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Abstract

The flow past a circular cylinder has been extensively investigated by

researchers due to its widespread application to environmental and

engineering flows. In most practical applications, the upstream flow is

turbulent, yet this has received less attention in the literature. The in-

fluence of turbulence on the wake of a circular cylinder is investigated

in this thesis through a combination of experiments and numerical

simulations. Focus is placed on the generation of inflow turbulence,

and the relationship between coherent structures and dissipation in

the wake.

Free-stream turbulence is generated in simulations by projecting grid

patterns onto the inlet patch. A new design is developed here which

combines the best characteristics of both regular and fractal grid ge-

ometries. It has been shown that wakes created by each bar interact in

an unpredictable manner, which can lead to vorticity clustering and

poor turbulence homogeneity.

A circular cylinder is then placed in the wake of regular and fractal

grids. A laminar inflow is also simulated for comparison. A surro-

gate of dissipation has been developed, which is tested on the circular

cylinder wake, and only requires two components of velocity on a

two-dimensional slice. In addition to this, a model is proposed which

maps the distribution of dissipation and coherent structures. It has

been suggested in the literature that dissipation is concentrated in the

primary vortex rollers. However, here it is found to reside in between

streamwise ribs.

V



Experiments on the circular cylinder wake are conducted using parti-

cle image velocity (PIV) to supplement numerical modelling. A turbu-

lent inflow is generated from a biplane grid upstream of the cylinder.

Structures in the wake are decomposed into coherent and stochastic

components by a phase averaging procedure. Dissipation is evaluated

in the two-dimensional PIV data by using the surrogate method devel-

oped in the numerical modelling work. It is concluded that stochastic

turbulent fluctuations are more dissipative than coherent motions by

an order of magnitude, but the two processes are locked for a short

region in the circular cylinder wake. This has also been observed in

the numerical simulations, and may indicate a non-classical form of

turbulence decay.
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wise (x̂) and normal direction (ŷ) marked for reference, with axial
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Chapter 1

Introduction

Flow past a circular cylinder is a classical problem in fluid dynamics research,

and has received considerable attention from theoreticians, experimentalists, and

computational fluid dynamicists alike. Despite the relatively simple geometrical

set-up, a complex wake is generated which may include: flow separation, shear

layers, and recirculation. The most recognisable signature of the circular cylinder

wake is the vortex street, where alternating concentrated regions of vorticity are

generated periodically from the cylinder surface, and advect downstream by the

mean flow. This can be seen across a wide range of applications: heat exchangers,

telecommunication cables, chimney stacks, cylindrical buildings, aircraft landing

gear, and bridge cables. It is therefore a problem which spans across a range

of length scales, from small components in microfluidic devices, to massively

separated flow in geophysical and astrophysical fluid dynamics. Controlling and

predicting dynamics of the circular cylinder wake is important across a range of

applications, such as: vortex-induced vibration (VIV) (Dalton et al., 2001), pedes-

trian comfort and pollutant dispersion (Franke and Frank, 2002), and bridge scour

(Dargahi, 1990), to name a few.

In simple terms, the flow past a circular cylinder is an input-output system.

Figure 1.1 presents a simplified picture of the flow past a circular cylinder. The

base case for this type of flow is a smooth, infinitely long circular cylinder placed in

a laminar free-stream. Although the base case has been thoroughly investigated in

experiments and simulations, it is important for practical applications to consider

departures from this base case. In reality, the cylinder may not be uniformly
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circular in cross-section, will have some level of surface imperfections, and is of

finite length, which may lead to end-effects. In addition to this, a cylinder is rarely

placed in isolation and might be located in a boundary layer, or in the wake of

another body.

With regards to inflow conditions, a circular cylinder can be placed in harsh

environments, where turbulence levels are high, and the inflow is highly transient.

In wind engineering for example, a laminar inflow is an exception rather than a

rule (Ricci et al., 2017). In some applications such as tidal streams, turbulence

intensity may exceed I = 20% (Bell, 1979). Despite the wealth of literature on

the flow past a circular cylinder, relatively few studies consider the case of tur-

bulent inflow. For example, the seminal work of Williamson (1996) provides a

comprehensive review of the coherent structures formed in the wake of a circular

cylinder, but only low-turbulence intensity levels (I < 0.1%) were considered.

However, interaction between free-stream turbulence and a circular cylinder has

many interesting aspects, such as (Britter et al., 1979): distortion of turbulence

by the mean flow, interaction between the turbulence and cylinder surface, ef-

fects of turbulence on the cylinder boundary layer and separation, interaction of

turbulence with the wake flow.

In wind or water tunnel experiments, a laminar flow can be passed through a

grid to generate a close approximation to homogeneous isotropic turbulence (HIT)

(Batchelor, 1953). Almost all of the studies which consider a turbulent inflow are

End conditions:

- Blockage effects.
- Horseshoe vortices.

Inflow conditions:

- Non-uniform.
- Turbulent.

Cylinder geometry:

- Inclined.
- Surface roughness.
- Non-circular.

Cylinder response:

- Vortex-induced vibration (VIV).

Surface properties:

- Lift, drag, pressures, separation.

Flow field:

- Near wake (x ≤ 10D).
- Far wake (x > 10D).
- Coherent structures.
- Shear layers.
- Boundary layer.

Figure 1.1: Input and output processes for the flow past a circular cylinder.
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experimental and only evaluate fluid dynamic properties of the cylinder, such as:

drag, lift, and pressure forces (Fage and Warsap, 1929; Bloor, 1964; Gerrard, 1965;

Bearman and Morel, 1983). Theoretical models are limited to the special case of

homogeneous and isotropic inflow (Eames et al., 2011). Similarly, computational

modelling has also been restricted to HIT inflow (Aarnes et al., 2018). Although

research of flow past a circular cylinder has been somewhat confined to HIT

inflow, there has been recent interest in the bespoke generation of grid turbulence

(Sakai and Vassilicos, 2016). This has been pioneered by experiments of multiscale

and fractal grid-generated turbulence (Seoud and Vassilicos, 2007; Hurst and

Vassilicos, 2007), which have shifted focus away from the fully developed HIT

far wake and towards the turbulence production region. Multiscale and fractal

grids have been found to generate elevated levels of turbulence, and an extended

region in which the turbulence cascade is in non-equilibrium. Advances in custom

grid-generated turbulence are yet to be applied to the study of bluff body flow,

although Paul et al. (2018) simulated heat transfer of the circular cylinder in the

wake of a single fractal grid element.

Despite the important role coherent structures play in heat, mass, and mo-

mentum transport, the identification of such structures has been a challenge in

experiments due to the difficulty in measuring the velocity gradient tensor (Wal-

lace, 2009). A current open question in the subject of bluff body wakes is the

dissipative role of coherent structures. Goto and Vassilicos (2015) argued that a

locking between the dissipation of coherent and stochastic motions may result

in the non-equilibrium dissipation scaling. This argument was strengthened by

Alves Portela et al. (2018), who detected a locking between coherent and stochas-

tic dissipation components in the same downstream region of the square cylinder

where non-equilibrium scaling was identified. Chen et al. (2018) investigated the

relationship between coherent motions and dissipation, concluding that dissipa-

tion is concentrated in the primary rollers. This was in contrast to the model of

Hussain and Hayakawa (1987), who conjectured that dissipation resides in regions

of high mixing. However, the dynamics of streamwise ribs is absent from both

models because measurements were taken at a single point in space, so it was not

possible to separate ribs from rollers.
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This thesis focuses on two aspects of the flow past a circular cylinder: inflow

turbulence, and coherent structures in the wake. A method to generate free-stream

turbulence in simulations is required. Ideally this method is capable of generating

grid turbulence with the same characteristics observed from experiments, and can

be tuned to produce different turbulence behaviour. Coherent structures in the

circular cylinder wake are investigated numerically and experimentally. In addi-

tion to this, there is a lack of measurements in the literature for the dissipation

field in the circular cylinder wake. A three-dimensional picture of the dissipation

field and wake structures is required to understand how the two interact.

1.1 Research aims

The aim of this thesis is to improve understanding of the circular cylinder wake

for a turbulent inflow. In particular, the relationship between coherent turbulent

structures and dissipation will be investigated. To deliver this aim, the problem

has been split into two distinct components: inflow turbulence generation, and

cylinder wake dynamics. The objectives are as follows:

1 Develop a method to generate free-stream turbulence in simulations which

can replicate bespoke grid turbulence from experiments.

(a) Review the experimental literature of grid turbulence.

(b) Simulate grid turbulence using different designs to compare turbulence

produced by classical and novel grids.

(c) Identify important parameters in grid construction which influence

turbulence level, homogeneity, and length scales.

2 Explore the relationship between coherent structures and dissipation for

simulations of laminar and turbulent flow past a circular cylinder.

(a) Investigate the influence of free-stream turbulence on lift and drag of

the circular cylinder.

(b) Evaluate alternative methods of estimating the dissipation term which

require fewer terms of the velocity gradient tensor.
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(c) Construct a three-dimensional picture of the wake, including: rollers,

ribs, and the dissipation field.

3 Investigate the circular cylinder wake experimentally using planar particle

image velocimetry (PIV) for a turbulent free-stream, validating findings

from the numerical modelling.

(a) Estimate dissipation along the centreline from a two-dimensional plane

in the circular cylinder wake.

(b) Decompose the circular cylinder wake structures into coherent and

stochastic motions, verifying the relationship between coherent and

stochastic dissipation.

1.2 Thesis layout

This thesis consists of 8 chapters, including this introduction. A brief outline for

each chapter is provided for the reader:

• Chapter 2 provides a review on the current understanding of free-stream tur-

bulence generation, and its influence on the circular cylinder wake. Methods

of generating turbulence in experiments are detailed, including the use of

multiscale and fractal grids. Cylinder wake flow studies are reviewed, high-

lighting disparities in the control of inflow turbulence between experiments

and simulations.

• Chapter 3 details methods of computational fluid dynamics, covering gov-

erning equations, boundary conditions, and large-eddy simulation (LES).

Dissipation modelling in LES is reviewed, and turbulence models are vali-

dated on the Taylor-Green vortex problem.

• Chapter 4 is the first computational results chapter, concerning LES for a

number of different grid geometries projected onto the inlet patch. A new

fractal grid design is constructed which reduces vorticity clustering along the

channel perimeter. Results from the projected inlet method are validated

against wind tunnel experiments of grid turbulence.
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• Chapter 5 provides a comparison between laminar and turbulent flow past a

circular cylinder simulated with LES at a Reynolds number of 3900. Three

cases are ran in total: (i) laminar inflow, (ii) regular grid turbulence inflow,

(iii) fractal grid turbulence inflow. Turbulent inflow is generated from grid

geometries introduced in Chapter 4. A new method of calculating dissi-

pation in the circular cylinder wake is developed which only requires two

components of velocity.

• Chapter 6 describes the experimental set-up employed in this study. A cylin-

der fitted with end plates is mounted downstream of a turbulence-generating

grid within a recirculating water flume.

• Chapter 7 is the first experimental results chapter- particle image velocime-

try of turbulent flow past a circular cylinder. Time-averaged wake dynamics

are compared to literature results of experiments and numerical simulations

from the low-turbulence free-stream case. Dissipation along the wake cen-

treline is calculated by decomposing the velocity field into coherent and

stochastic motions, from the method proposed in Chapter 5. Non-classical

dissipation scaling is observed in the wake of the cylinder.

• Chapter 8 concludes the thesis, summarising the main findings and contri-

butions. Further work to advance the present investigation is suggested.
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Chapter 2

Free-stream turbulence and the

circular cylinder wake

The present chapter is composed of two parts. Firstly, turbulence production and

decay is discussed, with a focus on dissipation of freely-decaying turbulent flow.

The energy cascade process is described, leading to a discussion on the mecha-

nisms of dissipation. The preferred method of generating freely-decaying turbu-

lence in experiments is to pass a uniform flow through a lattice of rods arranged

into a grid, referred to as grid turbulence. Although square mesh grids have been

used by experimentalists and theoreticians for over a century to generate and

study turbulence, recent work on the subject of grid-generated turbulence has

challenged the well established equilibrium dissipation scaling law. Secondly, an

introduction and review of laminar flow past circular cylinders is presented. The

base case for this flow configuration is that of an infinitely long circular cylinder

placed in a laminar free-stream. Inconsistencies in simple measures of the wake

across experiments and simulations are highlighted. Differences between reported

values of the shedding frequency and recirculation length in the literature are

compared, and possible sources of departure from the base case are discussed.

The impact of free-stream turbulence on the circular cylinder wake is discussed,

in particular how shedding is disrupted by inflow turbulence.
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2.1 Freely decaying turbulence

A natural place to begin discussion of free-stream turbulence is the case of freely

decaying turbulence. Turbulent flows consist of a wide range of scales, from the

largest external scales which contain most of the energy, to the smallest scales

where the majority of energy is dissipated. Energy at the large scales is injected

from the mean flow and transferred into small scale fluctuations. This is the energy

cascade description. Figure 2.1 presents a schematic of the energy cascade. Energy

introduced at the large scales ` is transferred successively by inviscid processes

to smaller scales, until viscous dissipation begins to dominate, and energy is

dissipated into heat (Richardson, 1922).

Injection

Dissipation
ε

Transfer
Π

`

Figure 2.1: Energy cascade picture, adapted from Frisch et al. (1978).

An analytical description of the smallest scales of turbulence was introduced

by Kolmogorov (1941), where turbulence at the smallest scales was described to

be quasi-universal. This is often referred to as the K41 theory in the turbulence

literature. From the largest scales to the smallest scales, the transfer of energy is

governed by only two factors: kinematic viscosity ν, which is a physical property

of the fluid; and the rate at which energy is destroyed, given by the dissipation

ε. If the smallest motions have characteristic length and velocity scales denoted

by η and u(η) respectively, dissipation scales like (Pope, 2001)

ε ∼ ν
u(η)2

η2
. (2.1)
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At the other end of the energy cascade, where the largest motions in a turbu-

lent flow have typical length scale `, and characteristic velocity u(`), the rate at

which energy is passed down the cascade from the largest motions is given by

Π ∼ u(`)3

`
. (2.2)

If energy injected at the largest turbulent scales balances dissipation at the

smallest scales then Π ∼ ε. Along the cascade, viscosity begins to dominate flow

dynamics when the turbulent scales yield a Reynolds number of unity, such that

Reη ≡ η u(η)/ν = 1. The Reynolds number is a measure of inertial to viscous

forces, and is defined by Re = UL/ν, where U and L are characteristic velocity

and length scales of the flow, respectively. Kolmogorov’s first similarity hypothesis

states that the smallest scales of motion in a turbulent flow have a universal form

determined by the dissipation ε, and kinematic viscosity ν. Combining Reη = 1

with (2.1) yields

η ≡ (ν3/ε)1/4 , (2.3)

u(η) ≡ (νε)1/4 . (2.4)

Scales η and u(η) are the Kolmogorov scales of turbulence, which characterise

the smallest, dissipative eddies (Davidson, 2015).

2.1.1 Dissipation in turbulent flows

The mean turbulent kinetic energy dissipation rate, which is a fundamental quan-

tity in turbulent flows (Sreenivasan and Antonia, 1997), plays a significant role in

small-scale turbulence theory (Vassilicos, 2015). This has implications for many

practical flow problems which may be characterised by enhanced turbulence pro-

duction and mixing. Furthermore, the popular k-ε turbulence model of Jones and

Launder (1972), requires both the kinetic energy k, and energy dissipation rate

ε, as scale determining variables to close the system of equations. The dissipation
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rate is given by (Hinze, 1975)

ε = ν

[〈
∂ui
∂xj

∂ui
∂xj

〉
+

〈
∂ui
∂xj

∂uj
∂xi

〉]
, (2.5)

where Einstein summation convention is used over repeated indices, angled brack-

ets indicate a time-averaged quantity, and ui is the three-component fluctuating

velocity vector for i = 1, 2, 3. Fluctuating velocity is obtained from the velocity

field Ui by subtracting the time-average such that ui = Ui − 〈Ui〉. A Cartesian

coordinate system is adopted throughout this thesis. The three orthogonal com-

ponents of direction x1, x2, x3 are used interchangeably with the notation x, y, z.

Similarly, the notation u1, u2, u3 is used interchangeably with u, v, w. Given that ε

is an averaged quantity, is may also be written as 〈ε〉. Several methods of arriving

at (2.5) are presented in Section 2.1.4 of Davidson (2015).

From (2.5) it is seen that dissipation is more significant in regions where

the velocity gradient tensor (VGT) Aij = ∂ui/∂xj is large, i.e. large gradients of

fluctuating velocity. Throughout the turbulence literature, ε takes different forms.

For example, by introducing the strain rate tensor Sij = 1
2

(Aij + Aji), dissipation

can be written in a more compact form ε = 2ν 〈SijSij〉. Dissipation appears as a

sink in the energy equation, which is constructed from the governing equation of

incompressible fluid flow- the Navier-Stokes momentum equation. The first term

in (2.5) is the main contributor to ε in virtually all circumstances, which leads

many researchers to drop the second term for convenience, and refer to the first

term as the pseudo dissipation (Pope, 2001).

In total, (2.5) contains 12 terms, which are readily available in numerical

simulations, but difficult to obtain experimentally, i.e. see the review of Wallace
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(2009). For reference, the 12 individual terms of (2.5) are

ε = ν

2

〈(
∂u

∂x

)2
〉

︸ ︷︷ ︸
1

+

〈(
∂v

∂x

)2
〉

︸ ︷︷ ︸
2

+

〈(
∂w

∂x

)2
〉

︸ ︷︷ ︸
3

+

〈(
∂u

∂y

)2
〉

︸ ︷︷ ︸
4

+ 2

〈(
∂v

∂y

)2
〉

︸ ︷︷ ︸
5

+

〈(
∂w

∂y

)2
〉

︸ ︷︷ ︸
6

+

〈(
∂u

∂z

)2
〉

︸ ︷︷ ︸
7

+

〈(
∂v

∂z

)2
〉

︸ ︷︷ ︸
8

+ 2

〈(
∂w

∂z

)2
〉

︸ ︷︷ ︸
9

+2

〈
∂u

∂y

∂v

∂x

〉
︸ ︷︷ ︸

10

+2

〈
∂u

∂z

∂w

∂x

〉
︸ ︷︷ ︸

11

+2

〈
∂v

∂z

∂w

∂y

〉
︸ ︷︷ ︸

12

 . (2.6)

Due to the difficulty of measuring all 12 terms of the dissipation in exper-

iments, assumptions on the flow field are often enforced. The simplest form of

turbulent flow is homogeneous isotropic turbulence (HIT), which is invariant to

rotation and translation. Isotropy requires that averaged functions of the velocity

and its derivatives at a given point are invariant to rotation or reflection (Von Kar-

man and Howarth, 1938). Homogeneity requires that averaged properties of the

flow are invariant to translation, i.e. independent of position (Batchelor, 1953).

If small scales are assumed to be locally isotropic, the following relations can be

applied to the velocity gradients (Taylor, 1935; George and Hussein, 1991)〈(
∂u

∂x

)2
〉

=

〈(
∂v

∂y

)2
〉

=

〈(
∂w

∂z

)2
〉

, (2.7)

〈(
∂u

∂y

)2
〉

=

〈(
∂u

∂z

)2
〉

=

〈(
∂v

∂x

)2
〉

=

〈(
∂v

∂z

)2
〉

=

〈(
∂w

∂x

)2
〉

=

〈(
∂w

∂y

)2
〉

, (2.8)
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〈
∂u

∂y

∂v

∂x

〉
=

〈
∂u

∂z

∂w

∂x

〉
=

〈
∂v

∂z

∂w

∂y

〉
= −1

2

〈(
∂u

∂x

)2
〉

. (2.9)

On substitution of (2.7), (2.8), (2.9) into (2.6), the pseudo dissipation com-

monly referred to as the X-wire form is obtained

εxw = 3ν

[〈(
∂u

∂x

)2
〉

+ 2

〈(
∂v

∂x

)2
〉]

. (2.10)

Pseudo dissipation (2.10) can be utilised with constant temperature anemom-

etry (CTA) probes. CTA is a preferred measurement technique in wind tunnel

experiments. X-wire probes consist of two wires arranged in an X configuration

and are capable of measuring two components of velocity. From εxw it is pos-

sible to retain the isotropic dissipation εiso by enforcing (2.8) and the isotropic

condition 〈(∂v/∂x)2〉 = 2〈(∂u/∂x)2〉, to obtain

εiso = 15ν

〈(
∂u

∂x

)2
〉

, (2.11)

where Taylor’s hypothesis ∂/∂x ≡ U−1∂/∂t is commonly used to evaluate εiso.

Despite the widespread use of εiso due to its relative simplicity, it is only reliable

when the turbulence is approximately isotropic, e.g. centrelines of jets/wakes, and

far enough away from the wall of pipe/channel/boundary flow (Lefeuvre et al.,

2014).

2.1.2 Grid turbulence

Grid turbulence is the preferred method of generating free-stream turbulence in

the laboratory as the closest approximation to HIT available to the experimental-

ist. For grid-generated turbulence, in the Eulerian frame of reference, turbulence

decays along the streamwise direction. In the Lagrangian frame moving down-

stream with a parcel of fluid, turbulence decays slowly over time. As a result,

grid turbulence is not strictly homogeneous, but it decays at such a slow rate that

homogeneity can be assumed, and it is very nearly isotropic (Batchelor, 1953).

Historically, theoretical investigations of HIT have relied heavily on laboratory
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experiments of grid turbulence, however, with the advent of direct numerical

simulation, HIT can be generated numerically by simulating a box of periodic

turbulence (Goto and Vassilicos, 2015).

Additionally, there are a number of reasons to generate grid turbulence in

practical applications. Turbulent fluctuations can be combined with a bulk flow to

study aerodynamic and hydrodynamic properties of objects placed in a turbulent

free-stream. Grid turbulence can also be utilised in areas of engineering where

enhanced mixing is desired. For example, if a grid is to be placed within a device

to mix a combustible species, it is important to thoroughly distribute that species

throughout the geometry, instead of producing regions of high concentration. In

contrast, a wind tunnel experiment to investigate the aerodynamic properties

of a solid body might only require a basic control of the turbulent inflow, such

as setting an approximate turbulence intensity, which may be defined in the

streamwise and crossflow directions by

I1 =
urms

U∞
, I2 =

vrms

U∞
, I3 =

wrms

U∞
, (2.12)

where urms =
√
〈u2〉, vrms =

√
〈v2〉, wrms =

√
〈w2〉 are, respectively, the root-

mean-square (r.m.s.) velocity fluctuations in the x, y, and z directions. Alterna-

tively, turbulence intensity can also be defined using all 3 components of fluctu-

ating velocity

I =

√
1

3
(I2

1 + I2
2 + I2

3 ) . (2.13)

Numerous grid geometries have been designed and tested in numerical and

experimental work. The grid can be active, i.e. moving in the laboratory frame

and responding to the flow dynamics (Hideharu, 1991; Mydlarski and Warhaft,

1998; Cekli and van de Water, 2010), or passive and fixed in position. Only

passive grids are considered in this thesis. The majority of studies have used a

regular grid, constructed by forming a lattice of bars with constant diameter and

equal spacing. When a uniform stream of fluid hits the grid, jets emerge through

the gaps, instabilities in the shear layers grow, and turbulence is produced (see

Figure 2.2).
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Figure 2.2: Visualisation of flow past an array of cylinders from Van Dyke (1982).
Jets emerging through grid gaps interact and break down as they travel down-
stream. Flow is from left to right.

Regular grids have been extensively researched due to their simple construc-

tion, and advancements in turbulence theory have been developed alongside grid

turbulence experiments. Early work sought to understand turbulent fluctuations

(Taylor, 1922; Simmons and Salter, 1934), rigorously define isotropy (Taylor,

1935), and also describe homogeneity (Batchelor and Townsend, 1948; Batchelor,

1953). This led to further experiments focussed solely on grid turbulence. Mo-

hamed and Larue (1990) split the flow field into three regions corresponding to

the downstream position from the grid. Near grid there is a production of tur-

bulent kinetic energy and the flow is grid geometry dependent, inhomogeneous,

and anisotropic. The flow develops further downstream into Saffman turbulence

(Saffman, 1967). Viscosity acts directly on the large-scale motions in the final

decay region. Skrbek and Stalp (2000) developed a model to describe the final

decay of turbulence, and influence of intermittency on the energy decay, applying

findings to a number of grid turbulence experiments.

In defining the concept of isotropy from experiments of grid-generated turbu-

lence, Taylor (1935) reasoned on ad-hoc grounding that dissipation scales by

ε = Cε
U3

L
, (2.14)

where Cε is the Kolmogorov equilibrium constant, and U , L are characteristic
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turbulent velocity and length scales, respectively. The form of (2.14) is similar

to (2.2), but with some change of notation. A characteristic time scale of the

turbulence can be defined from T = L/U , from which (2.14) can be interpreted

as the rate of change of energy from the large scale turbulent motions. In the

case of grid turbulence, large scale structures are generated near grid in the

production region, which then break up into progressively smaller scales as they

travel downstream. Choice of characteristic turbulent velocity and length scales

vary between authors. Well established choices for U and L are generated from the

streamwise component of velocity (Batchelor, 1953; Sreenivasan, 1984; Antonia

and Pearson, 2000; Vassilicos, 2015)

U =

√
3

2
urms , (2.15)

L = L11 , (2.16)

where L11 is the longitudinal integral length scale, obtained by integrating the

autocovariance function R(s) = 〈u(x)u(x+ s)〉

L11(x) =
1

〈u2(x)〉

∫ ∞
0

R(s) ds , (2.17)

where s is a separation distance in the streamwise direction x, and the integral

(2.17) is usually taken up to the first zero crossing of the integrand.

Another important length scale in the study of grid turbulence is the Taylor

microscale λ, which lies between the integral length scale and the Kolmogorov

microscale. The Taylor microscale is defined by

λ2 =
〈u2〉〈

(∂u/∂x)2〉 . (2.18)

A local Reynolds number can be defined from the Taylor microscale by Reλ =

urmsλ/ν. Taylor (1935) considered Cε to be constant for geometrically similar

boundaries, and far enough away from the grid where the mean velocity becomes

uniform. Experimental evidence for constant Cε in the initial period of decay

followed in Batchelor (1953), who compiled data from numerous biplane grid
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turbulence experiments. This was further strengthened by Sreenivasan (1984),

who also collected biplane grid data and plotted the relationship between Cε and

Reλ, here reproduced in Figure 2.3. It was concluded that Cε becomes independent

of Reλ for Reλ & 50, and asymptotes towards a constant value which depends on

the grid geometry. The assumption that Cε is constant was referred to as “one

of the cornerstone assumptions in turbulence theory” by Tennekes and Lumley

(1972). The implications of constant Cε are discussed in further detail in Section 2

of Vassilicos (2015)- “The Richardson-Kolmogorov Cascade”.

Cε

3.0

2.0

1.0

5 10 50 100 500Reλ

Figure 2.3: Cε as a function of Reλ from a range of biplane grid experiments. Plot
reproduced from Table I of Sreenivasan (1984).

With a comprehensive understanding of regular grid turbulence, researchers

turned to variations of the classic biplane grid by constructing grids with multiple

bar diameters and mesh spacings. Such grids are referred to as multiscale, which

is a general description encompassing a number of geometries. Grids can also

be constructed from fractal patterns. Fractal grids are constructed by repeating

a chosen shape on progressively smaller scales. Four multiscale grids from wind

tunnel experiments are displayed in Figure 2.4. Fractal shapes are ubiquitous in

nature, for example: tree canopies, coral reefs, coastal lines, and the respiratory

system are all fractal geometries which have some interaction with fluid flow.

Alongside a need to understand the flow past fractal shapes for environmental
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fluid dynamics, Laizet and Vassilicos (2009) highlighted potential use throughout

engineering, including: improved performance of inline mixers, heat exchangers,

fluid injectors, pollutant dispersal/ventilation, and optimisation of combustion

engines. Greater control of grid turbulence through multiscale/fractal geometries

opens up the possibility of bespoke turbulence generation (Sakai and Vassilicos,

2016), which extends beyond grids, e.g. to combustions systems (Hampp and

Lindstedt, 2016), and fractal orifices in pipes (Nicolleau, 2016). However, fractal

grid-generated turbulence is yet to be adopted to the study of flow past a circular

cylinder

(a) Multiscale grid of Krogstad and
Davidson (2011).

(b) Square-fractal grid of Hurst and Vas-
silicos (2007).

(c) Fractal grid of Hearst and Lavoie
(2014).

(d) I-fractal grid of Hurst and Vassilicos
(2007).

Figure 2.4: Multiscale and fractal grid designs from wind tunnel experiments.

Alongside the motivation for generating fractal grid turbulence for environ-

mental and engineering flows, fractal grid turbulence initially received consider-

able attention due to the non-classical turbulence decay behaviour observed in
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wind tunnel experiments, pioneered by research conducted at Imperial College

London, UK: Hurst and Vassilicos (2007); Seoud and Vassilicos (2007). Experi-

mental findings confirmed the existence of a region close to the grid where the

equilibrium scaling (2.14) is violated, such that Cε varies like the inverse of a

local Reynolds number

Cε ∝
√

ReI
Reλ

, (2.19)

where ReI is an inlet/global Reynolds number which may be defined using the

mesh spacing, for example.

Subsequent experiments in wind tunnels and water flumes have confirmed the

existence of non-constant Cε in regions of well developed turbulence, conditions

for which were set out in Laizet et al. (2013): Kolmogorov’s −5/3 law is observed

for at least one decade of wavenumbers, and the probability density function

of streamwise velocity fluctuations is approximately Gaussian. Non-constant Cε

is not only confined to grid turbulence (Mazellier and Vassilicos, 2010; Valente

and Vassilicos, 2011; Gomes-Fernandes et al., 2012; Valente and Vassilicos, 2012;

Discetti et al., 2013; Nagata et al., 2013; Hearst and Lavoie, 2014; Isaza et al.,

2014; Nagata et al., 2017), but also: boundary layers (Nedić et al., 2017); planar

jets (Breda and Buxton, 2018); periodic box turbulence (Goto and Vassilicos,

2015); axisymmetric wakes (Dairay et al., 2015); and the square-cylinder wake

(Alves Portela et al., 2018). To the author’s knowledge, non-constant Cε has not

been detected or investigated in the wake of a circular cylinder.

Mazellier and Vassilicos (2010) describe non-constant Cε as a result of “self-

preserving single-length scale type of decaying homogeneous turbulence”, where

the ratio of the integral length scale L11 to the Taylor microscale λ remains con-

stant in regions of decreasing Reλ. In fact, this special case of decaying turbulence

was predicted on entirely theoretical grounds by George (1992), who solved the

energy spectra equation for a fixed length scale. However, the work of George

(1992) was dismissed because there was no experimental evidence of non-classical

decay behaviour at the time.

George and Wang (2009) provide explanation towards why multiscale and

fractal grids produce different turbulence behaviour. For a given range of length

scales, equilibrium requires a constant flux of turbulent kinetic energy across all
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scales. If the net flux of energy is balanced, the energy spectra becomes steady.

However, if this balance is disturbed, then non-equilibrium turbulence may be

produced. Unlike the regular grid, which is constructed with only one bar diam-

eter and equal spacing, multiscale and fractal grids add energy at multiple scales

of motion. This alters the flux of energy from low to high wavenumbers, and the

relative amount of energy at each wavenumber remains constant during decay.

This is in contrast to the process depicted in Figure 2.1, because the Richardson-

Kolmogorov cascade does not include details of hierarchical flow structures or

cascade dynamics (Goto et al., 2017). Non-classical dissipation has since been

observed in regular and multiscale grids (Valente and Vassilicos, 2012), however

this behaviour was first detected in fractal grid experiments because fractal tur-

bulence produces an elongated non-equilibrium range.

To understand how previous grid turbulence experiments failed to isolate the

behaviour of Cε, it is important to note the majority of experiments sought to

study HIT, i.e. in the final period of decay where classical decay is found. The

highly anisotropic and inhomogeneous flow near grid was of no interest to re-

searchers. Additionally, the chosen measurement instrumentation also plays a

role. A preferred method of experimentalists in the study of grid turbulence is

hot-wire anemometry (HWA). A wire is placed in the flow field and tempera-

ture changes in time are related to flow speed. HWA is intrusive and unsuitable

for the recirculating flow present near grid. Another drawback of HWA measure-

ments is the difficulty found when probing regions of high turbulence. Since HWA

measurements are fixed in space, researchers rely on Taylor’s frozen turbulence

hypothesis, which assumes that advection is dominated by the bulk flow and not

turbulent motions. This is not possible for regions in the flow where turbulent

intensity is large I & 15% (Valente and Vassilicos, 2014), i.e. in the near grid

region where the non-equilibrium range typically exists.
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2.2 Flow past a circular cylinder

2.2.1 Vortex shedding

A region of disturbed flow is formed as a fluid moves relative to a bluff body,

causing recirculation and formation of a wake. Bluff body flows are common in

engineering and environmental applications. Simple structures such as circular

cylinders, flat plates, and cubes, are basic components of larger structures in the

fields of civil, hydraulic, mechanical, offshore, and wind engineering (Zdravkovich,

1997). Alongside the many applications of the flow past a circular cylinder, it is

also an ideal test case for assessing the performance of experimental and numeri-

cal techniques due to the simple geometrical set-up and complexity of generated

flow field. A number of reviews have documented this flow: Norberg (1987); Nie-

mann and Hölscher (1990); Beaudan and Moin (1994); Williamson (1996). The

coordinate system used throughout this thesis for the circular cylinder flow is

defined in Figure 2.5.

x̂

ŷ

U∞

U

Figure 2.5: Schematic of the circular cylinder wake and coordinate axis. Stream-
wise (x̂) and normal direction (ŷ) marked for reference, with axial direction (ẑ)
out of the page. A dot is placed at the coordinate system origin, which corresponds
to the cylinder centre. Flow is from left to right.

The very first scientific investigation into vortex shedding is attributed to

Vincenc Strouhal. In 1878, Strouhal conducted an experiment by moving wires

through air using a hand-driven whirler. Strouhal observed that the frequency of
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the Aeolian tone was proportional to U/D, where U was the relative air velocity,

and D the wire diameter. This led to the introduction of an important nondi-

mensional parameter in the study of circular cylinder flow- the Strouhal number

St = fs ·D/U , where fs is the shedding frequency. The Strouhal number is a rep-

resentation of the eddy shedding frequency. Theodore von Kármán carried out

experiments to study the wake by towing a circular cylinder through a solution

of sugar and water. Pioneering work from von Kármán contributed to under-

standing the formation and stability of the vortex street configuration. However,

although often attributed to von Kármán, vortex streets were first sketched by

Henri Bénard as he observed the formation of surface dimples as bluff bodies

move through water (Bénard, 1908a,b).

Figure 2.6 presents an example of periodic shedding in a large scale environ-

mental flow- a vortex street forming in the clouds above the Alejandro Selkirk

Island, off the Chilean coast. This image was captured from the Landsat 7 satel-

lite, on September 15, 1999. The island has a diameter of 1.5 km and the vortices

advect hundreds of kilometres downstream.

Figure 2.6: Satellite image of vortex shedding over the Alejandro Selkirk Island
(Cahalan, 1999). To give an idea of scale- the island has a diameter of 1.5 km.

Another important nondimensional parameter, which is closely linked to the

Strouhal number for the flow past a circular cylinder, is the Reynolds number Re.

For the flow past a circular cylinder, the Reynolds number based on the cylinder

diameter and inflow speed is given by ReD = U∞D/ν. The Strouhal number

increases monotonically in the Reynolds number range 45 < ReD < 1000, after

which it plateaus to St ≈ 0.21 at approximately ReD = 103 (Roshko, 1952).
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Figure 2.7 displays an example of vortex shedding from a circular cylinder at

ReD = 2000. The cylinder surface can be defined using cylindrical coordinates

(r, θ), where r = D/2 is the radial distance, and θ is the angle swept from the

cylinder front (θ = 0◦) to a point on the surface. An angle of θ = 180◦ corresponds

to the base. A stagnation point of zero flow velocity is found at the front and base

of the cylinder. Flow separation occurs at an angle of θs, which is Reynolds number

dependent, such that θs = 78.8+505Re
−1/2
D , for the range 270 . ReD . 105 (Jiang,

2020). For a Reynolds number of ReD = 2000, this corresponds to θs = 90.1◦,

which looks reasonable from Figure 2.7.

θs

Figure 2.7: Visualisation of the circular cylinder wake flow at ReD = 2000, in-
cluding the definition of the separation point θs. Adapted from Van Dyke (1982).
Flow is from left to right.

2.2.2 Wake structures and dissipation

Coherent structures play an important role in many turbulent flows such as bluff

body wakes due to their influence on heat, mass, and momentum transport. Nu-

merous definitions of a coherent structure exist, but here the definition of Hussain

(1986) is used: “A coherent structure is a connected turbulent fluid mass with

instantaneously phase-correlated vorticity over its spatial extent”. This definition

allows decomposition of turbulent fields into coherent and incoherent parts.

Despite the relative simplicity of the circular cylinder geometry, a complex

wake is generated due to the interaction of three shear layer transitions in the

same problem: the boundary layer, a separating free shear layer, and in the near
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wake (Zdravkovich, 1990; Williamson, 1996). Here the convention of Ma et al.

(2000) is used: x/D < 3 is the very near wake, where dynamics of the shear layer

dominate, and 3 < x/D < 10 is the near wake.

At low Reynolds numbers in the viscous limit ReD � 1, the flow around

a circular cylinder resembles potential flow (Zdravkovich, 1997). Separation oc-

curs at approximately ReD = 5, due to an increase in static pressure causing

the boundary layer to slow, triggering separation (Taneda, 1956). At approxi-

mately ReD = 49, the wake develops from a symmetrical fixed double separation

bubble into an unsteady shedding regime. Increasing the Reynolds number fur-

ther, the flow becomes asymmetric and unsteady. The flow remains laminar and

von Kármán street vortices are created from shear layer instabilities, which are

primarily two-dimensional (Singh and Mittal, 2005).

At ReD ≈ 190, the flow becomes three-dimensional, producing two disconti-

nuities in the Strouhal-Reynolds number relation. From ReD = 190 to 260, vortex

loops and streamwise vortices are generated, identified by Williamson (1988) as

mode A and B, respectively. Vortex loops with a wavelength of approximately

3D are formed as laminar primary vortices deform. Mode B fine-scale stream-

wise vortices have a wavelength of roughly 1D. Streamwise vortices greatly alter

the dynamics of the von Kármán vortices, but only on the upstream side (Bays-

Muchmore and Ahmed, 1993). The primary von Kármán rollers are deformed,

and there is a production of axial flow. Mode A and B structures were first iden-

tified numerically in the direct numerical simulation (DNS) of Thompson et al.

(1994). Figure 2.8 is reproduced from the study of Williamson (1988), which

forms some of the earliest work on the three-dimensionality of the wake. Two

sets of structures are easily identified- mode A orientated vertically with wave-

length ∼ πD, and mode B orientated in the streamwise direction with wavelength

∼ 1D. Figure 2.9 presents a schematic of the interaction between vortex loops and

streamwise ribs, which are observed in the dye visualisation of Williamson (1988).

Up until the review paper of Williamson (1996), the circular cylinder wake was

mostly described as a two-dimensional process. Williamson (1996) detailed some

of the complexities found in the wake, including: oblique, parallel, and cellular

shedding; vortex dislocations; phase shocks and expansions; and vortex loops.
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(a) Vortex loops (ReD ≈ 180). (b) Streamwise ribs (ReD ≈ 285).

Figure 2.8: Visualisation of vortex structures from dye washed off the circular
cylinder surface. Flow is from left to right, and the cylinder is located along the
left edge of each image. Adapted from Williamson (1988).

Figure 2.9: Interaction between vortex loops/rollers and streamwise vortices.
Adapted from Hussain and Hayakawa (1987).

Beyond Re ≈ 250, modelling the problem as two-dimensional leads to inaccu-

rate calculated values of drag and lift coefficients. Two-dimensional simulations

have been known to over-predict the fluid forces on the cylinder, e.g. see Beaudan

and Moin (1994). A three-dimensional dependency on lift and drag were found in

the earlier work of Braza et al. (1986). At ReD ≈ 300, the wake undergoes a fast

transition from laminar to turbulent, and enters the subcritical regime (Norberg,

2003). Transition to turbulence occurs in the separated free shear layers, but flow

in the direct vicinity of the cylinder remains laminar (Cardell, 1993). Norberg

(2003) split the subcritical regime into lower and upper portions at a cut-off of

ReD = 5000. A notable difference between the lower and upper subcritical regimes
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ReD Comment

∼ 90 Eddies break off, form von Kármán street vortices
(Zdravkovich, 1997).

140-500 Knots and fingers appear as footprints of secondary vortices
(Gerrard, 1978).

185 Earliest 3D transition to mode A (Williamson and Roshko, 1988).

188.5 Floquet analysis predicts mode A structures
(Barkley and Henderson, 1996).

260 Shedding enters mode B (Williamson, 1988).

300 Beginning of lower subcritical regime (Norberg, 2003).

1200 Shear layer becomes unstable (Prasad and Williamson, 1997a).

5000 Subcritical regime transitions to upper part
(Prasad and Williamson, 1997b).

2× 105 End of subcritical regime, boundary layer becomes turbulent
(Norberg, 2003).

3.5× 106 Boundary layer turbulent before separation
(Kravchenko and Moin, 2000).

Table 2.1: Reynolds number regimes of laminar flow past a circular cylinder.

is the existence of vortex dislocations (Norberg, 1987; Prasad and Williamson,

1997a). The lower critical transition range (ReD = 2× 105 to 5× 105), is associ-

ated with a large drop in the drag coefficient from Cd = 1.2 to 0.3, known as the

drag crisis (Roshko, 1952). In the upper critical transition range (ReD = 5× 105

to 3.5× 106), the drag coefficient increases from 0.3 to 0.7, and remains constant

up to approximately ReD = 1 × 107 (Beaudan and Moin, 1994). The cylinder

flow enters the post-critical regime at a Reynolds number of ReD = 3.5× 106, at

which point the boundary layer becomes turbulent before separation. A summary

of flow regimes for a range of Reynolds numbers is presented in Table 2.1.
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Figure 2.10 presents a topological model of the circular cylinder wake, pro-

posed by Hussain and Hayakawa (1987) from their wind tunnel experiment.

This model was constructed from vorticity data at a fixed Reynolds number of

ReD = 13000 by an array of 8 X-wire probes positioned at x/D = 10, 20, 30, 40.

This picture presents a slice taken through 5 spanwise rollers of the vortex street.

In line with the definition of Hussain (1986), rollers are coherent structures with

phase-correlated vorticity over some spatial extent. The centre of each roller has

been marked in Figure 2.10, and surrounded by a closed circle to mark its bound-

ary. Successive vortices pull fluid into the wake and meet with engulfed free-

stream flow at saddle points, creating regions of intense strain and turbulence

production. The saddle points are dynamically the most significant point of the

flow. Turbulence produced around the saddle points interacts with rollers, causing

strong mixing. Although dissipation was not calculated in their study, Hussain

and Hayakawa (1987) proposed that it is concentrated in these regions of strong

turbulent mixing.

Key: Roller centre

Saddle point

Mixing

Turbulence production

Engulfed free-stream

Flow of produced turbulence

x̂

Figure 2.10: Topological features of the circular cylinder wake, adapted from the
original model of Hussain and Hayakawa (1987) with the amendments of Chen
et al. (2018).
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Chen et al. (2018) sought to amend the model of Hussain and Hayakawa

(1987) by including information on dissipation in the vortex street. Measurements

were taken at a fixed Reynolds number of ReD = 2500 at downstream positions

x/D = 10, 20, 40. A surrogate of the dissipation rate, derived from an assumption

of homogeneity (Lefeuvre et al., 2014), is calculated from 10 of the 12 terms of ε

in (2.6). Phase averaged data suggested that energy dissipation is concentrated

in the primary vortex rollers, and not in the regions of strong turbulent mixing

as proposed by Hussain and Hayakawa (1987). To the author’s knowledge, the

experimental data of Chen et al. (2018), where 10 of the 12 dissipation terms

were directly measured, is the most complete study of dissipation in the circu-

lar cylinder wake. However, a more complete picture of the interaction between

coherent vortices in the near wake region and the dissipation rate is required to

gain a better understanding of the circular cylinder wake.
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2.2.3 Measurement challenges

To demonstrate the difficulty of controlling external variables in experiments and

numerical simulations, two simple measures of the circular cylinder wake are

considered: the recirculation length Lr, and the Strouhal number St. The recircu-

lation length is taken to be the distance from the cylinder base to the sign change

where 〈U1〉 first becomes positive. The Strouhal frequency can be deduced from

pressure measurements on the cylinder surface, or from periodic velocity signals

in the wake. Data is collected from across a range of experiments and simula-

tions at a moderate Reynolds number of ReD = 3900. This Reynolds number has

been chosen because it is convenient- there are numerous studies carried out at

this Reynolds number, and it is attainable in experiments and simulations. It is

also of interest to the wider engineering community, for example, Demartino and

Ricciardelli (2017) emphasised its relevance to the lower Reynolds number range

experienced in the flow around cables, chimneys, and cooling towers. Finally,

structures in the circular cylinder wake are unchanged for a Reynolds number

below the critical value, i.e. for ReD < 2.5× 105 (Zdravkovich, 1997), so findings

at this Reynolds number can be extrapolated up to higher Reynolds numbers.

In Figure 2.11, shedding frequency is plotted against recirculation length for

various experimental and numerical studies of the flow past a circular cylinder

at ReD = 3900. The data are also presented in Table 2.2, with supplementary

information on methodology used for each study. The shape of each marker corre-

sponds to the method used to collect each measurement, i.e. experiment, DNS, or

LES. Data is further segregated by the aspect ratio of the cylinder. Solid markers

correspond to aspect ratios exceeding Lz/D = π, where Lz is the cylinder length.

This is an important distinction, because Lz/D = π is commonly used in numeri-

cal simulations, yet might not appropriately represent an infinite circular cylinder

(Ma et al., 2000). If the aspect ratio is Lz/D ≤ π, the marker is left hollow. Mean

values have been calculated for each method and are represented by grey markers.

It can be seen that, despite scatter in the data, mean values obtained from each

method are reasonably grouped about Lr/D = 1.35, and St = 0.213.

Figure 2.11 is inspected for trends in the data due to cylinder aspect ratio, level

of turbulence modelling approximations, and free-stream flow conditions. Firstly,
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Figure 2.11: Shedding frequency versus recirculation length for experiments and
simulations of the flow past a circular cylinder at Reynolds number 3900. Raw
data is presented in Table 2.2. Hollow markers have been used where the nondi-
mensional cylinder length is Lz/D ≤ π, and solid markers otherwise. Grey mark-
ers denote mean values for each method.

there appears to be no link between aspect ratio and recirculation length, because

there is no observable grouping between solid and hollow markers. Secondly, dif-

ferent turbulence models and mesh resolutions have been employed across the

LES studies, therefore some scatter would be expected in those results. However,

there is also considerable scatter in the DNS data, which is surprising because

no modelling is employed, and all scales of turbulence are resolved down to the

Kolmogorov scales (Pope, 2001). Correctly predicting Lr and St is not only impor-

tant for model validation, but there are also physical consequences. For example,

the Strouhal number is intimately linked to the vortex shedding frequency fs,

which plays an important role in vortex-induced vibration, mixing, lift and drag

measurements, and acoustic noise (Williamson and Govardhan, 2004, 2008). This

has led researchers to investigate methods to manipulate and control the circular

cylinder wake, e.g. see Choi et al. (2008). The operation of energy harvesting

devices also depends on the recirculation region, which is a factor in how quickly
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the wake will recover from the velocity deficit (Akaydın et al., 2010).

One plausible explanation for the scatter in Lr is the inflow conditions. For

example, in their PIV experiment at ReD = 3900, Lourenco and Shih (1993) re-

ported a recirculation length of Lr/D = 1.18, however, this was later documented

in Kravchenko and Moin (2000) to be resulting from “inflow disturbances”. Par-

naudeau et al. (2008) reported a recirculation length of Lr/D = 1.51 from their

PIV study, which closely agrees with the DNS (case II) of Ma et al. (2000) who

found Lr/D = 1.59, and the PIV of Dong et al. (2006) where Lr/D = 1.47. Al-

though it is possible to assess the accuracy of an experimental or numerical study

on the flow past a circular cylinder by using all the compiled data to obtain a

sensible range for St or Lr, it is more important to understand the causes of such

a scatter in the data.
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Reference Type St Lr/D Lz/D

Cardell (1993) HWA 0.215 1.33 20

Lourenco and Shih (1993) PIV 0.220 1.19 21

Mittal and Moin (1997) LES 0.220 1.59 π

Kravchenko and Moin (2000) LES 0.210 1.37 π

Ma et al. (2000) DNS (Case I) 0.203 1.12 2π

DNS (Case II) 0.219 1.59 π

DNS (Case III) 0.206 1.00 1.5π

LES (Case IV) 0.213 1.28 1.5π

LES (Case V) 0.208 1.76 1.5π

Franke and Frank (2002) LES (Nc=42) 0.209 1.64 π

Tremblay (2002) DNS 0.220 1.30 π

LES 0.215 1.02 π

Dong et al. (2006) DNS 0.208 1.18 1.5π

Park et al. (2006) LES (DVME) 0.212 1.36 π

Alkishriwi et al. (2006) LES 0.217 1.31 1

Wissink and Rodi (2008) DNS 0.216 1.58 8

Parnaudeau et al. (2008) PIV 0.208 1.51 20

LES 0.208 1.56 π

Ouvrard et al. (2010) LES 0.223 1.56 π

Meyer et al. (2010) LES (Cart. grid) 0.210 1.38 4

LES (Curv. grid) 0.215 1.18 4

Lysenko et al. (2012) LES (TKE) 0.209 1.67 π

Prsic et al. (2014) LES 0.215 1.27 4

Table 2.2: Experiments and simulations on the flow past a circular cylinder at
ReD = 3900. Data is plotted in Figure 2.11. Inflow turbulence was deemed to be
negligible in these studies.
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2.2.4 The turbulent inflow case

So far only the ideal test case for the flow past a circular cylinder has been

discussed- an infinitely long cylinder placed in a laminar free-stream flow. How-

ever, wake dynamics are also sensitive to: end conditions (Prasad and Williamson,

1997a); surface roughness (Shih et al., 1993); cross-sectional irregularities (De-

martino and Ricciardelli, 2017); cylinder vibration (Chyu and Rockwell, 1996);

aspect ratio (Norberg, 1994); and free-stream turbulence (Williamson, 1996). The

two most common disturbances in practical applications are free-stream turbu-

lence, and surface roughness (Zdravkovich, 1990). Although the circular cylinder

wake is sensitive to inflow conditions, and free-stream turbulence is commonplace

in practical applications, the laminar inflow condition is more widely investigated.

For example: in the seminal vortex dynamics review paper of Williamson (1996),

only low levels of inflow turbulence are analysed in depth. The cut-off for a smooth

inflow was defined by a turbulence intensity of I < 0.1%, and flow regimes were

classified only by the Reynolds number. In laminar free-stream flow, the Reynolds

number is the defining flow parameter. However, above a certain threshold, pa-

rameters based on free-stream turbulence become governing parameters of the

flow field (Zdravkovich, 1990). These can be, but are not limited to: (i) turbulence

intensity I; (ii) components of turbulence intensity in each direction I1, I2, I3; (iii)

longitudinal and lateral integral length scales L11, L22; (iv) the Taylor parameter

T = I1(D/L11)0.2. Free-stream turbulence increases entrainment in the surface

shear layers, which can influence vortex shedding, and aerodynamic properties

such as drag (Bell, 1983).

Prior to Bloor (1964) and Gerrard (1965), little work had been carried out

to characterise the inflow conditions. However, earlier work identified how even

low-intensity free-stream turbulence alters the Reynolds number regimes, trig-

gering the critical transition at Reynolds numbers below that for a laminar in-

flow (Fage and Warsap, 1929). This can be observed by a sharp decrease of

the drag coefficient (Goldstein, 1965). In the subcritical Reynolds number range

ReD = 300 to 2×105, separation at the cylinder is laminar, and turbulent vortices

are formed downstream in the wake (Bearman and Morel, 1983). Bloor (1964)

studied the relationship between inflow turbulence and the Reynolds number at
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which transition occurs in the boundary layer. Two turbulence intensities were

tested: I = 0.03% and 1%. It was found that transition to a three-dimensional

wake occurred at a lower Reynolds number for the higher turbulence intensity

tested.

Gerrard (1965) found that in the sub-critical regime, inflow disturbances have

a profound affect on fluid dynamical properties, such as: drag coefficient Cd, lift

coefficient Cl, base pressure coefficient Cpb, and surface pressure. The sub-critical

regime was subsequently referred to as the “disturbance-sensitive Reynolds num-

ber range”. For a laminar inflow, a fall in the drag coefficient occurs at some

critical Reynolds number. When a moderate level of turbulence is introduced

into the free-stream (I < 5%), a drag minimum is observed at a lower critical

Reynolds number (Bell, 1979). Surry (1972) investigated the unsteady pressure

distribution around the circular cylinder for a range of turbulence intensities

I1 = 2.5% to 14.7% in the subcritical regime for a Reynolds number range of

33800 ≤ ReD ≤ 44200. It was observed that the vortex shedding phenomenon is

not disrupted by intense turbulence intensities, but there was a broadening of the

Strouhal peak.

Batham (1973) took pressure measurements of the circular cylinder in a tur-

bulent free-stream with Reynolds numbers 1.1 × 105 and 2.35 × 105. A complex

pressure field was observed on the circular cylinder surface, independent of the

Reynolds numbers tested. High free-stream turbulence intensities of I > 10%

were found to suppress vortex shedding, attributed to the presence of turbulent

bursts, causing small axial correlations and three-dimensionality at separation.

In a similar experimental set-up to Batham (1973), Bruun and Davies (1975) also

found a reduction in the spanwise correlation of pressure, indicating a breakdown

of vortex shedding coherence. In their wind tunnel experiment, Symes and Fink

(1978) found free-stream turbulence levels of 5% had a significant influence on

the cylinder wake- increasing the rate of turbulent diffusion. Kiya et al. (1982)

investigated the relationship between T , ReD, and Cd for inflow with turbulence

intensity I1 ranging from 1.4% to 18.5%. The drag coefficient collapsed into a

narrow region when plotted against the parameter Re1.34
D T . However, the authors

were sceptical on the relevance of parameter Re1.34
D T for the turbulent flow past

a circular cylinder.
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Cheung and Melbourne (1980) conducted wind tunnel tests of circular cylin-

ders with two cylinder diameters under different turbulence intensities and ob-

tained the variation curve of aerodynamic coefficients with Reynolds numbers

ReD = 7×104 to 6×105, and turbulence intensities I1 = 0.4% to 9.1%. They found

that the critical Reynolds number at which transition occurs is less well defined

when the free-stream flow is turbulent, compared to the laminar case. Blackburn

and Melbourne (1996) investigated the time-varying lift coefficient of the circular

cylinder for laminar and turbulent free-stream flow at Reynolds numbers in the

range ReD = 1×105 to 5×105. The highest levels of turbulence, for I1 = 9.6% to

18% and L11/D = 0.53, provided the first evidence from wind tunnel experiments

that high free-stream turbulence promotes early transition to supercritical flow.

In the shear layers, free-stream turbulence lowers the Reynolds number at which

instabilities arise to ReD = 1200 (Prasad and Williamson, 1997a).

Most of the advances into understanding the wake of a circular cylinder in a

free-stream turbulent flow have been developed through experiments, but some

researchers have also investigated this flow by theoretical or computational ap-

proaches. Eames et al. (2011) developed a theoretical model to predict wake

spreading in the presence of intense homogeneous and isotropic free-stream tur-

bulence. Initially, a region of ballistic spreading is found, where the velocity deficit

Um/U∞ decays like 1/x. This is followed by diffusive spreading, where Um/U∞

decays like 1/
√
x. Their model was complemented by experimental results from

a recirculating water channel using acoustic Doppler velocimetry (ADV) mea-

surements. Free-stream turbulence was measured at L11/D ≈ 6.8 and I = 18%.

Reasonable agreement was found between the model and experimental results,

confirming a rapid spreading of the wake in intense free-stream turbulence.

Little attention has been placed on the simulation of turbulent flow past a cir-

cular cylinder. Instead, researchers use a coarse computational mesh at the inlet,

which would dampen any turbulent fluctuations introduced into the free-stream

(Breuer, 1998a; Lysenko et al., 2012). Aarnes et al. (2018) simulated turbulent

flow past a circular cylinder by generating homogeneous isotropic turbulence in a

box and advecting this past a circular cylinder. Transition to three-dimensionality

was the focus, so the Reynolds number was kept relatively low in the range

34



120 ≤ ReD ≤ 350. Free-stream turbulence generation was tuned to produce in-

tegral length scales of L11/D = 0.5, 0.75, 1.0 and turbulence intensities in the

range I = 3.6% to 13.5%. Free-stream turbulence increased instabilities in the

mode A structures, which caused an enhanced interaction between mode A and

B structures.
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2.3 Concluding remarks

In this introductory chapter, two fundamental problems in the subject of fluid

dynamics have been considered: grid-generated turbulence, and flow past a circu-

lar cylinder. These problems can be treated in isolation, and there is a wealth of

information on each subject which is continuously growing. However, here they

are studied in tandem to investigate the impact of turbulent flow past a circular

cylinder, and its influence on coherent structures and dissipation in the wake.

It has been necessary to introduce methods of calculating the dissipation term,

which takes different forms depending on the availability of the velocity gradient

tensor. Measurement of the VGT is particularly challenging in experiments, which

leads researchers to enforce isotropic assumptions, regardless of its suitability to

the particular flow field. As a result, despite the important role dissipation plays

in turbulent flow, its exact form is seldom reported.

Recent developments in the subject of multiscale/fractal grid-generated tur-

bulence have been discussed, with particular focus on the dissipation of freely de-

caying turbulence. There are numerous motivations for studying grid-generated

turbulence. Firstly, grid turbulence is the closest approximation to homogeneous

isotropic turbulence (HIT) available to the experimentalist. It can therefore be

generated to study the production and decay of turbulence, with fundamental

consequences for turbulence theory and modelling. For example, by forcing tur-

bulence at multiple scales, a non-classical form of dissipation has been produced

in wind tunnel experiments. Additionally, there is vast potential in industrial

fluid flow applications where it is desirable to fully control turbulence properties.

Finally, fractal shapes are ubiquitous in nature, and therefore it is important to

understand the turbulence produced by multiscale objects.

Despite advances in bespoke turbulence generation, the flow past a circular

cylinder is most often studied for the case of smooth inflow where turbulence

intensity is low (I < 0.1%). A number of studies have been undertaken in the

subcritical regime because it is an attainable Reynolds number in experiments

and simulations. A Reynolds number of 3900 is especially well documented. How-

ever, simple measures of the circular cylinder wake, such as shedding frequency

and recirculation length, have been shown to vary significantly between studies.
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This was highlighted in the current chapter, and potential reasons for the scatter-

ing of data were considered. It was concluded that inflow conditions are a major

factor to this, but a detailed assessment of the inflow turbulence is often over-

looked. It is therefore desirable to fully control upstream turbulence conditions

in order to study the influence of turbulence on the wake generated by a circular

cylinder. Coherent structures in the wake are reasonably well understood for the

case of a laminar inflow, and this has been reflected in a number of review papers.

However, there is some uncertainty regarding the spatial organisation of dissipa-

tion in relation to the primary rollers. More research into the interaction between

coherent structures and dissipation for the laminar inflow case is required, and a

natural extension of this work is to consider how this changes under a turbulent

inflow.

To summarise the current chapter and provide motivation for subsequent

work- advances in free-stream turbulence theory have been developed alongside

wind tunnel experiments of grid turbulence. In contrast, there is no consensus

on the optimal method to customise turbulence in simulations. However, it was

highlighted how the wake of a circular cylinder is sensitive to inflow conditions, es-

pecially turbulence characteristics. Coherent wake structures and turbulence dis-

sipation are key to this. The vast majority of studies undertaken on the turbulent

flow past a circular cylinder have been experiments focused on the aerodynamic

properties, such as surface measurements of pressure, lift, and drag. More inves-

tigation is required to understand the role of coherent structures and dissipation

in the wake of a circular cylinder placed in a turbulent flow.
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Chapter 3

Dissipation modelling in LES

Having introduced the turbulent flows which are of interest in this study, at-

tention turns to the modelling of such flows. Two major considerations of the

modelling are: (i) estimating turbulence decay, (ii) representing regions of large

separation. Large-eddy simulation (LES) is chosen as the best candidate for mod-

elling free-stream turbulent flow past a circular cylinder, and this chapter begins

with a description of the numerical procedure. Particular attention is placed on

the subgrid-scale modelling, which acts to represent the dissipative nature of the

smallest scales of motion. Model transport equations for subgrid-scale turbulent

kinetic energy and turbulence dissipation rate are introduced and discussed in

terms of freely decaying turbulence. In order to assess model performance, the

Taylor-Green vortex (TGV) problem is chosen as a challenging test case. The

TGV problem concerns the production and decay of vorticity in a triply-periodic

box. The overly-dissipative nature of the popular Smagorinsky model is demon-

strated and compared to a one-equation model. Implications of overly dissipative

subgrid-scale models are discussed with respect to grid turbulence. Suggestions

for a two-equation model which incorporates some of the recent findings from

grid turbulence experiments are discussed.
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3.1 Introduction

Advancements in computing and developments in turbulence modelling have led

to a growing confidence in computational fluid dynamics (CFD). However, due

to the wide range of length scales present in turbulent flows, a complete simu-

lation resolving all scales is computationally expensive (Pope, 2001). To remedy

this, computational fluid dynamicists utilise statistical properties of turbulence

to introduce some form of modelling. Turbulence models generally fall into three

categories, listed here in order of least computational to most computationally

expensive: (i) Reynolds-averaged Navier-Stokes (RANS), (ii) large-eddy simula-

tion (LES), (iii) direct numerical simulation (DNS). A trade-off exists between

computational expense and numerical accuracy, therefore before running a sim-

ulation, a researcher must decide what level of modelling is to be introduced.

For example, a DNS resolves all temporal and length scales down to the smallest

dissipative motions. Due to the large range of resolved scales, DNS studies are

generally more computationally expensive than RANS and LES, and the number

of operations grows as ∼ Re3 (Pope, 2001). Since all scales of motion are ex-

plicitly resolved, no turbulence modelling is enforced. However, DNS is currently

unrealistic for industrial flow problems due to the immense computational cost.

RANS modelling provides accessible results for industrial fluid flow problems

thanks to reduced computing costs. However, it is well documented that some

RANS turbulence models poorly represent flows with unsteady separation and

vortex shedding (Pope, 2001). The Spalart–Allmaras model (Spalart and All-

maras, 1992) is a one-equation model which is cost effective, and relatively easy

to implement. The SA model was developed for aerodynamic flows, and performs

well for wall-bounded, adverse pressure gradients. The k-ε model of Jones and

Launder (1972) and Launder and Sharma (1974) solves two transport equations-

one for the turbulent kinetic energy k, and another for the turbulence dissipation

ε. The k-ε model is widely adopted across engineering industry and is available

in most commercial CFD codes thanks to its reasonable accuracy and computa-

tional cost. The major drawbacks of the k-ε model are the difficulty in integrating

to the wall, and the tendency of the model to poorly represent areas of separa-

tion with large streamline curvature. The k-ε model performs best in flows with
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low streamline curvature, and small mean pressure gradients. The k-ω model is

often employed as an alternative to the k-ε model, due to the more accurate

representation of the boundary layer (Menter, 2009). However, the k-ω model

is sensitive to free-stream values of ω, which depend heavily on the arbitrarily

defined values of ε and ω at the inlet. The shear-stress transport model (SST)

combines the k-ω model near wall, and the k-ε model in the free-stream. The

SST model has attracted considerable attention from the engineering industry.

The model was originally developed by Menter (1993) as a method for simulat-

ing three-dimensional aerodynamic flows. Reynolds-stress models solve transport

equations for components of the Reynolds-stress tensor, and an additional quan-

tity, such as the dissipation ε. Therefore, no turbulence-viscosity assumption is

employed. Reynolds-stress models perform well for flows with significant stream-

line curvature and secondary flow.

LES has been steadily growing in popularity across engineering applications,

e.g. aerodynamics, noise prediction, and turbo-machinery (Sagaut, 2006). In a

large-eddy simulation, the governing equations of fluid flow are spatially filtered

by some cut-off length scale. Scales larger than the filter width ∆ are resolved, pro-

viding an evolution of the large-scale eddies. Scales smaller than the filter width

are mostly responsible for dissipation, and are parametrised using a subgrid-scale

(SGS) model. According to Davidson (2015), the purpose of the SGS model is to

“. . . mop up all the kinetic energy which cascades down from the large scales”.

The equations of LES were first formulated in the work of Smagorinsky (1963) as

an approach to modelling atmospheric flows. The Smagorinsky model forms the

basis of many subgrid-scale models to date, and was first used by Deardorff (1970)

on a three-dimensional turbulent channel flow. Implementation of the Smagorin-

sky model requires a characteristic velocity scale of the subgrid motions, which

can be calculated from the subgrid kinetic energy by assuming a balance between

subgrid-scale dissipation and energy production.

Figure 3.1 presents a simplified picture of the difference between scale resolu-

tion of an LES and DNS. In the LES picture, scales smaller than ∆ are accounted

for by the SGS model. In a DNS, all scales of turbulence are resolved down to η,

at which point energy is dissipated through heat. The purpose of LES is to obtain

a flow field solution which converges towards a direct numerical simulation, but
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without the required grid resolution. The mathematical operations responsible

for filtering are introduced in Section 3.2.

∆

η

Figure 3.1: Schematic of scale resolution for LES (left) and DNS (right). Blue
arrows represent resolved motions, red arrows represent modelled scales. An ex-
ample of the grid filter width ∆, and Kolmogorov scale η is included.

3.1.1 Numerical implementation

Numerical simulations are carried out in OpenFOAM v4.1 (Open source Field

Operation And Manipulation), an open-source software encompassing a range

of solvers and pre/post-processing utilities for the solution of partial differential

equations (Weller et al., 1998). A large collection of CFD solvers are available for

incompressible, compressible, multiphase, combustion, and heat transfer flows.

As a second-order finite volume method (FVM) code, OpenFOAM utilises the

same methods and principles found in other CFD software codes, such as the

commercial package Ansys Fluent. However, because OpenFOAM is open-source,

the source code is available to the user, which makes it more flexible and easier

to customise. This has led to increased interest from industry and academia. An

informal introduction to the history and operation of OpenFOAM can be found

in Chen et al. (2014), and a detailed description of the FVM is provided in Jasak

(1996). For problems of incompressible bluff body flow, Robertson et al. (2015)

found OpenFOAM and Fluent perform equally well, despite OpenFOAM being

more sensitive to mesh quality. OpenFOAM was also found to be scalable up to

192 processors, therefore large problems can be decomposed and ran in parallel.
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3.2 Filtering operation

The basis of LES is to filter governing equations of motion by some cut-off filter

width ∆, which splits the flow into large and small scale motions. The velocity field

U(x, t) is decomposed into a sum of two terms: a resolved component U(x, t),

and a subgrid-scale modelled component u′(x, t), such that

U (x, t) = U(x, t) + u′(x, t) . (3.1)

As noted by Pope (2001), (3.1) has a similar form to the Reynolds decomposi-

tion, however U is a random field, and the filtered residual is generally non-zero.

Small scale structures are assumed to be universal, however the filtered velocity

U represents the larger scales which are geometry defined. The filtering operation

is defined mathematically by a convolution (Leonard, 1975)

U(x, t) =

∫∫∫
V

G(r,x)U(x− r, t) dr , (3.2)

where G(r,x) is a chosen filter, and the integral is taken over the entire fluid

domain. The following normalisation condition is imposed on the filter∫∫∫
V

G(r,x) dr = 1 . (3.3)

Various choices for the filter function are available, the most common of which

are: box or top-hat, Gaussian, and spectral or sharp cut-off filter. A comprehen-

sive guide to filter functions is provided in Sagaut (2006). The top-hat filter is

often implemented in finite volume discretisation codes (De Villiers, 2006), and

is defined as follows

G(r,x) =

1/∆3 for |x− r| ≤ ∆/2 ,

0 otherwise .
(3.4)

A common choice for the filter width ∆ is given by the geometric mean of the
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computational cell sizes (Deardorff, 1970)

∆ = (∆x∆y∆z)1/3 , (3.5)

where ∆x, ∆y, ∆z are the cell sizes in the x, y, z directions, respectively. This

simple choice of filter width returns a filtered velocity field equal to the cell average

of the velocity field. The filtering operation defined in (3.2) can be applied to the

continuity equation, as follows

∂Ui
∂xi

=
∂U i

∂xi
−
∫
Ui(x− r, t)

∂G(r,x)

∂xi
dr , (3.6)

= 0 , (3.7)

which, for a homogeneous filter function G(r,x), simplifies to

∂Ui
∂xi

=
∂U i

∂xi
= 0 , (3.8)

i.e. the filtered velocity field is divergence free. Another consequence of (3.8) is

that filtering and spatial derivative operators commute. The same is also true for

filtering and time derivatives. However, when a mesh is refined near a boundary,

e.g. for a body-fitted grid, a filter width proportional to the grid spacing leads

to an non-uniform filter. In this case, filtering and spatial derivatives no longer

commute. For simulations ran on particularly distorted meshes, a significant error

is introduced when the commutative assumption is enforced (Sagaut, 2006).

The filtering operation is also applied to the momentum equation

∂U i

∂t
+

∂

∂xj
(UiUj)− ν

∂2U i

∂xj∂xj
= −1

ρ

∂p

∂xi
. (3.9)

At this point, the non-linear convective term in (3.9) is recast by introducing

the residual-stress tensor

τ r
ij ≡ UiUj − U iU j . (3.10)

It is noted that as τ r
ij → 0, the model tends towards a DNS. The trace of
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(3.10) is related to the kinetic energy of the residual motions by

kr ≡
1

2
τ r
kk , (3.11)

=
1

2

(
UkUk − UkUk

)
, (3.12)

from left to right, the two terms appearing on the RHS of (3.12) can be identified

as the filtered kinetic energy field E = 1
2
UkUk, and the kinetic energy of the

filtered field Ef = 1
2
UkUk, respectively. Therefore, a decomposition of the filtered

kinetic-energy is

E = Ef + kr . (3.13)

The residual-stress tensor can be split into two parts

τ r
ij =

1

3
τ r
kkδij +

(
τ r
ij −

1

3
τ r
kkδij

)
, (3.14)

where the first term on the RHS of (3.14) is the isotropic contribution, and the

bracketed term is the anisotropic part, which is denoted by τR
ij . From this, (3.14)

is re-written

τ r
ij =

2

3
krδij + τR

ij . (3.15)

Inserting (3.10) and (3.15) into the filtered momentum equation (3.9) yields

∂U i

∂t
+

∂

∂xj
(U iU j)− ν

∂2U i

∂xj∂xj
= −1

ρ

∂p

∂xi
−
∂τR

ij

∂xj
, (3.16)

where the modified filtered pressure is denoted by a shorter overbar and defined

by

p ≡ p+
2

3
kr . (3.17)

The pressure equation is formed in the usual manner by taking the divergence

of (3.16). Closure for (3.16) is achieved through modelling τR
ij .
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3.3 Subgrid-scale modelling

The momentum equation (3.16) represents the evolution of filtered velocity field

U . Closure for the system is achieved through modelling the anisotropic residual-

stress tensor τR
ij via some subgrid-scale model. The SGS model acts to represent

scales smaller than the filter width, which are mostly responsible for dissipation.

Algebraic eddy viscosity models are considered first, where the residual stress

tensor is assumed to be related to the strain rate tensor of the filtered velocity

via an algebraic expression for the eddy viscosity

τR
ij = τ r

ij −
1

3
τ r
kkδij = −2νrSij , (3.18)

where νr is the eddy viscosity of the residual motions, and Sij is the rate of strain

of the filtered velocity field. The anisotropic form in (3.18) is rearranged to arrive

at the commonly found form of the stress tensor

τ r
ij =

2

3
krδij − 2νrSij . (3.19)

Smagorinsky assumed the eddy viscosity of SGS motions is analogous to the

eddy viscosity of RANS equations, described by Prandtl’s mixing-length theory.

From this comparison, the eddy viscosity is given by the product of characteristic

SGS turbulence length and velocity scales

νr = l2s S , (3.20)

where ls is the Smagorinsky lengthscale, and S = (2SijSij)
1/2 is the characteristic

filtered rate of strain. The Smagorinsky lengthscale is taken to be proportional

to the filter width such that ls = Cs∆, where Cs is the Smagorinsky coefficient.

Combining (3.18) and (3.20) yields

τ r
ij =

2

3
krδij − 2C2

s ∆2S Sij . (3.21)

In OpenFOAM, Cs is not explicitly defined (Castro et al., 2017), instead the
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eddy viscosity of the residual motions is defined by

νr = Ck∆
√
kr , (3.22)

where Ck = 0.094 is a model constant, and kr represents the turbulent kinetic

energy of the residual motions. Note from (3.22) that νr ≥ 0, which determines

that there is no energy backscatter- a process by which energy is transferred from

small to large scales. Combining (3.18) and (3.22)

τ r
ij =

2

3
krδij − 2Ck∆

√
kr Sij . (3.23)

There are different approaches to finding kr. The Smagorinsky model assump-

tion is considered here first because it is the simplest to implement and forms a

basis for other models. An energy balance is enforced where the rate of transfer

of energy to the residual motions

Pr = −τ r
ijSij , (3.24)

is balanced by the subgrid-scale dissipation

εr = Cε
k1.5

r

∆
, (3.25)

that is

τ r
ijSij + Cε

k1.5
r

∆
= 0 . (3.26)

Rearranging (3.23) and (3.26), by noting Sijδij = 0, gives

kr = 2
Ck

Cε
∆2(SijSij) . (3.27)

The Smagorinsky constant can then be calculated from (3.20), (3.22), and

(3.27)

Cs =

(
C3

k

Cε

) 1
4

. (3.28)

Using default values Ck = 0.094 and Cε = 1.048 yields Cs = 0.168. An alterna-

tive approach for determining Smagorinsky’s constant is provided in Lesieur et al.

46



(2005), where it is stated “Cs ≈ 0.18 gives acceptable results for LES of isotropic

turbulence”. By assuming a balance between production and dissipation of SGS

kinetic energy, the Smagorinsky model obtains an algebraic expression for kr in

terms of a scalar eddy viscosity, and resolved strain-rate tensor. The Smagorinsky

model belongs to the general category of algebraic eddy viscosity models.

Yoshizawa (1986) derived a transport equation for the subgrid-scale kinetic

energy kr by subtracting the filtered equations of motion from the non-filtered

equations, multiplying by the fluctuating velocity, and finally contracting with

the assumption that SGS motions are isotropic. The resulting equation for kr is

∂kr

∂t
+
∂U jkr

∂xj
− ∂

∂xj

[(
ν +

νr
σk

)
∂kr

∂xj

]
= Pr − εr , (3.29)

where σk = 1 is a model constant in OpenFOAM. The LHS of (3.29) represents

transportation of kr, i.e. terms are identified from left to right as: time derivative,

advection, and diffusion of kr. By neglecting the LHS, the Smagorinsky model is

retained, i.e. local balance assumption reduces to Pr = εr. With inclusion of the

LHS of (3.29), no local balance is assumed.

To arrive at the form of Pr found in the OpenFOAM code, the subgrid-scale

stress tensor (3.19) is substituted into the production term (3.24)

Pr = −τ r
ijSij , (3.30)

= −
(

2

3
krδij − 2νrSij

)
Sij , (3.31)

= 2νrSijSij , (3.32)

= 2νrSij
∂U i

∂xj
. (3.33)

Steps from (3.30) to (3.33) include: imposing incompressibility, and utilising

symmetry properties of Sij. The form of the production term given in (3.33) is

used in OpenFOAM.
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3.3.1 Modelling dissipation

It is also possible to introduce a transport equation for εr. The exact form of

the dissipation equation is often modelled in the high Reynolds number form

(Speziale et al., 1991)

∂εr

∂t
+
∂U jεr

∂xj
− ∂

∂xj

[(
ν +

νr
σε

)
∂εr

∂xj

]
= Cε1

εr

kr

Pr − Cε2
ε2

r

kr

, (3.34)

where σε = 1.3, Cε1 = 1.44, and Cε2 = 1.83 are standard model coefficients which

will be discussed later. From the computed fields of kr and εr, the eddy viscosity

is recovered from

νt = Cν
k2

r

εr

, (3.35)

for some modelling constant Cν . If the turbulence is homogeneous, kinetic energy

kr, and dissipation εr, are spatially invariant, (3.29) and (3.34) reduce to

k̇r = Pr − εr , (3.36)

ε̇r = Cε1
εr

kr

Pr − Cε2
ε2

r

kr

. (3.37)

If the turbulence is freely decaying, for which grid turbulence is a prime ex-

ample, there is no production mechanism, and the production term vanishes

k̇r = −εr , (3.38)

ε̇r = −Cε2
ε2

r

kr

. (3.39)

Separation of variables kr and εr can be achieved by manipulation of (3.38)

and (3.39) to yield

ε̇r

εr

= −Cε2
εr

kr

= Cε2
k̇r

kr

, (3.40)

from which a time integral can be constructed∫
ε̇r

εr

dt =

∫
Cε2

k̇r

kr

dt . (3.41)

At this point, it is common to assume that Cε2 is a fixed constant, and there-
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fore does not vary in time. In which case the integral (3.41) has analytical solutions

kr(t) = k0

(
t

t0

)−n
, (3.42)

εr(t) = ε0

(
t

t0

)−(n+1)

, (3.43)

where k0 and ε0 are reference values at time t0 = nk0/ε0, and the decay exponent

n is

n =
1

Cε2 − 1
, (3.44)

which can be rearranged to find an expression for Cε2

Cε2 =
n+ 1

n
. (3.45)

For the case of decaying homogeneous isotropic turbulence, experiments of

the flow through a turbulence-generating grid find the exponent of decay from

(3.42) to be in the range n = 1.2 to 1.4. Substituting n = 1.3 into (3.45) yields

Cε2 ≈ 1.77. Additionally, experiments based on multiscale turbulence generation

from fractal grids have found exponents of n ≈ 2 (Valente and Vassilicos, 2011;

Vassilicos, 2015), which leads to Cε2 = 1.5. The generally accepted value of Cε2 =

1.92 proposed by Launder and Sharma (1974) yields a decay exponent of n = 1.09.

This choice of Cε2 is known to over predict the rate of spreading for the round jet

(Pope, 2001). Table (3.1) presents common choices of model constants Cε1 and

Cε2 throughout the literature.

A two-equation system based on a hybrid approach was proposed by Perot

and Gadebusch (2007). In their model, the standard k-ε RANS turbulence model

was modified to adapt to mesh resolution. In a coarse mesh limit, the Perot and

Gadebusch model switches to a typical k-ε RANS. This is achieved by including

an extra factor in the eddy viscosity equation which depends on the ratio of

modelled to total turbulent kinetic energy kr/(kr +k). The eddy viscosity is given

by

νr = Cµ
k2

r

εr

(
kr

kr + k

)
, (3.46)

where Cµ = 0.18 is a model constant, and k is the resolved turbulent kinetic
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Constant Value Comment

Cε1

1.55 Perot and Gadebusch (2007).

1.44 Standard ε equation (Launder and Sharma, 1974).

1.42 Pope (2001), originally Orszag et al. (1996).

Cε2

1.92 Standard ε equation (Launder and Sharma, 1974).

1.83 Perot and Gadebusch (2007).

1.77 Power law decay n = 1.3 from (3.45).

1.71 Power law decay n = 1.4 from (3.45).

Table 3.1: Choice of model constants Cε1 and Cε2 from the literature.

energy. Perot and Gadebusch (2007) noted (3.46) returns to a typical RANS

form νr = Cµk
2
r /εr when all scales are modelled (k = 0). However, in the k-ε

RANS model, Cµ = 0.09, and in the RANS limit (3.46) returns an eddy viscosity

which is a factor of 2 larger than the common RANS. No explanation for this

difference in Cµ was offered by the authors. When all scales are resolved, i.e.

kr → 0 in the DNS limit, the model returns νr → 0. Turbulent kinetic energy of

the resolved field is calculated from the mean velocity field by k = 1
2
|(U −〈U〉)2|,

where 〈U〉 can be calculated from a spatial, temporal, or ensemble average.

Perot and Gadebusch (2007) proposed a form of Cε2 which “varies Cε2 from

its theoretical limits of 11/6 at high Reynolds numbers to 3/2 at low Reynolds

numbers”, given by

Cε2 =
5

3
+

1

180

(√
Re2

T + 60ReT − ReT

)
, (3.47)

on manipulation of (3.47), an alternative form is arrived at

Cε2 =
5

3
+

1

3

(
1 +

√
1 +

60

ReT

)−1

. (3.48)

Asymptotic behaviour of Cε2 is now considered. In the low turbulent Reynolds

number limit of ReT → 0, (3.47) returns Cε2 → 5/3. It is noted this contradicts

the asymptotic value of Cε2 → 3/2 promised in Perot and Gadebusch (2007). In
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the high turbulent Reynolds number limit as ReT → ∞, the correct asymptotic

behaviour is achieved from (3.48), that is Cε2 → 11/6. Figure 3.2 presents the

variation of Cε2 with increasing ReT.

Figure 3.2: Asymptotic behaviour of Cε2 from the model of Perot and Gadebusch
(2007).

Although the value of Cε2 is fixed at the limits ReT → 0 and ReT →∞, there

is no exact formulation for its behaviour between the limits. Presumably, this

would require an adjustment based on the free-stream turbulence levels, ReT|∞.

For example, a local measure of the flow turbulence ReQ could be introduced

which takes the form

ReQ =
ReT − ReT

∣∣
∞

max(ReT)− ReT

∣∣
∞

, (3.49)

where ReT

∣∣
∞ is recorded at a user-defined location in the domain which represents

the bulk flow, i.e. in the undisturbed free-stream, and max(ReT) is the maximum

value found throughout the domain. The form of Cε2 can then be chosen

Cε2 =
3

2
+

1

3

(
1−max{0,ReQ}

)
. (3.50)

Figure 3.3 displays the behaviour of Cε2 for a range of ReT. For low values of

turbulent Reynolds number (ReT < ReT

∣∣
∞), the model constant is inactive and
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returns a value of Cε2 = 11/6. Once the local turbulence level increases beyond

the free-stream value of ReT

∣∣
∞, Cε2 decreases linearly to a minimum value of 3/2.

C
ε2

11/6

3/2

ReT

ReT

∣∣
∞ max(ReT)

Figure 3.3: Variable Cε2 from (3.50).
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3.4 Test case: the Taylor-Green vortex

A numerical benchmark case is considered to compare subgrid-scale models. To

demonstrate the process of large eddies grinding down to progressively smaller

sizes, Taylor and Green (1937) constructed a special case of flows with a known

initial condition. The Taylor-Green vortex is a common benchmark for numerical

codes to test vortex dynamics, transition to turbulence, turbulence decay, and

energy dissipation. The TGV problem was set as a challenging case in the 1st

and 2nd International Workshop on High-Order CFD Methods (Wang et al.,

2013), and as a result, its solution is well documented, for example see: DeBonis

(2013), Aubard et al. (2013), Bull and Jameson (2014).

3.4.1 Initialisation and case set-up

The TGV problem consists of a triply periodic box initialised with blobs of vor-

ticity. The domain has dimensions −πL ≤ (x, y, z) ≤ πL, where L is a reference

length scale. The flow field is initialised at t = t0 on a Cartesian mesh with

velocity field

U(x, t0) = A cos(ax) sin(by) sin(cz) , (3.51)

V (x, t0) = B sin(ax) cos(by) sin(cz) , (3.52)

W (x, t0) = C sin(ax) sin(by) cos(cz) , (3.53)

where a, b, c, A,B,C are constants. If incompressibility is enforced, (3.51)-(3.53)

leads to the following condition

Aa+Bb+ Cc = 0 , (3.54)

which can be satisfied by

a = b = c = 1/L , (3.55)

A = −B = V0 , (3.56)

C = 0 , (3.57)
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where V0 is a reference velocity scale. Substitution of (3.55)-(3.57) into the gen-

eralised initial velocity field (3.51)-(3.53), yields

U(x, t0) = V0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
, (3.58)

V (x, t0) = −V0 cos
(x
L

)
sin
( y
L

)
cos
( z
L

)
, (3.59)

W (x, t0) = 0 , (3.60)

p(x, t0) = p0 +
ρ0V

2
0

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)][
cos

(
2z

L

)
+ 2

]
, (3.61)

where the pressure field is obtained in the usual manner by forming a Poisson

equation from the velocity field, and p0 and ρ0 are reference values of pressure

and density respectively.

From reference length and velocity scales L and V0, a Reynolds number is

defined by Re = V0L/ν. A nondimensional time can also be defined by t∗ =

t/(L/V0). Reference length and velocity scales of L = 1 and V0 = 1 have been

chosen here, from which a Reynolds number of 1600 is set by adjusting the kine-

matic viscosity. A Reynolds number of 1600 was stipulated for submission to the

1st and 2nd International Workshop on High-Order CFD Methods (Wang et al.,

2013), therefore a wealth of fully resolved numerical simulations have been ran

at this Reynolds number.

For a compressible flow, the dissipation rate is given by the sum of three

components: strain-based, pressure dilation-based, and viscosity-based (Bull and

Jameson, 2014). Theoretically, only the strain-based term is non-zero for the in-

compressible limit. Compressible simulations have shown that the strain-based

term dominates, and therefore incompressibility can be assumed at this Reynolds

number (DeBonis, 2013; Bull and Jameson, 2014). If the flow is incompressible,

density is constant ρ = ρ0. Based on the chosen reference scales and the incom-
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pressibility assumption, the initial flow field is governed by

U(x, t0) = sin (x) cos (y) cos (z) , (3.62)

V (x, t0) = − cos (x) sin (y) cos (z) , (3.63)

W (x, t0) = 0 , (3.64)

p(x, t0) =
ρ0

16

[
cos(2x) + cos(2y)

][
cos(2z) + 2

]
. (3.65)

The initial flow field described by (3.62)-(3.65) is generated in Matlab for a

number of grid densities. To visualise the initial flow field, the curl of (3.62)-(3.64)

is taken to obtain the vorticity field

ωx(x, t0) = − cos (x) sin (y) sin (z) , (3.66)

ωy(x, t0) = − sin (x) cos (y) sin (z) , (3.67)

ωz(x, t0) = 2 sin (x) sin (y) cos (z) , (3.68)

from which the z-component of vorticity is displayed in Figure 3.4. As time

evolves, vortices in Figure 3.4 roll up, stretch, and interact. This develops into

turbulence, with scales developing in a very precise manner, not simply just by

period doubling (Berselli, 2005).

Figure 3.4: Volume rendering of ωz at t = t0 from (3.68). Negative to positive
z-vorticity is represented by colours blue to red, respectively.
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From initialisation to decay, DeBonis (2013) identify 4 regions of flow be-

haviour:

I. Inviscid flow. Vortices evolve and break up (0 ≤ t∗ < 7).

II. Smooth vortical structures undergo changes in their structure (t∗ = 7).

III. Dissipation peaks, coherent structures break down (t∗ = 9).

IV. Decay to turbulence (t∗ > 9).

Two approaches will be taken in this study. The first is to simulate the TGV

problem with direct numerical simulation, i.e. no turbulence modelling. From this

reference data, the Smagorinsky and k-equation SGS models will be compared.

By running a DNS alongside the LES, it is possible to isolate the behaviour

of the subgrid-scale model. The purpose of running an LES is to fully capture

large structures, and successfully model smaller structures. A DNS resolves all

scales, right down to the Kolmogorov scales where dissipation dominates. The

TGV problem is designed to produce progressively smaller scales, therefore it is

possible to track the evolution of small scales and assess the suitability of an SGS

model.

A coarse, medium, and fine grid have been created in the blockMesh appli-

cation of OpenFOAM. A fixed time step of ∆t∗ = 1 × 10−3 has been set for the

coarse 643 grid. The time step is halved every time the mesh is refined, as in Bull

and Jameson (2014). Simulations are ran for 20 dimensionless time units to record

the full production and decay of vortical structures. Coarse grid simulations can

be ran locally on a desktop PC with 4 cores. Medium and fine grid simulations

are ran on the Leeds HPC ARC3, with 24 and 96 cores, respectively. See Table 3.2

for a summary of the numerical parameters used in the current study.

A minimum of 512 degrees of freedom was required for submission to the 1st

and 2nd workshop on high-order CFD methods. However, the goal in this current

study is to assess the modelling capabilities of subgrid-scale models on relatively

coarse (64, 128 DOF) meshes. Numerical dissipation is expected to contribute to

inaccuracies on coarse meshes, therefore reference data from high-order methods

in the literature is supplemented with DNS simulations in the current study.
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Case Mesh ∆t∗ Machine Cores

Coarse 643 1× 10−3 Desktop 4

Medium 1283 5× 10−4 ARC3 Leeds 24

Fine 2563 2.5× 10−4 ARC3 Leeds 96

Table 3.2: Cell density and time stepping for the coarse, medium, and fine meshes.

Case Mesh Model

Smag64 643 LES Smagorinsky (Smagorinsky, 1963).

kEqn64 643 LES k-equation (Yoshizawa, 1986).

DNS64 643 DNS.

DRP-512 5123 High-resolution explicit finite
difference method of DeBonis (2013).

Table 3.3: Case set-up and models for the TGV problem.

Combining high-resolution literature results and coarse DNS simulations allows

for a full assessment of the LES subgrid-scale model in isolation. Turbulence

models, mesh densities, and abbreviations of each case can be found in Table 3.3.

3.4.2 Impact of subgrid-scale model

Following the guidelines for submission to the International Workshop on High-

Order CFD Methods (Wang et al., 2013), evolution of the flow is assessed by

various diagnostic quantities. The volume-averaged integrated kinetic energy is

given by

Ek =
1

ρ0V

∫
V

ρ
uiui

2
dV , (3.69)

where V is the domain volume. For constant density ρ = ρ0, (3.69) transforms to

Ek =
1

(2π)3

∫
V

uiui
2

dV . (3.70)

Kinetic energy dissipation rate (KEDR) can be obtained directly from the
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kinetic energy Ek by taking the time derivative

ε(Ek) = −dEk
dt

. (3.71)

Integrated enstrophy is defined by

ζ =
1

ρ0V

∫
V

ρ
ωiωi

2
dV , (3.72)

which is analogous to the dissipation produced through vorticity, or turbulence.

For an incompressible flow it can be shown that

ε(ζ) = 2νζ . (3.73)

DeBonis (2013) compared the two forms of dissipation given in (3.71) and

(3.73) for a range of grid densities. If the computational grid is too coarse, vor-

tical structures are poorly resolved, and dissipation through turbulence is under-

predicted. This manifests in a discrepancy between profiles of ε(Ek) and ε(ζ).

From this it could be seen that their 643 grid was not able to fully capture all

vortical structures. However, dissipation computed directly from the kinetic en-

ergy ε(Ek) matched closely to the reference data. Therefore, although the coarse

643 grid was unable to produce enough dissipation through resolved turbulence,

numerical dissipation εnum accounted for the rest, where

εnum = ε(Ek)− ε(ζ) . (3.74)

There are two approaches for producing the correct level of dissipation. The

first is to reduce numerical dissipation as much as possible. Another approach is

that of implicit LES, where no subgrid-scale model is used, but the grid density

is chosen such that εnum provides a suitable amount of dissipation.

Before running LES simulations on coarse meshes of 643, a DNS on a mesh of

1283 is ran to highlight the difficulty in modelling the TGV problem. To visualise

vortex development, isosurfaces of z-vorticity are presented in Figure 3.5. At

t∗ = 0, the initial field compromises periodically stacked regions of high vorticity
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(Figure 3.5a). As the flow develops, vortices stretch, roll up, and interact. At

t∗ = 20 it can be seen that large structures have broken down (Figure 3.5b).

(a) t∗ = 0 (b) t∗ = 20

Figure 3.5: DNS of the Taylor-Green vortex on a 1283 mesh. Isosurfaces of |ωz| =
0.7 (red and blue represent negative and positive values respectively).

To further illustrate the importance of small-scale structures in the TGV

problem, isovolumes of Q at different stages of flow development are produced

for the current DNS and compared to the high-order flux reconstruction scheme of

Bull and Jameson (2014). Isovolumes of Q = −1
2
AijAji, where Aij is the velocity

gradient tensor, are commonly visualised to identify turbulent structures (Hunt

et al., 1988). In Figure 3.6a, good agreement can be seen between the coarse DNS

and high-order method in the initial stage at t∗ = 2.5. From t∗ = 2.5 to t∗ = 5

there is an emergence of fine, feather-like structures. The very smallest feather

structures are not captured with the DNS. At t∗ = 8 and t∗ = 10.75 it becomes

apparent that a mesh density of 1283 is unable to fully resolve the smallest scales,

however the large-scale dynamics are reasonably well captured.
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(a) t∗ = 2.5, Q = 0.5.

(b) t∗ = 5, Q = 1.5.

(c) t∗ = 8, Q = 1.5.

(d) t∗ = 10.75, Q = 1.5.

Figure 3.6: Q isovolumes coloured by velocity magnitude. Left column: high-order
flux reconstruction (FR) DNS of Bull and Jameson (2014) with cell density 643.
Right column: current DNS with cell density 1283.
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Attention now turns to the predicted energy decay from the Smagorinsky

and k-equation SGS models. SGS models are evaluated on their accuracy to

correctly dissipate energy. Volume-averaged energy is recorded at time intervals

of t∗ = 0.25 for the full duration. Figure 3.7 presents the time-evolution of energy

decay. Included is the high-resolution results of DeBonis (2013). The k-equation

performs reasonably well for t∗ < 4, and is in close agreement to the DNS and

high-resolution results. However, the Smagorinsky model immediately begins to

dissipate energy, even in the inviscid period. Ideally the SGS model is inactive in

the inviscid period and returns a small turbulent viscosity νT . Once the smooth

vortical structures evolve and break down into turbulence (t∗ > 9), the LES

and DNS tested on the 643 grid all begin to collapse onto one another. This

suggests that turbulence modelling becomes less of a factor towards the end of

the simulation, perhaps because the turbulent structures are under-resolved with

the coarse grid.

(a) Inviscid period of decay. (b) Full simulation duration.

Figure 3.7: Volume-integrated energy decay in time, normalised by its maxi-
mum value. DRP-512: high-resolution explicit finite difference method of DeBonis
(2013).

Time-evolution of dissipation is calculated two ways. First, it is calculated

from the enstrophy, which represents dissipation due to turbulence (Figure 3.8a).

Secondly, it is derived straight from the rate of change of kinetic energy (Fig-

ure 3.8b). Dissipation is a small scale phenomenon, therefore using a coarse mesh,

or an overly-dissipative SGS model will cause an under-prediction in ε. It is clear
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from Figure 3.8a that the grid of 643 is incapable of capturing the vortex dynam-

ics, even with DNS.

(a) KEDR computed from enstrophy ζ. (b) KEDR computed from energy Ek.

Figure 3.8: Time-evolution of the kinetic energy dissipation rate (KEDR). DRP-
512: high-resolution explicit finite difference method of DeBonis (2013).

Although the same mesh density has been used between the DNS and LES,

a different level of ε(ζ) has been observed between each simulation. To further

inspect this, the following ratios are calculated

εf1 =
ε(ζ)|Smag

ε(ζ)|DNS

, εf2 =
ε(ζ)|k-Eqn

ε(ζ)|DNS

, (3.75)

where ε(ζ)|Smag, ε(ζ)|DNS, and ε(ζ)|k-Eqn are the dissipation terms evaluated by

each modelling approach. Figure 3.9 displays the results calculated by the dissipa-

tion fractions defined in (3.75). At peak dissipation (t∗ = 8.75), both SGS models

return minimums in εf1, and εf2. At t∗ = 8.75, the k-equation model under-

estimates dissipation by ≈ 27%, while the Smagorinsky model under estimates

dissipation by ≈ 49%.

Figure 3.10 highlights the role of turbulent viscosity. Isocontours of Q are

presented for simulations of the TGV problem at dimensionless time t∗ = 5. Fine

structures circled in green are visible in the DNS and k-equation simulations which

are not present with the Smagorinsky model. In Figure 3.10d, isovolumes of high

turbulent viscosity are overlaid with isocontours of Q = 1.5, as predicted by the
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Figure 3.9: Kinetic energy dissipation rate (KEDR) computed from enstrophy ζ.

Smagorinsky model. Regions in which the Smagorinsky model is unable to predict

finer structures corresponds directly to higher values of turbulent viscosity.
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(a) DNS64. (b) k-equation.

(c) Smagorinsky. (d) Fig. 3.10c with isovolumes of νT .

Figure 3.10: Isocontours of Q = 1.5 at t∗ = 5 for each turbulence model on a 643

mesh resolution. Fine connecting structures have been circled in the DNS and
k-equation model, which are not present in the Smagorinsky model. To under-
stand this, isovolumes of νT/max(νT ) are plotted in the range [0.3, 1] over the
Smagorinsky solution.

64



3.5 Chapter conclusions

Turbulence modelling approaches have been discussed in the current chapter.

When simulating free-stream turbulence, it is imperative to choose a subgrid-scale

(SGS) model which controls the level of dissipation. Two stock SGS models have

been introduced: the Smagorinsky algebraic model of Smagorinsky (1963), and

the one-equation k-equation model of Yoshizawa (1986). The extension to a two-

equation model has been discussed, which has the potential to incorporate some of

the recent findings from wind-tunnel experiments, where a different behaviour in

the turbulence dissipation has been observed (Hurst and Vassilicos, 2007; Seoud

and Vassilicos, 2007; Vassilicos, 2015).

Models are tested on the three-dimensional Taylor-Green vortex (TGV) prob-

lem as a challenging test case which incorporates inviscid processes, turbulence

production, and dissipation. The Smagorinsky model was found to dissipate en-

ergy indiscriminately, without the presence of a physical mechanism. This has

been observed in the initial period of inviscid development with the TGV prob-

lem. However, the one-equation model of Yoshizawa (1986) performs better, and

is a closer match to a DNS ran on the same mesh. Volume-averaged integrated

kinetic energy is evaluated during the TGV development. Towards the end of the

simulation, once structures have been given enough time to break down, the DNS

and LES ran on the 643 grid contain the same amount of energy. This demon-

strates that regardless of the turbulence modelling employed, dissipation due to

a coarse mesh can be a dominate factor in overall dissipation.

To summarise, the method of LES has been set out in the present chapter.

Dissipation is of interest to the study of free-stream turbulence and wake dynam-

ics, therefore dissipation modelling has been the focus of this current chapter. The

k-equation SGS model has performed reasonably well on a challenging vortex test

case, and is therefore chosen to model grid turbulence using LES.
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Chapter 4

Simulating grid turbulence

Numerical simulations of grid turbulence are investigated in the current chapter.

A total of 4 grids are considered: regular, multiscale, and two fractal designs. A

new grid design is constructed to address problems of flow homogeneity and vor-

ticity clustering. Typically, a turbulence-generating grid is constructed by tiling

a single element until the entire experimental cross-section is covered. With the

two fractal-type grids studied here, only one grid element is considered. By only

considering a single grid element instead of tiling multiple elements into a sheet,

the interaction between jets and wakes can be observed, driving discussion on

flow homogeneity and grid design. Measurements of the velocity gradient tensor

are taken directly behind each grid, which is not possible when taking intrusive

measurements in a wind tunnel. The first key outcome of this chapter is to in-

spect the wake generated behind each grid element by sampling data across a

plane normal to the streamwise direction. This provides new information on the

cross-sectional distribution of turbulence from such grids. The second key out-

come of this chapter is to evaluate velocity gradients in the near grid region to

better understand the production and decay of turbulence, in addition to the

dissipation rate.
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4.1 Introduction

Methods to generate free-stream turbulence in experiments and simulations have

been introduced in Section 2.1. It was seen that complex grid geometries are

used in experiments to customise grid turbulence (Hurst and Vassilicos, 2007;

Vassilicos, 2015; Nagata et al., 2017). However, no consensus exists on an optimal

method to generate turbulence in simulations, and the solution of an LES is known

to be sensitive to inlet conditions, as highlighted in the review papers of Tabor

and Baba-Ahmadi (2010) and Wu (2017). Conditions required for an LES inlet

condition were set out by Tabor and Baba-Ahmadi (2010): stochastically varying,

represent scales down to the filter, compatible with the Navier-Stokes equation,

and easy to specify turbulent properties. Tabor and Baba-Ahmadi (2010) split

inlet conditions into two categories: precursor, and synthetic.

Precursor methods utilise pre-existing results, which could be obtained by

experimental data or CFD. For example, Wu et al. (2006) passed data from a

channel flow simulation into an inlet section of a diffuser, therefore shortening

the streamwise inlet development length. However, extracting the solution of a

precursor simulation for use in a separate simulation requires added computa-

tional memory, which may not be available. To address this, synthetic methods

have been developed which create a turbulent inlet condition in situ, requiring

less computational memory.

Synthetic methods combine generated turbulence with a mean flow to produce

an inlet condition. For industrial engineering flow applications, the development

of a synthetic turbulence generator has two major advantages: (i) reduced devel-

opment length for wall bounded flows such as the channel and diffuser sections

of an aeroengine combustor (Zhou et al., 2017); (ii) representation of a turbu-

lent inlet, which is important in wind engineering where a laminar inflow is an

exception rather than a rule (Ricci et al., 2017). Care must be taken to generate

appropriate fluctuations which are correlated in time and space. In a study of

the backward-facing step by Aider et al. (2007), random white noise, which holds

no temporal or spatial correlation, was combined with a bulk flow to yield an

inlet condition. The resulting flow field revealed an overestimation of the recir-

culation length, and a reduction in the shedding frequency. Turbulent content in
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the free-stream served to amplify shear layer instabilities. The energy spectra of

generated white noise does not correctly represent turbulence because energy is

distributed across all wavenumbers, which is unrealistic for a turbulent flow, and

as a result the fluctuations die out (Jarrin et al., 2006).

To generate turbulent inflow, Jarrin et al. (2009) split their computational

domain into two regions, implementing LES where high accuracy is necessary,

and RANS elsewhere. Information is passed from the RANS region into the LES

domain via a synthetic-eddy method (SEM). Their study compromised 3 test

geometries: channel, duct, and aerofoil. Using the SEM, the upstream RANS so-

lution can be used to generate an unsteady turbulent inflow condition for the

LES region. Comparisons were made between: SEM, the random method, and

the method of Batten et al. (2004). The Fourier decomposition type approach of

Batten et al. (2004) was deemed inappropriate when specifying an inhomogeneous

length scale in the channel flow, or predicting the separation on the aerofoil. The

random method could not replicate coherence at the inlet which led to laminar-

isation downstream. SEM outperformed both methods in every aspect studied,

and is a promising method for the generation of synthetic turbulence as it is can

be applied to complex geometries and is independent of the spatial discretisation

(Dhamankar et al., 2017).

A modification to the SEM was developed by Poletto et al. (2013) which

guarantees that the fluctuating velocity field is divergence-free. The SEM method

detailed in Jarrin et al. (2009) was applied to the fluctuating vorticity field to

create the divergence-free synthetic-eddy method (DFSEM). Eddies randomly

created within an eddy bounding box are advected through the inlet patch (see

Figure 4.1). The shape function was also reworked to create anisotropic length

scales, leading to a divergence-free restriction on the shape function. A turbu-

lent channel flow test case was performed to compare the DFSEM to the original

SEM, the VORTEX method of Sergent (2002), and the sythesized turbulence ap-

proach of Davidson and Billson (2006). A periodic LES channel flow was chosen

as the validation data set. The DFSEM produced more accurate representation

of turbulent structures downstream from the inlet. When comparing the devel-

opment of Reynold stress components and skin friction, the closest agreement to
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the periodic LES was found with the DFSEM. A number of channel flow stud-

ies have validated the DFSEM condition. Poletto et al. (2013) and Skillen et al.

(2016) both found the condition to trigger turbulence at the walls, and reduce

the development length. The DFSEM has also been implemented in the study of

Dean vortices in pipe flow (Tunstall et al., 2016; Hufnagel et al., 2018). Hufnagel

et al. (2018) implemented a pseudo-spectral method DNS, and visualised wave-

like structures using proper orthogonal decomposition (POD). Tunstall et al.

(2016) simulated the flow through a T-junction pipe elbow using OpenFOAM.

U∞

x̂

ŷ

ẑ

Figure 4.1: Schematic of the eddy generation process in the DFSEM, adapted from
Poletto et al. (2013). Eddies are randomly generated within an eddy bounding
box, and subsequently advected through the inlet plane by a bulk flow along the
streamwise direction.

The aforementioned studies have all used the DFSEM condition on wall-

bounded flows. However, the procedure for generating an inflow condition up-

stream of a bluff body geometry is not known. The advection of eddies generated

in the DFSEM bounding box into a free-stream has yet to receive any attention.

All previous studies have instead focused on the production of structures once

the DFSEM eddies have interacted with wall boundaries.

Direct numerical simulation of grid turbulence has been made possible through

the implementation of immersed boundary method (IBM) and terascale parallel

high performance computing capabilities (Laizet and Vassilicos, 2009). There ex-

ists a wealth of literature detailing DNS on the flow past thin sheets with fractal
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geometry cut outs, for example Nagata et al. (2008), Suzuki et al. (2010), Suzuki

et al. (2013), Zhou et al. (2014). However, high resolution simulations of fractal

grid turbulence are currently restricted to academic research, due to immense

computational cost. Blackmore et al. (2013) took a simplified approach to gen-

erating grid turbulence. Instead of simulating flow past an array of cylinders or

a thin sheet, parts of the inlet were blocked with solid patches representing a

biplane grid. A major advantage of this technique is there is no requirement for

a body fitted mesh with refinement around walls. They performed a parametric

study, varying bar width, grid spacing, computational cell density, and domain

size. Turbulence downstream of each permutation was analysed by computing

energy spectra, integral length scales, and turbulence intensities. A triple inlet

was deemed more suitable than the single and double inlet, because it did not

restrict the growth of turbulent structures. Blackmore et al. (2013) only stud-

ied a regular grid, but they showed that the projected inlet technique produces

turbulence comparable to grid-generated turbulence. With the recent interest in

multiscale and fractal grid turbulence, a natural extension of the projected inlet

method is to test a range of grid designs.

The first objective of this chapter is to focus on grid design. Important pa-

rameters of grid turbulence are reviewed in order to better understand how the

design of each grid influences the characteristics of turbulence. This includes tur-

bulence decay and length scales generated from each grid. This motivates the

design of a new type of grid, which combines benefits of the regular grid design

with benefits from fractal-type grids. The second objective of this chapter is to

compare the turbulence generated by each grid design. Data is sampled along

the centreline to assess streamwise development, and on a plane normal to the

streamwise direction to compare turbulence characteristics of each grid element.

4.2 Parameters of grid turbulence

Following a parcel of fluid in the Lagrangian frame of reference, turbulence decay

can be described by a power-law fitting to the velocity variance (Von Karman
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and Howarth, 1938; Saffman, 1967)

〈u2
1〉 = a(t− t0)−n , (4.1)

where u1 is the velocity fluctuation in the streamwise direction, a is a coefficient

which depends on the initial conditions, t0 is the virtual origin where the turbu-

lence becomes fully developed (Krogstad and Davidson, 2010), and n is the decay

exponent. A Cartesian coordinate system (x, y, z) is used interchangeably with

(x1, x2, x3). Similarly, the notation u1, u2, u3 is used interchangeably with u, v, w.

The streamwise direction is aligned along x, and crossflow directions are denoted

by y and z. Mohamed and Larue (1990) proposed an alternative form of (4.1)

by using Taylor’s hypothesis to convert from time to downstream position, and

dividing throughout by the square of the mean velocity, such that

〈u2
1〉

U2
= A

(
x1 − x0

M

)−n
, (4.2)

where A is the decay coefficient, x0 is the virtual origin, and M is the regular grid

spacing. If a regular grid is not used, M in (4.2) becomes some relevant length

scale of the grid, for example Krogstad and Davidson (2011) used the integral

length scale at a fixed downstream position. Unlike t0 in (4.1), x0 in (4.2) is not

the point where turbulence becomes fully developed, but rather some distance

upstream of that point (Krogstad and Davidson, 2010). It is often convenient to

take natural logarithms of (4.2) to yield

ln

[
〈u2

1〉
U2

]
= lnA− n ln

[
x1 − x0

M

]
, (4.3)

from which a linear fit can be made to find a suitable A, x0, and n. Alternatively,

A can be eliminated by taking a two-point differencing scheme (Krogstad and

Davidson, 2011)

n = −
ln
[
〈u21〉(x+∆x−x0)

〈u21〉(x−∆x−x0)

]
ln
[
x+∆x−x0
x−∆x−x0

] , (4.4)
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where the virtual origin x0 can be estimated by a least-squares approach. Es-

timating n from (4.4) is susceptible to noise, however this is only a concern in

experiments when taking measurements in the far wake.

The classical range of decay exponents is 6/5 ≤ n ≤ 10/7, where the lower

bound n = 6/5 is the classical prediction of Saffman (1967), and the upper bound

n = 10/7 is described by Batchelor and Townsend (1948) and Ossia and Lesieur

(2000). Substantial evidence for the classical decay range has been provided over

decades of grid turbulence research: Comte-Bellot and Corrsin (1966); Mohamed

and Larue (1990); Krogstad and Davidson (2010). However, large decay expo-

nents where n > 10/7 has been observed for fractal grid-generated turbulence:

Hurst and Vassilicos (2007); Seoud and Vassilicos (2007); Mazellier and Vassilicos

(2010); Valente and Vassilicos (2011); Nagata et al. (2013).

For isotropy, turbulent fluctuations in the streamwise direction should be ap-

proximately equal to crossflow fluctuations. To test this, a measure of isotropy is

calculated by the ratio
〈q2〉

3〈u2
1〉
≡ 〈u

2
1 + u2

2 + u2
3〉

3〈u2
1〉

, (4.5)

where it is noted that a value of unity corresponds to a flow where streamwise

fluctuations are balanced by cross-stream contributions.

To further test for homogeneity and isotropy along the centreline, skewness Su

and flatness Fu are obtained from moments of velocity fluctuation (Pope, 2001)

µ̂n =
〈un〉
σnu

, (4.6)

where σ is the variance, and setting n = 3, 4 corresponds to skewness and flat-

ness, respectively. Skewness is a measure of high speed events, and for HIT it is

expected to find Su ≈ 0. Spikes in Fu represent high flow intermittency, as would

be expected in the production area. In the ideal case of HIT, a PDF of turbu-

lent velocities follow a Gaussian distribution with Fu = 3. Measures of skewness

and flatness can be used to determine the approximate downstream position at

which the flow recovers homogeneity. Krogstad and Davidson (2012) investigated

homogeneity behind a regular grid (cg), and two multiscale grids (msg1, msg2).

Cross-stream variations of velocity skewness near grid were largest behind cg.
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However, at approximately 50 integral length scales, profiles of streamwise veloc-

ity skewness Su recover a homogeneous value of 0 for cg and msg1, but Su ≈ −0.15

for msg2. For their conventional grid design, 50 integral length scales corresponds

to approximately 30 mesh spacings, where the mesh spacing M is the separation

distance between the centres of neighbouring bars. It was concluded that msg2

needs more time to become homogeneous because of lower solidarity, and larger

length scales generated near grid.

The Taylor microscale is often referred to as the diameter of the smallest

eddies responsible for energy dissipation. Although this is not strictly true, it is a

well defined and useful length scale for the study of grid turbulence (Pope, 2001).

The Taylor microscale λ is defined by

λ2 =
〈u2

1〉〈
(∂u1/∂x1)2〉 . (4.7)

In previous experiments, the general trend of λ in the decay region has been

well documented. In regular grid experiments, it has been shown to increase

monotonically. If the turbulence decays as a power law, then λ ∝ x0.5
1 (Batchelor,

1953). However, for multiscale and fractal grids, evidence suggests λ becomes

constant (Seoud and Vassilicos, 2007). Constant λ was attributed to the smallest

fractal iterations in the wind tunnel experiment of Nagata et al. (2017).

A constant Taylor microscale has implications for the decay characteristics.

To demonstrate this, (4.7) is considered without averaging, and for a constant

Taylor microscale, λ = λ0

λ2
0 =

u2
1

(∂u1/∂x1)2
, (4.8)

which reduces to a 1st order homogeneous ODE

du1

dx1

± 1

λ0

u1 = 0 , (4.9)

which has analytical solutions

u2
1 ∝ exp

(
± x1

2λ0

)
. (4.10)

73



Turbulence intensity must remain finite for x1 →∞, hence the positive solu-

tion in (4.10) is unphysical and discarded. The negative solution corresponds to

exponential decay of turbulence intensity. Therefore, exponential decay present

in the decay region of grid turbulence directly corresponds to constant Taylor

microscale.

The integral length scale is obtained from integration of the autocovariance

function R(s) = 〈u1(x1)u1(x1 +s)〉. In experimental measurements and numerical

simulations, R(s) decreases monotonically towards zero, then oscillates around

zero. As in Krogstad and Davidson (2011), R(s) is only considered up to its first

zero crossing r0. Taylor’s frozen turbulence hypothesis has been used to evaluate

R(s). The longitudinal integral length scale is given by

L11(x1) =
1

〈u2
1(x1)〉

∫ r0

0

R(s) ds . (4.11)
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4.3 Developing a new grid design

4.3.1 Projected inlet method

Figure 4.2 presents a simple example of the projected inlet method. The same

inflow velocity and domain bounding box is used across simulations for a fairer

comparative study. The bounding box of the computational domain is fixed by a

width of W = 120 mm in crossflow directions, and a streamwise length of 4W . The

inlet of each grid has been split into two patches: (i) zero velocity at solid patches,

where grid bars are projected; (ii) non-zero velocity Uin = (Uin, 0, 0) in the gaps

between grid bars. Velocity at the outlet boundary is prescribed using the mixed

OpenFOAM boundary condition inletOutlet, which switches from zero gradient

to a fixed value if back flow occurs. Zero gradient for pressure is prescribed across

the full inlet patch. Pressure is fixed at the outlet boundary, with value 0. All

other boundary patches are periodic- see Table 4.1 for further information. An

adjustable time-step is enforced, guaranteeing a Courant-Friedrichs-Lewy (CFL)

of less than 0.75. Data is sampled for at least 125 000 iterations of the flow

to obtain converged statistics, as per Laizet et al. (2013). LES simulations are

ran in OpenFOAM v4.1 using the k-equation SGS model of Yoshizawa (1986),

which was described in Chapter 3. A description of the numerical settings selected

throughout this study are detailed in Appendix A.

Inlet
patch

Outlet

W

W

4W

Figure 4.2: Example of the projected inlet method. Left: a cross is projected onto
the inlet plane. All cells marked in grey are set to zero velocity. Right: computa-
tional domain, including inlet patch onto which each grid design is projected.
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4.3.2 Grid construction

Naming conventions differ slightly throughout the literature and between grid

designs. Figure 4.3 displays the notation used in this study. Regular and multiscale

grids are constructed with bars of varying thickness ti, and mesh spacing Mi,

where subscripts i = 0, . . . , (N − 1) indicate the iteration level. A regular grid

has only one mesh spacing, whereas a multiscale grid has multiple mesh spacings.

By definition: Mmax ≡ M0, and tmax ≡ t0. For fractal-type grids, a comparable

measure of mesh spacing is the bar length Li. Length and thickness of bars is

scaled between iterations through scaling parameters RL and Rt, such that Li =

(RL)i L0, and ti = (Rt)
i t0. Similarly, by definition: Lmax ≡ L0.

A grid-based Reynolds number is defined from the inflow velocity Uin, and

a choice of length scale. For regular and multiscale grids, it is common to use

the largest mesh spacing M0, and bar width t0. The mesh Reynolds number is

denoted by ReM when a mesh spacing is used, and Re0 when bar width t0 is used.

For a fractal grid, the length of the largest bar L0 can be used, however Hurst and

Vassilicos (2007) introduced a length scale which takes solidarity σ into account.

Solidarity is defined by the ratio of solid blockage to cross-sectional area when

the grid is projected onto a two-dimensional plane. The effective mesh length is

defined by

Meff =
4T 2

P

√
1− σ , (4.12)

where T 2 is the cross-sectional area, and P is the fractal perimeter of the grid. In

this study the fractal perimeter has been taken as the sum of all jet perimeters,

Patch U [m/s] p [m2/s2] k [m2/s2]

Inflow (Uin, 0, 0) zeroGradient 1× 10−4

Inlet grid (0, 0, 0) zeroGradient 0

Outlet inletOutlet 0 inletOutlet

Side patches cyclic cyclic cyclic

Table 4.1: Boundary patch prescriptions in OpenFOAM for the grid turbulence
channel.
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(a) (b)

(c)

Figure 4.3: Dimensions and naming conventions of common turbulence-generating
grids: (a) regular, (b) multiscale, (c) square-fractal.

without including edges which coincide with cyclic boundary conditions.

By approximating the position along the domain centreline at which the wake

of the largest bars first meet, Mazellier and Vassilicos (2010) obtained a stream-

wise length scale onto which centreline mean velocity and turbulence intensity

profiles collapse- the wake interaction length scale x∗

x∗ =
L2

0

t0
. (4.13)

Figure 4.4 presents a schematic of the wake interaction length scale x∗, adapted

from Mazellier and Vassilicos (2010). It can be seen that x∗ corresponds to the

downstream position at which the wake from the largest bars meets. Although

x∗ is defined by crude geometrical arguments, it has been successfully adopted

throughout experiments (Gomes-Fernandes et al., 2012), and numerical simula-

tions (Nagata et al., 2008). Valente and Vassilicos (2011) noted that x∗ is also

applicable to regular grids.

An important parameter to consider when designing a fractal grid geometry
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Grid
bars

Centreline
x∗

Figure 4.4: Schematic of wake interaction on the centreline, adapted from Mazel-
lier and Vassilicos (2010).

is the fractal dimension Df , defined by (Hurst and Vassilicos, 2007)

Df = − log(B)

log(RL)
∈ [1, 2] , (4.14)

where B is the number of patterns at each iteration, which is 4 in the case of

a square-fractal grid constructed by squares (e.g. see Figure 4.3). The influence

of Df on flow homogeneity has been studied. Hurst and Vassilicos (2007) tested

a number of fractal grids with various space-filling parameters Df ≤ 2, finding

greatest homogeneity when Df = 2. To ensure Df = 2 with B = 4, (4.14) requires

that RL = 0.5.

Hearst and Lavoie (2014) reported inhomogeneities in their cross-fractal grid

experiment in the near field. The authors noted that this result contradicted

previous fractal grid turbulence experimental results. The cause of poor transverse

homogeneity was not addressed, however a bar length scaling of RL = 0.44 was

used in their design, resulting in a space-filling parameter of Df = 1.71.

In a preliminary numerical study, two square-fractal grids with identical design

were tested, but with different space-filling parameters: Df = 1.8, and Df = 2.

Contours of velocity magnitude for both grids is presented in Figure 4.5. High

velocity streaks along the domain perimeter are present when Df = 1.8, resulting

in transverse inhomogeneities- a conclusion which aligns with the problems en-

countered in Hearst and Lavoie (2014). As hoped, these streaks are not present in

78



the space-filling grid where Df = 2. It is clear that even though solidarity might

be fixed between two grid designs, how this solidarity is spread across the inlet

patch is free to vary. If the majority of inlet blockage is located in the centre of

the inlet patch, this could lead to inhomogeneities, resulting from persistent jets

around the perimeter.

Df = 1.8

Df = 2.0

W

W

0 x1/W 4

0 ||U || Uin

Figure 4.5: Contours of velocity magnitude for two square-fractal grids with dif-
ferent space-filling parameter Df .

4.3.3 Selected grid designs

To address the problems of homogeneity reported throughout the literature, a new

type of grid geometry is designed which combines separate strengths from regular

and fractal designs. Compared to square-fractal grids, a regular grid uniformly

spreads solidarity across the channel. However, alongside a need for better homo-

geneity, it may also be desirable to force near grid turbulence across a number of

length scales, as with a fractal grid geometry.

A combined-fractal design has been created by layering square-fractal and

cross-fractal elements, with the addition of one large cross (Figure 4.6). There are
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a number of advantages to the cross-fractal grid. With an additional iteration, this

introduces an extra length scale. Furthermore, small elements along the perimeter

in the cross-fractal design help to break up large jets produced by the square-

fractal grid. The new combined-fractal design has a perimeter increase of ∼ 12%

over the square-fractal grid.

Figure 4.6: Layering cross-fractal and square-fractal elements to generate the
combined-fractal grid, with the addition of one large cross to block the wake
centreline.

Four grid geometries have been generated and superimposed onto the inlet

patch as a blockage (Figure 4.7). Each grid has been designed to obstruct the

centreline, allowing a comparative study to be made on centreline statistics. The

regular grid is conventional in design, constructed by taking a lattice of bars with

constant thickness and spacing. The multiscale grid is constructed from bars of

two separate diameters and spacings. The fractal design in this study combines

a square-fractal grid of 3 iterations, with two central bars arranged in a cross,

similar to the design of Hearst and Lavoie (2014). It is ensured that the fractal

design has Df = 2.0. All four grids have solidarity of σ = 44%, matching the

grid inlet study of Blackmore et al. (2013), and experimental study of Krogstad

and Davidson (2012). A summary of grid-based length scales are presented in

Table 4.2. In Figure 4.9, contours of velocity and the mesh structure at the inlet

patch are displayed for each grid design. A mesh independence study is conducted

on the combined-fractal grid to ensure the chosen computational mesh sufficiently
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resolves the flow field. The combined-fractal grid has been used because it is

expected to generate the smallest scales of turbulence, and will therefore require

the most mesh refinement. Details of the mesh independence study are provided

in Appendix B.

Inlet Outlet

W

W

4W

x̂1x̂2

x̂3

RG MG FG CF

Figure 4.7: Top: domain size and Cartesian coordinate system orientation. Bot-
tom: grid inlet configurations of present study for the regular (RG), multiscale
(MG), square-fractal (FG), and combined-fractal (CF) grids.

Homogeneity for each grid design is considered by analysing the solidarity

distribution across the inlet patch. To describe this graphically, a square with

side lengths LB is centred in the middle of the inlet patch and superimposed

over the grid geometry. The area of the square is increased, and solidarity is

recorded at each increment. Solidarity distributions found in Figure 4.8 highlight

two key points. There are two fixed points which are constant across the grids.

One at LB/W = 0, because the centreline of each grid is blocked, and another

at LB/W = 1 where σ = 44% is recovered. However, there is freedom between

these two fixed points, and it can be seen that the combined-fractal grid quickly

approaches σ = 44% and remains relatively constant. The combined-fractal design

differs from the typical fractal design because it moves blockages towards the
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Regular Multiscale Square-fractal Combined-fractal

(RG) (MG) (FG) (CF)

Li (mm) - - 67.5, 33.8, 16.9 67.5, 33.8, 16.9

ti (mm) 6.0 6.5, 3.5 6.1, 3.3, 1.8 5.6, 3.9, 2.6, 1.8

Mi (mm) 24.0 40.0, 20.0 - -

P (m) 1.80 2.16 3.52 3.98

Meff (mm) 23.9 20.0 12.2 10.8

x∗ (m) 0.10 0.25 0.75 0.81

Re0 5000 5437 5116 4684

Table 4.2: Grid-based length scales. All grids have fixed inflow velocity Uin =
1 m/s and solidarity σ = 44%.

perimeter. This is expected to result in better homogeneity across the x2-x3 plane.

LB

W

Figure 4.8: Solidarity distribution across the inlet plane. For a given grid, an
imaginary box with side length LB is drawn in the centre (left). As the box
expands outwards, solidarity is recorded at each LB (right).
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U/Uin

0.0 0.25 0.50 0.75 1.0

Figure 4.9: Mesh distribution and velocity at the inlet patch of each grid design.
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4.4 Flow homogeneity

Figure 4.10 displays position of sample lines in the domain. Velocity is sampled

along the domain centreline and at fixed downstream positions spanning across

the channel. The majority of grid turbulence studies only report centreline de-

velopment of turbulence. However, in order to assess flow homogeneity, it is also

required to sample across the channel. A total of 4 downstream positions are

recorded at x1/W = 1, 2, 3, 4.

x1/W = 1

x1/W = 2

x1/W = 3
x1/W = 4

Figure 4.10: Location of probes across the channel at 4 separate downstream
locations from which velocity is sampled.

4.4.1 Streamwise turbulence development

Figure 4.11 displays instantaneous contours of velocity magnitude, normalised by

the inlet velocity, on the two-dimensional slice defined by x2 = 0. A vertical slice

at x2 = 0 is taken to assess the impact of the centre cross, which is common to all

4 grids. Although the centre plane of x2 = 0 sits behind a vertical bar for all grid

designs, a different flow field is generated due to the neighbouring jet and bar

wakes. A characteristic of the regular grid is that each bar wake is identical and

equally spaced. Therefore, the turbulence produced is more predictable. However,

with the multiscale and fractal grids, it is not immediately obvious at which
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downstream position bar wakes will interact, if at all. For example, it can be seen

in Figure 4.11 that, although both fractal grids have a similar construction along

the line x1 = x2 = 0, the middle cross is more dominate in the combined-fractal

grid case.

Figure 4.11: Contours of instantaneous velocity magnitude |U |/Uin along the
plane x2 = 0 (red line). Flow is from left to right.

Figure 4.12 displays instantaneous contours of velocity magnitude, normalised

by the inlet velocity, on the two-dimensional slice defined by x2 = −33.75 mm. A

slice at x2 = −33.75 mm is sampled because this runs through the largest fractal

iteration, common to the fractal-type grids, and also provides information on the

development of the bar wakes in the regular and multiscale cases. Figure 4.12

indicates that the regular grid produces orderly bar wakes that break up as they
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travel downstream. This is not seen in the fractal grid- the second square-fractal

iteration creates a persistent jet.

Figure 4.12: Contours of instantaneous velocity magnitude |U |/Uin along the
plane x2 = −33.75 mm (red line). Flow is from left to right.

Figure 4.13 provides information on the wake created in the corners and along

the perimeter. A diagonal slice x2 = x3 is taken to give a better understanding of

flow around the perimeter, which is an important design factor in the combined-

fractal grid. Behind the fractal grid FG, a total of 15 wakes can be counted in the

diagonal plane. As they travel downstream, some of the wakes join together, and

5 distinct wakes are then observed. These have been marked on Figure 4.13 for

clarity. A green dot is placed at a point on the diagonal where a jet emerges from

a gap in the second fractal iteration, which can be seen to travel downstream

without breaking up from interaction with neighbouring wakes. Such high speed
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streaks are not observed in the combined-fractal case, although it can be seen

once again that the centre cross produces a wake which persists into the domain.

Figure 4.13: Contours of instantaneous velocity magnitude |U |/Uin along the
diagonal slice defined by x2 = x3 (red line). Points of interest have been marked
on the fractal case using green dots and blue braces. Flow is from left to right.
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Figure 4.14 presents time-averaged velocity along the centreline for each grid

design. The centreline behind each grid is blocked by a central bar, therefore

a recirculation region is observed near grid. The cross-fractal grid produces the

smallest recirculation region, and recovers towards its asymptotic value quicker.

When the streamwise coordinate is nondimensionalized by the width of the largest

bar t0, profiles collapse slightly better. This is reasonable, because the middle

cross which blocks the centreline of each grid is constructed by bars of width

t0. However, there are more factors to the centreline velocity deficit than t0,

because wakes created from neighbouring bars interact at different downstream

positions, which was demonstrated in Figure 4.11. Figure 4.14 indicates how jets

created around the middle cross interact and feed into the centreline. This has

implications for flow homogeneity, because it is sub-optimal to create large wakes

behind bars which are not broken down by perimeter jets and wakes.

Figure 4.14: Time-averaged streamwise velocity along the domain centreline with
different normalisation of downstream coordinate x1.

Figure 4.15 displays centreline development of the root-mean-square (r.m.s)

streamwise velocity fluctuations urms =
√
〈u2

1〉, normalised by U∞. Included are

the wind tunnel data of Nagata et al. (2017) from their RG3 grid at Re0 =

5900, which bears closest resemblance to the regular grid design of the current

study. A reasonable agreement is found between the regular grid RG and the

experimental results of Nagata et al. (2017), strengthening the validity of the

projected inlet method for creating realistic grid turbulence. However, decay of

urms is considerably different for the other grids. Behind the MG, FG, and CF

grids at downstream position x1/(L0/2) ≈ 1, urms begins to decay quickly. This
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is in contrast to the profile of RG, where the decay at x1/(L0/2) ≈ 1 is more

gradual.

Figure 4.15: Development of streamwise r.m.s velocity along the centreline. Ref.
1: RG3 of Nagata et al. (2017).

Figure 4.16 presents the results of fitting the power law of (4.4) to the decay

of 〈u2
1〉. A marked difference in the shape of n is observed behind the two fractal

grids. Similar to the behaviour seen in Figure 4.15, the decay exponent recorded

behind the RG and MG grids steadily increases to n ≈ 2 and n ≈ 1.6, respectively.

Behind the FG grid, the decay exponent steadily increases to n ≈ 1.8, after

which it then drops to n ≈ 1 and flattens out. A prolonged period of n ≈ 1.8

is observed behind the CF grid. Higher decay exponents have been the focus of

multiple studies e.g. Hurst and Vassilicos (2007); Seoud and Vassilicos (2007);

Krogstad and Davidson (2012); Hearst and Lavoie (2014), and the current results

reinforce some of those findings- multiscale-generated turbulence displays non-

classical decay behaviour.
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Figure 4.16: Decay characteristics along the centreline of each grid. Decay expo-
nent n is calculated using (4.4).
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Figure 4.17 displays the downstream development of 〈q2〉/3〈u2
1〉 from (4.5).

Immediately behind each grid for x1/W < 1, the flow is highly anisotropic. This

is the turbulence production region. The flow then recovers further downstream.

An asymptotic value of 0.9 is achieved for the regular, multiscale, and combined-

fractal grids. However, the fractal grid produces an asymptotic value of 0.8, sug-

gesting the turbulence generated behind the fractal grid is more anisotropic than

the other grids.

Figure 4.17: Streamwise development of 〈q2〉/3〈u2
1〉 along the domain centreline.

Centreline skewness and flatness are plotted in Figure 4.18. The regular, mul-

tiscale, and combined-fractal grids approach the expected values of Su = 0 and

Fu = 3 for HIT. Slightly elevated Su and Fu are reported from the fractal grid.

Figure 4.19 displays the Taylor microscale (4.7). Nagata et al. (2017) found

profiles of λ/L0 to collapse when plotted against x1/x∗. However, in the current

study, profiles of λ collapse when nondimensionalized by t0 and plotted against

x1/M0 or x1/(L0/2). Also plotted is the fit of λ ∝ x0.5
1 (Valente and Vassilicos,

2011; Hearst and Lavoie, 2014; Nagata et al., 2017). The Taylor microscale is some

intermediate length scale which lies between the integral length scale L11, and the

Kolmogorov microscale η (Pope, 2001). However, it is not immediately obvious

how λ is set. The results displayed in Figure 4.19 suggest that the middle cross
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Figure 4.18: Skewness and flatness profiles along the domain centreline.

has a profound affect on the generation of λ, because the profiles are collapsed

when nondimensionalized by t0.

Figure 4.19: Centreline profiles of the Taylor microscale λ.

The local Reynolds number Reλ = urmsλ/ν, defined using the streamwise

Taylor microscale λ is displayed in Figure 4.20. Each grid produces a similar level

of turbulence near grid. This is evidence that fractal-type grids produce elevated

levels of turbulence (Hurst and Vassilicos, 2007), because in the current study,

Re0 is considerably lower for the combined-fractal case. However, the streamwise

development of Reλ behind the fractal-type grids is different to that of the regular

and multiscale grids. Behind the fractal grids, decay of Reλ is abrupt, as observed

in previous investigations e.g. Hurst and Vassilicos (2007); Mazellier and Vassilicos

(2010); Gomes-Fernandes et al. (2012); Nagata et al. (2013); Vassilicos (2015);
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Nagata et al. (2017). Further downstream and it can be seen that the fractal

grid asymptotes to a similar Reλ as in the regular and multiscale grid cases. This

is not seen for CF, which instead continues to decay further, reaching a lower

asymptotic value of Reλ compared to other grids.

Figure 4.20: Streamwise development of local turbulent Reynolds number Reλ.

Figure 4.21 displays the centreline development of the integral length scale

L11. Included are the data of Nagata et al. (2017) from their regular grid named

RG3, ran at Reynolds number Re0 = 5900 and with solidarity σ = 25%. Also

plotted are the data from the projected inlet study of Blackmore et al. (2013)

where Re0 = 36000 and σ = 44%. Profiles of L11 are seen to collapse better

when nondimensionalized against t0. Although the studies have different Re0 and

σ, a close agreement on how the integral length scale grows as a function of

downstream position can be seen.

A line of best fit is added to the data to find the growth rate of integral length

scale

L11 = A

(
x1 − x0

M

)m
, (4.15)

where A is a constant, x0 is the virtual origin, and m is the length scale growth

rate. For the regular grid tested in the current LES, the growth rate estimated

from (4.15) is m = 0.39. This compares well to experimental results: m = 0.38
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Figure 4.21: Growth of the longitudinal integral length scale behind regular grids.
RG is the regular grid in the current LES. Reference data of Nagata et al. (2017)
at Re0 = 5900 and σ = 0.25. Triple inlet of Blackmore et al. (2013) at Re0 = 9000
with σ = 0.44.

(Nagata et al., 2017), m = 0.40 (Krogstad and Davidson, 2011). However, fitting

(4.15) to the data of Blackmore et al. (2013) yields m = 0.29. These results are in

close agreement to the power-law energy decay prediction of Saffman turbulence

which yields L11 ∝ (x1 − x0)0.4, for a virtual origin x0 = 0.

Figure 4.22 displays the growth of the integral length scale along the centreline

for each grid. A reference line of L11 ∝ x0.4
1 has been superimposed onto the plot.

The fractal grid FG produces the largest L11 along the centreline. A likely cause of

such a large L11 along the centreline of the FG case is the dominant flow dynamics

generated by the middle cross. In the CF case, structures from the central cross

are less dominant. Different length scales have been used to nondimensionalise the

integral length scale for each grid, but no grid length scale appears to collapse the

profiles of L11. It is concluded that it is not possible to predict the integral length

scale produced from a grid by just considering certain grid based length scales,

such as width of largest bar t0. This may be true close to the grid, where the wake

from each bar is pronounced, but the streamwise development of L11 depends on

the interaction of surrounding jets and wakes. For example, directly behind each

grid it can seen that L11/t0 ≈ 1, so the integral length scale in the near wake

is heavily influenced by t0. However, despite the predictability of L11/t0 directly

behind the grid, growth of the integral length scale depends on the structures
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generated by neighbouring wakes.

Figure 4.22: Centreline development of the longitudinal integral length scale. A
solid line of L11 ∝ x0.4

1 corresponding to Saffman turbulence is included on the
first plot.

4.4.2 Cross-channel homogeneity

Skewness and flatness across the channel at downstream position x1/W = 2 are

plotted in Figure 4.23. Similar to profiles along the centreline, i.e. Figure 4.18,

skewness and flatness across the channel approach their HIT expected values of

Su = 0 and Fu = 3.

Figure 4.24 presents time-averaged profiles of velocity magnitude 〈|U |〉 =

〈UiUi〉1/2, nondimensionalized by the inlet velocity, across the channel at 4 stream-

wise positions. At x1/W = 1, the grid shadow is present across each grid. A wake

is visible behind each of the 5 bars in the RG case. However in the MG case,

only the largest bars leave a noticeable wake shadow. Profiles behind FG are
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Figure 4.23: Skewness and flatness profiles in the crossflow direction x2, at
x1/W = 2.

reasonably flat when compared to the CF grid. At x1/W = 4, all 4 profiles have

flattened, but velocity behind the regular grid is considerably higher than the

other grids. This is despite all grids sharing the same solidarity σ = 44%, and

inflow velocity Uin = 1 m/s.
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Figure 4.24: Profiles of time-averaged nondimensional velocity magnitude |U |
across the channel at streamwise locations x1/W = 1, 2, 3, 4.
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Figure 4.25 presents time-averaged velocity magnitude U = 〈UiUi〉1/2 for a

slice at downstream position x1/W = 2, nondimensionalized by the centreline

value. It is immediately clear that jets generated from the regular grid are broken

up, and the ratio U/Uc is reasonably constant across the slice. Jets have been gen-

erated by the largest iteration of the multiscale grid, and not completely broken

up by the second iteration of smaller bars. In the fractal grid case, the middle cross

has had a profound affect on the velocity field, dominating the smaller iterations

placed around the perimeter. This is directly compared to the combined-fractal

grid, where it can be seen that the wind shadow of the middle cross has spread

more. This is encouraging for the combined-fractal grid design- jet break up at

the perimeter can be controlled by spreading solidarity away from the centre.

Figure 4.25: Time-averaged streamwise velocity for a two-dimensional slice at
x1/W = 2.

Figure 4.26 presents time-averaged turbulence intensity 〈uiui〉/2, recorded on

the x2-x3 plane at downstream position x1/W = 2. Contours have been nondi-
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mensionalized by the centreline value. There is little indication of the wind shadow

in profiles of turbulence intensity for the regular grid. In the multiscale wake,

turbulence intensity is lowest in the gaps between the largest iteration, i.e. the

locations where the smallest bars cross. For the fractal grid FG, turbulence inten-

sity is highest behind the 4 corners of the largest fractal square. This may be a

result of vorticity clustering, therefore indicating poor homogeneity. Behind the

combined-fractal grid, turbulence intensity is reasonably uniform, apart from at

the very perimeter of each corner.

Figure 4.26: Time-averaged turbulence intensity for a two-dimensional slice at
x1/W = 2.

Figure 4.27 presents the integral length scale L11 at a number of points on

the x2-x3 plane, located at downstream position x1/W = 2. Unlike previous

wind tunnel experiments where L11 is sampled along the centreline, Figure 4.27

provides more information on the turbulent scales generated by each grid bar.

Length scales produced by the regular and multiscale grid are more uniform on

99



the slice, which is to be expected, because the solidarity is sufficiently spread

across the inlet patch. Clearly a major factor to the turbulence produced behind

the fractal-type grids is the middle cross, which dominates the integral length

scales produced.

Figure 4.27: Integral length scale L11 for a two-dimensional slice at x1/W = 2.

Figure 4.28 displays the relationship between the integral length scale and

Taylor microscale. Data is sampled on the x2-x3 plane, located at downstream

position x1/W = 2. Figure 4.28 presents additional information on the length

scales generated by each grid, namely how the relationship between L11 and λ

varies across the full grid element. The fractal grid FG has produced turbulence

where the ratio of integral length scale to Taylor microscale is approximately

constant, and there appears to be a lower bound at L11/λ = 2. There is some

deviation away from L11/λ = 2 where the central cross produces large integral

length scales of turbulence. This is especially true for the fractal cases FG and

CF. Non-equilibrium turbulence has been attributed to regions where the ratio
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L11/λ is constant (Vassilicos, 2015). This has only been studied previously as a

function of streamwise position, i.e. following a parcel of decaying turbulence.

But here data is collected from a fixed streamwise position, so the turbulence

isn’t decaying with respect to position. Figure 4.28 highlights that only collecting

data along the centreline can be misleading, because statistics vary greatly in the

x2-x3 plane, especially for fractal grid designs.

Figure 4.28: Scatter plot of integral length scale L11 versus Taylor microscale λ
for each grid inlet design. Included are lines of L11/λ = 2, 6.

4.4.3 Vorticity clustering

To identify structures and turbulence clustering behind each grid design, vorticity

magnitude ω ≡ ||ω|| = √ωiωi is normalised at each downstream position x1 = x′

by its maximum value at that downstream position in the x2-x3 plane, such that

ω̌(x1 = x′) =
ω(x1 = x′)

max{ω(x1 = x′)}
. (4.16)

By the same method, the normalised streamwise component of vorticity ω̌x

is computed. It is necessary to normalise vorticity for each downstream position

in order to remove the effects of decay (Laizet and Vassilicos, 2011). Without
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normalisation, only structures directly behind the grid where vorticity is highest

would be visible.

Figure 4.29 presents isosurfaces of instantaneous vorticity magnitude gener-

ated by the regular, multiscale, and fractal-type grids. Directly behind each grid,

vorticity structures are elongated in the streamwise direction. Larger streaks are

present behind the regular and multiscale grid, with the combined-fractal grid pro-

ducing the smallest streaks. Clumping in the square-fractal and combined-fractal

grids is observed, consistent with the findings of Laizet and Vassilicos (2011),

who found fractal grids produce clustering in the vorticity field. Clustering is be-

lieved to originate from the varied development lengths of wakes behind fractal

iterations. Larger structures are shed from the middle cross and take longer to

interact with perimeter fractal iterations. In contrast to multiple wake develop-

ment lengths, a regular grid produces jets which interact at a fixed downstream

position.

Figure 4.30 presents a side view of the square-fractal and combined-fractal

generated turbulence. Streamwise regions of interest have been labelled 1-4 to

compare the turbulence development of each grid wake. In the near grid (region

1), the fractal grid FG produces streamwise elongated structures. In region 2, both

grids produce a concentration of vorticity behind the large cross. Development of

this centreline vorticity clustering is significantly different between the two grids.

In region 3, vorticity along the centreline of the combined-fractal grid begins to

equalise with vorticity around the perimeter. However, in the FG fractal case, a

centreline streak of low vorticity is observed, which persists downstream.

Figures 4.29 and 4.30 highlight an important difference between the turbu-

lence generated by regular, multiscale, square-fractal, and combined-fractal grids.

Jets emerging from the regular and multiscale geometries are uniform across the

inlet patch, which leads to a well defined transition between the production and

decay regions. In the square-fractal and combined-fractal cases, jets are spread

non-uniformly across the inlet patch, and therefore interaction occurs at a range

of downstream positions. Figure 4.30 also highlights the importance of smaller

fractal iterations surrounding the large centreline cross. In the square-fractal case,

structures shed from the centre cross dominate smaller perimeter structures in

102



(a) Regular (b) Multiscale

(c) Square-fractal. (d) Combined-fractal.

Figure 4.29: Instantaneous vorticity isosurfaces in the wake of each grid. Blue:
vorticity magnitude normalised by its maximum value at each streamwise posi-
tion. Red: x-component of vorticity normalised by its maximum value at each
streamwise position.

the near grid. At some point downstream, perimeter structures begin to domi-

nate. In the combined-fractal case, centreline and perimeter structures are well

balanced far downstream.
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1 2 3 4

(a) Square-fractal

(b) Combined-fractal

Figure 4.30: Side view of Figure 4.29 for the fractal-type grids. Regions of interest
are labelled 1-4.
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4.5 Non-equilibrium dissipation

4.5.1 Estimating dissipation

Calculation of the dissipation rate requires evaluation of spatial velocity gradients,

which are difficult to obtain experimentally. A discussion on methods to calculate

dissipation was provided in Chapter 2.1.1, but some of the points will be revisited

here. The dissipation rate is given by (Hinze, 1975)

ε = ν
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 . (4.17)

Evaluating all 12 terms of (4.17) is possible in simulations, and therefore data

is available right up to the grid. In the current simulations, the velocity gradient

tensor is evaluated along the centreline during run time. For comparison, εiso, and

εxw are also calculated by

εiso = 15ν

〈(
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)2
〉

, (4.18)

εxw = 3ν
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〉]

. (4.19)

Figure 4.31 presents the centreline development of εiso and εxw, nondimension-

alized by the full dissipation ε. It is immediately apparent that εxw underestimates

ε, and this is evident behind all 4 grids. Valente and Vassilicos (2012) reported a

similar result, however the full dissipation was not available for comparison, and
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measurements were only taken at a single point in the far field. Profiles of εiso/ε

approach a fixed value of approximately 0.89 for all cases. Neither εiso or εxw have

been found to be a suitable candidate to estimate ε.

RG MG

FG CF

Figure 4.31: Centreline development of ratios εiso/ε and εxw/ε.

To assess at which downstream position each grid injects dissipation, (4.17)

is evaluated along the centreline and displayed in Figure 4.32. Dissipation behind

the regular (RG) and multiscale (MG) grids display similar behaviour. A max-

imum is reached near grid at x1/W ≈ 0.2, at which point the profiles decrease

monotonically. Dissipation behind the fractal grid (FG) is characterised by a slow

build-up towards a peak at x1/W ≈ 0.2, but is significantly reduced for the re-

gion x1/W < 0.1. The opposite is true in the combined-fractal CF wake, where

dissipation is large in the initial build-up, and displays a peak closer to the grid.

To further understand the contrasting dissipation behaviour observed between

the regular/multiscale grids and the fractal-type grids, each individual term in

(4.17) is calculated and plotted in Figure 4.33. The last 3 terms in (4.17) are found

to be negative, therefore their sign is swapped in the plot to aid readability. In
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Figure 4.32: Streamwise development of dissipation along the centreline for each
grid.

the cases of the regular and combined-fractal grids, a significant proportion of

the dissipation near grid (x1/W < 0.1) is found to be generated by the 3 terms

〈(∂u/∂xi)2〉. Due to isotropy in the y and z directions, there are 5 pairs of terms

which are approximately equal. For example, 〈(∂v/∂x)2〉 ≈ 〈(∂w/∂x)2〉 is one

such pair. Terms 1 and 12 of the dissipation ε in (4.17) are distinct. Behind the

CF grid, 〈(∂u/∂x)2〉 is particularly active in the region x1/W < 0.2. However,

elevated levels of dissipation in the CF grid case are not solely attributed to just

one term of ε, as all terms make a contribution.

107



RG MG

FG CF

Figure 4.33: Streamwise development of each term belonging to ε from (4.17).
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4.5.2 Non-equilibrium effects

Combining the equilibrium dissipation scaling law ε = Cε U3/L with the Taylor

microscale λ2 ≡ ν U2/ε implies

CεReλ ∝
L
λ
. (4.20)

An implication of (4.20) is that as the Reynolds number is increased, a greater

range of turbulent length scales are produced. If it is assumed that Cε = const,

and the decay region of grid turbulence where Reλ is a decreasing function with

downstream position is considered, (4.20) suggests the ratio L11/λ should decrease

like Reλ. However, constant L11/λ has been observed in experiments (Vassilicos,

2015), and therefore Cε ∝ 1/Reλ.

Figure 4.34 displays the relationship between L11/λ and Reλ. Profiles of con-

stant Cε are included in each plot, which indicates dissipation in equilibrium. Be-

hind the regular, multiscale, and combined-fractal grids, L11/λ is approximately

constant, which indicates a region of non-equilibrium. This was observed in the

wake of regular, multiscale, and fractal grids in the wind tunnel experiment of Na-

gata et al. (2017). Behind the fractal grid however, the profile of L11/λ is decreas-

ing slightly with increasing Reλ. This suggests a wider region of non-equilibrium

in the FG wake.

Finally, the development of Cε along the centreline is presented in Figure 4.35.

Included are the data of Valente and Vassilicos (2011) for a square-fractal grid at

different inlet speeds. A remarkable agreement is observed between experimental

results and the regular and combined fractal cases. A greater increase in Cε is ob-

served for the FG wake, once again indicating elevated levels of non-equilibrium.

109



Figure 4.34: Ratio of longitudinal integral length scale L11 to Taylor microscale
λ.
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Figure 4.35: Streamwise development of the dissipation constant. Included are
experimental data of Valente and Vassilicos (2011) from a square-fractal grid
tested at: U∞ = 10 m/s (Ref. 1), U∞ = 15 m/s (Ref. 2).
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4.6 Chapter conclusions

Simulations of grid turbulence have been carried out using the projected inlet

method of Blackmore et al. (2013). A regular, multiscale, and two fractal grids

have been tested. To allow a fair comparison between grids, solidarity, domain size,

and inflow velocity, have been kept the same across all simulations. A solidarity

of σ = 44% is chosen to match previous investigations of Blackmore et al. (2013)

and Krogstad and Davidson (2012). Power-law decay and generated length scales

are in close agreement with experimental results, suggesting some universality

between investigations, and therefore the projected inlet method has successfully

generated grid turbulence. This method can be utilised by experimentalists to

test grid designs before they are deployed in wind and water tunnel tests.

A new fractal-type grid, referred to as the combined-fractal grid, has been

designed with the aim of improving homogeneity across the grid element. The new

design is constructed from a combination of I-fractal and square-fractal grids. The

smallest I-fractal iterations were added to improve flow homogeneity by pushing

more solidarity towards the grid element perimeter. This has been confirmed

in visualisation of the vorticity field. Less clustering is produced along the grid

elements perimeter. Homogeneity was also affected by the relative size of the

middle cross compared to neighbouring grid bars. If the middle cross is too large,

the flow might initially look to be developing towards HIT, but after an initial

period of decay, the mean flow begins to dominate the decaying turbulent field.

This was confirmed by sampling data from a cross-sectional plane, whose normal

is orientated in the streamwise direction. It was seen how both fractal-type grids

produce large turbulent length scales along the centreline. Poor homogeneity

was reported in the wind tunnel experiment of Hearst and Lavoie (2014), which

contradicted previous fractal grid experiments. Two explanations are offered here.

Firstly, their grid was constructed with a length scaling parameter of RL = 0.44,

resulting in a space-filling parameter of Df = 1.71. This is known to be too low

(Hurst and Vassilicos, 2007), and almost certainly contributed to inhomogeneity.

A parameter study has been conducted on Df , and high velocity streaks were

observed at the channel perimeters when Df < 2.0. Secondly, it is suspected that

their central cross was too big, i.e. t0 was too large, introducing even more flow
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inhomogeneity. Although only one element was considered in the two fractal grids

tested here, and therefore homogeneity would improve if more elements were tiled,

it is still important to understand the wake generated by a single element. For

example, it was observed that neighbouring wakes generated by grid bars behind

the fractal grid do not always interact, which can generate high speed velocity

streaks.

Despite having the lowest grid Reynolds number Re0, the combined-fractal

design produces a local Reynolds number Reλ which was comparable to other

grids tested in this study. Elevated turbulence levels are often desirable in exper-

iments, and the combined-fractal grid shows promise of this. Decay of Reλ was

also found to be abrupt. In addition to this, large decay exponents of n ≈ 2 were

observed behind the combined-fractal grid. This finding supports the claim from

experimentalist that turbulence decay is altered by the fractal grid geometries.

To understand how the fractal and combined-fractal grids produce different

decay characteristics, the full form of the dissipation term is evaluated along the

centreline. This includes measurements directly behind the grid, which are not

possible to collect in HWA wind tunnel experiments due to the high level of

turbulence intensity and anisotropy in the production region. Surrogates of the

exact dissipation were also calculated to compare their accuracy. Results suggest

that the common X-wire approximation to the dissipation εxw significantly under

predicts the true value. However, the isotropic form εiso was found to be a rea-

sonable estimate in the far field. Elevated levels of dissipation were observed in

the production region of the combined-fractal grid. This was investigated further

by considering each term of the full dissipation. It was found that, whilst all 12

terms play a role in generating high levels of ε, the terms 〈(∂u/∂xi)2〉 are signif-

icant contributors. Non-equilibrium turbulence decay is assessed in the wake of

each grid. Usual markers of non-equilibrium are calculated, i.e. constant L11/λ,

and increasing Cε. Although some non-equilibrium effects are detected behind

the regular, multiscale, and combined-fractal grids, the fractal grid produces a

longer region of non-equilibrium dissipation.

To conclude, numerical simulations of grid turbulence can be used to guide

experimentalists on grid design. Care must be taken when designing such grids,
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because flow homogeneity can be difficult to guarantee. A key finding of this chap-

ter is that fractal grids can be constructed which spread solidarity away from the

centre, much like a regular grid. However, it is difficult to predict how the wakes

created from each bar will interact with jets from the grid gaps. The projected

inlet technique is a suitable method to generate free-stream turbulence, and this

has been confirmed with regular, multiscale, and fractal-type grids. Different tur-

bulent characteristics, such as non-equilibrium decay, have been observed behind

each grid. There is potential for researchers to customise grid turbulence towards

their application, for example, grid elements of the inlet can be arranged to pro-

duce a non-uniform profile of turbulence. It is also possible to assign some time-

varying profile at the inlet to model gusts of turbulence, which is a key property

in wind engineering. In the following chapter, the projected inlet method will be

used to generate custom free-stream turbulence past a circular cylinder.
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Chapter 5

Simulating turbulent flow past a

circular cylinder

Turbulent flow past a circular cylinder is investigated numerically for a circular

cylinder Reynolds number of 3900. Three types of inflow are generated at the

inlet. The first case is laminar inflow, which is the most common configuration

found in the literature on flow past a circular cylinder. The second and third

inflow conditions are of non-negligible turbulence, generated by projecting grid

blockages onto the inlet patch. The simplest grid geometry to use on the inlet

patch is the biplane grid, constructed from a lattice of vertical and horizontal

bars. The second type of grid used is the combined-fractal, which produces a

range of length scales due to the multiscale nature of the grid design. The in-

fluence of inflow turbulence on the circular cylinder wake is analysed for each

inlet grid geometry. Time-averaged velocity profiles reveal how upstream turbu-

lence produces a narrowed wake. Dissipation is split into coherent and stochastic

components, and a new surrogate of dissipation is developed which outperforms

other methods, and can be evaluated with fewer terms of the velocity gradient

tensor. The velocity gradient tensor is analysed for snapshots in time, making it

possible to compare the topology of turbulence in the wake for each inlet case.

Turbulence dissipation is found to be concentrated in between streamwise ribs,

which is in contrast to the model of Chen et al. (J. Fluid Mech., vol. 835, 2018,

pp. 271–300), where it resides in the primary rollers.
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5.1 Introduction

The flow past a circular cylinder at Reynolds number ReD = 3900, where D is

the cylinder diameter, has been investigated extensively in both experiments and

numerical simulations. Some of the main findings were discussed in Chapter 2, so

only a brief review is covered here. The first point to note is that inflow turbulence

plays a different role between experiments and simulations. In experiments it can

be difficult to produce a smooth flow upstream of the circular cylinder. This

was observed in the experiment of Lourenco and Shih (1993), where turbulence

of an unspecified level was introduced into the inflow, causing early separation

in the shear layers and a reduced recirculation length. However, in numerical

simulations, turbulence is difficult to produce at the inlet. Instead researchers opt

to prescribe a laminar inflow, because mesh grading at the inlet would dissipate

any turbulence regardless (Breuer, 1998b; Lysenko et al., 2012). This is reflected

in the vast amount of numerical studies carried out on laminar flow past a circular

cylinder (Beaudan and Moin, 1994; Mittal and Moin, 1997; Kravchenko and Moin,

2000; Franke and Frank, 2002; Dong et al., 2006; Meyer et al., 2010; Prsic et al.,

2014).

To the author’s knowledge, the most relevant study concerning the simulation

of turbulent flow past a circular cylinder is Aarnes et al. (2018). However, this

study was undertaken at a lower Reynolds number range 180 < ReD < 250 to

investigate the transition to three-dimensionality, and turbulence was artificially

generated prior to seeding through the inlet. Here a different approach is taken.

With the increased interest in customising grid turbulence (Sakai and Vassilicos,

2016), the next step in the study of turbulent flow past a circular cylinder is better

control of the inflow turbulence. Simulation of grid turbulence was considered in

Chapter 4 by projecting grid designs onto the inlet patch. A circular cylinder can

now be placed in the wake of a regular and combined-fractal grid. A schematic

of the flow field and computation set-up, including coordinate system used, is

presented in Figure 5.1.

Despite the lack of simulations concerning a turbulent flow past a circular

cylinder, there are numerous motivations for simulating this flow. One key ad-

vantage of simulations over experiments is the ease at which the whole flow field
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x, x1

y, x2

U∞, L11, I

Figure 5.1: Schematic of turbulent flow past a circular cylinder. Inflow is charac-
terised by bulk velocity U∞, integral length scale L11, and turbulence intensity I.
Axial direction (z, x3) out the page.

can be sampled, including the recirculation region. This is especially true for the

velocity gradient tensor VGT, which is difficult to measure in experiments (Wal-

lace, 2009). However, the VGT is required to identify coherent structures, which

are important to understand in terms of interactions between primary vortex

rollers and smaller three-dimensional structures in the wake.

The VGT is also required when measuring the dissipation rate ε. In the low-

turbulence wind tunnel experiment of Browne et al. (1987), single hot wires and

single X-wires were placed in the far field (x/D = 420) for a cylinder wake flow at

Reynolds number ReD = 1170. Taylor’s frozen turbulence hypothesis was enforced

to calculate velocity derivatives. They reported the isotropic form of dissipation

εiso to be approximately 45% smaller than ε. Hao et al. (2008) also found εiso

to be smaller than ε, but only by 10% in their circular cylinder wind tunnel

experiment conducted at downstream position x/D = 240, and Reynolds number

ReD = 2000. Chen et al. (2018) enforced homogeneity in the transverse plane

(y-z) to calculate a surrogate of dissipation εyz, which served as a reference value

for the true mean energy dissipation for their study of the circular cylinder wake.

Measurements were recorded at downstream positions x/D = 10, 20, and 40 for a

Reynolds number of ReD = 2500. Dissipation was found to be concentrated in the

coherent spanwise vortex rollers, in contrast with the model of Hussain (1986)

and Hussain and Hayakawa (1987) where it resides in regions of high mixing.
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It is noted here that Browne et al. (1987) and Chen et al. (2018) sampled the

wake flow at considerably different streamwise locations, i.e. x/D = 420 and

x/D = 10 to 40, respectively. Therefore it is possible that dissipation resides in

the primary rollers close to the circular cylinder, but once primary rollers are

broken down, it moves into areas of high mixing. However, Browne et al. (1987)

and Chen et al. (2018) both collected measurements at a single point in space,

which makes it difficult to build a three-dimensional picture of the interaction

between dissipation and coherent structures.

This chapter aims to improve understanding of the dissipation in the wake of

a circular cylinder for laminar and turbulent inflow. It is important to establish

the projected inlet method for the simulation of free-stream turbulence flow past

a circular cylinder. The affect of inflow turbulence on the wake structures will

be studied. In addition to this, a three-dimensional picture of the turbulence

dissipation will be developed, which is absent from the literature. The present

chapter is structured as follows. First, the numerical procedure is outlined and

the smooth inflow case is simulated for validation against experimental data.

The next step is to project a grid onto the inlet patch and simulate free-stream

turbulent flow past a circular cylinder. Wake dynamics are compared between

simulations to capture the effects of free-stream turbulence. This comparison

includes a look into the turbulence topology through analysis of the velocity

gradient tensor. Finally, a model of the interaction between coherent structures

and the dissipation is developed.

5.2 Laminar inflow case

5.2.1 Numerical procedure

Flow past a circular cylinder at Reynolds number ReD = 3900 is modelled nu-

merically using large-eddy simulation. A Cartesian coordinate system is used to

define the computation domain, i.e. orthogonal basis of x, y, z (or equivalently

x1, x2, x3) which are referred to here as, respectively: streamwise, normal, and

axial directions. Index notation xi (i = 1, 2, 3) is only used briefly when it is con-

venient to introduce Einstein summation convention. The 3 components of veloc-
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Patch U (m/s) p (m2/s2) k (m2/s2)

Inflow (Uin, 0, 0) zeroGradient 1× 10−4

Outlet inletOutlet 0 inletOutlet

Cylinder wall (0, 0, 0) zeroGradient 0

Side patches symmetry symmetry symmetry

Top/bottom cyclic cyclic cyclic

Table 5.1: Boundary patch prescriptions in OpenFOAM for the simulations of
flow past a circular cylinder.

ity are given by U, V,W . Similarly, velocity fluctuations are denoted by u, v, w.

A circular cylinder of diameter 6 mm is placed at the origin of the computa-

tional domain. Coordinates of the circular cylinder axis are given by: x = y = 0,

and z ∈ [0, 40 mm]. This yields an axial length of Lz = 6.6̇D, which complies

with the recommended Lz ≥ πD found to be sufficient in previous studies at

the same Reynolds number- Ma et al. (2000), Kravchenko and Moin (2000), and

Parnaudeau et al. (2008). The domain extends ±10D in the crossflow direction,

and 15D in the downstream direction, similar to the domain of Ma et al. (2000).

The inlet plane is positioned 30D upstream of the cylinder because additional

simulations with a turbulent inflow require an extended development length.

For the laminar inflow case, a fixed velocity of U = (Uin, 0, 0) is prescribed

across the full inlet patch to yield a circular cylinder Reynolds number of ReD =

3900. Velocity at the outlet boundary is prescribed using the OpenFOAM bound-

ary condition inletOutlet, which switches from zeroGradient to fixedValue if

back flow occurs. This boundary condition is suitable for the advection of vortical

structures through the outlet. Zero gradient for pressure is prescribed across the

full inlet patch. Pressure is fixed at the outlet boundary, with value 0. A sym-

metry boundary condition is prescribed at the side patches for all fields. Periodic

boundary conditions are specified at the cylinder ends, replicating an infinite as-

pect ratio. Table 5.1 presents a summary of the boundary conditions used for

velocity and pressure.

As in Parnaudeau et al. (2008), the turbulent wake is assumed to be fully
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developed after T = 150D/U∞. With the flow parameters considered in this

study, D = 6 mm and U∞ = 0.78 m/s, this corresponds to 1.15 s. Additionally, a

minimum of 52 shedding periods will be collected to ensure statistical convergence

(Parnaudeau et al., 2008). An estimation of the time taken to capture 52 shedding

periods is calculated by setting a Strouhal frequency of St = 0.215, which is in

agreement with results from literature. From St = 0.215 it is estimated that 52

sheds corresponds to 1.86 s of flow time. Therefore, each simulation is ran till 3

seconds is acquired, from which the first 1.15 s is discarded.

Figure 5.2 displays the meshing strategy employed. A region of close refine-

ment near the cylinder is controlled by the number of radial elements Nr. A min-

imum of 48 computational cells are required over a spanwise length of Lz = πD

(Franke and Frank, 2002; Parnaudeau et al., 2008; D’Allessandro et al., 2016).

Therefore, for a cylinder length of Lz = 6.66̇, Nz = 100 is sufficient. Figure 5.3

presents a slice through the mid-plane of a computational mesh with approxi-

mately 20 million cells, demonstrating the mesh distribution of the O-type grid

employed in this study. Refinement is concentrated around the cylinder surface

in body fitted layers, which increase in thickness away from the surface in the

radial direction.

Nx1 Nx2 Nx3

Ny

Nr

Figure 5.2: Blocking and meshing strategy for the circular cylinder simulations.

LES simulations were ran in OpenFOAM v4.1. A description of the numerical

settings selected throughout this study are detailed in Appendix A. Additionally,
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Figure 5.3: A slice through the O-grid mesh and close up of cyinder surface mesh
layers.

the k-equation SGS model of Yoshizawa (1986) was detailed in Chapter 3. It is

necessary to conduct a mesh independence study on the laminar inflow case to

ensure the chosen computational mesh sufficiently resolves the flow field in the

wake. Table 5.2 presents the details of 4 structured grids used to determine the

minimum resolution required for the number of radial elements Nr (see meshing

strategy Figure 5.2). The recirculation length is reported for each simulation,

which is taken to be the distance from the cylinder base to the sign change where

〈U〉 first becomes positive. Included are the PIV results of Parnaudeau et al.

(2008), where it was found that Lr/D = 1.51.

Case ReD Nr Nz N (×106) Lr/D

LI1 3900 50 100 8.8 0.82

LI2 3900 100 100 10.4 1.39

LI3 3900 200 100 16.4 1.49

LI4 3900 300 100 25.2 1.49

Exp. 3900 - - - 1.51

Table 5.2: Mesh independence grids for the laminar inflow (LI) case. Experimental
results of Parnaudeau et al. (2008).
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Figure 5.4 presents the development of time-averaged streamwise velocity

〈U〉/U∞, and variance 〈u2〉/U2
∞ along the wake centreline. Included are the PIV

experimental results of Parnaudeau et al. (2008). Zero velocity is observed at the

cylinder wall due to the no-slip condition, followed by a region of recirculation

in the near wake of each grid. Profiles of 〈U〉 then recover further downstream

to an asymptotic value. Two peaks are visible in the profiles of variance 〈u2〉,
which is in agreement with Parnaudeau et al. (2008). The coarsest mesh resolu-

tion LI1 has generated a considerably shorter recirculation region Lr/D = 0.82,

it is therefore unable to sufficiently capture the shedding phenomena. The meshes

of LI3 and LI4 both predict a recirculation length of Lr/D = 1.49, which is in

close agreement to the PIV results from literature: Lr/D = 1.51.

Figure 5.4: Centreline development of time-averaged streamwise velocity and ve-
locity variance. PIV data are from the experiment of Parnaudeau et al. (2008).

Figure 5.5 presents profiles of velocity at 3 downstream locations in the wake:

x/D = 1.06, 1.54, 2.02. A velocity deficit is observed behind the cylinder in profiles

of time-averaged streamwise velocity 〈U〉. Profiles of 〈U〉 close to the cylinder

(x/D = 1.06) are characterised by a U-shape, which evolves into a sharper V-

shape further downstream. Typically, experiments and numerical simulations have

reported two distinct mean streamwise velocity profiles at x/D = 1.06, those

being U-type and V-type solution.

The presence of a U-shape has been confirmed across previous numerical and

experimental studies (Ma et al., 2000; Parnaudeau et al., 2008), therefore it is
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Figure 5.5: Mesh independence test. Time-averaged velocities in the near wake,
for 3 streamwise locations: x/D = 1.06, 1.54, 2.02. Profiles at x/D = 1.54 and
x/D = 2.02 have been shifted to fit onto the same figure as x/D = 1.06. PIV
experimental results of Parnaudeau et al. (2008).
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encouraging to find it here for the mesh resolutions of LI2, LI3, and LI4. How-

ever, the coarsest mesh resolution LI1 predicts a V-shape, which was reported in

the experimental data of Lourenco and Shih (1993), and is most likely a result

of inflow turbulence. Antisymmetry about y = 0 is observed in profiles of 〈V 〉
for all mesh resolutions. Apart from LI1, all other mesh resolutions are in close

agreement to the experimental data. This has been seen across the profiles of

velocity variance: 〈u2〉, 〈v2〉, and 〈uv〉.
To summarise this mesh independence study, a coarse grid is unable to predict

the correct recirculation length, and the velocity deficit recovers too quickly as

a result. A similar effect was observed in the experiment of Lourenco and Shih

(1993), where inflow turbulence caused an early separation in the shear layers

and a reduced recirculation length. The mesh resolution of LI2 showed some

improvement to LI1, but still predicted a slightly reduced recirculation length

of Lr/D = 1.39, and a lower asymptotic value of 〈U〉 (Figure 5.4). Acceptable

agreement has been observed between the PIV results of Parnaudeau et al. (2008)

and the mesh resolutions LI3, LI4. Therefore it is concluded that Nr = 200 is

sufficient to capture the wake dynamics.
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5.3 Grid turbulence inflow

A regular and combined-fractal grid are projected onto the inlet patch for the

turbulent inflow simulations. These two cases were chosen from the findings of

Chapter 4. A regular grid is chosen because it is the most common grid design

used throughout experiments, and is the closest approximation to homogeneous

isotropic turbulence. This is contrasted to the new combined-fractal design, which

is constructed from a fractal pattern of varying bar widths and lengths. The inlet

is split into two patches: (i) zero velocity at solid patches, where grid bars are

projected; (ii) non-zero velocity Uin = (Uin, 0, 0) in the gaps between grid bars.

This configuration is displayed in Figure 5.6.

Cyl.

U∞

Regular grid inlet (RGI)

Fractal grid inlet (FGI)

15D30D

10D

U∞

Figure 5.6: Top: regular grid with cylinder placed in the free-stream. Screen shot
from Paraview geometry creation. Bottom: regular and fractal grid designs pro-
jected onto the inlet patch, and two-dimensional slice of the computational do-
main (not to scale).

To yield a cylinder Reynolds number of ReD = 3900, the inflow velocity
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Uin is adjusted by trial and error until a free-stream velocity of U∞ ≈ 0.78 is

achieved. To monitor this, a number of probes are placed between the grid and

cylinder, along the domain centreline. Velocity is recorded at each location and

time-averaged to obtain U∞. Figure 5.7 displays the Reynolds number ReD for

each grid, upstream of the cylinder. It is trivial to control the laminar inflow

Reynolds number, but it can be seen how the grid turbulence cases display a

velocity deficit, before building towards a free-stream velocity U∞. It has been

ensured that the turbulence behind each grid has enough time to develop before

passing the cylinder. A reasonable match in ReD for each simulation has been

achieved. It is noted that profiles of ReD begin to feel influence from the cylinder

at approximately x/D = −5. In the short region −5 < x/D < −0.5, velocity

decreases from a free-stream value of U∞, to zero velocity at the circular cylinder.

Figure 5.7: Reynolds number along the domain centreline, from the inlet (x/D =
−30), to the cylinder front (x/D = −0.5).

To obtain lift and drag forces on the circular cylinder, the OpenFOAM forces

library is specified in the controlDict file. A time-series of pressure and viscous

forces are generated in each direction (x, y, z). The total force on the cylinder

is obtained by taking the sum of the pressure and viscous forces. Time series of

drag and lift are extracted from the streamwise (x) and normal (y) components

of force, respectively. Coefficients of lift and drag forces can then be calculated
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by

Cl =
Fl

1
2
ρU2
∞Aref

, (5.1)

Cd =
Fd

1
2
ρU2
∞Aref

, (5.2)

where Fl and Fd are the lift and drag forces experienced on the cylinder surface,

respectively, and Aref is a reference area taken to be the total surface area of the

cylinder. A Discrete Fourier Transform (DFT) of the lift coefficient is computed in

Matlab to extract the shedding frequency fs, which can then be used to calculate

the Strouhal frequency St = fsD/U∞.

In addition to the upstream Reynolds number, turbulence levels are also

recorded. The turbulence intensity in each direction is given by

I1 =
urms

U∞
, I2 =

vrms

U∞
, I3 =

wrms

U∞
, (5.3)

where urms =
√
〈u2〉, vrms =

√
〈v2〉, wrms =

√
〈w2〉 are, respectively, the root-

mean-square (r.m.s.) velocity fluctuations in the x, y, and z directions. Turbulence

intensity percentage is given by

I =

√
1

3
(I2

1 + I2
2 + I2

3 ) . (5.4)

A distinction is made here between I and I1, although it is not always clear

in the literature which turbulence intensity has been used. It is common to only

use I1 and refer to this as the turbulence intensity. Another important parameter

in the characterisation of inflow turbulence is the approximate size of large-scale

eddies, given by the longitudinal integral length scale L11

L11(x) =
1

〈u2(x)〉

∫ ∞
0

〈u(x)u(x+ s)〉 ds . (5.5)

Figure 5.8 presents I (%) and L11/D recorded upstream of the circular cylin-

der. Although the turbulence intensity I (%) grows initially near grid in the tur-

bulence production region, it begins to decay towards the cylinder. The integral
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length scale close to the inlet is scattered due to the presence of unbroken jets

emerging from the turbulence-generating grid. At x/D = −20, it begins to settle,

and then steadily grow towards the cylinder. The regular grid has produced a

higher level of turbulence intensity I (%), and a larger integral length scale L11.

The most likely reason for this, which was observed in Chapter 4, is the width

of the central bar. Figure 5.8 highlights the importance of monitoring the inflow

conditions between the inflow and circular cylinder, because turbulence levels

and length scales develop along the streamwise direction, and cannot simply be

taken at a single point. The region −10 < x/D < −5 is considered to be far

enough away from the inlet, such that turbulence has time to develop, but is also

unaffected by the cylinder. Therefore, measures of free-stream velocity, integral

length scale, and turbulence intensity have been calculated by taking averages in

this region. Table 5.3 presents chosen simulation parameters and free-stream flow

conditions for each run.

Figure 5.8: Turbulence intensity I and integral length scale L11/D between the
grid inlet and circular cylinder.

Figure 5.9 plots the mean drag coefficient 〈Cd〉 against the turbulence pa-

rameter Re1.34
D T , where T = I1(D/L11)0.2 is the Taylor parameter. This plot

has been reproduced from Kiya et al. (1982), with addition of results from the

current simulations. The wind tunnel experiments of Fage and Warsap (1929);

Surry (1972); Bruun and Davies (1975); Kiya et al. (1982) were ran at a higher

Reynolds number range (104 < ReD < 106), and the turbulence is assumed to

be fully developed. It is clear from Figure 5.9 why this Reynolds number range

is chosen, because it covers the sharp decrease in the drag coefficient. Profiles
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Inflow conditions Averaged properties

ReD L11/D I1, I2, I3 (%) I (%) St 〈Cd〉 Lr/D

LI 3900 0.00 0.0, 0.0, 0.0 0.0 0.218 1.03 1.49

RGI 3850 0.67 7.1, 7.1, 7.1 7.3 0.207 1.18 0.88

FGI 4050 0.56 3.9, 6.7, 4.4 4.1 0.224 1.35 0.96

Table 5.3: Inflow conditions and averaged properties for the laminar/turbulent
flow past a circular cylinder.

of 〈Cd〉 are reasonably well collapsed by Re1.34
D across the experiments, which is

encouraging because Re1.34
D contains defining parameters of turbulent flow past a

circular cylinder, i.e. Reynolds number, turbulence intensity, and integral length

scale.

Figure 5.9: Mean drag coefficient 〈Cd〉 plotted against the parameter Re1.34
D T for

the current simulations and previous experiments.

In the range reported here, increasing Re1.34
D T leads to asymptotic behaviour

towards 〈Cd〉 = 0.4. However, profiles of 〈Cd〉 for the lower limits (Re1.34
D T < 105),

asymptote towards different values. The experimental data of Kiya et al. (1982)

match with the RGI case, while the data of Surry (1972) are closer to FGI. Kiya
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et al. (1982) were aware of the limitations, concluding: “It is doubtful, however,

whether the parameter Re1.34
D T uniquely controls all the aspects of the flow past

a circular cylinder immersed in turbulent streams”.

5.4 Cylinder shedding response

5.4.1 Mean wake profiles

Figure 5.10 plots the mean streamwise velocity and velocity variance along the

wake centreline. Included is the PIV experiment of Parnaudeau et al. (2008). At

the cylinder base (θ = 180◦), the velocity is zero due to the no-slip condition. A

region of recirculating flow is found in the very near wake (x/D < 2), where the

velocity reaches a minimum of Umin. Profiles of 〈U〉 then recover and asymptote

towards the free-stream value U∞. The laminar inflow matches closely to the

experimental results- correctly predicting the position of a velocity minimum

Umin, and producing a similar recirculation length. Free-stream turbulence has

reduced the recirculation length, and produced different behaviour for x/D > 4.

An increase in 〈u2〉 is observed directly behind the cylinder as the turbulence

develops spatially. A maximum is then reached at an approximate position of

x/D = 1.5. Two peaks in the very near wake x/D < 2 are present in the PIV

data of Parnaudeau et al. (2008). Norberg (1998) also reported two peaks in their

study and attributed one of the two peaks to the cross over of mode B streamwise

ribs.

Figure 5.11 presents profiles of velocity at 3 downstream locations in the wake:

x/D = 1.06, 1.54, 2.02. Profiles of 〈U〉 at x/D = 1.06 reveal how inflow turbulence

causes an early separation in the shear layers and therefore a small recirculation

region. A U-shape is predicted in the laminar inflow case (LI), and with the PIV

of Parnaudeau et al. (2008). A V-shape is predicted for the turbulent inflow cases

(RGI, FGI), and the PIV of Lourenco and Shih (1993).
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Figure 5.10: Mean streamwise velocity and velocity variance along the wake cen-
treline for the circular cylinder at ReD = 3900. PIV experimental results of Par-
naudeau et al. (2008).
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Figure 5.11: Time-averaged velocities in the near wake for 3 streamwise locations:
x/D = 1.06, 1.54, 2.02. Profiles at x/D = 1.54 and x/D = 2.02 have been shifted
to fit onto the same figure as x/D = 1.06. Exp. 1: PIV experimental results of
Parnaudeau et al. (2008). Exp. 2: PIV experimental results of Lourenco and Shih
(1993).
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5.4.2 Phase averaging procedure

Turbulent signals downstream of a wake generator, such as a cylinder, can be

decomposed into time-averaged, phase averaged, and stochastic components. Pe-

riodic shedding from the cylinder contributes to the phase averaged component

of the turbulent signal. For an arbitrary turbulent time series signal f(t), a de-

composition is defined by (Hussain and Reynolds, 1970)

f = 〈f〉+ f̃ + f ′′ , (5.6)

where 〈f〉 is the time-average, f̃ is the phase averaged component, and f ′′ is the

stochastic component. The phase averaging procedure is defined by

f̃ = lim
N→∞

1

N

N∑
n=0

f(t+ nτ)− 〈f〉 , (5.7)

for some wave period τ , corresponding to the periodic vortex shedding of the

circular cylinder.

To perform phase averaging, a trigger signal is required to determine the wave

phase at each time step. Hussain and Reynolds (1970) developed the theory of

phase averaging by conducting experiments of flow past ribbons with controlled

oscillation. A reference signal can be extracted directly or indirectly from the

velocity field by conditional averaging, e.g. Sung and Yoo (2001), Lourenco et al.

(1997), Kim et al. (2002). However, a time series of lift on the geometry surface

has been generated in the current study, which can be processed to deduce phase

information (Braza et al., 2006).

Shedding from the circular cylinder is periodic, which results in a sinusoidal

profile of the lift coefficient Cl. Each instance in time corresponds to a phase angle

ϕ ∈ [−π, π] of shedding. A Hilbert transform of the lift coefficient Cl is taken to

yield the phase angle ϕ for each time step. Time-series of the phase angle is

then discretised into 32 bins, such that ϕ = −π + 2π(n/32), for n = 0, 1, . . . , 31.

Figure 5.12 presents the resulting phase averaged lift coefficients C̃l for each

simulation. Each profile is symmetrical about ϕ/π = 0, where a maximum in C̃l

is found. This phase corresponds to a vortex shed from the bottom surface of the
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circular cylinder. A phase angle of ϕ/π = −1 corresponds to shedding of a vortex

from the top of the circular cylinder, and a minimum in Cl is experienced. The

coefficient of lift increases drastically with a turbulent inflow, which has been seen

in experiments, albeit for larger Reynolds numbers ReD > 1 × 105 (Blackburn

and Melbourne, 1996).

Figure 5.12: Phase averaged coefficient of lift C̃l as a function of phase angle ϕ/π.

5.4.3 Wake structures

Figure 5.13 display contours of velocity magnitude sampled on a 2D slice along the

mid-plane. The plane extends 6 diameters upstream, 14 diameters downstream,

and 4 diameters either side. Snapshots have been taken at a phase of ϕ/π = −1

to allow for a fairer comparison between simulations. This particular phase angle

is characterised by the shedding of a vortex from the top of the cylinder. In the

laminar inflow case (LI), a well defined von Kármán street is visible. This can also

be seen in the turbulent inflow cases, however, there appears to be a breakdown

of the primary vortex shedding further downstream.

Although contours of vorticity are commonly used to visualise the flow field

and structures, this method is unsuitable for identifying vortices because there

is no distinction between shearing, and the swirling motion of a vortex. The
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LI

|U |/U∞

RGI

|U |/U∞

FGI

|U |/U∞

Figure 5.13: Contours of velocity magnitude along the axial mid-plane z = Lz/2.
Each snapshot is taken at phase angle ϕ/π = −1.

velocity gradient tensor serves as the starting point for many theories of vortex

identification, and there are typically two approaches. The first approach is to
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decompose the VGT into strain and rotation rate tensors, Aij = Sij + Ωij, where

Sij =
1

2
(Aij + Aji) , (5.8)

Ωij =
1

2
(Aij − Aji) . (5.9)

A second approach is through the characteristic equation. Let λi denote the

eigenvalues of the VGT, the characteristic equation for Aij is (Hunt et al., 1988)

λ3
i + Pλ2

i +Qλi +R = 0 , (5.10)

where P , Q, R are the first, second, and third invariants of the velocity gradient

tensor, respectively. The invariants of a second order tensor can be related to its

eigenvalues by here utilising properties of the roots of a cubic equation, along

with eigenvalue theory (Davidson, 2015)

P = (λ1 + λ2 + λ3) = −tr(Aij) , (5.11)

Q = (λ1λ2 + λ2λ3 + λ3λ1) = −1

2
tr(A2

ij) , (5.12)

R = (λ1λ2λ3) = −det(Aij) . (5.13)

The first invariant is zero due to incompressibility, i.e. P = (λ1 +λ2 +λ3) = 0.

The second invariant is re-written here to highlight its physical importance.

Q = −1

2
AijAji , (5.14)

= −1

2
(Sij + Ωij)(Sij − Ωij) , (5.15)

=
1

2
(ΩijΩij − SijSij) , (5.16)

from which it can be seen that the sign of Q is an indicator of the balance between

rotation and strain. It is possible to rewrite (5.16) in terms of the vorticity vector
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by noting ΩijΩij = ωiωi/2, from which

Q =
1

4
(ωiωi − 2SijSij) , (5.17)

= Qω +QS . (5.18)

It can also be shown that Q = tr(H)/2, where H is the pressure Hessian-

see Lesieur et al. (2005) for discussion. The Q-criterion (Hunt et al., 1988), is a

vortex identification method which exploits two properties of vortices: (i) vorticity

dominates strain such that Q > 0, (ii) a local pressure minimum is observed in

vortex cores. However, requiring that there is a pressure minimum is a weak

argument, as highlighted by Jeong and Hussain (1995)- “Thus, the existence of

a local pressure minimum is neither a sufficient nor a necessary condition for

the presence of a vortex core in general”. Jeong and Hussain (1995) proposed a

definition of a vortex from considering the eigenvalues of the symmetric tensor

S2 + Ω2. If the eigenvalues are ordered such that λ1 ≥ λ2 ≥ λ3, a sufficient

condition for a vortex is that λ2 < 0.

The third invariant R provides a measure of compression and stretching

(Davidson, 2015), therefore Q and R can be used in tandem to classify differ-

ent regions of turbulence. Every realisation of Aij in a turbulent flow corresponds

to a point on the Q-R diagram and can be classified according to the quadrant it

lies within. Additional classifications of the Q-R diagram are found by considering

the discriminant function for incompressible flow

ΛL = Q3 +
27

4
R2 . (5.19)

Eigenvalues of Aij form a complex conjugate pair when ΛL > 0, and this cor-

responds to closed streamlines (when moving in the Lagrangian reference frame).

When ΛL < 0, the eigenvalues are real. Table 5.4 provides a classification of vor-

tex behaviour based on the sign of ΛL and R. Zeros of the discriminant function

(5.19) are given by

Q∗ = −3

(
R2

4

)1/3

. (5.20)
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R > 0 R < 0

ΛL > 0 Vortex compression Vortex stretching

ΛL < 0 Bi-axial strain Axial strain

Table 5.4: Turbulent structure identification from Perry and Chong (1987).

As a reference, aR-Q diagram is constructed from DNS data of forced isotropic

turbulence (Li et al., 2008), accessed from the Johns Hopkins turbulence database

(Wan et al., 2016). The full data set compromises velocity and pressure fields on

a 10243 grid for 5028 time samples. Temporal and spatial derivatives are also

available. Data in Figure 5.14 has been generated from the velocity gradient

tensor at a snapshot in time (t = 1). A total of 163 uniformly distributed positions

are sampled from. Behaviour of the flow at each sample point is classified by its

position on the R-Q diagram, which is divided into 6 separate regions (I − V I)

by the lines Q = 0, R = 0, and ΛL = 0. As hoped, common features of the

Q-R diagram for homogeneous isotropic turbulence can be observed. These are:

(i) clustering around R = Q = 0, (ii) a tear-drop shape with a Vieillefosse tail

(Vieillefosse, 1984).

Figure 5.15 presents a view from above the von Kármán vortex street. In

the laminar inflow case, the primary rollers are easily identified, and there are

no structures in the neighbourhood. This is in contrast to the turbulent inflow

simulations, where the vortex sheet is less well defined, and structures from the

free-stream turbulent flow are engulfed into the wake. Figure 5.16 presents the

same field of Q isocontours from a side view. Each wake looks similar- the primary

shedding structures are identified, and there are streamwise ribs running between

the rollers.
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V
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Figure 5.14: R-Q diagram constructed from results of triply periodic, forced
isotropic turbulence DNS of Li et al. (2008). The discriminant function ∆L = 0
has been represented as a solid red line.
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LI

RGI

FGI

Figure 5.15: Snapshot of the circular cylinder wake for each inflow case. Coherent
structures are visualised by isovolumes of Q = 10000, and coloured by normal
velocity V to highlight the different sides of the primary vortex rollers. Each
snapshot is taken at phase angle ϕ/π = −1.

140



LI

RGI

FGI

Figure 5.16: Snapshot of coherent structures in the circular cylinder wake for each
inflow case. See Figure 5.15 for further description.
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5.4.4 Role of non-normality

In Figure 5.17, contours of Q = 5000 coloured by V are presented for the case of

the laminar inflow at ReD = 3900. To compare the cylinder wakes produced by

each inlet grid, only a small portion of the computational domain is considered. A

sampling box is centred at (x, y, z) = (5D, 0, 0) and extends 10D in the streamwise

direction, and 4D in both the normal and axial direction. As can be seen in

Figure 5.17, the chosen location of the box covers a number of primary and

secondary shedding structures (Williamson, 1996).

Figure 5.17: Snapshot of the cylinder wake for the laminar inflow case (LI). Co-
herent structures are visualised by isovolumes of Q = 5000, and coloured by
normal velocity V to highlight the different sides of the primary vortex rollers.
The region of interest for the present study is highlighted by a faint yellow box
in the cylinder wake.

Figure 5.18 displays the Q-R diagram for each inflow condition. The percent-

age of points which lie in each region is marked in square brackets. Each Q-R

diagram takes on a classical tear-drop shape, and there is significant clustering

around the Vieillefosse tail. Interestingly, despite the changes in wake dynamics

between a laminar and turbulent inflow, each region contains approximately the

same percentage of points across each inlet condition.

Keylock (2018) introduced an alternative approach to analysing the VGT

by first taking a Schur decomposition. The VGT is decomposed by A = B +C,

whereB contains dynamics driven by the eigenvalues, andC contains non-normal
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Figure 5.18: Q-R diagram for each inflow case. Each region is marked by the
percentage of points occupied within that region.

effects of the VGT. A measure of normal versus non-normal dynamics is therefore

κB,C =
‖B‖ − ‖C‖
‖B‖+ ‖C‖

. (5.21)

Figure 5.19 displays the joint probability distribution for marker κB,C, con-

ditioned on each region of the Q-R diagram. Also plotted are profiles of p(κB,C)

from Keylock (2018), produced from the HIT data of Li et al. (2008). The great-

est departure from HIT comes in regions 4 and 6 for the laminar inflow case,

where profiles of p(κB,C) are skewed towards unity. This corresponds to clus-

tering around the Vieillefosse tail. By definition, as κB,C → 1, normal effects

dominate non-normal effects. As turbulence is introduced into the free-stream

flow, the profile p(κB,C) moves towards the results obtained from HIT.
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R < 0 R > 0

Q > 0

Q < 0,

ΛL > 0

ΛL < 0

Figure 5.19: Probability distribution function of κB,C for each region in the Q-R
space. HIT results reproduced from Keylock (2018).

144



5.5 Dissipation in the wake

5.5.1 Surrogates of dissipation

An introduction to the dissipation rate ε was provided in Chapter 2. To summarise

here: the dissipation rate is a key feature of any turbulent flow (Sreenivasan and

Antonia, 1997; Vassilicos, 2015), but is difficult to accurately obtain experimen-

tally (Wallace, 2009). As a result, researchers enforce approximations and take

surrogates of ε. The full dissipation rate is given by (Hinze, 1975)

ε = ν

[〈
∂ui
∂xj

∂ui
∂xj

〉
+

〈
∂ui
∂xj

∂uj
∂xi

〉]
, (5.22)

where Einstein summation convention is used over repeated indices. The 12 terms

contained in (5.22) are

ε = ν

2

〈(
∂u

∂x

)2
〉

︸ ︷︷ ︸
1

+

〈(
∂v

∂x

)2
〉

︸ ︷︷ ︸
2

+

〈(
∂w

∂x

)2
〉

︸ ︷︷ ︸
3

+

〈(
∂u

∂y

)2
〉

︸ ︷︷ ︸
4

+ 2

〈(
∂v

∂y

)2
〉

︸ ︷︷ ︸
5

+

〈(
∂w

∂y

)2
〉

︸ ︷︷ ︸
6

+

〈(
∂u

∂z

)2
〉

︸ ︷︷ ︸
7

+

〈(
∂v

∂z

)2
〉

︸ ︷︷ ︸
8

+ 2

〈(
∂w

∂z

)2
〉

︸ ︷︷ ︸
9

+2

〈
∂u

∂y

∂v

∂x

〉
︸ ︷︷ ︸

10

+2

〈
∂u

∂z

∂w

∂x

〉
︸ ︷︷ ︸

11

+2

〈
∂v

∂z

∂w

∂y

〉
︸ ︷︷ ︸

12

 . (5.23)

In Chapter 4, individual terms of (5.23) were calculated for simulations of grid

turbulence. Each grid geometry produced unique initial conditions of turbulence

and dissipation. Differences in the dissipation between each grid design can be

explained by the contribution of each term in (5.23). It was shown that in the

wake of turbulence-generating grids, large-scale anisotropy is present near grid,
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therefore the isotropic form of dissipation

εiso = 15ν

〈(
∂u

∂x

)2
〉

, (5.24)

is unsuitable near grid. Even in the far field (20 mesh spacings or 40 integral length

scales for the regular grid), εiso underestimated ε by approximately 5-10%. If two

components of velocity are measured, perhaps from an X-wire probe, dissipation

can be calculated from

εxw = 3ν

[〈(
∂u

∂x

)2
〉

+ 2

〈(
∂v

∂x

)2
〉]

. (5.25)

If homogeneity is assumed in the transverse plane (y-z plane of Figure 5.1),

such as in the wake of a square cylinder, it can be shown that 〈(∂v/∂y)(∂w/∂z)〉 ≈
〈(∂v/∂z)(∂w/∂y)〉 (Lefeuvre et al., 2014). This is combined with the continuity

equation and (5.23) to yield

εyz = ν

[
4

〈(
∂u

∂x

)2
〉

+

〈(
∂v

∂x

)2
〉

+

〈(
∂w

∂x

)2
〉

+

〈(
∂u

∂y

)2
〉

+

〈(
∂w

∂y

)2
〉

+

〈(
∂u

∂z

)2
〉

+

〈(
∂v

∂z

)2
〉

+ 2

〈
∂u

∂y

∂v

∂x

〉
+ 2

〈
∂u

∂z

∂w

∂x

〉
− 2

〈
∂v

∂z

∂w

∂y

〉]
. (5.26)

Figure 5.20 displays the centreline development of ε for the laminar inflow case

ran at ReD = 3900. Also plotted are the surrogates εiso, εxw, and εyz. In the most

complete study of dissipation in the wake of a circular cylinder, Chen et al. (2018)

used εyz as a reference value for ε. However, without direct measurements of ε, it

is unknown how closely εyz represents the true dissipation. In the current study

it can be seen that εyz is indeed the closest approximation to ε. Surprisingly, εiso

performs better than εxw, despite containing less terms of the VGT.
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Figure 5.20: Wake centreline profiles of dissipation ε and surrogates for the lam-
inar inflow case (LI) ran at ReD = 3900.

5.5.2 Phase averaged dissipation

A property of the phase averaging procedure is that dissipation ε = 2ν〈SijSij〉
can be decomposed into phase averaged and stochastic components (Hussain and

Reynolds, 1970; Alves Portela et al., 2018), such that

ε = 2ν〈S̃ijS̃ij〉+ 2ν〈S ′′ijS ′′ij〉 , (5.27)

where S̃ij and S ′′ij are the strain rate of phase averaged and stochastic velocity

components, respectively.

Surrogates of ε have been introduced, which enforce certain assumptions on

the local turbulence. The level of accuracy for these surrogates was demonstrated

for the circular cylinder wake in Figure 5.20. However, here a different approach

will be taken. The first step is to take the form given in the decomposition (5.27),

and reduce both the coherent and stochastic terms to a simpler form. In the

analysis that follows, stochastic motions are assumed to be isotropic, while phase

averaging requires separate treatment.
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The stochastic component is considered first, and written out in full form

ε′′ = 2ν〈S ′′ijS ′′ij〉 , (5.28)

= 2ν
〈
(S ′′11)2 + (S ′′22)2 + (S ′′33)2 + 2(S ′′12)2 + 2(S ′′13)2 + 2(S ′′23)2

〉
, (5.29)

where the symmetry property of the rate of strain tensor (Sij = Sji) has been

used. The small scales are not strongly affected by the type of wake generator,

and isotropy is a reasonable assumption for the small scales for both the square

and circular cylinder (Thiesset et al., 2013). By assuming local isotropy, an esti-

mation of ε for 2D planar PIV was provided by Tanaka and Eaton (2007). The

same treatment is applied here for stochastic motions, from which the following

conditions are enforced

2〈(S ′′33)2〉 = 〈(S ′′11)2〉+ 〈(S ′′22)2〉 , (5.30)

〈(S ′′12)2〉 = 〈(S ′′23)2〉 = 〈(S ′′13)2〉 , (5.31)

to yield, on substitution into (5.29), an estimation for the stochastic dissipation

on the x-y plane is given by

ε′′xy = 3ν
[
〈(S ′′11)2〉+ 〈(S ′′22)2〉+ 4〈(S ′′12)2〉

]
. (5.32)

The rate of strain for the phase averaged velocity field is now considered.

Large scale motions in the cylinder wake are anisotropic (Thiesset et al., 2013),

therefore the same treatment used to arrive at (5.32) cannot be followed for the

phase averaged component. Chen et al. (2018) measured velocity derivatives in

the wake of a circular cylinder and found (∂̃u/∂y)2 and (∂̃v/∂x)2 to be at least an

order of magnitude larger than the remaining phase averaged velocity derivatives.

This is because the coherent shedding vortices are associated with the coherent

spanwise vorticity ω̃z(= ∂̃v/∂x − ∂̃u/∂y). If the coherent shedding vortices are

associated with ωz, this process is largely two-dimensional, and the phase averaged

component of axial velocity is therefore negligible, such that it can be assumed

w̃ = 0, and S2
33 = 0. It is also assumed that phase averaged velocities do not

vary in the z-direction, such that ∂ũi/∂z = 0. A similar method was followed

by Alves Portela et al. (2018) for the square-cylinder, who collapsed their DNS
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data onto one plane by averaging in the spanwise direction to improve statistical

convergence. The form of (5.29) for a phase averaged field is therefore

ε̃xy = 2ν
[
〈(S̃11)2〉+ 〈(S̃22)2〉+ 2〈(S̃12)2〉

]
. (5.33)

It is encouraging to see the S̃2
12 term is retained in (5.33), because this is the

major contributor to ε̃ (Chen et al., 2018). The dissipation term has been split

into phase averaged and stochastic components, from which it is assumed that

stochastic motions are isotropic, and phase averaged fields do not vary along the

axial direction. This results in stochastic and phase averaged terms (5.32) and

(5.33), which can be combined to obtain the full form of dissipation

εxy = ε̃xy + ε′′xy . (5.34)

Figure 5.21 presents centreline dissipation ε for the circular cylinder laminar

inflow case. Also included are the reference value εyz used in Chen et al. (2018),

and εxy developed in this chapter. A close agreement between ε and εxy can be

observed, even at the peak level of dissipation.

Figure 5.21: A comparison between surrogates of dissipation along the wake cen-
treline for the laminar inflow case.

To understand how coherent and stochastic motions contribute to the velocity
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gradient tensor, individual terms are introduced

Cij =
〈(Ãij)2〉(
U∞
D

)2 , Fij =
〈(A′′ij)2〉(
U∞
D

)2 , (5.35)

where Ãij = ∂ũi/∂xj and A′′ij = ∂u′′i /∂xj are the velocity gradient tensors of

the coherent and stochastic motions, respectively. Figure 5.22 plots each term of

Cij and Fij for the laminar inflow case. It is immediately clear that C12 and C21

are major contributors to dissipation of coherent motions. This result supports

the findings of Chen et al. (2018), i.e. terms associated with coherent spanwise

vorticity ω̃z(= ∂̃v/∂x− ∂̃u/∂y) are approximately one order of magnitude larger

than other terms.

Figure 5.22: Comparison between terms Cij and Fij along the wake centreline for
the laminar inflow case.

In addition to this, isotropy conditions (5.30), (5.31) have been enforced on

the stochastic motions. To test the validity of these assumptions, the following

are calculated

K1 =
〈(S ′′11)2〉+ 〈(S ′′22)2〉

2〈(S ′′33)2〉
, K2 =

〈(S ′′23)2〉
〈(S ′′12)2〉

, K3 =
〈(S ′′13)2〉
〈(S ′′12)2〉

, (5.36)

where for isotropy it would be expected to find K1 = K2 = K3 = 1. Figure 5.23

plots each isotropy condition, and K1, K2, K3 are all reasonably close to their

isotropic value. This strengthens the approach taken in this chapter to arrive at

εxy.
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Figure 5.23: Measure of isotropy K for the laminar inflow circular cylinder wake.
Every second data point is plotted for image clarity.

The ratio of stochastic to phase averaged components is shown in Figure 5.24.

Although dissipation through stochastic motions is significantly larger than dis-

sipation through coherent motions, the ratio between the two is reasonably con-

stant for all inflow cases. This constancy in the ratio ε′′/ε̃ has been argued to

arise from a locking between stochastic and coherent motions, and has been iden-

tified in the wake of a square cylinder (Alves Portela et al., 2018). Additionally,

it is suggested that a locking between the two may be a cause of non-equilibrium

turbulence (Goto and Vassilicos, 2015; Alves Portela et al., 2018).

5.5.3 Circular cylinder wake model

This chapter concludes with a look into the relationship between coherent struc-

tures in the circular cylinder wake and the dissipation field ε. In the current

simulations, snapshots of the dissipation field have been collected. Each snapshot

is taken at the same phase angle (ϕ/π = −1), and the wake is cropped to isolate

5 streamwise rollers. Contours of Q = 15000 are generated to visualise coher-

ent structures, and isovolumes of exp(−ε) ∈ [0, 0.75] highlight regions of intense

dissipation. Thresholds of Q and exp(−ε) were varied and chosen by trial and

error to isolate primary rollers and streamwise ribs. Figures 5.25 and 5.26 display
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Figure 5.24: Ratio of stochastic to phase averaged dissipation along the centreline
for the laminar inflow case.

structures in the wake for each inflow condition. When the turbulence dissipation

field is viewed in isolation, it takes the same shape as the von Kármán vortex

street. This is to be expected, but it is not immediately clear if the dissipation

field is linked to the primary rollers. However, when the Q field is included, it

becomes apparent that dissipation resides in between the streamwise ribs. This

is confirmed in Figure 5.27 which provides a closer look at the wake structures

and dissipation field for the laminar inflow case.
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LI

RGI

FGI

Figure 5.25: Top view of coherent structures and dissipation in the circular cylin-
der wake. Isocontours of Q = 15000 are coloured (dark red to yellow) by velocity
magnitude |U |. Dissipation is visualised by isovolumes of exp(−ε) ∈ [0, 0.75].
Only a portion of the wake has been visualised to isolate 5 primary rollers.
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FGI

Figure 5.26: Side view of coherent structures in the wake. See Figure 5.25 for
further description.
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Figure 5.27: A closer look at the structures and dissipation field in the cylinder
wake for the laminar inflow case.

With the findings from the current chapter, the model of Chen et al. (2018)

is returned to. Hussain and Hayakawa (1987) concluded that dissipation is con-

centrated in regions of high mixing, however, Chen et al. (2018) proposed that it

resides in the primary rollers. Neither study allowed for the presence of stream-

wise ribs, because the X-wire probes used in their wind tunnel experiments only

detected periodic shedding, which is attributed to the primary rollers. An alter-

native model is proposed here in Figure 5.28, which incorporates findings from

the current chapter. Dissipation resides in between streamwise ribs, which has

been identified in both the laminar and turbulent inflow cases.
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Roller centres

Engulfed
turbulence

Streamwise
rib

High
dissipation

Turbulent inflow:

- Increase in Cd.
- Decrease in Lr.
- Wake non-normality.

U∞, L11, I
Cyl.

Figure 5.28: Topological features of the circular cylinder wake, adapted from the
model of Chen et al. (2018), and extended into the third dimension ẑ. Strands of
concentrated dissipation are present in between streamwise ribs.
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5.6 Chapter conclusions

The influence of free-stream turbulence on the flow past a cylinder at Reynolds

number ReD = 3900 has been investigated through large-eddy simulation. Tur-

bulence has been generated in the free-stream by projecting regular (RGI) and

fractal (FGI) grids onto the inlet patch. A laminar inflow (LI) has also been sim-

ulated as the base case for this flow, which allows for validation of the numerical

method. The RGI case produces a turbulent inflow with integral length scale

L11 = 0.67D and turbulence intensity I = 7.3%, compared to the FGI case where

L11 = 0.56D and I = 4.1%.

Time-averaged profiles of velocity in the wake for the turbulent inflow cases

reveal a shortened development. This results in a shorter recirculation length,

and a reduced velocity deficit. This effect has been observed in previous exper-

iments. The PIV of Lourenco and Shih (1993) has been used as a benchmark

for validation of numerical models in the past. However, inflow conditions were

undocumented, and an unspecified level of turbulence was introduced into the

free-stream. In contrast, the PIV of Parnaudeau et al. (2008) had low levels of

free-stream turbulence (I < 0.1%), and their results match with the current lam-

inar inflow (LI) case. Aerodynamic properties of the circular cylinder have also

been altered. Inflow turbulence has been shown to significantly increase the co-

efficient of drag, from 〈Cd〉 = 1.03 in the laminar case, to 1.18 and 1.37 in the

regular and fractal grid cases, respectively. It is surprising to see such a drastic in-

crease between the regular and fractal grid cases, because free-stream turbulence

intensity and integral length scales are comparable between the two simulations.

Primary vortex rollers and streamwise ribs are identified in both the laminar

and turbulent inflow cases. However, free-stream turbulence has contributed to a

break down of these coherent structures. The Q-R diagram is constructed from

a snapshot of each wake. There is little difference between each case, which is

most likely due to the universality of turbulence. However, inflow turbulence has

been seen to drastically alter the parameter κB,C, which is a measure of normal to

non-normal dynamics. The laminar inflow case produces a wake which skews the

probability distribution function of κB,C towards unity, indicating that normal

contributions in the shedding modes are dominant. When the inflow is turbulent,
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profiles of p(κB,C) shift towards a mean value of zero, approaching results obtained

from HIT. Therefore, non-normality plays a greater role in the wake dynamics of

the cylinder when free-stream conditions are turbulent.

Commonly used surrogates for the dissipation field have been compared for

the circular cylinder wake. A reasonable agreement was achieved with εyz, which

is derived on an assumption of homogeneity in the transverse plane. The isotropic

and X-wire forms of dissipation were less successful. The velocity gradient tensor

has been decomposed into coherent and stochastic components. The coherent

portion accounts for periodic shedding from the circular cylinder wake, and is

associated with the primary rollers. The stochastic component is a measure of the

background turbulence level. From this decomposition it is possible to calculate

the dissipation field for the coherent ε̃ and stochastic ε′′ motions. The ratio ε′′/ε̃

has been computed for each simulation, and it is found to be constant in the region

x/D < 10. This has been attributed in the literature to a locking effect between

coherent and stochastic cascades, and may indicate non-equilibrium behaviour.

It has been demonstrated that ε̃ is dominated by the two-dimensional primary

rollers, and that ε′′ arises from approximately isotropic motions. From this it is

possible to reduce the amount of terms required to estimate ε̃ and ε′′, and their

sum returns a surrogate of ε which only requires measurements of the VGT on the

x-y plane, denoted here by εxy. Calculation of εxy only requires two-components of

velocity, it is therefore suitable when only a two-dimensional plane of the flow field

is sampled, such as with planar PIV. This will be explored further in Chapter 7,

when measurements of the circular cylinder wake are collected experimentally

using planar PIV.

A model has been proposed which describes the interaction of coherent mo-

tions and dissipation in the circular cylinder wake. This has built upon the pre-

vious work of Chen et al. (2018), who suggested that dissipation is concentrated

in the primary rollers. Results from the current chapter are in disagreement with

this conclusion. It is found that dissipation resides between streamwise ribs. More

work is required to understand the interaction between dissipation and coherent

structures.
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Chapter 6

Experimental set-up

Experiments in the present study were performed in the Sorby Environmental

Fluid Dynamics Laboratory, University of Leeds. The experimental set-up is de-

scribed in this chapter, including the recirculating water flume, biplane turbulence

generating grid, and circular cylinder design. Free-stream flow conditions are pro-

filed using acoustic Doppler velocimetry probes. The technique of particle image

velocimetry is then detailed for the current experiments.
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6.1 Flume components

Tests were carried out in the open surface hydraulic recirculating flume in the

Sorby Environmental Fluid Dynamics Laboratory, University of Leeds. A schematic

of the test section is displayed in Figure 6.1. Optical access is provided through

the floor and side walls by panels of Perspex. The remaining flume walls are made

from black opaque fibreglass. The working section of the water flume has dimen-

sions of 12 m × 1 m, and can be filled to a height of 0.7 m. At the far end of the

flume is a reservoir with two Fybroc 1500 series pumps, capable of high shear

and low turbulence. Fluid is pumped back from the reservoir to the entrance

by a large diameter pipe which sits under the flume floor. The pump speed can

be controlled via a variable frequency inverter. Figure 6.2 presents the bulk flow

speed for a range of pump frequency settings. At the flume entrance, the flow is

passed through a honeycomb mesh which has elements of diameter 6 mm.

Honeycomb Biplane grid Reservoir

Recirculating
pumps

x1

x2

Figure 6.1: Schematic of the recirculating flume in the Sorby lab, University of
Leeds.

The cylinder is a rigid hollow aluminium tube with outer diameter 25 mm and

length 1 m, giving an aspect ratio of approximately 40. A black anodised finish

is applied to the cylinder to reduce reflection from the laser light sheet. Circular

end-plates with diameter 3D are fitted to suppress the production of structures at

either end of the cylinder. Between the flume wall and end-plate, there is a gap of

approximately 1.5D. For each run, the cylinder Reynolds number is calculated by

considering the temperature-dependent kinematic viscosity, and free-stream flume
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Figure 6.2: Relationship between flume
pump frequency and flow velocity.

Pump freq. U∞
(Hz) (m/s)

4 0.1072
6 0.1588
8 0.2146
10 0.2689
12 0.3318

Table 6.1: Raw data
for Figure 6.2.

speed. Water temperature is monitored throughout the experiments and found to

have an average value of 12◦C. This corresponds to a kinematic viscosity of ν =

1.2× 10−6 m2/s. Circular end plates with diameter 3D are fitted to suppress the

production of structures at either end of the cylinder (Figure 6.3a). Between the

flume wall and end plate, there is a gap of approximately 1.5D (see Figure 6.3b).

Temperature of flume water is monitored to ensure the correct Reynolds number

ReD = U∞D/ν is recorded. For each run, the corresponding Reynolds number

is calculated by considering the temperature-dependent kinematic viscosity, and

free-stream flume speed.

U∞

(a) Mount and dye injector.

5

3

32

25

Mount

End plate

Flume wall

25

40

(b) End plate (units in millimetres).

Figure 6.3: Cylinder mount and end plate design.

To produce a turbulent inflow, a biplane grid is placed 2 m upstream of the

cylinder. The biplane grid has a mesh spacing of M = 96 mm, and grid bar

161



diameters of 25 mm. The grid sits flush in the flume and spans 10 rods horizontally

and 10 rods vertically. A schematic of the biplane grid design and placement in

the flume is displayed in Figure 6.4.

96 mm

25 mm

(a) Mesh spacing and bar thickness of
the biplane grid.

(b) Biplane grid positioned in the
flume.

Figure 6.4: Biplane turbulence-generating grid construction.

6.2 Acoustic Doppler velocimetry description

6.2.1 Instrumentation

Acoustic Doppler velocimetry probes are experimental instruments to measure

flow velocity in a remote sampling volume. Measured phase shift between trans-

mitted and received signals is related to flow velocity by Doppler shift theory.

ADV is capable of recording instantaneous velocities at high sampling rates. The

sensors can be easily deployed and provide accurate mean velocity, variance, and

covariance of the flow field (Voulgaris and Trowbridge, 1998).

Acoustic signals are emitted from a central transmitter at a pulse repetition

frequency fpr. A fraction of the acoustic energy is scattered back from Talisman

30 polymer seeding particles to receivers arranged around the transmitter. A

total of 4 receivers are placed equidistant around the transmitter. Each receiver
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is angled towards the central beam at 30◦, focusing onto an intersection point.

A Nortek Vectrino II profiler ADV probe (see Thomas et al. (2017) for details

on technical characteristics and operation), is used in the current investigation is

shown in Figure 6.5a. The Vectrino II probe is capable of recording at a number

of positions simultaneously in order to calculate spatial profiles with a 30 mm

range, however, in this investigation the ADV is set-up to record at a single

point in space. The receiver marked with red paint is aligned such that it points

in the same direction as the bulk flow, i.e. along the streamwise direction. In

addition to velocity data, the ADV also records the signal-to-noise ratio (SNR),

and the correlation (COR). The signal-to-noise-ratio provides a measure of the

recorded acoustic signal received. Velocities are recorded along the angle bisector

of the line from the transmitter to the sampling volume, and the line from the

sampling volume to the receiver. In Figure 6.5b this corresponds to the angle

bisector between blue and red lines. Although the ADV is an intrusive device,

the clearance between the transmitter and sampling volume is large enough to

have minimal effect on the flow measurement (Cea et al., 2007).

(a) Nortek Vectrino II ADV sensor used
in the experiments.

Receivers

Sampling
volume

Transmitter

Receiver

30◦

(b) ADV configuration with 3 receivers,
adapted from Chanson (2008).

Figure 6.5: Acoustic Doppler velocimeter (ADV) probe head.

Three-component velocity is recorded 50 mm from the transmitter bottom in

the sweet spot where the signal-to-noise ratio is maximum (Thomas et al., 2017).

Data were sampled for a period of 300 seconds at a frequency of 100 Hz. The rate
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of change of phase shift ∆φ is given by

dφ

dt
=

1

τ
arctan

[
sin(φ(t)) cos(φ(t+ τ))− sin(φ(t+ τ)) cos(φ(t))

cos(φ(t)) cos(φ(t+ τ)) + sin(φ(t+ τ)) sin(φ(t))

]
, (6.1)

where τ is the time between transmissions, equal to 1/fpr. Due to the periodicity

of the tan function (6.1), phase angles must lie in the range−π < φ < π, otherwise

signal aliasing can occur. To prevent aliasing, acceptable velocity ranges are input

into the ADV software by the user. This is achieved by setting the desired flume

speed, and adjusting the velocity range bounds accordingly, ensuring no aliasing

is present. Phase data from (6.1) is then converted to velocities via

U =
c

4πfa

dφ

dt
, (6.2)

where c is the speed of sound in the fluid (≈ 1466 m/s), and fa = 10 MHz is the

acoustic frequency.

6.2.2 Noise removal

Noise variance in ADV measurements is a combination of noise due to the elec-

tronic circuitry (Doppler noise, signal aliasing), and flow-related noise (high tur-

bulence intensity, air entrainment, micro-bubbles in the carrier fluid). Coherent

Doppler acoustic systems are sensitive to Doppler phase noise, which causes a

broadening of the Doppler spectral peak. Velocity signals corrupt with Doppler

noise return an overestimation of turbulent kinetic energies. It is also noted

that horizontal velocity components are far noisier than the vertical component

(Lohrmann et al., 1994).

There are a number of methods to detect and remove spurious data. If velocity

is recorded at high temporal resolution, it is possible to calculate acceleration and

identify spikes through large values which are deemed non-physical. The threshold

which separates real data from spikes is determined empirically, for example in

the fitted model of Goring and Nikora (2002). Following the correlation filter of

Cea et al. (2007), an ellipsoid is fitted to the fluctuating velocity phase spaces

of {u1-u2, u1-u3, u2-u3}, based on computed statistics of the data. Idealised data
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forms a cluster of points, and spikes lay outside of this cluster. Fitting an ellipse

to the data requires information on the location, size, and shape. By assuming

that the mean of fluctuating velocities is zero, the centre of the ellipse in the

phase space is the origin (0, 0). Scaling the ellipse is achieved by introducing

parameter λ which depends on the expected maximum of data. From theoretical

considerations, Donoho and Johnstone (1994) derived a formula for the expected

maximum value of N observations with standard deviation σ to be λσ, where

λ =
√

2 ln(N). The rotation axis of the ellipse is given by (Cea et al., 2007)

θ = arctan

(
〈uv〉
〈u2〉

)
. (6.3)

The major and minor axis are

x2
0 =

(λσU cos θ)2 − (λσV sin θ)2

cos2 θ − sin2 θ
, (6.4)

y2
0 =

(λσV cos θ)2 − (λσU sin θ)2

cos2 θ − sin2 θ
, (6.5)

where σU and σV are the standard deviation of velocities U and V . Two ad-

vantages of the correlation filter are: (i) implementation is independent of time

resolution, (ii) no tuning parameters are required. After each iteration of the cor-

relation filter, global flow statistics change, the correlation filter can be applied

once more. For the AVD data in the current study, it is generally found that no

points were removed after two iterations.

Figures 6.6a, 6.6b present an example of the correlation filter on a single data

set, recorded at a flume pump frequency of 8 Hz. In Figure 6.6a, a first-pass of

the ellipse fitting method is applied to the data set. Points located outside of the

ellipse are replaced, and the correlation method is applied repeatedly, until no

points are flagged as spurious. Figure 6.6b displays a time trace of streamwise

velocity .
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(a) First pass of the ellipse fitting on
the raw data.

(b) Streamwise velocity time series. A
spike is flagged as spurious.

Figure 6.6: Example of the ellipse fitting method of Cea et al. (2007). Data
presented is collected from a 8 Hz pump frequency run, which corresponds to
U∞ = 0.2146.

6.3 Free-stream flow conditions

A sampling duration for the ADV data acquisition was chosen by calculating a

cumulative average of velocity magnitude and turbulence intensity. For N discrete

samples of an arbitrary variable fi = (f1, f2, . . . , fN), the cumulative average is

defined as

〈fi〉N =
1

N

N∑
i=1

fi . (6.6)

Turbulence intensity is given by

I1 =
urms

U∞
, I2 =

vrms

U∞
, I3 =

wrms

U∞
, (6.7)

where urms =
√
〈u2〉, vrms =

√
〈v2〉, wrms =

√
〈w2〉 are, respectively, the root-

mean-square (r.m.s.) velocity fluctuations in the x, y, and z directions.

In Figures 6.7a and 6.7b, cumulative averages of the velocity magnitude and

turbulence intensity become almost constant when averaged over t & 200 s. There-

fore, a minimum of 200 seconds is used when time-averaging any ADV data.

In Figure 6.8 time-averaged streamwise velocity is plotted as a function of

distance from the flume bottom. This run is carried out in the streamwise posi-
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(a) Cumulative average of velocity
magnitude.

(b) Cumulative average of turbulence
intensity.

Figure 6.7: Sensitivity of velocity magnitude and turbulence intensity with respect
to run duration.

tion where the cylinder will be placed, i.e. 2 m downstream from the turbulence

generating grid. A linear fit has been added, showing probes positioned at heights

greater than 0.1 m are out of the logarithmic profile. This flow corresponds to a

circular cylinder Reynolds number of ReD = 4200.

Figure 6.8: Time-averaged streamwise velocity recorded at the centre of the work-
ing section, as a function of distance from the flume bottom. Measurements taken
2 m downstream from the turbulence-generating grid without a cylinder.
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6.4 End-plate effects

Similar to the investigation of Stäger and Eckelmann (1991), probes were posi-

tioned in multiple locations along the cylinder axis at downstream position x/D =

5, and heights y/D = 0, 2. In the lower Reynolds number range (ReD = 1600),

Stäger and Eckelmann (1991) reported a shedding frequency f2 < f1 near the end

plates, where f1 is the Strouhal shedding frequency defined by St = f ·D/U∞. A

lower frequency f2 is due to the horseshoe vortex at the leading edge of the end

plate. End effects were found to fade away with increasing Reynolds number. For

large Reynolds numbers ReD = 4800, no secondary frequency f2 is detected, even

as close as one diameter away from the end plate The wake is divided into two

regions: (i) affected by the end plates, (ii) sufficiently far enough away from the

end plates where the flow is unaffected. The boundary between the affected and

unaffected region is referred to as the node, and defined by the point at which

the energy present in f1 and f2 is equal.

108.1

End plate

Flume wall

125.0

507.5

40.075.1

Centreline

P1P2P3P4P5P6P7P8P9

Flow

Figure 6.9: Probe positioning along cylinder axis, denoted by crosses. Units are
in millimetres.

Figure 6.10 presents the results for a cylinder Reynolds number of ReD = 4200,

at position x/D = 5, y/D = 0. In total, 9 axial positions were used. Noise is

present in all axial positions, but close to the cylinder midpoint, a pronounced

shedding frequency of f1 ≈ 1.65 is recorded. As the ADV probe moves closer

to the cylinder end plates, f1 decreases towards f1 ≈ 1.35, the amplitude of f1

decreases, and more noise is present. From these ADV results, it is concluded

that the mid-point of the cylinder is unaffected by end plate shedding.
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P1 P2 P3

P4 P5 P6

P7 P8 P9

Figure 6.10: Velocity time series in the frequency domain. Single-sided amplitude
spectrum of Ux(t) at 9 different axial locations (x/D = 5, y/D = 0). Positions
given in Figure 6.9.
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6.5 Cylinder shedding visualisation

Dye visualisation experiments are ran to gain a better qualitative description of

the wake. Dye is released from the back of the cylinder by 5 holes with diameter

1 mm. Spacing between the holes is 25 mm, ensuring axial correlation length of

πD is sufficiently covered, ensuring at least 3 holes cover the axial correlation

length. A fluorescent dye solution is made by combining 7 litres of tap water

with 2 Cole-Parmer yellow/green dye tablets. For each run, a Watson Marlow

520S peristaltic pump is turned on for 20 seconds. This is found to correspond to

approximately 65 ml of dye solution. Sampling 20 seconds of data is sufficient for

analysis, and that it allowed for a number of runs before the water became too

strongly coloured. Images were captured with a Vision Research Phantom Miro

M120 high-speed camera at a resolution of 1920× 1080 pixels and 24 frames per

second (fps).

Figure 6.11 presents a snapshot of the circular cylinder wake at a Reynolds

number of ReD = 2100. The vortex street is clearly visible from the periodic

shedding. Each run displays short periods of time where the periodic shedding is

disrupted, and the wake becomes symmetrical. Despite this, counting the amount

of sheds for the full 60 s returns a frequency close to the expected Strouhal number

for flows of similar Reynolds number.
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U∞

Figure 6.11: Dye flow visualisation of the circular cylinder wake at ReD = 2100.
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6.6 Particle image velocimetry description

6.6.1 Data acquisition

PIV is a non-intrusive optical technique used to obtain instantaneous flow veloc-

ity. PIV utilises one or more cameras to record successive images of illuminated

seeding particles suspended in a fluid. Figure 6.12 presents an overview of the

steps taken from image acquisition of the flow field, to generation of velocity vec-

tors. A detailed description of the PIV technique can be found in Adrian and

Westerweel (2011).

Images are captured by the camera sensor and converted from light energy

to electrical energy. The most common sensors used in PIV applications are

charge coupled devices (CCD), and complementary metal oxide semiconductors

(CMOS). A comparative study between CCD and CMOS sensors is provided in

Hain et al. (2007). A major advantage of CMOS sensors is their fast readout- a re-

quirement for time-resolved PIV. Also, unlike with CCD sensors, a CMOS sensor

houses individual circuitry for each pixel. This allows for electronic processing di-

rectly on the chip, including pre-amplification, non-linear signal transformations,

and AD-conversion (Raffel et al., 2018). However, CMOS sensors are typically

less sensitive than CCD sensors and therefore require a larger sensor surface. A

larger pixel surface produces a higher signal-to-noise ratio (SNR) (Hain et al.,

2007), but also increases the probability of pixel locking.

Image pairs A and B are taken at a fixed time displacement δt, which is

set according to the flow dynamics. Each image is split into a number of sub-

images, called interrogation areas. Images A and B are correlated to find the

most probable particle displacement from image A to B in each interrogation area

(Raffel et al., 2018). For a sufficiently small increment δt, which is constrained

by the typical time scale of the flow, this provides particle displacement which

is used to calculate velocity. The cross-correlation function is given by (Huang

et al., 1997)

C(m,n) =
∑
i

∑
j

A(i, j)B(i−m, j − n) . (6.8)
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Figure 6.12: Overview of the processes required for PIV, adapted from Adrian
and Westerweel (2011).
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The largest peak in C(m,n) corresponds to the most probable particle dis-

placement, and is referred to as the displacement-correlation peak. The displacement-

correlation peak should be considerably larger in amplitude than the surrounding

noise. By taking the ratio of amplitudes between the displacement-correlation

peak and the tallest noise signal, a cut-off can be imposed on the peak height ra-

tio. It is possible to solve (6.8) in the spatial domain by direct cross-correlation, or

in the frequency domain by a fast-Fourier transform (Willert and Gharib, 1991).

There are a number of considerations for flow seeding of a PIV experiment.

Ideally, particles are non-intrusive, follow the fluid motion accurately, are dis-

tributed throughout the fluid medium, and scatter enough light back to the cam-

era sensor. In an accelerating fluid, the slip velocity Us is defined as the differ-

ence between the particle velocity and the fluid velocity, and can be estimated

by Stokes drag law (Raffel et al., 2018)

Us = Up −U = D2
p

ρp − ρ
18νρ

a , (6.9)

where Up is the particle velocity, Dp is the particle diameter, ρp is the particle

density, and a is the fluid acceleration. Without changing the experimental con-

ditions, one method to minimise Us is to match the fluid and particle density,

i.e. neutrally buoyant seeding. Tracer particles made from polyamide and hollow

glass spheres are approximately neutrally buoyant in water (Raffel et al., 2018).

The second method of minimising Us is to reduce the particle diameter. However,

particles must also scatter sufficient light with a low SNR from the laser sheet,

which favours larger diameters (Melling, 1997).

For a particle to accurately trace a fluid flow, it must respond to the smallest

turbulent motions to resolve those structures. To check this, the particle relax-

ation time and the characteristic flow response time are compared. The particle

relaxation time is a measure of how quickly particles attain velocity equilibrium

with the fluid (Raffel et al., 2018), and is given by

τP = γ
D2
P

18ν
, (6.10)

where γ = ρp/ρ is the ratio of particle to fluid density (or specific gravity), DP
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is the particle diameter, and ν is the kinematic viscosity of the fluid phase. The

characteristic flow response time is taken to be the time scale of the smallest

eddies, i.e. the Kolmogorov scales of turbulence. The Kolmogorov time scale is

given by

τF =

√
ν

ε
. (6.11)

The Stokes number is defined from (6.10) and (6.11) as a nondimensional

measure of the seeding particles response to accelerations of the surrounding flow

Sk =
τP
τF

, (6.12)

where Sk < 0.1 is found to be sufficient for tracer particles (Samimy and Lele,

1991).

To seed the fluid flow, 10 g of Dantec silver coated hollow glass spheres (S-

HGS) are suspended in a mixing tank holding 40 litres of water. The seeding

has an average diameter of DP = 10µm, with relative density γ = 1.1. Each

seeding particle has a thin silver coating to increase reflectivity. To suppress

flocculation, 0.1 ml of Ilford RA50 rinse aid is added to act as a surfactant. As an

indication of how well the seeding follows the flow, the Stokes number (6.12) is

calculated. The estimated response time of the particles from (6.10) is τP ≈ 5µs.

The characteristic flow response time (6.11), given by the time scale of the smallest

eddies, is τF =
√
ν/ε. Since ε is unknown at this stage, an estimation is taken

from the numerical modelling, i.e. Figure 5.20. This yields a peak dissipation of

ε = 0.02(U3
∞/D), which gives a flow response time of τF = 12 ms. From these

approximations, Sk ≈ 4.2× 10−4 (� 1), and it is concluded that the seeding is a

reasonable flow tracer.

The light sheet is generated by a Litron Bernoulli double cavity PIV laser,

with a 50 mJ energy pulse per cavity. A top hat optic generates the laser sheet and

an adjustment module controls the sheet thickness. The light sheet illuminates

the flow on a vertical plane, orientated parallel to the flow direction, and per-

pendicular to the axis of the cylinder. A Dantec SpeedSense 9040 complementary

metal oxide semiconductor (CMOS) camera with 24 GB of on-board memory is

placed perpendicularly to the laser light sheet, and angled towards the cylinder
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wake. A total of 6400 image pairs are acquired at a sampling frequency of 99 Hz

in double-frame mode from two synchronization pulses at an interframe time of

1500 ns. The synchroniser ensures the light sheet and camera trigger simultane-

ously. Light spots are recorded on the image plane from the illuminated seeding

particles, converted to electrical charge, and held on the CMOS. The CMOS has

1600 × 1200 pixels, with spacing 10µm, and dynamics of 8 bits. A Nikon PC

macro lens is fitted to the camera. The lens has a focal length of 85 mm and

a max aperture of f/2.8. An aperture of f/4 was found to provide an optimal

balance between depth of field and image quality.

Data for each run is acquired until the on board camera memory is full, which

under the current set-up yields 60 s of data. Parnaudeau et al. (2008) investigated

the number of shedding cycles required for statistical convergence, finding 52

shedding periods to be satisfactory. For the flow past a cylinder at Re = 3900,

reported values across literature for the Strouhal number take a mean value of

St ≈ 0.21. This corresponds to a shedding frequency of f = 1.7 Hz. If the cylinder

wake is sampled for 60 s, approximately 100 shedding cycles will be captured, and

therefore 60 seconds of recorded data in the current study is sufficient. A summary

of the experimental parameters used in this study is provided in Table 6.2.
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Seeding Type S-HGS

Specific gravity 1.1

Diameter 10µm

Light sheet Laser type Nd:YAG

Maximum energy 50 mJ

Wave length 532 nm

Camera Type CMOS

Resolution 1600× 1200 px

Pixel size 11.5µm

Lens focal length 85 mm

f# 4

Imaging Magnification 0.45

Viewing area 30 mm× 30 mm

PIV analysis Interrogation area 24× 24 px

Overlap 50%

Approx. resolution 2.2 mm× 2.2 mm

Table 6.2: PIV experimental parameters.
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6.6.2 Pre-processing: outlier detection and replacement

Once the images have been collected and transferred from the camera, image pre-

processing is required before PIV analysis. A calibration target of size 200 mm×
200 mm with 37× 37 markers is placed in the flume directly behind the cylinder,

parallel to the bulk flow. Image calibration is carried out in the commercial PIV

software DynamicStudio to map points from the calibration target to the image

plane. A direct linear transfer image model is selected to account for the effects

of imaging through the glass viewing window, and water medium. From the cali-

bration, de-warping is carried out. To remove constant artefacts, such as cylinder

surface glare, a mean of the full data set is taken, and subtracted from each in-

dividual image. The cylinder and supports were then masked from each image.

Interrogation areas (IA) are set to a minimum and maximum size of 24 × 24. A

grid step size of 12× 12 corresponds to an overlap of 50%. A low-pass Gaussian

filter with k = 3 is applied to attenuate the random vector measurement error,

and produce data which is more suitable for subsequent differentiation (Adrian

and Westerweel, 2011).

Figure 6.13 presents a graphical description of the steps taken in the pre-

processing of raw images. It can be seen how surface glare on the cylinder is

removed once the background mean image is subtracted. However, an artefact

is still present on top of the cylinder, corresponding to laser reflection from the

water surface. This artefact oscillates in the axial direction, therefore cannot be

captured in an image mean. A mask is applied for the cylinder and support.

Masked regions are ignored by the PIV analysis.

There are two considerations with data outliers- (i) method to identify spu-

rious vectors, (ii) method of replacement. The universal outlier detection (UOD)

of Westerweel and Scarano (2005) detects outliers based on local flow statistics.

However, if a cluster of outlier vectors exist, local statistics are effected. Higham

et al. (2016) proposed a method of outlier detection and removal based on the

POD technique. In their study, artificial noise introduced into a velocity time

series was detected in the time-dependent expansion coefficients αj(t) as a high-

frequency oscillation. By applying a moving average to coefficients αj(t), a filtered

decomposition of the flow is obtained. A difference matrix between the raw and
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Reflection
(laser-water surface)

Reflection
(laser)
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Figure 6.13: Example of the steps taken to process images before cross-correlation:
(a) raw image, (b) de-warp applied using calibration image, (c) mean subtracted,
(d) final masked image.

filtered velocity field is constructed, and ordered by magnitude. The largest p% of

entries in the difference matrix correspond to spikes, and are replaced in the raw

field by the filtered field. Further details of the method can be found in Higham

et al. (2016).

Figure 6.14 displays velocity vectors in the cylinder wake, before and after

application of the outlier detection and replacement method of Higham et al.

(2016) for some arbitrary snapshot in time. The p% = 5% largest entries from

the difference matrix have been replaced. A vortex street is clearly visible in

each data set and the data looks reasonably clean. Clusters of outliers has been

identified visually and circled in each plot.
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Figure 6.14: Velocity vectors generated in the wake of the cylinder at ReD = 4200.
Left: raw vectors, right: after application of the outlier detection and replacement
method of Higham et al. (2016). A cluster of outliers has been identified and
circled on both plots.
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Chapter 7

Dissipation in the circular

cylinder wake

This chapter presents an experimental investigation into the wake of a circular

cylinder placed in a free-stream turbulent flow. Experiments are carried out in

the recirculating water flume documented in Chapter 6. Free-stream turbulence

is controlled by passing the inflow through a turbulence-generating grid. This

leads to a non-negligible free-stream turbulence intensity, in contrast to previous

experimental and numerical investigations of laminar inflow past cylinders. Effects

of inflow turbulence on the wake are highlighted by considering time-averaged

velocity profiles and wake width development. Non-negligible turbulence in the

free-stream is found to deform the wake, such that it is squeezed towards the

cylinder base. Measurements are collected in the x-y plane using particle image

velocimetry, therefore only two components of velocity are recorded. Dissipation

is calculated from the surrogate εxy derived in Chapter 5. This is achieved by

applying the method of proper orthogonal decomposition (POD) to detect and

extract coherent motions in the wake, from which the dissipation term can be

decomposed into coherent ε̃xy and stochastic ε′′xy contributions. A locking between

coherent and stochastic motions is suggested from the constant ratio ε′′xy/ε̃xy. This

behaviour has been previously linked to non-equilibrium turbulence, and has been

detected here.
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7.1 Introduction

Flow past a circular cylinder has received significant attention in fluid dynamics

due to its widespread application across engineering and environmental flows.

Experiments and simulations are often used in tandem to gain a better under-

standing of the complex wake, for example see Dong et al. (2006) and Parnaudeau

et al. (2008). However, discrepancies exist between experiments and simulations,

which is discussed in Chapter 2. Despite advances in turbulence modelling and

computing, there will always be a requirement to investigate this flow experimen-

tally. One challenge in experiments, which is not an issue in simulations, is lack

of access to the flow field. Dye visualisation provides a full picture of the wake

and can be used to identify structures, but no quantitative data is generated. Ve-

locities can be recorded using hot-wire anemometry (HWA), but this technique is

intrusive and can only be deployed at one fixed position. With the development

of PIV, the velocity field can be measured instantaneously at multiple points in

space (Adrian, 1991). PIV is therefore well suited to study the spatio-temporal

organisation of the vortex street in the circular cylinder wake.

The von Kármán street vortices are the most recognisable signature of the

circular cylinder wake, and can be identified from measurements on the x-y plane,

where x is the streamwise direction running parallel to the bulk flow, y is the

normal direction, and z is the axial direction. Streamwise ribs, which connect von

Kármán rollers, are most commonly identified through streamwise vorticity ωx

in the y-z plane. However, ribs are inclined and also cut through the x-z plane,

which leaves a signature in ωy (Hayakawa and Hussain, 1989). Planar PIV, which

records two components of velocity on a two-dimensional slice, can therefore be

used to construct a three-dimensional picture of coherent wake structures. Wu

et al. (1994) used planar PIV to determine the pattern and circulation of ωy in

the circular cylinder wake for a Reynolds number of ReD = 525. Lin et al. (1995b)

visualised the organisation of streamwise ribs from ωx using PIV at a Reynolds

number of ReD = 1 × 104, and found the average circulation of streamwise ribs

is approximately one-tenth of the von Kármán rollers. Huang et al. (2006) used

planar PIV with a pre-displaced second light sheet in order to investigate the
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size, strength, and evolution of streamwise vortices for the circular cylinder wake

in the Reynolds number range ReD = 2× 103 to 1× 104.

Coherent structures in the wake can also be investigated through the use of a

phase averaging procedure. Each snapshot of the wake velocity field is attributed

to a phase angle of shedding. Lourenco et al. (1997) reconstructed phase averaged

velocity and vorticity fields in the circular cylinder wake for a Reynolds number

of ReD = 3000. Perrin et al. (2007) investigated coherent structures and turbulent

kinetic energy in the wake of a circular cylinder at a Reynolds number of 1.4×105

by three-component stereoscopic and planar two-component PIV measurements.

Turbulent kinetic energy was found to be concentrated in two different regions:

within the primary rollers of the vortex street, and in the vicinity of stream-

wise ribs which connect primary rollers. In the current thesis, phase averaging

was utilised in the numerical modelling of Chapter 5 to decompose the dissipa-

tion term into coherent and stochastic components. This led to the development

of a surrogate for the dissipation term which can be evaluated using only two

components of velocity.

Dissipation is a key process in the wake of a bluff body as it acts to dampen

turbulent kinetic energy. A recent investigation into the wake of a square cylinder

(Alves Portela et al., 2018), confirmed existence of non-classical dissipation scal-

ing behaviour, such that the Kolmogorov equilibrium constant Cε varies like the

reciprocal of a local Reynolds number. This is in disagreement with the widely

accepted assumption that Cε is a constant, whose value is fixed by global tur-

bulence properties of a given flow (Taylor, 1935). Although this non-classical

behaviour has been confirmed for flows which are approximately homogeneous

and isotropic, e.g. grid turbulence (Vassilicos, 2015), velocities in the wake of a

cylinder have a strong periodic component. Following the decomposition method

of Hussain and Reynolds (1970), Alves Portela et al. (2018) isolated large-scale

coherent motions in the wake of the square cylinder to extract stochastic turbu-

lent motions. Non-equilibrium dissipation scaling was observed in a region where

the ratio of stochastic to coherent dissipation was constant, therefore suggest-

ing that non-equilibrium scaling was linked to a locking between the dissipation

terms.
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In addition to investigating dissipation along the wake centreline, the current

chapter will also investigate the influence of free-stream turbulence on the wake.

To the author’s best knowledge, very few PIV studies exist concerning the circu-

lar cylinder wake for a turbulent inflow. A contribution of this chapter is to add

towards the experimental data of turbulent flow past a circular cylinder. This will

be compared to the numerical results of Chapter 5. Introduction of turbulence

into the free-stream lowers the critical Reynolds number at which the shear layers

become unstable (Prasad and Williamson, 1997a), and shortens the recirculation

region. Lourenco and Shih (1993) found a reduced recirculation length in their

PIV experiments of flow past a circular cylinder at ReD = 3900. Kravchenko

and Moin (2000) noted that “inflow disturbances” in the experiment of Lourenco

and Shih (1993) caused a reduction in the recirculation length, however, no fur-

ther information on the turbulence characteristics were provided. In the current

experiment, flume speeds are adjusted to achieve cylinder Reynolds numbers in

the range 2100-6500. A wealth of studies have been undertaken in this range for

the laminar inflow case, which allows for a direct comparison. This range also

lies within the “disturbance-sensitive Reynolds number range”, where the wake

dynamics are sensitive to inflow conditions (Gerrard, 1965).

The first objective of this chapter is to highlight the influence of free-stream

turbulence on the flow past a circular cylinder. Planar PIV measurements in the

wake region at high turbulence levels are directly compared to literature results

from numerical simulations and experiments of low free-stream turbulence levels.

One such comparison is with the PIV study of Parnaudeau et al. (2008), where

a circular cylinder was placed in low-level free-stream turbulence (I < 0.1%)

with a cylinder Reynolds number of 3900. The second objective of this study is

to estimate the dissipation term from only two resolved components of velocity.

From two-dimensional slices of data, the POD method is applied to decompose

the velocity field into coherent and stochastic components. Dissipation scaling

along the wake centreline is then investigated for each Reynolds number.
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7.2 Coherent motion detection

7.2.1 Triple decomposition method

An introduction to the triple decomposition method of Hussain and Reynolds

(1970) was covered in Chapter 5, where the lift coefficient on the cylinder surface

was processed to extract periodicity from turbulent signals in the wake. The phase

averaging procedure is outlined once again here.

Velocities downstream of a wake generator, such as a circular cylinder, can be

decomposed into time-averaged 〈U〉, phase averaged ũ, and stochastic u′′ compo-

nents. Periodic shedding contributes to the phase averaged component of velocity.

If the phase averaging procedure is correctly implemented, the stochastic com-

ponent is uncorrelated to organised motion. The decomposition follows Hussain

and Reynolds (1970)

Ui = 〈Ui〉+ ũi + u′′i , (7.1)

where the subscript notation (i = 1, 2, 3) is used to denote the 3 directional

components of velocity. In this study, the Cartesian coordinate system xi is used

interchangeably with x, y, z. Turbulent fluctuating velocity is recovered from

the phase averaged and stochastic components by: ui = ũi + u′′i . Phase averaged

velocity is defined by (Hussain and Reynolds, 1970)

ũi = lim
N→∞

1

N

N∑
n=0

Ui(t+ nτ)− 〈Ui〉 , (7.2)

where τ is the wave period, corresponding to the periodic vortex shedding of the

circular cylinder.

A trigger signal can be extracted from force measurements on the cylinder

surface (Braza et al., 2006), or by velocity signals in the wake (Sung and Yoo,

2001; Lourenco et al., 1997; Kim et al., 2002). However, surface measurements are

not directly recorded in PIV. A more robust method of coherent motion detection,

which does not rely on conditional averaging, is modal decomposition (Lumley,

1981). In the current study, two-components of velocity in the cylinder wake are

recorded on a plane, therefore modal decomposition is well suited to the current

study. Wlezien and Way (1979) present a review on analysing phase information
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from the circular cylinder wake. Perrin et al. (2006) used a modal decomposition

to extract energetic modes of the cylinder wake. A trigger signal was then defined

from the coefficients of the two most energetic modes, which are associated with

the convection of von Kármán street vortices. From the coefficients of the first

two modes, the phase angle of shedding was deduced.

7.2.2 Proper orthogonal decomposition

Modal decomposition provides a statistical method for decomposing data into a

minimal number of energetic modes. It has been used extensively in a variety of

applications, such as: detection, estimation, pattern recognition, and image pro-

cessing (Taira et al., 2017). The proper orthogonal decomposition is a form of

modal decomposition. Although the POD technique can be utilised in a variety

of applications where it is known by other names, such as Karhunen–Loève de-

composition, it was first introduced in the context of turbulence as a means of

identifying coherent structures in turbulent flow fields (Lumley, 1967). Energetic

modes can be determined from the flow field data, or theoretically from the gov-

erning equations. Proper orthogonal decomposition is introduced in this study

for two primary reasons: (i) detection and replacement of spurious PIV vectors,

(ii) to provide a trigger signal for the phase averaging procedure.

The process of conducting POD analysis is described by first considering the

collection and storage of velocity data. At each time step in the PIV data col-

lection, velocity is recorded at a number of positions spanning a two-dimensional

plane. Data are stacked into a single column vector, from which a data matrix X

is formed, where each column corresponds to a stacked vector representing the

dynamical system at a single time step (see Figure 7.1). The covariance matrix

is constructed from the data matrix by R = XXT , where (·)T is the conjugate

transpose operator. If the total number of points in space is n, then R ∈ Rn×n,

and this matrix is potentially very large. To combat this, the snapshot POD

method developed by Sirovich (1987) reformulates the covariance matrix R. In-

stead of processing all time steps, a collection of s snapshots are extracted, and

the temporal correlation matrix is calculated by R = XTX ∈ Rs×s. Crucially,

XTX and XXT share the same non-zero eigenvalues (Taira et al., 2017), and
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yield the same dominant modes. The snapshot method produces a considerably

smaller correlation matrix, but the total number of time steps taken must be

sufficient to capture the flow physics (Sirovich, 1987).

Figure 7.1: Construction of data matrix X in preparation for POD analysis.

The POD technique extracts energetic modes by optimizing the mean square

of a given variable, which in the case of a fluid flow is the fluctuating velocity.

A fluctuating fluid flow is decomposed into a sum of weighted basis functions by

the generalised Fourier series

u(x, t) =
∑
j=1

αj(t)φj(x) , (7.3)

where αj(t) are time-dependent expansion coefficients, and φj(x) are incompress-

ible vector fields which can be thought of as characteristic eddies (Moin and

Moser, 1989). The method of snapshot POD seeks to represent u by an optimal

set of modes φ. This is achieved by recasting (7.3) into an eigenvalue problem,

such that

XTXψj = λjψj , (7.4)
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where ψj are the eigenvectors, and λj are eigenvalues corresponding to energy

levels. Setting up the eigenvalue problem in (7.4) is described in Eckart and

Young (1936), and Section 3.1 of Holmes et al. (2012). POD modes are recovered

from (Taira et al., 2017)

φj = Xψj
1√
λj

. (7.5)

A Hilbert transform of the expansion coefficients αj(t) is taken to yield a ref-

erence phase, associated with the cylinder vortex shedding. The reference phase

is then discretised into 32 bins. For each time-step, the velocity fields are placed

into the bin corresponding to their phase. Within each bin, an average is taken

over all velocity fields to obtain phase averaged velocities. From time traces of

αj(t), it is also possible to identify intermittent features in the wake. Intervals of

weak shedding can be identified by periods where the amplitude of αj(t) momen-

tarily decreases. Roshko (1952) observed such a phenomenon of intermittent low-

frequency irregularities in the wake-transition regime, due to the growth of large

vortical structures in the wake (Williamson, 1996). A consequence of this is that

turbulent structures are less organised for ReD > 5000 (Prasad and Williamson,

1997b).
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7.3 Circular cylinder wake structure

7.3.1 Vortex shedding characteristics

Formation of a vortex street in the wake is a consequence of periodic shedding

from the cylinder surface. A nondimensional measure of the eddy shedding is

given by the Strouhal number St = fsD/U∞, where fs is the shedding frequency.

Periodic shedding from the cylinder induces a force transverse to the flow direc-

tion, which can lead to vortex-induced vibration, and even structural failures.

Shedding frequencies can be extracted from velocity time signals in the wake

by various methods. Matsumura and Antonia (1993) estimated the shedding fre-

quency from the primary spike found in the spectra of normal velocity fluctuation

u2. Instead of using velocity data, Ma et al. (2000) used the lift coefficient to ob-

tain a time-averaged Strouhal frequency. Parnaudeau et al. (2008) computed the

Strouhal number from examination of the peaks and troughs of the fluctuating

normal velocity time signal u2(t). This was achieved by identifying a peak at the

start and end of the full data, and counting the number of sheds in the interval.

POD analysis was carried out in Section 6.6.2 to detect and remove spurious

vectors, from which the expansion coefficients αj(t) are generated and can be

analysed to deduce shedding characteristics. Figure 7.2 displays the results of

POD analysis on the case of ReD = 4200. In Figure 7.2a, the percentage of energy

in each mode for the fluctuating velocity signal is plotted. Included are the data of

Perrin et al. (2006) from a considerably higher Reynolds number of ReD = 140000.

The POD method sorts and arranges modes by energy in descending order. This

is confirmed in Figure 7.2a, where it can be seen that after approximately 10

modes, energy decays exponentially. The first two modes carry approximately

the same amount of energy- 13.6% and 12.8%, respectively. This is in agreement

with previous studies where the first two modes were attributed to the primary

vortex shedding, from ReD = 100 (Deane et al., 1991), to ReD = 140000 (Perrin

et al., 2006). The third mode contributes 3.1%, after which, all modes have energy

< 1%. A low-dimensional model of a fluid flow can be constructed from a small

number (< 10) of modes. Phase information of the primary vortex shedding is

contained within the expansion coefficients of the first two modes. A time-series
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of the first expansion coefficient α1, normalised by max{|α1|}, is presented in

Figure 7.2b for 20 seconds of data. It was noted that α1(t) and α2(t) differ only

by a translation in t, as confirmed in Perrin et al. (2006), therefore phase averaging

of the periodic shedding process can be deduced from only α1.

(a) Energy in each POD mode. (b) Normalised coefficient α̂1(t).

Figure 7.2: Energy contained in each POD mode, and time trace of the first POD
coefficient α̂1 = α1/max{|α1|}. Ref. 1: PIV of Perrin et al. (2006).

The Strouhal shedding frequency St is calculated from the time-series of α1 by

taking a Fourier transform and extracting the dominant frequency. This method

is checked by taking a Fourier transform of the normal fluctuating velocity at

various downstream positions along the wake centreline, and confirming both

methods return the same shedding frequency.

Table 7.1 presents details of current flow conditions, and time-averaged statis-

tics in the wake. Turbulence intensity is calculated in the free-stream. Included

are computational results from the LES study of Chapter 5, first presented in Ta-

ble 5.3. Reported values from the literature for the Strouhal number, as discussed

in Section 2.2, are varied. However, the current PIV data at ReD = 4200 agrees

closely with the PIV experiment of Parnaudeau et al. (2008). This is despite the

differences in free-stream turbulence. There is no clear trend between ReD and

St for results in the current PIV data. Results from the current PIV data show

that as the Reynolds number increases, the recirculation length reduces.

Between the simulations of Chapter 5 and the current PIV, it is expected

that the results of RGI and Case II would be comparable, because the freestream
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flow conditions are similar. The RGI simulation returns a Strouhal number of

St = 0.207, in close agreement to Case II, where St = 0.203. This is not the

case in the FGI simulation, where St = 0.224. However, a recirculation length of

Lr/D = 1.30 is reported in Case II, compared to Lr/D = 0.88 and 0.96 for the

RGI and FGI simulations, respectively. This may suggest that the recirculation

length is more sensitive to inflow turbulence than the shedding frequency.

Reference Type ReD St Lr/D I (%) L11/D

Literature

Norberg (1987) HWA 3900 0.215 1.33 . . . . . .

Lourenco and Shih (1993) PIV 3900 . . . 1.18 . . . . . .

Ong and Wallace (1996) PIV 3900 0.215 . . . . . . . . .

Ma et al. (2000), case II DNS 3900 0.219 1.59 . . . . . .

Parnaudeau et al. (2008) PIV 3900 0.208 1.51 < 0.2 . . .

Simulations (Chapter 5) I1, I2 (%)

LI LES 3900 0.218 1.49 0.0, 0.0 0.00

RGI LES 3850 0.207 0.88 7.1, 7.1 0.67

FGI LES 4050 0.224 0.96 3.9, 6.7 0.56

Current PIV I1, I2 (%)

Case I PIV 2100 0.180 1.92 6.5, 6.5 0.58

Case II PIV 4200 0.203 1.30 6.8, 5.3 0.94

Case III PIV 6500 0.189 1.03 6.3, 6.1 1.63

Table 7.1: Characteristic flow conditions from experimental and numerical studies
on the flow past a circular cylinder. Turbulent intensity: I1 = urms/U∞, I2 =
vrms/U∞.

7.3.2 Mean velocity wake profiles

Isocontours of first and second order statistics are presented in Figure 7.3. High

gradients of streamwise velocity 〈U1〉 are present in the shear layers. In contours

of streamwise velocity variance 〈u2
1〉, a maximum is present either side of the
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cylinder, which takes the shape of an ellipse in the contour plot. Although the

current PIV data and results of Parnaudeau et al. (2008) agree in their shape,

it can be seen that streamwise distances of maxima and minima are slightly

different. For example, in the map of 〈u1u2〉/U2
∞, the butterfly pattern identified

in Parnaudeau et al. (2008) has also been seen in the current PIV data. However,

the location of maxima and minima is shifted towards the cylinder in the current

PIV data. The most likely cause of this is the free-stream turbulence which causes

earlier transition in the shear layers. A similar effect was seen in Lourenco and

Shih (1993), where free-stream disturbances also caused earlier transition.

Figure 7.4 presents time-averaged velocity profiles across −2 < x2/D < 2 at

fixed downstream position in the near wake for x1/D = 1.54. This corresponds to

the approximate downstream position on the wake centreline at which streamwise

velocity experiences a minimum, and where the streamwise variance reaches a

maximum. Results from the current experiment at Reynolds number 4200 have

been compared to the PIV studies of Lourenco and Shih (1993) and Parnaudeau

et al. (2008), which were both ran at a Reynolds number of 3900. Additionally,

simulation results from Chapter 5 have been included for comparison.

Profiles of 〈U1〉 for the current PIV data is in close agreement to the data of

Lourenco and Shih (1993), but deviate from the PIV data of Parnaudeau et al.

(2008), and the LES results of LI. Both turbulent inflow simulations RGI and

FGI show a rapid recovery of the mean streamwise velocity in the wake, which

is particularly pronounced on the centreline (x2/D = 0), and at the wake edge

(x2/D ≈ ±0.8). Streamwise velocity on the centreline appears to increase as the

freestream turbulence increases. This suggests that inflow disturbances, i.e. free-

stream turbulence, cause an earlier transition in the shear layers, leading to a

shorter recirculation length. However, freestream flow conditions for the runs of

Case II, RGI, and FGI are similar in level of turbulence, as reported in Table 7.1.

The amplitude and location of peaks for 〈U2〉 match closely to Parnaudeau

et al. (2008) and the current LES results LI. Lourenco and Shih (1993) report

smaller amplitudes. However, in the middle portion (−1 < x2/D < 1), a clearly

defined inflection point observed in the LES results of LI and the PIV of Par-

naudeau et al. (2008) is not found in the current PIV or turbulent inflow data of
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RGI or FGI. Nor is it observed in the results of Lourenco and Shih (1993). This

is once again believed to be an effect of early transition in the shear layers.

In profiles of 〈u2
1〉/U2

∞, the experimental results of Parnaudeau et al. (2008)

display two peaks either side of the centreline. Two inner peaks at x2/D ≈ ±0.25

form as a result of primary vortex shedding. Two outer peaks x2/D ≈ ±0.5

originate from the transitional behaviour of the shear layers (Parnaudeau et al.,

2008). Profiles of 〈u2
1〉/U2

∞ and 〈u2
2〉/U2

∞ differ between the current results and

those from literature. There is considerable scatter between data sets. This is

especially true for the LES FGI case, where particularly large values of 〈u2
2〉/U2

∞

are reported along the centreline. A possible explanation is that freestream tur-

bulence has become entrained into the wake centreline. Profiles of 〈u1u2〉/U2
∞ for

Parnaudeau et al. (2008) and the LES of LI are closely matched. The shape of

〈u1u2〉/U2
∞ is similar to 〈U2〉/U2

∞, i.e. it displays asymmetry.
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Figure 7.3: Isocontours of first and second order velocity statistics in the cylinder
wake. From top to bottom: 〈U1〉/U∞, 〈U2〉/U∞, 〈u2

1〉/U2
∞, 〈u2

2〉/U2
∞, 〈u1u2〉/U2

∞.
Left: Parnaudeau et al. (2008), right: current PIV data.

194



Figure 7.4: Velocity profiles in the cylinder wake at downstream position x1/D =
1.54, as a function of crossflow position x2/D. Case II of the current PIV at
Re = 4200. Ref. 1: Parnaudeau et al. (2008), Ref. 2: Lourenco and Shih (1993).
Simulations LI, RGI, FGI of Chapter 5.
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7.3.3 Shedding structures

To visualise vortex shedding in the cylinder wake, vorticity is computed

ωz =
∂Uy
∂x
− ∂Ux

∂y
, (7.6)

which, for a discrete set of locations (Figure 7.5), can be estimated by a second-

order central differencing scheme

ωz(i, j) ≈
Uy(i+ 1, j)− Uy(i− 1, j)

2∆x
− Ux(i, j + 1)− Ux(i, j − 1)

2∆y
. (7.7)

Adrian (1991) note that (7.7) amplifies noise in the measured velocity data.

A remedy is to first apply a low-pass filter to the velocity data to replace high-

frequency noise. Landreth and Adrian (1988) propose calculating vorticity via

circulation, such that

ωz = lim
A→0

1

A

∮
C
U · dl , (7.8)

where C is the contour that encloses area A. The discrete form of (7.8) is a filtered

second-order difference (Westerweel, 1993; Landreth and Adrian, 1988)

ωz =
1

4δxδy


δy · Uy(i+ 1, j) + 1

2
δy · {Uy(i+ 1, j − 1) + Uy(i+ 1, j + 1)}

−δx · Ux(i, j + 1)− 1
2
δx · {Ux(i− 1, j + 1) + Ux(i+ 1, j + 1)}

−δx · Uy(i− 1, j)− 1
2
δy · {Uy(i− 1, j − 1) + Uy(i− 1, j + 1)}

δy · Ux(i, j − 1) + 1
2
δx · {Ux(i− 1, j − 1) + Ux(i+ 1, j − 1)}

 .

Contour plots of z-vorticity are presented in Figure 7.6 for ReD = 4200. Time-

averaged z-vorticity contour plots are symmetrical about the wake centreline.

Maximum vorticity is found in the shear layers either side of the cylinder. In the

recirculation region directly behind the cylinder, low levels of vorticity are found,

as reported in Lin et al. (1995a). A comparison is made between the current results

at ReD = 4200, and the combined DNS/PIV of Dong et al. (2006) for ReD = 3900,

ReD = 10000. Surprisingly, the current PIV results for effective shear layer length

Ls are in closer agreement to the higher Reynolds number of Dong et al. (2006).

This is more supporting evidence to suggest free-stream turbulence has caused

early transition in the shear layer instability. Instantaneous z-vorticity contours
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Figure 7.5: Grid point definitions in the current 2D PIV coordinate system. Out of
plane vorticity at the central node (i, j) requires velocity data from neighbouring
grid points.

shown in Figure 7.6 illustrate the process of periodic shedding. A vortex can be

seen to break off from the bottom surface of the cylinder.

Figure 7.6: Contours of normalised z-vorticity ωz(D/U∞) in the near wake at
ReD = 4200. Left: time-averaged profiles displaying symmetry. Right: instanta-
neous profile showing the shedding of a vortex from the bottom surface of the
circular cylinder.

Figure 7.7 presents a typical velocity decomposition. The mean profile repre-
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sents a symmetrical wake with a small recirculation region. In the phase averaged

component, a von Kármán vortex street is clearly identified by alternating vor-

tices, created at the top and bottom cylinder surface and advected downstream.

No such coherent structures are identified in the stochastic signal, confirming

phase averaging has successfully removed the periodic component of velocity.

Figure 7.7: Instantaneous velocity contours in the cylinder wake. The raw veloc-
ity signal is decomposed into mean, phase, and stochastic components. A von
Kármán vortex street is clearly visible in the phase averaged component.

To illustrate the operation of decomposing the velocity field into mean, phase,

and stochastic components, two time-series of streamwise velocity are presented

in Figure 7.8. These time series were chosen along the centreline at downstream

position x1/D = 6 to produce a strong influence from the cylinder shedding for at

least three wave periods. Phase component ũ1 follows a sinusoidal profile which

is driven by periodic shedding from the cylinder.
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Figure 7.8: Time-series of phase and stochastic components of U1 at a point in
the wake x/D = 6, y/D = 0.

7.3.4 Wake width development

In applications where an object is placed in the vicinity of a circular cylinder, it

is important to predict time-averaged properties of the cylinder wake. A simple

example is the tandem cylinder configuration, where a downstream cylinder sits

in the wake of a primary cylinder. Periodic shedding from the primary cylinder

can cause wake-induced transverse forcing on the downstream cylinder (Bearman,

2011), but this is dependent on the wake development from the primary cylinder.

If the downstream cylinder is to be placed at a certain position of the primary

cylinder wake, one important consideration is the streamwise development of the

wake width. For purposes of energy harvesting, devices such as piezoelectric beams

are positioned in the wake where primary vortex shedding is strong (Akaydın

et al., 2010). Behind a bluff body, a region of displaced fluid is generated which

leads to a velocity deficit. The velocity deficit is defined by Uw = U∞−〈U1〉, and

has centreline value Um. The wake width yw is defined to be the distance from

the centreline where the velocity deficit has decayed to e−1/2 its maximum value.

Wake width development is dependent on characteristics of free-stream turbu-

lence, such as turbulence intensity and integral length scale. In their wind tunnel

experiment, Symes and Fink (1978) found free-stream turbulence levels of 5%

had a significant influence on the cylinder wake, increasing the rate of turbu-
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lent diffusion. Eames et al. (2011) developed a theoretical model to predict wake

spreading in the presence of intense free-stream turbulence. Initially, a region of

ballistic spreading is found, where the velocity deficit Um/U∞ decays like 1/x1.

This is followed by diffusive spreading, where Um/U∞ decays like 1/
√
x1.

Figure 7.9 presents the nondimensionalized inverse of the velocity deficit along

the wake centreline, for cylinder Reynolds numbers ReD = 2100, 4200, 6500. A

minimum is reached close to the cylinder base in the recirculation region, followed

by a region of linear growth where Um ∝ 1/x1. Lines of Ax1 +B, where A and B

are constants, have been superimposed on top of the data to highlight regions of

ballistic spreading, as described in the theoretical model of Eames et al. (2011).

Figure 7.9: Inverse of the velocity deficit, as a function of downstream position
from the cylinder. Dashed lines follow linear growth, typical of ballistic spreading.

7.3.5 Centreline development

Figure 7.10a displays time-averaged streamwise velocities along the wake centre-

line. In the near wake (x1/D < 2) there is a velocity deficit, where the flow is

highly separated and recirculating. Profiles at the cylinder base (x1/D = 0.5)

approach zero velocity due to the no-slip condition. It reaches a minimum of Umin

in the recirculation region. The length of the recirculation region Lr is defined

as the distance from the cylinder base to the streamwise location at which 〈U1〉
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crosses zero. The current PIV results are in closest agreement with the PIV data

of Lourenco and Shih (1993) for size of recirculation region, and magnitude. In-

flow turbulence in the current PIV has created a smaller region of recirculation,

with a smaller magnitude of recirculation. A short recirculation region found in

Lourenco and Shih (1993) was explained by Kravchenko and Moin (2000) to be

due to early transition to turbulence in the shear layers.

Figure 7.10b displays profiles of 〈u2
1〉/U2

∞ along the wake centreline. Directly

behind the cylinder (x1/D < 3) turbulence intensity is dominated by background

noise and cylinder aspect ratio (Ma et al., 2000). In the far wake, turbulence

intensity is dominated by primary von Kármán shedding. Profiles of u2
1/U

2
∞ are

characterised by a sharp increase in the near wake region, followed by a peak and

eventual decay to an apparent asymptotic value. Increasing the Reynolds number

shifts the peak towards the cylinder, and profiles approach their asymptote closer

to the cylinder. Two peaks are visible in the results of Parnaudeau et al. (2008),

which are not visible in the current PIV data. There is reasonable agreement

between the current PIV data at Re = 4200, and the results of Parnaudeau et al.

(2008) at Re = 3900, with regards to location and amplitude of peak 〈u2
1〉.

(a) Mean streamwise velocity. (b) Variance of streamwise velocity.

Figure 7.10: Time-averaged streamwise velocity along the wake centreline. Ref.
1: PIV Parnaudeau et al. (2008), Ref. 2: PIV of Lourenco and Shih (1993), Ref.
3: DNS (case II) of Ma et al. (2000).
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7.4 Dissipation in the wake

Taylor (1935) investigated the decay of grid-generated turbulence and reasoned,

on ad hoc grounding, that dissipation is balanced by energy loss from the large

scale motions. If the largest turbulent eddies have length and velocity scales L
and U respectively, the assumed form of dissipation is given by

ε = Cε
U3

L
, (7.9)

where Cε is the dimensionless dissipation constant. Although Cε does not have a

universal value, it is considered to be constant for “geometrically similar bound-

aries”, and far enough away from the grid where the shadow disappears and the

mean velocity becomes uniform. The assumption that Cε is constant has been

referred to as “one of the cornerstone assumptions in turbulence theory” by Ten-

nekes and Lumley (1972). With the advent of fractal-type grids in wind tunnel

experiments, a non-classical dissipation behaviour has been confirmed in the de-

cay region. This non-classical dissipation scaling is given by (Vassilicos, 2015)

Cε ∝
√

ReI
Reλ

, (7.10)

where ReI is an inlet/global Reynolds number, and Reλ is the local Reynolds

number based on the Taylor microscale λ, such that

Reλ =
Uλ
ν

. (7.11)

7.4.1 Characteristic scales of turbulence

In order to investigate the behaviour of CεReλ as an indicator of non-equilibrium

turbulence, typical scales of length and velocity must be chosen. Any velocity

scale U which does not incorporate the effects of the vortex shedding was found

suitable in the study of Alves Portela et al. (2018). A strong periodic signal in

U = k1/2 was detected because of the normal component ũ2. Here the choice of

U is given by

U =

√
1

2
〈(u′′1)2〉 . (7.12)
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Alves Portela et al. (2018) investigated the behaviour of (7.10) with different

choice of length scale λ. The isotropic value is given by

λ =

√
15ν
U2

ε
, (7.13)

however, a different choice of length scale can be taken, for example

λij =

√
2〈u2

i 〉
〈(∂jui)2〉

, (7.14)

where ∂i ≡ ∂/∂xi, and there is no summation over repeated indices. Alves Portela

et al. (2018) found the ratio λij/λ to be approximately constant in the downstream

region 4 . x1/D < 10, therefore without the third component of velocity in the

PIV measurements, it is possible instead to take (7.14) for i = j = 1. Following

Alves Portela et al. (2018), the characteristic length scale is taken to be L =

U1Θu′′1
, where Θu′′1

is the integral time scale given by

Θu′′1
=

1

〈u′′1(x, t)2〉

∫ r0

0

〈u′′1(x, t)u′′1(x, t+ τ)〉 dτ , (7.15)

where r0 is the first zero-crossing of the integrand, and τ is a separation in time.

It is noted that (7.12) and (7.15) do not contain any phase component of velocity,

and therefore large-scale coherent motions have been removed from characteristic

scales U , L.

7.4.2 Dissipation term decomposition

A surrogate of the dissipation term was introduced in Chapter 5.5.2. The main

points are revisited here before the method is used to evaluate dissipation along

the circular cylinder wake centreline. The pseudo dissipation term εxy only re-

quires measurements of velocity and velocity derivatives from a two-dimensional

slice on the x-y plane, which is available here in the planar PIV measurements.

For the circular cylinder wake, εxy was found to be close approximation to ε. Dissi-

pation is split into coherent and stochastic components from the phase averaging
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procedure such that εxy = ε̃xy + ε′′xy, where

ε̃xy = 2ν
[
〈(S̃11)2〉+ 〈(S̃22)2〉+ 2〈(S̃12)2〉

]
, (7.16)

ε′′xy = 3ν
[
〈(S ′′11)2〉+ 〈(S ′′22)2〉+ 4〈(S ′′12)2〉

]
, (7.17)

where S̃ij and S ′′ij are the strain rate of phase averaged and stochastic velocity

components, respectively.

Dissipation along the wake centreline for Reynolds numbers ReD = 2100, 6500

is displayed in Figure 7.11. The combined dissipation due to phase and stochastic

motions displays a peak in the near wake and then decays in the streamwise

direction. Profiles of stochastic dissipation ε′′xy follow the same trend as εxy and

have therefore been omitted. It can also be seen that coherent motions make little

contribution towards dissipation, in agreement with the findings of Hussain (1983)

and Alves Portela et al. (2018). Interestingly, at the lowest Reynolds number, ε̃xy

displays two pronounced peaks at x1/D ≈ 2, 3. The first peak at x1/D ≈ 2

corresponds to the point at which the variance of the streamwise velocity u2
c

begins to plateau towards its maximum value (Figure 7.10b), and where Uc = Umin

(Figure 7.10a). The second peak at x1/D ≈ 3 corresponds to the point at which

the ballistic spreading regime begins.

Figure 7.11: Centreline development of turbulent dissipation, and dissipation due
to coherent motions, both nondimensionalized by U3

∞/D.

Non-equilibrium turbulence is believed to result from a locking of dissipation

between stochastic and coherent motions, which leads a constant ratio of ε′′/ε̃
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(Goto and Vassilicos, 2015). Figure 7.12 plots the ratio ε′′/ε̃ along the wake

centreline. Strictly speaking, it is the ratio ε′′xy/ε̃xy which is calculated for the

current PIV. Results from the current PIV at Reynolds numbers 2100 and 4200

are compared to the LES regular grid inlet (RGI) case ran in Chapter 5. Also

included are the DNS data in the square cylinder wake of Alves Portela et al.

(2017), which was later re-analysed by Alves Portela et al. (2018). The ratio

ε′′/ε̃ is approximately constant with a value of 10 in the current PIV data at

ReD = 2100 for the region 2 < x1/D < 4. This is followed by a sharp increase

and a second plateau at 4 < x1/D < 6. However, results from the Reynolds

number of 4200 display a steady increase through x1/D > 2, with no observable

plateau. A close agreement is found between the PIV data and the LES data in the

region 2 < x1/D < 4. In the region 4 < x1/D < 6, the current PIV data begins to

deviate from the LES, and looks to be approaching the DNS of Alves Portela et al.

(2018). An increase in ε′′/ε̃ may occur when a flow transitions out of equilibrium.

However, this isn’t suggested by the simulations, because ε′′/ε̃ remains constant

for a least 10 diameters downstream of the cylinder. It is possible that noise in

the PIV data begins to contaminate the stochastic component of dissipation far

enough away from the cylinder.

Figure 7.12: Centreline development of turbulent dissipation. LES: results of
Chapter 5 for the RGI turbulent inflow case at ReD = 3900. Ref. 1: Alves Portela
et al. (2018) DNS of square prism wake at a Reynolds number of 3900.
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7.4.3 Dissipation scaling

Profiles of CεReλ/
√

ReD (Figure 7.13), display similar behaviour for Reynolds

numbers ReD = 2100, 6500. Profiles collapse when normalised by
√

ReD, further

strengthening the claim of Cε ∝
√

ReI/Reλ (Vassilicos, 2015), where the global

Reynolds number here is the cylinder Reynolds number. However, this behaviour

can be split into two categories: (i) Cε, Reλ are both constant; (ii) one increases as

the other decreases, in proportion to one another. It can be seen from Figure 7.14

that Cε increases at the same rate that Reλ decreases for ReD = 2100. At the

highest Reynolds number ReD = 6500, it can be deduced that constant CεReλ is

due to both terms becoming constant.

Figure 7.13: Relationship between dissipation constant Cε, and local Reynolds
number Reλ.

The non-equilibrium dissipation scaling is written out in full by expanding

each term (7.9), (7.11)

CεReλ =
ε

ν

λL
U2

, (7.18)

=
ε

ν

L
λ

(
λ

U

)2

. (7.19)
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(a) ReD = 2100. (b) ReD = 6500.

Figure 7.14: Development of dissipation constant Cε, and local Reynolds number
Reλ along the centreline.

If L/λ is constant (Vassilicos, 2015), (7.19) simplifies to

CεReλ ∝
ε T 2

ν
, (7.20)

where T = λ/U is some local turbulent time scale. The development of εT 2 along

the wake centreline is shown in Figure 7.15. It is evident that εT 2 asymptotes to

a constant value for approximately x1/D > 3.

Figure 7.15: Development of εxyT 2 along the wake centreline for ReD = 2100.
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7.5 Chapter conclusions

Turbulent flow past a circular cylinder in a recirculating water flume has been

investigated using two-dimensional particle image velocimetry in the subcritical

range of Reynolds numbers. Turbulence upstream from the cylinder has been

generated by passing the flow through a biplane grid, yielding non-negligible

turbulence intensities of 5-10%. Free-stream turbulence has been found to squeeze

the wake closer to the cylinder base. Results agree with previous experiments,

where flow disturbances have been inadvertently added to the free-stream.

Proper orthogonal decomposition has been used in this study to identify co-

herent motions in the circular cylinder wake, and provide a trigger signal for

phase averaging. The two-dimensional velocity field has been decomposed into

mean, phase averaged, and stochastic components. It is demonstrated that phase

averaging successfully extracts coherent motions, which correspond to the von

Kármán street vortices. Calculating turbulence dissipation requires a total of 9

terms from the velocity gradient tensor, only 4 of which are resolved in planar

PIV. By decomposing turbulence dissipation into coherent and stochastic com-

ponents, the surrogate εxy can be used as an approximation. This was developed

in Chapter 5 and validated on LES data.

The non-equilibrium dissipation scaling Cε ∝ 1/Reλ has been observed in the

near wake in the current study. However, there is different behaviour between

the low and high Reynolds number cases. As the cylinder Reynolds number is

increased, Cε and Reλ quickly asymptote to a constant value, at least for the range

of wake extent monitored. For the lowest Reynolds number tested in the current

experiment, Cε increases as Reλ decreases at the same rate, giving Cε ∝ 1/Reλ.

For the wake of a square prism at Reynolds number 3900, Alves Portela

et al. (2018) propose the scaling Cε ∝ 1/Reλ is a consequence of locking between

stochastic and phase averaged dissipation components, such that the ratio ε′′xy/ε̃xy

is constant along the centreline in the wake. Although the study of Alves Portela

et al. (2018) concerned a square prism, and a circular cylinder has been used in

the current investigation, reasonable agreement is found between the two cases.

In the current study, the ratio ε′′xy/ε̃xy becomes constant in the downstream re-

gion at the lowest Reynolds number ReD = 2100, but is steadily increasing in
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the same region for the higher Reynolds numbers tested. Yiu et al. (2004) stud-

ied the circular cylinder wake in the Reynolds number range ReD = 2500 to

10000 and found two-dimensionality of the wake broke down as the Reynolds

number was increased. Here it has been observed that centreline dissipation due

to stochastic turbulent motions dominates dissipation due to coherent shedding

as the Reynolds number is increased, even in the small Reynolds number range

tested here for ReD = 2100 to 6500. This is in disagreement to the LES results

of Chapter 5, where the ratio ε′′/ε̃ is constant for at least 10 diameters along the

centreline.

To further investigate the non-equilibrium dissipation scaling, individual terms

of CεReλ are expanded. It is shown that non-equilibrium dissipation behaviour

coincides with regions of constant (ε̃xy + ε′′xy)T 2, where T is a turbulent time

scale based on the Taylor microscale. Further work is required to understand the

mechanism responsible for the sensitivity of Cε to inflow conditions in the wake

of bluff bodies.
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Chapter 8

Conclusions and outlook
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8.1 Thesis conclusions

Simulations of grid turbulence have been carried out to investigate the genera-

tion and decay of freestream turbulence. A comprehensive study was undertaken

using LES to compare turbulence characteristics behind 4 grid designs. A new

fractal grid design has been compared to 3 standard grids: regular, multiscale,

and square-fractal. Fractal shapes are ubiquitous in nature, and this type of flow

can be exploited in the engineering industry, e.g. for applications of vortex shed-

ding and mixing. To the author’s knowledge, this is the first time multiscale and

fractal shapes have been considered in such a study.

Clustering in the vorticity field has been reported in wind tunnel experiments

for the turbulence generated by fractal grids. The reason for this has been con-

firmed in the current simulations- if solidarity is not sufficiently spread across

the inlet patch, this can lead to prominent jets and wakes which are not broken

up as they travel downstream. Evidence for this has been provided by taking

slices through the domain to visualise high velocity streaks. Vorticity clumping

has also been observed in the fractal designs, especially along the perimeter of

the square-fractal grid.

Turbulence decay in the wake of the regular and multiscale grids differs to the

fractal-type grids. Along the centreline, the decay exponent measured behind the

fractal-type grids builds rapidly. This is in agreement with previous experiments,

where a higher exponent is measured behind fractal grids compared to regular

or multiscale grids. A region of non-equilibrium turbulence has been detected in

the wake of all 4 grid designs, although to a varying degree. This is attributed to

forcing of turbulence at multiple length scales, which disrupts the flow of energy

down the cascade.

Building directly on the grid turbulence simulations, Chapter 5 investigated

turbulent flow past a circular cylinder using LES. Two types of turbulent flow

were generated upstream by using a regular and fractal grid design, projected

onto the inlet patch. A laminar inflow was also simulated as the base case. An in-

crease in drag is experienced between the laminar inflow (LI), and the two fractal

grid cases. This is to be expected. However, taking inflow turbulence conditions

into consideration, i.e. integral length scale, turbulence intensity, and Reynolds
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number, the RGI and FGI cases should predict a similar drag coefficient. This

has not been the case. Despite the FGI case producing turbulence with a lower

intensity and smaller integral length scale, a higher drag coefficient is returned.

A 15% increase in drag was observed for the regular grid inlet when compared to

the laminar inflow case. This increases further to 33% when comparing the frac-

tal grid inlet to the laminar inflow case. This suggests that characterising inflow

turbulence on intensity and integral length scale alone is insufficient.

Structures in the wake were then identified for each inflow case, and it was

possible to detect rollers and streamwise ribs in each simulation. In the Reynolds

number range studied in this thesis, the circular cylinder wake consists of rollers,

streamwise ribs, saddle points, high mixing regions, and engulfed free-stream. This

is reasonably well understood, and models have been developed to describe these

processes. However, there is less understanding on how dissipation is concentrated

in relation to coherent structures, with the current theory being that it resides

in the primary rollers. When the dissipation field is visualised and superimposed

on top of the coherent motions, it is seen that high levels of dissipation are

concentrated in between the streamwise ribs. This is a significant result which

has not been reported before in the literature. An updated model of the circular

cylinder wake is introduced with this new information on the dissipation field.

Along the wake centreline, dissipation is split into coherent and stochastic con-

tributions by implementing a phase averaging technique. The ratio of stochastic

to coherent dissipation is approximately constant in the near wake of the circular

cylinder, up to at least 10 diameters. Locking between coherent and stochastic

dissipation has been detected in the wake of a square-cylinder, but this is believed

to be the first time this has been observed in the circular cylinder wake. This lock-

ing phenomenon is important to study, because it is suspected to be linked to

non-equilibrium dissipation. A surrogate of the dissipation term, denoted by εxy,

has been developed which has been successfully verified on the circular cylinder

wake. Not only does εxy perform equally well compared to other commonly used

surrogates of ε from the literature, but it also only requires those components of

velocity measured with planar PIV.

The cylinder wake was then investigated experimentally using particle image

velocimetry. A turbulence inflow was generated using a regular grid. Freestream
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flow conditions were comparable to the RGI case of Chapter 5. A total of 3 runs

were analysed at Reynolds numbers ReD = 2100, 4200, 6500. It was found that

a turbulent inflow causes an early transition in the wake, leading to a smaller

recirculation region. This was also observed in the simulations of Chapter 5. A

phase averaging procedure was applied to extract coherent motions from the

wake. A trigger signal to characterise the phase angle of periodic shedding was

deduced from analysis of the proper orthogonal decomposition (POD) modes.

This is in contrast to the LES study of Chapter 5, where a trigger signal was

available from a time series of the lift coefficient. POD has also been used in the

pre-processing of data to remove spurious vectors. Dissipation along the centreline

has been calculated from the two-dimensional data using the surrogate method

developed in Chapter 5, and split into coherent and stochastic contributions.

The ratio between dissipation due to stochastic motions and dissipation due to

coherent motions is found to be constant in the wake, and is in close agreement to

the current LES. Non-equilibrium turbulence has been detected at each Reynolds

number, but it is especially pronounced in the lowest Reynolds number case.

To summarise the overriding conclusions from this thesis- a method to gener-

ate bespoke turbulence in simulations has been explored, which has been consid-

ered in isolation, and as a method to create free-stream turbulence upstream of

a circular cylinder. An alternative method of calculating dissipation in the wake

of a periodic shedding bluff body has been developed, which is validated using

CFD of flow past a circular cylinder, and used to calculate dissipation in the

cylinder wake from planar PIV data. A new model of the circular cylinder wake

has been proposed, which describes the configuration of dissipation and coherent

structures. Results and methods presented in this thesis are relevant not only to

the study of turbulent flow past a circular cylinder, but also to the subjects of

grid-generated turbulence, and bluff body flow.

8.2 Research aims revisited

Research objectives were set out in Chapter 1 to “. . . improve understanding of

the circular cylinder wake for a turbulent inflow. In particular, the relationship
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between coherent turbulent structures and dissipation will be investigated”. Each

objective is revisited here:

I. Develop a method to generate free-stream turbulence in simulations which

can replicate bespoke grid turbulence from experiments.

(a) Review the experimental literature of grid turbulence.

Chapter 2 presented a review of classical grid turbulence, alongside

more recent developments in multiscale/fractal grid turbulence exper-

iments. Despite the wide applications of fractal grid turbulence in the

engineering industry, there are a lack of studies reported in the liter-

ature which consider the case of multiscale turbulent flow past bluff

bodies. There is also no consensus on the best way to generate multi-

scale free-stream turbulence in simulations.

(b) Simulate grid turbulence using different designs to compare turbulence

produced by classical and novel grids.

Large-eddy simulations of free-stream turbulence have been carried

out by projecting grid designs onto the inlet patch in Chapter 4. This

has been shown to be a suitable method for generating realistic grid

turbulence in simulations, even reproducing universal laws from wind

tunnel experiments.

(c) Identify important parameters in grid construction which influence tur-

bulence level, homogeneity, and length scales.

A crucial finding from Chapter 4 is that common fractal designs used

in wind tunnel experiments can display poor homogeneity across the

grid element. This has been observed in wind tunnel experiments and

has been explained here by considering one fractal grid element in

isolation. The central cross of each grid element plays a vital role in

flow homogeneity and also on the turbulent length scales produced.

A similar level of turbulence is produced from each grid because the

inflow speed has been fixed, rather than fixing the grid inlet Reynolds

number Re0.
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II. Explore the relationship between coherent structures and dissipation for sim-

ulations of laminar and turbulent flow past a circular cylinder.

(a) Investigate the influence of free-stream turbulence on lift and drag of

the circular cylinder.

An increase in drag has been observed when turbulence is introduced

in the free-stream. This has been reported in the numerical simulations

of Chapter 5. For the laminar inflow, the drag coefficient of Cd = 1.03

matches well to literature. This increases to 1.18 for the regular grid

inlet, and 1.37 for the fractal grid inlet.

(b) Evaluate alternative methods of estimating the dissipation term which

require fewer terms of the velocity gradient tensor.

An alternative method of calculating dissipation from only two compo-

nents of velocity has been developed by decomposing the velocity field

into coherent and stochastic contributions, which is denoted by εxy. It

has been shown that εxy is a good approximation to ε for the circular

cylinder wake, and can also be evaluated using only two components

of the velocity field. A locking between the dissipation due to coherent

motions and the dissipation due to stochastic motions was observed.

(c) Construct a three-dimensional picture of the wake, including: rollers,

ribs, and the dissipation field.

A model to describe the interaction between concentrated regions of

dissipation and coherent motions in the wake was proposed in Chap-

ter 5. It has been previously reported in the literature that dissipation

is concentrated within the primary vortex rollers. However, it is shown

in Chapter 5 that dissipation resides between the streamwise rib struc-

tures.

III. Investigate the circular cylinder wake experimentally using planar parti-

cle image velocimetry (PIV) for a turbulent free-stream, validating findings

from the numerical modelling.

(a) Estimate dissipation along the centreline from a two-dimensional plane

in the circular cylinder wake.
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The surrogate of dissipation εxy developed in Chapter 5 has been mea-

sured experimentally in Chapter 7 from two-dimensional PIV velocity

data.

(b) Decompose the circular cylinder wake structures into coherent and

stochastic motions, verifying the relationship between coherent and stochas-

tic dissipation.

The method of proper orthogonal decomposition has been implemented

on the velocity field to extract dissipation due to coherent motions ε̃xy

and stochastic motions ε′′xy. Stochastic motions are a greater contrib-

utor to the centreline dissipation, which validates the results from the

numerical simulations of Chapter 5.

8.3 Suggestions for future work

This thesis has investigated the circular cylinder wake for a turbulent inflow. A

suitable method of producing grid turbulence in simulations has been explored for

a number of different grid designs, and universal laws of turbulence production

and decay have been successfully validated against experiments. There are two

main motivations for producing grid turbulence in simulations: (i) study the fun-

damental nature of grid turbulence and assess grid designs; (ii) produce realistic

free-stream turbulence upstream of a bluff body. Both points have been explored

in this thesis, but further avenues for research follow naturally from this:

I. Simulating grid turbulence in isolation.

A total of 4 grid designs were considered in this thesis, and the new combined-

fractal grid showed promise as an alternative to the regular and fractal

grids. However, there is scope to further investigate novel grid designs in

simulations. Additionally, the introduction of a solid wall running along the

streamwise direction would provide researchers with a test case for investi-

gating the interaction between grid turbulence and a boundary layer flow.

For applications of wind engineering where there are bursts and gusts of tur-

bulent flow, it is possible to set a time varying inflow speed, i.e. representing

pulsing grid turbulence.
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II. Simulating grid turbulence upstream of a bluff body.

This thesis has provided a method to simulate the flow of grid turbulence

past a circular cylinder, but this can be applied to various geometries of

aerodynamic and engineering interest. Beyond the scope of this thesis, there

is potential to apply the methods of simulating free-stream turbulence to

the study of fluid-structure interaction (FSI) of a flexible body placed in a

turbulent flow.

Another focus of this thesis has been dissipation. Dissipation plays a key role

in the dynamics of turbulence decay, and has a close relationship with coherent

structures in the circular cylinder wake. Further work is required in the following

areas:

I. Dissipation modelling.

In Chapter 3, dissipation modelling in LES was discussed in the context of

free-stream turbulence. There is potential to develop subgrid-scale models

which take into account the non-equilibrium dissipation behaviour which

has been observed in wind tunnel experiments. An alternative to the model

equation for dissipation was proposed, where the constant Cε2 is allowed to

vary depending on the local turbulence level.

II. Coherent structures and dissipation.

A new model of the circular cylinder wake was proposed in Chapter 5, where

it was concluded that dissipation is concentrated in between the streamwise

ribs. This contradicts the experiments of Chen et al. (2018). To the author’s

knowledge, no volumetric experimental data set for the dissipation field ex-

ists in the wake of the circular cylinder. A next step towards understanding

dissipation in the wake is to collect DNS or volumetric PIV velocity data.
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Appendix A

Default OpenFOAM settings

Default numerical schemes chosen throughout the current study are presented in

Table A.1, unless stated otherwise. An adjustable time-step is enforced, guaran-

teeing a Courant-Friedrichs-Lewy (CFL) condition of less than 0.75. Crank Nicol-

son is employed for time discretisation, with blending coefficient 0.8 for improved

stability. Upwind discretisation schemes implemented in LES are overly dissipa-

tive (Beaudan and Moin, 1994), therefore they have been avoided in this study.

Instead, central based schemes, which control aliasing by an energy conservation

principle, and do not introduce spurious damping in the small scales (Mittal,

1995), have been favoured. Laplacian terms are discretised using Gaussian inte-

gration with linear interpolation for diffusivity, and surface normal gradients are

calculated using the corrected scheme to maintain second-order accuracy.

In a segregated pressure-based solver, the momentum equation is solved sep-

arately from the pressure equation (Patankar and Spalding, 1983). The pressure

equation, which enforces mass conservation, is estimated to account for between

50-80% of total simulation time (Jasak et al., 2007). Therefore, linear solver ef-

ficiency has a great bearing on the overall computational time required. In the

current study, the generalised geometric-algebraic multi-grid (GAMG) solver is

favoured over the Preconditioned Conjugate-Gradient (PCG) solver. The GAMG

solver is generally considered to be faster than the PCG solver, and this was found

to be true for jobs of . 120 cores (D’Allessandro et al., 2016). Further details on

OpenFOAM solvers, smoothers, and preconditioners can be found in Behrens

(2009). Initially GAMG is used in the current study with the GaussSeidel
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Operator Current selection Description

Time derivative CrankNicolson 0.8 2nd-order implicit, bounded.

Gradient Gauss linear 2nd-order, linear face-
interpolation.

Divergence Gauss linear 2nd-order, unbounded.

Laplacian Gauss linear 2nd-order, unbounded,
conservative.

SN grad. corrected Explicit non-orthogonal
correction.

Table A.1: Numerical schemes sub-dictionaries in OpenFOAM.

smoother to reduce the residuals down to a tolerance of 10−3, or relative toler-

ance of 10−2. Finally, the combined DIC/GaussSeidel smoother DICGaussSeidel

is chosen with a tolerance of 10−7.

The computational domain is split into sub-domains through the utility decomposePar,

before running simulations in parallel. The scotch decomposition method has

been selected to minimise the number of shared cells between processors. Open-

FOAM is highly parallelizable- Robertson et al. (2015) found OpenFOAM to scale

well up to 192 processors on a mesh of 11 million cells.

Computational work in this thesis was undertaken on ARC3 and ARC4, part

of the High Performance Computing (HPC) facilities at the University of Leeds,

UK. OpenFOAM v4.1 is compiled on the ARC systems with the gnu/6.3.0 com-

piler and runs in parallel using the message passing interface OpenMPI.
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Appendix B

Mesh independence study for

Chapter 4

Simulations are ran on the combined-fractal grid with various mesh densities. The

combined-fractal grid has been chosen because it has the greatest range of bar

lengths and widths, therefore is expected to require the most refinement. Hexa-

hedral control volumes are chosen to mesh the geometry to achieve an orthogonal

structured mesh with zero skew. Meshes are generated in the blockMesh appli-

cation of OpenFOAM. There are a total number of N = nx × ny × nz cells. All

control volumes are cubes, therefore no grading is applied in any direction. For

each grid, it is only necessary to choose ny, from which it is then possible to set

nz = ny. Since the channel has a length of 4W , where W is the width, it therefore

follows that nx = 4 × ny. Refinement of a grid is obtained from multiplying ny

by some expansion factor α. Here the expansion factor between each grid is kept

at an approximately constant α = 1.135. Table B.1 presents the mesh densities

used in the mesh independence study.

Time-averaged streamwise velocity profiles along the centreline are displayed

in Figure B.1. An area of recirculation is present near grid, corresponding to the

centreline probes sitting directly behind a large middle bar. Along the centreline,

streamwise velocity converges towards approximately half the inlet velocity for

all grids. As the mesh resolution is increased, the recirculation region shortens

considerably. Here it can be seen that the mesh of CF1 is too coarse to resolve
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Mesh nx ny, nz N (×106)

CF1 520 130 8.8

CF2 580 145 12.2

CF3 660 165 18.0

CF4 760 190 27.4

Table B.1: Cell density for mesh independence studies on the combined-fractal
grid.

the flow directly behind the grid. Profiles of CF3 and CF4 collapse on top of one

another, however CF2 begins to deviate at x1/W ≈ 0.2.

Figure B.1: Time-averaged streamwise velocity along the domain centreline.

Figures B.2 and B.3 display profiles of time-averaged streamwise and nor-

mal velocity cross-channel at downstream positions x1/W = 1, 2, 3, 4. Peaks and

troughs across the channel correspond to the grid shadow, which is more pro-

nounced at x1/W = 1. Profiles of 〈U1〉 and 〈U2〉 begin to flatten at increasing

distances from the grid. It is generally observed that the solution generated from

CF1 deviates significantly from the other mesh densities. This is particularly true

for profiles of 〈U2〉, which corresponds to shedding in the grid wake. Apart from

the coarsest mesh CF1, profiles of 〈U2〉 are reasonably well collapsed. A similar

outcome is observed in profiles of 〈U1〉. However, near grid for x1/W = 1, veloc-

ity profiles produced by CF2 are in similar agreement to CF1. This leads to the

conclusion that if CF1 is too coarse, so is CF2.
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Figure B.2: Time-averaged streamwise velocity across the channel.

Figure B.4 presents the downstream development of 〈q2〉/3〈u2
1〉, where 〈q2〉 =

〈u2
1 +u2

2 +u2
3〉. This serves as a measure of isotropy. The flow is highly anisotropic

near grid in the production region, but settles towards isotropy in the far field.

Profiles of CF3 and CF4 are roughly constant, even close to the grid. However,

the coarser meshes CF1 and CF2 take longer to reach a constant value.

It is concluded from this mesh resolution study that a minimum requirement

is ny = 165 elements. This results in a total number of 18.0 million cells.
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Figure B.3: Time-averaged normal velocity across the channel.

Figure B.4: Streamwise development of isotropy along the centreline.
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