
 

1 

 

 

Development and application of 

consistent path size route choice 

models 

 

 

 
 

Submitted in accordance with the requirements 

for the degree of Doctor of Philosophy 

by 

Lawrence Christopher Duncan 
 

 

 

 

 

 

University of Leeds 

February 2021 
  



 

2 

 

Intellectual Property and Publications 
The candidate confirms that the work submitted is his own, except where work which has formed part of 

jointly authored publications has been included. The contribution of the candidate and the other authors to this 

work has been explicitly indicated below. The candidate confirms that appropriate credit has been given 

within the thesis where reference has been made to the work of others. 

The work in Chapter 2 of this thesis has appeared in publication as follows: 

Duncan L, Watling D, Connors R, Rasmussen T, & Nielsen O, (2020). Path Size Logit route choice models: 

Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale 

network with GPS data. Transportation Research Part B, 135, p.1-40. 

I developed the main idea for the work together with all co-authors. I performed the theoretical analysis, wrote 

the computer code to implement the models, conducted the numerical experiments, and was lead author on the 

written manuscript. All co-authors provided recommendations on the modelling and comments on the results. 

The manuscript was improved by comments from all the co-authors. 

The work in Chapter 3 of this thesis is a manuscript under review: 

Duncan L, Watling D, Connors R, Rasmussen T, & Nielsen O, (under review). Formulation and solution of 

Adaptive Path Size Logit Stochastic User Equilibrium – addressing choice set robustness and internal 

consistency. 

I developed the main idea for the work together with all co-authors. I performed the theoretical analysis, wrote 

the computer code to implement the models, conducted the numerical experiments, and was lead author on the 

written manuscript. All co-authors provided recommendations on the modelling and comments on the results. 

The manuscript was improved by comments from all the co-authors. 

The work in Chapter 4 of this thesis has appeared in publication as follows: 

Duncan L, Watling D, Connors R, Rasmussen T, & Nielsen O, (2021). A bounded path size route choice 

model excluding unrealistic routes: Formulation and estimation from a large-scale GPS study. 

Transportmetrica A: Transport Science.  

I developed the main idea for the work together with all co-authors. I performed the theoretical analysis, wrote 

the computer code to implement the models, conducted the numerical experiments, and was lead author on the 

written manuscript. All co-authors provided recommendations on the modelling and comments on the results. 

The manuscript was improved by comments from all the co-authors. 

The work in Chapter 5 of this thesis is a manuscript in preparation: 

Duncan L, Watling D, Connors R, Rasmussen T, & Nielsen O, (in preparation). Formulation and solution of 

bounded path size stochastic user equilibrium models – consistently addressing route overlap and unrealistic 

routes. 

I developed the main idea for the work together with all co-authors. I performed the theoretical analysis, wrote 

the computer code to implement the models, conducted the numerical experiments, and was lead author on the 

written manuscript. All co-authors provided recommendations on the modelling and comments on the results. 

The manuscript was improved by comments from all the co-authors. 

This copy has been supplied on the understanding that it is copyright material and that no quotation from 

the thesis may be published without proper acknowledgement. 

 

©2021 The University of Leeds and Lawrence Christopher Duncan 

The right of Lawrence Christopher Duncan to be identified as Author of this work has been asserted by him in 

accordance with the Copyright, Designs and Patents Act 1988. 

  



 

3 

 

Acknowledgements 
First and foremost, I would like to express my sincere gratitude for all the guidance that my supervisors David 

Watling and Richard Connors have given me. They have both been incredibly supportive and inspirational 

throughout my time in Leeds. Their passion for the field and expertise in it were apparent from the outset and 

I have very quickly grown to share their enthusiasm. Under their exemplary supervision I have learnt valuable 

skills in how to be an independent academic researcher, and I owe a lot of my achievements to them. I would 

specifically like to thank David for encouraging me to pursue a PhD, helping me to obtain funding, and 

believing in my ability to complete it. 

I would also like to say a big thank you to my co-authors Thomas Kjær Rasmussen and Otto Anker 

Nielsen. I have benefitted immeasurably from the collaboration of research my supervisors and I have had 

with colleagues at the Technical University of Denmark (DTU). Thomas and Otto have both shown great 

enthusiasm to assist me in my research. Our meetings have been highly constructive, and their comments have 

greatly improved the quality of the papers. I extend my thanks to DTU for allowing me to use their data, and 

for also giving me access to their supercomputers, which I could not have conducted my experiments without. 

I thank Thomas, Otto, and DTU for their kind hospitality when I have visited.  

Additionally, I would like to thank Dave Milne for giving me the opportunity to be module assistant, 

which I enjoyed immensely and gained invaluable experience in teaching. And, I thank the Spatial Modelling 

and Dynamics group for giving me feedback on my presentations. I also acknowledge the financial support 

provided by the University of Leeds for awarding me a Doctoral Scholarship. 

  



 

4 

 

 

Abstract 
The congestion of road traffic has a negative effect on the environment, the economy, and the well-being of 

people. It has therefore long been the aim of transport agencies to reduce congestion levels by improving 

transport infrastructure. It is essential that decision processes related to improving transport infrastructure, are 

supported by a well-functioning transport model which gives a realistic representation of the route choices of 

travellers. The ability to predict driver route choice means that route flows can be calculated and areas of 

potentially high levels of congestion can be identified, in turn allowing us to investigate many eventualities, 

and assess any possible remedial measures. This thesis develops new route choice models, specifically: path 

size route choice models, and investigates their applicability for use in real-life, e.g. parameter estimation and 

solution within network equilibrium. 

Path Size Logit route choice models attempt to capture the correlation between overlapping routes by 

including correction terms within the route utility functions. This provides a convenient closed-form solution 

for implementation in traffic network models. The path size terms measure distinctiveness of routes; a route is 

penalised based on the number of other routes sharing its links, and the costs of those shared links. Typically, 

real road networks have many very long routes that should be considered unrealistic and excluded from route 

choice. Such unrealistic routes are problematic for the Path Size Logit (PSL) model because they negatively 

impact the choice probabilities of realistic routes when links are shared. The Generalised Path Size Logit 

(GPSL) model attempts to address this problem by weighting the contributions of routes to path size terms 

according to the ratio of route travel costs. However, the GPSL model is not internally consistent in how it 

defines routes as being unrealistic: the path size terms consider only travel cost, whereas the route choice 

probability relation considers disutility including the correction term. 

To solve these challenges, this thesis formulates a new internally consistent Adaptive Path Size Logit 

(APSL) model wherein routes contribute to path size terms according to the ratio of route choice probabilities, 

ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice 

probabilities.  

While the GPSL and APSL models improve upon PSL in reducing the negative effects of unrealistic 

routes, the issue is not solved entirely; this thesis also investigates how one might eliminate unrealistic route 

contributions entirely, as well as remove all the negative effects of unrealistic routes by also assigning them 

zero choice probabilities. In order to do so, the integration of PSL concepts with the recently developed 

Bounded Choice Model (BCM) (Watling et al, 2018) is explored. A mathematically well-defined Bounded 

Path Size (BPS) route choice model is then derived that utilises a consistent criterion for assigning zero choice 

probabilities to unrealistic routes while eliminating their path size contributions. 

Parameter estimation for the APSL and BPS models is explored in simulation studies and on a real-life 

large-scale network using GPS data, where computational feasibility is demonstrated. And, their application to 

Stochastic User Equilibrium is investigated, where it is proven that solutions are guaranteed to exist, and 

solution uniqueness is explored numerically. 
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Chapter 1. Introduction 

1.  Background & Motivation 
Road users worldwide waste many hours in congestion every day, which constitutes a large annual societal 

loss (see INRIX (2020) for figures in different countries). Moreover, a significant share of air pollution 

emissions is generated by road transport (e.g. over a quarter in Denmark (Klimarådet, 2020)), and it is well-

documented that these transport related emissions have numerous negative effects on e.g. the climate and 

public health (Krzyzanowski et al, 2005; Ortiz, 2019; Stanley et al, 2011). Lower traffic volumes – such as 

those experienced during the Covid-19 pandemic – also reduces the frequency of on-road vehicle collisions 

(INRIX, 2020), which also have a significant economic impact (Blincoe et al, 2002). On-the-other-hand, due 

to increased vehicle speeds experienced with lower traffic volumes, fatality rates of the vehicle collisions 

actually increased during the pandemic (INRIX, 2020). All of this evidence points to the need to understand 

the interplay between traffic congestion and economic, environmental, and safety issues. 

There is a consensus among researchers that neither the congestion challenge nor vehicle emission 

reduction goals (e.g. Klimarådet, 2020) can be fulfilled solely and cost-effectively through technological 

advancements (such as with biofuels or a transition to electric vehicles). A behavioural change of road users is 

therefore considered essential, and it is an aim of transport agencies to develop and introduce transport 

policies and interventions which instigate behavioural changes that reduce or beneficially displace congestion. 

For example, tolling schemes have proven successful in changing behaviour in cities such as Singapore, 

Stockholm, and London (Chin, 1996; Johansson, 2009; Tonne, 2008), and promise has been shown for region 

perimeter control schemes (e.g. in Nanjing (Du et al, 2015)).  

In order to evaluate the impacts of different potential policy schemes and interventions, and provide 

evidence to either support or oppose different strategies, it is essential that policy makers have a well-

functioning transport model, which gives a realistic representation of travel behaviour for travel adjustment 

predictions. Numerous models and computational methods have been constructed to capture the behaviour of 

drivers on road networks. These behavioural models classically involve predicting traffic flows on each road 

of the physical network with route choice traffic assignment models. Recent years have seen the emergence of 

more computationally attractive but less detailed approaches, however, that model traffic at an aggregated 

level exchanging between regions, for example using Macroscopic Fundamental Diagrams (e.g. Yildirimoglu 

& Geroliminis (2014), Batista & Leclercq (2019), Mariotte et al (2020)). This thesis, however, focuses on 

developing the traditional route choice traffic assignment model. There are two types of such model: Dynamic 

Traffic Assignment (DTA) and Static Traffic Assignment (DTA).  

DTA models how the traffic on the network evolves over time, such as how vehicle flow propagates 

through the network interacting with each other and road conditions such as traffic lights. Several traffic 

simulation software packages such as VISSIM (Fellendorf & Vortisch, 2010), METROPILIS (Marchal, 

2001), AIMSUN (Casas et al, 2010; Barcelo & Casas, 2005), and DynusT (Chiu & Bustillos, 2009; Chiu et al, 

2010; Chiu et al, 2011; Nava & Chiu, 2012) have been developed based on DTA, as tools for policy makers to 

simulate travel behaviour. DTA and associated software packages have been used to investigate policy 

interventions in real-life case studies, such as road pricing schemes in Maryland (Chen et al, 2015; Chen et al, 

2016), Tehran (Hosseinlou et al, 2016), and Athens (Gkotsis, 2006).  

STA on-the-other-hand provides an aggregate representation of the traffic flow on the network links for a 

given period of time, supposing the vehicle flow is omnipresent across the route links. Generally, STA models 

are unable to properly account for the effects of congestion, such as how bottlenecks lead to flow-metering 

and spillbacks (Brederode et al, 2019), though ‘quasi-dynamic’ approaches have been developed to extend 

STA models to approximate such phenomena (e.g. Bleimer et al, 2014; Brederode et al, 2019). Three quasi-

dynamic traffic assignment models in use in strategic transport model systems that, to some extent, capture 

flow metering and spillback effects are: QBLOK (Bakker et al, 1994) used solely in the Dutch national 

models system, SATURN (Van Vliet et al, 1980) used in e.g. London Highway Assignment Models, and the 

blocking back assignment in PTV VISUM (Bundschuh et al, 2006) used in e.g. the UK west midlands PRISM 

model and Flemish strategic traffic models (Brederode et al, 2019).  

Although DTA models are able to produce the most realistic traffic flows and travel times, they have a 

much higher computational complexity, require more sophisticated calibration techniques, have poor 

convergence/mathematical properties, and are less scalable (Bleimer, 2014). Furthermore, despite having the 
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potential to provide more accuracy than traditional STA models, quasi-dynamic approaches tend not to have a 

solid theoretical basis, presented merely as algorithms with no underlying mathematical problem formulation 

and without specified assumptions. This leads to poor accountability and makes calibration cumbersome and 

model-specific (Brederode et al, 2019). Standard STA models on-the-other-hand are attractive due to their 

ease of use, comprehensibility, computational convenience, well-behaved convergence properties, and 

mathematical rigour (Bleimer, 2014). This thesis therefore focuses on advancing STA models, though the 

concepts developed are relevant and applicable also for DTA and quasi-dynamic models. 

To set the background, the following details generic network modelling concepts. A typical road network 

has many spatially aggregated origins and destinations for trips, where a single Origin and Destination trip is 

known as an OD movement. Furthermore, each OD movement has a travel demand representing the number 

of drivers who make this trip in a given period of time (most commonly an hour). For each OD movement, 

there is a universal choice set of routes that a driver can take from the origin node to the destination node. A 

common assumption is that this set includes all ‘simple’ routes, i.e. where there are no cycles and no link is 

traversed more than once; this is to adhere to what one might consider as being sensible driving behaviours, 

though this assumption is not always upheld (Akamatsu, 1996).  

In order to model the route choice behaviour of drivers, it has been proposed that each link in a network 

has a generalised travel cost that relates to some observable attributes of that link. The most basic travel cost is 

link/road length, though travel time is the most commonly used. Other attributes, for example any existing toll 

along the road, can also be incorporated into the generalised travel cost, usually by quantifying that cost in 

terms of time. This means that all drivers in the network have a perception of the travel cost (time penalty) 

associated with traversing along each link. Furthermore, it is assumed that the generalised travel cost for each 

route in the network can be calculated by summing up the generalised travel costs of the links that make up 

that route, hence, for each OD movement, the drivers have a perception of the generalised travel time cost for 

each available route. 

As noted by e.g. Papola et al (2018), there are several distinct and unique aspects about route choice 

modelling that makes it a more challenging task than modelling other types of transport choices. The literature 

highlights four key aspects in particular.  

The first aspect, as discussed by e.g. Damberg et al (1996), is that the exact characteristics of each 

available route are not necessarily known to the driver, for example the exact lengths of each route, nor are the 

route characteristics necessarily perceived uniformly among the drivers, for example different drivers may 

perceive a toll charge differently. Furthermore, as noted by Watling et al (2015), there is likely to be 

uncertainty from the modeller in terms of quantifying the attractiveness of each route, for example unobserved 

attributes. Consider the example network in Fig. 1.1. The travel costs as stipulated on the links result in Route 

2 being the cheapest alternative. However, supposing there is some imprecision in measuring the travel costs, 

and that the 0.3 costing link in Route 3 was actually less, Route 3 could well be the best alternative. 

The second aspect, as Papola et al (2018) describes, is that the choice that drivers have of choosing 

between routes is often correlated due to the topological overlapping of routes on a road network. Correlation 

between alternatives is common in choice modelling, but the particular difficulty for route choice is that the 

correlation structure of overlapping routes on the physical network is highly complex, which causes 

computational problems. It is widely acknowledged, however, that not accounting for the correlations between 

routes leads to unrealistic route flow predictions (e.g. Hoogendoorn-Lanser et al, 2005; Chen et al, 2012). 

Considering again Fig. 1.1, Routes 2&3 both share the 0.8 costing link and a significant proportion of their 

journeys. Clearly, the decision to take Route 2 is closely aligned with the decision to take Route 3 and the two 

routes should not be considered independently. It is worth noting also that firstly, it has been questioned 

whether travellers are fully aware of the topological overlapping of routes (e.g. Hoogendoorn-Lanser et al, 

2005). Although two given routes may physically overlap and thus in theory drivers should perceive the two 

trips as being correlated, if the driver does not have a very good knowledge of the physical network structure 

(but does have an idea of the attractiveness of the two routes), then the fact that that the routes overlap is 

irrelevant. Secondly, regardless of the knowledge of the physical network structure, the correlation network 

structure that driver’s actual consider may be different to the physical one (Frejinger & Bierlaire, 2007; 

Frejinger et al, 2009). It is questioned whether it is behaviourally realistic for drivers to have full knowledge 

of the physical network and/or that they take into account correlation between all parts that overlap. Frejinger 

& Bierlaire (2007) suppose for example that drivers only consider correlation between subnetworks consisting 

of the key most prevalent parts, such as motorways. Also, in the DTA framework there can be correlation 
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between leaving at different times (Bhat, 1998), e.g. the decision to set-off at 8:00am is likely to be correlated 

with the decision to set-off at 8:05am as there may be similar travel experiences, however setting off at 

perhaps 10:00am the congestion state will be different entirely. 

The third aspect is that typical road networks have many possibilities for routes that should be considered 

unrealistic and excluded from route choice (Watling et al, 2015; Watling et al, 2018). It is important to point 

out here the distinction between an ‘unrealistic route’ and ‘low probability route’. Unrealistic routes are 

routes that exist as possible options from the network, but drivers would not realistically consider taking them, 

i.e. they are not in the choice set for drivers and have zero probability of being chosen. Low probability routes, 

however, are routes that are within the choice set for drivers but have a very low likelihood of being chosen. 

On real-life networks, enumerating and performing route choice with the universal set of routes is 

behaviourally unrealistic and computationally infeasible, as the set contains millions of routes even in 

medium-sized networks, the majority of which are not routes that drivers would realistically consider taking. 

However, there is nothing physical that can be measured to determine with certainty whether a route is 

realistic or unrealistic, it can be a matter of opinion. A useful modelling concept is that there are cut-offs in 

travel costs that can define realistic and unrealistic routes, for example a cut-off in terms of the length of a 

route (e.g. Watling et al, 2015; Rasmussen et al, 2015; Watling et al, 2018). But, there is no exact science to 

determining exactly where the cut-offs are, and these may not be uniform across all drivers. Nonetheless, there 

is often a large number of routes that would clearly not be considered in the mental map that travellers build in 

their mind when making their route choice decisions, e.g. very long routes. Considering Fig. 1.1, it is clear 

that Route 1 is so costly that no driver would realistically consider taking it. It is less clear, however, whether 

the travel cost of Route 4 should mean it is considered unrealistic. It is worth noting route ‘outliers’ are 

common in tracked route data (e.g. GPS data), where the route an individual has taken between the origin and 

destination appears to be unrealistic/illogical. However, this is often because either: a) there is a model mis-

specification error in that there are attributes of the route not captured by the modeller that the driver 

considered (for example the route passing by nicer scenery), and/or, b) there is a data error in that the data did 

not capture the true origins and true destinations of trips where a single route observation may actually contain 

multiple different trips (for example a driver may travel to drop a kid off at school and then to work, captured 

as one trip, but it is actually two). Thus, when the term ‘realistic’ is used for a route it means realistic as 

defined by the model and the utility attributes assumed.  

The fourth aspect is that trips are affected by congestion; as Patriksson (2015) describes, as the number of 

drivers travelling on a road increases, the limited capacity of the road results in increased congestion, and 

hence increases in travel time. Congestion is known to highly influence travel behaviour and the distribution 

of traffic. It is thus crucial that the effects of congestion are incorporated into modelling route choice, and this 

is done through traffic assignment. Considering Fig. 1.1, supposing that the travel demand is 𝑑 = 100, and the 

capacity of each link is 80 before a jamming scenario occurs, one might expect the drivers to distribute 

themselves in such a way to avoid the jamming situation, for example by 70 using the cheaper Routes 2&3 

and 30 using Route 4.  
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Fig. 1.1. Example network. 

 

For behaviourally realistic traffic flow predictions, one must address these four key challenging aspects of 

route choice modelling. Numerous modelling approaches have been developed to address these challenges; 

however, as will be discussed in the subsequent sections and explored in more detail in the thesis, some of the 

models/approaches have issues with theoretical consistency, robustness, and/or being mathematically well-

defined. The motivation for the research in this thesis was therefore to solve this by developing a new route 

choice modelling framework.  

Before deciding on the approach to pursue, there were some requirements. The aim was to develop a 

model that would be suitable for traffic flow predictions on real-life networks, which are typically large-scale 

in size and present a greater computational challenge due to the greater number of links, nodes, routes, and 

OD movements. It was therefore considered crucial that the developed model could be solved in feasible 

computation times on large-scale networks, which would hence allow for rigorous analyses of policy schemes, 

rather than potentially only being able to test a handful of scenarios for a scheme in a feasible amount of time. 

Furthermore, the ability to successfully estimate the parameters of a model is crucial in order to be able to 

apply the model for e.g. policy testing, and hence the other requirement was that the proposed model could be 

successfully estimated. In order to set the background for the research in this thesis, and to set out the 

motivation for the research directions pursued, the following four subsections below discuss existing 

modelling approaches for the four key challenging aspects of route choice modelling, and review their 

potential suitability for the requirements set out above. 

 

1.1 Aspect 1: Allowing for Driver/Modelling Uncertainties 

In choice theory, the utility of a product or service is a scalar measure of its attractiveness; hence, the utility of 

a route relates to its travel cost. The Utility Maximisation concept states that when a driver is choosing 

between routes they will attempt to choose the route that maximises their utility, i.e. that will minimise their 

travel time cost. The all-or-nothing (AON) model could be considered as the most primitive route choice 

model, which proposes that all drivers will opt to travel upon the lowest costing route(s) in each OD choice 

set: maximising total utility. The AON model has however been widely discredited for being unrealistic. One 

of the reasons for this is that the model assumes all drivers have a uniform perception of the cost of each 

route, and that there is no uncertainty from the modeller in terms of any unobserved attributes or any 

unobserved heterogeneity in the utilities.  

The well-known Random Utility Theory acknowledges the difficulties in analysing route choice 

behaviour and supposes that the utilities are not known with any certainty. To compensate for this, the utilities 

are treated as random variables, and thus include random error terms. The probability that the utility of a route 

is perceived to be greater than another depends upon the distribution of the error terms. Thus, assuming 

drivers (travellers) wish to maximise their utility (i.e. wish to choose the lowest costing route (path)), Watling 

et al (2015) state Stochastic User Conditions: 

“For any OD movement, the proportion of travellers on a path is equal to the probability that the path has a 

perceived utility greater than [or equal to] the perceived utility of all alternative paths.” 

Random Utility Models (RUMs) propose different distributions for the random error terms. For example, 

Multinomial Logit (MNL) (Dial, 1971), Multinomial Probit (MNP) (Daganzo & Sheffi, 1977), Multinomial 

Gammit (MNG) (Cantarella & Binetti, 2002), and Multinomial Weibit (MNW) (Castillo et al, 2008), propose 

that the error terms assume Gumbel, Normal, Gamma, and Weibit distributions, respectively. 

 

1.2 Aspect 2: Capturing Route Correlations 

The deficiency of the MNL model in its inability to capture correlations between overlapping routes is well-

known. This issue stems from the underlying assumption made by the MNL model that the random error 

terms are Independently and Identically Distributed (IID) with the same, fixed variances (Sheffi, 1985). 

Numerous adaptations of the MNL model have been proposed in the literature which relax the IID assumption 

– specifically the independently distributed assumption – to attempt to capture the correlation between routes. 

These extended Logit models can be classified into three groups according to the model structures as 

suggested by Prashker & Bekhor (2004): GEV structures, Mixed Logit models, and MNL-modification 

models. Alternative RUMs to MNL either capture route correlations implicitly or utilise concepts from 
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extended Logit models to similarly adapt the model. Collating extended Logit models and alternative RUMs, 

there are three general types of correlation-based route choice models: GEV structure models, simulation 

models, and correction term models. Each of these categories is reviewed in turn below. 

 

1.2.1 GEV Structure Models 

GEV structure models are those that are based on the Generalized Extreme Value (GEV) theory (McFadden, 

1978), which use a multi-level tree structure to capture the similarity among routes through the random error 

component of the utility function. These models include: Cross-Nested Logit (CNL) (Vovsha, 1997; Bekhor 

& Prashker, 1999), Paired Combinatorial Logit (PCL) (Chu, 1989; Bekhor & Prashker, 1999; Gliebe et al, 

1999; Pravinvongvuth & Chen, 2005), Generalized Nested Logit (GNL) (Bekhor & Prashker, 2001; Wen & 

Koppelman, 2001), and the Network GEV model (Bierlaire, 2002; Daly & Bierlaire, 2006). For PCL, the 

logic is that each pair of routes in a choice set form a nest and routes are chosen from each nest. For 

CNL/GNL, each link in the network corresponds to a nest and routes using each link are chosen from that 

nest. The Network GEV model uses a fairly general class of networks to generalise the use of trees to 

represent nested logit models to a network representation.  

Computational features: Although GEV structure models have closed-form probability expressions, due 

to their multi-level tree structure the choice probabilities are complex to compute, where the computational 

burden escalates significantly as the scale of network / choice set sizes increase. This is because the number of 

nests increases exponentially as the number of links/routes increases. This raises concerns over the 

applicability of GEV structure models to real-life large-scale networks, where there are potentially thousands 

of links and routes.  

Estimation features: There are numerous different issues involved in estimating the numerous different 

specifications of the CNL model for route choice, and several studies have discussed issues in detail, for 

example see Bierlaire (2006), Abbe et al (2007), Marzano & Papola (2008). To summarise a few of the issues 

documented: a) there may be infinite specifications with different choice probabilities that lead to the same 

covariance figures (Marzano & Papola, 2008); b) the number of unknown parameters to be estimated 

increases as the number of routes increases (Marzano & Papola, 2008); c) several studies have found that 

when estimating the nesting coefficients the model tends to collapse to MNL (Ramming, 2002; Prato, 2005; 

Prato & Bekhor, 2006); d) the maximum likelihood estimation functions are not concave which significantly 

complicates the identification of a global maximum (Bierlaire, 2006); and, e) because of d), nonlinear 

programming methods tend to converge towards local maxima of the log-likelihood function, and in practice, 

one observes a significant influence of the initial values provided to the algorithm on the estimated parameters 

(Abbe et al, 2007). GNL requires the estimation of an additional parameter over CNL which makes parameter 

estimation more difficult. 

 

1.2.2 Simulation Models 

Simulation models include Mixed Logit models (Ben-Akiva & Bolduc, 1996; McFadden & Train, 2000) such 

as the Factor Analytic Logit Kernel model (Bekhor et al, 2002), as well as alternative RUMs to MNL such as 

MNP and MNG. Mixed Logit models divide the error terms into two Gumbel and Gaussian distributed 

variable components which ensures the Logit structure is kept while allowing for capturing interdependencies 

between routes. MNP and MNG etc. do not suffer from the same issue as MNL, as the similarity between 

each pair of routes is accounted for by allowing for covariance between the error terms, and route correlations 

are thus captured implicitly.  

Computational features: The main problem for simulation models is that they do not have closed-form 

expressions and solving the choice probabilities requires either Monte Carlo simulation or alternative 

methods, all of which are computationally burdensome. Many analytical approximation methods have been 

proposed to solve the MNP model, all aiming to provide the best compromise between speed and accuracy 

(reviews can be seen in e.g. Rosa (2003), Connors et al (2014)); however, performance of these approaches 

are assessed with a very limited number of routes, typically up to just 25 alternatives. It is generally 

considered infeasible to accurately compute MNP, MNG etc. probabilities on large-scale networks with 

thousands of routes. 

Estimation features: Studies have discussed/found difficulties in estimating the parameters of the Factor 

Analytic Logit Kernel model: Ramming (2002) finds instable estimates of the covariance parameters, despite 

the very large number of random draws, while Prato (2005) discusses the difficulty in obtaining significant 
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estimates. And, there are also issues involved in estimating the MNP model, including: identification issues 

arising from the number of parameters that may need to be estimated (Dansie, 1985; Bunch, 1991; Keane, 

1992); and, difficulties in accurately computing small choice probabilities (Connors et al, 2014).  

 

1.2.3 Correction Terms Models 

Correction term models modify the deterministic utilities / probability relations by including correction terms 

that adjust the choice probabilities in order to approximate the correlation between routes. These models 

include: C-Logit (CL) (Cascetta et al, 1996), Path Size Correction Logit (PSCL) (Bovy et al, 2008), Path Size 

Logit (PSL) (Ben-Akiva & Ramming, 1998), Path Size Hybrid (PSH) (Xu et al, 2015), and Path Size Weibit 

(PSW) (Kitthamkesorn & Chen, 2013). CL proposes that the correction terms are based upon commonality 

factors that measure the similarity of routes, and penalises the utilities accordingly. In contrast, path size 

models propose that the correction terms are based upon path size terms that measure route distinctiveness: a 

route is penalised based on the number of other routes sharing its links, and the lengths/costs of those shared 

links.  

Computational features: The main attraction of correction term models is that they all retain the single-

level tree structure as MNL and have simple closed-form expressions. This means that the route choice 

probabilities are generally easy and quick to compute, though as the size of network increases, so does the 

computational effort required to enumerate the overlap between all routes in a choice set. They are a useful 

and practical approach to approximating the correlation, however more complex models can capture route 

correlations more accurately. 

Estimation features: Correction term models are frequently estimated on real-life large-scale networks. 

Their simplicity means that reasonable estimates for parameters can be obtained with relative ease. Examples 

of estimation studies for correction term models are: Ramming (2002), Bovy et al (2008), Hoogendoorn-

Lanser et al (2005), Frejinger & Bierlaire (2007), and Prato (2013). 

 

1.3 Aspect 3: Dealing with Unrealistic Routes 

The typical route choice modelling approach for dealing with unrealistic routes, is to employ some kind of 

heuristic method that attempts to explicitly pre-generate a route choice set containing just the routes 

considered realistic. Numerous choice set generation schemes have been proposed, such as: distance-bounded 

enumeration (Leurent, 1997), constrained enumeration (Friedrich et al, 2001; Prato & Bekhor, 2006), 

probabilistic generation techniques (Cascetta & Papola, 2001; Frejinger et al, 2009), and various deterministic 

or stochastic shortest path algorithms (e.g. Dijkstra, 1959; Sheffi & Powell, 1982; Ben-Akiva et al, 1984). 

The choice set generation approach is problematic, however. Firstly, it leads to theoretical 

inconsistencies, since the route generation criteria is not consistent with the calculation of the choice 

probabilities among generated routes. Consequently, a route found by the generation criteria may be 

considered unrealistic by the choice probability criteria, and vice versa, thus leading to inaccurate results. 

Secondly, generating the exact choice sets of realistic routes is very difficult to do, especially on large-scale 

networks, where there are a greater number of possible routes to generate spanning over a greater distance, 

and hence there is a greater amount uncertainty on where the cut-off is between realistic and unrealistic. In 

large-scale case studies, choice sets are typically generated to be large enough so that one can be fairly certain 

the realistic alternatives are present, regardless of how many unrealistic routes are generated. This is 

particularly problematic for many correlation-based models since many are not choice set robust, and results 

are thus negatively influenced by the presence of the unrealistic routes as well as highly sensitive to the choice 

set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming, 2002; Ben-Akiva & 

Bierlaire, 1999; Bekhor et al, 2008). Thirdly, several of the methods are based on Monte Carlo simulation, 

which introduces a lack of repeatability of results due to this additional source of randomness. 

Since it is difficult to obtain choice sets of realistic routes with absolute certainty for the PSL model to be 

suitable, a pragmatic approach that has been proposed is to utilise a weighted path size contribution technique 

along with choice set generation to attempt to reduce the impact any present unrealistic routes may have on 

the choice probabilities of realistic routes. Weighted path size contribution techniques weight the contribution 

of routes to path size terms with a path size contribution factor. Ben-Akiva & Bierlaire (1999) initially 

proposed that the contribution factor should be the ratio of the length/cost of each route compared to the 

shortest/cheapest alternative in the choice set. Hence, contributions of high costing routes compared to the 
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cheapest alternative are reduced. This was criticised by Ramming (2002) however, since a route that is 

completely distinct may have a non-zero path size correction term, thus resulting in an undesired penalisation 

upon the utility of that route.  

To combat this, Ramming (2002) proposes the Generalised Path Size Logit (GPSL) model. The GPSL 

model proposes that the contribution factor is based upon ratios of either length or travel cost between routes, 

and hence routes with excessively long lengths / large travel costs have a diminished impact upon the 

correction terms of routes with short lengths / small travel costs, and consequently the choice probabilities of 

those routes. GPSL requires the estimation of an additional parameter over the PSL model which makes 

parameter estimation more difficult. Estimates for the parameter can be justified by assessing the goodness-of-

fit, though the best estimates in case studies tend to be very large values meaning that it is difficult to provide 

a behavioural interpretation for the parameter. 

An approach that has recently been proposed for consistently dealing with unrealistic routes is the 

Bounded Choice Model (BCM) (Watling et al, 2018). The BCM has a consistent criterion for determining 

restricted choice sets of realistic routes, and route choice probability: a bound is applied to the difference in 

random utility between each given route and an imaginary reference route alternative, so that routes only 

receive a non-zero choice probability if the difference between its random utility and the random utility of the 

reference alternative is within the bound. Furthermore, the probability by which each route is chosen relates to 

the odds associated with choosing each alternative versus the reference alternative. A special case of the BCM 

is where the reference alternative is that with the maximum deterministic utility i.e. the route with the cheapest 

generalised travel cost, so that a route only receives a non-zero probability if its cost is within some bound of 

the cheapest route. The BCM has a simple closed-form probability relation that is similar to MNL and the 

model is thus suited for large-scale network applications, though estimation of the model has not yet been 

explored. The key behavioural issue for the BCM however is that it does not account for route correlations.  

 

1.4 Aspect 4: Incorporating the Effects of Congestion 

As Patriksson (2015) describes, the travel speed on a link tends to decrease as the volume of traffic on that 

link increases, slowly at first, but as the effects of congestion become more significant, average speed 

decreases more rapidly, until the congestion level has developed into a jamming situation, where very little 

flow can be observed. Each link in a network thus has a link cost function that relates travel time for the link 

with vehicle flow upon it, where travel time increases with flow. There is thus a feedback effect in that drivers 

make decisions on which routes to take according to the travel times they perceive for the routes, which in 

turn depend upon the route choice decisions and the consequent route and link flows. 

To model this feedback effect, the concept of road network user equilibrium was introduced. In urban 

areas such as cities, the travel demand is so large that high levels of congestion are often experienced, 

particularly during peak hour times. Time wasted in congestion has a big influence on how travellers organize 

their lives and decide between available routes. Moreover, it is well-known that travel behaviours tend to be 

habitual. Wardrop (1952) thus proposed the Deterministic User Equilibrium (DUE) model, based upon 

Wardrop’s first principle of equilibrium:  

“The journey times on all the routes actually used are equal, and less than those which would be experienced 

by a single vehicle on any unused route.” 

This principle makes some important assumptions about driver behaviour. As Damberg et al (1996) and 

Patriksson (2015) describe, the principle assumes that all drivers have complete and accurate information 

about all available routes, including the travel cost (time) for each route, where every driver has the exact 

same perception of travel cost. Furthermore, it is assumed that the routes chosen by drivers are those which 

are individually perceived as having the lowest cost, i.e. all drivers look to minimise their travel cost. The 

result from such conditions is a distribution of route flows such that no driver can improve upon their travel 

cost by unilaterally changing routes, hence resulting in a user equilibrium. For low travel demand, the DUE 

model is equivalent to the AON model where all drivers opt to take the single minimum costing route 

(providing there are no ties). As the travel demand increases, the lower costing routes increase in travel time 

(due to greater flows along them) and thus routes previously unused become more attractive and the flows are 

distributed across more minimum costing routes. 

The DUE model makes some behaviourally questionable assumptions about driver behaviour, however. 

Similar to AON, the model assumes that all drivers have complete and accurate information about all 
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available routes, including the travel costs for each of the routes (which are flow-dependent), where every 

driver has the exact same perception of travel cost. Moreover, it assumes that there is no uncertainty from the 

modeller in terms of any unobserved attributes or any unobserved heterogeneity in the utilities. The DUE 

model is heavily dependent upon these behavioural assumptions, and it would be natural to assume that traffic 

flows do not satisfy the user equilibrium conditions when these assumptions are not true, for example if 

drivers do not all have perfect information about the cost of each route, or perceive travel costs differently 

(Damberg et al, 1996). The DUE model does, however, implicitly capture route correlations, and deals with 

unrealistic routes, since zero flows are given to routes that are not minimum costing.  

Since it is behaviourally questionable (due to e.g. driver/modelling uncertainty) that a route with a cost 

only slightly higher than the minimum costing routes goes unused (i.e. as in DUE), one approach that has been 

proposed for addressing this is the Boundedly Rational User Equilibrium (BRUE) model (Mahmassani & 

Chang, 1987; Guo & Liu, 2011; Lou et al, 2010; Di et al, 2013; Di & Liu, 2016). In the context of route 

choice, the theory of bounded rationality has been interpreted as establishing the existence of ‘indifference 

bands’ on the excess cost of a route relative to the minimum costing route (Mahmassani & Chang, 1987; Hu 

& Mahmassani, 1997; Jayakrishnan et al, 1994; Mahmassani & Liu, 1999; Srinivasan & Mahmassani, 1999). 

BRUE proposes that drivers are indifferent to route cost differences within their indifference bands, and thus a 

space of route flow equilibrium solutions exists that represents drivers’ inertia to route-switching. This 

extends the used route selection of DUE to include some sub-optimal routes while still excluding those that 

are unrealistic. A big issue however is that the deliberate non-uniqueness of solutions makes the approach 

unsuitable for real-life applications (such as policy testing). 

To compensate for driver/modelling uncertainty of the route travel costs, Daganzo & Sheffi (1977) extend 

the DUE model to include a random component in the travel cost function, thus forming the Stochastic User 

Equilibrium (SUE) model. The probability that a specific route is chosen, given the actual cost of the route, is 

then dependent upon the probability distribution of the random component, i.e. dependent upon the underlying 

RUM. Solutions to the SUE model are such that the route flows result in travel costs (and thus route utilities) 

that satisfy the Stochastic User Conditions as described above, where the proportion of the travel demand flow 

on each route is equal to the probability that that route has the perceived highest utility.  

SUE is expressed as a fixed-point problem and computing the SUE route flows thus requires a solution 

algorithm. These algorithms involve weighting the route flows between iterations with step-sizes, to 

eventually converge towards a solution. There are three main types of step-size scheme, as suggested by Chen 

et al (2014). Some SUE models can be expressed as equivalent Mathematical Programming (MP) 

formulations, and thus SUE for these models can be obtained through solving some convex optimisation 

problem where the step-sizes are exact. For SUE models that are not expressed as MP formulations, step-sizes 

are either pre-determined e.g. the method of successive averages and its variants such as the method of 

successive weighted averages (Liu et al, 2009) or the self-regulated averaging method (e.g. Yang et al, 2013; 

Xu & Chen, 2013; Kitthamkesorn & Chen 2013, 2014; Chen et al, 2014; Yao et al, 2014), or inexact such as 

Armijo’s step-size strategy (Armijo, 1966; Bertsekas, 1976) or self-adaptive schemes such as those described 

by Chen et al (2012, 2013), Xu et al (2012), and Zhou et al (2012). 

Like there are different computational challenges for solving the route choice probabilities for the 

different correlation-based route choice models, there are also different computational challenges involved in 

their application to SUE. The SUE application of each correlation-based route choice model category is 

reviewed in turn below. 

GEV structure models. Equivalent MP formulations for CNL, GNL, and PCL are given by Bekhor & 

Prashker (1999, 2001). Bekhor & Prashker (2001), Chen et al (2003) and Bekhor et al (2008) provide path-

based partial linearization algorithms for solving GNL SUE, PCL SUE, and CNL SUE, respectively. Due to 

their multi-level tree structure, the choice probabilities and in particular MP formulations are complex to 

compute, where the computational burden escalates significantly as the scale of network / choice set sizes 

increase. This raises concerns over their applicability to SUE on large-scale networks. Pre-determined, exact, 

and inexact step-size schemes have been investigated to assess computational trade-off, i.e. where the 

computation time required to perform each iteration is compared with the number of iterations required for 

convergence (Bekhor & Prashker, 2001; Bekhor et al, 2008; Chen et al, 2014).  

Simulation models. Sheffi (1985) formulates MNP SUE as a mathematical programme and presents a 

flow-averaging solution algorithm. Cantarella & Binetti (2002) give flow-averaging and cost-averaging 

algorithms for solving MNG SUE. These models are attractive behaviourally due to their ability to accurately 
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capture route correlations, however there are computational issues for SUE. As discussed previously, 

computing the choice probabilities comes with a high computational cost, and increasing the accuracy of 

choice probability computation substantially adds to the computational burden. However, as Sheffi (1985) 

explores, in SUE application, one can trade-off the accuracy of the probabilities (and thus computation times 

of each iteration) with rate of SUE convergence. Nonetheless, due to the random nature in which the search 

direction is obtained in typical simulation-based algorithms, there are difficulties in suitably measuring flow 

convergence (Sheffi, 1985). Moreover, numerous studies have found convergence very slow on large-scale 

networks (Rich et al, 2015; Manzo et al, 2015; Rasmussen et al, 2017; Connors et al, 2014). 

Correction term models. Zhou et al (2012) give equivalent MP formulations for Length-based CL SUE 

(LCL SUE) and Congestion-based CL SUE (CCL SUE), where length and congestion based refers to whether 

the correction term is computed using length or congestion-dependent travel cost. Chen et al (2012), 

Kitthamkesorn & Chen (2013), and Xu et al (2015) give equivalent MP formulations for PSL SUE, PSW 

SUE, and PSH SUE, respectively. Chen et al (2012) present a path-based partial linearization algorithm for 

solving LCL SUE and PSL SUE. Zhou et al (2012) present a path-based Gradient Projection algorithm for 

solving LCL SUE and CCL SUE, and Xu et al (2012) and Chen et al (2013) assess the computational trade-

off for different step-size strategies. Kitthamkesorn & Chen (2013) develop a path-based partial linearization 

algorithm for solving PSW SUE, and Kitthamkesorn & Chen (2014) propose a link-based algorithm. These 

models have probability relations and MP formulations that are relatively easy and quick to compute, which 

makes them more suitable for SUE applications on large-scale networks. However, they are a heuristic 

approach to capturing route correlations, and as discussed in more detail below, theoretical consistency is 

often overlooked in the SUE formulations so that solution methods are simpler/quicker to implement. 

GEV structure and correction term models do not require random simulation to compute choice 

probabilities, and search directions can be computed exactly. This means that convergence can be suitably 

measured, and more optimal step-size schemes / algorithms can be developed for better convergence. 

However, internal consistency is often overlooked in the SUE formulations for these models so that solution 

methods are simpler/quicker to implement. An SUE model is internally consistent if the same definition of 

generalised cost is used in all components of the specification. In SUE application where the travel costs 

within the deterministic utilities are flow-dependent (congested), the route similarity features (PCL, CL) or 

link-route prominence features (CNL, GNL, PSL, PSW, PSH) in the correlation components should also be 

based upon the congested cost. Most studies use topological length or uncongested cost (free-flow travel time) 

for these features, however this may be inaccurate behaviourally since a short route can have a large 

congested travel cost, and vice versa. Studies that have been implemented with flow-dependent correction 

terms include CCL SUE by Zhou et al (2012), Xu et al (2012), and Chen et al (2013), and PSL Restricted 

SUE (discussed below) by Rasmussen et al (2015).  

Just as for route choice probability computations, the typical approach for dealing with unrealistic routes 

for SUE modelling is to attempt to exactly generate the realistic routes using some kind of heuristic method. 

There are however two ways in which route generation is typically done for SUE. The first way is also 

through choice set pre-generation which leads to the same issues as discussed above. The second way is to 

employ a column generation approach within implementation of the SUE algorithm, thereby generating routes 

as the algorithm progresses until the convergence criteria are met. The column generation approach is likely to 

have improved theoretical consistency over the choice set pre-generation approach, since routes are typically 

generated given the current link costs at the algorithm iterations, however the route generation and route flow 

distribution criteria are not guaranteed to be consistent. Furthermore, solutions emitted by the column 

generation algorithms have the potential to differ dramatically depending on the initial conditions set, 

especially for many correlation-based SUE models that are not choice set robust. For simulation SUE models, 

typical solution methods do not require explicit route generation and thus the accuracy of results is not 

dependent upon the choice sets generated, although the routes generated may vary from different algorithm 

runs. 

Recent years have seen the emergence of some promising SUE approaches for dealing with unrealistic 

routes in a consistent way. Watling et al (2015) and Rasmussen et al (2015) develop a Restricted Stochastic 

User Equilibrium (RSUE) approach whereby the choice set of used routes is determined by some explicit 

constraint that is dependent on the equilibrium solution. Rasmussen et al (2015) then formulate the RSUE 

with a Threshold (RSUET) model which further extends the approach to include a second restriction, 

determined partly by an exogenously defined cost threshold. PSL correction terms are added to both of these 
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approaches to also deal with the route overlap problem. The disadvantage with these approaches, however, is 

that equilibrium solutions are not guaranteed to exist, and even in cases where solutions do exist, there is no 

guarantee of the uniqueness of the solution. This lack of theoretical guarantee of existence and uniqueness is a 

major price to pay when one considers the typical use of such models in policy testing, meaning that one 

cannot guarantee to attribute a unique forecasted benefit to any tested measure. Furthermore, the lack of a 

mathematically well-defined underlying route choice model with a continuous choice probability function 

means that the approach is not robust (i.e. potentially sensitive to small changes to network/model 

specifications). 

Motivated by the desire to develop an SUE model that consistently addresses unrealistic routes but has 

guaranteed existence and uniqueness of solutions, as well as a mathematically well-defined underlying route 

choice model, Watling et al (2018) formulated the BCM (as described above) and applied it to SUE, thus 

formulating Bounded SUE (BSUE). BSUE applies a bound upon congested cost so that the choice sets of 

realistic routes are equilibrated along with the route flows. The issue for the BCM (and thus BSUE), however, 

as previously mentioned, is its inability to capture route correlations.  

Table 1.1 summarises the features of the network equilibrium models mentioned above. A model which 

does not have an implicit mechanism for dealing with unrealistic routes, does it explicitly through e.g. choice 

set pre-generation. 
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Network 

Equilibrium Model 

Well-defined 

underlying route 

choice model 

Allows for 

driver/modelling 

uncertainty 

Mechanism for 

capturing route 

correlations 

Implicit 

mechanism for 

dealing with 

unrealistic routes 

DUE No No - Yes 

BRUE No No - Yes 

MNL SUE Yes Yes None No 

CNL SUE Yes Yes Explicit No 

GNL SUE Yes Yes Explicit No  

PCL SUE Yes Yes Explicit No 

MNP SUE Yes Yes Implicit No 

MNG SUE Yes Yes Implicit No 

MNW SUE Yes Yes None No 

(L/C)CL SUE Yes Yes Explicit No 

PSL SUE Yes Yes Explicit No 

PSW SUE Yes Yes Explicit No 

PSH SUE Yes Yes Explicit No 

MNL RSUE No Yes None Yes 

PSL RSUE No Yes Explicit Yes 

PSL RSUET No Yes Explicit Yes 

BSUE Yes Yes None Yes 

Table 1.1. Features of different network equilibrium models. 

2.  Research Directions & Thesis Outline 
The previous section discussed modelling approaches for addressing four key challenging aspects of route 

choice modelling highlighted in the literature: allowing for driver/modelling uncertainty, capturing 

correlations between overlapping routes, dealing with unrealistic routes, and incorporating the effects of 

congestion. While many promising approaches have been developed, no approach has been developed thus far 

that addresses all four of these challenges in a theoretically consistent, robust, and mathematically well-

defined way, and moreover, has been shown to be both computationally feasible and estimatable on real-life 

large-scale networks. Below, existing approaches are reviewed in summary, followed by a discussion on how 

the directions to pursue were decided upon. 

 

Summary review of existing route choice modelling approaches 

Simulation models are the most behaviourally attractive approach for addressing the route overlap 

problem, since route correlations are captured implicitly and consequently accurately. Furthermore, solution 

methods for computing choice probabilities and solving SUE do not necessarily require explicit route 

generation, and thus the accuracy of results is not necessarily dependent upon the choice sets generated nor 

highly influenced by unrealistic routes. However, there are major concerns over their suitability for real-life 

large-scale network applications. Accurately computing route choice probabilities on large-scale networks 

where there are potentially thousands of links/routes requires an extremely high computational cost, while 

there are also uncertainties involved in successfully estimating model parameters. Moreover, there are also 

issues in their SUE application, for example difficulties measuring convergence and slow convergence on 

large-scale networks.  

GEV structure models can in theory capture route correlations accurately. However, due to the immense 

number of routes and the complexity in which they overlap on large-scale networks, estimating each 

individual e.g. similarity/nesting/inclusion parameter is infeasible, and instead, heuristic functional 

relationships have been proposed – using knowledge of network topology – in order to represent these 

parameters and simplify estimation. With this, it is uncertain exactly how accurately route correlations are 

captured, and there is some uncertainty in which functional relationships are best to adopt. Moreover, there are 

questions whether the functional relationships adopted thus far in SUE formulations are suitable given the lack 
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of consistency between the costs used in different components. Numerous difficulties have been documented 

in estimating GEV structure models, including in some studies results implying a collapse to MNL, while the 

complexity of the probability relations / MP formulations raise concerns over computational feasibility on 

large-scale networks. Furthermore, results can be sensitive to the adopted choice sets, but generating exact 

choice sets of realistic route alternatives is very difficult to do on large-scale networks. 

Correction term models take a heuristic approach to capturing route correlations, and as such, are 

typically less accurate than the other approaches, but are very attractive for real-life large-scale applications. 

They have choice probabilities and MP formulations that are relatively easy and quick to compute, meaning 

SUE can be solved in feasible computation times on large-scale networks, and have also been shown to be 

estimatable in large-scale applications. A key issue, however, is that results also can be sensitive to the 

adopted choice sets and negatively influenced by the presence of unrealistic routes in the choice sets. This 

highlights the importance of obtaining exact choice sets of realistic routes to perform route choice / SUE with, 

which is very difficult to do on large-scale networks, while it also leads to theoretical inconsistencies. 

 

Due to the attractiveness of correction term models for real-life large-scale network applications, and inspired 

by some promising approaches that have been proposed for addressing issues with unrealistic routes for these 

models, the following two research directions were chosen to pursue. Below, these research directions are 

detailed, and the contents of the thesis is outlined.  

 

2.1 Research Direction 1 – A New Internally Consistent Weighted Path Size Contribution 

Technique 

The PSL model attempts to capture correlations between routes by including correction terms within the route 

utility functions. These correction terms depend upon path size terms which measure the distinctiveness of 

routes: a route is penalised based on the number of other routes sharing its links, and the costs of those shared 

links. The key issue for PSL, however, is that the choice probabilities are extremely sensitive to the choice 

sets adopted since all routes contribute equally to path size terms, and as such, results are extremely sensitive 

to the choice set generation method adopted. Moreover, it is crucial for PSL that the choice sets contain 

realistic alternatives only, as the inclusion of a single unrealistic alternative can have a considerable and 

negative effect on the choice probabilities of the realistic routes.  

Acknowledging the difficulties in obtaining exact choice sets of realistic routes for PSL to be suitable, a 

pragmatic approach that has been proposed is to utilise a weighted path size contribution technique along with 

choice set generation, to attempt to reduce the impact any present unrealistic routes may have on the choice 

probabilities of realistic routes. The idea is that instead of all routes having equal path size contributions to the 

path size terms of other routes (i.e. PSL) – and therefore the utilities and consequently the choice probabilities 

of realistic routes are undesirably adjusted to capture correlations between routes not even considered by 

drivers – the contributions are weighted so that the probabilities of realistic routes are only minorly adjusted 

from link sharing with generated unrealistic routes. This is a promising approach as it relaxes the importance 

of generating exact choice sets of realistic routes; however, the path size contribution factors proposed thus far 

have deficiencies, and the first research direction was to address this by developing a new contribution factor.  

As discussed previously, the initial contribution factor proposed – where routes are weighted according to 

their length/cost compared to the shortest/cheapest route – is problematic, since a route that is completely 

distinct may have a non-zero path size correction term, thus resulting in an undesired penalisation upon the 

utility of that route.  

The GSPL model attempts to address this by proposing each route contributes to the path size term of 

another according the ratio of length/cost between the routes. An issue that has not yet been brought to 

attention, however, nor addressed, is internal consistency. There may be many ways in which a model can be 

internally (in)consistent, however internal consistency is used in this thesis to describe two specific features of 

path size logit route choice models. 

The first feature is how the path size model components define travel cost. Typically, path size logit 

models use length or free-flow travel time costs within the path size terms to measure link-route prominence. 

However, this is potentially inconsistent as generalised travel cost is used to measure the attractiveness of 

routes within the utility component. For example, a short route may have a large generalised travel cost, and 

vice versa. 
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The second feature is how the path size model components define routes as unrealistic. The GPSL path 

size correction terms define a route as unrealistic if it has a large length / travel cost, however the route choice 

probability relation considers disutility including the correction term. There are hence potentially inconsistent 

definitions for unrealistic routes within the model, which may lead to inaccurate results. Moreover, due to 

these internal inconsistency issues, an additional scaling parameter is required to scale the path size 

contributions which makes parameter estimation more difficult.  

In Chapter 2 of this thesis, the first journal manuscript, these internal inconsistency issues for GPSL are 

discussed and demonstrated on small example networks. Addressing these issues, Chapter 2 then formulates 

the Adaptive Path Size Logit (APSL) model where a new path size contribution factor is proposed. The APSL 

model proposes that the contribution factors are based upon ratios of choice probability between routes, thus 

ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice 

probabilities. APSL is hence internally consistent in how routes are defined as (un)realistic. Also, by defining 

the path size contribution factor as the ratio of choice probabilities, the scaling of the path size contributions is 

controlled implicitly through the scaling of the route choice probabilities (i.e. with the Logit parameter and 

path size parameter), and hence there is no additional path size contribution parameter for estimation. The 

APSL route choice probability relation is an implicit function involving the choice probabilities, and solutions 

to the model are solutions to the fixed-point problem. A solution algorithm is provided for computing the 

APSL choice probabilities, APSL solutions are proven to exist, and conditions for unique APSL solutions are 

given. 

Given that the requirements set out for a developed model were that one should be able to solve it in 

computationally feasible times on large-scale networks, as well as successfully estimate the parameters of the 

model, in the second part of Chapter 2 these properties are investigated for APSL. To show that the 

parameters of the APSL model can be estimated a Maximum Likelihood Estimation procedure is first 

proposed for estimating APSL with tracked route observation data, then this procedure is investigated in a 

simulation study on the Sioux Falls network, where it is shown it is generally possible to reproduce assumed 

true parameters. Then, in a real-life case study, the APSL model is estimated using real tracked route GPS 

data on a large-scale network. Computational feasibility is then assessed for solving and estimating APSL on 

the Sioux Falls and real-life large-scale network.  

Chapter 3 of this thesis, the second journal manuscript, explores the integration of APSL within a SUE 

model, thereby developing a modelling approach that addresses all four of the key challenging aspects of route 

choice modelling. SUE conditions are established for the APSL model, where – for full internal consistency – 

flow-dependent, generalised costs are used in all components: route costs as well as path size correction terms. 

APSL SUE solutions are proven to exist.  

APSL comes at a price of needing to solve a fixed-point problem even to compute route choice 

probabilities at given travel cost/utility levels. Thus, before the research was conducted, there was a question 

of whether it would be computationally feasible to implement such a method within an SUE framework, since 

it apparently needs to embed a fixed-point problem (for calculating choice probabilities) within another fixed-

point problem (for equilibrating flows). However, as the paper shows, the potentially onerous requirement of 

solving fixed-point problems to compute APSL choice probabilities can be circumvented, since at SUE the 

route flow proportions and choice probabilities equate. The useful relationship between choice probabilities 

and route flow proportions in SUE context allows for a considerable flexibility in solving APSL SUE, as is 

explored, where one can trade-off the accuracy of APSL probabilities (and thus computation times of each 

iteration) with rate of SUE convergence.  

Using a flow-averaging algorithm to solve the SUE models, the advantages of APSL SUE are 

demonstrated in numerical experiments on the Sioux Falls and Winnipeg networks, where computational 

performance, choice set robustness, and flow results are compared with the internally consistent SUE 

formulations of GEV structure and correction term correlation-based route choice models. APSL SUE 

solution uniqueness is explored numerically where results suggest that uniqueness conditions exist. 

It is worth noting that, so far, standard PSL is the most common path size approach adopted in practice. It 

is hoped 

 

2.2 Research Direction 2 – A Bounded Path Size Route Choice Model 

Although the weighted path contribution technique is a promising approach for addressing the deficiency of 

the PSL model, in its sensitivity to unrealistic routes in the adopted choice sets, it does not solve the issue 
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entirely, since the path size contributions of routes defined as unrealistic are only reduced instead of 

eliminated. Moreover, as well as non-zero path size contributions, unrealistic routes also receive non-zero 

choice probabilities. Thus, while under the GPSL and APSL models each unrealistic route may only have a 

small path size contribution / choice probability, the total sum of these unrealistic route contributions / 

probabilities may be significant, consequently impacting the accuracy of results. This problem becomes 

greater as the scale of network increases and a greater amount of uncertainty comes with choice set 

generation, where, typically, choice sets are generated as large as the computational resources are deemed to 

allow, in order to minimise the possibility of excluding what would later turn out to be a plausible route. 

In contrast to these issues with PSL models, the BCM has a consistent criterion for determining restricted 

choice sets of realistic routes and route choice probability, but does not account for route correlations. An 

approach that was therefore deemed promising was to explore the integration of PSL model concepts with the 

BCM, thereby harnessing the contrasting strengths of the two approaches. Chapter 4 of this thesis, the third 

journal manuscript, explores formulating a Bounded Path Size (BPS) route choice model, where route 

correlations and unrealistic routes are fully dealt with in a consistent, robust, and mathematically-well defined 

way. The aim is to develop a model that eliminates unrealistic route path size contributions entirely, as well as 

removes all the negative effects of unrealistic routes by also assigning them zero choice probabilities. 

A natural form for a BPS model can be derived by inserting path size choice model utilities into the 

standard BCM formula. However, as shown, this natural form for a BPS model is deeply problematic and 

there are no behaviourally and practically desirable formulations. This is because appropriately defining the 

path size contribution factors within the path size terms is challenging, and from demonstrating with different 

options, desired properties are established for a mathematically well-defined BPS choice model that utilises a 

consistent criterion for assigning zero choice probabilities to unrealistic routes while eliminating their path 

size contributions.  

To develop a BPS model that satisfies these properties, an alternative BPS model form is the derived and 

two BPS models are consequently proposed: one that is closed-form (the Bounded Bounded Path Size (BBPS) 

model) and another expressed as a fixed-point problem (the Bounded Adaptive Path Size (BAPS) model). The 

BBPS model path size contribution factors consider ratios of the odds that routes are within the bound, and its 

limit model – where the bound is large enough so that all routes have non-zero choice probabilities – is a 

GPSL variant. The BAPS model utilises probability ratio contribution factors and its limit model is APSL. 

The BAPS model has a greater appeal behaviourally since it is fully internally consistent, while the BBPS 

model offers a more computationally practical alternative. 

Again, given that the requirements set out for a developed model were that one should be able to solve it 

in computationally feasible times on large-scale networks, as well as successfully estimate the parameters of 

the model, the second part of Chapter 4 investigates these properties for the BBPS & BAPS models. Similar 

to that for APSL, a Maximum Likelihood Estimation procedure is proposed for estimating the BBPS & BAPS 

models with tracked route observation data, then this procedure is investigated in a simulation study on the 

Sioux Falls network, where it is shown that it is generally possible to reproduce assumed true parameters. 

Then, in a real-life case study, the BBPS & BAPS models are estimated using real tracked route GPS data on 

a large-scale network. Computational feasibility is assessed for solving and estimating the BAPS model (since 

it is not closed-form) on the Sioux Falls and real-life large-scale network.  

Chapter 5 of this thesis, the fourth manuscript, explores the integration of BPS models within a SUE 

model, thereby developing a second modelling approach that addresses all four of the key challenging aspects 

of route choice modelling. SUE conditions are established for the BPS models, where the restricted choice 

sets of realistic routes are equilibrated. BBPS SUE solutions are proven to exist. 

A generic algorithm is proposed for solving BPS SUE models. The algorithm is an adaptation of the 

generic algorithm proposed by Watling et al (2018) for the BSUE model. To equilibrate the choice sets of 

realistic routes, the BSUE algorithm generates realistic routes from the network as the algorithm progresses. 

With the current techniques available for generating these routes, there are questions over the suitability of the 

approach for large-scale networks. A more heuristic approach is thus taken for the proposed BPS SUE 

algorithm, by pre-generating approximated universal choice sets.  

For BAPS SUE, just like for APSL SUE, the potentially onerous requirement of solving fixed-point 

problems to compute BAPS model probabilities can be circumvented, since at SUE the route flow proportions 

and choice probabilities equate. The trade-off between the accuracy of BAPS model probabilities (and thus 

computation times of each iteration) with rate of SUE convergence is explored. Numerical experiments are 
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conducted on the Sioux Falls and Winnipeg networks, assessing computational performance for solving the 

BPS SUE models, comparing flow results between the models, and exploring numerically the uniqueness of 

BAPS SUE solutions. Computational performance, choice set robustness, and flow results are also compared 

related non-bounded SUE models, i.e. BSUE, PSL SUE models. 

Chapter 6 concludes the thesis and discusses scope for further research. 

Fig. 1.2 below summarises the structure and content of the thesis. 
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Fig. 1.2. Thesis structure.  
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Highlights 

➢ Demonstrate issues with existing Path Size Logit (PSL) models 

➢ Propose a new internally consistent Adaptive PSL that addresses these issues 

➢ Proof of existence and uniqueness conditions for Adaptive PSL solutions 

➢ Adaptive PSL Likelihood formulation and tracked route data MLE procedure 

➢ Estimation of PSL models on a large-scale network using real GPS data 

 

Abstract 

Path Size Logit route choice models attempt to capture the correlation between routes by including correction 

terms within the route utility functions. This provides a convenient closed-form solution for implementation in 

traffic network models. The path size terms measure distinctiveness of routes; a route is penalised based on 

the number of other routes sharing its links, and the costs of those shared links. Typically, real road networks 

have many very long routes that should be considered unrealistic. Such unrealistic routes are problematic for 

the Path Size Logit (PSL) model because they negatively impact the choice probabilities of realistic routes 

when links are shared. The Generalised Path Size Logit (GPSL) model attempts to address this problem by 

weighting the contributions of routes to path size terms according to the ratio of route travel costs. However, 

the GPSL model is not internally consistent in how it defines routes as being unrealistic: the path size terms 

consider only travel cost, whereas the route choice probability relation considers disutility including the 

correction term.  

To solve these challenges, this paper formulates a new internally consistent Adaptive Path Size Logit 

(APSL) model wherein routes contribute to path size terms according to the ratio of route choice probabilities, 

ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice 

probabilities. The APSL route choice probability relation is an implicit function, naturally expressed as a 

fixed-point problem. A proof is provided for the guaranteed existence of solutions, as well as conditions for 

the uniqueness of solutions. A Maximum Likelihood Estimation procedure is given for estimating the APSL 

model with tracked route observation data, and this procedure is investigated in a simulation study where it is 

shown it is generally possible to reproduce assumed true parameters. APSL is then estimated using real 

tracked route GPS data on a large-scale network, and results are compared with other PSL models.  

 

Key Words: path size logit, route choice, random utility, fixed-point problem, overlapping routes, parameter 

estimation 
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1.   Introduction 
It is well known that the Multinomial Logit (MNL) Random Utility Model (RUM) often provides unrealistic 

choice probabilities when applied to real road network route choice. One of the main reasons for this is that 

the MNL model does not capture the correlation between routes. This issue stems from the underlying 

assumption made by the MNL model that the random error terms are independently and identically distributed 

(IID) with the same, fixed variances (Sheffi, 1985). Numerous adaptations of the MNL model have been 

proposed in the literature which relax the IID assumption – specifically the independently distributed 

assumption – and attempt to capture the correlation between the routes. These extended Logit models can be 

classified into three groups according to the model structures as suggested by Prashker & Bekhor (2004): 

GEV structures, Mixed Logit models, and MNL-modification models. The fourth group of route choice 

models that provide an option for overcoming the weakness of MNL are those which propose an alternative 

probability distribution for the random error terms, i.e. alternative RUMs, that capture the correlation 

implicitly. To set the background for the research in the present paper, we consider each of these categories in 

turn below: 

 

GEV structures: The first group of extended Logit models are those which are based on the Generalized 

Extreme Value (GEV) theory (McFadden, 1978), which use a two-level tree structure to capture the similarity 

among routes through the random error component of the utility function. These models include the Cross-

Nested Logit (CNL) model (Vovsha, 1997; Bekhor & Prashker, 1999; Marzano & Papola, 2008), the Paired 

Combinatorial Logit (PCL) model (Chu, 1989; Bekhor & Prashker, 1999; Gliebe et al, 1999; Pravinvongvuth 

& Chen, 2005), the Generalized Nested Logit (GNL) model (Bekhor & Prashker, 2001; Wen & Koppelman, 

2001), and the Network GEV model (Bierlaire, 2002; Daly & Bierlaire, 2006) which uses a fairly general 

class of networks to generalise the use of trees to represent nested logit models to a network representation. 

The PCL, CNL, and GNL models all have closed-form probability expressions, though due to their two-level 

tree structure the route choice probabilities are complex to compute for large-scale network applications. 

Furthermore, several studies have found that when estimating the nesting coefficients for the CNL model, the 

model tends to collapse to MNL (Ramming, 2002; Prato, 2005; Prato & Bekhor, 2006), and the GNL model 

requires the estimation of an additional parameter over the CNL model which makes parameter estimation 

more difficult.  

 

Mixed Logit models: The second group of extended Logit models are Mixed Logit models (Ben-Akiva & 

Bolduc, 1996; McFadden & Train, 2000), also known as Logit Kernel, Random Parameter Logit, Error 

Component Logit, and Hybrid Logit. Mixed Logit models attempt to capture the correlation between routes by 

dividing the random error terms into two components; the first component is a set of IID Gumbel variables 

ensuring that the Logit structure is kept, and the second component is a set of Gaussian distributed variable 

terms that attempt to capture the interdependencies among the routes. Bekhor et al (2002) propose a Factor 

Analytic Logit Kernel model that attempts to capture the similarities among routes by assuming the 

covariance between utilities relates to overlap lengths. The main drawback of Mixed Logit models however, is 

that they do not possess closed-form expressions and therefore solving the route choice probabilities requires 

either Monte Carlo simulation or similar methods, which are computationally burdensome. There are also 

difficulties in estimating the parameters of the Factor Analytic Logit Kernel model: Ramming (2002) finds 

instable estimates of the covariance parameters, while Prato (2005) discusses the difficulty in obtaining 

significant estimates. 

 

MNL-modification models: The third group of extended Logit models are the MNL-modification models 

which modify the deterministic part of the route utilities by including a correction term that adjusts the route 

choice probabilities to approximate the correlation between the routes. These models include C-Logit (CL) 

(Cascetta et al, 1996), Path Size Logit (PSL) (Ben-Akiva & Ramming, 1998), and Path Size Correction Logit 

(PSCL) (Bovy et al, 2008). Ramming (2002) proposes a Generalised Path Size Logit (GPSL) model which 

includes a component that attempts to reduce the impact that infeasibly long routes have on the correction 

terms (and thus choice probabilities) of feasible routes. The main attraction of MNL-modification models is 

that they all retain the single-level tree structure as MNL and have simple closed-form expressions, meaning 

the route choice probabilities are generally easy and quick to compute, and estimating the parameters of the 

CL, PSL, and PSCL models is a comparatively simple task, though as the size of network increases, so does 
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the computational effort required to enumerate the overlap between all routes in a choice set. The GPSL 

model requires the estimation of an additional parameter over the PSL model which makes parameter 

estimation more difficult; estimates for the parameter can be justified by assessing the goodness-of-fit, though 

the best estimates in case studies tend to be very large values meaning that it is difficult to provide a 

behavioural interpretation for the parameter. 

 

Alternative RUMs: Another option is to utilise an alternative RUM. There are many RUMs that do not suffer 

from the same issue as MNL as the similarity between each pair of routes is accounted for by allowing for 

covariance between the error terms. The MNL RUM proposes that the random error terms assume a Gumbel 

distribution (Dial, 1971), while the Multinomial Probit (MNP) model (Daganzo & Sheffi, 1977) and the 

Multinomial Gammit (MNG) model (Cantarella & Binetti, 2002), propose that the error terms assume a 

Normal distribution and Gamma distribution, respectively. Other distributions include Log-Normal and 

Uniform, while Nielsen (2000) argues that Gamma distributed error terms is preferred since the error term is 

positive and link-additive (Nielsen & Frederiksen, 2006). These models however, do not have closed-form 

probability expressions and hence solving the route choice probabilities also requires either Monte Carlo 

simulation or similar methods which are computationally burdensome and converge very slowly on large 

scale networks (Rich et al, 2015; Manzo et al, 2015; Rasmussen et al, 2016; Connors et al, 2014). Mishra et al 

(2012), Ahipasaoglu et al (2013), and Ahipasaoglu et al (2015) explore a Cross Moment (CMM) choice model 

where the exact distribution of the random error terms is unknown and instead belongs to a set, where the 

distribution employed is that which maximises the expected utility given known mean and covariance 

information of the utilities. Efficient convex optimisation techniques are developed to solve the CMM, though 

computation times increase dramatically as the number of routes increases. 

 

There are numerous examples of alternative RUMs where the correlation between routes is not explicitly 

captured (like MNL) and have been adapted accordingly utilising concepts from extended Logit models. 

These models thus share the same associated strengths/weaknesses of the approaches. Castillo et al (2008) 

proposed a Multinomial Weibit (MNW) model – where the random error terms assume a Weibull distribution 

– to address the other underlying assumption made by the MNL model that the error terms are identically 

distributed. Kitthamkesorn & Chen (2013) then integrated the ideas of the MNW and PSL models to 

formulate a Path Size Weibit (PSW) model that simultaneously addresses both the independently distributed 

and identically distributed assumptions made of the MNL error terms. Xu et al (2015) formulate a Hybrid 

closed-form route choice model to alleviate the contrasting scaling issues of MNL and MNW by 

simultaneously considering absolute cost difference and relative cost difference, and is extended to include a 

path size correction factor to capture the correlation between routes. Chikaraishi & Nakayama (2016) extend 

concepts from the q-Generalised Logit model (Nakayama & Chikaraishi, 2015) to introduce a q-Product Logit 

model in which the relationship between the deterministic and random components of utilities can be either 

additive, multiplicative, or in-between, depending on the value of the parameter q, where MNL and MNW are 

special cases of the model. A q-Product Nested Logit model is presented to capture correlation, where the 

CNL model is a special case, as well as a nested equivalent of the Weibit model. Li (2011) proposes a Semi-

Parametric choice model that relaxes the assumption of underlying distributions from either Gumbel or 

Weibull to a wider distribution class where the underlying choice model is unknown, and integrates Mixed 

Logit concepts to postulate a Mixed Semi-Parametric choice model. Ahipasaoglu et al (2016) consider the 

application of the Marginal Distribution Model (MDM) (Natarajan et al, 2009) to route choice, where the 

marginal distributions of the route utilities are specified but the joint distributions are not, and the focus is on 

the particular joint distribution that maximizes expected utility. Incorporating information on the marginal 

distributions makes the MDM model flexible and MNL, CL, PSL, MNW, and PSW are all special cases. 

Numerous variants of the MDM are explored and PSL and CL concepts are integrated to form new MDMs. 

Chorus (2010) and Bekhor et al (2012) introduce a Random Regret Minimization (RRM) model which 

assumes that individuals minimise anticipated regret, rather than maximize expected utility, when choosing 

routes, and Prato (2014) develops a Path Size RRM model and a Path Size Correction RRM model. 

To summarise, the greatest hindrance for the GEV structures, Mixed Logit models, and alternative RUMs 

is the considerable computational cost required to solve the route choice probabilities for large-scale networks, 

while another issue that has been noted for some of the GEV structures and Mixed Logit models is the 

difficulty in obtaining reasonable estimates for parameters. MNL-modification models are a useful and 
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practical approach to approximating the correlation; more complex models can capture the correlation more 

accurately, but due to the comparatively low computational cost and the relative ease in obtaining reasonable 

estimates for parameters, they are the most commonly used models in practice, and are the focus of this paper, 

in particular: Path Size Logit models.  

One of the main issues for most MNL-modification models is that results are highly sensitive to the 

inclusion and exclusion of routes from the choice set. The CL model proposes that the correction terms are 

based upon commonality factors that measure the similarity of routes, and penalises the utilities accordingly. 

In contrast, the PSL and PSCL models propose that the correction terms are based upon path size terms that 

measure route distinctiveness: a route is penalised based on the number of other routes sharing its links, and 

the costs of those shared links. The inclusion of a route to a choice set can thus have a substantial effect upon 

the choice probability of any route that shares its links, as the correction terms adjust the route utilities 

attempting to capture the correlation.  

In real-life applications where the size of the network is often large, route choice is rarely performed upon 

the full choice sets of routes, and choice sets are either pre-generated or a column generation approach is 

employed with implementation. This is often because it is computationally infeasible to both/either enumerate 

the full choice sets of routes and/or perform route choice upon the full choice sets of routes. Furthermore, 

typical road networks contain many very long routes that should be considered unrealistic and excluded from 

route choice. The key issue for the PSL model is that the choice probabilities are extremely sensitive to the 

utilised choice sets since all routes contribute equally to path size terms, and as such, results are extremely 

sensitive to the choice set generation / column generation method adopted. Moreover, it is crucial for the PSL 

model that the choice sets contain realistic alternatives only, as the inclusion of a single unrealistic alternative 

can have a considerable and negative effect on the choice probabilities of the realistic routes.  

Thus, since it is difficult to obtain choice sets of realistic routes with absolute certainty for PSL to be 

suitable, a pragmatic approach is to utilise a weighted path size contribution technique along with choice set 

generation to attempt to reduce the impact any present unrealistic routes may have on the choice probabilities 

of realistic routes. Weighted path size contribution techniques weight the contribution of routes to path size 

terms with a path size contribution factor, i.e. so that the contribution of route 𝑘 to the path size term of route 𝑖 
is reduced for unrealistic routes.  

The GPSL model proposes that the path size contribution factor is based upon ratios of travel cost 

between routes, and hence routes with excessively large travel costs have a diminished impact upon the 

correction terms of routes with small travel costs, and consequently the choice probabilities of those routes. 

How the GPSL path size contribution factor is formulated, however, means that: a) the model is not always 

internally consistent with how it assesses routes to be (un)realistic, and b) an additional scaling parameter is 

required to scale the path size contributions which makes parameter estimation more difficult. The main 

contribution of the present paper is thus the formulation of an Adaptive Path Size Logit (APSL) model where 

a new path size contribution factor is proposed so that the model is always internally consistent with how it 

assesses routes to be unrealistic, and so that no additional parameters are required for estimation. 

For Path Size Logit models, the probability that a route is chosen (i.e. how feasible of an alternative the 

route is perceived to be) is a trade-off between its relative attractiveness due to travel cost and its relative 

attractiveness due to distinctiveness, and two independent scaling parameters (Logit parameter and path size 

parameter) affect the relativeness of how attractive each component is. The GPSL path size contribution 

factors however, are inconsistent with this in two ways: a) they assess the feasibility of a route according to its 

relative attractiveness due to travel cost only; and, b) they scale the relativeness of how attractive routes are 

due to travel cost with an additional independent path size contribution parameter, which is not necessarily 

proportional to the Logit parameter that scales travel cost within the probability relation. 

The APSL model proposes that the path size contribution factors are based upon ratios of choice 

probability between routes, thus ensuring that routes defined as unrealistic by the path size terms, are exactly 

those with very low choice probabilities. The APSL route choice probability relation is an implicit function 

involving the choice probabilities, and solutions to the model are solutions to the fixed-point problem. Also, 

by defining the path size contribution factor as the ratio of choice probabilities, the scaling of the path size 

contributions is controlled implicitly through the scaling of the route choice probabilities (i.e. with the Logit 

parameter and path size parameter), and hence there is no additional path size contribution parameter for 

estimation. 
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Fig. 2.1 displays a network with a single OD movement and three routes. As 𝑥 varies, the travel cost of 

each route stays constant (though different from one another), meaning that the GPSL path size terms always 

assess the feasibility of each route as being the same. However, as 𝑥 is varied between 0 and 1, the correlation 

between Route 1 and Route 2 varies, thus altering the choice probabilities and how feasible of an alternative 

each route is perceived to be. A key point is that the behaviour of the choice probabilities as 𝑥 is varied is 

highly dependent upon the values of the scaling parameters; different ranges for the Logit / path size 

parameters imply different theoretical route choice behaviours consequently altering how feasible each route 

is deemed to be. This makes it difficult to state what behaviours we should expect to happen as 𝑥 is varied, 

without knowing the parameter values we wish to set, to model specific behaviours. Due to its internal 

consistency, the APSL model is adaptable to whichever values are set for the scaling parameters, and the path 

size contribution factors will assess the feasibility of routes by how relatively attractive they are due to travel 

cost and distinctiveness as the scaling parameters dictate. 

 

Fig. 2.1. Example network to demonstrate the inconsistency of the GPSL model. 

 

The structure of the paper is as follows. In Section 2 we introduce some basic network notation as well as the 

definitions of the MNL, PSL, and GPSL models, and several numerical experiments on small-scale networks 

to demonstrate some of the key issues with PSL and GPSL, and the potential negative implications of an 

internally inconsistent PSL model. In Section 3 we detail the new APSL model, give results from several 

numerical experiments that demonstrate the key properties of the APSL model, and detail a solution method. 

Section 4 addresses existence and uniqueness of APSL solutions. In Section 5 we investigate estimating the 

APSL model. To show that the parameters of the APSL model can be estimated we first propose a Maximum 

Likelihood Estimation procedure for estimating APSL with tracked route observation data, then investigate 

this procedure in a simulation study on the Sioux Falls network where we show that it is generally possible to 

reproduce assumed true parameters. Then, in a real-life case study, we estimate the APSL model using real 

tracked route GPS data on a large-scale network. Section 6 concludes the paper. 

2.  Notation, Definitions, and Demonstrations of Key Issues with Existing Path Size 

Logit Models 

2.1 Basic Network Notation 

The model developed in this paper is applicable to general networks with multiple OD movements and flow-

dependent link costs. However, without compromising the model derivation, we simplify notation by 

considering a single OD movement with fixed link costs. The network consists of link set 𝐴. For the OD 

movement, 𝑅 is the choice set of all simple routes (without cycles), having size 𝑁 = |𝑅|. 𝐴𝑖 ⊆ 𝐴 is the set of 

links belonging to route 𝑖 ∈ 𝑅, and 𝛿𝑎,𝑖 = {
1     𝑖𝑓 𝑎 ∈ 𝐴𝑖    
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. Each link 𝑎 ∈ 𝐴 has a fixed generalised travel cost 

𝑡𝑎, and supposing that the travel cost for a route can be attained through summing up the total cost of its links, 

then the generalised travel cost for route 𝑖 ∈ 𝑅, 𝑐𝑖, can be computed as follows: 𝑐𝑖 = ∑ 𝑡𝑎𝑎∈𝐴𝑖 . 

The route choice probability for route 𝑖 ∈ 𝑅 is 𝑃𝑖, where 𝑷 = (𝑃1, 𝑃2, … , 𝑃𝑁) is the vector of route choice 

probabilities, and 𝐷 is the set of all possible route choice probability vectors: 
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𝐷 = {𝑷 ∈ ℝ≥0
𝑁 : 0 ≤ 𝑃𝑖 ≤ 1,∀𝑖 ∈ 𝑅,∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

And, 𝐷>0 ⊂ 𝐷 is the subset of all possible route choice probability vectors where no route has zero choice 

probability: 

𝐷>0 = {𝑷 ∈ ℝ>0
𝑁 : 0 < 𝑃𝑖 < 1, ∀𝑖 ∈ 𝑅,∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

2.2 Multinomial Logit 

The Multinomial Logit (MNL) choice model is formulated as follows. The deterministic utility of alternative 

𝑖 ∈ 𝑅 is 𝑉𝑖, and the random utility of alternative 𝑖 ∈ 𝑅 is 𝑈𝑖 such that 𝑈𝑖 = 𝑉𝑖 + 𝜀𝑖, where the 𝜀𝑖 terms are the 

individually and identically distributed random variable error terms. Assuming individuals seek the alternative 

with highest utility, the probability that an individual selects alternative 𝑖 ∈ 𝑅 is: 

𝑃𝑖 = Pr(𝑈𝑖 ≥ 𝑈𝑗 , ∀𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖) = Pr(𝑉𝑖 + 𝜀𝑖 ≥ 𝑉𝑗 + 𝜀𝑗, ∀𝑗 ∈ 𝑅, 𝑗 ≠ 𝑖). 

The defining characteristic of Logit models is that the random variable error terms assume a Gumbel 

distribution. Consequently: 

𝑃𝑖(𝑽) =
𝑒𝑉𝑖

∑ 𝑒𝑉𝑗𝑗∈𝑅

 

where 𝑽 is the vector of deterministic utilities.  

The MNL model in the context of route choice states that the deterministic utility of route 𝑖 ∈ 𝑅 is given 

by 𝑉𝑖 = −𝜃𝑐𝑖, where 𝜃 > 0 is the Logit scaling parameter, and thus: 

 𝑃𝑖 =
𝑒−𝜃𝑐𝑖

∑ 𝑒−𝜃𝑐𝑗𝑗∈𝑅

=
1

∑ 𝑒−𝜃(𝑐𝑗−𝑐𝑖)𝑗∈𝑅

. (2.1) 

The MNL model assumes the route utilities are independent from one another, however routes with 

overlapping links share unobserved attributes, and the assumption that the random error terms are all 

independently and identically distributed is no longer valid. The famous example for this is the ‘loop hole’ 

network (also known as the red-bus/blue-bus network) presented in Cascetta et al (1996). 

 

2.3 Path Size Logit Models 

Path Size Logit models include correction terms to penalise routes that share links with other routes, so that 

the deterministic utility of route 𝑖 ∈ 𝑅 is 𝑉𝑖 = −𝜃𝑐𝑖 + 𝜅𝑖, where 𝜅𝑖 ≤ 0 is the correction term for route 𝑖 ∈ 𝑅. 

The probability that a driver chooses route 𝑖 ∈ 𝑅 is therefore: 

𝑃𝑖 =
𝑒−𝜃𝑐𝑖+𝜅𝑖

∑ 𝑒−𝜃𝑐𝑗+𝜅𝑗𝑗∈𝑅

. 

Path Size Logit models adopt the form 𝜅𝑖 = 𝛽 ln(𝛾𝑖), where 𝛽 ≥ 0 is the path size scaling parameter, and 𝛾𝑖 ∈
(0,1] is the path size term for route 𝑖 ∈ 𝑅. A distinct route with no shared links has path size term equal to 1, 

resulting in no penalisation. Less distinct routes have smaller path size terms and incur greater penalisation. 

The probability that a driver chooses route 𝑖 ∈ 𝑅 is: 

 
𝑃𝑖 =

𝑒−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖)

∑ 𝑒−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗)𝑗∈𝑅

=
(𝛾𝑖)

𝛽𝑒−𝜃𝑐𝑖

∑ (𝛾𝑗)
𝛽
𝑒−𝜃𝑐𝑗𝑗∈𝑅

=
1

∑ (
𝛾𝑗
𝛾𝑖
)
𝛽

𝑒−𝜃(𝑐𝑗−𝑐𝑖)𝑗∈𝑅

. 
(2.2) 

 

2.3.1 Path Size Logit 

The Path Size Logit (PSL) model was first proposed by Ben-Akiva & Ramming (1998), and states that the 

PSL path size term for route 𝑖 ∈ 𝑅, 𝛾𝑖
𝑃𝑆, is defined as follows: 
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 𝛾𝑖
𝑃𝑆 =∑

𝑡𝑎
𝑐𝑖

1

∑ 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

. (2.3) 

To dissect the PSL path size term for route 𝑖 ∈ 𝑅 defined in (2.3): each link 𝑎 in route 𝑖 is penalised (in terms 

of decreasing the path size term and hence the utility of the route) according to the number of routes in the 

choice set that also use that link (∑ 𝛿𝑎,𝑘𝑘∈𝑅 ), and the significance of the penalisation is weighted according to 

how prominent link 𝑎 is in route 𝑖, i.e. the cost of route 𝑎 in relation to the total cost of route 𝑖 (
𝑡𝑎

𝑐𝑖
).  

 

PSL Key Issue: Unrealistic routes negatively impact the choice probabilities of realistic routes when links 

are shared. 

 

The key issue with the PSL model is that all routes contribute equally to path size terms (i.e. the path size 

contribution factors are simply all 1), and hence the choice probabilities of realistic routes are affected by link 

sharing with unrealistic routes. To demonstrate this, consider example network 1 in Fig. 2.2A where there are 

3 routes: Routes 2 & 3 have travel cost 1 and Route 1 has travel cost 1 + 𝜐, Routes 1 & 2 are correlated while 

Route 3 is distinct. Fig. 2.2B displays the example network 1 PSL choice probabilities as 𝜐 is increased from 

0.5 to 3, 𝜃 = 𝛽 = 1. For 𝜐 = 0.5, Routes 1 & 2 have the same unshared travel cost and are thus considered 

equally attractive. As 𝜐 is increased, Route 1 increases in travel cost and decreases in choice probability. As 

Route 1 becomes an unrealistic alternative, the choice probability of Route 2 should not be penalised for 

overlapping with Route 1. The PSL path size terms dictate though that Route 1 contributes equally to the path 

size term of Route 2 for all 𝜐, and hence the choice probability of Route 2 is always significantly penalised. 

As 𝜐 is increased and the choice probability of Route 1 approaches zero, the contribution of Route 1 to the 

path size term of Route 2 should decrease, and the choice probability of Route 2 should converge to the choice 

probability of Route 3. 

  

Fig. 2.2. A: Example network 1. B: Example network 1: PSL route choice probabilities for increasing 𝜐 (𝜃 = 𝛽 = 1). 

 

2.3.2 Generalised Path Size Logit 

Ben-Akiva & Bierlaire (1999) formulate an alternative PSL model (PSL′) that attempts to reduce the 

contributions of excessively expensive routes to the path size terms of more realistic routes in the choice set. 

The PSL′ model states that the PSL′ path size term for route 𝑖 ∈ 𝑅, 𝛾𝑖
𝑃𝑆′, is defined as follows: 

 
𝛾𝑖
𝑃𝑆′ =∑

𝑡𝑎
𝑐𝑖

1

∑ (
min(𝑐𝑙: 𝑙 ∈ 𝑅)

𝑐𝑘
) 𝛿𝑎,𝑘𝑘∈𝑅

𝑎∈𝐴𝑖

, 
(2.4) 

As (2.4) shows, the contribution of route 𝑘 to path size terms is weighted according to the ratio of route 𝑘 and 

the cheapest route in the choice set (
min(𝑐𝑙:𝑙∈𝑅)

𝑐𝑘
), and hence contributions of high costing routes compared to 

the cheapest alternative are reduced.  

Route 1 × 

Route 2 ▲ 

Route 3  

A B 
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As Ramming (2002) describes, however, when a route is completely distinct its path size term is not 

always equal to 1 which results in an undesired penalisation upon the utility of that route. To combat this, 

Ramming (2002) proposes the Generalised Path Size Logit (GPSL) model. The GPSL model states that the 

GPSL path size term for route 𝑖 ∈ 𝑅, 𝛾𝑖
𝐺𝑃𝑆, is defined as follows: 

 
𝛾𝑖
𝐺𝑃𝑆 =∑

𝑡𝑎
𝑐𝑖

1

∑ (
𝑐𝑖
𝑐𝑘
)
𝜆
𝛿𝑎,𝑘𝑘∈𝑅

𝑎∈𝐴𝑖

, 
(2.5) 

where 𝜆 ≥ 0, noting that the GPSL model is equivalent to the PSL model when 𝜆 = 0. In (2.5), the 

contribution of route 𝑘 to the path size term of route 𝑖 (the path size contribution factor) is weighted according 

to the cost ratio between the routes, ((
𝑐𝑖

𝑐𝑘
)
𝜆
), and hence the contributions of high costing routes to the path 

size terms of low costing routes is reduced. 𝜆 ≥ 0 is the path size contribution scaling parameter to be 

estimated. 

Fig. 2.3 displays the example network 1 GPSL choice probabilities as 𝜐 is increased from 0.5 to 3, 𝜃 =
𝛽 = 1, 𝜆 = 3. As Fig. 2.3 shows, as 𝜐 is increased and the travel cost of Route 1 increases, the contribution of 

Route 1 to the path size term of Route 2 decreases, and consequently the choice probability of Route 2 

converges to the choice probability of Route 3. 

 

Fig. 2.3. Example network 1: GPSL route choice probabilities for increasing 𝜐 (𝜃 = 𝛽 = 1, 𝜆 = 3). 

 

GPSL Key Issue 1: For large 𝜆, GPSL path size terms are highly sensitive to small differences in route travel 

cost. 

 

It is mentioned numerous times in the literature that the GPSL model can be problematic for large 𝜆 values, 

especially when overlapping routes only have marginally different travel costs (Ramming, 2002; Frejinger & 

Bierlaire, 2007; Hoogendoorn-Lanser, 2005). Hoogendoorn-Lanser et al (2005) describe how 𝜆 should be set 

to 0 when overlapping routes have more-or-less equal travel costs, as the overlap between those alternatives 

should not affect their choice probabilities differently. However, when overlapping routes have very different 

travel costs 𝜆 should not be set to 0, as the effects that routes with high travel costs have on the path size terms 

of routes with low travel costs should be dampened. Example network 2 in Fig. 2.4A shows a network where 

both cases exist: Routes 1 & 2 are overlapping routes with more-or-less equal travel costs (𝑐1 = 2.01, 𝑐2 = 2), 

and Routes 3 & 4 are overlapping routes with very different travel costs (𝑐3 = 2, 𝑐4 = 6). Fig. 2.4B shows the 

example network 2 GPSL choice probabilities as 𝜆 is increased from 0 to 400, 𝜃 = 𝛽 = 1. When 𝜆 = 0 (i.e. 

GSPL is equivalent to PSL), Routes 1, 2 & 3 have approximately equal choice probabilities as they all have 

similar travel costs and all share approximately half of their journey with one other route. Route 4 induces a 

penalty on Route 3, but this should be less than the path size penalties Routes 1 & 2 impose on each other, and 

thus 𝑃3 should be greater than 𝑃1 and 𝑃2, which should be approximately equal, for these values of 𝜃 and 𝛽. 

Although this is the case when 𝜆 ≅ 10, increasing 𝜆 amplifies the difference in costs between Routes 1 & 2 so 

that 𝑃1 and 𝑃2 diverge, which is not desired. 

Route 1 × 

Route 2 ▲ 

Route 3  
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Fig. 2.4. A: Example network 2. B: Example network 2: GPSL route choice probabilities for increasing 𝜆 (𝜃 = 𝛽 = 1). 

 

As (2.2) shows, how feasible route 𝑖 is perceived to be by drivers (i.e. its choice probability) is a trade-off 

between its relative attractiveness due to travel cost 𝑒−𝜃(𝑐𝑗−𝑐𝑖) and its relative attractiveness due to 

distinctiveness (
𝛾𝑗

𝛾𝑖
)
𝛽

, where the 𝜃 parameter scales relative attractiveness due to travel cost and 𝛽 scales 

relative attractiveness due to distinctiveness. The GPSL path size contribution factors in (2.5), however, assess 

the feasibility of route 𝑖 according to its relative attractiveness due to travel cost only (
𝑐𝑖

𝑐𝑘
)
𝜆
, where an 

additional parameter 𝜆 scales relative attractiveness due to travel cost. The internal inconsistency issues of the 

GPSL model between the probability relation and path size terms are thus twofold: a) there is an inconsistent 

assessment of the feasibility of routes; and, b) there are inconsistent parameters that scale relative 

attractiveness due to travel cost. We demonstrate both issues below. 

 

GPSL Key Issue 2: Internally inconsistent assessment of the feasibility of routes. 

 

Fig. 2.5A shows a network with 6 routes: Routes 1-5 are highly correlated with each other with fixed travel 

cost 1.2, and Route 6 has a fixed cost of 2 and is either a distinct route when 𝜂 = 1 or correlated with Routes 

1-5 when 𝜂 < 1. As 𝜂 is decreased, the correlation between Route 6 and Routes 1-5 increases, but the travel 

costs don’t change. Supposing that 𝜃 = 𝛽 = 1, then one might expect Route 6 to have a choice probability 

greater than each of Routes 1-5 when 𝜂 = 1 due to being distinct, and a choice probability smaller than each 

of Routes 1-5 when 𝜂 = 0 due to having the larger detour. There should thus be a point 𝜂𝑒𝑞 ∈ (0,1) where all 

routes have equal choice probability. At this point, each route is considered equally attractive and all routes 

should contribute equally to path size terms. By the definition of the PSL model all routes always contribute 

equally to path size terms; Fig. 2.5B shows the example network 3 PSL choice probabilities for increasing 𝜂, 

𝜃 = 𝛽 = 1, and 𝜂𝑒𝑞 = 0.27 is the point where all routes have equal choice probabilities. For 𝜂 ≠ 𝜂𝑒𝑞 

however, it is not necessarily required for routes to contribute equally to path size terms, for example when 

𝜂 = 0 the contribution of Route 6 to Routes 1-5 may wish to be reduced, and the PSL model is incapable of 

this. Fig. 2.5C & Fig. 2.5D show the example network 3 GPSL choice probabilities for increasing 𝜂, 𝜃 = 𝛽 =
1, for 𝜆 = 1 and 𝜆 = 10, respectively. The GPSL model proposes that the contribution of Route 6 to the path 

size terms of Routes 1-5 is a constant (
1.2

2
)
𝜆
 for all 𝜂, and thus the points where all routes have equal choice 

probabilities are 𝜂𝑒𝑞 = 0.37 and 𝜂𝑒𝑞 = 0.48 for 𝜆 = 1 and 𝜆 = 10, respectively, which are greater than 0.27, 

and larger values for 𝜆 moves 𝜂𝑒𝑞 further away from 0.27. 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

A B 
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Fig. 2.5. A: Example network 3. Example network 3: Route choice probabilities for increasing 𝜂 (𝜃 = 𝛽 = 1). 

B: PSL, (𝜂𝑒𝑞 = 0.27). C: GPSL (𝜆 = 1), (𝜂𝑒𝑞 = 0.37). D: GPSL (𝜆 = 10), (𝜂𝑒𝑞 = 0.48). 

 

GPSL Key Issue 3: Internally inconsistent scaling parameters. 

 

Fig. 2.6A displays a network with 4 routes: Routes 1 & 4 have travel cost 3 and Routes 2 & 3 have travel cost 

1, Routes 1 & 2 are distinct and Routes 3 & 4 are correlated, with Route 4 being more distinct than Route 3. 

Different ranges for the 𝜃 and 𝛽 parameters have different implications for how relatively attractive the routes 

are due to travel cost and distinctiveness. Fig. 2.6B shows the example network 4 GPSL choice probabilities 

for increasing 𝜃, 𝛽 = 1, 𝜆 = 4. The GPSL model diminishes Route 4’s contribution to the path size term of 

Route 3 to (
1

3
)
4
, and thus Routes 2 & 3 have near identical choice probabilities for all 𝜃. For low 𝜃 however, 

the sensitivity to the differences in travel cost is dampened within the probability relation, yet Route 4’s path 

size term contribution to Route 3 accentuates the difference in cost, and the GPSL model is thus inconsistent. 

To try and overcome this inconsistency issue, one must attempt to represent 𝜆 proportional to 𝜃. Because 

𝜃 scales travel cost difference, and 𝜆 scales travel cost ratios, it is difficult to know how 𝜆 should relate to 𝜃, 

e.g. 𝜆 = 𝜃5? A potential solution could be to adjust the GPSL path size contribution factor to resemble the 

relative attractiveness due to travel cost component within the Path Size Logit probability relation in (2.2) 

(and the MNL probability relation in (2.1)), thus formulating an alternative Generalised Path Size Logit 

(GPSL′) model, where the GPSL′ path size term for route 𝑖 ∈ 𝑅, 𝛾𝑖
𝐺𝑃𝑆′ , is defined as follows: 

 𝛾𝑖
𝐺𝑃𝑆′ =∑

𝑡𝑎
𝑐𝑖

1

∑ 𝑒−𝜆(𝑐𝑘−𝑐𝑖)𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

. (2.6) 

By setting 𝜆 = 𝜃, the relative attractiveness due to travel cost components within the GPSL′ model match 

exactly. Fig. 2.6C shows the example network 4 GPSL′(𝜆=𝜃) choice probabilities for increasing 𝜃, 𝛽 = 1. For 

Routes 1-5 × 

Route 6 ▲ 

Routes 1-5 × 

Route 6 ▲ 

Routes 1-5 × 

Route 6 ▲ 

A B 

C D 
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low 𝜃, the sensitivity to the difference in cost between Routes 3 & 4 is dampened within the probability 

relation and within the path size contribution factor, and Route 3 has the lowest choice probability due to 

being the least distinct. As 𝜃 is increased, the sensitivity to the difference in cost between Routes 3 & 4 is 

accentuated within the path size contribution factor and Route 4’s contribution to Route 3 decreases, and the 

choice probability of Route 3 converges to the choice probability of Route 2. 

The GPSL′(𝜆=𝜃) model only partially improves the internal consistency of the GPSL model though. Fig. 

2.6D shows the example network 4 GPSL′(𝜆=𝜃)choice probabilities for increasing 𝜃, 𝛽 = 2. An increase in 𝛽 

increases the sensitivity to distinctiveness within the probability relation; attractiveness due to distinctiveness 

is not considered within the GPSL & GPSL′ path size contribution factors however, and hence as Route 3 

becomes unattractive for low 𝜃 due to being the least distinct, its path size contribution to Route 4 is not 

reduced, though approaching being considered unrealistic as the parameters dictate. 

   

  

Fig. 2.6. A: Example network 4. Example network 4: Route choice probabilities for increasing 𝜃: 

B: GPSL (𝛽 = 1, 𝜆 = 4). C: GPSL′ (𝜆 = 𝜃, 𝛽 = 1). D: GPSL′ (𝜆 = 𝜃, 𝛽 = 2). 

3.  The Adaptive Path Size Logit Model 
In the PSL model, all routes contribute equally to path size terms so that unrealistic routes negatively impact 

the choice probabilities of realistic routes when links are shared. The GPSL model attempts to overcome this 

issue by including a path size contribution factor based upon travel cost ratios, but has issues with internal 

inconsistency. The alternative GPSL (GPSL′(𝜆=𝜃)) model partially addresses this inconsistency but does not 

take into account the relative attractiveness of routes due to distinctiveness. We thus propose in this section a 

fully internally consistent PSL model where all components assess the feasibility of routes according to its 

relative attractiveness due to travel cost and distinctiveness. Formulation of the APSL model was complicated 

by the desire to establish existence and uniqueness of solutions. First, we provide a simpler formulation of the 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

A B 

C D 
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APSL model, then we detail the final more complicated definition, which has been constructed solely so that 

solutions exist and can be unique (proven in Section 4). 

 

3.1 Preliminary Definition of APSL 

Definition 

The preliminary definition of APSL (APSL0) is defined as follows. The APSL0 choice probabilities, 𝑷∗, are a 

solution to the fixed-point problem 𝑷 = 𝒈(𝜸𝐴𝑃𝑆(𝑷)), where 𝑔𝑖 for route 𝑖 ∈ 𝑅 is: 

 

𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)) = 

𝑒
−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖

𝐴𝑃𝑆(𝑷))

∑ 𝑒
−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗

𝐴𝑃𝑆(𝑷))
𝑗∈𝑅

=
(𝛾𝑖

𝐴𝑃𝑆(𝑷))
𝛽
𝑒−𝜃𝑐𝑖

∑ (𝛾𝑗
𝐴𝑃𝑆(𝑷))

𝛽
𝑒−𝜃𝑐𝑗𝑗∈𝑅

=
1

∑ (
𝛾𝑗
𝐴𝑃𝑆(𝑷)

𝛾𝑖
𝐴𝑃𝑆(𝑷)

)

𝛽

𝑒−𝜃(𝑐𝑗−𝑐𝑖)𝑗∈𝑅

, (2.7) 

and 𝛾𝑖
𝐴𝑃𝑆 for route 𝑖 ∈ 𝑅 is: 

 
𝛾𝑖
𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

=∑
𝑡𝑎
𝑐𝑖

1

∑ (
𝑃𝑘
𝑃𝑖
)𝛿𝑎,𝑘𝑘∈𝑅

𝑎∈𝐴𝑖

, ∀𝑷 ∈ 𝐷>0. 
(2.8) 

The model parameters are 𝜃 > 0 and 𝛽 ≥ 0. 𝛾𝑖
𝐴𝑃𝑆(𝑷) in (2.8) is the APSL path size term function for route 

𝑖 ∈ 𝑅 that is a function involving the route choice probabilities. 𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)) in (2.7) is the APSL route 

choice probability function for route 𝑖 ∈ 𝑅 which is a function involving the path size term functions and 

hence also the choice probabilities of routes. The choice probability relation for route 𝑖 ∈ 𝑅 is given by 𝑃𝑖 =

𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)), which is an implicit equation involving choice probabilities, and hence the APSL0 route choice 

probabilities, 𝑷∗, are a solution such that 𝑃𝑖
∗ = 𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷∗)), ∀𝑖 ∈ 𝑅.  

Property 1: For an APSL0 route choice probability solution vector 𝑷∗, 𝛾𝑖
𝐴𝑃𝑆(𝑷∗) is the APSL path size 

term for route 𝑖 ∈ 𝑅, 𝜅𝑖 = 𝛽 ln (𝛾𝑖
𝐴𝑃𝑆(𝑷∗)) is the correction term, and the deterministic utility is given by: 

 𝑉𝑖 = −𝜃𝑐𝑖 + 𝛽 ln (𝛾𝑖
𝐴𝑃𝑆(𝑷∗)). (2.9) 

If the random utility for route 𝑖 ∈ 𝑅 is 𝑈𝑖 = −𝜃𝑐𝑖 + 𝛽 ln (𝛾𝑖
𝐴𝑃𝑆(𝑷∗)) + 𝜀𝑖, and if the random variable error 

terms, 𝜀𝑖, are i.i.d Gumbel, then the probability relation in (2.7) is obtained.  

As (2.8) shows, for a choice probability solution 𝑷∗, the contribution of route 𝑘 to the APSL path size 

term of route 𝑖 is weighted according to the ratio of choice probabilities between the routes (
𝑃𝑘
∗

𝑃𝑖
∗), and hence 

unrealistic route alternatives with very low choice probabilities have a diminished contribution to the path size 

terms of realistic routes with relatively large choice probabilities. The choice probability ratio path size 

contribution factor can also be formulated as follows: 

 
𝑃𝑘
∗

𝑃𝑖
∗ =

𝑔𝑘(𝜸
𝐴𝑃𝑆(𝑷∗))

𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷∗))

= (
𝛾𝑘
𝐴𝑃𝑆(𝑷∗)

𝛾𝑖
𝐴𝑃𝑆(𝑷∗)

)

𝛽

𝑒−𝜃(𝑐𝑘−𝑐𝑖). (2.10) 

So, it is clear to see that the path size contribution factor in (2.10) matches the probability relation in (2.7), 

where both consider how attractive a route is by measuring its relative attractiveness due to travel cost and 

distinctiveness, and hence there is some clear consistency within the model’s framework. Furthermore, not 

only do the path size contribution factors become more consistent with the eventual route choice probabilities 

(i.e. they both define a route as being unrealistic if it has a relatively unattractive combination of travel cost 

and distinctiveness) the model does not require the estimation of any additional parameters. Whereas the 

scaling of the path size contributions in the GPSL model depends upon an independent parameter 𝜆, the 

scaling of the path size contributions in the APSL0 model depends implicitly on the scaling of the choice 

probability relation with the 𝜃 and 𝛽 parameters, and one cannot independently adjust the scaling within the 

path size contribution factors without scaling the choice probability relation as well.  
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In Random Utility Theory (RUT), RUMs are derived based on the deterministic utility function and 

random error term. As (2.9) shows, however, the deterministic utility function for the APSL0 model is not in 

fact deterministic since it is dependent upon the route choice probabilities. APSL0 is thus not a member of the 

RUM family, though it is derived using RUT. This is analogous to the way that Stochastic User Equilibrium 

(SUE) is a consistency condition derived using RUT but an SUE model is not a member of the RUM family. 

The key difference can be understood in considering a policy test: having solved the APSL0 fixed-point 

problem for the ‘before’ case, the path size terms are not fixed. The ‘after’ case would require APSL0 to be re-

solved and the path size terms would be updated. If instead one fixed the APSL path size terms from the 

‘before’ case, then the ‘after’ case would be a regular Path Size Logit model and hence a RUM. Making this 

explicit, imagine examining the impact on route choice of a new road added to the network. For pre-existing 

routes not overlapping with the new routes generated, the path size terms of the regular Path Size Logit 

models would remain the same, and hence so does the attractiveness of those routes. For the APSL0 model, 

however, the fixed-point probability system must be re-solved, and the path size terms for all pre-existing 

routes may be adjusted to account for the updated attractiveness of the routes, and thus to alter the path size 

contributions. 

 

The Issue 

Standard proofs for existence and uniqueness of fixed-point solutions require the domain of the fixed-point 

function (in this case 𝒈) to be a compact convex set. The issue with the APSL0 model as defined in (2.7) and 

(2.8) is that the domain of the fixed-point function 𝒈, 𝐷>0, is open and bounded (not compact) as the function 

is not always defined for zero choice probabilities where 
0

0
 can occur in the path size terms. Altering the 

definition of the path size terms so that the domain of the fixed-point function 𝒈 is the closed and bounded set 

𝐷, where routes can have zero choice probabilities, is however problematic as issues arise with ensuring that 

𝜸𝐴𝑃𝑆(𝑷) remains a continuous function (see Appendix A for a demonstration). 

 

3.2 Proposed APSL Definition 

While the preliminary definition of the APSL model defined in the previous subsection is the model we 

originally aimed to propose, as discussed, we could not prove that solutions were guaranteed to exist nor be 

unique according to standard proofs, and hence we provide here an altered model for use where solutions are 

guaranteed to exist and where conditions for uniqueness can be defined.  

 

Definition 

The APSL choice probabilities, 𝑷∗, (for a choice set of size 𝑁) are a solution to the fixed-point problem 𝑷 =

𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))), where 𝐺𝑖 for route 𝑖 ∈ 𝑅 is: 

 𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))) = 𝜏 + (1 − 𝑁𝜏) ∙ 𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷)), (2.11) 

𝑔𝑖 for route 𝑖 ∈ 𝑅 is: 

 𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)) =

𝑒
−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖

𝐴𝑃𝑆(𝑷))

∑ 𝑒
−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗

𝐴𝑃𝑆(𝑷))
𝑗∈𝑅

=
(𝛾𝑖

𝐴𝑃𝑆(𝑷))
𝛽
𝑒−𝜃𝑐𝑖

∑ (𝛾𝑗
𝐴𝑃𝑆(𝑷))

𝛽
𝑒−𝜃𝑐𝑗𝑗∈𝑅

, (2.12) 

and 𝛾𝑖
𝐴𝑃𝑆 for route 𝑖 ∈ 𝑅 is: 

 
𝛾𝑖
𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

=∑
𝑡𝑎
𝑐𝑖

1

∑ (
𝑃𝑘
𝑃𝑖
)𝛿𝑎,𝑘𝑘∈𝑅

𝑎∈𝐴𝑖

, ∀𝑷 ∈ 𝐷(𝜏), 
(2.13) 

𝐷(𝜏) = {𝑷 ∈ ℝ>0
𝑁 : 𝜏 ≤ 𝑃𝑖 ≤ (1 − (𝑁 − 1)𝜏), ∀𝑖 ∈ 𝑅,∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

The model parameters are 𝜃 > 0, 𝛽 ≥ 0, 0 < 𝜏 ≤
1

𝑁
. (2.12) and (2.13) are equivalent to (2.7) and (2.8) for 

the preliminary definition: 𝛾𝑖
𝐴𝑃𝑆(𝑷) in (2.13) is the APSL path size term function for route 𝑖 ∈ 𝑅 that is a 
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function involving the route choice probabilities, and 𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)) in (2.12) is the unadjusted choice 

probability function for route 𝑖 ∈ 𝑅 which is a function involving the path size term functions and hence also 

the choice probabilities of routes. The choice probability relation for route 𝑖 ∈ 𝑅 is given by 𝑃𝑖 =

𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))), which is an implicit equation involving choice probabilities, and hence the APSL route 

choice probabilities, 𝑷∗, are a solution such that 𝑃𝑖
∗ = 𝐺𝑖 (𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷∗))), ∀𝑖 ∈ 𝑅. The key difference 

between this final model here and the preliminary definition is the adjustment function 𝐺𝑖. 𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))) 

in (2.11) is the APSL choice probability adjustment function for route 𝑖 ∈ 𝑅 which adjusts the choice 

probability function 𝑔𝑖 for reasons given below.  

 

Motivation 

𝐺𝑖 is a fixed-point function, and its construction was motivated by some desired behaviours, as well as some 

required properties for proving existence and uniqueness: 

1. 𝐺𝑖 must map into itself. 

2. 𝐺𝑖 must be continuous for all 𝑷. 

3. 𝐺𝑖 must be continuously differentiable with respect to 𝑷 for all 𝑷. 

4. The domain of 𝐺𝑖 must be closed and bounded. 

5. The domain of 𝐺𝑖 must not allow for zero choice probabilities. 

6. 𝐺𝑖 should be able to approximate 𝑔𝑖. 

7. The domain of 𝐺𝑖 should allow for choice probabilities to be approximately close to zero. 

Desired Properties (DP) 1-4 are required for existence and uniqueness proofs. DP 5 is required since the path 

size term function 𝛾𝑖
𝐴𝑃𝑆(𝑷) in (2.13) and thus 𝐺𝑖 (𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷))) in (2.11) can be undefined for zero choice 

probabilities where 
0

0
 can occur. DP 6 is desired as it is not our intention for the choice probabilities acquired 

from this final APSL model to be different to the choice probabilities from the preliminary definition (where 

one would exist), and we wish them to be as close as possible. DP 7 is desired as we wish to be able to obtain 

choice probability solutions where there are unrealistic routes with extremely small choice probabilities.  

So, the formulation of 𝐺𝑖 in (2.11) and its domain 𝐷(𝜏) have been constructed to satisfy DP 1-7. In 

Section 4 we prove that DP 1-3 are satisfied. The parameter 𝜏 is introduced, and the domain 𝐷(𝜏) is such that 

𝑃𝑖 ≥ 𝜏, ∀𝑖 ∈ 𝑅, and since the choice probabilities for all routes sum up to 1: 𝑃𝑖 ≤ (1 − (𝑁 − 1)𝜏), ∀𝑖 ∈ 𝑅. DP 

4 is thus satisfied as 𝐷(𝜏) is closed and bounded. Moreover, 𝜏 is restricted to the range 0 < 𝜏 ≤
1

𝑁
 and thus DP 

5 is satisfied as zero choice probabilities are not in the domain. As 𝜏 → 0, 𝐺𝑖 → 𝑔𝑖 satisfying DP 6 and the 

lower bound for 𝑃𝑖 in 𝐷(𝜏) tends towards zero satisfying DP 7.  

It is important to note that the 𝝉 parameter is not a model parameter that requires estimating, it is 

simply a mathematical construct that ensures DP 1-7 are satisfied. While the proposed APSL model provides 

the capability, it is not our intention for this final APSL model to purposefully compute different choice 

probabilities to those obtained from the preliminary definition for any given theoretical reason. In fact, we 

desire the choice probabilities to be as close as possible, and hence we advise that only small values of 𝜏 are 

used. For the rest of the paper, i.e. for the demonstrations and estimation work, we set 𝜏 = 10−16, unless 

stated otherwise. In Section 5.3.2.2 we briefly investigate the impact of the 𝜏 parameter upon parameter 

estimation. 

 

3.3 Demonstrations of Key Properties 

 

APSL Key Property 1: Unrealistic routes have a diminished impact upon the choice probabilities of realistic 

routes when links are shared. 
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Referring to the PSL Key Issue in Section 2.3.1, Fig. 2.7 displays the example network 1 APSL choice 

probabilities as 𝜐 is increased from 0.5 to 3, 𝜃 = 𝛽 = 1. As Fig. 2.7 shows, as the travel cost of Route 1 

increases, so does the relative unattractiveness of Route 1, thus decreasing the choice probability for that route 

and its influence upon the correction term of Route 2. The choice probability of Route 2 thus converges to 

match the choice probability of Route 3 as 𝜐 is increased. 

 

Fig. 2.7. Example network 1: APSL route choice probabilities for increasing 𝜐 (𝜃 = 𝛽 = 1). 

 

APSL Key Property 2: APSL path size terms aren’t highly sensitive to small differences in route travel cost. 

 

Referring to GPSL Key Issue 1 in Section 2.3.2, it was demonstrated how GPSL path size terms can be highly 

sensitive to small differences in route travel cost when 𝜆 values are large. It was also demonstrated how 

setting 𝜆 = 0 (i.e. equivalating GPSL and PSL) can also have adverse effects, as the routes with large travel 

costs negatively impact the choice probabilities of routes with low travel costs when links are shared. For 

example network 2 in Fig. 2.4A, a good compromise was found by setting 𝜆 = 10. APSL path size terms do 

not suffer from the same issues GPSL path size terms have when 𝜆 = 0 and when 𝜆 is large. Table 2.1 

displays the example network 2 GPSL choice probabilities when 𝜆 = 0, 𝜆 = 10, and 𝜆 = 400, as well as the 

APSL choice probabilities, 𝜃 = 𝛽 = 1. As Table 2.1 shows, the APSL choice probabilities resemble the 

‘optimised’ GPSL choice probabilities for 𝜆 = 10. 

 

 PSL (= GPSL 𝜆 =
0) 

GPSL (𝜆 =
10) 

GPSL (𝜆 = 400) APSL 

𝑃1 0.329 0.294 0.222 0.297 

𝑃2 0.332 0.301 0.374 0.301 

𝑃3 0.332 0.399 0.398 0.397 

𝑃4 0.007 0.006 0.006 0.006 

Table 2.1. Example network 2: choice probabilities for different PSL models; 𝜃 = 𝛽 = 1. 

 

APSL Key Property 3: Internally consistent assessment of the feasibility of routes. 

 

Referring to GPSL Key Issue 2 in Section 2.3.2 where it was demonstrated how the GPSL model is not 

internally consistent with the assessment of the feasibility of routes, Fig. 2.8 shows the example network 3 

APSL choice probabilities for increasing 𝜂, 𝜃 = 𝛽 = 1. At the point 𝜂 = 𝜂𝑒𝑞 = 0.27, all routes have equal 

choice probabilities; the APSL model proposes that routes contribute to path size terms according to choice 

probability ratios and thus the path size contributions all cancel out at that point resulting in the PSL model, as 

desired.  

Route 1 × 

Route 2 ▲ 

Route 3  
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Fig. 2.8. Example network 3: APSL route choice probabilities for increasing 𝜂 (𝜃 = 𝛽 = 1). 

 

APSL Key Property 4: Internally consistent scaling parameters. 

 

Referring to GPSL Key Issue 3 in Section 2.3.2, it was demonstrated how the GPSL model has internally 

inconsistent scaling parameters, and how the GPSL′(𝜆=𝜃) model partially improves the internal consistency of 

the GPSL model. Fig. 2.9A shows the example network 4 APSL choice probabilities for increasing 𝜃, 𝛽 = 1. 

As shown in (2.7) and (2.10), the APSL model, like the GPSL′(𝜆=𝜃) model, uses the 𝜃 parameter to scale 

differences in travel cost within both the probability relation and the path size contribution factor, and thus for 

low 𝜃 Route 3 has the lowest choice probability due to being the least distinct, and for larger 𝜃 Route 3’s 

choice probability converges to Route 2 as Route 4’s path size contribution diminishes. Fig. 2.9B shows the 

example network 4 APSL choice probabilities for increasing 𝜃, 𝛽 = 1.4. An increase in 𝛽 further decreases 

Route 3’s choice probability for low 𝜃, and as a consequence Route 3’s path size contribution to Route 4 

diminishes and Route 4 converges to the choice probability of Route 1. 

  

Fig. 2.9. Example network 4: APSL route choice probabilities for increasing 𝜃. A: 𝛽 = 1. B: 𝛽 = 1.4. 

 

3.4 Solution Method 

There are many fixed-point algorithms available for solving the APSL fixed-point system 𝑷 =

𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))). In the studies in this paper we utilise the simplest fixed-point algorithm available: the 

Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). The FPIM is the most basic fixed-point 

algorithm, and other algorithms aim to accelerate the convergence of the FPIM, though require more 

complicated computations at each iteration. The FPIM for solving the APSL fixed-point system 𝑷 =

𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) is formulated as follows: 

Routes 1-5 × 

Route 6 ▲ 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

A B 
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𝑃𝑖
(𝑠+1)

= 𝐺𝑖 (𝑔𝑖 (𝜸
𝐴𝑃𝑆(𝑷(𝑠)))) , 𝑠 = 0,1,2,… 

such that 

lim
𝑠→∞

𝑃𝑖
(𝑠+1)

= lim
𝑘→∞

𝐺𝑖 (𝑔𝑖 (𝜸
𝐴𝑃𝑆(𝑷(𝑠)))) =𝑃𝑖

∗, 𝑷(0) ∈ 𝐷(𝜏), ∀𝑖 ∈ 𝑅. 

A standard convergence statistic we chose to observe in this study is ln (∑ |𝑃𝑖
(𝑠+1)

− 𝑃𝑖
(𝑠)
|𝑖∈𝑅 ), and the FPIM 

is said to have converged sufficiently to an APSL choice probability solution if: 

ln (∑|𝑃𝑖
(𝑠+1)

− 𝑃𝑖
(𝑠)
|

𝑖∈𝑅

) < ln(10−𝜉), 

where 𝜉 > 0 is a predetermined convergence parameter. In Sections 5.3.2.2 & 5.4.1.2 we assess the 

computational performance of the APSL model in calculating choice probabilities and parameter estimation. 

4.  Existence and Uniqueness of APSL Solutions 
In this section we establish a series of theoretical results concerning the APSL model as defined in (2.11), 

(2.12), and (2.13), where the guaranteed existence of solutions is proven, and sufficient conditions for the 

uniqueness of solutions are detailed. 

 

4.1 Properties 

First, we note the relationship between the APSL0 and APSL models. 

Property 2. A solution to the APSL model as defined in (2.11), (2.12), and (2.13) approaches the APSL0 

model as defined in (2.7) and (2.8) in the limit as 𝜏 → 0. 

Proof. This follows by inspection from the definition of 𝐺𝑖 in (2.11) noting that 𝐺𝑖 → 𝑔𝑖, as 𝜏 → 0. 

∎ 

From Property 2, the APSL model will thus satisfy Property 1 in the limit as 𝜏 → 0. 

We next provide two important properties of the fixed-point function 𝑮. In Lemma 1 we establish the 

continuity property of 𝑮. 

Lemma 1. 𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))) is a continuous function for 𝑷 ∈ 𝐷(𝜏), ∀𝑖 ∈ 𝑅. 

Proof. From the definition (2.13) above it follows that 𝜸𝐴𝑃𝑆 is continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): 

 lim
𝑷→𝒒

𝜸𝐴𝑃𝑆(𝑷) = 𝜸𝐴𝑃𝑆(𝒒), ∀𝒒 ∈ 𝐷(𝜏). (2.14) 

If we let 𝛤 be the set of possible path size terms: 

𝛤 = {𝜸𝐴𝑃𝑆 ∈ ℝ>0
𝑁 : 0 < 𝛾𝑖

𝐴𝑃𝑆 ≤ 1, ∀𝑖 ∈ 𝑅}, 

then from definition (2.12) above it follows that 𝑔𝑖 is continuous in 𝜸𝐴𝑃𝑆 for all 𝜸𝐴𝑃𝑆 ∈ 𝛤: 

 lim
𝜸𝐴𝑃𝑆→𝜸0

𝑔𝑖(𝜸
𝐴𝑃𝑆) = 𝑔𝑖(𝜸0), ∀𝜸0 ∈ 𝛤, ∀𝑖 ∈ 𝑅. (2.15) 

And, from definition (2.11) above it follows that 𝐺𝑖 is continuous in 𝑥 for all 𝑥 ∈ (0,1): 

 lim
𝑥→𝑥0

𝐺𝑖(𝑥) = 𝐺𝑖(𝑥0), ∀𝑥0 ∈ (0,1). (2.16) 

It then follows from (2.14), (2.15), and (2.16) that 𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))), as a composition of continuous 

functions, is itself continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): 

lim
𝑷→𝒒

𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))) = 𝐺𝑖 (𝑔𝑖(𝜸

𝐴𝑃𝑆(𝒒))) , ∀𝒒 ∈ 𝐷(𝜏), ∀𝑖 ∈ 𝑅. 

∎ 

We now in Lemma 2 show that the domain of 𝑮 maps to itself. 
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Lemma 2. 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) maps 𝐷(𝜏) into 𝐷(𝜏). 

Proof. From definition (2.13) above it follows that the function 𝜸𝐴𝑃𝑆 maps 𝐷(𝜏) → 𝛤, from definition (2.12) it 

follows that the function 𝒈 maps 𝛤 → 𝐷>0, and, from definition (2.11) it follows that the function 𝑮 maps 

𝐷>0 → 𝐷(𝜏). It thus follows that the composition of the functions 𝜸𝐴𝑃𝑆, 𝒈, and 𝑮, 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))), maps 

𝐷(𝜏) → 𝐷(𝜏). 
∎ 

 

4.2 Existence of Solutions 

Having established some properties regarding the APSL fixed-point function 𝑮, we consider the existence of 

APSL solutions. 

Proposition 1. At least one APSL fixed-point solution, 𝑷∗, to the system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) is guaranteed 

to exist in 𝐷(𝜏). 

Proof. 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) is a continuous function by Lemma 1, which maps 𝐷(𝜏) into 𝐷(𝜏) by Lemma 2, and 

thus since 𝐷(𝜏) is a compact convex set, and by Brouwer’s Fixed-Point Theorem at least one fixed-point 

solution, 𝑷∗, is guaranteed to exist for the system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷))) in 𝐷(𝜏). 

∎ 

 

4.3 Uniqueness of Solutions 

Having proven that APSL solutions are guaranteed to exist, the next question is whether sufficient conditions 

exist which ensure APSL solutions are unique. In order to do this, we must first establish two key properties 

of 𝐽𝑮(𝑷; 𝛽) which is the Jacobian matrix of first partial derivatives of 𝑮 evaluated at 𝑷 and 𝛽. 

Lemma 3. The maximum Jacobian matrix norm of 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷); 𝛽)) for all 𝑷 ∈ 𝐷(𝜏) at 𝛽 = 0 is equal to 

zero: max(‖𝐽𝑮(𝑷; 0)‖: ∀𝑷 ∈ 𝐷
(𝜏)) = 0. 

Proof. From definitions (2.11) and (2.12) above it follows that: 

 𝐺𝑖(𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷); 0)) = 𝜏 + (1 − 𝑁𝜏) ∙ (

𝑒−𝜃𝑐𝑖

∑ 𝑒−𝜃𝑐𝑗𝑗∈𝑅

) , ∀𝑖 ∈ 𝑅. (2.17) 

It then follows from (2.17) that: 

 
𝜕𝐺𝑖(𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷); 0))

𝜕𝑃𝑙
= 0, ∀𝑷 ∈ 𝐷(𝜏), ∀𝑖, 𝑙 ∈ 𝑅. (2.18) 

It thus follows from (2.18) that ‖𝐽𝑮(𝑷; 0)‖ = 0, ∀𝑷 ∈ 𝐷
(𝜏), and hence max(‖𝐽𝑮(𝑷; 0)‖:∀𝑷 ∈ 𝐷

(𝜏)) = 0. 

∎ 

Lemma 4. The maximum Jacobian matrix norm of 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷); 𝛽)), max(‖𝐽𝑮(𝑷;𝛽)‖:∀𝑷 ∈ 𝐷
(𝜏)), is a 

continuous function for 𝛽 ∈ [0,∞). 

Proof. It follows from the definitions (2.11), (2.12), and (2.13) above that: 

𝜕𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
 

 
= (1 − 𝑁𝜏) ∙ (

(𝛾𝑖
𝐴𝑃𝑆(𝑷))

𝛽

𝑒−𝜃𝑐𝑖

∑ (𝛾𝑗
𝐴𝑃𝑆(𝑷))

𝛽

𝑒−𝜃𝑐𝑗𝑗∈𝑅

) ∙

(

 
 𝛽

𝜕𝛾𝑖
𝐴𝑃𝑆(𝑷)
𝜕𝑃𝑙

(𝛾𝑖
𝐴𝑃𝑆(𝑷))

−

(∑ 𝛽
𝜕𝛾𝑗

𝐴𝑃𝑆(𝑷)

𝜕𝑃𝑙
(𝛾𝑗

𝐴𝑃𝑆(𝑷))
𝛽−1

𝑒−𝜃𝑐𝑗𝑗∈𝑅 )

(∑ (𝛾𝑗
𝐴𝑃𝑆(𝑷))

𝛽

𝑒−𝜃𝑐𝑗𝑗∈𝑅 )
)

 
 
,

∀𝑖, 𝑙 ∈ 𝑅, 

(2.19) 
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𝜕𝛾𝑖

𝐴𝑃𝑆(𝑷)

𝜕𝑃𝑖
=∑

𝑡𝑎
𝑐𝑖
(
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖

(∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 )
2)

𝑎∈𝐴𝑖

, ∀𝑖 ∈ 𝑅, (2.20) 

and, 

 
𝜕𝛾𝑖

𝐴𝑃𝑆(𝑷)

𝜕𝑃𝑙
= −∑

𝑡𝑎
𝑐𝑖

𝑃𝑖𝛿𝑎,𝑙

(∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 )
2

𝑎∈𝐴𝑖

, ∀𝑖, 𝑙 ∈ 𝑅, 𝑙 ≠ 𝑖. (2.21) 

From the definitions (2.20) and (2.21) above it follows that 
𝜕𝜸𝐴𝑃𝑆(𝑷)

𝜕𝑷
 is continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): 

 lim
𝑷→𝒒

𝜕𝜸𝐴𝑃𝑆(𝑷)

𝜕𝑷
=
𝜕𝜸𝐴𝑃𝑆(𝒒)

𝜕𝑷
, ∀𝒒 ∈ 𝐷(𝜏). (2.22) 

It then follows from (2.14) and (2.22) that 
𝜕𝐺𝑖(𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
 as defined in (2.19), being a composition of 

continuous functions, is itself continuous in 𝑷 for all 𝑷 ∈ 𝐷(𝜏): 

lim
𝑷→𝒒

𝜕𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
=
𝜕𝐺𝑖 (𝑔𝑖(𝜸

𝐴𝑃𝑆(𝒒)))

𝜕𝑃𝑙
, ∀𝒒 ∈ 𝐷(𝜏), ∀𝑖, 𝑙 ∈ 𝑅. 

Since 
𝜕𝐺𝑖(𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
 is a continuous function for 𝑷 ∈ 𝐷(𝜏), ∀𝑖, 𝑙 ∈ 𝑅, 

𝜕𝐺𝑖(𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷);𝛽))

𝜕𝑃𝑙
 is also a continuous 

function for 𝛽 ∈ [0,∞), ∀𝑖, 𝑙 ∈ 𝑅: 

lim
𝛽→𝛽0

(
𝜕𝐺𝑖(𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷); 𝛽))

𝜕𝑃𝑙
 ) =

𝜕𝐺𝑖(𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷); 𝛽0))

𝜕𝑃𝑙
 , ∀𝛽0 ∈ [0,∞), ∀𝑖, 𝑙 ∈ 𝑅. 

Hence, since max(‖𝐽𝑮(𝑷; 𝛽)‖:∀𝑷 ∈ 𝐷
(𝜏)) is a composition of continuous functions then it itself is a 

continuous function for 𝛽 ∈ [0,∞):  

lim
𝛽→𝛽0

(max(‖𝐽𝑮(𝑷;𝛽)‖: ∀𝑷 ∈ 𝐷
(𝜏))) = max(‖𝐽𝑮(𝑷;𝛽0)‖:∀𝑷 ∈ 𝐷

(𝜏)) , ∀𝛽0 ∈ [0,∞). 

∎ 

These two key properties of 𝐽𝑮(𝑷; 𝛽) allow us to establish conditions for the uniqueness of solutions. 

Proposition 2. There always exist values of 𝑏 > 0 such that when the 𝛽 parameter is within the range 0 ≤

𝛽 ≤ 𝑏, there are unique APSL fixed-point solutions, 𝑷∗, to the system 𝑷 = 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝑷); 𝛽)) in 𝐷(𝜏).  

Proof. 𝑮 is a contraction mapping on the domain 𝐷(𝜏) if: 

a) 𝑮 maps 𝐷(𝜏) into itself, so 𝑮(𝒈(𝜸𝐴𝑃𝑆(𝒒); 𝛽)) ∈ 𝐷(𝜏), ∀𝒒 ∈ 𝐷(𝜏), and 

b) There exists a constant 0 ≤ 𝜎 < 1 such that: 

‖𝐽𝑮(𝑷; 𝛽)‖ ≤ 𝜎, ∀𝑷 ∈ 𝐷(𝜏), 

where 𝐽𝑮(𝑷; 𝛽) is the Jacobian matrix of first partial derivatives of 𝑮 evaluated at 𝑷. 

If the link cost vector 𝒕 is fixed (and thus the route cost vector 𝒄 is fixed), and 𝜃 is fixed, then for any 

given 𝛽, if 𝑮 is a contraction mapping, then since 𝐷(𝜏) is a compact convex set, and by Lemma 1, Lemma 2, 

and the Contraction Mapping Theorem, 𝑮 emits a unique fixed-point solution 𝑷∗ ∈ 𝐷(𝜏).  
It remains to establish the conditions under which 𝑮 is a contraction mapping. Since by Lemma 3 the 

maximum Jacobian matrix norm of 𝑮 for all 𝑷 ∈ 𝐷(𝜏) at 𝛽 = 0 is equal to zero (max(‖𝐽𝑮(𝑷; 0)‖: ∀𝑷 ∈

𝐷(𝜏)) = 0), and by Lemma 4 max(‖𝐽𝑮(𝑷;𝛽)‖:∀𝑷 ∈ 𝐷
(𝜏)) is a continuous function for 𝛽 ∈ [0,∞), then there 

must always exist values 𝑏 > 0 such that when 𝛽 is within the range 0 ≤ 𝛽 ≤ 𝑏 𝑮 is a contraction mapping 

and the sufficient conditions for unique APSL solutions are always met.  

∎ 

There are cases where the APSL model has unique solutions for all 𝛽 > 0 (i.e. for all values of 𝑏), for 

example where all routes are non-overlapping and the path size terms are consequently all 1 so that 𝐺𝑖 
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collapses to (2.17), and hence in these cases a maximum value for 𝑏 does not exist. However, in most cases 

APSL solutions are not unique for all values of 𝛽 and in these cases a maximum value for 𝑏 exists (denoted 

𝑏𝑚𝑎𝑥) such that Proposition 2 holds. However, Proposition 2 is only a sufficient condition for unique APSL 

solutions and solutions are not necessarily non-unique for 𝛽 > 𝑏𝑚𝑎𝑥. In Section 4.4 below we explore how 

0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 relates to the true maximum range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥 in which APSL solutions are unique. 

 

4.4 Investigating the Conditions for Uniqueness 

𝑏𝑚𝑎𝑥 is the maximum value such that the sufficient conditions for unique APSL solutions in Proposition 2 are 

satisfied for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥. 𝛽𝑚𝑎𝑥 is the true maximum value such that APSL solutions are 

unique for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥, where 𝛽𝑚𝑎𝑥 ≥ 𝑏𝑚𝑎𝑥. The purpose of this section is to explore 

how close 𝑏𝑚𝑎𝑥 is to 𝛽𝑚𝑎𝑥, and demonstrate that multiple solutions can exist when 𝛽 is greater than 𝛽𝑚𝑎𝑥. 

We specify and demonstrate how to calculate 𝑏𝑚𝑎𝑥, and suggest and demonstrate a method for estimating 

𝛽𝑚𝑎𝑥. 

Calculating 𝑏𝑚𝑎𝑥 can be formulated as either of the following optimisation problems: 

 

𝒃𝒎𝒂𝒙 Optimisation Problem 1 

𝑏𝑚𝑎𝑥 = max{𝛽} 

subject to 

‖𝐽𝑮(𝑷;𝛽)‖ < 1, ∀𝑷 ∈ 𝐷(𝜏). 

 

𝒃𝒎𝒂𝒙 Optimisation Problem 2 

𝑏𝑚𝑎𝑥 = max{𝛽} 

subject to 

‖𝐽𝑮(�̅�; 𝛽)‖ < 1 

where 

�̅� = argmax
𝑷
{‖𝐽𝑮(𝑷;𝛽)‖: ∀𝑷 ∈ 𝐷

(𝜏)}. 

Example 

Consider example network 5 in Fig. 2.10 where there are 2 routes: Route 1 has travel cost 𝑢 + 𝑤 and Route 2 

has travel cost 𝑣 + 𝑤. Fig. 2.11A-D display the maximum Jacobian matrix norm of 𝑮 for increasing 𝛽 for four 

different network parameter settings. 

 

Fig. 2.10. Example network 5. 
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Fig. 2.11. Example network 5: Maximum Jacobian matrix norm of APSL fixed-point function 𝑮 for increasing 𝛽.  

A: 𝑢 = 𝑣 = 𝑤 = 𝜃 = 1, (𝑏𝑚𝑎𝑥 ≅ 2.95). B: 𝑢 = 0.5, 𝑣 = 𝑤 = 𝜃 = 1, (𝑏𝑚𝑎𝑥 ≅ 2.05).  

C: 𝑢 = 0.1, 𝑣 = 1, 𝑤 = 4, 𝜃 = 1, (𝑏𝑚𝑎𝑥 ≅ 0.075). D: 𝑢 = 0.1, 𝑣 = 𝑤 = 20, 𝜃 = 10−5, (𝑏𝑚𝑎𝑥 ≅ 0.0125). 

 

𝛽𝑚𝑎𝑥 can be estimated by plotting trajectories of APSL solutions for varying 𝛽, and identifying where a 

unique trajectory of solutions ends and multiple trajectories begin. We briefly detail here a simple method for 

obtaining trajectories of APSL solutions: 

Step 1. Identify a suitably large value for 𝛽. 

Step 2. Solve the APSL fixed-point system for this large 𝛽 with a randomly generated initial condition 

(see Section 3.4). 

Step 3. Decrement 𝛽 and obtain the next APSL solution with initial condition set as the APSL 

solution for the previous 𝛽. 

Step 4. Continue until 𝛽 = 0 or 𝛽 = 𝑏𝑚𝑎𝑥 if known. 

By plotting the choice probabilities at each decremented 𝛽, and repeating this method several times, one can 

determine where non-unique solution trajectories end and hence estimate 𝛽𝑚𝑎𝑥. If after several repetitions 

(with different randomly generated initial conditions) only a single trajectory of solutions is shown, then the 

initial large 𝛽 value is increased. We illustrate the approach graphically, but there is no need to draw graphs 

for general networks. One can instead observe the choice probability values, where a finer grained decrement 

of 𝛽 will provide a more accurate estimation of 𝛽𝑚𝑎𝑥. 

To demonstrate, consider again example network 5 in Fig. 2.10; Fig. 2.12A-D display trajectories of 

APSL solutions as the 𝛽 parameter is varied for the same network parameter settings as Fig. 2.11A-D, 

respectively. 𝛽 was decremented by 0.01, and the initial large 𝛽 value was 𝛽 = 10, (though trajectories are 

only plotted for part of this range for illustrative purposes). The solution trajectory plotting was repeated until 

multiple clear trajectories were shown. As each of Fig. 2.12A-D show, there is a unique trajectory of choice 

max(‖𝐽𝐺‖) × 

1 ∎ 

𝒃𝒎𝒂𝒙 ▲ 

 

max(‖𝐽𝐺‖) × 

1 ∎ 

𝒃𝒎𝒂𝒙 ▲ 

 

max(‖𝐽𝐺‖) × 

1 ∎ 

𝒃𝒎𝒂𝒙 ▲ 

 

max(‖𝐽𝐺‖) × 

1 ∎ 

𝒃𝒎𝒂𝒙 ▲ 

 

A B 
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probability solutions up until 𝛽 = 𝛽𝑚𝑎𝑥 where there then becomes multiple trajectories. As Fig. 2.12A shows, 

the estimated 𝛽𝑚𝑎𝑥 value in this case is equal to 𝑏𝑚𝑎𝑥  in Fig. 2.11A, however in the cases of Fig. 2.12B-D, 

the estimated 𝛽𝑚𝑎𝑥 values are all greater than the 𝑏𝑚𝑎𝑥 values in Fig. 2.11B-D. 

  

  

Fig. 2.12. Example network 5: Trajectories of APSL choice probability solutions as 𝛽 is varied. 

A: 𝑢 = 𝑣 = 𝑤 = 𝜃 = 1, (𝛽𝑚𝑎𝑥 ≅ 2.95). B: 𝑢 = 0.5, 𝑣 = 𝑤 = 𝜃 = 1, (𝛽𝑚𝑎𝑥 ≅ 2.8).  

C: 𝑢 = 0.1, 𝑣 = 1, 𝑤 = 4, 𝜃 = 1, (𝛽𝑚𝑎𝑥 ≅ 1.5). D: 𝑢 = 0.1, 𝑣 = 𝑤 = 20, 𝜃 = 10−5, (𝛽𝑚𝑎𝑥 ≅ 4.3). 

 

As we have shown, 𝑏𝑚𝑎𝑥 can be a conservative estimate of 𝛽𝑚𝑎𝑥. On the other hand, we have shown that for 

large enough values of 𝛽 multiple solutions can exist, and therefore is an issue that should be considered in 

practice in real-life applications. The experiments above provide a computationally feasible method for 

revealing multiple solutions, and thus 𝛽𝑚𝑎𝑥, that can be applied in realistic sized networks (see Sections 

5.3.2.3 / 5.4.1.3).  

5.  Estimating the APSL Model 
In this section, we provide a Maximum Likelihood Estimation (MLE) procedure for estimating the APSL 

model with tracked route observations. This procedure for estimating the APSL model is then investigated in a 

simulation study, and the possibility of retrieving APSL parameter estimates is assessed. The APSL model is 

then estimated on a large-scale network using real route choice observation data tracked with GPS units, and 

results are compared with other Path Size Logit models. 

 

5.1 Notation and Definitions for Estimation with Multiple OD Movements 

5.1.1 Notation 

To consider the estimation of the APSL model and other Path Size Logit models, we extend definitions here 

for estimation on a network with multiple OD movements, but where the travel costs remain fixed. The road 

Route 1 × 

Route 2 ▲ 

𝜷𝒎𝒂𝒙 -- 
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C D 
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Route 2 ▲ 
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network consists of link set 𝐴 and 𝑚 = 1,… ,𝑀 OD movements. 𝑅𝑚 is the choice set of all simple routes (no 

cycles) for OD movement 𝑚 of size 𝑁𝑚 = |𝑅𝑚|, and 𝐴𝑚,𝑖 ⊆ 𝐴 is the set of links belonging to route 𝑖 ∈ 𝑅𝑚, 

and 𝛿𝑎,𝑚,𝑖 = {
1     𝑖𝑓 𝑎 ∈ 𝐴𝑚,𝑖
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. Suppose that the generalised travel cost 𝑡𝑎 of each link 𝑎 ∈ 𝐴 is a weighted 

sum (by parameter vector 𝜶) of variables 𝒘𝑎, i.e. 𝑡𝑎(𝒘𝑎; 𝜶), and that the generalised travel cost for route 𝑖 ∈
𝑅𝑚, 𝑐𝑚,𝑖, can be attained through summing up the total cost of its links so that 𝑐𝑚,𝑖(𝒕(𝒘;𝜶)) =
∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 , where 𝒕 is the vector of all link travel costs and 𝒘 is the vector of all link variables. Let the 

route choice probability for route 𝑖 ∈ 𝑅𝑚 be 𝑃𝑚,𝑖, where 𝑷𝑚 = (𝑃𝑚,1, 𝑃𝑚,2, … , 𝑃𝑚,𝑁𝑚) is the vector of route 

choice probabilities for OD movement 𝑚, and 𝐷𝑚 is the domain of possible route choice probability vectors 

for OD movement 𝑚, 𝑚 = 1,… ,𝑀. 

 

5.1.2 Model Definitions 

5.1.2.1 Multinomial Logit 

MNL choice probability relation for route 𝑖 ∈ 𝑅𝑚: 

 𝑃𝑚,𝑖(𝒕) =
1

∑ 𝑒
−𝜃(𝑐𝑚,𝑗(𝒕)−𝑐𝑚,𝑖(𝒕))

𝑗∈𝑅𝑚

. (2.23) 

 

5.1.2.2 Regular Path Size Logit Models 

Regular Path Size Logit model choice probability relation for route 𝑖 ∈ 𝑅𝑚: 

 
𝑃𝑚,𝑖(𝒕) =

1

∑ (
𝛾𝑚,𝑗(𝒕)

𝛾𝑚,𝑖(𝒕)
)
𝛽

𝑒
−𝜃(𝑐𝑚,𝑗(𝒕)−𝑐𝑚,𝑖(𝒕))

𝑗∈𝑅𝑚

. 
(2.24) 

PSL path size term for route 𝑖 ∈ 𝑅𝑚: 

 𝛾𝑚,𝑖
𝑃𝑆 (𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

1

∑ 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖

. (2.25) 

GPSL path size term for route 𝑖 ∈ 𝑅𝑚: 

 
𝛾𝑚,𝑖
𝐺𝑃𝑆(𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

1

∑ (
𝑐𝑚,𝑖(𝒕)

𝑐𝑚,𝑘(𝒕)
)
𝜆

𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚

𝑎∈𝐴𝑚,𝑖

. 
(2.26) 

GPSL′(𝜆=𝜃) path size term for route 𝑖 ∈ 𝑅𝑚: 

 𝛾𝑚,𝑖
𝐺𝑃𝑆′(𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

1

∑ 𝑒
−𝜃(𝑐𝑚,𝑘(𝒕)−𝑐𝑚,𝑖(𝒕))𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚

𝑎∈𝐴𝑚,𝑖

. (2.27) 

 

5.1.2.3 Adaptive Path Size Logit 

The APSL choice probabilities for OD movement 𝑚, 𝑷𝑚
∗ , are a solution to the fixed-point problem 𝑷𝑚 =

𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚))), where 𝐺𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 

 𝐺𝑚,𝑖 (𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚))) = 𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚

𝐴𝑃𝑆(𝒕, 𝑷𝑚)), (2.28) 

𝑔𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚)) =

(𝛾𝑚,𝑖
𝐴𝑃𝑆(𝒕, 𝑷𝑚))

𝛽
𝑒−𝜃𝑐𝑚,𝑖(𝒕)

∑ (𝛾𝑚,𝑗
𝐴𝑃𝑆(𝒕, 𝑷𝑚))

𝛽
𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚

, (2.29) 
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and 𝛾𝑚,𝑖
𝐴𝑃𝑆 for route 𝑖 ∈ 𝑅𝑚 is: 

 𝛾𝑚,𝑖
𝐴𝑃𝑆(𝒕, 𝑷𝑚) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

𝑃𝑚,𝑖
∑ 𝑃𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖

, 𝑷𝑚 ∈ 𝐷𝑚
 (𝜏𝑚), (2.30) 

𝐷𝑚
(𝜏𝑚) = {𝑷𝑚 ∈ ℝ>0

𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚,∑ 𝑃𝑚,𝑗
𝑁𝑚

𝑗=1
= 1}, 

The model parameters are 𝜃 > 0, 𝛽 ≥ 0, and 0 < 𝜏𝑚 ≤
1

𝑁𝑚
, 𝑚 = 1,… ,𝑀. Each OD movement has its own 

range restrictions for 𝜏𝑚 based on the number of routes in the choice set, but the 𝜏𝑚 parameters are not model 

parameters that require estimating, they are simply a mathematical construct that ensure solutions to the APSL 

model exist and can be unique. As discussed in Section 3.2, only small values of 𝜏𝑚 should be used, and we 

set 𝜏𝑚 = 10−16, 𝑚 = 1,… ,𝑀. APSL choice probability solutions are computed using the FPIM with initial 

conditions set as the MNL route choice probabilities, and convergence statistic set at 𝜉 = 10 (see Section 3.4), 

unless specified otherwise. 

 

5.2 Adaptive Path Size Logit Likelihood Formulation & Estimation Procedure 

5.2.1 Likelihood Formulation 

Suppose that we have available a set of 𝑍 observed routes, e.g. collected through GPS units or smart phones, 

and consider a situation where it is not needed to distinguish individuals in their preferences (the approach is, 

of course, readily generalised to permit multiple user classes differing in their parameters). Let 𝑚𝑧 denote the 

OD movement of route observation 𝑧, and for each trip observation 𝑧 = 1,2,… , 𝑍, let 𝑅𝑚𝑧
 be the choice set of 

all simple routes between the origin and destination of the trip. Suppose that the observation data is contained 

in a vector 𝒙 of size 𝑍 where: 

𝑥𝑧 = 𝑖     if alternative 𝑖 ∈ 𝑅𝑚𝑧
 is chosen, 𝑧 = 1,… , 𝑍. 

The Likelihood for a sample of size 𝑍, can be formulated as: 

 𝐿(𝜶, 𝜃, 𝛽|𝒙) =∏𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶), 𝜃, 𝛽)

𝑍

𝑧=1

, (2.31) 

where 𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶), 𝜃, 𝛽) is the APSL choice probability solution for route 𝑥𝑧 ∈ 𝑅𝑚𝑧

 to the fixed-point 

problem 𝑷𝑚𝑧
= 𝑮𝑚𝑧

(𝒈𝑚𝑧
(𝒄𝑚𝑧

(𝒕), 𝜸𝑚𝑧
𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧

))) for OD movement 𝑚𝑧, where 𝐺𝑚,𝑖 and 𝑔𝑚,𝑖 are as in 

(2.28) and (2.29) for route 𝑖 ∈ 𝑅𝑚, respectively. The Log-Likelihood function is thus: 

 𝐿𝐿(𝜶, 𝜃, 𝛽|𝒙) = ln(∏𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶), 𝜃, 𝛽)

𝑍

𝑧=1

) =∑ln (𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶), 𝜃, 𝛽))

𝑍

𝑧=1

. (2.32) 

 

5.2.2 Estimation Procedure 

Standard MLE procedures can be used to estimate the parameters of the APSL model for a given network. 

Using a standard iterative estimation procedure, APSL model parameters can be found that maximise the Log-

Likelihood function as formulated in (2.32) above for a given set of data. Algorithm 2.1 outlines pseudo-code 

for the estimation procedure. 

 

Step 1: Initialisation. For each route observation 𝑧 = 1,… , 𝑍, generate the corresponding universal choice set 

and store the link attributes and link-route information. Define an initial set of parameter values 

(�̃�(1), �̃�(1), �̃�(1)) for MLE, and set 𝑛 = 1. 

 

Step 2: Recalculate choice probabilities and LL. Given the set of parameter values (�̃�(𝑛), �̃�(𝑛), �̃�(𝑛)) for 

iteration 𝑛, calculate the link costs 𝒕(𝒘; �̃�(𝑛)) and solve each of the fixed-point problems 
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𝑷𝑚𝑧
= 𝑮𝑚𝑧

(𝒈𝑚𝑧
(𝒄𝑚𝑧

(𝒕(𝒘; �̃�(𝑛))) , 𝜸𝑚𝑧
𝐴𝑃𝑆(𝒕(𝒘; �̃�(𝑛)), 𝑷𝑚𝑧

); �̃�(𝑛), �̃�(𝑛))) 

for 𝑧 = 1,… , 𝑍. Given the fixed-point choice probability solutions 𝑃𝑚𝑧,𝑥𝑧
∗  for each of the route observations 

𝑧 = 1,… , 𝑍, calculate the Log-Likelihood 𝐿𝐿(𝑛)(�̃�(𝑛), �̃�(𝑛), �̃�(𝑛)|𝒙) for iteration 𝑛. 

 

Step 3: Compute new set of parameters. Based on 𝐿𝐿(𝑠) and the associated parameters (�̃�(𝑠), �̃�(𝑠), �̃�(𝑠)) for 

all 𝑠 ≤ 𝑛, compute a new set of parameters (�̃�(𝑛+1), �̃�(𝑛+1), �̃�(𝑛+1)) to test in the following iteration.  

 

Step 4: Stopping criteria. If |𝐿𝐿(𝑛) − 𝐿𝐿(𝑛−1)| < 𝜁, stop. Otherwise, set 𝑛 = 𝑛 + 1 and return to Step 2. 

 

Algorithm 2.1: Pseudo-code for estimating the APSL model. 

 

In general, Step 3 could apply procedures from standard numerical optimisation methods to identify the 

parameters to evaluate in the next iteration. Utilising gradient approaches such as Newton-Raphson or BHHH, 

however, is complicated by the difficulties in differentiating the APSL Log-Likelihood function, which 

involves differentiating the fixed-point choice probabilities with respect to the parameters, which is not 

straightforward. Other optimisation algorithms such as BFGS and alternative quasi-Newton algorithms use 

methods to approximate the differentials, and while are more computationally burdensome and typically less 

accurate, are readily useable. For the experiments in this paper, we utilise the L-BFGS-B bound-constraint, 

quasi-Newton minimisation algorithm (Byrd et al, 1995) for Steps 2-4 of Algorithm 2.1 (where we minimise 

−𝐿𝐿). The parameter bounds and initial conditions are given in each study. 

Note that Algorithm 2.1 computes one set of parameter estimates, estimated from one set of observations. 

It is possible to calculate standard errors for the estimated APSL parameters analytically, but this is again 

complicated by the requirement to differentiate the APSL Log-Likelihood function with respect to the 

parameters. Instead, the robustness of the parameters estimated (variation of the estimates) can be investigated 

numerically by applying Algorithm 2.1 multiple times through resampling-approaches such as Bootstrap or 

Jackknife. 

 

5.3 Simulation Study 

In this section we investigate the formulated likelihood function for the APSL route choice model in a 

simulation study, evaluating the likelihood-surface and assessing the possibility of estimating reasonable 

parameters that reproduces observed behaviour. 

 

5.3.1 Experiment Setup 

In general, the approach is to sample observations according to an assumed ‘true’ model, and then use these in 

combination with the log-likelihood function to evaluate the ability to reproduce the assumed ‘true’ 

parameters. The simulation study consists of three steps: 

(i) Postulate a true APSL choice model including specification and parameter values. 

(ii) Sample a set of observed route choices according to the true model using the specified link travel 

costs. 

(iii) Apply MLE approach to obtain parameter estimates based on the observed route choices. 

The estimation procedure in Algorithm 2.1 is altered for simulation studies, by modifying Step 1: 

Initialisation as outlined below to reflect (i) and (ii) in the above: 

 

Step 1: Initialisation.  

 1.1 For OD movements 𝑚 = 1,… ,𝑀, generate the choice sets and store the link attributes and link- 

route information. 

 

1.2. Postulate a true set of parameters (𝜶𝑡𝑟𝑢𝑒 , 𝜃𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒) for the APSL model, and given these 

parameters and  
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the generated choice sets, solve each of the fixed-point problems  

𝑷𝑚 = 𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕(𝒘;𝜶
𝑡𝑟𝑢𝑒)), 𝜸𝑚

𝐴𝑃𝑆(𝒕(𝒘;𝜶𝑡𝑟𝑢𝑒), 𝑷𝑚); 𝜃𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒)) 

for 𝑚 = 1,… ,𝑀. 

 

1.3. Based on the fixed-point choice probability solutions 𝑷𝑚
∗  for 𝑚 = 1,… ,𝑀 (obtained in 1.2), 

sample 𝑍 observed routes. 

 

1.4. Define an initial set of parameter values (�̃�(1), �̃�(1), �̃�(1)) for MLE, and set 𝑛 = 1. 

Algorithm 2.1 (Step 1): Pseudo-code, initialisation of simulation experiments. 

 

The number of observed routes to sample, 𝑍, is exogenously defined. The robustness of the estimated 

parameters estimated can be investigated numerically by applying Algorithm 2.1 multiple times and then 

analysing the variation of the estimated parameters. 

 

5.3.2 Sioux Falls Application 

The Sioux Falls network in Fig. 2.13 consists of 76 links, 528 OD movements with non-zero travel demands, 

and 1,632,820 total routes. The travel cost of link 𝑎 is specified as the free-flow travel time 𝑤𝑎,1 only, such 

that: 

𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1, 

where 𝛼1 > 0 is the free-flow travel time parameter, and thus the travel cost for route 𝑖 ∈ 𝑅𝑚 is: 

𝑐𝑚,𝑖(𝒕(𝒘;𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)

𝑎∈𝐴𝑚,𝑖

= 𝛼1 ∑ 𝑤𝑎,1
𝑎∈𝐴𝑚,𝑖

. 

The model requires the specification of three parameters: 𝛼1, 𝜃, and 𝛽, but to ensure identification 𝜃 is fixed 

at 𝜃 = 1 throughout.  

 
Fig. 2.13. Sioux Falls network. 

 

Since the travel costs of the links (and thus routes) correspond to a single variable, to generate the utilised 

choice sets we employ k-shortest path to generate 150 of the lowest costing routes for each choice set. We 

also remove the short trip OD movements where the cheapest route has a free-flow travel time cost less than 

10. The result is that there are 316 remaining OD movements, and a total of 47,400 routes.  
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5.3.3 Experiment Results 

We begin the simulation study by investigating the Log-Likelihood surface. By evaluating the Log-Likelihood 

function in (2.32) for various configurations of 𝛼1 and 𝛽 the Log-Likelihood surface can be visualised for a 

sample of observed routes. Fig. 2.14 displays the log-likelihood surface for a single estimation experiment, 

with 𝛼1
𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 = 0.6, and 𝑍 = 2000. As Fig. 2.14 shows, the Log-Likelihood surface is smooth and 

approximately maximal around the true parameters, where the estimated parameters are �̂�1 = 0.294 ± 0.002 

and �̂� = 0.57 ± 0.01.  

 
Fig. 2.14. Sioux Falls simulation study: Log-Likelihood surface (𝜃𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 = 0.6, 𝑍 = 2000). 

 

Next, we investigate the stability of the estimated parameters over multiple experiment replications. Each 

experiment utilises a Log-Likelihood maximisation algorithm (see Section 5.2.2) to obtain the parameter 

estimates with initial conditions (�̃�1
(0)
, �̃�(0)) = (0.15,0), and bounds �̃�1, �̃� ∈ [0,1]. 

Fig. 2.15A-D display for different settings of 𝛼1
𝑡𝑟𝑢𝑒 and 𝛽𝑡𝑟𝑢𝑒, the distribution of the estimated 

parameters after 𝑞 = 100 experiment replications of 𝑍 = 1000 simulated observations.  

  

A B 
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Fig. 2.15. Sioux Falls simulation study: Distribution of estimated parameters after multiple experiment replications (𝑍 = 1000, 𝑞 =
100). A: 𝛼1

𝑡𝑟𝑢𝑒 = 0.1 𝛽𝑡𝑟𝑢𝑒 = 0.8. B: 𝛼1
𝑡𝑟𝑢𝑒 = 0.2 𝛽𝑡𝑟𝑢𝑒 = 0.7. C: 𝛼1

𝑡𝑟𝑢𝑒 = 0.3 𝛽𝑡𝑟𝑢𝑒 = 0.6. D: 𝛼1
𝑡𝑟𝑢𝑒 = 0.4 𝛽𝑡𝑟𝑢𝑒 = 0.4. 

 

Table 2.2 reports, for various settings of the true parameters (same as Fig. 2.15A-D), the mean value (𝜇), 
standard deviation (𝜎), and Mean Squared Error (𝑀𝑆𝐸) of the estimates across 𝑞 = 100 experiment 

replications with 𝑍 = 1000 simulated observations. Table 2.2 also displays the estimated covariance between 

the 𝛼1 and 𝛽 parameters. As shown, the mean estimates of 𝛼1 and 𝛽 are close to the true values for all settings 

tested (i.e. there is no evidence of bias in the parameter estimates). However, as measured by the MSE, the 

precision of estimating 𝛼1 decreases as 𝛼1
𝑡𝑟𝑢𝑒 increases, and the precision of estimating 𝛽 decreases as 𝛽𝑡𝑟𝑢𝑒 

decreases. This seems reasonable as increasing 𝛼1 in this case corresponds to lower perception error of travel 

cost and decreasing 𝛽 corresponds to lower perception of distinctiveness.  

Table 2.2 and Fig. 17A-D both indicate that, with this network and the generated choice sets, there 

appears to be some negative correlation between the �̂�1 and �̂� estimates. This is likely due to the large number 

of unrealistic routes present within the choice sets and the consequent small path size contribution factors for 

these routes from the true parameters; these factors can be reduced by increasing 𝛼1 or 𝛽 and hence negative 

correlation appears from balancing the parameters to obtain small contributions.  

 

𝛼1
𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 �̂�1 �̂� 𝑐𝑜𝑣(�̂�1, �̂�) 

𝜇 𝜎 𝑀𝑆𝐸 𝜇 𝜎 𝑀𝑆𝐸  

0.1 0.8 0.1000 0.0032 0.0000 0.8003 0.0136 0.0002 -0.00003 

0.2 0.7 0.2016 0.0068 0.0001 0.6972 0.0305 0.0009 -0.00014 

0.3 0.6 0.3021 0.0105 0.0001 0.5876 0.0485 0.0025 -0.00034 

0.4 0.4 0.4012 0.0153 0.0002 0.3984 0.0817 0.0067 -0.00096 
Table 2.2. Sioux Falls simulation study: Stability of estimated parameters across multiple experiment replications (𝑍 = 1000, 𝑞 =

100). 

 

5.3.3.1 Computation Analysis 

In this subsection we analyse the computational performance of the APSL model in the Sioux Falls MLE 

application. The computer used has a 2.10GHz Intel Xeon CPU, 512GB RAM, and 64 Logical Processors (of 

which 50 were utilised). The code was implemented in Python. Results are reported throughout this section 

for a single simulation experiment where 𝑍 = 1000 route choice observations were simulated from the true 

model 𝛼1
𝑡𝑟𝑢𝑒 = 0.3, 𝛽𝑡𝑟𝑢𝑒 = 0.6. �̂�1 = 0.295 and �̂� = 0.611 are the consequent maximum likelihood 

estimates. 

Fig. 2.16A shows for different values of the APSL choice probability convergence parameter 𝜉 (and thus 

convergence statistic, See Section 3.4), the average number of fixed-point iterations per OD movement and 

computation time required to solve all of the 316 APSL fixed-point problems 𝑷𝑚 =

𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚))), and consequently compute the Log-Likelihood value of the maximum 

likelihood estimates. As shown, computation time and average number of fixed-point iterations per OD 

C D 
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increase roughly linearly as the convergence parameter is increased. As expected, computation times relate to 

the number of iterations required for convergence. Fig. 2.16B shows the value of the Log-Likelihood obtained 

as 𝜉 is increased. As shown, the Log-Likelihood increases in value and accuracy as the APSL choice 

probabilities become more accurate. 

  

Fig. 2.16. Sioux Falls simulation study: Computational statistics for calculating APSL Log-Likelihoods as the APSL choice 

probability convergence parameter 𝜉 is increased. 

A: Average number of fixed-point iterations per OD / computation time [mins]. B: Log-Likelihood value. 

 

Fig. 2.17 shows for different values of �̃� the average number of fixed-point iterations per OD movement and 

computation time required to calculate the Log-Likelihood, with 𝜉 = 7 and �̃�1 set as the maximum likelihood 

estimate �̂�1 = 0.295. As shown, the average number of iterations per OD required for convergence increases 

as �̃� increases, and thus so do the required computation times. 

 

Fig. 2.17. Sioux Falls simulation study: Average number of fixed-point iterations per OD movement and computation time required to 

calculate the Log-Likelihood for different �̃� values (�̃�1 = �̂�1 = 0.295, 𝜉 = 7). 

 

Fig. 2.18A-B show for a single MLE (implementation of the L-BFGS-B algorithm), the cumulative 

computation times of the iterations and the Log-Likelihood values and parameter estimates at the end of each 

iteration, with 𝜉 = 7.  

A B 
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Fig. 2.18. Sioux Falls simulation study: Cumulative computation time at each iteration of a single MLE, and MLE statistics (𝜉 = 7).  

A: Log-Likelihood. B: Parameter estimates. 

 

Fig. 2.19A shows the total computation times and MLE final Log-Likelihood values of different MLE runs for 

different settings of 𝜉. Fig. 2.19B shows the parameter estimates. For 𝜉 = 5, the inaccuracy of the APSL 

choice probabilities means that more MLE iterations are required to identify the estimates. For 𝜉 = 6, 

however, the choice probabilities are sufficiently accurate to quickly estimate the parameters. Greater values 

of 𝜉 increase the number of fixed-point iterations required for the fixed-point convergences and hence the 

computation times of the MLE. 

  

Fig. 2.19. Sioux Falls simulation study: Total computation time of MLE runs for different values of 𝜉, and MLE results. A: Final Log-

Likelihood. B: Parameter estimates. 

 

We also briefly investigate the impact of the 𝜏 parameter upon parameter estimation. Each OD movement 𝑚 

has a choice set size 𝑁𝑚 = 150, and therefore supposing each OD movement has the same value for 𝜏, the 

maximum value for 𝜏 is 
1

150
= 0.006̇. Supposing 𝜏 assumes the form 𝜏 = 10−𝜑, Fig. 2.20 displays how the 

maximum likelihood parameter estimates vary as 𝜑 varies. As shown, the parameter estimates converge 

quickly to the limit case of 𝜏 → 0, demonstrating that we can recover the desired model APSL0 (Section 3.1) 

to a high computational accuracy using the APSL model as defined in Section 3.2, with a sufficiently small 

value of 𝜏. 

A B 

A B 
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Fig. 2.20. Sioux Falls simulation study: Maximum likelihood APSL parameter estimates for different values of 𝜏 = 10−𝜑. 

 

5.3.3.2 APSL Solution Uniqueness Analysis 

In this subsection we briefly investigate the uniqueness of APSL choice probability solutions in the context of 

the Sioux Falls simulation study. Just as in Section 4.4, we plot trajectories of APSL solutions to approximate 

the uniqueness conditions, i.e. estimate 𝛽𝑚𝑎𝑥. A single simulation study is conducted for 𝛼1
𝑡𝑟𝑢𝑒 = 0.3, 

𝛽𝑡𝑟𝑢𝑒 = 0.6, and 𝑍 = 2000, leading to maximum likelihood estimates �̂�1 = 0.306 and �̂� = 0.6001. We thus 

investigate whether APSL solutions are unique for these parameter estimates. Fig. 2.21 displays the maximum 

choice probability from three trajectories of APSL solutions as the 𝛽 parameter is varied for four different 

randomly chosen OD movements, with 𝛼1 = �̂�1 = 0.306. 𝛽 was decremented by 0.01, and the initial large 𝛽 

value was 𝛽 = 2. As shown, the 𝛽𝑚𝑎𝑥,𝑚 values (𝛽𝑚𝑎𝑥 for OD movement 𝑚) for these OD movements can be 

estimated to vary between 0.86 and 0.94, suggesting that 𝛽 = 0.6001 results in universally unique solutions.  
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Fig. 2.21. Sioux Falls simulation study: Maximum choice probability of trajectories of APSL solutions as 𝛽 is varied (𝛼1 = 0.306). 

 

5.4 Real-Life Case Study 

In this section we estimate the APSL model, where the model parameters are estimated using MLE with 

observed route choices tracked by GPS units. The data has been collected among drivers in the eastern part of 

Denmark in 2011, and includes a total of 17,115 observed routes. The dataset is the same as used in Prato et al 

(2014) as well as Rasmussen et al (2017), and after a filtering to include only trips where the sum of travel 

time (in minutes) and length (in km) is at least 10, a total of 8,696 observations remain. 

The GPS traces are map matched to a network, for which corresponding time-of-day dependent travel 

times are available on the entire network. See more details in Prato et al (2014). The network is large-scale, 

representing all of Denmark, and thus includes 34,251 links. With current alternative generation techniques, it 

is not feasible to enumerate the universal choice set for such a large network. Instead, we approximate the 

universal choice set by generating a choice set for each observed route by applying the doubly stochastic 

approach also applied in Prato et al (2014). This approach is based on repeated shortest path search in which 

the network attributes and parameters of the cost function is perturbated between searches (Nielsen, 2000; 

Bovy & Fiorenzo-Catalano, 2007). Up to 100 unique paths are generated for each observation, see the 

distribution of number of alternatives in Fig. 2.22. 

  

Fig. 2.22. Real-life case-study: Cumulative distribution of the choice set sizes for the 8,696 observations.  

 

For the estimation, the travel cost of link 𝑎 is specified as a weighted sum of congested travel time 𝑤𝑎,1 (in 

minutes), and length 𝑤𝑎,2 (in kilometres), such that: 

𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1 +𝑤𝑎,2 ∙ 𝛼2 

where 𝛼1 > 0 and 𝛼2 > 0 are the congested travel time, and length parameters, respectively. The generalised 

travel cost for route 𝑖 ∈ 𝑅𝑚 is thus: 
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𝑐𝑚,𝑖(𝒕(𝒘;𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)

𝑎∈𝐴𝑚,𝑖

= ∑ (𝑤𝑎,1 ∙ 𝛼1 +𝑤𝑎,2 ∙ 𝛼2)

𝑎∈𝐴𝑚,𝑖

= 𝛼1 ∑ 𝑤𝑎,1
𝑎∈𝐴𝑚,𝑖

+ 𝛼2 ∑ 𝑤𝑎,2
𝑎∈𝐴𝑚,𝑖

. 

The model requires the specification of four parameters: 𝛼1, 𝛼2, 𝜃, and 𝛽, but to ensure identification, the 𝜃 

parameter is fixed at 𝜃 = 1. Fig. 2.23A shows the relative travel time deviations away from the quickest 

routes in the choice sets for the observed routes as well as the alternative routes generated, and Fig. 2.23B 

shows the relative length deviations. 47% and 36% of the observed routes were the quickest and shortest 

routes, respectively. Moreover, there appear to be observations of unattractive route choices, where some 

observed routes were 2.11 times slower / 2.29 times longer than the quickest / shortest alternatives, as well as 

numerous potentially unrealistic routes generated, where some generated routes are 2.91 times slower / 3.22 

times longer. 

  

Fig. 2.23. Real-life case-study: Relative deviations away from quickest/shortest routes in the choice sets for the observed routes (red) 

and alternative routes generated (blue). A: Travel time. B: Length. 

 

We estimate the models utilising the same Log-Likelihood maximisation algorithm (L-BFGS-B, see Section 

5.2.2), initial conditions, and parameter bounds, where appropriate. Initial conditions: 

(�̃�1
(1)
, �̃�2

(1)
, �̃�(1), �̃�(1)) = (0.5,0.5,0,0), and bounds: �̃�1, �̃�2, �̃� ∈ [0,2], �̃� ∈ [0,200]. 

 

5.4.1 APSL Estimation 

5.4.1.1 Results 

In this subsection we provide results from estimating the three parameters of the APSL model in this case 

study: 𝛼1, 𝛼2, and 𝛽. Table 2.3 displays the APSL parameter estimates and the consequent Log-Likelihood 

value. 

 

�̂�1 �̂�2 �̂� 𝐿𝐿 

0.633 0.184 0.840 -18978 
Table 2.3. Real-life case-study: APSL parameter estimates and Log-Likelihood. 

 

Fig. 2.24 shows the Log-Likelihood surfaces around the three parameter estimates; as can be seen, these are 

smooth and maximal around the estimates. 

A B 
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Fig. 2.24. Real-life case-study: APSL Log-Likelihood surface around parameter estimates in Table 3. A: 𝛼1, 𝛼2. B: 𝛼1, 𝛽. C: 𝛼2, 𝛽.  

 

5.4.1.2 Computation Analysis 

We analyse here the computational performance of the APSL model in the real-life case study. The same 

computer was used as in Section 5.3.2.2. 

Fig. 2.25A shows for different values of the APSL choice probability convergence parameter 𝜉 (and thus 

convergence statistic), the average number of fixed-point iterations per OD movement and computation time 

required to solve all of the 8,696 APSL fixed-point problems 𝑷𝑚𝑧
= 𝑮𝑚𝑧

(𝒈𝑚𝑧
(𝒄𝑚𝑧

(𝒕), 𝜸𝑚𝑧
𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧

))) for 

𝑧 = 1,… , 𝑍, and consequently compute a single Log-Likelihood, with the estimated APSL parameters in 

Table 2.3. Fig. 2.25B shows the value of the Log-Likelihood obtained as 𝜉 is increased. As shown, 

computation time and average number of fixed-point iterations per OD increase linearly as the convergence 

parameter is increased, and the Log-Likelihood increases in accuracy (from 𝜉 = 2) as the APSL choice 

probabilities become more accurate. The relatively large estimated 𝛽 value results in a longer computation 

time, as shown in Section 5.3.2.2, for lower 𝛽, the computation times are less.  

B 

C 

A 

C 
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Fig. 2.25. Real-life case-study: Computational statistics for calculating APSL Log-Likelihoods as the APSL choice probability 

convergence parameter 𝜉 is increased. 

A: Average number of fixed-point iterations per OD / computation time [mins]. B: Log-Likelihood value. 

 

Fig. 2.26A-B show for a single estimation of the APSL model (implementation of the L-BFGS-B algorithm), 

the cumulative computation times of the iterations and the Log-Likelihood values and parameter estimates at 

the end of each iteration, respectively, with 𝜉 = 10. The initial conditions for solving the APSL fixed-point 

problems were updated at the end of each iteration with the choice probabilities obtained from the current 

parameter estimates.  

   

Fig. 2.26. Real-life case-study: Cumulative computation time at each iteration for a single estimation of the APSL model, and MLE 

statistics (𝜉 = 10). A: Log-Likelihood. B: Parameter estimates. 

 

5.4.1.3 APSL Solution Uniqueness Analysis 

We briefly investigate here the uniqueness of APSL choice probability solutions in the context of the real-life 

case study. Similar to the experiments conducted in Section 5.3.2.3 for the Sioux Falls simulation study, we 

estimate the uniqueness conditions for the network given the estimated parameters. Trajectories of APSL 

solutions are plotted to approximate 𝛽𝑚𝑎𝑥. Fig. 2.27 displays the maximum choice probability from 

trajectories of APSL solutions as the 𝛽 parameter is varied for four different randomly chosen OD 

movements, with 𝛼1 and 𝛼2 as in Table 2.3. 𝛽 was decremented by 0.01, and the initial large 𝛽 value was 𝛽 =
1.5. As shown, the 𝛽𝑚𝑎𝑥,𝑚 values (𝛽𝑚𝑎𝑥 for OD movement 𝑚) for these OD movements are between 0.96 

and 0.99, suggesting that 𝛽 = 0.840 results in universally unique solutions.  

A B 
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Fig. 2.27. Real-life case study: Maximum choice probability from trajectories of APSL solutions as 𝛽 is varied (𝛼1 = 0.633, 𝛼2 =
0.184). 

 

5.4.2 Comparing Results with Other Path Size Logit Models 

In this subsection we estimate models discussed in this paper and compare results. Table 2.4 shows the 

estimated parameters for the MNL, PSL, GPSL, GPSL′(𝜆=𝜃), and APSL models. 

 

 �̂�1 �̂�2 �̂� �̂� 𝐿𝐿 

MNL 0.777 0.330   -21308 

PSL 0.966 0.306 1.347  -20581 

GPSL 0.415 0.085 1.186 91.95 -17874 

GPSL′(𝜆=𝜃)  0.691 0.154 1.807  -19152 

APSL 0.633 0.184 0.840  -18978 
Table 2.4. Real-life case-study: Estimation results and stability statistics from all Path Size Logit models. 

 

To compare the estimation results of the models, we apply the approach in Swait & Ben-Akiva (1984) based 

on the non-nested test in Horowitz (1983) in combination with the results in Table 2.4. The adjusted rho-

squared for model ℎ with estimated parameters �̂�ℎ is given by: 

�̅�ℎ
2 = 1 −

𝐿𝐿ℎ(�̂�ℎ) − 𝐾ℎ
𝐿𝐿∗

, 

where 𝐿𝐿ℎ(�̂�) is the Log-Likelihood for model ℎ given the estimated parameters �̂�ℎ, 𝐾ℎ is the number of 

model ℎ parameters, and 𝐿𝐿∗ is the equal choice probability Log-Likelihood which in this case study is: 𝐿𝐿∗ =
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ln (∏
1

𝑁𝑚𝑧

𝑍
𝑧=1 ) = −∑ ln(𝑁𝑚𝑧

)𝑍
𝑧=1 = −28200. The distribution of the difference between �̅�ℎ1

2  and �̅�ℎ2
2  for 

models ℎ1 and ℎ2, respectively, (which are possibly non-nested) is given by: 

Pr(�̅�ℎ2
2 − �̅�ℎ1

2 > 𝑦) ≤ Φ(−[−2𝑦𝐿𝐿∗ + (𝐾ℎ2 − 𝐾ℎ1)]
1
2), 

where 𝑦 > 0 is the test statistic. To test the null hypothesis that the MNL model outperforms the PSL, GPSL, 

GPSL′(𝜆=𝜃), and APSL models, we compute the test statistics 𝑦𝑃𝑆 = �̅�𝑃𝑆
2 − �̅�𝑀𝑁𝐿

2 , 𝑦𝐺𝑃𝑆 = �̅�𝐺𝑃𝑆
2 − �̅�𝑀𝑁𝐿

2 , 

𝑦𝐺𝑃𝑆′ = �̅�𝐺𝑃𝑆′
2 − �̅�𝑀𝑁𝐿

2 , and 𝑦𝐴𝑃𝑆 = �̅�𝐴𝑃𝑆
2 − �̅�𝑀𝑁𝐿

2 . Similarly, we compute the corresponding 𝑌𝑃𝑆 =

−[−2𝑦𝑃𝑆𝐿𝐿
∗ + (𝐾𝑃𝑆 − 𝐾𝑀𝑁𝐿)]

1

2, 𝑌𝐺𝑃𝑆 = −[−2𝑦𝐺𝑃𝑆𝐿𝐿
∗ + (𝐾𝐺𝑃𝑆 − 𝐾𝑀𝑁𝐿)]

1

2, 𝑌𝐺𝑃𝑆′ = −[−2𝑦𝐺𝑃𝑆′𝐿𝐿
∗ +

(𝐾𝐺𝑃𝑆′ − 𝐾𝑀𝑁𝐿)]
1

2, and 𝑌𝐴𝑃𝑆 = −[−2𝑦𝐴𝑃𝑆𝐿𝐿
∗ + (𝐾𝐴𝑃𝑆 −𝐾𝑀𝑁𝐿)]

1

2. The results are shown in Table 2.5. 

Pr(𝑦ℎ ≤ 𝑌ℎ) is the probability that the MNL model outperforms model ℎ, but these values are too small for 

computer precision to calculate. This exemplifies the necessity of capturing the correlation between routes. 

One can identify however that Pr(𝑦𝑃𝑆 ≤ 𝑌𝑃𝑆) > Pr(𝑦𝐺𝑃𝑆′ ≤ 𝑌𝐺𝑃𝑆′) > Pr(𝑦𝐴𝑃𝑆 ≤ 𝑌𝐴𝑃𝑆) > Pr(𝑦𝐺𝑃𝑆 ≤ 𝑌𝐺𝑃𝑆). 
In another comparison of fit test, Table 2.6 shows the penalised-likelihood criteria. 

In both tests, the GPSL′(𝜆=𝜃) and APSL models outperform the PSL model with the same number of 

parameters, where APSL outperforms GPSL′(𝜆=𝜃). This suggests that there is value in including a measure of 

distinctiveness within the path size contribution factors. The GPSL model outperforms all models due to the 

greater flexibility the 𝜆 parameter provides. Several case studies have found that larger values of 𝜆 increase 

the goodness-of-fit of the GPSL model (Ramming, 2002; Prato, 2005; Hoogendoorn-Lanser, 2005; Bekhor & 

Prato, 2006), and hence it is not unusual that �̂� = 91.95 is so big. We explore further below. 

 

ℎ 𝐾ℎ �̅�ℎ
2 𝑦ℎ 𝑌ℎ 

PSL 3 0.27006 0.02573 -38.1144 

GPSL 4 0.36604 0.12171 -82.8673 

GPSL′(𝜆=𝜃) 3 0.32074 0.07642 -65.6583 

APSL 3 0.32690 0.08258 -68.2537 
Table 2.5. Real-life case-study: Comparison of fit between models based on non-nested Horowitz type tests. 

 

 AIC BIC CAIC 

MNL 42621 42635 42637 

PSL 41169 41190 41193 

GPSL 35756 35784 35788 

GPSL′(𝜆=𝜃) 38311 38332 38335 

APSL 37963 37984 37987 
Table 2.6. Real-life case-study: Comparison of fit between models based on penalised-likelihood criteria. 

 

For very large values of 𝜆 within the GPSL path size terms, the path size contributions become extremely 

sensitive to differences in cost, where the contribution of route 𝑘 to the path size term of route 𝑖 is large if 𝑐𝑖 >

𝑐𝑘 and small if 𝑐𝑖 < 𝑐𝑘, and as 𝜆 → ∞, (
𝑐𝑖

𝑐𝑘
)
𝜆
→ ∞ if 𝑐𝑖 > 𝑐𝑘, and (

𝑐𝑖

𝑐𝑘
)
𝜆
→ 0 if 𝑐𝑖 < 𝑐𝑘. The implication of 

this is that routes with relatively small travel costs are penalised significantly less than routes with relatively 

large travel costs for link sharing, and hence that low costing routes are considered much more distinct than 

high costing routes.  

To provide some measure of the relative cost and distinctiveness of the observed routes (in comparison 

with the generated alternatives), Fig. 2.28A plots the percentage of generated routes with a travel cost greater 

than the observed route in each choice set (where the GPSL travel cost parameters are used), against the 

percentage of routes with PSL path size terms smaller than the observed route. The PSL path size terms 

provide a measure of the universal distinctiveness of the alternatives, i.e. without considering whether or not 

the routes are link sharing with unrealistic alternatives. The bottom right of the figure appears to be highly 

populated suggesting that many of the observations have relatively low travel costs but are relatively 
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universally indistinct, while a sizeable proportion are relatively distinct, even without the contribution 

weighting. Most notably though, a considerable proportion of the route observations have a low percentage of 

routes with greater travel costs, and many of these are relatively universally distinct (top left of figure). This 

perhaps suggests that many drivers have taken unattractive, relatively costly routes that are distinct. Fig. 2.28B 

plots the same cost percentage against the GPSL path size term percentage. As expected, the route 

observations with low costs are now considered much more distinct, while the observations with large costs 

are considered less distinct. 

Fig. 2.29 displays the choice probability distribution of the observed routes under the different estimated 

models. For all models, a large percentage of the observed routes have small choice probabilities. This seems 

to also suggest that there are many observations where an unattractive route was chosen. 

  

Fig. 2.28. Real-life case study: Percentage of routes in each OD movement choice set with costs greater / path size terms smaller than 

the observed route. A: PSL path size terms. B: GPSL path size terms. 

 

Fig. 2.29. Real-life case study: Choice probability distribution of the observed routes under the different estimated models. 

 

The data set contains relatively costly but relatively universally distinct route observations. The GPSL model 

is able to provide the best fit for these observations, without compromising the fit for the low costing 

observations. The GPSL travel cost parameter estimates are smaller than the same estimates for the other 

models, which improves the relative attractiveness of the costly alternatives. To counterbalance this so that 

that the low costing routes still remain attractive, GPSL introduces a large 𝜆 value: routes with relatively small 

travel costs are penalised significantly less than routes with relatively large travel costs for link sharing. 

Moreover, GPSL is able to further increase the relative attractiveness of the distinct, costly routes by 

decreasing the attractiveness of the indistinct, costly routes with the large 𝜆. 

Fig. 2.30A & Fig. 2.31A show two route observations, which we label OD 1 and OD 2, respectively. Fig. 

2.30B-D & Fig. 2.31B-D plot the consequent link choice probabilities from the MNL, PSL, GPSL, and APSL 

models. From first inspection it appears that the route taken by the driver in OD 1 is a high probability, 

A B 
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attractive route, while the route taken in OD 2 is low probability. Table 2.7 displays the choice probabilities of 

the observed route for OD 1 and OD 2 under the different models. The APSL model provides the largest 

choice probability for the observed route in OD 1, and GPSL provides the highest for OD 2, where the chosen 

probabilities for OD 2 are small. 
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Fig. 2.30. Real-life case study: OD 1 plotted link choice probabilities from the estimated models for a single observation. 

A: Observed route. B: MNL. C: PSL. D: GPSL. E: APSL. 

 

E 
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Fig. 2.31. Real-life case study: OD 2 plotted link choice probabilities from the estimated models for a single observation.  

A: Observed route. B: MNL. C: PSL. D: GPSL. E: APSL. 

 

 MNL PSL GPSL APSL 

OD 1 0.101 0.110 0.150 0.261 

OD 2 0.0004 0.0024 0.0042 0.0025 
Table 2.7. Real-life case study: OD 1 & OD 2 observed route choice probabilities for the different estimated models. 

 

For Path Size Logit models, the utility for route 𝑖 ∈ 𝑅𝑚 is comprised of a cost component −𝜃𝑐𝑚,𝑖 and a path-

size component 𝛽 ln(𝛾𝑚,𝑖), i.e. so that the utility is 𝑉𝑚,𝑖 = −𝜃𝑐𝑖 + 𝛽 ln(𝛾𝑖). Fig. 2.32A-B plot for OD 1 and 

OD 2, respectively, the cost components against path size components of the routes under the PSL, GPSL, and 

APSL models, where the observed route is in red. Fig. 2.33A-B plot the cost and path size components against 

choice probability. In both cases, universal distinctiveness tends to increase as travel cost increases. For OD 1, 

the observed route is universally indistinct but low costing, and is the highest choice probability route for all 

models. The APSL model thus provides the best fit for this observation: the path size contribution factors 

consider probability ratios and hence the observed route is considered the most attractive and distinct 

compared to its overlapping routes. The GPSL model reduces the range for the cost components and hence 

decreases the attractiveness of the observed route according to its cost, which is not compensated for by its 

distinctiveness, since it is highly correlated with other low costing routes. For OD 2, the observed route is 

universally distinct but high costing, and has a low choice probability for all models. As discussed above, the 

GPSL model is able to provide the best fit for these observations. 

E 
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Fig. 2.32. Real-life case study: Cost / Path-Size components of the route utilities from PSL/GPSL/APSL. A: OD 1. B: OD 2. 
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Fig. 2.33. Real-life case study: Choice probability against cost / path-size component for PSL/GPSL/APSL. A: OD 1. B: OD 2. 

 

The consistency requirement we impose on the APSL model constrains the way that it can mimic the 

behaviour of the GPSL model, since if parameters are chosen to capture the high costing observations, a price 

is paid in terms of the feedback effect to the path size correction terms. This confirms that APSL and GPSL 

are quite different candidate models in the way in which they aim to capture behaviour. 

The 𝜆 parameter allows the GPSL model to improve the choice probabilities of high costing, distinct 

route observations one might consider as being outliers / route choice decisions made according to unobserved 

attributes, though not by design. It seems unlikely that the GPSL model was formulated anticipating extremely 

large values of 𝜆 (such as 91.95) given the exponential nature of the path size contribution factors. In fact, 

Ramming (2002) estimates the proposed exponential formulation and finds 𝜆 = ∞ provides the best fit to the 

data, which does not seem reasonable. Moreover, Ramming (2002) hypothesises that the path size 

contribution factor should ‘split the link size contributions more severely than MNL would split path shares, 

or counter-intuitive predictions will result’, though a reason is not given. It’s difficult to know what a 

A 
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‘sensible’ restriction would be that one could impose upon the 𝜆 parameter so that the GPSL model behaves 

according to a more feasible theoretical interpretation. Bekhor & Prato (2006) utilise 𝜆 = 9, Hoogendoorn-

Lanser (2005) utilises 𝜆 = 20, and Prato (2009) claims optimal values vary between 10 and 15, though these 

values still seem large. Table 2.8 displays the results from estimating the GPSL model with a restriction 

imposed upon 𝜆 so that 𝜆 ≤ 10. As anticipated, the optimal value for 𝜆 is at the bound (equal to 10), but the 

Log-Likelihood value no longer beats the GPSL′(𝜆=𝜃) and APSL models. What is also interesting is that the 

estimated 𝛽 value is almost 2, which is very large seeming the theory suggests it should be around 1. This 

supports the theory that the GPSL path size components are capturing something other than the correlation. 

 

 �̂�1 �̂�2 �̂� �̂� 𝐿𝐿 

MNL 0.777 0.330   -21308 

PSL 0.966 0.306 1.347  -20581 

GPSL (𝜆 ≤
10) 

0.769 0.160 1.943 10 -19312 

GPSL 0.415 0.085 1.186 91.95 -17874 

GPSL′(𝜆=𝜃)  0.691 0.154 1.807  -19152 

APSL 0.633 0.184 0.840  -18978 
Table 2.8. Real-life case-study: Estimation results including GPSL with 𝜆 restricted to 𝜆 ≤ 10. 

6.  Summary and Scope for Further Research 
Due to their comparatively low computational cost and relative ease in obtaining reasonable estimates for 

parameters, Path Size Logit route choice models are a useful and practical approach to approximating the 

correlation between routes. Existing Path Size Logit models, however, have some key theoretical weaknesses: 

for PSL the presence of unrealistic routes in a choice set negatively impacts the choice probabilities of 

realistic routes when links are shared, and for GPSL there are internal inconsistency issues which can have 

negative implications, for example routes which are defined as unrealistic by the path size terms may not be 

routes with low choice probabilities. The intricacies of the issues with existing Path Size Logit models are 

demonstrated in the paper, and a new APSL model is proposed which provides a potential solution to these 

issues. The APSL model proposes that routes contribute to path size terms according to probability ratios, and 

choice probability solutions to the model are solutions to the fixed-point problem involving the probabilities. 

The paper proves that choice probability solutions to the APSL model are guaranteed to exist, and proves 

that values of 𝑏 exist such that APSL solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏. Though there are 

cases where solutions are unique for all 𝛽 ≥ 0, in most cases there is a maximum value for 𝑏 (𝑏𝑚𝑎𝑥). 𝛽 in the 

range 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 is however only a sufficient condition for unique APSL solutions, 𝛽𝑚𝑎𝑥 is the true 

maximum value where solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥, and a method is proposed in the 

paper for estimating 𝛽𝑚𝑎𝑥. 

To show that the parameters of the APSL model can be estimated, a Maximum Likelihood Estimation 

procedure is proposed for estimating APSL with tracked route observation data. This procedure is then first 

investigated in a simulation study on the Sioux Falls network where it is shown that it is generally possible to 

reproduce assumed true parameters. The APSL model is then estimated using real tracked route GPS data on a 

large-scale network. Results show that the APSL outperforms the MNL and PSL models with the same 

number of model parameters, while the GPSL model outperforms APSL due to the added flexibility an 

additional parameter provides. 

The APSL model requires a fixed-point algorithm to approximate solutions. The paper assesses the 

computational performance of the FPIM for calculating choice probabilities and estimating the parameters of 

the APSL model, where accuracy is compared with computation time. Results indicate that accurate choice 

probability solutions and parameter estimates can be obtained from feasible computation times. 

Future research should explore the application of the APSL model within a Stochastic User Equilibrium 

framework, which could involve exploring whether one can combine the fixed-point iterations used for APSL 

with those used for congestion, so that they are performed simultaneously. 

As noted in our numerical experiments, the consistency condition that we impose in the APSL model, 

while offering improvements over PSL, constrains the extent to which the model is able to compete with the 
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GPSL model in terms of model-fit, with the additional parameter in the GPSL model allowing it to de-couple 

the scale of the model from the path-size effect, albeit at the price of inconsistency. A natural path for future 

research could be to explore the potential for developing generalised forms of APSL, in the spirit of GPSL, 

allowing an extra dimension (parameter) to fit, but without sacrificing the requirement for consistency. 
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9.  Appendix 

9.1 Appendix A - Discontinuity issue with APSL path size terms when allowing zero choice 

probabilities 

The APSL path size term for route 𝑖 ∈ 𝑅 is given by: 

𝛾𝑖
𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

. 

The issue is that there are three possible values for lim
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 →0

𝑃𝑖

∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅
: 
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a) lim
𝑃𝑖→0

( lim
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 →0

𝑃𝑖

𝑃𝑖+∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖
) = 1, 

b) lim
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 →0

( lim
𝑃𝑖→0

𝑃𝑖

𝑃𝑖+∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖
) = 0, 

c) lim
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑚;𝑘≠𝑖 →0

𝑃𝑖→0

𝑃𝑖

𝑃𝑖+∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖
=

1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
. 

 

To demonstrate this, consider the Appendix A example network in Fig. 2.34 where there are 9 routes. 

 

Fig. 2.34 Appendix A example network. 

 

Route 1: 1 → 2, Route 2: 1 → 4, Route 3: 1 → 6, 

Route 4: 3 → 2, Route 5: 3 → 4, Route 6: 3 → 6, 

Route 7: 5 → 2, Route 8: 5 → 4, Route 9: 5 → 6. 

 

Suppose 𝑢 = 𝑣 = 𝑤 = 𝑥 = 𝑦 = 𝑧 = 1, and let 𝑃1 = 𝑃2 = 𝑃3 =
1−𝑃4

3
, 𝑃4 ∈ [0,1], 𝑃5 = 𝑃6 = 𝑃7 = 𝑃8 = 𝑃9 =

0. As 𝑃4 → 1, 𝑃1 = 𝑃2 = 𝑃3 → 0, and the path size terms for Route 1, Route 2, and Route 5 as 𝑃4 → 1 are: 

 

lim
𝑃4→1

𝛾1
𝐴𝑃𝑆(𝑷) = lim

𝑃4→1
((
1

2
) ∙ (

𝑃1
𝑃1 + 𝑃2 + 𝑃3

) + (
1

2
) ∙ (

𝑃1
𝑃1 + 𝑃4 + 𝑃7

)) 

= (
1

2
) ∙ ( lim

𝑃2+𝑃3→0
𝑃1→0

𝑃1
𝑃1 + 𝑃2 + 𝑃3

)+ (
1

2
) ∙ ( lim

𝑃4→1
𝑃1→0

( lim
𝑃7→0

𝑃1
𝑃1 + 𝑃4 + 𝑃7

)) 

= (
1

2
) ∙ (

1

3
) + (

1

2
) ∙ (0) =

1

6
 

 

lim
𝑃4→1

𝛾2
𝐴𝑃𝑆(𝑷) = lim

𝑃4→1
((
1

2
) ∙ (

𝑃2
𝑃1 + 𝑃2 + 𝑃3

) + (
1

2
) ∙ (

𝑃2
𝑃2 + 𝑃5 + 𝑃8

)) 

= (
1

2
) ∙ ( lim

𝑃1+𝑃3→0
𝑃2→0

𝑃2
𝑃1 + 𝑃2 + 𝑃3

)+ (
1

2
) ∙ ( lim

𝑃2→0
( lim
𝑃5+𝑃8→0

𝑃2
𝑃2 + 𝑃5 + 𝑃8

)) 

= (
1

2
) ∙ (

1

3
) + (

1

2
) ∙ (1) =

2

3
 

 

lim
𝑃4→1

𝛾5
𝐴𝑃𝑆(𝑷) = lim

𝑃4→1
((
1

2
) ∙ (

𝑃5
𝑃4 + 𝑃5 + 𝑃6

) + (
1

2
) ∙ (

𝑃5
𝑃2 + 𝑃5 + 𝑃8

)) 



Chapter 2. Path Size Logit route choice models: Issues with current models, a new internally consistent 

approach, and parameter estimation on a large-scale network with GPS data 

75 

 

= (
1

2
) ∙ ( lim

𝑃4→1
( lim
𝑃5→0
𝑃6→0

𝑃5
𝑃4 + 𝑃5 + 𝑃6

))+ (
1

2
) ∙ ( lim

𝑃2→0
( lim
𝑃5→0
𝑃8→0

𝑃5
𝑃2 + 𝑃5 + 𝑃8

)) 

= (
1

2
) ∙ (0) + (

1

2
) ∙ (0) = 0 

 

Thus, at 𝑃4 = 1 where 𝑃1 = 𝑃2 = 𝑃3 = 𝑃5 = 𝑃6 = 𝑃7 = 𝑃8 = 𝑃9 = 0, many cases of ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0 occur, 

but lim
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 →0

𝑃𝑖

∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅
 either equals 1, 0, or 

1

3
, and hence defining the path size terms as either: 

𝛾𝑖
𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖
×

{
 

 
𝑃𝑖

∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅
     𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘

𝑘∈𝑅
> 0

          1                𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘
𝑘∈𝑅

= 0𝑎∈𝐴𝑖

, 

𝛾𝑖
𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖
×

{
 

 
𝑃𝑖

∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅
     𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘

𝑘∈𝑅
> 0

          0                𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘
𝑘∈𝑅

= 0𝑎∈𝐴𝑖

, 

or, 

𝛾𝑖
𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖
×

{
 
 

 
 

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅

     𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘
𝑘∈𝑅

> 0

  
1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
        𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘

𝑘∈𝑅
= 0𝑎∈𝐴𝑖

, 

 

does not ensure continuity. 
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➢ Computational performance and choice set robustness assessed for all SUE models 

 

Abstract 
The Stochastic User Equilibrium (SUE) traffic assignment model is a well-known approach for investigating 

the behaviours of travellers on congested road networks. SUE compensates for driver/modelling uncertainty 

of the route travel costs by supposing the costs include stochastic terms. Two key challenges for SUE 

modelling, however, are capturing route correlations and dealing with unrealistic routes. Numerous 

correlation-based SUE models have been proposed, but issues remain over both internal consistency and 

choice set robustness. This paper explores both internal consistency and choice set robustness for correlation-

based SUE models. We formulate internally consistent SUE formulations for GEV structure and correction 

term correlation-based route choice models, where the functional forms in the correlation components are 

based upon generalised, flow-dependent congested costs, rather than e.g. length / free-flow travel time as done 

typically. Without explicit mechanisms for dealing with unrealistic routes in the adopted choice sets, however, 

there are questions on how robust these models are to choice set mis-generation.  

The paper therefore develops the foundation for an SUE application of the Adaptive Path Size Logit 

(APSL) route choice model, as introduced by Duncan et al (2020). APSL captures correlations between routes 

by including correction terms within the route utilities. It offers an internally consistent approach to reducing 

the negative impact that unrealistic route alternatives have on the correction terms and thus on the choice 

probabilities of realistic routes. To do this, APSL uses choice probability ratio path size contribution factors to 

weight the correction terms; consequently, the model is naturally expressed as a fixed-point problem. This 

paper establishes SUE conditions for the APSL model, where flow-dependent, generalised costs are used 

consistently in all components: route costs as well as path size correction terms. The paper proves that APSL 

SUE solutions exist. Then it shows that the potentially onerous requirement of solving fixed-point problems to 

compute APSL choice probabilities can be circumvented, since at SUE the route flow proportions and choice 

probabilities equate. As we show, one can tune the APSL SUE algorithm by trading-off the accuracy of APSL 

probabilities (and thus computation times of each iteration) with rate of SUE convergence. The advantages of 

APSL SUE are demonstrated in numerical experiments on the Sioux Falls and Winnipeg networks, where 

computational performance, choice set robustness, and flow results are compared with the internally 

consistent SUE formulations of GEV structure and correction term correlation-based route choice models. 
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APSL SUE solution uniqueness is explored numerically where results suggest that uniqueness conditions 

exist. 

 

Key Words: adaptive path size logit, stochastic user equilibrium, fixed-point, convergence, internal 

consistency, choice set robustness 

1.  Introduction 
The Stochastic User Equilibrium (SUE) traffic assignment model proposed by Daganzo & Sheffi (1977) is a 

well-known approach for investigating the behaviours of travellers on congested road networks. SUE relaxes 

the perfect information assumption of the Deterministic User Equilibrium model by supposing that route 

choice is based on costs that include stochastic terms. This accounts for the differing perceptions travellers 

have of the attractiveness of routes. A specific challenge when developing a route choice model for SUE is 

capturing correlations between overlapping routes. There is a trade-off: accurately capturing route correlation 

in a behaviourally realistic way requires a more complex route choice model, but this results in computational 

challenges for solving for SUE (e.g. long computation times, sensitivity of results to sampled choice sets). The 

aim of this paper is hence to develop a new correlation-based SUE model that seeks to address these issues, 

and to demonstrate its computational feasibility for large-scale network applications. 

 Different stochastic route cost terms proposed in the literature give rise to three general types of 

correlation-based route choice models that have been applied to SUE: GEV structure models (e.g. Cross-

Nested Logit (CNL), Generalised Nested Logit (GNL), Paired Combinatorial Logit (PCL)), correction term 

models (e.g. C-Logit (CL), Path Size Logit (PSL), Path Size Weibit (PSW), Path Size Hybrid (PSH)), and 

simulation models (e.g. Multinomial Probit (MNP), Multinomial Gammit (MNG)). For a detailed review of 

correlation-based route choice models see Duncan et al (2020). To set the background for the research in the 

present paper, we consider each of the categories in turn below, where we review their SUE application. 

GEV structure models. Equivalent Mathematical Programming (MP) formulations for CNL, GNL, and 

PCL are given by Bekhor & Prashker (1999, 2001). Bekhor & Prashker (2001), Chen et al (2003) and Bekhor 

et al (2008) provide path-based partial linearization algorithms for solving GNL SUE, PCL SUE, and CNL 

SUE, respectively. However, though the PCL, CNL, and GNL models all have closed-form probability 

expressions, due to their two-level tree structure the choice probabilities and in particular MP formulations are 

complex to compute, where the computational burden escalates significantly as the scale of network / choice 

set sizes increase. Pre-determined, exact, and inexact line search schemes have been investigated to assess 

computational trade-off, i.e. where the computation time required to perform each iteration is compared with 

the number of iterations required for convergence (Bekhor & Prashker, 2001; Bekhor et al 2008; Chen et al, 

2014).  

Correction term models. Zhou et al (2012) give equivalent MP and variational inequality formulations for 

Length-based CL SUE (LCL SUE) and Congestion-based CL SUE (CCL SUE), where length and congestion 

based refers to whether the correction term is computed using length or congestion-dependent travel cost. 

Chen et al (2012), Kitthamkesorn & Chen (2013), and Xu et al (2015) give equivalent MP formulations for 

PSL SUE, PSW SUE, and PSH SUE, respectively. Chen et al (2012) present a path-based partial linearization 

algorithm for solving LCL SUE and PSL SUE. Zhou et al (2012) present a path-based Gradient Projection 

algorithm for solving LCL SUE and CCL SUE, and Xu et al (2012) and Chen et al (2013) assess the 

computational trade-off for different step-size strategies. Kitthamkesorn & Chen (2013) develop a path-based 

partial linearization algorithm for solving PSW SUE, and Kitthamkesorn & Chen (2014) propose a link-based 

algorithm. The main attraction of correction term models for solving SUE is that they have simple closed-

form expressions, meaning the route choice probabilities and MP formulations are generally easy and quick to 

compute; however, more complex models can capture correlations more accurately.  

Simulation models. Sheffi (1985) formulates MNP SUE as a mathematical programme and presents a 

flow-averaging solution algorithm. Cantarella & Binetti (2002) give flow-averaging and cost-averaging 

algorithms for solving MNG SUE. The issue for these models is that they do not have closed-form probability 

expressions, and so evaluating the route choice probabilities requires either Monte Carlo simulation or 

alternative methods, all of which are computationally burdensome, particularly in large-scale applications 

(Rasmussen et al, 2017). One specific problem is accurately computing route choice probabilities that are 

small, which is common when there are many routes. Increasing the accuracy of choice probability 
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computation substantially adds to the computational burden. Sheffi (1985) explores the computational trade-

off between the number of simulation samples and SUE convergence rates.  

 

Upon selection of which correlation-based SUE model to employ in large-scale network applications, one 

must trade-off the anticipated accuracy of results with the computational burden and/or convergence of 

applicable solution algorithms. Simulation SUE models are attractive behaviourally due to their ability to 

accurately capture route correlation. Moreover, solution methods do not necessarily require explicit route 

generation and thus the accuracy of results is not necessarily dependent upon the choice sets generated, 

though, without route generation, with flows being assigned in theory to all routes, unrealistic routes will still 

have a negative influence on results. The main issues however, are that a) due to the random nature in which 

the search direction is obtained in typical simulation-based algorithms, there are difficulties in suitably 

measuring flow convergence (Sheffi, 1985), and b) numerous studies have found very slow convergence on 

large-scale networks (Rich & Nielsen, 2015; Manzo et al, 2015; Rasmussen et al, 2017; Connors et al, 2014). 

GEV structure and correction term models on-the-other-hand do not require random simulation to compute 

choice probabilities, and search directions can be computed exactly. This means that convergence can be 

suitably measured, and more optimal step-size schemes / algorithms can be developed for better convergence. 

However, theoretically undesirable trade-offs are often made to improve computational performance. There 

are two common types of such trade-offs. 

The first trade-off is between desirable behavioural features for the SUE model and the ability to solve it 

more efficiently. An SUE model is internally consistent if the same definition of generalised cost is used in all 

components of the specification. This is often overlooked in the SUE formulations of GEV structure and 

correction term models so that solution methods are simpler/quicker to implement. In SUE application where 

the travel costs within the deterministic utilities are flow-dependent (congested), for consistency, the route 

similarity features (PCL, CL) or link-route prominence features (CNL, GNL, PSL, PSW, PSH) in the 

correlation components should also be based upon the congested cost. Most studies use topological length or 

uncongested cost (free-flow travel time) for these features, however this may be inaccurate behaviourally 

since a short route can have a large congested travel cost, and vice versa.  

The second trade-off is between the sizes of the choice sets generated (pre or column generated) and the 

ability to solve efficiently. Typical road networks have many very costly routes that should be considered 

unrealistic and excluded from route choice. In large-scale case studies, choice sets are typically generated to 

be large enough that one can be fairly certain the realistic alternatives are present, regardless of how many 

unrealistic routes are generated. However, for many GEV structure and correction term SUE models, the 

computational burden of solution algorithms increases dramatically as the number of routes increases, which 

limits how large the choice sets can be generated. Furthermore, many of the models are not choice set robust, 

and results are thus negatively influenced by the presence of unrealistic routes as well as highly sensitive to 

the choice set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming, 2002; Ben-

Akiva & Bierlaire, 1999; Duncan et al, 2020).  

 

Motivated by the above challenges, we set out to develop a correlation-based SUE model that addresses 

both internal consistency and choice set robustness, and is computationally feasible in large-scale network 

applications. Due to the aforementioned difficulties in suitably measuring flow convergence, and the reported 

slow convergence on large-scale networks, we did not consider advancing simulation SUE models to be a 

worthwhile approach. We instead looked to advance GEV structure and/or correction term SUE models. Zhou 

et al (2012), Xu et al (2012), and Chen et al (2013) explore an internally consistent SUE formulation for the 

CL model (CCL SUE), where the CCL commonality factors capture the similarity between routes according 

to their shared flow-dependent congested cost. However, internally consistent SUE formulations are yet to be 

explored for other GEV structure and correction term models. In this paper, we address this by formulating 

and solving internally consistent SUE formulations for the CNL, GNL, PCL, and PSL models, where the route 

similarity or link-route prominence features are based upon generalised, flow-dependent congested cost. We 

assess the choice set robustness for these models (including CCL SUE), and evaluate their computational 

performances, including for different sizes of choice sets and scale of network. 

None of these models, however, have explicit mechanisms for dealing with unrealistic routes within the 

adopted choice sets, and thus there are questions over how well these models perform in terms of choice set 

robustness. For the PSL model, a mechanism has been proposed for dealing with unrealistic routes: to weight 
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the contributions of routes to path size terms, with path size contribution factors. This relaxes the importance 

of obtaining accurate choice sets of realistic routes, since the negative effects of any present unrealistic routes 

within the choice sets are reduced. The Generalised PSL (GPSL) model (Ramming, 2002) proposes a path 

size contribution factor based on travel cost ratios to reduce the contributions of costly routes. However, as we 

discussed and demonstrated in Duncan et al (2020), GPSL is not internally consistent within the specification 

of the choice model, since in their definitions of unrealistic, the path size terms consider only travel cost, 

whereas the route choice probability relation considers disutility including the correction term.  

Solving this, we then in Duncan et al (2020) proposed the Adaptive Path Size Logit (APSL) model where 

the path size contribution factors are based upon ratios of route choice probability. This ensures that APSL is 

internally consistent within the specification of the choice model, where routes defined as unrealistic by the 

path size terms – and consequently given reduced path size contributions – are exactly those with very low 

choice probabilities. APSL provides improved choice set robustness over PSL, and does so in a way that is 

internally consistent (unlike GPSL). In this paper, we thus investigate the application of APSL to SUE, where 

to guarantee full internal consistency in the SUE formulation of APSL we stipulate that costs in all 

components are defined as generalised, flow-dependent congested cost. 

Since the APSL path size contribution factors depend upon the route choice probabilities, the probability 

relation is an implicit function, naturally expressed as a fixed-point problem. The APSL model is thus not 

closed-form and solving the choice probabilities requires a fixed-point algorithm to compute the solution. This 

has the potential to be computationally burdensome in large-scale networks even when the travel costs are 

fixed. However, as we show in this study, the requirement of solving fixed-point problems to compute APSL 

choice probabilities can be circumvented in SUE application, since at equilibrium the route flow proportions 

and choice probabilities equate. The useful relationship between choice probabilities and route flow 

proportions in SUE context allows for a considerable flexibility in solving APSL SUE, where one can trade-

off the accuracy of APSL probabilities (and thus computation times of each iteration) with rate of SUE 

convergence. 

The structure of the paper is as follows. In Section 2.  we introduce congested network notation. In 

Section 3. we establish SUE conditions for the APSL model, prove the existence of solutions, and discuss 

uniqueness. In Section 4.  we conduct numerical experiments to assess computational performance and choice 

set robustness, compare flow results, and investigate APSL SUE solution uniqueness. In Section 5.  we 

conclude the paper.  

2.  Congested Network Notation 
A road network consists of link set 𝐴 and 𝑚 = 1,… ,𝑀 OD movements. 𝑅𝑚 is the choice set of all simple 

routes (no cycles) for OD movement 𝑚 of size 𝑁𝑚 = |𝑅𝑚|, where 𝑁 = ∑ 𝑁𝑚
𝑀
𝑚=1  is the total number of 

routes. 𝐴𝑚,𝑖 ⊆ 𝐴 is the set of links belonging to route 𝑖 ∈ 𝑅𝑚, and 𝛿𝑎,𝑚,𝑖 = {
1     𝑖𝑓 𝑎 ∈ 𝐴𝑚,𝑖
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

.  

The travel demand for OD movement 𝑚 is 𝑞𝑚 ≥ 0, and 𝑸𝑚 is the 𝑁𝑚 × 𝑁𝑚 diagonal matrix of the travel 

demand for OD movement 𝑚 (i.e. with 𝑞𝑚 on each diagonal element). The flow on route 𝑖 ∈ 𝑅𝑚 is 𝑓𝑚,𝑖, and 

𝒇𝑚 is the 𝑁𝑚-length vector of route flows for OD movement 𝑚. 𝒇 is the 𝑁-length vector of all OD movement 

route flow vectors such that 𝒇 = (𝒇1, … 𝒇𝑀), where 𝑓𝑚,𝑖 refers to element number 𝑖 + ∑ 𝑁𝑘
𝑚−1
𝑘=1  in 𝒇. 𝐹 

denotes the set of all demand-feasible non-negative universal route flow vector solutions: 

𝐹 = {𝒇 ∈ ℝ+
𝑁: ∑ 𝑓𝑚,𝑖

𝑖∈𝑅𝑚

= 𝑞𝑚,𝑚 = 1,… ,𝑀}. 

Furthermore, 𝑥𝑎 denotes the flow on link 𝑎 ∈ 𝐴, and 𝒙 = (𝑥1, 𝑥2, … , 𝑥|𝐴|) is the vector of all link flows. 𝑋 

denotes the set of all demand-feasible non-negative link flow vectors: 

𝑋 = {𝒙 ∈ ℝ+
|𝐴|: ∑ ∑ 𝛿𝑎,𝑚,𝑖𝑓𝑚,𝑖

𝑖∈𝑅𝑚

𝑀

𝑚=1

= 𝑥𝑎 , ∀𝑎 ∈ 𝐴, 𝒇 ∈ 𝐹}. 

For link 𝑎 ∈ 𝐴 experiencing a flow of 𝑥𝑎, denote the generalised travel cost for that link as 𝑡𝑎(𝑥𝑎), where 

𝒕(𝒙) is the vector of all generalised link travel cost functions. In vector/matrix notation, let 𝒙 and 𝒇 be column 
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vectors, and define 𝜟 as the |𝐴| × 𝑁-dimensional link-route incidence matrix. Then the relationship between 

link and route flows may be written as 𝒙 = 𝜟𝒇. Supposing that the travel cost for a route can be attained 

through summing up the total cost of its links, then the generalised travel cost for route 𝑖 ∈ 𝑅𝑚, 𝑐𝑚,𝑖, can be 

computed as follows: 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) = ∑ 𝑡𝑎(𝜟𝒇)𝑎∈𝐴𝑚,𝑖 , where 𝒄𝑚(𝒕(𝜟𝒇)) is the vector of generalised travel 

cost functions for OD movement 𝑚. 

Let the route choice probability for route 𝑖 ∈ 𝑅𝑚 be 𝑃𝑚,𝑖, where 𝑷𝑚 = (𝑃𝑚,1, 𝑃𝑚,2, … , 𝑃𝑚,𝑁𝑚) is the 

vector of route choice probabilities for OD movement 𝑚, and 𝐷𝑚 is the domain of possible route choice 

probability vectors for OD movement 𝑚, 𝑚 = 1,… ,𝑀. 

3.  Adaptive Path Size Logit Stochastic User Equilibrium 
In this section, we establish SUE conditions for the APSL route choice model, prove the existence of 

solutions, and discuss solution uniqueness. Since at SUE the route flow proportions and route choice 

probabilities are equal, APSL SUE can be defined in two different ways. These two definitions are equal at 

equilibrium, but not equal for any other route flow vector.  

In order to appreciate the features of APSL SUE, it is helpful to contrast it with other internally consistent 

SUE approaches based on alternative route choice models. Therefore, these internally consistent approaches 

are specified in Appendix A for completeness, and we will refer to them as we introduce the proposed model 

below. 

 

3.1 Definition 1: APSL SUE 

The APSL model provides an internally consistent approach to reducing the negative effects unrealistic routes 

have on the correction terms (and thus choice probabilities) of realistic routes. To do this, path size 

contributions are weighted according to ratios of choice probability, and APSL is consequently naturally 

expressed as a fixed-point problem. Formulation of the APSL model was complicated by the desire to 

establish existence and uniqueness of solutions. To circumvent issues with the standard APSL formulation, a 

modified version was proposed where solutions are guaranteed to exist and are unique under determinable 

conditions. Moreover, the standard formulation can be approximated to arbitrary precision. We thus provide 

here the definition of and establish SUE conditions for the final proposed definition of APSL, see Duncan et al 

(2020) for more details on its derivation. 

The APSL route choice probabilities for OD movement 𝑚, 𝑷𝑚
∗ , (for a choice set of size 𝑁𝑚) are a 

solution to the fixed-point problem 𝑷𝑚 = 𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚))), where 𝐺𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 

 𝐺𝑚,𝑖 (𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚))) = 𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚

𝐴𝑃𝑆(𝒕, 𝑷𝑚)), (3.1) 

𝑔𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆(𝒕, 𝑷𝑚)) =

(𝛾𝑚,𝑖
𝐴𝑃𝑆(𝒕, 𝑷𝑚))

𝛽
𝑒−𝜃𝑐𝑚,𝑖(𝒕)

∑ (𝛾𝑚,𝑗
𝐴𝑃𝑆(𝒕, 𝑷𝑚))

𝛽
𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚

, (3.2) 

and, 𝛾𝑚,𝑖
𝐴𝑃𝑆 for route 𝑖 ∈ 𝑅𝑚 is: 

 
𝛾𝑚,𝑖
𝐴𝑃𝑆(𝒕, 𝑷𝑚) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

1

∑ (
𝑃𝑚,𝑘
𝑃𝑚,𝑖

) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚
𝑎∈𝐴𝑚,𝑖

, ∀𝑷𝑚 ∈ 𝐷𝑚
 (𝜏𝑚), 

(3.3) 

𝐷𝑚
(𝜏𝑚) = {𝑷𝑚 ∈ ℝ>0

𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚,∑ 𝑃𝑚,𝑗
𝑁𝑚

𝑗=1
= 1}. 

𝜃 > 0 is the Logit scaling parameter, 𝛽 ≥ 0 is the path size scaling parameter, and 0 < 𝜏𝑚 ≤
1

𝑁𝑚
, 𝑚 =

1,… ,𝑀, are the perturbation parameters. 𝛾𝑚,𝑖
𝐴𝑃𝑆 (3.3) is the APSL path size term function, 𝑔𝑚,𝑖 in (3.2) is the 

choice probability function, and 𝐺𝑚,𝑖 in (3.1) is the probability adjustment function.  
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As shown in (3.3), for a choice probability solution 𝑷𝑚
∗ , the contribution of route 𝑘 to the path size term 

of route 𝑖 is weighted according to the ratio of choice probabilities between the routes (
𝑃𝑚,𝑘
∗

𝑃𝑚,𝑖
∗ ), and hence 

unrealistic route alternatives with very low choice probabilities have a diminished contribution to the path size 

terms of realistic routes with relatively large choice probabilities. The APSL model is thus internally 

consistent as the probability relation and path size terms both define a route as unrealistic if it has a relatively 

unattractive combination of travel cost and distinctiveness. Moreover, unlike GPSL (see Appendix A), an 

additional parameter to scale the path size contributions is not required as this is done implicitly and 

consistently through the scaling of the probabilities with 𝜃 and 𝛽. This has practical and behavioural 

estimation benefits compared to GPSL (Duncan et al, 2020). 

The APSL model is not closed-form since the choice probabilities for each OD movement are the solution 

to a fixed-point problem. The 𝜏𝑚 parameters are not model parameters that require estimating, they are simply 

a mathematical construct that ensure solutions to the APSL model exist and can be unique; specifically, they 

ensure that the probability domain 𝐷𝑚
(𝜏𝑚) for the fixed-point function 𝑮𝑚 is closed and bounded, while 

avoiding issues occurring from zero choice probabilities. Duncan et al (2020) recommend that only very small 

values for 𝜏𝑚 are used so that the fixed-point solution obtained is negligibly different to the fixed-point 

solution if 𝜏𝑚 = 0 (where one would exist). We thus set 𝜏𝑚 = 10−16, 𝑚 = 1,… ,𝑀, throughout this paper. 

Most studies of PSL SUE (see Appendix A), or of SUE models with PSL path size terms, suppose that 

the link-route prominence feature is represented as the ratio of link-route length, i.e. 
𝑡𝑎

𝑐𝑚,𝑖(𝒕)
=

𝑙𝑎

𝐿𝑚,𝑖
, where 𝑙𝑎 

and 𝐿𝑚,𝑖 are the lengths of link 𝑎 ∈ 𝐴 and route 𝑖 ∈ 𝑅𝑚, respectively. However, this may be inaccurate in how 

travellers perceive the prominence of links in a route: a short link may be highly congested and have a greater 

travel time than a long link that is uncongested, and hence the timely, short link may be perceived as more 

prominent in the route than the long, quick link. A similar argument can be made for using other uncongested 

costs, e.g. free-flow travel time. Thus, for internal consistency, the APSL path size term defined in (3.3) above 

consider generalised travel cost for the link-route prominence feature.  

In the context of SUE, the generalised travel costs include congested cost and are thus flow-dependent. 

Adopting generalised, flow-dependent congested costs for the link-route prominence features, APSL SUE is 

formulated as follows: 

APSL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹(𝝉) is an APSL SUE solution iff the route flow vector for 

OD movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚
∗ (𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (3.4) 

where 𝑷𝑚
∗  is a route choice probability solution for OD movement 𝑚 in 𝒀𝑚 to the fixed-point problem 

 𝒀𝑚 = 𝑮𝑚 (𝒈𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚
𝐴𝑃𝑆(𝒕(𝜟𝒇), 𝒀𝑚))), (3.5) 

given the universal route flow vector 𝒇, where 𝐺𝑚,𝑖, 𝑔𝑚,𝑖, and 𝛾𝑚,𝑖
𝐴𝑃𝑆 are as in (3.1), (3.2), and (3.3), 

respectively, for route 𝑖 ∈ 𝑅𝑚, and 

𝐹(𝝉) = {𝒇 ∈ ℝ>0
𝑁 : 𝜏𝑚 ≤

𝑓𝑚,𝑖
𝑞𝑚

≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚, ∑ 𝑓𝑚,𝑖
𝑖∈𝑅𝑚

= 𝑞𝑚,𝑚 = 1,… ,𝑀}. 

APSL SUE is derived directly by utilising APSL as the underlying route choice model and applying flow-

dependent link travel costs. For a given route flow vector and hence setting of the link costs, the APSL fixed-

point system must be re-solved, so that the path size contribution factors are consistent with the relative 

attractiveness of the routes. This ensures that the choice model is internally consistent for all route flow 

vectors. 

The APSL model restricts the domain for the route choice probabilities so that the probabilities for OD 

movement 𝑚 must belong to the domain 𝐷𝑚
(𝜏𝑚), where 𝑃𝑚,𝑖 ≥ 𝜏𝑚, ∀𝑖 ∈ 𝑅𝑚. Consequently, the set of all 

demand-feasible universal route flow vector solutions for the APSL SUE model, 𝐹(𝝉), is also restricted, where 

𝑓𝑚,𝑖 ≥ 𝜏𝑚𝑞𝑚, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. 
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3.2 Definition 2: APSL′ SUE 

APSL SUE Definition 2 (APSL′ SUE) is derived indirectly by utilising a new underlying route choice model, 

that is equivalent to APSL at SUE, but only at SUE. By the definition of SUE, the route flow proportions and 

route choice probabilities equate at equilibrium. Therefore, APSL′ SUE supposes that the path size 

contribution factors consider route flow proportion ratios, instead of choice probability. The underlying route 

choice model, APSL′, proposes that the choice probability function for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑃𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆′(𝒕, 𝒇𝑚))) = 𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚

𝐴𝑃𝑆′(𝒕, 𝒇𝑚)), (3.6) 

where 𝑔𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚
𝐴𝑃𝑆′(𝒕, 𝒇𝑚)) =

(𝛾𝑚,𝑖
𝐴𝑃𝑆′(𝒕, 𝒇𝑚))

𝛽
𝑒−𝜃𝑐𝑚,𝑖(𝒕)

∑ (𝛾𝑚,𝑗
𝐴𝑃𝑆′(𝒕, 𝒇𝑚))

𝛽
𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚

, (3.7) 

and, 𝛾𝑚,𝑖
𝐴𝑃𝑆′  for route 𝑖 ∈ 𝑅𝑚 is: 

 

𝛾𝑚,𝑖
𝐴𝑃𝑆′(𝒕, 𝒇𝑚) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

𝑓𝑚,𝑖/𝑞𝑚
∑ (𝑓𝑚,𝑘/𝑞𝑚)𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖

=∑
𝑡𝑎

𝑐𝑚,𝑖(𝒕)

𝑓𝑚,𝑖
∑ 𝑓𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖

, ∀𝒇𝑚 ∈ 𝐹𝑚
>0, 

(3.8) 

𝐹𝑚
>0 = {𝒇𝑚 ∈ ℝ>0

𝑁𝑚: ∑ 𝑓𝑚,𝑖
𝑖∈𝑅𝑚

= 𝑞𝑚}. 

The model parameters are again 𝜃 > 0, 𝛽 ≥ 0, and 0 < 𝜏𝑚 ≤
1

𝑁𝑚
, 𝑚 = 1,… ,𝑀. As shown in (3.8), the 

contribution of route 𝑘 ∈ 𝑅𝑚 to the path size term of route 𝑖 ∈ 𝑅𝑚 is weighted according to the ratio of flow 

between the routes (
𝑓𝑚,𝑘

𝑓𝑚,𝑖
), and hence unrealistic route alternatives with very low use/flow have a diminished 

contribution to the path size terms of realistic routes with relatively high use/flow. 

The APSL′ choice model is closed-form and hence choice probability solutions for a given route flow 

vector are guaranteed to exist and be unique, assuming every route has a non-zero flow. Stipulating that the 

flows for OD movement 𝑚 𝒇𝑚 belong to the set 𝐹𝑚
>0 ensures that: a) no routes have zero flow; b) the route 

flows are demand-feasible; and, c) the path size contribution factors consider ratios of route flow proportion. 

The APSL′ choice model need not only be considered in an SUE application; regardless of whether the link 

costs are flow-dependent or fixed, if information is available on the route flow proportions then the path size 

contribution factors can utilise this for route choice prediction. 

Adopting generalised, flow-dependent congested costs for the link-route prominence features, APSL′ 
SUE is formulated as follows: 

APSL′ SUE: A universal route flow vector 𝒇∗ ∈ 𝐹(𝝉) is an APSL SUE solution iff the route flow vector for 

OD movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒈𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚
𝐴𝑃𝑆′(𝒕(𝜟𝒇), 𝒇𝑚))) , 𝑚 = 1,… ,𝑀, (3.9) 

where 𝑃𝑚,𝑖, 𝑔𝑚,𝑖, and 𝛾𝑚,𝑖
𝐴𝑃𝑆′  are as in (3.6), (3.7), and (3.8), respectively, for route 𝑖 ∈ 𝑅𝑚, given the universal 

route flow vector 𝒇, and  

𝐹(𝝉) = {𝒇 ∈ ℝ>0
𝑁 : 𝜏𝑚 ≤

𝑓𝑚,𝑖
𝑞𝑚

≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚, ∑ 𝑓𝑚,𝑖
𝑖∈𝑅𝑚

= 𝑞𝑚,𝑚 = 1,… ,𝑀}. 
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The APSL′ choice model is only internally consistent for route flow vectors at SUE, since for all other route 

flow vectors, the relative attractiveness of routes as defined in the path size contribution factors does not 

match the relative attractiveness in the probability relation. 

 

3.3 Existence & Uniqueness of Solutions 

Zhou et al (2012) formulate a congestion-based CL SUE model in which the commonality factors are based 

on flow-dependent congested costs (see Appendix A). While such solutions can be proven to exist, uniqueness 

cannot be guaranteed. In a similar vein, APSL SUE solutions can be proven to exist, but it is expected that 

uniqueness can also not be guaranteed. 

 

3.3.1 Existence 

In this subsection, we prove that solutions are guaranteed to exist to the APSL′ SUE fixed-point system as 

defined in (3.9), and thus the APSL SUE fixed-point system defined in (3.4)-(3.5), due to equivalence in 

equilibrium. 

First, we define an important function: the APSL′ SUE fixed-point function. Let 𝐻𝑚,𝑖(𝒇) =

𝑞𝑚𝑃𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚
𝐴𝑃𝑆′(𝒕(𝜟𝒇), 𝒇𝑚))), where 𝑃𝑚,𝑖, 𝑔𝑚,𝑖, and 𝛾𝑚,𝑖

𝐴𝑃𝑆′  are as in (3.6), (3.7), and (3.8), 

respectively, for route 𝑖 ∈ 𝑅𝑚. It is clear from (3.9) that a route flow solution 𝒇∗ is an APSL′ SUE solution iff 

𝐻𝑚,𝑖(𝒇
∗) = 𝑓𝑚,𝑖

∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀.  

Given 𝐻𝑚,𝑖(𝒇), we first prove that APSL′ SUE solutions are guaranteed to exist. 

Proposition 1: If the link cost function 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ 𝐹(𝝉), then at least one 

APSL′ SUE fixed-point route flow solution, 𝒇∗ ∈ 𝐹(𝝉), is guaranteed to exist. 

Proof. From the assumption that 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ 𝐹(𝝉), (and thus 𝒄𝑚, 𝜸𝑚
𝐴𝑃𝑆′, 𝑔𝑚,𝑖, 

𝑃𝑚,𝑖, and 𝐻𝑚,𝑖 are all continuous), and given that 𝐹(𝝉) is a nonempty, convex, and compact set, and 𝑯 maps 

𝐹(𝝉) into itself, then by Brouwer’s Fixed-Point Theorem at least one solution 𝒇∗ exists such that 𝐻𝑚,𝑖(𝒇
∗) =

𝑓𝑚,𝑖
∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and hence APSL′ SUE solutions are guaranteed to exist. 

∎ 

Next, we clarify the equivalence of APSL SUE and APSL′ SUE. 

 

Lemma 1: If 𝒇∗ ∈ 𝐹(𝝉) is an APSL′ SUE solution, 𝒇∗ ∈ 𝐹(𝝉) is also an APSL SUE solution. 

Proof. This follows by inspection from the equivalence of (3.1), (3.2), and (3.3) with (3.6), (3.7), and (3.8), 

respectively, when 𝑃𝑚,𝑖 =
𝑓𝑚,𝑖

𝑞𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and hence for an APSL′ SUE solution 𝒇∗ ∈ 𝐹(𝝉) 

where 𝑃𝑚,𝑖 =
𝑓𝑚,𝑖
∗

𝑞𝑚
. 

∎ 

What remains is to prove the existence of APSL SUE solutions. 

Proposition 2: If the link cost function 𝒕(𝜟𝒇) is a continuous function, then at least one APSL SUE fixed-

point route flow solution, 𝒇∗ ∈ 𝐹(𝝉), is guaranteed to exist. 

Proof. It follows from Proposition 1 and Lemma 1 that since APSL′ SUE solutions are guaranteed to exist, 

and an APSL′ SUE solution is also always an APSL SUE solution, then at least one APSL SUE fixed-point 

route flow solution 𝒇∗ ∈ 𝐹(𝝉) is guaranteed to exist. 

∎ 
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3.3.2 Uniqueness 

The standard approach for establishing sufficient conditions for the uniqueness of APSL′ SUE solutions 

requires 𝐻𝑚,𝑖(𝒇) to be a monotonic function. Assuming the link cost functions 𝒕(𝜟𝒇) are monotonic, then the 

route cost functions 𝒄𝑚(𝒕(𝜟𝒇)) are also monotonic. This is enough to establish sufficient conditions for the 

uniqueness of MNL SUE solutions, as well as solutions for Path Size Logit SUE models with flow-

independent path size costs. However, for the APSL′ SUE model (and other Path Size Logit SUE models with 

flow-dependent path size costs), the path size term functions, in this case 𝜸𝑚
𝐴𝑃𝑆′(𝒕(𝜟𝒇), 𝒇𝑚), are not 

guaranteed to always be monotonic, and hence the approach is not applicable. This is not to say however that 

APSL SUE solutions cannot be unique, since the mentioned approach only establishes sufficient conditions, 

and in Section 4.4 we investigate this numerically. 

4.  Numerical Experiments 
In this section, some numerical experiments are conducted to compare the computational performance of 

APSL & APSL′ SUE, as well as with internally consistent SUE formulations for competitor correlation-based 

route choice models to APSL, namely: MNL, PSL, GPSL, CL, CNL, GNL, and PCL SUE, as defined in 

Appendix A. We also examine how robust these SUE models are to the inclusion of unrealistic routes to the 

choice set, thereby mimicking choice set mis-generation. We compare flow results between the Path Size 

Logit SUE models, as well as investigate the uniqueness of APSL SUE solutions. 

 

4.1 Experiment Setup 

The computer used has a 2.10GHz Intel Xeon CPU and 512GB RAM, and the code was implemented in 

Python. In our implementation, we assume that a working set of routes is available in advance to solve the 

SUE models. The advantage of using a working route set (i.e. generated from a choice set generation scheme) 

is that it provides a common basis for the comparison of various models. Behaviourally, it has the advantage 

of identifying routes that would likely to be used (Cascetta et al, 1997; Bekhor et al 2006, 2008). However, a 

column generation procedure (e.g. Chen et al, 2001) could also be used. 

In our experiments, we consider three networks: a small example network (Fig. 3.1), and two well-known 

networks Sioux Falls and Winnipeg. The small example network consists of 3 nodes, 4 links, and 1 OD 

movement (with demand 200), the Sioux Falls network consists of 24 nodes, 64 links, and 528 OD 

movements (with positive demands), and the Winnipeg network consists of 1052 nodes, 2836 links, and 4345 

OD movements. 

In general, the generalised travel cost, 𝑡𝑎(𝑥𝑎), for link 𝑎 ∈ 𝐴 may consist of several flow-dependent and 

flow-independent attributes, for example congested travel time, length, number of left turns, etc. However, for 

the numerical experiments in this section and for all networks, the travel cost of link 𝑎 ∈ 𝐴 is specified as the 

flow-dependent travel time 𝑇𝑎(𝑥𝑎) only, where the volume-delay link cost functions for all networks are 

based on the Bureau of Public Road (BPR) formula with link-specific parameters: 

𝑡𝑎(𝑥𝑎) = 𝑇𝑎(𝑥𝑎) = 𝑇0,𝑎 (1 + 𝐷 (
𝑥𝑎
𝐾𝑎
)
𝐵

), 

where 𝑇0,𝑎 and 𝐾𝑎 are the free-flow travel time and capacity of link 𝑎 ∈ 𝐴, respectively, and 𝐷,𝐵 ≥ 0. For the 

small example network, 𝐷 = 0.15, 𝐵 = 4, 𝐾𝑎 = 100 for all links, and 𝑇0,𝑎 for each link is shown in Fig. 3.1. 

For the Sioux Falls and Winnipeg networks, the link-cost function values as well as the network and demand 

data are obtained from https://github.com/bstabler/TransportationNetworks.  

For the small example network, the working choice set utilises all 4 routes, where the routes are Route 1: 

1 → 3, Route 2: 1 → 4, Route 3: 2 → 3, Route 4: 2 → 4. For the numerical experiments in this paper, we 

generated new working choice sets for the Sioux Falls and Winnipeg networks. From experimenting with 

different settings and generation methods, we ultimately generated as large choice sets as we deemed our 

computational resources would allow, in order to minimise the possibility that we had excluded what would 

later turn out to be a plausible route from the working choice set. For the Sioux Falls network, the working 

choice sets were obtained by generating all routes with a free-flow travel time less than 2.5 times greater than 

the free-flow travel time on the quickest route for each OD movement. This technique was not viable 

computationally for the Winnipeg network; instead, we utilised a simulation approach (Sheffi & Powell, 

https://github.com/bstabler/TransportationNetworks
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1982) where the link costs were drawn randomly from a truncated normal distribution with mean value being 

free-flow travel time and standard deviation being 0.6 times the mean. The link costs were simulated 150 

times for each OD movement and for each simulation shortest path was conducted to generate a route, where a 

maximum of 100 unique routes were generated for each choice set. The average and maximum free-flow 

travel time relative deviations from the quickest route in each choice set were 1.14 and 3.2, respectively. For 

Sioux Falls, 42,976 routes were generated in total, and the maximum, average, and median choice set sizes for 

an OD movement were 898, 116, and 6, respectively. For Winnipeg, 305,005 routes were generated in total, 

and the maximum, average, and median choice set sizes for an OD movement were 100, 70, and 88, 

respectively. In Sections 4.2 & 4.3 we investigate how varying the choice set sizes effects computational 

performance and flow results, respectively. 

 

Fig. 3.1.Small example network. 

 

It is not expected that equivalent Mathematical Programming (MP) formulations can be derived for the 

internally consistent SUE formulations in this paper. This is due to the correlation components being flow-

dependent, e.g. based upon the flow-dependent congested costs. For example, as Zhou et al (2012) explain for 

congestion-based CL SUE: since the CL commonality factors are nonlinear flow-dependent functions, CL 

SUE cannot be formulated as an equivalent MP formulation, and thus cannot be obtained through solving 

some convex optimisation problem. Instead, we use a standard Flow-Averaging Algorithm (FAA) to solve all 

SUE models, where a step-size scheme averages the route flows between the current flow vector and an 

auxiliary flow vector computed from the route choice probabilities of the underlying choice model. The FAA 

is as follows: 

𝑓𝑚,𝑖
(𝑛)

= (1 − 𝜂𝑛) ∙ 𝑓𝑚,𝑖
(𝑛−1) + 𝜂𝑛 ∙ 𝑞𝑚𝑃𝑚,𝑖(𝒇

(𝑛−1)), 𝑛 = 1,2,3… 

such that 

lim
𝑛→∞

𝑓𝑚,𝑖
(𝑛) = lim

𝑛→∞
(1 − 𝜂𝑛) ∙ 𝑓𝑚,𝑖

(𝑛−1) + 𝜂𝑛 ∙ 𝑞𝑚𝑃𝑚,𝑖(𝒇
(𝑛−1)) =𝑓𝑚,𝑖

∗ , ∀𝑖 ∈ 𝑅𝑚,𝑚 = 1,… ,𝑀, 𝒇(0) ∈ 𝐹, 

where 𝑓𝑚,𝑖
(𝑛)

 is the flow for route 𝑖 ∈ 𝑅𝑚 at iteration 𝑛, 𝜂𝑛 is the step-size at iteration 𝑛, and 𝑃𝑚,𝑖(𝒇
(𝑛−1)) is the 

choice probability for route 𝑖 ∈ 𝑅𝑚 at iteration 𝑛 given the route flows from iteration 𝑛 − 1. For the APSL & 

APSL′ SUE models, the feasible set of route flows is 𝐹(𝝉) rather than 𝐹. 

The step-size scheme we adopt in this paper is the Method of Successive Weighted Averages (MSWA) 

(Liu et al, 2009), which is based upon the well-known Method of Successive Averages (MSA). While being 

pre-defined, the MSWA allows giving higher weight to auxiliary flow patterns from later iterations, and the 

step-size 𝜂𝑛 at iteration 𝑛 is defined as:  

𝜂𝑛 =
𝑛𝑑

∑ 𝑘𝑑𝑛
𝑘=1

, 

where 𝑑 ≥ 0 is the MSWA parameter. Increasing the value of 𝑑 moves more flow towards the auxiliary 

solution. The MSA is a special case of the MSWA, namely when 𝑑 = 0.  

Convergence of the FAA is measured by the Route Mean Squared Error (RMSE) between the final route 

flow vector and auxiliary route flow vector at iteration 𝑛: 
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𝑅𝑀𝑆𝐸(𝑛) = √
1

𝑁
∑∑ (𝑓𝑚,𝑖

(𝑛)
− 𝑓̅𝑚,𝑖

(𝑛)
)
2

𝑖∈𝑅𝑚

𝑀

𝑚=1

, 

where 𝑓𝑚,𝑖
(𝑛)

 and 𝑓̅𝑚,𝑖
(𝑛)

 are the final route flow and auxiliary route flow for route 𝑖 ∈ 𝑅𝑚 at iteration 𝑛, and 𝑁 is 

the total number of routes. The route flows are thus said to have converged sufficiently to a route flow vector 

solution 𝒇∗ = 𝒇(𝑛) if 𝑅𝑀𝑆𝐸(𝑛) < 10−𝜁 , where 𝜁 is a predetermined flow convergence parameter.  

For PSL, GPSL, APSL′, CL, CNL, GNL, & PCL SUE, the auxiliary flows are computed exactly since the 

probability relations are closed-form. For APSL SUE, however, the accuracy of the auxiliary flows is 

dependent upon the accuracy of the APSL fixed-point probabilities. To ensure that APSL SUE is reached, 

when the RMSE convergence criteria are said to have converged, we check by computing the RMSE between 

the final route flow vector and an auxiliary route flow vector calculated from APSL′ probabilities, which at 

iteration 𝑛 is: 

𝑅𝑀𝑆𝐸(𝑛) = √
1

𝑁
∑∑ (𝑓𝑚,𝑖

(𝑛) − 𝑞𝑚𝑃𝑚,𝑖 (𝒄𝑚 (𝒕(𝜟𝒇
(𝑛)), 𝜸𝑚

𝐴𝑃𝑆′(𝒕(𝜟𝒇(𝑛)), 𝒇(𝑛)))))
𝑖∈𝑅𝑚

𝑀

𝑚=1

2

. 

We continue until this RMSE satisfies the convergence criterion, or it is clear that this convergence criterion 

will not be satisfied. 

Computing the APSL choice probabilities requires a fixed-point algorithm to compute the solution. In 

general, there are many fixed-point algorithms available for solving the APSL fixed-point system. In this 

study, we use the Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). Other algorithms were 

considered, however the performance and convergence of the FPIM in our tests were sufficiently promising 

that we did not consider this worthwhile. The FPIM for solving the APSL choice probabilities for OD 

movement 𝑚 at iteration 𝑛 of the FAA is as follows: 

𝑃𝑚,𝑖
[𝑠] = 𝐺𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚 (𝒕(𝜟𝒇

(𝑛))) , 𝜸𝑚
𝐴𝑃𝑆 (𝒕(𝜟𝒇(𝑛)), 𝑷𝑚

[𝑠−1]))) , 𝑠 = 1,2,3,… 

such that 

lim
𝑠→∞

𝑃𝑚,𝑖
[𝑠] = lim

𝑠→∞
𝐺𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚 (𝒕(𝜟𝒇

(𝑛))) , 𝜸𝑚
𝐴𝑃𝑆 (𝒕(𝜟𝒇(𝑛)), 𝑷𝑚

[𝑠−1]))) = 𝑃𝑚,𝑖
∗ , ∀𝑖 ∈ 𝑅𝑚,

𝑷𝑚
(0) ∈ 𝐷𝑚

(𝜏𝑚), 

where 𝐺𝑚,𝑖, 𝑔𝑚,𝑖, and 𝛾𝑚,𝑖
𝐴𝑃𝑆 are as in (3.1), (3.2), and (3.3), respectively, for route 𝑖 ∈ 𝑅𝑚, and 𝒇(𝑛) is the route 

flow vector at iteration 𝑛 of the FAA. The FPIM is said to have converged sufficiently to an OD movement 𝑚 

APSL choice probability solution 𝑷𝑚
∗ = 𝑷𝑚

[𝑠]
 if: ∑ |𝑃𝑚,𝑖

[𝑠−1] − 𝑃𝑚,𝑖
[𝑠]
|𝑖∈𝑅𝑚 < 10−𝜉, where 𝜉 is a predetermined 

APSL probability convergence parameter. 

In the numerical experiments in this paper, we explore adopting two different initial conditions for the 

FPIM: fixed initial conditions where 𝑃𝑚,𝑖
[0] =

1

𝑁𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and follow-on initial conditions where 

𝑃𝑚,𝑖
[0] =

𝑓𝑚,𝑖
(𝑛−1)

𝑞𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. The follow-on initial FPIM conditions utilise information from the 

previous FAA iteration route flows 𝒇(𝑛−1) to determine the FPIM initial conditions. The idea is to harness the 

useful relation between route flow proportions and route choice probabilities in SUE, where these equate at 

equilibrium. The hypothesis is that by utilising follow-on initial conditions, the numbers of fixed-point 

iterations required for APSL choice probability convergence (and thus computation time to perform each FAA 

iteration) should decrease as the algorithm progresses and the route flow proportions become closer to the 

APSL SUE route choice probabilities. This hypothesis is tested in Section 4.2. 

Unless stated otherwise, the specifications are as follows. The initial SUE conditions are set as the even 

split route flows, i.e. 𝑓𝑚,𝑖
(0) =

𝑞𝑚

𝑁𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and the SUE route flow convergence parameter is set 
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as 𝜁 = 3. The MSWA parameter is set as 𝑑 = 15. For computing APSL probabilities, the initial FPIM 

conditions are set as the fixed initial conditions, and the APSL probability convergence parameter is set as 

𝜉 = 6. The utilised model parameters for the Sioux Falls network are 𝜃 = 0.3, 𝛽 = 0.8, 𝜐 = −0.8, 𝜆𝐺𝑃𝑆𝐿 =
10, 𝜇 = 0.25. 𝜃 = 0.5, 𝛽 = 0.8, 𝜐 = −0.8, 𝜆𝐺𝑃𝑆𝐿 = 10, 𝜇 = 0.25, and 𝜆𝐺𝑁𝐿 = 1 for the Winnipeg network.  

Note that for the GNL SUE model as defined in Appendix A, the model is undefined when there are 

routes consisting of a single link between the origin and destination. The Sioux Falls network contains 

numerous instances of such cases and thus we do not present results for GNL SUE on this network.  

 

4.2 Computational Performance 

We begin by analysing here the computational performance of the FAA for solving the SUE models. Table 

3.1 displays for all SUE models the average computation time to perform a single FAA iteration on the Sioux 

Falls and Winnipeg networks. As expected, MNL probabilities are the quickest to compute. 

PSL/GPSL/APSL′ probabilities all take a similar amount of time to compute, but longer than MNL due to the 

computation of path size terms. APSL probabilities take significantly longer than the other PSL models due to 

the requirement of having to solve APSL probability fixed-point problems. CL probabilities take longer to 

compute than CNL probabilities on the Sioux Falls network, while CNL & GNL take longer than CL on the 

Winnipeg network. This is because the Winnipeg network has greater network depth and the routes are made 

up of a greater number of links. The greater the number of links, the greater the number of nests for CNL & 

GNL, and hence the greater the complexity of the probability expression and longer the computation times. 

GNL takes longer than CNL due to the computation of nesting coefficients. For CL, the commonality factors 

evaluate the similarity between each pair of routes, and thus despite the smaller network depth of the Sioux 

Falls network, there are still many routes to compare, increasing the computational burden. Due to relatively 

large choice set sizes and thus extremely large number of route pairs and hence nests for PCL, the 

probabilities for Sioux Falls and Winnipeg are very computationally burdensome and could not be computed 

in computationally feasible times. Due to this, we do not present computation/flow results for PCL SUE. 

 

 MNL PSL GPSL APSL APSL′ CL CNL GNL 

Sioux 

Falls 

0.006 0.038 0.038 0.920 0.038 0.562 0.196 - 

Winnipeg 0.089 0.208 0.208 4.199 0.208 1.611 6.806 12.921 
Table 3.1. Average computation time [mins] to perform a single FAA iteration on the Sioux Falls and Winnipeg networks. 

 

Fig. 3.2A-B display for the Sioux Falls and Winnipeg networks, respectively, the number of FAA iterations 

required to obtain levels of SUE convergence. Fig. 3.3A-B the display computation time required. As shown, 

while APSL SUE requires a similar number of FAA iterations for convergence to PSL & GPSL SUE, total 

computation times are significantly longer due to the requirement of solving APSL probability fixed-point 

problems at each iteration, and hence longer iteration times. APSL′ SUE has the same iteration computation 

times as for PSL & GPSL SUE, but the slow convergence also results in longer total computation times. MNL 

SUE is the quickest to solve due to not having to compute path size terms, while PSL SUE takes less time 

than GPSL SUE due to fewer iterations. For Sioux Falls, iteration times are quicker for CNL than for CL, and 

thus despite fewer number of iterations required for CL SUE, CNL SUE takes less time overall. For 

Winnipeg, iteration times are quicker for CL than for CNL & GNL, and thus CNL & GNL SUE take more 

time overall, where GNL SUE takes longer than CNL SUE.  
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Fig. 3.2. Number of FAA iterations required to obtain levels of SUE convergence for the different SUE models. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 3.3. Computation time [mins] required to obtain levels of SUE convergence for the different SUE models. A: Sioux Falls. B: 

Winnipeg. 

 

As demonstrated above, further below, and in the experience of the authors, while the number of iterations 

required for APSL SUE convergence tend to be similar to that required for PSL & GPSL SUE convergence 

under identical configurations of the FAA, the requirement of solving APSL choice probability fixed-point 

problems at each FAA iteration results in significantly greater total computation times. On-the-other-hand, 

while the computational burden involved in computing the APSL′ choice probabilities during each iteration of 

the FAA solving APSL′ SUE is no more than that for PSL & GPSL, APSL′ SUE convergence is 

comparatively very slow, and thus total computational times are also longer. There are unique aspects of the 

APSL model however that allow for some flexibility in solving APSL SUE and consequent potential to 

improve computation times, as we show below. 

For APSL SUE, the scale of the computational burden involved at each FAA iteration in solving the 

APSL choice probability fixed-point problems depends on numerous factors; some of which can be controlled 

by the modeller, for example the choice of fixed-point algorithm, and the fixed-point algorithm initial 

conditions and probability convergence parameter 𝜉. The current study focuses on the FPIM as the fixed-point 

algorithm. 

Fig. 3.4A-B display for the Sioux Falls and Winnipeg networks, respectively, the cumulative computation 

times of the iterations during a single run of the FAA, for fixed and follow-on FPIM initial conditions. Fig. 

3.5A-B shows the average number of fixed-point iterations per OD movement required for APSL choice 

probability convergence at each iteration of the FAA. As shown, utilising follow-on initial conditions can 

significantly improve overall computation time due to the reduction in the number of FPIM iterations required 

for APSL probability convergence as the FAA progresses. 

A 

A B 

B 
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Fig. 3.4. Cumulative computation times of the iterations during a single run of the FAA solving APSL SUE with different FPIM initial 

conditions. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.5. Average number of APSL probability fixed-point iterations per OD movement at each iteration of the FAA solving APSL 

SUE with different FPIM initial conditions. A: Sioux Falls. B: Winnipeg. 

 

Fig. 3.6A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation time 

for solving APSL SUE varies as the FPIM probability convergence parameter 𝜉 is increased, with follow-on 

and fixed FPIM initial conditions. Fig. 3.7A-B display how the average number of APSL fixed-point 

iterations and total number of FAA iterations vary as 𝜉 is increased.  

With fixed FPIM initial conditions, APSL SUE could not be solved for 𝜉 < 6 due to the inaccuracies of 

the APSL probabilities. For 𝜉 ≥ 6, as shown, as 𝜉 increases, while the number of iterations required for SUE 

convergence remains constant, greater numbers of FPIM iterations are required for APSL probability 

convergence and thus total computation times increase.  

With follow-on FPIM initial conditions, APSL SUE could be solved for all 𝜉. This is because for 𝜉 = −1, 

only single FPIM iterations are required for APSL probability convergence, and with follow-on initial FPIM 

conditions, solving APSL SUE this way simulates solving APSL′ SUE. Increasing 𝜉 increases the number of 

FPIM iterations required for APSL probability convergence and the accuracy of the APSL probabilities, but 

the APSL SUE solution obtained is the same. As shown, convergence of APSL′ SUE (APSL SUE with small 

𝜉 & follow-on conditions) is slow, resulting in longer computation times. On-the-other-hand, large values of 𝜉 

result in comparatively quick APSL SUE convergence, but longer computation times at each iteration, also 

resulting in longer total computation times. There is thus an optimal, intermediate value of 𝜉 whereby suitable 

SUE convergence meets suitable iteration computation times. As shown in Fig. 3.6A-B, the optimal values in 

these cases are approximately 𝜉 = 1 and 𝜉 = 0 for Sioux Falls and Winnipeg, respectively, yielding 

computation times of 32.68 minutes and 53.94 minutes, respectively. 

A B 

A B 
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Fig. 3.6. Computation time for solving APSL SUE as the APSL probability convergence parameter 𝜉 is increased, with fixed and 

follow-on initial FPIM conditions. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.7. Average number of APSL fixed-point iterations and total number of FAA iterations for solving APSL SUE as 𝜉 is increased, 

with fixed and follow-on initial FPIM conditions. A: Sioux Falls. B: Winnipeg. 

 

Alternatively, utilising follow-on conditions, one can stipulate a set number of FPIM iterations to perform at 

each FAA iteration. Supposing that ℎ FPIM iterations are conducted, Fig. 3.8A-B display the total 

computation times and number of FAA iterations solving APSL SUE, for the Sioux Falls and Winnipeg 

networks, respectively. As shown, conducting just two FPIM iterations (instead of one) can significantly 

reduce the number of FAA iterations required for convergence, and thus total computation times. The optimal 

values for ℎ appear to be 3 and 2 FPIM iterations, respectively, where suitable SUE convergence meets 

suitable iteration computation times. This yields computation times of 23.79 minutes for Sioux Falls and 

47.17 minutes for Winnipeg.  

One can also utilise a combination of both techniques for reducing APSL SUE total computation times 

and stipulate a maximum number of FPIM iterations to perform and a maximum level of APSL probability 

convergence, i.e. the FPIM is stopped if either a maximum of ℎ iterations are conducted or the probabilities 

have converged sufficiently according to the set parameter 𝜉. This can potentially save computation times in 

latter FAA iterations where the stipulated amount of FPIM iterations unnecessarily overly-converges the 

APSL probabilities. Fig. 3.9A and Fig. 3.10A display for Sioux Falls how computation times and the number 

of FAA iterations / average number of FPIM iterations vary, respectively, for different settings of 𝜉, where a 

maximum of 3 FPIM iterations are conducted. Fig. 3.9B displays results for Winnipeg where a maximum of 2 

FPIM iterations are conducted. As shown, optimal values of 𝜉 with this technique are approximately 𝜉 = 5 

and 𝜉 = 4 for Sioux Falls and Winnipeg, respectively, where a suitable number of FAA iterations meets a 

suitable average number of FPIM iterations. This yields computation times of 20.24 minutes for Sioux Falls 

and 42.25 minutes for Winnipeg.  

A B 

A B 
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Fig. 3.8. Total computation times and number of FAA iterations for solving APSL SUE utilising follow-on conditions, with ℎ FPIM 

iterations conducted. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.9. Total computation times for solving APSL SUE utilising follow-on conditions as 𝜉 is varied, with a max number of FPIM 

iterations conducted ℎ. A: Sioux Falls (ℎ = 3). B: Winnipeg (ℎ = 2). 

  

Fig. 3.10. Number of FAA iterations, and average number of FPIM iterations for solving APSL SUE utilising follow-on conditions as 

𝜉 is varied, with a max number of FPIM iterations conducted ℎ. A: Sioux Falls (ℎ = 3). B: Winnipeg (ℎ = 2). 

 

Considering the above results, for the remainder of the paper, unless stated otherwise, we solve APSL SUE by 

stipulating a maximum number of FPIM iterations to perform at each FAA iteration and a maximum level of 

APSL probability convergence. For Sioux Falls, a maximum of 3 FPIM iterations are conducted with 𝜉 = 5. 

For Winnipeg, 2 FPIM iterations are used with 𝜉 = 4. We label for reference this method APSL SUE*. This 

A B 

A B 

A B 
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‘optimal’ method for solving APSL SUE is of course particular to the network, model, and algorithm 

specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by fixing the 

optimised values for that particular specification, and then varying the specifications, we will show that the 

method is robust in its effectiveness compared to solving APSL SUE in a standard way (i.e. where the APSL 

fixed-point probabilities are accurately solved with non-follow-on initial conditions).  

Fig. 3.11A-B and Fig. 3.12A-B add the APSL SUE* convergence statistics to the results from Fig. 3.2A-

B and Fig. 3.3A-B. As shown, for APSL SUE*, the number of iterations required to obtain levels of 

convergence is now significantly less than for APSL′ SUE, though more than required for APSL SUE. Hence, 

since the iteration computation times of APSL SUE* are significantly less than for APSL SUE, total 

computation times are improved. Moreover, APSL SUE* outperforms CL, CNL, & GNL SUE – significantly 

on the larger-scale Winnipeg network. 

  

Fig. 3.11. Number of FAA iterations required to obtain levels of SUE convergence for the different SUE models, with updated APSL 

SUE solution method. A: Sioux Falls. B: Winnipeg. 

   

Fig. 3.12. Computation time [mins] required to obtain levels of SUE convergence for the different SUE models, with updated APSL 

SUE solution method. A: Sioux Falls. B: Winnipeg. 

 

Other factors that affect the computational performance of APSL SUE, in terms of solving the APSL 

probability fixed-point problems, include the value of 𝛽 and the choice set sizes. As shown in Duncan et al 

(2020), larger values of 𝛽 result in a greater number of FPIM iterations being required for APSL convergence 

(increasing computation times), and, the greater the choice set sizes the more routes there are to capture the 

correlation between (escalating the computational burden involved in computing path size terms).  

Fig. 3.13A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time 

for APSL SUE* as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, varies as 

the 𝛽 parameter is increased. Fig. 3.14A-B display how the average number of FPIM iterations per OD 

movement per FAA iteration and how the total number of FAA iterations vary as 𝛽 is increased. As shown, 

A B 

A B 
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for APSL SUE follow-on & fixed, while the number of FAA iterations do not vary considerably, the average 

number of FPIM iterations increases exponentially with 𝛽 and hence so do computation times. For APSL 

SUE*, the number of SUE iterations increases as 𝛽 increases, while the average number of FPIM iterations 

remains low (decreasing slightly due to more SUE iterations), resulting in the technique significantly 

improving in effectiveness as 𝛽 increases. 

   

Fig. 3.13. Computation time for APSL SUE*, APSL′ SUE, and solving APSL SUE with follow-on and fixed initial FPIM conditions 

as 𝛽 is increased. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.14. Number of FAA iterations, and average number of FPIM iterations for APSL SUE*, APSL′ SUE, and solving APSL SUE 

with follow-on and fixed initial FPIM conditions as 𝛽 is increased. A: Sioux Falls. B: Winnipeg. 

 

Fig. 3.15A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time for 

APSL SUE* as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, varies as the 

choice set sizes are increased. Fig. 3.16A-B display how the average number of FPIM iterations per OD 

movement per FAA iteration and how the total number of FAA iterations vary. The choice sets are obtained 

by generating all routes (from the master generated choice sets used throughout this section) with a free-flow 

travel time less than 𝜑 times greater than the free-flow travel time on the quickest generated route for each 

OD movement. As shown, computation times increase as the choice sets are expanded. The greater number of 

routes to capture the correlation between means that more FPIM iterations are required for APSL probability 

convergence, which, combined with a greater number of FAA iterations required for SUE convergence, 

results in increasing computation times (more SUE iterations that each take longer on average). It is also 

shown again how effective APSL SUE* can be. 
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Fig. 3.15. Computation time for APSL SUE* and solving APSL SUE with follow-on and fixed initial FPIM conditions the choice set 

sizes are increased, scaled by 𝜑. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.16. Number of FAA iterations, and average number of FPIM iterations for APSL SUE* and solving APSL SUE with follow-on 

and fixed initial FPIM conditions the choice set sizes are increased, scaled by 𝜑. A: Sioux Falls. B: Winnipeg. 

 

Next, we investigate for all SUE models, how total computation times and number of FAA iterations vary 

according to different sizes of choice sets, levels of travel demand, and model parameters. 

Fig. 3.17A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation 

times for the different SUE models vary as the choice set sizes are increased. Fig. 3.18A-B display how the 

required number of FAA iterations varies. As shown, for Sioux Falls, although the number of iterations 

required for convergence decreases for most of the models, computation times increase due to additional 

burden involved in computing choice probabilities / working with more routes. For APSL SUE, computation 

times increase significantly due also to the more burdensome fixed-point problems (i.e. Fig. 3.15/Fig. 3.16). 

For Winnipeg, the number of iterations requited for SUE convergence increases, increasing to the 

computational burden of larger choice sets. 
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Fig. 3.17. Computation times for solving the SUE models as the choice set sizes are increased, scaled by 𝜑. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 3.18. Number of iterations required for convergence for the SUE models as the choice set sizes are increased, scaled by 𝜑. A: 

Sioux Falls. B: Winnipeg. 

 

Fig. 3.19A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation 

times vary for the different SUE models as the level of travel demand is varied. Fig. 3.20A-B display how the 

required number of FAA iterations varies. The demand is scaled according to the parameter 𝜔 so that the 

demand for OD movement 𝑚 is 𝜔 ∙ 𝑞𝑚, 𝑚 = 1,… ,𝑀. As shown, and as expected, the number of iterations 

required for convergence increases for all SUE models as the level of demand increases, thus increasing total 

computation times. APSL′ SUE experiences a significant increase for large demand. 
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Fig. 3.19. Computation times for solving the SUE models as the level of travel demand is increased, scaled by 𝜔. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 3.20. Number of iterations required for convergence for the SUE models as the level of travel demand is increased, scaled by 𝜔.  

A: Sioux Falls. B: Winnipeg. 

 

Fig. 3.21A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation 

times vary for the different SUE models as the common 𝜃 parameter is varied. Fig. 3.22A-B display how the 

required number of FAA iterations varies. As shown, apart from for APSL′ SUE on the Sioux Falls network, 

convergence for the SUE models generally gets slower as 𝜃 increases and the route cost differences are 

accentuated more resulting in greater flow fluctuations. 

Fig. 3.23A-B and Fig. 3.24A-B display how total computation times / number of iterations vary, 

respectively, for the CNL SUE model as the 𝜇 parameter is varied. As shown, for both networks, the number 

of iterations (and thus computation time) required for convergence decreases for greater values of 𝜇, i.e. as 

CNL SUE increases in similarity to MNL SUE. This is a typical finding for CNL SUE models, e.g. Bekhor et 

al (2008). 

Fig. 3.25A-B display results for the GNL SUE model as the 𝜆𝐺𝑁𝐿 parameter is varied. As shown, the 

number of iterations (and thus computation time) required for convergence decreases for greater values of 

𝜆𝐺𝑁𝐿. Note that for 𝜆𝐺𝑁𝐿 = 0, GNL SUE is equivalent to MNL SUE (since 𝜆𝐺𝑁𝐿 = 0 results in 𝜇𝑚 = 1, 𝑚 =
1,… ,𝑀). 

Fig. 3.26A-B and Fig. 3.27A-B display results for the GPSL SUE model as the 𝜆𝐺𝑃𝑆 parameter is varied. 

As shown, the number of iterations (and thus computation time) required for convergence increases for greater 

values of 𝜆𝐺𝑃𝑆, where greater fluctuations occur within the path size contribution factors.  

Fig. 3.28A-B and Fig. 3.29A-B display results for the PSL/GPSL/APSL SUE models as the common 𝛽 

parameter is varied. As shown, for APSL′ SUE and APSL SUE*, the number of FAA iterations increases 

exponentially with 𝛽. For the other models however, the effects are not as significant, though for APSL SUE 

– as also shown in Fig. 3.13/Fig. 3.14 – total computation times increase exponentially with 𝛽 due to the 

fixed-point probability computation. 
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Fig. 3.21. Computation times for SUE convergence as 𝜃 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.22. Number of iterations required for SUE convergence as 𝜃 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.23. Computation times for CNL SUE convergence as 𝜇 is varied. A: Sioux Falls. B: Winnipeg. 
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Fig. 3.24. Number of iterations required for CNL SUE convergence as 𝜇 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.25. Winnipeg: GNL SUE convergence as 𝜆𝐺𝑁𝐿 is varied. A: Computation time [mins]. B: Number of iterations. 

  

Fig. 3.26. Computation times for GPSL SUE convergence as 𝜆𝐺𝑃𝑆 is varied. A: Sioux Falls. B: Winnipeg. 
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Fig. 3.27. Number of iterations required for GPSL SUE convergence as 𝜆𝐺𝑃𝑆 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.28. Computation times for convergence for the Path Size Logit SUE models as 𝛽 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.29. Number of iterations required convergence for the Path Size Logit SUE models as 𝛽 is varied. A: Sioux Falls. B: Winnipeg. 

 

Lastly, Fig. 3.30A-B display for the Sioux Falls and Winnipeg networks, respectively, and for the different 

SUE models, how the number of iterations required for convergence varies for different settings of the 

MSWA parameter 𝑑. As shown, for APSL′ SUE and APSL SUE*, convergence improves significantly with 

greater values of 𝑑, though for APSL SUE * the number of FPIM iterations and 𝜉 value has been optimised 

for 𝑑 = 5. For APSL SUE, and MNL, PSL, & GPSL SUE, 𝑑 = 5 and 𝑑 = 10 provide roughly the best 

convergence for Sioux Falls and Winnipeg, respectively.  
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Fig. 3.30. Number of iterations required for SUE convergence for varying settings of the MSWA parameter 𝑑. A: Sioux Falls. B: 

Winnipeg. 

 

4.3 Choice Set Robustness & Flow Results 

In this subsection we compare the flow results from the different SUE models. To compare the flow results 

𝒇∗𝑅1 and 𝒇∗𝑅2 for Result 1 and Result 2, respectively, we measure the Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √∑ ∑ (𝑓𝑚,𝑖
∗𝑅1 − 𝑓𝑚,𝑖

∗𝑅2)
𝑖∈𝑅𝑚

2𝑀

𝑚=1
/𝑁, 

where 𝑁 is the total number of routes. Note that for reference the RMSE between the previous and final route 

flows of the FAA converging to a SUE solution 𝒇∗ were approximately of the order 10−5. 

First, we assess choice set robustness for the SUE models. Fig. 3.31A-B display for the Sioux Falls and 

Winnipeg networks, respectively, the impact that varying the sizes of choice sets has on the route flow results 

from the different models. The choice sets are obtained by generating all routes (from the pre-generated 

choice sets) with a free-flow travel time less than 𝜑 times greater than the free-flow travel time on the 

quickest route for each OD movement, and it is assumed that 𝜑 = 2 are the true choice sets, i.e. flow results 

are compared between the 𝜑 = 2 generated routes only. As shown, PSL SUE is the most affected by 

expanding the choice sets, as the path size terms of the assumed true routes are adjusted significantly 

attempting to capture the correlation with the added high costing routes. GPSL & APSL SUE are the least 

affected (and affected significantly less than PSL SUE) due to the employment of path size contribution 

weighting techniques, reducing the impact of the added routes.  

Fig. 3.32A-B display for the Sioux Falls and Winnipeg networks, respectively, the impact varying the 

common 𝜃 parameter has on choice set robustness for the different SUE models. Flow results from the 𝜑 = 2 

and 𝜑 = 2.5 choice sets are compared, where flows again are just compared between the 𝜑 = 2 generated 

routes. As shown, choice set robustness improves for all models as the 𝜃 parameter is decreased. For Sioux 

Falls, the relative choice set robustness between the models does not change significantly. For Winnipeg, 

there are more evident changes. For low 𝜃, the choice set robustness of APSL SUE is similar to that for PSL 

SUE. This is because for low 𝜃 routes are considered more evenly attractive (travellers are less sensitive to 

differences in travel cost), and hence the APSL SUE path size contribution factors are closer to 1 (the PSL 

SUE factors). Increasing 𝜃 (implying the routes are less evenly attractive) accentuates the travel cost 

differences within the factors moving them away from 1, thereby improving choice set robustness so that for 

larger 𝜃 APSL SUE is the most choice set robust. For GPSL SUE, however, regardless of the 𝜃 value and 

consequent behavioural implications, the path size contribution factors accentuate the travel cost differences 

and GPSL SUE is choice set robust for all 𝜃. This demonstrates how APSL SUE is more internally consistent 

and adaptable than GPSL SUE, where APSL SUE is always consistent with the behavioural implications of 

the model parameters. 

Fig. 3.33A-B display choice set robustness for the CNL SUE model as 𝜇 is varied. As shown, for Sioux 

Falls, choice set robustness improves for greater values of 𝜇, where the probabilities are closer to the MNL 

model, thus implying that in this case MNL is more robust than the correlation-based models. For Winnipeg, 
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however, choice set robustness worsens with 𝜇, implying the opposite. Moreover, best choice set robustness 

occurs for 𝜇 close to 0, however as Bekhor & Prashker (2001) note, the extreme case for CNL where 𝜇 → 0 is 

suitable in the context of route choice only when the total route costs are equal, otherwise 𝜇 → 0 can lead to 

counter-intuitive results. 

Fig. 3.34A-B display choice set robustness for the GNL SUE model as 𝜆𝐺𝑁𝐿 is varied. As shown, choice 

set robustness improves as 𝜆𝐺𝑁𝐿 increases: the nesting coefficients move away from 1 and closer 0, and thus 

since MNL SUE (𝜇 = 1 for CNL/GNL) on Winnipeg is not robust, robustness for GNL SUE improves for 

greater values of 𝜆𝐺𝑁𝐿. 

Fig. 3.35A-B display choice set robustness for the CL SUE model as 𝜐 is varied. As shown, for Sioux 

Falls, since MNL SUE is choice set robust, CL SUE is also choice set robust for low 𝜐; however, as 𝜐 

increases and the correlation component becomes more prominent, choice set robustness worsens 

dramatically. For Winnipeg, since MNL SUE is not robust, robustness actually improves for CL SUE as 𝜐 

increases, up to a point where the correlation components become prominent enough that the adjustments 

from capturing similarities with new unrealistic routes begins to worsen robustness.  

Fig. 3.36A-B display choice set robustness for the GPSL SUE model as 𝜆𝐺𝑃𝑆 is varied. As shown, and as 

expected, for both networks, choice set robustness is equivalent to that of PSL SUE for 𝜆𝐺𝑃𝑆 = 0 (where the 

models are equivalent), and robustness improves as 𝜆𝐺𝑃𝑆 increases from 0 and the path size contribution 

factors accentuate the cost differences more, resulting in the new more costly routes having reduced 

contributions and thus adjusting the realistic route probabilities less. A peak is reached in terms of choice set 

robustness, however, and increasing 𝜆𝐺𝑃𝑆 further worsens robustness. 

Fig. 3.37A-B display choice set robustness for the PSL/GPSL/APSL SUE models as 𝛽 is varied. As 

shown, for 𝛽 = 0 the path size models are equal to MNL SUE, where robustness is good for Sioux Falls and 

bad for Winnipeg. As 𝛽 increases for Sioux Falls, the increasing prominence of the correlation components 

worsens robustness, where the effects for PSL SUE are significantly worse than for the weighted path size 

contribution models. For Winnipeg, robustness improves as 𝛽 increases for the weighted contribution models, 

but worsens for PSL SUE. 

  

Fig. 3.31. Impact that varying the sizes of choice sets has on the route flow results of the different SUE models, scaled by 𝜑. A: Sioux 

Falls (𝜃 = 0.07). B: Winnipeg. 
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Fig. 3.32. Impact that varying the 𝜃 parameter has on choice set robustness for the different SUE models. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 3.33. Impact that varying the 𝜇 parameter has on choice set robustness for the CNL SUE model. A: Sioux Falls. B: Winnipeg. 

 

Fig. 3.34. Impact that varying the 𝜆𝐺𝑁𝐿 parameter has on choice set robustness for the GNL SUE model on the Winnipeg network. 
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Fig. 3.35. Impact that varying the 𝜐 parameter has on choice set robustness for the CL SUE model. A: Sioux Falls. B: Winnipeg. 

  

Fig. 3.36. Impact that varying the 𝜆𝐺𝑃𝑆 parameter has on choice set robustness for the GPSL SUE model. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 3.37. Impact that varying the 𝛽 parameter has on choice set robustness for the Path Size Logit SUE models. A: Sioux Falls. B: 

Winnipeg. 

 

We next consider the differences in flow results between the Path Size Logit SUE models. Fig. 3.38A-B 

display for the Sioux Falls and Winnipeg networks, respectively, the impact the 𝜃 parameter has on the 

differences in SUE flow between the models. Most notably, in these ranges of 𝜃, the flow differences between 

GPSL & APSL SUE decrease with 𝜃 (initially for Winnipeg) and the flow differences between PSL & APSL 

SUE increase with 𝜃. The former is because as 𝜃 increases, the travel cost components within the APSL SUE 
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path size contribution factors increase in contribution influence compared to the route distinctiveness 

components, and hence the factors increase in similarity to the GPSL SUE factors (which only consider travel 

cost), and thus the SUE route flows. The flows then begin to increase in difference as the 𝜃 parameter begins 

to accentuate the travel cost differences for APSL more than the 𝜆 parameter does for GPSL within the 

contribution factors. The latter occurs since for low 𝜃 routes are considered more evenly attractive and hence 

the APSL SUE path size contribution factors are closer to 1 (the PSL SUE factors), and increasing 𝜃 

accentuates the travel cost differences within the factors moving them away from 1. A peak is reached and 

further increasing 𝜃 results in the travel cost components within the PSL & APSL probability relations 

dominating the distinctiveness components where the difference lies. 

Fig. 3.39A-B display the impact of the 𝛽 parameter. As shown, the flow differences all increase as 𝛽 

increases, which is logical since the differences between the SUE models are the different path size correction 

terms scaled by 𝛽. GPSL & APSL SUE are amongst the least different due to their similarity in adopting path 

size contribution weighting techniques. What is noticeable is that the differences between the APSL SUE 

flows and PSL/GPSL SUE flows increase significantly for larger values of 𝛽. This is because distinctiveness 

increases significantly in contribution influence within the APSL SUE path size terms, moving the 

contribution factors away from 1 (PSL) and making the travel cost component less prominent (GPSL). 

  

Fig. 3.38. Impact of the 𝜃 parameter on the differences in SUE flow between the Path Size Logit SUE models. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 3.39. Impact of the 𝛽 parameter on the differences in SUE flow between the Path Size Logit SUE models. A: Sioux Falls. B: 

Winnipeg.  

 

To explore the impact that varying the level of travel demand has on route choice (i.e. proportional route 

flow), we measure the RMSE of the route choice probabilities, i.e. by dividing the flow results by the 

respective OD movement demands. Fig. 3.40A-B display the impact different levels of travel demand have on 

the differences in choice probabilities between the Path Size Logit SUE models, with 𝜃 = 0.01 for Sioux 
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Falls. Most notably for Sioux Falls, the differences between the GPSL & APSL SUE probabilities decrease 

from being the most different as the demand level increases, while the PSL & APSL SUE probability 

differences increase from being the least different. At zero demand, the relatively low setting of 𝜃 given the 

zero flow link costs dampens the travel cost differences within the APSL path size contribution factors 

resulting in the PSL probabilities being closer and the GPSL probabilities further away to APSL. As demand 

increases however and the link costs increase in scale, the travel cost differences become less dampened and 

the APSL contribution factors consequently move away from 1 (PSL) and closer to the GPSL factors, where 

the travel cost differences are accentuated. For Winnipeg, due to the overall lower level of congestion, the 

effects are less significant; however, the flow differences between the GPSL & APSL SUE probabilities also 

decrease while the PSL & APSL SUE probability differences increase. This time though the GPSL & APSL 

SUE probabilities are the most similar, due to the similar path size contribution weightings given the scale of 

travel costs. 

  

Fig. 3.40. Impact that different levels of demand has on the differences in choice probability between the Path Size Logit SUE models, 

demand scaled by 𝜔. A: Sioux Falls. B: Winnipeg. 

 

Lastly, Fig. 3.41A-B display for Sioux Falls and Winnipeg, respectively, how the SUE models differ from the 

CNL SUE model as the 𝜃 parameter is varied. Most interestingly, on both networks, APSL SUE is the most 

similar to CNL SUE for larger values of 𝜃, even when compared with GNL SUE. 

  

Fig. 3.41. How the SUE models differ from the CNL SUE model as the 𝜃 parameter is varied. A: Sioux Falls. B: Winnipeg. 

 

4.4 Uniqueness of APSL SUE Solutions 

As discussed in Section 3.3.2, it is not possible to prove that APSL SUE solutions can be unique according to 

standard approaches. Instead, we investigate here the uniqueness of APSL SUE solutions numerically. 

As demonstrated in Duncan et al (2020), for a given setting of the link costs 𝒕 and 𝜃 value, a 𝛽 value 

exists, 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃) > 0, for OD movement 𝑚 such that APSL choice probability solutions are unique for all 
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𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃). This means that a 𝛽 value exists, 𝛽𝑚𝑎𝑥(𝒕, 𝜃) > 0, such that solutions 

are unique for all OD movements for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥(𝒕, 𝜃), i.e. 𝛽𝑚𝑎𝑥(𝒕, 𝜃) =

min(𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃)). And, assuming the link costs are bounded, i.e. they have a maximum and minimum 

value (for example due the fixed demands), for a given 𝜃 value, a 𝛽 value exists, �̅�𝑚𝑎𝑥(𝜃) > 0, such that 

APSL solutions are unique for all OD movements and for all feasible flow vectors (and thus costs) for all 𝛽 in 

the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃). Obviously, �̅�𝑚𝑎𝑥(𝜃) ≤ 𝛽𝑚𝑎𝑥(𝒕, 𝜃) ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃).  

While it is not guaranteed that in all cases APSL SUE solutions will be unique when APSL probabilities 

are universally unique, i.e. for 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃), as we show below, it appears from numerical 

experiments that this is often the case.  

Fig. 3.42A-B plot, for two runs, the small example network route flows at each iteration of the FAA when 

the initial conditions for the FPIM in Step 3 are randomly generated, for 𝛽 = 0.9 and 𝛽 = 1.1, respectively, 

𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8. The step-size is set as 𝜂𝑛 = 1 (𝑛 = 1,2,…) and the algorithm is 

stopped after 20 iterations if convergence is not reached. As shown, for 𝛽 = 0.9, because the APSL 

probabilities are unique for the route costs (from the flows) at each iteration, the route flows on both runs 

converge in the same way to the same APSL SUE solution. For 𝛽 = 1.1, however, as demonstrated clearly at 

iteration 1, there are multiple APSL probabilities for the route costs at each iteration, and hence due to the 

step-size the flows fluctuate randomly and do not converge. This suggests that APSL probability solutions are 

universally unique for 𝛽 = 0.9, but not for 𝛽 = 1.1, and hence that 0.9 ≤ �̅�𝑚𝑎𝑥(1) < 1.1.  

Fig. 3.43A-B plot for 𝛽 = 0.9 and 𝛽 = 1.1, respectively, and for multiple runs, the flows at each iteration 

of the FAA utilising follow-on initial conditions for the FPIM in Step 3, where the SUE initial conditions are 

randomly generated, 𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8. As shown, for 𝛽 = 0.9, all initial conditions 

lead to the same solution, whereas for 𝛽 = 1.1, two solutions are found with different initial conditions. Fig. 

3.44A-B plot the flows at each iteration of the FAA for solving APSL′ SUE. As shown, for 𝛽 = 0.9, all initial 

conditions again lead to the same solution, whereas for 𝛽 = 1.1, two solutions are found. 

  

Fig. 3.42. Small example network: APSL SUE route flows at each iteration of the FAA with randomly generated FPIM initial 

conditions, two runs (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 
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Fig. 3.43. Small example network: APSL SUE route flows at each iteration of the FAA with follow on FPIM initial conditions and 

randomly generated SUE initial conditions, multiple runs (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

  

Fig. 3.44. Small example network: APSL′ SUE route flows at each iteration of the FAA with randomly generated SUE initial 

conditions, multiple runs (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

 

Fig. 3.43 & Fig. 3.44 suggest that the APSL SUE solution is unique for 𝛽 = 0.9, and solutions are non-unique 

for 𝛽 = 1.1, and Fig. 3.42 suggests that this due to the APSL choice probability solutions being universally 

unique for 𝛽 = 0.9, but not for 𝛽 = 1.1. One can imply from this that 0.9 ≤ �̅�𝑚𝑎𝑥(1) < 1.1, and potentially 

that APSL SUE solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 0.9 ≤ �̅�𝑚𝑎𝑥(1).  
Duncan et al (2020) demonstrate how APSL choice probability solutions for OD movement 𝑚 are unique 

for 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃). Here, we utilise a similar method to that described in Section 4.4 of 

Duncan et al (2020) for the APSL model, to attempt to identify �̅�𝑚𝑎𝑥,𝑚(𝜃) values and thus �̅�𝑚𝑎𝑥(𝜃) =

min(�̅�𝑚𝑎𝑥,𝑚(𝜃):𝑚 = 1,… ,𝑀) for the APSL SUE model, where the costs are not fixed. �̅�𝑚𝑎𝑥,𝑚(𝜃) is 

estimated by plotting trajectories of APSL SUE solutions for OD movement 𝑚 for varying 𝛽, and identifying 

where a unique trajectory of solutions ends and multiple trajectories begin. A simple method for obtaining 

trajectories of APSL SUE solutions is as follows: 

Step 1. Identify a suitably large value for 𝛽 (where it is predicted that solutions will be non-unique). 

Step 2. Solve APSL SUE for this large 𝛽 with a randomly generated SUE initial condition. 

Step 3. Decrement 𝛽 and obtain the next APSL SUE solution with the SUE initial condition set as the 

solution for the previous 𝛽. 

Step 4. Continue until a suitably low value of 𝛽 (where it is predicted that solutions will be unique). 

By plotting the route flows for OD movement 𝑚 at each decremented 𝛽, and repeating this method several 

times, one can determine where non-unique solution trajectories end and hence estimate �̅�𝑚𝑎𝑥,𝑚(𝜃). If after 

A B 

A B 
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several repetitions (with different randomly generated initial conditions) only a single trajectory of solutions is 

shown, then the initial large 𝛽 value is increased. Similarly, if only multiple trajectories are shown, the 

stopping low 𝛽 value is decreased. However, one can test beforehand whether the initial and stopping 𝛽 

values are suitable by solving for each a few times with random initial conditions and observing whether there 

are different solutions for the initial 𝛽 value and the same solution for the stopping 𝛽. In the experience of the 

authors, the �̅�𝑚𝑎𝑥,𝑚(𝜃) values typically range between 0.9 and 1.1 (usually around 1). If in large-scale 

networks it is computationally burdensome to solve APSL SUE once at a time for each decremented value of 

𝛽, then one can instead (by possibly harnessing parallel processing) solve for different 𝛽 values 

simultaneously, each with randomly generated initial conditions. This should also identify where solutions are 

and are not unique. Moreover, one can plot flow trajectories for all OD movements simultaneously, so the 

method does not need to be repeated for each OD movement. We illustrate the approach graphically here, but 

there is no need to draw graphs for general networks. One can instead observe the route flow values, where a 

finer grained decrement of 𝛽 will provide a more accurate estimation of �̅�𝑚𝑎𝑥,𝑚(𝜃). 

In the case of the small example network where there is a single OD movement, we estimate �̅�𝑚𝑎𝑥(1) 
using the above method. Fig. 3.45 displays trajectories of APSL SUE route flow solutions as the 𝛽 parameter 

is varied for 𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8. 𝛽 was decremented by 0.005 and the initial large 𝛽 

value was 1.2. The solution trajectory plotting was repeated until multiple trajectories were shown. As shown, 

there is a unique trajectory of route flow solutions up until 𝛽 = �̅�𝑚𝑎𝑥(1) where there then becomes multiple 

trajectories. The estimated �̅�𝑚𝑎𝑥(1) value is 0.995. While two APSL SUE solutions were found for 𝛽 = 1.1 

in Fig. 3.43B & Fig. 3.44B, Fig. 3.45 shows that there are three solutions. 

 

Fig. 3.45. Small example network: Trajectories of APSL SUE solutions as 𝛽 is varied (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8). 

 

We use the same technique of plotting flow trajectories to estimate the APSL SUE uniqueness conditions for 

the Sioux Falls and Winnipeg networks. Fig. 3.46 displays for Sioux Falls the maximum route flow from three 

trajectories of APSL SUE solutions as the 𝛽 parameter is varied for four different randomly chosen OD 

movements. 𝛽 was decremented by 0.005, and the initial large 𝛽 and stopping small 𝛽 values were 𝛽 = 1.1 

and 𝛽 = 0.9, respectively. As shown, the �̅�𝑚𝑎𝑥,𝑚(0.01) values for these OD movements appear to be close to 

1. Fig. 3.47 display results for the Winnipeg network (two trajectories are plotted), where the �̅�𝑚𝑎𝑥,𝑚(0.5) 
values also appear to be close 1.  

Route 1 ×   Route 2 ▲ 

Route 3    Route 4 ∎ 

�̅�𝒎𝒂𝒙(𝟏) -- 

 



Chapter 3. Formulation and solution of Adaptive Path Size Logit Stochastic User Equilibrium – 

addressing choice set robustness and internal consistency 

109 

 

  

  

Fig. 3.46. Sioux Falls: Maximum route flow for four different OD movements from three trajectories of APSL SUE solutions as 𝛽 is 

varied. 
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Fig. 3.47. Winnipeg: Maximum route flow for four different OD movements from two trajectories of APSL SUE solutions as 𝛽 is 

varied. 

 

In our experience, the ranges of 𝛽 that exist for the uniqueness of APSL and APSL SUE solutions provide 

enough scope for fitting to behaviour, where typical 𝛽𝑚𝑎𝑥 values range between 0.9 and 1.1. Duncan et al 

(2020) experienced no difficulties in estimating APSL on a real-life large-scale network, and obtained a 

maximum likelihood estimate of 𝛽 = 0.84, where it was verified that this was within the uniqueness range. 

Although there are obvious differences in the models, we note that this ‘safe’ range for 𝛽 for APSL 

uniqueness also includes values for 𝛽 reported in empirical studies with PSL & GPSL (e.g. Ramming, 2002, 

Bovy et al, 2008, Hoogendoorn-Lanser et al, 2005; Frejinger & Bierlaire, 2007; Prato, 2013), where estimated 

values have been reported in the range 0.6 to 0.93. 

 

4.5 Findings of the Numerical Experiments 

To summarise, the key findings of the numerical experiments were that: 

a) APSL SUE is more internally consistent than GPSL SUE in terms of dealing with unrealistic routes in 

the adopted choice sets. 

b) APSL SUE is generally more robust than PSL, CL, CNL, & GNL SUE to the inclusion of unrealistic 

routes to the choice set. 

c) Convergence rates for solving APSL SUE were similar to that for PSL & GPSL SUE, however the 

computational burden involved in computing the APSL choice probabilities for each FAA iteration 

resulted in much longer total computation times. 

d) On-the-other-hand, the computational burden involved in computing the APSL′ choice probabilities 

was the same as that for PSL & GPSL (similarly closed-form), but the APSL′ SUE convergence rate 

was comparatively slow, and thus total computation times were also longer. 

e) In general, the FPIM convergence parameter 𝜉 (and thus the accuracy of the APSL choice 

probabilities) must be at a certain level for convergence of the FAA to the APSL SUE solution. 

f) However, by utilising ‘follow-on’ initial FPIM conditions – where the initial conditions for solving 

the APSL probabilities at iteration 𝑛 of the FAA are set as the route flow proportions from iteration 

𝑛 − 1 – the FAA will converge to the APSL SUE solution regardless for all 𝜉. 

g) There was a computational trade-off between solving APSL & APSL′ SUE: solving APSL SUE with 

low 𝜉 and follow-on initial conditions simulated solving APSL′ SUE where the convergence rate was 

slow, while larger values of 𝜉 resulted in comparatively quick convergence rates but lengthy 

computation times for the iterations.  

h) There was an ‘optimal’ intermediate value of 𝜉 for solving APSL SUE with follow-on initial FPIM 

conditions whereby a suitable SUE convergence rate meets suitable computation times for each 

iteration. Optimal values for the examples in this study were 𝜉 = 1 for Sioux Falls and 𝜉 = 0 for 

Winnipeg. 
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i) Another technique that improved APSL SUE computation times was to stipulate a set number of 

FPIM iterations to perform at each FAA iteration: optimal values were 3 and 2 FPIM iterations for 

Sioux Falls and Winnipeg, respectively. 

j) Best computation times for solving APSL SUE were found when utilising a combination of a 

maximum number of FPIM iterations and an intermediate value of 𝜉: 3 FPIM iterations and 𝜉 = 5 for 

Sioux Falls, 2 FPIM iterations and 𝜉 = 4 for Winnipeg. 

k) APSL SUE can be thus solved in feasible computation times – typically longer than PSL & GPSL 

SUE, but quicker than CL, CNL, GNL, & PCL SUE (significantly on the larger-scale Winnipeg 

network). 

l) Uniqueness conditions appeared to exist for APSL SUE: for 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃), where 

APSL probability solutions are unique. 

m) �̅�𝑚𝑎𝑥,𝑚(𝜃) values (uniqueness for OD movement 𝑚) in experiments were all close 1. 

The ‘optimal’ values for the methods in h)-i) for solving APSL SUE are particular to the network, model, and 

algorithm specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by 

fixing the optimised values for a given specification, and then varying the specifications, it was shown that the 

method was robust in its effectiveness compared to solving APSL SUE in a standard way (i.e. where the 

APSL fixed-point probabilities are accurately solved with non-follow-on initial conditions). Future research 

could explore an intelligent, adaptive process whereby the optimal values of 𝜉 and the maximum number of 

FPIM iterations to perform at each FAA iteration are learnt / worked out as the FAA progresses. 

5.  Conclusion 
This paper investigates the integration of the Adaptive Path Size Logit (APSL) route choice model within a 

Stochastic User Equilibrium (SUE) model. The APSL model captures correlations between overlapping routes 

by including correction terms within the route utilities, and offers an internally consistent approach to 

reducing the negative impact that unrealistic routes have on the correction terms of realistic routes. To do this, 

the APSL model proposes that routes contribute to path size terms according to choice probability ratios; 

consequently, the probability relation is an implicit function, naturally expressed as a fixed-point problem. 

APSL is thus not closed-form and calculating the choice probabilities requires a fixed-point algorithm that can 

compute the solution. This has the potential to be computationally burdensome in large-scale networks even 

when the travel costs are fixed. As explored in the paper, however, the requirement of solving fixed-point 

problems to compute APSL choice probabilities can be circumvented in SUE application, since at equilibrium 

the route flow proportions and choice probabilities equate.  

The paper proves that APSL SUE solutions exist, but uniqueness cannot be guaranteed. Instead, the paper 

investigates the uniqueness of APSL SUE solutions numerically, where experiments on the Sioux Falls and 

Winnipeg networks suggest that uniqueness conditions exist. These conditions are analogous to those for the 

uniqueness of APSL probability solutions, and APSL SUE solutions appear to be unique when APSL 

solutions are unique. 

The advantages of APSL SUE are demonstrated in numerical experiments on the Sioux Falls and 

Winnipeg networks. Computational performance, choice set robustness, and flow results are compared with 

internally consistent SUE formulations of competitor correlation-based route choice models to APSL, namely: 

Path Size Logit (PSL), Generalised Path Size Logit (GPSL), C-Logit (CL), Cross-Nested Logit (CNL), 

Generalised Nested Logit (GNL), and Paired Combinatorial Logit (PCL), where the functional forms in the 

correlation components are based upon generalised, flow-dependent congested costs, rather than e.g. length / 

free-flow travel time. A flow-averaging algorithm with Method of Successive Weighted Averages step-size 

scheme is used to solve the SUE models. The paper demonstrates how for APSL SUE one can trade-off the 

accuracy of APSL probabilities (and thus computation times of each iteration) with rate of SUE convergence, 

and as such, it is shown that APSL SUE can be solved in feasible computation times. The key findings from 

the numerical experiments were that: 

a) APSL SUE is generally more robust than PSL, CL, CNL, & GNL SUE to the inclusion of unrealistic 

routes to the choice set. 
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b) APSL SUE is more internally consistent than GPSL SUE in terms of dealing with unrealistic routes in 

the adopted choice sets. 

c) APSL SUE can be solved in feasible computation times – typically longer than PSL & GPSL SUE, 

but quicker than CL, CNL, GNL, & PCL SUE (considerably on the larger-scale Winnipeg network). 

Further research could compare APSL SUE / the internally consistent correlation-based SUE models in the 

paper with other network equilibrium modelling approaches, for example Probit, Markovian traffic 

equilibrium (Baillon & Cominetti, 2008), or Recursive Logit with choice aversion by Knies & Melo (2020), 

who provide an extensive comparison with APSL as the reference model. 
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8.  Appendix 

8.1 Appendix A: Internally Consistent SUE Formulations for Correlation-Based Route Choice 

Models 

8.1.1 Correction Term Models 

Correction term models capture correlations between routes by including heuristic correction terms within the 

deterministic utilities. The deterministic utility of route 𝑖 ∈ 𝑅𝑚 is thus 𝑉𝑚,𝑖 = −𝜃𝑐𝑚,𝑖(𝒕) + 𝜅𝑚,𝑖, where 𝜃 > 0 

is the Logit scaling parameter and 𝜅𝑚,𝑖 ≤ 0 is the correction term for route 𝑖 ∈ 𝑅𝑚. The choice probability for 

route 𝑖 ∈ 𝑅𝑚 is then: 

𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝜿𝑚) =
𝑒−𝜃𝑐𝑚,𝑖(𝒕)+𝜅𝑚,𝑖

∑ 𝑒−𝜃𝑐𝑚,𝑗(𝒕)+𝜅𝑚,𝑗𝑗∈𝑅𝑚

. 

 

8.1.1.1 Path Size Logit SUE Models 

Path Size Logit models propose that the correction terms adopt the form 𝜅𝑚,𝑖 = 𝛽 ln(𝛾𝑚,𝑖), where 𝛽 ≥ 0 is 

the path size scaling parameter, and 𝛾𝑚,𝑖 ∈ (0,1] is the path size term for route 𝑖 ∈ 𝑅𝑚. A distinct route with 

no shared links has a path size term equal to 1, resulting in no penalisation. Less distinct routes have smaller 
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path size terms and incur greater penalisation. The path size terms are often based upon link lengths and thus 

𝛾𝑚,𝑖 (in those cases) is not dependent upon the link/route generalised travel costs. However, this leads to 

internal inconsistency (as we discuss in more detail below) and in this study we base the path size terms upon 

on generalised link travel costs (i.e. 𝛾𝑚,𝑖 = 𝛾𝑚,𝑖(𝒕)), which in SUE application are congested, flow-dependent 

costs. The choice probability function for route 𝑖 ∈ 𝑅𝑚 is thus: 

 𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚(𝒕)) =
𝑒
−𝜃𝑐𝑚,𝑖(𝒕)+𝛽 ln(𝛾𝑚,𝑖(𝒕))

∑ 𝑒
−𝜃𝑐𝑚,𝑗(𝒕)+𝛽 ln(𝛾𝑚,𝑗(𝒕))

𝑗∈𝑅𝑚

=
(𝛾𝑚,𝑖(𝒕))

𝛽
𝑒−𝜃𝑐𝑚,𝑖(𝒕)

∑ (𝛾𝑚,𝑗(𝒕))
𝛽
𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚

. (3.10) 

The general form for the path size term is as follows: 

 
𝛾𝑚,𝑖(𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

1

∑ (
𝑊𝑚,𝑘(𝒕)

𝑊𝑚,𝑖(𝒕)
) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚

𝑎∈𝐴𝑚,𝑖

, 
(3.11) 

where 𝑊𝑚,𝑘(𝒕) > 0 is the path size contribution weighting of route 𝑖 ∈ 𝑅𝑚 to path size terms (different for 

each model), so that the contribution of route 𝑘 ∈ 𝑅𝑚 to the path size term of route 𝑖 ∈ 𝑅𝑚 (the path size 

contribution factor) is 
𝑊𝑚,𝑘(𝒕)

𝑊𝑚,𝑖(𝒕)
. To dissect the path size term: each link 𝑎 in route 𝑖 ∈ 𝑅𝑚 is penalised (in terms 

of decreasing the path size term and hence the utility of the route) according to the number of routes in the 

choice set that also use that link (∑ 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚 ), where each contribution is weighted (i.e. 

∑ (
𝑊𝑚,𝑘(𝒕)

𝑊𝑚,𝑖(𝒕)
) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚 ), and the significance of the penalisation is also weighted according to how prominent 

link 𝑎 is in route 𝑖 ∈ 𝑅𝑚, i.e. the cost of route 𝑎 in relation to the total cost of route 𝑖 ∈ 𝑅𝑚 (
𝑡𝑎

𝑐𝑚,𝑖(𝒕)
). 

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1998) proposes that 𝑊𝑚,𝑘(𝒕) = 1 so that all 

routes contribute equally to path size terms. This is problematic with the mis-generation of realistic route 

choice sets, however, as the correction terms and thus the choice probabilities of realistic routes are affected 

by link sharing with unrealistic routes. To combat this, Ramming (2002) proposed the Generalised Path Size 

Logit (GPSL) model where 𝑊𝑚,𝑘(𝒕) = (𝑐𝑚,𝑘(𝒕))
−𝜆

, 𝜆 ≥ 0, and routes contribute according to travel cost 

ratios, so that routes with large travel costs have a diminished impact upon the correction terms of routes with 

small travel costs, and consequently the choice probabilities of those routes.  

Most studies of PSL SUE, or of SUE models with PSL path size terms, suppose that the link-route 

prominence feature is represented as the ratio of link-route length, i.e. 
𝑡𝑎

𝑐𝑚,𝑖(𝒕)
=

𝑙𝑎

𝐿𝑚,𝑖
, where 𝑙𝑎 and 𝐿𝑚,𝑖 are the 

lengths of link 𝑎 ∈ 𝐴 and route 𝑖 ∈ 𝑅𝑚, respectively. However, this may be inaccurate in how travellers 

perceive the prominence of links in a route: a short link may be highly congested and have a greater travel 

time than a long link that is uncongested, and hence the timely, short link may be perceived as more 

prominent in the route than the long, quick link. A similar argument can be made for using other uncongested 

costs, e.g. free-flow travel time. SUE for a Path Size Logit model – where for internal consistency the link-

route prominence feature considers flow-dependent congested cost – can be formulated as follows:  

Path Size Logit model SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is an SUE solution for a Path Size Logit 

model iff the route flow vector for OD movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚 (𝒕(𝜟𝒇),𝑾𝑚(𝒕(𝜟𝒇)))) , 𝑚 = 1,… ,𝑀, (3.12) 

where 𝑃𝑚,𝑖 and 𝛾𝑚,𝑖 are as in (3.10) and (3.11), respectively, for route 𝑖 ∈ 𝑅𝑚, given the universal route flow 

vector 𝒇. 

 

8.1.1.2 C-Logit SUE 

C-Logit (CL) proposes that the correction terms adopt the form 𝜅𝑚,𝑖 = ln(𝜎𝑚,𝑖), where 𝜐 ≤ 0 is the 

commonality scaling parameter, and 𝜎𝑚,𝑖 ∈ [1,∞) is the commonality factor for route 𝑖 ∈ 𝑅𝑚. The choice 

probability for route 𝑖 ∈ 𝑅𝑚 is thus: 
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 𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝝈𝑚(𝒕)) =
𝑒
−𝜃𝑐𝑚,𝑖(𝒕)+𝜐 ln(𝜎𝑚,𝑖(𝒕))

∑ 𝑒
−𝜃𝑐𝑚,𝑗(𝒕)+𝜐 ln(𝜎𝑚,𝑗(𝒕))

𝑗∈𝑅𝑚

=
(𝜎𝑚,𝑖(𝒕))

𝜐
𝑒−𝜃𝑐𝑚,𝑖(𝒕)

∑ (𝜎𝑚,𝑗(𝒕))
𝜐
𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚

. (3.13) 

Routes not similar in any way to any other route have commonality factors equal to 1 (similar only to itself) 

and no penalisation is incurred. Routes that are more similar to other routes (in terms of shared congested 

travel cost) have greater commonality factors and incur greater penalisation. Cascetta et al (1996) proposed 

several functional forms for the commonality factor, however the congestion-based functional form adopted 

by Zhou et al (2012), and thus adopted in this paper, is as follows for route 𝑖 ∈ 𝑅𝑚: 

 𝜎𝑚,𝑖(𝒕) = ∑
∑ 𝑡𝑎𝛿𝑎,𝑚,𝑖𝛿𝑎,𝑚,𝑘𝑎∈𝐴𝑚,𝑖

√𝑐𝑚,𝑖(𝒕) ∙ √𝑐𝑚,𝑘(𝒕)𝑘∈𝑅𝑚

, (3.14) 

where ∑ 𝑡𝑎𝛿𝑎,𝑚,𝑖𝛿𝑎,𝑚,𝑘𝑎∈𝐴𝑚,𝑖  is the shared congested travel cost between routes 𝑖 ∈ 𝑅𝑚 and 𝑘 ∈ 𝑅𝑚. 

CL SUE can thus be formulated as follows: 

 

CL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is a CL SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝝈𝑚(𝒕(𝜟𝒇))) , 𝑚 = 1,… ,𝑀, (3.15) 

where 𝑃𝑚,𝑖 and 𝜎𝑚,𝑖 are as in (3.13) and (3.14) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow 

vector 𝒇. 

 

8.1.2 GEV Structure Models 

GEV structure models are those that are based on the Generalized Extreme Value (GEV) theory (McFadden, 

1978), which use a multi-level tree structure to capture the similarity among routes through the random error 

component of the utility function. 

 

8.1.2.1 Cross-Nested Logit SUE 

The Cross-Nested Logit (CNL) model was adapted to the context of route choice by Prashker & Bekhor 

(1998) and Bekhor & Prasker (1999). Their adaptation uses a two-level nesting structure in which the upper 

level (nests) includes all the links in the network. The lower level consists of all the routes in the choice set 

𝑅𝑚 for OD movement 𝑚, and each of the routes is allocated to all the link nests that that route consists of. The 

nest inclusion parameters 𝛼𝑎,𝑚,𝑖 represent the proportion of link 𝑎 used by alternative 𝑖 ∈ 𝑅𝑚. For more than a 

handful of routes and links, however, the number of independent nest inclusion parameters becomes very 

large, making estimation difficult. Seeking to address this, Prashker & Bekhor (1998) proposed a functional 

form for these parameters based on the network topology. These link-route prominence features are 

represented in terms of length or free-flow travel time however, which is not internally consistent. Addressing 

this so that the nest inclusion parameters 𝛼𝑎,𝑚,𝑖(𝒕) are based upon flow-dependent congested cost, the choice 

probability for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑃𝑚,𝑖(𝒕) =∑ 𝑃𝑚,(𝑎)(𝒕) ∙ 𝑃𝑚,(𝑖|𝑎)(𝒕)
𝑎∈𝐴𝑚,𝑖

, (3.16) 

where 

 𝑃𝑚,(𝑖|𝑎)(𝒕) =
(𝛼𝑎,𝑚,𝑖(𝒕) exp (−𝜃𝑐𝑚,𝑖(𝒕)))

1/𝜇

∑ (𝛼𝑎,𝑚,𝑗(𝒕) exp (−𝜃𝑐𝑚,𝑗(𝒕)))
1/𝜇

𝑗∈𝑅𝑚

, (3.17) 

and 
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 𝑃𝑚,(𝑎)(𝒕) =
(∑ (𝛼𝑎,𝑚,𝑘(𝒕) exp (−𝜃𝑐𝑚,𝑘(𝒕)))

1/𝜇

𝑘∈𝑅𝑚 )
𝜇

∑ (∑ (𝛼𝑏,𝑚,𝑘(𝒕) exp (−𝜃𝑐𝑚,𝑘(𝒕)))
1/𝜇

𝑘∈𝑅𝑚 )
𝜇

𝑏∈𝐴

, (3.18) 

where 𝛼𝑎,𝑚,𝑖(𝒕) =
𝑡𝑎

𝑐𝑚,𝑖(𝒕)
∙ 𝛿𝑎,𝑚,𝑖, and 𝜇 ∈ (0,1] indicates the degree of nesting such that when 𝜇 = 1 CNL 

collapses to MNL.  

CNL SUE can thus be formulated as follows: 

 

CNL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is a CNL SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚(𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (3.19) 

where 𝑃𝑚,𝑖 is as in (3.16)-(3.18) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow vector 𝒇. 

 

8.1.2.2 Generalised Nested Logit SUE 

Bekhor & Prashker (2001) generalise CNL by introducing a functional form for the nesting coefficient 𝜇, to 

be a parameterised average value of the nest inclusion coefficients. With congestion-based inclusion 

coefficients, the Generalised Nested Logit (GNL) model proposes that the choice probability for route 𝑖 ∈ 𝑅𝑚 

is as in (3.16)-(3.18), where the nesting coefficient 𝜇 for link nest 𝑎 and OD movement 𝑚 is: 𝜇𝑎,𝑚(𝒕) =

(1 −
∑ 𝛼𝑎,𝑚,𝑖(𝒕)𝑖∈𝑅𝑚

∑ 𝛿𝑎,𝑚,𝑖𝑖∈𝑅𝑚

)
𝜆

, 𝜆 ≥ 0. GNL SUE is thus as in (3.19) but with flow-dependent nesting coefficients as 

above. Note that routes consisting of a single link between the origin and destination result in the nesting 

coefficient 𝜇𝑎,𝑚(𝒕) for that link being equal to 0, since ∑ 𝛼𝑎,𝑚,𝑖(𝒕)𝑖∈𝑅𝑚 = ∑ 𝛿𝑎,𝑚,𝑖𝑖∈𝑅𝑚 = 1. This results in the 

GNL model being undefined.  

 

8.1.2.3 Paired Combinatorial Logit SUE 

The Paired Combinatorial Logit (PCL) model was adapted to the context of route choice by Prashker & 

Bekhor (1998). Here, each pair of routes in a choice set form a nest and routes are chosen from each nest. 

Within each nest, 𝜎𝑚,𝑖,𝑗 is the similarity index between routes 𝑖 ∈ 𝑅𝑚 and 𝑗 ∈ 𝑅𝑚. Like CNL/GNL, 

individually estimating each of these parameters for each nest becomes infeasible for more than a handful of 

routes. Instead, Prashker & Bekhor (1998) propose a functional form for these similarity indexes, proposing 

that the similarity between routes is measured according to the C-Logit commonality factor. These 

commonality factors are formulated in terms of shared length / uncongested travel cost however, which is not 

internally consistent. Addressing this so that the similarity index parameters 𝜎𝑚,𝑖,𝑗(𝒕) are based upon flow-

dependent congested cost, the choice probability for route 𝑖 ∈ 𝑅𝑚 is 

 𝑃𝑚,𝑖(𝒕) =∑ 𝑃𝑚,(𝑖,𝑗)(𝒕) ∙ 𝑃𝑚,(𝑖|𝑖,𝑗)(𝒕)
𝑗∈𝑅𝑚;𝑗≠𝑖

, (3.20) 

where 

 𝑃𝑚,(𝑖|𝑖,𝑗)(𝒕) =

exp (
−𝜃𝑐𝑚,𝑖(𝒕)

1 − 𝜎𝑚,𝑖,𝑗(𝒕)
)

exp (
−𝜃𝑐𝑚,𝑖(𝒕)

1 − 𝜎𝑚,𝑖,𝑗(𝒕)
) + exp (

−𝜃𝑐𝑚,𝑗(𝒕)

1 − 𝜎𝑚,𝑖,𝑗(𝒕)
)

, (3.21) 

and 
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𝑃𝑚,(𝑖,𝑗)(𝒕)

=

(1 − 𝜎𝑚,𝑖,𝑗(𝒕)) ∙ (exp(
−𝜃𝑐𝑚,𝑖(𝒕)

1 − 𝜎𝑚,𝑖,𝑗(𝒕)
) + exp (

−𝜃𝑐𝑚,𝑗(𝒕)

1 − 𝜎𝑚,𝑖,𝑗(𝒕)
))
1−𝜎𝑚,𝑖,𝑗(𝒕)

∑ ∑ (1 − 𝜎𝑚,𝑘,𝑙(𝒕)) ∙ (exp (
−𝜃𝑐𝑚,𝑘(𝒕)

1 − 𝜎𝑚,𝑘,𝑙(𝒕)
) + exp (

−𝜃𝑐𝑚,𝑙(𝒕)

1 − 𝜎𝑚,𝑘,𝑙(𝒕)
))
1−𝜎𝑚,𝑘,𝑙(𝒕)

𝑁𝑚
𝑙=𝑘+1

𝑁𝑚−1
𝑘=1

, 
(3.22) 

where 𝜎𝑚,𝑖,𝑗(𝒕) = (
∑ 𝑡𝑎𝛿𝑎,𝑚,𝑖𝛿𝑎,𝑚,𝑗𝑎∈𝐴𝑚,𝑖

√𝑐𝑚,𝑖(𝒕)∙√𝑐𝑚,𝑗(𝒕)
)

𝜆

, 𝜆 ≥ 0, is the similarity index between routes 𝑖 ∈ 𝑅𝑚 and 𝑗 ∈ 𝑅𝑚. 

PCL collapses to MNL when similarity indexes are all equal to zero. 

PCL SUE can thus be formulated as follows: 

 

PCL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is a PCL SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚(𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (3.23) 

where 𝑃𝑚,𝑖 is as in (3.20)-(3.22) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow vector 𝒇. 
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Abstract 

This paper develops a new route choice modelling framework that deals with both route correlations and 

unrealistic routes in a consistent and robust way. To do this, we explore the integration of a correlation-based 

Path Size Logit model with the Bounded Choice Model (BCM) (Watling et al, 2018). We find, however, that 

the natural integration of these models leads to behavioural inconsistencies and/or undesirable mathematical 

properties. Solving these challenges, we derive a mathematically well-defined Bounded Path Size (BPS) 

model form that utilises a consistent criterion for assigning zero choice probabilities to unrealistic routes while 

eliminating their path size contributions. Two BPS models are consequently formulated: one that is closed-

form and another expressed as a fixed-point problem. Subsequently, we consider parameter estimation in a 

simulation study and on a real-life large-scale network using GPS data, where computational feasibility is 

demonstrated. Estimation results show the potential of the BPS models to give improved fit relative to 

unbounded versions (as well as the BCM), while providing greater robustness to the assumed choice sets. 

 

Key Words: bounded choice model, path size logit, route choice, parameter estimation, unrealistic routes 

1.  Introduction 
There are several distinct and unique aspects about route choice modelling that makes it a more challenging 

task than modelling other types of transport choices. Two key aspects are that: 1) there is often a complex 

correlation structure between the route alternatives, which occurs due to the significant topological 

overlapping of routes; and 2) typical road networks have many possibilities for very long routes that should be 

considered unrealistic and excluded from route choice. To the best knowledge of the authors, no route choice 

modelling approach has been developed thus far that addresses both of these challenges in a theoretically 

consistent, robust, and mathematically well-defined way, and that moreover, has been shown to be both 

computationally feasible in large-scale networks and estimatable from revealed choice data. In this paper, we 

aim to address this by developing a new model framework. To set the background for the research, below, we 

discuss modelling approaches for 1) and 2), and how we decided upon the approach taken.  
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To overcome the deficiency of the Multinomial Logit (MNL) Random Utility Model (RUM) in its 

inability to capture correlations between routes, numerous MNL extension models have been proposed that 

relax the assumption that the random error terms are independently distributed. Alternative RUMs to MNL 

either capture route correlations implicitly or utilise concepts from extended Logit models to similarly adapt 

the model. For a more detailed review, see Duncan et al (2020); however, we discuss the key models and 

concepts relevant to this paper below:  

• GEV structure models use a multi-level tree structure to capture the similarity among routes through 

the random error component of the utility function. Such models include: Cross-Nested Logit (CNL) 

(Vovsha, 1997; Bekhor & Prashker, 1999; Marzano & Papola, 2008), Paired Combinatorial Logit 

(Chu, 1989; Bekhor & Prashker, 1999; Gliebe et al, 1999; Pravinvongvuth & Chen, 2005), 

Generalized Nested Logit (GNL) (Bekhor & Prashker, 2001; Wen & Koppelman, 2001), and the 

Network GEV model (Bierlaire, 2002; Daly & Bierlaire, 2006).  

• Simulation models include Mixed Logit models (Ben-Akiva & Bolduc, 1996; McFadden & Train, 

2000) such as the Factor Analytic Logit Kernel model (Bekhor et al, 2002), as well as alternative 

RUMs to MNL such as Multinomial Probit (MNP) (Daganzo & Sheffi, 1977) and Multinomial 

Gammit (MNG) (Cantarella & Binetti, 2002). Mixed Logit models divide the error terms into two 

Gumbel and Gaussian distributed variable components which ensures the Logit structure is kept while 

allowing for capturing interdependencies between routes. MNP and MNG etc. do not suffer from the 

same issue as MNL, as the similarity between each pair of routes is accounted for by allowing for 

covariance between the error terms, and route correlations are thus captured implicitly.  

• Correction term models add correction terms to the deterministic utilities / probability relations to 

adjust the choice probabilities in order to capture route correlations. Such models include: C-Logit 

(CL) (Cascetta et al, 1996), Path Size Correction Logit (PSCL) (Bovy et al, 2008), Path Size Logit 

(PSL) (Ben-Akiva & Ramming, 1998), Path Size Hybrid (Xu et al, 2015), and Path Size Weibit 

(Kitthamkesorn & Chen, 2013).  

The typical route choice modelling approach for dealing with unrealistic routes – for correlation-based models 

and in general – is to employ some kind of heuristic method that attempts to explicitly generate a route choice 

set containing just the routes considered realistic. This approach, however, leads to theoretical inconsistencies, 

since the route generation criteria is not consistent with the calculation of the choice probabilities among 

chosen routes. Moreover, in large-scale case studies, for example the study of eastern Denmark in Prato et al 

(2014), Rasmussen et al (2016), Duncan et al (2020), as well as in Section 7.4 of this paper, it is implausible 

to attempt to generate the exact choice sets of realistic routes, and instead choice sets are generated large 

enough so that one can be fairly certain the realistic alternatives are present, regardless of how many 

unrealistic routes are generated. This is problematic, since many correlation-based models are not choice set 

robust, and results are thus negatively influenced by the presence of the unrealistic routes as well as highly 

sensitive to the choice set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming, 

2002; Ben-Akiva & Bierlaire, 1999; Bekhor et al (2008); Duncan et al, 2020). 

An approach that has recently been proposed for consistently dealing with unrealistic routes is the 

Bounded Choice Model (BCM) (Watling et al, 2018). The BCM has a consistent criterion for determining 

restricted choice sets of realistic routes, and route choice probability: a bound is applied to the difference in 

random utility between each given route and an imaginary reference route alternative, so that routes only 

receive a non-zero choice probability if the difference between its random utility and the random utility of the 

reference alternative is within the bound. Furthermore, the probability by which each route is chosen relates to 

the odds associated with choosing each alternative versus the reference alternative. A special case of the BCM 

is where the reference alternative is that with the maximum deterministic utility i.e. the route with the cheapest 

generalised travel cost, so that a route only receives a non-zero probability if its cost is within some bound of 

the cheapest route. 

The BCM does not account for route correlation however, and motivated by the desire to develop a route 

choice model that deals with both route correlation and unrealistic routes in a consistent and robust way, an 

approach we deemed promising was to explore the integration of a correlation-based model with the BCM. To 

determine which correlation-based model we would adopt, there were requirements: real-life application of a 

route choice model involves estimating the model parameters, and we thus considered it important that the 

proposed model could be successfully estimated, and moreover, that it would be computationally feasible to 
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do so on large-scale networks. Below, we consider the suitability of the correlation-based model categories in 

terms of potential to satisfy these requirements. 

For GEV structure and simulation models, there are computational concerns: computing route choice 

probabilities / estimation typically requires a high computational cost on large-scale networks. Although GEV 

structure models have closed-form probability expressions, due to their multi-level tree structure the choice 

probabilities are complex to compute, where the computational burden escalates significantly as the scale of 

network / choice set sizes increase. This raises concerns over their applicability to large-scale networks. For 

example, Lai & Bierlaire (2015) estimate CNL on a medium-scale network and find significantly greater 

computation times than for MNL/PSL (e.g. 9.76 hours compared to 98.7/116 seconds). The problem for 

simulation models is that they do not have closed-form expressions and solving the choice probabilities 

requires either Monte Carlo simulation or alternative methods, all of which are computationally burdensome. 

Many analytical approximation methods have been proposed to solve the MNP model, all aiming to provide 

the best compromise between speed and accuracy (reviews can be seen in e.g. Rosa (2003), Connors et al 

(2014)); however, performance of these approaches are assessed with a very limited number of routes, 

typically up to just 25 alternatives. It is generally considered infeasible to accurately compute MNP, MNG etc. 

probabilities on large-scale networks with thousands of routes.  

There are also estimation concerns for GEV structure and simulation models: numerous studies have 

found/discussed difficulties in obtaining reasonable estimates for parameters. There are numerous different 

issues involved in estimating the numerous different specifications of the CNL model for route choice, and 

several studies have discussed issues in detail, for example see Bierlaire (2006), Abbe et al (2007), Marzano 

& Papola (2008). To summarise a few of the issues documented: a) there may be infinite specifications with 

different choice probabilities that lead to the same covariance figures (Marzano & Papola, 2008); b) the 

number of unknown parameters to be estimated increases as the number of routes increases (Marzano & 

Papola, 2008); c) several studies have found that when estimating the nesting coefficients the model tends to 

collapse to MNL (Ramming, 2002; Prato, 2005; Prato & Bekhor, 2006); d) the maximum likelihood 

estimation functions are not concave which significantly complicates the identification of a global maximum 

(Bierlaire, 2006); and, e) because of d), nonlinear programming methods tend to converge towards local 

maxima of the log-likelihood function, and in practice, one observes a significant influence of the initial 

values provided to the algorithm on the estimated parameters (Abbe et al, 2007). GNL requires the estimation 

of an additional parameter over CNL which makes parameter estimation more difficult. There are also 

difficulties in estimating the parameters of the Factor Analytic Logit Kernel model: Ramming (2002) finds 

instable estimates of the covariance parameters, despite the very large number of random draws, while Prato 

(2005) discusses the difficulty in obtaining significant estimates. And, there are also issues involved in 

estimating the MNP model, including: identification issues arising from the number of parameters that may 

need to be estimated (Dansie, 1985; Bunch, 1991; Keane, 1992); and, difficulties in accurately computing 

small choice probabilities (Connors et al, 2014).  

Correction term models are in contrast much more computationally practical than GEV structure and 

simulation models, and are regularly applied and estimated on large-scale networks. They have simple closed-

form expressions, meaning the route choice probabilities are generally easy and quick to compute. They are 

thus a useful and practical approach to approximating the correlation; more complex models can capture the 

correlation more accurately, but due to the comparatively low computational cost and the relative ease in 

obtaining reasonable estimates for parameters, correction term models are the most commonly used models in 

practice.  

Motivated by the above, we decided to explore the integration of a correction term model with the BCM. 

The CL model proposes that the correction terms are based upon commonality factors that measure the 

similarity of routes, and penalises the utilities accordingly. In contrast, the PSL model proposes that the 

correction terms are based upon path size terms that measure route distinctiveness: a route is penalised based 

on the number of other routes sharing its links, and the costs of those shared links. The PSCL model provides 

a modified path size term derived from an approximation of GEV models.  

Developing a BCM with an integrated correction term was complicated by the desire to produce a model 

such that the correction terms consistently and only capture correlations between the routes the model defines 

as realistic. Achieving this, however, and maintaining a continuous choice probability function is far from 

trivial, as the research in this paper shows. Continuity is an important property, and is typically required for 

applications of the model that are well-behaved, for example convergent parameter estimation and existence 
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of network equilibria. Thus, when considering which correction term model to integrate we considered how 

continuity could be achieved. We found that while one can derive a BCM with an integrated CL correction 

term, there are uncertainties over how one can suitably maintain a continuous probability function. For the 

PSL model, existing research on dealing with unrealistic routes within the path size terms presented a clear 

direction to pursue, and while similar techniques could be translated for the PSCL model, PSL is much more 

widely used and we therefore chose to pursue developing a BCM with an integrated PSL-like correction term.  

The pragmatic approach that has been proposed for addressing choice set robustness for PSL, is to utilise 

a weighted path size contribution technique along with choice set generation, to reduce the negative effects of 

any present unrealistic routes. The Generalised Path Size Logit (GPSL) model (Ramming, 2002) proposes a 

path size contribution factor based on travel cost ratios to reduce the contributions of costly routes, while the 

Adaptive Path Size Logit (APSL) model (Duncan et al, 2020) proposes a contribution factor based on choice 

probability ratios to provide internal consistency. While improving upon the choice set robustness of PSL, 

these approaches do not solve the issue entirely since the path size contributions of routes defined as 

unrealistic are only reduced instead of eliminated. 

Taking the promising weighted path size contribution approach one step further, by integrating PSL 

concepts with the BCM, the aim is to develop a model that eliminates unrealistic route contributions entirely, 

as well as removing all the negative effects of unrealistic routes by also assigning them zero choice 

probabilities. A natural form for a Bounded Path Size (BPS) model can be derived by inserting path size 

choice model utilities into the standard BCM formula. However, as we show, this natural form for a BPS 

model is deeply problematic and there are no behaviourally and practically desirable formulations. This is 

because appropriately defining the path size contribution factors within the path size terms is challenging, and 

from demonstrating with different options we establish desired properties for a theoretically consistent, robust, 

and mathematically well-defined BPS model. To develop a BPS model that satisfies these properties, we then 

derive an alternative BPS model form and consequently propose two BPS models: one that is closed-form and 

another expressed as a fixed-point problem.  

The structure of the paper is as follows. In Section 2 we introduce some basic network notation as well as 

the definitions of relevant models. In Section 3 we discuss issues with the natural form for a BPS model and 

consequent desired properties for a BPS model (demonstrated in detail in Appendix C), and derive an 

alternative BPS model form. In Sections 4&5 we propose two BPS models adopting the alternative form. We 

also in Section 5 provide a solution method for computing the choice probabilities, which are a solution to a 

fixed-point problem, and address the existence and uniqueness of solutions (where the proofs are given in 

Appendix D). In Section 6 we discuss/demonstrate the theoretical properties of the proposed BPS models 

including how they satisfy the desired properties (demonstrated in detail in Appendix E). In Section 7 we 

investigate parameter estimation. To show that the model parameters can be estimated we first propose a 

Maximum Likelihood Estimation procedure for estimation with tracked route observation data, then 

investigate this procedure in simulation studies on the Sioux Falls network where we show that it is generally 

possible to reproduce assumed true parameters. Then, in a real-life case study, we estimate the BPS models 

using real tracked route GPS data on a large-scale network, compare results with other models, and assess 

computational feasibility. Section 8 concludes the paper.  

2.  Notation & Model Definitions  

2.1 Basic Network Notation 

The model developed in this paper is applicable to general networks with multiple OD movements and flow-

dependent link costs. However, without compromising the model derivation, we simplify notation by 

considering a single OD movement with fixed link costs. The network consists of link set 𝐴. For the OD 

movement, 𝑅 is the choice set of all simple routes (without cycles), having size 𝑁 = |𝑅|. 𝐴𝑖 ⊆ 𝐴 is the set of 

links belonging to route 𝑖 ∈ 𝑅, and 𝛿𝑎,𝑖 = {
1     𝑖𝑓 𝑎 ∈ 𝐴𝑖    
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. Suppose that the generalised travel cost 𝑡𝑎 of each 

link 𝑎 ∈ 𝐴 is a weighted sum (by parameter vector 𝜶) of variables 𝒘𝑎, i.e. 𝑡𝑎(𝒘𝑎; 𝜶), and that the generalised 

travel cost for route 𝑖 ∈ 𝑅, 𝑐𝑖, can be attained through summing up the total cost of its links so that 

𝑐𝑖(𝒕(𝒘;𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑖 , where 𝒕 is the vector of all link travel costs and 𝒘 is the vector of all link 

variables. To simplify notation 𝑐𝑖(𝒕(𝒘;𝜶)) is denoted just as 𝑐𝑖. The route choice probability for route 𝑖 ∈ 𝑅 
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is 𝑃𝑖, where 𝑷 = (𝑃1, 𝑃2, … , 𝑃𝑁) is the vector of route choice probabilities, and 𝐷 is the set of all possible 

route choice probability vectors: 

𝐷 = {𝑷 ∈ ℝ≥0
𝑁 : 0 ≤ 𝑃𝑖 ≤ 1,∀𝑖 ∈ 𝑅,∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

And, 𝐷>0 ⊂ 𝐷 is the subset of all possible route choice probability vectors where no route has zero choice 

probability: 

𝐷>0 = {𝑷 ∈ ℝ>0
𝑁 : 0 < 𝑃𝑖 < 1, ∀𝑖 ∈ 𝑅,∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

 

2.2 Path Size Logit Models 

Path Size Logit models were developed to address the well-known deficiency of the Multinomial Logit 

(MNL) model in its inability to capture the correlation between routes. To do this, they include correction 

terms to penalise routes that share links with other routes, so that the deterministic utility of route 𝑖 ∈ 𝑅 is 

𝑉𝑖 = −𝜃𝑐𝑖 + 𝜅𝑖, where 𝜃 > 0 is the Logit scaling parameter and 𝜅𝑖 ≤ 0 is the correction term for route 𝑖 ∈ 𝑅. 

The choice probability for route 𝑖 ∈ 𝑅 is: 

𝑃𝑖 =
𝑒−𝜃𝑐𝑖+𝜅𝑖

∑ 𝑒−𝜃𝑐𝑗+𝜅𝑗𝑗∈𝑅

. 

Path Size Logit correction terms adopt the form 𝜅𝑖 = 𝛽 ln(𝛾𝑖), where 𝛽 ≥ 0 is the path size scaling parameter, 

and 𝛾𝑖 ∈ (0,1] is the path size term for route 𝑖 ∈ 𝑅. A distinct route with no shared links has a path size term 

equal to 1, resulting in no penalisation. Less distinct routes have smaller path size terms and incur greater 

penalisation. The choice probability for route 𝑖 ∈ 𝑅 is thus: 

 𝑃𝑖 =
𝑒−𝜃𝑐𝑖+𝛽 ln(𝛾𝑖)

∑ 𝑒−𝜃𝑐𝑗+𝛽 ln(𝛾𝑗)𝑗∈𝑅

=
(𝛾𝑖)

𝛽𝑒−𝜃𝑐𝑖

∑ (𝛾𝑗)
𝛽
𝑒−𝜃𝑐𝑗𝑗∈𝑅

. (4.1) 

The general form for the path size term is as follows: 

 
𝛾𝑖 =∑

𝑡𝑎
𝑐𝑖

1

∑ (
𝑊𝑘
𝑊𝑖
)𝛿𝑎,𝑘𝑘∈𝑅

𝑎∈𝐴𝑖

, 
(4.2) 

where 𝑊𝑘 > 0 is the path size contribution weighting of route 𝑖 ∈ 𝑅 to path size terms (different for each 

model), so that the contribution of route 𝑘 to the path size term of route 𝑖 (the path size contribution factor) is 
𝑊𝑘

𝑊𝑖
. To dissect the path size term: each link 𝑎 in route 𝑖 is penalised (in terms of decreasing the path size term 

and hence the utility of the route) according to the number of routes in the choice set that also use that link 

(∑ 𝛿𝑎,𝑘𝑘∈𝑅 ), where each contribution is weighted (i.e. ∑ (
𝑊𝑘

𝑊𝑖
)𝛿𝑎,𝑘𝑘∈𝑅 ), and the significance of the 

penalisation is also weighted according to how prominent link 𝑎 is in route 𝑖, i.e. the cost of route 𝑎 in relation 

to the total cost of route 𝑖 (
𝑡𝑎

𝑐𝑖
).  

Path size terms sometimes suppose that the link-route prominence feature is represented as the ratio of 

link-route length, i.e. 
𝑡𝑎

𝑐𝑖
=

𝑙𝑎

𝐿𝑖
, where 𝑙𝑎 and 𝐿𝑖 are the lengths of link 𝑎 ∈ 𝐴 and route 𝑖 ∈ 𝑅, respectively. 

However, this may be inaccurate in how travellers perceive the prominence of links in a route: a short link 

may be highly congested and have a greater travel time than a long link that is uncongested, and hence the 

timely, short link may be perceived as more prominent in the route than the long, quick link. Thus, for internal 

consistency, we suppose the link-route prominence feature is represented as the ratio of link-route generalised 

travel cost. 

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1999) proposes that 𝑊𝑘 = 1 so that all routes 

contribute equally to path size terms. This is problematic, however, as the correction terms and thus the choice 

probabilities of realistic routes are affected by link sharing with unrealistic routes. To combat this, Ramming 

(2002) proposed the Generalised Path Size Logit (GPSL) model where 𝑊𝑘 = 𝑐𝑘
−𝜆 and routes contribute 
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according to travel cost ratios, so that routes with excessively large travel costs have a diminished impact 

upon the correction terms of routes with small travel costs, and consequently the choice probabilities of those 

routes. Duncan et al (2020) reformulate the GPSL model (proposing the alternative GPSL model (GPSL′)) so 

that the contribution weighting resembles the probability relation, i.e. 𝑊𝑘 = 𝑒
−𝜆𝑐𝑘. As they discuss, however, 

GPSL and GPSL′ are not internally consistent in how they define routes as being unrealistic: the path size 

terms consider only travel cost, whereas the route choice probability relation considers disutility including the 

correction term. To address this, the Adaptive Path Size Logit (APSL) model is proposed where 𝑊𝑘 = 𝑃𝑘 and 

routes contribute according to ratios of route choice probability. This ensures internal consistency, where 

routes defined as unrealistic by the path size terms – and consequently given reduced path size contributions – 

are exactly those with very low choice probabilities. Since the APSL path size contribution factors depend 

upon the route choice probabilities, the probability relation is an implicit function, naturally expressed as a 

fixed-point problem. The APSL model is thus not closed-form and solving the choice probabilities requires a 

fixed-point algorithm to compute the solution. Furthermore, in order to prove existence and uniqueness of 

solutions the APSL probability relation is modified from that in (4.1). See Duncan et al (2020) for more 

details on the derivation and theoretical properties of the APSL model, as well as definitions and details of the 

other Path Size Logit models. 

 

2.3 Bounded Choice Model 

In this subsection we briefly formulate the Bounded Choice Model (BCM), see Watling et al (2018) for more 

details on the derivation and theoretical properties of the model. The BCM proposes that a bound is applied to 

the difference in random utility between each given alternative and an imaginary reference alternative, so that 

an alternative only receives a non-zero choice probability if the difference between its random utility and the 

random utility of the reference alternative is within the bound. Furthermore, the probability each alternative is 

chosen relates to the odds associated with choosing each alternative versus the reference alternative. Watling 

et al (2018) consider a special case of the BCM where the reference alternative is the alternative with the 

maximum deterministic utility. While the application of the BCM can involve exerting an absolute bound 

upon the difference in utility from the maximum, (for example 25 units worse in deterministic utility), we 

consider in this paper exerting a relative bound upon the difference, i.e. where routes only receive a non-zero 

choice probability if they have a deterministic disutility less than 𝜑 times worse than the greatest route utility. 

If 𝑉𝑖 < 0 is the deterministic disutility of alternative 𝑖 ∈ 𝑅, then the probability of alternative 𝑖 ∈ 𝑅 is chosen 

under the BCM is: 

 𝑃𝑖 =
(ℎ𝑖(𝑽) − 1)+

∑ (ℎ𝑗(𝑽) − 1)+𝑗∈𝑅

, (4.3) 

where ℎ𝑖(𝑽) = exp(𝑉𝑖 − 𝜑max(𝑉𝑘: 𝑘 ∈ 𝑅)), 𝜑 > 1 is the relative bound parameter to be estimated, and 

(∙)+ = max(0,∙). The BCM formulation in (4.3) is derived from an assumption that the difference random 

variable error terms (relative to the best alternative) follow a truncated logistic distribution, see Appendix A 

for details. 

In a route choice context where the deterministic utility of route 𝑖 ∈ 𝑅 is given by 𝑉𝑖 = −𝜃𝑐𝑖, the choice 

probability relation for route 𝑖 ∈ 𝑅 is: 

 𝑃𝑖 =
(ℎ𝑖(−𝜃𝒄) − 1)+

∑ (ℎ𝑗(−𝜃𝒄) − 1)+𝑗∈𝑅

, (4.4) 

where ℎ𝑖(−𝜃𝒄) = exp(−𝜃𝑐𝑖 −𝜑max(−𝜃𝑐𝑙: 𝑙 ∈ 𝑅)) = exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))). Thus, routes only 

receive a non-zero choice probability if they have a cost less than 𝜑 times the cost on the cheapest route. We 

would like to point out that although for simplification of notation 𝑐𝑖 is denoted as a single variable, 𝑐𝑖 is 

actually a weighted sum of route variables, i.e. 𝑐𝑖(𝒕(𝒘;𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑖 , for example travel time, 

length, number of left/right turns, toll, etc., each with an associated taste coefficient / parameter. Therefore, 

the bound is applied to generalised cost. 

On the surface there may appear to be some similarity between the BCM and the original Random Regret 

Minimisation (RRM) model (Chorus et al, 2008), in that they both propose that when travellers are 

considering the relative attractiveness of a route, they compare the route alternative against better alternatives, 

and worse alternatives in some way (at least in theory) have eliminated effects on better alternatives. For the 
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BCM, the generalised travel cost of a route is compared against that of the lowest costing (best) alternative, 

and if it has a cost some order of magnitude worse, it is not considered as a realistic alternative and is assigned 

a zero choice probability. As such, the worse alternatives do not affect the choice probabilities of better 

alternatives. For the RRM model, however, each of the cost attributes of a route are individually compared 

against the attributes of the other routes, and if the attribute of another route is worse than the attribute from 

the route in question, then there is no regret. As such, the worse alternatives do not affect the systematic 

regrets of better alternatives. Therefore, the BCM and RRM model are very different models. They differ in 

many ways, but a key difference is that in the RRM model all routes receive non-zero choice probabilities, 

and thus unrealistic routes in the choice set negatively impact results. Moreover, RRM operates on an attribute 

level. Prato (2014) explores integrating correction term models with the RRM model, to also deal with route 

overlap. 

3.  Derivation of the Proposed Bounded Path Size Model Form 

3.1 The Natural Form 

There is a natural form for a Bounded Path Size (BPS) choice model, which is derived as follows. Path Size 

RUMs (with additive error terms) propose that the deterministic utility for route 𝑖 ∈ 𝑅 is given by 𝑉𝑖 =
−𝜃𝑐𝑖 + 𝛽 ln(𝛾𝑖). Thus, inserting the Path Size choice model utilities into the BCM formula in (4.3), the 

choice probability relation for route 𝑖 ∈ 𝑅 is: 

 𝑃𝑖 =
(ℎ𝑖(−𝜃𝒄 + 𝛽 ln(𝜸)) − 1)+

∑ (ℎ𝑗(−𝜃𝒄 + 𝛽 ln(𝜸)) − 1)+𝑗∈𝑅

, (4.5) 

where ℎ𝑖(−𝜃𝒄 + 𝛽 ln(𝜸)) = exp(−𝜃𝑐𝑖 + 𝛽 ln(𝛾𝑖) − 𝜑max(−𝜃𝑐𝑙 + 𝛽 ln(𝛾𝑙) : 𝑙 ∈ 𝑅)). So, the natural BPS 

model form applies a bound to the route utilities so that zero choice probabilities are assigned to routes with 

infeasibly low utilities (𝜑 times worse in utility than the best alternative), where the utilities include a path 

size correction.  

Appropriately defining the path size contribution factors within the path size terms is difficult, however, 

and from exploring different options, we consequently establish desired properties for a BPS model. We 

briefly detail and discuss these properties here, see Appendix C for demonstrations on how they are derived. 

While it may appear the properties are derived from issues with the specific path size term options explored, 

the natural BPS model form is actually deeply problematic and there are no behaviourally and practically 

desirable formulations, as we attempt to demonstrate. We define the active choice set as the set of routes with 

non-zero choice probabilities, otherwise known as the used routes or those considered realistic. The Desired 

Properties (DP) are as follows: 

• Desired Property 1 – Consistent Definitions of Unrealistic Routes: Routes defined as unrealistic 

by the choice model (assigned zero choice probabilities) should have zero path size contributions, and 

vice versa. 

• Desired Property 2 – Well-Defined Functions: The model functions should be well-defined across 

their domain. 

• Desired Property 3 – Internal Consistency: The model should be internally consistent, i.e. there is a 

consistent assessment of the feasibility of routes between probability relation and path size 

contribution factors. 

• Desired Property 4 – Uniqueness: Route choice probability solutions are inter-active-choice-set 

unique (where there is only one active choice set in which solutions exist), and conditions can be 

established for intra-active-choice-set uniqueness (where for a given active choice set there is only 

one solution). 

• Desired Property 5 – Continuity: The choice probability function is continuous. 

DP1 is behaviourally desirable since otherwise the assumption would be that travellers account for overlap 

between routes they do not consider as being realistic alternatives, or vice versa in that they do not account for 

the overlap between some routes they do consider realistic. Achieving this property is not trivial however as it 

involves zero path size contributions, which results in issues leading to DP2,4,5. DP2 is practically desirable 
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as it allows solutions to exist and be computed, and derives from an issue inherent with the natural BPS model 

form where zero path size contributions results in occurrences of 
0

0
 and ln(0). DP3 is motivated by the key 

behavioural feature of the APSL model, where theoretical consistency is provided within the model’s 

specification. We note that internal consistency also includes utilising the same generalised costs within all 

model components, i.e. also within the path size terms, rather than using just length. Due to inherent 
0

0
 and 

ln(0) issues with the natural BPS model form, there are problems with solution uniqueness where multiple 

active choice sets can yield solutions. This is undesirable as then an active choice set selection procedure is 

required to determine which routes are considered realistic. DP4 is thus that solutions exist within a single 

active choice only (i.e. so that the choice model has a unique selection of which routes are considered 

(un)realistic), and that conditions exist for unique solutions within that active choice set (for example 

conditions exist for unique APSL solutions). DP5 is practically desirable as this property is required for 

applications of the model, for example parameter estimation and network equilibrium where the costs are not 

fixed.  

We would like to emphasise that continuity of the choice probability function is not trivial for a choice 

model with implicit restriction of routes (i.e. where zero choice probabilities are assigned). For route choice 

models in which non-zero choice probabilities are assigned to all routes (i.e. non-bounded models), while the 

choice probability functions may be continuous for a given choice set, the functions are not continuous for 

changes to the choice set. As such, as the generalised cost of a route increases where at some point it is 

excluded by the choice set generation criteria, the probabilities from the choice model will not be continuous. 

The BCM solves this by ensuring a routes choice probability tends towards zero as its cost increases, and 

receives a zero probability exactly at the bound (and thus the probabilities of other routes are not adjusted 

when it is removed from the active choice set). For a BPS model to be continuous, the path size contributions 

must tend towards zero as a route approaches zero choice probability, and be eliminated exactly at zero choice 

probability. 

DP2,4,5 are general desired properties for any route choice model, and satisfying these properties is 

essential for application of the model. Often, closed-form models such as MNL, PSL, GPSL, and the BCM 

satisfy these properties trivially. However, these models have behavioural deficiencies: PSL models do not 

(fully) deal with unrealistic routes, the BCM does not capture route correlations, and MNL deals with neither 

route overlap nor unrealistic routes. Our aim is thus to develop a model that can harness the contrasting 

strengths of the BCM and PSL models, thereby dealing with route overlap and unrealistic routes. The 

difficulty, however, lies in obtaining theoretical consistency, i.e. satisfying DP1&3, where overlap is 

considered between only and all the routes defined as realistic. While there exist natural BPS model 

formulations that satisfy DP2,4,5 (e.g. option 1 in Appendix C Section 10.3.1), and formulations that satisfy 

DP1&3 (e.g. options 2&3 in Appendix C Section 10.3.2), no formulations exist where all properties are 

satisfied. 

As shown in Appendix A of the revised manuscript, the BCM is derived from an assumption that the 

random error terms follow a truncated logistic distribution, where the truncation is dependent upon the bound. 

For the natural BPS model form in (4.5), the bound is dependent upon the best route utility, which includes 

the path size correction. Therefore, during calibration the path size correction can have an indirect effect on 

both the deterministic utility and random error term. The natural BPS model form could thus in principle 

correct the relative sizes of the deterministic and random parts of the utility across different routes, and 

thereby has the potential to provide a means for capturing a greater part of the correlation than standard PSL 

models, which capture correlations through correcting the deterministic part only (Ramming, 2002; 

Hoogendoorn-Laser et al, 2005). As shown in Appendix C, however, the natural BPS model form is not 

suitable for use. In the following section we discuss how this applies to the alternative BPS model form we 

propose.  

 

3.2 The Proposed Form 

To circumvent these issues with the natural form for a BPS model, we derive an alternative BPS model form 

(henceforth just referenced as the proposed BPS model form). In Sections 4&5 we develop two BPS models 

that adopt the proposed form, and which satisfy desired properties, as we discuss/demonstrate in Appendix E. 

The basis for the proposed BPS model form can be considered to roughly derive from the union of two 

models, where the probability of choosing route 𝑖 relates to the probability of choosing route 𝑖 under model 1 
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and choosing route 𝑖 under model 2. Model 1 is the BCM and model 2 is a Path Size Logit model where only 

the correlation between routes is considered, i.e. there is no travel cost component. Let 𝑄𝑖
1 and 𝑄𝑖

2 be the 

probability of choosing route 𝑖 ∈ 𝑅 under model 1 and model 2, respectively. Unionising the two models, the 

probability of choosing route 𝑖 ∈ 𝑅 relates as: 

𝑃𝑖 = 𝑄𝑖
1 × 𝑄𝑖

2 × χ, 

where 

𝑄𝑖
1 =

(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)
+

𝑗∈𝑅

, 𝑄𝑖
2 =

𝑒𝛽 ln(𝛾𝑖)

∑ 𝑒𝛽 ln(𝛾𝑗)𝑗∈𝑅

, 

and χ is a normalisation constant that ensures the probabilities for all routes sum up to 1. So, 𝑄𝑖
1 is the BCM 

choice probability relation in (4.4) and 𝑄𝑖
2 is the regular Path Size Logit model probability relation in (4.1) 

with 𝜃 = 0, i.e. considering route distinctiveness only. The deterministic utilities of route 𝑖 under model 1 and 

model 2 are 𝑉𝑖
1 = −𝜃𝑐𝑖 and 𝑉𝑖

2 = 𝛽 ln(𝛾𝑖), respectively. By giving both of these utilities i.i.d Gumbel 

distributed random error terms, the resultant union model would be a regular Path Size Logit model. Instead, 

model 2 has i.i.d Gumbel distributed random error terms, and model 1 has difference random variable error 

terms (relative to the best alternative) that follow a truncated logistic distribution (see Appendix A). 

With probability relation 𝑃𝑖 = 𝑄𝑖
1 × 𝑄𝑖

2 × χ and the knowledge that ∑ 𝑃𝑖𝑖∈𝑅 = ∑ 𝑄𝑖
1 × 𝑄𝑖

2 × χ𝑖∈𝑅 = 1, the 

following BPS model is derived (see Appendix B for details): 

𝑃𝑖 =
(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+ ∙ 𝑒

𝛽 ln(𝛾𝑖)

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)
+
∙𝑗∈𝑅 𝑒𝛽 ln(𝛾𝑗)

 

=
(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+ ∙

(𝛾𝑖)
𝛽

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)
+
∙𝑗∈𝑅 (𝛾𝑗)

𝛽
. 

Note that the proposed BPS model form approaches the regular Path Size Logit model in (4.1) in the limit as 

𝜑 → ∞ since the BCM approaches the MNL model in limit as 𝜑 → ∞. 

Assuming that the path size terms are non-zero, a route only receives a zero choice probability if 𝑐𝑖 >
𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅). One can thus predetermine the unused routes by checking the fixed route travel costs against 

the bound, and the model can be formulated as follows. Let �̅�(𝒄; 𝜑) ⊆ 𝑅 be the restricted choice set of all 

routes 𝑖 ∈ 𝑅 where 𝑐𝑖 < 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅). The choice probability relation for route 𝑖 ∈ 𝑅 is: 

𝑃𝑖 = {

(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (𝛾𝑖)
𝛽

∑ (exp (−𝜃(𝑐𝑗 −𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙𝑗∈�̅�(𝒄;𝜑) (𝛾𝑗)
𝛽
      𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                                             0                                                                𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)

.  

Routes 𝑖 ∈ �̅�(𝒄;𝜑) are the used/active routes and routes 𝑖 ∉ �̅�(𝒄; 𝜑) are the unused/inactive routes.  

Proposing that the routes with zero choice probabilities are exactly those with zero path size contributions 

(and strictly positive otherwise), the BPS model formulation can be extended as follows. Let �̅�(𝒄; 𝜑) ⊆ 𝑅 be 

the restricted choice set of all routes 𝑖 ∈ 𝑅 where 𝑐𝑖 < 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅). Given �̅�(𝒄; 𝜑), the choice probability 

relation for route 𝑖 ∈ 𝑅 is: 

 𝑃𝑖 = {

(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑖)
𝛽

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙𝑗∈�̅�(𝒄;𝜑) (�̅�𝑗)
𝛽
      𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                                             0                                                                𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)

, (4.6) 

where the path size term for route 𝑖 ∈ �̅�(𝒄; 𝜑) is: 

 �̅�𝑖 =∑
𝑡𝑎
𝑐𝑖

𝑊𝑖

∑ 𝑊𝑘𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑)𝑎∈𝐴𝑖

, (4.7) 
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where 𝑊𝑖 > 0 is the path size contribution weighting of route 𝑖 ∈ �̅�(𝒄; 𝜑) to used route path size terms, so 

that the contribution of used route 𝑘 to the path size term of used route 𝑖 is 
𝑊𝑘

𝑊𝑖
. Note that the path size 

contribution factor is of the form 
𝑊𝑘

𝑊𝑖
 so that distinct routes non-overlapping with all other routes have path 

size terms equal to 1. As Ramming (2002) noted, this was an issue for the original alternative PSL formulation 

proposed by Ben-Akiva & Bierlaire (1999). Since it is predetermined which routes are the unrealistic routes 

with zero probabilities, one only need consider the correlation between the realistic routes with positive 

probabilities (i.e. sum over routes 𝑘 ∈ �̅�(𝒄; 𝜑)), and inactive/unused routes, i.e. routes 𝑖 ∉ �̅�(𝒄; 𝜑), do not 

have path size term values.  

For the choice probability function to be continuous for the proposed BPS model, the path size 

contributions weightings (𝑊𝑖) must tend to zero as the route costs approach the bound from below (and 

consequently zero choice probability), so that when the cost of a route reaches the bound exactly (and thus 

receives a zero choice probability and is removed from the active choice set), there are no adjustments to the 

path size terms of the remaining active routes altering the probabilities and making the distribution 

discontinuous. This means that the 𝑊𝑖 contribution weightings should be explicitly or implicitly dependent 

upon the route/link costs.  

Watling et al (2018) remark that the BCM is consistent with a behavioural assumption that travellers 

make decisions in two stages. In the context of route choice, in the first stage travellers compare the random 

utility of each route against the best alternative in a pairwise manner. The bound imposed implicitly generates 

a choice set. In the second stage, alternatives from this choice set are compared and route choice probabilities 

are modelled using the log-odds from the first stage. Use of these log-odds means that choice set generation 

and route choice are consistent with the same underlying behavioural model. 

With the natural BPS model form, the deterministic utilities comprise of a path size component and a cost 

component. This combined utility is used in the first stage to compare and bound, and obtain a choice set. In 

the second stage, the route choice probabilities are modelled by directly using the log-odds from the first 

stage. 

With the proposed BPS model form derived here, the first stage is identical to that for the standard use of 

the BCM, where solely travel cost is used to compare and bound to obtain a choice set. Where the proposed 

BPS model form differs, however, is that in the second stage, the route choice probabilities are not modelled 

by directly using the log-odds from the first stage, and instead these log-odds are adjusted according to path 

size corrections to heuristically capture route correlation. Importantly though, the consistent criteria for 

determining choice sets and route choice probabilities are not violated, i.e. no route excluded from the 

generated choice set during the first stage can have a non-zero choice probability in the second stage, or vice 

versa. The key feature of the proposed BPS model form is that the measure of route correlation in the second 

stage only considers overlap between routes deemed realistic in the first stage. 

As discussed in the previous section for the natural BPS model form, since the random error terms depend 

upon the bound, and the bound in that case is dependent upon the best route utility (which includes the path 

size correction), during calibration the path size correction can have an indirect effect on both the 

deterministic utility and random error term. For the proposed BPS model form in (4.6), however, the bound 

(in model 1) depends only upon the best route cost and is independent from the path size correction. The path 

size correction in this case therefore does not affect random error. 

4.  The Bounded Bounded Path Size Model 
In this and the following sections, we formulate two BPS models that adopt the proposed form in (4.6)-(4.7). 

In Appendix E we discuss/demonstrate how these two models satisfy the desired properties for a BPS model 

established in Appendix C.  

We begin by formulating the Bounded Bounded Path Size (BBPS) model, which is defined as follows. 

Let �̅�(𝒄; 𝜑) ⊆ 𝑅 be the restricted choice set of all active routes 𝑖 ∈ 𝑅 where 𝑐𝑖 < 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅). Given 

�̅�(𝒄; 𝜑), the choice probability relation for route 𝑖 ∈ 𝑅 is: 
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 𝑃𝑖 =

{
 

 (exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑖
𝐵𝐵𝑃𝑆)

𝛽

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑗
𝐵𝐵𝑃𝑆)

𝛽
𝑗∈�̅�(𝒄;𝜑)

    𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                                                 0                                                                  𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)

, (4.8) 

where the path size term for route 𝑖 ∈ �̅�(𝒄; 𝜑) is: 

 �̅�𝑖
𝐵𝐵𝑃𝑆 =∑

𝑡𝑎
𝑐𝑖

(ℎ𝑖(−𝜆𝒄) − 1)

∑ (ℎ𝑘(−𝜆𝒄) − 1)𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑)𝑎∈𝐴𝑖

, (4.9) 

where ℎ𝑖(−𝜆𝒄) = exp(−𝜆(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))), and the model parameters are 𝜃, 𝜆 > 0, 𝛽 ≥ 0, 𝜑 > 1. 𝑃𝑖 

in (4.8) is the BBPS model probability relation for route 𝑖 ∈ 𝑅 which adopts the proposed BPS model form in 

(4.6), and �̅�𝑖
𝐵𝐵𝑃𝑆 in (4.9) is the BBPS model path size term for route 𝑖 ∈ �̅�(𝒄; 𝜑), which adopts the form of 

(4.7) with 𝑊𝑘 = ℎ𝑘(−𝜆𝒄) − 1.  

The rationale behind formulating the BBPS path size contribution weightings as 𝑊𝑘 = ℎ𝑘(−𝜆𝒄) − 1 was 

to satisfy the desired properties for a BPS model. As discussed in the previous section, when deriving a BPS 

model from the proposed form by stipulating how the path size contribution weightings 𝑊𝑘 are formulated, 

there are requirements for the consequent model to have a continuous choice probability function. To ensure a 

smooth removal of a route from the active choice set, the weighting 𝑊𝑘 for each route 𝑘 ∈ �̅�(𝒄; 𝜑) must tend 

towards zero as the cost of that route tends towards the cost bound from above, i.e. as 𝑐𝑘 → 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅), 
𝑐𝑘 > 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅), and be eliminated exactly at the bound. The BBPS path size contribution weighting 

𝑊𝑘 = ℎ𝑘(−𝜆𝒄) − 1 was stipulated as such so to satisfy these requirements. As can be seen, when 𝜆 = 𝜃, 𝑊𝑘 

matches the travel cost component in the BBPS model probability relation exactly, and thus choice 

probabilities and path size contributions tend towards zero concurrently and meet at zero.  

An additional path size contribution scaling parameter, 𝜆, is included, in the spirit of the GPSL and 

GPSL′ models, to allow for the de-coupling of the scale of the model from the path size effect. Larger values 

of 𝜆 accentuate the differences in cost with the contribution factors, so that the more expensive routes have 

more diminished (though still positive) contributions. In the same way that the GPSL′(𝜆=𝜃) model is 

developed, however, one can equate the travel cost scales setting by 𝜆 = 𝜃 – thus formulating the BBPS(λ=θ) 

model – to improve internal consistency and reduce the number of model parameters to estimate. 

The attraction of the BBPS model is that it has a closed-form choice probability expression and hence 

route choice probability solutions are guaranteed to exist and be unique. The BBPS model is however not 

fully internally consistent since the path size contribution factors do not consider route distinctiveness, though 

consistency is improved by setting 𝜆 = 𝜃. 

Moreover, the BBPS model approaches the GPSL′ model as 𝜑 → ∞: 

∑
𝑡𝑎
𝑐𝑖

(ℎ𝑖(−𝜆𝒄) − 1)

∑ (ℎ𝑗(−𝜆𝒄) − 1)𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑)𝑎∈𝐴𝑖

→∑
𝑡𝑎
𝑐𝑖

𝑒−𝜆𝑐𝑖

∑ 𝑒−𝜆𝑐𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

 

and 

(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (𝛾𝑖)
𝛽

∑ (exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (𝛾𝑗)
𝛽

𝑗∈�̅�(𝒄;𝜑)

→
(𝛾𝑖)

𝛽𝑒−𝜃𝑐𝑖

∑ (𝛾𝑗)
𝛽
𝑒−𝜃𝑐𝑗𝑗∈𝑅

 

as 𝜑 → ∞. 

The BBPS(λ=θ) model is thus equivalent to the GPSL′(𝜆=𝜃) model in the limit as 𝜑 → ∞, and the BBPS model 

is equivalent to the BCM for 𝛽 = 0, which is equivalent to the MNL model in the limit as 𝜑 → ∞. 

5.  The Bounded Adaptive Path Size Model 
The Bounded Adaptive Path Size (BAPS) model adopts the proposed BPS model form derived in Section 3 

and proposes that routes contribute to path size terms according choice probability ratios to ensure internal 

consistency and to provide a continuous choice probability function. The BAPS model route choice 

probability relation is thus an implicit function, naturally expressed as a fixed-point problem. 
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In the following two subsections we introduce two variants of the BAPS model. We first introduce in 

Section 5.1 the standard formulation, which is the straightforward definition. However, the probability domain 

is not defined on a closed set, forcing difficulties proving the existence and uniqueness of solutions. To 

circumvent this, we also in Section 5.2 formulate a modified version for which we can prove solution 

existence and establish uniqueness conditions, and where the standard BAPS formulation can be 

approximated to an arbitrary precision. We then provide a solution method for the modified BAPS model 

formulation, prove solution existence, and establish uniqueness conditions. 

 

5.1 Standard BAPS Model Formulation 

The standard BAPS model formulation (BAPS0) is defined as follows. Let �̅�(𝒄; 𝜑) ⊆ 𝑅 be the restricted 

choice set of all active routes 𝑖 ∈ 𝑅 where 𝑐𝑖 < 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅). Given �̅�(𝒄; 𝜑), the BAPS0 model route 

choice probabilities, 𝑷∗, are a solution to the fixed-point problem 𝑷 = 𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷)), where 𝑓𝑖 for route 𝑖 ∈ 𝑅 

is: 

 

𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)) 

=

{
 
 

 
 (exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑖

𝐵𝐴𝑃𝑆(𝑷))
𝛽

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑗
𝐵𝐴𝑃𝑆(𝑷))

𝛽

𝑗∈�̅�(𝒄;𝜑)

    𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                                                     0                                                                    𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)

, 
(4.10) 

and the path size term for route 𝑖 ∈ �̅�(𝒄; 𝜑) is: 

 

�̅�𝑖
𝐵𝐴𝑃𝑆(𝑷) 

=∑
𝑡𝑎
𝑐𝑖

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑)𝑎∈𝐴𝑖

=∑
𝑡𝑎
𝑐𝑖

1

∑ (
𝑃𝑘
𝑃𝑖
)𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑)

𝑎∈𝐴𝑖

, ∀𝑷 ∈ 𝐷(�̅�(𝒄;𝜑)), (4.11) 

𝐷(�̅�(𝒄;𝜑)) = {𝑷 ∈ ℝ≥0
𝑁 : 0 < 𝑃𝑖 ≤ 1, ∀𝑖 ∈ �̅�(𝒄; 𝜑), 𝑎𝑛𝑑, 0 ≤ 𝑃𝑖 ≤ 1,∀𝑖 ∉ �̅�(𝒄; 𝜑),∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

The model parameters are 𝜃 > 0, 𝛽 ≥ 0, and 𝜑 > 1. �̅�𝑖
𝐵𝐴𝑃𝑆(𝑷) in (4.11) is the BAPS model path size term 

function for route 𝑖 ∈ �̅�(𝒄; 𝜑) that is a function involving the choice probabilities of all routes, though in 

effect only the active routes. 𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)) in (4.10) is the BAPS0 model choice probability function for route 

𝑖 ∈ 𝑅 which is a function of the used route path size term functions and hence also the choice probabilities. 

The choice probability relation for route 𝑖 ∈ 𝑅 is given by 𝑃𝑖 = 𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)), which is an implicit equation 

involving choice probabilities, and hence the BAPS0 model route choice probabilities, 𝑷∗, are a solution such 

that 𝑃𝑖
∗ = 𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷∗)), ∀𝑖 ∈ 𝑅. For a BAPS0 model route choice probability solution vector 𝑷∗, �̅�𝐵𝐴𝑃𝑆(𝑷∗) 

is the BAPS model path size term for route 𝑖 ∈ �̅�(𝒄; 𝜑), and unused routes, i.e. routes 𝑖 ∉ �̅�(𝒄; 𝜑), do not 

have path size term values. 

𝐷(�̅�(𝒄;𝜑)) is the domain for the fixed-point function 𝒇, which is dependent upon the active choice set of 

routes �̅�(𝒄; 𝜑) (and thus the route costs and bound parameter), and stipulates the feasible set of values for the 

fixed-point variables, which are in this case probabilities 𝑷. 𝐷(�̅�(𝒄;𝜑)) stipulates that the active routes 𝑖 ∈
�̅�(𝒄; 𝜑) with costs below the bound must all have non-zero fixed-point variable values (i.e. 𝑃𝑖 > 0, ∀𝑖 ∈

�̅�(𝒄; 𝜑)) ensuring that occurrences of 
0

0
 are avoided in the BAPS model path size term functions �̅�𝑖

𝐵𝐴𝑃𝑆(𝑷), 

and thus any solution to the fixed-point system also circumvents the issue. The active routes can however 

assume any non-zero probability value. 𝐷(�̅�(𝒄;𝜑)) then stipulates that the inactive routes 𝑖 ∉ �̅�(𝒄; 𝜑) with costs 

above the bound can assume any probability value (zero or non-zero), though while the domain of 𝒇 allows 

for inactive routes to have non-zero fixed-point variable values, by the definition of 𝑓𝑖 in (4.10), any solution 

to the fixed-point system will have zero probabilities for all inactive routes. 𝐷(�̅�(𝒄;𝜑)) also stipulates that the 

fixed-point variable values should all sum up to 1, as standard for a probability domain. 

As (4.11) shows, for a choice probability solution 𝑷∗, the contribution of used route 𝑘 to the BAPS model 

path size term of used route 𝑖 is weighted according to the ratio of choice probabilities between the routes 
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(
𝑃𝑘
∗

𝑃𝑖
∗), and hence as a used route approaches zero choice probability its path size contribution approaches zero, 

until it is considered unrealistic, where it then receives a zero choice probability and its path size contributions 

are eliminated completely.  

It is our belief that there is a strong theoretical and behavioural basis for the BAPS0 model, and the model 

captures the best features of the BCM and APSL model. It appears logical that routes are judged as unrealistic 

(assigned zero choice probability / have zero path size contributions) if they have an excessively large travel 

cost, but not necessarily unrealistic if they are very indistinct. Routes are still penalised according to their 

indistinctiveness and the choice probability / path size contribution of route 𝑖 decreases as �̅�𝑖
𝐵𝐴𝑃𝑆 decreases, 

but routes are not bounded according to indistinctiveness.  

The BAPS0 model approaches the APSL model in the limits as 𝜏 → 0 and 𝜑 → ∞: 

𝐺𝑖 (𝑔𝑖(𝜸
𝐴𝑃𝑆(𝑷))) → 𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷)) as 𝜏 → 0, 

and, 

𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)) → 𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷)) as 𝜑 → ∞. 

The BAPS0 model is also equivalent to the BCM for 𝛽 = 0, which is equivalent to the MNL model in the 

limit as 𝜑 → ∞. 

The BAPS0 model proposes that the path size terms utilise choice probability ratio path size contribution 

factors; however, referring to the derivation of the proposed BPS model form in Section 3, the choice 

probabilities are not the model 2 probabilities (𝑄𝑖
2), but instead those obtained from the union model. Hence, 

the BAPS0 model is not a direct union of two separate models and instead the models are interdependent. 

The complication for the BAPS0 model to be mathematically well-defined is that it is not in the correct 

form for standard proofs of solution existence and uniqueness to apply. Standard proofs for existence and 

uniqueness of fixed-point solutions require the domain of the fixed-point function (in this case 𝒇) to be a 

compact convex set. The domain of 𝒇, 𝐷(�̅�(𝒄;𝜑)), however, is not a compact convex set since the fixed-point 

variable value bounds are not closed for all routes: the lower bound for all active routes 𝑖 ∈ �̅�(𝒄;𝜑) is open 

where these fixed-point variables cannot assume the bound value (i.e. 𝑃𝑖 ≠ 0). As shown in Appendix C for 

options 2&3, the path size terms cannot be altered to allow for zero path size contribution weightings without 

losing continuity of the fixed-point function (which is also required for the proofs), and hence in Section 5.2 

below we modify the BAPS model so that it is in the correct form for standard proofs to apply. 

 

5.2 Modified BAPS Model Formulation 

5.2.1 Definition 

The modified BAPS model is defined as follows. Let �̅�(𝒄;𝜑) ⊆ 𝑅 be the restricted choice set (with size �̅�) of 

all routes 𝑖 where 𝑐𝑖 < 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅). The BAPS model route choice probabilities, 𝑷∗, are a solution to the 

fixed-point problem 𝑷 = 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))), where 𝐹𝑖 for route 𝑖 ∈ 𝑅 is: 

 𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))) = {

𝜏 + (1 − �̅�𝜏) ∙ 𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))    𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                        0                               𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)
, (4.12) 

𝑓𝑖 for route 𝑖 ∈ 𝑅 is: 

 

𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)) 

=

{
 
 

 
 (exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑖

𝐵𝐴𝑃𝑆(𝑷))
𝛽

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1) ∙ (�̅�𝑗
𝐵𝐴𝑃𝑆(𝑷))

𝛽

𝑗∈�̅�(𝒄;𝜑)

    𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                                                       0                                                                  𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)

, 
(4.13) 

and the path size term for route 𝑖 ∈ �̅�(𝒄; 𝜑) is: 

 �̅�𝑖
𝐵𝐴𝑃𝑆(𝑷) =∑

𝑡𝑎
𝑐𝑖

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑)𝑎∈𝐴𝑖

, ∀𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏), (4.14) 
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𝐷(�̅�(𝒄;𝜑),𝜏) = {𝑷 ∈ ℝ≥0
𝑁 : 𝜏 ≤ 𝑃𝑖 ≤ (1 − 𝑁𝜏), ∀𝑖 ∈ �̅�(𝒄; 𝜑), 𝑎𝑛𝑑, 0 ≤ 𝑃𝑖 ≤ (1 − 𝑁𝜏), ∀𝑖 ∉ �̅�(𝒄; 𝜑),∑ 𝑃𝑗

𝑁

𝑗=1
= 1}. 

The model parameters are 𝜃 > 0, 𝛽 ≥ 0, 𝜑 > 1, and 0 < 𝜏 ≤
1

�̅�
, where 𝜏 is the perturbation parameter. (4.13) 

and (4.14) are equivalent to (4.10) and (4.11) for the standard BAPS model formulation: �̅�𝑖
𝐵𝐴𝑃𝑆(𝑷) in (4.14) is 

the path size term function for route 𝑖 ∈ �̅�(𝒄; 𝜑) that is a function involving the choice probabilities, and 

𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)) in (4.13) is the unadjusted choice probability function for route 𝑖 ∈ 𝑅 which is a function of the 

used route path size term functions and hence also the choice probabilities. The choice probability relation for 

route 𝑖 ∈ 𝑅 is given by 𝑃𝑖 = 𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))), which is an implicit equation involving choice probabilities, 

and hence the BAPS model route choice probabilities, 𝑷∗, are a solution such that 𝑃𝑖
∗ = 𝐹𝑖 (𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷∗))), 

∀𝑖 ∈ 𝑅. The key difference between this modified formulation and the standard formulation is the adjustment 

function 𝐹𝑖. 𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))) in (4.12) is the choice probability adjustment function for route 𝑖 ∈ 𝑅 which 

adjusts the choice probability function 𝑓𝑖 for reasons given below. 

Duncan et al (2020) construct a choice probability adjustment function 𝐺𝑖 for the APSL model motivated 

by some desired behaviours and required properties for proving existence and uniqueness. Similar motivations 

led to the construction of the adjustment function 𝐹𝑖 for the BAPS model. The Required Properties (RP) for 𝐹𝑖 
were as follows: 

1. 𝐹𝑖 must map into itself. 

2. 𝐹𝑖 must be continuous for all 𝑷. 

3. 𝐹𝑖 must be continuously differentiable with respect to 𝑷 for all 𝑷. 

4. The domain of 𝐹𝑖 must be closed and bounded. 

5. The domain of 𝐹𝑖 must allow the unused routes to have zero choice probabilities but not the used 

routes. 

6. 𝐹𝑖 should be able to approximate 𝑓𝑖 to arbitrary precision. 

7. The domain of 𝐹𝑖 should have a lower bound for used routes that can approximate zero to 

arbitrary precision. 

RP 1-4 are required for existence and uniqueness proofs. RP 5 is required so that the used route path size term 

function �̅�𝑖
𝐵𝐴𝑃𝑆(𝑷) in (4.14) and thus 𝐹𝑖 (𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷))) in (4.12) are defined, i.e. to avoid occurrences of 
0

0
. 

RP 6 is desired as it is not our intention for the choice probabilities acquired from the modified formulation to 

be different to the choice probabilities from the standard BAPS model formulation (where one would exist), 

and we wish them to be as close as possible. RP 7 is desired as there should be no intentional bounding of the 

used route choice probabilities; used routes ideally should be able to assume any non-zero probability, but this 

must be approximated due to the requirement for the domain to be closed and bounded. 

So, the formulation of 𝐹𝑖 in (4.12) and its domain 𝐷(�̅�(𝒄;𝜑),𝜏) have been constructed to satisfy RP 1-7. In 

Section 10.2 we prove that RP 1-3 are satisfied. The parameter 𝜏 is introduced, and the domain 𝐷(�̅�(𝒄;𝜑),𝜏) is 

such that 𝑃𝑖 ≥ 𝜏, ∀𝑖 ∈ �̅�(𝒄; 𝜑), and since the choice probabilities for all routes sum up to 1: 𝑃𝑖 ≤
(1 − (�̅� − 1)𝜏), ∀𝑖 ∈ �̅�(𝒄; 𝜑). The domain also stipulates that 0 ≤ 𝑃𝑖 ≤ (1 − �̅�𝜏) for all 𝑖 ∉ �̅�(𝒄; 𝜑). RP 4 is 

thus satisfied as 𝐷(�̅�(𝒄;𝜑),𝜏) is closed and bounded. 𝜏 is restricted to the range 0 < 𝜏 ≤
1

�̅�
 and thus RP 5 is 

satisfied as zero choice probabilities are not in the domain for the used routes, and unused routes can have 

zero probabilities. As 𝜏 → 0, 𝐹𝑖 → 𝑓𝑖 satisfying RP 6 and the lower bound for 𝑃𝑖 ∀𝑖 ∈ �̅�(𝒄; 𝜑) in 𝐷(�̅�(𝒄;𝜑),𝜏) 
tends towards zero satisfying RP 7.  

As is the case for the APSL model, the 𝜏 parameter is not a model parameter that requires estimating, it is 

simply a mathematical construct that ensures RP 1-7 are satisfied. While the modified BAPS model 

formulation provides the capability, it is not our intention for this model to purposefully compute different 

choice probabilities to those obtained from the standard formulation for any given theoretical reason. In fact, 

we desire the choice probabilities to be as close as possible, and hence we advise that only small values of 𝜏 
are used. While bounding the non-zero choice probabilities from below results in a discontinuous choice 
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probability function (since used routes cannot have probabilities between 0 and 𝜏), in practice, the range of 

computable values is naturally limited by computer precision, and hence choice probabilities are always in 

effect bounded by the smallest computable positive value. Thus, despite the known discontinuity, in 

applications we use the modified BAPS model formulation with 𝜏 set as a very small value (as small as 

feasible for computation). With the APSL model proposed in Duncan et al (2020), no difficulties are 

experienced in practical applications in their analogous approximation of the desired APSL0 model with the 

parameter 𝜏, and hence it is also expected that the approximation of the BAPS0 model with the proposed 

BAPS model here will be similarly non-problematic. For the rest of the paper, i.e. for the demonstrations and 

estimation work, we use the modified BAPS model formulation with 𝜏 = 10−16, unless stated otherwise. In 

Section 7.3.2.2 we briefly investigate the impact of the 𝜏 parameter upon parameter estimation. 

The modified BAPS model formulation approaches the APSL model in the limit as 𝜑 → ∞: 

𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)) → 𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷)) as 𝜑 → ∞ 

and, 

𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))) → 𝐺𝑖 (𝑔𝑖(𝜸

𝐴𝑃𝑆(𝑷))) as 𝜑 → ∞. 

Both the standard and modified BAPS model formulations are equivalent to the BCM for 𝛽 = 0, which is 

equivalent to the MNL model in the limit as 𝜑 → ∞. 

BAPS model solutions are guaranteed to exist and are unique under certain conditions. To prove these 

theoretical properties, we appropriately modify the proofs for existence and uniqueness provided for the APSL 

model in Duncan et al (2020). We include the proofs in Appendix D. Just as for the APSL model, values of 

𝑏 > 0 exist such that BAPS model solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏. Though there are cases 

where solutions are unique for all 𝛽 ≥ 0 (for example when there are no overlapping used routes), in most 

cases there is a maximum value for 𝑏 (𝑏𝑚𝑎𝑥). 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 is however only a sufficient 

condition for unique BAPS model solutions, 𝛽𝑚𝑎𝑥 is the true maximum value where solutions are unique for 

𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥. In Appendix E we propose a method for estimating 𝛽𝑚𝑎𝑥 (also adapted from 

that proposed for the APSL model) and demonstrate estimating the uniqueness conditions for the example 

network. In Sections 7.3.2.2.3 and 7.4.2.3 we demonstrate estimating the uniqueness conditions for the Sioux 

Falls simulation experiments and real-life large-scale network, respectively. 

 

5.2.2 Solution Method 

There are many fixed-point algorithms available for solving the BAPS model fixed-point system 𝑷 =

𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))). In the studies in this paper we utilise the simplest fixed-point algorithm available: the 

Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). The FPIM is the most basic fixed-point 

algorithm, and other algorithms aim to accelerate the convergence of the FPIM, though require more 

complicated computations at each iteration 𝑠. The FPIM for solving the BAPS model fixed-point system 𝑷 =

𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))) is formulated as follows: 

𝑃𝑖
(𝑠+1)

= 𝐹𝑖 (𝑓𝑖 (�̅�
𝐵𝐴𝑃𝑆(𝑷(𝑠)))) , 𝑠 = 0,1,2,… 

such that 

lim
𝑠→∞

𝑃𝑖
(𝑠+1) = lim

𝑠→∞
𝐹𝑖 (𝑓𝑖 (�̅�

𝐵𝐴𝑃𝑆(𝑷(𝑠)))) =𝑃𝑖
∗, 𝑷(0) ∈ 𝐷(�̅�(𝒄;𝜑),𝜏), ∀𝑖 ∈ 𝑅. 

A standard convergence statistic we chose to observe in this study is ln (∑ |𝑃𝑖
(𝑠+1) − 𝑃𝑖

(𝑠)
|𝑖∈𝑅 ), and the FPIM 

is said to have converged sufficiently to a BAPS model choice probability solution if: 

ln (∑|𝑃𝑖
(𝑠+1) − 𝑃𝑖

(𝑠)
|

𝑖∈𝑅

) < ln(10−𝜉), 

where 𝜉 is a predetermined convergence parameter. In Sections 7.3.2.2 & 7.4.1.2 we assess the computational 

performance of the BAPS model in computing choice probabilities and parameter estimation. 
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6.  Theoretical Properties 
In this section, we first demonstrate on small example networks the theoretical properties of the proposed BPS 

models and compare with results from MNL, Path Size Logit models, and the BCM. Then, we discuss how 

the proposed BPS models satisfy the desired properties established for a BPS model in Section 3.1 and 

Appendix C, and finally illustrate how the models collapse into one another. 

In demonstration 1, we demonstrate whether/how the different models deal with route overlap and 

unrealistic routes. To do this, we adapt the famous ‘loop-hole’ network (also known as the red-bus/blue-bus 

network) presented in Cascetta et al (1996), which is Fig. 4.1 minus link 1. Example network 1 in Fig. 4.1 has 

five routes: Route 1: 1 → 3, Route 2: 1 → 4, Route 3: 2 → 3, Route 4: 2 → 4, Route 5: 5. Routes 3-5 all have 

a travel cost of 1 while Routes 1&2 have a travel cost of 2.5 − 𝜌. Route 5 is distinct while Routes 1-4 are 

correlated, where the degree of correlation depends on 𝜌. As 𝜌 → 1, Routes 1&2 and Routes 3&4 become 

highly correlated, and (because links 3&4 become negligible compared to links 1&2) the network is in effect 

reduced to 3 distinct routes consisting of links 1,2,&5. On-the-other-hand, as 𝜌 → 0, link 2 becomes negligible 

compared to links 3&4 and Routes 3&4 become non-overlapping routes.  

Fig. 4.2 displays for example network 1 the route choice probabilities for the different models as 𝜌 is 

varied between 0 and 1, 𝜃 = 𝛽 = 𝜆𝐺𝑃𝑆
′
= 𝜆𝐵𝐵𝑃𝑆 = 1, 𝜑 = 2, 𝜆𝐺𝑃𝑆 = 5. As 𝜌 varies between 0 and 1, the cost 

of Routes 1&2 decreases from 2.5 to 1.5. Since the minimum costing route is 1, the cost bound is 2. 

Therefore, for 𝜌 < 0.5, Routes 1&2 should be considered unrealistic (given the bound criteria) and hence 

given zero choice probabilities and excluded from route overlap considerations. As shown for MNL and the 

BCM, because these models fail to account for any route overlap, and Routes 3-5 all have travel costs of 1 for 

all 𝜌, these routes have equal choice probabilities for all 𝜌, while the BCM gives zero probabilities to routes 

considered unrealistic and MNL does not. Routes 3-5 should, however, only have equal choice probabilities at 

𝜌 = 0 (where these routes are all non-overlapping, equal costing, and Routes 1&2 are considered unrealistic). 

As 𝜌 is increased from 0 to 0.5, the choice probabilities of Routes 3&4 should be reduced to account for the 

overlap between the two routes, and as 𝜌 is increased from 0.5 to 1, overlap with Routes 1&2 should also be 

considered as these become realistic. For PSL, while route overlap is considered, the overlap is considered in 

a non-discriminatory manner between realistic and unrealistic routes, and therefore Routes 3&4 are penalised 

for overlapping with Routes 1&2 for 𝜌 < 0.5. GPSL, GPSL′, and APSL all improve upon this shortcoming of 

PSL by reducing the penalisation incurred upon Routes 3&4 from Routes 1&2 for 𝜌 < 0.5. All routes are 

given non-zero choice probabilities and path size contributions however, and therefore the effects of the 

unrealistic routes are not fully dealt with. As the plots for the BBPS & BAPS models show, Routes 1&2 

receive zero choice probabilities for 𝜌 < 0.5, and Routes 3&4 are not penalised for overlapping with Routes 

1&2. For 𝜌 > 0.5, Routes 1&2 receive non-zero choice probabilities and Routes 3&4 are penalised for 

overlapping with Routes 1&2. 

 

Fig. 4.1. Example network 1. 
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Fig. 4.2. Example network 1: Route choice probabilities for different models as 𝜌 is varied (𝜃 = 𝛽 = 𝜆𝐺𝑃𝑆
′
= 𝜆𝐵𝐵𝑃𝑆 = 1, 𝜑 = 2, 

𝜆𝐺𝑃𝑆 = 5). 

 

In demonstration 2, we demonstrate how the BPS models are able to overcome a drawback typically 

experienced by correction terms models on the Switching Route Network in Prashker & Bekhor (2004). 

Example network 2 in Fig. 4.3 (the Switching Route Network) has four routes: Route 1: 1 → 2. Route 2: 5 →
6. Route 3: 1 → 3 → 6. Route 4: 5 → 4 → 2. Routes 1-3 all have travel cost equal to 10 (for all 𝜂), while 

Route 4 has travel cost equal 4𝜂-10. To ensure non-negative link costs, 𝜂 must be between 5 and 10. For 𝜂 =
5, Route 4 has equal travel cost to the other routes, and as 𝜂 increases from 5, Route 4 increases in cost and 

consequently becomes less attractive compared to the other routes. 

There are expected behaviours from the choice probabilities as 𝜂 is varied between 5 and 10, where the 

probability of Route 3 is typically observed. For 𝜂 = 5, the middle links collapse to zero and the network is in 

effect reduced to four identical routes. Probability for each of these routes should therefore equal 
1

4
 at 𝜂 = 5. 

As 𝜂 increases, Route 4 becomes less attractive and the other routes should increase in choice probability. The 

proposition is that at some point as 𝜂 is increased, Route 4 should be defined as unrealistic and beyond this 

point should not impact upon the probabilities of the other routes. Presuming Route 4 is defined as unrealistic 

before 𝜂 = 10, when 𝜂 reaches 10, links 1&6 collapse to zero and the network is in effect reduced to just three 

identical distinct routes (excluding the unrealistic route). As such, at 𝜂 = 10, Route 3 (along with Routes 

1&2) should have probability equal to 
1

3
. Here, we suppose that a route is defined as unrealistic if it has a 

travel cost greater than or equal to twice the minimum cost route (a bound of 𝜑 = 2). This means that at and 

beyond 𝜂 = 7.5 (where Route 4’s travel cost equals 20), Route 4 should be defined as unrealistic and its 

impact removed. 

Fig. 4.4A-B displays for example network 2 the Route 3 choice probabilities from the different models as 

𝜂 is varied between 5 and 10, where the parameters for Fig. 4.4A and Fig. 4.4B are 𝜃 = 𝜆𝐺𝑃𝑆
′
= 𝜆𝐵𝐵𝑃𝑆 = 𝛽 =

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

Route 5 + 



Chapter 4. A bounded path size route choice model excluding unrealistic routes: Formulation and 

estimation from a large-scale GPS study 

136 

 

0.5, 𝜑 = 2, 𝜆𝐺𝑃𝑆 = 10 and 𝜃 = 𝜆𝐺𝑃𝑆
′
= 𝜆𝐵𝐵𝑃𝑆 = 0.1, 𝛽 = 0.8, 𝜑 = 2, 𝜆𝐺𝑃𝑆 = 1, respectively. Considering 

first Fig. 4.4A, as shown, for PSL, since the path size terms suppose all routes contribute equally whether 

realistic or unrealistic, Route 4 contributes to Routes 1&2 for all 𝜂 and the PSL probability for Route 3 goes 

above 
1

3
. For 𝜂 ≥ 7.5, however, where Route 4 should be defined as unrealistic, Route 4 should not contribute 

to Routes 1&2. For MNL & the BCM, Routes 1-3 receive the same probability for all 𝜂 as they are equal 

costing and correlation is not considered. For 𝜂 ≥ 7.5, the BCM gives the unrealistic Route 4 zero probability 

(and Route 3 thus 
1

3
 probability). MNL gives a non-zero probability, but with the 𝜃 parameter set, these 

probabilities are small and the BCM is approximated. With the GPSL, GPSL′, APSL, BBPS, & BAPS 

models, overlap correlations between Routes 1-3 are captured, where Route 3 is penalised for overlapping 

with both Routes 1&2, but because the path size contributions are weighted, the contribution of Route 4 to 

Routes 1&2 is either reduced (for GPSL, GPSL′, APSL) or eliminated (for BBPS & BAPS) for 𝜂 ≥ 7.5. For 

the parameters set, GPSL′ approximates the BBPS model and APSL approximates the BAPS model, where 

the contributions are weighted sufficiently for GPSL, GPSL′, & APSL such that the probability for Route 3 

does not exceed 
1

3
.  

For the parameters set in Fig. 4.4B, however, the contributions are not weighted sufficiently for GPSL, 

GPSL′, & APSL, and the probabilities for Route 3 exceed 
1

3
. For BBPS & BAPS, with 𝜑 = 2, the contribution 

of Route 4 to Routes 1&2 will be eliminated for 𝜂 ≥ 7.5 (rather than reduced) for all settings of the 𝜃 and 𝛽 

parameters. 𝛽 allows for route correlations to be captured (differentiating the BPS models from the BCM), 

while the 𝜃 parameter scales sensitivity to travel cost. 

 

Fig. 4.3. Example network 2 (the Switching Route Network). 
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Fig. 4.4. Example network 2: Choice probability of Route 3 for the different models. A: 𝜃 = 𝜆𝐺𝑃𝑆
′
= 𝜆𝐵𝐵𝑃𝑆 = 𝛽 = 0.5, 𝜑 = 2, 

𝜆𝐺𝑃𝑆 = 10. B: 𝜃 = 𝜆𝐺𝑃𝑆
′
= 𝜆𝐵𝐵𝑃𝑆 = 0.1, 𝛽 = 0.8, 𝜑 = 2, 𝜆𝐺𝑃𝑆 = 1. 

 

In demonstration 3, we demonstrate how the parameters of the BAPS model impact upon the route choice 

probabilities. Example network 5 in Fig. 4.5A has seven routes: Route 1: 1, Route 2: 2, Route 3: 3, Route 4: 

4 → 5, Route 5: 4 → 6, Route 6: 7 → 8, Route 7: 7 → 9. Routes 1&7 have travel cost 2, Routes 2&6 have 

travel cost 1.5, and Routes 3-5 have travel cost 1. Routes 1-3 are distinct routes, while Routes 4&5 and Routes 

6&7 are correlated. The minimum costing routes are Routes 3-5 costing 1. For different ranges of the bound 

parameter 𝜑, the active choice set of realistic routes varies, and the network can in effect be reduced as 

A 

B 
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follows: for 𝜑 > 2 the full network in Fig. 4.5A of all 7 seven routes; for 1.5 < 𝜑 ≤ 2 the reduced network in 

Fig. 4.5B excluding Routes 1&7; and, for 1 < 𝜑 ≤ 1.5 the reduced network in Fig. 4.5C excluding Routes 

1&7 and Routes 2&6.  

Fig. 4.6A-E display, for different settings of the 𝜃 and 𝛽 parameters, how the BAPS model choice 

probabilities vary as 𝜑 is varied between 1 and 3. Considering first Fig. 4.6C where 𝜃 = 𝛽 = 1, as shown, for 

𝜑 = 3, all routes have costs below the bound and thus all have non-zero choice probabilities, (here the APSL 

probabilities are approximated). As 𝜑 is decreased to 2, the costs of Routes 1&7 approach the bound, and their 

choice probabilities thus tend towards zero. Moreover, as Route 7 tends towards zero probability, its path size 

contribution to Route 6 tends to zero, and thus when 𝜑 = 2 and Route 7 receives zero probability / its 

contribution to Route 6 is eliminated, the probabilities remain smooth and continuous.  

For 𝜑 > 2, despite having the same travel cost, Route 6 has a lower probability than Route 2 as Route 6 is 

penalised for overlapping with Route 7, while Route 2 is distinct. For 1.5 < 𝜑 ≤ 2, however, Route 6 is not 

penalised for overlapping with the unrealistic Route 7, and thus Routes 2&6 have the same probability. As 𝜑 

is decreased to 1.5, Routes 2&6 approach the cost bound and zero probability.  

For 1 < 𝜑 ≤ 1.5, only the minimum costing Routes 3-5 are within the cost bound are thus receive non-

zero probabilities. Routes 4&5 have a lower probability than Route 3 since Routes 4&5 are penalised for 

overlapping.  

Now, considering Fig. 4.5A-C where 𝛽 equals 0, 0.5, and 1, respectively, the effect of the 𝛽 parameter 

(and thus path size correction) upon route choice can be seen. In Fig. 4.5A where 𝛽 = 0, the BCM 

probabilities are displayed. As can be seen, Routes 1&7, Routes 2&6, and Routes 3-5 have equal probabilities 

for all 𝜑 since these routes have equal costs and route correlation is not considered. Routes 4&5 and Routes 

6&7 should be penalised (when considered realistic), however, as they overlap. As Fig. 4.5B-C show for 𝛽 =
0.5 and 𝛽 = 1, respectively, the BAPS model probabilities penalises overlapping routes (when they are 

considered realistic), while the penalisation is more significant for greater values of 𝛽. 

Now, considering Fig. 4.5C-E where 𝜃 equals 1, 0.1, and 2, respectively, the effect of the 𝜃 parameter 

upon route choice can be seen. Lower 𝜃 values dampen the travel cost differences for routes within the active 

choice set, and routes with different costs have closer probabilities. Larger 𝜃 values accentuate the travel cost 

differences so that the higher costing routes receive lower probabilities. Decreasing probabilities with greater 

𝜃 values also results in the path size contributions for those routes being reduced, which is why the 

probabilities between routes with the same cost have closer probabilities for larger 𝜃. 

 

A 
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Fig. 4.5. Example network 3. A: Full network (for 𝜑 > 2). B: Reduced network (for 1.5 < 𝜑 ≤ 2). C: Reduced network (for 1 < 𝜑 ≤
1.5). 

  

 

B C 

A B 

C 
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Fig. 4.6. Example network 3: BAPS model choice probabilities as the bound parameter 𝜑 is varied. A: 𝜃 = 1, 𝛽 = 0. B: 𝜃 = 1, 𝛽 =
0.5. C: 𝜃 = 𝛽 = 1. D: 𝜃 = 0.1, 𝛽 = 1. E: 𝜃 = 2, 𝛽 = 1. 

 

Table 4.1 summarises whether the BBPS, BAPS0, & BAPS models satisfy the established desired properties 

for a BPS model. We briefly discuss the results below, see Appendix E for a detailed discussion and 

demonstrations.  

Since the BBPS, BAPS0, & BAPS models all adopt the proposed BPS model form as derived in Section 

3, DP1 & DP2 are automatically satisfied as the form has a consistent definition for unrealistic routes (which 

is whether the cost bound is violated) and ensures all functions are defined.  

The BBPS model is not internally consistent since route distinctiveness is not considered within the path 

size contribution factors, while the BAPS0 & BAPS model contribution factors consider choice probability 

and the models are thus internally consistent. The BAPS0 & BAPS models thus satisfy DP3 while the BBPS 

model does not. 

The BBPS model satisfies DP4 since the BBPS model has a closed-form probability relation guaranteeing 

solution uniqueness. As discussed in Section 5.1, the BAPS0 model is not in the correct form for standard 

proofs of solution existence and uniqueness to apply. That is not to say that in all cases solutions are not 

guaranteed to exist or are not unique, or that it is not the case that solutions do not always exist or there are not 

always conditions under which solutions are unique. Thus, generally, the BAPS0 model does not satisfy DP4, 

but this is not necessarily always the case, and is neither proven nor disproven. As proven in Section 10.2, 

BAPS model solutions are guaranteed to exist and uniqueness conditions can be established, thus satisfying 

DP4.  

The BBPS & BAPS0 model path size contribution weightings tend towards zero as route costs approach 

the bound from below, and when a route cost reaches the bound exactly, that route receives a zero choice 

probability / path size contribution. The BBPS & BAPS0 models thus have continuous choice probability 

functions and hence satisfy DP5. BAPS0 model solutions are not necessarily guaranteed to exist, however, 

which puts a caveat on whether this is true. The BAPS model does not have a continuous probability function 

since no route can have a choice probability between 0 and 𝜏, and hence DP5 is not satisfied. The caveat 

however is that continuity of the BAPS model can be approximated with small values of 𝜏 (the perturbation 

parameter) such that discontinuity is not an issue in practice.  

In conclusion, the benefit of the BBPS model is that solutions are guaranteed to exist and be unique and 

continuity is guaranteed, while the negative is internal inconsistency. The BAPS0 & BAPS models achieve 

internal consistency, but the drawbacks are that BAPS0 model solutions are not guaranteed to exist or be 

unique and the BAPS model choice probability function is not continuous, though both of these drawbacks are 

not issues in practice. Due to its greater theoretical appeal, and since its lack of discontinuity is not an issue in 

practice, our recommended is that the BAPS model is used were it is computationally feasible to do so. The 

BBPS model offers a more computationally practical alternative. 

 

 

 

D E 
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Desired Property (DP) BBPS BAPS0 BAPS 

DP1 – Consistent 

Definitions of 

Unrealistic Routes 

Yes Yes Yes 

DP2 – Well-Defined 

Functions 

Yes Yes Yes 

DP3 – Internal 

Consistency 

No Yes Yes 

DP4 – Uniqueness Yes Neither proven nor 

disproven 

Yes 

DP5 – Continuity Yes Yes, if solutions exist 

(neither proven nor 

disproven) 

Yes, in the limit as the 

‘perturbation parameter’ 

𝜏 tends to zero 

Table 4.1. Summary of how the BBPS, BAPS0, & BAPS models satisfy the established desired properties for a BPS model. 

 

Fig. 4.7 displays a schematic diagram of how the models in this paper collapse into one another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.7. Schematic diagram of how the models collapse into one another. 

7.  Estimating BPS Models 
In this section, we provide a Maximum Likelihood Estimation (MLE) procedure for estimating the BBPS & 

BAPS models with tracked route observations. This procedure is then investigated in simulation studies, and 

the possibility of reproducing assumed true parameter estimates is assessed. The BBPS & BAPS models are 

then estimated on a large-scale network using real route choice observation data tracked with GPS units, and 

results are compared with MNL, Path Size Logit models, and the BCM. As discussed in the Section 5.2.1, in 

applications, we propose that the modified BAPS model formulation, defined in (4.12)-(4.14) is used, with the 

𝜏 parameter set as a very small value. 

 

7.1 Notation and Definitions for Estimation with Multiple OD Movements 

7.1.1 Notation 

To consider the estimation of the BBPS & BAPS models as well as other models, we extend definitions here 

for estimation on a network with multiple OD movements, but where the travel costs remain fixed. The road 

network consists of link set 𝐴 and 𝑚 = 1,… ,𝑀 OD movements. 𝑅𝑚 is the choice set of all simple routes (no 

cycles) for OD movement 𝑚 of size 𝑁𝑚 = |𝑅𝑚|, and 𝐴𝑚,𝑖 ⊆ 𝐴 is the set of links belonging to route 𝑖 ∈ 𝑅𝑚, 

and 𝛿𝑎,𝑚,𝑖 = {
1     𝑖𝑓 𝑎 ∈ 𝐴𝑚,𝑖
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

. Suppose that the generalised travel cost 𝑡𝑎 of each link 𝑎 ∈ 𝐴 is a weighted 

MNL 

PSL 

GPSL 

GPSL′ 

BCM 

APSL 

BAPS 

BBPS 
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sum (by parameter vector 𝜶) of variables 𝒘𝑎, i.e. 𝑡𝑎(𝒘𝑎; 𝜶), and that the generalised travel cost for route 𝑖 ∈

𝑅𝑚, 𝑐𝑚,𝑖, can be attained through summing up the total cost of its links so that 𝑐𝑚,𝑖(𝒕(𝒘;𝜶)) =
∑ 𝑡𝑎(𝒘𝑎; 𝜶)𝑎∈𝐴𝑚,𝑖 , where 𝒕 is the vector of all link travel costs and 𝒘 is the vector of all link variables. Let the 

route choice probability for route 𝑖 ∈ 𝑅𝑚 be 𝑃𝑚,𝑖, where 𝑷𝑚 = (𝑃𝑚,1, 𝑃𝑚,2, … , 𝑃𝑚,𝑁𝑚) is the vector of route 

choice probabilities for OD movement 𝑚, and 𝐷𝑚 is the domain of possible route choice probability vectors 

for OD movement 𝑚, 𝑚 = 1,… ,𝑀. 

 

7.1.2 Model Definitions 

For multiple OD movement definitions of the MNL, PSL, GPSL, GPSL′, and APSL models for parameter 

estimation, see Section 5.1.2 in Duncan et al (2020). For the APSL model, the 𝜏𝑚 parameters are also set here 

as 𝜏𝑚 = 10−16, 𝑚 = 1,… ,𝑀, and APSL choice probability solutions are computed using the FPIM with initial 

conditions set as the MNL route choice probabilities, and convergence statistic set at 𝜉 = 10 (see Section 3.4 

in Duncan et al (2020)).  

We provide here multiple OD movement definitions of the BCM, and the BBPS & BAPS models for 

parameter estimation. 

 

7.1.2.1 Bounded Choice Model 

The BCM choice probability relation for route 𝑖 ∈ 𝑅𝑚: 

 𝑃𝑚,𝑖(𝒕) =
(exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))) − 1)

+

∑ (exp (−𝜃(𝑐𝑚,𝑗(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))) − 1)
+

𝑗∈𝑅𝑚

. (4.15) 

 

7.1.2.2 Bounded Bounded Path Size Model 

Let �̅�𝑚(𝒄𝑚(𝒕); 𝜑) ⊆ 𝑅𝑚 be the restricted choice set (with size �̅�𝑚) of all routes 𝑖 ∈ 𝑅𝑚 where 𝑐𝑚,𝑖(𝒕) <

𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚) for OD movement 𝑚. The BBPS choice probability relation for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑃𝑚,𝑖(𝒕) =

{
 
 

 
 (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑖

𝐵𝐵𝑃𝑆(𝒕))
𝛽

∑ (ℎ𝑚,𝑗(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑗
𝐵𝐵𝑃𝑆(𝒕))

𝛽

𝑗∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)

    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑)

                                              0                                                  𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑)

, (4.16) 

where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))), and the path size term for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) is: 

 �̅�𝑚,𝑖
𝐵𝐵𝑃𝑆(𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

(ℎ𝑚,𝑖(−𝜆𝒄𝑚(𝒕)) − 1)

∑ (ℎ𝑚,𝑘(−𝜆𝒄𝑚(𝒕)) − 1)𝛿𝑎,𝑚,𝑘𝑘∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)𝑎∈𝐴𝑚,𝑖

. (4.17) 

 

7.1.2.3 Bounded Adaptive Path Size Model 

Let �̅�𝑚(𝒄𝑚(𝒕); 𝜑) ⊆ 𝑅𝑚 be the restricted choice set (with size �̅�𝑚) of all routes 𝑖 ∈ 𝑅𝑚 where 𝑐𝑚,𝑖(𝒕) <

𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚) for OD movement 𝑚. The BAPS model route choice probabilities for OD movement 

𝑚, 𝑷𝑚
∗ (𝒕), are a solution to the fixed-point problem 𝑷𝑚 = 𝑭𝑚 (𝒇𝑚(𝒄𝑚(𝒕), �̅�𝑚

𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))), given the link 

cost vector 𝒕, where 𝐹𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 

 

𝐹𝑚,𝑖 (𝑓𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))) 

= {
𝜏𝑚 + (1 − �̅�𝑚𝜏𝑚) ∙ 𝑓𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚

𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑)

                                      0                                                  𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑)
, 

(4.18) 

𝑓𝑚,𝑖 for route 𝑖 ∈ 𝑅𝑚 is: 
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𝑓𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚)) 

= 

{
 
 

 
 (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑖

𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))
𝛽

∑ (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑗
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))

𝛽

𝑗∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)

    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑)

                                           0                                                             𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑)

, 
(4.19) 

where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))), and the path size term for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) is: 

 

�̅�𝑚,𝑖
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚) = 

∑
𝑡𝑎

𝑐𝑚,𝑖(𝒕)

𝑃𝑚,𝑖
∑ 𝑃𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)𝑎∈𝐴𝑚,𝑖

, ∀𝑷𝑚 ∈ 𝐷𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑)), 

(4.20) 

𝐷𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚)

= {𝑷𝑚 ∈ ℝ≥0
𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (�̅�𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑), 𝑎𝑛𝑑, 0 ≤ 𝑃𝑚,𝑖

≤ (1 − �̅�𝑚𝜏𝑚), ∀𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑),∑ 𝑃𝑚,𝑗
𝑁𝑚

𝑗=1
= 1}, 

The model parameters are 𝜃 > 0, 𝛽 ≥ 0, 𝜑 > 1, and 0 < 𝜏𝑚 ≤
1

�̅�𝑚
, 𝑚 = 1,… ,𝑀. Each OD movement has its 

own range restrictions for 𝜏𝑚 based on the number of routes in the active choice set, but the 𝜏𝑚 parameters are 

not model parameters that require estimating, and we set 𝜏𝑚 = 10−16, 𝑚 = 1,… ,𝑀. BAPS model choice 

probability solutions are computed using the FPIM with initial conditions set as the BCM route choice 

probabilities, and convergence statistic set at 𝜉 = 10 (see Section 5.2.2), unless stated otherwise. 

 

7.2 Likelihood Formulations, Existence/Uniqueness, & Estimation Procedure 

7.2.1 Likelihood Formulations 

Suppose that we have available a set of 𝑍 observed routes, e.g. collected through GPS units or smart phones, 

and consider a situation where it is not needed to distinguish individuals in their preferences (the approach is, 

of course, readily generalised to permit multiple user classes differing in their parameters). Let 𝑚𝑧 denote the 

OD movement of route observation 𝑧, and for each trip observation 𝑧 = 1,2,… , 𝑍, let 𝑅𝑚𝑧
 be the choice set of 

all simple routes between the origin and destination of the trip. Suppose that the observation data is contained 

in a vector 𝒙 of size 𝑍 where: 

𝑥𝑧 = 𝑖     if alternative 𝑖 ∈ 𝑅𝑚𝑧
 is chosen, 𝑧 = 1,… , 𝑍. 

The BBPS model Likelihood, 𝐿𝐵𝐵𝑃𝑆, for a sample of size 𝑍 is: 

 𝐿𝐵𝐵𝑃𝑆(𝜶, 𝜃, 𝛽, 𝜑, 𝜆|𝒙) =∏𝑃𝑚𝑧,𝑥𝑧
(𝒕(𝒘;𝜶); 𝜃, 𝛽, 𝜑, 𝜆)

𝑍

𝑧=1

, (4.21) 

where 𝑃𝑚𝑧,𝑥𝑧
(𝒕) is the BBPS model choice probability function given by (4.16) for route 𝑥𝑧 ∈ 𝑅𝑚𝑧

. 

The BAPS model Likelihood, 𝐿𝐵𝐴𝑃𝑆, for a sample of size 𝑍 is: 

 𝐿𝐵𝐴𝑃𝑆(𝜶, 𝜃, 𝛽, 𝜑|𝒙) =∏𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶); 𝜃, 𝛽, 𝜑)

𝑍

𝑧=1

, (4.22) 

where 𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕) is the BAPS model choice probability solution for route 𝑥𝑧 ∈ 𝑅𝑚𝑧

 to the fixed-point problem 

𝑷𝑚𝑧
= 𝑭𝑚𝑧

(𝒇𝑚𝑧
(𝒄𝑚𝑧

(𝒕), �̅�𝑚𝑧
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧

))) for OD movement 𝑚𝑧, given the link cost vector 𝒕, where 𝐹𝑚,𝑖 

and 𝑓𝑚,𝑖 are as in (4.18) and (4.19), respectively, for route 𝑖 ∈ 𝑅𝑚, and �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆 is as in (4.20) for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑).  
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If for a given setting of the travel cost and bound parameters �̃� and �̃�, there is an observation 𝑧 such that 

𝑐𝑚𝑧,𝑥𝑧(𝒕(𝒘; �̃�)) ≥ �̃�min(𝑐𝑚𝑧,𝑙(𝒕(𝒘; �̃�)): 𝑙 ∈ 𝑅𝑚𝑧
), the BBPS & BAPS model Likelihood values are zero. 

This means that the maximum likelihood estimates (�̂�, 𝜃, �̂�, �̂�, �̂�) for the BBPS model and (�̂�, 𝜃, �̂�, �̂�) for the 

BAPS model will always be such that 𝑐𝑚𝑧,𝑥𝑧(𝒕(𝒘; �̂�)) < �̂�min(𝑐𝑚𝑧,𝑙(𝒕(𝒘; �̂�)): 𝑙 ∈ 𝑅𝑚𝑧
) for 𝑧 = 1,… , 𝑍.  

The BBPS model Log-Likelihood function, 𝐿𝐿𝐵𝐵𝑃𝑆, to be maximised is: 

 

𝐿𝐵𝐵𝑃𝑆(𝜶, 𝜃, 𝛽, 𝜑, 𝜆|𝒙) 

= ln(∏𝑃𝑚𝑧,𝑥𝑧
(𝒕(𝒘;𝜶); 𝜃, 𝛽, 𝜑, 𝜆)

𝑍

𝑧=1

) =∑ln(𝑃𝑚𝑧,𝑥𝑧
(𝒕(𝒘;𝜶); 𝜃, 𝛽, 𝜑, 𝜆))

𝑍

𝑧=1

, 
(4.23) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑐𝑚𝑧,𝑥𝑧(𝒕(𝒘;𝜶)) < 𝜑min(𝑐𝑚𝑧,𝑙(𝒕(𝒘;𝜶)): 𝑙 ∈ 𝑅𝑚𝑧
) , 𝑧 = 1,… , 𝑍, 

where 𝑃𝑚𝑧,𝑥𝑧
(𝒕) is the BBPS model choice probability relation in (4.16) for route 𝑥𝑧 ∈ 𝑅𝑚𝑧

. 

The BAPS model Log-Likelihood function, 𝐿𝐿𝐵𝐴𝑃𝑆, to be maximised is: 

 

𝐿𝐿𝐵𝐴𝑃𝑆(𝜶, 𝜃, 𝛽, 𝜑|𝒙) 

= ln(∏𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶); 𝜃, 𝛽, 𝜑)

𝑍

𝑧=1

) =∑ln(𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕(𝒘;𝜶); 𝜃, 𝛽, 𝜑))

𝑍

𝑧=1

, 
(4.24) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑐𝑚𝑧,𝑥𝑧(𝒕(𝒘;𝜶)) < 𝜑min(𝑐𝑚𝑧,𝑙(𝒕(𝒘;𝜶)): 𝑙 ∈ 𝑅𝑚𝑧
) , 𝑧 = 1,… , 𝑍, 

where 𝑃𝑚𝑧,𝑥𝑧
∗ (𝒕) is the BAPS model choice probability solution for route 𝑥𝑧 ∈ 𝑅𝑚𝑧

 to the fixed-point problem 

𝑷𝑚𝑧
= 𝑭𝑚𝑧

(𝒇𝑚𝑧
(𝒄𝑚𝑧

(𝒕), �̅�𝑚𝑧
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧

))) for OD movement 𝑚𝑧, given the link cost vector 𝒕.  

 

7.2.2 Existence & Uniqueness of Solutions 

The typical sufficient conditions for the existence of Maximum Likelihood Estimation (MLE) solutions are 

that: a) the parameter space is compact (closed and bounded), and b) the Likelihood function is a continuous 

function.  

Consider first the BBPS model. Since the BBPS probability function in (4.16)-(4.17) is a continuous 

closed-form function, the BBPS Likelihood function in (4.21) is in turn also continuous. The range restrictions 

for the model parameters are 𝜃 > 0, 𝛽 ≥ 0, 𝜑 > 1, 𝜆 > 0, and the travel cost parameters 𝜶 may have e.g. 

positive, negative, or no restrictions. Define Ω𝐵𝐵𝑃𝑆 as the parameter space obtained from these range 

restrictions. Ω𝐵𝐵𝑃𝑆 is not a compact set and thus for this general parameter space the typical sufficient 

conditions do not apply. This is the same for estimating MNL, PSL, etc. In practice however it is 

commonplace to enforce some sensible bounds upon the parameter ranges. Define then Ω𝐵𝐵𝑃𝑆
′ ⊆ Ω𝐵𝐵𝑃𝑆 as a 

closed-bounded parameter subspace of Ω𝐵𝐵𝑃𝑆. For any Ω𝐵𝐵𝑃𝑆
′ , since the BBPS Likelihood function is 

continuous, the typical sufficient conditions can be applied, and solutions are guaranteed to exist.  

The BBPS Likelihood function in (4.21) can be rewritten as follows: 

 

𝐿𝐵𝐵𝑃𝑆(𝜶, 𝜃, 𝛽, 𝜑, 𝜆|𝒙) 

=∏
0                                                𝑖𝑓 𝑐𝑚𝑧,𝑥𝑧(𝒕(𝒘; 𝜶)) ≥ 𝜑min(𝑐𝑚𝑧,𝑙(𝒕(𝒘; 𝜶)): 𝑙 ∈ 𝑅𝑚𝑧

)  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧

𝑃𝑚𝑧,𝑥𝑧
(𝒕(𝒘; 𝜶); 𝜃, 𝛽, 𝜑, 𝜆)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                               

𝑍

𝑧=1

. 
(4.25) 

For a closed-bounded parameter space Ω𝐵𝐵𝑃𝑆
′ ⊆ Ω𝐵𝐵𝑃𝑆, there are three scenarios:  

i) For all (�̃�, �̃�, �̃�, �̃�, �̃�) ∈ Ω𝐵𝐵𝑃𝑆
′  the observed routes have travel costs greater than the bound and the 

Likelihood 𝐿𝐵𝐵𝑃𝑆 is zero. 

ii) For some (�̃�, �̃�, �̃�, �̃�, �̃�) ∈ Ω𝐵𝐵𝑃𝑆
′  the observed routes have travel costs greater than the bound and the 

Likelihood 𝐿𝐵𝐵𝑃𝑆 is zero. 

iii) For no (�̃�, �̃�, �̃�, �̃�, �̃�) ∈ Ω𝐵𝐵𝑃𝑆
′  the observed routes have travel costs greater than the bound and the 

Likelihood 𝐿𝐵𝐵𝑃𝑆 is zero. 
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Obviously, parameter spaces resulting in i) are not suitable; however, i) occurs only when the upper limit for 

the bound parameter �̃� is set too low. For any closed-bounded range for the travel cost parameters �̃�, upper 

limits for �̃� will exist such that Ω𝐵𝐵𝑃𝑆
′  is either ii) or iii) (since it is always possible to expand the bound 𝜑 to 

include at least one observed route). Suppose then that the upper limit for �̃� is set suitably high to avoid i), 

and we now have case ii). Define Ω̅𝐵𝐵𝑃𝑆
′  as the parameter subspace of Ω𝐵𝐵𝑃𝑆

′  where no observed routes have 

travel costs greater than the bound. Since if a MLE solution is to exist, it will exist within the parameter 

subspace Ω̅𝐵𝐵𝑃𝑆
′ , and solutions are guaranteed to exist, solutions are guaranteed to exist in Ω̅𝐵𝐵𝑃𝑆

′ . For case 

iii), Ω̅𝐵𝐵𝑃𝑆
′ = Ω𝐵𝐵𝑃𝑆

′  and MLE solutions will exist and can exist in the whole closed-bounded parameter 

subspace. 

For the BAPS model, the BAPS probability function in (4.18)-(4.20) is not technically continuous, and 

thus the BAPS Likelihood function in (4.22) is not continuous. Existence of MLE solutions thus cannot be 

guaranteed for the BAPS model. Nevertheless, as discussed in Sections 5.2&6, continuity of the BAPS 

probability function is not an issue in practice, since continuity can be approximated to arbitrary precision 

with the 𝜏 parameter. It is therefore believed that the BAPS Log-Likelihood function can also be continuous in 

practice, and indeed this appeared to be the case in our numerical experiments. When MLE solutions exist, 

they will exist in Ω̅𝐵𝐴𝑃𝑆
′  if case ii) above or in Ω̅𝐵𝐴𝑃𝑆

′ = Ω𝐵𝐴𝑃𝑆
′  if case iii) above. 

The typical sufficient conditions for the uniqueness of MLE solutions are that, given an MLE solution 

exists: a) the parameter space is convex, and b) the Likelihood function is a concave function. The issue here 

for the BPS models, is that the probability functions are not guaranteed to be monotonic functions, and thus 

the Likelihood function is not guaranteed to be concave. This is not to say however that MLE solutions for the 

BPS models cannot be unique, since these are only sufficient conditions, and no issues with uniqueness were 

experienced in the experiments in this paper. 

 

7.2.3 Estimation Procedure 

Standard MLE procedures can be used to estimate the parameters of the BBPS & BAPS models for a given 

network. Using a standard iterative estimation procedure, BBPS & BAPS model parameters can be found that 

maximise the Log-Likelihood functions as formulated in (4.23) and (4.24) above for a given set of data. 

Duncan et al (2020) outline algorithm pseudo-code for a tracked route observation data estimation procedure 

for the APSL model. Using a similar approach, Algorithm 4.1 below outlines pseudo-code for the BBPS & 

BAPS model estimation procedure.  

Maximising Log-Likelihood for the BPS models is complicated by the constraints that require all chosen 

routes to have costs less than the cost bound, otherwise the Log-Likelihood functions are undefined. It is 

possible to pre-determine the parameter space Ω̅′ for MLE (where there Log-Likelihood will always be 

defined), by identifying (for a given closed-bounded range for the cost parameters) the lower limit for the 

bound parameter 𝜑 before it is possible for any chosen route to violate the cost bound. Or, one can incorporate 

corresponding constraints for the optimisation algorithm, like those in (4.23) and (4.24) but adjusted to 

include equivalence. However, since identifying the existence parameter space / incorporating the 

corresponding constraints is not always straightforward, we detail in Algorithm 4.1 and adopt in our 

experiments an easier to implement approach. 

 

Step 1: Initialisation. For each route observation 𝑧 = 1,… , 𝑍, generate the corresponding universal choice set 

and store the link attributes and link-route information. Define an initial set of parameter values 

(�̃�(1), �̃�(1), �̃�(1), �̃�(1), �̃�(1)) for the BBPS model or (�̃�(1), �̃�(1), �̃�(1), �̃�(1)) for the BAPS model for MLE, and 

set 𝑛 = 1. 

Step 2: Bound violation check. Given the travel cost parameters �̃�(𝑛) for iteration 𝑛, calculate the link costs 

𝒕(𝒘; �̃�(𝑛)) and consequently the route costs 𝒄𝑚𝑧
(𝒕(𝒘; �̃�(𝑛))), 𝑧 = 1,… , 𝑍, for iteration 𝑛. Given the route 

costs, and the bound parameter value �̃�(𝑛) for iteration 𝑛, check whether 𝑐𝑚𝑧,𝑥𝑧 (𝒕(𝒘; �̃�
(𝑛))) ≥

�̃�(𝑛)min(𝑐𝑚𝑧,𝑙 (𝒕(𝒘; �̃�
(𝑛))) : 𝑙 ∈ 𝑅𝑚𝑧

) for any 𝑧. If so, set the Log-Likelihood value 𝐿𝐿𝐵𝐵𝑃𝑆
(𝑛)

 or 𝐿𝐿𝐵𝐴𝑃𝑆
(𝑛)

 for 

iteration 𝑛 as an appropriate large and negative value (since ln(0) is undefined), and skip to Step 4. 

Otherwise, continue to Step 3. 
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Step 3: Recalculate choice probabilities and LL.  

 BBPS Model: Given the set of parameter values (�̃�(𝑛), �̃�(𝑛), �̃�(𝑛), �̃�(𝑛), �̃�(𝑛)) and the link and route 

costs for iteration 𝑛, compute the BBPS model choice probabilities 𝑃𝑚𝑧,𝑥𝑧 according to (4.16) and (4.17) 

above for 𝑧 = 1,… , 𝑍. Given these probabilities, calculate the BBPS model Log-Likelihood 

𝐿𝐿𝐵𝐵𝑃𝑆
(𝑛)

(�̃�(𝑛), �̃�(𝑛), �̃�(𝑛), �̃�(𝑛), �̃�(1)|𝒙) for iteration 𝑛. 

BAPS Model: Given the set of parameter values (�̃�(𝑛), �̃�(𝑛), �̃�(𝑛), �̃�(𝑛)) and the link and route costs 

for iteration 𝑛, solve each of the fixed-point problems 

𝑷𝑚𝑧
= 𝒇𝑚𝑧

(𝒄𝑚𝑧
(𝒕(𝒘; �̃�(𝑛))) , �̅�𝑚𝑧

𝐵𝐴𝑃𝑆(𝒕(𝒘; �̃�(𝑛)), 𝑷𝑚𝑧
); �̃�(𝑛), �̃�(𝑛), �̃�(𝑛)) 

for 𝑧 = 1,… , 𝑍. Given the fixed-point choice probability solutions 𝑃𝑚𝑧,𝑥𝑧
∗  for each of the route observations 

𝑧 = 1,… , 𝑍, calculate the BAPS model Log-Likelihood 𝐿𝐿𝐵𝐴𝑃𝑆
(𝑛)

(�̃�(𝑛), �̃�(𝑛), �̃�(𝑛), �̃�(𝑛)|𝒙) for iteration 𝑛. 

Step 4: Compute new set of parameters.  

BBPS Model: Based on 𝐿𝐿𝐵𝐵𝑃𝑆
(𝑠)

 and the associated parameters (�̃�(𝑠), �̃�(𝑠), �̃�(𝑠), �̃�(𝑠), �̃�(𝑠)) for all 𝑠 ≤

𝑛, compute a new set of parameters (�̃�(𝑛+1), �̃�(𝑛+1), �̃�(𝑛+1), �̃�(𝑛+1), �̃�(𝑛+1)) to test in the following iteration.  

BAPS Model: Based on 𝐿𝐿𝐵𝐴𝑃𝑆
(𝑠)

 and the associated parameters (�̃�(𝑠), �̃�(𝑠), �̃�(𝑠), �̃�(𝑠)) for all 𝑠 ≤ 𝑛, 

compute a new set of parameters (�̃�(𝑛+1), �̃�(𝑛+1), �̃�(𝑛+1), �̃�(𝑛+1)) to test in the following iteration.  

Step 5: Stopping criteria. If |𝐿𝐿𝐵𝐵𝑃𝑆
(𝑛) − 𝐿𝐿𝐵𝐵𝑃𝑆

(𝑛−1)
| < 𝜁 or |𝐿𝐿𝐵𝐴𝑃𝑆

(𝑛) − 𝐿𝐿𝐵𝐴𝑃𝑆
(𝑛−1)

| < 𝜁 stop. Otherwise, set 𝑛 =

𝑛 + 1 and return to Step 2. 

Algorithm 4.1: Pseudo-code for estimating the BBPS and BAPS models. 

 

As discussed in Section 7.2.2 above, for a closed-bounded parameter space Ω′ where for some settings of the 

parameters the Likelihood is zero, the MLE solution will always lie in the parameter subspace Ω̅′ where no 

observed routes have travel costs greater than the bound and the Likelihood is non-zero. Thus, the idea for 

Algorithm 4.1 is simply to tell the algorithm to search for solutions within Ω̅′ only, by setting nonoptimal 

values for the objective function when testing parameters not in Ω̅′.  
To do this, in Algorithm 4.1 we include a bound violation check in Step 2. In this step, given the route 

travel costs from the current cost parameters �̃�(𝑛) and the current bound parameter �̃�(𝑛), a check is performed 

to see whether any chosen route currently violates the cost bound. If any chosen route does violate the bound, 

then an appropriate large and negative value is set for the Log-Likelihood value. For the experiments in this 

paper, supposing that 𝑍′ is the set of observations that violate the bound, we set the appropriate large and 

negative value as  

𝐿𝐿 =∑
−999             𝑖𝑓 𝑧 ∈ 𝑍′   

ln(𝑃𝑚𝑧,𝑥𝑧
𝐵𝐶𝑀 )     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑍

𝑧=1
, 

where 𝑃𝑚𝑧,𝑥𝑧
𝐵𝐶𝑀  is the BCM choice probability for route 𝑥𝑧 ∈ 𝑅𝑚𝑧

 given the current �̃�(𝑛) and �̃�(𝑛) parameter 

values. Setting the appropriate large and negative value in this way, rather than as some constant arbitrary 

number, means that some information can be gathered on the relevance of the parameters even when bound 

violating parameters are tested. For more accurate information, the BBPS or BAPS probabilities can be used 

instead of the BCM probabilities. We use the BCM probabilities however to avoid having to compute BAPS 

model fixed-point probabilities for non-relevant parameter tests, thereby reducing computation times.  

In general, Step 4 could apply procedures from standard numerical optimisation methods to identify the 

parameters to evaluate in the next iteration. For cases where there is a single variable in the generalised link 

travel cost function (for example in the Sioux Falls simulation experiments in Section 7.3.2 below), it is 

possible to adopt gradient approaches such as Newton-Raphson or BHHH. In this case, the singular cost 

parameter can be factored out from the cost functions, so that the minimum cost route is fixed (e.g. the route 

with the quickest free-flow travel time). The min operator component within the bounded model probability 

functions (see e.g. equations (4.15), (4.16), and (4.19)) can thus be treated as a constant and is independent 

from any parameters. Therefore, in this case, in the parameter space Ω̅′, the Log-Likelihood objective function 
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is continuously differentiable with respect to the parameters, and gradient minimisation algorithms can be 

adopted. 

For cases where there are multiple variables in the generalised link travel cost function (for example in 

the real-life case study in Section 7.4 below), however, it is not guaranteed that gradient minimisation 

algorithms can be directly adopted, since in this case, the minimum cost routes are not guaranteed to be fixed 

for every OD movement. If for all values of the cost parameters in the stipulated cost parameter space and for 

all OD movements the minimum cost routes are always the same routes, then the Log-Likelihood objective 

function is continuously differentiable in the parameter space Ω̅′. It is possible that one could potentially 

stipulate a cost parameter space to ensure as such. Alternatively, one could smooth out the min operator, at the 

kinks or by adopting a logsum operator to approximate the min function. 

For the BAPS model, however, regardless of whether or not the Log-Likelihood function is continuously 

differentiable, utilising gradient approaches is complicated by the difficulties in differentiating the BAPS 

model Log-Likelihood function, which involves differentiating the fixed-point choice probabilities with 

respect to the parameters, which is not straightforward. Other optimisation algorithms such as BFGS and 

alternative quasi-Newton algorithms use finite difference to approximate the differentials, and while are more 

computationally burdensome and typically less accurate, are readily useable. Thus, for the experiments in this 

paper, we estimate the BBPS and BAPS models utilising the L-BFGS-B bound-constraint, quasi-Newton 

minimisation algorithm (Byrd et al, 1995) for Steps 2-4 of Algorithm 4.1 (where we minimise −𝐿𝐿). The L-

BFGS-B algorithm was implemented using the scipy.optimize.minimize package in Python. The parameter 

bounds and initial conditions are given in each study.  

In Fig. 4.12 and Fig. 4.23, we demonstrate how the adopted L-BFGS-B algorithm converges to the 

parameter estimates for the BAPS model, given the initial conditions. Other initial conditions were tested to 

see whether different solutions would be found but the solution was the same. Although it is not necessarily a 

requirement, our recommendation is that initial conditions are set such that none of the chosen route cost 

bounds are violated, i.e. (�̃�(1), �̃�(1), �̃�(1), �̃�(1), �̃�(1)) ∈ Ω̅𝐵𝐵𝑃𝑆
′  or (�̃�(1), �̃�(1), �̃�(1), �̃�(1)) ∈ Ω̅𝐵𝐴𝑃𝑆

′ . This can be 

done simply by setting an intuitively large bound value, or by calculating 𝐵(�̃�(1)) =

max(
𝑐𝑚𝑧,𝑥𝑧(𝒕(𝒘;�̃�

(1)))

min(𝑐𝑚𝑧,𝑙(𝒕(𝒘;�̃�
(1))):𝑙∈𝑅𝑚𝑧)

: 𝑧 = 1,… , 𝑍) (the lower limit for 𝜑 before any chosen route violates the 

bound) given the initial conditions for the cost parameters �̃�(1), and choosing a larger value than 𝐵(�̃�(1)). 

Note that Algorithm 4.1 computes one set of parameter estimates, estimated from one set of observations. 

It is not possible to calculate standard errors for the estimates analytically for the BBPS or BAPS model. This 

is because the models violate the regularity conditions that establish asymptotic standard errors of the 

Maximum Likelihood Estimates as the inverse of the Fisher information. Instead, the robustness of the 

parameters estimated (variation of the estimates) can be investigated numerically by applying Algorithm 4.1 

multiple times through resampling-approaches such as Bootstrap or Jackknife. 

 

7.3 Simulation Studies 

In this section we investigate the formulated Likelihood functions for the BBPS & BAPS models in 

simulation studies, evaluating the Likelihood-surfaces and assessing the possibility of estimating reasonable 

parameters that reproduces observed behaviour.  

 

7.3.1 Experiment Setup 

A similar approach is adopted to that utilised for the APSL model in Duncan et al (2020). In general, the 

approach is to sample observations according to an assumed ‘true’ model, and then use these in combination 

with the Log-Likelihood function to evaluate the ability to reproduce the assumed ‘true’ parameters. The 

simulation study consists of three steps: 

(iv) Postulate a true BBPS / BAPS model including specification and parameter values. For each relevant 

OD movement, identify a corresponding choice set of routes to be used for estimation. 

(v) Sample a set of observed route choices according to the true model using the specified link travel 

costs. 

(vi) Apply MLE approach to obtain parameter estimates based on the observed route choices. 
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Step (ii) mimics estimating the models with tracked route observation data (e.g. GPS traces). The estimation 

procedure in principle needs to enumerate and store the universal choice sets in order to allow for evaluating 

the Log-likelihood for very large values of the bound 𝜑 (e.g. in cases when the BBPS model approaches 

GPSL′ or the BAPS model approaches APSL). For larger networks this is not feasible and a subset consisting 

of routes with costs below some value being considerably larger than the bounding cost of the true model can 

be used. 

The generic estimation procedure in Algorithm 4.1 is altered for simulation studies, by modifying Step 1: 

Initialisation as outlined in Algorithm 4.1 (Step 1) below to reflect (i) and (ii) in the above. 

 

Step 1: Initialisation.  

 1.1 Postulate a true set of parameters (𝜶𝑡𝑟𝑢𝑒 , 𝜃𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒 , 𝜑𝑡𝑟𝑢𝑒 , 𝜆𝑡𝑟𝑢𝑒) for the BBPS model or  

(𝜶𝑡𝑟𝑢𝑒 , 𝜃𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒 , 𝜑𝑡𝑟𝑢𝑒) for the BAPS model, and given these parameters generate/approximate  

the universal choice sets for OD movements 𝑚 = 1,… ,𝑀, and store the link attributes and link-route  

information. 

1.2.  

BBPS model: Given the assumed true parameters and the generated choice sets, compute the BBPS  

model choice probabilities 𝑷𝑚 for 𝑚 = 1,… ,𝑀.  

BAPS model: Given the assumed true parameters and the generated choice sets, solve each of the  

fixed-point problems  

𝑷𝑚 = 𝑭𝑚 (𝒇𝑚(𝒄𝑚(𝒕(𝒘;𝜶
𝑡𝑟𝑢𝑒)), �̅�𝑚

𝐵𝐴𝑃𝑆(𝒕(𝒘;𝜶𝑡𝑟𝑢𝑒), 𝑷𝑚); 𝜃𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒 , 𝜑𝑡𝑟𝑢𝑒)) 

for 𝑚 = 1,… ,𝑀. 

1.3. Based on the BBPS model probabilities 𝑷𝑚 or the BAPS model fixed-point choice probability  

solutions 𝑷𝑚
∗  for 𝑚 = 1,… ,𝑀 (obtained in 1.2), sample 𝑍 observed routes. 

1.4. Define an initial set of parameter values (�̃�(1), �̃�(1), �̃�(1), �̃�(1), �̃�(1)) for the BBPS model or  

(�̃�(1), �̃�(1), �̃�(1), �̃�(1)) for the BAPS model for MLE, and set 𝑛 = 1. 

Algorithm 4.1 (Step 1): pseudo-code for initialisation of simulation experiments. 

 

The number of observed routes to sample, 𝑍, is exogenously defined. The robustness of the estimated 

parameters estimated can be investigated numerically by applying Algorithm 4.1 multiple times and then 

analysing the variation of the estimated parameters. 

 

7.3.2 Sioux Falls Application 

The Sioux Falls network consists of 76 links, 528 OD movements with non-zero travel demands, and 

1,632,820 total routes. Details of the network were obtained from 

https://github.com/bstabler/TransportationNetworks. The travel cost of link 𝑎 is specified as the free-flow 

travel time 𝑤𝑎,1 only, such that: 

𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1, 

where 𝛼1 > 0 is the free-flow travel time parameter, and thus the travel cost for route 𝑖 ∈ 𝑅𝑚 is: 

𝑐𝑚,𝑖(𝒕(𝒘;𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)

𝑎∈𝐴𝑚,𝑖

= 𝛼1 ∑ 𝑤𝑎,1
𝑎∈𝐴𝑚,𝑖

. 

The model requires the specification of four parameters: 𝛼1, 𝜃, 𝛽, and 𝜑 but to ensure identification 𝜃 is fixed 

at 𝜃 = 1 throughout.  

Since the travel costs of the links (and thus routes) correspond to a single variable, to approximate the 

universal choice sets, we generate all routes with a free-flow travel time less than 2.5 times greater than the 

free-flow travel time on the quickest route for each OD movement (since the assumed true bound parameters 

are much less than 2.5). We also remove all OD movements where there are less than 5 routes. The result is 

https://github.com/bstabler/TransportationNetworks
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that there are 370 remaining OD movements and a total of 42,976 routes, where the minimum, maximum, and 

average choice set sizes are 5, 898, and 116, respectively.  

 

7.3.2.1 BBPS Model Experiment Results 

We present results here from simulation studies estimating the BBPS(λ=θ) model, and then investigate how 

estimating the 𝜆 parameter effects simulation results. 

The BBPS(λ=θ) model Log-Likelihood function in (4.23) depends on three parameters 𝛼1, 𝛽, and 𝜑, which 

can be visualised through three 3-dimensional projections of this 4-dimensional relationship. Fig. 4.8A-C 

display the BBPS(λ=θ) model Log-Likelihood surface for a single estimation experiment, with 𝛼1
𝑡𝑟𝑢𝑒 = 0.2, 

𝛽𝑡𝑟𝑢𝑒 = 1, 𝜑𝑡𝑟𝑢𝑒 = 1.5 and 𝑍 = 2000. As Fig. 4.8A-C show, the Log-Likelihood surface is smooth and 

maximal around the true parameters, where the estimated parameters are �̂�1 = 0.208 ± 0.008, �̂� = 1.04 ±
0.04, and, �̂� = 1.5 ± 0.002. 

 

 

 
Fig. 4.8. Sioux Falls simulation study: BBPS(λ=θ) Log-Likelihood surface (𝛼1

𝑡𝑟𝑢𝑒 = 0.2, 𝛽𝑡𝑟𝑢𝑒 = 1, 𝜑𝑡𝑟𝑢𝑒 = 1.5, �̂�1 = 0.208, �̂� =
1.04, �̂� = 1.5). A: LL vs (𝛼1, 𝛽). B: LL vs (𝛼1, 𝜑). C: LL vs (𝛽, 𝜑). 

 

Next, we investigate the stability of the estimated parameters for the BBPS(λ=θ) model over multiple 

experiment replications. Each experiment utilises a Log-Likelihood maximisation algorithm (see Section 

7.2.2) to obtain the parameter estimates with initial conditions (�̃�1
(0)
, �̃�(0), �̃�(0)) = (0.15,0,1.1), and bounds 

�̃�1 ∈ [0,1], �̃� ∈ [0,2], �̃� ∈ [1.01,2.5]. 
Table 4.2 reports, for various settings of the true parameters, the mean Bias, Standard Error, and Route 

Mean Squared Error (𝑅𝑀𝑆𝐸 = √(𝐵𝑖𝑎𝑠)2 + (𝑆. 𝐸)2), of the estimates across 𝑟 = 25 experiment replications 

with 𝑍 = 1500 simulated observations. Table 4.3 displays the estimated covariances between the 𝛼1, 𝛽, and 

𝜑 parameters. As shown, the mean bias of the estimates of 𝛼1, 𝛽, and 𝜑 are small for all settings of the true 
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parameters tested, with max absolute percentage biases of 7% (
0.014

0.2
× 100%), 6.4%, & 0.5%, respectively. 

There is thus no evidence of bias in the parameter estimates – the estimates are all close to the true values. 

However, as measured by the RMSE, the precision of estimating 𝛼1 and 𝛽 decrease as 𝛼1
𝑡𝑟𝑢𝑒 and 𝛽𝑡𝑟𝑢𝑒 

decrease. This seems reasonable as increasing 𝛼1 corresponds to lower perception error of travel cost and 

decreasing 𝛽 corresponds to lower perception of distinctiveness. Moreover, a lower perception error of travel 

cost also results in less precise estimations of the bound parameter 𝜑 since fewer simulated observations are 

close to the bound. The RMSEs of the estimated bound parameters �̂� suggest though that the bound, at least 

for these settings of 𝜑𝑡𝑟𝑢𝑒, can be estimated to a reasonably high level of precision.  

Table 4.3 indicates that, with this network and the generated choice sets, there appears to be some 

negative correlation between the �̂�1 and �̂� estimates since both scale negative utility components. There also 

appears to be some positive correlation between the �̂�1 and �̂� estimates, which is logical since both these 

parameters scale travel cost, where an increase in 𝛼1 or a decrease in 𝜑 gives more probability to lower 

costing routes. 

 

𝛼1
𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 𝜑𝑡𝑟𝑢𝑒 �̂�1 �̂� �̂� 

Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE 

0.2 0.8 1.5 -0.008 0.031 0.0320 -0.029 0.146 0.1489 -0.003 0.0061 0.0068 

0.2 1 1.4 0.002 0.027 0.0271 -0.024 0.162 0.1638 -0.004 0.0078 0.0088 

0.2 1 1.5 -0.014 0.023 0.0269 0.012 0.147 0.1475 -0.008 0.0075 0.0110 

0.2 1 1.6 -0.001 0.017 0.0170 0.064 0.132 0.1467 -0.001 0.0091 0.0092 

0.1 1 1.5 -0.007 0.028 0.0289 -0.017 0.099 0.1004 -0.004 0.0068 0.0079 
Table 4.2. Sioux Falls simulation study: Stability of estimated BBPS(λ=θ) parameters across multiple experiment replications (𝑍 =

1500, 𝑟 = 25). 

 

𝛼1
𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 𝜑𝑡𝑟𝑢𝑒 𝑐𝑜𝑣(�̂�1, �̂�) 𝑐𝑜𝑣(�̂�1, �̂�) 𝑐𝑜𝑣(�̂�, �̂�) 

0.2 0.8 1.5 -0.00306 0.00007 -0.00003 

0.2 1 1.4 -0.00045 0.00007 0.00082 

0.2 1 1.5 -0.00183 0.00004 -0.00004 

0.2 1 1.6 -0.00085 0.00003 0.00042 

0.1 1 1.5 -0.00101 0.00010 0.00010 
Table 4.3. Sioux Falls simulation study: Estimated covariances between BBPS(λ=θ) model parameters from multiple experiments (𝑍 =

1500, 𝑟 = 25). 

 

We also explore estimating the additional 𝜆 parameter of the BBPS model. For the Log-Likelihood 

maximisation algorithm, the initial condition and bounds for 𝜆 were �̃�(0) = 1 and �̃� ∈ [0,20], respectively. 

Table 4.4 displays for different settings of 𝜆𝑡𝑟𝑢𝑒 the stability statistics of the estimates �̂�1, �̂�, �̂�, and �̂� across 

𝑟 = 25 experiment replications with 𝑍 = 1500 simulated observations, where 𝛼1
𝑡𝑟𝑢𝑒 = 0.2, 𝛽𝑡𝑟𝑢𝑒 = 1, and 

𝜑𝑡𝑟𝑢𝑒 = 1.5. Table 4.4 also displays the estimated covariances between the 𝛼1 and 𝜆 parameters. As shown, 

as measured by the MSE, the precision of estimating all parameters generally appears to decrease as 𝜆𝑡𝑟𝑢𝑒 
increases. Most notably, the precision of estimating 𝜆 appears particularly poor for large 𝜆𝑡𝑟𝑢𝑒, and the mean 

bias for 𝜆 worsens as 𝜆𝑡𝑟𝑢𝑒 increases where the percentage bias is 39% for 𝜆𝑡𝑟𝑢𝑒 = 8 and 34% for 𝜆𝑡𝑟𝑢𝑒 = 10, 

providing evidence of positive bias. There also appears to be some negative correlation between the �̂�1 and �̂� 

estimates, which makes sense since both scale travel cost within the path size contribution factors.  
 

𝜆𝑡𝑟𝑢𝑒 �̂�1 �̂� �̂� �̂� 𝑐𝑜𝑣(�̂�1, �̂�) 

 Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE  

2 -0.014 0.032 0.0349 -0.011 0.092 0.0927 -0.007 0.008 0.0106 0.67 1.226 1.397 -0.0347 

5 -0.014 0.042 0.0443 0.035 0.121 0.1260 -0.006 0.010 0.0117 1.06 1.391 1.749 -0.0397 

8 -0.028 0.044 0.0522 0.035 0.157 0.1609 -0.009 0.008 0.0120 3.15 4.168 5.224 -0.0647 

10 -0.024 0.043 0.0492 0.003 0.130 0.1300 -0.008 0.011 0.0136 3.43 3.791 5.112 -0.0899 

Table 4.4. Sioux Falls simulation study: Stability of estimated BBPS model parameters across multiple experiment replications with 

different settings of 𝜆 (𝑍 = 1500, 𝑟 = 25). 
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7.3.2.2 BAPS Model 

7.3.2.2.1 Experiment Results 

The BAPS model Log-Likelihood function in (4.24) depends on three parameters 𝛼1, 𝛽, and 𝜑, which can 

again be visualised through three 3-dimensional projections of this 4-dimensional relationship. Fig. 4.9A-C 

display the BAPS model Log-Likelihood surface for a single estimation experiment, with 𝛼1
𝑡𝑟𝑢𝑒 = 0.2, 

𝛽𝑡𝑟𝑢𝑒 = 0.7, 𝜑𝑡𝑟𝑢𝑒 = 1.5 and 𝑍 = 2000. As Fig. 4.9A-C show, the Log-Likelihood surfaces are smooth and 

approximately maximal around the true parameters, where the estimated parameters are �̂�1 = 0.2 ± 0.02, �̂� =
0.66 ± 0.04, and, �̂� = 1.496 ± 0.004. 

 

 

 
Fig. 4.9. Sioux Falls simulation study: BAPS model Log-Likelihood surface. (𝛼1

𝑡𝑟𝑢𝑒 = 0.2, 𝛽𝑡𝑟𝑢𝑒 = 0.7, 𝜑𝑡𝑟𝑢𝑒 = 1.5, �̂�1 = 0.20, �̂� =
0.66, �̂� = 1.496). A: LL vs (𝛼1, 𝛽). B: LL vs (𝛼1, 𝜑). C: LL vs (𝛽, 𝜑). 

 

Next, we investigate the stability of the estimated parameters over multiple experiment replications. Each 

experiment utilises a Log-Likelihood maximisation algorithm (see Section 7.2.2) to obtain the parameter 

estimates with initial conditions (�̃�1
(0)
, �̃�(0), �̃�(0)) = (0.15,0,2), and bounds �̃�1 ∈ [0.05,1], �̃� ∈ [0,1], �̃� =

[1.01,2.5]. 
Table 4.5 reports, for various settings of the true parameters the mean bias, standard error, and RMSE of 

the estimates across 𝑟 = 25 experiment replications with 𝑍 = 1500 simulated observations. Table 4.6 

displays the estimated covariance between the 𝛼1, 𝛽, and 𝜑 parameters. As shown, as for the BBPS model, the 

mean bias of the estimates of 𝛼1, 𝛽, and 𝜑 are small for all settings of the true parameters tested, with max 

absolute percentage biases of 13%, 4.6%, & 0.6%, respectively. There is thus again no evidence of bias in the 

parameter estimates – the estimates are all close to the true values. The precision of estimating 𝛼1 and 𝛽 

decrease as 𝛼1
𝑡𝑟𝑢𝑒 and 𝛽𝑡𝑟𝑢𝑒 decrease, as anticipated. And, a lower perception error of travel cost again results 

in less precise estimations of the bound parameter 𝜑. The RMSEs of �̂� compared to those for the BBPS(λ=θ) 
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model in Table 4.2 suggest that the 𝛽 parameter can be estimated more accurately with the BAPS model. 

Table 4.6 indicates that there also appears to be some negative correlation between the �̂�1 and �̂� estimates, as 

well as some positive correlation between the �̂�1 and �̂� estimates.  

 

𝛼1
𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 𝜑𝑡𝑟𝑢𝑒 �̂�1 �̂� �̂� 

Bias S.E RMSE Bias S.E RMSE Bias S.E RMSE 

0.2 0.8 1.5 0.000 0.018 0.0180 0.000 0.108 0.1080 -0.003 0.0047 0.0056 

0.2 0.7 1.4 -0.004 0.030 0.0303 -0.032 0.134 0.1378 -0.004 0.0067 0.0078 

0.2 0.7 1.5 -0.003 0.014 0.0143 -0.023 0.112 0.1143 -0.004 0.0058 0.0070 

0.2 0.8 1.7 -0.004 0.017 0.0175 0.006 0.115 0.1152 -0.002 0.0101 0.0103 

0.1 0.7 1.5 -0.013 0.022 0.0256 0.006 0.126 0.1261 -0.004 0.0052 0.0066 
Table 4.5. Sioux Falls simulation study: Stability of estimated BAPS model parameters across multiple experiment replications (𝑍 =

1500, 𝑟 = 25). 

 

𝛼1
𝑡𝑟𝑢𝑒 𝛽𝑡𝑟𝑢𝑒 𝜑𝑡𝑟𝑢𝑒 𝑐𝑜𝑣(�̂�1, �̂�) 𝑐𝑜𝑣(�̂�1, �̂�) 𝑐𝑜𝑣(�̂�, �̂�) 

0.2 0.8 1.5 -0.00090 0.00004 -0.00015 

0.2 0.7 1.4 -0.00198 0.00003 0.00029 

0.2 0.7 1.5 -0.00104 0.00002 0.00008 

0.2 0.8 1.7 -0.00104 0.00007 0.00026 

0.1 1 1.5 -0.00155 0.00005 -0.00002 
Table 4.6. Sioux Falls simulation study: Estimated covariance of BAPS model parameters from multiple experiment replications (𝑍 =

1500, 𝑟 = 25). 

 

7.3.2.2.2 Computation Analysis 

Due to the requirement of having to solve fixed-point problems to compute choice probabilities, in this 

subsection we analyse the computational performance of the BAPS model in the Sioux Falls MLE application. 

We The computer used has a 2.10GHz Intel Xeon CPU, 512GB RAM, and 64 Logical Processors (of which 

50 were utilised). The code was implemented in Python. Results are reported throughout this section for a 

single simulation experiment where 𝑍 = 1000 route choice observations were simulated from the true model 

𝛼1
𝑡𝑟𝑢𝑒 = 0.2, 𝛽𝑡𝑟𝑢𝑒 = 0.7, 𝜑𝑡𝑟𝑢𝑒 = 1.5. �̂�1 = 0.208, �̂� = 0.703, and �̂� = 1.493 were the consequent 

maximum likelihood estimates. Unless stated otherwise, the BAPS model choice probability convergence 

parameter 𝜉 was set as 𝜉 = 10 (see Section 5.2.2). 

Fig. 4.10A shows for different values of the BAPS model choice probability convergence parameter 𝜉 

(and thus convergence statistic), the average number of fixed-point iterations per OD movement and 

computation time required to solve all of the 370 BAPS model fixed-point problems 𝑷𝑚 =

𝑭𝑚 (𝒇𝑚(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))), and consequently compute the Log-Likelihood value of the maximum 

likelihood estimates. As shown, computation time and average number of fixed-point iterations per OD 

increase roughly linearly as the convergence parameter is increased. As expected, computation times relate to 

the number of iterations required for convergence. Fig. 4.10B shows the value of the Log-Likelihood obtained 

as 𝜉 is increased. As shown, the Log-Likelihood increases in accuracy as the BAPS model choice probabilities 

become more accurate. 
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Fig. 4.10. Sioux Falls simulation study: Computational statistics for calculating a BAPS model Log-Likelihood as the BAPS model 

choice probability convergence parameter 𝜉 is increased. A: Average number of fixed-point iterations per OD / computation time 

[mins]. B: Log-Likelihood value. 

 

Fig. 4.11 shows for different values of �̃� the average number of fixed-point iterations per OD movement and 

computation time required to calculate the Log-Likelihood. As shown, the average number of iterations per 

OD required for convergence increases as �̃� increases, and thus so do the required computation times. This is 

because the number of routes with a cost below the bound increases as the bound becomes less restrictive, and 

there are thus more routes to calculate the correlation between. This shows that the BAPS model can improve 

upon the computational performance of the APSL model in computing choice probabilities. 

  

Fig. 4.11. Sioux Falls simulation study: Average number of fixed-point iterations (A) /  active routes (B) per OD movement and 

computation time required to calculate the BAPS model Log-Likelihood for different �̃� values. 

 

Fig. 4.12A-B show for a single MLE (implementation of the L-BFGS-B algorithm), the cumulative 

computation times of the iterations and the BAPS model Log-Likelihood values and parameter estimates at 

the end of each iteration.  

A B 

A B 
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Fig. 4.12. Sioux Falls simulation study: Cumulative computation time at each iteration of a single BAPS model MLE, and MLE 

statistics. A: Log-Likelihood. B: Parameter estimates. 

 

We also briefly investigate the impact of the 𝜏 parameter upon parameter estimation. For 𝜑 = 1.5, the largest 

choice set size is 898; thus, supposing that 𝜏𝑚 = 𝜏, 𝑚 = 1,… ,𝑀, the maximum value for 𝜏 is 
1

898
≅ 10−3. 

Supposing 𝜏 assumes the form 𝜏 = 10−𝜈, Fig. 4.13 displays how the maximum likelihood parameter estimates 

vary as 𝜈 varies. Unlike the APSL model, the BAPS model probability function is not continuous, and 

continuity is approximated by setting a small 𝜏 value. MLE requires a continuous probability function, and 

hence a small 𝜏 value is not only desired to approximate the standard formulation (like APSL), but is required 

so that the model is well behaved. For 𝜈 = 4 and 𝜈 = 5, MLE could not run successfully due to the 

discontinuity; however, as Fig. 4.13 shows for 𝜈 > 5, MLE runs successfully and the parameter estimates are 

extremely close / roughly converge to the limit case of 𝜏 → 0. This demonstrates that we can recover the 

desired BAPS0 model (Section 5.1) to a high computational accuracy using the BAPS model as defined in 

Section 5.2, with a sufficiently small value of 𝜏. 

 

Fig. 4.13. Sioux Falls simulation study: Maximum likelihood BAPS model parameter estimates for different values of 𝜏 = 10−𝜈. 

 

7.3.2.2.3 BAPS Model Solution Uniqueness Analysis 

In this subsection we briefly investigate the uniqueness of BAPS model choice probability solutions in the 

context of the Sioux Falls simulation study. To do this, we utilise the method proposed in Section 10.3.4, 

where we plot trajectories of BAPS model solutions to approximate the uniqueness conditions, i.e. estimate 

𝛽𝑚𝑎𝑥. A single simulation study is conducted for 𝛼1
𝑡𝑟𝑢𝑒 = 0.2, 𝛽𝑡𝑟𝑢𝑒 = 0.7, 𝜑𝑡𝑟𝑢𝑒 = 1.5, and 𝑍 = 2000, 

leading to maximum likelihood estimates �̂�1 = 0.200, �̂� = 0.747, and �̂� = 1.499 . We thus investigate 

whether BAPS model solutions are unique for these parameter estimates. Fig. 4.14 displays the maximum 

choice probability from three trajectories of BAPS model solutions as the 𝛽 parameter is varied for four 

different randomly chosen OD movements, with 𝛼1 = �̂�1 = 0.200 and 𝜑 = �̂� = 1.499. 𝛽 was decremented 
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by 0.01, and the initial large 𝛽 value was 𝛽 = 2. As shown, the 𝛽𝑚𝑎𝑥,𝑚 values (𝛽𝑚𝑎𝑥 for OD movement 𝑚) 

for these OD movements can be estimated to vary between 0.86 and 0.94, suggesting that 𝛽 = 0.747 results in 

universally unique solutions.  

  

  

Fig. 4.14. Sioux Falls simulation study: Maximum choice probability of trajectories of BAPS model solutions as 𝛽 is varied. 

 

7.3.2.3 Model Robustness to the Adopted Choice Sets 

We briefly evaluate here on the Sioux Falls network the robustness of the BBPS & BAPS models to the 

adopted choice sets. Fig. 4.15A-B display the impact that varying the sizes of choice sets has on the route 

choice probabilities from the different models. The choice sets are generated using 𝑘-shortest path, with 

increasing values of 𝑘. It is assumed that the true active choice sets are those containing all routes with a free-

flow travel time less than 2 and 2.5 times greater, respectively, than the free-flow travel time on the quickest 

route for each OD movement, and probability results are compared between these routes only (probability is 

zero if not generated). The model parameters are assumed known: 𝛼1 = 0.2, 𝛽 = 0.8, 𝜆𝐺𝑃𝑆𝐿 = 10, 𝜆𝐵𝐵𝑃𝑆 =

1, and 𝜑 = 2,2.5 for Fig. 4.15A,B, respectively, and to compare the probability result 𝑷{𝑘} for the 𝑘-shortest 

path choice sets with the assumed true probabilities 𝑷𝑡𝑟𝑢𝑒, we measure the Route Mean Squared Error 

(RMSE): 

𝑅𝑀𝑆𝐸 = √∑ ∑ (𝑃𝑚,𝑖
{𝑘} − 𝑃𝑚,𝑖

𝑡𝑟𝑢𝑒)
𝑖∈𝑅𝑚

2𝑀

𝑚=1
/𝑁, 

where 𝑁 is the total number of routes (12,844 for 𝜑 = 2, 42,976 for 𝜑 = 2.5). Fig. 4.16A-B show how the 

percentage of routes generated with a cost greater than the 2 and 2.5 relative cost bound varies, respectively, 

as 𝑘 varies, as well as the percentage of routes that should be generated but were not (non-generated routes 

with a relative cost less the bound).  
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As shown, the choice probability results for the MNL and PSL models both decrease in similarity to the 

respective assumed true probabilities as the choice sets are expanded and more unrealistic routes (with relative 

cost deviations greater than the bound) are present with the choice sets (shown in Fig. 4.16). The GPSL and 

APSL model results remain fairly stable in similarity due to the weighted contributions. The probability 

results for the bounded models, however, all increase in similarity since these models implicitly restrict the 

choice sets and perform better as more realistic routes are generated, regardless of how many generated 

unrealistic routes. As anticipated, GPSL & APSL are more robust than PSL due to the employment of path 

size contribution weighting techniques, while the BBPS & BAPS models are significantly more robust due to 

path size contribution elimination. 

  

Fig. 4.15. Sioux Falls network: Impact that varying the sizes of choice sets has on the choice probabilities from different models, 𝑘-

shortest path. A: 𝜑 = 2. B: 𝜑 = 2.5. 

  

Fig. 4.16. Sioux Falls network: Percentage of routes in the choice sets with a free-flow travel time greater than or equal to the 𝜑 

relative cost bound (Result 1) and percentage of routes that should be generated but were not as 𝑘 varies (Result 2). A: 𝜑 = 2. B: 𝜑 =
2.5. 

 

7.4 Real-Life Large-Scale Case Study 

In this section we estimate the BBPS and BAPS models, where the model parameters are estimated using 

MLE with observed route choices tracked by GPS units. The data has been collected among drivers in the 

eastern part of Denmark in 2011, and includes a total of 17,115 observed routes. The dataset is the same as 

used in Prato et al (2014), Rasmussen et al (2017), and Duncan et al (2020), and after a filtering to include 

only trips where the sum of travel time (in minutes) and length (in km) is at least 10, a total of 8,696 

observations remain. 

The GPS traces are map matched to a network, for which corresponding time-of-day dependent travel 

times are available on the entire network. See more details in Prato et al (2014). The network is large-scale, 

representing all of Denmark, and thus includes 34,251 links. With current alternative generation techniques, it 
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is not feasible to enumerate the universal choice set for such a large network, and even enumerating all 

alternatives with a cost below a rather large relative bound (e.g. 𝜑 = 2) is not feasible. Instead, we 

approximate the universal choice set by generating a choice set for each observed route by applying the 

doubly stochastic approach also applied in Prato et al (2014). This approach is based on repeated shortest path 

search in which the network attributes and parameters of the cost function are perturbated between searches 

(Nielsen, 2000; Bovy & Fiorenzo-Catalano, 2007). To reduce the risk of bias in estimation, care was taken to 

ensure a large variety of alternatives with different characteristics were generated, by assuming large variance 

in the parameters of the cost function. Up to 100 unique paths are generated for each observation, and for 591 

observations only the observed route was generated, so these are removed from the data set, leaving 8105 

observations.  

For the estimation, the travel cost of link 𝑎 is specified as a weighted sum of congested travel time 𝑤𝑎,1 

(in minutes), and length 𝑤𝑎,2 (in kilometres), such that: 

𝑡𝑎(𝒘𝑎; 𝜶) = 𝑤𝑎,1 ∙ 𝛼1 +𝑤𝑎,2 ∙ 𝛼2 

where 𝛼1 > 0 and 𝛼2 > 0 are the congested travel time, and length parameters, respectively. The generalised 

travel cost for route 𝑖 ∈ 𝑅𝑚 is thus: 

𝑐𝑚,𝑖(𝒕(𝒘;𝜶)) = ∑ 𝑡𝑎(𝒘𝑎; 𝜶)

𝑎∈𝐴𝑚,𝑖

= ∑ (𝑤𝑎,1 ∙ 𝛼1 +𝑤𝑎,2 ∙ 𝛼2)

𝑎∈𝐴𝑚,𝑖

= 𝛼1 ∑ 𝑤𝑎,1
𝑎∈𝐴𝑚,𝑖

+ 𝛼2 ∑ 𝑤𝑎,2
𝑎∈𝐴𝑚,𝑖

. 

The model requires the specification of five parameters: 𝛼1, 𝛼2, 𝜃, 𝛽, and 𝜑 but to ensure identification, the 𝜃 

parameter is fixed at 𝜃 = 1. There are some outlying observations in the data where the relative travel time / 

length deviation of the observed route away from the quickest/shortest route is high. So that the estimation 

results are not influenced significantly by these outliers, and to improve the analysis of results, we remove 82 

route observations where either the relative travel time or length deviation is over 1.5, leaving 8023 

observations, see the distribution of the choice set sizes in Fig. 4.17. 

  

Fig. 4.17. Real-life case-study: Cumulative distribution of the choice set sizes for the 8,023 observations. 

 

Fig. 4.18A shows the relative travel time deviations away from the quickest routes in the choice sets for the 

observed routes as well as the alternative routes generated, and Fig. 4.18B shows the relative length 

deviations. 
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Fig. 4.18. Real-life case-study: Relative deviations away from quickest/shortest routes in the choice sets for the observed routes (red) 

and alternative routes generated (blue). 

 

We estimate the models utilising the same Log-Likelihood maximisation algorithm (L-BFGS-B, see Section 

7.2.2), initial conditions, and parameter bounds, where appropriate. Initial conditions are: 

(�̃�1
(1)
, �̃�2

(1)
, �̃�(1), �̃�(1), �̃�(1)) = (0.5,0.5,0,1.6,0), and bounds: �̃�1, �̃�2 ∈ [0,1], �̃� ∈ [0,2], �̃� ∈ [1.01,5], �̃� ∈

[0,200]. For the APSL and BAPS models the bounds are: �̃�1, �̃�2 ∈ [0.1,1], �̃� ∈ [0,1], �̃� ∈ [1.01,5]. 
 

7.4.1 BBPS Model Estimation 

Table 4.7 displays the BBPS(λ=θ) and BBPS model parameter estimates, and the consequent Log-Likelihood 

values. The BBPS model appears to outperform the BBPS(λ=θ) model due to the greater flexibility the 𝜆 

parameter provides; however, the estimated bound is very large considering the relative deviations in Fig. 

4.18, which results in every route having a cost within the bound and the BBPS approximating the GPSL′ 
model. This suggests that the GPSL′ model with a large 𝜆 value is outperforming more internally consistent 

models by capturing something other than the correlation between the realistic routes. We explore this further 

in Section 7.4.3. 

 

 �̂�1 �̂�2 �̂� �̂� �̂� 𝐿𝐿 

BBPS(λ=θ) 0.690 0.209 1.786  1.495 -18556 

BBPS 0.433 0.148 0.970 10.277 3.834 -17463 
Table 4.7. Real-life case-study: BBPS(λ=θ) & BBPS parameter estimates and Log-Likelihood values. 

 

Fig. 4.19A-F visualise the BBPS(λ=θ) model Log-Likelihood surface around the four parameter estimates; as 

can be seen, these are smooth. 

Observed routes 

All routes generated 

 

Observed routes 

All routes generated 

 

Travel time 

 

Length 
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Fig. 4.19. Real-life case-study: BBPS(λ=θ) model Log-Likelihood surface around parameter estimates in Table 4.7. A: LL vs (𝛼1, 𝛼2). 
B: LL vs (𝛼1, 𝛽). C: LL vs (𝛼1, 𝜑). D: LL vs (𝛼2, 𝛽). E: LL vs (𝛼2, 𝜑). F: LL vs (𝛽, 𝜑). 

 

7.4.2 BAPS Model Estimation 

7.4.2.1 Results 

Table 4.8 displays the BAPS model parameter estimates and the consequent Log-Likelihood value. As shown, 

the estimates all seem reasonable and the BAPS model appears to provide better fit over the BBPS(λ=θ) model 

in Table 4.7. 

 

�̂�1 �̂�2 �̂� �̂� 𝐿𝐿 

0.629 0.250 0.844 1.506 -18308 
Table 4.8. Real-life case-study: BAPS model parameter estimates and Log-Likelihood. 

A B 

C D 
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Fig. 4.20A-F visualise the Log-Likelihood surface around the four parameter estimates; as can be seen, these 

are smooth.  

 

Fig. 4.20. Real-life case-study: BAPS model Log-Likelihood surface around parameter estimates in Table 4.8. A: LL vs (𝛼1, 𝛼2). B: 

LL vs (𝛼1, 𝛽). C: LL vs (𝛼1, 𝜑). D: LL vs (𝛼2, 𝛽). E: LL vs (𝛼2, 𝜑). F: LL vs (𝛽, 𝜑). 

 

7.4.2.2 Computation Analysis 

We analyse here the computational performance of the BAPS model in the real-life case study. The same 

computer was used as in Section 7.3.2.2.2. Unless stated otherwise, the BAPS model choice probability 

convergence parameter 𝜉 was set as 𝜉 = 7. 

Fig. 4.21A shows for different values of the BAPS model choice probability convergence parameter 𝜉 

(and thus convergence statistic), the average number of fixed-point iterations per OD movement and 
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computation time required to solve all of the 8,023 BAPS model fixed-point problems 𝑷𝑚𝑧
=

𝑭𝑚𝑧
(𝒇𝑚𝑧

(𝒄𝑚𝑧
(𝒕), �̅�𝑚𝑧

𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚𝑧
))) for 𝑧 = 1,… , 𝑍, and consequently compute a single Log-Likelihood, 

with the estimated BAPS model parameters in Table 4.8. Fig. 4.21B shows the value of the Log-Likelihood 

obtained as 𝜉 is increased. As shown, computation time and average number of fixed-point iterations per OD 

increase linearly as the convergence parameter is increased, and the Log-Likelihood increases in accuracy 

(from 𝜉 = 2) as the BAPS model choice probabilities become more accurate. 

    

Fig. 4.21. Real-life case-study: Computational statistics for calculating the estimated BAPS model Log-Likelihood as the BAPS model 

choice probability convergence parameter 𝜉 is increased. A: Average number of fixed-point iterations per OD / computation time 

[mins]. B: Log-Likelihood value. 

 

Fig. 4.22A shows for different values of 𝜑 the average number of fixed-point iterations per OD movement and 

computation time required to solve the BAPS model, with 𝛼1, 𝛼2, and 𝛽 set as the estimated BAPS model 

parameters in Table 4.8. Fig. 4.22B shows the average active choice set size as 𝜑 increases. As shown, the 

average number of iterations per OD required for convergence and average active choice set size increases as 

𝜑 increases, and thus so do the required computation times. 

  

Fig. 4.22. Real-life case study: The impact of 𝜑 on computation statistics for solving the BAPS model with 𝛼1, 𝛼2, 𝛽 as the parameter 

estimates in Table 4.8. Computation time [mins] and A: Average number of fixed-point iterations per OD movement. B: Average 

active choice set size. 

 

Fig. 4.23A-B show for a single estimation of the BAPS model (implementation of the L-BFGS-B algorithm), 

the cumulative computation times of the iterations and the Log-Likelihood values and parameter estimates at 

the end of each iteration, respectively.  

A B 

A B 
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Fig. 4.23. Real-life case-study: Cumulative computation time at each iteration for a single estimation of the BAPS model, and MLE 

statistics. A: Log-Likelihood. B: Parameter estimates. 

 

7.4.2.3 BAPS Model Solution Uniqueness Analysis 

We briefly investigate here the uniqueness of BAPS model choice probability solutions in the context of the 

real-life case study. Similar to the experiments conducted in Section 7.3.2.2.3 for the Sioux Falls simulation 

study, we estimate the uniqueness conditions for the network given the estimated parameters. Trajectories of 

BAPS model solutions are plotted to approximate 𝛽𝑚𝑎𝑥. Fig. 4.24 displays the maximum choice probability 

from trajectories of BAPS model solutions as the 𝛽 parameter is varied for four different randomly chosen OD 

movements, with 𝛼1, 𝛼2, and 𝜑 as in Table 4.8. 𝛽 was decremented by 0.01, and the initial large 𝛽 value was 

𝛽 = 1.5. As shown, the 𝛽𝑚𝑎𝑥,𝑚 values for these OD movements are around 1, suggesting that 𝛽 = 0.844 

results in universally unique solutions.   
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Fig. 4.24. Real-life case study: Maximum choice probability from trajectories of BAPS model solutions as 𝛽 is varied. 

 

7.4.3 Comparing Results with Other Models 

In this subsection we estimate models discussed in this paper and compare results. Table 4.9 shows the 

estimated parameters and Log-Likelihood values for the MNL, PSL, GPSL, GPSL′, GPSL′(𝜆=𝜃), & APSL 

models, as well as the BCM, BBPS(λ=θ), BBPS, & BAPS models. As anticipated, the estimated bounds for the 

BCM, and BBPS(λ=θ) and BAPS models are all around 1.5; however, the estimated bound for the BBPS model 

is much larger than 1.5 and while the given value is 3.834 it is approximating 𝜑 → ∞ where the BBPS model 

collapses to the GPSL′ model, which is evident from the same estimated parameters and Log-Likelihood 

value. We discuss this result in more detail below. 

 

 �̂�1 �̂�2 �̂� �̂� �̂� 𝐿𝐿 

MNL 0.799 0.441    -20573 

PSL 0.990 0.405 1.335   -19907 

GPSL 0.431 0.126 1.133 103.89  -17327 

GPSL′ 0.433 0.148 0.970 10.277  -17463 

GPSL′(𝜆=𝜃) 0.701 0.212 1.780   -18571 

APSL 0.642 0.251 0.842   -18323 

BCM 0.786 0.439   1.486 -20565 

BBPS(λ=θ) 0.690 0.209 1.786  1.495 -18556 

BBPS 0.433 0.148 0.970 10.277 3.834 -17463 

BAPS  0.629 0.250 0.844  1.506 -18308 
Table 4.9. Real-life case-study: Estimation results. 

 

To compare the fits of the estimated models, Table 4.10 shows the penalised-likelihood criteria. As expected, 

the MNL model provides the worst fit, and the Path Size models all perform significantly better. APSL 

outperforms GPSL′(𝜆=𝜃) and the BAPS model outperforms the BBPS(λ=θ) model suggesting that internal 

consistency can improve model fit, but more specifically by including a measure of distinctiveness within the 

path size contribution factors. By applying a relative bound of around 1.5 to the route costs, the BCM, and 

BBPS(λ=θ) & BAPS models all improve upon the fit of their limit models MNL, GPSL′(𝜆=𝜃), and APSL, 

respectively, showing the value in excluding the influence of unrealistic routes. The BBPS model, however, 

cannot improve upon the fit of its limit model despite it being known that unrealistic routes are present in the 

choice sets.  

GPSL and GPSL′ (also BBPS with 𝜑 → ∞) outperform all models, however this appears not to be by 

design. The PSL′ model introduced by Ben-Akiva & Bierlaire (1999) and then the GPSL model by Ramming 

(2002) were constructed so that, as Ramming (2002) notes, “arbitrarily long paths – which would likely not be 

considered by travelers – do not reduce the size of other, more reasonable paths that use the same link”, which 

loosely translates as so that the path size terms are attempting the capture the correlation between the realistic 
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alternatives only. So, if these models are aiming to reduce the contributions of unrealistic routes to the path 

size terms of realistic routes, then eliminating the contributions completely should improve performance. 

However, when the GPSL′ model is given the opportunity to eliminate contributions, i.e. with the BBPS 

model, the option is not taken, and the best fit comes from an unbounding 𝜑 and a large 𝜆 value. This clearly 

indicates that the GPSL and GPSL′ models are able to provide better fits to real data by capturing something 

other than the correlation between the realistic routes within the path size terms.  

Duncan et al (2020) estimate the GPSL model with the same data set but without excluding the 82 route 

observations with relatively large travel times / lengths. As they note, the data set contains relatively costly but 

relatively universally distinct route observations (i.e. without considering whether or not the routes are link 

sharing with unrealistic alternatives), and the GPSL model is able to provide the best fit for these 

observations, without compromising the fit for the low costing observations. The GPSL travel cost parameter 

estimates are smaller than the same estimates for the other models, which improves the relative attractiveness 

of the costly alternatives. To counterbalance this so that that the low costing routes still remain attractive, 

GPSL introduces a large 𝜆 value: routes with relatively small travel costs are penalised significantly less than 

routes with relatively large travel costs for link sharing. Moreover, GPSL is able to further increase the 

relative attractiveness of the distinct, costly routes by decreasing the attractiveness of the indistinct, costly 

routes with the large 𝜆. It appears then that for the GPSL and GPSL′ models to work well, they require the 

presence of costly routes in the choice sets so that the counterbalancing can occur, which is why the bound is 

all-inclusive. 

What is noticeable about the estimated GPSL parameters with this reduced data set is that the travel cost 

parameters are slightly larger (than �̂�1 = 0.415 and �̂�1 = 0.085 from full data set), which make sense since 

the most relatively costly observations have been removed. The estimated 𝜆 parameter is also larger (than �̂� =
91.95) which fits with the arguments above: a larger 𝜆 is required to counterbalance the small travel cost 

parameters (but greater than before) for the low costing routes.  

Furthermore, as reported in Section 7.3.2.1 in the Sioux Falls simulation experiments, larger values of 𝜆 

for the BBPS model makes estimation more unreliable/unstable. Due to the clear similarities with analogous 

additional 𝜆 parameters, it would be natural to assume that this is also the case for the GPSL models, further 

adding to the undesirability of estimating GPSL/BBPS with large 𝜆. 

The reason why the relative improvement in fit from BCM to BBPS(λ=θ) is greater than from MNL to PSL 

is because PSL does not deal with unrealistic routes in the path size terms at all. It is therefore not just limited 

in how it can adjust for correlation compared to the bounded path size models, but also the weighted path size 

contribution models. When comparing relative improvement in fit from the BCM to BBPS(λ=θ) with MNL to 

GPSL′(𝜆=𝜃) (the limit model of BBPS(λ=θ)), however, the effects are of the same order of magnitude, across the 

range of tests i.e. for the primary estimation results in Table 4.9&Table 4.10 and re-estimation results below in 

Table 4.11. 

 

 AIC BIC CAIC 

MNL 41150 41164 41166 

PSL 39820 39841 39844 

GPSL 34662 34690 34694 

GPSL′ 34934 34961 34966 

GPSL′(𝜆=𝜃) 37148 37168 37172 

APSL 36652 36673 36676 

BCM 41136 41157 41160 

BBPS(λ=θ) 37120 37148 37152 

BBPS 34936 34970 34976 

BAPS 36624 36651 36656 
Table 4.10. Real-life case-study: Comparison of fit between models based on penalised-likelihood criteria. 

 

As shown in Fig. 4.18A-B, only a very small percentage of the generated routes have a relative travel time 

and/or length deviation greater than 1.5 (3.4% for travel time, 4.4% for length). Hence, since there are route 

observations with relative cost deviations close to 1.5 and thus the estimated bound parameters are close to 
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1.5, only a small percentage of routes generated are defined as unrealistic by the bounded models and 

consequently assigned zero choice probabilities / path size contributions eliminated. This restricts how 

effective the bounded models are at improving upon the fit of their limit models. The bounded models are 

however more robust (than the unbounded models) to changes in the adopted choice sets. If the choice sets are 

expanded, all routes generated with a relative cost deviation greater than 1.5 will have no effect upon the 

estimation and resultant choice probabilities of the bounded models. The unbounded models will however all 

be affected, and some potentially quite significantly (e.g. MNL, PSL). Generating routes with a relative cost 

deviation less than 1.5 will though affect the bounded models. This means though that either the choice sets 

were mis-generated initially, outlier observations have resulted in a large estimated bound, or the universal 

bound mis-represents actual OD-specific relative cost bounds, or all of these. Obtaining multiple route choice 

observations from the OD movements and estimating OD-specific bounds would lead to far more accurate 

estimated bounded models, and far greater goodness-of-fit improvements over the limit models. Moreover, it 

would improve robustness to the adopted choice sets.  

To demonstrate how the bounded models can be more effective at improving the fit of their limit models, 

we re-estimate the models after removing a further 872 route observations from the data set where either the 

relative travel time or length deviation is over 1.2, leaving 7151 observations. This means that there are now 

30.4% and 27.4% of the generated routes that have a relative travel time and length deviation, respectively, 

greater than the expected estimated bound of 1.2 (as opposed to previously 3.4% and 4.4% for 1.5). Hence, 

with more routes within the choice sets judged as being unrealistic, the negative effects of not excluding these 

from route choice should be greater. Table 4.11 shows the estimated parameters and Log-Likelihood values 

for the re-estimated models, as well as the penalised-likelihood criteria. As expected, the estimated bound 

parameters are approximately 1.2, apart from for the BBPS model where the estimate is very large, again 

approximating 𝜑 → ∞ and the GPSL′ model. As shown, the BCM, and BBPS(λ=θ) & BAPS models now all 

improve significantly more upon the fit of their limit models MNL, GPSL′(𝜆=𝜃), and APSL, respectively.  

As noted above, when 82 of the most costly observations are removed from the full data set and the GPSL 

model is re-estimated, the travel cost parameters increase slightly not having to provide fit for the costly 

observations, and the 𝜆 parameter becomes slightly larger to counterbalance within the contribution factors. 

As can be seen from Table 4.11 after removing a further 872 costly observations, the GPSL travel cost 

parameters increase significantly and hence the 𝜆 parameter increases dramatically too, supporting the trend.  

 

 �̂�1 �̂�2 �̂� �̂� �̂� 𝐿𝐿 AIC BIC CAIC 

MNL 1.066 1.161    -15159 30322 30336 30337 

PSL 1.231 1.079 1.149   -14883 29772 29793 29796 

GPSL 0.621 0.477 0.811 203.43  -13254 26516 26544 26548 

GPSL′ 0.633 0.519 0.696 10.962  -13301 26610 26638 26642 

GPSL′(𝜆=𝜃) 0.832 0.589 1.548   -14146 28298 28319 28322 

APSL 0.792 0.606 0.825   -13771 27548 27569 27572 

BCM 0.973 1.049   1.194 -15050 30106 30127 30130 

BBPS(λ=θ) 0.731 0.481 1.631  1.197 -13960 27928 27956 27960 

BBPS 0.633 0.519 0.696 10.962 3.940 -13301 26612 26646 26651 

BAPS  0.681 0.505 0.838  1.201 -13582 27172 27199 27204 
Table 4.11. Real-life case-study: Re-estimation results after removing observations with relative travel time or length deviations 

greater than 1.2, and penalised-likelihood criteria. 

8.  Conclusion 
This paper develops a new route choice modelling framework that deals with both route overlap and 

unrealistic routes in a theoretically consistent, robust, and mathematically well-defined way, and demonstrates 

its computational feasibility and estimatibility on large-scale networks. Path Size Logit route choice models 

capture the correlation between routes by including correction terms within the route utility functions. This 

provides a convenient closed-form solution for implementation in traffic network models. The deficiency of 

based Path Size Logit (PSL) model, in its sensitivity to unrealistic routes in the adopted choice sets, is well 

established. By weighting the contributions of routes to path size terms, current PSL model variants (e.g. 
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Generalised PSL (GPSL), alternative GPSL (GPSL′), & Adaptive PSL (APSL)) reduce the negative impact 

the unrealistic routes have upon the correction factors and thus choice probabilities of realistic routes. 

However, the effectiveness of this technique worsens as the choice sets are expanded and more unrealistic 

routes are included. In this study we develop a path size choice model that entirely eliminates the path size 

contributions and undesirable effects of unrealistic routes. 

To tackle this, we explored the integration of PSL concepts with the recently developed Bounded Choice 

Model (BCM). The BCM provides a consistent criterion for determining restricted choice sets of feasible 

routes and route choice probability, though route correlation is not considered. This paper derives the natural 

form for a Bounded Path Size (BPS) model whereby path size choice model utilities are inserted into the 

BCM formula; however, this led to behavioural inconsistencies and/or undesirable mathematical properties, 

which were demonstrated by a series of examples. Five desirable properties are consequently established for a 

mathematically well-defined BPS model that utilises a consistent criterion for assigning zero choice 

probabilities to unrealistic routes while eliminating their path size contributions. 

In order to solve these challenges, an alternative form for a BPS model is derived and two models are 

consequently formulated that adopt this form: the Bounded Bounded Path Size (BBPS) model and Bounded 

Adaptive Path Size (BAPS) model, which satisfy many of the desired properties, as discussed/demonstrated. 

1. The BBPS model has a consistent criterion for assigning zero choice probabilities to unrealistic routes 

and eliminating path size contributions, but is not internally consistent. The attraction of the BBPS 

model, however, is that the probability relation is closed-form. 

2. The BAPS model has a consistent criterion for assigning zero choice probabilities to unrealistic 

routes, eliminating the path size contributions of unrealistic routes, and determining route choice 

probabilities and path size contributions (internally consistent). The BAPS model is, however, not 

closed-form since the path size contribution factors are based upon choice probability ratios, and 

hence the probability relation is an implicit function, naturally expressed as a fixed-point problem. 

Two formulations for the BAPS model are given: one that has a continuous choice probability 

function but no formal proofs for solution existence and uniqueness, and one modified version that 

does not have a continuous distribution, but solutions can be proven to exist and be unique, and the 

proofs are given. The modified version can approximate the standard version to an arbitrary precision 

(i.e. by setting a very small value for the parameter 𝜏), however, thus approximating continuity, and 

hence in practice we use the modified formulation with a small value of 𝜏. 
This paper proves that choice probability solutions to the BAPS model are guaranteed to exist, and provides 

conditions under which solutions are unique. These conditions are only sufficient conditions for uniqueness, 

however, and a method is proposed and demonstrated for estimating the actual uniqueness conditions. 

To show that the parameters of the BBPS & BAPS models can be estimated, a Maximum Likelihood 

Estimation procedure is proposed for estimating the BBPS & BAPS models with tracked route observation 

data. Application to the Sioux Falls network shows it is generally possible to reproduce assumed true 

parameters. The BBPS & BAPS models are then estimated using real tracked route GPS data on a large-scale 

network. Results show that the BBPS(λ=θ) and BAPS models outperform their limit models GPSL′(𝜆=𝜃) and 

APSL, respectively, but that the BBPS model approximates the GPSL′ model. This indicates that the GPSL′ 
and GPSL models provide better fits to real data not by design but by capturing something other than the 

correlation between the realistic routes within the path size terms.  

The BAPS model requires a fixed-point algorithm to approximate solutions. The paper assesses the 

computational performance of the Fixed-Point Iteration Method for calculating choice probabilities and 

estimating the parameters of the BAPS model, where accuracy is compared with computation time. Results 

indicate that accurate choice probability solutions and parameter estimates can be obtained by feasible 

computation times. It is also shown that BAPS model choice probability computation times can be quicker 

than for APSL, due to its implicit restriction of choice sets to having fewer routes. 

The theory suggests that the BAPS model is more behaviourally realistic than the BBPS model, which is 

supported by the estimation results, and thus our recommendation is that the BAPS model is used where it is 

computationally feasible to do so. The BBPS model offers a more computationally practical alternative. 
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10.  Appendix 

10.1 Appendix A – Derivation of the Bounded Choice Model 

First, we define the pdf’s and cdf’s of relevant probability distributions. The pdf of a Gumbel distribution with 

mode 𝜁 and scale 𝜃−1 (𝜃 > 0) is:  

𝑓𝐺(𝑥; 𝜁, 𝜃) = 𝜃 exp (−(𝜃(𝑥 − 𝜁) + exp(−𝜃(𝑥 − 𝜁)))) , (−∞ < 𝑥 < ∞), 

and the cdf is: 

𝐹𝐺(𝑥; 𝜁, 𝜃) = exp(−exp(−𝜃(𝑥 − 𝛼))) , (−∞ < 𝑥 < ∞). 
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Supposing that 𝜖1 and 𝜖2 are individually and identically distributed Gumbel random variables, the difference 

random variable 𝜀 = 𝜖1 − 𝜖2 is a logistic distribution with pdf (for mean 𝜇 and scale 𝜃−1) equal to: 

𝑓𝐿(𝑥; 𝜇, 𝜃) = 𝜃 exp(−𝜃(𝑥 − 𝜇)) (1 + exp(−𝜃(𝑥 − 𝜇)))
−2
, (−∞ < 𝑥 < ∞), 

and cdf: 

𝐹𝐿(𝑥; 𝜇, 𝜃) = (1 + exp(−𝜃(𝑥 − 𝜇)))
−1
, (−∞ < 𝑥 < ∞). 

If 𝜖1 and 𝜖2 have mode 0 and scale 𝜃−1 it follows that 𝜀 has mean 0 and scale 𝜃−1.  

The BCM proposes that each route 𝑖 ∈ 𝑅 is compared with an imaginary reference alternative 𝑟∗ in terms 

of difference in random utility, and imposes a bound, 𝜓, upon this random utility difference. In this study, the 

reference alternative is the route with the best utility. If 𝑈𝑖 and 𝑉𝑖 are the random and deterministic utilities for 

route 𝑖 ∈ 𝑅, respectively, the difference in random utility relative to the reference alternative for route 𝑖 ∈ 𝑅 

is: 

𝑈𝑟∗ − 𝑈𝑖 = 𝑉𝑟∗ + 𝜖𝑟∗ − 𝑉𝑖 − 𝜖𝑖 = max(𝑉𝑙: 𝑙 ∈ 𝑅) − 𝑉𝑖 + 𝜖𝑟∗ − 𝜖𝑖 = max(𝑉𝑙: 𝑙 ∈ 𝑅) − 𝑉𝑖 + 𝜀𝑖 , 

where 𝜖𝑖 is the individually and identically distributed random variable error term for route 𝑖 ∈ 𝑅, and 𝜀𝑖 is the 

difference random variable for route 𝑖 ∈ 𝑅 with the reference alternative. The MNL model can be derived by 

assuming the 𝜖𝑖 error terms are Gumbel distributed and thus the 𝜀𝑖 difference random error terms assume the 

logistic distribution. The BCM, however, proposes that the difference random variable error terms 𝜀𝑖 assume a 

truncated logistic distribution, obtained by left-truncating a logistic distribution with mean 0 and scale 𝜃−1 at 

a lower bound of −𝜓 for some 𝜓 ≥ 0. Each of these variables thus has pdf: 

𝑓𝑇(𝑥; 𝜇, 𝜃, 𝜓) = {

0 −∞ < 𝑥 < −𝜓

𝑓𝐿(𝑥; 𝜇, 𝜃)

1 − 𝐹𝐿(−𝜓; 𝜇, 𝜃)
𝑥 ≥ −𝜓

, 

and cdf: 

𝐹𝑇(𝑥; 𝜇, 𝜃, 𝜓) = {

0 −∞ < 𝑥 < −𝜓

𝐹𝐿(𝑥; 𝜇, 𝜃) − 𝐹𝐿(−𝜓; 𝜇, 𝜃)

1 − 𝐹𝐿(−𝜓; 𝜇, 𝜃)
𝑥 ≥ −𝜓

. 

The probability of choosing route 𝑖 ∈ 𝑅 versus the reference alternative is therefore: 

Pr(choosing 𝑖 from {𝑖, 𝑟∗}) = Pr(𝑈𝑖 ≥ 𝑈𝑟∗) = Pr(𝑈𝑟∗ − 𝑈𝑖 ≤ 0) 

= Pr(max(𝑉𝑙: 𝑙 ∈ 𝑅) − 𝑉𝑖 + 𝜀𝑖 ≤ 0) = Pr(𝜀𝑖 ≤ 𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)) 

= 𝐹𝑇(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ; 0, 𝜃, 𝜓) 

= {

0 −∞ < 𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) < −𝜓

𝐹𝐿(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ; 0, 𝜃) − 𝐹𝐿(−𝜓; 0, 𝜃)

1 − 𝐹𝐿(−𝜓; 0, 𝜃)
𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ≥ −𝜓

, 

= {

0 −∞ < 𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) < −𝜓

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))
−1
− (1 + exp(𝜃𝜓))−1

1 − (1 + exp(𝜃𝜓))−1
𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ≥ −𝜓

. 

The odds ratio for route 𝑖 ∈ 𝑅 versus the reference alternative 𝑟∗ ∈ 𝑅 is then: 

𝜂𝑖 =
Pr(choosing 𝑖 from {𝑖, 𝑟∗})

1 − Pr(choosing 𝑖 from {𝑖, 𝑟∗})
=

𝐹𝑇(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ; 0, 𝜃, 𝜓)

1 − 𝐹𝑇(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ; 0, 𝜃, 𝜓)
. 

For 𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ≥ −𝜓, 𝜂𝑖 can be re-arranged as follows: 
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1

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))
−

1
(1 + exp(𝜃𝜓))

1
1 −

1
(1 + exp(𝜃𝜓))

1 −

1

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))
−

1
(1 + exp(𝜃𝜓))

1
1
−

1
(1 + exp(𝜃𝜓))

 

=

exp(𝜃𝜓) − exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))(1 + exp(𝜃𝜓))

exp(𝜃𝜓)
(1 + exp(𝜃𝜓))

1 −

exp(𝜃𝜓) − exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))(1 + exp(𝜃𝜓))

exp(𝜃𝜓)
(1 + exp(𝜃𝜓))

 

=

(exp(𝜃𝜓) − exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))) exp(𝜃𝜓)

1
1
−
(exp(𝜃𝜓) − exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))) exp(𝜃𝜓)

 

=

(exp(𝜃𝜓) − exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))))

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))) exp(𝜃𝜓)

exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))) exp(𝜃𝜓) + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))

(1 + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))) exp(𝜃𝜓)

 

=
exp(𝜃𝜓) − exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))

exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))) exp(𝜃𝜓) + exp(−𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅)))
 

=
exp(𝜃𝜓) exp(𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅))) − 1

exp(𝜃𝜓) + 1
 

=
exp(𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1

exp(𝜃𝜓) + 1
. 

Thus, given the above re-arranging, the odds ratio 𝜂𝑖 for route 𝑖 ∈ 𝑅 versus the reference alternative 𝑟∗ ∈ 𝑅 is: 

𝜂𝑖 = {

0 −∞ < 𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) < −𝜓

exp(𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1

exp(𝜃𝜓) + 1
𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) ≥ −𝜓

, 

which can be written succinctly as: 

𝜂𝑖 =
(exp(𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1)+

exp(𝜃𝜓) + 1
, 

where (∙)+ = max (0,∙). 
Now, due to the Independence from Irrelevant Alternatives (IIA) property, the probability ratio between 

any two routes 𝑖, 𝑗 ∈ 𝑅 where 𝑃𝑖 > 0 and 𝑃𝑗 > 0 is the ratio of the odds ratios: 

𝑃𝑖
𝑃𝑗
=
𝜂𝑖
𝜂𝑗
=

Pr(choosing 𝑖 from {𝑖, 𝑟∗})
1 − Pr(choosing 𝑖 from {𝑖, 𝑟∗})

Pr(choosing 𝑗 from {𝑗, 𝑟∗})
1 − Pr(choosing 𝑗 from {𝑗, 𝑟∗})
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=
(exp(𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1)+

(exp (𝜃(𝑉𝑗 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1)
+

. 

Thence, since the non-zero probabilities must add up to 1, the BCM probability for route 𝑖 ∈ 𝑅 is: 

𝑃𝑖 =
(exp(𝜃(𝑉𝑖 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1)+

∑ (exp (𝜃(𝑉𝑗 −max(𝑉𝑙: 𝑙 ∈ 𝑅) + 𝜓)) − 1)
+

𝑗∈𝑅

. 

Finally, setting 𝜓 = (1 − 𝜑)max(𝑉𝑙: 𝑙 ∈ 𝑅): 

𝑃𝑖 =
(exp(−𝜃(𝑉𝑖 − 𝜑max(𝑉𝑙: 𝑙 ∈ 𝑅))))+

∑ (exp (−𝜃(𝑉𝑗 − 𝜑max(𝑉𝑙: 𝑙 ∈ 𝑅))))
+

𝑗∈𝑅

. 

 

10.2 Appendix B – Derivation of Proposed BPS Model Form 

Suppose the probability of choosing route 𝑖 ∈ 𝑅 relates as: 

𝑃𝑖 = 𝑄𝑖
1 × 𝑄𝑖

2 × χ, 

where 

𝑄𝑖
1 =

(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)
+

𝑗∈𝑅

, 𝑄𝑖
2 =

𝑒𝛽 ln(𝛾𝑖)

∑ 𝑒𝛽 ln(𝛾𝑗)𝑗∈𝑅

, 

and χ is a normalisation constant. The probabilities for all routes 𝑟 ∈ 𝑅 must add up to 1:  

∑𝑃𝑟
𝑟∈𝑅

=∑𝑄𝑟
1 × 𝑄𝑟

2 × χ
𝑟∈𝑅

= (∑
(exp(−𝜃(𝑐𝑟 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+𝑒

𝛽 ln(𝛾𝑟)

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)
+

𝑗∈𝑅 ∑ 𝑒𝛽 ln(𝛾𝑗)𝑗∈𝑅𝑟∈𝑅

) × χ = (∑
𝑋𝑟
𝐿

𝑟∈𝑅

) × χ = 1, 

where to simplify notation:  

𝑋𝑟 = (exp(−𝜃(𝑐𝑟 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+𝑒
𝛽 ln(𝛾𝑟), 

and 

𝐿 =∑ (exp (−𝜃(𝑐𝑗 −𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)
+𝑗∈𝑅
∑ 𝑒𝛽 ln(𝛾𝑗)

𝑗∈𝑅
. 

By rearranging, the normalisation constant χ is thus: 

χ = (∑
𝑋𝑟
𝐿

𝑟∈𝑅

)

−1

. 

Substituting χ back into the probability relation for route 𝑖 ∈ 𝑅: 

𝑃𝑖 = 𝑄𝑖
1 × 𝑄𝑖

2 × χ =
𝑋𝑖
𝐿
× (∑

𝑋𝑟

𝐿
𝑟∈𝑅

)

−1

=
𝑋𝑖
𝐿
× (

1

𝐿
∑ 𝑋𝑟

𝑟∈𝑅

)

−1

=
𝑋𝑖
𝐿
×

𝐿

∑ 𝑋𝑟𝑟∈𝑅

=
𝑋𝑖

∑ 𝑋𝑟𝑟∈𝑅

 

=
(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+ ∙ 𝑒

𝛽 ln(𝛾𝑖)

∑ (exp(−𝜃(𝑐𝑟 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)+ ∙𝑟∈𝑅 𝑒𝛽 ln(𝛾𝑟)
. 

 

10.3 Appendix C – Desired Properties for a Bounded Path Size Model 

In this section, we establish desired properties for a BPS model by exploring different options for the path size 

terms for the natural BPS model in (4.5). 

 

10.3.1 Option 1 

Suppose that the path size term for route 𝑖 ∈ 𝑅 is defined as follows: 
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 𝛾𝑖
1 =∑

𝑡𝑎
𝑐𝑖

1

∑ 𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

. (4.26) 

The option 1 path size term, 𝛾𝑖
1, is equivalent to the PSL path size term. As (4.26) shows, all routes in the 

choice set contribute equally to path size terms, however unattractive, and thus unrealistic routes (with zero 

choice probabilities) negatively impact the choice probabilities of realistic routes (with non-zero choice 

probabilities) if links are shared. To demonstrate this, consider example network 4 in Fig. 4.25A where there 

are 3 routes: Routes 2&3 have travel cost 1 and Route 1 has travel cost 0.5 + 𝜐, Routes 1&2 are correlated 

while Route 3 is distinct. Fig. 4.25B displays the example network 4 option 1 BPS model route choice 

probabilities as 𝜐 is increased from 0.5 to 3, 𝜃 = 𝛽 = 1, 𝜑 = 2.5. For 𝜐 = 0.5, Routes 1&2 have the same 

unshared travel cost and are thus considered equally attractive. As 𝜐 is increased, Route 1 increases in travel 

cost and decreases in utility. As the utility of Route 1 becomes 2.5 times smaller than the utility of Route 3 

(the best alternative), Route 1 attains zero choice probability, but continues to contribute to the path size term 

of Route 2, which is not desired.  

We thus establish the following desired property for a BPS model: 

Desired Property 1 – Consistent Definitions of Unrealistic Routes: Routes defined as unrealistic by the 

choice model (assigned zero choice probabilities) should have zero path size contributions, and vice versa. 

  

Fig. 4.25. A: Example network 4. B: Example network 4: Option 1 BPS model route choice probabilities for increasing 𝜐 (𝜃 = 𝛽 = 1, 

𝜑 = 2.5). 

 

10.3.2 Options 2&3 

Option 1 clarifies that routes defined as unrealistic by the path size terms should have no path size 

contributions. We explore in options 2&3 below how this might be achieved. However, there is a practical 

issue for both options that complicates matters. Allowing path size contributions to be zero means that: a) 

scenarios of 
0

0
 can occur within the path size terms; and, b) path size terms can equal zero which consequently 

results in occurrences of ln(0) within the route utilities. The ln(0) issue can be circumvented by negligibly 

perturbing path size terms that equal zero (by 0 < 𝜏 ≪ 1 say), so that the utility of route 𝑖 ∈ 𝑅 is 𝑉𝑖 = −𝜃𝑐𝑖 +
𝛽 ln((𝛾𝑖 − 𝜏)+ + 𝜏). ln(0) within a route utility implies that that the route is infinitely unattractive, and hence 

it can be concluded that the route is outside the bound and assigned zero choice probability. A suitably low 

value for 𝜏 will ensure utilities with zero path size terms are finite but small enough to violate the bound, and 

for the demonstrations below we set 𝜏 = 10−16. The 
0

0
 issue, however, cannot be completely circumvented. In 

order to use options 2&3, one must specify how the path size terms deal with 
0

0
, and with each option there is 

no single formulation that ensures continuity, as we will show. Nevertheless, we present here their 

formulations as simply as possible for pedagogical purposes only. 

 

10.3.2.1 Option 2 

Suppose that the path size term for route 𝑖 ∈ 𝑅 is defined as follows: 

Route 1 × 

Route 2 ▲ 

Route 3  

A B 



Chapter 4. A bounded path size route choice model excluding unrealistic routes: Formulation and 

estimation from a large-scale GPS study 

174 

 

 𝛾𝑖
2 =∑

𝑡𝑎
𝑐𝑖

(ℎ𝑖(−𝜃𝒄;𝜔) − 1)+
∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

, (4.27) 

where ℎ𝑖(−𝜃𝒄;𝜔) = exp(−𝜃𝑐𝑖 −𝜔max(−𝜃𝑐𝑙: 𝑙 ∈ 𝑅)) = exp(−𝜃(𝑐𝑖 − 𝜔min(𝑐𝑙: 𝑙 ∈ 𝑅))), and 𝜔 > 1 is 

the path size contribution bound parameter. Option 2 supposes that routes only contribute to path size terms if 

they have a cost less than 𝜔 times the cost on the cheapest route, and the path size contribution factors 

consider ratios of the odds that routes are within this path size contribution bound. As (4.27) shows, route 𝑘 

only contributes to path size terms if 𝑐𝑘 < 𝜔min(𝑐𝑙: 𝑙 ∈ 𝑅), and as the cost of a route decreases below the 

contribution bound its path size contribution increases. 

Option 2 has two main failings. The first main failing is the practical issue discussed above. If no routes 

using link 𝑎 have a cost within the contribution bound, then ∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘𝑘∈𝑅 = 0 and 
0

0
 occurs. 

Furthermore, if route 𝑖 has a cost above the contribution bound (i.e. (ℎ𝑖(−𝜃𝒄;𝜔) − 1)+ = 0) but for all links 

in route 𝑖 at least one route has a cost within the contribution bound (i.e. ∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘𝑘∈𝑅 > 0, 

∀𝑎 ∈ 𝐴𝑖), then 𝛾𝑖
2 = 0 and ln(0) occurs in 𝑉𝑖. In order to use option 2, one must specify how 𝛾𝑖

2 is formulated 

for ∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘𝑘∈𝑅 = 0 (to avoid occurrences of 
0

0
). There are three alternative formulations for 

𝛾𝑖
2:  

𝛾𝑖
2 =∑

𝑡𝑎
𝑐𝑖
×

{
 

 
(ℎ𝑖(−𝜃𝒄;𝜔) − 1)+

∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘𝑘∈𝑅
     𝑖𝑓 ∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘

𝑘∈𝑅
> 0

                        𝑌                                𝑖𝑓 ∑ (ℎ𝑘(−𝜃𝒄;𝜔) − 1)+𝛿𝑎,𝑘
𝑘∈𝑅

= 0𝑎∈𝐴𝑖

, 

where 𝑌 has three alternative values, equal to either 0, 1, or 
1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
, depending on how 

(ℎ𝑖(−𝜃𝒄;𝜔)−1)+

∑ (ℎ𝑘(−𝜃𝒄;𝜔)−1)+𝛿𝑎,𝑘𝑘∈𝑅
→

0

0
. 

The second main failing is that the model is internally inconsistent with how routes are defined as being 

(un)realistic. The natural BPS model probability relation in (4.5) bounds the route utilities so that routes with a 

relatively unattractive combination of travel cost and distinctiveness are assigned zero choice probabilities. 

The option 2 path size terms, however, define a route as unrealistic if it has a large travel cost only, and 

subsequently bound the route costs so that expensive routes have zero path size contributions. The option 2 

path size terms thus potentially result in an inconsistent model, as routes with non-zero choice probabilities 

may have zero path size contributions, and/or vice versa. To demonstrate, consider example network 4 in Fig. 

4.25A. Fig. 4.26A-B display example network 4 option 2 BPS model choice probabilities for 𝜔 = 1.5 and 

𝜔 = 3, respectively, as 𝜐 is increased from 0.5 to 3, 𝑌 = 𝜃 = 𝛽 = 1, 𝜑 = 2.5. In Fig. 4.26A, as the path size 

contribution bound parameter is more restrictive than the model bound, the path size contribution of Route 1 

to Route 2 is eliminated before Route 1 reaches zero choice probability. Conversely in Fig. 4.26B, as the 

contribution bound is less restrictive than the model bound, Route 1 reaches zero probability before its 

contribution to Route 2 is eliminated. 

Option 2 also requires the estimation of an additional bound parameter, which makes estimation more 

difficult, and which can amplify the inconsistency of the model due to the different bound considerations. It is 

possible that the model bound and path size contribution bound could equate (𝜔 = 𝜑), so that routes have zero 

choice probabilities and/or zero path size contributions if they have a utility/cost 𝜑 times worse than the best 

respective route, but there is no real theoretical basis for this. Fig. 4.26C displays example network 4 option 2 

BPS model choice probabilities as 𝜐 is increased from 0.5 to 3, with 𝜔 = 𝜑 = 2.5, 𝑌 = 𝜃 = 𝛽 = 1. As 

shown, internal inconsistency still occurs with equated bounds. This does though at least decrease the number 

of parameters for estimation. The inconsistency of the resultant option 2 model is amplified if the two bound 

parameters 𝜑 and 𝜔 have significantly different restrictions on the assessed feasibility of routes, as Fig. 

4.26A-B show. If the model bound 𝜑 is restrictive so that very few routes have non-zero choice probabilities, 

but the contribution bound is unrestrictive so that many routes have non-zero path size contributions, or vice 

versa, then the model is clearly more inconsistent than if the two bound parameters were similarly restricting. 

From exploring option 2, we establish the following desired properties for a BPS model: 

Desired Property 2 – Well-Defined Functions: The model functions should be well-defined across their 

domain. 



Chapter 4. A bounded path size route choice model excluding unrealistic routes: Formulation and 

estimation from a large-scale GPS study 

175 

 

Desired Property 3 – Internal Consistency: The model should be internally consistent, i.e. there is a 

consistent assessment of the feasibility of routes between probability relation and path size contribution 

factors. 

Specifically, Desired Property 2 covers the avoidance of occurrences of 
0

0
 in the path size terms / ln(0) within 

the route utilities, which occur naturally when routes have zero path size contributions, as shown above and 

below. It is worth noting that satisfying Desired Property 3 – Internal Consistency is enough to satisfy Desired 

Property 1 – Consistent Definitions of Unrealistic Routes, but the vice versa is not true, as shown in Section 

10.3.3. 

  

 

Fig. 4.26. Example network 4: Option 2 BPS model route choice probabilities for increasing 𝜐 (𝑌 = 𝜃 = 𝛽 = 1, 𝜑 = 2.5). A: 𝜔 =
1.5. B: 𝜔 = 3. C: 𝜔 = 2.5 

 

10.3.2.2 Option 3 

Suppose that the path size term for route 𝑖 ∈ 𝑅 is defined as follows: 

 
𝛾𝑖
3(𝑷) =∑

𝑡𝑎
𝑐𝑖

𝑃𝑖
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

= ∑
𝑡𝑎
𝑐𝑖

1

∑ (
𝑃𝑘
𝑃𝑖
)𝛿𝑎,𝑘𝑘∈𝑅

𝑎∈𝐴𝑖

, 
(4.28) 

where 𝑷 is a route choice probability vector, and the option 3 BPS model choice probabilities, 𝑷∗, are a 

solution to the fixed-point problem 𝑷 = 𝑯(𝜸3(𝑷)) in 𝐷, where: 

𝐻𝑖(𝜸
3(𝑷)) =

(ℎ𝑖(−𝜃𝒄 + 𝛽 ln(𝜸
3(𝑷))) − 1)

+

∑ (ℎ𝑗(−𝜃𝒄 + 𝛽 ln(𝜸
3(𝑷))) − 1)

+𝑗∈𝑅

, ∀𝑖 ∈ 𝑅. 

The option 3 path size terms propose that routes contribute according to ratios of choice probability, and thus 

the resultant model is internally consistent. The probability relation is an implicit function involving the 

A B 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 1 × 

Route 2 ▲ 

Route 3  

C 

Route 1 × 

Route 2 ▲ 

Route 3  
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choice probabilities, and solutions to the model are solutions to the fixed-point problem. Whereas the APSL 

domain for choice probability solutions, 𝐷(𝜏), does not allow routes to have zero choice probabilities, the 

option 3 BPS model domain, 𝐷, does allow for zero probabilities. This is a requirement since the model 

assigns zero choice probabilities / eliminates the path size contributions of routes with infeasibly low utilities. 

With this though, 
0

0
 occurs in the path size terms when ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0, and ln(0) occurs in the route utilities 

when 𝑃𝑖 = 0 and ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 > 0 for all 𝑎 ∈ 𝐴𝑖. In order to use option 3. one must specify how 𝛾𝑖
3 is 

formulated for ∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0. There are again three alternative formulations for 𝛾𝑖
3:  

𝛾𝑖
3 =∑

𝑡𝑎
𝑐𝑖
×

{
 

 
𝑃𝑖

∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅
     𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘

𝑘∈𝑅
> 0

         𝑌               𝑖𝑓 ∑ 𝑃𝑘𝛿𝑎,𝑘
𝑘∈𝑅

= 0𝑎∈𝐴𝑖

, 

where 𝑌 has three alternative values, equal to either 0, 1, or 
1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
, depending on how 

𝑃𝑖

∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈𝑅
→

0

0
. 

Option 3 has two other main failings. The first of which is the unconditional non-uniqueness of solutions. 

The ‘active choice set’ is the restricted choice set of routes with non-zero choice probabilities. In the case of 

the option 3 BPS model, there are two types of solution non-uniqueness: inter-active-choice-set non-

uniqueness and intra-active-choice-set non-uniqueness. Intra-active-choice-set non-uniqueness is where there 

are multiple choice probability solutions within the active choice sets, and inter-active-choice-set non-

uniqueness is where there are multiple solutions between active choice sets. Inter-active-choice-set non-

uniqueness is much more problematic than intra-active-choice-set non-uniqueness, and having a single active 

choice set where multiple choice probability solutions exist is more manageable than having multiple active 

choice sets where solutions exist. If there is just one active choice set where solutions exist, then at least it is 

known which routes are defined as unrealistic, and it’s possible that there will be some conditions under 

which solutions within the active choice set are unique. However, if it is possible for multiple active choice 

sets to have solutions, then it is unlikely that uniqueness conditions can be established (conditions under 

which there is only ever one active choice set with solutions), and an active choice set selection procedure is 

required. 

Inter-active-choice-set non-uniqueness occurs extensively for the option 3 BPS model due to the route 

utilities not being fixed and the potential for them to vary massively according to the active choice set. 

Without fixed utilities, the maximum utility route(s) and value can vary, and different routes can have utilities 

within the bound. To demonstrate, consider example network 5 in Fig. 4.27 where there are 5 routes; Table 

4.12 gives the route information. As Fig. 4.27 shows, Routes 1-4 are correlated, and Route 5 is distinct. Using 

an exhaustive search for active choice set solutions, Table 4.13, Table 4.14, & Table 4.15 display all of the 

BPS model option 3 choice probability solutions for 𝑌 = 0, 𝑌 = 1, and 𝑌 =
1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
, respectively, for 𝜃 =

𝛽 = 1, 𝜑 = 2. �̅� ⊆ 𝑅 is the restricted choice set of active routes. There are 17, 3, and 5 active choice sets in 

which solutions exist for 𝑌 = 0, 𝑌 = 1, and 𝑌 =
1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
, respectively. For these parameter settings there is 

intra-active-choice-set uniqueness. However, to demonstrate how there can also be intra-active-choice-set 

non-uniqueness, Table 4.16 displays two BPS model option 3 choice probability solutions for the active 

choice set �̅� = {1,2,5}, with 𝑌 = 0, 𝜃 = 1, and 𝛽 = 𝜑 = 5. 
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Fig. 4.27. Example network 5. 

 

Route Node Traversal Travel Cost 

1 𝑂 → 1 → 𝐷 0.7 

2 𝑂 → 1 → 2 → 𝐷 1.1 

3 𝑂 → 2 → 1 → 𝐷 2 

4 𝑂 → 2 → 𝐷 1.3 

5 𝑂 → 3 → 𝐷 2 

Table 4.12. Example network 5 route information. 

 

�̅� 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 �̅� 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

{5} 0 0 0 0 1 {2,4} 0 0.590 0 0.410 0 

{4} 0 0 0 1 0 {2,4,5} 0 0.498 0 0.346 0.156 

{4,5} 0 0 0 0.765 0.235 {2,3} 0 0.901 0.099 0 0 

{3} 0 0 1 0 0 {2,3,5} 0 0.819 0.09 0 0.09 

{3,5} 0 0 0.5 0 0.5 {2,3,4} 0 0.610 0.026 0.365 0 

{3,4} 0 0 0.101 0.899 0 {2,3,4,5} 0 0.517 0.022 0.309 0.153 

{3,4,5} 0 0 0.076 0.676 0.249 {1} 1 0 0 0 0 

{2} 0 1 0 0 0 {1,4} 0.906 0 0 0.094 0 

{2,5} 0 0.901 0 0 0.099       

Table 4.13. Example network 5: All option 3 BPS model choice probabilities solutions (𝑌 = 0, 𝜃 = 𝛽 = 1, 𝜑 = 2). 

 

�̅� 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

{2,3,5} 0 0.819 0.09 0 0.09 

{2,3,4,5} 0 0.517 0.022 0.309 0.153 

{1,4} 0.906 0 0 0.094 0 

Table 4.14. Example network 5: All option 3 BPS model choice probabilities solutions (𝑌 = 1, 𝜃 = 𝛽 = 1, 𝜑 = 2). 

 

�̅� 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

{2,5} 0 0.901 0 0 0.099 

{2,3,5} 0 0.819 0.09 0 0.09 

{2,3,4,5} 0 0.517 0.022 0.309 0.153 

{1} 1 0 0 0 0 

{1,4} 0.906 0 0 0.094 0 

Table 4.15. Example network 5: All option 3 BPS model choice probabilities solutions (𝑌 =
1

∑ 𝛿𝑎,𝑘𝑘∈𝑅
, 𝜃 = 𝛽 = 1, 𝜑 = 2). 

 
𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

0.009 0.703 0 0 0.288 

0.698 0.066 0 0 0.235 

Table 4.16. Example network 5: Option 3 BPS model choice probabilities solutions for �̅� = {1,2,5} (𝑌 = 0, 𝜃 = 1, 𝛽 = 𝜑 = 5). 

 

Another main failing for the option 3 model is that the choice probability function is not always continuous. 

The option 3 BPS model has trajectories of choice probability solutions as the 𝜑 bound parameter is varied. 

For a given trajectory of solutions, as 𝜑 is decreased, route utilities approach the bound from below resulting 

in the choice probabilities and thus path size contributions approaching zero. However, since the utilities are 

not fixed, and are dependent upon 𝜑, it is possible for the utility of a route to meet the bound (as 𝜑 is 

decreased) before its path size contribution to routes meets zero, and as a consequence, the choice probability 

function is not always continuous in 𝜑. To demonstrate, consider again example network 5 in Fig. 4.27. To 

identify a trajectory of option 3 BPS model solutions for varying 𝜑 we utilise the following method. 

Step 1. Identify a suitably large value for 𝜑 such that the option 3 BPS model solution will have a 

non-zero choice probability for all routes. 

Step 2. Solve the option 3 BPS model fixed-point problem for this large 𝜑 with a randomly generated 

initial condition. 
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Step 3. Decrement 𝜑 and obtain the next solution with initial condition set as the solution for the 

previous 𝜑. 

Step 4. Continue until 𝜑 = 1. 

Utilising the above method and plotting the probabilities at each decremented 𝜑, Fig. 4.28 displays a 

trajectory of option 3 BPS model choice probability solutions as 𝜑 is varied, 𝑌 = 𝜃 = 𝛽 = 1. As 𝜑 is 

decreased, the utility of Route 3 approaches the bound and zero choice probability. However, the utility of 

Route 3 reaches the bound before the path size contribution of Route 3 to Routes 1&4 reaches zero. Thus, due 

to the sizeable adjustment of the utilities when Route 3 is removed from the active choice set, the choice 

probability function is not continuous. 

 

Fig. 4.28. Example network 5: Trajectory of option 3 BPS model choice probability solutions for varying 𝜑 (𝑌 = 𝜃 = 𝛽 = 1) 

 

From exploring option 3, we establish the following desired properties for a BPS model: 

Desired Property 4 – Uniqueness: Route choice probability solutions are inter-active-choice-set unique 

(where there is only one active choice set in which solutions exist), and conditions can be established for 

intra-active-choice-set uniqueness (where for a given active choice set there is only one solution). 

Desired Property 5 – Continuity: The choice probability function is continuous. 

 

10.4 Appendix D – Existence and Uniqueness of BAPS Model Solutions 

In this section we establish a series of theoretical results concerning the BAPS model as defined in (4.18), 

(4.19), and (4.20), where the guaranteed existence of solutions is proven, and sufficient conditions for the 

uniqueness of solutions are detailed. 

 

10.4.1 Properties 

We begin by providing two important properties of the fixed-point function 𝑭. In Lemma 1 we establish the 

continuity property of 𝑭. 

Lemma 1. 𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))) is a continuous function for 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏), ∀𝑖 ∈ 𝑅. 

Proof. From the definition (4.20) above it follows that �̅�𝐵𝐴𝑃𝑆 is continuous in 𝑷 for all 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏): 

 lim
𝑷→𝑷0

�̅�𝐵𝐴𝑃𝑆(𝑷) = �̅�𝐵𝐴𝑃𝑆(𝑷0), ∀𝑷0 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏). (4.29) 

If we let �̅� be the set of possible path size terms: 

�̅� = {�̅�𝐵𝐴𝑃𝑆 ∈ ℝ>0
�̅� : 0 < �̅�𝑖

𝐵𝐴𝑃𝑆 ≤ 1,∀𝑖 ∈ �̅�(𝒄; 𝜑)}, 

then from definition (4.19) above it follows that 𝑓𝑖 is continuous in �̅�𝐵𝐴𝑃𝑆 for all �̅�𝐵𝐴𝑃𝑆 ∈ �̅�: 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 4 ∎ 

Route 5 + 
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 lim
�̅�𝐵𝐴𝑃𝑆→�̅�0

𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆) = 𝑓𝑖(�̅�0), ∀�̅�0 ∈ �̅�, ∀𝑖 ∈ 𝑅. (4.30) 

And, from definition (4.18) above it follows that 𝐹𝑖 is continuous in 𝑥 for all 𝑥 ∈ [0,1]: 

 lim
𝑥→𝑥0

𝐹𝑖(𝑥) = 𝐹𝑖(𝑥0), ∀𝑥0 ∈ [0,1], ∀𝑖 ∈ 𝑅. (4.31) 

It then follows from (4.29), (4.30), and (4.31) that 𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))), as a composition of continuous 

functions, is itself continuous in 𝑷 for all 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏): 

lim
𝑷→𝑷0

𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷))) = 𝐹𝑖 (𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷0))) , ∀𝑷0 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏), ∀𝑖 ∈ 𝑅. 

∎ 

We now in Lemma 2 show that the domain of 𝑭 maps to itself. 

Lemma 2. 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))) maps 𝐷(�̅�(𝒄;𝜑),𝜏) into 𝐷(�̅�(𝒄;𝜑),𝜏). 

Proof. From definition (4.20) above it follows that the function �̅�𝐵𝐴𝑃𝑆 maps 𝐷(�̅�(𝒄;𝜑),𝜏) → �̅�, from definition 

(4.19) it follows that the function 𝒇 maps �̅� → 𝐷(�̅�(𝒄;𝜑)), and, from definition (4.18) it follows that the 

function 𝑭 maps 𝐷(�̅�(𝒄;𝜑)) → 𝐷(�̅�(𝒄;𝜑),𝜏). It thus follows that the composition of the functions �̅�𝐵𝐴𝑃𝑆, 𝒇, and 𝑭, 

𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))), maps 𝐷(�̅�(𝒄;𝜑),𝜏) → 𝐷(�̅�(𝒄;𝜑),𝜏). 

∎ 

 

10.4.2 Existence of Solutions 

Having established some properties regarding the BAPS model fixed-point function 𝑭, we consider the 

existence of BAPS model solutions. 

Proposition 1. At least one BAPS model fixed-point solution, 𝑷∗, to the system 𝑷 = 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))) is 

guaranteed to exist in 𝐷(�̅�(𝒄;𝜑),𝜏). 

Proof. 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))) is a continuous function by Lemma 1, which maps 𝐷(�̅�(𝒄;𝜑),𝜏) into 𝐷(�̅�(𝒄;𝜑),𝜏) by 

Lemma 2, and thus since 𝐷(�̅�(𝒄;𝜑),𝜏) is a compact convex set, and by Brouwer’s Fixed-Point Theorem at least 

one fixed-point solution, 𝑷∗, is guaranteed to exist for the system 𝑷 = 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷))) in 𝐷(�̅�(𝒄;𝜑),𝜏). 

∎ 

 

10.4.3 Uniqueness of Solutions 

Having proven that BAPS model solutions are guaranteed to exist, the next question is whether sufficient 

conditions exist which ensure BAPS model solutions are unique. In order to do this, we must first establish 

two key properties of 𝐽𝑭(𝑷; 𝛽) which is the Jacobian matrix of first partial derivatives of 𝑭 evaluated at 𝑷 and 

𝛽. 

Lemma 3. The maximum Jacobian matrix norm of 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷); 𝛽)) for all 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏) at 𝛽 = 0 is 

equal to zero: max(‖𝐽𝑭(𝑷; 0)‖:∀𝑷 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏)) = 0. 

Proof. From definitions (4.18) and (4.19) above it follows that: 

 

𝐹𝑖(𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷); 0)) 

=

{
 
 

 
 
𝜏 + (1 − �̅�𝜏) ∙ (

(exp(−𝜃(𝑐𝑖 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)

∑ (exp (−𝜃(𝑐𝑗 − 𝜑min(𝑐𝑙: 𝑙 ∈ 𝑅))) − 1)𝑗∈�̅�(𝒄;𝜑)

)      𝑖𝑓 𝑖 ∈ �̅�(𝒄; 𝜑)

                                                            0                                                                     𝑖𝑓 𝑖 ∉ �̅�(𝒄; 𝜑)

, ∀𝑖 ∈ 𝑅. 
(4.32) 

It then follows from (4.32) that: 
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𝜕𝐹𝑖(𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷); 0))

𝜕𝑃𝑙
= 0, ∀𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏), ∀𝑖, 𝑙 ∈ 𝑅. (4.33) 

It thus follows from (4.33) that ‖𝐽𝑭(𝑷; 0)‖ = 0, ∀𝑷 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏), and hence max(‖𝐽𝑭(𝑷; 0)‖: ∀𝑷 ∈

𝐷(�̅�(𝒄;𝜑),𝜏)) = 0. 

∎ 

Lemma 4. The maximum Jacobian matrix norm of 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷); 𝛽)), max(‖𝐽𝑭(𝑷;𝛽)‖:∀𝑷 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏)), 

is a continuous function for 𝛽 ∈ [0,∞). 

Proof. It follows from the definitions (4.18), (4.19), and (4.20) above that: 

 

𝜕𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
= 

{
 
 

 
 

(1 − 𝑁𝜏) ∙ (
(ℎ𝑖(−𝜃𝒄) − 1) ∙ (�̅�𝑖

𝐵𝐴𝑃𝑆(𝑷))
𝛽

∑ (ℎ𝑗(−𝜃𝒄) − 1) ∙ (�̅�𝑗
𝐵𝐴𝑃𝑆(𝑷))

𝛽

𝑗∈�̅�(𝒄;𝜑)

) ∙

(

 
 𝛽

𝜕�̅�𝑖
𝐵𝐴𝑃𝑆(𝑷)
𝜕𝑃𝑙

�̅�𝑖
𝐵𝐴𝑃𝑆(𝑷)

−
∑ 𝛽(ℎ𝑗(−𝜃𝒄) − 1)

𝜕�̅�𝑗
𝐵𝐴𝑃𝑆(𝑷)

𝜕𝑃𝑙
(�̅�𝑗

𝐵𝐴𝑃𝑆(𝑷))
𝛽−1

𝑗∈�̅�(𝒄;𝜑)

∑ (ℎ𝑗(−𝜃𝒄) − 1) ∙ (�̅�𝑗
𝐵𝐴𝑃𝑆(𝑷))

𝛽

𝑗∈�̅�(𝒄;𝜑)

)

 
 
     𝑖𝑓 𝑖, 𝑙 ∈ �̅�(𝒄; 𝜑)

                                                                                                          0                                                                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

(4.34) 

∀𝑖, 𝑙 ∈ 𝑅, 

 
𝜕�̅�𝑖

𝐵𝐴𝑃𝑆(𝑷)

𝜕𝑃𝑖
=∑

𝑡𝑎
𝑐𝑖
(
∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑);𝑘≠𝑖

(∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑) )
2)

𝑎∈𝐴𝑖

, ∀𝑖 ∈ �̅�(𝒄; 𝜑), (4.35) 

and, 

 
𝜕�̅�𝑖

𝐵𝐴𝑃𝑆(𝑷)

𝜕𝑃𝑙
= {

−∑
𝑡𝑎
𝑐𝑖

𝑃𝑖𝛿𝑎,𝑙

(∑ 𝑃𝑘𝛿𝑎,𝑘𝑘∈�̅�(𝒄;𝜑) )
2

𝑎∈𝐴𝑖

     𝑖𝑓 𝑙 ∈ �̅�(𝒄; 𝜑)

                           0                                  𝑖𝑓 𝑙 ∉ �̅�(𝒄; 𝜑)

, (4.36) 

∀𝑖 ∈ �̅�(𝒄; 𝜑), 𝑙 ∈ 𝑅, 𝑙 ≠ 𝑖. 

From the definitions (4.35) and (4.36) above it follows that 
𝜕�̅�𝐵𝐴𝑃𝑆(𝑷)

𝜕𝑷
 is continuous in 𝑷 for all 𝑷 ∈

𝐷(�̅�(𝒄;𝜑),𝜏): 
 

 

 lim
𝑷→𝑷0

𝜕�̅�𝐵𝐴𝑃𝑆(𝑷)

𝜕𝑷
=
𝜕�̅�𝐵𝐴𝑃𝑆(𝑷0)

𝜕𝑷
, ∀𝑷0 ∈ 𝐷

(�̅�(𝒄;𝜑),𝜏). (4.37) 

It then follows from (4.29) and (4.37) that 
𝜕𝐹𝑖(𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
 as defined in (4.34), being a composition of 

continuous functions, is itself continuous in 𝑷 for all 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏): 

lim
𝑷→𝑷0

𝜕𝐹𝑖 (𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
=
𝜕𝐹𝑖 (𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷0)))

𝜕𝑃𝑙
, ∀𝑷0 ∈ 𝐷

(�̅�(𝒄;𝜑),𝜏), ∀𝑖, 𝑙 ∈ 𝑅. 

Since 
𝜕𝐹𝑖(𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷)))

𝜕𝑃𝑙
 is a continuous function for 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏), ∀𝑖, 𝑙 ∈ 𝑅, 

𝜕𝐹𝑖(𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷);𝛽))

𝜕𝑃𝑙
 is also a 

continuous function for 𝛽 ∈ [0,∞), ∀𝑖, 𝑙 ∈ 𝑅: 

lim
𝛽→𝛽0

(
𝜕𝐹𝑖(𝑓𝑖(�̅�

𝐵𝐴𝑃𝑆(𝑷); 𝛽))

𝜕𝑃𝑙
 ) =

𝜕𝐹𝑖(𝑓𝑖(�̅�
𝐵𝐴𝑃𝑆(𝑷); 𝛽0))

𝜕𝑃𝑙
 , ∀𝛽0 ∈ [0,∞), ∀𝑖, 𝑙 ∈ 𝑅. 

Hence, since max(‖𝐽𝑭(𝑷; 𝛽)‖:∀𝑷 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏)) is a composition of continuous functions then it itself is a 

continuous function for 𝛽 ∈ [0,∞):  
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lim
𝛽→𝛽0

(max(‖𝐽𝑭(𝑷; 𝛽)‖: ∀𝑷 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏))) = max(‖𝐽𝑭(𝑷;𝛽0)‖:∀𝑷 ∈ 𝐷

(�̅�(𝒄;𝜑),𝜏)) , ∀𝛽0 ∈ [0,∞). 

∎ 

These two key properties of 𝐽𝑭(𝑷; 𝛽) allow us to establish conditions for the uniqueness of solutions. 

Proposition 2. There always exist values of 𝑏 > 0 such that when the 𝛽 parameter is within the range 0 ≤
𝛽 ≤ 𝑏, there are unique BAPS model fixed-point solutions, 𝑷∗, to the system 𝑷 = 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷); 𝛽)) in 

𝐷(�̅�(𝒄;𝜑),𝜏).  

Proof. 𝑭 is a contraction mapping on the domain 𝐷(�̅�(𝒄;𝜑),𝜏) if: 

a) 𝑭 maps 𝐷(�̅�(𝒄;𝜑),𝜏) into itself, so 𝑭(𝒇(�̅�𝐵𝐴𝑃𝑆(𝑷0); 𝛽)) ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏), ∀𝑷0 ∈ 𝐷

(�̅�(𝒄;𝜑),𝜏), and 

b) There exists a constant 0 ≤ 𝜎 < 1 such that: 

‖𝐽𝑭(𝑷; 𝛽)‖ ≤ 𝜎, ∀𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏), 

where 𝐽𝑭(𝑷;𝛽) is the Jacobian matrix of first partial derivatives of 𝑭 evaluated at 𝑷. 

If the link cost vector 𝒕 is fixed (and thus the route cost vector 𝒄 is fixed), and 𝜃, 𝜑 are fixed, then for any 

given 𝛽, if 𝑭 is a contraction mapping, then since 𝐷(�̅�(𝒄;𝜑),𝜏) is a compact convex set, and by Lemma 1, 

Lemma 2, and the Contraction Mapping Theorem, 𝑭 emits a unique fixed-point solution 𝑷∗ ∈ 𝐷(�̅�(𝒄;𝜑),𝜏).  
It remains to establish the conditions under which 𝑭 is a contraction mapping. Since by Lemma 3 the 

maximum Jacobian matrix norm of 𝑭 for all 𝑷 ∈ 𝐷(�̅�(𝒄;𝜑),𝜏) at 𝛽 = 0 is equal to zero (max(‖𝐽𝑭(𝑷; 0)‖:∀𝑷 ∈

𝐷(�̅�(𝒄;𝜑),𝜏)) = 0), and by Lemma 4 max(‖𝐽𝑮(𝑷; 𝛽)‖:∀𝑷 ∈ 𝐷
(�̅�(𝒄;𝜑),𝜏)) is a continuous function for 𝛽 ∈

[0,∞), then there must always exist values 𝑏 > 0 such that when 𝛽 is within the range 0 ≤ 𝛽 ≤ 𝑏 𝑭 is a 

contraction mapping and the sufficient conditions for unique BAPS model solutions are always met.  

∎ 

 

There are cases where the BAPS model has unique solutions for all 𝛽 > 0 (i.e. for all values of 𝑏), for 

example where all active routes are non-overlapping and the path size terms are consequently all 1 so that 𝐹𝑖 
collapses to (4.32), and hence in these cases a maximum value for 𝑏 does not exist. However, in most cases 

BAPS model solutions are not unique for all values of 𝛽 and in these cases a maximum value for 𝑏 exists 

(denoted 𝑏𝑚𝑎𝑥) such that Proposition 2 holds. However, Proposition 2 is only a sufficient condition for unique 

BAPS model solutions and solutions are not necessarily non-unique for 𝛽 > 𝑏𝑚𝑎𝑥. In Section 10.5 below we 

demonstrate how the true maximum range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥 for which BAPS model solutions are unique can be 

estimated. 

 

10.5 Appendix E – Satisfying the Desired Properties for a BPS Model 

In this section we discuss/demonstrate how the BBPS and BAPS models satisfy the desired properties for a 

BPS model established in Appendix C. 

 

10.5.1 Desired Property 1 – Consistent Definitions of Unrealistic Routes 

Property: Routes defined as unrealistic by the choice model (assigned zero choice probabilities) should have 

zero path size contributions, and vice versa. 

The BBPS and BAPS models both satisfy Desired Property 1 since the proposed BPS model form stipulates 

that a route has both a zero choice probability and zero path size contributions if and only if it has a travel cost 

above the bound. This is demonstrated in Section 10.5.3 below. 

 

10.5.2 Desired Property 2 – Well-Defined Functions  

Property: The model functions should be well-defined across their domain. 

The BBPS and BAPS models both satisfy Desired Property 2, which, specifically, is established so that 

occurrences of 
0

0
 in the path size terms / ln(0) within the route utilities are avoided. Generally, the path size 

correction factor for route 𝑖 ∈ 𝑅 is 𝜅𝑖 = 𝛽 ln(𝛾𝑖), and the path size term of route 𝑖 ∈ 𝑅 is defined as follows: 
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𝛾𝑖 =∑
𝑡𝑎
𝑐𝑖

𝑊𝑖

∑ 𝑊𝑘𝛿𝑎,𝑘𝑘∈𝑅𝑎∈𝐴𝑖

, 

where 𝑊𝑘 is the path size contribution weighting of route 𝑘 ∈ 𝑅. If allowing for the weightings to be zero as 

to eliminate contributions, then 
0

0
 occurs when 𝑊𝑖 = ∑ 𝑊𝑘𝛿𝑎,𝑘𝑘∈𝑅 = 0, and 𝛾𝑖 = 0 occurs (resulting in ln(0)) 

when 𝑊𝑖 = 0 and ∑ 𝑊𝑘𝛿𝑎,𝑘𝑘∈𝑅;𝑘≠𝑖 > 0. Two key features of the proposed BPS model form – of which the 

BBPS and BAPS model adopt – are that: a) only the realistic routes have path size terms; and, b) the realistic 

route path size terms only consider the path size contributions of other realistic routes. These two features 

ensure that the proposed BPS model form has well-defined functions. The form stipulates that the realistic 

routes are those which have a travel cost less than the bound (𝜑 times the cost on the cheapest route), and that 

the path size contribution weightings of these routes are non-zero. The proposed BPS model path size term 

definition in (4.7) thus only considers the path size contribution weightings of routes 𝑘 ∈ 𝑅 that have costs 

below the bound (routes 𝑘 ∈ �̅�(𝒄; 𝜑)), since it is known that these are the realistic routes and have non-zero 

weightings, and hence occurrences of 
0

0
 are avoided. Moreover, since path size terms are only defined for 

realistic routes where 𝑊𝑖 > 0, occurrences of 𝛾𝑖 = 0 and thus ln(0) are avoided, although (4.7) precludes 

occurrences of ln(𝛾𝑖) regardless. 

 

10.5.3 Desired Property 3 – Internal Consistency 

Property: The model should be internally consistent, i.e. there is a consistent assessment of the feasibility of 

routes for both the probability relation and the path size contribution factors. 

The BAPS model satisfies Desired Property 3 since the BAPS model path size contribution factors assess the 

feasibility of routes according to their route choice probability, and hence the model is internally consistent. 

The BBPS model is not internally consistent, however, since the contribution factors assess routes according 

to their travel cost, with no consideration of distinctiveness, and hence Desired Property 3 is not satisfied. 

To demonstrate, consider example network 4 in Fig. 4.25A. Fig. 4.29A-B display the example network 4 

BBPS model 𝜆 = 8 and BAPS model choice probabilities, respectively, as 𝜐 is increased from 0.5 to 3, 𝜃 =
𝛽 = 1, 𝜑 = 2.5. As Fig. 4.29B shows for the BAPS model, as the travel cost of Route 1 increases, its choice 

probability and consequently path size contribution to Route 2 decreases. As the cost of Route 1 approaches 

the bound, Route 1 approaches zero choice probability / path size contribution. When 𝜐 = 2, the travel cost of 

Route 1 is exactly 2.5 times the cost on the cheapest routes (Routes 2&3), and hence Route 1 is assigned zero 

choice probability, and its path size contribution is eliminated. In Fig. 4.29A, however, for the BBPS model, 

the large 𝜆 value accentuates the travel cost differences and the contribution of Route 1 to Route 2 diminishes 

to zero well before the cost of Route 1 reaches the bound and obtains zero probability. 

  

Fig. 4.29. Example network 4: Route choice probabilities for increasing 𝜐 (𝜃 = 𝛽 = 1, 𝜑 = 2.5). A: BBPS model, 𝜆 = 8. B: BAPS 

model. 

 

A B 

Route 1 × 

Route 2 ▲ 

Route 3  

Route 1 × 

Route 2 ▲ 

Route 3  
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10.5.4 Desired Property 4 – Uniqueness 

Property: Route choice probability solutions are inter-active-choice-set unique (where there is only one 

active choice set in which solutions exist), and conditions can be established for intra-active-choice-set 

uniqueness (where for a given active choice set there is only one solution). 

For the proposed BPS model form, there is only one active choice set in which solutions exist: the zero choice 

probability routes are exactly the routes with travel costs greater than or equal to the bound, and, routes with 

travel costs below the bound will receive non-zero choice probabilities. This is in contrast to the option 2&3 

BPS models in Section 10.1.2 where there are multiple active choice sets in which solutions exist. BBPS & 

BAPS model choice probability solutions are thus inter-active-choice-set unique, and, since the BBPS model 

is closed-form, solutions are also intra-active-choice-set unique. BAPS model choice probability solutions are 

however not intra-active-choice-set unique, though conditions exist under which solutions are.  

Duncan et al (2020) demonstrate how APSL choice probability solutions are unique for 𝛽 in the range 

0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥. A similar range exists for the BAPS model. We shall show here: a) that multiple BAPS model 

solutions can exist; b) that there is a range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥 for 𝛽 in which solutions are unique; and, c) how 

𝛽𝑚𝑎𝑥 can be estimated. To do this, we utilise the same method to that described in Section 4.4 of Duncan et al 

(2020) for the APSL model. 𝛽𝑚𝑎𝑥 is estimated by plotting trajectories of BAPS model solutions for varying 𝛽, 

and identifying where a unique trajectory of solutions ends and multiple trajectories begin. A simple method 

for obtaining trajectories of BAPS model solutions is as follows: 

Step 1. Identify a suitably large value for 𝛽. 

Step 2. Solve the BAPS model fixed-point system for this large 𝛽 with a randomly generated initial 

condition (see Section 5.2.2). 

Step 3. Decrement 𝛽 and obtain the next BAPS model solution with initial condition set as the 

solution for the previous 𝛽. 

Step 4. Continue until 𝛽 = 0. 

By plotting the choice probabilities at each decremented 𝛽, and repeating this method several times, one can 

determine where non-unique solution trajectories end and hence estimate 𝛽𝑚𝑎𝑥. If after several repetitions 

(with different randomly generated initial conditions) only a single trajectory of solutions is shown, then the 

initial large 𝛽 value is increased. We illustrate the approach graphically, but there is no need to draw graphs 

for general networks. One can instead observe the choice probability values, where a finer grained decrement 

of 𝛽 will provide a more accurate estimation of 𝛽𝑚𝑎𝑥. 

To demonstrate, consider again example network 5 in Fig. 4.27; Fig. 4.30A-B display trajectories of 

BAPS model solutions as the 𝛽 parameter is varied for 𝜑 = 7 and 𝜑 = 2.5, respectively, with 𝜃 = 1. 𝛽 was 

decremented by 0.01, and the initial large 𝛽 values were 𝛽 = 1.5 for Fig. 4.30A and 𝛽 = 10 for Fig. 4.30B. 

The solution trajectory plotting was repeated until multiple clear trajectories were shown. As shown, there is a 

unique trajectory of choice probability solutions up until 𝛽 = 𝛽𝑚𝑎𝑥 where there then becomes multiple 

trajectories. The estimated 𝛽𝑚𝑎𝑥 values are 0.97 for Fig. 4.30A and 4.61 for Fig. 4.30B. 

  

Fig. 4.30. Example network 5: Trajectories of BAPS model choice probability solutions as 𝛽 is varied (𝜃 = 1). A: 𝜑 = 7. B: 𝜑 = 2.5. 
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10.5.5 Desired Property 5 – Continuity 

Property: The choice probability function is continuous. 

The BBPS model has a continuous choice probability function: it is closed-form, and as the cost of a route 

approaches the bound from below, its choice probability and path size contributions approach zero, and meet 

exactly at zero. While the modified BAPS model formulation is known to be discontinuous, the standard 

BAPS model formulation has a continuous choice probability function (if assumed solutions always exist), 

and the modified version approximates the standard version, thus approximating continuity. Despite having 

similar path size terms, the standard BAPS model formulation does not suffer from the same discontinuity 

issue as the option 3 BPS model in Section 10.1. Whereas with the option 3 model the feature that is bounded 

(route utility) varies as 𝜑 varies, the feature that is bounded with the BAPS model (route cost) is constant for 

all 𝜑. As a consequence, choice probabilities / path size contributions approach zero as routes approach the 

bound from below, and meet exactly at zero. To demonstrate, consider example network 5 in Fig. 4.27; Fig. 

4.31A-B display the trajectories of BBPS(λ=θ) and BAPS model choice probability solutions, respectively, as 𝜑 

is varied, 𝜃 = 𝛽 = 1. As Fig. 4.31A-B show, as the bound decreases and the route costs approach the bound 

from below, the choice probabilities approach zero and meet zero at the bound. Since the path size 

contributions also approach zero as the route costs approach the bound, then there is no adjustment amongst 

the active route probabilities once a route becomes inactive and hence the choice probability functions are 

continuous in 𝜑, and thus travel cost (as shown in Fig. 4.29). 

  

Fig. 4.31. Example network 5: Route choice probabilities for varying 𝜑 (𝜃 = 𝛽 = 1). A: BBPS(λ=θ) model. B: BAPS model. 
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Abstract 

The Bounded Path Size (BPS) route choice model form, as introduced in Duncan et al (2021b), offers a 

theoretically consistent and practical approach to dealing with both route overlap and unrealistic routes. It 

captures correlations between overlapping routes by including correction terms within the probability 

relations, and has a consistent criterion for assigning zero choice probabilities to unrealistic routes while 

eliminating their path size contributions. Two BPS models are proposed: one that is closed-form and another 

expressed as a fixed-point problem. This paper establishes Stochastic User Equilibrium (SUE) conditions for 

these BPS models, where the choice sets of realistic routes are equilibrated along with the route flows. SUE 

solution existence is proven for the closed-form BPS model. A generic algorithm is proposed for solving BPS 

SUE models, where the realistic route choice sets are equilibrated from a master pre-generated set of routes. 

For the BPS SUE algorithm solving the fixed-point BPS model, we show how the potentially onerous 

requirement of solving fixed-point problems to compute choice probabilities can be circumvented, by 

harnessing the relationship between choice probability and route flow proportion in SUE context. This allows 

one to trade-off the accuracy of the fixed-point probabilities (and thus computation times of each iteration) 

with rate of SUE convergence. Numerical experiments on the Sioux Falls and Winnipeg networks show that 

the BPS SUE models can be solved in feasible computation times compared to non-bounded versions, while 

providing the potential for significantly improved robustness to the adopted master route choice set. Solution 

uniqueness for the fixed-point BPS SUE model is explored numerically where results suggest that uniqueness 

conditions exist. 

 

Key Words: bounded path size, stochastic user equilibrium, solution algorithm, fixed-point, convergence, 

equilibrated choice sets 

1.  Introduction 
The Stochastic User Equilibrium (SUE) traffic assignment model proposed by Daganzo & Sheffi (1977) is a 

well-known approach for investigating the behaviours of travellers on congested road networks. SUE relaxes 

the perfect information assumption of the Deterministic User Equilibrium model by supposing that route 
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choice is based on costs that include stochastic terms. This accounts for the differing perceptions travellers 

have of the attractiveness of routes. Two specific challenges for SUE modelling are: 1) capturing correlations 

between overlapping routes, and 2) dealing with unrealistic routes. In this paper, we develop a new SUE 

modelling approach that addresses both of these challenges in a theoretically consistent, robust, and 

mathematically well-defined way, and demonstrate its computational feasibility on large-scale networks. To 

set the background for the research, we discuss existing SUE modelling approaches for 1) and 2) below. 

When developing a correlation-based route choice model for SUE, there is a trade-off: accurately 

capturing route correlation in a behaviourally realistic way requires a more complex route choice model, but 

this results in computational challenges for solving for SUE (e.g. long computation times, difficulties 

measuring convergence). Different stochastic route cost terms proposed in the literature give rise to three 

general types of correlation-based route choice models that have been applied to SUE: GEV structure models 

(e.g. Cross-Nested Logit, Generalised Nested Logit, Paired Combinatorial Logit), simulation models (e.g. 

Multinomial Probit, Multinomial Gammit), and correction term models (e.g. C-Logit, Path Size Logit (PSL), 

Path Size Weibit, Path Size Hybrid). For a detailed review of correlation-based route choice models, with 

literature references, see Duncan et al (2020, 2021b), and for a detailed review of SUE applications of 

correlation-based models, with literature references, see Duncan et al (2021a). We briefly discuss here, 

without the literature references, the key characteristics and strengths/weaknesses of the different correlation-

based SUE model categories.  

GEV structure models use a multi-level tree structure to capture the similarity among routes through the 

random error component of the utility function. This means that despite having closed-form probability 

expressions, due to their multi-level tree structure the choice probabilities and in particular Mathematical 

Programming (MP) formulations are complex to compute, where the computational burden escalates 

significantly as the scale of network / choice set sizes increase. Simulation models capture route correlation 

implicitly, as the similarity between each pair of routes is accounted for by allowing for covariance between 

the error terms. The issue for these models is that they do not have closed-form probability expressions, and 

so evaluating the route choice probabilities requires either Monte Carlo simulation or alternative methods, all 

of which are computationally burdensome. Correction term models add correction terms to the deterministic 

utilities / probability relations to adjust the choice probabilities in order to capture route correlations. Their 

main attraction is that they have simple closed-form expressions, meaning the route choice probabilities and 

MP formulations are generally easy and quick to compute; however, more complex models can capture 

correlations more accurately. 

Upon selection of which correlation-based SUE model to employ in large-scale network applications, one 

must compare the anticipated accuracy of results with the computational burden and/or convergence of 

applicable solution algorithms. Simulation SUE models are attractive behaviourally due to their ability to 

accurately capture route correlations. However, due to the random nature in which the search direction is 

obtained in typical simulation-based algorithms, there are difficulties in suitably measuring flow convergence. 

Moreover, numerous studies have found convergence very slow on large-scale networks, while there are also 

difficulties in accurately computing small probabilities/flows. GEV structure and correction term models do 

not require random simulation to compute choice probabilities, and search directions can be computed 

exactly. This means that convergence can be suitably measured, and more optimal step-size schemes / 

algorithms can be developed for better convergence. As discussed above, due to their increasing 

computational burden as network scale increases, there are questions over the suitability of GEV structure 

models for SUE on large-scale networks, while in Duncan et al (2020b), we discuss internal consistency 

issues. Correction term models, although are typically less accurate in capturing route correlations, are more 

computationally practical and are regularly applied to SUE on large-scale networks. 

Historically, SUE models – correlation-based and in general – have had a theoretical need to enumerate 

the universal set of routes, however nonsensical they may be (Daganzo & Sheffi, 1977). This is behaviourally 

unrealistic and computationally infeasible, as the set contains millions of routes even in medium-sized 

networks (Watling et al, 2015; Rasmussen et al, 2015), the majority of which are very long and should be 

considered unrealistic. The typical approach for dealing with this is to employ some kind of heuristic method 

that attempts to explicitly generate a route choice set containing just the routes considered realistic. This 

approach leads to theoretical inconsistencies however, since the route generation criteria is not consistent with 

the calculation of the flows among generated routes. Moreover, generating the exact choice sets of realistic 

routes is very difficult to do, especially on large-scale networks, and this problematic for many correlation-
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based SUE models as many are not choice set robust (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming, 

2002; Ben-Akiva & Bierlaire, 1999; Bekhor et al, 2008; Duncan et al, 2020,2021b). For simulation SUE 

models, typical solution methods do not require explicit route generation and thus the accuracy of results is 

not dependent upon the choice sets generated, although the routes generated may vary from different 

algorithm runs. 

Recent years have seen the emergence of some promising SUE approaches for dealing with unrealistic 

routes in a consistent way. Watling et al (2015) and Rasmussen et al (2015) develop a Restricted Stochastic 

User Equilibrium approach whereby the choice set of used routes is determined by some explicit constraint 

that is dependent on the equilibrium solution. Rasmussen et al (2015) further extend the approach to include a 

second restriction, determined partly by an exogenously defined cost threshold. PSL correction terms are 

added to both of these approaches to also deal with the route overlap problem. The disadvantage with these 

approaches, however, is that equilibrium solutions are not guaranteed to exist, and even in cases where 

solutions do exist, there is no guarantee of the uniqueness of the solution. This lack of theoretical guarantee of 

existence and uniqueness is a major price to pay when one considers the typical use of such models in policy 

testing, meaning that one cannot guarantee to attribute a unique forecasted benefit to any tested measure. 

Furthermore, the lack of a mathematically well-defined underlying route choice model with a continuous 

choice probability distribution means that the approach is not robust (i.e. potentially sensitive to small changes 

to network/model specifications). 

Motivated by the desire to develop an SUE model that consistently addresses unrealistic routes but has 

guaranteed existence and uniqueness of solutions, as well as a mathematically well-defined underlying route 

choice model, Watling et al (2018) formulate the Bounded Choice Model (BCM), and consequently Bounded 

SUE. The BCM has a consistent criterion for determining restricted choice sets of feasible routes, and route 

choice probability: a bound is applied to the difference in random utility between each given route and an 

imaginary reference route alternative, so that routes only receive a non-zero choice probability if the 

difference between its random utility and the random utility of the reference alternative is within the bound. 

Furthermore, the probability each route is chosen relates to the odds associated with choosing each alternative 

versus the reference alternative. A special case of the BCM is where the reference alternative is that with the 

maximum deterministic utility i.e. the route with the cheapest generalised travel cost, so that a route only 

receives a non-zero probability if its cost is within some bound of the cheapest route. 

The BCM, however, does not account for route correlations. To address this, in Duncan et al (2021b), our 

own previous work, we considered the integration of a correlation-based route choice model with the BCM. 

Upon selection of which correlation-based model to adopt, we had some requirements: real-life application of 

a route choice model involves estimating the model parameters, and we thus considered it important that the 

proposed model could be successfully estimated, and moreover, that it would be computationally feasible to 

do so (as well as apply it) on large-scale networks. As we discussed, there are computational and estimation 

concerns that raise questions whether GEV structure and simulation models may satisfy these requirements. 

Due to the comparatively low computational cost and the relative ease in obtaining reasonable estimates for 

parameters, we thus chose to explore the integration of correction term models with the BCM. 

The real-life application of a route choice model on congested road networks involves applying it to SUE, 

and thus, although it was not discussed in the paper, our other requirement was that the proposed model would 

be suitable for SUE on large-scale networks. As discussed above, and demonstrated in Duncan et al (2021a), 

there are also questions over the suitability of GEV structure and simulation models for large-scale SUE 

applications, while correction term models are suitable. Furthermore, although it is always desirable for a 

route choice model to be mathematically well-defined, this is essential for SUE application, and thus although 

it was not explicitly discussed in the paper as for SUE, it was important the proposed model was well-defined.  

Inspired by existing research on dealing with unrealistic routes for the PSL model (e.g. Generalised PSL 

(Ramming, 2002), Adaptive PSL (APSL) (Duncan et al, 2020)), we chose to pursue integration of PSL model 

concepts with the BCM. In the paper, we consequently derived a mathematically well-defined Bounded Path 

Size (BPS) model form that utilises a consistent criterion for assigning zero probabilities to unrealistic routes 

while eliminating their path size contributions. Two BPS models were proposed: one that is closed-form, and 

another expressed as a fixed-point problem.  

In this paper, we investigate the application of these BPS models to SUE. For the fixed-point BPS model, 

solving the choice probabilities requires a fixed-point algorithm to compute the solution. This has the potential 

to be computationally burdensome in large-scale networks even when the travel costs are fixed. However, as 
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we explore in this study, the requirement of solving fixed-point problems to compute the probabilities can be 

circumvented in SUE application, since at equilibrium the route flow proportions and choice probabilities 

equate. In an analogous way to that described/explored for the APSL SUE model in Duncan et al (2021a), the 

useful relationship between choice probabilities and route flow proportions in SUE context allows for a 

considerable flexibility in solving the fixed-point BPS SUE model, where one can trade-off the accuracy of 

the probabilities (and thus computation times of each iteration) with rate of SUE convergence. 

The structure of the paper is as follows. In Section 2 we introduce congested network notation as well as 

provide definitions of relevant SUE models. In Section 3 we establish SUE conditions for BPS models and 

address solution existence/uniqueness. In Section 4 we detail a solution algorithm, which has two variants for 

cases where there are and are not approximated or actual pre-generated universal choice sets. In Section 5 we 

conduct numerical experiments to assess computational performance, compare flow results, and investigate 

BPS SUE solution uniqueness. Section 6 concludes the paper. 

2.  Notation & Model Definitions 

2.1 Congested Network Notation 

A road network consists of link set 𝐴 and 𝑚 = 1,… ,𝑀 OD movements. 𝑅𝑚 is the choice set of all simple 

routes (no cycles) for OD movement 𝑚 of size 𝑁𝑚 = |𝑅𝑚|, where 𝑁 = ∑ 𝑁𝑚
𝑀
𝑚=1  is the total number of 

routes. 𝐴𝑚,𝑖 ⊆ 𝐴 is the set of links belonging to route 𝑖 ∈ 𝑅𝑚, and 𝛿𝑎,𝑚,𝑖 = {
1     𝑖𝑓 𝑎 ∈ 𝐴𝑚,𝑖
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

.  

The travel demand for OD movement 𝑚 is 𝑞𝑚 > 0, and 𝑸𝑚 is the 𝑁𝑚 × 𝑁𝑚 diagonal matrix of the travel 

demand for OD movement 𝑚 (i.e. with 𝑞𝑚 on each diagonal element). The flow on route 𝑖 ∈ 𝑅𝑚 is 𝑓𝑚,𝑖, and 

𝒇𝑚 is the 𝑁𝑚-length vector of route flows for OD movement 𝑚. 𝒇 is the 𝑁-length vector of all OD movement 

route flow vectors such that 𝒇 = (𝒇1, … 𝒇𝑀), where 𝑓𝑚,𝑖 refers to element number 𝑖 + ∑ 𝑁𝑘
𝑚−1
𝑘=1  in 𝒇. 𝐹 

denotes the set of all demand-feasible non-negative universal route flow vector solutions: 

𝐹 = {𝒇 ∈ ℝ+
𝑁: ∑ 𝑓𝑚,𝑖

𝑖∈𝑅𝑚

= 𝑞𝑚,𝑚 = 1,… ,𝑀}. 

Furthermore, 𝑥𝑎 denotes the flow on link 𝑎 ∈ 𝐴, and 𝒙 = (𝑥1, 𝑥2, … , 𝑥|𝐴|) is the vector of all link flows. 𝑋 

denotes the set of all demand-feasible non-negative link flow vectors: 

𝑋 = {𝒙 ∈ ℝ+
|𝐴|: ∑ ∑ 𝛿𝑎,𝑚,𝑖𝑓𝑚,𝑖

𝑖∈𝑅𝑚

𝑀

𝑚=1

= 𝑥𝑎 , ∀𝑎 ∈ 𝐴, 𝒇 ∈ 𝐹}. 

For link 𝑎 ∈ 𝐴 experiencing a flow of 𝑥𝑎, denote the generalised travel cost for that link as 𝑡𝑎(𝑥𝑎), where 

𝒕(𝒙) is the vector of all generalised link travel cost functions. In vector/matrix notation, let 𝒙 and 𝒇 be column 

vectors, and define 𝜟 as the |𝐴| × 𝑁-dimensional link-route incidence matrix. Then the relationship between 

link and route flows may be written as 𝒙 = 𝜟𝒇. Supposing that the travel cost for a route can be attained 

through summing up the total cost of its links, then the generalised travel cost for route 𝑖 ∈ 𝑅𝑚, 𝑐𝑚,𝑖, can be 

computed as follows: 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) = ∑ 𝑡𝑎(𝜟𝒇)𝑎∈𝐴𝑚,𝑖 , where 𝒄𝑚(𝒕(𝜟𝒇)) is the vector of generalised travel 

cost functions for OD movement 𝑚. 

Let the route choice probability for route 𝑖 ∈ 𝑅𝑚 be 𝑃𝑚,𝑖, where 𝑷𝑚 = (𝑃𝑚,1, 𝑃𝑚,2, … , 𝑃𝑚,𝑁𝑚) is the 

vector of route choice probabilities for OD movement 𝑚, and 𝐷𝑚 is the domain of possible route choice 

probability vectors for OD movement 𝑚, 𝑚 = 1,… ,𝑀. 

 

2.2 Path Size Logit SUE Models 

We briefly detail definitions of SUE for Path Size Logit models with flow-dependent path size terms here, we 

direct the reader to Duncan et al (2021a) for more details and solution methods. 

Path Size Logit models were developed to address the well-known deficiency of the Multinomial Logit 

(MNL) model in its inability to capture the correlation between routes. To do this, they include correction 

terms to penalise routes that share links with other routes, so that the deterministic utility of route 𝑖 ∈ 𝑅𝑚 is 
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𝑉𝑚,𝑖 = −𝜃𝑐𝑚,𝑖(𝒕) + 𝜅𝑚,𝑖, where 𝜃 > 0 is the Logit scaling parameter and 𝜅𝑚,𝑖 ≤ 0 is the correction term for 

route 𝑖 ∈ 𝑅𝑚. The choice probability for route 𝑖 ∈ 𝑅𝑚 is: 

𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝜿𝑚) =
𝑒−𝜃𝑐𝑚,𝑖(𝒕)+𝜅𝑚,𝑖

∑ 𝑒−𝜃𝑐𝑚,𝑗(𝒕)+𝜅𝑚,𝑗𝑗∈𝑅𝑚

. 

Path Size Logit correction terms adopt the form 𝜅𝑚,𝑖 = 𝛽 ln(𝛾𝑚,𝑖), where 𝛽 ≥ 0 is the path size scaling 

parameter, and 𝛾𝑚,𝑖 ∈ (0,1] is the path size term for route 𝑖 ∈ 𝑅𝑚. A distinct route with no shared links has a 

path size term equal to 1, resulting in no penalisation. Less distinct routes have smaller path size terms and 

incur greater penalisation. The path size terms are often based upon link lengths and thus 𝛾𝑚,𝑖 (in those cases) 

is not dependent upon the link/route generalised travel costs. However, this leads to internal inconsistency (see 

Duncan et al (2021a)), and in this study we base the path size terms upon on generalised link travel costs (i.e. 

𝛾𝑚,𝑖 = 𝛾𝑚,𝑖(𝒕)), which in SUE application are congested, flow-dependent costs. The choice probability for 

route 𝑖 ∈ 𝑅𝑚 is thus: 

 𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚(𝒕)) =
𝑒
−𝜃𝑐𝑚,𝑖(𝒕)+𝛽 ln(𝛾𝑚,𝑖(𝒕))

∑ 𝑒
−𝜃𝑐𝑚,𝑗(𝒕)+𝛽 ln(𝛾𝑚,𝑗(𝒕))

𝑗∈𝑅𝑚

=
(𝛾𝑚,𝑖(𝒕))

𝛽
𝑒−𝜃𝑐𝑚,𝑖(𝒕)

∑ (𝛾𝑚,𝑗(𝒕))
𝛽
𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚

. (5.1) 

The general form for the path size term is as follows: 

 
𝛾𝑚,𝑖(𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

1

∑ (
𝑊𝑚,𝑘

𝑊𝑚,𝑖
) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚

𝑎∈𝐴𝑚,𝑖

, 
(5.2) 

where 𝑊𝑚,𝑘 > 0 is the path size contribution weighting of route 𝑖 ∈ 𝑅𝑚 to path size terms (different for each 

model), so that the contribution of route 𝑘 ∈ 𝑅𝑚 to the path size term of route 𝑖 ∈ 𝑅𝑚 (the path size 

contribution factor) is 
𝑊𝑚,𝑘

𝑊𝑚,𝑖
. To dissect the path size term: each link 𝑎 in route 𝑖 ∈ 𝑅𝑚 is penalised (in terms of 

decreasing the path size term and hence the utility of the route) according to the number of routes in the 

choice set that also use that link (∑ 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚 ), where each contribution is weighted (i.e. 

∑ (
𝑊𝑚,𝑘

𝑊𝑚,𝑖
)𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚 ), and the significance of the penalisation is also weighted according to how prominent 

link 𝑎 is in route 𝑖 ∈ 𝑅𝑚, i.e. the cost of route 𝑎 in relation to the total cost of route 𝑖 ∈ 𝑅𝑚 (
𝑡𝑎

𝑐𝑚,𝑖(𝒕)
).  

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1999) proposes that 𝑊𝑚,𝑘 = 1 so that all 

routes contribute equally to path size terms. This is problematic, however, as the correction terms and thus the 

choice probabilities of realistic routes are affected by link sharing with unrealistic routes.  

To combat this, Ramming (2002) proposed the Generalised Path Size Logit (GPSL) model where 𝑊𝑚,𝑘 =

(𝑐𝑚,𝑘(𝒕))
−𝜆

 and routes contribute according to travel cost ratios, so that routes with excessively large travel 

costs have a diminished impact upon the correction terms of routes with small travel costs, and consequently 

the choice probabilities of those routes.  

Duncan et al (2020) reformulate the GPSL model (proposing the alternative GPSL model (GPSL′)) so 

that the contribution weighting resembles the probability relation, i.e. 𝑊𝑚,𝑘 = 𝑒
−𝜆𝑐𝑚,𝑘(𝒕). As they discuss, 

however, GPSL and GPSL′ are not internally consistent in how they define routes as being unrealistic: the 

path size terms consider only travel cost, whereas the route choice probability relation considers disutility 

including the correction term.  

To address this, the Adaptive Path Size Logit (APSL) model is proposed where 𝑊𝑚,𝑘 = 𝑃𝑚,𝑘 and routes 

contribute according to ratios of route choice probability. This ensures internal consistency, where routes 

defined as unrealistic by the path size terms – and consequently given reduced path size contributions – are 

exactly those with very low choice probabilities. Since the APSL path size contribution factors depend upon 

the route choice probabilities, the probability relation is an implicit function, naturally expressed as a fixed-

point problem. The APSL model is thus not closed-form and solving the choice probabilities requires a fixed-

point algorithm to compute the solution. Furthermore, in order to prove existence and uniqueness of solutions 

the APSL probability relation is modified from that in (5.1). See Duncan et al (2020) for more details on the 
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derivation and theoretical properties of the APSL model, as well as definitions and details of the other Path 

Size Logit models.  

SUE for a Path Size Logit model with flow-dependent path size terms can be formulated as follows: 

Path Size Logit model SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is an SUE solution for a Path Size Logit 

model iff the route flow vector for OD movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚(𝒕(𝜟𝒇))) , 𝑚 = 1,… ,𝑀, (5.3) 

where 𝑃𝑚,𝑖 and 𝛾𝑚,𝑖 are as in (5.1) and (5.2) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow 

vector 𝒇. 

 

For APSL SUE, the probabilities in (5.3) are fixed-point probabilities. As shown in Duncan et al (2021a), 

since the route choice probabilities and route flow proportions equate at SUE, the APSL path size contribution 

factors can be instead expressed in terms of route flow proportions, i.e. where 𝑊𝑚,𝑘 =
𝑓𝑚,𝑘

𝑞𝑚
. This underlying 

route choice model is denoted APSL′ and is closed-form. This alternative definition of APSL SUE is hence 

denoted APSL′ SUE, and APSL SUE and APSL′ SUE are equivalent for route flow vectors at SUE only. 

Since the APSL probabilities are fixed-point, and the APSL′ probabilities are closed-form, APSL SUE and 

APSL′ SUE have different computational performances: the increased computational burden involved in 

computing each iteration solving APSL SUE means that total computation times are long, while convergence 

is very slow for APSL′ SUE also resulting in longer total computation times. As explored in Duncan et al 

(2021a), one can trade-off the accuracy of APSL choice probabilities with rate of SUE convergence, and 

several techniques are developed that significantly improve total computation times. This manipulation of the 

APSL SUE model as well as the developed solution techniques are highly relevant for the SUE application of 

the fixed-point BPS model as detailed in Section 3.2. 

 

2.3 Bounded SUE 

Bounded SUE (BSUE) is derived with the Bounded Choice Model (BCM) as the underlying route choice 

model. In this subsection we briefly formulate the BCM, see Watling et al (2018) and Duncan et al (2021b) 

for more details on the derivation and theoretical properties of the model. The BCM proposes that a bound is 

applied to the difference in random utility between each given alternative and an imaginary reference 

alternative, so that an alternative only receives a non-zero choice probability if the difference between its 

random utility and the random utility of the reference alternative is within the bound. Furthermore, the 

probability each alternative is chosen relates to the odds associated with choosing each alternative versus the 

reference alternative. Watling et al (2018) consider a special case of the BCM where the reference alternative 

is the alternative with the maximum deterministic utility. While the application of the BCM can involve 

exerting an absolute bound upon the difference in utility from the maximum, (for example 25 units worse in 

deterministic utility), we consider in this paper exerting a relative bound upon the difference, i.e. where routes 

only receive a non-zero choice probability if they have a deterministic disutility less than 𝜑 times worse than 

the greatest route utility. If 𝑉𝑚,𝑖 < 0 is the deterministic disutility of alternative 𝑖 ∈ 𝑅𝑚, then the probability 

alternative 𝑖 ∈ 𝑅𝑚 is chosen under the BCM is: 

 𝑃𝑚,𝑖(𝑽𝑚) =
(ℎ𝑚,𝑖(𝑽𝑚) − 1)+

∑ (ℎ𝑚,𝑗(𝑽𝑚) − 1)+𝑗∈𝑅𝑚

, (5.4) 

where ℎ𝑚,𝑖(𝑽𝑚) = exp(𝑉𝑚,𝑖 − 𝜑max(𝑉𝑚,𝑘: 𝑘 ∈ 𝑅𝑚)), 𝜑 > 1 is the relative bound parameter to be 

estimated, and (∙)+ = max(0,∙). In a route choice context where the deterministic utility of route 𝑖 ∈ 𝑅𝑚 is 

given by 𝑉𝑚,𝑖 = −𝜃𝑐𝑚,𝑖, the probability of choosing route 𝑖 ∈ 𝑅𝑚 is: 

 𝑃𝑚,𝑖(𝒄𝑚(𝒕)) =
(ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1)+

∑ (ℎ𝑚,𝑗(−𝜃𝒄𝑚(𝒕)) − 1)+𝑗∈𝑅𝑚

, (5.5) 
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where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp(−𝜃𝑐𝑚,𝑖(𝒕) − 𝜑max(−𝜃𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) −

𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))). Thus, routes only receive a non-zero choice probability if they have a cost less 

than 𝜑 times the cost on the cheapest route, and the probability each route is chosen relates to the odds that 

that route has a cost within the bound. 

BSUE can be formulated as follows: 

BSUE: A universal route flow vector 𝒇∗ ∈ Ω is a BSUE solution iff the route flow vector for OD movement 

𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇))) , 𝑚 = 1,… ,𝑀, (5.6) 

where 𝑃𝑚,𝑖 is as in (5.5), respectively, for route 𝑖 ∈ 𝑅𝑚, given the universal route flow vector 𝒇. 

3.  Bounded Path Size Stochastic User Equilibrium Models 
The PSL model is problematic in that results are sensitive to unrealistic routes in the adopted choice sets. PSL 

variants such as GPSL, GPSL′, and APSL weight the contributions of routes to path size terms so that the 

negative impact that unrealistic routes have upon the corrections factors of realistic routes is reduced, and thus 

the choice probabilities of those routes. This technique, however, does not solve this problem entirely and 

only worsens in effectiveness as the choice sets are expanded and more unrealistic routes are included. 

Duncan et al (2021) investigate developing a path size route choice model that eliminates the path size 

contributions of unrealistic routes entirely, and once more, that removes all the negative effects of unrealistic 

routes, thereby fully solving the issue. 

To tackle this, the integration of PSL concepts with the BCM was explored. The BCM provides a 

consistent criterion for determining restricted choice sets of feasible routes and route choice probability, 

though route correlation is not considered. The natural form for a Bounded Path Size (BPS) choice model is 

derived from inserting path size choice model utilities into the BCM formula in (5.4). As Duncan et al (2021b) 

show, however, appropriately defining the path size contribution factors within the path size terms is 

problematic, as demonstrated with examples. A series of desired properties are consequently established for a 

mathematically well-defined BPS model formulation that utilises a consistent criterion for assigning zero 

choice probabilities to unrealistic routes while eliminating their path size contributions. 

Solving these challenges, an alternative form for a BPS model is proposed and two models are 

consequently formulated that adopt this form: the Bounded Bounded Path Size (BBPS) model and Bounded 

Adaptive Path Size (BAPS) model, which satisfy desired properties, as discussed/demonstrated. In this 

section, we provide SUE definitions for the BBPS & BAPS models, then address the existence and uniqueness 

of solutions. 

Just like the BCM, the BPS models propose that routes are defined as unrealistic if they have generalised 

travel costs greater than the cost bound, i.e. routes 𝑖 ∈ 𝑅𝑚 such that 𝑐𝑚,𝑖(𝒕) ≥ 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚), where 

𝜑 > 1 is the bound parameter. For a given setting of the link/route costs (and bound parameter), 

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) ⊆ 𝑅𝑚 is defined as the restricted choice set (for OD movement 𝑚) of all routes 𝑖 ∈ 𝑅𝑚 where 

𝑐𝑚,𝑖(𝒕) < 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚). �̅�𝑚 is the active choice set of the realistic/used routes that will receive 

non-zero probabilities. Unrealistic routes 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑) with costs above the bound receive zero choice 

probabilities.  

Where the BPS models differ from the BCM is with the inclusion of path size correction factors within 

the probability relation, to adjust the probabilities to capture route correlations. Moreover, the key behavioural 

feature of the BPS models is that route correlations are considered between only the routes defined as realistic. 

Thus, only the realistic routes 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑) have path size terms and contribute to / impact the path size 

terms of other realistic routes. Unrealistic routes 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑) do not have path size terms and do not 

contribute to / impact the path size terms of realistic routes.  

In SUE application, the travel costs are flow-dependent, and therefore the routes defined as (un)realistic 

depend upon the flows set. The restricted choice sets of realistic routes for the BPS models in SUE are thus 

equilibrated along with the route flows. The theoretical difference between the BBPS model and BAPS model 

is in how the path size contribution factors are formulated, as we discuss below. 
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3.1 Bounded Bounded Path Size SUE 

The BBPS model proposes that the path size contribution factors consider ratios of the odds that routes are 

within the bound. Given �̅�𝑚(𝒄𝑚(𝒕); 𝜑) for OD movement 𝑚, the BBPS model choice probability relation for 

route 𝑖 ∈ 𝑅𝑚 is: 

 

𝑃𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐵𝑃𝑆(𝒕))

=

{
 
 

 
 (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑖

𝐵𝐵𝑃𝑆(𝒕))
𝛽

∑ (ℎ𝑚,𝑗(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑗
𝐵𝐵𝑃𝑆(𝒕))

𝛽

𝑗∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)

    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

                                              0                                                  𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

, 
(5.7) 

where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))), and the path size term for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) is: 

 �̅�𝑚,𝑖
𝐵𝐵𝑃𝑆(𝒕) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

(ℎ𝑚,𝑖(−𝜆𝒄𝑚(𝒕)) − 1)

∑ (ℎ𝑚,𝑘(−𝜆𝒄𝑚(𝒕)) − 1)𝛿𝑎,𝑚,𝑘𝑘∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)𝑎∈𝐴𝑚,𝑖

. (5.8) 

𝜃 > 0 is the Logit scaling parameter, 𝛽 ≥ 0 is the path size scaling parameter, 𝜑 > 1 is the universal bound 

parameter, and 𝜆 > 0 is the path size contribution scaling parameter. 

The BBPS path size contribution weighting 𝑊𝑚,𝑘 = ℎ𝑚,𝑘(−𝜆𝒄𝑚(𝒕)) − 1 is stipulated as such so to 

satisfy the desired properties for a BPS model established in Duncan et al (2021b). This includes ensuring the 

choice probability function is continuous, which is vital for SUE application. As can be seen, when 𝜆 = 𝜃, 

𝑊𝑚,𝑘 matches the travel cost component in the BBPS model probability relation exactly, and thus choice 

probabilities and path size contributions tend towards zero concurrently and meet at zero. This ensures the 

smooth removal of a route from the active choice set as it’s travel cost is decreased below the bound. 

An additional path size contribution scaling parameter, 𝜆, is included, in the spirit of the GPSL and GPSL' 

models, to allow for the de-coupling of the scale of the model from the path size effect. Larger values of 𝜆 

accentuate the differences in cost within the contribution factors, so that the more expensive routes have more 

diminished (though still positive) contributions. In the same way that the GPSL′(𝜆=𝜃) model is developed, 

however, one can equate the travel cost scales setting by 𝜆 = 𝜃 – thus formulating the BBPS(λ=θ) model – to 

improve internal consistency and reduce the number of model parameters to estimate. In Duncan et al (2020) 

and Duncan et al (2021b), through theoretical and empirical analysis, the credibility of large 𝜆 values for 

BBPS/GPSL models is questioned. 

The attraction of the BBPS model is that it has a closed-form choice probability expression and hence 

route choice probability solutions are guaranteed to exist and be unique. The BBPS model is however not 

fully internally consistent since the path size contribution factors do not consider route distinctiveness, though 

consistency is improved by setting 𝜆 = 𝜃. 

The BBPS model approaches the GPSL′ model as 𝜑 → ∞, and thus the BBPS(λ=θ) model is also 

equivalent to the GPSL′(𝜆=𝜃) model in the limit as 𝜑 → ∞. This provides the BBPS model with a theoretical 

connection to the family of PSL models. The BBPS model is also equivalent to the BCM for 𝛽 = 0, which is 

equivalent to the MNL model in the limit as 𝜑 → ∞.  

BBPS SUE can be formulated as follows: 

BBPS SUE: A universal route flow vector 𝒇∗ ∈ Ω is a BBPS SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), �̅�𝑚
𝐵𝐵𝑃𝑆(𝒕(𝜟𝒇))) , 𝑚 = 1,… ,𝑀, (5.9) 

where 𝑃𝑚,𝑖 is as in (5.7) for route 𝑖 ∈ 𝑅𝑚 and �̅�𝑚,𝑖
𝐵𝐵𝑃𝑆 is as in (5.8) for route 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑), given the 

universal route flow vector 𝒇. 

 



Chapter 5. Formulation and solution of bounded path size stochastic user equilibrium models – 

consistently addressing route overlap and unrealistic routes 

193 

 

3.2 Bounded Adaptive Path Size SUE 

Like the APSL model, the BAPS model proposes that the path size contribution factors consider choice 

probability ratios, and as such BAPS SUE can also be defined in two different ways. 

 

3.2.1 Definition 1: BAPS SUE 

By adopting choice probability ratio path size contribution factors, the BAPS model has a consistent criterion 

for assigning zero choice probabilities to unrealistic routes, eliminating the path size contributions of 

unrealistic routes, and determining route choice probabilities and path size contributions (internally 

consistent). The BAPS model is, however, not closed-form and the probability relation is an implicit function, 

naturally expressed as a fixed-point problem. 

As discussed in more detail in Duncan et al (2021b), the standard formulation for the BAPS model is 

problematic, since the probability domain is not defined on a closed set, forcing difficulties proving the 

existence and uniqueness of solutions. To circumvent this, a modified version is formulated for which 

solutions are proven to exist and uniqueness conditions are established. The modified BAPS model 

formulation does not have a continuous probability distribution, but the standard formulation can be 

approximated to arbitrary precision, thus also approximating continuity. In practice the modified version is 

used and hence we formulate SUE conditions for this formulation. 

The modified BAPS formulation is defined as follows, see Duncan et al (2021b) for more details on the 

derivation and theoretical properties of the model. Given �̅�𝑚(𝒄𝑚(𝒕); 𝜑), the BAPS model route choice 

probabilities for OD movement 𝑚, 𝑷𝑚
∗ (𝒕), are a solution to the fixed-point problem 𝑷𝑚 =

𝒁𝑚 (𝒛𝑚(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))), given the link cost vector 𝒕, where: 

 

𝑍𝑚,𝑖 (𝑧𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚)))

= {
𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑧𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚

𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

                                      0                                                  𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)
, 

(5.10) 

 

 

𝑧𝑚,𝑖(𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))

=

{
 
 

 
 (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑖

𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))
𝛽

∑ (ℎ𝑚,𝑗(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑗
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚))

𝛽

𝑗∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)

    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

                                                   0                                                      𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

, 
(5.11) 

where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))), and the path size term for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) is: 

 �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆(𝒕, 𝑷𝑚) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

𝑃𝑚,𝑖
∑ 𝑃𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)𝑎∈𝐴𝑚,𝑖

, ∀𝑷𝑚 ∈ 𝐷(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚), (5.12) 

𝐷𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚)

= {𝑷𝑚 ∈ ℝ≥0
𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (�̅�𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑), 𝑎𝑛𝑑, 0 ≤ 𝑃𝑚,𝑖

≤ (1 − �̅�𝑚𝜏𝑚), ∀𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑),∑ 𝑃𝑚,𝑗
𝑁𝑚

𝑗=1
= 1}. 

The model parameters are 0 < 𝜏𝑚 ≤
1

�̅�𝑚
, 𝑚 = 1,… ,𝑀, 𝜃 > 0, 𝛽 ≥ 0, 𝜑 > 1, where 𝜏𝑚 is the perturbation 

parameter for OD movement 𝑚, which does not require estimating, but is introduced so that BAPS models 

solutions can be proven to exist and be unique. 𝑍𝑚,𝑖 in (5.10) is the probability adjustment function also 

introduced for existence and uniqueness proofs. 

As (5.12) shows, for a choice probability solution 𝑷𝑚
∗ , the contribution of used route 𝑘 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑) 

to the BAPS model path size term of used route 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑) is weighted according to the ratio of choice 
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probabilities between the routes (
𝑃𝑚,𝑘
∗

𝑃𝑚,𝑖
∗ ), and hence as a used route approaches zero choice probability its path 

size contributions approach zero, until it is considered unrealistic, where it then receives a zero choice 

probability and its path size contributions are eliminated completely. This ensures that in practice the choice 

probability function is continuous, (when setting arbitrarily small 𝜏𝑚 values, see Duncan et al (2021b) for 

details).  

The modified BAPS model formulation approaches the APSL model in the limit as 𝜑 → ∞, and is 

equivalent to the BCM for 𝛽 = 0, which is equivalent to the MNL model in the limit as 𝜑 → ∞. 

BAPS SUE can be formulated as follows: 

BAPS SUE: A universal route flow vector 𝒇∗ ∈ Ω is a BAPS SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚
∗ (𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (5.13) 

where 𝑷𝑚
∗  is a route choice probability solution for OD movement 𝑚 in 𝒀𝑚 to the fixed-point problem: 

 𝒀𝑚 = 𝒁𝑚 (𝒛𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), �̅�𝑚
𝐵𝐴𝑃𝑆(𝒕(𝜟𝒇), 𝒀𝑚))), (5.14) 

given the universal route flow vector 𝒇, where 𝑍𝑚,𝑖 and 𝑧𝑚,𝑖 are as in (5.10) and (5.11), respectively, for route 

𝑖 ∈ 𝑅𝑚, and �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆 is as in (5.12) for route 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑).  

 

3.2.2 Definition 2: BAPS′ SUE 

Like APSL SUE Definition 2 (APSL′ SUE), BAPS SUE Definition 2 (BAPS′ SUE) is derived indirectly by 

utilising a different underlying route choice model, that is equivalent to the BAPS model at SUE, but only at 

SUE. By the definition of SUE, the route flow proportions and route choice probabilities equate at 

equilibrium. Therefore, the BAPS′ choice model supposes that the path size contribution factors consider 

route flow proportion ratios, instead of choice probability.  

The BAPS′ model is defined as follows. Given �̅�𝑚(𝒄𝑚(𝒕);𝜑), the BAPS′ model choice probability 

relation for route 𝑖 ∈ 𝑅𝑚 is: 

 

𝑃𝑚,𝑖 (𝑧𝑚,𝑖 (𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆′(𝒕, 𝒇𝑚)))

= {
𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑧𝑚,𝑖 (𝒄𝑚(𝒕), �̅�𝑚

𝐵𝐴𝑃𝑆′(𝒕, 𝒇𝑚))     𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

                                       0                                                    𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)
, 

(5.15) 

 

 

𝑧𝑚,𝑖 (𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆′(𝒕, 𝒇𝑚))

=

{
 
 

 
 (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑖

𝐵𝐴𝑃𝑆′(𝒕, 𝒇𝑚))
𝛽

∑ (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑗
𝐵𝐴𝑃𝑆′(𝒕, 𝒇𝑚))

𝛽

𝑗∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)

    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

                                              0                                                           𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

, 
(5.16) 

where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))), and the path size term for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) is: 

 �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆′(𝒕, 𝒇𝑚) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

𝑓𝑚,𝑖
∑ 𝑓𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)𝑎∈𝐴𝑚,𝑖

, ∀𝒇𝑚 ∈ Ω𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚), (5.17) 
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Ω𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚)

= {𝒇𝑚 ∈ ℝ+
𝑁𝑚: 𝜏𝑚 ≤

𝑓𝑚,𝑖
𝑞𝑚

≤ (1 − (�̅�𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑), 𝑎𝑛𝑑, 0 ≤
𝑓𝑚,𝑖
𝑞𝑚

≤ (1 − �̅�𝑚𝜏𝑚), ∀𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕);𝜑), ∑ 𝑓𝑚,𝑖
𝑖∈𝑅𝑚

= 𝑞𝑚}. 

0 < 𝜏𝑚 ≤
1

�̅�𝑚
, 𝑚 = 1,… ,𝑀, 𝜃 > 0, 𝛽 ≥ 0, 𝜑 > 1. As shown in (5.17), the contribution of route 𝑘 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) to the path size term of route 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕);𝜑) is weighted according to the ratio of flow 

between the routes (
𝑓𝑚,𝑘

𝑓𝑚,𝑖
), and hence less feasible route alternatives with very low use/flow have a diminished 

contribution to the path size terms of more feasible routes with relatively high use/flow. 

The BAPS′ choice model is closed-form and hence choice probability solutions for a given flow vector 

are guaranteed to exist and be unique, assuming every route with a travel cost below the bound has a non-zero 

flow. Stipulating that the flows for OD movement 𝑚 𝒇𝑚 belong to the set Ω𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚) ensures that: a) 

routes with costs below the bound have a non-zero flow; b) routes with costs above the bound can have a zero 

flow; c) the route flows are demand-feasible; d) the path size contribution factors consider ratios of route flow 

proportion (where the demands 𝑞𝑚 cancel out), and, e) the BAPS′ model flow domain matches the BAPS 

model probability domain 𝐷𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚).  

BAPS′ SUE can be formulated as follows: 

BAPS′ SUE: Let Ω′ ⊆ Ω be the subset of demand-feasible universal route flow vectors 𝒇 that satisfy the 

following conditions: 

 𝜏𝑚 ≤
𝑓𝑚,𝑖
𝑞𝑚

≤ (1 − (�̅�𝑚 − 1)𝜏𝑚) ⇔ 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) < 𝜑min(𝑐𝑚,𝑙(𝒕(𝜟𝒇)): 𝑙 ∈ 𝑅𝑚) , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, (5.18) 

 

 𝑓𝑚,𝑖 = 0 ⇔ 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) ≥ 𝜑min(𝑐𝑚,𝑙(𝒕(𝜟𝒇)): 𝑙 ∈ 𝑅𝑚) , ∀𝑖 ∈ 𝑅𝑚,𝑚 = 1,… ,𝑀. (5.19) 

A universal route flow vector 𝒇∗ ∈ Ω′ is a BAPS′ SUE solution iff the route flow vector for OD movement 𝑚, 

𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒛𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚
𝐵𝐴𝑃𝑆′(𝒕(𝜟𝒇), 𝒇𝑚))) , 𝑚 = 1,… ,𝑀, (5.20) 

where 𝑃𝑚,𝑖 and 𝑧𝑚,𝑖 are as in (5.15) and (5.16), respectively, for route 𝑖 ∈ 𝑅𝑚, and �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆′ is as in (5.17) for 

route 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕(𝜟𝒇)); 𝜑). 

 

The feasible set of flows Ω′ for all OD movements prohibits route flow vectors that lead to routes having non-

zero flows and cost that violates the cost bound. This ensures that Ω𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑),𝜏𝑚) is satisfied for each OD 

movement 𝑚 = 1,… ,𝑀, where a route with a cost below the bound must have a non-zero flow (≥ 𝑞𝑚𝜏𝑚). 

The BAPS′ choice model is only internally consistent for flow distributions at SUE, since for all other 

flow distributions, the relative attractiveness of routes as defined in the path size contribution factors does not 

match the relative attractiveness in the probability relation. 

The BAPS′ choice model in (5.15)-(5.17) above is defined including the BAPS model adjustment 

functions 𝑧𝑚,𝑖 and perturbation parameters 𝜏𝑚, so that the definitions of BAPS SUE and BAPS′ SUE are 

equivalent. However, since the BAPS′ model is closed-form, these modifications are not required for solution 

existence/uniqueness, and the BAPS′ model can be simplified and be formulated as follows (denoted BAPS′′). 
Given �̅�𝑚(𝒄𝑚(𝒕); 𝜑), the BAPS′′ model choice probability relation for route 𝑖 ∈ 𝑅𝑚 is: 
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𝑃𝑚,𝑖 (𝒄𝑚(𝒕), �̅�𝑚
𝐵𝐴𝑃𝑆′′(𝒕, 𝒇𝑚))

=

{
 
 

 
 (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑖

𝐵𝐴𝑃𝑆′′(𝒕, 𝒇𝑚))
𝛽

∑ (ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) − 1) ∙ (�̅�𝑚,𝑗
𝐵𝐴𝑃𝑆′′(𝒕, 𝒇𝑚))

𝛽

𝑗∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)

    𝑖𝑓 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

                                              0                                                           𝑖𝑓 𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑)

, 
(5.21) 

where ℎ𝑚,𝑖(−𝜃𝒄𝑚(𝒕)) = exp (−𝜃(𝑐𝑚,𝑖(𝒕) − 𝜑min(𝑐𝑚,𝑙(𝒕): 𝑙 ∈ 𝑅𝑚))), and the path size term for route 𝑖 ∈

�̅�𝑚(𝒄𝑚(𝒕); 𝜑) is: 

 �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆′′(𝒕, 𝒇𝑚) =∑

𝑡𝑎
𝑐𝑚,𝑖(𝒕)

𝑓𝑚,𝑖
∑ 𝑓𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈�̅�𝑚(𝒄𝑚(𝒕);𝜑)𝑎∈𝐴𝑚,𝑖

, ∀𝒇𝑚 ∈ Ω𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑)), (5.22) 

Ω𝑚
(�̅�𝑚(𝒄𝑚(𝒕);𝜑)) = {𝒇𝑚 ∈ ℝ+

𝑁𝑚: 𝑓𝑚,𝑖 > 0, ∀𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕); 𝜑), 𝑎𝑛𝑑, 𝑓𝑚,𝑖 = 0, ∀𝑖 ∉ �̅�𝑚(𝒄𝑚(𝒕); 𝜑), ∑ 𝑓𝑚,𝑖
𝑖∈𝑅𝑚

= 𝑞𝑚}. 

𝜃 > 0, 𝛽 ≥ 0, 𝜑 > 1.  

BAPS′′ SUE can thus be formulated as follows: 

BAPS′′ SUE: Let Ω′′ ⊆ Ω be the subset of demand-feasible universal route flow vectors 𝒇 that satisfy the 

following conditions: 

 𝑓𝑚,𝑖 > 0 ⇔ 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) < 𝜑min(𝑐𝑚,𝑙(𝒕(𝜟𝒇)): 𝑙 ∈ 𝑅𝑚) , ∀𝑖 ∈ 𝑅𝑚,𝑚 = 1,… ,𝑀, (5.23) 
 

 𝑓𝑚,𝑖 = 0 ⇔ 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) ≥ 𝜑min(𝑐𝑚,𝑙(𝒕(𝜟𝒇)): 𝑙 ∈ 𝑅𝑚) , ∀𝑖 ∈ 𝑅𝑚,𝑚 = 1,… ,𝑀. (5.24) 

A universal route flow vector 𝒇∗ ∈ Ω′′ is a BAPS′′ SUE solution iff the route flow vector for OD movement 

𝑚, 𝒇𝑚
∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚
𝐵𝐴𝑃𝑆′′(𝒕(𝜟𝒇), 𝒇𝑚)) , 𝑚 = 1,… ,𝑀, (5.25) 

where 𝑃𝑚,𝑖 is as in (5.21) for route 𝑖 ∈ 𝑅𝑚, and �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆′′  is as in (5.22) for route 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕(𝜟𝒇)); 𝜑). 

 

3.3 Existence & Uniqueness of Solutions 

In this subsection, we prove the existence of BBPS SUE solutions. However, since the BAPS model 

probability relation is modified so that BAPS probability solutions can be proven to exist, and the probability 

function is consequently discontinuous, BAPS SUE solutions (and therefore BAPS′ SUE solutions) cannot be 

proven to exist. We note that since continuity of the BAPS/BAPS′ probability functions can be approximated 

in the limits as 𝜏𝑚 → 0, we do not anticipate there to be issues with non-existence of BAPS/BAPS′ SUE 

solutions, as long as 𝜏𝑚 is set suitably small, and no issues were experienced in our experiments. Although the 

BAPS′′ model does have a continuous probability function, Ω′′ is not a convex set, and thus standard proofs 

for solution existence also do not apply. 

First, we define an important function: the BBPS SUE fixed-point function. Let 𝐻𝑚,𝑖(𝒇) =

𝑞𝑚𝑃𝑚,𝑖 (𝒄𝑚(𝒕(𝜟𝒇)), �̅�𝑚
𝐵𝐵𝑃𝑆(𝒕(𝜟𝒇))), where 𝑃𝑚,𝑖 is as in (5.7) for route 𝑖 ∈ 𝑅𝑚 and �̅�𝑚,𝑖

𝐵𝐵𝑃𝑆 is as in (5.8) for 

route 𝑖 ∈ �̅�𝑚(𝒄𝑚(𝒕(𝜟𝒇)); 𝜑). It is clear from (5.9) that a route flow solution 𝒇∗ is a BBPS SUE solution iff 

𝐻𝑚,𝑖(𝒇
∗) = 𝑓𝑚,𝑖

∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀.  

Given 𝐻𝑚,𝑖(𝒇), we prove that BBPS SUE model solutions are guaranteed to exist. 

Proposition 1: If the link cost function 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ Ω, then at least one BBPS 

SUE fixed-point route flow solution, 𝒇∗ ∈ Ω, is guaranteed to exist. 

Proof. From the assumptions that 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ Ω, (and thus 𝐻𝑚.𝑖 is a continuous 

function), and given that Ω is a nonempty, convex, and compact set, and 𝑯 maps Ω into itself, then by 
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Brouwer’s Fixed-Point Theorem at least one solution 𝒇∗ exists such that 𝐻𝑚,𝑖(𝒇
∗) = 0, ∀𝑖 ∈ 𝑅𝑚, 𝑚 =

1,… ,𝑀, and hence BBPS SUE solutions are guaranteed to exist. 

∎ 

The standard approach for establishing sufficient conditions for the uniqueness of BBPS SUE solutions 

requires 𝐻𝑚,𝑖(𝒇) to be a monotonic function. Assuming the link cost functions 𝒕(𝜟𝒇) are monotonic, then the 

route cost functions 𝒄𝑚(𝒕(𝜟𝒇)) are also monotonic. However, the used route path size term functions 

�̅�𝑚
𝐵𝐵𝑃𝑆(𝒕(𝜟𝒇)), are not guaranteed to always be monotonic, and hence the approach is not applicable. This is 

not to say however that BBPS SUE solutions cannot be unique, since the mentioned approach only establishes 

sufficient conditions. Due to the probability In Section 5.4 we investigate the uniqueness of BAPS SUE 

solutions numerically, since it is a fixed-point . 

4.  Solution Algorithm 
In this section, we propose a generic algorithm for solving BPS SUE models. The algorithm is an adaptation 

of the generic algorithm proposed by Watling et al (2018) for the BSUE model, which is in turn an adaptation 

of the generic algorithm proposed by Rasmussen et al (2015) for the Restricted SUE (RSUE) model. Since it 

is typically not feasible to generate and operate with the universal set of routes, these algorithms propose that 

routes are generated from the network as the algorithm progresses. At each iteration, given the route costs 

from the current route flows, a column generation approach is used to find, for each OD movement, all the 

routes in the network that have a travel cost below the current cost bound. As Watling et al (2018) discuss, 

however, with the current techniques available for generating all such routes, there are questions over the 

suitability of the approach for large-scale networks. For example, the computational burden of the Constrained 

Enumeration approach (e.g. Prato & Bekhor, 2006; Hoogendoorn-Lanser et al, 2006), which they adopt, 

increases exponentially as the bound parameter, size of network, and network depth increase. For use of the 

column generation approach, more computationally efficient methods for consistent route generation may 

need to be adopted.  

The approach we adopt in this paper for the proposed BPS SUE algorithm and its application, is to pre-

generate approximated universal choice sets and make an assumption that these routes contain at least all 

those considered realistic. Usually, for non-bounded route choice models, it is crucial for the accuracy of 

results that the pre-generated choice sets contain only the routes considered realistic, as the presence of 

unrealistic routes can significantly and negatively affect realistic route choice probabilities. For the bounded 

models, however, the presence of unrealistic routes in the pre-generated choice sets have no effect upon the 

probabilities of realistic routes (as defined by the model). Hence, choice sets can be generated as large as the 

computational resources allow, in order to minimise the possibility of excluding what would later turn out to 

be a plausible route from the choice sets. From the approximated universal choice sets, the BPS SUE 

algorithm equilibrates the restricted choice sets of the realistic route alternatives and assigns flows to these 

routes in a way that is consistent. The computational benefit of having pre-generated choice sets is that at each 

iteration of the BPS SUE algorithm, the travel costs for all routes can be computed and the column generation 

phase becomes trivial. The proposed BPS SUE algorithm given here can however be easily adapted so that 

routes are generated as the algorithm progresses, just like the BSUE algorithm in Watling et al (2018). 

As discussed in Section 3 in Duncan et al (2021b), a ‘natural’ form for the BPS model was initially 

explored, where path size utilities are inserted into the BCM formula in (5.4). This bounds routes according 

their utility (i.e. combination of cost and path size correction), rather than just cost. However, as 

demonstrated, appropriately defining the path size contribution factors within the path size terms is difficult. 

Instead, to circumvent this issue, an alternative BPS model form was derived, which proposes that routes are 

bounded according to their travel cost (like the BCM), while the probability relations for routes with costs 

below the bound include path size correction factors to adjust for route correlations. This means that the BCM 

and BPS model both have the same definition for unrealistic routes: those with travel costs above the bound. 

This has the benefit that the algorithm and gap measures proposed for solving BSUE are applicable for 

solving BPS SUE with only a few minor adjustments.  

The main adaptation of the BPS SUE algorithm from the BSUE algorithm is the addition of a Flow 

Allocation for New Routes phase, which ensures that the allocation of flow to new routes generated from the 

Column Generation Phase is done so in a way that satisfies the feasible set of flows.  
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The BPS SUE algorithm can be summarised as follows: Step 0: Initialise by performing all-or-nothing 

assignments to obtain the initial sets of used routes (where there is a single route in each used route choice 

set); Step 1: Search for routes with a cost below the current bound and add them to the used route choice sets; 

Step 2: Allocate flow to new routes in a way that satisfies flow feasibility; Step 3: Compute the relevant BPS 

model choice probabilities for the current used routes given the current flow vector and thus link costs 

(knowing all of these routes will receive a non-zero probability); Step 4: Compute auxiliary route flow vector 

given the probabilities; Step 5: Compute the next route flow vector by averaging the previous and auxiliary 

flow vectors according to chosen averaging scheme; Step 6: Given the new flow vector, compute the 

link/route costs; Step 7: Compute the used above bound relative gap measure which when satisfied ensures no 

routes with costs above the cost bound are used; Step 8: Remove routes that have costs above the bound (and 

thus should not be used / have flow), redistribute the flows, and update costs; Step 9: Compute the unused 

below bound and used below bound relative gap measures, which when satisfied ensure that no routes with 

costs below the cost bound are unused and that flow is allocated across the used routes in a way that fulfils the 

underlying choice model, respectively. Stop if all relative gap measures are satisfied, else return to Step 1. 

 

Step 0: Initialisation. Perform deterministic all-or-nothing assignments for all OD movements 𝑚 = 1,… ,𝑀 

and obtain the used route choice sets �̅�𝑚
(0)

 for OD movements 𝑚 = 1,… ,𝑀, and the universal route flow 

vector 𝒇(0), where all unused routes have zero flow. Given 𝒇(0), compute the link travel cost vector 𝒕(1) =

𝒕(𝜟𝒇(0)) for iteration 𝑛 = 1, and hence also the route cost vectors 𝒄𝑚
(1) = 𝒄𝑚(𝒕

(1)) = 𝒄𝑚 (𝒕(𝜟𝒇
(0))), 𝑚 =

1,… ,𝑀, for iteration 𝑛 = 1. Set 𝑛 = 1. 

Step 1: Column Generation Phase. Let �̅�𝑚
(𝑛−1)

 be the number of routes in the choice set for OD movement 

𝑚 at iteration 𝑛 − 1. For each OD movement 𝑚 = 1,… ,𝑀, given route cost vector 𝒄𝑚
(𝑛)

 for iteration 𝑛, add all 

routes with costs below the current bound to the used route choice sets �̅�𝑚
(𝑛)

 for iteration 𝑛. 

Step 2: Flow Allocation for New Routes. Allocate a flow to each of the new routes generated in Step 1 (and 

adjust existing route flows if required) in a way that satisfies the feasible set for route flows Ω, and thus obtain 

𝒇(𝑛) for iteration 𝑛. If required, update 𝒕(𝑛) = 𝒕(𝜟𝒇(𝑛)) and 𝒄𝑚
(𝑛) = 𝒄𝑚(𝒕

(𝑛)), 𝑚 = 1,… ,𝑀, for iteration 𝑛. 

Step 3: Compute Route Choice Probabilities. Given the choice sets �̅�𝑚
(𝑛)

 for OD movements 𝑚 = 1,… ,𝑀 

and the link cost vector 𝒕(𝑛) for iteration 𝑛, and the route flow vector 𝒇(𝑛) for iteration 𝑛 (or otherwise), 

compute the route choice probability vectors 𝑷𝑚
(𝑛)

, 𝑚 = 1,… ,𝑀, for iteration 𝑛. 

Step 4: Compute Auxiliary Route Flow Vector. Given the route choice probability vectors 𝑷𝑚
(𝑛)

, 𝑚 =

1,… ,𝑀, for iteration 𝑛, compute the auxiliary route flow vector �̃�(𝑛) for iteration 𝑛: 𝑓𝑚,𝑖
(𝑛)

= 𝑞𝑚𝑃𝑚,𝑖
(𝑛), ∀𝑖 ∈

�̅�𝑚
(𝑛),𝑚 = 1,… ,𝑀. 

Step 5: Flow-Averaging Phase. Given the route flow vector 𝒇(𝑛) and the auxiliary route flow vector �̃�(𝑛) for 

iteration 𝑛, perform flow-averaging to find the route flow vector 𝒇(𝑛+1) for iteration 𝑛 + 1. 

Step 6: Compute Link/Route Costs. Given 𝒇(𝑛+1), compute the link travel cost vector 𝒕(𝑛+1) = 𝒕(𝜟𝒇(𝑛+1)) 

and hence also the route cost vectors 𝒄𝑚
(𝑛+1) = 𝒄𝑚(𝒕

(𝑛+1)), 𝑚 = 1,… ,𝑀, for iteration 𝑛 = 𝑛 + 1. 

Step 7: Used Above Bound Convergence Evaluation. Compute the used above bound relative gap measure, 

and if this is equal to zero, continue to Step 9. Otherwise, continue to Step 8. 

Step 8: Bound Condition Phase. Given the used route choice sets �̅�𝑚
(𝑛)

 for all OD movements 𝑚 = 1,… ,𝑀, 

check whether the condition 𝑐𝑚,𝑖
(𝑛+1) < 𝜑min(𝑐𝑚,𝑗

(𝑛+1): 𝑗 ∈ �̅�𝑚
(𝑛)) is violated for any 𝑖 ∈ �̅�𝑚

(𝑛)
 for 𝑚 = 1,… ,𝑀. 

Update the choice sets �̅�𝑚
(𝑛)

 by removing violating routes, and update 𝒇(𝑛+1) by redistributing the flow on 
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routes removed among the remaining routes in the respective choice sets, ensuring the OD travel demands are 

still satisfied. Update 𝒕(𝑛+1) = 𝒕(𝜟𝒇(𝑛+1)) and 𝒄𝑚
(𝑛+1)

= 𝒄𝑚(𝒕
(𝑛+1)), 𝑚 = 1,… ,𝑀, for iteration 𝑛 + 1. 

Step 9: Below Bound Convergence Evaluation. Compute the below bound relative gap measures, and if all 

gap measures (including the used above bound measure) satisfy their pre-specified convergence value, output 

the route flow vector 𝒇(𝑛). Otherwise, set 𝑛 = 𝑛 + 1 and return to Step 1. 
Algorithm 5.1. Generic solution algorithm for Bounded Path Size SUE models, for when there are pre-generated approximated or 

actual universal choice sets. 

 

4.1 Step 2: Flow Allocation for New Routes 

For BPS SUE models in general – such as BBPS SUE – this step is straightforward: allocate all new routes 

zero flow. However, for the BAPS′ model, allocating new routes zero flows violates the set of feasible flows 

Ω(𝜑,𝝉) since these routes may have costs within the bound. Therefore, to satisfy feasible flows, we propose that 

these new routes are each allocated 𝜏𝑚 flow (where 𝜏𝑚 is the BAPS/BAPS′ perturbation parameter, see 

Section 3.2), and the flows of routes already existing in the choice set adjusted accordingly: 

𝑓𝑚,𝑖
(𝑛)

=

{
 

 
𝑓𝑚,𝑖
(𝑛)
−
(�̅�𝑚

(𝑛)
− �̅�𝑚

(𝑛−1)
)

�̅�𝑚
(𝑛−1)

∙ 𝜏𝑚     𝑖𝑓 𝑖 ∈ �̅�𝑚
(𝑛)
∩ �̅�𝑚

(𝑛−1)

                    𝜏𝑚                             𝑖𝑓 𝑖 ∈ �̅�𝑚
(𝑛)
\�̅�𝑚

(𝑛−1)

, ∀𝑖 ∈ �̅�𝑚
(𝑛)
, 

where �̅�𝑚
(𝑛)

 is the OD movement 𝑚 used route choice set at this stage of iteration 𝑛 (after the column 

generation phase) of size |�̅�𝑚
(𝑛)
| = �̅�𝑚

(𝑛)
, and �̅�𝑚

(𝑛−1)
 is the OD movement 𝑚 used route choice set at the end 

of iteration 𝑛 − 1 (after the bound condition phase) of size |�̅�𝑚
(𝑛−1)

| = �̅�𝑚
(𝑛−1)

, 𝑚 = 1,… ,𝑀. This is also 

required for solving BAPS SUE with follow-on initial conditions (see Section 4.2); however, otherwise (with 

non-follow-on conditions), new routes can be allocated zero flow. If the flows are adjusted, then the link/route 

costs should in theory be updated. However, in practice, the 𝜏𝑚 values are so small that the effects are 

insignificant and updating the costs is not necessary. 

 

4.2 Step 3: Compute Route Choice Probabilities 

For BBPS and BAPS′ SUE, this step is straightforward and involves a simple computation of the closed-form 

probability expressions.  

BBPS SUE: Given the used route choice set �̅�𝑚
(𝑛)

 for OD movement 𝑚, the link cost vector 𝒕(𝑛), and the 

route flow vector 𝒇(𝑛) at this stage of iteration 𝑛, the choice probability for route 𝑖 ∈ 𝑅𝑚 for iteration 𝑛 is: 

𝑃𝑚,𝑖
(𝑛) = 𝑃𝑚,𝑖 (𝒄𝑚(𝒕

(𝑛)), �̅�𝑚
𝐵𝐵𝑃𝑆(𝒕(𝑛)); �̅�𝑚

(𝑛)) , ∀𝑖 ∈ 𝑅𝑚, 

where 𝑃𝑚,𝑖 is as in (5.7) for route 𝑖 ∈ 𝑅𝑚, and �̅�𝑚,𝑖
𝐵𝐵𝑃𝑆 is as in (5.8) for route 𝑖 ∈ �̅�𝑚

(𝑛)
, 𝑚 = 1,… ,𝑀. 

BAPS′ SUE: Given the used route choice set �̅�𝑚
(𝑛)

 for OD movement 𝑚, the link cost vector 𝒕(𝑛), and the 

route flow vector 𝒇(𝑛) at this stage of iteration 𝑛, the choice probability for route 𝑖 ∈ 𝑅𝑚 for iteration 𝑛 is: 

𝑃𝑚,𝑖
(𝑛) = 𝑃𝑚,𝑖 (𝑧𝑚,𝑖 (𝒄𝑚(𝒕

(𝑛)), �̅�𝑚
𝐵𝐴𝑃𝑆′(𝒕(𝑛), 𝒇(𝑛))) ; �̅�𝑚

(𝑛)), 

where 𝑃𝑚,𝑖 and 𝑧𝑚,𝑖 are as in (5.15) and (5.16), respectively, for route 𝑖 ∈ 𝑅𝑚, and �̅�𝑚,𝑖
𝐵𝐴𝑃𝑆′ is as in (5.17) for 

route 𝑖 ∈ �̅�𝑚
(𝑛)

, 𝑚 = 1,… ,𝑀. 

For BAPS SUE, computing the BAPS model choice probabilities requires a fixed-point algorithm to 

compute the solution. In general, there are many fixed-point algorithms available for solving the BAPS fixed-

point system. In this study, we use the Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). Other 

algorithms were considered, however the performance and convergence of the FPIM in our initial tests (not 

reported here) were sufficiently promising that we did not consider this worthwhile. Given the used route 

choice set �̅�𝑚
(𝑛)

 for OD movement 𝑚, the link cost vector 𝒕(𝑛), and the route flow vector  𝒇(𝑛) at this stage of 
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iteration 𝑛, the FPIM for solving the BAPS model choice probabilities for OD movement 𝑚 at iteration 𝑛 of 

the BPS SUE algorithm is as follows: 

𝑃𝑚,𝑖
[𝑠] = 𝑍𝑚,𝑖 (𝑧𝑚,𝑖 (𝒄𝑚(𝒕

(𝑛)), �̅�𝑚
𝐵𝐴𝑃𝑆 (𝒕(𝑛), 𝑷𝑚

[𝑠−1])) ; �̅�𝑚
(𝑛)) , 𝑠 = 1,2,3,… 

such that 

lim
𝑠→∞

𝑃𝑚,𝑖
[𝑠]
= lim

𝑠→∞
𝑍𝑚,𝑖 (𝑧𝑚,𝑖 (𝒄𝑚(𝒕

(𝑛)), �̅�𝑚
𝐵𝐴𝑃𝑆 (𝒕(𝑛), 𝑷𝑚

[𝑠−1]
)) ; �̅�𝑚

(𝑛)
) = 𝑃𝑚,𝑖

∗ , ∀𝑖 ∈ 𝑅𝑚,

𝑷𝑚
(0)
∈ 𝐷𝑚

(�̅�𝑚
(𝑛)
,𝜏𝑚)

, 

where 𝑍𝑚,𝑖, 𝑧𝑚,𝑖, and 𝛾𝑚,𝑖
𝐴𝑃𝑆 are as in (5.10), (5.11), and (5.12), respectively, for route 𝑖 ∈ 𝑅𝑚, and 𝒇(𝑛) is the 

route flow vector at this stage of iteration 𝑛 of the BPS SUE algorithm. The FPIM is said to have converged 

sufficiently to an OD movement 𝑚 BAPS choice probability solution 𝑷𝑚
∗ = 𝑷𝑚

[𝑠]
 if: ∑ |𝑃𝑚,𝑖

[𝑠−1]
− 𝑃𝑚,𝑖

[𝑠]
|𝑖∈𝑅𝑚 <

10−𝜉, where 𝜉 is a predetermined BAPS probability convergence parameter. 

In the numerical experiments in Section 5 of this paper, we explore adopting two different initial 

conditions for the FPIM: fixed initial conditions where 𝑃𝑚,𝑖
[0]
=

1

�̅�𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and follow-on 

initial conditions where 𝑃𝑚,𝑖
[0]
=

𝑓𝑚,𝑖
(𝑛)

𝑞𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. The follow-on initial FPIM conditions utilise 

information from the previous BPS SUE algorithm iteration route flows 𝒇(𝑛) to determine the FPIM initial 

conditions. The idea is to harness the useful relation between route flow proportions and route choice 

probabilities in SUE, where these equate at equilibrium. In Duncan et al (2021), it was shown that utilising 

follow-on initial FPIM conditions for computing APSL probabilities solving APSL SUE, the numbers of 

fixed-point iterations required for APSL choice probability convergence (and thus computation times for each 

of the iterations) decreased as the flow-averaging algorithm progressed and the route flow proportions became 

closer to the APSL SUE route choice probabilities. For BAPS SUE, the set of used routes varies as the BPS 

SUE algorithm progresses, and therefore it is less clear how follow-on initial FPIM conditions will perform. 

We anticipate, however, that once the used route choice sets have equilibrated, the number of fixed-point 

iterations required for BAPS model choice probability convergence will decrease as the algorithm progresses 

(like as for APSL SUE). We test this hypothesis in Section 5.2.  

 

4.3 Step 5: Flow-Averaging Phase 

In Step 3, the route choice probabilities are computed given the current route flows, and these are used in Step 

4 to obtain an auxiliary route flow vector. In Step 5, the flow-averaging phase consists of weighting the 

current iteration route flow vector 𝒇(𝑛) with the auxiliary route flow vector �̃�(𝑛), according to some step-size 

𝜂𝑛, to find the next route flow vector: 

𝑓𝑚,𝑖
(𝑛+1) = (1 − 𝜂𝑛) ∙ 𝑓𝑚,𝑖

(𝑛) + 𝜂𝑛 ∙ 𝑓𝑚,𝑖
(𝑛), ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, 

where 0 ≤ 𝜂𝑛 ≤ 1. There are numerous flow-averaging step-size schemes available, all based on the famous 

pre-defined Method of Successive Averages (MSA). Liu et al (2009) test different alternative pre-defined 

averaging schemes, and introduce the Method of Successive Weighted Averages (MSWA), which we adopt 

for the experiments in this paper. While being pre-defined, the MSWA allows giving higher weight to 

auxiliary flow patterns from later iterations, and the step-size 𝜂𝑛 at iteration 𝑛 is defined as:  

𝜂𝑛 =
𝑛𝑑

∑ 𝑘𝑑𝑛
𝑘=1

, 

where 𝑑 > 0 is a real number. Increasing the value of 𝑑 moves more flow towards the auxiliary solution. The 

MSA is a special case of the MSWA, namely when 𝑑 = 0. 

 

4.4 Steps 7&9: Convergence Evaluation Phases 

In this subsection, we propose three gap measures to monitor convergence of the BPS-SUE algorithm to a 

solution satisfying the BPS SUE conditions. These gap measures are similar to those detailed for the BSUE 
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model in Watling et al (2018). Two parts monitor convergence of the equilibrated choice sets and one part 

monitors the convergence of the allocation of flow to fulfil the underlying choice model.  

Step 7: Used Above Bound Convergence Evaluation: Given the route cost vectors 𝒄𝑚
(𝑛+1)

, 𝑚 = 1,… ,𝑀, 

and the route flow vector 𝒇(𝑛+1) (for iteration 𝑛 + 1) at this stage of iteration 𝑛, the used above bound relative 

gap measure is as follows: 

 𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑎𝑏𝑜𝑣𝑒 𝑏𝑜𝑢𝑛𝑑
(𝑛)

=
∑ ∑ 𝑓𝑚,𝑖

(𝑛+1)
∙ (𝑐𝑚,𝑖

(𝑛+1)
− 𝜑min (𝒄𝑚

(𝑛+1)
))
+

𝑖∈𝑅𝑚
𝑀
𝑚=1

∑ ∑ 𝑓𝑚,𝑖
(𝑛+1)

∙ 𝑐𝑚,𝑖
(𝑛+1)

𝑖∈𝑅𝑚
𝑀
𝑚=1

. (5.26) 

This gap measure in (5.26) ensures that (at convergence) no routes with a cost above the cost bound are used. 

Moreover, it measures the total violation relative to the total costs across all routes. When across all OD 

movements, no used routes have costs above the bound, then the gap is zero, and the convergence criteria are 

satisfied. 

Step 9: Below Bound Convergence Evaluation: Given the current used route choice sets �̅�𝑚
(𝑛)

 and thus 

also the unused route choice sets 𝑅𝑚\�̅�𝑚
(𝑛)

, 𝑚 = 1,… ,𝑀, at this stage of iteration 𝑛, and the route cost vectors 

𝒄𝑚
(𝑛+1)

, 𝑚 = 1,… ,𝑀, (for iteration 𝑛 + 1) at this stage of iteration 𝑛, the unused below bound relative gap 

measure for iteration 𝑛 is as follows: 

 𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑛𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

=
∑ 𝑞𝑚 ∙ max (𝜑min (𝒄𝑚

(𝑛+1)
) − 𝑐𝑚,𝑖

(𝑛+1)
: 𝑖 ∈ 𝑅𝑚\�̅�𝑚

(𝑛)
)𝑀

𝑚=1

(𝜑 − 1) ∙ ∑ 𝑞𝑚
𝑀
𝑚=1 ∙ min (𝒄𝑚

(𝑛+1))
, (5.27) 

 

This gap measure in (5.27) ensures that no routes with a cost below the cost bound are unused. Moreover, for 

each OD movement, it measures the average relative non-violation of the bound for the unused routes not 

violating the bound the most. When across all OD movements, no unused routes have a cost below the bound, 

then the gap is zero, and the convergence criteria are satisfied. 

Given the current used route choice sets �̅�𝑚
(𝑛)

, 𝑚 = 1,… ,𝑀, at this stage of iteration 𝑛, and the route flow 

vector 𝒇(𝑛+1) (for iteration 𝑛 + 1) at this stage of iteration 𝑛, the used below bound relative gap measure for 

iteration 𝑛 is as follows: 

 

𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

=
∑ ∑ 𝑓𝑚,𝑖

(𝑛+1)
∙ (�̃�𝑚,𝑖(𝒇

(𝑛+1)) − min(�̃�𝑚,𝑗(𝒇
(𝑛+1)): 𝑗 ∈ �̅�𝑚

(𝑛)
))

𝑖∈�̅�𝑚
(𝑛)

𝑀
𝑚=1

∑ ∑ 𝑓𝑚,𝑖
(𝑛+1)

∙ �̃�𝑚,𝑖(𝒇
(𝑛+1))

𝑖∈�̅�𝑚
(𝑛)

𝑀
𝑚=1

. 
(5.28) 

This gap measure in (5.28) ensures that flow is allocated across used routes in a way that fulfils the underlying 

choice model. For this we extend ideas from Rasmussen et al (2015) and Watling et al (2018), where 

transformed cost measures �̃�𝑚,𝑖(𝒇
(𝑛+1)) were defined for the MNL choice model and the BCM, respectively, 

and convergence was proven for when (5.28) is equal to zero using this. For BPS models, we define 

�̃�𝑚,𝑖(𝒇
(𝑛+1)) to be used in (5.28) instead to be: 

 �̃�𝑚,𝑖(𝒇
(𝑛+1)) =

𝑓𝑚,𝑖
(𝑛+1)

(ℎ𝑚,𝑖 (−𝜃𝒄𝑚 (𝒕(𝜟𝒇
(𝑛+1)))) − 1) ∙ (�̅�𝑚,𝑖 (𝒕(𝜟𝒇

(𝑛+1)),𝑾𝑚(𝒇
(𝑛+1))))

𝛽
, (5.29) 

where �̅�𝑚,𝑖 is the used route path size term for route 𝑖 ∈ �̅�𝑚
(𝑛)

, and 𝑊𝑚,𝑖(𝒇
(𝑛+1)) =

(ℎ𝑚,𝑖 (−𝜃𝒄𝑚 (𝒕(𝜟𝒇
(𝑛+1)))) − 1) for the BBPS model, and 𝑊𝑚,𝑖 (𝑓𝑚,𝑖

(𝑛+1)) = 𝑓𝑚,𝑖
(𝑛+1)

 for the BAPS & BAPS′ 

models. At equilibrium, �̃�𝑚,𝑖(𝒇
(𝑛+1)) will be the same across all utilised routes for OD movement 𝑚, and the 

gap is zero. However, the convergence criteria is said to be satisfied if 𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

< 10−𝜁, 

where 𝜁 is a predetermined convergence parameter. Although for the BAPS model 𝑊𝑚,𝑖(𝒇
(𝑛)) =

𝑃𝑚,𝑖
∗ (𝒕(𝜟𝒇(𝑛))) for the underlying choice model, this requires solving choice probability fixed-point 
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problems just for computing the gap measures, and instead we recommend that this is circumvented by 

utilising the route flow proportions, which will be equal to the choice probabilities at convergence. 

5.  Numerical Experiments 
In this section, some numerical experiments are conducted to compare the computational performance and 

flow results of bounded SUE models (namely BSUE, BBPS, BAPS, & BAPS′ SUE) as well as with other 

SUE models (namely MNL, PSL, GPSL, GPSL′, APSL, & APSL′ SUE, as defined in Duncan et al (2021a) 

with flow-dependent path size terms). We examine results in the case where there are pre-generated 

approximated universal choice sets. Bounded SUE models are solved with the BPS SUE algorithm in 

Algorithm 5.1, and non-bounded SUE models are solved with a Flow-Averaging Algorithm (FAA) (see 

Duncan et al, 2021a). The BPS SUE algorithm can be seen as an extension of the FAA, where column 

generation, flow allocation for new routes, and bound condition phases are added for the equilibration of 

choice sets. We also investigate the uniqueness of BAPS SUE solutions. 

 

5.1 Experiment Setup 

The computer used has a 2.10GHz Intel Xeon CPU and 512GB RAM, and the code was implemented in 

Python. In our experiments, we consider three networks: a small example network (Fig. 5.1), and two well-

known networks Sioux Falls and Winnipeg. The small example network consists of 3 nodes, 4 links, and 1 

OD movement (with demand 200), the Sioux Falls network consists of 24 nodes, 64 links, and 528 OD 

movements (with positive demands), and the Winnipeg network consists of 1052 nodes, 2836 links, and 4345 

OD movements. 

In general, the generalised travel cost, 𝑡𝑎(𝑥𝑎), for link 𝑎 ∈ 𝐴 may consist of several flow-dependent and 

flow-independent attributes, for example congested travel time, length, number of left turns, etc. However, for 

the numerical experiments in this section and for all networks, the travel cost of link 𝑎 ∈ 𝐴 is specified as the 

flow-dependent travel time 𝑇𝑎(𝑥𝑎) only, where the volume-delay link cost functions for all networks are 

based on the Bureau of Public Road (BPR) formula with link-specific parameters: 

𝑡𝑎(𝑥𝑎) = 𝑇𝑎(𝑥𝑎) = 𝑇0,𝑎 (1 + 𝐷 (
𝑥𝑎
𝐾𝑎
)
𝐵

), 

where 𝑇0,𝑎 and 𝐾𝑎 are the free-flow travel time and capacity of link 𝑎 ∈ 𝐴, respectively, and 𝐷,𝐵 ≥ 0. For the 

small example network, 𝐷 = 0.15, 𝐵 = 4, 𝐾𝑎 = 100 for all links, and 𝑇0,𝑎 for each link is shown in Fig. 3.1. 

For the Sioux Falls and Winnipeg networks, the link-cost function values as well as the network and demand 

data are obtained from https://github.com/bstabler/TransportationNetworks.  

For the small example network, the pre-generated choice set is the actual universal set of all 4 routes, 

where the routes are Route 1: 1 → 3, Route 2: 1 → 4, Route 3: 2 → 3, Route 4: 2 → 4. For Sioux Falls and 

Winnipeg, we utilise choice sets generated in Duncan et al (2021). For the Sioux Falls network, the choice sets 

were obtained by generating all routes with a free-flow travel time less than 2.5 times greater than the free-

flow travel time on the quickest route for each OD movement. For Winnipeg, a simulation approach was 

adopted (Sheffi & Powell, 1982), where the link costs were drawn randomly from a truncated normal 

distribution with mean value being free-flow travel time and standard deviation being 0.6 times the mean. The 

link costs were simulated 150 times for each OD movement and for each simulation shortest path was 

conducted to generate a route, where a maximum of 100 unique routes were generated for each choice set. 

The average and maximum free-flow travel time relative deviations from the quickest route in each choice set 

were 1.15 and 3.3, respectively. For Sioux Falls, 42,976 routes were generated in total, and the maximum, 

average, and median choice set sizes for an OD movement were 898, 116, and 6, respectively. For Winnipeg, 

305,005 routes were generated in total, and the maximum, average, and median choice set sizes for an OD 

movement were 100, 70, and 88, respectively.  

https://github.com/bstabler/TransportationNetworks
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Fig. 5.1. Small example network. 

 

Convergence for the bounded SUE models is measured with the used below bound, used above bound, and 

unused below bound relative gap measures in Section 4.4, where convergence is said to be reached when 

𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑎𝑏𝑜𝑣𝑒 𝑏𝑜𝑢𝑛𝑑
(𝑛)

= 0, 𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑛𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

= 0, and 𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

< 10−4 (𝜁 =

4). 

For non-bounded SUE models, SUE convergence is measured using the used below bound relative gap 

measure (where all routes are used), which is as follows for iteration 𝑛: 

 

𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

=
∑ ∑ 𝑓𝑚,𝑖

(𝑛+1)
∙ (�̃�𝑚,𝑖(𝒇

(𝑛+1)) − min(�̃�𝑚,𝑗(𝒇
(𝑛+1)): 𝑗 ∈ 𝑅𝑚))𝑖∈𝑅𝑚

𝑀
𝑚=1

∑ ∑ 𝑓𝑚,𝑖
(𝑛+1) ∙ �̃�𝑚,𝑖(𝒇

(𝑛+1))𝑖∈𝑅𝑚
𝑀
𝑚=1

. 
(5.30) 

where, 

 �̃�𝑚,𝑖(𝒇
(𝑛+1)) =

𝑓𝑚,𝑖
(𝑛+1)

exp (−𝜃𝑐𝑚,𝑖 (𝒕(𝜟𝒇
(𝑛+1)))) ∙ (𝛾𝑚,𝑖(𝒇

(𝑛+1)))
𝛽
. (5.31) 

𝛾𝑚,𝑖(𝒇
(𝑛+1)) is the flow-dependent path size term for route 𝑖 ∈ 𝑅𝑚, different for each Path Size Logit SUE 

model, and equal to 1 for MNL SUE. For APSL SUE, the APSL′ SUE path size terms are used (to avoid 

solving fixed-point problems), since these are equal at convergence. Convergence is said to be reached also 

when 𝑅𝑒𝑙. 𝑔𝑎𝑝𝑢𝑠𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑏𝑜𝑢𝑛𝑑
(𝑛)

< 10−4. 

Unless stated otherwise, specifications are also as follows. The initial conditions for non-bounded SUE 

models are set as the even split route flows, i.e. 𝑓𝑚,𝑖 =
𝑞𝑚

𝑁𝑚
, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. The MSWA parameter is 

set as 𝑑 = 15. For computing BAPS and APSL probabilities with the FPIM, the probability convergence 

parameter is set as 𝜉 = 6. The utilised model parameters for the Sioux Falls network are 𝜃 = 𝜆𝐵𝐵𝑃𝑆 = 0.3, 

𝛽 = 0.8, 𝜆𝐺𝑃𝑆 = 10, and 𝜑 = 2. 𝜃 = 0.5, 𝛽 = 0.8, 𝜆𝐺𝑃𝑆 = 10, and 𝜑 = 2 for the Winnipeg network.  

 

5.2 Computational Performance 

We begin the numerical experiments by analysing here the computational performance of the BPS SUE 

algorithm for solving the bounded SUE models, and comparing computational performance with that for 

solving non-bounded Path Size Logit SUE models with the FAA.  

First, Table 5.1 displays for all SUE models, during a single run of the solution algorithm, the average 

computation times to compute the choice probabilities / perform an iteration on the Sioux Falls and Winnipeg 

networks.  

As shown and as expected for the non-bounded SUE models, the MNL probabilities are the quickest to 

compute, followed by the PSL, GPSL, GPSL′, and APSL′ probabilities, which have similar computation 

times. APSL probabilities take significantly longer due to solving the fixed-point probabilities. Furthermore, 

for the non-bounded SUE models, computing the probabilities takes up a significant proportion of the 

computation time for each iteration. Computing the convergence measure takes up most of the rest of the 

computation time. 
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For the bounded SUE models, there are additional steps in the BPS SUE algorithm compared to the FAA 

for equilibrating the used route choice sets. Thus, computing the probabilities takes up a smaller proportion of 

the computation time for each iteration. As shown by the probability computation times, the bounded model 

probabilities are slightly more complex to compute compared to their associated non-bounded model, i.e. the 

limit models (BCM & MNL, BBPS & GPSL′, BAPS & APSL, BAPS′ & BAPS′). Like APSL, the fixed-point 

BAPS model probabilities are computationally expensive to compute. For BAPS′, as discussed below, a 

greater proportion of the total iterations during a BPS SUE algorithm run are performed with the choice sets 

equilibrated where the computational burden is less than for pre-equilibrated. Therefore, the average 

computation time to perform an iteration across the iterations is less for BAPS′ than for BBPS, despite similar 

probability computation times. 

  

 MNL PSL GPSL GPSL′ APSL APSL′ BCM BBPS BAPS BAPS′ 

Sioux 

Falls 

0.003/ 

0.010 

0.034/ 

0.049 

0.034/ 

0.049 

0.034/ 

0.049 

1.465/ 

1.478 

0.034/ 

0.049 

0.004/ 

0.069 

0.017/ 

0.087 

0.844/ 

0.909 

0.017/ 

0.066 

Winnipeg 0.02/ 

0.05 

0.14/ 

0.22 

0.14/ 

0.22 

0.14/ 

0.22 

4.33/ 

4.40 

0.14/ 

0.22 

0.05/ 

0.16 

0.19/ 

0.72 

5.85/ 

6.38 

0.19/ 

0.55 
Table 5.1. Average computation time [mins] to compute the probabilities / perform an iteration on the Sioux Falls and Winnipeg 

networks. 

 

Fig. 5.2A-B display for the Sioux Falls and Winnipeg networks, respectively, the convergence patterns for the 

bounded SUE models for a single run of the BPS SUE algorithm. Fig. 5.3A-B display results in terms of 

computation time, and Fig. 5.4A-B display how the average used route choice set size varies as the algorithm 

progresses. Fig. 5.5A-B display for Winnipeg the convergence patterns for the non-bounded SUE models for a 

single run of the FAA in terms of iterations and computation time, respectively.  

As shown in Fig. 5.2/Fig. 5.3, the convergence patterns for the BSUE, BBPS SUE, & BAPS SUE models 

are different but not drastically different, and converge in similar numbers of SUE iterations. BBPS SUE takes 

longer to solve than BSUE, however, due to the longer choice probability computation times from computing 

path size terms. BAPS SUE takes significantly longer than BSUE / BBPS SUE, due to the computationally 

expensive fixed-point probabilities. For the BAPS′ SUE model, as is evident from the BAPS′ SUE 

convergence patterns being more concentrated to the left of the figures, while the number of iterations 

required to equilibrate the used route choice sets is similar to BSUE / BBPS SUE / BAPS SUE (can also be 

seen in Fig. 5.4), once the choice sets are equilibrated, convergence of the flows is slow compared to BSUE / 

BBPS SUE / BAPS SUE.  

Comparing the corresponding convergence patterns in Fig. 5.2 and Fig. 5.3, under close inspection one 

can observe that the region where the unused below bound and used above bound relative gap measures are 

non-zero appear more concentrated to the left of the figures in Fig. 5.2 than in Fig. 5.3 (more evident in Fig. 

5.2A/Fig. 5.3A for Sioux Falls). This indicates that the earlier iterations are more time consuming than later 

iterations, which is as expected since the steps for equilibrating the choice sets in earlier iterations are more 

active e.g. redistributing the flows of violating routes in the Bound Violation Check phase. 

As shown in Fig. 5.4, the average used route choice set sizes for the bounded SUE models generally 

expand as the BPS SUE algorithm progresses, up until choice set equilibration. Again, the average choice set 

size patterns are different for each model, but not drastically different. 

As shown in Fig. 5.5 for Winnipeg, in analogous results to the bounded versions of the non-bounded SUE 

models, the number of iterations required for MNL, PSL, GPSL, GPSL′, & APSL SUE convergence are 

similar, while APSL′ SUE convergence is comparatively slow. PSL/GPSL/GPSL′ SUE take longer than MNL 

SUE due to the path size term computation. APSL′ SUE takes longer than PSL/GPSL/GPSL′ SUE due to 

slower convergence, and APSL SUE takes significantly longer due to the fixed-point probabilities. The APSL′ 
SUE convergence patterns are also concentrated to the left of the figures, indicating that the slow convergence 

arises in achieving higher levels of convergence (i.e. convergence gets increasingly slow as the convergence 

measure is made more strict). Unlike for the bounded SUE models, the convergence patterns with respect to 

the iterations (Fig. 5.5A) appear in the figures similar to the convergence patterns with respect to computation 

time (Fig. 5.5B), i.e. the patterns are not skewed left or right of each other. This is because the computational 

burden is roughly uniform across the iterations, with the same number of active routes in each iteration. 
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Interestingly, the bounded SUE models in this case converge in similar numbers of iterations to the non-

bounded versions. APSL′ SUE is significantly slower than BAPS′ SUE, however, and APSL SUE actually 

takes longer than BAPS′ SUE. Otherwise, the bounded SUE models take longer than the non-bounded 

versions. 

  

Fig. 5.2. Relative gap measures for the bounded SUE models at each iteration of the BPS SUE Algorithm. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 5.3. Relative gap measures for the bounded SUE models in computation time [mins] of the BPS SUE Algorithm. A: Sioux Falls. 

B: Winnipeg. 

  

Fig. 5.4. Average used route choice set sizes for the bounded SUE models at each iteration of BPS SUE algorithm. A: Sioux Falls. B: 

Winnipeg. 
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Fig. 5.5. Winnipeg: Relative gap measures for the non-bounded SUE models at each iteration (A) / in computation time [mins] (B) of 

the FAA. 

 

Duncan et al (2021) demonstrated that while the number of iterations required for APSL SUE convergence 

tended to be similar to that required for MNL, PSL, & GPSL SUE under identical configurations of the FAA, 

the requirement of solving APSL choice probability fixed-point problems at each iteration resulted in 

significantly greater total computation times. On-the-other-hand, while the computational burden involved in 

computing the APSL′ choice probabilities during each iteration solving APSL′ SUE was no more than that for 

PSL & GPSL, APSL′ SUE convergence was comparatively very slow, and thus total computational times 

were also much longer. As they showed however, tuning the APSL SUE algorithm showed how one can 

trade-off the accuracy of APSL probabilities (and thus computation times of each iteration) with rate of SUE 

convergence. Several tuning techniques were explored, and it was shown how total computation times can be 

greatly improved. We shall now explore the success of these techniques for solving BAPS SUE. 

For BAPS SUE, the scale of the computational burden involved at each BPS SUE algorithm iteration in 

solving the BAPS model choice probability fixed-point problems depends on numerous factors; some of 

which can be controlled by the modeller, for example the choice of fixed-point algorithm, and the fixed-point 

algorithm initial conditions and probability convergence parameter 𝜉. The current study focuses on the FPIM 

as the fixed-point algorithm. 

Fig. 5.6A-B display for the Sioux Falls and Winnipeg networks, respectively, the cumulative computation 

times of the iterations during a single run of the BPS SUE algorithm solving BAPS SUE, with fixed and 

follow-on FPIM initial conditions (see Section 4.2). Fig. 5.7A-B shows the average number of fixed-point 

iterations per OD movement required for BAPS choice probability convergence at each iteration of the BPS 

SUE algorithm. As shown for Sioux Falls, once the choice sets have equilibrated, utilising follow-on initial 

conditions improves the computation times of each iteration due to the reduction in the number of FPIM 

iterations required for probability convergence. Before the choice sets have equilibrated, however, more FPIM 

iterations are required for follow-on initial conditions, due to the oscillations in flow. For Winnipeg, utilising 

follow-on conditions is significantly more effective. 
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Fig. 5.6. Cumulative computation times of the iterations during a single run of the BPS SUE algorithm solving BAPS SUE with fixed 

and follow initial FPIM conditions. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.7. Average number of BAPS probability fixed-point iterations at each iteration of the BPS SUE algorithm solving BAPS SUE 

with fixed and follow-on initial conditions. A: Sioux Falls. B: Winnipeg. 

 

Fig. 5.8A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation time 

for solving BAPS SUE varies as the FPIM probability convergence parameter 𝜉 is increased, with fixed and 

follow-on initial FPIM conditions. Fig. 5.9A-B display how the average number of BAPS fixed-point 

iterations and total number of BPS SUE algorithm iterations vary as 𝜉 is increased. 

With fixed FPIM initial conditions, BAPS SUE could not be solved for 𝜉 < 6 due to the inaccuracies of 

the BAPS probabilities. For 𝜉 ≥ 6, as shown, as 𝜉 increases, while the number of iterations required for SUE 

convergence remains constant, greater numbers of FPIM iterations are required for APSL probability 

convergence and thus total computation times increase.  

With follow-on FPIM initial conditions, like as for APSL SUE, BAPS SUE could be solved for all 𝜉. For 

𝜉 = −1, only single FPIM iterations are required for BAPS probability convergence, and with follow-on 

initial FPIM conditions, solving BAPS SUE this way simulates solving BAPS′ SUE. Increasing 𝜉 increases 

the number of FPIM iterations required for BAPS probability convergence and the accuracy of the BAPS 

probabilities, but the BAPS SUE solution obtained is the same. As shown, convergence of BAPS′ SUE 

(BAPS SUE with small 𝜉 & follow-on conditions) is slow. Increasing 𝜉 (generally) improves SUE 

convergence, with exceptions at small 𝜉, up until a minimum number of BPS SUE algorithm iterations is 

reached for solving with accurate BAPS probabilities. With these algorithm and model specifications, the 

convergence of BAPS′ SUE is not so slow that total computation times are high. However, best total 

computation times come from intermediate values of 𝜉 whereby suitable SUE convergence meets suitable 

iteration computation times, approximately 𝜉 = 1 and 𝜉 = 0 for Sioux Falls and Winnipeg, respectively. 
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Fig. 5.8. Computation time for solving BAPS SUE as the BAPS model probability convergence parameter 𝜉 is increased, with fixed 

and follow-on initial FPIM conditions. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.9. Average number of BAPS model fixed-point iterations and total number of BPS SUE algorithm iterations solving BAPS SUE 

as 𝜉 is increased. A: Sioux Falls. B: Winnipeg. 

 

Alternatively, utilising follow-on conditions, one can stipulate a set number of FPIM iterations to perform at 

each BPS SUE algorithm iteration. Supposing that 𝑘 FPIM iterations are conducted, Fig. 5.10A-B display the 

total computation times and number of BPS SUE algorithm iterations solving BAPS SUE, for the Sioux Falls 

and Winnipeg networks, respectively. As shown, conducting just two FPIM iterations (instead of one) can 

significantly reduce the number of BPS SUE algorithm iterations required for convergence, and thus total 

computation times. The optimal values for 𝑘 appear to be 2 and 3 FPIM iterations, respectively, where 

suitable SUE convergence meets suitable iteration computation times.  

One can also utilise a combination of both techniques for reducing BAPS SUE total computation times 

and stipulate a maximum number of FPIM iterations to perform and a maximum level of BAPS probability 

convergence, i.e. the FPIM is stopped if either a maximum of ℎ iterations are conducted or the probabilities 

have converged sufficiently according to the set parameter 𝜉. This can potentially save computation times in 

latter BPS SUE algorithm iterations where the stipulated amount of FPIM iterations unnecessarily overly-

converges the BAPS probabilities. Fig. 5.11A and Fig. 5.12A display for Sioux Falls how computation times 

and the number of BPS SUE algorithm iterations / average number of FPIM iterations vary, respectively, for 

different settings of 𝜉, where a maximum of 2 FPIM iterations are conducted. Fig. 5.11B and Fig. 5.12B 

display results for Winnipeg where a maximum of 3 FPIM iterations are conducted. As shown, best total 

computation times come from larger 𝜉 values and the time saved in latter iterations is not significant 

compared to a greater number of iterations being required for SUE convergence. This is different from the 

results for APSL SUE in Duncan et al (2021a), and is likely due to the iterations being more complex in the 

BPS SUE algorithm than the FAA. Optimal values of 𝜉 with this technique are approximately 𝜉 = 7 and 𝜉 =
8 for Sioux Falls and Winnipeg, respectively. 
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Fig. 5.10. Total computation times and number of BPS SUE algorithm iterations for solving BAPS SUE utilising follow-on 

conditions, with ℎ FPIM iterations conducted. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.11. Total computation times for solving BAPS SUE utilising follow-on conditions as 𝜉 is varied, with a max number of FPIM 

iterations conducted ℎ. A: Sioux Falls (ℎ = 2). B: Winnipeg (ℎ = 3). 

  

Fig. 5.12. Number of BPS SUE algorithm iterations, and average number of FPIM iterations for solving BAPS SUE utilising follow-

on conditions as 𝜉 is varied, with a max number of FPIM iterations conducted ℎ. A: Sioux Falls (ℎ = 2). B: Winnipeg (ℎ = 3). 

 

Considering the above results, for the remainder of the paper, unless stated otherwise, we solve BAPS SUE by 

stipulating a maximum number of FPIM iterations to perform at each BPS SUE algorithm iteration and a 

maximum level of BAPS model probability convergence. For Sioux Falls, a maximum of 2 FPIM iterations 

are conducted with 𝜉 = 7. For Winnipeg, 3 FPIM iterations are used with 𝜉 = 8. We label for reference this 
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method BAPS SUE*. This ‘optimal’ method for solving BAPS SUE is of course particular to the network, 

model, and algorithm specifications, e.g. model parameters, adopted step-size scheme, sizes of the 

approximated universal choice sets. However, by fixing the optimised values for that particular specification, 

and then varying the specifications, we will show that the method is robust in its effectiveness compared to 

solving BAPS SUE in a standard way (i.e. where the BAPS fixed-point probabilities are accurately solved 

with non-follow-on initial conditions).  

Fig. 5.13A-B display for the Sioux Falls and Winnipeg networks, respectively, the convergence patterns 

for BAPS SUE* for a single run of the BPS SUE algorithm. Fig. 5.14A-B display results in terms of 

computation time, and Fig. 5.15A-B display how the average used route choice set size varies as the algorithm 

progresses. As shown, for BAPS SUE*, the number of iterations required to obtain levels of convergence is 

now less than for BAPS′ SUE, though more than required for BAPS SUE (see Fig. 5.2). Hence, since the 

computation times for each iteration of BAPS SUE* are significantly less than for BAPS SUE, total 

computation times are improved.  

  

Fig. 5.13. Relative gap measures for BAPS SUE* at each iteration of the BPS SUE algorithm. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.14. Relative gap measures for BAPS SUE* in computation time [mins] of the BPS SUE algorithm. A: Sioux Falls. B: 

Winnipeg. 
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Fig. 5.15. Average used route choice set size for BAPS SUE* at each iteration of BPS SUE algorithm. A: Sioux Falls. B: Winnipeg. 

 

Other factors that affect the computational performance of BAPS SUE, in terms of solving the BAPS 

probability fixed-point problems, include the values of 𝛽 and 𝜑. As shown in Duncan et al (2021b), larger 

values of 𝛽 and 𝜑 result in greater numbers of FPIM iterations being required for BAPS probability 

convergence (increasing computation times). 

Fig. 5.16A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time 

for BAPS SUE* as well as for solving BAPS SUE with follow-on and fixed initial FPIM conditions, varies as 

the 𝛽 parameter is increased. Fig. 5.17A-B display how the average number of FPIM iterations per OD 

movement per BPS SUE algorithm iteration and how the total number of BPS SUE algorithm iterations vary 

as 𝛽 is increased. As shown, for BAPS SUE follow-on & fixed, while the number of BPS SUE algorithm 

iterations do not vary considerably, the average number of FPIM iterations increases exponentially with 𝛽 and 

hence so do computation times. For BAPS SUE*, the number of SUE iterations increases as 𝛽 increases, 

while the average number of FPIM iterations remains low (decreasing slightly due to more SUE iterations), 

resulting in the technique significantly improving in effectiveness as 𝛽 increases. 

  

Fig. 5.16. Computation time for BAPS SUE* and solving BAPS SUE with follow-on and fixed initial FPIM conditions as 𝛽 is 

increased. A: Sioux Falls. B: Winnipeg. 
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Fig. 5.17. Number of BPS SUE algorithm iterations, and average number of FPIM iterations for BAPS SUE*, and solving BAPS SUE 

with follow-on and fixed initial FPIM conditions as 𝛽 is increased. A: Sioux Falls. B: Winnipeg. 

 

Fig. 5.18A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time for 

BAPS SUE* as well as for solving BAPS SUE with follow-on and fixed initial FPIM conditions, varies as the 

𝜑 parameter is increased. Fig. 5.19A-B display how the average number of FPIM iterations per OD movement 

per BPS SUE algorithm iteration and how the total number of BPS SUE algorithm iterations vary as 𝜑 is 

increased. As shown for Sioux Falls, for this range of 𝜑, there are no clear trends for the SUE convergence 

rates as 𝜑 is varied, though the average number of FPIM iterations increases with 𝜑, as expected. For 

Winnipeg, however, there is a clear trend that the number of iterations required for SUE convergence 

decreases as 𝜑 increases. This is due to a greater number of iterations being required to equilibrate the choice 

sets, which are more restrictive for smaller 𝜑. Total computation times for the bounded SUE models thus 

decrease with 𝜑 in this range, despite greater numbers of FPIM iterations being required for BAPS probability 

convergence. 

  

Fig. 5.18. Computation time for BAPS SUE* and solving BAPS SUE with follow-on and fixed initial FPIM conditions as 𝜑 is 

increased. A: Sioux Falls. B: Winnipeg. 
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Fig. 5.19. Number of BPS SUE algorithm iterations, and average number of FPIM iterations for BAPS SUE* and solving BAPS SUE 

with follow-on and fixed initial FPIM conditions and 𝜑 is increased. A: Sioux Falls. B: Winnipeg. 

 

Next, we investigate for the bounded SUE models, how total computation times, number of BPS SUE 

algorithm iterations, and average used route choice set sizes vary according to levels of travel demand and the 

model parameters. 

Fig. 5.20A-B display for the Sioux Falls and Winnipeg networks, respectively, how the number of 

iterations required for SUE convergence varies for the bounded SUE models as the level of travel demand is 

varied, where the demand is scaled according to the parameter 𝜔 so that the demand for OD movement 𝑚 is 

𝜔 ∙ 𝑞𝑚, 𝑚 = 1,… ,𝑀. Fig. 5.21A-B display results in terms of computation time, and Fig. 5.22A-B display 

how the average used route choice set size varies. As shown, and as expected, the number of iterations 

required for convergence generally increases for the bounded SUE models as the level of demand increases, 

resulting in longer computation times.  

A surprising result is that (at least towards larger demand on Winnipeg) the average used route choice set 

sizes decrease as the demand level increases. If one considers what one might expect under Deterministic User 

Equilibrium (Wardrop, 1952), for low demand only the best costing routes are used, and increasing demand 

results in the used route choice sets expanding. For Winnipeg, the choice set sizes do expand initially as the 

demand level is increased, but then they decrease in size more significantly. For Sioux Falls, the more heavily 

congested network, the choice sets decrease in size quite significantly for 𝜔 in this range. The suspected 

reason for this is that for high levels of congestion the costs on all links are inflated, and routes that are used 

for one OD movement are likely inflating the costs so that routes in other OD movements are then too costly 

to be used. Sioux Falls is also potentially more susceptible to this due to the way the network is structured, i.e. 

heavily overlapping OD movements. 

  

Fig. 5.20. Number of iterations required for SUE convergence for varying levels of travel demand, scaled by 𝜔. A: Sioux Falls. B: 

Winnipeg. 

A B 

A B 



Chapter 5. Formulation and solution of bounded path size stochastic user equilibrium models – 

consistently addressing route overlap and unrealistic routes 

214 

 

  

Fig. 5.21. Computation time [mins] required for SUE convergence for varying levels of travel demand, scaled by 𝜔. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 5.22. Average used route choice set size for the bounded SUE models with different levels of travel demand, scaled by 𝜔. A: 

Sioux Falls. B: Winnipeg. 

 

Fig. 5.23A-B display for the Sioux Falls and Winnipeg networks, respectively, how the number of iterations 

required for SUE convergence varies for the BPS SUE models as the 𝛽 parameter is varied. Fig. 5.24A-B 

display results in terms of computation time, and Fig. 5.25A-B display how the average used route choice set 

size varies. As shown, for BBPS SUE and BAPS SUE, only a small increase in the number of iterations 

required for convergence occurs as 𝛽 is increased, though for BAPS SUE – as also shown in Fig. 5.16/Fig. 

5.17 – total computation times increase exponentially with 𝛽 due to the fixed-point probability computation. 

For BAPS′ SUE and BAPS SUE*, the number of BPS SUE algorithm iterations increases exponentially with 

𝛽, and for 𝛽 = 0.9 on Winnipeg, BAPS′ SUE actually takes longer than BAPS SUE. Albeit marginally, the 

average used route choice set sizes increase for the BBPS/BAPS SUE models as 𝛽 increases. As shown in Fig. 

5.22 & Fig. 5.28, BSUE tends to equilibrate smaller used route choice sets than the BPS SUE models. 

Decreasing 𝛽 tends the BPS SUE models towards BSUE and thus it makes sense that decreasing 𝛽 results in 

smaller choice sets. The reason that BSUE is equilibrating smaller used route choice sets than the BPS SUE 

models, must be due to the path size correction factors in the probability relations pushing flow to the low 

costing route(s), thus expanding the bound and including more used routes. 
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Fig. 5.23. Number of iterations required for SUE convergence as the 𝛽 parameter is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.24. Computation time [mins] required for SUE convergence as the 𝛽 parameter is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.25. Average choice set size for the BPS SUE models as the 𝛽 parameter is varied. A: Sioux Falls. B: Winnipeg. 

 

Fig. 5.26A-B display for the Sioux Falls and Winnipeg networks, respectively, how the number of iterations 

required for SUE convergence varies for the BPS SUE models as the 𝜑 parameter is varied. Fig. 5.27A-B 

display results in terms of computation time, and Fig. 5.28A-B display how the average used route choice set 

size varies. As expected, the used route choice set sizes expand as the bound parameter 𝜑 increases. As shown 

for Sioux Falls, there appears to be no clear trend for the SUE convergence rates in this range of 𝜑, though 

computation times generally increase due to the greater number of active routes. For Winnipeg, the SUE 

convergence rates improve as 𝜑 increases in this range, improving computation times. 
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Fig. 5.26. Number of iterations required for SUE convergence as the 𝜑 parameter is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.27. Computation time [mins] required for SUE convergence as the 𝜑 parameter is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.28. Average choice set size for the bounded SUE models as the 𝜑 parameter is varied. A: Sioux Falls. B: Winnipeg. 

 

The figures are omitted from the paper, but in similar experiments, for Sioux Falls and Winnipeg the SUE 

convergence rate worsened for the bounded SUE models as the 𝜃 parameter was increased, resulting in longer 

computation times. This is because the route cost differences are accentuated more with large 𝜃 resulting in 

greater flow fluctuations.   
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5.3 Flow Results 

In this subsection we compare the flow results from the different SUE models. To compare the flow results 

𝒇∗𝑅1 and 𝒇∗𝑅2 for Result 1 and Result 2, respectively, we measure the Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √∑ ∑ (𝑓𝑚,𝑖
∗𝑅1 − 𝑓𝑚,𝑖

∗𝑅2)
𝑖∈𝑅𝑚

2𝑀

𝑚=1
/𝑁, 

where 𝑁 is the total number of routes. 

We begin by demonstrating the relationships between the bounded and non-bounded SUE models. The 

bounded models all approach limit models as the bound 𝜑 → ∞ and all routes become used. MNL is the limit 

model of the BCM, GPSL′ is the limit model of the BBPS model, and APSL is the limit model of the BAPS 

model. Fig. 5.29 thus displays the differences between MNL SUE & BSUE, GPSL′ SUE & BBPS SUE, and 

APSL SUE & BAPS SUE respectively, as 𝜑 is increased, A: Sioux Falls, B: Winnipeg. As expected, 

similarity to the limit models increases as 𝜑 increases.  

  

Fig. 5.29. Difference between MNL SUE & BSUE, GPSL′ SUE & BBPS SUE, and APSL SUE & BAPS SUE as the bound 𝜑 is 

increased. A: Sioux Falls. B: Winnipeg. 

 

We next consider the differences in flow results between the bounded SUE models. Fig. 5.30A-B display for 

Sioux Falls and Winnipeg, respectively, the impact the 𝜑 parameter has on the differences in SUE flow 

between the models. As shown, BBPS & BAPS SUE as expected are the most similar, while BAPS SUE is 

the most different to BSUE. The similarity between BSUE and BBPS/BAPS SUE decreases as 𝜑 increases. 

This is likely because there are more routes to capture the correlation between as 𝜑 increases, and thus the 

path size terms have a greater impact upon the probability relations. 

Fig. 5.31A-B display the impact of the 𝜃 parameter. As shown, the similarity between BBPS & BAPS 

SUE increases initially as 𝜃 increases: increasing 𝜃 increases the prominence of the travel cost components in 

the BAPS path size contribution factors, for low 𝜃 the distinctiveness components are more prominent 

increasing the difference to the BBPS factors. 

Fig. 5.32A-B display the impact of the 𝛽 parameter. As shown, the flow differences all increase as 𝛽 

increases, which is logical since the differences between the SUE models are the different path size correction 

terms scaled by 𝛽. For BAPS SUE, the impact is more significant for larger 𝛽, where the contribution 

influence of distinctiveness is more significant within the BAPS path size terms. 
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Fig. 5.30. Impact of the 𝜑 parameter on the difference in SUE flow between the bounded SUE models. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.31. Impact of the 𝜃 parameter on the difference in SUE flow between the bounded SUE models. A: Sioux Falls. B: Winnipeg. 

  

Fig. 5.32. Impact of the 𝛽 parameter on the difference in SUE flow between the bounded SUE models. A: Sioux Falls. B: Winnipeg. 

 

Next, we assess choice set robustness for the bounded SUE models (robustness to the approximated universal 

choice sets). In Duncan et al (2021a) we assessed choice set robustness for internally consistent SUE 

formulations of numerous correlation-based route choice models, namely: PSL, GPSL, APSL, C-Logit (CL), 

Cross-Nested Logit (CNL), and Generalised Nested Logit (GNL). It was shown that GPSL & APSL SUE 

generally performed the best due to having explicit mechanisms for dealing with unrealistic routes in the 

correlation components. All routes receive non-zero flows however, and the mechanisms only reduce the 
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effects of unrealistic routes. The BPS SUE models have significantly greater potential to be more effective in 

dealing with unrealistic routes, and we anticipate that choice set robustness should be significantly improved. 

Adopting a similar experiment to that in Duncan et al (2021a), Fig. 5.33A-B display for the Sioux Falls 

and Winnipeg networks, respectively, the impact that varying the bound parameter 𝜑 has on choice set 

robustness for the bounded SUE models. To assess choice set robustness, flow results are compared between 

two different approximated universal choice sets, where the second set of choice sets expands the first, thus 

mimicking choice set mis-generation and the inclusion of unrealistic routes. The two choice sets are obtained 

by generating all routes (from the full pre-generated choice sets) with a free-flow travel time less than 𝜓 times 

greater than the free-flow travel time on the quickest route for each OD movement. For Sioux Falls, the base-

level choice sets are those obtained with 𝜓 = 2.3, and the expanded choice sets are those obtained with 𝜓 =
2.5 (i.e. in this case the full the pre-generated choice sets). For Winnipeg, the equivalent values are 𝜓 = 1.4 

and 𝜓 = 2.5, respectively. Fig. 5.34A-B display for the Sioux Falls and Winnipeg networks, respectively, the 

average used route choice set sizes vary for the bounded SUE models as 𝜑 is varied, for the base-level and 

expanded approximated universal choice sets. Note that for Sioux Falls the 𝜓 = 2.3 and 𝜓 = 2.5 universal 

choice sets have average sizes 54.8 and 81.9, respectively. For Winnipeg, the 𝜓 = 1.4 and 𝜓 = 2.5 choice 

sets have average sizes 67.9 and 70.2, respectively.  

As Fig. 5.33A-B show, the bounded SUE models do indeed have significant potential to improve choice 

set robustness. As 𝜑 → ∞, BSUE tends towards MNL SUE, BBPS SUE tends towards GPSL′ SUE, and 

BAPS SUE tends towards APSL SUE. As can be seen, decreasing the bound parameter 𝜑 from large 𝜑 

(where 𝜑 → ∞ is approximated), improves choice set robustness for the bounded SUE models. For large 

bound values, the additional routes in the expanded choice sets have equilibrated costs within the bound and 

thus receive non-zero flows. This means that for the expanded choice sets solutions, the flows on the non-

additional routes (those in the base-level choice sets) are adjusted from the base SUE solution. Lower bound 

values assign additional routes zero flows which reduces the impact they have on the non-additional route 

flows, thereby improving choice set robustness. As Fig. 5.34A-B show, decreasing 𝜑 reduces the difference 

between the equilibrated used routes from the base-level and the expanded approximated universal choice 

sets. 

  

Fig. 5.33. Impact of the 𝜑 parameter on choice set robustness for the bounded SUE models. A: Sioux Falls. B: Winnipeg. 
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Fig. 5.34. How the average equilibrated used route choice set sizes vary for the bounded SUE models as the bound parameter 𝜑 is 

varied, for the base-level and expanded approximated universal choice sets. A: Sioux Falls. B: Winnipeg. 

 

5.4 Uniqueness of BAPS SUE Solutions 

As discussed in Section 3.3, it is not possible to prove that BBPS SUE or BAPS SUE solutions can be unique 

according to standard approaches. In Duncan et al (2021a), the uniqueness of APSL SUE solutions was 

investigated numerically, where the results suggested uniqueness conditions exist. Due to the similarities 

between the APSL SUE and BAPS SUE models, we conduct similar experiments to investigate the 

uniqueness of BAPS SUE solutions numerically. 

As demonstrated in Duncan et al (2021b), for a given setting of the link costs 𝒕 and 𝜃 and 𝜑 values, a 𝛽 

value exists, 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃, 𝜑) > 0, for OD movement 𝑚 such that BAPS model choice probability solutions 

are unique for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃, 𝜑). This means that a 𝛽 value exists, 𝛽𝑚𝑎𝑥(𝒕, 𝜃, 𝜑) >

0, such that solutions are unique for all OD movements for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥(𝒕, 𝜃, 𝜑), i.e. 

𝛽𝑚𝑎𝑥(𝒕, 𝜃, 𝜑) = min(𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃, 𝜑)). And, assuming the link costs are bounded, i.e. they have a maximum 

and minimum value (for example due the fixed demands), for a given 𝜃 value, a 𝛽 value exists, �̅�𝑚𝑎𝑥(𝜃, 𝜑) >
0, such that BAPS model solutions are unique for all OD movements and for all feasible flow vectors (and 

thus costs) for all 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃, 𝜑). Obviously, �̅�𝑚𝑎𝑥(𝜃, 𝜑) ≤ 𝛽𝑚𝑎𝑥(𝒕, 𝜃, 𝜑) ≤
𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃, 𝜑).  

In Duncan et al (2021a) it was found that APSL SUE solutions appeared to be unique when APSL 

probabilities were universally unique. Thus, while it is not guaranteed that in all cases BAPS SUE solutions 

will be unique when BAPS models probabilities are universally unique, i.e. for 𝛽 in the range 0 ≤ 𝛽 ≤
�̅�𝑚𝑎𝑥(𝜃, 𝜑), as we show below, it appears from numerical experiments that this is also often the case.  

Fig. 5.35A-B plot, for two runs, the small example network route flows at each iteration of the BPS SUE 

algorithm solving BAPS SUE, when the initial conditions for the FPIM computing the BAPS model 

probabilities are randomly generated, for 𝛽 = 0.9 and 𝛽 = 1.1, respectively, 𝜃 = 1, 𝜑 = 1, 𝜉 = 10. The 

MSWA step-size scheme is adopted with 𝑑 = 10, and the algorithm is stopped after 20 iterations if 

convergence is not reached. As shown, for 𝛽 = 0.9, because the BAPS model probabilities are unique for the 

route costs (from the flows) at each iteration, the route flows on both runs converge in the same way to the 

same BAPS SUE solution. For 𝛽 = 1.1, however, as demonstrated clearly at iteration 12, there are multiple 

BAPS model probabilities for the route costs at each iteration, and hence due to the step-size the flows 

fluctuate randomly and do not converge. This suggests that BAPS model probability solutions are universally 

unique for 𝛽 = 0.9, but not for 𝛽 = 1.1, and hence that 0.9 ≤ �̅�𝑚𝑎𝑥(1) < 1.1.  

Fig. 5.36A-B plot for 𝛽 = 0.9 and 𝛽 = 1.1, respectively, and for multiple runs, the flows at each iteration 

of the BPS SUE algorithm solving BAPS SUE utilising follow-on initial conditions for the FPIM computing 

the BAPS model probabilities, where the SUE initial conditions are randomly generated, 𝜃 = 1, 𝜑 = 1, 𝜉 =
10. The initial SUE conditions for the BPS SUE algorithm in Algorithm 5.1 are All-Or-Nothing assignments. 

To instead randomly generate initial SUE conditions here, we first suppose all routes are used and randomly 

generate flows for these routes (maintaining demand-feasibility). A bound condition phase is then conducted 
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to remove routes with consequent costs above the bound and redistribute the flows accordingly. As shown, for 

𝛽 = 0.9, all initial SUE conditions lead to the same solution, whereas for 𝛽 = 1.1, two solutions are found 

with different initial conditions. Fig. 5.37A-B plot the flows at each iteration of the BPS SUE algorithm for 

solving BAPS′ SUE. As shown, for 𝛽 = 0.9, all initial conditions again lead to the same solution, whereas for 

𝛽 = 1.1, two solutions are found. 

  

Fig. 5.35. Small example network: BAPS SUE route flows at each iteration of the BPS SUE algorithm with randomly generated initial 

FPIM conditions, two runs (𝜃 = 1, 𝜑 = 2, 𝜉 = 10). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

  

Fig. 5.36. Small example network: BAPS SUE route flows at each iteration of the BPS SUE algorithm with follow-on initial FPIM 

conditions and randomly generated initial SUE conditions, multiple runs (𝜃 = 1, 𝜑 = 2, 𝜉 = 10). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

  

Fig. 5.37. Small example network: BAPS′ SUE route flows at each iteration of the BPS SUE algorithm with randomly generated 

initial SUE conditions, multiple runs (𝜃 = 1, 𝜑 = 2). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

A B 

A B 

A B 
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Fig. 5.36 & Fig. 5.37 suggest that the BAPS SUE solution is unique for 𝛽 = 0.9, and solutions are non-unique 

for 𝛽 = 1.1, and Fig. 5.35 suggests that this due to the BAPS choice probability solutions being universally 

unique for 𝛽 = 0.9, but not for 𝛽 = 1.1. One can imply from this that 0.9 ≤ �̅�𝑚𝑎𝑥(1,2) < 1.1, and potentially 

that BAPS SUE solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 0.9 ≤ �̅�𝑚𝑎𝑥(1,2).  
Duncan et al (2021a) describe a method for identifying the uniqueness conditions for APSL SUE 

solutions. Here, we utilise a similar method, to attempt to identify �̅�𝑚𝑎𝑥,𝑚(𝜃, 𝜑) values and thus 

�̅�𝑚𝑎𝑥(𝜃, 𝜑) = min(�̅�𝑚𝑎𝑥,𝑚(𝜃, 𝜑):𝑚 = 1,… ,𝑀) for the BAPS SUE model. �̅�𝑚𝑎𝑥,𝑚(𝜃, 𝜑) is estimated by 

plotting trajectories of BAPS SUE solutions for OD movement 𝑚 for varying 𝛽, and identifying where a 

unique trajectory of solutions ends and multiple trajectories begin. A simple method for obtaining trajectories 

of BAPS SUE solutions is as follows: 

Step 1. Identify a suitably large value for 𝛽 (where it is predicted that solutions will be non-unique). 

Step 2. Solve BAPS SUE for this large 𝛽 with a randomly generated initial SUE condition. 

Step 3. Decrement 𝛽 and obtain the next BAPS SUE solution with the initial SUE condition set as the 

solution for the previous 𝛽. 

Step 4. Continue until a suitably low value of 𝛽 (where it is predicted that solutions will be unique). 

The randomly generated initial SUE conditions for the BPS SUE algorithm are obtained by the same method 

as described above: by randomly generating a non-zero flow for all routes (maintaining demand-feasibility), 

and performing a bound condition phase to remove routes with consequent costs above the bound, 

redistributing the flows accordingly. Since the 𝜑 parameter is fixed, a bound condition phase is not required 

for Step 3 when using the solution to the previous 𝛽. 

By plotting the route flows for OD movement 𝑚 at each decremented 𝛽, and repeating this method 

several times, one can determine where non-unique solution trajectories end and hence estimate �̅�𝑚𝑎𝑥,𝑚(𝜃, 𝜑). 
If after several repetitions (with different randomly generated initial conditions) only a single trajectory of 

solutions is shown, then the initial large 𝛽 value is increased. Similarly, if only multiple trajectories are 

shown, the stopping low 𝛽 value is decreased. However, one can test beforehand whether the initial and 

stopping 𝛽 values are suitable by solving for each a few times with random initial conditions and observing 

whether there are different solutions for the initial 𝛽 value and the same solution for the stopping 𝛽. In the 

experience of the authors, the �̅�𝑚𝑎𝑥,𝑚(𝜃, 𝜑) values typically range between 0.9 and 1.1 (usually around 1).  

If in large-scale networks it is computationally burdensome to solve BAPS SUE once at a time for each 

decremented value of 𝛽, then one can instead (by possibly harnessing parallel processing) solve for different 𝛽 

values simultaneously, each with randomly generated initial conditions. This should also identify where 

solutions are and are not unique. Moreover, one can plot flow trajectories for all OD movements 

simultaneously, so the method does not need to be repeated for each OD movement. We illustrate the 

approach graphically here, but there is no need to draw graphs for general networks. One can instead observe 

the route flow values, where a finer grained decrement of 𝛽 will provide a more accurate estimation of 

�̅�𝑚𝑎𝑥,𝑚(𝜃, 𝜑). 

In the case of the small example network where there is a single OD movement, we estimate �̅�𝑚𝑎𝑥(1,2) 
using the above method. Fig. 5.38 displays trajectories of BAPS SUE route flow solutions as the 𝛽 parameter 

is varied for 𝜃 = 1, 𝜑 = 2, 𝜉 = 10. 𝛽 was decremented by 0.005 and the initial large 𝛽 value was 1.2. The 

solution trajectory plotting was repeated until multiple trajectories were shown. As shown, there is a unique 

trajectory of route flow solutions up until 𝛽 = �̅�𝑚𝑎𝑥(1,2) where there then becomes multiple trajectories. The 

estimated �̅�𝑚𝑎𝑥(1,2) value is 0.995. 
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Fig. 5.38. Small example network: Trajectories of BAPS SUE solutions as 𝛽 is varied (𝜃 = 1, 𝜑 = 2, 𝜉 = 8). 

 

We use the same technique of plotting flow trajectories to estimate the BAPS SUE uniqueness conditions for 

the Sioux Falls network. Fig. 5.39 displays for Sioux Falls the maximum route flow from two trajectories of 

BAPS SUE solutions as the 𝛽 parameter is varied for two different randomly chosen OD movements. 𝛽 was 

decremented by 0.01, and the initial large 𝛽 and stopping small 𝛽 values were 𝛽 = 1.1 and 𝛽 = 0.9, 

respectively. As shown, the �̅�𝑚𝑎𝑥,𝑚(0.1,2) values for these OD movements appear to be greater than 0.9.  

  

Fig. 5.39. Sioux Falls: Maximum route flow for two different OD movements from two trajectories of BAPS SUE solutions as 𝛽 is 

varied. 

 

5.5 Findings of the Numerical Experiments 

To summarise, the key findings of the numerical experiments were that: 

a) Flow results from the bounded SUE models converged towards their non-bounded limit models as the 

bound parameter was increased towards infinity. 

b) Bounded SUE models have the potential to be significantly more robust than non-bounded SUE 

models to the inclusion of unrealistic routes to the adopted choice sets. 

c) The BPS SUE models tended to equilibrate marginally larger used route choice set sizes than BSUE. 

d) BBPS SUE converged in a similar number of BPS SUE algorithm iterations to BSUE, but total 

computation times were longer due to the more complex probability expression. 

e) The features of solving APSL/APSL′ SUE explored in Duncan et al (2021a) could be transferred to 

solving the analogous BAPS/BAPS′ SUE: 

Route 1 ×   Route 2 ▲ 

Route 3    Route 4 ∎ 

�̅�𝒎𝒂𝒙(𝟏, 𝟐) -- 
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f) Convergence rates for solving BAPS SUE were similar to that for BSUE & BBPS SUE, however the 

computational burden involved in computing the fixed-point BAPS model choice probabilities for 

each BPS SUE algorithm iteration resulted in much longer total computation times. 

g) On-the-other-hand, the computational burden involved in computing the BAPS′ model choice 

probabilities was similar to that for the BBPS model (similarly closed-form), but the BAPS′ SUE 

convergence rate was comparatively slow, and thus total computation times were also longer. 

h) In general, the FPIM convergence parameter 𝜉 (and thus the accuracy of the BAPS model choice 

probabilities) must be at a certain level for convergence of the BPS SUE algorithm to the BAPS SUE 

solution. 

i) However, by utilising ‘follow-on’ initial FPIM conditions – where the initial conditions for solving 

the BAPS probabilities at iteration 𝑛 of the BPS SUE algorithm are set as the route flow proportions 

from iteration 𝑛 − 1 – the BPS SUE algorithm will converge to the BAPS SUE solution for all 𝜉. 

j) There was a computational trade-off between solving BAPS & BAPS′ SUE: solving BAPS SUE with 

low 𝜉 and follow-on initial conditions simulated solving BAPS′ SUE where the convergence rate was 

slow, while larger values of 𝜉 resulted in comparatively quick convergence rates but lengthy 

computation times for the iterations.  

k) One can thereby, with 𝜉, trade-off SUE convergence rates with computation times for each of the BPS 

SUE algorithm iterations, to improve total computation times for solving BAPS SUE. 

l) Also to improve BAPS SUE total computation times, one can stipulate a set number FPIM iterations 

to perform at each BPS SUE algorithm iteration, or utilise a combination of a maximum number of 

FPIM iterations to perform and a maximum level of BAPS probability convergence (controlled with 

𝜉). 

m) BAPS SUE can be thus solved in feasible computation times, though typically longer than BSUE & 

BBPS SUE. 

n) Uniqueness conditions appeared to exist for BAPS SUE: for 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃), where 

BAPS probability solutions are unique. 

o) �̅�𝑚𝑎𝑥,𝑚(𝜃) values (uniqueness for OD movement 𝑚) in experiments were greater than 0.9. 

The ‘optimal’ values for the methods in j)-k) for solving BAPS SUE are particular to the network, model, and 

algorithm specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by 

fixing the optimised values for a given specification, and then varying the specifications, it was shown that the 

method was robust in its effectiveness compared to solving BAPS SUE in a standard way (i.e. where the 

BAPS fixed-point probabilities are accurately solved with non-follow-on initial conditions). Future research 

could explore an intelligent, adaptive process whereby the optimal values of 𝜉 and the maximum number of 

FPIM iterations to perform at each BPS SUE algorithm iteration are learnt / worked out as the BPS SUE 

algorithm progresses. 

6.  Conclusion 
This paper investigates the integration of Bounded Path Size (BPS) route choice models within a Stochastic 

User Equilibrium (SUE) model. The BPS model form offers a theoretically consistent and practical approach 

for dealing with both route overlap and unrealistic routes on large-scale networks. It captures correlations 

between overlapping routes by including correction terms within the probability relations, and has a consistent 

criterion for assigning zero choice probabilities to unrealistic routes while eliminating their path size 

contributions. Two BPS models are proposed: one that is closed-form (the BBPS model), and another 

expressed as a fixed-point problem (the BAPS model). For the BAPS model, solving the choice probabilities 

requires a fixed-point algorithm to compute the solution. This has the potential to be computationally 

burdensome in large-scale networks even when the travel costs are fixed. As explored in the paper, however, 

the requirement of solving fixed-point problems to compute the BAPS model choice probabilities can be 

circumvented in SUE application, since at equilibrium the route flow proportions and choice probabilities 

equate.  
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The paper proves the existence of BBPS SUE solutions. BAPS SUE solution existence cannot be 

guaranteed by the standard proofs since the BAPS choice probability function is not technically continuous, 

though this is not an issue in practice and thus in practice BAPS SUE solution existence is not an issue. 

Uniqueness for BBPS SUE or BAPS SUE cannot be guaranteed. Instead, the paper investigates the 

uniqueness of BAPS SUE model solutions numerically, where experiments on the Sioux Falls and Winnipeg 

networks suggest that uniqueness conditions exist. These conditions are analogous to those for the uniqueness 

of BAPS model probability solutions, and BAPS SUE solutions appear to be unique when BAPS model 

solutions are unique.  

The paper proposes a generic algorithm for solving BPS SUE models. The algorithm is an adaptation of 

the generic algorithm proposed by Watling et al (2018) for the Bounded SUE (BSUE) model. To equilibrate 

the choice sets of realistic routes, the BSUE algorithm generates realistic routes from the network as the 

algorithm progresses. With the current techniques available for generating these routes, there are questions 

over the suitability of the approach for large-scale networks. For the proposed BPS SUE algorithm, we thus 

take a more heuristic approach, by pre-generating approximated universal choice sets. From these routes, the 

restricted choice sets of realistic routes are equilibrated. The algorithm can however be easily adapted so that 

routes are generated as the algorithm progresses, just like the BSUE algorithm. 

Adopting the Method of Successive Weighted Averages (MSWA) step-size scheme, the computational 

performance of the BPS SUE algorithm for solving BBPS & BAPS SUE is assessed in numerical experiments 

on the Sioux Falls and Winnipeg networks. The paper demonstrates how for BAPS SUE one can trade-off the 

accuracy of BAPS model probabilities (and thus computation times of each iteration) with rate of SUE 

convergence, and as such, it is shown that BAPS SUE can be solved in feasible computation times. 

Computational performance and flow results are also compared with BSUE and standard Path Size Logit 

(PSL) SUE models (solved with a flow-averaging algorithm and MSWA). The key findings of the numerical 

experiments were that: 

a) Flow results from the bounded SUE models converged towards their associated non-bounded limit 

SUE model as the bound parameter was increased towards infinity. 

b) The bounded SUE models have the potential to be significantly more choice set robust that non-

bounded SUE models, i.e. less sensitive to the inclusion of unrealistic routes to the adopted choice 

sets. 

c) BBPS SUE could be solved quicker than BAPS SUE, due to the closed-form BBPS probability 

expression, but BAPS SUE was more internally consistent (greater behavioural realism). 

d) BPS SUE models can be solved in feasible computation times, though typically longer than non-

bounded models. 
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Chapter 6. Conclusion 

It is essential that decision processes related to improving transport infrastructure, are supported by a well-

functioning transport model which gives a realistic representation of the route choices of travellers. The ability 

to predict driver route choice means that route flows can be calculated and areas of potentially high levels of 

congestion can be identified, in turn allowing us to investigate many eventualities, and assess any possible 

remedial measures. 

There are, however, several distinct and unique aspects about route choice modelling that makes it a more 

challenging task than modelling other types of transport choices. The literature highlights four key aspects in 

particular: allowing for driver/modelling uncertainty, capturing correlations between overlapping routes, 

dealing with unrealistic routes, and incorporating the effects of congestion. Numerous modelling approaches 

have been developed to address these challenges; however, as discussed/uncovered/demonstrated in this 

thesis, some of the models/approaches have issues with theoretical consistency, robustness, and/or being 

mathematically well-defined. This thesis addresses this by developing two new route choice modelling 

approaches, and demonstrates their computationally feasibility and estimatability on real-life large-scale 

networks. Chapters 2&3 of this thesis developed the first modelling approach, and Chapters 4&5 developed 

the second. Below, the two modelling approaches are reviewed, by reviewing the findings of each chapter in 

turn, followed by discussions of scope for further research. Some wider concluding remarks then finalise the 

conclusion chapter and thesis. Fig. 6.1 collates the highlights from the thesis chapters (the papers). 
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Fig. 6.1. Thesis chapter highlights.  

Chapter 2 (Paper 

One) –  

Adaptive Path 

Size Logit 

➢ Demonstrate issues with existing Path Size Logit (PSL) models 

➢ Propose a new internally consistent Adaptive PSL that addresses these issues 

➢ Proof of existence and uniqueness conditions for Adaptive PSL solutions 

➢ Adaptive PSL Likelihood formulation and tracked route data MLE procedure 

➢ Estimation of PSL models on a large-scale network using real GPS data 

 

Chapter 3 (Paper 

Two) –  

Adaptive Path 

Size Logit 

Stochastic User 

Equilibrium 

➢ Stochastic User Equilibrium (SUE) conditions for Adaptive Path Size Logit 

(APSL) 

➢ Existence proof for APSL SUE solutions & uniqueness conditions 

demonstrated 

➢ Numerical experiments demonstrating computational feasibility for APSL 

SUE 

➢ Internally consistent SUE formulations for correlation-based route choice 

models 

➢ Computational performance and choice set robustness assessed for all SUE 

models 

 

Chapter 4 (Paper 

Three) –  

Bounded Path 

Size Models 

➢ Identify desired properties for a Bounded Path Size (BPS) route choice 

model 

➢ Derive a mathematically well-defined & theoretically desirable BPS model 

form 

➢ Propose two BPS models and demonstrate properties 

➢ Present likelihood formulations and tracked route data MLE procedure 

➢ Estimate proposed models on a large-scale network using real GPS data 

 

Chapter 5 (Paper 

Four) – 

Bounded Path 

Size Stochastic 

User 

Equilibrium 

➢ Stochastic User Equilibrium (SUE) conditions for Bounded Path Size (BPS) 

models 

➢ Proof of existence for BPS SUE solutions and BPS SUE solution algorithm 

➢ Computation/flow results compared between BPS SUE models and with PS 

SUE models 

➢ Computational feasibility & insensitivity to unrealistic routes in the choice 

sets shown 

➢ Uniqueness conditions for BPS SUE solutions demonstrated numerically 

 

Modelling Approach 1 

Modelling Approach 2 

Highlights 

Highlights 
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1.  Modelling Approach 1 – A New Internally Consistent Weighted Path Size 

Contribution Technique 

1.1 Chapter 2 – Adaptive Path Size Logit 

1.1.1 Review of Findings 

The Path Size Logit (PSL) route choice model captures correlations between overlapping routes by including 

correction terms within the route utility functions. This provides a convenient closed-form solution for 

implementation in traffic network models, where the model has been shown to be both computationally 

feasible and estimatable on real-life large-scale networks.  

The correction terms depend upon path size terms which measure the distinctiveness of routes: a route is 

penalised based on the number of other routes sharing its links, and the costs of those shared links. The key 

issue for PSL, however, is that all routes contribute equally to path size terms, meaning that unrealistic routes 

have a considerable and negative effect on the choice probabilities of the realistic routes when links are 

shared. The typical way of dealing with unrealistic routes for PSL is to employ some kind of heuristic method 

that attempts to explicitly generate a route choice set containing just the routes considered realistic. This 

approach, however, leads to theoretical inconsistencies, since the route generation criteria is not consistent 

with the calculation of the choice probabilities among generated routes, while generating the exact choice sets 

of realistic routes is very difficult to do, especially on large-scale networks. 

Acknowledging the difficulties in obtaining exact choice sets of realistic routes for PSL to be suitable, a 

pragmatic approach that has been proposed is to utilise a weighted path size contribution technique along with 

choice set generation, to attempt to reduce the impact any present unrealistic routes may have on the choice 

probabilities of realistic routes. The idea is that instead of all routes having equal path size contributions to the 

path size terms of other routes (i.e. PSL), the contributions are weighted so that the probabilities of realistic 

routes are only minorly adjusted from link sharing with generated unrealistic routes. This is a promising 

approach as it relaxes the importance of generating exact choice sets of realistic routes.  

The Generalised PSL (GPSL) model proposes that the path size contribution factor is based upon ratios of 

travel cost between routes, and hence routes with large travel costs have a diminished impact upon the 

correction terms of routes with small travel costs. However, as discussed and demonstrated on example 

networks in Chapter 2 (the first journal manuscript), GPSL has some theoretical and practical issues. Firstly, 

GPSL is not internally consistent in how it defines routes as unrealistic: the path size terms consider the travel 

cost of the route, while the probability relation considers disutility including the correction term. Secondly, 

due to the way in which the contribution factor is formulated – as travel cost ratios – an additional scaling 

parameter, 𝜆, is required to scale these contributions, which makes parameter estimation more difficult, while 

there are questions over its behavioural interpretation.  

To address these issues, Chapter 2 then formulated two new PSL models. Firstly, addressing the second 

issue, the GPSL contribution factors were re-formulated to resemble the travel cost component in the 

probability relation, thus proposing an alternative GPSL (GPSL′) model. This means that one can equate the 

path size scaling parameter (𝜆) with the Logit parameter (𝜃), formulating the GPSL′(𝜆=𝜃) model, thereby 

improving internal consistency, reducing the number of parameters for estimation, and removing the concerns 

over behavioural interpretation of the path size scaling parameter. 

However, although the GPSL′(𝜆=𝜃) model provides improved internal consistency over GPSL, the path 

size contribution factors do not consider route distinctiveness. Addressing this, the Adaptive Path Size Logit 

(APSL) model was then formulated, where the contribution factors consider ratios of route choice probability 

between routes, thus ensuring that routes defined as unrealistic by the path size terms, are exactly those with 

very low choice probabilities. APSL is hence internally consistent in how routes are defined as (un)realistic. 

Also, by defining the path size contribution factor as the ratio of choice probabilities, the scaling of the path 

size contributions is controlled implicitly through the scaling of the route choice probabilities (i.e. with the 

Logit parameter and path size parameter), and hence there is no additional path size contribution parameter for 

estimation.  

The APSL route choice probability relation is an implicit function involving the choice probabilities, and 

solutions to the model are solutions to the fixed-point problem. Formulation of the APSL model was 

complicated by the desire to establish existence and uniqueness of solutions. The straightforward, desired 

APSL formulation was not in the correct format for standard proofs of existence and uniqueness of fixed-point 

solutions to apply. The proposed APSL formulation modifies the desired model so that the proofs apply. 
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Critically though, the desired APSL formulation can be approximated to arbitrary precision with the 

‘perturbation parameter’ 𝜏, i.e. the proposed APSL definition is equivalent to the desired APSL definition in 

the limit as 𝜏 → 0. It is therefore advised that in application of the APSL model, 𝜏 is set as a very small 

number, e.g. as small as computational precision will allow. 

Solutions to the APSL fixed-point problem are proven to exist, and it is proven that values of 𝑏 exist such 

that APSL solutions are unique for 𝛽 (the path size parameter) in the range 0 ≤ 𝛽 ≤ 𝑏. Though there are cases 

where solutions are unique for all 𝛽 ≥ 0, in most cases there is a maximum value for 𝑏 (𝑏𝑚𝑎𝑥). 𝛽 in the range 

0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 is however only a sufficient condition for unique APSL solutions, 𝛽𝑚𝑎𝑥 is the true maximum 

value where solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥, and a method is proposed for estimating 

𝛽𝑚𝑎𝑥. These sufficient and actual uniqueness conditions are specific to each setting of the travel costs and 

Logit scaling parameter. However, in the writer’s experience and experiments in this thesis, the actual 

uniqueness conditions provide enough scope for fitting to behaviour, where typical 𝛽𝑚𝑎𝑥 values range 

between 0.9 and 1.1. No difficulties were experienced in estimating APSL on the real-life large-scale network 

(discussed below), and a maximum likelihood estimate of �̂� = 0.84 was obtained, where it was verified that 

this was within the uniqueness range.  

Reflection. It remains uncertain under which conditions solutions to the straightforward, desired APSL 

formulation do not exist, and it has not been ruled out that a fixed-point theorem exists to prove existence. A 

considerable amount of time was spent formulating the modified version and exploring conditions for the 

uniqueness of solutions. It was a real struggle trying to work out why the mathematical uniqueness conditions 

(identified from max Jacobians) did not match the conditions found numerically, until it was realised that the 

conditions were only sufficient conditions. 

To show that the parameters of the APSL model can be estimated, a Maximum Likelihood Estimation 

(MLE) procedure was proposed for estimating APSL with tracked route observation data. This procedure was 

then first investigated in a simulation study on the Sioux Falls network where it was shown that it is generally 

possible to reproduce assumed true parameters. The APSL model was then estimated using real tracked route 

GPS data on a large-scale network. 

Estimation results show that APSL outperforms MNL and PSL in goodness-of-fit to the data, both 

showing the value in and highlighting the efficacy of APSL in capturing route correlations and dealing with 

unrealistic routes. Moreover, APSL outperforms the GPSL′(𝜆=𝜃) model, suggesting that there is value in 

having an internally consistency model / value in including a measure of distinctiveness within the path size 

contribution factors. The GPSL model outperforms all models due to the greater flexibility the additional path 

size contribution scaling parameter 𝜆 provides. However, as typically found in estimations of GPSL, the 

estimate for 𝜆 is extremely large (�̂� = 91.95), which is investigated.  

After conducting some analysis, it was postulated that the reason GPSL is able to provide better fit to the 

data is that the 𝜆 parameter allows GPSL to improve the choice probabilities of high costing, distinct route 

observations one might consider as being outliers / route choice decisions made according to unobserved 

attributes, without compromising the fit for the low costing observations, though this is not done by design. 

Reflection. Before the estimation experiments were conducted there were question marks over the 

computational feasibility of estimating APSL, especially for the real-life large-scale network. After some 

initial experiments in Python on a personal laptop, it became clear that utilising parallel processing was going 

to be necessary, and perhaps a better computer too. Initially, I learnt how to operate the High-Performance 

Computing system at University of Leeds. However, the real-life observation data could not be shared with 

me for ethical reasons, and the Danish Technical University (DTU) were kind enough to offer use of their 

super-computer, accessed via VPN, where I could access and use the data. After a significant amount of time 

and many difficulties working out how to parallel process in Python, it became possible to split APSL 

probability computation for different OD movements across multiple cores, improving computation times 

considerably. There were also concerns of whether APSL solution non-uniqueness would be an issue in 

estimation. The general approach adopted was to not allow for values of 𝛽 greater than around 0.9-0.95, a 

‘safe range’ determined from experience, and as non-uniqueness would typically become an issue towards 

𝛽 = 1. With this, non-uniqueness was never an issue, and the estimate for 𝛽 in the real-life estimation was 

within the uniqueness range. It was also learned the hard way how a code error can ruin months of work. For 

several months, slightly strange results were reported from the estimation experiments, until it was realised 

that there was an index error and all the experiments had to be done again. 
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1.1.2 Future Research 

Future research should explore estimating the APSL model with more complex route utility functions, than 

just considering travel time and length, to explore how APSL performs when there are fewer unobserved 

attributes / a better representation of route choices. Moreover, further research should also explore formulating 

and estimating APSL with different utilities/parameters for different user classes / vehicle types. One could 

also investigate estimating the models for different choice sets to assess their robustness.  

The APSL model requires a fixed-point algorithm to compute solutions. The paper assesses the 

computational performance of the Fixed-Point Iteration Method (FPIM) for calculating choice probabilities 

and estimating the parameters of the APSL model, where accuracy is compared with computation time. 

Results indicate that accurate choice probability solutions and parameter estimates can be obtained from 

feasible computation times. The FPIM, however, is the simplest fixed-point algorithm with the slowest 

convergence, and many fixed-point algorithms have been proposed to accelerate convergence. Further 

research could explore solving APSL utilising different fixed-point algorithms, such as Steffenson’s Method 

or Newton Raphson’s Method.  

Although these algorithms are designed to reduce the number of iterations required for fixed-point 

convergence, performing each iteration requires computing a more complicated function. Performance of 

these algorithms in terms of total computation time is therefore a trade-off between the number of iterations 

saved and the computation times for each of the iterations. As shown with the FPIM, the number of iterations 

required for APSL fixed-point convergence increases exponentially as 𝛽 increases. The performances of the 

more complex fixed-point algorithms (compared to the FPIM) are therefore likely to improve for larger values 

of 𝛽, where more iterations will be saved. As the scale of network / choice set sizes increase, however, the 

greater the computational burden of the more complex iteration functions, and after conducting some early 

experiments on the Sioux Falls networks, it was found that Steffensen’s Method and Newton Raphson’s 

Method did not improve total computation times compare to the FPIM. 

Scope for further research also includes modifying APSL, or integrating adaptive path size concepts 

within a different RUM, to also address the scaling problem. APSL, as it is currently formulated, does not 

distinguish between different lengths of trip. This can lead to imprecisions since travellers usually have more 

accurate perceptions of the route characteristics for a short trip than they do for very long trips, where a 

greater amount of uncertainty comes with knowing for example the exact travel time / distance. The thorough 

way of addressing this is to individually estimate a Logit scaling parameter for each OD movement, however 

this is potentially impractical and could lead to identification issues as the number of parameters to estimate 

may be huge. Alternatively, one could instead, for each OD movement, adjust the Logit scaling parameter 

according to the OD-specific scaling factor as proposed by Gliebe et al (1999). An interesting approach could 

be to explore altering the path size correction factors within the Path Size Weibit and Path Size Hybrid models 

to be adaptive path size, since both address the scaling problem. 

 

1.2 Chapter 3 – Adaptive Path Size Logit Stochastic User Equilibrium 

1.2.1 Review of Findings 

Chapter 3 explored the integration of APSL within a Stochastic User Equilibrium (SUE) model. On congested 

road networks, the travel times for the available routes are dependent upon the vehicle flow along them 

(where travel time increases with flow), and there is thus a feedback effect: drivers make decisions on which 

routes to take according to the travel times they perceive for the routes, which in turn depend upon the route 

choice decisions and the consequent route and link flows. SUE is a well-known approach for modelling this 

feedback effect, where an SUE route flow solution and the consequent route travel costs are such that, for 

each OD movement, the proportion of the flow on each route is equal to the probability that that route has a 

perceived utility greater than or equal to the perceived utility of all alternative routes. The distribution of the 

route flows is thus dependent on the underlying route choice model, which in this case is APSL. 

Reflection. APSL comes at a price of needing to solve a fixed-point problem even to compute route 

choice probabilities at given travel cost/utility levels. Thus, before the research was conducted, there was a 

question of whether it would be computationally feasible to implement such a method within an SUE 

framework, since it apparently needs to embed a fixed-point problem (for calculating choice probabilities) 

within another fixed-point problem (for equilibrating flows). Thankfully, harnessing the useful relationship 

between route choice probability and flow proportion in the context of SUE opened up a range of possibilities 
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for solving APSL SUE, and the potentially onerous requirement of solving fixed-point problems to compute 

APSL choice probabilities could be circumvented/controlled when solving SUE (discussed below). 

 APSL SUE can be defined in two different ways: Definition 1 is consistent with the APSL choice model 

for every setting of the route flows, and Definition 2 (APSL′ SUE) is just consistent at equilibrium, where the 

APSL′ path size contribution factors are instead presented as ratios of route flow. Definition 1 involves 

solving choice probability fixed-point problems for each given setting of the route flows, while Definition 2 is 

closed-form.  

Typical SUE formulations of PSL models utilise an uncongested variable such as length or free-flow 

travel time for the link-route prominence features within the path size terms, so that they are not flow-

dependent. The advantages of this are that: a) solution existence and uniqueness can be proven according to 

standard proofs; b) an equivalent MP formulation can easily be derived; and, c) the path size terms are 

constants and hence only need to be computed once at the initial rather than at every iteration of an SUE 

algorithm. However, for APSL/APSL′, these advantages are not applicable, since the APSL/APSL′ path size 

terms are flow-dependent regardless of whether or not flow-independent variables are used for the link-route 

prominence features. Moreover, the key feature of the APSL model is internal consistency, and utilising flow-

independent costs within the path size terms would violate this claim, since they would be inconsistent with 

the flow-dependent travel costs in other components. Therefore, for full internal consistency, the definitions of 

APSL & APSL′ SUE utilise the same flow-dependent, generalised costs in all components: route costs as well 

as path size terms. 

APSL′ SUE solutions are proven to exist, and thus by proving the equivalence of APSL SUE and APSL′ 
SUE, APSL SUE solutions are also proven to exist. Uniqueness of solutions, however, cannot be guaranteed 

by standard proofs, due to the flow-dependent path size terms, though that is not to say solutions cannot be 

unique, which is explore numerically. Experiments on the Sioux Falls and Winnipeg networks suggest that 

uniqueness conditions exist. These conditions are analogous to those for the uniqueness of APSL probability 

solutions, and APSL SUE solutions appear to be unique when APSL solutions are unique.  

Reflection. Like for estimation of APSL, there were concerns of whether non-uniqueness of APSL 

solutions would be an issue for a) solving APSL SUE and b) non-uniqueness of APSL SUE solutions. The 

conditions for unique APSL solutions depend upon the link/route travel costs, which in the context of SUE 

can vary significantly depending on the flows, and it is not feasible to determine the uniqueness conditions for 

all possible settings of the flows / costs. However, using again the general rule of restricting 𝛽 to no greater 

than 0.9-0.95 (a safe range), the non-uniqueness of APSL probability solutions was not an issue, and as the 

experiments found, APSL SUE solutions were unique when APSL probability solutions were unique (in those 

cases).  

To establish APSL SUE as a worthwhile approach, APSL SUE was compared to an array of competitor 

correlation-based SUE models. Like as discussed for PSL models above, typical SUE formulations for 

correlation-based models utilise uncongested costs for the functional forms in the correlation components. 

Addressing this, internally consistent SUE formulations for the competitor correlation-based models to APSL 

were formulated, namely: PSL, Generalised PSL (GPSL), C-Logit (CL), Cross-Nested Logit (CNL), 

Generalised Nested Logit (GNL), and Paired Combinatorial Logit (PCL). Only an internally consistent 

formulation for CL had previously been explored in the literature.  

Numerical experiments were conducted on the well-known Sioux Falls and Winnipeg networks to assess 

computational performance, choice set robustness, and internal consistency. APSL SUE outperformed GPSL 

SUE in terms of internal consistency (when dealing with unrealistic routes in the adopted choice sets), 

generally outperformed PSL, CL, CNL, & GNL SUE in terms of choice set robustness, and outperformed CL, 

CNL, GNL, & PCL SUE in terms of computational performance (considerably on the larger-scale Winnipeg 

network). 

A standard Flow-Averaging Algorithm (FAA) was used to solve the SUE models. The simplicity of the 

FAA is attractive for solving APSL SUE, where computing accurate choice probabilities is not 

straightforward/quick. The Method of Successive Weighted Averages (MSWA) step-size scheme was 

employed, however numerous other averaging step-size schemes could be adopted. Other inexact step-size 

schemes are applicable, however these are potentially complex / not computationally feasible for APSL SUE. 

For example, it may require gradient information which would involve differentiating the fixed-point APSL 

choice probabilities, which is not straightforward. Or, it may require accurately computing the APSL choice 
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probabilities which has the potential to be very computationally burdensome. Optimal step-size approaches 

are not applicable since there are no equivalent MP formulations. 

Since computing APSL probabilities involves solving fixed-point problems, and the APSL′ probability 

relation is closed-form, it was anticipated that APSL SUE and APSL′ SUE would have very different 

computational performances. Experiments on the Sioux Falls and Winnipeg networks found that, while the 

number of iterations required for APSL SUE convergence tended to be similar to that required for PSL & 

GPSL SUE convergence under identical configurations of the flow-averaging algorithm, the requirement of 

solving APSL choice probability fixed-point problems at each algorithm iteration resulted in significantly 

greater total computation times. On-the-other-hand, while the computational burden involved in computing 

the APSL′ choice probabilities during each iteration of the flow-averaging algorithm solving APSL′ SUE was 

no more than that for PSL & GPSL, APSL′ SUE convergence was comparatively very slow, and thus total 

computational times were also much longer.  

In this thesis, the accuracy of the APSL probabilities is controlled exogenously by the FPIM probability 

convergence parameter 𝜉, where accuracy increases as 𝜉 increases. Thus, in general, increasing 𝜉 increased 

the accuracy of the APSL SUE solution, but this resulted in longer computation times, as more FPIM 

iterations were required for probability convergence. 

However, as explored, the useful relationship between route flow proportions and choice probabilities in 

SUE context (where these are equal at equilibrium) allows for a considerable flexibility in solving APSL SUE, 

where one can trade-off the accuracy of APSL probabilities (and thus computation times of each iteration) 

with rate of SUE convergence. By utilising as termed ‘follow-on’ initial conditions for the FPIM – where the 

initial conditions for solving the APSL probabilities at iteration 𝑛 of the flow-averaging algorithm were set as 

the route flow proportions from iteration 𝑛 − 1 – the same APSL SUE solution was obtained regardless of 𝜉. 

For low 𝜉, solving APSL SUE with follow-on initial conditions simulated solving APSL' SUE, where there 

was just a single FPIM iteration conducted (and hence the APSL probabilities were very inaccurate) at every 

flow-averaging algorithm iteration. Increasing 𝜉 increased the accuracy of the APSL probabilities, which 

improved the rate of SUE convergence: more FPIM iterations were required for APSL probability 

convergence, but fewer flow-averaging algorithm iterations were required for SUE convergence.  

Thus, solving APSL SUE with low 𝜉 and follow-on initial conditions resulted in long total computation 

times due to the slow SUE convergence rate, while larger values of 𝜉 resulted in comparatively quick SUE 

convergence rates but lengthy computation times for each of the algorithm iterations, thus also resulting in 

long total computation times. There was therefore an ‘optimal’ intermediate value of 𝜉 for solving APSL SUE 

with follow-on initial FPIM conditions, whereby a suitable SUE convergence rate met suitable computation 

times for each iteration.  

Another technique that improved APSL SUE computation times was to utilise follow-on initial FPIM 

conditions and stipulate a set number of FPIM iterations to perform at each iteration of the flow-averaging 

algorithm. Conducting just two FPIM iterations (instead of one) significantly reduced the number of iterations 

required for SUE convergence, and thus total computation times.  

Best computation times for solving APSL SUE were found when utilising a combination of a maximum 

number of FPIM iterations to perform and a maximum level of APSL probability convergence (controlled 

with 𝜉) at each SUE iteration. This saved computation times in latter SUE iterations where the stipulated 

amount of FPIM iterations would unnecessarily overly-converge the APSL probabilities.  

Reflection. Due to the scale of the Winnipeg network, some careful thought was required to pre-process 

the network data and code up the SUE solution algorithm to optimise computational performance. In the pre-

processing, for example, link-route incidence matrices were generated and stored in Python dictionaries for 

quick access, where the matrices were trimmed to remove redundant links for that OD movement. And, for 

the solution algorithm, a way to compute path size terms using matrix manipulation was constructed, which 

improved computation times considerably. Due to the overhead involved in parallel processing in Python, 

parallel processing only improved computation times when accurately computing the fixed-point APSL 

probabilities. The best APSL SUE solution times were found when not accurately computing the APSL 

probabilities and thus for consistency across the models, parallel processing was not adopted. The work was 

also set back by another error: all experiments for the Winnipeg network had to be redone because the zone 

nodes were included as through nodes in the network, whereas they should be setup as connector nodes. 

In conclusion, the proposed APSL SUE model succeeds in addressing all four of the key challenging 

aspects of route choice modelling in a theoretically consistent, robust, and mathematically well-defined way. 
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As discussed/demonstrated, APSL SUE offers improved internal consistency and choice set robustness 

compared to competitor models. APSL SUE solutions are proven to exist, and though uniqueness is not 

guaranteed, numerical experiments suggest that uniqueness conditions exist. Moreover, as shown, the model is 

estimatable from revealed choice data and can be solved in computationally feasible times on real-life large-

scale networks.  

 

1.2.2 Future Research 

The ‘optimal’ values for the methods described above for solving APSL SUE are particular to the network, 

model, and algorithm specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. 

However, by fixing the optimised values for a given specification, and then varying the specifications, it was 

shown that the method was robust in its effectiveness compared to solving APSL SUE in a standard way (i.e. 

where the APSL fixed-point probabilities are accurately solved with non-follow-on initial conditions). Future 

research could explore an intelligent, adaptive process whereby the optimal values of 𝜉 and the maximum 

number of FPIM iterations to perform at each SUE algorithm iteration are learnt / worked out as the algorithm 

progresses.  

Future research could also explore utilising a different fixed-point algorithm (to the FPIM) for computing 

the APSL probabilities within the SUE algorithm, or perhaps a combination of fixed-point algorithms could 

be used, e.g. Newton Raphson’s Method for early iterations, Steffenson’s Method for middle iterations, and 

the FPIM for latter iterations, as the initial conditions for the probabilities become closer to the solution 

through the use of follow-on initial conditions. 

Future research could also explore utilising different averaging step-size schemes, such as the self-

regulated averaging method Liu et al (2009), which has been applied with success in various SUE models 

(e.g. Yang et al, 2013; Xu & Chen, 2013; Kitthamkesorn & Chen, 2013, 2014; Chen et al, 2014; Yao et al, 

2014). It has not yet been explored whether similar techniques to those described above for solving APSL 

SUE – where the APSL probabilities need not be computed accurately – are applicable for some inexact step-

size schemes, such as the self-adaptive method (e.g. Chen et al, 2012, 2013; Xu et al, 2012; Zhou et al, 2012). 

Furthermore, future research could explore alternative algorithms, such as the New Self-Adaptive Gradient 

Projection algorithm (Zhou & Chen, 2006), which has been applied with success to solve SUE for the C-Logit 

model with flow-dependent correction terms. 

Future research could also investigate under what conditions APSL SUE solutions are not unique when 

APSL solutions are universally unique, and/or identify uniqueness conditions and a proof. 

2.  Modelling Approach 2 – A Bounded Path Size Route Choice Model 

2.1 Chapter 4 – Bounded Path Size Models 

2.1.1 Review of Findings 

Although the weighted path contribution technique is a promising approach for addressing the deficiency of 

the PSL model, in its sensitivity to unrealistic routes in the adopted choice sets, it does not solve the issue 

entirely, since the path size contributions of routes defined as unrealistic are only reduced instead of 

eliminated. Moreover, as well as non-zero path size contributions, unrealistic routes also receive non-zero 

choice probabilities. Thus, while under the GPSL, GPSL′, and APSL models each unrealistic route may only 

have a small path size contribution / choice probability, the total sum of these unrealistic route contributions / 

probabilities may be significant, consequently impacting the accuracy of results. This problem becomes 

greater as the scale of network increases and a greater amount of uncertainty comes with choice set 

generation, where, typically, choice sets are generated as large as the computational resources are deemed to 

allow, in order to minimise the possibility of excluding what would later turn out to be a plausible route. 

The second modelling approach in this thesis was thus to take the weighted path size contribution 

technique one step further by exploring how one might eliminate unrealistic route path size contributions 

entirely. Moreover, in order to fully solve the issue, it was explored how one could also assign zero choice 

probabilities to unrealistic routes, as well as zero path size contributions.  

An approach that was deemed promising to investigate was the integration of PSL model concepts with 

the Bounded Choice Model (BCM). The BCM proposes that a bound is applied to the difference in utility / 

travel cost between each route and the highest utility / lowest costing route, so that routes with utilities/costs 

less/greater than the bound are considered unrealistic and assigned zero choice probabilities. Furthermore, the 



Chapter 6. Conclusion 

235 

 

probability each route is chosen relates to the odds associated with choosing each route versus the highest 

utility / lowest costing route, and the BCM thus has a consistent criterion for determining restricted choice sets 

of realistic routes and route choice probability. The BCM does not account for route correlations, however, 

and hence the aim was to develop a Bounded Path Size (BPS) route choice model that harnesses the 

contrasting strengths of the two approaches.  

In Chapter 4, a natural form for a BPS model was derived whereby path size choice model utilities (which 

include path size corrections) were inserted into the BCM formula. This, however, led to behavioural 

inconsistencies and/or undesirable mathematical properties, which were demonstrated by a series of examples. 

By utilising path size terms where all contributions were non-zero, a mathematically well-defined BPS model 

could be derived from the natural BPS model form, but this would mean that the contributions of unrealistic 

routes were not eliminated, as desired. On-the-other-hand, allocating zero path size contributions to routes 

defined as unrealistic resulted in occurrences of 
0

0
 and ln(0), and the path size term functions were thus not 

guaranteed to be defined. Moreover, these 
0

0
 and ln(0) issues led to problems with non-uniqueness of solutions 

and discontinuity of the choice probability function. Although these issues were derived from specific path 

size term options explored, the aim was to demonstrate that the natural BPS model is actually deeply 

problematic and there are no behaviourally and practically desirable formulations. 

Reflection. The best part of a year was spent trying to get the natural BPS form to work, by thinking of 

ways to work round the 
0

0
 and ln(0) issues. Numerous different approaches were proposed to deal with non-

uniqueness, i.e. different rules/methods for identifying the active choice set, for example decreasing from a 

high bound value and systematically removing routes. No approach however could achieve a continuous 

probability function. It was an enjoyable yet frustrating experience experimenting. 

From the investigation into issues with the natural BPS model form, five desirable properties were 

consequently established for a mathematically well-defined BPS model that utilises a consistent criterion for 

assigning zero choice probabilities to unrealistic routes while eliminating their path size contributions. Solving 

these challenges, an alternative form for a BPS model was derived. Here, path size correction factors are 

added directly to the BCM probability relation rather than the route utilities to adjust the probabilities to 

capture route correlations. Like the BCM, routes are defined as unrealistic if they have a travel cost greater 

than a cost bound. This means that for a setting of the costs, the realistic routes are identified as those with 

costs below the bound, and correlations are only considered between these routes, as only and exactly these 

will have non-zero choice probabilities, and unrealistic routes with costs greater than the bound do not have 

path size term values / path size contributions.  

Deriving a BPS model from the proposed form involves defining the path size contribution factors for the 

realistic/used routes. Care must be taken, however, to ensure that the chosen factors lead to a continuous 

choice probability function (a desired property): as the cost of a route approaches the bound (from below) its 

path size contribution must approach zero and be eliminated exactly at the bound. Two BPS models were thus 

proposed: the Bounded Bounded Path Size (BBPS) model and the Bounded Adaptive Path Size (BAPS) 

model. The BBPS model proposes that the contribution factors consider ratios of the odds that routes are 

within the bound, and the BAPS model proposes ratios of route choice probability (like APSL). Although the 

BBPS model is consistent in its definitions of which routes are considered (un)realistic, it does not have a 

consistent criterion for determining route choice probabilities and path size contributions, since the 

contribution factors do not consider route distinctiveness. The BAPS model has a consistent criterion for 

assigning zero choice probabilities to unrealistic routes, eliminating their path size contributions, and 

determining route choice probabilities and path size contributions, since the contributions are the probabilities. 

The BAPS model is thus fully internally consistent. The limit models for the BBPS & BAPS models are the 

GPSL′ and APSL models, respectively, where the bound is large enough so that all routes have non-zero 

choice probabilities, i.e. BBPS → GPSL′ and BAPS → APSL in the limit as the bound (𝜑) → ∞. 

The attraction of the BBPS model is that it has a closed-form probability relation, and therefore 

probability solutions are automatically guaranteed to exist and be unique and computing solutions is quick and 

simple, while the BBPS model also has a continuous choice probability function.  

The BAPS model, however, just like APSL, is not closed-form since the path size contribution factors are 

a function of the choice probabilities, and hence the probability relation is an implicit function, naturally 

expressed as a fixed-point problem. As was the case for APSL, formulation of the BAPS model was similarly 

complicated by the desire to establish existence and uniqueness of solutions. Although it also remains 
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uncertain under which conditions solutions do not exist / there are not uniqueness conditions, the 

straightforward, desired BAPS model formulation was not in the correct format for standard proofs of 

existence and uniqueness of fixed-point solutions to apply. The proposed BAPS model formulation, in an 

analogous way to APSL, modifies the desired model so that the proofs apply, and the desired BAPS model 

formulation can be approximated to arbitrary precision with the ‘perturbation parameter’ 𝜏, i.e. the proposed 

BAPS model definition is equivalent to the desired BAPS model definition in the limit as 𝜏 → 0.  

Unlike for APSL, however, the proposed formulation for the BAPS model does not have a continuous 

choice probability function, since, unlike APSL, routes can have zero choice probabilities, and consequently 

due to the modification with the perturbation parameter, routes cannot have probabilities between 0 and 𝜏. 
Nonetheless, although this is undesirable theoretically, it is not an issue in practice, since continuity can be 

approximated to arbitrary precision by the setting of 𝜏 as a very small value, e.g. as small as computational 

precision will allow. 

By adapting the proofs of existence and uniqueness for APSL solutions, solutions to the BAPS model 

fixed-point problem were proven to exist, and it was proven that values of 𝑏 exist such that BAPS model 

solutions are unique for 𝛽 (the path size parameter) in the range 0 ≤ 𝛽 ≤ 𝑏, where 𝑏𝑚𝑎𝑥 is the maximum 

value of 𝑏. Just like APSL, 𝛽 in the range 0 ≤ 𝛽 ≤ 𝑏𝑚𝑎𝑥 is only a sufficient condition for unique BAPS 

model solutions, 𝛽𝑚𝑎𝑥 is the true maximum value where solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤
𝛽𝑚𝑎𝑥, and a method is proposed for estimating 𝛽𝑚𝑎𝑥. These sufficient and actual uniqueness conditions are 

specific to each setting of the travel costs, Logit scaling parameter, and bound parameter. However, in the 

experience of the author and experiments in this thesis, the actual uniqueness conditions provide enough scope 

for fitting to behaviour, where typical 𝛽𝑚𝑎𝑥 values range between 0.9 and 1.1. No difficulties were 

experienced in estimating the BAPS model on the real-life large-scale network (discussed below), and 

obtained maximum likelihood estimates of �̂� = 0.844 and �̂� = 0.838, where it was verified that the former 

estimate was within the uniqueness range.  

To show that the parameters of the BBPS & BAPS models can be estimated, an MLE procedure was 

proposed, similar to that for APSL, for estimating the BBPS & BAPS models with tracked route observation 

data. Application to the Sioux Falls network showed it is generally possible to reproduce assumed true 

parameters. The BBPS & BAPS models were then estimated using real tracked route GPS data on a large-

scale network. Results found that the BBPS(λ=θ) and BAPS models outperformed their limit models 

GPSL′(𝜆=𝜃) and APSL, respectively, suggesting that there is value in fully dealing with unrealistic routes by 

eliminating their path size contributions / assigning them zero choice probabilities, rather than just reducing 

contributions / assigning small probabilities. Moreover, just as APSL outperformed the GPSL′(𝜆=𝜃) model, 

the BAPS model outperformed the BBPS(λ=θ) model, further suggesting that there is value in having a fully 

internally consistency model / value in including a measure of distinctiveness within the path size contribution 

factors.  

Reflection. For the BPS model MLE procedure, a pragmatic approach was proposed to avoid issues with 

ln(0) when an observed route has a cost above the bound (Likelihood equal to zero). The approach was to set 

a large and negative Log-Likelihood value when observed routes have a zero probability, the aim simply just 

to tell the optimisation algorithm to return to searching for maximum likelihood estimates within the 

parameter space the solution was known to lie. There was some uncertainty in how effective the approach 

would work, solutions might somehow get trapped in the large negative Log-Likelihood space, but the 

approach worked without any real problems. 

In Chapter 2, it was postulated that the GPSL/GPSL′ models provided the best fit to the data not by 

design. As investigated, the very large estimate for the additional path size scaling parameter, 𝜆, seemed to 

allow GPSL to improve the choice probabilities of high costing, distinct route observations one might 

consider as being outliers / route choice decisions made according to unobserved attributes, without 

compromising the fit for the low costing observations.  

An interesting result found when estimating the BBPS model in Chapter 4 was that the parameter 

estimates approximated the GPSL′ model, where the estimate for the bound parameter, �̂�, was very large 

approximating �̂� → ∞. The GPSL(/GPSL′) model was constructed with the aim of reducing the path size 

contributions of unrealistic, costly routes, so that the path size correction terms and thus the choice 

probabilities of realistic routes are not undesirably adjusted for overlapping with unrealistic routes. In other 

words, so that the path size terms of realistic routes capture the correlation between the realistic alternatives 

only. So, if these models are aiming to reduce the contributions of unrealistic routes to the path size terms of 
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realistic routes, then eliminating the contributions completely should improve performance. However, when 

the GPSL′ model was given the opportunity to eliminate contributions, i.e. with the BBPS model, the option 

was not taken, and the best fit came from an unbounding 𝜑 and a large 𝜆 value.  

This indicates that the GPSL and GPSL′ models were able to in this case provide better fits to real data by 

capturing something other than the correlation between the realistic routes within the path size terms. This 

could potentially be an important finding, since many studies either estimate GPSL and find best fit with a 

very large 𝜆 value (e.g. �̂� = ∞ Ramming, (2002)) or estimate GPSL with a fixed large 𝜆 value (e.g. 𝜆 = 20 

Hoogendoorn-Lanser et al, 2005)). Studies have speculated as to why large 𝜆 values provide the best fits, 

however no study (to the best knowledge of the author) has investigated this in detail. The typical 

interpretation is that when comparing routes and the overlap between them, drivers make a binary decision 

according to which route has the greater cost, and perceive the route with the lower cost as being distinct. This 

reasoning, however, is questionable, and it seems unlikely that driver psychology would be as such.  

 

2.1.2 Future Research 

The experiments in this thesis provide new insights into why GPSL/GPSL′ are best fitted with large 𝜆 values, 

and why GPSL/GPSL′ consequently outperform other PSL models. Further research should explore this in 

more detail. For example, how the GPSL models perform with more complex utility functions and hence there 

are fewer unobserved attributes. 

In reality, rather than a universal bound for all OD movements, there are likely to be OD-specific bounds 

and even traveller-specific bounds (as well as other-specific bounds) that travellers apply upon travel cost to 

consider routes unrealistic, and future research could investigate estimating such non-universal bounds. To 

estimate such bounds, however, one requires numerous observations from the same OD movement / traveller. 

Moreover, MLE exponentiates in difficulty as the number of parameters increases. This makes estimating a 

universal bound attractive. However, this can limit how effective the bounded models are at improving the fit 

of their limit models. The estimated universal bound will always at least be the supremum of the route 

observation cost deviations meaning that outlier observations will significantly limit the performance of the 

bounded models. As shown in Chapter 4, when there are route observations with large cost deviations and 

only a very small percentage of the generated routes have costs above the estimated bound, the bounded 

models only marginally improved upon the fit of their limit models. When the most relatively costly 

observations were removed, however, improved fit increased significantly. Theoretically, for any given 

estimated bound, the choice sets should include all routes with cost deviations less than this bound, as these 

routes are considered realistic, under the definition of the model. Future research could investigate how the re-

generation of choice sets effects re-estimation results, and further explore the effects of and how to deal with 

outlier observations, potentially through some systematic procedure. 

With the bounded models, a route is only defined unrealistic if it has a travel cost greater than the cost 

bound. However, in reality there may be routes that have travel costs below the bound but would also be 

considered unrealistic. For example, routes that repeatedly use on-off-ramps on motorways, which may have 

total travel costs below the bound but large local detour travel costs. Clearly, such alternatives with long local 

detours would not be considered in the mental map that travellers build in their mind when making their route 

choice decisions, and hence these routes should also be excluded from the choice sets. This could be done 

within the choice set pre-generation before implementation, however future research could investigate how to 

do this in an implicit, consistent way, for example by applying some consistent bound upon local detour cost, 

like as that for total travel cost. Moreover, one could investigate other forms of route choice bounds, for 

example for cyclist route choice, riders may have a bound upon the steepness of a route. 

As discussed for APSL, scope for further research for the BPS models also includes also addressing the 

scaling problem. This could again be through individually estimating a Logit scaling parameter for each OD 

movement, or adjusting the Logit scaling parameters according to the OD-specific scaling factor as proposed 

by Gliebe et al (1999). A more interesting approach would be to first investigate formulating a bounded 

choice model with Weibull distributed random error terms, then explore integrating appropriate path size 

correction factors, as done for the BCM in Chapter 4. Following on from this, it would also be interesting to 

explore formulating bounded choice models with other distributions for the random error terms, for example a 

Normal or Gamma distribution, or with GEV structure models e.g. Cross-Nested Logit. 
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2.2 Chapter 5 – Bounded Path Size Stochastic User Equilibrium 

2.2.1 Review of Findings 

Chapter 5 explored the integration of BPS models within a SUE model. SUE conditions are established for the 

BBPS & BAPS models where – for internal consistency – the link-route prominence features within the used 

route path size terms are based upon flow-dependent congested travel cost. A BPS SUE route flow solution 

and the consequent route travel costs are such that unused routes with zero flows have costs greater than or 

equal to the flow-dependent cost bound, while used routes with non-zero flows have costs below the bound. 

The restricted choice sets of realistic routes are thus equilibrated along with the flows.  

The BBPS SUE model has a closed-form underlying route choice model, while the BAPS SUE model has 

an underlying route choice model formulated as a fixed-point problem. However, since the path size 

contribution factors are based upon ratios of choice probability, (just like APSL), the potentially onerous 

requirement of solving fixed-point problems to compute the BAPS model choice probabilities can be 

circumvented, since at SUE the route flow proportions and choice probabilities equate. BAPS SUE can thus 

also be defined in two different ways: Definition 1 is consistent with the BAPS choice model for every setting 

of the route flows, and Definition 2 (BAPS′ SUE) is just consistent at equilibrium, where the BAPS′ model 

path size contribution factors are instead presented as ratios of route flow. Definition 1 involves solving 

choice probability fixed-point problems for each given setting of the route flows, while Definition 2 is closed-

form.  

BBPS SUE solutions are proven to exist, however existence of BAPS/BAPS′ SUE solutions could not be 

proven, since the underlying choice models do not have continuous probability functions (as routes cannot 

have probabilities between 0 and 𝜏). Although this is theoretically undesirable, solution existence is not a 

problem in practice since continuity can be approximated to arbitrary precision with small values of 𝜏. The 

modification of the desired BAPS model probability relation with the adjustment functions and perturbation 

parameter 𝜏 was required to establish existence and uniqueness of the fixed-point probability solutions. 

However, this is not necessary for the BAPS′ model since it is closed-form. BAPS′ SUE can thus be 

simplified and re-formulated (denoted BAPS′′) without the modifications so that it does have a continuous 

probability function. Nonetheless, solution existence could still not be proven since the set of feasible flows 

for the BAPS′′ model – which must be modified to avoid occurrences of 
0

0
 within the path size terms – is not a 

convex set, a requirement of standard proofs. 

Due to the flow-dependent path size terms, uniqueness of solutions for the BBPS & BAPS SUE models 

could not be guaranteed by standard proofs. That is not to say that solutions cannot be unique, however, and 

this is explored numerically for the BAPS SUE model. Experiments on a small-scale network and the Sioux 

Falls network suggest that uniqueness conditions exist. Like for APSL, these conditions are analogous to those 

for the uniqueness of probability solutions, and BAPS SUE solutions appear to be unique when BAPS model 

solutions are unique.  

A generic algorithm is proposed for solving BPS SUE models. The algorithm is an adaptation of the 

generic algorithm proposed by Watling et al (2018) for the Bounded SUE (BSUE) model, i.e. SUE with the 

BCM. To equilibrate the choice sets of realistic routes, the BSUE algorithm generates realistic routes from the 

network as the algorithm progresses. With the current techniques available for generating these routes, there 

are questions over the suitability of the approach for large-scale networks. For the proposed BPS SUE 

algorithm, a more practical approach is taken, by pre-generating approximated universal choice sets. From 

these routes, the restricted choice sets of realistic routes are equilibrated. The algorithm can however be easily 

adapted so that routes are generated as the algorithm progresses, just like the BSUE algorithm. 

The natural BPS model form originally explored in Chapter 4 bounds routes according their utility (i.e. 

combination of cost and path size correction), rather than just cost. This approach was found to be 

challenging, and instead, to circumvent the issues, an alternative BPS model form was derived, where routes 

are bounded according to their travel cost, but path size correction factors are included in the probability 

relations (rather than route utilities) to adjust for route correlations. The benefit of this is that the BCM and 

BPS model both have the same definition for unrealistic routes: those with travel costs above the bound, and 

the algorithm and gap measures proposed for solving BSUE are applicable for solving BPS SUE with only a 

few minor adjustments.  

The BPS SUE algorithm can be seen as an extension of the flow-averaging algorithm used in Chapter 3 

for solving the internally consistent SUE formulations of the correlation-based models, where column 
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generation, flow allocation for new routes, and bound condition phases are added for the equilibration of the 

used route choice sets. Numerous averaging step-size schemes can be employed, where the simplicity of the 

averaging method is also attractive for solving BAPS SUE, where computing accurate choice probabilities is 

not straightforward/quick. Other inexact step-size schemes are applicable, however, like for solving APSL 

SUE, these are potentially complex / not computationally feasible for BAPS SUE. The Method of Successive 

Weighted Averages step-size scheme was adopted in Chapter 3 for the flow-averaging algorithm where it 

proved successful, moreover Watling et al (2018) adopt this scheme to solve BSUE, and thus this approach 

was also adopted for the BPS SUE numerical experiments.  

Using similar SUE convergence criteria for the flow-averaging and BPS SUE algorithms, experiments on 

the Sioux Falls and Winnipeg networks found that, (in that case at least), although the numbers of iterations 

required for convergence were not notably longer for the bounded models (i.e. BSUE, BBPS, BAPS, & 

BAPS′ SUE) than the non-bounded models (i.e. MNL, PSL, GPSL, APSL, & APSL′ SUE), the additional 

computation time required during each iteration for the bounded models to perform the additional column 

generation, flow allocation for new routes, and bound condition phases, meant that (as expected) total 

computation times were longer. As anticipated from experiences solving APSL & APSL′ SUE, BAPS & 

BAPS′ SUE both had longer total computation times compared to BSUE & BBPS SUE, where BAPS SUE 

had long computation times for each of the iterations (due to solving fixed-point problems), and BAPS′ SUE 

had slow SUE convergence. However, from exploring the techniques developed for solving the APSL SUE 

model, it was shown how BAPS SUE can be solved in much quicker computation times.  

An interesting result was that for Winnipeg, increasing the bound parameter 𝜑 led to quicker total 

computation times for solving BAPS SUE. This is because a greater number of iterations were required to 

equilibrate the choice sets for small values of the bound, which outweighed only a small saving in the average 

number of FPIM iterations required for BAPS probability convergence (from the smaller active choice sets). 

Another interesting result was that the average used route choice set sizes for the bounded SUE models 

decreased as the travel demand level was increased. If one considers what one might expect under DUE, for 

low demand only the best costing routes are used, and increasing demand results in the used route choice sets 

expanding. For the bounded SUE models, however, although the used route choice sets expand initially from 

zero demand, they begin to decrease in size for larger demand. The suspected reason for this is that for high 

levels of congestion the costs on all links are inflated, and routes that are used for one OD movement are 

likely inflating the costs so that routes in other OD movements are then too costly to be used. 

The experiments demonstrated how the bounded SUE models have the potential to be significantly more 

robust to the adopted choice sets than the non-bounded SUE models, with robustness improving as the bound 

parameter is decreased. It was also confirmed that the flow results from the bounded SUE models tend 

towards their limit non-bounded SUE model as the bound parameter is increased. 

In conclusion, the proposed BPS SUE models succeed in addressing all four of the key challenging 

aspects of route choice modelling in a theoretically consistent, robust, and mathematically well-defined way. 

As discussed/demonstrated, the BPS SUE models offer a theoretically consistent and robust approach to 

realistic route choice set generation, and are significantly more robust to adopted choice sets compared to 

competitor non-bounded SUE models. BAPS has greater theoretical consistency compared to BBPS, and is 

thus in theory more behaviourally realistic, which is supported by the estimation results. BBPS SUE solutions 

are proven to exist, while, although not proven, solution existence is not an issue in practice for BAPS SUE, 

as long as the perturbation parameter is set appropriately small. Moreover, although uniqueness of solutions is 

not guaranteed, numerical experiments suggest that BBPS SUE solutions can be / are unique, and that 

uniqueness conditions exist for the BAPS SUE model. Furthermore, as shown, both models are estimatable 

from revealed choice data and can be solved in computationally feasible times on real-life large-scale 

networks, where BBPS is more computationally practical than BAPS.  

There were three key motivating factors for developing the BPS SUE models: firstly, to take the weighted 

path size contribution technique of GPSL and APSL one step further by fully eliminating the path size 

contributions of unrealistic routes; secondly, to improve the behavioural realism of the BCM by incorporating 

a mechanism for capturing route correlations; and, thirdly, to develop a model that was mathematically well-

defined, thereby addressing the shortcomings of the PSL Restricted SUE (PSL RSUE) (Watling et al, 2015; 

Rasmussen et al, 2015) and PSL Restricted SUE with a Threshold (PSL RSUET) (Rasmussen et al, 2017) 

models. PSL RSUE and PSL RSUET both offer a theoretically consistent approach to dealing with unrealistic 

routes and capturing route correlations within SUE context, but solution existence and uniqueness are not 
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guaranteed, and indeed this has been shown in examples. Although not proven, numerical experiments suggest 

that BBPS & BAPS SUE are mathematically well-defined in terms of solution existence and uniqueness. This 

is a significant result as it means they are suitable for real-life applications for traffic flow predictions. 

 

2.2.2 Future Research 

As discussed for solving APSL SUE, further research could also explore more intelligent, adaptive processes 

for solving BAPS SUE, as well as utilising a different fixed-point algorithm (to the FPIM) for computing the 

BAPS model probabilities within the SUE algorithm. Different step-size schemes should also be explored, 

such as the self-regulated averaging method, and if applicable the self-adaptive method. Since the BBPS 

model is closed-form, it would also be interesting to see whether inexact approaches requiring gradient 

information such as Armijo’s step-size strategy are applicable, and how they perform. 

In this thesis, solving BPS SUE models was explored in the case where there are pre-generated 

approximated universal route choice sets. Future research should also explore the case where routes are 

generated as the algorithm progresses. The difficulty with this approach – as discussed for BSUE in Watling 

et al (2018) – is that the computational burden involved in column generating all routes with costs less than 

the bound escalates dramatically and non-linearly as the scale of network increases / the bound increases. 

With this approach though, there are guaranteed to be no inconsistencies in terms of routes that were not pre-

generated by the route generation criteria but would be considered realistic by the choice model criteria.  

However, as discussed above, with the bounded models, a route is only defined unrealistic if it has a 

travel cost greater than the cost bound, yet in reality there may be many routes that have travel costs below the 

bound but would also be considered unrealistic. For example, routes with relatively large local detours such as 

on-off-ramps on motorways. Therefore, since on large-scale networks it will potentially be computationally 

infeasible to generate all routes less than even reasonably small bound values, yet possibly the majority of 

these routes may actually be unrealistic, future research could explore some theoretically consistent and 

computationally feasible way of removing all routes considered unrealistic. 

Further research could also investigate under what conditions BAPS SUE solutions are not unique when 

BAPS model solutions are universally unique, and/or identify uniqueness conditions and a proof. Moreover, 

further research could explore under what conditions BBPS SUE solutions are not unique, and/or identify 

uniqueness conditions and a proof. 

It would also be interesting to compare results from the BPS SUE models with results from the PSL 

RSUE and PSL RSUET models, and/or other RSUE models. 

3.  Wider Concluding Remarks 
This thesis offers new approaches for modelling the route choices of drivers on road networks. This provides a 

means for traffic flow predictions on real-life networks. The hope is that APSL SUE and/or BBPS/BAPS SUE 

will be used for traffic flow predictions in real-life transport systems, e.g. for policy scenario testing.  

Some further work is required before this, however. As discussed above, the models will need to be 

calibrated and applied with more complex route utility functions than those in this thesis, and different 

utilities/parameters for different e.g. user classes / vehicle types will need to be explored.  

Moreover, the estimation work in this thesis concerns estimating APSL, BBPS, & BAPS as route choice 

models. How to estimate/calibrate these models within SUE should be explored. Traditionally, this has been 

done either sequentially (through estimating the link cost functions and then SUE model), or in a completely 

detached way (by just calibrating the underlying choice model). These approaches are potentially inconsistent, 

however. It would be interesting to explore whether calibration of the SUE models and link cost functions 

could be performed simultaneously.  

There are also other behavioural realism extensions such as the scaling issue and dealing with local detour 

routes that could be explored to improve the accuracy of results. Moreover, a well-behaved approach for 

properly accounting for the effects of congestion – such as how bottlenecks lead to flow-metering and 

spillbacks – should be investigated, e.g. the ‘quasi-dynamic’ approaches of Bleimer et al (2014) and 

Brederode et al (2019). 

Application of the models to network equilibrium with elastic travel demand should also be considered 

(e.g. Kitthamkesorn et al, 2015), to explicitly consider the equilibrium between supply and demand. It would 

be interesting to see how the equilibration of demand effects the equilibration of the choice sets.   
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Further, it would be interesting to know whether the APSL/BBPS/BAPS SUE models could be 

implemented within transport modelling software such as SATURN and VISUM, and how they perform. Both 

of these pieces of software have the capability of solving SUE and using it for traffic flow predictions. Most 

studies using SATURN for policy analysis so far, however, seem to use DUE for the traffic assignment (e.g. 

Mitchell et al, 2005; May et al, 2002). 

It is worth noting also that, so far, standard PSL has been the most common path size approach (and also 

route choice modelling approach) adopted in practice, for e.g. travel behaviour adjustment prediction within a 

policy evaluation model. Perhaps the reason for this is due to the deficiencies of GPSL such as those 

highlighted in this thesis, e.g. the estimation concerns, and/or that solution of GPSL within a network 

equilibrium model had not yet been explored. The work in this thesis thus will (hopefully) provide 

practitioners with incentive to adopt an alternative path size model such APSL/BBPS/BAPS, or even GPSL. 

The BPS models assume that drivers are aware of and consider the correlation between all routes / parts 

of the routes that they define as being realistic alternatives. This provides theoretical consistency, but perhaps 

it could be investigated whether the correlation network should be different to the physical network, by e.g. 

comparing with the subnetwork path size approaches of Frejinger & Bierlaire (2007) and Frejinger et al 

(2009), and thereby developing a BPS approach for the correlation subnetwork that offers continuity, 

consistency, robustness, and mathematical rigour (that the existing subnetwork approach currently lacks). 

It would also be interesting to find out how the models and concepts developed in this thesis could be 

transferred to other transport or non-transport modelling topics. For example, the recently developed concept 

of multi-region traffic assignment modelling with Macroscopic Fundamental Diagrams (MFDs) (e.g. 

Yildirimoglu & Geroliminis (2014), Batista & Leclercq (2019), Mariotte et al (2020)), where the new path 

size models are adapted for the context of regional path choice. Or, how the new path size models could be 

applied to other route choice types, such as cycling route choice, where there may be different features to 

consider. For example, in cycling route choice, cyclists may have a bound upon the gradient of slope or 

energy they are willing to exert travelling uphill, which the BPS models could be adapted to remove routes. 

Alternatively, how the models can be adapted for path choice in multi-modal networks in contexts such as 

Mobility-as-a-Service (MaaS). Hoogendoorn-Lanser et al (2005) explore GPSL for multi-modal networks 

where trip legs are considered in the path size terms, it would be interesting to see how the BPS models apply, 

and there are likely to be plenty of unrealistic journey options.  

Route choice modelling is a unique type of choice modelling in many respects, however it would be 

interesting to discover how the choice modelling concepts in this thesis could apply to other types of choice 

modelling. Specifically, perhaps, how the concept of imposing a consistent bound upon choice attributes could 

be adopted to implicitly generate choice sets, or how path size correction factors could be used to capture 

correlations between alternatives in other settings. One application, for example, could be in Mobility-as-a-

Service bundle choice modelling, where there are potentially millions of bundle options, many of which may 

be considered unrealistic. There will also likely be strong correlations between alternative bundles and with 

such large choice sets, perhaps path size correction factors would be more suitable computationally, than 

nested/mixed approaches. 

It would be particularly pleasing if the models and concepts developed in this thesis were used in policy 

analysis for reducing levels of congestion, with the objective of reducing CO2 emissions. For example, 

exploring introducing a tolling scheme, where APSL/BBPS/BAPS SUE would be used for the traffic flow 

predictions, and some optimisation procedure would optimise the tolling price levels to minimise CO2 

emissions (whilst satisfying e.g. socio-economic benefit).  

Furthermore, due to the improved possibilities of collecting new types of data, and the increased 

accessibility of data, the way in which we can calibrate and validate proposed route choice models is 

changing. Traditionally, the calibration and validation of models has been through measuring the proximity of 

the predicted link flows to some observed link flows collected from data. However, due to the emergence of 

new data types, for example GPS data and Bluetooth data, there is now an improved possibility to observe the 

choices of routes in which drivers take, allowing for a greater understanding of the behaviour of drivers and 

the calibration and validation of route choice models. It is also possible that these new data types and the 

increasing availability and detail of them, could be more beneficial to the models developed in this thesis than 

traditional models. The ability to track a large sample of observed route choices – from all travellers as well as 

from specific individuals / OD movements – means that significant information can be gathered on the bounds 

drivers have as a whole, as well as bounds that individuals, user classes etc. may have. 
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It is gratifying that APSL has already picked up interest in the field of route choice modelling. A recent 

article by Knies & Melo (2020) proposes a Recursive Logit with choice aversion model, where APSL is used 

as the main reference model throughout the paper. An extensive comparison is conducted in numerous 

experiments and the authors are quite complimentary of APSL. It will be exciting to see what other models are 

compared with APSL in other studies, or how other researchers use APSL in their work. Moreover, what 

attention the BPS models receive, now that the paper has been published. 
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