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Abstract 

 

The maintenance of haematopoietic stem cell (HSC) self-renewal and differentiation 

throughout life is essential for ongoing haematopoiesis and is highly dependent upon 

cytokine-cytokine receptor interactions and direct cell-cell contact between the HSC 

and components of the perivascular bone marrow (BM) microenvironment. 

Thrombopoietin (TPO) is one of two such cytokines essential for HSC self-renewal. 

Although the majority of TPO is produced distally by the liver, lower amounts of TPO 

are thought to be produced locally in the BM, directly at the site of utilisation. However, 

the exact cellular sources of BM derived TPO are unclear and remains an active area 

of research. Contrary to previous studies, the results in this thesis indicate that 

megakaryocytes do not express Thpo, and instead LepR+/Cxcl12-DsRedhigh BM 

stromal cells (BMSCs) are major sources of Thpo in mice. 

Immune thrombocytopenia (ITP) is an acquired autoimmune condition characterised 

by reduced platelet production and increased platelet destruction by sustained immune 

attack. In this thesis, a novel mouse model of sustained ITP was generated and the 

effect on the immune and haematopoietic system was assessed. Platelet destruction 

was antibody dependent and appeared to be primarily driven by splenic macrophages. 

Additionally, ITP progression was associated with considerable progenitor expansion 

and BM remodelling. Single cell assays using Lin-Sca1+c-Kit+CD48-CD150+ long-term 

HSCs (LT-HSCs) revealed elevated LT-HSC activation and proliferation in vitro. 

However, LT-HSC functionality was maintained as measured by in vivo serial 

transplantations. ITP progression was associated with considerable BM vasodilation 

and angiogenesis, as well as a 2-fold increase in local production of CXCL12; a 

cytokine essential for LT-HSC function and BM homing expressed at high levels by 

LepR+ BMSCs. This was associated with a 1.5-fold increase in LepR+ BMSCs and a 

5.5-fold improvement in progenitor homing to the BM. Whereas the increase in BMSCs 

was transient and reverted back to baseline after platelet count returned to normal, 

vasculature changes in the BM persisted. Together, these studies demonstrate that 

LT-HSCs expand in response to ITP, and that LT-HSC functionality during sustained 

haematopoietic stress is maintained through an adapting BM microenvironment.   
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1 Introduction 

1.1 Overview of haematopoiesis 

Haematopoiesis is the ongoing process of blood cell production that occurs throughout 

life. Mature blood cells have relatively short life spans (1), therefore must be constantly 

replenished from progenitors. Without haematopoiesis, pancytopenia and death would 

occur within weeks as a result of anaemia (due to erythrocyte depletion), bleeding (due 

to platelet depletion) and infection (due to the depletion of immune effector cells) (2). At 

the top of the differentiation hierarchy is the haematopoietic stem cell (HSC); a rare cell 

with the highest potential in the blood. HSCs are defined by two essential characteristics: 

1) the ability to differentiate into mature blood cells (largely through restricted progenitor 

intermediates allowing for cell amplification), and 2) the ability to self-renew to maintain 

the HSC pool. In contrast, intermediates and committed progenitors have reduced self-

renewal ability and display restricted lineage differentiation potential before exhaustion 

after several weeks after transplant (3, 4). The balance between the differentiation and 

self-renewal of HSCs is tightly regulated through cell intrinsic and cell extrinsic factors: 

excessive differentiation or insufficient self-renewal can cause depletion of the HSC 

pool, whilst differentiation defects or excessive self-renewal can lead to the development 

of myeloproliferative diseases or leukaemia (5). 

1.2 HSC identification 

The existence of HSCs was first functionally demonstrated during early transplantation 

experiments. Multi-lineage differentiation occurred in the spleen of irradiated recipient 

mice (spleen colony-forming cells, CFU-S) when murine BM cells were injected 

intravenously (6), and this was derived from single clones (7) capable of self-renewal 

(8). Early attempts to identify HSCs relied on their functional characteristics: isolation of 

HSCs was enriched when selecting for BM cells that were resistant to 5-fluorouracil (5-

FU) (9) treatment or gamma (Gy) irradiation (10). 

The advent of fluorescence-activated cell sorting (FACS) using cell surface markers 

allowed for the enrichment (and later near purity), of HSCs. As HSCs do not express 

mature lineage markers such as those expressed by lymphocytes, granulocytes and 

leukocytes (11), HSCs are enriched by gating on cells that are negative for such 

markers, termed Lineage- (Lin-) cells. The combination of lineage cocktails with 

additional antibodies enriched for HSCs further such as  Lin− Sca-1+c-kit+ (LSK) Thy-1lo 

cells (12) or CD34−LSK (13) which allowed for the prospective isolation of HSCs with up 

to 20% efficiency. The combination of these markers with the use of fluorescent dyes 
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such as Hoechst 33342 (14) or Rhodamine 123 (15) increased the efficiency further to 

up to absolute purity (16, 17), however this demanded the use of highly complex FACS 

panels that most likely only identified a subset of HSCs (18). The identification that 

haematopoietic progenitors differentially expressed signalling lymphocyte activation 

molecule (SLAM) markers in a way that correlated with primitiveness and predicted 

developmental potential allowed for the separation of HSCs from restricted progenitors 

using only two markers (18). Using CD150 and CD48 alone isolated HSCs to a purity of 

20% whilst combination with earlier markers isolated HSCs with a purity up to 50% with 

a combined phenotype of LSK CD48-CD150+ (18). However, the LSK CD48-CD150+ 

phenotype still required the use of many markers for identification and isolation. Further 

refinement of HSC markers identified that expression of Endothelial protein C receptor 

(EPCR) explicitly identifies murine progenitors (19) and that the combined phenotype of 

CD45+EPCR+CD48-CD150+ can isolate HSCs to a purity of 43% (20). 

1.3 Steady state haematopoiesis 

HSCs reside primarily in the bone marrow (BM), which is the main site of 

haematopoiesis. The classical model of haematopoiesis suggests that differentiation 

occurs in a stepwise fashion, with the HSC differentiating into the common myeloid 

progenitor (CMP) and common lymphoid progenitor (CLP), followed by further sub-

branching and lineage commitment (21, 22). However, recent evidence indicates that 

both HSCs and downstream progenitors are highly heterogeneous with respect to 

cellular output and that differentiation during early haematopoiesis occurs through a 

continuum of transitory states rather than discrete progenitor cell types (23-26). HSCs 

are transcriptionally primed towards certain lineages, followed by activation of lineage 

specific transcriptional programs in downstream progenitors and definitive lineage 

commitment (27). As such, the majority of intermediate cell types (e.g. CMP, MEP; 

common erythroid/Mk progenitor) are already functionally committed; only very few cells 

are primed towards mixed lineages (25-29). The tendency of phenotypic HSCs to 

produce certain lineages above others during transcriptional priming resulted in the term 

‘lineage bias’ being used. The direction and extent of transcriptional priming is 

functionally linked to lineage bias of the HSC, with the amount of lineage specific priming 

linked to functional lineage commitment (27). Even the most primitive HSC subset, 

despite remaining multipotent, exhibits considerable lineage bias (30-32).  
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Figure 1.1 The classical model of haematopoiesis. Haematopoiesis originates from an HSC, 

downstream of which the first lineage bifurcation separates the myeloid and lymphoid branches via the CMP 
and the CLP 
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1.4 Cytokines in haematopoiesis 

Haematopoiesis during steady state, or in response to physiological stresses such as 

bleeding or infection, is a tightly regulated process that is largely governed by cytokines 

and their cognate receptors. Whilst some cytokines support the development of specific 

lineages such as the role of erythropoietin (EPO) in the production of erythrocytes (33), 

colony-stimulating factors (CSFs) in the production of granulocyte-macrophage lineages 

(34) and thrombopoietin (TPO) in megakaryopoiesis and platelet production (35, 36), 

other cytokines such as IL-3 stimulate the growth of many haematopoietic lineages (37). 

The instructive model of haematopoiesis suggests that simulation of progenitors with 

specific cytokines direct lineage commitment and differentiation, whilst the permissive 

model suggests that the role of cytokines is to permit the growth and survival of 

progenitors in which lineage commitment and differentiation is intrinsically 

predetermined (37). Evidence of the permissive model of haematopoiesis arose during 

experiments where ectopic expression of receptors or the use of chimeric receptors 

indicated that cytokine receptors provide nonspecific survival and proliferation signals. 

For example the expression of the non-haematopoietic prolactin receptor in primary 

erythroid progenitors results in the generation of erythroid colonies when stimulated with 

prolactin (38). Similarly, progenitors that had the endogenous Mpl gene replaced with a 

chimeric construct encoding the extracellular domain of Mpl and the cytoplasmic domain 

of granulocyte CSF receptor (G-CSFR) exhibited normal levels of megakaryopoiesis 

and platelet production (39). Conversely, when a chimeric receptor composed of the 

extracellular domain of human interleukin (IL)-3 receptor and the cytoplasmic domain of 

granulocyte-macrophage CSF receptor (GM-CSFR) was expressed in murine IL-3 

dependent Factor-dependent cell Paterson mixed potential (FSCPmix) cells, 

differentiation towards the granulocyte and monocyte/macrophage lineage was 

observed after stimulation with IL-3 (40), suggesting that the cytoplasmic domain 

delivered an instructive signal influencing lineage commitment. Together, the data 

suggests that haematopoiesis can exhibit plasticity, however some cytokines can also 

‘instruct’ differentiation. 

The concentration of local cytokine levels or strength of cytokine-receptor signalling can 

also highly influence cell fate. During steady state, low levels of multiple cytokines are 

sufficient to sustain the normal ratios of blood cells. The increase in local cytokine levels, 

such as during infection or blood loss, may influence the lineage output of progenitors 

by instructing lineage fate. For example, increased FMS-like tyrosine kinase 3 ligand 

(FLT3L) signalling drives myeloid-lymphoid development at the expense of 

megakaryocyte and erythroid development (41). In addition to the stimulation of 

megakaryopoiesis from progenitors, TPO has an essential role in HSC self-renewal (42), 
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which may be linked to the strength of TPO/MPL signalling (43). Studies using TPO 

agonists and partial agonistic diabodies revealed that the strength of signalling 

determined cell fate, with stronger signalling associated with megakaryopoiesis whilst 

weaker signalling was associated with increased HSC self-renewal (43). Clinical 

application of TPO diabodies have the potential to offer greater control of MPL signalling 

outputs, resulting in the fine-tuning of cell fate decisions in thrombocytopenic or 

malignant conditions. 

Whilst cytokines are critical for regulated differentiation from HSCs, they are also critical 

in regulating HSC function itself: including maintenance, quiescence, retention, 

proliferation as well as indirect effects that exert their effects on HSC activity by 

influencing the expression of other niche factors (5). Of these, the best characterised 

are stem cell factor (SCF), TPO and C-X-C motif chemokine ligand 12 (CXCL12). SCF 

and TPO are essential cytokines that maintain HSCs in vitro and in vivo (44), whilst 

CXCL12 is required for HSC maintenance in vivo as well as retention in the BM (45-49). 

SCF binds to c-Kit (44, 50-53), whilst TPO binds to MPL (54-58) and CXCL12 binds to 

CXCR4 (59), all of which are transmembrane receptors expressed by HSCs. SCF is 

expressed in both membrane bound and soluble forms, both of which stimulates 

downstream c-Kit signalling (44, 53, 60). Together, SCF and TPO can maintain HSCs 

in culture for 28 days with complete media changes (and fibronectin to prevent HSC 

detachment during media changes) (42).  

1.5 The bone marrow niche 

Early studies showed that HSCs in culture are dependent upon support from non-

haematopoietic BM derived cells (61), and that HSPCs are spatially organised within the 

BM, with more primitive progenitors residing away from bone surfaces (62). In 1978, 

Schofield provided the first formal conceptualisation of the BM niche (63). Based upon 

experimental evidence that CFU-S displayed decreased proliferative potential 

compared to BM derived HSCs, he proposed that HSCs were functionally dependent on 

the BM local environment, the so called ‘niche’ (63). In 2003 the first experimental 

evidence for the BM niche was obtained, where genetically engineered mice were used 

to demonstrate that by driving an increase in osteoblastic cells, the number of functional 

HSCs were increased (64, 65). Further to simply demonstrating the existence of the BM 

niche, these studies demonstrated that the niche was experimentally tractable, and 

suggested that osteoblastic cells were important components of the BM niche (later 

termed the ‘endosteal niche’).  

More recent studies support the existence of a vasculature niche, rather than an 

endosteal niche. Multiple studies have shown that HSCs are in direct contact or in close 
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proximity to sinusoidal blood vessels (18, 66-70), where vascular or perivascular cells 

maintain HSCs through a variety cytokine-cytokine receptor interactions and direct cell-

cell contact (45, 60, 71-73). Although HSCs preferentially home to endosteal regions in 

irradiated mice after transplantation (74), this is thought to be due to the irradiation 

induced disruption of the sinusoidal network, rather than the endosteum being a 

preferable site for haematopoiesis (75, 76). Indeed, few HSCs were observed to be in 

direct contact with osteoblastic cells in non-irradiated mice (67, 74). Finally, mature 

osteoblasts are not recognised to be major sources of factors needed for HSC 

maintenance (45, 71, 72), whilst their ablation did not lead to an acute loss in HSCs (77)  

which is in keeping with the observation that low levels of HSCs are maintained in 

extramedullary sites such as the spleen throughout life, which does not contain 

osteoblasts. However, some early lymphoid progenitors do appear to depend on an 

endosteal niche created by osteoblasts, based upon observations that Cxcl12 depletion 

form mature osteoblasts gave significantly lower levels of T and B cell reconstitution in 

irradiation mice relative to controls, and that ablation of osteoblasts acutely depletes 

lymphoid progenitors (45, 77).  

1.5.1 Niche components 

Recent evidence suggests that heterogeneity may exist within the HSC vascular niche, 

which may be subdivided into the sinusoidal and arteriolar niches, and these different 

sites may offer differential HSC support. It has been proposed that the degree of niche 

heterogeneity could match the heterogeneity within the HSC pool and that functional 

pairings may exist between niche cells and the HSCs which they regulate (78). For 

example, quiescent stem-like Nes-GFPbright BMSCs are found exclusively along 

arterioles (Figure 1.2), and their ablation causes a migration of dormant HSCs from 

arterioles to sinusoids and a reduction in their number and long-term repopulating ability 

(79). However, this is disputed by studies concluding that dividing and non-diving HSCs 

do not reside in spatially distinct niches (68-70).  

Endothelial cells (ECs) in both sinusoidal and arteriolar niches (Figure 1.2) express key 

niche factors CXCL12 and SCF (45, 71, 72). Historically, sinusoidal ECs were 

considered to be the more important EC for HSC maintenance. This was based upon 

their association with Cxcl12high BMSCs which were initially thought to be exclusively 

peri-sinusoidal (45), and the lack of markers to separate sub-populations of ECs (72). 

However, recent evidence suggests that arteriolar ECs may produce higher levels of 

Cxcl12 and Kitl (the gene encoding SCF), and that arteriolar, not sinusoidal ECs regulate 

HSC maintenance through SCF production (80).   
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The highest production of CXCL12 in the BM is from perivascular BMSCs (81), with 

lower amounts expressed by ECs (including arteriolar ECs) and osteoblasts (45, 82). 

Consistent with the chemotactic role of CXCL12 (46, 83), localisation studies revealed 

that HSCs are adjacent or close proximity to Cxcl12high BMSCs (69, 70), positioning 

HSCs well for maintenance from other BMSC-derived factors. Indeed, perivascular 

BMSCs are also major sources of SCF (72), indicating that these cell types are 

molecularly primed for HSC maintenance. HSCs are depleted in Sl/Sld mice (60), which 

express soluble SCF but not membrane bound SCF (84), providing a functional role for 

cell-cell contact. Broad deletion of Cxcl12 from BMSCs and osteoblasts using Prx1-cre 

resulted in HSC depletion and loss of HSC function and BM retention, highlighting the 

essential role of BMSCs in CXCL12 production (85). However, like the expression of 

other key niche factors, Cxcl12 expression in BMSCs is heterogeneous. A recent study 

using single-cell and spatial transcriptomic approaches identified two distinct 

Cxcl12highKitlhigh BMSC subsets which expressed adipocyte and osteo-lineage genes 

differentially, and were found in peri-sinusoidal or arteriolar niches respectively (81). 

Besides the expression of stem cell maintenance factors, these subsets devoted the 

largest proportion of their transcriptional activity to cytokine synthesis among all BM cell 

types, including the main cytokines mediating myeloid and lymphoid differentiation (73, 

81, 86). In acknowledgement of their now established broad role in haematopoiesis, 

perivascular Cxcl12highKitlhigh BMSCs have been referred to as ‘professional cytokine-

secreting cells’ (81, 87). 

The adipocyte lineage expressing Cxcl12high (Adipo-CAR) BMSCs overlapped 

considerably with previously described LepR+ BMSCs, which when Cxcl12 was deleted 

from this population resulted in HSC mobilisation, but not depletion (45, 88). LepR+ 

BMSCs comprise 70% of CD45/Ter119−PDGFRα+ BMSCs (45), therefore are 

considered a major source of BMSCs. In contrast, osteo-lineage expressing Cxcl12high 

(Osteo-CAR) BMSCs may overlap with previously described Nes-GFPbright peri-arteriolar 

BMSCs. Cxcl12 deletion from this population causes HSC mobilisation and depletion, 

indicating that CXCL12 production from Nes-GFPbright BMSCs may have a more 

important role than LepR+ BMSCs in HSC maintenance (88). In contrast, Kitl deletion 

from LepR⁺ BMSCs, but not Nes-GFPbright BMSCs causes HSC depletion (88). Nes-

GFPbright BMSCs are innervated by the sympathetic nervous system and are thought to 

regulate HSC traffic during homeostasis by the downregulation of Cxcl12 expression 

during circadian oscillations (89, 90). 
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Figure 1.2. The BM niche. HSCs reside in a perivascular niche maintained by a diverse group of cells. 

Adapted from Crane et al (2) 
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1.6 Extramedullary niches 

Whilst the BM is the primary and preferential site for steady state haematopoiesis in 

healthy adults, haematopoiesis can occur in almost any tissue (although the most 

common sites are the liver and spleen) (91). This is termed extramedullary 

haematopoiesis (EMH) and can occur when HSCs are mobilised and colonise niches in 

extramedullary tissues. EMH is associated with mobilisation of BM derived progenitors 

that become entrapped at peripheral sites and proliferate, damage to the BM 

microenvironment (e.g. during malignancy), or the production of haematopoietic growth 

factor by a tumour or at sites of tissue damage (91). During steady-state 

haematopoiesis, the spleen contains approximately 15-fold fewer HSCs than the BM 

(92). Similar to the BM, perivascular cells in the spleen maintain HSCs through the 

production of CXCL12 and SCF (93). In parabiosis experiments (an experimental 

approach where pairs of two CD45.1+ and CD45.2+ mice were surgically joined together 

to develop a single, shared haematopoietic system), phenotypic HSCs within the spleen 

were not replaced by circulating HSCs after 14 weeks (92). This suggests that the 

perivascular niche cells in the spleen can maintain HSCs long term, and the presence 

of HSPCs are not simply BM derived circulating cells transiently occupying an 

extramedullary niche (92). During infection or malignancy, EMH can be driven by loss 

of BM CXCL12 signalling (94-98), where HSCs leave the BM and populate 

extramedullary tissues such as the spleen.  

1.7 Pathological haematopoiesis 

HSCs are highly resistant to stress, which is essential to the preservation of 

haematopoiesis and homeostasis throughout life. They are highly quiescent (99), which 

protects them against DNA damage and functional decline associated with metabolic 

stress and DNA replication errors (100, 101). Additionally, HSCs are autophagy 

dependent which protects HSCs from metabolic stress, permitting survival and 

functionality during growth factor fluctuations and nutrient deprivations (102, 103) and 

are glycolytic which allows for prolonged survival in hypoxic conditions (104). Finally, 

HSCs synthesise less protein than most haematopoietic progenitors, even when 

undergoing self-renewing divisions (105), which together with their predisposition to 

apoptosis after accumulation of misfolded protein (106), may protect the HSC pool 

against damage accumulation and reduce malignancy risk.  

Under steady state conditions, HSCs divide only once every few months (107), however, 

during stress conditions where demand on haematopoiesis is elevated (such as during 

blood loss, transplantation or infection), HSCs transiently proliferate and differentiate 

(activate). Haematopoiesis during infection and inflammation is necessary to drive 
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expansion of immune effector cells and may be triggered directly such as through 

stimulation of toll-like receptors (TLRs) expressed by HSCs (108) or indirectly though 

inflammatory cytokine signalling such as type-I interferon (IFN)-α/β and type-II IFN (IFN-

γ) (109-111), IL-1 (112) or G-CSF (113). Whilst these cytokine signals are produced by 

mature immune cells and components of the BM niche, haematopoietic stem and 

progenitor cells (HSPCs) can also generate their own cytokine signals such as IL-6 

production after TLR activation which acts as an amplification signal both in a paracrine 

and autocrine fashion (114). In fact, HSPCs are capable of producing far more cytokines 

in both quantity and breadth than mature myeloid and lymphoid cells which may be 

important during situations when mature immune cells are depleted such as during 

transplantation (114). 

Stimulatory factors appear to have differential effects on the HSC response, most likely 

because they selectively target a specific HSC biased subset. For example, during 

emergency myelopoiesis, G-CSF stimulates multipotent progenitor cell (MPP) 2/3 to 

contribute granulocyte expansion (115), whilst during emergency megakaryopoiesis 

type-1 IFN cytokines stimulate rapid maturation of CD41+ HSCs in order to replenish the 

platelet pool (116). Whilst this is essential to control the infection, prolonged signalling 

impairs self-renewal and may lead to HSC exhaustion (108, 112, 116-118). It is therefore 

critical that the inflammatory response resolves after the inflammatory insult is cleared. 

An impaired haematopoietic system, is therefore common in chronic autoimmune or 

inflammatory diseases and may be characterised by cytopenia, myeloid skewing at the 

expense of lymphoid production, anaemia or BM failure (119, 120).  

1.7.1 Haematopoietic stem cell niche in ageing and disease 

Physiological ageing is associated with an increase in phenotypic HSCs (121, 122). 

However, they are functionally impaired: they exhibit decreased homing efficiency and 

reconstitution ability, which is driven by an expansion of a myeloid biased subset that 

outcompetes lineage balanced HSCs by virtue of a superior self-renewal capacity (123-

127). Both HSC-intrinsic and extrinsic effects drive HSC impairment, as aged HSCs 

maintain a lymphoid developmental defect when transplanted into young recipients 

(124), however aged HSCs have a reduction in myeloid output and engraftment 

efficiency when transplanted into young recipients (126, 128). Interestingly, myeloid 

restricted aged HSCs maintain their myeloid restriction when transplanted into young 

primary recipients, however return to multipotency when transplanted into secondary 

recipients (127), both confirming the role of an aged BM microenvironment in driving 

myeloid skewing, and that rejuvenation can occur after exposure to a young BM 

microenvironment.  
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Dissection of the aged BM niche revealed significant remodelling such as increased 

vasodilation, leakiness and imbalances in β2/β3-adrenergic (AR) innervation, changes 

in niche cellularity and increased local inflammation (128-131). The number of BM ECs 

decrease with age which is associated with the downregulation of Kitl and Cxcl12 

production (129). Infusion of aged ECs into mice promoted a myeloid bias and inhibited 

HSC engraftment, whilst the infusion of young ECs promoted rejuvenation of HSCs by 

increasing their lymphocyte output and engraftment ability (129). Aging could also be 

partially reversed by treating mice with β3-AR which reduced HSC number and myeloid 

skewing, whilst improving repopulating after transplantation (130, 131). Finally, aging is 

associated with BMSC expansion; however they are have reduced expression of key 

maintenance factors and are primed towards adipogenesis which is known to be 

detrimental to HSC function (129, 131-134).  

Similarities between the processes of normal ageing and chronic inflammation (e.g. 

myeloid skewing, pro-inflammatory microenvironment) has led to the hypothesis that the 

two may be mechanistically linked (135). Levels of circulating pro-inflammatory 

cytokines are upregulated in elderly populations (136), leading to the hypothesis that 

subclinical inflammation may contribute to the initiation and/or acceleration of 

haematopoietic aging (135). 

Malignancy and infection may also contribute to a reduction in healthy haematopoiesis 

in the BM niche. Oncogenic mutations in niche cells (such as loss-of-function mutations 

in the SBDS gene) can stimulate the secretion of pro-inflammatory factors (137, 138), 

whilst malignant haematopoietic cells can drive transformation of niche cells which 

reduces their capacity to support healthy haematopoiesis (95, 139). Aside from the 

development of inflammation during infection, infection can decrease the number of 

niche cells which compromises haematopoietic support (96, 97). Together, evidence 

suggests that the BM niche has a reduced capacity to support healthy haematopoiesis 

during normal physiological aging, and during the progression of malignancy and 

infection. 

1.8 Thrombopoietin 

1.8.1 Thrombopoietin biology: haematopoietic stem cell self-renewal and 

megakaryopoiesis 

As described earlier, TPO is one of two essential cytokines that can maintain HSCs in 

vitro for up to 28 days, with the other being SCF (42). Patients with congenital 

amegakaryotic thrombocytopenia have loss-of-function mutations in MPL or THPO 

which cause an age progressive loss of HSCs, leading to BM failure (140, 141). 
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Similarly, Thpo-/- and Mpl-/- mice progressively lose HSC numbers with age, translating 

to a 150-fold reduction in 1-year old Thpo-/- mice (142). 

The role of TPO as a humeral factor with a major role in platelet production was first 

identified in the 1950s based upon the observation that plasma from patients with 

essential thrombocythemia raises the platelet count of recipients when infused into 

normal individuals (143), however it was not until 1994 that TPO was cloned and 

purified, and was directly shown to drive megakaryopoiesis in vivo and in vitro (54, 56-

58). TPO is indispensable for megakaryopoiesis, although other factors such as SCF, 

IL-3 and IL-11 can augment Mk production in the presence of TPO (35, 36). Although 

MPL is expressed on both haematopoietic progenitors and Mks (35), TPO acts on 

progenitors upstream of Mks and MPL expression on Mks is dispensable for 

thrombopoiesis (144). More recent evidence indicates that TPO does not play an 

instructive role in the fate of uncommitted progenitor differentiation; rather, it enhances 

the proliferation, survival and differentiation of already committed Mk progenitors (145, 

146). 

1.8.1.1 Thrombopoietin regulation.  

TPO is produced by the liver, and to a lesser extent the kidney (55, 57, 147, 148), 

representing the only known distal maintenance factor in the mammalian 

haematopoietic system (147). Results from early studies indicated that TPO may be 

produced locally at trace amounts in the BM and this this expression may be inducible 

in response to thrombocytopenia (discussed in greater detail below) (148-150). TPO 

levels are thought to be partially regulated by platelet mass, based upon the capacity of 

platelets to bind, internalise and destroy TPO and the observation that platelet levels 

are inversely proportional to circulating TPO levels (151, 152). Mks may also control 

TPO levels through a similar mechanism, and may partially explain why patients with 

immune thrombocytopenia (associated with an increase in BM Mks) have normal TPO 

levels, which is in contrast to conditions of hypoproduction of Mks (such as aplastic 

anaemia and BM hypoplasia) where patients have increased levels of circulating TPO  

(153). The removal of aged, desialylated platelets by the hepatic Ashwell-Morell receptor 

(AMR) induces hepatic expression of TPO and therefore represents an additional 

mechanism of TPO production (154). This discovery demonstrated that TPO production 

is regulated and challenged the notion that TPO expression in hepatocytes is 

constitutive. The AMR signalling cascade shares similarities with IL-6R signalling on 

hepatocytes (154, 155), which is known to increase TPO during inflammation (156-158).  
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Figure 1.3 Regulation of TPO. TPO is primarily produced by the liver and to a lesser extent the kidneys, 

where it travels through the circulation to act on Mpl expressing cells in the BM. TPO production is both 
constitutive (blue arrows) and inducible (red arrows). The binding of desialylated platelets by the hepatic 
AMR induces TPO production from the liver, whilst thrombocytopenia or irradiation causes local TPO 
upregulation by BMSCs. The level of circulating TPO is regulated by binding to Mpl expressing platelets 
and Mks 
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1.8.2 Bone marrow sources of thrombopoietin 

The earliest report that the BM may produce TPO locally was in 1996, two years after 

the discovery of TPO. Nagahisa and colleagues showed by qPCR analysis that as well 

as liver and kidney, mouse whole BM was a local source of Thpo expression (159). This 

was confirmed at the protein level by a cell reporter assay, where they transfected IL-3-

dependent mouse proB cells (BaF3 cells) to express human or mouse MPL (BaF3-

MPL). They found that the mouse stromal PA6 cells or primary mouse BMSCs support 

the growth of BaF3-MPL but not BaF3 parental cells in the absence of IL-3. Later, 

cultures of human BMSCs were shown to produce low levels of TPO at the gene and 

protein level (150). 

In 1997, the first attempt to map BM THPO expression was through in situ hybridisation 

(148). Using BM trephines from: 1) subjects with a normal platelet count, 2) patients with 

thrombocytosis, 3) patients with marrow aplasia (severe aplastic anaemia or 

postchemotheraphy aplasia), or 4) patients with thrombocytopenia (immune 

thrombocytopenia [ITP] or secondary ITP), Guerriero and colleagues reported 

expression by BMSCs. Intriguingly, whilst very weak hybridisation signal was detected 

in BMSCs from the subjects with normal platelet counts and reactive thrombocytosis, 

this increased in patients with marrow aplasia and patients with thrombocytopenia. The 

strongest staining observed was in the BMSCs of a patient with Hodgkin’s disease and 

secondary thrombocytopenia. However, whilst an important discovery, the results were 

somewhat limiting as the identification of the BMSCs appeared to be based on their 

morphology as no further probes to confirm their stromal identity was performed.  

Despite this limitation, the discovery that the BM was able to respond to conditions of 

haematopoietic stress by THPO upregulation was important as it supported the idea that 

the paracrine production of TPO serves to fine tune HSC homeostasis and platelet 

production. Furthermore, this phenomenon appeared to be BM specific, as no 

upregulation was observed in the liver or kidney. This confirmed a finding by McCarty 

and colleagues showing that acute antibody mediated thrombocytopenia or BM 

suppression by irradiation or carboplatin causes Thpo upregulation in the whole BM of 

mice whilst Thpo levels in liver or kidney remained constant (149). Subsequent 

experiments suggested that this was in response to low platelet counts rather than high 

TPO levels following the discovery that platelet granule proteins suppress the production 

of Thpo production in OP9 cells (160) (a murine BMSC line). 

Yoshihara and colleagues used a TPO specific antibody to identify osteoblasts as the 

TPO producing cells in murine BM sections (161). This supported the idea of an 

endosteal niche at the time, where osteoblasts are thought to maintain HSC quiescence 
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over the long term (162). The same laboratory later used a different anti-TPO antibody 

to confirm that osteoblasts produce TPO, but in addition showed that Mks produce TPO 

at the protein level (163). Surprisingly, they showed by qPCR analysis that Mks express 

significantly higher amounts of Thpo than non-haematopoietic niche cells (BMSCs, 

osteoblasts and ECs) and that Thpo transcript levels increased with Mk ploidy. They 

noted that more than half of all LT-HSCs reside < 3 cell diameters apart from Mks, 

suggesting that Mks may have important paracrine influences on progenitor function. 

Mk depletion resulted in a decrease in BM, but not serum TPO levels and a decrease in 

LT-HSC number. In vitro culture of Mks and HSCs show that Mks support HSC number 

through TPO secretion; TPO neutralisation using soluble Mpl or Thpo knockdown in Mks 

supported fewer HSCs. In a follow up paper, they showed that Mk derived TPO 

production was dependent on CLEC-2 signalling, and that mice deficient in CLEC-2 

specifically in the Mk lineage (PF4-Cre:Clec2flox/flox) had a bias towards immature Mks of 

lower ploidy and HSCs that were less quiescent and had reduced stem cell potential 

(164). 

In 2016, it was known that BMSCs as a whole produce TPO (148, 159, 160, 165, 166), 

however the exact subsets necessary to maintain HSCs remained elusive. The first 18 

months of my PhD were dedicated to the identification of TPO expressing BMSCs using 

a combination of murine BM and human BMSC clonal cell lines. Thereafter, I researched 

haematological and immunological changes during ITP progression using a murine 

mouse model. Introduction to ITP and important cell players in ITP will be covered in the 

remainder of this section.   

1.9 Overview of the immune system 

1.9.1 Innate immune system  

The innate immune system is an evolutionary conserved host defence system 

dependent on the activity of cell dependent mechanisms such as phagocytosis and 

cytotoxicity, or secreted factors such as complement and antimicrobial peptides (167). 

Innate immune responses recognise conserved features of pathogens and are able to 

respond quickly to insults, therefore are important during the initial containment of the 

infection. Mature cells of the innate immune system include granulocytes comprising 

neutrophils, eosinophils, basophils and mast cells and monocytes/macrophages and 

dendritic cells. Monocytes, macrophages and dendritic cells will be briefly introduced 

here due to their relevance in subsequent chapters. 

Monocytes are phagocytic myeloid cells present in several organs including the BM, 

blood and spleen. Classical monocytes are Ly6C+ and are recruited to sites of infection 

and inflammation where they terminally differentiate into macrophages (168). They are 
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best known for their replenishment of monocyte-derived tissue macrophages in the gut, 

skin, heart and lung (169). However, they can also be considered as having effector 

function themselves, as under homeostatic conditions classical monocytes have been 

described to adopt a surveillance role where they enter non-lymphoid organs and 

upregulate MHC class II molecules (MHC II), before recirculating to secondary lymphoid 

organs to present antigen to T cells (170). They are also steady state precursors of 

Ly6C- patrolling monocytes (171), which as the name suggests, patrol the vascular 

endothelium and monitor its integrity (172). Patrolling monocytes are intravascular 

housekeepers which sense the perturbation of homeostasis (e.g. viral infection or local 

cell death), and contribute to its resolution by the removal of cellular debris and the 

recruitment of neutrophils to mediate necrosis of ECs (173).  

Macrophages are specialised non-migratory phagocytic cells that remove cellular debris 

and hazardous material (including pathogens) by phagocytosis, followed by degradation 

and neutralisation of the ingested material by the formation of the phagolysosome (174). 

This is achieved by the direct recognition of apoptotic cells and pathogens through 

pathogen-associated molecular patterns or danger-associated molecular patterns as 

well as the indirect recognition of targets through their coating in antibodies and 

complement components (opsonisation), which are in turn recognised by receptors on 

the macrophage surface. For example, autoreactive antibodies contribute to the 

destruction of platelets by macrophages through opsonisation mediated phagocytosis 

in ITP. In addition, macrophages direct the inflammatory response by the production of 

chemokines and cytokines that recruit and activate other immune cells as well as 

contributing to tissue repair after resolution of inflammation (175). Under steady states, 

the majority of macrophages that reside in healthy tissue are established prenatally and 

self-maintain through their self-renewal ability and longevity. Here, they monitor their 

local environment through the expression of a range of receptors and adhesion 

molecules. In contrast, classical monocytes act as a reservoir for rapid macrophage 

recruitment. Under inflammatory conditions, classical monocytes infiltrate into tissues 

and differentiate into macrophages where they perform their effector functions 

associated with the initiation and subsequent resolution of the inflammatory reaction. 

However, in tissues such as the intestine, skin and heart, monocyte infiltrates represent 

major sources of macrophages under steady state conditions (176). 

Dendritic cells (DCs) are specialised antigen-presenting cells with essential roles in 

controlling immunity and tolerance (177), which originate from a DC restricted progenitor 

downstream of the monocyte-dendritic cell progenitor (178, 179). DCs are a 
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heterogeneous group of cells that upon activation and capturing of antigen, migrate to 

T cell zones in the spleen or lymph nodes to present antigen to naïve T cells.  

1.10  T cell overview 

T cells originate from BM progenitors that migrate to the thymus where they mature and 

undergo selection processes to select for clones that recognise self-antigen (positive 

selection), but remove clones that are strongly self-reactive (negative selection), before 

emigrating to the periphery (180). Peripheral naïve T cells express a diverse repertoire 

of different T cell receptors that are generated during maturation in the thymus, allowing 

for recognition of a wide variety of antigen (181). Recognition of antigen and co-

stimulatory ligands leading to subsequent activation and clonal expansion occurs via 

interactions with antigen presenting cells (APCs) presenting antigenic peptides bound 

to a MHC I or II molecule (182). T cells are subdivided into CD4+ or CD8+ cells based 

on expression of CD4 or CD8 glycoproteins. CD4+ cells broadly have a ‘helper’ function: 

they activate naïve B cells which in turn leads to the production of antibodies, activate 

and recruit phagocytes to the site of infection, and active CD8+ cells (183, 184). CD8+ 

cells on the other hand broadly have a cytotoxic function: they eliminate infected and 

cancerous cells through the release of cytotoxic granules such as perforin and 

granzymes (185). Naïve CD4+ cells differentiate into different subsets including Th (T 

helper cells) 1, Th2, Th9, Th17, Th22 and Treg (regulatory T cells) and Tfh (T follicular 

helper cells) based upon the local inflammatory environment created by the innate 

immune system (186). Therefore the T cell response is tailored to the specific 

immunological challenge. For example, Th1 differentiation is induced by IL-12 and IFNγ, 

whilst Th2 differentiation is induced by IL-4. Each Th subset in turn secretes specific 

cytokines to fine tune the immune response e.g. with pro- or anti-inflammatory or survival 

or protective functions (186). These cytokines can feed back into the local immune 

environment, for example activating neighbouring cells like macrophages to increase 

their phagocytic and antigen presenting properties (182). 

Tregs regulate or suppress persistent or excessive immune responses which may 

otherwise cause immunopathology (187). Tregs can suppress different immune cells 

directly or indirectly: direct mechanisms include the secretion of suppressive cytokines 

such as IL-10 and TGFβ or the production of granzyme and perforin to kill autoreactive 

cells, whilst indirect mechanisms include starving the local microenvironment of 

proliferative factors (188, 189). Tregs are identified by the expression of FOXP3 and can 

be produced during thymic selection as well as being induced by suppressive cytokines 

such TGF-β (190). Tregs are heterogeneous and can be divided into resting and 

activated (rTreg and aTreg) cells based on the expression of homing (CD62L) and 
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activation (CD44) molecules (191). aTregs are more suppressive, shorter lived and are 

enriched in peripheral tissues whilst rTregs are quiescent and enriched in secondary 

lymphoid organs (191). 

Differentiation of naïve T cells into Tfh cells is induced by IL-21 and IL-27 which 

stimulates the migration to B cell follicles in secondary lymph nodes where they assist 

in the germinal centre reaction of B cells. Tfh cells are characterised by the expression 

of CXCR5 and PD-1 which are involved in follicular recruitment (192, 193). 

After pathogen clearance, the majority of antigen specific T cells die leaving behind a 

pool of long-lived memory cells. Central memory T cells (TCM) and effector memory T 

cells (TEM) are CD62LhighCD44high and CD62LlowCD44high, respectively and exist within 

each of the CD4+ or CD8+ subsets (194). The high expression of CD62L on TCM cells 

allow for preferential homing to secondary lymphoid organs where they proliferate in 

response to antigen and produce high numbers of new effector cells. Similarly, naïve T 

cells express high levels of CD62L, allowing for homing to the secondary lymphoid organ 

and increasing the likelihood of encounter with their specific antigen presented by APCs. 

On the other hand, low expression CD62L on TEM cells results in trafficking through 

nonlymphoid tissues at sites where reinfection could occur, therefore acting as ‘first 

responders’ where they display rapid effector function (e.g. granzyme B and IFNγ 

production) (182).  

1.11  T cell activation 

T cell activation is tightly regulated in order to prevent reactivity and damage to self-

tissue. As such, two or three signals are required for T cell activation, otherwise the T 

cell becomes unresponsive (anergic) and cannot develop an effector response (195). 

The first of these signals is TCR recognition of antigen presented by MHC molecules. 

CD8+ T cells recognise MHC I which are expressed on the surface of all cells except 

erythrocytes and present endogenously generated peptides, whilst CD4+ T cells 

recognise MHC II which are expressed by antigen presenting cells and present peptides 

derived from extracellular proteins. The second is the receipt of co-stimulatory signals 

generated by the engagement of CD28 on the surface of naïve T cells with its ligands 

B7-1 and B7-2 on APCs. B7-1 and B7-2 are constitutively expressed at low levels, 

however expression is upregulated during APC activation (196, 197). CD28 signalling 

induces a transcriptional program resulting in IL-2 production (a T cell proliferative 

factor) and expression of members of the TNF receptor superfamily, which promote the 

survival of proliferating T cells through the differentiation process when interacting with 

their specific con-stimulatory ligand on APCs (182, 198). Many costimulatory ligands 

required for T cell activation require activation of the APC before expression on its 
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surface. In the absence of this activation, T cell interactions with its specific antigen on 

resting APCs result in anergy and immune tolerance which is necessary to remove self-

reactive T cells and protect against autoimmunity (182). Therefore innate inflammatory 

signals are necessary to bridge the innate immune system with the adaptive.   

1.12  B cell overview 

B cells are responsible for the production of antigen-specific immunoglobulin 

(antibodies) directed against foreign antigens, which are secreted by terminally 

differentiated B cells known as plasma cells. B cell development begins in the BM with 

subsequent functional maturation occurring in the secondary lymphoid tissue. 

Additionally, as APCs, B cells are responsible for the initiation of T cell immune 

responses (199). 

1.13  ITP 

1.13.1 Definition and epidemiology 

Primary ITP is an acquired autoimmune disorder characterised by isolated 

thrombocytopenia (platelet count < 100x109/L compared to the normal range of 150-450 

x109/L in humans) due to the destruction of functionally normal platelets and impaired 

platelet production (200). Primary ITP can present as a bleeding phenotype, which is 

typically mild such as bleeding in skin and mucosal regions, however bleeding may also 

occur as a more life-threatening form such as in gastrointestinal or intracranial areas 

(200). ITP patients with platelet counts above 50 x109 /L rarely bleed (201), however a 

platelet count below this threshold is not necessarily a good prediction of bleeding 

tendency (202-204). Indeed, the majority of children with newly diagnosed ITP lack 

significant bleeding despite having a platelet count of < 50 x109 /L and therefore a ‘watch 

and wait’ policy is preferred by clinicians, where intervention to raise platelet count is 

based on symptoms rather than counts (205). Incidence of primary ITP is 2-5 per 

100,000 (206-208), and primary ITP patients can be classified as ‘newly diagnosed’ (< 

3 months) or ‘persistent’ (< 12 months) which is more common in children, as well as 

‘chronic’ (> 12 months) which is more common in adults (200, 209). The initiating events 

of primary ITP remain unclear, however the involvement of autoantibodies and 

autoreactive CD8+ T cells are strongly implicated in platelet destruction and impaired 

platelet production. 

In adults, primary ITP accounts for approximately 80% of ITP (210) and is the focus of 

this research. The remainder of ITP patients develop ITP secondary to another condition 

(termed ‘secondary ITP’) such as: other autoimmune disorders including systemic lupus 

erythematosus, antiphospholipid syndrome and thyroid disease; lymphoproliferative 
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disorders; chronic infection by infectious agents such as human immunodeficiency virus 

and Helicobacter pylori; and drug induced thrombocytopenia (211). Therapy for 

secondary ITP is different from primary ITP as it requires treatment of the underlying 

condition.  

However, there are suggestions that this distinction between primary and secondary ITP 

is somewhat outdated. Even in patients with primary ITP (hereafter referred to as ‘ITP’), 

there must be a triggering event that initiates the autoimmune response against platelet 

antigens (201). In other autoimmune diseases, infection is recognised as this trigger 

(212), however in ITP this is considered a secondary form. Furthermore, patients with a 

pre-existing autoimmune disease are more likely to develop ITP, suggesting that a 

dysregulated immune system may contribute to ITP disease progression. In light of this, 

Swinkels and colleagues (201) proposed a simplified model of ITP in which both loss of 

immune tolerance and exposure of platelet antigens (such as during infection) are 

required to induce ITP. Transient forms of ITP may develop if CD4+ T cell help is 

insufficient, which is required for the generation of a strong anti-platelet antibody 

response.  

1.13.2  Aetiology 

1.13.2.1 Autoantibodies 

In 1951, Harrington and colleagues transfused 5 L of whole blood or plasma from ITP 

patients into non-thrombocytopenic recipients (213). The majority of recipients 

developed transient (often dramatic) thrombocytopenia, demonstrating the presence of 

a ‘thrombocytopenic factor’ in the blood or plasma from ITP patients. It is now known 

that this ‘thrombocytopenic factor’ was a cocktail of autoantibodies specific for platelet 

glycoproteins or glycoprotein complexes. Approximately 60% of patients have 

detectable circulating autoantibodies (201). These are predominantly against platelet 

glycoprotein (GP) IIb/IIIa (~70%) and/ or the GP Ib-IX-V complex (~25%), whilst a 

minority are against GPIa-IIa or GPVI (214-216). The autoantibodies are generally of 

the IgG class, but IgA and IgM autoantibodies have also been reported (217). Plasma 

cells are found in the peripheral blood and BM, where they secrete platelet-reactive 

autoantibodies that bind to platelets and Mks (218).  

1.13.2.2 CD8+ T cells 

Autoantibodies cannot be detected in up to 40% of ITP patients (201), suggesting that 

alternative mechanisms of platelet destruction exist, independent of autoantibody 

mediated autoimmunity. This was demonstrated in the experiments performed by 

Harrington and colleagues, as not all blood or plasma from ITP patients caused transient 

thrombocytopenia in recipients (213). In these patients, platelet destruction is thought to 
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be driven by autoreactive CD8+ T cells (219), which are preferentially found in the spleen 

of ITP patients that do not respond to the B cell depleting antibody rituximab (220). CD8+ 

T cells are capable of directly lysing platelets (221, 222), triggering platelet apoptosis 

(222) and inhibiting Mk apoptosis (223). Similar to anti-GPIbα antibody binding 

(discussed in 1.13.2.4), CD8+ T cells are thought to trigger desialyation through sialidase 

translocation (224). However, the exact mechanism behind this remain elusive.  

1.13.2.3 Role of the spleen in ITP 

The spleen is the primary site of platelet destruction, and autoantibody production (225, 

226). Approximately 80% of ITP patients receiving a splenectomy have a raised platelet 

count to > 200 x 109 for at least one year (227). Splenic macrophages and dendritic cells 

bind opsonised platelets through their Fcγ-receptors (FcγRs), resulting in phagocytosis 

and destruction of the antibody-platelet complex (228). Following this, platelet antigens 

are presented to Th cells. ITP patients have an increased Th1/Th2 ratio, indicating a 

Th1 polarised immune response (229, 230). This is increased in patients with low 

platelet counts (231) and corrected following splenectomy or rituximab treatment (232, 

233). Splenic Tfh cell frequency is also increased in ITP, which drives B cell 

differentiation and autoantibody production (234).  

ITP patients also display decreased numbers and function of Tregs (235), which act to 

suppress T cell activation and proliferation, as well autoreactive B cells and T cells (189, 

236, 237). Treatment with corticosteroids and/or rituximab in responding patients helped 

to revert this phenotype (232, 238, 239).  

1.13.2.4 Platelet desialylation 

15-20% of ITP patients are refractory to first-line therapies such as immunosuppressive 

and immunomodulatory agents and even splenectomy (240, 241). Within this cohort, 

levels of platelet desialylation are increased (242), and platelet clearance is thought to 

occur independently of Fc mediated clearance via hepatocyte Ashwell-Morrell receptors 

(243). Platelet desialyation is triggered by anti-GPIbα, but not anti-GPIIb/IIIa through 

platelet activation causing surface expression of sialidase (243, 244). Anti-GPIbα 

antibodies bind to the GPIbα subunit of GPIb-IX, crosslinking platelets and unfolding its 

mechanosensory domain (MSD) under shear flow (245). In turn, the unfolding of the 

MSD leads to intracellular signalling events, including desialyation and platelet 

clearance. 

1.13.2.5 Impaired platelet production 

Platelet turnover studies have demonstrated that as well as increased platelet 

destruction, impaired platelet production contributes to the low platelet counts in ITP 

(246, 247). Mks express the common ITP autoantigens (GPIIb-IIIa and GPIb-IX) (248), 
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therefore Mks are similarly susceptible to humeral and cellular autoimmune responses. 

Additionally, autoantibodies have been visualised binding to Mks in BM of ITP patients 

(249). 

1.13.3 Immune thrombocytopenia treatment 

Newly diagnosed adults with a platelet count < 30x109/L who are asymptomatic or have 

minor mucocutaneous bleeding are typically managed with a low dose of corticosteroids 

such as prednisone or dexamethasone, which may be combined with IVIG (200). In 

contrast, a ‘watch and wait’ policy is preferred patients with a higher platelet count. 

Patients with persistent ITP who are corticosteroid dependent or unresponsive to 

treatment are typically treated with a TPO receptor agonist (TPO-RA) such as 

eltrombopag or romiplostim, however rituximab may be preferred if the patient wishes 

to avoid long term medication (200). For patients with chronic ITP, a combination of 

TPO-RA, splenectomy and rituximab is preferred according to the patient’s values and 

preferences (200, 250). 

1.14  Research aims  

This thesis aimed to explore how haematopoiesis is maintained under normal conditions 

and during ITP progression and had two overarching aims: 

1) To characterise the sources and roles of BM derived TPO in HSC self-renewal.  

This was achieved using murine BM and aided by using a panel of human BMSC 

clonal cell lines (Chapter 3). 

2) To characterise the immune and haematopoietic system using a murine model 

of sustained ITP.  

This was achieved by: 

a. Developing and characterising a murine model of sustained ITP (Chapter 

4). 

b. Studying the effect of ITP progression on the immune system using the 

model of sustained ITP (Chapter 5). 

c. Studying the effect of ITP progression on the haematopoietic system 

using the model of sustained ITP and human ITP patient BM aspirates 

(Chapter 6). 
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2 General materials and methods 

2.1 Cell culture 

2.1.1 Cell culture plasticware and reagents 

Tissue culture plates and pipettes were purchased from Sarstedt. Dulbecco’s Modified 

Eagle Medium (DMEM), and Opti-MEM Reduced Serum Medium were supplemented 

with 10,000 U/mL penicillin-streptomycin (PS), 200 mM L-glutamine (G) and trypsin-

EDTA (0.05%), all purchased from Life Technologies. Additionally, DMEM was 

supplemented with Fetal Bovine Serum (FBS) purchased from Hyclone. 

2.1.2 Cell line culture conditions 

Immortalised human BMSC clonal lines (Y101, Y102, Y201, Y202, Y204, Y205, Y301, 

Y302) were generated by James et al (251). This was achieved by using a lentiviral 

expression system to overexpress human telomerase reverse transcriptase (hTERT) in 

primary BMSCs which were derived from one donor to protect against inter-donor 

variation. Clonal lines were derived from single-cell-derived colonies and were selected 

for their strong clonal and stable growth characteristics. Clonal lines were used between 

passage 50-100. 

BHK-IL3 and BHK-TPO are baby hamster kidney fibroblasts transfected to overexpress 

IL-3 and TPO respectively (55), which is used as a recombinant source of IL-3 and TPO 

protein in cell culture assays. HepG2 cells are a hepatocellular carcinoma cell line and 

were purchased from ATCC. 

All cell lines were incubated at 37 ⁰C in a humidified atmosphere of 5% CO2 in DMEM 

supplemented with 10% FBS, 1% PSG. All cells were plated at 70% confluency and 

were passaged at ~90% confluency. Media change was twice a week.  

2.2 RNA isolation 

2.2.1 Cells: RNeasy mini kit 

Total RNA was isolated using the RNeasy Mini Kit (QIAGEN) as instructed by the 

manufacturer. Cells were lysed in buffer RLT + 10 µL/ml β- mercaptoethanol and stored 

at -80 ⁰C until use.  

Thawed samples were vortexed thoroughly and mixed with 1 volume of 70% ethanol. 

This was then loaded onto an RNeasy spin column and centrifuged for 15 sec at 8,000 

g. Contaminating gDNA was digested with DNase I in Buffer RDD (QIAGEN) for 20 min 

at room temperature. Samples were washed with Buffer RW1, followed by centrifugation 

for 15 sec at 8,000 g. Samples were then washed twice with Buffer RPE, followed by a 

final centrifugation for 2 min at 8,000 g to dry the membrane and ensure that no ethanol 
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was carried over during RNA elution. RNA was eluted from the membrane by the 

addition of RNase-free water and collected by centrifugation at 8,000 g for 1 min. RNA 

concentration was quantified using a Nanodrop 2000 Spectrophotometer 

(ThermoScientific) and purity indicated by the A260/A280 ratio. An absorbance of ~2.0 

was accepted as “pure” for RNA. 

2.2.2 Whole organs: Trizol plus miRNAeasy mini kit 

Total RNA was isolated using the miRNeasy Mini Kit (QIAGEN). Tissue was lysed in 

700 µL QIAzol Lysis Reagent with thorough vortexing and pipetting for disruption and 

homogenisation. Samples were stored at -80 ⁰C until required.  

Thawed samples were incubated at room temperature for 5 min before proceeding with 

RNA isolation. 200 µL chloroform was added and the tube vigorously shaken for 15 sec, 

followed by incubation at room temperature for 3 min. Samples were centrifuged for 15 

min at 12,000 g (4 ⁰C) for phase separation. The aqueous phase RNA containing phase 

was transferred to a separate collection tube and mixed with 1.5 volumes of 100% 

ethanol, which was then loaded onto an RNeasy spin column and centrifuged for 15 sec 

at 8,000 g. Contaminating gDNA was digested with DNase I in Buffer RDD (QIAGEN) 

for 20 min at room temperature, which were then washed with Buffer RW1, followed by 

centrifugation for 15 sec at 8,000 g. Samples were then washed twice with buffer RPE, 

followed by a final centrifugation for 2 min at 8,000 g to dry the membrane and ensure 

no ethanol is carried over during RNA elution. RNA was eluted from the membrane by 

the addition RNase-free water and collected by centrifugation at 8,000 g for 1 min. As 

an alternative to quantification using the Nanodrop, the Qubit RNA HS Assay Kit 

(Molecular Probes) was used to determine the RNA concentration of samples as per the 

manufacturer’s instructions. This is because components of the QIAzol Lysis Reagent 

such as phenol strongly absorbs near 280 nm, and so can give inaccurate readings. The 

Qubit RNA HS Assay Kit relies on ability of fluorescent binding dyes rather than 

absorbance to quantify RNA concentration, and is therefore tolerant of contaminants.  

2.2.3 Sorted cells: Manual QIAzol method 

Cells were sorted directly into 700 µL QIAzol Lysis Reagent and immediately placed on 

ice until the sample could be stored at -80 ⁰C. Thawed samples were incubated at room 

temperature for 5 min before proceeding with RNA isolation. 200 µL chloroform was 

added and the tube vigorously shaken for 15 sec, followed by incubation at room 

temperature for 3 min. Samples were centrifuged for 15 min at 12,000 g (4 ⁰C) for phase 

separation. The aqueous phase RNA containing phase was transferred to a separate 

collection tube, with 10 µg of glycogen (Invitrogen) added as a carrier. 1.5 volumes of 

100% isopropanol was mixed with the sample and incubated for 10 min at 4 ⁰C, followed 
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by centrifugation at 12,000 g (4 ⁰C) for another 10 min. The supernatant was removed 

with a micropipettor and washed with 1 ml of 75% ethanol, followed by centrifugation at 

7500 g (4 ⁰C) for 5 min. The supernatant was aspirated with a micropipettor and then air 

dried for 10 min. RNase-free water was added to solubilise the RNA pellet, followed by 

incubation at 60 ⁰C for 10 min. The Qubit RNA HS Assay Kit (Molecular Probes) was 

used to determine the RNA concentration as described previously. 

2.3 Reverse transcription polymerase chain reaction 

2.3.1 High input (cells/whole organs): High Capacity Reverse 

Transcription Kit 

cDNA was derived from total RNA of cell lines using High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems). RNA, 10X RT Buffer, 10X RT Random Primers, 

25X dNTP Mix (100 mM) and Multiscribe Reverse Transcriptase (50 U/µL) were 

combined in a sterile 0.2 mL polymerase chain reaction (PCR) tube and incubated at 25 

⁰C for 10 min, 37 ⁰C for 120 min and terminated by heating to 85 ⁰C for 5 min. Samples 

were then cooled to 4 ⁰C. 

2.3.2 Low input (sorted cells): Superscript IV 

cDNA was derived from total RNA of sorted cells and whole tissue using SuperScript IV 

First-Strand Synthesis System (ThermoFisher Scientific). RNA, 10 mM dNTP mix and 

50 µM random hexamers were heated together in a sterile 0.2 mL PCR tube at 65 ⁰C 

for 5 min, and then incubated at 4 ⁰C for 2 min. A 2X reaction mastermix was prepared 

by combining 5x SSIV Buffer, 100 mM DTT, RNaseOUT Recombinant RNase Inhibitor 

and Superscript IV Reverse Transcriptase (200 U/µL), and combined with the annealed 

RNA. The samples were heated to 23 ⁰C for 10 min, 53 ⁰C for 10 min and terminated by 

heating to 80 ⁰C for 10 min. Samples were then cooled to 4 ⁰C. 

2.4 Mouse models 

All mouse strains were developed on the C57/Bl6 background apart from the NSGSGM3 

mouse strain which was developed on a NOD background. Male and female mice were 

used between 8-12 weeks of age. 
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Table 1. Mouse models 

Mouse Strain Method of Generation Phenotype 

Cxcl12DsRed/+   A DsRed Express 2-

polyA-Frt-Neo-Frt 

cassette was inserted 

into exon 2 of Cxcl12 

to identify Cxcl12 

expressing cells in the 

BM (45). 

Cxcl12DsRed/+  mice have no known effects 

on the haematopoietic system (45). 

Cxcl12DsRed/ DsRed mice were not born alive, 

as CXCL12 is required for perinatal 

survival (252). 

Thpo-/- The insertion of a neor 

cassette removed 23 

amino acids of the 

third coding exon of 

Thpo (253). 

Thpo-/- mice have a > 80% decrease in Mk 

and platelet number, as well as an age 

progressive loss of HSCs (142, 253). 

 

FcRγ-/- The insertion of the 

poly(A) trap vector 

pMC1-neo into exon 2 

of the γ subunit gene 

which generated a 

premature stop codon 

(254). 

FcRγ-/- mice do not express FcγRI, FcγRIII 

and FcγRIV as the γ subunit is required 

for their surface expression and 

consequently cannot phagocytose 

opsonised antigens (254). 

Rag2-/- The replacement of a 

0.85 kb segment of 

the Rag-2 gene with 

the poly(A) trap vector 

pMC1-neo gene 

generated a 

premature stop codon 

and preventing V(D)J 

recombination  (255). 

Rag2-/- have an absence of mature B and 

T cells. 

NSG-SGM3 NOD.scid.Il2Rγcnull 

(NSG) mice were 

created by crossing a 

NOD/LtSz-scid mouse 

with a B6-Il2Rγnull 

mouse. NSG mice 

were bred with 

NSG mice have multiple defects in 

adaptive and innate immunity. NOD/Lt 

mice are deficient in NK cells and have an 

absence of circulating complement and 

defects in the differentiation and function of 

antigen presenting cells such as 

macrophages (257). Mice homozygous for 
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NOD/LtSz-scid mice 

engineered to express 

human Kitl, CSF2 and 

IL3 to generate the 

NSG-SGM3 strain 

(256). 

the severe combined immunodeficiency 

(scid) mutation lack functional B and T 

cells (258). Therefore NOD/LtSz-scid mice 

have multiple defects in adaptive as well as 

innate immunity. However, NOD/LtSz-scid 

mice have some residual NK activity (259), 

therefore hindering engraftment efficiency. 

The IL-2 receptor γ chain is indispensable 

for IL-2, IL-4, IL-7, IL-9 and IL-15 

signalling, therefore the B6-Il2Rγnull mouse 

has no NK cells and a decreased number 

of B and T cells (260, 261).  

The expression of the human transgenes 

by NSG-SGM3 aids the stable engraftment 

of human CD34+ cells. 

B6- W41/W41-

CD45.1 

The W41 mutation was 

generated by the V to 

M (position 831) point 

mutation in the kinase 

domain of c-Kit, 

affecting c-Kit activity 

(262). 

B6- W41/W41-CD45.1 mice support the 

engraftment of murine HSCs with reduced 

(sub-lethal) or no host irradiation (263-

265). c-kit is required for normal 

haematopoiesis; B6- W41/W41-CD45.1 

mice have mild anaemia arising from the 

mutated c-Kit expressed in haematopoietic 

populations (262). 

 

2.4.1 Genotyping 

Genomic DNA (gDNA) was isolated from ear notches using the Gentra Puregene Mouse 

Tail Kit (QIAGEN) as described by the manufacturers and the DNA dissolved in 50 µL 

DNA Hydration Solution at 65 ⁰C for 1 h. 

Polymerase chain reaction (PCR) was performed using the HotStarTaq DNA 

polymerase Kit (QIAGEN). A final concentration of 1X Q Solution, 1X PCR Buffer, 2.5 

mM MgCl2, 0.25 µM of forward and reverse primer, 0.200 µM of each dNTP and 0.625 

U HotStarTaq DNA polymerase was made up with PCR grade water in a sterile 0.2 mL 

PCR tube. The PCR reaction was initiated at 95 ⁰C for 15 min, followed by 30 cycles of 

denaturation (94 ⁰C for 1 min), annealing (variable temperature; see Table 2 for 1 min) 

and extension (72⁰ C for 1 min) followed by a final extension (72 ⁰C for 10 min). Amplified 

product was run on an agarose gel for 40 min at 100 V. 



28 
 

Table 2. Genotyping primer sequences and annealing temperatures 

 

2.5 Tissue Processing 

2.5.1 Bleeds 

2.5.1.1 Blood sampling 

Mice were placed in an induction chamber and exposed to 5% isoflurane for induction, 

followed by 1-2% for maintenance thereafter. Anesthetised mice were restrained in a 50 

mL falcon tube head first and their hind leg shaved with clippers to expose their 

saphenous vein. A thin layer of Vaseline (Unilever) was applied to prevent blood from 

seeping into the fur and allow for blood drop formation. A 25 g needle was used to 

puncture the saphenous vein at a 90 ⁰ angle, and the blood collected into EDTA-coated 

tubes (BD Biosciences). An appropriate amount of blood was removed (approximately 

20 µL complete blood counts (CBCs) analysis, approximately 50 µL for flow cytometry 

analysis). Afterwards, blood flow was stemmed by applying pressure to the wound site 

with blue roll. 

2.5.1.2 Cardiac puncture 

Cardiac puncture was the preferred method of whole blood isolation when required for 

plasma isolation, as this avoids the rupture of major vessels and is considered to result 

in minimal platelet and endothelial activation, thereby protecting against the release of 

clotting factors into the plasma (266). A 1 mL syringe with a 25G 5/8 needle attached was 

preloaded with 100 µl ACD buffer (SLS). Mice were administered an overdose of 

anaesthesia by intraperitoneal injection. After confirmation of insentience, the mice were 

placed in dorsal recumbency and cut through the rib cage to expose the heart, with care 

taken not to severe any major blood vessels. The needle was inserted into the heart and 

plunger retracted until 500 µL blood was aspirated. Cervical dislocation was performed 

as a tertiary method of euthanasia. Isolated blood was centrifuged at 8,000 g for 10 min 

and the supernatant (platelet poor plasma) collected and stored at -80 ⁰C. 

Gene Sequence Size 

(bp) 

Annealing 

Temperature (⁰C) 

DsRed 

Express-2 

F-5’-AAGAAGCCCGTGAAGCTGC-3’ 

R-3’-TCCTCGTTGTGGGAGGTGAT-3’ 

~90 60 

Thpo (WT) F-5’- GTCGACCCTTTGTCTATCCCT-3’ 

R-5’- GGTGAATGTAACCTGGGATAA-3’ 

~300 60 

Thpo 

(Neor) 

F-5’- TAGCCAACGCTATGTCCTGATA-3’ 

R-5’- AAGTATCCATCATGGCTGATG-3’ 

~350 58 
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2.5.1.3 Brachial bleed 

Brachial bleed was the preferred method of whole blood collection for FACS analysis 

when combined with a peritoneal wash, as it is quick to perform and avoids the use of 

the peritoneal cavity to deliver anaesthesia. Mice were administered with an overdose 

of anaesthesia (1:1 ratio of medetomidine and ketamine) by subcutaneous injection. 

After confirmation of insentience, the brachial artery was severed and blood collected 

into 3 ml ACD buffer. Cervical dislocation was performed as a secondary method of 

euthanasia.  

2.5.2 Primary cell isolation 

Cells from femurs, tibia, pelves and humeri were isolated and pooled for downstream 

analysis to 1) protect against intra-BM cellular composition variation, 2) increase the 

yield of starting material. To isolate haematopoietic cells, BM was flushed with ~7 mL 

2%FBS/PBS for femurs and pelves and ~3 mL for tibia and humeri using a 25 G 5/8 

needle attached to a 10 mL syringe, flushing into a 50 mL falcon tube.  

To isolate BMSCs, BM was also flushed as previously described. Additionally, leftover 

bones were cut into small pieces and digested with DMEN supplemented with 200 U/ml 

collagenase IV and 200 U/ml DNase I for 30 min at 37 °C with gentle agitation. Flushed 

haematopoietic cells were added to the bone digestion mix. All BM cells (haematopoietic 

and BMSCs) were passed through a 19 G needle to mechanically dissociate cells from 

BM plugs, with the resultant single cell suspension passed through a 70 µM cell strainer 

(Greiner bio-one). The cell strainer was washed with 2%FBS/PBS and the flow-through 

collected for downstream analysis. 

The spleen was homogenised by crushing with a plunger flange of a syringe into a 70 

µM cell strainer. The cell strainer was washed with 2%FBS/PBS and the flow-through 

collected for downstream analysis. 

Red blood cells were lysed in ACK lysing buffer (Gibco), followed by a PBS wash. 

2.6 Cell preparation for flow cytometry analysis 

For FACS analysis, cells were stained with one of the following viability dyes for 10mins 

at 4 ⁰C according to the manufacturer’s instructions: Zombie Aqua Fixable Viability 

Kit/Zombie Violet Fixable Viability Kit (Biolegend) or Fixable Viability Dye eFluor 780 

(eBioscience). Cells were washed in 1×PBS supplemented with 0.5% BSA and 2mM 

EDTA (FACS buffer) and then stained Mouse TruStain FcX (101320, Biolegend)/ 

Human TruStain FcX (422302, Biolegend) for 20 min at 4 ⁰C. Mouse committed 

progenitors were not stained with Mouse TruStain FcX, as the panel relies on the 

detection of CD16/32, which are the same receptors the Mouse TruStain FcX blocks. 
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Table 3. FACS antibody information 

Company Antibody 
Catalogue 

Number 
Clone Dilution 

Biolegend Anti-mouse CD115-PE 135506 AFS98 1:200 

Biolegend Anti-mouse CD115-PE/Dazzle 594 135528 CSF-1R 1:200 

Biolegend Anti-mouse CD117-BV421 105828 2B8 1:200 

Biolegend Anti-mouse CD150-BV605 115927 TC15-12F12.2 1:200 

Biolegend Anti-mouse CD11b-APC 101212 M1/70 1:500 

Biolegend Anti-mouse CD16/32-PE/Cy7 101318 93 1:200 

Biolegend Anti-mouse CD19-PE 115507 605 1:200 

Biolegend Anti-mouse CD25-PE 101903 RMPI-30 1:200 

eBioscience Anti-mouse CD31-FITC 11-0311-82 390 1:100 

eBioscience Anti-mouse CD34-FITC 11-0341-82 RAM34 1:250 

Biolegend Anti-mouse CD4-APC/Cy7 100526 RM4-5 1:200 

Biolegend Anti-mouse CD41-PE 133906 MReg30 1:100 

Biolegend Anti-mouse CD44-FITC 103006 1M7 1:200 

Biolegend Anti-mouse CD45-APC/Cy7 103116 30-F11 1:50 

Biolegend Anti-mouse CD45.1-BV650 110735 A20 1:200 

Biolegend Anti-mouse CD45.1-PE/Cy7 110730 A20 1:200 

Biolegend Anti-mouse CD45.1-PE 110708 A20 1:200 

Biolegend Anti-mouse CD45.2-Alexa Fluor 488 109816 104 1:200 

Biolegend Anti-mouse CD45.2-Alexa Fluor 700 56-0454-82 104 1:200 

Biolegend Anti-mouse CD48-PE/Cy7 103423 HM48-1 1:400 

Biolegend Anti-mouse CD62L-PE/Cy7 104417 MEL-14 1:200 

Biolegend Anti-mouse CD8a-APC 100711 53-6.7 1:200 

Biolegend Anti-mouse CXCR5-APC 145505 L13857 1:200 

Biolegend Anti-mouse F4/80-PE 123110 BM8 1:500 

Biolegend Anti-mouse FOXP3-Alexa Fluor 647 126407 MF-14 1:200 

Biolegend Anti-mouse GranzymeB-PE/Cy7 372213 QA16A02 1:200 

Biolegend Anti-mouse IL17α-PE/Cy7 506921 TC11-18H10.1 1:200 

Biolegend Anti-mouse IL2-PE 503807 JES6-5H4 1:200 

Biolegend Anti-mouse IL4-PE/Dazzle594 504131 11B11 1:200 

Biolegend Anti-mouse IFNγ-FITC 505806 XMG1.2 1:200 

BD Pharmingen Anti-mouse Lineage Cocktail-PerCP-

Cy5.5 

51-9006964 145-2C11, M1/70, RA3-

6B2, TER-119, RB6-8C5 

1:25 

Biolegend Anti-mouse Ly6C-BV605 128036 HK1.4 1:500 

Biolegend Anti-mouse Ly6G-PE/Cy7 127618 1A8 1:500 

Biolegend Anti-mouse MHC II-Alexa Fluor 700 107622 M5/114.15.2 1:500 

Biolegend Anti-mouse Sca1-APC 105828 2B8 1:200 

Biolegend Anti-mouse TCRβ-PerCP/Cy5.5 109227 H57-597 1:200 

Biolegend Anti-mouse TNFα-BV421 506327 MP6-XT22 1:200 

Biolegend Anti-human CD34-APC 343608 561 1:25 

BD Biosciences Anti-human CD38-BB515 564499 HIT2 1:25 

Biolegend Anti-human CD34-APC 343608 561 1:25 

Biolegend Anti-human CD45RA-PerCP/Cy5.5 304121 HI100 1:25 

ThermoFisher Goat anti-Rat Alexa Fluor 488 A-11006 [polyclonal] 1:500 

ThermoFisher Goat anti-Rat Alexa Fluor 647 A-21247 [polyclonal] 1:500 

R&D Systems LepR AF497 [goat polyclonal] 1:100 
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2.7 Tissue processing for imaging 

2.7.1 Pre-freezing steps 

Femurs were collected and epiphyses removed using a scalpel. Bones were processed 

by the sequential incubation at 4 ⁰C: 4% (v/v) PFA/PBS for 24 h, 10% (v/v) EDTA/PBS 

for 24 h, 20% (w/v) sucrose/PBS overnight. Livers were processed by the sequential 

incubation at 4 ⁰C: 4% (v/v) PFA/PBS for 24 h, and 20% (w/v) sucrose/PBS overnight. 

After drying, tissue was embedded in OCT (VWR) and snap frozen in a dry ice/100% 

ethanol slurry and stored at -80 °C until sectioning. 

2.7.2 Sectioning 

A Bright OTF500 cryostat equipped with tungsten carbide blades was used for 

sectioning, with sections cut at 12 μm. Superfrost Plus slides (ThermoFisher Scientific) 

were numbered as they were used to capture the generated sections, allowing the 

identification and comparison of sections of a similar longitudinal plane from different 

samples. Sections were allowed to dry for approximately 30 min at room temperature, 

during which they were inspected under a light microscope. Sections that were folded 

or torn were discarded. Slides were stored at -80 °C until staining. 

2.8 H&E staining 

Slides were allowed warm to room temperature for approximately 30 min. Next, slides 

were submerged in distilled water for 3 min, then in filtered Harris haematoxylin for 5 

min to stain the nuclei. Slides were then washed in running tap water for 10 min to blue 

the haematoxylin. They were then differentiated in 1% (v/v) hydrochloric acid/70% 

ethanol for 5 sec, washed in tap water briefly and then submerged in 0.1% eosin for 30 

sec to stain proteins. After washing in tap water briefly, slides were dehydrated in 

increasing concentrations of ethanol for 30 sec each: 50%, 70%, 90% and 100%. 

Afterwards the slides were submerged in Histoclear for 1 min, before mounting in DPX 

(Sigma-Aldrich). 
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3 The sources and roles of thrombopoietin in 

haematopoietic stem cell niche self-renewal 

3.1 Introduction 

TPO is a critical cytokine in blood homeostasis. Acting through its receptor, MPL, TPO 

is both the primary regulator of megakaryopoiesis and a crucial factor required for the 

maintenance of HSCs. The majority of TPO is produced by the liver and travels to the 

BM as a soluble plasma protein. However, numerous groups have shown that low 

concentrations of TPO is also produced in the in the BM (150, 159, 161, 163, 164), 

where cells capable of responding to conditions of thrombocytopenia or HSC stress by 

upregulating TPO production in a paracrine fashion are likely to be significant regulators 

of platelet production and HSC maintenance (148, 149, 160, 165).  

Since the cloning and isolation of TPO over 25 years ago, huge advances have been 

made in characterising the BM niche, and determining which cells are critical for HSC 

maintenance. Despite this work, the identification of TPO producing cells has remained 

a challenge due to the combination of low expression and the lack of reliable TPO 

specific antibodies. Illustrating this, TPO producing cells were not identified by 

immunofluorescence microscopy using an anti-TPO antibody until ten years after THPO 

expressing cells were identified in human bone marrow using in situ hybridisation. In 

2007, Yoshihara and colleagues identified osteoblasts as key TPO-producing 

components of the endosteal HSC niche in mice (161). As osteoblasts are mature, 

terminally differentiated cells from multipotent mesenchymal stromal cells (267, 268), 

this discovery suggested that TPO producing cells may exist across the mesenchymal 

lineage, therefore supporting earlier research showing that BMSCs produce TPO.  

In 2014, the first use of a commercially available anti-TPO antibody was used to show 

that paracrine production of TPO also occurs at the vascular HSC niche, with Mks being 

the key players (163). Strong TPO staining was observed in Mks, with weaker staining 

observed in bone lining cells (taken to be osteoblasts). Notably, despite the authors 

reporting that BMSCs produce comparatively more Thpo than osteoblasts, they did not 

show any BMSC TPO staining at the protein level.  

As TPO-expressing BMSCs have not been previously identified in situ, we set out to 

bridge this missing gap using the commercially available antibody used by Nakamura-

Ishizu and colleagues (163). As BMSCs are a heterogeneous population of cells with 

varying stemness (differentiation potential and self-renewal), HSC support and 

immunomodulatory capacity, it is likely that only subsets produce TPO. I found that, 

BMSCs exhibited heterogeneous Thpo expression, however, in contrast with findings 
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from some previous studies (163, 164), Mks did not express any Thpo. The results also 

indicate that long awaited commercially available anti-TPO antibody is non-specific, 

questioning some previous studies. 

3.2 Materials and methods 

3.2.1 Immunofluorescence microscopy 

Samples were permeabilised in 0.1% (v/v) Triton X-100/PBS for 10 min, and then 

washed in PBS. The slides were blocked in 10% (v/v) goat serum in 0.1% (v/v) tween-

20/PBS (PBST) for 1 h. All primary antibodies used at 1:100 dilution and were as follows: 

anti-TPO rabbit (bs-10407R; Bioss), anti-CD41 rat (553847; BD Pharmingen) with the 

following isotype controls: rabbit IgG (AI-1000, Vector) and rat IgG1 κ (400401; 

Biolegend). Antibodies were used in 10% (v/v) goat serum/ PBST overnight at 4 °C. 

Samples were washed three times in PBST and incubated for 1 h at room temperature 

in the dark with secondary antibodies. All secondary antibodies were used at 1:500 

dilution and were as follows: goat anti-rabbit IgG-Alexa Fluor 647 (A-21245; 

ThermoFisher) and goat anti-rat IgG-Alexa Fluor 568 (A11077, Molecular Probes). The 

slides were washed three times in PBST and stained with DAPI (0.5 μg/ml, 40833; Cell 

Signalling) for 5 min. After rinsing in PBS, slides were mounted in Mowiol 4-88. 

3.2.2 Fluorescence-activated cell sorting  

3.2.2.1 Megakaryocytes 

Haematopoietic BM cells were isolated as described previously (2.5.2), however a 100 

µM filter (Greiner bio-one) was used instead of a 70 µM filter due to the larger size of 

Mks. Lineage positive cells were depleted using the Lineage Cell Depletion Kit (Miltenyi 

Biotec) and magnetic activated cell sorting (MACS) according to the manufacturer’s 

instructions. MACS was carried out in PBS supplemented with 0.5% BSA and 2 mM 

EDTA (MACS buffer). Lineage negative cells were collected and stained with Mouse 

TruStain FcX in MACS buffer for 20 min at 4 ⁰C, followed by staining with anti-CD41-PE 

for 20 min at 4 ⁰C. Specific antibody information is found in Table 3. Stained cells were 

washed three times with MACS buffer and resuspended in MACS buffer. DAPI (Cell 

Signalling) was added at a final concentration of 1 μg/ml immediately before sorting to 

exclude dead cells. Cells were sorted using a MoFlo Astrios sorter equipped with a 100 

µM nozzle (Beckman Coulter); Summit Version 6 was used for gating. Cells were sorted 

directly into 700 µL QIAzol at 4 ⁰C. 

3.2.2.2 Bone marrow stromal cells 

BMSCs were isolated as described previously (2.5.2). Cells were stained with Mouse 

TruStain FcX in FACS buffer for 20 min at 4 ⁰C, followed by staining with primary 
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antibodies in FACS buffer for 20 min at 4 ⁰C. To isolate Cxcl12DsRed/+ BMSCs, BM was 

stained with CD31-FITC and CD45-APC/Cy7; to isolate LepR+ BMSCs, BM was stained 

with CD45-APC/Cy7 and LepR (unconjugated). After washing three times in FACS 

buffer, LepR+ BMSCs were additionally stained with donkey anti-goat IgG-Alexa Fluor 

647 for 20 min at 4 ⁰C, followed by a further three washes. Specific antibody information 

is found in 2.6. DAPI was added at a final concentration of 1 μg/ml immediately before 

sorting to exclude dead cells and cells were sorted using a MoFlo Astrios sorter 

equipped with a 90 µM nozzle (Beckman Coulter); Summit Version 6 was used for 

gating. Cells were sorted directly into 700 µL QIAzol at 4 ⁰C. 

3.2.3 Cultured megakaryocyte isolation by magnetic-activated cell sorting 

Haematopoietic BM cells were isolated as described previously (2.5.2). Cells were 

cultured in Opti-MEM Reduced Serum Medium (Gibco) containing 3% (v/v) TPO 

conditioned media and 3% (v/v) IL-3 conditioned media for 72 h. IL-3 and TPO 

supernatant was obtained by previously collecting the conditioned media generated by 

culturing BHK-IL3 and BHK-TPO cells respectively for 48 h and then stored at -20 ⁰C 

until use. Mature Mks were harvested by low speed centrifugation (100 g for 5 min) and 

enriched for by passing the culture through a discontinuous bovine serum albumin (BSA) 

density gradient (0%/2%/4% w/v). Enriched Mks settled to the bottom within 30 min as 

determined by visual inspection using a light microscope. The Mk containing fraction 

was then incubated with Accutase (STEMCELL) for 10 min at 37 °C to detach 

contaminating cells from Mks. Cells were pelleted and re-suspended in MACS buffer 

followed by staining with CD41-PE antibody for 20 min at 4 ⁰C (2.6). Stained cells were 

washed in MACS buffer, followed by staining with anti-PE microbeads (1:10 dilution, 

130-048-801; Miltenyi Biotec) in MACS buffer for 20 min at 4 ⁰C which were separated 

from unstained contaminating cells using an EasySep Magnet (18000; STEMCELL 

Technologies), where stained cells are selectively retained after inversion. The 

separation was performed four times with thorough washes to achieve maximal purity. 

For downstream mRNA analysis, Mks were lysed in 700 µL QIAzol and stored at -80 ⁰C. 

The purification process was assessed by flow cytometry and microscopy analysis of 

cytospin slides. To generate cytospin slides, Mks were cytospun at 18 g for 5 min 

followed by fixation in 4% paraformaldehyde for 5 min. Slides were stored at -80 ⁰C until 

use. 

3.2.4 Real-time polymerase chain reaction 

All reagents and equipment used were purchased from Applied Biosystems. Singleplex 

qPCR was performed using cDNA generated from human cell lines. The following 

reagents were added to the combined mastermix in the ratio 10:1:7; TaqMan Fast 
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Advanced MasterMix, gene expression assay and RNase-free water. The gene 

expression assays used were THPO (Hs01061346_m1) or HGPRT (Hs99999909_m1). 

Duplex qPCR was performed using cDNA generated from sorted mouse cells and 

homogenised whole tissue. The following reagents were added to the combined 

mastermix in the ratio 10:1:6; TaqMan Fast Advanced MasterMix, gene expression 

assay and RNase-free water. The gene expression assays used were Thpo 

(Mm00437040_m1) or Hprt (Mm03024075_m1). 2 μl of cDNA and 18 μl of the combined 

master mix, gene expression assay and water were added to each well of a MicroAmp 

Fast 96-well reaction plate. 

Each sample was prepared in triplicate. The plates were run using the StepOne Plus 

Realtime PCR System (Applied Biosystems).  Data was exported into Microsoft Excel 

and fold change was calculated using the delta-delta method where ratio=2-∆∆CT(269). 

THPO or Thpo gene expression was determined as fold induction over HepG2 cells or 

WT liver, respectively. The amplified product was run on a 3% (w/v) agarose/tris-

acetate-EDTA (TAE) gel stained with 5 mg/mL ethidium bromide and GeneRuler 1kb 

DNA Ladder Plus (Fermentas) was used as a DNA ladder. 

3.2.5 Acute immune thrombocytopenia mouse model 

WT or Cxcl12DsRed/+ mice were bled (2.5.1.1) to obtain baseline platelet counts. Mice 

were administered unconjugated anti-CD41 antibody (2.6) to induce haematological 

stress by acute thrombocytopenia induction, or PBS to act as a control, via a single 

intraperitoneal injection. Mice were bled 24 and 48 h after injection. After the 48 h bleed, 

mice were sacrificed and BMSCs FACS sorted for downstream qPCR analysis. 

3.3 Results 

3.3.1 Published thrombopoietin antibody is non-specific 

To determine whether murine BM is a site of local TPO production, and if so, to identify 

the TPO expressing cells, immunofluorescence microscopy was performed using the 

commercially available anti-TPO antibody (bs-10407R) which was used by Nakamura-

Ishizu and colleagues to demonstrate that BM Mks produce TPO (163). As the liver is 

the major source of TPO (55, 57, 147, 148), WT and Thpo-/- liver served as important 

controls for primary antibody specificity, whilst IgG controls were used to account for 

non-specific interactions from the secondary antibody. When comparing the pattern and 

intensity of TPO staining between sections generated from WT and Thpo-/- liver (Figure 

3.1), I found that the images were similar, suggesting that the primary antibody was non-

specific. This was not due to non-specific staining from the secondary antibody due to 

a complete absence of staining when using isotype controls at the same concentration.  
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Despite the indication using liver that the primary antibody was non-specific, WT and 

Thpo-/- BM was then also stained in order to determine whether a similar pattern of 

staining was achieved as Nakamura-Ishizu and colleagues (163, 164). Diffuse staining 

was observed throughout the BM with brighter staining observed with Mks (Figure 3.2A-

B), which was similarly observed between both WT and Thpo-/- BM, albeit fewer cells of 

bright TPO staining (Mks) in Thpo-/- BM. This is to be expected given the essential role 

of TPO in megakaryopoiesis and the subsequent low numbers of mature Mks in Thpo-/- 

BM (253). Again, no background staining was observed in BM staining with isotype 

controls.  
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Figure 3.1. bs-10407R is non-specific. A) WT, and B) Thpo-/- liver were stained with bs-10407R and 
AF647 secondary antibody. C) WT, and D) Thpo-/- liver were stained with a rabbit isotype control and AF647 

secondary antibody. All images are representative images from N = 3 mice, representative of 3 independent 
experiments. 
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Figure 3.2. Staining pattern of WT BM with bs-10407R is consistent with images generated by 
Nakamura-Ishizu et al. A) WT, and B) Thpo-/- femur BM were stained with bs-10407R and AF647 
secondary antibody. Strong TPO staining is seen by Mks, identified by CD41 staining. C) WT, and D) Thpo-

/- femur BM were stained with a rabbit isotype control and AF647 secondary antibody. All images are 

representative images from N = 3 mice, representative of 3 independent experiments. 
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3.3.2 Megakaryocytes do not express Thpo  

Next Mks were isolated to determine whether they transcribe Thpo, and therefore to 

clarify whether the bs-10407R primary antibody was non-specific. As mature Mks are 

large (mean diameter ~ 25 µm (270)), fragile cells, isolation by methods other than FACS 

sorting are often used as there is a tendency for Mks to become ruptured during the 

sorting process (271). Instead, researchers can purify them from other BM cells by 

exploiting their physical properties (as large, dense cells). Mks can be enriched using a 

density gradient (271) and optionally further enriched using their specific markers (272). 

As Mks represent less than 1% of BM cells, the proportion of mature Mks were expanded 

by culturing flushed BM with BHK-TPO for 72 h, therefore driving megakaryopoiesis. 

After 72 h the cultured BM was harvested and passed through a discontinuous BSA 

density gradient, with the enriched Mk containing fraction being further enriched for Mks 

via a MACS sort. The increasing purity of Mks isolated at each stage of the purification 

process is shown by Figure 3.3. Figure 3.3Ai-iii shows the FSC-H vs Log SSC-H plots 

of the events passing through the flow cytometer; with increasing purity, a lower 

percentage of total events were intact cells due to Mks breaking apart. Therefore, it is 

likely that the 82.6% purity shown in Figure 3.3Aiv is an underrepresentation of Mk purity 

that was used for downstream analysis as only the smaller Mks and non-Mk 

contaminants survived to analysis. The cells that stained positive for CD41 were the 

largest, most granular cells analysed (Figure 3.3Av), which is in keeping with the known 

phenotype of Mks and therefore giving further confidence that the cells isolated were 

highly purified, mature Mks.  

To visually inspect the purified Mks, and to confirm co-localisation with the bs-10407R 

antibody and an anti-CD41 antibody the cells were cytospun onto a glass slide and 

stained. It was unclear at the time whether the CD41-PE antibody used in the purification 

process could be visualised long enough to capture an image by immunofluorescence 

microscopy, therefore the cells were re-stained with CD41-AF568. This is because PE 

is known to be sensitive to photobleaching and consequently is rarely used for 

immunofluorescence microscopy (273). Figure 3.4 shows co-localisation between CD41 

expressing Mks and TPO staining.  

To determine whether Mks express Thpo, they were analysed by qPCR. As shown by 

Figure 3.5B, the cultured Mks isolated by the combination of BSA density gradient and 

MACs depletion had no Thpo expression relative to WT liver. However, it remained 

possible that the 72 h stimulation in BHK-TPO during the expansion process may act to 

repress Thpo transcription through a negative feedback loop. Therefore CD41high cells 

were directly isolated from lineage depleted BM by cell sorting. To minimise the rupture 
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of larger cells, a wide sorting nozzle was used at low pressure (274). However, as 

previously mentioned, the cells isolated were likely to be biased towards smaller Mks 

rather than larger, mature Mks. qPCR analysis of this population revealed that directly 

sorted Mks that had not been cultured also do not transcribe Thpo. Together, these 

results confirm that Thpo is not expressed by Mks and that the antibody used to report 

TPO production from Mks is non-specific.  
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Figure 3.3. Cultured Mks were isolated to a high degree of purity. Ai and Bi are cultured BM fractions 
that have not been subject to Mk enrichment. Aii and Bii are partially enriched fractions that have been 
subject to enrichment by BSA density gradient, but not MACS sorting. Aiii and Biii are the most purified 
fractions that have been subject to enrichment by BSA density gradient and MACs sorting. Ai-iii) First gate 

showing FSC-H vs Log SSC-H plots. With increasing purity, a lower percentage of total events were intact 
cells due to Mks breaking apart as they passed through the flow cytometer. iv) Overlay showing CD41-PE 
staining. v) CD41high cells are large, granular cells. Bi-iii H&E stain of cytospin slides showing an enrichment 

of larger cells with increasing purification steps. The data is representative of the purity achieved from 3 

independent experiments. 
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Figure 3.4. Cultured Mks stain positive with bs-10407R. Cultured Mks were the most purified fraction 
described in Figure 3.3; post BSA gradient, post MACS depletion. A Slide scanner image, B and C confocal 

microscopy image showing colocalisation between CD41 expressing Mks and TPO staining. Cultured Mks 
were additionally stained with CD41-AF568 as the PE (used in the MACS process) is suboptimal for 
visualisation by immunofluorescence microscopy. The slide scanner cannot distinguish between PE and 
AF568 emission, whilst this is possible using spectral unmixing techniques with confocal microscopy. N = 

3, representative of 3 independent experiments. 
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Figure 3.5. Neither cultured Mks nor sorted Mks express Thpo. A) WT BM was MACS depleted for 
lineage markers prior to being sorted for CD41high expression. B) qPCR analysis on cultured Mks (most 

purified fraction described in Figure 3.3; post BSA gradient, post MACS depletion) and sorted Mks. N = 3 
cultured Mks, N = 2 sorted Mks. 
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3.3.3 Cxcl12-DsRed/LepR+ bone marrow stromal cells express Thpo 

The Cxcl12DsRed/+ reporter mouse generated by Ding and Morrison was used to 

phenotype perivascular stromal cells by immunofluorescence microscopy and flow 

cytometry (45). In their paper, they characterise sources of Cxcl12 in the murine BM, 

reporting that the majority of Cxcl12 was produced by LepR+ BMSCs, whilst lower 

amounts were expressed by ECs (~100-fold lower). As BM stromal cells 

characteristically do not express CD45 or CD31, when FACS sorting Cxcl12+ BMSCs, 

antibodies against these markers were used to distinguish the BMSCs from 

haematopoietic cells and ECs respectively (Figure 3.6B). 

Cxcl12+ BMSCs are not uniform in their levels of Cxcl12 expression, and therefore can 

be subdivided into Cxcl12-DsRedlow and Cxcl12-DsRedhigh populations (88), as shown 

in Figure 3.6B. There is considerable overlap between Cxcl12-DsRedhigh and LepR+ 

BMSCs; 98.8% of LepR+ BMSCs are Cxcl12-DsRedhigh and 88.8% of Cxcl12-DsRedhigh 

are LepR+ (268). Cxcl12-DsRedlow, Cxcl12-DsRedhigh and LepR+ BMSCs express Thpo 

at ~0.06, 0.25 and 0.29 fold WT liver levels (Figure 3.6Di). 
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Figure 3.6. BMSC subsets express Thpo at different levels. A) Single stained BM cells from WT or 
Cxcl12DsRed/+ femurs were used to set the gates prior to Cxcl12-DsRed BMSC sorting. B) Gating strategy 
used to isolate Cxcl12-DsRedlow and Cxcl12-DsRedhigh BMSCs. C) Gating strategy used to isolate LepR+ 
BMSCs. Di) qPCR analysis on isolated Cxcl12-DsRedlow , Cxcl12-DsRedhigh and LepR+ BMSCs determined 

that they express Thpo at ~0.06, 0.25 and 0.29 fold WT liver levels. N = 5 livers and BMSCs from 
Cxcl12DsRed/+ mice, N = 1 LepR BMSCs from WT mice. ii) The amplicon from Cxcl12-DsRedlow , Cxcl12-

DsRedhigh BMSCs and cultured Mks were visualised on a 3% w/v agarose gel. 
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3.3.4 Bone marrow stromal cells do not upregulate Thpo expression after 

acute thrombocytopenia 

As previously mentioned, it has been reported that cells in the BM (149), namely BMSCs 

are inducible (148, 160), and can stimulated to upregulate Thpo/THPO under conditions 

of haematopoietic stress such as ITP, aplastic anaemia or irradiation. To determine 

whether Cxcl12-DsRedlow, Cxcl12-DsRedhigh and LepR+ BMSCs upregulate Thpo 

expression after induction of haematological stress, a model of acute thrombocytopenia 

was established. Cxcl12DsRed/+ or WT mice were injected with anti-CD41 antibody to 

induce thrombocytopenia and were sacrificed at 48 h post-injection (Figure 3.7A). 

McCarty and colleagues demonstrated an increase in BM Thpo expression as early as 

6 h after the induction of acute thrombocytopenia, and this peaked between 30 and 54 

h (149). Therefore, 48 h post-injection seemed an appropriate time point to sacrifice the 

mice and analyse Thpo expression. 

Contrary to past studies on BMSCs under conditions of haematopoietic stress, Thpo 

expression from Cxcl12-DsRedlow, Cxcl12-DsRedhigh and LepR+ BMSCs remained 

constant after acute thrombocytopenia (Figure 3.7B). As expected, no change was 

observed in whole liver. The results therefore indicate that acute thrombocytopenia does 

not alter Thpo expression from Cxcl12-DsRedlow, Cxcl12-DsRedhigh and LepR+ BMSCs. 
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Figure 3.7. Acute ITP does not influence BMSC Thpo expression. Cxcl12DsRed/+ or WT mice were 
injected with anti-CD41 antibody to induce thrombocytopenia and were sacrificed at 48 h post-injection. A) 

Mice were bled pre-injection, and 24 h and 48 h post-injection to monitor platelet counts and confirm 
thrombocytopenia induction. B) BMSC subsets and whole liver were isolated and Thpo expression 
determined by qPCR. Thrombocytopenia did not alter Thpo expression by the liver (P = 0.69), Cxcl12-
DsRedlow BMSCs (P = 0.84) or Cxcl12-DsRedhigh BMSCs (P = 0.42). N = 5 livers and BMSCs from 
Cxcl12DsRed/+ mice, N = 1-2 LepR BMSCs from WT mice. Hprt was used to normalise Thpo expression 

between samples. P values were calculated by Mann-Whitney tests. 
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3.3.5 Analysis of bone marrow stromal cell clonal lines suggest that THPO 

expressing bone marrow stromal cells are rare in vivo 

To better characterise THPO-expressing BMSC subsets, eight immortalised human 

BMSC clonal lines generated by James and colleagues were used (251), alongside total 

BMSCs from three independent donors. Each clonal line has differing characteristics in 

terms of differentiation capacity, gene expression, immunomodulation, and BM 

distribution of their in vivo counterparts. This variation likely represents differing 

functions in vivo and together; they represent a heterogeneous population of BMSCs. 

However their immortalisation allows for in-depth, reproducible analysis on functionality 

and gene/protein expression.  

As shown in Figure 3.8, all eight BMSC clonal lines displayed extremely low THPO 

expression (normalised to THPO expression from HepG2 cells). The highest expresser 

was Y302; at 0.037% the amount level of THPO expressed by HepG2 cells, this is likely 

to be background noise rather than THPO expression. The total BMSCs from three 

independent donors had higher THPO expression; however, with the highest amount 

expressed by Donor 2 (0.66%), this is still low THPO expression relative to HepG2 cells. 

Together, the data suggests that THPO expressing BMSCs are extremely rare, and 

were not captured by the eight clonal lines. The low THPO expression observed from 

Donor 1-3 likely originates from very rare subpopulations of unidentified BMSCs existing 

within the total BMSC population, which express comparatively high THPO expression. 

On a population level this presents as low THPO expression due to dilution effects from 

the vast majority of BMSCs that express little or no THPO. 
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Figure 3.8. THPO expressing human BMSC subsets may be extremely rare. HepG2 cells, total BMSCs 

from three independent donors (donors 1-3) and a panel of clonal BMSC lines were analysed for THPO 
expression by qPCR. N = 3 independent experiments. 
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3.4 Discussion 

Whilst it has long been appreciated that the liver is the major source of TPO (55, 57, 

147, 148), whether cells in the BM are responsible for local TPO production remains 

unclear. Here I show that Thpo is expressed on a population level by Cxcl12-DsRed 

BMSCs and not, as described previously, by Mks (163, 164). Within this population, 

Thpo expressing BMSCs are predominantly LepR+ /Cxcl12-DsRedhigh BMSCs and 

therefore are expected to reside in close proximity to HSCs. However, studies using 

human BMSCs of overlapping phenotype suggest that not all LepR+/Cxcl12-DsRedhigh 

BMSCs express Thpo and that further characterisation work is needed. Although 

previous studies suggest that BM Thpo expression increases during ITP (148, 149) 

Thpo expression by LepR+/Cxcl12-DsRedhigh BMSCs remains unchanged after platelet 

depletion.  

Nakamura-Ishizu and colleagues reported that Mks transcribe Thpo and used a 

commercially available antibody to confirm this at the protein level (163). In contrast, my 

results suggest that Mks do not transcribe Thpo and the antibody used was non-specific, 

based upon the observation that staining was similar between the liver and BM of WT 

and Thpo-/- mice. This was not due to non-specific staining from the secondary antibody 

due to a complete absence of staining when using isotype controls at the same 

concentration. This suggests that the non-specific binding of the TPO antibody is due to 

non-specific binding of the antigen-binding (Fab) fragment to epitopes other than TPO 

rather than the fragment crystallisable (Fc) region binding to Fc receptors throughout 

the BM. Nakamura-Ishizu and colleagues did not report the use of these additional 

controls in their papers, so it was not possible to compare results (163, 164). 

Similar to results described by Nakamura-Ishizu and colleagues, the antibody bound the 

strongest to Mks. In contrast however, weaker, more diffuse staining was also observed 

in my images throughout the BM of WT and Thpo-/- mice which was not reported by 

Nakamura-Ishizu and colleagues and was perhaps indicative of non-specific staining. 

There could be several reasons for the differences in antibody staining. Firstly, the 

authors did not report the concentration at which the antibody was used. If they used it 

at far lower concentration that I did, the weaker, diffuse staining may not have appeared. 

Secondly, the authors did not report the use of an isotype control. If one was not used, 

the diffuse staining may have been interpreted as background staining and therefore 

removed from the final image. 

In April 2018, an important paper was published in Science showing that Thpo is 

transcribed, but not translated in murine BM, and that liver derived TPO is essential for 

HSC maintenance (147). In their study, Decker and colleagues analysed the Thpo 
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expression levels of Mks, LepR+ BMSCs and Col2.3-GFP osteoblasts by qPCR. In 

agreement with my results, no Thpo expression was observed in Mks, however LepR+ 

BMSCs expressed approximately 30% of Thpo expressed by whole liver. This was 

remarkably consistent with my results (29% and 25% observed by LepR+ BMSCs and 

Cxcl12-DsRedhigh BMSCs respectively). Considering HSCs are adjacent to (94%) or 

within 5 µM of (97%) Cxcl12-DsRedhigh BMSCs, (and 93% within 5 µM of LepR+ BMSCs) 

(69), it is perhaps both surprising how much Thpo they transcribe, and unsurprising that 

they do not translate TPO, given the established role of the liver in TPO production.  

To assess the expression of TPO protein, Decker and colleagues generated ThpoDsRed-

CreER knock-in mice by replacing the stop codon of Thpo with a P2A-DsRed-P2A-CreER 

cassette (Figure 3.9). This allowed the translation of TPO, DsRed and CreER 

recombinase under the control of Thpo endogenous regulatory elements. LoxpZsGreen 

mice had a strong CAG promoter driven ZsGreen construct inserted into the ubiquitously 

expressed Gt(ROSA)26Sor locus (275). The ZsGreen is an enhanced green fluorescent 

protein engineered for brighter expression and higher expression. ThpoDsRed-CreER mice 

were crossed with LoxpZsGreen mice to generate ThpoDsRed-CreER;loxpZsGreen mice 

(147). In cells that express TPO, and therefore Cre-mediated recombination, ZsGreen 

is expressed. 

No DsRed fluorescence was observed in the ThpoDsRed-CreER;loxpZsGreen mouse 

(including liver, kidney and BM). Broad expression of ZsGreen was observed in 

hepatocytes and in rare cells in the kidney, however no fluorescence was observed in 

the BM. Firstly, the lack of DsRed fluorescence demonstrates that TPO is translated at 

very low levels in vivo, even in the liver which is considered to be the major site of TPO 

production (55, 57, 147, 148), and that amplification of signal by Cre-mediated 

recombination is required to visualise TPO expression. Secondly, the lack of ZsGreen 

in the BM demonstrates that Thpo is transcribed, but not translated in the BM.  
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Figure 3.9. Hepatic TPO is required for BM HSC maintenance. A) Thpo genomic location. B) Generation 
of the ThpoDsRed-CreER;loxpZsGreen translational reporter mouse. C) Generation of the conditional Thpofl 

knock-out allele. D) Generation of the global Thpogfp knock-out allele. 
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To confirm that the liver and not the BM, produce TPO in sufficient amounts to support 

haematopoiesis, a conditional knockout mouse was generated (147). They generated a 

floxed allele of Thpo by inserting loxp sequences flanking Thpo exons 2-4, where 

recombination would result in the deletion of the start codon and the generation of a 

frameshift (Figure 3.9). To confirm that haematopoietic cells (including Mks), osteoblasts 

and LepR+ BMSCs are not sources of TPO for HSC maintenance, Vav1-cre;Thpofl/gfp , 

Col2.3-cre;Thpofl/gfp and Lepr-cre;Thpofl/gfp mice were phenotyped. All three mouse 

strains had normal cellularity and HSC frequency showing that TPO produced locally in 

the BM is not required for HSC maintenance. To confirm that TPO production by 

hepatocytes is essential for HSC maintenance, Alb-cre;Thpofl/fl mice were phenotyped. 

They had 5x reduction in platelet count and Mk count as well as a 25x reduction in HSC 

frequency. BM cells from Alb-cre;Thpofl/fl mice had severe defects in their ability to 

reconstitute irradiated recipients, demonstrating that HSC self-renewal was 

compromised.  

To determine whether TPO is translated in the BM under conditions of haematopoietic 

stress, ThpoDsRed-CreER;loxpZsGreen were treated with a single dose of 5-fluorouracil (5-

FU), and analysed 10 days later. No ZsGreen fluorescence was observed, suggesting 

that TPO was not translated under these conditions. 5-FU treatment is a fast acting, 

anti-cancer treatment that targets all dividing cells non-specifically (276). Although 

upregulation of Thpo transcripts have been previously observed in the BM after 

carboplatinum treatment (149) (another anti-cancer treatment), THPO upregulation has 

also been observed during ITP or aplastic anaemia (148). Whilst total Thpo mRNA 

expression was not altered during our model of acute thrombocytopenia, increased TPO 

production may still have occurred through other mechanisms such as preferential 

alternative splicing of Thpo isoforms that have a higher translational efficiency, or 

downregulation of RNA-binding proteins/miRNAs that usually act to repress TPO 

translation. 

TPO production has previously been studied in vitro using total RNA from human liver 

and has been shown to be efficiently inhibited by a translational mechanism. Studies by 

Ghilardi and colleagues show that translation of THPO mRNA is almost completely 

inhibited by the presence of seven AUG codons upstream of the actual start site (uAUG) 

in the 5’-untranslated region (5’-UTR) (277). This can inhibit translation by causing 

premature ribosomal initiation, followed by translation of a short peptide and partial 

dissociation of the ribosome from the mRNA when a stop codon is encountered, thereby 

preventing the ribosome from initiating at the physiological start codon (278). Alternative 

promoter usage and differential splicing events can generate at least three THPO mRNA 
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isoforms that differ in the composition of their 5’-UTR. A rare alternatively spliced isoform 

(P1ΔE2; accounting for only 2% of THPO mRNA) that lacks exon 2 is the most efficiently 

translated, whilst the remainder of THPO mRNA is almost completely inhibited by the 

uAUGs. BMSCs and osteoblasts may preferentially exclude the use of P1ΔE2 in 

response to extracellular signals received from the BM microenvironment such as local 

cytokines or other tissue specific differences between the liver and BM, such as hypoxia. 

The BM is considered a tissue with limited oxygen supply; several lines of evidence 

suggest that HSCs prefer this hypoxic environment or ‘hypoxic niche’ to other more 

oxygen rich locations (279). Hypoxia may influence alternative splicing by changing the 

intracellular localisation of some splicing factors. For example, hypoxia causes the 

accumulation of the splicing factor tra2-beta1 in the cytosol rather than the nucleus, 

resulting in alterations in the splicing of its target genes (280). 

Determining the sources of TPO production by cells in the human BM (both at the 

transcriptional and translational level) is an important area of research. Recent 

communication with collaborators has identified a monoclonal anti-human TPO antibody 

sold by Abcam (ab196026) to be highly specific on human sections, so tools to study 

BM TPO production exist. If, like in the mouse, THPO is transcribed but not translated, 

studying the mechanism of translational repression would have important therapeutic 

consequences. If THPO expressing BMSCs could be therapeutically targeted to 

overcome translational repression and start producing TPO protein, this would be hugely 

beneficial for the 64-84% of patients with liver cirrhosis or fibrosis that have 

thrombocytopenia (281). To identify THPO expressing BMSCs, we used a panel of 

immortalised human BMSC clonal lines alongside total BMSCs from three independent 

donors. None of the eight stromal lines expressed any THPO, whilst the total BMSCs 

from the three donors expressed very low levels of THPO. Similarly, on a population 

level, murine BMSCs express very low levels of Thpo (too low levels to be detected by 

qPCR (data not shown)). Total murine BMSCs were isolated by culturing flushed BM in 

10%FCS/DMEN for 72 h, followed by washing away the suspension haematopoietic 

cells (similar to how primary human BMSCs are isolated). This shows that at a 

population level, THPO/Thpo expression from BMSCs is extremely low as the vast 

majority of BMSCs do not express THPO/Thpo. In mice, these Thpo expressing BMSCs 

are enriched in LepR+ BMSCs/Cxcl12-DsRedhigh BMSCs. 

There is considerable overlap in phenotype between human Y101/Y201 like cells and 

murine LepR+ BMSCs/Cxcl12-DsRedhigh BMSCs in vivo. Y101/Y201 express high 

amounts of CXCL12 (unpublished data from the Genever lab) and are LepR+ (251). They 

are also CD146+; CD146+ BMSCs are perivascular and widely considered to be the 
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human equivalents of murine LepR+ BMSCs/Cxcl12-DsRedhigh BMSCs (282). Despite 

their grouping based on similar expression of LepR and Cxcl12, LepR+ BMSCs/Cxcl12-

DsRedhigh BMSCs are a heterogeneous population of cells which may have different 

functions in vivo. For example, 9% of LepR+ BMSCs are tripotent, whilst 58% form 

osteoblastic cells in culture (268). Likewise, despite being ‘LepR+ BMSC-like,’ Y101 and 

Y201 each have distinctive expression profiles and different differentiation biases; 

although both Y101 and Y201 are tripotent, Y101 has osteogenic bias. On a population 

level, LepR+ BMSCs and Cxcl12-DsRedhigh BMSCs express 29% and 25% respectively 

of Thpo expressed by whole liver. However, neither Y101 nor Y201 express any THPO 

transcripts. Assuming mouse to human translatability, this indicates that there are 

subpopulations of LepR+ BMSC-like cells distinct from Y101 and Y201-like cells that 

express high levels of THPO. Expression of Thpo by Thpo-expressing LepR+ BMSCs 

on a single cell level is likely to be even higher than the indicated 29%, as the population 

analysed will be diluted by non Thpo-expressing LepR+ BMSCs. 

However, an argument could be made to caution against the therapeutic driving of TPO 

translation from THPO expressing BMSCs. Found in the low picomolar range in the 

plasma of healthy individuals (283), TPO is clearly a very potent cytokine. TPO 

overstimulation can be pathogenic; the abnormally low expression of MPL in platelets 

and Mks of human patients with myeloproliferative neoplasms (MPN) is associated with 

thrombocytosis (284, 285). Similarly, mice that express Mpl normally on HSPCs but lack 

expression on Mks and platelets (MplPF4cre/PF4cre) develop a myeloproliferative neoplasm 

(MPN)-like phenotype due to the lack of TPO clearance by Mks and platelets (144). 

HSPCs from both MplPF4cre/PF4cre and from patients with MPNs had a gene signature 

associated with TPO overstimulation (144). Considering that HSCs reside adjacent to 

or in very close proximity to LepR+ /Cxcl12-DsRedhigh BMSCs (69), the inhibition of TPO 

translation in sub-populations of BMSCs that express high levels of Thpo/THPO may 

therefore be a protective mechanism against TPO overstimulation. Any therapeutics 

designed to uninhibit TPO translation from THPO expressing BMSCs would have to be 

reversible and carefully monitored.  

In conclusion, my data showing that Mks do not transcribe Thpo is in agreement with a 

recent study by Decker and colleagues (147), which contradicts previous studies by 

Nakamura-Ishizu and colleagues (163, 164). In further agreement with Decker and 

colleagues (147), I show that LepR+/Cxcl12-DsRedhigh BMSCs transcribe approximately 

1/3 of Thpo transcribed by murine liver. Further analysis indicates that Thpo transcription 

by BMSCs is heterogeneous and does not respond to thrombocytopenia. Importantly, 

Decker and colleagues show that murine BM does not translate TPO (147); if human 
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BM also does not translate TPO, characterising the mechanism of translational 

repression is an important area of future research as it may have therapeutic potential 

in conditions where liver TPO production is impaired.  
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4 Generation of a model of sustained immune 

thrombocytopenia 

4.1 Introduction 

ITP is an acquired autoimmune disorder characterised by both the destruction of 

functionally normal platelets and reduced platelet production, which manifests as a 

bleeding tendency (200). The majority of ITP patients develop serum platelet specific 

autoantibodies that target platelets for destruction and are primarily against platelet 

glycoprotein (GP) IIb/IIIa (CD41/CD61), GPIb/IX (CD42c/CD42a), GPV (CD42d) and 

GPIa/IIa (CD49b) (214, 286-288). Of these, autoantibodies against CD41/CD61 are the 

most common (287, 288). The spleen is the major site of platelet clearance which is 

primarily mediated through phagocytosis by splenic macrophages or dendritic cells (225, 

228). Antigenic peptides derived from platelet glycoproteins are presented to CD4+ cells 

which causes activation and expansion of autoreactive B and T cells (289, 290). ITP 

patients can be classified as ‘newly diagnosed’ (< 3 months) or ‘persistent’ (< 12 months) 

which is more common in children, as well as ‘chronic’ (> 12 months) which is more 

common in adults (200, 209). 

The majority of studies using animal models of ITP utilise the passive transfer model 

where anti-platelet antiserum or platelet specific monoclonal antibodies are injected into 

recipients, causing thrombocytopenia via antibody mediated platelet destruction (291-

293). Passive transfer models are typically used to evaluate the efficacy of therapeutics 

(such as IVIg therapy or cell based therapies) or to understand ITP disease progression 

(294-297). However, these studies are typically short in duration, lasting up to one week 

(294, 297), or two weeks in the case of one isolated study (117).  

To better model sustained ITP, I extended the passive transfer model to 4 weeks, where 

the mice shared a number of features associated with the clinical progression of chronic 

ITP such as increased megakaryopoiesis (whilst maintaining normal circulating TPO 

levels), mild splenomegaly and spontaneous bleeding. This mouse model will therefore 

be useful in investigating ITP progression, especially in investigating the mechanism 

behind the increased megakaryopoiesis in ITP, which is currently unknown. Recent 

evidence has shown that inflammation can drive emergency megakaryopoiesis (116, 

298), which is of interest as autoimmune diseases are often associated with chronic 

inflammation. However, when inflammation is maintained over several weeks, HSC 

functionality is impaired suggesting that there may be broader implications for 

haematopoiesis during sustained ITP (112). This chapter defines and phenotypes the 
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sustained model of ITP, whilst subsequent chapters use the model to further explore the 

immune and haematopoietic systems. 

4.2 Materials and methods 

4.2.1 Immune thrombcytopenia model 

Mice were administered rat unconjugated anti-CD41 antibody to selectively deplete 

platelets, or rat unconjugated IgG1 to act as a control (2.6), via intraperitoneal injection 

every 48 h. Concentration of anti-CD41/IgG1 began at 0.2 mg/kg and was increased by 

0.1 mg/kg when the average platelet count of the anti-CD41 injected group rose above 

200 103/mm3 (typically a 0.1 mg/kg increase every 7 days). Mice were bled (2.5.1.1) 

before the first injection to obtain baseline complete blood counts, minimum once a week 

thereafter for monitoring. The time courses used were 48 h, 2 or 4 weeks. 

4.2.2 Thrombopoietin enzyme-linked immunosorbent assay 

Plasma samples were obtained by cardiac puncture as described previously (2.5.1.2). 

50 µL of sample was analysed for TPO concentration using the Mouse Thrombopoietin 

Quantikine ELISA Kit (MTP00; R&D systems) according to the manufacturer’s 

instructions. The optical density of each sample-containing well of the provided 

microplate strips was read at 450 nm with wavelength correction set to 595 nm (iMark 

Microplate Absorbance Reader, Bio-Rad).  

4.2.3 Quantification of bone marrow megakaryocyte number 

Mice were administered anti-CD41 antibody/IgG1 for 2 or 4 weeks (4.2.1), before culling. 

One femur per mouse was isolated, prepared and sectioned (2.7) and BM sections were 

H&E stained (2.8) and Mk numbers were manually counted using a light microscope 

(20x objective) by an independent researcher under blinded conditions. 5-8 random 

fields of view were obtained per section, and 4 sections were analysed per mouse. 

4.2.4 Determination of whether injected anti-CD41 binds to 

megakaryocytes: flow cytometry 

Mice were administered anti-CD41 antibody/IgG1 for 2 weeks (4.2.1), before culling. 

Haematopoietic BM cells were collected (2.5), followed by a wash in FACS buffer. As 

standard FcR blocking antibodies are raised in rat, the BM cells were not blocked 

beforehand as this would have resulted in non-specific binding of the goat anti-rat 

secondary antibody. To ensure that the majority of SSChigh events were of the Mk 

lineage, cells were stained with rat unconjugated anti-CD41 antibody for 20 min at 4 ⁰C. 

Specific antibody information is found in 2.6. Cells were then washed 3x in FACS buffer, 

before being stained with goat anti-rat Alexa Fluor 488 for 20 min at 4 ⁰C. To determine 

whether injected anti-CD41 binds to Mks, 4x106 BM cells were stained with goat anti-rat 
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Alexa Fluor 488 only (no primary). After staining, cells were washed three times in FACS 

buffer. After the final wash, cells were resuspended in FACS buffer and acquired on the 

Cytoflex LX or CytoFLEX S (Beckman Coulter). All cells were pre-gated on viable and 

single cells. All data was analysed with FCS Express (De Novo) software. 

4.2.5 Determination of whether injected anti-CD41 binds to 

megakaryocytes: microscopy 

To confirm the results of 4.2.4 by microscopy, one femur per mouse was prepared and 

sectioned (2.7). Sections were prepared for blocking by rehydration in PBS for 5 min, 

followed by permeabilisation in 0.1% (v/v) Triton X-100/PBS for 10 min, followed by a 

final PBS wash. The slides were blocked in 10% (v/v) goat serum in 0.1% (v/v) tween-

20/PBS (PBST) for 1 h. To stain the vasculature, slides were stained with anti-laminin 

(L9393; Sigma) at 1:200 dilution in 10% goat serum/PBST overnight at 4 °C. The 

following secondary antibodies were purchased from ThermoFisher and were used at 

1:500 dilution: goat anti rat IgG-AF568 (A-11077) and goat anti rabbit IgG-AF488 (A-

11008). Sections were mounted with ProLong Gold with DAPI (ThermoFisher). All 

images were acquired using the LSM 880 confocal microscope (Zeiss) with a 40x 

objective in lambda mode and were spectrally unmixed. 

4.3 Results 

4.3.1 Repeated anti-CD41 intraperitoneal injection as a model of sustained 

immune thrombocytopenia 

To study ITP progression, a model for sustained ITP was established by the repeated 

intraperitoneal injection of mice with a monoclonal rat anti-CD41 antibody, maintaining 

severe thrombocytopenia (defined as a mean platelet count below 200 x109/L). At the 

same time points and at equal concentrations, mice in the control group were injected 

with rat IgG1 isotype control to monitor for non-specific immune responses. With time, 

mice become refractory to anti-CD41 injection (299), so after the first 14 days of the time 

course, an increase of 0.1 mg/kg every 7 days was necessary to maintain severe 

thrombocytopenia for a 4 week period. Hereafter, mice treated with anti-CD41 are 

referred to as the ‘ITP’ group; mice treated with IgG1 are referred to as the ‘control’ 

group. 

A typical complete blood counts of a 4 week experiment is shown by Figure 4.1, however 

2 week and 48 h time points were also used. Figure 4.1A shows a rapid induction of ITP 

from a resting platelet count of 865 ± 57.2 x109/L (mean values ± SD) to mean platelet 

count of 107 ± 14.6x109/L, 24 h after antibody injection. Severe thrombocytopenia was 

maintained throughout the 4 week experiment, with a final mean platelet count of 128 ± 
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18.4x109/L, 29 days after the first antibody injection. Figure 4.1B shows the mean 

platelet volume (MPV), which is an indicator of increased thrombopoiesis (300). 24 h 

after antibody injection the resting MPV (6.08 ± 0.068 µm) increases to 6.81 ± 0.118 µm. 

It continues to rise until it reaches a maximum value of 7.30 ± 0.131 µm, 15 days after 

first antibody injection.  

The red blood cell count does not differ significantly from controls (Figure 4.1C), which 

is also reflected in the haematocrit (Figure 4.1D). Initially (24 h after the first injection), 

there are slightly higher levels of subpopulations of white blood cells of control mice 

relative to mice with ITP (Figure 4.1E-G). However, with the exception of the granulocyte 

count which remains at slightly higher levels throughout, the monocyte and lymphocyte 

counts revert back to similar levels as mice with ITP.  
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Figure 4.1. Repeated intraperitoneal injection of mice is a model for sustained ITP. A single 

intraperitoneal injection of anti-CD41 antibody (delineated by an arrow) every 48 h induces severe 
thrombocytopenia. For routine monitoring of ITP induction, mice were bled 24 h after injection and complete 
blood counts measured. For the first 14 days, anti-CD41 antibody was used at 0.2 mg/kg in sterile PBS. 
Hereafter, the concentration of anti-CD41 antibody was increased by 0.1 mg/kg every 7 days. A Platelet 
count, B mean platelet volume (MPV), C red blood cell (RBC) count, D haematocrit (HCT) percentage, E 
monocyte count, F granulocyte count, G lymphocyte count. P* < 0.05, P** < 0.01, P**** < 0.001 P**** < 
0.0001. P values were calculated by a Two-way ANOVA with Sidak’s post hoc analysis. N = 5. 
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4.3.2 Dose escalation is required to maintain severe thrombocytopenia in 

WT mice, but not Rag2-/- mice 

To maintain severe thrombocytopenia in WT mice, a dose escalation model was 

needed. As it was not clear whether this was due to compensatory thrombopoeisis or to 

production of antibodies against the rat anti-CD41 antibody, Rag2-/- (which lack mature 

B or T cells therefore lack the ability to produce antibody) were used alongside WT mice. 

WT or Rag2-/- mice were administered low doses (0.2 mg/kg) of anti-CD41 or IgG every 

48 h for a 4 week period. Figure 4.2 demonstrates that Rag2-/- mice maintain severe 

thrombocytopenia throughout the 4 week experiment. In contrast, WT mice exhibit a 

partial platelet rebound by day 17.  

Together, the results suggest that the production of antibodies by WT mice against the 

injected rat anti-CD41 antibody is, at least partially, responsible for platelet rebound by 

day 17. Therefore for subsequent experiments, a dose escalation model will be used to 

maintain severe thrombocytopenia for long periods of time. 

 

 

 

 

 

 



63 
 

Days after first injection

P
la

te
le

t 
c
o

u
n

t 
(1

0
3
/m

m
3
)

P
re

-in
je

ct
io

n 1 7 17 23 27

0

500

1000

1500

WT ITP

WT Control

Rag2-/- Control

Rag2-/- ITP

        Injection (0.2 mg/kg)

 

Figure 4.2. Rag2-/- mice maintain severe thrombocytopenia at low doses of anti-CD41. WT or Rag2-/- 

mice were administered low doses (0.2 mg/kg) of anti-CD41 or IgG via intraperitoneal injections (delineated 

by an arrow) every 48 h for a 4 week period. Mice were bled 24 h after injection and complete blood counts 

measured. WT and Rag2-/- mice both maintained severe thrombocytopenia initially, but by day 17, WT mice 

exhibited a partial platelet rebound. Rag2-/- mice maintained severe thrombocytopenia throughout the 

experiment. N = 3. 
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4.3.3 Sustained immune thrombocytopenia model exhibits clinical 

features of immune thrombocytopenia  

Spontaneous bleeding is a common feature that can occur in ITP patients due to their 

low platelet count (201). Post-mortem analysis of mice with 4 week ITP revealed that 

40% of mice appeared to have evidence of sub-cutaneous bleeding (an example of 

which is shown in Figure 4.3), which was not observed in control mice.   

Moderate or massive splenomegaly (enlarged spleen between 4.1 and 10 cm, and 

greater than 10 cm below the left costal edge in human adults respectively (301)) is not 

typical of ITP and may suggest an alternative cause, however mild splenomegaly may 

be found in younger patients (205). In the model of sustained ITP, the spleen is not 

obviously palpable, therefore does not suggest moderate or massive splenomegaly. 

Figure 4.4A shows a freshly isolated spleen from a mouse with 4 week ITP alongside a 

spleen from a control mouse for comparison. Upon isolation, there does not appear to 

be any obvious differences in terms of morphology or size. However, in the absence of 

significant splenomegaly, one of the biggest influencers on splenic size is the overall 

size of the mouse. In order to more accurately determine whether ITP progression 

causes splenomegaly, the spleen length (Figure 4.4Aii) and weight (Figure 4.4B) were 

normalised to the total mouse weight (taken immediately before the mouse was 

sacrificed). Although the spleen length remains consistent between the two groups at 4 

weeks (Figure 4.4Aii), a 45.1% increase was observed in spleen weight for mice with 

ITP at the same time point (Figure 4.4B). Furthermore, this increase in spleen weight is 

independent of the adaptive immune system, as Rag2-/- mice exhibited a 74.0% increase 

in spleen weight at 4 weeks of anti-CD41 treatment (Figure 4.4C). Together, the results 

show that moderate or massive splenomegaly does not occur in the model of sustained 

ITP. However, mild splenomegaly does occur with ITP progression and this is mainly 

driven by an increase in spleen weight, rather than an increase in spleen length.  

Despite the low observed platelet levels characteristic in ITP, plasma TPO levels are 

normal (153). This is reflected in Figure 4.5; plasma TPO levels from mice with 48 h, 2 

week and 4 week ITP are unchanged from controls. Despite this, BM Mk numbers 

increase with ITP progression, suggesting the occurrence of TPO independent 

emergency megakaryopoiesis. Mk numbers were unchanged at 2 weeks, but by 4 

weeks, the number of Mks had increased by 81.5% (Figure 4.6). Increased 

megakaryopoiesis is observed in ITP patients (302-304). 
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Figure 4.3. Sustained ITP model appears to induce occasional spontaneous bleeding. Post-mortem 

analysis of mice with 4 week ITP or controls revealed that 40% of mice with 4 week ITP appeared to have 
evidence of subcutaneous bleeding (highlighted by black arrows). No such observations were found in 
control mice. N = 5. 
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Figure 4.4. Mild splenomegaly during ITP progression occurs in the absence of a functional adaptive 
immune system. Ai) representative images of spleen from mice with 4 week ITP and controls. ii)  spleen 
length to final body weight ratio in mice with 4 week ITP and controls. P values were calculated by a Mann-
Whitney test (P = 0.42). N = 5. B) and C) show the spleen weight to body weight ratio of WT and Rag2-/- 

mice, respectively. P values for B) were calculated by 2way ANOVA with Sidak’s multiple comparisons test 
(**P = 0.0034). N = 4-10. P value for C) was calculated by a Mann-Whitney test (P = 0.1). N = 3.  
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Figure 4.5. Plasma TPO levels are normal during ITP progression. Circulating thrombopoietin (TPO) 

levels during ITP progression (control vs 2 week ITP P > 0.99, control vs 4 week ITP P > 0.99, 2 week ITP 
vs 4 week ITP P > 0.99). N = 4-5 (2 independent experiments). P values calculated by a Kruskal-Wallis test 
with Dunn’s multiple comparisons test.  
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Figure 4.6. BM Mk numbers increased with ITP progression. A) Representative H&E stained BM 
sections from mice with 2 and 4 week ITP as well as control BM. Yellow stars indicate Mks. B) Mk numbers 

were manually counted using a light microscope (20x objective). Counts were obtained by an independent 
researcher under blinded conditions. Control vs 2 week ITP > 0.99, control vs 4 week ITP **P = 0.0069, 2 
week ITP vs 4 week ITP P = 0.10). N = 5-8. P values calculated by a Kruskal-Wallis test with Dunn’s multiple 
comparisons test.  
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4.3.4 Injected anti-CD41 binds BM Mks 

Defects in platelet production in ITP are thought to due to autoantibody binding to Mks 

and interactions of CD8+ T cells with Mks (218, 223).  To determine whether the injected 

rat anti-CD41 antibody binds to Mks, flow cytometry and confocal approaches were 

used, exploiting the biophysical characteristics of Mks for their identification. Mature Mks 

are highly granular due to their α-granule content and appear as SSChigh cells by flow 

cytometry (305, 306). In agreement, the majority of SSChigh cells are CD41+ (Figure 

4.7A). When this same gate was used on samples that were stained with anti-rat 

secondary antibody only, BM samples originating from mice treated with anti-CD41, but 

not IgG, had a shift in fluorescence. This indicated that the anti-CD41 antibody binds to 

SSChigh cells, most likely Mks.  

As well as being highly granular, mature Mks are large, autofluorescent cells and have 

a polyploid nucleus. Using the three parameters of size, polyploidy and 

autofluorescence, mature Mks can therefore be identified with a high degree of certainty. 

When staining IgG and anti-CD41 treated mice with an anti-rat secondary antibody, the 

cell surface of Mks from anti-CD41 treated mice (but not IgG treated mice) stain positive 

for the secondary antibody (Figure 4.7B). This confirms that the injected anti-CD41 

antibody binds to mature Mks in the model of sustained ITP. 
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Figure 4.7. Injected anti-CD41 binds BM Mks.  A) The majority of SSChigh cells in flushed BM are Mks 
(marked by CD41 expression). B) A fluorescently conjugated anti-rat secondary antibody binds SSChigh 
cells in mice injected with a rat anti-mouse CD41 antibody, but not rat IgG injected mice. C) 

Immunofluorescence microscopy analysis of stained BM sections confirms flow cytometry results. Mks are 
identified using a label free technique as autofluorescenthigh, large cells with polyploidy nuclei.  
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4.3.5 Platelet recovery is similar between mice with sustained immune 

thrombocytopenia and acute immune thrombocytopenia 

As well as peripheral platelet destruction, defects in platelet production are thought to 

occur in ITP (246, 247). To address whether mice with sustained ITP have detects in 

platelet production, mice were either administered anti-CD41 for 4 weeks (sustained 

ITP), or were administered a single dose of anti-CD41 (acute ITP) and platelet recovery 

monitored (Figure 4.8). Both groups had severe thrombocytopenia 1 day after the final 

injection; mice from the sustained ITP group had a platelet count of 107 ± 14.8 and mice 

from the acute ITP group had a platelet count of 46.4 ± 6.55 (Figure 4.8A). At this same 

time point, mice from the sustained ITP group had a significantly higher MPV value of 

7.34 ± 0.218 µm3 as opposed to 6.16 ± 0.098 µm3 for the acute ITP group. By day 2, 

platelet counts in both groups had begun to rise, with steeper rise observed in the 

sustained ITP group, whilst MPV of the acute group rose to similar levels as the 

sustained ITP group.  

By day 6, both groups had platelet counts more than double that of resting. This 

‘overshoot’ effect where platelet counts climb to supranormal levels, then stabilise back 

to normal is a well-documented yet incompletely understood phenomenon (307). 

However, the platelet count was not statistically different between groups. Here, the 

MPV of both groups dropped to baseline, indicating that by day 6, platelet production 

was normal. By day 10, the platelet count of both groups return to baseline, however the 

return of the sustained ITP group was slower than the acute group. This trend continued 

and by day 18 the platelet counts were at similar levels between the two groups. Whilst 

still at higher levels than baseline at day 18, the platelet counts were considered to be 

within the normal range using our blood counter, therefore the experiment was 

terminated. Together, the results show that the trend of platelet recovery was similar 

between the two groups. However, the rise in platelet count was quicker (day 1-6) and 

the second drop in platelet count was slower (day 10-18) in the sustained ITP group 

(Figure 4.8A). 
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Figure 4.8. Platelet recovery is similar between mice with sustained ITP and acute ITP. Mice were 

administered anti-CD41 for 4 weeks (sustained) or administered a single dose of anti-CD41 (acute), and 
the A) platelet counts, and B) MPV determined at 1, 2, 6, 10, 13 and 18 days after the final anti-CD41 
injection. P* < 0.05, P** < 0.01, P**** < 0.0001. P values were calculated by a Two-way ANOVA with Sidak’s 
post hoc analysis. N = 5 with the exception of day 10 which was N = 2 due to a technical error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

4.4 Discussion 

The passive and the adoptive transfer model are the two established murine models of 

ITP (291-293, 308). I found that the passive transfer model using anti-mouse CD41 

antibody to induce thrombocytopenia was well tolerated by the mice used which allowed 

for its application over extended periods of time, and therefore study of ITP progression. 

This is in contrast with an adoptive transfer model where recipients have an 80% 

bleeding mortality within 21 days after transfer – therefore the ability to perform long 

term experiments is limited (308). ITP patients commonly develop anti-GPIIb/IIIa 

antibodies (214-216), may exhibit spontaneous bleeding and/or mild splenomegaly 

(201, 205, 309), have normal circulating levels of TPO and normal or increased 

megakaryopoiesis (153, 302-304). The sustained model of ITP exhibits all of these 

clinical manifestations, showing that it is clinically relevant. Furthermore, I demonstrated 

that anti-CD41 binds to BM Mks in vivo, the effect of which should be further 

investigated. The model of sustained ITP model can be applied to a variety of mouse 

strains (such as reporter mice and mice deficient in adaptive immunity), allowing for the 

dissection of mechanisms behind ITP progression.  

ITP is characterised by isolated thrombocytopenia with an otherwise normal complete 

blood count (205). Our model of sustained ITP maintains severe thrombocytopenia 

throughout the 4 week period of anti-CD41 injections, whilst IgG treated controls had a 

normal platelet count. Platelets newly released from the BM are immature, larger and 

contain higher amounts or RNA (so called ‘reticulated platelets’) (300, 310), remaining 

in the circulation for 24-36 h, during which they progressively decrease their volume and 

RNA content (311). An increased MPV is therefore indicative of increased 

thrombopoiesis (300). ITP patients have an increase in MPV which can be useful to the 

clinician in determining whether thrombocytopenia is a result of hypo-production of 

platelets (such as aplastic anaemia) or hyper-destruction of platelets (312). Similarly, 

mice with sustained ITP have an elevated MPV showing the clinical relevance of the 

model. 

The red blood cell count and haematocrit is normal during the model of sustained ITP, 

indicating that the thrombocytopenia is not due to BM failure. The white cell count follows 

the same trend between the ITP group and the control group, although there is a slight 

reduction of granulocytes in the peripheral blood of mice with ITP compared to controls. 

Although the causes of this are unclear, recent evidence has suggested that platelets 

can have a number of immunomodulatory roles (313). One hypothesis is that treatment 

of mice with rat IgG evokes an immune response, which is directly dampened down 

during ITP due to platelet depletion. Alternatively, ITP may indirectly modulate 
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granulocyte number, where phagocytosis of the antibody-platelet complex produces an 

anti-inflammatory factor that prevents the rat IgG mediated elevation in granulocyte 

numbers. This demonstrates the necessity of injecting control mice with IgG for the same 

duration and concentration as anti-CD41, thereby controlling against non-specific 

immune cell interactions caused by the injection of rat IgG. 

Researchers who work with animal models of ITP historically refer to repeated injections 

of antibody as a model of ‘chronic ITP,’ despite the study typically not exceeding one 

week (294, 297), or two weeks in the case of one isolated study (117). It is appreciated 

that the term ‘chronic’ may be used to distinguish between ‘acute ITP’ which typically 

refers to a single injection, and repeated injections where the platelet nadir is maintained 

over several days. However, there is therefore a disconnect between basic research 

and the patients in which it serves as patients with chronic ITP have ITP for > 12 months 

(200). For this reason, I refer to the use of repeated injections of anti-CD41 as ‘sustained 

ITP’, or clearly state the duration of ITP e.g. mice with 4 week ITP. 

The rat anti-CD41 antibody (MWReg30) was chosen for our model as the majority of 

ITP patients with detectable autoantibodies have autoantibodies against the 

CD41/CD61 complex (~70% of patients) (201). Hamster anti-mouse CD61 (2C9.G2) 

has previously been used to induce ITP in mice, however it requires approximately 5x 

higher dose than MWReg30 (314, 315). As well as being considerably more costly to 

perform long term experiments, the consequences of injecting 2C9.G2 at far higher 

doses than MWReg30 for a prolonged period is unclear. One might predict that the host 

immune response against 2C9.G2 would be greater than the response against 

MWReg30, requiring an exacerbated dose increase over time to maintain 

thrombocytopenia. Rat anti-CD42b is another alternative (297), however fewer ITP 

patients have autoantibodies against the CD42b-CD42c-CD42d complex (25%) than the 

CD41/CD61 complex (201). A mouse anti-platelet antibody such as the 6A6 antibody 

would have been advantageous in avoiding anti-rat/hamster immune responses (316, 

317). However the specific antigen target of 6A6 is not clear, therefore may have off 

target effects which may be exasperated when used long term. For example, (NZW x 

BXSB) F1 mice (the strain from which the antibody was generated) have a high 

incidence of myocardial infarction for unknown reasons (318). 

At low anti-CD41 doses, mice can become refractory to the antibody injection due to 

compensatory thrombopoiesis (299). However, this can be overcome by a dose 

escalation model. Compensatory thrombopoiesis is not observed in our model, possibly 

as we begin anti-CD41 injections at higher concentrations than a previous study where 

compensatory thrombopoiesis was reported (68 µg/kg vs 200 µg/kg) (299). Although 
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dose escalation is eventually needed, this is not until day 17 (as opposed to day 4), and 

appears to be due to the development of antibodies against rat anti-CD41 rather than 

compensatory thrombopoiesis. It usually takes at least two weeks for high affinity 

antibodies to be generated after first exposure to an antigen (319), therefore day 17 is 

within the expected timeframe. Furthermore, unlike WT mice, Rag2-/- mice did not 

require an escalating dose to maintain severe ITP. 

Another advantage of beginning the experiment at a higher concentration of antibody is 

that injections are only required once every 48 h, rather than once every 24 h. 48 h 

injections at higher doses are desirable from an NC3Rs standpoint as it reduces the 

number of injections each animal receives by 50%. From a researcher’s perspective, it 

is also preferable as the generation of the model is less labour intensive.  

As described in detail in the introduction, bleeding events in ITP patients are typically 

mild, such as bleeding in skin and mucosal regions, yet are unpredictable as not all ITP 

patients with severe thrombocytopenia exhibit spontaneous bleeding (201, 204). It is 

therefore unsurprising that only a minority of mice with sustained ITP appeared to have 

evidence of spontaneous bleeding at post-mortem analysis. However, the lack of 

spontaneous bleeding at the endpoint does not preclude the possibility of spontaneous 

bleeding at earlier time points. Fur was only shaven from the rear legs to aid the routine 

sampling of blood over the 4 week time period, so spontaneous bleeding would not have 

been observed had it occurred elsewhere. A previous one week long study using the 

dose escalation passive transfer model reported that 100% of mice with ITP developed 

multiple petechiae that were distributed over the skin (294). However it was not reported 

how this was assessed so direct comparisons cannot be made.  

Moderate or massive splenomegaly is not typical of ITP and may suggest an alternative 

cause, however mild splenomegaly may occur, especially in younger patients (205, 

309). The ‘gold standard’ definition of splenomegaly is splenic weight, however this can 

only be determined at splenectomy or post-mortem analysis (320). A palpable spleen is 

indicative of splenomegaly, however a mildly enlarged spleen could easily be missed on 

routine clinical examination (320, 321). Although mild splenomegaly may be detected 

by radiological assessment, this is usually performed to confirm clinical findings rather 

than a first port of call (322). Mice with sustained ITP did not have an obviously palpable 

spleen and did not have an increased spleen length to body weight ratio upon isolation. 

However, whilst assessment of splenic length is a useful index in determining 

splenomegaly, it is more informative in the context of the width and depth, which allows 

the clinician to calculate the ‘splenic index’ (323, 324). As an alternative to measuring 

three different parameters per spleen, I measured the spleen weight to calculate the 
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spleen weight to body weight ratio. Mice administered with 2 week ITP had a normal 

spleen weight to body weight ratio, however by 4 weeks it was increased. This suggests 

that ITP progression can cause mild splenomegaly. Furthermore, Rag2-/- mice also had 

an increased spleen weight to body weight ratio by 4 weeks, suggesting that 

splenomegaly was driven by an expansion of some component of the innate immune 

system. It is hypothesised that this is due to increased numbers of macrophages (which 

are normal in both WT and Rag2-/- mice), as this has been reported in histological 

analysis of the spleen in ITP patients (309).  

The incubation of autoantibodies derived from ITP patients with healthy BM cells have 

two distinct effects: suppression of megakaryopoiesis (218, 325, 326) and inhibition of 

pro-platelet formation (327, 328) which is thought to occur via antibody binding to mature 

Mks and Mk progenitors. Direct evidence of autoantibody binding to mature Mks in ITP 

has been reported through the detection of Mks bound with IgG in BM trephines obtained 

from ITP patients (249), however there have been no past studies showing direct 

evidence of autoantibody binding to progenitors. Confocal microscopy on the BM of mice 

with ITP revealed that although antibody binding clearly occurred with Mks, there was 

also anti-CD41 binding to smaller nucleated cells. This was likely to be antibody binding 

to CD41-expressing progenitor populations (as opposed to non-specific binding as no 

staining was present in the BM of IgG treated mice). However, this would need to be 

confirmed by flow cytometry using specific markers of progenitor populations. The effect 

of anti-CD41 binding to mature Mks in vivo was not directly assessed, however, platelet 

recovery experiments suggested that sustained anti-CD41 treatment compromised 

thrombopoiesis to some degree. It has recently been shown that the injection of anti-

GP1bα into mice also binds Mks (297), causing antibody-receptor internalisation. This 

led to a downregulation of GP1bα in newly formed platelets, which was postulated by 

the authors could partially explain the low sensitivity of diagnostic assays aimed at 

detecting autoantibodies bound to the surface of platelets in ITP patients (329). My data 

indicates that this may be a GP1bα specific mechanism as anti-CD41 binds the surface 

of Mks, but is not internalised even 24 h after the final injection. 

The suppression of megakaryopoiesis in ITP appears at odds with clinical findings that 

ITP patients have normal or increased numbers of BM Mks (302-304), which is in 

agreement with our model. In our model of sustained ITP, Mk numbers were unchanged 

at 2 weeks. Although past studies have not addressed megakaryopoiesis using a 2 week 

passive transfer model of ITP, this is in agreement with studies using earlier (1 week) 

time point where they showed that ITP does not influence BM Mk numbers (297, 330). 

In contrast, by 4 weeks, the number of Mks had increased by 81.5% in our mouse model. 
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This is of interest, as increased megakaryopoiesis is associated with chronic ITP 

patients in particular (304). Morphologically, the majority of Mks in ITP are immature; 

they are smaller, display a reduction in granularity and platelet formation and have a 

higher nuclear/cytoplasmic ratio (303, 331, 332). The increase in Mk numbers but 

decrease in maturity and platelet production suggests compensatory megakaryopoiesis 

from progenitors. 

Previous experiments addressing megakaryopoiesis in ITP have been performed in vitro 

assessing the effect of ITP plasma or purified antibodies on healthy progenitors, 

therefore independently of any effects that compensatory factors may have on 

megakaryopoiesis or progenitor activation or expansion (218, 325, 326). As discussed 

in detail previously, TPO is the master regulator of megakaryopoiesis; circulating levels 

of which are controlled by platelets and Mks (151, 152). However, TPO levels are normal 

in ITP patients (153), and is thought to be because platelets are produced in sufficient 

quantities to bind and internalise TPO before they are degraded by autoreactive B or T 

cells (201, 333). An alternate hypothesis is that the increased Mks in the BM of ITP 

patients acts as a TPO sink, which is in contrast to conditions where Mk production is 

reduced (such as aplastic anaemia and BM hypoplasia) which are associated with a 

significant increase in circulating TPO (153). Consistent with TPO levels in the plasma 

of ITP patients, TPO levels are normal in the plasma of mice with sustained ITP.  

If TPO levels are normal during ITP, what is driving megakaryopoiesis? Other long range 

cytokines such as EPO have been shown to drive megakaryopoiesis independently of 

TPO (334). Alternatively, local signals through an altered BM niche in ITP may be of 

importance. The CXCL12-CXCR4 gradient guides progenitors to the BM perivascular 

niche which can stimulate megakaryopoiesis and thrombopoiesis in the absence of TPO 

signalling (335). Perivascular niche cells such as BMSCs can be induced to express 

factors such as angiopoietin-like 4, SCF, IL-3 or IL-6 (both singularly and in 

combination), which can increase both Mks and platelet counts in vivo (336, 337). 

Interestingly, IL-6 is upregulated in the BM and spleen following the induction of acute 

ITP in mice (292). Furthermore, IFNγ, which is usually upregulated in serum of ITP 

patients, has been shown to enhance the of megakaryopoietic activity of IL-3 (338, 339). 

IL-6 and IFNγ are both proinflammatory cytokines, indicating that inflammation may 

have a role in megakarypoiesis. The involvement of inflammation in driving emergency 

megakaryopoiesis was recently confirmed in vivo (116, 298). Type-1 IFN signalling 

activates both Mk-biased HSCs and Mk progenitors (MkPs) to rapidly produce mature 

Mks (116), whilst a tyrosyl-tRNA synthetase variant has an ex-translational role in 

directing HSCs to differentiate into Mks as well as upregulating megakarypoiesis 
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stimulating factors such as IL-6, VEGF-A and IL-1α from monocytes within the BM 

microenvironment (298). Activated CD8+ T cells (223), or their secretory factors (325), 

can increase numbers of BM Mks through inhibition of Mk apoptosis, which is required 

during the final stages of platelet release (340). Whether activated CD8+ T cells are 

present in our ITP model will be addressed further in Chapter 5.  

To determine whether sustained anti-CD41 binding to Mks affects the recovery in 

platelet counts, platelet recovery was compared between mice with acute ITP and mice 

with sustained ITP. The differences in platelet counts appear to be in the kinetics of 

platelet recovery (quicker rebound after nadir and slower decrease after overshoot peak) 

rather than peak number. This was surprising, as a faster platelet recovery and a slower 

return to baseline should also present as a higher peak platelet count. The reasons for 

this are unclear, however it is plausible that the blood counter is inaccurate at counting 

platelets outside the normal physiological range, and the true platelet count in the 

sustained ITP group was higher than recorded. An alternate method to determine 

platelet count could be a flow cytometry method (341). As platelet destruction occurs to 

a similar extent between groups, the differences in platelet recovery between the 

sustained and acute group are likely due to differences in thrombopoiesis and/or 

differences in megakaryopoiesis. In first few days of platelet recovery, increased 

thrombopoiesis from the sustained group was likely to have contributed to the earlier 

rise in platelet count based upon the significantly higher MPV. However, as platelet 

lifespan is 3-4 days in mice (342), and the MPV in both groups had returned to baseline, 

difference in the peak platelet count and subsequent return to baseline would be heavily 

influenced by differences in megakaryopoiesis. However, given that the sustained group 

had almost double the number of BM Mks than the acute group, one might expect that 

the differences in platelet counts would be greater than that observed. However, this is 

assuming that the increased Mks are all platelet producing. As previously stated, Mks in 

ITP are reported to be more immature (303, 331, 332) and may not all be capable of 

platelet production (303). Although the Mks in mice with 4 week ITP do not appear 

noticeably immature (e.g. smaller, less polyploid), this has not been formally quantified 

and therefore cannot be ruled out. Additionally, anti-CD41 binding to mature Mks may 

be detrimental to platelet production, potentially by inhibiting pro-platelet formation (327, 

328). However, the necessary experiments to address this question (e.g. in vitro platelet 

production assays) were considered out of the scope of this PhD. Interestingly, rebound 

thrombopoiesis after 5-FU treatment is inhibited in Mpl-/- mice injected with antibodies to 

CXCR4, highlighting the importance of the BM niche in reactive thrombopoiesis as well 

as steady state homeostasis (335). 
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The Mk lineage is the predominant fate of HSCs in the native, unperturbed setting and 

differentiation predominantly occurs directly, as opposed to through intermediates in the 

MPP compartment (32). This raises the question of whether sustained 

thrombocytopenia could be more detrimental to HSC function long term than other 

cytopenias. Another important question is whether HSCs are under direct autoimmune 

attack in ITP, in addition to Mks and platelets. In mice, CD41 is additionally expressed 

in subpopulations of HSCs (343, 344). Whilst CD41 expression on HSCs is not 

absolutely required for platelet bias (31, 32), CD41 expressing HSCs consist of a 

subpopulation of functional HSCs: they are quiescent, myeloid and platelet biased (yet 

with multi-lineage potential) and have serial repopulation ability (343, 344). Furthermore, 

CD41 expression is inducible. HSC CD41 expression increases with age (343, 345) and 

during inflammation (116). Other platelet autoantigens commonly targeted in ITP are 

also upregulated during inflammation such as CD61 and components of the GPIb-IX-V 

complex (116).  

The clinical relevance of anti-CD41 binding to mouse progenitors is unclear, as Mk 

priming of HSCs has yet to be convincingly demonstrated in human haematopoiesis. Mk 

markers appear to be more highly expressed in murine HSCs than human HSCs, 

however this may also be due to less well developed purification strategies for human 

HSCs (346). However, this warrants further investigation, especially in adults where the 

majority of ITP patients have chronic ITP, therefore potential prolonged autoimmune 

attack on progenitors at a time where upregulation of platelet associated markers may 

occur on the most primitive of populations.  

Together, the data indicates that the novel model of sustained ITP is useful in studying 

ITP progression (summarised in Figure 4.9). It is clinically relevant: mice are 

thrombocytopenic by the injection of anti-CD41 which is the most common autoantibody 

found in patients that display autoantibodies. However, further analysis of the immune 

system is needed to clarify which cell types are responsible for platelet depletion, and 

whether cell-mediated autoimmunity exists in this model. This is of importance, as 

minority of patients do not display autoantibodies, and in these patients ITP is thought 

to be driven through T cell involvement (201). Mice with ITP display mild splenomegaly 

and spontaneous bleeding and display increased megakaryopoiesis despite having 

normal levels of circulating TPO. The latter may indicate emergency megakaryopoiesis 

in ITP and may have broader implications for haematopoiesis (116), neither of which 

has previously been assessed. Direct HSC effects may also exist; anti-CD41 binds to 

BM Mks, and possibly also to CD41 expressing progenitors which may directly influence 

haematopoiesis.  
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Figure 4.9. A model for sustained ITP. Autoantibody binding to the surface of platelets targets them for 

destruction. TPO independent emergency megakaryopoiesis occurs to increase thrombopoiesis, and this 
may be driven by changes in the BM niche. Autoantibody binding to the surface of Mks occurs, and is likely 
to compromise thrombopoiesis. Autoantibody binding to progenitors (including phenotypic HSCs) may have 
wider long term consequences for haematopoiesis. 
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5 Characterisation of the immune system using the 

sustained ITP mouse model 

5.1 Introduction 

Splenic macrophages and dendritic cells are major sources of platelet clearance in ITP, 

binding opsonised platelets through Fcγ-receptors (FcγRs), resulting in phagocytosis 

and destruction of the antibody-platelet complex (228, 289). Despite their well-

established role in platelet clearance, there may also be other, previously unrecognised 

cell types that also contribute to platelet clearance. For example, monocytes are 

phagocytic and express FcγRIII, the activating Fc receptor responsible for IgG1 binding 

(254). Characterisation of the immune cells responsible for platelet clearance is 

important for the identification of new pharmacological targets and may be have major 

consequences for patient therapy.  

The current treatment of ITP is based around the suppression of autoreactive platelet 

destruction (e.g. IVIG, corticosteroids, rituximab) and the stimulation of platelet 

production (e.g. TPO-RA) (200). However the two approaches are not mutually 

exclusive; TPO-RAs have been linked to disease remission through immune system 

modulation leading a normalisation of the Treg/effector CD8+ cell ratio (347). A clinically 

relevant in vivo mouse model allowing for the in-depth analysis of immune populations 

during ITP progression would be useful in exploring the mechanisms behind ITP 

progression and response to novel therapies, as well as possible side effects associated 

with their use long term. Currently, most studies rely on peripheral blood from ITP 

patients (221, 229, 348, 349), and the use of samples from other clinically relevant sites 

such as BM or spleen is rare. Therefore, as well as allowing tractability within 

experiments, the use of a clinically relevant in vivo mouse model would allow for the 

harvest and analysis of important samples ordinarily out of reach.  

Using the model of sustained ITP, I determined which immune populations bound 

labelled antibody-platelet complexes from multiple sites including the bone marrow, 

blood, spleen and peritoneal cavity, and determined the requirements for the initiation 

and maintenance of ITP using both immunocompetent WT mice and immunodeficient 

strains such as Rag2-/- and NSG-SGM3 mice. Although NSG-SGM3 mice are typically 

used for humanisation studies (256), they were available to use and considered a useful 

model due to their NOD/LtSz-scid background and IL-2Rγ chain deficiency (350, 351). 

Additionally, I analysed T cell subsets to determine whether the model mimicked clinical 

findings and therefore whether the model could be useful in increasing understanding 
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of cell mediated autoimmunity in ITP as well as in preclinical drug studies aimed at 

suppressing the T cell response. 

5.2 Materials and methods 

5.2.1 Flow cytometry 

5.2.1.1 FcRy genotyping 

FcRγ+/- mice were bred together genotyped by James Hewitson (University of York, 

results not shown). To confirm genotyping results, I performed FACS analysis of 

peripheral blood using the anti-mouse CD16/32 antibody as follows: 

Mice were bled (2.5.1.1) and red blood cells were lysed in ACK lysing buffer, followed 

by a PBS wash. Cells were stained with anti-mouse CD16/32-PE/Cy7 diluted in FACS 

buffer for 20 min at 4 ⁰C (2.6). Stained cells were then washed three times in FACS 

buffer. After the final wash, cells were resuspended in FACS buffer and analysed on the 

Cytoflex LX (Beckman Coulter). After the final wash, all cells were resuspended in FACS 

buffer and analysed on the Cytoflex LX (Beckman Coulter). 

5.2.1.2 Characterisation of the innate immune system at 2 weeks 

WT, Rag2-/- or NSG-SGM3 mice were administered anti-CD41 antibody/IgG1 for 2 

weeks (4.2.1). If platelets required labelling prior to analysis, mice were given an 

intraperitoneal injection with anti CD41-FITC or IgG1-FITC 1 h before euthanasia 

(summarised in Figure 5.1), which was achieved by an overdose of anaesthetic and 

exsanguinated by brachial bleed (2.5.1.3). After cervical dislocation, peritoneal 

macrophages were collected by a peritoneal wash.  

To perform a peritoneal wash, a small incision was made along the midline of the 

euthanised mouse and the abdominal skin retracted to expose the intact peritoneal wall. 

5 mL of ice-cold RPMI (Gibco) media was injected slowly into the peritoneum using a 

25 G 5/8 needle, with care taken not to puncture any organs. To suspend the cells in 

RPMI, the mouse was gently agitated for up to a minute. The needle was reinserted into 

the peritoneum and the fluid collected and placed on ice until the cells were needed. 

Haematopoietic BM cells were collected as described previously (2.5.2). Splenic cell 

suspensions were prepared by dicing spleens with a razor blade and digested with 

DMEN supplemented with 0.25 mg/mL collagenase IV and 0.1 mg/mL DNase I (both 

Roche) for 20 min at 37 ⁰C with gentle agitation. Digested tissue was then passed 

through a 70 µM cell strainer which was washed with 2%FBS/PBS and the flow-through 

collected for downstream analysis. All cells (blood, peritoneal, BM and spleen) were 

prepared for FACS analysis (2.6), with blood and BM cells were stained with the 

following antibodies at 4 ⁰C for 20 min: CD115-PE, CD11b-APC, CD45-APC/Cy7, Ly6C-
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BV605, Ly6G-PE/Cy7 and MHC II-AF700. Spleen cells were stained with the following 

antibodies at 4 ⁰C for 20 min: F4/80-PE, CD11b-APC, CD45-APC/Cy7, Ly6C-BV605, 

Ly6G-PE/Cy7 and MHC II-Alexa Fluor 700. Peritoneal cells were stained with the 

following antibodies at 4 ⁰C for 20 min: F4/80-PE, CD11b-APC and MHC II-AF700. 

Specific antibody information is found in Table 3. After staining, cells were washed three 

times in FACS buffer. After the final wash, cells were resuspended in FACS buffer and 

analysed on the Cytoflex S (Beckman Coulter). 

All cells were pre-gated on viable and single cells. All data was analysed with FCS 

Express (De Novo) software. 
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Figure 5.1. Summary of platelet labelling experiment. A) Mice were injected with unlabelled anti-CD41 
every 48 h for 2 weeks. B) On day 16, mice were injected with anti-CD41-FITC, followed by culling 1 hr later 

and analysis to determine which cells bound to FITC labelled platelets.  

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

5.2.1.3 Characterisation of T cell subsets at 4 weeks 

WT mice were administered anti-CD41 antibody/IgG1 for 4 weeks (4.2.1), then 

euthanised prior to BM and splenic harvest (2.5.2). For T cell stimulation, cells were 

stimulated in RMPI supplemented with 0.5 µg/mL PMA, 1 µg/mL ionomycin and 10 

µg/mL brefeldin (all Sigma) for 4 h in cell culture conditions. Cells were then prepared 

for FACS analysis (2.6).  

Cell surface markers were stained with the following antibodies in FACS buffer for 20 

min at 4 ⁰C. General phenotype panel (to identify B cells, CD4 and CD8 subtypes): 

CD8a-APC, TCR-β-PerCP/Cy5.5, CD62L-PE/Cy7, CD44-FITC, CD19-PE and CD4-

APC/Cy7. Tfh cell panel: TCR-β-PerCP/Cy5.5, CD4-APC/Cy7, CD44-FITC, CD62L-

PE/Cy7, CXCR5-APC, PD-1-PE. Treg panel: TCR-β-PerCP/Cy5.5, CD4-APC/Cy7, 

CD44-FITC, CD62L-PE/Cy7 and CD25-PE. Intracellular cytokine panel: CD8a-APC and 

CD4-APC/Cy7. Specific antibody information is found in Table 2. Stained cells were then 

washed twice in FACS buffer.  

Cells stained with the general phenotype or T Follicular Helper Cell panel were 

additionally fixed for 15 min at 4⁰C in 2%PFA/PBS, followed by a further two washes in 

FACS buffer. 

Cells stained with the Treg panel were fixed/permeabilised with the eBioscience Foxp3 

/ Transcription Factor Fixation/Permeabilization Concentrate and Diluent kit at 1X 

concentration for 1 h in the dark at 4 ⁰C. Cells were washed twice in 1X permabilisation 

buffer, followed by staining with Foxp3-AF647 in permabilisation buffer for 20 min at 4 

⁰C (Table 3). Cells were washed twice more in permabilisation buffer, followed by once 

in FACS buffer. 

Cells stained with the intracellular cytokine panel were fixed with the eBioscience IC 

Fixation Buffer for 20 min at 4 ⁰C, followed by washing twice in 1X permabilisation buffer. 

All cell surface markers were stained with the following antibodies in permabilisation 

buffer for 20 min at 4 ⁰C. Panel 1: IFN-γ-FITC, granzymeB-PE/Cy7, IL4-PE/Dazzle594, 

IL-2-PE and TNF-α-BV421. Panel 2: IL17-A-PE/Cy7, IFN-γ-FITC, granzymeB-PE/Cy7, 

IL-4-PE/Dazzle594, IL-10-PE and TNF-α-BV421. Cells were washed twice more in 

permabilisation buffer, followed by once in FACS buffer. After the final wash, all cells 

were resuspended in FACS buffer and analysed on the Cytoflex LX (Beckman Coulter). 

All cells were pre-gated on viable and single cells. All data was analysed with FCS 

Express (De Novo) software. 
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5.3 Results 

5.3.1 Induction of immune thrombocytopenia model is dependent on 

expression of FcyRIII  

Activating IgG receptors require the association of the FcRγ subunit to be expressed 

and functional at the cell surface (352). Consequently, FcRγ-/- mice do not express 

FcγRI, FcγRIII and FcγRIV and cannot phagocytose opsonised antigens (254). The anti-

CD41 antibody used to deplete platelets is of the IgG1 isotype which is recognised by 

the low affinity receptors FcγRIII and FcγRIIB which are expressed on all myeloid 

populations (353). FcγRIII is an activating FcRγ, whilst FcγRIIB is an inhibitory FcRγ; 

therefore FcγRIII is the only activating FcRγ capable of binding IgG1 (354).  

FcRγ+/- and FcRγ-/- mice were a kind gift from James Hewitson, (University of York). As 

FcγRII but not FcγRIII is expressed by FcRγ-/- mice (254), FcRγ+/- and FcRγ-/- mice can 

be distinguished from one another by the intensity of stain of mononuclear cells in 

peripheral blood using an antibody that recognises both FcγRIII and FcγRII (Figure 

5.2A). An antibody with dual specificity for FcγRIII and FcγRII was used as antibodies 

uniquely specific for FcγRIII have not yet been generated. Although specific markers 

were not used to confirm the identity of the cells, granulocytes, monocytes and 

lymphocytes in peripheral blood can be distinguished based on their side scatter (SSC) 

profile. FcRγ+/- and FcRγ-/- mice can clearly be distinguished apart from one another 

based on the FcγRIII/II staining of the monocyte and granulocyte populations. Peripheral 

monocytes exhibited a near total reduction in FcγRIII/II staining in FcRγ-/- mice, whilst 

granulocytes exhibited a less dramatic reduction in FcγRIII/II staining. A subpopulation 

of WT lymphocytes stained positive for FcγRIII/II and this was not altered in FcRγ+/- or 

FcRγ-/- mice. 

To determine whether platelet depletion using the passive transfer model is solely 

dependent on FcγRIII expression, WT, FcRγ+/- and FcRγ-/- mice were injected with anti-

CD41 antibody (Figure 5.2B). 24 h later, WT mice and FcRγ+/- exhibited an 89.5% and 

49.7% decrease in platelet count, respectively whilst FcRγ-/- mice had no statistical 

change in platelet count.  
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Figure 5.2. FcγRIII expression is required for ITP induction. A) Flow cytometry analysis of peripheral 
blood to confirm genotype of FcRγ+/- and FcRγ-/- mice. WT peripheral blood was also analysed as a 
comparison. B) Platelet counts from WT, FcRγ+/- and FcRγ-/- mice 24 h after anti-CD41 injection. N = 3. 
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5.3.2 Sustained ITP is achieved in Rag2-/-, but not NSG-SGM3 mice 

To dissect which immune cell populations were responsible for sustained platelet 

clearance in our model of sustained ITP, the immunocompromised NSG-SGM3 and 

Rag2-/- mouse strains were injected with anti-CD41 or IgG for 2 weeks (Figure 5.3B and 

Figure 5.4B respectively). Severe thrombocytopenia was only transient at day 1 and day 

9 in NSG-SGM3 mice, while Rag2-/- mice had sustained severe thrombocytopenia. To 

explore the mechanism behind the observed differences, peripheral blood was analysed 

by flow cytometry on day 15.  

As expected, the SSC vs FSC plot of red blood cell lysed peripheral blood from NSG-

SGM3 mice (Figure 5.3A) was totally absent in lymphocytes (258, 260). Whilst 

lymphocytes were present in peripheral blood from Rag2-/- mice (Figure 5.4A), they were 

reduced in number as compared to WT peripheral blood (Figure 5.5A) and were 

expected to be immature (255). Confirmation of specific staining and correct gating was 

achieved by backgating onto the SSC vs FSC plot; as expected, neutrophils appeared 

as granulocytes and monocytes appeared as leukocytes. In addition, differences in 

monocyte populations were observed between NSG-SGM3 and Rag2-/- mice. CD115 

expression by monocytes of NSG-SGM3 mice (Figure 5.3A) was lower than that 

observed in Rag2-/- and WT mice (Figure 5.4A and Figure 5.5A, respectively). 

Additionally, no expression of MHC II was observed in NSG-SGM3 mice (Figure 5.2A), 

whilst Rag2-/- mice expressed MHC II (Figure 5.3A). Despite MHC II expression by Rag2-

/- mice, expression levels were not altered by ITP.  

Anti-CD41 treated NSG-SGM3 mice had a mean 55.7% decrease in classical 

monocytes (P = 0.10) and a mean 39.5% decrease in patrolling monocytes (P = 0.20) 

whilst neutrophil numbers remained constant. However, there did not appear to be any 

major differences in monocyte or neutrophil numbers in Rag2-/- mice, although peripheral 

blood from more mice would need to be analysed before drawing any definitive 

conclusions. 
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Figure 5.3. NSG-SGM3 mice cannot maintain thrombocytopenia using the ITP model. Flow cytometry analysis of NSG-SGM3 peripheral blood. A) Gating strategy showing 
example plots from IgG treated mice. Gated populations appear as red events when backgated onto the initial SSC vs FSC plot. B) Platelet counts during the 2 week ITP time 
course. C) Frequency of i) neutrophils (P = 0.26), ii) classical monocytes (P = 0.067) and iii) patrolling monocytes (P = 0.13). No expression of MHC II by iv) classical monocytes 
or v) patrolling monocytes was detected. P values were calculated by Mann-Whitney tests. N = 3. 
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Figure 5.4. Rag2-/- mice maintain severe thrombocytopenia using the ITP model. Flow cytometry analysis of Rag2-/- peripheral blood. A) Gating strategy showing example 
plots from IgG treated mice. Gated populations appear as red events when backgated onto the initial SSC vs FSC plot. B) Platelet counts during the 2 week ITP time course. N=3. 
C) Frequency of i) neutrophils, ii) classical monocytes and iii) patrolling monocytes. MHC II expression by iv) classical monocytes or v) patrolling monocytes. N = 1-3.  
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5.3.3 Characterisation of the innate immune system in immune 

thrombocytopenia 

Splenic macrophages and dendritic cells are thought to be the major cell types 

responsible for platelet clearance in ITP (228, 289). However, it remains possible that 

other cell types may also have a role in the phagocytosis of antibody bound platelets. 

To address this, immune cells of interest from WT mice with 2 week ITP were analysed 

for their ability to bind labelled platelets in vivo. On day 16, mice were injected with FITC 

labelled anti-CD41 1 h prior to euthanasia to label platelets or FITC labelled IgG to 

control for non-specific interactions (Figure 5.1). Flow cytometry was used to determine 

which immune cells were binding labelled platelets in ITP. Cell percentage and 

activation status (indicated by MHC II expression) were also recorded. 

Analysis of peripheral blood, flushed BM, peritoneal wash and digested spleen is shown 

by Figures 5.5-8. Subfigure A of Figures 5.5-8 shows the gating strategy used to identify 

innate immune cells of interest; backgating onto the initial SSC vs FSC plot gave 

confidence to the staining and gating strategy as the gated cells appeared as expected 

based on their known biophysical properties. Classical and patrolling monocytes 

appeared to be increased in peripheral blood (both P = 0.1), whilst neutrophils are 

unaltered (P > 0.99) (Figure 5.5B). In contrast, in the BM there appeared to be an 

increase in neutrophils and patrolling monocytes (both P = 0.1), but not classical 

monocytes (P = 0.4) (Figure 5.6B). In the peritoneal wash and spleen, there were no 

differences in F4/80+ macrophages (P = 0.8; Figure 5.7B and P = 0.4; Figure 5.8B 

respectively). There were no differences in the MHC II expression of any monocyte or 

macrophage populations analysed, indicating that their activation status was unaltered.  

Platelets are defined as FSClowSSClowCD41+ cells (355). Unlike injected anti-CD41-

FITC, injected IgG-FITC does not bind to platelets (Figure 5.5Ci). Furthermore, injected 

IgG-FITC does not non-specifically bind larger mononucleated cells (Figure 5.5Cii). As 

platelets are the only circulating cell that expresses CD41 (356), I had confidence that 

FITC+ events corresponded to platelets or platelets bound to other cells. When applying 

the gates defined in Figure 5.5A, a minority of both classical and patrolling monocytes 

are shown to bind labelled platelets. However, when backgating onto the initial SSC vs 

FSC plot, FITC+ events appear mainly as FSClowSSClow events which are characteristic 

of lymphocytes (357). This indicates that in peripheral blood, classical monocytes and 

possibly lymphocytes bind platelets in ITP. 

Similarly, FITC+ events are not observed in the BM of IgG-FITC treated mice, unlike anti-

CD41-FITC treated mice (Figure 5.6Ci). However, the FITC+ events appeared diffuse 
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and did not exclusively fall within any of the monocyte or neutrophil gates characterised 

in Figure 5.6A.  

FITC+ events appear in cells isolated from the peritoneal cavity in both IgG-FITC and 

anti-CD41-FITC treated mice, implying that anti-CD41 binding is nonspecific (Figure 

5.7C). FITC+ events from both IgG-FITC and anti-CD41-FITC treated mice appear 

predominantly as F4/80+ macrophages, implying that nonspecific interactions occur 

predominantly with this population.  

The majority of splenic F4/80+ macrophages were FITC+ in anti-CD41-FITC but not IgG-

FITC treated mice implying that these cells are major contributors to antibody bound 

platelet destruction in ITP (Figure 5.8Cii). To predict which cells bind labelled platelets 

in an unbiased setting, FITC+ events were backgated onto the initial SSC vs FSC plot. 

FITC+ events were predominantly in the macrophage rich area defined in Figure 5.8A, 

confirming that splenic macrophages are the major contributors to antibody bound 

platelet destruction within the spleen. 

Together, the results indicate that splenic macrophages are major contributors to 

antibody bound platelet destruction in ITP. Circulating and BM monocytes respond to 

sustained anti-CD41 treatment by expanding in number, however are likely to only be 

minor direct contributors to platelet phagocytosis.
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Figure 5.5. Labelled platelets bind to a minority of peripheral monocytes during sustained ITP. Flow cytometry analysis of peripheral blood from platelet labelling experiment 

(Figure 5.1). A Gating strategy showing example plots. Gated populations appear as red events when backgated onto the initial SSC vs FSC plot. B Frequency of i) neutrophils (P 

> 0.99), ii) classical monocytes (P = 0.10) and iii) patrolling monocytes (P = 0.10). MHC II expression by iv) classical monocytes (P = 0.40), or v) patrolling monocytes (P > 0.99). 

Ci) anti-CD41-FITC is specific for platelets. ii) FITC+ events mainly appear as lymphocytes when backgated onto the SSC vs FSC plot. iii) Populations defined in A) that were FITC⁺: 

neutrophils (P > 0.99), classical monocytes (P = 0.10) and patrolling monocytes (P = 0.10). P values were calculated by Mann-Whitney tests. N=3.  
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Figure 5.6. Labelled platelets bind to a minority of BM monocytes during sustained ITP. Flow cytometry analysis of BM from platelet labelling experiment (Figure 5.1). A) 
Gating strategy showing example plots from IgG treated mice. Gated populations appear as red events when backgated onto the initial SSC vs FSC plot. B) Frequency of i) 
neutrophils (P = 0.10), ii) classical monocytes (P = 0.40) and iii) patrolling monocytes (P = 0.10). MHC II expression by iv) classical monocytes (P = 0.70), or v) patrolling 

monocytes (P = 0.70). i) FITC+ events backgated onto the SSC vs FSC plot. ii) Populations defined in A) that were FITC⁺: neutrophils (P = 0.10), classical monocytes (P = 0.10) 
and patrolling monocytes (P = 0.10). P values were calculated by Mann-Whitney tests. N=3.  

 

 

 

 

 



97 
 

 

Figure 5.7. Labelled anti-CD41/IgG binds non-specifically to peritoneal macrophages. Flow cytometry analysis of cells from the peritoneal cavity of mice from platelet 
labelling experiment (Figure 5.1). A) Gating strategy showing example plots from IgG treated mice. Gated populations appear as red events when backgated onto the initial SSC 
vs FSC plot. Bi) Frequency of macrophages (P = 0.80). ii) MHC II expression by macrophages (P = 0.70). i) FITC+ events mainly appear as macrophages when backgated onto 

the SSC vs FSC plot. ii) FITC⁺ events within the macrophage gate (P = 0.40). P values were calculated by Mann-Whitney tests. N=3
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Figure 5.8. Labelled platelets bind to the majority of splenic F4/80+ macrophages during sustained 
ITP. Flow cytometry analysis of the spleen of mice from platelet labelling experiment (Figure 5.1). A) 

Gating strategy showing example plots from IgG treated mice. Gated populations appear as red events 
when backgated onto the initial SSC vs FSC plot. B) Frequency of i) neutrophils (P = 0.40), ii) F4/80+ 
macrophages (P = 0.40). iii) MHC II expression by F4/80+ macrophages (P = 0.70). i) FITC+ events 

backgated onto the SSC vs FSC plot. ii) Populations defined in A) that were FITC⁺: neutrophils (P = 0.40), 
F4/80+ macrophages (P = 0.10). P values were calculated by Mann-Whitney tests. N = 3.  

 

5.3.4 Characterisation of T cell subsets in chronic ITP 

Approximately 40% of ITP patients display no detectable anti-platelet antibodies and 

cellular immunity is thought to drive pathogenesis (201). The results so far indicated that 

the ITP model is initiated and sustained by a functional innate immune system, however 

it is possible that with longer anti-CD41 treatment, T cell involvement may occur. As it 

can take at least 2 weeks from the first exposure to an antigen to surmount an adaptive 

immune response (319), 4 weeks was chosen as an appropriate time point to study T 

cell subpopulations in the ITP model. Alongside IgG and anti-CD41 treated groups, a 

naïve group was used where possible to assist data interpretation.  

Figure 5.9 and Figure 5.10 show the relative proportions of lymphocyte populations in 

the spleen and BM of mice with ITP vs IgG controls. Analysis of lymphocytes revealed 

that whilst the T cell proportion remained unchanged, there was a general decrease in 

B cells (12.2% and 37.8% decrease) in the spleen and BM respectively. In contrast, 

there was an increase in non-lymphocytes in the spleen and BM (58.4% and 10.3% 

increase respectively). The non-lymphocyte population comprised a wide variety of cell 

types that do not express CD19 or TCR-β, used to identify B cells and T cells 

respectively. There were no differences in the CD4/CD8 ratio in the spleen or BM. Within 

the spleen, naïve CD4+ and CD8+ T cells appeared to expand at the expense of activated 

effector cells, however this was not significant (naïve and activated effector CD4+ T cells 

P = 0.058 and P = 0.39 respectively, naïve and activated effector CD8+ T cells P = 0.070 

and P = 0.10 respectively). In contrast, in the BM the naïve and activated effector CD4+ 

and CD8+ T cells appeared to decrease at the expense of an expansion in effector 

memory cells, however this was also mostly not significant. 

Further analysis of CD4+ cell subsets within the spleen did not reveal differences 

between mice with ITP and IgG treated controls; there were no differences in the 

proportion of Tfh cells or Tregs (Figure 5.11 and Figure 5.12, respectively). Subsets of 

Tfh cells or Tregs based upon expression of CD62L and CD44 were also unchanged. 

Additionally, analysis of CD4+ and CD8+ cells in the spleen and BM did not reveal any 

differences in intracellular cytokine production (Figure 5.13 and Figure 5.14). Together 
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the data suggested that sustained ITP did not activate T cells, however there appeared 

to be an increase in naïve T cells within the spleen of mice with ITP, although this was 

not significant. 
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Figure 5.9. Splenic T cell phenotype in the sustained ITP mouse model. Flow cytometry analysis of the spleen from WT mice with 4 week ITP vs controls. A) Gating strategy 
showing example plots from controls. B) Gating strategy showing example plots from mice with 4 week ITP. C) Summary data of i) splenic cell populations: B cells (naïve vs 
control, P = 0.44; control vs 4 week ITP, **P = 0.0029), T cells (naïve vs control, P = 0.52; control vs 4 week ITP, P = 0.89) and non-lymphocyte (naïve vs control, P > 0.99; control 
vs 4 week ITP, **P = 0.0073), ii) CD4/CD8 ratio: CD4+ cells (naïve vs control, P = 0.20; control vs 4 week ITP, P = 0.16), and CD8+ cells (naïve vs control, P = 0.20; control vs 4 
week ITP, P = 0.16), iii) CD4+ cells; naïve (naïve vs control, P > 0.99; control vs 4 week ITP, P = 0.058), central memory (naïve vs control, P = 0.93 control vs 4 week ITP, P = 
0.057), effector memory (naïve vs control, P = 0.30, control vs 4 week ITP, *P = 0.019) and activated effector (naïve vs control, P = 0.23, control vs 4 week ITP, P = 0.39) iv) CD8+ 
cells: naïve (naïve vs control, P = 0.72; control vs 4 week ITP, P = 0.070), central memory (naïve vs control, P > 0.99, control vs 4 week ITP, *P = 0.030), effector memory (naïve 
vs control, P > 0 .99, control vs 4 week ITP, P = 0.58) and activated effector (naïve vs control, P = 0.65, control vs 4 week ITP, P = 0.10). P values were calculated by Kruskal-
Wallis test with Dunn’s multiple comparisons test. Ci and ii N = 3-10, Ciii and iv N = 3-5.  
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Figure 5.10. BM T cell phenotype in the sustained ITP mouse model. Flow cytometry analysis of the BM from WT mice with 4 week ITP vs controls. A) Gating strategy 
showing example plots from controls. B) Gating strategy showing example plots from mice with 4 week ITP. C) Alterations in i) BM cell populations: B cells (naïve vs control, P = 
0.61; control vs 4 week ITP, P = 0.046), T cells (naïve vs control, P = 0.050; control vs 4 week ITP, P = 0.042) and non-lymphocyte (naïve vs control, P = 0.56 vs 4 week ITP, P = 
0.078), ii) CD4/CD8 ratio: CD4+ cells (naïve vs control, P > 0.99; control vs 4 week ITP, P = 0.14), and CD8+ cells (naïve vs control, P > 0.99; control vs 4 week ITP, P = 0.14), iii) 
CD4+ cells: naïve (naïve vs control, P = 0.12; control vs 4 week ITP, P = 0.23), central memory (naïve vs control, P > 0.99; control vs 4 week ITP, P = 0.44), effector memory 
(naïve vs control, P = 0.079; control vs 4 week ITP, P = 0.26) and activated effector (naïve vs control, P = 0.029; control vs 4 week ITP, P > 0.99) iv) CD8+ cells: naïve (naïve vs 
control, P = 0.16; control vs 4 week ITP, *P = 0.039), central memory (naïve vs control, P = 0.056; control vs 4 week ITP, P = 0.52), effector memory (naïve vs control, P > 0.99; 
control vs 4 week ITP, **P = 0.0060) and activated effector (naïve vs control, P = 0.24, control vs 4 week ITP, *P = 0.024). P values were calculated by Kruskal-Wallis test with 
Dunn’s multiple comparisons test. N = 3-10. 
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Figure 5.11. No alteration in proportion of T follicular helper cells in the sustained ITP mouse 
model. Flow cytometry analysis of the spleen from WT mice with 4 week ITP vs controls. A) Gating 
strategy showing example plots from controls. B) Gating strategy showing example plots from mice with 4 
week ITP. C) The proportion of i) T follicular helper cells (P = 0.88) and ii) memory subsets of T follicular 

helper cells (central memory, P = 0.55; effector memory, P = 0.84) were not altered between groups. P 
values were calculated by Mann Whitney tests. N = 5. 
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Figure 5.12. No alteration in proportion of Tregs in the sustained ITP mouse model. Flow cytometry 
analysis of the spleen from WT mice with 4 week ITP vs controls. A) Gating strategy showing example 
plots from controls. B) Gating strategy showing example plots from mice with 4 week ITP. C) The 
proportion of Tregs (P = 0.84, Mann-Whitney test) were not altered between groups. N = 5. 
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Figure 5.13. CD4+ and CD8+ T cells in the spleen have no change in activation status in the 
sustained ITP mouse model. A) CD4+ T cells: i) TNFα (naïve vs control, P = 0.27; control vs 4 week 
ITP, P = 0.13), ii) IL-2 (naïve vs control, P > 0.99; control vs 4 week ITP, P = 0.089), iii) IL-4 (naïve vs 
control, P = 0.64; control vs 4 week ITP, P = 0.27), iv) IFNγ (naïve vs control, P = 0.35; control vs 4 week 
ITP, P = 0.45), v) IL-10 (naïve vs control, P = 0.41; control vs 4 week ITP, P = 0.82), vi) IL-17A (naïve vs 
control, P = 0.067; control vs 4 week ITP, P > 0.99). B) CD8+ T cells: i) TNFα (naïve vs control, P = 0.46; 
control vs 4 week ITP, P = 0.65), ii) IL-2 (naïve vs 4 week ITP, P = 0.31; control vs 4 week ITP, P > 0.99), 
iii) IL-4 (naïve vs control, P = 0.32; control vs 4 week ITP, P = 0.55), iv) IFNγ (naïve vs control, P = 0.85; 
control vs 4 week ITP, P > 0.99), v) Granzyme B (naïve vs control, P = 0.38; control vs 4 week ITP, P > 
0.99). P values were calculated by Kruskal-Wallis tests with Dunn’s multiple comparisons test. N = 3-10. 
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Figure 5.14. CD4+ and CD8+ T cells in the BM have no change in intracellular cytokine production 
in the sustained ITP mouse model. A) CD4+ T cells: i) TNFα (P = 0.84), ii) IL-2 (P = 0.68), iii) IL-4 (P = 
0.55), iv) IFNγ (P = 0.056), v) IL-10 (P=0.55), vi) IL-17A (P = 0.17). B) CD8+ T cells: i) TNFα (P = 0.69), 
ii) IL-2 (P = 0.90), iii) IL-4 (P = 0.55), iv) IFNγ (P = 0.31), v) Granzyme B (P = 0.97). P values were 

calculated by Kruskal-Wallis tests with Dunn’s multiple comparisons test. N = 4-5. 

 

 



109 
 

5.4 Discussion 

The versatility of the passive transfer model both in terms of the variability of the ITP 

time course and applicability to a wide variety of mouse strains allowed for the dissection 

of the requirements for the initiation and maintenance of ITP. Initiation of ITP was 

dependent on the expression of FcγRIII, whilst maintenance of ITP required a fully 

functional innate immune system. Immunocompetent WT mice were used to 

characterise components of the innate and adaptive immune response during sustained 

ITP. Progression of ITP was associated with monocyte and naïve T cell expansion, 

however analysed cells did not appear to be activated. Labelled platelets bound to the 

majority of splenic macrophages in ITP, with minimal binding observed from other innate 

immune cells from a variety of sites suggesting that splenic macrophages are the major 

cell type responsible for the phagocytosis and clearance of antibody bound platelets. 

To validate genotyping results from FcRγ+/- and FcRγ-/- mice, peripheral blood was 

stained with an antibody specific for both FcγRIII and FcγRII and analysed by flow 

cytometry. Takai and colleagues found that splenic macrophages in FcRγ-/- mice 

exhibited an 80% reduction in FcγRIII/II staining, whilst neutrophils exhibited a 50% 

reduction in staining (254). My results using peripheral blood of FcRγ-/- mice are 

comparable. Similar to splenic macrophages, peripheral monocytes exhibited a near 

total reduction in FcγRIII/II staining in FcRγ-/- mice, whilst granulocytes (of which 

neutrophils are the dominant population), exhibited a less dramatic reduction in 

FcγRIII/II staining (perhaps indicating that granulocytes express FcγRII at higher levels 

than monocytes). Interestingly, monocytes from the FcRγ+/- mice had almost the levels 

of WT FcγRIII/II staining, rather than closer to 50% FcγRIII/II staining that might be 

expected if FcγRIII/II expression was driven by a gene dosage effect. However, after 

injection of anti-CD41, FcRγ+/- mice have approximately a 50% reduction in platelet 

counts as expected. Possibly this discrepancy is due to an increase in FcγRII expression 

in FcRγ+/- mice, therefore total staining is similar to WT mice when using an antibody 

with dual FcγRIII/II specificity. B express FcγRII but not FcγRIII, NK cells express FcγRIII 

but not FcγRII whilst T cells express neither (354). Therefore, it was expected that 

FcγRIII/II staining from NK cells, but not from B and T cells, would be reduced in FcRγ-

/- mice (254). However, NK cells contribute to approximately 3% of circulating 

lymphocytes in mice (358), therefore loss of staining from the total lymphocyte 

population would be expected to be minimal. As expected, lymphocyte staining in WT, 

FcRγ+/- and FcRγ-/- mice is comparable. The resistance of FcRγ-/- mice to ITP, confirms 

that initiation of the model is mostly (or exclusively) dependent on the expression of 

FcγRIII and is therefore driven by components of the innate immune system. 

Macrophages and DCs both have high expression of FcγRIII (354), which is in keeping 
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with their reported role in the phagocytosis of antibody bound platelets in ITP (228, 289). 

However, 2/3 FcRγ-/- mice exhibited a mild drop in platelet count 24 h after anti-CD41 

injection. Although this drop in platelet count was not significant, it would be interesting 

to repeat the experiment as a mild drop in platelet count in FcRγ-/- mice suggests there 

may be other mechanisms of platelet depletion present. As platelet desialyation is 

thought to be triggered by anti-GPIbα, but not anti-GPIIb/IIIa (243, 244), this would be 

an interesting avenue of research. 

To address whether a functional innate immune system is required for the maintenance 

of sustained ITP, two immunocompromised mouse strains (NSG-SGM3 and Rag2-/-) 

were injected with anti-CD41 or IgG for 2 weeks. NSG-SGM3 mice have multiple defects 

in adaptive and innate immunity, whilst Rag2-/- mice have defects in adaptive immunity 

but a normal innate immune system (255, 257, 258, 260).  

Rag2-/- mice had severe thrombocytopenia throughout the 2 week experiment, however 

the NSG-SGM3 strain could induce but not sustain ITP. Whilst macrophages are present 

in NOD mice or mice bred on a NOD background (such as NSG-SGM3 mice), they are 

considered functionally immature (350, 351). Macrophages were not studied in the 

described experiment, however circulating monocytes appeared defective. CD115 

expression was lower in NSG-SGM3 mice as compared to the similar levels expressed 

by WT and Rag2-/- mice. The ligand for CD115 (colony-stimulatory factor-1; CSF-1) is 

required for monocyte survival and macrophage differentiation (359). Reduced 

signalling through this axis (which may occur due to the reduced expression of CD115 

by NSG-SGM3 mice) may reduce survival of monocytes, especially under stress such 

as ITP. In support of this, there appeared to be lower percentages of classical and 

patrolling monocytes in NSG-SGM3 mice with ITP than controls (although this was not 

significant). Alternatively, monocytes could be subject to defective replenishment after 

ITP driven differentiation into inflammatory macrophages; NOD mice are known to have 

defects in monocyte differentiation from progenitors (350, 360). 

MHC II expression by APCs is required to present antigen to CD4+ T cells. Although 

constitutively expressed by APCs, the presence of inflammatory cytokines such as IFN-

γ derived from immune cells such as activated NK cells, Th1 or Tc1 cells upregulates 

MHC II expression on APCs and their ability to process antigens to CD4+ T cells is 

improved (361-363). MHC II expression on APCs can therefore be used as a surrogate 

for activation status. MHC II by tissue macrophages can create a positive feedback loop 

with IFN-γ producing lymphocytes where MHC II dependent antigen presentation and 

cytokines produced by activated macrophages stimulate T cells to produce IFN-γ which 

in turn upregulates MHC II expression in the macrophage (364). IFN-γ expression (or 
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any other cytokine expression analysed) by CD4+ and CD8+ T cells is not upregulated 

in mice with 4 week ITP. Although monocyte and macrophage populations were 

analysed at 2 weeks, not 4 weeks, MHC II expression in WT or Rag2-/- monocyte or 

macrophage populations was not upregulated, suggesting that ITP does not result in 

activation of monocyte and macrophage populations.  

Monocytes from NSG-SGM3 mice did not stain positive for MHC II. Although NOD mice 

have multiple defects in the function of macrophages (257), the lack of staining is due 

to NOD mice having a haplotype not recognised by the antibody clone used 

(M5/114.15.2) as opposed to a complete lack of MHC II expression (365). Rag2-/- mice, 

on the other hand, are of the C57BL/6 background which have the H-2b MHC haplotype 

(366). This is one of several polymorphic determinants recognised by the M5/114.15.2 

clone used in my experiments. In contrast, mice of the NOD background (such as NSG-

SGM3 mice) are of the H-2g7 haplotype (365). To determine whether MHC II expression 

of NSG-SGM3 mice alters after anti-CD41 treatment, an antibody recognising the H-2g7 

haplotype such as clone AMS-32.1 should be used in future experiments (367). 

Additionally, it would be of interest to study both the numbers and intracellular cytokine 

production of splenic macrophage and dendritic cells from Rag2-/- and NSG-SGM3 mice. 

Whilst MHC II expression is a useful surrogate for activation status, it is more informative 

to study their intracellular cytokine profile as this provides polarisation information (368, 

369). 

The pilot experiment assessing the innate immune response to ITP used a low number 

of mice in each group (N=3), therefore the results are indicative but definitive 

conclusions would require further experiments. Flow cytometry experiments indicated 

that the majority of splenic macrophages specifically bound labelled platelets in ITP, 

suggesting, in line with previous studies, that splenic macrophages are the main drivers 

of platelet clearance in ITP patients with autoantibody production (228). However, 

unaltered MHC II expression in macrophages isolated from mice with ITP suggested 

that phagocytosis of opsonised platelets did not stimulate their activation (although as 

previously described, in-depth intracellular cytokine analysis would have been more 

informative). Finally, the percentage of splenic macrophages appeared to slightly 

increase in ITP. In hindsight, it would have been informative to calculate absolute cell 

numbers, as macrophage numbers increase in ITP (309), however total cell counts were 

not retained. 

Past studies using peripheral blood from ITP patients observed that the CD16+ monocyte 

population (patrolling monocytes) is expanded relative to healthy controls, and this 

appears to modulate the T cell response (348, 349). Similarly, both classical and 
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patrolling monocytes from the peripheral blood of WT mice appeared to be expanded in 

ITP when compared to controls. Whilst monocyte/T cell interactions were not directly 

assessed in my experiments (e.g. through co-culture experiments), no evidence of T cell 

activation was observed in vivo (discussed further in the subsequent paragraph). 

Indeed, ITP had no effect on MHC II expression and only a minority of classical and 

patrolling monocytes appeared to bind opsonised platelets. However, there may be 

other consequences of peripheral blood monocyte expansion, perhaps to replenish 

resident macrophage populations. Conversely, patrolling, but not classical monocytes 

appeared to be expanded in the BM of mice with ITP. However, it is possible that there 

may be some macrophage contamination in the BM populations – to rule this out, a 

F4/80 stain should be included in future experiments (370). ITP had no effect on the 

numbers or activation status of peritoneal macrophages, and although anti-CD41-FITC 

was observed to bind to the majority of peritoneal macrophages, some of this binding 

may be non-specific. There was a higher amount of non-specific IgG binding to 

peritoneal macrophages relative to monocytes/macrophages isolated from other sites 

which was likely to be a consequence of the anti-CD41/IgG injection being at the same 

site as sample isolation. 

Autoantibodies cannot be detected in up to 40% of ITP patients (201), suggesting that 

cell mediated autoimmunity may have a significant role in ITP progression. To determine 

whether the passive transfer model is a clinically relevant model in studying T cell 

subsets in ITP, T cells from the spleen and BM of mice with 4 week ITP were 

characterised in-depth. Analysis of the intracellular cytokine profile of splenic and BM 

derived CD4+ and CD8+ T cells indicated that ITP did not cause T cell activation. ITP did 

not increase IL-2 production, suggesting that the cells were not expanding in response 

to activation, and there was no Th1 or Tc1 skewing. This is in agreement with a recent 

study where the authors concluded that the passive transfer model does not mimic the 

Th or Th17 profile of human ITP (371). Similarly, there were no differences in the 

percentages of Tfh cells or Tregs in our study. Whilst this previous study used a week 

long time course, it appears that extension to 4 weeks still does not provide the 

necessary inflammatory environment needed for T cell activation.  

Surprisingly, splenic CD4 and CD8 cells from ITP mice in fact appeared to have lower 

cytokine production than controls, although this was not significant. As discussed in 

more detail in the subsequent paragraph, this may be due to an influx of recent thymic 

emigrants (RTEs) into the spleen, generated by an increase in de novo production of T 

cells in the thymus. RTEs are immature, have diminished proliferative ability and 

produce less IL-2, IFN-γ, TNF-α, IL-4 and IL-17 when stimulated under non-polarising 
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or Th1 polarising conditions (372), therefore a higher contribution of RTEs to the 

CD4+/CD8+ phenotype in ITP may present as a higher frequency of splenocytes with 

reduced effector functions. 

Increased numbers of RTEs in the ITP spleen was considered likely based upon the 

observation that there appeared to be a higher percentage of naïve CD4+ and CD8+ T 

cells at the expense of activated T cells, although this was not significant. Increased 

numbers of RTEs in ITP may be due to a general increase in BM haematopoiesis. 

Younger patients receiving HSC transplants are associated with better homing and 

engraftment capacity are also associated with faster immune reconstitution (373), whilst 

defective haematopoiesis (either due to intrinsic HSC changes or extrinsic changes in 

the BM microenvironment) is associated with defective lymphopoiesis (374).  

Increased haematopoiesis may have also been reflected by a significant increase in the 

non-lymphocyte population in the ITP BM and spleen, whilst the proportion of T cells 

remained the same and the proportion of B cells decreased. As discussed in depth in 

Chapter 6, haematopoiesis occurred in the BM and spleen by 4 weeks, accompanied 

by substantial remodelling in the BM. This is likely reflected as a greater contribution to 

the non-lymphocyte population in ITP during flow cytometry analysis, however increased 

numbers of splenic macrophages may significantly contribute to the non-lymphocyte 

population as previously discussed. Again, it would have been informative to retain total 

cell counts and calculate the absolute number of lymphocytes. For example, as mild 

splenomegaly occurred during ITP progression, it is possible that the absolute splenic 

B cell number remained constant (rather than decreasing), whilst splenic T cell number 

increased (rather than remaining unaltered).   

Together, the data indicates that the monocyte-macrophage system expands during ITP 

progression; monocyte expansion may replenish tissue resident macrophages, which 

are the main drivers of platelet clearance through FcγRIII mediated phagocytosis (Figure 

5.14). However, despite sustained platelet clearance, macrophages (and other APCs) 

do not appear to be in the activated state necessary for upregulation of costimulatory 

molecules and therefore cannot drive T cell mediated autoimmunity. The contribution of 

autoreactive T cells to autoimmunity is considerable in ITP (201), however my data 

indicates that this was not captured in the presented model. Whilst active models of ITP 

exist, these mice have a severe bleeding phenotype not exhibited by ITP patients, which 

limits long term experiments (308). There is therefore an unmet need for an ITP mouse 

model that faithfully recapitulates the ITP setting, which would aid understanding of ITP 

progression.  
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Figure 5.15. ITP is initiated and maintained by splenic macrophages and associated with an 
increase in naïve T cells . Opsonised platelets are phagocytosed by splenic macrophages. ITP 

progression is associated with expansion of circulating monocytes, which may infiltrate into the spleen 
and replenish the macrophage pool. ITP progression is also associated with an increased percentage of 
naïve T cells in the spleen, which may be driven by an increase in thymic output. 
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6 Haematopoiesis in immune thrombocytopenia 

6.1 Introduction 

During conditions of chronic haematopoietic stress, such as infection and inflammation, 

HSCs are activated to meet the increased demand in blood cell production (375, 376). 

Exit from quiescence has been previously associated with a loss in regenerative 

capacity and may eventually cause pancytopenia (109, 110, 377). During ITP, the 

requirement for HSC differentiation is twofold. Firstly, the increased platelet demand 

caused by autoimmune-mediated platelet destruction drives megakaryopoiesis (302-

304, 378). Secondly, sustained immune system activation driving platelet destruction 

requires replenishment from progenitors (201, 375, 376). Despite this, there have been 

no reports of HSC exhaustion or pancytopenia in chronic ITP patients, suggesting that 

HSCs may receive additional support. 

Recent evidence shows that the BM microenvironment provides supportive, rather than 

instructive input for HSC differentiation (379). Furthermore, the microenvironment is 

pliable, and can contribute to disease progression by driving the expression of 

proliferative/pro-inflammatory factors or by downregulating factors which traditionally 

support HSC function. Such changes may be induced by the presence of infection (96, 

118), the development of malignancy (94, 380) or the administration of drugs (381). 

Whether the BM microenvironment actively remodels itself in response to various 

chemical or cellular insults to resolve and/or minimise hematopoietic stress remains 

unclear.  

Using a mouse model of sustained ITP, I show that the increased demand on 

haematopoiesis is met by an increase in the number of functional HSCs, which appears 

to be achieved through an interactive and iterative relationship between differentiating 

HSCs and an adapting supportive BM microenvironment in an effort to maintain 

homeostasis. 

6.2 Methods and materials 

6.2.1.1 Cytokine analysis 

Plasma was isolated from ITP or control mice via a cardiac puncture (2.5.1.2), whilst BM 

supernatant was obtained by flushing each femur with 500 µL PBS and splenic 

supernatant was obtained by crushing the spleen in 1 mL PBS and filtering through a 

70-µm cell strainer, followed by centrifugation for 5 min at 300 g. Samples were analysed 

using the Proteome Profiler Mouse XL Cytokine Array Kit (ARY028; R&D systems), 

whilst the TPO and CXCL12 content was analysed using the Mouse Thrombopoietin 

and CXCL12/SDF-1 alpha Quantikine ELISA kits (MTP00 and MCX120 respectively, 
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R&D Systems) according to the manufacturer’s instructions. Blots obtained from the 

Proteome Profiler Mouse XL Cytokine Array Kit were visualised on the Chemidoc MP 

(Bio-Rad) and saved as TIFF images. Images were imported into ImageJ software and 

the Integrated Density calculated per spot. The average measurement from each 

cytokine replicate was calculated and presented as the log2 fold change of IgG and anti-

CD41 treated mice. Upregulated proteins (log2 fold change > 0.3) were subject to 

STRING analysis (https://string-db.org/) to form a protein-protein interaction network 

(PPI). Upregulated proteins were inputted with their associated log2 fold change using 

the ‘Proteins with Values/Ranks – Functional Enrichment Analysis’ feature to visually 

identify the highest upregulated proteins within the PPI. Edges were formed if the 

interaction score was at least 0.4 (medium confidence), which was based on 

experimental, database and co-expression evidence. For analysis, proteins were 

clustered according to Gene Ontology terms within the biological process domain and 

the reactome pathway. To increase the meaningfulness of the data generated, large (> 

500) gene sets were excluded. 

6.2.2 Flow cytometry 

6.2.2.1 Flow cytometry to analysis human haematopoietic progenitors 

Cells were prepared for FACS analysis (2.6) and stained with the following antibodies 

in 100 μl FACS buffer for 20 min at 4 ⁰C: CD34-APC, CD45RA-PerCP/Cy5.5, CD90-

PE/CF594 and CD38-BB515. After staining, cells were washed three times in FACS 

buffer. After the final wash, cells were resuspended in FACS buffer and acquired on an 

LSR Fortessa (BD Biosciences) flow cytometer.  

All cells were pre-gated on viable and single cells. Samples with < 75% viable cells were 

excluded. All data was analysed with FCS Express (De Novo) software. 

6.2.2.2 Flow cytometry to analysis mouse haematopoietic progenitors 

WT mice were administered anti-CD41 antibody/IgG1 for 4 weeks (4.2.1), then 

euthanised prior to BM and splenic harvest (2.5.2) and prepared for FACS analysis (2.6). 

All cell surface markers were stained with the following antibodies in 100 μl FACS buffer 

for 20 min at 4⁰C: mouse lineage antibody cocktail-PerCP/Cy5.5, CD48-PE/Cy7, 

CD117-BV421, CD150-BV605 and Sca-1-APC. For chimerism analysis the following 

panel was used in 100 μl of FACS buffer for 20 min at 4 °C: CD45.1-PE/Cy7 or PE and 

CD45.2-AF488. After staining, cells were washed three times in FACS buffer. After the 

final wash, cells were resuspended in FACS buffer and acquired on the Cytoflex LX or 

CytoFLEX S (Beckman Coulter). 
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All cells were pre-gated on viable and single cells. All data was analysed with FCS 

Express (De Novo) software. 

6.2.3 Competitive transplantation 

WT (CD45.2) donor mice were injected with anti-mouse CD41 antibody, whilst WT 

(CD45.1) donor mice were injected with IgG1 for 4 weeks  (4.2.1). CD45.1 recipient mice 

were administered total body gamma radiation with two doses of 5.5 Gy, 24 h apart 

(lethal irradiation). Donor mice were euthanised and BM haematopoietic cells isolated 

(2.5.2) without red blood cell lysis. For primary transplants, donor BM was prepared by 

mixing CD45.1 and CD45.2 BM cells in a 3:1, 1:1, and 1:3 ratio and resuspended in 

sterile PBS. A total of 5x106 cells in a final volume of 200 µL was injected into the tail 

vein of each of the recipient mice. For secondary transplants, 2x107 BM cells from 

primary transplant donors (pooled within each group) were further transplanted into 

CD45.1 recipient mice. All recipient mice were administered oral antibiotic Baytril (Bayer, 

Leverkusen, Germany) in drinking water for 14 days post-transplant as a prophylactic 

treatment against bacterial infection. Recipient mice were bled at 4, 8, 12, 16 and 20 

weeks to monitor donor chimerism and relative mature cell production by flow cytometry. 

6.2.4 Cell sorting and transplantation experiments 

Lin- donor cells were immunomagnetically enriched prior to cell sorting based upon the 

negative expression of lineage markers via the EasySep Mouse Hematopoietic 

Progenitor Cell Isolation Kit (19856, StemCell Technologies) according to the 

manufacturer’s instructions. Following enrichment, cells were stained for progenitor 

markers followed by flow cytometry analysis (6.2.2.2). 

For homing assays, approximately 15,000 Lin- Sca1+c-Kit+ (LSK) cells from naïve 

CD45.1 mice were administered in 100 µL sterile PBS per recipient mouse via tail vein 

injection. Recipient mice were lethally irradiated 4 week anti-CD41 or IgG injected 

CD45.2 mice. 36 h later, BM was harvested and stained for donor cells followed by flow 

cytometry analysis (6.2.2.2). 

For low dose HSC transplantation experiments, 100 LT-HSCs from either 4 week anti-

CD41 or IgG injected CD45.2 mice were bulk sorted into 1 mL of PBS, and diluted so 

that each sub-lethally irradiated (one dose of 3.6 Gy) B6-W41/W41-CD45.1 mouse 

received either 10 or 3 LT-HSCs. Recipient B6-W41/W41-CD45.1 mice were bled 4, 8 or 

11 weeks post transplantation and peripheral blood analysed to determine levels of 

chimerism (6.2.2.2).The experiment was terminated at 11 weeks due to COVID-19 

restrictions, therefore it was not possible to confirm whether mice with < 1% chimerism 
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(trace chimerism) would progress to develop > 1% chimerism with time. Mice with trace 

chimerism are highlighted in the results. 

For in vitro LT-HSC assays, 1 LT-HSC was sorted per well of a round bottom 96-well 

plate, with each well containing 50 µL of LT-HSC media as described in 6.2.5. 

Cells were sorted using a four laser Beckman Coulter Astrios Eq sorter. 

6.2.5 In vitro long term haematopoietic stem cell assays 

LT-HSCs were sorted into and cultured in 50 µL StemSpan media (STEMCELL) 

supplemented with 10% fetal calf serum (Sigma-Aldrich), 300 ng/ml stem cell factor 

(STEMCELL) and 20 ng/ml IL-11 (STEMCELL). Every 24 h for 120 h, the number of 

cells in each well were manually counted and the cumulative proportion of clones having 

entered their first division (2 cells), second division (3-5 cells) or third division (> 6 cells) 

recorded. At 10 days, clones were estimated to be very small (< 50 cells), small (51-500 

cells), medium (501-10,000 cells), or large (> 10,000 cells). Clone sizes were validated 

by analysing a constant volume of cell suspension (95% of suspension) by flow 

cytometry. Very small clones were pooled together due to low numbers of cells. Cells 

were then prepared for FACS analysis (2.6), followed by staining for the presence of 

lineage markers (mouse lineage antibody cocktail-PerCP/Cy5.5, 1:50 dilution) and 

progenitor markers (Sca-1-APC and CD117-BV421; both 1:400 dilution) in 100 μl FACS 

buffer for 20 min at 4 ⁰C. After staining, cells were washed three times in FACS buffer. 

After the final wash, cells were resuspended in FACS buffer and acquired on the 

Cytoflex LX or CytoFLEX S (Beckman Coulter). 

All cells were pre-gated on viable and single cells. All data was analysed with FCS 

Express (De Novo) software. 

6.2.6 Immunostaining 

Sections were blocked in 10% donkey serum/ 0.1% tween-20/PBS (PBST) for 1 h. 

Antibodies were used in 10% goat serum/PBS: primary antibodies were applied 

overnight at 4 °C whilst secondary antibodies were applied at room temperature in the 

dark. Primary antibodies were LepR (goat polyclonal, R&D systems; 1:100) and anti-

laminin (rabbit polyclonal, Sigma, 1:200). All secondary antibodies were used at 1:400 

dilution and were as follows: donkey anti-goat IgG-AF647 (ThermoFisher) and goat anti-

rabbit IgG-AF488 (Molecular Probes). Samples were washed three times in PBST after 

each primary and secondary incubation. Sections were mounted with ProLong Gold with 

DAPI (ThermoFisher). 
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6.2.7 Imaging and image analysis 

Images were acquired using a Zeiss 880 lsm confocal microscope with Zeiss Zen 

software at 40x objective (Plan-Apochromat 40x/1.4 Oil MIC M27) and 3x3 tilescan. 

Flurochromes used were AF488 (laminin), AF647 (LepR) and DAPI. Images were 

acquired in lamda mode and spectrally unmixed to remove background 

autofluorescence. Non-linear adjustment (0.5 gamma) was applied to the DAPI channel 

only. 

For relative quantification of LepR staining, spectrally unmixed LepR-AF647 images 

were saved as TIFF images and imported into ImageJ software and the Integrated 

Density calculated per image. Images with > 10% negative space (e.g. capturing the 

central vein, or edge of the BM) were excluded. Only images that were taken on the 

same day with the same imaging conditions were compared, therefore ensuring images 

had similar levels of background fluorescence.  

For vessel analysis, image quantification was achieved using StrataQuest software 

(TissueGnostics GmbH). The confocal microscope images were imported and combined 

to create a grey virtual channel; median (‘despeckle’) and Gauss filters were applied, 

(kernel radius (‘smoothing’) =1: Gauss std=0.5). Bitwise NOT function was used to invert 

the image. Blood vessel ‘seeds’ were formed by combining inverted image from the 

laminin and DAPI mask (removing objects < 10 µm2 function was used to discard data 

from intercellular spaces). Blood vessel seeds were selected from a scatter plot of area 

(µm2) versus mean intensity of the combined grey virtual channel and a gate applied to 

identify the blood vessel lumens. Seeds were morphologically 'opened' to remove very 

small objects while maintaining the shape and size of blood vessels; Bwareopen 

function was used to remove connected objects that had fewer than 50 pixels. Tears in 

the tissue and any remaining small holes were visually verified by backgating on the 

image and excluded from the analysis. Manual correction was used to add or remove 

false positive or negative blood vessels visually identified. 

6.2.8 Real-time polymerase chain reaction 

RNA was isolated using the miRNeasy Mini Kit (QIAGEN) as described in 2.2.2 and 

transcribed using SuperScript IV First-Strand Synthesis System (ThermoFisher 

Scientific) according to the manufacturer’s instructions. Following cDNA synthesis, 

duplex qPCR was performed using genes of interest (Cxcl12, Mm00445553_m1; Kitl1, 

Mm00442972_m1, or; Angpt1 Mm00456503_m1) and housekeeping gene (Hprt1, 

Mm03024075_m1), TaqMan Fast Advanced MasterMix (ThermoFisher Scientific) and 

RNase-free water in the ratio 10:1:8; TaqMan Fast Advanced MasterMix, gene 

expression assay and RNase-free water. Each sample was prepared in triplicate. The 
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plates were run using the StepOne Plus Realtime PCR System (Applied Biosystems).  

Data was exported into Microsoft Excel and fold change was calculated using the delta-

delta method where ratio=2-∆∆CT(269). 

6.3 Results 

6.3.1 Immune thrombocytopenia progression drives haematopoietic stem 

cell and progenitor expansion 

As discussed in Chapter 4, ITP patients have increased numbers of BM Mks (302-304), 

which is in agreement with the model presented. As inflammatory factors are known to 

drive emergency megakaryopoiesis independently of TPO (116), the plasma and BM 

supernatant were analysed. Biological processes involved in the inflammatory response 

and positive regulation of MAPK signalling (such as CCL21) were upregulated in both 

the plasma and the BM (Figure 6.1 and Figure 6.2). Upregulation of these biological 

processes were higher in the BM than the plasma which was of interest as inflammation 

and MAPK signalling have previously been shown to affect LT-HSC quiescence and 

function (116, 382).  Additionally, some biological processes and reactome pathways 

also shown to affect LT-HSC quiescence and function such as IL-1 signalling and 

smooth muscle cell proliferation (such as VEGF, MMP2, WISP1 and IGFBP-3) were 

uniquely upregulated in the BM (Figure 6.1 and Figure 6.2)  (112, 383-386).  

To test whether sustained ITP affects BM haematopoietic progenitors, mice in the ITP 

group and controls were compared by flow cytometry (Figure 6.3). Whilst ITP had no 

effect on total BM cellularity (Figure 6.3C), ITP caused a 1.3-fold expansion in the 

percentage of BM-derived Lin-Sca1-c-Kit+ (LK cells, enriched for myeloid progenitors) 

and 1.7-fold expansion in LSK cells, which are enriched for HSCs (Figure 6.3Di and ii). 

Progenitor expansion in the spleen was also observed (Figure 6.4), with a 2 and 2.9-

fold expansion in the LK and LSK populations, respectively, suggesting the presence of 

extramedullary hematopoiesis in ITP. The LSK population was subdivided further using 

SLAM markers (18), with the largest expansion in the LT-HSC fraction (2.8-fold in the 

BM and 9.7-fold in the spleen) (Figure 6.3v and Figure 6.4v, respectively). In addition, 

the LK population within the BM was subdivided further (Figure 6.5); showing an 

expansion in the common myeloid progenitor fraction, and possibly also an expansion 

in the common erythroid/Mk progenitor. In contrast, there were no differences in the 

common granulocyte/monocyte progenitor fraction of mice with ITP vs controls. 

To confirm that ITP progression causes progenitor expansion, BM aspirate from 8 ITP 

patients was analysed by flow cytometry (Figure 6.6). An increase in progenitor 

frequency was observed, which was proportional to ITP duration in patients not 

undergoing treatment at the time of BM aspiration. Within CD34+CD38- cells, there was 
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a 2.37 fold increase in CD34+CD38-CD90-CD45RA- MPPs and a 3.31 fold increase in 

CD34+CD38-CD90+CD45RA- HSCs from chronic ITP patients over newly diagnosed ITP 

patients, groups as defined by the 2019 ASH guideline on ITP (200). Patients 

undergoing treatment at the time of BM aspiration (steroids, IVIg or TPO-RA) did not 

follow this same trend, suggesting that intervention may correct progenitor expansion.  

To determine the functional effect of ITP on LT-HSCs, single LT-HSCs from mice in the 

ITP group or controls were isolated and cultured in conditions which maintain LT-HSC 

activity (Figure 6.7) and analysed for changes in cell division, colony size and cell 

phenotype (387, 388). LT-HSCs from mice with ITP proliferated faster, with less time 

taken to complete first, second and third division (Figure 6.7B). This faster division 

formed larger colonies at day 10 of culture (Figure 6.7C), which were driven by an 

increase in LSK progenitors (Figure 6.7Di). However, despite the overall increase in 

number of cells per clone, ITP did not alter the proportion of differentiated and 

stem/progenitor cells within clones, suggesting that progenitor expansion was not 

accompanied by differentiation or self-renewal defects (Figure 6.7Dii-iii). The results 

indicate that sustained ITP induces the cycling of phenotypic LT-HSCs, causing an 

expansion of haematopoietic progenitors without compromising LT-HSC function. 
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Figure 6.1. Cytokine signature in plasma and BM supernatant is altered in sustained ITP. Cytokine 

array data from the BM supernatant and plasma of IgG/anti-CD41 treated mice. Data is presented as log2 
fold change of 4 week ITP relative to control. N = 1. 
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Figure 6.2. Mice with sustained ITP develop a pro-inflammatory cytokine signature in plasma and 
BM supernatant in mice with ITP. Ai-ii, Bi-ii) Gene Ontology terms within the Biological Process domain 
and Reactome pathways identified by STRING analysis of upregulated proteins in the A) BM and B) plasma 
of mice with 4 week ITP relative to control. Aiii, Biii) Protein-protein interaction (PPI) network of upregulated 
proteins in the Aiii) BM supernatant (PPI enrichment P = 1x10-16), Biii) plasma (PPI enrichment P = 0.46). 

Edges (connecting lines) show PPIs of 0.4 or higher, with the thickness of the edge indicating the strength 
of data support. The halo colour corresponds to the protein rank, with the highest upregulated protein shown 
in red and lowest upregulated protein shown in blue. 
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Figure 6.3. Sustained ITP drives BM primitive progenitor expansion. Representative flow cytometry 
gating strategy for haematopoietic progenitors in the BM of A) controls, B) mice with 4 week ITP. All cells 
are gated on live cells and singlets. C) Total cell counts from flushed BM (2x femur, tibia and humerus) P = 
0.46 (Mann-Whitney test). N = 7, (2 independent experiments). D) Summary of flow cytometry analysis: i) 
Lin-c-Kit+ (LK); *P = 0.034, ii) Lin-Sca-1+c-Kit+ (LSK); **P = 0.0055, iii) LSK CD48+CD150- (Multipotent 
Progenitors, MPP); P = 0.068, iv) LSK CD48-CD150- (Short Term HSC, ST-HSC); *P = 0.019, v) LSK CD48-

CD150+ (Long Term HSC, LT-HSC); ***P = 0.0005. N = 13 (3 independent experiments), P values were 
calculated by Mann-Whitney tests.  
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Figure 6.4. Sustained ITP drives extramedullary haematopoiesis. Representative flow cytometry gating 
strategy for haematopoietic progenitors in the spleen of A) controls, B) mice with 4 week ITP. All cells are 
gated on live cells and singlets. C) Summary of flow cytometry analysis: i) LK (***P = 0.0007), ii) LSK (***P 
= 0.0001), iii) MPP (***P = 0.0003), iv) ST-HSC (*P = 0.045), v) LT-HSC (****P < 0.0001). N = 10 mice per 

group, 2 independent experiments. P values were calculated by Mann-Whitney tests.  
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Figure 6.5. Sustained ITP drives BM committed progenitor expansion. Representative flow cytometry 
gating strategy showing example plots from A) controls, B) mice with 4 week ITP. All cells are gated on live 
cells, singlets and Lin- cells. C) Summary of flow cytometry analysis: i) LK CD16/CD32lowCD34high (common 
myeloid progenitor, CMP); *P = 0.029, ii) LK CD16/CD32lowCD34low (common erythroid/Mk progenitor; 
MEP); P = 0.11, iii) LK CD16/CD32highCD34high (common granulocyte/monocyte progenitor; GMP); P = 0.69. 
N = 4 (1 independent experiment), P values were calculated by Mann-Whitney tests.  
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Figure 6.6. ITP progression is associated with progenitor expansion. A) Representative flow cytometry 

gating strategy for haematopoietic progenitors in BM aspirate samples from ITP patients. All cells are gated 
on live cells and singlets. B) Summary of flow cytometry analysis from 9 ITP patients (CD34+, CD34+CD38-

, CD34+CD38-CD90+CD45RA- ; HSC and CD34+CD38-CD90-CD45RA- ; MPP). Newly diagnosed: ITP 
duration of < 3 months, Chronic ITP: ITP duration of > 12 months, Refractory ITP: ITP duration of > 12 
months that is resistant to therapy. All aspirates had a viability of > 75%. 
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Figure 6.7. Sustained ITP drives progenitor proliferation. A) Experimental outline for B-D. B) Cumulative 
time taken for a single LT-HSC to complete first (i), second (ii), and third (iii) division. N = 4-5 (2 independent 
experiments), P values calculated by Two-way ANOVA with Sidak’s multiple comparison test. C) Colony 
size after 10 days in culture (*P = 0.020). N = 3-4 (representative of 2 independent experiments). P values 
calculated by Two-way ANOVA. Colonies were categorised as very small (< 50), small (51-500), medium 
(501-10,000) or large (> 10,000). D) After 10 days in culture, colonies were analysed by flow cytometry for 
the expression of Lineage and LSK markers. LSK numbers (i, P = 0.006) and frequency (ii, P = 0.92). 
Frequency of Lin+ cells (iii, P = 0.55). P values were calculated by Mann-Whitney test. n = 143 and n = 208 

clones from controls and mice with sustained ITP, respectively. N = 3 (representative of 2 independent 
experiments).  
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6.3.2 Sustained immune thrombocytopenia increases the number of 

functional haematopoietic stem cells 

In order to assess the in vivo functional capacity of the expanded progenitor 

compartment in mice, competitive transplantation assays were performed using 5x106 

whole BM cells from ITP and control donors in 3:1, 1:1 and 1:3 ratios (Figure 6.8A). This 

was followed by secondary transplantations after 20 weeks using 2x107 pooled whole 

BM cells from mice within each ratio group. In the 1:1 group (Figure 6.8C), the 

contribution of ITP donors to peripheral chimerism increased to 63 ± 6% (mean values 

± SD), accompanied by an expanded contribution to the BM LT-HSC phenotype at 85 ± 

10%. Secondary transplantation data similarly showed an increased contribution by 

donor cells derived from the ITP group to mature cell production. Together, these 

transplantation data demonstrate the existence of an expanded, self-renewing pool of 

functional LT-HSCs in the BM of mice with sustained ITP. 

In order to test LT-HSC functional capacity more directly, we next transplanted limiting 

numbers of highly purified LT-HSCs isolated using the Lin-Sca1+c-Kit+CD48-CD150+ 

phenotype. Either 3 or 10 LT-HSCs from the ITP or control groups were isolated and 

transplanted into sub-lethally irradiated B6-W41/W41-CD45.1 mice (Figure 6.9). Whereas 

20% of mice receiving 3 LT-HSCs and 40% of mice receiving 10 LT-HSCs from the 

control group were positive, none of the mice receiving LT-HSCs from mice with ITP 

were repopulated, suggesting that the LT-HSC phenotype in the ITP group does not 

contain as high a frequency of functional LT-HSCs.  
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Figure 6.8. Sustained ITP increases the frequency of functional LT-HSCs in vivo. A) Experimental 
outline for B-D. Bi, Ci and Di) peripheral blood from primary recipients 4-20 weeks after transplantation. 
Bii, Cii and Dii) analysis of BM from primary recipients 20 weeks after transplantation. Biii, Ciii and Diii) 
analysis of peripheral blood from secondary recipients 4-20 weeks after transplantation. Biv, Civ and Div) 

analysis of BM from secondary recipients 20 weeks after transplantation. The dotted line shows the 
expected ratio if ITP had no effect on chimerism; for primary recipients this was calculated based upon the 
transplanted ratio of donor cells, for secondary recipients this was calculated based upon the end point of 
the primary recipients. N = 5 per recipient group.  
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Figure 6.9. Fewer functional LT-HSCs exist in the phenotypic LT-HSC pool in ITP. A) Experimental 
outline for B. B) After 11 weeks, 2/9 recipients receiving 3 control LT-HSCs and 2/5 recipients receiving 10 
LT-HSCs experienced chimerism, whilst 0 recipients receiving ITP LT-HSCs experienced chimerism, P = 
0.013. P value was calculated by a Chi-squared test. A successful transplantation was defined as > 1% 
CD45.2 chimerism. After 11 weeks, 1 mouse transplanted with 10 control LT-HSCs showed > 1% CD45.2 

chimerism, whilst 1 mouse showed trace amounts of chimerism (< 1%) as marked by an asterisk (*).  
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6.3.3 ITP progression drives physical and biochemical changes within the 

BM HSC microenvironment 

LT-HSC function is maintained through cytokine-cytokine receptor interactions and 

direct cell-cell contact between the LT-HSC and components of the perivascular BM 

microenvironment, including ECs and LepR+ BMSCs (45, 60, 72). As sustained ITP 

causes expansion and functional changes in LT-HSCs, we next assessed whether this 

was accompanied by alterations in the BM microenvironment. Immunofluorescence 

microscopy identified significant changes in non-haematopoietic components of the 

HSC BM microenvironment, which were associated with ITP progression (Figure 6.10). 

Mice with 4 week ITP had a 2-fold increase in sum vessel area, which was attributed to 

an increase in average vessel area rather than any changes in vessel number. Effects 

were also observed at an earlier (2 week) time point, with a 1.5-fold increase in sum 

vessel area with no change in vessel number (Figure 6.11). Furthermore, at 4 weeks 

there was a significant LepR+ stromal cell expansion (1.5-fold increase) (Figure 6.10B), 

whilst there were no changes in stromal cell number at 2 weeks (Figure 6.10B). 

To explore whether this remodelling of the BM microenvironment was reversible 

following recovery from thrombocytopenia, mice were allowed to recover for 4 weeks 

(‘ITP Recovered’ group) prior to BM analysis (Figure 6.10). During this period of 

recovery, the platelet count reverted back to baseline by day 18 after the final anti-CD41 

antibody injection (Figure 6.12). Despite the amelioration of thrombocytopenia, the 

substantial structural differences observed in the BM vasculature persisted with a further 

1.5-fold increase in sum vessel area relative to the initial ITP group. In these mice, a 

significant increase in vessel number was observed as opposed to a further increase in 

average vessel area (Figure 6.10C). Conversely, numbers of LepR+ perivascular 

stromal cells reverted back to control levels, suggesting that stromal cell expansion was 

transient (Figure 6.10B). 

Since perivascular LepR+ stromal cells are a major source of factors influencing LT-HSC 

function, including key microenvironment factors CXCL12, SCF and Angiopoietin-1 (45, 

72, 73, 88), and share the same microenvironment as LT-HSCs (69, 70, 72), I 

hypothesised that a transient increase in LepR+ stromal cells support LT-HSCs in 

response to sustained ITP. I measured the expression of Cxcl12, Kitl and Angpt1 in the 

BM and found that Cxcl12 expression transiently increased to 2-fold levels in the ITP 

group (Figure 6.13Ai), but there were no significant changes in Kitl or Angpt1 (Figure 

6.13Aii-iii). Additionally I measured Cxcl12 expression in the spleen, but found that 

expression levels did not alter with ITP progression (Figure 6.13B). 
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There is considerable overlap between Cxcl12-DsRed and LepR BMSCs; 98.8% of 

LepR+ BMSCs are Cxcl12-DsRed BMSCs and 88.8% of Cxcl12-DsRed are LepR+ 

BMSCs (268). To confirm past studies, confocal microscopy was performed on the BM 

of Cxcl12DsRed/+ mice with sustained ITP and sections were stained with LepR antibody. 

As expected, there was strong co-localisation between perivascular LepR+ BMSCs and 

Cxcl12-DsRed BMSCs (Figure 6.14). When the BM microenvironment of Cxcl12DsRed/+ 

mice with 4 week ITP was compared to controls, it was found that the perivascular 

Cxcl12 expression increased in mice with ITP (Figure 6.15). CXCL12 levels were 

increased 1.8-fold in the BM supernatant of mice with ITP, but not in circulation or 

spleen, confirming a BM specific elevation in CXCL12 (Figure 6.16). As CXCL12 has an 

essential role in progenitor homing to the BM (46, 47, 85, 90), I hypothesised that mice 

with ITP would show an increased potential for progenitor homing. Flow cytometry 

analysis of recipient BM revealed that naïve LSKs homed preferentially to the BM of 

irradiated mice with ITP relative to controls (5.5-fold increase; Figure 6.17B). Together, 

the data shows that the BM actively remodels in response to ITP progression to create 

a site preferential for haematopoiesis. Whilst the expansion in LepR+ BMSCs and 

associated CXCL12 expression was transient, vasculature changes persisted, the 

consequences of which are unknown. 
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Figure 6.10. Sustained ITP remodels the BM niche. ITP progression was associated with blood vessel 

structural changes and reversible changes in stromal cell number. Mice were treated with IgG (control) or 
anti-CD41 (ITP) for 4 weeks. A further group of ITP mice were allowed to recover for a further 4 weeks after 
the last injection of anti-CD41, where platelet count returned to normal by day 18 (‘ITP Recovered’ group). 
All data shown from controls and mice with ITP are representative of 3 independent experiments, whilst the 
data from ITP Recovered mice is representative of 1 independent experiment. A) Representative confocal 
images of control, ITP and ITP Recovered diaphysis BM from WT femurs. B) Relative numbers of LepR+ 

stromal cells were inferred by comparing total LepR staining between groups. Staining was quantified by 
exporting the LepR channel images as TIFFs and quantifying total staining relative to controls using ImageJ 
software. Control vs ITP *P = 0.018, control vs ITP Recovered P = 0.91, ITP vs ITP Recovered **P = 0.0021. 
P values were calculated by a Kruskal-Wallis test with Dunn’s multiple comparison test. N = 4-9. Values 
show mean values ± SD, with an average of 10 images analysed per mouse. C) Vessel analysis showing: 
i) Sum vessel area (control vs ITP ****P < 0.0001, control vs ITP Recovered ****P < 0.0001, ITP vs ITP 
Recovered ***P = 0.0001), i) Average vessel area (control vs ITP ****P < 0.0001, control vs ITP Recovered 
****P < 0.0001, ITP vs ITP Recovered P = 0.066), ii) Vessel number (control vs ITP P > 0.99, control vs ITP 
Recovered ***P = 0.0008, ITP vs ITP Recovered ***P = 0.0007). Vessel information was quantified using 
StrataQuest analysis software (TissueGnostics). P values were calculated by a Kruskal-Wallis test with 

Dunn’s multiple comparison test, n = 44-55. Violin plots show median values and upper and lower quartiles, 
with an average of 10 images analysed per mouse. 
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Figure 6.11. 2 Week ITP causes an increase in average vessel area but no changes in vessel number 
or LepR+ stromal cell number. A) Representative confocal images of diaphysis BM from the femurs of 
mice with 2 week ITP and controls. B) Relative numbers of LepR+ stromal cells were inferred by comparing 

total LepR staining between groups. Staining was quantified by exporting the LepR channel images as 
TIFFs and quantifying total staining relative to controls using ImageJ software. P = 0.73. P value was 
calculated by a Mann-Whitney test. N = 4-5. Values show mean values ± SD, with an average of 10 images 
analysed per mouse. C) Vessel analysis showing: i) Sum vessel area (****P < 0.0001), ii) Average vessel 
area (****P < 0.0001), iii) Vessel number (P = 0.144). Vessel information was quantified using StrataQuest 
analysis software (TissueGnostics). P values were calculated by Mann-Whitney tests, n = 75-113. Violin 
plots show median values and upper and lower quartiles, with an average of 20 images analysed per mouse.  
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Figure 6.12. Platelet counts return to baseline after cessation of anti-CD41 administration in the 
sustained ITP model. Mice were administered anti-CD41 for 4 weeks as described previously. After the 

final injection on day 28, mice were regularly bled to monitor platelet recovery. By day 47 (18 days after the 
final injection), the platelet count had returned to baseline. Mice were sacrificed on day 56. N = 5. 
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Figure 6.13. ITP progression increases BM Cxcl12 expression. Cytokine expression of digested whole 
BM and spleen Ai) BM Cxcl12 expression (control vs 2 week ITP P > 0.99, control vs 4 week ITP *P = 
0.021, control vs 4 week ITP Recovered P > 0.99, 2 week ITP vs 4 week ITP P = 0.14, 4 week ITP vs 4 
week ITP Recovered P = 0.43). Aii) BM Kitl expression (control vs 2 week ITP P = 0.17, control vs 4 week 
ITP P = 0.68, control vs 4 week ITP Recovered P = 0.61, 2 week ITP vs 4 week ITP P > 0.99, 4 week ITP 
vs 4 week ITP Recovered P > 0.99). N = 4-8. Aiii) BM Anpt1 expression (control vs 2 week ITP P > 0.99, 
control vs 4 week ITP P = 0.090, control vs 4 week ITP Recovered P = 0.10, 2 week ITP vs 4 week ITP P 
= 0.19, 4 week ITP vs 4 week ITP Recovered P > 0.99). N = 4-8. 1-3 independent experiments, P values 
calculated by Kruskal-Wallis tests with Dunn’s multiple comparison test. B) Spleen Cxcl12 expression (P = 
0.82). N = 6 (2 independent experiments). P values were calculated by Mann-Whitney tests.  
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Figure 6.14. Strong co-localisation between perivascular LepR+ stromal cells and Cxcl12 expression. Representative confocal image of BM from Cxcl12Dsred/+ mice with 4 

week ITP stained for LepR+ BMSCs.  
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Figure 6.15. Expansion of Cxcl12 expressing perivascular cells in ITP. Representative confocal images of BM from Cxcl12Dsred/+ mice with sustained ITP vs controls. 
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Figure 6.16. ITP progression increases BM CXCL12 expression. CXCL12 ELISA using: A) BM supernatant (**P = 0.0023, N = 7), B) spleen homogenate (P = 0.38, N = 7), C) 

and plasma (P = 0.23, N = 3-4). 2 independent experiments, P values were calculated by Mann-Whitney tests.  
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Figure 6.17. ITP progression is associated with increased BM homing. A) Experimental outline for B. B) Homing of naïve progenitors to the BM of mice with 4 week ITP vs 
controls (P = 0.004, N = 8-9). 2 independent experiments, P value was calculated by a Mann-Whitney Test.  
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6.4 Discussion 

Whilst the mechanisms behind the development and maintenance of thrombocytopenia 

have been the subject of intensive research, the wider long-term effects of ITP 

progression are unclear. Here, I identify a significant expansion in phenotypic 

haematopoietic progenitors in both the murine model of sustained ITP and in human 

patients with chronic ITP, accompanied by a remodelling of the BM microenvironment 

in mice with sustained ITP. Functional assays demonstrated an increased proliferation 

and self-renewal potential of LT-HSCs from mice with ITP, but also indicated a shift in 

LT-HSC frequency within the LT-HSC phenotype. Assessment of the BM 

microenvironment identified alterations in key mediators of LT-HSC function, including 

an increase in total blood vessel area and a specific increase in LepR+ BMSCs.  

Together, these changes in LT-HSC activation and BM remodelling combine to 

counteract the stress of sustained ITP to ensure homeostasis within the haematopoietic 

system. 

Cytokine analysis of BM and plasma samples from mice with sustained ITP identified 

that proteins involved in the inflammatory response were upregulated, which has been 

previously shown to drive megakaryopoiesis (116). As the cytokine signature in the ITP 

BM appeared to be more divergent from controls than the periphery, and that several 

upregulated biological processes and pathways have been previously shown to affect 

LT-HSC function (112, 382, 383), I asked if sustained ITP may affect haematopoiesis 

more broadly. 

The expansion in stem and progenitor cell numbers in ITP in combination with the 

increase in proliferation observed in single LT-HSC in vitro assays suggests that LT-

HSCs might be activated in response to ITP. Competitive transplantation assays 

revealed that ITP drives an expansion of LT-HSCs with durable self-renewal, suggesting 

that this activation did not compromise LT-HSC activity. However, caution is needed 

when interpreting the relative numbers and activation status of LT-HSCs in diseased 

states. Whereas whole BM competitive transplants allow LT-HSC activity to be 

assessed in an unbiased fashion and indicate that numbers of functional LT-HSC are 

increased, experiments assume that the expression of cell surface markers are not 

altered as a result of the experimental conditions. Indeed, it has been reported that 

during immune stimulation, BM cells have increased expression of Sca1 and CD150, 

causing non-HSC populations to appear in gates expected to be enriched in LT-HSC 

populations (389). This can lead to dilution of experimental LT-HSCs vs control LT-

HSCs when performing downstream experiments. The low dose LT-HSC transplantation 
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experiments suggest that this may also occur in sustained ITP, where sub-lethally 

irradiated mice receiving LT-HSCs from ITP CD45.2 mice failed to repopulate compared 

to control CD45.2 mice. Together these data indicate that LT-HSCs might reside outside 

the traditional phenotype and that the LT-HSC phenotype is contaminated with a larger 

proportion of non-HSCs in an ITP setting.   

It has been shown recently that progenitors activate and proliferate in response to acute 

antibody mediated thrombocytopenia (117). However, when ITP is extended to two 

weeks, LT-HSC functionality was impaired during serial transplants. This discrepancy 

with our results is potentially due to differences in experimental setup. Ramasz et al 

(117) performed a primary competitive transplant using 300 LT-HSCs from mice with 

sustained ITP and 5x105 BM competitor cells from controls. After 16 weeks, they 

transplanted 300 ITP LT-HSCs from primary recipients into secondary recipients 

alongside 5x105 fresh BM competitor cells. The decreased contribution to peripheral 

blood reconstitution after each round of competitive transplant can be explained by our 

observation that the traditional LT-HSC phenotype is contaminated with a larger 

proportion of non-HSCs in ITP. However, when analysing the LT-HSC pool as a whole 

(e.g. using unbiased whole BM transplants), LT-HSC functionality is increased and 

preserves haematopoiesis long-term.    

The ability of LT-HSCs to maintain functionality in conditions of haematological stress is 

essential for the preservation of haematopoiesis long term. When LT-HSCs are unable 

to meet the increased demand such as in chronic infection (96, 118) or the development 

of malignancy (94, 380), LT-HSCs exit quiescence and pancytopenia may arise. The 

increase in the functional LT-HSC pool in ITP therefore presents an intriguing dichotomy 

and we studied the HSC BM microenvironment to determine whether beneficial changes 

in cell extrinsic factors may occur. ITP progression was associated with vasodilation and 

angiogenesis as well as LepR+ BMSC expansion. The BMSCs maintained their 

classically defined perivascular location and therefore close/adjacent proximity to LT-

HSCs (45, 88, 268) and their expansion was associated with an increase in CXCL12, 

which has a crucial role in maintaining LT-HSC function, including retention in the BM 

(45-47), repopulating activity (48) and quiescence (49, 85). Furthermore, this increase 

in CXCL12 was BM specific and was expected to be primarily derived from LepR+ 

BMSCs (45, 268), which I confirmed by confocal microscopy. Intriguingly, LepR+ BMSC 

number reverted back to levels seen in control mice after recovery from ITP, suggesting 

that thrombocytopenia may indirectly feedback to increase LT-HSC support during ITP 

progression.  
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The BM is the primary and preferential site for steady state haematopoiesis in healthy 

adults, which is maintained by complex and multifactorial interactions from many 

different niche components (2). Extramedullary haematopoiesis during infection or 

malignancy is often associated with loss of BM CXCL12 signalling (94-98). Our 

observation that ITP progression coincides with a transient increase in BM CXCL12 

expression and associated increase in LT-HSC BM homing may be an important 

mechanism to maintain LT-HSC functionality in conditions of elevated differentiation 

pressure, which is essential for maintenance of homeostasis long-term. As BM 

sinusoids are the preferred sites of progenitor homing due to low blood flow velocities 

and low wall shear rates (390), it is possible that the increase in average vessel area 

in ITP would further reduce blood flow velocity and aid progenitor homing. Additionally, 

a transient increase in BM CXCL12 expression may further act to increase 

thrombopoiesis in ITP (335). As discussed, it has been shown that progenitors activate 

and proliferate in response to acute antibody mediated thrombocytopenia, driven by 

the relocalisation of SCF from the cytoplasm to the cell membrane of Mks (117). 

Interestingly, this was not accompanied by an increase in total BM Kitl expression, 

suggesting that the proliferative effect on progenitors was post-transcriptionally 

regulated. In addition to its proliferative effects, SCF is essential for LT-HSC function 

(60, 72). We have not assessed membrane bound SCF expression in our model of 

sustained ITP, which may present a further mechanism acting to preserve LT-HSC 

functionality during sustained ITP. 

Progenitor expansion was also observed in BM aspirates from ITP patients which was 

proportional to ITP duration, suggesting that BM changes similar to those observed in 

the mouse model may exist in ITP patients. Interestingly, this trend was only observed 

in ITP patients not undergoing therapy at the time of collection, indicating that steroidal 

treatment may limit the emergency haematopoiesis observed in mice. This excludes the 

refractory patient (who was taking eltrombopag at the time of collection, which is an MPL 

agonist known to drive progenitor expansion (391, 392)). Whilst steroidal treatment may 

be an effective mechanism to limit platelet destruction, it may also have unintended 

consequence of disrupting emergency haematopoiesis in some patients, which our data 

suggests may be a compensatory mechanism to increase platelet counts. Further 

research is needed in this area, as disruption of emergency haematopoiesis may explain 

why some patients are refractory to steroids (200, 205, 393). 

My research therefore points to a holistic transformation of the BM microenvironment to 

create a nurturing environment maximising megakaryopoiesis whilst minimising LT-HSC 

exhaustion (Figure 6.18). As BM examination is not routinely performed for chronic ITP 
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patients (200), it is possible therefore that significant changes in BM architecture go 

undetected which require further investigation.  
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Figure 6.18. Sustained ITP causes expansion of HSCs in the BM and spleen. A) Healthy 
haematopoiesis. B) Haematopoiesis in ITP. ITP progression is associated with BM progenitor expansion, 

and local inflammation which may drive emergency megakaryopoiesis. The HSC pool is maintained through 
remodelling of the BM niche, such as increased CXCL12 production which is associated with a transient 
expansion in LepR+ BMSCs. Extramedullary haematopoiesis in the spleen also contributes to an increased 
HSC pool, the role of which is unclear. 
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7 General discussion  

The initial aim of this thesis was to characterise the sources and roles of TPO in HSC 

self-renewal, whilst subsequent aims were to characterise the immune and 

haematopoietic system using a murine model of sustained ITP. 

Using murine BM as a model, I concluded that an antibody previously used to show 

that Mks are major sources of TPO in the murine BM is non-specific (163). This was 

also indicated by the observation that Mks do not transcribe Thpo, a finding shared by 

Decker and colleagues (147). In contrast, LepR+ and Cxcl12-DsRedhigh BMSCs 

express Thpo at 0.29 and 0.25 fold WT liver levels respectively, which was remarkably 

similar to the 0.30 fold level shown to be expressed by LepR+ BMSCs (147). Recent 

evidence at the single cell level indicates that LepR+/Cxcl12-DsRedhigh BMSCs are 

heterogeneous (81), which agrees with my finding using human BMSCs of overlapping 

phenotype suggesting that not all LepR+/Cxcl12-DsRedhigh BMSCs express Thpo. 

Although Thpo is transcribed in the murine BM, it is not translated under steady state 

or stress conditions, and TPO utilised in the BM is produced distally in the liver (147). 

My own study indicated that haematopoietic stress driven by acute thrombocytopenia 

does not influence Thpo expression by LepR+ or Cxcl12-DsRedhigh BMSCs in mice, 

although this may occur in humans during chronic ITP or other conditions of 

haematopoietic stress such as aplastic anaemia or irradiation (148, 149, 160). 

To study the effects of sustained ITP on the immune and haematopoietic system, I 

developed a model of sustained ITP in mice by administering anti-CD41 antibody 

through intraperitoneal injections every 48 h for up to 4 weeks. Similarly to the model 

developed by Katsman and colleagues (299), maintenance of thrombocytopenia 

required dose escalation over time. However unlike WT mice, Rag2-/- mice did not 

require an escalating dose to maintain severe ITP, which is suggestive of the 

development of antibodies against the injected rat anti-CD41 rather than 

compensatory thrombopoiesis (299). Mice with sustained ITP displayed characteristics 

of ITP: isolated thrombocytopenia associated with an increase in MPV (205, 312), mild 

splenomegaly (205, 309), normal levels of circulating TPO and normal or increased 

megakaryopoiesis (153, 302-304). In addition, some mice showed signs of 

spontaneous bleeding at post-mortem which is consistent with the development of 

bleeding events in ITP patients (201) and reports of spontaneous bleeding in a similar 

passive transfer ITP mouse model (294). Confirming previous reports, I demonstrated 

that the injected anti-CD41 antibody binds to BM BKs (294) and platelet recovery 
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experiments suggested that sustained anti-CD41 treatment compromised 

thrombopoiesis (327, 328). Interestingly, confocal microscopy suggested that in 

addition to MKs, injected anti-CD41 binds to smaller nucleated cells (possibly 

progenitors) which may suppress megakaryopoiesis (218, 325, 326). 

I used the model of sustained ITP to characterise the immune and haematopoietic 

system during ITP progression. Mice with sustained ITP were associated with 

monocyte and naïve T cell expansion, however analysed cells did not appear to be 

activated which was suggestive of a general increase in haematopoiesis rather than a 

coordinated immune response. In support of this, phenotypic BM LT-HSCs and 

committed progenitors were significantly expanded in ITP (Figure 7.1), whilst 

functional assays demonstrated an increased proliferation and self-renewal potential of 

LT-HSCs. This coincided with considerable BM remodelling and a transient increase in 

stromal derived CXCL12, which may combine to create a nurturing environment 

maximising megakaryopoiesis whilst minimising LT-HSC exhaustion. A preliminary 

experiment using ITP BM aspirates revealed that ITP patients similarly have HSC 

expansion associated with ITP progression, and importantly, treatment (such as 

steroidal treatment) may disrupt emergency haematopoiesis and therefore limit 

compensatory platelet production.  

In agreement with a previous study (371), my results indicate that the passive transfer 

model of ITP does not mimic the human T cell response in ITP and therefore active 

models are better suited to study cell-mediated autoimmunity in ITP  (308, 394). 

However, my results also indicate that sustained ITP may have a significant influence 

on haematopoiesis and the BM niche which requires further investigation. Additionally, 

my results adds further support to the emerging idea that the local BM response to 

thrombocytopenia may be driven independently of TPO, such as through local 

inflammation (116, 292, 298) or through distinct receptor kinases (117). 
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Figure 7.1. A summary of data using the murine model of sustained ITP. ITP is initiated and maintained 

by splenic macrophages which remove opsonised platelets form the circulation. ITP progression is 
associated with BM progenitor expansion, and local inflammation which may drive emergency 
megakaryopoiesis and T cell replenishment. The HSC pool is maintained through remodelling of the BM 
niche, such as increased CXCL12 production which is associated with a transient expansion in LepR+ 
BMSCs. Extramedullary haematopoiesis in the spleen also contributes to an increased HSC pool, the role 
of which is unclear. 
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7.1 The sustained model of immune thrombocytopenia 

ITP is a complex, acquired autoimmune disease characterised by both the destruction 

of functionally normal platelets and reduced platelet production. Despite decades of 

research, the exact cause of ITP is still unknown. Both the loss of tolerance and 

exposure of platelet surface antigens are likely required for the development of ITP 

(201), which are not reflected in current models of ITP (395). Each model is able to 

recapitulate some but not all aspects of ITP progression, necessitating the need to 

carefully choose the appropriate model to best answer the experimental question.  

Passive transfer models are the most widely used, involving the transfer of anti-platelet 

antiserum or platelet specific monoclonal antibodies into recipients, causing 

thrombocytopenia via antibody mediated platelet destruction. The passive model allows 

a degree of fine-tuning with respect to the severity or duration of the induced ITP 

depending on the frequency, quantity and type of antibody administered (395). 

Repeated administration maintains ITP, however can be significantly more laborious 

and costly depending on the desired duration. An alternative approach is via the 

continuous peritoneal infusion of antibody via an osmotic pump (396, 397), however 

platelet recovery can occur due to compensatory thrombopoiesis (299). In the model of 

sustained ITP reported in this thesis, compensatory thrombopoiesis was not observed, 

most likely as a higher starting anti-CD41 (MWReg30) dose was used. As such, while 

the ability to fine tune ITP could be seen as an advantage of the model, it is also its 

inherent disadvantage; the lack of a standardised approach with regard to frequency, 

quantity and type of antibody administration has led to conflicting results between 

different groups. For example, whilst MWReg30 injection into mice causes acute 

thrombocytopenia universally amongst research groups, this has been accompanied by 

different effects ranging from mild petechiae (294) to severe effects such as hypothermia 

and acute lung injury (398) or intestinal and subcutaneous haemorrhages with markedly 

decreased haematocrits (399), depending on the frequency and quantity of dose. In 

contrast, the mice used in this model of sustained ITP presented in this thesis had 

thrombocytopenia accompanied by mild subcutaneous bleeding in a minority of mice 

with no changes in haematocrits. Additionally, the model captures other clinical features 

of ITP progression including progressive megakaryopoiesis despite normal TPO levels 

and mild splenomegaly. Mice tolerated sustained anti-CD41 injections well, allowing its 

sustained application for prolonged periods of time and the subsequent study of ITP 

progression. 

The active model of ITP involves the transfer of splenocytes from immunised mice 

against platelet CD61 or CD41 into SCID mice (developed in 2010 and 2019 
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respectively), resulting in severe and non-recoverable thrombocytopenia with bleeding 

diathesis in the intestines, lungs, subcutaneous tissues and brain (308, 394). Mice 

receiving CD61 reactive splenocytes had a more severe bleeding phenotype than mice 

receiving CD41 reactive splenocytes (80% bleeding mortality within 21 days in the 

former which prevented long term experiments) (308, 394). As CD61 can be expressed 

on ECs during proinflammatory conditions (400), it was thought that some off target 

effects on activated ECs may contribute to the severe bleeding mortality seldom seen 

in ITP patients (308). As such, the model using CD61 reactive splenocytes is 

inappropriate for long term studies such as those performed in this thesis. In isolation, 

the CD41 reactive model could be considered too severe to accurately represent ITP 

progression as 100% of mice exhibited severe bleeding events, with 33.3% exhibiting 

intracranial haemorrhage (ICH), far higher than that exhibited in ITP patients (non-ICH 

severe bleeding are recorded in 9.6% of adults with ITP, whilst ICH events are recorded 

in 1.4% of ITP patients) (394, 401, 402). However, experiments described in this thesis 

(which are independent of T cell autoimmunity) may be strengthened using this CD41 

reactive model as CD8+ mediated effects on platelet destruction and platelet production 

are considerable in ITP (201).  

7.2 Future research 

The observations that HSCs and the BM niche respond to ITP progression by driving 

haematopoiesis are clinically important, however they are correlative and based on 

associations rather than mechanistic understanding. HSC expansion in response to 

inflammation and thrombocytopenia has been described previously (116, 117), however 

the suggestion that the BM niche remodels itself to resolve and/or minimise 

haematopoietic stress is a novel phenomenon and further research is needed to 

elucidate the molecular mechanisms behind these changes. An emerging hypothesis is 

that normal ageing of the haematopoietic system and chronic inflammation (coined 

‘Inflamm-Aging’) may be mechanistically linked is based upon the observation that 

myeloid skewing and a proinflammatory BM microenvironment is a common hallmark of 

both states (135). Cytokines involved in the inflammatory response were highly 

upregulated in the BM of mice with sustained ITP, whilst the overall microenvironmental 

change in ITP (vasodilation of sinusoids and expansion of vascular niches) resembles 

the changes described during premature and physiological mouse aging, where a 

similar expansion of megakaryocytic cells and HSCs occurs (130). In that study of 

premature and physiological mouse aging, HSC expansion was associated with myeloid 

lineage bias and was driven by an age associated imbalance in β2/β3 signalling (130). 
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CBC analysis during ITP progression did not suggest reactive myelopoiesis during the 

course of the experiments as mature granulocytes were not expanded at the expense 

of lymphoid cells, whilst flow cytometry analysis of committed progenitors indicated that 

differentiation was skewed towards Mk and erythroid differentiation, rather than 

granulocyte differentiation. Furthermore, key drivers of reactive myelopoiesis such as 

BM IL-6, IL-6 and RANTES are decreased, rather than increased in the BM of mice with 

ITP (128, 130). However, this contrasts with the results of the pilot experiment described 

in Chapter 5, where analysis of the peripheral blood and BM by flow cytometry 

suggested that monocyte populations were expanded in ITP. Further experiments are 

needed to resolve this contradictory data, additionally using a 4 week time point as 

monocyte expansion may occur at earlier, at 2 weeks during an acute phase response, 

but not 4 weeks. Additionally, further experiments are needed to confirm that the 

expanded LT-HSCs in ITP remain balanced long term, rather than displaying lineage 

skewing with time. In this regard, experiments using the vWF reporter mouse that labels 

platelet/myeloid biased LT-HSCs would be particularly informative (30, 31). Platelet 

biased LT-HSCs reside at the apex of the haematopoietic stem cell hierarchy and are 

primed for short and long-term reconstitution of platelets, however they can also have a 

long term myeloid lineage bias and have potential for multipotency (30). An expansion 

in vWF+ platelet primed LT-HSCs indicate preferential (or exclusive) expansion of 

platelet biased HSCs in the short term, but in the long term may contain platelet/myeloid 

biased HSCs as well as platelet biased HSCs (30). Such long term myeloid skewing 

could increase susceptibility to infections and propagate immune dysregulation over 

time, both of which are associated with ITP (201, 403). In this instance, modulation of 

the BM microenvironment (such as through a β3 RA) may be a viable therapeutic option 

(130). 

Second-line therapies for ITP patients who are corticosteroid dependent or 

unresponsive to treatment include TPO-RAs such as eltrombopag or romiplostim to 

increase platelet production, however these are expensive therapies which require 

ongoing use (200, 404-407). Clinical use of rTPO has been discontinued due to the 

formation of antibodies to the molecule (408), however stimulating the endogenous 

production of TPO may have therapeutic potential. As discussed in Chapter 3, TPO is 

transcribed, but not translated by LepR+ /Cxcl12-DsRedhigh BMSCs. Further research is 

needed to determine the mechanism behind this translational repression and whether 

the repression can be overcome by pharmaceutical intervention.   
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7.3 Concluding remarks 

Over 40 years have passed since Schofield first hypothesised that HSCs were 

dependent upon the BM niche for maintenance of their stem like state. Since then, a 

plethora of experimental evidence has confirmed this to be the case, and key niche cells 

have been identified. However, the function and composition of niche cells exhibit 

plasticity during disease progression and the normal ageing process which causes 

disruption of normal haematopoiesis, leading to lineage skewing or one or more 

cytopenias. The BM niche can respond during haematopoietic stress to expand one or 

more progenitor subsets in an effort to maintain homeostasis, however this is usually 

coupled with functional exhaustion over time (116, 117). The research presented in this 

thesis using a murine model of sustained ITP is the first experimental evidence 

suggesting that the BM niche can adapt during disease progression to both expand HSC 

number and to maintain HSC functionality during haematopoietic stress. Further 

research is needed to explore the exact mechanism behind these, as well as whether 

this is observed in ITP patients as modulation of the BM niche could hold therapeutic 

promise.   
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8 Abbreviations 

5-FU 5-fluorouracil  
AF Alexa Fluor 
AMR Ashwell-Morell receptor  
ANOVA Analysis of variance 
APC Antigen presenting cell 
APC Allophycocyanin  
AR Adrenergic 
ASH American Society of Hematology 
BHK Baby hamster kidney fibroblasts  
BM Bone marrow 
BMSC Bone marrow stromal cell 
BV Brilliant violet 
CBC Complete blood count 
CD Cluster of differentiation 
cDNA  Complementary DNA 
CFU-S Spleen colony-forming cells 
CLP Common lymphid progenitor 
CMP Common myeloid progenitor 
CXCL12 C-X-C motif chemokine ligand 12 
CXCR4 C-X-C-chemokine receptor 4 
Cy Cyanine 
DAPI 4′,6-diamidino-2-phenylindole 
DC Dendritic cell 
DMEM Dulbecco’s Modified Eagle Medium  
DNA Deoxyribonucleic acid 
EC Endothelial cell 
EDTA Ethylenediaminetetraacetic acid 
EMH Extramedullary haematopoiesis 
EPCR Endothelial protein C receptor  
EPO Erythropoietin 
FACS Fluorescence-activated cell sorting 
FBS Fetal Bovine Serum  
FcγR Fcγ-receptor 
FITC Fluorescein  
G-CSF Granulocyte colony-stimulating factor  
gDNA Genomic DNA 
GFP Green fluroscence protein 
GMP Common granulocyte/monocyte progenitor 
GP Platelet glycoprotein 
H&E  Haematoxylin and eosin 
HSC Haematopoietic stem cell 
HSPC Haematopoietic stem and progenitor cell 
hTERT Human telomerase reverse transcriptase  
ICH Intracranial haemorrhage 
IFN Interferon 
IGFBP-3 Insulin-like growth factor-binding protein 3 
IgG Immunoglobulin G 
IL Interleukin 
ITP Immune thrombocytopenia  
IVIG Intravenous immunoglobulin 
LepR Leptin receptor 
Lin Lineage 
LSK Lineage− Sca-1+c-kit+  
LSM Laser scanning microscope 
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LT-HSC  Long term haematopoietic stem cell 
MACS Magnetic-activated cell sorting 
MAPK Mitogen-activated protein kinase 
MEP Common erthyroid/megakaryocyte progenitor 
MkP Megakaryocyte progenitor 
MMP2 Matrix metalloproteinase-2  
MPL Myeloproliferative leukemia virus 
MPP Multipotent progenitor cell 
mRNA Messenger RNA 
neor neomycin-resistance gene 
NC3R National Centre for the Replacement Refinement and Reduction of  

Animals in Research 
NK  Natural killer 
NOD Non-obese diabetic 
NSG NOD.scid.Il2Rγcnull  
OCT Optimal cutting temperature 
PBS Phosphate-buffered saline 
PBS-T Tween-20/PBS 
PD-1 Programmed cell death protein 1 
PE Phycoerythrin 
PFA Paraformaldehyde 
qPCR Real-time polymerase chain reaction 
RNA Ribonucleic acid 
RANTES Regulated on activation, normal T cell expressed and secreted 
RTE Recent thymic emigrants 
Sca-1 Stem cell antigen-1 
SCF Stem cell factor 
SCID Severe combined immunodeficiency  
ST-HSC Short term haematopoietic stem cell 
STRING Search Tool for the Retrieval of Interacting Genes/Proteins 
TAE Agarose/tris-acetate-EDTA  
TCM Central memory T cell 
TCR T cell receptor 
TEM Effector memory T cell 
Tfh T follicular helper cell 
Th T helper cell 
TLR Toll-like receptors  
TNFα Tumour necrosis factor α 
TPO Thrombopoietin 
TPO-RA Thrombopoietin receptor agonist 
Treg Regulatory T cell 
VEGF Vascular endothelial growth factor 
vWF von Willebrand factor 
WISP1 Wnt1-inducible signaling pathway protein-1 
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