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Abstract

The congestion of road traffic has a negative effect on the environment, the economy, and the well-being of
people. It has therefore long been the aim of transport agencies to reduce congestion levels by improving
transport infrastructure. It is essential that decision processes related to improving transport infrastructure, are
supported by a well-functioning transport model which gives a realistic representation of the route choices of
travellers. The ability to predict driver route choice means that route flows can be calculated and areas of
potentially high levels of congestion can be identified, in turn allowing us to investigate many eventualities,
and assess any possible remedial measures. This thesis develops new route choice models, specifically: path
size route choice models, and investigates their applicability for use in real-life, e.g. parameter estimation and
solution within network equilibrium.

Path Size Logit route choice models attempt to capture the correlation between overlapping routes by
including correction terms within the route utility functions. This provides a convenient closed-form solution
for implementation in traffic network models. The path size terms measure distinctiveness of routes; a route is
penalised based on the number of other routes sharing its links, and the costs of those shared links. Typically,
real road networks have many very long routes that should be considered unrealistic and excluded from route
choice. Such unrealistic routes are problematic for the Path Size Logit (PSL) model because they negatively
impact the choice probabilities of realistic routes when links are shared. The Generalised Path Size Logit
(GPSL) model attempts to address this problem by weighting the contributions of routes to path size terms
according to the ratio of route travel costs. However, the GPSL model is not internally consistent in how it
defines routes as being unrealistic: the path size terms consider only travel cost, whereas the route choice
probability relation considers disutility including the correction term.

To solve these challenges, this thesis formulates a new internally consistent Adaptive Path Size Logit
(APSL) model wherein routes contribute to path size terms according to the ratio of route choice probabilities,
ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice
probabilities.

While the GPSL and APSL models improve upon PSL in reducing the negative effects of unrealistic
routes, the issue is not solved entirely; this thesis also investigates how one might eliminate unrealistic route
contributions entirely, as well as remove all the negative effects of unrealistic routes by also assigning them
zero choice probabilities. In order to do so, the integration of PSL concepts with the recently developed
Bounded Choice Model (BCM) (Watling et al, 2018) is explored. A mathematically well-defined Bounded
Path Size (BPS) route choice model is then derived that utilises a consistent criterion for assigning zero choice
probabilities to unrealistic routes while eliminating their path size contributions.

Parameter estimation for the APSL and BPS models is explored in simulation studies and on a real-life
large-scale network using GPS data, where computational feasibility is demonstrated. And, their application to
Stochastic User Equilibrium is investigated, where it is proven that solutions are guaranteed to exist, and
solution uniqueness is explored numerically.
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Chapter 1. Introduction

1. Background & Motivation

Road users worldwide waste many hours in congestion every day, which constitutes a large annual societal
loss (see INRIX (2020) for figures in different countries). Moreover, a significant share of air pollution
emissions is generated by road transport (e.g. over a quarter in Denmark (Klimaradet, 2020)), and it is well-
documented that these transport related emissions have numerous negative effects on e.g. the climate and
public health (Krzyzanowski et al, 2005; Ortiz, 2019; Stanley et al, 2011). Lower traffic volumes — such as
those experienced during the Covid-19 pandemic — also reduces the frequency of on-road vehicle collisions
(INRIX, 2020), which also have a significant economic impact (Blincoe et al, 2002). On-the-other-hand, due
to increased vehicle speeds experienced with lower traffic volumes, fatality rates of the vehicle collisions
actually increased during the pandemic (INRIX, 2020). All of this evidence points to the need to understand
the interplay between traffic congestion and economic, environmental, and safety issues.

There is a consensus among researchers that neither the congestion challenge nor vehicle emission
reduction goals (e.g. Klimaradet, 2020) can be fulfilled solely and cost-effectively through technological
advancements (such as with biofuels or a transition to electric vehicles). A behavioural change of road users is
therefore considered essential, and it is an aim of transport agencies to develop and introduce transport
policies and interventions which instigate behavioural changes that reduce or beneficially displace congestion.
For example, tolling schemes have proven successful in changing behaviour in cities such as Singapore,
Stockholm, and London (Chin, 1996; Johansson, 2009; Tonne, 2008), and promise has been shown for region
perimeter control schemes (e.g. in Nanjing (Du et al, 2015)).

In order to evaluate the impacts of different potential policy schemes and interventions, and provide
evidence to either support or oppose different strategies, it is essential that policy makers have a well-
functioning transport model, which gives a realistic representation of travel behaviour for travel adjustment
predictions. Numerous models and computational methods have been constructed to capture the behaviour of
drivers on road networks. These behavioural models classically involve predicting traffic flows on each road
of the physical network with route choice traffic assignment models. Recent years have seen the emergence of
more computationally attractive but less detailed approaches, however, that model traffic at an aggregated
level exchanging between regions, for example using Macroscopic Fundamental Diagrams (e.g. Yildirimoglu
& Geroliminis (2014), Batista & Leclercq (2019), Mariotte et al (2020)). This thesis, however, focuses on
developing the traditional route choice traffic assignment model. There are two types of such model: Dynamic
Traffic Assignment (DTA) and Static Traffic Assignment (DTA).

DTA models how the traffic on the network evolves over time, such as how vehicle flow propagates
through the network interacting with each other and road conditions such as traffic lights. Several traffic
simulation software packages such as VISSIM (Fellendorf & Vortisch, 2010), METROPILIS (Marchal,
2001), AIMSUN (Casas et al, 2010; Barcelo & Casas, 2005), and DynusT (Chiu & Bustillos, 2009; Chiu et al,
2010; Chiu et al, 2011; Nava & Chiu, 2012) have been developed based on DTA, as tools for policy makers to
simulate travel behaviour. DTA and associated software packages have been used to investigate policy
interventions in real-life case studies, such as road pricing schemes in Maryland (Chen et al, 2015; Chen et al,
2016), Tehran (Hosseinlou et al, 2016), and Athens (Gkotsis, 2006).

STA on-the-other-hand provides an aggregate representation of the traffic flow on the network links for a
given period of time, supposing the vehicle flow is omnipresent across the route links. Generally, STA models
are unable to properly account for the effects of congestion, such as how bottlenecks lead to flow-metering
and spillbacks (Brederode et al, 2019), though ‘quasi-dynamic’ approaches have been developed to extend
STA models to approximate such phenomena (e.g. Bleimer et al, 2014; Brederode et al, 2019). Three quasi-
dynamic traffic assignment models in use in strategic transport model systems that, to some extent, capture
flow metering and spillback effects are: QBLOK (Bakker et al, 1994) used solely in the Dutch national
models system, SATURN (Van Vliet et al, 1980) used in e.g. London Highway Assignment Models, and the
blocking back assignment in PTV VISUM (Bundschuh et al, 2006) used in e.g. the UK west midlands PRISM
model and Flemish strategic traffic models (Brederode et al, 2019).

Although DTA models are able to produce the most realistic traffic flows and travel times, they have a
much higher computational complexity, require more sophisticated calibration techniques, have poor
convergence/mathematical properties, and are less scalable (Bleimer, 2014). Furthermore, despite having the
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potential to provide more accuracy than traditional STA models, quasi-dynamic approaches tend not to have a
solid theoretical basis, presented merely as algorithms with no underlying mathematical problem formulation
and without specified assumptions. This leads to poor accountability and makes calibration cumbersome and
model-specific (Brederode et al, 2019). Standard STA models on-the-other-hand are attractive due to their
ease of use, comprehensibility, computational convenience, well-behaved convergence properties, and
mathematical rigour (Bleimer, 2014). This thesis therefore focuses on advancing STA models, though the
concepts developed are relevant and applicable also for DTA and quasi-dynamic models.

To set the background, the following details generic network modelling concepts. A typical road network
has many spatially aggregated origins and destinations for trips, where a single Origin and Destination trip is
known as an OD movement. Furthermore, each OD movement has a travel demand representing the number
of drivers who make this trip in a given period of time (most commonly an hour). For each OD movement,
there is a universal choice set of routes that a driver can take from the origin node to the destination node. A
common assumption is that this set includes all ‘simple’ routes, i.e. where there are no cycles and no link is
traversed more than once; this is to adhere to what one might consider as being sensible driving behaviours,
though this assumption is not always upheld (Akamatsu, 1996).

In order to model the route choice behaviour of drivers, it has been proposed that each link in a network
has a generalised travel cost that relates to some observable attributes of that link. The most basic travel cost is
link/road length, though travel time is the most commonly used. Other attributes, for example any existing toll
along the road, can also be incorporated into the generalised travel cost, usually by quantifying that cost in
terms of time. This means that all drivers in the network have a perception of the travel cost (time penalty)
associated with traversing along each link. Furthermore, it is assumed that the generalised travel cost for each
route in the network can be calculated by summing up the generalised travel costs of the links that make up
that route, hence, for each OD movement, the drivers have a perception of the generalised travel time cost for
each available route.

As noted by e.g. Papola et al (2018), there are several distinct and unique aspects about route choice
modelling that makes it a more challenging task than modelling other types of transport choices. The literature
highlights four key aspects in particular.

The first aspect, as discussed by e.g. Damberg et al (1996), is that the exact characteristics of each
available route are not necessarily known to the driver, for example the exact lengths of each route, nor are the
route characteristics necessarily perceived uniformly among the drivers, for example different drivers may
perceive a toll charge differently. Furthermore, as noted by Watling et al (2015), there is likely to be
uncertainty from the modeller in terms of quantifying the attractiveness of each route, for example unobserved
attributes. Consider the example network in Fig. 1.1. The travel costs as stipulated on the links result in Route
2 being the cheapest alternative. However, supposing there is some imprecision in measuring the travel costs,
and that the 0.3 costing link in Route 3 was actually less, Route 3 could well be the best alternative.

The second aspect, as Papola et al (2018) describes, is that the choice that drivers have of choosing
between routes is often correlated due to the topological overlapping of routes on a road network. Correlation
between alternatives is common in choice modelling, but the particular difficulty for route choice is that the
correlation structure of overlapping routes on the physical network is highly complex, which causes
computational problems. It is widely acknowledged, however, that not accounting for the correlations between
routes leads to unrealistic route flow predictions (e.g. Hoogendoorn-Lanser et al, 2005; Chen et al, 2012).
Considering again Fig. 1.1, Routes 2&3 both share the 0.8 costing link and a significant proportion of their
journeys. Clearly, the decision to take Route 2 is closely aligned with the decision to take Route 3 and the two
routes should not be considered independently. It is worth noting also that firstly, it has been questioned
whether travellers are fully aware of the topological overlapping of routes (e.g. Hoogendoorn-Lanser et al,
2005). Although two given routes may physically overlap and thus in theory drivers should perceive the two
trips as being correlated, if the driver does not have a very good knowledge of the physical network structure
(but does have an idea of the attractiveness of the two routes), then the fact that that the routes overlap is
irrelevant. Secondly, regardless of the knowledge of the physical network structure, the correlation network
structure that driver’s actual consider may be different to the physical one (Frejinger & Bierlaire, 2007;
Frejinger et al, 2009). It is questioned whether it is behaviourally realistic for drivers to have full knowledge
of the physical network and/or that they take into account correlation between all parts that overlap. Frejinger
& Bierlaire (2007) suppose for example that drivers only consider correlation between subnetworks consisting
of the key most prevalent parts, such as motorways. Also, in the DTA framework there can be correlation
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between leaving at different times (Bhat, 1998), e.g. the decision to set-off at 8:00am is likely to be correlated
with the decision to set-off at 8:05am as there may be similar travel experiences, however setting off at
perhaps 10:00am the congestion state will be different entirely.

The third aspect is that typical road networks have many possibilities for routes that should be considered
unrealistic and excluded from route choice (Watling et al, 2015; Watling et al, 2018). It is important to point
out here the distinction between an ‘unrealistic route’ and ‘low probability route’. Unrealistic routes are
routes that exist as possible options from the network, but drivers would not realistically consider taking them,
i.e. they are not in the choice set for drivers and have zero probability of being chosen. Low probability routes,
however, are routes that are within the choice set for drivers but have a very low likelihood of being chosen.
On real-life networks, enumerating and performing route choice with the universal set of routes is
behaviourally unrealistic and computationally infeasible, as the set contains millions of routes even in
medium-sized networks, the majority of which are not routes that drivers would realistically consider taking.
However, there is nothing physical that can be measured to determine with certainty whether a route is
realistic or unrealistic, it can be a matter of opinion. A useful modelling concept is that there are cut-offs in
travel costs that can define realistic and unrealistic routes, for example a cut-off in terms of the length of a
route (e.g. Watling et al, 2015; Rasmussen et al, 2015; Watling et al, 2018). But, there is no exact science to
determining exactly where the cut-offs are, and these may not be uniform across all drivers. Nonetheless, there
is often a large number of routes that would clearly not be considered in the mental map that travellers build in
their mind when making their route choice decisions, e.g. very long routes. Considering Fig. 1.1, it is clear
that Route 1 is so costly that no driver would realistically consider taking it. It is less clear, however, whether
the travel cost of Route 4 should mean it is considered unrealistic. It is worth noting route ‘outliers’ are
common in tracked route data (e.g. GPS data), where the route an individual has taken between the origin and
destination appears to be unrealistic/illogical. However, this is often because either: a) there is a model mis-
specification error in that there are attributes of the route not captured by the modeller that the driver
considered (for example the route passing by nicer scenery), and/or, b) there is a data error in that the data did
not capture the true origins and true destinations of trips where a single route observation may actually contain
multiple different trips (for example a driver may travel to drop a kid off at school and then to work, captured
as one trip, but it is actually two). Thus, when the term ‘realistic’ is used for a route it means realistic as
defined by the model and the utility attributes assumed.

The fourth aspect is that trips are affected by congestion; as Patriksson (2015) describes, as the number of
drivers travelling on a road increases, the limited capacity of the road results in increased congestion, and
hence increases in travel time. Congestion is known to highly influence travel behaviour and the distribution
of traffic. It is thus crucial that the effects of congestion are incorporated into modelling route choice, and this
is done through traffic assignment. Considering Fig. 1.1, supposing that the travel demand is d = 100, and the
capacity of each link is 80 before a jamming scenario occurs, one might expect the drivers to distribute
themselves in such a way to avoid the jamming situation, for example by 70 using the cheaper Routes 2&3
and 30 using Route 4.
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Fig. 1.1. Example network.

For behaviourally realistic traffic flow predictions, one must address these four key challenging aspects of
route choice modelling. Numerous modelling approaches have been developed to address these challenges;
however, as will be discussed in the subsequent sections and explored in more detail in the thesis, some of the
models/approaches have issues with theoretical consistency, robustness, and/or being mathematically well-
defined. The motivation for the research in this thesis was therefore to solve this by developing a new route
choice modelling framework.

Before deciding on the approach to pursue, there were some requirements. The aim was to develop a
model that would be suitable for traffic flow predictions on real-life networks, which are typically large-scale
in size and present a greater computational challenge due to the greater number of links, nodes, routes, and
OD movements. It was therefore considered crucial that the developed model could be solved in feasible
computation times on large-scale networks, which would hence allow for rigorous analyses of policy schemes,
rather than potentially only being able to test a handful of scenarios for a scheme in a feasible amount of time.
Furthermore, the ability to successfully estimate the parameters of a model is crucial in order to be able to
apply the model for e.g. policy testing, and hence the other requirement was that the proposed model could be
successfully estimated. In order to set the background for the research in this thesis, and to set out the
motivation for the research directions pursued, the following four subsections below discuss existing
modelling approaches for the four key challenging aspects of route choice modelling, and review their
potential suitability for the requirements set out above.

1.1 Aspect 1: Allowing for Driver/Modelling Uncertainties

In choice theory, the utility of a product or service is a scalar measure of its attractiveness; hence, the utility of
a route relates to its travel cost. The Utility Maximisation concept states that when a driver is choosing
between routes they will attempt to choose the route that maximises their utility, i.e. that will minimise their
travel time cost. The all-or-nothing (AON) model could be considered as the most primitive route choice
model, which proposes that all drivers will opt to travel upon the lowest costing route(s) in each OD choice
set: maximising total utility. The AON model has however been widely discredited for being unrealistic. One
of the reasons for this is that the model assumes all drivers have a uniform perception of the cost of each
route, and that there is no uncertainty from the modeller in terms of any unobserved attributes or any
unobserved heterogeneity in the utilities.

The well-known Random Utility Theory acknowledges the difficulties in analysing route choice
behaviour and supposes that the utilities are not known with any certainty. To compensate for this, the utilities
are treated as random variables, and thus include random error terms. The probability that the utility of a route
is perceived to be greater than another depends upon the distribution of the error terms. Thus, assuming
drivers (travellers) wish to maximise their utility (i.e. wish to choose the lowest costing route (path)), Watling
et al (2015) state Stochastic User Conditions:

“For any OD movement, the proportion of travellers on a path is equal to the probability that the path has a
perceived utility greater than [or equal to] the perceived utility of all alternative paths.”

Random Utility Models (RUMS) propose different distributions for the random error terms. For example,
Multinomial Logit (MNL) (Dial, 1971), Multinomial Probit (MNP) (Daganzo & Sheffi, 1977), Multinomial
Gammit (MNG) (Cantarella & Binetti, 2002), and Multinomial Weibit (MNW) (Castillo et al, 2008), propose
that the error terms assume Gumbel, Normal, Gamma, and Weibit distributions, respectively.

1.2 Aspect 2: Capturing Route Correlations

The deficiency of the MNL model in its inability to capture correlations between overlapping routes is well-
known. This issue stems from the underlying assumption made by the MNL model that the random error
terms are Independently and Identically Distributed (11D) with the same, fixed variances (Sheffi, 1985).
Numerous adaptations of the MNL model have been proposed in the literature which relax the 11D assumption
— specifically the independently distributed assumption — to attempt to capture the correlation between routes.
These extended Logit models can be classified into three groups according to the model structures as
suggested by Prashker & Bekhor (2004): GEV structures, Mixed Logit models, and MNL-modification
models. Alternative RUMs to MNL either capture route correlations implicitly or utilise concepts from

4



Chapter 1. Introduction

extended Logit models to similarly adapt the model. Collating extended Logit models and alternative RUMs,
there are three general types of correlation-based route choice models: GEV structure models, simulation
models, and correction term models. Each of these categories is reviewed in turn below.

1.2.1 GEV Structure Models

GEV structure models are those that are based on the Generalized Extreme Value (GEV) theory (McFadden,
1978), which use a multi-level tree structure to capture the similarity among routes through the random error
component of the utility function. These models include: Cross-Nested Logit (CNL) (Vovsha, 1997; Bekhor
& Prashker, 1999), Paired Combinatorial Logit (PCL) (Chu, 1989; Bekhor & Prashker, 1999; Gliebe et al,
1999; Pravinvongvuth & Chen, 2005), Generalized Nested Logit (GNL) (Bekhor & Prashker, 2001; Wen &
Koppelman, 2001), and the Network GEV model (Bierlaire, 2002; Daly & Bierlaire, 2006). For PCL, the
logic is that each pair of routes in a choice set form a nest and routes are chosen from each nest. For
CNL/GNL, each link in the network corresponds to a nest and routes using each link are chosen from that
nest. The Network GEV model uses a fairly general class of networks to generalise the use of trees to
represent nested logit models to a network representation.

Computational features: Although GEV structure models have closed-form probability expressions, due
to their multi-level tree structure the choice probabilities are complex to compute, where the computational
burden escalates significantly as the scale of network / choice set sizes increase. This is because the number of
nests increases exponentially as the number of links/routes increases. This raises concerns over the
applicability of GEV structure models to real-life large-scale networks, where there are potentially thousands
of links and routes.

Estimation features: There are numerous different issues involved in estimating the numerous different
specifications of the CNL model for route choice, and several studies have discussed issues in detail, for
example see Bierlaire (2006), Abbe et al (2007), Marzano & Papola (2008). To summarise a few of the issues
documented: a) there may be infinite specifications with different choice probabilities that lead to the same
covariance figures (Marzano & Papola, 2008); b) the number of unknown parameters to be estimated
increases as the number of routes increases (Marzano & Papola, 2008); ¢) several studies have found that
when estimating the nesting coefficients the model tends to collapse to MNL (Ramming, 2002; Prato, 2005;
Prato & Bekhor, 2006); d) the maximum likelihood estimation functions are not concave which significantly
complicates the identification of a global maximum (Bierlaire, 2006); and, ) because of d), nonlinear
programming methods tend to converge towards local maxima of the log-likelihood function, and in practice,
one observes a significant influence of the initial values provided to the algorithm on the estimated parameters
(Abbe et al, 2007). GNL requires the estimation of an additional parameter over CNL which makes parameter
estimation more difficult.

1.2.2  Simulation Models

Simulation models include Mixed Logit models (Ben-Akiva & Bolduc, 1996; McFadden & Train, 2000) such
as the Factor Analytic Logit Kernel model (Bekhor et al, 2002), as well as alternative RUMSs to MNL such as
MNP and MNG. Mixed Logit models divide the error terms into two Gumbel and Gaussian distributed
variable components which ensures the Logit structure is kept while allowing for capturing interdependencies
between routes. MNP and MNG etc. do not suffer from the same issue as MNL, as the similarity between
each pair of routes is accounted for by allowing for covariance between the error terms, and route correlations
are thus captured implicitly.

Computational features: The main problem for simulation models is that they do not have closed-form
expressions and solving the choice probabilities requires either Monte Carlo simulation or alternative
methods, all of which are computationally burdensome. Many analytical approximation methods have been
proposed to solve the MNP model, all aiming to provide the best compromise between speed and accuracy
(reviews can be seen in e.g. Rosa (2003), Connors et al (2014)); however, performance of these approaches
are assessed with a very limited number of routes, typically up to just 25 alternatives. It is generally
considered infeasible to accurately compute MNP, MNG etc. probabilities on large-scale networks with
thousands of routes.

Estimation features: Studies have discussed/found difficulties in estimating the parameters of the Factor
Analytic Logit Kernel model: Ramming (2002) finds instable estimates of the covariance parameters, despite
the very large number of random draws, while Prato (2005) discusses the difficulty in obtaining significant
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estimates. And, there are also issues involved in estimating the MNP model, including: identification issues
arising from the number of parameters that may need to be estimated (Dansie, 1985; Bunch, 1991; Keane,
1992); and, difficulties in accurately computing small choice probabilities (Connors et al, 2014).

1.2.3 Correction Terms Models

Correction term models modify the deterministic utilities / probability relations by including correction terms
that adjust the choice probabilities in order to approximate the correlation between routes. These models
include: C-Logit (CL) (Cascetta et al, 1996), Path Size Correction Logit (PSCL) (Bovy et al, 2008), Path Size
Logit (PSL) (Ben-Akiva & Ramming, 1998), Path Size Hybrid (PSH) (Xu et al, 2015), and Path Size Weibit
(PSW) (Kitthamkesorn & Chen, 2013). CL proposes that the correction terms are based upon commonality
factors that measure the similarity of routes, and penalises the utilities accordingly. In contrast, path size
models propose that the correction terms are based upon path size terms that measure route distinctiveness: a
route is penalised based on the number of other routes sharing its links, and the lengths/costs of those shared
links.

Computational features: The main attraction of correction term models is that they all retain the single-
level tree structure as MNL and have simple closed-form expressions. This means that the route choice
probabilities are generally easy and quick to compute, though as the size of network increases, so does the
computational effort required to enumerate the overlap between all routes in a choice set. They are a useful
and practical approach to approximating the correlation, however more complex models can capture route
correlations more accurately.

Estimation features: Correction term models are frequently estimated on real-life large-scale networks.
Their simplicity means that reasonable estimates for parameters can be obtained with relative ease. Examples
of estimation studies for correction term models are: Ramming (2002), Bovy et al (2008), Hoogendoorn-
Lanser et al (2005), Frejinger & Bierlaire (2007), and Prato (2013).

1.3 Aspect 3: Dealing with Unrealistic Routes

The typical route choice modelling approach for dealing with unrealistic routes, is to employ some kind of
heuristic method that attempts to explicitly pre-generate a route choice set containing just the routes
considered realistic. Numerous choice set generation schemes have been proposed, such as: distance-bounded
enumeration (Leurent, 1997), constrained enumeration (Friedrich et al, 2001; Prato & Bekhor, 2006),
probabilistic generation techniques (Cascetta & Papola, 2001; Frejinger et al, 2009), and various deterministic
or stochastic shortest path algorithms (e.g. Dijkstra, 1959; Sheffi & Powell, 1982; Ben-Akiva et al, 1984).

The choice set generation approach is problematic, however. Firstly, it leads to theoretical
inconsistencies, since the route generation criteria is not consistent with the calculation of the choice
probabilities among generated routes. Consequently, a route found by the generation criteria may be
considered unrealistic by the choice probability criteria, and vice versa, thus leading to inaccurate results.
Secondly, generating the exact choice sets of realistic routes is very difficult to do, especially on large-scale
networks, where there are a greater number of possible routes to generate spanning over a greater distance,
and hence there is a greater amount uncertainty on where the cut-off is between realistic and unrealistic. In
large-scale case studies, choice sets are typically generated to be large enough so that one can be fairly certain
the realistic alternatives are present, regardless of how many unrealistic routes are generated. This is
particularly problematic for many correlation-based models since many are not choice set robust, and results
are thus negatively influenced by the presence of the unrealistic routes as well as highly sensitive to the choice
set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming, 2002; Ben-Akiva &
Bierlaire, 1999; Bekhor et al, 2008). Thirdly, several of the methods are based on Monte Carlo simulation,
which introduces a lack of repeatability of results due to this additional source of randomness.

Since it is difficult to obtain choice sets of realistic routes with absolute certainty for the PSL model to be
suitable, a pragmatic approach that has been proposed is to utilise a weighted path size contribution technique
along with choice set generation to attempt to reduce the impact any present unrealistic routes may have on
the choice probabilities of realistic routes. Weighted path size contribution techniques weight the contribution
of routes to path size terms with a path size contribution factor. Ben-Akiva & Bierlaire (1999) initially
proposed that the contribution factor should be the ratio of the length/cost of each route compared to the
shortest/cheapest alternative in the choice set. Hence, contributions of high costing routes compared to the
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cheapest alternative are reduced. This was criticised by Ramming (2002) however, since a route that is
completely distinct may have a non-zero path size correction term, thus resulting in an undesired penalisation
upon the utility of that route.

To combat this, Ramming (2002) proposes the Generalised Path Size Logit (GPSL) model. The GPSL
model proposes that the contribution factor is based upon ratios of either length or travel cost between routes,
and hence routes with excessively long lengths / large travel costs have a diminished impact upon the
correction terms of routes with short lengths / small travel costs, and consequently the choice probabilities of
those routes. GPSL requires the estimation of an additional parameter over the PSL model which makes
parameter estimation more difficult. Estimates for the parameter can be justified by assessing the goodness-of-
fit, though the best estimates in case studies tend to be very large values meaning that it is difficult to provide
a behavioural interpretation for the parameter.

An approach that has recently been proposed for consistently dealing with unrealistic routes is the
Bounded Choice Model (BCM) (Watling et al, 2018). The BCM has a consistent criterion for determining
restricted choice sets of realistic routes, and route choice probability: a bound is applied to the difference in
random utility between each given route and an imaginary reference route alternative, so that routes only
receive a non-zero choice probability if the difference between its random utility and the random utility of the
reference alternative is within the bound. Furthermore, the probability by which each route is chosen relates to
the odds associated with choosing each alternative versus the reference alternative. A special case of the BCM
is where the reference alternative is that with the maximum deterministic utility i.e. the route with the cheapest
generalised travel cost, so that a route only receives a non-zero probability if its cost is within some bound of
the cheapest route. The BCM has a simple closed-form probability relation that is similar to MNL and the
model is thus suited for large-scale network applications, though estimation of the model has not yet been
explored. The key behavioural issue for the BCM however is that it does not account for route correlations.

1.4 Aspect 4: Incorporating the Effects of Congestion

As Patriksson (2015) describes, the travel speed on a link tends to decrease as the volume of traffic on that
link increases, slowly at first, but as the effects of congestion become more significant, average speed
decreases more rapidly, until the congestion level has developed into a jamming situation, where very little
flow can be observed. Each link in a network thus has a link cost function that relates travel time for the link
with vehicle flow upon it, where travel time increases with flow. There is thus a feedback effect in that drivers
make decisions on which routes to take according to the travel times they perceive for the routes, which in
turn depend upon the route choice decisions and the consequent route and link flows.

To model this feedback effect, the concept of road network user equilibrium was introduced. In urban
areas such as cities, the travel demand is so large that high levels of congestion are often experienced,
particularly during peak hour times. Time wasted in congestion has a big influence on how travellers organize
their lives and decide between available routes. Moreover, it is well-known that travel behaviours tend to be
habitual. Wardrop (1952) thus proposed the Deterministic User Equilibrium (DUE) model, based upon
Wardrop’s first principle of equilibrium:

“The journey times on all the routes actually used are equal, and less than those which would be experienced
by a single vehicle on any unused route.”

This principle makes some important assumptions about driver behaviour. As Damberg et al (1996) and
Patriksson (2015) describe, the principle assumes that all drivers have complete and accurate information
about all available routes, including the travel cost (time) for each route, where every driver has the exact
same perception of travel cost. Furthermore, it is assumed that the routes chosen by drivers are those which
are individually perceived as having the lowest cost, i.e. all drivers look to minimise their travel cost. The
result from such conditions is a distribution of route flows such that no driver can improve upon their travel
cost by unilaterally changing routes, hence resulting in a user equilibrium. For low travel demand, the DUE
model is equivalent to the AON model where all drivers opt to take the single minimum costing route
(providing there are no ties). As the travel demand increases, the lower costing routes increase in travel time
(due to greater flows along them) and thus routes previously unused become more attractive and the flows are
distributed across more minimum costing routes.

The DUE model makes some behaviourally questionable assumptions about driver behaviour, however.
Similar to AON, the model assumes that all drivers have complete and accurate information about all
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available routes, including the travel costs for each of the routes (which are flow-dependent), where every
driver has the exact same perception of travel cost. Moreover, it assumes that there is no uncertainty from the
modeller in terms of any unobserved attributes or any unobserved heterogeneity in the utilities. The DUE
model is heavily dependent upon these behavioural assumptions, and it would be natural to assume that traffic
flows do not satisfy the user equilibrium conditions when these assumptions are not true, for example if
drivers do not all have perfect information about the cost of each route, or perceive travel costs differently
(Damberg et al, 1996). The DUE model does, however, implicitly capture route correlations, and deals with
unrealistic routes, since zero flows are given to routes that are not minimum costing.

Since it is behaviourally questionable (due to e.g. driver/modelling uncertainty) that a route with a cost
only slightly higher than the minimum costing routes goes unused (i.e. as in DUE), one approach that has been
proposed for addressing this is the Boundedly Rational User Equilibrium (BRUE) model (Mahmassani &
Chang, 1987; Guo & Liu, 2011; Lou et al, 2010; Di et al, 2013; Di & Liu, 2016). In the context of route
choice, the theory of bounded rationality has been interpreted as establishing the existence of ‘indifference
bands’ on the excess cost of a route relative to the minimum costing route (Mahmassani & Chang, 1987; Hu
& Mahmassani, 1997; Jayakrishnan et al, 1994; Mahmassani & Liu, 1999; Srinivasan & Mahmassani, 1999).
BRUE proposes that drivers are indifferent to route cost differences within their indifference bands, and thus a
space of route flow equilibrium solutions exists that represents drivers’ inertia to route-switching. This
extends the used route selection of DUE to include some sub-optimal routes while still excluding those that
are unrealistic. A big issue however is that the deliberate non-uniqueness of solutions makes the approach
unsuitable for real-life applications (such as policy testing).

To compensate for driver/modelling uncertainty of the route travel costs, Daganzo & Sheffi (1977) extend
the DUE model to include a random component in the travel cost function, thus forming the Stochastic User
Equilibrium (SUE) model. The probability that a specific route is chosen, given the actual cost of the route, is
then dependent upon the probability distribution of the random component, i.e. dependent upon the underlying
RUM. Solutions to the SUE model are such that the route flows result in travel costs (and thus route utilities)
that satisfy the Stochastic User Conditions as described above, where the proportion of the travel demand flow
on each route is equal to the probability that that route has the perceived highest utility.

SUE is expressed as a fixed-point problem and computing the SUE route flows thus requires a solution
algorithm. These algorithms involve weighting the route flows between iterations with step-sizes, to
eventually converge towards a solution. There are three main types of step-size scheme, as suggested by Chen
et al (2014). Some SUE models can be expressed as equivalent Mathematical Programming (MP)
formulations, and thus SUE for these models can be obtained through solving some convex optimisation
problem where the step-sizes are exact. For SUE models that are not expressed as MP formulations, step-sizes
are either pre-determined e.g. the method of successive averages and its variants such as the method of
successive weighted averages (Liu et al, 2009) or the self-regulated averaging method (e.g. Yang et al, 2013;
Xu & Chen, 2013; Kitthamkesorn & Chen 2013, 2014; Chen et al, 2014; Yao et al, 2014), or inexact such as
Armijo’s step-size strategy (Armijo, 1966; Bertsekas, 1976) or self-adaptive schemes such as those described
by Chen et al (2012, 2013), Xu et al (2012), and Zhou et al (2012).

Like there are different computational challenges for solving the route choice probabilities for the
different correlation-based route choice models, there are also different computational challenges involved in
their application to SUE. The SUE application of each correlation-based route choice model category is
reviewed in turn below.

GEV structure models. Equivalent MP formulations for CNL, GNL, and PCL are given by Bekhor &
Prashker (1999, 2001). Bekhor & Prashker (2001), Chen et al (2003) and Bekhor et al (2008) provide path-
based partial linearization algorithms for solving GNL SUE, PCL SUE, and CNL SUE, respectively. Due to
their multi-level tree structure, the choice probabilities and in particular MP formulations are complex to
compute, where the computational burden escalates significantly as the scale of network / choice set sizes
increase. This raises concerns over their applicability to SUE on large-scale networks. Pre-determined, exact,
and inexact step-size schemes have been investigated to assess computational trade-off, i.e. where the
computation time required to perform each iteration is compared with the number of iterations required for
convergence (Bekhor & Prashker, 2001; Bekhor et al, 2008; Chen et al, 2014).

Simulation models. Sheffi (1985) formulates MNP SUE as a mathematical programme and presents a
flow-averaging solution algorithm. Cantarella & Binetti (2002) give flow-averaging and cost-averaging
algorithms for solving MNG SUE. These models are attractive behaviourally due to their ability to accurately
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capture route correlations, however there are computational issues for SUE. As discussed previously,
computing the choice probabilities comes with a high computational cost, and increasing the accuracy of
choice probability computation substantially adds to the computational burden. However, as Sheffi (1985)
explores, in SUE application, one can trade-off the accuracy of the probabilities (and thus computation times
of each iteration) with rate of SUE convergence. Nonetheless, due to the random nature in which the search
direction is obtained in typical simulation-based algorithms, there are difficulties in suitably measuring flow
convergence (Sheffi, 1985). Moreover, numerous studies have found convergence very slow on large-scale
networks (Rich et al, 2015; Manzo et al, 2015; Rasmussen et al, 2017; Connors et al, 2014).

Correction term models. Zhou et al (2012) give equivalent MP formulations for Length-based CL SUE
(LCL SUE) and Congestion-based CL SUE (CCL SUE), where length and congestion based refers to whether
the correction term is computed using length or congestion-dependent travel cost. Chen et al (2012),
Kitthamkesorn & Chen (2013), and Xu et al (2015) give equivalent MP formulations for PSL SUE, PSW
SUE, and PSH SUE, respectively. Chen et al (2012) present a path-based partial linearization algorithm for
solving LCL SUE and PSL SUE. Zhou et al (2012) present a path-based Gradient Projection algorithm for
solving LCL SUE and CCL SUE, and Xu et al (2012) and Chen et al (2013) assess the computational trade-
off for different step-size strategies. Kitthamkesorn & Chen (2013) develop a path-based partial linearization
algorithm for solving PSW SUE, and Kitthamkesorn & Chen (2014) propose a link-based algorithm. These
models have probability relations and MP formulations that are relatively easy and quick to compute, which
makes them more suitable for SUE applications on large-scale networks. However, they are a heuristic
approach to capturing route correlations, and as discussed in more detail below, theoretical consistency is
often overlooked in the SUE formulations so that solution methods are simpler/quicker to implement.

GEV structure and correction term models do not require random simulation to compute choice
probabilities, and search directions can be computed exactly. This means that convergence can be suitably
measured, and more optimal step-size schemes / algorithms can be developed for better convergence.
However, internal consistency is often overlooked in the SUE formulations for these models so that solution
methods are simpler/quicker to implement. An SUE model is internally consistent if the same definition of
generalised cost is used in all components of the specification. In SUE application where the travel costs
within the deterministic utilities are flow-dependent (congested), the route similarity features (PCL, CL) or
link-route prominence features (CNL, GNL, PSL, PSW, PSH) in the correlation components should also be
based upon the congested cost. Most studies use topological length or uncongested cost (free-flow travel time)
for these features, however this may be inaccurate behaviourally since a short route can have a large
congested travel cost, and vice versa. Studies that have been implemented with flow-dependent correction
terms include CCL SUE by Zhou et al (2012), Xu et al (2012), and Chen et al (2013), and PSL Restricted
SUE (discussed below) by Rasmussen et al (2015).

Just as for route choice probability computations, the typical approach for dealing with unrealistic routes
for SUE modelling is to attempt to exactly generate the realistic routes using some kind of heuristic method.
There are however two ways in which route generation is typically done for SUE. The first way is also
through choice set pre-generation which leads to the same issues as discussed above. The second way is to
employ a column generation approach within implementation of the SUE algorithm, thereby generating routes
as the algorithm progresses until the convergence criteria are met. The column generation approach is likely to
have improved theoretical consistency over the choice set pre-generation approach, since routes are typically
generated given the current link costs at the algorithm iterations, however the route generation and route flow
distribution criteria are not guaranteed to be consistent. Furthermore, solutions emitted by the column
generation algorithms have the potential to differ dramatically depending on the initial conditions set,
especially for many correlation-based SUE models that are not choice set robust. For simulation SUE models,
typical solution methods do not require explicit route generation and thus the accuracy of results is not
dependent upon the choice sets generated, although the routes generated may vary from different algorithm
runs.

Recent years have seen the emergence of some promising SUE approaches for dealing with unrealistic
routes in a consistent way. Watling et al (2015) and Rasmussen et al (2015) develop a Restricted Stochastic
User Equilibrium (RSUE) approach whereby the choice set of used routes is determined by some explicit
constraint that is dependent on the equilibrium solution. Rasmussen et al (2015) then formulate the RSUE
with a Threshold (RSUET) model which further extends the approach to include a second restriction,
determined partly by an exogenously defined cost threshold. PSL correction terms are added to both of these
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approaches to also deal with the route overlap problem. The disadvantage with these approaches, however, is
that equilibrium solutions are not guaranteed to exist, and even in cases where solutions do exist, there is no
guarantee of the uniqueness of the solution. This lack of theoretical guarantee of existence and uniqueness is a
major price to pay when one considers the typical use of such models in policy testing, meaning that one
cannot guarantee to attribute a unique forecasted benefit to any tested measure. Furthermore, the lack of a
mathematically well-defined underlying route choice model with a continuous choice probability function
means that the approach is not robust (i.e. potentially sensitive to small changes to network/model
specifications).

Motivated by the desire to develop an SUE model that consistently addresses unrealistic routes but has
guaranteed existence and uniqueness of solutions, as well as a mathematically well-defined underlying route
choice model, Watling et al (2018) formulated the BCM (as described above) and applied it to SUE, thus
formulating Bounded SUE (BSUE). BSUE applies a bound upon congested cost so that the choice sets of
realistic routes are equilibrated along with the route flows. The issue for the BCM (and thus BSUE), however,
as previously mentioned, is its inability to capture route correlations.

Table 1.1 summarises the features of the network equilibrium models mentioned above. A model which
does not have an implicit mechanism for dealing with unrealistic routes, does it explicitly through e.g. choice
set pre-generation.
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Well-defined Allows for Mechanism for Implicit
Network - . . . mechanism for
s underlying route driver/modelling capturing route : .
Equilibrium Model choice model uncertainty correlations deal_mg with
unrealistic routes

DUE No No - Yes
BRUE No No - Yes
MNL SUE Yes Yes None No
CNL SUE Yes Yes Explicit No
GNL SUE Yes Yes Explicit No
PCL SUE Yes Yes Explicit No
MNP SUE Yes Yes Implicit No
MNG SUE Yes Yes Implicit No
MNW SUE Yes Yes None No
(L/C)CL SUE Yes Yes Explicit No
PSL SUE Yes Yes Explicit No
PSW SUE Yes Yes Explicit No
PSH SUE Yes Yes Explicit No
MNL RSUE No Yes None Yes
PSL RSUE No Yes Explicit Yes
PSL RSUET No Yes Explicit Yes
BSUE Yes Yes None Yes

Table 1.1. Features of different network equilibrium models.

2. Research Directions & Thesis Outline

The previous section discussed modelling approaches for addressing four key challenging aspects of route
choice modelling highlighted in the literature: allowing for driver/modelling uncertainty, capturing
correlations between overlapping routes, dealing with unrealistic routes, and incorporating the effects of
congestion. While many promising approaches have been developed, no approach has been developed thus far
that addresses all four of these challenges in a theoretically consistent, robust, and mathematically well-
defined way, and moreover, has been shown to be both computationally feasible and estimatable on real-life
large-scale networks. Below, existing approaches are reviewed in summary, followed by a discussion on how
the directions to pursue were decided upon.

Summary review of existing route choice modelling approaches

Simulation models are the most behaviourally attractive approach for addressing the route overlap
problem, since route correlations are captured implicitly and consequently accurately. Furthermore, solution
methods for computing choice probabilities and solving SUE do not necessarily require explicit route
generation, and thus the accuracy of results is not necessarily dependent upon the choice sets generated nor
highly influenced by unrealistic routes. However, there are major concerns over their suitability for real-life
large-scale network applications. Accurately computing route choice probabilities on large-scale networks
where there are potentially thousands of links/routes requires an extremely high computational cost, while
there are also uncertainties involved in successfully estimating model parameters. Moreover, there are also
issues in their SUE application, for example difficulties measuring convergence and slow convergence on
large-scale networks.

GEV structure models can in theory capture route correlations accurately. However, due to the immense
number of routes and the complexity in which they overlap on large-scale networks, estimating each
individual e.g. similarity/nesting/inclusion parameter is infeasible, and instead, heuristic functional
relationships have been proposed — using knowledge of network topology — in order to represent these
parameters and simplify estimation. With this, it is uncertain exactly how accurately route correlations are
captured, and there is some uncertainty in which functional relationships are best to adopt. Moreover, there are
guestions whether the functional relationships adopted thus far in SUE formulations are suitable given the lack
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of consistency between the costs used in different components. Numerous difficulties have been documented
in estimating GEV structure models, including in some studies results implying a collapse to MNL, while the
complexity of the probability relations / MP formulations raise concerns over computational feasibility on
large-scale networks. Furthermore, results can be sensitive to the adopted choice sets, but generating exact
choice sets of realistic route alternatives is very difficult to do on large-scale networks.

Correction term models take a heuristic approach to capturing route correlations, and as such, are
typically less accurate than the other approaches, but are very attractive for real-life large-scale applications.
They have choice probabilities and MP formulations that are relatively easy and quick to compute, meaning
SUE can be solved in feasible computation times on large-scale networks, and have also been shown to be
estimatable in large-scale applications. A key issue, however, is that results also can be sensitive to the
adopted choice sets and negatively influenced by the presence of unrealistic routes in the choice sets. This
highlights the importance of obtaining exact choice sets of realistic routes to perform route choice / SUE with,
which is very difficult to do on large-scale networks, while it also leads to theoretical inconsistencies.

Due to the attractiveness of correction term models for real-life large-scale network applications, and inspired
by some promising approaches that have been proposed for addressing issues with unrealistic routes for these
models, the following two research directions were chosen to pursue. Below, these research directions are
detailed, and the contents of the thesis is outlined.

2.1 Research Direction 1 — A New Internally Consistent Weighted Path Size Contribution
Technique

The PSL model attempts to capture correlations between routes by including correction terms within the route
utility functions. These correction terms depend upon path size terms which measure the distinctiveness of
routes: a route is penalised based on the number of other routes sharing its links, and the costs of those shared
links. The key issue for PSL, however, is that the choice probabilities are extremely sensitive to the choice
sets adopted since all routes contribute equally to path size terms, and as such, results are extremely sensitive
to the choice set generation method adopted. Moreover, it is crucial for PSL that the choice sets contain
realistic alternatives only, as the inclusion of a single unrealistic alternative can have a considerable and
negative effect on the choice probabilities of the realistic routes.

Acknowledging the difficulties in obtaining exact choice sets of realistic routes for PSL to be suitable, a
pragmatic approach that has been proposed is to utilise a weighted path size contribution technique along with
choice set generation, to attempt to reduce the impact any present unrealistic routes may have on the choice
probabilities of realistic routes. The idea is that instead of all routes having equal path size contributions to the
path size terms of other routes (i.e. PSL) — and therefore the utilities and consequently the choice probabilities
of realistic routes are undesirably adjusted to capture correlations between routes not even considered by
drivers — the contributions are weighted so that the probabilities of realistic routes are only minorly adjusted
from link sharing with generated unrealistic routes. This is a promising approach as it relaxes the importance
of generating exact choice sets of realistic routes; however, the path size contribution factors proposed thus far
have deficiencies, and the first research direction was to address this by developing a new contribution factor.

As discussed previously, the initial contribution factor proposed — where routes are weighted according to
their length/cost compared to the shortest/cheapest route — is problematic, since a route that is completely
distinct may have a non-zero path size correction term, thus resulting in an undesired penalisation upon the
utility of that route.

The GSPL model attempts to address this by proposing each route contributes to the path size term of
another according the ratio of length/cost between the routes. An issue that has not yet been brought to
attention, however, nor addressed, is internal consistency. There may be many ways in which a model can be
internally (in)consistent, however internal consistency is used in this thesis to describe two specific features of
path size logit route choice models.

The first feature is how the path size model components define travel cost. Typically, path size logit
models use length or free-flow travel time costs within the path size terms to measure link-route prominence.
However, this is potentially inconsistent as generalised travel cost is used to measure the attractiveness of
routes within the utility component. For example, a short route may have a large generalised travel cost, and
vice versa.
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The second feature is how the path size model components define routes as unrealistic. The GPSL path
size correction terms define a route as unrealistic if it has a large length / travel cost, however the route choice
probability relation considers disutility including the correction term. There are hence potentially inconsistent
definitions for unrealistic routes within the model, which may lead to inaccurate results. Moreover, due to
these internal inconsistency issues, an additional scaling parameter is required to scale the path size
contributions which makes parameter estimation more difficult.

In Chapter 2 of this thesis, the first journal manuscript, these internal inconsistency issues for GPSL are
discussed and demonstrated on small example networks. Addressing these issues, Chapter 2 then formulates
the Adaptive Path Size Logit (APSL) model where a new path size contribution factor is proposed. The APSL
model proposes that the contribution factors are based upon ratios of choice probability between routes, thus
ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice
probabilities. APSL is hence internally consistent in how routes are defined as (un)realistic. Also, by defining
the path size contribution factor as the ratio of choice probabilities, the scaling of the path size contributions is
controlled implicitly through the scaling of the route choice probabilities (i.e. with the Logit parameter and
path size parameter), and hence there is no additional path size contribution parameter for estimation. The
APSL route choice probability relation is an implicit function involving the choice probabilities, and solutions
to the model are solutions to the fixed-point problem. A solution algorithm is provided for computing the
APSL choice probabilities, APSL solutions are proven to exist, and conditions for unique APSL solutions are
given.

Given that the requirements set out for a developed model were that one should be able to solve it in
computationally feasible times on large-scale networks, as well as successfully estimate the parameters of the
model, in the second part of Chapter 2 these properties are investigated for APSL. To show that the
parameters of the APSL model can be estimated a Maximum Likelihood Estimation procedure is first
proposed for estimating APSL with tracked route observation data, then this procedure is investigated in a
simulation study on the Sioux Falls network, where it is shown it is generally possible to reproduce assumed
true parameters. Then, in a real-life case study, the APSL model is estimated using real tracked route GPS
data on a large-scale network. Computational feasibility is then assessed for solving and estimating APSL on
the Sioux Falls and real-life large-scale network.

Chapter 3 of this thesis, the second journal manuscript, explores the integration of APSL within a SUE
model, thereby developing a modelling approach that addresses all four of the key challenging aspects of route
choice modelling. SUE conditions are established for the APSL model, where — for full internal consistency —
flow-dependent, generalised costs are used in all components: route costs as well as path size correction terms.
APSL SUE solutions are proven to exist.

APSL comes at a price of needing to solve a fixed-point problem even to compute route choice
probabilities at given travel cost/utility levels. Thus, before the research was conducted, there was a question
of whether it would be computationally feasible to implement such a method within an SUE framework, since
it apparently needs to embed a fixed-point problem (for calculating choice probabilities) within another fixed-
point problem (for equilibrating flows). However, as the paper shows, the potentially onerous requirement of
solving fixed-point problems to compute APSL choice probabilities can be circumvented, since at SUE the
route flow proportions and choice probabilities equate. The useful relationship between choice probabilities
and route flow proportions in SUE context allows for a considerable flexibility in solving APSL SUE, as is
explored, where one can trade-off the accuracy of APSL probabilities (and thus computation times of each
iteration) with rate of SUE convergence.

Using a flow-averaging algorithm to solve the SUE models, the advantages of APSL SUE are
demonstrated in numerical experiments on the Sioux Falls and Winnipeg networks, where computational
performance, choice set robustness, and flow results are compared with the internally consistent SUE
formulations of GEV structure and correction term correlation-based route choice models. APSL SUE
solution uniqueness is explored numerically where results suggest that uniqueness conditions exist.

It is worth noting that, so far, standard PSL is the most common path size approach adopted in practice. It
is hoped

2.2 Research Direction 2 — A Bounded Path Size Route Choice Model

Although the weighted path contribution technique is a promising approach for addressing the deficiency of
the PSL model, in its sensitivity to unrealistic routes in the adopted choice sets, it does not solve the issue
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entirely, since the path size contributions of routes defined as unrealistic are only reduced instead of
eliminated. Moreover, as well as non-zero path size contributions, unrealistic routes also receive non-zero
choice probabilities. Thus, while under the GPSL and APSL models each unrealistic route may only have a
small path size contribution / choice probability, the total sum of these unrealistic route contributions /
probabilities may be significant, consequently impacting the accuracy of results. This problem becomes
greater as the scale of network increases and a greater amount of uncertainty comes with choice set
generation, where, typically, choice sets are generated as large as the computational resources are deemed to
allow, in order to minimise the possibility of excluding what would later turn out to be a plausible route.

In contrast to these issues with PSL models, the BCM has a consistent criterion for determining restricted
choice sets of realistic routes and route choice probability, but does not account for route correlations. An
approach that was therefore deemed promising was to explore the integration of PSL model concepts with the
BCM, thereby harnessing the contrasting strengths of the two approaches. Chapter 4 of this thesis, the third
journal manuscript, explores formulating a Bounded Path Size (BPS) route choice model, where route
correlations and unrealistic routes are fully dealt with in a consistent, robust, and mathematically-well defined
way. The aim is to develop a model that eliminates unrealistic route path size contributions entirely, as well as
removes all the negative effects of unrealistic routes by also assigning them zero choice probabilities.

A natural form for a BPS model can be derived by inserting path size choice model utilities into the
standard BCM formula. However, as shown, this natural form for a BPS model is deeply problematic and
there are no behaviourally and practically desirable formulations. This is because appropriately defining the
path size contribution factors within the path size terms is challenging, and from demonstrating with different
options, desired properties are established for a mathematically well-defined BPS choice model that utilises a
consistent criterion for assigning zero choice probabilities to unrealistic routes while eliminating their path
size contributions.

To develop a BPS model that satisfies these properties, an alternative BPS model form is the derived and
two BPS models are consequently proposed: one that is closed-form (the Bounded Bounded Path Size (BBPS)
model) and another expressed as a fixed-point problem (the Bounded Adaptive Path Size (BAPS) model). The
BBPS model path size contribution factors consider ratios of the odds that routes are within the bound, and its
limit model — where the bound is large enough so that all routes have non-zero choice probabilities — is a
GPSL variant. The BAPS model utilises probability ratio contribution factors and its limit model is APSL.
The BAPS model has a greater appeal behaviourally since it is fully internally consistent, while the BBPS
model offers a more computationally practical alternative.

Again, given that the requirements set out for a developed model were that one should be able to solve it
in computationally feasible times on large-scale networks, as well as successfully estimate the parameters of
the model, the second part of Chapter 4 investigates these properties for the BBPS & BAPS models. Similar
to that for APSL, a Maximum Likelihood Estimation procedure is proposed for estimating the BBPS & BAPS
models with tracked route observation data, then this procedure is investigated in a simulation study on the
Sioux Falls network, where it is shown that it is generally possible to reproduce assumed true parameters.
Then, in a real-life case study, the BBPS & BAPS models are estimated using real tracked route GPS data on
a large-scale network. Computational feasibility is assessed for solving and estimating the BAPS model (since
it is not closed-form) on the Sioux Falls and real-life large-scale network.

Chapter 5 of this thesis, the fourth manuscript, explores the integration of BPS models within a SUE
model, thereby developing a second modelling approach that addresses all four of the key challenging aspects
of route choice modelling. SUE conditions are established for the BPS models, where the restricted choice
sets of realistic routes are equilibrated. BBPS SUE solutions are proven to exist.

A generic algorithm is proposed for solving BPS SUE models. The algorithm is an adaptation of the
generic algorithm proposed by Watling et al (2018) for the BSUE model. To equilibrate the choice sets of
realistic routes, the BSUE algorithm generates realistic routes from the network as the algorithm progresses.
With the current techniques available for generating these routes, there are questions over the suitability of the
approach for large-scale networks. A more heuristic approach is thus taken for the proposed BPS SUE
algorithm, by pre-generating approximated universal choice sets.

For BAPS SUE, just like for APSL SUE, the potentially onerous requirement of solving fixed-point
problems to compute BAPS model probabilities can be circumvented, since at SUE the route flow proportions
and choice probabilities equate. The trade-off between the accuracy of BAPS model probabilities (and thus
computation times of each iteration) with rate of SUE convergence is explored. Numerical experiments are
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conducted on the Sioux Falls and Winnipeg networks, assessing computational performance for solving the
BPS SUE models, comparing flow results between the models, and exploring numerically the uniqueness of

BAPS SUE solutions. Computational performance, choice set robustness, and flow results are also compared
related non-bounded SUE models, i.e. BSUE, PSL SUE models.

Chapter 6 concludes the thesis and discusses scope for further research.
Fig. 1.2 below summarises the structure and content of the thesis.
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Abstract

Path Size Logit route choice models attempt to capture the correlation between routes by including correction
terms within the route utility functions. This provides a convenient closed-form solution for implementation in
traffic network models. The path size terms measure distinctiveness of routes; a route is penalised based on
the number of other routes sharing its links, and the costs of those shared links. Typically, real road networks
have many very long routes that should be considered unrealistic. Such unrealistic routes are problematic for
the Path Size Logit (PSL) model because they negatively impact the choice probabilities of realistic routes
when links are shared. The Generalised Path Size Logit (GPSL) model attempts to address this problem by
weighting the contributions of routes to path size terms according to the ratio of route travel costs. However,
the GPSL model is not internally consistent in how it defines routes as being unrealistic: the path size terms
consider only travel cost, whereas the route choice probability relation considers disutility including the
correction term.

To solve these challenges, this paper formulates a new internally consistent Adaptive Path Size Logit
(APSL) model wherein routes contribute to path size terms according to the ratio of route choice probabilities,
ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice
probabilities. The APSL route choice probability relation is an implicit function, naturally expressed as a
fixed-point problem. A proof is provided for the guaranteed existence of solutions, as well as conditions for
the uniqueness of solutions. A Maximum Likelihood Estimation procedure is given for estimating the APSL
model with tracked route observation data, and this procedure is investigated in a simulation study where it is
shown it is generally possible to reproduce assumed true parameters. APSL is then estimated using real
tracked route GPS data on a large-scale network, and results are compared with other PSL models.

Key Words: path size logit, route choice, random utility, fixed-point problem, overlapping routes, parameter
estimation
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1. Introduction

It is well known that the Multinomial Logit (MNL) Random Utility Model (RUM) often provides unrealistic
choice probabilities when applied to real road network route choice. One of the main reasons for this is that
the MNL model does not capture the correlation between routes. This issue stems from the underlying
assumption made by the MNL model that the random error terms are independently and identically distributed
(11D) with the same, fixed variances (Sheffi, 1985). Numerous adaptations of the MNL model have been
proposed in the literature which relax the 11D assumption — specifically the independently distributed
assumption — and attempt to capture the correlation between the routes. These extended Logit models can be
classified into three groups according to the model structures as suggested by Prashker & Bekhor (2004):
GEV structures, Mixed Logit models, and MNL-modification models. The fourth group of route choice
models that provide an option for overcoming the weakness of MNL are those which propose an alternative
probability distribution for the random error terms, i.e. alternative RUMS, that capture the correlation
implicitly. To set the background for the research in the present paper, we consider each of these categories in
turn below:

GEV structures: The first group of extended Logit models are those which are based on the Generalized
Extreme Value (GEV) theory (McFadden, 1978), which use a two-level tree structure to capture the similarity
among routes through the random error component of the utility function. These models include the Cross-
Nested Logit (CNL) model (Vovsha, 1997; Bekhor & Prashker, 1999; Marzano & Papola, 2008), the Paired
Combinatorial Logit (PCL) model (Chu, 1989; Bekhor & Prashker, 1999; Gliebe et al, 1999; Pravinvongvuth
& Chen, 2005), the Generalized Nested Logit (GNL) model (Bekhor & Prashker, 2001; Wen & Koppelman,
2001), and the Network GEV model (Bierlaire, 2002; Daly & Bierlaire, 2006) which uses a fairly general
class of networks to generalise the use of trees to represent nested logit models to a network representation.
The PCL, CNL, and GNL models all have closed-form probability expressions, though due to their two-level
tree structure the route choice probabilities are complex to compute for large-scale network applications.
Furthermore, several studies have found that when estimating the nesting coefficients for the CNL model, the
model tends to collapse to MNL (Ramming, 2002; Prato, 2005; Prato & Bekhor, 2006), and the GNL model
requires the estimation of an additional parameter over the CNL model which makes parameter estimation
more difficult.

Mixed Logit models: The second group of extended Logit models are Mixed Logit models (Ben-Akiva &
Bolduc, 1996; McFadden & Train, 2000), also known as Logit Kernel, Random Parameter Logit, Error
Component Logit, and Hybrid Logit. Mixed Logit models attempt to capture the correlation between routes by
dividing the random error terms into two components; the first component is a set of 11D Gumbel variables
ensuring that the Logit structure is kept, and the second component is a set of Gaussian distributed variable
terms that attempt to capture the interdependencies among the routes. Bekhor et al (2002) propose a Factor
Analytic Logit Kernel model that attempts to capture the similarities among routes by assuming the
covariance between utilities relates to overlap lengths. The main drawback of Mixed Logit models however, is
that they do not possess closed-form expressions and therefore solving the route choice probabilities requires
either Monte Carlo simulation or similar methods, which are computationally burdensome. There are also
difficulties in estimating the parameters of the Factor Analytic Logit Kernel model: Ramming (2002) finds
instable estimates of the covariance parameters, while Prato (2005) discusses the difficulty in obtaining
significant estimates.

MNL-modification models: The third group of extended Logit models are the MNL-modification models
which modify the deterministic part of the route utilities by including a correction term that adjusts the route
choice probabilities to approximate the correlation between the routes. These models include C-Logit (CL)
(Cascetta et al, 1996), Path Size Logit (PSL) (Ben-Akiva & Ramming, 1998), and Path Size Correction Logit
(PSCL) (Bovy et al, 2008). Ramming (2002) proposes a Generalised Path Size Logit (GPSL) model which
includes a component that attempts to reduce the impact that infeasibly long routes have on the correction
terms (and thus choice probabilities) of feasible routes. The main attraction of MNL-modification models is
that they all retain the single-level tree structure as MNL and have simple closed-form expressions, meaning
the route choice probabilities are generally easy and quick to compute, and estimating the parameters of the
CL, PSL, and PSCL models is a comparatively simple task, though as the size of network increases, so does
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the computational effort required to enumerate the overlap between all routes in a choice set. The GPSL
model requires the estimation of an additional parameter over the PSL model which makes parameter
estimation more difficult; estimates for the parameter can be justified by assessing the goodness-of-fit, though
the best estimates in case studies tend to be very large values meaning that it is difficult to provide a
behavioural interpretation for the parameter.

Alternative RUMSs: Another option is to utilise an alternative RUM. There are many RUMs that do not suffer
from the same issue as MNL as the similarity between each pair of routes is accounted for by allowing for
covariance between the error terms. The MNL RUM proposes that the random error terms assume a Gumbel
distribution (Dial, 1971), while the Multinomial Probit (MNP) model (Daganzo & Sheffi, 1977) and the
Multinomial Gammit (MNG) model (Cantarella & Binetti, 2002), propose that the error terms assume a
Normal distribution and Gamma distribution, respectively. Other distributions include Log-Normal and
Uniform, while Nielsen (2000) argues that Gamma distributed error terms is preferred since the error term is
positive and link-additive (Nielsen & Frederiksen, 2006). These models however, do not have closed-form
probability expressions and hence solving the route choice probabilities also requires either Monte Carlo
simulation or similar methods which are computationally burdensome and converge very slowly on large
scale networks (Rich et al, 2015; Manzo et al, 2015; Rasmussen et al, 2016; Connors et al, 2014). Mishra et al
(2012), Ahipasaoglu et al (2013), and Ahipasaoglu et al (2015) explore a Cross Moment (CMM) choice model
where the exact distribution of the random error terms is unknown and instead belongs to a set, where the
distribution employed is that which maximises the expected utility given known mean and covariance
information of the utilities. Efficient convex optimisation techniques are developed to solve the CMM, though
computation times increase dramatically as the number of routes increases.

There are numerous examples of alternative RUMs where the correlation between routes is not explicitly
captured (like MNL) and have been adapted accordingly utilising concepts from extended Logit models.
These models thus share the same associated strengths/weaknesses of the approaches. Castillo et al (2008)
proposed a Multinomial Weibit (MNW) model — where the random error terms assume a Weibull distribution
—to address the other underlying assumption made by the MNL model that the error terms are identically
distributed. Kitthamkesorn & Chen (2013) then integrated the ideas of the MNW and PSL models to
formulate a Path Size Weibit (PSW) model that simultaneously addresses both the independently distributed
and identically distributed assumptions made of the MNL error terms. Xu et al (2015) formulate a Hybrid
closed-form route choice model to alleviate the contrasting scaling issues of MNL and MNW by
simultaneously considering absolute cost difference and relative cost difference, and is extended to include a
path size correction factor to capture the correlation between routes. Chikaraishi & Nakayama (2016) extend
concepts from the g-Generalised Logit model (Nakayama & Chikaraishi, 2015) to introduce a g-Product Logit
model in which the relationship between the deterministic and random components of utilities can be either
additive, multiplicative, or in-between, depending on the value of the parameter g, where MNL and MNW are
special cases of the model. A g-Product Nested Logit model is presented to capture correlation, where the
CNL model is a special case, as well as a nested equivalent of the Weibit model. Li (2011) proposes a Semi-
Parametric choice model that relaxes the assumption of underlying distributions from either Gumbel or
Weibull to a wider distribution class where the underlying choice model is unknown, and integrates Mixed
Logit concepts to postulate a Mixed Semi-Parametric choice model. Ahipasaoglu et al (2016) consider the
application of the Marginal Distribution Model (MDM) (Natarajan et al, 2009) to route choice, where the
marginal distributions of the route utilities are specified but the joint distributions are not, and the focus is on
the particular joint distribution that maximizes expected utility. Incorporating information on the marginal
distributions makes the MDM model flexible and MNL, CL, PSL, MNW, and PSW are all special cases.
Numerous variants of the MDM are explored and PSL and CL concepts are integrated to form new MDMs.
Chorus (2010) and Bekhor et al (2012) introduce a Random Regret Minimization (RRM) model which
assumes that individuals minimise anticipated regret, rather than maximize expected utility, when choosing
routes, and Prato (2014) develops a Path Size RRM model and a Path Size Correction RRM model.

To summarise, the greatest hindrance for the GEV structures, Mixed Logit models, and alternative RUMs
is the considerable computational cost required to solve the route choice probabilities for large-scale networks,
while another issue that has been noted for some of the GEV structures and Mixed Logit models is the
difficulty in obtaining reasonable estimates for parameters. MNL-modification models are a useful and
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practical approach to approximating the correlation; more complex models can capture the correlation more
accurately, but due to the comparatively low computational cost and the relative ease in obtaining reasonable
estimates for parameters, they are the most commonly used models in practice, and are the focus of this paper,
in particular: Path Size Logit models.

One of the main issues for most MNL-modification models is that results are highly sensitive to the
inclusion and exclusion of routes from the choice set. The CL model proposes that the correction terms are
based upon commonality factors that measure the similarity of routes, and penalises the utilities accordingly.
In contrast, the PSL and PSCL models propose that the correction terms are based upon path size terms that
measure route distinctiveness: a route is penalised based on the number of other routes sharing its links, and
the costs of those shared links. The inclusion of a route to a choice set can thus have a substantial effect upon
the choice probability of any route that shares its links, as the correction terms adjust the route utilities
attempting to capture the correlation.

In real-life applications where the size of the network is often large, route choice is rarely performed upon
the full choice sets of routes, and choice sets are either pre-generated or a column generation approach is
employed with implementation. This is often because it is computationally infeasible to both/either enumerate
the full choice sets of routes and/or perform route choice upon the full choice sets of routes. Furthermore,
typical road networks contain many very long routes that should be considered unrealistic and excluded from
route choice. The key issue for the PSL model is that the choice probabilities are extremely sensitive to the
utilised choice sets since all routes contribute equally to path size terms, and as such, results are extremely
sensitive to the choice set generation / column generation method adopted. Moreover, it is crucial for the PSL
model that the choice sets contain realistic alternatives only, as the inclusion of a single unrealistic alternative
can have a considerable and negative effect on the choice probabilities of the realistic routes.

Thus, since it is difficult to obtain choice sets of realistic routes with absolute certainty for PSL to be
suitable, a pragmatic approach is to utilise a weighted path size contribution technique along with choice set
generation to attempt to reduce the impact any present unrealistic routes may have on the choice probabilities
of realistic routes. Weighted path size contribution techniques weight the contribution of routes to path size
terms with a path size contribution factor, i.e. so that the contribution of route k to the path size term of route i
is reduced for unrealistic routes.

The GPSL model proposes that the path size contribution factor is based upon ratios of travel cost
between routes, and hence routes with excessively large travel costs have a diminished impact upon the
correction terms of routes with small travel costs, and consequently the choice probabilities of those routes.
How the GPSL path size contribution factor is formulated, however, means that: a) the model is not always
internally consistent with how it assesses routes to be (un)realistic, and b) an additional scaling parameter is
required to scale the path size contributions which makes parameter estimation more difficult. The main
contribution of the present paper is thus the formulation of an Adaptive Path Size Logit (APSL) model where
a new path size contribution factor is proposed so that the model is always internally consistent with how it
assesses routes to be unrealistic, and so that no additional parameters are required for estimation.

For Path Size Logit models, the probability that a route is chosen (i.e. how feasible of an alternative the
route is perceived to be) is a trade-off between its relative attractiveness due to travel cost and its relative
attractiveness due to distinctiveness, and two independent scaling parameters (Logit parameter and path size
parameter) affect the relativeness of how attractive each component is. The GPSL path size contribution
factors however, are inconsistent with this in two ways: a) they assess the feasibility of a route according to its
relative attractiveness due to travel cost only; and, b) they scale the relativeness of how attractive routes are
due to travel cost with an additional independent path size contribution parameter, which is not necessarily
proportional to the Logit parameter that scales travel cost within the probability relation.

The APSL model proposes that the path size contribution factors are based upon ratios of choice
probability between routes, thus ensuring that routes defined as unrealistic by the path size terms, are exactly
those with very low choice probabilities. The APSL route choice probability relation is an implicit function
involving the choice probabilities, and solutions to the model are solutions to the fixed-point problem. Also,
by defining the path size contribution factor as the ratio of choice probabilities, the scaling of the path size
contributions is controlled implicitly through the scaling of the route choice probabilities (i.e. with the Logit
parameter and path size parameter), and hence there is no additional path size contribution parameter for
estimation.
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Fig. 2.1 displays a network with a single OD movement and three routes. As x varies, the travel cost of
each route stays constant (though different from one another), meaning that the GPSL path size terms always
assess the feasibility of each route as being the same. However, as x is varied between 0 and 1, the correlation
between Route 1 and Route 2 varies, thus altering the choice probabilities and how feasible of an alternative
each route is perceived to be. A key point is that the behaviour of the choice probabilities as x is varied is
highly dependent upon the values of the scaling parameters; different ranges for the Logit / path size
parameters imply different theoretical route choice behaviours consequently altering how feasible each route
is deemed to be. This makes it difficult to state what behaviours we should expect to happen as x is varied,
without knowing the parameter values we wish to set, to model specific behaviours. Due to its internal
consistency, the APSL model is adaptable to whichever values are set for the scaling parameters, and the path
size contribution factors will assess the feasibility of routes by how relatively attractive they are due to travel
cost and distinctiveness as the scaling parameters dictate.

2—x

Route 3

1

Fig. 2.1. Example network to demonstrate the inconsistency of the GPSL model.

The structure of the paper is as follows. In Section 2 we introduce some basic network notation as well as the
definitions of the MNL, PSL, and GPSL models, and several numerical experiments on small-scale networks
to demonstrate some of the key issues with PSL and GPSL, and the potential negative implications of an
internally inconsistent PSL model. In Section 3 we detail the new APSL model, give results from several
numerical experiments that demonstrate the key properties of the APSL model, and detail a solution method.
Section 4 addresses existence and uniqueness of APSL solutions. In Section 5 we investigate estimating the
APSL model. To show that the parameters of the APSL model can be estimated we first propose a Maximum
Likelihood Estimation procedure for estimating APSL with tracked route observation data, then investigate
this procedure in a simulation study on the Sioux Falls network where we show that it is generally possible to
reproduce assumed true parameters. Then, in a real-life case study, we estimate the APSL model using real
tracked route GPS data on a large-scale network. Section 6 concludes the paper.

2. Notation, Definitions, and Demonstrations of Key Issues with Existing Path Size
Logit Models

2.1 Basic Network Notation

The model developed in this paper is applicable to general networks with multiple OD movements and flow-
dependent link costs. However, without compromising the model derivation, we simplify notation by
considering a single OD movement with fixed link costs. The network consists of link set A. For the OD
movement, R is the choice set of all simple routes (without cycles), having size N = |R|. A; € A is the set of
1 lf ae Ai
0 otherwise
t,, and supposing that the travel cost for a route can be attained through summing up the total cost of its links,
then the generalised travel cost for route i € R, c;, can be computed as follows: ¢; = Y.geq, tq-

The route choice probability for route i € R is P;, where P = (P;, P,, ..., Py) is the vector of route choice
probabilities, and D is the set of all possible route choice probability vectors:

links belonging to route i € R, and 6, ; = { . Each link a € A has a fixed generalised travel cost
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N
D={PERQ’0:OSPL- < 1,VieR,z P = 1}.
j=1

And, D>° c D is the subset of all possible route choice probability vectors where no route has zero choice
probability:

N
D>0:{PER¥0:O<PL'<1'ViER’z, 1Pj:1}'
]=

2.2 Multinomial Logit

The Multinomial Logit (MNL) choice model is formulated as follows. The deterministic utility of alternative

i € R isV;, and the random utility of alternative i € R is U; such that U; = V; + &;, where the ¢; terms are the
individually and identically distributed random variable error terms. Assuming individuals seek the alternative
with highest utility, the probability that an individual selects alternative i € R is:

P,=Pr(U; =U;,Vje€R,j#i)=Pr(Vi+& =V, +¢,Vj €R,j#1i).
The defining characteristic of Logit models is that the random variable error terms assume a Gumbel

distribution. Consequently:

eVi

PV =5
' Yjer eV
where V is the vector of deterministic utilities.

The MNL model in the context of route choice states that the deterministic utility of route i € R is given

by V; = —60c;, where 8 > 0 is the Logit scaling parameter, and thus:
_ e o B 1
T Tiene % S e )

The MNL model assumes the route utilities are independent from one another, however routes with
overlapping links share unobserved attributes, and the assumption that the random error terms are all
independently and identically distributed is no longer valid. The famous example for this is the ‘loop hole’
network (also known as the red-bus/blue-bus network) presented in Cascetta et al (1996).

P;

(2.1)

2.3 Path Size Logit Models

Path Size Logit models include correction terms to penalise routes that share links with other routes, so that
the deterministic utility of route i € R is V; = —60c¢; + k;, where k; < 0 is the correction term for route i € R.
The probability that a driver chooses route i € R is therefore:
e—@ci+xi
P, = :
l ZjER e—QCj+K,'j

Path Size Logit models adopt the form x; = S In(y;), where 8 > 0 is the path size scaling parameter, and y; €
(0,1] is the path size term for route i € R. A distinct route with no shared links has path size term equal to 1,
resulting in no penalisation. Less distinct routes have smaller path size terms and incur greater penalisation.
The probability that a driver chooses route i € R is:

e~ 0ci+BIn(yy) (y)Pe ¢ 1

) —6ci+B1In(y; - B _g = \ B '
Yjere " ) Yjer(¥;) €70 Yjer (%) e=0(cj=c)

b= 2.2)

2.3.1 Path Size Logit
The Path Size Logit (PSL) model was first proposed by Ben-Akiva & Ramming (1998), and states that the
PSL path size term for route i € R, y/5, is defined as follows:
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t 1
=y A (23)

a€EA; C_iZkeR 6a,k.
To dissect the PSL path size term for route i € R defined in (2.3): each link a in route i is penalised (in terms
of decreasing the path size term and hence the utility of the route) according to the number of routes in the
choice set that also use that link (ZkeR 6a,k)1 and the significance of the penalisation is weighted according to
how prominent link a is in route i, i.e. the cost of route a in relation to the total cost of route i (t—“)

Ci

PSL Key Issue: Unrealistic routes negatively impact the choice probabilities of realistic routes when links
are shared.

The key issue with the PSL model is that all routes contribute equally to path size terms (i.e. the path size
contribution factors are simply all 1), and hence the choice probabilities of realistic routes are affected by link
sharing with unrealistic routes. To demonstrate this, consider example network 1 in Fig. 2.2A where there are
3 routes: Routes 2 & 3 have travel cost 1 and Route 1 has travel cost 1 + v, Routes 1 & 2 are correlated while
Route 3 is distinct. Fig. 2.2B displays the example network 1 PSL choice probabilities as v is increased from
051t03,6 = = 1. Forv = 0.5, Routes 1 & 2 have the same unshared travel cost and are thus considered
equally attractive. As v is increased, Route 1 increases in travel cost and decreases in choice probability. As
Route 1 becomes an unrealistic alternative, the choice probability of Route 2 should not be penalised for
overlapping with Route 1. The PSL path size terms dictate though that Route 1 contributes equally to the path
size term of Route 2 for all v, and hence the choice probability of Route 2 is always significantly penalised.
As v is increased and the choice probability of Route 1 approaches zero, the contribution of Route 1 to the
path size term of Route 2 should decrease, and the choice probability of Route 2 should converge to the choice
probability of Route 3.

A Route 1 B
1) 0.6

N M
0.4 q

0.3 7

0.5

Route 2
0.5

Choice Probability P;

0.2 4

01/ Routelx
Route 2 A
Route 3 *

0.0 T T T T T
1 0.5 1.0 15 2.0 2.5 3.0
v

Route 3

Fig. 2.2. A: Example network 1. B: Example network 1: PSL route choice probabilities for increasing v (8 = g = 1).

2.3.2 Generalised Path Size Logit

Ben-Akiva & Bierlaire (1999) formulate an alternative PSL model (PSL") that attempts to reduce the
contributions of excessively expensive routes to the path size terms of more realistic routes in the choice set.

The PSL’" model states that the PSL’ path size term for route i € R, yiPS', is defined as follows:

t a€A; Ci min(cl:l € R) ’ (24)
S e (ELER) 5

As (2.4) shows, the contribution of route k to path size terms is weighted according to the ratio of route k and

the cheapest route in the choice set (M) and hence contributions of high costing routes compared to

Ck
the cheapest alternative are reduced.
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As Ramming (2002) describes, however, when a route is completely distinct its path size term is not
always equal to 1 which results in an undesired penalisation upon the utility of that route. To combat this,
Ramming (2002) proposes the Generalised Path Size Logit (GPSL) model. The GPSL model states that the

GPSL path size term for route i € R, y£F*, is defined as follows:

yEPS — Z a1
t C; ci\A ’ (2.5)
aeA; " Yker (i) Sak

where A > 0, noting that the GPSL model is equivalent to the PSL model when A = 0. In (2.5), the
contribution of route k to the path size term of route i (the path size contribution factor) is weighted according

A
to the cost ratio between the routes, ((CC—‘) ) and hence the contributions of high costing routes to the path
k

size terms of low costing routes is reduced. 1 > 0 is the path size contribution scaling parameter to be
estimated.

Fig. 2.3 displays the example network 1 GPSL choice probabilities as v is increased from 0.5t0 3, 6 =
B =1,1=3.AsFig. 2.3 shows, as v is increased and the travel cost of Route 1 increases, the contribution of
Route 1 to the path size term of Route 2 decreases, and consequently the choice probability of Route 2
converges to the choice probability of Route 3.
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Choice Probability P;

0.2

01| Route1x
Route 2 A
Route 3 %

0.0
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u

Fig. 2.3. Example network 1: GPSL route choice probabilities for increasingv (6 = =1, 1 = 3).

GPSL Key lIssue 1: For large A, GPSL path size terms are highly sensitive to small differences in route travel
cost.

It is mentioned numerous times in the literature that the GPSL model can be problematic for large 4 values,
especially when overlapping routes only have marginally different travel costs (Ramming, 2002; Frejinger &
Bierlaire, 2007; Hoogendoorn-Lanser, 2005). Hoogendoorn-Lanser et al (2005) describe how A should be set
to 0 when overlapping routes have more-or-less equal travel costs, as the overlap between those alternatives
should not affect their choice probabilities differently. However, when overlapping routes have very different
travel costs A should not be set to 0, as the effects that routes with high travel costs have on the path size terms
of routes with low travel costs should be dampened. Example network 2 in Fig. 2.4A shows a network where
both cases exist: Routes 1 & 2 are overlapping routes with more-or-less equal travel costs (c; = 2.01, ¢, = 2),
and Routes 3 & 4 are overlapping routes with very different travel costs (c; = 2, ¢, = 6). Fig. 2.4B shows the
example network 2 GPSL choice probabilities as 4 is increased from 0t0 400, 6 = 8 = 1. When A = 0 (i.e.
GSPL is equivalent to PSL), Routes 1, 2 & 3 have approximately equal choice probabilities as they all have
similar travel costs and all share approximately half of their journey with one other route. Route 4 induces a
penalty on Route 3, but this should be less than the path size penalties Routes 1 & 2 impose on each other, and
thus P; should be greater than P, and P,, which should be approximately equal, for these values of 8 and 3.
Although this is the case when A = 10, increasing A amplifies the difference in costs between Routes 1 & 2 so
that P; and P, diverge, which is not desired.
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Fig. 2.4. A: Example network 2. B: Example network 2: GPSL route choice probabilities for increasing A (6 = 8 = 1).

As (2.2) shows, how feasible route i is perceived to be by drivers (i.e. its choice probability) is a trade-off
between its relative attractiveness due to travel cost e ~9(¢i=¢i) and its relative attractiveness due to

. NP . .
distinctiveness (g) , Where the 6 parameter scales relative attractiveness due to travel cost and S scales

4

relative attractiveness due to distinctiveness. The GPSL path size contribution factors in (2.5), however, assess
A
the feasibility of route i according to its relative attractiveness due to travel cost only (Cc—‘) , Where an
k
additional parameter A scales relative attractiveness due to travel cost. The internal inconsistency issues of the
GPSL model between the probability relation and path size terms are thus twofold: a) there is an inconsistent
assessment of the feasibility of routes; and, b) there are inconsistent parameters that scale relative
attractiveness due to travel cost. We demonstrate both issues below.

GPSL Key Issue 2: Internally inconsistent assessment of the feasibility of routes.

Fig. 2.5A shows a network with 6 routes: Routes 1-5 are highly correlated with each other with fixed travel
cost 1.2, and Route 6 has a fixed cost of 2 and is either a distinct route when n = 1 or correlated with Routes
1-5whenn < 1. As 1 is decreased, the correlation between Route 6 and Routes 1-5 increases, but the travel
costs don’t change. Supposing that & = f = 1, then one might expect Route 6 to have a choice probability
greater than each of Routes 1-5 when n = 1 due to being distinct, and a choice probability smaller than each
of Routes 1-5 when n = 0 due to having the larger detour. There should thus be a point n,, € (0,1) where all
routes have equal choice probability. At this point, each route is considered equally attractive and all routes
should contribute equally to path size terms. By the definition of the PSL model all routes always contribute
equally to path size terms; Fig. 2.5B shows the example network 3 PSL choice probabilities for increasing n,
6 =B =1,and n.q = 0.27 is the point where all routes have equal choice probabilities. For n # 7.,
however, it is not necessarily required for routes to contribute equally to path size terms, for example when

n = 0 the contribution of Route 6 to Routes 1-5 may wish to be reduced, and the PSL model is incapable of
this. Fig. 2.5C & Fig. 2.5D show the example network 3 GPSL choice probabilities for increasingn, 8 = f =
1,for A =1and A = 10, respectively. The GPSL model proposes that the contribution of Route 6 to the path

pl
size terms of Routes 1-5 is a constant (12—2) for all n, and thus the points where all routes have equal choice

probabilities are n,, = 0.37 and n,, = 0.48 for A = 1 and A = 10, respectively, which are greater than 0.27,
and larger values for A moves 7., further away from 0.27.
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Fig. 2.5. A: Example network 3. Example network 3: Route choice probabilities for increasingn (6 = f = 1).
B: PSL, (17eq = 0.27). C: GPSL (A = 1), (1o = 0.37). D: GPSL (1 = 10), (17,4 = 0.48).

GPSL Key Issue 3: Internally inconsistent scaling parameters.

Fig. 2.6A displays a network with 4 routes: Routes 1 & 4 have travel cost 3 and Routes 2 & 3 have travel cost
1, Routes 1 & 2 are distinct and Routes 3 & 4 are correlated, with Route 4 being more distinct than Route 3.
Different ranges for the 8 and B parameters have different implications for how relatively attractive the routes
are due to travel cost and distinctiveness. Fig. 2.6B shows the example network 4 GPSL choice probabilities
for increasing 6, f = 1, A = 4. The GPSL model diminishes Route 4’s contribution to the path size term of

4

Route 3 to G) , and thus Routes 2 & 3 have near identical choice probabilities for all 8. For low 8 however,
the sensitivity to the differences in travel cost is dampened within the probability relation, yet Route 4’s path
size term contribution to Route 3 accentuates the difference in cost, and the GPSL model is thus inconsistent.

To try and overcome this inconsistency issue, one must attempt to represent A proportional to 8. Because
0 scales travel cost difference, and A scales travel cost ratios, it is difficult to know how A should relate to 6,
e.g. 1 = 852 A potential solution could be to adjust the GPSL path size contribution factor to resemble the
relative attractiveness due to travel cost component within the Path Size Logit probability relation in (2.2)
(and the MNL probability relation in (2.1)), thus formulating an alternative Generalised Path Size Logit

(GPSL') model, where the GPSL' path size term for route i € R, in”S', is defined as follows:
' t 1
6rs’ _ fa ,
Vi ZaeAi Ci Xker e~ Mer=co) Sak (26)

By setting 2 = 0, the relative attractiveness due to travel cost components within the GPSL' model match
exactly. Fig. 2.6C shows the example network 4 GPSL' ;¢ choice probabilities for increasing 6, f = 1. For
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low 6, the sensitivity to the difference in cost between Routes 3 & 4 is dampened within the probability
relation and within the path size contribution factor, and Route 3 has the lowest choice probability due to
being the least distinct. As 6 is increased, the sensitivity to the difference in cost between Routes 3 & 4 is
accentuated within the path size contribution factor and Route 4’s contribution to Route 3 decreases, and the
choice probability of Route 3 converges to the choice probability of Route 2.

The GPSL'(;=¢y model only partially improves the internal consistency of the GPSL model though. Fig.
2.6D shows the example network 4 GPSL'(,-g)choice probabilities for increasing 6, § = 2. An increase in
increases the sensitivity to distinctiveness within the probability relation; attractiveness due to distinctiveness
is not considered within the GPSL & GPSL' path size contribution factors however, and hence as Route 3
becomes unattractive for low 6 due to being the least distinct, its path size contribution to Route 4 is not
reduced, though approaching being considered unrealistic as the parameters dictate.
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Fig. 2.6. A: Example network 4. Example network 4: Route choice probabilities for increasing 6:
B:GPSL (8 =1,1=4).C:GPSL' (1=6,8=1).D:GPSL' (1 =6, 8 = 2).

3. The Adaptive Path Size Logit Model

In the PSL model, all routes contribute equally to path size terms so that unrealistic routes negatively impact
the choice probabilities of realistic routes when links are shared. The GPSL model attempts to overcome this
issue by including a path size contribution factor based upon travel cost ratios, but has issues with internal
inconsistency. The alternative GPSL (GPSL'(;-4)) model partially addresses this inconsistency but does not
take into account the relative attractiveness of routes due to distinctiveness. We thus propose in this section a
fully internally consistent PSL model where all components assess the feasibility of routes according to its
relative attractiveness due to travel cost and distinctiveness. Formulation of the APSL model was complicated
by the desire to establish existence and uniqueness of solutions. First, we provide a simpler formulation of the
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APSL model, then we detail the final more complicated definition, which has been constructed solely so that
solutions exist and can be unique (proven in Section 4).

3.1 Preliminary Definition of APSL

Definition

The preliminary definition of APSL (APSL,) is defined as follows. The APSL, choice probabilities, P, are a
solution to the fixed-point problem P = g(y4PS(P)), where g; for route i € R is:

g:(r*" () =
APS —Oc:
o-0citBIn(yP5(P)) (v APS(P)) b 1 2.7)
_ APS —oc. APS B '
ZjeR 96]+Bln(y (P)) ZJE (YJAPS(P)) e ZjeR (y];‘lP'SE£§> e_e(cj_Ci)
Vi
and y#**® for route i € R is:
t P, t 1
VAPS(P _Z _a—lzz B VP € DO,
(P) a€4; Ci ZkeR PkSa,k ae4; Ci Y ker (%) Sak (28)
) Oa,

The model parameters are 8 > 0 and 8 = 0. y{**S(P) in (2.8) is the APSL path size term function for route
i € R that is a function involving the route choice probabilities. g;(y47S(P)) in (2.7) is the APSL route
choice probability function for route i € R which is a function involving the path size term functions and
hence also the choice probabilities of routes. The choice probability relation for route i € R is given by P; =
gi(yAPS(P)), which is an implicit equation involving choice probabilities, and hence the APSL, route choice
probabilities, P*, are a solution such that P} = g;(y4P$(P*)), Vi € R.

Property 1: For an APSL, route choice probability solution vector P*, y/*% (P*) is the APSL path size

term forroutei ER, k; = f ln( Vi PS(P*)) is the correction term, and the deterministic utility is given by:
V,=—6c; + B1n (y{*PS(P*)). (2.9)

If the random utility for route i € R is U; = —fc; + f1In (yiAPS(P*)) + &;, and if the random variable error

terms, g;, are i.i.d Gumbel, then the probability relation in (2.7) is obtained.
As (2.8) shows, for a choice probability solution P*, the contribution of route k to the APSL path size

term of route i is weighted according to the ratio of choice probabilities between the routes (P') and hence

unrealistic route alternatives with very low choice probabilities have a diminished contribution to the path size
terms of realistic routes with relatively large choice probabilities. The choice probability ratio path size
contribution factor can also be formulated as follows:

P_k* _ 9k (") _ <W<4PS(P*)>B e~ 0(ck—c) (2.10)
P gi(yAPs(PY)) v (P) '
So, it is clear to see that the path size contribution factor in (2.10) matches the probability relation in (2.7),
where both consider how attractive a route is by measuring its relative attractiveness due to travel cost and
distinctiveness, and hence there is some clear consistency within the model’s framework. Furthermore, not
only do the path size contribution factors become more consistent with the eventual route choice probabilities
(i.e. they both define a route as being unrealistic if it has a relatively unattractive combination of travel cost
and distinctiveness) the model does not require the estimation of any additional parameters. Whereas the
scaling of the path size contributions in the GPSL model depends upon an independent parameter A, the
scaling of the path size contributions in the APSL, model depends implicitly on the scaling of the choice
probability relation with the 6 and 8 parameters, and one cannot independently adjust the scaling within the
path size contribution factors without scaling the choice probability relation as well.
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In Random Utility Theory (RUT), RUMs are derived based on the deterministic utility function and
random error term. As (2.9) shows, however, the deterministic utility function for the APSL, model is not in
fact deterministic since it is dependent upon the route choice probabilities. APSL, is thus not a member of the
RUM family, though it is derived using RUT. This is analogous to the way that Stochastic User Equilibrium
(SUE) is a consistency condition derived using RUT but an SUE model is not a member of the RUM family.
The key difference can be understood in considering a policy test: having solved the APSL, fixed-point
problem for the ‘before’ case, the path size terms are not fixed. The ‘after’ case would require APSLo to be re-
solved and the path size terms would be updated. If instead one fixed the APSL path size terms from the
‘before’ case, then the ‘after’ case would be a regular Path Size Logit model and hence a RUM. Making this
explicit, imagine examining the impact on route choice of a new road added to the network. For pre-existing
routes not overlapping with the new routes generated, the path size terms of the regular Path Size Logit
models would remain the same, and hence so does the attractiveness of those routes. For the APSLo model,
however, the fixed-point probability system must be re-solved, and the path size terms for all pre-existing
routes may be adjusted to account for the updated attractiveness of the routes, and thus to alter the path size
contributions.

The Issue

Standard proofs for existence and uniqueness of fixed-point solutions require the domain of the fixed-point
function (in this case g) to be a compact convex set. The issue with the APSLo model as defined in (2.7) and
(2.8) is that the domain of the fixed-point function g, D>°, is open and bounded (not compact) as the function
is not always defined for zero choice probabilities where % can occur in the path size terms. Altering the
definition of the path size terms so that the domain of the fixed-point function g is the closed and bounded set
D, where routes can have zero choice probabilities, is however problematic as issues arise with ensuring that
y4PS(P) remains a continuous function (see Appendix A for a demonstration).

3.2 Proposed APSL Definition

While the preliminary definition of the APSL model defined in the previous subsection is the model we
originally aimed to propose, as discussed, we could not prove that solutions were guaranteed to exist nor be
unique according to standard proofs, and hence we provide here an altered model for use where solutions are
guaranteed to exist and where conditions for uniqueness can be defined.

Definition
The APSL choice probabilities, P*, (for a choice set of size N) are a solution to the fixed-point problem P =
G (g(yAPS(P))), where G; for route i € R is:

Gi (9:(r"™ @) =7+ (1 = ND) - i (r*7°(P)), (2.11)
gi forroutei € R is:

( APS(P)) e—eci+ﬁln(y{4Ps(P)) (V{qPS(P))ﬁ e—oci 212)
gi\Y = = , .
ZjeR e—ch+Bln(yJAPS(P)) EjER ()/]APS(P))B e_ch

and y/*PS for route i € R is:

t P; t 1
APS(py — ta i _ tq @
Yi (P)—Z —_Z ————, VvPeD®,
i a€4; Ci ZkER Pk6a,k a€4; Ci ZkER (%) 6(1 . (213)
; ,

N
D@ = {P ERYVy:T<P<(1-(N-D1),Vi€e R,Z P, = 1}.
j=1

The model parametersare 8 >0, § >0, 0 <7 < % (2.12) and (2.13) are equivalent to (2.7) and (2.8) for
the preliminary definition: y/*"* (P) in (2.13) is the APSL path size term function for route i € R that is a
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function involving the route choice probabilities, and g; (yAP S (P)) in (2.12) is the unadjusted choice
probability function for route i € R which is a function involving the path size term functions and hence also
the choice probabilities of routes. The choice probability relation for route i € R is given by P; =

G; (gi(yAPS(P))), which is an implicit equation involving choice probabilities, and hence the APSL route
choice probabilities, P*, are a solution such that P;' = G; (gi(yAPS(P*))), Vi € R. The key difference

between this final model here and the preliminary definition is the adjustment function G;. G; (gi(yAPS (P)))

in (2.11) is the APSL choice probability adjustment function for route i € R which adjusts the choice
probability function g; for reasons given below.

Motivation
G; is a fixed-point function, and its construction was motivated by some desired behaviours, as well as some
required properties for proving existence and uniqueness:

1. G; must map into itself.

G; must be continuous for all P.

G; must be continuously differentiable with respect to P for all P.
The domain of G; must be closed and bounded.

The domain of G; must not allow for zero choice probabilities.

S L

G; should be able to approximate g;.
7. The domain of G; should allow for choice probabilities to be approximately close to zero.

Desired Properties (DP) 1-4 are required for existence and uniqueness proofs. DP 5 is required since the path
size term function y{**$(P) in (2.13) and thus G; (gi(yAPS(P))) in (2.11) can be undefined for zero choice

probabilities where % can occur. DP 6 is desired as it is not our intention for the choice probabilities acquired
from this final APSL model to be different to the choice probabilities from the preliminary definition (where
one would exist), and we wish them to be as close as possible. DP 7 is desired as we wish to be able to obtain
choice probability solutions where there are unrealistic routes with extremely small choice probabilities.

So, the formulation of G; in (2.11) and its domain D(® have been constructed to satisfy DP 1-7. In
Section 4 we prove that DP 1-3 are satisfied. The parameter 7 is introduced, and the domain D™ is such that
P; = 1, Vi € R, and since the choice probabilities for all routessumupto1: P; < (1 — (N — 1)1), Vi € R. DP
4 is thus satisfied as D™ is closed and bounded. Moreover, 7 is restricted to the range 0 < 7 < %and thus DP

5 is satisfied as zero choice probabilities are not in the domain. As t — 0, G; — g; satisfying DP 6 and the
lower bound for P; in D™ tends towards zero satisfying DP 7.

It is important to note that the T parameter is not a model parameter that requires estimating, it is
simply a mathematical construct that ensures DP 1-7 are satisfied. While the proposed APSL model provides
the capability, it is not our intention for this final APSL model to purposefully compute different choice
probabilities to those obtained from the preliminary definition for any given theoretical reason. In fact, we
desire the choice probabilities to be as close as possible, and hence we advise that only small values of  are
used. For the rest of the paper, i.e. for the demonstrations and estimation work, we set T = 10716, unless
stated otherwise. In Section 5.3.2.2 we briefly investigate the impact of the T parameter upon parameter
estimation.

3.3  Demonstrations of Key Properties

APSL Key Property 1: Unrealistic routes have a diminished impact upon the choice probabilities of realistic
routes when links are shared.
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Referring to the PSL Key Issue in Section 2.3.1, Fig. 2.7 displays the example network 1 APSL choice
probabilities as v is increased from 0.5t0 3, 8 = § = 1. As Fig. 2.7 shows, as the travel cost of Route 1
increases, so does the relative unattractiveness of Route 1, thus decreasing the choice probability for that route
and its influence upon the correction term of Route 2. The choice probability of Route 2 thus converges to
match the choice probability of Route 3 as v is increased.

Choice Probability P;
[=]
w

| Route 1 x
Route 2 A
Route 3 %

0.5 1o 15 2.0 25 3.0
u

Fig. 2.7. Example network 1: APSL route choice probabilities for increasing v (6 = g = 1).
APSL Key Property 2: APSL path size terms aren’t highly sensitive to small differences in route travel cost.

Referring to GPSL Key Issue 1 in Section 2.3.2, it was demonstrated how GPSL path size terms can be highly
sensitive to small differences in route travel cost when A values are large. It was also demonstrated how
setting A = 0 (i.e. equivalating GPSL and PSL) can also have adverse effects, as the routes with large travel
costs negatively impact the choice probabilities of routes with low travel costs when links are shared. For
example network 2 in Fig. 2.4A, a good compromise was found by setting A = 10. APSL path size terms do
not suffer from the same issues GPSL path size terms have when A = 0 and when 4 is large. Table 2.1
displays the example network 2 GPSL choice probabilities when A = 0, A = 10, and 1 = 400, as well as the
APSL choice probabilities, 8 = g = 1. As Table 2.1 shows, the APSL choice probabilities resemble the
‘optimised” GPSL choice probabilities for 1 = 10.

PSL(=GPSLA= | GPSL (A= | GPSL (1 = 400) APSL
0) 10)

P, 0.329 0.294 0.222 0.297

P, 0.332 0.301 0.374 0.301

P, 0.332 0.399 0.398 0.397

P, 0.007 0.006 0.006 0.006

Table 2.1. Example network 2: choice probabilities for different PSL models; 6 = g = 1.
APSL Key Property 3: Internally consistent assessment of the feasibility of routes.

Referring to GPSL Key Issue 2 in Section 2.3.2 where it was demonstrated how the GPSL model is not
internally consistent with the assessment of the feasibility of routes, Fig. 2.8 shows the example network 3
APSL choice probabilities for increasing n, 8 = § = 1. At the pointn = n., = 0.27, all routes have equal
choice probabilities; the APSL model proposes that routes contribute to path size terms according to choice
probability ratios and thus the path size contributions all cancel out at that point resulting in the PSL model, as
desired.
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Routes 1-5 x
Route 6 A

0.24

0.22

0.20

0.18 4

0.16

Choice Probability P;

0.14 1

0.12

0.10

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
n

Fig. 2.8. Example network 3: APSL route choice probabilities for increasing n (6 = 8 = 1).
APSL Key Property 4: Internally consistent scaling parameters.

Referring to GPSL Key Issue 3 in Section 2.3.2, it was demonstrated how the GPSL model has internally
inconsistent scaling parameters, and how the GPSL'(;-4) model partially improves the internal consistency of
the GPSL model. Fig. 2.9A shows the example network 4 APSL choice probabilities for increasing 6, 8 = 1.
As shown in (2.7) and (2.10), the APSL model, like the GPSL'(;-¢y model, uses the 6 parameter to scale
differences in travel cost within both the probability relation and the path size contribution factor, and thus for
low 6 Route 3 has the lowest choice probability due to being the least distinct, and for larger 8 Route 3’s
choice probability converges to Route 2 as Route 4’s path size contribution diminishes. Fig. 2.9B shows the
example network 4 APSL choice probabilities for increasing 6, § = 1.4. An increase in 8 further decreases
Route 3’s choice probability for low 8, and as a consequence Route 3’s path size contribution to Route 4
diminishes and Route 4 converges to the choice probability of Route 1.

0.5

Choice Probability P;

0.4 1

0.3 1

e

A

Choice Probability P;

0.5

0.4

0.3

02 1 Route 1 x 0.2 - Route 1 x
Route 2 A s Route 2 A
Route 3 * *' Route 3 %
0.1 0.1 /.-'
0.0 - ‘ . ‘ . : . . 0.0 - . . . . . : ‘
0.0 0.2 04 06 08 10 12 14 0.0 02 04 06 0.8 1.0 12 14

6

3.4

Fig. 2.9. Example network 4: APSL route choice probabilities for increasing 6. A: § = 1. B: g = 1.4.

Solution Method

There are many fixed-point algorithms available for solving the APSL fixed-point system P =
G (g(yAPS(P))). In the studies in this paper we utilise the simplest fixed-point algorithm available: the

Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). The FPIM is the most basic fixed-point
algorithm, and other algorithms aim to accelerate the convergence of the FPIM, though require more
complicated computations at each iteration. The FPIM for solving the APSL fixed-point system P =

G (g(yAPS(P))) is formulated as follows:
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Pi(s+1) =G, (gi (yAPS(P(S))))’ s=0,1,2,..
such that

lim PC*Y = lim G; (gi (yAPS(P(S>))) =p;, P@Qep®  vieR.

S—00

A standard convergence statistic we chose to observe in this study is In (ZiER |Pi(s+1) — Pl.(s)

is said to have converged sufficiently to an APSL choice probability solution if:

In <z ) <1In(107%),

i€R
where & > 0 is a predetermined convergence parameter. In Sections 5.3.2.2 & 5.4.1.2 we assess the
computational performance of the APSL model in calculating choice probabilities and parameter estimation.

), and the FPIM

Pi(s+1) _ PL(S)

4. Existence and Uniqueness of APSL Solutions

In this section we establish a series of theoretical results concerning the APSL model as defined in (2.11),
(2.12), and (2.13), where the guaranteed existence of solutions is proven, and sufficient conditions for the
uniqueness of solutions are detailed.

4.1 Properties
First, we note the relationship between the APSL, and APSL models.

Property 2. A solution to the APSL model as defined in (2.11), (2.12), and (2.13) approaches the APSL,
model as defined in (2.7) and (2.8) in the limitas 7 — 0.

Proof. This follows by inspection from the definition of G; in (2.11) noting that G; - g;,as 7 — 0.

From Property 2, the APSL model will thus satisfy Property 1 in the limitas t — 0.
We next provide two important properties of the fixed-point function G. In Lemma 1 we establish the
continuity property of G.
Lemma 1. G; (gi(yAPS(P))) is a continuous function for P € D™, vi € R.
Proof. From the definition (2.13) above it follows that y4”S is continuous in P for all P € D®:
limy4"S(P) =y*"(q), vqeD®. (2.14)
-q
If we let I' be the set of possible path size terms:
r={y"" eRl;:0<y " <1,vieR}
then from definition (2.12) above it follows that g; is continuous in y4FS for all y47S € I
Jim g (r*) = gi(ve), VYo €T, ViER (2.15)
YT 2Yo
And, from definition (2.11) above it follows that G; is continuous in x for all x € (0,1):
xligclo Gi(x) = Gi(xp),  Vxo € (0,1). (2.16)
It then follows from (2.14), (2.15), and (2.16) that G; (gi (yAPS(P))), as a composition of continuous
functions, is itself continuous in P for all P € D™®:
Il,l_r};ll Gi (gi()’APS(P))) — Gi (gi(yAPS(q))), Vq € D(T), Vi € R.

We now in Lemma 2 show that the domain of G maps to itself.
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Lemma?2. G (g(yAPS(P))) maps D@ into D@,

Proof. From definition (2.13) above it follows that the function Y47 maps D™ — I, from definition (2.12) it
follows that the function g maps I' - D>°, and, from definition (2.11) it follows that the function G maps
D>% — D@ _ |t thus follows that the composition of the functions y4FS, g, and G, G (g(yAPS(P))), maps
p@® 5 p@®.

4.2 Existence of Solutions

Having established some properties regarding the APSL fixed-point function G, we consider the existence of
APSL solutions.

Proposition 1. At least one APSL fixed-point solution, P*, to the system P = G (g(yAP s (P))) is guaranteed
to exist in D™,

Proof. G (g(yAPS(P))) is a continuous function by Lemma 1, which maps D™ into D™ by Lemma 2, and
thus since D™ is a compact convex set, and by Brouwer’s Fixed-Point Theorem at least one fixed-point
solution, P*, is guaranteed to exist for the system P = G (g(yAPS(P))) inD®,

4.3 Uniqueness of Solutions

Having proven that APSL solutions are guaranteed to exist, the next question is whether sufficient conditions
exist which ensure APSL solutions are unique. In order to do this, we must first establish two key properties
of J¢(P; B) which is the Jacobian matrix of first partial derivatives of G evaluated at P and .

Lemma 3. The maximum Jacobian matrix norm of G(g(yAPS(P); ﬁ)) forall P € D@ at g = 0 is equal to
zero: max(||/g(P; 0)||: VP € D®) = 0.

Proof. From definitions (2.11) and (2.12) above it follows that:

—0c;
Gi(g:(y*P5(P);0)) =7+ (1 - N1) - (ﬁ) Vi €R. (2.17)

jeR €
It then follows from (2.17) that:
9G;(g:(y*P5(P); 0)) _
aP,
It thus follows from (2.18) that [|/¢(P; 0)I| = 0, VP € D, and hence max(||/¢(P; 0)|l: VP € D®) = 0.

00 VvPeDW®,  vVvileR. (2.18)

[ ]
Lemma 4. The maximum Jacobian matrix norm of G(g(y4*S(P); B)), max(|lJ¢(P; B)|I: VP € D®), is a
continuous function for g € [0, ).
Proof. It follows from the definitions (2.11), (2.12), and (2.13) above that:
JACER )
ap,
APS VP 4p p-1
- (y{;ps(,,))ﬁe_eq g"’%aipl(”) (2,@/? L (@) e )
=(1-N1)- : - ,
Yer (yjAPs(P))[” e-0¢) (yiAPS(P)) (ZjER (y]APS(P))ﬁ e_ecf) (2.19)

Vi,l ER,
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ovAPS(p t P )
yi ~(P) _ Z ta ZkER,kil k a,lzc ’ Vi ER, (2.20)
g a€A; Ci (ZkER Pk5a,k)
and,
ayAPS(p t P:5
i ") _ _Z e "%l yileR %L (2.21)
0P, a€4; Ci (Y er Pebai)
APS
From the definitions (2.20) and (2.21) above it follows that By 6P(P) is continuous in P forall P € D®:

. ay S (P) _ay*™(q)
Py P aP

26i(g:(r**S(P))

It then follows from (2.14) and (2.22) that 7
l
continuous functions, is itself continuous in P for all P € D®:
0G; (gi(YAPS(P))) B aG; (gi(YAPS(CI)))
Pl ap, = P, '
3Gi(gi(YAPS(P)))

vqeD®, (2.22)

as defined in (2.19), being a composition of

vqe D@,  VilE€R.

aGi(gi(YAPS(P);B))
aP,

Since is a continuous function for P € D™, vi, [ € R, is also a continuous

l
function for g € [0, ), Vi, € R:

y 9G;(g:(y*S(P); B)) _ 9G;(g9: (¥ *S(P); Bo))
5B aP, = P, '

VB, € [0, ), Vi,l € R.

Hence, since max(||/¢(P; B)I|: VP € D®) is a composition of continuous functions then it itself is a
continuous function for g € [0, ©):

Jim (max(ll/g(P; O)II: vP € DD)) = max([l/g(P; Bo)l: vP € D), ¥po € [0, 00).

These two key properties of /¢ (P; 8) allow us to establish conditions for the uniqueness of solutions.

Proposition 2. There always exist values of b > 0 such that when the g parameter is within the range 0 <
B < b, there are unique APSL fixed-point solutions, P, to the system P = G(g(y“"S(P); 8)) in D®.

Proof. G is a contraction mapping on the domain D if:
a) G maps D™ into itself, so G(g(¥*"5(q); 8)) € D®,vq € D@, and
b) There exists a constant 0 < o < 1 such that:

I/eP;BIl <o, VPeED®D,

where J;(P; B) is the Jacobian matrix of first partial derivatives of G evaluated at P.

If the link cost vector ¢t is fixed (and thus the route cost vector c is fixed), and 6 is fixed, then for any
given B, if G is a contraction mapping, then since D is a compact convex set, and by Lemma 1, Lemma 2,
and the Contraction Mapping Theorem, G emits a unique fixed-point solution P* € D(®.

It remains to establish the conditions under which G is a contraction mapping. Since by Lemma 3 the
maximum Jacobian matrix norm of G for all P € D™ at 8 = 0 is equal to zero (maX(lllc(P: 0)|: VP €
D®) = 0), and by Lemma 4 max(||/g(P; B)Il: YP € D™®) is a continuous function for g € [0, ), then there
must always exist values b > 0 such that when g is within the range 0 < 8 < b G is a contraction mapping
and the sufficient conditions for unique APSL solutions are always met.

There are cases where the APSL model has unique solutions for all # > 0 (i.e. for all values of b), for
example where all routes are non-overlapping and the path size terms are consequently all 1 so that G;
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collapses to (2.17), and hence in these cases a maximum value for b does not exist. However, in most cases
APSL solutions are not unique for all values of g and in these cases a maximum value for b exists (denoted
bax) Such that Proposition 2 holds. However, Proposition 2 is only a sufficient condition for unique APSL
solutions and solutions are not necessarily non-unique for 8 > b, 4. In Section 4.4 below we explore how
0 < B < by, relates to the true maximum range 0 < 8 < Sqx IN Which APSL solutions are unique.

4.4 Investigating the Conditions for Uniqueness

bpax 1S the maximum value such that the sufficient conditions for unique APSL solutions in Proposition 2 are
satisfied for all B inthe range 0 < 8 < bynax- Bmax 1S the true maximum value such that APSL solutions are
unique for all g inthe range 0 < f < Bmax, Where Binax = bmax- The purpose of this section is to explore
how close by, 4y 1S 10 Bax, @and demonstrate that multiple solutions can exist when £ is greater than £,,,4x-
We specify and demonstrate how to calculate b,,,,, and suggest and demonstrate a method for estimating

.Bmax-
Calculating b,,,4, can be formulated as either of the following optimisation problems:
b ax Optimisation Problem 1

bmax = max{f}
subject to

eP;PI <1, vPeDD,

b ax Optimisation Problem 2
bmax = max{f}

subject to
IJe(P; Il < 1
where
P = argmax{|l/¢(P; p)|l: vP € D@},
Example

Consider example network 5 in Fig. 2.10 where there are 2 routes: Route 1 has travel cost u + w and Route 2
has travel cost v + w. Fig. 2.11A-D display the maximum Jacobian matrix norm of G for increasing g for four
different network parameter settings.

Route 1

Route 2
\%

Fig. 2.10. Example network 5.
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Fig. 2.11. Example network 5: Maximum Jacobian matrix norm of APSL fixed-point function G for increasing f3.
Alu=v=w=0=1 (Do =295).B:u=05v=w=0 =1, (bya, =2.05).
Cu=0Lv=1,w=4,0=1, (bpa =0.075).D:u=0.1,v =w = 20,0 = 1075, (bpay = 0.0125).

Bmax €an be estimated by plotting trajectories of APSL solutions for varying g, and identifying where a
unique trajectory of solutions ends and multiple trajectories begin. We briefly detail here a simple method for
obtaining trajectories of APSL solutions:

Step 1. Identify a suitably large value for 3.

Step 2. Solve the APSL fixed-point system for this large g with a randomly generated initial condition
(see Section 3.4).

Step 3. Decrement 8 and obtain the next APSL solution with initial condition set as the APSL
solution for the previous £.

Step 4. Continue until 8 = 0 or 8 = by, if known.

By plotting the choice probabilities at each decremented g, and repeating this method several times, one can
determine where non-unique solution trajectories end and hence estimate 5, If after several repetitions
(with different randomly generated initial conditions) only a single trajectory of solutions is shown, then the
initial large B value is increased. We illustrate the approach graphically, but there is no need to draw graphs
for general networks. One can instead observe the choice probability values, where a finer grained decrement
of B will provide a more accurate estimation of S,,4-

To demonstrate, consider again example network 5 in Fig. 2.10; Fig. 2.12A-D display trajectories of
APSL solutions as the § parameter is varied for the same network parameter settings as Fig. 2.11A-D,
respectively. 8 was decremented by 0.01, and the initial large § value was 8 = 10, (though trajectories are
only plotted for part of this range for illustrative purposes). The solution trajectory plotting was repeated until
multiple clear trajectories were shown. As each of Fig. 2.12A-D show, there is a unique trajectory of choice
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probability solutions up until 8 = B,,,, Where there then becomes multiple trajectories. As Fig. 2.12A shows,
the estimated f3,,,4, Value in this case is equal to b4, In Fig. 2.11A, however in the cases of Fig. 2.12B-D,
the estimated f,,,,, Values are all greater than the b, 4, values in Fig. 2.11B-D.

A B

104 Route 1 x
Route 2 A

Bmax -

1.0 A

Route 1 x
Route 2 A

Bmax -

0.8 0.8 1

0.6 0.6

0.4 0.4 4

Choice Probability P;
Choice Probability P;

0.2 9 0.2 4

0.0 0.0 4

1.0 1.0+

0.8 q 0.8
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Bmax - ﬁmax -
0.0 A 0.0 4 X Wbttt i
0.0 0s 10 s 20 25 30 o 1 2 3 a 5 & 7 8

Fig. 2.12. Example network 5: Trajectories of APSL choice probability solutions as g is varied.
Alu=v=w=0=1,Bnax =295).B:u=05v=w=0 =1, (Bnax = 2.8).
Cu=01Lv=1,w=4,0=1,(Fpex =15).D:u=01,v=w=20,0 =105 (Bpax = 4.3).

As we have shown, b,,,,, can be a conservative estimate of f,,,,,. On the other hand, we have shown that for
large enough values of § multiple solutions can exist, and therefore is an issue that should be considered in
practice in real-life applications. The experiments above provide a computationally feasible method for
revealing multiple solutions, and thus £,,,,., that can be applied in realistic sized networks (see Sections
5.3.2.3/5.4.1.3).

5.  Estimating the APSL Model

In this section, we provide a Maximum Likelihood Estimation (MLE) procedure for estimating the APSL
model with tracked route observations. This procedure for estimating the APSL model is then investigated in a
simulation study, and the possibility of retrieving APSL parameter estimates is assessed. The APSL model is
then estimated on a large-scale network using real route choice observation data tracked with GPS units, and
results are compared with other Path Size Logit models.

5.1  Notation and Definitions for Estimation with Multiple OD Movements

5.1.1 Notation
To consider the estimation of the APSL model and other Path Size Logit models, we extend definitions here
for estimation on a network with multiple OD movements, but where the travel costs remain fixed. The road
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network consists of link set A and m = 1, ..., M OD movements. R,,, is the choice set of all simple routes (no
cycles) for OD movement m of size N,,, = |R,|, and A,,,; S A is the set of links belonging to route i € R,

and &g mi = {1 ifac A_m"'. Suppose that the generalised travel cost t, of each link a € A is a weighted
" 0 otherwise

sum (by parameter vector a) of variables w,, i.e. t,(w,; a), and that the generalised travel cost for route i €
Ry, cm,i, Can be attained through summing up the total cost of its links so that c,,, ; (¢(w; @) ) =

2acay,; ta(Wq; @), where ¢ is the vector of all link travel costs and w is the vector of all link variables. Let the
route choice probability for route i € R, be Py, ;, where P,,, = (ijl,ijz, s Pm,Nm) is the vector of route

choice probabilities for OD movement m, and D,,, is the domain of possible route choice probability vectors
for OD movementm, m=1, ..., M.

5.1.2 Model Definitions

5.1.2.1 Multinomial Logit
MNL choice probability relation for route i € R,y,:

1
P (t) = .
e Yjer e_e(cm,j(t)—cm,i(t)) (2.23)
JE€Rm
5.1.2.2 Regular Path Size Logit Models
Regular Path Size Logit model choice probability relation for route i € R,y,:
P () !
m,i = .
Vm,j () d —0(cm j(®—cmi(®) (2.24)
Yier, \ T2 ) e J g
JERm ym,i(t)

PSL path size term for route i € R,;:

Yimi(t) = Z ‘a ! (2.25)

a€Am i Cm,i (t) ZkERm é\a,m,k.

GPSL path size term for route i € R,,:

t 1
GPS () = Z a .
Yim €A, Cm,i (L) emi(®))" 5 (2.26)
k€ERy, (Cm,k (t)) amk

GPSL'(1=¢) path size term for route i € R,:

, t 1
Yol (8) = Z ; : (2.27)

ach; Cmi(D g o ~0(cmi(®=cm(®) 5o
m 2]

5.1.2.3 Adaptive Path Size Logit
The APSL choice probabilities for OD movement m, Py,, are a solution to the fixed-point problem P,,, =

G, (gm (em(®), varsS(e, Pm))), where G, ; for route i € R,y is:

Gm,i (gm,i(cm(t):y;alps(t: Pm))) =Tn + (1 - Nme) ) gm,i(cm(t):)’#lps(tr Pm))v (2-28)

9m,i forroute i € R, is:
B ,
(y1¢ll,)i5(t’ Pm)) e~ 0cmi(®

B
YjeRm (y;‘l{’js(t,Pm)) e=0m j(®

Imi(em®), ¥ S (t,Pp)) = (2.29)
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and y/57 forroute i € Ry, is:

t P
APS a m, (T )
Y. -(t,P)=Z , Pn€D,™, 2.30
mt m a€Am; Cm,i(t) ZkERm Pm,k(sa,m,k " m ( )

N

piTm) = {Pm eRV™ T, <P < (1= Ny — 1)1y, Vi€ Rm,z: Ppj = 1},

The model parametersare 8 > 0,8 = 0,and 0 < 7,,, < Ni m =1,..., M. Each OD movement has its own

j=1

range restrictions for t,,, based on the number of routes in the choice set, but the t,,, parameters are not model
parameters that require estimating, they are simply a mathematical construct that ensure solutions to the APSL
model exist and can be unique. As discussed in Section 3.2, only small values of t,,, should be used, and we
sett,, = 10716, m = 1, ..., M. APSL choice probability solutions are computed using the FPIM with initial
conditions set as the MNL route choice probabilities, and convergence statistic set at & = 10 (see Section 3.4),
unless specified otherwise.

5.2  Adaptive Path Size Logit Likelihood Formulation & Estimation Procedure

5.2.1 Likelihood Formulation

Suppose that we have available a set of Z observed routes, e.g. collected through GPS units or smart phones,
and consider a situation where it is not needed to distinguish individuals in their preferences (the approach is,
of course, readily generalised to permit multiple user classes differing in their parameters). Let m, denote the
OD movement of route observation z, and for each trip observation z = 1,2, ..., Z, let R, be the choice set of

all simple routes between the origin and destination of the trip. Suppose that the observation data is contained
in a vector x of size Z where:

x, =i ifalternativei € Ry, is chosen, z=1,..,2Z.

The Likelihood for a sample of size Z, can be formulated as:

Z
L(a, 6, Bx) = 1_[ Py (t(w; ),0,), (2.31)
z=1

where Py, . (t(w; ), 0, ) is the APSL choice probability solution for route x, € R, to the fixed-point
problem P,,, = G, (gmz (cmz(t),yf;gs(t, sz))) for OD movement m,, where G, ; and g, ; are as in
(2.28) and (2.29) for route i € R,y, respectively. The Log-Likelihood function is thus:

VA VA
LL(et, 6, 41%) = In <1_[ By . (tw; @),6, /3)) = (P, tw; @),0,9)). (2.32)
z=1 z=1

5.2.2 Estimation Procedure

Standard MLE procedures can be used to estimate the parameters of the APSL model for a given network.
Using a standard iterative estimation procedure, APSL model parameters can be found that maximise the Log-
Likelihood function as formulated in (2.32) above for a given set of data. Algorithm 2.1 outlines pseudo-code
for the estimation procedure.

Step 1: Initialisation. For each route observation z = 1, ..., Z, generate the corresponding universal choice set
and store the link attributes and link-route information. Define an initial set of parameter values
(@W,6W, W) for MLE, and set n = 1.

Step 2: Recalculate choice probabilities and LL. Given the set of parameter values (&™), 8™, ™) for
iteration n, calculate the link costs ¢(w; &™) and solve each of the fixed-point problems
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Py, =Gy, (gmz (sz (t(w; &(”))),yf}lis(t(w; a™), P, ); 67(”),[3'(”)))
forz =1, ..., Z. Given the fixed-point choice probability solutions B;_, for each of the route observations
z=1,...,Z, calculate the Log-Likelihood LL™ (@™, 8™, (™ |x) for iteration n.

Step 3: Compute new set of parameters. Based on LL®) and the associated parameters (&), (), ) for
all s < n, compute a new set of parameters (&™+9, §(+D), F(n+1)) 10 test in the following iteration.

Step 4: Stopping criteria. If [LL™ — LL"=V| < ¢, stop. Otherwise, setn = n + 1 and return to Step 2.

Algorithm 2.1: Pseudo-code for estimating the APSL model.

In general, Step 3 could apply procedures from standard numerical optimisation methods to identify the
parameters to evaluate in the next iteration. Utilising gradient approaches such as Newton-Raphson or BHHH,
however, is complicated by the difficulties in differentiating the APSL Log-Likelihood function, which
involves differentiating the fixed-point choice probabilities with respect to the parameters, which is not
straightforward. Other optimisation algorithms such as BFGS and alternative quasi-Newton algorithms use
methods to approximate the differentials, and while are more computationally burdensome and typically less
accurate, are readily useable. For the experiments in this paper, we utilise the L-BFGS-B bound-constraint,
guasi-Newton minimisation algorithm (Byrd et al, 1995) for Steps 2-4 of Algorithm 2.1 (where we minimise
—LL). The parameter bounds and initial conditions are given in each study.

Note that Algorithm 2.1 computes one set of parameter estimates, estimated from one set of observations.
It is possible to calculate standard errors for the estimated APSL parameters analytically, but this is again
complicated by the requirement to differentiate the APSL Log-Likelihood function with respect to the
parameters. Instead, the robustness of the parameters estimated (variation of the estimates) can be investigated
numerically by applying Algorithm 2.1 multiple times through resampling-approaches such as Bootstrap or
Jackknife.

5.3  Simulation Study

In this section we investigate the formulated likelihood function for the APSL route choice model in a
simulation study, evaluating the likelihood-surface and assessing the possibility of estimating reasonable
parameters that reproduces observed behaviour.

5.3.1 Experiment Setup

In general, the approach is to sample observations according to an assumed ‘true’ model, and then use these in
combination with the log-likelihood function to evaluate the ability to reproduce the assumed ‘true’
parameters. The simulation study consists of three steps:

(i) Postulate a true APSL choice model including specification and parameter values.

(if) Sample a set of observed route choices according to the true model using the specified link travel
costs.

(iii) Apply MLE approach to obtain parameter estimates based on the observed route choices.

The estimation procedure in Algorithm 2.1 is altered for simulation studies, by modifying Step 1:
Initialisation as outlined below to reflect (i) and (ii) in the above:

Step 1: Initialisation.
1.1 For OD movements m = 1, ..., M, generate the choice sets and store the link attributes and link-
route information.

1.2. Postulate a true set of parameters ("¢, 8;,4,e, Berue) for the APSL model, and given these
parameters and
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the generated choice sets, solve each of the fixed-point problems

P, =G, (gm(cm(t(W; atrue)),yTA;lPS(t(W; atrue)’ Pm); etrue'ﬁtrue))
form=1,.. M.

1.3. Based on the fixed-point choice probability solutions Py, form = 1, ..., M (obtained in 1.2),
sample Z observed routes.

1.4. Define an initial set of parameter values (&®,§®, F)) for MLE, and setn = 1.

Algorithm 2.1 (Step 1): Pseudo-code, initialisation of simulation experiments.

The number of observed routes to sample, Z, is exogenously defined. The robustness of the estimated
parameters estimated can be investigated numerically by applying Algorithm 2.1 multiple times and then
analysing the variation of the estimated parameters.

5.3.2 Sioux Falls Application

The Sioux Falls network in Fig. 2.13 consists of 76 links, 528 OD movements with non-zero travel demands,
and 1,632,820 total routes. The travel cost of link a is specified as the free-flow travel time w, ; only, such
that:

ta(Wa; 0() = Wa’1 A,
where a; > 0 is the free-flow travel time parameter, and thus the travel cost for route i € R,,, is:
mi(tw; @) = ) tWg@) =@ Y e
aEAm‘i aEAm,i

The model requires the specification of three parameters: a4, 8, and g, but to ensure identification 8 is fixed
at @ = 1 throughout.

w
(¥}

7| |35

20
33

56//60

4
@1 —{24)

39

Fig. 2.13. Sioux Falls network.

Since the travel costs of the links (and thus routes) correspond to a single variable, to generate the utilised
choice sets we employ k-shortest path to generate 150 of the lowest costing routes for each choice set. We
also remove the short trip OD movements where the cheapest route has a free-flow travel time cost less than
10. The result is that there are 316 remaining OD movements, and a total of 47,400 routes.
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5.3.3 Experiment Results

We begin the simulation study by investigating the Log-Likelihood surface. By evaluating the Log-Likelihood
function in (2.32) for various configurations of a; and g the Log-Likelihood surface can be visualised for a
sample of observed routes. Fig. 2.14 displays the log-likelihood surface for a single estimation experiment,
with at™¢ = 0.3, Byue = 0.6, and Z = 2000. As Fig. 2.14 shows, the Log-Likelihood surface is smooth and
approximately maximal around the true parameters, where the estimated parameters are @; = 0.294 + 0.002
and f = 0.57 + 0.01.
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—4300

0.45
0.40

0.34

Fig. 2.14. Sioux Falls simulation study: Log-Likelihood surface (6844 = 0.3, Btyue = 0.6, Z = 2000).

Next, we investigate the stability of the estimated parameters over multiple experiment replications. Each
experiment utilises a Log-Likelihood maximisation algorithm (see Section 5.2.2) to obtain the parameter

estimates with initial conditions (dio), E(O)) = (0.15,0), and bounds &, 5 € [0,1].

Fig. 2.15A-D display for different settings of at"*¢ and B, the distribution of the estimated
parameters after ¢ = 100 experiment replications of Z = 1000 simulated observations.
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Fig. 2.15. Sioux Falls simulation study: Distribution of estimated parameters after multiple experiment replications (Z = 1000, g =

100). Az al™e = 0.1 Byrye = 0.8. B: ™€ = 0.2 Bryye = 0.7. C: ™€ = 0.3 Byrye = 0.6. D1 al™€ = 0.4 Byrye = 0.4.

Table 2.2 reports, for various settings of the true parameters (same as Fig. 2.15A-D), the mean value (u),
standard deviation (o), and Mean Squared Error (MSE) of the estimates across g = 100 experiment

replications with Z = 1000 simulated observations. Table 2.2 also displays the estimated covariance between
the a; and B parameters. As shown, the mean estimates of a; and g are close to the true values for all settings
tested (i.e. there is no evidence of bias in the parameter estimates). However, as measured by the MSE, the
precision of estimating a; decreases as a!"¢ increases, and the precision of estimating 8 decreases as Bye
decreases. This seems reasonable as increasing a; in this case corresponds to lower perception error of travel
cost and decreasing 8 corresponds to lower perception of distinctiveness.

Table 2.2 and Fig. 17A-D both indicate that, with this network and the generated choice sets, there
appears to be some negative correlation between the @, and 8 estimates. This is likely due to the large number
of unrealistic routes present within the choice sets and the consequent small path size contribution factors for
these routes from the true parameters; these factors can be reduced by increasing a; or 8 and hence negative
correlation appears from balancing the parameters to obtain small contributions.

afrue ﬂtrue &1 ﬁ COU(al, ﬁ)
7 o MSE 7 o MSE
0.1 0.8 0.1000 | 0.0032 0.0000 | 0.8003 | 0.0136 | 0.0002 | -0.00003
0.2 0.7 0.2016 | 0.0068 0.0001 | 0.6972 | 0.0305 | 0.0009 | -0.00014
0.3 0.6 0.3021 | 0.0105 | 0.0001 | 0.5876 | 0.0485 | 0.0025 | -0.00034
0.4 0.4 0.4012 | 0.0153 0.0002 | 0.3984 | 0.0817 | 0.0067 | -0.00096
Table 2.2. Sioux Falls simulation study: Stability of estimated parameters across multiple experiment replications (Z = 1000, g =
100).

5.3.3.1 Computation Analysis
In this subsection we analyse the computational performance of the APSL model in the Sioux Falls MLE
application. The computer used has a 2.10GHz Intel Xeon CPU, 512GB RAM, and 64 Logical Processors (of
which 50 were utilised). The code was implemented in Python. Results are reported throughout this section
for a single simulation experiment where Z = 1000 route choice observations were simulated from the true
model at™€ = 0.3, Bye = 0.6. @; = 0.295 and # = 0.611 are the consequent maximum likelihood
estimates.

Fig. 2.16A shows for different values of the APSL choice probability convergence parameter ¢ (and thus
convergence statistic, See Section 3.4), the average number of fixed-point iterations per OD movement and
computation time required to solve all of the 316 APSL fixed-point problems P,,, =

G, (gm (em(®), vars(e, Pm))), and consequently compute the Log-Likelihood value of the maximum
likelihood estimates. As shown, computation time and average number of fixed-point iterations per OD
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increase roughly linearly as the convergence parameter is increased. As expected, computation times relate to
the number of iterations required for convergence. Fig. 2.16B shows the value of the Log-Likelihood obtained
as & is increased. As shown, the Log-Likelihood increases in value and accuracy as the APSL choice

probabilities become more accurate.
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Fig. 2.16. Sioux Falls simulation study: Computational statistics for calculating APSL Log-Likelihoods as the APSL choice

probability convergence parameter ¢ is increased.

A: Average number of fixed-point iterations per OD / computation time [mins]. B: Log-Likelihood value.

Fig. 2.17 shows for different values of 8 the average number of fixed-point iterations per OD movement and

computation time required to calculate the Log-Likelihood, with ¢ = 7 and &; set as the maximum likelihood
estimate @; = 0.295. As shown, the average humber of iterations per OD required for convergence increases
as f3 increases, and thus so do the required computation times.
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Fig. 2.17. Sioux Falls simulation study: Average number of fixed-point iterations per OD movement and computation time required to

calculate the Log-Likelihood for different § values (&, = &, = 0.295, & = 7).

Fig. 2.18A-B show for a single MLE (implementation of the L-BFGS-B algorithm), the cumulative
computation times of the iterations and the Log-Likelihood values and parameter estimates at the end of each

iteration, with & = 7.
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Fig. 2.18. Sioux Falls simulation study: Cumulative computation time at each iteration of a single MLE, and MLE statistics (¢ = 7).

A: Log-Likelihood. B: Parameter estimates.

Fig. 2.19A shows the total computation times and MLE final Log-Likelihood values of different MLE runs for
different settings of £. Fig. 2.19B shows the parameter estimates. For & = 5, the inaccuracy of the APSL
choice probabilities means that more MLE iterations are required to identify the estimates. For & = 6,
however, the choice probabilities are sufficiently accurate to quickly estimate the parameters. Greater values
of & increase the number of fixed-point iterations required for the fixed-point convergences and hence the

computation times of the MLE.
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Fig. 2.19. Sioux Falls simulation study: Total computation time of MLE runs for different values of &, and MLE results. A: Final Log-

Likelihood. B: Parameter estimates.

We also briefly investigate the impact of the T parameter upon parameter estimation. Each OD movement m
has a choice set size N,,, = 150, and therefore supposing each OD movement has the same value for t, the

maximum value for t is ﬁ = 0.006. Supposing T assumes the form r = 10~%, Fig. 2.20 displays how the

maximum likelihood parameter estimates vary as ¢ varies. As shown, the parameter estimates converge
quickly to the limit case of T — 0, demonstrating that we can recover the desired model APSL, (Section 3.1)
to a high computational accuracy using the APSL model as defined in Section 3.2, with a sufficiently small

value of 7.

53



Chapter 2. Path Size Logit route choice models: Issues with current models, a new internally consistent
approach, and parameter estimation on a large-scale network with GPS data

ay estimate

0.295 1

0.294

0.2931

0.292

0.291 A

0.290

0.289

0.288

02871

I
=}
b}

o
=
=)

e
@
w

e
o
=

e
o
w

ol
o
~

F0.61

B estimate

Fig. 2.20. Sioux Falls simulation study: Maximum likelihood APSL parameter estimates for different values of T = 107%.

5.3.3.2 APSL Solution Uniqueness Analysis
In this subsection we briefly investigate the uniqueness of APSL choice probability solutions in the context of
the Sioux Falls simulation study. Just as in Section 4.4, we plot trajectories of APSL solutions to approximate
the uniqueness conditions, i.e. estimate S, A single simulation study is conducted for a{"*¢ = 0.3,

Berue = 0.6, and Z = 2000, leading to maximum likelihood estimates &, = 0.306 and # = 0.6001. We thus
investigate whether APSL solutions are unique for these parameter estimates. Fig. 2.21 displays the maximum
choice probability from three trajectories of APSL solutions as the 8 parameter is varied for four different
randomly chosen OD movements, with a; = @; = 0.306. § was decremented by 0.01, and the initial large 8
value was = 2. As shown, the £,,4xm Values (8,4, for OD movement m) for these OD movements can be
estimated to vary between 0.86 and 0.94, suggesting that § = 0.6001 results in universally unique solutions.
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Fig. 2.21. Sioux Falls simulation study: Maximum choice probability of trajectories of APSL solutions as § is varied (@; = 0.306).

5.4 Real-Life Case Study

In this section we estimate the APSL model, where the model parameters are estimated using MLE with
observed route choices tracked by GPS units. The data has been collected among drivers in the eastern part of
Denmark in 2011, and includes a total of 17,115 observed routes. The dataset is the same as used in Prato et al
(2014) as well as Rasmussen et al (2017), and after a filtering to include only trips where the sum of travel
time (in minutes) and length (in km) is at least 10, a total of 8,696 observations remain.

The GPS traces are map matched to a network, for which corresponding time-of-day dependent travel
times are available on the entire network. See more details in Prato et al (2014). The network is large-scale,
representing all of Denmark, and thus includes 34,251 links. With current alternative generation techniques, it
is not feasible to enumerate the universal choice set for such a large network. Instead, we approximate the
universal choice set by generating a choice set for each observed route by applying the doubly stochastic
approach also applied in Prato et al (2014). This approach is based on repeated shortest path search in which
the network attributes and parameters of the cost function is perturbated between searches (Nielsen, 2000;
Bovy & Fiorenzo-Catalano, 2007). Up to 100 unique paths are generated for each observation, see the
distribution of number of alternatives in Fig. 2.22.
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Fig. 2.22. Real-life case-study: Cumulative distribution of the choice set sizes for the 8,696 observations.
For the estimation, the travel cost of link a is specified as a weighted sum of congested travel time w, ; (in
minutes), and length w, , (in kilometres), such that:
ta(wa; a) = Wg1 01 +Wgoay

where a; > 0 and a, > 0 are the congested travel time, and length parameters, respectively. The generalised
travel cost for route i € R, is thus:
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Cm,i(t(Wi “)) = Z toWg; @) = Z (Wa,l "Q tWapot 052) =y Z Wg1 + a3 2 Wg,2-

A€Am i A€Am i A€Anm i A€Am i

The model requires the specification of four parameters: a4, a5, 8, and 8, but to ensure identification, the 6
parameter is fixed at 6 = 1. Fig. 2.23A shows the relative travel time deviations away from the quickest
routes in the choice sets for the observed routes as well as the alternative routes generated, and Fig. 2.23B
shows the relative length deviations. 47% and 36% of the observed routes were the quickest and shortest
routes, respectively. Moreover, there appear to be observations of unattractive route choices, where some
observed routes were 2.11 times slower / 2.29 times longer than the quickest / shortest alternatives, as well as
numerous potentially unrealistic routes generated, where some generated routes are 2.91 times slower / 3.22
times longer.
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g. 2.23. Real-life case-study: Relative deviations away from quickest/shortest routes in the choice sets for the observed routes (red)
and alternative routes generated (blue). A: Travel time. B: Length.

We estimate the models utilising the same Log-Likelihood maximisation algorithm (L-BFGS-B, see Section
5.2.2), initial conditions, and parameter bounds, where appropriate. Initial conditions:

(af),&gl),/?(l),,i(l)) = (0.5,0.5,0,0), and bounds: @;, &, § € [0,2], X € [0,200].

5.4.1 APSL Estimation

5.4.1.1 Results

In this subsection we provide results from estimating the three parameters of the APSL model in this case
study: a4, a,, and . Table 2.3 displays the APSL parameter estimates and the consequent Log-Likelihood
value.

~

&, @, B LL
0.633 0.184 0.840 -18978
Table 2.3. Real-life case-study: APSL parameter estimates and Log-Likelihood.

Fig. 2.24 shows the Log-Likelihood surfaces around the three parameter estimates; as can be seen, these are
smooth and maximal around the estimates.
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Fig. 2.24. Real-life case-study: APSL Log-Likelihood surface around parameter estimates in Table 3. A: a;, a,. B: a4, 8. C: a5, B.

5.4.1.2 Computation Analysis
We analyse here the computational performance of the APSL model in the real-life case study. The same
computer was used as in Section 5.3.2.2.

Fig. 2.25A shows for different values of the APSL choice probability convergence parameter ¢ (and thus
convergence statistic), the average number of fixed-point iterations per OD movement and computation time

required to solve all of the 8,696 APSL fixed-point problems P,,, = G, (gmz (sz @, vals (e, sz))) for

z =1, ...,Z, and consequently compute a single Log-Likelihood, with the estimated APSL parameters in
Table 2.3. Fig. 2.25B shows the value of the Log-Likelihood obtained as ¢ is increased. As shown,
computation time and average number of fixed-point iterations per OD increase linearly as the convergence
parameter is increased, and the Log-Likelihood increases in accuracy (from & = 2) as the APSL choice
probabilities become more accurate. The relatively large estimated S value results in a longer computation
time, as shown in Section 5.3.2.2, for lower $, the computation times are less.
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Fig. 2.26A-B show for a single estimation of the APSL model (implementation of the L-BFGS-B algorithm),
the cumulative computation times of the iterations and the Log-Likelihood values and parameter estimates at
the end of each iteration, respectively, with & = 10. The initial conditions for solving the APSL fixed-point
problems were updated at the end of each iteration with the choice probabilities obtained from the current
parameter estimates.
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Fig. 2.26. Real-life case-study: Cumulative computation time at each iteration for a single estimation of the APSL model, and MLE
statistics (¢ = 10). A: Log-Likelihood. B: Parameter estimates.

5.4.1.3 APSL Solution Uniqueness Analysis

We briefly investigate here the uniqueness of APSL choice probability solutions in the context of the real-life
case study. Similar to the experiments conducted in Section 5.3.2.3 for the Sioux Falls simulation study, we
estimate the uniqueness conditions for the network given the estimated parameters. Trajectories of APSL
solutions are plotted to approximate S,,4x- Fig. 2.27 displays the maximum choice probability from
trajectories of APSL solutions as the § parameter is varied for four different randomly chosen OD
movements, with @; and a, as in Table 2.3. § was decremented by 0.01, and the initial large S value was 8 =
1.5. As shown, the S,4xm Values (B q, for OD movement m) for these OD movements are between 0.96
and 0.99, suggesting that # = 0.840 results in universally unique solutions.
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Fig. 2.27. Real-life case study: Maximum choice probability from trajectories of APSL solutions as g is varied (a; = 0.633, a, =
0.184).

5.4.2 Comparing Results with Other Path Size Logit Models
In this subsection we estimate models discussed in this paper and compare results. Table 2.4 shows the
estimated parameters for the MNL, PSL, GPSL, GPSL’(;¢), and APSL models.

a, a, ; i LL
MNL 0.777 0.330 -21308
PSL 0.966 0.306 1.347 -20581
GPSL 0.415 0.085 1.186 91.95 -17874
GPSL,(Azg) 0.691 0.154 1.807 -19152
APSL 0.633 0.184 0.840 -18978

Table 2.4. Real-life case-study: Estimation results and stability statistics from all Path Size Logit models.

To compare the estimation results of the models, we apply the approach in Swait & Ben-Akiva (1984) based
on the non-nested test in Horowitz (1983) in combination with the results in Table 2.4. The adjusted rho-
squared for model h with estimated parameters @y, is given by:

_ LLp(@p) — K,
LL* ’

where LLy, (@) is the Log-Likelihood for model h given the estimated parameters @y, Kj, is the number of
model h parameters, and LL* is the equal choice probability Log-Likelihood which in this case study is: LL* =

=2 —

pr=1
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ln( lei) = —%Z_,In(N,,,) = —28200. The distribution of the difference between i and gy, for

models h,; and h,, respectively, (which are possibly non-nested) is given by:
1
Pr(ph, — pr, >y) S @ <—[—2yLL* + (Kn, — Khl)]2>,

where y > 0 is the test statistic. To test the null hypothesis that the MNL model outperforms the PSL, GPSL,
GPSL'(;-¢), and APSL models, we compute the test statistics yps = pps — P, Yops = Pérs — PrnL:
Vaps' = Peps' — Pune, aNd Yaps = Paps — Doy Similarly, we compute the corresponding Yps =

1 1
—[—2ypsLL" + Ufps — Kuni)12, Yops = —[—2ygpsLL” + (Kgps - Kuni)12, Yepst = —[—2y6ps' LL" +
(Kgps' — Kuni)1z, and Yaps = —[—2y4psLL* + (Kups — Ky )]2. The results are shown in Table 2.5.
Pr(y, <Y,) is the probability that the MNL model outperforms model h, but these values are too small for
computer precision to calculate. This exemplifies the necessity of capturing the correlation between routes.
One can identify however that Pr(yps < Yps) > Pr(ygps' < Yips') > Pr(Waps < Yaps) > Pr(¥gps < Ygps).
In another comparison of fit test, Table 2.6 shows the penalised-likelihood criteria.

In both tests, the GPSL'(;-4y and APSL models outperform the PSL model with the same number of
parameters, where APSL outperforms GPSL'(;-4). This suggests that there is value in including a measure of
distinctiveness within the path size contribution factors. The GPSL model outperforms all models due to the
greater flexibility the A parameter provides. Several case studies have found that larger values of A increase
the goodness-of-fit of the GPSL model (Ramming, 2002; Prato, 2005; Hoogendoorn-Lanser, 2005; Bekhor &

Prato, 2006), and hence it is not unusual that A = 91.95 is so big. We explore further below.

h Kn Oh Yh Yn

PSL 3 0.27006 0.02573 -38.1144

GPSL 4 0.36604 0.12171 -82.8673

GPSL'(1=¢) 3 0.32074 0.07642 -65.6583

APSL 3 0.32690 0.08258 -68.2537

Table 2.5. Real-life case-study: Comparison of fit between models based on non-nested Horowitz type tests.

AIC BIC CAIC
MNL 42621 42635 42637
PSL 41169 41190 41193
GPSL 35756 35784 35788
GPSL’ (1=¢) 38311 38332 38335
APSL 37963 37984 37987

Table 2.6. Real-life case-study: Comparison of fit between models based on penalised-likelihood criteria.

For very large values of A within the GPSL path size terms, the path size contributions become extremely
sensitive to differences in cost, where the contribution of route k to the path size term of route i is large if ¢; >
\A N
¢ and small if ¢; < ¢, and as A — oo, (5—1) - 0 if ¢; > ¢y, and (CC—’) - 0if ¢; < cx. The implication of
k k

this is that routes with relatively small travel costs are penalised significantly less than routes with relatively
large travel costs for link sharing, and hence that low costing routes are considered much more distinct than
high costing routes.

To provide some measure of the relative cost and distinctiveness of the observed routes (in comparison
with the generated alternatives), Fig. 2.28A plots the percentage of generated routes with a travel cost greater
than the observed route in each choice set (where the GPSL travel cost parameters are used), against the
percentage of routes with PSL path size terms smaller than the observed route. The PSL path size terms
provide a measure of the universal distinctiveness of the alternatives, i.e. without considering whether or not
the routes are link sharing with unrealistic alternatives. The bottom right of the figure appears to be highly
populated suggesting that many of the observations have relatively low travel costs but are relatively
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universally indistinct, while a sizeable proportion are relatively distinct, even without the contribution
weighting. Most notably though, a considerable proportion of the route observations have a low percentage of
routes with greater travel costs, and many of these are relatively universally distinct (top left of figure). This
perhaps suggests that many drivers have taken unattractive, relatively costly routes that are distinct. Fig. 2.28B
plots the same cost percentage against the GPSL path size term percentage. As expected, the route
observations with low costs are now considered much more distinct, while the observations with large costs
are considered less distinct.

Fig. 2.29 displays the choice probability distribution of the observed routes under the different estimated
models. For all models, a large percentage of the observed routes have small choice probabilities. This seems

to also suggest that there are many observations where an unattractive route was chosen.
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Fig. 2.28. Real-life case study: Percentage of routes in each OD movement choice set with costs greater / path size terms smaller than
the observed route. A: PSL path size terms. B: GPSL path size terms.
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Fig. 2.29. Real-life case study: Choice probability distribution of the observed routes under the different estimated models.

The data set contains relatively costly but relatively universally distinct route observations. The GPSL model
is able to provide the best fit for these observations, without compromising the fit for the low costing
observations. The GPSL travel cost parameter estimates are smaller than the same estimates for the other
models, which improves the relative attractiveness of the costly alternatives. To counterbalance this so that
that the low costing routes still remain attractive, GPSL introduces a large A value: routes with relatively small
travel costs are penalised significantly less than routes with relatively large travel costs for link sharing.
Moreover, GPSL is able to further increase the relative attractiveness of the distinct, costly routes by
decreasing the attractiveness of the indistinct, costly routes with the large A.

Fig. 2.30A & Fig. 2.31A show two route observations, which we label OD 1 and OD 2, respectively. Fig.
2.30B-D & Fig. 2.31B-D plot the consequent link choice probabilities from the MNL, PSL, GPSL, and APSL
models. From first inspection it appears that the route taken by the driver in OD 1 is a high probability,
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attractive route, while the route taken in OD 2 is low probability. Table 2.7 displays the choice probabilities of
the observed route for OD 1 and OD 2 under the different models. The APSL model provides the largest
choice probability for the observed route in OD 1, and GPSL provides the highest for OD 2, where the chosen
probabilities for OD 2 are small.
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Fig. 2.30. Real-life case study: OD 1 plotted link choice probabilities from the estimated models for a single observation.
A: Observed route. B: MNL. C: PSL. D: GPSL. E: APSL.
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Fig. 2.31. Real-life case study: OD 2 plotted link choice probabilities from the estimated models for a single observation.
A: Observed route. B: MNL. C: PSL. D: GPSL. E: APSL.

MNL PSL GPSL APSL
OD1 0.101 0.110 0.150 0.261
OD 2 0.0004 0.0024 0.0042 0.0025

Table 2.7. Real-life case study: OD 1 & OD 2 observed route choice probabilities for the different estimated models.

For Path Size Logit models, the utility for route i € R, is comprised of a cost component —6c,, ; and a path-
size component B In(yy,,;), i-€. so that the utility is V,,; = —6¢; + B In(y;). Fig. 2.32A-B plot for OD 1 and
OD 2, respectively, the cost components against path size components of the routes under the PSL, GPSL, and
APSL models, where the observed route is in red. Fig. 2.33A-B plot the cost and path size components against
choice probability. In both cases, universal distinctiveness tends to increase as travel cost increases. For OD 1,
the observed route is universally indistinct but low costing, and is the highest choice probability route for all
models. The APSL model thus provides the best fit for this observation: the path size contribution factors
consider probability ratios and hence the observed route is considered the most attractive and distinct
compared to its overlapping routes. The GPSL model reduces the range for the cost components and hence
decreases the attractiveness of the observed route according to its cost, which is not compensated for by its
distinctiveness, since it is highly correlated with other low costing routes. For OD 2, the observed route is
universally distinct but high costing, and has a low choice probability for all models. As discussed above, the
GPSL model is able to provide the best fit for these observations.
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Fig. 2.32. Real-life case study: Cost / Path-Size components of the route utilities from PSL/GPSL/APSL. A: OD 1. B: OD 2.
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Fig. 2.33. Real-life case study: Choice probability against cost / path-size component for PSL/GPSL/APSL. A: OD 1. B: OD 2.

The consistency requirement we impose on the APSL model constrains the way that it can mimic the
behaviour of the GPSL model, since if parameters are chosen to capture the high costing observations, a price
is paid in terms of the feedback effect to the path size correction terms. This confirms that APSL and GPSL
are quite different candidate models in the way in which they aim to capture behaviour.

The A parameter allows the GPSL model to improve the choice probabilities of high costing, distinct
route observations one might consider as being outliers / route choice decisions made according to unobserved
attributes, though not by design. It seems unlikely that the GPSL model was formulated anticipating extremely
large values of 4 (such as 91.95) given the exponential nature of the path size contribution factors. In fact,
Ramming (2002) estimates the proposed exponential formulation and finds 2 = oo provides the best fit to the
data, which does not seem reasonable. Moreover, Ramming (2002) hypothesises that the path size
contribution factor should ‘split the link size contributions more severely than MNL would split path shares,
or counter-intuitive predictions will result’, though a reason is not given. It’s difficult to know what a
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‘sensible’ restriction would be that one could impose upon the A parameter so that the GPSL model behaves
according to a more feasible theoretical interpretation. Bekhor & Prato (2006) utilise A = 9, Hoogendoorn-
Lanser (2005) utilises A = 20, and Prato (2009) claims optimal values vary between 10 and 15, though these
values still seem large. Table 2.8 displays the results from estimating the GPSL model with a restriction
imposed upon A so that A < 10. As anticipated, the optimal value for A is at the bound (equal to 10), but the
Log-Likelihood value no longer beats the GPSL'(;-¢y and APSL models. What is also interesting is that the
estimated S value is almost 2, which is very large seeming the theory suggests it should be around 1. This
supports the theory that the GPSL path size components are capturing something other than the correlation.

~

@, @, ¢ A LL

MNL 0.777 0.330 -21308

PSL 0.966 0.306 1.347 -20581

GPSL (1 < 0.769 0.160 1.943 10 -19312
10)

GPSL 0.415 0.085 1.186 91.95 -17874

GPSL’(1=¢) 0.691 0.154 1.807 -19152

APSL 0.633 0.184 0.840 -18978

Table 2.8. Real-life case-study: Estimation results including GPSL with A restricted to 4 < 10.

6. Summary and Scope for Further Research

Due to their comparatively low computational cost and relative ease in obtaining reasonable estimates for
parameters, Path Size Logit route choice models are a useful and practical approach to approximating the
correlation between routes. Existing Path Size Logit models, however, have some key theoretical weaknesses:
for PSL the presence of unrealistic routes in a choice set negatively impacts the choice probabilities of
realistic routes when links are shared, and for GPSL there are internal inconsistency issues which can have
negative implications, for example routes which are defined as unrealistic by the path size terms may not be
routes with low choice probabilities. The intricacies of the issues with existing Path Size Logit models are
demonstrated in the paper, and a new APSL model is proposed which provides a potential solution to these
issues. The APSL model proposes that routes contribute to path size terms according to probability ratios, and
choice probability solutions to the model are solutions to the fixed-point problem involving the probabilities.

The paper proves that choice probability solutions to the APSL model are guaranteed to exist, and proves
that values of b exist such that APSL solutions are unique for 8 in the range 0 < 8 < b. Though there are
cases where solutions are unique for all > 0, in most cases there is a maximum value for b (b;,y). B in the
range 0 < B < by,qx IS however only a sufficient condition for unique APSL solutions, B4 1S the true
maximum value where solutions are unique for g in the range 0 < 8 < Bax, and a method is proposed in the
paper for estimating fB,qx-

To show that the parameters of the APSL model can be estimated, a Maximum Likelihood Estimation
procedure is proposed for estimating APSL with tracked route observation data. This procedure is then first
investigated in a simulation study on the Sioux Falls network where it is shown that it is generally possible to
reproduce assumed true parameters. The APSL model is then estimated using real tracked route GPS data on a
large-scale network. Results show that the APSL outperforms the MNL and PSL models with the same
number of model parameters, while the GPSL model outperforms APSL due to the added flexibility an
additional parameter provides.

The APSL model requires a fixed-point algorithm to approximate solutions. The paper assesses the
computational performance of the FPIM for calculating choice probabilities and estimating the parameters of
the APSL model, where accuracy is compared with computation time. Results indicate that accurate choice
probability solutions and parameter estimates can be obtained from feasible computation times.

Future research should explore the application of the APSL model within a Stochastic User Equilibrium
framework, which could involve exploring whether one can combine the fixed-point iterations used for APSL
with those used for congestion, so that they are performed simultaneously.

As noted in our numerical experiments, the consistency condition that we impose in the APSL model,
while offering improvements over PSL, constrains the extent to which the model is able to compete with the
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GPSL model in terms of model-fit, with the additional parameter in the GPSL model allowing it to de-couple
the scale of the model from the path-size effect, albeit at the price of inconsistency. A natural path for future
research could be to explore the potential for developing generalised forms of APSL, in the spirit of GPSL,
allowing an extra dimension (parameter) to fit, but without sacrificing the requirement for consistency.
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9. Appendix

9.1  Appendix A - Discontinuity issue with APSL path size terms when allowing zero choice
probabilities
The APSL path size term for route i € R is given by:

t P,
ey =y A

a€A; Ci Yker Pk5a,k

i i ; . P;
The issue is that there are three possible values for lim —
YkerPrbak—0 Lker PkOak
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a) lim ( lim +> =1,
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b) lim (llm —l> =
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C) lim L = )
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To demonstrate this, consider the Appendix A example network in Fig. 2.34 where there are 9 routes.

Hh=u hh=v

5=y Ig =2

Fig. 2.34 Appendix A example network.

Route 1: 1 —» 2, Route 2: 1 - 4, Route 3: 1 — 6,
Route 4: 3 - 2, Route 5: 3 - 4, Route 6: 3 — 6,
Route 7: 5 - 2, Route 8: 5 - 4, Route 9: 5 — 6.

Supposeu =v=w=x=y=z=1,andletP, = P, = Py =" P, € [01], P = Ps =P, = Py = P; =
0.As P, - 1, P, = P, = P; = 0, and the path size terms for Route 1, Route 2, and Route 5 as P, — 1 are:
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Thus,atP, = 1where Py, = P, = P; = P; = P6 = P; = Pg = Py = 0, many cases of }xcr Pi 84 = 0 occur,

but lim —Pi_ gither equals 1, 0, or , and hence defining the path size terms as either:
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does not ensure continuity.
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Abstract

The Stochastic User Equilibrium (SUE) traffic assignment model is a well-known approach for investigating
the behaviours of travellers on congested road networks. SUE compensates for driver/modelling uncertainty
of the route travel costs by supposing the costs include stochastic terms. Two key challenges for SUE
modelling, however, are capturing route correlations and dealing with unrealistic routes. Numerous
correlation-based SUE models have been proposed, but issues remain over both internal consistency and
choice set robustness. This paper explores both internal consistency and choice set robustness for correlation-
based SUE models. We formulate internally consistent SUE formulations for GEV structure and correction
term correlation-based route choice models, where the functional forms in the correlation components are
based upon generalised, flow-dependent congested costs, rather than e.g. length / free-flow travel time as done
typically. Without explicit mechanisms for dealing with unrealistic routes in the adopted choice sets, however,
there are questions on how robust these models are to choice set mis-generation.

The paper therefore develops the foundation for an SUE application of the Adaptive Path Size Logit
(APSL) route choice model, as introduced by Duncan et al (2020). APSL captures correlations between routes
by including correction terms within the route utilities. It offers an internally consistent approach to reducing
the negative impact that unrealistic route alternatives have on the correction terms and thus on the choice
probabilities of realistic routes. To do this, APSL uses choice probability ratio path size contribution factors to
weight the correction terms; consequently, the model is naturally expressed as a fixed-point problem. This
paper establishes SUE conditions for the APSL model, where flow-dependent, generalised costs are used
consistently in all components: route costs as well as path size correction terms. The paper proves that APSL
SUE solutions exist. Then it shows that the potentially onerous requirement of solving fixed-point problems to
compute APSL choice probabilities can be circumvented, since at SUE the route flow proportions and choice
probabilities equate. As we show, one can tune the APSL SUE algorithm by trading-off the accuracy of APSL
probabilities (and thus computation times of each iteration) with rate of SUE convergence. The advantages of
APSL SUE are demonstrated in numerical experiments on the Sioux Falls and Winnipeg networks, where
computational performance, choice set robustness, and flow results are compared with the internally
consistent SUE formulations of GEV structure and correction term correlation-based route choice models.
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APSL SUE solution uniqueness is explored numerically where results suggest that uniqueness conditions
exist.

Key Words: adaptive path size logit, stochastic user equilibrium, fixed-point, convergence, internal
consistency, choice set robustness

1. Introduction

The Stochastic User Equilibrium (SUE) traffic assignment model proposed by Daganzo & Sheffi (1977) is a
well-known approach for investigating the behaviours of travellers on congested road networks. SUE relaxes
the perfect information assumption of the Deterministic User Equilibrium model by supposing that route
choice is based on costs that include stochastic terms. This accounts for the differing perceptions travellers
have of the attractiveness of routes. A specific challenge when developing a route choice model for SUE is
capturing correlations between overlapping routes. There is a trade-off: accurately capturing route correlation
in a behaviourally realistic way requires a more complex route choice model, but this results in computational
challenges for solving for SUE (e.g. long computation times, sensitivity of results to sampled choice sets). The
aim of this paper is hence to develop a new correlation-based SUE model that seeks to address these issues,
and to demonstrate its computational feasibility for large-scale network applications.

Different stochastic route cost terms proposed in the literature give rise to three general types of
correlation-based route choice models that have been applied to SUE: GEV structure models (e.g. Cross-
Nested Logit (CNL), Generalised Nested Logit (GNL), Paired Combinatorial Logit (PCL)), correction term
models (e.g. C-Logit (CL), Path Size Logit (PSL), Path Size Weibit (PSW), Path Size Hybrid (PSH)), and
simulation models (e.g. Multinomial Probit (MNP), Multinomial Gammit (MNG)). For a detailed review of
correlation-based route choice models see Duncan et al (2020). To set the background for the research in the
present paper, we consider each of the categories in turn below, where we review their SUE application.

GEV structure models. Equivalent Mathematical Programming (MP) formulations for CNL, GNL, and
PCL are given by Bekhor & Prashker (1999, 2001). Bekhor & Prashker (2001), Chen et al (2003) and Bekhor
et al (2008) provide path-based partial linearization algorithms for solving GNL SUE, PCL SUE, and CNL
SUE, respectively. However, though the PCL, CNL, and GNL models all have closed-form probability
expressions, due to their two-level tree structure the choice probabilities and in particular MP formulations are
complex to compute, where the computational burden escalates significantly as the scale of network / choice
set sizes increase. Pre-determined, exact, and inexact line search schemes have been investigated to assess
computational trade-off, i.e. where the computation time required to perform each iteration is compared with
the number of iterations required for convergence (Bekhor & Prashker, 2001; Bekhor et al 2008; Chen et al,
2014).

Correction term models. Zhou et al (2012) give equivalent MP and variational inequality formulations for
Length-based CL SUE (LCL SUE) and Congestion-based CL SUE (CCL SUE), where length and congestion
based refers to whether the correction term is computed using length or congestion-dependent travel cost.
Chen et al (2012), Kitthamkesorn & Chen (2013), and Xu et al (2015) give equivalent MP formulations for
PSL SUE, PSW SUE, and PSH SUE, respectively. Chen et al (2012) present a path-based partial linearization
algorithm for solving LCL SUE and PSL SUE. Zhou et al (2012) present a path-based Gradient Projection
algorithm for solving LCL SUE and CCL SUE, and Xu et al (2012) and Chen et al (2013) assess the
computational trade-off for different step-size strategies. Kitthamkesorn & Chen (2013) develop a path-based
partial linearization algorithm for solving PSW SUE, and Kitthamkesorn & Chen (2014) propose a link-based
algorithm. The main attraction of correction term models for solving SUE is that they have simple closed-
form expressions, meaning the route choice probabilities and MP formulations are generally easy and quick to
compute; however, more complex models can capture correlations more accurately.

Simulation models. Sheffi (1985) formulates MNP SUE as a mathematical programme and presents a
flow-averaging solution algorithm. Cantarella & Binetti (2002) give flow-averaging and cost-averaging
algorithms for solving MNG SUE. The issue for these models is that they do not have closed-form probability
expressions, and so evaluating the route choice probabilities requires either Monte Carlo simulation or
alternative methods, all of which are computationally burdensome, particularly in large-scale applications
(Rasmussen et al, 2017). One specific problem is accurately computing route choice probabilities that are
small, which is common when there are many routes. Increasing the accuracy of choice probability

77



Chapter 3. Formulation and solution of Adaptive Path Size Logit Stochastic User Equilibrium —
addressing choice set robustness and internal consistency

computation substantially adds to the computational burden. Sheffi (1985) explores the computational trade-
off between the number of simulation samples and SUE convergence rates.

Upon selection of which correlation-based SUE model to employ in large-scale network applications, one
must trade-off the anticipated accuracy of results with the computational burden and/or convergence of
applicable solution algorithms. Simulation SUE models are attractive behaviourally due to their ability to
accurately capture route correlation. Moreover, solution methods do not necessarily require explicit route
generation and thus the accuracy of results is not necessarily dependent upon the choice sets generated,
though, without route generation, with flows being assigned in theory to all routes, unrealistic routes will still
have a negative influence on results. The main issues however, are that a) due to the random nature in which
the search direction is obtained in typical simulation-based algorithms, there are difficulties in suitably
measuring flow convergence (Sheffi, 1985), and b) numerous studies have found very slow convergence on
large-scale networks (Rich & Nielsen, 2015; Manzo et al, 2015; Rasmussen et al, 2017; Connors et al, 2014).
GEV structure and correction term models on-the-other-hand do not require random simulation to compute
choice probabilities, and search directions can be computed exactly. This means that convergence can be
suitably measured, and more optimal step-size schemes / algorithms can be developed for better convergence.
However, theoretically undesirable trade-offs are often made to improve computational performance. There
are two common types of such trade-offs.

The first trade-off is between desirable behavioural features for the SUE model and the ability to solve it
more efficiently. An SUE model is internally consistent if the same definition of generalised cost is used in all
components of the specification. This is often overlooked in the SUE formulations of GEV structure and
correction term models so that solution methods are simpler/quicker to implement. In SUE application where
the travel costs within the deterministic utilities are flow-dependent (congested), for consistency, the route
similarity features (PCL, CL) or link-route prominence features (CNL, GNL, PSL, PSW, PSH) in the
correlation components should also be based upon the congested cost. Most studies use topological length or
uncongested cost (free-flow travel time) for these features, however this may be inaccurate behaviourally
since a short route can have a large congested travel cost, and vice versa.

The second trade-off is between the sizes of the choice sets generated (pre or column generated) and the
ability to solve efficiently. Typical road networks have many very costly routes that should be considered
unrealistic and excluded from route choice. In large-scale case studies, choice sets are typically generated to
be large enough that one can be fairly certain the realistic alternatives are present, regardless of how many
unrealistic routes are generated. However, for many GEV structure and correction term SUE models, the
computational burden of solution algorithms increases dramatically as the number of routes increases, which
limits how large the choice sets can be generated. Furthermore, many of the models are not choice set robust,
and results are thus negatively influenced by the presence of unrealistic routes as well as highly sensitive to
the choice set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming, 2002; Ben-
Akiva & Bierlaire, 1999; Duncan et al, 2020).

Motivated by the above challenges, we set out to develop a correlation-based SUE model that addresses
both internal consistency and choice set robustness, and is computationally feasible in large-scale network
applications. Due to the aforementioned difficulties in suitably measuring flow convergence, and the reported
slow convergence on large-scale networks, we did not consider advancing simulation SUE models to be a
worthwhile approach. We instead looked to advance GEV structure and/or correction term SUE models. Zhou
et al (2012), Xu et al (2012), and Chen et al (2013) explore an internally consistent SUE formulation for the
CL model (CCL SUE), where the CCL commonality factors capture the similarity between routes according
to their shared flow-dependent congested cost. However, internally consistent SUE formulations are yet to be
explored for other GEV structure and correction term models. In this paper, we address this by formulating
and solving internally consistent SUE formulations for the CNL, GNL, PCL, and PSL models, where the route
similarity or link-route prominence features are based upon generalised, flow-dependent congested cost. We
assess the choice set robustness for these models (including CCL SUE), and evaluate their computational
performances, including for different sizes of choice sets and scale of network.

None of these models, however, have explicit mechanisms for dealing with unrealistic routes within the
adopted choice sets, and thus there are questions over how well these models perform in terms of choice set
robustness. For the PSL model, a mechanism has been proposed for dealing with unrealistic routes: to weight
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the contributions of routes to path size terms, with path size contribution factors. This relaxes the importance
of obtaining accurate choice sets of realistic routes, since the negative effects of any present unrealistic routes
within the choice sets are reduced. The Generalised PSL (GPSL) model (Ramming, 2002) proposes a path
size contribution factor based on travel cost ratios to reduce the contributions of costly routes. However, as we
discussed and demonstrated in Duncan et al (2020), GPSL is not internally consistent within the specification
of the choice model, since in their definitions of unrealistic, the path size terms consider only travel cost,
whereas the route choice probability relation considers disutility including the correction term.

Solving this, we then in Duncan et al (2020) proposed the Adaptive Path Size Logit (APSL) model where
the path size contribution factors are based upon ratios of route choice probability. This ensures that APSL is
internally consistent within the specification of the choice model, where routes defined as unrealistic by the
path size terms — and consequently given reduced path size contributions — are exactly those with very low
choice probabilities. APSL provides improved choice set robustness over PSL, and does so in a way that is
internally consistent (unlike GPSL). In this paper, we thus investigate the application of APSL to SUE, where
to guarantee full internal consistency in the SUE formulation of APSL we stipulate that costs in all
components are defined as generalised, flow-dependent congested cost.

Since the APSL path size contribution factors depend upon the route choice probabilities, the probability
relation is an implicit function, naturally expressed as a fixed-point problem. The APSL model is thus not
closed-form and solving the choice probabilities requires a fixed-point algorithm to compute the solution. This
has the potential to be computationally burdensome in large-scale networks even when the travel costs are
fixed. However, as we show in this study, the requirement of solving fixed-point problems to compute APSL
choice probabilities can be circumvented in SUE application, since at equilibrium the route flow proportions
and choice probabilities equate. The useful relationship between choice probabilities and route flow
proportions in SUE context allows for a considerable flexibility in solving APSL SUE, where one can trade-
off the accuracy of APSL probabilities (and thus computation times of each iteration) with rate of SUE
convergence.

The structure of the paper is as follows. In Section 2. we introduce congested network notation. In
Section 3. we establish SUE conditions for the APSL model, prove the existence of solutions, and discuss
uniqueness. In Section 4. we conduct numerical experiments to assess computational performance and choice
set robustness, compare flow results, and investigate APSL SUE solution uniqueness. In Section 5. we
conclude the paper.

2. Congested Network Notation

A road network consists of link set A and m = 1, ..., M OD movements. R,,, is the choice set of all simple
routes (no cycles) for OD movement m of size N,, = |R,,,|, where N = XM _, N, is the total number of
1 ifa€Ap,

0 otherwise’

The travel demand for OD movement m is q,, = 0, and Q,, is the N,,, X N,,, diagonal matrix of the travel
demand for OD movement m (i.e. with g,,, on each diagonal element). The flow on route i € Ry, is f,, ;, and
fm is the N,,,-length vector of route flows for OD movement m. f is the N-length vector of all OD movement
route flow vectors such that f = (fy, ... fa), Where f,,; refers to element number i + Y7 ' Ny in f. F
denotes the set of all demand-feasible non-negative universal route flow vector solutions:

routes. A,,; € A is the set of links belonging to route i € R,,, and 8, ; = {

F={feRY: Z fi=qmm=1,..,M¢.

i{€ERm

Furthermore, x, denotes the flow on link a € A, and x = (xl,xz, ---,X|A|) is the vector of all link flows. X
denotes the set of all demand-feasible non-negative link flow vectors:

M
X = xeRLA':Z Z Samifmi = X Va €A fEF .

m=1Ii€Ry,

For link a € A experiencing a flow of x,, denote the generalised travel cost for that link as t, (x,), where
t(x) is the vector of all generalised link travel cost functions. In vector/matrix notation, let x and f be column
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vectors, and define 4 as the |A| x N-dimensional link-route incidence matrix. Then the relationship between
link and route flows may be written as x = Af. Supposing that the travel cost for a route can be attained
through summing up the total cost of its links, then the generalised travel cost for route i € R,;,, ¢, ;, Can be
computed as follows: ¢, ;(£(Af)) = Yqea,,,; ta(Af), Where c,, (t(Af)) is the vector of generalised travel
cost functions for OD movement m.

Let the route choice probability for route i € R, be Py, ;, where P,,, = (Pm,l;Pm,Z! ...,Pm,Nm) is the
vector of route choice probabilities for OD movement m, and D,,, is the domain of possible route choice
probability vectors for OD movementm, m =1, ..., M.

3. Adaptive Path Size Logit Stochastic User Equilibrium

In this section, we establish SUE conditions for the APSL route choice model, prove the existence of
solutions, and discuss solution uniqueness. Since at SUE the route flow proportions and route choice
probabilities are equal, APSL SUE can be defined in two different ways. These two definitions are equal at
equilibrium, but not equal for any other route flow vector.

In order to appreciate the features of APSL SUE, it is helpful to contrast it with other internally consistent
SUE approaches based on alternative route choice models. Therefore, these internally consistent approaches
are specified in Appendix A for completeness, and we will refer to them as we introduce the proposed model
below.

3.1 Definition 1: APSL SUE

The APSL model provides an internally consistent approach to reducing the negative effects unrealistic routes
have on the correction terms (and thus choice probabilities) of realistic routes. To do this, path size
contributions are weighted according to ratios of choice probability, and APSL is consequently naturally
expressed as a fixed-point problem. Formulation of the APSL model was complicated by the desire to
establish existence and uniqueness of solutions. To circumvent issues with the standard APSL formulation, a
modified version was proposed where solutions are guaranteed to exist and are unique under determinable
conditions. Moreover, the standard formulation can be approximated to arbitrary precision. We thus provide
here the definition of and establish SUE conditions for the final proposed definition of APSL, see Duncan et al
(2020) for more details on its derivation.

The APSL route choice probabilities for OD movement m, P, (for a choice set of size N,;,) are a

solution to the fixed-point problem P,, = G,, (gm (cm(®), vars(e, Pm))), where G, ; for route i € Ry, is:

Gm,i (gm,i(cm(t)' Yrélps(t' Pm))) =Tm + (1 - Nme) 'gm,i(cm(t):y;glps(t: Pm)): (3-1)

9m,; forroute i € Ry, is:

B
(Vs (e ) e=0emi®

Im,i(Cm@®), Y5 (£, Py)) = Z , (3.2)
et (Vi & P)) €70mi®
and, y/5° for route i € Ry, is:
t 1
CHCLOEDY v . VPR ED,™, (3.3)

a€Am,; cm,i(©) YkeR (—im'k) Samk
m 2 1L,
m,

N
pSm) = {Pm ERYT: Ty < Py < (1= (N — D), Vi € Rm:z. Pmj = 1}-
]=

6 > 0 is the Logit scaling parameter, 8 > 0 is the path size scaling parameter, and 0 < t,,, < Ni m =

m

1, ..., M, are the perturbation parameters. yf,‘lﬁs (3.3) is the APSL path size term function, g, ; in (3.2) is the
choice probability function, and G,,, ; in (3.1) is the probability adjustment function.
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As shown in (3.3), for a choice probability solution P, the contribution of route k to the path size term

. . . . . e P,
of route i is weighted according to the ratio of choice probabilities between the routes (PL"

unrealistic route alternatives with very low choice probabilities have a diminished contribution to the path size
terms of realistic routes with relatively large choice probabilities. The APSL model is thus internally
consistent as the probability relation and path size terms both define a route as unrealistic if it has a relatively
unattractive combination of travel cost and distinctiveness. Moreover, unlike GPSL (see Appendix A), an
additional parameter to scale the path size contributions is not required as this is done implicitly and
consistently through the scaling of the probabilities with 6 and . This has practical and behavioural
estimation benefits compared to GPSL (Duncan et al, 2020).

The APSL model is not closed-form since the choice probabilities for each OD movement are the solution
to a fixed-point problem. The t,,, parameters are not model parameters that require estimating, they are simply
a mathematical construct that ensure solutions to the APSL model exist and can be unique; specifically, they

ensure that the probability domain D,(,fm) for the fixed-point function G,, is closed and bounded, while
avoiding issues occurring from zero choice probabilities. Duncan et al (2020) recommend that only very small
values for t,,, are used so that the fixed-point solution obtained is negligibly different to the fixed-point
solution if 7,,, = 0 (where one would exist). We thus set z,,, = 10716, m = 1, ..., M, throughout this paper.
Most studies of PSL SUE (see Appendix A), or of SUE models with PSL path size terms, suppose that

the link-route prominence feature is represented as the ratio of link-route length, i.e. - tf‘(t) = Ll“ -, Where [,

and L,, ; are the lengths of link a € A and route i € R,,,, respectively. However, this may be inaccurate in how
travellers perceive the prominence of links in a route: a short link may be highly congested and have a greater
travel time than a long link that is uncongested, and hence the timely, short link may be perceived as more
prominent in the route than the long, quick link. A similar argument can be made for using other uncongested
costs, e.g. free-flow travel time. Thus, for internal consistency, the APSL path size term defined in (3.3) above
consider generalised travel cost for the link-route prominence feature.

In the context of SUE, the generalised travel costs include congested cost and are thus flow-dependent.
Adopting generalised, flow-dependent congested costs for the link-route prominence features, APSL SUE is
formulated as follows:

), and hence

APSL SUE: A universal route flow vector f* € F(® is an APSL SUE solution iff the route flow vector for
OD movement m, f7,, is a solution to the fixed-point problem

where Py, is a route choice probability solution for OD movement m in Y, to the fixed-point problem
Von = G (9 (em (6CAN)), VS (AP, V) ), 35

given the universal route flow vector f, where G, ;, g i, and y;;‘ﬂs are asin (3.1), (3.2), and (3.3),

respectively, for route i € R, and

FO =!feRVy1,, s];m"' < (1= (Np, — 1)1,,),Vi € Ry, Z fi=qmm=1,.., M.

m

i{€ERm

APSL SUE is derived directly by utilising APSL as the underlying route choice model and applying flow-
dependent link travel costs. For a given route flow vector and hence setting of the link costs, the APSL fixed-
point system must be re-solved, so that the path size contribution factors are consistent with the relative
attractiveness of the routes. This ensures that the choice model is internally consistent for all route flow
vectors.

The APSL model restricts the domain for the route choice probabilities so that the probabilities for OD

movement m must belong to the domain D,(,fm), where P, ; = 17,5, Vi € R,,;. Consequently, the set of all

demand-feasible universal route flow vector solutions for the APSL SUE model, F®, is also restricted, where
fm,i 2 qum: Vl € Rm; m= 1, ---,M.
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3.2 Definition 2: APSL’' SUE

APSL SUE Definition 2 (APSL' SUE) is derived indirectly by utilising a new underlying route choice model,
that is equivalent to APSL at SUE, but only at SUE. By the definition of SUE, the route flow proportions and
route choice probabilities equate at equilibrium. Therefore, APSL’ SUE supposes that the path size
contribution factors consider route flow proportion ratios, instead of choice probability. The underlying route
choice model, APSL', proposes that the choice probability function for route i € R,,, is:

Poni (9mi (em@, VA5 @ f))) = T + (L= NouT) - g (em @, VA W f)), (36)

where g,,, ; forroute i € R, is

(ym LS (¢, fm)) e~ 0cmi(®)

Im,i (cm(t) yAPS (t:fm)) = ) B ) (3.7)
% jery, (VATS (& F)) e ~06mi®
and, yAPS" for route i € R,y is
t fmilq
S a m,t m
VA e fm) = )
i I = 2 et ® St Gl ) amm 8)
t . :
-2 X i vpeR,
A€Ap Cm,i(t) ZkeRm fm,k 5a,m,k

F30 = {f, e RV mel—qm.

i€Rm

The model parameters are again 8 > 0, > 0,and 0 < 7,,, < Ni m =1,..., M. As shown in (3.8), the

contribution of route k € R,,, to the path size term of route i € R,, is weighted according to the ratio of flow

fmk

between the routes ( 7 ) and hence unrealistic route alternatives with very low use/flow have a diminished

m,i

contribution to the path size terms of realistic routes with relatively high use/flow.

The APSL' choice model is closed-form and hence choice probability solutions for a given route flow
vector are guaranteed to exist and be unique, assuming every route has a non-zero flow. Stipulating that the
flows for OD movement m f,,, belong to the set E;° ensures that: a) no routes have zero flow; b) the route
flows are demand-feasible; and, c) the path size contribution factors consider ratios of route flow proportion.
The APSL' choice model need not only be considered in an SUE application; regardless of whether the link
costs are flow-dependent or fixed, if information is available on the route flow proportions then the path size
contribution factors can utilise this for route choice prediction.

Adopting generalised, flow-dependent congested costs for the link-route prominence features, APSL'
SUE is formulated as follows:

APSL’ SUE: A universal route flow vector f* € F(® is an APSL SUE solution iff the route flow vector for
OD movement m, fy,, is a solution to the fixed-point problem

fn = QP (G (cm(tAN) VAT €D f))), =10 M, 39

where P, ;, gm.i» and yAPS

route flow vector f, and

are as in (3.6), (3.7), and (3.8), respectively, for route i € R,,,, given the universal

FO ={feRV1,, < % < (11— Ny —D1p), Vi € Ry, Z fmi=qmm=1,.., M
m i€Rp

82



Chapter 3. Formulation and solution of Adaptive Path Size Logit Stochastic User Equilibrium —
addressing choice set robustness and internal consistency

The APSL' choice model is only internally consistent for route flow vectors at SUE, since for all other route
flow vectors, the relative attractiveness of routes as defined in the path size contribution factors does not
match the relative attractiveness in the probability relation.

3.3 Existence & Uniqueness of Solutions

Zhou et al (2012) formulate a congestion-based CL SUE model in which the commonality factors are based
on flow-dependent congested costs (see Appendix A). While such solutions can be proven to exist, uniqueness
cannot be guaranteed. In a similar vein, APSL SUE solutions can be proven to exist, but it is expected that
uniqueness can also not be guaranteed.

3.3.1 Existence
In this subsection, we prove that solutions are guaranteed to exist to the APSL’ SUE fixed-point system as
defined in (3.9), and thus the APSL SUE fixed-point system defined in (3.4)-(3.5), due to equivalence in
equilibrium.

First, we define an important function: the APSL’ SUE fixed-point function. Let H, ;(f) =

G P (gm,i (cm(t(Af)),yr‘;fs'(t(df),fm))), where P i, gm,i, and y® are asin (36), (3.7), and (3.8),

respectively, for route i € R,,. It is clear from (3.9) that a route flow solution f* is an APSL' SUE solution iff
Hpi(f) = fis Vi€ERy,m=1,..., M.
Given Hy,, ;(f), we first prove that APSL" SUE solutions are guaranteed to exist.

Proposition 1: If the link cost function t(Af) is a continuous function for all f € F(® then at least one
APSL’ SUE fixed-point route flow solution, f* € F(®, is guaranteed to exist.

Proof. From the assumption that £(Af) is a continuous function for all f € F®, (and thus ¢,,, ¥2P5", gm.i,
Ppi, and H,, ; are all continuous), and given that F® is a nonempty, convex, and compact set, and H maps
F® into itself, then by Brouwer’s Fixed-Point Theorem at least one solution f* exists such that H,, ;(f*) =
fmi Vi € Ry, m =1,...,M, and hence APSL" SUE solutions are guaranteed to exist.

Next, we clarify the equivalence of APSL SUE and APSL’ SUE.

Lemma 1: If f* € F® isan APSL’ SUE solution, f* € F® is also an APSL SUE solution.

Proof. This follows by inspection from the equivalence of (3.1), (3.2), and (3.3) with (3.6), (3.7), and (3.8),
respectively, when P, ; = ];m'i Vi € R,,, m = 1,..., M, and hence for an APSL’ SUE solution f* € F@

1
m
*
_ fm,i

where P, ; = /7=
’ dm

What remains is to prove the existence of APSL SUE solutions.

Proposition 2: If the link cost function ¢(Af) is a continuous function, then at least one APSL SUE fixed-
point route flow solution, f* € F(® is guaranteed to exist.

Proof. It follows from Proposition 1 and Lemma 1 that since APSL’ SUE solutions are guaranteed to exist,
and an APSL' SUE solution is also always an APSL SUE solution, then at least one APSL SUE fixed-point
route flow solution f* € F(® is guaranteed to exist.
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3.3.2 Uniqueness

The standard approach for establishing sufficient conditions for the uniqueness of APSL' SUE solutions
requires H,, ; (f) to be a monotonic function. Assuming the link cost functions ¢(4f) are monotonic, then the
route cost functions ¢,,, (¢(4f)) are also monotonic. This is enough to establish sufficient conditions for the
uniqueness of MNL SUE solutions, as well as solutions for Path Size Logit SUE models with flow-
independent path size costs. However, for the APSL’ SUE model (and other Path Size Logit SUE models with

flow-dependent path size costs), the path size term functions, in this case y,A;lPS'(t(Af),fm), are not
guaranteed to always be monotonic, and hence the approach is not applicable. This is not to say however that
APSL SUE solutions cannot be unigue, since the mentioned approach only establishes sufficient conditions,
and in Section 4.4 we investigate this numerically.

4. Numerical Experiments

In this section, some numerical experiments are conducted to compare the computational performance of
APSL & APSL' SUE, as well as with internally consistent SUE formulations for competitor correlation-based
route choice models to APSL, namely: MNL, PSL, GPSL, CL, CNL, GNL, and PCL SUE, as defined in
Appendix A. We also examine how robust these SUE models are to the inclusion of unrealistic routes to the
choice set, thereby mimicking choice set mis-generation. We compare flow results between the Path Size
Logit SUE models, as well as investigate the uniqueness of APSL SUE solutions.

4.1 Experiment Setup

The computer used has a 2.10GHz Intel Xeon CPU and 512GB RAM, and the code was implemented in
Python. In our implementation, we assume that a working set of routes is available in advance to solve the
SUE models. The advantage of using a working route set (i.e. generated from a choice set generation scheme)
is that it provides a common basis for the comparison of various models. Behaviourally, it has the advantage
of identifying routes that would likely to be used (Cascetta et al, 1997; Bekhor et al 2006, 2008). However, a
column generation procedure (e.g. Chen et al, 2001) could also be used.

In our experiments, we consider three networks: a small example network (Fig. 3.1), and two well-known
networks Sioux Falls and Winnipeg. The small example network consists of 3 nodes, 4 links, and 1 OD
movement (with demand 200), the Sioux Falls network consists of 24 nodes, 64 links, and 528 OD
movements (with positive demands), and the Winnipeg network consists of 1052 nodes, 2836 links, and 4345
OD movements.

In general, the generalised travel cost, t,(x,), for link a € A may consist of several flow-dependent and
flow-independent attributes, for example congested travel time, length, number of left turns, etc. However, for
the numerical experiments in this section and for all networks, the travel cost of link a € A is specified as the
flow-dependent travel time T, (x,) only, where the volume-delay link cost functions for all networks are
based on the Bureau of Public Road (BPR) formula with link-specific parameters:

x B
ta(xq) = Ta(xa) = Toq (1 +D (K—“) )
a

where T, , and K, are the free-flow travel time and capacity of link a € A, respectively, and D, B > 0. For the
small example network, D = 0.15, B = 4, K, = 100 for all links, and T , for each link is shown in Fig. 3.1.
For the Sioux Falls and Winnipeg networks, the link-cost function values as well as the network and demand
data are obtained from https://github.com/bstabler/TransportationNetworks.

For the small example network, the working choice set utilises all 4 routes, where the routes are Route 1:
1 — 3, Route 2: 1 — 4, Route 3: 2 — 3, Route 4: 2 — 4. For the numerical experiments in this paper, we
generated new working choice sets for the Sioux Falls and Winnipeg networks. From experimenting with
different settings and generation methods, we ultimately generated as large choice sets as we deemed our
computational resources would allow, in order to minimise the possibility that we had excluded what would
later turn out to be a plausible route from the working choice set. For the Sioux Falls network, the working
choice sets were obtained by generating all routes with a free-flow travel time less than 2.5 times greater than
the free-flow travel time on the quickest route for each OD movement. This technique was not viable
computationally for the Winnipeg network; instead, we utilised a simulation approach (Sheffi & Powell,
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1982) where the link costs were drawn randomly from a truncated normal distribution with mean value being
free-flow travel time and standard deviation being 0.6 times the mean. The link costs were simulated 150
times for each OD movement and for each simulation shortest path was conducted to generate a route, where a
maximum of 100 unique routes were generated for each choice set. The average and maximum free-flow
travel time relative deviations from the quickest route in each choice set were 1.14 and 3.2, respectively. For
Sioux Falls, 42,976 routes were generated in total, and the maximum, average, and median choice set sizes for
an OD movement were 898, 116, and 6, respectively. For Winnipeg, 305,005 routes were generated in total,
and the maximum, average, and median choice set sizes for an OD movement were 100, 70, and 88,
respectively. In Sections 4.2 & 4.3 we investigate how varying the choice set sizes effects computational
performance and flow results, respectively.

To1 =v1 Toz =v3

Top, =2 Tos = vy
Fig. 3.1.Small example network.

It is not expected that equivalent Mathematical Programming (MP) formulations can be derived for the
internally consistent SUE formulations in this paper. This is due to the correlation components being flow-
dependent, e.g. based upon the flow-dependent congested costs. For example, as Zhou et al (2012) explain for
congestion-based CL SUE: since the CL commonality factors are nonlinear flow-dependent functions, CL
SUE cannot be formulated as an equivalent MP formulation, and thus cannot be obtained through solving
some convex optimisation problem. Instead, we use a standard Flow-Averaging Algorithm (FAA) to solve all
SUE models, where a step-size scheme averages the route flows between the current flow vector and an
auxiliary flow vector computed from the route choice probabilities of the underlying choice model. The FAA
is as follows:

frg‘l =(1-1n,) 'frf&_l) F i QP (F*D),  n=123..

such that
lim £ = lim (=10 fony D+ G Prni(F V) =fniy Vi€ERmm=1,.,M, fO€F,

where fn(fi) is the flow for route i € R,, at iteration n, n,, is the step-size at iteration n, and Pm,i(f("‘l)) is the
choice probability for route i € R,,, at iteration n given the route flows from iteration n — 1. For the APSL &
APSL’ SUE models, the feasible set of route flows is F(® rather than F.

The step-size scheme we adopt in this paper is the Method of Successive Weighted Averages (MSWA)
(Liu et al, 2009), which is based upon the well-known Method of Successive Averages (MSA). While being
pre-defined, the MSWA allows giving higher weight to auxiliary flow patterns from later iterations, and the
step-size n,, at iteration n is defined as:

nd

nTl = n d’
k=1 k

where d = 0 is the MSWA parameter. Increasing the value of d moves more flow towards the auxiliary
solution. The MSA is a special case of the MSWA, namely when d = 0.

Convergence of the FAA is measured by the Route Mean Squared Error (RMSE) between the final route
flow vector and auxiliary route flow vector at iteration n:
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RMSE™M — z z (n) n(lnl)) ’
i€ERm

where f; ) and i £ are the final route flow and auxiliary route flow for route i € R,, at iteration n, and N is
the total number of routes. The route flows are thus said to have converged sufficiently to a route flow vector
solution f* = £ if RMSE™ < 10~¢, where { is a predetermined flow convergence parameter.

For PSL, GPSL, APSL’, CL, CNL, GNL, & PCL SUE, the auxiliary flows are computed exactly since the
probability relations are closed-form. For APSL SUE, however, the accuracy of the auxiliary flows is
dependent upon the accuracy of the APSL fixed-point probabilities. To ensure that APSL SUE is reached,
when the RMSE convergence criteria are said to have converged, we check by computing the RMSE between
the final route flow vector and an auxiliary route flow vector calculated from APSL’ probabilities, which at
iteration n is:

2

RMSE™ = Z Z < ) m ml(cm (t(Af(”)) yAPS'(t(Aﬂ")).f(”))))) :

We continue until this RMSE satisfies the convergence criterion, or it is clear that this convergence criterion
will not be satisfied.

Computing the APSL choice probabilities requires a fixed-point algorithm to compute the solution. In
general, there are many fixed-point algorithms available for solving the APSL fixed-point system. In this
study, we use the Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). Other algorithms were
considered, however the performance and convergence of the FPIM in our tests were sufficiently promising
that we did not consider this worthwhile. The FPIM for solving the APSL choice probabilities for OD
movement m at iteration n of the FAA is as follows:

P = G, (gm,i (cm (t(arm)),vars (t(Af(">),P£f;1]))>, s=123,..

such that

lim P = lim Gy, <gml (cm (e(ar®)), vars (e(apm), Pl ))> Phi  Vi€Rp,

S—00

P(O) c D(Tm)

where G, i, Gm i, and y“”’s are as in (3.1), (3.2), and (3.3), respectively, for route i € R,,,, and £ is the route

flow vector at iteration n of the FAA. The FPIM is said to have converged sufficiently to an OD movement m
APSL choice probability solution Py, = ngl] if: Yicr,, P,Ei'” - Pn[f]l < 107¢, where ¢ is a predetermined
APSL probability convergence parameter.

In the numerical experiments in this paper, we explore adopting two different initial conditions for the
FPIM: fixed initial conditions where PTE’} = ﬁ Vi € R,,, m =1, ..., M, and follow-on initial conditions where

(n 1)

P[O] —— Vi €R,,,m=1,..,M. The follow-on initial FPIM conditions utilise information from the

previous FAA iteration route flows £~ to determine the FPIM initial conditions. The idea is to harness the
useful relation between route flow proportions and route choice probabilities in SUE, where these equate at
equilibrium. The hypothesis is that by utilising follow-on initial conditions, the numbers of fixed-point
iterations required for APSL choice probability convergence (and thus computation time to perform each FAA
iteration) should decrease as the algorithm progresses and the route flow proportions become closer to the
APSL SUE route choice probabilities. This hypothesis is tested in Section 4.2.

Unless stated otherwise, the specifications are as follows. The initial SUE conditions are set as the even

split route flows, i.e. f(o) qm, Vi € R,,, m =1, ..., M, and the SUE route flow convergence parameter is set
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as { = 3. The MSWA parameter is set as d = 15. For computing APSL probabilities, the initial FPIM

conditions are set as the fixed initial conditions, and the APSL probability convergence parameter is set as

& = 6. The utilised model parameters for the Sioux Falls network are 8 = 0.3, = 0.8, v = —0.8, A¢PSL =

10, u = 0.25.8 = 0.5, = 0.8, v = —0.8, A°PSL = 10, u = 0.25, and 1N = 1 for the Winnipeg network.
Note that for the GNL SUE model as defined in Appendix A, the model is undefined when there are

routes consisting of a single link between the origin and destination. The Sioux Falls network contains

numerous instances of such cases and thus we do not present results for GNL SUE on this network.

4.2  Computational Performance

We begin by analysing here the computational performance of the FAA for solving the SUE models. Table
3.1 displays for all SUE models the average computation time to perform a single FAA iteration on the Sioux
Falls and Winnipeg networks. As expected, MNL probabilities are the quickest to compute.
PSL/GPSL/APSL' probabilities all take a similar amount of time to compute, but longer than MNL due to the
computation of path size terms. APSL probabilities take significantly longer than the other PSL models due to
the requirement of having to solve APSL probability fixed-point problems. CL probabilities take longer to
compute than CNL probabilities on the Sioux Falls network, while CNL & GNL take longer than CL on the
Winnipeg network. This is because the Winnipeg network has greater network depth and the routes are made
up of a greater number of links. The greater the number of links, the greater the number of nests for CNL &
GNL, and hence the greater the complexity of the probability expression and longer the computation times.
GNL takes longer than CNL due to the computation of nesting coefficients. For CL, the commonality factors
evaluate the similarity between each pair of routes, and thus despite the smaller network depth of the Sioux
Falls network, there are still many routes to compare, increasing the computational burden. Due to relatively
large choice set sizes and thus extremely large number of route pairs and hence nests for PCL, the
probabilities for Sioux Falls and Winnipeg are very computationally burdensome and could not be computed
in computationally feasible times. Due to this, we do not present computation/flow results for PCL SUE.

MNL PSL GPSL APSL APSL' CL CNL GNL
Sioux 0.006 0.038 0.038 0.920 0.038 0.562 0.196 -
Falls
Winnipeg 0.089 0.208 0.208 4,199 0.208 1.611 6.806 12.921

Table 3.1. Average computation time [mins] to perform a single FAA iteration on the Sioux Falls and Winnipeg networks.

Fig. 3.2A-B display for the Sioux Falls and Winnipeg networks, respectively, the number of FAA iterations
required to obtain levels of SUE convergence. Fig. 3.3A-B the display computation time required. As shown,
while APSL SUE requires a similar number of FAA iterations for convergence to PSL & GPSL SUE, total
computation times are significantly longer due to the requirement of solving APSL probability fixed-point
problems at each iteration, and hence longer iteration times. APSL’ SUE has the same iteration computation
times as for PSL & GPSL SUE, but the slow convergence also results in longer total computation times. MNL
SUE is the quickest to solve due to not having to compute path size terms, while PSL SUE takes less time
than GPSL SUE due to fewer iterations. For Sioux Falls, iteration times are quicker for CNL than for CL, and
thus despite fewer number of iterations required for CL SUE, CNL SUE takes less time overall. For
Winnipeg, iteration times are quicker for CL than for CNL & GNL, and thus CNL & GNL SUE take more
time overall, where GNL SUE takes longer than CNL SUE.
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Fig. 3.2. Number of FAA iterations required to obtain levels of SUE convergence for the different SUE models. A: Sioux Falls. B:
Winnipeg.
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Fig. 3.3. Computation time [mins] required to obtain levels of SUE convergence for the different SUE models. A: Sioux Falls. B:
Winnipeg.

As demonstrated above, further below, and in the experience of the authors, while the number of iterations
required for APSL SUE convergence tend to be similar to that required for PSL & GPSL SUE convergence
under identical configurations of the FAA, the requirement of solving APSL choice probability fixed-point
problems at each FAA iteration results in significantly greater total computation times. On-the-other-hand,
while the computational burden involved in computing the APSL' choice probabilities during each iteration of
the FAA solving APSL' SUE is no more than that for PSL & GPSL, APSL’ SUE convergence is
comparatively very slow, and thus total computational times are also longer. There are unique aspects of the
APSL model however that allow for some flexibility in solving APSL SUE and consequent potential to
improve computation times, as we show below.

For APSL SUE, the scale of the computational burden involved at each FAA iteration in solving the
APSL choice probability fixed-point problems depends on numerous factors; some of which can be controlled
by the modeller, for example the choice of fixed-point algorithm, and the fixed-point algorithm initial
conditions and probability convergence parameter &. The current study focuses on the FPIM as the fixed-point
algorithm.

Fig. 3.4A-B display for the Sioux Falls and Winnipeg networks, respectively, the cumulative computation
times of the iterations during a single run of the FAA, for fixed and follow-on FPIM initial conditions. Fig.
3.5A-B shows the average number of fixed-point iterations per OD movement required for APSL choice
probability convergence at each iteration of the FAA. As shown, utilising follow-on initial conditions can
significantly improve overall computation time due to the reduction in the number of FPIM iterations required
for APSL probability convergence as the FAA progresses.
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Fig. 3.6A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation time
for solving APSL SUE varies as the FPIM probability convergence parameter £ is increased, with follow-on
and fixed FPIM initial conditions. Fig. 3.7A-B display how the average number of APSL fixed-point
iterations and total number of FAA iterations vary as ¢ is increased.

With fixed FPIM initial conditions, APSL SUE could not be solved for & < 6 due to the inaccuracies of
the APSL probabilities. For & > 6, as shown, as ¢ increases, while the number of iterations required for SUE
convergence remains constant, greater numbers of FPIM iterations are required for APSL probability
convergence and thus total computation times increase.

With follow-on FPIM initial conditions, APSL SUE could be solved for all £. This is because for & = —1,
only single FPIM iterations are required for APSL probability convergence, and with follow-on initial FPIM
conditions, solving APSL SUE this way simulates solving APSL’ SUE. Increasing ¢ increases the number of
FPIM iterations required for APSL probability convergence and the accuracy of the APSL probabilities, but
the APSL SUE solution obtained is the same. As shown, convergence of APSL’ SUE (APSL SUE with small
& & follow-on conditions) is slow, resulting in longer computation times. On-the-other-hand, large values of &
result in comparatively quick APSL SUE convergence, but longer computation times at each iteration, also
resulting in longer total computation times. There is thus an optimal, intermediate value of ¢ whereby suitable
SUE convergence meets suitable iteration computation times. As shown in Fig. 3.6A-B, the optimal values in
these cases are approximately ¢ = 1 and ¢ = 0 for Sioux Falls and Winnipeg, respectively, yielding
computation times of 32.68 minutes and 53.94 minutes, respectively.
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Alternatively, utilising follow-on conditions, one can stipulate a set number of FPIM iterations to perform at
each FAA iteration. Supposing that h FPIM iterations are conducted, Fig. 3.8A-B display the total
computation times and number of FAA iterations solving APSL SUE, for the Sioux Falls and Winnipeg
networks, respectively. As shown, conducting just two FPIM iterations (instead of one) can significantly
reduce the number of FAA iterations required for convergence, and thus total computation times. The optimal
values for h appear to be 3 and 2 FPIM iterations, respectively, where suitable SUE convergence meets
suitable iteration computation times. This yields computation times of 23.79 minutes for Sioux Falls and

47.17 minutes for Winnipeg.

One can also utilise a combination of both techniques for reducing APSL SUE total computation times
and stipulate a maximum number of FPIM iterations to perform and a maximum level of APSL probability
convergence, i.e. the FPIM is stopped if either a maximum of h iterations are conducted or the probabilities
have converged sufficiently according to the set parameter . This can potentially save computation times in
latter FAA iterations where the stipulated amount of FPIM iterations unnecessarily overly-converges the
APSL probabilities. Fig. 3.9A and Fig. 3.10A display for Sioux Falls how computation times and the number
of FAA iterations / average number of FPIM iterations vary, respectively, for different settings of &, where a
maximum of 3 FPIM iterations are conducted. Fig. 3.9B displays results for Winnipeg where a maximum of 2
FPIM iterations are conducted. As shown, optimal values of & with this technique are approximately ¢ = 5
and & = 4 for Sioux Falls and Winnipeg, respectively, where a suitable number of FAA iterations meets a
suitable average number of FPIM iterations. This yields computation times of 20.24 minutes for Sioux Falls
and 42.25 minutes for Winnipeg.
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Considering the above results, for the remainder of the paper, unless stated otherwise, we solve APSL SUE by
stipulating a maximum number of FPIM iterations to perform at each FAA iteration and a maximum level of
APSL probability convergence. For Sioux Falls, a maximum of 3 FPIM iterations are conducted with & = 5.
For Winnipeg, 2 FPIM iterations are used with & = 4. We label for reference this method APSL SUE*. This
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‘optimal’ method for solving APSL SUE is of course particular to the network, model, and algorithm
specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by fixing the
optimised values for that particular specification, and then varying the specifications, we will show that the
method is robust in its effectiveness compared to solving APSL SUE in a standard way (i.e. where the APSL
fixed-point probabilities are accurately solved with non-follow-on initial conditions).

Fig. 3.11A-B and Fig. 3.12A-B add the APSL SUE* convergence statistics to the results from Fig. 3.2A-
B and Fig. 3.3A-B. As shown, for APSL SUE*, the number of iterations required to obtain levels of
convergence is now significantly less than for APSL’ SUE, though more than required for APSL SUE. Hence,
since the iteration computation times of APSL SUE* are significantly less than for APSL SUE, total
computation times are improved. Moreover, APSL SUE* outperforms CL, CNL, & GNL SUE - significantly
on the larger-scale Winnipeg network.
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Fig. 3.11. Number of FAA iterations required to obtain levels of SUE convergence for the different SUE models, with updated APSL
SUE solution method. A: Sioux Falls. B: Winnipeg.
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Fig. 3.12. Computation time [mins] required to obtain levels of SUE convergence for the different SUE models, with updated APSL
SUE solution method. A: Sioux Falls. B: Winnipeg.

Other factors that affect the computational performance of APSL SUE, in terms of solving the APSL
probability fixed-point problems, include the value of 8 and the choice set sizes. As shown in Duncan et al
(2020), larger values of S result in a greater number of FPIM iterations being required for APSL convergence
(increasing computation times), and, the greater the choice set sizes the more routes there are to capture the
correlation between (escalating the computational burden involved in computing path size terms).

Fig. 3.13A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time
for APSL SUE* as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, varies as
the B parameter is increased. Fig. 3.14A-B display how the average number of FPIM iterations per OD
movement per FAA iteration and how the total number of FAA iterations vary as £ is increased. As shown,
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for APSL SUE follow-on & fixed, while the number of FAA iterations do not vary considerably, the average

number of FPIM iterations increases exponentially with £ and hence so do computation times. For APSL
SUE¥*, the number of SUE iterations increases as 8 increases, while the average number of FPIM iterations
remains low (decreasing slightly due to more SUE iterations), resulting in the technique significantly
improving in effectiveness as 8 increases.
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Fig. 3.15A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time for
APSL SUE* as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, varies as the
choice set sizes are increased. Fig. 3.16A-B display how the average number of FPIM iterations per OD
movement per FAA iteration and how the total number of FAA iterations vary. The choice sets are obtained
by generating all routes (from the master generated choice sets used throughout this section) with a free-flow
travel time less than ¢ times greater than the free-flow travel time on the quickest generated route for each
OD movement. As shown, computation times increase as the choice sets are expanded. The greater number of
routes to capture the correlation between means that more FPIM iterations are required for APSL probability
convergence, which, combined with a greater number of FAA iterations required for SUE convergence,
results in increasing computation times (more SUE iterations that each take longer on average). It is also
shown again how effective APSL SUE* can be.
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Fig. 3.16. Number of FAA iterations, and average number of FPIM iterations for APSL SUE* and solving APSL SUE with follow-on
and fixed initial FPIM conditions the choice set sizes are increased, scaled by ¢. A: Sioux Falls. B: Winnipeg.

Next, we investigate for all SUE models, how total computation times and number of FAA iterations vary
according to different sizes of choice sets, levels of travel demand, and model parameters.

Fig. 3.17A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation
times for the different SUE models vary as the choice set sizes are increased. Fig. 3.18A-B display how the
required number of FAA iterations varies. As shown, for Sioux Falls, although the number of iterations
required for convergence decreases for most of the models, computation times increase due to additional
burden involved in computing choice probabilities / working with more routes. For APSL SUE, computation
times increase significantly due also to the more burdensome fixed-point problems (i.e. Fig. 3.15/Fig. 3.16).
For Winnipeg, the number of iterations requited for SUE convergence increases, increasing to the
computational burden of larger choice sets.
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Fig. 3.19A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation
times vary for the different SUE models as the level of travel demand is varied. Fig. 3.20A-B display how the
required number of FAA iterations varies. The demand is scaled according to the parameter w so that the
demand for OD movement m is w - q,,, m = 1, ..., M. As shown, and as expected, the number of iterations
required for convergence increases for all SUE models as the level of demand increases, thus increasing total
computation times. APSL’ SUE experiences a significant increase for large demand.
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Fig. 3.19. Computation times for solving the SUE models as the level of travel demand is increased, scaled by w. A: Sioux Falls. B:

Winnipeg.
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Fig. 3.20. Number of iterations required for convergence for the SUE models as the level of travel demand is increased, scaled by w.

A: Sioux Falls. B: Winnipeg.

Fig. 3.21A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation
times vary for the different SUE models as the common 6 parameter is varied. Fig. 3.22A-B display how the
required number of FAA iterations varies. As shown, apart from for APSL’ SUE on the Sioux Falls network,
convergence for the SUE models generally gets slower as 6 increases and the route cost differences are
accentuated more resulting in greater flow fluctuations.

Fig. 3.23A-B and Fig. 3.24A-B display how total computation times / number of iterations vary,
respectively, for the CNL SUE model as the u parameter is varied. As shown, for both networks, the number
of iterations (and thus computation time) required for convergence decreases for greater values of u, i.e. as
CNL SUE increases in similarity to MNL SUE. This is a typical finding for CNL SUE models, e.g. Bekhor et
al (2008).

Fig. 3.25A-B display results for the GNL SUE model as the ANt parameter is varied. As shown, the
number of iterations (and thus computation time) required for convergence decreases for greater values of
AGNL Note that for 26Nt = 0, GNL SUE is equivalent to MNL SUE (since ANt = 0O resultsin p,, = 1, m =
1,..,M).

Fig. 3.26A-B and Fig. 3.27A-B display results for the GPSL SUE model as the 1675 parameter is varied.
As shown, the number of iterations (and thus computation time) required for convergence increases for greater
values of 1575, where greater fluctuations occur within the path size contribution factors.

Fig. 3.28A-B and Fig. 3.29A-B display results for the PSL/GPSL/APSL SUE models as the common g
parameter is varied. As shown, for APSL’ SUE and APSL SUE*, the number of FAA iterations increases
exponentially with 8. For the other models however, the effects are not as significant, though for APSL SUE
—as also shown in Fig. 3.13/Fig. 3.14 — total computation times increase exponentially with g due to the
fixed-point probability computation.

96



Chapter 3. Formulation and solution of Adaptive Path Size Logit Stochastic User Equilibrium —
addressing choice set robustness and internal consistency

A —— PSL —— APSL* —#— APSL —<4 CNL B
—m— GPSL —— APSL' CcL
140 £
o 1000 +
£
120 = 500
£
5]
— 100 “
£ £
E £ 150 A cL
u 801 ‘s
E E 100 4
= =
a 4 a
£ 60 E 501
g U__ —&— MNL —+— PSL —— GPSL —— APSL* —— APSL'
40 1 z
E 601
20 £ 401
- : 204
od ™ L E . s 4
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
] ]
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Fig. 3.23. Computation times for CNL SUE convergence as u is varied. A: Sioux Falls. B: Winnipeg.
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Fig. 3.29. Number of iterations required convergence for the Path Size Logit SUE models as f is varied. A: Sioux Falls. B: Winnipeg.

Lastly, Fig. 3.30A-B display for the Sioux Falls and Winnipeg networks, respectively, and for the different
SUE models, how the number of iterations required for convergence varies for different settings of the
MSWA parameter d. As shown, for APSL" SUE and APSL SUE¥*, convergence improves significantly with
greater values of d, though for APSL SUE * the number of FPIM iterations and & value has been optimised
for d = 5. For APSL SUE, and MNL, PSL, & GPSL SUE, d = 5 and d = 10 provide roughly the best
convergence for Sioux Falls and Winnipeg, respectively.
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Fig. 3.30. Number of iterations required for SUE convergence for varying settings of the MSWA parameter d. A: Sioux Falls. B:
Winnipeg.

4.3  Choice Set Robustness & Flow Results
In this subsection we compare the flow results from the different SUE models. To compare the flow results
F*RL and f*R2 for Result 1 and Result 2, respectively, we measure the Root Mean Squared Error (RMSE):

M 2
RMSE = JZ > (- ) N,
m=1 IERy,

where N is the total number of routes. Note that for reference the RMSE between the previous and final route
flows of the FAA converging to a SUE solution f* were approximately of the order 1075,

First, we assess choice set robustness for the SUE models. Fig. 3.31A-B display for the Sioux Falls and
Winnipeg networks, respectively, the impact that varying the sizes of choice sets has on the route flow results
from the different models. The choice sets are obtained by generating all routes (from the pre-generated
choice sets) with a free-flow travel time less than ¢ times greater than the free-flow travel time on the
quickest route for each OD movement, and it is assumed that ¢ = 2 are the true choice sets, i.e. flow results
are compared between the ¢ = 2 generated routes only. As shown, PSL SUE is the most affected by
expanding the choice sets, as the path size terms of the assumed true routes are adjusted significantly
attempting to capture the correlation with the added high costing routes. GPSL & APSL SUE are the least
affected (and affected significantly less than PSL SUE) due to the employment of path size contribution
weighting techniques, reducing the impact of the added routes.

Fig. 3.32A-B display for the Sioux Falls and Winnipeg networks, respectively, the impact varying the
common 8 parameter has on choice set robustness for the different SUE models. Flow results from the ¢ = 2
and ¢ = 2.5 choice sets are compared, where flows again are just compared between the ¢ = 2 generated
routes. As shown, choice set robustness improves for all models as the 8 parameter is decreased. For Sioux
Falls, the relative choice set robustness between the models does not change significantly. For Winnipeg,
there are more evident changes. For low 8, the choice set robustness of APSL SUE is similar to that for PSL
SUE. This is because for low 8 routes are considered more evenly attractive (travellers are less sensitive to
differences in travel cost), and hence the APSL SUE path size contribution factors are closer to 1 (the PSL
SUE factors). Increasing 6 (implying the routes are less evenly attractive) accentuates the travel cost
differences within the factors moving them away from 1, thereby improving choice set robustness so that for
larger 8 APSL SUE is the most choice set robust. For GPSL SUE, however, regardless of the 8 value and
consequent behavioural implications, the path size contribution factors accentuate the travel cost differences
and GPSL SUE is choice set robust for all 8. This demonstrates how APSL SUE is more internally consistent
and adaptable than GPSL SUE, where APSL SUE is always consistent with the behavioural implications of
the model parameters.

Fig. 3.33A-B display choice set robustness for the CNL SUE model as u is varied. As shown, for Sioux
Falls, choice set robustness improves for greater values of u, where the probabilities are closer to the MNL
model, thus implying that in this case MNL is more robust than the correlation-based models. For Winnipeg,
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however, choice set robustness worsens with u, implying the opposite. Moreover, best choice set robustness
occurs for u close to 0, however as Bekhor & Prashker (2001) note, the extreme case for CNL where u — 0 is
suitable in the context of route choice only when the total route costs are equal, otherwise u — 0 can lead to
counter-intuitive results.

Fig. 3.34A-B display choice set robustness for the GNL SUE model as AN is varied. As shown, choice
set robustness improves as A°NL increases: the nesting coefficients move away from 1 and closer 0, and thus
since MNL SUE (u = 1 for CNL/GNL) on Winnipeg is not robust, robustness for GNL SUE improves for
greater values of A¢NL,

Fig. 3.35A-B display choice set robustness for the CL SUE model as v is varied. As shown, for Sioux
Falls, since MNL SUE is choice set robust, CL SUE is also choice set robust for low v; however, as v
increases and the correlation component becomes more prominent, choice set robustness worsens
dramatically. For Winnipeg, since MNL SUE is not robust, robustness actually improves for CL SUE as v
increases, up to a point where the correlation components become prominent enough that the adjustments
from capturing similarities with new unrealistic routes begins to worsen robustness.

Fig. 3.36A-B display choice set robustness for the GPSL SUE model as 1¢7S is varied. As shown, and as
expected, for both networks, choice set robustness is equivalent to that of PSL SUE for 2575 = 0 (where the
models are equivalent), and robustness improves as A4S increases from 0 and the path size contribution
factors accentuate the cost differences more, resulting in the new more costly routes having reduced
contributions and thus adjusting the realistic route probabilities less. A peak is reached in terms of choice set
robustness, however, and increasing APS further worsens robustness.

Fig. 3.37A-B display choice set robustness for the PSL/GPSL/APSL SUE models as £ is varied. As
shown, for § = 0 the path size models are equal to MNL SUE, where robustness is good for Sioux Falls and
bad for Winnipeg. As S increases for Sioux Falls, the increasing prominence of the correlation components
worsens robustness, where the effects for PSL SUE are significantly worse than for the weighted path size
contribution models. For Winnipeg, robustness improves as £ increases for the weighted contribution models,
but worsens for PSL SUE.
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Fig. 3.31. Impact that varying the sizes of choice sets has on the route flow results of the different SUE models, scaled by ¢. A: Sioux
Falls (6 = 0.07). B: Winnipeg.
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Fig. 3.37. Impact that varying the 8 parameter has on choice set robustness for the Path Size Logit SUE models. A: Sioux Falls. B:

Winnipeg.

We next consider the differences in flow results between the Path Size Logit SUE models. Fig. 3.38A-B
display for the Sioux Falls and Winnipeg networks, respectively, the impact the 8 parameter has on the
differences in SUE flow between the models. Most notably, in these ranges of 6, the flow differences between
GPSL & APSL SUE decrease with @ (initially for Winnipeg) and the flow differences between PSL & APSL
SUE increase with 6. The former is because as 8 increases, the travel cost components within the APSL SUE
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path size contribution factors increase in contribution influence compared to the route distinctiveness
components, and hence the factors increase in similarity to the GPSL SUE factors (which only consider travel
cost), and thus the SUE route flows. The flows then begin to increase in difference as the 6 parameter begins
to accentuate the travel cost differences for APSL more than the A parameter does for GPSL within the
contribution factors. The latter occurs since for low 6 routes are considered more evenly attractive and hence
the APSL SUE path size contribution factors are closer to 1 (the PSL SUE factors), and increasing 6
accentuates the travel cost differences within the factors moving them away from 1. A peak is reached and
further increasing 6 results in the travel cost components within the PSL & APSL probability relations
dominating the distinctiveness components where the difference lies.

Fig. 3.39A-B display the impact of the 8 parameter. As shown, the flow differences all increase as
increases, which is logical since the differences between the SUE models are the different path size correction
terms scaled by 8. GPSL & APSL SUE are amongst the least different due to their similarity in adopting path
size contribution weighting technigques. What is noticeable is that the differences between the APSL SUE
flows and PSL/GPSL SUE flows increase significantly for larger values of 8. This is because distinctiveness
increases significantly in contribution influence within the APSL SUE path size terms, moving the
contribution factors away from 1 (PSL) and making the travel cost component less prominent (GPSL).
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Fig. 3.38. Impact of the 6 parameter on the differences in SUE flow between the Path Size Logit SUE models. A: Sioux Falls. B:
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Fig. 3.39. Impact of the g parameter on the differences in SUE flow between the Path Size Logit SUE models. A: Sioux Falls. B:

Winnipeg.

To explore the impact that varying the level of travel demand has on route choice (i.e. proportional route
flow), we measure the RMSE of the route choice probabilities, i.e. by dividing the flow results by the
respective OD movement demands. Fig. 3.40A-B display the impact different levels of travel demand have on
the differences in choice probabilities between the Path Size Logit SUE models, with 8 = 0.01 for Sioux
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Falls. Most notably for Sioux Falls, the differences between the GPSL & APSL SUE probabilities decrease
from being the most different as the demand level increases, while the PSL & APSL SUE probability
differences increase from being the least different. At zero demand, the relatively low setting of 6 given the
zero flow link costs dampens the travel cost differences within the APSL path size contribution factors
resulting in the PSL probabilities being closer and the GPSL probabilities further away to APSL. As demand
increases however and the link costs increase in scale, the travel cost differences become less dampened and
the APSL contribution factors consequently move away from 1 (PSL) and closer to the GPSL factors, where
the travel cost differences are accentuated. For Winnipeg, due to the overall lower level of congestion, the
effects are less significant; however, the flow differences between the GPSL & APSL SUE probabilities also
decrease while the PSL & APSL SUE probability differences increase. This time though the GPSL & APSL
SUE probabilities are the most similar, due to the similar path size contribution weightings given the scale of
travel costs.
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Fig. 3.40. Impact that different levels of demand has on the differences in choice probability between the Path Size Logit SUE models,
demand scaled by w. A: Sioux Falls. B: Winnipeg.

Lastly, Fig. 3.41A-B display for Sioux Falls and Winnipeg, respectively, how the SUE models differ from the
CNL SUE model as the 8 parameter is varied. Most interestingly, on both networks, APSL SUE is the most
similar to CNL SUE for larger values of 8, even when compared with GNL SUE.
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Fig. 3.41. How the SUE models differ from the CNL SUE model as the 6 parameter is varied. A: Sioux Falls. B: Winnipeg.

4.4 Uniqueness of APSL SUE Solutions
As discussed in Section 3.3.2, it is not possible to prove that APSL SUE solutions can be unique according to
standard approaches. Instead, we investigate here the uniqueness of APSL SUE solutions humerically.

As demonstrated in Duncan et al (2020), for a given setting of the link costs t and 6 value, a 8 value
exists, Bmaxm(t,8) > 0, for OD movement m such that APSL choice probability solutions are unique for all
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pintherange 0 < B < Baxm(t 0). This means that a 5 value exists, Bq(t, 6) > 0, such that solutions
are unique for all OD movements for all B intherange 0 < B < Bpax(t, 0), i.e. Brax(t,0) =

min (ﬁmax_m(t, 9)). And, assuming the link costs are bounded, i.e. they have a maximum and minimum

value (for example due the fixed demands), for a given 0 value, a 8 value exists, 5,4, (8) > 0, such that
APSL solutions are unique for all OD movements and for all feasible flow vectors (and thus costs) for all 8 in
the range 0 < 8 < Brax (). Obviously, Brax(0) < Brmax(t,6) < Lraxm (L, 6).

While it is not guaranteed that in all cases APSL SUE solutions will be unique when APSL probabilities
are universally unique, i.e. for g in the range 0 < 8 < Bnax(8), as we show below, it appears from numerical
experiments that this is often the case.

Fig. 3.42A-B plot, for two runs, the small example network route flows at each iteration of the FAA when
the initial conditions for the FPIM in Step 3 are randomly generated, for § = 0.9 and 8 = 1.1, respectively,
vi=2,v,=v3=v,=1,0=1,& =8. Thestep-sizeissetasn, = 1 (n = 1,2, ...) and the algorithm is
stopped after 20 iterations if convergence is not reached. As shown, for § = 0.9, because the APSL
probabilities are unique for the route costs (from the flows) at each iteration, the route flows on both runs
converge in the same way to the same APSL SUE solution. For § = 1.1, however, as demonstrated clearly at
iteration 1, there are multiple APSL probabilities for the route costs at each iteration, and hence due to the
step-size the flows fluctuate randomly and do not converge. This suggests that APSL probability solutions are
universally unique for 8 = 0.9, but not for § = 1.1, and hence that 0.9 < 8,4, (1) < 1.1.

Fig. 3.43A-B plot for 8 = 0.9 and 8 = 1.1, respectively, and for multiple runs, the flows at each iteration
of the FAA utilising follow-on initial conditions for the FPIM in Step 3, where the SUE initial conditions are
randomly generated, v; = 2, v, =v; = v, = 1,60 =1, £ = 8. As shown, for 8 = 0.9, all initial conditions
lead to the same solution, whereas for f = 1.1, two solutions are found with different initial conditions. Fig.
3.44A-B plot the flows at each iteration of the FAA for solving APSL’ SUE. As shown, for g = 0.9, all initial
conditions again lead to the same solution, whereas for § = 1.1, two solutions are found.
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Fig. 3.43 & Fig. 3.44 suggest that the APSL SUE solution is unique for § = 0.9, and solutions are non-unique
for p = 1.1, and Fig. 3.42 suggests that this due to the APSL choice probability solutions being universally
unique for £ = 0.9, but not for # = 1.1. One can imply from this that 0.9 < f,,4,(1) < 1.1, and potentially
that APSL SUE solutions are unique for 8 inthe range 0 < 8 < 0.9 < fax(1).

Duncan et al (2020) demonstrate how APSL choice probability solutions for OD movement m are unique
for g inthe range 0 < B < Bnaxm(t, 6). Here, we utilise a similar method to that described in Section 4.4 of

Duncan et al (2020) for the APSL model, to attempt to identify Brqxm (6) values and thus Br,q.(0) =
min(Baxm(0):m = 1, ..., M) for the APSL SUE model, where the costs are not fixed. Bq5m (6) is

estimated by plotting trajectories of APSL SUE solutions for OD movement m for varying 3, and identifying
where a unique trajectory of solutions ends and multiple trajectories begin. A simple method for obtaining
trajectories of APSL SUE solutions is as follows:

Step 1. Identify a suitably large value for 8 (where it is predicted that solutions will be non-unique).
Step 2. Solve APSL SUE for this large £ with a randomly generated SUE initial condition.

Step 3. Decrement 8 and obtain the next APSL SUE solution with the SUE initial condition set as the
solution for the previous S.

Step 4. Continue until a suitably low value of g (where it is predicted that solutions will be unique).

By plotting the route flows for OD movement m at each decremented 3, and repeating this method several
times, one can determine where non-unique solution trajectories end and hence estimate f5,,4, 1 (6). If after
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several repetitions (with different randomly generated initial conditions) only a single trajectory of solutions is
shown, then the initial large S value is increased. Similarly, if only multiple trajectories are shown, the
stopping low £ value is decreased. However, one can test beforehand whether the initial and stopping £
values are suitable by solving for each a few times with random initial conditions and observing whether there
are different solutions for the initial 8 value and the same solution for the stopping . In the experience of the
authors, the Baxm (0) values typically range between 0.9 and 1.1 (usually around 1). If in large-scale
networks it is computationally burdensome to solve APSL SUE once at a time for each decremented value of
B, then one can instead (by possibly harnessing parallel processing) solve for different 8 values
simultaneously, each with randomly generated initial conditions. This should also identify where solutions are
and are not unique. Moreover, one can plot flow trajectories for all OD movements simultaneously, so the
method does not need to be repeated for each OD movement. We illustrate the approach graphically here, but
there is no need to draw graphs for general networks. One can instead observe the route flow values, where a
finer grained decrement of B will provide a more accurate estimation of By,q. m (6).

In the case of the small example network where there is a single OD movement, we estimate 3,4, (1)
using the above method. Fig. 3.45 displays trajectories of APSL SUE route flow solutions as the 8 parameter
isvaried forv, =2, v, =v3 =v, = 1,60 =1, & = 8. § was decremented by 0.005 and the initial large
value was 1.2. The solution trajectory plotting was repeated until multiple trajectories were shown. As shown,
there is a unique trajectory of route flow solutions up until 8 = 3,4, (1) Where there then becomes multiple
trajectories. The estimated f,,,4, (1) value is 0.995. While two APSL SUE solutions were found for § = 1.1
in Fig. 3.43B & Fig. 3.44B, Fig. 3.45 shows that there are three solutions.
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Fig. 3.45. Small example network: Trajectories of APSL SUE solutions as 8 is varied (v; = 2, v, =v3=v,=1,0 =1, = 8).

We use the same technique of plotting flow trajectories to estimate the APSL SUE uniqueness conditions for
the Sioux Falls and Winnipeg networks. Fig. 3.46 displays for Sioux Falls the maximum route flow from three
trajectories of APSL SUE solutions as the 8 parameter is varied for four different randomly chosen OD
movements.  was decremented by 0.005, and the initial large g and stopping small 5 values were g = 1.1
and B = 0.9, respectively. As shown, the 4. (0.01) values for these OD movements appear to be close to
1. Fig. 3.47 display results for the Winnipeg network (two trajectories are plotted), where the 4. (0.5)
values also appear to be close 1.
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Fig. 3.47. Winnipeg: Maximum route flow for four different OD movements from two trajectories of APSL SUE solutions as f3 is

varied.

In our experience, the ranges of £ that exist for the uniqueness of APSL and APSL SUE solutions provide
enough scope for fitting to behaviour, where typical 5,,,,, vValues range between 0.9 and 1.1. Duncan et al
(2020) experienced no difficulties in estimating APSL on a real-life large-scale network, and obtained a
maximum likelihood estimate of 8 = 0.84, where it was verified that this was within the unigueness range.
Although there are obvious differences in the models, we note that this ‘safe’ range for § for APSL
uniqueness also includes values for S8 reported in empirical studies with PSL & GPSL (e.g. Ramming, 2002,
Bovy et al, 2008, Hoogendoorn-Lanser et al, 2005; Frejinger & Bierlaire, 2007; Prato, 2013), where estimated
values have been reported in the range 0.6 to 0.93.

4.5

Findings of the Numerical Experiments

To summarise, the key findings of the numerical experiments were that:

a)

b)

c)

d)

e)
f)

9)

h)

APSL SUE is more internally consistent than GPSL SUE in terms of dealing with unrealistic routes in
the adopted choice sets.

APSL SUE is generally more robust than PSL, CL, CNL, & GNL SUE to the inclusion of unrealistic
routes to the choice set.

Convergence rates for solving APSL SUE were similar to that for PSL & GPSL SUE, however the
computational burden involved in computing the APSL choice probabilities for each FAA iteration
resulted in much longer total computation times.

On-the-other-hand, the computational burden involved in computing the APSL’ choice probabilities
was the same as that for PSL & GPSL (similarly closed-form), but the APSL’ SUE convergence rate
was comparatively slow, and thus total computation times were also longer.

In general, the FPIM convergence parameter ¢ (and thus the accuracy of the APSL choice
probabilities) must be at a certain level for convergence of the FAA to the APSL SUE solution.

However, by utilising ‘follow-on’ initial FPIM conditions — where the initial conditions for solving
the APSL probabilities at iteration n of the FAA are set as the route flow proportions from iteration
n — 1 —the FAA will converge to the APSL SUE solution regardless for all .

There was a computational trade-off between solving APSL & APSL' SUE: solving APSL SUE with
low ¢ and follow-on initial conditions simulated solving APSL" SUE where the convergence rate was
slow, while larger values of & resulted in comparatively quick convergence rates but lengthy
computation times for the iterations.

There was an ‘optimal’ intermediate value of ¢ for solving APSL SUE with follow-on initial FP1M
conditions whereby a suitable SUE convergence rate meets suitable computation times for each
iteration. Optimal values for the examples in this study were & = 1 for Sioux Falls and ¢ = 0 for
Winnipeg.
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i) Another technique that improved APSL SUE computation times was to stipulate a set number of
FPIM iterations to perform at each FAA iteration: optimal values were 3 and 2 FPIM iterations for
Sioux Falls and Winnipeg, respectively.

j) Best computation times for solving APSL SUE were found when utilising a combination of a
maximum number of FPIM iterations and an intermediate value of ¢: 3 FPIM iterations and ¢ = 5 for
Sioux Falls, 2 FPIM iterations and ¢ = 4 for Winnipeg.

k) APSL SUE can be thus solved in feasible computation times — typically longer than PSL & GPSL
SUE, but guicker than CL, CNL, GNL, & PCL SUE (significantly on the larger-scale Winnipeg
network).

[) Uniqueness conditions appeared to exist for APSL SUE: for 8 in the range 0 < 8 < Bax(0), Where
APSL probability solutions are unique.

M) Bmaxm(0) values (uniqueness for OD movement m) in experiments were all close 1.

The ‘optimal’ values for the methods in h)-i) for solving APSL SUE are particular to the network, model, and
algorithm specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by
fixing the optimised values for a given specification, and then varying the specifications, it was shown that the
method was robust in its effectiveness compared to solving APSL SUE in a standard way (i.e. where the
APSL fixed-point probabilities are accurately solved with non-follow-on initial conditions). Future research
could explore an intelligent, adaptive process whereby the optimal values of ¢ and the maximum number of
FPIM iterations to perform at each FAA iteration are learnt / worked out as the FAA progresses.

5. Conclusion

This paper investigates the integration of the Adaptive Path Size Logit (APSL) route choice model within a
Stochastic User Equilibrium (SUE) model. The APSL model captures correlations between overlapping routes
by including correction terms within the route utilities, and offers an internally consistent approach to
reducing the negative impact that unrealistic routes have on the correction terms of realistic routes. To do this,
the APSL model proposes that routes contribute to path size terms according to choice probability ratios;
consequently, the probability relation is an implicit function, naturally expressed as a fixed-point problem.
APSL is thus not closed-form and calculating the choice probabilities requires a fixed-point algorithm that can
compute the solution. This has the potential to be computationally burdensome in large-scale networks even
when the travel costs are fixed. As explored in the paper, however, the requirement of solving fixed-point
problems to compute APSL choice probabilities can be circumvented in SUE application, since at equilibrium
the route flow proportions and choice probabilities equate.

The paper proves that APSL SUE solutions exist, but uniqueness cannot be guaranteed. Instead, the paper
investigates the uniqueness of APSL SUE solutions numerically, where experiments on the Sioux Falls and
Winnipeg networks suggest that uniqueness conditions exist. These conditions are analogous to those for the
uniqueness of APSL probability solutions, and APSL SUE solutions appear to be unique when APSL
solutions are unique.

The advantages of APSL SUE are demonstrated in numerical experiments on the Sioux Falls and
Winnipeg networks. Computational performance, choice set robustness, and flow results are compared with
internally consistent SUE formulations of competitor correlation-based route choice models to APSL, namely:
Path Size Logit (PSL), Generalised Path Size Logit (GPSL), C-Logit (CL), Cross-Nested Logit (CNL),
Generalised Nested Logit (GNL), and Paired Combinatorial Logit (PCL), where the functional forms in the
correlation components are based upon generalised, flow-dependent congested costs, rather than e.g. length /
free-flow travel time. A flow-averaging algorithm with Method of Successive Weighted Averages step-size
scheme is used to solve the SUE models. The paper demonstrates how for APSL SUE one can trade-off the
accuracy of APSL probabilities (and thus computation times of each iteration) with rate of SUE convergence,
and as such, it is shown that APSL SUE can be solved in feasible computation times. The key findings from
the numerical experiments were that:

a) APSL SUE is generally more robust than PSL, CL, CNL, & GNL SUE to the inclusion of unrealistic
routes to the choice set.
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b) APSL SUE is more internally consistent than GPSL SUE in terms of dealing with unrealistic routes in
the adopted choice sets.

¢) APSL SUE can be solved in feasible computation times — typically longer than PSL & GPSL SUE,
but quicker than CL, CNL, GNL, & PCL SUE (considerably on the larger-scale Winnipeg network).

Further research could compare APSL SUE / the internally consistent correlation-based SUE models in the
paper with other network equilibrium modelling approaches, for example Probit, Markovian traffic
equilibrium (Baillon & Cominetti, 2008), or Recursive Logit with choice aversion by Knies & Melo (2020),
who provide an extensive comparison with APSL as the reference model.

6. Acknowledgements

We gratefully acknowledge funding provided by the University of Leeds by awarding the corresponding
author with a University of Leeds Doctoral Scholarship for PhD research.

7. References

Baillon J & Cominetti R, (2008). Markovian traffic equilibrium. Mathematical Programming, 111(1-2), p.33-
56.

Bekhor S & Prashker J, (1999). Formulations of extended logit stochastic user equilibrium assignments. In:
Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel,
p.351-372.

Bekhor S & Prashker J, (2001). Stochastic user equilibrium formulation for the generalized nested logit
model. Transportation Research Record 1752, p.84—90.

Bekhor S, Toledo T, & Prashker J, (2006). Implementation issues of route choice models in path-based
algorithms. Paper presented at the 11th international conference on travel behaviour research, Kyoto, Japan
p.13-19.

Bekhor S, Toledo T, & Reznikova L, (2008). A path-based algorithm for the cross-nested logit stochastic user
equilibrium. Computer-Aided Civil and Infrastructure Engineering, 24(1), p.15-25.

Ben-Akiva M, & Ramming S, (1998). Lecture notes: discrete choice models of traveler behavior in networks.
Prepared for Advanced Methods for Planning and Management of Transportation Networks. Capri, Italy.

Ben-Akiva M, & Bierlaire M, (1999). Discrete choice methods and their applications to short term travel
decisions. In: Halled, R.W. (Ed.), Handbook of Transportation Science. Kluwer Publishers.

Bliemer M & Bovy P, (2008). Impact of Route Choice Set on Route Choice Probabilities. Transportation
Research Record: Journal of the Transportation Research Board, 2076, p.10-19.

Bovy P, Bekhor S, & Prato C, (2008). The Factor of Revisited Path Size: Alternative Derivation.
Transportation Research Record: Journal of the Transportation Research Board, 2076, Transportation
Research Board of the National Academies, Washington, D.C., p.132-140.

Cantarella G & Binetti M, (2002). Stochastic assignment with gammit path choice models. Patriksson, M.,
Labbé’s, M. (Eds.), Transportation Planning: State of the Art, p.53—68.

Cascetta E, Nuzzolo A, Russo F, & Vitetta A, (1996). A modified logit route choice model overcoming path
overlapping problems: specification and some calibration results for interurban networks. In: Proceedings of
the 13th International Symposium on Transportation and Traffic Theory, Leon, France, p.697—711.

112



Chapter 3. Formulation and solution of Adaptive Path Size Logit Stochastic User Equilibrium —
addressing choice set robustness and internal consistency

Cascetta E, Russo F, & Vitetta A, (1997). Stochastic user equilibrium assignment with explicit path
enumeration: comparison of models and algorithms. In: Proceedings of the international federation of
automatic control: Transportation systems, Chania, Greece, p.1078-1084.

Chen A, Lo H, & Yang H, (2001). A self-adaptive projection and contraction algorithm for the traffic
assignment problem with path-specific costs. European Journal of Operational Research, 135(1), p.27-41.

Chen A, Lee D-H, & Jayakrishnan R, (2002). Computational study of state-of-the-art path-based traffic
assignment algorithms. Mathematics and Computers in Simulation, 59, p.509-518.

Chen A, Kasikitwiwat P, & Ji Z, (2003). Solving the overlapping problem in route choice with paired
combinatorial logit model. Transportation Research Record 1857, p.65-73.

Chen A, Pravinvongvuth S, Xu X, Ryu S, & Chootinan P, (2012). Examining the scaling effect and
overlapping problem in logit-based stochastic user equilibrium models. Transportation Research Part A, 46,
p.1343-1358.

Chen A, Xu X, Ryu S, & Zhou Z, (2013). A self-adaptive Armijo stepsize strategy with application to traffic
assignment models and algorithms. Transportmetrica A: Transport Science, 9(8), p.695-712.

Chen A, S Ryu, Xu X, & Choi K, (2014). Computation and Application of the Paired Combinatorial Logit
Stochastic User Equilibrium Problem. Computers and Operations Research, 43, p.68—77.

Connors R, Hess S, & Daly A, (2014). Analytic approximations for computing probit choice probabilities,
Transportmetrica A: Transport Science, 10(2), p.119-139.

Daganzo C & Sheffi Y, (1977). On stochastic models of traffic assignment. Transportation Science, 11,
p.253-274.

Duncan L, Watling D, Connors R, Rasmussen T, & Nielsen O, (2020). Path Size Logit Route Choice Models:
Issues with Current Models, a New Internally Consistent Approach, and Parameter Estimation on a Large-
Scale Network with GPS Data. Transportation Research Part B, 135, p.1-40.

Frejinger E, & Bierlaire M, (2007). Capturing correlation with subnetworks in route choice models.
Transportation Research Part B, 41(3), p.363-378.

Hoogendoorn-Lanser S, van Nes R, & Bovy P, (2005). Path Size Modeling in Multimodal Route Choice
Analysis. Transportation Research Record: Journal of the Transportation Research Board, 1921, p.27-34.

Isaacson E, & Keller H, (1966). Analysis of Numerical Methods. John Wiley & Sons, Inc., New York, USA.

Jayakrishnan R, et al., (1994). Faster path-based algorithm for traffic assignment. Transportation Research
Record, 1443, p.75-83.

Kitthamkesorn S & Chen A, (2013). Path-size weibit stochastic user equilibrium model. Transportation
Research Part B, 57, p.378-397.

Kitthamkesorn S & Chen A, (2014). Unconstrained weibit stochastic user equilibrium model with extensions.
Transportation Research Part B, 59, p.1-21.

Knies A & Melo E, (2020). A Recursive Logit model with choice aversion and its application to route choice
analysis. https://arxiv.org/pdf/2010.02398.pdf.

113


https://arxiv.org/pdf/2010.02398.pdf

Chapter 3. Formulation and solution of Adaptive Path Size Logit Stochastic User Equilibrium —
addressing choice set robustness and internal consistency

Liu H, He X, & He B, (2009). Method of successive weighted averages (MSWA) and self regulated averaging
schemes for solving stochastic user equilibrium problem. Networks and Spatial Economics, 9(4), p.485-503.

Manzo S, Prato C & Nielsen O, (2015). How uncertainty in input and parameters influences transport model
outputs: a four-stage model case-study. Elsevier, Transport Policy, 38, p.64-72.

Prato C, (2014). Expanding the applicability of random regret minimization for route choice analysis.
Transportation, (41), p.351-375.

Ramming S, (2002). Network knowledge and route choice. Ph.D. Thesis, Massachusetts Institute of
Technology, Cambridge, USA.

Rich J & Nielsen, O (2015). System convergence in transport models: algorithms efficiency and output
uncertainty. European Journal of Transport Infrastructure Research (EJTIR), 15 (3), p.38-62.

Sheffi Y & Powell W, (1982). An algorithm for the equilibrium assignment problem with random link times.
Network: An International Journal, 12(2), p.191-207.

Sheffi Y, (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming
Methods. Prentice-Hall.

Xu X, Chen A, Zhou Z, & Behkor S, (2012). Path-based algorithms for solving C-logit stochastic user
equilibrium assignment problem. Transportation Research Record, 2279, p.21-30.

Xu X, Chen A, Kitthamkesorn S, Yang H, & Lo H, (2015). Modeling absolute and relative cost differences in
stochastic user equilibrium problem. Transportation Research Part B, 81, p.686-703.

Zhou Z & Chen A, (2006). A self-adaptive gradient projection algorithm for solving the nonadditive traffic
equilibrium problem. Paper presented at the 85th annual meeting of the transportation board, Washington,
D.C., USA.

Zhou Z, Chen A, & Bekhor S, (2012). C-logit stochastic user equilibrium model: formulations and solution
algorithm. Transportmetrica, 8(1), p.17-41.

8.  Appendix

8.1  Appendix A: Internally Consistent SUE Formulations for Correlation-Based Route Choice
Models

8.1.1 Correction Term Models

Correction term models capture correlations between routes by including heuristic correction terms within the
deterministic utilities. The deterministic utility of route i € R, isthus V,,,; = —6c¢y, ;(t) + Ky, ;, Where 8 > 0
is the Logit scaling parameter and k,,, ; < 0 is the correction term for route i € R,,,. The choice probability for
route i € R, is then:

e —0cm,i(®)+Km,i

Pm,i(cm(t): Km) = ZjeRm e—ecm,j(t)+lcm.j.

8.1.1.1 Path Size Logit SUE Models

Path Size Logit models propose that the correction terms adopt the form k,,, ; = 1n(ym_l-), where f >0 is

the path size scaling parameter, and y,, ; € (0,1] is the path size term for route i € R,,,. A distinct route with
no shared links has a path size term equal to 1, resulting in no penalisation. Less distinct routes have smaller
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path size terms and incur greater penalisation. The path size terms are often based upon link lengths and thus
Ym,i (inthose cases) is not dependent upon the link/route generalised travel costs. However, this leads to
internal inconsistency (as we discuss in more detail below) and in this study we base the path size terms upon
on generalised link travel costs (i.e. ¥, ; = ¥m i (), which in SUE application are congested, flow-dependent
costs. The choice probability function for route i € R,,, is thus:

5= 0m i (©+B1n(Vm,®) (vm l.(t))ﬁ e=0emi(®
Prni(€n (), ¥m(®)) = = : . (3.10)
% jepy e P OFIImO) g (@) e

The general form for the path size term is as follows:

®) = Z ta 1
T Lgeny ena @) (D) (311)
kER, Wm,i (t) amk

where W,,, ;. (t) > 0 is the path size contribution weighting of route i € R,, to path size terms (different for
each model), so that the contribution of route k € R,,, to the path size term of route i € R,,, (the path size

contribution factor) is thm—"((g To dissect the path size term: each link a in route i € R,,, is penalised (in terms

of decreasing the path size term and hence the utility of the route) according to the number of routes in the
choice set that also use that link (ZkeRm &Lm’k), where each contribution is weighted (i.e.

YkeR,, (Mwim—"((g) da.m,k), and the significance of the penalisation is also weighted according to how prominent

link a isinroute i € R,,, i.e. the cost of route a in relation to the total cost of route i € R,, (Ct—“(t))
m,

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1998) proposes that W, ,(t) = 1 so that all
routes contribute equally to path size terms. This is problematic with the mis-generation of realistic route
choice sets, however, as the correction terms and thus the choice probabilities of realistic routes are affected
by link sharing with unrealistic routes. To combat this, Ramming (2002) proposed the Generalised Path Size

-2
Logit (GPSL) model where W, ,.(t) = (Cm,k(t)) , A = 0, and routes contribute according to travel cost

ratios, so that routes with large travel costs have a diminished impact upon the correction terms of routes with
small travel costs, and consequently the choice probabilities of those routes.
Most studies of PSL SUE, or of SUE models with PSL path size terms, suppose that the link-route

prominence feature is represented as the ratio of link-route length, i.e. . t‘_"(t) = Ll“ -, where [, and L,, ; are the
m, m,l

lengths of link a € A and route i € R,,, respectively. However, this may be inaccurate in how travellers
perceive the prominence of links in a route: a short link may be highly congested and have a greater travel
time than a long link that is uncongested, and hence the timely, short link may be perceived as more
prominent in the route than the long, quick link. A similar argument can be made for using other uncongested
costs, e.g. free-flow travel time. SUE for a Path Size Logit model — where for internal consistency the link-
route prominence feature considers flow-dependent congested cost — can be formulated as follows:

Path Size Logit model SUE: A universal route flow vector f* € F is an SUE solution for a Path Size Logit
model iff the route flow vector for OD movement m, f7,, is a solution to the fixed-point problem

fn = QP (em(E@P). v (EAD. W (eaP))),  m=1,..M, (312)

where Py, ; and y,,, ; are as in (3.10) and (3.11), respectively, for route i € R,,, given the universal route flow
vector f.

8.1.1.2 C-Logit SUE

C-Logit (CL) proposes that the correction terms adopt the form «,,, ; = 1n(am_l-), where v < 0 is the
commonality scaling parameter, and o, ; € [1, ) is the commonality factor for route i € R,,,. The choice
probability for route i € R,, is thus:
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e —Ocmi(®)+v ln(amri(t)) (Um,i (t))v e~ 0cm,i(®)

= ] .
Sicr e—Qcm‘]-(t)+vln(Gm’j(t)) S ien, ( Omj (t)) o—0Cm,j(®

Pm,i(cm(t): Om (t)) = (3.13)

Routes not similar in any way to any other route have commonality factors equal to 1 (similar only to itself)
and no penalisation is incurred. Routes that are more similar to other routes (in terms of shared congested
travel cost) have greater commonality factors and incur greater penalisation. Cascetta et al (1996) proposed
several functional forms for the commonality factor, however the congestion-based functional form adopted
by Zhou et al (2012), and thus adopted in this paper, is as follows for route i € R,,:

o (t) _ z ZaEAm,i ta(sa,m,i6a,m,k (3 14)
& e e ® '

where Yaea,, ; tadam,iSa,mk is the shared congested travel cost between routes i € Ry, and k € Ry,.
CL SUE can thus be formulated as follows:

CL SUE: A universal route flow vector f* € F is a CL SUE solution iff the route flow vector for OD
movement m, fy,, is a solution to the fixed-point problem

fn = QP (cn(t@D), on(t@)), m=1,..M, (3.15)

where P, ; and o, ; are as in (3.13) and (3.14) for route i € R,,, respectively, given the universal route flow
vector f.

8.1.2 GEV Structure Models
GEV structure models are those that are based on the Generalized Extreme Value (GEV) theory (McFadden,
1978), which use a multi-level tree structure to capture the similarity among routes through the random error
component of the utility function.

8.1.2.1 Cross-Nested Logit SUE

The Cross-Nested Logit (CNL) model was adapted to the context of route choice by Prashker & Bekhor
(1998) and Bekhor & Prasker (1999). Their adaptation uses a two-level nesting structure in which the upper
level (nests) includes all the links in the network. The lower level consists of all the routes in the choice set
R,,, for OD movement m, and each of the routes is allocated to all the link nests that that route consists of. The
nest inclusion parameters a, ,, ; represent the proportion of link a used by alternative i € R,,,. For more than a
handful of routes and links, however, the number of independent nest inclusion parameters becomes very
large, making estimation difficult. Seeking to address this, Prashker & Bekhor (1998) proposed a functional
form for these parameters based on the network topology. These link-route prominence features are
represented in terms of length or free-flow travel time however, which is not internally consistent. Addressing
this so that the nest inclusion parameters a, ,,, ; (t) are based upon flow-dependent congested cost, the choice
probability for route i € R,,, is:

Pm,i(t) = Z Pm,(a) ® - Pm,(ila) ®, (3.16)
aEAm‘i
where
1/p
(aa,m,i(t) €xp (_Qcm,i(t)))
Pm,(i|a) (t) = 1/#1 (317)
e (@am,i(®) exp (—0cy,;(®)))
and
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(ZkERm (aa,m’k (t) exp (—Hcm,k (t)))l/u>u
Ybea (ZkERm (ab,m,k () exp (—Qcm,k (t)))l/u)w

* 8qm,i» and u € (0,1] indicates the degree of nesting such that when p = 1 CNL

Pin(a) ®) = (3.18)

t
where aa,m_i(t) = rlil(t)

collapses to MNL.
CNL SUE can thus be formulated as follows:

CNL SUE: A universal route flow vector f* € F is a CNL SUE solution iff the route flow vector for OD
movement m, fy,, is a solution to the fixed-point problem

fm = Qum(t(Af))l m = 1; e FMI (319)
where P, ; is as in (3.16)-(3.18) for route i € R,,, respectively, given the universal route flow vector f.

8.1.2.2 Generalised Nested Logit SUE
Bekhor & Prashker (2001) generalise CNL by introducing a functional form for the nesting coefficient y, to
be a parameterised average value of the nest inclusion coefficients. With congestion-based inclusion
coefficients, the Generalised Nested Logit (GNL) model proposes that the choice probability for route i € R,,,
is as in (3.16)-(3.18), where the nesting coefficient u for link nest a and OD movement m is: pig , (t) =

_ e A
(1 — Z‘;RL;"”(O) , A = 0. GNL SUE is thus as in (3.19) but with flow-dependent nesting coefficients as

i€ERmMm Pam,i

above. Note that routes consisting of a single link between the origin and destination result in the nesting
coefficient pq ., (t) for that link being equal to 0, since Xicr, @qm,i(t) = Xier,, Oam,i = 1. This results in the
GNL model being undefined.

8.1.2.3 Paired Combinatorial Logit SUE

The Paired Combinatorial Logit (PCL) model was adapted to the context of route choice by Prashker &
Bekhor (1998). Here, each pair of routes in a choice set form a nest and routes are chosen from each nest.
Within each nest, a,,,; ; is the similarity index between routes i € R,,, and j € R,,,. Like CNL/GNL,
individually estimating each of these parameters for each nest becomes infeasible for more than a handful of
routes. Instead, Prashker & Bekhor (1998) propose a functional form for these similarity indexes, proposing
that the similarity between routes is measured according to the C-Logit commonality factor. These
commonality factors are formulated in terms of shared length / uncongested travel cost however, which is not
internally consistent. Addressing this so that the similarity index parameters a,,, ; ; (t) are based upon flow-
dependent congested cost, the choice probability for route i € R,,, is

P i(t) = Z P @ - Poyai p (0, (3.20)
jERm,']il
where
—0cp,i (L)
Pon,(i1ipy (®) = - <1 — mi] (t)) , (3.22)
(il exp( —0cp, i () ) +ex ( —0cpm (1) )
1= 0y, ;(0) 1= 0, ;(0)
and
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P, (®)
(1 ) (22 g (s
_ omiJ P\T=0,®) " P\ T=0,,,® (3.22)
= o’
Nip—1 vNm —0C (1) —0cm, (D) omk
k=1 Zil=k+1 (1 - Umrki(t)) (exp (1 - Um,k,l(t)) +exp (1 - Um,k,l(t)>)
2

where ., ; j(t) =

Yaca,y, ;tabam,ibam,j

Vemi(@®: [em,j (@)

PCL collapses to MNL when similarity indexes are all equal to zero.
PCL SUE can thus be formulated as follows:

, A >0, is the similarity index between routes i € R,, and j € R,y,.

PCL SUE: A universal route flow vector f* € F is a PCL SUE solution iff the route flow vector for OD
movement m, fy,, is a solution to the fixed-point problem

fm = Qum(t(Af))l m = 1; e FMI (323)
where P, ; is as in (3.20)-(3.22) for route i € R,,, respectively, given the universal route flow vector f.

118



Chapter 4. A bounded path size route choice model
excluding unrealistic routes: Formulation and estimation
from a large-scale GPS study

Lawrence Christopher DUNCAN 2, David Paul WATLING 2, Richard Dominic CONNORS 2°, Thomas
Kjer RASMUSSEN ¢, Otto Anker NIELSEN °©

& Institute for Transport Studies, University of Leeds
36-40 University Road, Leeds, LS2 9JT, United Kingdom.
b University of Luxembourg, Faculté des Sciences, des Technologies et de Médecine,
Maison du Nombre, 6 Avenue de la Fonte, L-4364, Esch-sur-Alzette, Luxembourg.
¢ Department of Technology, Management and Economics, Technical University of Denmark
Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark.

Highlights

Identify desired properties for a Bounded Path Size (BPS) route choice model
Derive a mathematically well-defined & theoretically desirable BPS model form
Propose two BPS models and demonstrate properties

Present likelihood formulations and tracked route data MLE procedure

Estimate proposed models on a large-scale network using real GPS data

YV VVY

Abstract

This paper develops a new route choice modelling framework that deals with both route correlations and
unrealistic routes in a consistent and robust way. To do this, we explore the integration of a correlation-based
Path Size Logit model with the Bounded Choice Model (BCM) (Watling et al, 2018). We find, however, that
the natural integration of these models leads to behavioural inconsistencies and/or undesirable mathematical
properties. Solving these challenges, we derive a mathematically well-defined Bounded Path Size (BPS)
model form that utilises a consistent criterion for assigning zero choice probabilities to unrealistic routes while
eliminating their path size contributions. Two BPS models are consequently formulated: one that is closed-
form and another expressed as a fixed-point problem. Subsequently, we consider parameter estimation in a
simulation study and on a real-life large-scale network using GPS data, where computational feasibility is
demonstrated. Estimation results show the potential of the BPS models to give improved fit relative to
unbounded versions (as well as the BCM), while providing greater robustness to the assumed choice sets.

Key Words: bounded choice model, path size logit, route choice, parameter estimation, unrealistic routes

1. Introduction

There are several distinct and unique aspects about route choice modelling that makes it a more challenging
task than modelling other types of transport choices. Two key aspects are that: 1) there is often a complex
correlation structure between the route alternatives, which occurs due to the significant topological
overlapping of routes; and 2) typical road networks have many possibilities for very long routes that should be
considered unrealistic and excluded from route choice. To the best knowledge of the authors, no route choice
modelling approach has been developed thus far that addresses both of these challenges in a theoretically
consistent, robust, and mathematically well-defined way, and that moreover, has been shown to be both
computationally feasible in large-scale networks and estimatable from revealed choice data. In this paper, we
aim to address this by developing a new model framework. To set the background for the research, below, we
discuss modelling approaches for 1) and 2), and how we decided upon the approach taken.
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To overcome the deficiency of the Multinomial Logit (MNL) Random Utility Model (RUM) in its
inability to capture correlations between routes, numerous MNL extension models have been proposed that
relax the assumption that the random error terms are independently distributed. Alternative RUMs to MNL
either capture route correlations implicitly or utilise concepts from extended Logit models to similarly adapt
the model. For a more detailed review, see Duncan et al (2020); however, we discuss the key models and
concepts relevant to this paper below:

o GEV structure models use a multi-level tree structure to capture the similarity among routes through
the random error component of the utility function. Such models include: Cross-Nested Logit (CNL)
(Vovsha, 1997; Bekhor & Prashker, 1999; Marzano & Papola, 2008), Paired Combinatorial Logit
(Chu, 1989; Bekhor & Prashker, 1999; Gliebe et al, 1999; Pravinvongvuth & Chen, 2005),
Generalized Nested Logit (GNL) (Bekhor & Prashker, 2001; Wen & Koppelman, 2001), and the
Network GEV model (Bierlaire, 2002; Daly & Bierlaire, 2006).

o Simulation models include Mixed Logit models (Ben-Akiva & Bolduc, 1996; McFadden & Train,
2000) such as the Factor Analytic Logit Kernel model (Bekhor et al, 2002), as well as alternative
RUMSs to MNL such as Multinomial Probit (MNP) (Daganzo & Sheffi, 1977) and Multinomial
Gammit (MNG) (Cantarella & Binetti, 2002). Mixed Logit models divide the error terms into two
Gumbel and Gaussian distributed variable components which ensures the Logit structure is kept while
allowing for capturing interdependencies between routes. MNP and MNG etc. do not suffer from the
same issue as MNL, as the similarity between each pair of routes is accounted for by allowing for
covariance between the error terms, and route correlations are thus captured implicitly.

e Correction term models add correction terms to the deterministic utilities / probability relations to
adjust the choice probabilities in order to capture route correlations. Such models include: C-Logit
(CL) (Cascetta et al, 1996), Path Size Correction Logit (PSCL) (Bovy et al, 2008), Path Size Logit
(PSL) (Ben-Akiva & Ramming, 1998), Path Size Hybrid (Xu et al, 2015), and Path Size Weibit
(Kitthamkesorn & Chen, 2013).

The typical route choice modelling approach for dealing with unrealistic routes — for correlation-based models
and in general — is to employ some kind of heuristic method that attempts to explicitly generate a route choice
set containing just the routes considered realistic. This approach, however, leads to theoretical inconsistencies,
since the route generation criteria is not consistent with the calculation of the choice probabilities among
chosen routes. Moreover, in large-scale case studies, for example the study of eastern Denmark in Prato et al
(2014), Rasmussen et al (2016), Duncan et al (2020), as well as in Section 7.4 of this paper, it is implausible
to attempt to generate the exact choice sets of realistic routes, and instead choice sets are generated large
enough so that one can be fairly certain the realistic alternatives are present, regardless of how many
unrealistic routes are generated. This is problematic, since many correlation-based models are not choice set
robust, and results are thus negatively influenced by the presence of the unrealistic routes as well as highly
sensitive to the choice set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming,
2002; Ben-Akiva & Bierlaire, 1999; Bekhor et al (2008); Duncan et al, 2020).

An approach that has recently been proposed for consistently dealing with unrealistic routes is the
Bounded Choice Model (BCM) (Watling et al, 2018). The BCM has a consistent criterion for determining
restricted choice sets of realistic routes, and route choice probability: a bound is applied to the difference in
random utility between each given route and an imaginary reference route alternative, so that routes only
receive a non-zero choice probability if the difference between its random utility and the random utility of the
reference alternative is within the bound. Furthermore, the probability by which each route is chosen relates to
the odds associated with choosing each alternative versus the reference alternative. A special case of the BCM
is where the reference alternative is that with the maximum deterministic utility i.e. the route with the cheapest
generalised travel cost, so that a route only receives a non-zero probability if its cost is within some bound of
the cheapest route.

The BCM does not account for route correlation however, and motivated by the desire to develop a route
choice model that deals with both route correlation and unrealistic routes in a consistent and robust way, an
approach we deemed promising was to explore the integration of a correlation-based model with the BCM. To
determine which correlation-based model we would adopt, there were requirements: real-life application of a
route choice model involves estimating the model parameters, and we thus considered it important that the
proposed model could be successfully estimated, and moreover, that it would be computationally feasible to
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do so on large-scale networks. Below, we consider the suitability of the correlation-based model categories in
terms of potential to satisfy these requirements.

For GEV structure and simulation models, there are computational concerns: computing route choice
probabilities / estimation typically requires a high computational cost on large-scale networks. Although GEV
structure models have closed-form probability expressions, due to their multi-level tree structure the choice
probabilities are complex to compute, where the computational burden escalates significantly as the scale of
network / choice set sizes increase. This raises concerns over their applicability to large-scale networks. For
example, Lai & Bierlaire (2015) estimate CNL on a medium-scale network and find significantly greater
computation times than for MNL/PSL (e.g. 9.76 hours compared to 98.7/116 seconds). The problem for
simulation models is that they do not have closed-form expressions and solving the choice probabilities
requires either Monte Carlo simulation or alternative methods, all of which are computationally burdensome.
Many analytical approximation methods have been proposed to solve the MNP model, all aiming to provide
the best compromise between speed and accuracy (reviews can be seen in e.g. Rosa (2003), Connors et al
(2014)); however, performance of these approaches are assessed with a very limited number of routes,
typically up to just 25 alternatives. It is generally considered infeasible to accurately compute MNP, MNG etc.
probabilities on large-scale networks with thousands of routes.

There are also estimation concerns for GEV structure and simulation models: numerous studies have
found/discussed difficulties in obtaining reasonable estimates for parameters. There are numerous different
issues involved in estimating the numerous different specifications of the CNL model for route choice, and
several studies have discussed issues in detail, for example see Bierlaire (2006), Abbe et al (2007), Marzano
& Papola (2008). To summarise a few of the issues documented: a) there may be infinite specifications with
different choice probabilities that lead to the same covariance figures (Marzano & Papola, 2008); b) the
number of unknown parameters to be estimated increases as the number of routes increases (Marzano &
Papola, 2008); c) several studies have found that when estimating the nesting coefficients the model tends to
collapse to MNL (Ramming, 2002; Prato, 2005; Prato & Bekhor, 2006); d) the maximum likelihood
estimation functions are not concave which significantly complicates the identification of a global maximum
(Bierlaire, 2006); and, €) because of d), nonlinear programming methods tend to converge towards local
maxima of the log-likelihood function, and in practice, one observes a significant influence of the initial
values provided to the algorithm on the estimated parameters (Abbe et al, 2007). GNL requires the estimation
of an additional parameter over CNL which makes parameter estimation more difficult. There are also
difficulties in estimating the parameters of the Factor Analytic Logit Kernel model: Ramming (2002) finds
instable estimates of the covariance parameters, despite the very large number of random draws, while Prato
(2005) discusses the difficulty in obtaining significant estimates. And, there are also issues involved in
estimating the MNP model, including: identification issues arising from the number of parameters that may
need to be estimated (Dansie, 1985; Bunch, 1991; Keane, 1992); and, difficulties in accurately computing
small choice probabilities (Connors et al, 2014).

Correction term models are in contrast much more computationally practical than GEV structure and
simulation models, and are regularly applied and estimated on large-scale networks. They have simple closed-
form expressions, meaning the route choice probabilities are generally easy and quick to compute. They are
thus a useful and practical approach to approximating the correlation; more complex models can capture the
correlation more accurately, but due to the comparatively low computational cost and the relative ease in
obtaining reasonable estimates for parameters, correction term models are the most commonly used models in
practice.

Motivated by the above, we decided to explore the integration of a correction term model with the BCM.
The CL model proposes that the correction terms are based upon commonality factors that measure the
similarity of routes, and penalises the utilities accordingly. In contrast, the PSL model proposes that the
correction terms are based upon path size terms that measure route distinctiveness: a route is penalised based
on the number of other routes sharing its links, and the costs of those shared links. The PSCL model provides
a modified path size term derived from an approximation of GEV models.

Developing a BCM with an integrated correction term was complicated by the desire to produce a model
such that the correction terms consistently and only capture correlations between the routes the model defines
as realistic. Achieving this, however, and maintaining a continuous choice probability function is far from
trivial, as the research in this paper shows. Continuity is an important property, and is typically required for
applications of the model that are well-behaved, for example convergent parameter estimation and existence
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of network equilibria. Thus, when considering which correction term model to integrate we considered how
continuity could be achieved. We found that while one can derive a BCM with an integrated CL correction
term, there are uncertainties over how one can suitably maintain a continuous probability function. For the
PSL model, existing research on dealing with unrealistic routes within the path size terms presented a clear
direction to pursue, and while similar techniques could be translated for the PSCL model, PSL is much more
widely used and we therefore chose to pursue developing a BCM with an integrated PSL-like correction term.

The pragmatic approach that has been proposed for addressing choice set robustness for PSL, is to utilise
a weighted path size contribution technique along with choice set generation, to reduce the negative effects of
any present unrealistic routes. The Generalised Path Size Logit (GPSL) model (Ramming, 2002) proposes a
path size contribution factor based on travel cost ratios to reduce the contributions of costly routes, while the
Adaptive Path Size Logit (APSL) model (Duncan et al, 2020) proposes a contribution factor based on choice
probability ratios to provide internal consistency. While improving upon the choice set robustness of PSL,
these approaches do not solve the issue entirely since the path size contributions of routes defined as
unrealistic are only reduced instead of eliminated.

Taking the promising weighted path size contribution approach one step further, by integrating PSL
concepts with the BCM, the aim is to develop a model that eliminates unrealistic route contributions entirely,
as well as removing all the negative effects of unrealistic routes by also assigning them zero choice
probabilities. A natural form for a Bounded Path Size (BPS) model can be derived by inserting path size
choice model utilities into the standard BCM formula. However, as we show, this natural form for a BPS
model is deeply problematic and there are no behaviourally and practically desirable formulations. This is
because appropriately defining the path size contribution factors within the path size terms is challenging, and
from demonstrating with different options we establish desired properties for a theoretically consistent, robust,
and mathematically well-defined BPS model. To develop a BPS model that satisfies these properties, we then
derive an alternative BPS model form and consequently propose two BPS models: one that is closed-form and
another expressed as a fixed-point problem.

The structure of the paper is as follows. In Section 2 we introduce some basic network notation as well as
the definitions of relevant models. In Section 3 we discuss issues with the natural form for a BPS model and
consequent desired properties for a BPS model (demonstrated in detail in Appendix C), and derive an
alternative BPS model form. In Sections 4&5 we propose two BPS models adopting the alternative form. We
also in Section 5 provide a solution method for computing the choice probabilities, which are a solution to a
fixed-point problem, and address the existence and uniqueness of solutions (where the proofs are given in
Appendix D). In Section 6 we discuss/demonstrate the theoretical properties of the proposed BPS models
including how they satisfy the desired properties (demonstrated in detail in Appendix E). In Section 7 we
investigate parameter estimation. To show that the model parameters can be estimated we first propose a
Maximum Likelihood Estimation procedure for estimation with tracked route observation data, then
investigate this procedure in simulation studies on the Sioux Falls network where we show that it is generally
possible to reproduce assumed true parameters. Then, in a real-life case study, we estimate the BPS models
using real tracked route GPS data on a large-scale network, compare results with other models, and assess
computational feasibility. Section 8 concludes the paper.

2. Notation & Model Definitions

2.1  Basic Network Notation

The model developed in this paper is applicable to general networks with multiple OD movements and flow-
dependent link costs. However, without compromising the model derivation, we simplify notation by
considering a single OD movement with fixed link costs. The network consists of link set A. For the OD
movement, R is the choice set of all simple routes (without cycles), having size N = |R|. A; € A is the set of
1 lf ae Ai
0 otherwise
link a € A is a weighted sum (by parameter vector a) of variables w,, i.e. t,(w,; a), and that the generalised
travel cost for route i € R, c;, can be attained through summing up the total cost of its links so that

ci(t(w; a)) = Yaea, ta(Wq; @), where t is the vector of all link travel costs and w is the vector of all link

variables. To simplify notation ci(t(w; a)) is denoted just as c;. The route choice probability for route i € R

links belonging to route i € R, and 6, ; = { . Suppose that the generalised travel cost t, of each
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is P;, where P = (P;, P,, ..., Py) is the vector of route choice probabilities, and D is the set of all possible
route choice probability vectors:

N
D:{PE]RIEVO:OSPL- s1,vl'eR,Z P, = 1}_
j=1

And, D>° c D is the subset of all possible route choice probability vectors where no route has zero choice
probability:

N
D>% = {P ERY:0<P <1,Vi€ R,Z P = 1}.
j=1

2.2 Path Size Logit Models

Path Size Logit models were developed to address the well-known deficiency of the Multinomial Logit
(MNL) model in its inability to capture the correlation between routes. To do this, they include correction
terms to penalise routes that share links with other routes, so that the deterministic utility of route i € R is
V; = —6c; + k;, where 8 > 0 is the Logit scaling parameter and x; < 0 is the correction term for route i € R.
The choice probability for route i € R is:
e~ OcitK;

Pi - ZjER e—90j+l€]"
Path Size Logit correction terms adopt the form x; = S In(y;), where 8 > 0 is the path size scaling parameter,
and y; € (0,1] is the path size term for route i € R. A distinct route with no shared links has a path size term
equal to 1, resulting in no penalisation. Less distinct routes have smaller path size terms and incur greater
penalisation. The choice probability for route i € R is thus:

p e~ 0ci+BIn(yy) (y;)Pebei
i = o N = - (4.1)
ZjERe fcj+p1n(y;) ZjER(yj)'Be'gcj

The general form for the path size term is as follows:

t, 1
Yi = Y —

: : . C: %% 4.2

ac4; Ci Y er (Wllc) S (4.2)

where W, > 0 is the path size contribution weighting of route i € R to path size terms (different for each
model), so that the contribution of route k to the path size term of route i (the path size contribution factor) is

%. To dissect the path size term: each link a in route i is penalised (in terms of decreasing the path size term

and hence the utility of the route) according to the number of routes in the choice set that also use that link
(ZkER 5a,k), where each contribution is weighted (i.€. Y.xer (%) 8q,x), and the significance of the

i

penalisation is also weighted according to how prominent link a is in route i, i.e. the cost of route a in relation
to the total cost of route i (t—“)

Ci

Path size terms sometimes suppose that the link-route prominence feature is represented as the ratio of
link-route length, i.e. t—“ = lL—“ where [, and L; are the lengths of link a € A and route i € R, respectively.

Ci

However, this may be inaccurate in how travellers perceive the prominence of links in a route: a short link
may be highly congested and have a greater travel time than a long link that is uncongested, and hence the
timely, short link may be perceived as more prominent in the route than the long, quick link. Thus, for internal
consistency, we suppose the link-route prominence feature is represented as the ratio of link-route generalised
travel cost.

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1999) proposes that W, = 1 so that all routes
contribute equally to path size terms. This is problematic, however, as the correction terms and thus the choice
probabilities of realistic routes are affected by link sharing with unrealistic routes. To combat this, Ramming

(2002) proposed the Generalised Path Size Logit (GPSL) model where W, = c;* and routes contribute
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according to travel cost ratios, so that routes with excessively large travel costs have a diminished impact
upon the correction terms of routes with small travel costs, and consequently the choice probabilities of those
routes. Duncan et al (2020) reformulate the GPSL model (proposing the alternative GPSL model (GPSL')) so
that the contribution weighting resembles the probability relation, i.e. W, = e =", As they discuss, however,
GPSL and GPSL' are not internally consistent in how they define routes as being unrealistic: the path size
terms consider only travel cost, whereas the route choice probability relation considers disutility including the
correction term. To address this, the Adaptive Path Size Logit (APSL) model is proposed where W,, = P, and
routes contribute according to ratios of route choice probability. This ensures internal consistency, where
routes defined as unrealistic by the path size terms — and consequently given reduced path size contributions —
are exactly those with very low choice probabilities. Since the APSL path size contribution factors depend
upon the route choice probabilities, the probability relation is an implicit function, naturally expressed as a
fixed-point problem. The APSL model is thus not closed-form and solving the choice probabilities requires a
fixed-point algorithm to compute the solution. Furthermore, in order to prove existence and uniqueness of
solutions the APSL probability relation is modified from that in (4.1). See Duncan et al (2020) for more
details on the derivation and theoretical properties of the APSL model, as well as definitions and details of the
other Path Size Logit models.

2.3 Bounded Choice Model

In this subsection we briefly formulate the Bounded Choice Model (BCM), see Watling et al (2018) for more
details on the derivation and theoretical properties of the model. The BCM proposes that a bound is applied to
the difference in random utility between each given alternative and an imaginary reference alternative, so that
an alternative only receives a non-zero choice probability if the difference between its random utility and the
random utility of the reference alternative is within the bound. Furthermore, the probability each alternative is
chosen relates to the odds associated with choosing each alternative versus the reference alternative. Watling
et al (2018) consider a special case of the BCM where the reference alternative is the alternative with the
maximum deterministic utility. While the application of the BCM can involve exerting an absolute bound
upon the difference in utility from the maximum, (for example 25 units worse in deterministic utility), we
consider in this paper exerting a relative bound upon the difference, i.e. where routes only receive a non-zero
choice probability if they have a deterministic disutility less than ¢ times worse than the greatest route utility.
If V; < 0 is the deterministic disutility of alternative i € R, then the probability of alternative i € R is chosen
under the BCM is:

o (hy(V) — 1),
C Tjer(hin—1),

where h; (V) = exp(V; — ¢ max(Vi: k € R)), ¢ > 1 is the relative bound parameter to be estimated, and
()4 = max(0,"). The BCM formulation in (4.3) is derived from an assumption that the difference random
variable error terms (relative to the best alternative) follow a truncated logistic distribution, see Appendix A
for details.

In a route choice context where the deterministic utility of route i € R is given by V; = —0c;, the choice
probability relation for route i € R is:

(4.3)

 (h(=80) - 1),
C Zjer(hi(=00) - 1)

where h;(—0c) = exp(—0c; — ¢ max(—6c;:l € R)) = exp(—@(ci —@min(c;:l € R))). Thus, routes only
receive a non-zero choice probability if they have a cost less than ¢ times the cost on the cheapest route. We
would like to point out that although for simplification of notation c; is denoted as a single variable, c; is
actually a weighted sum of route variables, i.e. c;(t(w; a)) = Yaea, ta(Wg; ), for example travel time,
length, number of left/right turns, toll, etc., each with an associated taste coefficient / parameter. Therefore,
the bound is applied to generalised cost.

On the surface there may appear to be some similarity between the BCM and the original Random Regret
Minimisation (RRM) model (Chorus et al, 2008), in that they both propose that when travellers are
considering the relative attractiveness of a route, they compare the route alternative against better alternatives,
and worse alternatives in some way (at least in theory) have eliminated effects on better alternatives. For the

(4.4)
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BCM, the generalised travel cost of a route is compared against that of the lowest costing (best) alternative,
and if it has a cost some order of magnitude worse, it is not considered as a realistic alternative and is assigned
a zero choice probability. As such, the worse alternatives do not affect the choice probabilities of better
alternatives. For the RRM model, however, each of the cost attributes of a route are individually compared
against the attributes of the other routes, and if the attribute of another route is worse than the attribute from
the route in question, then there is no regret. As such, the worse alternatives do not affect the systematic
regrets of better alternatives. Therefore, the BCM and RRM model are very different models. They differ in
many ways, but a key difference is that in the RRM model all routes receive non-zero choice probabilities,
and thus unrealistic routes in the choice set negatively impact results. Moreover, RRM operates on an attribute
level. Prato (2014) explores integrating correction term models with the RRM model, to also deal with route
overlap.

3. Derivation of the Proposed Bounded Path Size Model Form

3.1  The Natural Form

There is a natural form for a Bounded Path Size (BPS) choice model, which is derived as follows. Path Size
RUMs (with additive error terms) propose that the deterministic utility for route i € R is given by V; =
—0c; + B In(y;). Thus, inserting the Path Size choice model utilities into the BCM formula in (4.3), the
choice probability relation for route i € R is:

p _ _(hi(=6c+BIn(y)) — 1),
" Yjer(hy(=0c+BIn)) - 1)

where h;(—0c + B In(y)) = exp(—0c; + B In(y;) — ¢ max(—6c; + B In(y;):l € R)). So, the natural BPS
model form applies a bound to the route utilities so that zero choice probabilities are assigned to routes with
infeasibly low utilities (¢ times worse in utility than the best alternative), where the utilities include a path
size correction.

Appropriately defining the path size contribution factors within the path size terms is difficult, however,
and from exploring different options, we consequently establish desired properties for a BPS model. We
briefly detail and discuss these properties here, see Appendix C for demonstrations on how they are derived.
While it may appear the properties are derived from issues with the specific path size term options explored,
the natural BPS model form is actually deeply problematic and there are no behaviourally and practically
desirable formulations, as we attempt to demonstrate. We define the active choice set as the set of routes with
non-zero choice probabilities, otherwise known as the used routes or those considered realistic. The Desired
Properties (DP) are as follows:

(4.5)

e Desired Property 1 — Consistent Definitions of Unrealistic Routes: Routes defined as unrealistic
by the choice model (assigned zero choice probabilities) should have zero path size contributions, and
vice versa.

o Desired Property 2 — Well-Defined Functions: The model functions should be well-defined across
their domain.

e Desired Property 3 — Internal Consistency: The model should be internally consistent, i.e. there is a
consistent assessment of the feasibility of routes between probability relation and path size
contribution factors.

e Desired Property 4 — Uniqueness: Route choice probability solutions are inter-active-choice-set
unique (where there is only one active choice set in which solutions exist), and conditions can be
established for intra-active-choice-set uniqueness (where for a given active choice set there is only
one solution).

o Desired Property 5 — Continuity: The choice probability function is continuous.

DP1 is behaviourally desirable since otherwise the assumption would be that travellers account for overlap
between routes they do not consider as being realistic alternatives, or vice versa in that they do not account for
the overlap between some routes they do consider realistic. Achieving this property is not trivial however as it
involves zero path size contributions, which results in issues leading to DP2,4,5. DP2 is practically desirable
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as it allows solutions to exist and be computed, and derives from an issue inherent with the natural BPS model
form where zero path size contributions results in occurrences of % and In(0). DP3 is motivated by the key

behavioural feature of the APSL model, where theoretical consistency is provided within the model’s
specification. We note that internal consistency also includes utilising the same generalised costs within all

model components, i.e. also within the path size terms, rather than using just length. Due to inherent % and

In(0) issues with the natural BPS model form, there are problems with solution uniqueness where multiple
active choice sets can yield solutions. This is undesirable as then an active choice set selection procedure is
required to determine which routes are considered realistic. DP4 is thus that solutions exist within a single
active choice only (i.e. so that the choice model has a unique selection of which routes are considered
(un)realistic), and that conditions exist for unique solutions within that active choice set (for example
conditions exist for unique APSL solutions). DP5 is practically desirable as this property is required for
applications of the model, for example parameter estimation and network equilibrium where the costs are not
fixed.

We would like to emphasise that continuity of the choice probability function is not trivial for a choice
model with implicit restriction of routes (i.e. where zero choice probabilities are assigned). For route choice
models in which non-zero choice probabilities are assigned to all routes (i.e. non-bounded models), while the
choice probability functions may be continuous for a given choice set, the functions are not continuous for
changes to the choice set. As such, as the generalised cost of a route increases where at some point it is
excluded by the choice set generation criteria, the probabilities from the choice model will not be continuous.
The BCM solves this by ensuring a routes choice probability tends towards zero as its cost increases, and
receives a zero probability exactly at the bound (and thus the probabilities of other routes are not adjusted
when it is removed from the active choice set). For a BPS model to be continuous, the path size contributions
must tend towards zero as a route approaches zero choice probability, and be eliminated exactly at zero choice
probability.

DP2,4,5 are general desired properties for any route choice model, and satisfying these properties is
essential for application of the model. Often, closed-form models such as MNL, PSL, GPSL, and the BCM
satisfy these properties trivially. However, these models have behavioural deficiencies: PSL models do not
(fully) deal with unrealistic routes, the BCM does not capture route correlations, and MNL deals with neither
route overlap nor unrealistic routes. Our aim is thus to develop a model that can harness the contrasting
strengths of the BCM and PSL models, thereby dealing with route overlap and unrealistic routes. The
difficulty, however, lies in obtaining theoretical consistency, i.e. satisfying DP1&3, where overlap is
considered between only and all the routes defined as realistic. While there exist natural BPS model
formulations that satisfy DP2,4,5 (e.g. option 1 in Appendix C Section 10.3.1), and formulations that satisfy
DP1&3 (e.g. options 2&3 in Appendix C Section 10.3.2), no formulations exist where all properties are
satisfied.

As shown in Appendix A of the revised manuscript, the BCM is derived from an assumption that the
random error terms follow a truncated logistic distribution, where the truncation is dependent upon the bound.
For the natural BPS model form in (4.5), the bound is dependent upon the best route utility, which includes
the path size correction. Therefore, during calibration the path size correction can have an indirect effect on
both the deterministic utility and random error term. The natural BPS model form could thus in principle
correct the relative sizes of the deterministic and random parts of the utility across different routes, and
thereby has the potential to provide a means for capturing a greater part of the correlation than standard PSL
models, which capture correlations through correcting the deterministic part only (Ramming, 2002;
Hoogendoorn-Laser et al, 2005). As shown in Appendix C, however, the natural BPS model form is not
suitable for use. In the following section we discuss how this applies to the alternative BPS model form we
propose.

3.2  The Proposed Form

To circumvent these issues with the natural form for a BPS model, we derive an alternative BPS model form

(henceforth just referenced as the proposed BPS model form). In Sections 4&5 we develop two BPS models

that adopt the proposed form, and which satisfy desired properties, as we discuss/demonstrate in Appendix E.
The basis for the proposed BPS model form can be considered to roughly derive from the union of two

models, where the probability of choosing route i relates to the probability of choosing route i under model 1
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and choosing route i under model 2. Model 1 is the BCM and model 2 is a Path Size Logit model where only
the correlation between routes is considered, i.e. there is no travel cost component. Let Q} and Q7 be the
probability of choosing route i € R under model 1 and model 2, respectively. Unionising the two models, the
probability of choosing route i € R relates as:

P; = Q X QF XX
where
(exp(—6(c; — p min(c;:1 € R))) — 1), . P

" Sjenef ")

1_
o Zjer (exp (~6(c; — 9 min(ci: L € R))) - 1)+’

and x is a normalisation constant that ensures the probabilities for all routes sum up to 1. So, Q} is the BCM
choice probability relation in (4.4) and Q2 is the regular Path Size Logit model probability relation in (4.1)
with 8 = 0, i.e. considering route distinctiveness only. The deterministic utilities of route i under model 1 and
model 2 are V! = —6¢; and V;* = B In(y;), respectively. By giving both of these utilities i.i.d Gumbel
distributed random error terms, the resultant union model would be a regular Path Size Logit model. Instead,
model 2 has i.i.d Gumbel distributed random error terms, and model 1 has difference random variable error
terms (relative to the best alternative) that follow a truncated logistic distribution (see Appendix A).

With probability relation P; = Q} x Q2 x x and the knowledge that ;g P; = Yicr QF X Q7 X x = 1, the
following BPS model is derived (see Appendix B for details):

_ (exp(=6(c; — pmin(ci:l €R)) — 1), - eBIn(r)
B Yjer (eXp (—G(Cj — @ min(c;:l € R))) - 1)+ . eBIn(y;)
3 (exp(—6(c; — p min(c;:l € R))) — 1)+ - (y)P

Yjer (eXp (—G(Cj — @ min(c;:l € R))) — 1)+ . (Yj)ﬁ

Note that the proposed BPS model form approaches the regular Path Size Logit model in (4.1) in the limit as
¢ — oo since the BCM approaches the MNL model in limit as ¢ — co.

Assuming that the path size terms are non-zero, a route only receives a zero choice probability if ¢c; >
¢ min(c;:l € R). One can thus predetermine the unused routes by checking the fixed route travel costs against
the bound, and the model can be formulated as follows. Let R(c; @) S R be the restricted choice set of all
routes i € R where ¢; < ¢ min(c;: L € R). The choice probability relation for route i € R is:

(exp(—8(c; — o min(c;: L € R))) — 1) - ()P
— . B
Pi =1Yjer(c:0) (exp (—B(Cj — @min(c;:l € R))) - 1) (%))
0 if i € R(c; @)
Routes i € R(c; ¢) are the used/active routes and routes i & R(c; @) are the unused/inactive routes.
Proposing that the routes with zero choice probabilities are exactly those with zero path size contributions
(and strictly positive otherwise), the BPS model formulation can be extended as follows. Let R(c; @) S R be

the restricted choice set of all routes i € R where ¢; < ¢ min(c;: [ € R). Given R(c; ¢), the choice probability
relation for route i € R is:

(exp(—@(ci —@min(c;:l € R))) — 1) . (Vi)ﬁ

i

if i € R(c; )

if i € R(c; )

— . _\B
P, = Zjeﬁ(c;¢) (exp (—Q(Cj — @ min(c;:l € R))) — 1) -(yj) , (4.6)
0 if i € R(c; p)
where the path size term for route i € R(c; @) is:
_ ta Wi
7 = Z fa : 4.7
' a€q; Ci Zkeﬁ(c;q)) Wk8a,k ( )
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where W; > 0 is the path size contribution weighting of route i € R(c; ) to used route path size terms, so
that the contribution of used route k to the path size term of used route i is % Note that the path size

i

contribution factor is of the form % so that distinct routes non-overlapping with all other routes have path

size terms equal to 1. As Ramming (2002) noted, this was an issue for the original alternative PSL formulation
proposed by Ben-Akiva & Bierlaire (1999). Since it is predetermined which routes are the unrealistic routes
with zero probabilities, one only need consider the correlation between the realistic routes with positive
probabilities (i.e. sum over routes k € R(c; ¢)), and inactive/unused routes, i.e. routes i & R(c; @), do not
have path size term values.

For the choice probability function to be continuous for the proposed BPS model, the path size
contributions weightings (WW;) must tend to zero as the route costs approach the bound from below (and
consequently zero choice probability), so that when the cost of a route reaches the bound exactly (and thus
receives a zero choice probability and is removed from the active choice set), there are no adjustments to the
path size terms of the remaining active routes altering the probabilities and making the distribution
discontinuous. This means that the W; contribution weightings should be explicitly or implicitly dependent
upon the route/link costs.

Watling et al (2018) remark that the BCM is consistent with a behavioural assumption that travellers
make decisions in two stages. In the context of route choice, in the first stage travellers compare the random
utility of each route against the best alternative in a pairwise manner. The bound imposed implicitly generates
a choice set. In the second stage, alternatives from this choice set are compared and route choice probabilities
are modelled using the log-odds from the first stage. Use of these log-odds means that choice set generation
and route choice are consistent with the same underlying behavioural model.

With the natural BPS model form, the deterministic utilities comprise of a path size component and a cost
component. This combined utility is used in the first stage to compare and bound, and obtain a choice set. In
the second stage, the route choice probabilities are modelled by directly using the log-odds from the first
stage.

With the proposed BPS model form derived here, the first stage is identical to that for the standard use of
the BCM, where solely travel cost is used to compare and bound to obtain a choice set. Where the proposed
BPS model form differs, however, is that in the second stage, the route choice probabilities are not modelled
by directly using the log-odds from the first stage, and instead these log-odds are adjusted according to path
size corrections to heuristically capture route correlation. Importantly though, the consistent criteria for
determining choice sets and route choice probabilities are not violated, i.e. no route excluded from the
generated choice set during the first stage can have a non-zero choice probability in the second stage, or vice
versa. The key feature of the proposed BPS model form is that the measure of route correlation in the second
stage only considers overlap between routes deemed realistic in the first stage.

As discussed in the previous section for the natural BPS model form, since the random error terms depend
upon the bound, and the bound in that case is dependent upon the best route utility (which includes the path
size correction), during calibration the path size correction can have an indirect effect on both the
deterministic utility and random error term. For the proposed BPS model form in (4.6), however, the bound
(in model 1) depends only upon the best route cost and is independent from the path size correction. The path
size correction in this case therefore does not affect random error.

4. The Bounded Bounded Path Size Model

In this and the following sections, we formulate two BPS models that adopt the proposed form in (4.6)-(4.7).
In Appendix E we discuss/demonstrate how these two models satisfy the desired properties for a BPS model
established in Appendix C.

We begin by formulating the Bounded Bounded Path Size (BBPS) model, which is defined as follows.
Let R(c; @) S R be the restricted choice set of all active routes i € R where ¢; < ¢ min(¢;: I € R). Given
R(c; @), the choice probability relation for route i € R is:
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. _ B
[ (oot —pmintait ) =) G2 g
Pi =133 erceo (exp (—G(Cj — @min(c;:l € R))) - 1) - (77P59) ) (4.8)
0 if i € R(c; @)
where the path size term for route i € R(c; @) is:

jprs -y fa (W29 -1
' a€4; Ci Zkeﬁ(c;tp)(hk (_AC) - 1)5a,k’

where h;(—Ac) = exp(—2A(c; — ¢ min(c;: L € R))), and the model parameters are 8,4 >0, 8 = 0, ¢ > 1. P;
in (4.8) is the BBPS model probability relation for route i € R which adopts the proposed BPS model form in
(4.6), and 7285 in (4.9) is the BBPS model path size term for route i € R(c; ¢), which adopts the form of

The rationale behind formulating the BBPS path size contribution weightings as W), = h,(—Ac) — 1 was
to satisfy the desired properties for a BPS model. As discussed in the previous section, when deriving a BPS
model from the proposed form by stipulating how the path size contribution weightings W, are formulated,
there are requirements for the consequent model to have a continuous choice probability function. To ensure a
smooth removal of a route from the active choice set, the weighting W,, for each route k € R(c; ¢) must tend
towards zero as the cost of that route tends towards the cost bound from above, i.e. as ¢, = @ min(c;:l € R),
¢, > @min(c;: L € R), and be eliminated exactly at the bound. The BBPS path size contribution weighting
W, = hi(—Ac) — 1 was stipulated as such so to satisfy these requirements. As can be seen, when A = 0, W,
matches the travel cost component in the BBPS model probability relation exactly, and thus choice
probabilities and path size contributions tend towards zero concurrently and meet at zero.

An additional path size contribution scaling parameter, A, is included, in the spirit of the GPSL and
GPSL' models, to allow for the de-coupling of the scale of the model from the path size effect. Larger values
of 1 accentuate the differences in cost with the contribution factors, so that the more expensive routes have
more diminished (though still positive) contributions. In the same way that the GPSL' ;) model is
developed, however, one can equate the travel cost scales setting by 1 = 8 — thus formulating the BBPS-s)
model — to improve internal consistency and reduce the number of model parameters to estimate.

The attraction of the BBPS model is that it has a closed-form choice probability expression and hence
route choice probability solutions are guaranteed to exist and be unique. The BBPS model is however not
fully internally consistent since the path size contribution factors do not consider route distinctiveness, though
consistency is improved by setting A = 6.

Moreover, the BBPS model approaches the GPSL' model as ¢ — oo:

(4.9)

tq (hi(=4c) - 1) tq e A
ZaeAiC_iZkeR(c;(p)(hj(—/lc) — 1)6a,k - ZQEAiC_im
and
(exp(=6(ci —pmin(c:l €RD) - 1)- () (r)fe
Y jerc:p)(exp(—0(c; — @ min(c;: L €R))) — 1) - (yj)B ZjER(yj)Be‘ecj
as @ — oo.

The BBPS.-0) model is thus equivalent to the GPSL’(;-5) model in the limit as ¢ — oo, and the BBPS model
is equivalent to the BCM for g = 0, which is equivalent to the MNL model in the limit as ¢ — oo.

5.  The Bounded Adaptive Path Size Model

The Bounded Adaptive Path Size (BAPS) model adopts the proposed BPS model form derived in Section 3
and proposes that routes contribute to path size terms according choice probability ratios to ensure internal
consistency and to provide a continuous choice probability function. The BAPS model route choice
probability relation is thus an implicit function, naturally expressed as a fixed-point problem.
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In the following two subsections we introduce two variants of the BAPS model. We first introduce in
Section 5.1 the standard formulation, which is the straightforward definition. However, the probability domain
is not defined on a closed set, forcing difficulties proving the existence and uniqueness of solutions. To
circumvent this, we also in Section 5.2 formulate a modified version for which we can prove solution
existence and establish uniqueness conditions, and where the standard BAPS formulation can be
approximated to an arbitrary precision. We then provide a solution method for the modified BAPS model
formulation, prove solution existence, and establish uniqueness conditions.

5.1 Standard BAPS Model Formulation

The standard BAPS model formulation (BAPSy) is defined as follows. Let R(c; ¢) S R be the restricted
choice set of all active routes i € R where ¢; < ¢ min(c;: 1 € R). Given R(c; ¢), the BAPS, model route
choice probabilities, P*, are a solution to the fixed-point problem P = f(y24PS(P)), where f; for route i € R
is:

fi(7B4P5(P))
(exp(—@(ci — @ min(c;:l € R))) — 1) . (ff’APS(P))B
B
Y jeR(c:o) (exp (—H(Cj — @min(c;:l € R))) — 1) . (?JBAPS(P))
0 if i € R(c; @)
and the path size term for route i € R(c; @) is:

ifi €R(c;p)  (4.10)

e (P)

- Z ta i _ 2 ta 1  ypep®ew)  (411)
a€A; Ci Zkeﬁ(c;(p) Pk5a,k a€4; Ci 2ke§(c-<p) (%) 6(1 k
; : ,

_ _ _ N
pRc9) — {P €ERY,;:0< P, <1,Vi € R(c; p),and,0 < P; < 1,Vi & R(c; (p),zl 1Pj = 1}.
]:

The model parameters are > 0, 8 > 0, and ¢ > 1. 724PS(P) in (4.11) is the BAPS model path size term
function for route i € R(c; ) that is a function involving the choice probabilities of all routes, though in
effect only the active routes. f;(¥24PS(P)) in (4.10) is the BAPS, model choice probability function for route
i € R which is a function of the used route path size term functions and hence also the choice probabilities.
The choice probability relation for route i € R is given by P; = fl-()_/BAPS(P)), which is an implicit equation
involving choice probabilities, and hence the BAPS, model route choice probabilities, P*, are a solution such
that P = f;(¥B4PS(P*)), Vi € R. For a BAPS, model route choice probability solution vector P*, ¥54PS(P*)
is the BAPS model path size term for route i € R(c; @), and unused routes, i.e. routes i & R(c; ¢), do not
have path size term values.

D(R(®) is the domain for the fixed-point function f, which is dependent upon the active choice set of
routes R(c; ¢) (and thus the route costs and bound parameter), and stipulates the feasible set of values for the
fixed-point variables, which are in this case probabilities P. p(R(ie)) stipulates that the active routes i €
R(c; ) with costs below the bound must all have non-zero fixed-point variable values (i.e. P; > 0, Vi €
R(c; )) ensuring that occurrences of % are avoided in the BAPS model path size term functions 72475 (P),
and thus any solution to the fixed-point system also circumvents the issue. The active routes can however
assume any non-zero probability value. DR©9) then stipulates that the inactive routes i & R(c; ¢) with costs
above the bound can assume any probability value (zero or non-zero), though while the domain of f allows
for inactive routes to have non-zero fixed-point variable values, by the definition of f; in (4.10), any solution
to the fixed-point system will have zero probabilities for all inactive routes. D) a1s0 stipulates that the
fixed-point variable values should all sum up to 1, as standard for a probability domain.

As (4.11) shows, for a choice probability solution P*, the contribution of used route k to the BAPS model
path size term of used route i is weighted according to the ratio of choice probabilities between the routes
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(%), and hence as a used route approaches zero choice probability its path size contribution approaches zero,

4

until it is considered unrealistic, where it then receives a zero choice probability and its path size contributions
are eliminated completely.

It is our belief that there is a strong theoretical and behavioural basis for the BAPS, model, and the model
captures the best features of the BCM and APSL model. It appears logical that routes are judged as unrealistic
(assigned zero choice probability / have zero path size contributions) if they have an excessively large travel
cost, but not necessarily unrealistic if they are very indistinct. Routes are still penalised according to their
indistinctiveness and the choice probability / path size contribution of route i decreases as 247 decreases,
but routes are not bounded according to indistinctiveness.

The BAPS, model approaches the APSL model in the limitsas T — 0 and ¢ — oo:

G: (9:(r""(P))) - gi(¥**5(P)) ast - 0,
and,

fi(?BAPS(P)) - gi(yAPS(P)) as @ — o,

The BAPS, model is also equivalent to the BCM for 8 = 0, which is equivalent to the MNL model in the
limitas ¢ — oo.

The BAPS, model proposes that the path size terms utilise choice probability ratio path size contribution
factors; however, referring to the derivation of the proposed BPS model form in Section 3, the choice
probabilities are not the model 2 probabilities (Q7), but instead those obtained from the union model. Hence,
the BAPS, model is not a direct union of two separate models and instead the models are interdependent.

The complication for the BAPS, model to be mathematically well-defined is that it is not in the correct
form for standard proofs of solution existence and uniqueness to apply. Standard proofs for existence and
uniqueness of fixed-point solutions require the domain of the fixed-point function (in this case f) to be a
compact convex set. The domain of f, DRE®) however, is not a compact convex set since the fixed-point
variable value bounds are not closed for all routes: the lower bound for all active routes i € R(c; ¢) is open
where these fixed-point variables cannot assume the bound value (i.e. P; # 0). As shown in Appendix C for
options 2&3, the path size terms cannot be altered to allow for zero path size contribution weightings without
losing continuity of the fixed-point function (which is also required for the proofs), and hence in Section 5.2
below we modify the BAPS model so that it is in the correct form for standard proofs to apply.

5.2 Modified BAPS Model Formulation

5.2.1 Definition
The modified BAPS model is defined as follows. Let R(c; @) S R be the restricted choice set (with size N) of
all routes i where ¢; < ¢ min(c;: L € R). The BAPS model route choice probabilities, P*, are a solution to the

fixed-point problem P = F (f(T/BAPS(P))), where F; for route i € R is:
_ 4+ (1= N71) - f;(¥%4P5(P)) if i € R(c;
F, (fi(yBAPS(P))) - { ( )0 f:(7B4P (P)) i;i - EEC. Z;’ (4.12)
f; forroutei € R is:

fi(7B4P5(P))
( (exp(—H(ci — @ min(c;:l € R))) — 1) . (VfAPS(P))ﬁ

YjeR(c:0) (exp (—9(6j — @ min(c;:l € R))) - 1) : (V]BAPS(P))ﬁ

ifi € R(c;p)  (413)

0 if i € R(c; )
and the path size term for route i € R(c; @) is:
t P; -
—BAPS _ ca l (R(c;),7)
vio o (P) = Z , VP €D , 4.14
! a€A; Ci Zkeﬁ(c;go) Pk5a,k ( )
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_ _ _ _ _ N
DREDD = {P €RYy:t <P, < (1—-N1),Vi€R(c;p),and,0 < P, < (1 — N1),Vi ¢ R(c; (p),z P = 1},
j=1
The model parametersare 8 > 0,8 >0, > 1,and0 <7 < % where 7 is the perturbation parameter. (4.13)

and (4.14) are equivalent to (4.10) and (4.11) for the standard BAPS model formulation: 74P (P) in (4.14) is
the path size term function for route i € R(c; ¢) that is a function involving the choice probabilities, and

fi(¥BAPS(P)) in (4.13) is the unadjusted choice probability function for route i € R which is a function of the
used route path size term functions and hence also the choice probabilities. The choice probability relation for

route i € R is given by P; = F; (ﬁ-(}_/BAPS(P))), which is an implicit equation involving choice probabilities,
and hence the BAPS model route choice probabilities, P*, are a solution such that P = F; (fl-(}_/BAPS(P*))),
Vi € R. The key difference between this modified formulation and the standard formulation is the adjustment
function F;. F; (fl- (pBAPS (P))) in (4.12) is the choice probability adjustment function for route i € R which

adjusts the choice probability function f; for reasons given below.

Duncan et al (2020) construct a choice probability adjustment function G; for the APSL model motivated
by some desired behaviours and required properties for proving existence and uniqueness. Similar motivations
led to the construction of the adjustment function F; for the BAPS model. The Required Properties (RP) for F;
were as follows:

1. F; must map into itself.

F; must be continuous for all P.

F; must be continuously differentiable with respect to P for all P.
The domain of F; must be closed and bounded.

o M DN

The domain of F; must allow the unused routes to have zero choice probabilities but not the used
routes.

o

F; should be able to approximate f; to arbitrary precision.

7. The domain of F; should have a lower bound for used routes that can approximate zero to
arbitrary precision.

RP 1-4 are required for existence and uniqueness proofs. RP 5 is required so that the used route path size term
function 72475 (P) in (4.14) and thus F; (fl- (VBAPS(P))) in (4.12) are defined, i.e. to avoid occurrences of %

RP 6 is desired as it is not our intention for the choice probabilities acquired from the modified formulation to
be different to the choice probabilities from the standard BAPS model formulation (where one would exist),
and we wish them to be as close as possible. RP 7 is desired as there should be no intentional bounding of the
used route choice probabilities; used routes ideally should be able to assume any non-zero probability, but this
must be approximated due to the requirement for the domain to be closed and bounded.

So, the formulation of F; in (4.12) and its domain D(R(¢:¢)) have been constructed to satisfy RP 1-7. In
Section 10.2 we prove that RP 1-3 are satisfied. The parameter 7 is introduced, and the domain D R(€®).7) jg
such that P; > 7, Vi € R(c; ¢), and since the choice probabilities for all routes sum up to 1: P; <
(1= (N — 1)7), Vi € R(c; ¢). The domain also stipulates that 0 < P; < (1 — N7) forall i € R(c; ¢). RP 4 is
thus satisfied as D R(€®)7) js closed and bounded. 7 is restricted to the range 0 < 7 < % and thus RP 5 is

satisfied as zero choice probabilities are not in the domain for the used routes, and unused routes can have
zero probabilities. As T — 0, F; — f; satisfying RP 6 and the lower bound for P; Vi € R(c; ¢) in D(R(c:)D)
tends towards zero satisfying RP 7.

As is the case for the APSL model, the T parameter is not a model parameter that requires estimating, it is
simply a mathematical construct that ensures RP 1-7 are satisfied. While the modified BAPS model
formulation provides the capability, it is not our intention for this model to purposefully compute different
choice probabilities to those obtained from the standard formulation for any given theoretical reason. In fact,
we desire the choice probabilities to be as close as possible, and hence we advise that only small values of T
are used. While bounding the non-zero choice probabilities from below results in a discontinuous choice
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probability function (since used routes cannot have probabilities between 0 and ), in practice, the range of
computable values is naturally limited by computer precision, and hence choice probabilities are always in
effect bounded by the smallest computable positive value. Thus, despite the known discontinuity, in
applications we use the modified BAPS model formulation with 7 set as a very small value (as small as
feasible for computation). With the APSL model proposed in Duncan et al (2020), no difficulties are
experienced in practical applications in their analogous approximation of the desired APSLo model with the
parameter z, and hence it is also expected that the approximation of the BAPS, model with the proposed
BAPS model here will be similarly non-problematic. For the rest of the paper, i.e. for the demonstrations and
estimation work, we use the modified BAPS model formulation with T = 10~1°, unless stated otherwise. In
Section 7.3.2.2 we briefly investigate the impact of the T parameter upon parameter estimation.

The modified BAPS model formulation approaches the APSL model in the limit as ¢ — oo:

fi@75(P)) - g:(r**5(P)) as ¢ > oo

and,

Fi (AT (P))) - Gi (g:(¥*"S (P))) as ¢ — oo.

Both the standard and modified BAPS model formulations are equivalent to the BCM for g = 0, which is
equivalent to the MNL model in the limit as ¢ — .

BAPS model solutions are guaranteed to exist and are unique under certain conditions. To prove these
theoretical properties, we appropriately modify the proofs for existence and uniqueness provided for the APSL
model in Duncan et al (2020). We include the proofs in Appendix D. Just as for the APSL model, values of
b > 0 exist such that BAPS model solutions are unique for 8 in the range 0 < § < b. Though there are cases
where solutions are unique for all > 0 (for example when there are no overlapping used routes), in most
cases there is a maximum value for b (by,4y). B in the range 0 < B < by, IS however only a sufficient
condition for unique BAPS model solutions, B4 iS the true maximum value where solutions are unique for
B intherange 0 < B < Bmax- In Appendix E we propose a method for estimating S, (also adapted from
that proposed for the APSL model) and demonstrate estimating the uniqueness conditions for the example
network. In Sections 7.3.2.2.3 and 7.4.2.3 we demonstrate estimating the uniqueness conditions for the Sioux
Falls simulation experiments and real-life large-scale network, respectively.

5.2.2  Solution Method
There are many fixed-point algorithms available for solving the BAPS model fixed-point system P =

F (f()_/BAPS(P))). In the studies in this paper we utilise the simplest fixed-point algorithm available: the

Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). The FPIM is the most basic fixed-point
algorithm, and other algorithms aim to accelerate the convergence of the FPIM, though require more
complicated computations at each iteration s. The FPIM for solving the BAPS model fixed-point system P =

F (f()_/BAPS(P))) is formulated as follows:

Pi(s+1) = F, (fi ()—,BAPS(P(S)))), s=012,..
such that

lim Pi(s+1) = lim F, (fz (}—,BAPS(P(S)))) =P, P© g pREe)D), Vi € R.
S$—00

S—00
A standard convergence statistic we chose to observe in this study is In (ZiER |Pi(s+1) — Pl.(s)

is said to have converged sufficiently to a BAPS model choice probability solution if:

In (Z ) <In(107%),

i€R
where £ is a predetermined convergence parameter. In Sections 7.3.2.2 & 7.4.1.2 we assess the computational
performance of the BAPS model in computing choice probabilities and parameter estimation.

), and the FPIM

(s+1) (s)
P~
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6. Theoretical Properties

In this section, we first demonstrate on small example networks the theoretical properties of the proposed BPS
models and compare with results from MNL, Path Size Logit models, and the BCM. Then, we discuss how
the proposed BPS models satisfy the desired properties established for a BPS model in Section 3.1 and
Appendix C, and finally illustrate how the models collapse into one another.

In demonstration 1, we demonstrate whether/how the different models deal with route overlap and
unrealistic routes. To do this, we adapt the famous ‘loop-hole’ network (also known as the red-bus/blue-bus
network) presented in Cascetta et al (1996), which is Fig. 4.1 minus link 1. Example network 1 in Fig. 4.1 has
five routes: Route 1: 1 — 3, Route 2: 1 — 4, Route 3: 2 — 3, Route 4: 2 — 4, Route 5: 5. Routes 3-5 all have
a travel cost of 1 while Routes 1&2 have a travel cost of 2.5 — p. Route 5 is distinct while Routes 1-4 are
correlated, where the degree of correlation depends on p. As p — 1, Routes 1&2 and Routes 3&4 become
highly correlated, and (because links 3&4 become negligible compared to links 1&2) the network is in effect
reduced to 3 distinct routes consisting of links 1,2,&5. On-the-other-hand, as p = 0, link 2 becomes negligible
compared to links 3&4 and Routes 3&4 become non-overlapping routes.

Fig. 4.2 displays for example network 1 the route choice probabilities for the different models as p is

varied between 0 and 1, 8 = B = A6PS" = ABBPS = 1, ¢ = 2, 16PS = 5. As p varies between 0 and 1, the cost
of Routes 1&2 decreases from 2.5 to 1.5. Since the minimum costing route is 1, the cost bound is 2.
Therefore, for p < 0.5, Routes 1&2 should be considered unrealistic (given the bound criteria) and hence
given zero choice probabilities and excluded from route overlap considerations. As shown for MNL and the
BCM, because these models fail to account for any route overlap, and Routes 3-5 all have travel costs of 1 for
all p, these routes have equal choice probabilities for all p, while the BCM gives zero probabilities to routes
considered unrealistic and MNL does not. Routes 3-5 should, however, only have equal choice probabilities at
p = 0 (where these routes are all non-overlapping, equal costing, and Routes 1&2 are considered unrealistic).
As p is increased from 0 to 0.5, the choice probabilities of Routes 3&4 should be reduced to account for the
overlap between the two routes, and as p is increased from 0.5 to 1, overlap with Routes 1&2 should also be
considered as these become realistic. For PSL, while route overlap is considered, the overlap is considered in
a non-discriminatory manner between realistic and unrealistic routes, and therefore Routes 3&4 are penalised
for overlapping with Routes 1&2 for p < 0.5. GPSL, GPSL’, and APSL all improve upon this shortcoming of
PSL by reducing the penalisation incurred upon Routes 3&4 from Routes 1&2 for p < 0.5. All routes are
given non-zero choice probabilities and path size contributions however, and therefore the effects of the
unrealistic routes are not fully dealt with. As the plots for the BBPS & BAPS models show, Routes 1&2
receive zero choice probabilities for p < 0.5, and Routes 3&4 are not penalised for overlapping with Routes
1&2. For p > 0.5, Routes 1&2 receive non-zero choice probabilities and Routes 3&4 are penalised for
overlapping with Routes 1&2.

ts =1

Fig. 4.1. Example network 1.
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Fig. 4.2. Example network 1: Route choice probabilities for different models as p is varied (6 = B = ASPS = 1BBPS = 1, ¢ = 2,
AGPS — 5)_

In demonstration 2, we demonstrate how the BPS models are able to overcome a drawback typically
experienced by correction terms models on the Switching Route Network in Prashker & Bekhor (2004).
Example network 2 in Fig. 4.3 (the Switching Route Network) has four routes: Route 1: 1 — 2. Route 2: 5 —
6. Route 3: 1 - 3 = 6. Route 4: 5 —» 4 — 2. Routes 1-3 all have travel cost equal to 10 (for all 1), while
Route 4 has travel cost equal 4n-10. To ensure non-negative link costs, n must be between 5 and 10. Forn =
5, Route 4 has equal travel cost to the other routes, and as n increases from 5, Route 4 increases in cost and
consequently becomes less attractive compared to the other routes.

There are expected behaviours from the choice probabilities as 7 is varied between 5 and 10, where the
probability of Route 3 is typically observed. For n = 5, the middle links collapse to zero and the network is in
effect reduced to four identical routes. Probability for each of these routes should therefore equal % atn =5.
As n increases, Route 4 becomes less attractive and the other routes should increase in choice probability. The
proposition is that at some point as i is increased, Route 4 should be defined as unrealistic and beyond this
point should not impact upon the probabilities of the other routes. Presuming Route 4 is defined as unrealistic
before n = 10, when 7 reaches 10, links 1&6 collapse to zero and the network is in effect reduced to just three
identical distinct routes (excluding the unrealistic route). As such, at n = 10, Route 3 (along with Routes
1&2) should have probability equal to % Here, we suppose that a route is defined as unrealistic if it has a
travel cost greater than or equal to twice the minimum cost route (a bound of ¢ = 2). This means that at and
beyond n = 7.5 (where Route 4’s travel cost equals 20), Route 4 should be defined as unrealistic and its
impact removed.

Fig. 4.4A-B displays for example network 2 the Route 3 choice probabilities from the different models as
n is varied between 5 and 10, where the parameters for Fig. 4.4A and Fig. 4.4B are § = A6PS" = 2BBPS — g —
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0.5, ¢ =2,A%?S =10and g = AGPS" = }BBPS — (1, f =08, ¢ =2,1%"S = 1, respectively. Considering
first Fig. 4.4A, as shown, for PSL, since the path size terms suppose all routes contribute equally whether
realistic or unrealistic, Route 4 contributes to Routes 1&2 for all n and the PSL probability for Route 3 goes
above % Forn = 7.5, however, where Route 4 should be defined as unrealistic, Route 4 should not contribute
to Routes 1&2. For MNL & the BCM, Routes 1-3 receive the same probability for all n as they are equal
costing and correlation is not considered. For n > 7.5, the BCM gives the unrealistic Route 4 zero probability
(and Route 3 thus § probability). MNL gives a non-zero probability, but with the 6 parameter set, these
probabilities are small and the BCM is approximated. With the GPSL, GPSL', APSL, BBPS, & BAPS
models, overlap correlations between Routes 1-3 are captured, where Route 3 is penalised for overlapping
with both Routes 1&2, but because the path size contributions are weighted, the contribution of Route 4 to
Routes 1&2 is either reduced (for GPSL, GPSL’, APSL) or eliminated (for BBPS & BAPS) forn > 7.5. For
the parameters set, GPSL' approximates the BBPS model and APSL approximates the BAPS model, where
the contributions are weighted sufficiently for GPSL, GPSL', & APSL such that the probability for Route 3

does not exceed §
For the parameters set in Fig. 4.4B, however, the contributions are not weighted sufficiently for GPSL,
GPSL', & APSL, and the probabilities for Route 3 exceed % For BBPS & BAPS, with ¢ = 2, the contribution

of Route 4 to Routes 1&2 will be eliminated for n > 7.5 (rather than reduced) for all settings of the 8 and
parameters. 8 allows for route correlations to be captured (differentiating the BPS models from the BCM),
while the 6 parameter scales sensitivity to travel cost.

Fig. 4.3. Example network 2 (the Switching Route Network).
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Fig. 4.4. Example network 2: Choice probability of Route 3 for the different models. A: 6 = A6PS" = 1BBPS = g = 0.5, ¢ = 2,
A6PS = 10.B: 6 = A5PS' = ABEPS = 0.1, = 0.8, ¢ = 2, 2575 = 1.

In demonstration 3, we demonstrate how the parameters of the BAPS model impact upon the route choice
probabilities. Example network 5 in Fig. 4.5A has seven routes: Route 1: 1, Route 2: 2, Route 3: 3, Route 4:

4 - 5, Route 5: 4 - 6, Route 6: 7 - 8, Route 7: 7 — 9. Routes 1&7 have travel cost 2, Routes 2&6 have
travel cost 1.5, and Routes 3-5 have travel cost 1. Routes 1-3 are distinct routes, while Routes 4&5 and Routes
6&7 are correlated. The minimum costing routes are Routes 3-5 costing 1. For different ranges of the bound
parameter ¢, the active choice set of realistic routes varies, and the network can in effect be reduced as
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follows: for ¢ > 2 the full network in Fig. 4.5A of all 7 seven routes; for 1.5 < ¢ < 2 the reduced network in
Fig. 4.5B excluding Routes 1&7; and, for 1 < ¢ < 1.5 the reduced network in Fig. 4.5C excluding Routes
1&7 and Routes 2&6.

Fig. 4.6A-E display, for different settings of the 6 and 8 parameters, how the BAPS model choice
probabilities vary as ¢ is varied between 1 and 3. Considering first Fig. 4.6C where 8 = § = 1, as shown, for
@ = 3, all routes have costs below the bound and thus all have non-zero choice probabilities, (here the APSL
probabilities are approximated). As ¢ is decreased to 2, the costs of Routes 1&7 approach the bound, and their
choice probabilities thus tend towards zero. Moreover, as Route 7 tends towards zero probability, its path size
contribution to Route 6 tends to zero, and thus when ¢ = 2 and Route 7 receives zero probability / its
contribution to Route 6 is eliminated, the probabilities remain smooth and continuous.

For ¢ > 2, despite having the same travel cost, Route 6 has a lower probability than Route 2 as Route 6 is
penalised for overlapping with Route 7, while Route 2 is distinct. For 1.5 < ¢ < 2, however, Route 6 is not
penalised for overlapping with the unrealistic Route 7, and thus Routes 2&6 have the same probability. As ¢
is decreased to 1.5, Routes 2&6 approach the cost bound and zero probability.

For 1 < ¢ < 1.5, only the minimum costing Routes 3-5 are within the cost bound are thus receive non-
zero probabilities. Routes 4&5 have a lower probability than Route 3 since Routes 4&5 are penalised for
overlapping.

Now, considering Fig. 4.5A-C where £ equals 0, 0.5, and 1, respectively, the effect of the f parameter
(and thus path size correction) upon route choice can be seen. In Fig. 4.5A where § = 0, the BCM
probabilities are displayed. As can be seen, Routes 1&7, Routes 2&6, and Routes 3-5 have equal probabilities
for all ¢ since these routes have equal costs and route correlation is not considered. Routes 4&5 and Routes
6&7 should be penalised (when considered realistic), however, as they overlap. As Fig. 4.5B-C show for g =
0.5 and g = 1, respectively, the BAPS model probabilities penalises overlapping routes (when they are
considered realistic), while the penalisation is more significant for greater values of 8.

Now, considering Fig. 4.5C-E where 8 equals 1, 0.1, and 2, respectively, the effect of the 6 parameter
upon route choice can be seen. Lower 6 values dampen the travel cost differences for routes within the active
choice set, and routes with different costs have closer probabilities. Larger 6 values accentuate the travel cost
differences so that the higher costing routes receive lower probabilities. Decreasing probabilities with greater
6 values also results in the path size contributions for those routes being reduced, which is why the
probabilities between routes with the same cost have closer probabilities for larger 6.

t =2
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Fig. 4.5. Example network 3. A: Full network (for ¢ > 2). B: Reduced network (for 1.5 < ¢ < 2). C: Reduced network (for 1 < ¢ <

1.5).
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Fig. 4.6. Example network 3: BAPS model choice probabilities as the bound parameter ¢ isvaried. A:6 =1,3=0.B: 6 =1,8 =
05.C:0=8=1.D:6=01,=1.E:0=28=1.

Table 4.1 summarises whether the BBPS, BAPS,, & BAPS models satisfy the established desired properties
for a BPS model. We briefly discuss the results below, see Appendix E for a detailed discussion and
demonstrations.

Since the BBPS, BAPSy, & BAPS models all adopt the proposed BPS model form as derived in Section
3, DP1 & DP2 are automatically satisfied as the form has a consistent definition for unrealistic routes (which
is whether the cost bound is violated) and ensures all functions are defined.

The BBPS model is not internally consistent since route distinctiveness is not considered within the path
size contribution factors, while the BAPS, & BAPS model contribution factors consider choice probability
and the models are thus internally consistent. The BAPS, & BAPS models thus satisfy DP3 while the BBPS
model does not.

The BBPS model satisfies DP4 since the BBPS model has a closed-form probability relation guaranteeing
solution uniqueness. As discussed in Section 5.1, the BAPS, model is not in the correct form for standard
proofs of solution existence and uniqueness to apply. That is not to say that in all cases solutions are not
guaranteed to exist or are not unique, or that it is not the case that solutions do not always exist or there are not
always conditions under which solutions are unique. Thus, generally, the BAPS, model does not satisfy DP4,
but this is not necessarily always the case, and is neither proven nor disproven. As proven in Section 10.2,
BAPS model solutions are guaranteed to exist and uniqueness conditions can be established, thus satisfying
DP4.

The BBPS & BAPS,; model path size contribution weightings tend towards zero as route costs approach
the bound from below, and when a route cost reaches the bound exactly, that route receives a zero choice
probability / path size contribution. The BBPS & BAPS, models thus have continuous choice probability
functions and hence satisfy DP5. BAPS, model solutions are not necessarily guaranteed to exist, however,
which puts a caveat on whether this is true. The BAPS model does not have a continuous probability function
since no route can have a choice probability between 0 and 7, and hence DP5 is not satisfied. The caveat
however is that continuity of the BAPS model can be approximated with small values of t (the perturbation
parameter) such that discontinuity is not an issue in practice.

In conclusion, the benefit of the BBPS model is that solutions are guaranteed to exist and be unique and
continuity is guaranteed, while the negative is internal inconsistency. The BAPS, & BAPS models achieve
internal consistency, but the drawbacks are that BAPS, model solutions are not guaranteed to exist or be
unique and the BAPS model choice probability function is not continuous, though both of these drawbacks are
not issues in practice. Due to its greater theoretical appeal, and since its lack of discontinuity is not an issue in
practice, our recommended is that the BAPS model is used were it is computationally feasible to do so. The
BBPS model offers a more computationally practical alternative.
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Desired Property (DP) BBPS BAPS, BAPS
DP1 — Consistent Yes Yes Yes
Definitions of
Unrealistic Routes
DP2 — Well-Defined Yes Yes Yes
Functions
DP3 — Internal No Yes Yes
Consistency
DP4 — Uniqueness Yes Neither proven nor Yes
disproven
DP5 — Continuity Yes Yes, if solutions exist Yes, in the limit as the
(neither proven nor ‘perturbation parameter’
disproven) 7 tends to zero

Table 4.1. Summary of how the BBPS, BAPSo, & BAPS models satisfy the established desired properties for a BPS model.

Fig. 4.7 displays a schematic diagram of how the models in this paper collapse into one another.

GPSL

MNL

BBPS

Fig. 4.7. Schematic diagram of how the models collapse into one another.

7.  Estimating BPS Models

In this section, we provide a Maximum Likelihood Estimation (MLE) procedure for estimating the BBPS &
BAPS models with tracked route observations. This procedure is then investigated in simulation studies, and
the possibility of reproducing assumed true parameter estimates is assessed. The BBPS & BAPS models are
then estimated on a large-scale network using real route choice observation data tracked with GPS units, and
results are compared with MNL, Path Size Logit models, and the BCM. As discussed in the Section 5.2.1, in
applications, we propose that the modified BAPS model formulation, defined in (4.12)-(4.14) is used, with the
T parameter set as a very small value.

7.1 Notation and Definitions for Estimation with Multiple OD Movements

7.1.1 Notation

To consider the estimation of the BBPS & BAPS models as well as other models, we extend definitions here
for estimation on a network with multiple OD movements, but where the travel costs remain fixed. The road
network consists of link set A and m = 1, ..., M OD movements. R,,, is the choice set of all simple routes (no
cycles) for OD movement m of size N,,, = |R,,,|, and A,,,; S A is the set of links belonging to route i € R,

and 8g mi = {1 iface A_m"'. Suppose that the generalised travel cost t, of each link a € A is a weighted
" 0 otherwise
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sum (by parameter vector a) of variables w,, i.e. t,(w,; a), and that the generalised travel cost for route i €
Ry, cm,i, Can be attained through summing up the total cost of its links so that c,,, ; (¢(w; @) ) =

ZaeAm,i t,(w,; a), where t is the vector of all link travel costs and w is the vector of all link variables. Let the
route choice probability for route i € R, be Py, ;, where P,,, = (ijl,ijz, s Pm,Nm) is the vector of route

choice probabilities for OD movement m, and D,,, is the domain of possible route choice probability vectors
for OD movementm, m=1, ..., M.

7.1.2 Model Definitions
For multiple OD movement definitions of the MNL, PSL, GPSL, GPSL', and APSL models for parameter
estimation, see Section 5.1.2 in Duncan et al (2020). For the APSL model, the t,,, parameters are also set here
ast,, =107, m = 1,..., M, and APSL choice probability solutions are computed using the FPIM with initial
conditions set as the MNL route choice probabilities, and convergence statistic set at § = 10 (see Section 3.4
in Duncan et al (2020)).

We provide here multiple OD movement definitions of the BCM, and the BBPS & BAPS models for
parameter estimation.

7.1.2.1 Bounded Choice Model
The BCM choice probability relation for route i € R,,,:

(exp (—H(Cm'i(t) — @ min(cp, (8):L € Rm))) — 1)+
Yjer,, (exp (—Q(Cm'j(t) — @ min(cy, (8):L € Rm))) - 1)+.

P i(t) = (4.15)

7.1.2.2 Bounded Bounded Path Size Model
Let R, (¢, (£); @) S Ry, be the restricted choice set (with size N,,) of all routes i € R,,, where ¢, ;(t) <

@ min(cp, (t):1 € R,,) for OD movement m. The BBPS choice probability relation for route i € R, is
(hi(—0cm(@®) — 1) - (7R3 @ _
Pri(t) = i ) if L € Rm(em(D; )
™ % jermten@yp(hm i (=0em(®) = 1) - (PEEFS(®)) '
0 if i ¢ Em(cm(t); §0)

where hy, ;(—0¢p, (8)) = exp (—G(Cm'i(t) — @ min(cy,, (8):1 € Rm))), and the path size term for route i €
Rin(em(8); @) is:

7EEPS (£) = ta (i (=2 (®) = 1) 4.17
y (t) ZaEAm,i Cm,i(t) Zkeﬁm(cm(t);q))(hm,k(_Acm(t)) - 1)6a,m,k. ( . )

(4.16)

7.1.2.3 Bounded Adaptive Path Size Model
Let R, (¢, (£); @) S Ry, be the restricted choice set (with size N,,) of all routes i € R,,, where ¢, ;(£) <

@ min(cp, (£): 1 € R,,) for OD movement m. The BAPS model route choice probabilities for OD movement
m, P, (t), are a solution to the fixed-point problem P,,, = (fm (cm(8), 75475 (e, Pm))), given the link
cost vector t, where F,, ; for route i € R, is

Fni (foni (€m (8, FEAPS (2, Py)) )

{rm + (1= M) * i (€m0, FEAPS (8, Pr))  if i € R(Em(8); 9) (4.18)
0 if i & Ryp(crn(©); )
fm, forroute i € Ry, is

142



Chapter 4. A bounded path size route choice model excluding unrealistic routes: Formulation and
estimation from a large-scale GPS study

fini (€m (), VA5 (8, Pry))
{ (hm,i(_ecm(t)) - 1) (Vm LPS(t Pm))

3 efimten o) (i (~0€m(®) = 1) - (FEAPS (2, Py))
0 if i € Rpn(cm(1); )

where hy, ;(—0¢, (8)) = exp (—Q(Cm'i(t) — @ min(cy,, (8):1 € Rm))), and the path size term for route i €

R, (e (D); @) is:

if NS Em(cm(t); (,0) (419)

Ym LPS(t Pm) -

Z a m,i . vp,, € plFnCen®e) (4.20)
A€Am i Cm,i(t) Zke}?m(cm(t);qo) Pm,k 6a,m,k

ng (em@®);9),Tm)

{P € ]R 0T <SP <(1- (N,,, — Dt,,),Vi € R, (¢ (1); ), and, 0 < P

N
< (1= NppTi), Vi € Rm(cm(t);§0)'z' 1Pm,j = 1}:
]:

The model parametersare 8 > 0,8 >0,¢ > 1,and 0 < 1), < Ni m =1, ..., M. Each OD movement has its

own range restrictions for t,,, based on the number of routes in the active choice set, but the 7,,, parameters are
not model parameters that require estimating, and we set z,,, = 10716, m = 1, ..., M. BAPS model choice
probability solutions are computed using the FPIM with initial conditions set as the BCM route choice
probabilities, and convergence statistic set at &€ = 10 (see Section 5.2.2), unless stated otherwise.

7.2 Likelihood Formulations, Existence/Uniqueness, & Estimation Procedure

7.2.1 Likelihood Formulations

Suppose that we have available a set of Z observed routes, e.g. collected through GPS units or smart phones,
and consider a situation where it is not needed to distinguish individuals in their preferences (the approach is,
of course, readily generalised to permit multiple user classes differing in their parameters). Let m, denote the
OD movement of route observation z, and for each trip observation z = 1,2, ..., Z, let R, be the choice set of
all simple routes between the origin and destination of the trip. Suppose that the observation data is contained
in a vector x of size Z where:

x, =i ifalternativei € Ry, is chosen, z=1,..,2Z.

The BBPS model Likelihood, Lggps, for a sample of size Z is:

LBBPS(aI 91 ,B, ®, ﬂ-lx) = 1_[ sz,xz (t(W, a); 91 18! v, /1)! (421)

where P, , (t) is the BBPS model choice probability function given by (4.16) for route x, € R,
The BAPS model Likelihood, Lg4ps, for a sample of size Z is:

Z
Loars(@,0,6,012) = | | B, (6W; @;0,5,0) (422)

where Py, . (t) is the BAPS model choice probability solution for route x, € R, to the fixed-point problem

P, =Fp, ( fom, (sz (), 7E4PS (¢, Py, ))) for OD movement m,, given the link cost vector &, where F,, ;

and f,,,; are as in (4.18) and (4.19), respectively, for route i € Ry, and 75"

R (e (®); ).

isasin (4.20) forroute i €
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If for a given setting of the travel cost and bound parameters & and @, there is an observation z such that
Cm,x, (E(W; @) = @ min(cp,,,(t(W; @)): 1 € Ry, ), the BBPS & BAPS model Likelihood values are zero.
This means that the maximum likelihood estimates (@, 8, 3, @, 1) for the BBPS model and (&, 8, 3, ) for the
BAPS model will always be such that ¢,,_, (t(w;@)) < @ min(c,, ,(t(w;@)):l € R, ) forz =1,..., 2.

The BBPS model Log-Likelihood function, LLggps, to be maximised is:

LBBPS(“: 9' Br P, /1|X)

A VA
(4.23)
=In 1_[ szrxz (t(W, a); 9' ﬁ' Y, }l) = Z In (Perxz (t(W, a); 9' ﬁ' @, A))'
z=1 z=1
subject to cmzsz(t(w; a)) <@ min(cmz,l(t(w; a)):l € Rmz), z=1,..,2Z
where P, _, (t) is the BBPS model choice probability relation in (4.16) for route x, € R, .
The BAPS model Log-Likelihood function, LLg4ps, to be maximised is:
LLgaps(@, 0, [, ¢|x)
(4.24)

Z Z
=In (1_[ Pr,x,t(w; @); 0,8, <P)) = Z In (Pri‘lz,xz(t(W; a);0,p, <p)).
z=1 z=1

subject to  cm_r (t(W; @) < @ min(cy,(¢(W; @)): 1 ERy ), z=1,..,7,
where Py, (t) is the BAPS model choice probability solution for route x, € R, to the fixed-point problem

P, =F,, ( fm, (sz (£), yBAPs (¢, sz))> for OD movement m,, given the link cost vector t.

7.2.2 Existence & Uniqueness of Solutions

The typical sufficient conditions for the existence of Maximum Likelihood Estimation (MLE) solutions are
that: a) the parameter space is compact (closed and bounded), and b) the Likelihood function is a continuous
function.

Consider first the BBPS model. Since the BBPS probability function in (4.16)-(4.17) is a continuous
closed-form function, the BBPS Likelihood function in (4.21) is in turn also continuous. The range restrictions
for the model parametersare & > 0, 8 > 0, ¢ > 1, A > 0, and the travel cost parameters a may have e.g.
positive, negative, or no restrictions. Define Qzpps as the parameter space obtained from these range
restrictions. Qgpps IS N0t a compact set and thus for this general parameter space the typical sufficient
conditions do not apply. This is the same for estimating MNL, PSL, etc. In practice however it is
commonplace to enforce some sensible bounds upon the parameter ranges. Define then Qppps S Qppps as a
closed-bounded parameter subspace of Qgpps. For any Qpgps, since the BBPS Likelihood function is
continuous, the typical sufficient conditions can be applied, and solutions are guaranteed to exist.

The BBPS Likelihood function in (4.21) can be rewritten as follows:

Lggps(a, 6,5, ¢, Ax)
B ﬁ 0 if Cmy, (EW; @) = @ min(cp,,,(t(w; @)): L ER,, ) foranyz (4.25)
B 1 Py, x,t(w;a);6,5,9,2) otherwise :
zZ=
For a closed-bounded parameter space Qpgps S Qppps, there are three scenarios:

i) Forall (@ 8,53,@ 1) € Qppps the observed routes have travel costs greater than the bound and the
Likelihood Lggps is zero.

ii) Forsome (&,0,5,,1) € Qpgps the observed routes have travel costs greater than the bound and the
Likelihood Lggps is zero.

iif) Forno (@&,0,,®,1) € Qppps the observed routes have travel costs greater than the bound and the
Likelihood Lggps IS zero.
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Obviously, parameter spaces resulting in i) are not suitable; however, i) occurs only when the upper limit for
the bound parameter & is set too low. For any closed-bounded range for the travel cost parameters &, upper
limits for @ will exist such that Qpgps is either ii) or iii) (since it is always possible to expand the bound ¢ to
include at least one observed route). Suppose then that the upper limit for @ is set suitably high to avoid i),
and we now have case ii). Define Qjzps as the parameter subspace of Q%zps Where no observed routes have
travel costs greater than the bound. Since if a MLE solution is to exist, it will exist within the parameter
subspace Qppps, and solutions are guaranteed to exist, solutions are guaranteed to exist in Qpppg. FOr case
iii), Qzpps = Qpgps and MLE solutions will exist and can exist in the whole closed-bounded parameter
subspace.

For the BAPS model, the BAPS probability function in (4.18)-(4.20) is not technically continuous, and
thus the BAPS Likelihood function in (4.22) is not continuous. Existence of MLE solutions thus cannot be
guaranteed for the BAPS model. Nevertheless, as discussed in Sections 5.2&86, continuity of the BAPS
probability function is not an issue in practice, since continuity can be approximated to arbitrary precision
with the t parameter. It is therefore believed that the BAPS Log-Likelihood function can also be continuous in
practice, and indeed this appeared to be the case in our numerical experiments. When MLE solutions exist,
they will exist in Qf ,ps if case ii) above or in Qp4ps = Qg 4ps if Case iii) above.

The typical sufficient conditions for the uniqueness of MLE solutions are that, given an MLE solution
exists: a) the parameter space is convex, and b) the Likelihood function is a concave function. The issue here
for the BPS models, is that the probability functions are not guaranteed to be monotonic functions, and thus
the Likelihood function is not guaranteed to be concave. This is not to say however that MLE solutions for the
BPS models cannot be unique, since these are only sufficient conditions, and no issues with uniqueness were
experienced in the experiments in this paper.

7.2.3 Estimation Procedure

Standard MLE procedures can be used to estimate the parameters of the BBPS & BAPS models for a given
network. Using a standard iterative estimation procedure, BBPS & BAPS model parameters can be found that
maximise the Log-Likelihood functions as formulated in (4.23) and (4.24) above for a given set of data.
Duncan et al (2020) outline algorithm pseudo-code for a tracked route observation data estimation procedure
for the APSL model. Using a similar approach, Algorithm 4.1 below outlines pseudo-code for the BBPS &
BAPS model estimation procedure.

Maximising Log-Likelihood for the BPS models is complicated by the constraints that require all chosen
routes to have costs less than the cost bound, otherwise the Log-Likelihood functions are undefined. It is
possible to pre-determine the parameter space Q' for MLE (where there Log-Likelihood will always be
defined), by identifying (for a given closed-bounded range for the cost parameters) the lower limit for the
bound parameter ¢ before it is possible for any chosen route to violate the cost bound. Or, one can incorporate
corresponding constraints for the optimisation algorithm, like those in (4.23) and (4.24) but adjusted to
include equivalence. However, since identifying the existence parameter space / incorporating the
corresponding constraints is not always straightforward, we detail in Algorithm 4.1 and adopt in our
experiments an easier to implement approach.

Step 1: Initialisation. For each route observation z = 1, ..., Z, generate the corresponding universal choice set
and store the link attributes and link-route information. Define an initial set of parameter values

(@W,6W, W, MW 1MW) for the BBPS model or (&,6M, F1), ) for the BAPS model for MLE, and
setn=1.

Step 2: Bound violation check. Given the travel cost parameters @™ for iteration n, calculate the link costs
t(w; @™) and consequently the route costs ¢, (t(w; ﬁ(n))), z=1,...,Z, for iteration n. Given the route

costs, and the bound parameter value @™ for iteration n, check whether Cm, x, (t(w; ﬁ(n))) >

#™ min (sz,z (t(w; &(”))) 1€ Rmz) for any z. I so, set the Log-Likelihood value LLS, or LLS) - for

iteration n as an appropriate large and negative value (since In(0) is undefined), and skip to Step 4.
Otherwise, continue to Step 3.
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Step 3: Recalculate choice probabilities and LL.

BBPS Model: Given the set of parameter values (&™), 6™, W, g, 1) and the link and route
costs for iteration n, compute the BBPS model choice probabilities B, , according to (4.16) and (4.17)
above for z = 1, ..., Z. Given these probabilities, calculate the BBPS model Log-Likelihood

LLSY o (@™, 6, ™, 5™, 1M x) for iteration n.
BAPS Model: Given the set of parameter values (&™), ™, 3™, (™)) and the link and route costs
for iteration n, solve each of the fixed-point problems
P, = F, (em, (605 @™)), FEPS (o5 @), P, ); 60, G, 50
forz =1, ..., Z. Given the fixed-point choice probability solutions B;_, for each of the route observations
z=1,...,Z, calculate the BAPS model Log-Likelihood LLYY, (@™, 8™, 3, | x) for iteration .

Step 4: Compute new set of parameters.
BBPS Model: Based on LL) . and the associated parameters (&, 6©), ), ), 1)) for all s <
n, compute a new set of parameters (@1, §(+D), g+ G(n+1) J(n+1)) o test in the following iteration.
BAPS Model: Based on LLS}IPS and the associated parameters (&,8©), ), ) for all s < n,
compute a new set of parameters (&(+Y, §(+D), Fn+D) g(n+1)) 10 test in the following iteration.

Step 5: Stopping criteria. If |LL§3”B)PS - LLSB”B_P?| <{or |LL§3’2PS = LL%’Z}S)| <  stop. Otherwise, setn =
n + 1 and return to Step 2.

Algorithm 4.1: Pseudo-code for estimating the BBPS and BAPS models.

As discussed in Section 7.2.2 above, for a closed-bounded parameter space Q" where for some settings of the
parameters the Likelihood is zero, the MLE solution will always lie in the parameter subspace Q' where no
observed routes have travel costs greater than the bound and the Likelihood is non-zero. Thus, the idea for
Algorithm 4.1 is simply to tell the algorithm to search for solutions within Q' only, by setting nonoptimal
values for the objective function when testing parameters not in Q.

To do this, in Algorithm 4.1 we include a bound violation check in Step 2. In this step, given the route
travel costs from the current cost parameters @™ and the current bound parameter ¢™, a check is performed
to see whether any chosen route currently violates the cost bound. If any chosen route does violate the bound,
then an appropriate large and negative value is set for the Log-Likelihood value. For the experiments in this
paper, supposing that Z' is the set of observations that violate the bound, we set the appropriate large and
negative value as

z -999  ifzeZ’
=y d

=1In(PEY ) otherwise’

where PESY is the BCM choice probability for route x, € Ry, given the current @™ and ¢™ parameter
values. Setting the appropriate large and negative value in this way, rather than as some constant arbitrary
number, means that some information can be gathered on the relevance of the parameters even when bound
violating parameters are tested. For more accurate information, the BBPS or BAPS probabilities can be used
instead of the BCM probabilities. We use the BCM probabilities however to avoid having to compute BAPS
model fixed-point probabilities for non-relevant parameter tests, thereby reducing computation times.

In general, Step 4 could apply procedures from standard numerical optimisation methods to identify the
parameters to evaluate in the next iteration. For cases where there is a single variable in the generalised link
travel cost function (for example in the Sioux Falls simulation experiments in Section 7.3.2 below), it is
possible to adopt gradient approaches such as Newton-Raphson or BHHH. In this case, the singular cost
parameter can be factored out from the cost functions, so that the minimum cost route is fixed (e.g. the route
with the quickest free-flow travel time). The min operator component within the bounded model probability
functions (see e.g. equations (4.15), (4.16), and (4.19)) can thus be treated as a constant and is independent
from any parameters. Therefore, in this case, in the parameter space Q’, the Log-Likelihood objective function
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is continuously differentiable with respect to the parameters, and gradient minimisation algorithms can be
adopted.

For cases where there are multiple variables in the generalised link travel cost function (for example in
the real-life case study in Section 7.4 below), however, it is not guaranteed that gradient minimisation
algorithms can be directly adopted, since in this case, the minimum cost routes are not guaranteed to be fixed
for every OD movement. If for all values of the cost parameters in the stipulated cost parameter space and for
all OD movements the minimum cost routes are always the same routes, then the Log-Likelihood objective
function is continuously differentiable in the parameter space Q'. It is possible that one could potentially
stipulate a cost parameter space to ensure as such. Alternatively, one could smooth out the min operator, at the
kinks or by adopting a logsum operator to approximate the min function.

For the BAPS model, however, regardless of whether or not the Log-Likelihood function is continuously
differentiable, utilising gradient approaches is complicated by the difficulties in differentiating the BAPS
model Log-Likelihood function, which involves differentiating the fixed-point choice probabilities with
respect to the parameters, which is not straightforward. Other optimisation algorithms such as BFGS and
alternative quasi-Newton algorithms use finite difference to approximate the differentials, and while are more
computationally burdensome and typically less accurate, are readily useable. Thus, for the experiments in this
paper, we estimate the BBPS and BAPS models utilising the L-BFGS-B bound-constraint, quasi-Newton
minimisation algorithm (Byrd et al, 1995) for Steps 2-4 of Algorithm 4.1 (where we minimise —LL). The L-
BFGS-B algorithm was implemented using the scipy.optimize.minimize package in Python. The parameter
bounds and initial conditions are given in each study.

In Fig. 4.12 and Fig. 4.23, we demonstrate how the adopted L-BFGS-B algorithm converges to the
parameter estimates for the BAPS model, given the initial conditions. Other initial conditions were tested to
see whether different solutions would be found but the solution was the same. Although it is not necessarily a
requirement, our recommendation is that initial conditions are set such that none of the chosen route cost
bounds are violated, i.e. (&, 8, MW, W, IV € Qppps or (W, 00, W, 31) € Of ps. This can be
done simply by setting an intuitively large bound value, or by calculating B(&(l)) =

Cmgey (t(WiED))
max <min(cmz_l(t(w;ﬁ(l))):lERmz
bound) given the initial conditions for the cost parameters &), and choosing a larger value than B(&™).

Note that Algorithm 4.1 computes one set of parameter estimates, estimated from one set of observations.
It is not possible to calculate standard errors for the estimates analytically for the BBPS or BAPS model. This
is because the models violate the regularity conditions that establish asymptotic standard errors of the
Maximum Likelihood Estimates as the inverse of the Fisher information. Instead, the robustness of the
parameters estimated (variation of the estimates) can be investigated numerically by applying Algorithm 4.1
multiple times through resampling-approaches such as Bootstrap or Jackknife.

) z=1,.., Z> (the lower limit for ¢ before any chosen route violates the

7.3 Simulation Studies

In this section we investigate the formulated Likelihood functions for the BBPS & BAPS models in
simulation studies, evaluating the Likelihood-surfaces and assessing the possibility of estimating reasonable
parameters that reproduces observed behaviour.

7.3.1 Experiment Setup

A similar approach is adopted to that utilised for the APSL model in Duncan et al (2020). In general, the
approach is to sample observations according to an assumed ‘true’ model, and then use these in combination
with the Log-Likelihood function to evaluate the ability to reproduce the assumed ‘true’ parameters. The
simulation study consists of three steps:

(iv) Postulate a true BBPS / BAPS model including specification and parameter values. For each relevant
OD movement, identify a corresponding choice set of routes to be used for estimation.

(v) Sample a set of observed route choices according to the true model using the specified link travel
costs.

(vi) Apply MLE approach to obtain parameter estimates based on the observed route choices.
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Step (ii) mimics estimating the models with tracked route observation data (e.g. GPS traces). The estimation
procedure in principle needs to enumerate and store the universal choice sets in order to allow for evaluating
the Log-likelihood for very large values of the bound ¢ (e.g. in cases when the BBPS model approaches
GPSL' or the BAPS model approaches APSL). For larger networks this is not feasible and a subset consisting
of routes with costs below some value being considerably larger than the bounding cost of the true model can
be used.

The generic estimation procedure in Algorithm 4.1 is altered for simulation studies, by modifying Step 1:
Initialisation as outlined in Algorithm 4.1 (Step 1) below to reflect (i) and (ii) in the above.

Step 1: Initialisation.
1.1 Postulate a true set of parameters (@™, 0;,ye, Beruer Perues Atrue) TOr the BBPS model or
(@™, 0rver Beruer Perue) for the BAPS model, and given these parameters generate/approximate
the universal choice sets for OD movements m = 1, ..., M, and store the link attributes and link-route
information.

1.2.

BBPS model: Given the assumed true parameters and the generated choice sets, compute the BBPS
model choice probabilities P,,, form =1, ..., M.

BAPS model: Given the assumed true parameters and the generated choice sets, solve each of the
fixed-point problems

P, =Fpy (fm(cm(t(W; atrue))’)—,glAPS(t(w; atrue)’ Pm); Otrue Prue §0true))
form=1,.. M.

1.3. Based on the BBPS model probabilities P,,, or the BAPS model fixed-point choice probability
solutions Py, form = 1, ..., M (obtained in 1.2), sample Z observed routes.

1.4. Define an initial set of parameter values (&®,8®, F), M, 71 for the BBPS model or
(@W,6W, W, W) for the BAPS model for MLE, and setn = 1.

Algorithm 4.1 (Step 1): pseudo-code for initialisation of simulation experiments.

The number of observed routes to sample, Z, is exogenously defined. The robustness of the estimated
parameters estimated can be investigated numerically by applying Algorithm 4.1 multiple times and then
analysing the variation of the estimated parameters.

7.3.2 Sioux Falls Application

The Sioux Falls network consists of 76 links, 528 OD movements with non-zero travel demands, and
1,632,820 total routes. Details of the network were obtained from
https://github.com/bstabler/TransportationNetworks. The travel cost of link a is specified as the free-flow
travel time w, ; only, such that:

ta(Wa; a) = Wg1* %1,

where a; > 0 is the free-flow travel time parameter, and thus the travel cost for route i € R,,, is:

cmi(tw; @) = Z t,(wg; @) = a; Z W 1.

A€Am i a€Am,i

The model requires the specification of four parameters: a4, 8, 8, and ¢ but to ensure identification 8 is fixed
at 6 = 1 throughout.

Since the travel costs of the links (and thus routes) correspond to a single variable, to approximate the
universal choice sets, we generate all routes with a free-flow travel time less than 2.5 times greater than the
free-flow travel time on the quickest route for each OD movement (since the assumed true bound parameters
are much less than 2.5). We also remove all OD movements where there are less than 5 routes. The result is

148



https://github.com/bstabler/TransportationNetworks

Chapter 4. A bounded path size route choice model excluding unrealistic routes: Formulation and
estimation from a large-scale GPS study

that there are 370 remaining OD movements and a total of 42,976 routes, where the minimum, maximum, and
average choice set sizes are 5, 898, and 116, respectively.

7.3.2.1 BBPS Model Experiment Results
We present results here from simulation studies estimating the BBPS.=) model, and then investigate how
estimating the A parameter effects simulation results.

The BBPS(.-0) model Log-Likelihood function in (4.23) depends on three parameters a4, 5, and ¢, which
can be visualised through three 3-dimensional projections of this 4-dimensional relationship. Fig. 4.8A-C
display the BBPS.-s) model Log-Likelihood surface for a single estimation experiment, with a{"™¢ = 0.2,
Birue = 1, @true = 1.5 and Z = 2000. As Fig. 4.8A-C show, the Log-Likelihood surface is smooth and
maximal around the true parameters, where the estimated parameters are @, = 0.208 + 0.008, 8 = 1.04 +
0.04, and, ¢ = 1.5+ 0.002.

222
Q 0.2440.78 X 0.2441.489

11
B 1.221.489

Fig. 4.8. Sioux Falls simulation study: BBPS(.-) Log-Likelihood surface (af™¢ = 0.2, Birye = 1, Ptrye = 1.5, @; = 0.208, § =
1.04, p = 1.5). A: LL vs (a1, B8). B: LL vS (a1, ). C: LL vs (B, ¢).

Next, we investigate the stability of the estimated parameters for the BBPS;-¢) model over multiple
experiment replications. Each experiment utilises a Log-Likelihood maximisation algorithm (see Section

7.2.2) to obtain the parameter estimates with initial conditions (dio),ﬁ(o),iz(o)) = (0.15,0,1.1), and bounds
@, €[0,1], B € [0,2], ¢ € [1.01,2.5].

Table 4.2 reports, for various settings of the true parameters, the mean Bias, Standard Error, and Route
Mean Squared Error (RMSE = J (Bias)? + (S. E)Z), of the estimates across r = 25 experiment replications

with Z = 1500 simulated observations. Table 4.3 displays the estimated covariances between the a4, £, and
¢ parameters. As shown, the mean bias of the estimates of a4, B, and ¢ are small for all settings of the true
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parameters tested, with max absolute percentage biases of 7% (

0.014

X 100%), 6.4%, & 0.5%, respectively.

There is thus no evidence of bias in the parameter estimates — the estlmates are all close to the true values.
However, as measured by the RMSE, the precision of estimating a; and B decrease as a{™¢ and B,y
decrease. This seems reasonable as increasing a, corresponds to lower perception error of travel cost and
decreasing £ corresponds to lower perception of distinctiveness. Moreover, a lower perception error of travel
cost also results in less precise estimations of the bound parameter ¢ since fewer simulated observations are
close to the bound. The RMSEs of the estimated bound parameters ¢ suggest though that the bound, at least
for these settings of ¢, can be estimated to a reasonably high level of precision.
Table 4.3 indicates that, with this network and the generated choice sets, there appears to be some

negative correlation between the @, and f estimates since both scale negative utility components. There also
appears to be some positive correlation between the @; and @ estimates, which is logical since both these
parameters scale travel cost, where an increase in a; or a decrease in ¢ gives more probability to lower

costing routes.

~

~

a{rue Btrue Ptrue aq B %
Bias S.E RMSE | Bias S.E RMSE | Bias S.E RMSE
0.2 0.8 15 -0.008 | 0.031 | 0.0320 | -0.029 | 0.146 | 0.1489 | -0.003 | 0.0061 | 0.0068
0.2 1 14 0.002 | 0.027 | 0.0271 | -0.024 | 0.162 | 0.1638 | -0.004 | 0.0078 | 0.0088
0.2 1 15 -0.014 | 0.023 | 0.0269 | 0.012 | 0.147 | 0.1475 | -0.008 | 0.0075 | 0.0110
0.2 1 1.6 -0.001 | 0.017 | 0.0170 | 0.064 | 0.132 | 0.1467 | -0.001 | 0.0091 | 0.0092
0.1 1 15 -0.007 | 0.028 | 0.0289 | -0.017 | 0.099 | 0.1004 | -0.004 | 0.0068 | 0.0079
Table 4.2. Sioux Falls simulation study: Stability of estimated BBPS.=¢) parameters across multiple experiment replications (Z =
1500, r = 25).
afrue Btrue Dtrue Cov(ap ﬁ) COU(al, iﬁ) COU(E, (/P)
0.2 0.8 15 -0.00306 0.00007 -0.00003
0.2 1 14 -0.00045 0.00007 0.00082
0.2 1 15 -0.00183 0.00004 -0.00004
0.2 1 1.6 -0.00085 0.00003 0.00042
0.1 1 15 -0.00101 0.00010 0.00010

Table 4.3. Sioux Falls simulation study: Estimated covariances between BBPS(=¢) model parameters from multiple experiments (Z =
1500, r = 25).

We also explore estimating the additional A parameter of the BBPS model. For the Log-Likelihood
maximisation algorithm, the initial condition and bounds for A were 1(© = 1 and 1 € [0,20], respectively.
Table 4.4 displays for different settings of 1,,,. the stability statistics of the estimates &,, £, @, and 1 across

r = 25 experiment replications with Z = 1500 simulated observations, where a{™¢ = 0.2, Byye =

1, and

Qirue = 1.5. Table 4.4 also displays the estimated covariances between the a; and A parameters. As shown,
as measured by the MSE, the precision of estimating all parameters generally appears to decrease as A;,.
increases. Most notably, the precision of estimating A appears particularly poor for large A;,,., and the mean
bias for A worsens as A, increases where the percentage bias is 39% for A4, = 8 and 34% for A4, = 10,
providing evidence of positive bias. There also appears to be some negative correlation between the @, and 1
estimates, which makes sense since both scale travel cost within the path size contribution factors.

Atrue @ b é A cov (@, z)
Bias S.E | RMSE | Bias S.E RMSE | Bias S.E | RMSE | Bias | S.E | RMSE
2 -0.014 | 0.032 | 0.0349 | -0.011 | 0.092 | 0.0927 | -0.007 | 0.008 | 0.0106 | 0.67 | 1.226 | 1.397 -0.0347
5 -0.014 | 0.042 | 0.0443 | 0.035 | 0.121 | 0.1260 | -0.006 | 0.010 | 0.0117 | 1.06 | 1.391 | 1.749 -0.0397
8 -0.028 | 0.044 | 0.0522 | 0.035 | 0.157 | 0.1609 | -0.009 | 0.008 | 0.0120 | 3.15 | 4.168 | 5.224 -0.0647
10 -0.024 | 0.043 | 0.0492 | 0.003 | 0.130 | 0.1300 | -0.008 | 0.011 | 0.0136 | 3.43 | 3.791 | 5.112 -0.0899

Table 4.4. Sioux Falls simulation study: Stability of estimated BBPS model parameters across multiple experiment replications with
different settings of 1 (Z = 1500, r = 25).
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7.3.2.2 BAPS Model

7.3.2.2.1 Experiment Results

The BAPS model Log-Likelihood function in (4.24) depends on three parameters a4, 3, and ¢, which can
again be visualised through three 3-dimensional projections of this 4-dimensional relationship. Fig. 4.9A-C
display the BAPS model Log-Likelihood surface for a single estimation experiment, with a{™¢ = 0.2,

Birue = 0.7, @true = 1.5and Z = 2000. As Fig. 4.9A-C show, the Log-Likelihood surfaces are smooth and
approximately maximal around the true parameters, where the estimated parameters are @, = 0.2 + 0.02, 8 =
0.66 + 0.04, and, ¢ = 1.496 + 0.004.

A

81
B 0.921.478

Fig. 4.9. Sioux Falls simulation study: BAPS model Log-Likelihood surface. (af™¢ = 0.2, Berue = 0.7, @prue = 1.5, @; = 0.20, f =
0.66, § = 1.496). A: LL vs (a,8). B: LL vs (a1, ). C: LL vsS (B, ).

Next, we investigate the stability of the estimated parameters over multiple experiment replications. Each
experiment utilises a Log-Likelihood maximisation algorithm (see Section 7.2.2) to obtain the parameter

estimates with initial conditions (&%, 5©, ) = (0.15,0,2), and bounds &, € [0.05,1], § € [0,1], & =
1

[1.01,2.5].

Table 4.5 reports, for various settings of the true parameters the mean bias, standard error, and RMSE of
the estimates across r = 25 experiment replications with Z = 1500 simulated observations. Table 4.6
displays the estimated covariance between the a4, 8, and ¢ parameters. As shown, as for the BBPS model, the
mean bias of the estimates of a4, 8, and ¢ are small for all settings of the true parameters tested, with max
absolute percentage biases of 13%, 4.6%, & 0.6%, respectively. There is thus again no evidence of bias in the
parameter estimates — the estimates are all close to the true values. The precision of estimating «; and g
decrease as af™*¢ and B, decrease, as anticipated. And, a lower perception error of travel cost again results
in less precise estimations of the bound parameter ¢. The RMSESs of 8 compared to those for the BBPS -
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model in Table 4.2 suggest that the g parameter can be estimated more accurately with the BAPS model.
Table 4.6 indicates that there also appears to be some negative correlation between the @, and 8 estimates, as
well as some positive correlation between the @, and @ estimates.

true %) 2

241 .Btrue Ptrue &1 ﬁ @

Bias S.E | RMSE | Bias S.E | RMSE | Bias S.E | RMSE

0.2 0.8 1.5 0.000 | 0.018 | 0.0180 | 0.000 | 0.108 | 0.1080 | -0.003 | 0.0047 | 0.0056

0.2 0.7 1.4 -0.004 | 0.030 | 0.0303 | -0.032 | 0.134 | 0.1378 | -0.004 | 0.0067 | 0.0078

0.2 0.7 15 -0.003 | 0.014 | 0.0143 | -0.023 | 0.112 | 0.1143 | -0.004 | 0.0058 | 0.0070

0.2 0.8 1.7 -0.004 | 0.017 | 0.0175 | 0.006 | 0.115 | 0.1152 | -0.002 | 0.0101 | 0.0103

0.1 0.7 15 -0.013 | 0.022 | 0.0256 | 0.006 | 0.126 | 0.1261 | -0.004 | 0.0052 | 0.0066

Table 4.5. Sioux Falls simulation study: Stability of estimated BAPS model parameters across multiple experiment replications (Z =

1500, r = 25).
a{rue Btrue DPtrue cov(@y, ﬁ) cov(@,, P) COU(B, ?)
0.2 0.8 15 -0.00090 0.00004 -0.00015
0.2 0.7 14 -0.00198 0.00003 0.00029
0.2 0.7 15 -0.00104 0.00002 0.00008
0.2 0.8 1.7 -0.00104 0.00007 0.00026
0.1 1 15 -0.00155 0.00005 -0.00002
Table 4.6. Sioux Falls simulation study: Estimated covariance of BAPS model parameters from multiple experiment replications (Z =
1500, r = 25).

7.3.2.2.2 Computation Analysis
Due to the requirement of having to solve fixed-point problems to compute choice probabilities, in this
subsection we analyse the computational performance of the BAPS model in the Sioux Falls MLE application.
We The computer used has a 2.10GHz Intel Xeon CPU, 512GB RAM, and 64 Logical Processors (of which
50 were utilised). The code was implemented in Python. Results are reported throughout this section for a
single simulation experiment where Z = 1000 route choice observations were simulated from the true model
al™ = 0.2, Brrue = 0.7, @erye = 1.5. @, = 0.208, B = 0.703, and ¢ = 1.493 were the consequent
maximum likelihood estimates. Unless stated otherwise, the BAPS model choice probability convergence
parameter & was set as & = 10 (see Section 5.2.2).

Fig. 4.10A shows for different values of the BAPS model choice probability convergence parameter &
(and thus convergence statistic), the average number of fixed-point iterations per OD movement and
computation time required to solve all of the 370 BAPS model fixed-point problems P,,, =

F,, (fm(Cm (1), ¥3APS (¢, Pm))), and consequently compute the Log-Likelihood value of the maximum

likelihood estimates. As shown, computation time and average number of fixed-point iterations per OD
increase roughly linearly as the convergence parameter is increased. As expected, computation times relate to
the number of iterations required for convergence. Fig. 4.10B shows the value of the Log-Likelihood obtained
as & is increased. As shown, the Log-Likelihood increases in accuracy as the BAPS model choice probabilities
become more accurate.
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Fig. 4.10. Sioux Falls simulation study: Computational statistics for calculating a BAPS model Log-Likelihood as the BAPS model
choice probability convergence parameter ¢ is increased. A: Average number of fixed-point iterations per OD / computation time
[mins]. B: Log-Likelihood value.

Fig. 4.11 shows for different values of @ the average number of fixed-point iterations per OD movement and
computation time required to calculate the Log-Likelihood. As shown, the average number of iterations per
OD required for convergence increases as @ increases, and thus so do the required computation times. This is
because the number of routes with a cost below the bound increases as the bound becomes less restrictive, and
there are thus more routes to calculate the correlation between. This shows that the BAPS model can improve

upon the computational performance of the APSL model in computing choice probabilities.

+120

1.0 { —— comp time _--7 50 1.0{ —— comp time

0.9 4 [a) 0.9 r100 @
_ t450 - &
2 @ Z E
= 0.8 Q ‘£ 0.8 ]
E o || E 80
v Lao s @ S
£ 0.7 1 =] £ 0.7 5]
= g = 5
s 1l e %0 2
£ 061 L35 || 2 06 Z
: i :
£ 05 & || €054 L40 g
o 4 =] I
Q r30 g o a

0.4 x 0.4 z

F20

0.3 A --- avg # of iter 25 0.3 A —-— avg # of active routes

A 16 18 2.0 22 24 16 18 20 22 24
? B 9

Fig. 4.11. Sioux Falls simulation study: Average number of fixed-point iterations (A) / active routes (B) per OD movement and
computation time required to calculate the BAPS model Log-Likelihood for different ¢ values.

Fig. 4.12A-B show for a single MLE (implementation of the L-BFGS-B algorithm), the cumulative

computation times of the iterations and the BAPS model Log-Likelihood values and parameter estimates at
the end of each iteration.
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Fig. 4.12. Sioux Falls simulation study: Cumulative computation time at each iteration of a single BAPS model MLE, and MLE
statistics. A: Log-Likelihood. B: Parameter estimates.

We also briefly investigate the impact of the T parameter upon parameter estimation. For ¢ = 1.5, the largest
choice set size is 898; thus, supposing that z,,, = ¢, m = 1, ..., M, the maximum value for 7 is 8—;8 ~ 1073,

Supposing T assumes the form 7 = 1077, Fig. 4.13 displays how the maximum likelihood parameter estimates
vary as v varies. Unlike the APSL model, the BAPS model probability function is not continuous, and
continuity is approximated by setting a small T value. MLE requires a continuous probability function, and
hence a small 7 value is not only desired to approximate the standard formulation (like APSL), but is required
so that the model is well behaved. For v = 4 and v = 5, MLE could not run successfully due to the
discontinuity; however, as Fig. 4.13 shows for v > 5, MLE runs successfully and the parameter estimates are
extremely close / roughly converge to the limit case of 7 — 0. This demonstrates that we can recover the
desired BAPS, model (Section 5.1) to a high computational accuracy using the BAPS model as defined in
Section 5.2, with a sufficiently small value of t.
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Fig. 4.13. Sioux Falls simulation study: Maximum likelihood BAPS model parameter estimates for different values of T = 107".

7.3.2.2.3 BAPS Model Solution Uniqueness Analysis

In this subsection we briefly investigate the uniqueness of BAPS model choice probability solutions in the
context of the Sioux Falls simulation study. To do this, we utilise the method proposed in Section 10.3.4,
where we plot trajectories of BAPS model solutions to approximate the uniqueness conditions, i.e. estimate
Bmax- A single simulation study is conducted for at™¢ = 0.2, Brrue = 0.7, Prue = 1.5, and Z = 2000,
leading to maximum likelihood estimates @, = 0.200, § = 0.747, and ¢ = 1.499 . We thus investigate
whether BAPS model solutions are unique for these parameter estimates. Fig. 4.14 displays the maximum
choice probability from three trajectories of BAPS model solutions as the 8 parameter is varied for four
different randomly chosen OD movements, with a; = @; = 0.200 and ¢ = @ = 1.499. 8 was decremented
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by 0.01, and the initial large B value was = 2. As shown, the f,4x m Values (4, for OD movement m)

for these OD movements can be estimated to vary between 0.86 and 0.94, suggesting that 5 = 0.747 results in
universally unique solutions.
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Fig. 4.14. Sioux Falls simulation study: Maximum choice probability of trajectories of BAPS model solutions as £ is varied.

7.3.2.3 Model Robustness to the Adopted Choice Sets

We briefly evaluate here on the Sioux Falls network the robustness of the BBPS & BAPS models to the
adopted choice sets. Fig. 4.15A-B display the impact that varying the sizes of choice sets has on the route
choice probabilities from the different models. The choice sets are generated using k-shortest path, with
increasing values of k. It is assumed that the true active choice sets are those containing all routes with a free-
flow travel time less than 2 and 2.5 times greater, respectively, than the free-flow travel time on the quickest
route for each OD movement, and probability results are compared between these routes only (probability is
zero if not generated). The model parameters are assumed known: a; = 0.2, § = 0.8, A°PSL = 10, ABBPS =
1, and ¢ = 2,2.5 for Fig. 4.15A,B, respectively, and to compare the probability result P} for the k-shortest
path choice sets with the assumed true probabilities P"“¢, we measure the Route Mean Squared Error

(RMSE):
M 2
RMSE = jz z (Y} - paree) N,
m=1 i€ERy, ’ ’

where N is the total number of routes (12,844 for ¢ = 2, 42,976 for ¢ = 2.5). Fig. 4.16A-B show how the
percentage of routes generated with a cost greater than the 2 and 2.5 relative cost bound varies, respectively,
as k varies, as well as the percentage of routes that should be generated but were not (non-generated routes
with a relative cost less the bound).
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As shown, the choice probability results for the MNL and PSL models both decrease in similarity to the
respective assumed true probabilities as the choice sets are expanded and more unrealistic routes (with relative
cost deviations greater than the bound) are present with the choice sets (shown in Fig. 4.16). The GPSL and
APSL model results remain fairly stable in similarity due to the weighted contributions. The probability
results for the bounded models, however, all increase in similarity since these models implicitly restrict the
choice sets and perform better as more realistic routes are generated, regardless of how many generated
unrealistic routes. As anticipated, GPSL & APSL are more robust than PSL due to the employment of path
size contribution weighting technigues, while the BBPS & BAPS models are significantly more robust due to
path size contribution elimination.
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Fig. 4.15. Sioux Falls network: Impact that varying the sizes of choice sets has on the choice probabilities from different models, k-
shortest path. A: ¢ = 2. B: ¢ = 2.5.
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2.5.

7.4 Real-Life Large-Scale Case Study

In this section we estimate the BBPS and BAPS models, where the model parameters are estimated using
MLE with observed route choices tracked by GPS units. The data has been collected among drivers in the
eastern part of Denmark in 2011, and includes a total of 17,115 observed routes. The dataset is the same as
used in Prato et al (2014), Rasmussen et al (2017), and Duncan et al (2020), and after a filtering to include
only trips where the sum of travel time (in minutes) and length (in km) is at least 10, a total of 8,696
observations remain.

The GPS traces are map matched to a network, for which corresponding time-of-day dependent travel
times are available on the entire network. See more details in Prato et al (2014). The network is large-scale,
representing all of Denmark, and thus includes 34,251 links. With current alternative generation techniques, it
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is not feasible to enumerate the universal choice set for such a large network, and even enumerating all
alternatives with a cost below a rather large relative bound (e.g. ¢ = 2) is not feasible. Instead, we
approximate the universal choice set by generating a choice set for each observed route by applying the
doubly stochastic approach also applied in Prato et al (2014). This approach is based on repeated shortest path
search in which the network attributes and parameters of the cost function are perturbated between searches
(Nielsen, 2000; Bovy & Fiorenzo-Catalano, 2007). To reduce the risk of bias in estimation, care was taken to
ensure a large variety of alternatives with different characteristics were generated, by assuming large variance
in the parameters of the cost function. Up to 100 unique paths are generated for each observation, and for 591
observations only the observed route was generated, so these are removed from the data set, leaving 8105
observations.

For the estimation, the travel cost of link a is specified as a weighted sum of congested travel time w,, ;
(in minutes), and length w,, , (in kilometres), such that:

ta(wa; a) =Wg101+ W ay

where @; > 0 and a, > 0 are the congested travel time, and length parameters, respectively. The generalised
travel cost for route i € R, is thus:

Cm,i(t(Wi “)) = Z ta(Wg; @) = Z (Wa,l Tyt Wwgo 0!2) =aq Z Wg1 T a3 Z Wgq,2-

a€Am,i A€Am,i A€Am; aA€Am,i

The model requires the specification of five parameters: a4, a5, 8, 8, and ¢ but to ensure identification, the 8
parameter is fixed at & = 1. There are some outlying observations in the data where the relative travel time /
length deviation of the observed route away from the quickest/shortest route is high. So that the estimation
results are not influenced significantly by these outliers, and to improve the analysis of results, we remove 82
route observations where either the relative travel time or length deviation is over 1.5, leaving 8023
observations, see the distribution of the choice set sizes in Fig. 4.17.
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Fig. 4.17. Real-life case-study: Cumulative distribution of the choice set sizes for the 8,023 observations.
Fig. 4.18A shows the relative travel time deviations away from the quickest routes in the choice sets for the

observed routes as well as the alternative routes generated, and Fig. 4.18B shows the relative length
deviations.
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Fig. 4.18. Real-life case-study: Relative deviations away from quickest/shortest routes in the choice sets for the observed routes (red)
and alternative routes generated (blue).

We estimate the models utilising the same Log-Likelihood maximisation algorithm (L-BFGS-B, see Section
7.2.2), initial conditions, and parameter bounds, where appropriate. Initial conditions are:

(ozf),dgl),ﬁ”U),@(l),Z(l)) = (0.5,0.5,0,1.6,0), and bounds: &, &, € [0,1], § € [0,2], & € [1.01,5], 1 €
[0,200]. For the APSL and BAPS models the bounds are: &, &, € [0.1,1], 8 € [0,1], & € [1.01,5].

7.4.1 BBPS Model Estimation

Table 4.7 displays the BBPS(,=9) and BBPS model parameter estimates, and the consequent Log-Likelihood
values. The BBPS model appears to outperform the BBPS.-9) model due to the greater flexibility the 4
parameter provides; however, the estimated bound is very large considering the relative deviations in Fig.
4.18, which results in every route having a cost within the bound and the BBPS approximating the GPSL’
model. This suggests that the GPSL’ model with a large A value is outperforming more internally consistent
models by capturing something other than the correlation between the realistic routes. We explore this further
in Section 7.4.3.

@, a, I y) o LL
BBPS;-0) 0.690 0.209 1.786 1.495 -18556
BBPS 0.433 0.148 0.970 10.277 3.834 -17463

Table 4.7. Real-life case-study: BBPSp=0) & BBPS parameter estimates and Log-Likelihood values.

Fig. 4.19A-F visualise the BBPS=¢) model Log-Likelihood surface around the four parameter estimates; as
can be seen, these are smooth.
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] 0.232 146

Fig. 4.19. Real-life case-study: BBPS@=e) model Log-Likelihood surface around parameter estimates in Table 4.7. A: LL vs (a4, @3).
B: LL vs (a1, 8). C: LLvs (ay, ). D: LL vs (ay, B). E: LL vs (a3, ). F: LL vs (B, ¢).

7.4.2 BAPS Model Estimation

7.4.2.1 Results

Table 4.8 displays the BAPS model parameter estimates and the consequent Log-Likelihood value. As shown,
the estimates all seem reasonable and the BAPS model appears to provide better fit over the BBPS(=s) model
in Table 4.7.

a

ay

~

B

~

4

LL

0.629

0.250

0.844

1.506

-18308

Table 4.8. Real-life case-study: BAPS model parameter estimates and Log-Likelihood.
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Fig. 4.20A-F visualise the Log-Likelihood surface around the four parameter estimates; as can be seen, these
are smooth.
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Fig. 4.20. Real-life case-study: BAPS model Log-Likelihood surface around parameter estimates in Table 4.8. A: LL vs (a4, a;). B:
LL vs (a1, B8). C: LL vs (@1, ¢). D: LL vs (a5, B). E: LL vs (a3, ¢). F: LL vs (B, ¢).

7.4.2.2 Computation Analysis
We analyse here the computational performance of the BAPS model in the real-life case study. The same

computer was used as in Section 7.3.2.2.2. Unless stated otherwise, the BAPS model choice probability
convergence parameter £ was setasé = 7.

Fig. 4.21A shows for different values of the BAPS model choice probability convergence parameter &
(and thus convergence statistic), the average number of fixed-point iterations per OD movement and
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Fn, (Fim, (em,®),
with the estimated BAPS model parameters in Table 4.8. Fig. 4.21B shows the value of the Log-Likelihood
obtained as ¢ is increased. As shown, computation time and average number of fixed-point iterations per OD
increase linearly as the convergence parameter is increased, and the Log-Likelihood increases in accuracy
(from & = 2) as the BAPS model choice probabilities become more accurate.

37BAPS

Voo

(t, sz))> forz =1, ..., Z, and consequently compute a single Log-Likelihood,
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Fig. 4.21. Real-life case-study: Computational statistics for calculating the estimated BAPS model Log-Likelihood as the BAPS model
choice probability convergence parameter ¢ is increased. A: Average number of fixed-point iterations per OD / computation time
[mins]. B: Log-Likelihood value.

Fig. 4.22A shows for different values of ¢ the average number of fixed-point iterations per OD movement and
computation time required to solve the BAPS model, with a4, a5, and B set as the estimated BAPS model
parameters in Table 4.8. Fig. 4.22B shows the average active choice set size as ¢ increases. As shown, the
average number of iterations per OD required for convergence and average active choice set size increases as
@ increases, and thus so do the required computation times.
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Fig. 4.22. Real-life case study: The impact of ¢ on computation statistics for solving the BAPS model with a4, a,, B as the parameter
estimates in Table 4.8. Computation time [mins] and A: Average number of fixed-point iterations per OD movement. B: Average
active choice set size.

Fig. 4.23A-B show for a single estimation of the BAPS model (implementation of the L-BFGS-B algorithm),
the cumulative computation times of the iterations and the Log-Likelihood values and parameter estimates at
the end of each iteration, respectively.
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Fig. 4.23. Real-life case-study: Cumulative computation time at each iteration for a single estimation of the BAPS model, and MLE

statistics. A: Log-Likelihood. B: Parameter estimates.

7.4.2.3 BAPS Model Solution Uniqueness Analysis
We briefly investigate here the uniqueness of BAPS model choice probability solutions in the context of the
real-life case study. Similar to the experiments conducted in Section 7.3.2.2.3 for the Sioux Falls simulation
study, we estimate the uniqueness conditions for the network given the estimated parameters. Trajectories of
BAPS model solutions are plotted to approximate B4, Fig. 4.24 displays the maximum choice probability
from trajectories of BAPS model solutions as the § parameter is varied for four different randomly chosen OD
movements, with a,, a,, and ¢ as in Table 4.8. 8 was decremented by 0.01, and the initial large 8 value was
p = 1.5. As shown, the S, Values for these OD movements are around 1, suggesting that g = 0.844
results in universally unique solutions.
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Fig. 4.24. Real-life case study: Maximum choice probability from trajectories of BAPS model solutions as £ is varied.

7.4.3 Comparing Results with Other Models

In this subsection we estimate models discussed in this paper and compare results. Table 4.9 shows the
estimated parameters and Log-Likelihood values for the MNL, PSL, GPSL, GPSL’, GPSL'(;_g), & APSL
models, as well as the BCM, BBPS;=¢), BBPS, & BAPS models. As anticipated, the estimated bounds for the
BCM, and BBPS.-0) and BAPS models are all around 1.5; however, the estimated bound for the BBPS model
is much larger than 1.5 and while the given value is 3.834 it is approximating ¢ — co where the BBPS model
collapses to the GPSL' model, which is evident from the same estimated parameters and Log-Likelihood
value. We discuss this result in more detail below.

~

ay a, b y) @ LL
MNL 0.799 | 0.441 -20573
PSL 0.990 | 0.405 | 1.335 -19907
GPSL 0.431 | 0.126 | 1.133 | 103.89 -17327
GPSL' 0.433 | 0.148 | 0.970 | 10.277 -17463
GPSL'(j—gy | 0.701 | 0.212 | 1.780 -18571
APSL 0642 | 0251 | 0.842 -18323
BCM 0.786 | 0.439 1.486 -20565
BBPSp-s | 0.690 | 0.209 | 1.786 1.495 -18556
BBPS 0.433 | 0.148 | 0.970 | 10.277 3.834 -17463
BAPS 0.629 | 0.250 | 0.844 1.506 -18308

Table 4.9. Real-life case-study: Estimation results.

To compare the fits of the estimated models, Table 4.10 shows the penalised-likelihood criteria. As expected,
the MNL model provides the worst fit, and the Path Size models all perform significantly better. APSL
outperforms GPSL’ ;¢ and the BAPS model outperforms the BBPS(,-5) model suggesting that internal
consistency can improve model fit, but more specifically by including a measure of distinctiveness within the
path size contribution factors. By applying a relative bound of around 1.5 to the route costs, the BCM, and
BBPS;=s) & BAPS models all improve upon the fit of their limit models MNL, GPSL'(;-4), and APSL,
respectively, showing the value in excluding the influence of unrealistic routes. The BBPS model, however,
cannot improve upon the fit of its limit model despite it being known that unrealistic routes are present in the
choice sets.

GPSL and GPSL' (also BBPS with ¢ — o) outperform all models, however this appears not to be by
design. The PSL’' model introduced by Ben-Akiva & Bierlaire (1999) and then the GPSL model by Ramming
(2002) were constructed so that, as Ramming (2002) notes, “arbitrarily long paths — which would likely not be
considered by travelers — do not reduce the size of other, more reasonable paths that use the same link”, which
loosely translates as so that the path size terms are attempting the capture the correlation between the realistic
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alternatives only. So, if these models are aiming to reduce the contributions of unrealistic routes to the path
size terms of realistic routes, then eliminating the contributions completely should improve performance.
However, when the GPSL" model is given the opportunity to eliminate contributions, i.e. with the BBPS
model, the option is not taken, and the best fit comes from an unbounding ¢ and a large A value. This clearly
indicates that the GPSL and GPSL' models are able to provide better fits to real data by capturing something
other than the correlation between the realistic routes within the path size terms.

Duncan et al (2020) estimate the GPSL model with the same data set but without excluding the 82 route
observations with relatively large travel times / lengths. As they note, the data set contains relatively costly but
relatively universally distinct route observations (i.e. without considering whether or not the routes are link
sharing with unrealistic alternatives), and the GPSL model is able to provide the best fit for these
observations, without compromising the fit for the low costing observations. The GPSL travel cost parameter
estimates are smaller than the same estimates for the other models, which improves the relative attractiveness
of the costly alternatives. To counterbalance this so that that the low costing routes still remain attractive,
GPSL introduces a large A value: routes with relatively small travel costs are penalised significantly less than
routes with relatively large travel costs for link sharing. Moreover, GPSL is able to further increase the
relative attractiveness of the distinct, costly routes by decreasing the attractiveness of the indistinct, costly
routes with the large A. It appears then that for the GPSL and GPSL' models to work well, they require the
presence of costly routes in the choice sets so that the counterbalancing can occur, which is why the bound is
all-inclusive.

What is noticeable about the estimated GPSL parameters with this reduced data set is that the travel cost
parameters are slightly larger (than &; = 0.415 and &@; = 0.085 from full data set), which make sense since
the most relatively costly observations have been removed. The estimated A parameter is also larger (than 1 =
91.95) which fits with the arguments above: a larger A is required to counterbalance the small travel cost
parameters (but greater than before) for the low costing routes.

Furthermore, as reported in Section 7.3.2.1 in the Sioux Falls simulation experiments, larger values of A
for the BBPS model makes estimation more unreliable/unstable. Due to the clear similarities with analogous
additional A parameters, it would be natural to assume that this is also the case for the GPSL models, further
adding to the undesirability of estimating GPSL/BBPS with large 4.

The reason why the relative improvement in fit from BCM to BBPS .- is greater than from MNL to PSL
is because PSL does not deal with unrealistic routes in the path size terms at all. It is therefore not just limited
in how it can adjust for correlation compared to the bounded path size models, but also the weighted path size
contribution models. When comparing relative improvement in fit from the BCM to BBPS-¢) with MNL to
GPSL’ (=g (the limit model of BBPS.=)), however, the effects are of the same order of magnitude, across the
range of tests i.e. for the primary estimation results in Table 4.9&Table 4.10 and re-estimation results below in
Table 4.11.

AIC BIC CAIC

MNL 41150 41164 41166
PSL 39820 39841 39844
GPSL 34662 34690 34694
GPSL' 34934 34961 34966
GPSL’ 30 37148 37168 37172
APSL 36652 36673 36676
BCM 41136 41157 41160
BBPSy) 37120 37148 37152
BBPS 34936 34970 34976
BAPS 36624 36651 36656

Table 4.10. Real-life case-study: Comparison of fit between models based on penalised-likelihood criteria.
As shown in Fig. 4.18A-B, only a very small percentage of the generated routes have a relative travel time

and/or length deviation greater than 1.5 (3.4% for travel time, 4.4% for length). Hence, since there are route
observations with relative cost deviations close to 1.5 and thus the estimated bound parameters are close to
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1.5, only a small percentage of routes generated are defined as unrealistic by the bounded models and
consequently assigned zero choice probabilities / path size contributions eliminated. This restricts how
effective the bounded models are at improving upon the fit of their limit models. The bounded models are
however more robust (than the unbounded models) to changes in the adopted choice sets. If the choice sets are
expanded, all routes generated with a relative cost deviation greater than 1.5 will have no effect upon the
estimation and resultant choice probabilities of the bounded models. The unbounded models will however all
be affected, and some potentially quite significantly (e.g. MNL, PSL). Generating routes with a relative cost
deviation less than 1.5 will though affect the bounded models. This means though that either the choice sets
were mis-generated initially, outlier observations have resulted in a large estimated bound, or the universal
bound mis-represents actual OD-specific relative cost bounds, or all of these. Obtaining multiple route choice
observations from the OD movements and estimating OD-specific bounds would lead to far more accurate
estimated bounded models, and far greater goodness-of-fit improvements over the limit models. Moreover, it
would improve robustness to the adopted choice sets.

To demonstrate how the bounded models can be more effective at improving the fit of their limit models,
we re-estimate the models after removing a further 872 route observations from the data set where either the
relative travel time or length deviation is over 1.2, leaving 7151 observations. This means that there are now
30.4% and 27.4% of the generated routes that have a relative travel time and length deviation, respectively,
greater than the expected estimated bound of 1.2 (as opposed to previously 3.4% and 4.4% for 1.5). Hence,
with more routes within the choice sets judged as being unrealistic, the negative effects of not excluding these
from route choice should be greater. Table 4.11 shows the estimated parameters and Log-Likelihood values
for the re-estimated models, as well as the penalised-likelihood criteria. As expected, the estimated bound
parameters are approximately 1.2, apart from for the BBPS model where the estimate is very large, again
approximating ¢ — oo and the GPSL’ model. As shown, the BCM, and BBPS.-s) & BAPS models now all
improve significantly more upon the fit of their limit models MNL, GPSL'(;—¢), and APSL, respectively.

As noted above, when 82 of the most costly observations are removed from the full data set and the GPSL
model is re-estimated, the travel cost parameters increase slightly not having to provide fit for the costly
observations, and the A parameter becomes slightly larger to counterbalance within the contribution factors.
As can be seen from Table 4.11 after removing a further 872 costly observations, the GPSL travel cost
parameters increase significantly and hence the A parameter increases dramatically too, supporting the trend.

a a, 2 i ? LL AIC BIC | CAIC

MNL 1.066 | 1.161 -15159 | 30322 | 30336 | 30337
PSL 1231 | 1.079 | 1.149 -14883 | 29772 | 29793 | 29796
GPSL | 0.621 | 0.477 | 0811 | 203.43 -13254 | 26516 | 26544 | 26548
GPSL’ | 0.633 | 0.519 | 0.696 | 10.962 213301 | 26610 | 26638 | 26642
GPSL'(;—¢y | 0.832 | 0.589 | 1.548 -14146 | 28298 | 28319 | 28322
APSL | 0.792 | 0.606 | 0.825 13771 | 27548 | 27569 | 27572
BCM 0.973 | 1.049 1.194 15050 | 30106 | 30127 | 30130
BBPSp-s | 0.731 | 0.481 | 1.631 1.197 -13960 | 27928 | 27956 | 27960
BBPS | 0.633 | 0519 | 0.696 | 10.962 | 3.940 13301 | 26612 | 26646 | 26651
BAPS | 0.681 | 0.505 | 0.838 1.201 13582 | 27172 | 27199 | 27204

Table 4.11. Real-life case-study: Re-estimation results after removing observations with relative travel time or length deviations
greater than 1.2, and penalised-likelihood criteria.

8. Conclusion

This paper develops a new route choice modelling framework that deals with both route overlap and
unrealistic routes in a theoretically consistent, robust, and mathematically well-defined way, and demonstrates
its computational feasibility and estimatibility on large-scale networks. Path Size Logit route choice models
capture the correlation between routes by including correction terms within the route utility functions. This
provides a convenient closed-form solution for implementation in traffic network models. The deficiency of
based Path Size Logit (PSL) model, in its sensitivity to unrealistic routes in the adopted choice sets, is well
established. By weighting the contributions of routes to path size terms, current PSL model variants (e.g.
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Generalised PSL (GPSL), alternative GPSL (GPSL'), & Adaptive PSL (APSL)) reduce the negative impact
the unrealistic routes have upon the correction factors and thus choice probabilities of realistic routes.
However, the effectiveness of this technique worsens as the choice sets are expanded and more unrealistic
routes are included. In this study we develop a path size choice model that entirely eliminates the path size
contributions and undesirable effects of unrealistic routes.

To tackle this, we explored the integration of PSL concepts with the recently developed Bounded Choice
Model (BCM). The BCM provides a consistent criterion for determining restricted choice sets of feasible
routes and route choice probability, though route correlation is not considered. This paper derives the natural
form for a Bounded Path Size (BPS) model whereby path size choice model utilities are inserted into the
BCM formula; however, this led to behavioural inconsistencies and/or undesirable mathematical properties,
which were demonstrated by a series of examples. Five desirable properties are consequently established for a
mathematically well-defined BPS model that utilises a consistent criterion for assigning zero choice
probabilities to unrealistic routes while eliminating their path size contributions.

In order to solve these challenges, an alternative form for a BPS model is derived and two models are
consequently formulated that adopt this form: the Bounded Bounded Path Size (BBPS) model and Bounded
Adaptive Path Size (BAPS) model, which satisfy many of the desired properties, as discussed/demonstrated.

1. The BBPS model has a consistent criterion for assigning zero choice probabilities to unrealistic routes
and eliminating path size contributions, but is not internally consistent. The attraction of the BBPS
model, however, is that the probability relation is closed-form.

2. The BAPS model has a consistent criterion for assigning zero choice probabilities to unrealistic
routes, eliminating the path size contributions of unrealistic routes, and determining route choice
probabilities and path size contributions (internally consistent). The BAPS model is, however, not
closed-form since the path size contribution factors are based upon choice probability ratios, and
hence the probability relation is an implicit function, naturally expressed as a fixed-point problem.
Two formulations for the BAPS model are given: one that has a continuous choice probability
function but no formal proofs for solution existence and uniqueness, and one modified version that
does not have a continuous distribution, but solutions can be proven to exist and be unique, and the
proofs are given. The modified version can approximate the standard version to an arbitrary precision
(i.e. by setting a very small value for the parameter t), however, thus approximating continuity, and
hence in practice we use the modified formulation with a small value of .

This paper proves that choice probability solutions to the BAPS model are guaranteed to exist, and provides
conditions under which solutions are unique. These conditions are only sufficient conditions for uniqueness,
however, and a method is proposed and demonstrated for estimating the actual uniqueness conditions.

To show that the parameters of the BBPS & BAPS models can be estimated, a Maximum Likelihood
Estimation procedure is proposed for estimating the BBPS & BAPS models with tracked route observation
data. Application to the Sioux Falls network shows it is generally possible to reproduce assumed true
parameters. The BBPS & BAPS models are then estimated using real tracked route GPS data on a large-scale
network. Results show that the BBPS(.-¢) and BAPS models outperform their limit models GPSL’ ;) and
APSL, respectively, but that the BBPS model approximates the GPSL' model. This indicates that the GPSL'
and GPSL models provide better fits to real data not by design but by capturing something other than the
correlation between the realistic routes within the path size terms.

The BAPS model requires a fixed-point algorithm to approximate solutions. The paper assesses the
computational performance of the Fixed-Point Iteration Method for calculating choice probabilities and
estimating the parameters of the BAPS model, where accuracy is compared with computation time. Results
indicate that accurate choice probability solutions and parameter estimates can be obtained by feasible
computation times. It is also shown that BAPS model choice probability computation times can be quicker
than for APSL, due to its implicit restriction of choice sets to having fewer routes.

The theory suggests that the BAPS model is more behaviourally realistic than the BBPS model, which is
supported by the estimation results, and thus our recommendation is that the BAPS model is used where it is
computationally feasible to do so. The BBPS model offers a more computationally practical alternative.
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10. Appendix
10.1  Appendix A — Derivation of the Bounded Choice Model

First, we define the pdf’s and cdf’s of relevant probability distributions. The pdf of a Gumbel distribution with
mode ¢ and scale 871 (8 > 0) is:

fo(x;4,6) = Bexp (—(6(x — Q) + exp(—8(x = 0)))), (=0 <x < o),
and the cdf is:
Fs(x;¢,0) = exp(— exp(—@(x — a))) , (—o0 < x < ).
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Supposing that €; and €, are individually and identically distributed Gumbel random variables, the difference
random variable € = €; — €, is a logistic distribution with pdf (for mean u and scale 8~1) equal to:

£ 10,0) = 0 exp(—0(x — 1)) (1 + exp(—0(x — 1)), (—o0 <x <),
and cdf:

F (x;u,0) = (1 + exp(—@(x — y)))_l, (—o0 < x < 00).

If €; and €, have mode 0 and scale 61 it follows that £ has mean 0 and scale 671

The BCM proposes that each route i € R is compared with an imaginary reference alternative r* in terms
of difference in random utility, and imposes a bound, 1, upon this random utility difference. In this study, the
reference alternative is the route with the best utility. If U; and V; are the random and deterministic utilities for
route i € R, respectively, the difference in random utility relative to the reference alternative for route i € R
is:

U—=Ui=Vp+er—V,—€¢,=max(V:lER) = V;+ €+ —€; =max(V: L ER) = V; + g,

where ¢; is the individually and identically distributed random variable error term for route i € R, and ¢; is the
difference random variable for route i € R with the reference alternative. The MNL model can be derived by
assuming the ¢; error terms are Gumbel distributed and thus the ¢; difference random error terms assume the
logistic distribution. The BCM, however, proposes that the difference random variable error terms g; assume a
truncated logistic distribution, obtained by left-truncating a logistic distribution with mean 0 and scale 61 at
a lower bound of —ip for some 1 > 0. Each of these variables thus has pdf:

0 —o<x < -
fréou6,9) =4 flsu6) x>y
and cdf:
0 —o<x < -y
FT(X;,UJ Hle) = FL(x':uie) —_FL.(—EDLU,B) x> —1,0
1 FL( 111,/,{,9)

The probability of choosing route i € R versus the reference alternative is therefore:
Pr(choosing i from {i,r*}) = Pr(U; = U,~) = Pr(U,» — U; < 0)
=Pr(max(V;:l €R) —V; + & < 0) = Pr(g; < V; —max(V;:l € R))
= Fp(V; —max(V;:l € R);0,0,¢)

X —oo < V;—max(Vi:l €R) < =y
={F,(V; —max(V;:l €R);0,8) — F,(—;0,8) |
i . > —
1-F(=;0,6) V; —max(Vi:l € R) = —
) —oo <V;—max(V:l€R) < -y

=¢(1+ exp(—0(V; — max(V;:l € R))))_1 — (1 + exp(By))~?
1—(1+exp(y))1
The odds ratio for route i € R versus the reference alternative r* € R is then:
Pr(choosing i from {i,r*}) Fr(V; —max(V;:l € R);0,6,v)
“1- Pr(choosing i from {i,r*}) “1- Fr(V; —max(V;:l € R);0,0,¢9)
For V; — max(V;:l € R) = —, n; can be re-arranged as follows:

Vi —max(Vi:l€ER) = -y

ni
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1 1
(1 + exp(=0(V; — max(V;:L € R)))) (L +exp(6y))
T T

1 (1+exp(6y))
1

1
. (L+ exp(=6(V; — max(V:1 € R)))) (1 +exp(6Y)
1 1
T (1+exp(6yY))
exp(8y) — exp(—0(V; — max(V;:l € R)))
(1 + exp(—H(Vi —max(V;:l € R))))(l + exp(6Y))
exp(6y)
_ (1 + exp(69))
exp(8y) — exp(—0(V; — max(V;:l € R)))
B (1 + exp(—G(Vi —max(V;:l € R))))(l + exp(6Y))
exp(6y)
(1 + exp(69))
(exp(6y) — exp(—0(V; — max(V;:1 € R))))
(1 + exp(—8(V; — max(V;: 1 € R)))) exp(69)
(exp(@z/;) — exp(—H(Vi —max(V;:l € R))))
(1 + exp(—0(V; — max(V;: L € R)))) exp(8y)
(exp(@z/;) — exp(—H(Vi —max(V;:l € R))))
(1 + exp(—0(V; — max(V;: L € R)))) exp(8y)
exp(—0(V; — max(V;: [ € R))) exp(6y) + exp(—0(V; — max(V;: 1 € R)))
(1 + exp(—8(V; — max(V;: 1 € R)))) exp(6¢)
exp(6y) — exp(—H(Vi —max(V;:l € R)))
exp(—0(V; — max(V;: [ € R))) exp(6y) + exp(—0(V; — max(V;: 1 € R)))
_exp(6y) exp(6(V; —max(V;:L € R))) — 1

1

1
1

exp(6y) + 1
B exp(H(Vl- —max(V;:l €R) + ¢)) -1
exp(6y) + 1 '
Thus, given the above re-arranging, the odds ratio n; for route i € R versus the reference alternative r* € R is:
0 —oo < V;—max(Vi:l €ER) < —y
ni = {exp(B(Vl I:Xa;((;:ll;)l .|E. f) +¥) -1 V- max(Vel€R) > —p

which can be written succinctly as:

(exp(6(V; — max(V;:l € R) + ) — 1)+
L exp(6y) + 1 ’

where (), = max (0,).
Now, due to the Independence from Irrelevant Alternatives (I11A) property, the probability ratio between
any two routes i,j € R where P; > 0 and P; > 0 is the ratio of the odds ratios:

Pr(choosing i from {i, r*})
ﬂ _ M _ 1—"Pr(choosing i from {i, v}
P; - nj "~ Pr(choosing j from {j, 7*})
1 — Pr(choosing j from {j,r*})
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(exp(Q(Vi —max(V;:l €R) + l/))) — 1)+

B (exp (H(VJ —max(V;:l ER) + 1/))) - 1)+.
Thence, since the non-zero probabilities must add up to 1, the BCM probability for route i € R is:
_ (exp(6(V; —max(Vi:l € R) +9)) — 1),
* Sjer (exp (6(V; - max(vVi: 1 € R) + ) ) - 1)+'
Finally, setting ¥ = (1 — @) max(V;:l € R):
B (exp(—H(Vi —max(V:l € R))))+
- 2 jer (exp (—Q(Vj —@max(V:l € R))))

i

i .
+
10.2  Appendix B — Derivation of Proposed BPS Model Form
Suppose the probability of choosing route i € R relates as:
P, = Qi xQf X,
where
. (exp(=6(c; — pmin(c;:L € R))) — 1), , eBInG)
Q. = , Q = )
l Yier (exp (—9(6j — @min(c;:l € R))) - 1) ' Yier eBIn(y))
+
and y is a normalisation constant. The probabilities for all routes » € R must add up to 1:
(exp(—6(c, — min(c;: 1 € R))) — 1) eFn0m) ( X, )
P= ) Q}xQixX= * xx=|) = |xx=1,
Z Z (ZR Yjer (exp (—G(Cj — @ min(c;:l € R))) - 1)+ Y jeref ) Z L

TER TER TER

where to simplify notation:
X, = (exp(—6(c, — g min(cy: | € R))) — 1), PO,

L= ZjER (exp (—H(Cj — @min(c;:l € R))) - 1)+ Z eBn(y)),

jER
By rearranging, the normalisation constant y is thus:

-(%%)

TER

and

Substituting x back into the probability relation for route i € R:

-1 -1
P; = Q} x Q7 x —Xix Zxr —Xix 12){ —Xix L&
l_Qi Qi X_L L _L L " _L ZTERXT_ZTERXT

T€R TER

(exp(—6(c; — p min(c;:l € R))) — 1)+ . eBIn()
" Trer(exp(=6(c, — pmin(ci:l € R)) — 1), - eF NG

10.3  Appendix C — Desired Properties for a Bounded Path Size Model

In this section, we establish desired properties for a BPS model by exploring different options for the path size
terms for the natural BPS model in (4.5).

10.3.1 Option 1
Suppose that the path size term for route i € R is defined as follows:
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t 1
=) (4.26)

a€Ai; Ci Yker 5a,k

The option 1 path size term, ¥}, is equivalent to the PSL path size term. As (4.26) shows, all routes in the
choice set contribute equally to path size terms, however unattractive, and thus unrealistic routes (with zero
choice probabilities) negatively impact the choice probabilities of realistic routes (with non-zero choice
probabilities) if links are shared. To demonstrate this, consider example network 4 in Fig. 4.25A where there
are 3 routes: Routes 2&3 have travel cost 1 and Route 1 has travel cost 0.5 + v, Routes 1&2 are correlated
while Route 3 is distinct. Fig. 4.25B displays the example network 4 option 1 BPS model route choice
probabilities as v is increased from 0.5t03,0 = f =1, ¢ = 2.5. For v = 0.5, Routes 1&2 have the same
unshared travel cost and are thus considered equally attractive. As v is increased, Route 1 increases in travel
cost and decreases in utility. As the utility of Route 1 becomes 2.5 times smaller than the utility of Route 3
(the best alternative), Route 1 attains zero choice probability, but continues to contribute to the path size term
of Route 2, which is not desired.

We thus establish the following desired property for a BPS model:

Desired Property 1 — Consistent Definitions of Unrealistic Routes: Routes defined as unrealistic by the
choice model (assigned zero choice probabilities) should have zero path size contributions, and vice versa.

A Route 1 B

0.7
U Route 1 x
06 Route2 A
Route 3 *

0.5

Route 2 0.5 4
0.4

0.3

Choice Probability P;

0.2 4

0.1+

0.0 T T T y y y
0.5 10 15 2.0 25 3.0
1 u

Route 3

Fig. 4.25. A: Example network 4. B: Example network 4: Option 1 BPS model route choice probabilities for increasing v (6 = 8 = 1,
@ = 2.5).

10.3.2 Options 2&3

Option 1 clarifies that routes defined as unrealistic by the path size terms should have no path size
contributions. We explore in options 2&3 below how this might be achieved. However, there is a practical
issue for both options that complicates matters. Allowing path size contributions to be zero means that: a)

scenarios of % can occur within the path size terms; and, b) path size terms can equal zero which consequently

results in occurrences of In(0) within the route utilities. The In(0) issue can be circumvented by negligibly
perturbing path size terms that equal zero (by 0 < 7 « 1 say), so that the utility of route i € R isV; = —0c; +
BIn((y; — 1)4 + 7). In(0) within a route utility implies that that the route is infinitely unattractive, and hence
it can be concluded that the route is outside the bound and assigned zero choice probability. A suitably low
value for 7 will ensure utilities with zero path size terms are finite but small enough to violate the bound, and

for the demonstrations below we set 7 = 1071°. The % issue, however, cannot be completely circumvented. In

order to use options 2&3, one must specify how the path size terms deal with % and with each option there is

no single formulation that ensures continuity, as we will show. Nevertheless, we present here their
formulations as simply as possible for pedagogical purposes only.

10.3.2.1 Option 2
Suppose that the path size term for route i € R is defined as follows:
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i z |2 (hi(=bc;w) — 1),
' aea; Ci Drer(he(—0c; w) — 1), 64

where h;(—0c; w) = exp(—0c¢; — w max(—0c;:l €ER)) = exp(—G(ci — wmin(c;:l € R))), andw > 1is
the path size contribution bound parameter. Option 2 supposes that routes only contribute to path size terms if
they have a cost less than w times the cost on the cheapest route, and the path size contribution factors
consider ratios of the odds that routes are within this path size contribution bound. As (4.27) shows, route k
only contributes to path size terms if ¢, < w min(c;:1 € R), and as the cost of a route decreases below the
contribution bound its path size contribution increases.

Option 2 has two main failings. The first main failing is the practical issue discussed above. If no routes
using link a have a cost within the contribution bound, then ;g (hx (—0¢; @) — 1) 484 = 0 and % occurs.
Furthermore, if route i has a cost above the contribution bound (i.e. (h;(—0c; w) — 1), = 0) but for all links
in route i at least one route has a cost within the contribution bound (i.e. X xer(hy (=0c¢; w) — 1)1 64, > 0,
Va € 4;), then y? = 0 and In(0) occurs in V;. In order to use option 2, one must specify how y? is formulated

for Yxer(hx(—0¢; w) — 1) 48, = 0 (to avoid occurrences of %). There are three alternative formulations for
2.
Vi

(4.27)

(hi(=6c;w) — 1), _ |
2= Z ta 3 Lrer(hi(=0€; 0) = 1), 80 if ZkER(hk(—Hc, @) = 1)48qx >0

Vi = '
ae4; Ci Y if Z (hi(=0c;w) —1)104, =0
keR

;, depending on how
YkerOak

where Y has three alternative values, equal to either 0, 1, or

(hi(-6c;w)—1)4 50
Yker(hi(=0c;w)—1)484k 0

The second main failing is that the model is internally inconsistent with how routes are defined as being
(un)realistic. The natural BPS model probability relation in (4.5) bounds the route utilities so that routes with a
relatively unattractive combination of travel cost and distinctiveness are assigned zero choice probabilities.
The option 2 path size terms, however, define a route as unrealistic if it has a large travel cost only, and
subsequently bound the route costs so that expensive routes have zero path size contributions. The option 2
path size terms thus potentially result in an inconsistent model, as routes with non-zero choice probabilities
may have zero path size contributions, and/or vice versa. To demonstrate, consider example network 4 in Fig.
4.25A. Fig. 4.26 A-B display example network 4 option 2 BPS model choice probabilities for w = 1.5 and
w = 3, respectively, as v is increased from 0.5t03,Y =6 = 8 =1, ¢ = 2.5. In Fig. 4.26A, as the path size
contribution bound parameter is more restrictive than the model bound, the path size contribution of Route 1
to Route 2 is eliminated before Route 1 reaches zero choice probability. Conversely in Fig. 4.26B, as the
contribution bound is less restrictive than the model bound, Route 1 reaches zero probability before its
contribution to Route 2 is eliminated.

Option 2 also requires the estimation of an additional bound parameter, which makes estimation more
difficult, and which can amplify the inconsistency of the model due to the different bound considerations. It is
possible that the model bound and path size contribution bound could equate (w = ¢), so that routes have zero
choice probabilities and/or zero path size contributions if they have a utility/cost ¢ times worse than the best
respective route, but there is no real theoretical basis for this. Fig. 4.26C displays example network 4 option 2
BPS model choice probabilities as v is increased from 0.5t0 3, withw = ¢ =25, Y =0 =0 =1. As
shown, internal inconsistency still occurs with equated bounds. This does though at least decrease the number
of parameters for estimation. The inconsistency of the resultant option 2 model is amplified if the two bound
parameters ¢ and w have significantly different restrictions on the assessed feasibility of routes, as Fig.
4.26A-B show. If the model bound ¢ is restrictive so that very few routes have non-zero choice probabilities,
but the contribution bound is unrestrictive so that many routes have non-zero path size contributions, or vice
versa, then the model is clearly more inconsistent than if the two bound parameters were similarly restricting.

From exploring option 2, we establish the following desired properties for a BPS model:

Desired Property 2 — Well-Defined Functions: The model functions should be well-defined across their
domain.
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Desired Property 3 — Internal Consistency: The model should be internally consistent, i.e. there is a
consistent assessment of the feasibility of routes between probability relation and path size contribution
factors.

Specifically, Desired Property 2 covers the avoidance of occurrences of% in the path size terms / In(0) within

the route utilities, which occur naturally when routes have zero path size contributions, as shown above and
below. It is worth noting that satisfying Desired Property 3 — Internal Consistency is enough to satisfy Desired
Property 1 — Consistent Definitions of Unrealistic Routes, but the vice versa is not true, as shown in Section
10.3.3.
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Fig. 4.26. Example network 4: Option 2 BPS model route choice probabilities for increasingv (Y =60 =8 =1,¢ =2.5). Al w =
15.B:w=3.C:w=25

10.3.2.2 Option 3
Suppose that the path size term for route i € R is defined as follows:

t P t 1
V3(P) = z K z ta
i aea; Ci Lker Pbai aca; Ciy, o (%) 5o (4.28)
WAL

where P is a route choice probability vector, and the option 3 BPS model choice probabilities, P*, are a
solution to the fixed-point problem P = H(y*(P)) in D, where:

(hi(=0c + B In(y*(P))) — 1),
Yier(hi(—=0c + BIn(y3(P))) — 1)+ '

The option 3 path size terms propose that routes contribute according to ratios of choice probability, and thus
the resultant model is internally consistent. The probability relation is an implicit function involving the

H;(y3(P)) = Vi € R.
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choice probabilities, and solutions to the model are solutions to the fixed-point problem. Whereas the APSL
domain for choice probability solutions, D, does not allow routes to have zero choice probabilities, the
option 3 BPS model domain, D, does allow for zero probabilities. This is a requirement since the model
assigns zero choice probabilities / eliminates the path size contributions of routes with infeasibly low utilities.

With this though, % occurs in the path size terms when Y ,cr P64 x = 0, and In(0) occurs in the route utilities

when P; = 0 and Y xep.kxi PiOax > 0 for all a € A;. In order to use option 3. one must specify how y? is
formulated for ¥;cg P 8q . = 0. There are again three alternative formulations for y:

(4T s
3 _ ta ) Xker PrOak ker © K
yi - X )
Y lf Z Pk(sa,k = O
KER

1

a€4; Ci

. P; 0
I depending on how SreRPidar -5

Option 3 has two other main failings. The first of which is the unconditional non-uniqueness of solutions.
The ‘active choice set’ is the restricted choice set of routes with non-zero choice probabilities. In the case of
the option 3 BPS model, there are two types of solution non-uniqueness: inter-active-choice-set non-
uniqueness and intra-active-choice-set non-uniqueness. Intra-active-choice-set non-unigqueness is where there
are multiple choice probability solutions within the active choice sets, and inter-active-choice-set non-
uniqueness is where there are multiple solutions between active choice sets. Inter-active-choice-set non-
uniqueness is much more problematic than intra-active-choice-set non-uniqueness, and having a single active
choice set where multiple choice probability solutions exist is more manageable than having multiple active
choice sets where solutions exist. If there is just one active choice set where solutions exist, then at least it is
known which routes are defined as unrealistic, and it’s possible that there will be some conditions under
which solutions within the active choice set are unique. However, if it is possible for multiple active choice
sets to have solutions, then it is unlikely that uniqueness conditions can be established (conditions under
which there is only ever one active choice set with solutions), and an active choice set selection procedure is
required.

Inter-active-choice-set non-uniqueness occurs extensively for the option 3 BPS model due to the route
utilities not being fixed and the potential for them to vary massively according to the active choice set.
Without fixed utilities, the maximum utility route(s) and value can vary, and different routes can have utilities
within the bound. To demonstrate, consider example network 5 in Fig. 4.27 where there are 5 routes; Table
4.12 gives the route information. As Fig. 4.27 shows, Routes 1-4 are correlated, and Route 5 is distinct. Using
an exhaustive search for active choice set solutions, Table 4.13, Table 4.14, & Table 4.15 display all of the

BPS model option 3 choice probability solutionsforY =0,Y =1,andY = , respectively, for 6 =

where Y has three alternative values, equal to either 0, 1, or 5

YkerOak
f =1, = 2. R S R isthe restricted choice set of active routes. There are 17, 3, and 5 active choice sets in

which solutions existforY =0, Y =1,and Y = z;a’ respectively. For these parameter settings there is
keROak

intra-active-choice-set uniqueness. However, to demonstrate how there can also be intra-active-choice-set
non-unigueness, Table 4.16 displays two BPS model option 3 choice probability solutions for the active
choice set R = {1,2,5}, withY = 0,6 =1,and f = ¢ = 5.
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Fig. 4.27. Example network 5.

Route | Node Traversal | Travel Cost
1 O0-1-D 0.7
2 O0-1-2-D 1.1
3 0-2->1-D 2
4 O0-2-D 1.3
5 0-3-D 2

Table 4.12. Example network 5 route information.

R P, P, P; P, Ps R P, P, Ps P, Ps
(5} 0 0 0 0 1 (2,4} 0 0.590 0 0.410 0
4} 0 0 0 1 0 2,4,5} 0 0.498 0 0.346 | 0.156

4,53 0 0 0 0.765 | 0.235 2,3} 0 0.901 | 0.099 0 0
(3} 0 0 1 0 0 2,3,5} 0 0819 | 0.09 0 0.09

(3,5} 0 0 05 0 05 2,34} 0 0610 | 0.026 | 0.365 0

(3,4} 0 0 0.101 | 0.899 0 (2,3,4,5} 0 0517 | 0022 | 0309 | 0.153

(3,4,5} 0 0 0.076 | 0.676 | 0.249 (1} 1 0 0 0 0
2} 0 1 0 0 0 (1,4} 0.906 0 0 0.094 0

2,5} 0 0.901 0 0 0.099

Table 4.13. Example network 5: All option 3 BPS model

choice probabilities solutions (Y = 0,0 = g =1, ¢ = 2).

R P, P, Py P, Ps
{2,3,5} 0 0.819 0.09 0 0.09
{2,3,4,5} 0 0.517 0.022 0.309 0.153
{1,4} 0.906 0 0 0.094 0
Table 4.14. Example network 5: All option 3 BPS model choice probabilities solutions (Y = 1,80 = 8 =1, ¢ = 2).
R Py P, P3 Py Ps
{2,5} 0 0.901 0 0 0.099
{2,3,5} 0 0.819 0.09 0 0.09
{2,3,4,5} 0 0.517 0.022 0.309 0.153
{1} 1 0 0 0 0
{1,4} 0.906 0 0 0.094 0
Table 4.15. Example network 5: All option 3 BPS model choice probabilities solutions (Y = ﬁ, 6=L=1,¢=2).
a,

Py P, i) Py Ps
0.009 0.703 0 0 0.288
0.698 0.066 0 0 0.235

Table 4.16. Example network 5: Option 3 BPS model choice probabilities solutions for R = {1,2,5} (Y = 0,0 = 1,8 = ¢ = 5).

Another main failing for the option 3 model is that the choice probability function is not always continuous.
The option 3 BPS model has trajectories of choice probability solutions as the ¢ bound parameter is varied.
For a given trajectory of solutions, as ¢ is decreased, route utilities approach the bound from below resulting
in the choice probabilities and thus path size contributions approaching zero. However, since the utilities are
not fixed, and are dependent upon ¢, it is possible for the utility of a route to meet the bound (as ¢ is
decreased) before its path size contribution to routes meets zero, and as a consequence, the choice probability
function is not always continuous in ¢. To demonstrate, consider again example network 5 in Fig. 4.27. To
identify a trajectory of option 3 BPS model solutions for varying ¢ we utilise the following method.

Step 1. Identify a suitably large value for ¢ such that the option 3 BPS model solution will have a
non-zero choice probability for all routes.

Step 2. Solve the option 3 BPS model fixed-point problem for this large ¢ with a randomly generated
initial condition.
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Step 3. Decrement ¢ and obtain the next solution with initial condition set as the solution for the
previous ¢.

Step 4. Continue until ¢ = 1.

Utilising the above method and plotting the probabilities at each decremented ¢, Fig. 4.28 displays a
trajectory of option 3 BPS model choice probability solutions as ¢ isvaried, Y =0 = =1. As ¢ is
decreased, the utility of Route 3 approaches the bound and zero choice probability. However, the utility of
Route 3 reaches the bound before the path size contribution of Route 3 to Routes 1&4 reaches zero. Thus, due
to the sizeable adjustment of the utilities when Route 3 is removed from the active choice set, the choice
probability function is not continuous.
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Fig. 4.28. Example network 5: Trajectory of option 3 BPS model choice probability solutions for varying o (Y =6 = = 1)

From exploring option 3, we establish the following desired properties for a BPS model:

Desired Property 4 — Uniqueness: Route choice probability solutions are inter-active-choice-set unique
(where there is only one active choice set in which solutions exist), and conditions can be established for
intra-active-choice-set uniqueness (where for a given active choice set there is only one solution).

Desired Property 5 — Continuity: The choice probability function is continuous.

10.4  Appendix D — Existence and Uniqueness of BAPS Model Solutions

In this section we establish a series of theoretical results concerning the BAPS model as defined in (4.18),
(4.19), and (4.20), where the guaranteed existence of solutions is proven, and sufficient conditions for the
uniqueness of solutions are detailed.

10.4.1 Properties

We begin by providing two important properties of the fixed-point function F. In Lemma 1 we establish the
continuity property of F.

Lemma 1. F; (fi(7BAP5(P))) is a continuous function for P € DR©®)D) i e R,

Proof. From the definition (4.20) above it follows that 754FS is continuous in P for all P € D(R(c:)D):

Jim yPAPS(P) = PAPS(Py), VP € DRED, (4.29)

If we let I" be the set of possible path size terms:
[={yP4%S € RY,: 0 < 7P4PS < 1,Vi € R(c; )},

then from definition (4.19) above it follows that f; is continuous in 2475 for all yB4PS € I
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ol A = fi@0). Vo €T, ViER (4.30)
And, from definition (4.18) above it follows that F; is continuous in x for all x € [0,1]:
lim F;(x) = F;(x,), Vx, € [0,1], Vi € R. (4.31)
X—>Xg

It then follows from (4.29), (4.30), and (4.31) that F; (fi (VBAPS(P))), as a composition of continuous
functions, is itself continuous in P for all P € D(R©9).D):

Jim F (7775 @) = F (7P (), vPo € DFE@OD, vieR

We now in Lemma 2 show that the domain of F maps to itself.
Lemma2. F (f()_/BAPS(P))) maps DREP)T) into p Rlco)D)

Proof. From definition (4.20) above it follows that the function 734PS maps D®(©#)D) 5 [ from definition
(4.19) it follows that the function f maps I' - D(R@®) and, from definition (4.18) it follows that the
function F maps D(R(€®) - p(R@e)D) |t thus follows that the composition of the functions ¥24PS, f, and F,
F (f(VBAPS(P))), maps D(RE9)D) _, pR(ci)D),

10.4.2 Existence of Solutions
Having established some properties regarding the BAPS model fixed-point function F, we consider the

existence of BAPS model solutions.
Proposition 1. At least one BAPS model fixed-point solution, P*, to the system P = F (f (yBAPs (P))) is
guaranteed to exist in D R©®).),

Proof. F (f (yPaPs (P))) is a continuous function by Lemma 1, which maps D ®(€®)7) jnto D R(€:0)D) py
Lemma 2, and thus since D(R(©®).7) js a compact convex set, and by Brouwer’s Fixed-Point Theorem at least
one fixed-point solution, P*, is guaranteed to exist for the system P = F (f()_/BAPS(P))) in DR@P).D),

10.4.3 Uniqueness of Solutions

Having proven that BAPS model solutions are guaranteed to exist, the next question is whether sufficient
conditions exist which ensure BAPS model solutions are unique. In order to do this, we must first establish
two key properties of Jg(P; ) which is the Jacobian matrix of first partial derivatives of F evaluated at P and

B.
Lemma 3. The maximum Jacobian matrix norm of F(f(y?4PS(P); B)) for all P € DREDD at g = 0 is
equal to zero: max(||Jp(P; 0)||: VP € DRE#D) = 0,

Proof. From definitions (4.18) and (4.19) above it follows that:

F(f: 75475 (P); 0))

(1N (exp(—G(ci — @ min(c;:l € R))) - 1) if i € R(c: ) . (4.32)
= 2 jeR(c0) (exp (—G(Cj — @ min(c;:l € R))) - 1) , Vi ER.
0 ifi g R(c;p)

It then follows from (4.32) that:
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oF;(f; @475 (P); 0)) 0
aP, o

It thus follows from (4.33) that ||z (P; 0)|| = 0, vP € DR and hence max(||J¢(P; 0)||: VP €
D(R(C;gv).f)) =0.

vP € DRE@®D vy eR. (4.33)

[ ]
Lemma 4. The maximum Jacobian matrix norm of F(f (#24PS(P); §)), max(|l/z(P; B)|: vP € DRE®)D),
is a continuous function for g € [0, o).
Proof. It follows from the definitions (4.18), (4.19), and (4.20) above that:
oF; (f,(7*47s(P)))
aPl B
L 4.34
( (hi(=6) - 1) (72475 Py / pULE) B SiennBlly(~6e) - 1y (P)( 7eas(p)) \ _ (4.34)
(1-N1)- . BAPS(P) - | ifi,lER(c;(p)’
3 jertep (b (—06) = 1) - (BAPS(P)) \ Sjencen(y(=60) — 1) - (77475(P))
0 otherwise
Vi,l ER,
oyPAPS (P t R(c:o)iki Picd, _
Yi aP( ) _ Z _(T ZkER(c,(p),kil k a,lzc ' Vi € R(C; (P), (435)
l acA; &i (Zkeﬁ(c;(p) Pk5a,k)
and,
ta Pi(sal . =
ayPAars(py |- Z — : 5 UfLER(c @)
la—PI = a€EA; C; (ZkEﬁ(C;QD) Pk(sa,k) , (436)
0 if L € R(c; )
Vi € R(c;),l ER, I #i.
L . ayBAPS(p) . . .
From the definitions (4.35) and (4.36) above it follows that —p— iscontinuous in P forall P €
DR(c9))-
57BAPS 57BAPS
im 2P _ 97T (Po). vP, € DREP)). (4.37)
P-P, oP apP
5Fi(fi(73APS(P)))

It then follows from (4.29) and (4.37) that as defined in (4.34), being a composition of

6Pl ~
continuous functions, is itself continuous in P for all P € D(R(©®).D);

oF; (F(7P47S(P)))  oF (F(7P47S(Py)))
P —’r}’lo 0P, B op, ’

OF; f BAPS(P) _ aFi i ~BAPS P ;
( (ap )) is a continuous function for P € DR€®).D v | € R, U (yap 25))
l l

continuous function for g € [0, ), Vi,l € R:

OF;(f;@P*PS(P); B)) \ _ 0F(fi(#®4FS(P); Bo))
ap, - ap, '

VP, € DREOID il eR.

Since isalso a

lim
B—Bo

Hence, since maX(lI]p(P; BI: VP € D(ﬁ(“‘/’m) is a composition of continuous functions then it itself is a
continuous function for g € [0, o0):

VB, € [0, ), Vi, l €R.
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Jim (max(|/p(P; PII: VP € DREND)) = max(||Jz(P; Bo)ll: VP € DREPID) v, € [0, 0).
—Po

These two key properties of Jr(P; 8) allow us to establish conditions for the uniqueness of solutions.

Proposition 2. There always exist values of b > 0 such that when the g parameter is within the range 0 <
B < b, there are unique BAPS model fixed-point solutions, P*, to the system P = F(f(¥54PS(P); B)) in
pRE9)T)

Proof. F is a contraction mapping on the domain DR(©®).D) jf:
a) F maps DRE®D into itself, so F(f(¥EAPS(Py); B)) € DREDD yp e pREDD ang
b) There exists a constant 0 < o < 1 such that:

Jr(P; Pl <o,  vPeDREDD,

where Jg(P; B) is the Jacobian matrix of first partial derivatives of F evaluated at P.

If the link cost vector t is fixed (and thus the route cost vector c is fixed), and 8, ¢ are fixed, then for any
given B, if F is a contraction mapping, then since D(R(¢:®)7) js a compact convex set, and by Lemma 1,
Lemma 2, and the Contraction Mapping Theorem, F emits a unique fixed-point solution P* € DR(€@).),

It remains to establish the conditions under which F is a contraction mapping. Since by Lemma 3 the
maximum Jacobian matrix norm of F for all P € DR at g = 0 is equal to zero (max(||Jz(P; 0)||: VP €
DRED) = 0), and by Lemma 4 max(||J¢(P; B)II: VP € DREID) js a continuous function for g €
[0, 0), then there must always exist values b > 0 such that when g is withintherange 0 < 8 < b Fisa
contraction mapping and the sufficient conditions for unique BAPS model solutions are always met.

There are cases where the BAPS model has unique solutions for all 8 > 0 (i.e. for all values of b), for
example where all active routes are non-overlapping and the path size terms are consequently all 1 so that F;
collapses to (4.32), and hence in these cases a maximum value for b does not exist. However, in most cases
BAPS model solutions are not unique for all values of g and in these cases a maximum value for b exists
(denoted b,,,4,) such that Proposition 2 holds. However, Proposition 2 is only a sufficient condition for unique
BAPS model solutions and solutions are not necessarily non-unique for 8 > b, 4. In Section 10.5 below we
demonstrate how the true maximum range 0 < 8 < Bmax for which BAPS model solutions are unique can be
estimated.

10.5 Appendix E — Satisfying the Desired Properties for a BPS Model

In this section we discuss/demonstrate how the BBPS and BAPS models satisfy the desired properties for a
BPS model established in Appendix C.

10.5.1 Desired Property 1 — Consistent Definitions of Unrealistic Routes

Property: Routes defined as unrealistic by the choice model (assigned zero choice probabilities) should have
zero path size contributions, and vice versa.

The BBPS and BAPS models both satisfy Desired Property 1 since the proposed BPS model form stipulates
that a route has both a zero choice probability and zero path size contributions if and only if it has a travel cost
above the bound. This is demonstrated in Section 10.5.3 below.

10.5.2 Desired Property 2 — Well-Defined Functions
Property: The model functions should be well-defined across their domain.

The BBPS and BAPS models both satisfy Desired Property 2, which, specifically, is established so that
occurrences of% in the path size terms / In(0) within the route utilities are avoided. Generally, the path size
correction factor for route i € R is k; = 8 In(y;), and the path size term of route i € R is defined as follows:
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_ Z [ Wi
Vi a€4; Ci Yker Wk6a,k'
where W, is the path size contribution weighting of route k € R. If allowing for the weightings to be zero as

to eliminate contributions, then % occurs when W; = Ypepr Wi 6, = 0, and y; = 0 occurs (resulting in In(0))

when W; = 0 and Yep.k2i WiSar > 0. Two key features of the proposed BPS model form — of which the
BBPS and BAPS model adopt — are that: a) only the realistic routes have path size terms; and, b) the realistic
route path size terms only consider the path size contributions of other realistic routes. These two features
ensure that the proposed BPS model form has well-defined functions. The form stipulates that the realistic
routes are those which have a travel cost less than the bound (¢ times the cost on the cheapest route), and that
the path size contribution weightings of these routes are non-zero. The proposed BPS model path size term
definition in (4.7) thus only considers the path size contribution weightings of routes k € R that have costs
below the bound (routes k € R(c; ¢)), since it is known that these are the realistic routes and have non-zero

. . 0 . . . .
weightings, and hence occurrences of Sare avoided. Moreover, since path size terms are only defined for

realistic routes where W; > 0, occurrences of y; = 0 and thus In(0) are avoided, although (4.7) precludes
occurrences of In(y;) regardless.

10.5.3 Desired Property 3 — Internal Consistency

Property: The model should be internally consistent, i.e. there is a consistent assessment of the feasibility of
routes for both the probability relation and the path size contribution factors.

The BAPS model satisfies Desired Property 3 since the BAPS model path size contribution factors assess the
feasibility of routes according to their route choice probability, and hence the model is internally consistent.
The BBPS model is not internally consistent, however, since the contribution factors assess routes according
to their travel cost, with no consideration of distinctiveness, and hence Desired Property 3 is not satisfied.

To demonstrate, consider example network 4 in Fig. 4.25A. Fig. 4.29A-B display the example network 4
BBPS model 4 = 8 and BAPS model choice probabilities, respectively, as v is increased from 0.5t0 3, 68 =
B =1, ¢ =2.5. As Fig. 4.29B shows for the BAPS model, as the travel cost of Route 1 increases, its choice
probability and consequently path size contribution to Route 2 decreases. As the cost of Route 1 approaches
the bound, Route 1 approaches zero choice probability / path size contribution. When v = 2, the travel cost of
Route 1 is exactly 2.5 times the cost on the cheapest routes (Routes 2&3), and hence Route 1 is assigned zero
choice probability, and its path size contribution is eliminated. In Fig. 4.29A, however, for the BBPS model,
the large A value accentuates the travel cost differences and the contribution of Route 1 to Route 2 diminishes
to zero well before the cost of Route 1 reaches the bound and obtains zero probability.

0.7 0.7
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w 0.3 @ 0.3
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0.2 A 0.2 4
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0.0 1— . T ¥ Y Y 0.0l T . Y ; Y
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 15 2.0 2.5 3.0
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Fig. 4.29. Example network 4: Route choice probabilities for increasing v (6 = § = 1, ¢ = 2.5). A: BBPS model, A = 8. B: BAPS
model.
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10.5.4 Desired Property 4 — Uniqueness

Property: Route choice probability solutions are inter-active-choice-set unique (where there is only one
active choice set in which solutions exist), and conditions can be established for intra-active-choice-set
uniqueness (where for a given active choice set there is only one solution).

For the proposed BPS model form, there is only one active choice set in which solutions exist: the zero choice
probability routes are exactly the routes with travel costs greater than or equal to the bound, and, routes with
travel costs below the bound will receive non-zero choice probabilities. This is in contrast to the option 2&3
BPS models in Section 10.1.2 where there are multiple active choice sets in which solutions exist. BBPS &
BAPS model choice probability solutions are thus inter-active-choice-set unique, and, since the BBPS model
is closed-form, solutions are also intra-active-choice-set unique. BAPS model choice probability solutions are
however not intra-active-choice-set unique, though conditions exist under which solutions are.

Duncan et al (2020) demonstrate how APSL choice probability solutions are unique for 8 in the range
0 < B < Bmax- A similar range exists for the BAPS model. We shall show here: a) that multiple BAPS model
solutions can exist; b) that there is arange 0 < 8 < Bmax fOr § in which solutions are unique; and, ¢) how
Bmazx €an be estimated. To do this, we utilise the same method to that described in Section 4.4 of Duncan et al
(2020) for the APSL model. 8,4, is estimated by plotting trajectories of BAPS model solutions for varying £,
and identifying where a unique trajectory of solutions ends and multiple trajectories begin. A simple method
for obtaining trajectories of BAPS model solutions is as follows:

Step 1. Identify a suitably large value for S.

Step 2. Solve the BAPS model fixed-point system for this large  with a randomly generated initial
condition (see Section 5.2.2).

Step 3. Decrement 8 and obtain the next BAPS model solution with initial condition set as the
solution for the previous S.

Step 4. Continue until 8 = 0.

By plotting the choice probabilities at each decremented g, and repeating this method several times, one can
determine where non-unique solution trajectories end and hence estimate £, If after several repetitions
(with different randomly generated initial conditions) only a single trajectory of solutions is shown, then the
initial large B value is increased. We illustrate the approach graphically, but there is no need to draw graphs
for general networks. One can instead observe the choice probability values, where a finer grained decrement
of B will provide a more accurate estimation of S,,4-

To demonstrate, consider again example network 5 in Fig. 4.27; Fig. 4.30A-B display trajectories of
BAPS model solutions as the 8 parameter is varied for ¢ = 7 and ¢ = 2.5, respectively, with 6 = 1. 8 was
decremented by 0.01, and the initial large g values were g = 1.5 for Fig. 4.30A and § = 10 for Fig. 4.30B.
The solution trajectory plotting was repeated until multiple clear trajectories were shown. As shown, there is a
unique trajectory of choice probability solutions up until 8 = ;4 Where there then becomes multiple
trajectories. The estimated 3,4, Values are 0.97 for Fig. 4.30A and 4.61 for Fig. 4.30B.
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Fig. 4.30. Example network 5: Trajectories of BAPS model choice probability solutions as g is varied (6 = 1). A: ¢ = 7.B: ¢ = 2.5.
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10.5.5 Desired Property 5 — Continuity
Property: The choice probability function is continuous.

The BBPS model has a continuous choice probability function: it is closed-form, and as the cost of a route
approaches the bound from below, its choice probability and path size contributions approach zero, and meet
exactly at zero. While the modified BAPS model formulation is known to be discontinuous, the standard
BAPS model formulation has a continuous choice probability function (if assumed solutions always exist),
and the modified version approximates the standard version, thus approximating continuity. Despite having
similar path size terms, the standard BAPS model formulation does not suffer from the same discontinuity
issue as the option 3 BPS model in Section 10.1. Whereas with the option 3 model the feature that is bounded
(route utility) varies as ¢ varies, the feature that is bounded with the BAPS model (route cost) is constant for
all ¢. As a consequence, choice probabilities / path size contributions approach zero as routes approach the
bound from below, and meet exactly at zero. To demonstrate, consider example network 5 in Fig. 4.27; Fig.
4.31A-B display the trajectories of BBPS(=¢) and BAPS model choice probability solutions, respectively, as ¢
is varied, 8 = § = 1. As Fig. 4.31A-B show, as the bound decreases and the route costs approach the bound
from below, the choice probabilities approach zero and meet zero at the bound. Since the path size
contributions also approach zero as the route costs approach the bound, then there is no adjustment amongst
the active route probabilities once a route becomes inactive and hence the choice probability functions are
continuous in ¢, and thus travel cost (as shown in Fig. 4.29).

Choice Probability P;

101 Route 1 x 1.0 A Route 1 x
Route 2 A Route 2 A
Route 3 * Route 3 %

0.8

0.6

0.4
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Route 5 +
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0.8 4
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0.4 4

Choice Probability P;
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Fig. 4.31. Example network 5: Route choice probabilities for varying ¢ (0 = = 1). A: BBPS(=6) model. B: BAPS model.
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Abstract

The Bounded Path Size (BPS) route choice model form, as introduced in Duncan et al (2021b), offers a
theoretically consistent and practical approach to dealing with both route overlap and unrealistic routes. It
captures correlations between overlapping routes by including correction terms within the probability
relations, and has a consistent criterion for assigning zero choice probabilities to unrealistic routes while
eliminating their path size contributions. Two BPS models are proposed: one that is closed-form and another
expressed as a fixed-point problem. This paper establishes Stochastic User Equilibrium (SUE) conditions for
these BPS models, where the choice sets of realistic routes are equilibrated along with the route flows. SUE
solution existence is proven for the closed-form BPS model. A generic algorithm is proposed for solving BPS
SUE models, where the realistic route choice sets are equilibrated from a master pre-generated set of routes.
For the BPS SUE algorithm solving the fixed-point BPS model, we show how the potentially onerous
requirement of solving fixed-point problems to compute choice probabilities can be circumvented, by
harnessing the relationship between choice probability and route flow proportion in SUE context. This allows
one to trade-off the accuracy of the fixed-point probabilities (and thus computation times of each iteration)
with rate of SUE convergence. Numerical experiments on the Sioux Falls and Winnipeg networks show that
the BPS SUE models can be solved in feasible computation times compared to non-bounded versions, while
providing the potential for significantly improved robustness to the adopted master route choice set. Solution
uniqueness for the fixed-point BPS SUE model is explored numerically where results suggest that uniqueness
conditions exist.

Key Words: bounded path size, stochastic user equilibrium, solution algorithm, fixed-point, convergence,
equilibrated choice sets

1. Introduction

The Stochastic User Equilibrium (SUE) traffic assignment model proposed by Daganzo & Sheffi (1977) is a
well-known approach for investigating the behaviours of travellers on congested road networks. SUE relaxes
the perfect information assumption of the Deterministic User Equilibrium model by supposing that route
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choice is based on costs that include stochastic terms. This accounts for the differing perceptions travellers
have of the attractiveness of routes. Two specific challenges for SUE modelling are: 1) capturing correlations
between overlapping routes, and 2) dealing with unrealistic routes. In this paper, we develop a new SUE
modelling approach that addresses both of these challenges in a theoretically consistent, robust, and
mathematically well-defined way, and demonstrate its computational feasibility on large-scale networks. To
set the background for the research, we discuss existing SUE modelling approaches for 1) and 2) below.

When developing a correlation-based route choice model for SUE, there is a trade-off: accurately
capturing route correlation in a behaviourally realistic way requires a more complex route choice model, but
this results in computational challenges for solving for SUE (e.g. long computation times, difficulties
measuring convergence). Different stochastic route cost terms proposed in the literature give rise to three
general types of correlation-based route choice models that have been applied to SUE: GEV structure models
(e.g. Cross-Nested Logit, Generalised Nested Logit, Paired Combinatorial Logit), simulation models (e.g.
Multinomial Probit, Multinomial Gammit), and correction term models (e.g. C-Logit, Path Size Logit (PSL),
Path Size Weibit, Path Size Hybrid). For a detailed review of correlation-based route choice models, with
literature references, see Duncan et al (2020, 2021b), and for a detailed review of SUE applications of
correlation-based models, with literature references, see Duncan et al (2021a). We briefly discuss here,
without the literature references, the key characteristics and strengths/weaknesses of the different correlation-
based SUE model categories.

GEV structure models use a multi-level tree structure to capture the similarity among routes through the
random error component of the utility function. This means that despite having closed-form probability
expressions, due to their multi-level tree structure the choice probabilities and in particular Mathematical
Programming (MP) formulations are complex to compute, where the computational burden escalates
significantly as the scale of network / choice set sizes increase. Simulation models capture route correlation
implicitly, as the similarity between each pair of routes is accounted for by allowing for covariance between
the error terms. The issue for these models is that they do not have closed-form probability expressions, and
so evaluating the route choice probabilities requires either Monte Carlo simulation or alternative methods, all
of which are computationally burdensome. Correction term models add correction terms to the deterministic
utilities / probability relations to adjust the choice probabilities in order to capture route correlations. Their
main attraction is that they have simple closed-form expressions, meaning the route choice probabilities and
MP formulations are generally easy and quick to compute; however, more complex models can capture
correlations more accurately.

Upon selection of which correlation-based SUE model to employ in large-scale network applications, one
must compare the anticipated accuracy of results with the computational burden and/or convergence of
applicable solution algorithms. Simulation SUE models are attractive behaviourally due to their ability to
accurately capture route correlations. However, due to the random nature in which the search direction is
obtained in typical simulation-based algorithms, there are difficulties in suitably measuring flow convergence.
Moreover, numerous studies have found convergence very slow on large-scale networks, while there are also
difficulties in accurately computing small probabilities/flows. GEV structure and correction term models do
not require random simulation to compute choice probabilities, and search directions can be computed
exactly. This means that convergence can be suitably measured, and more optimal step-size schemes /
algorithms can be developed for better convergence. As discussed above, due to their increasing
computational burden as network scale increases, there are questions over the suitability of GEV structure
models for SUE on large-scale networks, while in Duncan et al (2020b), we discuss internal consistency
issues. Correction term models, although are typically less accurate in capturing route correlations, are more
computationally practical and are regularly applied to SUE on large-scale networks.

Historically, SUE models — correlation-based and in general — have had a theoretical need to enumerate
the universal set of routes, however nonsensical they may be (Daganzo & Sheffi, 1977). This is behaviourally
unrealistic and computationally infeasible, as the set contains millions of routes even in medium-sized
networks (Watling et al, 2015; Rasmussen et al, 2015), the majority of which are very long and should be
considered unrealistic. The typical approach for dealing with this is to employ some kind of heuristic method
that attempts to explicitly generate a route choice set containing just the routes considered realistic. This
approach leads to theoretical inconsistencies however, since the route generation criteria is not consistent with
the calculation of the flows among generated routes. Moreover, generating the exact choice sets of realistic
routes is very difficult to do, especially on large-scale networks, and this problematic for many correlation-
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based SUE models as many are not choice set robust (Bovy et al, 2008; Bliemer & Bovy, 2008; Ramming,
2002; Ben-Akiva & Bierlaire, 1999; Bekhor et al, 2008; Duncan et al, 2020,2021b). For simulation SUE
models, typical solution methods do not require explicit route generation and thus the accuracy of results is
not dependent upon the choice sets generated, although the routes generated may vary from different
algorithm runs.

Recent years have seen the emergence of some promising SUE approaches for dealing with unrealistic
routes in a consistent way. Watling et al (2015) and Rasmussen et al (2015) develop a Restricted Stochastic
User Equilibrium approach whereby the choice set of used routes is determined by some explicit constraint
that is dependent on the equilibrium solution. Rasmussen et al (2015) further extend the approach to include a
second restriction, determined partly by an exogenously defined cost threshold. PSL correction terms are
added to both of these approaches to also deal with the route overlap problem. The disadvantage with these
approaches, however, is that equilibrium solutions are not guaranteed to exist, and even in cases where
solutions do exist, there is no guarantee of the uniqueness of the solution. This lack of theoretical guarantee of
existence and uniqueness is a major price to pay when one considers the typical use of such models in policy
testing, meaning that one cannot guarantee to attribute a unique forecasted benefit to any tested measure.
Furthermore, the lack of a mathematically well-defined underlying route choice model with a continuous
choice probability distribution means that the approach is not robust (i.e. potentially sensitive to small changes
to network/model specifications).

Motivated by the desire to develop an SUE model that consistently addresses unrealistic routes but has
guaranteed existence and uniqueness of solutions, as well as a mathematically well-defined underlying route
choice model, Watling et al (2018) formulate the Bounded Choice Model (BCM), and consequently Bounded
SUE. The BCM has a consistent criterion for determining restricted choice sets of feasible routes, and route
choice probability: a bound is applied to the difference in random utility between each given route and an
imaginary reference route alternative, so that routes only receive a non-zero choice probability if the
difference between its random utility and the random utility of the reference alternative is within the bound.
Furthermore, the probability each route is chosen relates to the odds associated with choosing each alternative
versus the reference alternative. A special case of the BCM is where the reference alternative is that with the
maximum deterministic utility i.e. the route with the cheapest generalised travel cost, so that a route only
receives a non-zero probability if its cost is within some bound of the cheapest route.

The BCM, however, does not account for route correlations. To address this, in Duncan et al (2021b), our
own previous work, we considered the integration of a correlation-based route choice model with the BCM.
Upon selection of which correlation-based model to adopt, we had some requirements: real-life application of
a route choice model involves estimating the model parameters, and we thus considered it important that the
proposed model could be successfully estimated, and moreover, that it would be computationally feasible to
do so (as well as apply it) on large-scale networks. As we discussed, there are computational and estimation
concerns that raise questions whether GEV structure and simulation models may satisfy these requirements.
Due to the comparatively low computational cost and the relative ease in obtaining reasonable estimates for
parameters, we thus chose to explore the integration of correction term models with the BCM.

The real-life application of a route choice model on congested road networks involves applying it to SUE,
and thus, although it was not discussed in the paper, our other requirement was that the proposed model would
be suitable for SUE on large-scale networks. As discussed above, and demonstrated in Duncan et al (2021a),
there are also questions over the suitability of GEV structure and simulation models for large-scale SUE
applications, while correction term models are suitable. Furthermore, although it is always desirable for a
route choice model to be mathematically well-defined, this is essential for SUE application, and thus although
it was not explicitly discussed in the paper as for SUE, it was important the proposed model was well-defined.

Inspired by existing research on dealing with unrealistic routes for the PSL model (e.g. Generalised PSL
(Ramming, 2002), Adaptive PSL (APSL) (Duncan et al, 2020)), we chose to pursue integration of PSL model
concepts with the BCM. In the paper, we consequently derived a mathematically well-defined Bounded Path
Size (BPS) model form that utilises a consistent criterion for assigning zero probabilities to unrealistic routes
while eliminating their path size contributions. Two BPS models were proposed: one that is closed-form, and
another expressed as a fixed-point problem.

In this paper, we investigate the application of these BPS models to SUE. For the fixed-point BPS model,
solving the choice probabilities requires a fixed-point algorithm to compute the solution. This has the potential
to be computationally burdensome in large-scale networks even when the travel costs are fixed. However, as
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we explore in this study, the requirement of solving fixed-point problems to compute the probabilities can be
circumvented in SUE application, since at equilibrium the route flow proportions and choice probabilities
equate. In an analogous way to that described/explored for the APSL SUE model in Duncan et al (2021a), the
useful relationship between choice probabilities and route flow proportions in SUE context allows for a
considerable flexibility in solving the fixed-point BPS SUE model, where one can trade-off the accuracy of
the probabilities (and thus computation times of each iteration) with rate of SUE convergence.

The structure of the paper is as follows. In Section 2 we introduce congested network notation as well as
provide definitions of relevant SUE models. In Section 3 we establish SUE conditions for BPS models and
address solution existence/unigueness. In Section 4 we detail a solution algorithm, which has two variants for
cases where there are and are not approximated or actual pre-generated universal choice sets. In Section 5 we
conduct numerical experiments to assess computational performance, compare flow results, and investigate
BPS SUE solution uniqueness. Section 6 concludes the paper.

2. Notation & Model Definitions
2.1 Congested Network Notation

A road network consists of link set A and m = 1, ..., M OD movements. R,,, is the choice set of all simple
routes (no cycles) for OD movement m of size N,, = |R,,|, where N = ¥M_. N,,, is the total number of
1 ifa€dAp

0 otherwise’

The travel demand for OD movement m is q,, > 0, and Q,,, is the N,,, X N,,, diagonal matrix of the travel
demand for OD movement m (i.e. with q,,, on each diagonal element). The flow on route i € Ry, is f,,;, and
fm 1S the N,,,-length vector of route flows for OD movement m. f is the N-length vector of all OD movement
route flow vectors such that f = (f, ... fa), Where f,,; refers to element number i + X7 Ny in f. F
denotes the set of all demand-feasible non-negative universal route flow vector solutions:

routes. A,, ; € A is the set of links belonging to route i € R,,, and 8 1, ; = {

F={feRl: 2 fmi=qmm=1,..,M.

i{€ERm

Furthermore, x, denotes the flow on link a € 4, and x = (xl,xz, ---.X|A|) is the vector of all link flows. X
denotes the set of all demand-feasible non-negative link flow vectors:

M
X = xe]R'f':Z Z Samifmi=xa,Va€EAfEF .

m=1i€Ry

For link a € A experiencing a flow of x,, denote the generalised travel cost for that link as t, (x,), where
t(x) is the vector of all generalised link travel cost functions. In vector/matrix notation, let x and f be column
vectors, and define 4 as the |A| x N-dimensional link-route incidence matrix. Then the relationship between
link and route flows may be written as x = Af. Supposing that the travel cost for a route can be attained
through summing up the total cost of its links, then the generalised travel cost for route i € R,,,, ¢, ;, Can be
computed as follows: ¢, ;(£(Af)) = Yqea,,,; ta(Af), Where c,, (t(Af)) is the vector of generalised travel
cost functions for OD movement m.

Let the route choice probability for route i € Ry, be Py, ;, where Py, = (Ppy1, P2, s P, ) IS the
vector of route choice probabilities for OD movement m, and D,, is the domain of possible route choice
probability vectors for OD movement m, m = 1, ..., M.

2.2 Path Size Logit SUE Models
We briefly detail definitions of SUE for Path Size Logit models with flow-dependent path size terms here, we
direct the reader to Duncan et al (2021a) for more details and solution methods.

Path Size Logit models were developed to address the well-known deficiency of the Multinomial Logit
(MNL) model in its inability to capture the correlation between routes. To do this, they include correction
terms to penalise routes that share links with other routes, so that the deterministic utility of route i € R, is
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Vini = —0cp,i(t) + Ky i, Where 8 > 0 is the Logit scaling parameter and x,,, ; < 0 is the correction term for
route i € R,,. The choice probability for route i € R,,, is:

e _ecm,i(t)""‘m,i

P i(em (t), k) = YjeRy, e~ 0cmjO+km,;’

Path Size Logit correction terms adopt the form ., ; = 1n(ym_l-), where > 0 is the path size scaling
parameter, and y,,, ; € (0,1] is the path size term for route i € R,,,. A distinct route with no shared links has a
path size term equal to 1, resulting in no penalisation. Less distinct routes have smaller path size terms and
incur greater penalisation. The path size terms are often based upon link lengths and thus y,, ; (in those cases)
is not dependent upon the link/route generalised travel costs. However, this leads to internal inconsistency (see
Duncan et al (2021a)), and in this study we base the path size terms upon on generalised link travel costs (i.e.
Ym,i = Ym,i(t)), which in SUE application are congested, flow-dependent costs. The choice probability for
route i € R, is thus:

P ( ( ) ( )) e_ecm'i(tﬂmn(ym‘i(t)) (ym,i(t))ﬁ e—ch,i(t) (5 1)
mi(€m (0 Ym(L)) = ) — = B : .
ZjERm e_ecrn,](t)+ﬂln(ym,](t)) ZjeRm (Vm_j (t)) e~ 0cm,i(®

The general form for the path size term is as follows:

(t) = Z ty 1
Ymill) = a€dn,; Cm,i(t) ¥ (Wm,k) 5 ) (5.2)
’ keRm \ W . ) Pamk
m,i
where W, , > 0 is the path size contribution weighting of route i € R,, to path size terms (different for each
model), so that the contribution of route k € R,, to the path size term of route i € R,,, (the path size

contribution factor) is Vvl;m" To dissect the path size term: each link a in route i € R, is penalised (in terms of
m,

decreasing the path size term and hence the utility of the route) according to the number of routes in the
choice set that also use that link (ZkERm 8am ), Where each contribution is weighted (i.e.

YkeR,, (';VV—:’:L‘) 8a.m,k), and the significance of the penalisation is also weighted according to how prominent

link a is inroute i € R,,, i.e. the cost of route a in relation to the total cost of route i € R, (C t‘f(t)).

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1999) proposes that W,,, , = 1 so that all
routes contribute equally to path size terms. This is problematic, however, as the correction terms and thus the
choice probabilities of realistic routes are affected by link sharing with unrealistic routes.

To combat this, Ramming (2002) proposed the Generalised Path Size Logit (GPSL) model where W, , =

-2
(Cm,k (t)) and routes contribute according to travel cost ratios, so that routes with excessively large travel

costs have a diminished impact upon the correction terms of routes with small travel costs, and consequently
the choice probabilities of those routes.

Duncan et al (2020) reformulate the GPSL model (proposing the alternative GPSL model (GPSL")) so
that the contribution weighting resembles the probability relation, i.e. Wy, , = e Aemk(® As they discuss,
however, GPSL and GPSL' are not internally consistent in how they define routes as being unrealistic: the
path size terms consider only travel cost, whereas the route choice probability relation considers disutility
including the correction term.

To address this, the Adaptive Path Size Logit (APSL) model is proposed where W, ,, = P, , and routes
contribute according to ratios of route choice probability. This ensures internal consistency, where routes
defined as unrealistic by the path size terms — and consequently given reduced path size contributions — are
exactly those with very low choice probabilities. Since the APSL path size contribution factors depend upon
the route choice probabilities, the probability relation is an implicit function, naturally expressed as a fixed-
point problem. The APSL model is thus not closed-form and solving the choice probabilities requires a fixed-
point algorithm to compute the solution. Furthermore, in order to prove existence and uniqueness of solutions
the APSL probability relation is modified from that in (5.1). See Duncan et al (2020) for more details on the
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derivation and theoretical properties of the APSL model, as well as definitions and details of the other Path
Size Logit models.
SUE for a Path Size Logit model with flow-dependent path size terms can be formulated as follows:

Path Size Logit model SUE: A universal route flow vector f* € F is an SUE solution for a Path Size Logit
model iff the route flow vector for OD movement m, f;,, is a solution to the fixed-point problem

fm = QuPm (cn(t@D)vn(t@N)), m=1..M, (53)

where P, ; and y,,, ; are as in (5.1) and (5.2) for route i € R,,, respectively, given the universal route flow
vector f.

For APSL SUE, the probabilities in (5.3) are fixed-point probabilities. As shown in Duncan et al (2021a),

since the route choice probabilities and route flow proportions equate at SUE, the APSL path size contribution

factors can be instead expressed in terms of route flow proportions, i.e. where W, , = f;"—"‘. This underlying

m

route choice model is denoted APSL’ and is closed-form. This alternative definition of APSL SUE is hence
denoted APSL’ SUE, and APSL SUE and APSL’ SUE are equivalent for route flow vectors at SUE only.
Since the APSL probabilities are fixed-point, and the APSL' probabilities are closed-form, APSL SUE and
APSL'’ SUE have different computational performances: the increased computational burden involved in
computing each iteration solving APSL SUE means that total computation times are long, while convergence
is very slow for APSL’ SUE also resulting in longer total computation times. As explored in Duncan et al
(2021a), one can trade-off the accuracy of APSL choice probabilities with rate of SUE convergence, and
several techniques are developed that significantly improve total computation times. This manipulation of the
APSL SUE model as well as the developed solution techniques are highly relevant for the SUE application of
the fixed-point BPS model as detailed in Section 3.2.

2.3  Bounded SUE

Bounded SUE (BSUE) is derived with the Bounded Choice Model (BCM) as the underlying route choice
model. In this subsection we briefly formulate the BCM, see Watling et al (2018) and Duncan et al (2021b)
for more details on the derivation and theoretical properties of the model. The BCM proposes that a bound is
applied to the difference in random utility between each given alternative and an imaginary reference
alternative, so that an alternative only receives a hon-zero choice probability if the difference between its
random utility and the random utility of the reference alternative is within the bound. Furthermore, the
probability each alternative is chosen relates to the odds associated with choosing each alternative versus the
reference alternative. Watling et al (2018) consider a special case of the BCM where the reference alternative
is the alternative with the maximum deterministic utility. While the application of the BCM can involve
exerting an absolute bound upon the difference in utility from the maximum, (for example 25 units worse in
deterministic utility), we consider in this paper exerting a relative bound upon the difference, i.e. where routes
only receive a non-zero choice probability if they have a deterministic disutility less than ¢ times worse than
the greatest route utility. If V,,, ; < 0 is the deterministic disutility of alternative i € R,,, then the probability
alternative i € R,,, is chosen under the BCM is:

(hm,i(Vm) - 1)+
ZjERm(hm,j(Vm) - 1)+,

where by, ;(V,,) = exp(Vy; — @ max(Vy 1k € Ry)), @ > 1is the relative bound parameter to be
estimated, and (-), = max(0,"). In a route choice context where the deterministic utility of route i € R,,, is
given by V,,, ; = —6c, ;, the probability of choosing route i € R, is:

(hn,i(—0cp () — 1)+
ZjeRm(hm,j(_ecm(t)) - 1).,.’

Pm,i(Vm) = (5.4)

Pm,i(cm(t)) = (5.5)
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where by, (=8¢ (8)) = exp(—0cy,,i(£) — ¢ max(—0cy, ; (£): 1 € Ry)) = exp (—H(Cm’i(t) -
@ min(cp, (£):1 € Rm))). Thus, routes only receive a non-zero choice probability if they have a cost less

than ¢ times the cost on the cheapest route, and the probability each route is chosen relates to the odds that
that route has a cost within the bound.
BSUE can be formulated as follows:

BSUE: A universal route flow vector f* € Q is a BSUE solution iff the route flow vector for OD movement
m, fr, IS a solution to the fixed-point problem

fm=QuPn (cm(t(Af))), m=1,.,M, (5.6)
where P, ; is as in (5.5), respectively, for route i € R,,, given the universal route flow vector f.

3. Bounded Path Size Stochastic User Equilibrium Models

The PSL model is problematic in that results are sensitive to unrealistic routes in the adopted choice sets. PSL
variants such as GPSL, GPSL’, and APSL weight the contributions of routes to path size terms so that the
negative impact that unrealistic routes have upon the corrections factors of realistic routes is reduced, and thus
the choice probabilities of those routes. This technique, however, does not solve this problem entirely and
only worsens in effectiveness as the choice sets are expanded and more unrealistic routes are included.
Duncan et al (2021) investigate developing a path size route choice model that eliminates the path size
contributions of unrealistic routes entirely, and once more, that removes all the negative effects of unrealistic
routes, thereby fully solving the issue.

To tackle this, the integration of PSL concepts with the BCM was explored. The BCM provides a
consistent criterion for determining restricted choice sets of feasible routes and route choice probability,
though route correlation is not considered. The natural form for a Bounded Path Size (BPS) choice model is
derived from inserting path size choice model utilities into the BCM formula in (5.4). As Duncan et al (2021b)
show, however, appropriately defining the path size contribution factors within the path size terms is
problematic, as demonstrated with examples. A series of desired properties are consequently established for a
mathematically well-defined BPS model formulation that utilises a consistent criterion for assigning zero
choice probabilities to unrealistic routes while eliminating their path size contributions.

Solving these challenges, an alternative form for a BPS model is proposed and two models are
consequently formulated that adopt this form: the Bounded Bounded Path Size (BBPS) model and Bounded
Adaptive Path Size (BAPS) model, which satisfy desired properties, as discussed/demonstrated. In this
section, we provide SUE definitions for the BBPS & BAPS models, then address the existence and uniqueness
of solutions.

Just like the BCM, the BPS models propose that routes are defined as unrealistic if they have generalised
travel costs greater than the cost bound, i.e. routes i € R,,, such that c,,, ;(t) = ¢ min(cmrl(t):l € Rm), where
@ > 1is the bound parameter. For a given setting of the link/route costs (and bound parameter),

R,,(c,,(t); @) S R,, is defined as the restricted choice set (for OD movement m) of all routes i € R,, where
cmi(t) < @ min(cpy, (8):1 € Ry). Ry, is the active choice set of the realistic/used routes that will receive
non-zero probabilities. Unrealistic routes i € R,,(c,,(t); ¢) with costs above the bound receive zero choice
probabilities.

Where the BPS models differ from the BCM is with the inclusion of path size correction factors within
the probability relation, to adjust the probabilities to capture route correlations. Moreover, the key behavioural
feature of the BPS models is that route correlations are considered between only the routes defined as realistic.
Thus, only the realistic routes i € R,,(c,,(t); @) have path size terms and contribute to / impact the path size
terms of other realistic routes. Unrealistic routes i & R,,(c,,(t); ¢) do not have path size terms and do not
contribute to / impact the path size terms of realistic routes.

In SUE application, the travel costs are flow-dependent, and therefore the routes defined as (un)realistic
depend upon the flows set. The restricted choice sets of realistic routes for the BPS models in SUE are thus
equilibrated along with the route flows. The theoretical difference between the BBPS model and BAPS model
is in how the path size contribution factors are formulated, as we discuss below.
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3.1 Bounded Bounded Path Size SUE

The BBPS model proposes that the path size contribution factors consider ratios of the odds that routes are
within the bound. Given R,, (¢, (t); ¢) for OD movement m, the BBPS model choice probability relation for
route i € R, is:

Pri(€m (), 75275 (1))
([ (rmi(=0en®) - 1) (7225 0))

= B
iZJ'ERm(Cm(t);tp)(hm,i(_ecm(t)) -1)- (Vﬁips(t))
0 if i € Ry(cp(£); )

if i € Rp(em(®);9)  (5.7)

where hy, ;(—0¢p, (8)) = exp (—Q(Cm'i(t) — @ min(cy,, (8):1 € Rm))), and the path size term for route i €
Ry (cn(®); @) is:

h,,i(—A t))—1
g =y e U@ - 58)
a€dpm; Cm,i () Yker, . e (0:0) (P (A€ () — 1) m 1

6 > 0 is the Logit scaling parameter, 8 = 0 is the path size scaling parameter, ¢ > 1 is the universal bound
parameter, and A > 0 is the path size contribution scaling parameter.

The BBPS path size contribution weighting W, , = hmrk(—lcm(t)) — 1 is stipulated as such so to
satisfy the desired properties for a BPS model established in Duncan et al (2021b). This includes ensuring the
choice probability function is continuous, which is vital for SUE application. As can be seen, when 4 = 6,
Wi, x matches the travel cost component in the BBPS model probability relation exactly, and thus choice
probabilities and path size contributions tend towards zero concurrently and meet at zero. This ensures the
smooth removal of a route from the active choice set as it’s travel cost is decreased below the bound.

An additional path size contribution scaling parameter, A, is included, in the spirit of the GPSL and GPSL"
models, to allow for the de-coupling of the scale of the model from the path size effect. Larger values of 1
accentuate the differences in cost within the contribution factors, so that the more expensive routes have more
diminished (though still positive) contributions. In the same way that the GPSL'(;-4) model is developed,
however, one can equate the travel cost scales setting by A = 8 — thus formulating the BBPS(-s) model — to
improve internal consistency and reduce the number of model parameters to estimate. In Duncan et al (2020)
and Duncan et al (2021b), through theoretical and empirical analysis, the credibility of large A values for
BBPS/GPSL models is questioned.

The attraction of the BBPS model is that it has a closed-form choice probability expression and hence
route choice probability solutions are guaranteed to exist and be unique. The BBPS model is however not
fully internally consistent since the path size contribution factors do not consider route distinctiveness, though
consistency is improved by setting A = 6.

The BBPS model approaches the GPSL' model as ¢ — oo, and thus the BBPS(-) model is also
equivalent to the GPSL’ ;-4 model in the limit as ¢ — co. This provides the BBPS model with a theoretical
connection to the family of PSL models. The BBPS model is also equivalent to the BCM for g = 0, which is
equivalent to the MNL model in the limit as ¢ — co.

BBPS SUE can be formulated as follows:

BBPS SUE: A universal route flow vector f* € Q is a BBPS SUE solution iff the route flow vector for OD
movement m, fr,, is a solution to the fixed-point problem

frn = QP (cn(tAN) FEEFS(HAS))),  m=1,..,M, (5.9)

where P, ; is as in (5.7) for route i € R,, and v ° is as in (5.8) for route i & R, (c,,(t); ¢), given the
universal route flow vector f.
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3.2 Bounded Adaptive Path Size SUE

Like the APSL model, the BAPS model proposes that the path size contribution factors consider choice
probability ratios, and as such BAPS SUE can also be defined in two different ways.

3.2.1 Definition 1: BAPS SUE

By adopting choice probability ratio path size contribution factors, the BAPS model has a consistent criterion
for assigning zero choice probabilities to unrealistic routes, eliminating the path size contributions of
unrealistic routes, and determining route choice probabilities and path size contributions (internally
consistent). The BAPS model is, however, not closed-form and the probability relation is an implicit function,
naturally expressed as a fixed-point problem.

As discussed in more detail in Duncan et al (2021b), the standard formulation for the BAPS model is
problematic, since the probability domain is not defined on a closed set, forcing difficulties proving the
existence and uniqueness of solutions. To circumvent this, a modified version is formulated for which
solutions are proven to exist and uniqueness conditions are established. The modified BAPS model
formulation does not have a continuous probability distribution, but the standard formulation can be
approximated to arbitrary precision, thus also approximating continuity. In practice the modified version is
used and hence we formulate SUE conditions for this formulation.

The modified BAPS formulation is defined as follows, see Duncan et al (2021b) for more details on the
derivation and theoretical properties of the model. Given R, (c,,(t); @), the BAPS model route choice
probabilities for OD movement m, Py, (t), are a solution to the fixed-point problem P,,, =

Zy, (zm (cm (8), 7EAPS (8, Pm))), given the link cost vector t, where:

Zm,i (Zm,i(cm (t)v V%APS (t, Pm)))
_ {rm + (1= NipTn) * 2 (€ (0, T35 (8, Pn))  if § € R (e (8); 90) (5.10)
0 lf i ¢ ﬁm(cm(t); <P)’
Zm,i(cm (t): VBmAPS (t: Pm))
(hmi(=0cn(®) — 1) (7245t P))
Zjeﬁm(Cm(t):qo)(hm.j(_gcm(t)) - 1) ) (Vﬁﬁps(t' Pm))
0 if i € Rin(cm(0);90)

if i € Rpy(cn(£); ) (5.11)

where hy, ;(—0c¢p, (8)) = exp (—G(Cm'i(t) — @ min(cy,, (8):1 € Rm))), and the path size term for route i €
Ry (cn(®); @) is:
TEAPS (£, Py) = )

ta Pm,i ) va = D(Rm(cm(t);(p),‘rm)’ (512)

a€Am i Cm,i(t) Zkeﬁm(cm(t)xp) Pm,k6a,m,k

Dr(fm (em(®);9),Tm)

= {Pm € ]R{IZV()”: T < Ppi < (11— (N,, — D1,,),Vi € R, (c,p(1); @), and, 0 < P

Nm
=< (1 - Nme)IVi ¢ Rm(cm(t); (P), E - Pm,j = 1}-
]=

The model parameters are 0 < ,,, < Ni m=1,.,M,6>0,8 =0, ¢ > 1, where 7, is the perturbation

parameter for OD movement m, which does not require estimating, but is introduced so that BAPS models
solutions can be proven to exist and be unique. Z,, ; in (5.10) is the probability adjustment function also
introduced for existence and uniqueness proofs.

As (5.12) shows, for a choice probability solution P, the contribution of used route k € R,,(c,,(t); )
to the BAPS model path size term of used route i € R,,,(c,,(t); @) is weighted according to the ratio of choice
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probabilities between the routes (%

size contributions approach zero, until it is considered unrealistic, where it then receives a zero choice
probability and its path size contributions are eliminated completely. This ensures that in practice the choice
probability function is continuous, (when setting arbitrarily small z,, values, see Duncan et al (2021b) for
details).

The modified BAPS model formulation approaches the APSL model in the limitas ¢ — oo, and is
equivalent to the BCM for g = 0, which is equivalent to the MNL model in the limit as ¢ — co.

BAPS SUE can be formulated as follows:

), and hence as a used route approaches zero choice probability its path

BAPS SUE: A universal route flow vector f* € Q is a BAPS SUE solution iff the route flow vector for OD
movement m, fr,, is a solution to the fixed-point problem

fm = QuPn(t4f)), m=1,.,M, (5.13)
where Py, is a route choice probability solution for OD movement m in Y, to the fixed-point problem:
Von = Zon (2 (e (EAD), TEP5 (4CA1), V) ) ) (514)

given the universal route flow vector f, where Z,,, ; and z,, ; are as in (5.10) and (5.11), respectively, for route
i € Ry, and 754" is as in (5.12) for route i € Ry, (¢, (1); ).

3.2.2 Definition 2: BAPS' SUE
Like APSL SUE Definition 2 (APSL' SUE), BAPS SUE Definition 2 (BAPS' SUE) is derived indirectly by
utilising a different underlying route choice model, that is equivalent to the BAPS model at SUE, but only at
SUE. By the definition of SUE, the route flow proportions and route choice probabilities equate at
equilibrium. Therefore, the BAPS' choice model supposes that the path size contribution factors consider
route flow proportion ratios, instead of choice probability.

The BAPS' model is defined as follows. Given R,,,(c,,,(t); @), the BAPS’ model choice probability
relation for route i € R,, is:

Poni (7mt (em @, 7575 €, 1))

{rm + (= BT 2 (€@, 75075 (0 f 1)) if 1 € Rulem(@i)  (015)
0 if | @ Rn(cm(®); )

Zon (€ (O, 7505 (&, )

(hmi(=0en®) = 1) - (72475' (&, f))

Y jermem@ip) (Fmi(—0cm(®) — 1) - (Vﬁﬁ'PS’(ﬁ f m))
0 if i € Rip(cm(t); @)

if i € Ry (em(8); @) (5.16)

where hp, (=8¢ () = exp (—Q(Cm,i(t) — @ min(cp, (8):L € Rm))), and the path size term for route i €
Ryn(cn(®); @) is:

' t fmi B .
—BAPS § a m,i (Rm(em(8);90),Tm)
mt mn a€Am; Cm,i(t) Zkeﬁm(cm(t);(p) fm,k 6a,m,k " m ( )
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ngm (em(®);9),tm)

={fmeRNm T, < ’% < (1= (N, — Dty), Vi € R, (e (£); @), and, 0 < Jmi

m Qm

< (1= W), Vi € Rn(em(®; @), ) foni = am (-

i€Rm
0<t, < NL m=1,..,M,6 >0,8 =0, > 1. Asshown in (5.17), the contribution of route k €

R,,(c,,(t); ) to the path size term of route i € R,,(c,,(t); @) is weighted according to the ratio of flow
between the routes (’;j”—") and hence less feasible route alternatives with very low use/flow have a diminished

m,i

contribution to the path size terms of more feasible routes with relatively high use/flow.

The BAPS' choice model is closed-form and hence choice probability solutions for a given flow vector
are guaranteed to exist and be unique, assuming every route with a travel cost below the bound has a non-zero
flow. Stipulating that the flows for OD movement m f,,, belong to the set Q,(ffm(cm(t)""’)’rm) ensures that: a)
routes with costs below the bound have a non-zero flow; b) routes with costs above the bound can have a zero
flow; c) the route flows are demand-feasible; d) the path size contribution factors consider ratios of route flow
proportion (where the demands g,,, cancel out), and, e) the BAPS’ model flow domain matches the BAPS
model probability domain p{Fm(em®:i@)Tm)

BAPS' SUE can be formulated as follows:

BAPS' SUE: Let Q' < Q be the subset of demand-feasible universal route flow vectors f that satisfy the
following conditions:

Ty < % < (1= Ny — D1p) © i (8A)) < o min(cp (t(AN)): L ERy),  ViERpm=1,..,M, (5.18)

m

fmi =0 & cni(tAf)) = p min(cp, (¢(Af)):l€Ry), Vi€ER,m=1,.,M (519

A universal route flow vector f* € Q' is a BAPS' SUE solution iff the route flow vector for OD movement m,
fm, is asolution to the fixed-point problem

Fm = QP (2 (m(EAP) VS AN F))), M =1, M, (520

where Py, ; and z,, ; are as in (5.15) and (5.16), respectively, for route i € R,,,, and ‘ﬁf‘ipsl is as in (5.17) for
route i € Ry, (¢, (¢(A1)); @).

The feasible set of flows Q' for all OD movements prohibits route flow vectors that lead to routes having non-

zero flows and cost that violates the cost bound. This ensures that ngm(cm(t)“p)'fm) is satisfied for each OD
movement m = 1, ..., M, where a route with a cost below the bound must have a non-zero flow (= g, 7).

The BAPS' choice model is only internally consistent for flow distributions at SUE, since for all other
flow distributions, the relative attractiveness of routes as defined in the path size contribution factors does not
match the relative attractiveness in the probability relation.

The BAPS' choice model in (5.15)-(5.17) above is defined including the BAPS model adjustment
functions z,, ; and perturbation parameters 7,,, so that the definitions of BAPS SUE and BAPS' SUE are
equivalent. However, since the BAPS' model is closed-form, these modifications are not required for solution
existence/uniqueness, and the BAPS' model can be simplified and be formulated as follows (denoted BAPS"").
Given R,,,(c,,(t); @), the BAPS" model choice probability relation for route i € R,,, is:
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P (€m (@), 755" (8 fn)

([ (mi(=0en®) = 1) (725"t )

T B emtem@io (i (—0em(®) — 1) - (BAFS" (&, fn)
0 if i € R(cm(8); 9)

if i € Rin(cm(8); @) (5.21)

where hy, ;(—0¢, (8)) = exp (—Q(Cm'i(t) — @ min(cy,, (8):1 € Rm))), and the path size term for route i €
Em(cm(t); @) is:

e t fm,i (R (em (0);90))
BAPS a m,l mCm(l);Q
Ymi ~ &f )=:§S ,  Vfm€Q , (522
i m a€Am; Cm,i 3] Zkeﬁm(cm(t);go) fm,k 6a,m,k " m ( )

ngm(cm(t);(p)) = {fm E Ri’m:fm‘i > 0, Vl E Em(cm(t)t (p): and: fm,i = 0! VL e Em(cm(t)! go)' Z fm.i = qm}
i€Rm
6>0,8=0¢>1.
BAPS'' SUE can thus be formulated as follows:

BAPS" SUE: Let Q" < Q be the subset of demand-feasible universal route flow vectors f that satisfy the
following conditions:

fmi >0 cpi(8Af)) < o min(cp, (¢(Af)): L ERy), Vi€ER,m=1,..,M, (5.23)

fmi =0 cni(8Af)) = p min(cp, (¢(Af)):l€Ry), Vi€ER,m=1.,M (524

A universal route flow vector f* € Q" is a BAPS"' SUE solution iff the route flow vector for OD movement
m, fr, IS a solution to the fixed-point problem

fin = QP (cn(EAP)VEPS (), fr)),  m=1,..,M, (5.25)

where P, ; is as in (5.21) for route i € R,,, and ‘,‘flf‘i”s" is as in (5.22) for route i € R, (¢, (¢(41)); ¢).

3.3 Existence & Uniqueness of Solutions

In this subsection, we prove the existence of BBPS SUE solutions. However, since the BAPS model
probability relation is modified so that BAPS probability solutions can be proven to exist, and the probability
function is consequently discontinuous, BAPS SUE solutions (and therefore BAPS’ SUE solutions) cannot be
proven to exist. We note that since continuity of the BAPS/BAPS’ probability functions can be approximated
in the limits as 7,,, = 0, we do not anticipate there to be issues with non-existence of BAPS/BAPS’ SUE
solutions, as long as 7, is set suitably small, and no issues were experienced in our experiments. Although the
BAPS" model does have a continuous probability function, Q" is not a convex set, and thus standard proofs
for solution existence also do not apply.

First, we define an important function: the BBPS SUE fixed-point function. Let H, ; (f) =
GmPrm,i (cm(t(Af)),7513P5(t(4|f))), where P, ; is as in (5.7) for route i € R,, and 755" is as in (5.8) for
route i € Ry, (€, (¢(Af)); @). Itis clear from (5.9) that a route flow solution f* is a BBPS SUE solution iff
Hyi(fY) = f;u-, VieER, m=1,.. M.

Given H,, ;(f), we prove that BBPS SUE model solutions are guaranteed to exist.

Proposition 1: If the link cost function ¢(Af) is a continuous function for all f € Q, then at least one BBPS
SUE fixed-point route flow solution, f* € Q, is guaranteed to exist.

Proof. From the assumptions that t(4f) is a continuous function for all f € Q, (and thus H,, ; is a continuous
function), and given that Q is a nonempty, convex, and compact set, and H maps Q into itself, then by
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Brouwer’s Fixed-Point Theorem at least one solution f* exists such that H,,, ;(f*) = 0, Vi € R,,,, m =
1, ..., M, and hence BBPS SUE solutions are guaranteed to exist.

The standard approach for establishing sufficient conditions for the uniqueness of BBPS SUE solutions
requires H,, ; (f) to be a monotonic function. Assuming the link cost functions ¢(4f) are monotonic, then the
route cost functions ¢,,, (¢(4f)) are also monotonic. However, the used route path size term functions
V%Bps(t(df)), are not guaranteed to always be monotonic, and hence the approach is not applicable. This is
not to say however that BBPS SUE solutions cannot be unique, since the mentioned approach only establishes

sufficient conditions. Due to the probability In Section 5.4 we investigate the uniqueness of BAPS SUE
solutions numerically, since it is a fixed-point .

4.  Solution Algorithm

In this section, we propose a generic algorithm for solving BPS SUE models. The algorithm is an adaptation
of the generic algorithm proposed by Watling et al (2018) for the BSUE model, which is in turn an adaptation
of the generic algorithm proposed by Rasmussen et al (2015) for the Restricted SUE (RSUE) model. Since it
is typically not feasible to generate and operate with the universal set of routes, these algorithms propose that
routes are generated from the network as the algorithm progresses. At each iteration, given the route costs
from the current route flows, a column generation approach is used to find, for each OD movement, all the
routes in the network that have a travel cost below the current cost bound. As Watling et al (2018) discuss,
however, with the current techniques available for generating all such routes, there are questions over the
suitability of the approach for large-scale networks. For example, the computational burden of the Constrained
Enumeration approach (e.g. Prato & Bekhor, 2006; Hoogendoorn-Lanser et al, 2006), which they adopt,
increases exponentially as the bound parameter, size of network, and network depth increase. For use of the
column generation approach, more computationally efficient methods for consistent route generation may
need to be adopted.

The approach we adopt in this paper for the proposed BPS SUE algorithm and its application, is to pre-
generate approximated universal choice sets and make an assumption that these routes contain at least all
those considered realistic. Usually, for non-bounded route choice models, it is crucial for the accuracy of
results that the pre-generated choice sets contain only the routes considered realistic, as the presence of
unrealistic routes can significantly and negatively affect realistic route choice probabilities. For the bounded
models, however, the presence of unrealistic routes in the pre-generated choice sets have no effect upon the
probabilities of realistic routes (as defined by the model). Hence, choice sets can be generated as large as the
computational resources allow, in order to minimise the possibility of excluding what would later turn out to
be a plausible route from the choice sets. From the approximated universal choice sets, the BPS SUE
algorithm equilibrates the restricted choice sets of the realistic route alternatives and assigns flows to these
routes in a way that is consistent. The computational benefit of having pre-generated choice sets is that at each
iteration of the BPS SUE algorithm, the travel costs for all routes can be computed and the column generation
phase becomes trivial. The proposed BPS SUE algorithm given here can however be easily adapted so that
routes are generated as the algorithm progresses, just like the BSUE algorithm in Watling et al (2018).

As discussed in Section 3 in Duncan et al (2021b), a ‘natural’ form for the BPS model was initially
explored, where path size utilities are inserted into the BCM formula in (5.4). This bounds routes according
their utility (i.e. combination of cost and path size correction), rather than just cost. However, as
demonstrated, appropriately defining the path size contribution factors within the path size terms is difficult.
Instead, to circumvent this issue, an alternative BPS model form was derived, which proposes that routes are
bounded according to their travel cost (like the BCM), while the probability relations for routes with costs
below the bound include path size correction factors to adjust for route correlations. This means that the BCM
and BPS model both have the same definition for unrealistic routes: those with travel costs above the bound.
This has the benefit that the algorithm and gap measures proposed for solving BSUE are applicable for
solving BPS SUE with only a few minor adjustments.

The main adaptation of the BPS SUE algorithm from the BSUE algorithm is the addition of a Flow
Allocation for New Routes phase, which ensures that the allocation of flow to new routes generated from the
Column Generation Phase is done so in a way that satisfies the feasible set of flows.
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The BPS SUE algorithm can be summarised as follows: Step 0: Initialise by performing all-or-nothing
assignments to obtain the initial sets of used routes (where there is a single route in each used route choice
set); Step 1: Search for routes with a cost below the current bound and add them to the used route choice sets;
Step 2: Allocate flow to new routes in a way that satisfies flow feasibility; Step 3: Compute the relevant BPS
model choice probabilities for the current used routes given the current flow vector and thus link costs
(knowing all of these routes will receive a non-zero probability); Step 4: Compute auxiliary route flow vector
given the probabilities; Step 5: Compute the next route flow vector by averaging the previous and auxiliary
flow vectors according to chosen averaging scheme; Step 6: Given the new flow vector, compute the
link/route costs; Step 7: Compute the used above bound relative gap measure which when satisfied ensures no
routes with costs above the cost bound are used; Step 8: Remove routes that have costs above the bound (and
thus should not be used / have flow), redistribute the flows, and update costs; Step 9: Compute the unused
below bound and used below bound relative gap measures, which when satisfied ensure that no routes with
costs below the cost bound are unused and that flow is allocated across the used routes in a way that fulfils the
underlying choice model, respectively. Stop if all relative gap measures are satisfied, else return to Step 1.

Step 0: Initialisation. Perform deterministic all-or-nothing assignments for all OD movements m =1, ..., M
and obtain the used route choice sets 1?,(,?) for OD movements m = 1, ..., M, and the universal route flow
vector £, where all unused routes have zero flow. Given f(®, compute the link travel cost vector t() =

t(Af©) for iteration n = 1, and hence also the route cost vectors c&) = ¢ () = ¢y, (t(Af(o))), m =
1, ..., M, for iterationn = 1. Setn = 1.

Step 1: Column Generation Phase. Let IVr(n”_l) be the number of routes in the choice set for OD movement
m at iteration n — 1. For each OD movement m = 1, ..., M, given route cost vector c,(,rl‘) for iteration n, add all
routes with costs below the current bound to the used route choice sets E,(,’f) for iteration n.

Step 2: Flow Allocation for New Routes. Allocate a flow to each of the new routes generated in Step 1 (and
adjust existing route flows if required) in a way that satisfies the feasible set for route flows Q, and thus obtain

£ for iteration n. If required, update ¢™ = ¢(4f™) and M = cm(t™), m = 1,..., M, for iteration n.

Step 3: Compute Route Choice Probabilities. Given the choice sets R,(,’l‘) for OD movementsm =1, ..., M
and the link cost vector £ for iteration n, and the route flow vector £ for iteration n (or otherwise),

compute the route choice probability vectors P(”) =1,..., M, for iteration n.

Step 4: Compute Auxiliary Route Flow Vector. Given the route choice probability vectors P( " m =
1, ..., M, for iteration n, compute the auxiliary route flow vector f™ for iteration n: fmi FO = qu(") Vi €

m,’
R,(,’;), =1,.., M.

Step 5: Flow-Averaging Phase. Given the route flow vector £ and the auxiliary route flow vector f™ for
iteration n, perform flow-averaging to find the route flow vector f™+1 for iteration n + 1.

Step 6: Compute Link/Route Costs. Given £+, compute the link travel cost vector t™+1 = ¢(4f D)
and hence also the route cost vectors c("+1) cm(t™Y), m = 1,..., M, for iteration n = n + 1.

Step 7: Used Above Bound Convergence Evaluation. Compute the used above bound relative gap measure,
and if this is equal to zero, continue to Step 9. Otherwise, continue to Step 8.

Step 8: Bound Condition Phase. Given the used route choice sets }?(”) for all OD movements m = 1,.
check whether the condition c(”“) <@ mm( (n+1). j € R(”)) is violated for any i € R form = 1, ..., M.

Update the choice sets R,(,?) by removing V|0Iat|ng routes, and update f™+1) by redistributing the flow on
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routes removed among the remaining routes in the respective choice sets, ensuring the OD travel demands are
still satisfied. Update ¢™*D = ¢(af™+)) and ¢ — cm(t™Y), m = 1,..., M, for iteration n + 1.

Step 9: Below Bound Convergence Evaluation. Compute the below bound relative gap measures, and if all
gap measures (including the used above bound measure) satisfy their pre-specified convergence value, output
the route flow vector £, Otherwise, setn = n + 1 and return to Step 1.

Algorithm 5.1. Generic solution algorithm for Bounded Path Size SUE models, for when there are pre-generated approximated or
actual universal choice sets.

4.1  Step 2: Flow Allocation for New Routes

For BPS SUE models in general — such as BBPS SUE — this step is straightforward: allocate all new routes
zero flow. However, for the BAPS' model, allocating new routes zero flows violates the set of feasible flows
D since these routes may have costs within the bound. Therefore, to satisfy feasible flows, we propose that
these new routes are each allocated 7,,, flow (where 7,,, is the BAPS/BAPS' perturbation parameter, see
Section 3.2), and the flows of routes already existing in the choice set adjusted accordingly:

((n) (Nrgln)_ﬁf(nn_l))

s s(n) ~ 5(n-1)
. ER,'NR =
frgznl) — ifm,z Nr(,:l_l) T Uf 1 m mo Vi € Rr(:)'
Tm ifie ﬁgll)\ﬁgf_l)

where E,(,’f) is the OD movement m used route choice set at this stage of iteration n (after the column
generation phase) of size |§r(,?)| = IV,(,l"), and I?r(,’l‘_l) is the OD movement m used route choice set at the end

of iteration n — 1 (after the bound condition phase) of size |E,(7’f_1)| = IV,(n"_l), m=1,..,M. Thisis also

required for solving BAPS SUE with follow-on initial conditions (see Section 4.2); however, otherwise (with
non-follow-on conditions), new routes can be allocated zero flow. If the flows are adjusted, then the link/route
costs should in theory be updated. However, in practice, the 7,,, values are so small that the effects are
insignificant and updating the costs is not necessary.

4.2  Step 3: Compute Route Choice Probabilities

For BBPS and BAPS’ SUE, this step is straightforward and involves a simple computation of the closed-form
probability expressions.

BBPS SUE: Given the used route choice set R for OD movement m, the link cost vector £, and the
route flow vector £ at this stage of iteration n, the choice probability for route i € R,,, for iteration n is:

M =P, (Cm(t(n))’)—,ngPS(t(n)); ggz))’ ViER,,

where P, ; is as in (5.7) for route i € R,,, and 75> is as in (5.8) for route i € R™ m=1,..,M.

BAPS' SUE: Given the used route choice set I?,S?) for OD movement m, the link cost vector ™, and the
route flow vector £ at this stage of iteration n, the choice probability for route i € R,,, for iteration n is:

P = Pong (2mi (€ (209), 7EAPS' (600, F)); ROV,

where P,,,; and zy, ; are as in (5.15) and (5.16), respectively, for route i € R,,, and 72475 is as in (5.17) for

m,i
route i € Rf,?), m=1,.., M.

For BAPS SUE, computing the BAPS model choice probabilities requires a fixed-point algorithm to
compute the solution. In general, there are many fixed-point algorithms available for solving the BAPS fixed-
point system. In this study, we use the Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966). Other
algorithms were considered, however the performance and convergence of the FPIM in our initial tests (not
reported here) were sufficiently promising that we did not consider this worthwhile. Given the used route

choice set R,(,'ll) for OD movement m, the link cost vector t(™, and the route flow vector £ at this stage of
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iteration n, the FPIM for solving the BAPS model choice probabilities for OD movement m at iteration n of
the BPS SUE algorithm is as follows:

PE} = Zuni (zm, (cm(t(n)), yoaps (t(”>,P,[;‘1])> RW),  s=123,..

such that
tim PEL = lim (2 (e (600), 75075 (60, P 0)) RY) = B, viRy,
R tm
p© ¢ plFnn)

where Zp, ;, Zm:, and y;anS are as in (5.10), (5.11), and (5.12), respectively, for route i € Ry, and £ is the

route flow vector at this stage of iteration n of the BPS SUE algorithm. The FPIM is said to have converged
sufficiently to an OD movement m BAPS choice probability solution P;, = PEZ] if: Yier,, P,Ei_l] — P8l <

m,i
10~%, where ¢ is a predetermined BAPS probability convergence parameter.
In the numerical experiments in Section 5 of this paper, we explore adopting two different initial

conditions for the FPIM: fixed initial conditions where P,LOE = Ni Vi € Ry, m =1, ..., M, and follow-on
! m

(n)
initial conditions where P,%OE = ]:;”—", Vi € R,,, m =1, ..., M. The follow-on initial FPIM conditions utilise

information from the previous BPS SUE algorithm iteration route flows £ to determine the FPIM initial
conditions. The idea is to harness the useful relation between route flow proportions and route choice
probabilities in SUE, where these equate at equilibrium. In Duncan et al (2021), it was shown that utilising
follow-on initial FPIM conditions for computing APSL probabilities solving APSL SUE, the numbers of
fixed-point iterations required for APSL choice probability convergence (and thus computation times for each
of the iterations) decreased as the flow-averaging algorithm progressed and the route flow proportions became
closer to the APSL SUE route choice probabilities. For BAPS SUE, the set of used routes varies as the BPS
SUE algorithm progresses, and therefore it is less clear how follow-on initial FPIM conditions will perform.
We anticipate, however, that once the used route choice sets have equilibrated, the number of fixed-point
iterations required for BAPS model choice probability convergence will decrease as the algorithm progresses
(like as for APSL SUE). We test this hypothesis in Section 5.2.

4.3  Step 5: Flow-Averaging Phase

In Step 3, the route choice probabilities are computed given the current route flows, and these are used in Step
4 to obtain an auxiliary route flow vector. In Step 5, the flow-averaging phase consists of weighting the
current iteration route flow vector £ with the auxiliary route flow vector ™, according to some step-size
N, to find the next route flow vector:

D = =) 40, fY, ViER, m=1,.,M,

m,i m,i’

where 0 < n,, < 1. There are numerous flow-averaging step-size schemes available, all based on the famous
pre-defined Method of Successive Averages (MSA). Liu et al (2009) test different alternative pre-defined
averaging schemes, and introduce the Method of Successive Weighted Averages (MSWA), which we adopt
for the experiments in this paper. While being pre-defined, the MSWA allows giving higher weight to
auxiliary flow patterns from later iterations, and the step-size n,, at iteration n is defined as:

nd

nn = n d’
k=1 k

where d > 0 is a real number. Increasing the value of d moves more flow towards the auxiliary solution. The
MSA is a special case of the MSWA, namely when d = 0.

4.4  Steps 7&9: Convergence Evaluation Phases

In this subsection, we propose three gap measures to monitor convergence of the BPS-SUE algorithm to a
solution satisfying the BPS SUE conditions. These gap measures are similar to those detailed for the BSUE
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model in Watling et al (2018). Two parts monitor convergence of the equilibrated choice sets and one part
monitors the convergence of the allocation of flow to fulfil the underlying choice model.

Step 7: Used Above Bound Convergence Evaluation: Given the route cost vectors c(”“) =1,..,M,

and the route flow vector f™*1 (for iteration n + 1) at this stage of iteration n, the used above bound relative
gap measure is as follows:

Sos Sien, fo - (et = omin (e577))

S ierp i ot

This gap measure in (5.26) ensures that (at convergence) no routes with a cost above the cost bound are used.
Moreover, it measures the total violation relative to the total costs across all routes. When across all OD
movements, no used routes have costs above the bound, then the gap is zero, and the convergence criteria are
satisfied.

Step 9: Below Bound Convergence Evaluation: Given the current used route choice sets E,S?) and thus
also the unused route choice sets Rm\}?,(,’f), m =1, ..., M, at this stage of iteration n, and the route cost vectors
c,(,’f”), =1,..., M, (for iteration n + 1) at this stage of iteration n, the unused below bound relative gap
measure for iteration n is as follows:

(5.26)

(n) _
Rel. 9aDysed above bound =

M m maX((pmln( ("H)) . e p \R(n))

m,t

(¢ = 1) ZM_; @y - min ()

This gap measure in (5.27) ensures that no routes with a cost below the cost bound are unused. Moreover, for
each OD movement, it measures the average relative non-violation of the bound for the unused routes not
violating the bound the most. When across all OD movements, no unused routes have a cost below the bound,
then the gap is zero, and the convergence criteria are satisfied.

Given the current used route choice sets I?,(,’l‘), m =1, ..., M, at this stage of iteration n, and the route flow

vector f(*+1 (for iteration n + 1) at this stage of iteration n, the used below bound relative gap measure for
iteration n is as follows:

(n) _
Rel. gapu?wsed below bound ~— ’ (5'27)

Rel. gapused below bound

2m=12i5§(n>f(n+1) ( (f(n+1)) mm( (f(n+1))] c R ))) (5.28)
B %=1Zie}?(")f(n+1) i (FOD) '

This gap measure in (5.28) ensures that flow is allocated across used routes in a way that fulfils the underlying
choice model. For this we extend ideas from Rasmussen et al (2015) and Watling et al (2018), where
transformed cost measures Em,i(f (”“)) were defined for the MNL choice model and the BCM, respectively,
and convergence was proven for when (5.28) is equal to zero using this. For BPS models, we define
Emi(FD) to be used in (5.28) instead to be:

f(n+1)
Em,i (fHD) = o
(om,i (—ecm (tca f(n+1)))) -1)- <7m,i (eCaFe+D), Wi f(n+1))))ﬁ (5.29)

where 7, ; is the used route path size term for route i € R, and W, ,(f+D) =
(s (— cm (t(a f<"+1>))) 1) for the BBPS model, and Wy, (£.052) = £ for the BAPS & BAPS'

models. At equilibrium, c”m,l-(f(n“)) will be the same across all utilised routes for OD movement m, and the

gap is zero. However, the convergence criteria is said to be satisfied if Rel. gapf[slzd vetow bouna < 1075,

where  is a predetermined convergence parameter. Although for the BAPS model Wm,i(f (")) =

Pn.: (t(Af(“))) for the underlying choice model, this requires solving choice probability fixed-point
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problems just for computing the gap measures, and instead we recommend that this is circumvented by
utilising the route flow proportions, which will be equal to the choice probabilities at convergence.

5. Numerical Experiments

In this section, some numerical experiments are conducted to compare the computational performance and
flow results of bounded SUE models (namely BSUE, BBPS, BAPS, & BAPS’ SUE) as well as with other
SUE models (namely MNL, PSL, GPSL, GPSL', APSL, & APSL' SUE, as defined in Duncan et al (2021a)
with flow-dependent path size terms). We examine results in the case where there are pre-generated
approximated universal choice sets. Bounded SUE models are solved with the BPS SUE algorithm in
Algorithm 5.1, and non-bounded SUE models are solved with a Flow-Averaging Algorithm (FAA) (see
Duncan et al, 2021a). The BPS SUE algorithm can be seen as an extension of the FAA, where column
generation, flow allocation for new routes, and bound condition phases are added for the equilibration of
choice sets. We also investigate the uniqueness of BAPS SUE solutions.

51 Experiment Setup

The computer used has a 2.10GHz Intel Xeon CPU and 512GB RAM, and the code was implemented in
Python. In our experiments, we consider three networks: a small example network (Fig. 5.1), and two well-
known networks Sioux Falls and Winnipeg. The small example network consists of 3 nodes, 4 links, and 1
OD movement (with demand 200), the Sioux Falls network consists of 24 nodes, 64 links, and 528 OD
movements (with positive demands), and the Winnipeg network consists of 1052 nodes, 2836 links, and 4345
OD movements.

In general, the generalised travel cost, t,(x,), for link a € A may consist of several flow-dependent and
flow-independent attributes, for example congested travel time, length, number of left turns, etc. However, for
the numerical experiments in this section and for all networks, the travel cost of link a € A is specified as the
flow-dependent travel time T, (x,) only, where the volume-delay link cost functions for all networks are
based on the Bureau of Public Road (BPR) formula with link-specific parameters:

x B
ta(xa) = Ta(xa) = Toa (1 +D (K—“) )
a
where T , and K, are the free-flow travel time and capacity of link a € A, respectively, and D, B > 0. For the
small example network, D = 0.15, B = 4, K, = 100 for all links, and T , for each link is shown in Fig. 3.1.
For the Sioux Falls and Winnipeg networks, the link-cost function values as well as the network and demand
data are obtained from https://github.com/bstabler/TransportationNetworks.

For the small example network, the pre-generated choice set is the actual universal set of all 4 routes,
where the routes are Route 1: 1 — 3, Route 2: 1 — 4, Route 3: 2 — 3, Route 4: 2 — 4. For Sioux Falls and
Winnipeg, we utilise choice sets generated in Duncan et al (2021). For the Sioux Falls network, the choice sets
were obtained by generating all routes with a free-flow travel time less than 2.5 times greater than the free-
flow travel time on the quickest route for each OD movement. For Winnipeg, a simulation approach was
adopted (Sheffi & Powell, 1982), where the link costs were drawn randomly from a truncated normal
distribution with mean value being free-flow travel time and standard deviation being 0.6 times the mean. The
link costs were simulated 150 times for each OD movement and for each simulation shortest path was
conducted to generate a route, where a maximum of 100 unique routes were generated for each choice set.
The average and maximum free-flow travel time relative deviations from the quickest route in each choice set
were 1.15 and 3.3, respectively. For Sioux Falls, 42,976 routes were generated in total, and the maximum,
average, and median choice set sizes for an OD movement were 898, 116, and 6, respectively. For Winnipeg,
305,005 routes were generated in total, and the maximum, average, and median choice set sizes for an OD
movement were 100, 70, and 88, respectively.
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TO,I =2 T0,3 =1

Top =1 Toa =1
Fig. 5.1. Small example network.

Convergence for the bounded SUE models is measured with the used below bound, used above bound, and
unused below bound relative gap measures in Section 4.4, where convergence is said to be reached when

(n) _ (n) _ n) - _
Rel. 9APysed above bound — 0, Rel. 9APynused below bound — 0, and Rel'gapused below bound <107* (( -
4).
For non-bounded SUE models, SUE convergence is measured using the used below bound relative gap
measure (where all routes are used), which is as follows for iteration n:

Rel. gap™™
-9 pused below bound ( )
+1 ~ (R i
m=1 Lierp St (Emi(F™Y) — min(Gn,;,(F™V):j ERp))  (5.30)

Ym=12icR,, ,,(Zliﬂ) i (D)

where,

(n+1)

Nm,i f(n+1) — m,i |
e exp (~0n, (t(ﬂf(”“))))-(ym,i(f@ﬂ)))ﬁ (5:31)

ym,i(f (”“)) is the flow-dependent path size term for route i € R,,, different for each Path Size Logit SUE
model, and equal to 1 for MNL SUE. For APSL SUE, the APSL’ SUE path size terms are used (to avoid
solving fixed-point problems), since these are equal at convergence. Convergence is said to be reached also
when Rel'gapftrs%d below bound < 10_4'

Unless stated otherwise, specifications are also as follows. The initial conditions for non-bounded SUE
models are set as the even split route flows, i.e. f;,,; = I‘f,—m, Vi € R,,, m =1, ..., M. The MSWA parameter is

m

setas d = 15. For computing BAPS and APSL probabilities with the FPIM, the probability convergence
parameter is set as & = 6. The utilised model parameters for the Sioux Falls network are 8§ = A88PS = 0.3,
B = 0.8, A°PS =10,and ¢ = 2.6 = 0.5, § = 0.8, A°PS = 10, and ¢ = 2 for the Winnipeg network.

5.2 Computational Performance

We begin the numerical experiments by analysing here the computational performance of the BPS SUE
algorithm for solving the bounded SUE models, and comparing computational performance with that for
solving non-bounded Path Size Logit SUE models with the FAA.

First, Table 5.1 displays for all SUE models, during a single run of the solution algorithm, the average
computation times to compute the choice probabilities / perform an iteration on the Sioux Falls and Winnipeg
networks.

As shown and as expected for the non-bounded SUE models, the MNL probabilities are the quickest to
compute, followed by the PSL, GPSL, GPSL’, and APSL’ probabilities, which have similar computation
times. APSL probabilities take significantly longer due to solving the fixed-point probabilities. Furthermore,
for the non-bounded SUE models, computing the probabilities takes up a significant proportion of the
computation time for each iteration. Computing the convergence measure takes up most of the rest of the
computation time.
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For the bounded SUE models, there are additional steps in the BPS SUE algorithm compared to the FAA
for equilibrating the used route choice sets. Thus, computing the probabilities takes up a smaller proportion of
the computation time for each iteration. As shown by the probability computation times, the bounded model
probabilities are slightly more complex to compute compared to their associated non-bounded model, i.e. the
limit models (BCM & MNL, BBPS & GPSL’, BAPS & APSL, BAPS' & BAPS'). Like APSL, the fixed-point
BAPS model probabilities are computationally expensive to compute. For BAPS', as discussed below, a
greater proportion of the total iterations during a BPS SUE algorithm run are performed with the choice sets
equilibrated where the computational burden is less than for pre-equilibrated. Therefore, the average
computation time to perform an iteration across the iterations is less for BAPS' than for BBPS, despite similar
probability computation times.

MNL PSL | GPSL | GPSL" | APSL | APSL’ | BCM | BBPS | BAPS | BAPS'
Sioux 0.003/ | 0.034/ | 0.034/ | 0.034/ | 1.465/ | 0.034/ | 0.004/ | 0.017/ | 0.844/ | 0.017/
Falls 0.010 | 0.049 | 0.049 | 0.049 | 1478 | 0.049 | 0.069 | 0.087 | 0.909 | 0.066

Winnipeg | 0.02/ | 0.14/ | 0.14/ 0.14/ 4.33/ 0.14/ | 0.05/ 0.19/ 5.85/ | 0.19/

0.05 0.22 0.22 0.22 4.40 0.22 0.16 0.72 6.38 0.55

Table 5.1. Average computation time [mins] to compute the probabilities / perform an iteration on the Sioux Falls and Winnipeg
networks.

Fig. 5.2A-B display for the Sioux Falls and Winnipeg networks, respectively, the convergence patterns for the
bounded SUE models for a single run of the BPS SUE algorithm. Fig. 5.3A-B display results in terms of
computation time, and Fig. 5.4A-B display how the average used route choice set size varies as the algorithm
progresses. Fig. 5.5A-B display for Winnipeg the convergence patterns for the non-bounded SUE models for a
single run of the FAA in terms of iterations and computation time, respectively.

As shown in Fig. 5.2/Fig. 5.3, the convergence patterns for the BSUE, BBPS SUE, & BAPS SUE models
are different but not drastically different, and converge in similar numbers of SUE iterations. BBPS SUE takes
longer to solve than BSUE, however, due to the longer choice probability computation times from computing
path size terms. BAPS SUE takes significantly longer than BSUE / BBPS SUE, due to the computationally
expensive fixed-point probabilities. For the BAPS' SUE model, as is evident from the BAPS’ SUE
convergence patterns being more concentrated to the left of the figures, while the number of iterations
required to equilibrate the used route choice sets is similar to BSUE / BBPS SUE / BAPS SUE (can also be
seen in Fig. 5.4), once the choice sets are equilibrated, convergence of the flows is slow compared to BSUE /
BBPS SUE / BAPS SUE.

Comparing the corresponding convergence patterns in Fig. 5.2 and Fig. 5.3, under close inspection one
can observe that the region where the unused below bound and used above bound relative gap measures are
non-zero appear more concentrated to the left of the figures in Fig. 5.2 than in Fig. 5.3 (more evident in Fig.
5.2A/Fig. 5.3A for Sioux Falls). This indicates that the earlier iterations are more time consuming than later
iterations, which is as expected since the steps for equilibrating the choice sets in earlier iterations are more
active e.g. redistributing the flows of violating routes in the Bound Violation Check phase.

As shown in Fig. 5.4, the average used route choice set sizes for the bounded SUE models generally
expand as the BPS SUE algorithm progresses, up until choice set equilibration. Again, the average choice set
size patterns are different for each model, but not drastically different.

As shown in Fig. 5.5 for Winnipeg, in analogous results to the bounded versions of the non-bounded SUE
models, the number of iterations required for MNL, PSL, GPSL, GPSL’, & APSL SUE convergence are
similar, while APSL’ SUE convergence is comparatively slow. PSL/GPSL/GPSL’ SUE take longer than MNL
SUE due to the path size term computation. APSL’ SUE takes longer than PSL/GPSL/GPSL’ SUE due to
slower convergence, and APSL SUE takes significantly longer due to the fixed-point probabilities. The APSL'
SUE convergence patterns are also concentrated to the left of the figures, indicating that the slow convergence
arises in achieving higher levels of convergence (i.e. convergence gets increasingly slow as the convergence
measure is made more strict). Unlike for the bounded SUE models, the convergence patterns with respect to
the iterations (Fig. 5.5A) appear in the figures similar to the convergence patterns with respect to computation
time (Fig. 5.5B), i.e. the patterns are not skewed left or right of each other. This is because the computational
burden is roughly uniform across the iterations, with the same number of active routes in each iteration.
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Interestingly, the bounded SUE models in this case converge in similar numbers of iterations to the non-
bounded versions. APSL' SUE is significantly slower than BAPS’ SUE, however, and APSL SUE actually
takes longer than BAPS' SUE. Otherwise, the bounded SUE models take longer than the non-bounded
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Duncan et al (2021) demonstrated that while the number of iterations required for APSL SUE convergence
tended to be similar to that required for MNL, PSL, & GPSL SUE under identical configurations of the FAA,
the requirement of solving APSL choice probability fixed-point problems at each iteration resulted in
significantly greater total computation times. On-the-other-hand, while the computational burden involved in
computing the APSL' choice probabilities during each iteration solving APSL" SUE was no more than that for
PSL & GPSL, APSL’ SUE convergence was comparatively very slow, and thus total computational times
were also much longer. As they showed however, tuning the APSL SUE algorithm showed how one can
trade-off the accuracy of APSL probabilities (and thus computation times of each iteration) with rate of SUE
convergence. Several tuning techniques were explored, and it was shown how total computation times can be
greatly improved. We shall now explore the success of these techniques for solving BAPS SUE.

For BAPS SUE, the scale of the computational burden involved at each BPS SUE algorithm iteration in
solving the BAPS model choice probability fixed-point problems depends on numerous factors; some of
which can be controlled by the modeller, for example the choice of fixed-point algorithm, and the fixed-point
algorithm initial conditions and probability convergence parameter . The current study focuses on the FPIM
as the fixed-point algorithm.

Fig. 5.6A-B display for the Sioux Falls and Winnipeg networks, respectively, the cumulative computation
times of the iterations during a single run of the BPS SUE algorithm solving BAPS SUE, with fixed and
follow-on FPIM initial conditions (see Section 4.2). Fig. 5.7A-B shows the average number of fixed-point
iterations per OD movement required for BAPS choice probability convergence at each iteration of the BPS
SUE algorithm. As shown for Sioux Falls, once the choice sets have equilibrated, utilising follow-on initial
conditions improves the computation times of each iteration due to the reduction in the number of FPIM
iterations required for probability convergence. Before the choice sets have equilibrated, however, more FPIM
iterations are required for follow-on initial conditions, due to the oscillations in flow. For Winnipeg, utilising
follow-on conditions is significantly more effective.
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Fig. 5.8A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation time
for solving BAPS SUE varies as the FPIM probability convergence parameter & is increased, with fixed and
follow-on initial FPIM conditions. Fig. 5.9A-B display how the average number of BAPS fixed-point
iterations and total number of BPS SUE algorithm iterations vary as ¢ is increased.

With fixed FPIM initial conditions, BAPS SUE could not be solved for & < 6 due to the inaccuracies of
the BAPS probabilities. For & > 6, as shown, as ¢ increases, while the number of iterations required for SUE
convergence remains constant, greater numbers of FPIM iterations are required for APSL probability
convergence and thus total computation times increase.

With follow-on FPIM initial conditions, like as for APSL SUE, BAPS SUE could be solved for all . For
¢ = —1, only single FPIM iterations are required for BAPS probability convergence, and with follow-on
initial FPIM conditions, solving BAPS SUE this way simulates solving BAPS' SUE. Increasing ¢ increases
the number of FPIM iterations required for BAPS probability convergence and the accuracy of the BAPS
probabilities, but the BAPS SUE solution obtained is the same. As shown, convergence of BAPS’ SUE
(BAPS SUE with small ¢ & follow-on conditions) is slow. Increasing ¢ (generally) improves SUE
convergence, with exceptions at small &, up until a minimum number of BPS SUE algorithm iterations is
reached for solving with accurate BAPS probabilities. With these algorithm and model specifications, the
convergence of BAPS' SUE is not so slow that total computation times are high. However, best total
computation times come from intermediate values of & whereby suitable SUE convergence meets suitable
iteration computation times, approximately ¢ = 1 and & = 0 for Sioux Falls and Winnipeg, respectively.
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Alternatively, utilising follow-on conditions, one can stipulate a set number of FPIM iterations to perform at
each BPS SUE algorithm iteration. Supposing that k FPIM iterations are conducted, Fig. 5.10A-B display the
total computation times and number of BPS SUE algorithm iterations solving BAPS SUE, for the Sioux Falls
and Winnipeg networks, respectively. As shown, conducting just two FPIM iterations (instead of one) can
significantly reduce the number of BPS SUE algorithm iterations required for convergence, and thus total
computation times. The optimal values for k appear to be 2 and 3 FPIM iterations, respectively, where
suitable SUE convergence meets suitable iteration computation times.

One can also utilise a combination of both techniques for reducing BAPS SUE total computation times
and stipulate a maximum number of FPIM iterations to perform and a maximum level of BAPS probability
convergence, i.e. the FPIM is stopped if either a maximum of h iterations are conducted or the probabilities
have converged sufficiently according to the set parameter &. This can potentially save computation times in
latter BPS SUE algorithm iterations where the stipulated amount of FPIM iterations unnecessarily overly-
converges the BAPS probabilities. Fig. 5.11A and Fig. 5.12A display for Sioux Falls how computation times
and the number of BPS SUE algorithm iterations / average number of FPIM iterations vary, respectively, for
different settings of &, where a maximum of 2 FPIM iterations are conducted. Fig. 5.11B and Fig. 5.12B
display results for Winnipeg where a maximum of 3 FPIM iterations are conducted. As shown, best total
computation times come from larger & values and the time saved in latter iterations is not significant
compared to a greater number of iterations being required for SUE convergence. This is different from the
results for APSL SUE in Duncan et al (2021a), and is likely due to the iterations being more complex in the
BPS SUE algorithm than the FAA. Optimal values of ¢ with this technique are approximately ¢ = 7 and & =
8 for Sioux Falls and Winnipeg, respectively.
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Considering the above results, for the remainder of the paper, unless stated otherwise, we solve BAPS SUE by
stipulating a maximum number of FPIM iterations to perform at each BPS SUE algorithm iteration and a
maximum level of BAPS model probability convergence. For Sioux Falls, a maximum of 2 FPIM iterations
are conducted with & = 7. For Winnipeg, 3 FPIM iterations are used with & = 8. We label for reference this
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method BAPS SUE*. This ‘optimal” method for solving BAPS SUE is of course particular to the network,
model, and algorithm specifications, e.g. model parameters, adopted step-size scheme, sizes of the
approximated universal choice sets. However, by fixing the optimised values for that particular specification,
and then varying the specifications, we will show that the method is robust in its effectiveness compared to
solving BAPS SUE in a standard way (i.e. where the BAPS fixed-point probabilities are accurately solved
with non-follow-on initial conditions).

Fig. 5.13A-B display for the Sioux Falls and Winnipeg networks, respectively, the convergence patterns
for BAPS SUE™ for a single run of the BPS SUE algorithm. Fig. 5.14A-B display results in terms of
computation time, and Fig. 5.15A-B display how the average used route choice set size varies as the algorithm
progresses. As shown, for BAPS SUE*, the number of iterations required to obtain levels of convergence is
now less than for BAPS' SUE, though more than required for BAPS SUE (see Fig. 5.2). Hence, since the
computation times for each iteration of BAPS SUE™ are significantly less than for BAPS SUE, total
computation times are improved.
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Other factors that affect the computational performance of BAPS SUE, in terms of solving the BAPS
probability fixed-point problems, include the values of g and ¢. As shown in Duncan et al (2021b), larger
values of 8 and ¢ result in greater numbers of FPIM iterations being required for BAPS probability

convergence (increasing computation times).

Fig. 5.16A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time
for BAPS SUE* as well as for solving BAPS SUE with follow-on and fixed initial FPIM conditions, varies as
the B parameter is increased. Fig. 5.17A-B display how the average number of FPIM iterations per OD
movement per BPS SUE algorithm iteration and how the total number of BPS SUE algorithm iterations vary
as B is increased. As shown, for BAPS SUE follow-on & fixed, while the number of BPS SUE algorithm
iterations do not vary considerably, the average number of FPIM iterations increases exponentially with g and
hence so do computation times. For BAPS SUE*, the number of SUE iterations increases as  increases,
while the average number of FPIM iterations remains low (decreasing slightly due to more SUE iterations),
resulting in the technique significantly improving in effectiveness as S increases.
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Fig. 5.18A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time for
BAPS SUE* as well as for solving BAPS SUE with follow-on and fixed initial FPIM conditions, varies as the
¢ parameter is increased. Fig. 5.19A-B display how the average number of FPIM iterations per OD movement
per BPS SUE algorithm iteration and how the total number of BPS SUE algorithm iterations vary as ¢ is
increased. As shown for Sioux Falls, for this range of ¢, there are no clear trends for the SUE convergence
rates as ¢ is varied, though the average number of FPIM iterations increases with ¢, as expected. For
Winnipeg, however, there is a clear trend that the number of iterations required for SUE convergence
decreases as ¢ increases. This is due to a greater number of iterations being required to equilibrate the choice
sets, which are more restrictive for smaller ¢. Total computation times for the bounded SUE models thus
decrease with ¢ in this range, despite greater numbers of FPIM iterations being required for BAPS probability

convergence.
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Next, we investigate for the bounded SUE models, how total computation times, number of BPS SUE
algorithm iterations, and average used route choice set sizes vary according to levels of travel demand and the
model parameters.

Fig. 5.20A-B display for the Sioux Falls and Winnipeg networks, respectively, how the number of
iterations required for SUE convergence varies for the bounded SUE models as the level of travel demand is
varied, where the demand is scaled according to the parameter w so that the demand for OD movement m is
® " qm, m=1,.., M. Fig. 5.21A-B display results in terms of computation time, and Fig. 5.22A-B display
how the average used route choice set size varies. As shown, and as expected, the number of iterations
required for convergence generally increases for the bounded SUE models as the level of demand increases,
resulting in longer computation times.

A surprising result is that (at least towards larger demand on Winnipeg) the average used route choice set
sizes decrease as the demand level increases. If one considers what one might expect under Deterministic User
Equilibrium (Wardrop, 1952), for low demand only the best costing routes are used, and increasing demand
results in the used route choice sets expanding. For Winnipeg, the choice set sizes do expand initially as the
demand level is increased, but then they decrease in size more significantly. For Sioux Falls, the more heavily
congested network, the choice sets decrease in size quite significantly for w in this range. The suspected
reason for this is that for high levels of congestion the costs on all links are inflated, and routes that are used
for one OD movement are likely inflating the costs so that routes in other OD movements are then too costly
to be used. Sioux Falls is also potentially more susceptible to this due to the way the network is structured, i.e.

heavily overlapping OD movements.
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Fig. 5.23A-B display for the Sioux Falls and Winnipeg networks, respectively, how the number of iterations
required for SUE convergence varies for the BPS SUE models as the g parameter is varied. Fig. 5.24A-B
display results in terms of computation time, and Fig. 5.25A-B display how the average used route choice set
size varies. As shown, for BBPS SUE and BAPS SUE, only a small increase in the number of iterations
required for convergence occurs as g is increased, though for BAPS SUE — as also shown in Fig. 5.16/Fig.
5.17 — total computation times increase exponentially with 8 due to the fixed-point probability computation.
For BAPS' SUE and BAPS SUE*, the number of BPS SUE algorithm iterations increases exponentially with
B, and for # = 0.9 on Winnipeg, BAPS’ SUE actually takes longer than BAPS SUE. Albeit marginally, the
average used route choice set sizes increase for the BBPS/BAPS SUE models as £ increases. As shown in Fig.
5.22 & Fig. 5.28, BSUE tends to equilibrate smaller used route choice sets than the BPS SUE models.
Decreasing £ tends the BPS SUE models towards BSUE and thus it makes sense that decreasing S results in
smaller choice sets. The reason that BSUE is equilibrating smaller used route choice sets than the BPS SUE
models, must be due to the path size correction factors in the probability relations pushing flow to the low
costing route(s), thus expanding the bound and including more used routes.
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Fig. 5.26A-B display for the Sioux Falls and Winnipeg networks, respectively, how the number of iterations
required for SUE convergence varies for the BPS SUE models as the ¢ parameter is varied. Fig. 5.27A-B
display results in terms of computation time, and Fig. 5.28A-B display how the average used route choice set
size varies. As expected, the used route choice set sizes expand as the bound parameter ¢ increases. As shown
for Sioux Falls, there appears to be no clear trend for the SUE convergence rates in this range of ¢, though
computation times generally increase due to the greater number of active routes. For Winnipeg, the SUE
convergence rates improve as ¢ increases in this range, improving computation times.
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Fig. 5.28. Average choice set size for the bounded SUE models as the ¢ parameter is varied. A: Sioux Falls. B: Winnipeg.

The figures are omitted from the paper, but in similar experiments, for Sioux Falls and Winnipeg the SUE
convergence rate worsened for the bounded SUE models as the 8 parameter was increased, resulting in longer
computation times. This is because the route cost differences are accentuated more with large 6 resulting in
greater flow fluctuations.
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5.3 Flow Results

In this subsection we compare the flow results from the different SUE models. To compare the flow results
F*R1and f*R2 for Result 1 and Result 2, respectively, we measure the Root Mean Squared Error (RMSE):

M 2
RMSE = jz > (RN,
m=14=ieRr,, ’

where N is the total number of routes.

We begin by demonstrating the relationships between the bounded and non-bounded SUE models. The
bounded models all approach limit models as the bound ¢ — oo and all routes become used. MNL is the limit
model of the BCM, GPSL' is the limit model of the BBPS model, and APSL is the limit model of the BAPS
model. Fig. 5.29 thus displays the differences between MNL SUE & BSUE, GPSL’ SUE & BBPS SUE, and
APSL SUE & BAPS SUE respectively, as ¢ is increased, A: Sioux Falls, B: Winnipeg. As expected,
similarity to the limit models increases as ¢ increases.

—— BCM-MNL -—- BBPS-GPSL' - BAPS-APSL B _ BCM-MNL --- BBPSGPSL' - BAPS-APSL
10

RMSE

T T T T T T T T T T T T
2.0 2.5 3.0 35 4.0 4.5 5.0 12 14 16 18 2.0
@ @

Fig. 5.29. Difference between MNL SUE & BSUE, GPSL’ SUE & BBPS SUE, and APSL SUE & BAPS SUE as the bound ¢ is
increased. A: Sioux Falls. B: Winnipeg.

We next consider the differences in flow results between the bounded SUE models. Fig. 5.30A-B display for
Sioux Falls and Winnipeg, respectively, the impact the ¢ parameter has on the differences in SUE flow
between the models. As shown, BBPS & BAPS SUE as expected are the most similar, while BAPS SUE is
the most different to BSUE. The similarity between BSUE and BBPS/BAPS SUE decreases as ¢ increases.
This is likely because there are more routes to capture the correlation between as ¢ increases, and thus the
path size terms have a greater impact upon the probability relations.

Fig. 5.31A-B display the impact of the 8 parameter. As shown, the similarity between BBPS & BAPS
SUE increases initially as 6 increases: increasing 0 increases the prominence of the travel cost components in
the BAPS path size contribution factors, for low 6 the distinctiveness components are more prominent
increasing the difference to the BBPS factors.

Fig. 5.32A-B display the impact of the § parameter. As shown, the flow differences all increase as 8
increases, which is logical since the differences between the SUE models are the different path size correction
terms scaled by . For BAPS SUE, the impact is more significant for larger S, where the contribution
influence of distinctiveness is more significant within the BAPS path size terms.

217




Chapter 5. Formulation and solution of bounded path size stochastic user equilibrium models —
consistently addressing route overlap and unrealistic routes

A — sBsueBBes --- BSUE-BAPS - BBPS-BAPS
4.0 emmmmmETETTIITTTT
3.5
3.0 1
w
w
2
2.5
2.0
15
. ‘ ‘ ‘ ‘ ‘ ‘
18 2.0 2.2 2.4 2.6 2.8 3.0
®

B

—— BSUE-BBPS

0.22

0.20

0.18 4

0.16 1

RMSE

0.14

0.12 1

0.10 4

Fig. 5.30. Impact of the ¢ parameter on the difference in SUE flow between the bounded SUE models. A: Sioux Falls. B: Winnipeg.
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Fig. 5.32. Impact of the 8 parameter on the difference in SUE flow between the bounded SUE models. A: Sioux Falls. B: Winnipeg.

Next, we assess choice set robustness for the bounded SUE models (robustness to the approximated universal
choice sets). In Duncan et al (2021a) we assessed choice set robustness for internally consistent SUE
formulations of numerous correlation-based route choice models, namely: PSL, GPSL, APSL, C-Logit (CL),
Cross-Nested Logit (CNL), and Generalised Nested Logit (GNL). It was shown that GPSL & APSL SUE
generally performed the best due to having explicit mechanisms for dealing with unrealistic routes in the
correlation components. All routes receive non-zero flows however, and the mechanisms only reduce the
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effects of unrealistic routes. The BPS SUE models have significantly greater potential to be more effective in
dealing with unrealistic routes, and we anticipate that choice set robustness should be significantly improved.

Adopting a similar experiment to that in Duncan et al (2021a), Fig. 5.33A-B display for the Sioux Falls
and Winnipeg networks, respectively, the impact that varying the bound parameter ¢ has on choice set
robustness for the bounded SUE models. To assess choice set robustness, flow results are compared between
two different approximated universal choice sets, where the second set of choice sets expands the first, thus
mimicking choice set mis-generation and the inclusion of unrealistic routes. The two choice sets are obtained
by generating all routes (from the full pre-generated choice sets) with a free-flow travel time less than i times
greater than the free-flow travel time on the quickest route for each OD movement. For Sioux Falls, the base-
level choice sets are those obtained with 1 = 2.3, and the expanded choice sets are those obtained with i =
2.5 (i.e. in this case the full the pre-generated choice sets). For Winnipeg, the equivalent values are Y = 1.4
and ¥ = 2.5, respectively. Fig. 5.34A-B display for the Sioux Falls and Winnipeg networks, respectively, the
average used route choice set sizes vary for the bounded SUE models as ¢ is varied, for the base-level and
expanded approximated universal choice sets. Note that for Sioux Falls the ¢ = 2.3 and Y = 2.5 universal
choice sets have average sizes 54.8 and 81.9, respectively. For Winnipeg, the ¥ = 1.4 and ¢ = 2.5 choice
sets have average sizes 67.9 and 70.2, respectively.

As Fig. 5.33A-B show, the bounded SUE models do indeed have significant potential to improve choice
set robustness. As ¢ — oo, BSUE tends towards MNL SUE, BBPS SUE tends towards GPSL' SUE, and
BAPS SUE tends towards APSL SUE. As can be seen, decreasing the bound parameter ¢ from large ¢
(where ¢ — oo is approximated), improves choice set robustness for the bounded SUE models. For large
bound values, the additional routes in the expanded choice sets have equilibrated costs within the bound and
thus receive non-zero flows. This means that for the expanded choice sets solutions, the flows on the non-
additional routes (those in the base-level choice sets) are adjusted from the base SUE solution. Lower bound
values assign additional routes zero flows which reduces the impact they have on the non-additional route
flows, thereby improving choice set robustness. As Fig. 5.34A-B show, decreasing ¢ reduces the difference
between the equilibrated used routes from the base-level and the expanded approximated universal choice
sets.
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Fig. 5.33. Impact of the ¢ parameter on choice set robustness for the bounded SUE models. A: Sioux Falls. B: Winnipeg.
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Fig. 5.34. How the average equilibrated used route choice set sizes vary for the bounded SUE models as the bound parameter ¢ is
varied, for the base-level and expanded approximated universal choice sets. A: Sioux Falls. B: Winnipeg.

54 Uniqueness of BAPS SUE Solutions

As discussed in Section 3.3, it is not possible to prove that BBPS SUE or BAPS SUE solutions can be unique
according to standard approaches. In Duncan et al (2021a), the uniqueness of APSL SUE solutions was
investigated numerically, where the results suggested uniqueness conditions exist. Due to the similarities
between the APSL SUE and BAPS SUE models, we conduct similar experiments to investigate the
uniqueness of BAPS SUE solutions numerically.

As demonstrated in Duncan et al (2021b), for a given setting of the link costs t and 6 and ¢ values, a 8
value exists, Bqxm(t, 6, ¢) > 0, for OD movement m such that BAPS model choice probability solutions
are unique for all g inthe range 0 < B < Braxm(t, 0, @). This means that a § value exists, B4, (t, 0, @) >
0, such that solutions are unique for all OD movements for all 8 in the range 0 < B < Bnax(t, 6, @), i.€.

Bmax(t, 0, ) = min (ﬂmax,m (t,0, (p)). And, assuming the link costs are bounded, i.e. they have a maximum

and minimum value (for example due the fixed demands), for a given 6 value, a 8 value exists, 4, (6, @) >
0, such that BAPS model solutions are unique for all OD movements and for all feasible flow vectors (and
thus costs) for all B in the range 0 < B < Brax (0, ®). Obviously, Brax (0, ®) < Bimax(t,0,9) <

Bmax,m (t' 9' (p)

In Duncan et al (2021a) it was found that APSL SUE solutions appeared to be unique when APSL
probabilities were universally unique. Thus, while it is not guaranteed that in all cases BAPS SUE solutions
will be unique when BAPS models probabilities are universally unique, i.e. for g intherange 0 < g <
Bmax (6, ®), as we show below, it appears from numerical experiments that this is also often the case.

Fig. 5.35A-B plot, for two runs, the small example network route flows at each iteration of the BPS SUE
algorithm solving BAPS SUE, when the initial conditions for the FPIM computing the BAPS model
probabilities are randomly generated, for § = 0.9 and § = 1.1, respectively, 0 =1, ¢ = 1, ¢ = 10. The
MSWA step-size scheme is adopted with d = 10, and the algorithm is stopped after 20 iterations if
convergence is not reached. As shown, for 8 = 0.9, because the BAPS model probabilities are unique for the
route costs (from the flows) at each iteration, the route flows on both runs converge in the same way to the
same BAPS SUE solution. For g = 1.1, however, as demonstrated clearly at iteration 12, there are multiple
BAPS model probabilities for the route costs at each iteration, and hence due to the step-size the flows
fluctuate randomly and do not converge. This suggests that BAPS model probability solutions are universally
unique for § = 0.9, but not for § = 1.1, and hence that 0.9 < 8,4, (1) < 1.1.

Fig. 5.36A-B plot for 8 = 0.9 and 8 = 1.1, respectively, and for multiple runs, the flows at each iteration
of the BPS SUE algorithm solving BAPS SUE utilising follow-on initial conditions for the FPIM computing
the BAPS model probabilities, where the SUE initial conditions are randomly generated, 8 =1, ¢ =1,¢ =
10. The initial SUE conditions for the BPS SUE algorithm in Algorithm 5.1 are All-Or-Nothing assignments.
To instead randomly generate initial SUE conditions here, we first suppose all routes are used and randomly
generate flows for these routes (maintaining demand-feasibility). A bound condition phase is then conducted
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to remove routes with consequent costs above the bound and redistribute the flows accordingly. As shown, for

B = 0.9, all initial SUE conditions lead to the same sol

ution, whereas for § = 1.1, two solutions are found

with different initial conditions. Fig. 5.37A-B plot the flows at each iteration of the BPS SUE algorithm for

solving BAPS' SUE. As shown, for g = 0.9, all initial
B = 1.1, two solutions are found.

conditions again lead to the same solution, whereas for
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Fig. 5.36 & Fig. 5.37 suggest that the BAPS SUE solution is unique for § = 0.9, and solutions are non-unique
for § = 1.1, and Fig. 5.35 suggests that this due to the BAPS choice probability solutions being universally
unique for 8§ = 0.9, but not for § = 1.1. One can imply from this that 0.9 < ,,4,(1,2) < 1.1, and potentially
that BAPS SUE solutions are unique for 8 in the range 0 < 8 < 0.9 < B0x(1,2).

Duncan et al (2021a) describe a method for identifying the uniqueness conditions for APSL SUE
solutions. Here, we utilise a similar method, to attempt to identify £,,,4.m (8, ) values and thus
Brmax (6, ®) = min(Braxm(0,9):m = 1,..., M) for the BAPS SUE model. Byqx.m (6, @) is estimated by
plotting trajectories of BAPS SUE solutions for OD movement m for varying g, and identifying where a
unique trajectory of solutions ends and multiple trajectories begin. A simple method for obtaining trajectories
of BAPS SUE solutions is as follows:

Step 1. Identify a suitably large value for § (where it is predicted that solutions will be non-unique).
Step 2. Solve BAPS SUE for this large 8 with a randomly generated initial SUE condition.

Step 3. Decrement 8 and obtain the next BAPS SUE solution with the initial SUE condition set as the
solution for the previous £.

Step 4. Continue until a suitably low value of g (where it is predicted that solutions will be unigue).

The randomly generated initial SUE conditions for the BPS SUE algorithm are obtained by the same method
as described above: by randomly generating a non-zero flow for all routes (maintaining demand-feasibility),
and performing a bound condition phase to remove routes with consequent costs above the bound,
redistributing the flows accordingly. Since the ¢ parameter is fixed, a bound condition phase is not required
for Step 3 when using the solution to the previous 8.

By plotting the route flows for OD movement m at each decremented 3, and repeating this method
several times, one can determine where non-unique solution trajectories end and hence estimate a1 (6, ).
If after several repetitions (with different randomly generated initial conditions) only a single trajectory of
solutions is shown, then the initial large £ value is increased. Similarly, if only multiple trajectories are
shown, the stopping low g value is decreased. However, one can test beforehand whether the initial and
stopping B values are suitable by solving for each a few times with random initial conditions and observing
whether there are different solutions for the initial 8 value and the same solution for the stopping S. In the
experience of the authors, the Emax,m(e, @) values typically range between 0.9 and 1.1 (usually around 1).

If in large-scale networks it is computationally burdensome to solve BAPS SUE once at a time for each
decremented value of S, then one can instead (by possibly harnessing parallel processing) solve for different 8
values simultaneously, each with randomly generated initial conditions. This should also identify where
solutions are and are not unique. Moreover, one can plot flow trajectories for all OD movements
simultaneously, so the method does not need to be repeated for each OD movement. We illustrate the
approach graphically here, but there is no need to draw graphs for general networks. One can instead observe
the route flow values, where a finer grained decrement of g will provide a more accurate estimation of

:Bmax,m (9, <P)-

In the case of the small example network where there is a single OD movement, we estimate f,,,4,(1,2)
using the above method. Fig. 5.38 displays trajectories of BAPS SUE route flow solutions as the 8 parameter
isvariedfor8 =1, ¢ = 2, & = 10. B was decremented by 0.005 and the initial large 5 value was 1.2. The
solution trajectory plotting was repeated until multiple trajectories were shown. As shown, there is a unique
trajectory of route flow solutions up until 8 = B,,4,(1,2) wWhere there then becomes multiple trajectories. The
estimated 3,4, (1,2) value is 0.995.
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Fig. 5.38. Small example network: Trajectories of BAPS SUE solutions as S is varied (6 = 1, ¢ = 2, ¢ = 8).

We use the same technique of plotting flow trajectories to estimate the BAPS SUE uniqueness conditions for
the Sioux Falls network. Fig. 5.39 displays for Sioux Falls the maximum route flow from two trajectories of
BAPS SUE solutions as the 8 parameter is varied for two different randomly chosen OD movements. § was
decremented by 0.01, and the initial large § and stopping small 8 values were § = 1.1 and § = 0.9,
respectively. As shown, the Bqxm (0.1,2) values for these OD movements appear to be greater than 0.9.
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Fig. 5.39. Sioux Falls: Maximum route flow for two different OD movements from two trajectories of BAPS SUE solutions as g is
varied.

55  Findings of the Numerical Experiments
To summarise, the key findings of the numerical experiments were that:

a) Flow results from the bounded SUE models converged towards their non-bounded limit models as the
bound parameter was increased towards infinity.

b) Bounded SUE models have the potential to be significantly more robust than non-bounded SUE
models to the inclusion of unrealistic routes to the adopted choice sets.

c) The BPS SUE models tended to equilibrate marginally larger used route choice set sizes than BSUE.

d) BBPS SUE converged in a similar number of BPS SUE algorithm iterations to BSUE, but total
computation times were longer due to the more complex probability expression.

e) The features of solving APSL/APSL’ SUE explored in Duncan et al (2021a) could be transferred to
solving the analogous BAPS/BAPS' SUE:
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f) Convergence rates for solving BAPS SUE were similar to that for BSUE & BBPS SUE, however the
computational burden involved in computing the fixed-point BAPS model choice probabilities for
each BPS SUE algorithm iteration resulted in much longer total computation times.

g) On-the-other-hand, the computational burden involved in computing the BAPS' model choice
probabilities was similar to that for the BBPS model (similarly closed-form), but the BAPS’ SUE
convergence rate was comparatively slow, and thus total computation times were also longer.

h) In general, the FPIM convergence parameter & (and thus the accuracy of the BAPS model choice
probabilities) must be at a certain level for convergence of the BPS SUE algorithm to the BAPS SUE
solution.

i) However, by utilising ‘follow-on’ initial FPIM conditions — where the initial conditions for solving
the BAPS probabilities at iteration n of the BPS SUE algorithm are set as the route flow proportions
from iteration n — 1 — the BPS SUE algorithm will converge to the BAPS SUE solution for all §.

j) There was a computational trade-off between solving BAPS & BAPS' SUE: solving BAPS SUE with
low ¢ and follow-on initial conditions simulated solving BAPS’ SUE where the convergence rate was
slow, while larger values of & resulted in comparatively quick convergence rates but lengthy
computation times for the iterations.

k) One can thereby, with &, trade-off SUE convergence rates with computation times for each of the BPS
SUE algorithm iterations, to improve total computation times for solving BAPS SUE.

I) Also to improve BAPS SUE total computation times, one can stipulate a set number FPIM iterations
to perform at each BPS SUE algorithm iteration, or utilise a combination of a maximum number of
FPIM iterations to perform and a maximum level of BAPS probability convergence (controlled with

§).

m) BAPS SUE can be thus solved in feasible computation times, though typically longer than BSUE &
BBPS SUE.

n) Uniqueness conditions appeared to exist for BAPS SUE: for 8 in the range 0 < 8 < B,,4x(0), Where
BAPS probability solutions are unique.

0) Bmaxm(6) values (uniqueness for OD movement m) in experiments were greater than 0.9.

The ‘optimal’ values for the methods in j)-k) for solving BAPS SUE are particular to the network, model, and
algorithm specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by
fixing the optimised values for a given specification, and then varying the specifications, it was shown that the
method was robust in its effectiveness compared to solving BAPS SUE in a standard way (i.e. where the
BAPS fixed-point probabilities are accurately solved with non-follow-on initial conditions). Future research
could explore an intelligent, adaptive process whereby the optimal values of ¢ and the maximum number of
FPIM iterations to perform at each BPS SUE algorithm iteration are learnt / worked out as the BPS SUE
algorithm progresses.

6. Conclusion

This paper investigates the integration of Bounded Path Size (BPS) route choice models within a Stochastic
User Equilibrium (SUE) model. The BPS model form offers a theoretically consistent and practical approach
for dealing with both route overlap and unrealistic routes on large-scale networks. It captures correlations
between overlapping routes by including correction terms within the probability relations, and has a consistent
criterion for assigning zero choice probabilities to unrealistic routes while eliminating their path size
contributions. Two BPS models are proposed: one that is closed-form (the BBPS model), and another
expressed as a fixed-point problem (the BAPS model). For the BAPS model, solving the choice probabilities
requires a fixed-point algorithm to compute the solution. This has the potential to be computationally
burdensome in large-scale networks even when the travel costs are fixed. As explored in the paper, however,
the requirement of solving fixed-point problems to compute the BAPS model choice probabilities can be
circumvented in SUE application, since at equilibrium the route flow proportions and choice probabilities
equate.
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The paper proves the existence of BBPS SUE solutions. BAPS SUE solution existence cannot be
guaranteed by the standard proofs since the BAPS choice probability function is not technically continuous,
though this is not an issue in practice and thus in practice BAPS SUE solution existence is not an issue.
Uniqueness for BBPS SUE or BAPS SUE cannot be guaranteed. Instead, the paper investigates the
uniqueness of BAPS SUE model solutions numerically, where experiments on the Sioux Falls and Winnipeg
networks suggest that uniqueness conditions exist. These conditions are analogous to those for the uniqueness
of BAPS model probability solutions, and BAPS SUE solutions appear to be unique when BAPS model
solutions are unique.

The paper proposes a generic algorithm for solving BPS SUE models. The algorithm is an adaptation of
the generic algorithm proposed by Watling et al (2018) for the Bounded SUE (BSUE) model. To equilibrate
the choice sets of realistic routes, the BSUE algorithm generates realistic routes from the network as the
algorithm progresses. With the current techniques available for generating these routes, there are questions
over the suitability of the approach for large-scale networks. For the proposed BPS SUE algorithm, we thus
take a more heuristic approach, by pre-generating approximated universal choice sets. From these routes, the
restricted choice sets of realistic routes are equilibrated. The algorithm can however be easily adapted so that
routes are generated as the algorithm progresses, just like the BSUE algorithm.

Adopting the Method of Successive Weighted Averages (MSWA) step-size scheme, the computational
performance of the BPS SUE algorithm for solving BBPS & BAPS SUE is assessed in numerical experiments
on the Sioux Falls and Winnipeg networks. The paper demonstrates how for BAPS SUE one can trade-off the
accuracy of BAPS model probabilities (and thus computation times of each iteration) with rate of SUE
convergence, and as such, it is shown that BAPS SUE can be solved in feasible computation times.
Computational performance and flow results are also compared with BSUE and standard Path Size Logit
(PSL) SUE models (solved with a flow-averaging algorithm and MSWA). The key findings of the numerical
experiments were that:

a) Flow results from the bounded SUE models converged towards their associated non-bounded limit
SUE model as the bound parameter was increased towards infinity.

b) The bounded SUE models have the potential to be significantly more choice set robust that non-
bounded SUE models, i.e. less sensitive to the inclusion of unrealistic routes to the adopted choice
sets.

c) BBPS SUE could be solved quicker than BAPS SUE, due to the closed-form BBPS probability
expression, but BAPS SUE was more internally consistent (greater behavioural realism).

d) BPS SUE models can be solved in feasible computation times, though typically longer than non-
bounded models.
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Chapter 6. Conclusion

It is essential that decision processes related to improving transport infrastructure, are supported by a well-
functioning transport model which gives a realistic representation of the route choices of travellers. The ability
to predict driver route choice means that route flows can be calculated and areas of potentially high levels of
congestion can be identified, in turn allowing us to investigate many eventualities, and assess any possible
remedial measures.

There are, however, several distinct and unique aspects about route choice modelling that makes it a more
challenging task than modelling other types of transport choices. The literature highlights four key aspects in
particular: allowing for driver/modelling uncertainty, capturing correlations between overlapping routes,
dealing with unrealistic routes, and incorporating the effects of congestion. Numerous modelling approaches
have been developed to address these challenges; however, as discussed/uncovered/demonstrated in this
thesis, some of the models/approaches have issues with theoretical consistency, robustness, and/or being
mathematically well-defined. This thesis addresses this by developing two new route choice modelling
approaches, and demonstrates their computationally feasibility and estimatability on real-life large-scale
networks. Chapters 2&3 of this thesis developed the first modelling approach, and Chapters 4&5 developed
the second. Below, the two modelling approaches are reviewed, by reviewing the findings of each chapter in
turn, followed by discussions of scope for further research. Some wider concluding remarks then finalise the
conclusion chapter and thesis. Fig. 6.1 collates the highlights from the thesis chapters (the papers).
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Modelling Approach 1

Highlights

Chapter 2 (Paper
One) —
Adaptive Path
Size Logit

Chapter 3 (Paper
Two) —
Adaptive Path
Size Logit
Stochastic User
Equilibrium

Modelling Approach 2

Chapter 4 (Paper
Three) —
Bounded Path
Size Models

Chapter 5 (Paper
Four) —
Bounded Path
Size Stochastic
User
Equilibrium

» Demonstrate issues with existing Path Size Logit (PSL) models

»  Propose a new internally consistent Adaptive PSL that addresses these issues

»  Proof of existence and uniqueness conditions for Adaptive PSL solutions

» Adaptive PSL Likelihood formulation and tracked route data MLE procedure

»  Estimation of PSL models on a large-scale network using real GPS data

»  Stochastic User Equilibrium (SUE) conditions for Adaptive Path Size Logit
(APSL)

»  Existence proof for APSL SUE solutions & unigueness conditions
demonstrated

»  Numerical experiments demonstrating computational feasibility for APSL
SUE

» Internally consistent SUE formulations for correlation-based route choice
models

» Computational performance and choice set robustness assessed for all SUE

Highlights

» ldentify desired properties for a Bounded Path Size (BPS) route choice
model

»  Derive a mathematically well-defined & theoretically desirable BPS model
form

»  Propose two BPS models and demonstrate properties

»  Present likelihood formulations and tracked route data MLE procedure

»  Estimate proposed models on a large-scale network using real GPS data

»  Stochastic User Equilibrium (SUE) conditions for Bounded Path Size (BPS)
models

»  Proof of existence for BPS SUE solutions and BPS SUE solution algorithm

»  Computation/flow results compared between BPS SUE models and with PS
SUE models

» Computational feasibility & insensitivity to unrealistic routes in the choice
sets shown

>  Uniqueness conditions for BPS SUE solutions demonstrated numerically

Fig. 6.1. Thesis chapter highlights.
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1. Modelling Approach 1 — A New Internally Consistent Weighted Path Size
Contribution Technique
1.1 Chapter 2 — Adaptive Path Size Logit

1.1.1 Review of Findings

The Path Size Logit (PSL) route choice model captures correlations between overlapping routes by including
correction terms within the route utility functions. This provides a convenient closed-form solution for
implementation in traffic network models, where the model has been shown to be both computationally
feasible and estimatable on real-life large-scale networks.

The correction terms depend upon path size terms which measure the distinctiveness of routes: a route is
penalised based on the number of other routes sharing its links, and the costs of those shared links. The key
issue for PSL, however, is that all routes contribute equally to path size terms, meaning that unrealistic routes
have a considerable and negative effect on the choice probabilities of the realistic routes when links are
shared. The typical way of dealing with unrealistic routes for PSL is to employ some kind of heuristic method
that attempts to explicitly generate a route choice set containing just the routes considered realistic. This
approach, however, leads to theoretical inconsistencies, since the route generation criteria is not consistent
with the calculation of the choice probabilities among generated routes, while generating the exact choice sets
of realistic routes is very difficult to do, especially on large-scale networks.

Acknowledging the difficulties in obtaining exact choice sets of realistic routes for PSL to be suitable, a
pragmatic approach that has been proposed is to utilise a weighted path size contribution technique along with
choice set generation, to attempt to reduce the impact any present unrealistic routes may have on the choice
probabilities of realistic routes. The idea is that instead of all routes having equal path size contributions to the
path size terms of other routes (i.e. PSL), the contributions are weighted so that the probabilities of realistic
routes are only minorly adjusted from link sharing with generated unrealistic routes. This is a promising
approach as it relaxes the importance of generating exact choice sets of realistic routes.

The Generalised PSL (GPSL) model proposes that the path size contribution factor is based upon ratios of
travel cost between routes, and hence routes with large travel costs have a diminished impact upon the
correction terms of routes with small travel costs. However, as discussed and demonstrated on example
networks in Chapter 2 (the first journal manuscript), GPSL has some theoretical and practical issues. Firstly,
GPSL is not internally consistent in how it defines routes as unrealistic: the path size terms consider the travel
cost of the route, while the probability relation considers disutility including the correction term. Secondly,
due to the way in which the contribution factor is formulated — as travel cost ratios — an additional scaling
parameter, 4, is required to scale these contributions, which makes parameter estimation more difficult, while
there are questions over its behavioural interpretation.

To address these issues, Chapter 2 then formulated two new PSL models. Firstly, addressing the second
issue, the GPSL contribution factors were re-formulated to resemble the travel cost component in the
probability relation, thus proposing an alternative GPSL (GPSL') model. This means that one can equate the
path size scaling parameter (1) with the Logit parameter (8), formulating the GPSL' ;) model, thereby
improving internal consistency, reducing the number of parameters for estimation, and removing the concerns
over behavioural interpretation of the path size scaling parameter.

However, although the GPSL'(,-4) model provides improved internal consistency over GPSL, the path
size contribution factors do not consider route distinctiveness. Addressing this, the Adaptive Path Size Logit
(APSL) model was then formulated, where the contribution factors consider ratios of route choice probability
between routes, thus ensuring that routes defined as unrealistic by the path size terms, are exactly those with
very low choice probabilities. APSL is hence internally consistent in how routes are defined as (un)realistic.
Also, by defining the path size contribution factor as the ratio of choice probabilities, the scaling of the path
size contributions is controlled implicitly through the scaling of the route choice probabilities (i.e. with the
Logit parameter and path size parameter), and hence there is no additional path size contribution parameter for
estimation.

The APSL route choice probability relation is an implicit function involving the choice probabilities, and
solutions to the model are solutions to the fixed-point problem. Formulation of the APSL model was
complicated by the desire to establish existence and uniqueness of solutions. The straightforward, desired
APSL formulation was not in the correct format for standard proofs of existence and uniqueness of fixed-point
solutions to apply. The proposed APSL formulation modifies the desired model so that the proofs apply.
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Critically though, the desired APSL formulation can be approximated to arbitrary precision with the
‘perturbation parameter’ t, i.e. the proposed APSL definition is equivalent to the desired APSL definition in
the limit as 7 — 0. It is therefore advised that in application of the APSL model,  is set as a very small
number, e.g. as small as computational precision will allow.

Solutions to the APSL fixed-point problem are proven to exist, and it is proven that values of b exist such
that APSL solutions are unique for g (the path size parameter) in the range 0 < 8 < b. Though there are cases
where solutions are unique for all £ > 0, in most cases there is a maximum value for b (b;,4,)- £ in the range
0 < B < by,qx IS however only a sufficient condition for unique APSL solutions, S, 1S the true maximum
value where solutions are unique for g in the range 0 < 8 < Bmax, @nd a method is proposed for estimating
Bmax- These sufficient and actual uniqueness conditions are specific to each setting of the travel costs and
Logit scaling parameter. However, in the writer’s experience and experiments in this thesis, the actual
uniqueness conditions provide enough scope for fitting to behaviour, where typical S,,4, Vvalues range
between 0.9 and 1.1. No difficulties were experienced in estimating APSL on the real-life large-scale network
(discussed below), and a maximum likelihood estimate of # = 0.84 was obtained, where it was verified that
this was within the unigqueness range.

Reflection. It remains uncertain under which conditions solutions to the straightforward, desired APSL
formulation do not exist, and it has not been ruled out that a fixed-point theorem exists to prove existence. A
considerable amount of time was spent formulating the modified version and exploring conditions for the
uniqueness of solutions. It was a real struggle trying to work out why the mathematical uniqueness conditions
(identified from max Jacobians) did not match the conditions found numerically, until it was realised that the
conditions were only sufficient conditions.

To show that the parameters of the APSL model can be estimated, a Maximum Likelihood Estimation
(MLE) procedure was proposed for estimating APSL with tracked route observation data. This procedure was
then first investigated in a simulation study on the Sioux Falls network where it was shown that it is generally
possible to reproduce assumed true parameters. The APSL model was then estimated using real tracked route
GPS data on a large-scale network.

Estimation results show that APSL outperforms MNL and PSL in goodness-of-fit to the data, both
showing the value in and highlighting the efficacy of APSL in capturing route correlations and dealing with
unrealistic routes. Moreover, APSL outperforms the GPSL'(;-4) model, suggesting that there is value in
having an internally consistency model / value in including a measure of distinctiveness within the path size
contribution factors. The GPSL model outperforms all models due to the greater flexibility the additional path
size contribution scaling parameter A provides. However, as typically found in estimations of GPSL, the
estimate for A is extremely large (1 = 91.95), which is investigated.

After conducting some analysis, it was postulated that the reason GPSL is able to provide better fit to the
data is that the A parameter allows GPSL to improve the choice probabilities of high costing, distinct route
observations one might consider as being outliers / route choice decisions made according to unobserved
attributes, without compromising the fit for the low costing observations, though this is not done by design.

Reflection. Before the estimation experiments were conducted there were question marks over the
computational feasibility of estimating APSL, especially for the real-life large-scale network. After some
initial experiments in Python on a personal laptop, it became clear that utilising parallel processing was going
to be necessary, and perhaps a better computer too. Initially, I learnt how to operate the High-Performance
Computing system at University of Leeds. However, the real-life observation data could not be shared with
me for ethical reasons, and the Danish Technical University (DTU) were kind enough to offer use of their
super-computer, accessed via VPN, where | could access and use the data. After a significant amount of time
and many difficulties working out how to parallel process in Python, it became possible to split APSL
probability computation for different OD movements across multiple cores, improving computation times
considerably. There were also concerns of whether APSL solution non-uniqueness would be an issue in
estimation. The general approach adopted was to not allow for values of 8 greater than around 0.9-0.95, a
‘safe range’ determined from experience, and as non-uniqueness would typically become an issue towards
B = 1. With this, non-uniqueness was never an issue, and the estimate for g in the real-life estimation was
within the unigueness range. It was also learned the hard way how a code error can ruin months of work. For
several months, slightly strange results were reported from the estimation experiments, until it was realised
that there was an index error and all the experiments had to be done again.

230



Chapter 6. Conclusion

1.1.2 Future Research

Future research should explore estimating the APSL model with more complex route utility functions, than
just considering travel time and length, to explore how APSL performs when there are fewer unobserved
attributes / a better representation of route choices. Moreover, further research should also explore formulating
and estimating APSL with different utilities/parameters for different user classes / vehicle types. One could
also investigate estimating the models for different choice sets to assess their robustness.

The APSL model requires a fixed-point algorithm to compute solutions. The paper assesses the
computational performance of the Fixed-Point Iteration Method (FPIM) for calculating choice probabilities
and estimating the parameters of the APSL model, where accuracy is compared with computation time.
Results indicate that accurate choice probability solutions and parameter estimates can be obtained from
feasible computation times. The FPIM, however, is the simplest fixed-point algorithm with the slowest
convergence, and many fixed-point algorithms have been proposed to accelerate convergence. Further
research could explore solving APSL utilising different fixed-point algorithms, such as Steffenson’s Method
or Newton Raphson’s Method.

Although these algorithms are designed to reduce the number of iterations required for fixed-point
convergence, performing each iteration requires computing a more complicated function. Performance of
these algorithms in terms of total computation time is therefore a trade-off between the number of iterations
saved and the computation times for each of the iterations. As shown with the FPIM, the number of iterations
required for APSL fixed-point convergence increases exponentially as 8 increases. The performances of the
more complex fixed-point algorithms (compared to the FPIM) are therefore likely to improve for larger values
of B, where more iterations will be saved. As the scale of network / choice set sizes increase, however, the
greater the computational burden of the more complex iteration functions, and after conducting some early
experiments on the Sioux Falls networks, it was found that Steffensen’s Method and Newton Raphson’s
Method did not improve total computation times compare to the FPIM.

Scope for further research also includes modifying APSL, or integrating adaptive path size concepts
within a different RUM, to also address the scaling problem. APSL, as it is currently formulated, does not
distinguish between different lengths of trip. This can lead to imprecisions since travellers usually have more
accurate perceptions of the route characteristics for a short trip than they do for very long trips, where a
greater amount of uncertainty comes with knowing for example the exact travel time / distance. The thorough
way of addressing this is to individually estimate a Logit scaling parameter for each OD movement, however
this is potentially impractical and could lead to identification issues as the number of parameters to estimate
may be huge. Alternatively, one could instead, for each OD movement, adjust the Logit scaling parameter
according to the OD-specific scaling factor as proposed by Gliebe et al (1999). An interesting approach could
be to explore altering the path size correction factors within the Path Size Weibit and Path Size Hybrid models
to be adaptive path size, since both address the scaling problem.

1.2 Chapter 3 — Adaptive Path Size Logit Stochastic User Equilibrium

1.2.1 Review of Findings

Chapter 3 explored the integration of APSL within a Stochastic User Equilibrium (SUE) model. On congested
road networks, the travel times for the available routes are dependent upon the vehicle flow along them
(where travel time increases with flow), and there is thus a feedback effect: drivers make decisions on which
routes to take according to the travel times they perceive for the routes, which in turn depend upon the route
choice decisions and the consequent route and link flows. SUE is a well-known approach for modelling this
feedback effect, where an SUE route flow solution and the consequent route travel costs are such that, for
each OD movement, the proportion of the flow on each route is equal to the probability that that route has a
perceived utility greater than or equal to the perceived utility of all alternative routes. The distribution of the
route flows is thus dependent on the underlying route choice model, which in this case is APSL.

Reflection. APSL comes at a price of needing to solve a fixed-point problem even to compute route
choice probabilities at given travel cost/utility levels. Thus, before the research was conducted, there was a
guestion of whether it would be computationally feasible to implement such a method within an SUE
framework, since it apparently needs to embed a fixed-point problem (for calculating choice probabilities)
within another fixed-point problem (for equilibrating flows). Thankfully, harnessing the useful relationship
between route choice probability and flow proportion in the context of SUE opened up a range of possibilities
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for solving APSL SUE, and the potentially onerous requirement of solving fixed-point problems to compute
APSL choice probabilities could be circumvented/controlled when solving SUE (discussed below).

APSL SUE can be defined in two different ways: Definition 1 is consistent with the APSL choice model
for every setting of the route flows, and Definition 2 (APSL" SUE) is just consistent at equilibrium, where the
APSL' path size contribution factors are instead presented as ratios of route flow. Definition 1 involves
solving choice probability fixed-point problems for each given setting of the route flows, while Definition 2 is
closed-form.

Typical SUE formulations of PSL models utilise an uncongested variable such as length or free-flow
travel time for the link-route prominence features within the path size terms, so that they are not flow-
dependent. The advantages of this are that: a) solution existence and uniqueness can be proven according to
standard proofs; b) an equivalent MP formulation can easily be derived; and, c) the path size terms are
constants and hence only need to be computed once at the initial rather than at every iteration of an SUE
algorithm. However, for APSL/APSL', these advantages are not applicable, since the APSL/APSL’ path size
terms are flow-dependent regardless of whether or not flow-independent variables are used for the link-route
prominence features. Moreover, the key feature of the APSL model is internal consistency, and utilising flow-
independent costs within the path size terms would violate this claim, since they would be inconsistent with
the flow-dependent travel costs in other components. Therefore, for full internal consistency, the definitions of
APSL & APSL' SUE utilise the same flow-dependent, generalised costs in all components: route costs as well
as path size terms.

APSL’ SUE solutions are proven to exist, and thus by proving the equivalence of APSL SUE and APSL’
SUE, APSL SUE solutions are also proven to exist. Uniqueness of solutions, however, cannot be guaranteed
by standard proofs, due to the flow-dependent path size terms, though that is not to say solutions cannot be
unique, which is explore numerically. Experiments on the Sioux Falls and Winnipeg networks suggest that
uniqueness conditions exist. These conditions are analogous to those for the uniqueness of APSL probability
solutions, and APSL SUE solutions appear to be unique when APSL solutions are unique.

Reflection. Like for estimation of APSL, there were concerns of whether non-unigqueness of APSL
solutions would be an issue for a) solving APSL SUE and b) non-uniqueness of APSL SUE solutions. The
conditions for unique APSL solutions depend upon the link/route travel costs, which in the context of SUE
can vary significantly depending on the flows, and it is not feasible to determine the uniqueness conditions for
all possible settings of the flows / costs. However, using again the general rule of restricting g to no greater
than 0.9-0.95 (a safe range), the non-uniqueness of APSL probability solutions was not an issue, and as the
experiments found, APSL SUE solutions were unique when APSL probability solutions were unique (in those
cases).

To establish APSL SUE as a worthwhile approach, APSL SUE was compared to an array of competitor
correlation-based SUE models. Like as discussed for PSL models above, typical SUE formulations for
correlation-based models utilise uncongested costs for the functional forms in the correlation components.
Addressing this, internally consistent SUE formulations for the competitor correlation-based models to APSL
were formulated, namely: PSL, Generalised PSL (GPSL), C-Logit (CL), Cross-Nested Logit (CNL),
Generalised Nested Logit (GNL), and Paired Combinatorial Logit (PCL). Only an internally consistent
formulation for CL had previously been explored in the literature.

Numerical experiments were conducted on the well-known Sioux Falls and Winnipeg networks to assess
computational performance, choice set robustness, and internal consistency. APSL SUE outperformed GPSL
SUE in terms of internal consistency (when dealing with unrealistic routes in the adopted choice sets),
generally outperformed PSL, CL, CNL, & GNL SUE in terms of choice set robustness, and outperformed CL,
CNL, GNL, & PCL SUE in terms of computational performance (considerably on the larger-scale Winnipeg
network).

A standard Flow-Averaging Algorithm (FAA) was used to solve the SUE models. The simplicity of the
FAA is attractive for solving APSL SUE, where computing accurate choice probabilities is not
straightforward/quick. The Method of Successive Weighted Averages (MSWA) step-size scheme was
employed, however numerous other averaging step-size schemes could be adopted. Other inexact step-size
schemes are applicable, however these are potentially complex / not computationally feasible for APSL SUE.
For example, it may require gradient information which would involve differentiating the fixed-point APSL
choice probabilities, which is not straightforward. Or, it may require accurately computing the APSL choice
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probabilities which has the potential to be very computationally burdensome. Optimal step-size approaches
are not applicable since there are no equivalent MP formulations.

Since computing APSL probabilities involves solving fixed-point problems, and the APSL' probability
relation is closed-form, it was anticipated that APSL SUE and APSL’ SUE would have very different
computational performances. Experiments on the Sioux Falls and Winnipeg networks found that, while the
number of iterations required for APSL SUE convergence tended to be similar to that required for PSL &
GPSL SUE convergence under identical configurations of the flow-averaging algorithm, the requirement of
solving APSL choice probability fixed-point problems at each algorithm iteration resulted in significantly
greater total computation times. On-the-other-hand, while the computational burden involved in computing
the APSL' choice probabilities during each iteration of the flow-averaging algorithm solving APSL’" SUE was
no more than that for PSL & GPSL, APSL’ SUE convergence was comparatively very slow, and thus total
computational times were also much longer.

In this thesis, the accuracy of the APSL probabilities is controlled exogenously by the FPIM probability
convergence parameter &, where accuracy increases as ¢ increases. Thus, in general, increasing & increased
the accuracy of the APSL SUE solution, but this resulted in longer computation times, as more FPIM
iterations were required for probability convergence.

However, as explored, the useful relationship between route flow proportions and choice probabilities in
SUE context (where these are equal at equilibrium) allows for a considerable flexibility in solving APSL SUE,
where one can trade-off the accuracy of APSL probabilities (and thus computation times of each iteration)
with rate of SUE convergence. By utilising as termed ‘follow-on’ initial conditions for the FPIM — where the
initial conditions for solving the APSL probabilities at iteration n of the flow-averaging algorithm were set as
the route flow proportions from iteration n — 1 — the same APSL SUE solution was obtained regardless of ¢.
For low &, solving APSL SUE with follow-on initial conditions simulated solving APSL' SUE, where there
was just a single FPIM iteration conducted (and hence the APSL probabilities were very inaccurate) at every
flow-averaging algorithm iteration. Increasing ¢ increased the accuracy of the APSL probabilities, which
improved the rate of SUE convergence: more FPIM iterations were required for APSL probability
convergence, but fewer flow-averaging algorithm iterations were required for SUE convergence.

Thus, solving APSL SUE with low & and follow-on initial conditions resulted in long total computation
times due to the slow SUE convergence rate, while larger values of ¢ resulted in comparatively quick SUE
convergence rates but lengthy computation times for each of the algorithm iterations, thus also resulting in
long total computation times. There was therefore an ‘optimal’ intermediate value of ¢ for solving APSL SUE
with follow-on initial FPIM conditions, whereby a suitable SUE convergence rate met suitable computation
times for each iteration.

Another technique that improved APSL SUE computation times was to utilise follow-on initial FPIM
conditions and stipulate a set number of FPIM iterations to perform at each iteration of the flow-averaging
algorithm. Conducting just two FPIM iterations (instead of one) significantly reduced the number of iterations
required for SUE convergence, and thus total computation times.

Best computation times for solving APSL SUE were found when utilising a combination of a maximum
number of FPIM iterations to perform and a maximum level of APSL probability convergence (controlled
with &) at each SUE iteration. This saved computation times in latter SUE iterations where the stipulated
amount of FPIM iterations would unnecessarily overly-converge the APSL probabilities.

Reflection. Due to the scale of the Winnipeg network, some careful thought was required to pre-process
the network data and code up the SUE solution algorithm to optimise computational performance. In the pre-
processing, for example, link-route incidence matrices were generated and stored in Python dictionaries for
quick access, where the matrices were trimmed to remove redundant links for that OD movement. And, for
the solution algorithm, a way to compute path size terms using matrix manipulation was constructed, which
improved computation times considerably. Due to the overhead involved in parallel processing in Python,
parallel processing only improved computation times when accurately computing the fixed-point APSL
probabilities. The best APSL SUE solution times were found when not accurately computing the APSL
probabilities and thus for consistency across the models, parallel processing was not adopted. The work was
also set back by another error: all experiments for the Winnipeg network had to be redone because the zone
nodes were included as through nodes in the network, whereas they should be setup as connector nodes.

In conclusion, the proposed APSL SUE model succeeds in addressing all four of the key challenging
aspects of route choice modelling in a theoretically consistent, robust, and mathematically well-defined way.
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As discussed/demonstrated, APSL SUE offers improved internal consistency and choice set robustness
compared to competitor models. APSL SUE solutions are proven to exist, and though uniqueness is not
guaranteed, numerical experiments suggest that uniqueness conditions exist. Moreover, as shown, the model is
estimatable from revealed choice data and can be solved in computationally feasible times on real-life large-
scale networks.

1.2.2 Future Research

The ‘optimal’ values for the methods described above for solving APSL SUE are particular to the network,
model, and algorithm specifications, e.g. model parameters, adopted step-size scheme, choice set sizes.
However, by fixing the optimised values for a given specification, and then varying the specifications, it was
shown that the method was robust in its effectiveness compared to solving APSL SUE in a standard way (i.e.
where the APSL fixed-point probabilities are accurately solved with non-follow-on initial conditions). Future
research could explore an intelligent, adaptive process whereby the optimal values of ¢ and the maximum
number of FPIM iterations to perform at each SUE algorithm iteration are learnt / worked out as the algorithm
progresses.

Future research could also explore utilising a different fixed-point algorithm (to the FPIM) for computing
the APSL probabilities within the SUE algorithm, or perhaps a combination of fixed-point algorithms could
be used, e.g. Newton Raphson’s Method for early iterations, Steffenson’s Method for middle iterations, and
the FPIM for latter iterations, as the initial conditions for the probabilities become closer to the solution
through the use of follow-on initial conditions.

Future research could also explore utilising different averaging step-size schemes, such as the self-
regulated averaging method Liu et al (2009), which has been applied with success in various SUE models
(e.g. Yang et al, 2013; Xu & Chen, 2013; Kitthamkesorn & Chen, 2013, 2014; Chen et al, 2014; Yao et al,
2014). It has not yet been explored whether similar techniques to those described above for solving APSL
SUE — where the APSL probabilities need not be computed accurately — are applicable for some inexact step-
size schemes, such as the self-adaptive method (e.g. Chen et al, 2012, 2013; Xu et al, 2012; Zhou et al, 2012).
Furthermore, future research could explore alternative algorithms, such as the New Self-Adaptive Gradient
Projection algorithm (Zhou & Chen, 2006), which has been applied with success to solve SUE for the C-Logit
model with flow-dependent correction terms.

Future research could also investigate under what conditions APSL SUE solutions are not unique when
APSL solutions are universally unique, and/or identify uniqueness conditions and a proof.

2.  Modelling Approach 2 — A Bounded Path Size Route Choice Model
2.1 Chapter 4 — Bounded Path Size Models

2.1.1 Review of Findings

Although the weighted path contribution technique is a promising approach for addressing the deficiency of
the PSL model, in its sensitivity to unrealistic routes in the adopted choice sets, it does not solve the issue
entirely, since the path size contributions of routes defined as unrealistic are only reduced instead of
eliminated. Moreover, as well as non-zero path size contributions, unrealistic routes also receive non-zero
choice probabilities. Thus, while under the GPSL, GPSL', and APSL models each unrealistic route may only
have a small path size contribution / choice probability, the total sum of these unrealistic route contributions /
probabilities may be significant, consequently impacting the accuracy of results. This problem becomes
greater as the scale of network increases and a greater amount of uncertainty comes with choice set
generation, where, typically, choice sets are generated as large as the computational resources are deemed to
allow, in order to minimise the possibility of excluding what would later turn out to be a plausible route.

The second modelling approach in this thesis was thus to take the weighted path size contribution
technique one step further by exploring how one might eliminate unrealistic route path size contributions
entirely. Moreover, in order to fully solve the issue, it was explored how one could also assign zero choice
probabilities to unrealistic routes, as well as zero path size contributions.

An approach that was deemed promising to investigate was the integration of PSL model concepts with
the Bounded Choice Model (BCM). The BCM proposes that a bound is applied to the difference in utility /
travel cost between each route and the highest utility / lowest costing route, so that routes with utilities/costs
less/greater than the bound are considered unrealistic and assigned zero choice probabilities. Furthermore, the
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probability each route is chosen relates to the odds associated with choosing each route versus the highest
utility / lowest costing route, and the BCM thus has a consistent criterion for determining restricted choice sets
of realistic routes and route choice probability. The BCM does not account for route correlations, however,
and hence the aim was to develop a Bounded Path Size (BPS) route choice model that harnesses the
contrasting strengths of the two approaches.

In Chapter 4, a natural form for a BPS model was derived whereby path size choice model utilities (which
include path size corrections) were inserted into the BCM formula. This, however, led to behavioural
inconsistencies and/or undesirable mathematical properties, which were demonstrated by a series of examples.
By utilising path size terms where all contributions were non-zero, a mathematically well-defined BPS model
could be derived from the natural BPS model form, but this would mean that the contributions of unrealistic
routes were not eliminated, as desired. On-the-other-hand, allocating zero path size contributions to routes

defined as unrealistic resulted in occurrences of % and In(0), and the path size term functions were thus not

guaranteed to be defined. Moreover, these % and In(0) issues led to problems with non-uniqueness of solutions

and discontinuity of the choice probability function. Although these issues were derived from specific path
size term options explored, the aim was to demonstrate that the natural BPS model is actually deeply
problematic and there are no behaviourally and practically desirable formulations.

Reflection. The best part of a year was spent trying to get the natural BPS form to work, by thinking of

ways to work round the % and In(0) issues. Numerous different approaches were proposed to deal with non-

uniqueness, i.e. different rules/methods for identifying the active choice set, for example decreasing from a
high bound value and systematically removing routes. No approach however could achieve a continuous
probability function. It was an enjoyable yet frustrating experience experimenting.

From the investigation into issues with the natural BPS model form, five desirable properties were
consequently established for a mathematically well-defined BPS model that utilises a consistent criterion for
assigning zero choice probabilities to unrealistic routes while eliminating their path size contributions. Solving
these challenges, an alternative form for a BPS model was derived. Here, path size correction factors are
added directly to the BCM probability relation rather than the route utilities to adjust the probabilities to
capture route correlations. Like the BCM, routes are defined as unrealistic if they have a travel cost greater
than a cost bound. This means that for a setting of the costs, the realistic routes are identified as those with
costs below the bound, and correlations are only considered between these routes, as only and exactly these
will have non-zero choice probabilities, and unrealistic routes with costs greater than the bound do not have
path size term values / path size contributions.

Deriving a BPS model from the proposed form involves defining the path size contribution factors for the
realistic/used routes. Care must be taken, however, to ensure that the chosen factors lead to a continuous
choice probability function (a desired property): as the cost of a route approaches the bound (from below) its
path size contribution must approach zero and be eliminated exactly at the bound. Two BPS models were thus
proposed: the Bounded Bounded Path Size (BBPS) model and the Bounded Adaptive Path Size (BAPS)
model. The BBPS model proposes that the contribution factors consider ratios of the odds that routes are
within the bound, and the BAPS model proposes ratios of route choice probability (like APSL). Although the
BBPS model is consistent in its definitions of which routes are considered (un)realistic, it does not have a
consistent criterion for determining route choice probabilities and path size contributions, since the
contribution factors do not consider route distinctiveness. The BAPS model has a consistent criterion for
assigning zero choice probabilities to unrealistic routes, eliminating their path size contributions, and
determining route choice probabilities and path size contributions, since the contributions are the probabilities.
The BAPS model is thus fully internally consistent. The limit models for the BBPS & BAPS models are the
GPSL' and APSL models, respectively, where the bound is large enough so that all routes have non-zero
choice probabilities, i.e. BBPS — GPSL' and BAPS — APSL in the limit as the bound (¢) — oo.

The attraction of the BBPS model is that it has a closed-form probability relation, and therefore
probability solutions are automatically guaranteed to exist and be unique and computing solutions is quick and
simple, while the BBPS model also has a continuous choice probability function.

The BAPS model, however, just like APSL, is not closed-form since the path size contribution factors are
a function of the choice probabilities, and hence the probability relation is an implicit function, naturally
expressed as a fixed-point problem. As was the case for APSL, formulation of the BAPS model was similarly
complicated by the desire to establish existence and uniqueness of solutions. Although it also remains
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uncertain under which conditions solutions do not exist / there are not unigueness conditions, the
straightforward, desired BAPS model formulation was not in the correct format for standard proofs of
existence and uniqueness of fixed-point solutions to apply. The proposed BAPS model formulation, in an
analogous way to APSL, modifies the desired model so that the proofs apply, and the desired BAPS model
formulation can be approximated to arbitrary precision with the ‘perturbation parameter’ t, i.e. the proposed
BAPS model definition is equivalent to the desired BAPS model definition in the limitas T — 0.

Unlike for APSL, however, the proposed formulation for the BAPS model does not have a continuous
choice probability function, since, unlike APSL, routes can have zero choice probabilities, and consequently
due to the modification with the perturbation parameter, routes cannot have probabilities between 0 and .
Nonetheless, although this is undesirable theoretically, it is not an issue in practice, since continuity can be
approximated to arbitrary precision by the setting of 7 as a very small value, e.g. as small as computational
precision will allow.

By adapting the proofs of existence and uniqueness for APSL solutions, solutions to the BAPS model
fixed-point problem were proven to exist, and it was proven that values of b exist such that BAPS model
solutions are unique for g (the path size parameter) in the range 0 < 8 < b, where b, is the maximum
value of b. Just like APSL, g in the range 0 < 8 < b, IS ONly a sufficient condition for unique BAPS
model solutions, B 1S the true maximum value where solutions are unique for g intherange 0 < g <
Bmax, @nd a method is proposed for estimating S, These sufficient and actual uniqueness conditions are
specific to each setting of the travel costs, Logit scaling parameter, and bound parameter. However, in the
experience of the author and experiments in this thesis, the actual uniqueness conditions provide enough scope
for fitting to behaviour, where typical 3,4, Values range between 0.9 and 1.1. No difficulties were
experienced in estimating the BAPS model on the real-life large-scale network (discussed below), and
obtained maximum likelihood estimates of § = 0.844 and = 0.838, where it was verified that the former
estimate was within the uniqueness range.

To show that the parameters of the BBPS & BAPS models can be estimated, an MLE procedure was
proposed, similar to that for APSL, for estimating the BBPS & BAPS models with tracked route observation
data. Application to the Sioux Falls network showed it is generally possible to reproduce assumed true
parameters. The BBPS & BAPS models were then estimated using real tracked route GPS data on a large-
scale network. Results found that the BBPS.-e) and BAPS models outperformed their limit models
GPSL’(1=¢y and APSL, respectively, suggesting that there is value in fully dealing with unrealistic routes by
eliminating their path size contributions / assigning them zero choice probabilities, rather than just reducing
contributions / assigning small probabilities. Moreover, just as APSL outperformed the GPSL'(;-4) model,
the BAPS model outperformed the BBPS(-¢y model, further suggesting that there is value in having a fully
internally consistency model / value in including a measure of distinctiveness within the path size contribution
factors.

Reflection. For the BPS model MLE procedure, a pragmatic approach was proposed to avoid issues with
In(0) when an observed route has a cost above the bound (Likelihood equal to zero). The approach was to set
a large and negative Log-Likelihood value when observed routes have a zero probability, the aim simply just
to tell the optimisation algorithm to return to searching for maximum likelihood estimates within the
parameter space the solution was known to lie. There was some uncertainty in how effective the approach
would work, solutions might somehow get trapped in the large negative Log-Likelihood space, but the
approach worked without any real problems.

In Chapter 2, it was postulated that the GPSL/GPSL’ models provided the best fit to the data not by
design. As investigated, the very large estimate for the additional path size scaling parameter, A, seemed to
allow GPSL to improve the choice probabilities of high costing, distinct route observations one might
consider as being outliers / route choice decisions made according to unobserved attributes, without
compromising the fit for the low costing observations.

An interesting result found when estimating the BBPS model in Chapter 4 was that the parameter
estimates approximated the GPSL' model, where the estimate for the bound parameter, @, was very large
approximating ¢ — co. The GPSL(/GPSL") model was constructed with the aim of reducing the path size
contributions of unrealistic, costly routes, so that the path size correction terms and thus the choice
probabilities of realistic routes are not undesirably adjusted for overlapping with unrealistic routes. In other
words, so that the path size terms of realistic routes capture the correlation between the realistic alternatives
only. So, if these models are aiming to reduce the contributions of unrealistic routes to the path size terms of
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realistic routes, then eliminating the contributions completely should improve performance. However, when
the GPSL' model was given the opportunity to eliminate contributions, i.e. with the BBPS model, the option
was not taken, and the best fit came from an unbounding ¢ and a large A value.

This indicates that the GPSL and GPSL' models were able to in this case provide better fits to real data by
capturing something other than the correlation between the realistic routes within the path size terms. This
could potentially be an important finding, since many studies either estimate GPSL and find best fit with a
very large A value (e.g. A = oo Ramming, (2002)) or estimate GPSL with a fixed large A value (e.g. A = 20
Hoogendoorn-Lanser et al, 2005)). Studies have speculated as to why large 4 values provide the best fits,
however no study (to the best knowledge of the author) has investigated this in detail. The typical
interpretation is that when comparing routes and the overlap between them, drivers make a binary decision
according to which route has the greater cost, and perceive the route with the lower cost as being distinct. This
reasoning, however, is questionable, and it seems unlikely that driver psychology would be as such.

2.1.2 Future Research

The experiments in this thesis provide new insights into why GPSL/GPSL’ are best fitted with large A values,
and why GPSL/GPSL' consequently outperform other PSL models. Further research should explore this in
more detail. For example, how the GPSL models perform with more complex utility functions and hence there
are fewer unobserved attributes.

In reality, rather than a universal bound for all OD movements, there are likely to be OD-specific bounds
and even traveller-specific bounds (as well as other-specific bounds) that travellers apply upon travel cost to
consider routes unrealistic, and future research could investigate estimating such non-universal bounds. To
estimate such bounds, however, one requires numerous observations from the same OD movement / traveller.
Moreover, MLE exponentiates in difficulty as the number of parameters increases. This makes estimating a
universal bound attractive. However, this can limit how effective the bounded models are at improving the fit
of their limit models. The estimated universal bound will always at least be the supremum of the route
observation cost deviations meaning that outlier observations will significantly limit the performance of the
bounded models. As shown in Chapter 4, when there are route observations with large cost deviations and
only a very small percentage of the generated routes have costs above the estimated bound, the bounded
models only marginally improved upon the fit of their limit models. When the most relatively costly
observations were removed, however, improved fit increased significantly. Theoretically, for any given
estimated bound, the choice sets should include all routes with cost deviations less than this bound, as these
routes are considered realistic, under the definition of the model. Future research could investigate how the re-
generation of choice sets effects re-estimation results, and further explore the effects of and how to deal with
outlier observations, potentially through some systematic procedure.

With the bounded models, a route is only defined unrealistic if it has a travel cost greater than the cost
bound. However, in reality there may be routes that have travel costs below the bound but would also be
considered unrealistic. For example, routes that repeatedly use on-off-ramps on motorways, which may have
total travel costs below the bound but large local detour travel costs. Clearly, such alternatives with long local
detours would not be considered in the mental map that travellers build in their mind when making their route
choice decisions, and hence these routes should also be excluded from the choice sets. This could be done
within the choice set pre-generation before implementation, however future research could investigate how to
do this in an implicit, consistent way, for example by applying some consistent bound upon local detour cost,
like as that for total travel cost. Moreover, one could investigate other forms of route choice bounds, for
example for cyclist route choice, riders may have a bound upon the steepness of a route.

As discussed for APSL, scope for further research for the BPS models also includes also addressing the
scaling problem. This could again be through individually estimating a Logit scaling parameter for each OD
movement, or adjusting the Logit scaling parameters according to the OD-specific scaling factor as proposed
by Gliebe et al (1999). A more interesting approach would be to first investigate formulating a bounded
choice model with Weibull distributed random error terms, then explore integrating appropriate path size
correction factors, as done for the BCM in Chapter 4. Following on from this, it would also be interesting to
explore formulating bounded choice models with other distributions for the random error terms, for example a
Normal or Gamma distribution, or with GEV structure models e.g. Cross-Nested Logit.
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2.2  Chapter 5 — Bounded Path Size Stochastic User Equilibrium

2.2.1 Review of Findings

Chapter 5 explored the integration of BPS models within a SUE model. SUE conditions are established for the
BBPS & BAPS models where — for internal consistency — the link-route prominence features within the used
route path size terms are based upon flow-dependent congested travel cost. A BPS SUE route flow solution
and the consequent route travel costs are such that unused routes with zero flows have costs greater than or
equal to the flow-dependent cost bound, while used routes with non-zero flows have costs below the bound.
The restricted choice sets of realistic routes are thus equilibrated along with the flows.

The BBPS SUE model has a closed-form underlying route choice model, while the BAPS SUE model has
an underlying route choice model formulated as a fixed-point problem. However, since the path size
contribution factors are based upon ratios of choice probability, (just like APSL), the potentially onerous
requirement of solving fixed-point problems to compute the BAPS model choice probabilities can be
circumvented, since at SUE the route flow proportions and choice probabilities equate. BAPS SUE can thus
also be defined in two different ways: Definition 1 is consistent with the BAPS choice model for every setting
of the route flows, and Definition 2 (BAPS' SUE) is just consistent at equilibrium, where the BAPS' model
path size contribution factors are instead presented as ratios of route flow. Definition 1 involves solving
choice probability fixed-point problems for each given setting of the route flows, while Definition 2 is closed-
form.

BBPS SUE solutions are proven to exist, however existence of BAPS/BAPS’ SUE solutions could not be
proven, since the underlying choice models do not have continuous probability functions (as routes cannot
have probabilities between 0 and 7). Although this is theoretically undesirable, solution existence is not a
problem in practice since continuity can be approximated to arbitrary precision with small values of t. The
modification of the desired BAPS model probability relation with the adjustment functions and perturbation
parameter T was required to establish existence and uniqueness of the fixed-point probability solutions.
However, this is not necessary for the BAPS' model since it is closed-form. BAPS' SUE can thus be
simplified and re-formulated (denoted BAPS"’) without the modifications so that it does have a continuous
probability function. Nonetheless, solution existence could still not be proven since the set of feasible flows

for the BAPS'' model — which must be modified to avoid occurrences of % within the path size terms —is not a

convex set, a requirement of standard proofs.

Due to the flow-dependent path size terms, uniqueness of solutions for the BBPS & BAPS SUE models
could not be guaranteed by standard proofs. That is not to say that solutions cannot be unique, however, and
this is explored numerically for the BAPS SUE model. Experiments on a small-scale network and the Sioux
Falls network suggest that uniqueness conditions exist. Like for APSL, these conditions are analogous to those
for the uniqueness of probability solutions, and BAPS SUE solutions appear to be unique when BAPS model
solutions are unique.

A generic algorithm is proposed for solving BPS SUE models. The algorithm is an adaptation of the
generic algorithm proposed by Watling et al (2018) for the Bounded SUE (BSUE) model, i.e. SUE with the
BCM. To equilibrate the choice sets of realistic routes, the BSUE algorithm generates realistic routes from the
network as the algorithm progresses. With the current techniques available for generating these routes, there
are questions over the suitability of the approach for large-scale networks. For the proposed BPS SUE
algorithm, a more practical approach is taken, by pre-generating approximated universal choice sets. From
these routes, the restricted choice sets of realistic routes are equilibrated. The algorithm can however be easily
adapted so that routes are generated as the algorithm progresses, just like the BSUE algorithm.

The natural BPS model form originally explored in Chapter 4 bounds routes according their utility (i.e.
combination of cost and path size correction), rather than just cost. This approach was found to be
challenging, and instead, to circumvent the issues, an alternative BPS model form was derived, where routes
are bounded according to their travel cost, but path size correction factors are included in the probability
relations (rather than route utilities) to adjust for route correlations. The benefit of this is that the BCM and
BPS model both have the same definition for unrealistic routes: those with travel costs above the bound, and
the algorithm and gap measures proposed for solving BSUE are applicable for solving BPS SUE with only a
few minor adjustments.

The BPS SUE algorithm can be seen as an extension of the flow-averaging algorithm used in Chapter 3
for solving the internally consistent SUE formulations of the correlation-based models, where column
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generation, flow allocation for new routes, and bound condition phases are added for the equilibration of the
used route choice sets. Numerous averaging step-size schemes can be employed, where the simplicity of the
averaging method is also attractive for solving BAPS SUE, where computing accurate choice probabilities is
not straightforward/quick. Other inexact step-size schemes are applicable, however, like for solving APSL
SUE, these are potentially complex / not computationally feasible for BAPS SUE. The Method of Successive
Weighted Averages step-size scheme was adopted in Chapter 3 for the flow-averaging algorithm where it
proved successful, moreover Watling et al (2018) adopt this scheme to solve BSUE, and thus this approach
was also adopted for the BPS SUE numerical experiments.

Using similar SUE convergence criteria for the flow-averaging and BPS SUE algorithms, experiments on
the Sioux Falls and Winnipeg networks found that, (in that case at least), although the numbers of iterations
required for convergence were not notably longer for the bounded models (i.e. BSUE, BBPS, BAPS, &
BAPS’ SUE) than the non-bounded models (i.e. MNL, PSL, GPSL, APSL, & APSL' SUE), the additional
computation time required during each iteration for the bounded models to perform the additional column
generation, flow allocation for new routes, and bound condition phases, meant that (as expected) total
computation times were longer. As anticipated from experiences solving APSL & APSL' SUE, BAPS &
BAPS’ SUE both had longer total computation times compared to BSUE & BBPS SUE, where BAPS SUE
had long computation times for each of the iterations (due to solving fixed-point problems), and BAPS' SUE
had slow SUE convergence. However, from exploring the techniques developed for solving the APSL SUE
model, it was shown how BAPS SUE can be solved in much quicker computation times.

An interesting result was that for Winnipeg, increasing the bound parameter ¢ led to quicker total
computation times for solving BAPS SUE. This is because a greater number of iterations were required to
equilibrate the choice sets for small values of the bound, which outweighed only a small saving in the average
number of FPIM iterations required for BAPS probability convergence (from the smaller active choice sets).

Another interesting result was that the average used route choice set sizes for the bounded SUE models
decreased as the travel demand level was increased. If one considers what one might expect under DUE, for
low demand only the best costing routes are used, and increasing demand results in the used route choice sets
expanding. For the bounded SUE models, however, although the used route choice sets expand initially from
zero demand, they begin to decrease in size for larger demand. The suspected reason for this is that for high
levels of congestion the costs on all links are inflated, and routes that are used for one OD movement are
likely inflating the costs so that routes in other OD movements are then too costly to be used.

The experiments demonstrated how the bounded SUE models have the potential to be significantly more
robust to the adopted choice sets than the non-bounded SUE models, with robustness improving as the bound
parameter is decreased. It was also confirmed that the flow results from the bounded SUE models tend
towards their limit non-bounded SUE model as the bound parameter is increased.

In conclusion, the proposed BPS SUE models succeed in addressing all four of the key challenging
aspects of route choice modelling in a theoretically consistent, robust, and mathematically well-defined way.
As discussed/demonstrated, the BPS SUE models offer a theoretically consistent and robust approach to
realistic route choice set generation, and are significantly more robust to adopted choice sets compared to
competitor non-bounded SUE models. BAPS has greater theoretical consistency compared to BBPS, and is
thus in theory more behaviourally realistic, which is supported by the estimation results. BBPS SUE solutions
are proven to exist, while, although not proven, solution existence is not an issue in practice for BAPS SUE,
as long as the perturbation parameter is set appropriately small. Moreover, although uniqueness of solutions is
not guaranteed, numerical experiments suggest that BBPS SUE solutions can be / are unique, and that
uniqueness conditions exist for the BAPS SUE model. Furthermore, as shown, both models are estimatable
from revealed choice data and can be solved in computationally feasible times on real-life large-scale
networks, where BBPS is more computationally practical than BAPS.

There were three key motivating factors for developing the BPS SUE models: firstly, to take the weighted
path size contribution technique of GPSL and APSL one step further by fully eliminating the path size
contributions of unrealistic routes; secondly, to improve the behavioural realism of the BCM by incorporating
a mechanism for capturing route correlations; and, thirdly, to develop a model that was mathematically well-
defined, thereby addressing the shortcomings of the PSL Restricted SUE (PSL RSUE) (Watling et al, 2015;
Rasmussen et al, 2015) and PSL Restricted SUE with a Threshold (PSL RSUET) (Rasmussen et al, 2017)
models. PSL RSUE and PSL RSUET bhoth offer a theoretically consistent approach to dealing with unrealistic
routes and capturing route correlations within SUE context, but solution existence and uniqueness are not
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guaranteed, and indeed this has been shown in examples. Although not proven, numerical experiments suggest
that BBPS & BAPS SUE are mathematically well-defined in terms of solution existence and uniqueness. This
is a significant result as it means they are suitable for real-life applications for traffic flow predictions.

2.2.2 Future Research

As discussed for solving APSL SUE, further research could also explore more intelligent, adaptive processes
for solving BAPS SUE, as well as utilising a different fixed-point algorithm (to the FPIM) for computing the
BAPS model probabilities within the SUE algorithm. Different step-size schemes should also be explored,
such as the self-regulated averaging method, and if applicable the self-adaptive method. Since the BBPS
model is closed-form, it would also be interesting to see whether inexact approaches requiring gradient
information such as Armijo’s step-size strategy are applicable, and how they perform.

In this thesis, solving BPS SUE models was explored in the case where there are pre-generated
approximated universal route choice sets. Future research should also explore the case where routes are
generated as the algorithm progresses. The difficulty with this approach — as discussed for BSUE in Watling
et al (2018) — is that the computational burden involved in column generating all routes with costs less than
the bound escalates dramatically and non-linearly as the scale of network increases / the bound increases.
With this approach though, there are guaranteed to be no inconsistencies in terms of routes that were not pre-
generated by the route generation criteria but would be considered realistic by the choice model criteria.

However, as discussed above, with the bounded models, a route is only defined unrealistic if it has a
travel cost greater than the cost bound, yet in reality there may be many routes that have travel costs below the
bound but would also be considered unrealistic. For example, routes with relatively large local detours such as
on-off-ramps on motorways. Therefore, since on large-scale networks it will potentially be computationally
infeasible to generate all routes less than even reasonably small bound values, yet possibly the majority of
these routes may actually be unrealistic, future research could explore some theoretically consistent and
computationally feasible way of removing all routes considered unrealistic.

Further research could also investigate under what conditions BAPS SUE solutions are not unique when
BAPS model solutions are universally unique, and/or identify uniqueness conditions and a proof. Moreover,
further research could explore under what conditions BBPS SUE solutions are not unique, and/or identify
uniqueness conditions and a proof.

It would also be interesting to compare results from the BPS SUE models with results from the PSL
RSUE and PSL RSUET models, and/or other RSUE models.

3. Wider Concluding Remarks

This thesis offers new approaches for modelling the route choices of drivers on road networks. This provides a
means for traffic flow predictions on real-life networks. The hope is that APSL SUE and/or BBPS/BAPS SUE
will be used for traffic flow predictions in real-life transport systems, e.g. for policy scenario testing.

Some further work is required before this, however. As discussed above, the models will need to be
calibrated and applied with more complex route utility functions than those in this thesis, and different
utilities/parameters for different e.g. user classes / vehicle types will need to be explored.

Moreover, the estimation work in this thesis concerns estimating APSL, BBPS, & BAPS as route choice
models. How to estimate/calibrate these models within SUE should be explored. Traditionally, this has been
done either sequentially (through estimating the link cost functions and then SUE model), or in a completely
detached way (by just calibrating the underlying choice model). These approaches are potentially inconsistent,
however. It would be interesting to explore whether calibration of the SUE models and link cost functions
could be performed simultaneously.

There are also other behavioural realism extensions such as the scaling issue and dealing with local detour
routes that could be explored to improve the accuracy of results. Moreover, a well-behaved approach for
properly accounting for the effects of congestion — such as how bottlenecks lead to flow-metering and
spillbacks — should be investigated, e.g. the ‘quasi-dynamic’ approaches of Bleimer et al (2014) and
Brederode et al (2019).

Application of the models to network equilibrium with elastic travel demand should also be considered
(e.g. Kitthamkesorn et al, 2015), to explicitly consider the equilibrium between supply and demand. It would
be interesting to see how the equilibration of demand effects the equilibration of the choice sets.
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Further, it would be interesting to know whether the APSL/BBPS/BAPS SUE models could be
implemented within transport modelling software such as SATURN and VISUM, and how they perform. Both
of these pieces of software have the capability of solving SUE and using it for traffic flow predictions. Most
studies using SATURN for policy analysis so far, however, seem to use DUE for the traffic assignment (e.g.
Mitchell et al, 2005; May et al, 2002).

It is worth noting also that, so far, standard PSL has been the most common path size approach (and also
route choice modelling approach) adopted in practice, for e.g. travel behaviour adjustment prediction within a
policy evaluation model. Perhaps the reason for this is due to the deficiencies of GPSL such as those
highlighted in this thesis, e.g. the estimation concerns, and/or that solution of GPSL within a network
equilibrium model had not yet been explored. The work in this thesis thus will (hopefully) provide
practitioners with incentive to adopt an alternative path size model such APSL/BBPS/BAPS, or even GPSL.

The BPS models assume that drivers are aware of and consider the correlation between all routes / parts
of the routes that they define as being realistic alternatives. This provides theoretical consistency, but perhaps
it could be investigated whether the correlation network should be different to the physical network, by e.g.
comparing with the subnetwork path size approaches of Frejinger & Bierlaire (2007) and Frejinger et al
(2009), and thereby developing a BPS approach for the correlation subnetwork that offers continuity,
consistency, robustness, and mathematical rigour (that the existing subnetwork approach currently lacks).

It would also be interesting to find out how the models and concepts developed in this thesis could be
transferred to other transport or non-transport modelling topics. For example, the recently developed concept
of multi-region traffic assignment modelling with Macroscopic Fundamental Diagrams (MFDs) (e.g.
Yildirimoglu & Geroliminis (2014), Batista & Leclercq (2019), Mariotte et al (2020)), where the new path
size models are adapted for the context of regional path choice. Or, how the new path size models could be
applied to other route choice types, such as cycling route choice, where there may be different features to
consider. For example, in cycling route choice, cyclists may have a bound upon the gradient of slope or
energy they are willing to exert travelling uphill, which the BPS models could be adapted to remove routes.
Alternatively, how the models can be adapted for path choice in multi-modal networks in contexts such as
Mobility-as-a-Service (MaaS). Hoogendoorn-Lanser et al (2005) explore GPSL for multi-modal networks
where trip legs are considered in the path size terms, it would be interesting to see how the BPS models apply,
and there are likely to be plenty of unrealistic journey options.

Route choice modelling is a unique type of choice modelling in many respects, however it would be
interesting to discover how the choice modelling concepts in this thesis could apply to other types of choice
modelling. Specifically, perhaps, how the concept of imposing a consistent bound upon choice attributes could
be adopted to implicitly generate choice sets, or how path size correction factors could be used to capture
correlations between alternatives in other settings. One application, for example, could be in Mobility-as-a-
Service bundle choice modelling, where there are potentially millions of bundle options, many of which may
be considered unrealistic. There will also likely be strong correlations between alternative bundles and with
such large choice sets, perhaps path size correction factors would be more suitable computationally, than
nested/mixed approaches.

It would be particularly pleasing if the models and concepts developed in this thesis were used in policy
analysis for reducing levels of congestion, with the objective of reducing CO, emissions. For example,
exploring introducing a tolling scheme, where APSL/BBPS/BAPS SUE would be used for the traffic flow
predictions, and some optimisation procedure would optimise the tolling price levels to minimise CO,
emissions (whilst satisfying e.g. socio-economic benefit).

Furthermore, due to the improved possibilities of collecting new types of data, and the increased
accessibility of data, the way in which we can calibrate and validate proposed route choice models is
changing. Traditionally, the calibration and validation of models has been through measuring the proximity of
the predicted link flows to some observed link flows collected from data. However, due to the emergence of
new data types, for example GPS data and Bluetooth data, there is now an improved possibility to observe the
choices of routes in which drivers take, allowing for a greater understanding of the behaviour of drivers and
the calibration and validation of route choice models. It is also possible that these new data types and the
increasing availability and detail of them, could be more beneficial to the models developed in this thesis than
traditional models. The ability to track a large sample of observed route choices — from all travellers as well as
from specific individuals / OD movements — means that significant information can be gathered on the bounds
drivers have as a whole, as well as bounds that individuals, user classes etc. may have.
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It is gratifying that APSL has already picked up interest in the field of route choice modelling. A recent
article by Knies & Melo (2020) proposes a Recursive Logit with choice aversion model, where APSL is used
as the main reference model throughout the paper. An extensive comparison is conducted in numerous
experiments and the authors are quite complimentary of APSL. It will be exciting to see what other models are
compared with APSL in other studies, or how other researchers use APSL in their work. Moreover, what
attention the BPS models receive, now that the paper has been published.
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