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Abstract

As inkjet technology develops to produce smaller droplets, substrate features such

as accidental scratches or manufacturing defects can potentially affect the outcome

of printing, particularly for printed electronics where continuous tracks are required.

Here, the deposition of micro–droplets onto an idealised scratch of commensurate

size is studied using a GPU–accelerated 3D multiphase lattice Boltzmann model

validated against published experiments and theoretical models. The scratch is con-

sidered as a groove of rectangular cross–section, with rectangular side ridges repre-

senting material displaced from the substrate, and seven equilibrium morphologies

are identified as a result of inertial spreading, contact line pinning, imbibition into

the scratch and capillary flow. A regime map is constructed in terms of scratch

depth and width, and theoretical estimates of the regime boundaries are developed

by adapting droplet spreading laws for flat surfaces to account for liquid entering

the scratches. Good agreement with the numerical results is seen, and the influences

of Reynolds number, Weber number and advancing and receding contact angles are

explored. Negative and positive implications of the results for printing applications

are discussed and illustrated via multiple–droplet simulations of printing across and

along scratches.
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1 Introduction 1.1 Printed Electronics

1.1 Printed Electronics

Printed electronics, also known as organic electronics (Chang et al., 1965), is a tech-

nology whereby electronics manufacturing and text/graphics printing techniques are

combined to produce electronic products that are thin, flexible, wearable, light, cost–

effective and environmentally friendly (Suganuma, 2014). Enabling this merger is

the ability to deposit materials from solution (Lupo et al., 2013). This technology is

increasingly exploited in numerous industries including lighting, organic/inorganic

photovoltaics, displays, integrated smart systems and electronic components (Sug-

anuma, 2014). The flexible, printed and organic electronics market size in 2020 was

$41 billion and is estimated to grow to $73 billion by 2030 (Das et al., 2019). Print-

ing methods used in printed electronics include offset, gravure, flexo, and screen

printing (Lupo et al., 2013; Suganuma, 2014). Presently these are used in sheet–

fed, low throughput, and batch processes; the desire to move to roll–to–roll, high

throughput and continuous processes is driving the development of alternative print-

ing technologies, particularly inkjet printing.

1.1.1 Inkjet Printing

Traditional printing methods, such as lithography, flexography, gravure and screen

printing, have experienced consistent improvement for a couple of centuries and can

now produce high quality and precision printed products over large areas (Huchings

et al., 2016). These methods require liquid to transfer through direct contact with

the substrate, a previously prepared master containing the pattern to be printed.

To change the printed product, the process has to stop and the master pattern has

to be physically changed (Huchings et al., 2016). On the other hand, inkjet print-

ers, now ubiquitous in homes, offices and increasingly in manufacturing processes,

use a non–contact droplet deposition mechanism. Patterns are made by precisely

producing and placing small (10 − 100)µm liquid droplets on a substrate (Stringer

2



1 Introduction 1.1 Printed Electronics

and Derby, 2012). Unlike conventional printing methods, a master pattern is not

needed; patterns are defined digitally, stored electronically and can easily be changed

(Huchings et al., 2016) so that each printed pattern can equally easily be different or

the same as its immediate neighbours in a sequence (Hutchings and Martin, 2012).

There are two main methods to produce inkjet droplets: continuous inkjet

(CIJ) and drop on demand (DOD). The former, as the name suggests, produces

a continuous stream of droplets through the continuous breakup of a liquid jet of

ink; the desired droplets for printing are selected electrostatically and the rest are

recycled. CIJ was developed in the 1970s and 1980s for applications that require

high speed and low printing resolution such as marking products, bar codes and

addressing bulk mail (Hutchings and Martin, 2012). Drop on Demand, as the name

also implies, produces a droplet only at the desired time and location. In DOD, a

pressure pulse, conventionally produced by a piezoelectric element in the printhead,

ejects a small volume of liquid at speed. DOD has been developing since the mid–

1980s and is capable of much higher resolutions than those from CIJ, but at lower

printing speeds, enabling the printing of text and images in the domestic and office

environments (Hutchings and Martin, 2012). Typical droplet speeds are 5− 8m s−1

and 10− 30m s−1 for DOD and CIJ respectively, and typical inkjet droplet sizes are

(10 − 100)µm in both methods. Newer methods can exceed these typical ranges;

for example, electrohydrodynamic (EHD) inkjet printing which uses an electric field

instead of a piezoelectric to produce droplets in DOD can produce relatively smaller

droplets (< 5µm) (Zheng et al., 2021), and another example is laser–induced droplets

which can reach speeds of 50m s−1 (Visser et al., 2012).

Inkjet printing has been increasingly adopted for manufacturing applica-

tions due to the following features:

1. Inkjet printing is a digital process that overcomes the need for a physical

mask/frame as in conventional contact printing methods and gives great flex-

ibility for changing the printed patterns on demand.

3



1 Introduction 1.1 Printed Electronics

2. It is suitable for short print runs with high–profit margins and as reliability

increases, inkjet printing will compete with traditional methods in large–area

manufacturing in terms of cost–efficiency (Huchings et al., 2016).

3. The process is non–contact. This makes it ideal for flexible substrates (ex-

pected to be the majority for mass production and will eventually be applied

in roll–to–roll (R2R) manufacturing processes (Suganuma, 2014)) fragile sub-

strates, liquid baths, and powder beds.

4. The process is material–efficient, saving material wasted in conventional print-

ing methods due to the need for masks/frames.

5. A wide range of materials can be inkjet printed, materials can be combined

and printed, and inkjet can be combined with other processing steps. Metals,

ceramics, polymers, living cells and tissue have been inkjet printed.

6. Inkjet printing works at speed and can work in parallel with different inkjet

heads working on various areas of the product simultaneously. Multiple heads

can be assembled and arranged in different ways. This makes inkjet suit-

able as an R2R process which is more time, cost and material efficient than

conventional methods that work as sheet-fed processes.

Fluid properties of inks are restricted to a fairly narrow range of viscosities

in inkjet printing. Typical viscosities are µ < 20 mPa s, which limits the particle

loading in these inks. Particle sizes need careful control to avoid blockages, which

makes inks expensive to manufacture.

1.1.2 Substrates for Inkjet Printing of Electronics

Substrates for printed electronics have particular requirements including flexibility,

excellent transparency, surface smoothness, thinness, lightness and more (Suganuma,

4



1 Introduction 1.2 Project Aims and Objectives

2014). Commonly used substrates include polyethylene terephthalate (PET), pol-

yethylene naphthalate (PEN), polyimide (PI), glass, paper, transparent paper and

steel. Glass substrates are commonly used in optical products such as displays,

photovoltaics, and lighting due to their high transparency and low haze. Glass is,

however, brittle, dense and expensive compared with plastic substrates. PET is

the more popular of plastic substrates due to its relatively low cost and high trans-

parency, but it has low heat resistance hence mandates the entire printing process

occur at low temperatures. PEN and PI have better heat resistance but smaller

transparency and higher cost. Refer to Suganuma (2014) for more details on sub-

strates.

Besides challenges related to substrate characteristics such as transparency,

heat resistance, cost and rigidity, small imperfections in the substrate surface can

affect the printing quality. These arise through small variations during manufactur-

ing or as a result of unintended damage, such as scratching during transportation

and/or handling of the substrate, especially in plastic substrates. These can pose a

challenge for printing continuous tracks to form electrical circuits (Chilton, 2012),

particularly as the droplet sizes are progressively decreasing in the quest for higher

resolution. Topographical features, of commensurate size to substrate defects, can

also be added to substrates to control the flow of the droplets as in (Seemann et al.,

2005; Kant et al., 2017). The focus of this thesis is to study the interaction of single

and multiple droplets with surface defects/features of commensurate size to inkjet

printing droplets across the relevant printing parameter space.

1.2 Project Aims and Objectives

The aims of the project can be summarised in two main points:

• To understand the effect of the surface defects on printing by studying droplet–

5



1 Introduction 1.3 Thesis Overview

surface interactions.

• To conduct a parametric study of the variables that affect the spreading of

droplets on surfaces and establish operability diagrams that can be used to

inform the film production and subsequent printing processes.

To achieve the aims of the project, the following objectives must be achieved:

1. Develop a reliable simulation tool for real surfaces and fluids. This includes

choosing the right multiphase models with the right extensions to control sur-

face tension as a parameter and reach sufficiently high–density ratios (greater

than 500) while keeping the simulation stable. This also requires capturing

surface topographies in the simulations with various contact angles.

2. Validate the model against experiments in the literature.

3. Simulate single droplet printing onto an idealised 2D scratch and characterise

the possible resulting morphologies and how they vary within the printing

parameter space.

4. Simulate printing lines of droplets onto these 2D scratch–like features to assess

the potential influence of these features on inkjet–printed electronics.

1.3 Thesis Overview

The previous works in the literature on single and multiple micro–droplet impact on

a flat substrate and printing on substrate surfaces with topographies are presented

in chapter 2. The chapter also presents the main methods to simulate such a system

and concludes with choosing the lattice Boltzmann (LBM) method for the thesis.

Chapter 3 then presents the LBMmethod, overviews the multiphase deriva-

tives of the method, and presents the pseudo–potential model chosen for this thesis.

6



1 Introduction 1.3 Thesis Overview

In its original form, however, the pseudo–potential approach cannot replicate inkjet

printing conditions, particularly in terms of density ratio between phases and surface

tension.

Chapter 4 then investigates the various methods to mitigate the issues of

the pseudo–potential model and chooses appropriate modifications from the litera-

ture to improve the model. The approach is then validated and its implementation

accelerated using GPUs.

Having developed an appropriate approach and validated it, chapter 5 sim-

ulates the impact of a single droplet impacting a substrate surface with an idealised

scratch topography. The resulting morphologies are named and analytical models to

expect when they will occur are developed. The effects of fluid, flow and substrate

on the formation of the morphologies are also investigated. The implications of the

identified morphologies for printing applications of lines are discussed in chapter 6.

The thesis is finally concluded in chapter 7.
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2 Literature Review 2.1 Droplet Impact onto a Flat Surface

2.1 Droplet Impact onto a Flat Surface

2.1.1 Single Droplet Impact

A significant amount of experimental, computational, and theoretical work has fo-

cused on the impact of single and multiple droplets onto smooth or nominally flat

rough substrates. This makes these parts of the problem relatively well studied; for

reviews on the topic refer to Yarin (2006), Josserand and Thoroddsen (2016), and

Khojasteh et al. (2016). When a droplet impacts a dry surface it will spread and

stick, rebound or splash depending on the fluid and surface properties as well as the

droplet speed.

The dynamics of a droplet that spreads and sticks on a solid smooth surface

can be classified into three stages. In the first stage, the droplet spreads due to inertia

on an air layer which prevents direct contact with the substrate. This air layer is

either expelled or trapped in the droplet as a bubble when the droplet eventually

makes contact with the substrate. In the second stage, surface tension causes the

droplet to oscillate or relax depending on the degree of viscous dissipation. In the

final stage, the droplet spreads under capillary forces reaching an equilibrium that

minimises free energy. The three stages were labelled by Rioboo et al. (2002) as

kinematic and spreading, relaxation, and wetting/equilibrium respectively.

Droplet impact conditions are typically described in terms of the Reynolds

number and Weber number, defined respectively as

Re = uD0

ν
and We = ρu2D0

γ
, (2.1)

where u is the impact velocity, D0 is the in–flight droplet diameter, ν is the kinematic

viscosity, ρ the density, and γ the surface tension. To set the current work in context,

figure 2.1 presents a Re–We map of key previous studies of droplet impact onto solid

9



2 Literature Review 2.1 Droplet Impact onto a Flat Surface

surfaces compiled by the author from studies in the literature. By necessity, inkjet

printing systems operate under non–splashing conditions and the typical range of

Re and We is indicated by the dashed rectangle. Interestingly, micro–droplets

(i.e. droplets with diameter below about 100 µm) have been shown not to splash,

even at conditions well above the splashing threshold (Visser et al., 2012). Hence,

micro–droplets do not necessarily behave in the same way as much larger droplets

despite dynamic similitude. The classic splashing threshold found in (Josserand and

Thoroddsen, 2016) is also plotted in figure 2.1. Micro–droplet studies are indicated

by red–filled symbols in figure 2.1. There are many studies of droplet spreading,

resulting in a wide collection of models for important characteristics such as the

equilibrium and maximum spreading diameters discussed in the following sections.
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Figure 2.1: A map of previous studies of single and multiple droplet impact onto
surfaces with and without topographical features in terms of Reynolds number and
Weber number.
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2 Literature Review 2.1 Droplet Impact onto a Flat Surface

2.1.2 Equilibrium Spreading Diameter

The shape of a droplet in equilibrium on an ideal flat substrate (i.e. in the absence

of hysteresis and topography) will depend on the contact angle and Bond number

Bo (also called Eötvös number) defined as,

Bo = ∆ρgD0

γ
, (2.2)

where g is the acceleration due to gravity and ∆ρ is the density difference between

the liquid and the gas. For droplets with Bo < 1, which holds for microdroplets, the

droplet forms a spherical cap. Knowing the equilibrium contact angle θeq, we can

write an expression for the radius of the spherical cap using conservation of volume

(Van Dam and Le Clerc, 2004),

4
3πR

3
0 = R3

eq tan
(
θ

2

)(
3 + tan2 θ

2

)
;

so the equilibrium diameter normalised as βeq = Deq/D0 = Req/R0, is:

βeq = 2
tan θ2

(
3 + tan2 θ

2

)−1/3

. (2.3)

Other forms have distinguished between hydrophilic cases where θeq < π/2, and

hydrophobic cases, θeq > π/2 (Lee et al., 2016),

βeq =


(

4 sin3 θ
2−3 cos θ+cos3 θ

)1/3
if θ < π/2(

1
(2+cos θ) sin4(θ/2)

)1/3
if θ > π/2.

(2.4)

Equations (2.3) and (2.4) match for θ < π/2 and differ only slightly otherwise.

11



2 Literature Review 2.1 Droplet Impact onto a Flat Surface

2.1.3 Maximum Spreading Diameter

For a droplet impacting a planar surface, the maximum spreading diameter Dmax

(normalised as βmax = Dmax/D0) has been extensively studied and found to de-

pend on the impact velocity and fluid properties captured in the Reynolds and We-

ber numbers (2.1). Pasandideh-Fard et al. (1996) showed that for low Weber and

Reynolds numbers, surface wettability also becomes a significant variable. Clanet

et al. (2004) demonstrated that there are two regimes for droplet deposition: one

is the capillary regime with low We and high Re, where viscous effects are negligi-

ble, and the other is the viscous regime with high We and low Re, where capillary

forces are negligible. Early studies reported two conflicting βmax scalings with We

in the capillary regime: studies that used an energy balance predicted a We1/2 de-

pendence (Madejski, 1976; Chandra and Avedisian, 1991; Bennett and Poulikakos,

1993), while those using a momentum balance predictedWe1/4 (Clanet et al., 2004).

In the viscous regime, most studies predict a Re1/5 dependence (Madejski, 1976;

Chandra and Avedisian, 1991; Bennett and Poulikakos, 1993).

Eggers et al. (2010) showed, using a dynamical model with a viscous bound-

ary layer, that if the We1/2 scaling holds, then βmax = Re1/5F (P ), where F is a

function of P = WeRe−2/5. Laan et al. (2014) showed, using experiments on three

liquids with different viscosities, that the We1/2 scaling holds rather than We1/4

and used Padé interpolation to approximate F (P ) for We > 10. Lee et al. (2016)

extended this to We > 1 by incorporating surface wettability by incorporating the

βeq from equation (2.4). Table 2.1 lists a selection of models from the literature.

In fact, some models developed earlier than (Eggers et al., 2010), can be written in

the form βmax = Re1/5F (P ). For example, Wang and Bourouiba (2018) rewrote the

model by Scheller and Bousfield (1995) in table 2.1 using F (P ) = 0.61P 1/6, so

βmax = 0.61Re1/5P 1/6. (2.5)
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We can similarly rewrite the model by Roisman (2009) in table 2.1 using F (P ) =

0.87− 0.4P−1/2 so,

βmax = 0.87− 0.4P−1/2. (2.6)

Wildeman et al. (2016) recently used extensive simulations and modelling to bridge

the energy balance and the momentum balance approaches and developed a model

for βmax. All these models have good agreement with experimental and numerical

data (Josserand and Thoroddsen, 2016; Lee et al., 2016; Wildeman et al., 2016).

It is challenging to test the applicability of these models to large Re because of

the onset of splashing for millimetre droplets before maximum spreading is reached

(Josserand and Thoroddsen, 2016) and the difficulty in speeding up microdroplets.

2.1.4 Continuous Bead Printing On Flat Substrates

A series of droplets overlapping on the substrate coalesce and form a continuous bead

also called a printed line/track especially after drying. The stability of a printed

line is sensitive to droplet spacing, contact angle and contact line pinning. Davis

(1980) studied the stability of a liquid bead, using linear stability analysis, under

three conditions of the contact–line: (i) is pinned, (ii) moves but with a fixed contact

angle, and (iii) movement with a contact angle that behaves as a smooth function

of contact–line speed. For cases (ii) and (iii), he found wavenumbers for which the

continuous bead is unstable and breaks into several segments. When the contact line

is pinned, i.e. case (i), he found the bead to be stable for contact angles θeq < π/2.

Schiaffino and Sonin (1997) and Gau et al. (1999) experimentally confirmed the

theoretical prediction by Davis (1980).

Duineveld (2003) demonstrated another instability called the bulging in-

stability. He showed that when one bulge forms it acts as a seed for subsequent

bulges and hypothesised that it forms due to the initial head, also called the pri-

mary head. He did not study the formation of the initial bulge, however (Thompson
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number Study βmax (= Dmax/D0)

1 Chandra and Avedisian (1991)

3We

2Re β
4
max + (1− cos θ)β2

max

−
(
We

3 + 4
)
≈ 0

2 Scheller and Bousfield (1995) 0.61Re1/5(P )1/6

3 Pasandideh-Fard et al. (1996)
√

We+ 12
3(1− cos θA) + 4(We/

√
Re)

4 Roisman (2009) Re1/5(0.87− 0.4(WeRe−2/5)−1/2)

5 Laan et al. (2014) Re1/5 P 1/2

1.24 + P 1/2

6 Lee et al. (2016)
√
We1/2Re1/5

7.6 +We1/2 + β2
eq

7 Wildeman et al. (2016)

3(1− cos θ)
We

β2
max

+ 0.7√
Re

β2
max

√
βmax − 1

= 12
We

+ 1
2

Table 2.1: A selection of previously published models for predicting the maximum
spreading diameter of a droplet impacting on a flat surface. Here P = WeRe−2/5

and βeq is the equilibrium spread diameter.
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et al., 2014). Thompson et al. (2014) studied the initial bulge more carefully, using

a quasi–static model and experiments. They found that the primary head forms be-

cause of contact angle hysteresis (CAH). There are three cases to consider in terms

of CAH characterised by Thompson et al. (2014) using ε ≡ θR/θA: (i) ε = 1, (ii)

ε = 0 and θR = 0 and (iii) 0 < ε < 1.

When ε = 1, the only possible morphology is a circular island. When

ε = 0 and θR = 0, the contact line is pinned and forms the non–receding mor-

phology characterised by a long and shallow rivulet as seen in (Duineveld, 2003).

Otherwise, when 0 < ε < 1, θR is finite and the contact line is allowed to recede.

This allows the retraction of the rivulet towards the primary head; this is known

as the drawback effect. The accumulation of the drawback effect eventually results

in the landing droplet not making contact with the existing fluid. The drawback

effect can decrease the resolution of a 3D inkjet printed pattern, reduce dimensional

tolerance and cause displacement of solder bumps on printed circuit boards (Dalili

et al., 2014). This results in the formation of a new line. Thompson et al. (2014)

think that this retraction of the rivulet is what is happening rather than a Rayleigh

(1879) type instability breaking a continuous line as claimed in (Duineveld, 2003).

Through their models, Thompson et al. (2014) demonstrated that bulging occurs

because of competition between the transport of fluid into the pre–existing rivulet

and spreading of the new droplet. This bulging instability increases with decreasing

spacing — i.e. increasing overlap.

There are two competing trends: decreasing spacing compensates for the

drawback effect but also has the effect of inadvertently increasing the bulging in-

stability. A trade–off, therefore, exists between these competing trends. Figure 2.2

shows this trade–off: for low spacing, bulges are bigger and more frequent than

for higher spacing lines. For high spacing, liquid islands or individual droplets are

formed rather than a line. For moderate spacing, bulges are not formed but a pri-

mary head is. Note that figure 2.2 has a spacing δ = ∆x
D0

= 0.5 where ∆x is the
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difference between two consecutive droplet centres. Dalili et al. (2014) studied the

drawback effect and droplet spacing and arrived at a criterion for break up, given

by

bc = 2∆x
∆x+Dflat

(2.7)

where ∆x is the centre to centre spacing, Dflat is the equilibrium spreading diameter

when only one droplet is deposited, and b is a drawback index given by,

b = L

Dflat + (m− 1)∆x (2.8)

where m is the number of droplet and L is the actual length, and bc is the critical

drawback value below which breakup occurs and above which it does not.

In this thesis, we focus on lines with ε = 0 and θR = 0◦ because they

are characteristic of the colloidal inks ubiquitous in the printed electronics industry.

This means that the drawback effect is not important here, but spacing persists as

an important variable. Other factors that affect printed lines include delay time

(i.e. printing frequency), substrate temperature, and printing procedure, however,

these will not be considered in this thesis. For studies on these refer to Soltman

and Subramanian (2008), Soltman (2011), and Kwon et al. (2018). Some authors

also studied line features such as minimum and maximum widths as a function of

droplet spacing, refer to Yang et al. (2021) for a recent publication on the topic.

Other studies have considered the impact of single and multiple droplets

onto substrates with topographies, we discuss these next.
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Figure 2.2: Experiments by (Thompson et al., 2014) that looking at the continuity of
printed lines with varying the distance between droplets characterised by δ = ∆s

Dflat

where ∆s is difference between two droplet centres and R is the radius of a single
droplet. The formation of periodic bulges can be seen clearly at δ = 0.26. Picture
from (Thompson et al., 2014) page 262 (Permission not needed for reuse in thesis).

2.2 Impact on Substrates with Topographies

Only a few studies have examined the effect of substrate features on droplet impact.

Bussmann et al. (1999) studied the impact of millimetre–sized droplets onto a sub-

strate with a sharp step. They found that a droplet can split due to the presence of

a corner. De Jong et al. (2015) studied experimentally the impact of similar–sized

droplets near closed pits and open–ended pores and their effect on splashing. Most

relevant to this study, since we consider micro–droplets, Rashidian et al. (2019)

developed an analytical model and used lattice Boltzmann method (LBM) simula-

tions to investigate how the presence of a small protrusion can cause the rupture

of a droplet’s spreading lamella and the effect of impact velocity, wettability and

protrusion dimensions on this phenomenon. It is found that the presence of a small

protrusion can rupture the lamella of the spreading droplet possibly resulting in a

non–continuous coating. Kant et al. (2017) studied experimentally the spreading of
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a micro–droplet on a substrate with a recessed pixel and found that the presence of

its side wall can either enhance or hinder spreading depending on the gradient of

the topography ahead. They found that topography can be used to restrict small

volumes of liquids to a specific region; a droplet spreading with the topography

ahead sloping downhill will be pinned. Jackson et al. (2019) used LBM simulations

to explore the effects of misalignment between droplets and small cavities and the

filling of the cavities.

Seemann et al. (2005) studied the wetting of micro–structured surfaces

using regular grooves separated with ridges. A small liquid volume was deposited

using vapour condensation rather than deposition. Two main morphologies were ob-

served, namely an overspilling droplet that extends onto the ridges and neighbouring

grooves, and extended filaments that run parallel to the grooves.

Figure 2.3 shows droplet sizes vs feature sizes of studies in the literature

compiled by the author. The majority of studies focus on millimetre droplets on

millimetre features and millimetre droplets on micron features usually in the context

of rough substrates. The study by Seemann et al. (2005) used condensation rather

than droplet impact. With the exception of the studies by the Kant et al. (2017)

group, literature has not focused on micron droplets on micron features. This is the

region of interest for inkjet printing.

As droplet sizes decrease, driven by the desire for higher resolution, it

is expected that substrate topographical features will have a greater effect on the

printed morphology and product quality. There have been no studies of how such

minor variations or defects on a substrate change the morphology of an impacting

droplet.
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Figure 2.3: Maps of previous studies of single and multiple droplet impact onto
surfaces with and without topographical features in terms of droplet diameter and
size of feature on the substrate.
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2.3 Simulation Methods for Droplets on Surfaces

2.3.1 Multiphase Flows

Droplet impact is a multidimensional process that is particularly challenging to

investigate experimentally (Shikhmurzaev, 2007), hence the numerical approach is

usually undertaken. Several methods can be used to simulate multiphase (two–

phase in our case) flow. There are typically five challenges faced by these methods:

conserving mass, momentum and kinetic energy, capturing discontinuities across

the interface, dealing with complex topologies and scale separation, issues with

robustness for realistic simulations, and capturing surface tension (Mirjalili et al.,

2017).

Several possible methods could be used to simulate deforming droplets on

surfaces, see e.g. Wilson and Kubiak (2016) for a review. A key requirement of

any such method is the ability to represent and determine the shape of the liquid

free–surface as it deforms. One possibility is to use an interface tracking approach,

where the computational mesh is fitted to and deforms with the free surface — for

example as in the finite element technique used by Feng (2015). While this approach

provides excellent sharp representations of free surfaces, it cannot track surfaces that

break apart or intersect without remeshing, which can lead to instability (Furlani,

2015). This makes the method challenging when simulating systems with critical

phenomena such as the breakup or coalescence of small droplets. A more common

approach is to use an interface capturing method, of which there are many types,

such as the volume-of-fluid (VOF), level-set and phase-field methods — see Mirjalili

et al. (2017) for a classification and review. In such methods, the liquid–fluid inter-

face moves through the computational mesh, allowing greater flexibility in terms of

severe interface deformations and topological changes in the liquid volume, subject

to sufficient mesh resolution.
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VOF is used frequently for droplet deposition onto surfaces, with work

by Wildeman et al. (2016) being a recent example. However, a key limitation in

VOF approaches — and Navier-Stokes based approaches in general — is that the

dynamic contact angle θd usually has to be prescribed as an input. For relatively

well–behaved systems, empirical relations between θd and the contact line velocity

U can be used (Yokoi et al., 2009; Sykes et al., 2020). However, for a complex 3D

geometry evolving in time, as considered here, this is not straightforward.

The lattice Boltzmann method (LBM) is increasingly used to simulate the

fluid mechanics of multiphase systems. The mesoscopic nature of the method, which

retains some molecular–scale physics via probability density distributions, makes it

well suited to multiphase simulations, with interface motion, break–up and coales-

cence readily captured in 3D. Multiphase LBM does not require a relation between

θd and U , but just the static contact angle θs in the case without contact angle hys-

teresis (CAH), and the advancing θA and receding θR contact angles in cases with

CAH. The dynamic contact angle results naturally from the statistical mechani-

cal nature of the method. LBM is localised and lends itself to parallel computing

with GPUs (Krüger et al., 2016); we make use of this feature to run an extensive

parametric study here. A disadvantage of LBM is that macroscopic variables such

as density, viscosity, velocity, and surface tension are derived quantities, see below.

It is also a memory–intensive method, putting limits on domain size when using

GPUs, and local grid refinement is still a developing area. These disadvantages did

not affect this work.

2.3.2 Lattice Boltzmann Method

Although an alternative to traditional CFD methods, multiphase LBM can be con-

sidered an interface–capturing method. In LBM the liquid and ambient fluid are

modelled as one fluid with two phases. This method requires the receding and

advancing contact angles and the dynamic contact angle arises from the statisti-
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cal nature of the method. The advantages and disadvantages of this method are

discussed below and the method is discussed in section 3. LBM has the following

advantages:

• LBM is algorithmically simple in comparison to other methods such as finite

element (Geier and Schönherr, 2017).

• After initialising which involves setting the probability distribution function

at every node to the equilibrium distribution function, and choosing ρ and u,

only two steps are involved; streaming and collision discussed in section 3.2.

• The method is highly localised making it implementable in a highly parallel

fashion (Wilson and Kubiak, 2016).

• Using GPUs to run LB simulations is popular and can lead to running speeds

hundreds of times faster than CPU’s (Wilson and Kubiak, 2016).

• LBM has been extended to model multiphase flow resulting in a diffuse inter-

face representing the liquid–air interface (Shan and Chen, 1993; 1994; Swift

et al., 1995; He and Doolen, 2002).

• Surface wettability is incorporated in terms of the static contact angle using

a wetting parameter see section 3.5.2.

• LBM can capture contact angle hysteresis (Castrejón-Pita et al., 2011; Castrejón-

Pita et al., 2013), also see section 4.7.

• It is well suited to modelling rough surfaces for example work by Khatir et al.

(2016) and Yuan and Zhang (2017), porous media for example work by (Spaid

and Phelan, 1997) and complex geometries such as work by Succi et al. (1989).

• Simulations including topographical features are fairly straightforward and

hence the real surface maps obtained by white light interferometry can be

directly imported to the computational and aligned with the lattice nodes

(Phelan et al., 1999).
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Disadvantages of LBM, however, include:

• Measurable macroscopic variables such as density, viscosity, velocity and sur-

face tensions cannot be directly input into the method as discussed in chapter

3.

• The method is also more memory intensive because statistical variables at

every lattice site have to be saved as well as the derived macroscopic variables

we are interested in (Guo et al., 2008).

• LBM and especially LBM for multiphase flows is still a developing area. All

multiphase models have limitations and improvements are being proposed in

the literature.

• Local grid refinement is not yet a fully developed capability in LBM (Di Ilio

et al., 2017).

• The governing length scale in our simulations is the smallest length in our

physical system. Because local grid refinement is not yet well developed, prob-

lems with high aspect ratios can become very big an example is simulations

in chapter 5.

• Both the droplet and ambient have to be modelled which makes it necessary

to capture more space around the droplet. This makes the spatial dimension

bigger than free surface simulations where the ambient is ignored (Wilson and

Kubiak, 2016).

2.4 Summary

Several possible methods could be used to simulate droplets on surfaces. These

including interface tracking methods (usually using level–set methods e.g. Hu et
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al. (2014)) and diffuse interface methods, typically volume of fluid (VOF) and in-

creasingly also the Lattice Boltzmann Method (LBM), e.g. Shan and Chen (1993).

Surface tracking methods cannot track surfaces that break apart or intersect with-

out regridding which can lead to instability (Furlani, 2015). This makes the method

challenging when simulating systems with critical phenomena such as the breakup

or coalescence of small droplets.

Given the advantages of LBM outlined in this chapter, it is adopted in this

thesis. In the following two chapters, chapter 3 presents the fundamentals of LBM

and the basic implementation of a multiphase LBM model and chapter 4 discusses

how this model can be extended to realistic conditions, validated with literature–

reported experimental data and accelerated to run on GPUs.
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Having concluded the Lattice Boltzmann method (LBM) is suitable for

simulating microdroplets impacting substrates with topographies, see section 2.3,

we present a review of the method in this chapter. The next chapter presents

extensions to the method adopted in this thesis to capture high-density ratios, ther-

modynamically consistent simulations and wetting.

Originally developed in the 1980s from lattice gas models, LBM has re-

cently seen major developments in the breadth of applications and technical capa-

bility (Succi, 2018). In contrast to the continuum simulation methods that seek

appropriate solutions to the Navier Stokes equations, the LBM method is derived

directly from kinetic theory and statistical mechanics.

3.1 Relevant Scales

To present the origins of the Lattice Boltzmann method, we consider a gas system,

in which its constituent molecules/atoms have positions x, and velocities ξ at time

t. The separation between these particles is assumed to be such that the gas is

neither rarefied nor so dense that multiple, particles collisions become frequent. All

collisions are assumed two-bodied, and elastic. Before considering the distribution

function of the system, we discuss the typical length and time scales relevant to fluid

mechanics.

Classical fluid mechanics considers the fluid as a continuum, requiring that

the problem’s length scale l, i.e. typical scale for gradients in macroscopic properties,

is much greater than the size of an atom la and mean free path lmfp. This requires

the Knudsen number Kn,

Kn = l

lmfp
(3.1)
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to be large, Kn >> 1. In addition to this hierarchy of length scales, there is a

corresponding hierarchy of time scales. The shortest timescale is the collision time

between two molecules of matter ta = la/vt, where vt is associated with thermal

motion velocity given by vt ∝ (kT/m)1/2, where T , k and m are temperature, Boltz-

mann’s constant, and mass of a molecule respectively. Kinetic theory assumes that

ta → 0, i.e. collisions are instantaneous. The time between collisions is called the

mean free time tmfp and is defined as tmfp = lmfp/vt. Kinetic theory operates on

the time-scale tmfp, which is the time taken to reach local thermodynamic equi-

librium through collisions. This local equilibrium does not imply the system is in

global thermodynamic equilibrium, a fact that is exploited in the Lattice Boltzmann

Method in solving for global dynamics on timescales larger than tmfp.

Depending on whether a fluid flow system is in the viscous or inertial

regime, the next shortest timescale is either the timescale for diffusion tdiff = ρl2/µ

or the advective timescale tadv = l/u. Here ρ and µ are density and dynamic

viscosity respectively, and u is the ensemble mean velocity, which, at low Mach

numbers, is small compared to the thermal velocity. In the inertial regime, viscous

dissipation is low relative to inertia, and the opposite is true in the viscous regime.

The conventional way to determine the regime of a fluid flow is by using the Reynolds

number defined as the ratio of the two timescales,

Re = tdiff
tadv

= ρul

µ
. (3.2)

Fluid dynamics problems can be approached using various methods de-

pending on the relevant length and timescales, see figure 3.1. Because all matter is

composed of atoms/molecules, tracking each would in principle capture the whole

picture. Macroscopic properties are then derived from the microscopic details. How-

ever, such molecular dynamics calculations are possible only for very short time

and length scales. At the other extreme, where length and time scales are large,
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Figure 3.1: Simulation Length and timescales for different methods in fluid dynam-
ics.

the continuum assumption applies and only the macroscopic quantities are tracked

using the Navier–Stokes equations. There is an intermediate region between the

microscopic and macroscopic pictures. Here, the average behaviour of collections

of atoms/molecules is tracked using statistical methods and kinetic theory. This

region is termed mesoscopic. Macroscopic quantities are calculated from moments

of the statistical distributions of these collections of atoms/molecules. The Lattice

Boltzmann method is a mesoscopic method where the fundamental quantity is the

probability distribution function whose evolution in time and space is governed by

the Boltzmann equation.

3.2 The Boltzmann Equation

The density function f(x, ξ, t), the fundamental quantity in the Lattice Boltzmann

method, determines the probability of finding a particle at position near x, moving

at a molecular velocity ξ at time t. The position and molecular velocity are the
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micro–state variables in the statistical mechanics of a gas system. If an external

force density F acts on a particle in the system, in the absence of collisions, it will

be translated in a time period dt from x to a new position x+ ∆x = x+ ξdt with

a new velocity ξ+ ∆ξ = ξ+ F
ρ
dt. As a consequence the distribution will be shifted

such that

f

(
x+ ξdt, ξ + F

ρ
dt, t+ dt)

)
− f(x, ξ, t) = 0. (3.3)

This purely translational step is called streaming. This means that along charac-

teristics given by dx
dt

= ξ and dξ
dt

= F
ρ
, f remains constants. We can write this

as,

df
dt = ∂f

∂t
+ ξ · ∂f

∂x
+ F

ρ
· ∂f
∂ξ

= 0. (3.4)

Equation (3.4) is the Boltzmann equation without a source term. Collisions between

molecules will cause them to exchange momenta that will cause f to relax back

towards local thermodynamic equilibrium. This is captured by introducing a source

term Ω(f), so that equation (3.4) becomes

df
dt = ∂f

∂t
+ ξ · ∂f

∂x
+ F

ρ
· ∂f
∂ξ

= Ω(f). (3.5)

Equation (3.5) is the full Boltzmann equation. It can be shown that inte-

grating equation (3.5) and taking appropriate moments leads to the Navier–Stokes

equation, see for example (Sukop and Thorne, 2006; Krüger et al., 2016) for more

details. Therefore, solving (3.5) indirectly solves the Navier–Stokes equations. How-

ever, in general, it is more challenging to solve (3.5) analytically than the Navier–

Stokes equations since it requires determining the entire distribution of molecular

velocities at each point rather than just the ensemble mean velocity.
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However, solving equation (3.5) numerically, using streaming and colli-

sion steps, is comparatively simple in terms of implementation and parallelisation.

This simplicity compared with numerical solutions of the Navier–Stokes equations

has increased attention event even though it involves solving for the entire veloc-

ity distribution. This numerical method of solving the Boltzmann equation, and

hence indirectly solving the Navier–Stokes equations, is called the Lattice Boltz-

mann Method.

3.3 The Lattice Boltzmann Method

As previously mentioned, LBM solves equation (3.5) using a streaming and collision

process to solve the Boltzmann equation. To achieve this, the equation needs to

be discretised in space, velocity and time, and its collision operator defined in a

discrete and solvable form. Macroscopic quantities also need to be derived from the

solutions. Space x discretisation is done by introducing a cubic lattice with edge

length ∆x, with f defined only at the lattice vertices. The values of f are updated

with timestep ∆t. The steps in time ∆t and space ∆x define the resolution in a

chosen set of units, conventionally artificial lattice units are adopted such that ∆t

and ∆x are both equal to unity. Conversion between these units and another set of

units, such as SI units, is straightforward. However, we also require a discretisation

of velocity ξ.

The continuous velocity space is discretised to a set of velocity vectors and

corresponding weights {ei,wi} which correspond to velocity required to move to a

neighbouring lattice point in time ∆t, so that the velocity ei are give in units of

∆x/∆t, see figure 3.2. These velocity sets are denoted by DdQq, where d is the

number of spatial dimensions and q is the number of discrete velocity vectors. The

most commonly used velocity sets in fluid mechanical applications are D2Q9 and

D3Q19 in 2D and 3D problems respectively, we use these sets throughout this thesis.
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Figure 3.2: The D2Q9 velocity discretisation. The spacing between lattice sites is
∆x and each velocity vecot reaches a neightbouring lattice site in time ∆t.

Table 3.1: Definition of D2Q9 velocity set written explicitly with corresponding
weights, commonly used for 2D fluid mechanics problems.

i 0 1 2 3 4 5 6 7 8
wi 4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36
eix 0 1 0 -1 0 1 -1 -1 1
eiy 0 0 1 0 -1 1 1 -1 -1

The D2Q9 and D3Q19 velocity sets are in tables 3.1 and 3.2 respectively.

Various collision terms have been proposed to approximate the original

term proposed by Boltzmann; a cumbersome double integral that takes into account

all possibilites of a two–body collision (Krüger et al., 2016). The most commonly

used collision operator is the BGK operator developed by Bhatnagar et al. (1954)

and by Welander (1954) at the same time (Mohamad, 2019). This is written as,

Ω(f) = −1
τ

(f − f eq). (3.6)

Equation (3.6) relaxes the local distribution function f to the local equilibrium

distribution function f eq at a timescale τ . f eq is the equilibrium density function
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Table 3.2: Definition of D3Q19 velocity set written explicitly with corresponding
weights, commonly used for 3D fluid mechanics problems.

i wi eix eiy eiz
0 1/3 0 0 0
1 1/18 1 0 0
2 1/18 -1 0 0
3 1/18 0 1 0
4 1/18 0 -1 0
5 1/18 0 0 1
6 1/18 0 0 -1
7 1/36 1 1 0
8 1/36 -1 -1 0
9 1/36 1 0 1
10 1/36 -1 0 -1
11 1/36 0 1 1
12 1/36 0 -1 -1
13 1/36 1 -1 0
14 1/36 -1 1 0
15 1/36 1 0 -1
16 1/36 -1 0 1
17 1/36 0 1 -1
18 1/36 0 -1 1
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arises given by the minimisation of the free energy of a gas system, which is given

by,

f eq(ξ) = ρ

(2πRT )3/2 exp
(
− 1

2RT (ξ − u)2
)
, (3.7)

where ρ is the macroscopic density, ξ the microscopic velocity, u the macroscopic

density, T the absolute temperature, and R the specific gas constant. Using Hermite

polynomials and discretisation, an approximate discrete form of f eq can be written

as,

f eq(ωi, ei) = f eqi = wiρ

(
1 + u · ei

c2
s

+ (u · ei)2

2c4
s

− u · u2c2
s

)
, (3.8)

where wi are the weights of the corresponding velocity set, u is the macroscopic

velocity, and cs the speed of sound corresponding to the velocity set defined later in

this section. Using equation (3.3) and (3.6), we can write

f
(
x+ ξdt, ξ + dtF /m, t+ dt)

)
− f(x, ξ, t) = −∆t

τ
(f(x, ξ, t)− f eq(ξ)). (3.9)

The moments of f give the macroscopic variables of density and momentum. Density

is, by definition, the zeroth moment Π0,

Π0 = ρ(x, t) =
∫
f(x, ξ, t)dξ =

∑
i

fi =
∑
i

f eqi . (3.10)
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Similarly, the momentum density is obtained from the first moment,

Π1 = ρ(x, t)u(x, t) =
∫
ξf(x, ξ, t)dξ =

∑
i

eifi =
∑
i

eif
eq
i . (3.11)

Velocity u(x, t) is the result of dividing equation (3.11) by ρ(x, t). The Chapman–

Enskog analysis, see (Chapman and Cowling, 1952), derives the link between the

Boltzmann equation and the Navier–Stokes equations and demonstrates that they

are equivalent with kinematic viscosity given by

ν = c2
s

(
τ − ∆t

2

)
, (3.12)

and pressure by

p(x, t) = c2
sρ(x, t). (3.13)

where cs is the speed of sound given by c2
s =

(
∂p/∂ρ

)
s and in the case of an isothermal

system c2
s = RT . The relation is used in the approximation of f eq using Hermite

polynomials in equation (3.8) and each velocity discretisation DdQq has a unique

value of cs. Both D2Q9 and D3Q19 both have c2
s = 1/3. We are now ready to im-

plement an LBM algorith using the streaming and collision steps. For each discrete

velocity the collision step can be written as,

f ∗i (x, t) = fi(x, t)−
∆t
τ

(fi(x, t)− f eqi ), (3.14)

where f ∗i is the post–collision distribution function, f eqi is found using (3.8). An

alternative implementation steps that is reportedly faster especially when τ = ∆t is
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(Krüger et al., 2016),

f ∗i (x, t) = fi(x, t)
(

1− ∆t
τ

)
+ f eqi )∆t

τ
. (3.15)

In the absence of an external force, the streaming step can implemented as,

fi(x+ ei∆t, t+ ∆t) = f ∗i (x, t). (3.16)

To include a force, we rewrite equation (3.9) to include the forcing term,

f
(
x+ ξdt, ξ + dtF /m, t+ dt)

)
− f(x, ξ, t) = [Ωi(x, t)− Si(x, t)]∆t, (3.17)

where Si is given by (Guo et al., 2002),

Si = (1− 1/2τ)Fi, (3.18)

and Fi is given by

Fi = ωi

[
ei − u
c2
s

+ ei · u
c4
s

ei

]
· F . (3.19)

The density can still be found using (3.10) but the momentum density is now given

by,

ρu =
∑
i

eifi + F∆t
2ρ , (3.20)

this correction is performed before calculating f eq.
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3.4 Multiphase Lattice Boltzmann

The LBM method described above is for a single–phase fluid. To simulate print-

ing onto real surfaces under realistic conditions, the chosen model has to capture

multiphase flows with a high–density ratio O(103) between phases. It also has to

simulate micro–droplet impact onto a surface within the parameter space presented

in chapter 1. This requires the simulation to remain stable at a high–density ratio,

and appropriate viscosity ratio, and velocity. It also needs to capture contact angle

wetting in the presence of topography without diverging.

There are four main approaches in LBM to multiphase flows: colour–

gradient (Rothman and Keller, 1988), pseudo–potential (Shan and Chen, 1993;

1994), free–energy (Swift et al., 1995), and phase–field (He et al., 1999). The colour–

gradient assigns a colour for each phase and tracks it with a density function, intro-

duces an extra collision term and performs an additional recolouring step compared

with single–phase models. The pseudo–potential model introduces an interactive

force that scales with a density–dependent term called pseudo–potential which re-

places the ideal EOS in equation (3.13) with a non–monotonic EOS that results in

two stable phases. As its name implies, the free–energy starts with a free energy

functional that describes the desired multiphase system from which a representative

force or pressure tensor is derived and inserted in the Lattice Boltzmann equation.

The phase–field is described as a descendant of van der Waals and Cahn–Hilliard

classical approaches, it introduces an order parameter to track the interface given

by an additional distribution function.

Each of these approaches struggle with all or some of the following chal-

lenges:

• Spurious velocities around the interface. When simulating a static droplet, for

example, velocity should be 0 everywhere in the system; unexpected velocities
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appear near the interface in the four models, however. The magnitude of

these spurious velocities differs among models. These currents cause numerical

instability. However, if these velocities are small compared with the system

speed, the issue can be ignored.

• Small density ratio between phases constraint. These models in their original

form are all constrained to density ratios of O(10) except the pseudo–potential

model which is capable of O(100) ratios. Increasing the density ratio increases

spurious currents. Many applications such as droplet fall in air are charac-

terised by a density ratio of O(1000).

• Small surface tension forces. The range of achievable surface tension (in lat-

tice units) achievable in these models is limited and restricts the accessible

parameter space. Increasing surface tension also increases spurious currents.

The pseudo–potential model in its original form cannot vary the surface ten-

sion and density ratio independently. This poses a challenge for performing

parametric studies.

Numerous modifications of the four models have been proposed to overcome

these issues and it is still an active area of research. We will not detail these proposed

models here nor the differences between the four models and their weaknesses and

strengths, refer to Huang et al. (2015) and Li et al. (2016) for such comparisons.

We note, however, that the pseudo–potential is the simplest, most efficient, and the

model with most extensions and studies of the four models. Therefore, we present

it in its basic form in the rest of this chapter and employ an appropriate extension,

validate it and accelerate it in the next chapter.
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3.5 The Pseudo-Potential Model

A sufficiently attractive force between a gas molecules will cause two phases to form:

liquid and gas. This fact inspired Shan and Chen (1993) to introduce an attractive

force between the molecules. The force needs to be attractive, i.e. negative in sign,

additive, i.e proportional to ρ(x)ρ(x̄) where x 6= x̄ and dependant on the distance

between molecules, this can be represented by distance dependent Green’s function

G(x, x̄). The force can be written as (Krüger et al., 2016),

Fint(x) = −
∫

(x̄− x)G(x̄,x)ψ(x)ψ(x̄)d3x̄, (3.21)

where, to avoid numerical instability at high densities, density ρ has been replaced

with an effective density ψ called pseudo-potential, hence the name of the method.

Shan and Chen (1993) proposed ψ be given by,

ψ(ρ) = ρ0[1− exp(−ρ/ρ0)], (3.22)

where ρ0 is a reference density usually kept at unity. Equation (3.22) bounds ψ

between 0 and ρ0 keeping the pseudo–potential finite even for large densities. The

pseudo–potential model also assumes the force is short ranged, most commonly to

lattice nodes connected by ei∆t. The force is assumed isotropic so it depends on

the magnitude of the distance between molecules |x − x̄|. The Green’s function is

therefore given by,

G(x̄,x) =


ωiG if x̄ = x+ ei∆t

0 otherwise
. (3.23)
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the spatially disctretised force Fint can be written as (Shan and Chen, 1994),

Fint(x, t) = −Gψ(x, t)
∑
i

wiψ(x+ ei∆t, t)ei∆t. (3.24)

The magnitude of G in (3.24) is used to control the strength of the interaction force.

Taylor expanding ψ(x + ei∆t, t) about x, substituting into (3.24) and including

terms up to third order,

Fint = −Gψ
(
c2
s∆t2∇ψ + c2

s∆t4
2 ∇∇2ψ

)
. (3.25)

The first term in (3.25) has the form of a gradient in the pseudo–potential and

can be considered as an addition to the pressure giving a pseudo–potential EOS as

(Krüger et al., 2016)

p = c2
sρ+ c2

sG

2 ψ2(ρ). (3.26)

Plotting equation (3.26) for multiple values of G with ρ0 = 1 and c2
s = 1/3 in figure

3.3, we can see that the pressure becomes multivaluesd for a range of pressures

for |G| ≥ 4 with two stable equilibrium densities a liquid ρl and gas ρg densities

separated by an unstable intermediate state as seen for p = p0 in figure 3.3. The

maximum achievable density ratio before the system becomes unstable is ≈ 70 when

G ≈ −7.
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Figure 3.3: Phase separation from EOS in equation (3.26) for various values of G.

3.5.1 Surface Tension

Surface tension is an emergent property in the pseudo–potential model. To calculate

surface tension, the Young–Laplace law given by

∆P =


γ 1
R

in 2D

2γ 1
R

in 3D
. (3.27)

Equation equation (3.27) is exploited by simulating a series of droplets with varying

radii R. The pressure differences between the inside and outside of the droplets

∆p is calculated in the simulation. The pressure differences ∆p and the inverse

of the droplet radii R−1 are plotted. The relationship is a straight line with the

surface tension γ in 2D, or 2γ in 3D, as the slope. The surface tension depends on

the strength of the interaction force G which also changes the density ratio, hence

surface tension cannot be varied without varying the density ratio, and vice–versa.
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This Young–Laplace test is used later in figure 4.1.

3.5.2 Wetting

The easiest way to achieve a certain contact angle (θ) with a solid boundary is to

introduce a force similar to that in equation (3.17) between the solid nodes and

boundary nodes, i.e. fluid cells closes to the solid boundary. This force, technically

a force density, between solid and boundary nodes F s
int is given by,

F s
int(x, t) = −Gψ(x, t)

solid∑
i

wiψ(ρs)ei∆t, (3.28)

where ρs is an effective density at solid nodes chosen to achieve a specific

contact angle. The range of achievable contact angle depends, not only on ρs, but

also on the value of G. A calibration between {G, ρs} and θ is needed, see Wilson

and Kubiak (2016) for an example.

As implemented above, the pseudo–potential model captures density ratios

only up to 70. We cannot manipulate surface tension without changing the density

ratio, and we expect an issue will arise with the current wetting model as the density

ratio increases. The next chapter investigates extensions of this SC model to mitigate

these issues.

3.6 Summary

We have derived the discrete Lattice Boltzmann equation and presented its imple-

mentation for a single–phase fluid. We have chosen the pseudo–potential model for

this thesis and implemented it in its original form, demonstrated how the Laplace–

Young law is used to find surface tension and presented how a partial wetting con-
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dition is achieved. Because of the constraint on density ratio and surface tension of

the pseudo–potential model, we will investigate extending it to appropriate density

ratio, appropriate surface tension, and contact angle options in the next chapter.
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As presented in the previous chapter, the original pseudo–potential mul-

tiphase model is not able to simulate density ratios above O(100), struggles with

spurious currents, low surface tension and thermodynamic inconsistency. It is also

not clear if the constant wall density model will be stable in a high–density ratio

simulation. In this chapter, we present the various modifications that have been pro-

posed to mitigate these issues using various strategies. Various collision operators

section 4.1, equations of state section 4.2, force capturing schemes section 4.3, and

forms of interactive force section 4.4 have been proposed. We briefly present these

and choose a form of the pseudo–potential model with appropriate modifications.

The geometric wetting model is presented in section 4.7. We then validate the model

with wetting in section 4.8 and accelerate its execution in section 4.9.

4.1 Collision Operators

A collision operator has to conserve mass, momentum, and, in the case of the Lattice

Boltzmann Method, translational energy. These conservation restrictions can be

written as moments of the collision operator, with mass conservation given by

∫
Ω(f)d3ξ =

∑
i

Ωi(fi) = −
∑
i

s(fi − f eqi ) = 0, (4.1)

and momentum conservation given by

∫
ξΩ(f)d3ξ =

∑
i

eiΩi(fi) = −
∑
i

s(fiei − f eqi ei) = 0. (4.2)

There are three commonly used collision operators in LBM: the single relaxation

time operator discussed in chapter 4, also called BGK, Multiple Relaxation Times

(MRT) and Two Relaxation Times (TRT). The two former variations have been

used in multiphase LBM pseudopotential models; we discuss them next.
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4.1.1 BGK Collision Operator

The most commonly used collision is the BGK operator which relaxes the local

distribution equilibrium to the equilibrium distribution function as discussed in 3,

Ω(f) = −1
τ

(f − f eq). (4.3)

This operator is considered the simplest collision operator that satisfies the con-

straints in equations 4.1 and 4.2. It is also the most efficient and easiest to imple-

ment but this comes at the cost of reduced stability and accuracy (Krüger et al.,

2016). When increasing Reynolds number in LBM simulations and to avoid increas-

ing lattice (grid) resolution, either the viscosity (i.e. relaxation time τ) is decreased

or velocity is increased. However, there are limits to how low τ and how high u can

go. The relaxation time has to be greater than 0.5 and u << cs for stability. To

overcome these limitations, collision operators with more degrees of freedom have

been proposed, including MRT.

4.1.2 Multiple Relaxation Times (MRT)

The BGK single relaxation time uses a single relaxation rate s = 1/τ, MRT, as the

name implies, uses multiple relaxation rates si and performs the relaxation step in

the moments space rather than population space. We can rewrite equations 4.1 and

4.2 as,

∫
Ω(f)d3ξ =

∑
i

Ωi(fi) = −
∑
i

s(fi − f eqi ) = −s(ρ− ρeq) = 0, (4.4)
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and

∫
ξΩ(f)d3ξ =

∑
i

eiΩi(fi) = −
∑
i

s(fiei − f eqi ei) = −s(ρu− ρequeq) = 0. (4.5)

MRT starts by converting the population space fi to the moment space, applies

a relaxation step to the equilibrium moment space, then converts this equilibrium

moment space back to the population space. We can see how this works by looking

at the original discrete Boltzmann equation with the BGK operator in the absence

of a force in vector form,

f(x+ ei∆t, t+ ∆t)− f(x, t) = −∆ts
(
f(x, t)− f eq(x, t)

)
. (4.6)

Multiplying through by an identity matrix I = M−1M where M is an invertible

matrix called a collision matrix,

f(x+ ei∆t, t+ ∆t)− f(x, t) = −M−1M∆ts
(
f(x, t)− f eq(x, t)

)
= −M−1∆ts

(
Mf(x, t)−Mf eq(x, t)

)
= −M−1∆tsI

(
m(x, t)−meq(x, t)

)
= −M−1∆tΛ

(
m(x, t)−meq(x, t)

)
,

(4.7)

wherem is a vector of momentsm = Mf ,meq is a vector of equilibrium moments

meq = Mf eq, and Λ = sI = diag(s, ..., s) is a diagonal matrix that relaxes all

moments with one rate s using the term Λ (m−meq). The result is then multiplied

by the inverse matrixM−1 to transform it back to population space. MRT suggests

instead of using a diagonal matrix of the same relaxation rate s, using a different

rate for each moment, Λ = diag
(
s0, ..., sq−1

)
, where q is the number of velocity
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vectors, recall the notation DdQq.

The diagonal relaxation matrix Λ and the collision matrix M , and hence

M−1, can take different but equivalent forms depending on how they are derived.

The most commonly used collision matrix is that derived using the Gram–Schmidt

procedure (D’Humières et al., 2002). The relaxation and collision matrices and

inverse matrices can be respectively written for the D2Q9 as,

Λ = diag(0, sζ , sπ, 0, sq, 0, sq, sν , sν), (4.8)

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 −1 0 1 0

1 −1 −1 0 0 1 1 −1 0

1 −1 −1 −1 1 0 0 1 0

1 −1 −1 0 0 −1 1 −1 0

1 1 1 1 1 1 1 0 1

1 1 1 −1 −1 1 1 0 −1

1 1 1 −1 −1 −1 −1 0 1

1 1 1 1 1 1 1 0 −1



, (4.9)
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and

M−1 =



1
9 −1

9
1
9 0 0 0 0 0 0

1
9 −

1
36 −

1
18

1
6 −1

6 0 0 1
4 0

1
9 −

1
36 −

1
18 0 0 1

6
1
6 −1

4 0
1
9 −

1
36 −

1
18 −

1
6

1
6 0 0 1

4 0
1
9 −

1
36 −

1
18 0 0 −1

6
1
6 −1

4 0
1
9

1
18

1
36

1
6

1
12

1
6

1
12 0 1

4

1
9

1
18

1
36 −1

6 −
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

. (4.10)

where sζ and sν determine the bulk and kinematic shear viscosities respectively. sπ

and sq are relaxation rates for non–hydrodynamic moments that can be tuned to

ensure the stability of the simulation.

Similar matrices can be found for the D3Q19 velocity set. The collision matrix can

be found in Krüger et al. (2016) and the inverse matrix can be readily found using

mathematical software. The relaxation matrix is,

Λ = diag(1, sζ , sν , 1, 1, sq, 1, sq, sν , sν , sq, sq, sq, sq, sq, sq, sπsm, sm, sm). (4.11)

where sm is also a relaxation rates for non–hydrodynamic moment. The multiple

relaxation time (MRT) collision operator is written as

Ωαβ = (M−1ΛM)αβ, (4.12)

whereM is the collision matrix and Λ is a diagonal relaxation matrix used to relax

the various moments of the distribution density function at various rates.

The most commonly used collision matrix is that derived using the Gram–
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4 Extending the LBM Method 4.2 Equations of State

Schmidt procedure (D’Humières et al., 2002), however, an equivalent but more effi-

cient and easier to implement matrix has been derived by Li et al. (2019), which is

used in this work, its corresponding diagonal relaxation matrix is given by

Λ = diag(1, 1, 1, 1, sζ , sν , sν , sν , sν , sν , sq, sq, sq, sq, sq, sq, sπsπ, sπ, sπ), (4.13)

where sζ and sν determine the bulk and kinematic shear viscosities respectively. sπ

and sq are relaxation rates for non–hydrodynamic moments that can be tuned to

ensure the stability of the simulation. The collision matrix can be found in Li et al.

(2019) and its inverse readily computed.

4.2 Equations of State

Incorporating various equations of state into the pseudo–potential has been shown

to allow accessing higher density ratios and surface tension. This model results

in a pressure, p = c2
sρ + ψ2 c2

sG
2 , supporting two phases, where cs = 1/

√
3 is the

speed of sound of the lattice (Shan and Chen, 1993). Yuan and Schaefer (2006)

showed that this equation of state, with the choice of ψ(x, t) = ρ0(1− exp (−ρ/ρ0))

originally proposed by Shan and Chen (1993), is limited in terms of achievable

density ratio between the liquid and vapour phases and instead proposed using a

different expression for ψ(x, t),

ψ(x, t) =

√√√√2(p− c2
sρ(x, t))
c2
sG

. (4.14)

This enables using different equations of state for pressure such as the

Carnahan–Starling equation of state used in this work,

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1− bρ/4)3 − aρ2, (4.15)
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where a = 0.49963R2T 2
c /pc and b = 0.18727RTc/pc, where Tc and pc are the critical

temperature and pressure respectively, T is temperature, and R is the universal

gas constant set to 1. The parameter a physically represents the strength of the

molecular interaction in the EOS and lowering it results in a thicker interface and

a more stable simulation at higher density ratios Li et al. (2013). Reducing T in

(4.15) increases the density of the liquid and lowers that of the gas, hence increasing

the density ratio. The parameter b represents the volume occupied by the material’s

atoms and is chosen arbitrarily and kept constant.

Other commonly used equations of state in the pseudo–potential model in-

clude: vand der Waals, Redlich–Kwong, Redlich–Kwong Soave, and Peng–Robinson,

for a review on these refer to Yuan and Schaefer (2006).

4.3 Force Capturing Schemes

Various force capturing methods have been proposed to improve the original pseudo–

potential model. For detailed discussions on forcing schemes, refer to Guo et al.

(2002) and Huang et al. (2011). Krüger et al. (2016) present the various force

capturing schemes by rewriting the discrete form of f eq as,

f eq(ωi, ei) = f eqi = wiρ

(
1 + ueq · ei

c2
s

+ (ueq · ei)2

2c4
s

− u
eq · ueq

2c2
s

)
, (4.16)

where ueq is given by

ueq = ρ−1∑
i

eifi + A
F∆t
ρ

. (4.17)

The relevant force capturing schemes can be expressed with different values
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of A and the source term in (3.17). The model in 3.3 has a value A = 1/2 and source

term given by (3.18), this scheme is called Guo et al. (2002). The original approach

in the pseudo–potential model uses A = τ∆t and source term Si = 0, this scheme is

henceforth called Shan and Chen velocity shift. Another method, He et al. (1999)

uses A = 1/2 and a source term SHei given by,

SHei =
(

1− ∆
2τ

)
f eqi (ei − u)

ρc2
s

· F . (4.18)

A method proposed by Kupershtokh et al. (2009), called the exact differ-

ence method (EDM), is given by A = 0 and source term SEDMi given by

SEDMi = f eqi (ρ, ū+ ∆u)− f eqi (ρ, ū), (4.19)

where ū = ∑
i fiei/ρ and ∆u = F∆t/ρ.

The MRT version of the Guo et al. (2002), we call MRT–Guo et al. (2002),
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and the source term is given for D2Q9 by,

S =



0

6(Fxux + Fyuy)

−6(Fxux + Fyuy)

Fx

−Fx

Fy

−Fy

2(2Fxux − 2Fyuy)

Fyux + Fxuy



. (4.20)
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Similarly the D3Q19 is given by

S =



0

Fx

Fy

Fz

2F · u

2(2Fxux − Fyuy − Fzuz)

2(Fyuy − Fzuz)

Fxuy + Fyux

Fxuz + Fzux

Fyuz + Fzuy

c2
sFy

c2
sFx

c2
sFz

c2
sFx

c2
sFz

c2
sFy

2c2
s(uxFx + uyFy)

2c2
s(uxFx + uzFz)

2c2
s(uyFy + uzFz)



. (4.21)
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4.4 Form of the Interactive Force

To improve the stability of the pseudo–potential model, improved force density terms

are proposed. The simple extension is considering not only the nearest neighbours

for interactions but also the next neighbours, this is called multirange, refer to

Sbragaglia et al. (2007). Another forcing form, called the beta scheme or quadratic

forcing, attempts to improve the isotropy of the force by including a combination of

the pseudo–potential at the nearest nodes as well as the square, refer to Gong and

Cheng (2012) for more details.

4.5 Pseudo–Potential Model by Li et al.

Li et al. (2012) studied the forcing schemes in section 4.3 and derived the macro-

scopic equations resulting from them. They then used this analysis and proposed

a new force density capturing model, by improving the MRT–Guo et al. (2002), by
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rewriting equation (4.20) as

S =



0

6(Fxux + Fyuy) + 12σ|F |2
ψ2(s−1

ζ
−0.5)

−6(Fxux + Fyuy) + 12σ|F |2
ψ2(s−1

π −0.5)

Fx

−Fx

Fy

−Fy

2(2Fxux − 2Fyuy)

Fyux + Fxuy



. (4.22)

Li et al. (2019) performed a similar analysis for 3D and rewrote the source
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term by Guo et al. (2002) in equation (4.21) as

S =


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Fx

Fy
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2F · u+ 6σ|F |2
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Fyuz + Fzuy

c2
sFy

c2
sFx

c2
sFz

c2
sFx

c2
sFz

c2
sFy

2c2
s(uxFx + uyFy)

2c2
s(uxFx + uzFz)

2c2
s(uyFy + uzFz)



. (4.23)

Li et al. (2019) proposed a new MRT scheme that is more efficient and

simpler to implement. Li et al. (2013; 2019) studied the effect of the parameter a
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Figure 4.1: Young–Laplace test of the pseudo–potential model with the modifica-
tions from Li et al. (2013; 2019). a is the parameter from the Carnahan–Starling
EOS, equation (4.15). Increasing a increases surface tension γ in lattice units.

on stability and surface tension. Performing the Young–Laplace test and varying a

from equation (4.15), we can see that the surface tension increases with a, we also

found the simulations stable for density ratios > 1000 between phases particularly

for low values of a.
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4.6 Choosing a Version of the Pseudo–Potential

Model

The author implemented the original pseudo–potential model by Shan and Chen

(1993) in 2D and 3D in C++ code from scratch and then also implemented all the

suggested improvements discussed in the previous sections of this chapter. To en-

able investigating all these options, a GPU version of the code was also imple-

mented by the author to accelerate the simulations, see section 4.9. This not only

enabled efficient exploration of model options but also running parametric studies

and multiple–droplet simulations in chapters 5 and 6 respectively. This enabled

efficient exploration of model options, running parametric studies later in chapter

5 and multiple droplet simulations in chapter 6. Of the modifications proposed in

sections 4.14.3, 4.4, and 4.5 and their combinations, we have found those proposed

by Li et al. (2012; 2013; 2019), see section 4.5, most suitable for this thesis. It

enables us to simulate droplets at density ratio between phases up to O(1000), and

control surface tension through the a parameter in the Carnahan Starling Equation

of state (4.15). It is also thermodynamically consistent, i.e. its phase separation is

consistent with thermodynamic expectations represented in the Maxwell equal–area

construction. The spurious currents are also lowered using this model. We discuss

partial wetting then validate the model chosen here in combination with the chosen

wetting model and finally accelerate it.

4.7 Wetting and CAH Boundary Condition

Various methods can be used to prescribe a contact angle at a wall boundary, such

as introducing an interaction force between the solid and fluid nodes (see for ex-

ample Li et al. (2014)) or prescribing a constant density at the wall to achieve a

predetermined contact angle (see for example Castrejón-Pita et al. (2013)). These
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methods work well at relatively low density ratios but become unstable at higher

values. The prescription of a constant density at the wall also requires calibration

to give a specific contact angle whenever the density ratio or the equation of state is

changed (Wilson and Kubiak, 2016). An alternative is to use the geometric bound-

ary condition developed by Ding and Spelt (2007), which has been used to simulate

inkjet printed droplets at high density ratio without loss of stability, and hence it is

used in this study. This condition was originally developed for the volume of fluid

method and adopted in the phase field multiphase lattice Boltzmann methods by

(Connington and Lee, 2013) and has been used for the pseudo–potential multiphase

models by Zhang et al. (2018). The geometric model works by dynamically assign-

ing a density to each wall boundary lattice site at each time step depending on the

density field in the nearby fluid nodes to satisfy prescribed θA and θR. The deriva-

tion of this model is presented next. The dynamic contact angle θd is an emergent

property stemming from the statistical mechanical nature of the LBM.

4.7.1 Deriving the Geometric Wetting Model

Consider a droplet spreading on a solid surface with unit normal n. The unit normal

and unit tangent to the droplet surface are ns and t respectively. Since the droplet

is made of the liquid (heavy) phase submerged in the gas (light) phase, the density

gradient at the droplet surface will point in the direction of −ns. Therefore,

ns = − ∇ρ
|∇ρ| . (4.24)

Looking at figure 4.2, an expression for θ is derived,

tan
(
π

2 − θ
)

= ns · n
|ns − (ns · n)n| . (4.25)
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𝒏𝑠 − (𝒏𝑠⋅ 𝒏)𝒏
𝒏𝑠 ⋅ 𝒏

𝒏𝑠

𝒕
Liquid Phase

Gas Phase

Solid surface

Drop Surface

𝜃
𝒏

Figure 4.2: Schematic of the geometry at the three–phase contact line where n is
the unit normal to the solid surface, ns and t are the unit normal and unit tangent
to the droplet surface. The unit normal to the fluid surface can be calculated using
the density field which in turn can be used in geometric arguments to calculate the
density on the solid surface to satisfy the contact angle θ.

Substituting equation (4.24) into (4.25) and simplifying,

tan
(
π

2 − θ
)

= −∇ρ · n
|∇ρ− (∇ρ · n)n| . (4.26)

4.7.2 Discrete Geometric Model

Equation (4.26) can be discretised and used to calculate a density to assign to the

solid wall locally to satisfy a given contact angle. The discrete form for our geometry

is detailed here. Equation (4.26) was discretised differently for the various parts of

the geometry depending on the local normal n. The geometry is illustrated through

a cross–section seen in figure 4.3, with the various geometry types numbered. Sim-

ilar boundary conditions are labelled with similar patterns. The fluid domains are

surrounded by ghost nodes whose density is calculated to satisfy a pre–determined

contact angle. The density at these ghost nodes of type 1 can be calculated using

the equation (4.26), giving

ρijk = ρij+2k + tan
(
π

2 − θ
)
ζ, (4.27)
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where,

ζ =
√

(ρi+1jk − ρi−1jk)2 + (ρijk+1 − ρijk−1)2. (4.28)

A similar form can be used for node types 2,3, and 4. For corner 7,

ρijk = ρi+2j+2k + tan
(
π

2 − θ
)
ζ, (4.29)

where,

ζ =
√

(ρi+1j+3k − ρi+3j+1k)2 + 2(ρi+2j+2k+1 − ρi+2j+2k−1)2. (4.30)

A similar form is used for all other corners. Equations (4.29) and (4.30) cannot be

used for solid nodes directly adjacent to corner nodes because a solid node might

be used to update another solid node. Instead, a second order accurate forward

difference scheme is used for node type 11,

ρijk = ρij−2k + tan
(
π

2 − θ
)
ζ, (4.31)

where,

ζ =
√

(−ρi+3j−1k + 4ρi+2j−1k)2 − 3(ρi+1j−1k+1 − ρij−1k−1)2. (4.32)

A similar form was used for all solid nodes neighbouring a corner.

4.7.3 Contact Angle Hysteresis CAH

Contact angle hysteresis was implemented by calculating the local contact angle

using the inverse of equation (4.26). If the value of the local contact angle is lower

than the receding contact angle (θR) then θ is replaced with θR and similarly, if the

local contact angle is higher than the advancing contact angle, it is replaced with

θA. Assigning the density on the wall controls the interaction pseudo–potential in
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Figure 4.3: The fluid domain is surrounded by adjacent ghost lattice nodes to apply
the boundary conditions.

equation (4.14) to satisfy the contact angle θ. In order to capture CAH, the wall

lattice sites are initialised with θ in equation (4.26) set to θA. This allows the droplet

to spread provided that the contact line forms a local contact angle of θ ≥ θA. Once

a lattice site has been wetted, the value of θ in equation (4.26) is replaced with θR

for this lattice site. This will stop the droplet from dewetting or the contact line to

recede unless the local contact angle at contact line is θ ≤ θR. This is implemented

by rearranging equation (4.26) for θ and calculating in every time step locally in

every wall lattice site. Note that the values of θ assigned at the wall are used to

control the interaction force, while the contact line can have any contact angle. The

Shan and Chen (1993) model with these additions can capture a range of contact

angles, contact angle hysteresis, coalescence and breakup, and contact line dynamics

at high density ratio up to 103. The simulation is stable for 45◦ ≤ θA ≤ 140◦ in the

smooth surface case and 55◦ ≤ θA ≤ 130◦ in the case with the scratch.
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4.8 Validation

4.8.1 Validation of Simulations with Experiments

For the impact of a single droplet falling onto a smooth solid surface we compare our

simulations to experimental data from Lim et al. (2009), who examined droplets with

in–flight diameter D0 = 48.1 µm hitting a smooth surface at speed u = 1.9 m s−1

corresponding to a Reynolds number Re = uD0/ν = 107, Weber number We =

ρu2D0/γ = 2.4, and Ohnesorge number Oh =
√
We/Re = 0.015, where γ is the

surface tension. The advancing and receding contact angles were reported to be

θA = 60◦ and θR = 40◦ respectively. The normalised spreading diameter of the

droplet Ds/D0 and height Hs/D0 were tracked over time. (Lim et al., 2009) data

are compared with equivalent simulations in figure 4.4. To give an indication of

the sensitivity of the simulations to the resolution of the lattice, several different

lattices were tested, with the resolution expressed in terms of the number of nodes

per initial droplet radius. Note that in the lattice Boltzmann method, testing the

sensitivity to lattice resolution is not as straightforward as for direct discretisations

of the Navier–Stokes equations, since the lattice discretises both coordinate space

and the molecular velocity space. Hence modifications of the lattice node spacing

require adjustments of other parameters to ensure that the same physical system is

being simulated.

In general terms, good agreement is achieved between the simulations and

both sets of experimental data as the lattice resolution increases; oscillations in

height agree well particularly for the first few periods, while the spreading rate and

final diameter are close, with some small variation in experimental data due to ex-

perimental noise. There is still some sensitivity in the time scales of the simulations

using different lattices, which becomes more evident at later times, but the same

equilibrium state is reached in each case. In the non–axisymmetric simulations pre-
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Figure 4.4: Comparison between the experimental results by Lim et al. (2009) and
corresponding simulations of a 48.1 µm droplet impacting a flat surface at 1.9m s−1

(Re = 107; We = 2.4) using different lattice resolutions. The data show the spread-
ing diameter (in red) and height (in blue) of the droplet, all scaled by the initial
droplet diameter.
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sented in section 5.2, the finest resolution was used and, for a random sample of the

conditions considered, simulations were repeated with the other lattice resolutions.

The same equilibrium shapes were obtained with each lattice.

4.8.2 Comparison with Analytical Models

Models for the equilibrium spreading diameter of a droplet impacting a surface

without contact angle hysteresis have been proposed, see section 2.1.2 for more

detail. One such model is that by Van Dam and Le Clerc (2004) given by equation

(2.3) which we rewrite here for convenience,

βeq = 2
tan θ2

(
3 + tan2 θ

2

)−1/3

. (4.33)

We use (4.33) this model as well as models of maximum spreading diameters in table

2.1 here for validation.

As validation for the simulation methodology, and to provide a baseline

simulation for more complex topographies, a typical inkjet droplet impacting a

smooth surface was simulated. The droplet was 48.8 µm in diameter falling at

3.74m s−1, with density 1000 kg m−3, surface tension 26 N m−1, and dynamic vis-

cosity 9 × 10−4 Pa s (i.e. Re = 204 and We = 26). Several simulations were run

without contact angle hysteresis for various θ and using different lattice resolutions.

The resulting equilibrium diameters are compared to values predicted by equation

(4.33) in figure 4.5, which shows very good convergence of the numerical simulations

to the analytical result.

Figure 4.5 shows the maximum spreading diameter of a droplet (scaled by

its initial diameter) obtained from numerical simulations with contact angle hys-

teresis included (θA = 75◦; θR = 1◦) for different values of the Weber number. For

comparison, the grey shaded area represents the range of maximum spreading diam-
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Figure 4.5: Comparison of simulation predictions with analytical models for droplet
spreading diameters on a flat surface. The equilibrium diameter is determined with-
out contact angle hysteresis using different lattice resolutions and compared with
equation (4.33) for different contact angles. The inset plot shows the L∞–norm of
the error.
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Figure 4.6: The maximum spreading diameter, normalised by D0, from simulations
using the finest lattice is shown for different Weber numbers, with θA = 75◦ and
θR = 1◦. The grey shaded region indicates the range of predictions using the models
in table 2.1.
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eters predicted by the spreading models in table 2.1, showing that the simulations

are consistent with the collective predicted behaviour. Note that not all the models

are valid for the whole range of We shown. Further comparison with the models in

table 2.1 is given in figure 4.7 for the specific case We = 26. The figure highlights

the effect of contact angle hysteresis on the spreading. With hysteresis accounted

for (again with θA = 75◦ and θR = 1◦), the contact line expands as the droplet

spreads and becomes pinned essentially at the maximum spread diameter since the

receding contact angle is so low. Such pinning is important in printing applica-

tions and is seen in practice with the colloidal inks used in the printed electronics

industry (Duineveld, 2003). The grey shaded band again corresponds to the pre-

dictions of maximum spreading diameter from the models in table 2.1. In contrast,

when contact angle hysteresis is not included in the simulation, the droplet recoils

and contracts after reaching its maximum extent, then overshoots and oscillates in

diameter as it settles to an equilibrium diameter consistent with equation (4.33).

4.9 Simulation Acceleration

Several methods can speed up the execution of an LBM code. These include using

optimisations during compilation, section 4.9.1, optimising memory array access

management, section 4.9.2, and running the code on a GPU, section 4.9.3. There

are other options for speeding up LBM simulations including OpenMP and MPI

parallelisations but are not considered here because the aforementioned methods

were found sufficient. To measure improvements in runtime, a unit of measurement

is needed. LBM simulations speed is conventionally measured in million lattice

updates per second (MLUPS) which is calculated by multiplying the domain size by

the number of time steps and dividing by the total runtime.
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Figure 4.7: The spreading diameter Ds as a function of time for a single droplet
on a smooth surface. These are results from simulations with and without contact
angle hysteresis compared to predictions of the maximum spread diameter from
the models in table 2.1 (grey shaded area) and the equilibrium diameter given by
equation (4.33) (grey dashed line).
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4.9.1 Compilation Optimisation

Having used the compiled language C++, compile–time optimisation lends itself to

accelerate the simulations. The GNU compiler collection (gcc) offers five compila-

tion optimisation options that can be accessed when compiling the code using the

command:

$ gcc −On code . cpp −o run . exe

, where n can be replaced by the five options: 0, 1, 2, 3 or fast. The default value

in gcc is 1, and 0 is the option without optimisation. These work by optimising

the execution of instructions as well as their order. Running 2D simulations of a

stationary droplet with periodic boundary conditions on an Intel Xeon Gold 6138

@ 2GHz, the different optimisation options are compared in figure 4.8.

For small domain sizes, all optimisation options are significantly faster than

no optimisations, see figure 4.8. The fast option is the quickest with a simulation

speed of 10.59 MLUPS for a domain size nx = ny = 32 compared to a speed of

2.59 MLUPS for the same domain size. The optimisation options 2 and 3 are very

similar and follow a similar trend, see figure 4.8. As the domain size increases,

however, the simulation speeds converge to a relatively low speed of about 0.51

– 0.76 MLUPS. This indicates that optimisation using compilation options is not

effective for larger domain sizes. Another option is the management of array storage

in memory discussed next.

4.9.2 Array Memory Access

Optimising the memory access pattern to exploit cache memory is said to increase

simulation speeds significantly (Krüger et al., 2016). This can be achieved by con-

verting the (x,y,d) arrays in 2–D or (x,y,z,d) arrays in 3–D into 1-D arrays.

One way to linearise the arrays for a 2–D code is to to map a location (x,y,d) to
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Figure 4.8: Simulation speeds for the five compile optimisation options vs domain
size.
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(ndir-1)*(nx*y+x)+(d-1) in a one dimensional array, where ndir is the number

of velocity directions. This form facilitates the writing of the arrays to memory by

writing array elements in consecutive order. It also facilitates the reading of the

information in the 1-D array. The speeding up in reading and writing of arrays de-

creases run times. To test this, 2-D simulations of a stationary droplet surrounded

by periodic boundary conditions are performed with the linearised arrays for various

domain sizes. The results are plotted in figures 4.9 and 4.10. In the latter figure, the

results for the multidimensional arrays are labelled Multi–dim and the 1–D arrays

are labelled Linearised.

For large domain sizes, the linearised arrays simulations perform quicker

than their multidimensional arrays counterparts. For example, for a domain size

nx = ny = 1024, the linearised simulation speed is 3.88 MLUPS while that of the

multidimensional array simulation is 0.76 MLUPS for the same size both using the

fast optimisation during compilation. The opposite is true for small domain sizes.

For example, for the domain size nx = ny = 32, the simulation speeds for the

multidimensional and linearised array simulations are 10.59 and 5.28 MLUPS re-

spectively. In addition, the linearised arrays simulations scale better and the speeds

do not dramatically decrease with increasing domain size, unlike in multidimen-

sional array simulations see figure 4.10. The optimisation options make a significant

improvement in speed for both large and small domain sizes in the linearised case,

see figure 4.9. These still do not permit large parametric studies required in this

thesis, hence acceleration using GPUs is discussed next.

4.9.3 GPU Acceleration

Graphics Processing Units (GPUs) were originally developed to render graphics for

computer screens but they are now found in workstations and high–performance

computing facilities where they are used for other applications, including fluid sim-

ulations particularly using LBM and smooth particle hydrodynamics. Both in 2–D
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Figure 4.9: Simulation speeds using the various optimisation strategies and lin-
earised array arrangements.
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and 3–D graphics, similar and usually simple, computations are repeatedly per-

formed on different input data, this lends these computations for parallel computa-

tion.

GPUs were designed to perform such simple but numerous computations

in parallel. GPUs exploit the fact that the same operations are repeated, a bigger

fraction of the transistors is dedicated to computation in a GPU than in a CPU.

CPUs, on the other hand, use more transistors for caches and logical control and

treats all input sequentially making it more suitable for complex non–repeating

computations.

To exploit the efficiency of GPUs in processing repeated computations in

parallel, software engineers map and design non–graphic algorithms to run on GPUs.

Modern GPUs, compared to their older counterparts, are more precise, support

double floating–point arithmetic and are designed to support scientific computation.

There are two major GPU vendors: NVIDIA and AMD. I will use NVIDIA’s

computing platform because the GPU devices in the University of Leeds are from

this vendor and limit the subsequent discussion accordingly. To run programs on

NVIDIA GPUs, they have to be written in the Compute Unified Device Architec-

ture (CUDA) programming language supported by the vendor. The GPUs available

at the University of Leeds supercomputer facility ARC3, at the time of performing

simulations for this thesis, are NVIDIA K80, P100. The latter will be used for the

simulations in this thesis because they have greater memory. The P100 and has a

memory of approximately 11GB.

Each GPU has a CPU multiprocessor called the Host which is used to

manage the threads of the GPU. The Host provides each thread with the code it

has to run when it needs it. Threads are grouped in units called warps typically

consisting of 32 threads each. All threads in a warp execute their command con-

currently. GPUs perform most efficiently when an algorithm can be divided among

74



4 Extending the LBM Method 4.9 Simulation Acceleration

numerous threads. To exploit the parallel nature of GPUs, algorithms should be

arranged such that threads follow the same computation paths.

The threads of a GPU are arranged in a hierarchy of three levels: the first is

threads which are arranged into blocks which are in turn arranged into a grid. Each

thread is identified by its number in the block and its block’s number in the grid.

Data is usually arranged such that their dimensions match those of the threads, this

is true for LBM where each thread is responsible for one lattice site.

A qualifier called __global__ defines functions, without a return value,

called kernels which the threads then perform. The instructions within these kernels

are executed in every thread representing a loop executed in parallel. To identify

the portion of data for a particular thread, the variables threadIdx which is the

position of the thread within a block, blockIdx which is the position of the block

within the grid, blockDim provides the dimensions of the block, and gridDim which

provides the dimensions of the grid are needed.

Simulation domain sizes are usually bigger than a single block, the data set

is spread across several blocks. To map between GPU thread coordinates to spacial

2D/3D coordinates, a code like that in listing 1 is used.

# in 2D
unsigned int j = blockIdx.y;
unsigned int i = blockIdx.x*blockDim.x+threadIdx.x;

# in 3D
unsigned int k = blockIdx.z;
unsigned int j = blockIdx.y;
unsigned int i = blockIdx.x*blockDim.x+threadIdx.x;

Listing 1: Converting GPU coordinates to special coordinates.

A kernel is called using the triple angle bracket command:

kernel_name<<<grid, threads, mem>>>(arg1,arg2,arg3,...)
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#, where grid: is grid dimensions,

#, threads: is block dimensions.

#and mem: is shared memory set to 0 when missing.

CUDA also uses qualifiers for functions that run on a CPU or GPU:

__host__, and __device__ respectively. If a function has not a qualifier, it is

compiled to run on the host. These qualifiers can be combined for a kernel to run

on both host and device as __host__ __device__.

To implement the LBM multiphase methodology, the pseudocode in list-

ing 2 was used. Firstly the variables are given a type and allocated memory on

the device using cudamalloc and on the host using malloc. The droplet and the

surrounding vapour are initialised including density, location, radius, and velocity.

The distribution function is then initialised to the equilibrium distribution function

values. Boundary values are then set using equation (4.27) for the wall to be im-

pacted and similarly for the rest of the walls but with a neutral contact angle of

θ = 90◦.

The collision step, using the MRT model and force modifications discussed

earlier in this chapter, is then called upon with a kernel that runs on the device

(GPU) followed by the streaming step. Bounce back is then applied on the solid

walls followed by calculating the macroscopic quantities. Having calculated the

density, the geometric boundary condition in equation (4.17) can be applied to

assign densities to lattice cites on the impact wall. The thermodynamic pressure

using the EOS and the pseudopotential are then calculated, see listing 2.

The code can be compiled using the nvcc command, see listing 3. The

option -arch sm_70 is the compute capability of the Nvidia Tesla P100 used in this

thesis. The --ptxas-options=-v requires verbose output during compilation. -O3

is the optimisation option as discussed in section 4.9.1.

76



4 Extending the LBM Method 4.9 Simulation Acceleration

// setup the GPU device and give it Id 0
cudaSetDevice(0)
int deviceId = 0;
cudaGetDevice(&deviceId)

// define domain size, and timestep (nx,ny,numTimSteps)

/* define fluid and flow properties(densities,
relaxation times, speed, etc)*/

// start main
int main(int argc, char const *argv[]) {

for(t=0; t<=NumSteps; t++){
//allocate memory for all arrays using malloc and cudamalloc

// kernel: intialise droplet's density, speed, radius, ...

// kernel: initialise distribution function field eq 3.8

// kernel: initialise boundaries

// kernel: collision equations 4.12, 4.13, 4.22, 4.23

// kernel: streaming equation 3.16

// kernel: bounceback for solid boundaries

// kernel: calculates macroscopic properties equation 3.10
// and 4.17 with A =0.5

// kernel: Geometric Wetting Boundary condition equation 4.27

// kernel: calculate multiphase potential equation 4.14 and 4.15

// print output for post processing in vtk format

// free memory using free() and cudafree()

// release resources associated with the GPU device
}
cudaDeviceReset();
return 0;

}

Listing 2: Pseudocode for the LBM multiphase GPU used in this thesis written in
CUDA C.
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$ nvcc -arch sm_60 -v --ptxas-options=-v ...
-O3 LiModel3DMain.cu seconds.cpp -o run.exe

Listing 3: Command for compiling CUDA C code for the Nvidia Tesla P100.

To test the speed improvement by the GPU implementation, 2D simula-

tions of a stationary droplet in domains of increasing size were performed and run

on the Tesla P100 GPU. Compared to the CPU implementations, we can notice a

speedup of up to two orders of magnitude, see figure 4.10 where the 2D GPU simu-

lations are labelled GPU–2D. For example, for a domain size nx = ny = 1024, the

simulation speeds for the linearised array CPU simulation and the corresponding

the GPU–2D are 3.66 and 614.03 MLUPS respectively showing great improvement.

The simulation speed for the 2D GPU implementation increases with increasing

domain size but plateaus at approximately 600 MLUPS. A corresponding 3D code

was implemented, see figure 4.10 where 3D results are labelled GPU-3D. Simulation

speeds plateaued around 200 MLUPS on the Tesla P100 GPU. This speed enables

parametric studies of the kind required for this thesis. A simulation that would take

up to 3 days (of size 256×256×576 lattice nodes) on a single CPU then ran in under

two hours.

4.10 Summary

Here, the options to mitigate issues of density ratio and surface tension of the pseudo-

potential model were discussed. The improvement recommended by Li et al. (2012;

2013; 2019) were found most appropriate for this thesis. The model with these

modifications was then validated against literature–reported data as well as analyt-

ical predictions. After validating the model, it was accelerated using GPU–CUDA.

With a valid and efficient approach, parametric studies of inkjet printing can now

be executed in the next chapter.
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Figure 4.10: GPU acceleration results with in 2D (GPU–2D) and 3D (GPU–3D).
For comparison, corresponding simulation speeds on a CPU with multidimensional
and linearised arrays are also plotted labelled Multi–dim and Linearised respectively.
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Having developed validated and accelerated the simulations, this chapter

investigates a droplet impacting onto a surface containing a linear topographic fea-

ture. We use an idealised geometry, explained in section 5.1, which mimics a scratch

or an intentionally–manufactured groove to control droplet spreading. We consider

how the spread of the droplet is affected by the geometry of the feature, the ad-

vancing and receding contact angles, and the droplet parameters as characterised by

Re and Oh =
√
We/Re. These two dimensionless numbers capture the main flow

and fluid properties including, viscosity, surface tension, density, speed, and droplet

diameter, see equation (2.1). The chemical interaction between the droplet and sub-

strate is captured by the contact angle. The colloidal nature of the droplet results

in contact line pinning and very low θR ≈ 0◦. The increased viscosity and reduced

surface tension due to the colloidal nature of the typical inkjet inks are captured in

the Re and We respectively. Therefore, the results in this thesis are applicable in

the inkjet printing parameter space shown in figures 2.1 and 2.3. Before presenting

the reults of parametric simulations in section 5.2, we postulate a regime map of

possible morphologies and conditions for their occurence. section 5.2 will then test

the validity of the postulated regime map using simulations for a typical inkjet Re

and Oh. section 5.3 studies the effects of these dimensionless groups as well as θA,

and θR on the regime map. Chapter 6 will discuss the implication of the findings

for printing applications.

5.1 Idealised Scratch and Anticipated Dynamics

The specific surface geometry feature considered here is shown in figure 5.1. A

scratch on the substrate is idealised as a continuous uniform groove of rectangular

cross–section, with a rectangular ridge on each side representing solid material nor-

mally displaced during formation of the scratch. Hence the combined cross–sectional

area of the side ridges matches that of the groove below the original substrate sur-

face level. The side ridges are taken to have a height of 1
2 d̄, where d̄ is the depth
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Figure 5.1: The geometry used to represent an idealised scratch. The groove has
width w and so do the side ridges. The bottom of the groove is a depth d̄ below
the original substrate surface, and its total depth from the top of the side ridges is
d = d̄+ 1

2 d̄.

of the groove below the original surface. Hence the total depth of the groove from

the top of the side ridges is d = 3
2 d̄. The displaced material in real scratches is

not as symmetric across the scratch nor as uniform along it, but the idealised ge-

ometry considered here is a good approximation. As well as representing a scratch,

the geometry also mimics micro–structured surfaces such as those studied by See-

mann et al. (2005), with the side ridges akin to the edges between two neighbouring

grooves. Throughout this study, the groove width, w, and depth, d, are scaled by

the in–flight diameter, D0, of a droplet impacting on the solid surface. We will

use the words ‘groove’ and ‘scratch’ interchangeably in what follows. Note that in

practice scratch sizes can range from nanometers to tens of microns (Brostow et al.,

2004; Chen et al., 2008; Dasari et al., 2009).

In considering possible outcomes of a single droplet impact on this topog-

raphy, there are some obvious limiting behaviours. If the groove is much wider than

the droplet, i.e. w � 1, and the droplet lands away from the side walls, the impact is

simply that of a droplet on a flat surface, which has been widely studied (see section

5.1.2). If instead the droplet impacts the side wall, the situation corresponds to

impact on a step as previously considered by e.g. Bussmann et al. (1999) and more
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recently by Jackson et al. (2019) in the context of droplet deposition into square

cavities. As the groove width becomes closer to the droplet diameter, i.e. w ∼ 1,

the dynamics are expected to become more complicated. If the droplet lands in

the centre of the groove, full imbibition of the droplet into the groove would be

expected, but only for sufficient groove depths and substrate wettability. At the

other extreme, if w � 1 and the scratch is shallow, i.e. d� 1, it is expected to have

a negligible effect on the spreading dynamics of the droplet, and we have again the

well–studied scenario of droplet impact on a smooth flat surface. However, if d is

sufficiently large compared to width, one would expect capillary flow to occur along

the narrow channel if the substrate is sufficiently wetting, i.e. θ < 90◦.

In this chapter we therefore focus on the range 0 < w 6 1, i.e. where the

droplet is of a similar size or larger than the scratch. The droplet impact regime

is taken to be non–splashing, non–bouncing deposition as required for a successful

inkjet printing operation, i.e. within the inkjet printing parameter space see section

2.1.1. It is also important to note that the advancing static contact angle is assumed

to be less than 90◦ and the receding contact angle to be close to zero, again as is

typical in printing systems. In all cases, the droplet initially spreads on impact due

to inertia. Given the presence of ridges and edges in the geometry, it is expected that

overspill, splitting and/or pinning of the droplet contact line on different edges will

occur for certain conditions. A postulated regime map showing outcomes of single–

droplet deposition on the centre of the scratch for different widths and depths is given

in figure 5.2. The different droplet morphologies and estimates of the conditions

under which they occur are explored and developed in the following subsections.

5.1.1 Capillary Flow Along Narrow Scratches

A scratch much narrower than the impinging droplet (w � 1) is expected to have

little effect on the early stage inertial spreading of the droplet. However, once

deposited, the drop becomes a source of liquid from which capillary flow can occur
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Figure 5.2: A postulated regime map for the outcome of a single droplet impact
centred on the idealised scratch shown in figure 5.1 in terms of the scratch width
and depth scaled by the droplet’s in–flight diameter. The lines and curves indicate
theoretically estimated critical conditions for behaviours including capillary flow,
contact line pinning on edges, droplet splitting and full imbibition into the scratch.
The inset top–view images within each region show examples of corresponding final
printed droplet shapes predicted by numerical simulations, indicating possible dif-
ferent droplet morphologies. These are named: I ‘capillary’; II ‘quasi–spherical cap’;
III ‘inertial’; IV ‘semi–imbibed’; V ‘split semi–imbibed’; and VI ‘fully–imbibed’. Note
that the inset images are shown at different scales. The vertical dashed lines in each
image indicate the outer edges of the side ridges of the scratch.
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over a longer time scale along sufficiently narrow and deep scratches. Capillary flow

has been extensively studied including in cylindrical micro–channels since the early

twentieth century (Bell and Cameron, 1906; Lucas, 1918; Washburn, 1921). With

the advent of microfluidics, recent attention has been paid to other micro–channel

geometries; most relevant to our geometry is the work on open rectangular micro–

channels by Yang et al. (2011) who, based on experiments and a model balancing

capillary and viscous forces, proposed a critical channel width below which capillary

flow occurs:

wcap = 2d cos θA/(1− cos θA). (5.1)

The line given by (5.1) is shown in figure 5.2, with θA having a representative value of

75◦. Below this line, the final printed droplet shape will consist of a localised droplet

(since the small receding contact angle prevents full contraction of the droplet)

with liquid filaments extending in both directions along the scratch. An example

numerical simulation result (discussed later) is shown in figure 5.2 as image I. As a

result of the mechanism producing it, we label this the ‘capillary’ morphology. The

long filament within the scratch has been observed by Seemann et al. (2005), but not

the liquid outside the scratch because they used vapour condensation rather than

droplet deposition. Above the line (5.1), i.e. for shallow, narrow scratches, there will

be only a small deviation from perfect sphericity, as indicated by image II in figure

5.2. This shape will be referred to as the ‘quasi–spherical cap’.

5.1.2 Predicting Edge Pinning and Overspill

The impacting droplet will spread over the top of the side ridges while at the same

time penetrating the scratch. Depending upon the width and depth of the scratch,

overspill from the side ridges onto the original substrate may occur. To develop

an estimate of conditions under which this will happen, we need to consider the

expected maximum spreading diameter, Dmax, of the droplet. A discussion of the

available models for Dmax can be found in section 2.1.3.
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Although originally developed for axisymmetric conditions, maximum spr-

eading laws like the those in section 2.1.3 can be modified by introducing a correction

factor to account for the presence of the scratch, and hence used to estimate when

overspill occurs. For ease of implementation we consider only models that can be

written explicitly as βmax = f(We,Re) or βmax = f(We,Re, θA). In particular,

we use the models of Scheller and Bousfield (1995), Pasandideh-Fard et al. (1996),

Roisman (2009), Laan et al. (2014), and Lee et al. (2016) listed in table 2.1.

Assuming that the droplet spreads on the tops of the side ridges and the

inner scratch walls at the same rate, a correction factor can be derived by subtracting

from the initial droplet volume the volume of liquid that will go into the scratch

before the droplet reaches the outer edges. The new volume available for spreading

can then be used to derive a new equivalent ‘initial’ droplet diameter to be used in

the maximum spreading laws. Assuming that d ≤ w, the volume to be subtracted

is approximately dD0 × wD0 × D0 = wdD3
0, so the new volume of liquid available

for spreading over the side ridges is Vnew = πD3
0/6 − dwD3

0 = D3
0
(
π/6− dw

)
. This is

equivalent to a free droplet of diameter D0,new = D0
(
1− 6dw/π

)1/3. The maximum

spreading laws are of the form Dmax/D0 = f(Re,We, θA), so replacing D0 with the

expression for D0,new, Dmax/D0 = f(Re,We, θA)
(
1− 6dw/π

)1/3. This holds when

d ≤ w, otherwise the droplet reaches the outer edges of the side ridges before the

entire depth is covered by the impacting droplet. If d > w, the volume to be

subtracted will be w2D3
0 and hence D0,new will not depend on d, and wpin will be

the same value as that when d = w for the entire range d > w. To spill over onto

the original substrate, the droplet needs to spread beyond a distance of 3w, i.e. the

width of the scratch and the two side ridges, hence overspill is expected to occur

only for scratches with widths smaller than wpin, given by:

w <
1
3f(We,Re, θA)


(
1− 6dwpin

π

)1/3
if d ≤ wpin(

1− 6w2
pin

π

)1/3

if d > wpin

. (5.2)
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The five different spreading model listed in table 2.1 give slightly different

predictions for f(We,Re, θA), therefore, in plotting the values of wpin in figure 5.2,

the three solid black lines correspond to the mean and standard deviation of the five

predictions. Note that equation (5.2) simply provides an estimate of scratch widths

for which the droplet can reach the outer edge of the side ridges. Whether or not

the droplet does spill over the edge will depend on whether or not it has sufficient

inertia to overcome the Gibbs criterion for pinning of the contact line on the edge.

Hence equation (5.2) provides an estimate for conditions under which the droplet

contact line will pin on the outer edge of the side ridges. This will be discussed again

with the benefit of numerical simulations in section 5.2.1. For w sufficiently below

wpin, the droplet inertia is expected to be sufficient for overspill onto the original

substrate to occur and the final droplet morphology will look like image III in figure

5.2. This will be referred to as the ‘inertial’ morphology.

5.1.3 Droplet Splitting and Imbibition

For w > wpin, the droplet does not cross the outer edges of the side ridges. For suffi-

ciently shallow scratches, its final shape is expected to be one where the continuous

liquid volume rests on top of side ridges while also filling the scratch. This morphol-

ogy is labelled ‘semi–imbibed’, and an example is shown in image IV in figure 5.2.

As the scratch depth increases, more of the liquid volume will occupy the scratch.

Given that the low receding contact angle prevents significant contraction of the

droplet contact line from the side ridges, for a deep enough scratch the droplet may

split along the inner edges of the side ridges such that the liquid on the top of the

side ridges and that in the scratch become separated. Splitting along the inner edges

is expected when the cross–sectional area of the scratch multiplied by Dalong, the

length of spreading along the scratch, results in a greater volume than the droplet.

Thus the critical width corresponds to when wD0 × dD0 × DAlong = 4
3π(D0/2)3.

Assuming that DAlong = βmaxD0, where βmax is again the maximum spreading on a
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flat surface, this gives the following estimate of the critical width for which splitting

will occur:

wsplit = π

6dβmax
. (5.3)

Again the different models in table 2.1 have been used to give a spread

of estimates of βmax (for θA = 75◦) and these result in the blue dotted curves in

figure 5.2. For depths below these curves and w < 1, the final droplet shape will

be a ‘split semi–imbibed’ morphology where most of the liquid occupies the scratch,

but separate small droplets remain on the upper surfaces of the side ridges. See the

example image V in figure 5.2.

The droplet fully imbibes into the scratch without spreading on the side–

ridges when w > 1 and the scratch depth is sufficient to contain the entire the liquid

volume. The result is a ‘fully–imbibed’ morphology as indicated in image VI in figure

5.2. By a similar argument to that above for droplet splitting, the condition for full

imbibition into the scratch is:

w ≥ 1, and d >
π

6βmaxwsplit.
(5.4)

This corresponds to the region to the right of the vertical dash–dot line in figure 5.2.

Having developed a postulated regimes map, figure 5.2, simulations can be used to

test its validity.

5.2 Simulate Single Droplet Impact on Scratch

The droplet deposition scenario considered is as described in section 5.1 and shown

in figure 5.1 following the methodology in chapter 4. To provide a representative
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specific impact condition, simulation results are presented here for Re = 204 and

We = 26, which are relevant to inkjet printing applications (Dong et al., 2007;

Zhang et al., 2018) and as indicated in figure 2.1. The advancing and receding

contact angles are set to θA = 75◦ and θR = 1◦, again to be relevant to inkjet

printing (Davis, 1980; Duineveld, 2003). The effect of variations in these four key

parameters are considered in section 5.3.

5.2.1 Printed Droplet Morphologies

Figure 5.3 presents a map of the scratch width–depth parameter space showing the

outcomes of droplet impact simulations that were run until an equilibrium mor-

phology was formed. Different symbols indicate the morphology obtained at each

width–depth combination, and corresponding examples of the equilibrium shapes

for the same Re, We, θA and θR are given in figure 5.2. In addition, figure 5.3 shows

an example of an ‘edge–pinned’ final droplet, where the droplet has spread over the

tops of the side ridges, reaching the outer edge with insufficient momentum to spill

onto the original substrate surface. The contact line remains pinned on the outer

edge as the very low receding contact angle prevents recession and the Gibbs pinning

criterion is satisfied. Top views of the morphologies in figure 5.3 are in figure 5.4.

The theoretically estimated regime boundaries developed in section 5.1

are superimposed in figure 5.3 and show generally very good agreement with the

outcomes of the numerical simulations. Recall that the three curves corresponding

to equations (5.2) and (5.3) give the mean and standard deviations of the predictions

based on the maximum spreading models in table 2.1. There is slight deviation

between equation (5.1) and the boundary of the capillary regime identified from

simulations because equation (5.1) assumes an infinite source of liquid and does not

capture the force due to the Laplace pressure resulting from curvature of the droplet,

which becomes significant when the source droplet is of commensurate width to the

groove. However, the criterion (5.2) for pinning of the contact line on the edges
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Figure 5.3: Numerically determined regime map for morphologies formed by print-
ing a single centred droplet impact onto the idealised scratch shown in figure 5.1.
Simulation parameters: Re = 204, We = 26, θA = 75◦, θR = 1◦. The overlaid lines
and curves give the theoretically estimated regime boundaries developed in section
5.1.
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Figure 5.4: Top views of equilibrium morphologies for printing onto a scratch with
various widths and depths for Re = 204 and We = 26. The zoom scale is kept
constant.
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of the side ridges captures very well the numerical predictions. Note that similar

pinning has been observed even on rounded edges (Kant et al., 2017).

The splitting boundary of equation (5.3) also fits well with the simulation

results but has a slight deviation at larger depths. This is likely due to the assump-

tion that the entire depth of the scratch is filled when deriving equation (5.3), i.e.

the simple geometrical argument does not account for the non–trivial shape of the

liquid free–surface within the scratch. Similarly, the conditions for full imbibition

of the droplet into the scratch are quite well identified by the criteria in (5.4), with

some discrepancy in the critical depth due to the crude approximation of the free–

surface shape within the scratch. The delineation of the ‘quasi–spherical cap’ region

of figure 5.3 is somewhat subjective. Here we define this to be where the final droplet

shape deviates from a spherical cap by less than 10% in the lateral dimensions.

5.2.2 Droplet Spreading Dynamics

Although seven different equilibrium morphologies have been identified in figures 5.2

and 5.3, essentially only two types of flow dominate the spreading dynamics, namely

inertia–driven spreading and capillary flow. Front views of the droplet spreading

process at different times are shown in figure 5.5 for a selection of scratch widths

and depths that lead to each of the seven equilibrium morphologies, while figure 5.6

illustrates how the horizontal and vertical dimensions of the droplet change in time

between different morphologies. There, DAlong refers to the length of the liquid in

the direction of the scratch, DAcross is the diameter perpendicular to the scratch,

and H is the droplet height measured at the centre of the scratch from the bottom of

the scratch to the free surface. These quantities are normalised by the equilibrium

spreading diameter of an equivalent droplet on a flat surface, Dflat and height Hflat

of a corresponding droplet after impact on a smooth flat surface, i.e. with no scratch.

Note that in most cases considered here Dflat ≈ Dmax since the very low receding

contact angle prevents contraction of the contact line, but for other values of θR
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Regime Time Evolution (ms)

Quasi-
spherical
d̄ = 0.05
w = 0.1

t = 0 t = 0.03 t = 0.039 t = 0.048 t = 0.072 t = 0.138

Inertial
d̄ = 0.1
w = 0.4

t = 0.03 t = 0.036 t = 0.042 t = 0.048 t = 0.069 t = 0.12

Edge
pinned
d̄ = 0.15
w = 0.5

t = 0 t = 0.036 t = 0.045 t = 0.048 t = 0.066 t = 0.12

Semi
Imbibed
d̄ = 0.1
w = 0.8

t = 0.033 t = 0.036 t = 0.042 t = 0.048 t = 0.066 t = 0.12

Split
Semi
Imbibed
d̄ = 0.45
w = 0.7

t = 0.033 t = 0.036 t = 0.042 t = 0.048 t = 0.066 t = 0.12

Fully
Imbibed
d̄ = 0.5
w = 1

t = 0.036 t = 0.045 t = 0.048 t = 0.054 t = 0.057 t = 0.066

Capillary
with
3D view
d̄ = 0.25
w = 0.2

t = 0.033 t = 0.036 t = 0.048 t = 0.066 t = 0.195 t = 5.7

Figure 5.5: Front view snapshots of the different regimes evolving in time measured
in milliseconds. The images are to scale, the zoom scale is constant and the droplet
diameter (hence also volume) is kept constant. The last row contains 3D views to
demonstrate the capillary flow along the scratch.
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Figure 5.6: Evolution with time of the morphology height and dimensions along and
across a scratch for the (a) quasi–spherical cap, (b) edge–pinned, and (c) capillary
flow cases shown in figure 5.5.

these values are generally different.

In the quasi–spherical cap regime, the scratch is filled and covered very

quickly, the droplet spreads to reach a maximum diameter and then oscillates, as

seen in the H curve in figure 5.6(a), before relaxing more slowly to its equilibrium

shape. The resulting horizontal dimensions DAlong and DAcross are similar to the

corresponding spherical cap formed on a smooth flat surface. However, the slight

extension of the droplet along the scratch results in a lower equilibrium height.

In the inertial regime, the droplet touches the side ridges, then penetrates

to the bottom surface of the scratch. The liquid spreads on the side ridges and

spills over onto the original substrate surface, as seen in the second row of figure

5.5. Compared to the quasi–spherical cap case, there is greater spreading along the

scratch and slightly shorter spreading in the direction perpendicular to the scratch.

The wider scratch results in a greater volume of liquid occupying the scratch, and

consequently a slightly reduced final droplet height. In the edge–pinned regime,

i.e. for wider scratches, the droplet contact line reaches the outer edges of the side

ridges, but, as noted in section 5.2.1, there is insufficient momentum to carry the

free surface past the edges, and the contact line remains pinned as seen in figure

5.5. Figure 5.6(b), which corresponds to w = 0.5, shows the increased inertia–driven

spreading along the scratch and the subsequent halting of the contact line producing
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a constant DAlong as a result of the very low receding contact angle. The extent of

the droplet in the direction across the scratch is reduced by the enhanced flow along

the direction of the scratch and the pinning on the ridge edges.

Under conditions leading to the semi–imbibed morphology, the droplet

impacts the bottom of the scratch and spreads along and across the scratch and

then impacts onto the side ridges, see figure 5.5. The droplet spreads on the top of

the side ridges but the contact line does not reach the outer edges; it becomes pinned

somewhere on the top of the ridges because of the very low receding contact angle.

In the split-semi–imbibed regime, the droplet impacts the side ridges first, and then

penetrates into the scratch, reaching the bottom and spreading along it. As the

droplet spreads into the scratch, it splits along the inner edges of the side ridges,

leaving separated droplets sitting on the top of the side ridges. These droplets are

almost flat because of the very low receding contact angle. In the fully imbibed

regime, the droplet never impacts on the top surface of the side ridges but falls into

the scratch and spreads until an equilibrium is reached.

Finally, as shown in the 3D view included in the bottom row of figure

5.5, for scratches producing capillary flow, the droplet initially spills over the side

ridges onto the original substrate as in the quasi–spherical cap and inertial regimes.

However, the liquid then spreads along the scratch by capillary action until there is

no more liquid to supply further flow. This can be clearly seen in the evolution of

both DAlong and the droplet height in figure 5.6(c). Note the different scale on the

vertical axis in this plot compared to the others in figure 5.6.

The rate of capillary propagation has been studied extensively starting with

work by Washburn (1921), Bell and Cameron (1906) and Lucas (1918) on cylindrical

capillaries. The main finding is that the propagation length x increases as the square

root of time, that is x ∝
√
t. More recently this analysis has been extended to other

geometries including, capillary flow in open rectangular micro–channels, studied

theoretically and experimentally by Yang et al. (2011). They followed a similar
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approach to that used to derive the Washburn model except that they applied the

procedure to an open rectangular micro–channel. The reservoir droplet in their

experiments was large enough relative to the micro–channel to ignore its Laplace

pressure in the model. Although the capillary flow seen here initially follows the

propagation rate predicted by their model, the limited volume of fluid in the droplet

supplying the flow soon results in a more rapid decrease in the speed of propagation

and the corresponding flattening of the DAlong curve in figure 5.6(c).

5.2.3 Groove Without Ridges

Removing the side ridges from the topography in figure 5.1 reduces the number of

possible equilibrium morphologies from seven to five, and alters the combinations of

groove width and depth at which the morphologies arise. The corresponding regime

map, constructed from simulations for groove widths ranging from 0.1–1 and depths

of 0.05–0.75 with increments of 0.1 and 0.05 respectively, is shown in figure 5.7. The

morphologies caused by the presence of the ridges, namely edge–pinned and inertial

(where the droplet spills over the ridges), are not seen with this topography. These

both merge into the semi–imbibed morphology, where the equilibrium shape of the

droplet occupies both the groove and the nearby region of the substrate surface,

and is the dominant morphology for sufficiently shallow grooves. For narrow and

shallow grooves, the morphology can still be classed as a quasi–spherical cap, and for

narrow and deep grooves, the capillary morphology is still seen. The fully imbibed,

and split semi–imbibed morphologies are again seen for sufficiently wide and deep

grooves.

The theoretical estimates (5.1), (5.3) and (5.4) for the boundaries of the

regions in the regime map are readily adapted by using the appropriate depth d̄,

and these are included in figure 5.7. Again, good agreement is seen between these

estimates and the results of the simulations.
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Figure 5.7: Regime map of equilibrium morphologies formed by printing a single
droplet centred on a groove of width w and depth d with no side ridges. Simulation
parameters: Re = 204, We = 26, θA = 75◦, and θR = 1◦. The overlaid lines and
curves are theoretical estimates of the regime boundaries based on conditions (5.1),
(5.3) and (5.4).
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5.3 Effect of Flow and Substrate Parameters

The regime maps in figures 5.3 and 5.7 were constructed using a single set of material

and flow parameters θA, θR, Re, and We to illustrate the effects of the scratch ge-

ometry and the relationships among the morphologies. For this case, the boundaries

of the regions within the regime maps are found to be represented very well by the

theoretical estimates (5.1)–(5.4) that are more broadly applicable. Apart from the

criterion for capillary flow, these expressions are based on the maximum spreading

diameter, for which many models exist that account for the effects of Reynolds num-

ber, Weber number and advancing contact angle (see table 2.1). Hence it is possible

to predict new regime boundary estimates for other values of these parameters.

5.3.1 Effect of Reynolds and Weber Numbers

Increasing Re and/or We promotes greater spreading of the droplet on impact and

the droplet is therefore able to spill over wider side ridges. Hence wpin — the critical

scratch width for edge pinning in (5.2) — increases and the ‘inertial’ region of figure

5.3 will expand to the right. This effect is illustrated in the specific case shown in

figure 5.8, for a scratch geometry given by d = 0.15 and w = 0.5. A droplet impact

at Re = 62 results in a ‘semi–imbibed’ morphology, whereas an impact on the same

scratch at Re = 102 produces the ‘edge–pinned’ morphology, and at Re = 204 the

‘inertial’ morphology arises, consistent with the increase in the value of wpin.

The greater inertia of the droplet will also result in greater penetration

into and along the scratch, resulting in a smaller liquid height within the scratch

and consequently a greater tendency for the droplet to split along the inner edges of

the scratch and leave separate small droplets on the outer surface. From the form

of equation (5.3) it is clear that the boundary of the ‘split semi-imbibed’ region in

both figures 5.3 and 5.7 will expand upwards and to the left — i.e. towards narrower,
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Re = 62 Re = 102 Re = 204
‘semi-imbibed’ ‘edge-pinned’ ‘inertial’

Figure 5.8: Effect of Re on the morphology resulting from a droplet impact on a
scratch of dimensions d = 0.15 and w = 0.5 atWe = 26, with θA = 75◦ and θR = 1◦.

shallower scratches. The critical condition (5.1) for the onset of capillary flow is

independent of Re and We since capillary flow is not inertia–driven and continues

long after the initial spreading of the droplet. It is of course greatly influenced by

θA, and this is discussed below.

5.3.2 Effect of the Advancing Contact Angle, θA

The effect of θA on the initial spreading of a droplet on a flat surface is captured in

some of the models of maximum spreading diameter in table 2.1. It is well known

that contact angles below 90◦ promote spreading and those above hinder it. Hence

increasing θA results in reduced spreading both along and perpendicular to the

scratch, and a consequently increased droplet height (unless of course the droplet

is fully imbibed). However, θA also influences the shape of the liquid free surface

within the scratch, as can be seen in figure 5.9, which shows just the liquid volume

with the confining solid made invisible.

The contact line on the bottom of the scratch, which is generally concave

at θA = 75◦, becomes convex when θA = 115◦ as the side walls of the scratch then

act to hinder rather than assist spreading. The non–trivial shape of the liquid free

surface in the ‘semi–imbibed’ and ‘split semi–imbibed’ cases illustrate why there is
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Figure 5.9: Effect of θA on final droplet shape for Re = 204, We = 26 and θR = 1◦.
The images show just the liquid volume(s) within and around each scratch.

a small discrepancy between the predicted regime boundary given by equation (5.3)

and that observed from the simulations.

In the ‘quasi–spherical cap’ regime, the liquid volume that runs along the

scratch decreases with increasing θA until it no longer extends beyond the diameter

perpendicular to the scratch, and for θA = 115◦ (figure 5.9) the liquid inside the

scratch does not extend as far as that above the scratch. Moreover, capillary flow

will no longer occur for θA > 90◦, and as a consequence the region in figures 5.3 and

5.7 where capillary flow exists moves to smaller values of w/d as θA increases, until

the capillary flow region vanishes.

For a scratch that produces the ‘inertial’ morphology when θA = 75◦, the

reduced spreading that occurs when θA is increased can mean that the droplet no

longer has sufficient momentum to spill over the side ridges, and the droplet becomes

‘edge–pinned’ or ‘semi–imbibed’. A similar effect is seen for wider scratches, and we

conclude that the boundaries within the regime map in figure 5.3 shift towards lower

widths as θA increases, with the capillary flow region eventually disappearing.
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Figure 5.10: Effect of θR on final droplet shape. The images show top views for
θA = 75◦, Re = 204, and We = 26.

5.3.3 Effect of the Receding Contact Angle, θR

If, as the droplet shape changes, the contact angle falls below the receding contact

angle, the contact line will recede. Changes in θR are therefore be expected to have

a significant influence on the droplet morphologies discussed above. Figure 5.10

highlights this via top-view plots of the final droplet shape for five different values

of θR from the 1◦ value used to create figures 5.3 and 5.7 up to θR = 75◦, which

corresponds to the case where there is no contact angle hysteresis.

For scratch dimensions leading to the quasi–spherical cap morphology, the

droplet remains quasi–spherical, but its footprint becomes smaller as θR increases

because the contact line recedes until an equilibrium is reached where the contact

angle is everywhere equal to or greater than θR. The conditions for capillary flow

101



5 Printing onto an Idealised Scratch 5.3 Effect of Flow and Substrate Parameters

to occur are independent of θR, but as θR increases, the contraction of the droplet

above the scratch means that more liquid is available to feed the capillary flow and

the final extent of the capillary flow is therefore increased. However, for intermediate

θR, as the droplet recedes from the top of the side ridges and original surface, small

amounts of liquid are left behind in the corners between the outer wall of the side

ridges and the original surface of the substrate. When there is no contact angle

hysteresis (θR = θA = 75◦), the entire droplet is pulled into the scratch by capillary

action.

The ‘inertial’ morphology in figure 5.3 arises when the droplet spills over the

side ridges of the scratch onto the original surface, but no capillary action occurs.

When θR is larger, the contact line recedes after reaching its maximum spread,

and climbs back onto the side ridges to reach a different equilibrium. Hence the

‘inertial’ morphology becomes ‘edge–pinned’ and ‘semi–imbibed’ for θR values of

50◦ and 75◦ respectively. The liquid inside the scratch also recedes with higher θR.

The ‘semi–imbibed’ morphology becomes ‘fully–imbibed’ due to the recession of the

footprint outside the groove into it. The ‘edge–pinned’ morphology turns into a

‘semi–imbibed’ and then ‘fully–imbibed’ as θR approaches θA. The fully imbibed

morphology only changes in its extent along the scratch. Increasing the receding

contact angle generally results in an equilibrium morphology that is less spread in

the direction perpendicular to the scratch, and also shorter in the direction along

the scratch. The exceptions are the capillary and edge–pinned regimes, where the

lack of contact–line pinning on the upper substrate releases more liquid to penetrate

along the scratch. All the regime map boundaries shift to lower widths, except the

capillary regime because it is governed by θA.
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5.4 Summary

In this chapter, the spreading of a single micro–droplet onto a scratched substrate has

been investigated. The scratch is idealised into a groove of rectangular cross–section,

with rectangular side ridges representing material displaced from the groove. Seven

distinct equilibrium morphologies are identified as a result of inertial spreading,

contact line pinning on various features of the topography, imbibition of the droplet

into the scratch and capillary flow along it. These morphologies arise for distinct

ranges of scratch depth and width, relative to the droplet size, which define regions

of a regime map. Using existing models for the maximum spreading diameter of a

droplet on a flat surface, and accounting for liquid entering the scratch, theoretical

estimates of the boundaries within the regime map have been obtained that show

good agreement with the numerical predictions. These expressions illustrate how the

boundaries can be manipulated by varying the Reynolds number, Weber number,

and advancing and receding contact angles.

We discuss the implications of the results found in this chapter from a

practical perspective, in the next chapter.
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6 Multiple Droplets Impact on Idealised Scratches 6.1 Spacing and Frequency

In printing an electrical circuit, a key requirement is continuity of the

printed track. Achieving a stable, continuous printed line requires consistent droplet

spreading behaviour and a careful balance of droplet generation frequency and print-

ing speed to achieve the correct droplet spacing section 6.1 (Stringer and Derby,

2010). Variations in the droplet spreading caused by a scratch could therefore desta-

bilise the line or cause a break in continuity. Hence quantitative measures of the

spreading behaviour on a scratch are potentially useful. Here, for simplicity, the two

simplest configurations will be considered, namely printing perpendicular section to

a scratch 6.2 and printing along a scratch section 6.3.

6.1 Spacing and Frequency

Before simulating multiple droplets impacting onto a substrate with a scratch on its

surface, the spacing between droplet centres ∆P = (Xi+1−Xi)/D0, where Xi is the

position of the ith droplet in the direction along the printing direction and D0 is the

in–flight diameter. The period between consecutive droplet impacts ∆t̃ is measured

in units of ∆t = 8.0723 × 10−9second for the example droplet described in section

4.8.2. We do not consider temperature here. Temperature effects have been studied

in Yang et al. (2021). As in the previous sections, we limit our study to the case

with contact line pinning.

Before choosing specific ∆P and ∆t̃, we simulate a range of them with five

droplets and tabulate top view images of the results in figure 6.1. Rows are the dif-

ferent spacing between droplet centres and columns are periods. The spacing range

considered is 0 − 0.45, to picture how much overlap this results in, remember that

the equilibrium spreading diameter here is D∗flat ≈ 2D0. Time steps are reported in

figure 6.1 in units of 8.0723× 10−9, ranging from 1000–10000.

For ∆P = 0, a spherical cap is formed as expected. As ∆P increases the

morphology starts elongating along the access of printing. The sides of the line
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6 Multiple Droplets Impact on Idealised Scratches 6.2 Line Printing Across a Scratch

start forming a wave–like pattern as ∆P increases. Increasing ∆P further causes

individual droplets to form, see ∆P = 0.45. The best line quality is seen for ∆P in

the range 0.2 − 0.3. This is consistent with the results by Thompson et al. (2014),

see figure 2.2. converting the δ values from figure 2.2 to ∆x, δ = 0.81 reported as

spacing for a good quality line by Thompson et al. (2014) corresponds to ∆x ≈ 3

for our system which is consistent with our simulations. The period does not have

a significant effect on the formed morphologies probably because of contact line

pinning.

We, therefore, use ∆P = 0.25 for the rest of this chapter when simulating

printing multiple droplets onto a scratch.

6.2 Line Printing Across a Scratch

With the prospect of a break in line continuity, a key quantity to consider is the ex-

tent of droplet spreading in the direction perpendicular to the scratch. Figures 6.2a

and 6.2b show the behaviour of DAcross, i.e. the length of the resulting droplet mor-

phology in the direction perpendicular to the scratch (see figure 5.3 for a figure

explaining DAcross and DAlong), as a function of scratch width and depth. The plots

show DAcross normalised by Dflat, the equilibrium spreading diameter of an equiva-

lent droplet on a flat surface. Recall that the scratch width and depth are scaled by

the impacting droplet’s in–flight diameter. While narrow, shallow scratches cause

only a small change in the extent of spreading, it is clear that as the droplet and

scratch become similar in size, a significant shortfall in the spread length occurs.

Depending on the degree of overlap between consecutive droplets, which determines

the printed line width (Stringer and Derby, 2010), such a reduction in spreading

could prevent coalescence of a droplet with the rest of the line and hence a break

in continuity. Note that the convergence of the lines in figure 6.2a and the sudden

drop in the w = 0.4 line in figure 6.2b are a result of pinning of the contact line on
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∆t̃
∆P 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.50

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 6.1: A table of morphologies formed by the printing of five droplets at Re =
204, We = 26, with θA = 75◦ and θR = 1◦. Columns represent different periods
between droplet impacts in units of ∆t̃ given in units of ∆t = 8.0723× 10−9second
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Figure 6.2: DAcross, the length of the final single–droplet morphology in the direction
perpendicular to a scratch following deposition of a droplet on the scratch shown
in figure 5.1 at Re = 204, We = 26, with θA = 75◦ and θR = 1◦. The plots show
variation with scratch width and depth, and the coloured symbols indicate the type
of morphology following the same labelling as in figure 5.3.

the outer edge of the side ridges. The upturn between w = 0.9 and w = 1.0 in figure

6.2a is because for the ‘fully–imbibed’ morphology, DAcross = w.

Another mechanism by which line continuity could be broken is through

the splitting of the droplet along the inner edge of the scratch. This is illustrated

in figure 6.3, which shows simulations of printing a series of five droplets across

two scratches with the same depth but different widths. Both scratches appear in

the ‘split semi–imbibed’ region of figure 5.3, and the third droplet, landing on the

scratch centre, splits along the inner edges of the scratch, as expected — see figure

6.3(b) and (f). For the wider of the two scratches, this splitting is irrecoverable

and the printing continues with a separate line on the other side of the scratch.

However, for the slightly narrower scratch, when the fourth droplet is printed, it

pushes back on the pre–existing liquid on the substrate, making the liquid coalesce

and become continuous again, see figure 6.3(g). This illustrates that the dynamics

of the consecutively printed and coalescing droplets can be subtly different from the

single–droplet dynamics. Note that while the narrower scratch does not cause a

break in continuity, the thinner parts of the printed line could cause problems such

as higher resistance or local heat generation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Simulations of printing consecutive droplets across scratches of depth
d̄ = 0.4 (d = 0.6) and widths w = 0.6 (images a–d) and w = 0.45 (images e–h).

The extent of liquid spreading along a scratch, DAlong (see figure 5.3), is

also an important consideration in line printing, and this is captured in figures 6.4a

and 6.4b. For a line crossing the scratch, spreading along the scratch would create

a variation in the thickness of the line that could potentially lead to instability

and formation of bulges along the line. As can be seen in figures 6.4a and 6.4b,

all dimensions of scratch lead to enhanced spreading along the scratch direction,

with the most significant extent being of course that corresponding to the deep,

narrow scratches where capillary flow occurs. The long filaments of the capillary

morphology could be problematic if, for instance, two parallel lines are being printed

in close proximity for a printed circuit: they could cause the two lines to connect

unintentionally, resulting in a short circuit. However, because of the slower time-

scale of the capillary flow, as seen in figure 5.6(c), this issue could perhaps be

avoided using a fast enough curing mechanism or by creating a larger advancing

contact angle. On the other hand, this morphology can be exploited to connect two

lines by designing such a feature and using a slowly evaporating ink.

6.3 Printing Along a Scratch

The edge–pinned morphology is an example of how structured substrates can be

exploited to print lines with sharp edges. To demonstrate this effect, five droplets

are printed into a groove with depths of d̄ = 0.3 and d̄ = 0.45 and width w = 0.4,
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Figure 6.4: DAlong, the length of the final single–droplet morphology in the direction
along a scratch following deposition of a droplet on the scratch shown in figure 5.1
at Re = 204, We = 26, with θA = 75◦ and θR = 1◦. The plots show variation with
scratch width and depth, and the coloured symbols indicate the type of morphology
following the same labelling as in figure 5.3.

both corresponding to the edge-pinned morphology. The results are visualised in

figure 6.5. In the first simulation, (d̄ = 0.3 and w = 0.4), although the first droplet

forms a sharp edge as expected, subsequent droplets spill over as seen in figure

6.5(c) and (d). This occurs because the precursor droplet inside the groove is in

the spreading path of the subsequent droplet; this causes it to spill over. Increasing

the depth to 0.45, however, allows more volume for droplet spreading inside the

groove, so overspill does not occur and a sharp line is formed along the outer edges

of the side ridges, as seen in figure 6.5(h). These two simulations demonstrate how

challenging printing a sharp line can be.

The simulations of printing along and across a scratch show that topo-

graphical features of commensurate size to droplets have a significant effect not only

on a single droplet but also a series of droplets.

Possible implications of the morphologies identified in this work are dis-

cussed in table 6.1.
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Table 6.1: Implications of the various morphologies.

Morphology Implications

Capillary This morphology produces the largest DAlong due to
capillary action. This result in unwanted connections
between printed liquid bodies. Due to the relatively
slow nature of capillary flow, this can be avoided us-
ing a fast–enough sintering mechanism. The capillary
morphology can be exploited to transport liquid us-
ing micro–structuring of such scratches. It can also
be used to intentionally connect two otherwise dis-
connected printed morphologies.

Quasi–spherical
cap and inertial

The distinction between these two morphologies is
subjective and application dependent. Here, we have
considered a 10% deviation in spreading diameters
to be the critical point, this criterion can be differ-
ent for other applications. Beyond a certain level of
shortening, a continuous line might break because the
subsequent droplet will not coalesce with the previ-
ously printed one. This will occur when the short-
ening is greater than the overlap between printed
droplets. Similarly, if the morphology is lengthened
in one dimension to an extent greater than clearance
(with an adjacent line, for instance) unwanted coales-
cence might occur. The quasi–spherical cap morphol-
ogy can potentially be exploited for centring droplets
without significant detriment to the morphology. The
inertial morphology can also be exploited to print
lemon–shaped morphologies.

(Split) Semi–
imbibed

The characteristic feature of semi–imbibed morpholo-
gies is that they do not overspill onto the original sub-
strate. When printing droplets across such a scratch,
the droplet footprint will not only be shortened like
inertial but also elevated on the side ridges above the
substrate. This makes it more likely to prevent the
coalescence of subsequent droplets and separation will
occur along the outer edges of the side ridges in the
semi–imbibed case. In the split semi–imbibed case,
splitting will also occur along the inner edges of the
side ridges such as seen in figure 6.3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5: Simulations of printing five consecutive droplets along scratches with
width w = 0.4 and depths d̄ = 0.3 (images a-d) and d̄ = 0.45 (images e-h).

Table 6.1 Continued: Implications of the various morphologies.

Morphology Implications

Fully imbibed Here the entirety of the droplet sinks into the scratch.
This most problematic because contact with a subse-
quent droplet will not be possible. For scratches that
are just as wide as the droplet in–flight diameter, the
droplet will sink into the scratch but will have contact
with the inner walls of the scratch.

Edge–pinned The distinctive feature of this morphology is the
sharp contact line of the morphology that form along
the outer edges of the side ridges. Besides the im-
plications of a semi–imbibed morphology discussed
above, the edge–pinned morphology can also be ex-
ploited to print sharp morphologies as demonstrated
in figure 6.5.
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6.4 Summary

Printing a continuous lines is sensitive to spacing. A spacing can be chosen to form

a continuous line in the flat substrate surface case, but the morphology differs. The

interaction of droplets with a scratch of commensurate size can be harmful in differ-

ent ways. When printing a line of droplets across a scratch, the line can shorten in

the direction perpendicular to the scratch will result in droplets separating, resulting

in line breaks, see chapter 6. For sufficiently deep and narrow scratches, capillary

flow along the scratches could lead to unintentional connections between parallel

tracks; in the case of printed electronics this can result in malfunctioning circuits.

However, this can be an opportunity to make use of intentional features (such as

those described by Nie and Kumacheva (2008), or Seemann et al. (2005)) to control

spreading and maintain a uniform printed line. As printing resolutions improve,

and droplet sizes decrease, the results show that the consideration of the substrate’s

topographical features becomes increasingly important in achieving desired printing

outcomes.
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With an estimated market size of $41 billion in 2020, printed electronics combines

electronic manufacturing with text/graphics printing techniques to produces thin,

flexible, light, cost-effective and/or environmentally–friendly products such as pho-

tovoltaics, displays, integrated smart systems and electronic components. Conven-

tional text/graphics printing techniques used in printed electronics include gravure,

flexo and screen printing. To move to roll–to–roll, high throughput, and flexible

manufacturing, alternative technologies, particularly inkjet printing, have been re-

ceiving increasing attention.

A few key features qualify inkjet printing as a prime alternative. The

method is digital which removes its need for a mask/frame and makes it easy to

change the printed pattern on demand. Inkjet printing is non–contact, making it

suitable for printing onto unconventional substrates such as flexible, fragile, liquid,

and powder substrates. Inkjet printing also minimises waste conventionally lost

to masks/frames. The method can also work at speed and in parallel on different

parts of the product. Limitations of inkjet printing are the restriction of viscos-

ity, typically µ < 20 mPa s, and particle sizes which need to be small enough to

avoid blockages. Substrates have requirements in transparency, surface smoothness,

thinness and lightness. Small imperfections in the substrate surface, caused by

small variations during manufacturing, or as a result of unintended damage such as

scratching during transportation and/or handling, can affect the printing quality.

Substrate surface topographical features can also be added and exploited to control

the spreading of liquid. This thesis we studied the interaction of single and multi-

ple droplets with a surface feature/defect of commensurate size to inkjet printing

droplets across the relevant parameter space.

The lattice Boltzmann method was applied in this thesis on the basis of a
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number of advantages. These include: it is well suited to multiphase simulations,

with interface motion, break–up and coalescence readily captured in 3D, multiphase

systems do not require a relation between θd and U , but just the static contact

angle θs in the case without contact angle hysteresis (CAH), and the advancing

θA and receding θR contact angles in cases with CAH. LBM is also localised and

lends its self for parallel computing in GPUs (Krüger et al., 2016); we make use

of this feature to run an extensive parametric study here. Shortcommings in the

common LB approach were addressed by modifications suggested in the literature

particularly thos by Shan and Chen (1993), Sbragaglia et al. (2007), and Li et al.

(2012; 2013; 2019). A geometric model was applied to capture wetting rather than

the commonly used fixed–density approach.

The simulation method was validated with literature–reported experimen-

tal data of droplet impact onto a surface. We also use analytical predictin of max-

imum and equilibrium spreading diameters for validation. The parallel nature of

LBM to accelerate it using CUDA is exploited to accelerate the simullation by up to

two orders of magnitude on a GPU compared to a CPU. This validated and accel-

erated methodology is then used to simulate micro–droplet impact onto a substrate

surface with a scratch.

The scratch is idealised into a groove of rectangular cross–section, with

rectangular side ridges representing material displaced from the groove. Seven dis-

tinct equilibrium morphologies are identified as a result of inertial spreading, contact

line pinning on various features of the topography, imbibition of the droplet into the

scratch and capillary flow along it. These morphologies arise for distinct ranges of

scratch depth and width, relative to the droplet size, which define regions of a regime

map. Using existing models for the maximum spreading diameter of a droplet on a

flat surface, and accounting for liquid entering the scratch, theoretical estimates of

the boundaries within the regime map have been obtained that show good agreement

with the numerical predictions. These expressions illustrate how the boundaries can

115



7 Conclusions

be manipulated by varying the Reynolds number, Weber number, and advancing

and receding contact angles, see chapter 5.

The scratch is idealised into a groove of rectangular cross–section, with

rectangular side ridges representing material displaced from the groove. An exten-

sive parametric study varying the depth and width of the surface feature revealed

seven distinct equilibrium morphologies when a single droplet impacts centrally on

the topography. These are identified in a regime map as: (i) a ‘quasi–spherical cap’

that forms when the scratch is too narrow and shallow to cause significant deviation

from a spherical cap; (ii) ‘inertial’, where the droplet spills over the side ridges and

also spreads along the scratch, driven by the droplet’s inertia; (iii) ‘capillary’, where

a long filament is formed along deep, narrow scratches due to capillary action but

the droplet also spills over onto the original substrate; (iv) ‘edge–pinned’, where the

droplet has sufficient energy to spread as far as the outer edge of the side ridges,

but not to spill over, resulting in the contact line being pinned at the outer edges of

the side ridges; (v) ‘semi–imbibed’, where most of the droplet rests in the scratch

but some of it lies on the outer surface; (vi) ‘split–semi–imbibed’, where the droplet

splits along the inner edges of the scratch to create separated liquid bodies; and

(vii) ‘fully–imbibed’, where the scratch is sufficiently wide and deep that the entire

droplet sinks into the scratch. In all these morphologies the droplet spreads due to

the inertia of the impact. The contact line becomes pinned because of the low re-

ceding contact angle (typical of such printing applications) and the liquid body then

relaxes to an equilibrium. In narrow and deep scratches, subsequent capillary flow

occurs which forms the long filament. Therefore, there are two main mechanisms

to deform the morphology from a spherical cap: a width–dominated mechanism of

capillary flow and a cross–sectional area–dominated mechanism where the droplet

imbibes into the scratch.

The advancing and receding contact angles, Weber number, and Reynolds

number affect the boundaries within the regime map — i.e. the scratch dimensions
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for which the different morphologies arise. Increasing the Reynolds number generally

shifts the boundaries in the regime map towards larger scratch widths. For example,

a droplet that becomes pinned on the side ridge edges at low Reynolds number will

be able to spill over them at sufficiently higher Reynolds number; the edge–pinned

morphology will then occur at larger widths. For narrow and shallow scratches,

however, the greater spreading possible at larger Re does result in greater deviation

from a spherical cap, and the quasi–spherical cap morphology, therefore, becomes

more restricted to small scratch widths. Decreasing the Weber number has a similar

effect to increasing the Reynolds number. Increasing the receding contact angle

promotes contraction of the droplet in all directions, in most cases resulting in a

less–spread equilibrium morphology. However, in the edge–pinned and capillary

regimes, the contraction of the contact line on the upper surfaces of the substrate

releases more liquid to penetrate into the scratch, resulting in greater spreading

along the scratch. For sufficiently large receding contact angle, the entire droplet

can be drawn into a narrow scratch by capillary action. Removing the side ridges

reduces the number of different morphologies from seven to five, since the edge–

pinned and inertial morphologies related to the ridges are no longer possible; they

both become semi–imbibed.

From a practical perspective, the interaction of droplets with a scratch of

similar size can be detrimental in different ways. When inkjet printing an electrical

track across a scratch, for example, the shortening of the spreading in the direction

perpendicular to the scratch can result in a disastrous break in the continuity of

the track, as subsequent droplets may not be able to coalesce with the previously

deposited liquid, or the liquid might split along an edge of the scratch. The simula-

tions of sequential droplet deposition presented here show that, in some cases, it is

possible to recover from a break along an edge if the next droplet can push separated

liquid back sufficiently towards the printed track. Another problem might arise for

sufficiently deep, narrow scratches, where capillary flow can lead to spreading along

the scratch of more than three times the in–flight droplet diameter. If two paral-
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lel tracks are being printed, this could lead to unintentional connections, i.e. short

circuits between the two tracks.

On the other hand, scratch–like surface features could potentially be ex-

ploited to control spreading and maintain a uniform track, if droplets are printed

along the feature. Multiple–droplet simulations illustrate how the feature dimen-

sions can be tuned to prevent overspill and form a uniform printed track.
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