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Abstract

In this thesis we extend previous studies of Toeplitz and truncated Toeplitz operators

by studying both Toeplitz and truncated Toeplitz operators with matrix symbols.

We address the question of whether there is a smallest (matricial) Toeplitz kernel

containing a given element or subspace of the Hardy space. This will in turn show

how Toeplitz kernels can often be completely described by a fixed number of vectors,

called maximal functions. We also discover an interesting and fundamental link

between this topic and cyclic vectors for the backward shift.

We show that there is a link between the vector-valued nearly invariant subspaces

and the scalar-valued nearly invariant subspaces with a finite defect. This powerful

observation allows us to develop an all-encompassing approach to the study of the

kernels of the Toeplitz operator, the truncated Toeplitz operator, the matrix-valued

truncated Toeplitz operator and the dual truncated Toeplitz operator.

We study matrix-valued truncated Toeplitz operators with symbols having each

entry in Lp for some p ∈ (2,∞]. We develop an approach which bypasses the tech-

nical difficulties which arise when dealing with problems concerning matrix-valued

truncated Toeplitz operators with unbounded symbols. Using this new approach we

express the kernel of the matrix-valued truncated Toeplitz operator as an isometric

image of an S∗-invariant subspace. Also, we construct a Toeplitz operator which is

equivalent after extension to the matrix-valued truncated Toeplitz operator.

We characterise the dual, and in some cases the predual, of the backward shift
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invariant subspaces of the Hardy space H1. We then use our duality results to show

that under certain conditions on the inner function I, every bounded truncated

Toeplitz operator on the model space corresponding to I has a bounded symbol if

and only if every compact truncated Toeplitz operator on the model space has a

symbol which is of the form I multiplied by a continuous function.
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1 Introduction

1.1 History of Toeplitz and truncated Toeplitz operators

Toeplitz operators are natural generalizations of so-called Toeplitz matrices. In the

standard orthonormal basis of `2(Z+) =
{
a = (an)n≥0 : ‖a‖2

2:=
∑

n≥0 |an|
2 <∞

}
,

a Toeplitz operator is represented by the infinite matrix

T =



u0 u−1 u−2 u−3 · · ·

u1 u0 u−1 u−2
. . .

u2 u1 u0 u−1
. . .

...
. . . . . . . . .

...


,

where (un)n∈Z is a given sequence. Although the Toeplitz operator is named after the

German mathematician Otto Toeplitz (1881-1940), in his work [65, 66] Otto Toeplitz

never actually studied the present day version of the Toeplitz operator. He studied

Laurent Operators, which may be viewed as multiplication operators on `2(Z), and

finite Toeplitz matrices. However, even without the present day formulation of

the Toeplitz operator, one of the cornerstone theorems in the theory of Toeplitz

operators was discovered by Toeplitz. Toeplitz showed that with T as above the

upper bounds of the bilinear forms 〈Tx, y〉 and 〈Lx, y〉 (here L : `2(Z) → `2(Z)

denotes the Laurent operator with corresponding sequence (un)n∈Z) over the unit

balls of the corresponding spaces are the same, and hence in modern notation, this
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is the well known formula

‖T‖=

∥∥∥∥∥∑
j∈Z

ujz
j

∥∥∥∥∥
∞

.

Although Toeplitz’s interests were purely mathematical, Wiener and Hopf both

independently came to study Toeplitz operators through applications. For Wiener

the subject arose naturally during his studies of causal signals and the best quadratic

predictions for random processes. Hopf came to study Toeplitz operators through

his interest in integral equations and a problem related to radiative equilibrium (see

[67]).

Onsanger (1903-1976), winner of the Nobel prize in Chemistry, showed that the

problem of finding the thermodynamic limit of a system of particles lying in Z× Z

may be reduced to an asymptotic question of Toeplitz determinants. In search of

a mathematical colleague competent for this question (and able – as he wrote –

to “fill out the holes in the mathematics and show the epsilons and deltas and all

of that”) Onsanger made contact with Szegö and this eventually led to the strong

Szegö Theorem. This collaboration was the starting point for the vast field of study

into the asymptotic properties of Toeplitz matrices and their diverse applications.

It is worth noting that the first appearance of a Toeplitz operator in its present

day form T : `2(Z+)→ `2(Z+),

Tx =

(∑
j>0

ci−jxj

)
i>0

,
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where (ci)i∈Z is some given sequence, took place in Odessa in 1948 [57, 56]. Since

1948 mathematicians have developed a rich theory surrounding the Toeplitz opera-

tor, which intertwines Riemann-Hilbert problems, Wiener-Hopf operators and more

recently the invariant subspace problem. For a more detailed history on the Toeplitz

operator we refer the reader to [54].

Truncated Toeplitz operators may be viewed as an operator theoretic gener-

alisation of finite Toeplitz matrices (precise definitions will be given in the next

section). Thus, from a historical perspective, it may seem appropriate to attribute

the first mathematical study of truncated Toeplitz operators to Otto Toeplitz with

his study of finite Toeplitz matrices in [66]. Although truncated Toeplitz operators

were encountered naturally in the Sz.-Nagy-Foiaş model theory for Hilbert space

contractions (see [53]) and Sarason’s study of the Volterra operator [60], the first

systematic study of truncated Toeplitz operators was initiated by Sarason in his

seminal work of 2007 [63].

Sarason’s work of 2007 has led to an explosion of research into truncated Toeplitz

operators with far reaching applications. One notable reason operator theorists have

taken a particular interest in truncated Toeplitz operators is because there seems to

be a growing body of evidence to suggest that truncated Toeplitz operators might

serve as some sort of model operator for various classes of complex symmetric opera-

tors. At this point, however, it is still too early to tell what exact form such a model

theory should take. On the other hand, a surprising array of complex symmetric
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operators can be concretely realised in terms of truncated Toeplitz operators (or

direct sums of such operators). We refer the reader to Section 9 of [37] for a detailed

discussion of such results.

Other notable applications of the study of truncated Toeplitz operators are the

Carathéodory and Pick problems [1], where truncated Toeplitz operators with an

analytic symbol appear naturally, and extremal problems stemming from control

theory and electrical engineering [33, 32] where one can compute the norm of a

Hankel matrix by considering the norm of a truncated Toeplitz operator (see equa-

tion 2.9 in [55]).

In this thesis we build on the previous literature studying Toeplitz and trun-

cated Toeplitz operators with a particular emphasis on extending the theory of

these operators to a multidimensional setting. Although the study of multidimen-

sional analogues of truncated Toeplitz operators is a fairly recent endeavour, these

operators do find application in various problems. They appear naturally when one

is considering the Sz.-Nagy and Foiaş model theory for Hilbert space contractions or

when one wants to compute the norm of an associated (vectorial) Hankel operator.

We refer the reader to Chapter 4 for a more detailed explanation of these links, with

further applications to minimisation problems and Nehari’s Theorem.
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1.2 Background theory and notation

We let T denote the unit circle in the complex plane, let D denote the open unit

disc in C and let m denote the normalised Lebesgue measure on T. We denote

Lp = Lp(T, dm). We now give two equivalent ways to view the Hardy space.

Definition 1.1. For 0 < p <∞, we define the Hardy space, Hp, to be the class of

holomorphic functions in the unit disc such that

sup
06r<1

(
1

2π

∫ 2π

0

∣∣f (reiζ)∣∣p dζ) 1
p

<∞.

The class Hp is a vector space, and for p > 1 if we equip Hp with the norm given

by

‖f‖Hp := sup
06r<1

(
1

2π

∫ 2π

0

∣∣f (reiζ)∣∣p dζ) 1
p

<∞

then Hp becomes a Banach space.

Definition 1.2. The space H∞ is defıned as the vector space of bounded holomorphic

functions on the unit disk, with the norm

‖f‖H∞= sup
|z|<1

|f(z)|.

With this norm H∞ is also a Banach space. Theorem 3.8 in Chapter 3 of [46] shows

that given f ∈ Hp with 0 < p 6∞ the radial limit f̃
(
eiζ
)

:= limr→1 f
(
reiζ
)

exists
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for almost every ζ ∈ T and ‖f̃‖Lp= ‖f‖Hp . We define Hp(T) to be the vector

subspace of Lp containing all the limit functions f̃ when f ∈ Hp. Then by Theorem

3.12 in Chapter 3 of [46] for 1 6 p 6∞ we have

g ∈ Hp(T) if and only if g ∈ Lp and ĝ(n) = 0 for all n < 0,

where ĝ(n) are the Fourier coefficients of the function g,

∀n ∈ Z, ĝ(n) =
1

2π

∫ 2π

0

g
(
eiζ
)
e−inζdζ.

When 1 6 p 6∞ the space Hp(T) is a closed subspace of Lp and thus is a Banach

space.

With the above construction of Hp(T), we start with the space Hp, defined on the

disc, and obtain a closed subspace of Lp by taking radial limits. When 1 6 p 6∞,

one can actually reverse this process and define the space Hp starting from the space

Hp(T). We define the Poisson kernel,

Pr(t) :=
∞∑

n=−∞

r|n|eint =
1− r2

1− 2r cos t+ r2
= Re

(
1 + reit

1− reit

)
, 0 ≤ r < 1,

then we define

f
(
reit
)

=
1

2π

∫ 2π

0

Pr(t− ζ)f̃
(
eiζ
)
dζ, r < 1.
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Then Theorem 3.11 in Chapter 3 of [46] shows that f̃ belongs to Hp(T) exactly when

f ∈ Hp and furthermore the proof of Theorem 3.12 in Chapter 3 of [46] shows the

Fourier coefficients (an)n∈N of f̃ are exactly the coefficients of the analytic function

f(z) =
∞∑
n=0

anz
n, |z|< 1.

Thus we have shown there are two equivalent ways to view the Hardy space, as

either Hp or Hp(T). We note that when p < 1 the Fourier coefficients of a function

in Hp(T) may not exist and we therefore can not view Hp(T) as the subspace of Lp

which has all negative Fourier coefficients having a value of 0. Following convention,

we will not distinguish between f ∈ Hp and f̃ ∈ Hp(T), and we will just use the

notation f ∈ Hp. When we multiply a function f ∈ Hp by any other function g

defined almost everywhere on T, this multiplication is to be understood as f̃ (defined

as above) multiplied by g, i.e, the multiplication is understood on T.

From the identification of Hp as a subset of Lp it is clear that for p1 < p2 we

have Hp2 ⊆ Hp1 . Another key result in the theory of Hardy spaces, which can be

found as Theorem 3.3 in [27], is the following.

Theorem 1.3. For 0 < p <∞, Hp is the closure of the set of polynomials.

We also note that by orthogonality of {zn : n ∈ N} in L2, the Hardy space H2

consists of all functions

f(z) =
∞∑
n=0

anz
n
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analytic in the unit disc D such that

‖f‖2
H2=

∞∑
n=0

|an|2 <∞.

Definition 1.4. Let 0 < p 6 ∞. We say a function f i ∈ Hp is inner if |f |= 1

a.e. on T. We say an analytic function with radial boundary values defined almost

everywhere, f o, is outer if it is of the form

f o(z) = α exp

{
1

2π

∫ 2π

0

eit + z

eit − z
logψ(eit)dt

}
,

where α is a complex number of modulus one, ψ(eit) > 0, log(ψ(eit)) ∈ L1.

As outlined after Definition 3.19 in [36], the significance of the above outer function

lies in the fact that |f o|= |ψ|= ψ a.e. on T.

Definition 1.5. Let (ak)k∈N be a sequence of points in D satisfying the property∑
k(1− |ak|) <∞. An inner function, B, of the form

B(z) = αzm
∞∏
k=1

|ak|
ak

ak − z
1− akz

,

where α ∈ C has modulus one and m ∈ Z+, is called a Blaschke product.

We note that each ak is a zero of B. We refer the reader to Theorem 2.4 in [27] for

a proof that the specified function B is indeed inner.
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Definition 1.6. An inner function of the form

S(z) = α exp

{
−
∫ 2π

0

eit + z

eit − z
dµ(t)

}
,

where α is a constant of modulus one, and µ is a positive singular measure is called

a singular inner function.

We note that singular inner functions do not have any zeros in the disc. The most

fundamental factorisation result within the theory of Hardy spaces is the following.

(A proof of which may be found as Theorem 2.8 in [27].)

Theorem 1.7. Let 0 < p 6∞. Every non-zero f ∈ Hp has a factorisation

f(z) = f i(z)f o(z),

where f i is inner, and f o is outer and lying in Hp. Furthermore this factorisation

is unique up to multiplication by unimodular constants. We may further factorise

f i as

f i(z) = B(z)S(z),

where B is a Blaschke product and S is a singular inner function. This factorisation

of f i is also unique up to multiplication by unimodular constants.

Conversely, every such product f(z) = f i(z)f o(z) where f i is inner and f o is an

outer function lying Lp, belongs to Hp.
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Throughout the thesis, for a function f ∈ Hp we write f = f if o, where f i/f o is

an inner/outer factor of f respectively.

Theorem 3.5.6 in [24] gives us the following theorem.

Theorem 1.8. Let 1 < p <∞ and let 1
p

+ 1
q

= 1. Then

1. ` ∈ (Hp)∗ if and only if there is a g ∈ Hq such that

`(f) = `g(f) :=

∫
T
f(ζ)g(ζ)dm(ζ),

for all f ∈ Hp.

2. The norm of the above linear functional is equivalent to the Hq -norm of g.

We call the bounded map S : Hp → Hp given by f 7→ zf the (forward) shift.

The shift invariant subspaces of Hp for 0 < p < ∞ are characterised by Beurling’s

Theorem, which is the following.

Theorem 1.9. Let M ⊆ Hp be a nontrivial (closed) invariant subspace for S. Then

there is an inner function I ∈ H∞ such that

M = IHp = {If : f ∈ Hp} .

Also, I is unique to within a constant of modulus 1.

Beurling’s Theorem was originally proved by Beurling for the Hilbert space H2 and

then generalised by others to to the case when 0 < p < ∞, see [35] page 132 and
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[51] page 79.

The following theorem is a well known result, originally due to Riesz [58, 59]

Theorem 1.10. Let 1 < p <∞. If f ∈ Lp has the Fourier series

f ∼
∞∑

n=−∞

f̂(n)ζn,

then the map P+ : Lp → Hp, defined by

(P+f)(z) :=
∞∑
n=0

f̂(n)zn =

∫
T

f(ζ)

1− ζz
dm(ζ), z ∈ D,

is bounded.

We define Hp
0 := {f ∈ Hp : f(0) = 0} and we use the notation f to mean the

conjugate of f (which is automatically in Lp whenever f ∈ Hp). We call the map P+

the Riesz projection, and we note that when p = 2, P+ is the orthogonal projection

from L2 to H2. Similarly, we define P− := Id − P+. When there is ambiguity

over which space the projection is acting on, we will denote Pq,+ (respectively Pq,−)

to mean the projection Lq → Hq (respectively Lq → Hq
0). We can observe that

for 1 6 p 6 ∞ we have Hp ∩ Hp
0 = {0}. Moreover, when 1 < p < ∞ we have

Lp = P+L
p + P−L

p, which implies

Lp = Hp ⊕Hp
0 ,
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where here we write Hp
0 to mean the conjugate of Hp

0 .

Definition 1.11. Let 1 < p <∞. For g ∈ L∞ the Toeplitz operator, Tg : Hp → Hp

is defined by

Tg(f) = P+(gf).

We call g the symbol for the Toeplitz operator.

Remark. Although the Toeplitz operator in the introduction is viewed on `2(Z+),

viewing the Toeplitz operator to act instead on Hp will still give the same matrix

representation of the operator (when one uses the canonical basis {zn : n ∈ Z+} for

Hp) and we now have the added benefit that we can use function theoretic results

developed for the Hardy space to study the Toeplitz operator.

Being the composition of two bounded maps, the Toeplitz operator is clearly

bounded, and in fact by Theorem 2.1.5 in [54] we have the following.

Theorem 1.12. For g ∈ L∞ the Toeplitz operator, Tg : L2 → H2 satisfies ‖g‖L∞=

‖Tg‖.

For 1 < p < ∞ the adjoint of S : Hp → Hp, denoted S∗, is a continuous map

given by

S∗(f)(z) =
f(z)− f(0)

z
.

We can also consider the above map S∗ acting on other spaces of analytic functions

in the disc, such as the Smirnov class. Using Beurling’s Theorem one can show all
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closed S∗-invariant subspaces of Hp for 1 < p <∞ are of the form

Kp
I := IHp

0 ∩Hp,

for some inner function I. Conversely for an inner function I, any set of the form

IHp
0 ∩Hp is a closed S∗-invariant subspace of Hp. We refer the reader to Theorem

5.1.4 in [24] for a proof of this result.

Definition 1.13. We call the set Kp
I := IHp

0 ∩Hp a model space.

Theorem 5.10.1 in [24] is the following.

Theorem 1.14. If p ∈ (1,∞), then ` ∈
(
Hp ∩ IHp

0

)∗
if and only if there is a

g ∈ Hq ∩ IHq
0 , where 1

p
+ 1

q
= 1, such that

`(f) =

∫
fgdm f ∈ Hp ∩ IHp

0 .

Moreover the norm of ` is equivalent to the Hq norm of g.

For 1 < p < ∞ and an inner function I, we define the surjective bounded

projection PI : Lp → Kp
I by PI := P+IP−I. We observe that Kp

I ∩ IHp = {0} and

Lp = P−L
p + (PI + (Id − PI))P+L

p, which implies

Lp = Hp
0 ⊕K

p
I ⊕ IH

p.
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We again note that when p = 2 the projection PI is orthogonal and the above

decomposition is an orthogonal decomposition. When there is ambiguity on the

index of which Lp space the projection is defined on we will use the notation PI,q to

denote the projection from Lq to Kq
I .

Definition 1.15. The truncated Toeplitz operator AIg : K2
I → K2

I having symbol

g ∈ L2 is the densely defined operator

AIg(f) = PI,2(gf)

having domain

{f ∈ K2
I : gf ∈ L2}.

We will use the abbreviation TTO for the truncated Toeplitz operator. In con-

trast to the Toeplitz operators on H2 the truncated Toeplitz operator may be ex-

tended to a bounded operator on K2
I even for some unbounded symbols.

We now give a brief outline of some of the above results generalised to the

multidimensional case.

For 1 6 p < ∞ the space (Lp)n is the space of column vectors of length n ∈ N

with each coordinate taking values in Lp; (Lp)n is a Banach space when equipped
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with the norm ∥∥∥∥∥∥∥∥∥∥


f1

...

fn


∥∥∥∥∥∥∥∥∥∥

= (‖f1‖pLp+ . . .+ ‖fn‖pLp)
1
p .

The vector-valued Hardy space, denoted (Hp)n, is the subspace of (Lp)n consist-

ing of all vectors 
f1

...

fn

 ,

such that f1, ..., fn lie in Hp. We define

(Hp
0 )n := {


f1

...

fn

 :


f1

...

fn

 ∈ z(Hp)n}.

We can define (vectorial) projections, P+ : (Lp)n → (Hp)n, and P− : (Lp)n → (Hp
0 )n
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such that for


f1

...

fn

 ∈ (Lp)n

P+


f1

...

fn

 =


P+(f1)

...

P+(fn)

 , P−


f1

...

fn

 =


P−(f1)

...

P−(fn)


where the projection maps on the right hand side of the above equalities are under-

stood as in the scalar case. Like the scalar case we have the direct sum decomposition

(Lp)n = (Hp
0 )n⊕ (Hp)n. As we have done in the scalar case, when there is ambiguity

over which space the projection is acting on, we will denote Pq,+ (respectively Pq,−)

to mean the projection (Lq)n → (Hq)n (respectively (Lq)n → (Hq
0)n). The forward

shift on the space (Hp)n, S, is defined analogously to the scalar case, and so the

adjoint of the forward shift, the backward shift, on the space (Hp)n is given by

S∗


f1

...

fn

 (z) =


f1(z)

...

fn(z)

−

f1(0)

...

fn(0)


z

.

For 1 6 p 6 ∞, we denote L(p,n×n) to be the space of n-by-n matrices with
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each entry taking values in Lp. We make an analogous definition for H(p,n×n). For

G ∈ L(∞,n×n) the matricial Toeplitz operator on the space (Hp)n, with symbol G, is

defined by

TG(f) = P+(Gf).

Remark. We note that in chapter 4 we use the same notation TG for a natural

generalisation of the matricial Toeplitz operator defined above. The full details of

this generalisation are given in chapter 4.

Much like the scalar case, the matricial Toeplitz operator is bounded if and

only if G is a bounded symbol. In other literature the above multidimensional

generalisation of the Toeplitz operator is often called the vectorial Toeplitz operator

or the block Toeplitz operator. When the context is clear we will also just refer to

TG as the Toeplitz operator.

The study of matricial generalisations of the truncated Toeplitz operator began

as recently as 2018 [50]. Because this field of study is new we postpone the definition

of the matrix-valued truncated Toeplitz operator until Chapter 4.
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Layout of the thesis, notation and abbreviations

Here we list the notations and abbreviations which we will use consistently through-

out the rest of the thesis. Note that we will make further definitions in each chapter

as necessary.

• TTO is an abbreviation for truncated Toeplitz operator.

• We will use a.e. to abbreviate almost everywhere.

• Throughout we will use the notation I to denote an arbitrary inner function.

• Throughout we will fix the notation Kp
I to denote the model space.

• We write Toeplitz kernel to mean the kernel of a Toeplitz operator.

• We write m to denote the normalised Lebesgue measure on T.

• All subspaces are assumed closed unless otherwise stated.

• In chapter 4 we use the abbreviation EAE for equivalent after extension.

• In chapter 4 we use the abbreviation MTTO for matrix-valued truncated

Toeplitz operator.

This thesis is split into five chapters. Each of these chapters is split into sections

and where necessary some sections may be split into subsections.
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In Chapter 2 we show existence of a minimal kernel for any element of the vector-

valued Hardy space and we determine a symbol for the corresponding Toeplitz op-

erator. We show not all matricial Toeplitz kernels have a maximal function and in

the case of p = 2 we find the exact conditions for when a Toeplitz kernel has a max-

imal function. We study the minimal Toeplitz kernel containing multiple elements

of the Hardy space, which in turn allows us to deduce an equivalent condition for a

function in the Smirnov class to be cyclic for the backward shift.

In Chapter 3 we study vector and scalar-valued nearly S∗-invariant subspaces

of the Hardy space. We first produce some results on the structure of nearly S∗-

invariant subspaces with a finite defect. In particular, we produce a powerful tool

which allows us to relate the vector-valued nearly S∗-invariant subspaces to scalar-

valued nearly S∗-invariant subspaces with a finite defect. These results then allow

us to adopt a previously unknown universal approach to the study of the kernel of

the Toeplitz operator, the truncated Toeplitz operator, the dual truncated Toeplitz

operator and the matrix-valued truncated Toeplitz operator.

In Chapter 4 we study the matrix-valued truncated Toeplitz operator (abbre-

viated to MTTO). MTTOs are a vectorial generalisation of the truncated Toeplitz

operator. We focus on studying the kernel of the MTTO and we also find a new form

of Toeplitz operator which is equivalent after extension to the MTTO. We make a

handy observation, that when studying a given property of the MTTO it is often

convenient to initially modify the MTTO by changing its codomain (in a natural
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way), then one can deduce results about the MTTO from the modified MTTO. This

approach allows us to tackle problems which were previously out of reach concerning

MTTOs with unbounded symbols.

In Chapter 5 we provide two new overlapping results. We characterise the dual

space of K1
I = IH1

0 ∩H1. Although the dual of Kp
I for 1 < p <∞ is easy to charac-

terise, when we no longer have a reflexive Hardy space classical results break down

and a complete description for when p = 1 is missing. In some cases we also charac-

terise the predual of K1
I . We then use our duality results to study the question, when

does a bounded truncated Toeplitz operator have a bounded symbol? This question

has generated much research interest and is one of the most fundamental problems

concerning truncated Toeplitz operators. Surprisingly, we show that under certain

assumptions on an inner function, I, every bounded truncated Toeplitz operator on

K2
I has a bounded symbol if and only if every compact truncated Toeplitz operator

on K2
I has a symbol which is of the form If where f is a continuous function on T.
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2 Minimal kernels and maximal functions

Throughout this chapter we will fix 1 < p < ∞ and n ∈ N. All Toeplitz

operators are assumed bounded and hence have bounded symbols.

2.1 Minimal kernel of an element in (Hp)n

It is easily shown that not all φ ∈ (Hp)n lie in a one-dimensional Toeplitz kernel.

In the scalar case (i.e when n = 1) Theorem 5.1 in [14] shows the existence of a

Toeplitz kernel of smallest size containing φ ∈ Hp (formally known as the minimal

kernel for φ and denoted κmin(φ)), furthermore a Toeplitz operator Tg is defined

such that κmin(φ) = kerTg. This motivates our study for this section, where we

address the question: is there a minimal Toeplitz kernel containing a given element

φ ∈ (Hp)n?

Definition 2.1. For G a bounded n-by-n matrix symbol we say kerTG is the minimal

kernel of φ :=

(
φ1 . . . φn

)T
if

(
φ1 . . . φn

)T
∈ kerTG, and if

(
φ1 . . . φn

)T
∈

kerTH for any other bounded n-by-n matrix symbol H we have kerTG ⊆ kerTH . In

this case we write κmin(φ) = kerTG.

Although Section 5.1 in [14] addresses whether there always exists a minimal

Toeplitz kernel containing a function in (Hp)n, a complete answer to this question

was not given. A partial result was given as Theorem 5.5 which shows the existence

of a minimal Toeplitz kernel containing any rational φ in (Hp)n. We will show
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existence of a minimal Toeplitz kernel containing any φ ∈ (Hp)n, and define an

operator TG such that κmin(φ) = kerTG.

Lemma 2.2. For any φ1 . . . φn ∈ Hp there exists an outer function u such that

|u|= |φ1|+ . . .+ |φn|+1.

Proof. Outer functions have a representation

u(z) = α exp

(
1

2π

∫ 2π

0

eit + z

eit − z
log k(eit)dt

)
,

where |α|= 1, log k ∈ L1(T) is real. Moreover |k|= |u| a.e. on T.

In the above representation, if we let k = (|φ1|+ . . .+ |φn|+1) it then follows that

|u|= |φ1|+ . . .+ |φn|+1. It can be seen that log k = log(|φ1|+ . . .+ |φn|+1) ∈ L1(T),

as 0 < log(1 + x) < x for all x > 0, and φ1 . . . φn ∈ L1.

Definition 2.3. We say f belongs to the Smirnov class, denoted N+, if f is holo-

morphic in the disc and

lim
r→1−

∫
T

log(1 + |f(rz)|)dm(z) =

∫
T

log(1 + |f(z)|)dm(z) <∞.

On N+ the metric is defined by

ρ(f, g) =

∫
T

log(1 + |f(z)− g(z)|)dm(z).

We let logL denote the class of complex measurable functions f on T for which
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ρ(f, 0) < ∞. One can check logL is an algebra. Furthermore Section 3.6.3 of [24]

along with the argument laid out on p. 122 of Gamelin’s book [35] shows that when

logL is equipped with ρ as a metric logL is a topological algebra (fn → f and

gn → g in logL =⇒ fn + gn → f + g and fngn → fg in logL). Proposition 3.6.10

in [24] further shows that N+ is the closure of the analytic polynomials in logL,

and hence N+ is a topological algebra.

Throughout various literature there have many equivalent ways to define the

Smirnov class; for the sake of completeness we list these in the following proposition.

Proposition 2.4. The following three statements are equivalent

1. f ∈ N+.

2. f ∈ {f1

f2
: f2 is outer , f1, f2 ∈ H∞}.

3. f ∈ {f1

f2
: f2 is outer , f1, f2 ∈ H1/2}.

4. f = bsµ1f
o, where b is a Blaschke product, sµ1 a singular inner function with

respect to the measure µ1 and f o an outer function.

Proof. Following the argument laid out in the proof of Theorem 2.10 in [27] shows

the equivalence of 1 and 4. 2 =⇒ 3 is immediate. 3 =⇒ 4 follows from the fact

that the reciprocal of an outer function is outer and so is the product of two outer

functions. We now show 4 implies 2 to show all the statements are equivalent.
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We construct two outer functions F1, F2 such that |F1|= min(1, |f |), and |F2|=

min(1, |f |−1), as in Lemma 2.2 we only need to prove that log(min(1, |f |)) and

log(min(1, |f |−1)) are in L1 in order to do this. We define E := {z ∈ T : |f(z)|> 1}

and F := {z ∈ T : |f(z)|6 1}. Then

∫
T

log(min(1, |f |)) =

∫
E

log(min(1, |f |)) +

∫
F

log(min(1, |f |)) = 0 +

∫
F

log|f |.

As |f | is log integrable over the whole of T it is also log integrable over any subset of

T, so the expression above shows logmin(1, |f |) ∈ L1. A similar computation shows

min(1, |f |−1) is log integrable and it then follows that F1, F2 ∈ H∞. As |F2‖f |= |F1|

a.e. on T, taking outer factors we can conclude f o = F1

F2
so f =

bsµ1F1

F2
.

Remark. From the equivalence of 2 and 3 in the above proposition one can also

easily show that

N+ = {f1

f2

: f2 is outer f1, f2 ∈ H1}.

Notice from the fourth characterisation of N+ in the proposition above, that if

f ∈ N+ and the boundary function is in Lp, then f ∈ Hp, i.e., N+ ∩Lp = Hp. This

is a useful result we will freely use throughout this chapter.

We present the main theorem of this section.

Theorem 2.5. Let u be an outer function such that |u|= |φ1|+ . . .+ |φn|+1, where
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φ1 . . . φn ∈ Hp, then

κmin


φ1

...

φn

 = kerT

φ1z/φ
o
1 0 . . . . . . . . . . . . 0

−φ2/u φ1/u 0 . . . . . . . . . 0

−φ3/u 0 φ1/u 0 . . . . . . 0

−φ4/u 0 0 φ1/u 0 . . . 0

...
...

...
...

...
...

...

−φn/u 0 . . . . . . . . . 0 φ1/u



.

Proof. We denote the above symbol by G. It is clear that

(
φ1 . . . φn

)T
∈ kerTG.

It remains to show that if

(
φ1 . . . φn

)T
∈ kerTH ,

for any bounded n-by-n matrix H, then every

(
f1 . . . fn

)T
∈ kerTG also lies in
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kerTH . To this end let

(
φ1 . . . φn

)T
∈ kerTH , then if we write

H =



h11 h12 . . . h1n

h21 h22 . . . h2n

...
...

...
...

hn1 hn2 . . . hnn


we have 

h11 h12 . . . h1n

h21 h22 . . . h2n

...
...

...
...

hn1 hn2 . . . hnn





φ1

...

...

φn


=



zp1

...

...

zpn


,

for some p1 . . . pn ∈ Hp, so that φ1hi1+φ2hi2+. . .+φnhin = zpi for each i ∈ {1 . . . n}.

Let

(
f1 . . . fn

)T
∈ kerTG, then f1 = φ1p

φo1
for some p ∈ Hp. Rows 2 to n of G take

values in N+ ∩ L∞ = H∞, so from row i ∈ {2 . . . n} in G

(
f1 . . . fn

)T
∈ (Hp

0 )n,

taking into account that Hp ∩Hp
0 = {0}, we deduce

f1
φi
u

= fi
φ1

u
.

33



Substituting our value for f1 we can write fi as,

fi =
φip

φo1
,

so 
f1

...

fn

 =
p

φo1


φ1

...

φn

 ,

and hence

H


f1

...

fn

 = H


φ1

...

φn

 p

φo1
=


zp1

...

zpn

 p

φo1
.

Proposition 2.4 shows zpi
p

φo1
∈ zN+ ∩ Lp = Hp

0 , so we conclude


f1

...

fn

 ∈ kerTH .

Remark. The above symbol for the minimal kernel is not unique. In fact we can

show there are at least n different symbols (not including permuting the rows of the

symbol) which represent the same kernel, each depending on the minimal kernel in
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the scalar case, of φj, where j ∈ {1 . . . n}. Consider the symbol



0 . . . . . . . . . . . . . . . φjz/φ
o
j 0 . . . 0

0 φj/u 0 . . . . . . . . . −φ2/u 0 . . . 0

0 0 φj/u 0 . . . . . . −φ3/u 0 . . . 0

0 0 0 φj/u 0 . . . −φ4/u 0 . . . 0

...
...

...
...

...
...

...
...

...
...

φj/u 0 . . . . . . . . . 0 −φ1/u 0 . . . 0

0 . . . . . . . . . . . . . . . φj+1/u φj/u 0 0

...
...

...
...

...
...

...
...

...
...

0 . . . . . . . . . . . . . . . φn/u 0 . . . φj/u



,

where the first non-zero entry on the first row is in the j’th column, and the row

where the first entry is non-zero is the j’th row. This can also be checked to be a

symbol for the minimal kernel.

2.2 Maximal functions for kerTG

In this section we consider the following question: given any Toeplitz kernel K does

there exist a φ such that K = κmin(φ)? We call such a φ a maximal function for

K. It has been shown in [14] that in the scalar Toeplitz kernel case, whenever

the kernel is non-trivial there does exist a maximal function. Theorem 3.17 in [18]

shows that for p = 2 every matricial Toeplitz kernel which can be expressed as a
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fixed vector-valued function multiplied by a non-trivial scalar Toeplitz kernel also

has a maximal function. The results of this section show not all non-trivial matricial

Toeplitz kernels have a maximal function and for p = 2 we find the exact conditions

for when a Toeplitz kernel has a maximal function. An interesting application of

the study of maximal functions is given in [17], which fully characterises multipliers

between Toeplitz kernels in terms of their maximal functions.

A simple explicit example to show not all matricial Toeplitz kernels have a max-

imal function is the following

kerT
z 0

0 z


= {

λ
µ

 : λ, µ ∈ C}.

Suppose some fixed

λ1

µ1

 ∈ C2 give a maximal function, then

λ1

µ1

 ∈ kerT
µ1 −λ1

0 0


=

λ1

µ1

Hp,
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but

kerT
z 0

0 z


6⊆ kerT

µ1 −λ1

0 0


,

so kerT
z 0

0 z


can not have a maximal function. We can build on this example to

give a condition for when Toeplitz kernels do not have a maximal function.

We use the notation kerTG(0) := {f(0) : f ∈ kerTG}. For a matrix A with each

entry of A being a holomorphic function in the disc we write A(0) to mean A with

each entry evaluated at 0.

Theorem 2.6. If kerTG is such that dim kerTG(0) > 1 then kerTG does not have

a maximal function.

Proof. Suppose for contradiction kerTG is such that dim kerTG(0) > 1 and kerTG

has a maximal function

v =


v1

...

vn

 .
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Then for any symbol H if v ∈ kerTH , we must have kerTG ⊆ kerTH . Let

x =


x1

...

xn

 , y =


y1

...

yn

 ,

be two linearly independent vectors in kerTG(0). Pick i, j ∈ {1...n}, i < j such that



0

...

xi

0

...

0

xj

0

...

0



,



0

...

yi

0

...

0

yj

0

...

0



,

span a two dimensional subspace of Cn. Let n be the largest integer such that vi
zn
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and
vj
zn

lie in Hp, let u be an outer function such that |u|= |vi|+|vj|+1, and let

H =



0 . . . 0
vj
znu

0 . . . 0 − vi
znu

0 . . . 0

0 . . . 0 0 0 . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 . . . 0 0 0 . . . 0 0 0 . . . 0


,

where the first non-zero entry is in the i’th column and the second is in the j’th

column. As vi
znu

,
vj
znu
∈ L∞ ∩ N+ = H∞, each entry of H takes values in H∞.

Furthermore v ∈ kerTH , so

kerTG ⊆ kerTH ,

which means that

kerTG(0) ⊆ kerTH(0).

For

(
f1 . . . fn

)T
∈ kerTH we have fi

vj
znu

= fj
vi
znu

, and by dividing vi, vj by zn, we

have ensured there is a linear relation between fi(0) and fj(0). So the i’th and j’th

coordinate of kerTH(0) only span a one dimensional subspace of Cn, but we have

picked i, j so that the i’th and j’th coordinate of kerTG(0) span a two dimensional

subspace of Cn, which is a contradiction. So we conclude that maximal functions

do not exist whenever dim kerTG(0) > 1.

We now aim to generalise Dyakonov’s decomposition of Toeplitz kernels, which

is Theorem 1 in [29], to a matrix setting, we will then use this result to further
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study maximal functions. In the case of p = 2, Theorem 7.4 of [4] presents a similar

formula to what we will obtain.

We define N (+,n×n) to be the space of all n × n matrices taking values in N+.

An n-by-n matrix inner function Θ is an element of H(∞,n×n) such that for for

almost every z ∈ T, Θ(z) is unitary. We denote the adjoint of the matrix Θ by

Θ∗. For a n-by-n matrix inner function Θ we denote the S∗-invariant subspace,

kerTΘ∗ = Θ(Hp
0 )n ∩ (Hp)n by Kp

Θ. Kp
Θ can easily be checked to be S∗-invariant by

noting if Θ∗f ∈ (Hp
0 )n, then Θ∗f(0) ∈ (Hp)n and so Θ∗(f − f(0)) ∈ (Hp)n, which

implies Θ∗ f−f(0)
z

= Θ∗S∗(f) ∈ (Hp
0 )n.

For a symbol G, if detG is an invertible element in L∞ then

∫
T

log
1

|detG(z)|
dm(z) <∞,

and so
∫
T log |detG(z)|dm(z) = −

∫
T log 1

|detG(z)|dm(z) > −∞. This means we can

construct a scalar outer function q such that |detG|= |q|.

Lemma 2.7. Let G ∈ L(∞,n×n) be such that detG is invertible in L∞ and let q be

the outer function such that |detG|= |q|. Then if we define G
′ ∈ L(∞,n×n) to be the

matrix G with the first row divided by q, we have kerTG = kerTG′ . Furthermore

detG
′

is unimodular.

Proof. We only need to consider the first row of G
′
. Denote the first row of G

(respectively G
′
) by G1 (respectively G

′
1). As q is invertible in H∞, for f ∈ (Hp)n
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we have G1f ∈ Hp
0 if and only if G1

q
f ∈ Hp

0 . The fact detG
′
is unimodular is a result

of linearity of the determinant in each row.

Under the assumption that detG is invertible in L∞, by the argument laid out

above we can assume without loss of generality that detG is actually unimodular.

Theorem 4.2 of [7] states we can now write G as

G = G2
∗G1, (1)

with G1, G2 ∈ H(∞,n×n). Furthermore taking the determinant of our unimodular G

shows us that 1 = |detG∗2||detG1| and so detG∗2 and detG1 are invertible in L∞,

which means G∗2 and G1 are invertible in L(∞,n×n).

By (1) under the assumptions above we can write f ∈ kerTG if and only if

f ∈ (Hp)n and G∗2G1f ∈ (Hp
0 )n i.e G1f ∈ kerTG∗2 . Furthermore the following

proposition shows the kernel of TG∗2 can be simplified.

Proposition 2.8. If G2 ∈ H(∞,n×n) then kerTG∗2 = kerT(Gi2)∗.

Before we begin the proof we make a remark about inner-outer matrix factori-

sation. We follow definition 3.1 in [45] of outer functions in N (+,n×n) and say that

E ∈ N (+,n×n) is outer if an only if detE is outer in N+. Theorem 5.4 of [45] says

that given a function F ∈ N (+,n×n) such that detF is not equal to the 0 function,

there exist matrix functions F i inner and F o outer (respectively F i′ , F o′) such that

we may write F as F = F iF o (respectively F = F o′F i′).
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Proof. Since det(Go
2) is outer in H∞ and invertible in L∞, it is invertible in H∞, so

(Go
2)∗ is invertible in H(∞,n×n). Then, after writing G2 as G2 = Gi

2G
o
2, it immediately

follows that kerTG∗2 = kerT(Gi2)∗ .

The following theorem is the generalisation of Dyakonov’s decomposition of

Toeplitz kernels to a matrix setting.

Theorem 2.9. Using the decomposition for G given in (1),

kerTG = (Gi′

1 )∗
(

(Go′

1 )−1Kp

Gi2
∩Gi′

1 (Hp)n
)
.

Proof. Using the proposition above and (1) we may write f ∈ kerTG if and only if

f ∈ (Hp)n and G1f ∈ Kp

Gi2
. We write G1 = Go′

1 G
i′
1 . Since detGo′

1 is outer in H∞ and

invertible in L∞, it is invertible in H∞, which means (Go′
1 )−1 ∈ H(∞,n×n). Hence we

can write the condition f ∈ (Hp)n and G1f ∈ Kp

Gi2
as Gi′

1 f ∈ (Go′
1 )−1Kp

Gi2
∩Gi′

1 (Hp)n

and so f ∈ kerTG if and only if

f ∈ (Gi′

1 )∗
(

(Go′

1 )−1Kp

Gi2
∩Gi′

1 (Hp)n
)
.

Proposition 2.10. Let K be a S∗-invariant subspace of (Hp)n such that K evaluated

at 0 is a one-dimensional subspace of Cn. Then K is of scalar type i.e, K is a fixed
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vector multiplied by a scalar backward shift invariant subspace of Hp.

Proof. Let K evaluated at 0 be equal to the span of

(
λ1 . . . λn

)T
, then by as-

sumption for any f ∈ K we must have f(0) = x0

(
λ1 . . . λn

)T
for some x0 ∈ C.

Similarly S∗(f)(0) = x1

(
λ1 . . . λn

)T
for some x1 ∈ C, and we repeat this process

recursively to obtain S∗i(f)(0) = xi

(
λ1 . . . λn

)T
for each i ∈ N. Noting that

S∗i(f)(0) is the coefficient of zi for f and polynomials are dense in Hp, we deduce

that f =
∑∞

i=0 xiz
i

(
λ1 . . . λn

)T
. Furthermore

{
∞∑
i=0

xiz
i ∈ Hp :

∞∑
i=0

xiz
i

(
λ1 . . . λn

)T
∈ K

}

is S∗-invariant because K is.

Corollary 2.11. If kerTG(0) is a one-dimensional subspace of Cn and in the decom-

position of the kernel given in Theorem 2.9 we have Gi′
1 = Id and Kp

Gi2
is non-trivial,

then kerTG has a maximal function.

Proof. If Gi′
1 = Id then we have Go′

1 kerTG = Kp

Gi2
, so Go′

1 (0) kerTG(0) = Kp

Gi2
(0).

Which means either Kp

Gi2
(0) is a one-dimensional subspace of Cn or is equal to 0,

but as Kp

Gi2
is S∗-invariant it can never be the case that Kp

Gi2
⊆ z(Hp)n. So we must

have Kp

Gi2
(0) is a one-dimensional subspace of Cn. Then by the previous proposition

Kp

Gi2
must be equal to

(
λ1 . . . λn

)T
Kp
I for some

(
λ1 . . . λn

)T
∈ Cn, and some
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scalar inner function I.

We now use Corollaries 2.20 and 2.21 which are proved later in this chapter

but the proof is independent of any previous results. If we let m
′

be the maximal

function of Kp
I (which exists by Corollary 2.20) then by Corollary 2.21 given any

f ∈ kerTG we can write f = (Go′
1 )−1

(
λ1 . . . λn

)T
m
′
s for some s ∈ N+. So if

(Go′
1 )−1

(
λ1 . . . λn

)T
m
′ ∈ kerTH then

Hf = H(Go′

1 )−1


λ1

...

λn

m
′
s ∈ s(Hp

0 )n.

Thus as N+ is closed under multiplication we know each coordinate of Hf lies

in zN+ and furthermore f ∈ (Hp)n and H is bounded so we must actually have

Hf ∈ (Hp
0 )n, and so f ∈ kerTH . As our f was arbitrary we have kerTG ⊆ kerTH .

This shows (Go′
1 )−1

(
λ1 . . . λn

)T
m
′

is a maximal vector for kerTG.

For 1 < p <∞ and a Toeplitz operator Tg : Hp → Hp, Theorem 2 in [41] shows

existence of an extremal function q ∈ kerTg, and an inner function I vanishing at 0

such that:

1. If p 6 2 then qK2
I ⊆ kerTg ⊆ qKp

I .

2. If p > 2 then qKp
I ⊆ kerTg ⊆ qK2

I .
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We now state a reformulation of this result, which may be viewed as a generalisation

of the result given by Hayashi in [43] to 1 < p <∞.

Corollary 2.12. 1. If p 6 2 then kerTg = qKp
I ∩Hp.

2. If p > 2 then kerTg = qK2
I ∩Hp.

Proof. We will prove statement (1). The ⊆ inclusion is clear from the original

result. To show the other inclusion we first observe that as qK2
I ⊆ kerTg we must

have qIz ∈ kerTg. Then for all p ∈ Hp we must then have

gqIzp ∈ zN+,

and so if qIzp also lies in Hp we must have gqIzp ∈ Hp
0 , and so consequently

qIzp ∈ kerTg. The result now follows from the fact that any element of qKp
I ∩Hp

can be written as qIzp for some p ∈ Hp.

Although the existence of maximal functions in the scalar case has been estab-

lished in [14], we can use the above corollary to give an alternate expression for a

maximal function of a given scalar Toeplitz kernel.

Corollary 2.13. If kerTg is expressed as in Corollary 2.12, then κmin(qIz) =

kerTg.

Proof. We will prove the statement in the case p 6 2. It is clear qIz ∈ kerTg.
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If qIz ∈ kerTh for any other bounded symbol h, then for any p ∈ Hp such that

qIzp ∈ Hp, because hqIz ∈ Hp
0 , we must have hqIzp ∈ Hp

0 .

2.2.1 Maximal functions when p = 2

For the remainder of Section 2.2 we set p = 2, and only consider Toeplitz

operators

TG : (H2)n → (H2)n.

When considering whether a given Toeplitz kernel has a maximal function the

space W := kerTG 	 (kerTG ∩ z(H2)n) is central to this problem. We know from

Corollary 4.5 in [20] that kerTG can be written as

kerTG = [W1,W2, ...Wr]((H
2)r 	 Φ(H2)r

′
), (2)

where W1, ...Wr is an orthonormal basis for W , Φ is a r by r
′

matrix inner function

vanishing at 0 (i.e Φ is such that multiplication by Φ is an isometry from (H2)r
′

to

(H2)r) and r
′
6 r.

Lemma 2.14. dim kerTG(0) = dimW .

Proof. W1(0), ...Wr(0) are linearly independent, as if Wk(0) =
∑

i 6=k λiWi(0) this

would mean Wk −
∑

i 6=k λiWi vanishes at 0 and therefore lies in z(H2)n. Next we
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show that W1(0), ...Wr(0) span kerTG(0). Evaluating kerTG at 0 gives

kerTG(0) = [W1(0),W2(0), ...Wr(0)]Cr,

which is equal to the span of W1(0), ...Wr(0). So W1(0), ...Wr(0) are a basis for

kerTG(0).

Taking into account Theorem 2.6 and the previous lemma we can conclude if

kerTG is such that dimW > 1, then kerTG does not have a maximal function. This

leaves us with the following question: if kerTG is such that dimW = 1 does this

Toeplitz kernel have a maximal function? When dimW = 1, using the Sarason style

decomposition (2) we can write

kerTG = W1(H2 	 ΦH2), (3)

where Φ is a (scalar) inner function vanishing at 0 or Φ = 0. So either:

1. kerTG = W1K
2
Φ,

2. kerTG = W1H
2.

In case 1 K2
Φ is a Toeplitz kernel so kerTG has a maximal function given by W1Φz

as shown in Theorem 3.17 in [18].

For case 2 we find that unlike the scalar Toeplitz kernel case there are non-trivial
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matricial Toeplitz kernels that are shift invariant, for example kerT
1 −1

0 0


=

1

1

H2. In case 2, kerTG can not have a maximal function as if it did we would

have κmin(φ) = W1H
2, but this can’t be the case as Theorem 2.5 shows the minimal

kernel of any element φ ∈ (H2)n is not shift invariant (in particular φz 6∈ κmin(φ)).

We can summarise these results to conclude the following theorem.

Theorem 2.15. A non-zero Toeplitz kernel, kerTG, has a maximal function if and

only if both: dimW = 1 (or equivalently dim kerTG(0) = 1)), and when kerTG is

decomposed as in (3), kerTG takes the form kerTG = W1K
2
Φ.

Remark. These two conditions can be concisely written as dim kerTG(0) = 1 and

kerTG is not shift invariant.

Proof. Lemma 2.14 and Theorem 2.6 show that if dimW > 1 then kerTG does not

have a maximal vector. Conversely if dimW = 1 then the reasoning after (3) shows

that when kerTG is of the form W1K
2
Φ, then it necessarily must have a maximal

function and when kerTG = W1H
2, kerTG can have no maximal function.

Corollary 2.16. If kerTG is non-zero, then kerTG is of scalar type if and only if

dim kerTG(0) = 1.

Proof. If kerTG is of scalar type it is clear that dim kerTG(0) = 1. Conversely if
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dim kerTG(0) = 1, then Lemma 2.14 shows dimW = 1, and then (3) shows kerTG

is of scalar type.

We note that if F ∈ kerTG ∩ J(H2)n, where J is a scalar inner function then

F
J
∈ kerTG. This property is called near invariance and we will use this fact in the

proof of multiple results in this chapter. We exploit this property further in the

next chapter to study the kernels of truncated Toeplitz operators.

Theorem 2.17. If Φ = 0 in (3) i.e if kerTG = W1H
2, then for any f ∈ H2 which

is a cyclic vector for the backward shift on H2, we have κmin(W1,W1f) = W1H
2.

Proof. It is clear the two vectors are in the required kernel. Theorem 4.4 in [20]

shows that multiplication by W1 is an isometric mapping from H2 to (H2)2, so W1

is a 2-by-1 matrix inner function. If W1,W1f ∈ kerTH for any bounded H, then for

any λ ∈ C

W1(f − λ) ∈ kerTH .

So setting λ = f(0), and using the near invariance property of Toeplitz kernels we

see that

W1
f − f(0)

z
= W1S

∗(f) ∈ kerTH .

Repeating this inductively gives W1S
∗n(f) ∈ kerTH for all n ∈ N, and as f is cyclic

for the backward shift and W1 is inner, we can deduce

W1H
2 ⊆ kerTH .
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This demonstrates that the number of maximal functions needed to specify a

matricial Toeplitz kernel is highly non-trivial and poses the question: for an arbitrary

Toeplitz kernel kerTG, how large should k be such that we can find φ1 . . . φk where

κmin(φ1 . . . φk) = kerTG? In this case we call φ1 . . . φk a maximal k-tuple of functions

or when k = 2 a maximal pair of functions for kerTG.

We examine the case further for n = 2. We have seen if dimW = 2 then kerTG

does not have a maximal function, however we will now show if dimW = 2 under

certain conditions kerTG does have a maximal pair of functions. For a matrix A we

denote Ci(A) to be the i’th column of A.

Proposition 2.18. If the decomposition of kerTG in (2) is such that Φ is square i.e.

if kerTG = [W1,W2]((H2)2 	 Φ(H2)2), then kerTG has a maximal pair of functions

given by [W1,W2]C1(Φz), and [W1,W2]C2(Φz).

Proof. When Φ is square we have ΦΦ∗ = Φ∗Φ = I, and so a computation shows

((H2)2	Φ(H2)2) = kerTΦ∗ . Then it is clear both vectors are in the required kernel.

Take any x ∈ [W1,W2]((H2)2 	 Φ(H2)2) = [W1,W2] kerTΦ∗ , then

x = [W1,W2]Φ

zp1

zp2

 = [W1,W2] (C1(Φz)p1 + C2(Φz)p2) ,

for some p1, p2 ∈ H2. If [W1,W2]C1(Φz), [W1,W2]C2(Φz) ∈ kerTH for any bounded
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symbol H then

H[W1,W2]C1(Φz)p1 ∈ (zN+)
2

and H[W1,W2]C1(Φz)p2 ∈ (zN+)
2
.

Which means

Hx = H[W1,W2] (C1(Φz)p1 + C2(Φz)p2) ∈ (zN+)
2
,

but as x ∈ (H2)n and H is bounded we can further conclude Hx ∈ (H2
0 )2, and so

x ∈ kerTH . Our x ∈ kerTG was arbitrarily chosen so

kerTG ⊆ kerTH .

Thus kerTG has a maximal pair of functions given by

{[W1,W2]C1(Φz), [W1,W2]C2(Φz)}.

Remark. This result can be extended to show that if

kerTG = [W1,W2, ...,Wn]((H2)n 	 Φ(H2)n),

then [W1,W2, ...Wn]Ci(Φz) for i ∈ {1 . . . n} is a maximal n-tuple of functions for
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kerTG.

2.3 Minimal kernel of multiple elements in Hp

Section 5 of [14] asks if there is a minimal Toeplitz kernel containing a closed sub-

space E ⊆ (Hp)n, so in the final two sections of this chapter we turn our attention

to finding the minimal kernel of multiple elements f1 . . . fk ∈ (Hp)n. This in turn al-

lows us to find the minimal Toeplitz kernel containing a finite-dimensional space E,

as we can set E =span{f1 . . . fk}. When considering scalar Toeplitz kernels previous

results considering the minimal kernel for multiple elements have been presented in

[12]. In particular, Theorem 5.6 of [12] shows that when κmin(fj) = KIj for some

inner function Ij then κmin(f1 . . . fj) = KLCM(I1,...Ij). The corollaries of this section

show a fundamental link between the minimal kernel of two elements in Hp and

cyclic vectors for the backward shift. In fact, we deduce an equivalent condition for

a function to be cyclic for the backward shift on N+.

It has been shown in [14] that every f ∈ Hp lies in a non-trivial Toeplitz kernel.

If we try to consider the minimal kernel of two elements f, g ∈ Hp we often find that

κmin(f, g) = Hp, and furthermore this seems to have a connection to cyclic vectors

for the backward shift. This is demonstrated with the following example.

Example 2.1. Let f be a cyclic vector for the backward shift on Hp, then κmin(f, 1)

is equal to Hp.

If for any symbol h, we have f, 1 ∈ kerTh , then f − λ ∈ kerTh for any λ ∈ C.
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Hence f−f(0) ∈ kerTh, and by near invariance of Toeplitz kernels f−f(0)
z

= S∗(f) ∈

kerTh. We can repeat this process inductively to give S∗n(f) ∈ kerTh, for all n ∈ N

and as f is cyclic, we deduce Hp ⊆ kerTh.

One can show can that for any family F of inner functions, there is an inner

function IF with the property that (i) I/IF ∈ H∞ for all I ∈ F ; and (ii) if J

is any inner function which divides every I ∈ F , then J divides IF . The inner

function IF is called the greatest common divisor of F . In this case we write

IF = GCD({I : I ∈ F}). See page 84 of [38] for a proof of the existence of a

greatest common divisor.

The following theorem gives a sufficient condition for a given function g to be

the symbol of a Toeplitz operator whose kernel is the minimal kernel of a given set

of functions in Hp. This result may be viewed as a partial generalisation of Theorem

2.2 in [17].

Theorem 2.19. If f1 . . . fk ∈ Hp and g ∈ L∞ are such that for each j ∈ {1, ..., k}

we have gfj = zpj for some pj ∈ Hp and GCD(pi1 . . . p
i
k) = 1, then κmin(f1 . . . fk) =

kerTg.

Proof. It is clear that fj ∈ kerTg for all j. We can write g as g =
zpj
fj

, and for all

x ∈ kerTg we have have xg = zp for some p ∈ Hp. Substituting our expression for g

into xg = zp we may write
xzpj
fj

= zp, and so x =
fjp

i
jp

poj
and then hx =

pij(hfj)p

poj
∈ Lp.

Therefore if fj ∈ kerTh, by Proposition 2.4
(hfj)p

poj
∈ zN+ ∩ Lp = Hp

0 , which means

53



hx =
pij(hfj)p

poj
∈ pijH

p
0 , so by Proposition 5.5 in [36] P+(hx) ∈ Kp

pij
for all j. Now

Corollary 5.9 in [36] shows us that
⋂
jK

p

pij
= Kp

1 = {0} and so P+(hx) = 0. We

conclude x ∈ kerTh and then kerTg ⊆ kerTh.

Although the following corollary can also be obtained from Corollary 5.1 in [14],

we give an alternate proof.

Corollary 2.20. Every non-trivial scalar Toeplitz kernel has a maximal function.

Proof. Specialising the above theorem to k = 1, we see that if there exists an f ∈ Hp

such that gf = zp where p ∈ Hp is outer then κmin(f) = kerTg. If kerTg is non-

trivial then there exists a f ′ such that gf ′ = zp′ for some p′ ∈ Hp, multiplying both

sides of this equality by (p′)i we see that f ′(p′)i is a maximal function.

Remark. Using the above corollary, we also obtain an explicit expression for a max-

imal function in a non-trivial Toeplitz kernel (when the symbol for the Toeplitz

operator is known). This expression can also be derived from Theorem 2.2 in [17].

The following corollary can also be proved as a consequence of Theorem 2.2 in

[17], but we provide an alternate proof here.

Corollary 2.21. If m
′

is a maximal function for kerTg then kerTg = m
′
N+ ∩Hp.

Proof. We first show the ⊇ inclusion. As m
′ ∈ kerTg, we must have m

′
gn ∈ zN+

for all n ∈ N+, so consequently if m
′
n ∈ Hp we would have gm

′
n ∈ Hp

0 . To show

the ⊆ inclusion we note that gm
′

= zpo1 where po1 is an outer function in Hp, and
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if f ∈ kerTg then gf = zp2 where p2 ∈ Hp. Solving these expressions for f we see

f = m
′ zp2

po1
∈ m′N+ ∩Hp.

For clarity in the following theorem we will write spanN
+

to mean the closed

linear span in N+, and we will write span to mean the linear span.

Theorem 2.22. Let f, g ∈ Hp. If g
fo

is cyclic for the backward shift on N+ then

κmin(f, g) = Hp.

Proof. For any bounded h, if f, g ∈ kerTh then near invariance shows f o ∈ kerTh,

and so for any λ ∈ C,

g − λf o = f o(
g

f o
− λ) ∈ kerTh.

Letting λ = g
fo

(0) we see that

f o(
g

f o
− g

f o
(0)) ∈ kerTh,

and near invariance gives

f o
( g
fo
− g

fo
(0))

z
= f oS∗(

g

f o
) ∈ kerTh.
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We can repeat this process inductively to give

span{f oS∗n(
g

f o
) : n ∈ Z+} ⊆ kerTh. (4)

We now take the closure of both sides of this set inclusion in the Hp subspace

topology of N+. We first show spanN
+{f oS∗n( g

fo
) : n ∈ Z+} = N+.

We have f o ∈ N+ and for each n, S∗n( g
fo

) ∈ N+, so as N+ is closed under

multiplication we have {f oS∗n( g
fo

) : n ∈ Z+} ⊆ N+ and hence spanN
+{f oS∗n( g

fo
) :

n ∈ Z+} ⊆ N+, so one set inclusion is clear. We now show N+ is contained in

spanN
+{f oS∗n( g

fo
) : n ∈ Z+}. Take any x ∈ N+ then as g

fo
is cyclic for N+ and

x
fo
∈ N+ there exists an (xk) ⊆ span{S∗n( g

fo
) : n ∈ Z+} such that xk → x

fo
in

N+. Then as N+ is a topological algebra we must have f oxk → x in N+. So the

closure of the left hand side of (4) in the Hp subspace topology of N+ is equal to

N+ ∩Hp = Hp.

The closure of the right hand side of (4) in the Hp subspace topology of N+ is

the closure of kerTh in N+ intersected with Hp. This can be seen to equal kerTh

via the following observation. Let xk ∈ kerTh ⊆ N+ be such that xk → x in logL

(or equivalently N+), then as logL is a topological algebra zhxk → zhx in logL.

As zhxk ∈ N+ and N+ is closed in logL so we must have zhx ∈ N+. If x ∈ Hp

then zhx ∈ N+ ∩ Lp = Hp so x ∈ kerTh. We conclude

Hp ⊆ kerTh.
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Corollary 2.23. Let f1 . . . fk ∈ Hp. If for any pair fj, fl with j, l ∈ {1 . . . k}, we

have that
fj
fol

is a cyclic vector for the backward shift on N+, then κmin(f1 . . . fk) =

Hp.

We now find a minimal kernel for when g
fo

is not a cyclic vector for the backward

shift. It is immediate that if g
fo

is not cyclic for N+ then it lies inside some S∗-

invariant subspace, and so to further understand κmin(f, g) we must discuss the S∗-

invariant subspaces of N+. As far as the author is aware the S∗-invariant subspaces

of N+ have not been described, however the following (unproved) conjecture is due

to Aleksandrov and can be found in Section 11.15 of [42].

Conjecture 2.1.

The S∗-invariant subspaces of N+ depend on three parameters:

1. An inner function I.

2. A closed set F ⊆ T with σ(I) ∩ T ⊆ F , where

σ(I) = {z ∈ D− : lim inf
λ−→z
|I(λ)|= 0}

is the spectrum of an inner function I.

3. A function k : F → N ∪ {∞} with the additional property k(η) = ∞ for all

η ∈ σ(I) ∩ T and for all non-isolated points η ∈ F .
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Define E(I, F, k) to be the set of f ∈ N+ with:

1. zIf ∈ N+.

2. f has an meromorphic continuation f̃ to a neighbourhood of Ĉ \ F .

3. η is a pole of f̃ of order at most k(η) for all η ∈ F with k(η) 6=∞.

Then E(I, F, k) is a proper S∗-invariant subspace of N+ and for every non-trivial

S∗-invariant subspace E ⊆ N+, there is a triple (I, F, k) such that E = E(I, F, k).

We will focus on S∗-invariant subspaces of N+ of the form {f ∈ N+ : zIf ∈

N+} =: I∗(N+), where I is some fixed inner function and the above multiplication

is understood on T. We call S∗-invariant subspaces of this form one component S∗-

invariant subspaces. We warn the reader that one component S∗-invariant subspaces

are not related to one component inner functions. It seems this terminology has

unfortunately been used twice independently to mean different things.

Proposition 2.24. Let τ be a family of inner functions, then

⋂
I∈τ

I∗(N+) = GCD(τ)∗(N+).

Proof. The ⊇ is clear. To prove the ⊆ inclusion we start with the fact that the H2

closure of span{IH2 : I ∈ τ} is equal to GCD(τ)H2 ( see Corollary 4.9 in [36]). This

means we can find a sequence hn ∈ span{IH2 : I ∈ τ} such that hn → GCD(τ) in
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the H2 norm. Using the fact log(1 + x) < x, this then implies hn → GCD(τ) in the

N+ metric. So if f ∈ ∩I∈τI∗(N+), then zIf ∈ N+ for all I ∈ τ , in particular as

N+ is an algebra zhnf ∈ N+. Taking the limit in the metric of logL, noting logL

is a topological algebra and N+ is closed we see that zGCD(τ)f ∈ N+.

Although the S∗-invariant subspaces of N+ have not been completely described,

there is a partial result showing all S∗-invariant subspaces of N+ are contained in a

one component S∗-invariant subspace. The following can be found as Corollary 1,

page 42 in [42].

Proposition 2.25. Given a non-trivial S∗-invariant subspace of N+, E, there exists

an inner function J such that E ⊆ J ∗(N+).

If g
fo

is not cyclic, from the above proposition there exists a J such that g
fo

lies in J ∗(N+). It then follows f i, g
fo

lie in a one component S∗-invariant subspace

((J f i)∗(N+) is one such example). Then Theorem 2.24 allows us to consider the

smallest one component S∗-invariant subspace containing f i, g
fo

.

Theorem 2.26. Let f, g ∈ Hp. If g
fo

is not cyclic for S∗ then κmin(f, g) =

kerTfoI/fo, where I is such that I∗(N+) is the smallest one component S∗-invariant

subspace containing both g
fo

and f i.

Proof. We first show f, g ∈ kerTfoI/fo . As g
fo
, f i ∈ I∗(N+),

g

f o
= Izp1,
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and

f i = Izp2,

for some p1, p2 ∈ N+. So

g(
f oI
f o

) = f ozp1,

and

f(
f oI
f o

) = f oz p2,

both of which are in zN+ ∩ Lp = Hp
0 (both can be seen to lie in Lp because the

symbol for the operator is unimodular). Now by Theorem 2.19 all that remains to

be proved is that GCD(pi1, p
i
2) = 1.

Because f i is inner this then forces p2 to be inner. If GCD(p2, p
i
1) = α 6= 1 then as

p2|I, this then forces α|I and then this would imply g
fo
, f i ∈ (Iα)∗(N+) ⊆ I(N+).

Which can not be the case by minimality of our choice of I.

Combining Theorem 2.22 and Theorem 2.26 we can now give a complete answer

as to when κmin(f, g) = Hp. This characterisation allows us to deduce an equivalent

condition for a function to be cyclic for the backward shift on N+.

Corollary 2.27. Let f, g ∈ Hp. There are no non-trivial Toeplitz kernels containing

both f and g if and only if g
fo

is a cyclic vector for the backward shift on N+.

Due to symmetry of the above corollary and using the fact that the reciprocal

of an outer function in N+ is outer and in N+ we can also deduce the following.
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Corollary 2.28. Let f ∈ N+ be outer, then f is cyclic for the backward shift on

N+ if and only if 1
f

is a cyclic vector for the backward shift on N+.

We know from Proposition 2.25 that an outer function f ∈ N+ is not S∗ cyclic

for N+ if and only if there exists an inner function α such that αf ∈ zN+. In the

case that f ∈ Hp we then clearly have f is not S∗ cyclic for Hp if and only f is not

S∗ cyclic for N+. Similarly when f, 1
f

both lie in Hp from the above corollary we

can deduce the following corollary.

Corollary 2.29. Let f be an outer function in Hp and let 1
f

also lie in Hp. The

following statements are equivalent

1. f is not S∗ cyclic for Hp,

2. f is not S∗ cyclic for N+,

3. 1
f

is not S∗ cyclic for N+,

4. 1
f

is not S∗ cyclic for Hp.

2.4 Minimal kernel of multiple elements in (Hp)2

Keeping with earlier notation we will use Greek symbols for elements of (Hp)2.

When considering the minimal kernel of

φ1

φ2

 ,

ψ1

ψ2

 ∈ (Hp)2, we find that the
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minimal kernel depends on the determinant of M =

φ1 ψ1

φ2 ψ2

. We first consider

the case when detM = φ1ψ2 − ψ1φ2 is not identically equal to zero.

Theorem 2.30. Let

φ1

φ2

 ,

ψ1

ψ2

 ∈ (Hp)2. If φ1ψ2 − ψ1φ2 is not identically

equal to zero then κmin


φ1

φ2

 ,

ψ1

ψ2


 = kerT(u1/u2)zM−1 , where u1 is a scalar

outer function with |u1|= |φ1ψ2 − ψ1φ2|, and u2 is a scalar outer function with

|u2|= |φ1|+|φ2|+|ψ1|+|ψ2|+1.

Proof. We first note that the specified symbol is in fact bounded. We have

(u1/u2)zM−1 = z
u1

φ1ψ2 − ψ1φ2

 ψ2/u2 −ψ1/u2

−φ2/u2 φ1/u2

 ,

by construction |z u1

φ1ψ2−ψ1φ2
|= 1 and each entry in

 ψ2/u2 −ψ1/u2

−φ2/u2 φ1/u2

 has modulus

smaller than 1, hence (u1/u2)zM−1 is a bounded matrix symbol.

For any

f1

f2

 ∈ kerT(u1/u2)zM−1 , we have

(u1/u2)zM−1

f1

f2

 ∈ (Hp
0 )2.
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Dividing through by u1, then multiplying through by u2 we see that

zM−1

f1

f2

 =

zp1

zp2

 ,

for some p1, p2 ∈ N+, so

f1

f2

 = M

p1

p2

 =

φ1

φ2

 p1 +

ψ1

ψ2

 p2.

Then for any other bounded matrix H we have

H

f1

f2

 = H

φ1

φ2

 p1 +H

ψ1

ψ2

 p2.

So if

φ1

φ2

 ,

ψ1

ψ2

 ∈ kerTH , then both coordinates of H

f1

f2

 lie in Lp and both

H

φ1

φ2

 p1 and H

ψ1

ψ2

 p2 have both their coordinates lying in zN+, so therefore

H

f1

f2

 ∈ (Hp
0 )2. We conclude

kerT(u1/u2)zM−1 ⊆ kerTH .
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We now consider the minimal kernel for when φ1ψ2−ψ1φ2 = 0. In the following

we let P
′
1 and P

′
2 denote the projections (Lp)2 → Lp on to the first and second

coordinate respectively.

Theorem 2.31. Let

φ1

φ2

 ,

ψ1

ψ2

 ∈ (Hp)2 and let u be an outer function such

that |u|= |φ1|+|φ2|+1. If ψ2

φo2
is not a cyclic vector for the backward shift on N+ and

φ1ψ2 − ψ1φ2 = 0, then we have

κmin(

φ1

φ2

 ,

ψ1

ψ2

) = kerT
φ2/u −φ1/u

0 φo2I/φo2


,

where I is such that I∗(N+) is the smallest one component S∗-invariant subspace

containing both ψ2

φo2
and φi2.

Remark. We note how I is the same inner function that appears in the symbol for

the scalar minimal kernel of φ2 and ψ2.

Proof. Our choice of I guarantees both the vectors are in the required kernel.
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Let

x1

x2

 ∈ kerT
φ2/u −φ1/u

0 φo2I/φo2


, then we have

x2 =
φo2Izh
φo2

,

for some h ∈ Hp. As in the scalar case for our choice of I we have ψ2

φo2
= Izp1 and

φi = Izp2, for some p1, p2 ∈ N+, so I can be written as

I =
ψ2zp

i
1

φo2p
o
1

,

and

I = φi2zp2,

where p2 is inner. Substituting our two expressions for I into the above expression

for x2 gives

x2 =
ψ2p

i
1h

φo2p
o
1

, (5)

and

x2 =
φ2p2h

φo2
. (6)
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We also have that

x1

x2

 satisfies

x1φ2 − φ1x2 = 0,

so substituting x2 = φ2p2h

φo2
from (6) yields

x1φ2 − φ1
φ2p2h

φo2
= 0,

and so

x1 = φ1
p2h

φo2
.

Consequently we may write all

x1

x2

 ∈ kerT
φ2/u −φ1/u

0 φo2I/φo2


are of the form

x1

x2

 =

φ1

φ2

 p2h

φo2
.
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We will now find a similar expression relating

x1

x2

 and

ψ1

ψ2

. Multiplying

x1φ2 − φ1x2 = 0,

by ψ1

φ1
= ψ2

φ2
gives

x1ψ2 − ψ1x2 = 0,

and substituting x2 =
ψ2pi1h

φo2p
o
1

from (5) into this expression yields

x1ψ2 − ψ1
ψ2p

i
1h

φo2p
o
1

= 0,

so

x1 = ψ1
pi1h

φo2p
o
1

.

Consequently we can write

x1

x2

 =

ψ1

ψ2

 pi1h

φo2p
o
1

.
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Now we have two expressions for

x1

x2

 ∈ kerT
φ2/u −φ1/u

0 φo2I/φo2


,

x1

x2

 =

ψ1

ψ2

 pi1h

φo2p
o
1

,

and x1

x2

 =

φ1

φ2

 p2h

φo2
.

So if

φ1

φ2

 ,

ψ1

ψ2

 ∈ kerTH , for any symbol H, then

H

x1

x2

 = H

ψ1

ψ2

 pi1h

φo2p
o
1

=
(
H

ψ1

ψ2

)( pi1h
φo2p

o
1

)
.

By Proposition 2.4 h
φo2o

o
1

∈ N+ and H

ψ1

ψ2

 ∈ (Hp
0 )2, so both coordinates of

(
H

ψ1

ψ2

)( h
φo2p

o
1

)
are in zN+ ∩Lp = Hp

0 , and so H

x1

x2

 =
(
H

ψ1

ψ2

)( pi1h

φo2p
o
1

)
∈
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pi1(Hp
0 )2. Similarly

H

x1

x2

 = H

φ1

φ2

 p2h

φo2
=
(
H

φ1

φ2

)(p2h

φo2

)
∈ p2(Hp

0 )2.

So P+P
′
1(H

x1

x2

) ∈ Kp
p2
∩ Kp

pi1
= Kp

GCD(p2,pi1)
, but as in the scalar case we have

chosen I such that GCD(p2, p
i
1) = 1, so P+P

′
1(H

x1

x2

) ∈ Kp
1 = {0}. The same

holds for P+P
′
2(H

x1

x2

) and so P+(H

x1

x2

) = 0, and therefore

kerT
φ2/u −φ1/u

0 φo2I/φo2


⊆ kerTH .

We now consider the case when ψ2

φo2
is cyclic for S∗. In doing so we need to

introduce some new theory. Let (N+)2 :=


f1

f2

 : f1, f2 ∈ N+

 with the metric
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on (N+)2 defined by

ρ2


f1

f2

 ,

g1

g2


 = ρ(f1, g1) + ρ(f2, g2),

where ρ is the metric on N+. It is easily checked that (N+)2 is also a metric space

and a sequence in (N+)2 converges if and only if both of its coordinates converge

in N+. As outer functions are invertible in N+ for a fixed f ∈ N+, fN+ = f iN+

is closed. For a fixed

f1

f2

 ∈ (N+)2, the following computation shows

f1

f2

N+

is closed in (N+)2. If

f1

f2

xn →

x1

x2

 then f1xn → x1 so x1 = f1x0, for some

x0 ∈ N+, then as logL is a topological algebra we can deduce xn → x0. So then

f2xn → f2x0 and

f1

f2

xn →

f1

f2

x0 ∈

f1

f2

N+.

We can also let ρ2 define a metric on (logL)2 =


f1

f2

 : f1, f2 ∈ logL

 and

in this metric (N+)2 is a closed subspace of (logL)2.

Theorem 2.32. Let

φ1

φ2

 ,

ψ1

ψ2

 ∈ (Hp)2, let β = GCD(φi1, φ
i
2) and let u be an

outer function such that |u|= |φ1|+|φ2|+1. If ψ2

βφ2
is a cyclic vector for the backward

shift on N+ and φ1ψ2 − ψ1φ2 = 0, then we have
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κmin


φ1

φ2

 ,

ψ1

ψ2


 = kerT

φ2/u −φ1/u

0 0


.

The assumption φ1ψ2 − ψ1φ2 = 0 ensures ψ2

βφ2
∈ N+. Indeed, as βφ1ψ2 = ψ1βφ2

and GCD(βφi1, βφ
i
2) = 1, every inner factor of βφ2 divides ψ2.

In the following proof we will write spanN
+

to mean the closed linear span in

(N+)2, and span to mean the linear span.

Proof. We split the proof up in to two stages. We first prove if for any bounded

symbol H we have

φ1

φ2

 ,

ψ1

ψ2

 ∈ kerTH , then β

φ1

φ2

N+ ∩ (Hp)2 ⊆ kerTH .

Then we prove kerT
φ2/u −φ1/u

0 0


= β

φ1

φ2

N+ ∩ (Hp)2. If

φ1

φ2

 ,

ψ1

ψ2

 ∈

kerTH then near invariance of Toeplitz kernels guarantees β

φ1

φ2

 ∈ kerTH , and

so for λ ∈ C ψ1

ψ2

− λβ
φ1

φ2

 = β

φ1( ψ1

βφ1
− λ)

φ2( ψ2

βφ2
− λ)

 ∈ kerTH .
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Noting ψ1

βφ1
= ψ2

βφ2
, and letting λ = ψ1

βφ1
(0) = ψ2

βφ2
(0) we see that,

β

φ1( ψ2

βφ2
− ψ2

βφ2
(0))

φ2( ψ2

βφ2
− ψ2

βφ2
(0))

 ∈ kerTH ,

and near invariance of Toeplitz kernels gives

β

φ1( ψ2

βφ2
− ψ2

βφ2
(0))

φ2( ψ2

βφ2
− ψ2

βφ2
(0))


z

= β

φ1

φ2

S∗(
ψ2

βφ2

) ∈ kerTH .

We can repeat this process inductively to get β

φ1

φ2

S∗n( ψ2

βφ2
) ∈ kerTH for each

n ∈ Z+, and hence

span{β

φ1

φ2

S∗n(
ψ2

βφ2

) : n ∈ Z+} ⊆ kerTH . (7)

We will now take the closure of both sides of this set inclusion in the (Hp)2

subspace topology of (N+)2. The closure of the left hand side of (7) is equal to

spanN
+{β

φ1

φ2

S∗n( ψ2

βφ2
)} intersected with (Hp)2. As β

φ1

φ2

N+ is closed, ψ2

βφ2
is

cyclic and N+ is a topological algebra the closure of the left hand side of (7) equals
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β

φ1

φ2

N+ ∩ (Hp)2.

The closure of the right hand side of (7) is the closure of kerTH in (N+)2 in-

tersected with (Hp)2. We now argue this is equal to kerTH . Let

x1n

x2n

 ∈ kerTH

be such that

x1n

x2n

 →
x1

x2

 in (N+)2, then

x1n

x2n

 →
x1

x2

 in (logL)2. As

logL is a topological algebra and H

x1n

x2n

 =

h11x1n + h12x2n

h21x2n + h22x2n

, we must have

zH

x1n

x2n

 → zH

x1

x2

 in (logL)2. As

x1n

x2n

 ∈ kerTH we have zH

x1n

x2n

 ∈
(N+)2, and as (N+)2 is closed in (logL)2 we must have zH

x1

x2

 ∈ (N+)2. So if

x1

x2

 ∈ (Hp)2 then zH

x1

x2

 ∈ (N+)2 ∩ (Lp)2 = (Hp)2, so

x1

x2

 ∈ kerTH . From

this we deduce

β

φ1

φ2

N+ ∩ (Hp)2 ⊆ kerTH .
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It remains to prove that kerT
φ2/u −φ1/u

0 0


= β

φ1

φ2

N+ ∩ (Hp)2. The

⊇ inclusion is clear. We will now show the ⊆ inclusion. If we let

F1

F2

 lie in

kerT
φ2/u −φ1/u

0 0


, then F1φ2 = F2φ1, and so βF1φ2 = βF2φ1 and F1 can be

written as F1 = βφ1
F2

βφ2
. Furthermore F2

βφ2
is in the Smirnov class, because βF1φ2 =

βF2φ1 and GCD(βφ1, βφ2) = 1 so every inner factor of βφ2 divides F2. We can

also write F2 = βφ2
F1

βφ1
, and as βF1φ2 = βF2φ1, we have F1

βφ1
= F2

βφ2
, so

F1

F2

 ∈
β

φ1

φ2

N+ ∩ (Hp)2.

Thus we have proved that if

φ1

φ2

 ,

ψ1

ψ2

 ∈ kerTH then

kerT
φ2/u −φ1/u

0 0


⊆ kerTH .

Proposition 2.33. Let I be inner. Then f ∈ N+ is cyclic for S∗ if and only if If
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is cyclic for S∗.

Proof. If f is not cyclic then it lies in a non-trivial S∗-invariant subspace. Then

by Proposition 2.25 f ∈ I∗(N+) for some inner function I, which then means

If ∈ (II)∗(N+) and is therefore not cyclic for S∗. Conversely if If is not cyclic, If

lies in some one component S∗-invariant subspace and hence so does f . So f can

not be cyclic.

Combining the two previous theorems and the previous proposition we can de-

duce the following unifying theorem.

Theorem 2.34. Let

φ1

φ2

 ,

ψ1

ψ2

 ∈ (Hp)2 be such that φ1ψ2 − ψ1φ2 = 0. Then

we have

κmin


φ1

φ2

 ,

ψ1

ψ2


 = kerT

φ2/u −φ1/u

0 χ


,

where u is an outer function such that |u|= φ1 +φ2 +1 and χ is our previously given

symbol for the scalar Toeplitz kernel κmin(φ2, ψ2). (Here if κmin(φ2, ψ2) = Hp the

symbol is formally defined to be 0.)
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3 Nearly invariant subspaces

Throughout this chapter from Section 3.2 onward we assume the symbol

of any truncated Toeplitz operator is bounded, and hence the truncated

Toeplitz operator is bounded. Throughout we continue to let I be an

arbitrary inner function.

Definition 3.1. A closed subspace M ⊆ (H2)n is said to be nearly S∗-invariant with

defect d if and only if there exists a d-dimensional subspace of (H2)n, D, (which may

be taken to be orthogonal to M) such that if f ∈M and f(0) is the zero vector then

S∗f ∈M ⊕D.

If M is nearly S∗-invariant with defect 0 then it is said to be nearly S∗-invariant.

The concept of (scalar) nearly backward shift invariant subspaces was first in-

troduced by Hitt in [44] as a generalisation to Hayashi’s results concerning Toeplitz

kernels in [43]. These spaces were then studied further by Sarason [62]. The study

of nearly backward shift invariant subspaces was then generalised to the vectorial

case in [20], and generalised to include a finite defect in [22]. Kernels of Toeplitz

operators are the prototypical example of nearly S∗- invariant subspaces.

3.1 Preliminary results

Although truncated Toeplitz operators share many properties with the classical

Toeplitz operator, it is easily checked that the kernel of a truncated Toeplitz operator
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is not nearly S∗-invariant. For example the truncated Toeplitz operator Az
3

z has

kernel given by span{z2} which is clearly not nearly S∗-invariant. This motivates

our study for this section where we show under certain conditions the kernel of a

truncated Toeplitz operator is in fact nearly S∗-invariant with defect 1. In many

cases the study of Toeplitz operators becomes greatly simplified when the operator

has an invertible symbol; in this section we also show that the symbol of a truncated

Toeplitz operator, g, may be chosen such that g−1 ∈ L∞.

Theorem 3.2. For any g ∈ L2 we write g = g−+g+ where g− ∈ H2
0 and g+ ∈ H2. If

the outer function in H2 with modulus equal to 2|g|+1 is not cyclic for the backward

shift then there exists a g̃ ∈ L2 such that AIg = AIg̃ and g̃−1 ∈ H∞.

Proof. Theorem 3.1 of [63] shows that AIg1
= AIg2

if and only if g1−g2 ∈ IH2+IH2, so

we may initially assume without loss of generality that g ∈ K2
I ⊕K2

I . Using Lemma

2.2 we can construct an outer function u such that |u|= 2|g|+1, furthermore u ∈ L2

so u ∈ H2. Then it follows that for any inner function α

g − αu (8)

has the property that

|g − αu|> |u|−|g|> |g|+1 > 0

almost everywhere on T, and so (g − αu)−1 ∈ L∞. Our construction of u shows

| 1
u
|6 1 and as the reciprocal of an outer function in is outer, we have 1

u
is outer
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and in L∞, so 1
u
∈ H∞. Furthermore by Corollary 2.29 we can say 1

u
∈ H2 is

non-cyclic for S∗ and hence must lie in a model space K2
Φ. Define g̃ := (g − ΦIu),

then as previously stated g̃−1 ∈ L∞. We now show g̃−1 =
∑∞

k=0(−1)gk(ΦI 1
u
)k+1

where the limit is taken in the sense of uniform convergence. We write g̃−1
N to be∑N

k=0(−1)gk(ΦI 1
u
)k+1 then we have ‖g̃−1

N − g̃−1‖∞ is equal to

‖g̃−1g̃(g̃−1
N − g̃

−1)‖∞6 ‖g̃−1‖∞‖g̃g̃−1
N − 1‖∞6 ‖g̃−1‖∞‖gN(ΦI

1

u
)N‖∞.

By our construction of u this is less than ‖g̃−1‖∞(1
2
)N , which clearly converges to

0. Now our choice of Φ ensures that Φ 1
u
∈ H∞, we also have Ig ∈ H2. This means

(−1)gk(ΦI 1
u
)k+1 ∈ H2 and is bounded by 1, so must actually lie in H∞. So g̃−1

being the uniform limit of a sequence in H∞ must also be in H∞.

Examining the first part of the above proof we can also deduce the following propo-

sition.

Proposition 3.3. For any g ∈ L2 there exists a g̃ ∈ L2 such that AIg = AIg̃ and

g̃−1 ∈ L∞.

Proof. In (8) if we set α to equal I, keep our construction of u the same and define

g̃ = g − αu then AIg = AIg̃. Furthermore the computation immediately after (8)

shows g̃−1 ∈ L∞.

This has an interesting relation to Sarason’s question posed in [63]; which is
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whether every bounded truncated Toeplitz operator has a bounded symbol. Al-

though Sarason’s question has been shown to be not true in general, the above

proposition shows every bounded truncated Toeplitz operator has a symbol which

has a bounded inverse.

These results suggest that under certain circumstances kerAIg may be a nearly

invariant subspace with a finite defect. This is because f ∈ kerAIg if and only if

f ∈ K2
I and

gf ∈ H2
0 ⊕ IH2,

so if f(0) = 0 and f ∈ kerAIg then we must have

gf

z
∈ H2

0 + span{S∗(I)}+ IH2.

This may lead us to believe that kerAIg is a nearly S∗-invariant subspace with a

defect given by g−1span{S∗(I)}, but the issue here is g−1S∗(I) need not necessarily

lie in K2
I or even H2. Theorem 3.2 shows us that under some weak restrictions we

can choose our non-unique symbol g so that g−1S∗(I) ∈ H2, but to fully understand

kerAIg as a nearly invariant subspace with a defect we must study vector-valued

nearly invariant subspaces with a defect.
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3.2 Vector-valued nearly invariant subspaces with a defect

In this section we prove a powerful result that shows for any i ∈ {1 . . . n} the first

i coordinates of a vector-valued nearly S∗-invariant subspace of (H2)n is a nearly

S∗-invariant subspace with a finite defect. We then generalise Theorem 3.2 in [20]

and Corollary 4.5 in [22] to find a Hitt-style decomposition for the vector-valued

nearly S∗-invariant subspaces with a finite defect.

Let M ⊆ (H2)n be a nearly invariant subspace for the backward shift with a finite

defect space D and let dimD = d. If not all functions in M vanish at 0 then we

define W := M	(M∩z(H2)n) and Corollary 4.3 in [20] shows that r := dimW 6 n,

in this case we let W1 . . .Wr be an orthonormal basis of W . For i = 1 . . . n we let

Pi : (H2)n → (H2)i be the projection on to the first i coordinates.

Theorem 3.4. For any i ∈ {1 . . . n}, Mi := Pi(M) is a (not necessarily closed)

nearly invariant subspace with a defect space
(

span{Pi(W1),...Pi(Wr)}
z

∩ (H2)i
)

+Pi(D).

Proof. We first consider the case when not all functions in M vanish at 0. Let

fi ∈Mi, then fi is the first i entries of some F ∈M . We write F as

F = a1W1 + . . . arWr + F1,

where a1 . . . ar ∈ C and F1 ∈ M ∩ z(H2)n. So if fi(0) is the zero vector, we then
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have fi(0) is zero and F1(0) is zero, which forces Pi(a1W1 + . . . arWr) to be zero. So

fi
z
− Pi(a1W1 + . . . arWr)

z
= Pi

(
F1

z

)
∈Mi + Pi(D),

which means

fi
z
∈Mi +

(
span{Pi(W1), . . . Pi(Wr)}

z
∩H2

)
+ Pi(D).

In the case when all functions in M vanish at 0 then W = {0} and we would

just have F
z
∈M +D, so fi

z
∈Mi + Pi(D).

Remark. If W = {0} we can interpret
(

span{Pi(W1),...Pi(Wr)}
z

∩ (H2)2
)

to be the zero

vector.

Corollary 3.5. With the same assumptions as in Theorem 3.4, if d = 0 i.e. if

M is a nearly S∗-invariant subspace, then Mi is a (not necessarily closed) nearly

S∗-invariant subspace with a defect space
(

span{Pi(W1),...Pi(Wr)}
z

∩ (H2)i
)

.

To further build on this result we will now give a Hitt style decomposition for a

vector-valued nearly invariant subspace with a finite defect. This style of decomposi-

tion was first introduced by Hitt in [44] when he decomposed the nearly S∗-invariant

subspaces. This was then generalised to the vectorial case as Corollary 4.5 in [20].

This style of proof was then adapted to produce a similar result for the (scalar)

nearly invariant subspace with a defect, which is Theorem 3.2 in [22].

81



For a Hilbert space H and x, y ∈ H we define x ⊗ y(f) = 〈f, y〉x. We say an

operator T on H belongs to the class C.0 if for all x ∈ H, limn→∞‖(T ∗)nx‖= 0.

Consider a subspace M which is nearly S∗-invariant with defect 1, so that D =

span{e1}, say, where ‖e1‖(H2)n= 1. Suppose first that not all functions in M vanish

at 0, then 1 6 r = dimW 6 n. Let F0 be the matrix with columns W1 . . .Wr, and

let PW be the orthogonal projection on to W . For each F ∈M we may write

F = PW (F ) + F1 = F0


a1

0

...

ar0

+ F1.

Now as F1(0) = 0 we have S∗(F1) = G1 + β1e1, where G1 ∈M and β1 ∈ C. Thus

F (z) = F0(z)A0 + zG1(z) + zβe1(z),

where A0 =


a1

0

...

ar0

. Moreover since the family {Wi}i=1...r forms an orthonormal

basis of W , we obtain the following identity of norms:

‖F‖2
(H2)n= ‖F0A0‖2

(H2)n+‖F1‖2
(H2)n= ‖A0‖2+‖G1‖2

(H2)n+|β1|2.

We may now repeat this process on G1 to obtain G1 = PW (G1) + F2, and S∗(F2) =
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G2 + β2e1, so G1 = F0A1 + zG2 + zβ2e1. We iterate this process to obtain

F (z) = F0(z)(A0 + A1z + . . . An−1z
n−1) + zGn(z) + (β1z + . . .+ βnz

n) e1(z), (9)

where

‖F‖2
(H2)n=

n−1∑
k=0

‖Ak‖2+‖Gn‖2
(H2)n+

n∑
k=1

|βk|2.

We now argue ‖Gn‖(H2)n→ 0 as n→∞. We can write Gn = Pe1S
∗PW⊥(Gn−1),

where Pe1 is the projection with kernel span{e1} and PW⊥ is the projection with

kernel span{W1 . . .Wr}. For all n > 1 we may write Gn+1 = Pe1R
n−1(S∗PW⊥(G1)),

where R = S∗PW⊥Pe1 and so

‖Gn+1‖(H2)n6 ‖Pe1‖‖Rn−1(S∗PW⊥(G1))‖(H2)n . (10)

As e1 is orthogonal to W we have

PW⊥Pe1 = Pe1PW⊥ = Id − e1 ⊗ e1 −
r∑
j=1

Wj ⊗Wj,

and so the adjoint of R is

Pe1PW⊥S = S − e1 ⊗ S∗(e1)−
r∑
j=1

Wj ⊗ S∗(Wj).

We now apply the second assertion of Proposition 2.1 from [20] to show the adjoint
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of R is of class C.0, and so Rn−1 applied to S∗PW⊥(G1) converges to 0; now from

(10) we see ‖Gn+1‖(H2)n→ 0. As a consequence taking limits in (9) we may write

F (z) = lim
n→∞

(
F0(z)(A0 + A1z + . . . An−1z

n−1) + (β1z + . . .+ βnz
n)e1(z)

)
.

We denote an(z) = F0(z) (A0 + A1z + . . . An−1z
n−1), and a0(z) = F0

(∑∞
k=0Akz

k
)
,

where
(∑∞

k=0 Akz
k
)

is taken in the (H2)n sense (this is defined by the equality

of norms given immediately after (9)). Then in the (H1)n norm we must have

‖an(z)− a0(z)‖(H1)n is equal to

‖F0

∞∑
k=n

Akz
k‖(H1)n6 ‖W1

∞∑
k=n

a1
kz

k‖(H1)n+ . . .+ ‖Wr

∞∑
k=n

arkz
k‖(H1)n .

For each i ∈ {1 . . . r} we define Ci to equal the maximum H2 norm of each coordinate

of Wi multiplied by n, then we apply Hölder’s inequality on each coordinate to obtain

‖Wi

∞∑
k=n

aikz
k‖(H1)n6 Ci‖

∞∑
k=n

aikz
k‖(H2)n→ 0.

Thus in the (H1)n norm we have an → a0. A similar computation shows

(β1z + . . .+ βnz
n) e1(z)
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converges to (
∑∞

k=1 βkz
k)e1 in the (H1)n norm so the (H1)n limit of

F (z) = F0(z)(A0 + A1z + . . . An−1z
n−1) + (β1z + . . .+ βnz

n)e1(z)

must be equal to

F (z) = F0

(
∞∑
k=0

Akz
k

)
+

(
∞∑
k=1

βkz
k

)
e1.

Furthermore by taking limits in the equality of norms immediately after (9) we know

‖F‖2
(H2)n=

∞∑
k=0

‖Ak‖2+
∞∑
k=1

|βk|2. (11)

We may alternatively express this as saying F ∈M if and only if

F (z) = F0k0 + zk1e1, (12)

where (k0, k1) lies in a subspace K ⊆ (H2)r ×H2 which is identified with (H2)r+1.

By virtue of (11) we can see that K is the image of a isometric mapping, and

hence closed. We now argue K is invariant under the backward shift on (H2)r+1.

Since in the algorithm we have k0(0) = A0 and k1(0) = β1 we can write F as

F = F0A0 + zF0S
∗(k0) + β1ze1 + z2S∗(k1)e1,
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consequently

F0S
∗(k0) + zS∗(k1)e1 =

F − F0A0 − β1ze1

z
= G1 ∈M. (13)

Conversely if

M = {F0k0 + zk1e1 : (k0, k1) ∈ K},

is a closed subspace of (H2)n, where K is a S∗-invariant subspace of (H2)r+1, then

M is nearly S∗-invariant with defect 1. To show this we first need a lemma, which

has been shown to be true in the proof of Lemma 2.14.

Lemma 3.6. W1(0), ...Wr(0) are linearly independent in Cn.

If F ∈ M and F (0) = 0 then we must have F0(0)k0(0) is equal to the zero vector.

We now add n − r vectors X1, . . . , Xn−r ∈ C which are linearly independent from

W1(0), . . .Wr(0) as extra columns to the matrix F0(0) to obtain a matrix

F
′

0(0) = [W1(0), . . . ,Wr(0), X1, . . . , Xn−r].

We now add n − r extra 0’s to the end of the column vector k0(0) and label this

k
′
0(0). As F0(0)k0(0) is equal to the zero vector, then F

′
0(0)k

′
0(0) must also be equal

to the zero vector. We can now invert F
′
0(0) to obtain k

′
0(0) is equal to the zero
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vector and hence k0(0) must be zero. This allows us to write

S∗(F ) = F0
k0

z
+ k1e1 = F0

k0

z
+ zS∗k1e1 + k1(0)e1,

and as K is S∗-invariant this is clearly an element of M ⊕ span{e1}.

If all functions in M vanish at 0 then there is no non-trivial reproducing kernel

at 0, but we may now write

F (z) = z (G1(z) + β1e1(z)) ,

with G1 ∈M and β1 ∈ C, and furthermore

‖F‖2
(H2)n= ‖G1‖2

(H2)n+|β1|2.

We can then iterate on G1 as we have previously done to obtain

F (z) = β1ze1 + β2z
2e1 + . . . .

For a general finite defect m the analogous calculations produce the following

result.

Theorem 3.7. Let M be nearly S∗-invariant with a finite defect d. Then:
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1. In the case where there are functions in M that do not vanish at 0,

M = {F : F (z) = F0(z)k0(z) + z

d∑
j=1

kj(z)ej(z) : (k0, . . . , kd) ∈ K},

where F0 is the matrix with each column being an orthonormal element of W ,

{e1, . . . ed} is any orthonormal basis for D, k0 ∈ (H2)r (where r = dimW ),

k1, . . . kd ∈ H2, and K ⊆ (H2)(r+d) is a closed S∗-invariant subspace. Further-

more ‖F‖2
(H2)n= ‖k0‖2

(H2)r+
∑d

j=1‖kj‖2
H2.

2. In the case where all functions in M vanish at 0,

M = {F : F (z) = z
d∑
j=1

kj(z)ej(z) : (k1, . . . , kd) ∈ K},

with the same notation as in 1, except that K is now a closed S∗-invariant

subspace of (H2)d, and ‖F‖2
(H2)n=

∑d
j=1‖kj‖2

H2.

Conversely if a closed subspace M ⊆ (H2)n has a representation as in 1 or 2, then

it is a nearly S∗-invariant subspace with defect m.

Remark. The above theorem was also independently proved in [23].

3.3 Application to truncated Toeplitz operators

In this section we show that whenever a truncated Toeplitz operator has a bounded

symbol, the kernel of the TTO is a nearly S∗-invariant subspace with defect 1; this
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then allows us to decompose the kernel into an isometric image of a model space.

The approach of decomposing a kernel into an isometric image of a model space much

resembles the works of Hayashi [43] and Hitt [44] for the classical Toeplitz operator.

We also make the observation that we can decompose the kernel of a truncated

Toeplitz operator into a nearly S∗-invariant subspace multiplied by a power of z

(where z ∈ D is the independent variable). Then using the results of [44], this

observation also gives us a second method to decompose the kernel into a isometric

image of a model space. Furthermore we show that in general our two choices of

decomposition of the kernel of a truncated Toeplitz operator yield different results.

Finally we give a decomposition of a TTO when the inner function, I, corresponding

to the model space K2
I satisfies extra assumptions.

Throughout this section (3.3) we assume g is bounded and so the

truncated Toeplitz operator AIg : K2
I → K2

I may be defined by

AIg(f) = PI,2(gf).

It was originally observed in [15] that the kernel of AIg is the first coordinate of

the kernel of the matricial Toeplitz operator with symbol

G =

I 0

g I

 .
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Recall that scalar-type Toeplitz kernels (first introduced in [18]) are vector-valued

Toeplitz kernels which can be expressed as the product of a space of scalar functions

multiplied by a fixed vector function. Recall that a maximal function for kerTG

is an element f ∈ kerTG such that if f ∈ kerTH for any other bounded matricial

symbol H, then kerTG ⊆ kerTH . By Corollary 3.9 in [18] kerTG is of scalar type,

and it is also easily checked that kerTG is not shift invariant and so by Theorem 3.7

in [18] we must have that kerTG has a maximal function. Now by Theorem 2.15

whenever the kernel is non-zero we can deduce that W = kerTG	 (kerTG∩ z(H2)n)

has dimension 1. If we denote

w1

w2

 to be the normalised element of W then using

Corollary 4.5 from [20] we can write

kerTG =

w1

w2

K2
zΦ,

where Φ is an inner function. We now can write

kerAIg = w1KzΦ. (14)

We describe Φ with the following proposition.

Proposition 3.8. When kerTG =

w1

w2

K2
zΦ, Φ is the unique (up to multiplication
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by a unimodular constant) inner function for which there exists p1, p2 ∈ H2 such that

G

w1

w2

Φ =

zp1

zp2

 ,

and GCD(pi1, p
i
2) = 1.

We recall that GCD stands for greatest common divisor, and the reasoning

following Theorem 2.19, shows the existence of a GCD of a family of inner functions.

Proof. We first show that up to multiplication by a unitary constant there can only

be one inner function Φ satisfying

G

w1

w2

Φ =

zp1

zp2

 ,

where GCD(pi1, p
i
2) = 1. Suppose there are two inner functions Φ1,Φ2 such that

G

w1

w2

Φ1 =

zp1

zp2

 ,

and

G

w1

w2

Φ2 =

zq1

zq2

 ,

91



where both GCD(pi1, p
i
2) = 1 and GCD(qi1, q

i
2) = 1. This would then imply that

Φ1

zp1

zp2

 = Φ2

zq1

zq2

 ,

and so (Φ1p1)i = (Φ2q1)i and (Φ1p2)i = (Φ2q2)i. By assumption we have GCD(pi1, p
i
2)

= 1 so GCD((Φ1p2)i, (Φ1p1)i) = Φ1, but substituting (Φ1p1)i for (Φ2q1)i we obtain

GCD((Φ1p2)i, (Φ2q1)i) = Φ1,

and so Φ1 divides Φ2. A similar computation shows Φ2 divides Φ1, and so we must

have Φ1 is a unitary constant multiple of Φ2. We now show that Φ is such that

G

w1

w2

Φ =

zp1

zp2

 ,

with GCD(pi1, p
i
2) = 1. If it is the case that α = GCD(pi1, p

i
2) 6= 1 then it would

follow that

w1

w2

Φα ∈ kerTG, which would be a contradiction as Φα /∈ K2
zΦ.

It is easily checked that kerTG is nearly S∗-invariant, and in view of (14) we can

use Corollary 3.5 to deduce the kernel of a truncated Toeplitz operator is nearly

S∗-invariant with a defect given by span{w1

z
} ∩H2. With this information we can

use the following result given as Theorem 3.2 in [22] (or equivalently Theorem 3.7
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with n = 1) to study kerAIg.

Theorem 3.9. Let M ⊆ H2 be a closed subspace that is nearly S∗-invariant with a

finite defect d. Then:

1. In the case where there are functions in M that do not vanish at 0,

M = {f : f(z) = f0(z)k0(z) + z
d∑
j=1

kj(z)ej(z) : (k0, . . . , kd) ∈ K},

where f0 is the normalised reproducing kernel for M at 0, {e1, . . . ed} is any

orthonormal basis for D, and K is a closed S∗-invariant subspace of (H2)(d+1).

Furthermore ‖f‖2
H2=

∑d
j=0‖kj‖2

H2.

2. In the case where all functions in M vanish at 0,

M = {f : f(z) = z
d∑
j=1

kj(z)ej(z) : (k1, . . . , kd) ∈ K},

with the same notation as in 1, except that K is now a closed S∗-invariant

subspace of (H2)d, and ‖f‖2
H2=

∑d
j=1‖kj‖2

H2.

Conversely if a closed subspace M ⊆ H2 has a representation as in 1 or 2, then it

is a nearly S∗-invariant subspace with defect d.

To use Theorem 3.9 we have to assume that our defect space is orthogonal to

kerAIg; we consider two separate cases. We first assume that all functions in kerAIg
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vanish at 0. We set O := kerAIg + span{w1

z
}, E := O 	 kerAIg, we let e be PE(w1

z
)

and then e is orthogonal to kerAIg. In this construction e 6= 0 as this would imply

w1

z
∈ kerAIg = w1KzΦ which is clearly a contradiction. Theorem 3.9 now yields

kerAIg = ezKΨ,

where Ψ is some inner function and multiplication by ez is an isometry from KΨ to

kerAIg. This expression for kerAIg is more familiar than w1K
2
zΦ (which was obtained

as equation (14)) as in this case the multiplication is an isometry as opposed to a

contraction. We can also relate this expression to nearly S∗-invariant subspaces. If

we let n be the greatest natural number such that e
zn
∈ H2 then

kerAIg
zn+1 = e

zn
K2

Ψ, now

e
zn

(0) 6= 0 so
kerAIg
zn+1 = e

zn
K2

Ψ is a nearly S∗-invariant subspace. We can conclude the

following theorem in this case.

Theorem 3.10. If n is the greatest natural number such that kerAIg ⊆ znH2, then

kerAIg
zn

is a nearly S∗-invariant subspace.

We now turn our attention to the case when not all functions in kerAIg vanish

at 0. In this case it must also follow that w1(0) 6= 0 as otherwise w1K
2
zΦ(0) = 0,

so using Corollary 3.5 we must have the defect space for kerAIg to be 0. So we can

conclude the following theorem.

Theorem 3.11. If kerAIg contains functions which do not vanish at 0 then it is

nearly S∗-invariant.
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When kerAIg is nearly S∗-invariant we may proceed by using Proposition 3 of

the paper of Hitt [44] to show kerAIg = uK2
zψ where u ∈ kerAIg 	 (kerAIg ∩ zH2)

is an isometric multiplier and ψ is some inner function. As was noted in [41] we

can call ψ the associated inner function to u, and it is easily checked (similar to the

approach in Proposition 3.8) this is an inner function such that guψ = zp1 + Ip2

where p1 is outer.

In fact using (14) we can view these two theorems as specialisations of the fol-

lowing theorem.

Theorem 3.12. If f ∈ H2, and I is an inner function such that fK2
I is a closed

subspace of H2, then if f(0) 6= 0 then fK2
I is a nearly invariant subspace. If f(0) = 0

then fK2
I is both a nearly invariant subspace multiplied by a power of z and a nearly

invariant subspace with a 1-dimensional defect space f
z
(K2
I 	 (K2

I ∩ zH2)).

Proof. The only non-trivial statement to prove is if f(0) = 0 then fK2
I is a nearly

invariant subspace with a defect space f
z
(K2
I 	 (K2

I ∩ zH2)), but this follows from

fK2
I

z
∈ f
z

(K2
I 	 (K2

I ∩ zH2)) + f

(
K2
I ∩ zH2

z

)
⊆ f

z
(K2
I 	 (K2

I ∩ zH2)) + fK2
I .

So under the assumptions f ∈ H2 and I is an inner function such that fK2
I

is a closed subspace of H2, if f(0) = 0 then Theorem 3.12 gives us two possible

approaches to decomposing fK2
I .
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1. Divide fK2
I by zn where n ∈ N is chosen such that f

zn
(0) 6= 0, then use the

Hitt decomposition given in [44]. Then we could write fK2
I as znu multiplied

by some model space, where u ∈ fK2
I

zn
	 (

fK2
I

zn
∩ zH2) .

2. Use Theorem 3.9 with f
z
(K2
I	 (K2

I ∩zH2)) as the defect space. Then we could

write fK2
I as ze multiplied by some model space , where e is chosen to be an

element of f
z
(K2
I 	 (K2

I ∩ zH2)) + fK2
I orthogonal to fK2

I .

In both of these cases we obtain a model space multiplied by an isometric multiplier.

Due to the similarities in the way these two decompositions are developed, one

might expect that the two possible ways of decomposing fK2
I might actually yield

the same result. We show this is not the case and in general we have two different

expressions with an example.

Example 3.1. Let g = 1
1− z

3
(z3 + z3) and let I = z4. We first find kerAIg using

linear algebra techniques. With respect to the basis 1, z, z2, z3, AIg has the matrix

representation 

1
33

1
32

1
3

1

1
34

1
33

1
32

1
3

1
35

1
34

1
33

1
32

1 + 1
36

1
35

1
34

1
33


,
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which has reduced row echelon form given by



1 0 0 0

0 1 3 9

0 0 0 0

0 0 0 0


.

The kernel of this matrix has a basis given by



0

1

−1
3

0


,



0

0

1

−1
3


,

and thus we can write kerAIg = z(1− z
3
)K2

z2 . We now will give two different decom-

positions of this kernel using Theorem 3.12. Let f = z(1− z
3
) and K2

I = K2
z2 , then

fK2
I = zspan{(1− z

3
), z(1− z

3
)}. We first use approach 1. It can be checked that

1− z

3
K2
z2 	 1− z

3
K2
z2 ∩ zH2

has a normalised basis element given by

u =
3
√

910

91
(1− 1

30
z − 1

10
z2),

97



and so fK2
I can be written as zu multiplied by some model space, which we will

denote K2
I1 . In order to find I1 we must solve

z(1− z

3
)K2

z2 = zuK2
I1 ,

but
(1− z

3
)

u
is a scalar multiple of 1

1+ 3z
10

, so K2
I1 must be given by span{ 1

1+ 3z
10

z
1+ 3z

10

},

therefore I1 = z
z+ 3

10

1+ 3z
10

. So we conclude

z(1− z

3
)K2

z2 = z
3
√

910

91
(1− 1

30
z − 1

10
z2)K

z(
z+ 3

10
1+ 3z

10

)
,

where multiplication by z 3
√

910
91

(1 − 1
30
z − 1

10
z2) is an isometry on the model space.

This can be simplified to

z(1− z

3
)K2

z2 = z(30− z − 3z2)K2

z(
z+ 1

3
1+ z

3
)
,

however in this case we no longer have the multiplication on the model space acting

as an isometry. Now we use approach 2. We must find a normalised element

e ∈ z(1− z
3
)K2

z2 + span{(1− z
3
)}, which is orthogonal to z(1− z

3
)K2

z2 . This can be

checked to be √
729

74620
(
91

9
− 1

27
z − 1

9
z2 − 1

3
z3),

which means fK2
I can also be written as ze multiplied by some model space, which
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we will denote K2
I2 . Now to find I2 we must solve

z(1− z

3
)K2

z2 = zeK2
I2 .

we know e is a scalar multiple of

(273− z − 3z2 − 9z3) = 3(1− z

3
)(9z2 + 30z + 91),

and so K2
I2 must be span{ 1

9z2+30z+91
, z

9z2+30z+91
}. We now aim to find the inner

function I2. We denote A = 1
9z2+30z+91

and B = z
9z2+30z+91

. A(0) = 1
91

, so

S∗(A)(z) =
A(z)− 1

91

z
=

−9z − 30

91(9z2 + 30z + 91)
= −30

91
A− 9

91
B.

It is clear that S∗(B) = A. We now aim to find two eigenvectors of the backward

shift operator (these are necessarily Cauchy kernels) which are in span{A,B}. If we

use A,B as a basis for span{A,B} then the matrix representation of the backward

shift operator is given by −30
91

1

− 9
91

0

 ,

which has eigenvalues given by −15±3i
√

66
91

. We denote λ1 = −15+3i
√

66
91

and λ2 =

−15−3i
√

66
91

, then the corresponding eigenvectors are given by kλ1
= 1

1−λ1z
and kλ2

=

1
1−λ2z

. So K2
I2 = span{A,B} = span{kλ1

, kλ2
}, which means we must have I2 =
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( z−λ1

1−λ1z
)( z−λ2

1−λ2z
). We can conclude

z(1− z

3
)K2

z2 = z

√
729

74620
(
91

9
− 1

27
z − 1

9
z2 − 1

3
z3)K2

(
z−λ1
1−λ1z

)(
z−λ2
1−λ2z

)
,

where multiplication by z
√

729
74620

(91
9
− 1

27
z− 1

9
z2− 1

3
z3) is an isometry on the model

space. Again we can simplify this to

z(1− z

3
)K2

z2 = z(273− z − 3z2 − 9z3)K2

(
z−λ1
1−λ1z

)(
z−λ2
1−λ2z

)
,

but in this expression we no longer have the multiplication on the model space acting

as an isometry. Thus approach 1 and approach 2 give different decompositions.

In Chapter 4, we will build on the theory we have developed on nearly invariant

subspaces to study the matrix-valued truncated Toeplitz operator. (In fact we will

even consider matrix-valued truncated Toeplitz operators which do not possess a

bounded symbol).

3.3.1 Separated symbols

We conclude this section by giving another decomposition of the kernel of a TTO

under extra assumptions on the symbol of the TTO. In the following we use the

convention that if f ∈ H2
0 , we define the inner and outer factor of f to be the

inner/outer factor of f ∈ H2 conjugated.
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In this subsection (3.3.1) we continue to assume that g is bounded and

we also assume the symbol g is separated. We call the symbol g, of AIg,

separated when g+ig−i = Iα , where g = g− + g+ with g+ ∈ H2 and g− ∈ H2
0 ,

and where α is an inner function.

This is a generalisation of the notion of separated introduced in [15] as we do

not require that g− and g+ to be bounded. We also define the lowest common

multiple (abbreviated to LCM) of two inner functions I1, I2 to be the inner function

I∗ = LCM(I1, I2) such that I1 and I2 divide I∗ (here I1 dividing I∗ means I1
I∗
∈ H∞)

and if I1 and I2 divide any other inner function β then I∗ divides β. The lowest

common multiple is unique up to multiplication by a unitary constant

Lemma 3.13. kerAIg = kerAIg−+g+ = kerAI
g−i
∩ kerAI

g+i .

Proof. By Theorem 3.1 of [63], we can assume throughout that g− ∈ K2
I , and

g+ ∈ K2
I . We first show the ⊇ inclusion. If a ∈ kerAI

g−i
∩kerAI

g+i , then ag+i ∈ IH2,

and multiplying by the outer factor of g we see ag+ ∈ IH1. Similarly we have

ag−
i ∈ H2

0 , so ag− ∈ H1
0 . Together these imply

ag = a(g− + g+) ∈ H1
0 ⊕ IH1.

But ag ∈ L2, so

ag ∈ H2
0 ⊕ IH2

which means a ∈ kerAIg.
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We now show the ⊆ inclusion. We first note that as g ∈ L∞ we can write g as

g = g−+ g+, where g− ∈ H6
0 , and g+ ∈ H6. The reason that we specify L6 (and not

L2 ) is because then ag ∈ L3/2 and H3/2 = K
3/2
I ⊕IH3/2 whereas this decomposition

does not hold for H1. If a ∈ kerAIg−+g+ then ag−+ag+ ∈ H2
0⊕IH2 ⊆ H

3/2
0 ⊕IH3/2.

We also have a ∈ IH2
0 , so ag− ∈ IH3/2

0 , and similarly ag+ ∈ H3/2. Now, H3/2 =

K
3/2
I ⊕ IH3/2, and IH

3/2
0 = K

3/2
I ⊕H3/2

0 , so projecting from L3/2 we have,

g−a = PI,3/2(g−a) + P3/2,−(g−a)

and

g+a = PI,3/2(g+a) + (P3/2,+ − PI,3/2)(g+a).

Adding these expressions together and noting ga ∈ H
3
2
0 ⊕ IH

3
2 we obtain

g−a+ g+a = P3/2,−(g−a) + (P3/2,+ − PI,3/2)(g+a).

Multiplying by g−i and rearranging we obtain

g−oa− g−iP3/2,−(g−a) = −Iαg+oa+ g−i(P3/2,+ − PI,3/2)(g+a). (15)

We know a ∈ IH2
0 and g−o ∈ H6

0 , so ag−o ∈ IH
3/2
0 . Therefore the left hand side

of the above equation is in LCM(I, g−i)H
3/2
0 whereas the right hand side of the

equation is in IGCD(α, g−i)H3/2. We know LCM(I, g−i) is I multiplied by any
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factors of g−i which aren’t also a factor of I. But any factor of g−i that isn’t also a

factor of I will be a factor of GCD(α, g−i), as g+ig−i = Iα. So we have LCM(I, g−i)

divides IGCD(α, g−i), therefore

LCM(I, g−i)H
3/2
0 ∩ IGCD(α, g−i)H3/2 = {0},

which means both sides of (15) must be equal to 0. Multiplying the left hand side

of (15) by g−i, we have

g−a = P3/2,−(g−a),

i.e

g−a ∈ H3/2
0

which then implies

g+a ∈ IH3/2.

As ag+ ∈ IH3/2, dividing through by g+o and using Proposition 2.4 we see ag+i is of

the form I multiplied by an element of the Smirnov class as well as L2, and therefore

ag+i ∈ IH2 . Similarly as ag− ∈ H3/2
0 , dividing through by the outer factor, again

we see ag−i ∈ H2
0 . So we have

a ∈ kerAI
g−i
∩ kerAI

g+i .
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Theorem 3.14. Let g−, g+ 6= 0. Then kerAI
g−i
∩ kerAI

g+i = K2

g−
i ∩ Ig+iH2 ∩K2

I .

Proof. If a ∈ kerAI
g−i
∩ kerAI

g+i then ag−
i ∈ H2

0 and ag+i ∈ IH2. So a ∈ K2

g−i
∩

Ig+iH2 ∩ K2
I . We now show the ⊇ inclusion. If a ∈ K2

g−
i ∩ Ig+iH2 ∩ K2

I , then

a = g−izp1 = Ig+ip2 for some p1, p2 ∈ H2, so

ag+i = Ip2,

and

ag−
i

= zp1,

so a ∈ kerAI
g−i
∩ kerAI

g+i .

Lemma 3.15. If I1, I2 are inner functions and GCD(I1, I2) = 1 then

H2 ∩ I2H
2I1 = I1H

2.

Proof. To show the ⊇ inclusion we trivially note that

I1x = I2(I2x)I1.
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We now show the ⊆ inclusion. Corollary 5.9 in [36] shows us that

K2
I1
∩K2

I2
= K2

GCD(I1,I2) = {0}.

Which means we must have

I1H2
0 ∩ I2H2

0 ⊆ H2
0 , (16)

because if there exists a non-zero p1 ∈ H2 and p2 ∈ H2 such that

zp2 + p1 ∈ I1H2
0 ∩ I2H2

0 ,

then by Proposition 5.5 in [36] we would have P+(zp2 + p1) = p1 ∈ K2
I1
∩ K2

I2
=

K2
GCD(I1,I2) = {0}. Conjugating (16), we have

I1zH
2 ∩ I2zH

2 ⊆ zH2,

so

I1H
2 ∩ I2H

2 ⊆ H2,

which implies

H2 ∩ I2H
2I1 ⊆ I1H

2.
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We can now conclude our main decomposition theorem for TTOs with a sepa-

rated symbol g.

Theorem 3.16. Let Ψ = GCD(I, g+i), and χ = GCD(g−i, I). Then kerAIg =

IΨK2
χIΨ

.

Proof. We have kerAIg = kerAI
g−i
∩ kerAI

g+i = K2

g−
i ∩ Ig+iH2 ∩K2

I , which is equal

to

K2
χ ∩ Ig+iH2 = χH2

0 ∩H2 ∩ Ig+iH2 = χH2
0 ∩H2 ∩ IΨH2g+iΨ.

But as a result of our previous lemma, this is equal to

χH2
0 ∩ IΨH2 = IΨ(χIΨH2

0 ∩H2) = IΨK2
χIΨ

.

By noting AIg = AI
I+g

, when g is analytic the symbol I + g is separated and so

we can deduce the following corollary

Corollary 3.17. If g = g+ ∈ H∞, then kerAIg = IΨKΨ.

3.4 Application to dual truncated Toeplitz operators

In this section we study the kernel of dual truncated Toeplitz operator. Dual trun-

cated Toeplitz operators have been studied in both [26, 19] as well as many other
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sources. The kernel of a dual truncated Toeplitz operator has been studied in [11].

Although the domain of the dual truncated Toeplitz operator is not a subspace of

H2, we still can use similar recursive techniques used in previous sections of this

chapter to decompose the kernel into a fixed function multiplied by a S∗-invariant

subspace of H2.

It is easily checked that in L2 we have (K2
I )⊥ = H2

0 ⊕ IH2. We denote R to be

the orthogonal projection R : L2 → (K2
I )⊥.

Throughout this section (3.4) we continue to assume g ∈ L∞.

The dual truncated Toeplitz operator DI
g : (K2

I )⊥ → (K2
I )⊥ is defined by

f 7→ R(gf).

Theorem 6.6 in [11] shows that for a symbol g that is invertible in L∞ we have

kerDI
g = g−1 kerAIg−1 , so given our observation (14) under the condition that g is

invertible in L∞ we can write kerDI
g as an L2 function multiplied by a model space.

We now aim to use similar recursive methods that were used to prove Theorem 3.7

to obtain a decomposition theorem for kerDI
g .

Throughout this section (3.4) we assume that kerDI
g is finite dimen-

sional.

We define A := {f ∈ kerDI
g : gf ∈ K2

I ∩zH2} and C := kerDI
g∩(H2

0⊕IzH2)∩A,
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then using orthogonal decomposition we can write

kerDI
g = C ⊕ (kerDI

g 	 C).

Lemma 3.18. If kerDI
g ⊆ C then kerDI

g = {0}.

Proof. Suppose we have a non-zero f ∈ kerDI
g ⊆ C, then by construction of C we

must have f
z
∈ kerDI

g ⊆ C. Iterating this we can obtain f
zn
∈ kerDI

g for all n ∈ N,

which can’t be true as given n sufficiently large gf
zn

/∈ H2.

Corollary 3.19. For any kerDI
g 6= {0} we have 1 6 dim(kerDI

g 	 C) 6 2.

Proof. If kerDI
g 6= {0} then Lemma 3.18 shows that 1 6 dim(kerDI

g	C). Let F1 be

the orthogonal projection of gk0 on to kerDI
g and F2 be the orthogonal projection

of Ik0 on to kerDI
g , where k0 ∈ K2

I is the reproducing kernel at 0, then kerDI
g 	 C

is generated by F1, F2. Indeed if f ∈ kerDI
g and f is orthogonal to F1, F2 then

〈f, F1〉 = 〈gf, k0〉 = 0,

so f ∈ A, and

〈f, F2〉 = 〈If, k0〉 = 0,

so we also have P+(If) ⊆ zH2, so f ∈ C.

As we are working with a finite dimensional kerDI
G we can consider g kerDI

g =

gC ⊕ (g kerDI
g 	 gC), and by Corollary 3.19 we must have g kerDI

g 	 gC is at most
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2-dimensional. If g kerDI
g 	 gC is 2-dimensional then we denote its orthonormal

basis elements by gf0, gh0. Then for all f ∈ kerDI
g using orthogonal projections

and the observation that C
z
⊆ kerDI

g we can write

gf = λ0gf0 + µ0gh0 + zgf1,

where gf1 ∈ g kerDI
g , and furthermore

‖gf‖2
H2= |λ0|2+|µ0|2+‖gf1‖2

H2 .

In a similar process to Theorem 3.7 we can iterate this process starting with gf1 to

obtain

gf =
N∑
i=0

gf0λiz
i +

N∑
j=0

gh0µjz
j + zN+1gfN+1,

with

‖gf‖2
H2=

N∑
i=0

|λi|2+
N∑
j=0

|µj|2+‖gfN+1‖H2 . (17)

Following the argument laid out in Section 3.2 to deduce (10) we can deduce that

in the H2 norm ‖gfN+1‖→ 0 as N →∞. Then ‖gfN+1‖ must also converge to 0 in

the L1 norm, and so in the L1 norm we must have

gf = lim
N→∞

(
N∑
i=0

gf0λiz
i +

N∑
j=0

gh0µjz
j

)
.
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Now two applications of Hölder’s inequality shows the L1 limit of
∑N

i=0 gf0λiz
i +∑N

j=0 gh0µjz
j is equal to gf0

∑∞
i=0 λiz

i + gh0

∑∞
j=0 µjz

j, where
∑∞

i=0 λiz
i,
∑∞

j=0 µjz
j

are limits in the H2 sense . So we may write

gf = gf0

∞∑
i=0

λiz
i + gh0

∞∑
j=0

µjz
j,

and furthermore by taking limits in (17) we can deduce

‖gf‖2
H2=

∞∑
i=0

|λi|2+
∞∑
i=0

|µi|2.

Mimicking the argument from Section 3.2 between (12) and (13) we can say f ∈

kerDI
g if and only if

gf =

(
gf0 gh0

)k0

k1

 ,

where

k0

k1

 lies in a closed S∗-invariant subspace of (H2)2. With obvious modifi-

cations for when dim kerDI
g 	 C = 1 we can deduce the following theorem.

Theorem 3.20. 1. If dim(g kerDI
g 	 gC) = 2 then

g kerDI
g =

(
gf0 gh0

)
K,
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where K is a closed S∗-invariant subspace of (H2)2, gf0, gh0 are orthonor-

mal basis elements of (g kerDI
g 	 gC) and for f ∈ kerDI

g we have ‖gf‖2
H2=

‖k0‖2
H2+‖k1‖2

H2.

2. If dim(g kerDI
g 	 gC) = 1 then

g kerDI
g = gf0Kχz,

where χ is some inner function, gf0 is a normalised element of (g kerDI
g	gC)

and for f ∈ kerDI
g we have ‖gf‖2

H2= ‖k‖2
H2.

Remark. In point 2 of the above theorem we know the inner function must be of the

form χz (i.e. that Kχz contains 1) because we know f0 ∈ kerDI
g .

Cancelling the g and using the same notation as the previous theorem we obtain

the following.

Corollary 3.21. 1. If dim(kerDI
g 	 C) = 2 then

kerDI
g =

(
f0 h0

)k0

k1

 .

2. If dim(kerDI
g 	 C) = 1 then

kerDI
g = f0Kχz.
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4 Matrix-valued truncated Toeplitz operators

In this chapter we will study the matrix-valued truncated Toeplitz operator (abbre-

viated to MTTO). MTTOs are a vectorial generalisation of the truncated Toeplitz

operator. In particular, we focus on studying the kernel of the MTTO and we

also find a new form of Toeplitz operator which is equivalent after extension to

the MTTO. We make a powerful observation, that when studying a given property

of the MTTO it is often convenient to initially modify the MTTO by changing its

codomain (in a natural way), then one can deduce results about the MTTO from the

modified MTTO. This approach allows us to tackle problems concerning MTTOs

with unbounded symbols.

Recall that for a matrix M ∈ L(∞,n×n) the adjoint of M ∈ L(∞,n×n) is denoted

M∗ and an n-by-n matrix inner function Θ is an element of H(∞,n×n) such that for

almost every z ∈ T, we have Θ(z) is a unitary matrix. Throughout this chapter we

use Θ to denote an arbitrary n-by-n inner function. We know from the Beurling-Lax

Theorem that Θ(H2)n is a shift invariant subspace. Therefore using orthogonality

one can see that the (matricial) model space, K2
Θ := Θ(H2

0 )n∩(H2)n is S∗-invariant.

Recall that for k > n we write Pn : (H2)k → (H2)n to mean the projection onto the

first n coordinates.
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4.1 Basic properties, definition and motivation

As noted in the introduction the Riesz projections Pq+ : (Lq)n → (Hq)n and Pq− :=

Id − Pq+ : (Lq)n → (Hq
0)n are bounded when q ∈ (1,∞). Furthermore for n = 1,

Pq+ can be expressed by

Pq+(f)(z) =

∫
T

f(ζ)

1− ζz
dm(ζ),

which is independent of q ∈ (1,∞). Which means we can deduce the following.

Lemma 4.1. For q ∈ (1, 2) and f ∈ (L2)n, we have Pq+(f) = P2+(f) and Pq−(f) =

P2−(f).

Using the projection PΘ,q := Pq+ΘPq−Θ∗ we can decompose, as we have done in the

introduction for n = 1, (Hq)n as

(Hq)n = Kq
Θ ⊕Θ(Hq)n,

where Kq
Θ = Θ(Hq

0)n ∩ (Hq)n and

(Lq)n = (Hq
0)n ⊕Kq

Θ ⊕Θ(Hq)n.

We note that when q = 2 the above decompositions are orthogonal. As PΘ,2 =

P2+ΘP2−Θ∗ using Lemma 4.1 we can conclude the following.
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Lemma 4.2. For q ∈ (1, 2) and f ∈ (L2)n, we have

PΘ,2(f) = PΘ,q(f).

We can also deduce that for QΘ,q := ΘPq+Θ∗ = Pq+ − PΘ,q : (Lq)n → Θ(Hq)n we

have the following.

Lemma 4.3. For q ∈ (1, 2) and f ∈ (L2)n, we have

QΘ,2(f) = QΘ,q(f).

We will use Lemmas 4.1, 4.2 and 4.3 freely throughout this chapter.

Matrix-valued truncated Toeplitz operators were first defined in [50] as a natural

generalisation of truncated Toeplitz operators. They have further been studied in

[49, 48]. We define the MTTO as follows. Let G ∈ L(2,n×n), consider the map

f 7→ PΘ,2(Gf), (18)

defined on K2
Θ ∩ (H∞)n. It is shown in Section 4 of [50] that K2

Θ ∩ (H∞)n is

dense in K2
Θ, so in the case when (18) is bounded this uniquely defines an operator

K2
Θ → K2

Θ, which we denote AΘ
G and call a matrix-valued truncated Toeplitz operator

(recall we abbreviate this to MTTO). We note that with this definition, all MTTOs

are implicitly bounded. We call G the symbol of the MTTO, and we note that if we
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have the additional assumption that G ∈ L(∞,n×n) then (4) can always be extended

to a bounded operator. In the case when n = 1, we recover the well known bounded

truncated Toeplitz operator.

We say Θ is pure if ‖Θ(0)‖< 1. Matrix valued truncated Toeplitz operators with

a pure inner function appear naturally in the Sz.-Nagy and Foiaş model theory for

Hilbert space contractions. In particular, every bounded linear operator between

two Hilbert spaces T : H1 → H2 with defect indices (n, n) and with the property

that for all h ∈ H1, T ∗n(h) → 0 (S.O.T) is unitarily equivalent to AΘ
z for some n-

by-n inner function Θ. See Section 2, page 33, of [47] for a more detailed discussion.

Although this is one of the main motivations for interest in the truncated Toeplitz

operator (which is relevant when the defect indices are (1, 1)), there has been very

little research done into the general case of the MTTO.

Let I ∈ H2 be a scalar inner function and let φ ∈ H∞. We denote the Hankel op-

erator with symbol g ∈ L∞, by Hg : H2 → H2
0 . This is defined by Hψ(p) = P−(ψp).

It is well known that many questions about Hankel operators can be phrased in

terms of truncated Toeplitz operators with an analytic symbol. In particular the

relation

AIφ = IHIφ|K2
I

has long been exploited. Making natural generalisations so that Ψ ∈ H(∞,n×n), Θ

is an n-by-n matrix inner function and H : (H2)n → (H2
0 )n is a Hankel operator on
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the vector-valued Hardy space, we can also write the relation

AΘ
Ψ = ΘHΘ∗Ψ|K2

Θ
.

So, just as is true in the scalar case, the matricial Hankel operator and MTTO are

fundamentally linked. This has applications in minimisation problems and Nehari’s

Theorem, see Section 2.2 of [55].

4.2 The modified matrix-valued truncated Toeplitz opera-

tor

In this section we make some key observations which allow us to define the modified

MTTO. The modified MTTO turns out to be a crucial tool in later sections of this

chapter, when we are trying to understand properties of the MTTOs which do not

possess a bounded symbol.

Definition 4.4. Let p ∈ (2,∞], let G ∈ L(p,n×n) and let 1
2

+ 1
p

= 1
q
. Then the

bounded operator ÃΘ
G : K2

Θ → Kq
Θ is defined by ÃΘ

G(f) = PΘ,q(Gf). We call the

operator ÃΘ
G the modified matrix-valued truncated Toeplitz operator.

Remark. Although ÃΘ
G does have a specific p dependence depending on which space

G lies in, we will omit this from our notation.

The following proposition shows that when AΘ
G : K2

Θ → K2
Θ is a MTTO, up to a
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change in codomain, AΘ
G and ÃΘ

G are actually the same operator. In the next section

of this chapter we will exploit this link to study the kernel of AΘ
G.

Proposition 4.5. Let the assumptions of Definition 4.4 hold and let AΘ
G : K2

Θ → K2
Θ

be a MTTO. Then for each f ∈ K2
Θ we have ÃΘ

G(f) = AΘ
G(f).

Proof. For a given f ∈ K2
Θ, let fn ∈ K2

Θ ∩ (H∞)n be such that fn
(L2)n→ f . As ÃΘ

G is

bounded we have PΘ,q(Gfn)
(Lq)n→ PΘ,q(Gf). By Lemma 4.2 this means

PΘ,2(Gfn)
(Lq)n→ PΘ,q(Gf) = ÃΘ

G(f). (19)

Because PΘ,2(Gfn)
(L2)n→ PΘ,2(Gf) = AΘ

G(f) and convergence in (L2)n is stronger

than (Lq)n we must have

PΘ,2(Gfn)
(Lq)n→ PΘ,2(Gf) = AΘ

G(f). (20)

Now by comparing (19) and (20), uniqueness of limits implies that ÃΘ
G(f) = AΘ

G(f).

Corollary 4.6. Let the assumptions of Definition 4.4 hold and let AΘ
G : K2

Θ → K2
Θ

be a MTTO. Then ImgÃΘ
G ⊆ K2

Θ.

In fact we have the following;

Proposition 4.7. Let the assumptions of Definition 4.4 hold. Then ImgÃΘ
G ⊆ K2

Θ

if and only if AΘ
G is a MTTO (i.e the map (18) is bounded).
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Proof. The above corollary shows that when AΘ
G : K2

Θ → K2
Θ is a MTTO, we have

ImgÃΘ
G ⊆ K2

Θ. To show the other implication, we first change the codomain of

ÃΘ
G, to view the map ÃΘ

G : K2
Θ → K2

Θ, which is well defined by the assumption

ImgÃΘ
G ⊆ K2

Θ. We now use the Closed Graph Theorem to show ÃΘ
G : K2

Θ → K2
Θ is

continuous. Let (fn)n∈N ∈ K2
Θ and let

(fn, ÃΘ
G(fn))

K2
Θ×K

2
Θ→ (y1, y2),

then clearly fn
K2

Θ→ y1 and ÃΘ
G(fn)

K2
Θ→ y2. We also know that ÃΘ

G(fn)
Kq

Θ→ ÃΘ
G(y1), and

as L2 convergence is stronger than Lq convergence we can say that ÃΘ
G(fn)

Kq
Θ→ y2.

Uniqueness of limits now shows (fn, ÃΘ
G(fn))

K2
Θ×K

2
Θ→ (y1, ÃΘ

G(y1)), and hence the

graph is closed. Now, again viewing ÃΘ
G : K2

Θ → K2
Θ, we have

ÃΘ
G(f) = AΘ

G(f)

for all f ∈ K2
Θ ∩ (H∞)n. Thus boundedness of ÃΘ

G : K2
Θ → K2

Θ ensures boundedness

of (4).

In a similar fashion to how we have changed the codomain of the MTTO to

obtain the modified MTTO, we can also change the codomain of matricial Toeplitz
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operators. Let p ∈ (2,∞] and let G ∈ L(p,n×n). Define

G =

Θ∗ 0

G Θ

 , (21)

where 0 denotes the n-by-n matrix with each entry being 0. Throughout the rest of

this chapter, given two different Banach spaces X1, X2 we will equip the space

X1

X2

 =


f1

f2

 : f1 ∈ X1, f2 ∈ X2


with the norm given by

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
f1

f2


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = ‖f1‖X1+‖f2‖X2 .

With this convention we can define TG :

(H2)n

(Hq)n

→
(H2)n

(Hq)n

, where if f1 ∈ (H2)n

and f2 ∈ (Hq)n (where 1
2

+ 1
p

= 1
q
),

f1

f2

 7→
 P2+(Θ∗f1)

Pq+(Gf1 + Θf2)

 . (22)

An application of Hölder’s inequality shows TG is bounded. In the following propo-
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sition recall that Pn denotes the projection on to the first n coordinates.

Proposition 4.8. For the matrix G defined as (21) we have Pn(kerTG) = ker ÃΘ
G.

Proof. Clearly, for f1 ∈ (H2)n and f2 ∈ (Hq)n, we have (f1, f2) ∈ kerTG if and only

if f1 ∈ kerTΘ∗ = K2
Θ and Gf1 + Θf2 ∈ (Hq

0)n. So f1 ∈ kerAΘ
G, and likewise given

f1 ∈ kerAΘ
G there exist f2 ∈ (Hq)n with (f1, f2) ∈ kerTG.

4.3 The kernel

4.3.1 A decomposition of the kernel

In this subsection we aim to expand on the results in Chapter 3 to decompose the

kernel of a MTTO into an isometric image of an S∗-invariant subspace. In Chapter

3 the kernel of a TTO with a bounded symbol is shown to be nearly invariant with

defect 1. Following this result, we may suspect the kernel of a MTTO to be nearly

S∗-invariant with defect n (where n is such that Θ and G are n-by-n matrices); in

this subsection, under very mild assumptions, we show this is the case.

Recall from Chapter 3 that a closed subspace M ⊆ (H2)n is said to be nearly

S∗-invariant with defect d if and only if there exists a d-dimensional subspace D

(which may be taken to be orthogonal to M) such that if f ∈ M and f(0) is the

zero vector then S∗f ∈ M ⊕ D. We call D the defect space. If M is nearly S∗-

invariant with defect 0 then it is said to be nearly S∗-invariant. Similarly, we say
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a closed subspace N ⊆

(H2)n

(Hq)n

 is nearly S∗-invariant if and only if all functions

f ∈ N with the property f(0) is the zero vector satisfy S∗(f) = f
z
∈ N .

Define W̃ := kerTG(0) = {F (0) : F ∈ kerTG} ⊆ C2n. Let dim W̃ = r, and pick

W1, . . . ,Wr ∈ kerTG such that W1(0), . . . ,Wr(0) are a basis for W̃ .

Proposition 4.9. The space Pn(kerTG) is nearly S∗-invariant with a defect space

(
span{Pn(W1), . . . Pn(Wr)}

z
∩ (H2)n

)
. (23)

Remark. This may be viewed as a generalisation of Corollary 3.5, but the delicate

issue here is that we are no longer working with a Hilbert space and so we can not

use orthogonality.

Proof. Let f1 ∈ Pn(kerTG) with f1(0) equal to the zero vector. Pick f2 ∈ (Hq)n such

that

f1

f2

 ∈ kerTG and pick constants λ1 . . . λr such that

f1

f2

−λ1W1− . . . λrWr

evaluated at 0 is the zero vector, then

f1

f2

− λ1W1 − . . . λrWr ∈ kerTG ∩ z

(H2)n

(Hq)n

 .
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Near invariance of kerTG now ensures

f1

f2

− λ1W1 − . . . λrWr

z
∈ kerTG,

so

f1

z
− λ1Pn(W1)− . . . λrPn(Wr)

z
∈ Pn(kerTG),

and therefore

f1

z
∈ Pn(kerTG) +

(
span{Pn(W1), . . . Pn(Wr)}

z
∩ (H2)n

)
.

Previous results on the kernel of the truncated Toeplitz operator (see Chapter 3,

[18] and [16]) have been under the assumption that the symbol for the operator is

bounded. Now using the operator ÃΘ
G as an intermediate tool, this allows us to obtain

a Hitt-style characterisation for the kernel of a MTTO and, unlike previous results,

we do not require that the symbol of the MTTO is bounded for this characterisation

to hold.

Theorem 4.10. Let p ∈ (2,∞], and let G ∈ L(p,n×n) be such that AΘ
G is a MTTO.

Then kerAΘ
G is nearly S∗-invariant with defect m, where m 6 n.
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Proof. From Proposition 4.5 it is clear that kerAΘ
G = ker ÃΘ

G, and Proposition 4.8

shows that ker ÃΘ
G = Pn(kerTG), so from Proposition 4.9 we can deduce that kerAΘ

G

is a nearly invariant subspace with a defect space given by (23). If r 6 n is it clear

that the dimension of (23) is less than or equal to n, so it remains to prove that if

r = n + i for i > 0 then the dimension of (23) is at most n. Suppose r = n + i for

i > 0. We form a matrix

[W1(0), . . . ,Wn+i(0)],

then for


s1

...

sn+i

 ∈ Cn+i we have that s1Pn(W1) + . . . sn+iPn(Wn+i) ∈ z(H2)n if and

only if

Pn

[W1(0), . . . ,Wn+i(0)]


s1

...

sn+i




is the zero vector. Hence the dimension of (23) is given by the dimension of

S =




s1

...

sn+i

 ∈ Cn+i : Pn

[W1(0), . . . ,Wn+i(0)]


s1

...

sn+i


 =


0

...

0


 .
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As W1(0), ...Wn+i(0) ∈ C2n are linearly independent, we may pick vectors

X1, . . . Xn−i ∈ C2n

such that the vectors W1(0), . . . Wn+i(0), X1, . . . , Xn−i are linearly independent. We

then define S
′

as



s1

...

sn+i

0

...

0


∈ C2n : Pn


[W1(0), . . . ,Wn+i(0), X1, . . . , Xn−i]



s1

...

sn+i

0

...

0




=



0

...

...

...

0





.

It is clear dimS = dimS
′
, and moreover S

′
is contained in

{
[W1(0), . . . ,Wn+i(0), X1, . . . , Xn−i]

−1V : V ∈ C2nand Pn(V ) = 0
}
,

which has dimension n. Thus we can conclude that the dimension of (23) is equal

to dimS = dimS
′
6 n.

Theorem 3.7 (which was also independently proved in [23]) gives a decomposition

for vector-valued nearly S∗-invariant subspaces with a defect. So combining the
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above theorem and Theorem 3.7 we obtain the following decomposition for the

kernels of MTTOs in terms of S∗-invariant subspaces.

Theorem 4.11. Let p ∈ (2,∞], and let G ∈ L(p,n×n) be such that AΘ
G is a MTTO.

Let {e1, . . . em} be an orthonormal basis for the m-dimensional defect space (where

m 6 n) for kerAΘ
G given by (23) and set r = dim(kerAΘ

G	(kerAΘ
G∩z(H2)n)). Then

1. in the case where there are functions in kerAΘ
G that do not vanish at 0,

kerAΘ
G = {F : F (z) = F0(z)k0(z) + z

m∑
j=1

kj(z)ej(z) : (k0, . . . , km) ∈ K},

where F0 is the matrix with each column being an orthonormal element of

kerAΘ
G	(kerAΘ

G∩z(H2)n), k0 ∈ (H2)r, k1, . . . km ∈ H2, and K ⊆ (H2)(r+m) is

a closed S∗-invariant subspace. Furthermore ‖F‖2
(H2)n= ‖k0‖2

(H2)r+
∑d

j=1‖kj‖2
H2.

2. In the case where all functions in kerAΘ
G vanish at 0,

kerAΘ
G = {F : F (z) = z

m∑
j=1

kj(z)ej(z) : (k1, . . . , km) ∈ K},

with the same notation as in 1, except that K is now a closed S∗-invariant

subspace of (H2)m, and ‖F‖2
(H2)n=

∑d
j=1‖kj‖2

H2.

We now give an example to show that under the conditions of Theorem 4.10, n

is the smallest dimension of defect space for kerAΘ
G, i.e. it is not true that for all
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inner functions Θ and symbols G ∈ L(p,n×n), that kerAΘ
G has a j-dimensional defect

where j < n.

Example 4.1. Let Θ =

z2 0

0 z2

, and G =

z 0

0 z

 then

kerAΘ
G =


λz
µz

 : λ, µ ∈ C

 ,

which is clearly nearly S∗-invariant with defect 2.

The condition that we no longer require a bounded symbol to decompose kerAΘ
G

is a significant extension to Chapter 3. This is because there are a wide class of

MTTOs which do not have a bounded symbol but do have a symbol in L(p,n×n),

where p ∈ (2,∞). This can be shown in the case where n = 1 by using Theorem

5.3 in [6], which is the following;

Theorem 4.12. Suppose I is a (scalar) inner function which has an ADC at ζ ∈ T

(i.e. the nontangential limits of I and the derivative of I exist at ζ and |I(ζ)|= 1).

Let p ∈ (2,∞). Then the following are equivalent:

1. the bounded truncated Toeplitz operator kIζ ⊗ kIζ has a symbol φ ∈ Lp ;

2. kIζ ∈ Lp.
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Where in the above theorem kIζ = 1−I(ζ)I(z)

1−ζz ∈ K2
I is the reproducing kernel at ζ.

In particular, the above theorem shows that if 2 < p1 < p2 < ∞ and kIζ ∈ Lp1 but

kIζ /∈ Lp2 , then kIζ ⊗ kIζ does not have a bounded symbol but does have a symbol in

Lp1 .

The precise conditions for kIζ to lie in Lp for p ∈ (1,∞) are given in [2] and [25].

In particular, for a Blaschke product with zeros (ak) we have kIζ ∈ Lp if and only if

∑
k

1− |ak|2

|ζ − ak|p
<∞. (24)

To obtain a bounded truncated Toeplitz operator which does not have a bounded

symbol but does have a symbol in Lp1 , for some p1 ∈ (2,∞), it is sufficient to have

a point ζ ∈ T, and a Blaschke product which has an ADC at ζ such that (24) is

true for some p = p1 ∈ (2,∞) but not for some strictly larger value of p. An explicit

example of this is a Blaschke product with zeros (ak) accumulating to the point 1

such that ∑
k

1− |ak|2

|1− ak|p1
<∞ for some 2 < p1 <∞,

but ∑
k

1− |ak|2

|1− ak|p2
=∞ for some p1 < p2 <∞.

Similarly, Theorem 5.1(b) in [63] states that if I has an ADC at ζ ∈ T, then

kIζ ⊗ kIζ is a bounded truncated Toeplitz operator. Therefore by Theorem 5.1(b) in

127



[63] and the above theorem, we can construct an example of a bounded truncated

Toeplitz operator which has a symbol in L2, but does not have a symbol in Lp for

any p ∈ (2,∞). Similar to our previous example, in order to do this it is sufficient

to have a point ζ ∈ T and a Blaschke product with an ADC at ζ such that (24) is

true for p = 2 but not for any p ∈ (2,∞). A numerical example of such a point

ζ ∈ T and Blaschke product is the Blaschke product with zeros (accumulating to 1)

given by ak = (1− εk)eiδk where εk = 1
k2 and δk = log(k)

k1/2 for k ∈ N. This observation

shows that not every bounded truncated Toeplitz operator has a symbol in Lp for

some p ∈ (2,∞).

We will consider the problem of determining when a bounded TTO has a bounded

symbol in Chapter 5.

4.3.2 Analytic symbols and conjugations

In this subsection we continue to study the kernel of the MTTO, but we have a

particular focus on when the symbol of the MTTO is analytic. We use a generalised

notion of a conjugation map to deduce some elegant results about the MTTO when

the symbol of the MTTO is analytic.

Recall ΘT is the matrix transpose of Θ. We define the map C : K2
Θ → K2

ΘT

by f 7→ ΘT zf . One can check that C is a unitary map with adjoint given by

CT : K2
ΘT → K2

Θ, where CT (f) = Θzf . This pair of maps may be viewed a vectorial

generalisation of the canonical conjugation map on the scalar model space. To the
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author’s knowledge the map C : K2
Θ → K2

ΘT was first introduced in [34]. It is worth

noting these maps have been used before in [48] to deduce a spatial isomorphism

theorem for MTTOs.

When considering the kernel of an analytic MTTO we have the following.

Proposition 4.13. Suppose that G ∈ H∞,n×n(C). Then kerAΘ
G = CT (kerTG′ ∩

K2
ΘT ), where G

′
= ΘTGΘ.

Proof. We first show that C(kerAΘ
G) ⊆ kerTG′ ∩K2

ΘT . It is clear that C(kerAΘ
G) ⊆

K2
ΘT , so we only require to prove that C(kerAΘ

G) ⊆ kerTG′ . Any element of

C(kerAΘ
G) is of the form ΘT zf for some f ∈ kerAΘ

G. By the definition of G
′

we

have G
′
ΘT zf = ΘTGzf , and as Gf ∈ Θ(H2)n, this means Gzf ∈ Θ(H2

0 )n, so

G
′
ΘT zf = ΘTGzf ∈ ΘTΘ(H2

0 )n ∈ (H2
0 )n.

Thus C(kerAΘ
G) ⊆ kerTG′ .

Next, we show kerAΘ
G ⊇ CT (kerTG′ ∩K2

ΘT ). Any element of CT (kerTG′ ∩K2
ΘT )

is clearly contained in K2
Θ and is of the form Θzf , where f ∈ kerTG′ ∩ K2

ΘT . So

using our construction of G
′

and the fact G
′
f ∈ (H2

0 )n, we have

GΘzf = ΘG′zf ∈ Θ(H2)n.

Thus kerAΘ
G ⊇ CT (kerTG′ ∩K2

ΘT ).
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As previously noted, kernels of Toeplitz operators are nearly S∗-invariant. It is

also clear that the intersection of a nearly S∗-invariant subspace with a S∗-invariant

subspace is a nearly S∗-invariant subspace. So we can make the following corollary.

Corollary 4.14. Suppose that G ∈ H∞,n×n(C). Then C(kerAΘ
G) is a nearly S∗-

invariant subspace of K2
ΘT . Furthermore we can write

kerAΘ
G = {Θz


k1

...

kn

 :


k1

...

kn

 ∈ [V1, . . . Vr]
(

(H2)r 	 zΦ(H2)r
′
)
}

where V1, . . . Vr be an orthonormal basis of C(kerAΘ
G)	 (C(kerAΘ

G) ∩ z(H2)n), and

Φ is a r-by-r
′

matrix inner function with r
′
6 r 6 n.

Proof. The first statement is clear from the previous proposition. The final state-

ment comes from the decomposition of vector-valued nearly S∗-invariant subspaces,

which is Corollary 4.5 in [20].

Remark. We note how in the above proposition, the lack of commutativity between

G and Θ means we can only conclude C(kerAΘ
G) is nearly S∗-invariant and (unlike

the scalar case) not S∗-invariant.

Below we provide a far reaching theorem for the case of analytic symbols. The

following theorem may be specialised to give a decomposition of the kernel of AΘ
z

by setting G = zId.
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Theorem 4.15. Suppose that G ∈ H∞,n×n(C) and GΘT = ΘTG. Then

kerAΘ
G = {Θ


k1

...

kn

 z :


k1

...

kn

 ∈ K} = {CT


k1

...

kn

 :


k1

...

kn

 ∈ K}, (25)

where K is the closed backward shift invariant subspace given by K = kerTG
⋂
K2

ΘT .

Furthermore we can express K as K = (H2)n	I(H2)n, where I is the n-by-n matrix

inner function that is the greatest common divisor of GT and ΘT , i.e. I is such that

the closure of GT (H2)n + ΘT (H2)n is equal to I(H2)n.

Remark. We note that the assumptions of the above theorem include the case when

Θ is a diagonal matrix. Thus this theorem is particularly relevant when considering

truncated Toeplitz operators on multiband spaces (see Section 4.5 and Theorem

4.27)

Proof. It is clear from the above proposition that

kerAΘ
G = {CT


k1

...

kn

 :


k1

...

kn

 ∈ K} = {Θ


k1

...

kn

 z :


k1

...

kn

 ∈ K}.

We now show that K is the backward shift invariant subspace given by (H2)n	

I(H2)n. It is well known that T ∗G = TG∗ , and so if we denote ⊥ to be the orthogonal
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complement in (H2)n then

kerTG = Img(T ∗
G

)⊥ = Img(TGT )⊥ = (GT (H2)n)⊥. (26)

This gives

K = kerTG
⋂

K2
ΘT = (GT (H2)n)⊥

⋂(
ΘT (H2)n

)⊥
=

(
GT (H2)n + ΘT (H2)n

)⊥
.

The Beurling-Lax Theorem now guarantees the closure of GT (H2)n + Θ(H2)n is

equal to I(H2)r, where r 6 n and I is a n-by-r matrix inner function (recall an

n-by-r matrix inner function, Φ, is an element of H∞,n×r(C) such that f 7→ Φf is

an isometry (H2)r → (H2)n). After noting that the orthogonal complement of a set

is equal to the orthogonal complement of its closure, we have

K =
(
GT (H2)n + ΘT (H2)n

)⊥
= I(H2)r

⊥
= (H2)n 	 I(H2)r. (27)

We now argue r = n, and so I is a square matrix inner function. Suppose for

contradiction r < n. Let Iext be the n-by-n matrix made by adding n− r additional

column vectors of length n with each entry being 0 as additional columns on the

right hand side of I. Then for any F ∈ (H2)r define Fext ∈ (H2)n to be the column

vector of length n with the first r coordinates of Fext equal to F , and last n − r

132



coordinates arbitrarily chosen. Then for any choice of F1, . . . Fn ∈ (H2)r, we form a

matrix

[IF1, IF2, . . . , IFn] = [IextF1,ext, IextF2,ext, . . . , IextFn,ext] = Iext[F1,ext, . . . , Fn,ext],

which has determinant zero because Iext does.

However as ΘT (H2)n ⊆ I(H2)r, there exists F1, . . . Fn ∈ (H2)r such that ΘT =

[IF1, IF2, . . . , IFn], but ΘT does not have determinant equal to 0. So we conclude

r must be equal to n.

Corollary 4.16. With the same assumptions as in Theorem 4.15, we have the

following:

1. AΘ
G = 0 if and only if GT ∈ ΘTH∞,n×n(C) ;

2. AΘ
G is injective if and only if I is the identity;

3. dim kerAΘ
G <∞ if and only if I is a finite Blaschke–Potapov product.

Proof. To prove (1), we first note that AΘ
G = 0 if and only if kerAΘ

G = K2
Θ, which hap-

pens if and only if I = ΘT . If GT ∈ ΘTH∞,n×n(C), then clearly I = ΘT . Conversely

if GT /∈ ΘTH∞,n×n(C), then GT (H2)n 6⊆ ΘT (H2)n. Because if GT (H2)n ⊆ ΘT (H2)n

then for ei denoting the standard basis of Cn we would have

GT ei = ΘTFi,
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for some Fi ∈ (H∞)n, which would mean

GT = ΘT [F1, . . . Fn] ∈ ΘTH∞,n×n(C).

So GT (H2)n 6⊆ ΘT (H2)n, and then trivially

GT (H2)n + ΘT (H2)n 6⊆ ΘT (H2)n,

which means I 6= ΘT . Statement 2 is an immediate consequence of Theorem 4.15.

The proof of (3) follows from the fact that a vector-valued model space corre-

sponding to an inner function is finite dimensional if and only if the inner function

is a finite Blaschke–Potapov product. The proof of this can be found as Lemma 5.1

in Chapter 2 of [55].

With the same assumptions as in Theorem 3.4, in order to describe the point

spectrum of AΘ
G, we define Bλ to be the n-by-n matrix inner function such that the

closure of (G−λId)T (H2)n+ΘT (H2)n is equal to Bλ(H
2)n. The existence of such an

inner function is guaranteed by the Beurling-Lax Theorem, and the inner function

can be seen to be n-by-n by mimicking the same argument laid out immediately

after equation (27).

Corollary 4.17. With the same assumptions as in Theorem 4.15, the point spectrum
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of AΘ
G is the set

{λ : Bλ 6= Id}

and, for each λ in the point spectrum, the corresponding eigenspace is given by

Eλ = {Θ

k1

k2

 z :

k1

k2

 ∈ (H2)2 	Bλ(H
2)2}.

Proof. If GΘT = ΘTG, then (G− λId)ΘT = ΘT (G− λId) and so, by Theorem 3.4,

a necessary and sufficient condition for the kernel of the operator AΘ
G−λId to be non-

zero is that Bλ is not the identity matrix; on the other hand, from the expression

(25) we have Eλ = kerAΘ
G−λ given as above.

4.4 Equivalence after extension

In this section we generalise the results of Section 6 in [16]. We first find a Toeplitz

operator which is equivalent after extension (abbreviated to EAE) to the modified

MTTO. As a corollary to this result, we can then easily find an operator which is

EAE to the MTTO in the case when the symbol of the MTTO is bounded. We then

also provide an EAE result for when the symbol of the MTTO is unbounded.

For Banach spaces X, X̃, Y, Ỹ the operators T : X → X̃ and S : Y → Ỹ are

said to be (algebraically and topologically) equivalent if and only if T = ESF ,

where E and F are invertable operators. More generally T and S are equivalent
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after extension if and only if there exists (possibly trivial) Banach spaces X0, Y0,

called extension spaces and invertable linear operators E : Ỹ ⊕ Y0 → X̃ ⊕ X0 and

F : X ⊕X0 → Y ⊕ Y0, such that

T 0

0 Id

 = E

S 0

0 Id

F,

where the Id on the left hand side is the identity on X0 and on the right hand side

it is the identity on Y0. In this case we write that T
∗
v S.

The relation
∗
v is an equivalence relation. Operators that are equivalent after

extension have many features in common. In particular, using the notation X ' Y

to say that two Banach spaces X and Y are isomorphic, i.e., that there exists an

invertible operator from X onto Y , and the notation ImgA to denote the range of

an operator A, we have the following.

Theorem 4.18 ([8]). Let T : X → X̃, S : Y → Ỹ be operators and assume that

T
∗
v S. Then

1. kerT ' kerS;

2. Img T is closed if and only if ImgS is closed and, in that case, X̃/ImgT '

Ỹ /ImgS;

3. if one of the operators T, S is generalised (left, right) invertible, then the other
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is generalised (left, right) invertible too;

4. T is Fredholm if and only if S is Fredholm and in that case dim kerT =

dim kerS and codim ImgT = codim ImgS.

The above theorem highlights that when one wants to consider invertibility,

Fredholmness and spectral properties, EAE extension results are very useful. Section

6 of [16] shows that a truncated Toeplitz operator with a bounded symbol is EAE

to a matricial Toeplitz operator, and then consequently the spectral properties of

the truncated Toeplitz operator were studied in [15]. Section 5 of [11] shows the

dual truncated Toeplitz operator is EAE to a paired operator on (L2)2.

In the first part of this section we initially adapt the results in Section 6 of [16]

to show that TG is EAE to ÃΘ
G. Unlike the works of [16] we consider operators

which only have unbounded symbols, and in order to overcome to problem of G not

being bounded (and then necessarily the domain and codomain of ÃΘ
G being different

spaces) one must define a new normed space which mixes Hp and Hq spaces.

Throughout this section (4.4), unless otherwise stated, we assume that

G ∈ L(p,n×n) where p ∈ (2,∞]. We let q ∈ (1, 2] be such that 1
2

+ 1
p

= 1
q
. In

this context, we write TG : (H2)n → (Hq)n to mean the map f 7→ Pq+(Gf).
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Consider the operator

PΘ,qGPΘ,2 +QΘ,2 : (H2)n → Kq
Θ + Θ(H2)n,

where here the norm of k+ Θf ∈ Kq
Θ + Θ(H2)n is given by ‖k‖(Lq)n+‖Θf‖(L2)n . We

first show that

ÃΘ
G

∗
v PΘ,qGPΘ,2 +QΘ,2. (28)

We have ÃΘ
G 0

0 IΘ(H2)n

 = E1

PΘ,qGPΘ,2 +QΘ,2 0

0 I0

F1,

where

F1 : K2
Θ ⊕Θ(H2)n → (H2)n ⊕ {0}

is such that  k

Θf

 7→
k + Θf

0

 ,

and

E1 : Kq
Θ + Θ(H2)n ⊕ {0} → Kq

Θ ⊕Θ(H2)n

is such that k + Θf

0

 7→
 k

Θf

 .
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On the other hand it is clear that

PΘ,qGPΘ,2 +QΘ,2
∗
v

PΘ,qGPΘ,2 +QΘ,2 0

0 Pq+

 . (29)

If we denote Id to be the identity operator on Kq
Θ + Θ(H2)n, we also have

PΘ,qGPΘ,2 +QΘ,2 = (Id − PΘ,qTGQΘ,q)(PΘ,qTG +QΘ,2).

We can see this by expanding the right hand side of the above expression to get

IdPΘ,qTG + IdQΘ,2 − PΘ,qTGQΘ,qPΘ,qTG − PΘ,qTGQΘ,qQΘ,2, (30)

but QΘ,qQΘ,2(f) = QΘ,2(f), IdPΘ,qTG + IdQΘ,2 = PΘ,qTG + QΘ,2 and QΘ,qPΘ,q = 0,

so (30) is equal to PΘ,qGPΘ,2 +QΘ,2. Furthermore we also have:

Lemma 4.19. The operator Id − PΘ,qTGQΘ,q : Kq
Θ + Θ(H2)n → Kq

Θ + Θ(H2)n is

invertible with inverse Id + PΘ,qTGQΘ,q.

Proof. As QΘ,qPΘ,q = 0 we have

(Id ± PΘ,qTGQΘ,q)(Id ∓ PΘ,qTGQΘ,q) = Id ∓ IdPΘ,qTGQΘ,q ± PΘ,qTGQΘ,qId = Id.
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In the following argument for ease of notation we write the domain and co-

domain above the operator. For example, if the operator A : X → Y , we will label

this as

X→Y︷︸︸︷
A . In the case when A : X → X we will denote this by

X︷︸︸︷
A . With

this notation we will omit the specific q or 2 notation from the projections in the

following matrices.

Thus with

T =


Kq

Θ+Θ(H2)n︷ ︸︸ ︷
Id − PΘTGQΘ

(Hq)n→{0}︷︸︸︷
0

Kq
Θ+Θ(H2)n→{0}︷︸︸︷

0

(Hq)n︷︸︸︷
P+

 , (31)

we can write 
(H2)n→Kq

Θ+Θ(H2)n︷ ︸︸ ︷
PΘGPΘ +QΘ

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
P+

 =

T


(H2)n→Kq

Θ+Θ(H2)n︷ ︸︸ ︷
PΘTG +QΘ

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
P+

 =

T


(H2)n→Θ(H2)n︷︸︸︷

TΘ

(Hq)n→Kq
Θ︷︸︸︷

PΘ

(H2)n︷︸︸︷
−P+

(Hq)n︷︸︸︷
TΘ∗




(H2)n︷︸︸︷
TΘ∗

(Hq)n→(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷ ︸︸ ︷
TG −QΘTG +QΘP+

(Hq)n︷︸︸︷
TΘ

 ,

where the last line follows by using the identity P+ − QΘ = PΘ and TΘ∗PΘ = 0.
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This can be factorised further to equal

T


(H2)n→Θ(H2)n︷︸︸︷

TΘ

(Hq)n→Kq
Θ︷︸︸︷

PΘ

(H2)n︷︸︸︷
−P+

(Hq)n︷︸︸︷
TΘ∗

TG


(H2)n︷︸︸︷
P+

(Hq)n→(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷ ︸︸ ︷
−TΘ∗TG + TΘ∗P+

(Hq)n︷︸︸︷
P+

 , (32)

where TG is defined as in (22). In the above, we label the second factor as T1 and

the final factor as T2.

1. The first factor, T , is invertible with inverse given by


Kq

Θ+Θ(H2)n︷ ︸︸ ︷
Id + PΘTGQΘ

(Hq)n→{0}︷︸︸︷
0

Kq
Θ+Θ(H2)n→{0}︷︸︸︷

0

(Hq)n︷︸︸︷
P+

 .

This is verified by Lemma 4.19.

2. The second factor, T1, is invertible as a map

(H2)n

(Hq)n

 →
Kq

Θ + Θ(H2)n

(Hq)n


by Lemma 4.20 below.

3. The last factor, T2, is invertible in

(H2)n

(Hq)n

 by Lemma 4.21 below.

We note that Lemmas 4.19, 4.20 and 4.21 are generalisations of Lemmas 6.3, 6.4

and 6.5 respectively in [16].
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Lemma 4.20. The operator T1 :

(H2)n

(Hq)n

→
Kq

Θ + Θ(H2)n

(Hq)n

 defined by

T1


φ1

...

φ2n

 =


(H2)n→Θ(H2)n︷︸︸︷

TΘ

(Hq)n→Kq
Θ︷︸︸︷

PΘ

(H2)n︷︸︸︷
−P+

(Hq)n︷︸︸︷
TΘ∗



φ1

...

φ2n


is invertible.

Proof. Given any


ψ1

...

ψ2n

 ∈
Kq

Θ + Θ(H2)n

(Hq)n

 we have T1


φ1

...

φ2n

 =


ψ1

...

ψ2n

 if and

only if

Θ


φ1

...

φn

+ PΘ


φn+1

...

φ2n

 =


ψ1

...

ψn


and

−


φ1

...

φn

+ TΘ∗


φn+1

...

φ2n

 =


ψn+1

...

ψ2n

 .
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The first of these two equations implies that

Θ


φ1

...

φn

 = QΘ


ψ1

...

ψn

 , PΘ


φn+1

...

φ2n

 = PΘ


ψ1

...

ψn

 (33)

and from the second we have
φ1

...

φn

+


ψn+1

...

ψ2n

 = Θ∗QΘ


φn+1

...

φ2n

 ; (34)

therefore

QΘ


φn+1

...

φ2n

 = Θ


φ1

...

φn

+ Θ


ψn+1

...

ψ2n

 = QΘ


ψ1

...

ψn

+ Θ


ψn+1

...

ψ2n

 . (35)

So we must have 
φ1

...

φn

 = Θ∗QΘ


ψ1

...

ψn

 , (36)
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and combining (33), (35) we can deduce


φn+1

...

φ2n

 =


ψ1

...

ψn

+ TΘ


ψn+1

...

ψ2n

 .

It follows that T1 is injective (replacing


ψ1

...

ψn

 and


ψn+1

...

ψ2n

 by 0) and surjective

as we can arbitrarily set


ψ1

...

ψ2n

 ∈
Kq

Θ + Θ(H2)n

(Hq)n

 in the above two formulae.

Moreover T−1
1 is given by:

T−1
1


ψ1

...

ψ2n

 =


Kq

Θ+Θ(H2)n→(H2)n︷︸︸︷
TΘ∗

(Hq)n→(H2)n︷︸︸︷
0

(Hq)n︷︸︸︷
P+

(Hq)n︷︸︸︷
TΘ



ψ1

...

ψ2n

 .
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Lemma 4.21. The operator T2 :

(H2)n

(Hq)n

→
(H2)n

(Hq)n

 defined by

T2 =


(H2)n︷︸︸︷
P+

(Hq)n→(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷ ︸︸ ︷
−TΘ∗TG + TΘ∗P+

(Hq)n︷︸︸︷
P+


is invertible with inverse given by

T−1
2 =


(H2)n︷︸︸︷
P+

(Hq)n→(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷ ︸︸ ︷
TΘ∗TG − TΘ∗P+

(Hq)n︷︸︸︷
P+

 .

Proof. This follows from the fact that T2 is of the form

P2+ 0

A Pq+


where A is an operator such that AP2+ = Pq+A.

We can now conclude the following;

Theorem 4.22. TG is equivalent after extension to ÃΘ
G.
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Proof. Using (28), (29) and the fact that
∗
v is transitive, we see that

ÃΘ
G

∗
v

PΘ,qGPΘ,2 +QΘ,2 0

0 Pq+

 .

Now (32) and the reasoning immediately following (32) shows

PΘ,qGPΘ,2 +QΘ,2 0

0 Pq+

 ∗
v TG

and so transitivity of
∗
v gives us

ÃΘ
G

∗
v TG.

Remark. In the case when n = 1 and p = ∞, Theorem 4.22 specialises to become

(the symmetric case of) Theorem 6.6 in [16].

When G is bounded we have ÃΘ
G = AΘ

G, so we may specialise Theorem 4.22 to

find an operator which is EAE to AΘ
G when G is bounded.

Theorem 4.23. Let G ∈ L(∞,n×n). Then TG : (H2)2n → (H2)2n is equivalent after

extension to AΘ
G.

As operators which are EAE have isomorphic kernels and cokernels, Theorem

4.22 and Proposition 4.5 suggest that restricting the codomain of TG may provide an
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operator which is EAE to AΘ
G, where G ∈ L(p,n×n), for p ∈ (2,∞). We now pursue

this idea.

Throughout the remainder of this section (4.4) we now continue to

assume that G ∈ L(p,n×n) where p ∈ (2,∞], but we now we also make the

extra assumption that AΘ
G is a MTTO (and hence bounded).

The image of TG is computed to be

 0

Θ(Hq)n

+

 0

Pq+(GK2
Θ)

+


 f

Pq+(GΘf)

 : f ∈ (H2)n

 ,

where for A ⊆ (Lq)n,

0

A

 is the set of all vectors of length 2n with the last n

coordinates taking a value a ∈ A. We now define the Banach space

Co-d :=

 0

Θ(Hq)n

+

 0

K2
Θ

+


 f

Pq+(GΘf)

 : f ∈ (H2)n

 , (37)

where for p1 ∈ (Hq)n, p2 ∈ K2
Θ, p3 ∈ (H2)n we have the well defined norm

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 0

Θp1

+

 0

p2

+

 p3

Pq+(GΘp3)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Co-d

:= ‖Θp1‖(Hq)n+‖p2‖K2
Θ

+‖p3‖(H2)n .
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We note that completeness of each of the spaces (Hq)n, K2
Θ and (H2)n ensures com-

pleteness of Co-d. Corollary 4.6 ensures that Pq+(GK2
Θ) ⊆ K2

Θ + Θ(Hq)n so this

gives us a well defined bounded map

T rG :

(H2)n

(Hq)n

→ Co-d,

where for f1 ∈ (H2)n and f2 ∈ (Hq)n

f1

f2

 7→
 P2+(Θ∗f1)

Pq+(Gf1 + Θf2)

 = TG

f1

f2

 .

Remark. In the case when p = ∞ and so q = 2, as sets we have Co-d =

(H2)n

(H2)n


and furthermore the Co-d norm is equivalent to the

(H2)n

(H2)n

 norm.

Similar to the proof of Theorem 4.22, we can show that

AΘ
G
∗
v


(H2)n→K2

Θ+Θ(H2)n︷ ︸︸ ︷
PΘ,qGPΘ,2 +QΘ,2

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
Pq+

 ,

where we know by Corollary 4.6 that PΘ,q(GK
2
Θ) ⊆ K2

Θ. It is also clear that for
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f1

f2

 ∈
(H2)n

(Hq)n

 using (32) we still have

TT1T
r
GT2

f1

f2

 =


(H2)n→K2

Θ+Θ(H2)n︷ ︸︸ ︷
PΘ,qGPΘ,2 +QΘ,2

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
Pq+


f1

f2

 .

One can also check that the operator TT1 : Co-d →

(H2)n

(Hq)n

 is well defined,

bounded and invertible. We know from Lemma 4.21 that T2 :

(H2)n

(Hq)n

→
(H2)n

(Hq)n


is invertible. So we can conclude;

Theorem 4.24. AΘ
G
∗
v T rG .

4.5 Truncated Toeplitz operators on the multiband space

Definition 4.25. Let I be an inner function and φ, ψ unimodular functions in L∞

such that φK2
I ⊥ ψK2

I . Define the space M := φK2
I ⊕ψK2

I . Define the operator AMg

by

AMg u := PM(gu),

149



where PM is the orthogonal projection onto M . We refer to M as the multiband

space, and we call AMg a truncated Toeplitz operator on the multiband space.

Remark. As with truncated Toeplitz operators these may initially be considered as

densely defined operators when g ∈ L2.

Truncated Toeplitz operators on multiband spaces were first introduced in [13]

and are motivated by applications in speech processing and signal transmission.

Theorem 2.2 in [13] shows how truncated Toeplitz operators on multiband spaces

and MTTOs are fundamentally linked. We state this theorem below, and refer the

reader to [13] for a proof.

Theorem 4.26. Let AMg be a bounded truncated Toeplitz operator on the multiband

space M := φK2
I ⊕⊥ ψK2

I , where I is inner and φ, ψ ∈ L∞ are unimodular. Then

AMg is unitarily equivalent to the block truncated Toeplitz operator

W =

 AIg AI
φψg

AI
ψφg

AIg

 , (38)

on K2
I ⊕ K2

I . Hence AMg = 0 if and only if each of the four truncated Toeplitz

operators composing W is 0.

Remark. We note that the candidate is not directly attributable to Theorem 4.26.

In the context of MTTOs we may rewrite the above theorem as the following;
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Theorem 4.27. With the assumptions of Theorem 4.26, AMg is unitarily equivalent

to the MTTO AΩ
Φ, where

Ω =

I 0

0 I

 ,

and

Φ =

 g φψg

ψφg g

 .

In the above theorem we denote the unitary map by U , and hence we can write

AMg = U∗AΩ
ΦU .

With the above theorem we may now specialise several results on MTTOs to

produce results about TTOs on the multiband space. In particular, for a bounded

TTO on a multiband space, AMg , we can deduce that kerAMg = U∗ kerAΩ
Φ. So

from Theorem 4.10 we can deduce kerAMg is isometrically isomorphic to a nearly

S∗-invariant subspace with defect less than or equal to 2. Due to the partly scalar

nature of the TTO on the multiband space and the repetition in the matrix symbol

appearing in Theorem 4.27 one may suspect that the defect of kerAΩ
Φ (where Φ,Ω

are defined as in Theorem 4.27) is actually strictly less than 2. However we will

show this is not the case and in general kerAΩ
Φ is nearly S∗-invariant with defect 2.

Example 4.2. With Θ and Ω defined as in Theorem 4.27, let I = z2, φ = z, ψ = z4,

g = 2z2 + z + 2z4. We identify the basis of K2
Θ with a basis of C4 in the following
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way

1

0

 7→


1

0

0

0


,

z
0

 7→


0

1

0

0


,

0

1

 7→


0

0

1

0


,

0

z

 7→


0

0

0

1


, then AΩ

Φ has the

following matrix representation



0 0 0 0

1 0 2 0

0 0 0 0

2 0 1 0


.

Thus kerAΩ
Φ is given by the span of

z
0

 and

0

z

, which is clearly nearly S∗-

invariant with defect 2.

In view of Theorem 4.27 we also can specialise the EAE result for MTTOs (which

is Theorem 4.23) to TTOs on the multiband space.

Theorem 4.28. For g ∈ L∞, one has AMg
∗∼ TG with

G =



I 0 0 0

0 I 0 0

g gφψ I 0

gφψ g 0 I


.
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5 Symbols of truncated Toeplitz operators

Although there are an abundance of interesting questions concerning the symbols of

MTTOs, there is still not a complete answer to several questions posed about the

symbols of bounded TTOs. For this reason, in this chapter we only consider scalar

truncated Toeplitz operators.

Throughout this chapter we continue to let I be an inner function. We let C(T)

be the space of continuous functions on the unit circle. We let BMOA denote the

set of all analytic functions of bounded mean oscillation, i.e., f ∈ BMOA means

f ∈ H2 and

sup
A

1

|A|

∫
A

|f − fA|dm <∞,

where the supremum is taken over all arcs A ⊆ T and

fA :=
1

|A|

∫
A

fdm.

It can be checked that BMOA is a linear vector space and an easy adaptation of

Proposition 2.5 in [39] shows that when equipped with the norm

‖f‖∗:=
∣∣∣∣∫

T
gdm

∣∣∣∣+ sup
A

1

|A|

∫
A

|f − fA|dm,

BMOA becomes a Banach space. We let VMOA denote the set of all analytic
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functions of vanishing mean oscillation, i.e., f ∈ VMOA means f ∈ H2 and

lim
d→0

{
sup
|A|<d

1

|A|

∫
A

|f − fA|dm

}
= 0.

Theorem 5.5 in [39] shows VMOA is a closed subspace of BMOA. We note that as

BMOA ⊆ H2 this allows to have a well defined map PI : BMOA→ PI(BMOA).

We use the notation T (I) to denote the space of bounded truncated Toeplitz op-

erators on K2
I and Tc(I) to denote the space of compact truncated Toeplitz operators

on K2
I .

In this chapter, before we can study the symbols of bounded truncated Toeplitz

operators we must first obtain a description of both the dual and predual of K1
I .

5.1 Duality results

5.1.1 Dual of K1
I

Previous results in [9] identify the dual space of K1
I ∩zH1 for a certain class of inner

functions. The results in this subsection give an alternative description of the space

dual to K1
I , and furthermore this description is valid for all inner functions.

We first notice that we trivially have a surjective mapping PI : BMOA →

PI(BMOA), and so for each f ∈ PI(BMOA) this allows us to define the preim-

age of f , which we denote by Ef := {g ∈ BMOA such that PI(g) = f}. We define
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a norm on the space PI(BMOA) given by

‖f‖Img:= inf
g∈Ef
{‖g‖∗},

for each f ∈ PI(BMOA). We refer to this norm as the image norm. With this norm

it is immediate that for each g ∈ BMOA

‖PI(g)‖Img

‖g‖∗
6 1. (39)

In order to show this norm is well defined the only non-trivial things to check are

that it satisfies the triangle inequality and that ‖f‖Img= 0 implies that f = 0.

If ‖f‖Img= 0, then there exists a sequence (gn) contained in Ef such that

gn
BMOA→ inf

g∈Ef
{‖g‖∗} = 0.

As BMOA convergence implies convergence in H2 (see the final statement of The-

orem 2.1 in Chapter 9 of [3]) and PI : H2 → K2
I is continuous, we must have

f = PI(gn)
H2

→ 0, and so f = 0.

To show the triangle inequality holds, we let f1, f2 ∈ PI(BMOA) and note that

for any g1 ∈ Ef1 and g2 ∈ Ef2 there exists a g := g1 + g2 which lies in Ef1+f2 such

that

‖g‖∗6 ‖g1‖∗+‖g2‖∗.
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Thus taking the infimum of the above where g ∈ Ef1+f2 and g1 ∈ Ef1 and g2 ∈ Ef2

we obtain

‖f1 + f2‖Img6 ‖f1‖Img+‖f2‖Img.

In order to show the normed space (PI(BMOA), ‖ ‖Img) is complete we use the

following well known result, a proof of this may be found as Proposition 2.2 in [52].

(Or alternatively one can make minor adaptations to the proof of Proposition 1.35

in [30].)

Lemma 5.1. Let X be a Banach space, let Y be a normed vector space, and let

T : X → Y be a surjective linear continuous map. Assume there exists some

constant C > 0, such that for every y ∈ Y , there exists an x ∈ X with T (x) = y

and ‖x‖X6 C‖y‖Y . Then Y is a Banach space.

Proposition 5.2. The space (PI(BMOA), ‖ ‖Img) is a Banach space.

Proof. The proof of this proposition is just an application of the previous lemma.

In the notation of the previous lemma, we let X = BMOA, Y = PI(BMOA) and

T = PI : BMOA→ PI(BMOA). We know T is continuous by (39). For any non-zero

function f ∈ PI(BMOA), let us show that there exists a g ∈ BMOA with PI(g) = f

and ‖g‖∗6 2‖f‖Img. If f is non-zero then by definition there exists a sequence, (gn),

contained in Ef such that gn
BMOA→ infg∈Ef{‖g‖∗} = ‖f‖Img> 0 and PI(gn) = f for

all n ∈ N. Now purely by means of the inertia principle there exists an N ∈ N such

that PI(gN) = f and such that ‖gN‖∗6 2‖f‖Img. If f is zero then clearly PI(0) = 0
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and ‖0‖∗6 2‖0‖Img.

When considering the dual space of K1
I , one can deduce that (K1

I )∗ is isomet-

rically isomorphic to the quotient space (H1)∗/(K1
I )⊥ (see Section 3.5 of [24] for

details). Furthermore it is well known that (H1)∗ is anti-linearly isomorphic to

BMOA and a computation shows that (K1
I )⊥ = (IH2∩BMOA), so we can conclude

that (K1
I )∗ is anti-linearly isomorphic to BMOA/(IH2 ∩BMOA). However, as with

the description for model spaces when p 6= 1, we can realise (K1
I )∗ as a space of

analytic functions on the unit disc.

Lemma 5.3 ([24] Lemma 5.8.14). K2
I is dense in K1

I .

Theorem 5.4. l ∈ (K1
I )∗ if and only if there is a v ∈ PI(BMOA) such that l is the

continuous extension of the densely defined map

l(f) = lv(f) :=

∫
T
f(ζ)v(ζ)dm(ζ) f ∈ K2

I

to K1
I . Furthermore the norm of the above linear functional is equivalent to the

PI(BMOA) norm of v.

Proof. First, we take v ∈ PI(BMOA), then v = PI(g) for some g ∈ BMOA. As

BMOA is contained in H2, we have that lv(f) agrees with the regular H2 inner

product of f and v whenever f ∈ K2
I . Now as the projection PI : L2 → K2

I is self
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adjoint on the H2 inner product, we can see that

〈 , v〉H2 = 〈 , PI(g)〉H2 = 〈 , g〉H2 ,

when viewed as maps on K2
I ⊆ K1

I . However, we know that 〈 , g〉H2 : K2
I → C

extends continuously to K1
I , because K1

I ⊆ H1 and using the Hardy-BMO duality

established by Fefferman-Stein [31] (or see Theorem 2.2 in Chapter 9 of [3]) we know

BMOA is the dual of H1. Thus, l = lv defined as above has a continuous extension

to K1
I and defines an element of (K1

I )∗.

Conversely if we take any l ∈ (K1
I )∗, using the Hahn-Banach extension Theorem

l can be extended to l
′ ∈ (H1)∗. Using Theorem 2.2 in Chapter 9 of [3] we know

there exists a g ∈ BMOA such that l
′

is the continuous extension of

l
′
(f) =

∫
T
f(ζ)g(ζ)dm(ζ) f ∈ H2

to H1. Furthermore as l
′

restricted to K1
I is equal to l, we know that l is the

continuous extension of

l(f) =

∫
T
f(ζ)g(ζ)dm(ζ) f ∈ K2

I
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to K1
I . Now again, using the fact that l(f) = 〈f, g〉H2 when f ∈ K2

I , we can see that

l(f) = l(PI(f)) =

∫
T
PI(f)(ζ)g(ζ)dm(ζ) =

∫
T
f(ζ)PI(g)(ζ)dm(ζ) (40)

when f ∈ K2
I . So l must equally be the continuous extension of

f 7→
∫
T
f(ζ)v(ζ)dm(ζ),

where v = PI(g), from K2
I to K1

I .

We now prove the second statement of the theorem. We have shown there is a

well defined surjective linear map

D : PI(BMOA)→ (K1
I )∗,

where v 7→ lv. It is also clear this map is injective (as if lv = 0, then ‖v‖2
H2= lv(v) =

0). So if we equip PI(BMOA) with a norm given by ‖f‖= ‖f‖Img and show D is

bounded, then as a result of the Banach Isomorphism Theorem we will have shown

D is an isomorphism and so the norm of l is equivalent to the PI(BMOA) norm of

v.

We write v = PI(g) where g is an element of Ev and by (40) it is clear that

lv(k) = lg(k) for each g ∈ Ev and k ∈ K1
I . As a result of Theorem 2.2 in Chapter 9
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of [3] we know there exists a C > 0 such that

|lv(k)|
‖k‖K1

I

=
|lg(k)|
‖k‖K1

I

6 C‖g‖∗,

for each g ∈ Ev and k ∈ K1
I . If we take the infimum of the right hand side of the

above expression over each g ∈ Ev, and the supremum of the left hand side over

each k ∈ K1
I , we obtain ‖lv‖6 C‖v‖Img.

In light of the isomorphism D, as we do when 1 < p < ∞, it is conventional to

say PI(BMOA) is the dual of K1
I , and write (K1

I )∗ = PI(BMOA).

Remark. One could also realise (K1
I )∗ as PI(BMOA) by defining the map

PI : BMOA→ PI(BMOA),

applying the First Isomorphism Theorem to deduce BMOA/(IH2 ∩ BMOA) is iso-

morphic to PI(BMOA), and then noting BMOA/(IH2 ∩ BMOA) is anti-linearly

isomorphic to (K1
I )∗ by the reasoning laid out after Proposition 5.2. Although this

description of (K1
I )∗ is expressed as a space of analytic functions in the disc, this

method only shows existence and we do not have an explicit description of the

duality isomorphism.
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Remark. One can also express lv(f) for f ∈ K1
I as

l(f) = lv(f) := lim
r→1−

∫
T
fr(ζ)v(ζ)dm(ζ),

where fr(ζ) = f(rζ).

We now seek to obtain a set theoretic description of (K1
I )∗. The following result

more so resembles classical duality result for model spaces, which is (Kp
I )∗ = Kq

I

where 1 < p <∞ and 1
p

+ 1
q

= 1.

Proposition 5.5. (K1
I )∗ = PI(BMOA) = span(BMOA, I(BMOA)) ∩K2

I

Proof. The previous result shows the first equality, so we must only prove the second.

As BMOA is contained in H2, we can write PI(BMOA) as

{k ∈ K2
I : there exists a h ∈ H2 with k + Ih ∈ BMOA} := K.

Now because the space H1 is invariant by multiplication by I, and BMOA is the dual

space of H1, we can deduce that BMOA is invariant under the Toeplitz operator TI .

Thus, we can in fact write K as

{k ∈ K2
I : there exists a h ∈ BMOA with k + Ih ∈ BMOA}.
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The above line is clearly equal to span(BMOA, I(BMOA)) ∩K2
I , so we conclude

PI(BMOA) = span(BMOA, I(BMOA)) ∩K2
I .

From the above proposition one can also show that the ‖ ‖Img norm the on space

span(BMOA, I(BMOA)) ∩K2
I is given by

‖k‖= inf
h∈(BMOA)

‖k + Ih‖∗= inf
h∈H2
‖k + Ih‖∗,

for each k ∈ span(BMOA, I(BMOA)) ∩K2
I .

Remark. We note that in general IBMOA 6⊆ BMOA. In fact, the conditions for

when IBMOA ⊆ BMOA can be found as Theorem 1 in [28].

Remark. In contrast to the case when 1 < p < ∞, Theorem 3.8 of [64] shows that

PI(BMOA) ⊆ BMOA if and only if I is finite Blaschke product. It is for this reason

that we still must take an infimum in the above norm.

For ease of notation we denote the space span(BMOA, I(BMOA))∩K2
I equipped

with the ‖ ‖Img norm by KBMOA
I . We summarise the results of this subsection with

a theorem;

Theorem 5.6. The dual space of K1
I is KBMOA

I .
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5.1.2 Pre-dual of K1
I

As mentioned in the introduction, an inner function may be factorised into a Blaschke

product multiplied by a singular inner function. The singular set of the inner func-

tion I, denoted sing(I), is defined to be the set of all ζ ∈ T such that either ζ is an

accumulation point of the zeros of I or ζ lies in the support of the singular measure

associated to the singular factor of I.

As we have reserved the notation I for an arbitrary inner function, and in this

subsection we require further assumptions on our inner function, in this subsection

we will use the notation I to denote our inner function.

Throughout this subsection (5.1.2) we assume that I is a Blaschke

product with a finite singular set. We note that as I a Blaschke product,

sing(I) is just the set of all ζ ∈ T, such that ζ is an accumulation point of

the zeros of I.

Just as we have done in the previous subsection, we can define a surjective map

PI : VMOA→ PI(VMOA) and then equip PI(VMOA) with the image norm given

by

‖f‖Img= inf{‖v‖∗ where v ∈ VMOA, PI(v) = f},

for f ∈ PI(VMOA). Mimicking the results of the previous subsection we can deduce

that when PI(VMOA) is equipped with the image norm it is a Banach space and

that PI : VMOA→ PI(VMOA) is continuous.
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Throughout we will freely use the well known theorem, which can be found in

[61], which states that P+(C(T)) = VMOA. This result then immediately implies

the disc algebra, C(T) ∩H2, is contained in VMOA.

In order to describe the predual of K1
I we need the following lemma.

Lemma 5.7. Let g ∈ K1
I and let kλ(z) = 1

1−λz . Then if

〈
(
z − λ
1− λz

)i
kλ, g〉 =

∫
T

(
z − λ
1− λz

)i
kλgdm = 0

for every λ ∈ D such that I(λ) = 0 and every non-negative integer i, where i < jλ

and jλ is the order of the zero I(λ), then g = 0.

Proof. Let the assumptions of the lemma hold and let λ ∈ D be such that I(λ) = 0.

We have

〈kλ, g〉 = g(λ) = 0,

and so g ∈ z−λ
1−λzH

1. If jλ > 2, then we may deduce z−λ
1−λzg ∈ H

1 and z−λ
1−λzg(0) = 0,

and so g ∈
(
z−λ
1−λz

)2

H1. We may then iterate this process to deduce g ∈
(
z−λ
1−λz

)jλ
H1.

As this argument holds for all λ ∈ D such that I(λ) = 0 we must have g ∈ IH1,

but K1
I ∩ IH1 = {0}.

Recall from Proposition 2.4 the Smirnov class, denoted N+, can be expressed as

N+ = {f1

f2

: f2 is outer f1, f2 ∈ H1}.
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Theorem 5.8. l ∈ (PI(VMOA))∗ if and only if there exists a g ∈ K1
I such that

l(f) = lg(f) := lim
n→∞

∫
T
fgndm, (41)

where (gn) is any sequence in K2
I such that gn → g in K1

I (such a sequence always

exists by Lemma 5.3). Furthermore the norm of l is equivalent to the K1
I norm of

g.

Proof. We first show l defined as above is well defined and bounded on PI(VMOA).

We write f = PI(v) for some v ∈ VMOA, then

∫
T
fgndm =

∫
T
PI(v)gndm =

∫
T
vPI(gn)dm =

∫
T
vgndm,

where the second equality holds because the above integrals may be expressed as a

H2 inner product and PI is self adjoint. Now, by Fefferman’s duality result given

as Theorem 2.2 in Chapter 9 of [3] we know there exists a C > 0 such that

∣∣∣∣∫
T
vgndm

∣∣∣∣ 6 C‖v‖∗‖gn‖K1
I
. (42)

Which shows
∫
T vgndm is a Cauchy sequence and hence converges to an element of

C. Similarly if (g
′
n) is another sequence in K2

I which converges to g then (42) also

shows that ∫
T
vgndm−

∫
T
vg′ndm→ 0,
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and thus l(f) is independent of choice of sequence (gn). So l(f) is well defined.

Finally if we take the limit as n tends to infinity in (42) and then then take the

infimum over all v ∈ VMOA such that PI(v) = f we obtain

|l(f)| 6 C‖f‖Img‖g‖K1
I
.

In order to show the forward implication part of the proof we need the following

lemma, which gives a non standard description of VMOA∗.

Lemma 5.9. If r ∈ (VMOA)∗ then there exists a h ∈ H1 such that for w ∈ VMOA

r(w) = lim
n→∞

∫
T
whndm,

where hn is any sequence in H2 which converges to h in the H1 norm.

Proof. By Theorem 3.5.27 in [24] we know there exists a h ∈ H1 such that for

w ∈ VMOA

r(w) = lim
r→1−

∫
T
wrhdm,

where wr(ζ) := w(rζ) for r ∈ (0, 1). However, as with many spaces of analytic

functions in the disc, by considering the duality on the corresponding sequence

(obtained from the coefficients of w and h) we know that

lim
r→1−

∫
T
wrhdm = lim

r→1−

∫
T
whrdm.
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We now note

lim
r→1−

∫
T
whrdm = lim

n→∞

∫
T
whrndm,

where rn is any sequence which converges to 1 from below. Finally, by Theorem

3.2.3 in [24] we know that hrn converges to h in H1, and so by a similar reasoning

to that following (42) we can deduce

lim
n→∞

∫
T
whrndm = lim

n→∞

∫
T
whndm,

where hn is any sequence in H2 such that hn → h in H1.

With the above lemma we now proceed to show the forward implication part of

the proof. Let l ∈ (PI(VMOA))∗, then

v 7→ l(PI(v))

is continuous on VMOA. So by the above lemma there exists a g ∈ H1 such that

l(PI(v)) = lim
n→∞

∫
T
vgndm, (43)

where (gn) is any sequence in H2 converging to g in the H1 norm. Now, we denote

sing(I) = {x1, ..., xN}, and we set J := I(z − x1)...(z − xN). As I has an analytic

continuation to any point in T\sing(I), it is clear that J is continuous on T\sing(I).
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Furthermore if we define J(x) = 0 for all x ∈ sing(I), then for each k > 0, Jzk is

analytic in D and continuous on the closure of D, and thus lies in VMOA. So using

(43) and the fact Jzk ∈ IH2 we deduce

0 = l(PI(Jz
k)) = lim

n→∞

∫
T
Jzkgndm =

∫
T
Jzkgdm,

for each k > 0. Thus, by our construction of H1 viewed as a subspace of L1 we know

Jg ∈ zH1 and as (z−x1)...(z−xN) is outer we have g ∈ IzN+∩H1 = IH1
0 ∩H1 =

K1
I . Now by Lemma 5.3, we may choose our sequence (gn) to be any sequence K2

I .

Thus, we have shown for each l ∈ (PI(VMOA))∗ there exists a g ∈ K1
I such that

l(PI(v)) = lim
n→∞

∫
T
vgndm,

where (gn) is any sequence in K2
I converging to g in K1

I . So, as we have done

previously, if we write f = PI(v) then we have

l(f) = lim
n→∞

∫
T
vgndm = lim

n→∞

∫
T
vPI(gn)dm = lim

n→∞

∫
T
fgndm. (44)

This proves the first statement of the theorem.

In order to show the norm of l is equivalent to the K1
I norm of g, one may directly

adapt the proof the second statement in Theorem 5.4 to show there is a well defined
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bounded surjective linear map

K1
I → (PI(VMOA))∗,

where g 7→ lg (defined as in (41)). We now argue that this map is also injective and

so consequently we can apply Banach’s Isomorphism Theorem to deduce the norm

of l is equivalent to the K1
I norm of g. For each λ ∈ D such that I(λ) = 0 and every

i < jλ, where jλ is the order of the zero I(λ) we have
(
z−λ
1−λz

)i
kλ ∈ C(T) ∩ K2

I .

Now as P+(C(T)) = VMOA, this means the specified
(
z−λ
1−λz

)i
kλ lie in VMOA and

trivially PI(
(
z−λ
1−λz

)i
kλ) =

(
z−λ
1−λz

)i
kλ, so

(
z−λ
1−λz

)i
kλ ∈ PI(VMOA). Now if lg = 0

then for each of the specified
(
z−λ
1−λz

)i
kλ we have

lg(

(
z − λ
1− λz

)i
kλ) =

∫
T

(
z − λ
1− λz

)i
kλgdm = 0,

(note we can omit taking the limit in the above expression as
(
z−λ
1−λz

)i
kλ is contin-

uous). Now applying Lemma 5.7 we see that g = 0.

Just as we have done with the analogous BMOA space we can deduce the fol-

lowing.

Proposition 5.10. PI(VMOA) = span(VMOA, I(H2)) ∩K2
I.
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Furthermore, as we have done with BMOA previously, one may equip

KVMOA
I := span(VMOA, I(H2)) ∩K2

I

with the VMOA image norm, and in light of Theorem 5.8 we may write (KVMOA
I )∗ =

K1
I . However, in the next section it is more convenient to actually continue to realise

the predual of K1
I as the image of PI : VMOA→ PI(VMOA).

5.2 Application to truncated Toeplitz operators

The question of whether every bounded TTO has a bounded symbol is an interesting

one. This question has led to much research activity within the community with

many questions being answered and many new questions being posed. Here we give

the reader a brief background on this topic. In Sarason’s seminal work of 2007 [63]

he initiated a systematic study of TTOs with symbols in L2. In this paper one of

the most natural questions posed was whether every bounded TTO has a bounded

symbol. This question was then shown to be negative in 2009 (see [6]). In fact, the

authors actually constructed a bounded rank one TTO which was shown to have

no bounded symbol. To build on this work, in [5] the authors gave a condition on

an inner function, I, which is equivalent to every bounded TTO on K2
I having a

bounded symbol. (See Theorem 5.11 below.)

Motivated by these findings, a similar study into the symbols of compact TTOs
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was initiated. Section 5 of [21] gives an overview of many results in this area. In

particular, the role played by bounded symbols in the case of bounded TTOs on

K2
I seems to be replaced by symbols of the form IC(T) when we are considering

compact TTOs. Specifically, Proposition 5.4 of [21] shows that if φ ∈ IC(T) then

AIφ is compact, however much like the case for bounded TTOs, Corollary 5.13 shows

the converse of this statement does not hold in general. One question posed in [21]

was whether there was a compact TTO on K2
I with a symbol in IC(T) + IH∞ that

has no continuous symbol. This question was then answered affirmative in [40] when

a compact TTO with this property was then constructed.

Following the results in [5] one may suspect that there are conditions on the inner

function I which are equivalent to every compact TTO on K2
I having a symbol in

IC(T). We may further suspect that these conditions may be similar in nature to

the condition on the inner function I which is equivalent to every bounded TTO on

K2
I having a bounded symbol. In fact, in this section we will prove that under the

assumptions on I given later, every compact TTO has a symbol in IC(T) if and

only if every bounded TTO has a bounded symbol. We show this with Theorem

5.12 below.

In the following we define Cp(I) to be the set of all finite complex Borel measures

µ on the unit circle such that the embedding Kp
I → Lp(|µ|) is continuous.

Theorem 5.11. [5]

The following are equivalent:
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1. any bounded TTO on K2
I admits a bounded symbol;

2. C1(I2) = C2(I2);

3. for any f ∈ K1
I2/z there exists xi, yi ∈ K2

I with
∑

i‖xi‖K2
I
‖yi‖K2

I
<∞ such that

f =
∑

i xiyi.

The inner function I is said to be one-component if and only if there exists an η

such that

{z ∈ D : |I(z)|< η}

is connected. We remark that by Corollary 2.5 in [5] the equivalent conditions of

the theorem below are fulfilled when I is a one component inner function.

Throughout the remainder of this section (5.2), unless otherwise stated,

we suppose that the inner function I is such that I(0) = 0 and in order to

use the previous results concerning the predual of a model space we also

impose the condition that I is a Blaschke product with a finite singular

set. All TTOs are assumed to be defined on the space K2
I.

In this section we will see that our previous duality results allow us to retrieve

information about the symbols of bounded TTOs.

The following is the main theorem that we shall prove:

Theorem 5.12. The equivalent conditions of Theorem 5.11 (with the inner function

I now replaced by I) are satisfied if and only if any compact TTO on K2
I has a symbol
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in IC(T).

We postpone the proof of Theorem 5.12.

Corollary 5.13. There are compact TTOs on K2
I without a symbol in IC(T).

Proof. This follows from Theorem 5.12 and the existence of bounded TTOs with no

bounded symbol shown in [6]. We note that the examples of the bounded TTOs with

no bounded symbol in [6] can be defined on K2
I where I satisfies the assumptions

given above.

Following the results of [5], we define the Banach spaces

X = {
∑

xiyi : xi, yi ∈ K2
I ,
∑
‖xi‖K2

I
‖yi‖K2

I
<∞},

and

Xa = {
∑

xiyi : xi, yi ∈ K2
I ,
∑
‖xi‖K2

I
‖yi‖K2

I
<∞}.

The norm in the space of X and Xa is defined as the infimum of
∑
‖xi‖K2

I
‖yi‖K2

I

over all possible representations. We note there is an isometric isomorphism from

X to Xa given by

f 7→ zIf, (45)

and one can also show that the inclusion Xa → K1
I2/z is bounded. One key result

we will use, which is given as Theorem 2.3 in [5], is the following.
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Theorem 5.14. The dual space of X can be naturally identified with T (I). Namely,

continuous linear functionals over X are of the form

ΦA(f) =
∑
i

〈Axi, yi〉, f =
∑
i

xiyi ∈ X,

with A ∈ T (I), and the correspondence between X and T (I) is one to one and

isometric.

We can define a bounded linear map

L : X → K1
I2/z,

given by

f 7→ zIf.

Now taking into account Theorem 5.6 and Theorem 5.14, when considering the

adjoint, L∗, of L we obtain a bounded map

L∗ : KBMOA
I2/z → T (I).

Explicitly, L∗ is the unique map satisfying

〈L(k), g〉 = 〈k, L∗(g)〉, (46)
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for each k ∈ X and g ∈ KBMOA
I2/z (here the duality pairings, denoted 〈 , 〉, are given

by Theorem 5.4 and 5.14 respectively). If we denote AI to be the TTO L∗(g), then

for k = xy with x ∈ K∞I , y ∈ K2
I equating both sides of equation (46) gives

∫
T
xyIzgdm =

∫
T
AI(x)ydm.

Now by density of K∞I in K2
I and non-degeneracy of the integral we can deduce

AI = AIIgz.

We conclude the following result;

Theorem 5.15. There is a bounded (anti-linear) map L∗ : KBMOA
I2/z → T (I), given

by

g 7→ AIIgz. (47)

Remark. The reason we have an anti-linear map as opposed to a linear map is

because the identification of the dual space of X with T (I) given in Theorem 5.14

is a linear map, whereas the duality given in 5.4 is defined by an antilinear map.

It is well known that the symbol of a TTO is not unique. As previously pointed

out, AIφ = 0 if and only if φ ∈ IH2 + IH2, which means every TTO has unique

symbol in K2
I+K

2
I . This unique symbol is called the standard symbol, and we remark

that the standard symbol is easily obtained from any symbol, ψ, by projecting ψ on
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to the space K2
I +K2

I . We recognise in the above theorem that Igz is the standard

symbol for AIIgz.

As P+(L∞) = BMOA (see Theorem 3.5.1 from [24] and references thereafter)

and PI2/zP+ = PI2/z, we can deduce KBMOA
I2/z = PI2/z(L

∞) = PI2/z(BMOA). This

observation allows us to make the following corollary.

Corollary 5.16. The image of L∗ is exactly all elements of T (I) which possess a

bounded symbol.

Proof. We have g ∈ KBMOA
I2/z = PI2/z(L

∞) if and only if there exists h1, h2 ∈ H2 such

that

zh2 + g +
I2

z
h1 ∈ L∞,

which happens if and only if

Iz(
I2

z
h1 + g + zh2) = Ih1 + Igz + Ih2 ∈ L∞.

Which is clearly equivalent to AIIgz possessing a bounded symbol.

We now consider the pre-adjoint of L. Making a minor adaptation to the second

part of Theorem 2.3 in [5], we can write the following.

Theorem 5.17. The dual space of Tc(I) can be identified with X, via the duality
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pairing
∑

i xiyi 7→ L∑
i xiyi

, where

L∑
i xiyi

(AI) =
∑
i

〈AIyi, xi〉,

for each compact TTO AI. Furthermore the duality pairing
∑

i xiyi 7→ L∑
i xiyi

is

one-to-one and isometric map between X and (Tc)∗.

In the general case the pre-adjoint of a bounded linear map may not exist.

Nonetheless we may define the map ∗L : PI2/z(VMOA)→ Tc(I), where

g 7→ AIIgz.

Proposition 5.18. The map ∗L is a well defined bounded, linear, injective map and

(∗L)∗ = L (i.e. ∗L is the pre-adjoint of L).

Proof. The map ∗L is clearly linear. If AIIgz = 0, then Igz ∈ IH2 + IH2, and so

g ∈ H2
0 + I2

z
H2, but as g ∈ K2

I2/z, this means g = 0 and hence ∗L is injective. To

show the map is well defined we note that AIIgz is compact if and only if (AIIgz)
∗ =

AIIgz is compact, so it suffices to show AIIgz is compact. Recall by [61] we know

P+(C(T) = VMOA and trivially we have PI2/zP+ = PI2/z so this must mean that

PI2/z(VMOA) = PI2/z(C(T))), and hence g ∈ PI2/z(C(T)). Thus we know there

exists p1, p2 ∈ H2 such that zp1 + g + I2

z
p2 := g

′ ∈ C(T). Now it is easy to see that

AIIgz = AI
Ig′z

, and by Proposition 5.4 in [21] we know that AI
Ig′z

is compact.
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To show boundedness, we again use the fact that ‖AIIgz‖= ‖(A
I
Igz)

∗‖= ‖AIIgz‖,

and we observe that

sup
g∈PI2/z(VMOA)

‖AIIgz‖
‖g‖Img

6 sup
g∈PI2/z(BMOA)

‖AIIgz‖
‖g‖Img

which is finite due to (47).

We now argue (∗L)∗ = L. We know (∗L)∗ is a linear map satisfying

〈∗L(g), xy〉 = 〈g, (∗L)∗(xy)〉,

for every g ∈ PI2/z(VMOA) and every xy ∈ X, where x, y ∈ K2
I . Here the duality

pairing on the left hand side is understood by the duality described in Theorem 5.17

and on the right hand side the duality is described by Theorem 5.8. Explicitly, this

means (∗L)∗ is a linear map satisfying

〈Igzy, x〉L2 = lim
n→∞
〈g, (∗L)∗(xy)n〉L2 , (48)

where (∗L)∗(xy)n is any sequence in K2
I2/z converging to (∗L)∗(xy) in the K1

I2/z

norm. Continuous functions in K2
I2/z also lie in PI2/z(VMOA) and so in (48) we

can set g to equal
(
z−λ
1−λz

)i
kλ for every λ ∈ D such that I

2

z
(λ) = 0 and every i < jλ

where jλ is the order of the zero I
2

z
(λ). Then as each g =

(
z−λ
1−λz

)i
kλ is bounded we
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can omit taking the limit in our duality pairing and we obtain

∫
T
gIzxy − (∗L)∗(xy)dm = 0.

Now an application of Lemma 5.7 gives us that Izxy − (∗L)∗(xy) = 0, and so

(∗L)∗(xy) = L(xy). Now, Proposition 4.1 in [5] states that every element of X can

be expressed as a sum of four elements of the form xy for x, y ∈ K2
I , and furthermore

L and (∗L)∗ are linear so we must indeed have (∗L)∗ = L.

We can make a result which is analogous to Proposition 5.16 but in the case of

continuous symbols.

Proposition 5.19. The image of ∗L is all TTOs of the form AIφ where φ ∈ IC(T)

Proof. Let AIφ lie in the image of ∗L. Then AIφ = AIIgz for some g ∈ PI2/z(VMOA) =

PI2/z(C(T)). As g lies in PI2/z(C(T)) there exists p1, p2 ∈ H2 such that zp1 + g +

I2

z
p2 := g

′ ∈ C(T). Now it is easy to see that AIφ = AIIgz = AIIg′z , and clearly

g
′
z ∈ C(T).

Conversely if AIφ is such that φ ∈ IC(T) then as pointed out in the proof of

the previous proposition AIφ is compact. As division by z is continuous we can

write φ = Iφ′z where φ
′

is continuous. Now it is easy to see that AIφ = AIIφ′z =

AIIPI2/z(φ′ )z
= ∗L(PI2/z(φ

′
) ∈ ∗L(PI2/z(C(T))) = ∗L(PI2/z(VMOA)).

As the map L is clearly injective, ∗L must have dense range and we can make
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the following corollary which has been previously noticed in the proof of Lemma 3.5

in [10].

Corollary 5.20. Truncated Toeplitz operators of the form AIφ where φ ∈ IC(T) are

dense in Tc(I).

Lemma 5.21. Every compact TTO on K2
I is of the form AIIφ where φ ∈ C(T) if

and only if every compact TTO on K2
I is of the form AIIψ, where ψ ∈ C(T).

Proof. This follows from the fact that for all g ∈ L∞, AIg is compact if and only if

(AIg )∗ = AIg is compact and that C(T) = C(T).

We now can prove a one way implication of Theorem 5.12.

Theorem 5.22. If every compact TTO on K2
I is of the form AIIφ where φ ∈ C(T)

then every bounded TTO has a bounded symbol.

Proof. If every compact TTO on K2
I is of the form AIIφ where φ ∈ C(T) then by

Lemma 5.21 and Proposition 5.19 we know that ∗L is surjective (and hence isomor-

phic). Now by Proposition 5.18 we must also have that (∗L)∗ = L is isomorphic,

and hence L∗ is (anti-linear) isomorphic. Now by Proposition 5.16 this must mean

every bounded TTO has a bounded symbol.

In order to prove the converse of the above theorem, we need the following

lemma. As the following lemma holds for any inner function, we prove the lemma

in the context of an arbitrary inner function I.
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Lemma 5.23. If I is written as a product I = θ1...θN , where each θi is inner, then

⋂
i=1,...,N

C2(θi) = C2(I).

Proof. For each i we have K2
θi
⊆ K2

I , so the ⊇ inclusion is immediate. We now

assume µ ∈ ∩
i=1,...,N

C2(θi). For each f ∈ K2
I , we can use an orthogonal decomposition

to write f as

f = k1 + θ1k2 + . . .+ θ1 . . . θN−1kN ,

where ki ∈ K2
θi

and ‖f‖2
KI

= ‖k1‖2
K2
θ1

+‖θ1k2‖2
K2
θ2

+ . . . + ‖θ1 . . . θN−1kN‖2
K2
θN

. By the

triangle inequality we have

‖f‖L2(|µ|)6 ‖k1‖L2(|µ|)+‖θ1k2‖L2(|µ|)+ . . .+ ‖θ1 . . . θN−1kN‖L2(|µ|),

and as each θi is inner this is equal to

‖k1‖L2(|µ|)+‖k2‖L2(|µ|)+ . . .+ ‖kN‖L2(|µ|). (49)

Now if we denote Ci to be the least bound such that ‖k̃‖L2(|µ|)6 Ci‖k̃‖K2
θi

for all

k̃ ∈ K2
θi

, and C := max{C1, . . . CN} then equation (49) is less than or equal to

C
(
‖k1‖K2

θ1
+‖k2‖K2

θ2
+ . . .+ ‖kN‖K2

θN

)
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which is equal to

C
(
‖k1‖K2

θ1
+‖θ1k2‖K2

θ2
+ . . .+ ‖θ1 . . . θN−1kN‖K2

θN

)
. (50)

Now it is easily checked that K2
I with the conventional norm is equivalent to K2

I

equipped with the norm where ‖f‖= ‖k1‖K2
θ1

+‖θ1k2‖K2
θ2

+ . . .+‖θ1 . . . θN−1kN‖K2
θN

.

This means there exist a B > 0 such that (50) is less than or equal to CB‖f‖K2
I
.

Corollary 5.24. C2(I2) = C2(I).

Theorem 5.25. If every bounded TTO on K2
I has a bounded symbol then every

compact TTO on K2
I is of the form AIIφ where φ ∈ C(T).

Proof. If we assume every bounded TTO on K2
I has a bounded symbol then by

Theorem 5.11 we must also have C2(I2) = C1(I2), and then consequently by the

above corollary we must also have C2(I) = C1(I2). Now under this condition The-

orem 5.2 in [21] states that every compact TTO on K2
I is of the form AIIφ where

φ ∈ C(T).

We now easily state the proof of our main result.

Proof of Theorem 5.12. The forward implication is Theorem 5.25 and the backward

implication is Theorem 5.22.

A long standing open conjecture regarding symbols of bounded TTOs is the

following.
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Conjecture 5.1. Let I be an inner function. Every bounded TTO on K2
I has a

bounded symbol if and only if I is one-component.

Under the conditions given on our inner function I the results of this section

show one may approach the above conjecture from a different viewpoint. When one

considers the inner function I an alternative formulation of the above conjecture is

the following.

Conjecture 5.2. Every compact TTO on K2
I has a symbol in IC(T) if and only if

I is one-component.
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