
Mobile Traffic Prediction Through

Machine Learning Techniques

Fuyou Li

Department of Electronic and Electrical Engineering

University of Sheffield

Supervisors: Prof. Jie Zhang, Dr. Wei Liu

This thesis is submitted for the approval of the

Doctor of Philosophy

July 2021

This thesis is dedicated to my beloved parents. Without their unconditional love and support,

I would not be who I am today.

Acknowledgements

First and foremost, I would like to express my sincere thanks to my supervisor, Professor Jie

Zhang, for his continuous guide and support during my PhD study. His patience, encourage-

ment and guidance help me to complete the study. His optimism and confidence towards life

and work have a positive impact on me. Besides my supervisor, I would like to thank my

second supervisor, Dr Wei Liu, for giving me great support.

I am very grateful to Dr. Zitian Zhang who most importantly helped me to become an

independent researcher. I could never accomplish my PhD study without his guidance and

persistent help.

A very special gratitude to Dr. Yunpeng Zhu and Mr. Lu Zhang for their guidance and

support.

Finally, I would like to express my heartfelt appreciation for my family who always

encourages and support me with patience and love.

Abstract

In recent decades, the development of wireless technologies incurs explosive mobile traffic

growth. To address the rapidly growing traffic demand, operators deploy more base stations

to increase the total network traffic capacity. However, the deployment significantly increases

the operational cost, and the traffic demand is still hard to be fulfilled. Besides, more mobile

applications and services rely on nearly real-time or even proactive traffic analysis. These

increasing traffic demands and increasingly stringent quality of service requirements have

brought significant challenges. Mobile traffic analysis becomes a promising solution to

these challenges and attracts continuous research interest from both academia and industry.

Therefore, mobile traffic analysis is the main research direction of this thesis.

Firstly, user mobility analysis, a critical perspective in mobile traffic analysis, is conducted.

Long Short-Term Memory (LSTM) network, an elegant candidate to address this issue, is

introduced and investigated. An LSTM-based user mobility prediction scheme is proposed

and evaluated through a real-world user trajectory dataset.

Next, the thesis focuses on mobile network traffic pattern analysis. Twitter traffic is

analysed to extract the temporal characteristics. Based on the extracted features, a Twitter

traffic prediction framework is proposed which combines statistical analysis and machine

learning techniques.

After that, this thesis seeks to improve mobile network traffic prediction accuracy. Al-

though recent research shows the potentials of deep learning-based algorithms, current

techniques have high complexity, and require a long time and a high volume of samples to

train the model. Therefore, a meta-learning-based mobile traffic prediction framework, ML-

viii

TP, is proposed to address these issues, achieving higher prediction accuracy. Furthermore,

the learning efficiency is also significantly improved.

Finally, to further improve ML-TP, dmTP is proposed, determining the optimal model

hyperparameter. The dmTP shows competitive performance in both regular and high varied

traffic prediction accuracy and learning efficiency by testing several real-world datasets.

List of Publications

Published

F. Li, Z. Zhang, Y. Zhu and J. Zhang, "Prediction of Twitter Traffic Based on Machine

Learning and Data Analytics," IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 2020, pp. 443-

448

Z. Zhang, F. Li, X. Chu and J. Zhang, "The dmTP: A Deep Meta-learning based Framework

for Mobile Traffic Prediction," accepted by IEEE Wireless Communications Magazine, 2021

Submitted

F. Li, Z. Zhang, X. Chu and J. Zhang, " A Meta-Learning based Framework for Cellular

Level Mobile Network Traffic Prediction," submitted to IEEE Transactions on Wireless

Communications

xii List of Abbreviations

List of Abbreviations

3GPP 3rd Generation Partnership Project

ANN Artificial Neural Network

ARIMA AutoRegressive Integrated Moving Average

ATT Average Training Time

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DFS Discrete Fourier Series

dmTP deep meta-learning based mobile Traffic Prediction framework

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

KNN K-nearest neighbours

LTE Long Term Evolution

LR Linear Regression

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

ML-TP Meta-Learning Traffic Prediction

NMAE Normalised Mean Absolute Error

NMSE Normalised Mean Squared Error

NRMSE Normalised Root Mean Square Error

OpEx Operational Expenditure

OSN Online Social Network

POI Point of Interest

R2 R-squared

RNN Recurrent Neural Networks

SVR Support Vector Regression

TCMTM Time needed to Construct the Meta-task training set and Train the Meta-learner

Table of contents

List of Publications ix

List of Abbreviations xi

List of figures xvii

List of tables xxi

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 The Development of Mobile Network Traffic Analysis 1

1.1.2 Machine Learning in Mobile Networking 2

1.1.3 Motivation . 5

1.2 Contributions of the Thesis . 7

1.3 Thesis Organisation . 8

2 Literature Review 11

2.1 Mobile Traffic Analysis . 11

2.1.1 Mobile Network Traffic Prediction 12

2.1.2 Mobility Prediction in Mobile Networks 15

2.1.3 Social Analysis in Mobile Networks 17

2.2 Machine Learning in Mobile Network Traffic 19

xiv Table of contents

3 Fundamentals of LSTM 21

3.1 Introduction . 21

3.2 LSTM in Mobile Communications . 26

3.2.1 Data Pre-processing . 26

3.2.2 POI Extraction . 28

3.2.3 LSTM Network Training and Prediction 29

3.3 Use Case: The LSTM-based User Mobility Prediction 33

3.3.1 Data Pre-processing . 33

3.3.2 POI Extraction . 35

3.3.3 User Mobility Prediction Using LSTM 37

4 Traffic Feature Analysis 39

4.1 Introduction . 39

4.2 The Twitter Dataset and Preliminary Analysis 41

4.2.1 The Twitter Datasets . 41

4.2.2 The Preliminary Analysis . 42

4.3 The Twitter Traffic Prediction Framework 46

4.3.1 Statistical Analysis of Twitter Traffic 47

4.3.2 Twitter Traffic Prediction Using Machine Learning Techniques . . . 49

4.3.3 Performance Evaluation . 51

4.4 Conclusion . 55

5 Mobile Network Traffic Prediction Framework: The ML-TP 57

5.1 Introduction . 58

5.1.1 Related Works . 60

5.2 Dataset Description and Preliminary Analysis 61

5.2.1 Mobile Network Traffic Trace . 62

5.2.2 Characteristics of Cell-Level Mobile Traffic 63

5.3 The Proposed ML-TP . 68

5.3.1 Meta-learning . 68

Table of contents xv

5.3.2 Overview of ML-TP . 69

5.3.3 Deep LSTM Network as the Base-learner 71

5.3.4 The KNN Algorithm Based Meta-learner 73

5.3.5 Fine-tune the Base-learner for a New Base Learning Task 76

5.4 Evaluation on Real-world Mobile Traffic Data 76

5.4.1 Experimental settings and performance metrics 77

5.4.2 Influence of the meta-learner’s two key hyper-parameters 79

5.4.3 Prediction accuracy of ML-TP and the baseline methods 80

5.4.4 Base-samples needed to fine-tune the base-learner of a new base-task 83

5.4.5 Epochs needed to fine-tune the base-learner of a new prediction task 85

5.5 CONCLUSION . 87

6 Mobile Network Traffic Prediction Framework: The dmTP 89

6.1 Introduction . 90

6.2 Dataset Description and Background Knowledge of Meta-Learning 92

6.2.1 Mobile Traffic Traces . 92

6.2.2 Characteristics of Mobile Traffic 93

6.2.3 Characteristics of Mobile Traffic 94

6.2.4 Meta-Learning . 96

6.3 The Proposed dmTP . 96

6.3.1 Deep LSTM Network as the Base-learner 98

6.3.2 Train the Meta-learner with Meta-samples 98

6.3.3 Fine-tune the Base-learner for a New Base-Task 99

6.4 Evaluation on Real-world Mobile Traffic Data 99

6.4.1 Experimental Settings . 99

6.4.2 Prediction Performance . 101

6.4.3 Learning Efficiency Improvement of Base-learner 104

6.5 Conclusion . 107

xvi Table of contents

7 Conclusions and Future Work 109

7.1 Conclusions . 109

7.2 Future Work . 111

References 113

Appendix A Proof of Lemma 1 133

Appendix B Proof of Lemma 2 137

Appendix C Proof of Proposition 1 143

Appendix D Proof of Proposition 2 145

List of figures

3.1 An example of ANN . 23

3.2 Network architecture of simplified ANN (left) and simplified RNN (right) . 23

3.3 Inner structure of an LSTM network . 23

3.4 Sigmoid function and hyperbolic tangent function 25

3.5 General process for LSTM mobility prediction 26

3.6 User trajectory and POI extraction . 28

3.7 General procedure for training an LSTM network for mobility prediction

and evaluation . 31

3.8 An example of user trajectory . 33

3.9 Original trajectory of a user . 34

3.10 Pre-processed user trajectory . 34

3.11 An example of POI extraction . 36

3.12 POIs of a user . 36

3.13 Simplified mobility prediction framework using LSTM 37

4.1 All tweets posted on 15th February 2016 41

4.2 Number of Tweets in two weeks . 42

4.3 Data comparison between the 15th and 16th February 2016 43

4.4 DFS of Twitter traffic during a week . 43

4.5 The Pearson correlation heatmap for 1-hour interval 44

4.6 Variation of patterns for (a) weekdays and (b) weekend 45

4.7 Flow chart of the traffic prediction processes 46

xviii List of figures

4.8 The occurrence probability of tweets described in intervals of (a) weekdays

and (b) weekends . 48

4.9 The pattern with statistical analysis on weekdays 49

4.10 The process of the K-fold cross-validation 50

4.11 The seven-order polynomial regression of the Twitter traffic obtained from

the statistical analysis for (a) weekdays and (b) weekends 52

4.12 Predicted pattern using the new method and LR for (a) weekdays and (b)

weekend . 53

4.13 MSE comparison using the proposed method, LR and neural network . . . 54

5.1 Milan grid . 62

5.2 Temporal traffic patterns (normalised, in hours) of cell 1884 (commercial

area), 7121 (business area) and 1684 (residential area) 64

5.3 Autocorrelation coefficient of the normalised traffic load vector of cell 1884. 64

5.4 DFS of traffic load for cell 1884, 7121 and 1684 66

5.5 Relationship between the Pearson correlation coefficient of traffic load in

the time domain and traffic frequency component vector distance in the

frequency domain . 67

5.6 Architecture of the proposed ML-TP framework 69

5.7 Inner structure of a LSTM network, where the green squares represent the

forget gate, input gate, input activation gate and output gate, respectively . . 72

5.8 NRMSE over the variation of K of the meta-learner and number of meta-sample 79

5.9 Performance of ML-TP and the baseline methods in terms of (a) NRMSE;

(b) NMAE 2; (c) R2 . 81

5.10 Predicted mobile traffic load by ML-TP compared the real traffic load of cell

(a) 1884 (b) 1684 . 82

5.11 Performance of ML-TP and deep LSTM with respect to the number of

training base-samples: (a) NRMSE; (b) NMAE; (c) R2 84

5.12 Performance of ML-TP and deep LSTM networks with respect to the number

of training epochs: (a) NRMSE; (b) NMAE; (c) R2 85

List of figures xix

6.1 Characteristics of mobile traffic in the time domain (left) and frequency

domain (right) . 94

6.2 Cumulative distribution function of base-tasks whose sum energy of the five

main frequency components accounts a certain percentage of the related

periodic signal’s energy . 95

6.3 Architecture of the proposed dmTP framework 97

6.4 Performance of dmTP and the baseline methods 101

6.5 Prediction results of the dmTP and basic LSTM networks for a testing base-

task in Dataset 1 (cell 1684) . 103

6.6 ATT and TCMTM needed by dmTP and the baseline methods 104

6.7 Performance of dmTP and basic LSTM networks under different numbers of

training epochs and different numbers of base-samples 105

List of tables

6.1 Description of the three adopted datasets 93

Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Development of Mobile Network Traffic Analysis

Mobile traffic analysis becomes a popular research topic in recent years [1]. The early,

seminal studies exploiting mobile network traffic datasets of significant size appeared in

2006 [2]. Although this research field is relatively new, it develops rapidly. The reasons

behind this can be summarised into four factors. Unprecedented coverage of mobile services

is the first factor. Mobile services are becoming more popular and ubiquitous. According

to statistics from the Global System for Mobile Communications Association (GSMA), the

number of global mobile scribers has exceeded 5.2 billion in 2020 [3]. This means that about

two-thirds of the global population has at least one mobile device.

As a consequence, the mobile scribers can represent the population to a large extent

[4]. Secondly, the continuous interactions between mobile devices and the network infras-

tructure produce vast subscribers’ information at unprecedented scales, such as movement,

interactions, service usage, and other users’ behaviour-related information [1]. This rich

source of knowledge attracts much attention from experts from different disciplines, such

as sociology, epidemiology, transportation, and wireless communications [1]. The third

supporting factor is the availability of datasets. Although mobile operators keep monitoring

2 Introduction

the mobile traffic status in their networks to troubleshoot and improve the quality of service

and billing [1], they barely share the data. This situation is changing since they see the

potential benefits of sharing data and collaborations with research groups. The last factor

is the quality improvement of datasets. Due to the base station densification and diversity

of services, from macro base stations to small base stations, from voice and texting to data

and diverse applications, the granularity, diversity, and accuracy of data are significantly

improved [1].

Since the mobile traffic data have diverse types of information, and the research is

conducted from various disciplines, it is difficult to find a clear edge between each research

domains [1]. One way is to classify the research according to the research subjects. Based

on the research domains, the research can be classified into three subjects: social analyses,

mobility analyses, and network analyses [1]. The social analysis focus on exploring user

interactions [2, 5], demographics [6, 7], and environmental perspectives such as epidemics

prevention and containment [8–11]. The mobility analysis extract either global or individual

movement patterns [12–32]. The network analysis aims to understand mobile traffic dynamics

to improve mobile network performance [1]. Basically, in wireless communications, the

mobile network traffic analysis covers all these three subjects, therefore plays a vital role

in the field. For example, from the social perspective, Li et al. [33] propose a social-aware

device-to-device communication architecture; in the field of mobility analysis, many works

deal with the mobility aware computation or content offloading strategies in mobile networks

[34–36]; from the network performance point of view, Hu et al. [37] propose a base station

sleeping strategy to reduce the energy consumption based on mobile traffic prediction.

1.1.2 Machine Learning in Mobile Networking

Machine learning was first proposed in 1952, which can be defined as a study of computer

algorithms that can make predictions or improvements through experience [38]. Machine

learning aims to utilise the data to build a model that can make predictions or decisions

automatically [38]. Compared with traditional mathematical models, machine learning-based

models require considerable data to train the model rather than explicitly programmed [38].

1.1 Background and Motivation 3

By developing its algorithm, machine learning can solve complicated problems that are

difficult for humans to build appropriate models manually [37]. Based on the model of

the brain and machine learning concept in [38], Rosenblatt [39] created the perceptron.

Although the perceptron seemed promising, Minsky and Papert [40] proved that it could only

deal with linear separable problems. Due to this defect of the neural network and limited

computing power and pessimism about machine learning effectiveness, the development of

machine learning has stalled. The resurgence of machine learning research occurred in the

1980s, when the backpropagation theory was proposed [41]. In the 1990s, machine learning

research shifts from a knowledge-driven approach to a data-driven approach [42]. Support

vector machines [43] and Recurrent Neural Networks (RNNs) [44] were proposed, and the

computational complexity of neural networks increases. From the 2010s, deep learning

becomes feasible, making machine learning a part of many software services and applications

[45]. Examples of deep learning architectures include deep neural networks, deep belief

networks, and convolutional neural networks.

Machine learning can be mainly classified into two categories: supervised learning and

unsupervised learning. A supervised learning task has an input-output pair, meaning that it

has both an input object and the desired output value. It aims to learn the function which

maps the input-output pairs [46]. Since each sample in supervised learning is tagged with

the desired output value (label), the training process is easy to understand. The evaluation of

the accuracy of supervised learning algorithms is relatively straightforward. Most regression

and classification problems are supervised learning tasks. Typical examples of supervised

learning include handwriting recognition, spam detection, pattern recognition, and speech

recognition.

In contrast to supervised learning, unsupervised learning does not have pre-existing

labels [46]. It aims to identify the patterns or relationships which are previously unknown.

Compared with supervised learning who has targets, unsupervised learning must discover

information without any guidance or supervision. Hence it is more unpredictable. The

advantage of unsupervised learning is that it can perform more complex processing tasks

than supervised learning [46]. The most common unsupervised learning applications in-

4 Introduction

clude clustering, anomaly detection [47], and feature extraction. In mobile networks, both

supervised and unsupervised learning algorithms are involved [48], and supervised learning

is more popular since the targets are usually available under more scenarios, such as user

locations in mobility management and traffic loads in network optimisation problems.

According to the state of the arts, machine learning algorithms and mobile networking

are two independent fields. Some crossovers emerged in recent years indicate that machine

learning techniques start to be employed to solve complicated problems in mobile networks,

especially in the 5th Generation (5G) of mobile systems where things become much more

complex, such as radio resource management [49], mobility management [50] and mobile

traffic prediction [51, 52]. With mobile communication technology development, the diversity

and complexity of mobile networks increase significantly, causing the traditional network

management techniques to become challenging to meet the needs [47]. For example, in the

3G, wireless coverage optimisation needs more than one hour to apply [53]. Although things

have been improved in the 4G networks, the advanced self-optimisation network engines still

spend more than ten minutes to react [54, 55]. However, in the 5G, the context in a mobile

network, such as the number of users in a region, changes fast and frequently. Hence, fast-

response and proactive optimisation become a necessity [56]. The 3rd Generation Partnership

Project (3GPP) Mobile Data Applications Impacts (Release 11) [57] has mentioned that the

network optimisation can be boosted if the user behaviour and mobile network dynamics

can be understood and predicted. Machine learning techniques show great potentials in

extracting user behaviour and spatial-temporal traffic patterns [58]. Researchers recognise

the importance and potential of using machine-learning techniques to solve problems in

mobile networks [59, 60]. Li et al. [61] discuss the potentials and effectiveness of integrating

machine learning into mobile networks to achieve intelligent 5G networks and highlight

the significance of machine learning in future mobile network architectures. Therefore,

integrating machine learning technology into mobile networks becomes a promising research

field.

1.1 Background and Motivation 5

1.1.3 Motivation

With the rapid development of cellular network technologies and mobile applications’ in-

novations, mobile networks’ traffic has increased exponentially in recent decades [62]. The

number of new devices added in 2016 reached nearly half a billion [63]. The global mobile

data traffic has increased by eighteen-fold between 2012 and 2016. The global mobile data

traffic volume has reached 19.01 exabytes (1018 bytes) per month and will increase at a 46 %

annual growth rate [64]. Mobile traffic is expected to has an astounding 1000-fold increase

in this decade [65].

To meet these user demands and reduce the Operational Expenditure (OpEx), mobile

traffic prediction plays a vital role in mobile networks since many mobile applications rely on

real-time or approximately real-time traffic analysis throughout a considered Radio Access

Network (RAN) [37, 66, 67]. For example, operators have to deploy more base stations to

meet the rapidly growing user demands [68]. Although the power consumption of a small

cell is lower than that of a macro base station, the increase in the number of base stations

makes the total power consumption increase. By forecasting the mobile traffic, a sleeping

strategy for the BS might be carried out to reduce energy consumption, which accounts for a

significant proportion of OpEx [37]. The 3GPP Release 8 proposed automatic optimisation in

mobile networks and introduced and self-optimisation network [67]. For congestion control,

a key element of keeping the quality of service in a self-optimisation network, accurate

traffic models can capture the actual statistical traffic characteristics in the network. An

inaccurate traffic prediction model either over-estimates or under-estimates the network

traffic will degrades network performance [69]. Besides, with the introduction of network

slicing, such as network virtualisation and artificial intelligence, the 5G and future mobile

networks will operate in an ultra-flexible way [70, 71]. The number of slices that can be run

on the same infrastructure determines the network performance, relying on traffic prediction

ability [72]. Therefore, mobile network traffic prediction becomes more critical in network

deployment, management, optimisation, improving the users’ quality of experience, and even

acquiring intelligence [61, 73, 74]. This is why mobile traffic prediction has become a hot

6 Introduction

topic attracting attention from both academia and industries in recent years. Meanwhile, the

nature of mobile network traffic makes prediction a complicated and challenging task.

As introduced above, many efforts have been made to predict mobile network traffic.

Numerous methods have been proposed from statistical, mathematical to machine learning

perspectives, and significant progress has been achieved. The early works aim to discover

mobile network traffic features, such as periodicity [75] and correlations [12]. Their findings

lay the foundations for predicting mobile network traffic. Later research starts to try using

mathematical models to model the mobile network traffic dynamics, such as the Markov

model [76], α-stable model [77], Holt-Winter’s exponential smoothing model [78] and

autoregressive moving average model [79]. Although these approaches try to depict mobile

network traffic mathematically, the accuracy is still unsatisfactory. The emergence of machine

learning techniques makes further improvements possible. Machine learning techniques show

the potentials of achieving higher prediction accuracy without complex mathematical models.

Such techniques include Linear Regression (LR) [80], compressive sensing [81], Support

Vector Regression (SVR) [82], ANN [83] and RNN [84]. However, the improvements come

at a cost. Compared with mathematical-based models, machine learning-based approaches

require more data to train the model, along with longer model training time and higher

computation complexity.

Nevertheless, some challenges are brought by the nature of the mobile network traffic

dynamics, which are inevitable and worthy of attention. Meanwhile, the limitations of current

works should also be noticed. Some of the main challenges and limitations are summarised

as follows.

• The accuracy of mobile traffic prediction is a necessity [72]. Mobile network traffic is

very complicated because of many factors, such as time, day of the week, number of

users, and user behaviours. In order to capture mobile traffic dynamics, an accurate

prediction model is required.

• Existing mobile network traffic prediction models based on mathematical methods

simply simulate mobile network traffic variation, which ignores the features and

correlations hidden in the traffic, such as the periodicity and temporal correlations

1.2 Contributions of the Thesis 7

[80]. These correlations help to understand user behaviour and design mobile network

optimisation strategy.

• Although the machine learning-based methods are proposed to improve significantly

the ability to capture traffic dynamics, these methods have significant computation com-

plexity. They require more time to train the model than those based on mathematical

methods [78, 85–89]. An efficient mobile network prediction method is needed.

In order to address the challenges, this thesis explores a traffic pre-processing method to

improve the mobile traffic prediction accuracy and develop a deep-learning-based mobile

traffic prediction framework that achieves competitive prediction performance with high

computation efficiency.

1.2 Contributions of the Thesis

The main contributions of this thesis are summarised as follows:

• Propose a feature extraction method that combines both statistical analysis and fre-

quency domain analysis. It can extract daily traffic pattern features and filter out the

outliers of mobile network traffic.

• Introduce a mobile traffic prediction framework using the proposed feature extraction

technique to achieve better prediction accuracy.

• Develop a novel meta-learning method in the mobile traffic prediction framework, such

to achieve better prediction performance, which is justified by the Normalised Root

Mean Square Error (NRMSE), Normalised Mean Absolute Error (NMAE), and R-

squared (R2) criteria. Simultaneously, the proposed framework dramatically improves

training efficiency in terms of training time and computation load consumption.

• Propose an advanced meta-learning-based mobile network traffic prediction framework

that utilises a Multilayer Perceptron (MLP) as the meta-learner. This framework

8 Introduction

can determine not only the model parameters of the base-learners but also the hyper-

parameters. By introducing the meta-learner, the baseline methods’ prediction accuracy

can also be improved. The proposed framework also shows competitive performance

in predicting the traffic load from another city with different spatial scales and different

types of services.

• Practical applications of the newly developed approaches are demonstrated by using the

real-world mobile network traffic datasets from Italy, London, and China, respectively.

These approaches show the potentials of solving problems in practice.

1.3 Thesis Organisation

The thesis is organised as follows.

Chapter 2: Literature Review

This chapter presents the development and related works related to mobile network

traffic prediction. Then, the machine learning techniques applied in mobile communication

networks are introduced.

Chapter 3: Fundamentals of LSTM

This chapter focuses on introducing the LSTM network, including the principles of

LSTM and how it is used in mobile networks. This lays the foundation for its application

in mobile network traffic prediction. A use case of applying LSTM in mobile networks is

illustrated.

Chapter 4: Traffic Feature Analysis

In this chapter, the features of mobile network traffic are analysed. The analysis is

conducted in both the time domain and frequency domain to extract mobile network traffic

features. This chapter proposes a Twitter traffic prediction framework that combines the

proposed analysis technique and machine learning techniques.

Chapter 5: Mobile Network Traffic Prediction Framework: The ML-TP

This chapter proposes a meta-learning based mobile traffic prediction framework. The

framework utilises the analysis technique proposed in Chapter 4. By exploiting the meta-

1.3 Thesis Organisation 9

learning concept, a meta-learner is trained, giving the best initial parameters of the LSTM

model according to the frequency-domain characteristics of a new mobile traffic prediction

task.

Chapter 6: Mobile Network Traffic Prediction Framework: The dmTP

Based on the ML-TP in Chapter 5, an advanced mobile network traffic prediction frame-

work is proposed to output both the optimal hyper-parameter value and initial status for the

base-learner of a new base-task. In addition, the prediction performance of the proposed

framework is investigated in terms of predicting the traffic load of different types of services

and the mobile network traffic of different cities with different spatial scales. Furthermore,

the performance in predicting varied mobile network traffic load is also tested.

Chapter 7:Conclusions and Future Work

This chapter summarises the works of this thesis and presents future work.

Chapter 2

Literature Review

2.1 Mobile Traffic Analysis

The network traffic refers to the amount of data passing through the network at a given

time [90]. It is mostly encapsulated in network packets, which accounts for the load in the

network. Network traffic is the main component for network traffic measurement, control,

and management [90]. For mobile traffic, it refers to the traffic data generated in the cellular

networks. Thus mobile traffic analysis denotes the analysis related to mobile traffic data.

The most crucial driving factor for mobile traffic analysis is that mobile traffic conveys

vast and diverse individual information, such as geolocations, movement, interactions and

mobile services accessed [1]. Meanwhile, mobile traffic data have three exceptional advan-

tages. The first one is population coverage. Since more than 60% population around the

world is equipped with at least one mobile device [3], mobile traffic data can represent human

activities to a large extent. The second advantage is the geographical coverage. Mobile traffic

data can be collected if a base station covers. Thus, the data can span from small geographical

regions to city level, even nation-wide. The last one is time coverage. The timespan of

mobile traffic data can range from weeks to months. Based on these advantages, mobile

traffic analysis attracts more experts from various fields, such as sociology, epidemiology,

transportation and wireless communications [1]. Consequently, research usually involves

many domains, and it is difficult to find a clear separation for classification.

12 Literature Review

Since mobile traffic analysis is usually cross-disciplinary, a possible way for classification

is to organise according to research subjects. From the perspective of telecommunications,

based on the research’s domains, the related research can be classified into three main

domains: network analysis, mobility analysis, and social analysis [1]. The network analyses

mainly focus on understanding the mobile network’s traffic dynamics and discuss how the

mobile network can accommodate these mobile network traffic demands; mobility analyses

investigate either individual users or groups of users’ mobility characteristics. The social

analyses deal with the relationships between mobile traffic and social features, such as

mobile users’ interactions and how they use mobile services. Related research efforts will be

discussed in the following sub-sections.

2.1.1 Mobile Network Traffic Prediction

In the past few decades, mobile cellular communication technology has developed rapidly.

The system capacity and data rate have been improved significantly [91]. Along with recent

advances in mobile communication technologies, the number of mobile devices experienced

explosive growth, including a wide variety of smart devices, such as the Internet of things

devices. According to the investigation from GSMA [3], the number of mobile subscribers

has exceeded five billion in 2020. The rapid growth of mobile devices and the demand

for multimedia services prompt the rise of data traffic. The global mobile data traffic has

an eighteen-fold growth from 2012 to 2016. It is estimated to increase seven-fold in the

following five years [63]. The global mobile data traffic volume has reached 19.01 exabytes

(1018 bytes) per month and will increase at a 46% annual growth rate [64]. The industry’s

latest prediction indicates that the annual traffic generated in 2021 will reach 3.3 zettabytes

(1021 bytes) [92].

Although mobile network operators and network equipment vendors keep making efforts

on enhancing wireless link bandwidth and network capacity by employing advanced tech-

niques at both medium access layer and physical layer in Long Term Evolution (LTE) and

LTE-Advanced systems, it is difficult to sustain the rapid growth of network demand [91].

The advances in hardware are still difficult to meet the rapidly increasing demand, so re-

2.1 Mobile Traffic Analysis 13

searchers turned to seek improvements at the software level to improve network performance

[91].

To meet the rapidly growing traffic needs and reduce the OpEx, mobile network traffic

prediction at the cellular level plays a vital role in mobile networks since many mobile appli-

cations rely on real-time or approximately real-time traffic analysis throughout a considered

RAN [66]. The reason behind this is that, by forecasting the traffic in mobile networks,

some proactive optimisation strategies can be applied to improve network performance. For

example, the sleeping strategy for the base stations might be carried out to reduce energy

consumption, which accounts for a significant proportion of OpEx [37]. By knowing the

network traffic in advance, a resource allocation strategy can be applied, avoiding the possible

network congestion [69]. Also, for mobile caching, a key element in 5G networks whose

purpose is to proactively store contents in edge clouds adjacent to mobile users in advance

in order to subscribers’ experience and the stability of mobile networks [93], also requires

predicting downlink mobile traffic data required by terminal devices. Moreover, with the

introduction of network virtualisation and artificial intelligence, future mobile networks will

operate in an ultra-flexible way [70, 71]. Thus mobile network traffic prediction becomes an

essential element in network design [94]. Therefore, mobile traffic prediction will then be

more and more critical to mobile networks, including network deployment, management,

and even acquiring intelligence [61, 73].

Since analysing mobile network traffic is the key to know how the resources in the mobile

network are consumed and even yield the potential of improving mobile network performance,

it attracts more attention. The early research focuses on exploring mobile network traffic

characteristics, which lays the foundations for subsequent research. Williamson et al. [75]

observed the network traffic of 100 base stations. They found that network traffic patterns

show periodicity on a daily basis. Tidal effects occur where high traffic consumption during

the day and low consumption at night. Paul et al. [12] conducted the auto-correlation

analysis of the whole network traffic in a nationwide 3G network. They showed that the

auto-correlation function has peaks at 24-hour intervals, indicating the regularity of human

activity patterns. Shafiq et al. [76] presented an analysis of aggregated cellular network

14 Literature Review

traffic from a mobile operator. They showed that the aggregated traffic load has diurnality.

The regularity is also confirmed by Keralapura et al. [95], Zhang and Arvidsson [96], and

Oliveira et al. [97]. Although the periodicity and tidal effects exist, mobile network traffic

also shows fluctuations over the daily patterns and geographical locations. This diversity also

depends on the dataset considered [75, 98]. At the same time, the mobile network traffic is

also spatially heterogeneous. Hoteit et al. [99] analysed the service consumption of mobile

networks in Paris and showed that mobile traffic differs geographically. Shafiq et al. [100]

noticed that the types of mobile traffic consumed depend on the locations. Therefore, the

regularities of mobile network traffic make predicting mobile network traffic feasible and

fluctuations make the prediction a challenge.

Many efforts have been made to use mathematical models to model mobile network traffic.

Jin et al. [101] characterised the data usage patterns by the Markov model. Shafiq et al. [76]

employed a Markov model to model the cellular network’s temporal traffic demand. However,

due to the Markov model’s limitation, which has limited states, it can only model limited and

discrete traffic status. In contrast, the nature of real network traffic is continuous. In light of

mobile network traffic’s self-similarity, Ge et al. [15] utilised the α-stable model to predict

the cellular level traffic. Tikunov and Nishimura [78] proposed a cellular traffic prediction

technique to forecast the traffic in GSM/GPRS networks using Holt-Winter’s exponential

smoothing model. Wang et al. [89] analysed the temporal cellular traffic characteristics and

showed that it has periodicity. They further found the mobile traffic has three main frequency

components. Then they proposed a sinusoid superposition model to describe the temporal

traffic dynamics. The linear AutoRegressive Integrated Moving Average (ARIMA) model,

which is a generalisation of an autoregressive moving average model, aiming to address

the time-series modelling and prediction, was adopted in [41, 79, 102, 103] to capture the

short-term correlations in mobile network traffic. As an extension of the ARIMA method,

the seasonal ARIMA model has been adopted in [86, 103] to improve the ARIMA model on

long-term traffic correlation capturing. Although these methods have good understandability

and relatively low computational complexity, it is difficult for them to achieve good prediction

2.1 Mobile Traffic Analysis 15

accuracy since mobile network traffic is much more complicated, where mathematical models

are hard to model mobile network traffic irregularities.

2.1.2 Mobility Prediction in Mobile Networks

Previous research has shown that user mobility affects mobile network research and develop-

ment [104], such as mobility management for user handover and association events in which

a user moves between cells [105]. To manage user mobility and keep connections between

users and the mobile network, mobility prediction is considered a practical approach [106].

The ability to predict the subscriber’s next cell or even the trace that the subscriber will

move across cells becomes a critical aspect in the future mobile networks [107]. Mobility

prediction has three potential applications in mobile communications: handover management,

resource management, location-based service pre-configuration, and network planning [108].

Early research focuses on analysing user mobility characteristics. Tang and Baker [109]

investigated the user movement features in a metropolitan-area packet radio wireless network.

They used the clustering method and focus on three aspects: the frequency, distance of

moving, and potential mobility patterns. The results showed that most users have very limited

mobility. The travel distance is inversely correlated to the number of locations visited by

a user. They also found that different users show different mobility patterns, such as some

users are active all day. In contrast, some are more active only during the daytime. Halepovic

and Williamson [13] also obtained similar results. They found that the majority of users have

low mobility, and the mobility follows a heavy-tailed distribution, meaning that very few

users have high mobility. Paul et al. [12] also proved this heavy-tailed distribution of visited

locations with a national-wide dataset. The subsequent works [24, 26] also obtained similar

results.

Later, research efforts have been made to explore the spatiotemporal regularity of user

mobility. González et al. [27] have shown that the popularity of locations visited by a user

follows Zipf’s distribution, which means users are more likely to visit specific locations

more frequently. Besides, they showed that a strong regularity exists in individuals’ mobility

patterns, i.e., users are likely to re-visit some locations within 24 hours, indicating the

16 Literature Review

temporal regularity. Song et al. [28] conducted a similar analysis using their dataset to

prove Zipf’s law and mobility regularity on a 24-hour basis. Cho et al. [29] and Hess et

al. [26] also showed that user mobility has geographic and temporal regularity, i.e., users

tend to visit the same locations at a similar time every day. The latter further indicated

that besides daily pattern, user mobility also shows the periodicity of one week. This is

consistent with the results in [30] and [31]. These strong regularities raise the discussion

on the predictability of user movement. Song et al. [32] conduct an early investigation

on the predictability of user mobility. They employed the entropy method to measure the

randomness and measured the regularity of the spatiotemporal sequence of locations that a

user visits. Their dataset has 50,000 users’ trajectory records, and the results show that users’

movements have low randomness. 93% of user mobility is theoretically predictable. This

research lays the foundation for predicting the feasibility of user mobility. Later research

also showed that high predictability exists in user movements [14].

Many efforts have been made to model user mobility from both individuals and aggre-

gated population perspectives. The individual perspective mainly focuses on analysing and

predicting individual user moving traces. In contrast, the aggregated mobility analysis aims

to investigate a large population’s mobility features with low spatial granularity [1]. Scourias

and Kunz [83] proposed a stochastic mobility model based on daily activity patterns for

individual mobility studies. In this model, the subscribers were divided into four categories

depending on their jobs and activities and then derived a mobility model based on activity

pattern theory. In [13], Halepovic and Williamson first obtained the empirical distribution of

the number of cells visited by a user and the empirical distribution of cell change frequency

and then built a stochastic-based mobility model.

The Markov chain model is one of the popular methods used in mobility prediction.

It is a stochastic process that describes a sequence of all possible states. The probability

of each state only depends on the previous state [16]. A Markov process is memoryless,

meaning that the future state is solely based on the present state. Thus it is usually used in

scenarios with a chain of events that the next event is only dependent on the current status

and independent of the previous status. The transition probability matrix is pre-defined. Due

2.1 Mobile Traffic Analysis 17

to this property, the Markov chain has become a popular tool in mobility prediction. Ulvan

et al. [17] and Ariffin et al. [18] employed the original Markov chain model to predict user

mobility. A user’s positions may visit from the states, and the user moves among states with

transition probability. The next state that the user may visit only depends on the current

state. In [19], the state is not limited to a position but can also represent the movement.

Hadachi et al. [20] proposed an enhanced Markov Chain model that embeds association

rules, such as universal users mobility behaviour and temporal rule, into a second-order

Markov Chain model. However, in reality, the next user state depends not only on the current

state but also on previous states. Gambs et al. [89] proposed a mobility Markov chain

model, which considers n previous locations that a user has visited to solve this issue. By

incorporating more previous locations, the prediction accuracy is improved. However, this

improvement comes at the cost of increasing the model complexity. Markov chain model has

two disadvantages. Since its performance depends on the transition probability matrix, how

to obtain the accurate matrix is a challenge. The other disadvantage is the poor extensibility.

When the number of states is large, acquiring the transition matrix becomes challenging.

For the efforts on aggregate mobility analysis, the Gravity model is used in [22] to model

user mobility. It performs well in modelling the commuting distances of users. Simini et

al. [23] proposed the radiation model, which outperforms the gravity model. Lu et al. [14]

employed the Markov chain model. They showed that the first-order Markov chain model

could achieve an average prediction accuracy of 91%. Since the gravity model and the

Markov chain model can only model the mobility at low spatial granularity, Yang et al. [25]

propose an improved model by combining these two models. The results show that the new

model works at different granularities.

This thesis mainly focuses on individual mobility since mobility on the individual level

is of more interest in cellular networks in most cases.

2.1.3 Social Analysis in Mobile Networks

The social analysis focuses on the relationship between mobile traffic and user social char-

acteristics, such as investigating the impacts of demographic, economic, or environmental

18 Literature Review

factors on mobile service consumption [1]. The social analysis can be classified into four

main research directions [1], as illustrated as follows.

The first research direction aims to understand the structure of interactions among mobile

users. Most studies represent these interactions through graph theory [1]. The mobile traffic

datasets are usually represented as mobile call graphs. A mobile call graph can be regarded

as a mathematical structure recording subscribers and mapping to a set of vertices with their

interactions, such as voice calls and text messages [1]. In an early work [2], Nanavati et

al. described the call-in and call-out relationship by constructing an unweighted directed

graph. They found that the call-in and out behaviours follow a power-law distribution, which

implies that users who make calls to more users also tend to be called by more subscribers.

Doran et al. [5] have drawn a similar conclusion.

The second direction is demographics. This direction studies the relationship between

mobile user behaviour and demographics. For example, Yang et al. [6] investigated the

impacts of age and gender on mobile traffic. They found that people of a similar age tend to

communicate more often. Besides, female users have a longer calling duration than male

users. Soto et al. [7] defined a list of mobile user features and showed that the mobile features

could predict the user’s economic level.

The impacts of the geographical and social environment on mobile communication

patterns are the third research direction. Onnela et al. [110] investigated the effects of

physical distance on social interactions. They indicated that the mobile contact between two

users follows a power-law distribution with respect to their geographical distance. In [111]

and [112], the authors implied that the users who have close social contact tend to reside

within a short geographical distance.

The last direction is the relationship with epidemics. Wesolowski et al. [8], Enns and

Amuasi [9] studied the correlation between mobile traffic and diseases diffusion. Besides

using mobile traffic to understand the disease spreading, some research also tries to utilise

mobile traffic to control the disease spreading. Leidig et al. [10] and Kafsi et al. [11]

proposed spreading-aware strategies to reduce disease diffusion by extracting trajectories

from mobile traffic.

2.2 Machine Learning in Mobile Network Traffic 19

2.2 Machine Learning in Mobile Network Traffic

With the rise of machine learning, lots of efforts have been made to solve the problems as

mentioned above using machine learning techniques. For mobile network traffic prediction,

at the early stage, Linear Regression (LR) [80], compressive sensing [81, 82, 113, 114],

and the Support Vector Regression (SVR) [115] are utilised for traffic loads prediction.

Researchers [116–119] also used principal components analysis [116], Kalman filtering

[116-117], and Gaussian process [119] to address the traffic prediction tasks. These machine

learning methods are shallow machine learning approaches due to the low complexity of

these algorithms. The low complexity comes at the cost of limited prediction performance.

As the mature of deep learning algorithms, some research efforts leveraged deep learning

algorithms to predict mobile network traffic.

Nie et al. [120] exploited the deep belief network-based model and the Gaussian model

to model the low-pass and high-pass features of cellular level mobile traffic. Wang et

al. [121] investigated the spatio-temporal dependencies among cellular towers and used

graph neural networks to model and forecast mobile traffic. Considering the capability of

capturing the temporal correlations, Tian and Pan [84] trained an RNN to predict traffic

loads. As an evolution method of RNN, LSTM shows competitive performance in capturing

long-term mobile traffic dynamics and thus has been used in many related works, such as

[122–124]. Zhang et al. [125] considered the mobile traffic pattern as images. They proposed

a ZipNet, which combines a convolutional neural network and a generative adversarial neural

network to capture spatio-temporal mobile traffic patterns. Huang et al. [126] combined

the convolutional neural network and RNN, where a convolutional neural network captures

the geographical features, and RNN extracts mobile traffic’s temporal features. However,

although these deep learning-based methods improve traffic prediction accuracy, they incur

some new challenges. First, deep learning-based techniques require lots of data to train

the model, meaning they have high data availability requirements. Secondly, these existing

methods must construct and train a specific prediction model for each individual prediction

task since the time series of mobile traffic generated in different cells are quite different.

20 Literature Review

Separately training the prediction models for different mobile cells is not only time consuming

but also computing consuming.

For mobility analysis, machine learning is becoming a powerful tool due to its capability

of capturing spatial dependencies from sequential data [47]. Biesterfeld [83] made early

attempts to use Artificial Neural Network (ANN) to learn the subscriber movement pattern

and predict the next location during the next time interval. Their results show that ANN

outperforms conventional methods in dealing with dynamic movement patterns. Akoush

et al. [127] proposed a Bayesian neural network, which integrates Bayesian inference into

ANN to predict the next location and service required by the user. Chen et al. [128] proposed

a prediction framework that uses an echo state network with conceptors, which is a particular

type of RNN, to predict user mobility patterns and content request distributions. Yang et

al. [129] adopted a support vector machine for terminal mobility prediction in 5G ultra-

dense networks, which reduces the hardware complexity compared with ANN but can still

achieve competitive prediction accuracy. In [130–132], principle component analysis was

employed as another approach to extract user mobility patterns. Xi et al. [133] argued that

mobility data are high-dimensional as the development of mobile networks. The shallow

machine learning models, such as support vector machine, have difficulties dealing with such

high-dimensional data. Nguyen [134] made early efforts to use a deep learning algorithm,

deep autoencoder, a variant of ANN that stacks multiple layers of restricted Boltzmann

machines to learn typical user mobility patterns. The results show that the deep autoencoder

framework significantly improves the performance in reconstructing user trajectory than

principal components analysis. In [133], Xi et al. employed a convolutional neural network,

which can capture the local dependency of visual information. They built a convolutional

neural network model with a hierarchical structure to predict human moving paths. However,

although a convolutional neural network achieves excellent performance, it is hard to deal

with the long time-series data.

Chapter 3

Fundamentals of LSTM

This chapter mainly focuses on introducing the fundamentals of the LSTM network. The

principles of the LSTM network and how it is used for prediction are introduced in detail.

Besides, the data pre-processing techniques are also presented along with the employment of

LSTM in this chapter. By predicting mobile user mobility, the LSTM network shows great

potential in dealing with time series problems in mobile networks.

3.1 Introduction

The traditional ANN is inspired by biological neural networks such as human brains. Figure

3.1 shows the architecture of a simple ANN example. It has two neurons in the input layer

and output layer, one hidden layer which contains three neurons. Each neuron takes one

value, a linear combination of all input connections, as the input and outputs one value. In

ANN, all inputs are independent of each other, and all outputs are independent as well. This

means that the output is fixed for a given input vector, and changing input orders will not

change the output values. For example, for two given input samples, x1 and x2, the ANN

gives the output denoting as y1 and y2, respectively. Changing the input order to x2, x1 will

not change the results given by ANN except the output order, i.e., the output becomes y2 and

y1. However, in practice, the inputs and outputs are correlated in some tasks. For example,

the user movement in the mobile network is temporal correlated. The next location that the

22 Fundamentals of LSTM

user will move to depends on the current location [135]. Hence, to address this correlation,

RNN, a type of ANN, is utilised. Figure 3.2 shows the simplified network architecture of

ANN and RNN, respectively. The difference between ANN and RNN is that RNN has a

loop in the hidden layer, which allows the information to persist. By adding the feedback

connections, the information from previous inputs can keep passing such that previous states

have an influence on future states, as shown in the unfolded RNN architecture in Figure 3.2.

This enables RNN the ability to deal with sequential tasks. However, RNN has the problem

of vanishing gradient [136]. This means when training an RNN using the back-propagation

technique, and the back-propagated gradients will tend to zero, i.e., vanish, leading to the

network loses previous information [137]. This leads to the limitation that RNN cannot deal

with tasks with long-term dependencies. In practice, some tasks, such as natural language

processing and time-series prediction tasks, are sequentially related, which means previous

inputs will affect subsequent outputs. In these tasks, long-term dependencies are essential

factors. To solve this problem, LSTM, an improved architecture of RNN, was proposed [138].

The key idea of LSTM is to replace the loop structure in RNN with gate architecture known as

the memory block [138], which determines what and to what extent that the information will

be remembered. The gate structure significantly mitigates the gradient issues in traditional

RNNs. This elegant feature makes LSTM a powerful tool in dealing with sequential tasks,

such as speech recognition [139], handwriting recognition [140], and anomaly detection

[141].

The critical component that makes LSTM networks possess the ability to model long-term

dependencies is the LSTM memory block. As illustrated in Figure 3.3, each LSTM memory

block is a recurrently connected subnet logically, which contains some functional modules

called gates.

According to their corresponding practical functionalities, these gates are classified as the

input gate it , forget gate ft and output gate ot . In addition, LSTM has a cell state Ct which

stores previous network state information from previous inputs. The functions of the gate

structures are summarised as follows:

3.1 Introduction 23

Fig. 3.1 An example of ANN

Fig. 3.2 Network architecture of simplified ANN (left) and simplified RNN (right)

Fig. 3.3 Inner structure of an LSTM network

24 Fundamentals of LSTM

(i) The forget gate controls how much information still remains in the memory block’s

current state through the recurrent connection (see equation 3.1).

(ii) The input gate controls how much new information flows into the memory block’s

current state (see equation 3.2).

(iii) Both the forget gate and the input gate control the cell state, which is represented in

equation 3.3.

(iv) The output gate controls how much information is used to compute the output activation

of the memory block and further flows into the rest of the LSTM network (see equation

3.4).

The main operations conducted in the LSTM network are concluded as below:

ft = σ(Wxfxt +Whfht−1 +bf) (3.1)

it = σ(Wxixt +Whiht−1 +bi) (3.2)

Ct = ft ⊙Ct−1 + it ⊙ϕ(Wxcxt +Whcht−1 +bc) (3.3)

ot = σ(Wxoxt +Whoht−1 +bo) (3.4)

ht = ot ⊙ tanh(Ct) (3.5)

where ⊙ denotes the Hadamard product, xt is the input vector, ht are the hidden states, Wxf,

Whf, Wcf, Wxi, Whi, Wci, Wxc, Whc, Wxo, Who and Wco represent the weight matrices in

each gate that are needed to be trained. bf, bi, bc and bo are the biases, which are ’offsets’

added to each unit to ensure the activation function to be shifted to fit the data better. σ(x)

and ϕ(x) are activation functions where σ(x) usually takes the sigmoid function and ϕ(x)

usually takes the hyperbolic tangent function. The reasons for choosing these two functions

are that the output of the sigmoid function ranges between 0 and 1, which can either let no

flow (0) or complete flow (1) of information go through the gates. To overcome the vanishing

gradient problem, a function whose second derivative can sustain for a long time before

3.1 Introduction 25

Fig. 3.4 Sigmoid function and hyperbolic tangent function

going to zero is needed. Thus the hyperbolic tangent function is a good candidate with this

property. In addition, it usually converges faster and consumes less gradient computation

[142]. The sigmoid function of the hyperbolic tangent function is defined as follows:

σ(x) =
1

1+ e−x (3.6)

ϕ(x) = tanh(x) =
ex − e−x

ex + e−x (3.7)

Figure 3.4 shows the sigmoid function and hyperbolic tangent function, which are usually

employed in the LSTM network. In a basic LSTM memory block, each gate consists of a

two-layer neural network where the neuron number of the output layer equals the output

vector’s length. The neuron number of the input layer equals the input vector’s length plus

that of the output vector. In Figure 3.3, ⊕ and ⊗ denote summation and dot product of two

vectors, respectively.

The training process of a traditional ANN (feedforward neural network) is based on gradi-

ent descent combined with a backpropagation algorithm. The method used to train an LSTM

is slightly different. Since LSTMs and RNNs have cycles, the backpropagation algorithm

cannot directly be applied. The backpropagation through time algorithm is proposed [143]

for training LSTMs and RNNs. It works similarly to the backpropagation algorithm. It first

unfolds the LSTM in time, transforms LSTM into a feedforward neural network, and then

applying the backpropagation algorithm.

26 Fundamentals of LSTM

Fig. 3.5 General process for LSTM mobility prediction

3.2 LSTM in Mobile Communications

Mobile networks generate various sequential data, such as network traffic loads and user

equipment trajectories [47]. Thus, methods dealing with the time series problems, such

as LSTM, have become a promising approach to enhancing sequential task analysis. This

section will introduce the general process and background knowledge of using LSTM to

predict user mobility. The overall steps for mobility prediction using LSTM in this chapter

have been summarised in Figure 3.5. It consists of four steps. First of all, the original data,

such as GPS data, are needed to be pre-processed to ensure the data are suitable for this

task; secondly, the user Points of Interest (POI) will be extracted; the POI represents the

regions where user spends long time to stay at, and it will be introduced in detail in the

following part. Then the features for training the LSTM network will be extracted. Finally,

an LSTM network will be trained and used for mobility prediction. The rest of this section

will introduce the procedure step-by-step.

3.2.1 Data Pre-processing

Data collection and pre-processing are two critical parts that can affect the performance of

prediction performance. For a trajectory recorded by GPS logs, although GPS usually has

relatively high accuracy in recording geolocation data, it may still have errors due to some

reasons such as noise and time error. Therefore, to reduce the effects of data error on the

prediction performance, data pre-processing is necessary.

A GPS trajectory usually contains a set of GPS records. Each record has timestamp and

geolocation information, including latitude, longitude, and altitude. It can be denoted as

p(i) = (lati, loni,alti, ti) (3.8)

3.2 LSTM in Mobile Communications 27

where i represents the i-th GPS record, lat i, loni, alt i, ti, represent latitude, longitude, altitude,

and time, respectively.

To identify the error GPS records, a heuristic anomaly detection method is applied, which

has been widely used in previous work [144–146]. The mean speed between the GPS point

and its preceding point can be calculated, denoted as

vp(i),p(i−1) =
dist

(
p(i), p(i−1)

)
ti − ti−1

(3.9)

where the denominator and the numerator represent the geographical distance and time differ-

ence between the i-th record and its preceding record, i.e. the (i−1)-th record, respectively.

The speed obtained is then compared with a pre-set threshold speed vth, which depends

on the maximum reasonable speed in practice, such as urban speed limit and maximum

achievable speed of pedestrians, vehicles, or railways. If the speed exceeds the threshold

speed, i.e., vp(i),p(i−1) > vth, the i-th record will be regarded as an anomaly. In this work, the

record will be removed if it is identified as an abnormality.

After the error detection, data resampling will be applied. The motivation behind this

is that the GPS sampling frequency is usually not uniform. The time intervals between

consecutive neighbouring records range from seconds to hours. Since this work focuses on

the locations where the user stays for a long time rather than the trajectory itself, and the

nonuniformity makes the latter feature extraction becomes difficult. Thus, the resampling

technique is needed.

As mentioned above, this work concentrates on the areas where a user spends a long

time rather than precise location information. Thus the average coordinates (latitude and

longitude) can be taken during each time interval as the rough location. The average latitude

and longitude during the time interval j can be defined as:

lat j =
1
m

m

∑
k=1

lat j,∀k in time interval j (3.10)

lon j =
1
m

m

∑
k=1

lon j,∀k in time interval j (3.11)

28 Fundamentals of LSTM

Fig. 3.6 User trajectory and POI extraction

where m is the total number of samples in time interval j.

Thus, the average coordinate at time interval j can be denoted as coordinate(i) =(
lati, loni

)

3.2.2 POI Extraction

After the pre-processing, a trajectory with a fixed sampling rate is obtained. This trajectory

describes the user mobility characteristics. Not all points in the trajectory are equally

important. This work focuses on the locations where users spend time, such as shopping

centres, working areas, and residential areas. For example, Figure 3.6 shows an example

of a user trajectory that is sampled at a fixed frequency. There are two areas with densely

distributed GPS points through observation. These GPS densely distributed areas represent

the locations where the user stays for a long time. These areas are named POI, and these

POIs are of more interest. To extract these locations, the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) clustering method is applied as follows.

DBSCAN and K-means are the most common clustering approaches. The reasons for

choosing DBSCAN in this work can be summarised as follows. Compared to the very

traditional K-means method, the DBSCAN based clustering approach does not need to

specify the number of clusters. Since the POI amount of each user is unknown, the K-means

3.2 LSTM in Mobile Communications 29

approach is not suitable for this case. Second, DBSCAN is more robust to noise than

K-means. Since POIs are of more interest than the moving path in this work, DBSCAN

can recognise the clusters and mark unrelated points as noise. Compared with DBSCAN,

K-means will assign every point into a cluster. Thus it is more sensitive to noise. In addition,

DBSCAN can deal with the irregular shapes of clusters [147]. As shown in Figure 3.6, the

extracted POIs are of more interest, and the points forming the moving path are regarded as

noise. When using K-means, these grey points will also be classified into clusters. Compared

with K-means, DBSCAN can effectively recognise the noise points and filter them out. Thus,

DBSCAN is a better choice for POI extraction.

In general, there are two parameters to be specified in the DBSCAN algorithm, known as

the Eps and the MinPts. The effects of the two parameters on the clustering results have been

concluded in Remark 3-1. In this study, Eps represents the physical distance, and MinPts is

a threshold to form a POI. A point is considered as the core point of other data points if the

number of these data points within the radius of Eps is no less than MinPts. The purpose of

clustering is to find the set of all points connected to the cluster’s core point. The clusters

obtained via the DBSCAN technique are POIs of the user. The procedure of DBSCAN can

be summarised as Algorithm 3-1, as shown below.

Remark 3-1: The value of Eps affects the shape of clusters. Large Eps may introduce

the unrelated points into clusters, and small values may lead to one region be divided into

several clusters. MinPts determines the minimum number of points to form a cluster. The

value selection of Eps and MinPts is based on experience.

By applying the DBSCAN algorithm to the pre-processed user trajectory, a set of clusters

will be obtained. These clusters represent the areas where the user stays for a long time, i.e.,

each cluster denotes a POI. Then each POI will be numbered, and all POIs form the POI set

of the user.

3.2.3 LSTM Network Training and Prediction

This section illustrates the related work for training an LSTM network, including input feature

selection, feature normalisation, output selection, dataset division, and model performance

30 Fundamentals of LSTM

Algorithm 1 : POI Extraction using DBSCAN
Input: P: Pre-processed trajectory database consisting P records;

Eps: radius of distance;
MinPts: minimum number of points required to form a cluster (POI);

Output: Collection of density-based clusters
1: Mark all objects p as unvisited;
2: C = 0;
3: for i=0, i<length of P, i++ do
4: if p[i] is unvisited then
5: Mark p[i] as visited;
6: Find the set N which includes all objects in the range of Eps;
7: if |N| ≥ MinPts then
8: C++;
9: for p[j] in N do

10: if p[i] is unvisited then
11: Mark p[i] as visited;
12: Find the set N′ which includes all objects in the range of Eps;
13: if |N′| ≥ MinPts then
14: Add all points in N′ into N;
15: end if
16: if p[j] does not belong to any cluster then
17: Add p[j] to cluster C;
18: end if
19: end if
20: end for
21: end if

return C;
22: else
23: Mark p[i] as noise;
24: end if
25: end for

evaluation. These processes can be summarised in Figure 3.7. In this figure, the general

procedure for mobility prediction and evaluation can be divided into five parts: network

input feature normalisation, LSTM training, LSTM prediction, inverse normalisation, and

prediction evaluation. In this figure, xt is a vector which contains the features of the user’s

historical trajectories, x′t is the normalised input vector to the LSTM network; ot is the output

given by the LSTM network, which further gives ĉt+1 after inverse normalisation. Finally,

ĉt+1 is compared with ground-truth, ct+1, to evaluate the model performance.

3.2 LSTM in Mobile Communications 31

Fig. 3.7 General procedure for training an LSTM network for mobility prediction and
evaluation

In this work, the LSTM aims to predict the POI that the user will go to during the next

time interval. Therefore, the output of the LSTM network will be the label of the POI. The

LSTM network input is a vector consisting of five features: latitude, longitude, POI, date,

and time. Thus, each data sample will be converted to the form which is suitable to the input

of the LSTM, i.e., each sample is denoted in the following form:

xt : (latt , lont ,ct ,dt , t) (3.12)

where latt , lont , ct , dt , and t represent latitude, longitude, POI label, day of the week and

time of sample xt , respectively.

For each feature, a conversion is needed to ensure the feature is compatible with the

LSTM network. To be more specific, the latitude and longitude are in floats, which can

be input to the LSTM network; however, the date ranges from Monday to Sunday, the

value ’Monday’ cannot be directly inputted to the LSTM network. An encoding scheme

is necessary to convert the non-digital features into digital form. Since the date has a very

limited value range, i.e., only seven possibilities, the simplest way is to encode Monday to

Sunday with integers 1 to 7, respectively. Similarly, for the feature time, ‘0, 1,. . . , 23’ is used

if it is in hours, or ‘0, 1, . . . , 1439’ is used if it is in minutes.

After feature encoding, feature normalisation is applied to ensure the LSTM network

work properly. Min-max normalisation is one of the most common methods for feature

scaling. It scales features to the range in [0,1] or [-1,1]. The former feature range is more

32 Fundamentals of LSTM

common, and it is defined as:

ynorm =
y−min(y)

max(y)−min(y)
(3.13)

where min(y) and max(y) represent the minimum and the maximum value of feature y.

The min-max normalisation applies to all features, respectively, to ensure all features

of the samples are in the range [0,1]. There are two more steps before training the LSTM

network. The first one is to clarify the output of the LSTM network, i.e., the target. In this

work, as mentioned at the beginning of this section, the target is the POI that the user will go

to during the next time interval, i.e. ct+1. Therefore, each sample has an input-output pair,

denoting as (xt ,ct+1). Inverse normalisation applies to the output of the LSTM network, ot ,

to obtain the predicted POI given by the network, denoted as ĉt+1. The calculation of inverse

normalisation is as follows

yinv = ynorm (max(y)−min(y))+min(y) (3.14)

where ynorm is the normalised variable, min(y) and max(y) are the same as in equation 3.13.

The final step is to divide the dataset into a training dataset and a test dataset. The

training dataset is used to train the LSTM network, and the test dataset is used to evaluate the

performance of the LSTM network. The training dataset usually accounts for 70-80% of the

whole dataset, whereas the remaining is the test dataset.

The architecture of the LSTM network employed in this chapter consists of three layers:

one input layer, one hidden layer and one output layer. The input layer has ten neurons

that take the input feature as the network input; the hidden layer has five neurons. The

output layer has one neuron that outputs the normalised predicted POI. The LSTM network

is trained based on a widely used stochastic gradient-based optimisation technique, Adam

[148]. In addition, the MSE loss is chosen as the loss function.

To evaluate the performance of the LSTM network, prediction accuracy is employed,

which measure the number of correct predictions over the total number of predictions. The

3.3 Use Case: The LSTM-based User Mobility Prediction 33

accuracy can be defined as:

Accuracy =
1
m

m

∑
i=1

1ĉi=ci ×100% (3.15)

where ci is the ground truth of the POI in the time interval i, and 1ĉi=ci represents value is

counted as 1 when ĉi = ci.

3.3 Use Case: The LSTM-based User Mobility Prediction

In this section, a user mobility prediction model is proposed using the LSTM network. The

data pre-processing and user movement feature extraction are introduced first. Then the

LSTM network is utilised to predict user mobility. The model is validated using a real dataset.

3.3.1 Data Pre-processing

Fig. 3.8 An example of user trajectory

The dataset used is collected by the Geolife project from Microsoft Research Asia [149]. It

has 182 users’ trajectories in a period of three years. Each record contains GPS location, date,

and time, which can be expressed as p : (latp, lonp,altp, ti), representing latitude, longitude,

altitude, date and time, respectively. The altitude information is ignored in this work since

this work focuses on the horizontal position. The records are collected under different time

intervals, from seconds to hours. Figure 3.9 shows the original trajectory of a user in a day.

By zooming in the trajectory, it can be found that the trajectory is composed of many dense

GPS points. Each GPS point is a record, and some records may have the wrong location due

to the error of the GPS. The method introduced in section 3.2.1 is used to detect and remove

34 Fundamentals of LSTM

Fig. 3.9 Original trajectory of a user

Fig. 3.10 Pre-processed user trajectory

3.3 Use Case: The LSTM-based User Mobility Prediction 35

these abnormalities. First, the geographical distance, dist(rec1,rec2) and the time difference,

trec1,rec2 , between two sequential records, rec1 and rec2 are calculated, such that the speed,

vrec1,rec2 , between the two locations can be obtained, as shown in equation 3.16:

vrec1,rec2 =
dist(rec1,rec2)

trec1,rec2

(3.16)

The speed is compared with a threshold speed of vth=430 km/h, which is known as the

maximum speed of urban rail transport. The record will be then removed if the speed exceeds

the threshold speed, i.e. vrec1,rec2 > vth. For example, in Figure 3.8, the average speed

between p3 and p4 can be calculated as v3,4, and if v3,4 > vth, p4 will be regarded as an

outlier and will be removed.

After that, the user trajectory is resampled at a one-minute interval. As shown on the left

of Figure 3.9, although the moving path is clear, it is difficult to know the locations where the

user stays long (as shown on the right of Figure 3.9). A new user moving trace with a fixed

sampling frequency is obtained by applying the resampling technique, as shown in Figure

3.10. From this figure, there are three areas where the GPS points are densely distributed,

located at the top left, middle and bottom right in this figure, respectively. Since the points

are collected at a fixed time interval, this means that the user spends more time in these areas.

After resampling, the trajectory of a user can be denoted by a set of locations expressed

as trace = p1, · · · , pn. The resampling ensures the subsequent analysis and greatly reduces

the data volume. The coordinates of latitude and longitude during each time interval i are

averaged to obtain the average position
(
lati, loni

)
during this interval, as shown in equation

3.10 and equation 3.11.

3.3.2 POI Extraction

As introduced in section 3.2.2, DBSCAN is employed to extract the POIs. Based on the

experiment results, the suitable value of the two parameters in the DBSCAN algorithm,

Eps, and MinPts, are determined through experiments. The value of Eps is set to 0.01,

and the MinPts is set to 10. Figure 3.11 shows an example of extracting POIs from a pre-

36 Fundamentals of LSTM

Fig. 3.11 An example of POI extraction

Fig. 3.12 POIs of a user

processed user trajectory. For the location p1, if assuming MinPts=3 and the Eps as shown

in the figure, it can be seen that the total number of points within the range Eps is one, i.e.

Np1 = 1 < MinPts, thus p1 is considered as noise. In contrast, for the location p4, by having

Np4 = 4 > MinPts, p4 is a core point, and finally, the area in yellow is considered as a POI.

Figure 3.12 shows the POIs of a user. Three POIs are obtained, shown in red, light blue,

and orange, respectively. By combining the time that the user visits these POIs and the

geographic features of these areas, it is reasonable to infer that the three POIs, from top to

bottom in the figure, are office location, lunch location, and home, respectively. Different

types of POIs have been extracted, meaning that the POI extraction algorithm can effectively

reflect the user’s daily activities.

3.3 Use Case: The LSTM-based User Mobility Prediction 37

Fig. 3.13 Simplified mobility prediction framework using LSTM

3.3.3 User Mobility Prediction Using LSTM

Figure 3.13 shows the simplified LSTM network framework for mobility prediction. The

LSTM network takes a vector as input. For each sample, the length of the input vector is five,

representing five features which are extracted in previous sections which can be denoted as in

equation 3.12, where latt and lont are the latitude and longitude of GPS coordinates obtained

from section 3.3.1, ct is the label of the POI extracted in section 3.3.2, t represents the time in

minute in a day, from 0:00 to 23:59, and 1,440 minutes in total. dt denotes the day of week,

which is an integer in the range [1,7], representing Monday to Sunday, respectively. All

features of xt are normalised by min-max normalisation, which makes each feature ranges

between 0 and 1, as indicated in Figure 3.13.

The output of the LSTM network is a scalar, denoted as ĉt+1, which represents the

predicted POI label in the next time interval. An LSTM network is trained for each user. In

addition, the pre-processed dataset is divided into a training set and test set, which accounts

for 80% and 20%, respectively.

To evaluate the performance of the LSTM network, the prediction accuracy defined in

equation 3.15 is employed.

To show the superiority of the LSTM, an ANN network is trained which has the same

input and output settings as the LSTM network. Ten users are selected, and one ANN and

one LSTM network are trained for each user, respectively. The accuracy of each model is

38 Fundamentals of LSTM

calculated, and the accuracy of the ten ANN networks and ten LSTM networks are averaged

to obtain the average prediction accuracy of ANN and LSTM networks, respectively.

To illustrate the prediction process, one user’s GPS log is taken from the Geolife dataset.

The log includes the user’s GPS records within half a year. The log is pre-processed according

to the instructions in Section 3.2.1, with a sampling frequency of ten minutes. Figure 3.12

presents the pre-processed trajectory of a day, which shows three POIs during that day. By

conducting pre-processing and POI extraction on the log, five POIs are identified in total.

Based on existing data, the user spent around 62.5% of the total time staying in one of the

five POIs. The LSTM aims to predict whether and which POI the user will be at in the

next time interval. An LSTM network is trained following Section 3.2.3, and the user log is

divided into a training set and a test set, which accounts for 80% and 20%, respectively. For

comparison, an ANN is also trained. The ANN has two hidden layers, and each layer has ten

neurons as well as the LSTM network. The prediction accuracy of LSTM network and ANN

is recorded respectively.

To evaluate the average prediction performance, ten users are randomly selected. One

LSTM network and one ANN is trained for each individual. Therefore, ten LSTM networks

and ten ANNs are built in total. The average prediction accuracy of the ten LSTM networks

and ten ANNs is calculated. The results show that the average prediction accuracy of ANN

achieves 54.9%, whereas the LSTM network achieves 79.7%. The LSTM network improves

the prediction accuracy by 45.2% compared with ANN.

Chapter 4

Traffic Feature Analysis

In the last chapter, the POI extraction, along with the input feature extraction used, are two

representatives in feature extraction. There are various approaches to feature extraction.

In this chapter, the process of feature extraction will be introduced. A feature extraction

method is proposed and utilised in a proposed Twitter traffic prediction framework to show

its effectiveness. This chapter proposes a low complexity data pre-processing strategy, which

utilises statistical analysis to extract the traffic pattern features. Then the extracted features

are used to train an LR model. By validating with real-world mobile traffic data, the proposed

strategy efficiently improves the LR prediction accuracy.

4.1 Introduction

In recent years, the number of Online Social Network (OSN) users has increased rapidly.

OSN applications have become a vital part of people’s daily lives. The OSN applications,

including Facebook, Twitter, Wechat, WhatsApp, Instagram, and Weibo, have billions of

users in summary. The average time per day spent on social media is also increasing. Users

in the U.S. spend approximately one hour in OSNs every day, where this amount reaches 4

hours in the Philippines [150]. This trend has attracted many research efforts on the study of

OSN application-specific mobile network traffic [151–153], which has shown potentials in

40 Traffic Feature Analysis

solving people-related issues, such as sentiment analysis [154, 155], election result prediction

[156] and traffic event detection [157].

Most existing works about the study of OSN application-specific mobile network traffic

focus on exploiting the content in the OSN records. For example, geo-tagged tweets were

used to detect the quality of experience complaints [151] and core network failure [152].

Guo and Zhang [153] applied natural language processing techniques based on Twitter

data to uncover blackspots in 4G networks in London. However, the prediction of OSN

application-specific traffic is still new.

The authors in [12] analysed the network traffic status and subscriber behaviour charac-

teristics. They proposed the feasibility to design the pricing strategy, protocol, and conduct

resource and spectrum management. In [80], a regression-based method was proposed,

which combines the network key performance indicators to predict network traffic. In [158]

and [124], ANN was employed. Similarly, Hua et al. [123], Azzouni and Pujolle [159]

proposed a deep learning approach. They used the LSTM network to predict the traffic in

telecommunication networks. Nevertheless, all these research works have focused on the

aggregate traffic loads generated by all applications while ignoring the traffic characteristics

of OSN applications. These existing prediction techniques may not work well, considering

the high dynamics in OSN traffic.

Among OSN applications, Twitter has more than 300 million monthly active users [160].

Moreover, Yang et al. [161] have proved that the variation of Twitter traffic can be used to

precisely analyse the mobile network traffic trend and the mobility of the population.

In this work, to fill the gaps above, the temporal characteristics of Twitter traffic is studied,

and a Twitter traffic prediction framework is proposed which combines statistical analytics

and machine learning techniques. In the framework, the statistical analysis act as a part of the

pre-processing stage to extract daily Twitter traffic pattern features and filter out the outliers.

Then the LR approach is applied to fit the Twitter pattern. Prediction of Twitter traffic in the

central London area are discussed to validate the proposed method. Compared with deep

learning methods, my approach has low complexity and does not rely on a big dataset. In

4.2 The Twitter Dataset and Preliminary Analysis 41

Fig. 4.1 All tweets posted on 15th February 2016

addition, numerical results show better prediction performance than the conventional LR

method and neural network.

4.2 The Twitter Dataset and Preliminary Analysis

4.2.1 The Twitter Datasets

In order to conduct the Twitter traffic prediction of Greater London and surrounding suburbs

areas, all tweets between 15th and 28th February 2016 in this area were collected and

pre-processed for the analysis. Since no important event happened during these two weeks

(14 days), the data is representative in representing users’ daily behaviours and activities.

Each tweet was time-stamped and geo-tagged to investigate the distribution of the data. For

example, Figure 4.1 shows the tweets posted on 15th February 2016 in Greater London and

surrounding suburbs areas. A total of 8,192 samples were collected, and it can be seen that

most tweets are concentrated in central London. In general, the number of tweets varies at

different times of the day. The number of tweets in the two weeks from 15th to 28th February

42 Traffic Feature Analysis

Fig. 4.2 Number of Tweets in two weeks

2016 is displayed in Figure 4.2. It can be seen from Figure 4.2 that the number of tweets

periodically changes, and basically, fewer tweets are posted at midnight while more tweets in

the daytime. The similarity of the posted tweets numbers among each day is investigated by

using the correlation analysis as follows, such to explore the data properties for the traffic

prediction.

4.2.2 The Preliminary Analysis

The correlation analysis is conducted in this section showing the tweets data of each day is

similar such that the numerical and statistical analysis can be conducted based on the two

weeks’ data. The similarity of each day’s number of tweets can be observed in Figure 4.2,

and the details of each day’s data are shown in Figure 4.3 by comparing the data changing

on 15th and 16th February 2016. It can be seen that peak time appears from 9 a.m to 9 p.m,

indicating that users are active from the afternoon to the evening. Valley time occurs at other

times, which conforms to the users’ sleeping habits.

To validate the regularity of Twitter traffic, Twitter traffic is analysed in the frequency

domain. Fast Fourier Transform (FFT) is applied to convert the Twitter traffic from the time

domain into the frequency domain. The aim of applying FFT is to observe the Twitter traffic

in the frequency domain, which is helpful to extract the periodic features that are not obvious

4.2 The Twitter Dataset and Preliminary Analysis 43

Fig. 4.3 Data comparison between the 15th and 16th February 2016

Fig. 4.4 DFS of Twitter traffic during a week

under the time domain observation. For example, the daily regularity is easy to be observed,

as shown in Figure 16. However, any other underlying regularities are difficult to be observed

directly in the time domain. The FFT is defined as

Γl(k) = FFT[l[t]] =
T−1

∑
t=0

l[t]Wkt
T (4.1)

where T is the number of hours in one week (7 days × 24 hours =168), WT = e− j 2π

T , j is

the imaginary unit. The Discrete Fourier Series (DFS) of the Twitter traffic in a week is

obtained by applying FFT, as shown in Figure 4.4. In this figure, the highest peak occurs at

the frequency of 1
12π , which corresponds to one day in the time domain. This means that the

Twitter traffic shows the strongest regularity with the period of one day, which is consistent

with the previous ‘peak-valley’ observation during a day.

44 Traffic Feature Analysis

Fig. 4.5 The Pearson correlation heatmap for 1-hour interval

To further find out the relationships among these data, the Pearson correlation coefficient

is employed to assess the correlations between each day’s tweets data. The Pearson correlation

is defined as:

ρl1,l2 =
cov(l1, l2)

σl1σl2
(4.2)

where σl1 is the standard deviation of l1 and σl2 is the standard deviation of l2, cov(l1, l2) is

the covariance between l1 and l2, which is defined as:

cov(l1, l2) = E [(l1 −µl2)(l1 −µl2)] (4.3)

with µl1 being the mean of l1, and E[·] represents the expectation.

The Pearson correlation range in equation 4.2 is from -1 to 1, where -1 indicates entirely

negative correlated, 0 means no correlation, and 1 represents entirely positive correlated. By

conducting Pearson correlation analysis, the similarity between Twitter traffic patterns, such

as similarity between daily Twitter traffic patterns, can be obtained. The correlation helps to

infer the possible future Twitter traffic patterns.

The Pearson correlation between any two days’ pattern is calculated and described as

a heatmap, as shown in Figure 4.5. Figure 4.5 shows that most correlation values are

4.2 The Twitter Dataset and Preliminary Analysis 45

(a) Pattern during weekdays (b) Pattern during weekend

Fig. 4.6 Variation of patterns for (a) weekdays and (b) weekend

larger than 0.9, and all of them are higher than 0.87, which means the curves are highly

similar to each other. This characteristic can be concluded as Remark 4-1. Moreover, the

correlations between weekends, i.e., two Saturdays (20th and 27th February), are higher than

the correlations between a weekday and a weekend, indicating the data patterns of weekends

have higher similarity to each other than weekdays. Figure 4.6 shows the pattern variability

of weekdays and weekends, respectively, where the points represent the mean value. The

vertical lines represent the standard deviation of the number of tweets. From this figure, it is

noticed that during peak time, the traffic on weekdays has a higher standard deviation than

weekends, indicating weekdays’ traffic pattern has higher fluctuation than weekends’ during

peak time. This can be summarised as Remark 4-2.

Remark 4-1: The Twitter Traffic pattern shows periodicity and high similarity on a daily

basis.

Remark 4-2: The Twitter traffic pattern has burstiness, it has a high deviation from day

to day, even during the same time period, and the deviation is higher on weekdays than

weekends.

According to the analysis above, the daily pattern can be divided into two parts: the upper

half of the curve (Peak times) indicates users are more active, whereas the lower half (Valley

times) indicates users are inactive. They are denoting the upper half as the peak period and

the lower half as the off-peak period. During the off-peak period, the number of tweets sent

46 Traffic Feature Analysis

Fig. 4.7 Flow chart of the traffic prediction processes

is stable, and the variation is small, while during the peak period, the number of tweets can

fluctuate within a certain range.

In the following studies, the Twitter traffic prediction is discussed by using a combination

of statistical and numerical analysis based on the correlation properties of the everyday

Twitter traffic.

4.3 The Twitter Traffic Prediction Framework

In order to estimate each hour’s Twitter traffic on both weekdays and weekends, according

to the correlation analysis above and the results in Figure 4.6, the periodicity can be found.

Thus it is straightforward to model the twitter traffics by fitting all collected data with a

regression method, as demonstrated at the top of Figure 4.7. For example, a polynomial

function can be achieved to represent the Twitter traffic on both weekdays and weekends.

However, due to the uncertainty, i.e., high deviation of the Twitter traffic pattern, direct use of

the regression method on all collected data may not be accurate for Twitter traffic estimation.

This issue is resolved in this study by conducting the statistical analysis of the collected

data before the regression process, such that significant information in the means of statistical

remains to improve the accuracy of the regression results. The basic estimation process is

illustrated at the bottom of Figure 4.7.

The analysis of the new Twitter traffic estimation approach is discussed as follows.

4.3 The Twitter Traffic Prediction Framework 47

4.3.1 Statistical Analysis of Twitter Traffic

The purpose of the statistical analysis is to eliminate the effects of the uncertainty or outliers

of the collected Twitter traffic data. It can be seen from Figure 4.6 that the data traffic range

changes during peak and off-peak times on both weekdays and weekends. For example,

on weekdays, the traffic is roughly from 50 to 300 during off-peak times, which is quite

small compared to those during peak times from 400 to 600. Consequently, it is much more

important to discuss the peak time data traffic than the off-peak time due to the practical

requirement. It can be seen from Figure 4.6 that the collected traffic data varies in each

hour during the peak time of both weekdays and weekends, which can be quantified by the

variation ratio defined as

η =
lmax[t]− lmin[t]

l̄t
(4.4)

where lmax[t] and lmin[t] are the upper and lower limit of the statistical data in the t hour,

respectively; l̄t represents the average value of the number of tweets in t.

As a result, the largest variation ratio during peak time on the weekdays is about η=30%,

indicating that uncertainty or outliers should be considered before conducting the regression

analysis for traffic prediction.

The uncertainty or outliers of the traffic data can be processed by using the statistical

analysis method, including two steps as follows:

Step 1: Divide the number of tweets posted during the same periods of different days

into intervals, and then calculates the occurrence probability of each interval by using

Pi(t) =
ni(t)
Ni(t)

(4.5)

where i = 1,2, · · · represents the different intervals, ni(t) and Ni(t) represent the occurrence

number and the total number of counts during the t hour, respectively.

Step 2: Only the data within the interval with the highest occurrence probability will be

used for further regression analysis.

For example, a total of 14 days’ data are collected, and the first 11 days’ data are

considered for the training purpose of the Twitter traffic model. The peak time traffic data

48 Traffic Feature Analysis

(a) Weekdays’ data

(b) Weekend’s data

Fig. 4.8 The occurrence probability of tweets described in intervals of (a) weekdays and (b)
weekends

4.3 The Twitter Traffic Prediction Framework 49

Fig. 4.9 The pattern with statistical analysis on weekdays

are divided into ten levels, and each level has an interval of traffic set as 100. Therefore,

the number of tweets located at different intervals in the 11 days can be calculated by using

equation 4.5. The results are shown in Figure 4.8, where the index ‘100’ represents the

maximum value of the interval, i.e., 100 represents 0-100, 200 represents 100-200; the

boxes in blue represent the highest occurrence probability of tweets in an hour. The pattern

variability of the weekdays’ data from the statistical analysis is shown in Figure 4.9, where

the points represent the mean value and the vertical lines represent the standard deviation

of the number of tweets. Compared with the results of Figure 4.6(a), it is more evident that

the number of tweets during 14:00 and 15:00 decreases and users are the most active during

19:00 and 20:00, due to the working hours and break time, respectively.

In the next section, the LR will be applied based on the processed data by using the

statistical analysis above for the prediction of the tweets traffic data.

4.3.2 Twitter Traffic Prediction Using Machine Learning Techniques

In order to represent the variation of Twitter traffic, a polynomial function is applied as

l[t] = α0 +α1t + · · ·+αntn (4.6)

where αi f ori = 0,1, · · · are the coefficients of the polynomial function, l[t] represents the

Twitter traffic at the t hour of the day. It is known that when determining a maximum order n,

50 Traffic Feature Analysis

Fig. 4.10 The process of the K-fold cross-validation

the polynomial function can be determined by using the least square method as:

A =
(
TT T

)−1 TT D (4.7)

where

A = [a0, · · · ,an]
T (4.8)

T =


1 · · · tn

1
...

1 · · · tn
N

 (4.9)

and

D =


l [t1]

...

l [tN]

 (4.10)

where ti, i = 1, · · · ,N represent the different times of the traffic data.

In order to determine the maximum order n of the polynomial function 4.6 to conduct the

least square evaluation algorithm, the K-fold cross-validation is applied in this stage. The

basic process of the K-fold cross-validation can be summarised in Figure 4.10.

4.3 The Twitter Traffic Prediction Framework 51

In the K-fold cross-validation, the Mean Squared Error (MSE) is applied to quantify the

regression error of each fold as

MSEk =
1
N

N

∑
i=1

[
l̂ [ti]− l [ti]

]2
(4.11)

where l̂ [ti] is the predicted value of the remaining fold except for the K-1 training folds.

The process circulates K times for each order n = 1,2, · · · ,K of the polynomial function

4.6, and the value of n is chosen with the minimum mean MSE value computed by

MSE =
1
K

K

∑
i=1

MSEk (4.12)

For example, the K value of the Twitter traffic data is chosen as K = 10, and the order of the

polynomial function representation is obtained as n = 7. Consequently, a 7-order polynomial

function is applied to represent the Twitter traffic obtained from the statistical analysis of

both weekdays and weekends, as shown in Figure 4.11.

Figure 4.11 shows that by applying statistical analysis and filtering, the outliers have been

removed. The remaining data points are closely distributed. The curve obtained from LR has

managed to fit the Twitter traffic pattern. In addition, the small valley and peak during 14:00

to 15:00 and 19:00 to 20:00 can be noted from the curve, indicating that the details in the

pattern have been retained, and fluctuations have been alleviated.

4.3.3 Performance Evaluation

To validate the advantage of the proposed estimation method, the prediction of the Twitter

traffic of the remaining three days is conducted for both weekdays (2 days) and weekends

(1 day). The direct use of LR on the original data is conducted where, by using the K-fold

cross-validation, a 7-order polynomial is used, and the results are shown in Figure 4.12.

The predicted pattern is firstly compared using the proposed method with that without

statistical analysis and using a traditional neural network. Figure 4.12 shows the results,

where the blue curve is obtained by the proposed method, which combines statistical analysis

52 Traffic Feature Analysis

(a) Weekdays’ data

(b) Weekend’s data

Fig. 4.11 The seven-order polynomial regression of the Twitter traffic obtained from the
statistical analysis for (a) weekdays and (b) weekends

4.3 The Twitter Traffic Prediction Framework 53

(a) Weekdays’ data

(b) Weekend’s data

Fig. 4.12 Predicted pattern using the new method and LR for (a) weekdays and (b) weekend

54 Traffic Feature Analysis

Fig. 4.13 MSE comparison using the proposed method, LR and neural network

and LR. The red curve represents the predicted number of tweets using LR only, without

statistical analysis. The two curves are similar, and both outperform the black curve which is

obtained by using a neural network. During weekdays, the red and blue curves are pretty

close during the off-peak period, and the curve using the proposed method is slightly lower

during peak time. For weekend prediction, the patterns predicted by these two methods are

quite close. The curve obtained by the neural network performs relatively poor, due to a

lack of samples. A neural network requires a considerable size of the dataset to train the

model, which is usually much larger than non-machine learning-based methods. In this case,

only three days’ data, i.e., 72 samples are available, which are far from enough. The lack of

samples makes the neural network perform poorly.

To further evaluate the performance of the proposed method, the MSE is adopted as

described in equation 4.12, where N represents the number of test samples. Lower MSE

means the prediction is closer to the ground truth. Figure 4.13 shows the logarithmic MSE

comparison results using the proposed algorithm, LR only, and neural network. In this figure,

the MSE obtained from the proposed method is lower under both cases, under both weekdays

and weekends. This indicates that the proposed method performs approximately 10% better

than that without statistical analysis numerically and much better than using a neural network.

4.4 Conclusion 55

4.4 Conclusion

This chapter studies the temporal characteristics of Twitter traffic and proposes a Twitter

traffic prediction framework that combines statistical analytics and machine learning tech-

niques. In the proposed framework, the statistical analysis aims to extract statistical features

and pre-process the Twitter data. Then the LR is used to model the temporal Twitter traffic.

The proposed framework has several main advantages. The first one is the low computing

complexity. Secondly, this method performs well, even if the length of historical data is

limited. Lastly, it is easy to keep updated by running statistical analysis and retraining the

LR model. Experimental results based on the real-world Twitter traffic dataset collected in

central London have validated that the proposed framework has a high prediction accuracy

with low computation complexity and low demand for the size of the dataset. In the future,

the model versatility, scalability and feasibility will be investigated. For example, the cellular

network traffic will be compared to investigate the feasibility of using OSN as a proxy to

predict mobile network traffic.

Chapter 5

Mobile Network Traffic Prediction

Framework: The ML-TP

In previous chapters, the potentials of deep learning techniques in addressing time series

prediction tasks in mobile networks and the importance of feature extraction for time series

prediction have been discussed. Based on these achievements, a novel mobile network

traffic prediction framework is proposed in this chapter, which integrates both deep learning

techniques and feature extraction. This chapter proposes a meta-learning-based Traffic

Prediction framework (ML-TP), which can accumulate meta-knowledge from previous

cellular level mobile traffic prediction tasks, and adaptively learn to learn the proper prediction

model for a new prediction task. For a new traffic prediction task, the ML-TP can quickly

generate the proper initial parameters of an LSTM network based on the task’s traffic features.

Numerical results show that the ML-TP outperforms existing prediction algorithms for

the cellular level mobile traffic prediction tasks. Furthermore, the meta-learner in ML-TP

significantly improves the base-learner’s learning efficiency by leading to about 70% and

80% reduction in the epochs and base-samples required to train their parameters, while

keeping similar or even better prediction accuracy.

58 Mobile Network Traffic Prediction Framework: The ML-TP

5.1 Introduction

With the rapid development of mobile communication technologies and applications such

as the Internet of Things (IoT), Cloud Computing, and Virtual Reality (VR)/Augmented

Reality (AR), the traffic in mobile networks has experienced explosive growth in the past

decades. To meet the soaring user demands and reduce the operational expenditure (OpEx),

traffic prediction at the cell-level plays a vital role in mobile networks since many mobile

applications rely on real-time or near real-time traffic analysis of a radio access network

(RAN) [66]. For example, if the future traffic load of a base station (BS) can be forecasted

accurately, a sleeping strategy for the base station (BS) can be implemented to reduce the

energy consumption [37]. Also, if the downlink mobile traffic data required by terminal

devices in a certain area can be predicted and then be stored in edge clouds close to mobile

users in advance, mobile subscribers’ experience will be greatly improved [93]. Moreover,

as the increase of cellular network service diversity and traffic load, traffic prediction also

becomes critical for energy optimization [61] and network resource allocation [73].

Mobile network traffic prediction has attracted a lot of attention from both academia and

industry. The statistical model-based and shallow machine learning-based prediction methods

cannot cope with many practical prediction tasks due to the fact that they rely on some prior

knowledge of traffic records to extract mobile traffic features. Although deep learning-

based prediction methods are capable of mining the temporal-spatial correlations hidden

in traffic patterns, individually training deep learning models for multiple cells is not only

time consuming but also sometimes unfeasible since there are not always sufficient historical

mobile traffic records available, e.g., for newly built cells and networks. Considering the

massive number of cells in 5G and beyond mobile networks, an efficient cell-level traffic

prediction method is urgently needed.

In order to fill the above gaps, this chapter presents an early attempt to introduce meta-

learning into cell-level mobile traffic prediction, where the knowledge obtained from well-

trained prediction models for existing cells or previous traffic prediction tasks will be used

to learn the proper prediction model for a new cell or a new traffic prediction task, thus

removing the dependency on a large amount of historical mobile traffic records for each cell

5.1 Introduction 59

or each traffice prediction task. The main contributions of this chapter are summarised as

follows:

• Using the real-world mobile traffic records collected in Milan, the characteristics

of cell-level mobile traffic in both the time domain and the frequency domain are

investigated. Through fast Fourier transform (FFT), it can be found that five main

frequency components can characterise the cell-level mobile traffic variations over

hours, days, and weeks, hence can be used as the meta-features for a cell-level mobile

traffic prediction task.

• The traffic prediction task for each individual mobile cell is regarded as a base-task.

By defining the meta-task as learning to learn the proper prediction model for a new

base-task according to its meta-features, a novel meta-learning-based cell-level mobile

traffic prediction framework (ML-TP) is proposed. The ML-TP adopts a deep long

short-term memory (LSTM) network with a fixed structure as the base-learner to

forecast a cell’s future traffic load. This chapter mathematically proves that each

base-task’s traffic pattern is dominated by the meta-features and that the well-trained

base-learner of a base-task can be seen as a continuous and differentiable function

w.r.t. its input. Based on these, this chapter theoretically concludes that transferring

the base-learner’s parameters of a previous base-task to a new base-task’s base-learner

will cause limited prediction errors if the two base-tasks have similar meta-features.

Then a K-nearest neighbours (KNN) algorithm-based meta-learner is proposed to

generate the proper initial parameters for the base-learner of a new base-task based on

its meta-features.

• This chapter evaluates the performance of the proposed ML-TP framework through

real-world cellular-level mobile traffic prediction tasks. The results show that the

ML-TP outperforms existing prediction methods in terms of cell-level mobile traffic

prediction accuracy for the same size of training sets. Furthermore, the meta-learner in

ML-TP can significantly improve the base-learners’ learning efficiency by reducing the

60 Mobile Network Traffic Prediction Framework: The ML-TP

epochs and base-samples required to train their parameters while achieving a similar

or even better prediction accuracy.

The rest of this chapter is organised as follows. Section 5.1 reviews the existing works on

mobile traffic prediction and meta-learning technology. Section 5.2 describes the mobile

traffic traces used, followed by the characteristic analyses of cell-level mobile traffic. The

proposed ML-TP is presented in Section 5.3. Section 5.4 evaluates the performance of

ML-TP in comparison with representative baseline methods. Finally, Section 5.5 concludes

this chapter.

5.1.1 Related Works

In statistical model-based mobile traffic prediction, the time series of mobile traffic are fitted

to specific mathematical models, and future traffic loads are predicted based on statistics or

probabilistic distributions. Li et al.[162] demonstrated that cell-level mobile traffic loads

possess a strong self-similarity and utilised the α-stable model to predict the cell-level mobile

traffic fluctuations over time. In [79, 85, 102], the linear autoregressive integrated moving

average (ARIMA) model was used to capture the short-term correlation in mobile network

traffic. As an extension, the seasonal ARIMA (SARIMA) model was adopted in [86, 103]

to improve the ARIMA model on long-term traffic correlation capturing . The authors in

[87] proposed an entropy theory-based mathematical model to improve the ARIMA model’s

prediction accuracy. In addition, Holt-Winter’s exponential smoothing model [78], ON-OFF

model [88], and sinusoid superposition model [89] were also used to capture the temporal

and/or spatial characteristics of mobile network traffic. Though these statistical model-based

prediction methods have a relatively low computational complexity, it is difficult for them to

estimate the realistic mobile traffic accurately because the real-world irregular traffic patterns

are much more complicated than the mathematical models.

In the machine learning-based mobile traffic prediction, linear regression (LR) [80], com-

pressive sensing (CS) [81, 114], support vector regression (SVR) [115], principal components

analysis [116], Kalman filtering [118], and Gaussian process [119] were used to forecast the

5.2 Dataset Description and Preliminary Analysis 61

future trends of cell-level mobile traffic. Nevertheless, these shallow learning-based methods

can not cope with many practical prediction tasks because they rely on some prior knowledge

of mobile traffic to perform feature extraction.

Powerful deep learning tools have recently been leveraged for mobile traffic prediction.

Nie et al. [120] exploited the deep belief network (DBN) based model and the Gaussian model

to predict the low-pass and high-pass components of cell-level mobile traffic, respectively.

Tian et al. [84] trained a recurrent neural network (RNN) to predict the cell-level mobile

traffic by utilising the RNN’s capability of capturing the temporal correlations in traffic load

time series. Assuming traffic information of neighbouring cells, Qiu et al. [122] proposed

a long short-term memory (LSTM) network-based prediction model to forecast the future

traffic load of a target cell. With a reduced connection complexity, a model based on a

random connectivity LSTM network was proposed in [123] to predict a single cell’s traffic

load. Wang et al. [124] used local stacked autoencoders and global stacked autoencoders to

extract spatial correlations among mobile traffic loads generated in different cells and then

trained individual LSTM networks to predict the future traffic loads for different cells. Based

on historical traffic loads generated in city-wide networks, a convolutional neural network

based prediction model [51] and a convolutional LSTM network-based prediction model

[52] were proposed to forecast the spatial distribution of mobile traffic in a city. However, in

the existing deep learning-based methods, a specific prediction model must be constructed

and trained for each individual prediction task as the mobile traffic patterns associated with

different tasks are quite different.

5.2 Dataset Description and Preliminary Analysis

This section introduces the dataset of real-world mobile network traffic records used in this

work and presents the characteristic analyses of cell-level mobile traffic in both the time

domain and frequency domain.

62 Mobile Network Traffic Prediction Framework: The ML-TP

Fig. 5.1 Milan grid

5.2.1 Mobile Network Traffic Trace

This chapterb adopts the mobile network dataset provided by the "Big Data Challenge"

program of Telecom Italia [163]. In the dataset, mobile traffic records were collected from

1st November 2013 to 1st January 2014 with a time resolution of ten minutes (about 300

million traffic records in 62 days) over the whole area of Milan. Specifically, the Milan city

area is divided into 10,000 grids, each with the same size of 235m x 235m, as shown in

Figure 5.1. In each grid, three types of mobile traffic (i.e., short message service, voice call

service, and Internet browsing service) were recorded by the operator. Each traffic record

contains the time-stamps, the corresponding cell ID, service type, and the volume of data

generated. Hereafter, each grid is referred to as a cell, as the grid size approximates to the

coverage area of an urban BS. The same grid index as in the original dataset is used.

Denoting the time resolution of the traffic records by ∆t, the sum traffic load of the p-th

cell during the t-th time interval is given by:

l′p [t] = ∑
IDr=p,(t−1)·∆t<tr≤t·∆t

volr,r ∈ R (5.1)

5.2 Dataset Description and Preliminary Analysis 63

where R is the set of traffic records, r is an index of traffic record in R, IDr, tr, and volr are

the cell ID, time-stamp, and volume of mobile traffic data of record r, respectively.

The time series of the p-th cell’s traffic loads is denoted by a vector, l′p =(l′p[1], l
′
p[2], ..., l

′
p[N])

, where N is the total number of total time intervals.The time resolution of traffic records, ∆t,

is set as one hour following the settings in [52].

In order to analyse mobile traffic characteristics for various cells, the elements of the

traffic load vectors are normalised into the range of [0,1] via the min-max normalization

method:

lp [t] =
l′p[t]−min(l′p)

max(l′p)−min(l′p)
(5.2)

where max(l′p) and min(l′p) represent the values of the largest element and the smallest

element in l′p, respectively. Accordingly, the vector lp = (lp[1], lp[2], ..., lp[N]) is used to

record the normalised traffic load vector for cell p.

5.2.2 Characteristics of Cell-Level Mobile Traffic

Figure 5.2 shows the normalised mobile traffic patterns of three different cells, i.e., cells

1684, 1884, and 7121 that are located in the commercial area, the residential area, and the

business area, respectively, over the same two weeks. From Figure 5.2, it can be observed

that:

Observation 1: Mobile traffic loads of the different cells exhibit various temporal

characteristics because they locate in different urban-functional areas. In cell 1684, the

mobile traffic was mainly produced from 8:00 to 17:00 in a single day, and the traffic loads

on weekends are much higher than those on workdays. In cell 1884, the traffic loads have

multiple peaks during 8:00-10:00 and 15:00-17:00, respectively every day, and the difference

between workday loads and weekend loads is much less than that in cell 1684. In cell 7121,

the traffic loads also have multiple peaks during 9:00-11:00 and 13:00-15:00, respectively

every day, but the traffic loads on weekends are much lower than those on workdays.

64 Mobile Network Traffic Prediction Framework: The ML-TP

Fig. 5.2 Temporal traffic patterns (normalised, in hours) of cell 1884 (commercial area), 7121
(business area) and 1684 (residential area)

Fig. 5.3 Autocorrelation coefficient of the normalised traffic load vector of cell 1884.

5.2 Dataset Description and Preliminary Analysis 65

Observation 2: In each cell (including those not shown in Figure 5.2), although the

traffic variations are different on different days of the week, they exhibit a weekly periodic

pattern.

To quantify the temporal correlation of cell-level mobile traffic, the autocorrelation

coefficient of the normalised traffic load vector of cell is calculated as p [164]:

corp,k =
∑

168−k
t=1

(
lp [t]− l̄p

)(
lp [t + k]− l̄p

)
∑

168
t=1

(
lp [t]− l̄p

)2 (5.3)

where l̄p represents the mean value of the normalised traffic load vector of cell p, 168 is the

length of one week (7 days × 24).

Figure 5.3 displays the autocorrelation coefficient of the normalised traffic loads in cell

1884. Autocorrelation coefficients of different cells show similar results. From Figure 5.3, it

can be observed that:

Observation 3: The normalised cell-level traffic load vector exhibits non-zero autocorre-

lations in the time domain, and the autocorrelation coefficient reaches peak values when the

temporal lag, k, is an integer multiple of 24 hours.

According to Observation 2, a discrete periodic signal based on cell p’s normalised

traffic load vector is constructed firstly, denoted as follows

l̃p [t] =

 lp [t] ,0 ≤ t < 168

lp [t mod 168] , t < 0 or t ≥ 168

and then obtain the FFT of this discrete periodic signal:

Fp

(
k · 2π

T

)
= FFT

[
l̃p [t]

]
=

T−1

∑
t=0

l̃p [t]W kt
T , k ∈ Z (5.4)

where j is the imaginary unit.

Although the above constructed periodic signal may only approximate the actual traffic

stream, it allows us to study the features of a cell-level traffic prediction task using historical

traffic loads recorded in just one week.

66 Mobile Network Traffic Prediction Framework: The ML-TP

Fig. 5.4 DFS of traffic load for cell 1884, 7121 and 1684

The amplitudes of the FFT results for cells 1684, 1884, and 7121 are shown in Figure

5.4. From Figure 5.4 and the FFT results for other cells are not illustrated in Figure 5.4, the

following observation is achieved.

Observation 4: The five frequency components, ω = π/84, ω = π/12, ω = π/6, ω =

π/4, and ω = π/3, which correspond to the periods of one week, one day, 12 hours, 8 hours,

and 6 hours, respectively, dominate the frequency-domain characteristics of the normalised

traffic load vector of each cell. However, the amplitudes of these frequency components

change evidently across different individual cells.

The real and imaginary parts of cell p’s five main frequency components form a frequency

component vector of size 10:

Γp = [ℜ(Fp (π/84)) ,ℑ(Fp (π/84)) ,ℜ(Fp (π/12)) ,ℑ(Fp (π/12)) ,ℜ(Fp (π/6)) ,

ℑ(Fp (π/6)) ,ℜ(Fp (π/4)) ,ℑ(Fp (π/4)) ,ℜ(Fp (π/3)) ,ℑ(Fp (π/3))]
(5.5)

where ℜ(C) and ℑ(C) are the real part and the imaginary part of a complex number C,

respectively.

In order to examine whether the five main frequency components can characterize the

features of traffic load variations for different cells, the Pearson correlation coefficient ρp,q

5.2 Dataset Description and Preliminary Analysis 67

Fig. 5.5 Relationship between the Pearson correlation coefficient of traffic load in the time
domain and traffic frequency component vector distance in the frequency domain

for an arbitrary pair of cells, p and q, can be calculated based on their normalised traffic load

vectors, lp [t] and lq [t] as follows:

ρp,q =
cov

(
lp, lq

)
σlpσlq

(5.6)

where σlp is the standard deviation of cell p and σlq is the standard deviation of cell q,

cov
(
lp, lq

)
is the covariance between lp and lp, which is defined as:

cov
(
lp, lq

)
= E

[(
lp[t]−µlp

)(
lq[t]−µlq

)]
(5.7)

where µlp being the mean of lp, and E [.] denotes the operational symbol of expectation.

The Euclidean distance between their frequency component vectors, dist
(
Γp,Γq

)
is also

calculated, which is defined as

dist
(
Γlp ,Γlq

)
=

√
∑

ωi∈ω

(
R(Fp (ωi))−R

(
Fq (ωi)

))2
+ ∑

ωi∈ω

(
ℑ(Fp (ωi))−ℑ

(
Fq (ωi)

))2

(5.8)

where ω is the set of main frequency components, i.e., ω = {π/84,π/12,π/6,π/4,π/3}.

For 10,000 randomly selected pairs of cells from the dataset, the Pearson correlation

coefficients of their normalised traffic load vectors versus the Euclidean distance between

68 Mobile Network Traffic Prediction Framework: The ML-TP

their frequency component vectors are plotted in Figure 5.5. From Figure 5.5, following

observation can be obtained:

Observation 5: The Pearson correlation coefficient of two normalised traffic load vectors

is negatively correlated with the Euclidean distance between their frequency component

vectors. This indicates that two cells tend to have similar traffic variations in the time domain

if their frequency component vectors are close to each other, and vice versa.

Observation 5 implies that the frequency component vector can be used to characterize

the features of a cell-level traffic prediction task.

5.3 The Proposed ML-TP

This section first gives an overview of the proposed meta-learning-based cell-level traffic

prediction framework, ML-TP. Then, the structures of the base-learners, which are designed

for the traffic prediction tasks related to individual cells, and the meta-learner, which is used

to improve the learning efficiency of the base-learners, are put forward, respectively.

5.3.1 Meta-learning

Meta-learning is also referred to as “learning to learn" [165, 166]. For a typical supervised

learning task ξ , a learning model ς for ξ is usually trained using a set of independent and

identically distributed (i.i.d.) samples from the sample space Sξ

train of task ξ . Each sample is

depicted by a set of features and is pre-labelled by an unknown task-specific target function

Fξ .

The hypothesis space of ς , Hς , is defined as the set of all the possible hypotheses output

by ς for arbitrary tasks and arbitrary training sets. Training the learning model ς can be

considered as the process of searching for the hypothesis h̄ς (ξ) that approximates Fξ over

the hypothesis space of ς according to the task’s sample space, Sξ

train.

Due to the learning algorithms adopted (e.g., SVR, decision tree, or deep neural network),

the hyper-parameters, or the initial status (e.g., initial connection weights between neurons),

5.3 The Proposed ML-TP 69

Fig. 5.6 Architecture of the proposed ML-TP framework

the learning model ς often has biases. These biases not only affect ς ’s hypothesis space but

also influence the way of ς in searching its hypothesis space to find h̄ς (ξ).

Different learning tasks, referred to as base-tasks, may prefer different sets of biases

embedded in ς . One goal of meta-learning is to find the best set of biases for each base-task

according to its meta-features. The learning model handling the meta-learning task (meta-

task) is referred to as the meta-learner, while the learning models for base-tasks are called

base-learners. In the absence of meta-knowledge, a base-learner has to try all possible sets of

biases to find the set of biases that lead to the optimal learning performance. Meta-samples

can be obtained by labelling the meta-features of a well-solved base-tasks and used to train

the meta-learner. With the accumulation of meta-knowledge from meta-samples, the meta-

learner is expected to find the meta-hypothesis, which can produce an approximate best set

of biases for the base-learner of a new base-task.

5.3.2 Overview of ML-TP

The diagram of ML-TP is displayed in Figure 5.6. As mentioned before, each cell-level

mobile traffic prediction task is regarded as a base-task and present a deep LSTM network

70 Mobile Network Traffic Prediction Framework: The ML-TP

based prediction model with a fixed structure as the base-learner to address it. According to

Observation 5, a base-task’s frequency component vector is defined as its features (meta-

features). The initial parameter values, i.e., the initial values of neural connection weights

and neural biases, of the deep LSTM network can be further regarded as a base-learner’s set

of biases.

Specifically, in this figure, the input to the base-learner for task p, i.e., the LSTM network,

is Ip,t . It is a vector that includes lp[t], d[t] and hr[t], representing the input features, i.e.,

traffic load, day of the week and hour in the day. The output of the base-learner is the

predicted traffic load at the next hour, i.e., l̂p[t +1]. The meta-learner takes the frequency

component vector as input and outputs the initial PN parameters for the base-learner.

Obviously, for a certain base-task, the values of neural connection weights and neural

biases of the deep LSTM network determine how the base-learner generates the predicted

traffic load according to the previous load values, and thus represent the base-learner’s

hypothesis found in its hypothesis space. All the possible value combinations of neural con-

nection weights and neural biases in the LSTM network structure determines the hypothesis

space of a base-learner. In this work, base-learners related to various base-tasks have the

same hypothesis space as they have the fixed structure, and a base-learner’s set of biases only

influences the base-learner’s initial searching point in the hypothesis space. It is a reasonable

assumption that a base-learner corresponding to a specific base-task will get the highest

learning efficiency when its initial searching point approaches this base-task’s target function,

which is approximated by the hypothesis ultimately found. In other words, the best set of

biases of a base-learner will be the final values of neural connection weights and neural

biases of the deep LSTM network after it is trained with tremendous base-samples.

This chapter presents a KNN algorithm based meta-learner in ML-TP to handle the

meta-task. For any new base-task (cell-level mobile traffic prediction task), the meta-learner

will input this base-task’s frequency component vector and output the proper initial values

of neuron connection weights and neuronal biases for the base-learner according to a set of

accumulated meta-samples. This chapter calls this set of meta-samples as the knowledge

database of the meta-learner. Each meta-sample in the knowledge database is acquired by

5.3 The Proposed ML-TP 71

labelling the frequency component vector of a previous base-task with the values of neuron

connection weights and neuronal biases in this base-task’s well-trained base-learner.

Notations in ML-TP: Smeta
train denotes the set of accumulated meta-samples (knowledge

database of the meta-learner). smetap
train in Smeta

train denotes the meta-sample related to the p-th

mobile cell. Without confusion, Smeta
train is used to denote the set of mobile cells generating

meta-samples. Sbasep
train_large denotes the large training set with tremendous base-samples for the

base-task related to the p-th mobile cell (p ∈ Smeta
train). Correspondingly, Sbaseq

train_small is the small

training set with a few number of base-samples to fine-tune the base-learner of base-task q

(q /∈ Smeta
train). Sbaseq

test is the testing set of base-samples related to base-task q for evaluating the

base-learner’s performance.

5.3.3 Deep LSTM Network as the Base-learner

Recurrent neural networks (RNNs) allow the information of past inputs to be memorised

in the networks’ internal states and thereby make them capable of handling input data with

historical dependencies. Nevertheless, for a standard RNN architecture, the influence of any

input on the network’s output will either decay or blow up exponentially when information

cycles around the network’s recurrent connections. To address this problem, the deep

LSTM network, an elegant RNN architecture, has been designed. Deep LSTM network has

shown progressive performances in time series forecasting tasks such as language modelling,

handwriting recognition, and mobile network traffic prediction [167].

The key component that makes LSTM networks possess the ability to model long-term

dependencies is the LSTM memory block. As illustrated in Figure 5.7, each LSTM memory

block is a recurrently connected subnet logically, which contains some functional modules

called gates. According to their corresponding practical functionalities, these gates are

classified as input gate, forget gate, input activation gate and output gate. The input gate

controls how much new information flows into the memory block’s current state, while the

forget gate controls how much information still remains in the memory block’s current state

through the recurrent connection. Finally, the output gate controls how much information is

used to compute the output activation of the memory block and further flows into the rest of

72 Mobile Network Traffic Prediction Framework: The ML-TP

Fig. 5.7 Inner structure of a LSTM network, where the green squares represent the forget
gate, input gate, input activation gate and output gate, respectively

the LSTM network. In a basic LSTM memory block, each gate consists of a two-layer neural

network where the neuron number of the output layer equals the dimension of the output

vector, and the neuron number of the input layer equals the dimension of the input vector

plus that of the output vector. In Figure 5.7,
⊕

and
⊗

denote summation and dot product of

two vectors, respectively. σ(x) usually takes the sigmoid function, and ϕ(x) usually takes

the hyperbolic tangent function as shown in 3.6 and 3.7, respectively.

In this chapter, a multi-layer LSTM network is constructed to act as the base-learner

in the ML-TP framework. For specific mobile cell i, this multi-layer LSTM network will

continuously input a sequence of input vectors and finally output the predicted mobile

traffic load in the next time interval. The length of each input sequence is denoted as the step

number, SN. The input sequence is denoted as [Ip [t] Ip [t −1] , ...,Ip [t −SN +1]]. According

to Observation 2 that the traffic load of a mobile cell is strongly influenced by the time, each

input vector Ip [t] is constructed consisting of three attributes: one is the normalised mobile

traffic load during the time interval in this cell, lp [t], and the other two attributes, dt and hrt ,

reflecting the temporal information of time interval t (dt equals 1/7, 2/7, ..., or 1 denoting

Monday, Tuesday, ..., or Sunday, hrt equals g/24 denoting t is during the g-th hour of a day).

5.3 The Proposed ML-TP 73

M is used to denote the layer number of the proposed LSTM network, use Um and Vm to

denote the dimensions of the m-th layer LSTM memory block’s input vector and output vector.

Obviously, it can be noticed that Vm = Um+1. For the m-th layer LSTM memory block in

the LSTM network, there are 4× (Um+Vm)×Vm+4×Vm parameters (4× (Um+Vm))×Vm

neural connection weights and 4×Vm neural biases) can be trained in this block as shown in

Figure 5.7. Thus, the total number of parameters to be trained, PN, in each base-learner can

be calculated as follows:

PN =
M

∑
m=1

4× (Um +Vm)×Um +4×Vm (5.9)

For an arbitrary mobile cell p, the input sequence is labelled as [lp [t] , lp [t −1] , ..., lp [t −SN +1]]

with this cell’s realistic normalised mobile traffic load during time interval t +1, lp [t +1],

and transform it into a base-sample. By applying a sliding window with a length of SN to

split cell p’s normalised traffic load vector, a number of BSN = N −SN base-samples will be

built for this cell.

5.3.4 The KNN Algorithm Based Meta-learner

Without meta-knowledge, a base-learner has to be trained with a randomly selected set of

biases: random initial values for its neural connection weights and neural biases. For each

mobile cell p in Smeta
train, its base-learner can be trained using the large base-task training set,

Sbasep
train_large, which comprises all the BSN base-samples related to this mobile cell. By labeling

mobile cell p’s frequency component vector with the values of neural connection weights

and neural biases in its well-trained base-learner, the meta-sample, smetap
train , can be obtained.

As it is challenging to train all the base-learners related to numerous mobile cells with

large base-task training sets, whether the proper set of biases for the base-learner of a new

base-task can be provided with the help of accumulated meta-knowledge is investigated.

Indeed, this chapter can prove the following Lemmas 1 and 2, as well as Propositions 1 and

2.

74 Mobile Network Traffic Prediction Framework: The ML-TP

Lemma 1: Assume l1 = [ł1 [−∞] , ..., l1 [∞]] and l2 = [l2 [−∞] , ..., l2 [∞]] are discrete peri-

odic signals with the same period of T . l1 and l2 have some main frequency components

at the same set of frequencies, fmain = { f1, f2, ..., fE}, in the range of [0,2π] through FFT,

and the sum amplitude of the other frequency components of l1 [t] or l2 [t] in [0,2π] does

not exceed η . The vectors Γ1 = (ℜ(F1 (f1)) ,ℑ(F1 (f1)) , ...,ℜ(F1 (fE)) ,ℑ(F1 (fE))) and

Γ2 = (ℜ(F2 (f1)) ,

ℑ(F2 (f1)) , ...,ℜ(F2 (fE)) ,ℑ(F2 (fE))) can be used to record the main frequency compo-

nents of l1 [t] and l2 [t] in their FFT results, respectively. Then if Euclidean distance between

Γ1 and Γ2 is σ , then |l1 [t] − l2 [t] | ≤
√

k ·σ +2 ·η , ∀t ∈ Z.

Proof: See Appendix A.

Lemma 2: For an LSTM memory block, whose input vector x[t] = (x1[t], ...,xU [t])

and output vector h[t] = (h1[t], ...,hV [t]) have the dimensions of U and V , respectively,

(x[t],x[t−1], ...,x[t−SN+1]) and (h[t],h[t−1], ...,h[t−SN+1]) is used to denote its input

sequence and output sequence, respectively, for certain number of steps, SN. Then when the

LSTM memory block has given values of neural connection weights and neural biases in

its input gate, forget gate, input activation gate and output gate, for an arbitrary element hv

in the output vector, hv[t], hv[t −1], ..., and hv[t −SN +1] are continuous and differentiable

functions about x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1], ..., xU [t].

Proof: See Appendix B.

Proposition 1: For a deep LSTM network, which consists of W layers of stacked LSTM

blocks, x[t] = (x1[t], ...,xU [t]), (x[t],x[t − 1], ...,x[t − SN + 1]), y[t] = (y1[t], ...,yV [t]), and

(y[t],y[t − 1], ...,y[t − SN + 1]) is used to denote its input vector, input sequence, output

vector, and output sequence, respectively. With given neural connection weights and neural

biases of this LSTM network, y1[t], ..., yV [t] are continuous and differentiable functions w.r.t.

x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1], ..., xU [t].

Proof: See Appendix C.

Proposition 2: Suppose l1 and l2 are discrete periodic signals with the same period

of T . l1 and l2 have some main frequency components at the same set of frequencies,

fmain = { f1, f2, ..., fE}, in the range of [0,2π] through FFT, and the sum amplitude of the

5.3 The Proposed ML-TP 75

Algorithm 2 : The KNN algorithm based meta-learner in ML-TP

1: input the frequency component vector Γq and the small training set Sbaseq
train_small of mobile

cell q;
2: input the the set of accumulated meta-samples, Smeta

train;
3: for each meta-sample smetap

train in Smeta
train do

4: calculate the the Euclidean distance between Γq and the frequency component vector
of mobile cell p, Γp;

5: end for
6: retrieve the K meta-samples in Smeta

train whose frequency component vectors have the
smallest Euclidean distance with Γq;

7: record the set of those K meta-samples as smetap1
train ,smetap2

train , ...,smetapK
train ;

8: for each meta-sample s
metapk
train in smetap1

train ,smetap2
train , ...,smetapK

train do
9: transfer the parameter values in s

metapk
train ’s base-learner, i.e., the neural connection

weights and neural biases, to the base-learner of mobile cell q;
10: test the predicting accuracy of mobile cell q’s base-learner over Sbaseq

train_small;
11: end for
12: retrieve the meta-sample s

metapk∗
train in smetap1

train ,smetap2
train , ...,smetapK

train , whose base-learner’s pa-
rameters lead to the best predicting accuracy of the base-learner of mobile cell q over
Sbaseq

train_small;

13: output the parameter values in s
metapk∗
train ’s base-learner;

other frequency components of l1 [t] or l2 [t] in [0,2π] does not exceed η . The Euclidean

distance between l1 [t]’s and l2 [t]’s main frequency component vectors, Γl1 and Γl2 , is σ .

Then if σ and η are small enough, and a deep LSTM network, which has one-dimensional

output vector y[t] and certain number of steps, SN, can accurately predict l1[t + 1], i.e.,

y[t] = l1 [t +1] using the input vector x [t] = (l1[t],d[t],hr[t]), then the error of utilising

this deep LSTM network to predict l2 [t +1], i.e. |ŷ′[t]− l2[t +1]|, using the input vector

x′ [t] = (l2[t],d[t],h[t]) is bounded by (
√

k ·σ +2 ·η) · (1+ ∂y[t]
∂ l1[t]

+ ...+ ∂y[t]
∂ l1[t−SN+1]) for all t

in Z.

Proof: See Appendix D.

According to previous observations that the cell-level mobile network traffic varies

approximately periodically and is dominated by the five main frequency components, Propo-

sition 1 implies that, in ML-TP, transferring the values of neural connection weights and

neural biases in the base-learner of a previous base-task to a new base-task’s base-learner will

76 Mobile Network Traffic Prediction Framework: The ML-TP

cause limited prediction error if the previous base-learner is well-trained and the Euclidean

distance between the two base-tasks’ frequency component vectors is small. In other words,

if choosing these values of neural connection weights and neural biases as the set of biases

for the new base-task’s base-learner, the new base-learner will have a proper initial status,

and its learning efficiency may be improved.

Thus, the Euclidean distance can be defined as the difference between two base-tasks’

meta-features and propose a KNN algorithm based meta-learner. For any new base-task q

with a limited number of training base-samples, Sbaseq
trainsmall

, the meta-learner will first extract

its meta-features and calculate the difference between this task’s meta-features and the meta-

features of each meta-sample in Smeta
train. Then, the meta-learner will set the label of each

meta-sample in the k ones, which have the smallest difference values with the base-task

q in Smeta
train, as the new base-learner’s set of biases, respectively, and test the base-learner’s

performance on Sbaseq
trainsmall

. Finally, the meta-learner will choose the label leading the lowest

predicting error of the new base-learner on Sbaseq
trainsmall

as the new base-learner’s set of biases.

The pseudo-code of the KNN algorithm based meta-learner is given in Algorithm 1.

5.3.5 Fine-tune the Base-learner for a New Base Learning Task

For any base-task related to a new mobile cell q, as shown in Algorithm 1, the proper set

of biases for its base-learner will be output by the meta-learner based on its meta-features.

Then, the base-learner is fine-tuned using the corresponding base-samples in Sbaseq
trainsmall

. With

meta-knowledge, the base-learner of a new mobile traffic prediction task is expected to obtain

a good prediction accuracy and learning efficiency in terms of fast convergence speed and a

small number of training base-samples needed.

5.4 Evaluation on Real-world Mobile Traffic Data

This section conducts comprehensive experiments to investigate the performance of ML-TP

for cell-level mobile traffic prediction. Firstly, the experimental settings and performance met-

rics used are introduced. Then, this section test the influence of two key hyper-parameters, i.e.,

5.4 Evaluation on Real-world Mobile Traffic Data 77

the scale of Smeta
train and the selection of k in Algorithm 1, on the meta-learner’s performance.

After that, the prediction accuracy of the ML-TP is compared with several baseline methods.

Finally, how the meta-learner can help base-learners improve their learning efficiency in

terms of converging speed, and the number of base-examples needed is demonstrated in

detail.

5.4.1 Experimental settings and performance metrics

In the dataset, mobile traffic records of some cells during a few time intervals are not

successfully collected due to base station failure or data storage error. If the actual traffic

load of a mobile cell at a certain time interval is missing, according to the high correlation

among adjacent cells, it will be filled using a common method [168] that this missing value

is completed by the mean traffic load of the surrounding cells at the same time intervals.

Each base-learner in ML-TP is constructed as a three-layer deep LSTM network, i.e.,

M = 3, and its output vectors of the three layers are 5, 5, and 1 respectively. According to

equation 5.9, the total number of parameters to be trained in each base-learner is 428. The

step number, SN, of a base-learner is set to be 3. The meta-learner in ML-TP takes the main

frequency vector of a new base-task with size 10 as its input, and outputs a vector of size 428

representing the initial parameter values in the new base-task’s base-learner.

For each base-task, i.e., the traffic prediction problem of a mobile cell in the dataset, a

sliding window with size SN = 3 is applied to split its normalised traffic loads and generate

the base-samples by labelling each sequence of input vectors with the normalised traffic load

in next time interval. Moreover, those base-samples during 24/12/2012-01/01/2013 when

the holidays introduced evident mobile traffic abnormalities are abandoned. This secction

randomly selects 70% of mobile cells in the dataset to construct the meta-training set Smeta
train.

To generate a meta-sample for each base-task i in Smeta
train, the base-learner from a randomly

selected initial status is trained using all the base-samples generated corresponding to this

base-task. This section evaluates the performance of ML-TP on testing base-tasks related to

the other 30% of mobile cells. For each testing base-task q, base-samples generated during

78 Mobile Network Traffic Prediction Framework: The ML-TP

11/01/2013-12/15/2013 are used to fine-tune the base-learner and the other ones are used to

test the base-learner’s prediction accuracy.

This section compares the performance of ML-TP with several methods that are com-

monly used in time series prediction. These baseline methods include ARIMA [79, 85, 102],

Linear Regression (LR) [80], SVR [115] and the conventional LSTM network [122]. ARIMA

is an advanced statistical model based method for time series prediction problems, while

LR and SVR are representatives of shallow learning methods. Different from these statis-

tical model-based methods or shallow learning methods, the conventional LSTM network

is one of deep learning methods. For a fair comparison, the conventional LSTM network

structure is the same as each base-learner in ML-TP for each base-task. Different from the

base-learner in ML-TP, the initial values of neuron connection weights and neuronal biases

of the conventional LSTM network are randomly initialised.

The base-learners in ML-TP and the conventional LSTM networks related to different

base-tasks are optimised based on a stochastic gradient-based optimization technique, Adam

[148], which is widely adopted in deep learning domain, with the batch size of 8 and the

learning rate of 0.001. The mean square error (MSE) loss is chosen as the loss function in

the training process.

To evaluate the prediction performance, three metrics, i.e., Root Mean Square Error of

Normalised traffic (NRMSE), Mean Absolute Error of Normalised traffic (NMAE), and R-

squared (R2) are adopted in the experiments. NRMSE and NMAE reflect how the prediction

values approach the real values, while R2 measures the fitting degree between the prediction

and ground true values. NRMSE, NMAE, and R2 can be calculated as follows:

NRMSEp =

√
1
N

N

∑
t=1

(
l̂p [t] − lp [t]

)2
(5.10)

NRMAEp =
1
N

N

∑
t=1

∣∣∣l̂p [t] − lp [t]
∣∣∣ (5.11)

5.4 Evaluation on Real-world Mobile Traffic Data 79

Fig. 5.8 NRMSE over the variation of K of the meta-learner and number of meta-sample

R2p = 1− 1
N

∑
N
t=1

(
l̂p [t] − lp [t]

)2

∑
N
t=1

(
l̄p [t] − lp [t]

)2 (5.12)

where N, l̂p [t] and lp [t] represent the total number of samples in calculation, predicted traffic

and ground truth traffic, respectively. l̄p [t] is the average of the ground true values.

5.4.2 Influence of the meta-learner’s two key hyper-parameters

For the meta-learner in Algorithm 1, there are two key hyper-parameters affecting its

performance: the value of K and the scale of Smeta
train, W , i.e., the number of meta-samples.

K determines the number of candidates meta-samples used to choose the optimal set of

biases for the base-learner of each new base-task and the scale of Smeta
train reflects how much

meta-knowledge has been accumulated.

Figure 5.8 presents the average NRMSE achieved by the base-learners of the testing

base-tasks over the corresponding testing base-samples when their initial statuses are given

by the meta-learner, and they are not fine-tuned by any base-samples, under various values

of K and W . Obviously, a smaller average NRMSE value reflects that the meta-learner in

ML-TP can provide better sets of biases (initial statuses) for the base-learners of the testing

base-tasks. From Figure5.8, it can be noticed that as K rises from 2 to 16 and the number of

80 Mobile Network Traffic Prediction Framework: The ML-TP

meta-samples rises from 1000 to 7000, the average NRMSE decreases transparently from

around 0.067 to lower than 0.057. Moreover, for a certain value of W or K, increasing the

value of the other hyper-parameter monotonously elevates the meta-learner’s performance

in terms of the average NRMSE achieved. These observations can be explained as when

more meta-knowledge is accumulated or considering more candidate meta-samples for a

new base-task, the meta-learner will have a higher probability to find the previous base-tasks

possessing similar traffic patterns with the target base-task and more chances to obtain the

proper set of biases for the new base-task’s base-learner, which leads to a small prediction

error.

An interesting phenomenon in Figure 5.8 is that when K increases from 1 to 16, the

average NRMSE first decreases dramatically and then becomes stable under each certain

value of W . More specifically, after K exceeds 10, further augment of K seems to introduce

little performance improvement for the meta-learner in ML-TP. This is a meaningful conclu-

sion that provides a guide to the hyper-parameter selection in Algorithm 1. In the rest of

the experiments, the value of K is set to 10 to balance the framework performance and the

algorithm complexity.

5.4.3 Prediction accuracy of ML-TP and the baseline methods

The prediction performance of ML-TP and the baseline methods are compared over the

testing base-tasks. The results of evaluation metrics are shown in Figure 5.9. For each testing

base-task q, Sbaseq
trainsmall

is set to contain all the base-samples generating during 11/01/2013-

12/15/2013, to fine-tune/train the base-learner in ML-TP and the baseline methods.

From Figure 5.9, it can be clearly seen that the LR and the ARIMA perform the worst

among all the methods. This can be explained as mobile traffic loads have highly nonlinear

patterns in the temporal dimension, which makes the future traffic load forecasting a very

challenging task and beyond the ability of linear models. The SVR method has the capability

of dealing with nonlinearities in mobile traffic loads. Thus it achieves better prediction

performance than that of LR and ARIMA. The high complex network architecture enables

the conventional LSTM network to have strong ability to represent the nonlinearities in

5.4 Evaluation on Real-world Mobile Traffic Data 81

(a)

(b) (c)

Fig. 5.9 Performance of ML-TP and the baseline methods in terms of (a) NRMSE; (b) NMAE
2; (c) R2

82 Mobile Network Traffic Prediction Framework: The ML-TP

cell-level mobile traffic patterns. In addition, the conventional LSTM network can mine deep

dependencies among mobile traffic loads generated at various time intervals. Therefore, it

can be found from Figure 5.9 that the conventional LSTM network outperforms the LR, the

ARIMA, and the SVR.

The proposed ML-TP achieves the best results in terms of all the evaluation metrics, i.e.,

NRMSE, NMAE, and R2. This can be traced back to two main reasons. First, the base-learner

for each base-task in ML-TP is based on deep LSTM network and can learn and represent

the complex nonlinearities in cell-level mobile traffic load variations. Second, unlike the

conventional LSTM network, which is initialised with randomly selected parameter values,

the meta-learner in ML-TP will output the best initial searching point in the hypothesis space

for a base-learner, leading to a more precise hypothesis for each base-task. Compared with

the conventional LSTM network, the meta-learning technique brings about 3.9%, 6.7% and

1.3% performance improvements in terms of NRMSE, NMAE and R2, respectively.

(a) Traffic pattern of cell 1884 (b) Traffic pattern of cell 1684

Fig. 5.10 Predicted mobile traffic load by ML-TP compared the real traffic load of cell (a)
1884 (b) 1684

To be more specific, this section also compares the mobile traffic loads predicted by the

ML-TP with the ground-truth values. Figure 5.10 shows the predicted mobile traffic loads of

ML-TP and the conventional LSTM network, as well as the real mobile traffic loads generated

in cells 1884 and 1684, respectively. It can be found that both the conventional LSTM network

and the proposed ML-TP can accurately predict the mobile traffic dynamics under normal

5.4 Evaluation on Real-world Mobile Traffic Data 83

traffic patterns. Additionally, ML-TP performs much better than the conventional LSTM

network when the mobile traffic patterns have abnormities or sudden changes. This can

be explained as the accumulated meta-knowledge will make the base-learners in ML-TP

adaptable to abnormal mobile traffic and help them handle unknown traffic patterns. While for

the conventional LSTM networks, they will fail to predict unknown mobile traffic variations

without meta-knowledge if there are no similar base-samples in their base-task training sets.

5.4.4 Base-samples needed to fine-tune the base-learner of a new base-

task

In this subsection, how the meta-learner in ML-TP improves the learning efficiency of

the base-learners in terms of the number of training base-samples needed is investigated.

Different from the training process in section 5.4.3, for each testing base-task q, a portion of

base-samples generated during 11/01/2013-12/15/2013 is randomly selected to fine-tune/train

the base-learner initialised by the meta-learner and the conventional LSTM network. Note

that for the base-learners in ML-TP and the conventional LSTM networks, the number of

training epochs is set to 100, under which those deep learning-based models’ parameters

have already converged to stable values.

Figure5.11 (a,b,c) describe the evaluation metrics achieved by the ML-TP and the conven-

tional LSTM networks, i.e., without meta-learner, under different numbers of base-samples in

each testing base-task’s training set. The results are obtained by validating on the testing set.

It can be found that the conventional LSTM networks have high NRMSE and NMAE values

as well as a low R2 value with small base-task training sets and will obtain a high prediction

accuracy if the training set of each testing base-task is large enough (e.g., containing more

than 500 training base-samples). This is because with randomly selected initial status, the

conventional LSTM networks require abundant training data to adjust their parameter values.

Otherwise, they may suffer the overfitting problem. As a comparison, the ML-TP achieves a

competitive accuracy performance even with a quite small number of training base-samples

for each testing base-task and then will approach stable when that number reaches about

84 Mobile Network Traffic Prediction Framework: The ML-TP

200 400 600 800
Number of training base-samples

0.0

0.1

0.2

0.3

0.4

NR
M

SE

ML-TP
Basic LSTM

(a)

200 400 600 800
Number of training base-samples

0.0

0.1

0.2

0.3

0.4

NM
AE

ML-TP
Basic LSTM

(b)

200 400 600 800
Number of training base-samples

1.5

1.0

0.5

0.0

0.5

1.0

R2

ML-TP
Basic LSTM

(c)

Fig. 5.11 Performance of ML-TP and deep LSTM with respect to the number of training
base-samples: (a) NRMSE; (b) NMAE; (c) R2

5.4 Evaluation on Real-world Mobile Traffic Data 85

150. The prediction accuracy of ML-TP with 150 training base-samples exceeds that of the

conventional LSTM networks with 800 training base-samples, leading to about 81% reduc-

tion in the training base-samples needed. This can be explained as due to the accumulation

of meta-knowledge, the base-learner for a new base-task will be given the proper initial

values of neuron connection weights and neuronal biases. Thus, it performs well after being

fine-tuned with only few training base-samples.

5.4.5 Epochs needed to fine-tune the base-learner of a new prediction

task

0 20 40 60 80 100
Epoches in training process

0.0

0.1

0.2

0.3

0.4

NR
M

SE

ML-TP, 24 base-samples
Basic LSTM, 24 base-samples
ML-TP, 840 base-samples
Basic LSTM, 840 base-samples

(a)

0 20 40 60 80 100
Epoches in training process

0.0

0.1

0.2

0.3

0.4

NM
AE

ML-TP, 24 base-samples
Basic LSTM, 24 base-samples
ML-TP, 840 base-samples
Basic LSTM, 840 base-samples

(b)

(c)

Fig. 5.12 Performance of ML-TP and deep LSTM networks with respect to the number of
training epochs: (a) NRMSE; (b) NMAE; (c) R2

86 Mobile Network Traffic Prediction Framework: The ML-TP

This section also examines how the meta-learner in ML-TP improves the learning

efficiency of the base-learners in terms of the number of training epochs needed. Fig-

ure5.12(a,b,c) show the average NRMSE, NMAE, and R2 achieved by the ML-TP and the

conventional LSTM networks over the testing base-tasks versus the number of epochs in

the training process, where different number of samples are available. Two scenarios are

presented: limited data availability and adequate data availability. One day’s data (24 sam-

ples) and five weeks’ data (840 samples) are provided to construct the training set for each

base-task, respectively. The performance of ML-TP and basic LSTM without meta-learner is

evaluated under these two scenarios.

It can be seen that for small training sets, the prediction accuracy of the conventional

LSTM networks ascends relatively slow as the number of training epochs increases and

remains stable at a relatively bad performance after 60 training epochs. This is because

the conventional LSTM network will overfit the training set of each testing base-task if the

number of base-samples is small. The proposed ML-TP has a faster convergence speed

and much better prediction performance than the conventional LSTM networks. This is

because due to the accumulation of meta-knowledge, the base-learner for a new base-task

in ML-TP will be given the proper initial parameter values that approach the target ones,

and thus achieve competitive performance even with few training base-samples and small

training epoch numbers. When the base-task training sets have adequate base-samples, the

conventional LSTM networks require fewer training epochs to converge and achieve a good

prediction accuracy after 40 training epochs. This is in accordance with the previous analysis

that the conventional LSTM networks have both high representation ability and training-data

dependence due to their complex structures. The proposed ML-TP also has higher predicting

accuracy and much faster convergence speed than the conventional LSTM networks when

the base-task training sets are large. ML-TP’s performance becomes stable when the epoch

number exceeds 10, leading to a 75% reduction in the number of training epochs needed

compared with the conventional LSTM networks.

5.5 CONCLUSION 87

5.5 CONCLUSION

In this chapter, an early attempt to introducing the meta-learning concept into cell-level

mobile traffic prediction is carried out. A meta-learning-based mobile traffic framework, ML-

TP, is propsoed to adaptively learn the proper prediction model for a new mobile cell. In the

ML-TP framework, the traffic prediction task for each individual mobile cell is considered as

a base learning task and utilise the deep LSTM as the base-learner to address it. This chapter

also defines a meta-learning task, aiming to learn to learn the proper prediction models

for different base-learning tasks. By testing the ML-TP on a real-world cell-level traffic

load dataset, the results reveal that the proposed ML-TP outperforms existing prediction

techniques in terms of mobile traffic prediction. Furthermore, compared with the traditional

LSTM network, the ML-TP significantly improves the learning efficiency, where the number

of training base-samples to fine-tune the base-learner and the requirement on epochs is

reduced by about 70% and 80%, respectively.

Except for the initial searching point, whether and how the meta-learning can be adopted

to determine the most suitable prediction algorithm and hyper-parameters for a specific

mobile traffic prediction task will also be analysed in future work.

Chapter 6

Mobile Network Traffic Prediction

Framework: The dmTP

Deep learning technologies have been widely exploited to predict mobile traffic. However,

individually training deep learning models for various traffic prediction tasks is not only time

consuming but also sometimes unrealistic due to limited traffic records. In this chapter, a

novel deep meta-learning based mobile Traffic Prediction framework (dmTP) is proposed,

which can adaptively learn to learn the proper prediction model for each distinct prediction

task from accumulated meta-knowledge of previous prediction tasks. In dmTP, each mobile

traffic prediction task is regarded as a base-task, and an LSTM network is adopted with a

fixed structure as the base-learner for each base-task. In order to improve the base-learner’s

prediction accuracy and learning efficiency, an MLP is further employed as the meta-learner

to find the optimal hyper-parameter value and initial training status for the base-learner of

a new base-task according to its meta-features. Extensive experiments using real-world

datasets demonstrate that while guaranteeing a similar or even better prediction accuracy,

meta-learning in the proposed dmTP reduces the number of epoch and base-samples needed

to train the base-learners by around 75% 81%, respectively, as compared with the existing

prediction models.

90 Mobile Network Traffic Prediction Framework: The dmTP

6.1 Introduction

With the popularity of mobile devices and applications such as the Internet of things, cloud

computing, and virtual reality /augmented reality, mobile communication networks have

become an indispensable part of people’s lives [169]. According to Cisco’s latest statistical

report [170], global mobile traffic demands are expected to increase seven-fold from 2016 to

2021 and account for 20% of the total Internet traffic by 2021.

In order to provide mobile service with guaranteed quality [169, 170], key technical

challenges in mobile traffic analysis, including mobile traffic prediction, anomaly detection,

attack classification, website fingerprinting, and mobile traffic identification, have been

widely investigated in recent years [171]. Among these challenges, the accurate prediction

of mobile traffic is a critical enabler of advanced management and optimisation of network

resources.

Mobile traffic prediction has attracted continued research interest from both academia and

industry [162, 172]. Estimating the future loads based on historical traffic records, mobile

traffic prediction has been widely considered as a time series forecasting problem. The

existing mobile traffic prediction models or algorithms can be generally classified into two

categories: statistical methods and machine learning-based methods [52].

In statistical methods, researchers tried to use explicit statistical models with certain

parameters to fit the mobile traffic patterns for future traffic forecasting. In [102], Zhou et

al. used the ARIMA model to capture the short-term correlation in network traffic. The

seasonal ARIMA model was adopted in [85] to capture the long-term traffic correlation. Li

et al. [162] demonstrated that the cellular traffic loads generated by three typical mobile

services follow heavy-tailed distributions and then utilised the α-stable model to predict their

load fluctuations. However, since realistic mobile traffic tends to show complex irregular

patterns, it is difficult for statistical models to predict realistic mobile traffic accurately.

Machine learning technologies are gaining increasing popularity in mobile traffic predic-

tion. Unlike the statistical methods, machine learning-based methods package the statistical

models used for prediction into opaque or semi-opaque black boxes, which need to be trained

using historical traffic records. In [80] and [115], LR and SVR were used to predict the

6.1 Introduction 91

network-level mobile traffic, respectively. Nevertheless, these shallow learning methods

cannot cope with many practical prediction scenarios due to the fact that they cannot perform

feature extraction on their own, while relying on some prior knowledge of the input features.

Recently, powerful deep learning tools have been leveraged for mobile traffic prediction.

Nie et al. [120] employed a deep belief network-based model to predict the mobile traffic

loads aggregated across a city. Assuming traffic information of neighbouring cells, Feng et

al. [172] proposed an LSTM network-based prediction model to forecast the traffic loads of

a target cell. With a reduced connection complexity, a model based on a random connectivity

LSTM network was proposed in [123] to predict a single cell’s traffic. Furthermore, based

on historical traffic loads generated in all the cells, a convolutional neural network-based

prediction model [164] and a convolutional LSTM network-based prediction [52] were

proposed to forecast the spatial mobile traffic in a city. However, in the existing works, a

specific prediction model must be constructed and trained for each individual mobile traffic

prediction task as the time series of mobile traffic handled by various prediction tasks are

quite different. Separately training the prediction models for multiple tasks is not only time

consuming but also unrealistic since there are not always sufficient historical traffic records

available, e.g., for newly built networks.

To fill the above gaps, this chapter presents an early attempt to introduce deep meta-

learning into mobile traffic prediction and investigate how to make the prediction model

learn to learn for a specific mobile traffic prediction task according to its characteristics

(meta-features). The main contributions of this work are summarised as follows:

• Through FFT, it can be demonstrated that the temporal variations of mobile traffic over

hours, days, and weeks can be characterised by the five main frequency components

of the frequency spectrum. More specifically, my analysis shows that the Pearson

correlation coefficient of two base-tasks’ normalised traffic load series is negatively

correlated with the Euclidean distance between their frequency component vectors.

In other words, two base-tasks’ normalised traffic load series tend to have similar

time-domain variations if their frequency component vectors are close to each other,

and vice versa.

92 Mobile Network Traffic Prediction Framework: The dmTP

• This chapter introduces deep meta-learning into mobile traffic prediction, where each

prediction task is regarded as a base-task and is represented as a time series forecasting

problem. By defining the meta-task as learning to learn the proper prediction models

for different base-tasks, a novel deep meta-learning based mobile Traffic Prediction

framework (dmTP) is proposed. In dmTP, an LSTM network with a fixed structure

is adopted as the base-learner to forecast a base-task’s traffic load based on previous

values. Using the five main frequency components as the meta-features, an MLP

is employed as the meta-learner to output the optimal hyper-parameter value and

initial status for the base-learner of a new base-task according to the accumulated

meta-knowledge and the base-task’s meta-features.

• The performance of dmTP is evaluated by extensive tests using real-world mobile

traffic data for heterogeneous prediction tasks. Numerical results show that the meta-

learning technology not only improves the prediction models’ prediction accuracy and

learning efficiency but also makes them more adaptable to high varied traffic patterns.

The rest of this article is organised as follows. Section 6.2 presents the statistical

characteristics of mobile traffic and briefly introduces the meta-learning technology. Section

6.3 elaborates on the proposed dmTP. Section 6.4 evaluates the performance of dmTP in

comparison with some existing prediction models. In Section 6.5, a summary of this study is

given.

6.2 Dataset Description and Background Knowledge of Meta-

Learning

6.2.1 Mobile Traffic Traces

This chapter adopts three real-world mobile traffic datasets generated in Milan (Dataset 1),

Guangzhou (Dataset 2), and London (Dataset 3), respectively. Table 6.1 provides details

6.2 Dataset Description and Background Knowledge of Meta-Learning 93

Table 6.1 Description of the three adopted datasets

Dataset 1 Location Duration Items
Mobile network traffic Milan, Italy 11/01/2013-01/01/2014 319,896,289 records
Description: Records are provided by Telecom Italy with a temporal interval of 10 minutes.
Milan city area is divided into 9,999 grids, and the size of a grid is about 235m×235m.
Each traffic record has information about its time interval, geographical gird, and data volume in bits.
Dataset 2 Location Duration Items
Short message service traffic Guangzhou, China 03/01/2019-03/31/2019 1,521,005 records
Description: Records provided by China Unicom. Each short message service record has information
about its timestamp and data volume.
Dataset 3 Location Duration Items
Twitter London, UK 02/15/2016-02/28/2016 136,710 records
Description: Twitter records purchased from the Twitter Company. Each record has information about
its timestamp and geolocation.

about those datasets. Dataset 1 is publicly available [52], while Datasets 2 and 3 were

purchased and are not publicly accessible.

Each grid in Dataset 1 is referred to as a cell, and the forecasting problem for each cell’s

mobile traffic load (in bits) is regarded as an individual prediction task. As the city area of

Milan is divided into 9,999 grids, there are 9,999 prediction tasks for Dataset 1. Further

details about Dataset 1 can be referred to as section 5.2.1. Datasets 2 and 3 aims for the

forecasting problem for short message service traffic load (in bits) generated in the whole

Guangzhou city and that for Twitter traffic load (in amounts) generated in the whole London

city as two prediction tasks, respectively. These prediction tasks from Datasets 1, 2, and 3

focus on different spatial scales and involve different kinds of mobile traffic. This study does

not breach user privacy or raises ethical or legal issues. Indeed, this study does not process

individual or personal data. Also, the datasets are strongly anonymised by the geographical

aggregation at the cellular or city level, ensuring that the mobile demands are merged over

numerous subscribers.

6.2.2 Characteristics of Mobile Traffic

The time interval resolution is set to one hour following the settings in [52] mainly because

time interval resolutions smaller than one hour will make many cells from Dataset 1 have

lots of zero values in their traffic load series, which will be too sparse for traffic prediction.

94 Mobile Network Traffic Prediction Framework: The dmTP

Fig. 6.1 Characteristics of mobile traffic in the time domain (left) and frequency domain
(right)

The peak traffic loads among various prediction tasks from the three datasets differ by up to

5 orders of magnitude, and the traffic load series of each prediction task is normalised into

the range of [0,1] using the min-max normalisation scaling method, as defined in 3.13. The

left of Figure 6.1 illustrates the normalised mobile traffic loads in three prediction tasks for

two weeks. It can be observed that though the three mobile traffic streams exhibit different

temporal patterns, they all exhibit a weekly cyclic pattern, which is also observed in the time

series of other cells from Dataset 1.

6.2.3 Characteristics of Mobile Traffic

A discrete periodic signal is generated for each mobile traffic prediction task by periodically

repeating its normalised real traffic loads in the first secular week (from Monday to Sunday),

and then FFT is performed. Notably, though using a periodic signal to represent the actual

mobile traffic stream may lose some variation information in the time series, it allows

depicting the features of a prediction task with much fewer records of historical traffic

load. The right of Figure 6.1 shows the amplitudes of the frequency components in the FFT

results related to the three time series in the left of Figure 6.1. From The right of Figure

6.1, it can be found that in the frequency domain ω = π

84 ,
π

12 ,
π

6 ,
π

4 ,
π

3 (corresponding to the

periods of one week, one day, 12 hours, 8 hours, and 6 hours, respectively) are the five main

6.2 Dataset Description and Background Knowledge of Meta-Learning 95

Fig. 6.2 Cumulative distribution function of base-tasks whose sum energy of the five main
frequency components accounts a certain percentage of the related periodic signal’s energy

frequency components for a mobile traffic prediction task. However, the amplitudes of the

main frequency components vary evidently across the different prediction tasks. Figure 6.2

shows the cumulative distribution function of the percentage of the traffic load series’ signal

energy carried by the five main frequency components. It can be observed that the sum

energy of the five main frequency components in more than 60% of the considered prediction

tasks exceeds 60% of the signal energy.

A frequency component vector of size ten is used to record the real parts and imaginary

parts of a prediction task’s main frequency components, same as in section 5.2.2. Obviously,

this vector can reflect both the amplitude and the phase of each main frequency component.

Figure 5.5 illustrates the inter-dependencies of 5,000 randomly selected pairs of time se-

ries (i.e., prediction tasks) from Dataset 1 in both the time domain and the corresponding

frequency domain. Specifically, Figure 5.5 plots the Euclidean distance between the two

frequency component vectors of a pair of prediction tasks versus the Pearson correlation

coefficient between the two corresponding time series. It can be observed that the Pearson

correlation coefficient of the two prediction tasks’ time series is negatively correlated with

the Euclidean distance between their frequency component vectors. In other words, two

prediction tasks’ time series tend to have similar time-domain variations if their frequency

component vectors are close to each other, and vice versa. This implies that the frequency

component vector can be used to characterise the features of a prediction task’s traffic pattern.

96 Mobile Network Traffic Prediction Framework: The dmTP

6.2.4 Meta-Learning

Meta-learning studies how learning systems can increase learning efficiency through expe-

rience. The goal of meta-learning is to understand how learning itself can become flexible

according to the domains or tasks under study [162].

For a typical supervised learning task ξ and a learner ς , each sample is denoted by

labelling a number of features with an unknown target function Fξ and the hypothesis space

of learner ς , Hξ , is defined as the set of all the possible hypothesis functions generated by ς .

The training progress of ς can thus be seen as searching the hypothesis function Hς (ξ) that

approximates Fξ over ς ’s hypothesis space. ς usually embeds a set of biases, which may be

caused by the adopted learning algorithm, hyper-parameters, or the initial status. These biases

may restrict the size of a base-learner’s hypothesis space, and will affect how the base-learner

searches the hypothesis space. Meta-learning matches the biases of a base-learner to an

individual task, which is achieved by a meta-task that adaptively generates a proper set of

biases for each learning task according to the learning task’s meta-features. The meta-task

itself can be seen as a learning task and handled by a meta-learner. Accordingly, those

original individual learning tasks are referred to as base-tasks.

6.3 The Proposed dmTP

Figure 6.3 shows the diagram of my proposed deep meta-learning based mobile traffic

prediction framework, dmTP. In dmTP, each individual mobile traffic prediction task is

regarded as a base-task and present an LSTM network-based prediction model with a fixed

structure as the base-learner for it. A base-task’s frequency component vector is defined as

its meta-features. The number of steps, which is a hyper-parameter defining the length of

the input sequence and is denoted by T S, and the initial values of neural connection weights

and neural thresholds as a base-learner’s set of biases. For each considered value of T S, the

hypothesis space of a base-learner is constituted by the hypothesis functions that each maps

the sequence of T S input vectors to an output value. Thus, the value of T S determines a

base-learner’s hypothesis space, and the initial parameter values determine the base-learner’s

6.3 The Proposed dmTP 97

Fig. 6.3 Architecture of the proposed dmTP framework

initial searching point in its hypothesis space. Intuitively, since the meta-features of a base-

task reflect its traffic pattern characteristics, the best set of biases of the base-learner will be

influenced by this task’s meta-features. An MLP is used as the meta-learner to non-explicitly

extract the correlation between the base-tasks’ meta-features and their best sets of biases, and

output the best set of biases for a new base-task’s base-learner according to the meta-features.

Notations in dmTP: Smeta
train denotes the meta-task training set, which is equivalent to the

set of base-tasks generating meta-samples for meta-task training. For base-task m in Smeta
train,

Smeta_m(T S)
train_large is used to denote the large base-task training set of base-samples for training

m’s base-learner when the number of steps equals T S, while Smeta_m(T S)
veri f y is used to denote

the set of base-samples for verifying the base-learner’s performance. For base-task n not in

Smeta
train, Smeta_n(T S∗n)

train_small is used to denote the small base-task training set with few base-samples

for fine-tuning the base-learner and Smeta_n(T S∗n)
test is used to denote the set of base-samples for

testing the base-learner’s performance.

98 Mobile Network Traffic Prediction Framework: The dmTP

6.3.1 Deep LSTM Network as the Base-learner

In dmTP, a multi-layer LSTM network with L layers is constructed to act as the base-learner.

For a specific prediction task, this LSTM network will be continuously fed a sequence of

input vectors related to previous T S time intervals and predict (as the output) normalised

mobile traffic load in the next time interval. Each input vector consists of three attributes: the

normalised mobile traffic load, the day of the week, and the hour of the day.

The structure of an LSTM memory has been shown in Figure 3.3, and as stated in Chapter

5.3.2, the number of parameters to be trained in each layer is given by 4× (Um +Vm)×

Vm +4×Vm and the total number of parameters to be trained in an LSTM network-based

base-learner is given in equation 5.9.

6.3.2 Train the Meta-learner with Meta-samples

It is assumed that a base-learner will obtain the highest prediction accuracy and training

efficiency when its T S value determines the proper hypothesis space and its initial parameters

approach the target ones (the initial searching point in the hypothesis space approaches the

target function) [162].

The dmTP utilises a set of base-tasks to construct Smeta
train. For each base-task m in

Smeta
train, the best value of T S for its base-learner is selected from multiple candidates through

exhaustive trials. Specifically, for every candidate value, T Sc, the base-learner is trained using

Sbase_m(T Sc)
train_large with randomly selected initial values of the PN parameters, and its performance

is verified via Sbase_m(T Sc)
veri f y . All the base-samples in Sbase_m(T Sc)

train_large and Sbase_m(T Sc)
veri f y have the

same length as the input sequence, T Sc. The best T S value that leads to the base-learner’s

highest prediction accuracy is then selected and denoted by T S∗m. By labelling base-task m’s

frequency component vector with T S∗m and the PN parameters of the base-learner trained by

Sbase_m(T S∗m)
train_large , one meta-sample is obtained.

The meta-learner with MLP is constructed which consists of at least three layers of

operations [45]. For the meta-learner, the input is the frequency component vector, and the

output is the predicted PN parameters and the predicted optimal T S. The MLP based meta-

6.4 Evaluation on Real-world Mobile Traffic Data 99

learner is trained using Smeta
train. With the MLP’s ability of feature extraction and correlation

characterization [45], the meta-learner will be able to generate the best step number, T S∗m,

and initial parameter values approaching the target ones, for a given frequency component

vector as its input, for the base-learner of a new base-task n.

6.3.3 Fine-tune the Base-learner for a New Base-Task

As shown in Figure 6.3, for a new mobile traffic prediction task (i.e., a new base-task) n,

the frequency component vector is first extracted as its meta-features. The well-trained

meta-learner is fed with the meta-features and outputs a set of biases for the base-learner

of base-task n. Specifically, for a new mobile traffic prediction task, the well-trained meta-

learner takes the task’s traffic features as its input, and aims to give the optimal initial

parameters and the hyperparameter, T S, to construct a base-learner for the base-task.

The base-learner will take the given T S∗n as its number of steps and set its initial values of

neural connection weights and neural thresholds according to the output of the meta-learner.

Then, the base-learner is fine-tuned using the small base-task training set, Sbase_n(T S∗n)
train_small . With

meta-knowledge, the base-learner of n is expected to obtain a good prediction accuracy and

training efficiency in terms of a fast convergence speed and a small number of base-samples

needed. Guaranteeing the base-learner’s prediction accuracy, Sbase_n(T S∗n)
train_small can only contain a

few base-samples.

6.4 Evaluation on Real-world Mobile Traffic Data

6.4.1 Experimental Settings

In the experiments, the base-learner is constructed as a three-layer LSTM network, where the

output vectors of the first and the second LSTM memory blocks are both of size 5. According

to the LSTM memory block structure and equation 5.9, the total number of parameters to

be trained for each base-learner is 428. The meta-learner has three hidden layers of size

300, 300, and 400, respectively, while its input and output layers have ten neurons and 429

100 Mobile Network Traffic Prediction Framework: The dmTP

neurons (one for T S and the rest for the 428 parameters in a base-learner to be trained),

respectively.

The experiment randomly selects 8,000 out of 9,999 base-tasks related to Dataset 1 to

construct the meta-training set, Smeta
train, to train the meta-learner. For each base-task m in

Smeta
train, T S is tested whose value ranges from 3 to 24. For a candidate T S value, T Sc, a sliding

window with size T Sc, is applied to split m’s normalised traffic load series and generate

the base-samples by labelling each sequence of m input vectors with the normalised traffic

load in the next time interval. 90% of these base-samples are selected to construct the

base-task’s training set, i.e., Sbase_m(T Sc)
train_large while use the other ones to construct the test set, i.e.,

Sbase_m(T Sc)
veri f y . The performance of dmTP is examined on the remaining 1,999 base-tasks of

Dataset 1 that have not been selected for meta-training and the two testing base-tasks from

Datasets 2 and 3. Similarly, for each testing base-task n, a sliding window with size T S∗n is

applied, which is output by the meta-learner, to generate the base-samples. For each testing

base-task n, the traffic load series are also divided into a training set and a test set, where

the training set is used to fine-tune the base-learner, and the test set is used to evaluate the

performance of the base-learner.

The performance of dmTP is compared with the existing time series forecasting methods,

including ARIMA [102], LR [80], SVR [115], and basic LSTM networks [123] for T S =

12,24. For a fair comparison, a basic LSTM network with the same structure as a base-

learner is constructed in dmTP. the MSE loss is chosen as the loss function. At the same time,

the adaptive moment estimation algorithm [45] with the default learning rate is utilised to

optimise the baseline LSTM networks as well as the meta-learner and base-learners in dmTP.

It can be noted that for around 20% of the base-tasks in Dataset 1, the traffic loads in more

than 50% of time intervals are less than 20% of the peak traffic load, while for around 84%

of the base-tasks in Dataset 1 and the two base-tasks from Datasets 2 and 3, the traffic loads

in more than 50% of time intervals are less than 40% of the peak traffic load. Considering

that the mean values of the traffic load series related to a considerable portion of base-tasks

are relatively low, the NRMSE is used to evaluate the accuracy of the considered prediction

methods.

6.4 Evaluation on Real-world Mobile Traffic Data 101

Fig. 6.4 Performance of dmTP and the baseline methods

6.4.2 Prediction Performance

Figure 6.4 compares the prediction accuracy achieved by dmTP, ML-TP and the baseline

methods. In order to test the applicability of meta-learning technology to other prediction

methods, the performance of ARIMA, LR, and SVR is evaluated when their hyper-parameters

(i.e., the number of steps for ARIMA and LR, and the kernel function for SVR for a certain

base-task are either fixed or selected by MLP based meta-learners from multiple candidate

values (where candidate TS value ranges from 1 to 5 for ARIMA, candidate TS value ranges

from 1 to 10 for LR, and candidate kernel functions for SVR are linear, poly, and exponential

functions). Except for the output layer, the meta-learners for the above three baseline methods

have the same structure as the meta-learner in dmTP. For each testing base-task from Dataset

1, the testing base-samples are generated during the two weeks of 12/16/2013-12/22/2013

and 12/23/2013-12/29/2013, where the traffic pattern during the second week has apparent

variations due to the Christmas holidays. For the two testing base-tasks from Datasets 2

and 3, the testing base-samples are generated in the last week, i.e., 03/25/2019-03/31/2019

and 02/22/2016-02/28/2016, respectively. Note that for each testing base-task in Figure

102 Mobile Network Traffic Prediction Framework: The dmTP

6.4, all the base-samples that have not been used for testing are used to fine-tune/train the

base-learner in dmTP and the baseline models.

As can be seen from Figure 6.4, ARIMA and LR perform the worst among all the

considered methods. This is because these simple models are not able to capture the highly

nonlinear temporal patterns of mobile traffic loads. The SVR, a nonlinear prediction method,

can deal with the nonlinearities in load variation and thus achieve better performance than

ARIMA and LR. Due to the deep learning capability, the basic LSTM networks with adequate

training data can learn the deep dependency between traffic loads generated in various time

intervals and thus perform better than ARIMA, LR, and SVR, as shown in Figure 6.4 (a).

However, Figure 6.4 (c) (d) show that the prediction accuracy of the basic LSTM networks

degrades for prediction tasks related to Datasets 2 and 3. This is because the basic LSTM

networks require a large number of samples to train their models. The small training sets

with base-samples generated in a three-week or one-week period will lead to overfitting and

thus poor performance. Figure 6.4 (b) shows that when there are high variations in the testing

traffic patterns, the basic LSTM networks have unsatisfactory performance. This is because

these basic LSTM networks have a high dependency on the training data, and they will fail

to predict the highly varied traffic loads, which are apparently different to usual patterns if

there are not similar samples in their training sets. The prediction performance achieved by

ML-TP proposed in the last chapter is slightly inferior to prediction performance than the

dmTP. This is because the hyper-parameters are fixed in ML-TP. It cannot determine the

hyper-parameters, which also have apparent impacts on the prediction performance.

The proposed dmTP always obtains the best prediction accuracy, attributing to two

aspects. First, the base-learner for each base-task in dmTP has the ability to learn and

representing the complex nonlinearities in mobile traffic load variations. Second, unlike the

basic LSTM networks embedded with fixed hyper-parameters and randomly selected initial

parameter values, the meta-learner in dmTP will find the best T S and proper initial values

of parameters for a base-learner, which leads to higher prediction accuracy and stronger

adaptability to the diverse traffic patterns. Compared with ARIMA, LR, and SVR, dmTP

reduces the NRMSE by about 25-43%, 73-85%, and 20-39%, respectively, for the testing

6.4 Evaluation on Real-world Mobile Traffic Data 103

Fig. 6.5 Prediction results of the dmTP and basic LSTM networks for a testing base-task in
Dataset 1 (cell 1684)

base-tasks from Datasets 1, 2, and 3. As shown in Figure 6.4 (a), when there is adequate

training data, and the traffic pattern is typical, dmTP can further reduce the NRMSE by

12% compared with the basic LSTM networks, mainly due to the selection of the optimal

T S value. As shown in Figure 6.4(b)-(d), when the training sets are small, or the traffic

pattern is quite different than usual, dmTP outperforms the basic LSTM networks with a

28-60% reduction in NRMSE owing to the proper selection of initial parameter values in

each base-learner. Figure 6.5 shows the prediction results of the dmTP and the basic LSTM

networks for a testing base-task in Dataset 1 (cell 1684). It can be clearly seen that the dmTP

achieves more accurate prediction values than the basic LSTM networks when the traffic

pattern has abnormities or sudden changes. From Figure 6.4, it can also be found that the

three baseline methods in conjunction with meta-learning technology perform better than

their counterparts without meta-learning technology. The meta-learners can improve the

prediction accuracy by about 9%, 17%, and 8%, for ARIMA, LR, and SVR, respectively.

These results verify the applicability of the meta-learning technology to ARIMA, LR, and

SVR.

Figure 6.6 shows the Average Training Time (ATT) needed by the base-learners in dmTP

and the baseline methods for the testing base-tasks as well as the Time needed to Construct

the Meta-task training set and Train the Meta-learner (TCMTM). The dmTP consumes

more TCMTM than ML-TP, since dmTP needs to train multiple base-learners with different

104 Mobile Network Traffic Prediction Framework: The dmTP

Fig. 6.6 ATT and TCMTM needed by dmTP and the baseline methods

hyperparameters for each base task. Compared with dmTP, the hyper-parameters are fixed

such that ML-TP only needs to train one base-learner for each base-task.

Compared with the baseline methods, although dmTP consumes much more TCMTM,

after the initial parameter values have been properly set, the base-learner of a new base-task

will converge faster and need less ATT than the basic LSTM networks. Note that since the

meta-samples can be obtained off-line and the meta-learner only needs to be trained once, the

extra off-line complexity caused by meta-learning in dmTP can be justified by the improved

online convergence speed and reduced training time of base-learners.

6.4.3 Learning Efficiency Improvement of Base-learner

In Figure 6.7, the testing base-tasks from Dataset 1 is used to further examine how the meta-

learner can help the base-learners improve their learning efficiency in terms of convergence

speed and the number of base-samples needed. For each testing base-task, the testing

base-samples are generated during the two weeks of 12/16/2013-12/22/2013 and 12/23/2013-

12/29/2013, while different from in Figure 6.4, only a portion of the remaining base-samples

are randomly selected to fine-tune/train the base-learner in dmTP and the baseline models.

Figure 6.7 (a) shows the average NRMSE achieved by the proposed dmTP, basic LSTM

networks with random initial parameters, and the LSTM network with biases transferred

6.4 Evaluation on Real-world Mobile Traffic Data 105

0 20 40 60 80 100
Epoches in training process

0.00

0.10

0.20

0.30

0.35
NR

M
SE

Basic LSTM (TS=24), Normal traffic
Basic LSTM (TS=12), Normal traffic
LSTM with transferred biases, Normal traffic
The dmTP, Normal traffic
Basic LSTM (TS=24), Varied traffic
Basic LSTM (TS=12), Varied traffic
LSTM with transferred biases, Varied traffic
The dmTP, Varied traffic

(a)

0 100 200 300 400 500 600 700 800
Number of training base-samples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

NR
M

SE

Basic LSTM (TS=24), Normal traffic
Basic LSTM (TS=12), Normal traffic
LSTM with transferred biases, Normal traffic
The dmTP, Normal traffic
Basic LSTM (TS=24), Varied traffic
Basic LSTM (TS=12), Varied traffic
LSTM with transferred biases, Varied traffic
The dmTP, Varied traffic

(b)

Fig. 6.7 Performance of dmTP and basic LSTM networks under different numbers of training
epochs and different numbers of base-samples

106 Mobile Network Traffic Prediction Framework: The dmTP

from a certain base-task in Smeta
train (cell 6395 with the best T S of 6) versus the number of

epochs in training, where 840 base-samples are used to fine-tune/train the base-learner in

dmTP and the baseline models for each testing base-task. It can be found that for predicting

normal mobile traffic, the NRMSE of basic LSTM networks decreases as the number of

epochs increases and remains at a good accuracy level after 40 epochs. Due to the diversity of

mobile traffic patterns among various base-tasks, the LSTM network with transferred biases

has a slower convergence speed and a higher NRMSE than dmTP. However, the transferred

initial parameters lead to a lower initial NRMSE value and a higher convergence speed than

the basic LSTM networks. The dmTP’s performance becomes stable after ten epochs, leading

to a 75% reduction in the number of epochs needed than the basic LSTM networks. Thanks

to the chosen optimal T S value, dmTP reduces the NRMSE by about 12% compared with the

basic LSTM networks. It can also be seen that dmTP has a much faster convergence speed

for predicting highly varied mobile traffic than both the basic LSTM networks and the LSTM

network with transferred biases. Moreover, the accuracy improvement of dmTP over the

baselines after they all become stable is much larger than predicting normal mobile traffic.

This demonstrates that the meta-learner can not only elevate the base-learners’ learning

efficiency but also make them more robust and adaptable to diverse mobile traffic because the

accumulated meta-knowledge will help each base-learner in dmTP handle unknown traffic

patterns.

Figure 6.7 (b) displays the average NRMSE achieved by dmTP and the baselines versus

the number of training base-samples selected to fine-tune/train the predicting models for each

testing base-task with 100 training epochs. It can be seen that for predicting normal mobile

traffic, the basic LSTM networks and the LSTM network with transferred biases obtain a

high prediction accuracy if the base-task training sets are large enough (e.g., more than 500

training base-samples). The prediction accuracy of the proposed dmTP with 150 training

base-samples exceeds that of the basic LSTM networks with 800 training base-samples.

Compared with the basic LSTM networks, the meta-learner in dmTP helps the base-learners

reduce the training base-samples needed by about 81%. Since each base-learner for a testing

base-task in dmTP is given a proper set of biases by the meta-learner, only a limited number

6.5 Conclusion 107

of base-samples are required to fine-tune a base-learner to achieve high accuracy. The

NRMSE of dmTP is significantly lower for predicting varied traffic than those of the basic

LSTM networks and the LSTM network with transferred biases. This is because, without

meta-knowledge, the LSTM networks will fail to accurately predict unknown traffic patterns

if there are no similar base-samples in their training sets.

6.5 Conclusion

By taking each individual mobile traffic prediction task as a base-task and the main frequency

components of traffic time series as a base-task’s meta-features, a meta-task has been

constructed which can adaptively learn to learn the proper hyper-parameter and initial

parameter values based on accumulated meta-knowledge for the prediction model of a new

base-task. Specifically, an LSTM network with a fixed structure is adopted as the base-learner

for each base-task while proposing an MLP based meta-learner for the meta-task.

The prediction accuracy of the proposed dmTP framework has been tested on multiple

real-world mobile traffic datasets. Experimental results demonstrate that the proposed

framework can forecast mobile traffic loads for prediction tasks with quite different spatial

scales or application types. With meta-learning, the proposed framework can achieve a much

higher prediction accuracy than the existing prediction methods. Moreover, the meta-learner

will lead to about 75% and 81% reduction in epochs and base-samples needed to fine-tune

the base-learners compared with traditional LSTM network-based prediction models.

Building on this work, it will be interesting to mathematically model and analyse the

correlation between a base-task’s frequency component vector and the best set of biases

for the task’s base-learner, as well as investigate whether the meta-learning technology can

be used to optimise the structure of the base-learner for a prediction task. Additionally,

it is worth studying if some other characteristics of mobile traffic can be considered as a

base-task’s meta-features.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis mainly focuses on predicting mobile traffic, from mobility prediction and mobile

network traffic load prediction perspectives, based on deep-learning techniques. Since mobile

traffic has experienced explosive growth in the past decades, mobile traffic analysis becomes

an important topic attracting more attention. In the meantime, challenges are also brought

for predicting mobile traffic. Firstly, many factors affect mobile traffic. It is difficult to

build a mathematical model to model traffic dynamics accurately. Although some methods

have been proposed to address this kind of time series prediction tasks, such as ARIMA, the

prediction accuracy is still not satisfactory. Moreover, how to select and extract feature also

contributes to the prediction performance. Finally, although some machine learning-based

approaches are proposed, and the deep learning-based methods can achieve competitive

prediction accuracy, they have high computation complexity and require a large number of

samples to train the model.

Mobile traffic analysis consists of three main perspectives: mobility analysis, network

analysis, and social analysis. This thesis mainly focuses on mobility prediction and network

traffic prediction from the first two perspectives, respectively, based on machine learning

techniques. Chapter 3 focuses on mobility prediction in mobile networks. The user movement

shows temporal correlation and regularity. To address this problem, the LSTM network is

110 Conclusions and Future Work

introduced. As an elegant machine learning technique, LSTM shows competitive performance

in dealing with time series prediction. First, data pre-processing techniques are applied to

the original user traces to filter out the abnormalities and convert them to traces with fixed

sampling frequency. A POI extraction scheme is then proposed to extract the areas where

the user stays for a long time. After that, the features of the POIs are extracted as the input

features to the LSTM network. Finally, an LSTM network is trained and evaluated. The

results show that, compared with traditional neural networks, ANN, the prediction accuracy

of LSTM achieves 79.7%, which is improved by 45.2% compared with ANN.

For the network analysis, this thesis focuses on network traffic prediction from two

perspectives: traffic feature analysis and traffic load prediction. Traffic feature analysis plays

a vital role in helping to understand traffic patterns and traffic load prediction. Chapter 4

firstly studies the temporal characteristics of online social networks, which has not been

thoroughly analysed in previous research. Through analysis, the Twitter traffic pattern

shows periodicity and high similarity on a daily basis. At the same time, it also has a high

deviation from day to day. Based on this feature, further statistical analysis is conducted. A

data filtering scheme is then proposed to extract regularity features and filter out irregular

components in Twitter traffic. The filtered Twitter traffic obtained from the statistical analysis

and data filtering scheme is then used to train an LR model. By evaluating the LR model

with real Twitter traffic, the proposed LR model achieves higher Twitter traffic prediction

accuracy compared with the LR model without statistical analysis and data filtering. This

chapter shows the importance of feature analysis, which can improve prediction performance

while keeping low computing complexity.

Targeting the mobile network traffic prediction, conventional works using mathemati-

cal models or shallow machine learning techniques cannot achieve satisfactory prediction

accuracy. Later works utilising deep learning algorithms improve the prediction accuracy

at the cost of high computing complexity, more significant data requirements, and longer

modelling time. To address these problems, a meta-learning based mobile network traffic

prediction framework is proposed. By considering each traffic prediction task as a base-task,

a meta-learner is built to learn to learn the proper prediction models from base-tasks. By

7.2 Future Work 111

testing the framework on a real-world cellular network traffic load dataset, the results reveal

that the proposed MLCTPF outperforms existing prediction techniques in terms of traffic

load prediction accuracy. In addition, compared with the traditional LSTM network, the

MLCTPF significantly improves the learning efficiency by reducing the training epochs and

number of training samples needed.

Based on the results achieved in Chapter 5, an advanced mobile network traffic prediction

framework, dmTP, is further proposed, which employs MLP as the meta-learner instead

of KNN-based meta-learner. Compared with the MLCTPF, the dmTP not only predicts

the initial status for the new base-learner but also determine the optimal hyper-parameter.

By testing with two datasets with a limited number of samples, a Twitter traffic dataset

and a traffic load dataset in another city with different spatial scales, the dmTP can also

achieve the best prediction performance. Baseline methods are also integrated with meta-

learning technology, and the results show that the baseline methods perform better than their

counterparts without meta-learning technology. Furthermore, the dmTP in predicting varied

mobile network traffic load is investigated, and results show that the dmTP can improve

the prediction accuracy. Finally, the dmTP improves learning efficiency than the traditional

LSTM network by reducing the epochs and number of base-samples needed for fine-tuning.

7.2 Future Work

This thesis conducts mobility analysis and traffic load analysis in mobile networks. For

mobility analysis, a POI extraction scheme is proposed, and then the deep learning algorithm

is used to predict user mobility. In terms of traffic load analysis, statistical analysis and data

filtering strategies are proposed to extract the traffic features. Then a novel deep learning-

based traffic load prediction framework is established to predict mobile network traffic. The

traffic prediction accuracy and learning efficiency of the proposed framework have been

evaluated. There are still some potential research directions, which are summarised as

follows.

112 Conclusions and Future Work

In Chapter 3, user mobility is predicted by the LSTM using five features extracted from

the user trajectory. In reality, the user movement is affected by many factors, such as weather,

public holiday, and even the user’s individual information such as age and job. In the

future, how to extract more features and evaluate their effects on user trajectory should be

investigated. In addition, these new features should be integrated into the prediction models

to improve prediction accuracy.

In Chapter 4, the feature analysis of the mobile traffic load is presented. Statistical

analysis is conducted to study the temporal characteristics of Twitter traffic. Based on the

statistical analysis, a data filtering scheme is proposed to extract the regularity and filter

out the outliers of Twitter traffic. An LR model is established to predict the Twitter traffic

load. In the future, the versatility, scalability, and feasibility of the model should be further

investigated, for example, the model performance on other OSNs, and the feasibility of using

OSN as a proxy to predict the cellular network traffic.

In Chapter 5, a deep learning-based mobile network traffic prediction framework is

proposed to predict the cellular network traffic load. The prediction accuracy and learning

efficiency of the proposed framework are evaluated. However, the current framework only

predicts the model parameters of a fixed type of model with a fixed structure, i.e., a deep

LSTM network with a fixed network structure. In the future, the meta-learning concept can

be expanded to more types of models with various structures.

Chapter 6 proposes an advanced mobile network traffic prediction framework, dmTP,

based on the results achieved in Chapter 5. The meta-learner is enabled to predict both the

hyper-parameter and initial status for the base-learner. In the future, the meta-learner can

be empowered such that the meta-learner can determine not only the hyper-parameters and

initial status for the base-learner, but also can decide the optimal model and its structure

for the base-learner. It is also worth exploring other mobile network traffic features as the

base-task’s meta-features to improve prediction performance further.

References

[1] D. Naboulsi, M. Fiore, S. Ribot, and R. Stanica, “Large-Scale Mobile Traffic Analysis:

A Survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 124–161,

2016.

[2] A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta, S. Mukherjea,

and A. Joshi, “On the structural properties of massive telecom call graphs: findings and

implications,” in Proceedings of the 15th ACM international conference on Information

and knowledge management, pp. 435–444, 2006.

[3] GSMA, “Unique mobile subscribers,” 2021.

[4] P. R. Center, “Emerging nations embrace Internet, mobile technology,” 2014.

[5] D. Doran, V. Mendiratta, C. Phadke, and H. Uzunalioglu, “The importance of outlier

relationships in mobile call graphs,” in 2012 11th International Conference on Machine

Learning and Applications, vol. 2, pp. 24–29, IEEE, 2012.

[6] S. Yang, B. Wu, and B. Wang, “Multidimensional views on mobile call network,”

Frontiers of Computer Science in China, vol. 3, no. 3, pp. 335–346, 2009.

[7] V. Soto, V. Frias-Martinez, J. Virseda, and E. Frias-Martinez, “Prediction of socioeco-

nomic levels using cell phone records,” in International Conference on User Modeling,

Adaptation, and Personalization, pp. 377–388, Springer, 2011.

114 References

[8] A. Wesolowski, N. Eagle, A. J. Tatem, D. L. Smith, A. M. Noor, R. W. Snow, and C. O.

Buckee, “Quantifying the impact of human mobility on malaria,” Science, vol. 338,

no. 6104, pp. 267–270, 2012.

[9] E. Enns and J. Amuasi, “Human mobility and communication patterns in Cote d’Ivoire:

A network perspective for malaria control,” NetMob D4D Challenge, pp. 1–14, 2013.

[10] J. P. Leidig, Y. Kitsumi, K. A. O’Hearn, C. M. Sauer, J. Scripps, and G. Wolffe,

“Applying mobile datasets in computational public health research,” in Proc. NetMob

D4D Challenge, pp. 1–11, 2013.

[11] M. Kafsi, E. Kazemi, L. Maystre, L. Yartseva, M. Grossglauser, and P. Thiran, “Miti-

gating epidemics through mobile micro-measures,” arXiv preprint arXiv:1307.2084,

2013.

[12] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, “Understanding traffic

dynamics in cellular data networks,” in 2011 Proceedings IEEE INFOCOM, pp. 882–

890, IEEE, 2011.

[13] E. Halepovic and C. Williamson, “Characterizing and modeling user mobility in a

cellular data network,” in Proceedings of the 2nd ACM international workshop on

Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 71–78,

2005.

[14] X. Lu, E. Wetter, N. Bharti, A. J. Tatem, and L. Bengtsson, “Approaching the limit of

predictability in human mobility,” Scientific reports, vol. 3, p. 2923, 2013.

[15] J. Scourias and T. Kunz, “An activity-based mobility model and location management

simulation framework,” in Proceedings of the 2nd ACM international workshop on

Modeling, analysis and simulation of wireless and mobile systems, pp. 61–68, 1999.

[16] P. A. Gagniuc, Markov chains: from theory to implementation and experimentation.

John Wiley & Sons, 2017.

References 115

[17] A. Ulvan, M. Ulvan, and R. Bestak, “The enhancement of handover strategy by

mobility prediction in broadband wireless access,” in Proceedings of the networking

and electronic commerce research conference (NAEC 2009), pp. 266–276, American

Telecommunications Systems Management Association Inc., 2009.

[18] S. H. S. Ariffin, N. N. N. Abd, and N. E. Ghazali, “Mobility prediction via Markov

model in LTE femtocell,” International Journal of Computer Applications, vol. 65,

no. 18, 2013.

[19] N. A. Amirrudin, S. H. S. Ariffin, N. N. N. Abd Malik, and N. E. Ghazali, “User’s

mobility history-based mobility prediction in LTE femtocells network,” in 2013 IEEE

International RF and Microwave Conference (RFM), pp. 105–110, IEEE, 2013.

[20] A. Hadachi, O. Batrashev, A. Lind, G. Singer, and E. Vainikko, “Cell phone subscribers

mobility prediction using enhanced Markov Chain algorithm,” in 2014 IEEE Intelligent

Vehicles Symposium Proceedings, pp. 1049–1054, IEEE, 2014.

[21] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place prediction

using mobility markov chains,” in Proceedings of the first workshop on measurement,

privacy, and mobility, pp. 1–6, 2012.

[22] B. C. Csáji, A. Browet, V. A. Traag, J.-C. Delvenne, E. Huens, P. Van Dooren,

Z. Smoreda, and V. D. Blondel, “Exploring the mobility of mobile phone users,”

Physica A: statistical mechanics and its applications, vol. 392, no. 6, pp. 1459–1473,

2013.

[23] F. Simini, M. C. González, A. Maritan, and A.-L. Barabási, “A universal model for

mobility and migration patterns,” Nature, vol. 484, no. 7392, pp. 96–100, 2012.

[24] S. Scepanovic, P. Hui, and A. Yla-Jaaski, “Revealing the pulse of human dynamics in

a country from mobile phone data,” NetMob D4D Challenge, pp. 1–15, 2013.

116 References

[25] Y. Yang, C. Herrera, N. Eagle, and M. C. Gonzalez, “A multi-scale multi-cultural

study of commuting patterns incorporating digital traces,” in Proc. NetMob, pp. 1–3,

2013.

[26] A. Hess, I. Marsh, and D. Gillblad, “Exploring communication and mobility behav-

ior of 3G network users and its temporal consistency,” in 2015 IEEE international

conference on communications (ICC), pp. 5916–5921, IEEE, 2015.

[27] M. C. González, C. A. Hidalgo, and A.-L. Barabási, “Understanding individual human

mobility patterns,” Nature, vol. 453, pp. 779–782, jun 2008.

[28] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding Mobile Traffic Patterns

of Large Scale Cellular Towers in Urban Environment,” IEEE/ACM Transactions on

Networking, vol. 25, pp. 1147–1161, apr 2017.

[29] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement

in location-based social networks,” in Proceedings of the 17th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, pp. 1082–1090,

2011.

[30] A. K. Jain, M. N. Murty, and P. J. Flynn, “Estimating origin-destination flows using

mobile phone location data,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323,

1999.

[31] H. Zang and J. C. Bolot, “Mining call and mobility data to improve paging efficiency

in cellular networks,” in Proceedings of the 13th annual ACM international conference

on Mobile computing and networking, pp. 123–134, 2007.

[32] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human

mobility.,” Science (New York, N.Y.), vol. 327, pp. 1018–21, feb 2010.

[33] Y. Li, T. Wu, P. Hui, D. Jin, and S. Chen, “Social-aware D2D communications:

Qualitative insights and quantitative analysis,” IEEE Communications Magazine,

vol. 52, no. 6, pp. 150–158, 2014.

References 117

[34] M. Chen, Y. Hao, M. Qiu, J. Song, D. Wu, and I. Humar, “Mobility-Aware Caching

and Computation Offloading in 5G Ultra-Dense Cellular Networks,” Sensors, vol. 16,

p. 974, jun 2016.

[35] M. Chen, Y. Hao, L. Hu, K. Huang, and V. K. N. Lau, “Green and Mobility-Aware

Caching in 5G Networks,” IEEE Transactions on Wireless Communications, vol. 16,

pp. 8347–8361, dec 2017.

[36] D. Ren, X. Gui, K. Zhang, and J. Wu, “Mobility-Aware Traffic Offloading via Cooper-

ative Coded Edge Caching,” IEEE Access, vol. 8, pp. 43427–43442, 2020.

[37] J. Hu, W. Heng, G. Zhang, and C. Meng, “Base station sleeping mechanism based on

traffic prediction in heterogeneous networks,” in 2015 International Telecommunica-

tion Networks and Applications Conference (ITNAC), pp. 83–87, IEEE, 2015.

[38] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,”

IBM Journal of Research and Development, vol. 3, pp. 210–229, jul 1959.

[39] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[40] M. Minsky and S. Papert, “Perceptrons.,” 1969.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[42] B. Marr, “A short history of machine learning–every manager should read,” Forbes.

http://tinyurl. com/gslvr6k, 2016.

[43] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,

pp. 273–297, 1995.

[44] H. T. Siegelmann and E. D. Sontag, “On the computational power of neural nets,”

Journal of computer and system sciences, vol. 50, no. 1, pp. 132–150, 1995.

118 References

[45] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[46] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 2002.

[47] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and Wireless Net-

working: A Survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3,

pp. 2224–2287, 2019.

[48] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in

wireless networks: Key techniques and open issues,” IEEE Communications Surveys

& Tutorials, vol. 21, no. 4, pp. 3072–3108, 2019.

[49] N. Wang, E. Hossain, and V. K. Bhargava, “Backhauling 5G small cells: A radio

resource management perspective,” IEEE Wireless Communications, vol. 22, no. 5,

pp. 41–49, 2015.

[50] F. Giust, L. Cominardi, and C. J. Bernardos, “Distributed mobility management for

future 5G networks: overview and analysis of existing approaches,” IEEE Communi-

cations Magazine, vol. 53, no. 1, pp. 142–149, 2015.

[51] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as images:

a deep convolutional neural network for large-scale transportation network speed

prediction,” Sensors, vol. 17, no. 4, p. 818, 2017.

[52] C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep Transfer Learning

for Intelligent Cellular Traffic Prediction Based on Cross-Domain Big Data,” IEEE

Journal on Selected Areas in Communications, vol. 37, pp. 1389–1401, jun 2019.

[53] D. Fagen, P. A. Vicharelli, and J. Weitzen, “Automated Wireless Coverage Optimiza-

tion With Controlled Overlap,” IEEE Transactions on Vehicular Technology, vol. 57,

no. 4, pp. 2395–2403, 2008.

References 119

[54] A. Lobinger, S. Stefanski, T. Jansen, and I. Balan, “Coordinating Handover Parameter

Optimization and Load Balancing in LTE Self-Optimizing Networks,” in 2011 IEEE

73rd Vehicular Technology Conference (VTC Spring), pp. 1–5, 2011.

[55] A. Aguilar-Garcia, S. Fortes, A. F. Duran, and R. Barco, “Context-Aware Self-

Optimization: Evolution Based on the Use Case of Load Balancing in Small-Cell

Networks,” IEEE Vehicular Technology Magazine, vol. 11, no. 1, pp. 86–95, 2016.

[56] B. Ma, W. Guo, and J. Zhang, “A Survey of Online Data-Driven Proactive 5G Network

Optimisation Using Machine Learning,” IEEE Access, vol. 8, pp. 35606–35637, 2020.

[57] A. Patil and H. K. Sawant, “Technical specification group services and system aspects,

IP multimedia subsystem (IMS),” Int. J. Electron. Commun. Comput. Eng., vol. 3,

no. 2, pp. 234–238, 2012.

[58] M. A. Alsheikh, D. Niyato, S. Lin, H.-P. Tan, and Z. Han, “Mobile big data analytics

using deep learning and apache spark,” IEEE network, vol. 30, no. 3, pp. 22–29, 2016.

[59] H. Zhu, Y. Zhang, M. Li, A. Ashok, and K. Ota, “Exploring deep learning for efficient

and reliable mobile sensing,” IEEE Network, vol. 32, no. 4, pp. 6–7, 2018.

[60] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning for networking:

Workflow, advances and opportunities,” IEEE Network, vol. 32, no. 2, pp. 92–99,

2017.

[61] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang, “Intelligent 5G:

When Cellular Networks Meet Artificial Intelligence,” IEEE Wireless Communications,

vol. 24, pp. 175–183, oct 2017.

[62] C. Lynch, “How do your data grow?,” Nature, vol. 455, no. 7209, pp. 28–29, 2008.

[63] T. J. Barnett, A. Sumits, S. Jain, and U. Andra, “Cisco Visual Networking Index (VNI)

Update Global Mobile Data Traffic Forecast,” Vni, pp. 2015–2020, 2015.

120 References

[64] J. Clement, “Global mobile data traffic 2017-2022,” Statista, Available: https://www.

statista. com/statistics/271405/global-mobile-datatraffic-forecast/(Accessed Decem-

ber 2020), 2019.

[65] Qualcomm, “The 1000x data challenge,” 2013.

[66] P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, “Design

considerations for a 5G network architecture,” IEEE Communications Magazine,

vol. 52, no. 11, pp. 65–75, 2014.

[67] “3GPP work items on self-organizing networks, v0.1.3 (2014-06),” 2014.

[68] I. Allal, B. Mongazon-Cazavet, K. A. Agha, S. Senouci, and Y. Gourhant, “A green

small cells deployment in 5G — Switch ON/OFF via IoT networks & energy efficient

mesh backhauling,” in 2017 IFIP Networking Conference (IFIP Networking) and

Workshops, pp. 1–2, 2017.

[69] B. Chandrasekaran, “Survey of network traffic models,” Waschington University in St.

Louis CSE, vol. 567, 2009.

[70] P. Semov, P. Koleva, and V. Poulkov, “Adaptive resource scheduling based on neural

network and mobile traffic prediction,” in 2019 42nd International Conference on

Telecommunications and Signal Processing, TSP 2019, pp. 585–588, Institute of

Electrical and Electronics Engineers Inc., jul 2019.

[71] I. Angri, M. Mahfoudi, A. Najid, and M. El Bekkali, “Exponential MLWDF (EXP-

MLWDF) downlink scheduling algorithm evaluated in LTE for high mobility and

dense area scenario,” International Journal of Electrical and Computer Engineering,

vol. 8, no. 3, p. 1618, 2018.

[72] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia, and

A. Banchs, “Mobile traffic forecasting for maximizing 5G network slicing resource uti-

lization,” in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications,

pp. 1–9, 2017.

References 121

[73] N. Saxena, B. J. Sahu, and Y. S. Han, “Traffic-aware energy optimization in green

LTE cellular systems,” IEEE Communications Letters, vol. 18, pp. 38–41, jan 2014.

[74] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile Traffic Prediction from Raw Data

Using LSTM Networks,” in 2018 IEEE 29th Annual International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1827–1832, 2018.

[75] C. Williamson, E. Halepovic, H. Sun, and Y. Wu, “Characterization of CDMA2000

cellular data network traffic,” in The IEEE Conference on Local Computer Networks

30th Anniversary (LCN’05) l, pp. Z000–719, IEEE, 2005.

[76] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and modeling internet

traffic dynamics of cellular devices,” ACM SIGMETRICS Performance Evaluation

Review, vol. 39, no. 1, pp. 265–276, 2011.

[77] G. Xiaohu, S. Yu, W.-S. Yoon, and Y.-D. Kim, “A new prediction method of alpha-

stable processes for self-similar traffic,” in IEEE Global Telecommunications Confer-

ence, 2004. GLOBECOM ’04., vol. 2, pp. 675–679 Vol.2, 2004.

[78] D. Tikunov and T. Nishimura, “Traffic prediction for mobile network using Holt-

Winter’s exponential smoothing,” in 2007 15th International Conference on Software,

Telecommunications and Computer Networks, pp. 1–5, 2007.

[79] F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi, J. Song, and Y. Li, “Big Data Driven Mobile

Traffic Understanding and Forecasting: A Time Series Approach,” IEEE Transactions

on Services Computing, vol. 9, pp. 796–805, sep 2016.

[80] H. Sun, H. X. Liu, H. Xiao, and B. Ran, “Short term traffic forecasting using the local

linear regression model,” 2002.

[81] R. Li, Z. Zhao, X. Zhou, and H. Zhang, “Energy savings scheme in radio access

networks via compressive sensing-based traffic load prediction,” Transactions on

Emerging Telecommunications Technologies, vol. 25, pp. 468–478, apr 2014.

122 References

[82] R. Li, Z. Zhao, Y. Wei, X. Zhou, and H. Zhang, “GM-PAB: A grid-based energy

saving scheme with predicted traffic load guidance for cellular networks,” in IEEE

International Conference on Communications, pp. 1160–1164, 2012.

[83] J. Biesterfeld, E. Ennigrou, and K. Jobmann, “Neural networks for location prediction

in mobile networks,” in Proceedings of the International Workshop on Applications of

Neural Networks to Telecommunications (IWANNT’97), pp. 207–214, 1997.

[84] Y. Tian and L. Pan, “Predicting Short-Term Traffic Flow by Long Short-Term Mem-

ory Recurrent Neural Network,” in 2015 IEEE International Conference on Smart

City/SocialCom/SustainCom (SmartCity), pp. 153–158, 2015.

[85] Yantai Shu, Minfang Yu, Jiakun Liu, and O. Yang, “Wireless traffic modeling and

prediction using seasonal ARIMA models,” in IEEE International Conference on

Communications, 2003. ICC ’03., vol. 3, pp. 1675–1679, IEEE.

[86] J. Guo, Y. Peng, X. Peng, Q. Chen, J. Yu, and Y. Dai, “Traffic forecasting for mobile

networks with multiplicative seasonal ARIMA models,” in 2009 9th International

Conference on Electronic Measurement & Instruments, pp. 3–380, 2009.

[87] R. Li, Z. Zhao, X. Zhou, J. Palicot, and H. Zhang, “The prediction analysis of cellular

radio access network traffic: From entropy theory to networking practice,” IEEE

Communications Magazine, vol. 52, no. 6, pp. 234–240, 2014.

[88] F. Ju, J. Yang, and H. Liu, “Analysis of Self-Similar Traffic Based on the On/Off

Model,” in 2009 International Workshop on Chaos-Fractals Theories and Applications,

pp. 301–304, 2009.

[89] S. Wang, X. Zhang, J. Zhang, J. Feng, W. Wang, and K. Xin, “An Approach for Spatial-

Temporal Traffic Modeling in Mobile Cellular Networks,” in 2015 27th International

Teletraffic Congress, pp. 203–209, 2015.

[90] techopedia, “Network Traffic,” https://www.techopedia.com/definition/29917/network-

traffic, 2015.

References 123

[91] X. Wang, A. V. Vasilakos, M. Chen, Y. Liu, and T. T. Kwon, “A Survey of Green

Mobile Networks: Opportunities and Challenges,” Mobile Networks and Applications,

vol. 17, pp. 4–20, feb 2012.

[92] C. V. N. Index, “Forecast and methodology, 2016–2021,” White Paper, June, 2017.

[93] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. YANG, and W. Wang, “A Survey on Mobile

Edge Networks: Convergence of Computing, Caching and Communications,” IEEE

Access, vol. 5, pp. 6757–6779, 2017.

[94] G. Soos, D. Ficzere, and P. Varga, “Towards Traffic Identification and Modeling for

5G Application Use-Cases,” Electronics, vol. 9, no. 4, p. 640, 2020.

[95] R. Keralapura, A. Nucci, Z.-L. Zhang, and L. Gao, “Profiling users in a 3g network

using hourglass co-clustering,” in Proceedings of the sixteenth annual international

conference on Mobile computing and networking, pp. 341–352, 2010.

[96] Y. Zhang and A. Årvidsson, “Understanding the characteristics of cellular data traf-

fic,” in Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks:

operations, challenges, and future design, pp. 13–18, 2012.

[97] E. M. R. Oliveira, A. C. Viana, K. P. Naveen, and C. Sarraute, “Measurement-driven

mobile data traffic modeling in a large metropolitan area,” in 2015 IEEE International

Conference on Pervasive Computing and Communications (PerCom), pp. 230–235,

IEEE, 2015.

[98] Y. Wang, M. Faloutsos, and H. Zang, “On the usage patterns of multimodal communi-

cation: Countries and evolution,” in 2013 Proceedings IEEE INFOCOM, pp. 3135–

3140, IEEE, 2013.

[99] S. Hoteit, S. Secci, Z. He, C. Ziemlicki, Z. Smoreda, C. Ratti, and G. Pujolle, “Content

consumption cartography of the paris urban region using cellular probe data,” in

Proceedings of the first workshop on Urban networking, pp. 43–48, 2012.

124 References

[100] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Characterizing geospatial

dynamics of application usage in a 3G cellular data network,” in 2012 Proceedings

IEEE INFOCOM, pp. 1341–1349, IEEE, 2012.

[101] Y. Jin, N. Duffield, A. Gerber, P. Haffner, W.-L. Hsu, G. Jacobson, S. Sen, S. Venkatara-

man, and Z.-L. Zhang, “Characterizing data usage patterns in a large cellular network,”

in Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: opera-

tions, challenges, and future design, pp. 7–12, 2012.

[102] B. Zhou, D. He, and Z. Sun, “Traffic modeling and prediction using ARIMA/GARCH

model,” in Modeling and Simulation Tools for Emerging Telecommunication Networks:

Needs, Trends, Challenges and Solutions, pp. 101–121, Springer Science and Business

Media, LLC, 2006.

[103] Y. Shu, M. Yu, J. Liu, O. W. W. Yang, Yantai Shu, Minfang Yu, Jiakun Liu, and

O. W. W. Yang, “Wireless traffic modeling and prediction using seasonal ARIMA

models,” in IEEE International Conference on Communications, 2003. ICC ’03.,

vol. 3, pp. 1675–1679 vol.3, IEEE, 2003.

[104] A. Hess, K. A. Hummel, W. N. Gansterer, and G. Haring, “Data-driven human

mobility modeling: a survey and engineering guidance for mobile networking,” ACM

Computing Surveys (CSUR), vol. 48, no. 3, pp. 1–39, 2015.

[105] A. Janecek, K. A. Hummel, D. Valerio, F. Ricciato, and H. Hlavacs, “Cellular data

meet vehicular traffic theory: location area updates and cell transitions for travel time

estimation,” in Proceedings of the 2012 ACM conference on ubiquitous computing,

pp. 361–370, 2012.

[106] A. Nadembega, A. Hafid, and T. Taleb, “Mobility-Prediction-Aware Bandwidth Reser-

vation Scheme for Mobile Networks,” IEEE Transactions on Vehicular Technology,

vol. 64, no. 6, pp. 2561–2576, 2015.

References 125

[107] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey of Machine Learning

Techniques Applied to Self Organizing Cellular Networks,” IEEE Communications

Surveys & Tutorials, pp. 1–1, 2017.

[108] H. Zhang and L. Dai, “Mobility Prediction: A Survey on State-of-the-Art Schemes

and Future Applications,” IEEE Access, vol. 7, pp. 802–822, 2019.

[109] D. Tang and M. Baker, “Analysis of a metropolitan-area wireless network,” Wireless

Networks, vol. 8, no. 2-3, pp. 107–120, 2002.

[110] J.-P. Onnela, S. Arbesman, M. C. González, A.-L. Barabási, and N. A. Christakis,

“Geographic constraints on social network groups,” PLoS one, vol. 6, no. 4, p. e16939,

2011.

[111] R. Lambiotte, V. D. Blondel, C. De Kerchove, E. Huens, C. Prieur, Z. Smoreda, and

P. Van Dooren, “Geographical dispersal of mobile communication networks,” Physica

A: Statistical Mechanics and its Applications, vol. 387, no. 21, pp. 5317–5325, 2008.

[112] D. Wang and C. Song, “Impact of human mobility on social networks,” Journal of

Communications and Networks, vol. 17, no. 2, pp. 100–109, 2015.

[113] Y. C. Chen, L. Qiu, Y. Zhang, G. Xue, and Z. Hu, “Robust network compressive

sensing,” in Proceedings of the Annual International Conference on Mobile Computing

and Networking, MOBICOM, (New York, New York, USA), pp. 545–556, Association

for Computing Machinery, sep 2014.

[114] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal compressive

sensing and internet traffic matrices,” in Proceedings of the ACM SIGCOMM 2009

conference on Data communication - SIGCOMM ’09, (New York, New York, USA),

p. 267, Association for Computing Machinery (ACM), 2009.

[115] N. Sapankevych and R. Sankar, “Time series prediction using support vector machines:

A survey,” IEEE Computational Intelligence Magazine, vol. 4, pp. 24–38, may 2009.

126 References

[116] R. H. Filho and J. E. B. Maia, “Network traffic prediction using PCA and K-means,” in

2010 IEEE Network Operations and Management Symposium - NOMS 2010, pp. 938–

941, 2010.

[117] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci, M. Crovella,

and C. Diot, “Traffic matrices: Balancing measurements, inference and modeling,” in

Performance Evaluation Review, vol. 33, (New York, New York, USA), pp. 362–373,

ACM Press, 2005.

[118] M. C. Falvo, M. Gastaldi, A. Nardecchia, and A. Prudenzi, “Kalman filter for short-

term load forecasting: An hourly predictor of municipal load,” 2007.

[119] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, “Wireless Traffic Prediction With Scal-

able Gaussian Process: Framework, Algorithms, and Verification,” IEEE Journal on

Selected Areas in Communications, vol. 37, no. 6, pp. 1291–1306, 2019.

[120] L. Nie, D. Jiang, S. Yu, and H. Song, “Network traffic prediction based on deep belief

network in wireless mesh backbone networks,” in IEEE Wireless Communications

and Networking Conference, WCNC, Institute of Electrical and Electronics Engineers

Inc., may 2017.

[121] X. Wang, Z. Zhou, F. Xiao, K. Xing, Z. Yang, Y. Liu, and C. Peng, “Spatio-Temporal

Analysis and Prediction of Cellular Traffic in Metropolis,” IEEE Transactions on

Mobile Computing, vol. 18, no. 9, pp. 2190–2202, 2019.

[122] C. Qiu, Y. Zhang, Z. Feng, P. Zhang, and S. Cui, “Spatio-Temporal Wireless Traffic

Prediction with Recurrent Neural Network,” IEEE Wireless Communications Letters,

vol. 7, pp. 554–557, aug 2018.

[123] Y. Hua, Z. Zhao, Z. Liu, X. Chen, R. Li, and H. Zhang, “Traffic Prediction Based

on Random Connectivity in Deep Learning with Long Short-Term Memory,” in

IEEE Vehicular Technology Conference, vol. 2018-August, Institute of Electrical and

Electronics Engineers Inc., jul 2018.

References 127

[124] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spatiotemporal

modeling and prediction in cellular networks: A big data enabled deep learning

approach,” pp. 1–9, 2017.

[125] C. Zhang, X. Ouyang, and P. Patras, “ZipNet-GAN: Inferring fine-grained mobile

traffic patterns via a generative adversarial neural network,” in Proceedings of the 13th

International Conference on emerging Networking EXperiments and Technologies,

pp. 363–375, 2017.

[126] C.-W. Huang, C.-T. Chiang, and Q. Li, “A study of deep learning networks on mobile

traffic forecasting,” in 2017 IEEE 28th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, IEEE, 2017.

[127] S. Akoush and A. Sameh, “Mobile user movement prediction using bayesian learning

for neural networks,” in Proceedings of the 2007 international conference on Wireless

communications and mobile computing, pp. 191–196, 2007.

[128] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong, “Caching in

the Sky: Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Op-

timized Quality-of-Experience,” IEEE Journal on Selected Areas in Communications,

vol. 35, pp. 1046–1061, may 2017.

[129] J. Yang, C. Dai, and Z. Ding, “A scheme of terminal mobility prediction of Ultra

Dense Network based on SVM,” in 2017 IEEE 2nd International Conference on Big

Data Analysis (ICBDA)(, pp. 837–842, IEEE, mar 2017.

[130] N. Eagle and A. S. Pentland, “Eigenbehaviors: identifying structure in routine,” Be-

havioral Ecology and Sociobiology, vol. 63, pp. 1057–1066, may 2009.

[131] J. Reades, F. Calabrese, and C. Ratti, “Eigenplaces: analysing cities using the

space–time structure of the mobile phone network,” Environment and Planning B:

Planning and Design, vol. 36, no. 5, pp. 824–836, 2009.

128 References

[132] F. Calabrese, J. Reades, and C. Ratti, “Eigenplaces: segmenting space through digital

signatures,” IEEE Pervasive Computing, vol. 9, no. 1, pp. 78–84, 2009.

[133] X. Ouyang, C. Zhang, P. Zhou, H. Jiang, and S. Gong, “Deepspace: An online deep

learning framework for mobile big data to understand human mobility patterns,” arXiv

preprint arXiv:1610.07009, 2016.

[134] Nam Tuan Nguyen, Yichuan Wang, Husheng Li, Xin Liu, and Zhu Han, “Extracting

typical users’ moving patterns using deep learning,” in 2012 IEEE Global Communi-

cations Conference (GLOBECOM), pp. 5410–5414, IEEE, dec 2012.

[135] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial Neural Networks-

Based Machine Learning for Wireless Networks: A Tutorial,” oct 2017.

[136] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural

nets and problem solutions,” International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[137] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies,” 2001.

[138] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[139] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent neural

network architectures for large scale acoustic modeling,” 2014.

[140] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,

“A Novel Connectionist System for Unconstrained Handwriting Recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868,

2009.

[141] A. Singh, “Anomaly detection for temporal data using long short-term memory (lstm),”

2017.

References 129

[142] W. Duch and N. Jankowski, “Survey of neural transfer functions,” Neural Computing

Surveys, vol. 2, no. 1, pp. 163–212, 1999.

[143] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceed-

ings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[144] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang, “T-drive:

driving directions based on taxi trajectories,” in Proceedings of the 18th SIGSPATIAL

International conference on advances in geographic information systems, pp. 99–108,

2010.

[145] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from the physi-

cal world,” in Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 316–324, 2011.

[146] Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma, “GeoLife2. 0: a location-based social net-

working service,” in 2009 tenth international conference on mobile data management:

systems, services and middleware, pp. 357–358, IEEE, 2009.

[147] P. Simon, Too big to ignore : the business case for big data.

[148] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[149] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining correlation between locations

using human location history,” in Proceedings of the 17th ACM SIGSPATIAL inter-

national conference on advances in geographic information systems, pp. 472–475,

2009.

[150] “• Number of social media users worldwide 2010-2021 | Statista.”

[151] T. Qiu, J. Feng, Z. Ge, J. Wang, J. Xu, and J. Yates, “Listen to me if you can: tracking

user experience of mobile network on social media,” in Proceedings of the 10th ACM

SIGCOMM conference on Internet measurement, pp. 288–293, ACM, 2010.

130 References

[152] K. Takeshita, M. Yokota, and K. Nishimatsu, “Early network failure detection system

by analyzing Twitter data,” in 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM), pp. 279–286, IEEE, 2015.

[153] W. Guo and J. Zhang, “Uncovering wireless blackspots using Twitter data,” Electronics

Letters, vol. 53, pp. 814–816, jun 2017.

[154] N. Kumar, “Sentiment Analysis of Twitter Messages: Demonetization a Use Case,” in

2nd International Conference on Computational Systems and Information Technol-

ogy for Sustainable Solutions, CSITSS 2017, Institute of Electrical and Electronics

Engineers Inc., aug 2018.

[155] E. Miranda, M. Aryuni, R. Hariyanto, and E. S. Surya, “Sentiment Analysis using Sen-

tiwordnet and Machine Learning Approach (Indonesia general election opinion from

the twitter content),” in Proceedings of 2019 International Conference on Information

Management and Technology, ICIMTech 2019, pp. 62–67, Institute of Electrical and

Electronics Engineers Inc., aug 2019.

[156] R. Jose and V. S. Chooralil, “Prediction of election result by enhanced sentiment

analysis on Twitter data using Word Sense Disambiguation,” in 2015 International

Conference on Control, Communication and Computing India, ICCC 2015, pp. 638–

641, Institute of Electrical and Electronics Engineers Inc., mar 2016.

[157] A. S. Pereira, T. R. M. B. Silva, F. A. Silva, and A. A. F. Loureiro, “Traffic Event

Detection Using Online Social Networks,” in 2017 13th International Conference on

Distributed Computing in Sensor Systems (DCOSS), pp. 61–64, IEEE, jun 2017.

[158] A. Y. Nikravesh, S. A. Ajila, C. H. Lung, and W. Ding, “Mobile network traffic

prediction using MLP, MLPWD, and SVM,” in Proceedings - 2016 IEEE International

Congress on Big Data, BigData Congress 2016, pp. 402–409, Institute of Electrical

and Electronics Engineers Inc., oct 2016.

[159] A. Azzouni and G. Pujolle, “A Long Short-Term Memory Recurrent Neural Network

Framework for Network Traffic Matrix Prediction,” may 2017.

References 131

[160] “• Twitter: number of active users 2010-2019 | Statista.”

[161] B. Yang, W. Guo, B. Chen, G. Yang, and J. Zhang, “Estimating Mobile Traffic Demand

Using Twitter,” IEEE Wireless Communications Letters, vol. 5, pp. 380–383, aug

2016.

[162] R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai, and H. Zhang, “The Learning and Predic-

tion of Application-Level Traffic Data in Cellular Networks,” IEEE Transactions on

Wireless Communications, vol. 16, no. 6, pp. 3899–3912, 2017.

[163] G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F. Antonelli,

A. Vespignani, A. Pentland, and B. Lepri, “A multi-source dataset of urban life in

the city of Milan and the Province of Trentino,” Scientific data, vol. 2, p. 150055, oct

2015.

[164] C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide Cellular Traffic Prediction

Based on Densely Connected Convolutional Neural Networks,” IEEE Communications

Letters, vol. 22, pp. 1656–1659, aug 2018.

[165] J. Schmidhuber, “Evolutionary principles in self-referential learning, or on learning

how to learn: the meta-meta-... hook,” 1987.

[166] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: a survey of trends and technolo-

gies,” Artificial intelligence review, vol. 44, no. 1, pp. 117–130, 2015.

[167] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep learning

approach for short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11,

no. 2, pp. 68–75, 2017.

[168] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

[169] Y. Huang, J. Tan, and Y.-C. Liang, “Wireless big data: transforming heterogeneous

networks to smart networks,” Journal of Communications and Information Networks,

vol. 2, no. 1, pp. 19–32, 2017.

132 References

[170] C. V. N. Index, “Global mobile data traffic forecast update, 2016–2021,” white paper,

2017.

[171] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Toward Effective Mobile

Encrypted Traffic Classification through Deep Learning,” Neurocomputing, 2020.

[172] J. Feng, X. Chen, R. Gao, M. Zeng, and Y. Li, “Deeptp: An end-to-end neural network

for mobile cellular traffic prediction,” IEEE Network, vol. 32, no. 6, pp. 108–115,

2018.

Appendix A

Proof of Lemma 1

For the two discrete periodic signals l1 [t] and l2 [t] with the period of T , we can represent

their frequency components by applying FFT as:

F1(k ·
2π

T
) = FFT [l1 [t]] =

1
T

T−1

∑
t=0

l1 [t]W kt
T (A.1)

F2(k ·
2π

T
) = FFT [l2 [t]] =

1
T

T−1

∑
t=0

l2 [t]W kt
T (A.2)

where WT = e− j 2π

T

We can also represent l1 [t] and l2 [t] for t ∈ Z by their Inverse Fast Fourier Transform

(IFFT):

l1 [t] =
T−1

∑
k=0

F1(k ·
2π

T
) ·W−kt

T (A.3)

l2 [t] =
T−1

∑
k=0

F2(k ·
2π

T
) ·W−kt

T (A.4)

Obviously, for an arbitrary t ∈ Z, we have:

134 Proof of Lemma 1

|l1[t]− l2[t]|=
∣∣∣∣T−1

∑
k=0

F1(k · 2π

T) ·W−kt
T −

T−1
∑

k=0
F2(k · 2π

T) ·W−kt
T

∣∣∣∣
=

∣∣∣∣∣ ∑

k· 2π

T ∈ fmain

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T + ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣∣∣
≤

∣∣∣∣∣ ∑

k· 2π

T ∈ fmain

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣∣∣+
∣∣∣∣∣ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣∣∣
(A.5)

Since
∣∣∣W−kt

T

∣∣∣2 = 1 for arbitrary k = 1, ...,T −1, we have the following inequalities based

on the inequality of arithmetic and geometric means:

∣∣∣∣∣ ∑

k· 2π

T ∈ fmain

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣∣∣≤ ∑

k· 2π

T ∈ fmain

∣∣∣[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣
≤
√

k ·
√

∑

k· 2π

T ∈ fmain

∣∣∣[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣2 =√
k ·

√
∑

k· 2π

T ∈ fmain

∣∣[F1(k · 2π

T)−F2(k · 2π

T)]
∣∣2

=
√

k ·
√

∑

k· 2π

T ∈ fmain

[ℜ(F1(k · 2π

T))−ℜ(F2(k · 2π

T))]
2
+ ∑

k· 2π

T ∈ fmain

[ℑ(F1(k · 2π

T))−ℑ(F2(k · 2π

T))]
2

=
√

k ·σ
(A.6)

For

∣∣∣∣∣ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣∣∣, we have:

∣∣∣∣∣ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

[F1(k · 2π

T)−F2(k · 2π

T)] ·W−kt
T

∣∣∣∣∣
≤

∣∣∣∣∣ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

F1(k · 2π

T) ·W−kt
T

∣∣∣∣∣+
∣∣∣∣∣ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

F2(k · 2π

T) ·W−kt
T

∣∣∣∣∣
≤ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

∣∣∣F1(k · 2π

T) ·W−kt
T

∣∣∣+ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

∣∣∣F2(k · 2π

T) ·W−kt
T

∣∣∣
= ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

∣∣F1(k · 2π

T)
∣∣+ ∑

k· 2π

T /∈ fmain, k· 2π

T ∈[0,2π)

∣∣F2(k · 2π

T)
∣∣

≤ 2 ·η

(A.7)

Combining (A.5) with (A.6) and (A.7), we have:

135

|l1[t]− l2[t]| ≤
√

k ·σ +2 ·η , ∀t ∈ Z (A.8)

We arrive at Lemma 1.

Appendix B

Proof of Lemma 2

For an LSTM block shown in Fig. 12, we denote the input vectors of the forget gate, input gate,

input activation gate and output gate as fi[t] = (f i
1[t], ..., f i

v[t]), ii[t] = (ii1[t], ..., i
i
v[t]), zi[t] =

(zi
1[t], ...,z

i
v[t]), and oi[t] = (oi

1[t], ...,o
i
v[t]), respectively. Correspondingly, we use fo[t] =

(f o
1 [t], ..., f o

v [t]), io[t] = (io1[t], ..., i
o
v [t]), zo[t] = (zo

1[t], ...,z
o
v [t]), and oo[t] = (oo

1[t], ...,o
o
v [t]),

respectively, to denote the output vectors of the logical gates. We use Z[t] = (Z1[t], ...,Zv[t])

to denote the status vector of the LSTM block. We use the (U +V)×V matrixes W f , Wi,

Wz, and Wo, respectively to denote the neural connection weights in the forget gate, input

gate, input activation gate and output gate, while use the V -dimensional vectors b f , bi, bz,

and bo, respectively, to denote the neural biases in the forget gate, input gate, input activation

gate and output gate.

For an arbitrary element b in the output vector, we have the following equations according

to the structure of the LSTM block:

hv[t −SN +1] = ϕ(iov [t −SN +1] · zo
v [t −SN +1]) ·oo

v [t −SN +1]

= ϕ(σ(iiv[t −SN +1]+bi(v)) ·ϕ(zi
v[t −SN +1]+bc(v))) ·σ(oi

v[t −SN +1]+bo(v))

= ϕ(σ(
U
∑

u∗=1
xu∗[t −SN +1] ·Wi(V +u∗,v)+bi(v)) ·ϕ(

U
∑

u∗=1
xu∗[t −SN +1] ·Wc(V +u∗,v)+bc(v)))

·σ(
U
∑

u∗=1
xu∗[t −SN +1] ·Wo(V +u∗,v)+bo(v))

(B.1)

138 Proof of Lemma 2

Zv[t −SN +1] = iov [t −SN +1] · zo
v [t −SN +1]

= σ(
U
∑

u∗=1
xu∗[t −SN +1] ·Wi(V +u∗,v)+bi(v)) ·ϕ(

U
∑

u∗=1
xu∗ [t −SN +1] ·Wc(V +u∗,v)+bc(v))

(B.2)

Obviously, hv[t−SN+1] and Zv[t−SN+1] are continuous functions about x1[t−SN+1],

..., xU [t −SN +1]. For an arbitrary element a in the LSTM block’s input vector, the partial

derivatives of hv[t −SN +1] and zv[t −SN +1] w.r.t. xu[t −SN +1] can be calculated as:

∂Zv[t−SN+1]
∂xu[t−SN+1] =

∂σ(iiv[t−SN+1]+bi(v))
∂xu[t−SN+1] · zo

v [t −SN +1]+ iov [t −SN +1] · ∂ϕ(zi
v[t−SN+1]+bc(v))
∂xu[t−SN+1]

= σ(iiv[t −SN +1]+bi(v)) · (1−σ(iiv[t −SN +1]+bi(v)) ·Wi(V +a,v) · zo
v [t −SN +1]

+iov [t −SN +1] · (1−ϕ2(zi
v[t −SN +1]+bc(v))) ·Wc(V +a,v)

(B.3)

∂hv[t−SN+1]
∂xu[t−SN+1] =

∂ϕ(iov [t−SN+1]·zo
v [t−SN+1])

∂xu[t−SN+1] ·oo
v [t −SN +1]+ϕ(iov [t −SN +1] · zo

v [t −SN +1]) · ∂oo
v [t−SN+1]

∂xu[t−SN+1]

= (1−ϕ2(iov [t −SN +1] · zo
v [t −SN +1])) ·oo

v [t −SN +1]

·(∂σ(iiv[t−SN+1]+bi(v))
∂xu[t−SN+1] · zo

v [t −SN +1]+ iov [t −SN +1] · ∂ϕ(zi
v[t−SN+1]+bc(v))
∂xu[t−SN+1])

+ϕ(iov [t −SN +1] · zo
v [t −SN +1]) · ∂σ(oi

v[t−SN+1]+bo(v))
∂xu[t−SN+1]

= (1−ϕ2(iov [t −SN +1] · zo
v [t −SN +1])) ·oo

v [t −SN +1] ·σ(iiv[t −SN +1]+bi(v))

·(1−σ(iiv[t −SN +1]+bi(v)) ·Wi(V +a,v) · zo
v [t −SN +1]

+(1−ϕ2(iov [t −SN +1] · zo
v [t −SN +1])) ·oo

v [t −SN +1] · iov [t −SN +1] · (1−ϕ2(zi
v[t −SN +1]+bc(v)))

·Wc(V +a,v)+ϕ(iov [t −SN +1] · zo
v [t −SN +1])

·σ(oi
v[t −SN +1]+bi(v)) · (1−σ(oi

v[t −SN +1]+bi(v)) ·Wo(v+a,v)
(B.4)

Thus, we can conclude that hv[t − SN + 1] and Zv[t − SN + 1] are differentiable w.r.t.

xu[t−SN+1]. Similarly, we can prove that hv[t−SN+1] and Zv[t−SN+1] are differentiable

w.r.t. x1[t −SN +1], ..., xU [t −SN +1].

So hv[t − SN + 1] and Zv[t − SN + 1] are continuous and differentiable functions w.r.t.

x1[t − SN + 1], ..., xU [t − SN + 1]. Similarly, we can prove that h1[t − SN + 1], ..., hv[t −

139

SN + 1], C1[t − SN + 1], ..., Zv[t − SN + 1] are all continuous and differentiable functions

w.r.t. x1[t − SN + 1], ..., xU [t − SN + 1]. Furthermore, since the values of h1[t − SN + 1],

..., hv[t − SN + 1], C1[t − SN + 1], ..., Zv[t − SN + 1] are not influenced by x1[t − SN + 2],

..., x1[t], ..., xU [t −SN +2], ..., xU [t], they are also continuous and differentiable functions

w.r.t. x1[t − SN + 2], ..., x1[t], ..., xU [t − SN + 2], ..., xU [t], whose partial derivatives w.r.t.

x1[t −SN +2], ..., x1[t], ..., xU [t −SN +2], ..., xU [t] equal 0.

For an arbitrary element b in the output vector, we have:

hv[t −SN +2] = ϕ(Zv[t −SN +1] · f o
v [t −SN +2]+ iov [t −SN +2] · zo

v [t −SN +2]) ·oo
v [t −SN +2]

= ϕ(Zv[t −SN +1] ·σ(f i
v[t −SN +2]+b f (v))+σ(iiv[t −SN +2]+bi(v)) ·ϕ(zi

v[t −SN +2]+bc(v)))

·σ(oi
v[t −SN +2]+bo(v))

= ϕ(Zv[t −SN +1] ·σ(
B
∑

v∗=1
hv∗ [t −SN +1] ·W f (v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·W f (V +u∗,v)+b f (v))

+σ(
B
∑

v∗=1
hv∗ [t −SN +1] ·Wi(v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·Wi(V +u∗,v)+bi(v))

·ϕ(
B
∑

v∗=1
hv∗ [t −SN +1] ·Wc(v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·Wc(V +u∗,v)+bc(v)))

·σ(
B
∑

v∗=1
hv∗ [t −SN +1] ·Wo(v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·Wo(V +u∗,v)+bo(v))

(B.5)

Zv[t −SN +2] = Zv[t −SN +1] · f o
v [t −SN +2]+ iov [t −SN +2] · zo

v [t −SN +2]

= Zv[t −SN +1] ·σ(f i
v[t −SN +2]+b f (v))+σ(iiv[t −SN +2]+bi(v)) ·ϕ(zi

v[t −SN +2]+bc(v))

= Zv[t −SN +1] ·σ(
B
∑

v∗=1
hv∗ [t −SN +1] ·W f (v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·W f (V +u∗,v)+b f (v))

+σ(
B
∑

v∗=1
hv∗ [t −SN +1] ·Wi(v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·Wi(V +u∗,v)

+bi(v)) ·ϕ(
B
∑

v∗=1
hv∗ [t −SN +1] ·Wc(v∗,v)+

U
∑

u∗=1
xu∗ [t −SN +2] ·Wc(V +u∗,v)+bc(v))

(B.6)

Since h1[t−SN+1], ..., hv[t−SN+1], C1[t−SN+1], ..., Zv[t−SN+1] are all continuous

functions w.r.t. x1[t − SN + 1], ..., x1[t], ..., xU [t − SN + 1], ..., xU [t], hv[t − SN + 2] and

Zv[t − SN + 2] are continuous functions about x1[t − SN + 1], ..., x1[t], ..., xU [t − SN + 1],

..., xU [t]. For an arbitrary element a in the LSTM block’s input vector and an arbitrary

140 Proof of Lemma 2

t∗ ∈ t −SN +1, ..., t, the partial derivatives of Zv[t −SN +2] and hv[t −SN +2] w.r.t. xu[t∗]

can be calculated as:

∂Zv[t−SN+2]
∂xu[t∗]

= ∂Zv[t−SN+1]
∂xu[t∗]

· f o
v [t −SN +2]+Zv[t −SN +1] · ∂ f o

v [t−SN+2]
∂xu[t∗]

+ ∂ iov [t−SN+2]
∂xu[t∗]

· zo
v [t −SN +2]+ iov [t −SN +2] · ∂ zo

v [t−SN+2]
∂xu[t∗]

=



∂Zv[t−SN+1]
∂xu[t∗]

· f o
v [t −SN +2]+Zv[t −SN +1] · f o

v [t −SN +2] · (1− f o
v [t −SN +2])

·
B
∑

v∗=1

∂hv∗ [t−SN+1]
∂xu[t∗]

·W f (v∗,v)+ zo
v [t −SN +2] · iov [t −SN +2] · (1− iov [t −SN +2])

·
B
∑

v∗=1

∂hv∗ [t−SN+1]
∂xu[t∗]

·Wi(v∗,v)+ iov [t −SN +2] · (1− zo
v [t −SN +2] · zo

v [t −SN +2])

·
B
∑

v∗=1

∂hv∗ [t−SN+1]
∂xu[t∗]

·Wc(v∗,v), t∗ ̸= t −SN +1

∂Zv[t−SN+1]
∂xu[t∗]

· f o
v [t −SN +2]+Zv[t −SN +1] · f o

v [t −SN +2] · (1− f o
v [t −SN +2])

·W f (V + t∗− t +SN,v)+ zo
v [t −SN +2] · iov [t −SN +2] · (1− iov [t −SN +2])

·Wi(V + t∗− t +SN,v)+ iov [t −SN +2]

·(1− zo
v [t −SN +2] · zo

v [t −SN +2]) ·Wc(V + t∗− t +SN,v), t∗ = t −SN +1
(B.7)

∂hv[t−SN+2]
∂xu[t∗]

= ∂ϕ(Zv[t−SN+2])
∂xu[t∗]

·oo
v [t −SN +2]+ϕ(Zv[t −SN +2]) · ∂oo

v [t−SN+2]
∂xu[t∗]

=



(1−ϕ2(Zv[t −SN +2])) · ∂Zv[t−SN+2]
∂xu[t∗]

·oo
v [t −SN +2]+ϕ(Zv[t −SN +2]) ·oo

v [t −SN +2]

·(1−oo
v [t −SN +2]) ·

B
∑

v∗=1

∂hv∗ [t−SN+1]
∂xu[t∗]

·Wo(v∗,v), t∗ ̸= t −SN +1

(1−ϕ2(Zv[t −SN +2])) · ∂Zv[t−SN+2]
∂xu[t∗]

·oo
v [t −SN +2]

+ϕ(Zv[t −SN +2]) ·oo
v [t −SN +2] · (1−oo

v [t −SN +2]) ·Wo(V + t∗− t +SN,v), t∗ = t −SN +1
(B.8)

Thus, hv[t −SN +2] and Zv[t −SN +2] are continuous and differentiable functions about

x1[t−SN+1], ..., x1[t], ..., xU [t−SN+1], ..., xU [t]. Furthermore, we can prove h1[t−SN+2],

..., hv[t − SN + 2], Z1[t − SN + 2], ..., Zv[t − SN + 2] are all continuous and differentiable

functions about x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1], ..., xU [t].

Similar with t −SN +2, for any t∗ ∈ t −SN +3, ..., t, we can prove that h1[t∗], ..., hv[t∗],

Z1[t∗], ..., Zv[t∗] are all continuous and differentiable functions about x1[t −SN +1], ..., x1[t],

141

..., xU [t −SN +1], ..., xU [t] given that h1[t∗−1], ..., hv[t∗−1], Z1[t∗−1], ..., Zv[t∗−1] are

continuous and differentiable functions about x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1], ...,

xU [t]. We arrive at Lemma 2.

Appendix C

Proof of Proposition 1

We adopt the proving method of mathematical induction. We use hm[t] = hm
1 [t], ...,h

m
V m to

denote the output vector of the M-th layer LSTM block, which has the scale of V m. Obviously,

hW [t] = y[t] = (y1[t], ...,yV [t]).

For m = 1, according to Lemma 2, we have h1
1[t], ..., h1

1[t − SN + 1], ..., h1
V 1[t], ...,

h1
V 1 [t −SN +1] are continuous and differentiable functions w.r.t. x1[t −SN +1], ..., x1[t], ...,

xU [t −SN +1], ..., xU [t].

If we suppose for m = m∗, hm∗
1 [t], ..., hm∗

1 [t − SN + 1], ..., hm∗

V m∗ [t], ..., hm∗

V m∗ [t − SN + 1]

are continuous and differentiable functions w.r.t. x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1],

..., xU [t], hw∗+1
1 [t], ..., hm∗+1

1 [t − SN + 1], ..., hm∗+1
V m∗+1[t], ..., hm∗+1

V m∗+1[t − SN + 1] will also be

continuous and differentiable functions w.r.t. x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1], ...,

xU [t] since hm∗+1
1 [t], ..., hm∗+1

1 [t −SN+1], ..., hm∗+1
V m∗+1[t], ..., hm∗+1

V m∗+1[t −SN+1] are continuous

and differentiable functions w.r.t. hm∗
1 [t], ..., hm∗

1 [t −SN +1], ..., hm∗

V m∗ [t], ..., hm∗

V m∗ [t −SN +1]

according to Lemma 2.

Therefore, can conclude that hm
1 [t], ..., hm

1 [t −SN +1], ..., hm
V m [t], ..., hm

V m[t −SN +1] are

continuous and differentiable functions w.r.t. x1[t −SN +1], ..., x1[t], ..., xU [t −SN +1], ...,

xU [t] for ∀m ∈ Z+.

We arrive at Proposition 1.

Appendix D

Proof of Proposition 2

From Lemma 1, we have |l1 [t]− l2 [t]| ≤
√

k ·σ +2 ·η for ∀t ∈ Z.

Furthermore, according to Proposition 1, we have y [t] is a continuous and differentiable

function w.r.t. l1[t], ..., l1[t −SN +1]. ∂y[t]
∂ l1[t]

, ..., ∂y[t]
∂ l1[t−SN+1] are the partial derivatives.

Since σ and η are small enough and |l1[t]− l2[t]|, ..., |l1[t −SN +1]− l2[t −SN +1]| are

bounded by
√

k ·σ +2 ·η , we have:

|y[t]− ŷ′[t]| ≤ |l1[t]− l2[t]| · ∂y[t]
∂ l1[t]

+ ...+ |l1[t −SN +1]− l2[t −SN +1]| · ∂y[t]
∂ l1[t−SN+1]

≤ (
√

k ·σ +2 ·η) · (∂y[t]
∂ l1[t]

+ ...+ ∂y[t]
∂ l1[t−SN+1])

(D.1)

Considering y[t] = l1[t +1] and |l1[t +1]− l2[t +1]| ≤
√

k ·σ +2 ·η , we have:

|ŷ′[t]− l2[t +1]| ≤ |y[t]− ŷ′[t]|+ |y[t]− l2[t +1]|

≤ |y[t]− ŷ′[t]|+ |l1[t +1]− l2[t +1]|

≤ (
√

k ·σ +2 ·η) · (1+ ∂y[t]
∂ l1[t]

+ ...+ ∂y[t]
∂ l1[t−SN+1])

(D.2)

We arrive at Proposition 2.

	List of Publications
	List of Abbreviations
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background and Motivation
	1.1.1 The Development of Mobile Network Traffic Analysis
	1.1.2 Machine Learning in Mobile Networking
	1.1.3 Motivation

	1.2 Contributions of the Thesis
	1.3 Thesis Organisation

	2 Literature Review
	2.1 Mobile Traffic Analysis
	2.1.1 Mobile Network Traffic Prediction
	2.1.2 Mobility Prediction in Mobile Networks
	2.1.3 Social Analysis in Mobile Networks

	2.2 Machine Learning in Mobile Network Traffic

	3 Fundamentals of LSTM
	3.1 Introduction
	3.2 LSTM in Mobile Communications
	3.2.1 Data Pre-processing
	3.2.2 POI Extraction
	3.2.3 LSTM Network Training and Prediction

	3.3 Use Case: The LSTM-based User Mobility Prediction
	3.3.1 Data Pre-processing
	3.3.2 POI Extraction
	3.3.3 User Mobility Prediction Using LSTM

	4 Traffic Feature Analysis
	4.1 Introduction
	4.2 The Twitter Dataset and Preliminary Analysis
	4.2.1 The Twitter Datasets
	4.2.2 The Preliminary Analysis

	4.3 The Twitter Traffic Prediction Framework
	4.3.1 Statistical Analysis of Twitter Traffic
	4.3.2 Twitter Traffic Prediction Using Machine Learning Techniques
	4.3.3 Performance Evaluation

	4.4 Conclusion

	5 Mobile Network Traffic Prediction Framework: The ML-TP
	5.1 Introduction
	5.1.1 Related Works

	5.2 Dataset Description and Preliminary Analysis
	5.2.1 Mobile Network Traffic Trace
	5.2.2 Characteristics of Cell-Level Mobile Traffic

	5.3 The Proposed ML-TP
	5.3.1 Meta-learning
	5.3.2 Overview of ML-TP
	5.3.3 Deep LSTM Network as the Base-learner
	5.3.4 The KNN Algorithm Based Meta-learner
	5.3.5 Fine-tune the Base-learner for a New Base Learning Task

	5.4 Evaluation on Real-world Mobile Traffic Data
	5.4.1 Experimental settings and performance metrics
	5.4.2 Influence of the meta-learner's two key hyper-parameters
	5.4.3 Prediction accuracy of ML-TP and the baseline methods
	5.4.4 Base-samples needed to fine-tune the base-learner of a new base-task
	5.4.5 Epochs needed to fine-tune the base-learner of a new prediction task

	5.5 CONCLUSION

	6 Mobile Network Traffic Prediction Framework: The dmTP
	6.1 Introduction
	6.2 Dataset Description and Background Knowledge of Meta-Learning
	6.2.1 Mobile Traffic Traces
	6.2.2 Characteristics of Mobile Traffic
	6.2.3 Characteristics of Mobile Traffic
	6.2.4 Meta-Learning

	6.3 The Proposed dmTP
	6.3.1 Deep LSTM Network as the Base-learner
	6.3.2 Train the Meta-learner with Meta-samples
	6.3.3 Fine-tune the Base-learner for a New Base-Task

	6.4 Evaluation on Real-world Mobile Traffic Data
	6.4.1 Experimental Settings
	6.4.2 Prediction Performance
	6.4.3 Learning Efficiency Improvement of Base-learner

	6.5 Conclusion

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	Appendix A Proof of Lemma 1
	Appendix B Proof of Lemma 2
	Appendix C Proof of Proposition 1
	Appendix D Proof of Proposition 2

