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Abstract

This thesis proposes a novel approach for connectivity studies in Electrophysiology
and Neuroimaging based on Bayesian Network (BN) analysis in the Fourier domain
that is named Fourier Bayesian Networks (FBNs). FBNs use the complex informa-
tion available in time series to make inferences about an unknown network structure.
Using the Fourier transform, the frequency power and frequency phase information
are estimated; then probabilistic models using power and phase are built and used
in the network structure searching algorithm.

FBNs are able to deal with massive datasets with long time series and large
numbers of sources. This property is inherited by the Fourier transform from which
the Fourier coefficients instead of raw time series are used during network searching.

The analysis of the phase using the Fourier transform makes FBNs non-parametric,
meaning that these networks do not rely on a model to make inferences. This is an
important property for causality inference since several network unfoldings, as in the
case of Dynamic BNs, are not needed. This makes FBNs robust to the underlying
model.

The proposed method is tested using multivariate autoregressive (MVAR) and
non-linear (NL) systems with the variable model order d. Networks are estimated
from the MVAR(d) and NL(d) systems directly and also from a magnetoencephalo-
graphic (MEG)-simulated environment where beamforming is implemented for source
inference. For all experiments d = 1 and d = 2 are used. The optimization method
for network structure searching is simulated annealing.

Simulations show that FBNs are robust to the model order change, and that
this method is able to correctly estimate network structures and functional brain
connectivity in MEG studies.
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Introduction

The brain has drawn the attention of researchers for centuries, since the Greek

Philosophers such as Hippocrates and Aristotle who developed the first theories

about the brain, not exactly about how it works, but a more simple question: What

is the purpose of this organ inside our heads? Today much is known about our

brain but the way it works is still an unsolved subject that needs the collaboration

of researchers from all kind of fields such as Mathematicians, Biologists, Surgeons,

Engineers, Psychologists, Philosophers, etc. The understanding of the brain will

lead to cures or at least to better treatments for brain conditions and diseases such

as Alzheimer’s, Dementia, Schizophrenia, or Epilepsy. Also the Engineering field

is receiving improvements from the brain. In the computer science field, there is

no a single computer today that can do what the brain does. How does the brain

store images, memories, songs, or languages? What does the brain do to recognize

a face even if the image is distorted? These kind of tasks can not be solved even

by the state of the art algorithms in Machine Learning and Artificial Intelligence,

but our brain does these and more complex activities every day. To understand how

the brain solves its tasks will help to create brain-inspired technologies to perform

brain-like processing.

In recent years, brain networks have been an important field of study; functional,

structural, and effective brain networks. The connectome project1 which aims to

describe all neural paths in the human brain is possibly the most important ef-

fort today in structural brain connectivity. In order to infer functional networks

in the brain, different technologies exist to today such as Electroencephalography

(EEG), functional magnetic resonance imaging (fMRI), and magnetoencephalogra-

1http://humanconnectome.org/
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phy (MEG). Each one of them has their advantages and disadvantages ranging from

device cost to spatial and time resolution for the acquisition of brain related activity.

In this thesis, the technology of interest is MEG and the goal is the designing of a

novel method for functional/effective brain connectivity. The proposed method is

named Fourier Bayesian Networks or FBNs, and are based in the same theory of

Bayesian networks with the difference that the relation parents-children is performed

in the Fourier domain by taking advantage of the power and phase properties of the

Fourier transform. In this document, it will be shown and proved that FBNs are a

potential tool for network inference and structure searching algorithms and also for

functional brain connectivity in MEG.

The chapters in this thesis are arranged as follows: Chapter 1 gives a review

on Neuroscience and Neuroimaging covering from the beginnings of Neuroscience to

the state of the art technologies in brain imaging. In Chapter 2 attention is focused

on MEG which is the main study of this document. Chapter 3 gives a brief review

on network theory and network metrics. In Chapter 4 some of the most common

and applied source relation inference method are reviewed. Chapter 5 introduces

Bayesian networks and network structure searching algorithms. Chapter 6 covers

all simulations for this thesis showing results about the performance of FBNs for

network structure inference. Real MEG datasets are analysed in Chapter 7 using

FBNs and finally Chapter 8 discusses about FBN properties and delineates future

work needed to improve the current state of FBNs.
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Chapter 1

Introduction to Neuroscience and

Neuroimaging

The brain is possibly the most exciting organ in the human body. It has drawn the

attention of physicians, philosophers and researchers from all fields for centuries and

still our current accumulated knowledge give us only a glimpse of all its secrets. The

brain is in charge of analysing an astonishing amount of information coming from

our five senses, and from this information it is able to recall memories to perform

future and almost instant actions. Our voluntary and many involuntary movements

are controlled by the brain; walking, blinking, talking and even typing a PhD thesis

are controlled by this organ.

The brain stores our memories and experiences which also shape our personality.

Everything we are is defined in our brain and understanding how it works is not

an easy task. It requires the aid of a wide range of disciplines such as psychology,

biology, engineering, mathematics, philosophy and more.

Neuroscience, as its name suggests, is the science that study the nervous system

including the brain. Neuroscience comprehends such an extremely large field of

knowledge that it is preferable to subdivide it according to levels of complexity,

from the chemical phenomena to the study of the mind (Bear et al. , 2007). These

levels are summarized as follows:

• Molecular Neuroscience; It studies the chemistry of the brain, mainly neuro-
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1 Introduction to Neuroscience and Neuroimaging

transmitters, hormones, and drugs and how these substances influence either

our behaviour or our health.

• Cellular Neuroscience; Mainly it is focused on the study of the different kind

of neurons in the nervous system, how they interact with other neurons and

how the nervous system develops from fetal stage to old age.

• System Neuroscience; It studies the neural circuitry and how it works to allow

the performing of different tasks, like reading or walking. It is mainly focused

on the study of the steps performed by the neural circuitry when executing

physical or cognitive actions.

• Behavioural Neuroscience; It is interested in understanding the biological pro-

cesses that leads to the behaviour of individuals, it is also known as Psychobi-

ology.

• Cognitive Neuroscience; It studies the same field of Behavioural Neuroscience,

but Cognitive Neuroscience avoids attaching the mind to biological processes

only, by complementing its understanding with several other fields such as

Computer Science, Information Theory, Philosophy and Mathematics. It is

also commonly called ‘Biology of the mind” or “Science of the mind” (Gaz-

zaniga , 1998).

Cognitive Neuroscience is normally referred as a new school of thinking which rec-

ognizes that the understanding of an extremely complex system such as the brain, re-

quires the expertise of multiple fields. Among these we can also find Computational

Neuroscience and Neuroimaging. Computational Neuroscience aims to find mathe-

matical models that explain the biological and behavioural processes in the brain.

It studies neural membrane phenomena, such as conductive channels, membrane

potentials, axonal interactions and dendrite models. It also studies the behaviour

of neural networks, aiming to understand how big groups of networks communicate

with each other. On the other hand, Neuroimaging groups a set of techniques and

technologies designed to acquire either invasively or not, functional or structural in-

formation from the brain that helps to understand the processes that occur in it. To
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1.1 Beginnings of Neuroscience

achieve this, there are technologies such as electroencephalography (EEG), magne-

toencephalography (MEG), magnetic resonance imaging (MRI), and its functional

complement (fMRI).

The study of the brain has become in recent years a multidisciplinary field.

The brain and in general the nervous system still represents a challenge for the

scientific community. Its understanding will lead to better treatments for brain

related diseases, and faster and more accurate clinical diagnoses.

1.1 Beginnings of Neuroscience

The brain has fascinated philosophers and scientists for centuries. Even the first

hominids were aware that the brain was crucial to sustain life. The archaeological

evidence dating back a million years has found hominid skulls presenting fatal dam-

age produced by direct attack. The brain resides at the centre of the head, protected

by the skull and close to all our sensorial receptors. Our ears, eyes, and nose are in

the head and their importance was obvious for the first hominids.

Human skulls as old as 7000 years has been found showing signs of being bored in

a process called trepanation, showing recovery after the procedure, clearly indicating

that death was not desired to the subject but some kind of relief instead. The

purpose of trepanation at that time is not really known, but it is speculated that

trepanation may have been used to treat headaches or mental disorders by which

the hole in the skull represented an escaping route for the evil spirit (Finger , 1994).

Egyptian manuscripts dating back 5000 years describe that this culture was

aware of some of the symptoms of brain damage (Finger , 1994). Possibly by their

observations on head concussions and its behavioural consequences. Nevertheless,

for Egyptians it was the heart and not the brain where all memories were placed,

and for this reason the heart was carefully preserved during mummification while

the brain was extracted through the nostrils and discarded.

The view of the heart as the centre of intelligence and memories was not chal-

lenged until the times of Hippocrates (470-379 B.C), when the Greek philosophers

started wondered about the function of the brain. Hippocrates stated that the brain
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was not only the centre of all sensations but also the seat of intelligence (Bear et al.

, 2007). This statement was contradicted by Aristotle (384-322 B.C.) who kept the

current view that the heart was the centre of intelligence and the brain was a cooling

device for blood. He explained that the rational temperament of some individuals

was due to the large cooling capacity of the brain. Hence, in some sense, intelligence,

patience, and wisdom were indeed related to the brain size and its cooling capacity.

Hippocrates also aimed to explain brain related diseases such as epilepsy. He

proposed that an interruption of the blood flow into the brain was the cause of this

disease, leading to the inability of the brain of taking the vital principle from the

blood and causing convulsions and loss of consciousness (Bear et al. , 2007).

An important milestone in Neuroscience was achieved by Galen (130-200 A.D.),

considered the most important figure of Roman medicine. Galen shared the Hip-

pocratic thinking of the brain function and most of his studies were influenced by

anatomical observations. As the physician of gladiators, Galen had the opportunity

of studying the symptoms caused by spinal and brain injuries, and complemented

his studies using sheep as subjects. In his research work, Galen tried to infer brain

functionality. He first noticed that the brain can be divided in two areas, being

these the cerebrum and the cerebellum. By touching a fresh brain, Galen found

that the cerebrum was soft while the cerebellum was harder. Using his observations

and his experience as physician, Galen correctly inferred that the cerebellum was in

charge of muscle control while the cerebrum manages memories (Bear et al. , 2007).

His hypothesis was very simple, since memories always change and must be stored

in some way in the brain, the storing must occur in the more moldable cerebrum,

while the locomotion knowledge which is a more fixed skill, had to be placed in the

harder part of the brain, the cerebellum.

Galen’s studies remained prominent for almost 1500 years until new theories were

proposed during the Renaissance. French inventions like hydraulically controlled

machines, brought new ideas into the mind of the French philosopher Descartes

(1596-1650). He theorized that the brain ventricles with their enclosed liquid (cere-

brospinal fluid or CSF) worked as a hydraulic machine to control the muscles of

the human body, a principle called “the automaton”. The automaton, shown in
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Figure 1.1, was the description of the human body as a machine and this model

explained most of the movement abilities in mammals, but it did not explain the

main ability that makes humans different, the mind and voluntary behaviour.

Figure 1.1: Descartes’ model for the nervous system. Descartes thought that the nervous system
worked as pumping pipes, a hydraulic automaton.

To complete his model, Descartes proposed that the soul or spirit was placed

inside the ventricles and that the voluntary behaviour occurred thanks to interac-

tions between the soul and the automaton, managed by the pineal gland (Finger ,

1994; Bear et al. , 2007). Descartes chose the pineal gland for two reasons, first

because this gland is unitary in the brain anatomy (most of the regions of the brain

come in pairs, left and right) and second and most important because this gland is

surrounded by CSF. Galen also made these observations about the pineal gland, he

thought that the gland regulated the flow of spirits through the body. Nevertheless

he concluded that this idea was ridiculous (Finger , 1994; Bear et al. , 2007).

1.2 Brain cortex

The first neuroscientists studied the brain by identifying its structures, which were

catalogued and named according to the way they looked or the purpose they thought

they had. The brain surface is called “cortex” or brain cortex. It is where most

of the brain neural cells are allocated. The cortex is mainly a sheet of neuronal

tissue folded several times in an attempt to maximize the available space inside the
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skull. This cortical folding produces bumps and grooves in the brain cortex which

are common in all humans and are commonly taken as markers for anatomical

localization. The bumps are called gyri (singular gyrus) and the grooves are called

either sulci (singular sulcus) or fissures if they are bigger. Two thirds of the brain

cortex is found in the sulci.

Fissures are common in all humans, and as mentioned previously these are used

to divide anatomically the brain. The right and left hemisphere are divided by the

longitudinal fissure that runs from the frontal lobe to the occipital lobe. Further-

more, each hemisphere is subdivided in lobules; the lateral lobule (left and right),

frontal lobule, parietal lobule and the occipital lobule. see Figure 1.2.

Figure 1.2: Lateral view of the brain, left hemisphere. The brain is divided mainly in four paired
lobes: frontal, parietal, occipital, and temporal. The cerebellum shown at the bottom, is a structure
in charge of control and learning of movement.

A highly important internal structure is the Corpus Callosum. This structure is a

massive bundle of neuronal connections that connects the left and right hemispheres.

Hence, the Corpus Callosum is the main communication channel between both brain

hemispheres.

There are plenty more substructures in the brain, all of them equally important.

Unfortunately in this thesis it is not possible to mention all of them, but a complete

review on brain’s anatomy can be found in Bear et al. (2007).

1.2.1 Functional localization

At the beginning of the nineteenth century there was the idea that the nervous

system could be divided by functions. Franz Joseph Gall (1758-1828) was a pioneer
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1.2 Brain cortex

researcher in localization of mental functions and his vision certainly changed the

study of the human brain. Gall was a very talented physician and anatomist, and his

work led him to formulate the idea that the development of specific cortical regions

were a result or at least an indicator of special abilities in individuals. That meant

that people’s abilities were correlated with the development of certain brain areas.

Gall started his research studying skulls and he hypothesized that bumps on

the skull surface explained special characteristics on individuals like intelligence,

creativity, memory or even child caring. For example, a prominent front was an

indicative of intelligence while the contrary the lack of it. Also, a flat nape according

to Gall’s theory was an indicative of laziness, and this was produced by putting

hands on the nape while resting. Following his ideas, Gall collected skulls and casts

of skulls from different individuals with opposing backgrounds, some of them were

writers, poets, and statesmen and others were lunatics and criminals (Finger , 1994).

With these Gall attempted to correlate their skull shapes with the lives they had.

Figure 1.3: American Phrenological Journal front. At the beginning of the 19th century, Gall’s
Phrenology became an influential school of thought.

Gall started giving public lectures about his theory amazing the public and at

that moment a new science was born. It was called Phrenology, a science specialized

in cortical localization. Suddenly, Phrenology expanded through United States and
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Europe and Gall gathered more than 300 skulls and 120 casts for his studies (Finger

, 1994). There were also Phrenology societies in the United States and England

spreading the word of the new science. But in France some researchers resisted

the enchantment of Phrenology. One of them was Marie-Jean-Pierre Flourens, a re-

searcher with an extremely good reputation in France, where he published many pa-

pers on Comparative Anatomy, Anaesthesiology, Embryology and Physiology (Fin-

ger , 1994). Flourens claimed that it was impossible to delimit cortical areas by

measuring the skull and correlating its shape with human capacities. Flourens be-

came the most outspoken critic of Gall’s theory.

Flourens was a true believer of laboratory work in research, and developed pro-

tocols for the use of animals in ablation and stimulation of cortical areas. Ablation

in Neuroscience is a technique that destroys tissue of a specific area and sees how

the specimen’s behaviour is affected. From his experiments, Flourens theorized that

it was impossible to define cortical localization and inferred that the cerebral cortex

worked as a whole and not in specialized areas, a theory that he called “Equipoten-

tiality”. Nowadays, historians consider that Flourens was so blinded by his hate of

Phrenology that he did not realize that some of his work confirmed functional cor-

tical division (Finger , 1994). In many of his ablation experiments, Flourens found

a recovering of the specimen after some time, and for him this confirmed his theory

about equipotentiality of the cerebral cortex.

Nevertheless, Gall and Flourens together are considered today as the fathers of

cortical localization. Gall was a visionary with a great theory but the wrong method,

and Flourens was a great experimentalist with the correct method but the wrong

answer.

1.2.2 On the search of language, Broca’s area

By the middle of the nineteenth century, the strongest accepted theory for func-

tionality of the cerebral cortex was the “equipotential cortex” mainly advocated by

Flourens in France, although the ghost of Phrenology still wandered in the corridors

of academic societies. In 1861, the French physician Alexandre Ernest Aubertin, a

convinced follower of the localization theory (although not by Phrenologist’s meth-
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ods), presented a case of a patient who attempted suicide by shooting the front of

his head. The results of this was a cracked frontal bone which exposed his frontal

lobes. During the medical intervention, the patient was interrogated while placing

the blade of a spatula on his frontal lobes. By means of light pressure on the frontal

lobes, Aubertin was able to induce Aphasia. The patient lost his ability to speak

and this returned when the pressure was not delivered (Finger , 1994; Bear et al.

, 2007). Other scientists argued that the aphasia phenomenon occurred because

Aubertin also transmitted the pressure to other areas of the brain, but Aubertin

argued back saying that the spatula was located in such a way that just the frontal

lobes were affected. After his finding, Aubertin studied several patients with frontal

damage and claimed that the ability of speech was in some area of the frontal lobe.

He also hypothesized that the cases where this did not occur were because the area

of articulated speech was not established and also in the cases of unilateral damage,

the speech ability can be compensated by the other side of the brain (Finger , 1994),

a property known today as “brain plasticity”.

Aubertin also stated that he would renounce his idea of language localization,

if he found contrary evidence in an aphasic patient that he had studied for a long

time and was close to death. One of the scientists who attended Aubertin’s lectures

was Paul Broca.

In the same year 1861, a patient named Monsieur Leborgne, was referred to

Broca’s surgical service. Leborgne was known by other patients as “tan” or “tan-

tan”, because this word was the only thing he could say, besides some swearing.

Broca invited Aubertin to analyse his patient “tan” and after an inspection Aubertin

concluded that the aphasia had its source in the frontal lobe (Finger , 1994).

Six days later Leborgne passed away and Broca presented his case and his brain

to the Society of Anthropology in France the next day. Four months later Broca

submitted a full report to the Society of Anatomy in France and presented a strong

support that the damaged area was involved in articulated language. In his report

Broca congratulated Aubertin for gathering a considerable amount of evidence about

the role of the frontal lobe in speech and from that moment the case of the patient

“tan” revolutionized the ideas of cortical localization. Finally, the area that Broca
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found in the frontal lobe of his patient is known today as Broca’s area.

1.2.3 Wernicke’s area

In 1874 a German neurologist Karl Wernicke reported finding an area on the left

temporal hemisphere that also produced aphasia, but this area was different from

Broca’s area. The aphasia produced by damage in Broca’s area is manifested in

disruption of speech but comprehension or coherence of what is said is complete.

The aphasia that Wernicke reported was contrary of the one reported by Broca. The

patients were very talkative, their speech was fluent but there was not coherence in

their conversations (Gazzaniga , 1998).

1.2.4 The Wernicke-Geschwind model

Just after the discovery of Wernicke’s area, Wernicke proposed a model for language

processing in the brain. This model was extended later by Norman Geschwind and

it is known today as the Wernicke-Geschwind model. Wernicke’s model was the

first attempt to propose a neural communication path among different regions of

the brain, extending the concept of cortical functional localization by suggesting

interaction among the brain areas.

The elements that integrate Wernicke-Geschwind model are Broca’s area, Wer-

nicke’s area, the arcuate fasciculus (a group of axons that connect both areas), the

angular gyrus, the motor cortex, and the auditory cortex as shown in Figure 1.4.

Figure 1.4: The Broca’s and Wernicke’s areas are involved in the communication process.

12



1.3 Cytoarchitecture of the cerebral cortex

The model explains the communication process for two cases; the repetition

of a spoken word and the reading of a written word. In the first case the word

must be listened to by the auditory cortex and it does not have any meaning until it

arrives at Wernicke’s area where the word is analysed. Then, the information travels

through the arcuate fasciculus to Broca’s area which does the necessary coding of

information. This code is sent to the motor cortex which will move the necessary

muscles, tongue, larynx, and so on for the expression of the word.

The second case, the reading of a written word, is very similar but it starts

in the visual cortex. The visual patterns are processed in the visual cortex and

the information is sent to the angular gyrus, it is thought that the angular gyrus

transforms the read word into a code similar to that of a heard word, and then this

code is sent to Wernicke’s area to continue the language processing path (Gazzaniga

, 1998).

By the ending of the 19th century, the theory of brain functionality where cortical

regions were assumed to be in charge of one or maybe more tasks was well accepted.

The introduction of new microscope techniques in Neuroscience fuelled the discovery

of the brain’s construction and the cells that compose it.

1.3 Cytoarchitecture of the cerebral cortex

The brain of an adult consists of approximately 100 billion neurons and a larger

number of glial cells, the supporting cells of the brain (Abeles , 1991). Brain neurons

are arranged in an extremely intricate manner that may seem to be a chaotic universe

of cells and neuronal connections. But there is no chaos in the brain, every single

connection or synapse (which can be numbered in hundreds of trillions) has a purpose

of existence, such as the neuron where it comes from. In this section we review

neuron cells, their functions, and some of their properties.

1.3.1 The neuron

Although the microscope was invented long before Broca’s time, it was not possible

to see brain cells through it. The reason was because in order to see cells on the

13
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microscope, very thin slices of tissue are needed, at least as thin as the size of the

cell. The brain is a very soft tissue more or less having the consistency of gelatin

dessert. Hence, it was impossible for neuroscientist to obtain such thin slices without

disturbing the tissue. It was not until neuroscientists learnt how to harden the brain

by immersing the tissue on formaldehyde and developed a special device to obtain

thin slices called microtome, which works similar to meat-slicers used in butcher

shops, that the neural world inside the brain was discovered.

Anyway, even when neuroscientists could harden the brain, problems remained.

The reason was that fresh hard brain tissue is completely monochrome. It has

monotone pink colour from which no cell can be seen. It was not until researchers

were able to discover stains that have the property to attach their pigments to

specific parts of the tissue but not all, that neurons appeared in the microscope.

One of these stains was Nissl stain which has the property of staining only the soma

of some neurons. The soma is in some sense the body of the neuron. This was

the first time where the brain cells could be physically seen and also this allowed

neuroscientists to catalog brain tissues by their cellular construction, also called

cytoarchitecture.

In 1873, the Italian histologist Camillo Golgi (1843-1926) discovered that by

immersing brain tissue in silver chromate solution, neurons were pigmented almost

entirely, allowing to see in the microscope two principal parts of the neuron; the soma

which is the body of the neuron and a series of thin tubes that radiates from the soma

called neuritas, which are divided in two types, axons and dendrites. Neurologists of

that time were able to infer that axons work like wires from which the messages are

sent to other neurons or tissues. Also, they inferred that dendrites, which are shorter

reaching only the vicinity of the soma, work as antennae that receive messages from

other neurons.

By his work, Golgi inferred that neuritas were fused together to form a continuous

reticulum or a network, in a similar way to the veins and arteries in the circulatory

system. Hence, Golgi claimed that the neural network in the brain was an exception

of the cell theory, which states that cells are the minimal unit of all biological tissues.

A contemporary histologist was Santiago Ramon y Cajal (1852-1934) who learned
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Figure 1.5: One of original drawings of Ramon y Cajal. A section of the optic tectum of a sparrow,
Madrid 1905.

Golgi’s method around 1888. Surprinsingly, Cajal arrived at a completely different

conclusion. Cajal claimed that neuritas of different neurons were not fused but

joined by contact. Cajal’s findings led to the neuron doctrine, which places the

neuron as an individual processing unit which connects with other neurons forming

the neural network.

The brain is formed mainly of two kinds of cells, neurons and glia (or glial cells).

It is thought that the glial cells contribute to the nourishing, support, and isolation

of the neurons and that these cells do not perform any information processing. The

glial cells represent 90% of the brain mass while the neurons represent the remaining

10%. Hence, the research community focuses its attention on a minimal portion of

the brain. Nevertheless, some researchers are working on glial cells in order to

discover if these important cells also contribute to the cognitive processes in the

brain (Bear et al. , 2007).

It is assumed that neurons perform all the signal processing in the nervous sys-

tem. There are different kind of neurons depending on their specific function. Al-

though their functions are not fully understood, some neurons are dedicated to sense

our environment by our ears, eyes, nose, and our skin. Others are dedicated to feel

pain, if something is hot or cold or even spicy thanks to neuronal terminals in our
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tongue. The muscles are also controlled by specialized neurons that send signals

projecting their axons into muscle fibers, also known as innervation.

Neurons, as all eukariotic cells, encloses in its interior organelles that contribute

to the cell functions; one nucleus, Golgi apparatus, endoplasmic reticulum (ER,

rough and smooth), mitochondrias and ribosomes. From the inside there is little

difference between a neuron and any other cell in our body. The main characteristics

that make neurons unique are their cellular membrane, their peculiar shape, the

proteins embedded in their membrane, and an important number of mitochondrias

which are the fuel store of all cells, indicating that neurons consume important

amounts of energy. Is not a surprise then, that the brain consumes 20% of the

calories we intake but it represents only 5% of our body mass (Lauglin , 2001).

Figure 1.6 shows a typical neuron, its body is divided in three sections: the

soma, dendrites, and the axon. The soma is the body of the cell, it is where all the

organelles are placed and where the cell machinery works to allow the neuron to

perform all its functions. The dendrites are considered as a kind of antenna where

signals coming from other neurons are caught. Finally, the axon has the function of

sending electrical signals processed by the neuron to other neurons or muscles. For

this reason the axon can be as long as a meter projecting from the backbone to the

finger tips.

The most common way to catalog neurons is by their number of neurites (axons

and dendrites). If the neuron has only one neurite (which should be an axon) it is

called unipolar, two neurites is called bipolar, and if there are three or more neurites

the neuron is called multipolar (Bear et al. , 2007). From the multipolar category

there are two types of multipolar neurons in the cerebral cortex, these are stellate

cells (star shaped) and pyramidal cells (pyramid shaped body). The stellate neuron

has a more local radius of influence in the cerebral cortex, it projects its axon to local

neurons and can receive signals from either neighbour neurons or neurons placed far

away in the nervous system. Pyramidal neurons also receive signals from local and

far away neurons, but their main characteristic are their long axons.

The axon starts in the axon hillock and finishes in the axon’s terminals which

synapse onto other neurons. The axon is in charge of transporting the signal to
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Figure 1.6: The neuron. The neuron is not very different to any other cell in the human body.
It has a nucleous, a nucleolus and all the organelles. What makes the neuron unique are its
membrane and its irregular shape. The figure shows a pyramidal neuron and the neuritas: axons
and dendrites which connect to other neurons (synapses). The myelin sheaths that surround
the axon work as insulators that improve the transmission of action potentials. Image from
http://en.wikipedia.org/wiki/Neuron

other neurons thanks to unique characteristics of the neural membrane. The neural

membrane as other cellular membranes is made of phospholipids (fatty material)

(Bear et al. , 2007), a molecule formed by a polar “head” containing phosphate

and a nonpolar “tail” containing hydrocarbon. An important characteristic that

makes the cellular membrane so efficient is the phosphate head of the molecule that

is hydrophilic, that means that it does not repel water and the hydrocarbon “tail”

is hydrophobic, meaning that it repels water. The cellular membrane is formed of

two layers of phospholipids (phospholipid bilayer), with the hydrophobic tail in the

inner section and the hydrophilic heads in the outer section, creating an effective

layer that isolates the cytosol of the cell from the outside environment.

Embedded in the neural membrane are specialized amino acid proteins that work

as channels for the crossing of particles and ions through the neural membrane. The

ion channels are carefully folded proteins arranged as if they were a barrel with a

hole in the centre where the ion particles cross. It is thought that the folding of

these proteins is performed inside the Golgi apparatus just after the transcription

17



1 Introduction to Neuroscience and Neuroimaging

of the mRNA into protein by the rough ER, then the new ion channel travels to the

membrane transported by a vesicle (Bear et al. , 2007).

All the electrical features of neurons are in the ion channels and the cellular

membrane. The electric current that neurons produce can be compared to the one

generated by a battery. Ions with different electrical charge are present inside and

outside the neural membrane. The ionic concentration difference produces a differen-

tial potential between both sides of the cellular membrane. The main ions involved

in the neural battery are Sodium (Na+), Potassium (K+), Calcium (Ca2+), and

Chloride (Cl−), the first three have positive charge and Chloride is negative as it is

indicated. However, the potential is due to the difference of the ionic concentration,

for example K+ is 20 times more concentrated in the inside than in the outside

of the cell providing a difference potential of -80 mV according to Nernst equation

(Bear et al. , 2007)

E =
RT

zF
ln

concentration of ions outside cell

concentration of ions inside cell
, (1.1)

where R is the universal gas constant, T is the absolute temperature, z is the

number of electrons, and F is the Faraday constant. With different concentrations of

ions in the neural environment, the cell membrane presents a differential potential

of approximately -65mV which is commonly called the “resting potential”. The

resting potential is the voltage that can be measured at the membrane in its resting

state, which means that the neuron is neither receiving signals from other neurons

nor sending information through its axon. The information received or sent among

neurons is manifested in a voltage change, also called action potential (AP). This

AP is a change in the resting potential from -65mV up to 40mV due to changes in

the neural membrane permeability to ions. In the cerebral cortex, the changes in

the membrane permeability are mainly induced by the arrival of APs from other

neurons. The ionic principle of the membrane potential gives the AP the property

of travelling through the membrane. The AP travels on the neuron’s membrane

thanks to changes in local ion channels. These changes produce a chain reaction in

neighbouring channels and the AP is then transmitted to the neighbouring areas of

the membrane.
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When the AP arrives at the axon hillock it is accelerated thanks to the oligoden-

droglial cells and the nodes of Ranvier. The oligodendroglian cells are cells with an

unusual sheath shape. They literally wrap the axon with the myelinated sheath in

several layers and work as an isolator for the axon “cable”, and the nodes of Ranvier

are membrane gaps left by the myelin sheath. Both can be seen in Figure 1.6. The

myelin wrapping avoids current leakages across the wrapped section and the spike is

transmitted to the next node of Ranvier electrically by the differential potential, ac-

celerating the spike transmission. The axon terminal might divide itself to synapse

onto several neurons at the same time. Commonly, the axon terminals synapse a

spine in a dendrite of another neuron.

Now that we have seen just a part of the process of neural transmission, we can

imagine the complexity of a network of 100 billion of neurons each one receiving an

average of 10,000 synapses approximately in the adult brain. Although complex,

the arrangement of neurons in the cerebral cortex obeys some detectable patterns

in delimited cortical areas. According to the theory of functional localization in

the cortex, the differences among cortical regions are because these regions are

specialized to perform specific processing tasks.

1.3.2 Brodmann’s map

In 1909 Korbinian Brodmann identified 52 different regions in the human cerebral

cortex. Brodmann categorized these areas by analysing the neural cytoarchitecture,

this means the variations in the proportion of cell types within the layers of the brain

cortex. The map he discovered is known today as Brodmann’s areas or Brodmann’s

map. Brodmann guessed (but could not prove) that different neural cytoarchitec-

tures have a specific functionality attached to them (Bear et al. , 2007; Gazzaniga

, 1998).

Today research work has proved that indeed this is true. For instance, area 17 is

called the visual cortex because this area receives axons from the thalamus which is

connected to the retina. Area 4 is called the motor cortex because neurons in this

area project axons to the spinal cord which in turn manages the contracting of the

body muscles. Figure 1.7 shows the regions found by Brodmann.
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Figure 1.7: Brodmann’s map or areas were defined by Korbinian Brodmann in 1909. By using
Nissl stain Brodmann was able to identify different neural cytoarchitectures in the cortex which
he labelled in 52 regions. Gray’s Anatomy, 1918.

One of the questions that has intrigued researchers since the findings of Brod-

mann is how the human brain evolved such a complex architecture. Brodmann sug-

gested that the human cortex evolved by adding areas to perform abilities needed

by the individual. This was partially confirmed by the analysis of cortical cytoar-

chitectures in other mammals like the cat or the rat whose brains have fewer areas.

Furthermore, there is little difference between the thickness of the human cortex

compared with other mammals, suggesting that evolution of the human brain was

by increasing the size of the cortical sheath and the number of areas (Bear et al. ,

2007).

1.4 Cortical maps

Due to the complexity of the cerebral cortex and the nervous system, the study

of the functional anatomy of the brain results in a great challenge for researchers.

Discovering the secrets of the neural network has been the work of thousands of

researchers around the world. How are the networks formed? How do neurons

synchronize? How and where is memory stored?, These are just some of the questions

that still remain unanswered.

To study the brain and its functional areas, different research paths have been

followed. Because the brain structure of mammals is approximately similar, some

researchers use cats, dogs, monkeys or rats in their research experiments and extrap-

olate their results to the human brain. The brains of lower mammals are simpler
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than the human so its study is also easier. Furthermore many experiments carried

out using drugs and ablation procedures can be performed in animals but not in

humans. Experiments in mammals provide insights about how the cortical areas of

the brain interact in different controlled scenarios, but the study of cortical areas

do not provide knowledge of how the neurons work at a cellular level. In order to

tackle this question some researchers prefer to work using invertebrates such as the

squid or the sea slug Aplysia Californica (Bear et al. , 2007). The reason why using

such a different animal like a slug to infer processes in the human nervous system

is because all living things in this planet have a common ancestor. That means

that humans share DNA with any other animal. For example, the yeast cell Saccha-

romyces Cervisae shares 20% of its DNA with humans and this organism is widely

used to study cellular processes also present in human cells. The same analogy is

applied to the sea slug and its nervous system.

There are also studies in humans which are noninvasive using neuroimaging tech-

nologies such as electroencephalography (EEG), magnetoencephalography (MEG),

and functional magnetic resonance imaging (fMRI). These kind of technologies ac-

quire information which is correlated to brain activity and also have the capacity to

localize its position. This property makes neuroimaging techniques extremely valu-

able in brain studies. On the contrary, trascranial magnetic stimulation or TMS

induces a current in the brain by producing a magnetic field focussed on a spe-

cific cortical region, which is also valuable for functional localization studies. A

similar approach but using direct electrical stimulation led to the discovery of the

sensory-motor map in the cortex.

The sensory-motor cortex

Long before Broadmann’s map, it was already known that the nervous system com-

municates using electrical currents. In 1791 the Italian physician Luigi Galvani

discovered that frog’s legs twitched when struck by an electrical spark, starting a

new field known today as Bioelectricity, which studies the electrical properties of

the nervous system and muscles. In 1809 an Italian anatomist, Luigi Rolando, used

Galvanic currents to stimulate the brain cortex, and in 1937 John Zachary Young
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suggested that the squid giant axon could be used to study the electrical properties

of nerve cells, a suggestion that finally ended in the ground breaking work of Alan

Lloyd Hodgkin and Andrew Huxley who in 1952 created a mathematical model that

describes the ionic mechanisms for the axon potential propagation in the giant squid.

In the field of cortical functionality, pioneering work was achieved by Wilder

Penfield in the 1940s. Penfield was carrying out operations to extract cortical tissue

from the brain of epileptic patients. When the epileptic source can be localized

in the cerebral cortex, its extraction commonly leads to the cure of the disease,

and the stopping of epileptic seizures. Taking advantage of the exposed patient’s

brain during the medical procedure, Penfield explored the effects of small levels of

electrical stimulation on several areas of the cerebral cortex. Since the brain lacks

pain receptors, the patient could not feel any discomfort allowing Penfield to record

the patient’s experiences (Finger , 1994).

Figure 1.8: The sensory-motor cortex (left) shows the correspondence between cortical areas and
the body areas. The homunculus (right) represents broadly how our brain sees our body. The size
of the brain regions is proportional to the size of the body parts. Image adapted from Purves D.
et al. editors (2004).

For many years Penfield and colleagues experimented with the effects of cortical

stimulation in their patients and most of their work was focused on the area of

the central sulcus. By stimulating the precentral gyrus, they noticed that body

movement was produced and that the type of movement was directly related to

the stimulated area. The same phenomenon happened in the postcentral gyrus

but instead of movement, the stimulation activated different sensations, like light

touch, or itch. This correspondence between the cortical areas of the sensory-motor

cerebral cortex with the body areas can be represented as a homunculus as shown
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in Figure 1.8.

Language of the brain

Brain imaging techniques have been used to test hypotheses about the brain and its

mysteries. For instance, language is a characteristic apparently unique in humans,

which have a very complex communication system compared to other mammals. The

language neural path in the human brain might be discovered or proposed with the

Wernicke-Geschwind model in Section 1.2.4. But this model does not explain many

of the phenomena involved in the process of language. The model can explain the

main types of aphasia; Broca’s aphasia, Wernicke’s aphasia and conduction aphasia,

which occurs when the arcuate fasciculus (the path between Wernicke’s and Broca’s

area) is damaged. But it can not explain many other kind of specific symptoms and

cases. How do we choose words? How do we make relations among them? Where

are words stored? and many other questions that remain unanswered.

Figure 1.9 shows a theoretical model for language processing (Gazzaniga , 1998).

At the centre of this model we can find the lexicon. The lexicon is the pool of words

which are stored somewhere in our brain. It is theorized that the brain creates

networks among all our stored words and these networks are always changing due

to our continuous learning and forgetting of words during our life. For example, the

word “car” can be related to “truck” but not to “lemon”, and “car” and “truck”

might be in a subnetwork called “vehicles”. Also there might be a link between the

word “firetruck” in the network of vehicles and the word “red” in the network of

colours because both words are related (Gazzaniga , 1998).

Motor Learning

Motor control is maybe the most studied area in Neuroscience. The mechanisms

of movement in our backbone and limbs are better understood than the ones in

our brain. This is mainly because for many years researchers have performed ex-

periments in animals to discover the circuits for movement. Today, we know that

special neural circuits in our spinal cord communicate the commands of the brain

to the limbs. Special neurons called alpha motor neurons send their axons to all the
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Figure 1.9: Theoretical model for language processing and mechanism of language. This map
represents the model for language creation and use. Image adapted from Gazzaniga (1998).

muscles of our body leading to their contraction. Also, the motor neurons placed

in the spinal cord can perform neural processing to activate movement without a

direct command from the brain, these movements are called reflexes (Gazzaniga ,

1998).

The areas of the brain involved in motor control are known, but an important

issue is how these areas interact to launch movement. Fortunately the human being

is not a machine, the discovery of the areas involved in motor control is not enough

to understand the phenomenon. Besides movements, humans also make decisions,

plans and even imagine a movement before it starts. Only reflexes are done uncon-

sciously (that is why reflexes are better understood) and thus planned movement

requires more research. Figure 1.10 shows the functional hypothesis of how the dif-

ferent motor areas of the brain interact, but this is just a consensus. Future work

in brain mapping for control of movement might change or add more areas to the

network in Figure 1.10.
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Figure 1.10: Functional hypothesis for movement decisions. The diagram shows the brain struc-
tures theoretically linked to perform skilled movement. Image adapted from Gazzaniga (1998).

Memory and Learning

Memory is the holy grail of Neuroscience. The place of memory in the human

brain is still unsolved, but some of the memory phenomena are understood today.

Currently, it is known that the temporal lobes are an important structure for memory

and this fact was discovered almost by accident (as it often happens in science) in

a patient who had serious epileptic seizures. His name was Henry Gustav Molaison

(1926-2008), better known in the scientific community as H.M. In order to cure

his epilepsy he had an operation where 8 cm of both temporal lobes were excised,

including the amygdala and two thirds of the hippocampus. The surgeon succeeded

in alleviating H.M’s seizures (Bear et al. , 2007).

Everything looked fine in H.M., but the removal of so much temporal tissue left

H.M. with retrograde amnesia of many years before the operation, that means that

he could not remember anything in a period of years before the surgery. But that was

just a minor problem in H.M.. The surgery also left him with a serious anterograde

amnesia, meaning that he was unable to remember new experiences. H.M. could

not even remember someone he met minutes ago. An interesting phenomenon also

happened in H.M, he was able to learn new motor tasks. For instance, he was asked

to draw by looking at his hand through a mirror, a task that needs practice. The

odd thing is that after many trials to gain experience he could accomplish the task
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successfully but he could not remember any of his previous trials. For H.M. a new

trial was the first time.

At the cellular level much of the insight in learning has been provided by exper-

iments in the sea slug Aplysia Californica. In a series of experiments in the 1960s,

Eric Kandel worked on how memory was formed in this invertebrate animal. When

a jet of water is squirted on the siphon (a fleshy exposed section) of the aplysia, its

gill retracts. This reflex is called gill-withdrawal reflex. Kandel experimented habit-

uation of aplysia to the sensation of the water jet until the gill stopped contracting.

By measuring the electrical impulses in the neurons of aplysia, it was found that

the presynaptic neuron that senses the skin continues sending the signal with the

same intensity but the postsynaptic neuron that innervate the gill muscle fired with

lower intensity. The reason of this was that the axon of the presynaptic neuron

changed by releasing less neurotransmitters. Hence, the habituation learning for

the gill-withdrawal reflex was explained by a presynaptic modification (Bear et al.

, 2007). Eric Kandel was awarded the Nobel prize in 2004 for his research work.

Certainly the mapping of the brain and its correlation with functional and cog-

nitive abilities in humans will continue revealing the secrets of our nervous system.

Nowadays the acceleration of technologies provides Neuroscience with better tools to

study the human nervous system, and has provided new ways to infer the networks

that form it.

1.5 Networks in the brain

As mentioned in Section 1.3.1, it is estimated that the human brain has 100 billion

neurons, each one receiving synapses from 10,000 other neurons on average. This

creates a massive neural network that defines all what we are. Definitely a single cell

such as a neuron is not capable of thinking, saving memories, recognizing patterns,

or reading this thesis. But when billions of them communicate they create a much

more complex and dynamic system which performs these and more cognitive tasks.

It is known that brain neurons create networks or neural patterns and clusters

to perform different tasks. In the brain cortex there are regions designed to perform
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information processing, and none of these regions works alone, each one of them

interacts with several others.

It is the desire of researchers to understand the interaction of the different brain

regions either at the cellular level (micro scale) and at the regional level (macro

scale). These two views of network neuroscience, try to understand the cellular

network including the interaction of large areas of the brain cortex (Sporns et al. ,

2004). Both views, the micro and macro scales, are equally important and in fact

both are necessary to understand the brain and to decrease the current gap that

exists between the biological brain and the human mind.

Researchers agree that the understanding of the neuronal processes can also be

achieved by studying the network patterns in the brain. Network theory focuses

on the shape of networks to define the properties of the systems. In the case of a

network the interest is focused on its shape and the interaction among its elements.

1.5.1 Small-world network

A network is formed by agents called “nodes” or “vertices” and connections normally

called “edges”, which are the lines that connect the nodes. Networks are part of our

daily life, for instance the Internet, the electrical power grids, or the city subway.

Also our friends create a network of human relations. The social networks are

possibly the most cited examples in network theory today from where the concept of

“six degrees of separation” started. The six degrees of separation concept states that

in the world-wide network of friends and acquaintances, every human is separated

an average of six people from any other person in the world. This “friend of a friend”

network was called by the first researchers in the field as small-world network.

Small-world networks were first quantitatively described by Watts and Strogatz

(1998). In their paper, Watts and Strogatz took a regular graph in which each node

was connected to its k nearest neighbours, then the network edges were reconnected

randomly with a low probability p. Regular networks have as common characteristic

a high clustering coefficient C, meaning that the nodes in this network are mostly

connected to their nearest neighbours. Furthermore, these networks present a high

path length L or in other words, several steps are needed through the network edges
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to arrive from one node to any other. On the other hand, random networks which

are created by connecting nodes randomly, present low clustering C and low path

length L. Small-world networks are somewhere in between, having high C but low

L.

Figure 1.11: Randomness in a network. The figure shows a lattice (left), a small-world (centre), and
a random (right) networks. A small-world network can be created by reconnecting pseudorandomly
edges from a lattice network. Image generated using Python module: networkx.

Figure 1.11 shows an example of small-world network generation. Here, the

network at the left is a regular circular network of 10 nodes where each node is

connected to its 4 nearest neighbours. The network in the middle has the same

arrangement as the regular network but a second step of rewiring was implemented.

Every edge was rewired randomly with a probability p = 0.15 to create a small-

world topology. Finally, the network at the right is a random network. In order to

create this network, all edges from the regular network were rewired randomly with

probability p = 1.

Interestingly, the small-world phenomenon has been found in all kinds of systems,

mainly biological. The first and only nervous system which has been completely

described is the Caenorhabditis elegans’ system, a nematode of approximately 1mm

long which has been used for decades as a model organism in biology, mainly because

of its simplicity. C. elegans’ nervous system is exactly described by 282 neurons

having 2462 synaptic connections (Basset and Bullmore , 2006) and it was proved

to be a small-world network.

The small-world topology presents interesting properties. For instance it is said

to be high synchronizable (Uhlhaas et al. , 2009), meaning that nodes in small-world

systems tend to be synchronized. These kind of networks have been also noted as

the optimal trade off between high communication among network nodes and wiring
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cost, which is a natural behaviour of a system with high need of connectivity having

limited resources, such as the nervous system (Bullmore and Sporns , 2009).

1.5.2 A small world in the brain

The search path for the brain network has basically two main branches; the struc-

tural network and the functional network (Sporns and Honey , 2006). The structural

network represents all physical connections among neurons in the brain. Hence the

structural network is mostly defined by the axons that connect brain neurons. The

functional network, as we have previously said, represents the interaction among

several areas of the brain when performing a cognitive task or no task at all (this

is called resting state network, see (Raichle et al. , 2001)). Furthermore, there

is a third kind of network called causal or effective network, which commonly has

the same structure than the functional network but arrows are added instead of

undirected edges to emphasize cause and effect during information flow.

Several researches have pointed out the importance of the brain network study

(structural, functional, and effective) see for instance Bullmore and Sporns (2009);

Rubinov and Sporns (2009). Sporns et al. (2007) studied several network metrics

on the macaque brain cortex identifying that some areas of the cortex act as bridges

between neuronal clusters. These kind of regions are called hubs, see Figure 1.12.

Hubs in the cerebral cortex have acquired great importance in brain network stud-

ies. This is because hubs represent communication bridges among several other

regions and if affected by a disease, the performance of the brain network will de-

crease considerably. Furthermore, it is hypothesized that hubs are also in charge of

synchronizing neurons in regions they interconnect (Uhlhaas et al. , 2009).

Latter work has focused on the structural network in the human brain using

diffusion spectrum imaging (DSI), a technique capable of imaging the axonal tracts

in the brain white matter. Hagmann et al. (2008) used DSI to infer the structural

network of the cerebral cortex, see Figure 1.13. In his publication he divided the

cortex in 998 regions of interest (ROIs) and inferred connections using DSI axonal

paths. It was found in Hagmann et al. (2008) that cortex is composed mostly

of short range connections. 54% of them were within their ROI, 42% among ROIs
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Figure 1.12: Macaque cortex. Regions V4 and 46 are hubs that communicate two important clusters
of nodes. In the left column the connectivity matrices are shown. The middle column shows the
network where hubs 46 and V4 are highlighted in blue and the two regions they communicate in
white and gray respectively. The third column shows the cortex surfaces with regions V4 and 46
shaded in blue and their direct neighbours shaded in light blue. Image from Sporns et al. (2007).
Colour image is shown in Figure B.1.

of different areas in the same hemisphere and 4% were interhemispheric connec-

tions. These results will help to relate the functional network with the structural

counterpart.

Figure 1.13: Dorsal and lateral views of the structural brain network backbone. The width of the
edges is proportional of the connection weight. Image from Hagmann et al. (2008).

A complex system such as the brain network can also be studied from the point

of view of efficiency. Efficiency measures the capacity of information flow within the

network and this is directly related to network connectivity and wiring cost. It is

mathematically defined as the inverse of the average path length, see Section 5.4.

Achard and Bullmore (2007) studied efficiency of the small-world brain network and
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how this is affected by ageing and pharmacological blockage of dopamine transmis-

sion. In Achard and Bullmore (2007) it was found that brain efficiency decrements

with ageing and in the same manner when using sulpiride drug (a dopamine antag-

onist), see Figure 1.14.

Figure 1.14: Brain functional networks of a young person and old person following placebo. The
node efficiency is colour coded: The red nodes have a reduced efficiency by age, blue nodes by
sulpiride (a dopamine antagonist), and purple nodes by both, age and sulpiride. Image from
Achard and Bullmore (2007). Colour image can be seen in Figure B.2 (Appendix).

Fair et al. (2009) studied the brain network evolution following its development,

by analysing the brain network of subjects at different ages. What the researchers

found was that the brain network evolves from local connectivity to distributed

connectivity. Distributed connectivity is fully related to the long range connections

in the small-world network and these edges are at the same time fully correlated

with the efficiency, synchronizablity and parallel information processing of the brain,

indicating that the brain improves itself during our learning and maturation. This

improvement helps us to solve problems faster. See Figure 1.15.

Kaiser and Hilgetag (2006) also studied wiring cost in the nervous system by

using the available datasets of the C. elegans and the macaque cortex. Here a

simulated annealing algorithm was implemented to rearrange the position of known

nodes from their original position to a new position, having as objective function the

minimization of the wiring cost. What they found is that positions of brain regions

are not optimal. The wiring cost can be decreased dramatically by interchanging

the physical position, but the average path length increases. This means that the

number of edges between any pair of nodes increases. What this research suggests
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Figure 1.15: Default network maturation. The graph shows two individual screen shots A and B
of times series correlation among brain areas. The data was divided in three groups according to
their age and the nodes are colour coded. It can be seen that in children nodes are more clustered
according to their location while in adults there are more connections among nodes of different
regions. Image from Fair et al. (2009).

is that wiring cost is not the only objective of the small-world topology in the brain.

The long paths in the brain network are placed with the intention of decreasing the

path length and they are maintained in order to keep the optimal information flow

by avoiding the use of several paths. See Figure 1.16.

Figure 1.16: Macaque cortex network, original (left) and rearranged (right). The rearranged
network was created by reallocating the physical position of the original nodes and keeping their
original edges intact. By this arrangement it is proved that the wiring cost of the original network
could be minimized, indicating that position of brain regions in the macaque cortex is not optimal
and they obey other evolutionary rules than wiring cost only. Image from Kaiser and Hilgetag
(2006).

The brain network can also be studied at different range of frequencies which

the system might use for information flow purposes. For instance the long edges
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in the functional brain network are stronger at low frequencies. Salvador (2005)

showed this using fMRI studies on several patients in resting state. The importance

of the work of Salvador (2005) is that long paths tend to communicate using low

frequencies and this functional synchronization occurs at low bands below 0.3Hz

(Salvador , 2005).

The resting state network has become an important tool for network analysis.

Although it was taken with scepticism when it was proposed in Raichle and Snyder

(2007), today is widely used and accepted in functional connectivity experiments.

Raichle et al. (2001) were the first to propose a default mode network in the brain,

a network which is always present but it is detectable when the subject is not per-

forming a task. During decades the study of functional localization was focused on

the activation of one or more areas when performing a specific cognitive task using

experimental paradigms carefully designed to solve the psychological hypothesis of

interest. Raichle noticed that when the brain performs a specific cognitive task the

consumption of oxygen increases only 5% compared with the resting state. Further-

more, it was noticed that when a cognitive task was performed (and the oxygen

consumption increased in a specific region) the oxygen consumption of other regions

decreased. Raichle and others concluded that these decreasing areas were activ-

ity that was ongoing before the task performance. This activity was called default

function (Raichle et al. , 2001; Raichle and Snyder , 2007).

The default mode network or resting state network is a common accepted con-

cept, and practically all research work today in brain connectivity includes resting

state experiments. The resting state network has been pointed to be very useful

for brain studies, and mainly brain related diseases (Buckner et al. , 2008). For

instance de Vico Fallani (2009) used resting state and EEG to study brain network

metrics in stroke patients. Also, He et al. (2010) and Stam (2004) applied resting

state and brain network analysis to study brain connectivity in Alzheimer’s disease.
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1.6 Neuroimaging

Current findings on brain networks would not have been possible without the aid

of brain imaging technologies. Brain imaging has its beginnings when Hans Berger

(1873-1941) recorded the first human electroencephalogram using a Galvanometer

of 130 µV/cm and photographic paper. Since Berger’s work, the recording of brain

signals has followed a continuous evolution, with the introduction of computers that

led to new algorithms for quantitative analysis and better visualization.

According to the functional localization theory each brain area has a specific

cytoarchitecture because these areas specialize in information processing linked to

some task, either cognitive or motor. There are sections in the brain involved in

memory like the hippocampus, visual processing like the visual cortex, or movement

like the motor cortex. When a subject performs a task, neurons that are in charge

of carrying on the task will fire more intensely. It is supposed that there is a cause-

effect relation between the functional or cognitive activity performed by the subject

and the neuronal firing.

When a large number of neurons fire it is possible to record the generated elec-

trical signal without the need of single neuron electrodes that pierce and later kill

the neural tissue. This is possible because neighbouring neurons tend to synchro-

nize and fire at the same time, adding up their potential to measurable voltages.

There are several techniques to measure brain activity, the most common are elec-

trocorticography, electroencephalography, magnetoencephalography, and functional

magnetic resonance imaging. The latter does not measure electrical activity but

metabolic activity of neurons.

1.6.1 Electroencephalography

The first studies on human electroencephalography (EEG) came from the German

neuropsychiatrist Hans Berger using rudimentary Galvanometers and photographic

paper. Berger published a series of fourteen reports of his research work mainly

related to the alpha band, the first of these published in 1929 (Niedermeyer and

Lopes , 1993). In his reports Berger noticed that different signal waveforms are
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present in EEG and also gave sufficient evidence to suggest that these signals might

be correlated with functional activity (Niedermeyer and Lopes , 1993).

The different brain waves of approximately 50 µV amplitude (also called brain

rhythms) that can be observed in an EEG exam are the gamma rhythms which are

in the band of 30-80 Hz, the beta rhythms (13-30Hz), alpha rhythms (8-13Hz), theta

rhythms (4-8Hz), and delta rhythms (0.5-4Hz). The alpha rhythms are associated

with quiet, conscious states. This rhythm appears when the subject closes his eyes

and stays conscious. Theta rhythm is highly present during sleep stages, and delta

rhythm is the hallmark of deep sleep, see Figure 1.18.

EEG is a common technique worldwide for medical diagnosis, thus the placement

of the electrodes on the head is standardized to allow the reproducibility of the test

among different laboratories. This standard is the 10-20 system where the “10” and

“20” are because the electrodes are placed on the scalp letting a space among them of

10% or 20% of the subject’s scalp distance from the Nasion to the Inion. The Nasion

is the zone of the face just above the nose between the eyes and the Inion is a bone

bump at the back of the head between the scalp and the neck. Furthermore, the 10-

20 system labels all the electrodes with a letter and a number. The letter indicates

the lobe where the electrode is located, F for frontal, O (occipital), P (parietal), and

T (temporal). There is also a C label for the electrodes placed just above the central

sulcus. The number next to each label indicates the electrode order. The electrodes

nearer to the centre receive lower label number, and the electrodes just over the line

that crosses the scalp from the Nasion to the Inion instead of a number receive a

z label. Figure 1.17 shows the arrangement of the electrodes for the international

10-20 system.

EEG is widely used because of its low cost and noninvasiveness. EEG causes no

harm to the subject and can be repeated any number of times. Its main application

is in medical diagnosis of brain related diseases like epilepsy, sleep disorders, head

trauma or dementia. There are also applications to detect promptly Parkinson’s and

Alzheimer’s diseases based on mapping of functional activity and evoked potentials

(EP) (Niedermeyer and Lopes , 1993). An EP is a wave of very low magnitude that

appears just after a stimulus (visual, auditory or somatosensory). Several trials of
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Figure 1.17: International 10-20 system for electrode placement in EEG. Electrodes A1 and A2
are used as voltage references.

the stimulus must be recorded in order to see an EP, otherwise the evoked wave

would remain masked by the high amplitude of the background EEG. The main

goal of this kind of research is to study the behaviour of the brain during different

kind of stimuli. For example, it is possible to study the visual system by recording

EEG signals from the visual cortex and see how the visual cortex activates using

different kinds of images such as faces (Gazzaniga , 1998; Niedermeyer and Lopes ,

1993).

EEG is the first tool used to diagnose epilepsy and can be used to approximately

locate the source of the epileptic focus in the cerebral cortex. If the epileptic seizures

are so intense and untreatable with conventional drugs, the epileptic tissue must be

excised by opening the skull (craniotomy) in an attempt to eliminate the seizures. In

this case, EEG gives the first clue of where the epileptic focus is in order to proceed

with the craniotomy procedure.

EEG signals can also be used to implement brain computer interfaces (BCI).

BCI research tries to help paraplegic patients by allowing them to interact with

their environment using a computer interface. EEG electrodes are attached to the

patient’s scalp. Then a computer reads the brain signals to control an electronic

device such as a mouse pointer on a computer screen. In this manner patients are

able to move a mouse pointer and click on several options.

Because EEG signals are taken from the scalp and not from the cerebral cortex,

there is a diffusion of the neural activity from the cortex to the scalp and also a
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decrement of these potentials due to the skull resistance. This means that a signal

acquired by an electrode placed on the scalp comes from a wider area of the cerebral

cortex and also its potential is decremented due to the insulating property of the

skull which behaves as a barrier for electric currents.

There are some issues with the acquisition of signals from the scalp, and one

of these is the volume conduction problem. Volume conduction is manifested as a

high correlation among all the EEG channels. This is because the cortex flesh, the

CSF, and scalp skin are able to transmit electricity as a normal conductor. Thus a

current that is present at the scalp on the left lobe side will also be present at the

right lobe. This means that all channels in EEG will show a baseline correlation.

Another problem in EEG is the presence of artifacts, which are spurious signals

that do not belong to the brain electrical activity but contribute to the EEG record-

ing. This occurs because the brain is not the only organ that produces electricity in

our body. The heart and all the muscles produce different kind of signals. The most

common sources of artifacts in EEG are the heart (electrocardiogram or ECG), the

eyes (electrooculogram or EOG), the muscles (electromyogram or EMG) and the

tongue (glossokinetic artifact). Furthermore, artifacts might be several times larger

than the brain signals, making them difficult to eliminate.

1.6.2 Electrocorticography

Even when EEG is successful on reading brain rhythms and localising epileptic

sources, higher resolution is still needed for brain surgery. In this case electrocor-

ticography (ECoG) is the next step after EEG.

ECoG is an invasive technique to measure electrical activity directly from the

cerebral cortex. The reason why this technique is invasive is because a section of the

skull must be removed in a surgery called craniotomy in order to expose the cerebral

cortex. Then a grid of electrodes is placed over the cortical surface to record the

electrical signals, as shown in Figure 1.19. The signals that are acquired using the

grid of electrodes come mainly from the vertical pyramidal neurons that are placed

in the gyri of the cortex, see Figure 2.1

Although very invasive, ECoG has good spatial resolution which depends on the
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Figure 1.18: Typical EEG waveforms and their frequency bands. Image from Malmivuo and
Plonsey (1995).

electrode grid used. Using new technologies like micro electrode arrays it is possible

to obtain spatial resolutions of millimetres or even less. If the micro electrode arrays

are combined with sampling frequencies above 10 KHz, it is possible to isolate the

action potentials of individual neurons (Quiroga and Panzeri , 2009). Therefore,

time resolution is also another of its advantages.

As in EEG another application of ECoG that is becoming important is BCIs.

It is possible to implant a grid of electrodes on the cerebral cortex and seal the

skull again letting enough space for the electrode’s wires. Using algorithms of pat-

tern recognition to process the brain signals, the subject can learn how to use the

electrodes to move devices. An advantage of ECoG for BCIs is the automatic elim-

ination of artifacts. Because the signals are recorded directly from the cerebral

cortex, the muscle artifacts are eliminated automatically. The only artifact that

might be present is the ECG artifact, but this can be avoided by not placing the

cortical electrodes above cerebral vessels.
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Figure 1.19: ECoG grid placed on the scalp. The ECoG can be also used for brain computer inter-
faces, which allow a paraplegic subject to interact with his/her environment through a computer
device (for instance a computer mouse) and click on several options.

1.6.3 Functional magnetic resonance imaging

Magnetic resonance imaging (MRI) is a technique based on the principle that when

atoms are excited by an electromagnetic pulse, they spin at specific frequencies which

depends on the properties of the excited material. In 1920 the Austrian physicist

Wolfgang Pauli noted anomalies in the electromagnetic spectra emitted by excited

atoms. Pauli stated that atoms have two properties; a spin and a magnetic moment.

He also stated that atomic frequencies were a discrete quantity, this means that

different chemical elements spin at different frequencies. Pauli’s conjectures would

not be proved for more than a decade until Rabi’s experiments (Huettel et al. ,

2009).

In 1930 Isidor Rabi, an American physicist, ran an experiment using a modified

version of Stern-Gerlach’s gaseous beam (Huettel et al. , 2009). This gaseous beam

uses a single element and allows to send a beam of different particles of the same

element. Then the beam is passed through a magnetic field to induce a splitting

of the beam into more beams. What Rabi did was to add an oscillating magnetic

field and found that at a specific frequency and power the lithium atoms in the

beam were deflected, indicating according to the experiment setup that these atoms

absorbed energy. The phenomenon was called magnetic resonance (MR) and Pauli

was awarded the Nobel Prize in Physics in 1944 for his discovery (Huettel et al. ,

2009).
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During the following years, Magnetic resonance’s developing path was awarded

four Nobel prizes in Physics and Medicine. The first two were won in 1952 by Felix

Bloch and Edward Purcell for their work using MR in bulk matter. By 1945 the

current MR experiments were only run using beams of particles, Bloch and Purcell

proved that MR was also present in common materials. The second two Nobel

Prizes were awarded to Paul Lauterbur and Peter Mansfield in 2003 for their work

on improving the MR image acquisition. In 1972 Lauterbur had the idea of varying

the magnetic field over the space, in this way the resonance frequency of different

atoms would also vary. By measuring the resonance frequency and energy emitted

by the excited atoms, Lauterbur was able to infer how many atoms of an element

were present. This technique is called induction of spatial gradients (Huettel et

al. , 2009). Lauterbur also noticed that spatial gradients only gave information in

one dimension, thus he applied spatial gradients at different orientations in order

to infer shape, Figure 1.20. In 1976 Mansfield imagined a more efficient recording

approach. His technique used an electromagnetic pulse just before the introduction

of magnetic gradients while recording the MR signals. Then the image could be

reproduced by using Fourier analysis techniques (Huettel et al. , 2009). Mansfield’s

technique was later called echo-planar imaging (EPI) and still continues being the

standard for MR Imaging (MRI) today.

Figure 1.20: First MR Image obtained by Lauterbur. Lauterbur applied electromagnetic gradients
at different orientations in order to infer to object’s shape. In this case the shape of two bars.

The standard use of MRI as its name says is just for imaging. It can be used to

obtain images of knees, feet, elbows, brain, and any other section of the body or all of

it. MRI does not use any kind of ionizing radiation like Computerized Tomography
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(CT), which uses X-rays. Thus it can be run several times on the same patient.

Furthermore, MRI is a noninvasive technique, it does not require the injection of

radioactive agents as occurs in positron emission tomography (PET) (Huettel et al.

, 2009).

MRI obtains the adjective of “functional” when it is used to observe how the

brain works when different cognitive tasks are performed and is commonly called

fMRI for this case. In order to detect cognitive (or functional) activity in the brain,

it is necessary to sense the activity of the cells in charge, the neurons. But fMRI

cannot sense the electrical activity of neurons as EEG and MEG do. What fMRI

does is to sense the metabolism of the neural tissue, the oxygen consumption which

is highly correlated with neural activity.

BOLD fMRI

Blood-oxygenation-level dependent (BOLD) fMRI is a technique used to acquire

images of brain functional activity. BOLD fMRI is based on the phenomenon that

when a haemoglobin molecule is carrying oxygen the molecule is completely dia-

magnetic, this means that it has paired electrons and no magnetic moment. When

haemoglobin releases its oxygen it becomes paramagnetic, meaning that now the

molecule has a magnetic moment. Because paramagnetic materials distort mag-

netic fields, the protons that surround this material will be exposed to different field

strengths. This phenomenon of paramagnetic haemoglobin is used in fMRI.

When neurons show high activity, they send several excitatory postsynaptic po-

tentials (EPSPs) to other neurons. In fact this is the activity acquired by MEG.

But when neurons send EPSPs (and also inhibitory or IPSP), this action repre-

sents a cost of energy for the neural cells because in order to maintain the ionic

concentration inside and outside the cellular membrane, neurons have to activate

their Sodium-Calcium pumps (membrane channels) to transport ions against the

concentration gradient and restore the membrane potential (Bear et al. , 2007).

When the Sodium-Calcium pumps are active, they consume adenosine triphosphate

(ATP) molecules available in the cytoplasm. This molecule is commonly known

as the energy currency for all cells in our body. The breaking of ATP molecules
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produces enough energy to make the Sodium-Calcium channels work.

ATP molecules are created by mitochondria inside the neurons. It is thought

that mitochondrial cells were bacteria that parasited the cells during evolution and

they were found to be useful for energy production. Inside the mitochondria occurs

a series of chemical reactions known as Glycolysis and the Krebs cycle. During

Glycolysis the mitochondrion uses a 6-carbon molecule of Glucose and breaks it in

two 3-carbon molecules of Pyruvate and two ATP molecules, by the investment of

two ATP molecules. Therefore the total ATP gain at this point is zero. Then, in the

presence of oxygen the pyruvate molecules oxidates and by a series of reactions using

an enzyme called ATP synthase during the Krebs cycle, the mitochondrion generates

34 ATP molecules. Hence, in the presence of oxygen 34 ATP molecules per molecule

of Glucose are generated. The oxygen needed by the mitochondria to create ATP

is the reason why we need to breath and get oxygen from the air. The oxygen that

enters the lungs is absorbed by the red blood cells where haemoglobin oxidates, and

this oxygen is delivered to the brain and other tissues by the circulatory system.

Hence what fMRI really measures is the delivery of oxygen to neurons in the brain

tissues or in other words, it measures deoxygenation of haemoglobin. The delivery

of oxygen occurs in the capillary vessels. These vessels are thin enough to allow the

crossing of just one red blood cell. During their crossing, the oxygen is delivered

and the CO2 generated as waste during the Krebs cycle is extracted (Huettel et al.

, 2009). The increase of functional activity activates the flow of more blood through

the capillaries because more oxygen is needed. Hence the increase of the blood flow

also increases the number of deoxygenated haemoglobin molecules. Furthermore, it

is assumed that the increase in the rate of haemoglobin deoxygenation occurs in the

cerebral area needed to perform functional activity.

The use of fMRI and its correlation with functional activity has opened new

research horizons. Now it is possible to find with high spatial resolution the exact

point where the neural activity is happening. But even a high-tech device like fMRI

has some minor issues. First of all, the signal that is measured is not neural activity

but a collateral phenomenon (deoxygenation of haemoglobin) which is assumed to

be correlated with functional activity. Also, BOLD signals are not “real time”.
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This is because when EPSPs and IPSPs are sent, neurons will use first their stock

of ATP and their current oxygen and just a couple of seconds later an haemoglobin

response will be detected and this will last for several seconds. Therefore, although

fMRI shows a high spatial resolution it has low time resolution, not only for the time

that it takes to get the image but also by the phenomenon that fMRI measures.

Figure 1.21: Coregistration of fMRI and MEG for dipole localization. Image obtained using

EEGLab: http://sccn.ucsd.edu/eeglab/ .

An interesting use of fMRI is when it is accompanied by a MEG or EEG test.

Even though fMRI has a low temporal resolution when detecting functional activity,

MRI is the safest technique to obtain brain images. Thus, it is possible to obtain

images from the same subject and perform coregistration with MEG in an attempt

to get the best of both techniques, the spatial resolution of MRI and the temporal

resolution of MEG, see Figure 1.21 for an example using EEGLab software. Having

images of the subjects’ brain allows to build more realistic models of the head and

improves the accuracy of MEG in brain source localization. Furthermore, if MEG

and fMRI are performed using similar experimental protocols, it is possible to use

coregistration as an extra validation of the data if both techniques show similar

results, like neural activity in the same area.
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1.6.4 Magnetoencephalography

In magnetoencephalography (MEG) the brain signals are not acquired using elec-

trodes. Instead of electrodes the signals are acquired using coils called magnetome-

ters. The neuronal axons can be modelled as conductors carrying electrons and

when an electrical current travels through a conductor it also produces a magnetic

field. Therefore each neuronal axon is capable of generating a magnetic field.

The advantage of MEG over EEG is that the recorded signals come directly from

the cerebral cortex instead from the scalp. This is because the skull does not offer

any resistance to the magnetic fields as it does with the cortical electric currents.

Furthermore, MEG does not need reference signals. Hence there are no ground

electrodes that can be contaminated with artifacts or external noise.

MEG also has some weaknesses. The estimation of the neuronal sources is still

not accurate enough to make it a fully reliable technique. There are many publica-

tions in the literature which work on source localization for MEG and the research

on this field still continues. Currently, MEG techniques are able to theoretically find

sources not only in the cerebral cortex but also in deeper regions of the brain. This

is done by applying complex brain geometries that take into account the different

brain tissues and also the skull.

Another problem in MEG is that the number of sources surpasses the number

of sensors. The brain has thousands of neuronal groups firing at the same time and

all of them contribute to the magnetic signals emitted by the brain. This number

of superposed signals outnumbers the number of available magnetometers which

makes the problem of finding the sources ill-posed. This means that the solution is

not unique and many sources at different places can be found as probable solutions

given the provided data. The problem of finding the position of magnetic sources

is commonly called the inverse problem (Hämäläinen et al. , 1993; Baillet et al. ,

2001).

Several techniques has been developed to tackle the inverse problem, like equiva-

lent current dipole (ECD) (Sarvas , 1987) and beamforming (Van Veen and Buckley

, 1988; Van Veen et al. , 1997). Beamforming is considered the most successful tech-

nique for source localization and was designed first in communications engineering
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for target localization in radars and sonars. This topic will be studied more deeply

in Chapter 2.

1.7 The volume conduction problem

Electrophysiological recordings present a common and difficult problem, volume

conduction. Volume conduction is produced by the conductivity of the living tissues,

which spreads the generated currents or voltages through the tissue volume. In the

case of the brain the main tissues that produce volume conduction are the brain

itself, the cerebrospinal fluid (CSF), the skull, and the scalp skin. Volume conduction

causes that a cortical voltage generated by brain activity diffuses before arriving to

the head scalp. Hence the signals recorded by EEG electrodes for instance are not

necessarily generated at regions below them but by surrounding brain areas.

Volume conduction represents a challenge for connectivity studies and mainly

for EEG. As we discussed in this chapter EEG acquires brain activity by placing

electrodes on the head scalp, but due to volume conduction these signals are highly

correlated to their neighbouring electrodes.

For electrical fields, volume conduction can be modelled analytically using models

of concentric spheres, every sphere represents a conductive tissue. A widely applied

model is the four sphere model, shown in Figure 1.22 where the four spheres are

depicted representing each one from the inner to the outer; the brain, CSF, the skull

bone, and the scalp. The spheres’ radius are r1 = 8cm, r2 = 8.1cm, r3 = 8.6cm,

and r = 9.2cm as shown in Figure 1.22. The conductivity ratios among spheres

are commonly defined with the values σ1/σ2 = 0.2, σ1/σ3 = 40.0, and σ1/σ2 = 1.0

where the indices indicate the model’s spheres.

The four sphere model and its analytical solution is well explained in Nunez and

Srinivasan (2006). The equations for the voltages at any radius of the sphere were

solved for a radial source (whose direction intersects the spheres’ centre) and also

a tangential source (tangential to the cortical surface). Neuronal sources at any

direction can be modelled by using the linear properties of electromagnetism using

three orthogonal dipoles. Sources at any position are also obtained by rotation of the
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Figure 1.22: The four sphere model for volume conduction in EEG.

sphere model and again using the linear property of electromagnetism to simulate

the activity of several sources distributed in the brain’s sphere. Figure 1.23 shows a

simulation of a tangential source (top row) and a radial source (bottom row) using

the four sphere model. The sources were located at a radius of 7cm from the centre.

Notice that the radial dipole shows a larger potential indicated by red colour (see

Figure B.3). This shows that EEG is more sensitive to radial dipoles which are the

main source of recorded EEG potentials. Radial dipoles are commonly present in

the cortical gyri.

For the EEG case the research community has worked on several techniques to

diminish the influence of the volume conduction problem. One of these approaches

is to redefine digitally the EEG mounting, such as the averaged electrode reference,

which consists on averaging all bipolar channels and use the result as the new ref-

erence. There are also source localization techniques for EEG which aim to reverse

the volume conduction effect by unmixing the original sources using a volume con-

duction model. This method requires a deep knowledge of the head shape including

its internal tissues. Although this information can be obtained by current imag-

ing techniques like MRI, it is still a computationally intensive approach. Another

method is independent component analysis (ICA) which is an improved version of

the widely known principal component analysis (PCA). ICA aims to unmix the

sources that generated the recorded signal assuming source independence and not
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1.7 The volume conduction problem

Figure 1.23: The four sphere model for volume conduction. The top row shows the four spheres
representing the cortex, the CSF, skull, and the scalp when a tangential dipole is active. The
bottom row shows the same but for a orthogonal dipole. Notice the surface voltage is more
concentrated for orthogonal (also called normal) dipoles. Colour image can be seen in Figure B.3.
Image created using Python-Mayavi2.

only orthogonality (or decorrelation) as PCA does, but it has two limitants. The

first is the number of estimated sources, which is N − 1, where N is the number of

electrodes, and the second is that the generating sources need to be independent.

MEG also suffers from the volume conduction problem, but the reasons of this

are different to the ones in EEG. Volume conduction for MEG will be studied more

deeply in Chapter 2.

Chapter summary

This introductory chapter gave a brief review of Neuroscience, its history, current

developments and imaging technologies. It was emphasized that the brain is com-

posed of billions of neural cells (100 billion approximately) and these neurons create

a massively connected network with astonishing parallel (and also unparalleled for

the best current computers) processing capabilities. Research work has found that

the brain network follows a small-world topology. These kind of networks are as-

sociated with the optimum threshold between minimum wiring cost and maximum

connectivity. It seems that the nervous system in humans and practically all species
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evolved in order to minimize the number of steps among the network nodes by using

long distance paths to connect high clustered subnetworks.

Some technologies used to acquire brain signals were also described in this chap-

ter. These are EEG, ECoG, MEG, and fMRI. EEG is the oldest technique to acquire

noninvasively brain signals. EEG acquires electrical activity generated mainly by

pyramidal neurons located in the gyri of the cerebral cortex. However, because

EEG electrodes are placed on the scalp and not directly on the cerebral cortex, the

recorded signals suffer the volume conduction problem. A technique that overcomes

this issue is ECoG. Here the electrodes are placed directly on the surface of the cere-

bral cortex, thus problems like volume conduction and skull resistance are avoided.

ECoG is highly invasive because a section of the skull must be removed in order to

get access to the cortical tissue and place the electrodes.

fMRI is another technology for functional and cognitive studies. MRI by it-

self can obtain images of the brain with high spatial resolution which are used by

physicians to study brain tissues and detect tumours or any other malformation.

Furthermore MRI can be adapted to sense functional activity (fMRI) by detecting

the increase of deoxygenated haemoglobin in brain tissues.

MEG is a technique that technically overcomes the issues of EEG and also ECoG.

MEG is able to acquire brain activity that comes directly from the brain tissue.

What MEG detects are the magnetic fields generated by neuronal groups whose

axons fire synchronously. It has been found that in the cerebral cortex, pyramidal

neurons located in the sulci contribute most of the electromagnetic fields emitted

by the brain. For this reason MEG is referred as a complemental technique for

EEG, which acquires signals generated mainly in the gyri. However MEG also has

one weakness regarded to the localization of the real current dipoles, but current

research has proved that MEG is indeed a robust technique. This is explained in

the following chapter.
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Chapter 2

Magnetoencephalography

Magnetoencephalography or MEG is a brain imaging technology that senses the

magnetic fields generated by large neuronal groups in the brain. Previously in Sec-

tion 1.6.4 a brief introduction to MEG was given. In this chapter the mathematical

concepts behind MEG as a brain imaging technique are covered.

2.1 Brain fields

When a neural group of approximately 10,000 cells fire synchronously in a small

area of the brain, they create enough electrical current and in consequence enough

magnetic field to be sensed by the MEG device. These magnetic fields are in the

order of hundreds of femto-Teslas (10−15 Teslas) (Preissl , 2005). As in EEG and

ECoG, these fields come from pyramidal neurons but instead of neurons located

in the gyri, most of the recorded fields in MEG come from neurons located in the

cortical sulci, see Figure 2.1.

Neural currents are commonly modelled as a current dipole Q, which is nothing

else than a small conductor segment that transports electrons. In Electromagnetism

a current dipole can be created by placing two particles of opposing polarity and

equal magnitude charges at a very close distance in a conductive environment. This

is possible because the magnetic and electric fields of one charged particle can be

computed easily since their analytical solution are well known. By placing two

particles with opposite charges, the linear property of Electromagnetism allows to
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2 Magnetoencephalography

Figure 2.1: Pyramidal neurons in the gyri and sulci are the main sources for EEG and MEG signals
respectively. It is needed the synchronous activity of approximately 10,000 pyramidal neurons to
generate a magnetic field that can be sensed by the MEG device.

add up their fields thus creating the dipole.

In many MEG studies the frequencies of interest are below 100 Hz (Preissl ,

2005; Hämäläinen et al. , 1993). At these frequencies the wavelengths of the brain

fields are much more longer than the separation of the MEG sensors. Hence the

quasistatic approximation of Maxwell’s equations is used in brain dipole modelling

(Hämäläinen et al. , 1993; Baillet et al. , 2001; Sarvas , 1987). These are

E = −∇V ,

∇×B = µ0J ,

∇ ·B = 0 ,

J = Jp + σE ,

(2.1)

where V is the electric potential, J is the total current density, Jp is the primary

current, B is the magnetic field, and σE is the Ohmic current. Maxwell’s equations

in Eq. 2.1 imply that the radiated signals do not suffer any delay due to spatial

propagation.

The firing of several axons in a limited region is commonly modelled in the

literature as a current dipole which generates a magnetic field B(r) defined as

B(r) =
µ0

4π

∫
v

J(rd)×
r− rd
|r− rd|3

dv . (2.2)

Eq. 2.2 is the Biot-Savart law, which is used to compute magnetic fields generated
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2.1 Brain fields

by J(rd) defined as

J = Jp − σ∇V , (2.3)

where σ∇V is the volume current that closes the circuit. Here σ is the macro-

scopic conductivity and the potential V is obtained by solving Poisson’s equation

∇V = ∇·Jp/σ (Hämäläinen et al. , 1993). Jp is the “battery” of the current dipole

Q which is concentrated at the space point rQ (Hämäläinen et al. , 1993). This

concentration is defined using the δ function as

Jp(r) = Qδ(r− rQ). (2.4)

It is commonly assumed that only Jp contributes to the generation of the mag-

netic field to simplify the computation of the dipole position (Hämäläinen et al. ,

1993), where the dipole current is confined in an infinitesimal conductive segment

dl. Using these assumptions we can rewrite Eq. 2.2 as

B(r) =

∫
µ0

4π

Jdl× (r− rd)

|r− rd|3
, (2.5)

where J represents the current magnitude and dl the infinitesimal conductor

segment. Computing the integral in Eq. 2.5 we have that

B(r) =
µ0

4π

q(rp − rn)× (r− rd)

|r− rd|3
. (2.6)

Here q represents the magnitude of the positive and negative charges, whose

positions are rp and rn respectively. Figure 2.2 shows this dipole arrangement rep-

resented by Eq. 2.6.

By averaging the vector distances rn and rp to rd, Eq. 2.6 can also be represented

as

B(r) =
µ0

4π

q(rd, t)× (r− rd)

|r− rd|3
. (2.7)

where q(rd, t) is the vector whose magnitude and direction equals the modelled

dipole and rd is the dipole’s centre. Notice that the variable t in the dipole repre-

sentation was added to indicate that the dipole’s current changes over time. Now

assuming that in the brain there are N number of dipoles or sources. Using the

linear property of Electromagnetism, it is possible to represent the magnetic field
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2 Magnetoencephalography

Figure 2.2: Dipole represented by charges of equal magnitude but different polarity separated by

a distance dl. r represents the point of magnetic field measurement.

B(r) produced by the N dipoles as

B(r) =
µ0

4π

N∑
i=1

q(ri, t)× (r− ri)

|r− ri|3
(2.8)

Eq. 2.8 represents the magnetic field produced by N dipoles and it is the base

for source inference in magnetic source imaging.

Current dipoles orthogonal to the scalp surface represent the main sources in

EEG recordings. These orthogonal dipoles are mainly placed in the cortical gyri.

An example of an orthogonal or radial dipole is shown in Figure 2.3 using the head’s

four sphere model in Figure 1.22.

Figure 2.3 shows the scalp layer and its electric potential distribution caused

by an orthogonal dipole placed in the brain cortex (Nunez and Srinivasan , 2006).

Notice here that the scalp potential is well localised, and the point of maximum

voltage is just above the dipole position. In Figure 2.3, the dipole’s position is

shown with a red cone above the head’s scalp, where the cone’s vertex represent the

positive pole. The dipole charge was of 1µC for this simulation.

Figure 2.4 shows the distribution of a current dipole tangential to the scalp

cortex. Notice that for a tangential dipole, the potential is more dispersed on the

scalp and also its magnitude is much lower than the one produced by an orthogonal

dipole. Furthermore, the maximum is not above the dipole’s position but some

distance in front of the positive pole and in a similar way the minimum appears

some distance from the negative pole.
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2.1 Brain fields

Figure 2.3: Orthogonal dipole on head’s scalp. An orthogonal dipole is simulated using the four
sphere model (Nunez and Srinivasan , 2006). The electric dipole was placed inside the brain. The
figure shows the voltage field produced by the dipole on the head’s scalp, which is shown on the
outermost sphere (recall the four sphere model). Notice how the fields maxima is located just
above the current dipole, whose position is represented by a red cone above the scalp. The image
was programmed and created using Python-Mayavi2. Colour image can be seen in Figure B.4.

Figure 2.4: Tangential dipole on head’s scalp. As in Figure 2.3, a current dipole was placed in
the brain but in this case its direction is tangential to the scalp cortex. The position of the dipole
inside the four sphere model is shown with a red cone with its vertex pointing to the positive
pole. Notice that in this case, the field’s distribution is not concentrated as in the orthogonal
case. The field is much wider and its voltage lower. Also, the field shows one minimum and
one maximum and the real position of the dipole is located in the middle of these two points.
This pattern is characteristic of tangential dipoles. The image was programmed and created using
Python-Mayavi2. Colour image can be seen in Figure B.5.
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As we mentioned previously, MEG is more sensitive to dipoles that are tan-

gential to the head’s surface. These dipoles are commonly located in the sulci.

Figure 2.5(left) shows the voltage distribution on the scalp produced by an orthog-

onal dipole. The orthogonal component of the dipole’s magnetic field is shown on

the sphere at the right in Figure 2.5. This sphere shows the orthogonal component

magnitude of the magnetic field at four centimetres from the scalp. Four centimeters

is the average distance between the scalp and the MEG sensors. Notice that the

field acquired is uniformly zero, making impossible any localization attempt. The

reason of this uniformity is because for spherical structures there are not orthogonal

components in the magnetic field generated by an orthogonal dipole.

Figure 2.5: Magnetic field generated by an orthogonal dipole. The sphere at the right shows in
colour the magnitude of the orthogonal components of the magnetic field that crosses the sphere.
The sphere’s surface is located four centimetres above the scalp sphere. Notice that the magnitude
shown is zero (green colour), meaning that there are no orthogonal components. The sphere at the
left shows the orthogonal dipole and its voltage field at scalp level. The image was programmed
and created using Python-Mayavi2. Colour image can be seen in Figure B.6.

On the other hand, a tangential dipole presents clearly a minimum and a max-

imum in the field distribution which facilitate the localization of the generating

dipole. As shown in Figure 2.6, a tangential dipole generates a magnetic field which

has orthogonal components crossing the outer sphere, see Figure 2.6(left). Here the

minimum and maximum are located where the orthogonal magnetic field magnitude

is higher and the dipole is located exactly in the middle of both points. Basic source

localization techniques in MEG use this minimum and maximum pattern of the field

distribution to approximate the position of the generating sources.
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2.2 Magnetoencephalographer

Figure 2.6: Magnetic field generated by a tangential dipole. The sphere at the right shows in colour
the magnitude of the orthogonal components of the magnetic field that crosses the sphere. Notice
that in this case a minimum and a maximum can be appreciated, and that the real position of the
dipole is in the middle of these two points. The sphere at the left shows a tangential dipole and
its voltage field at scalp level. The image was programmed and created using Python-Mayavi2.
Colour image can be seen in Figure B.7.

2.2 Magnetoencephalographer

As we mentioned in Section 1.6.4, the magnetic fields generated by the brain are

acquired using magnetometers. These are extremely sensitive to very small fields on

the order of femtoteslas thanks to their high conductivity. The high conductivity

is accomplished by lowering the magnetometers’ temperature using liquid Helium

which decreases their temperature to approximately 4 Kelvin, close to absolute

zero. For this reason the magnetometers are located in a thermal drum to keep

the low temperature inside. Noise can be reduced using special magnetometers

called gradiometers which are an arrange of two magnetometers, see Figure 2.7.

Gradiometers offer good performance because they only respond to magnetic fields

whose source is close instead of sources that are far away. Therefore only magnetic

fields coming from the brain are recorded (Preissl , 2005). The gradiometers used in

MEG are very specialized devices called SQUIDs, which stands for superconductive

quantum interference devices (Baillet et al. , 2001; Hämäläinen et al. , 1993).

There are few brands of MEG devices in the market. The newest ones surpass

300 SQUID sensors arranged in a semispherical helmet that surrounds the head.

The MEG device at the York Neuroimaging Centre is a 4D Neuroimaging Magnes

3600 of 248 SQUIDs, shown in Figure 2.7-left. The layout of the 248 MEG SQUIDs
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2 Magnetoencephalography

Figure 2.7: York Neuroimaging Centre (YNiC) (https://www.ynic.york.ac.uk/ ) magnetoen-
cephalographer (left) and standard gradiometer (right). The gradiometer is designed
to cancel fields coming from far away sources and sense only near sources.

is shown in Figure 2.8 where the SQUIDs are represented by white spheres and their

axial direction is represented with blue arrows. In all simulations in this thesis the

SQUIDs will be sensitive to magnetic field components parallel to them (parallel to

the blue arrows in Figure 2.7).

Figure 2.8: 248 SQUID layout from a 4D Neuroimaging MEG device. The blue arrows represent
the SQUIDs’ directions. Hence the SQUIDs are more sensitive to fields parallel to the blue arrows.
The image was programmed and created using Python-Mayavi2. Colour image can be seen in
Figure B.8.

56



2.3 Magnetic field acquisition

2.3 Magnetic field acquisition

In MEG analysis it is commonly assumed that the SQUIDs are sensitive to magnetic

fields parallel to the axial axis of the SQUID sensor. This means that the MEG

sensors are much more sensitive to dipoles that are tangential to the head’s scalp

(Hämäläinen et al. , 1993; Malmivuo , 1997). This sensitivity can be modelled as

Bn(r, t) =
µ0

4π
an(r) ·

N∑
i=1

q(ri, t)× (r− ri)

|r− ri|3
, (2.9)

where we have added to Eq. 2.8 the dot product between the magnetic field and

the SQUID directions an(r), represented as a unitary vector parallel to the sensors,

see Figure 2.8. Eq. 2.9 can also be written in matrix notation as

x =
N∑
i=1

H(qi)m(qi) + n . (2.10)

The time series vector x represents the acquired MEG signals which are propor-

tional to the magnetic field Bn, H(qi) is a matrix that represents the gain of the

SQUIDs to a dipole qi at the position ri, m(qi) represents the dipoles q(ri, t), and

n is uncorrelated Gaussian noise that represents the instrumental noise.

In order to derive the matrices in Eq. 2.10 using Eq. 2.9, let’s assume first that

there is only one dipole in the brain space. Then, by recalling Eq. 2.9 we have that

bn(r) = an(r) ·
[
µ0

4π

q(ri, t)× (r− ri)

|r− ri|3

]
. (2.11)

Now, expanding the cross product inside the brackets of the previous equation

gives 
bx

by

bz

 =
µ0

4π|r − ri|3


0 rz −ry
−rz 0 rx

ry −rx 0




qx

qy

qz

 . (2.12)

By reintroducing the dot product with vector an(r), we obtain an expanded

version of Eq 2.11 in matrix notation,

bn(r) =
µ0

4π|rsi|3
[
ax ay az

]
0 rz −ry
−rz 0 rx

ry −rx 0




qx

qy

qz

 (2.13)
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where

rsi = rs − ri = [rx ry rz] , (2.14)

and rs and ri are the position vectors of the SQUIDs and the dipole source

respectively.

In order the generalize the previous result to N number of dipoles we define

as(r) = [asx asy asz] (2.15)

as the unitary vector parallel to each SQUID, here s defines the SQUID index.

Also

Rsi =
1

|rsi|3


0 rz −ry
−rz 0 rx

ry −rx 0

 (2.16)

is the matrix of distances between the sth SQUID and the ith dipole. Using the

previous definitions, matrix H can be represented as

H =
µ0

4π


a1 0

a2

. . .

0 aS




R11 R12 · · · R1N

R21
. . . . . . R2N

...
. . .

...

RS1 RS2 · · · RSN

 . (2.17)

Finally, by defining the set of active dipoles as the column vector

m(q) = [ q1x q1y q1z . . . qNx qNy qNz ]T (2.18)

we obtain the matrix representation of Eq. 2.9

x = H(q)m(q) + n . (2.19)

Vector x has the times series acquired by the SQUIDs and the matrix H can be

divided in several N submatrices

H(q) = [H(q1) H(q2) · · ·H(qN)] , (2.20)

where H is a S × 3N matrix, S is the total number of SQUIDs, and N is the

hypothetical number of dipoles. Every submatrix in H can be used to compute the

specific spatial filter for a hypothetical dipole source. Working with inferred sources

is commonly called in the literature as source domain, while the contrary is called

sensor domain.
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2.4 Sensor domain

When working with MEG signals data can be analysed in the sensor domain or

source domain. Sensor domain means that MEG signals used for analysis come

directly from the SQUIDs. For instance Figure 2.9 shows the sensor acquisition of

a tangential dipole. Recall that data from the SQUIDs are time series, hence the

modelled brain dipoles fluctuate and change their polarity continuously. This is not

fully accurate to real neuronal activity since neurons can not move and change their

polarity. Nevertheless, for the simulations presented in this thesis the brain dipoles

are allowed to change polarity in order to generate time series with zero mean.

Figure 2.9: Magnetic field acquisition given by the MEG SQUIDs. Here the coloured smaller 248
spheres represent the magnitude of the acquired magnetic field using SQUIDs (one sphere per
SQUID). This simulation was done by applying Eq. 2.9 to sense a tangential dipole. Also the
scalp’s potential distribution is shown using the four sphere model for EEG. Both images, left and
right, show different views of the same magnetic field acquisition. The image was programmed and
created using Python-Mayavi2. Colour image can be seen in Figure B.9.

Analysis in the source domain has several applications. As in EEG the brain

rhythms can be read and used to find epileptic waveforms (Preissl , 2005). Evoked

potentials (EP) can also be analysed using MEG in the sensor domain. The only

disadvantage of this approach is that there is needed the average of approximately

100 EP experiments to see the desired response (Preissl , 2005). This is because the

event responses have a very low voltage and they are completely overshadowed by

the background brain activity. Using averaging the background activity will cancel

since it is considered a random process, while the EP amplitude keeps approximately

constant.
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2.5 Source domain

Working in the source domain is the most appealing aim in MEG analysis. Source

inference techniques will aim to find the physiological sources that emitted the ac-

quired electromagnetic fields. This means that the position of the generating sources

can be found either on the brain cortex or even in more internal structures of the

brain, like the hypothalamus or the cingulate cortex.

Source inference in MEG has endless applications in brain studies, but it is not

a straightforward task. The brain field activity might be generated by thousands

of sources while the most modern MEG devices are just above 300 SQUID sensors.

Hence there are more sources than sensors, causing an undetermined problem which

means that there will be more than one solution for the position of the sources

inside the brain. Current source inference techniques in MEG aim to find the best

solution among the universe of them; the source positions within the brain volume

that explain the best the MEG time series in the sensor domain.

2.5.1 Minimum Norm

Minimum norm (Wang et al. , 1993; Hämäläinen and Ilmoniemi , 1994; Wang et al.

, 1992; Jeffs et al. , 1987) is an imaging technique which is based on the solution of

Eq. 2.19. This can be attempted by writing the error function

‖e‖ = ‖H(q)m(q)− x ‖, (2.21)

and finding a vector m that minimizes the error e. Minimization of the previous

equation is equivalent to minimize the squared error eTe which is easier to handle.

Its derivative equated to zero leads to

HTHm = HTx . (2.22)

From which we can solve for m as

m̂ = (HTH)−1HTx, (2.23)

where m̂ stands for an estimated vectorm. Eq. 2.23 is known as the least squares

solution for a vector of dipoles m̂ (Wang , 1993). Nevertheless as it was explained
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previously, in MEG there are many solutions that can explain the current brain

fields. In other words, very often the matrix HTH is nonsingular and its direct

inverse does not exist. However, solution of Eq. 2.23 can be found by computing

the Moore-Penrose inverse, often known as the pseudoinverse.

A simple way to compute the pseudoinverse is by SVD decomposition (Mosher

et al. , 1992). SVD decomposition says that a m× n matrix can be decomposed in

the matrix product

H = UΣVT , (2.24)

where matrices U and V are orthogonal matrices or UUT = UTU = I, Σ is a

diagonal matrix p×p, and p = min{m,n}. Hence, the inverse of H can be computed

as

H† = (UΣVT )−1 = VΣ−1UT , (2.25)

where † stands for pseudoinverse. Because matrix Σ has very low values, which

produces very high values when computing its inverse, the lowest values are normally

zeroed out. This process is commonly called “regularization” and it aims to filter

noise from the equation system at the cost of lowering the spatial resolution for the

estimated source places. Finally, the estimated dipoles can be computed by

m̂ = H†x . (2.26)

Figure 2.10 shows a minimum norm result of a single dipole. The red arrows

represent the area where the dipole is more likely to be. This can be observed from

the SQUIDs coloured values whose minimum and maximum are the sides of the

estimated dipole position. For this example only the 15 highest values of the diagonal

matrix Σ were preserved. The rest were zeroed out. An issue with minimum norm

imaging technique is that it tends to find dipoles on the brain surface, even if the

original source is located in a deeper region. Although there are weighting schemes

to solve this problem, there is a technique that solves this issue in a more direct way

called beamforming which is our next topic.
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Figure 2.10: Minimum norm source estimation. For this simulation the surface of the scalp was
tessellated to create regions of interest. Then, dipoles were estimated using regularised least squares
or minimum norm. The red arrows indicate the most likely place where the dipole might be. This
is the best dipole that explain the brain magnetic field whose magnitude is shown in coloured
spheres. The image was programmed and created using Python-Mayavi2. Colour image can be
seen in Figure B.10.

2.5.2 Beamforming

Beamforming as a brain imaging technique was introduced by Van Veen et al. (1997)

as the linearly constrained minimum variance (LCMV) beamforming. Nevertheless,

beamforming was already a very well known concept in the area of communication

engineering (radars and sonars) (Buckley , 1987; Van Veen and Buckley , 1988). The

aim of any beamforming technique is to find the position of a source of interest using

an antenna array. In the case of radar the applications can be localisation of missile,

airplanes or even people using cell phone communications. In sonar, beamforming

also has plenty of applications such as localisation of submarines, whales, and even

failure detection in car motors.

Brain imaging beamforming was envisioned in Van Veen et al. (1997) by bringing

concepts from communication engineering to the brain imaging field. The concept

is similar as in radar with the difference that the frequencies analysed in MEG are

commonly below 100Hz. At these frequencies the electromagnetic fields can be con-

sidered static or in other words, there are no signal delays that can be sensed by the

MEG SQUIDs. Hence, in MEG beamforming the time and frequency information

can not be used for localisation as it occurs in radar.
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Figure 2.11 shows how MEG beamforming works. Here the array of SQUIDs is

used to create a spatial filter that will suppress sources coming from any region other

than the region of interest. If nothing is transmitted from the region of interest, there

will not be in theory any output from the beamforming filter. But if a real source

is active in the analysed region, the beamforming output will be large. When the

beamformer is oriented to sense only a particular region and ignore sources coming

from other regions, the MEG spatial filter is commonly called a “virtual electrode”,

meaning that the MEG device is sensing virtually (without electrodes) that area.

Figure 2.11: Beamforming creating a virtual electrode. The MEG SQUID array creates a virtual
electrode by weighting the acquired vector using a spatial filter W.

The LCMV beamforming derivation is fully presented in Van Veen et al. (1997).

Here an extended version of their derivation is reproduced. Recall Eq. 2.19 and

notice that it can be rewritten as

x =
N∑
i=1

H(qi)m(qi) + n , (2.27)

where H is defined as in Eq. 2.20. Computing the expected value and covariance

of vector x we obtain that

E{x} =
N∑
i=1

H(qi)E{m(qi)} , (2.28)

and

C(x) = E{[x− E{x}][x− E{x}]}

=
N∑
i=1

H(qi)C(qi)H
T (qi) +D ,

(2.29)
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where D represents the covariance matrix of the noise n and it is supposed to

be a diagonal matrix representing the instrumental noise variance of each SQUID

in its elements. Assuming we have the solution for the system in Eq. 2.27, it can be

written as

y = WT (qo)x , (2.30)

where the solution vector y is the value of the estimated dipole and WT is the

matrix filter. This means that W and H are related by the property

WT (qo)H(q) =


I q = qo

0 q 6= qo

q ∈ Ω

, (2.31)

where Ω is the universe of dipole positions or regions of interest. Eq. 2.31 rep-

resents the spatial filter behaviour of matrix W which allows the acquisition of a

possible source at location qo while suppressing sources at other locations. How-

ever, this behaviour is not possible in real applications and its direct implementation

might lead to solutions with very high source power (variance) at locations which are

not source related. This problem can be solved with the use of Lagrange multipliers,

which aims to keep the filtering property of Eq. 2.31 while minimising the variance

of the estimated source. Hence, the name of minimum variance beamforming. This

is represented with the following set of equations;

WT (qo)H(qo) = I , (2.32)

WT (qo)H(qs) = 0 . (2.33)

where the filter should be constrained to find the solution that gives the minimum

variance of y. This can be represented by

minW tr[C(y)] . (2.34)

where tr stands for the trace of the covariance matrix C(y). Notice that y is

a 3-dimensional vector x, y, z, and its covariance is a 3 × 3 matrix. The previous

equations can also be represented as

minW tr[WT (qo)C(x)W(qo)] (2.35)
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subject to WT (qo)H(qo) = I . (2.36)

Eq. 2.35 and Eq. 2.36 represent the cost function to minimize. In order to

achieve its optimization, Lagrange multipliers are used with the following Lagrangian

definition;

L(W,L) = tr{WTCW + (WTH− I)2L} , (2.37)

where 2L is the matrix of Lagrange multipliers. Expanding the Lagrangian and

recalling that tr{B} = tr{BT} we have that

L(W,L) = tr{WTCW + (WTH− I)L+ LT (HTW − I)} , (2.38)

and completing the squares

L(W,L) =tr{(WT + LTHTC−1)C(W +C−1HL)

− L− LT − LTHTC−1HL}
. (2.39)

It can be noticed that the nonfactorized terms do not depend on W, and in

consequence for W optimization purposes they can be ignored. Hence, in order to

minimize the Lagrangian we have to choose a

W = −C−1HL (2.40)

which zero out the W dependent factors. Replacing W in the constraint rule in

Eq. 2.36 gives

−LTHTC−1H = I . (2.41)

And solving for L give us the Lagrangian matrix

LT = −(HTC−1H)−1. (2.42)

Finally, substituting the previous Lagrangian matrix in Eq. 2.40 gives the spatial

filter solution

W(qo) = [HT (qo)C
−1(x)H(qo)]

−1HT (qo)C
−1(x) (2.43)

The filter W will be able to extract using a virtual electrode the times series of

a source at position qo. The variance of the estimated source can estimated by

v̂ar(qo) = tr{[HT (qo)C
−1(x)H(qo)]

−1} . (2.44)
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This variance represents the power or level of activity of the brain region of

interest. However, notice that the instrumental noise n and its variance D are

always constant while the dipoles’ power decreases in a square fashion due the Biot-

Savart law (see Eq. 2.9). This means that at long distances the noise power will

cover completely any possible source, making them invisible. This problem is solved

by normalizing the dipole variance with the noise power as

v̂arN(qo) =
tr{[HT (qo)C

−1(x)H(qo)]
−1}

tr{[HT (qo)D
−1H(qo)]

−1}
(2.45)

Notice that what Eq. 2.45 does is to take the power of the noise and place it just

in the same position of the estimated dipole. Hence all dipoles will be normalized

with an equivalent noise source. Eq. 2.45 is called in the literature as the neural

activity index or NAI (Van Veen et al. , 1997).

Figure 2.12 shows an example of the LCMV beamforming performance. Here

two dipoles were located in tangential orientation with respect to a spherical surface.

Then a coronal slice within the sphere is defined as the area of analysis and finally

tessellated to create regions of interest. The arrows represent the orientation of the

estimated dipole y at every region and their colour is proportional to the NAI index

value, being red the highest one and blue the lowest.

Figure 2.12: Beamforming simulation, localization of two dipoles. The LCMV beamforming finds
the position of two tangential dipoles. Using a sphere to define the universe of possible places,
a coronal slice was tessellated to define the regions of interest. Then, a dipole was estimated
at each region. These dipoles are represented as coloured arrows being the red ones the best
estimations. Both images, left and right, show the same simulation in different views. The image
was programmed and created using Python-Mayavi2. Colour image can be seen in Figure B.11.

Figure 2.13 shows a heat plot of the same slice shown in Figure 2.12 with NAI
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indices. The real position of the dipoles is exactly at the maximum values shown in

red. For this simulation a signal to noise ratio SNR = 25 was used.

Figure 2.13: Same simulation as in Figure 2.12. Here the NAI index are shown using a heat map
with spline interpolation. Notice that the LCMV beamforming can estimate accurately sources at
deeper regions of the brain. The image was programmed and created using Python-Matplotlib.
Colour image can be seen in Figure B.12.

2.6 LCMV Beamforming variants

LCMV beamforming (Van Veen et al. , 1997) has shown to be a very powerful

technique for MEG studies. Nevertheless as every technique it has some issues that

decrease its performance. For instance it is vulnerable to highly correlated signals

(Vrba , 2002). However, it was previously demonstrated in Van Veen et al. (1997)

that the technique is robust under certain limits of distance and correlation among

the related sources.

For the reason mentioned before, several research groups have worked on im-

provements of the primary LCMV beamforming to tackle the source correlation

issue, which is of paramount importance for brain connectivity analysis using MEG.

Broadly speaking there are four kind of MEG beamfoming variants, catalogued by

Huang et al. (2004) as Type I, II, III and IV.
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2.6.1 Vectorized Type I Beamforming

The Type I beamforming is exactly the same LCMV beamforming whose NAI ex-

pression is rewritten here:

NAI(qo) =
tr{(HT (qo)C

−1H(qo))
−1}

tr{(HT (qo)D−1H(qo))−1}
(2.46)

Huang et al. (2004) have rewritten Eq. 2.46 in a vectorized form as

NAI(qo) =

(hT
x (qo)C

−1hx(qo))
−1 + (hT

y (qo)C
−1hy(qo))

−1 + (hT
z (qo)C

−1hz(qo))
−1

(hT
x (qo)D−1hx(qo))−1 + (hT

y (qo)D−1hy(qo))−1 + (hT
z (qo)D−1hz(qo))−1

(2.47)

where matrix H has been divided in its components; H = [hx hy hz] and

every h is a column vector N × 1. In order to normalize each dipole direction x, y, z

separately with respect to the noise power. The “vectorized” LCMV beamforming

is written then as

NAI(qo) =

(hT
x (qo)C

−1hx(qo))
−1

(hT
x (qo)D−1hx(qo))−1

+
(hT

y (qo)C
−1hy(qo))

−1

(hT
y (qo)D−1hy(qo))−1

+
(hT

z (qo)C
−1hz(qo))

−1

(hT
z (qo)D−1hz(qo))−1

. (2.48)

The purpose for the beamforming vectorization is to avoid shadowing of the lower

dipole components by the strongest one. For instance, in the common spherical head

model the radial dipole does not produce any field outside the head (see Figure 2.5).

Nevertheless, in a realistic head model this radial field component will not be zero

but it will be anyway much weaker than the other components and in consequence its

presence will be hidden by the other two components. Eq. 2.48 solves this shadowing

issue.

2.6.2 Vectorized Type II Beamforming

Sekihara et al. (2001, 2002) published a beamforming based on the work of Bor-

giotti and Kaplan (1979), which has higher spatial resolution than the common
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LCMV beamforming. This beamforming is designed with the following constraints

(Sekihara et al. , 2001),

minwxwxCwx

subject to wT
xwx = 1, wT

xhy = 0, and wT
xhz = 0,

minwywyCwy

subject to wT
y hx = 0, wT

y wy = 1, and wT
y hz = 0,

minwzwzCwz

subject to wT
z hx = 0, wT

z hy = 0, and wT
z wz = 1,

(2.49)

whose minimization procedure derives to the following vectorized beamforming

activity index (Huang et al. , 2004)

NAI(qo) =

hT
x (qo)C

−1hx(qo)

hT
x (qo)C−2hx(qo)

+
hT
y (qo)C

−1hy(qo)

hT
y (qo)C−2hy(qo)

+
hT
z (qo)C

−1hz(qo)

hT
z (qo)C−2hz(qo)

. (2.50)

Sekihara et al. (2001) claimed that this beamforming is more robust than Type

I against coherent sources and also that it has better SNR. Nevertheless, Huang et

al. (2004) showed that it also tends to give false positive dipoles mainly at low

SNR.

2.6.3 Vectorized Type III Beamforming

This beamforming is known as synthetic aperture magnetometry (SAM) (Vrba and

Robinson , 2001; Vrba , 2002). The NAI index for SAM is

NAI(qo) =

wT
x (qo)Cwx(qo)

wT
x (qo)Dwx(qo)

+
wT

y (qo)Cwy(qo)

wT
y (qo)Dwy(qo)

+
wT

z (qo)Cwz(qo)

wT
z (qo)Dwz(qo)

. (2.51)

A more understandable representation is the following;

NAI(qo) =
hT
x (qo)C

−1hx(qo)

hT
x (qo)C−1DC−1hx(qo)

+
hT
y (qo)C

−1hy(qo)

hT
y (qo)C−1DC−1hy(qo)

+
hT
z (qo)C

−1hz(qo)

hT
z (qo)C−1DC−1hz(qo)

.

(2.52)
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From which we can see the similarities to Type II beamforming. If the instru-

mental noise is considered independent univariate Gaussian noise, matrix D = I will

equate both beamforming expressions. For this reason this beamforming also tends

to show false positive dipole estimations (Huang et al. , 2004).

2.6.4 Vectorized Type IV Beamforming

The fourth beamforming type was proposed in Huang et al. (2004). It is basically

the LCMV beamforming but using a higher order covariance matrix. The covariance

order recommended is n = 3.

NAI(qo) =

(hT
x (qo)C

−nhx(qo))
−1

(hT
x (qo)D−nhx(qo))−1

+
(hT

y (qo)C
−nhy(qo))

−1

(hT
y (qo)D−nhy(qo))−1

+
(hT

z (qo)C
−nhz(qo))

−1

(hT
z (qo)D−nhz(qo))−1

. (2.53)

The intention of using a higher order covariance matrix is to increase the SNR

beamforming performance which at the same times makes this technique more robust

against coherent sources when compared with the standard LCMV beamforming.

Huang et al. (2004) reported that this beamformer lacks of the false positive issues

presented in Type II and III. In this matter it behaves similar to Type I LCMV.

However, its advantage relies on its higher resolution when dealing with coherent

sources.

2.7 MEG for brain connectivity

The power of MEG and beamforming for finding the generating brain sources, makes

them a very attractive technology for brain connectivity research. At the time of

writing this thesis, the amount of publications related to MEG and connectivity

is not vast. This area is mainly dominated by studies that use fMRI as primary

research tool. Nevertheless, the designing of newer beamforming algorithms added

to the high time resolution of the MEG device (much higher compared with fMRI),

increase the interest of the research community to work with MEG for brain connec-

tivity studies. For instance Fuchs (2007) presented a review about the four beam-

forming types and their applications to connectivity analysis. In the same manner,
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2.7 MEG for brain connectivity

Schoffelen and Gross (2009) tested beamforming for functional connectivity and its

performance when dealing with volume conduction in MEG.

Interesting work in MEG for brain connectivity was published by Stam et al.

(2009); Stam (2010) in a study on brain networks in Alzheimer patients. Although

Stam et al. (2009) worked in the sensor domain, this work shows the potential of

MEG for these kind of studies. Brookes et al. (2004) published a MEG version

of the general linear model (GLM), which is a common connectivity technique for

fMRI. MEG has been also used to analyse networks when performing memory tasks

as published by Brookes et al. (2011a) and also for Parkinsonian resting tremor

networks (Timmermann et al. , 2003). These previous studies show the potential of

MEG for brain connectivity.

There are also open source softwares dedicated to MEG analysis and beamform-

ing like Fieldtrip (Oostenveld et al. , 2011), Nutmeg (Dalal , 2004), and statistical

parametric mapping (SPM) (Penny et al. , 2007) which allow the research commu-

nity the sharing and testing of techniques, accelerating research and advancements

in MEG. A similar process was achieved by the fMRI community, where the sharing

of open source software made fMRI the most successful tool for brain studies.

The methodology followed in this thesis for brain connectivity is explained in

Chapter 7 where the real MEG data sets are analysed.

Chapter summary

In this chapter an introduction to MEG and beamforming were given. MEG is a

reliable technique for brain studies. Its time resolution is higher than other imaging

techniques like fMRI, although MEG offers lower spatial resolution. Beamforming

techniques allow to estimate the generating magnetic sources in the brain, not only

sources in the cortex but also in deeper regions.

More research is needed to improve MEG beamforming and different research

groups continue working on this task. In this thesis, the Type I beamforming is used

for all simulations and for the clinical datasets the YNiC’s beamforming software

which is also Type I is used, with the advantage that it offers MRI coregistration.
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The next chapter offers an introduction to networks and network analysis, which

will be necessary to understand further chapters.
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Chapter 3

Introduction to network analysis

In Section 1.5 an introduction to brain networks was given. We talked about

the small-world topology and also some of the current published work in the field

(Achard and Bullmore , 2007; Basset and Bullmore , 2006; Brookes et al. , 2011a;

Bullmore and Sporns , 2009). This chapter covers networks; their analysis, metrics,

and their importance in brain research. The concept of causality is presented here,

which is important to analyse directed networks.

3.1 An introduction to networks

The theory of networks has found applications in almost every field in science. In

the literature we can find applications in urbanism, designing of subways and bus

routes for big cities. In social networks, the main interest relies on finding the

interactions among individuals. From this network we can study the interests of

each subgroup (subnetwork) and see if they are connected by friendship, family, or

a simple hobby. In Biology, the most famous networks are the protein networks,

where the correlation of protein translation in the cell is studied. The favourite cells

for these kind of studies are yeast and E. Coli.

Other examples are the Internet, which forms a network of computers, also tele-

phone networks, electricity distribution grids, oil pipe networks, and airline route

networks. In our daily life we can find networks everywhere and we can use network

theory to study these systems, and infer properties from them. The obvious interest
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in this thesis is the nervous system, in particular the brain and its cortex.

The neural network can also be studied using network theory. From the mi-

croscale level for neuron to neuron interactions to macroscale for region to region

interaction. The former one requires invasive techniques such as micro electrode

arrays, where tiny needle electrodes pierce the neural tissue and are able to acquire

individual neuron firing. This procedure normally destroys the brain tissue and for

this reason has limited applications in humans. However, macroscale level studies

can be done using noninvasive techniques. As we saw in Section 1.6, EEG, MEG,

and fMRI can sense functional brain activity coming from either the brain cortex or

deeper regions, being this latter the case of fMRI and MEG.

When working with brain networks from MEG signals, there are two options:

sensor domain and source domain (see Section 2.4 and 2.5). In sensor domain, time

series are analysed practically raw from the MEG device and in the source domain

a source localization technique must be applied in order to estimate the source’s

position and record its activity using a virtual electrode. In both cases, the result

is a database of time series from which inference about their relations is performed

to build networks and study their properties.

A network is composed of nodes which represent the sources and edges which are

lines representing the relation between two sources. The edges can be undirected

(a line) or directed (an arrow). When a network is composed of directed edges it is

commonly called directed network or causal network, and in the brain imaging field

it is also called effective network. Figure 3.1-right shows two networks of similar

structure, the network at the left is an undirected network and the one at the right

a directed network. In general, arrows in a directed network highlight causality,

meaning that a node’s behaviour is a consequence of another node, or in other

words “a cause points to an effect or result”. For example, in Figure 3.1 we can see

that node 1 causes node 2, or another way to say this is that node 1 is a parent of

child node 2. The description of network motifs using parents, children, and other

family terms is common in network theory.

The most practical way to represent mathematically a network is using a con-

nectivity matrix C. where the column and row indices represent the nodes and the
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Figure 3.1: Undirected (left) and directed (right) network examples. Networks can be undirected
or directed. In the undirected case the relation among two nodes is indicated by a simple line,
nevertheless with this representation the flow of information is not indicated. If the cause and the
effect is known within the network, causality can be represented by arrows, where the direction of
the arrows indicates information flow.

matrix elements the connectivity structure among them. 1 stands for an edge and

0 no edge. This can be seen in Eq. 3.1 for the undirected matrix. Here Cu explains

mathematically the connectivity among the five nodes of the undirected network in

Figure 3.1,

Cu =



0 1 1 1 0

1 0 1 0 1

1 1 0 0 0

1 0 0 0 1

0 1 0 1 0


. (3.1)

Notice that for the undirected case the connectivity matrix is symmetric. For

the case of the directed network in Figure 3.1-right, Cd in Eq. 3.2 describes its

directed connectivity. Here 1 not only represents the edge but also its direction.

For example in the first row which represents node one, we can see that there are

1s at column 2, 3, and 4, indicating that node 1 is parent of nodes 2, 3 and 4,

which are called children nodes. Also notice that following the parent-child logic,

node 2 is also parent of node 5, and that 5 is the only node with no children or

descendants. Hence, in this case the rows of the matrix represents parents and the

columns children (although this convention can be changed) and the matrix C is
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asymmetric. For the example in Figure 3.1-right the directed matrix is defined as

Cd =



0 1 1 1 0

0 0 1 0 1

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0


. (3.2)

3.1.1 Network metrics

The network connectivity matrix C allows to study the network from a mathemati-

cal perspective. The matrices we saw in the previous section are called directed and

undirected matrices. However, they can also be called binary directed and undi-

rected matrices to emphasize that these matrices have only two values, 1s and 0s to

define edge and no-edge. There are other kind of matrices called weighted matrices,

which are the result of estimating the relation among the sources at hand.

Figure 3.2: Directed and undirected weighted networks. Here we present the standard steps in
network structure inference. a) First all edges are estimated creating a full connected network. The
width of the edges are proportional to the strength of the relation between two sources. b) Then the
edges are thresholded in order to keep the most important connections in the matrix/network. c)
and d) From the thresholded network we can infer causality (d) or just connectivity by defining the
undirected binary matrix (c). e) Finally, using the estimated causality we can define the network’s
directed binary matrix.

When edge estimation techniques are used, these commonly offer bounded scalar
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values that define the edge strength, see Figure 3.2a. These values are normally

called network weights. Weighted connectivity matrices can be used to describe a

weighted network which is fully connected even though the strength of its connec-

tions is not equal. In order to keep the strongest or statistically significant edges

only, a threshold is applied. The edges above the threshold will be set to 1 and

below to it will be zeroed out. After the thresholding procedure what remains most

of the time is a scatter network whose connectivity matrix has fewer 1s than 0s, and

makes the network analysis more tractable. Furthermore, using causality estimation

the edge direction can be defined. The network estimation and thresholding steps

are depicted in Figure 3.2.

Directed or undirected, the maximum number of edges a matrix can have is

max edges in a network =
N(N − 1)

2
. (3.3)

Eq. 3.3 defines the full connectivity bound for a network. For instance a 5-node

network can have a maximum of 5∗4/2 = 10 edges. Reachability is another concept

that tells if all network nodes are connected, meaning that a node can be reached by

any other node in the network. Reachability can be found by computing the power

of the connectivity matrix.

N−1∑
n=1

Cn
ab = 0 Disconneted nodes (3.4)

6= 0 Connected otherwise (3.5)

where the a and b indices indicate the row and column matrix elements respec-

tively. If the sum of the elements (a, b) equals zero, it indicates that the node a can

not be reached by node b. Hence the column and the row of the disconnected node

will be full of zeros. Let’s see this in the following example:

The connectivity matrices at Eq. 3.6 and 3.7 describe the network in Figure 3.3a

and 3.3b respectively. Notice that in network a, node 5 is disconnected from the

network, and that in network b there are two subnetworks where nodes 4 and 5

create one.
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C1 =



0 1 1 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0


(3.6)

C2 =



0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 0 1

0 0 0 1 0


(3.7)

Figure 3.3: Connectivity matrix examples. a) This network has one disconnected node, whose row
and column appear as zeros in the powered connectivity matrix, see Eq. 3.8. b) This network is
composed of two disconnected networks, this will cause that the powered connectivity matrix be
composed of the two independent submatrices one for each subnetwork, see Eq. 3.9

.

Computing the sum of the powered matrices we get the following results

N−1∑
n=1

Cn
1 =



16 12 12 6 0

12 11 11 6 0

12 11 11 6 0

6 6 6 4 0

0 0 0 0 0


(3.8)
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N−1∑
n=1

Cn
2 =



10 10 10 0 0

10 10 10 0 0

10 10 10 0 0

0 0 0 2 2

0 0 0 2 2


(3.9)

The zero elements in the previous matrices represent unconnected nodes, indi-

cating that those nodes can not be reached. Notice that the network in Figure 3.3-b,

the powered matrix is formed by two submatrices, indicating the number of uncon-

nected subnetworks present in the system.

Another important measure in network analysis is node degree. Node degree

measures how important is a node in the network indicating the number of edges

that connect to it. The node degree is defined by

ki =
∑
j∈N

aij , (3.10)

where aij represents an edge between the current node i and all its j neighbours

and aij = 1 if there is an edge and aij = 0 otherwise. For directed networks, it

is needed to define the out degree and the in degree to divide the edges that point

outwards and inwards the node respectively. In degree and out degree are defined

by

kout
i =

∑
j∈N

aij , (3.11)

kin
i =

∑
j∈N

aji . (3.12)

And for weighted networks the node degree is

kwi =
∑
j∈N

wij (3.13)

where wij is the edge weight.

In network theory it is also interesting to know how distant is one node from

another by counting the number of edges that separate them. A metric that account

for this is the shortest path distance which is defined between two nodes i and j by

dij =
∑

auv∈i↔j

auv (3.14)
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where i↔ j stands for shortest path between node i and j. Hence dij describes the

number of steps (edges) between two nodes.

Furthermore it is possible to integrate the path distances in a network by com-

puting the average network path length which gives us an indicator of how far in

average the nodes are from each other. This measure is defined by

L =
1

n

∑
j∈N

Lj =
1

n

∑
j∈N

∑
k∈N,k 6=j djk

n− 1
, (3.15)

Notice that Lj is the average distance between the node j and the rest of the

network nodes. A problem in the path length measure L is that when one node is

completely disconnected from the network, djk becomes undetermined (some litera-

ture might also say infinite) and Eq. 3.15 is not valid in these cases. For disconnected

networks there is another path length estimator called harmonic mean distance

L′ =

(
1

n

∑
j∈N

∑
k( 6=j)

1
djk

n− 1

)−1
. (3.16)

Harmonic distance is designed to deal with the undetermined/disconnected paths

by assuming these paths as infinitely long and their inverse equal to zero.

Another important measure is clustering, which measure the level of segregation

or grouping in a network. The clustering coefficient C is defined as

C =
1

n

∑
j∈N

Cj =
1

n

∑
j∈N

2tj
dj(dj − 1)

(3.17)

where Cj = 0 for dj < 2, and

tj =
1

2

∑
k,h∈N

ajkajhakh (3.18)

is the number of triangles around the node j. There are in the literature more

network metrics which highlight other network characteristics that will not be men-

tioned in this thesis. For a deeper reading on this area Newman (2010) is recom-

mended.

3.1.2 Small-world and scale-free networks

Among the multiple characteristics that can be measured from network systems,

their structure results to be possibly the most important one. The network struc-
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ture or pattern defines the behaviour of the system that creates the network. Sec-

tion 1.5.1 gave an introduction to small-world networks which are characterized by

high clustering and low short path length. It is possible to concentrate these two

measures in just one called small-worldness S, defined by

S =
C/Crand

L/Lrand

, (3.19)

where Crand and Lrand are the clustering coefficients and the average distance

path respectively of a random network with the same number of nodes. If S � 1 the

network is considered a small-world network. Small-world networks can be found

almost everywhere, and very frequently in nature. It has been pointed out that

small-world networks offer the optimal trade off between connectivity and wiring

cost. Wiring cost is an important measure in nature because for biological systems

to maintain and nurture several connections is very expensive, so it is very likely

that a biological system such as the brain tries to optimize connectivity and save

resources when possible. Some literature suggest this logic is followed by neurons

to create their networks. See for instance Achard and Bullmore (2007), and Kaiser

and Hilgetag (2006).

Another famous network structure for biological interest is the scale-free net-

work. For instance, it has been shown that protein networks in the cell show a

scale-free architecture and in other fields, the internet and the world-wide-web also

show a scale-free pattern. Scale-free networks are networks where the node degree

distribution is a power law. This means that the node degree distribution decays

exponentially. In other words, scale-free networks are composed of few very high

clustered nodes while the rest of the nodes are not.

The most common explanation for the scale-free generation in networks is pref-

erential attachment, also known as “the rich get richer”. This implies that new

nodes in the network are more likely to generate connections to current older and

highly connected nodes. In the world-wide-web this phenomenon is very common.

New webpages tend to create a link to older well known webpages creating in this

way the scale-free architecture. In protein networks, the architecture has an evolu-

tionary explanation. As the cellular organisms evolved from simple forms with few
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chemical processes to more complex forms with more chemical processes, when a

new process was created it tended to reuse the current proteins generated in the cell

in combination with new proteins generated by mutation of DNA. This caused that

some proteins are practically always needed for most of the chemical processes in

the cell.

Figure 3.4 shows examples for scale-free (left) and small-world (right) networks.

Notice that the scale-free network is composed of one very high connected node and

several other nodes presenting less number of edges. On the other hand the small-

world network has a structure more similar to a mesh, which is commonly called a

more “democratic” system when compared with scale-free networks where the “rich

get richer”. Figure 3.4-bottom also shows the same networks in a circular layout.

Figure 3.5 shows the node degree histograms of the networks shown in Figure 3.4.

Notice the exponential fall of the scale-free network.

For the case of the brain and brain networks, some literature suggests that the

brain is small-world and other authors scale-free. Both opinions might be correct

for two reasons; first it has been demonstrated that scale-free networks are also

small-world network, called super small-world networks, and the second reason is

because from a functional and connectivity perspective the brain evolved to optimize

connectivity while reducing the wiring cost, hence functional brain networks present

a small-world architecture. However, recall that just as the proteins in the cell, the

mammal nervous systems evolved in different stages. Our nervous system has neural

structures that appeared above older ones according to our evolution. Hence newer

neuronal tissue tended to create connections with older structures, creating a scale-

free architecture from the nervous system perspective. Nevertheless, these topics

are currently debated by the Neuroscience community, see for instance Biswal et al.

(2010); Sporns et al. (2004); Bullmore and Sporns (2009); Kaiser and Hilgetag

(2006); Sporns and Honey (2006).

3.1.3 Network comparisons

Besides having common network metrics it is important to know how to use them

to make network comparisons. It is common in network inference research to com-
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Scale-free network Small-world network

Figure 3.4: Scale-free and small-world network examples. The network at the left is a scale-free
network presented in two different layouts. The layout at the top shows the clustering property of
scale-free networks where few nodes are highly connected. This kind of construction is thought to
occur because new nodes in the network tend to create connections to older and highly connected
nodes, a generation process called “the rich get richer”. On the other hand, small-world network
shows a more democratic structure pattern. Both networks are composed of 30 nodes. Image
programmed and created using Python module: networkx.

Figure 3.5: Node degree plots of the networks shown in Figure 3.4. Notice the exponential decay
of the scale-free network. In the small-world network an important number of nodes have degree
of 6 and difference between the highest degree and the lowest is not large, showing the democratic
behaviour of this kind of network structure.
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pare the inferred network using one or many techniques. Every network measure

highlights different characteristic of the network depending on the model used. For

this reason it is important to have a standard on network comparison in order to

measure the performance of different network inference methods.

The most applied method of comparison is average degree. If two networks were

inferred from the same system using two different methods, the average degree of

both should be the same if structure comparison wants to be made. Another similar

approach is to take the P edges with the highest weight. Notice that the small-world

measure in Eq. 3.19 uses this when normalizing the clustering and the network path

length with the ones of a random network which has same number of edges. In

this thesis the P higher network weights are taken for comparisons among network

inference techniques.

Chapter summary

This chapter gave a brief review of brain theory and network metrics highly impor-

tant for brain network analysis. Since the neuronal tissue in the brain cortex and

in general all the nervous system produces a massive connected network, it is im-

portant to use network theory tools to study the brain network architecture. Some

network metrics are clustering which measures how well connected a node is with

its neighbours, network path length which measures how far a node is from another,

and also small-worldness which is a measure that highlights if the system of interest

presents a small-world architecture which is a very common pattern in nature.

Small-world networks are considered the optimum tradeoff between high connec-

tivity and wiring cost, being this the more plausible cause of why many biological

systems follow this pattern including the brain. In the next two chapters connectiv-

ity inference tools will be covered, including the thesis proposal: Fourier Bayesian

networks explained in Chapter 5.
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Chapter 4

Standard connectivity measures

In this chapter we review measures for network edge inference widely used in the

research literature. The simplest and more common of them is by far Pearson’s

correlation, which is still commonly used in fMRI connectivity studies. Although

there are currently more sophisticated techniques, Pearson’s correlation is still the

best option to test as starting point.

4.1 Correlation and partial correlation

Correlation is defined as the normalized cross-covariance between two processes x

and y. This relation is expressed as

ρxy =
cov(x, y)

σxσy

=
E[(x− µx)(y − µy)]

σxσy

, (4.1)

where E is the expected value, and σx, σy are the standard deviations of x and

y respectively. In practice since the time series x and y are finite, correlation is

estimated using the sampled correlation (Stuart and Ord , 1994) defined by

ρ̂xy =

∑M
i=1(x(i)− µ̂x)(y(i)− µ̂y)

(n− 1)σ̂xσ̂y

=

∑M
i=1(x(i)− µ̂x)(y(i)− µ̂y)∑M

i=1(x(i)− µ̂x)2
∑M

j=1(y(j)− µ̂y)2
,

(4.2)

where M is the length of the time series x and y. Furthermore, it is possible

to compute partial correlation. This measure estimates the correlation between two
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sources x and y after removing the influence of a third one z. Partial correlation

(Whittaker , 1990) is computed by

ρxy·z =
ρxy − ρxzρyz√
1− ρ2xz

√
1− ρ2yz

, (4.3)

where ρxy is estimated using Eq. 4.2 and the notation xy · z has similar meaning

to conditional probability and can be read as “correlation between x and y given

z”.

Figure 4.1: Three-node network structures. If the relation among nodes is measured using standard
correlation, the real structure of the networks shown can not be inferred. However, if partial
coherence is applied, it is possible to find the relation between two sources after removing the
influence of a third one. This allows the inference of network structures as the ones shown in a),
b) or c).

Partial correlation is very useful to estimate spurious connections. This is shown

in Figure 4.1, where Figure 4.1a shows the probable connectivity found between three

correlated nodes x1, x2 and x3. Nevertheless this structure can also be explained

by Figure 4.1b and c. Partial correlation is able to infer which of them is true. For

instance, if ρ12·3 = 0 this means that structure a) is true, or if ρ23·1 = 0, then option

c) will be the true structure.

If we have a vector of times series x = [x0 x1 . . . xN ] we can define the correlation

matrix Corr as

Corr =


ρ11 · · · ρ1N
...

. . .
...

ρN1 · · · ρNN

 (4.4)

where ρii = 1 for i = 1, . . . , N . Using the correlation matrix Corr it is also

possible to compute partial correlation between two sources x and y after removing

the influences of all the rest of sources in the matrix. This is commonly written
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4.1 Correlation and partial correlation

as ρxy·N/xy, where N/xy means “all N sources but not counting x and y”. We can

verify this with a simple 3× 3 correlation matrix example.

Suppose we have the following correlation matrix

Corr =


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ21 ρ32 ρ33

 , (4.5)

and we compute its inverse which is

Corr−1 =
1

detCorr


1− ρ23ρ32 ρ13ρ32 − ρ12 ρ12ρ23 − ρ13

ρ31ρ23 − ρ21 1− ρ31ρ13 ρ21ρ13 − ρ23

ρ21ρ32 − ρ31 ρ12ρ31 − ρ32 1− ρ12ρ21

 , (4.6)

Normalizing the diagonal of the previous matrix to 1, gives the following expres-

sion

Corrxy·N/xy =


1 − ρ12−ρ13ρ32√

1−ρ223
√

1−ρ231
− ρ13−ρ12ρ23√

1−ρ231
√

1−ρ221

− ρ12−ρ31ρ23√
1−ρ223
√

1−ρ231
1 − ρ23−ρ21ρ13√

1−ρ212
√

1−ρ231

− ρ31−ρ21ρ32√
1−ρ223
√

1−ρ212
− ρ32−ρ12ρ31√

1−ρ213
√

1−ρ212
1

 , (4.7)

Notice that the partial correlation notation xy · N/xy is used instead of the

matrix inverse. Comparing the elements of the partial correlation matrix in Eq. 4.7

with Eq. 4.3 we see that these expressions coincide but with negative values, from

which their modulus can be computed to obtain the absolute values.

Once the partial correlation matrix has been estimated, it is possible to build a

connectivity matrix C using only the matrix values that are statistically significant.

This can be achieved by applying Fisher’s transformation for partial correlation,

zρ =
1

2
ln

(
1 + ρxy·z
1− ρxy·z

)
, (4.8)

where ρxy·z represents the estimated partial correlation between nodes x and

y after removing the influence of the nodes in vector z and zρ is the transformed

partial correlation coefficient. Then, we can reject the null hypothesis (independent

sources) with a significance level α if

√
M − size(z)− 3× zρ > Φ−1(1− α/2) (4.9)
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where size(z) represents the number of elements in vector z, M is the length of

the time series and Φ−1 is the Gaussian cumulative distribution function (cdf).

4.1.1 Time lagged partial correlation matrix

A method to infer causality using the partial correlation matrix concept is using

a time lagged version of it, the time-lagged partial correlation matrix (Peraza and

Halliday , 2010a) . This matrix is computed by concatenating the time series vector

x with a delayed version of itself. This is written as

xc = [x1(t) x2(t) . . . xN(t) x1(t− 1) x2(t− 1) . . . xN(t− 1)] . (4.10)

This step is similar to network unfolding in Bayesian networks, see Section 5.3.

Using the concatenated version of the data vector we compute the partial correlation

matrix

Corrxy·N/xy =

 At,t Bt,t−1

Bt−1,t At−1,t−1

 . (4.11)

Notice that the resultant matrix can be divided in four submatrices. Matrix At,t

represents the partial correlation between the first vector x at time t, At−1,t−1 has

the partial correlations between the nodes of the delayed x at time t− 1, and Bt−1,t

has the partial correlations between both vectors x(t) and x(t− 1), this means that

the elements in Bt−1,t are estimates of the edges that cross between the time gap,

from t− 1 to t showing causality. We can visualize this with the example shown in

Figure 4.2.

Figure 4.2 shows a network composed of 11 nodes which was defined as a mul-

tivariate autoregressive process of order 1 (MVAR(1)). Figure 4.3 shows the same

network in an extended version which shows the delay in the defined MVAR system.

Using matrix Bt−1,t it is possible to infer the inter-slice edges taking the most statis-

tically significant elements in Bt−1,t, as explained in the previous section. Causality

is then defined by the construction of vector xc from t− 1 to t.

Notice also that matrix Bt,t−1 has no physical meaning and can be ignored. For

an application of the time-lagged partial correlation matrix in network structure

inference see Peraza and Halliday (2010a).
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4.1 Correlation and partial correlation

Figure 4.2: Multivariate autoregressive network system as originally published in Peraza and Hal-
liday (2010a). This system is used as example test for the time-lagged partial correlation matrix.

Figure 4.3: Same network system shown in 4.2 but here the network has been unfolded one time
delay. Also, the inter-slice edges between both network, the original and delayed version, are
shown.
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4.1.2 Correlation function

The correlation function defines how related two time series are through time. This

is commonly defined as ρxy(τ), where τ is the delay index between time series x and

y. In different words it is the correlation between x(t) and y(t−τ). If the maximum

of ρxy(τ) is not at τ = 0, there is causal relation between x and y.

The correlation function ρxy(l, k) is defined by

ρxy(l, k) = E[x(l)y(k)] =

∫ ∞
−∞

∫ ∞
−∞

xyplk(x, y)dxdy , (4.12)

where plk(x, y) represents the second order probability density function or pdf

(León-Garcia , 1994), and l, k are time indices. Because the processes x and y are

assumed as stationary, l and k can be substituted by τ = l − k which defines the

delay index, leading to

ρxy(τ) = E[x(k + τ)y(k)] . (4.13)

Thus, ρxy(τ) is a function of the time delay τ . The autocorrelation, ρxx(τ) is

defined in the same manner as Eq. 4.12, but here it is wanted to know how correlated

a signal x is with itself. Autocorrelation is expressed by

ρxx(τ) = E[x(k + τ)x(k)] = E[x(k)x(k + τ)] = ρxx(−τ) . (4.14)

Notice that autocorrelation in Eq. 4.14 is always an even function (León-Garcia

, 1994) and its maximum is always at τ = 0.

Because in real applications it is not possible to have infinite data segments, in

order to estimate ρxy(τ) an unbiased estimator of the correlation function (Haykin

, 2001) is used, which is

ρ̂xy(τ) =


1

M−|τ |
∑M−τ−1

k=0 x(k + τ)y(k) τ > 0 ,

ρ̂xy(−τ) τ < 0 ,

(4.15)

where M defines the length of the time series at hand.

4.2 Spectral synchronicity measures

Besides correlation which searches for synchronization in the time domain, it is

possible to estimate a similar measure in the spectral domain and even to infer at
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which frequency the relation between two sources is stronger.

The first of these techniques reviewed in this section is called coherence. Coher-

ence is commonly seen as the spectral version of correlation and just as correlation,

coherence is also a bounded measure between 0 and 1, where 1 indicates maximum

synchronization or complete linear dependence. All the techniques reviewed in this

section have their roots in coherence. Hence these synchronization techniques are

also able to give synchronization information at specific points in the spectrum and

are also bounded between 0 and 1.

4.2.1 Coherence

There is a direct relation between the autocorrelation function ρxx(τ) and the spec-

trum of x, fxx, given by the Fourier transform of the autocorrelation function. This

relation is

fxx(λ) =

∫ ∞
−∞

ρxx(τ)e
−j2πλτdτ . (4.16)

Eq. 4.16 is known as the Wiener-Khinchin theorem and it is a common tool for

computing spectral densities using parametric methods (Kay , 1988). In this case the

parameters are elements of the autocorrelation function ρxx. Coherency is similar

in its construction to the correlation coefficient ρ as shown in Eq. 4.1 (Brillinger ,

1981). This measure is defined as

Rxy(λ) =
fxy(λ)

[fxx(λ)fyy(λ)]1/2
, (4.17)

where fxy(λ) is the cross-spectrum and λ is the frequency index. Coherency

Rxy(λ) provides a strength measure of the relation between times series x and y in

the spectral domain. Also notice that Rxy(λ) is a complex function which carries

in its phase information about the delay between both signals. Its modulus square

|Rxy(λ)|2 is called coherence,

|R̂xy(λ)|2 =
|f̂xy(λ)|2

f̂xx(λ)f̂yy(λ)
, (4.18)

where estimations of f̂xy, f̂xx, and f̂yy can be computed using the fast Fourier

transform (FFT) algorithm. Furthermore, spectral estimation techniques for spec-
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tral smoothing such as Welch’s periodogram may be applied to obtain smoother

coherence and coherency estimates (Kay , 1988).

Correlation and coherency explain causality between two sources x and y by

means of the phase delay between both signals. Phase delay is a common assumption

in brain source causality because axonal communication among neurons does not

occur at the velocity of light. For instance, the axon of a motor neuron has a

conduction velocity of approximately 100 m/s (Abeles , 1991). Sometimes it is

possible that two sources x and y are highly correlated with almost no phase delay

between them. There are two possibilities for this scenario, one might be that x and

y are really mutually connected, this means that both sources have a bidirectional

communication between them, and the second scenario is that it might be a third

hidden source z influencing x and y, as shown in Figure 4.4. A measure to deal with

this scenario is partial coherence which is similar to partial correlation.

Figure 4.4: Network with hidden node. Node z is a hidden node which controls processes x and y.

4.2.2 Partial coherence

Partial coherency finds the relation in the frequency domain between two sources y

and x after removing the linear influence of a third one z (Brillinger , 1981; Halliday

et al. , 1995; Rosemberg et al. , 1989). Partial coherency is defined by

Rxy·z(λ) =
fxy·z(λ)

[fxx·z(λ)fyy·z(λ)]1/2
, (4.19)

where

fxy·z(λ) = fxy(λ)−
fxz(λ)fzy(λ)

fzz(λ)
. (4.20)

Just as normal coherency in the previous section, partial coherency also carries

information about the causality between x and y in its phase. And in the same way,
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its modulus square |Rxy·z(λ)|2 is called partial coherence.

Because we are assuming linearity in our system, it is possible to do multiple

linear regressions as the one performed in Eq. 4.20 for multiple signals, and obtain

partial coherence between x and y after removing the influence of two or more

sources. For instance in Rosemberg et al. (1998) it is given the formula

|Rxy·wz(λ)|2 =
|fxy·wz(λ)|2

fxx·wz(λ)fyy·wz(λ)
, (4.21)

where

fxy·wz(λ) = fxy(λ)−
[
fxw(λ) fxz(λ)

]
×

 fzz(λ) fzw(λ)

fwz(λ) fww(λ)

−1  fwy(λ)

fzy(λ)

 ,
(4.22)

for a network as the one shown in Figure 4.5. Here, it is desired to know the

relation between the sources x and y after removing the influence of sources z and

w.

Figure 4.5: This diagram shows the relation among two input sources w and z, and two output
sources x and y. Partial correlation can be applied in this case to find if x and y are correlated
due to the influence of w and z or not.

In the case that w and z are independent as shown in Figure 4.5, the partial

cross-spectrum in Eq. 4.22 can be simplified (Rosemberg et al. , 1998) to

fxy·wz(λ) = fxy(λ)−
fxz(λ)fzy(λ)

fzz(λ)
− fxw(λ)fwy(λ)

fww(λ)
. (4.23)

It is also possible to compute partial coherence in the same manner as in Eq. 4.21

for N number of sources. Partial coherency (Brillinger , 1981) is defined for the

general case as

R12·3,...,N(λ) =
f12·3,...,N(λ)

[f11·3,...,N(λ)f22·3,...,N(λ)]1/2
, (4.24)
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where

f12·3,...,N(λ) = f12(λ)− [f13(λ) · · · f1N(λ)]

×


f33(λ) · · · f3N(λ)

...
. . .

...

fN3(λ) · · · fNN(λ)


−1 

f32(λ)
...

fN2(λ)

 ,
(4.25)

and the source indices x, y were replaced by indices from 1 to N . Hence, Eq. 4.24

computes partial coherence between sources 1 and 2 after removing the linear influ-

ences from the rest of the available sources, 3, ..., N , and the same can be defined

for any other pair of sources in N . Notice that Eq. 4.25 is in the frequency domain,

therefore a matrix inversion is required at every frequency component λ.

4.2.3 Imaginary coherence

Imaginary coherence was proposed in Nolte et al. (2004) as an option to avoid vol-

ume conduction in EEG and MEG recordings. What it does is to take the imaginary

part of coherency, R12(λ). The quasi-static approximation of the Maxwell’s equa-

tions proposes that there is no time delay in the currents transmitted by the scalp,

recall Eq. 2.1. As a consequence of this, if two signals have instant synchronicity,

coherency will not show any imaginary part. Therefore, it is assumed that volume

conduction does not cause time delay and it will not be reflected on the imaginary

part of coherency.

Having two time series x and y, it is possible to represent their Fourier transform

as

fx = axe
(−j2πλτx)

fy = bye
(−j2πλτy) .

(4.26)

Hence, the cross spectrum is defined by

fxy = axbye
(−j2πλ∆τ ) , (4.27)

where ∆τ = τx − τy is the phase difference between both signals x and y. As

shown in Nolte et al. (2004), coherency can be expressed as

Rxy(λ) =
|fxy(λ)|

[fxx(λ)fyy(λ)]1/2
e(−j2πλ∆τ ) . (4.28)

94



4.2 Spectral synchronicity measures

Here, the statistic Phxy = e−j2πλ∆τ defines synchronicity between x and y. Also

if x and y are independent, Phxy will be a uniform random measure whose mean

value will be zero and imaginary coherency will also be zero.

In two subsequent papers, Nolte and colleagues published that imaginary part of

coherence can not solve the volume conduction problem, since as normal coherence

this measure is also affected by the amplitudes of the analysed sources and in some

cases it provides much worst results than standard coherence (Wheaton et al. ,

2005; Stam et al. , 2007).

Coherence, coherency and its imaginary part, imaginary coherence are non-

parametric techniques because the only assumption that is taken is stationarity

of the process, at least in the wide sense (mean and variance are constant). Another

technique that infers relations among signals is partial directed coherence (PDC)

and this is a parametric technique based on the multivariate autoregressive model

(MVAR).

4.2.4 Partial directed coherence

Granger’s causality (Granger , 1969) is based on the autoregressive (AR) model for

stationary random signals. The AR model is defined as a FIR filter whose weights

are the AR coefficients with unit variance Gaussian noise η as the filter’s input. The

order of the model p is defined by the number of AR coefficients. Suppose that the

discrete signals x1 and x2 are defined by the following equations

x1(n) =

p∑
k=1

a11(k)x1(n− k) +

p∑
k=1

a12(k)x2(n− k) + η1(n) ,

x2(n) =

p∑
k=1

a21(k)x1(n− k) +

p∑
k=1

a22(k)x2(n− k) + η2(n) ,

(4.29)

where a11, a12, ..., a22 are the AR coefficients and n is the discrete time index.

Eq. 4.29 describes a multivariate AR (MVAR) process and it is important to notice

that the MVAR model can also model bidirectional causality thanks to the AR

coefficients a21 and a12. These coefficients regulate the causal relation between both

AR processes.
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Expanding the MVAR model to N number of processes we have that
x1(n)

...

xN(n)

 =

p∑
k=1

Ak


x1(n− k)

...

xN(n− k)

+


η1(n)
...

ηN(n)

 . (4.30)

Notice that Ak is a N×N matrix and A is a three-dimensional matrix N×N×p

where the dimensional index of p is controlled by k. The joint spectral density is

defined by

Axy(λ) =


1−

∑p
k=1 axy(k)e

−i2πλk if x = y

−
∑p

k=1 axy(k)e
−i2πλk otherwise

(4.31)

In this case we have used x and y as indices to denote the rows and columns of

matrix A, thus x = 1, .., N and y = 1, ..., N . With the definition of Eq. 4.31, partial

directed coherence (PDC) (Baccala , 2001; Schelter , 2005; Kaminski et al. , 2001)

is defined by

PDCx←y(λ) =
|Axy(λ)|[∑N

m=1 |Amy(λ)|2
]1/2 , (4.32)

where x ← y indicates causality. Eq. 4.32 computes the partial directed coher-

ence using the MVAR coefficients, thus the PDC solution relies on the estimation of

the MVAR coefficients. In practice this can be done using the well known Nuttal-

Strand algorithm which is available for Matlab (Schlogl , 2006). In order to show

how PDC works, an example is reproduced here from Baccala (2001) using MVAR

synthesized signals. Let’s define the MVAR equations for a system as the one shown

in Figure 4.6 as

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2) + η1(n)

x2(n) = 0.5x1(n− 2) + η2(n)

x3(n) = −0.4x1(n− 3) + η3(n)

x4(n) = −0.5x1(n− 2) + 0.25
√
2x4(n− 1) + 0.25

√
2x5(n− 1) + η3(n)

x5(n) = −0.25
√
2x4(n− 1) + 0.25

√
2x5(n− 1) + η5(n)

(4.33)

The PDC result using the estimator in Eq. 4.32 is shown in Figure 4.7. In this

figure the rows show the outputs of the MVAR system and the columns the inputs.
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Figure 4.6: 5-node MVAR network originally published by Baccala (2001). This network is
mathematically described by Eq. 4.33.

It can be appreciated that the diagonal shows a high self-PDC which is consistent

with the model in Eq. 4.33.

Figure 4.7: PDC estimation for the network in Figure 4.6. The MVAR signals were synthesized
and the AR coefficients estimated using the Nuttal-Strand algorithm.

PDC has been used in many applications like gene regulatory networks (GRN)

and naturally brain networks. Its main advantage is that the Nuttal-Strand al-

gorithm is a very efficient and fast estimator for the MVAR coefficients, thus the

computation of PDC is also fast. Some of its disadvantages are that as the number

of sources N increases the accuracy of the Nuttal-Strand algorithm decreases. Fur-

thermore, the Nuttal-Strand algorithm depends on long signal segments to estimate

correctly the MVAR coefficients, and in some real applications long data segments

are not available. Another objection against PDC is that it is a parametric tech-

nique, meaning that it relies on the signal model. Therefore, if the signal does not
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follow a MVAR model, PDC will not be able to find an accurate result.

In signal processing there is a rule of thumb to know if a signal can be mod-

elled as an AR process by just estimating the power spectrum using non-parametric

techniques, like Welch’s periodogram (Kay , 1988). If the estimated spectrum is

narrowband, say it has a well defined peak, then the signal can be modelled as an

AR process.

4.2.5 Phase coherence and phase lag index

Instead of computing the imaginary part of coherence only, it is much better to

estimate the phase using the imaginary and real part of the signal spectrum. Al-

though this can be done directly from the estimated phase spectrum in fxy(λ), some

authors find also useful to estimate this phase difference in the time domain. Phase

coherence (PC) and phase lag index (PLI) use instant phase difference estimation

to find synchronicity and instead of the Fourier transform which finds the Fourier

coefficients at all Nyquist frequency values, the Hilbert transform is used.

PC comes from the concept of phase locking or phase synchrony as explained in

Tass et al. (1998); Mormann et al. (2000). Here it is desired to measure if there is

consistency between the phase difference ∆φn,m(t) of two time series x and y. This

phase difference is commonly represented in the literature as

|∆φn,m(t)| = |nφx(t)−mφy(t)| < const, (4.34)

where n and m are integers, and φx,y are the phase of time series x and y.

Also notice that ∆φn,m(t) depends on the time index t, which indicates that phase

consistency is being searched through time and not frequency. When this concept

is applied to Electrophysiology, the isofrequency case (where n = m = 1) is of most

interest (Tass et al. , 1998; Quiroga et al. , 2002). The difference in Eq. 4.34

behaves as a stochastic variable on the unit circle whose angle difference will tend

to a constant value if both times series are synchronized. Using this phase difference

consistency, phase coherence is defined by

PC =

∣∣∣∣∣ 1M
M−1∑
l=0

ei∆φ(tl)

∣∣∣∣∣ . (4.35)
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Notice that PC depends only on the phase difference. This makes PC insensitive

to the amplitude of both time series and it is not affected by this as are coherence

and imaginary part of coherence (Stam et al. , 2007).

The most applied method to extract instantaneous phase for PC is by using the

analytical signal

xH(t) = x(t) + ix̃(t), (4.36)

where xH is complex valued, x(t) is the original time series, and x̃(t) is its Hilbert

transform. Hence, xH(t) can be represented as

xH(t) = A(t)eiφ(t) , (4.37)

where

A(t) =
√
[x(t)]2 + [x̃(t)]2 , (4.38)

and

φ(t) = arctan
x̃(t)

x(t)
. (4.39)

Figure 4.8 shows phase histograms of the real and imaginary part of phase dif-

ferences between two signals under three conditions. The first column shows the

case of two correlated signals with no delay induced, simulating in this manner a

volume conduction case. In the second column a signal delay was added, and the

third column shows phase difference between two independent signals. Notice how

the phase difference histogram in the correlated case is centred at zero while the

independent source case shows a histogram with uniform distribution.

Just as PC, another measure that uses phase difference is phase lag index or

PLI. PLI was proposed in Stam et al. (2007) as a measure for synchronicity which

also avoids the volume conduction problem in EEG recordings. The logic of PLI

is based on the fact that the imaginary part of coherency can not be explained

by volume conduction. In consequence the imaginary part reflects true interaction

among different brain regions, and because it uses phase information as PC, PLI

is also immune to the source amplitude problem (Guevara et al. , 2005). PLI is

defined by

PLI =

∣∣∣∣∣ 1M
M−1∑
l=0

sign(∆φ(tl))

∣∣∣∣∣ . (4.40)
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Figure 4.8: Phase histograms of dependent and independent signals. The first column shows the
phase histograms of two independent sources affected by volume conduction, which is a common
problem in EEG. The second column shows the phase difference between two truly correlated and
delayed signals. The third column shows phase histograms of two independent signals.

Because of its close relation to PC, PLI can also be expressed as

PLI =

∣∣∣∣∣ 1M
M−1∑
l=0

sign(Im(ei∆φ(tl)))

∣∣∣∣∣ . (4.41)

Notice PC and PLI are bounded measures between 0 and 1.

Although PLI was designed to avoid the volume conduction and the source am-

plitude problem, there are more issues for synchronicity measures to solve in Electro-

physiology. For instance EEG may use a bipolar montage to acquire brain signals.

This means that EEG records the electrode of interest above the area of the scalp

where it is desired to obtain brain activity but also the activity of a reference which

is needed to obtain a differential voltage. This reference is commonly attached to

the ears. In the EEG 10/20 system the ears are labelled as A1 and A2.

Figure 4.9 shows the effects of the reference at different magnitudes. The x-axis

at each graph of Figure 4.9 shows reference/source ratio. It can be seen that all

measures PLI and PC are highly affected by the reference as its amplitude becomes

higher.

Synchrony is highly affected by the EEG reference which might cause spurious
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Figure 4.9: Effect produced by a common reference on synchronicity measures. A synchronized
reference means that the reference has synchrony with one of the sources, and non-synchronized
reference means that the reference is independent of the sources. The figure shows the behaviour of
two sensor acquisition using a bipolar mounting which is normal in EEG tests where the reference
electrode is common for both scalp electrodes. Ref-PLI means PLI computations using electrodes
with common reference and similarly for Ref-Phase Coh.

synchronization. The reference issue is discussed in Guevara et al. (2005) for EEG

where the phenomenon is studied with no apparent solution to it. Nevertheless it

is possible to diminish the effect of the bipolar recording by re-referencing the EEG

channels digitally and use the EEG average as the common reference, also known as

the average montage. We can see this by analysing the EEG recordings with volume

conduction.

Volume conduction produces a linear mixing of the cortical sources S, which can

be represented by

X = HS , (4.42)

where H is the matrix that defines the head volume conductivity. Now, if an

EEG recording is made using a common reference, ref, we can represent the acquired

set of bipolar signals XB as

XB = X− ref . (4.43)
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By referencing digitally the EEG channels to the average EEG we have that

XA = X− ref − 1

N

N∑
n=1

xBn(t) (4.44)

= X− 1

N

N∑
n=1

xn(t) ,

where XA are EEG signals using average reference. Eq. 4.44 shows that average

reference in EEG solves in part the bipolar synchrony problem mentioned in Guevara

et al. (2005) by cancelling the references, but volume conduction still persists.

4.3 Behaviour of standard techniques on volume

conduction

In network inference using techniques such as Coherence, PC or PLI, volume con-

duction affects the estimated network by producing high clustered networks (Nolte

et al. , 2004; Peraza et al. , 2012). Figure 4.10 shows the behaviour of coherence,

PC and PLI when a network is inferred using EEG signals under the null hypothe-

sis. The null hypothesis indicates that all the present sources are independent. For

this simulation the four-sphere head model was implemented and 64 independent

sources were simulated and placed at the brain cortex level. Then, their voltages at

scalp level are recorded and from them, networks were inferred. In order to avoid a

cluttered network a threshold was applied by setting the average network degree to

3 (Peraza et al. , 2012).

For coherence, the network inferred under the null hypothesis resembles a mesh,

where every node is connected to its closer neighbours. Notice that since the average

node degree is 3 in Figure 4.10, every node is connected to 3 or sometimes 4 neigh-

bour nodes. PC suffers exactly the same problem. On the other hand, PLI seems

to infer a random network. It was hypothesized in Peraza et al. (2012) that if PLI

is immune to volume conduction as commonly stated in the literature, the networks

inferred by this measure must resemble a Random network. It was shown that PLI

when affected by volume conduction shows small-worldness when compared with

PLI under the non-volume conduction case.

102
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Figure 4.10: Network inference affected by volume conduction. Here coherence, phase coherence
and PLI are tested for network inference in EEG. The model used was the four sphere head model
to simulate volume conduction. Image adapted from Peraza et al. (2012).
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Chapter summary

In this chapter some standard techniques for relation inference were reviewed. Cor-

relation and partial correlation work in the time domain and search for synchroniza-

tion through all time series’ samples. Coherence techniques which include coherence

itself, PDC, PLI, and PC, are able to search for synchronization at specific frequen-

cies. PLI and PC use the Hilbert transform to find synchronization in the time

domain after narrow band filtering.

PDC is a causal inference technique that also gives frequency information about

connectivity based on Granger’s causality and the MVAR model. PDC has been

applied widely in Neuroimaging showing promising results. Its only disadvantage is

that it uses the MVAR model to find connectivity, and if the analysed system does

not follow this model, PDC is likely to fail.

There is another group of techniques that follow a probabilistic approach known

as Bayesian networks. Bayesian networks aim to fit a network model to the time

series at hand.
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Chapter 5

Structure inference using Bayesian

networks

In Chapter 3 networks were covered, their metrics and comparison strategies. This

chapter talks about Bayesian networks (BNs), dynamic Bayesian networks (DBNs),

network score functions, and network structure searching techniques widely used in

this field. This chapter also presents the proposed technique of this thesis, Fourier

Bayesian networks or FBNs, which use Bayesian network theory for network struc-

ture inference but the relation parents-children is inferred using Fourier transformed

time series.

There are different approaches in network structure searching. The algorithms

are mainly divided in stochastic and rule-based. Rule-based algorithms are the faster

ones. These kind of algorithms follow a series of steps to find the best network. Most

of them are based on network pattern searching, the convergent network the most

used one. Stochastic algorithms are also widely used for network searching. These

algorithms perform a searching from a pool of probable networks to sample those

networks that describe the current data in the best way possible.

Before starting working on network inference, the researcher must decide which

kind of algorithm will be used. Each technique has different properties and might

require data pre-processing. For instance, it must be decided first if the algorithm

will be fed with discrete or continuous valued data.
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5.1 Discrete or continuous?

It is possible to work with Bayesian networks using discrete or continuous valued

time series. Discrete Bayesian networks have the property of inferring causality from

non-linear systems which makes them a powerful tool to analyse all kind of systems

regardless of the system’s model. However, when the complexity of the recorded data

increases, this means if the number of discrete levels increases, the complexity of

the Bayesian inference algorithm also increases due to evaluation of the probability

tables. More options mean more probabilities to define and in consequence more

computations.

If the amount of information in the continuous time data is so important that

it requires several discrete levels, it is possible to work with the datasets directly

as continuous time series. The only disadvantage of this approach is that a model

should be chosen for this. The most used model in the literature is the Gaussian

model, which states that the linear regression error of one or more several signals in

the network system onto another signal can be represented as Gaussian noise. Then

the power of the Gaussian error is taken as cost function for the analysis. The aim

of this approach is to decrease this error as much as possible. Gaussian Bayesian

networks lose the non-linearity property of discrete Bayesian networks but gain the

advantage of avoiding discretization saving computational cost.

Figure 5.1 shows an example from Smith et al. (2002) showing a discretiza-

tion approach for Bayesian networks. In Smith et al. (2002) a gene transcription

simulator was implemented and from the generated time series a discretization was

performed to make the time series a discrete signal with 3 levels. Then, a Bayesian

network analysis using multinomial distributions was implemented to infer causality

and network structure.

The same signal discretization approach implemented for genetic datasets, can

also be done in Electrophysiology. For instance Smith et al. (2006) used the signal

envelope of physiological signals recorded from birds’ brain cortices, in specific the

Zebra Finch bird. Once the power envelope is obtained it is discretized to perform

multinomial Bayesian network inference. See Figure 5.2.
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Figure 5.1: Network structure inference using discretizations. In Smith et al. (2002) a dis-
cretization procedure was performed to simulate datasets in order to use Dynamic BNs with a
multinomial probability distribution. These allowed the researchers to make network structure
inference on simulated gene networks. Image from Smith et al. (2002).

Figure 5.2: Network structure inference using envelope estimation. Here, Smith et al. (2006)
estimated the envelope of the recorded time series and then the envelope was discretized. The
aim of this is to apply the same Dynamic BNs algorithm as in Smith et al. (2002) but now from
micro electrode array datasets recorded from the Zebra Finch bird’s brain. Image from Smith et
al. (2006).

5.2 Causality and Bayesian networks

When working with or studying networks sometimes it is not enough just knowing

the structure that describes the interaction among the nodes, but also the causality

of all node connections. This means to find which nodes are influenced by their

neighbours and/or if they influence other nodes. Causality can be explained using

one of the most classic examples and the one that will be used for the rest of the

chapter, the season-slippery network (Pearl and Russel , 2001) shown in Figure 5.3.

The season-slippery network in Figure 5.3 is a causal graph composed of five

nodes named season, sprinkler, rain, wet, and slippery. The network describes the

possible causes for a person to slip due to a wet floor. Hence, the fact the floor is

wet causes people to slip, and it is said that the node wet is cause of slippery. In the

same way there are two reasons that explain why floor is wet. One might be that the

garden sprinklers were turned on or it might be because of the rain. The example

goes a little further trying to find the reason that influences nodes sprinkler and
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Figure 5.3: Season-slippery causal network example. The network attempts to explain the reasons
of people falling because of a wet floor. The network shows two causes of this, one are the sprinklers
and the other is raining. Sprinklers and rain are also controlled by season, if it is dry season it is
more likely that the sprinklers will turn on, while if it is the rain season, rain is more probable.
Adapted from Pearl and Russel (2001).

wet. The season influences these. If node season is the dry season, the sprinklers

will turn on, otherwise if it is the rain season, it is more likely that the floor will be

wet due to the rain.

The previous example explains in principle causality, meaning that one node or

process influences another and in this way directionality is implied in the definition.

For instance, in the season-slippery example it would sound awkward to say: “it

rains because the floor is wet”, this causal relation is very unlikely.

Causality and edge directionality is also commonly described in the literature

using family analogy. For example in Figure 5.3 causality starts in node x1 and ends

in node x5, making x1 the highest node in the network hierarchy. Hence, we can say

that x1 is parent of x2 and x3 and these both are in consequence brother nodes. x2

and x3 are both parents of x4, being this last one a parent of node x5.

Causality can be mathematically represented using conditional probability, in

the logic that knowing the cause will increase the certainty of the effect. Take

for instance the subnetwork composed by the nodes wet and rain shown in Fig-

ure 5.4. If we want to compute the probability of wet floor p(wet), it can be esti-

mated by sampling the humidity of the floor during the year and taking the ratio
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wet days/all days. However, imagine now that you already know that it is raining.

Will this knowledge increase the probability of having a wet floor? Certainly this

probability will increase and it can be represented as p(wet|rain) which should be

read as “the probability of wet floor given it is raining”.

Figure 5.4: Rain wet floor subnetwork from Figure 5.3.

The realm of conditional probabilities allows to represent the causal structure of

a network using mathematical representations. The probability of wet floor given it

is raining can be represented as

p(wet|rain) = p(wet, rain)

p(rain)
, (5.1)

or also

p(wet, rain) = p(wet|rain)p(rain) . (5.2)

Eq. 5.2 represents the joint probability of variables wet and rain. It also repre-

sents the probability of the entire subnetwork shown in Figure 5.4.

Following the same probability logic we can represent the joint probability of the

entire season-slippery network in Figure 5.3 as

p(x1, x2, x3, x4, x5) =

p(x5|x4, x3, x2, x1)p(x4|x3, x2, x1)p(x3|x2, x1)p(x2|x1)p(x1) . (5.3)

The property of representing a causal conditional system as a product of proba-

bilities is called in the literature the theorem of total probability which is expressed

mathematically as

p(x1....xN) = p(x1)
N∏

n=2

p(xn|xn−1...x1) , (5.4)
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where N is the total number of nodes in the network. Notice that the joint

network probability can be factorized by nodes and as expected every node is de-

pendant on all its ancestors. However, in conditional probability if the current

state of a node’s parents is known, any knowledge coming from higher ancestors

will be meaningless. For instance, assume you want to compute the probability

p(slippery|wet, sprinkler, rain). If it is already known that the floor is wet, the

current knowledge about the rain and the state of the sprinklers is not required to

infer if people will slip, since we already know that the floor is wet. This is com-

monly called in the literature as conditional independence. Hence, we can say that

“slippery is conditionally independent of sprinkler and rain given that floor is wet”

or p(slippery|wet, sprinkler, rain) = p(slippery|wet). In consequence, we can state

that in a causal networks a node is only dependant on its parents. Using conditional

independence we can rewrite Equation 5.3 as

p(x1, x2, x3, x4, x5) = p(x5|x4)p(x4|x3, x2)p(x3|x1)p(x2|x1)p(x1) . (5.5)

or using the theorem of total probability as

p(x1...xN) =
N∏

n=1

p(xn|paxn
) , (5.6)

where paxn
represents the set of parents for the node xn. Eq. 5.5 describes

the structure of the season-slippery network using a probability model. This mod-

elling becomes very useful to find network structure and its causal properties in

plenty of applications, and an uncountable number of algorithms have been pub-

lished using the conditional independence principle. Unfortunately, the network

structure description that relates Eq. 5.5 and Figure 5.3 is not unique. This means

that there might be a whole family of networks that are as equally probable as the

season-slippery one. We can explain this by using Bayes’ theorem which relates the

conditional probability of two dependent processes A and B as

p(A|B) =
p(B|A)p(A)

p(B)
, (5.7)

where
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p(B) =

∫
A

p(B|A)p(A) . (5.8)

Using Bayes’ theorem it is possible to find another network with the same joint

probability as the season-slippery one. Let’s for instance change the direction of

the edge between node sprinkler and node season. This will give us the following

probability modelling

p(x1, x2, x3, x4, x5) = p(x5|x4)p(x4|x3, x2)p(x1|x3)p(x2|x1)p(x3) . (5.9)

The previous change was possible due to Bayes’ theorem. Recall that

p(x3|x1) =
p(x1|x3)p(x3)

p(x1)
(5.10)

The equivalent network is shown in Figure 5.5. Notice that although its prob-

ability is exactly the same, it does not make sense that the sprinkler be the cause

for the season changes. The network equivalence problem requires the creation of

algorithms and strategies to find among all the family of equivalent networks the

ones that make sense.

Figure 5.5: Season-slippery equivalent network. The direction of the edge between node x1 and x3

has been changed, producing the different network that has the same probability value than the
network in Figure 5.3.

Knowing conditional probability, it is time to define the basic network structures.

Any directed network can be divided by sets of three node networks. These are the
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linear network, divergent network, and convergent network. These basic structures

are shown in Figure 5.6, where networks a and c are linear networks, b is divergent

and d is convergent. It can be proved easily using Bayes’ theorem that networks

a, b, and c are equivalent, this means that they have the same probability and in

consequence they can not be differentiated by any algorithm. On the other hand,

the convergent network d is not equivalent to a, b, or c. Its probability value is

unique and for this reason almost all algorithms that infer network structure are

based on the analysis of convergent networks.

Figure 5.6: Three-node networks. The networks at the left have the same joint probability value
p(x1, x2, x3), while the convergent network at the right has not. Many network inference algorithms
in the literature focus on the searching of convergent networks due to this property.

The networks estimated using the framework explained in this section are called

in the literature Bayesian networks because their analysis is based on Bayes’ theorem.

There is one last point that is worth mention, the concept of cycles. Cycles in a

network are edge paths whose causality leads to a closed loop. Cycles examples are

shown in Figure 5.7. The importance of cycles is that in Bayesian networks the cyclic

structures are forbidden. The reason for this is because these structures do not follow

the theorem of total probability which is the base of causal networks. Furthermore,

the total probability theorem also causes that Bayesian networks always have at

least one node with no parents and at least one node without children.

Bayesian networks are also commonly called in the literature as static Bayesian

networks to remark the fact that the computed probability is an instantaneous

probability. This means that time lags among processes are ignored and only in-
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Figure 5.7: Cyclic network examples. The figure shows three examples of network cycles, which
are forbidden in static network theory because this kind of structure does not obey the theorem of
total probability.

stantaneous interaction is used for network inference. Nevertheless, if the researcher

already knows that the analysed processes present time lagged correlation, this extra

information can be used for network inference. This can be achieved by a variant of

Bayesian networks called dynamic Bayesian networks.

5.3 Dynamic Bayesian networks

Dynamic Bayesian networks use the same principles and algorithms as static Bayesian

networks but instead of using the original time series set only, a time delayed version

of the original nodes is added to the network. This step is called network unfolding

and the complete network is called the unfolded network.

An important property of the unfolded network is that with this arrangement

now cycles are allowed. Since the delayed nodes are taken as different processes the

total probability theorem is not broken by these delayed cycles. Figure 5.8 shows

an example of network unfolding. Here a static network is shown as example in

Figure 5.8a and its unfolded counterpart is shown in Figure 5.8b where the original

network has been unfolded twice. Notice that the delay can be forwards or backwards

without affecting the algorithm’s performance. For instance in Figure 5.8b the

unfolding was performed as [t, t+1, t+2], but this can also be done backwards as

[t− 1, t, t+ 1] and it represents the same system.

In the literature, every network unfolding is also called network slice. For in-

stance, the network in Figure 5.8b has three slices t, t+ 1, and t+ 2 using forward

delay. The edges that cross from one slice to another are called inter slice edges
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and the edges that stay within the network slice are called intra slice edges. For

example, in Figure 5.8 the edge between x4 and x5 is an intra slice edge while the

rest are inter slice.

Figure 5.8: Dynamic networks and network unfolding. The figure shows an example of a static
network that has two cycles, one between nodes x1 and x2 and the other is a self cycle in x3. Cycles
are forbidden in Bayesian network theory, but they can be represented or estimated by unfolding
the static network, and making it dynamic. Dynamic networks have the disadvantage of increasing
the number of nodes, which also increases exponentially the number of possible networks to infer
and the computational load.

There is an important disadvantage of dynamic Bayesian networks related to

the network unfolding and this is that the number of nodes in the network system

is increased N nodes at every slice of the new network. This also increases the

complexity of the problem and the computational cost. The number of possible

networks increases exponentially with the number of nodes, making the network

inference an unbearable problem if the number of nodes increases beyond allowed

levels. For this reason most of the current algorithms only unfold the network once

from t to t+ 1, which for most applications seems to be enough. Another option is

to constrain the network searching. For instance, if the interest is on causality only,

the DBN algorithm can be designed to search for inter slice edges only and ignore

the intra slice ones. This decreases the network searching space considerably. An
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example of this approach can be found in Rajapakse and Zhou (2007).

5.4 Network score functions

BNs are a natural method to encode network causality and summarize the joint

pdf of a system with all its variables in a directed graphical model which allows

to make inferences. For these reasons, BNs have received all kind of names in the

literature such as influence diagrams, expert systems, and causal networks. Most

of the authors agree to call them Bayesian networks because of their philosophy of

using all the knowledge at hand and even intelligent guesses to make inferences.

Bayes’ theorem defines the probability of the system’s parameters θ given the

data D and the background knowledge ξ as

p(θ|D, ξ) =
p(θ|ξ) p(D|θ, ξ)

p(D|ξ)
(5.11)

where

p(D|ξ) =
∫

p(D|θ, ξ)p(θ|ξ)dθ (5.12)

p(θ|ξ) and p(θ|D, ξ) are called the prior and the posterior probability for variable

θ, and p(D|θ, ξ) is known as the likelihood. Hence

posterior =
prior × likelihood

normalizing factor
. (5.13)

When Bayesian analysis is performed for network structure searching, the struc-

ture of the network becomes part of the system parameters. The hypothetical net-

work structure Sh defines the interrelation among the network nodes and defines the

system parameters. Hence, from now on the Bayesian probability of the hypothetical

network Sh is defined as

p(Sh|D) =
p(D|Sh)p(Sh)

p(D)
, (5.14)

where again the denominator is defined by

p(D) =
∑
S

p(D|Sh)p(Sh) . (5.15)
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In all Bayesian algorithms for network structure inference, the hypothetical net-

work Sh is proposed first to evaluate the Bayes’ theorem, then if the evaluation is

good or better than a previous choice, the network is accepted or rejected depend-

ing on the algorithm’s rules. The proposed network Sh is then evaluated using a

network score function of the form

Score function = Network likelihood× Punishment factor . (5.16)

When working with probabilities, it is more useful to work with logarithms in

order to represent multiplications of several factors as sums;

Score = log[Network likelihood] + log[Punishment factor] . (5.17)

The network likelihood generally gives a measure of how good the proposed

structure Sh describes the data. Unfortunately, the more connected is the network

the better is the data described. This means that a full connected network is able to

describe all processes in the network, but a full connected network will not give useful

information about the studied system. For this reason, the Occam’s razor principle

is applied and simpler structure models Sh are chosen instead of full connected ones.

Simpler models are found by introducing a cost factor also known as punishment

factor into the network score function. The punishment factor has the task of

decreasing the score of those networks that are too complex. The level of complexity

can be adapted by multiplying the punishment factor by a constant which controls its

influence in the score function. This procedure is commonly called in the literature

as score tuning. In the following sections, well known score function are reviewed.

5.4.1 Maximum a posteriori, MAP

The maximum a posteriori is a general estimation method based on the Bayes’

theorem. It is very related to the maximum likelihood estimation but here the prior

distribution of the variable of interest is included. Generally the MAP estimator is

found by maximizing the posterior distribution (hence the name) of a network Sh

given the data. This is represented as
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Sh → argmax
Sh

p(Sh|D) (5.18)

which using the Bayes’ theorem, becomes

Sh → argmax
Sh

p(D|Sh)p(Sh)

p(D)
(5.19)

Recall from Eq. 5.15 that P (D) does not depend on Sh, hence it can not be

minimized by Sh. This simplifies the MAP structure estimator to

Sh → argmax
Sh

p(D|Sh)p(Sh) . (5.20)

Finally, the network score function using the MAP estimator becomes

ScoreMAP = log p(D|Sh) + log p(Sh) . (5.21)

In Eq. 5.21 the punishment factor is represented by the network prior probability

p(Sh). Here, p(Sh) will regulate which networks have higher probability and which

do not. For instance, it is very unlikely that the real system is either a full connected

network or a full disconnected one. The disadvantage of applying Eq. 5.21 directly

is that it requires the prior distribution p(Sh) which might be difficult to know.

Nevertheless, there are algorithms that deal with the prior distribution as explained

in Section 5.8.

5.4.2 Bayesian Dirichlet equivalence, BDe

The Bayesian Dirichlet equivalence (BDe) evaluates multinomial Bayesian networks

using a Dirichlet probability distribution as prior distribution. In the case of bi-

nomial variables, the Dirichlet distribution reduces to a Beta distribution which is

a special case where the analysed variables have only two values. Using the Beta

distribution and Bayes’ theorem, the posterior probability of a binomial process can

be represented as

p(θ|D, ξ) =
θh(1− θ)tp(θ|ξ)

p(D|ξ)
, (5.22)

where h and t are the available known data D, the number of heads and tails

outcomes from the tossing process respectively. The prior Beta distribution, which
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gives the prior knowledge on h and t is defined by

p(θ|ξ) = Beta(θ|αh, αt) =
Γ(α)

Γ(αh)Γ(αt)
θαh−1(1− θ)αt−1 , (5.23)

where αh and αt are the distribution parameters and are known in Bayesian

analysis as hyperparameters, α = αh + αt, and Γ is the Gamma function. The

hyperparameters reflect the current knowledge about the behaviour of the system.

For instance, if we assume that a coin that is being tossed is fair, we can use a

perfectly symmetric Beta function or even if we do not known anything about the

coin, we can assume a uniform distribution as prior (Neapolitan , 2004; Heckerman

, 1996; Heckerman et al. , 1995). Using the previous defined prior and posterior

distribution, the Bayes’ theorem in Eq. 5.22 can be rewritten as

p(θ|D, ξ) =
Γ(α+M)

Γ(αh + h)Γ(αt + t)
θαh+h−1(1− θ)αt+t−1

= Beta(θ|αh + h, αt + t),

(5.24)

where M is the total observed data M = h + t. Notice that the denominator

in Eq. 5.22 is completely ignored in Eq. 5.24. This is because the denominator is

just a normalizing factor that assures that the integral of the posterior probability

equals one. Because Eq. 5.24 is already a fully Beta normalized distribution the

denominator can be just ignored. This is the advantage of using a Beta distribution

as prior distribution. The posterior will also be a Beta distribution which can be

easily normalized. Furthermore, the expectation of a Beta process is also a well

known result ∫
θBeta(θ|αh, αt)dθ =

αh

α
(5.25)

Using the previous equation, the expectation of Eq. 5.24 will give us the Bayesian

probability that the next toss results in heads,

p(xM+1 = heads|D, ξ) =
αh + h

α+M
. (5.26)

The Beta prior distribution works well for the coin tossing example, but in the

case of multinomial sampling where more than two options are observed (like in a

dice for example), the likelihood function of this kind of processes is given by

p(X = xk|θ, ξ) = θk, k = 1, ..., r, (5.27)
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where θ = {θ2, ..., θr} are the multinomial probability parameters and r is the

total number of outcome options (for instance, in a dice r = 6). From the observed

data D = {X1, ..., XM = xM} we can obtain the sufficient statistic {M1, ...,Mr}

where Mk is the number of outcomes xk in the observed dataset. The multinomial

prior distribution chosen for this problem is the Dirichlet distribution (Neapolitan ,

2004; Heckerman , 1996), which is nothing else than a Beta distribution generaliza-

tion. The Dirichlet distribution is defined by

p(θ|ξ) = Dir(θ|α1, ..., αr) =
Γ(α)∏r

k=1 Γ(αk)

r∏
k=1

θαk−1
k , (5.28)

where α =
∑r

k=1 αk. As in the binomial example, the posterior distribution will

also be a Dirichlet probability

p(θ|D, ξ) = Dir(θ|α1 +M1, ..., αr +Mr). (5.29)

As its name suggests, the BDe score is based on the Dirichlet distribution and

its derivation is fully presented in Heckerman et al. (1995). The BDe is defined for

a network structure Sh as

BDe(Sh) = p(D|Sh) =
N∏
i=1

Ov∏
j=1

Γ(αij)

Γ(αij +Mij)

rv∏
k=1

Γ(αijk +Mijk)

Γ(αijk)
(5.30)

where i is the index of current node xi, Ov is the total number of combinations

(instantiations) of the parents of xi, and rv is the total number of possible values of

xi.

The BDe score is the most common score function applied in Bayesian networks.

Notice that Ov and rv depends on how many values the variables in the system have.

Hence a discretized signal with several discrete levels will increase the complexity of

the BDe evaluation by increasing the number of combinations in Ov and rv. For this

reason many of the current applications do not use discrete signals with multiple

levels.

To evaluate networks using the BDe score function, a MAP approach can be

followed or any other approach for structure searching like Markov chain Monte

Carlo or stochastic hill climbing (Neapolitan , 2004). More about this is discussed

in Section 5.8
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5.4.3 Bayesian information criterion, BIC

The Bayesian information criterion or BIC score function is also widely used in

network inference. The BIC score function is defined as

BIC(Sh|D) = log2 p(D|Sh, ξ̂s)−
size(Sh)

2
log2(M) , (5.31)

where P (D|Sh, ξs) is the likelihood function and the second term is the punish-

ment factor which is proportional to the number of edges in the network.

The BIC score using Dirichlet distributions (Jensen and Nielsen , 2007) is math-

ematically expressed by

BIC(Sh|D) =
N∑
i=1

[
Ov∑
j=1

rv∑
k=1

Mijk log

(
Mijk

Mij

)
− 1

2
Ov(rv − 1) logM

]
. (5.32)

where the terms in Eq. 5.32 are defined as in Eq. 5.30. The BIC score function

can be applied alone without requiring any prior distribution or algorithms that deal

with the prior function. BIC is commonly used in rule based learning approaches

where a series of rules evaluates different network possibilities until the one with the

highest BIC score is found.

Using the conditional independence property of Bayesian networks, the BIC score

function can be factorized as

BIC(Sh|D) =
N∑

n=1

{
log p(xn|pan, Sn, ξ̂n)−

size(Sn)

2
log(M)

}
, (5.33)

where pan is the vector of parents of node xn, and Sn is a convergent subnetwork

formed by xn and its parents pan.

A common practice using BIC is to add a tuning parameter for the punishment

factor, which leads to the following BIC score

BIC(Sh|D) =
N∑

n=1

{
log p(xn|pan, Sn, ξ̂n)− alpha

size(Sn)

2
log(M)

}
. (5.34)

The tuning parameter alpha allows the researcher to modify the punishment

level during the network searching, see for instance Varshavsky et al. (2007).
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5.5 Gaussian model

BDe and multinomial BIC score functions are designed for multinomial discrete data.

If the data at hand are time series sampled from continuous variables one option is to

round the samples to assigned number of levels to create multinomial variables. This

approach has two main problems. To round the time series to create multinomial

variables destroys valuable information from the original sampled recordings and the

second problem is that the size of the probability tables in multinomial Bayesian

network for either network estimation or prediction increases exponentially with

the number of multinomial levels, which increases the complexity of the original

problem.

Instead of using time series rounding to create multinomial variables, another

approach is to use continuous time BNs, which use a Gaussian model to describe

data. The Gaussian model relies on a linear regression from the parent nodes into

the child node. In other words, what it is done here is to regress the probable parents

into the child in order to decrease the regression error. The parents that decrease

this regression error, might be assumed to be the true parents of the child node.

The disadvantages for the Gaussian model in Bayesian networks is that the

time series should be stationary and the regression error must follow a Gaussian

distribution, also the nonlinear property of multinomial BNs is lost. Fortunately

the stationary assumption is very common in many current algorithms and does

not represent an issue, and Gaussian processes are the most common processes in

nature, which make Gaussian BNs applicable to a broad range of problems.

In a Gaussian model what we want to find is the conditional probability f(x1|x2)

of a network as the one shown in Figure 5.9. Notice that now f is used to define

a continuous probability distribution instead of p which was used for discrete vari-

ables. Figure 5.9 shows a basic model from which it is desired to know how much

information in x2 is able to explain the behaviour of x1.

A straightforward approach to derive f(x1|x2) is given in Anderson (2003). This

derivation is reproduced in this section in extended version. First of all, let’s define
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Figure 5.9: Gaussian model for BN showing conditional probability with a causal network.

the multivariate Gaussian distribution,

G(x|µx,Σx) =
1

2πd/2|Σx|1/2
e{−

1
2
(x−µx)TΣ−1

x (x−µx)}, (5.35)

where Σx is the multivariate variance matrix, x is the vector of variables, µx is

the vector of means, and | ∗ | represents the determinant of a matrix. Suppose now

that two Gaussian signals y1 and y2 are related by following equation;

y1 = x1 +Bx2

y2 = x2

(5.36)

and that a constant B must be found in order to leave y1 and y2 uncorrelated.

To start this, lets compute first the covariance matrix between y1 and y2,

C(y1, y2) = E[(y1 − E(y1))(y2 − E(y2)
T )] . (5.37)

First the expected value of Eq. 5.36 is computed,

E[y1] = E[x1 +Bx2] = µ1 +Bµ2 ,

E[y2] = µ2 .
(5.38)

Substituting the expected values in the covariance equation, leads to

C(y1, y2) = E[(x1 +Bx2 − µ1 −Bµ2)(x2 − µ2)
T ] = 0 ,

= E[[(x1 − µ1)−B(x2 − µ2)][x2 − µ2]
T ] = 0

= E[(x1 − µ1)(x2 − µ2)
T +B(x2 − µ2)(x2 − µ2)

T ] = 0

= E[(x1 − µ1)(x2 − µ2)
T ] +BE[(x2 − µ2)(x2 − µ2)

T ) = 0 .

(5.39)

From Eq. 5.39 it can be noticed that the expected values are the cross-covariance

between x1 and x2 and the variance of x2, defined as Σ12 and Σ22 respectively. Hence

the previous equation can be rewritten as

Σ12 +BΣ22 = 0 (5.40)
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From which B can be easily obtained

B = −Σ12Σ
−1
22 . (5.41)

Using the previous result, the Gaussian signals y1 and y2 in Eq. 5.36 can be

redefined as

y1 = x1 − Σ12Σ
−1
22 x2

y2 = x2

. (5.42)

The next step now is to find the covariance matrix for y1 and y2. Start by

computing the mean vector µy

E[y1] = µ1 − Σ12Σ
−1
22 µ2

E[y2] = µ2 .
(5.43)

Expressing Eq. 5.43 in matrix notation we have that

E

 y1

y2

 = E

 I −Σ12Σ
−1
22

0 I

 µ1

µ2

 =

 µ1 − Σ12Σ
−1
22 µ2

µ2

 = µy . (5.44)

The covariance can be expressed as

C(y) = E[(y − µy)(y − µT
y )] , (5.45)

which leads to

C(y) =

 E[(y1 − µ1)(y1 − µ1)
T ] E[(y1 − µ1)(y2 − µ2)

T ]

E[(y2 − µ2)(y1 − µ1)
T ] E[(y2 − µ2)(y2 − µ2)

t]

 . (5.46)

The only expected value that is nontrivial in Eq. 5.46 is the variance of y1.

Algebraic manipulation of Eq. 5.46 results in

C(y) =

 Σ11 − Σ12Σ
−1
22 Σ21 0

0 Σ22

 . (5.47)

Therefore, with the covariance matrix C(y) and the expected value E(y) it is

possible now to write the multivariate Gaussian probability distribution for y as

f(y1, y2) = G(y1|µ1 +Bµ2,Σ11 +BΣ21)G(y2|µ2,Σ22) (5.48)
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where y1 and y2 are defined in Eq. 5.36. Notice that f(y1, y2) is factorized because

y1 and y2 were defined as orthogonal or uncorrelated. Hence in the wide sense it can

be said that both signals are independent.

At the beginning of the model derivation we wanted the probability distribu-

tion f(x1|x2) and not f(y1, y2). Nevertheless using the linear mixing in equations

in Eq. 5.42 and the transformation theorem it is possible to map the probability

distribution from vector y to vector x. The transformation theorem is defined as

g(x1, ...xp) = f [y1(x1, ...xp), ...., yp(x1, ..., xp)]J(y1, ..., yp) , (5.49)

where J(x1, ..., xp) is the Jacobian. For this derivation the Jacobian matrix is

J(y1, y2) =

∣∣∣∣∣∣
dy1
dx1

= I dy1
dx2

= B

dy2
dx1

= 0 dy2
dx2

= I

∣∣∣∣∣∣ = 1 . (5.50)

Now, by defining

Σ11·2 = Σ11 − Σ12Σ
−1
22 Σ21, (5.51)

and applying the transformation theorem, we have that

f(x1, x2) =
1

(2π)q/2|Σ11·2|1/2
×

exp

{
−1

2
(x1 +Bx2 − µ1 −Bµ2)

TΣ−111·2(x1 +Bx2 − µ1 −Bµ2)

}
×

1

(2π)(p−q)/2|Σ22|1/2
exp

{
1

2
(x2 − µ2)

TΣ−122 (x2 − µ2)

}
.

(5.52)

Notice that f(x1, x2) is factorized in two Gaussian distributions. Now recall the

definition of conditional probability that says

f(x1|x2) =
f(x1, x2)

f(x2)
. (5.53)

Hence, using the definition of Eq. 5.53 in Eq. 5.52 leads to desired result,

f(x1|x2) = G(x1|µ1 −B(x2 − µ2),Σ11·2) . (5.54)

Eq. 5.54 can be easily extended to vector notation in order to work with multiple

variables (Zou and Feng , 2009). For instance f(x1|x2, ...xv). Using a more general

notation, Eq. 5.54 can be written as

f(xa|xb) = G(xa|µxa|xb
,Σaa·b) , (5.55)
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where x = [xa xb]
T and µxa|xb

= µa + ΣabΣ
−1
bb(xb − µb). xa is the vector of

children while xb is the vector of parent nodes. Notice that in Bayesian networks,

the children vector xa will always be a univariate time series, hence xa is a scalar

child.

Eq. 5.55 can be used directly for the BIC in Eq 5.33 using the conditional inde-

pendence property of Bayesian networks.

5.6 Fourier Bayesian networks

As mentioned previously, DBNs are a great technique for network structure and

causality inference. This is performed by unfolding the original network and using

standard network structure searching algorithms. Nevertheless, in Electrophysiol-

ogy, which is the case of MEG and EEG, it is not possible to define a static delay

as the only causal relation between nodes and unfolding the network several slices

will also increase the complexity of the original problem by increasing the size of the

network.

This thesis proposes a novel approach for network structure and causality in-

ference for Electrophysiological studies that is named Fourier Bayesian networks or

FBNs. FBNs are able to infer causality without network unfolding and delays by

using the complex valued information embedded in the time series as the input of

the BN algorithm. This is done by extracting the frequency power and the frequency

phase using the Fourier transform, hence the name of FBNs. In the following the

mathematical derivation for FBNs will be explained and in Chapter 6 properties of

FBNs will be studied.

Recall Bayes’ theorem for the probability of a hypothetical or proposed network

given the stored datasets,

p(Sh|D) =
p(D|Sh)p(Sh)

p(D)
, (5.56)

where

p(D) =
∑
S

p(D|Sh)p(Sh) . (5.57)
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p(D) in Eq 5.57 is the probability of the time series stored in D and can be

obtained by summing out all probable network structures Sh as shown in Eq 5.57.

p(D) mainly works as a normalizing factor for p(Sh|D) which is needed in Eq 5.56

to have a total probability of 1 (Heckerman , 1996). Nevertheless, since the universe

of networks in Sh can be extremely large depending on the number of nodes in the

system, the computation of p(D) is intractable or simply not possible. However,

there are in the literature Markov chain Monte Carlo (MCMC) algorithms that are

able to sample and evaluate networks from Eq. 5.56 without the need of computing

Eq. 5.57 (Walsh , 2004).

Now, if the Fourier transform of the data matrix D is computed, the time series

can be decomposed in frequency power F and frequency phase Θ matrices. These

two matrices represent the same data and information stored in D but in the Fourier

domain. Hence, the posterior probability in Eq. 5.56 can also be represented as

p(Sh|D) =⇒ p(Sh|F,Θ) . (5.58)

Substituting the previous equation in the Bayes’ theorem definition leads to

p(Sh|F,Θ) =
p(F,Θ|Sh)p(Sh)

p(F,Θ)
. (5.59)

At this point is worth to recall that in a Fourier transformed signal, frequency

power and frequency phase are independent, meaning that p(F,Θ) = p(F)p(Θ).

This independence property allows to factorize the joint probability of F and Θ in

Eq. 5.59 as

p(Sh|F,Θ) =
p(F|Sh)p(Θ|Sh)p(Sh)

P (F)p(Θ)
. (5.60)

Here, p(F|Sh) is the likelihood of the spectral matrix F given the network struc-

ture, p(Θ|Sh) is the likelihood of the phase matrix Θ given the structure, and p(Sh)

is the prior probability of the proposed network structure.

Eq. 5.60 can be used to sample networks from the universe of possible Sh solutions

using Monte Carlo methods for Bayesian inference (Chen et al. , 2000; Walsh , 2004).

In order to achieve this, it is necessary to derive the mathematical representation of

p(F|Sh) and p(Θ|Sh) which are explained in the next sections.
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5.6.1 Spectral likelihood

In this Section the spectral likelihood p(F|Sh) is derived. It can be started by

adopting the regression model widely used in Gaussian networks (Schachter and

Kenley , 1989; Geiger and Heckerman , 1994; Peraza and Halliday , 2010b), which

states that the likelihood distribution p(D|Sh) is represented as the error of a linear

regression of Gaussian processes. Using the Gaussian network model, allows to

define the likelihood as

p(D|Sh) =
N∏

n=1

(2π)−1/2

|Σxx|pan
|1/2
×

exp

{
−1

2
(xn − µx|pan

)Σ−1xx|pan
(xn − µx|pan

)

}
, (5.61)

where pan is the vector of parent nodes of xn,

µx|pan
= µx − Σxpan

Σ−1pan
(paT

n − µpan
) , (5.62)

Σxx|pan
= Σx − Σxpan

Σ−1pan
Σpanx , (5.63)

Σ =

 Σx Σxpan

Σpanx Σpan

 , (5.64)

µx and µpan
are the means of xn and pan respectively, and Σ is the covariance

matrix of the vector [xn pan].

Notice that xn in Eq. 5.61 is a univariate vector, hence the likelihood equation

can be rewritten using the sum of elements in xn,

p(D|Sh) =
N∏

n=1

(2π)−1/2

|Σxx|pan
|1/2

exp

{
−1

2

∑M
i=1(xn(i)− µx|pan

)2

Σxx|pan

}
, (5.65)

where i is the sample index for the time series xn. Taking the logarithm of

Eq. 5.65 we have that

ln p(D|Sh) =
N∑

n=1

(
−1

2
ln(2πΣxx|pan

)− M

2

Σ̂xx|pan

Σxx|pan

)
, (5.66)
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where Σ̂xx|pan
is the variance estimator of the regression error ε defined by

var[ε] = var[xn − µx + Σxpan
Σ−1pan

(pan − µpan
)] (5.67)

= Σxx|pan
(5.68)

Assuming that xn is long enough and stationary, Eq. 5.66 can be represented as

ln p(D|Sh) = −
1

2

N∑
n=1

ln(Σxx|pan
)− N

2
ln(2π)− MN

2
(5.69)

Because of the Gaussian and stationary assumption on ε, the variance of this

error can be rewritten as

Σxx|pan
=

∫
λ

fn
εε(λ)dλ . (5.70)

In the previous equation the Parseval’s theorem is used to represent the variance

of the regression error as the total energy of its spectrum. Hence, fn
εε is the error

spectrum, the spectrum of the regression of vector pan on xn. fn
εε can be obtained

directly using spectral regression (Priestley , 1983) as follows,

fn
εε(λ) = fxx(λ)−AfT

panx
(λ) , (5.71)

where

A = fxpan
(λ)f−1pan

(λ) , (5.72)

fxx(λ) is the second order spectra of xn, fxpan
(λ) represents the cross spectrum

of xn with the vector of parents pan, A is the complex regression coefficient matrix

(Priestley , 1983), fpan
is the cross spectral matrix of pan, and λ is the frequency

index. Also notice that fn
εε(λ) is a scalar positive number whose magnitude is in-

dependent of the time series’ phases. This fact is of paramount importance in this

step of the derivation, since it indicates that the error spectrum is invariant to the

phase of all signals.

Finally, using the error spectrum definition, the data likelihood can be repre-

sented as

ln p(F|Sh) = −
1

2

N∑
n=1

ln

∫
λ

fn
εε(λ)−

N

2
ln(2π)− MN

2
. (5.73)

Because it is wanted to optimize is the likelihood function only, all constant

terms can be eliminated from the previous expression leading to

ln p(F|Sh) ≡ −
1

2

N∑
n=1

ln

∫
λ

fn
εε(λ) (5.74)
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The invariance property of the error spectrum to the phase of the time series will

cause that the likelihood p(F|Sh) gives a high probability to those networks that fit

the system’s network structure but ignoring causality completely. This steps works

in some way as a “phase normalization” of all the recorded time series, and focus

the interest on how the proposed network Sh is able to explain the signal power

manifested by the system. Furthermore, this step also recalls heuristic approaches

in DBNs where the envelope of the time series is used as input of the BNs algorithm,

see for instance Smith et al. (2006). Causality however is inferred by the phase

likelihood p(Θ|Sh).

5.6.2 Phase likelihood

To propose a likelihood function for the phase, a heuristic approach is followed. For

the convergent model network having a single child and several parents, define the

vector of phases Θn as

Θn = θxpan
= [θxpa(1) θxpa(2) ... θxpa(p)] , (5.75)

where θxpa(1) represents the estimated cross phase between the first parent in

vector pan and the child xn. Θn has then all the cross phase estimations between

the child xn and its parents in pan. Hence, the probability of this convergent network

is

p(Θn|Sn) = p(θxpa(1), θxpa(2), · · · , θxpa(p)|Sn) , (5.76)

where Sn stands for the network composed by xn and its p parents in pan.

Now assume that the phase differences between a child xn with any of the parents

in pan, θxpan
, are independent. Hence, the total phase probability can be represented

as a product of phase probabilities

p(Θn|Sn) = p(θxpan
|Sn) =

p∏
i=1

p(θxpan(i)) (5.77)

Notice that Eq. 5.77 is not strictly true, since the common child node xn and its

phase adds a level of dependency on the phase difference of all the arriving edges

from the parent nodes. This is because xn works as a common reference for all

parents. A well explained case of this issue is discussed by Guevara et al. (2005).
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In order to obtain a measure for the entire network Sh, it is needed to include

the rest of the nodes and their parents into Eq. 5.77. This gives the final expression

for the network phase probability as

p(Θ|Sh) =
N∏

n=1

p(θxnpax
|Sx) =

N∏
n=1

p∏
i=1

p(θxnpa(i)) . (5.78)

Taking the logarithm of the previous equation leads to

ln p(Θ|Sh) =
N∑

n=1

p∑
i=1

ln p(θxnpa(i)) . (5.79)

Eq. 5.79 can be seen as a score function that evaluates the phase of the entire

network. This means that for every proposed causal structure Sh, p(Θ|Sh) will

search for the one that fits the cross phase difference among the datasets, meaning

that the phase likelihood is focused on finding causality and not network structure.

Notice that the spectral nature of FBNs allows to study the network probabilty

at specific or desired frequency bands, being these defined by λ in Eq. 5.74 and the

phase can be estimated also for the same λ band of frequencies. This property of

FBNs is studied in Chapter 6 through simulations.

5.6.3 Phase estimation

When working with real electrophysiological recordings it is not easy to estimate

the cross-phase difference between two biological signals. This is mainly because as

all things in nature nothing is linear and stationary. Biological systems are complex

ever changing systems which provide time series that are rich in information, but

also difficult to work with. Nevertheless, in this thesis stationarity and linearity

are assumed as properties of the analysed system. This allows to estimate the

cross-phase between two sources using a modified method originally published in

Rosemberg et al. (1989) which uses the slope of the phase spectrum.

The phase spectrum θ(λ) between two signals x and y can be obtained from the

argument of coherency (Rosemberg et al. , 1989) defined as

Ryx(λ) =
fyx(λ)√

fyy(λ)fxx(λ)
. (5.80)

130



5.6 Fourier Bayesian networks

Hence θyx(λ) = arg{Ryx(λ)} = arg{fyx(λ)}. Assume now that the time series y

is a time lagged version of x, then

fyx(λ) = e−iλτfxx(λ) . (5.81)

where the phase spectrum θyx = −λτ and the slope τ defines the time delay

between y and x. Nevertheless as mentioned at the beginning of this section, a time

series acquired from a real biological system does not produce a constant slope in its

phase spectrum and can not be fitted using a straight line. For this reason a weighted

slope approach is used for the FBNs implemented in this thesis by computing first

the cross-phase at every frequency using the derivative of the phase spectrum. This

is implemented as

τyx(λ) =
∂θyx(λ)

∂λ
. (5.82)

Notice also that τyx can have a range from −∞ to∞. Using the phase spectrum

θyx(λ) the delay between two signals is estimated as

τ̂yx(λ) =
∆θyx(λ)

∆λ
=

θ(λ+∆λ)− θ(λ−∆λ)

2∆λ
. (5.83)

A negative gradient in the previous equation will suggest that the chosen model

is correct, meaning x is leading y or x is cause of y, x→ y.

At this point, we have to take into account that the estimated delay is only

important where coherence Ryx is high. A way to do this is by weighting the es-

timated delay using squared coherence R2
yx(λ) as weighting function. R2

yx(λ) falls

faster with low coherence values, providing a better suppression of those τ estima-

tions at frequencies where coherence is low. The final expression for weighted delay

τwyx is

τwyx ≡
1

∆λ

∫
∆λ

τyx(λ)R
2
yx(λ)∂λ (5.84)

Finally, in order to apply this delay estimation in the FBNs algorithm, it is

necessary to express the delay as a probability. This can be implemented by mapping

τyx(λ) onto the inverse logistic function L,

p(θyx) ≡ L(τyx) =
1

1 + exp(2βτyx)
. (5.85)
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Although Eq. 5.85 is not a phase estimation since a delay is used instead, it

provides a numerical score to assess the idea of Fourier Bayesian networks using a

spectral likelihood and a phase likelihood as a novel network structure searching

approach and also test their properties.

5.7 Fourier BIC

Using the concept of spectral likelihood it is possible to create a Fourier version of

the original BIC score function. This idea was originally published in Peraza and

Halliday (2010b) as the FBIC score function. FBIC uses the spectral likelihood

directly in the BIC function. FBIC is defined as

FBIC(Sh|D) =
N∑
y=1

(
ln

∫
λ

fεεy(λ)dλ− alpha ∗ k ln(M)

)
, (5.86)

where the tuning parameter alpha has been added to the punishment term as in

BIC.

FBIC behaves similarly to the standard BIC criterion for the case of static BNs,

with the advantage of the phase normalization given by the frequency power. As

shown in Peraza and Halliday (2010b), this score is good in finding network structure

and its advantage relies that the phase information can be used to test if the direction

of the found edge is correct. Also as in the case of FBNs, the FBIC can be used to

find the best network in a specific band of frequencies defined by the λ variable.

The design of network probability distributions or score functions, which are

another representation of these probabilities, needs to be implemented in algorithms

that search through the network distribution for all those networks that fit the data.

There are in the literature an large number of algorithms created to optimize network

structure searching. In the next section some of these algorithms are studied.

5.8 Network structure searching

In this section some algorithms for network structure searching are reviewed. The

previous section covered some network score metrics which are used to evaluate a
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proposed or hypothetical network Sh which is chosen from the pool of all possible

networks available. Nevertheless, this universe of hypothetical networks can be

extremely large and it is computationally expensive to evaluate all of them in order

to find the network or family of networks that fits the dataset. For this reason, the

research community has developed strategies to sample networks from the universe

Sh and keep the most significant ones. From all the approaches, Markov chain

Monte Carlo or MCMC family of algorithms is the most successful and applied one.

This section starts explaining the most efficient and basic of the structure searching

algorithms; the K2 algorithm.

5.8.1 K2 Algorithm

The K2 algorithm (Cooper and Herskovits , 1992) is a simple method to find network

structure which derives from another one called “Katutó” (Hersovits and Cooper ,

1991) hence the name. The K2 algorithm is considered a greedy searching algorithm

since it evaluates different networks and chooses the one with the highest score. Its

only disadvantage is that the node order hierarchy (from parents to children) must be

provided in advance. In some real applications this is possible, a physician might say

that flu causes cough and a hierarchy can be settled, but in many other applications

this is not an option. However, the K2 algorithm is the first approach to solve any

problem and it is also used as a measure point to compare the performance of new

algorithms. See for instance Chen et al. (2008) where a variant of the K2 algorithm

is proposed which uses a node ordering algorithm before running the K2 algorithm.

The pseudocode for the K2 algorithm can be found in Neapolitan (2004), which

is reproduced here;

Network structure <- function (data D, node order V-->1)

{

for (i=1;i<=n; i++)

{

PAi=0 ;

Pold=score(D,Xi,PAi);
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findmore=true;

// u= max of parents allowed per child node.

while(findmore && |PAi|< u)

{

Z=new node that maximizes score(D,Xi,PAi+Z);

Pnew=score(D,Xi,PAi+Z) ;

if(Pnew > Pold) {

Pold=Pnew ;

PAi=PAi+Z; }

else

findmore=false;

} } }

In the previous pseudocode u is the maximum number of parents allowed per

child node, PAi is the vector of parents which can grow, and score() is the score

function, for instance BIC. The K2 algorithm is fast and very efficient not counting

the node ordering disadvantage.

5.8.2 A DBN algorithm using time-lagged partial correla-

tion

This algorithm was published in Peraza and Halliday (2010a) and has four steps or

rules that are executed in a consecutive fashion. The first step finds all the inter-

slice edges of the network by applying the time-lagged partial correlation matrix

reviewed in Sec 4.1.1. Then, the second step analyses all the convergent three-node

structures and uses a score function to evaluate them. The third rule evaluates

cycles and finally the fourth rule analyses all remaining edges.

The advantage of this algorithm compared with K2 is that a network node pre-

ordering is not needed and also it is fast finding the network structure. However, it

is commonly said in the literature that these kind of algorithms might also fall in

a local minimum (or maximum), meaning that sometimes they will not be able to

find the true network that describes the analysed system. These are trade offs that
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researchers must take into account when using this or any other kind of algorithm.

In the following the four rules of this algorithm are studied.

Rule 1: Time-lagged partial correlation matrix

The time-lagged partial correlation concept was explained in Section 4.1.1. The goal

of this rule is to obtain the dynamic connection matrix DM which will be used in

further rules. DM is found by applying a threshold to the partial correlation matrix

defined in Eq. 4.11. This threshold will decide if a statistically significant edge exists

or not between two nodes a and b. This is found using Fisher’s transformation

explained previously in Section 4.1 with a desired level of significance. For instance

in Peraza and Halliday (2010a) a significance level of 0.05 was used as edge threshold.

After thresholding Eq. 4.11, DM will be of the form

DM =

 A 0

B A

 , (5.87)

where A = bAt,tc and B = bBt−1,tc are thresholded versions of the submatrices

in Eq. 4.11 and whose elements above the threshold are replaced with 1s and 0s

otherwise.

As explained before, a network can be unfolded several time slices. However

each slicing will increase the system complexity and also the number computations

performed. This means that if the Bayesian network is unfolded k slices, DM will

have submatrices until At−k,t−k. However, here the network is unfolded up to t− 1

as it was defined in Eq. 4.11.

In Rule 1 it is important to define all the dynamic edges that will be allocated

in the submatrix B in DM. The steps for this are:

1. Create a backward shifted version of the data matrix Dt and call it Dt−1.

Then concatenate both data matrices to create a new D = [Dt Dt−1].

2. Compute the correlation matrix for the new D, Corr(D).

3. Invert Corr(D) and then normalize the resultant matrix to obtain ones in its

diagonal, the result will be the time-lagged partial correlation matrix PCorr.
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4. Use a threshold to define the zeros and ones of the connexion matrix.

5. Build the dynamic connexion matrix as defined in Eq. 5.87.

6. Using the submatrix B, define all the edges pointing from t − 1 to t, see for

instance Figure 4.3. Place these edges in a list called fixed-edges.

7. Using submatrices At and At−1 define all the variable edges that still do not

have a direction and place them in a list called var-edges.

Hence, the output of this stage besides the matrixDM are the vectors fixed-edges

and var-edges.

Rule 2: Convergent structure analysis

Rule 2 looks for convergent structures. Because convergent structures are easily

inferred using the available data, it is possible to find if an undirected structure is a

convergent structure or not. This stage is explained in the following steps:

1. Identify three node paths of the shape at−1 → bt−ct, see Fig. 4.3 for a reference.

Note that the edges pointing from at−1 to bt were fixed in Section 5.8.2.

2. Evaluate and score the two possible combination for the paths found in step

1, they can be either at−1 → bt → ct or at−1 → bt ← ct.

3. Choose the option with the highest score and fix its edges. Place the fixed

edges in the fixededges list and delete them from varedges including the delayed

mirror edges bt−1 − ct−1. Also, update the dynamic matrix DM.

4. Identify three node paths of the shape a→ b− c regardless of the lag index.

5. Do the same as in steps 2 and 3.

6. Identify three node paths of the shape a − b − c regardless of the lag index,

and evaluate two possibilities; convergent structure and any other.

7. If the convergent network evaluated in step 6 results in the highest score: Place

the fixed edges in the fixededges list and delete them from varedges including
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the delayed mirror edges bt−1−ct−1. Also, update the connection matrix DM.

Otherwise, leave the edges as undirected.

The next rule also looks for network patterns, but now it is more difficult because

it involves one node more and possible cycles must be avoided.

Rule 3: 4-node acyclic paths

This stage searches all the acyclic four-node loops inside the total unfolded network

in At, At−1 and even using the fixed edges in B as bridges to build four-node loops.

We can summarize this stage with the following steps.

Figure 5.10: Forbidden four-node cycles in BNs.

1. Identify 4-node loops in the network.

2. Using the lists fixededges and varedges identify the directed and undirected

edges of the loops found in the previous step.

3. For each loop iterate all possible edges that form a full directed loop avoiding

cycles as the ones shown in Fig. 5.10.

4. If from all the possible networks found in step 3, there is only one with the

highest score, fix it and place the new directed edges in fixededges and delete

them from vardedges including their mirror edges at slice t or t−1. Otherwise,

leave the undirected edges as found previously.

5. Repeat steps 3 and 4 for all the 4-node loops in the network.
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Rule 4: Scoring remaining edges

This is the simplest of all the algorithm’s rules. It consists of iterating all the network

combinations using the remaining variable edges if any and scoring the totality of

the network using the probability model.

The network searching as it is described here is the worst of all searching tech-

niques, in fact few authors would call it a technique. However, because very few

non-fixed edges are expected at this point, the computation of this stage is fast.

Furthermore, the algorithm does not look for the skeleton of the network, the undi-

rected network was established in Rule 1. Here, only the direction of the remaining

edges is searched and this is more efficient. The steps for this stage are as follows:

1. Identify all the remaining variable edges in the unfolded BN.

2. Iterate all the possible combinations (avoiding cycles) and score each iteration.

3. If only one network with the highest score is found, fix all the remaining edges

and place them in the vector fixed-edges.

4. If more than one network is found with the highest score, group them as the

most probable solution.

5. End of the algorithm.

This DBN rule based algorithm was tested in Peraza and Halliday (2010a) for

a simulated MVAR system and also on real time series from the Saccharomyces

Cerevisiae (yeast) cell cycle datasets using BIC as score function. The next section

covers a very successful area in network structure searching where networks are

sampled directly from the posterior probability distribution.

5.9 Monte Carlo methods

Network structure inference using Bayesian networks can be done by sampling net-

works from the posterior probability distribution
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p(Sh|D) =
p(D|Sh)p(Sh)

p(D)
, (5.88)

and averaging the sampled network to obtain a representative mean of the net-

work system. Also the population mode can be computed and taken as the estimated

network. The problem here is that almost always it is impossible to sample networks

from Eq. 5.88 since the denominator (the normalizing factor) is not known and the

prior distribution p(Sh) is most of the time also unknown and has to be proposed

based on previous experiences.

However, network sampling from the posterior can be done in an indirect way

using Monte Carlo methods.

5.9.1 Markov chain Monte Carlo

A Markov chain is a system where a future sample or output depends only on its

predecessor. This kind of systems are also called in Signal Processing as Markov

processes (León-Garcia , 1994). Markov chain Monte Carlo is a sampling method

that behaves as a Markov process and it is based on a Monte Carlo method for

computation of integrals. As explained in Walsh (2004), assume that it is desired

to compute the following integral,

∫ b

a

h(x)dx (5.89)

and that the function h(x) can be factorized in two functions f(x) and p(x), the

latter being a probability distribution. This can be expressed as

∫ b

a

h(x)dx =

∫ b

a

f(x)p(x)dx . (5.90)

Since p(x) is a probability distribution the previous expression becomes an ex-

pected value with respect to p(x). This means that∫ b

a

f(x)p(x)dx = Ep(x) [f(x)] ≈
1

M

M∑
i=1

f(xi) , (5.91)

where M is a very large number of samples xi which were drawn from p(x).

Now imagine that h(x) can not be factorized, in this case there is a slight change
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applied by proposing another known probability distribution q(x) and adding it to

the integral as follows∫ b

a

f(x)
p(x)

q(x)
q(x)dx = Eq(x)

[
f(x)

(
p(x)

q(x)

)]
≈ 1

M

M∑
i=1

f(xi)

(
p(xi)

q(xi)

)
, (5.92)

The previous equation is called in the literature importance sampling (Gamer-

man and Lopes , 2006). Notice that although h(x) is shown factorized it is not

strictly required.

Now the concept of Markov chains needs to be explained more deeply. Markov

chains are very well explained in Walsh (2004), but since this concept is needed to

understand the Metropolis-Hastings algorithm in Section 5.9.2, it is briefly explained

here.

As previously mentioned a Markov chain is a system where future outcomes

only depend on its last predecessor. This can be represented using conditional

probabilities as

p(Xt+1 = sk|Xt = sg, Xt−1 = sh, ..., Xt−2 = sj, ) = p(Xt+1 = sk|Xt = sg) , (5.93)

where the outputs s are different states of the Markov chain. What Eq. 5.93

says is “the probability of jumping to state sk if currently the system is in state sg”.

This probability depends only on sg and the information or knowledge of previous

steps is lost. Now represent the probability of the current state as

πj(t+ 1) = p(Xt+1 = sj) (5.94)

which can also be computed with

πj(t+ 1) =
∑
k

p(Xt+1 = sj|Xt = sk)p(Xt = sk)

=
∑
k

p(Xt+1 = sj|Xt = sk)πk(t)

=
∑
k

p(k → j)πk(t)

(5.95)

which in matrix representation for the Markov chain state can be written as

Π(t+ 1) = Π(t)P , (5.96)
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where P is the transition matrix. This is a square matrix whose elements indicate

the probability of going from column state a to row state b. Hence all rows in this

matrix sum to 1. An interesting property of Markov chains is their stationarity. As

can be seen, Eq. 5.96 is an iterable equation where Π is not known in advance but

it can be proposed at the beginning of the iteration and after some “burning time”

it will reach stationarity or stability, which implies that

Π∗ = Π∗P , (5.97)

where Π∗ shows the probability of being in any state at any moment of time.

5.9.2 Metropolis algorithm

The Metropolis algorithm is a sampling method proposed by Metropolis using sym-

metrical distributions (Metropolis and Ulam , 1949; Metropolis et al. , 1953).

Symmetrical distribution refers that the probability of going from step a to step

b is the same as going from b to a in the Markov chain. This is represented as

p(a→ b) = p(b→ a). The easiest choice although not the more efficient is to choose

the uniform distribution where all transition probabilities are equal.

For the case of Bayesian networks which are the interest of this thesis the

Metropolis algorithm is as follows:

1. Propose an initial hypothetical network Sh ,

2. Using the previous network, modify it applying one the three basic network

changes (see Section 5.9.4) to create a new S+
h ,

3. evaluate the posterior probability with both networks using

α =
p(S+

h |D)

p(Sh|D)
, (5.98)

4. If α < 1, accept the proposed network S+
h with probability α, otherwise accept

S+
h ,

5. Go to step 2 and repeat until stationarity is reached ,
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6. All accepted networks will be networks sampled from p(Sh|D) .

The Metropolis algorithm can be summarized as

α = min

(
1,

p(S+
h |D)

p(Sh|D)

)
. (5.99)

The Metropolis algorithm allows to sample networks from the posterior distri-

bution. Notice that with this algorithm it is not needed to compute the normalizing

factor which is the probability of the datasets p(D) because this factor is cancelled.

From the network samples, it is possible to compute for instance the sample mode

and use it as the network estimator. However, there are modifications of the original

Metropolis algorithm that are able to reach the maxima of the network probability

distribution and sample networks around this point, such as simulated annealing.

This is the optimization method applied in this thesis for network inference.

5.9.3 Simulated annealing

Simulated annealing (Kirkpatrick et al. , 1983; Walsh , 2004) is implemented in the

same way than Metropolis algorithm, but the acceptance probability is defined by

β = min

[
1,

(
p(S+

h |D
p(Sh|D)

)1/T (t)
]

. (5.100)

The function T (t) is called the cooling schedule which cools down the network

acceptance probability β in Eq. 5.100 and helps to sample networks closer to the net-

work distribution maxima (Walsh , 2004). The cooling schedule function is defined

as

T (t) = max

[
T0

(
Tf

T0

)t/b

, Tf

]
, (5.101)

where T0 is the initial temperature, Tf is the final temperature and b is the

cooling time, which is the time it takes to reach Tf . The proposed network S+
h

is created by changing the previous network Sh using one of three basic network

changes, see Section 5.9.4.

Notice that as in the Metropolis algorithm the denominators in Eq 5.60 are

cancelled, leading to
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α =
p(S+

h |D)

p(Sh|D)
=

p(D|S+
h )p(S

+
h )

p(D|Sh)p(Sh)
(5.102)

At this point there are two approaches that can be followed, one is to say that

for large networks S+
h and Sh are similar or almost equal, differing in only one edge.

This means that p(Sh) ≈ p(S+
h ) and the previous ratio can be further simplified to

α =
p(S+

h |D)

p(Sh|D)
=

p(D|S+
h )

p(D|Sh)
. (5.103)

This previous step is commonly assumed because in principle the prior distribu-

tion p(Sh) is not known. See for instance Rajapakse and Zhou (2007).

The second approach is to apply our previous knowledge of what is expected

to find as a network, and this is a sparse network. Hence, it is possible to use a

prior distribution for the Bayesian ratio that gives high probabilities to sparsely

connected networks and low probabilities to highly connected ones. This approach

is followed in this thesis for the FBNs networks by using the FBIC score which

introduces a punishment factor for network complexity. The FBNs acceptance ratio

using simulated annealing is finally defined by

β = min

[
1,

(
p(F|S+

h )p(Θ|S
+
h )p(S

+
h )

p(F|Sh)p(Θ|Sh)p(Sh)

)1/T (t)
]

. (5.104)

The first proposed network Sh has to be chosen previously by the researcher,

which can be the empty network for instance. The following network proposals S+
h

must be chosen using one of the three basic network changes; edge addition, edge

deletion, and edge reversal.

5.9.4 Proposing a network change

In order to propose new networks for the simulated annealing algorithm, the new

network S+
h must be created by applying to the current network Sh one of the three

basic network changes. These are edge addition, edge deletion, and edge reversal.

These basic network edge modifications apply a small change to the current network.

Here it can be appreciated why the Metropolis algorithm produces a Markov chain.

Every network in the universe of networks is one state in the Markov chain, and when
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5 Structure inference using Bayesian networks

a new network is proposed what is evaluated is the probability of jumping to the next

state. The networks that receive more jumps when the chain reaches stationarity,

are the networks that describe the best the studied system. Figure 5.11 shows the

three network changes. In this thesis the edge changes applied for Metropolis or

simulated annealing algorithm are chosen randomly, each one with probability 1/3.

Figure 5.11: Three basic network changes. a) Edge addition, b) Edge reversal, c) Edge deletion.

Chapter summary

In this chapter an introduction to Bayesian networks for structure searching was

given. This included basic theory on network evaluation using the posterior dis-

tribution from Bayes’ theorem. Also, network score metrics were reviewed such as

BDe, BIC, and FBIC which can be used in rule-base algorithms or stochastic ones.

This chapter also introduced the main contribution of this thesis which are Fourier

Bayesian networks or FBNs. FBNs use the complex valued information embedded

in the time series to find network structures and edges’ causality. In order to do this,

FBNs uses the Fourier transform to decompose the time series in two matrices, one

for the frequency power F and another for the frequency phase Θ. Using these two

matrices FBNs are able to factorize the likelihood distribution p(F,Θ|Sh) in Bayes’

theorem in two likelihoods, one for the power and other for the phase. FBNs have

many good properties against standard BNs or DBNs. FBNs are nonparametric,
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5.9 Monte Carlo methods

this means that FBN does not rely on the network unfolding like DBNs. FBNs do

not need to unfold the network and can be focused on a specific band of frequen-

cies λ for the network searching thanks to their Fourier nature. These properties

will be studied in the next chapter where FBNs are tested through simulations and

compared with BNs and DBNs using Gaussian models.
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Chapter 6

Simulations

This chapter explains through simulations the proposed method of Fourier Bayesian

networks or FBNs. FBNs performance is tested using two network models, a linear

one using MVAR processes and a non-linear model using a variant of the MVAR

where the exponential function e is used as non-linear operator. FBNs are based on

the Fourier transform whose complex coefficients are used to make inferences about

the network power and the network phase likelihood functions.

All simulations in this chapter are implemented in Python (version 2.6.5). The 2-

dimensional graphs are created using the Python module Matplotlib (version 1.3.0)

and the 3-dimensional ones with the brain cortex meshes are created using Python-

Mayavi2 module Enthought.mayavi (version 3.3.0).

6.1 Spectral and phase likelihood

This section shows in action the spectral and phase likelihoods presented in Eq. 5.74

and Eq. 5.79. The spectral likelihood which is based on the linear model can be seen

as a spectral regression of Fourier coefficients. From this perspective Eq. 5.74 is not

different from any other regression in time domain. However, since the Fourier coef-

ficients are used for the regression and these represent the amplitudes of orthogonal

sines and cosines, the cross-phase among the child node and its parents is completely

ignored. In other words, for the spectral likelihood in Eq. 5.74 only power fitting is

important at every frequency point.
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How Eq. 5.74 works can be explained with the following network example. The

network shown in Figure 6.1 (Baccala , 2001) is a 5-node network whose behaviour

is described by a set of MVAR equations in Eq. 6.1. It is possible to infer this

network structure by studying the interactions among the time series recorded from

the network nodes (sources). Figure 6.2 shows the coherence matrix for the five

sources. Each element of this matrix shows the coherence Rrow,column. As can be

seen, there is a strong coherence between neighbouring nodes and weak coherence

between nodes that are far away within the network.

Figure 6.1: Network example for spectral error and phase estimation. The equations that describe
the behaviour of this system are shown in Eq. 6.1.

x1(n) = 0.33x1(n− 1) + 0.33x5(n− 1) + 0.33η1

x2(n) = 0.5x1(n− 1) + 0.2η2

x3(n) = 0.5x2(n− 1) + 0.2η3

x4(n) = 0.25x3(n− 1) + 0.25x4(n− 1) + 0.25x5(n− 1) + 0.2η4

x5(n) = 0.33x4(n− 1) + 0.33x5(n− 1) + 0.2η5

(6.1)

In order to perform network structure inference, the spectral likelihood function

is used in a network searching algorithm to evaluate all convergent structures that

obey the network conditional independence and the acyclic path condition. For

instance, suppose that it is of interest to find the parents of node x4. This can be

achieved by applying the spectral error function and see the resultant error spectrum.

The parents that give the lowest error spectrum will be the more likely parents for

node x4.

Figure 6.3 shows the evaluation of error spectrum in Eq. 5.71 for the parent nodes

for x4. The evaluated convergent networks for this example are x4 itself, (x4 ← x3),
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6.1 Spectral and phase likelihood

Figure 6.2: Coherence matrix of the network system in Eq. 6.1. Each row and column represents
a node of the network shown in Figure 6.1.

(x4 ← [x3, x1]), (x4 ← [x3, x5]), (x4 ← [x3, x5, x2]), and (x4 ← [x3, x5, x2, x1]).

Notice how the error spectrum power decreases when the parent node x1 is added

to the network (x4 ← x3) to form (x4 ← [x3, x1]). Notice also that the error

spectrum decreases even more with the network (x4 ← [x3, x5]), where x3 and x5

are neighbours of x4 and make x4 independent of the rest of the network. This

can be confirmed by noticing that when more network nodes are added into the

vector of parents, the error spectrum does not decrease more as can be seen in the

last two error spectra for the convergent networks (x4 ← [x3, x5, x2]), and (x4 ←

[x3, x5, x2, x1]). This means that information coming from x1 and x2 is irrelevant

once x3 and x5 are given and that x4 is conditional independent from the rest of the

network given nodes x3 and x5. The same could be proven for the rest of the nodes

in the network. Basically all the network structure searching algorithms use this

principle to find the best network that produces the lowest regression error, with

some constraints such as limiting the complexity of the network represented by the

number of edges or cyclic path avoidance.
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Figure 6.3: The error spectrum is shown for networks formed by node x4 and different combinations
of parents. It is possible to see how the addition of a new source node in the parent vector decreases
the error spectrum until the two neighbouring nodes of x4 are included, these are x3 and x5. Once
these nodes are given, any information coming from other sources in the network is irrelevant. This
shows that x4 is conditional independent from the rest of the network given x3 and x5. Colour
image can be seen in Figure B.13.

Figure 6.4 shows the cross-phase obtained from coherency in Figure 6.2. Since

the delay in this system is on average constant among network nodes, most of the

phase slopes are constant through all frequencies, meaning that we can fit the phase

with a straight line. According to the Fourier linear model, a negative slope indicates

that the row node causes the column node in the cross-phase matrix in Figure 6.4, or

row → column. All cross phases in Figure 6.4 show consistent slopes, with exception

of the phase between x4 ↔ x5 which have a bidirectional interaction (cyclic path)

that can not be modelled by a straight line.

The phase likelihood in Eq. 5.79 uses the cross-phase slope to infer time delay

and map this information in a probability score, see Eq. 5.85. Figure 6.5 shows the

phase spectrum between x4 and its possible parents. A negative slope indicates that

the causality model is correct.
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6.1 Spectral and phase likelihood

Figure 6.4: Cross-phase matrix for the system shown in Figure 6.1. The phase slope indicates
causality for the network system. A negative slope indicates that a row node is a parent of a
column node.
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Figure 6.5: Phase spectra between the child node x4 and the rest of the nodes in the network as
parents. A negative slope indicates that the edge direction or model is correct.
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6.2 Network models

For all experiments in this chapter, two network models are implemented. AMVAR(d)

and a non-linear model NL(d), where d indicates delayed interaction among sources.

All simulations use d = 1 and d = 2 which are sufficient to show the properties of

FBNs for network structure inference. Two kind of experiments were implemented:

first the inference of synthetic networks generated by the MVAR and NL models

using FBNs and also DBNs for comparison purposes. The second set of experi-

ments consist of the same set up but instead of using time series generated by the

synthetic networks only, a simulated MEG recording environment is included. This

means that the synthesized time series modulate electric dipoles placed in a brain

mesh to generate fluctuating magnetic fields that are acquired by MEG SQUIDs.

Then, brain imaging beamforming is applied in order to infer the current activity of

the original brain electric dipoles and the network structure with this information.

The experiments using the MEG recording simulated environment are designed to

test how the inference of brain networks works after MEG beamforming.

In addition to network inference from the defined network models and the sim-

ulated MEG recording environment, different network sizes are also tested. In this

thesis project, it is of interest to see how network inference using MEG beamform-

ing behaves for large networks. Networks of 100 nodes are used to test the FBNs

behaviour. Nevertheless, smaller networks of 10 nodes are also studied in order to

see the network inference performance by keeping the analysis as simple as possible.

6.2.1 Linear case: Multivariate autoregressive model

The MVAR networks are implemented using the following set of equations in matrix

notation;

x(n) = Ax(n− d) + g(n) , (6.2)

where x is the vector of generated time series, g is a vector of independent

Gaussian noise sources, d is the variable time delay, and A is the MVAR coefficient

matrix, the coefficients that define the edges and their strength. The coefficient

matrix A is chosen by three steps. First a small-world network is created with 4
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6.2 Network models

nearest neighbour edges for each node and random reconnecting edge probability

of 0.25, see Section 1.5.1 for details. Second, the undirected matrix for the small

world network is directed by taking the upper triangular part of this matrix. Finally

the directed matrix is weighted where every weight value is chosen randomly with

uniform distribution −1 < aij < 1 while keeping the MVAR system stable.

To generate small-world networks randomly, the Watts and Strogatz (Watts

and Strogatz , 1998) method implemented in Networkx1 python module is used.

Figure 6.6 shows the 10-node small-world network for the MVAR experiments. This

network is shown in two network layouts, a spring layout at the left and a circular

layout at the right side of Figure 6.6. The undirected connectivity matrix is given

directly by the random network generator function in the Networkx python module.

Figure 6.6: 10-node MVAR(d) network structure for simulations. Both networks show the same
network structure but in two different layouts; spring and circular. Using this structure FBNs are
test for network connectivity inference.

Figure 6.7 shows the directed connectivity matrix for the network in Figure 6.6.

Since static BNs do not allow cyclic paths, the undirected networks were directed

by zeroing out the lower triangular part of the undirected matrix. This procedure

generates automatically a directed graph whose edges will be oriented in a clockwise

fashion in a circular layout. For instance, for the network in Figure 6.6 the nodes

x1,x4, and x8 will point to x0. Notice that with this arrangement x0 will always be

the lowest node in the network hierarchy.

1http://networkx.lanl.gov/index.html
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Figure 6.7: 10-node MVAR(d) coefficient matrix. This matrix represents the connectivity structure
of the network in Figure 6.6 and also the edge weights.

Using the weighted and directed connectivity matrix A it is possible then to

generate time series using the MVAR model. Figure 6.8 shows the correlation ma-

trix of 10 time series generated by the 10-node MVAR(1) network. Notice that the

interaction among the sources does not allow to infer the real shape of the net-

work using simple correlation. But if the time-lagged partial correlation matrix (see

Eq. 4.11) is computed, the network structure is recovered from the time series as

seen in Figure 6.9.
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Figure 6.8: 10-node MVAR(1) correlation matrix. This matrix was estimated using time-series
generated by the coefficient matrix A in Figure 6.7 and Eq. 6.2.

In the same manner as the 10-node MVAR network explained previously, a 100-

node MVAR network was designed. This network is shown in Figure 6.10 in a spring

and circular layout. Also, its connectivity matrix was directed by taking the upper

triangular part and weighted randomly with a uniform distribution as can be seen

in Figures 6.10 and 6.11.

Figure 6.12 shows the correlation matrix for the MVAR-100-node system. Again

154



6.2 Network models

0 5 10 15

0

5

10

15

Time-lagged partial correlation matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.9: 10-node MVAR(1) time-lagged partial correlation matrix. This matrix was estimated
using time series generated by Eq. 6.2 and the matrix in Figure 6.7 as coefficient matrix A.

Figure 6.10: 100-node MVAR(d) network for simulations. This network uses the same connectivity
model shown in Eq. 6.2 and it is used to test FBNs performance on networks with large number
of nodes.
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Figure 6.11: 100-node MVAR(d) coefficient matrix. This is the matrix A for Eq. 6.2 to synthesize
time series from the MVAR(d) model.

as the 10-node network case, it is not possible to infer the network structure from

the correlation matrix. However, it is already known that this is a linear system

whose sources have interaction of one sample lag, and this knowledge allows to apply

the time-lagged partial correlation matrix, shown in Figure 6.13. The structure can

be inferred in the submatrix B of this matrix, which can be located at the rows

100− 199 and columns 0− 99.

6.2.2 Non-linear model

The non-linear simulations are performed with a modification of the original MVAR(d)

model where the exponential function e is used as a non-linear operator. The syn-

thesized networks using the non-linear model NL(d) are defined by the equation

x(n) = A exp(x(n− d)) + g(n) , (6.3)

where the coefficient matrix A is generated as in the linear case in Section 6.2.1

but with uniform distribution 0 < aij < 2.0, and g(n) is a vector of Gaussian noise

sources. Figure 6.14 shows the structure of the non-linear system for this simulation

in both layouts, spring and circular.
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Figure 6.12: 100-node MVAR(1) correlated matrix. This matrix is estimated using time series
synthesized from the MVAR(1) model in Eq. 6.2.
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Figure 6.13: 100-node MVAR(1) time-lagged partial correlation matrix estimated from the MVAR
network system in Figure 6.10.

157



6 Simulations

Figure 6.14: 10-node NL(d) network for the non-linear simulations. Both networks represent the
same structure shown in two different layouts; spring and circular layout.

Figure 6.15 shows the coefficient matrix A for the network in Figure 6.14. Using

this matrix and the NL model in Eq. 6.3 time series can be generated. The correla-

tion matrix of these time series are shown in Figure 6.16. As in the MVAR case, the

structure of the network can not be inferred by simply analysing the correlation ma-

trix. However, it is possible to compute the time-lagged partial correlation matrix

to infer the structure. The time-lagged correlation matrix is shown in Figure 6.17.
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Figure 6.15: 10-node NL(1) coefficient matrix for the non-linear experiments. This matrix and its
coefficients define the connectivity structure and edge weights of the non-linear network.

In order to see the behaviour of FBNs in larger non-linear systems, a 100-node

network is also implemented. Its structure is shown in Figure 6.18 and its weighted

connectivity matrix A is shown in Figure 6.19. By this point the correlation matrix

and the partial correlation matrix are omitted since their results are similar to the

previous cases, and do not offer more insight to the comprehension of the NL(d)
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Figure 6.16: 10 node NL(1) correlation matrix estimated from time series generated using matrix
A in Figure 6.16 and the NL(1) model in Eq. 6.3.
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Figure 6.17: 10-node NL(1) time-lagged partial correlation matrix.
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system.

Figure 6.18: 100-node NL(d) network for simulations.

6.3 Simulated brain networks

The main interest of this project is to design a connectivity technique for MEG

studies and for this reason it is of paramount importance to test how FBNs behave

in MEG studies. This is difficult to perform on real datasets. Using real datasets

will not allow to compare the performance of FBNs inferring networks because every

network connectivity technique highlights different properties of the system under

study depending on the model or assumptions followed. Hence, FBNs can not be

compared using other connectivity techniques, unless the real brain network were

known in advance.

In order to test FBNs’ performance in MEG studies, a simulated MEG record-

ing environment is implemented. This MEG environment consists of a brain mesh

with the shape of the brain cortex, simulated electric dipoles, and SQUIDs sensors

which have the same sensor layout of the 4D Neuroimaging Magnes 3600 with 248

sensors. The cortex is a VTK mesh/polyhedron of 263924 triangular faces for the

left hemisphere and 265694 faces for the right hemisphere and it was taken from the

3DSlicer2 software and its tutorial files.

2http://www.slicer.org/
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Figure 6.19: 100-node NL(d) coefficient matrix A.

A straight forward way to set up simulations is assuming that every triangular

face in the cortex polyhedron is a potential place for cortical sources whose electric

dipoles are orthogonal to the faces of the polyhedron. Nevertheless, using such

amount of positions increases the computation for the beamforming analysis. Recall

from Section 2.5.2 that a new spatial filter must be estimated for each position within

the tessellated brain, which in this case will be of 529618 spatial filters. For this

reason the original brain mesh was decimated in order to have fewer faces and in

consequence fewer spatial filters to compute. Using Mayavi23 software, the brain

cortex mesh was decimated from its original 529618 faces to 25416 triangular faces

for the right hemisphere and 25376 faces for the left hemisphere. This reduces the

number of estimated spatial filters to 50792.

Having the network systems defined in Sections 6.2.1 and 6.2.2, N number of

faces from the brain mesh are chosen randomly where N is the number of sources

to simulate (10 and 100 nodes). The brain network connectivity is defined by the

original network systems defined in Sections 6.2.1 and 6.2.2, but the spatial locations

of the nodes are chosen randomly. Once the source positions are designated, their

3http://code.enthought.com/projects/mayavi/
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positions are fixed. The chosen brain network configurations are used for all the

remaining experiments in this chapter.

Figure 6.20 shows the 10-node and 100-node network for the MVAR network

systems. The thickness of the network edges is proportional to the edge weights.

Figure 6.20: Generated network structures in the brain cortex mesh for the network structure
inference experiments using MVAR(d) model. The upper row shows the 10-node network and the
100-node network is shown in bottom row. Colour image can be seen in Figure B.14

The NL(d) cases are also implemented. The reason for implementing a NL case

is mainly because it is important to study the FBNs’ performance when the model

is not linear. FBNs are based on the Fourier transform, hence there are some

assumptions automatically taken such as stationarity and linearity. FBNs assume

that the interaction among brain regions is linear which is not true for the brain as

in all phenomena in nature. Nevertheless, linear techniques are still being used in

Neuroscience and Neuroimaging and much of the accumulated knowledge about the

brain today has been achieved by linear techniques.

The simulation set up presented in this section can be summarized as follows:

First, network inference performance from synthesized networks using linear MVAR(d)
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6.3 Simulated brain networks

Figure 6.21: Generated network structures in the brain cortex mesh for network structure inference
experiments using the NL(d) model. The upper row shows the 10-node network and the 100-node
network is shown at the bottom row. Colour image can be seen in Figure B.15
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and non-linear NL(d) models with two different time delays d = 1 and d = 2 is stud-

ied. These simulations show the performance of FBNs assuming full access to the

signal generating sources. Nevertheless, in MEG studies it is not possible to have

access to the sources, that is why the MEG recording simulated environment is

implemented. Using the MEG implementation, FBNs are tested after the MEG

has recorded the brain’s magnetic fields and the LCMV beamformer has been ap-

plied, where beamforming has the function of recovering the activity of the original

sources. The next section explains how the simulated MEG recording environment

is implemented for brain source acquisition and also localisation of brain sources.

6.4 MEG and Beamforming

This section describes the MEG recording environment designed for the simulations.

The MEG implemented here is composed of 248 sensors that are able to record

magnetic fields that crosses the magnetometers or SQUIDs, these are shown in

Figure 6.22 as small spheres surrounding the brain mesh. The layout of the SQUIDS

is the same of the 4D Neuroimaging Magnes 3600 located at the York Neuroimaging

Centre4 (YNiC). As explained in Section 2.3, only the magnetic field components

parallel to the SQUIDS or orthogonal to the magnetometers’ loops are recorded, see

Section 2.5.2 for details.

Using the MVAR(d) and NL(d) models and networks defined in Section 6.2 and

Section 6.3, it is possible to generate time series that modulate electric dipoles placed

in the brain cortex mesh and acquire their magnetic fields.

It is important to notice that in real experiments, the number of sources and their

position is unknown. Hence, in a real brain imaging using MEG, the researcher will

have to answer first how many sources there are and their position in the brain vol-

ume before attempting brain activity extraction using the virtual electrodes. There

are several techniques and protocols to achieve this such as designed paradigms to

compare resting state and a cognitive task of interest in order to find significant

statistical differences between both conditions. The places with higher significance

4https://www.ynic.york.ac.uk/
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6.4 MEG and Beamforming

Figure 6.22: Simulated MEG acquisition environment. The figure shows the 248 SQUIDs as
small spheres surrounding the brain mesh. The layout of the SQUIDs is the same of the real 4D
Neuroimaging Magnes 3600 magnetoencephalographer.

are considered true activated sources for the particular cognitive task tested. An-

other popular technique is independent component analysis, which tries to find the

original independent sources within all sources in the brain. Then areas of the brain

correlated with significant independent components are taken as true source activity.

Since the experiments are done with simulated networks where every node is a

brain source, the positions of all nodes are already known. Hence for the matters

of this thesis, source inference and techniques to find them will not be discussed or

tested. For network structure inference simulations, the MEG virtual electrodes are

used at those places where it is known in advance the existence of a brain source.

In the next section, beamforming simulations are shown for the two brain networks,

linear MVAR and the non-linear NL.

6.4.1 Independent sources

The LCMV beamforming is originally designed to find the position and power of

independent or at least uncorrelated sources. According to the beamforming deriva-
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tion, its performance decreases if two or more brain sources are highly correlated.

This makes beamforming “fuse” the correlated sources in a single one, because from

the beamforming perspective, two or more sources with almost equal activity must

have a common single driving source. For this reason, it is interesting to see first

how the beamforming method implemented here works for independent sources. Fig-

ure 6.23 shows the LCMV beamforming results where the brain cortex mesh faces

have been coloured coded according to the power obtained from the NAI index in

Eq. 2.45 (red=highest and blue-lowest).

The network structure used for this simulation is the one for the 10-node MVAR(d)

network, and the sources were modelled as independent Gaussian noise that repre-

sent cortical activity. By comparing the beamforming maps in Figure 6.23 with

the linear structure in Figure 6.20 it can be seen that for the 10-node network the

areas with larger NAI index correspond to the areas where the network sources were

placed, indicating that the original sources can be localized.

Figure 6.23: Beamforming maps from independent sources. The current dipoles were modulated
by independent Gaussian noise sources and the source arrangement is the one of the 10-node linear
network in Figure 6.20. The image was programmed and created using Python-Mayavi2. Colour
image can be seen in Figure B.16.

Even when the sources can not be easily seen from the NAI map in Figure 6.23,

it is still possible to apply the virtual electrodes since the positions of the original

sources is known in advance. This approach is used in this thesis to infer networks
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from the MEG environment.

6.4.2 Linear networks

Figure 6.25 shows the same network structures as in Figure 6.23 but now using the

MVAR(1) model in Eq. 6.2 and its respective weighted connectivity matrix. As

can be seen, the 10-node beamforming NAI cortical map is very similar to the one

in Figure 6.23 where the NAI largest index areas coincide with the network node

positions at some degree.

Figure 6.24 shows correlation values between the extracted brain activity using

beamforming on those regions where it is known in advance the existence of network

sources and the original source activity. The correlation matrix was computed using

the vector [Beamforming results ; Original signals] and it is a 20×20 correlation

matrix which can be segmented as

C =

 B A

A O

 , (6.4)

where the matrix B is as 10×10 correlation matrix of the beamforming extracted

sources using the virtual electrodes, O is also a 10 × 10 correlation matrix but in

this case represents the correlation of the original source activity. The matrix of

interest for this experiment is A which is the cross matrix between the beamforming

extracted signals and the original sources. As can be seen in Figure 6.24, the largest

values in B are in its diagonal, indicating that the source extraction was performed

correctly, although there is one source that was not inferred correctly and showed

low correlation. Notice also that the cross correlations among the sources in B are

decreased compared with the original source cross correlations in matrix O.

Figure 6.26 shows the correlation matrix between the beamforming extracted

signals and the original sources for the 100-node MVAR(1) brain network. As in

the previous case, this matrix can be divided in four submatrices B, O and two

A as shown in Eq. 6.4. The matrix of interest for this experiment is matrix A

which is the cross correlation between the beamforming extracted signals and the

original sources. As can be seen the signal extraction was poor with only some high
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Figure 6.24: Beamforming vs. Originals correlation matrix for the 10-node MVAR(1) system. The
correlation matrix was computed by concatenating the original sources with the extracted ones by
beamforming.

Figure 6.25: Beamforming maps using the 10-node MVAR(1) brain network shown in Section 6.20.
The image was programmed and created using Python-Mayavi2. Colour image can be seen in
Figure B.17.
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correlation values in the diagonal. Figure 6.27 shows the NAI map for the 100-node

MVAR(1) network. The high density and number of the network sources affect their

extraction.

Figure 6.26: Beamforming vs. Originals correlation matrix for the 100-node MVAR(1) system.
As in the 10-node case, this matrix was created by concatenating the original sources with the
beamforming extracted ones.

6.4.3 Non-linear networks

For the NL network systems similar results were obtained. The 10-node NL(1) net-

work showed localised activity in the NAI map which coincides in some degree with

the original network structure. Figure 6.28 shows the correlation matrix between the

beamforming extracted sources and the original sources for the 10-node NL(1) net-

work. As can be seen in submatrix A, the extraction was successful with exception

of one source.

Figure 6.30 shows the correlation matrix but now for the 100-node NL(1) net-

work. Matrix A which has the cross correlation values between the beamforming

extracted sources and the original ones, shows that beamforming has a poor source
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Figure 6.27: Beamforming map using the 100-node MVAR(1) network model shown in Figure 6.20.
Colour image can be seen in Figure B.18.

Figure 6.28: Beamforming vs. original source correlation matrix for the 10-node NL(1) network
system.
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Figure 6.29: Beamforming maps using the 10-node NL(1) network. The original network structure
system is depicted in Figure 6.21. Colour image can be seen in Figure B.19.

extraction, since the diagonal elements of A are low value correlation coefficients.

The NAI map for the 100-node network case is shown in Figure 6.31. As in the

linear case, the large number of sources produces generalized activity through the

entire brain cortex and not single isolated sources from the original brain network

can be seen from the NAI map.

The beamforming results using the 10-node networks for both cases, linear and

non-linear, showed to be successful. The correlation between the extracted sources

by beamforming with the original sources is high. For the 100-node networks, this

was not the case as shown by the low correlation values in matrix A. Low correla-

tion indicates that network structure inference using beamforming for the 100-node

network is difficult.

6.5 Bayesian networks

Using the networks designed in previous sections, now it is possible to run experi-

ments for network inference for both the network systems alone and also using the

MEG recording environment. The FBN algorithm for structure searching will be

tested here using the four network systems designed and for comparison purposes

DBNs using Gaussian linear model will also be tested. It is not the intention of this
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Figure 6.30: Beamforming vs. original network correlation, 100-node NL(1) system. The original
network structure system is depicted in Figure 6.21.

Figure 6.31: Beamforming map for the 100-node NL(1) network. The original network structure
systems are depicted in Figure 6.21. Colour image can be seen in Figure B.20.
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section to make FBNs and DBNs compete. The reason for applying DBNs is to

have a background that tells us how good or bad is the FBNs’ performance.

Figure 6.32: Fourier Bayesian network (FBN) simulation and experiment scheme. The figure shows
the steps followed for most of the simulations in this section. First a network model is chosen from
which times series are synthesized. Then, these time series represented as the data matrix D are
Fourier transformed to obtain the power matrix F and the phase matrix Θ. Both matrices are fed
into the FBNs using the simulated annealing algorithm as optimization method in order to sample
networks from the network distribution close the distribution maxima. For these experiments 100
network are sampled. The network matrices are then added up to create a matrix that summarizes
the final estimated network from which a “champion” network is chosen using a network edge
threshold.

The results in this section start with single experiments where only one run of the

algorithm is plotted. Then statistical results obtained by several repetitions of the

algorithm are given. The statistical results give an idea of the average performance

of FBNs for the analysed networks. A diagram explaining the experiments in this

section is shown in Figure 6.32.

Figure 6.33 shows the coherence matrix for the 10-node MVAR(1) network in

Figure 6.6. From the figure, it can be seen that x3 shows high coherence values with

sources x4, x5, x6, and x7. Nevertheless, although coherence allows to infer relation

or connectivity among the universe of sources, it does not give any information

about causality of these connections. This can be assessed by analysing the phase
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information of coherency, see Section 5.6.3.

For all coherence and phase matrices in rest of thesis, the length of the data

segments is M = 20× 256, where 256 samples are the periodogram’s time window

with 75% overlapping.

Figure 6.33: 10-node MVAR(1) coherence matrix. The coherence matrix was computed using
time series generated from the 10-node MVAR(1) system. The time series length was of 20× 256
samples. This length will be constant for all simulations in this section. Each row and column
index of the matrix represents the network source it belongs to.

Figure 6.34 shows the cross phase spectrum (wrapped frequency phase) obtained

by taking the argument of coherency. As explained in Section 5.6.3, a negative phase

slope indicates that the row source in the matrix causes or leads the column source.

For instance, Figure 6.34 shows that x1 causes x0. This result was expected. Recall

from Section 6.2 that causality was created by taking the upper triangular part of

the weighted connectivity matrix. Hence, if a connection exist between two sources

in the analysed network, causality will always be defined from the node with higher

index to the node with lower index. This causality definition will be helpful for

analysing the simulation results in this section. Using this phase slope it is possible
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to infer the time delay between the two sources, see Section 5.6.3 for more details.

Figure 6.34: 10-node MVAR(1) cross-phase matrix. The cross-phase information shows the causal-
ity interaction among the network sources. This causality can be estimated by the phase slope. If
this slope is negative, it means that the source represented by the matrix row causes the source
represented by the matrix column.

In order to infer the 10-node MVAR(1) network, the FBN algorithm explained

in Section 5.6 was run using times series obtained from this network system. The

convergence curves for the FBN algorithm are shown in Figure 6.35. Figure 6.35-

top-left shows the score values | log(p(F|Sh)p(Θ|Sh)p(Sh))| which is the numerator

of the Metropolis rule in Eq. 5.104 for the simulated annealing. In this algorithm

all networks are evaluated and then the Metropolis rule decides if the new network

is taken as a true sample of the network distribution or discarded. The accepted

network scores are shown in Figure 6.35-top-right. The flat segments in this curve are

the algorithm iterations when the proposed networks were rejected by Metropolis,

and the curve’s steps indicate when the proposed network was accepted. Hence a

“noisy” curve in this case means a good performance for the Metropolis algorithm.

The third graph, Figure 6.35-bottom shows the number of edges of the estimated

network. From this graph it can be seen how this number converges to a constant

value with an acceptable variance.
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The hyperparameters for the simulated annealing algorithm are given in Table 6.1

for the 10-node MVAR(1) and MVAR(2) network systems. The hyperparameters

define the simulated annealing algorithm’s behaviour which is in charge of sampling

networks from the network distribution given the data matrices, p(Sh|F,Θ). The

hyperparameters’ function and their interpretation are explained in Appendix A.

Figure 6.35: 10-node MVAR(1) simulated annealing performance curve. The top-left curve shows
the score | log(p(F|Sh)p(Θ|Sh)p(Sh))| for the sampled networks. The top-right curve shows the
score of accepted network by simulated annealing. The bottom curve shows the number of edges
of the accepted network.

Table 6.1: Hyperparameters for simulated annealing:
10-node network systems, MVAR and NL.

numruns: 10000 initemp: 2.0
coolruns: 1500 fintemp: 0.02

burnedruns: 8000 alpha: 0.02
beta: 0.04

The last iterations of the simulated annealing algorithm (burnedruns) are used

for network inference where the first 100 accepted networks are saved. Then these

100 sampled networks are added up and thresholded to obtain a champion network.

Figure 6.36-left shows the estimated average network for the 10-node MVAR(1)

system, here the threshold Pnum is of 13 edges, while the true weighted network

for this system is shown at the right with all its weighted edges where the width of
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the arrows are proportial to their weight. Notice that the FBN method was able

to infer correctly the network system with exception of the weak edges which were

ignored by the algorithm.

Figure 6.36: 10-node MVAR(1) estimated network. The estimated network is shown at the left and
the true weighted network is shown at the right. Notice that the FBN method was able to infer
correctly the network with exception of the weak edges which were ignored. The edge threshold
for this simulation was Pnum = 13.

The results for the 10-node MVAR(2) system are shown in Figure 6.37, 6.38, 6.39,

and 6.40 and the simulated annealing algorithm uses the hyperparameters shown in

Table 6.1. Figure 6.37 and 6.38 shows the cross coherence and cross phase matrices

for this network system. Notice how the coherence spectrum changed with respect

to Figure 6.33 and the phase slopes have higher values than the ones in Figure 6.34.

The performance curves are shown in Figure 6.39. Notice that the average edge

of the sampled networks when the algorithm reaches stability is 12 edges. The flat

segments in this curve represent the iterations where the Metropolis rule rejects the

proposed networks.

Figure 6.40 shows the estimated network at the left of the figure, while the true

weighted network is shown at the right. Similarly to the MVAR(1) case, all strong

edges from the true network were found correctly while the weak ones were ignored

by the FBN method. Recall that in Figure 6.40-right the width of the arrows are

proportional of the edge strength. The estimated network is created by adding up

100 sampled networks which were taken after the simulated annealing algorithm

reached stability and the threshold applied is Pnum = 13.
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Figure 6.37: 10-node MVAR(2) Cross-coherence matrix from the network system in Figure 6.6.
Notice the difference with the coherence matrix in Figure 6.33.
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Figure 6.38: 10-node MVAR(2) cross-phase matrix from the network system in Figure 6.6.

Figure 6.39: 10-node MVAR(2) simulated annealing performance curves. Top-left) Network score
values | log(p(F|Sh)p(Θ|Sh)p(Sh))| per algorithm iterations. Top-right) Network score values of the
Metropolis accepted networks. Bottom) Number of edges of the networks accepted by simulated
annealing.
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Figure 6.40: 10-node MVAR(2) estimated networks. Left) The estimated network using the FBN
method. Right) True weighted MVAR(2) network. Here the network edge threshold was Pnum =
13 as in Figure 6.36.

The same experiments using the FBN method with the same hyperparameters

were implemented to infer the nonlinear 10-node networks, NL(1) and NL(2). For

the 10-node NL(1) network system, Figure 6.41 shows the coherence matrix and

Figure 6.42 shows the cross phase among network nodes. Most of the coherence

power is concentrated at high frequencies as can be seen in Figure 6.41.

Figure 6.43 shows the performance curves for the simulated annealing algorithm

during the network sampling for the 10-node NL(1) system. Figure 6.43-top-left

shows the network scores. The accepted network scores are shown at the top-right

of the same figure. Figure 6.43-bottom shows the number of edges of the accepted

networks which are approximately 16 edges. The estimated network is created by

adding up the last 100 Metropolis accepted networks after the algorithm reached

stability is shown in Figure 6.44-left. The original weighted 10-node network is

shown at the right of the same figure. Notice again that the weakest edges were

ignored by the FBN method.

The same set of experiments were performed for network NL(2). The results

for a single run of the FBN algorithm using simulated annealing as the network

distribution sampling method are also presented. As in the previous results, Fig-

ure 6.45 shows the coherence matrix for the 10-node NL(2) network, and Figure 6.46

shows the cross-phase matrix for the same system. Notice how the phase slopes in
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Figure 6.41: 10-node NL(1) network coherence matrix. The coherence matrix was computed from
time series synthesized using the network system in Figure 6.14.
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Figure 6.42: 10-node NL(1) network cross phase matrix, wrapped phase. The 10-node NL network
is depicted in Figure 6.14.

Figure 6.43: 10-node NL(1) simulated annealing performance curves. The top-left curve shows the
network score value | log(p(F|Sh)p(Θ|Sh)p(Sh))| for all proposed networks during the algorithm’s
run. Top-right curve shows the networks accepted by the simulated annealing. The number of
edges of the accepted networks are shown in the bottom curve.
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Figure 6.44: 10-node NL(1) estimated network. left) The estimated 10-node network using 100 sam-
pled networks. right) True weighted nonlinear network system originally depicted in Figure 6.14.
The threshold Pnum = 16 for the estimated structure.

Figure 6.46 are higher for the NL(2) when compared to the ones in Figure 6.42 for

the NL(1) network, and recall that the slope is a indicator of causality. A negative

slope indicates that the source represented by the matrix rows causes or influences

the sources at the matrix columns.

As expected after observing the previous experiments, the performance curves

for the simulated annealing algorithm were similar to the NL(1) and both MVAR

network estimation cases. The performance curves for the 10-node NL(2) are shown

in Figure 6.47. The network scores of all the proposed networks are shown at the top-

left of this figure, while the top-right curve shows only the scores of the Metropolis

accepted networks. The flat segments of this curve are iterations where the proposed

networks were rejected by the Metropolis rule. The bottom curve in Figure 6.47

shows the number of edges of the accepted networks which is on average 15. Recall

that the network structure is the same as the NL(1) case analysed previously.

Figure 6.48-left shows the estimated network using the FBN method. The orig-

inal network is shown at the right of the same figure for comparison purposes. As

in all previous cases the weak edges in the true weighted network in Figure 6.48

were ignored by the FBN method and only strong ones were obtained as the true

network.

The four 10-node networks, MVAR(1), MVAR(2), NL(1) and NL(2), show that

the FBN algorithm is able to infer the structure of these systems correctly, and more
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Figure 6.45: 10-node NL(2) coherence matrix. The coherence matrix was computed from time
series synthesized by the network system shown in Figure 6.14.

Figure 6.46: 10-node NL(2) cross phase matrix.
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Figure 6.47: 10-node NL(2) simulated annealing performance curves. Top-left curve shows the
network score values | log(p(F|Sh)p(Θ|Sh)p(Sh))| for proposed networks before accepted by the
Metropolis ratio. Top-right figure shows the accepted network scores. Bottom picture shows the
number of edges for the accepted scores.

Figure 6.48: 10-node NL(2) estimated network. The estimated network is shown at the left of
the figure. Right) The true weighted network for the 10-node NL system. Here the network edge
threshold was Pnum = 17.
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importantly that its performance is not affected by the system’s time delay d. For

the FBNs it is possible to infer NL(1) and NL(2) with the same successful result.

This non-parametric property of FBNs is inherited by the Fourier transform.

The 10-node networks show that non-parametric property of FBNs, but their

performance inferring large networks is still to be tested. In general, Bayesian net-

works is the preferred method to do this kind of task. Inference of large networks

is the reason why BNs and DBNs have become so popular in fields like genetic

networks or protein networks. The next section presents simulations of FBNs for

network inference but now for the 100-node networks defined in Section 6.2.1 and

Section 6.2.2.

6.5.1 FBNs: Inferring large networks

In this section the FBN method is used to infer the 100-node networks defined in

Sections 6.2.1 and 6.2.2. In order to test the accuracy of the FBN algorithm inferring

the network system, some matrices and performance measures must be defined first.

Recalling the model equations for the linear and non-linear system in Eq. 6.2 and

Eq. 6.3, the matrix that describes the causality and weights of the network system

is defined by

Cw = (U− I). ∗A , (6.5)

where .∗ stands for element per element multiplication,A is the coefficient matrix

in Eq. 6.2 and Eq. 6.3, U is a matrix of ones, and I is the unitary matrix. Notice that

in Cw only the diagonal of A was zeroed out. The estimated matrix Ew is obtained

by adding up 100 sampled directed binary networks from the network probability

distribution using the simulation annealing algorithm, see Figure 6.32.

Ew andCw define the connectivity of the estimated network and the real network

system. Nevertheless comparison of both matrices can not be done directly due to

the difference in their number of network edges and weights. For this reason it

is necessary to threshold both matrices in order match the average degree of the

networks; the real and the estimated networks. We define this threshold as Pnum

which represents the number of accepted edges in the inferred network.
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Using Pnum it is possible define binary directed matrices for the real and esti-

mated networks Cbd = bCwcPnum and Ebd = bEbdcPnum, where the floor brackets

indicates thresholding and Pnum is the number of edges for the threshold. The

binary undirected versions of these matrices can be created easily as

Ebu = Ebd + ET
bd , (6.6)

and similarly for Cbu. Using these matrices the network inference performance

measures are defined. As said previously, these measures test the accuracy of the

FBN algorithm and they are:

Structural correct edges(SC): SC measures the number of edges that were

found correctly regardless of causality. SC focuses on the network structure using

the undirected edges and it is defined mathematically as

SC =
1

2

∑
i

∑
j

Ebu(i, j)Cbu(i, j) (6.7)

where Ebu(i, j) and Cbu(i, j) are the (i, j) elements of matrices Cbu and Ebu

respectively. The weighted version of WSC, which uses the original weights of the

connectivity matrix Cw, is defined as

WSC =
∑
i

∑
j

Ebu(i, j)Cbu(i, j)Cw(i, j) . (6.8)

Correct directed edges (CD): From the total structural similarities (SC) in

both networks, CD will measure the number of edges whose inferred causality match

to the ones in the real network. This measure is defined by

CD =
∑
i

∑
j

Ebd(i, j)Cbd(i, j) , (6.9)

and its weighted version WCD is defined by

WCD =
∑
i

∑
j

Ebd(i, j)Cbd(i, j)Cw(i, j) . (6.10)

Wrong directed edges (WD): From the structural similarities (SC) in both

networks, WD measures the number of edges whose causality is contrary to the ones

in the real network. WD is defined by

WD =
∑
i

∑
j

Ebd(j, i)Cbd(i, j) . (6.11)
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Its weighted version (WWD) is defined by

WWD =
∑
i

∑
j

Ebd(j, i)Cbd(i, j)Cw(i, j) . (6.12)

Structural errors (SE): SE measures all the edge differences between both

networks either it is an extra inferred edge or a missing edge. This measure is

defined by

SE =
1

2

∑
i

∑
j

|Ebu(i, j)− Cbu(i, j)| . (6.13)

The weighted version WSE can only be defined for the missing edges, edges that

are present in the real network but not in the inferred one since for the extra inferred

edges there are not weights in Cw. Taking into account this previous fact, WSE is

defined as

WSE =
∑
i

∑
j

|Ebu(i, j)− Cbu(i, j)|Cw(i, j) . (6.14)

The four defined performance measures and their weighted versions are used to

test the performance of the FBN algorithm for the remaining of this chapter.

Table 6.2 shows the hyperparameters used to estimate the 100-MVAR(1) net-

work. Notice that the large number of nodes in this experiment requires more al-

gorithm iterations in order to reach stability. For this experiment a total of 200000

iterations were used with a cooling time of 70000.

Table 6.2: Simulated annealing hyperparameters for
the 100-node MVAR(1) system experiments.

numruns: 200000 initemp: 2.0
coolruns: 70000 fintemp: 0.06

burnedruns: 8000 alpha: 0.02
beta: 0.04

The large number of nodes makes it impossible to show figures with coherence

and cross-phase matrices. In their place the estimated connectivity matrix is given.

Figure 6.49 shows the estimated binary directed matrix Ebd and the thresholded

original matrix Cbd for the 100-node MVAR(1) network at the left and right of

the same figure respectively. Notice that some of the inferred edges have contrary

direction. This can be noticed by the elements at the lower triangular part of the
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estimated connectivity matrix which should be full of zeros as it is for the true

network.

For the connectivity matrices in Figure 6.49 the average number of edges of

the sampled networks obtained from the simulated annealing algorithm was of 133.

Hence, the original network matrix Cw was thresholded until the 133 strongest di-

rected edges remained while the rest were zeroed out and similarly for Ew. Here it

is important to mention that even though the networks sampled by the simulated

annealing algorithm are binary directed and acyclic matrices, there is no guaran-

tee that the network Ebd will be acyclic since it is created by adding up sampled

networks, as shown in Figure 6.32.

Figure 6.49: 100-node MVAR(1) estimated connectivity matrix shown at the left of the figure and
the original connectivity is shown at the right side. Notice that some edges were estimated with
backward causality which can be seen in the lower triangular part of the estimated matrix.

The simulated annealing performance curves are shown in Figure 6.51. Notice

that the average number of edges of the sampled network is around the 133 edges,

where the algorithm reached stability.

Table 6.3 shows the summarized results for this experiments. The true network

system represented by Cw has 200 weighted edges. The estimated network Edb has

133, 67 less edges than the original system. Recall the 10-node network experiments

in the previous section where the FBN method tends to ignore all low weighted edges

and keeps only the stronger ones, hence an estimated network with fewer edges was

also expected here. From the 133 estimated edges 99 undirected edges are estimated
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Figure 6.50: 100-node MVAR(1) estimated network using the FBN algorithm. The estimated
network is shown at the left and a network edge threshold Pnum = 133 edges was used. The true
network is shown at the right side of the figure.

Figure 6.51: 100-node MVAR(1) simulated annealing performance curves. The top curve shows
the score values | log(p(F|Sh)p(Θ|Sh)p(Sh))| of the accepted network vs. number of iteration of
the algorithm. The bottom curve shows the number of edges in the accepted networks.
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correctly, meaning that the structure of the network was inferred correctly in 99 of

the 133 edges, ignoring causality. From these 99 correct undirected edges, 89 were

inferred with the correct direction and the remaining 10 edges with contrary direction

as can be seen in WD. Finally, 34 edges were estimated incorrectly either they were

missed by the algorithm or were spurious found edges.

Since the network structure inference favours strong connections, it is also im-

portant to analyse the weighted version of the performance measures. Using the

edge weights in matrix Cw the weighted version of the performance measures are

computed. The total network weight is of 80.8238 which was computed by summing

133 weights in Cw that match the edges in Cbd. WSC is 65.1132, meaning that

80.56% of the original structure was inferred correctly, and WCD also shows that

72.41% of the original edges were inferred with the correct direction.

Table 6.3: Single run results: 100-node MVAR(1) network.
Edges in E (Pnum): 133 Edges in bCbdc: 133

Number of edges in Cw 200 Real network weight: 80.8238

SC: 99 WSC 65.1132 80.56%
CD: 89 WCD: 58.5304 72.41%
WD: 10 WWD: 6.5828 8.14%

SE: 34 WSE: 15.7105 19.43%

The same network inference experiment was also run for the MVAR(2) network.

The hyperparameters used are shown in Table 6.4 and the estimated network in

Figure 6.52. The structure of the original system is exactly the same as for the

MVAR(1) system, the only thing that has changed is the model order of the MVAR

equations. At first glance both networks in Figure 6.52 look very similar.

Table 6.4: Simulated annealing hyperparameters for
the 100-node network MVAR(2) system experiments.

numruns: 150000 initemp: 2.0
coolruns: 50000 fintemp: 0.04

burnedruns: 8000 alpha: 0.02
beta: 0.04

Figure 6.53 shows the weighted connectivity matrices for both networks, the

estimated and true network. As it happened in the MVAR(1) case some of the

estimated edges have inverse causality, the direction of the edges was estimated
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Figure 6.52: 100-node MVAR(2) estimated network using the FBN algorithm. The estimated
network is shown at the left side of the figure and the true network system is at the right side.
The estimated network edges were thresholded using a Pnum = 141.

backwards. This can be seen easily by inspecting the matrix elements at the lower

triangular part of the connectivity matrix for the estimated network, which as shown

in Figure 6.53-right should be full of zeros.

Figure 6.53: 100-node MVAR(2) estimated connectivity matrix using the FBN method. The
elements at the lower triangular part of the estimated connectivity matrix indicates edges with
backwards causality.

The simulated annealing performance curves for this experiment are shown in

Figure 6.54 where the number of edges of the sampled networks is around 141,

being the edge number average of the last 100 networks from which matrix Ew
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is computed. From the 141 edges, 119 were estimated correctly, representing this

number the 90.04% of the original structure and all of them were inferred with

correct causality. Only 22 edges were missing or spurious, representing the first ones

the 9.95% of the original network structure.

Figure 6.54: 100-node MVAR(2) simulated annealing performance curves. The top curve shows the
score values | log(p(F|Sh)p(Θ|Sh)p(Sh))| of the accepted networks during the simulated annealing
algorithm. The bottom curve shows the number of edges of the accepted networks versus the
number of iterations for the simulated annealing algorithm.

Table 6.5: Single run results: 100-node MVAR(2) network estimation using FBNs.
Edges in Ebd: 141 Edges in bCbdc: 141

Number of edges in Cw 200 Real network weight: 83.0968

SC: 119 WSC: 74.8225 90.04%
CD: 119 WCD:: 74.8225 90.04%
WD: 0 WWD: 0.0 0.0%

SE: 22 WSE: 8.2743 9.95%

Nonlinear large networks

Experiments are also run for the non-linear cases NL(1) and NL(2). For this set of

experiments the hyperparameters used are shown in Table 6.6. Figure 6.55 shows

the performance curves for the NL(1) network inference. In this case the average

number of edges in the sampled network was of 108 edges.

Figure 6.56 shows the inferred (left) and real (right) connectivity matrices for

the studied network after thresholding. Notice that as in previous experiments
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Table 6.6: Simulated annealing hyperparameters for
100-node network NL(1) experiments.

numruns: 200000 initemp: 2.0
coolruns: 70000 fintemp: 0.015

burnedruns: 8000 alpha: 0.01
beta: 0.04

Figure 6.55: 100-node NL(1) simulated annealing performance curves. As in the previous cases, the
top curve shows the score | log(p(F|Sh)p(Θ|Sh)p(Sh))| of accepted networks which were sampled by
the simulated annealing algorithm. The bottom curve shows the number of edges of the accepted
networks versus algorithm iterations.
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some edges in the inferred network were found with reverse causality. These can be

seen in the lower triangular part of the estimated connectivity matrix. The same

information is shown in circular network layout in Figure 6.57 where the similarities

between the two networks can be noticed better.

Figure 6.56: 100-node NL(1) estimated (left) and true (right) connectivity matrices. The elements
in the lower triangular part of the estimated connectivity matrix indicate estimated edges whose
causality are backwards.

Figure 6.57: 100-node NL(1) estimated (left) and true (right) networks in a circular layout. The
network edge threshold for the estimated network was Pnum = 108. The true network in Cw has
a total of 117 weighted edges.

The performance measures are shown in Table 6.7. The average number of

edges in the sampled networks was 108 and this number was chosen as the edge

threshold for network comparison. In this case 84.84% of the network structure was
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inferred correctly ignoring of course the causality of the edges. If causality is taken

into account, then 80.27% of the real structure was inferred correctly. The network

structural errors in this experiment represents the 15.35% of the original thresholded

structure.

Table 6.7: Single run results: 100-node NL(1) network estimation using FBNs.
Edges in Ebd: 108 Edges in bCbdc: 108

Number of edges in Cw 117 Real network weight: 72.1025

SC: 88 WSC: 61.0305 84.64%
CD: 83 WCD: 57.8833 80.27%
WD: 5 WWD: 3.1471 4.364%

SE: 20 WSE: 11.0719 15.35%

For the 100-node NL(2) network experiment, the same hyperparameters given in

Table 6.6 were used in the simulated annealing algorithm. As in the previous cases,

performance curves are shown where the average number of edges in the sampled

network was of 117 edges. The inferred connectivity matrix is shown in Figure 6.59-

left where the edges with contrary causality appear in the lower triangular part of

this matrix. These matrices are also shown in circular network layouts in Figure 6.60

where similarities can be appreciated but also some long range spurious edges in the

inferred network.

Performance results are given in Table 6.8. The structure was recovered with

85.51% accuracy and all edge directions were also found correctly. Only the 14.48%

of the real thresholded structure were found with errors.

Table 6.8: Single run results: 100-node NL(2) network.
Edges in Ebd: 117 Edges in bCbdc: 117

Number of edges in Cw 117 Real network weight: 75.99

SC: 96 WSC: 64.9832 85.51%
CD: 96 WCD: 64.9832 85.51%
WD: 0 WWD: 0.0 0.0 %

SE: 21 WSE: 11.0087 14.48%

In this section FBNs for network structure inference were tested using practically

eight network systems. These systems were created by changing the model (MVAR

and NL), time delay d (1 and 2), and their network sizes (10 and 100 nodes). Due to

the difficulty of choosing a fair network using these models, the network edge weights

and the network structures were chosen randomly. The first set of experiments using
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Figure 6.58: 100-node NL(2) simulated annealing performance curves. The top curve shows the
score values | log(p(F|Sh)p(Θ|Sh)p(Sh))| of the accepted sampled networks. The bottom curve
shows the number of edges of the accepted sampled networks.

Figure 6.59: 100-node NL(2) estimated (left) and true (right) connectivity matrices.
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Figure 6.60: 100-node NL(2) estimated (left) and real (right) networks in a circular layout. The
network edge threshold was Pnum = 117. The true matrix has a total of 117 weighted edges.

the 10-node size networks (MVAR and NL) were implemented with the intention

of showing the algorithm’s performance in a network that can be eye inspected.

All these experiments were successful for the FBN method. The second set using

large networks were implemented in order to see how the method behaves when

inferring large structures. Although 100 is not strictly large it is large enough for

the application in this thesis. Again, FBNs behaved relatively well inferring these

network systems for the linear and non-linear cases.

A pending issue is to compare FBNs with the DBN algorithm for network struc-

ture inference. This is the focus of the following section.

6.5.2 Comparing FBNs and DBNs

In the previous sections, the behaviour and performance of the FBN method was

shown for two different networks with different parameters: equation model, time

delay, and network size. This section shows performance comparison of the proposed

method in this thesis, FBNs, with the well known DBNs for structure inference

explained in Section 5.3. DBNs work in the time domain and causality is inferred by

network unfolding. This means that a second delayed set of time series is reproduced

and in consequence the number of nodes is doubled. A DBN can be unfolded several
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times depending on the needs of the analysed system, although this is something

that is not normally known in advance. However, for many of the applications in

the current literature one network unfolding might be sufficient for DBNs.

The one delay unfolding is very practical in brain network inference using fMRI

data and DBNs have given successful results in this field. Nevertheless, fMRI is a

brain imaging technique that although it has an unparalleled spatial resolution it

suffers from poor time resolution, in the order of seconds. Network unfolding using

one time delay for this brain imaging technique is not a matter of choice but a need

that results from the low sampling rate and short time series length.

In Electrophysiology the sampling rate can be high, 500Hz or more, and the

delayed interactions are variable among the neuronal groups. Hence, if DBNs are

applied in Electrophysiology, several unfoldings should be performed or a different

representation of the data sets should be used to feed into the DBN algorithm, such

as the time series envelope as in Smith et al. (2006).

In this experiment the advantage of FBNs over DBNs when the model order

of the analysed system is unknown is demonstrated. Experiments for MVAR(1)

and MVAR(2) networks are shown only. Suppose then, that the model order of

the system whose time series were recorded is unknown and in consequence a DBN

algorithm using one time delay (one network unfolding) is implemented as a first

option.

Using the previously defined 10-node networks for the MVAR model, time series

are generated for each of the network nodes. Then, the FBN and DBN algorithms

are implemented to infer the network structures. This structure will be the best

network that explains the available datasets.

Figure 6.61-left shows the inferred 10-node MVAR(1) network using FBNs simi-

larly to the previous experiments shown in Section 6.5, but here a Pnum = 15 was

chosen as network degree threshold, this means that only the 15 most sampled edges

were kept for the final estimated network. By simple observation we can see that

the structure is well recovered.

Figure 6.62 shows the same experiment as in Figure 6.61 but here a standard

DBN algorithm is implemented. Notice that a similar result was obtained. DBNs
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Figure 6.61: 10-node MVAR(1) estimated (left) and true (right) networks. The network was
estimated using the FBN method and the network edge threshold was Pnum = 15.

were able to infer correctly the structure, but recall here that the delay of the system

is 1, MVAR(1), which is exactly the expected by the DBNs which use one time delay

for the network unfolding.

Figure 6.62: 10-node MVAR(1) estimated (left) and true (right) networks. The network was
estimated using DBNs and the network edge threshold was Pnum = 15.

The results for the MVAR(2) are shown in Figure 6.63 for the the FBN method.

Here we can see by visual inspection that the proposed method was able to infer

most of the real structure. On the other hand, Figure 6.64-left shows the inferred

network using the standard DBNs and it can be seen that it is completely different

from the original structure shown at the right side of the same figure. The poor

performance of the DBNs are due to the change of d, which does not fit the delay
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from which the DBN method was designed.

Figure 6.63: 10-node MVAR(2) estimated (left) and true (right) networks. The network was
estimated using the FBN algorithm proposed in this thesis and the network edge threshold Pnum =
15 was used.

Figure 6.64: 10-node MVAR(2) estimated (left) and true (right) networks in a circular layout.
The Figure shows the advantage of FBNs over DBNs. FBNs are non-parametric, meaning that
this method does not rely on the delay variable d. On the other hand DBNs relies heavily on this
parameter and when it is changed it produces wrong networks as shown in this figure.

In order to have a broader perspective of DBNs and FBNs performances, 500

runs of the previous experiments were implemented. With these network results the

eight defined performance measures in Section 6.5.1 were computed. Figure 6.65

shows the structural correct edge (SC) and the weighted SC (WSC) measures in

box plots for the FBN and DBN methods. Recall that the box’s boundaries are

defined by the lower quartile and the upper quartile, the central line is the median
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of the population which is also the second quartile. Also the whiskers indicate the

population range and the “+” markers are samples that are considered outliers.

The SC measure estimates how good the algorithm was in extracting the original

structure regardless of the causality of the inferred edges. From Figure 6.65 we can

see that FBNs had a good performance inferring the structure. DBNs also had

a good performance for the structure inference for the MVAR(1) case. This did

not occur for the MVAR(2) where the parameter d of the network equations was

changed. These results show that DBNs are highly affected by the delay of the model

and that FBNs are robust against this parameter. The weighted version WSC shows

similar results as can be observed in Figure 6.65-right.
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Figure 6.65: Structural correct (SC) and weighted SC (WSC) results for the 500 experiments. The
box limits define the lower quartile and the upper quartile. The thickest line in each box is the
median of the population for each case.

Figure 6.66 shows the correct directed edge (CD) measure and its weighted ver-

sion (WCD). CD is similar to SC but here the direction of the edges matters. If

an edge has a contrary direction it is an error. The panel at the right shows box

plots for SC, which counts for the directed binary inferred networks. For the FBN-

MVAR(1) the average of correct directed edges found was 14 with the lower quartile

in 13. In general both FBN and the DBN-MVAR(1) had a similar performance.

The worst behaviour was shown by DBN-MVAR(2) which found around 3 edges

with the correct direction for the inferred networks.

Figure 6.67 shows the wrong directed (WD) edge measures. From the structural

correct edges measured by SC, WD counts those ones whose direction was inferred
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Figure 6.66: Correct directed (CD) and Weighted CD (WCD) results for the 500 experiments
shown in box-plots. Here the best performance was achieved by the FBN-MVAR(2) case.

incorrectly. The median for the FBN cases is 0 which is a good result although a

better one was obtained by DBN-MVAR(1). The worst case again is DBN-MVAR(2)

where the range for these results reaches 7 edges. WWD also shows similar results

to the binary ones.
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Figure 6.67: Wrong directed (WD) and weighted (WD) WWD results for the 500 experiments.
Best performance was achieved by DBN-MVAR(1).

Structural error (SE) counts the number of edges in the inferred network that

do not match the real network (here their causality is not important by definition).

The best results were obtained by FBNs for both delays d = 1 and d = 2. The worst

result was obtained by DBN-MVAR(2). Similar results are shown for the weighted

version of this measure, meaning that the error edges or extra edges inferred by the

FBN method do not have a high weight in the network.

This section showed through a series of experiments the performance of the
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Figure 6.68: Structural error (SE) and weighted SE (WSE) results for the 500 experiments.

proposed method FBNs for network structure estimation. The FBN algorithm was

tested using eight different network systems defined by size (10 and 100 nodes),

model (MVAR and NL), and time delay (1 and 2). In all experiments, FBNs showed

similar results to DBNs with exception of all d = 2 experiments. The performance of

DBNs when d = 2 is dramatically decreased because the DBN was designed to search

one time delay interactions in the network system. Recall that only one network

unfolding was implemented with one time delay. This problem can be fixed by either

delaying twice the one unfolded network or unfolding the DBN network twice. This

second solution will increase by three the number of sources which also increases the

complexity of the original problem. On the other hand, FBNs present the advantage

of being non-parametric, a property inherited by the Fourier transform and proved

by the results presented here. FBNs’ performance is not heavily affected by changes

in d.

6.5.3 FBNs performance at defined frequency bands

All simulations in previous sections were implemented using the entire frequency

spectrum, normalized from 0.0 Hz to 0.5 Hz. But the spectral nature of FBNs

also allows to study smaller sets of frequency bands for the same system using

the same data sets by defining a range of frequencies for λ. In this section the

experiments of the previous section (500 algorithm iterations) are repeated for the

10-node MVAR(1) network estimation using different ranges for λ. These are: λ1 =
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0.0Hz−0.1Hz, λ2 = 0.0Hz−0.2Hz, λ3 = 0.1Hz−0.2Hz, and λ4 = 0.0Hz−0.5Hz is

repeated again for easy comparison.

Figure 6.69 shows the SC and the WSC measures for the inference of the 10-node

MVAR(1) network using FBNs in the defined frequency bands. It is possible to see

that the best performance is achieved when the entire range of frequencies (λ4) is

used. The worst case is for λ1 (0.0 to 0.1Hz) and λ2 and λ3 showed similar results.

Notice from Figure 6.33 that most of the coherence spectrum is below 0.2 Hz which

explains the good performance obtained by λ2 and λ3 from which we can see that

λ3 = 0.1− 0.2Hz showed a better performance in average than λ2 = 0.0− 0.2Hz.
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Figure 6.69: Structural correct (SC) and weighted SC (WSC) results for the 500 experiments using
frequency bands λ. The box limits define the lower quartile and the upper quartile. The thickest
line in each box is the median of the population for each case.

Figure 6.70 shows the correct directed edges found for the 10-node MVAR(1)

network. This results are similar to ones shown in Figure 6.69 with λ4 showing the

best performance in average being followed by λ3. Again λ1 which covers from 0.0Hz

to 0.1Hz had the worst performance inferring the correct edges and their causality.

Figure 6.71 shows the wrong directed edges found by the FBN algorithm. These

are similar results to the previous measures with the exception of λ3 for WWD which

clearly had a better performance than λ2 even though this last band covers more

frequencies. Similar results to these ones are found in Figure 6.72 for the structural

errors.

The use of a shorter range of frequency also helps to decrease importantly the

computational load, since lower frequency elements are using making the cross spec-
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Figure 6.70: Correct directed (CD) and weighted CD (WCD) results for the 500 experiments using
frequency bands λ. The box limits define the lower quartile and the upper quartile. The thickest
line in each box is the median of the population for each case.
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Figure 6.71: Wrong directed (WD) and weighted WD (WWD) results for the 500 experiments
using frequency bands λ. The box limits define the lower quartile and the upper quartile. The
thickest line in each box is the median of the population for each case.
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Figure 6.72: Structural error (SE) and weighted SE (WSE) results for the 500 experiments using
frequency bands λ. The box limits define the lower quartile and the upper quartile. The thickest
line in each box is the median of the population for each case.
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tra matrices smaller. This can be seen in Figure 6.73 which shows the time used by

each one of the 500 iterations in these experiments. The computer used for these

experiments (and all experiments and results in this thesis) was a relatively fast one;

Intel Core Duo (3.16 MHz per processor) and 3.2 GB of RAM under Ubuntu Linux.

As expected using shorter frequency bands improves the processing time, but as we

saw previously this has the cost of worsening the network inference performance.

For instance, it can be seen that simulation using λ4 took more than 150 seconds

while λ1 and λ3 took 50 seconds approximately.
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Figure 6.73: Simulation time for different frequency bands λ. λ1 = 0.0Hz−0.1Hz, λ2 =
0.0Hz−0.2Hz, λ3 = 0.1Hz−0.2Hz, and λ4 = 0.0Hz−0.5Hz.

6.5.4 MEG Beamforming and network inference

In this section, network inference experiments using LCMV beamforming are im-

plemented. The scheme for the experiments is shown in Figure 6.74. The networks

designed in Section 6.2.1 and Section 6.2.2 are fed into the MEG recording simulated

environment as explained in Section 6.4. Then using the recorded signals which are

in the sensor domain, these are mapped to the source domain by implementing the

LCMV beamforming and its virtual electrodes. In this stage it is assumed that the

spatial location of the N sources of interest is known. Using the virtual electrodes,

the electrophysiological activity of these regions is extracted and their time series

are fed into the FBN algorithm for network structure inference.
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Figure 6.74: MEG simulated environment and brain network estimation scheme. An acyclic causal
network is placed within the brain mesh. Then generated magnetic fields are acquired by simulated
SQUIDs and the extraction of the time series is done using LCMV beamforming. For this simulation
the position of the original sources is known in advance.
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Figure 6.75 shows the coherence matrix of extracted signals using beamforming

virtual electrodes for the 10-node MVAR(1) network system. Notice that coherence

among the sources is affected by beamforming even though the exact position of the

original sources is known. This issue is mainly because the LCMV beamforming

assumes independence or at least decorrelation among the extracted brain sources.

The decrease in coherence values for this system can be noticed better by comparing

Figure 6.75 with the coherence matrix of the original network sources in Figure 6.33.

The FBN parameters for these experiments are shown in Table 6.9.

Table 6.9: Simulated annealing hyperparameters for
the 10-node network MVAR(1) experiments using
beamforming.

numruns: 20000 initemp: 2.0
coolruns: 1500 fintemp: 0.01

burnedruns: 8000 alpha: 0.015
beta: 0.04

Figure 6.75: 10-node MVAR(1) network coherence matrix after beamforming. Compare with
Figure 6.33 which is the coherence matrix of the original network. The coherence among the
related sources is decreased due to source extraction by beamforming.

Figure 6.76 shows the cross-phase matrix of the extracted time series. An in-
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teresting phenomenon here is that although coherence is highly affected by the

beamforming extraction, the phase slope of the extracted time series almost re-

mains intact. This can be seen by comparing the cross-phase matrix of the original

sources in Figure 6.34.

Figure 6.76: 10-node MVAR(1) network cross-phase matrix. Compare the cross-phase matrix with
the one in Figure 6.34 and notice that after beamforming the phase slope is practically unaltered.

Figure 6.77 shows the inferred network using the beamformed extracted time

series. The network is not accurate, it has noticeable differences when compared

with the original system shown at the right of the same figure. The network inference

performance measures for this single experiment are shown in Table 6.10.

Table 6.10: Single run results: 10-node MVAR(1) network.
Edges in Ebd: 11 Edges in bCbdc: 11

Number of edges in Cw 20 Real network weight: 6.3160

SC: 9 WSC: 5.0734 80.3261%
CD: 9 WCD: 5.0734 80.3261%
WD: 0 WWD: 0.0 0.0%

SE: 2 WSE: 1.2425 19.6722%

The results for the 10-node MVAR(2) are shown in Figures 6.78-6.80. Figure 6.78

shows the coherence matrix for this network system. As in the MVAR(1), the
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Figure 6.77: 10-node MVAR(1) inferred network structure after beamforming. It can be seen that
for the algorithm it is harder to infer the original structure as shown in Figure 6.36.

coherence spectrum among the connected sources is highly decreased when compared

with the coherence matrix of the original sources in Figure 6.37.

Figure 6.79 shows the cross-phase matrix. Again the phase slopes of the original

sources and the ones extracted by beamforming are very similar, see the cross-phase

matrix in Figure 6.38. The inferred network is shown in Figure 6.80 and the values

of the network measures are shown in Table 6.11.

Table 6.11: Single run results: 10-node MVAR(2) network.
Edges in Ebd: 11 Edges in bCbdc: 11

Number of edges in Cw 20 Real network weight: 6.3160

SC: 9 WSC: 5.333 84.4363%
CD: 8 WCD: 4.5654 72.2830%
WD: 1 WWD: 0.7675 12.1516%

SE: 2 WSE: 0.9830 15.5636%

The NL(d) systems are also implemented in the MEG acquisition environment.

For the 10-node NL(1) network, the coherence matrix of the extracted sources is

shown in Figure 6.81. Again, beamforming affects seriously the coherence among

the connected sources. The original coherence matrix which represents the real

relation strength among the sources prior to beamforming is shown in Figure 6.41.

Figure 6.82 shows the cross-phase matrix. Comparing this matrix with the one in

Figure 6.42 shows that the phase slope is preserved in some of the matrix elements.

This means that for the FBN algorithm, network inference will be more difficult

211



6 Simulations

Figure 6.78: 10-node MVAR(2) network coherence matrix after beamforming. As in the previous
case, the coherence spectrum among the connected sources is highly decreased after beamforming.
The coherence matrix of the original network before beamforming can be seen in Figure 6.37.

Figure 6.79: 10-node MVAR(2) network cross-phase matrix after beamforming.
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Figure 6.80: 10-node MVAR(2) inferred network structure after beamforming.

Figure 6.81: 10-node NL(1) network coherence matrix after beamforming. The coherence spec-
trums among the original sources can be seen in Figure 6.41.

213



6 Simulations

since not only the coherence spectra are decreased but also the phase slopes among

the connected sources are affected.

Figure 6.82: 10-node NL(1) network cross-phase matrix after beamforming.

Figure 6.83 shows the inferred network using the FBN algorithm. We can see that

some of the structure was recovered with some edge errors. The network inference

measures for this experiments are shown in Table 6.12, where we can see that only

68.16% of the thresholded structure was recovered correctly.

Table 6.12: Single run results: 10-node NL(1) network.
Edges in Ebd: 14 Edges in bCbdc: 14

Number of edges in Cw 20 Real network weight: 8.6708

SC: 8 WSC: 5.9101 68.16%
CD: 7 WCD: 5.0734 58.51%
WD: 1 WWD: 0.8367 9.64 %

SE: 6 WSE: 2.7606 31.83%

The last set of figures show the results for the 10-node NL(2) system. Figure 6.84

shows the coherence matrix, see Figure 6.45 for comparison. The cross-phase matrix

is shown in Figure 6.85.
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Figure 6.83: 10-node NL(1) inferred network structure estimation after beamforming.

Figure 6.84: 10-node NL(2) network coherence matrix estimation after beamforming.
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Figure 6.85: 10-node NL(2) network cross-phase matrix estimation after beamforming using the
MEG acquisition simulated environment.

The inferred network using the FBN algorithm and the MEG simulated en-

vironment is shown in Figure 6.86-left for the 10-node NL(2) system. As in the

10-node NL(1) case, most of the network edges were recovered but some errors are

also present. The network inference measures for this experiment are shown in

Table 6.13.

Table 6.13: Single run results: 10-node NL(2) network.
Edges in Ebd: 13 Edges in bCbdc: 13

Number of edges in Cw 20 Real network weight: 8.2536

SC: 9 WSC: 6.4714 78.407%
CD: 9 WCD: 6.4714 78.407%
WD: 0 WWD: 0.0 0.0 %

SE: 4 WSE: 1.7821 21.591%
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6.5 Bayesian networks

Figure 6.86: 10-node NL(2) inferred network structure using the MEG acquisition simulated envi-
ronment.

6.5.5 Inferring large networks using

LCMV beamforming

In Section 6.4 the LCMV beamforming was implemented to create NAI maps for

the 10-node and 100-node network systems. Source extraction was reasonably fine

for the 10-node networks, both the MVAR and NL. The 100-node network systems

are not inferred correctly. An example of inferred network is shown in Figure 6.87

for the 100-node MVAR(1) network after beamforming. From the figure, it can be

seen that the inferred network is completely different from the original shown at the

right of Figure 6.87.

The differences between the original network and the estimated one can be ob-

served more easily by watching the connectivity matrices shown in Figure 6.88.

There are almost no similarities between the two matrices and the network infer-

ence measures shown in Table 6.14. The original network system was thresholded

from 200 known weighted edges to 150 directed edges for comparison with the in-

ferred network and only 18.05% of the original structure was retrieved correctly.

Experiments for the remaining 100-node systems will not be shown here because

their performance are similar to the MVAR(1) case.
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6 Simulations

Figure 6.87: 100-node MVAR(1) inferred network structure using the MEG recording simulated
environment.

Figure 6.88: 100-node MVAR(1) inferred connectivity matrix shown at the left of the figure. The
true connectivity matrix is shown at the right.

Table 6.14: Single run results: 100-node MVAR(1) network.
Edges in Ebd: 150 Edges in bCbdc: 150

Number of edges in Cw 200 Real network weight: 85.3519

SC: 28 WSC: 15.4079 18.0522%
CD: 17 WCD: 10.0614 11.7881%
WD: 11 WWD: 5.3464 6.2639 %

SE: 122 WSE: 69.9440 81.9477%
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6.5 Bayesian networks

6.5.6 Beamforming behaviour

in presence of multiple sources

The previous experiment using large networks with 100 sources and the LCMV

beamforming raised an interesting question about how many sources can be accu-

rately extracted by the beamforming virtual electrodes. Using the MEG simulated

recording environment, several independent brain sources were placed in the brain

mesh. Their position were chosen randomly with uniform distribution from 1 source

to 200 sources. The brain sources were modelled as Gaussian noise segments of

30× 256 samples.

Figure 6.89 shows the average correlation between the original sources within

the brain mesh and the extracted times series using the LCMV beamforming. For

every dot in this curve 20 iterations of the experiment were computed and at each

iteration the positions of the sources within the brain mesh were chosen randomly

with uniform distribution. We can see that the correlation curve in Figure 6.89

falls with an exponential decay and an average correlation of 0.5 is reached when

35 independent brain sources (modelled as Gaussian noise) are placed in the brain

mesh.

Figure 6.89: Beamforming vs. multiple brain sources. When the number of sources is low, the
LCMV beamforming is able to extract correctly the activity of the brain sources. As the number
of independent sources increases, the performance of the beamforming technique at the virtual
electrodes tends to zero. The upper and lower lines in the curve indicate standard deviation.
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This result is very important for the performance of the network inference tech-

nique proposed in this thesis and explains why the 100-node MVAR(1) network

in the previous section was inferred with very low accuracy. For 100 independent

sources the average correlation among the extracted sources is 0.23.

Chapter summary

In this chapter several experiments were done to test the performance of the FBN

method. To achieve this, two different network systems were implemented; a linear

one using the MVAR model and a non-linear version of the MVAR model, referred

in this chapter as NL model. The delay of the implemented systems was made

variable. In this chapter delays d = 1 and d = 2 were used. In addition of using two

models with two different delays, two network sizes were implemented, 10-node and

100-node network. All these variables give a total of eight different networks which

were used to study the behaviour of the FBN algorithm.

The different network models MVAR and NL helped us to test how the FBN

network estimation method worked. First with a model that follows the linearity

assumption of the FBNs. The NL model was implemented to test the performance

of the FBN method with a model that does not follow completely the FBNs system

assumptions.

Using the eight network systems, two different approaches were followed. First

the FBN algorithm was tested by inferring network structures. The time series for

these experiments were obtained directly from the defined network systems. This

was done in order to test FBNs for network inference with the assumption that full

access is gained to the network sources. Nevertheless, the aim application for FBNs

is MEG and beamforming. For this reason a MEG recording simulated environment

was also implemented.

In general, FBNs showed a good performance inferring both the 10-node MVAR

and NL system for both model orders. FBNs were also compared with the well

known DBNs inferring both systems, the MVAR and NL networks using different

delays, d = 1 and d = 2. The simulations in this chapter showed that FBNs and
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6.5 Bayesian networks

DBNs have similar results inferring d = 1 systems. For the case of DBNs this

was expected since this algorithm was designed using one network unfolding with

one time delay. Nevertheless, for the experiments involving order 2, MVAR(2) and

NL(2), the performance of DBNs was highly affected by this parameter change while

FBNs performance remained almost constant. This is an interesting characteristic

for FBNs, which is not affected by the delay parameter. This property is inherited

by the Fourier transform which makes FBNs a non-parametric technique.

The FBN algorithm was also proved for different frequency bands for the 10-

node MVAR(1) network. Four frequency bands were proved: λ1 = 0.0 − 0.1Hz,

λ2 = 0.0 − 0.2Hz, λ3 = 0.1 − 0.2Hz, λ4 = 0.0 − 0.5Hz. The simulations proved

that using wider frequency bands improves the network estimation at the cost of

computation load, and the inverse happens for narrower frequency bands. A nice

trade-off between computational load versus network estimation accuracy might be

choosing a band of frequencies where it is known that the cross spectrum is higher

as occurs for narrower signals.

Simulations were also carried using the MEG recording simulated environment

and FBNs. The same network systems tested for network inference were placed

in the brain cortical mesh for beamforming analysis. The positions of the network

sources were chosen randomly and then fixed. All the experiments presented in this

chapter for MEG were single run simulations. The experiments showed that network

inference performance is highly attached to the beamforming ability of extracting

original network sources. This was proved for the 10-node systems where sources

were extracted correctly in comparison with the 100-node network systems. As

the number of sources increases, the LCMV beamforming performance decreases

because the limited number of MEG sensors is not able to stop the magnetic fields

radiated by sources at positions different to the position analysed.
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Chapter 7

MEG resting state data sets

Chapter 2 reviewed MEG analysis and beamforming for brain source extraction.

In this chapter the real data sets are studied. The database belongs to a previous

study at the Hull York Medical School and the York Neuroimaging Centre (YNiC)

on mild trauma brain injury (MTBI). It is composed of MEG recordings from three

groups: a) a MTBI group whose MEG data were recorded 2 weeks after injury, b)

The same group but now 6 months after injury, and c) a control group of healthy

patients.

The MEG recording codes for every patient are shown in Table 7.1 as available in

the YNiC database. All MEG recordings are resting state, meaning that the subjects

just sat without doing a specific cognitive task. The recordings last 6 minutes where

in the first half the patient keeps the eyes open while watching a fixation cross. The

last 3 minutes the patients were in resting state with eyes closed, see Figure 7.1.

The recordings were acquired with a sampling rate of 678.17 Hz and pre-filtered in

the bands 2-40 Hz using a Butterworth filter of order 3.

Figure 7.1: Resting state recording; 3 minutes eyes open with a fixation cross and then 3 minutes
eyes closed. The sampling rate for these recordings is 678.17 Hz.
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7 MEG resting state data sets

Table 7.1: YNiC MTBI MEG datasets (2
weeks after injury) and control group.

MTBI subjects Control subjects

R1805 R1681
R1914 R2016
R1916 R2089
R1952 R2153
R1959 R2202
R1964 R2200
R1995 R2222
R2049 R2229
R2050 R2325

The analysis in this chapter is focused on the study of subject R2016 and was

chosen randomly from the available MEG database in Table 7.1. The FBN algorithm

will be applied for network inference to the eyes closed segment. The pre-analysis

steps are shown in Figure 7.2 and these are explained in the following paragraphs.

Figure 7.2: Preprocessing steps for the experiments in this chapter. Colour image can be seen in
Figure B.21.

In order to obtain brain source time series, the vectorized type I beamforming

is applied (see Section 2.6.1). This beamforming is implemented in the YNiC’s

Neuroimaging Analysis Framework1 (NAF) software. The NAF software is a suite

1http://vcs.ynic.york.ac.uk/docs/naf/
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of python classes and GUIs that perform several preprocessing tasks for the MEG

recordings. Using the NAF, the original datasets were coregistered to the subjects’

MRI brain and then transformed to MNI standard brain volume. All virtual elec-

trodes (VE) are also extracted in the coregistered subjects’ brain volume space and

then transformed to MNI brain standard. This procedure can also be implemented

backwards by choosing VEs in the MNI space and then these coordinates can be

transformed to the individuals’ brain space. The brain space transformation steps

are performed automatically inside the NAF software. This means that once all sub-

jects’ brains were coregistered and transformed to MNI standard brain, it is possible

to work in the MNI space domain seamlessly for intersubject comparisons.

The study in this chapter is based on a study published by Jiao et al. (2011).

Jiao et al. (2011) published a directed graph describing the causal connectivity

for the resting state network (or default mode network (DMN)) using fMRI and

Granger causality as the connectivity technique. This network is reproduced in

Figure 7.3 and it is composed of seven brain regions: The dorsal medial prefrontal

cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), left and right inferior

temporal gyri (lITG and rITG), left and right angular gyri (lANG and rANG), and

the posterior cingulate/precuneus cortices (PCC/PrCC).

Figure 7.3: Granger causality inference of the default mode network or DMN. Figure adapted from
Jiao et al. (2011).

In order to define the nodes of interest, a node grid of 20 mm space between
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7 MEG resting state data sets

neighbour nodes is defined using the Harvard-Oxford cortical atlas in MNI space.

This step gives a total of 220 nodes within the cortex. Then using the coregistration

matrices between the subject’s MRI brain and the MNI brain, the MNI grid is

transformed to the subject’s head space for beamforming analysis. This pre-analysis

step is implemented in the NAF software.

Using FSL and the structural MNI brain, the regions defined in Figure 7.3 were

chosen and their XYZ coordinates are shown in Table 7.2. Then using the defined

cortical grid, the grid nodes closest to the defined points are estimated. These points

are shown in Table 7.2 as grid coordinates. The grid coordinates are the ones used

for the beamforming virtual electrodes.

Table 7.2: DMN regions and grid coordinates.
DMN regions XYZ coordinates Grid coordinates

PrCC [0, 36, 28] [-10, 34, 28]
PCC [0, 14, 30] [10, 14, 28]
lANG [56, -54, 26] [50, -46, 28]
rANG [-46, -56, 26] [-50, -46, 28]
dMPFC [0, 30, 52] [10, 34, 48]
vMPFC [0, 44, -24] [10, 54, 28]
lITG [52, -20, -34 [50, -26, -32]
rITG [-54, -30, -26] [-50, -26, -32]

The vectorized LCMV beamforming (Huang et al. , 2004) described in Sec-

tion 2.6.1 and available in the NAF software gives three normalized NAI components

representing three dimensional coordinates XYZ. The NAI components represent the

normalized power of the extracted time series using virtual electrodes. The NAF

software divides the MEG time series in contiguous segments of 990 milliseconds,

giving a total of 671 samples per segment. The covariance matrix is computed using

a concatenated time series using all segmented epochs. This produces 180 segments

of 990 milliseconds from which the vectorized beamforming is computed.

For connectivity analysis in MEG using beamforming it is important to define a

fixed direction for the analysed dipoles at each virtual electrode, see Fuchs (2007).

Here the dipole direction vector is computed as the one that maximizes the power

of the resultant time series using the X, Y, and Z normalized VEs (V Ex, V Ey, and

V Ez). The resultant VE time series can be represented as
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V E(t) = max
a,b,c
‖aV Ex(t) + bV Ey(t) + cV Ez(t)‖ (7.1)

where V Ex(t) is the x time series component given by the vectorized Type I

beamforming. and the constants a, b, c define a unitary vector whose direction is the

direction of the current dipole at the grid node of interest. The a, b, c vector is fixed

for all 180 segments and this assures that the computed current dipole does not

rotate its direction during the recording. With the resultant VEs computed using

Eq. 7.1 at the grid coordinates defined in Table 7.2, it is now possible to run the

FBN algorithm to find the best network per segment.

Due to their close physical and network relation, the regions for PrCC-PCC

and dMPFC-vMPFC were fused to create two new regions PrCC=[10,14,28] and

dMPFC=[10,34,48]. This means that regions PCC and vMPFC are not included

in the following experiments. The main reason for this is because the beamforming

weights of these regions are highly correlated, meaning that the VEs will infer highly

correlated signals. This is explained in Section 7.1.

For demonstration purposes, single VE extraction and network estimation are

shown for segments 25 and 55. Figure 7.4 shows the VE time series for segment

25 using the procedure described previously. As for the segment 25, the other 179

VE segments are extracted and the FBN algorithm is run for each segment to infer

connectivity among the VE sources.

The coherence matrix for the time series in Figure 7.4 is shown in Figure 7.5-

top using a FFT with 128 samples, 75% overlapping and a square window for the

periodogram estimation. The cross-phase matrix is shown in Figure 7.5-bottom.

Using the spectral properties of FBNs, the algorithm is set to estimate the con-

nectivity network for the band 2-40 Hz. Notice that this band gives 8 rounded up

power and phase coefficients when the FFT is computed with 128-sample windows.

The simulated annealing hyperparameters for these simulations are shown in Ta-

ble 7.3 and the estimated network is shown in Figure 7.6. The steps for network

estimation using FBNs are shown in Figure 6.32 but here real VE-MEG time series

are used.

Figure 7.7 shows the VE time series for segment 55. As in the previous exam-
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7 MEG resting state data sets

Figure 7.4: Extracted and resultant VEs from subject R2016. The segment shown corresponds to
segment 25 from 180 available.

Table 7.3: Simulated annealing hyperparameters for
real MEG data sets R2016.

numruns: 12000 initemp: 2.0
coolruns: 1500 fintemp: 0.02

burnedruns: 8000 alpha: 0.04
beta: 0.02

ple, coherence and cross-phase matrices for this segment are shown in Figure 7.8.

Figure 7.9 shows the estimated network for these time series.

Notice that the spectral nature of the FBN method allows to try different seg-

ment lengths for the FFT. Much of the reliability of the FBN method is based on the

estimation of the spectra and cross-phases among the nodes of interest. The follow-

ing examples are obtained using the same data segments 25 and 55 from recording

R2016 but now a 256-sample window size is used for the FFT algorithm with 75% of

overlapping and a square weight window to compute the periodogram. Furthermore,

the hyperparameters changed for these examples; alpha=0.085 and beta=0.04. The

rest of the hyperparameters kept their values. The frequency band analysed by

the FBN method is again 2-40 Hz, which for a 256-sample window means that 15

rounded up spectral coefficients are used in FBN method.

Figure 7.10 shows the coherence and cross-phase matrices for segment 25. Notice

these coherence spectra are noisier or with higher variability that the ones shown in

Figure 7.5. Recall that longer FFT windows increases power spectrum variability
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Figure 7.5: Coherence and cross-phase matrices using 128 samples for the FFT for the extracted
VE segment 25.

Figure 7.6: Estimated network using the proposed FBN algorithm for real MEG data segments.
This network was estimated for recording R2016, segment 25, using a 128-sample window for the
FFT algorithm and a frequency band 2-40 Hz for the FBN method.
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Figure 7.7: VE time series for the defined DMN regions. These time series are obtained from
segment 55.

but improves frequency resolution.

Figure 7.11 shows the estimated network using 256 sample segments for the FFT

algorithm. Notice that the network structure is drastically changed just by modify-

ing the length for FFT window, showing the importance of the spectral estimation

step.

The same previous experiment is repeated for segment 55. The coherence and

phase matrices are shown in Figure 7.12 and the estimated network in Figure 7.13.

Again notice that the structure of the estimated network changed when compared

with the one shown in Figure 7.9.

As noticed, the differences among inferred networks for the same VE segment

are produced by the length of FFT window. This highlights the need of establishing

a procedure or criterion to assure statistical significance for the estimated network

and/or their edges. This topic will be covered in the discussion section.

The previous experiments showed results for segments 25 and 55. Showing re-

sults for the other 178 segments will not be possible here, but it is possible to show

some statistics about the behaviour of the network inference in the entire eyes closed

recording. Figure 7.14 shows the inferred causality for the 180 edges for all found

edges using 256-sample window for the FFT. The maximum number of times a di-

rected edge can be estimated is 18000 (180 segments times 100 network samples
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Figure 7.8: Coherence and phase matrix for segment 55. The FFT uses 128 samples with 75%
overlapping, and square window for the periodogram.

Figure 7.9: Estimated network for segment 55 using 128-sample window for the FFT algorithm
and a frequency band of 2-40 Hz for the FBN method. The hyperparameters for the simulated
annealing are shown in Table 7.3.
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Figure 7.10: Coherence and cross-phase matrices for segment 25 using 256-sample window for the
FFT algorithm.

Figure 7.11: Estimated network for segment 25 using 256-sample windows for the FFT. The
analysed frequency band is 2-40 Hz.
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Figure 7.12: Coherence and cross-phase matrices for segment 55 using 256-sample windows to
compute the FFT with 75% overlapping and square weighting window for the periodogram.

Figure 7.13: Estimated network for segment 55 using a 256-sample windows for the FFT with 75%
overlapping and squared weighting window. Notice the differences with Figure 7.9.
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from simulated annealing). As expected some edges are estimated more frequently

than others as it is the case for rANG-rITG, lANG-lITG, and lITG-rITG, but un-

expectedly, causality was estimated practically evenly for both directions (A → B

and A← B).

Figure 7.14: Inferred edge causality for the 180 MEG segments using 128-sample windows for the
FFT. The maximum number of times an arrow can be sampled is 18000. The bars shows all
possible edges in the network.

Figure 7.15 shows the same information as in Figure 7.14 but ignoring causality.

This is in order to show the frequency of the estimated edges for the 180 segments.

As in Figure 7.14, the bar plot in 7.15 was created by adding up the 100 network

matrices sampled by the FBN method per each one of the 180 segments, giving a

total of 18000 sampled networks and this number is the maximum number of times

each edge can be sampled, see Figure 6.32.

Figure 7.16 shows the same experiments but now for FFT windows of 256 samples

with the same periodogram computation (75% overlapping and square weighting

window). Notice that results are similar to the previous results for the 128-FFT case

but now there are more estimated edges in average for the networks. Figure 7.17

shows all sampled edges but ignoring causality. In this case it seems that all possible

edges are sampled with approximately same frequency.

The almost even causality estimations for the inferred edges seems to be caused

by the highly dynamic nature of the brain and the activity it generates. This can

be seen by plotting the cross-phase frequency for some of the edges of interest for

the analysed frequency band 2-40 Hz. Figure 7.18 shows the cross-phase between
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Figure 7.15: Edge estimation frequency of all possible edges in the networks using windows of 128
samples for the FFT. These bars show same information than Figure 7.14 but causality is ignored
here.

Figure 7.16: Inferred edge causality for 180 MEG segments using a 256-sample windows for the
FFT algorithm.

Figure 7.17: Edge estimation frequency of all possible edges in the networks using segments of 256
samples for the FFT. These bars show same information than Figure 7.16 but causality is ignored
here.
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six node pairs of interest: PrCC-lANG, PrCC-dMPFC, lANG-lITG, rANG-rITG,

dMPFC-lITG, and dMPFC-rANG. The six graphs show the cross-phase of 180 seg-

ments for the frequency band 2-40 Hz. It can be seen that the phase slope sign

changes almost evenly (there are similar number of positive and negative slopes),

proving the dynamic nature of the brain recordings. Recall that the direction of the

brain current dipoles is constant for all 180 segments.

Figure 7.18: Cross-phase frequency for six edges of interest between 2 and 40 Hz. The edges are
from top to bottom and from left to right: PrCC-lANG, PrCC-dMPFC, lANG-lITG, rANG-rITG,
dMPFC-lITG, and dMPFC-rANG. Colour image can be seen in Figure B.22.
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The high dynamics and variability of the inferred networks suggest that there

are network patterns that are repetitive along the entire MEG recording. Since

the recording was made for resting state with eyes closed it is plausible that some

patterns repeat. This was partially proved empirically by running the FBN algo-

rithm several times for several segments, but a manner to see this phenomenon is

implemented here. The FBN algorithm was run for all 180 segments from which 180

networks were estimated. Then, the directed acyclic connectivity matrices inferred

for every segment were reshaped from 6 × 6 matrices to 36 × 1 column vectors.

Using these connectivity vectors a correlation matrix among them is computed.

Figure 7.19 shows the correlation matrix of the estimated 180 connectivity vectors

where only correlation values above zero are preserved and the rest are zeroed out,

this was done because negative correlations do not have a structural meaning.

Figure 7.19: Correlation matrix of the connectivity vectors. The 180 acyclic directed estimated
matrices were reshaped from 6× 6 to 36× 1 column vector. Then, correlations among all of them
are computed. Colour image can be seen in Figure B.23.

In order to identify network structures, a clustering method is performed on the

network correlation matrix. This procedure will group networks with similar struc-

ture and causality. The method used for the hierarchical clustering is the farthest

point algorithm available for python (python module: scipy.cluster.hierarchy.linkage).
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The clustered matrix is shown in Figure 7.20 with its respective dendogram which

uses a tree graph showing the hierarchical clustering. There are approximately 13

identifiable network clusters which define network structure groups.

Figure 7.20: Clustered network correlation matrix. The hierarchical clustering is shown by the
dendogram graph which shows approximately 13 network clusters. Colour image can be seen in
Figure B.24.

Figure 7.21 shows a histogram for the clustered networks for the 180 segments

showing which network patterns were more common. As can be seen the most com-

mon networks for these results are the resting state networks (RSN) RSN2 and RSN6

followed by RSN7, RSN10, and RSN12. These networks are shown in Figure 7.22

where the nodes lANG, rANG, lITG are the most connected nodes. The network

patterns in Figure 7.22 were obtained by averaging the networks within each cluster

in order to obtain a representative network for each cluster. Here the edge threshold

Pnum = 10.

An interesting property to study is the evolution of the inferred network patterns

through time. This time evolution can be seen in Figure 7.23 for the 180 MEG
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7.1 Discussion of the experiments

Figure 7.21: Network pattern histogram. The histogram shows the number of times each of the
identified network patterns in the clustered correlation matrix appears in the recording.

segments. Interestingly a smooth network change from pattern to pattern can be

appreciated in the graph through time. This suggests that occurrence of network

patterns is not completely random.

7.1 Discussion of the experiments

An important issue to have in mind when estimating networks from MEG datasets

using beamforming is the weight vector of each of the regions of interest. As it was

explained in previous chapters the beamforming weights defines the spatial filter

that linearly unmixes the recording to infer the activity in the desired voxel. Weight

vectors of different and separated voxels might infer highly correlated signals if

their weights are similar. This issue is pointed out in Brookes et al. (2011b)

where it is suggested to compute correlations among the weights to find possible

spurious brain connections. For the experiments in this chapter, the beamforming

weight correlation matrix is shown in Figure 7.24 for the 8 regions involved in the

default mode network shown in Figure 7.3. For instance, Figure 7.24 shows that

beamforming weights of dMPFC and PrCC are highly correlated and this might be

the reason for finding an edge between these two regions.

Nevertheless, in beamforming there is still the possibility that the high correla-

tion between two spatial filter weights is caused by a real interaction between two
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Figure 7.22: Network patterns for the resting state MEG recording, subject R2016. This figure
shows the 13 identified networks patterns that are estimated by the FBN method. The patterns
were found using a hierarchical clustering method and then each cluster is averaged to obtain a
representative network of each cluster. Colour image can be seen in Figure B.25.
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Figure 7.23: Network pattern evolution through time during the MEG eyes closed segments.The
bars show the networks in Figure 7.22 vs. time. Notice that there are smooth changes from pattern
to pattern through time.

regions. Recall from Chapter 2 that when two regions or voxels are highly correlated,

the beamforming technique tends to fuse both sources in a single source which also

produces similar spatial filter weights for both regions. This problem might be solved

by using different beamforming techniques designed to deal with correlated sources

by imposing extra constraints for the spatial filter in the Lagrangian, like dynamic

imaging of coherent sources (DICS) (Gross J. et al. , 2001) or nulling beamforming

(Hui et al , 2010). But these techniques were not implemented for simulations in

this thesis and they are not implemented in the YNiC’s NAF software.

The networks found by the FBN method in the R2016 MEG resting state record-

ing show that recurring network patterns appear in a resting state brain. These

network patterns are shown in Figure 7.22 and their occurrence in the recording is

shown in Figure 7.23. This is the most compelling result of this chapter, neverthe-

less it is a preliminary result. For instance, FBNs are able to find the best network

that fits the datasets, but their ability to find the network depends on the hyperpa-

rameters used, especially the alpha and beta parameters which tune the algorithm

by increasing or decreasing the weight of the number of edges and the phase slope

respectively in the posterior probability function. For instance in this chapter, using

128 or 256 samples for the FFT algorithm requires different beta and alpha values.

In the future more work will be needed to correctly tune the FBN algorithm.

The inferred networks using FBNs should also be assessed by statistical signif-
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Figure 7.24: Correlation matrix of beamforming weights. The beamforming weight correlation
matrix might indicate if a link between two virtual electrodes is produced by real brain connectivity
or by volume conduction.

icance. This means that a test should be applied to all the inferred edges in order

to assure that there is really an edge there.

In general, this chapter proves that FBNs have potential application to MEG

network studies. This technique is designed to deal with large number of sources and

also large datasets. Because it is based on the Fourier transform it is catalogued

as a non-parametric technique. Power and phase are analysed separately in the

posterior probability distribution and no suppositions or models are assumed for

power and phase besides the coefficients provided by the FFT-periodogram and

phase estimation. Furthermore, FBNs can also find networks at specific band of

frequencies thanks to its spectral nature.

Chapter summary

In this chapter the FBN algorithm was tested on real datasets for the first time.

The datasets at hand belong to a current project at YNiC (University of York) on

MTBI. This dataset is composed of 27 MEG recordings: 9 controls, 9 MTBI subjects

2 weeks after injury and the same 9 MTBI subjects 6 months after injury. For the

experiments in this chapter subject R2016 was chosen randomly and the vectorized
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LCMV beamforming was applied to the regions defined by the DMN published by

Jiao et al. (2011), see Figure 7.2.

After all the pre-analysis steps what is obtained are 180 segments of 990 millisec-

onds. Each segment is composed of 6 time series which represent the 6 defined nodes

of interest. Then the FBN method is applied to all 180 segments to infer connec-

tivity among these sources. Interestingly, after several runs of the algorithm using

the extracted time series, it was noticed that common network patterns appeared

in several segments. This phenomenon led to analysis of which and where in time

these common networks occur. In order to achieve this, a hierarchical clustering

was implemented using correlations among all connectivity vectors obtained from

the inferred network structures. This created a 180× 180 clustered matrix where 13

clusters could be identified, see Figure 7.20. The networks composing each cluster

are averaged to obtain a representative network of each cluster. These 13 networks

are shown in Figure 7.22. This is possibly the most important result of this the-

sis, because this suggests that something recurring is happening in the dynamics

of a resting state brain and these network patterns appear frequently during the

recording. Their occurrence is not chaotic, there is an smooth changing of patterns

through time as can be seen in Figure 7.23. These results definitively compel future

research.
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Chapter 8

Discussion and future work

8.1 Discussion

Brain networks have won great importance in recent years. The paths used by brain

neurons to communicate is an important field of knowledge which is still partially

explored even with the current technologies and the extensive research work that

has been done. The resting state network or default mode network is maybe one

of the most recent and important findings in Neuroscience and Neuroimaging. At

the beginning it raised scepticism in the research community but today it is a well

established research area.

The resting state network has been pointed as a potential marker for brain related

diseases and conditions. The reason of this is because this network is assumed to be

constant in all humans and this has been confirmed by several research groups in

different countries. A universal functional brain network like the DMN would allow

to study how this network is affected given that there is a possible brain condition

or disease.

MEG network studies have not been as popular as in fMRI also known as fcMRI

(functional connectivity MRI). The reasons of this might be because MRI devices

are much more common than MEG ones, the fMRI community is bigger than the

MEG community, and also the availability of Open Source software is higher in

fMRI. Nevertheless in recent years and possibly fuelled by the need of studying the

dynamic activity of the brain and its effective connectome, the number of research
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8 Discussion and future work

works relating MEG and brain networks has increased. This also raises the need to

develop new techniques and protocols designed for brain connectivity in MEG.

The proposition of this thesis is to apply Bayesian network theory in the Fourier

domain, hence the name of Fourier Bayesian networks or FBNs, to the study of

effective brain networks. Bayesian networks have been applied with success in fMRI

studies where the BOLD time series values are rounded to discrete levels to feed the

BN searching algorithm using discrete distributions. Discrete BNs have the property

of being non-linear which improves the network estimation since an interaction model

among the network nodes is not assumed at the cost of losing information due to

discretization of the data.

Applications of discrete BNs for MEG brain functional studies is not possible

using the VE time series directly, current approaches consist of taking the signals

envelope (or instant power) using the Hilbert transform and converting these to

discrete levels for the BN algorithm. A second approach is using Gaussian Bayesian

networks which can deal with time series at the cost of assuming a linear interaction

among the sources which is mainly governed by a linear regression whose error is

assumed Gaussian (hence the name). Causality in Gaussian BNs is inferred by net-

work unfolding which means duplicating sources as delayed versions of the original

time series. This approach might work in some applications where the delay among

sources can be guessed but in the case of Electrophysiology this delay is not known,

and sometimes it can be variable due to the dynamics of the nervous system. For

these reasons, this thesis proposes FBNs as an approach for brain connectivity.

Properties of FBNs

FBNs work by transforming the source time series in the Fourier domain. Working

in the Fourier domain allows to separate the Likelihood distributions in two factors

taking the advantage that in this domain power spectrum is independent of phase

spectrum, leading to a likelihood function for the network power and a likelihood

function for the network phase. The likelihood phase allows to evaluate causality

without setting the source delay as a parameter, a common practice in discrete

dynamic BNs. FBNs have interesting properties that makes them an appealing
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approach for brain functional connectivity and maybe other fields too. These are:

• FBNs inherits the ability of BNs of dealing with large number of sources. One

of the properties that made BNs so important in genetic or protein networks

is their ability to build networks from large number of sources which is the

case of the proteins transcribed inside the cell. In the case of MEG maybe it

is not possible to have hundreds of sources due to the physical constraints in

MEG given by the number of SQUIDs but it is still an important property.

• FBNs are able to work with long time series. Long time series are com-

mon in Electrophysiology studies, which is a positive characteristic due to

the amount of information provided but in the case of Gaussian BNs it in-

creases the amount of computations needed for network structure inference

since the linear regression is performed in time domain. By transforming the

time series in the Fourier domain a long time series segment is transformed to

a fixed window defined by the spectral coefficients which at the level of the

algorithm produces smaller matrix computations. Also, if FBNs are estimated

at specific band of frequencies it also decreases the size of the matrices. This

FBN property might also represent a disadvantage since brain time series are

known to be non-stationary and by computing the Fourier transform and the

periodogram the entire segment is considered stationary.

• FBNs deal with dynamic phase variability - causality. As previously explained

FBNs work with the frequency power and frequency phase. In order to esti-

mate the delay between the parent source and the child source the frequency

phase slope is estimated within the band of interest. In Gaussian dynamic BNs

(DBNs) causality is estimated by delaying the time series a certain amount of

samples, commonly one or two. FBNs do not need to specify the number of

delayed samples, because it estimates the phase slope which will always be pos-

itive or negative regardless of the delay length. Also, this delay does not have

to be homogeneous among the sources, it can have different values. This is not

possible in Gaussian DBNs. In DBN the network must be unfolded several

delays and network searching algorithm must optimize the entire network.
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• FBNs are non-parametric. FBNs inherits this property from the Fourier trans-

form. The spectral regression of the Fourier transform does not imply a signal

model besides the one provided by the Fourier coefficients. These also allows

to estimate parent-child delay from the phase slope only. Nevertheless, the

network structure searching algorithms require hyperparameters that control

or tune the searching.

• FBNs can perform network searching at user-defined frequency bands. This

property is also inherited from the Fourier transform and it was tested in

Section 6.5.3. Network searching at frequency bands can be performed by just

doing spectral regression and slope estimation using the Fourier coefficients

that represent the desired frequencies.

Thesis simulations

The simulations presented in Chapter 6 were designed to study the performance of

FBNs under controlled environments. The first set of simulations tested how FBNs

behave inferring simulated networks using two source-to-source interaction models:

a linear model MVAR(p) and a non-linear NL(p) model, where p defines the time lag

or delay parameter. These simulations proved that FBNs are successful at inferring

the modelled network for all cases and behave better than DBNs even when the time

lag parameter p changes. FBN performance was practically invariant to changes in

the model order p.

For the second set of experiments a MEG simulated environment was imple-

mented. These simulations were designed to test the performance of FBNs for the

application of interest in this thesis in a controlled environment where the network

system to be inferred is truly known. In these simulations FBNs showed good per-

formance inferring networks although not as good as the previous set of simulations

due to the volume conduction problem produced by the space between the brain

sources and MEG SQUIDS, and the LCMV beamforming. These simulations also

provided an idea of how difficult it is to infer networks after beamforming and also

that the number of inferred sources can not be large due to physical constraints of

the MEG device such as the number of SQUIDs. For instance, simulations showed
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results for a 100-node network which was impossible to estimate after beamforming

even knowing the exact position and orientation of dipoles.

Possibly, simulations using the MEG environment were not as accurate as desired

because no volume head model for the secondary dipole currents was implemented

such as the sphere model, multisphere model or finite element method that describes

the electromagnetic properties of the head flesh and skull. Nevertheless, all these

models at the end provide a linear mixing of the sources that reflect their activity

to the MEG squids. A linear mixing occurs due to the space between the modelled

sources and the MEG SQUIDs, this second mixing is modelled in our simulations

for the primary dipole currents. The use of a more realistic head model needs to be

covered as future work.

FBNs and the MEG resting state datasets

The experiments with real MEG datasets were more challenging than simulations

implemented in Chapter 6 since in a real resting state brain it is not possible to

know in advance what to find or search for and this topic will certainly be a focus of

future research. However, these experiments were able to test the behaviour of the

proposed technique with real MEG time series. From the available MEG database

the recording of subject R2016 from the control group was chosen for analysis. This

recording consists of 360 seconds of resting state with the first half being eyes open

and the second half (180 seconds) eyes closed. The 180 seconds for eyes closed were

chosen to avoid eye movement or blink artefacts. Then 6 regions which are currently

known to be part of the DMN were defined, these are: PrCC, lITG, rITG, lANG,

rANG and dMPFC. Then, beamforming was applied to extract the source activity

at these regions. Beamforming is implemented in the YNiC’s NAF software for

MEG data analysis.

The results of these experiments showed promise even though these are prelimi-

nary results that will need much more research work. The FBN method was able to

infer from subject R2016 approximately 13 common network structures or patterns

that manifest in the recording during the resting state with eyes closed. Importantly,

these networks do not show up in a chaotic manner but there seems to be a smooth

249



8 Discussion and future work

change among the 13 inferred networks. These results are shown in Figures 7.20,

7.22 and 7.23.

8.2 Future work

The results obtained from this thesis and the proposed technique compel future

research in order to study more exhaustively the behaviour, performance, and prop-

erties of FBNs and their potential applications. In this section eleven areas of future

research are described. These areas of future research are mentioned with the in-

tention of improving the current state of FBNs.

1. Noise analysis. For the experiments in Chapter 6, noise was fixed to a SNR=

30 for MEG. This is a high SNR which might not reflect the real difficulties

found in MEG recordings. A study of the behaviour and perfomance of FBNs

under different SNRs for network estimation and also beamforming will be

needed in the future.

2. Statistical significance of the inferred edges. The FBN method using the sim-

ulated annealing algorithm or other optimization algorithms aims to find the

best or more probable network within the posterior probability distribution

where constraints such as the complexity of the network can be added during

the network sampling. These sampled networks will represent the best set of

networks that describes the data. Nevertheless, a separate statistical test that

indicates or proves that there exists real interaction between the sources con-

nected by the inferred network should be computed. This needs to be done in

order to prove that there is indeed a network with statistical significance. The

most direct method to analyse statistical significance between a child node

and its parent nodes is by studying the regression coefficients in the spectral

domain. Recall that FBNs work by performing a spectral regression which

is governed by regression coefficients. These are an indicator of connection

strength.

3. Likelihood function for the network phase probability. This is a pending issue
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for the FBN development. The current function in Eq. 5.79 is a heuristic

approach that aims to evaluate a network with a higher value if the network

edges have the correct causality and with a lower value for the contrary. For

practical purposes it works well but the FBN method needs a likelihood phase

distribution with a physical meaning which should come from the proposed

structure Sh. Future work on this function is necessary.

4. Hyperparameters methodology. The simulations in Chapter 6 and the exper-

iments with real MEG datasets in Chapter 7 showed that the algorithm’s

hyperparameters which control the behaviour of the network searching are of

paramount importance for the correct estimation of the system’s network. A

wrong set of hyperparameters might lead to completely incorrect results in

the worst scenario. The hyperparameters in this thesis were chosen by con-

tinued experimentation and taking those values that showed good results, but

this cannot be done on real datasets and real applications. The hyperparam-

eters depend on the characteristics of the time series analysed, new datasets

might require new hyperparameter values. For this reason a more scientific

methodology should be found to set the FBN hyperparameters.

5. FBN performance at different band of frequencies. Section 6.5.3 covered in

part the FBN property for inferring networks at user’s defined frequency bands

and the advantage of decreasing the number of computations at the algorithm

level. Choosing a limited band of frequencies instead of the full Nyquist range

reduces the size of the matrices used for spectral regression. Nevertheless a

study about how FBNs behave at different frequency bands should be done in

the future. In Electrophysiology, frequency band analysis is a very important

topic since the bands such as alpha, beta, theta and gamma, are related with

physical or cognitive conditions in the human brain.

6. Realistic brain model for MEG-beamforming simulations. For the simulations

in this thesis a MEG simulated acquisition environment was implemented. The

simulated environment is able to simulate the linear source mixing caused by

the separation between the brain sources and MEG SQUIDs where only the
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magnetic fields from the primary currents of modelled dipoles were recorded.

Nevertheless in a real brain the secondary currents which travel through the

head’s flesh are also important to create more realistic simulations. Future

work should also focus on the implementation of a brain model such as the

sphere model, the multisphere model for the brain or to model completely the

subject’s head and tissues using finite element method, see for instance Huang

et al. (1999); Darvas et al. (2004).

Realistic head models like the ones obtained by the finite element method are

able to model the shape of the cortex. For the case of brain connectivity this is

advantageous since it allows to define the direction of the current dipole which

otherwise should be estimated by maximum variance, for a review on this see

Fuchs (2007).

7. Inference of DMN regions. For the experiments in this thesis, regions that

are currently known to belong to the DMN system were used for network

connectivity inference. The experiments were based on the work of Jiao et

al. (2011). Nevertheless, for the resting state database in the YNiC the

existence of a DMN system and its regions should be proved first. Brookes

et al. (2011b) and de Pasquale et al. (2010) published a methodology for

the inference of the DMN from MEG recordings. It will be necessary and

interesting to reproduce the results in Brookes et al. (2011b) using the MTBI

MEG database.

8. Prior distributions and network probabilities. Since this thesis is a Bayesian ap-

proach, the prior distribution takes an important role. In this thesis, the prior

can be seen as a probability distribution function that gives high probabilities

to sparsely connected networks and low probabilities to highly connected ones.

This is done under the supposition that the expected network is simple and

concise or in other words sparse. This sparsity is supposed to be the previ-

ous knowledge. Nevertheless different approaches can be added to the prior

if other interaction models, or assumptions for the network structure and its

parameters are included. This topic will also be interesting for future research.
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9. Filtering or no filtering?. FBNs are able to infer networks at user’s defined

frequency bands, hence analysing the coefficients at the desired band of fre-

quencies might count as a kind of filtering. In the simulations this was not

tested, neither for experiments using the real MEG datasets. Certainly a fil-

tering or prefiltering will affect the spectral regression in the likelihood power

function. Experiments and research in this area will also be interesting in the

near future.

10. Wavelets and other orthogonal signal decompositions. FBNs as their name

indicates uses the Fourier transform to perform the signal decomposition in

the spectral domain and separate this information from the phase. But math-

ematically there is no constraint against applying other kind of orthogonal

decomposition for the signals of interest. One suggestion for future work is

to apply wavelets and perform wavelet spectral regression and phase analysis.

Wavelets have interesting characteristics relating to resolution and smoothness

in spectral estimation.

11. Number of subjects in the study. The MTBI database at hand is composed of

27 recordings (controls and MTBI). For the experiments in this thesis only the

recordings from the control subject R2016 were analysed. It will be necessary

once the previous points in this section are covered, to study all recordings in

the database to relate the MTBI condition with the DMN system for clinical

applications.

Network analysis and inference in the spectral domain as proposed in this doc-

ument shows to be a potential approach for network inference studies and for brain

connectivity studies. FBNs are a novel technique born in the Electrophysiology field

and designed for network inference from MEG time series. This spectral approach

has also raised importance in the research community, see for instance a recent pub-

lished PhD thesis on the same field in Meng (2011). Nevertheless to the knowledge

of the author of this document, Peraza and Halliday (2010b) is the first publication

suggesting this approach for network structure inference.
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Appendix A

Implementation details of FBNs

In this Section details related to the implementation of the simulated annealing

algorithm are explained. The algorithm aims to sample networks from the network

probability distribution p(Sh|D) which is then transformed to p(Sh|F,Θ). From

Section 5.9.3 recall the acceptance ratio for the simulated annealing algorithm in

Eq 5.104,

β = min

[
1,

(
p(F|S+

h )p(Θ|S
+
h )p(S

+
h )

p(F|Sh)p(Θ|Sh)p(Sh)

)1/T (t)
]

, (A.1)

where

T (t) = max

[
T0

(
Tf

T0

)t/b

, Tf

]
, (A.2)

The behaviour of the simulated annealing algorithm and in specific the imple-

mentation in this thesis is governed by seven hyperparameters:

• numruns: Number of runs. The maximum number of iterations for the

MCMC algorithm.

• initemp: Initial temperature. According to the simulated annealing, this

parameters governs the acceptance ratio at the start of the network searching.

It is defined by T0 in Eq. A.2.

• fintemp: Final temperature. This parameters governs the acceptance ratio

at the end of the network searching algorithm and its influence starts at time
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b. This parameter is defined as Tf in Eq. A.2.

• coolruns: Cooling runs. This is the number of iterations to reach the final

temperature Tf in Eq. A.2. This hyperparameter is represented in Eq A.2 as

b.

• burnedruns: Burned runs. The number of iterations that are assumed to be

stable after algorithm reaches Tf . For this implementation “burnedruns” will

be the last iterations before the algorithm reaches “numruns”.

• alpha: Network complexity. This tuning parameter punishes network that

are densely connected with the intention of favouring network models that are

simpler.

• beta: Phase influence. This tuning parameter controls the influence of the

network phase probability distribution

Adding the hyperparameters to the simulated annealing algorithm, the likelihood

distributions in Eq. A.1 is

p(F|Sh)p(Θ|Sh)p(Sh) ≡ p(F|Sh)p(Sh)
alphap(Θ|Sh)

beta , (A.3)

where the network complexity alpha and the phase influence beta parameters

have been added. Notice that these parameter are included as power in order to leave

them as factors when the logarithm is computed. For this case the p(F|Sh)p(Sh)
alpha

term is equivalent to the Fourier Bayesian information criterion (FBIC) in Sec-

tion 5.7. Hence the previous definition might also be written as

ln(p(F|Sh)p(Θ|Sh)p(Sh)) ≡ ln p(F|Sh)+alpha×ln p(Sh)+beta×ln p(Θ|Sh) , (A.4)

ln(p(F|Sh)p(Θ|Sh)p(Sh)) ≡ FBIC(F|Sh, alpha) + beta× ln p(Θ|Sh) . (A.5)

Recall that FBIC is independent from the phase. The error spectrum fεε is a real

number which is not influenced by the argument of the Fourier coefficients. Eq. A.5

is the function used for the Bayesian ratio and the simulated annealing algorithm

in Chapter 6 and Chapter 7.
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Colour images

Figure B.1: Macaque cortex. Regions V4 and 46 are hubs that communicate two important clusters
of nodes. In the left column the connectivity matrices are shown. The middle column shows the
network where hubs 46 and V4 are highlighted in blue and the two regions they communicate in
white and gray respectively. The third column shows the cortex surfaces with regions V4 and 46
shaded in blue and their direct neighbours shaded in light blue. Image from Sporns et al. (2007).
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B Colour images

Figure B.2: Brain functional networks of a young person and old person following placebo. The
node efficiency is colour coded: The red nodes have a reduced efficiency by age, blue nodes by
sulpiride (a dopamine antagonist), and purple nodes by both, age and sulpiride. Image from
Achard and Bullmore (2007).

Figure B.3: The four sphere model for volume conduction. The top row shows the four spheres
representing the cortex, the CSF, skull, and the scalp when a tangential dipole is active. The
bottom row shows the same but for a radial dipole. Notice that surface voltage is more concentrated
for radial (also called normal) dipoles.

Figure B.4: Orthogonal dipole on head’s scalp. An orthogonal dipole is simulated using the four
sphere model (Nunez and Srinivasan , 2006). The electric dipole was placed inside the brain.
The figure shows the voltage field produced on the head’s scalp, which is shown on the outermost
sphere (recall the four sphere model). Notice how the fields maxima is located just above the
current dipole, whose position is represented by a red cone above the scalp.
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Figure B.5: Tangential dipole on head’s scalp. As in Figure 2.3, a current dipole was place in the
brain but in this case its direction is tangential to the scalp cortex. The position of the dipole
inside the four sphere model is shown with a red cone with its vertex pointing to the positive pole.
Notice that in this case, the field’s distribution is not concentrated as in the orthogonal case. The
field is much wider and its voltage lower. Also, the field shows one minimum and one maximum
and the real position of the dipole is located in the middle of these two points. This pattern is
characteristic of tangential dipoles.

Figure B.6: Magnetic field generated by an orthogonal dipole. The sphere at the right shows in
colour the magnitude of the orthogonal components of the magnetic field that crosses the sphere.
The sphere’s surface is located four centimetres above the scalp sphere. Notice that the magnitude
shown is zero (green colour), meaning that there are no orthogonal components.

Figure B.7: Magnetic field generated by a tangential dipole. The sphere at the right shows in
colour the magnitude of the orthogonal components of the magnetic field that crosses the sphere.
Notice that in this case a minimum and a maximum can be appreciated, and that the real position
of the dipole is in the middle of these two points.
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Figure B.8: 248 SQUID layout from a 4D Neuroimaging MEG device. The blue arrows represent
the SQUIDs’ directions. Hence the SQUIDs are more sensitive to fields parallel to the blue arrows.

Figure B.9: Magnetic field acquisition given by the MEG SQUIDs. Here the coloured smaller
248 spheres represent the magnitude of the acquired magnetic field using SQUIDs (one sphere per
SQUID). This simulation was done by applying Eq. 2.9 to sense a tangential dipole. Also the
scalp’s potential distribution is shown using the four sphere model for EEG.

Figure B.10: Minimum norm source estimation. For this simulation the surface of the scalp was
tessellated to create regions of interest. Then, dipoles were estimated using regularised least squares
or minimum norm. The red arrows indicate the most likely place where the dipole might be. This
is the best dipole that explain the brain magnetic field whose magnitude is shown in coloured
spheres.
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Figure B.11: Beamforming simulation, localization of two dipoles. The LCMV beamforming finds
the position of two tangential dipoles. Using a sphere to define the universe of possible places, a
coronal slice was tessellated to define the regions of interest. Then, a dipole was estimated at each
region. These dipoles are represented as coloured arrows being the red ones the best estimations.

Figure B.12: Same simulation as in Figure 2.12. Here the NAI index are shown using a heat map
with spline interpolation. Notice that the LCMV beamforming can estimate accurately sources at
deeper regions of the brain.
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Figure B.13: The error spectrum is shown for networks formed by node x4 and different combina-
tions of parents. It is possible to see how the addition of a new source node in the parent vector
decreases the error spectrum until the two neighbouring nodes of x4 are included, these are x3

and x5. Once these nodes are given, any information coming from other sources in the network is
irrelevant. This shows that x4 is conditional independent from the rest of the network given x3

and x5.

Figure B.14: Generated network structures in the brain cortex mesh for the network structure
inference experiments using the MVAR(d) model. The upper row shows the 10-node network and
the 100-node network is shown in bottom row.
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Figure B.15: Generated network structures in the brain cortex mesh for network structure inference
experiments using the NL(d) model. The upper row shows the 10-node network and the 100-node
network is shown at the bottom row.

Figure B.16: Beamforming maps from independent sources. The current dipoles were modulated
by independent Gaussian noise sources and the source arrangement is the one of the 10-node linear
network in Figure 6.20.
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Figure B.17: Beamforming maps using the 10-node MVAR(1) brain network shown in Section 6.20.

Figure B.18: Beamforming map using the 100-node MVAR(1) network model shown in Figure 6.20.
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Figure B.19: Beamforming maps using the 10-node NL(1) network. The original network structure
system is depicted in Figure 6.21.

Figure B.20: Beamforming map for the 100-node NL(1) network. The original network structure
systems are depicted in Figure 6.21.
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Figure B.21: Preprocessing steps for the experiments in this chapter.

Figure B.22: Cross-phase frequency for six edges of interest between 2 and 40 Hz. The edges are
from top to bottom and from left to right: PrCC-lANG, PrCC-dMPFC, lANG-lITG, rANG-rITG,
dMPFC-lITG, and dMPFC-rANG.
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Figure B.23: Correlation matrix of the connectivity vectors. The 180 acyclic directed estimated
matrices were reshaped from 6 × 6 to 36 column vector. Then, correlation among all of them is
computed.

Figure B.24: Clustered network correlation matrix. The hierarchical clustering is shown by the
dendogram graph which shows approximately 13 network clusters.
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B Colour images

Figure B.25: Network patterns for the resting state MEG recording. This figure shows the 13
identified networks patterns that are estimated by the FBN method. The patterns were found
using a hierarchical clustering method and then each cluster is averaged to obtain a representative
network of each cluster.
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