-
-

UNIVERSITY OF LEEDS

Solid State Informatics
Studies to Address
Challenges in Pharmaceutics
Development

Jakub Piotr Janowiak

University of Leeds

School of Chemical and Process Engineering

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

September 2020

Intellectual property statement

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement.

The right of Jakub Piotr Janowiak to be identified as Author of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

© 2020 The University of Leeds and Jakub Piotr Janowiak

Acknowledgements

| would like to express my gratitude to everyone that has helped me on my journey
without whom | would not have reached this point.

| would like to thank my supervisors — Elaine Martin and Kevin Roberts, for their
patience and invaluable guidance. Special thanks go to Richard Marchese Robinson,
who has helped me with the technical and scientific understanding. | am grateful for
the insights provided by Andrew Maloney, Ilenia Giangreco, and Klimentina
Pencheva.

| would like to acknowledge the incredible services provided by the University of
Leeds HCP, without which I would still be waiting for my compute jobs to finish.

CP3 CDT has given me an incredible opportunity to do research, for which | am
grateful. I would like to extend my thanks to all my colleagues from the CDT, with
special mention to Alexandru Moldovan, Benjamin Tayler-Barrett, Thomas
Hardcastle for their support and for the many memorable moments.

Although far away, my family has kept me motivated during the years of research.
Thank you to Hannah Stacey for all the support she has given me.

Finally, I would like to thank my late granddad for inspiring my curiosity in the
natural world from a young age, something that stayed with me my whole life and
led me to do a PhD.

Abstract

Cheminformatics methods such as Matched Molecular Pair Analysis (MMPA) and
Quantitative Structure-Property Relationship (QSPR) models based on molecular
structure have been widely used to address challenges faced during the Discovery
stage of pharmaceutical product development. This thesis builds upon these concepts
by including the solid state consideration to address challenges associated with the

Development stage.

Polymorph propensity of molecules and solid state specific melting point (as a
surrogate for solubility) were focused upon in the thesis. Matched Molecular Pair
Analysis (MMPA) was used for the propensity study. However, no statistically
significant molecular transformations were identified due to the small number of

MMPs identified and the limited size and quality of polymorphism data.

The issue of the small number of MMPs was further analysed by constructing a
Matched Molecular Graph. The graph approach allowed the comparison of the
properties of datasets from different stages of the pharmaceutical development
process. Datasets taken from Development stage contain fewer molecules with at least
one MMP (25.1 %) and the lower total number of MMPs (2,776) compared to
Discovery datasets of the same size (58.2 % and 10,321), making the analysis method

less suitable.

A benchmarking dataset for crystal structure classification (into polymorphs and
redeterminations) was curated, and the developed machine-learning based method
(F1=0.910) along with existing methods (F1=0.780) of classification were compared.

A Message Passing Neural Network was used to develop a QSPR model using
molecular and crystal information. The best model that only used molecular
information achieved R? of 0.628 on the validation set, while the model trained with
the crystal information obtained 0.649. The improvements were limited when
compared to the QSPR model that only utilised molecular information; likely due to
the limited polymorphic data and the typically small effect the crystal packing
differences causes. The best model achieved test set R? value of 0.550.

This thesis provides partial solutions to the challenges of solid form informatics and

forms a starting point for further research in the area.

Contents

Chapter 1 INtrOAUCTION........eoiiiieieccie e nre s 1
L1 CONEXE ..ot s 2
1.2 AIM aNd ODJECTIVES ..ot 3
1.3 Structure of the theSiS.........cviiiiiee e 4

Chapter 2 Literature Context and Theoretical Background...............c.ccoeoveiviinnen. 7
2.1 Pharmaceutical product developmentccccevieieeie i 8

211 HISEOMY.ciiiiiiiiciieeee e 8
2.1.2 MOdern approachcocooiiiiiiiiee e 9
2.1.3 KeY ChalleNge.......cooiieee et 12
2.1.4 Material Science Tetranedronc.ccoeovrereiiieneneisesee e, 14
2.2 SCAIES OF STIUCTUIE ...t 19
2.2.1 MOIEBCUIES ... 19
2.2.2 Crystal SITUCIUIEccveiieiic et 19
2.2.3 Crystal habit..........cooiiiiiiie e 23
2.3 Properties and data SOUICESc.ccueierierierieriesiesieeeeee et 24
2.3.1 Polymorph propensitycccceeeereneiiniseeeeee e 24
2.3.2 SOIUDIIEY ..o 25
2.3.3 MEelting POINt.......cciiiieiece e 28
2.4 Quantitative Structure Property Relationship (QSPR)........ccccccoevviieiiiennenn, 30
2.4.1 A quantitative description of the Structure...........ccccooceviiiniiinieen, 31
2.4.2 Principles of machine [€arning..........ccocooeiiiiniiinieien e, 34
2.4.3 Performance MEASUIEScccouieeriirieriiniesiesieeee et 36
2.4.4 Random FOrest (RF)oooiiiiiiiieiieecee e 40
2.4.5 Support Vector Maching (SVM)........cccooviiiiiininiiiee e, 41
2.4.6 Neural Networks (NN)......cooiiiiiieiee e 45

2.4.7 Hyperparameter OpPtiMISAtiON..........ccevivereeiieiieere e s e 55

2.4.8 Application 0f QSPRooiiiieee e 62
2.5 Matched Molecular Pair Analysis (MMPA)cccceriiiniiieienienienceie e 64
2.5.1 Identification of pairs and analysis procedurecccovervvrivneeieennns 64
2.5.2 Application of MMPAooi e 66
2.6 Summary of the Chapter ... 67
Chapter 3~ Matched Molecular Pair Databaseccccceveereriniieneiieseene e 69
3.1 INEFOTUCTION L. 70
3.1.1 Need for database.........cccooeiiiiiiicii e 70
3.1.2 Hussain and Rea Fragmentation (HRF) method.............c.cccccovevrennnne. 71
3.2 Database deSIGNcccoiiuiiiiiiiii e 73
321 SCNBIMAeiiiiiiiieee e 73
3.2.2 Workflow for population of the database...........c.ccccervveriverriinreerinne 74
3.2.3 Modifications to the MMP identification..........c.cccceovivneneincncnnnnn, 78
3.3 Comparison to another MMP databases approach.............ccccceevevvevivennenne. 81
34 SUMMANY ..ottt nn e 82
Chapter 4 Polymorph Propensity PrediCtioncccooeviveveiieiiene e 84
A1 INEFOUCTION ..ottt 85
4.2 Method and Dataccccoviiiiiiiiiiieeeees s 86
4,21 DAASEL.....ccueiiiiieeiiete s 86
4.2.2 Molecular structure informationccoovvriniiieiinen e 87
4.2.3 SOTIWAIE ..o 88
4.3 ReSults and DISCUSSIONcceiuiiieiiieieriesie ittt 89
4.3.1 Polymorphism in the CSDcccoceiiiiiiiiiiiieeee e 89
4.3.2 Effects of molecular transformations............ccccooeveiiiene s 90
4.3.3 Effects of molecular flexibilityccccooiiiiiii e, 97

4.3.4 Issue of unknown polymorphs.........ccccvieieeiecic e 98
A4 CONCIUSION. ..ottt bbb bbb 101

Chapter 5 Benchmarking of Automated Approaches for Differentiating Between

Polymorphs and Redeterminationsccooeieiiiinininieieeese e 103
5.1 INErOUCTION ...t 104
5.2 Methods and Data..........cccoerieiiiiiiieisiseese e 106

D.2.1 DAASEIScviiiiiiiete e 106
5.2.2 DESCIIPIOIS ...ttt 110
5.2.3 DesCriptor @NalYSiS.........cccvevuiiieiiiieiie e 112
5.2.4 Classifier deVelOpmMENL..........ccceiveiiiiieiicicceese e 113
525 Computational detailScccoveriiiiiiiiiie e 114
5.3 ReSUlts and DISCUSSION........ceiiriieieieieitesie st 116
5.3.1 DesCriptor SEIECHIONcciiieieieiese s 116
5.3.2 Classifier deVelOpmMENL..........ccceiveiiiiiiicc e 121
5.4 CONCIUSTON. ..ottt 127

Chapter 6 Matched Molecular Graphs............ccociiiiniiiiie, 129
6.1 INEOTUCTION ..t 130
6.2 Method and Data.........cccvriiriiiiiiieieisie e 131

6.2.1 DaAASEL......cciiiiiiiiie 131
6.2.2 Graph CONSIIUCTIONcc.oiiiiiiiieieiese s 131
6.2.3 SOTIWAIEoiiiiiiiiiee e 133
6.3 ReSUlts and DISCUSSION.........ciiiiiieieieriesie sttt 134
6.3.1 Monomorphic adjusted single component CSD dataset 134
6.3.2 DAtASEL SIZE ..ot s 136
6.3.3 Datasets across the Pharmaceutical Product Development 138
6.4 CONCIUSION. ...t 140

-Vi-

Chapter 7 Melting Point Prediction Using Message Passing Neural Networks

Based on Molecular and Crystal StrUCIUIEScccovevieiiieieere e 141
7.1 INErOTUCTION .. 142
7.2 Methods and data..........cccvriiieiiieiee s 144

7.2.1 DaaSEISooiviiiiiiiciie 144
7.2.2 Model @rchiteCtUIeccooiiiiiiiieieese e 145
7.2.3 Model CONSIIUCTION.ciuiiiiiiiiieiesie e 147
7.2.4 Performance analysis ..o 148
725 SOTIWANE ... 149
7.3 ReSUlts and DISCUSSIONc.ciueiriiiiirieinierie et 150
7.3.1 Model performance and architeCtureccoccovvveriviieiieveere e, 150
7.3.2 Does crystal information help? ..., 153
T4 CONCIUSTON ..ottt 161

Chapter 8 = CONCIUSIONcuviiiiciie e s 165
8.1 INErOTUCTION ... 166
8.2 Data ManagemMEeNT.........cciiriiieiiiieseese et 167

8.2. 1 QUAIITY .. 167
8.2.2 Availability ..o 169
8.2.3 SUIADITILY ..oovrieiceicciece e 170
8.3 EmPIrical Method.........coociiiiiiiiiie e 171
8.3.1 Message Passing Neural Networkscccccevvviineniininiccee, 171
8.3.2 Matched Molecular Pairs — Graphs and AnalysiS..........cccccevevveennnne. 172
8.4 RESLAICH TOPIC ..cviiiii ettt re et 176
8.4.1 Polymorph Propensityccccerereieneiinesieieee e 177
8.4.2 Solid state specific Melting POINtcoovviriiiiieie e, 178
8.4.3 Future researCh tOPICScccvieiiiiiieiie e 179

-Vii-

8.5 Concluding REMAIKSc.cccveiiiiie e 179
Appendix 1: Matched Molecular Pairs Database SCriptS........cccocvvvververieieerverienn 212
Appendix 2: Matched Molecular Database SChema...........cccooeveiiiininiinisicen, 246

Appendix 3: Machine Learning-based Polymorph and Redetermination
Classification248

Appendix 4: Message Passing Neural Network SCripts........ccccovcvvvvereevesieeiinernene 264

-viii-

List of figures

Figure 1.1: Overview of the structure of the thesis.cccccovveiiiiiience e, 4
Figure 2.1: Pharmaceutical product development OVEIVIEW.cccoevrvneiinnenenn. 10
Figure 2.2: Material Science Tetranedron.cccevveeieeieeie e 14
Figure 2.3: Structure Property Relationship (SPR) at different scales....................... 16
Figure 2.4: Example lattice with illustration of a unit cell..........c.ccccoeviveiiiieiiennnn, 21

Figure 2.5: Three crystal structures of paracetamol, denoted by their CSD refcodes. a
- polymorph 1 (HXACANO7), b — another experimental determination
(“redetermination”) of polymorph 1 (HXACANO09), ¢ - polymorph 2 (HXACANO08)

.. 23
Figure 2.6: Dissolution of a crystalling Structure.ccccocveveiieeie i, 26
Figure 2.7: solvation - packing grid.ccoceoeiriininininiseeeee e 27

Figure 2.8: Distribution of melting points of structures with the CSD single component

MEItING POINT AALASEL.c.veiiieiicieceee e e ee e 29
Figure 2.9: Quantitative Structure Property Relationship overview.......................... 30
Figure 2.10: Comparison of absolute and squared errors.cccoeevererenenenieennenns 37
Figure 2.11: support vector machine classification............ccocvvvveiiienininiiicee 42
Figure 2.12: Training support vector classification.cccccoveeviiieiiecii e, 45
Figure 2.13: Simple Neuron deSign.cccveveeiieeie e 46

Figure 2.14: Examples of fully connected, convolutional, and recursive layers of

neural networks, along with a schematics of a simple recursive neuron. 48
Figure 2.15: Sampling of a search space using Grid search and Random search......57
Figure 2.16: Overview of SMBO algorithms............cccooi i 61
Figure 2.17: Example of a matched molecular pair.cccocooevenineniieniieeee 64
Figure 3.1: MMP Database SChema.ccoceiiiiiiiiee e 73
Figure 3.2: Schema explaining the indexing ProCesses.cccccovvevieiieesiecieesie e 75
Figure 3.3: MMP identification Stage.ccceovuieiiieiiiie e 76

-iXx-

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327404
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327405
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327406
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327407
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327408
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327410
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327411
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327412
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327412
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327413
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327414
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327415
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327416
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327417
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327418
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327418
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327419
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327420
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327421
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327422
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327423
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327424

Figure 3.4: Performance comparison between HRF and database method of MMP

identification for an increasing dataset.ccccviveiieie i 79
Figure 3.5: Multiple MMPs that can be identified from the same pair of molecules.80
Figure 3.6: Comparison of frequency of occurrences of transformations. 81

Figure 4.1: Comparison of the R-H — R-CHjs transformation for adjusted and

unadjusted CSD single component dataset.ccocvereevieiiere e 91

Figure 4.2: Distributions of the effects of the selected transformation on polymorph

Figure 4.3: Example MMP of the hydroxyl to phenyl transformation. 93

Figure 4.4 Comparison of hydrogen to methyl and hydrogen to hydroxyl

transformation for adjusted CSD single component dataset with ratio limited MMPs.

Figure 4.5: Effects of nConf20, H-bond donor / acceptor count, compound size on the

change for MMPs with hydrogen to hydroxyl transformationc.ccccceevvennne. 96

Figure 4.6: Effects of nConf20, H-bond donor / acceptor count, compound size on the

change for MMPs with hydrogen to phenyl transformation.c.ccocovevviviinnnn, 96

Figure 4.7: Distribution of nConf20 descriptor for compounds with different number

of polymorphs on the CSD adjusted dataset.cccoeveeriiiicie e 97
Figure 4.8: The number of polymorphs as a function of molecular weight. 98
Figure 4.9: Number of polymorphs as a function of redeterminations.................... 100
Figure 5.1: Datasets used in the polymorph redeterminationc.ccccoevveennen. 106

Figure 5.2: Label assignment process flow chart for labels based on the best R factor

Figure 5.3: Availability of labels from the best R factor list and manual labels. For the
pairs that have a manual label, whether both structures come from the same literature

SOUICE WAS @ISO NOLEA.eiiiiiiiiie et 109
Figure 5.4: Overview of the model development processccccvcevevenerinennnenn 114

Figure 5.5: Pearson Correlation coefficient matrix of the selected descriptors within
the BeSt R tralNiNg SEL......c.coiiiiiie et 116

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327425
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327425
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327426
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327427
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327428
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327428
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327429
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327429
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327430
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327431
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327431
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327431
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327432
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327432
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327433
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327433
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327434
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327434
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327435
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327436
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327437

Figure 5.6: Comparison of packing similarity between pairs of polymorphs and
redetermination for the benchmark validation set. The figure is normalised to the area
UNAer the graph = L. .o 120

Figure 5.7: Comparison between polymorphs and redeterminations for the best R
validation set. The classification based on spectra method (left) and manual label

(right). The graph is normalised to the area under the graph =1........c.ccooecvvvvennnne. 121

Figure 5.8: Comparison of false negatives and false positives of the trained machine
learning model 1 and the spectra Method. ..., 126

Figure 6.1: Datasets selected for MMG study across the pharmaceutical development

TOCESS. ..ttt euttte ettt e ettt e sttt e s st e s st e e s st et e s ab e e s bt e b bt e e e R bt e e Rt e e e R bt e e R b e e e e e e br e e e nn e e nnn e nnes 131

Figure 6.2: Visualisation of the Matched Molecular Graph contruction from a MMP.

Figure 6.3: Matched Molecular Graph of monomorphic adjusted CSD single
component dataset with max change size of 10 heavy atoms and max ratio of change
OF 0.3 0T @l IMIMIPS. ...t 134

Figure 6.4: Example of clusters found in the Matched Molecular Graph................ 135

Figure 6.5: The fraction of molecules with at least one MMP as a function of the

dataset size for the Patent dataSerl...........ooove oot 136

Figure 6.6: Average degree of molecules with at least one MMP as the dataset size
increases for the Patent dataSet.coovveeieieie e 137

Figure 6.7: Matched Molecular Graph of GSK TCAKS dataset (Discovery dataset)

Figure 6.8: Comparison of the fraction of molecules with at least one MMP for datasets
taken from different stages of the Pharmaceutical process development. 139

Figure 7.1: Overview of the model architecture.ccccooveviiii i, 145

Figure 7.2: Target MP and predicted MP by Molecule (left) and Crystal models (right)
0N the ValIatioNn SEL.ciieiecie et ae e 152

Figure 7.3: lllustration of molecular and crystal changes along with how these can be

studied using polymorphs and Matched Molecular Pairs (MMPS).........c.cccccoveee. 154

-Xi-

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327444
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327444
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327445
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327445
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327446
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327446
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327447
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327447
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327447
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327448
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327449
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327449
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327450
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327450
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327451
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327451
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327452
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327452
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327453
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327454
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327454
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327455
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327455

Figure 7.4: Actual and predicted change for polymorph pairs.cccccvevervennenn. 155

Figure 7.5: Comparison of the absolute change in MP due to hydrogen to carboxyl and

methyl group substitution, and polymorphic change.cccooeiviiiiiniiiciien, 159

Figure 7.6: Comparison of absolute change of MP for pairs of polymorphs where

hydrogen bond dimensionality changes or remains constant.ccccccceeveennenn, 159

Figure 7.7: Example molecules with large MP difference between polymorphs. ... 161

Figure 8.1: The three themes used to discuss the key findings of the thesis. 166
Figure 8.2: Typical data arrangement within research organisations. 170
Figure 8.3: Graph based MMP identification.cccccevvvieiieeie s, 173

Figure 8.4: MMP based group contribution for QSPR model prediction explanation.

-Xii-

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327456
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327457
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327457
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327458
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327458
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327459
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327460
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327461
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327462
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327463
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327463
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327464

List of tables

Table 2.1: CONTUSION MALFIX ...ovieiiiiiiieiieeie et nreas 40
Table 2.2: Activation functions commonly used in neural networks [118]............... 47
Table 2.3: coefficients to various initialisation Strategies.ccocevrereririneriennn, 51
Table 2.4: Comparison of the three learning algorithms.............ccccooevviiiiieciccenn, 54
Table 3.1: Fragmentation of molecules for MMP identification.c.c.ccccceevenen. 72
Table 4.1: Fraction of polymorphic structures within different datasets. 89

Table 4.2: Most common transformations within the CSD single component dataset

Table 5.2: Performance of classifiers trained..........ooveeeeeeee 122

Table 5.3: Performance on the validation sets of classifiers trained on Manual and Best

R training dataset, using different descriptor Sets.ccvvveveeveieereere e 124

Table 5.4: Confusion matrix of the trained machine learning model 1 and the spectra
MELhOd ON The TEST SEL.....iiieiiee e 126

Table 7.1: Information used and made available to Molecule and Crystal models. 148

Table 7.2: The best Molecule and Crystal models' hyperparameters along with the
average of the top 10 models for each category. Same treatment was applied to R?. For
categorical hyperparameters the most common value and the corresponding fraction
IS TEPOITEM. ..ttt bbbt 150

Table 7.3: List of molecules for which the Crystal model was not able to accurate
predict the difference between polymorphs. Cases where the predicted value of a

specific structure is incorrect by more than the MAE (30.8 C) are highlighted.156

-xiii-

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327465
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327466
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327467
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327468
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327469
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327470
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327471
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327471
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327475
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327475
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327476
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477

Abbreviations

(G)RU — (Gated) Recurrent Unit
(R)MSE — (Root) Mean Squared Error
(U)FF — (Universal) ForceField

VC — Partial derivative of the cost function (loss function) with respect to all the
weights

A — machine learning algorithm

a — output vector of a neuron

Adam - Adaptive Moment Estimation

ANN — Artificial Neural Network

API — Active Pharmaceutical Ingredient, or Application Programming Interface
b — bais term

CCDC — Cambridge Crystallographical Data Centre

CSD - Cambridge Structural Database

D — Dataset (D - training, Dy - validation, Dre - test)

DFT — Density Functional Theory

DHK — Matched Molecular Pairs Database designed by Dalke, Hert, and Kramer
T - set of edges of a graph

El — Expected improvement

EMA - European Medicines Agency

f;cq — Acquisition function used during Sequential model-based optimisation
FDA - Food and Drug Administration

farad — function to compute the gradients during gradient-based training
finit — initiation function

fmessage — message-passing function of graph-embedding process

-Xiv-

freadout — function to generate a fix-length of graph-embedding process
fupdate — hidden update function of graph-embedding process, weight update function
during gradient-based training

G — a graph (a set of vertices and edges)

GBO - gradient-based optimisation

GM — Graph Model

GSE — General Solubility Equation

GSK TCAKS — Tres Cantos Anti-Kinetoplastids dataset
h — hidden state vector of a neuron

H — machine learning model

HGP - Hierarchical Gaussian Process

HRF - Hussain and Rea Fragmentation method of Matched Molecular Pair

identification

ICH - International Conference on Harmonisation
KDE — Kernel Density Estimates

KNN — k-Nearest Neighbours

L — Loss function

LIME — Local Interpretable Model-agnostic Explanations
MAE - Mean Absolute Error

MCS - Maximum Common Substructure method of Matched Molecular Pair

identification

MLP — Multi-Layer Perceptron

MMG — Matched Molecular Graph
MMP(s) — Matched Molecular Pair(s)
MMPA — Matched Molecular Pair Analysis

MP — Melting Point

-XV-

MPNN - Message Passing Neural Network

MST — Material Science Tetrahedron

NN — Neural Network

p — input vector to a neuron

PC(A) — Principal Component (Analysis)

Pl — Probability of improvement

PL — Prediction Layer

QbD - Quality by desgin

QSPR — Quantitative Structure Property Relationship
ReLu — Rectified Linear function

RF — Random Forest

RMSD - Root Mean Squared Distance

SGD - Stochastic Gradient Descent

SMAC - Sequential Model based Algorithm Configuration
SMBO - Sequential model-based optimisation

SMILES - Simplified Molecular-Input Line-Entry System

STM - pre-Specified Transformation Methods of Matched Molecular Pair

identification
SVM — Support Vector Machine
TPE — Tree-structured Parzen Estimator

UTM - Unspecified Transformation Methods of Matched Molecular Pair

identification

"V - set of vertices of a graph

W, w — weight matrix or vector.

X, X, x — feature set, feature matrix, feature vector

Y, y — set of, or individual target value

-XVi-

v — width of margins or quantile

n — learning rate during gradient-based optimisation
6 — parameters of a model

A — hyperparameters of a model

o2 — variance

-XVii-

Chapter 1

Introduction

1.1 Context

Nearly half of the 7.5 years increase in life expectancy during the last half-century of
the 20™" century can be related to improvement in medical care [1]. Medicines in the
form of tablets for oral administration play an essential role in improving the quality
and expectancy of life with approximately half of the drugs on WHO’s ‘List of
Essential Medicine’[2] being orally administrated [3]. The majority of these are of
solid form. Engineering frameworks have been developed to better understand the
behaviour of solid state products, thereby enabling the sustainable development of

medical care.

The Material Science Tetrahedron (MST) is one example of such a framework, and it
emphasises the importance of the links between structure, property, processing, and
performance [4]. The objective of the framework is to optimise the Performance by
adjusting the properties of the studied system; this is achieved by processing the
material to alter its structure. The property is determined by the structure of the
product. Key to the successful implementation of the Material Science Tetrahedron
lies in understanding the structure-property relationship. The relationship can be
further expanded to take into account structure at different scales such as molecular,
crystal, and particle. These, in turn, affect properties to a varying degree. The MST
has been utilised when undertaking challenges in pharmaceutical product development
[5].

Pharmaceutical product development can be divided into two stages: Discovery and
Development. During the Discovery stage, a large number of molecules are screened
and optimised for specific properties such as molecular efficacy and toxicity [6,7]. The
work focuses on molecular structure alteration to optimise relevant properties. Once a
project reaches the Development stage, the molecular structure is set and work is
performed on structures at a larger scale, such as solid form and particle. Many key
properties that determine the ultimate performance of a drug are dependent on the solid
state structure. Polymorphs, structures with the same molecule but different crystal
arrangements, can exhibit different solubilities [8]. Therefore, it is highly desirable to

be able to predict how molecular and crystal structures contribute to key properties.

The pharmaceutical product development process generates large amounts of data due

to the trial and error approach, as well as its regulatory obligations [9]. In particular, a

2-

large number of molecules are screened during the Discovery stage. For this reason,
many empirical methods such as Quantitative Structure-Property Relationship
(QSPR) modelling [6,7,10] and Matched Molecular Pair Analysis (MMPA) [11,12]
have been used to utilise the volume of data generated to better guide the process. In
Discovery settings, the primary objective of the emprical models is to predict the
activity of a molecule — hence the modeling is often called Quantitative Structure-
Activity Relationship. However, in this thesis, activity is considered a property, so
QSPR is used as a collective term for empirical models that predict activity or other
property. Because of the relatively smaller volumes of data (structured data in
particular), the Development side of the process has not utilised methods such as
QSPR to a similar extent. The thesis aims to build upon the limited work in the area
of solid state informatics to address key challenges in Development.

1.2 Aim and objectives

The primary aim of the thesis is to investigate the extent to which techniques deployed
during the Discovery stage can be applied to the Development stage datasets to address
challenges encountered at this stage. The intention is that this will contribute to
increasing the efficiency of the Development stage, as well as facilitate the interaction
between the two phases by allowing the Development stage challenges to be better

anticipated and addressed during Discovery.

Molecular and crystal structures are studied in the thesis as they represent the interface
between Discovery and Development. There are several relevant properties for the
pharmaceutical product development. In the thesis, the emphasis is placed on
polymorph propensity and solid state-specific melting point. Polymorph propensity
refers to the propensity of a molecule to exhibit polymorphism which is of great
importance during Development [9,13]. An empirical model of the propensity could
be used as an additional consideration during lead optimisation (Discovery). The
second property of interest in the thesis is the solid state-specific melting point.
Melting point can be related to solubility, which is one of the key properties of a drug
product due to its influence on bioavailability. A novel method of capturing crystal

information as well as the significance of the solid state information was investigated.

The methods used in the thesis are MMPA and QSPR modelling. Within empirical

modelling, there is typically a trade-off between the model’s ability to capture complex

-3-

relationships and ease with which a model’s prediction can be explained. Complex
model explainability is an active area of research [14,15] and is also touched upon in
Chapter 7. The two techniques selected represent explainability (MMPA) and the
ability to capture complexity (QSPR).

1.3 Structure of the thesis

Chapter 2 expands on the context introduced in 1.1 and provides the theoretical
background necessary for the rest of the thesis. Approach chapter (pink in Figure 1.1)
focuses on the different iterations of the development and explains the principles of
the method. Result chapters (gold in Figure 1.1) provide the specific context and aims,
followed by the methodology used and the discussion of results. Discussion chapters
(grey in Figure 1.1) are used to collate the topics presented in the previous chapters

and offer an overarching discussion of them.

CH 2: Context and Background

Y
CH 3: MMP DB

! CHa: Eolymorph
ropensity
A 4
Crystal
CH 5'Classification
\ 4
» CH6: MMG
A 4
» CH7:MPNN

CH 8: Conclusion

Figure 1.1: Overview of the structure of the thesis.

Context and theory — dark blue (chapter 2). Approach development — pink
(chapter 3). Results — gold (chapters 4 — 7). Conclusion — grey (chapter 8).
Abbreviated chapter names are used in the figure to provide an overview of
the content. MMP DB — Matched Molecular Pair Database. MMG — Matched
Molecular Graph. MPNN — Message Passing Neural Networks

Chapter 3 presents the method development performed to produce a database of
Matched Molecular Pairs. The developed methodology was applied to the work
presented in Chapter 4, Chapter 6, and Chapter 7. Chapter 4 presents the work on
polymorph propensity prediction. It identifies several issues associated with the study
of this phenomenon which are addressed in subsequent chapters (5 and 6). Chapter 5
addresses the need for a robust, automated method for the classification of pairs of
crystal structures as different or same polymorphs by benchmarking an existing
method and comparing it to the novel machine learning-based approaches. Chapter 6
describes the work done on assessing the suitability of datasets for Matched Molecular
Pair Analysis. Crystal structure-specific melting point prediction is reported in
Chapter 7. Chapter 8 collates the findings from the previous chapters, provides a
discussion on how the work addressed the aims presented in 1.2, and sets out the

direction for future research in this area.

Chapter 2
Literature Context and

Theoretical Background

2.1 Pharmaceutical product development

Medicine has been an essential aspect of human civilisation since its beginnings. As
large population centres developed, the need for a systematic approach to healing and
the development of remedies increased [16-18]. Centuries of improvements led us to
the modern drug development process that has brought us numerous treatments and
increased the length and quality of life [1]. However, the process is currently riddled
with a lack of productivity [19]. Identification of the critical challenges and
development of potential solutions is essential to secure a sustainable healthcare
system for future generations [19,20]. The Material Science Tetrahedron is presented
as a framework for addressing these issues. Consequently, the key relationship
between structure and property is identified, and the areas of focus for the thesis are

discussed.

2.1.1 History

The profession of a physician was already established by 3,000 BCE in Mesopotamia
[18,21]. At the time, observation-based treatments like pharmaceutics and surgical
procedures were inseparable from superstitious healing rituals [18]. Pharmaceutical
prescriptions dating back to 3,000 BCE were found to contain botanic, mineral and
alcohol-based ingredients [16,18]. Many of these remedies were developed by
religious reasoning and non-systemic trial-and-error approaches and were documented
on clay tablets [18]. One of the ingredients mentioned in these tablets is willow leaves,
which contains salicylic acid, a precursor to the active ingredient of aspirin
(acetylsalicylic acid) used over 5,000 years later [21]. The fact that laws existed for
punishment for mistreatment suggests that some degree of confidence in the
treatments existed at the time [18]. Despite the limited scientific understanding and
the absence of the modern scientific method, the ancient physicians were able to
develop effective medicine using a rudimentary trial-and-error approach; thus
establishing trial-and-error as a critical element of treatment development which is

used to this day.

The introduction of a more robust, scientific approach to study illnesses and
development of treatments is credited to Hippocrates, who was born around 500 BCE
[22]. He was responsible for removing the assumption of the divine origin of disease,

thus paving the way for a scientific approach based on the observation and

-8-

understanding of nature [22,23]. The Hippocratic School of medicine is based on the
principles of rationality, experiments, patient observation, and deduction [22,23]. The
approach also aims to eliminate the presumptions and biases that the researchers may
have [22,23]. Unfortunately, many of Hippocrates’ followers partially abandoned
these principles [22]. Nonetheless, the approach is evident in modern pharmaceutics
development and forms the basis of the frameworks used. Indeed, due to his principles
forming the basis of modern medicine, Hippocrates is often referred to as the “father

of modern medicine” [23].

A significant step towards the modern approach to the development of medicine was
made at the turn of the 18" and 19 centuries [17]. With the advancement of chemistry,
Friedrich Wilhelm Adam Serturner was able to isolate morphine crystals from poppy
seed juice in 1804 [24]. This was followed by the isolation of other active ingredients
such as quinine (1820), atropine (1833), and cocaine (1860)[17]. In 1869, the first
synthetic drug, chloral hydrate (discovered in 1832) was introduced into the
pharmacopoeia [16]. These advances led drug development into a new era, focused on
molecules as the basis of pharmacological effects.

The history of medicine is as long as the history of humankind itself. Diseases tend to
propagate in areas of high population density, which put pressure on early civilisations
to tackle this challenge [18]. Over the millennia, the techniques used to develop
remedies evolved, resulting in the current pharmaceutical product development

process.

2.1.2 Modern approach

The modern pharmaceutical product development process is the product of millennia
of human ingenuity. It relies on the same principles developed over the ages: trial and
error, the scientific method, and our understanding and mastery of the natural world.
The term “pharmaceutical product development” is sometimes used to refer to only
the late stage of the process of developing new medicine; however, in this thesis, the
term is used to describe the entirety of the process. The modern framework can be
divided into two main stages: Discovery and Development (Figure 2.1) [19,25,26].
The majority of the cost is incurred during the Development stage [19]. An overview
of the process, with an emphasis on orally administrated drugs in the tablet form, is
presented as the majority of drug products are of this form [3]. For the process to be

-9-

initiated, a suitable target needs to be identified [25]. A target is a cell type, enzyme,
gene, receptor, or pathway that has been shown to have an effect on a disease.

2.1.2.1 Discovery

Once a target is identified, high throughput screening is used to identify potential
molecules that may affect it. Millions of molecules are screened using automated High
Throughput setups at rates of 10,000s a day until promising compounds (Hits) are
identified [25]. Due to the large number of data generated, the data management as
well as the false positive rate need to be considered [20,27]. These are then screened

further (Hit to Lead) to reduce the number of compounds of interest to 10 — 15 [19,25].

Stages Scale

\
3%

6 %

Molecule

17 %

7%

AN

15%

21 %

Solid state

Development

c
@]
=
i
>
£
i
o]
i

27 %

5%

Launch

Figure 2.1: Pharmaceutical product development overview.

With each subsequent stage, the number of molecules considered decreases.
Majority of work in Discovery is done on the scale of molecules. Solid state
considerations are made during late discovery and Development. At the same
time, formulation of the final drug product is investigated. The cost of each
stage is based on values found in literature [19].

-10-

During the Hit-to-Lead stage, assays are repeated to confirm the results of the initial
screening stage, and further experiments are performed to obtain pharmacodynamic
and pharmacokinetic profiles as well as toxicity data [27]. This is followed by lead
optimisation, where small changes to the compound are made to improve the desired
properties further (e.g. ICso — concentration required to achieve 50 % inhibition [28])
and limit the undesired properties (e.g. toxicity) [25]. Some pre-clinical experiments
are also performed to collect more data. At these early stages, the molecular efficacy
of the potential drug is the key focus. In parallel, ways of synthesis and the delivery
method of the drug candidate for the clinical trials is investigated. During the
discovery stage, most of the work is performed on a molecular scale; traditionally,
solid state considerations, such as polymorph screening and identification, were not
taken into account at this stage [29]. However, this began to change at the dawn of the
21%t century, where efforts were made to closely align the Discovery and Development
efforts [29]. The details of this are explained in the Development section (2.1.2.2) and
further considered as a solution to key challenges of the product development process
in 2.1.3. At the end of Discovery, a decision is made whether to continue with the drug
candidate and preceed to the Development phase. Performance and manufacturability
are considered amongst other commercial considerations. To avoid costly late stage

attrition, candidates are often dropped at this stage [30].

2.1.2.2 Development

The Development stage consists of parallel branches; clinical trials, the product
formulation, and the manufacture process development [26,31]. Three stages of
clinical trials are carried out on an increasingly large number of patients to determine
the safety and efficacy of the drug candidate [32,33]. Phase 1 mainly focuses on safety
and dosage, confirming the pre-clinical results. In Phases 2, the efficacy of the drug is
tested on a larger number of patients. The phase 3 trials are the largest, where the drug

performance is compared to a benchmark treatment if it is already available [34].

The second branch of the Development process is the formulation. In this branch, the
key objectives are to ensure adequate stability and Performance of the final drug
product [35]. The structure of the API is determined by the time it reaches the
Development stage. However, the decisions regarding its solid form, particle
characteristics, and final tablet composition leave room for optimisation for the key

-11-

objectives. The drug candidates are screened for possible solid forms such as:
hydrates, solvates, co-crystals, and polymorphs. Different solid forms can exhibit
vastly different properties such as the case of Ritonavir where two polymorphs had
different solubilities (170mg/mL and 30 mg/mL at 5 °C in ethanol-water mixture (3:1))
[8]. The screening is usually completed by repeatedly crystallising the drug candidate
under different conditions such as varied cooling rates and solvents [36]. Based on the
properties of the solid form, formulation at the larger scale is undertaken; optimisation
of particle properties, and finally, the design of the tablet composition.

The formulation process works in tandem with the manufacturing process design. As
the size of the clinical trials increases and the need for large-scale manufacture
approaches, the manufacturing process is developed [37]. Quality by Design (QbD)
framework is applied to the manufacturing process to ensure consistent quality of the
drug product [38]. The guiding principle of this framework is the need for the scientific

understanding of the underlying phenomena when designing the manufacturing route.

Successful clinical trials, formulation with the desired performance and stability, along
with the manufacturing process is submitted to the governing agency for approval. In
Europe, this falls under the European Medicines Agency (EMA), while in the United
States, it is the Food and Drug Administration (FDA). The end of the pharmaceutical
product development is marked by the granting of approval for the drug product.

2.1.3 Key challenge

The modern product development framework has had success in developing many
drugs. However, in recent years, the productivity of the approach came into question
[19,20]. The cost of each stage of discovery has decreased many-fold [19,20,34], yet
the cost of the successful introduction of a novel drug has doubled every nine years
since the 1950s [34]. The main reason for the decrease in productivity is said to be
late-stage attrition, namely, the failures of drug candidates during the Development
process. In fact, in the decade from 1998, 54 % of drug candidates that entered the
Development stage failed to get approval from the FDA [33].

Several strategies have been proposed to address the low productivity within
pharmaceutical product development. These include but are not limited to: human
factor mitigation [39], organisational [19,34], predictive tool improvement [20], and
integration of Discovery and Development processes for better performance

-12-

optimisation [29]. The first two strategies, although important, fall outside of the scope
of the thesis. The remaining two strategies, (1) improvement of predictive tools and

(2) better integration of Discovery and Development, are focused upon in the thesis.

The most common cause of failure is poor efficacy of the drug candidate during the
clinical trials [33]. Unless otherwise stated, efficacy refers to the clinical efficacy
resulting from the bioavailability and molecular efficacy at the target site. Ability to
predict the efficacy of a drug product in humans is the Holy Grail of pharmaceutical
research. However, the problem is difficult due to the number of factors that affect it.
These factors range from difficulty in predicting the biological effect of a molecule
[40,41] to prediction of ADMET (absorption, distribution, metabolism, excretion and
toxicity) [42-44] . The Material Science Tetrahedron (MST) is used to decompose
some of the complexities of the efficacy prediction into simpler components. In
particular, the emphasis is placed on the structures and properties that are focused upon
at the interface of Discovery and Development. The MST framework is used to

contextualise the research focus of this thesis.

-13-

2.1.4 Material Science Tetrahedron

The Material Science Tetrahedron is a framework that emphasises the importance of
the links between structure, property, processing, and Performance (Figure 2.2). The
origin of the tetrahedron can be traced back to a National Academy report from 1989,
“Materials Science and Engineering for the 1990’s”, where it was proposed as a
framework for a holistic view of the developments in the area [4]. The key elements
of the MST are discussed in 2.1.4.1. In 2008, a paper highlighting the usefulness of
the MST in pharmaceutical research and development was published [5]. Emphasis
was placed on the relationship between two elements of the tetrahedron: structure and
property (2.1.4.2). The structures and properties that are focused on in the thesis are
presented in 2.1.4.3. Methodologies for studying the relationship between these are
also discussed (2.1.4.4).

2.1.4.1 Vertices and edges of the tetrahedron

The MST consists of four vertices: structure, property, processing, and Performance
[4,5]. Performance is the primary element of interest and is the reason for the
development of a new product. In the case of the pharmaceutical product development,

the Performance encompasses factors such as manufacturability, bioavailability,

Performance

Processing

Property

Figure 2.2: Material Science Tetrahedron.

The tetrahedron illustrates the interdependence of structure, property,
processing, and performance.

-14-

toxicity (lack thereof), and molecular efficacy. Property is another vertex of the
tetrahedron; it represents the different properties of the system studied, such as its
physiochemical and mechanical properties. The structure of the system can be
considered at different scales, from molecular through crystal to particle structure and
beyond (formulation and the tablet form). Processing indicates the various actions that

can be carried out on the product to alter it, such as synthesis of the API or milling.

The six edges of the MST represent the relationships between the four elements [4,5].
When attempting to improve Performance, the most trivial approach is to see what
processing can achieve this. The processing-performance relationship is akin to
Hippocratian physicians observing the effects of prepared remedies on patients during
the classical era [23]. However, it does not provide any insight into the reason why
certain processing affects Performance. This is not sufficient for modern-day
regulatory bodies that require a Quality by Design (QbD) approach to be applied to
the pharmaceutical product development [26,38]. For this reason, it is beneficial to
focus on the relationship between processing and Performance via structure and
property; namely, processing — structure, structure — property, and property —

Performance [5].

Moving backwards from Performance, the first relationship is that between property
and Performance. Understanding how properties affect Performance is paramount in
being able to consistently develop methods of improving it. A drug candidate may fail
clinical trials due to insufficient efficacy (Performance) caused by many factors, such
as poor aqueous solubility (property). Beyond knowing which properties to improve,
it is necessary to understand how these arise. This is the purpose of the structure —
property relationship. A crystal structure that forms strong intermolecular interactions
requires more energy to dissociate, thus reducing the solubility [45]. Knowing this,
one can design a process that alters the crystal structure — for example, by forming a
co-crystal. The way in which processing can be used to modify the structure of the
system is captured by the processing — structure edge of the MST. It is possible to
skip the structure and directly map the processing — property relationship. However,
this does not contribute to the understanding of the underlying science behind the
property [5]. The structure — property relationship forms the basis of the scientific

understanding of the studied system’s behaviour.

-15-

In summary, the objective of the MST framework is to optimise the Performance by
adjusting the properties of the studied system. This is achieved by processing the
material to alter its structure. The property is determined by the structure of the
product. Key to the successful implementation of the Material Science Tetrahedron
lies in understanding the structure-property relationship. This relationship is further

explored below.

2.1.4.2 Focus on Structure-Property Relationship (SPR)

Pharmaceutical products are complex, multi-component systems where the

Performance of the product depends on many properties. In such systems, the

Processing

I\ System of interest

\

Scale of structure

Performance

Figure 2.3: Structure Property Relationship (SPR) at different scales.

A system of interest (gold box) is affected by processing and determines the
performance (blue arrows). Relationships within the system are indicated by
black arrows. Structure (dark blue) exists at different scales where each
subsequent scale of structure is determined by the prior scale of structures
and the processing carried out. Properties (dark green) at each scale are
determined by structures at that scale and all prior scales of structure.

-16-

relationship between structure and property exists at different scales. Furthermore, the
structures at progressively larger scales are affected by the smaller structures of their
component. Similarly, the properties at each scale are determined by the structure at
that scale and the structures at the smaller scales. Different processing techniques can
be applied to modify the structure at different scales as required. This multifaceted

relationship between structures and properties is depicted in Figure 2.3.

An example of a drug that has insufficient efficacy (a key performance indicator) can
be used to illustrate the complexity of this relationship. The majority of modern
pharmaceutical product development is based on the molecular scale; hence, this is
the smallest scale considered in this thesis. One possible reason for the poor
performance is low bioavailability of the drug as a drug even with high molecular
efficacy, cannot produce the desired effect if its bioavailability is too low. To reach
the target, a molecule must dissolve from the tablet into the gastrointestinal tract, and
permeate across the lipid bilayer. The permeability can be determined based on the
molecular structure [46]. The solubility is a function of molecular and crystal
structures. Restricting the consideration to the thermodynamic solubility, it depends
on the energy change of combining solute and solvent molecules and the free energy
needed to remove the molecule from the given crystal structure [45]. Thermodynamic
solubility may refer to the equilibrium between the solution and the most stable crystal
form for a given condition. Here however, thermodynamic solubility is used to refer
to the equilibrium between the solution and any crystal form. The rate of dissolution
is affected by the particle, crystal and molecular structure. The ratio of surface area to
volume decreases as particle size increases [47]. Since dissolution is surface
dependent, particle size affects the rate [48]. The crystal structure determines the
surface chemistry, which affects the rate of dissolution as well. Beyond the three
structures discussed here (molecule, crystal, and particle), bioavailability can be

affected by tablet structure (excipients used).

2.1.4.3 Structures and properties of interest

The relationship between structures and properties exists at different scales. For a
complex system such as a drug product, several scales and properties are important.

In this thesis, the focus is placed on properties that are relevant to the interface between

-17-

Discovery and Development, with the aim of contributing to the integration of the two

stages.

The two scales of structure that are focused upon in this thesis are molecular and
crystal. The Discovery process is focused on molecules. Hence it was selected as one
of the scales of structure. The crystal structure is the other structure that is focused
upon in the thesis as it plays a vital role during Development. Many important
properties are solid form specific [49,50], and earlier incorporation of the solid form
consideration has already been shown to be beneficial [29]. Detailed consideration of

these different scales of structure is presented in section 2.2.

The ability of a molecule to exhibit different packing arrangements in crystal form is
referred to as polymorphism [51]. Different polymorphs have different properties,
such as solubility and stability [8]. The ability to control polymorphism is an essential
task within pharmaceutical product development [8,13,36,49,52]. The tendency of a
compound to form polymorphs is called the polymorph propensity. Solubility has a
direct impact on the bioavailability of the orally administrated drug product and is also
an important property for processing (crystallisation). Bioavailability is defined as the
amount of drug substance found in the circulatory system as a fraction of the amount
of drug administrated where intravenous administration has 100 % bioavailability
[36]. Both properties form part of the decision trees for quality management adopted
by all major drug regulators around the world [9]. More details concerning each

property and the data sources used in the thesis are described in 2.3.

2.1.4.4 Structure-Property Relationship (SPR) methodologies

The relationship between structure and property lies at the heart of the MST, and
significant research effort has been dedicated to developing an understanding of it.
The first principle approach aims to derive the relationship from the scientific
understanding of the phenomena. In cases where the first principle approach is
unfeasible, either due to lack of information, deficient theory, or limited resources due
to computational expense, an empirical approach may be adopted [53].

Two categories of empirical methods are used in the thesis: Quantitative Structure
Property Relationship (QSPR)[54] and Matched Molecular Pair Analysis (MMPA)
[55]. In this thesis, QSPR is defined as any model, derived from the application of
statistical or machine learning algorithms to relevant data, that maps a relationship

-18-

between the structure of a system and a property of the system. The MMPA approach
aims to map a relationship between a change in the structure of a molecule to a change
in a property of the system. The principles of QSPR models are presented in 2.4 and
applied in Chapter 5 and Chapter 7. Similarly, for the MMPA approach, the
fundamental aspects are presented in 2.5 and its specific implementation in Chapter 3
and Chapter 4.

2.2 Scales of structure

Structure is one of the vertices of the MST and is a key focus of this thesis. Within the
scope of pharmaceutical product development and the challenges identified in 2.1.3,
structures can be found on various scales (Figure 2.3). The following sub-sections
describe the different levels of structure associated with a pharmaceutical product. As
discussed in 2.1.4.3, molecular and crystal structures are the main focus of the thesis
and are presented in 2.2.1 and 2.2.2. To better contextualise the structures, crystal habit
and is discussed (2.2.3). Larger structures, such as particles and tablets, are not

discussed here as these fall outside of the scope of the thesis.

2.2.1 Molecules

A molecule is the smallest scale of the system that is considered in this thesis. A
molecule consists of atoms that are covalently bonded to form functional groups and
molecules. The molecular structure determines factors such as molecular toxicity and
molecular efficacy at the site of biological action. It is at this scale that the majority of

the Discovery work is carried out.

Molecules are defined by the identities of their constituent atoms and the way in which
these are covalently bonded together, along with the shape the overall structure takes
(conformers). The primary method used in the thesis to describe molecules is the
simplified molecular-input line-entry system (SMILES) notation [56]. Molecular
structures can also be expressed as graphs[57]; this is elaborated upon in 2.4.1 and
Chapter 7.

2.2.2 Crystal structure

Once the scale of the system is increased to include several molecules, these can be

arranged to create a new scale of the structure. Such groups of molecules exist in three

-19-

different states of matter; gas, liquid, and solid. The focus of the thesis is on the solid
state as most pharmaceutical products are of this state [3]. Solids can be further
categorised into an amorphous and crystalline form. Crystalline structures are
characterised by the regularity of the molecular arrangement. Amorphous solids have

a random arrangement of molecules and fall outside of the scope of the thesis.

2.2.2.1 Crystal lattice

The regularity of crystals can be described using a lattice. An n-dimensional lattice is
an infinite set of points defined by n linearly independent vectors such that

n

p= Z aix; +c¢ Equation 2.1

i

where the X is the ith basis vector, a; € Z, c is an offset vector that is equal to O for
lattice points (origin is one of the lattice points), and p is the vector representing a
point on the lattice [58]. In essence, each lattice point is related to every other point
by translation. This also implies that every point has the exact same environment.
Crystal structures have lattices across three-dimensional space while the graphical

example in Figure 2.4 illustrates the two-dimensional case for the sake of clarity.

The smallest repeating unit of the lattice is called the unit cell (shaded area in Figure
2.4). Each point within the unit cell has an equivalent point in every other unit cell by
translation using Equation 2.1, where cis the point of interest in the unit cell. Several
potential unit cells can be defined for a given system, but it is common practice in
crystallography to define it as the smallest repeating unit that clearly captures the
symmetry of the lattice [58]. In the case of the example in Figure 2.4, a rectangular
unit cell can be used to define the repeating pattern. However, a parallelogram without

right angles may be chosen if it represents the internal symmetry of the unit cell better.

-20-

Many crystals exhibit symmetry beyond translational symmetry parallel to the basis
vector set. This is captured using 230 space groups (for a 3D system) and the
respective symmetry operators [59]. The minimum motif required to recreate the full
crystal structure is called the asymmetric unit [60].

2.2.2.2 Crystal packing

The arrangement of molecules, the crystal packing, is determined by the balance
between intra- and inter-molecular interactions [61]. Intramolecular interactions
include the covalent bonds formed between atoms to form a molecule. Intermolecular
interactions consist of Van der Waals (VdW), Hydrogen bonds (H-bond), and
electrostatic interactions [62]. VdW interactions occur between two dipoles, either
permanent-induced or induced-induced. Hydrogen bonding is a directional interaction
between two dipoles [63]. It forms between a hydrogen that is connected to an
electronegative atom (H-bond donor) and an electronegative atom with a lone pair of
electrons (H-bond acceptors). As a result of the directionality of hydrogen bond, they
most commonly occur at around 180° with a lower limit of 110° [63]. Smaller angles
are possible, but may indicate that a more stable crystal packing exists [64].

° ° ° ° ° ° ° q
14 -
129 ® ° ° ® ® ° °
10 -
® ® ° ® ® q
8 .
6 ® ® ® ® °
4—)(2
® ® ® ® ® ® q
2 -
Xq
0 ® ® ® ® ° ®
T T T T T T T
0 2 4 6 8 10 12 14

Figure 2.4: Example lattice with illustration of a unit cell.

The two vectors that define the lattice are x1 = [2,0] and x2=[1,3]. The shaded
area is the unit cell with dimensions equal to the magnitude of each vector.

-21-

Electrostatic interaction occurs between ions or between partially charged fragments
of the molecules. An energetically favourable crystal packing is characterised by
maximisation of these intermolecular interactions, while minimising the energy
penalty due to disruption of the intramolecular interaction. It is important to note that
Hydrogen bonds may also occur within the molecule itself, stabilising a particular
conformer. Although intermolecular interactions are weaker than the intramolecular
counterparts, the sum of intermolecular forces may be sufficient to induce a
conformational change [8]. Due to the large number of possible geometries resulting
from the interactions, a number of packing arrangements corresponding to local
energy minima are often possible [50]. The ability of a molecule to exhibit multiple

arrangements in the crystal state is called polymorphism.

2.2.2.3 Polymorphism

Although polymorphs have the same molecular structure, they may exhibit different
physical properties that can lead to differences in the Performance of the chemical
product. It is important to note that in some cases, solid forms such as solvates and co-
crystal are wrongly termed polymorphs (or pseudo-polymorphs). Here, the term is
strictly applied to crystals with the same molecular composition but different

arrangements of these molecules.

Paracetamol is an example of a polymorphic molecule [65]. Figure 2.5 (a and c) show
two polymorphs of the compound. Different intermolecular interactions govern the
crystal packing of the two polymorphs [65]. The two unit cells shown in Figure 2.5 (a
and b) also differ slightly — by an average of 1.7 % change in the unit cell dimensions.
However, these two structures are the same polymorph (1) at different temperatures (-
150.15 °C and room temperature). The two structures are not considered to be
polymorphic due to the same crystal packing seen across the two structures. The
importance of considerations of polymorphism within the context of the Development

process is further discussed in 2.3.1.

-22-

Figure 2.5: Three crystal structures of paracetamol, denoted by their CSD
refcodes. a - polymorph 1 (HXACANO07), b — another experimental
determination (“redetermination”) of polymorph 1 (HXACAN09), ¢ -
polymorph 2 (HXACANOS)

2.2.3 Crystal habit

The unit cell describes the way in which molecules pack to form solid state crystals.
Crystals however, rarely grow in the same shape as the underlying unit cell [66]. The
external structure of a crystal is called the crystal habit. The crystal habit is influenced
by the internal structure of the crystal (packing, discussed in 2.2.2) and the
crystallisation conditions [67]. The set of possible surfaces of the crystal (facets) are
determined by the way in which the molecules pack. The crystallisation conditions,
along with the surface chemistry of the facets, govern the growth rate of the facets.
The crystal habit is defined by the relative growth rates of the facets. Presence of
additives or impurities may selectively inhibit the growth of certain facets, thus
changing the crystal habit [68]. Similarly, the solvent selection affects the binding at
different facets, potentially leading to changes in crystal habit [69]. Other factors such

-23-

as the temperature, the rate of change of temperature, and the degree of agitation can
all have an impact on the resulting crystal habit [67]. The shape of the crystal affects
the structure and properties at larger scales of structures such as particles, powder, and
the final drug product. However, these fall outside of the scope of the thesis.

2.3 Properties and data sources

Polymorph propensity and solubility were identified in 2.1.4.3 as the main properties
of interest in the thesis due to their relevance for the Development. Details of
polymorphism and the data source for acquisition of the relevant information is
presented in 2.3.1 with equivalent discussion for solubility presented in 2.3.2.
However, the amount of solid state specific solubility data is limited [70]. Melting
point can be related to solubility, and some solid state specific data is available for this
property [71]. Details of the ways in which melting point data can be related to

solubility as well as information regarding data acquisition are presented in 2.3.3.

2.3.1 Polymorph propensity

Polymorphism is of great interest within the pharmaceutical product development. For
example, a previously unknown, more stable polymorph of ritonavir appeared two
years after the product launch [8]. The higher stability caused the product to fail
dissolution tests and consequently was removed from the market. Polymorphs may
exhibit different physiochemical properties [36,49]. To avoid such problems, the
regulatory bodies around the world have adopted strict requirements for identification
and control of the solid form of drug products [9,13,52]. Polymorphism also plays an
important role in patent litigation. Separate patents were granted for the two

polymorphs of ranitidine (Zantac) [72].

International Conference on Harmonisation (ICH) of Technical Requirements for
Registration of Pharmaceuticals for Human Use produced a series of guidelines
concerning the requirements for approval of drug products which were subsequently
adopted by all major regulatory bodies. Guideline on Quality Management Q6a
decision tree 4 sets out the acceptance criteria for polymorphism in drug products and
substances [9]. The guideline lists the requirement for identification of all solid forms.

-24-

The ability to accurately predict the likely number of solid forms would be of benefit,
if available ahead of time. The propensity for polymorph formation is defined as the
likelihood that a given compound will form polymorphs. This property of molecules
Is investigated in Chapter 4.

The Cambridge Structural Database (CSD) is a curated repository of small organic
and metal-organic crystal structures that contains over 1,000,000 entries and is
maintained by the Cambridge Crystallographic Data Centre (CCDC)[73,74]. The
database contains 3D crystal structures and to varying degree the information
concerning the conditions under which the structure was obtained. Several entries
corresponding to a single molecular composition may be present. These entries
correspond to the polymorphs and redeterminations. A redetermination is an
experimental determination of the crystal structure of a given polymorph with a
slightly different structure. The difference can arise from different conditions or the
way in which the structure was resolved from the experimental data. Issues
surrounding the differentiation between redeterminations of the same polymorphs and
polymorphic structures is discussed in Chapter 5. The data contained within the CSD

formed the basis of the polymorph propensity study (Chapter 4).

2.3.2 Solubility

Solubility is one of the key properties that contribute to the efficacy of the drug product
as it affects the bioavailability of the drug [75]. True thermodynamic solubility
indicates the maximum amount of the dissolved solute possible for a given state for
the most stable crystal structure [76]. Due to kinetic barriers of formation of the most
stable polymorph, the equilibrium between meta-stable polymorph and solution may
be more relevant for drug absorption upon drug administration. Kinetic solubility is
the solubility for a specific crystal structure. Processes such as dissolution and
absorption are relatively quick, thus can be affected by differences in crystal packing
[75].

-25-

(1) L ()

0
LB/
o

Figure 2.6: Simplified model of dissolution of a crystalline structure.

A molecule of the solute (gold hexagon) is removed from the crystal lattice (1).
A void in the solvent (blue circle) is created (2). The solute molecule solvates
into the void in the solvent (3). Yellow arrows indicate processes where the
crystal structure of the solute plays an dominant role. [75]

To understand the factors that influence solubility, it is useful to deconstruct the
relevant thermodynamic processes — dissolution (Figure 2.6) [75]. Here, it is assumed
that the true thermodynamic solubility and the Kinetic solubility is derived via
equilibrium with the specific crystalline form studied. Hence, solubility can be related
to the Gibbs free energy change associated with the dissolution process [77]. The first
step of the process is the release of the solute molecule from the crystal lattice. The
associated free energy change can be related to the strength of the intermolecular
interactions within the crystal. The second step is the creation of a cavity within the
solvent. The size of the solute molecule affects the free energy change associated with
this process. The final step is the solvation of the free solute molecule. In reality, the
dissolution involves formation of molecular clusters that disperse in the solvent [78].
However, this falls outside of the scope of the thesis, so the simplified model is used
hereafter. The process can be split into two factors: (1) molecular and crystal structure-

dependent strength of packing and (2) molecular structure-dependent solvation.

-26-

The two factors can be used to construct a grid that indicates the relative importance
of the molecular and crystal features [71]. The grid is illustrated in Figure 2.7. The
solubility decreases as molecules move diagonally from quadrant I to I1V. In quadrant
Il the solubility is limited by solvation and in quadrant I11, molecules exhibit solubility
limited by crystal packing. Molecules in quadrant IV have poor solvation properties
as well as strong intermolecular interactions within the crystal structure. The authors
of the paper claim that many of the literature datasets underrepresent quadrant I1I,
while many of the compounds within the Development stage fall here [71].

Different strategies for solubility improvement can be adopted based on the limiting
factor. For crystal packing limited solubility, the intermolecular interactions can be
weakened by altering the packing arrangement. Different solid form (polymorph,
solvate, or co-crystal) may be selected to achieve this [75]. For solvation-limited
compounds, alternative formulation changes can be used to improve solubility [35].
Therefore, the ability to predict solid form specific solubility, along with the limiting

factor is highly desirable.

Informatics approaches have been shown to be useful tools for solid form selection
[79]. Such informatics-based methods require large datasets to develop. Solubility is

recognised as an important property within pharmaceutical product development, so

Quadrant llI
Limited by packing

Quadrant | Quadrant Il
High solubility | Limited by solvation

Packing energy

v

Solvation energy

Figure 2.7: solvation - packing grid.

The grid is used to identify structures with crystal packing limited and
solvation limited solubility. [71]

-27-

curated datasets are available. The Handbook of Aqueous Solubility contains 16,000
data points for 4000 compounds [80]. However, the dataset comprises very limited
crystal structure information. Hence, rather than focusing on modelling solid state
specific solubility, the focus was placed on melting point. This approach does not take
into account the solvation aspect shown in Figure 2.6. However, there is value in
developing better understanding of the solid state-limited solubility [71]. Solid state
specific melting data is available, and the property can be related to the crystal packing
contributions to solubility [70,71].

2.3.3 Melting point

Melting point is the temperature at which a phase transition between solid state and
liquid is thermodynamically favourable. It corresponds to the energy required for the
molecules to break the intermolecular interactions within the crystal structure. The
melting point can be used as an indicator of the energy required to remove a molecule
from the crystal lattice (process (1) in Figure 2.6) [75] and the packing energy in
Figure 2.7 [35,71]. Furthermore, the melting point is used for solubility prediction via
the General Solubility Equation (GSE) [81].

Melting point data is widely available. However, similarly to the solubility data, the
melting points are rarely associated with a specific polymorph. Open Melting Point
Data resource contains 13,000 curated data points for a diverse range of temperatures
[82]. The dataset, along with its subsets, has been used to assess the Performance of
several models [81,83]. A larger, less curated dataset was generated by text mining
patent literature [83]. The Patent Dataset contains 289,379 datapoints, and it was
shown that accurate models can be trained on less curated datasets as well. Based on
the analysis of the datasets, the typical error within literature datasets was estimated
to be approximately 32 - 35 °C [83,84]. The error is not due to instrument error but
rather due to impurities and polymorphism, which is not controlled in many cases.

These datasets do not contain any solid state information.

In contrast to the limited polymorph specific solubility data in curated datasets, CSD
contains some polymorph specific melting point data. Approximately 17 % of single
component structures in the CSD have melting point data reported along with the
crystal structure. A dataset of 53,756 crystal structure specific melting point was
extracted from the CSD. The CSD MP dataset is further discussed in Chapter 7. The

-28-

CSD contains a wide range of structures. To ensure the MP dataset was relevant to the
pharmaceutics, the drug-likeness was investigated. The strict definition of drug-
likeness is not set; however, it is generally accepted that a molecule is “drug-like” if it
is similar to available drug molecules [85]. A number of metrics can be used to
describe “drug-likeliness” such as molecular weight (typically within 300 and 400
g/mol), rotatable bond count (5 and 6), and other molecular properties [85].
Approximately 93 % of structures with the CSD MP dataset fall within the drug-like
melting point range of 50 °C — 250 °C [85] (Figure 2.8).

0.007

0.006

normalised frequency
o o o o
o o o o
o o o o
S S

0.000 T 1 | | T T
—-200 —-100 0 100 200 300 400 500
melting point [C]

Figure 2.8: Distribution of melting points of structures with the CSD single
component melting point dataset.

The drug-like melting point range (50 °C — 250 °C) is highlighted. Kernel
Density Estimate (KDE) using gaussian kernel with kde factor of 1 was used
to construct the plot.

-29-

2.4 Quantitative Structure Property Relationship (QSPR)

Structure

!

Quantitative description

v

Empirical model

I

Property prediction

Figure 2.9: Quantitative Structure Property Relationship overview.

Quantitative structure property relationship (QSPR) is a paradigm that aims to develop
accurate empirical models that predict a property based on the structure of the system
studied (Figure 2.9). A distinction is often made for models of biological activity,
referred to as Quantitative structure activity relationship (QSAR); however, the two
are considered to be same and are referred to as QSPR models in this thesis. Structures
themselves cannot be used to map the relationship to the property of interest, so some
quantitative description is needed (2.4.1). This description takes the form of a feature
vector. The variables in this feature vector are typically termed “descriptors” within
the QSPR community. Features and descriptors are used interchangeably in the thesis.
The empirical model aims to find a function that accurately maps features onto targets
(f:X =Y). The principles of how this is accomplished, by training the models, is
presented in 2.4.2. Section 2.4.3 explains the way in which the Performance of the
models is measured. The machine learning algorithms used in the thesis are discussed
in the subsequent sections — Random Forest in 2.4.4, Support Vector Machine in 2.4.5,
and Neural Networks 2.4.6. Many models also have hyperparameters which are a set
of parameters that remain constant during training but affect the Performance. The
hyperparameters are adjusted by the process of hyperparameter optimisation, which is
discussed in 2.4.7. An overview of the application of QSPR models is presented in
2.4.8.

-30-

2.4.1 A quantitative description of the structure

The decision on the descriptor set used for a QSPR is crucial, as it has an effect on the
possible performance of the model. The descriptors need to capture relevant and
generalisable structural characteristics which are relevant to modelling the property of
interest. In this thesis, the descriptors are divided into two categories: structure
descriptors and graph embedding. Molecules can be seen as graphs (sets of connected
nodes — atoms); as such graph embedding techniques can be used to generate a
descriptor representation of the structure (2.4.1.2). In the thesis, graph embedding
techniques are defined as techniques that use graph representation of the entire
structure to produce a fixed-length representation of the given structure. Fingerprint
methods also use graph representation of structure; however, only a substructure is
often used to develop several fingerprints followed by one-hot key encoding for the
presence of a given substructure. One-hot key encoding is a process where a feature is
constructed for each unique value of interest (in this case one feature is constructed
for each fingerprint). The value of the generated feature is set to 1 where a given
sample has that specific unique value and set to O otherwise. The fingerprint
approaches, along with any other method of encoding the structure as a set of
numerical variables are collectively referred to as a structure descriptor in this thesis
(2.4.1.1).

2.4.1.1 Structure descriptors

For a QSPR model to accurately map the relationship between structure and the
property of interest, the structure needs to be adequately described. The primary
objective of a structure descriptor is to capture some information about the structure
while remaining invariant to artificial differences in the structure representation. This
means that calculation of a feature should always return the same value for the same
molecule, irrespective whether the molecule has been rotated or its atoms numbered

in a different order.

Historically, simple molecular descriptors such as the number of atoms in a molecule
were used to find correlations with properties [86-88]. As the computation and
experimental capabilities increased, so did the number of usable molecular descriptors
[89]. Thousands of molecular descriptors have been developed that have demonstrated
a correlation with some property of interest [89-93].

-31-

The same principles can be extended to crystal descriptors. As discussed in 2.1.4.2 and
2.3.2, properties such as solubility are affected by the solid structure. An inability to
adequately capture the solid state information was given as one of the reasons for the
difficulty of predicting solubility [94]. Experimental melting point data, lattice energy,
and 3D molecular descriptors calculated for structures found in the solid state were

used as crystal descriptors for solubility prediction [70,95].

Further to these descriptors, fingerprints can also be used for QSPR modelling.
Typically, fingerprints encode the presence of a specific molecular feature (e.g.
molecular substructures) [96,97]. The fingerprint approach has been used extensively
to construct QSPR models for solubility [98] and other properties such as activity
[99].The presence of these substructures can then be used as a descriptor. The task-
specific descriptors used in the thesis are discussed in the respective chapters (Chapter
5 and Chapter 7).

2.4.1.2 Graph embedding

Many applications within the broader machine learning community require an
effective representation of graph data [100]. For this reason, a number of graph
embedding techniques have been developed for different tasks. The definition of a
graph is presented, followed by graph embedding methods that can be used to generate
a fixed-length representation of such a graph.

A graph G is defined by a set of vertices "V, and edges F; G=(V, £). Anedge e €
T is defined by the two vertices it links; e;; = (vi, vj) [101]. Only undirected graphs
are used in this thesis. Undirected graphs are graphs such that e;; = e;;: e;; € E. For

undirected graphs a set of all neighbouring vertices for a given vertex Vv is giving by
NBR(vy) = {v;: (v, v;) € E} Equation 2.2

Additional information concerning vertices and edges properties can be embedded as
labels I, and |, respectively. Graphs can be further categorised into homogenous —
graphs such that |1,,| = || = 1 for all vertices and edges — and heterogeneous graphs.

As molecules tend to have more than one vertex label (atom type) and edge label (bond

type), only heterogeneous graph embedding methods were considered.

-32-

A comprehensive review of graph embedding techniques can be found elsewhere
[100]. Here, the focus is placed on Message Passing Neural Network (MPNN)
framework [102]. The general principles of neural networks are presented in 2.4.6.
MPNN is a class of neural networks that generate a fixed-length representation by

consecutively updating the state of each vertex v (h,(f)) followed by pooling all the

states. Each vertex is initialised based on the vertex label (l1,),

h$” = finie (1) Equation 2.3

(t+ 1))

v

The initialisation (f;,;;) can also be random. The message passed to the vertex (m

is a function of the current state of the vertex (h,(f)) and its neighbours using a message

function (frmessage)-

t+1 t) plt
mz(z) = fmessage (hq(;)’ h\gv)' lLyw 1) Equation 2.4
WENBR(v)

The relationship can also be dependent on the timestep t and the edge type that
connects the vertex with its neighbour (1,,,). The message is then used to update the

state of the vertex using an update function (fupdate),

WY = frndaee (R, mE, 1) Equation 2.5

At each time step, each vertex receives message only from its neighbours. However,
as the state of the neighbours is updated based on their neighbours, effectively the
information concerning each vertex is propagated through the graph. At time step t,
information from vertex t-connections away reaches its vertex. After T iterations of
message passing, the fixed-length graph representation is computed based on the state

of all the vertices.

Pstructure = freadout ({h"l(JT): v E V}) Equation 2.6

The difference between the approaches within the MPNN framework comes from the
functions used (finessager fupdate freaaout) [97,102-107]. The details of the MPNN

method used in the thesis to capture molecular and crystal structures are discussed in
Chapter 7.

-33-

2.4.2 Principles of machine learning

For the empirical models to make useful predictions, some parameters need to be
optimised. In the case of machine learning algorithms, this is referred to as learning or
training and can be split into three categories: supervised, unsupervised, and
reinforcement. In case of supervised learning, a dataset that contains pairs of features
(X) and targets (Y) is fed to the learning algorithm which then aims to find a mapping
between the two (f: X — Y) [108]. Reinforcement learning is a method by which an
agent (the model) is given a reward for an action based on observations with the aim
to learn actions that maximises the reward value [109]. Unsupervised learning does
not require labelled data nor rewards for actions; instead, it draws inferences from the
datasets such as clustering or dimensionality reduction [110]. Supervised learning is
used in this thesis. The general learning task is defined below (2.4.2.1), and the key
factor in determining the usefulness of a model — generalisability is defined in 2.4.2.2.

2.4.2.1 Definition of the task

Sets of N instances (examples) of features (X = {xq, x5 ...xy}) and corresponding
target values (Y = {y;,y, ... yn}) are arranged in pairs to form a dataset for supervised
learning (D = {(x;, ¥;):x; € X,y; €Y,1 < i < N}). The target can be a discrete
label, a continuous number, or a vector (of labels or continuous values); the type of
the target is used to categorise empirical models. In the case where the target is a label,
the task is called classification. In the case of a regression task, the model outputs a
predicted value(s). The empirical model () is a function constructed from
parameters (0) given a set of hyperparameters () using the selected algorithm A.
Machine learning models such as Random Forest (RF), Support Vector Machine
(SVM), Artificial Neural Networks (ANN or NN), k-Nearest Neighbours, and Naive
Bayes are commonly used within the field of cheminformatics. In this chapter, the
emphasis is placed on RF (2.4.4), SVM (2.4.5), and NN (2.4.6) as these are used in
the thesis (Chapter 5 and Chapter 7). Whilst random forest is typically considered a
non-parametric model, rather than one which constructs a function based upon a pre-
defined functional form and a fixed set of adjustable parameters, the set of split criteria

for the trees can be seen as parameters.

Ho = A(6; 1) Equation 2.7

-34-

Hyperparameters are kept constant during training. The performance of many machine
learning algorithm is greatly affected by the selection of hyperparameter. The details
of performance measures are presented in 2.4.3 while hyperparameter tuning is
discussed in 2.4.7. The cost function is used to compute the loss of the model for a

specific set of parameters.

C(6; 1) = LX,Y; Hp) Equation 2.8

L is the loss function and is selected prior to training. Several loss functions for
regression and classification tasks are presented in 2.4.3.1 and 2.4.3.2, respectively.
The value of the cost function may be computed for each iteration of training (per
batch in case of Neural Networks) or independently for each branch of a Random
Forest model. The aim of the training is to find a set of parameters (6”) such that the

cost function is minimised;

6" = argmin C(6; 1) Equation 2.9
0

In case of Random forest, this can be seen as the optimum tree structure for each tree.
Several strategies for finding the optimum parameters (6°) exists. Each algorithm
involves a different approach to finding the optimum set of parameters. The algorithm-
specific considerations are presented in the respective sections below (2.4.4 — 2.4.6).
Although the optimum set of parameters is based on the training set, it is important to
note that the aim of any supervised model is to generate useful predictions on unseen

data. Some considerations on how this can be estimated are discussed below (2.4.2.2).

2.4.2.2 Generalisation

The ability of a model to make accurate predictions on unseen data taken from the
same distribution as the data used for training is referred to as generalisability [108].
To get an estimate of model generalisability, the available dataset (D) is commonly
split into training (Dv), test (D), and potentially validation (Dv) sets as needed. To

correctly measure generalisability, each dataset should have the same distribution.

The test set is used as the unseen data at the end of the development process and is
split from the remaining data first. If only a single model is trained (one algorithm and
one set of hyperparameters), there is no need to split the remaining data into training

and validation as all of it can be used for training. However, when a number of models

-35-

are to be trained, it is beneficial to split the dataset further into training and validation
sets. This is because a particular set of features or hyperparameters may yield good
predictions on a particular set of data due to chance. Hence, predictions made on data
used to select the best model may be optimistically biased [111,112]. Hence, a separate
validation set should be employed for the model section. The datasets can be split
before the training commences into a training and validation datasets or cross-

validation procedure can be used [113].

Once the datasets are prepared, the model development process can be initiated. The
examples from the training set are used to fit parameters of the model (or construct
decision trees in case of RF). A solution to the minimisation problem defined in

Equation 2.9 is approximated using this dataset.

The validation set is then used to give an estimate of how well the model performs on
unseen examples. The loss or other performance measure is computed for the
predictions made by the model on the validation set. If the performance on the
validation set is significantly worse than on the training set, it is likely that the model
is overfitted [114]. Overfitting is the result of the model mapping the noise within the
training set. The performance on the validation set is typically used for selection of

the best model.

Although no parameter adjustment is directly performed based on the validation set,
the model was adjusted (or selected) based on the validation set performance; hence
the dataset is no longer “unseen”. The test set provides an unbiased evaluation of the
performance of the model. No adjustments to the model are made after it is run on this
dataset. The performance represents the ability of the model to predict unseen
examples. In the section below (2.4.3), methods for assessing the performance of

empirical models are discussed.

2.4.3 Performance measures

Performance measures are required to quantitatively assess the quality of a model.
This is needed for the training process (Equation 2.8) as well as for the understanding
of how well the model generalises. To monitor the iterative training process, easily
computable functions are preferred. These are referred to as loss functions and are
presented for regression and classification task in 2.4.3.1 and 2.4.3.2, respectively. The
measure of generalisability of the trained models is calculated on validation or test

-36-

sets. The loss function used for training the algorithm can be used to assess this;
however, it is sometimes not easily interpretable and may not fully capture the
Performance of the model. For this reason, a number of metrics have been developed
to allow comparison of models. These are also discussed in the respective sections
(2.4.3.1and 2.4.3.2).

2.4.3.1 Regression task

The aim of a regression task is to predict a value for a given feature vector that closely
corresponds to the actual value. The ‘closeness’ of the prediction can be captured using
different loss functions. For each of the functions, the predicted value for the ith input

is defined as,

Y, = Ho(x) Equation 2.10

and the error is,

e =Yi— ¥ Equation 2.11

20.0

—— absolute error
17.51 squared error

15.0 -
12.5
10.0 -
7.5 1
5.0 1

2.5 1

0.0 | |

:

Figure 2.10: Comparison of absolute and squared errors.

-37-

L1 and L2 are the two basic loss functions which are used in this thesis. For a dataset

of n items, L1 function, also known as the mean absolute error (MAE) is defined as,

MAE = M Equation 2.12

The L2 function, mean squared error (MSE), is defined as,

MSE = i=1(e)? Equation 2.13
n

The two loss functions are compared in Figure 2.10. The value of squared error
increases fast as the error increases compared to the absolute error (as e — o, e? >
le]). As aresult, an outlier can have a disproportionally large effect on the MSE. This
may result in unstable MSE value when working with datasets that have outliers. MAE
is not affected by the outliers to the same degree. However, the gradient is constant
and independent of the error value. This may affect the training as the correction made
to the model is proportional to the magnitude of the loss function. To address the
shortcomings of the L1 and L2 loss function, other loss functions have been developed
that attempt to capture advantages of each. Huber loss [115] (smooth mean absolute
error) and log cosh loss [116] approximate the behaviour of L2 for small e and L1 for

large e.

A square root may be taken of MSE to convert it to the same units as the target; this is
called root mean squared error (RMSE). Comparison between performances on
different datasets can be made using R? which is computed by scaling RMSE based

on the distribution of the target values in the dataset (total sum of squares) [117].

p2_q__ RMSE Equation 2.14
=i — }_’)2

The performance measures defined in this section can be used for training and
performance comparison of regression tasks. In this thesis, only neural networks were

used for regression.

-38-

2.4.3.2 Classification task

Classification tasks aim to predict a correct label based on a given feature vector. In
this thesis, only a binary classification (two labels) was performed so this section
focuses on loss functions that are used for this purpose. Algorithms such as SVM
classifier calculates the confidence of the model in the particular classification. For
this reason the model output Hg(x) is not restricted to just the class label ({-1,1}).
The Hinge loss is commonly used for measuring the performance of SVM classifiers
[118,119].
Luinge(= {1 — yi(})[g (x) if ﬁitj;-f:r(xi-) <1 Equation 2.15
wise

The multiplication of y; and H(x;) is done to reward predictions where the signs of
Hy(x;)and y; align (correct prediction) and penalise cases where the signs are

different (misclassification).

Entropy and Gini index are commonly used measures of impurity of nodes in a
decision tree [120]. For binary classification, the two measures are defined in Equation
2.16 and Equation 2.17, respectively,

2 Equation 2.16
Entropy =1 — ch log, p.
(o

Equation 2.17

2
Gini =1— ng
c=1

where pc is the fraction of elements with the label c. This is used in Random Forest
models to decide the best split (more details in 2.4.4).

For binary classification, a confusion matrix is a useful tool to analyse the performance
of the model (Table 2.1). Based on the confusion matrix, several performance

measures can be defined.

TP .
precision = TP+ FP Equation 2.18

-30-

TP .
e — Equation 2.19
recall TP T FN q

The same ratios can also be constructed for the negative class. The overall

performance can be described using accuracy.

TN +TP .
accuracy = Equation 2.20
TP+ FP+TN+FN

In cases where the number of positives and negatives is not similar, the F-score may
be used which focuses on how well the positive class is predicted. The F1 score (8 =
1) is the harmonic average of recall and precision. If more emphasis needs to be placed
on one of the measures, an appropriate f may be selected such that § € R* [121].

1

— 2
Fg=(1+p%) , 1 1 Equation 2.21
p recall+precision

Table 2.1: Confusion matrix

Predicted
Negative Positive
Negative True negative (TN) False positive (FP)
Actual
Positive False negative (FN) True Positive (TP)

2.4.4 Random Forest (RF)

2.4.4.1 Algorithm description

Random Forest (RF) is a machine learning algorithm constructed from an ensemble
of decision trees [122]. Each decision trees makes an independent prediction based on
the input feature vector (x). The predictions made by the decision trees are pooled
together to generate a single prediction. In the original publication of the algorithm,
this was achieved by a majority vote where each decision tree has a single vote [122].
In the implementation used in the thesis, the probabilities for each label are summed

across the entire forest and the label with the highest total value is taken as the

-40-

prediction of the RF model [123]. In summary, the prediction is made using a pooling

function on M decision trees (h; (x));

Y = fpoot({h1 (%), hp (%), ..., Ay (X)) Equation 2.22

2.4.4.2 Training methodology

For each tree, a subset of the training dataset is selected randomly and independently,
typically using the bootstrap method. In the case of the bootstrap method, a predefined
number of samples (n) is selected from the dataset with replacement. At each node of
each tree, a subset of features is selected based on which the node is split. All possible
split points are considered, and for each, the impurity of the split is computed
according to Gini (Equation 2.16) or entropy (Equation 2.15) impurity measures[124].
The best split point is selected, based on the largest reduction in impurity compared to
the parent node. The process is repeated for each of the two child nodes. The process
terminates when: (1) the child nodes are pure (i.e. the node only contains samples of
a single class), (2) the number of elements in the node is smaller than a predefined
number, or (3) the maximum depth of the tree is reached. Once the set number of trees

are trained, the training of the random forest model is complete.
2.4.5 Support Vector Machine (SVM)

2.4.5.1 Algorithm description

In this thesis, Support Vectors Machines (SVM) are used for a classification task
(Chapter 5). An SVM classifier constructs a hyperplane (decision boundary) to divide
a multidimensional feature space, into two classes (above and below) [53,119,125].
The dimensionality of the feature space corresponds to the number of features with
potentially additional dimensions due to the transformation of the features (kernel

trick). The decision boundary is defined by the weight vector (w) and the bias term b.

wx+b=0 Equation 2.23

Figure 2.11 (A and B) illustrates how a decision boundary can be used to linearly

separate examples. Margins (dotted lines in the figure) are parallel to the decision

-4]-

boundary, constructed using data points closest to the boundary (the support vectors),

indicate how well the classes are divided.

However, not all data is linearly separable. In such cases, the data can be transformed
into a linearly separable form. This is illustrated in Figure 2.11C for 1-dimensional
feature space. By adding another dimension, wherep(x(;)) = sin (xy)), the two

classes can be easily separated by a linear decision boundary (Figure 2.11D).

The prediction is made using the transformed feature vector and the decision boundary
(Equation 2.23),

y=wox)+b Equation 2.24
A label is assigned based on whether the output of the function is positive or negative.

In Equation 2.24, only the dot product of the transformed feature vector and the weight
vector needs to be computed [119]. The mapping transformation from the original

1
1 1
1 (A ' \ class
o8] (A) ! ! LS (€
I 1
0.7 1 I 1 +
I 1
I 1
0.6 | . P
I 1 ®
~ 0.5 1 1
x I 1 0- > ® [T °®
I 1
4
° e s A
0.3 ! !
I 1
I 1
0.2 1 1 1
I
0.14 1 + []
r .' —+ T 14 ; : T T T
0.2 0.4 0.6 0.8 0 5 10 15 20 25
x1 x1
- 1
0.8) (D)
/
0.7 /
0.6
0.5
o 0
0.4 ¢ e
0.3
0.2
®e
°
0.1
1 - _ a
0 5 10 15 20 25

x1

Figure 2.11: support vector machine classification

A possible decision boundary for separating the two classes (A). Another
decision boundary that increases the separation between the two classes (B).
Kernel trick can be used to transform a linearly inseparable points (C). In the
example in the figure, passing the xi1 feature through a sine function
transforms the data into linearly separable distribution (D).

-42-

features and the transformed feature vector does not need to be known. Rather, the dot
product can be computed using a kernel function requiring vectors in the original

descriptor space as input. This is referred to as the kernel trick.

2.4.5.2 Training methodology

In this thesis, SVM is only used as a binary classifier, so only the training procedure
for binary classification is presented. Training of an SVM consists of finding a
decision boundary (hyperplane) that separates the two classes (positive and negative
represented by 1 and -1 respectively). The feature vectors (of size d) can be projected
onto d-dimensional space where the (d-1)-dimensional decision boundary can be
defined. This is illustrated for a feature vector of length of 2 in Figure 2.12 (the three
points that lie on the dotted lines are the support vectors). The aim of training is

twofold:

1) Minimise the amount of misclassifications — performance

2) Maximise the margins that separate the two classes — avoid overfitting
The cost function (Equation 2.9) of SVM can be written as the following.

C(w,b) = Chargin(W,b) + K Ceiqss(w, b) Equation 2.25

K is a hyperparameter responsible for determining the relative importance of
minimisation of misclassification and maximisation of the margins. It is usually
denoted as C, however to avoid confusion with the cost function, K is used here. Hinge
loss (Equation 2.15) is commonly used for Ceclass [126].

The aim 2 (maximisation of margin) can be expressed as the following equation.
Equation 2.26

w = argmax (mjn yi)
w L

where y; corresponds to the margin in the ith dimension. The two lines that define the

margin (dotted lines in Figure 2.12) can be defined as follows.

wx+b=1 Equation 2.27

wx+b=-1 Equation 2.28

-43-

Let x1 and X2 denote two points that lie on the two margin lines. The following

relationship can be constructed.

w Equation 2.2
X1 = Xy + 2y (m) quation 2.29

Using Equation 2.27, Equation 2.28, and Equation 2.29, an expression for the width

of the margin (y) can be derived.

w
X1 = X3 +2]/ (m)

w<x2+2y (%)>+b=1

wx,+b)+ 2yw (1>=1

lw
2rw () =2
wl— | =
™Y
_ wl
wWw
y = 1 Equation 2.30
lwl

Therefore, the margins can be maximised by minimising|w|, or more conveniently,
by minimising % |lw|2. The cost function component associated with the aim 2 of SVM

training (Cmargin) Can be calculated by
Equation 2.31

1 2
Cmargin (w) = E lw|

The full cost function (Equation 2.25) can thus be expressed by substituting the

respective cost function components (Equation 2.15 and Equation 2.31) as follows

1 Equation 2.32
Cw,b) =S Iwl> + K Y (1= yif (X)), |
i=1

Gradient-based optimisation (see 2.4.6.2) can be used to optimise w, b for the given

set of hyperparameters.

-44-

10

wx+b=1,°
// —x+b=0
’ lw|
S
0.8 4 7 w
,
P
Ve
, wx+b=-1
, ,
7 e
0.6 4 Ve 7/
, ,
e L7
™
= L7 7
,
e
0.4 - e .7
e //.]
’ s L
, ,
,
0.2 - 7 o
//.
. @
-,
7
0.0 | < T T T
0.0 02 0.4 0.6 0.8 10
x1

Figure 2.12: Training support vector classification.

The decision boundary (black) and margins (black dotted) separate two
classes (gold — positive, dark blue — negative). Point A and M used for
calculation of confidence of prediction (blue). Point 1 and 2 used for margin
maximisation (grey). Handling of misclassification illustrated using e
(orange).

2.4.6 Neural Networks (NN)

2.4.6.1 Algorithm description

First proposed in 1943, artificial neural networks are a type of function approximators
that are inspired by the nervous activity of animal brains [127]. The term Neural
Networks (NN) and Artificial Neural Networks are used interchangeably. Similarly to
their biological counterparts, artificial neural networks are composed of neurons. The
basic functionality of a neuron is expressed mathematically in Equation 2.33 and

graphically in Figure 2.13 .

a=f(wp+Db) Equation 2.33

-45-

The input vector (p) is usually either the input to the whole network (x) or the output
of the previous layer (ak-1). It is multiplied by the weight vector (w) where each
element (w;) represents the sensitivity of the neuron to the respective input (pi). A bias
term (b) is usually added to allow 0 values in p to have an influence on the neuron.
The resulting scalar is then passed through an activation function which enables the

output (a) to have a non-linear relation to the input.

In principle, any differentiable function can be used as the activation function. Table
2.2 summarises the activation functions used in this thesis, along with some other
commonly used functions. Rectified Linear function (ReLu) is the most commonly
used activation function in deep neural networks due to its computational efficiency
and reduced chance of encountering the vanishing gradient problem in multi-layered
neural networks [128].

Neuron

P o a

Figure 2.13: Simple neuron design.
Vector input (p), is multiplied by a weight vector (w), a bias term (b) is added,
and the result is passed through an activation function (f) which results in a

scalar output (a).

-46-

Table 2.2: Activation functions commonly used in neural networks [130]

Name Function Visualisation
1
Sigmoid -
& Y 1+e*

Tanh y = tanh(x)

xx =0

RetU y:{0x<0

The neurons form the basic unit of neural networks. More sophisticated units can be
developed and arranged in a specific manner to suit a specific task (such as Long Short
Term Memory [129]). The neurons are usually arranged in layers, where each may
contain one or more neurons. Three main classes of the arrangement are shown in

Figure 2.14: fully connected, convolutional, and recursive [130].

In a fully connected layer (Figure 2.14 top left), each neuron is fed all the available
inputs (either model inputs or outputs of the previous layer). Each of the neurons has
a different weight vector (wj), and so the weights of a fully connected layer can be
expressed as a single weight matrix (Wk). For a layer k, containing S neurons, the

weight matrix can be expressed as shown in Equation 2.34.

-47-

W.
Wi = |7k Equation 2.34

This type of layer is the most common in neural networks and its main advantage is

that it utilises all available inputs.

A convolutional layer (Figure 2.14 top right) consists of neurons that have a restricted
receptive field (i.e. can only “see” a subset of all inputs). Inputs within the receptive
field are fed into the neuron to compute a single value output. The receptive field is
then shifted by a predetermined amount (movement in Figure 2.14 to the right), and
the action is repeated. In case part of the receptive field falls outside of the input vector,

padding with zeroes is sometimes used to ensure the dimensionality of the instance

movement

Fully connected Convolutional

Recursive

Figure 2.14: Examples of fully connected, convolutional, and recursive layers
of neural networks, along with a schematics of a simple recursive neuron.

Weights of each neuron are different and are connected to every input in case
of a fully connected layer (top left). In a convolutional layer, a neuron with
same weights is applied to a subset of the input (top right). All of the inputs
and the previous hidden state (h) are fed into a recursive neuron (bottom left).
A simple recursive neuron design (bottom right).

-48-

input is consistent. This type of layer is used to reduce the number of connections
within a network. It is also used to capture information where there is value in the
segment of the input regardless of where it appears, such as a curved line when
attempting to classify hand-written digits [131]. Convolutional layers are not used in
this thesis. A more detailed explanation of this type of layer can be found elsewhere
[128,130].

In the case of a recursive layer (Figure 2.14 bottom left), the neuron is connected to
the input, but also to itself. For this reason, the basic neuron introduced in the Figure
2.13 needs to be modified to handle two inputs (Figure 2.14 bottom right). The state
that is passed from the neuron to itself is referred to as the hidden state (h;). The
dimensions of h, p, and a are the same to ensure that the neuron can be applied
recursively. The equation describing the operation of a simple recursive neuron is
shown in Equation 2.35 [130].

a=f(Wyh+W,p) Equation 2.35

The first time a recursive neuron is applied, an initial hidden state (ho) needs to be
given. The order in which the input vectors (p) are fed is dependent on the structure
of the data. In a special case where the inputs are fed sequentially, the layer is referred

to as recurrent.

The activation function used in these layers may be different for each neuron.
However, it is common to see the same activation function being used for all neurons
of layers of a particular type. Different types of layers are sometimes combined within
the same neural network. The output of one layer becomes the input of the following
layer; hence the neural network can be expressed as a composite function of functions

for each layer

y=(fiw © frnen) © - ° fry) (%) Equation 2.36
where f; ;) is the function of the ith layer of the network and contains the required
weight multiplication and activation as exemplified in Equation 2.33 and Equation

2.35. Neural Network design is a substantial field, so only the architectures relevant

to the thesis are discussed further in Chapter 7. The work in the chapter utilises a

-49-

recurrent layer for graph embedding (as introduced in 2.4.1.2) and fully connected

layers for predictions.

2.4.6.2 Training methodology

Neural Network design often results in models with many parameters () that require
tuning for the model to make meaningful predictions. The training of a Neural
Network is usually carried out by iteratively updating the parameters based on the
gradients of the loss (VC) until the predefined convergence criteria is met. This
approach is commonly referred to as gradient descent. However, in this thesis, the term
gradient descent is used exclusively for the simplest form of the algorithm
(computation of the full gradient and update with constant learning rate; explained in
more details below) while the whole family of algorithms are referred to as gradient-
based optimisation (GBO) algorithms [132]. The algorithm A.1 describes the basic
components of GBO algorithms. The initial set of parameters 6, is determined by an
initiation function (f;,;;) and the hyperparameters of the model (4;,,;¢). Some initiation
strategies are discussed below. The training is initiated with the L being set to arbitrary,
large number. Predictions are made using the initial set of parameters and the
respective loss is calculated using the cost function C. Although loss is a function of
6 parameterised by the hyperparameters A (as defined in Equation 2.9), for the sake of
clarity, A is omitted in the description as these remain constant for the duration of
training. The differences in algorithms within the GBO family arises from the
differences in implementation of gradient computation (fz,qq(L,6;)) and the
parameter update strategy (fupaate(8:,VC)). The process is repeated until the

convergence criteria (fzony) 1S Met.

-50-

Algorithm A.1: Gradient-based optimisation

0o < finit (Ainit)

t <0

Loss < +o

while f.,,,(C,t) = False do
L < C(6)
VC < fgraa(L, 6;)
0 < fupdate(6,VC)

t—t+1

For many neural networks, the initial parameters (weights and biases) have an effect
on how well the network can be trained [133-135]. One generic weight initialisation
technique is to generate a random weight matrix that is orthogonal (i.e. WT = w~1)
[136]. A number of initialisation strategies were developed according to the design of
the network; particularly based on the activation functions used. The weights are
randomly selected from a truncated normal distribution with a mean of 0 and variance

according to,

o2 = o m Equation 2.37
Nin +k Nout

where nin and noy are the sizes of the input and output vectors to the layer, mis 1 or 2,

and k is 0 or 1 depending on the initiation strategy. The values of m and k for different

Table 2.3: coefficients to various initialisation strategies.

Name m |k
Lecun [134] 1 0
He [264] 2 |0
Glorot[133] 2 1

-51-

initialisation techniques are presented in Table 2.3. A robust comparison of the

initialisation techniques can be found elsewhere [135].

The GBO methods require partial derivatives of the loss with respect to each

parameter. For a model with M parameters, the gradients are defined as

— aC -
00,
ac .
VC = a_el Equation 2.38

ac
100,

Neural networks are differentiable composite functions as defined in Equation 2.36.
Therefore, the partial derivatives with respect to each parameter can be computed
using the chain rule. This is computationally expensive and gives rise to several key

issues which are explored below.

Firstly, all loss functions defined in 2.4.3 involve summation of individual loss over
the entire dataset. This is often computationally expensive so the loss may be
computed for a subset of the dataset (single data point or multiple data points).
Although this is only an approximation of the true gradient, the reduction in the
computational cost is large enough to warrant the use of this method [132,137,138].
As the subsets are often selected at random, the method is referred to as Stochastic
Gradient Descent (SGD).

Another issue arises if the Neural Network has many layers or a recursive layer. In a
recursive network, the input at timestep t depends on outputs for all previous timesteps
(0, 1, ..., t-1). When t is a large number, the differential becomes long, potentially
resulting in the “vanishing gradient” problem [139]. However, no more than four
timesteps of a recursive layer were used in this thesis (Chapter 7), so no measure to

counter this was necessary.

The computed gradients are then used to update each of the parameters of the model.

The basic equation for this is given below, where 6.,y are the updated parameters

and n is the learning rate.

-52-

0(t+1) = 0y —nVC Equation 2.39

The learning rate controls how much the weights are modified by and is predetermined
in case of GD and SGD. However, selection of the appropriate learning rate is often
challenging; too small and the optimisation will take a long time, too large and the
optimisation will not find a stable minima [132]. In theory, an adjustable learning rate
that decreases as it approaches minima would address this issue. Several methods that
attempt to achieve this have been developed such as Adagrad [140] and Adam [137].
Adam (Adaptive Moment Estimation) optimiser is de facto the standard optimisation
procedure in Neural Network training [132]. It provided adequate convergence

performance in Chapter 7 so no alternatives were used.

Adam uses two variables (m,, v,), parameterised by f5;, 8, € [0,1) to update model
parameters (@) [137]. The two variables are decaying averages of gradients and
squared gradients, defined as

m,= fim;_1+ (1— B,)VC; Equation 2.40

v, = Bove_q + (1 — B,)VC2 Equation 2.41

The terms (v,, m,) are biased towards the initiation values (vy, m,), usually set to 0.

A bias-correction is applied before the weights are updated.

p_ My Equation 2.42
T g
o = 2t Equation 2.43
=
1-p;

Finally, the model parameters are updated according to the following equation.

n
041y =0y ————m,
CD IO e

The e term is a small number to ensure that the denominator is not zero (usually of the

order of 10%). Multiplication between vectors in this equation is done element-wise

-53-

where each element corresponds to a parameter of the model [137]. The training

procedure is continued until the convergence criteria is met which is chosen before the

training is initiated. This is usually defined as a number of consecutive iterations with

loss function reduction below a specified amount. In the thesis, this is specified when

training procedure is discussed (Chapter 7). The three methods introduced in this

section are summarised in Table 2.4.

Table 2.4: Comparison of the three learning algorithms.

full gradient

unadjustable

rate per parameter

GD SGD Adam
Gradient _
_ Full gradient subset Subset
computation
n
Algorithm
n n B1, B2
hyperparameters
€
Model 0
0(t+1) 0(t+1) (t+1)
parameter 0 ve —9 U
= - =0, —nvC = T
update "N @® ~ MV&isubset ® \/v_t +e t
Slow _)
) Learning rate Adjusted update
comment computation of

-54-

2.4.7 Hyperparameter optimisation

Most machine learning algorithms require some hyperparameters that can greatly
affect the performance of the model [141]. The purpose of the hyperparameters is to
control the balance between under- and over-fitting [141]. The principles of
hyperparameter optimisation are similar to the training procedure discussed in the
training sections of each introduced algorithm. #; denotes an empirical model based
on a learning algorithm <A, optimised with respect to its parameters on a training set

D, with a given set of hyperparameters A.

Hy = A(Dyr; L) Equation 2.44

The cost function with respect to the hyperparameter set (1) can be expressed similarly

to Equation 2.8;

C(A) = L(D,; Hy) Equation 2.45

The same loss function £ can be used as with training. Alternatively, any quantitative
performance measure (2.4.3) can also be used. In cases such as with Gaussian Process
Regression, hyperparameter inference can be accomplished during training [142].
However, such algorithms were not used in the thesis, thus fall out of scope. The
hyperparameter optimisation task can thus be expressed in an analogous way to the
training task[141];

A* = argmin L(D,,, A(D¢r, 1)) Equation 2.46
2

A key difference between hyperparameter tuning (Equation 2.46) and training
(Equation 2.8) is the computation cost. A (D, A) is an optimisation problem in itself
and can be expensive to compute [141]. Furthermore, many of the models have
complex, conditional hyperparameter search spaces [141]. This is particularly true in
the case of Neural Networks where the number of neurons in a layer as well as the
number of layers may be hyperparameters [143]. Gradients are usually not available
for hyperparameter optimisation so the GBO methods discussed in 2.4.6.2 are not

suitable.

-55-

The most basic approach is to tune the hyperparameters manually, using rule of thumb
and experience. However, this can be tedious and is often outperformed by the
methods presented below [113,141]. These methods can be divided into informed and
uninformed approaches. In the thesis, uninformed methods are defined as an approach
where the choice of subsequent hyperparameters is not affected by the previous step.
Grid search and random search falls into this category and are elaborated upon in
2.4.7.1. On the other hand, in informed methods the set of hyperparameters proposed
at each iteration is based on the previous steps. This is a hot topic in machine learning
research and several methods have been developed; these are presented in 2.4.7.2. An
informed method used in Chapter 7, Sequential model-based optimisation (SMBO), is

explained in more details in 2.4.7.3.

2.4.7.1 Uninformed methods

To perform a grid search, a search space of hyperparameters consisting of discrete
values is constructed. A combination of the hyperparameters is used for training of the
model and its performance on the validation set is recorded. The process is repeated
for all combinations of the hyperparameters and the combination that yields a model
with the best performance is selected. This brute force approach is easy to set up and

can be easily parallelised for reduced computation time [113].

However, the grid search does not provide even coverage of the entire search space as
it focuses on the selected discrete values (Figure 2.15). For this reason, and particularly
for high dimension search space, a random search often outperforms grid search [113].
In the case of random search, upper and lower boundaries for each hyperparameter are
defined. The algorithm randomly samples the search space for a predefined number of
iterations. The best performing hyperparameter combination is then selected. By not
being limited by a defined grid, the algorithm is able to sample more varied values for
each of the hyperparameters (Figure 2.15). The random search is often sufficient when
hyperparameter optimising on relatively simple search spaces. The method is often
used as a benchmark for assessment of the performance of the informed methods of

hyperparameter optimisation [113].

-56-

104 @ ® @ @ ® ®
0.84 @ @ -] /] ® ®
064 @ [] @ » ®

~ ® orid
x random
047 @ @ @ @ ® ®
021 @ @ ® ® ® ®
0.04 @ @ -] ® ® ®
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x1

Figure 2.15: Sampling of a search space using Grid search and Random
search.

In case of the grid method, the preselected values of each variable are
sampled. The 36 samples only cover ten distinct values (0.0, 0.2,...1) of each
variable. The same number of samples using the random search method cover
36 distinct values of each.

2.4.7.2 Informed approaches

The high computation cost of each iteration of the hyperparameter optimisation makes
methods that can reduce the number of required steps highly desirable. The
computational cost of selecting a new set of hyperparameters to try is negligible
compared to the cost of the evaluation. As a result, a number of algorithms that attempt
to find the global minimum of the hyperparameter search space were developed.
Evolutionary algorithms are based on minor random mutations at each iteration from
the best performing set of models from the previous iteration [143]. Particle swarm
uses a set of “particles” (set of models trained with a set of hyperparameters) that
traverse the search space [144]. The movement of each of these particles is determined
by the location of its current best performing set of hyperparameters and that of the
entire swarm as well as a random component. Bayesian optimisation constructs a
surrogate function that predicts the performance of the trained model for a given set

of hyperparameters [145]. The subsequent combination is selected based on the

-57-

balance of exploration and exploitation. An exploration step is taken to improve the
accuracy of the surrogate function while exploitation attempts to find the minima
based on the current surrogate function. Algorithms that create a surrogate function
that is sequentially updated are collectively termed Sequential Model Based
Optimisation (SMBO) algorithms.

2.4.7.3 Sequential model-based optimisation (SMBO)

SMBO algorithms were originally developed for experiment design and oil
exploration work. In both of these applications, the computation of the performance
(i.e. yield of a reaction by doing the experiment or test drilling to measure the amount
of oil in an area) is significant; hence the algorithm attempts to minimise the number
of steps required to reach the optimum value [146]. The applicability of these methods
to hyperparameter optimisation is evident based on the similarity of the challenges of
the tasks. Four elements need to be defined for the SMBO algorithms: hyperparameter
search space, objective function (Equation 2.45), surrogate model, and acquisition
function (Figure 2.16).

The definition of the hyperparameter search space is performed similarly to the other
methods introduced. Unlike the grid search method, each variable can be defined using
a truncated distribution function (Gaussian, uniform). Conditional variables can also
be supported by SMBO algorithms [141,146]. Conditional variables refer to variables
that only exist when a specific condition is met; for example, the number of neurons
in the second layer of a Neural Network is only a valid hyperparameter when the

number of layers (another hyperparameter) is two or higher.

The acquisition function is used to determine the following hyperparameter
combination to test which reflects the relative importance of exploration and
exploitation. The hyperparameters are chosen at random based on a distribution
defined by the acquisition function. The general form of the acquisition function can

be defined as,

. ® . Equation 2.47
fuea i€ = | w7 pu(CID) de

-58-

where C denotes the cost function for the set of hyperparameters A as defined in
Equation 2.45, and C* denotes the baseline value of the cost function [147]. The
baseline value C* can be the lowest observed value so far or some other defined value.
The u(A; C*) is a utility function and the p,,(C|A) corresponds to the probability of
obtaining performance C given set of hyperparameters A based on the surrogate model
M. Probability of improvement (PI)[148] is one of the possible acquisition functions
that can be used and the corresponding utility function is defined as

0o c>c

u(d) = {1 c) < C* Equation 2.48

Expected improvement (EI)[148] is another acquisition function for which the utility
function is defined as follows.

0 c()>c

u(d) = {C*) cy<c Equation 2.49

The main difference between the two utility functions is the value of reward for finding
a value below the benchmark value (C*). In the case of PI, the same reward is given
regardless of the size of improvement, which may lead to overexploitation of a local
minima found [148]. The reward for El is scaled based on the size of improvement. El
is used in this thesis (Chapter 7) for which the acquisition function can be written as

follows (substitution of Equation 2.49 into Equation 2.47).

o Equation 2.50
EI(2; CY) =f (C* = O)pu(CID) dC

Other acquisition functions such as entropy-based functions have also been developed
[149].

The difference in SMBO algorithms arises from the different approaches to
constructing the surrogate model (Figure 2.16). Sequential Model-based Algorithm
Configuration (SMAC) uses a random forest for the construction of the surrogate
function [150]. The Hierarchical Gaussian Process (HGP) approach uses Gaussian
Processes which are updated at each iteration [147]. The method used in this thesis
(Chapter 7) is the Tree-structured Parzen Estimator (TPE) approach, details of which
are presented below. A comparison of SMAC and TPE can be found here [151], while
comparison between HGP and TPE is presented here [147].

-59-

HGP and other Gaussian Process-based approaches model p,,(C|A) directly, but the
TPE method instead models p,,(1|C) via two kernel density estimates (KDE) as
follows. The term pwm is abbreviated to p hereafter for clarity.
_(tD) c<cr Equation 2.51
PAO =13 s -

The two KDE functions are constructed from the predefined hyperparameter
distributions and the previous observations of pairs of 1 and C(4) [147]. A quantile y
can be defined that corresponds to the probability of C(1) < C*.

y=p(C<CY Equation 2.52

For TPE, Bayes’ Theorem is used to modify Equation 2.50 to give

c Al0)p(C
EI(A;C) = f c* - 6)% dc

S = Op@ICp(C) dC
- p(1) Equation 2.53

The denominator of Equation 2.53 can be expressed using the Law of Total

Probability, Equation 2.51, and Equation 2.52 as follows.

p() = j PAIC)P(C)dC =

[0e]

.
= | paicwdc + [paiop@dc
—00 c*

=y + (1 -y)g) Equation 2.54

The integral in the nominator of Equation 2.53 is within the range where p(1|C) =

£(2), hence it can be written as

)
f (€ — OpAICIP(C) dC =
c* c*
= (1) j p(C) dC — £(1) J Cp(C) dC

C*
=C*tAD)y —2(14 Cp(C)dC
Wy —&()f_oo p(C) Equation 2.55

-60-

Substituting Equation 2.54 and Equation 2.55 back into Equation 2.53 and rearranging
to aggregate the terms affected by A, the following equation is obtained [147]

1 c*
EI(A4;CY) = (y +(1-vy) %) (C*)/ - f Cp(C) dC> Equation 2.56

— 00

As can be seen from Equation 2.56, the EI can be maximised by minimising the ratio
g(A1)/€(A). In essence, this is achieved by probing areas with high probability of
achieving a score above the target (high (1)), and low probability of scores below
the target (low g(4)). In a typical implementation of the algorithm, a number of
samples are drawn from £(4) and each of the candidate hyperparameter combinations
are evaluated by the ratio g(1)/#(4). The A with the highest EI is then selected to
obtain C(A) according to Equation 2.45. The surrogate model is updated based on the
new A, C(A) pair and the process is repeated [147].

Hyperparameter
search space

Obijective function

Surrogate model

! '

GP TPE RF
| |
¢ v ¢
El PI Ent

Figure 2.16: Overview of SMBO algorithms.

Several surrogate models such as Gaussian Process (GP), Tree-structured
Parzen Estimator (TPE), and Random Forest (RF) are available. Expected
Improvement (EIl), Probability of Improvement (PI), and Entropy (Ent) are
some of the possible acquisition functions. TPE and EI was used in the thesis.

-61-

2.4.8 Application of QSPR

QSPR methods are often used in situations where a theoretical chemistry approach is
not suitable. Historically, such empirical models tended to be simple with very limited
scope of applicability such as only hydrocarbons [152]. As the amount of data and
modelling algorithms improve, more complicated relationships with ‘global’
applicability domain were mapped [53]. Although empirical models aim to be
generalisable, the models cannot be expected to reliably extrapolate to instances which
are not represented in the training data. Exact definition and estimation of the

applicability domain remains an active area of research [153,154].

One of the earliest works of QSPR can be traced back to the mid-19™ century with
work by Hermann Kopp on the relationship between the molecule size and boiling
point of alkanes [86,155]. Over the following decades, attempts were made to find
relationships between descriptors of the molecular structure and other physical
properties. In the 1930s, a melting point prediction model was published that used
number of atoms and the density of the compound as descriptors [87]. Development
of early descriptors can also be traced to this time period [156]. Cheminformatics
approaches, and the notion that an empirical relationship between structures of
molecules and their properties exists, faced many objections from other chemists [86].
However, these objections were shown to have been misplaced based on the
development of modern QSPR models [6,7,10,40,53,157-161].

Work done in the 1960s is considered to be the origin of the modern QSPR
methodologies [10,153,162-165]. QSPR models have been used extensively within
the areas related to the pharmaceutical product development. Models mapping
molecular structure biological activity, selectivity, and toxicity have been developed
[166,167]. Likewise, predictions of solubility [45,70,98,157,168,169] and melting
point [81,83,170-173] are also of considerable interest within the QSPR community.

The development of QSPR model has been facilitated by the increase in data
availability. In the case of melting point, the datasets were limited to 10s of compounds
in the early 20" century [87]. By the turn of the 21% century, models were typically
trained on datasets in the 100s of data points [171,174,175]. The Patent Dataset
(introduced in 2.3.3), which contains 289,379 datapoints, is the largest melting point
dataset available at the time of writing [83].

-62-

The increase in dataset size allows more complex models with larger applicability
domains. Early melting point models were often restricted to a specific class of
molecules such as rigid, non-hydrogen bonding aromatics [171] or aliphatics with
certain functional groups [175]. QSPR models that can be applied to a wider range of
molecules were later developed [83,172]. This trend is expected to continue in the
future as the dataset sizes increase and the available models become better at capturing
complex relationships. The dataset size can be expected to represent a more diverse
chemical space. The development of more complex algorithms has facilitated
improvements in performance in other fields such as Natural Language Processing
[176], so a similar trend can be expected to extend to QSPR research. The increase in
computational resource efficiency (both the computation and the economic cost) has
also been identified as one of the drivers of progress in the field of predictive
modelling [177].

Solubility and melting points are both dependent on the molecular structure, but also
the crystal structure. However, the crystal structure information is usually not
available and not used. This is cited as one of the limitations of these QSPR models
[172]. Work has been carried out investigating the extent to which incorporation of
crystal descriptors improve the model performance [70,95,178]. No good evidence of
significant improvement was observed. However, this may be attributed to limitations
in the calculated crystal descriptors and uncertainty in the specific polymorph for
which the experimental training set data were measured [70]. The issue of developing
adequate descriptors of the solid state and their importance to accurate property

prediction is addressed in Chapter 7.

-63-

2.5 Matched Molecular Pair Analysis (MMPA)

Matched Molecular Pair Analysis (MMPA) is a statistical method for studying the
effects of molecular changes on a property of interest. Molecules that differ only by
one chemical transformation are considered to be a Matched Molecular Pair (MMP).
Changes in properties across these pairs, for a given transformation, are statistically
analysed to infer the effects of the molecular transformations. The analysis procedure

(2.5.1) and its application within cheminformatics (2.5.2) are discussed here.
2.5.1 Identification of pairs and analysis procedure

2.5.1.1 Terminology

R, R

context

Molecules:

moll mol2

Transformation: R1 = CH, R2 =0H

Matched molecular pair: MMP: moll mol2 Context = Ph

Figure 2.17: Example of a matched molecular pair.

MMPA is based on pairs of molecules that differ by one chemical transformation. An
example of an MMP is toluene and phenol, as shown in Figure 2.17. In this case, the
‘transformation’ is the change from a methyl group (R1) to a hydroxyl group (R2).
These two groups are also referred to as cores. A ring substitution (e.g. phenyl to
Pyridyl group change) can also be considered to be a transformation. In the given
example, phenyl group is named ‘context’ as it is the common molecular substructure
across the two molecules. The two molecules are an MMP with transformation —CH3
— —OH. For the analysis, other MMPs with the same transformation would be used

to study the effect of substitution of a methyl group to hydroxyl group.

-64-

2.5.1.2 Identification

The simplest way of identification of MMPs is for a chemist to manually compare
molecules. This method becomes unfeasible as the number of molecules increases.
Two categories of automated methods for MMP identification have been developed;
pre-specified transformation methods (STM) and unspecified transformation methods
(UTM). STM can be useful in limiting the computational power required by narrowing
down the search to only the transformations of interest [179]. However, this is also a
weakness of the method — no new transformations can be identified. UTM identify

transformations and MMPs from a given set of molecules.

UTM can be further subdivided into fragmentation [180], maximum common
substructure (MCS) [181,182], and hybrid approaches [183,184]. UTM is used in this
project in order to be able to identify transformations that have an impact on the
properties studied (Chapter 6). In particular, the Hussain and Rea Fragmentation
method (HRF) was selected as it is computationally efficient and can be easily
implemented within the workflow. The details of the algorithm are presented in
Chapter 3.

2.5.1.3 Analysis

Once the transformations of interest have been identified and all corresponding MMPs
identified, the property change is calculated for each of the pairs. Each change
becomes a single datapoint for the analysis. All changes are grouped by the
transformation. For example, all MMPs where the transformation involves a methyl
group being swapped for a hydroxyl group are grouped together to study the effects
of that transformation on a property of interest. Statistical analysis is then performed
to infer the effect of the transformation. Typically, the averages and paired t-test scores
are calculated [179,185,186]. In many cases, the t-test is repeated multiple times (once
for each transformation within the dataset). As such, measures need to be taken to
account for multiple statistical testing [187,188]. The fraction of MMPs that have
positive / negative effect on the property has also been used for the analysis [189]. In
some cases the information about the context of the specific MMP is also included in

analysis [190].

-65-

2.5.2 Application of MMPA

The MMPA framework can be applied to study any property of interest that is affected
by molecular change. It has been widely used for properties that are relevant to the
drug Discovery process [179]. Properties relating to ADMET (absorption, distribution,
metabolism, excretion, and toxicity) such as aqueous solubility [191] and plasma
protein[186] binding were studied using MMPA. Molecular fragment contributions to
melting point, which is a property used in many solubility predictions (e.g. General
Solubility Equation) were investigated using this method as well [192]. MMPA has
also been used to study the effects of chemical transformations on binding to a
particular biological receptors [193,194](such as CYP inhibition) as well as to study
promiscuity [195] (the ability for a molecule to interact with several biological
macromolecules). MMPA was demonstrated to be a versatile method (in terms of
studied properties) which provides easily interpretable results that can be used by

chemists during Discovery [11,55,196].

MMPA has also been used in tandem with other statistical approaches such as QSPR
models. Two ways of combining QSPR with MMPA have been developed; QSPR-by-
MMP [197] and prediction driven MMP [198]. QSPR descriptors were calculated for
the chemical transformations (rather than individual chemical as it is the usual case
for QSAR models). The developed model predicted the activity change for the
chemical transformations. It was noted that for smaller sets of molecules, the number
of well represented transformations in the training set was too low in many cases,
limiting the model to the more commonly occurring transformations [197]. In case of
the prediction driven MMP, a QSPR model was developed for a set of molecules.
MMPA was carried out on the dataset using the predicted values [198]. Application
of MMPA to the output of the QSPR model allowed for a more easily interpretable
results; an increase or decrease in aquatic toxicity associated with a particular chemical
transformation [198]. The study demonstrated that useful knowledge can be extracted

by applying MMPA to calculated property values.

MMPA is a versatile method that can be used for multi-parameter optimisation
[55,199]. This can be achieved by determining the effects of chemical transformation
on multiple properties (such as solubility and plasma binding) and selecting the
transformations that provide the optimum change in the properties [186]. However,
MMPA typically has some shortcomings that need to be addressed. Firstly, the results

-66-

of MMPA can be significantly affected by the errors in the data[185]. Since each data
point used on the analysis is the difference between property values of two molecules,
the errors compound. Secondly, investigation into the varied effect within a
transformation (different MMPs of the same transformation have different effects) has
not been widely studied [185]. Some studies have taken into account the contextual
information (molecular structure surrounding the site of transformation) [190,197]. It
was noted that some transformations had a context chemotype (similar structure)
specific effect that was undistinguishable without this approach. Thirdly, the
application of MMPA has been mostly limited to properties of interest during the

Discovery stage of drug development.

2.6 Summary of the chapter

The modern pharmaceutical product development process was developed as a result
of millennia of human struggle against disease. The process has successfully
contributed to longevity and quality of life improvements. In recent years, the
productivity of drug product development has been decreasing; primarily due to
failures during clinical trials caused by insufficient human efficacy. With the ultimate
goal of predicting the efficacy (out of scope of the thesis), the relationships
underpinning the performance of pharmaceutics was analysed using the framework of
the Material Science Tetrahedron. Molecular structure — polymorph propensity, and
molecular and crystal structure — melting point were identified as the two structure
property relationships that the thesis focuses on. The theoretical framework for two
empirical approaches: Quantitative Structure Property Relationship (QSPR) and
Matched Molecular Pair Analysis (MMPA) were also presented.

In the following chapter, the development of a Matched Molecular Pair Database
(MMPDB) for streamlined MMPA of properties related to performance of
pharmaceutical products is discussed. The chapter focuses on the method development
and explains the design decision behind the database schema. The approach is
contextualised within literature works and its applicability to further research in the

thesis is discussed.

-67-

Chapter 3
Matched Molecular Pair

Database

-69-

3.1 Introduction

Matched Molecular Pair Analysis (MMPA) has been widely used within the
Discovery stage of the Pharmaceutical Product Development [11]. The analysis
provides an easy way to interpret results that can be used to assist in molecular
optimisation. More recently, the MMPA methodology was applied to the Cambridge
Structural Database (CSD) to investigate the effects of molecular transformation on
crystal packing [189]. This is the first application of MMPA to a dataset that resembles
a Development stage dataset. The work in the thesis aims to further this research by
focusing on transformations that affect polymorph propensity. The purpose of
applying empirical methods commonly used in Discovery to address Development
challenges is to allow for better integration of the two stages and to enable the

prediction of Development challenges while still in Discovery.

For systematic MMPA, a database can be a useful method of MMP storage to avoid
repeated, computationally expensive MMP identification (3.1.1). Several MMP
identification algorithms exist (as discussed in 2.5.1.2); the selected algorithm is
presented in 3.1.2. This work (along with work shown in Chapter 6) was presented at
UK QSAR conference [200]. Shortly after the work on this chapter was completed, a
similar MMP database was published [201]. Comparison of the database developed
for this thesis, and the one available in the literature is presented later in the chapter
(3.3).

3.1.1 Need for database

Matched Molecular Pair identification is a relatively slow process. Due to the O(n?)
nature of many algorithms (i.e. the computational cost increases with the square of the
number of samples), repeated identification of MMPs at large scale is computationally
expensive [180]. The CSD has quarterly updates with new structures. To avoid the
necessity to repeat the identification process, a database is desirable. A database
approach allows the molecular fragments generated from the previously seen
structures, matching of which is necessary to identify MMPs, to be stored and indexed
rather than having to generate these each time the dataset used for MMPA is updated.
Beyond storing MMP information, the database can also be used to store a number of
properties. The database also needs to store some crystallographic information in order
to effectively interact with the CSD.

-70-

3.1.2 Hussain and Rea Fragmentation (HRF) method

Hussain and Rea Fragmentation (HRF) method [180] was selected for MMP
identification due to its computational efficiency and the ability to easily integrate it
within Python workflow via its RDkit implementation [202]. Several improvements
to the algorithm were introduced during the development of the workflow for the
database population (3.2.3). The HRF algorithm is an automated MMP identification
algorithm that does not require pre-specification of transformations. It uses SMILES
(simplified molecular-input line-entry system) representations of molecular structure.
The chemical notation system developed to allow computer processing and efficient
substructure searching [56] (e.g. paracetamol is represented by CC(=O)Nclccc(O)ccl
). Rdkit was used for SMILES generation [202]. The algorithm can be divided into
three steps, (1) fragmentation, (2) indexing, and (3) MMP identification.
Fragmentation of the input SMILES is performed by one, two, or three cuts (see Table
3.1 for example of single and double cuts). The cuts are limited to acyclic bonds
between non-hydrogen atoms and it is ensured that predefined functional groups are
not cut. This ensures that groups such as a carboxylic acid group(R-COOH) are not
fragmented into a ketone group (R-C(=0)-R”) and a hydroxyl group (R’-OH). All the
fragments are then indexed which includes all the possible ways in which a given
molecule can be fragmented. A matched molecular pair is then identified by grouping
molecules that share the same fragment (context). MMP identification is made by
identifying all molecules that share the same context as the molecule of interest. The
core is the fragment of the molecule that changes across an MMP. Transformation is
the change defined by the core of each of the molecules. The larger a formed core is,
the less likely it is to occur in multiple instances, reducing the likelihood that any
results obtained from it will be statistically significant. From a chemistry perspective,
the study of MMPs with large changes is uninformative as the two molecules are
chemically too different. An example of such MMP is paracetamol and ethanol
(hydroxyl group is the context; the change is from Acetanilide to methyl group).
Therefore, a size limit is imposed to eliminate MMPs where the change is too big to
be meaningfully included in the analysis. The identification step can be repeated for
all molecules to identify all MMPs within a dataset. This can also be accomplished by
limiting the ratio of the change to the molecule size.

-71-

Table 3.1: Fragmentation of molecules for MMP identification.

=

Molecule Fragmentation Fragments Comment
o [*:1] _OH Cyclic bonds uncut
[*:1] No double / triple cuts can be

performed on this molecule

OH

OH

?

OH
crral] S

OH

[*:] OH
\/_..“u._ ~

OH

[*:1] _OH
N (1]

Three different single cuts can
be performed

OH

APk

Cr] fup NI OF

[*:2]

OH

C[*:1] [*:2] OH
[*:1] C[*:2] ~

OH

3K

[*:1] C [*:2] _OH

e

Three unique double cuts can be
performed

Two fragments on either side
are the context (part that does
not change in a MMP)

The fragment in the middle (one
with [*:1] and [*:2]) is the core
(part that changes in a MMP
Triple cuts are not possible

-72-

3.2 Database design

The database schema and the process to populate it was developed and is discussed in
this section. The aim of the schema is to store MMP data as well as additional property
data to enable easy MMPA. The workflow is based on the RDkit implementation of
the HRF algorithm introduced in 3.1.2. The algorithm was expanded upon in the
current work, with the differences discussed in 3.2.3.

3.2.1 Schema

The database schema was proposed to store the molecular and crystal information
along with the identified MMPs. The schema (presented in Figure 3.1) has three types
of tables, based on their primary purpose. The grey tables (fragments context_table,
and core_table) are used solely for MMP identification process (see 3.2.2 for details
of HRF algorithm implementation). The fragments table contains the fragmented
molecules (single row per cut per molecule). The table also stores information relating
to the resulting fragments such as the fragment size, its size ratio, and whether the
fragmentation was done by a single cut (this distinction is needed for handling
transformations including hydrogen). The context and core tables contain context and

core fragment information, respectively.

All_smiles, MMP, and Transformation are the second type of tables; these contain
information needed to perform MMPA. All_smiles table holds all the molecular

structure information such as SMILES, size, and flag columns used to keep track

» refcode » smiles_id » mmp_id > trans_id
* refcode family » refcode e trans_id 4—,7—> . R1
+ Property1 * Unique_smiles_id —_|::- mol1_id > R2
« Property?2 * smiles + mol2_id SMIRKS
: * method * context
* cmpd_size
* Fragmented(0/1)
* MMP_identified (0/1)
» Mol_id
¢ Smiles_id
* Propertyl > frag_id I > context_id'
* Property2 « context_id © context_srm
8 « core_id —— ¢ context_size
* core_size
Key: * ratio
> Primary key + Single_cut(0/1)
One — Many Ls ¢ mol id — » core_id —

* core_smi

Figure 3.1: MMP Database schema.
A larger image of the schema is available in Appendix 1

-73-

whether a given molecule has been fragmented and its MMPs identified. It also
contains refcode, which is used to associate a crystal structure to the given molecule.
Transformation table contains the unique transformations identified within the dataset.
The core_ids for the cores of the transformations are stored in R1 and R2 columns
respectively. Smirks are generated to allow for each specific transformation. MMP
table contains all the identified MMPs. The smiles_ids of the two molecules are stored
in moll_id and mol2_id. The transformation identifier (trans_id from Transformation
table) and context identifier (context_id from context_table) complete the information
that is stored for each MMP. This allows for each selection of all MMPs for a given
transformation or the context of interest. By parsing through moll_id and mol2_id, all

MMPs of a given molecule can be retrieved as well.

All molecular and crystal properties are stored in two respective tables
(Mol_properties and Solid_properties). The properties in these tables are used for
MMPA. For the purposes of the polymorph propensity study discussed in Chapter 4,
the number of known polymorphs was considered a molecular property, so this was
added to the Mol_properties table.

3.2.2 Workflow for population of the database

The workflow for the generation of the MMPs consists of three stages: fragmentation,
indexing, and MMP identification. However, for the process to begin, molecular
structures, expressed as SMILES, are required. In case of a dataset with only molecular
structures, a file containing SMILES and optionally molecule id can be used as the
input. If the dataset contains crystal information (as it was the case for the work

discussed in this thesis), a file containing CSD refcodes can be used as the input.

If refcodes are supplied, the CSD Python API is used to access the molecular structure
of the crystal. Canonised SMILES are generated using a script supplied by the CCDC.
The canonisation is a process that ensures a molecule structure is always represented
in the same way (for example; ethanol could be written as OCC, C(O)C, or CCO). In
case of a multi-component crystal structure, all distinct molecular structures are

retained.

The added SMILES are compared against all molecules already in the database. This
step is skipped if a new database is created. Two types of identifiers are added for each
molecule. Firstly, smiles_id is assigned to every molecule that is added. Additionally,

-74-

unique_smiles_id is assigned to every new molecular structure that is added. The
unique_smiles_id is set equal to the smiles_id, the first time a molecular structure is
encountered, and the unique_smiles_id of the first instance is used for subsequent
entries with the molecular structure. For example, in case of a dataset of two hydrates
(as defined by the CSD API), the first main component (non-water molecule) is
assigned smiles_id and unique_smiles_id of 0. The water molecule from the first
hydrate is assigned 1 for both identifiers. The main component of the second hydrate
is similarly assigned 2 for both. However, the second water molecule is assigned
smiles_id of 3 but unique_smiles_id of 1 (same as the first occurrence of the water
molecule). In this way, all distinct molecular structures can be selected by specifying
the condition that smiles_id must equal unique_smiles_id. This is quicker than
selection based on SMILES string comparison.

The newly added, distinct molecular structures are fragmented using HRF method
(3.1.2). The output of the fragmentation is referred to as ‘rfrag’.These results are stored

in memory and are not inserted as-is into the database. ‘fragmented’ from ‘all_smiles’

— In case of double / triple cut:

‘¢ , | * Fragl =+ Single component = Frag 1

Row fI“OI"I rfrag’— | Frag2 * Multi component = Frag 2
‘ Single, double, or triple cut? |
single Double or triple
A 4
‘ Frag 2< 15 | | Frag 1< 15
True False True | False
Add frag 1 to ‘context’ Add frag 1 to ‘context’
Add frag 2 to ‘core’ Add frag 2 to ‘core’

h 4

‘ Frag 1< 15 |

True False

Add frag 2 to ‘context’

Add frag 1 to ‘core’
\

> Next row from ‘rfrag’ “

Figure 3.2: Schema explaining the indexing processes.

Series of logical tests are done before the fragment data is inserted into the
‘context’ and ‘core’ tables. 15 indicates the heavy atom count (non-hydrogen
atoms) that is set as cut off for too large transformations.

-75-

table is set to True (1) for each molecule that was inputted into the fragmentation
algorithm even if fragmentation failed. This ensures that the script can continue to run
even if some errors were encountered. Most errors occur due to the fact that the
molecules are un-fragmentable (such as water). The process creates a large number
of fragments (over 319,000 from 8,879 molecules that are part of the drug subset[85]).

It is impractical to attempt to identify MMPs from this, hence indexing is performed.

Indexing is the stage where the fragments are reorganised to allow easier MMP
identification (Figure 3.2). The ‘rfrag’ data that is stored in memory is iterated over.
Rows with single cut molecules are treated differently to double or triple cut
molecules. The first fragment is selected and its heavy atom count (non-hydrogen
atoms) is compared to the set cut off (typically set to 15). If the fragment is within the
set size, it is inserted into the ‘core’ table. The other fragment is inserted into the
context table. The step is repeated with the other combination of fragments. For single
cut molecules, both “halves” of the molecule may be used as the core or context. For
example for ethanol, the hydroxyl group may be used as the core and methyl group as
the context and vice versa. Due to the fact that SMILES do not explicitly include

SMILES1 —» Obtainid/ size

L
‘) ‘) Backwards trans
cmpd_size moll_id l
MMP query R1
All possible:
* mol2_id l J
+ R2
. Context results -
_ Add unique trans
¢ Context_size l
Smallest pair i
]
v v v TransID
mol2_id context R2
[i

Add MMP

Figure 3.3: MMP identification stage.
All molecules are iterated over to identify all relevant MMPs.

-76-

hydrogens, transformations including it are handled separately. For all fragments
resulting from a single cut, a hydrogen is added to where the cut was made and it is
checked if that forms a valid molecule. If valid molecule is formed, all molecules
within the dataset are searched to see if this molecule is present. If the molecule is in
the dataset, a new row is added to fragments table. For example, using the hydroxyl
group fragment of ethanol, a hydrogen is attached to it forming water. If water is
present in the dataset, this will result in a new entry where the core is hydrogen, context
Is hydroxyl group, and the molecule is water. In case of double or triple cut, the
fragment that contains the single component is inserted into the ‘core' table if the other
fragment meets the size requirement. Apart from size, the ratio of the heavy atoms of

the core to the molecule may be used (either separately or in tandem).

The final stage is MMP identification where the MMPs are identified for each unique
molecule that has been fragmented. The process involves several steps that are
illustrated in Figure 3.3 For each input SMILES, the heavy atom count (cmpd_size)
and its smiles_id (mol1l id) is retrieved. All possible mol2_id are identified (all
possible MMPs within the dataset for the given moll) by MMP query. This query
returns several context- R2 combinations for the same pair of molecules. For example,
in case of butane and butanol the following combinations would be returned: context
= butane R2 = hydroxyl group, context = propane R2 = methanol, context = ethane R2
= ethanol, and context = methane R2 = propanol. The context and R2 are selected such
that the context_size is the largest (therefore, smallest change). In the aforementioned
example, this would be context = butane and R2 = hydroxyl group. For each of the
identified MMP, R1 is retrieved from the database. The combination of R1 and R2 are
checked in ‘Transformation' table (Both R1, R2 and R2, R1). If the combination
already exists, the corresponding TranslD is retrieved. If Transformation R2, R1 was
already in the database, the molecules are reordered (mollid becomes mol2id and vice
versa). Otherwise, the newly identified transformation is inserted into the database and
the TranslD is retrieved. The combination of mollid and mol2id are searched in the
‘MMP' table, and if the pair is already in the database, the script proceeds to the next
pair of molecules. Otherwise, the pair of molecules, along with context and TransID
are inserted into the table. This is repeated for all pairs of molecules identified. Once
all pairs are evaluated, the ‘all smiles' table is updated by setting ‘MMPidentified' to

True (1) for the given molecule. ‘MMPidentified’ is set to True even if no MMP were

-77-

identified for the molecule. The process is repeated for all fragmented molecules in

the ‘all smiles’ table.

3.2.3 Modifications to the MMP identification

The MMP database generation process follows a similar procedure to the original
implementation of the HRF method. However, some changes were made to address
the shortcomings of the original method. Firstly, using a database allows for addition
of new molecular structures without rerunning the entire process (3.2.3.1). Secondly,
some instances where the HRF method generates multiple MMPs of the same pair of

molecules were addressed (3.2.3.2).

3.2.3.1 Updatability

The updatability of the database was compared to deploying the original
implementation of the HRF method. A dataset of 50,000 randomly selected, organic
molecules with no disorders in the crystal structure (this often broke the SMILES
generation step of the flow) were processed by both methods. The dataset was
consequently increased by 10,000 molecules three times (to a total of 80,000 randomly
selected molecules). In case of the HRF method, the fragmentation was performed
only on the additional molecules, and the MMP identification on the entirety of the
fragments. This was necessary because the implementation of the HRF algorithm does
not support MMP identification between the added dataset and the original dataset. In
case of the database approach, fragmentation is performed on the added molecules and
the MMP identification is only performed on them as well. The identification includes
MMPs between the additional molecules and the molecules in the original dataset. The
benchmarking was performed on a Windows 7 machine with Intel Xeon E3-1226 v3
3.00 GHz 4 core processor and 16GB of RAM. Only a single core was used in the

processing.

-78-

The processing times for the two methods are shown in Figure 3.4. For the initial
identification of MMPs in the 50,000 molecule is twice as long for the database
method compared to the HFR method. This is because both methods perform the same
computation, while the database also performs database read and write actions. The
majority of the HFR algorithm is implemented in a lower-level language (C with
Python wrapper) compared to the majority of the processing logic being implemented
in Python for the database approach (C-based libraries were utilised). However, the
processing time for further 10,000 molecules is shorter for the database method
compared to the HFR method. Despite being computationally less efficient, the
database method has less computation to do. In this particular case, the break-even
point is after the second 10,000 molecule update. The database method shows some
advantages in terms of computation time for rapidly growing sources of data such as
the CSD, which was a key source of data for work presented in the thesis. Alternative
approaches to reducing the processing time by improving the efficiency of the

algorithm itself are likely possible, but fall outside of the scope of the thesis.

® HRF L
18000 - database

16000 A

14000 ~

12000 A

10000 +

cummulative time [s]

8000 +

6000 ~

4000 ®

T T T T T T T
50000 55000 60000 65000 70000 75000 80000
number of molecules

Figure 3.4: Performance comparison between HRF and database method of
MMP identification for an increasing dataset.

Comparison performed on a Windows 7 machine with Intel Xeon E3-1226 v3
3.00 GHz 4 core processor and 16GB of RAM. Only single core was used.

-79-

3.2.3.2 Elimination of duplicate MMPs

The database method also addresses some of the shortcomings of the original HRF
implementation. For molecules that can be cut at different points, multiple MMPs for
a given pair of molecules may be identified (illustrated in Figure 3.5). The MMP
resulting from cut 1 (OH>>CH3) in the figure corresponds to the smallest, and likeliest
to repeat across the dataset. The remaining two possible MMPs, although valid, are
not as useful in terms of MMPA artificially increasing the number of MMPs within a
dataset. The database approach addresses this issue because MMP identification is
performed per molecule. Once all MMPs for a given molecule are identified, any
duplicates based on the matching molecules are eliminated. For a given pair of
molecules, the MMP with the largest context (smallest change) is kept. This

CHs OH

:

OH CH3

\

OH CH3

2 2 ’

X

CHs
3 3/\/OH 3TN

<

Figure 3.5: Multiple MMPs that can be identified from the same pair of
molecules.

The molecules can be cut at different points (1-3). All the cuts are valid (only
a single C-C bond is cut, the resulting fragment size ratio is within limits).

-80-

1.0 ® database
HRF
0.8 N .
e,
e
o 0.6 4
=
(=
£
g
= 0.4 4
LY
e
0.2 1
]
[]
ﬂ.ﬂ i -y [. - - . - -
T T T T T T
2 4 6 8 10 12

mmp_count

Figure 3.6: Comparison of frequency of occurrences of transformations.

The database method reduces the number of transformation that do not occur
often by removing duplicate MMPs for the same pair of molecules.

transformation is the most common and meaningful in terms of MMPA. This
procedure reduces the number of MMPs that rarely occur as shown in Figure 3.6.

3.3 Comparison to another MMP databases approach

Shortly after completion of the work discussed in this chapter and presentation at UK
QSAR in March of 2018 [200], a similar MMP database approach was published in
May of the same year [201] (hereafter referred as DHK method for the names of the
authors). Both, the work presented above and the DHK method address the same issue
regarding MMPA; the extensive processing required to be carried out to identify all
MMPs within a dataset, and aims to aid systematic use of MMPA. The paragraphs
below present a comparison between the work presented in this chapter and the
published approach.

-81-

The HRF method is the basis of MMP identification used by both methods (one
presented in the thesis and the DHK method). However, the DHK approach expands
this to handle transformations involving chirality. This is achieved by the “welding”
technique developed as part of the publication [201]. For double-cut MMPs, the order
of attachments is stored, and canonicalization of the re-connected fragments is
checked to ensure it matches that of the original molecule. The approach provides a

useful mechanism for differentiation of stereoisomers.

Another difference between the DHK compared to the work in the thesis is the
inclusion of local environments. In the case of MMP, environment refers to the atoms
that surround the location where a cut is made during fragmentation. This information
is stored in the database and can be used to select MMPs with only the same

environment when conducting the analysis.

However, whilst the DHK approach offers some potential advantages over the
database approach developed, at the same time, in this thesis, it should be noted that
only the approach presented in this chapter was integrated with the population of a
database for analysis of solid state data. Matched Molecular Graph (introduced in
Chapter 6) construction was also added to the capabilities of the database presented in
the thesis. Due to the small number of MMPs, environmental consideration could not
be conducted (Chapter 4).

3.4 Summary

This chapter presented the method used to generate a database of Matched Molecular
Pairs that was subsequently used for the study of the effects of molecular changes on
solid state properties (Chapter 4). The database facilitates repeated analysis with
growing dataset without having to repeat MMP identification. Another advantage of
the method presented here is the ability to limit the MMPs that are not useful. Namely,
repeated MMPs for the same pair of molecules, and reduction in number of rare
transformations (ones that occur only a few times and hence are statistically not
significant). An interactive analysis tool was also created to complement the database
and allow MMPA to be carried out routinely. The scripts written to generate the
database and carry out analysis is available in Appendix 1.

-82-

A similar database was published during the course of this work. The work offers
several advantages in terms of handling of chirality and storing of transformation
environments [201]. However, due to the ease of integration with the CSD and
Matched Molecular Graph capabilities (detailed in Chapter 6), the method presented
in here was used in subsequent research. In the following chapter, this method and
database are used to study the effects of molecular transformation on the propensity

for molecules to exhibit polymorphism.

-83-

napter 4
Polymorph Propensity

Prediction

-84-

4.1 Introduction

The ability to predict the propensity to form polymorphs is valuable to the
pharmaceutical industry [9]. Unexpected polymorphism of the drug compound
necessitated the removal of ritonavir from the market [8]. Polymorph screening is
typically carried out during the Development stage of drug product development with
the aim to find all polymorphs within the range of applicable conditions. The ability
to predict the polymorph propensity may potentially allow to anticipate the magnitude

of challenges likely to be faced during the Development stage.

A number of studies have been done to better understand polymorphism. These
typically focus on examining individual crystal structures [8]. Individual
intermolecular interactions are assessed to see whether the structure is stable
[64,79,203]. If the structure does not satisfy all potential intermolecular synthons, it is
likely that other polymorphs exist. The assessment of the synthons can be done based
on the statistically favourable interaction based on the analysis of the CSD [64].
Density Functional Theory (DFT) based approaches have also been used for this
purpose [204]. Considerable work has been carried out in the area of crystal structure
prediction using a range of methods such as DFT and Forcefield (FF) for calculation
of structure stability coupled with search algorithms to explore the set of potential
structures [205-207]. Blind tests for structure prediction have been periodically
organised by CCDC since 1999 with the most recent one taking place in 2020 [208].
There has also been work published on the overall trends in polymorphism
[50,209,210].

In this chapter, the issue of polymorph propensity is studied from the perspective of
molecular transformations. The statistical approach to this is performed using MMPA
(see Chapter 3 for details) on the CSD. The intention for the work is to allow
polymorph propensity to be considered during the drug optimisation stage during
Discovery.

-85-

4.2 Method and Data

4.2.1 Dataset

4.2.1.1 CSD single component dataset

The polymorph propensity study focused on single component organic structures.
Single component structures were identified by checking the number of separate
molecular components. If the number was one, the structure was considered a single
component. If more than one molecular component was identified, SMILES strings
were generated for each of the components. If all of the strings matched, the crystal
structure was considered to be a single component structure. No organometallics were
considered. Based on these criteria, a dataset of 155,040 crystal structures was

identified. This dataset excluded all hydrates and co-crystals.

The CCDC publishes a list of crystal structures with the best R factor for each unique
crystal structure (polymorph) in the CSD. The list is generated based on the
comparison of generated spectra [211]. The details and the effectiveness of the method
are discussed in Chapter 5. The number of occurrences of each of the refcode within
the best R factor list corresponds to the number of polymorphs of that molecular
composition. The number of redeterminations was calculated by subtracting the
number of polymorphs from the total number of refcodes for the specific refcode
family within the CSD.

4.2.1.2 Monomorphic adjustment

The CSD is a repository of published crystal structure so it reflects the research trends
within the scientific community. A number of reasons exist for determining the crystal
structure of a compound. This may be done to confirm the molecular structure and the
crystal information is of secondary importance. In such cases, it is unlikely that
different experimental conditions were investigated and no polymorphs were found.

However, this does not exclude the possibility that multiple polymorphs exist.

For this reason, Monomorphic adjustment was introduced based on the literature
precedence [50]. Structures with only one refcode were considered to be not
sufficiently studied to determine whether these are indeed monomorphic or

polymorphic with undiscovered polymorphs. The unfiltered CSD single component

-86-

dataset has 1 % of polymorphic structures, which is significantly lower than other,
more thoroughly studied datasets presented in Table 4.2. After elimination of
structures with only one refcode, the dataset was reduced to 6,633 structures of which
25 % are polymorphic. The resulting dataset is referred to as the adjusted CSD single
component dataset. The process reduced the dataset by 97 %, which reflects the
prevalence of single-entry compounds. Concerns related to the large reduction in size

are discussed in 4.3.2.2.
4.2.2 Molecular structure information

4.2.2.1 Matched Molecular Pairs

Matched Molecular Pairs were used to study the effects of small molecular
transformations on the polymorph propensity of the molecule. The database method
developed in Chapter 3 was used for the analysis. For details of the method, refer to
the chapter. The maximum size of transformation used was 15 heavy atoms. Based on
the analysis presented in 4.3.2.2, the data was filtered by limiting the ratio of the

transformation to 0.3. The effects of limiting the ratio are discussed in 4.3.2.3.

4.2.2.2 Molecular flexibility and other molecular information

MMPs formed the basis of the study; however, additional information was also used
to further study the effects of small molecular transformations. Molecular properties

relevant to crystal lattice formation were selected.

Some molecules exhibit polymorphism due to the compound’s ability to crystallise in
different conformational forms, such as the case of ritonavir [8]. This was captured by
the molecular flexibility descriptor — nConf20 [212]. Other descriptors such as
rotatable bond count were outperformed by nConf20 in crystallisability prediction
study (86.1 % test set accuracy compared to 74.8 % for rotatable bond). The descriptor
attempts to capture the accessible conformational space of the molecule by generating
and optimising 50 random conformers. The optimisation is done using MMFF94
molecular mechanics forcefield [213]. The lowest energy conformer is selected as the
reference structures. Any symmetrically similar conformers, based on root mean
squared distance (RMSD) of less than 1 A, to the reference structure was removed.
The molecules were aligned prior to RMSD computation. The energy of each of the

conformer was calculated. If the energy difference between a conformer and the

-87-

reference structure was less than 20 kcal/mol, the value of the nConf20 descriptor was
increased by 1 (initialised by nConf20 = 0). In essence, the descriptor is the number
of conformers that fall within the 20 kcal/mol of the optimal structure. The parameters
of the descriptor (number of random conformers and the energy cut-off) were selected

based on the analysis carried out in the original publication [212].

As discussed in 2.2.2, intermolecular interactions such as hydrogen bonding and Van
der Waals interactions play an important role in determining the crystal structure of
the compound. The number of hydrogen bond donors and acceptors was used to
approximate the molecules ability to form hydrogen bonds. VVan der Waals interactions
tend to increase as the size of the molecule increases, so the compound size was used

[214]. Heavy atom count was used as a measure of the compound size.

4.2.3 Software

The work in this chapter was done using Python 2.7. All structures within the CSD
were analysed using the CSD Python API (version 1.5.2) [215]. The database of
MMPs was constructed using the workflow presented in Chapter 3. nConf20
descriptor calculations were done using the script from the original publications [212].
Data processing and visualisation was performed using pandas [216] and seaborn

[217,218]. Scripts used in this chapter can be found in Appendix 1.

-88-

4.3 Results and Discussion

4.3.1 Polymorphism in the CSD

The fraction of polymorphic structures in the dataset derived from the CSD is
significantly lower than for other literature sources presented in Table 4.2. The
discrepancy is most likely due to the nature of the different data sources. As discussed
in 4.2.1.2, the CSD reflects the research interests of a broader community that does
not necessarily focus on polymorphism. Similarly, the microscopy studies were likely
focused on crystal structure observation rather than a search for polymorphism. The
European Pharmacopeia, SSCI (Southern Society for Clinical Investigations)
polymorph screens, and the two pharmaceutical company database were more focused
on finding polymorphs of the different compounds. As a result, these datasets contain
a much higher fraction of polymorphic structures. This suggests the CSD single
component dataset contain some structures that are polymorphic but for which the
polymorphs remain undiscovered. The issues associated with this caveat are discussed
in more details in 4.3.4.
;’able 4.1: Most common transformations within the CSD single component
ataset.

Statistics of the polymorph count change (mean and standard deviation) and
the number of MMPs with that transformation are also included

Transformation Mean Std. dev. Count
R-H — R-CH3 0.037 0.312 6017
R-H — R-CI 0.044 0.349 2333
R-H — R-OCHjs 0.036 0.308 1884
R-H — R-OH 0.018 0.410 1708
R-H — R-Ph 0.040 0.387 1653
R-H — R-Br 0.054 0.309 1396
R-H — R-NO; 0.035 0.392 1391
R-CHs; — R-Ph -0.004 0.328 1310
R-H — R-F 0.043 0.356 1083
R-Ph(meta)-R’ — R-Ph(para)-R’ -0.020 0.337 1002

-89-

4.3.2 Effects of molecular transformations

4.3.2.1 CSD single component dataset

The MMPDB script identified 4,599,447 MMPs with 3,404,016 unique
transformations. The ten most common transformations are shown in Table 4.1. The
transformations represent a wide range of chemical changes such as the introduction
of hydrogen bonding hydroxyl group, or n- & stacking phenyl ring. However, the mean
change for all these transformations is approximately 0 with the biggest deviation from
that being 0.054 (R-H — R-Br). Due to the fact that only 1 % of the structures are
polymorphic (within the dataset), it is unlikely to find a transformation with MMPs

that consistently contain polymorphic structures.

4.3.2.2 Adjusted CSD single component dataset

The analysis workflow was repeated for the adjusted CSD single component dataset.
This dataset is 4 % of the original dataset, hence the number of transformations and
MMPs is significantly reduced to 2,048 and 3,913 respectively. The monomorphic
adjustment also had an impact on the distribution of the transformation effect. Figure
4.1 shows a comparison of the most common transformation (R-H — R-CHj3) for the

two datasets.

-90-

The MMP count for this transformation decreased from 6,015 to 211, while the mean
changed from 0.03 to -0.13. The tail of the distribution appears to be more prominent.
This is because a large number of monomorphic entries were removed based on the
adjustment. The change is not significant based on the paired t-test, without
considering multiple hypothesis testing correction [187,219]. Multiple hypothesis
testing is typically performed. This is unsurprising since a small transformation that
does not significantly alter the potential intermolecular interactions was not expected
to have an effect on polymorph propensity. However, it is important to note the
reduction in the number of MMPs that occurs when the monomorphic adjustment is

made as this is a consistent issue across all studied transformation.

Emphasis was placed on transformations that are likely to be statistically significant
based on the paired t-test. No multiple hypothesis testing was performed at this point.
5 % significance level was chosen as the basis of selections of transformations (37
transformations were identified. Distributions for some of these transformations

(selected based on statistical or chemical interest) are shown in Figure 4.2.

1.0

—— unadjusted
adjusted

fraction
= =
=Y @)}

0.2+

00 T T T T T T T T
-4 -3 -2 -1 0 1 2 3

change

Figure 4.1: Comparison of the R-H — R-CHzstransformation for adjusted and
unadjusted CSD single component dataset.

-91-

The hydroxyl to phenyl transformation was focused upon. It contains transformations
that alter the molecule significantly (Figure 4.3). The molecule doubles in size due to

the transformation. The change was considered to be too dramatic for the MMPA to

0.6

o
=
I

frequency
o
[9¥]

— clccc(ccl)[*:1] == O[*:1]
0.11 [*:1][H] >> O[*:1]
—— NC(=0)[*:1] >> NC(=S)NN=C[*:1]

0.07 T T T T T T T
—4 -3 =2 -1 0 1 2
polymorph count change
0.51 —— [%1][H] >> N#C[*:1]
[*:1][H] >> clccc(ccl)C[*:1]
—— [*:1][H] >> O0=C(0)C[*:1]
0.4+
>
o
G 0.3
3
=
Y
[
0.2
0.1+

—2 -1
polymorph count change

Figure 4.2: Distributions of the effects of the selected transformation on
polymorph count.

Top: biggest change within 5 % significance interval (blue), most common
transformation (grey), lowest p-value (dark blue). Bottom: highest count
within 5 % significance interval (green), large fragment size change (dark
blue), large change in reactivity (brown)

-902-

COOH

OH -
Ph

HOOC

Figure 4.3: Example MMP of the hydroxyl to phenyl transformation.
Refcodes: GLICAC (left), ZZZMLY (right).
be a useful assessment of the effects of transformation change. Similar issue persists
with other MMPs, so the maximum change ratio of 0.3 was imposed (i.e. the heavy
atom count of the change cannot exceed 30 % of the count of the whole molecule)
[180].

4.3.2.3 MMPs limited by the ratio of the change

The imposition of the ratio restriction further reduced the number of MMPs (2,776
MMPs, reduced from 3,913). Transformations with the highest MMP count, largest
mean change, and most likely to be statistically significant were selected for closer
analysis. The hydrogen to phenyl group had the MMP count of 9 and the largest mean
change of -0.667. The paired t-test p value of 0.156 suggests this is not a significant
change. The low MMP count is the likely reason for the high p value. Furthermore,
there is one data point with the change value of -4. This single datapoint shifts the
average by 0.417 from -0.250 (when calculated omitting this point). With the increase
in data quality (monomorphic adjustment) and the focus on chemically meaningful
transformation (ratio limit), the number of MMPs are reduced to the point where a

single data point may sway the overall average.

The hydrogen to chlorine transformation is most likely to be statistically significant
based on p-value, with the paired t-test p-value of 0.085. However, the transformation
is not significant at the 5 % level. Similarly, to the hydrogen to phenyl transformation,
the number of MMPs is low (8).

-03-

0.6
—o— [#:1][H] == C[*1]
[*:1

I[H] >> O[*:1]
0.5 -

[=}
+a
i

relative frequency
o [=]
L] [¥%)

N //
0.0 1

Figure 4.4: Comparison of hydrogen to methyl and hydrogen to hydroxyl
transformation for adjusted CSD single component dataset with ratio limited
MMPs.

change

On the other hand, the transformations with the highest counts tend to have a mean
change of approximately 0. For example, hydrogen to hydroxyl transformation has 72
MMPs and the mean change of 0.041. The distribution of the effect approximately
matched the distribution for hydrogen to methyl transformation (Figure 4.4). This is
likely due to the limited proportion of polymorphic structures within the dataset, even
after the monomorphic adjustment. A number of compounds may have unknown
polymorphs which skew the mean transformation effect towards 0. This is further
discussed in 4.3.4. Another possibility for the observed results is the importance of the
context of the MMP (the part of the molecule that does not change across the pair).

The flexibility (nConf20), potential to form hydrogen bond (donor and acceptor

count), and the Van der Waals interactions (heavy atom count) of the context
(part of an MMP that is same across the pair) of each of the MMP was

calculated. Only single-cut MMPs were used and a hydrogen was placed at the
cut to make a valid molecule. The effects of each of the descriptor on the size of

-94-

change for the MMPs with the hydrogen to phenyl transformation are shown in

1 . 1— °
O [} [} [3] 0 Y °
()
tél)_]_ . . ?1:)0_1 ° .
_g ©
G -2 S 221
_3 _3
41 e 44 e
0 8 12 y T T T
nConf20 0 H-dolnor 2
1 . 1 °
0] [] [] [] O* L]] [] [
Q Q
?:D_l e o ° téo-l L] L] L]
© ©
< N
o _2, o _2,
-3 -3
41 : : : : : A1 > : : : ‘
14 16 18 20 22 24 0 1 2 3 4 5

(Heavy atom count H-acceptor
Figure 4.6). No correlations were found for this transformation. The process
was repeated for hydrogen to hydroxyl transformation which had more MMPs
(72) to see if any pattern emerges with larger data size (

21 o 21 °
1 | esese o eee 1{e [3 . °
% 0 1 eessssee o oo L0 L] [% O1e [] [] [] L L
c C
© ©
S-1 eeeee 0 o . S-11° ° ® . °
"2 e 27 ° 3 °
3. 31 ‘ ‘
0 10 20 30 40 0 1 2 3 4 5 6
nConf20 H-donor
2 o e 0 21 e °
1 e e e e e e . . 1. ¢ ¢ ¢ ¢
% g)ﬂ 0 * * [. ® [}
% 01 * e e s e 00 e o s e e e e e %
S S-11
-1 . X . . e .
-2 . L] .
-2 . -3 .
o =~ 15 20 0 1 2 3 4 5 &6
Heavy atom count H—acceptor

Figure 4.5). No correlation was found between any of the descriptors.

-95-

1 . 1 °
O]] [} . 0 ® Y
(]
%0-1— . (] SC-)D_]_— ° °
@ ©
S-2 S5 -2-
-3 -3
-4 e -4 e
0 4 8 12 I T
nConf20 0 H-dolnor 2
1 . 11 ¢
O [] [] [] [] 0 LJ [] [] []
() ()
%D-l e o ° téD_l . . °
© ©
= N
o _2_ (S} _2,
-3 -3
41 : : : : : . > : : : :
14 16 18 20 22 24 0 1 2 3 4 5
Heavy atom count H-acceptor

Figure 4.6: Effects of nConf20, H-bond donor / acceptor count, compound size
on the change for MMPs with hydrogen to phenyl transformation.

2{e o 21 .
1{ eseene eoe 11 e ° . ° ®
gJD O | csssssee o oo oo ° . g.JD (VR ° ® ® ° °
c c
© ©
%-1 sscse o o . -8_1 . ™ ™ . .
21 e _2 R . 3 .
-3 e _3 ®
0 10 20 30 40 0 1 2 4 5 6
nConf20 H-donor
2 e e e 21 e °
1 [BN [BN BN BN L] L] 1 ¢ ® ® ° °
gJD g-b Oe . ° ° ° °
% O L] o o 00 0 00 ® ® 0 00 ® e 0 %
5 S-11 e ° . . .
_1 L] [BN BN L] L] [BN L]
-2 ° .]
'2 ™ -3 °
10 15 20 0 1 2 3 4 5 6
Heavy atom count H-acceptor

Figure 4.5: Effects of nConf20, H-bond donor / acceptor count, compound size
on the change for MMPs with hydrogen to hydroxyl transformation

-96-

4.3.3 Effects of molecular flexibility

Flexibility was considered a potential factor that influences the polymorph propensity.
As well as examining the influence on polymorph propensity due to molecular
transformations, the effects of the flexibility itself on polymorph propensity were
studied. A more flexible compound was expected to be able to form more distinct
crystal packing. The distribution of the nConf20 descriptor for the different number of
polymorphs is shown in Figure 4.7. Visually, there appears to be no difference
between monomorphic and polymorphic compounds. The median for both,
monomorphic and polymorphic structures is 5 with the means of 9.24 and 8.56
respectively. Mann Whitney U test was done to compare the two distributions and the
result was not statistically significant (p value = 0.415). Interestingly, the flexibility of
the polymorphic structures appears to be lower on average than that of the
monomorphic structures. This can be explained by considering the intention behind
the development of the nConf20 descriptor, which was to determine the
crystallisability of a compound [212]. In essence, higher nConf20 value, the more
difficult it is to crystallise a molecule. Therefore, the lower nConf20 value for

polymorphic structures could be the artefact of the ease of crystallisation of these

0.5

o

oS

|
W NN

© ©
\] W
!

normalised frequency
O
=

0.0
0 10 20 30 40

n conf 20

Figure 4.7: Distribution of nConf20 descriptor for compounds with different
number of polymorphs on the CSD adjusted dataset.

-97-

structures. This may result in an increased likelihood that such structures were
crystallised and added to the CSD. Hence, this trend is most likely an artefact of the
data availability.

4.3.4 lIssue of unknown polymorphs

The issue of unknown polymorphs has been mentioned in several sections of this
chapter. In this section, the discussion is collated and further analysis of this is
presented. The unique challenges associated with this issue are also discussed.

4.3.4.1 Exploration of the issues

The number of polymorphic structures is significantly lower within the CSD than other
data sources that focus more on polymorph screening (Table 4.2). Two hypotheses for
explaining this can be constructed: CSD represents a chemical space that is less
polymorphic compared to heavily screened pharmaceutics chemical space, or a

number of structures that are classed as monomorphic are actually polymorphic. The

10

co
I
@

number of polymorphs
o]

0 T T T T T T
200 250 300 350 400 450

molecular weight

Figure 4.8: The number of polymorphs as a function of molecular weight.

The mean weight of n-polymorphic compounds were taken. 8-polymorphic
compounds consist of a single molecule (same for 7-polymorphic).

-08-

chemical space of the CSD has been compared to the chemical space of drugs and
other molecules held in pharmaceutical company databases [85]. In the study, heavy
atom count, flexibility, and hydrogen bond donors /acceptors were used to compare
the chemical space of various datasets.

The CSD has a wider range of compound sizes with larger representation in the smaller
range [85]. 13 % of molecules within CSD are smaller than 100g/mol, while the
industrial datasets do not have many molecules in this range. The industrial datasets
tend to have larger molecules than the CSD. The industrial datasets also tend to have
more polymorphic structures (Table 4.2). This leads to the suggestion that larger
molecules tend to have a higher propensity for polymorphism. However, this is not
reflected in the CSD where smaller molecules appear to have a higher propensity for
polymorphism (Figure 4.8), further emphasising the likelihood that the results are
affected by the data artefacts.

A similar trend can be observed for molecular flexibility. In the cited study [85], the
rotatable bond count was used as a descriptor of flexibility. The CSD has more
molecules with no rotatable bonds than the industrial datasets. The industrial datasets
have more molecules with 5 and 6 rotatable bonds. Again, the increase in flexibility
does not correlate with an increase in polymorph propensity. For this reason, it is
unlikely that the difference in polymorphism found in CSD compared to other sources
is due to the difference in chemical space covered.

The lack of polymorphism in the CSD is likely due to the limited effort spend on
finding polymorphs. As stated in 4.3.1, industrial datasets tend to contain results of
polymorph screens. Therefore, polymorphism in the CSD is likely a reflection of the
research interests of the scientific community rather than actual polymorphism.
Smaller, more easily crystallisable compounds (low nConf20) are more likely to be
studied. This then results in more polymorphs for that structure to be found. This was
first noted by McCrone by his now-famous statement that “the number of forms known
for a given compound is proportional to the time and money spent in research on that
compound” [220]. The validity of the statement was tested on the CSD single
component dataset. The time and money spent on research were approximated by the
number of redeterminations a compound has in the CSD. A redetermination is often
the same polymorph studied under different conditions (a refinement of the same

structure being another reason for redeterminations). It represents a repeated study of

-99-

=
o

9]
< 81 o
-
E @
> 6
o
o3 ®
s
> 4 o
Q
Q @
5
CZ-O

|

0 T T T T
0 2 4 6 8 10

number of redeterminations

Figure 4.9: Number of polymorphs as a function of redeterminations.

The number of redeterminations is calculated by subtracting the number of
polymorphs from the total number of structures for a given compound. Mean
number of redeterminations were taken for each number of polymorphs. It is
important to note that the high polymorph count is rare (single datapoints for
7 and 8 polymorphs compounds, 9 datapoints for 5 polymorphs compounds).
the same compound under different conditions. The relationship between the number

of redeterminations and the number of polymorphs is shown in Figure 4.9.

4.3.4.2 Challenges

The issue of undiscovered polymorphs poses a significant challenge for the study of
polymorph propensity. Firstly, unlike other properties such as melting points, it is
difficult to assess the quality of the data. The number of redeterminations or number
of publications on the compound of interest may be used as an indicator of the quality
(i.e. the likelihood that all polymorphs have been found). However, it is not as rigorous

as the assessment of error for other experimentally determined properties.

Rather than studying polymorph propensity through the number of polymorphs found,
it could be studied by comparison of monomorphic and polymorphic structures to
create a classifier for the task. However, the issues highlighted here are still likely to

affect this analysis. This method also emphasizes the issue of the definition of

-100-

monomorphism. There is a large set of conditions under which crystallisation may be
attempted, making a definitive polymorph screen to find all physically possible
polymorphs unrealistic. Similar to the polymorph screening done by the
pharmaceutical industry, only the relevant conditions should be considered. At the
time of writing, no such dataset is publicly available, so the use the number of
redeterminations as a surrogate for the data quality remains the only suitable means of
analysing data quality of polymorph counts for the study. This could be expanded by
the inclusion of how wide of a range of conditions were investigated or by the number

of experiments performed within a set range of conditions.

4.4 Conclusion

In this chapter, the factors affecting polymorph propensity were studied. MMPs were
used to assess the effects of small molecular transformations on the propensity to form
polymorphs. However, no statistically significant transformations were identified.
This is partially due to the reduction in the dataset size due to the pursuit of quality in
terms of polymorphism data (monomorphic adjustment) and MMPs (elimination of
pairs where the change is larger than 30 % of either of the molecule based on heavy
atom count). The issues related to the small number of MMPs identified within the
dataset is explored in Chapter 6. The CSD single component dataset contains less
polymorphic structure than other sources (1 % vs 66 % for Lily internal dataset). This
is likely due to the active search for polymorphs within the pharmaceutical industry.
The number of polymorphs in the CSD appears to correlate with the time spend
researching that compound as approximated by the number of redeterminations. Due
to the difficulty in assessing the quality of polymorphism data, high-quality dataset
based on polymorph screened compounds is desirable for the propensity study. This
was attempted using Pfizer internal database. However, the crystal structures found
within the database are not grouped into polymorphs (redeterminations and
polymorphs are not distinguished). This issue was taken as an opportunity to
benchmark the existing automated methods of polymorph and redetermination
classification as well as develop machine learning classifiers for the task. This work

is discussed in the following chapter.

-101-

-102-

Chapter 5
Benchmarking of Automated
Approaches for Differentiating
Between Polymorphs and

Redeterminations

-103-

5.1 Introduction

The ability to predict polymorph propensity is of crucial interest within the
pharmaceutical research community (see 2.1.3 for more details). The research on the
topic presented in the previous chapter identified several challenges. The data quality
and quantity is one of such difficulties. It is difficult to ascertain the number of
polymorphs a structure exhibits because the lack of polymorphs may be due to lack of
emphasis on the determination of crystal structure, rather than lack of possible
polymorphs. Further challenge arises from the differentiation between polymorphs
and redeterminations. CCDC publishes a list of structures of each polymorph for all
structures in the CSD, based on the spectra comparison method [211]. However, no
similar list is available for in-house databases. This opportunity was taken to
benchmark the existing spectra comparison method, and develop alternative methods

of classification of pairs of structures into redeterminations and polymorphs.

In principle, the classification is best carried out “manually”, i.e. by visual inspection
and assessment by an expert in molecular crystallography. In practice, expert
identification of the polymorphs reported in large datasets is challenging, as it is very
labour intensive if the crystal structures were not annotated at the point of curation.
Moreover, inconsistencies can arise during “manual” curation due to fatigue,
insufficient expertise, or different experts assigning different labels to the same
polymorphs. For example, a variety of labels have been reported in the literature for
polymorphs of sulfathiazole [221]. While these inconsistencies could be avoided by
an expert panel working according to a standard operating procedure; this would still
require a considerable investment of time. Accurate, automated approaches to
identifying polymorphs are hugely desirable, with a means of differentiating

polymorphs and redeterminations of the same chemical being an important first step.

Automated approaches for identifying polymorphs are of value for both the CSD and
industrial crystal databases. As many of the latter databases are structured similarly to
the CSD, automated approaches which are applicable to the CSD should be widely
applicable within industry. Currently, manual labelling of polymorphs is reported, if
at all, at the point of deposition by individual researchers. This leads to incomplete
and potentially inconsistent assignments. In industry, in-house databases may not have
been annotated with the polymorph identity, even where this information may have

been experimentally determined.

-104-

An automated method can provide a consistent classification of large datasets. One
automatic method that was developed to classify polymorphs and redeterminations of
structures within the CSD is based on the comparison of simulated powder diffraction
spectra (hereafter referred to as spectra method) [211,222]. The refcode family is used
to group crystal structures of the same molecular composition and then, within each
family, a pairwise diffraction pattern comparison is undertaken. The peak positions of
the spectra are determined by the unit cell parameters, while the intensities are
calculated from the molecular structure and the space groups (i.e. the packing
arrangement) [211,222]. A comparison of the peak locations and the intensities allows
the similarity of the two crystal structures to be determined, hence the classification
of the pair as polymorphs or redeterminations. The effect of the experimental
conditions (temperature and pressure) are accounted for using unit cell volume
normalisation and a peak shift tolerance factor. The peak shift tolerance factor was
introduced to deal with the case of substantial differences in temperature or pressure,
for which cell volume normalisation alone is not sufficient. The spectra method is used
by the CCDC to generate the best R_factor_list, which is a list that contains the
refcode with the lowest R- factor, a measure of crystallographic data quality, for each

polymorph within the database [211].

However, the spectra method is not as easily implemented for CSD-like databases with
less curated information (such as no refcode family assignment), although chemical
structure representation (InChl, SMILES) based grouping of entries retrieved using
the CSD Python Application Programming Interface (API) [215], might address this
issue. Moreover, the spectra method was only benchmarked on a small set of 386
structures (83 refcode families) [211,222]. This is a small dataset compared to the
entirety of the CSD that the method is applied to. Version used in the study (5.39)
contained, 950,516 crystal structures while currently there are over 1 million
structures. In particular, when developing machine learning algorithms for this task, it

is desirable to have larger datasets which can be used to benchmark the method.

This chapter presents a more thorough, robust evaluation of the spectra method than
has previously been reported in the literature. The performance of the spectra method
is compared to the performance of machine learning methods for classifying pairs of
structures into polymorphs and redeterminations. A large dataset with manually

assigned polymorph labels, filtered to remove inter-expert inconsistencies, was

-105-

constructed to allow for the benchmarking of the classifiers. This analysis identified
the most suitable automated approach for discriminating polymorphs from
redeterminations to automatically identify polymorphs in the CSD or any CSD-like
in-house database.

5.2 Methods and Data

5.2.1 Datasets

The Manual label, Best R, and Benchmark datasets were derived from version 5.39 of
the CSD database. Prior to splitting, all crystal structure entries were filtered only to
retain structures for which the latest implementation of the spectra method from the
CCDC could be applied without raising any errors. All suitable refcodes were grouped
by the refcode family, and all possible combinations of refcode pairs within each group
were identified (81,401 pairs). Manual labels are not available for every structure, and
similarly, the best R factor list cannot be used for every pair, so the putative label
assignment was attempted by both methods for all pairs before they were split into
datasets. For each pair, a classification of 1 was given if the labelling method
determined that the pair are different polymorphs and 0 for pairs of redeterminations.
No value was given in case the labelling method could not be used to give a
classification (e.g. when one of the structures lacks a manual label). The way in which
the classification was done for each of the labelling methods (best R and manual label)
is described in the following sections (5.2.1.1 and 5.2.1.2 respectively). Based on the
obtained classifications, the pairs were split into the three datasets and the respective

subsets (section 5.2.1.3) as illustrated in Figure 5.1.

[Manual | training || validation]
[BestR training || validation J
validation test

Figure 5.1: Datasets used in the polymorph redetermination

Manual, Best R, Benchmark, and In-house. These can be further divided into
training, validation, testing, and application subsets.

-106-

5.2.1.1 Best R dataset

For each pair of refcodes, the classification was assigned based on the process
described in Figure 5.2. If both refcodes are in the best R factor list, the two structures
represent two different polymorphs. In any other case, if there is only one refcode in
the best R factor list for that refcode family, the pair of refcodes is the redetermination
of the same structure. In case there is more than one refcode in the best R factor list, it
IS not possible to determine whether the pair is a redetermination or different
polymorphs and so no label is assigned. This limits the number of available pairs for
the best R dataset. 51,649 pairs were given a classification based on Best R factor list

(referred to as Best R classification hereafter).

Both in best R factor list

true | false

v v

polymorphs (1) Number of refcodes in the best
R factor list for that family
I

=1 ¢ *)1

Redeterminations (0) Not determinable (-)

Figure 5.2: Label assignment process flow chart for labels based on the best R
factor list.

5.2.1.2 Manual label and benchmark datasets

The manual label and benchmark datasets are based on the polymorph label assigned
by the authors submitting the structure to the CSD; this is available for 4 % of the
structures studied. The distinction between polymorphs and redetermination was made
by comparing the manual polymorph labels. If the labels matched, the pair was
considered a set of redeterminations (classification = 0), and polymorphs
(classification = 1) otherwise. In cases where there was no label for one or both of the
structure, no label assignment was carried out (the label is referred to as Manual

classification hereafter).

-107-

For each pair of structures, along with the Manual classification, information
concerning whether the structures came from the same literature source was also
noted. To remove inconsistency in labels due to different polymorph labels by
different researcher [221], for the benchmark dataset, only structures that came from
the same literature source were considered. Furthermore, an effort was made to
eliminate any errors within the labels. However, some false polymorphs may have
been identified due to mismatch of the label caused by spelling mistakes. For example,
JIBCIG04 and JIBCIGO6 are redeterminations of the same polymorph with labels:
‘othorhombic’ and ‘orthorhombic’ (the missing ‘r’ was subsequently corrected in the
CSD). The curation workflow attempted to eliminate all such cases; however, the
possibility of some noise in the data cannot be entirely eliminated due to the large
number of pairs considered (17,364).

5.2.1.3 Dataset split

After each pair was labelled using the best R factor list and manual labels, along with
checking if the literature source is the same, the datasets were split into six subsets
according to Figure 5.1. Three intersecting sets were constructed based on the

availability of labelling discussed in 5.2.1.1 and 5.2.1.2.

Best R = {all pairs that have Best R classification} Equation 5.1
Manual = {all pairs that have Manual classification} Equation 5.2
Literature = Manual Equation 5.3

N {all pairs that come from same source}

The total number of available pairs (Best R U Manual) for dataset creation is 76,309.
The detailed breakdown of the sets is shown in Figure 5.3. The manual label training
and best R training datasets were selected from pairs that had an only manual label

and best R label respectively (Manual/Best R, Best R/Manual). This was to

-108-

ensure that the effects of training machine learning models for distinguishing
polymorphs from redeterminations using different means of assigning the training set
labels were not confounded by differences in the crystal structures used for training
the models. Due to the limited number of pairs available for Manual training dataset,

the training set size was limited to 24,660 pairs.

All the validation and test sets come from pairs that have both manual and best R labels
(Valid__and_test = Manual N Best_R). This is done to allow for further
comparison between the models trained on the two datasets. The benchmark validation
and test sets were selected where each structure came from the same literature source
(Valid_and_test N Literature). Best R and manual validation sets come from the
remaining pairs that have both labels (Valid_and_test/Literature). To ensure the
same size for all validation sets, the set size of 2,594 pairs was used. The Benchmark

test set consists of 3,415 pairs. The dataset splits are shown in Figure 5.3.

* Manual valid (2,594)
* Spectra valid (2,594)

* Spectra train

(24,660) [* Manual train (24,660)

11,355
14.9%

Literature

* Benchmark valid (2,594)
* Benchmark test (3,415)

Figure 5.3: Availability of labels from the best R factor list and manual labels.
For the pairs that have a manual label, whether both structures come from the
same literature source was also noted.

-109-

5.2.2 Descriptors

To build machine learning models for classifying pairs of crystal structures, contained
within CSD-like in-house databases, as polymorphs or redeterminations, suitable
descriptors needed to be identified. Initial descriptor selection was carried out based
on data available within the in-house database and understanding of polymorphism.
Different combinations of descriptors were evaluated based upon analysis of CSD
data, including the effect of removing certain descriptors on the performance of the
machine learning methods, as evaluated using the validation sets.

The following experimental data (structural data and experimental metadata) were
available for crystal structures in the in-house database and were considered relevant
to classifying structures, with the same molecular structure, were polymorphs or
redeterminations. Based upon the assessment described below, a subset of these
parameters was chosen to be used as descriptors, alongside the calculated packing

similarity (see below), for the machine learning models.

All entries in the in-house database and the CSD included information such as cell
parameters (lengths and angles), crystal system, and density, while the experiment
temperature and the R-factor are missing for some cases. Each numeric descriptor was
calculated as the difference across pairs of structures, i.e. difference in temperatures
was taken as the temperature descriptor. Otherwise, for qualitative variables, such as
crystal system, pairs where the values of these variables matched or did not match

were assigned a value of 0 or 1 respectively for the corresponding descriptor.

Cell parameters (angles and lengths) are expected to change across a pair of
polymorphs as different packing arrangements are likely to affect the unit cell
dimensions. In many cases, the crystal system (i.e. lattice type) differs between
polymorphs. In principle, this should not be different for redeterminations, but the
documented crystal system may occasionally differ for some redeterminations. (For
example, a slight difference in apparent cell lengths may lead a cubic polymorph to be
considered orthorhombic for some redeterminations.) However, differentiating
between polymorphs and redeterminations is more difficult for structures with the
same lattice type. If the lattice type is the same across the pair of structures, a value of

0 is assigned (1 is assigned if the system is different).

-110-

Regarding differences in symmetry, there are over 230 space groups possible with
some degree of similarity [59]. A method of grouping similar space groups was not
readily available, so differences in space group, i.e. symmetry differences, were not
encoded as a descriptor. For a given molecule, only a combination of cell parameters
and the space group can change the density, i.e. the ratio between the mass of all atoms
in a unit cell and the volume of the cell (the mass of all atoms in the unit cell is
determined by the number of molecules per unit cell — determined by the symmetry
operators, and the volume is determined by the cell parameters.) Therefore, it is
expected that any information captured by density is largely included within the cell
parameters. Crystallisation temperature along with other experiement conditions can
affect the cell parameters, and the same polymorph can have different apparent cell
parameters if studied at a different temperature. The R-factor is an indicator of how
well the structure calculated from a crystallographic model agrees with the
experimental X-ray diffraction data. In some cases, a redetermination with improved
R-factor can have different apparent cell parameters to the original structure [223]. To
capture these phenomena, the changes in R factor and the temperature across the pairs

of structures were used as descriptors.

Further to the descriptors available within the databases, a comparison of packing can
be made. Crystal polymorphism can be defined as structures with different packing
arrangements. COMPACK][224], as it is available through CSD API1[189], can be used
to quantify the packing similarity between pairs of crystal structures. A molecule is
selected from the crystal structure and a 15 molecule packing shell is generated based
on the crystal packing. The packing shells for the two crystal structures are
superimposed and are aligned to minimise the distance between matched atoms of
each molecule from each cluster. The number of molecules that fit within the
predefined distance tolerance (0.2 A [224]) is returned. A high number indicates that
the packing is similar for the crystal structure pair. In this study, the number was
divided by 15 to scale it within the range of 0 to 1 (1, meaning 15 out of 15 molecules
were within the tolerance distance). The descriptor is referred to as packing similarity

hereafter.

The differences in cell parameters (i.e. cell lengths a, b, ¢ and angles alpha, beta,

gamma), an indicator variable denoting differences in the crystal system as explained

-111-

above, differences in R-factors, differences in the temperature of crystallisation, and
packing similarity were initially selected as descriptors for the model development.
All of these descriptors were available for the set of entries chosen from the CSD to
form the datasets summarised in Figure 5.1. Analysis performed using the training and
validation data was also used to refine the set of descriptors chosen for the final

machine learning model.

5.2.3 Descriptor analysis

Prior to developing models using supervised machine learning, the descriptors were
analysed. The purpose of this step was to (1) assess whether the distributions between
the different CSD derived datasets used for training, validating and testing were
comparable, and (2) develop descriptor sets suitable for the classifier development.

5.2.3.1 Correlation matrix

A correlation matrix was used to eliminate descriptors that are highly correlated based
on the training sets. The Pearson correlation coefficient was used to quantify the
correlation between descriptors [225]. The coefficient for two descriptors (X, Y) is
given by equation (4), where n is the number of samples, i.e. pairs of polymorphs or
redeterminations, x; is the value of X for the i th sample and x is the arithmetic mean
of X (analogous for Y). The correlation coefficient was calculated for all combinations

of descriptors.

- 2ie (i =) (i —¥) Equation 5.4
Y VI G- D7 L0

5.2.3.2 Principal Component Analysis

Principal component analysis (PCA)[226] was performed for two reasons: (1) to
develop an understanding of key descriptors that determine whether a pair of structures
are polymorphs or redeterminations; (2) to assess whether the different training,
validation and test sets were sufficiently similar in order for the validation and test sets
to lie within the applicability domain of the machine learning models developed using

the corresponding training sets. The descriptors selected have different magnitudes of

-112-

scale. Hence, to ensure none of the features dominates the analysis, min-max scaling
was used. This transforms each descriptor to fit within the range of 0 to 1 based on the

minimum and maximum values.

The PCA was fitted to the Best R training set and Manual label training set, resulting
in two sets of loadings for the original descriptors, referred to as PCA-s and PCA-m
respectively. The two sets of loadings were then used to transform the manual label
validation set, Best R validation set, and the benchmark dataset to compare the datasets
based upon their distribution with respect to the principal components associated with
the highest contribution to the variance in the scaled descriptors. The loadings
associated with the principal components which best-separated pairs of polymorphs
from redeterminations were also examined, providing insight into the key descriptors
providing linear discrimination between polymorphs and redeterminations. However,
the supervised machine learning methods used to build the classifiers were also able
to take account of non-linear relationships. This was necessary as linear separation is
not sufficient for classification. For example, unit cell length difference may arise from
polymorphism, but also from temperature difference, hence the interdependent nature

of some the features need to be taken in account.
5.2.4 Classifier development

5.2.4.1 Development process

The model development stage was divided into three steps; training, validation, and
testing. The training subsets from the two datasets (Best R and Manual) were used to
train classifiers, using various machine learning algorithms, to distinguish between
polymorphic and redetermination pairs (Figure 5.4). The evaluated machine learning
algorithms are described below. The best algorithm and algorithm parameters, i.e.
hyperparameters, from each training set was selected for the validation step (selection
criteria discussed in below). The performance of the selected models was assessed
using the validation subsets of the Best R method, Manual label, and benchmark
datasets. Validation using three datasets was used to study the generalisability of the
models and to study the difference in the datasets. The process was repeated for

various descriptor sets developed based on the dataset analysis.

-113-

Finally, the single best performing machine learning model based on the benchmark

validation set, along with the spectra method, was applied to the benchmark test

Spectra
method

dataset to assess the performance on a high-quality external dataset.

Trained on: [BestR] [Manual]

Validated on: [Best R] [Manual]

L Best performing model)

Y

Tested on:)

Figure 5.4: Overview of the model development process

In this work, the following Random Forest (2.4.4) hyperparameter values were
investigated: number of trees 10 — 200, split criterion Gini or entropy, max depth 1 —
110. The following Support Vector Machine (2.4.5) hyperparameter values were
investigated: Gamma (10 to 10%) and C (10 to 10%). Random search was used to

probe the hyperparameter search space.

The F1 score (2.4.3, Equation 2.21) is used as the primary performance metric for the
models. It was used for selection of the single best machine learning model out of all
models, based upon different combinations of descriptors and training sets, applied to
the validation sets. It was also used for the selection of the most suitable algorithm, as
well as for the optimisation of SVM and RF models, i.e. the selection of the best
combinations of algorithms and hyperparameters was based upon the combination
which led to the largest mean F1 score obtained from cross-validation on the training

set.

5.2.5 Computational details

All computational work in this paper was performed using Python 2.7 (64-bit, as
installed using the Anaconda Distribution version 4.3.34). Any interaction with the

crystal structure repositories was handled using the CSD Python API (1.5.2) [215].
-114-

The API was also used for calculation of packing similarity between crystal structures.
The pandas (0.19.2) library was used for handling of data and for construction of the
correlation matrix [216]. Principal Component Analysis, Random Forest, Support
Vector Machine, and hyperparameter selection using cross-validation were performed
using SciKit-Learn (0.18.1) [123]. See Appendix 3 for the scripts used.

-115-

5.3 Results and Discussion

5.3.1 Descriptor Selection

5.3.1.1 Correlation matrix

A correlation matrix was created to eliminate any highly correlated descriptors (Figure
5.5). There were no significant correlations between the features, so all selected
descriptors were used.

1.00
alpha
beta 0.75
gamma 0.50
lattice 0.25
a
0.00
b
c -0.2
r factor -0.5
rmsd —0.7
temp
-1.0

Figure 5.5: Pearson Correlation coefficient matrix of the selected descriptors
within the Best R training set

5.3.1.2 Principal Component Analysis

The PCA was fitted to the manual label training set (PCA-m) and best R training set
(PCA-r). The descriptor contributions to the first four principal components are
summarised in Table 5.1. The explained variance of each of the principal component
is shown in Figure 5.6. The first component (PC1) explains significantly more of the

variance compared to the subsequent components. The largest contribution to the first

-116-

2000

explained variance

1000

T T
2 3 4

Principal Component

= —

6000

5000

N

o

o

(@]
|

30004

20004

explained variance

1000

T T T
2 3 4

Principal Component

Figure 5.6: explained variance of PCA fit to manual train dataset (top) and
Best R dataset (bottom).

principal component (PC 1) comes from packing similarity (-0.796 and -0.902
respectively) followed by crystal system (0.564 and 0.390 respectively). However,
there are differences in contributions to PC 2 and PC 3. For manual label dataset,
crystal system and packing similarity are the predominant contributors to the PC 2,
while the temperature and R factor are the largest contributors to the PC 3. The
contributions to PC 2 and PC 3 for best R dataset are similar to the contributions to

PC 3 and PC 2 for the manual label dataset respectively.

-117-

Table 5.1: First four principal components for the Manual label and Best R
training sets.

. Fitted to Manual Training Fitted to Best R training
Descriptor
PC1 PC 2 PC3 PC4 PC1 PC2 PC3 PC4
Alpha 0.049 0.047 | -0.028 | -0.042 | 0.051 0.021 0.082 | -0.019
Beta 0.150 0.053 0.029 0.019 0.087 0.033 0.096 | -0.006
Gamma 0.095 | 0.119 | -0.001 | -0.034 | 0.071 | 0.022 | 0.117 | -0.020
a 0.077 | -0.007 | -0.037 | 0.067 | 0.062 | 0.018 | 0.054 | 0.011
b 0.064 | -0.020 | 0.001 | 0.053 | 0.080 | 0.021 | 0.075 | 0.017
c 0.044 | -0.022 | 0.005 | 0.034 | 0.072 | 0.020 | 0.076 | 0.015
Crystal
0.564 | 0.796 | -0.050 | -0.001 | 0.390 | 0.086 | 0.874 | -0.075
system
Temperatu
0.027 | 0.030 | 0.843 | -0.531 | 0.005 | 0.882 | -0.135 | -0.450
re
Packing
o -0.796 | 0.588 0.022 0.036 | -0.902 | 0.082 0.417 0.023
similarity
R factor 0.043 0.003 0.533 0.840 0.058 0.452 | -0.004 | 0.889

Packing similarity and crystal system are the two factors that contribute the most to
the principal components and were further analysed to develop suitable descriptor sets

for the classifier development.

The Best R validation dataset transformed using PCA-m is shown in Figure 5.7. The
figure shows that the polymorphs and redeterminations are not linearly separatable.
Thus, the use of machine learning algorithms capable of capturing a more complex
relationship between the descriptors and the target (polymorph or redetermination) is

required.

5.3.1.3 Packing similarity

Polymorphism is the difference in the crystal packing. For this reason, it can be argued
that packing similarity alone should be sufficient in developing a classifier for
polymorph-redetermination. Based on the PCA, packing similarity is an important
descriptor, and so it was investigated how well it can separate polymorphic and
redeterminations pairs (Figure 5.8). As the figure shows, redeterminations tend to have
high packing similarity. 97.6 % of redetermination pairs in the benchmark validation
set have packing similarity of >0.8. For this reason, a single descriptor model was

considered in the classifier development stage (5.3.2).

-118-

Although it is a useful indicator, there is an overlap between the polymorphs and
redeterminations. For the benchmark validation set, 10.6 % of polymorphic pairs have
packing similarity of >0.8. Calculation of the packing similarity is computationally
expensive, so a descriptor set that does not use it was also used in the classifier

development (5.3.2).
target
[]
0.6 - . e pol
red
. - .
- L
.]
g 0.4 H . .l .
g 2"." ‘ * - » ':
" .
2 - y
= o : . .
s %21 & . R PP S i
- a0 ."‘ - R T
(=% Sae * . e ¢ ANt . o
‘S) . e) g % -
2 e® . . g * .
= - -
a 004 o - . LR o L e
et T . ¥ - .
il - L4 5 * - * Lt
[R] 3 14 Z
[+ L] LT} . e e W0
e & ' . ot . * HRL L
s . .0 'l L %
- [] L] o T8 &
-024 °* . * g S
o L]
L]
L
T ! ! T ! T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

principal component 1

Figure 5.7: Best R validation dataset transformed using the PCA-m (PCA
fitted to the manual label training dataset.

-119-

polymorph
redetermination
4 4
iy
= 3_
=
[,
]
ey
(@]
=
g
o 27
]
—
l -
0 T T T T T T

0.0 0.2 0.4 0.6 0.8 10
packing similarity

Figure 5.8: Comparison of packing similarity between pairs of polymorphs and
redetermination for the benchmark validation set. The figure is normalised to the
area under the graph = 1.

5.3.1.4 Lattice type

The lattice type is the second descriptor with the largest contribution to the first
principal component. The relationship between the lattice type descriptor and the
polymorph and redetermination classification using spectra method (left) and the
manual label (right) is shown in Figure 5.9. There are no redeterminations based on
the manual label that have different lattice types, whereas 18 % of redeterminations
based on the spectra method have different lattice types. TMACNZ07 and TMACNO09
are a pair of structures that are in the 18 %. The only difference in cell angles is a
change of 0.42° of B from 90°. For this reason, TMACNZO07 is classed as a monoclinic
lattice and TMACNZO09 is orthogonal. Comparing the two crystal structures further,
the average percentage change between the cell lengths is 0.7 %, with the change in b
from 15.309 A to 15.105 A being the largest difference. The packing similarity is 1.0,
indicating that all molecules within the 15 molecule packing shell align within the

-120-

tolerance of 0.2 A. It is plausible that the two structures are the same polymorph, with
the difference in the unit cell parameters being due to the difference in the R factor
(6.4 and 2.6) and the temperature (200 K and 100 K). Another similar example is the
pair of COQNUR and CONQNURO1, where different lattice type was assigned due to
a difference of the angle p of 0.02°, while the difference in cell lengths is below 0.9%
and the packing similarity is 1.0. It is possible that in some of the cases, a different
polymorph label was assigned based on the different lattice type assignment without
a thorough comparison of the crystal packing. For this reason, a descriptor set that

excludes lattice type was used for the classifier development (5.2.4).

polymarph 5 - polymorph

4.0 4 redetermination redetermination

frequency density
frequency density

0.0 T T T T T T

0 T T T T T
0.0 02 0.4 0.6 0.8
lattice type

0.0 0.2 0.4 0.6 0.8 10
lattice type

Figure 5.9: Comparison between polymorphs and redeterminations for the best
R validation set. The classification based on spectra method (left) and manual
label (right). The graph is normalised to the area under the graph = 1.

5.3.2 Classifier development

5.3.2.1 Training

Two training datasets, Manual training and Best R training sets were used to train
classifiers. For every combination of the training dataset and descriptor set (All, no
packing similarity, and no lattice), a RF and SVM classifiers were trained and
optimised. The F1 score on the cross-validation set for the best performing models is
summarised in Table 5.2. RF outperformed SVM for all descriptor sets, trained on the
Best R training dataset. The performance of the two algorithms was much closer in
case of models trained on the Manual training dataset, but the SVM models had the

-121-

higher F1 score. For the single descriptor model that only uses packing similarity, only

a random forest model was trained. It obtained a F1 score of 0.867.

The best performing algorithm for each combination of training set and descriptor set
were selected for the validation step of the classifier development.

Table 5.2: F1 scores of the trained classifiers.

Manual Best R
Descriptor set
RE SVM RE SVM
All 0.897 0.899 0.882 0.794
No Packing 0.892 0.900 0.811 0.681
No Lattice 0.893 0.898 0.880 0.793

5.3.2.2 Validation

The models with the highest F1 scores from each combination of training dataset and
descriptor set were applied to the three validation sets (Manual, Best R, and
Benchmark). The results are summarised in Table 5.3.

The performance on the homogenous validation set (i.e. performance of model trained
with manual label training set on manual label validation set and vice versa),
heterogeneous validation set (i.e. performance of model trained with manual label
training set on spectra method validation set and vice versa), and benchmark validation

set was analysed.

All models performed better on the homogeneous validation sets compared to
heterogenous validation sets with the exception of model 4, which had a similar F1
score for both (0.886 and 0.887). Out of the models trained on the Manual training
dataset (model 1 - 4), the single descriptor model (4) had the highest F1 score, in
contrast to model 2 which did not use packing similarity as a descriptor and had the
lowest F1 score. This further strengthens the argument for the usefulness of packing

similarity for the polymorph redetermination classification. Out of the models trained

-122-

on the Best R training dataset (model 5 — 8), single descriptor model (8) had the lowest
F1 score due to the very low recall (0.175) while the precision is high (0.933). Unlike
in the case of model 3, in model 7, the exclusion of the lattice type as a descriptor does
not improve the performance. As discussed in 5.3.1.4, in some cases, lattice type may
be incorrectly used to classify polymorphs and redeterminations manually. This is not
the base for Best R dataset, so no improvement was observed by dropping it as a

descriptor. Omitting packing similarity, reduced the F1 score to 0.886 (from 0.938).

-123-

Table 5.3: Performance on the validation sets of classifiers trained on Manual

and Best R trainin

dataset, using different descriptor sets.

Performance on

Recall: 0.121

Recall;: 0.175

Trained | Model _
Descriptors Benchmark
on 1D Manual valid Best R valid)
valid
F1:0.883 F1:0.801 F1:0.920
1 ALL Precision: 0.861 | Precision: 0.679 | Precision: 0.966
Recall: 0.906 Recall: 0.977 Recall: 0.878
NO
2 F1:0.879 F1:0.797 F1:0.911
PACKING
Manual
F1:0.881 F1:0.803 F1:0.918
3 NO
LATTICE Precision: 0.860 | Precision: 0.679 | Precision: 0.965
Recall: 0.903 Recall: 0.982 Recall: 0.875
F1:0.886 F1:0.887 F1:0.907
A PACKING
ONLY Precision: 0.956 | Precision: 0.814 | Precision: 0.952
Recall: 0.825 Recall: 0.974 Recall: 0.868
F1:0.852 F1:0.938 F1:0.816
5 | ALL Precision: 0.988 | Precision: 0.925 | Precision: 0.989
Recall: 0.749 Recall: 0.952 Recall: 0.694
6 NO
PACKING F1:0.819 F1:0.886 F1:0.790
Best R))
NO F1:0.850 F1:0.934 F1:0.813
7 - . - .
LATTICE | Precision: 0.988 Precision: 0.923 | Precision: 0.989
Recall:0 746 Recall: 0.945 Recall: 0.875
F1:0.217 F1:0.295 F1:0.176
o PACKING N
ONLY Precision: 0.982 | Precision: 0.933 | Precision: 0.896

Recall; 0.097

-124-

The performance on the heterogenous validation datasets is worse than on the
homogeneous datasets. The only exception is model 4, which has a consistent
performance across the two validation datasets. However, the similar F1 score is
caused by a proportional drop in precision and an increase in recall.

The performance on the benchmark validation set was higher for the models trained
on the Manual dataset (model 1 — 4) compared to the models trained on the Best R
dataset (model 5 — 8). The PCA did not indicate any clear differences between the two
datasets; however, the consistent difference in performances indicate that some

difference exists.

Model 8 has the worst performance overall, caused by low recall values. However, the
same descriptor set trained on the Manual dataset achieved F1 score of 0.907. Not
using lattice type as a descriptor has a minimal effect on the performance of the models
for the two groups (model 1 and 3, and model 5 and 7). The best performing models
for each training set are ones that use all descriptors (model 1 and 5) with model 1
having the highest F1 core (0.920). This model was selected for the testing stage

discussed below.

5.3.2.3 Test

The best performing model (trained on manual label dataset with all descriptor set)
achieved a F1 score of 0.910 (recall = 0.864, precision = 0.962) on the benchmark test
set (Table 5.4). The performance is similar to the one achieved on the benchmark
validation set. The spectra method was also compared to the manual labels from the
benchmark test set; the confusion matrix for which is presented in Table 5.4. The F1
score of the spectra method is 0.780 with recall of 0.645 and precision of 0.988. The
spectra method had fewer false positives compared to the model 1, but a higher rate
of false positives. Comparison of the misclassifications by the two methods are
visualised in Figure 5.10. It was attempted to find differences in the descriptor
distributions across the different subsets of the misclassified pairs. However, none of

these were statistically significant (at 5 % confidence level).

-125-

Table 5.4: Confusion matrix of the trained machine learning model 1 and the spectra
method on the test set

Model 1 Spectra method
Red. Pol. Red. Pol.
Manual | Redetermination 943 67 994 26
label Polymorph 265 1676 689 1252
ML model spectra

FP

252
13 437

FN

Figure 5.10: Comparison of false negatives and false positives of the trained machine
learning model 1 and the spectra method.

-126-

5.4 Conclusion

A dataset for benchmarking the performance of automated methods of classifying
polymorphic and redetermination pairs of crystal structures was developed. The
dataset consists of pairs of structures that have been manually assigned a polymorph
label and came from the same publication to ensure consistency of labels. 6,009 such
pairs were identified in total, making this the largest available benchmarking dataset

for assessing the polymorph redetermination classification.

A number of machine learning models were developed for the task of classifying
structures into polymorphs and redeterminations. The model with the highest F1 score
was selected and its performance was compared to the currently used method of based
on spectra comparison. The best performing model achieved an F1 score of 0.910,
while F1 score for the spectra method was 0.780. The machine learning approach
appears to be a promising avenue for the development of automated methods for

classification of polymorphs and redeterminations.

The work in this chapter shed some light on the data quality regarding polymorph
propensity study presented in Chapter 4. The spectra comparison method was used for
the polymorph count. This chapter showed that the polymorph count derived in this
way, may not be accurate (F1 score of 0.780). This likely contributed to the lack of
statistically significant trends observed on the polymorph propensity study. However,
the correlation between research intensity and polymorph count along with
challenging properties of the dataset itself are likely to have a more significant
contribution to the lack of trends observed. In the following chapter, the property of
the dataset itself, namely how suitable it is for MMPA is assessed.

-127-

Chapter 6
Matched Molecular Graphs

-129-

6.1 Introduction

In Chapter 4, several issues relating to MMPA of polymorph propensity were
identified. In this chapter, the datasets are examined and compared to other literature
data sources to assess the suitability for MMPA. Herein, the focus is upon issues which
prevent MMPA vyielding statistically significant results, even when those trends exist

and would be statistically significant given adequate datasets.

The MMP approach was first utilised to analyse the most common substitutions found
in drug-like substances [181]. Since then, it has been used for lead optimisation tasks
within the Discovery stage of pharmaceutical product development
[11,12,184,190,196,199]. A range of properties related to the early stage of the drug
development was studied, such as molecular solubility (as typically taken as a
molecular property rather than an equilibrium between the solid state and the
continuous phase) [190,192], activity [12,227,228] and clearance [55]. With one
notable exception where the effects of molecular transformation on crystal packing
were studied [189], the applications of MMPA are typically limited to properties of
interest during Discovery (i.e. where solid form may not be known or not focused
upon). As such, the datasets that are used for the analysis are predominantly derived

from Discovery datasets.

The datasets from different stages of pharmaceutical product development are
compared to develop a better understanding of the potential reasons for the low MMP
count for the CSD dataset used in Chapter 4. This is accomplished using Matched
Molecular Graphs (MMG), details of which are presented in 6.2.2

-130-

6.2 Method and Data

6.2.1 Dataset

Target-to-hit
Lead optimisation

Phase 1
Phase 3
111114
Phase 2 Submission
Pre-clinical
Hit-to-lead I
GSK TCAKS CSD

Figure 6.1: Datasets selected for MMG study across the pharmaceutical
development process.

The process diagram adapted from [19]. Discovery stages illustrated in blue.
Development stages shown in orange.

Datasets from a range of stages of the pharmaceutical product development were
selected (Figure 6.1). ChEMBL-NTD set 14 (GSK TCAKS (Tres Cantos Anti-
Kinetoplastids Set) dataset) [229] was taken as a representative dataset of the
Discovery stage where MMPA is typically applied. The dataset was selected due to its
size and the fact that it came from a single pharmaceutical company. The CSD
monomorphic adjusted single component dataset (as defined in Chapter 4)
corresponds to the Development stage. Patent melting point dataset (2.3.3) [83] was
used to systematically study the effects of dataset size on the properties of the MMG.

6.2.2 Graph construction

The MMG method uses a graph constructed from the MMPs. The basic concepts of
graphs were introduced in 2.4.1.2. In this chapter, some of the properties of graphs are
examined. The degree of a vertex is defined as the number of edges that connect to the
vertex. For graphs that do not have multiple edges (connecting the same pair of
vertices) nor loops, the degree of a vertex is equivalent to the cardinality of the set of

neighbours of the vertex (Equation 2.2).

-131-

deg(v) = INBR(v)| Equation 6.1

6.2.2.1 Matched Molecular Pair identification

The method described in Chapter 3 was used to identify MMPs within each of the
datasets. If not explicitly specified, the maximum change size was limited to 10 heavy
atoms, and the ratio of the change to the whole molecular was limited to 0.3.

6.2.2.2 Pairs to graph

Each MMP can be seen as an edge (small molecular change - transformation as defined
in Chapter 4) that connects two vertices (molecules), as shown in Figure 6.2. All
compounds within a dataset are initialised as vertices with some identifier (typically

OH

OH >>

>> OH

Figure 6.2: Visualisation of the Matched Molecular Graph contruction from
a MMP.

Labels such as molecular structure (SMILES) can be assigned to each of the

vertices. Labels such as the transformation (SMIRKS) can be assigned to

edges.
SMILES or refcode family) as a label. Additional labels such as the number of
polymorphs can also be added. List of all MMPs is used to construct the edges. The
molecules in the MMP are joined via an edge with the transformation being stored as
an edge label. Additional labels such as the property change for that transformation
may also be used. The created edge is a directed edge (e12 in Figure 6.2) and the reverse
edge should be added (e21). However, the script used to create the MMP Database
orders the transformations consistently. For this reason, the edge e»: is redundant as
all hydroxyl to methyl MMPs would be ordered in the same way. Hence, the e»1 edge
is not added to the graph.

-132-

6.2.2.3 Visualisation

Any graph operations can be performed in Python using NetworkX library [230].
However, it is often useful to visualise the graph and interact with it graphically. For
this purpose, Gephi software package was used [231]. ForceAtlas2 algorithm was used
for the vertex placement for visualisation [232]. The principle behind this algorithm is
that vertices repel one another, but edges attract. The result is that clusters of
interconnected vertices remain close, while vertices without many edges get repelled

further away.

6.2.3 Software

Matched Molecular Pair were extracted from the database introduced in Chapter 3.
Scripts were written to directly interact with the database. Graph visualisation was
carried out using Gephi [231]. Python 2.7 was used for data manipulation. Figures that
were not generated using Gephi were created using matplotlib [218] and seaborn

[217]. The scripts used for the Gephi input generation is available in Appendix 1.

-133-

6.3 Results and Discussion

6.3.1 Monomorphic adjusted single component CSD dataset

A Matched Molecular Graph was constructed from the data used in the polymorph
propensity study in Chapter 4. The dataset contained 6,633 entries with 2776 MMPs.
The constructed graph is shown in Figure 6.3. Due to the nature of the ForceAtlas2
algorithm, molecules with no MMPs (no edges) are pushed to the outside, while
molecules with MMPs tend to remain closer to the centre. This results in the graph to
consist of three components. The outer ring of vertices (dark blue in the figure)

consists of molecules with no MMPs. The middle ring (gold in the figure) contains

Figure 6.3: Matched Molecular Graph of monomorphic adjusted CSD single
component dataset with max change size of 10 heavy atoms and max ratio of
change of 0.3 for all MMPs.

The outer ring (dark blue) consists of molecules with no MMPs. The middle
ring (gold) consists of molecules with few (typically one or two) MMPs. The
inner circle (yellow) contains large clusters of molecules that share many
MMPs.

-134-

."’ (@)
® O
: ®) . IS8
@ @
o o _°

Figure 6.4: Example of clusters found in the Matched Molecular Graph.

On the left, typical clusters found in the mid-ring of the graph. On the right,
a large cluster found in the central circle of the graph. Emphasised are all
MMPs that contain the central molecule. Vertices were moved manually to
avoid overlap for the sake of clarity.

molecules that have few MMPs. These typically consist of small clusters of molecules
(left in Figure 6.4). In here, the term clusters are not used in accordance with the graph
theory definition, but rather as a synonym for a disjointed subgraph. As can be seen
from the graph, these clusters may be a pair of molecules (a single MMP) or a group
of molecules that share multiple MMPs. Much larger clusters can be found within the
inner circle of the graph in Figure 6.3. Molecules in these large clusters have up to 42
MMPs with other molecules from the cluster.

A closer examination of the relative size and properties of the three identified
components in the MMG was performed to identify aspects that affect the performance
of the MMPA procedure. The outer layer contains 74.9 % of the molecules (4,847)
from the dataset, yet contain none of the MMPs (no edges). This means that any
MMPA done on this dataset ignores almost three-quarters of the available data. This
is particularly problematic for small datasets such as the one used in Chapter 4. The
lack of MMPs for 74.9 % of the molecules suggests that these molecules are dissimilar

from one another.

The middle ring contains 17.7 % of molecules (1,146) and 41.3 % of the MMPs. 482
molecules (7.4 %) are found in the inner circle. These molecules contribute to the rest
of the MMPs (58.7 %). This means that over half of MMPA result comes from 7.4 %

-135-

of the molecules. In the case of polymorph propensity study where polymorphic

structures are rare, this may result in polymorphic structures being underrepresented.

The analysis of the MMG suggests that MMPA carried out on this dataset may not be
robust nor representative. To see which factors contribute to such MMG properties,
two dataset characteristics were considered: dataset size and the origin within the

pharmaceutical product development of the dataset. These are explored below.

6.3.2 Dataset size

The dataset size was expected to have an impact on the number of MMPs within a
dataset. The Patent Dataset was used for the study of the effects of the dataset size as
it is a large dataset (289,379 entries). MMGs for randomly selected subsets of 1,000,
2,000, 5,000, 10,000, 20,000, 40,000, 60,000 and 80,000 molecules were constructed.
The number of structures with at least one MMP (in the middle ring or inner circle in
Figure 6.3) were tracked for the increasing dataset size (Figure 6.5). For the MMG
made from 1,000 molecules, the fraction is only 2.2 % meaning that only 22 molecules
have MMP and therefore can be involved in MMPA. For the Patent dataset, this

U
o
I

B
(=]
I
@

N
o
I

connected molecule fraction [%]
= W
o o
I I

o
i

0 20000 40000 60000 80000
dataset size

Figure 6.5: The fraction of molecules with at least one MMP as a function of
the dataset size for the Patent dataset

-136-

wn
Q
o @
i
(@) _
2 3.0
5 °
0
9 2,51
c
S °
(@]
us 2.0
Q
v O
é‘ 1.5
@]
8” [X
g 1.0{ ®
> 0 20000 40000 60000 80000

dataset size

Figure 6.6: Average degree of molecules with at least one MMP as the dataset
size increases for the Patent dataset.

fraction increases to 7.5 % for dataset size of 5,000. This is notably lower than the
CSD dataset of the comparable size (6,633 molecules) in which 25.2 % of molecules
had at least one MMP. The effects of the origin and purpose of the dataset are further
discussed in the following section (6.3.3). The fraction of molecules with one or more
MMPs continues to increase as the dataset size increases, making the MMPA more

applicable.

Further to the increase in the fraction of molecules that can be used in MMPA (at least
one MMP), the average number of MMPs (average degree of vertices) increases as
well (Figure 6.6). The average degree was computed only for molecules that have at
least one MMP in order to distinguish this measure from the fraction of molecules
with at least one MMP discussed above. For the 1,000 dataset, the average degree is
1, indicating that there are only pairs and no clusters forming. This changes as the

dataset size increases, with the average degree increasing to 3.3 for the 80,000 dataset.

Based on the analysis, the dataset size plays an important role two-fold. Firstly, the
fraction of molecules that have at least one MMP increases with the dataset size.
Secondly, the average number of MMPs for molecules that have at least one increases

-137-

with size as well. As a result, analysis based on small datasets, such as the one done
in Chapter 4, may not produce meaningful results due to the small number of MMPs

and molecules that are included in the MMPA.

6.3.3 Datasets across the Pharmaceutical Product Development

The Patent dataset, which had a smaller fraction of molecules with at least one MMP
compared to the CSD dataset, represents a more diverse range of molecules. The
effects of the data source on the MMG were investigated further. The GSK TCAKS
dataset was taken as a representative of the Discovery dataset as it comes from a single
company against a specific target. In reality, pharmaceutical companies hold
significantly larger datasets within Discovery stage compared to Development
datasets, based on the attrition rate through the pharmaceutical development process.
However, to study the effects of the data source, a subset of the same size as the

Figure 6.7: Matched Molecular Graph of GSK TCAKS dataset (Discovery
dataset)

-138-

Development dataset was randomly selected. The CSD dataset was used as a surrogate

for a Development dataset.

The MMG of the Discovery dataset is shown in Figure 6.7. The difference compared
to the MMG of the Development dataset (Figure 6.3) is visually apparent. 58.2 % of
molecules in the Discovery dataset have at least one MMP compared to 25.1 % for the
Development dataset (Figure 6.8). This means that for the same dataset size, more than
twice as many molecules can be involved in MMPA of Discovery datasets compared
to a Development counterpart. Comparison of the MMGs can also reveal that the
Discovery dataset has larger clusters. The average degree of molecules with at least
one MMP is 5.34 for Discovery and 3.33 for Development. The total number of MMPs
is 10,321 and 2,776, respectively, indicating the difference in suitability of MMPA for
the two datasets.

U (=)
o o
| |

i
o
1

N
o
|

connected molecule fraction [%]
= w
o o

o
I

Discovery Development
stage

Figure 6.8: Comparison of the fraction of molecules with at least one MMP for
datasets taken from different stages of the Pharmaceutical process development.

CSD monomorphic adjusted single component dataset used as an example of
Development dataset. GSK TCAKS dataset is used as a representative example
of a Discovery dataset.

-139-

6.4 Conclusion

The concept of Matched Molecular Graphs (MMGs) was developed to address the
issue of the small number of MMPs found within the CSD dataset studied in Chapter
4. The analysis of the MMG constructed from the dataset revealed that 74.9 % of the
structures do not contribute to MMPA as they do not have a single MMP. The majority
of the MMPs (58.7 %) comes from a small fraction (7.4 %) of molecules that form
dense clusters. The effects of dataset size and source (Discovery or Development) on
the key MMG parameters were investigated. Unsurprisingly, the larger the dataset, the
larger the fraction of molecules with at least one MMP and the more MMPs overall.
The effect is particularly crucial for smaller dataset sizes (<10,000 molecules). The
change in MMG parameters decreases as the dataset size increases. Datasets of the
same size, taken from Discovery and Development, also show a difference in MMG
parameters. The Discovery dataset contained approximately four times more MMPs
(10,321 against 2,776). The number of molecules with at least one MMP was also
considerably higher for the Discovery dataset (58.2 %) compared to the Development
dataset (25.1 %). The analysis was performed only on a single dataset from each of
the stages, so further analysis of more datasets is necessary to establish whether this

trend is representative.

However, based on the analysis carried out here, it is clear that performing MMP-
based analysis is likely to exclude some data. This is particularly significant when
working with Development datasets which tend to be smaller and more diverse. Given
the focus of the thesis on Development stage related property prediction, the emphasis
shifted to QSPR approach. In the next chapter, work on a QSPR model for solid state-
specific prediction of melting point is discussed with a particular focus on the ability

to capture crystal information.

-140-

Chapter 7
Melting Point Prediction Using
Message Passing Neural
Networks Based on Molecular

and Crystal Structures

-141-

7.1 Introduction

Thus far in the thesis, work on identifying polymorphs and predicting the propensity
to form polymorphs was presented. This chapter focuses on the effects of
polymorphism on the properties of the solid state. An attempt is made to develop ways
to capture the solid state information to allow accurate solid state property prediction.
Melting point is used as a case study in this chapter.

Melting point is the temperature at which a solid transitions into a liquid. The process
consists of breaking of the intermolecular interactions that hold the molecules within
the crystal lattice. The temperature at which this occurs is the ratio of enthalpy and
entropy of melting [152]. The property, along with logP, can be used to estimate the
solubility of a compound via the General Solubility Equation (GSE) [81]. The melting
point can also be used as a descriptor of the strength of intermolecular interactions
within the crystal [35,71]. This can be used to identify “brick dust” compounds, where
the solubility is limited by the solid state interactions [35,71].

Melting point has been of interests to scientists for a long time. Earliest work on
melting point prediction can be traced back to the 19" century [233]. Most of the work
performed in the area focused on a narrow applicability domain such as alkenes or
chlorobenzenes [234,235]. As the availability of data increased, predictive models that
are applicable to a wider range of molecules were developed [172]. Less curated,
larger datasets have also been shown to produce models with large applicability
domain [83,84]. Reviews of the melting point prediction can be found elsewhere
[45,83,236].

A number of common challenges were identified in the previous works on the melting
point prediction. In particular, it has been suggested that the molecular descriptors are
unable to capture the long range intermolecular interactions that need to be broken for
the crystal to melt [94]. However, another significant contribution which limits model
performance is the experimental error, which may be interpreted as the inconsistency
between measurements reported in different studies. Analyses have suggested that
experimental errors vary with melting point and may be of the order of 32-35 °C [83].
However, these estimates are based upon analysis of the variability of measurements

for the same molecule and may be affected by polymorphism or impurity.

-142-

However, the value of incorporating solid state information can only be properly
assessed by focusing on the prediction of melting points which directly correspond to
that solid state information, i.e. polymorph specific melting point data are required.
Hence, to assess the importance of the solid state contributions, a dataset for crystal
structure-specific melting point was used in this study. The Cambridge Structural
Database (CSD) is a curated repository of small organic and metal-organic crystal
structures [74]. Some of the entries contain melting points measured for the specific
crystal structure. These entries formed the bases on the dataset used in this study.
Previous work done on incorporating solid state information into predictive models
for temperature-dependent solubility did not yield expected improvements [70]. The
inadequacy of the solid state descriptor was cited as one potential reason for the lack
of significant improvement in performance, along with the lack of polymorph specific
solubility data.

In this work, an attempt was made to capture the crystal information by a combination
of different kind of descriptors, including a novel graph embedding representation of
intermolecular interactions. The approach was presented at Computational Molecular
Science conference in March of 2019 [237]. Since then, a similar approach to
capturing crystal information [238] and ligand-protein intermolecular interaction
[239] has been published.

Graph embedding techniques such as Message Passing Neural Networks (MPNN) can
generate a fixed-length descriptor of a graph [104]. In MPNN, for each node (v), a

message (m,(,Hl)) is passed from each of the neighbouring nodes (NBR(v)) based on
the edges type (le) where each edge is defined by the two nodes (e = vw). In the

implementation used, this is achieved by the following function [105]

D Z lewh‘(ﬁf) Equation 7.1

v
WENBR(V)

w,,,, is the weight matrix for the specific edge type (interaction between atoms) and

hﬁf) is the state of the node (atom) at iteration t. The state of each node is updated at
the end of the message passing stage using a Gated Recurrent Unit (GRU) [240] or a
Recurrent Unit. (RU) [105]

R+ = fupdate(hgt)'mgt-'_l)) Equation 7.2

-143-

The message passing is repeated T times after which all states are pooled to generate

the fixed-length representation of the graph using gated regression layer [105].

j ‘ Equation 7.
DPstructure = Z o (l(hI(JT),hv)) ® (](hl(;T))) quation 7.3

VvEV

In the implementation used in this work, i and j are Multi-Layer Perceptrons (MLP)
with no hidden layers and ReLu (rectified linear unit) activation function. o is the
sigmoid activation function and © indicates a Hadamard product (element-wise

multiplication).

A detailed description of the principles of MPNN can be found elsewhere [241].
MPNN have been used to model many types of graph information, ranging from
knowledge graphs to molecules [43,57,104,106,241,242]. Prediction of thermoelectric

properties of materials using crystal graphs have also been studied [242].

In this work, the suitability of MPNN as a method of embedding crystal information
for melting point prediction is assessed. This is achieved by comparing models that
only had molecular information to ones that had access to molecular and crystal
information, as well as through Matched Molecular Pair Analysis (MMPA as

discussed in Chapter 3) and comparison of polymorph predictions.

7.2 Methods and data

7.2.1 Datasets

The CSD Melting point dataset (CSD MP set) was used in the study to develop models
to predict the melting point. Approximately 17 % of single component structures in
the CSD have melting point data reported along with the crystal structure. The melting
point data was converted to consistent units and entries where the reported melting
point range for a specific crystal structure was more than 5 °C were ignored. This was
performed to minimise the effects of experimental errors on the dataset. Measurements
of more than 5 °C range for a specific crystal structure were considered unreliable.
Entries where instead of a melting point, a temperature of degradation or sublimation
was reported, were ignored as well. This resulted in a dataset of 61,250 crystal
structure specific melting points. The CSD MP set was split into training (75 %,
45,938), validation (15 %, 9,187), and tests (10 %, 6,125).

-144-

7.2.2 Model architecture

The model developed here consists of a graph model and prediction layers (Figure
7.1). Message Passing Neural Network is used as the graph model to generate a fixed-
length representation of the graph inputs as per Equation 7.1 — Equation 7.3. The
details of the graph model used and the respective hyperparameters are presented
below (7.2.2.1). The graph representation along with additional descriptors are fed into

the prediction layers which make the melting point prediction (7.2.2.2).

7.2.2.1 Graph model

The Graph Model (GM) uses a varied size graph as an input and outputs a fixed-length
representation of it. The graphs were constructed using CSD Python API. The graphs
contain nodes information (atom information) and edge information (intra- and inter-
molecular interactions). Atom type (element identity) information was one hotkey
encoded and padded with zeroes to the predefined size (node size). This was used as
the initial node vector values. Edge types were categorised into: single, double, triple,
or aromatic covalent bonds. Additionally, intramolecular Van der Waals (Vdw),
intermolecular VdW, and hydrogen bonds were used. Hydrogen bonds and Van der
Waals interactions were identified using the distance and line of sight as defined by
the default settings of the Python API.

Predicted value

t

[Prediction layers]

e

Gated regression

[) |
T Tt T F 1t
[Recurrent layer]

t 1 t t t t 11 -
[]

L tt
[) |

H-bond Shape
dimensionality descriptor

[opow ydeuo

Recurrent layer
Tt T %

Recurrent layer

Types of intermolecular interactions used

Key:

Network design

Crystal information

Figure 7.1: Overview of the model architecture.

-145-

A GM cell was assigned to each node (atom). These cells were either recurrent units
(RU) or gated recurrent unit (GRU) [240]. A message is passed between each
connected node based on the edge type (i.e. different weight matrix for each of the
edge types) as per Equation 7.1 and Equation 7.2. The number of times the message
is passed is divided into two hyperparameters: GM layers and GM timesteps. GM
layers indicate how many different weight matrices are used for each of the edges. GM
timesteps indicates how many times the message is passed using the same weights.
For example, two GM layers with timesteps of two and one respectively indicate the
passing of the messages using W: twice followed by message passing using W- once
(where Wi is the weight matrix for a particular edge type for layer i). This is performed
to allow the model to treat neighbouring atoms (e.g. within the same functional group)
differently to ones further away. The total number of message passing steps (t)
indicates how many neighbours is each of the nodes ‘aware’ of. After the message
passing step is complete, all the messages are aggregated to produce a fixed-length
representation of the graph (graph vector). All the nodes are summed and passed
through a gated regression Equation 7.3. Similarly to GRU, the gated regression uses
an update gate to select which information is passed. The generated fixed-length graph
representation is then fed to the prediction layers. In the original implementation of
the algorithm [57], the message passing step was repeated until all nodes vectors
converged. However, later work showed that Gated Graph Neural Networks could use

the gated pooling step to generate the fixed-length graph feature [105].

7.2.2.2 Prediction layers

The prediction layers (PL) are a multilayer perceptron (MLP). The graph
representation along with the additional descriptors are the inputs to PL. The number
of neurons per each of the two layer are two hyperparameters. ReLu was used as the
activation function for all neurons except the outer layer, where a linear activation
function was used to generate a single value prediction. The graph representations do
not store any geometrical information; the additional descriptors focus on capturing
this. The two additional descriptors attempt to capture the molecular and crystal

interaction geometrical information respectively.

Shape change. The Root Mean Squared Deviation (RMSD) between the molecule in
the crystal and the molecule in the gas phase is used as the molecular shape change

-146-

descriptor. The descriptor intends to represent the energy required to distort the shape

from its optimal conformation to the conformation found in the crystal.

A molecule is taken from the unit cell of the crystal, and 10 random conformers are
generated. Each of these is then optimised in the gas phase using the Universal
Forcefield [243] as implemented in RDKit [213]. The lowest energy one is taken to
represent the global minimum conformation. RMSD is computed between the
optimised molecule and each molecule in the unit cell of the crystal, following the
maximum alignment of the structure. The average RMSD value is used as the

descriptor.

Hydrogen bond dimensionality. Hydrogen bonds are captured by the graph model,;
however, the dimensionality of it may be lost. Hydrogen bond dimensionality was
calculated using the method presented in this paper [244]. The possible outputs are: O-
D (point), 1-D (chain), 2-D (plane), or 3-D. One hotkey encoding was used to express

this where a vector of zeroes was used for structures with no hydrogen bonds.

7.2.3 Model construction

Two types of models were developed to investigate the effect of incorporation of
crystal information. Molecule model is constructed only from molecular information.
This includes the atom type and the intramolecular bonds between them. Crystal model
also has access to the additional crystal information. Usage of each type of crystal
information is a hyperparameter where the model can learn to use or ignore it. The
comparison of the information available and the information used is presented in Table
7.1.

Each model was trained using Adam optimiser [137]. The training was stopped after
300 epochs or after 25 consecutive epochs with no improvement in MSE on the
validation set. Weight initiation was performed using Glorot initiation [133] (see
2.4.6.2). Hyperparameter optimisation was performed using Tree-structured Parzen
Estimator (TPE) algorithm [147] as introduced in 2.4.7. Hyperopt [146] — Python
implementation of the algorithm was used. Up to 1,000 steps of optimisation, with
early stopping if no performance improvement was observed for 10 consecutive
iterations, for each of the types of model were performed. The top 10 models of each

type were analysed to determine the optimum combination of hyperparameters.

-147-

Table 7.1: Information used and made available to Molecule and Crystal
models.

Y — available to the model, N — not available to the model, O — optionally
available to the model.

Input to Information Molecule | Crystal
Atom type Y Y
Covalent bonds Y Y
Graph model Hydrogen bonds N 0
Intra-molecular VdWs N 0
Inter-molecular VdWs N 0
Shape change N @)
Prediction
| Hydrogen bond
ayers N @)
dimensionality

Optional information for the Crystal model (Table 7.1) were used as optional
hyperparameters (Use / not use). The graph model hyperparameters were: node size,
node cell type (GRU or RU), graph representation size, number of timesteps and the
number of layers. The prediction layers (MLP) hyperparameters were the two hidden

layer sizes.

7.2.4 Performance analysis

The performance of the models was evaluated using Mean Absolute Error (MAE), and
R? (mean coefficient of determination) value. Root Mean Squared Error (RMSE) was
also reported. Further to this, Matched Molecular Pairs (MMPs) and polymorph pair
comparison was used to de-convolute the relative importance of molecular and crystal

information.

7.2.4.1 Matched molecular Pairs

Matched Molecular Pair database as introduced in Chapter 3 was used in this study.
The MMPs were used to compare the actual change of melting point to the predicted

change to see how well the model is able to predict small molecular changes. It was

-148-

also used to estimate the typical effect a small molecular change has on melting point

as a point of comparison against melting point differences of polymorphs.

7.2.4.2 Polymorph Pairs

Polymorph pairs were defined as pairs of crystal structures with the same molecular
composition (based upon SMILES comparison) but different melting points.
Structures with the same molecular composition and same melting point were
considered to be redeterminations of the same crystal structure and were not used for
this analysis. The change in actual melting point across polymorph pairs was used to
estimate the average effect a polymorphic change has on the melting point. The change
was compared to the predicted difference to approximate how well the model is able

to predict the effects of solid state changes.

7.2.5 Software

The work in this paper was done using Python 2.7 and Python 3.6 environments due
to the requirements of different libraries. The preparation of the CSD MP dataset was
doing using the Python 2.7 environment. All interaction with the CSD was done using
the CSD Python API (version 1.5.2) distributed by the CCDC with the database [215].
RDkit was used for molecule optimisation [202]. Script by Steven Kearnes from
DeepChem library was used for the molecule optimisation workflow [245]. The
Python 3.6 environment was used for the model development. Tensorflow [246] was
used to construct the neural networks and was run on University of Leeds ARC
facilities. Hyperopt [146] was used for hyperparameter optimisation. Pandas [216],
scipy [247], matplotlib [218], and seaborn [217] were used for data processing and
visualisation. The scripts used for the network construction was based on work
available from GitHub [248]. The modified scripts along with ones developed

specifically for this work are available in Appendix 4.

-149-

7.3 Results and Discussion

7.3.1 Model performance and architecture

The hyperparameter optimisation was continued for up to 1,000 iterations. The Crystal
and Molecule models with the highest R? value (equivalent to MSE as calculated on
the same dataset) are reported in Table 7.2. The optimisation converged on the best
combination of hyperparameters; the top 10 best performing models have a similar set
of hyperparameters (Table 7.2). The best performing Crystal model achieved R? value

of 0.649 on the validation set and 0.550 on the test set (the optimisation curve shown

Table 7.2: The best Molecule and Crystal models’ hyperparameters along
with the average of the top 10 models for each category. Same treatment was
applied to R?. For categorical hyperparameters the most common value and
the corresponding fraction is reported.

Molecule Crystal
Hyperparameter
Best Top 10 Best Top 10
Graph vector 300 400 500 690
Node vector 110 117 90 94
PL layer 1 380 412 300 336
PL layer 2 160 200 230 252
GM cell type RU RU (1.00) RU RU (1.00)
GM timestep 2 2.00 2 2.00
GM layers 1 1.00 1 1.00
Use H-bond - - False False (1.00)
Use intra-VdW - - True True (1.00)
Use inter-VdW - - False False (1.00)
Use shape change - - True True (1.00)
Use H-bond dim - - True True (1.00)
R? 0.628 0.621 0.649 0.631

-150-

in Figure 7.2). The corresponding best Molecule model achieved R? of 0.628 on the

validation set and 0.500 on the test set.

Methods such as dropout [114] were utilised to reduce the risk of overfitting. However,
the decrease in the R? value between the validation set and the test set (from 0.649 to
0.550 for the crystal model) may be indicative of overfitting. The Molecule model also
underperformed on the test set (0.628 on the validation set and 0.500 on the test set).
However, the mean absolute error remained relatively unchanged for the Molecule
model (31.8 °C for both) and reduced from 30.8 °C to 29.5 °C on the test set for the
Crystal model. The subsequent analysis needs to be considered with the caveat that
some overfitting occurred. It was still considered valuable to compare the
performances of the Molecule and Crystal models, as well as investigate how well the

crystal model performed on pairs of polymorphs.

The major difference between the top 10 Crystal models comes from the size of the
layers. In particular, the graph vector size ranges from 500 to 1,200. This suggests that

the size of 500 is sufficient to capture graph information and any size above that does

Normalised MAE
(@]
g

0 0.5 1 1.5 2 2.5 3
Time [hours]

Figure 7.2: Optimisation curve for the training of the Crystal model.

The graph was extracted from Tensorboard as part of the used Tensorflow
library. Each datapoint represents an iteration of training. The MAE is
expressed in terms of the normalised data (standard deviation of 60.2).

-151-

500 500

400- 400
300 3001
200 200

100 100

predicted [C]
predicted [C]

0
—1001 -100

-200 -200

—300+ T v . i . . . - -300 T T
-300 =200 -100 0 100 200 300 400 500 -300 -200 -100 0 100 200 300 400 500
target [C] target [C]

Figure 7.3: Target MP and predicted MP by Molecule (left) and Crystal
models (right) on the validation set.
not contribute to the improvement of the model. This is reinforced by the fact that the
best performing Crystal model had the graph size vector of 500.

The graph vector size was bigger for Crystal models compared to Molecule models.
The Crystal models are able to store more information concerning the graph structure,
since crystal graphs are more complex than molecular graphs. However, the optimal
size of the node vector is smaller for the Crystal models compared to the Molecule
models. Intuitively, this can be explained by the need of the Molecule models to
implicitly capture information about the possible inter-molecular interaction that the
Crystal models can capture explicitly. Therefore, the Molecule model needs a bigger
vector to store the information. The optimal graph model set up, in terms of the GM
layers and GM timesteps, was similar for the two types of models. Using only a single
set of weights (one GM layer) seems to be sufficient. This is potentially due to the
increase in number of trainable parameters associated with multiple GM layers which
the model might not be able to fit adequately. Two GM timesteps, two degrees of
separation, are sufficient for each node to learn about its neighbours. This appears
consistent with the fact that a typical functional group can be identified by atom
connection within two degrees of separation. For larger groups such as aromatic rings,
a unique edge type is used, reducing the number of timesteps required for the model

to learn the presence of this kind of a functional group.

Interestingly, hydrogen bonds are not as useful as part of the graph model component
of the Crystal model. This is potentially because the possibility of forming hydrogen
bonds is implicitly captured by the graph based on the functional groups present.

Furthermore, the hydrogen bond dimensionality descriptor captures the complexity of

-152-

the hydrogen bonding formed within the crystal structure, making the explicit

hydrogen bonding encoding superfluous.

Based on the hyperparameter optimisation, the intermolecular Van der Waals
interactions were not selected as useful. This is potentially due to the fact that VdW
interactions are implicit in the molecular shape in the crystal structure, which is
partially taken into account by both the information regarding molecular functional
groups and intramolecular VdW interactions. This is encoded in the graph model via
the intramolecular VdW, and the molecular shape descriptor representing how the
molecular shape is distorted in the crystal from the gas phase preferred structure. This
may also be the reason for the inclusion of intramolecular VVan der Waals interactions.
This may be complementing the shape descriptor in capturing the relative positions of
the atoms within the crystal structure, since the VAW interactions were obtained purely

based on distance.

To test these hypotheses regarding the reasons why the hydrogen bonding and VdwW
intermolecular interactions were not selected for the graph model component of the
Crystal model, a new model which had access to crystal edges (H-bonds and VdWs)
but not the H-bond dimensionality and the molecule shape descriptor, was trained and
hyperparameter optimised. This model achieved R? of 0.630, worse than the best
performing Crystal model, but comparable to the top 10 models and surpassing all the
Molecule models. This suggests that in the absence of H-bond dimensionality, the H-
bond and VdWs edges contribute to the performance of the model. The molecular
shape change descriptor is a useful descriptor as the graphs do not store any

geometrical information.

7.3.2 Does crystal information help?

Molecule and Crystal models were compared to see the relative importance of the
additional crystal information. The best Crystal model achieved the R? of 0.649 and
0.550 on the validation and test sets, while the Molecule model achieved 0.628 and
0.500 (Figure 7.3 and Table 7.2). The top 20 best performing Crystal models are
statistically different compared to the top 20 Molecule models based on the Mann-
Whitney U test (p value = 2.937 x 107%). The addition of crystal information does
improve the performance of the model. However, the improvement is relatively small,

considering the amount of effort that is required to obtain a crystal structure. Three

-153-

possible reasons for the limited improvement were investigated: (1) under-
representation of polymorphic structures in the dataset, (2) inability to capture solid

state-specific information, and (3) the lack of importance of solid state information.

7.3.2.1 Underrepresentation

The difference between two crystal structures can be separated into a molecular
change and crystal change (Figure 7.4). Crystal change corresponds to the change in
molecular shape and arrangement as is seen when comparing two polymorphs. A
molecular change alone cannot be easily observed as a pair of different molecules also
pack differently. Therefore, a molecular change is also associated with a crystal

change.

The CSD MP dataset contains 672 molecules that are polymorphic (1.1 %). For the
majority of training, different target values were presented along with different
molecular and crystal changes. The model likely did not effectively learn the effects
of crystal changes as these were often linked with molecular changes. The small

number of occurrences of entries with the same molecular structure but different

\%
o

Crystal change

Molecular change

v

Figure 7.4: Hlustration of molecular and crystal changes along with how these
can be studied using polymorphs and Matched Molecular Pairs (MMPS)

Polymorphs is a crystal change with no associated molecular change. A small
change in the molecular structure (MMP) results in a molecular and crystal
change as the crystal packing is affected by the molecular structure.

-154-

crystal structure (polymorphs) may have led the model to incorporate crystal change

as part of the molecular change.

7.3.2.2 Capturing crystal information

Despite being underrepresented, analysis on polymorph specific MP prediction can be
performed. 21 pairs of polymorphs were identified within the validation set. Firstly,
as a surrogate for relative polymorph stability, the order of melting points between
polymorphs was investigated. 13 pairs of the 21 polymorphic pairs were predicted in
the right order (62 %). A score of -1 was given where the order of melting points was
incorrect and +1 if the order was correctly predicted. Random guessing is expected to
result in a symmetric distribution around 0 (equal number of correct and incorrect
guesses). Wilcoxon test was used to see if the model is statistically different from the
random guessing. The p value calculated was 0.275, thus the null hypothesis that the
distribution is symmetric around O (i.e. equivalent of random guessing) cannot be
rejected. This is consistent with the hypothesis that the model failed to adequately
capture the crystal change specific contributions to the melting point. However, it is
important to note that the sample size is very small (21 pairs).

40
30
)
[— 20_
()
o
c
c 10
<
o
2 o
et
L
§o!
v —10+
o
20

30 -20 -10 O 10 200 30 40
target change [C]

Figure 7.5: Actual and predicted change for polymorph pairs.

-155-

Table 7.3: List of molecules for which the Crystal model was not able to accurate predict
the difference between polymorphs. Cases where the predicted value of a specific structure
is incorrect by more than the MAE (30.8 °C) are highlighted.

Refcode Target [C] Predicted [C] Molecule
COOH
FPAMCA12 120.7 151.7 NH %
FPAMCA14 124.2 70.0
CF;
OMe
JATFUFO02 122.0 102.2

JATEUFO03 135.9 208 Meo N oMe
CEPXHP 119.6 126.1
0]
CEPXHPO1 127.6 99.8 \ l 0
OH Ph
OH OH
KARCOW 254.6 1427 /\
KARCOWO1 292.3 1471

investigated further by seeing how well the model is able to predict the difference
between polymorphs. The comparison of the predicted and actual differences between
polymorphs is presented in Figure 7.5. The magnitude of the actual change ranges
from 0.5 °C to 37.8 °C while the predicted change is typical below 13.0 °C (two cases
of the change predicted to be 21 and 26 °C shown in Figure 7.5 and two cases of over
80 °C not shown in the figure). Polymorphs where the discrepancy between actual
difference and predicted difference was the largest were examined closer. A select few
pairs of molecules are shown in Table 7.3.

A number of structures where the large difference in the actual melting points was due
to errors in the data were left out of the analysis. XEHGOH and XEHGOHO1 have
target values of 138.9 and 163.9 °C respectively, but based on the comparison of
packing [211], the two structures appear to be the same polymorph. Hence, these
should have the same melting point. The model made a prediction that is 6.2 °C apart
(141.2 and 147.4 °C respectively) which is consistent with the similarity of packing
between the two crystal structures. In case of FPAMCA (12/14) and JATFUF(02/03),
as shown in Table 7.3, one of the structures was predicted within the mean absolute
error (30.8 °C) while the other was outside of that range. This suggests that in these
cases, the solid state effect was not adequately captured. The pair of molecules of the
refcode family KARCOW were both predicted inaccurately by over 100 °C. The order
of polymorphs stability (melting point) was predicted correctly, but this is likely a

coincidence considering the overall poor prediction for the structures.

Several shortcomings of the model setup may be the cause of the inability to accurately
predict the solid state specific melting point. The intermolecular interactions are based
purely on the geometric relationship between atoms rather than force-based
consideration. This may result in the inaccurate assignment of the intermolecular
interactions, especially in cases such as the n- interaction between aromatic rings. In
cases where hydrogen bonds do not form, the n- © stacking interaction may play an
important role in contributing to the lattice energy such as in case of p-aminobenzoic
acid [249].

7.3.2.3 Relative importance of solid state changes

The importance of the additional crystal information is useful only if crystal change
(polymorphism) plays an important role in melting point. To assess this, the effects of

-157-

polymorphs were compared to the transformations corresponding to matched
molecular pairs (MMPs) identified within the CSD dataset. Representative

transformations were selected and their impact on the melting point was compared.

The most common transformation was the substitution of hydrogen by a methyl group
(1,302 occurrences). It was expected to be relatively insignificant due to the small size
of the methyl group and the lack of the change of hydrogen bond acceptor/donor count.
The transformation was expected to have limited impact on molecular packing and
VdW interactions. As an example of a transformation that may affect the melting point
more, a substitution of a hydrogen with a carboxyl group was selected as it changes
the number of potential hydrogen bonds. Considering transformations with at least 10
MMPs within the used dataset, this transformation had the third-highest mean effect
on the melting point. The top two are hydrogen to carbamoyl and methyl to carboxyl.
However, hydrogen to carboxyl has much higher MMP count within the dataset (74
against 15 and 19 respectively) so it was selected, as its effects on melting point could

be assessed more robustly.

The addition of the hydrogen bonding carboxyl group has the largest effect on the
melting point, with the mean and median change of 95 °C and 107 °C. The hydrogen
to methyl transformation, albeit small, has an average mean and median change of -7
and -4 °C. The differences between polymorph pairs were always taken as a positive
number. The mean and median change for polymorphs are 11 and 4.5 °C, respectively.
The absolute change for the two selected molecular transformations and polymorph
pairs are presented in Figure 7.6. The absolute change was selected rather than change

as the focus of the study is to compare the potential magnitude of effect rather than

-158-

determining the effect itself. This is lower than the mean and median of the absolute
change for the hydrogen to methyl transformation which is 30 and 23 °C, respectively.
This analysis suggests that even small molecular changes tend to have a larger effect
on the melting point than do crystal packing changes. This is in agreement with
literature which suggests that the typical energy difference between polymorphs is
small (less than 1 kcal/mol) [50].

7.3.2.4 'When does crystal change matter?

The melting point difference between polymorphs is typically small (median of 4.5
°C). However, there are cases where the difference is more profound. An attempt was
made to identify molecules where crystal change results in a significant change in the
melting point. The focus was placed on intermolecular interactions and the molecular

shape change.

The number of hydrogen bond donors and acceptors, and their ratio were compared to
the change in melting point, but no statistically significant relationship was found. The
potential importance of hydrogen bonding was further studied using the hydrogen
dimensionality descriptor (Figure 7.7). The polymorph pairs were separated into two

0.16 1
Hdim change

0.141 no Hdim change

e o o

o = M

® o N
| 1 1

relative frequency

0.06/

0.04+

0.02

T

~
0.00 . . ; = ‘
0 10 20 30 40 50

absolute change in MP [C]

Figure 7.7: Comparison of absolute change of MP for pairs of polymorphs
where hydrogen bond dimensionality changes or remains constant.

-159-

groups: no hydrogen dimensionality change occurs between the pair, and pairs where
there is a change in dimensionality. For the purpose of the study, the degree of change
was not considered (i.e. no differentiation between a change from 1D to 2D and a
change from 1D to 3D). Pairs of polymorphs where the dimensionality of the hydrogen
bonds change have higher median change (6.7 °C) compared to pairs where there is
no change in the dimensionality (4.0 °C). Polymorphs where the dimensionality of
the hydrogen bonding changes, typically have 68 % higher change in melting points.
The two distributions are statistically different based on the Mann-Whitney U test (p
value = 4.665 x 10~*). This indicates the potential future avenue of research, focused
on data-driven tools to study what molecular properties lead to larger changes in solid
state properties across polymorphs. However, it is important to note that the median
difference for the two types of polymorphs discussed here is smaller than the change
caused by molecular transformations. This may be the reason why the performance
difference between the Molecule and Crystal models is small, as even a model that
perfectly captures the crystal difference can only be expected to improve the
performance by the average of 4.5 °C.

Apart from the hydrogen bonds, another important intermolecular interaction is the n-
7 stacking. This interaction was not fully captured by the model as this interaction
typically occurs between aromatic rings and not individual atoms which is what the
graph is based on. A number of polymorphs with the largest melting point difference
were structures with multiple aromatic rings and one or none hydrogen bonding sites

(Figure 7.8). The dataset was sliced based on the number of aromatic rings present and

-160-

whether there were any hydrogen bonds present, but no statistically significant
difference was observed. A caveat to note here is the fact that only 21 pairs were

studied here.

A number of molecular descriptors were used to study its effect on the difference in
melting point across polymorphs. No statistically significant correlation was found
between the melting point difference and molecular size (heavy atom count) nor
molecular flexibility (nConf20 [212]). The flexibility descriptor was developed to
predict the crystallisability of a molecule, so lack of correlation may be an artefact of
the lack of polymorph data for difficult to crystallise molecules. The number of
conformers that can coexist within a crystal structure was also considered as a
descriptor. With the higher number of conformers, the number of possible
intermolecular interactions can be expected to increase. The highest observed Z prime
in all polymorphs of a given molecule was used as the conformer compatibility
descriptor. Z prime is the number of molecules within the asymmetric unit of the
crystal structure. For molecules with no self-symmetry, the value is one for structures
with one conformer present. However, no statistically significant difference was

observed for molecules with different conformer compatibility descriptor values.

7.4 Conclusion

Message Passing Neural Network was used to construct two QSPR models to predict

the melting point. The Molecule model, one constructed from molecular graphs,

NH,
@ -
HOOC
@ ' "

W@*l@ o TO

Figure 7.8: Example molecules with large MP difference between polymorphs.

Left — XUYHOO (86.0 C), right top — QAPKOH (132.5 C), right bottom —
ICAKAY (129.7 C)

-161-

achieved R? value of 0.628 on the validation set and 0.500 on the test set. The Crystal
model, one constructed from molecular and intermolecular graphs along with
additional crystal descriptors, achieved an R? value of 0.649 and 0.550 on the
validation and test sets respectively. The graph-based approach has shown some
promise in capturing the molecular and crystal properties. However, further work is
necessary to the suitability of the approach for melting point prediction. Recent work

in the use of molecular graph has shown promise in the QSPR field [238,239].

Some insights can be derived from the study regarding the ability to capture crystal
information and its relative importance. A statistically significant (p value=
2.937 x 107%), albeit small improvement (average R? = 0.621 and 0.631 on the
validation set) was observed between the Molecule and Crystal models. The small
performance improvement between the two types of models is likely due to a
combination of three reasons: (1) underrepresentation of polymorphs in the dataset,
(2) inability of the model to capture solid state specific information, and (3) the
typically small property difference between polymorphs.

Only 1.1 % of the molecules are polymorphic within the CSD MP dataset; hence the
trained models had limited exposure to structures with only solid state differences.
The model did not predict the relative stability of polymorphs (as approximated by
comparison of melting points) in a way that is statistically significant. However, this

may be due to the small number of polymorph pairs that were studied (21 pairs).

Only geometric considerations were undertaken when assessing the intermolecular
interactions which potentially reduced the usefulness of the information captured by
the models. The n- 7 interaction were not explicitly captured by the model which may
have contributed to the inability to fully capture the various intermolecular interactions
that affect the melting point. Geometry of the n- 7 interaction affects the strength of

the interaction [250], so a way of capturing this beyond the graph method is required.

The typical melting point difference between polymorphs is 4.5 °C, much smaller than
the effects of molecular changes such as the substitution of a hydrogen with a methyl
group. Therefore, the potential performance improvement from capturing the crystal
information is also small. However, in some cases, the difference between polymorphs
is large (over 30 °C). Potential factors that contribute to the large difference were
investigated. Hydrogen bond dimensionality is a potential indicator of this

-162-

phenomenon; whereas molecular flexibility, the presence of aromatic rings appear not
to be indicative, although this may be due to the issue of unknown polymorphs

discussed in Chapter 4.

The study has shown that there is some benefit to including crystal information for
solid state-specific melting point prediction. The graph-based approach to capturing
molecular and crystal information also shows some promise, although further work is
required. The ability to predict whether a molecule exhibits polymorphs with a wide
range of melting points would be a useful tool to complement the molecule structure-

based melting point prediction.

-163-

Chapter 8

Conclusion

-165-

8.1 Introduction

In this thesis, the extent to which techniques deployed during the Discovery stage can
be applied to the Development stage datasets to address challenges encountered at this
stage was investigated. Chapter 2 contextualised this challenge within the
pharmaceutical product development process and the Material Science Tetrahedron
(MST). Based on the survey of the challenges, two specific topics were identified as
the focus of the thesis. The topics are: (1) the prediction of the propensity of molecules
to form polymorphs and (2) the prediction of crystal structure-specific melting points
as an indication of potential solid state-specific solubility. Chapter 2 also provided an
overview of the techniques used in the thesis. Matched Molecular Pair Analysis
(MMPA) and Quantitative Structure Property Relationship (QSPR) were selected as
the two methods of addressing the topics identified. In Chapter 3, a novel database
approach to the MMPA was introduced. The MMP database workflow was utilised to
study the effects of small molecular transformations on the polymorph propensity
(Chapter 4). Issues related to the quality of the polymorphism data is partially
addressed in Chapter 5 by the development of a machine learning-based polymorph-
redetermination classification method which was benchmarked against the existing
methods. The issue related to the low number of MMPs present in the MMPA of
polymorph propensity was explored within the context of the different stages of the
drug development process in Chapter 6 by introducing Matched Molecular Graphs as
a method of exploring the dataset suitability for MMPA. Work on the second topic
identified in Chapter 2, crystal structure specific melting point prediction, was
discussed in Chapter 7.

Data

A 4

Method - Topic

Figure 8.1: The three themes used to discuss the key findings of the thesis.

-166-

The key findings from the thesis are discussed within the framework of three
interconnected aspects: Data, Empirical method, and research topic, as illustrated in
Figure 8.1. Conclusions are drawn on the specific topics studied, as well as on the
broader implications for the research in the area of solid state informatics for

pharmaceutical development.

The framework was selected due to the unique nature of the data-driven approaches,
where the available data and its quality plays a vital role on the suitability of methods
and topics. For example, polymorph specific solubility prediction may not be a
suitable research topic if the required data availability is limited [70,251]. Similarly,
multi-layered neural networks may not be the most suitable tool for QSPR modelling
if the dataset has only 10s or 100s of examples due to the high likelihood of overfitting.
Any research project needs to consider the interdependence of these three aspects.
These are discussed within the scope of the project and as learning outcomes that can

be used to inform further research.

8.2 Data Management

The availability and quality of data is a crucial consideration when undertaking a data
driven project. The importance of the quality of data is indicated by Wilf Hey’s maxim
— “Garbage in, Garbage out”. Assuming consistent quality, the more data is available,
the better empirical models can be developed. The two aspects are discussed within
the scope of the project below. Based on the work, recommendations for future

projects in a similar research area are presented.

8.2.1 Quality

In Chapter 4 and Chapter 5, several issues related to the polymorphism data were
identified. Firstly, many of the molecules in the CSD have not been studied under
different conditions to identify all polymorphs (within a reasonable set of conditions).
This results in underestimation of polymorphism in the database. Monomorphic
adjustment [50] (as described in Chapter 4) was implemented to mitigate the issue by
eliminating molecules that are likely to have not been studied extensively. Further
adjustments can be done by, for instance, eliminating all molecules that do not have at
least 3 distinct structures (as opposed to two as done in the original publication [50]

-167-

and the thesis where the dataset was reduced by 97 % to 6,633 structures). The process
can be continued until the fraction of polymorphic structures matches that of the more
heavily screened, smaller datasets. However, this approach also introduces a new bias
— where the more commonly studied compounds are overrepresented. This may result
in developing a model to predict popular compounds, rather than polymorphic
compounds. The process also reduces the dataset size, making it difficult to identify

any statistically significant trends.

The uniqueness of the challenges associated with polymorph propensity lies in the
inability to assess the data quality and completeness on individual entry level. Namely,
the lack of polymorphic data cannot be distinguished between the lack of
polymorphism or the lack of research done on the molecule. In the case of melting
point, it is easy to identify molecules that have no information on the property. A
public database of polymorph screens with studied conditions and resulting crystal
structure information, even if no distinct structures were identified, would be a useful
tool to aid this challenge. The number of entries to this database would be an indication
of how much the molecule has been studied, and the range of conditions of these
studies would inform the completeness of polymorph search. Running polymorph
screening is typically expensive, so it is unlikely that such a database could be purpose-
built by an individual group. However, crystallisation is a commonly studied process,
so there is a possibility for such a database to be successfully constructed based on
inter-institutional collaboration. Similar databases may also be constructed in-house

by pharmaceutical companies to better utilise the data already at their disposal.

The second issue related to the polymorphism data quality is the classification of
structures into polymorphs and redeterminations. Majority of crystallographic
research focuses on specific molecule or group of molecules. Systematic studies of
polymorphism are relatively rare [50,209]. The systematic studies rely on automated
methods for polymorph-redetermination classification. The method commonly used is
the simulated spectra comparison method[211] (discussed in Chapter 5). However, the
method was only tested on a small subset of 386 structures (83 molecular
compositions). A more detailed benchmarking was performed in Chapter 5 where the
existing and novel machine learning-based automated methods were compared against
manually assigned labels on a dataset of 2,951 pairs filtered to eliminate inconsistent

manual labels. The best machine learning model achieved a F1 score (defined in

-168-

Equation 2.21) of 0.910 with recall and precision of 0.864 and 0.962 respectively. The
F1 score of the spectra comparison method was 0.780 with relatively lower recall
value of 0.645 (precision was 0.987). The spectra comparison method had lower false

positive rate but a higher false negative rate.

The benchmarking also shed light on some of the inconsistencies found with
polymorph identification. A research community-wide effort to more vigorously label
polymorphs and develop an appropriate automated classification method is needed.
The lack of standard method has an impact on other areas of research such as the solid
state-specific melting point prediction explored in Chapter 7. A community endorsed,
vigorous method of crystal structure classification would clarify these situations and
allow research in solid state-specific property prediction to accelerate. To this end, the
benchmarking dataset was curated.

8.2.2 Availability

The availability and the dataset size is another consideration that needs to be made
when undertaking empirical modelling. This was lightly touched upon above (8.2.1)
with the issue of decreasing dataset size of polymorph counts. However, the issue of
data availability is an important aspect of any data-driven project in its own right. The
history of empirical modelling of molecular properties begun with work on 10s of
compounds and a narrow applicability domain [87]. With time, the dataset sizes
increased and so did the applicability domain of the empirical models based on the
data [171,174]. A more general melting point models were developed using a dataset
of over 280,000 molecules [83]. A similar trend can be observed in other areas of
empirical modelling, in particular machine learning, where dataset sizes and the

capability of the models increased over time [252].

Therefore, the acquisition of data should be one of the priorities when it comes to
future development in the area. In most cases, the data is already present; however, in
a difficult to use format. According to some estimates, up to 95 % of data is
unstructured, meaning it is difficult to access and utilise [253]. In research-driven
organisations such as universities, the data is typically arranged project-wise (Figure

8.2). This allows easy retrieval of data for a specific project.

-169-

Project 2
Project 3

Project 4

| Property

Figure 8.2: Typical data arrangement within research organisations.

The data is arranged per project bases, making it easy to locate all relevant

data for a particular project, however it results in difficulty in accessing

similar data across multiple projects.
However, search for specific information, such as property data, is difficult if not
unfeasible to do on a large scale. There are typically no consistent naming conventions
enforced at the organisation level and the data is structured appropriately for the needs
of the specific project. Along with the difficulty in accessing the data itself, metadata
extraction is also challenging. There is little incentive for individuals responsible for
these projects to make the data more easily accessible across projects as this often
requires additional work. Notable exceptions exist where data from multiple sources
was curated [80,82,83]. These datasets can be utilised within the cheminformatics
community for the study of the respective properties. Approaches such as the FAIR
data management principles [254] and EPSRC expectation around data availability
[255] attempt to address some of these issues. However, as long as the data producers
(ones who hold responsibility for data generation) and the data consumers (ones that
reap the benefits of data availability) are disjointed, the problems are likely to persist.
Therefore, for a consistent solution to the problem, an organisational level and
preferable inter-organisational strategy is required. Improving the data accessibility is

likely to increase further research using empirical methods.

8.2.3 Suitability

The Matched Molecular Graph (MMG) was developed (Chapter 6) to assess the
suitability of a dataset for MMPA. MMG allows for dataset comparison and
visualisation of MMPs. The analysis of the constructed graph on the monomorphism-
corrected CSD single component dataset revealed that 74.9 % of molecules did not

-170-

have any MMPs, thus were not taken into account when performing MMPA.
ChEMBL-NTD set 14 (GSK TCAKS (Tres Cantos Anti-Kinetoplastids Set) dataset)
[229] was selected as a representative Discovery-like dataset. The graph property
analysis revealed that the Discovery dataset had 58.2 % of molecules with at least one
MMP (compared to 25.1 %) and the molecules that had at least one MMP, typically
had 5.34 MMPs (compared to 3.33). These factors resulted in the large difference in
the number of MMPs for the two datasets despite the same size (10,321 MMPs in
Discovery dataset, 2,776 in the used CSD dataset).

The MMG analysis between the two datasets indicated that there are some differences
in the datasets between Discovery and Development. Such differences should be
considered when attempting to utilise other data-driven approaches, that have been
successfully implemented in Discovery settings, to Development datasets. The
analysis also showed the need to consider dataset suitability beyond the size and the
target value quality. Although not quantitatively vigorous, MMG can be used to assess
the suitability of datasets for MMPA.

8.3 Empirical Method

A number of empirical methods ranging from simple linear regression[256] to deep
learning [257] have been used within cheminformatics. In this thesis Matched
Molecular Pairs Analysis (Chapter 4), machine learning (Chapter 5) and deep learning
(Chapter 7) were used. MMPA represent an easily interpretable empirical method
while the Neural Network represents a more capable of capturing complex
relationships but more difficult to interpret class of methods. The performance of the
two methods within the project, as well as potential future implementations are

discussed here.

8.3.1 Message Passing Neural Networks

The Message Passing Neural Networks (MPNN) were used to develop melting point
QSPR models using molecular and crystal information. The model uses simple
descriptors (element and covalent bond type) to obtain molecular information which
is complemented by crystal information based on the potential intermolecular

interaction, hydrogen bond dimensionality, and conformation change between

-171-

structure in the solid state and gas phase (shape change descriptor). A set of Molecule
models (only had access to molecular structure) and Crystal models (had access to
molecular and crystal information) were trained. Some improvement of the Crystal
model (R? = 0.550) was observed compared to the Molecule model (R? = 0.500). This
suggest that the model is capable of capturing some intermolecular interactions to
improve the performance. The inability to capture the strength of interactions as well
as limited ability to capture =m-m interactions likely contributed to the small
improvement of the models, Recently, a similar model architecture was used to
successfully embed drug-target interactions using a graph-based approach to classify
molecules into active and inactive (Area Under the Curve = 0.968 and 0.935 on two
test sets) [239]. Although the test set performance of the Crystal model was lower than
on validation set (0.649), it has shown the ability of MPNNs to capture some

intermolecular interactions.

8.3.2 Matched Molecular Pairs — Graphs and Analysis

The Matched Molecular Pair framework was used for typical MMPA as well as for
construction of Matched Molecular Graph (MMG) and related analysis of the dataset
suitability for MMPA. The first step in the process is the identification of the MMPs
within a given dataset as discussed in Chapter 3. Several key issues relating to this
step were identified and addressed. As identified in other works on MMPs
identification using unspecified transformation methods (defined in 2.5.1.2), it is
important to limit the maximum size of the change of a MMP [180]. This is done either
by limiting the maximum size of the change or the ratio of the size of change to the
molecule. However, even within the limited scope, many unnecessary MMPs are
maintained. This includes a set of MMPs between the same pair of molecules. The
same pair of molecules may be cut in different ways to yield several MMPs. The
smallest change is most likely to be observed across multiple pairs of molecules,
contributing to the analysis. The other MMPs of the same molecule only contribute to
an increase in the number of MMPs. In the developed MMP Database, only one MMP
is kept for a pair of molecules based on the largest context (i.e. the smallest change as
these are more common). The adjustments made to the MMP identification procedure
reduce the number of total MMPs identified within a dataset, but ensures that the pairs
identified are likely to contain transformations that are more common (thus more

useful).

-172-

Figure 8.3: Graph based MMP identification.

Two types of nodes are used: contexts (gold) and molecules (blue). Edges
contain information on the core associated with the connected context and
molecule.

However, the reduction in the number of MMPs along with the reduction in the dataset
(monomorphic correction) resulted in MMPA that did not identify any statistically
significant transformations for polymorph propensity (Chapter 4). Lack of polymorph
data (discussed in 8.2) and the small number of MMPs were identified as the most

likely reason for the lack of statistically significant transformation.

The MMPA carried out in the thesis led to the development of the concept of MMG.
MMG can be further expanded to extract more information from an MMP Database.
Work can be performed to improve the process of database construction by
abandoning relational databases for graph databases. These types of database put more
emphasis on the relationships between elements (edges) [258]. The database structure
allows for more computationally efficient parsing based in the edges. The MMP
identification step could be replaced by simpler, more computationally efficient,
graph-based operations. Graph databases typically allow the specification of different
types of nodes and edges, as well as the addition of properties to these. Molecules can
be added to the database as nodes, with attached properties such as the molecule ID,
structure information (SMILES), properties value (dark blue nodes in Figure 8.3).
Upon fragmentation, the context-core pairs can be screened based on the maximum
size of the change and maximum ratio of change criteria (as discussed in Chapter 3
and Chapter 4). The filtered contexts can be added to the database as a different type

-173-

of node (gold nodes in Figure 8.3). An edge can be added between the molecule and
the added context, containing the core structure as its property (arrow in Figure 8.3).
MMPs can be identified by finding all molecules that are connected via a context node.
The search can be easily modified to find all MMPs with a given context, or all MMPs
of a given molecule or a set of molecules. Another layer to the graph can be added to
incorporate crystal information. A new type of node, a crystal node, can be added that
contains the crystal ID (refcode) and any other relevant crystal property (e.g lattice
type). These can be connected to molecule nodes based on the molecular composition.
Solvates and co-crystals would be connected to multiple molecules, so an edge
property used to indicate whether a molecule is a primary component or a solvent

molecule may be added.

The MMG can also be potentially used for property prediction based on MMPA if a
dense enough graph can be constructed. For a new molecule (m) with an unknown
property value (pm), all MMPs can be identified. A set of all molecules that are MMPs

with the given molecule are given by the following equation where represents all

edges (MMPs) in an MMG.
MMP(m) ={n:(m,n) € T} Equation 8.1

A series of predictions can be made based on each molecule and the corresponding
transformations, where pi is the property of the molecule i and t; is the average effect

of the transformation that links molecule i and m.
Dm; = i +t; wherei € MMP(m) Equation 8.2

A weight (wi) may be assigned to each of the MMP based on how well the effects of
the transformation are studied (number of occurrences of the given transformation
within the MMG). Hence, the final property prediction of the new molecule (m) can

be calculated based on the following.

_ Diemmpm)(Pi + 1)

Pm =

Equation 8.3
Yiemmp(m) Wi

The method is akin to the k-Nearest Neighbours (KNN) method [259]. KNN method
predicts the target value using k samples with the nearest feature values. In the
proposed method, the neighbour identification is performed based on molecular
transformations instead. A further distinction is the way in which the predicted value

-174-

is calculated. The effects of the transformation are used (along with a weighting based
on statistical confidence in the effect and its size) to compute the predicted property
value. In this way, a molecule that differs only slightly from a known one may be
predicted a vastly different property value if the transformation relating the two
molecules is known to have a large effect on the studied property. In this way,
knowledge of activity cliffs [41] may be included in the predictive model. Further

work is required to assess the feasibility and usefulness of such an approach.

As stated above, for this method to work, a dense MMG is required, unlike the ones
studied in the thesis (Chapter 6). However, the concept can be applied in tandem with
a QSPR model on a more sparse MMG. Prediction-driven MMPA was previously used
to generate new MMPs to enable better analysis of transformations with low MMP
count [198] (introduced in 2.5.2).

Model explainability is an important aspect of regulatory approval of QSPR models
[260] as well as an active area of research within the machine learning community
[15,261]. Local Interpretable Model-agnostic Explanations (LIME) relies on sampling
random values in the feature space surrounding the prediction of interests and
constructs a local, easily interpretable model (decision tree, linear model etc.) [261].
In many QSPR cases, the feature space may be not continuous and the meaning behind
each feature may be difficult to interpret by a researcher. Instead, a chemical space
surrounding the prediction of interest may be sampled using MMPs (Figure 8.4). A set
of new predictions (dark blue in the figure) can be made to generate MMPs with the
prediction of interest (gold in the figure). Several strategies for the MMP generation
are feasible. Pairs such that each functional group on the molecule of interest is
replaced with an inert functional group is one possibility. This is illustrated in Figure
8.4 with the replacement of terminating functional groups with a methyl group and
chain functional groups with a methylene bridge. This may result in the ability to
obtain the group contribution to the predicted property value of the molecule of interest
which can lead to increased model explainability.

-175-

0

Figure 8.4: MMP based group contribution for QSPR model prediction
explanation.

For a given prediction (gold) a set of MMPs can be generated (blue) to

determine the group contributions to the prediction.
Alternatively, MMPs may be generated to match common transformations within the
studied dataset. Rather than increasing the number of MMPs for better MMPA [198],
it can be used to compare the predicted MMPs to the ones from the datasets. This
allows for the assessment of the QSPR model’s ability to adequately map the effect of
these transformations. Similar analysis, without the generation of new molecules, was
carried out in Chapter 7 to assess the melting point model performance. The method
provided some means of more in-depth analysis of model performance which can be

further expanded with future research in this area.

8.4 Research Topic

The research topics covered in the thesis were contextualised within the Material
Science Tetrahedron presented in Chapter 2. The focus was placed on the multi-level
structure property relationship for properties relevant to the pharmaceutical product
development as visualised in Figure 8.5. The key findings of the for the polymorph
propensity study and the solid state specific melting point prediction are summarised
below. Based on the discussion of data (8.2) and the empirical method analysis (8.3),

future research topics are suggested.

-176-

Processing

System of interest
.

Scale of structure

Performance

Figure 8.5: Structure Property Relationship studied in the thesis.

The figure is based on the adapted Material Science Tetrahedron introduced
in Chapter 2.

8.4.1 Polymorph propensity

Polymorph propensity was studied using MMP approach in Chapter 4. No statistically
significant transformations were identified. Beyond the data related limitations
discussed earlier, the phenomenon of polymorphism may be too complex to capture
using MMPA. The way in which a transformation affects the propensity may be highly
dependent on the context of the pair (part of the MMP that does not change). However,
even when some properties of the context (such as flexibility and number of hydrogen
bond donors/acceptors) were taken into account, no meaningful correlations were
found. Furthermore, previous research into the effects of molecular transformations
on crystal packing found that some transformations had consistent effect [189].
Therefore, it is likely that the MMPA did not yield any statistically significant results
due to the analysis technique selected and the available data as previously discussed
(8.2.1 and 8.3.2). An empirical method that utilises the entirety of the dataset (such as
QSPR modelling) are likely to be more suitable for the propensity study as it can utilise
the entirety of the dataset. The challenge of the low data quality may be partially

-177-

addressed by focusing on prediction of polymorphism (i.e. classification into
monomorphic and polymorphic compounds). If at least two polymorphs are identified,
the molecule would be considered to be polymorphic without the need to have found
all possible polymorphs (as is the case for polymorph propensity study). However, this
does not fully solve the issue of unknown polymorphs, as many false monomorphic
molecules will skew the results. Industrial, polymorph screened datasets suggest that
up to 66 % of compounds may be polymorphic [50], which is much higher than the
observed rate of polymorphism in the CSD. Polymorphism and polymorph propensity
are of great interest, however it may be difficult to construct empirical models without

access to datasets with adequate quality.

8.4.2 Solid state specific melting point

Many properties relevant to the pharmaceutical product development are solid state-
dependent (see 2.1.4.3). In this thesis, melting point was studied due to the availability
of solid state specific data within the CSD. Previous work done on incorporating solid
state information indicated the inability to appropriately capture the crystal structure
as a reason for little improvement in model performance compared to molecule-based
models [70,262]. Graph-based structure description complemented by crystal

descriptors were used here in an attempt to capture solid state information.

The improvement between models that did not have any crystal information and ones
that did was relatively small (0.628 to 0.649 on the validation set and 0.500 to 0.550
on the test set). This can be interpreted in two ways, either the crystal structure
typically does not affect the property studied or the crystal structure information is not
adequately captured. It is also possible that a combination of the two factors
contributes to the small improvement. The improvement is particularly disappointing
if the labour intensity for the acquisition of the additional crystal structure features are
considered. These features require the crystal structure to be solved before computing
the values. This is much more demanding than features computed based on molecular
structure alone. Furthermore, the change in property across polymorphs is typically
small, especially compared to the effects of small molecular changes (MMPSs).
Therefore, further attempts to capture crystal structure information for solid state-
specific bulk property prediction may not yield significant improvements in predictive
power in relation to the labour intensity in acquiring solid state specific data. This is

-178-

not to diminish the importance of solid state informatics in developing better
predictive models in areas where crystal structure plays an important role such as

crystal surface properties [76,79].

8.4.3 Future research topics

Analysis of polymorph propensity was complicated due to the reduction in dataset and
unreliability of data. However, the MMP approach has previously been used to see
which transformation maintain isostructurality [189]. This can be expanded by
considering lattice energy changes caused by the molecular transformation. It is
possible to calculate group contribution to lattice energy [263]. The group contribution
of the context of the MMP can be calculated. A large change indicates a disruption to
the intermolecular interaction. By carrying out MMPA, it may be possible to
determine what transformations are likely to disrupt the intermolecular interactions.
This can potentially be linked to morphology modification. Some crystals grow as
needles due to the preferential intermolecular interactions [249]. By disrupting its
intermolecular interactions, it may be possible to avoid molecules with undesirable
morphological tendencies. In contrast, it may also be useful to identify transformations
that do not disrupt the crystal packing but influence some other property of interest or

vice versa.

The work on solid state-specific melting point, as well as previous works [50]
indicated that property difference between polymorphs is typically small, with few
notable exceptions where the difference is significant as such as the case of the
solubility of ritonavir [8]. A molecular structure based QSPR model to predict the size
of the property difference between polymorphs would be of great interest. However,
the issue of unknown polymorphs with unknown property value poses a similar

challenge as the one encountered in Chapter 4.

8.5 Concluding Remarks

The thesis aimed to investigate the extent to which data-driven techniques, typically
used during Discovery, could be used to address challenges commonly addressed
during the Development stage of the pharmaceutical development process. The
research was contextualised with the MST [5]. Emphasis was placed on the structure-

-179-

property relationship, where the framework was expanded to explicitly include the
concept of scale — for structures (molecular and crystal structure) as well as the
properties. The difference in the relevant scales of structure presents a major difference
between the two stages of drug development process where in Discovery, molecular
structure is considered, while in Development larger structures such as crystals and

particles are relevant.

Effects of molecular changes on the propensity of the molecule to exhibit
polymorphism were studied using MMPA, a method commonly used for the analysis
of Discovery-related properties [11]. To carry out the analysis, a database was
developed independently of other researchers [201]. A database of single component
crystal structures from the CSD was constructed and the analysis was carried out.
However, no statistically significant transformations were observed. Several potential
reasons were investigated for the lack of any noticeable trends. A Matched Molecular
Graph was constructed to investigate the properties of the dataset itself that may have
affected the analysis. Despite a large total number of MMPs identified, only 25.2 %
of molecules had at least one MMP. A Discovery dataset of the same size (TCAKS
dataset) [229] had 58.2 % of molecules with at least one MMP. This indicates that the
Development datasets may be less suitable for MMPA analysis compared to the

Discovery datasets.

The subsequent analysis focused on the data quality of the polymorph dataset.
Unobserved polymorphs have likely skewed the results of the analysis. A general trend
was observed that the more commonly studied structures (as approximated by the

number of redeterminations within the CSD) had more polymorphs as well.

Another issue related to the study of polymorphism that was addressed is the need for
automated methods for polymorph and redetermination classification of crystal
structures. A benchmark dataset was derived from the CSD based on the availability
of polymorph labelling provided by a single research group (per molecular
composition). The commonly used spectra comparison method achieved an F1 score
of 0.780 with relatively low recall value of 0.645 (precision was 0.987). Machine
learning-based approach achieved F1 score of 0.910 with recall and precision of 0.864
and 0.962, respectively. The benchmark dataset may be used as a starting point for
future work aimed at addressing the issue of polymorph and redetermination

classification.

-180-

Another challenge that was addressed in the thesis is the ability to adequately capture
crystal structure information for machine learning-based modelling. A graph was
constructed based on identified intermolecular interactions, along with other crystal
descriptors (shape change descriptor and hydrogen bond dimensionality) to investigate
if this improves the performance of melting point models. The observed improvement
(0.628 to 0.649 on the validation set and 0.500 to 0.550 on the test set) was relatively
small. This may be due to the inability to capture solid state information. However,
the typically small effect of solid state changes on the melting point is also likely to

have contributed to the small performance improvement.

The research opened several avenues for further investigation. Although MMPA of
polymorph propensity did not identify any statistically significant trends, the ease of
interpretability remains an attractive feature of MMPA. The method could be applied
to study the effects of molecular transformation on the disruption of intermolecular
interactions via lattice energy analysis. This would build on existing MMPA of iso-
structurality [189]. However, issues of systematic and accurate lattice energy
calculation need to be addressed [70].

Polymorphs typically have similar properties with a small fraction of notable
exceptions [50]. An interesting scope of future research is the prediction of the
difference of property values between solid state structures based on the molecular
structure. If successful, this would allow to anticipate the potential Development

challenges during Discovery.

The research and development of treatments for illnesses has been a major challenge
for civilisations for millennia [16,18]. In recent years, the efficiency of the
pharmaceutical product development process has been decreasing [33,34]. The studies
presented in this thesis provide partial solutions to problems addressed at the
Development stage. A novel method of analysing datasets — Matched Molecular
Graphs — showed that Development datasets tend to have less similar molecules,
resulting in methods that are commonly used in the Discovery stage (such as MMPA)
being less suitable. A graph-based approach to capturing crystal information showed
some promising results. The work in the thesis can inform future research in the area
of solid state informatics to address the challenges encountered when developing new
pharmaceutical products.

-181-

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

J.P. Bunker, The role of medical care in contributing to health improvements
within ~ societies, Int. J. Epidemiol. 30 (2001) 1260-1263.
https://doi.org/10.1093/ije/30.6.1260.

World Health Organization, Essential Medicines List, World Health
Organization, 2015. http://www.who.int/selection_medicines/list/en/ (accessed
February 8, 2017).

M. Lindenberg, S. Kopp, J.B. Dressman, Classification of orally administered
drugs on the World Health Organization Model list of Essential Medicines
according to the biopharmaceutics classification system, Eur. J. Pharm.
Biopharm. 58 (2004) 265-278. https://doi.org/10.1016/j.ejpb.2004.03.001.

Science Engineering Committee on Materials, Solid State Sciences Committee,
Board on Physics and Astronomy, and R. Commission on Physical Sciences,
Mathematics, Board National Materials Advisory, Commission on Engineering
and Technical Systems, National Research Council, MATERIALS SCIENCE
AND ENGINEERING FOR THE 1990s, National Academy Press, Washington
DC, 1989. https://www.nap.edu/read/758/chapter/1.

C. Sun, Materials Science Tetrahedron—A Useful Tool for Pharmaceutical
Research and Development, J. Pharm. Sci. 98 (2009) 1671-1687.

N. Kawashita, H. Yamasaki, T. Miyao, K. Kawai, Y. Sakae, T. Ishikawa, K.
Mori, S. Nakamura, H. Kaneko, <Review> A Mini-review on
Chemoinformatics Approaches for Drug Discovery, J. Comput. Aided Chem.
16 (2015) 15-29. https://doi.org/10.2751/jcac.16.15.

Y.-C. Lo, S.E. Rensi, W. Torng, R.B. Altman, Machine learning in
chemoinformatics and drug discovery, Drug Discov. Today. 23 (2018) 1538
1546. https://doi.org/10.1016/J.DRUDIS.2018.05.010.

J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter, J. Morris,
Ritonavir: An Extraordinary Example of Conformational Polymorphism,
Pharm. Res. 18 (2001) 859-866. https://doi.org/10.1023/A:1011052932607.

International Conference on Harmonisation of Technical Requirements for

-182-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Registration Of Pharmaceuticals for Human Use, Specifications: Test
Procedures and Acceptance Criteria for New Drug Substances and New Drug
Products: Chemical Substances Q6A, 1999.
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Q
uality/Q6A/Step4/Q6Astep4d.pdf (accessed July 4, 2019).

C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, V. Prachayasittikul,
A PRACTICAL OVERVIEW OF QUANTITATIVE STRUCTURE-
ACTIVITY RELATIONSHIP, EXCLI J. 8 (2009) 74-88.
https://www.excli.de/vol8/Prachayasittikul_04 2009/Prachayasittikul 050509
_proof.pdf (accessed May 14, 2019).

K. Miuller, The Power of MMPA and a Teaching Lesson in Medicinal
Chemistry, J. Med. Chem. 55 (2012) 1815-1816.
http://pubs.acs.org/doi/abs/10.1021/jm300163y (accessed July 8, 2016).

A. de la V. de Leon, J. Bajorath, Prediction of Compound Potency Changes in
Matched Molecular Pairs Using Support Vector Regression, J. Chem. Inf.
Model. 54 (2014) 2654-2663. http://pubs.acs.org/doi/abs/10.1021/ci5003944
(accessed July 8, 2016).

A.S. Raw, M.S. Furness, D.S. Gill, R.C. Adams, F.O. Holcombe, L.X. Yu,
Regulatory considerations of pharmaceutical solid polymorphism in
Abbreviated New Drug Applications (ANDAs), Adv. Drug Deliv. Rev. 56
(2004) 397-414. https://doi.org/10.1016/J.ADDR.2003.10.011.

P. Polishchuk, Interpretation of Quantitative Structure-Activity Relationship
Models: Past, Present, and Future, J. Chem. Inf. Model. 57 (2017) 2618-2639.
https://doi.org/10.1021/acs.jcim.7b00274.

E. Strumbelj, I. Kononenko, Explaining prediction models and individual
predictions with feature contributions, Knowl. Inf. Syst. 41 (2014) 647-665.
https://doi.org/10.1007/s10115-013-0679-x.

A.W. Jones, Early drug discovery and the rise of pharmaceutical chemistry,
Drug Test. Anal. 3 (2011) 337—-344. https://doi.org/10.1002/dta.301.

D.J. W, Pharmaceutical Industry, Britannica. (2018).

https://www.britannica.com/technology/pharmaceutical-industry.

-183-

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

E.K. Teall, Medicine and Doctoring in Ancient Mesopotamia, Gd. Val. J. Hist.
3 (2014) 1-8.
http://scholarworks.gvsu.edu/gvjhhttp://scholarworks.gvsu.edu/gvjh/vol3/iss1/
2 (accessed April 5, 2019).

S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R.
Lindborg, A.L. Schacht, How to improve R&D productivity: the

pharmaceutical industry’s grand challenge, Nat. Rev. Drug Discov. 9 (2010)
203-214. https://doi.org/10.1038/nrd3078.

J.W. Scannell, J. Bosley, When Quality Beats Quantity: Decision Theory, Drug
Discovery, and the Reproducibility Crisis., PLoS One. 11 (2016) e0147215.
https://doi.org/10.1371/journal.pone.0147215.

J.G. Mahdi, A.J. Mahdi, A.J. Mahdi, I.D. Bowen, The historical analysis of
aspirin discovery, its relation to the willow tree and antiproliferative and
anticancer potential, Cell Prolif. 39 (2006) 147-155.
https://doi.org/10.1111/j.1365-2184.2006.00377 .X.

W. Hamilton, The history of medicine, surgery and anatomy, Henry Colburn
and Richard Bentley, London, 1831.

https://archive.org/details/historyofmedicin02unse.

C. Yapijakis, Hippocrates of Kos, the father of clinical medicine, and
Asclepiades of Bithynia, the father of molecular medicine, In Vivo (Brooklyn).
23 (2009) 507-14. http://www.ncbi.nlm.nih.gov/pubmed/19567383 (accessed
April 9, 2019).

C. Krishnamurti, S.C. Rao, The isolation of morphine by Serturner., Indian J.
Anaesth. 60 (2016) 861-862. https://doi.org/10.4103/0019-5049.193696.

D. Taylor, The Pharmaceutical Industry and the Future of Drug Development,
Royal Society of Chemistry, Online, 2015.
https://doi.org/10.1039/9781782622345-00001.

L.X. Yu, Pharmaceutical Quality by Design: Product and Process
Development, Understanding, and Control, Pharm. Res. 25 (2008) 781-791.
https://doi.org/10.1007/s11095-007-9511-1.

M. Entzeroth, H. Flotow, P. Condron, Overview of high-throughput screening,

-184-

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Curr. Protoc. Pharmacol. 44 (2009) 9.4.1-9.4.27.
https://doi.org/10.1002/0471141755.ph0904s44.

H. Gubler, U. Schopfer, E. Jacoby, Theoretical and experimental relationships
between percent inhibition and 1C50 data observed in high-throughput
screening, J. Biomol. Screen. 18 (2013) 1-13.
https://doi.org/10.1177/10870571124552109.

M. Palucki, J.D. Higgins, E. Kwong, A.C. Templeton, Strategies at the Interface
of Drug Discovery and Development: Early Optimization of the Solid State
Phase and Preclinical Toxicology Formulation for Potential Drug Candidates,
J. Med. Chem. 53 (2010) 5897-5905. https://doi.org/10.1021/jm1002638.

M. Segall, A. Chadwick, The risks of subconscious biases in drug-discovery
decision making, Futur. Med. Chem. 3 (2011) 771-4.
https://doi.org/10.4155/FMC.11.33.

T.J. DiFeo, Drug Product Development: A Technical Review of Chemistry,
Manufacturing, and Controls Information for the Support of Pharmaceutical
Compound Licensing Activities, Drug Dev. Ind. Pharm. 29 (2003) 939-958.
https://doi.org/10.1081/DDC-120025452.

K.M. Lee, Overview of Drug Product Development, Curr. Protoc. Pharmacol. .
(2001) 7.3.1-7.3.10. https://doi.org/10.1002/0471141755.ph0703s15.

T.J. Hwang, D. Carpenter, J.C. Lauffenburger, B. Wang, J.M. Franklin, A.S.
Kesselheim, Failure of Investigational Drugs in Late-Stage Clinical
Development and Publication of Trial Results, JAMA Intern. Med. 176 (2016)
1826. https://doi.org/10.1001/jamainternmed.2016.6008.

J.W. Scannell, A. Blanckley, H. Boldon, B. Warrington, Diagnosing the decline
in pharmaceutical R&D efficiency, Nat. Rev. Drug Discov. 11 (2012)
191-200. https://doi.org/10.1038/nrd3681.

C.A.S. Bergstrom, W.N. Charman, C.J.H. Porter, Computational prediction of
formulation strategies for beyond-rule-of-5 compounds, Adv. Drug Deliv. Rev.
101 (2016) 6-21. https://doi.org/10.1016/J.ADDR.2016.02.005.

K. Raza, P. Kumar, S. Ratan, R. Malik, S. Arora, Polymorphism: The
Phenomenon Affecting the Performance of Drugs, SOJ Pharm. Pharm. Sci. 1

-185-

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(2014) 10. https://doi.org/10.15226/2374-6866/1/2/00111.

A.J. Blacker, M.T. Williams, Introduction, in: A.J. Blacker, M.T. Williams
(Eds.), Pharm. Process Dev., Royal Society of Chemistry, Cambridge, 2011.

U.S. Food and Drug Administration, Pharmaceutical Quality for the 21st
Century A Risk-Based Approach Progress Report, 2007.
https://www.fda.gov/about-fda/center-drug-evaluation-and-
research/pharmaceutical-quality-21st-century-risk-based-approach-progress-
report (accessed June 21, 2019).

A.T. Chadwick, M.D. Segall, Overcoming psychological barriers to good
discovery decisions, Drug Discov. Today. 15 (2010) 561-569.
https://doi.org/10.1016/J.DRUDIS.2010.05.007.

E. Gawehn, J.A. Hiss, G. Schneider, Deep Learning in Drug Discovery, Mol.
Inform. 35 (2016) 3-14. https://doi.org/10.1002/minf.201501008.

D. Stumpfe, H. Hu, J. Bajorath, Evolving Concept of Activity Cliffs, ACS
Omega. 4 (2019) 14360. https://doi.org/10.1021/acsomega.9b02221.

Y. Zhou, S. Cahya, S.A. Combs, C.A. Nicolaou, J. Wang, P. V. Desali, J. Shen,
Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial
ADME Data Sets, J. Chem. Inf. Model. (2019) acs.jcim.8b00671.
https://doi.org/10.1021/acs.jcim.8b00671.

K. Liu, X. Sun, L. Jia, J. Ma, H. Xing, J. Wu, H. Gao, Y. Sun, F. Boulnois, J.
Fan, Chemi-Net: A molecular graph convolutional network for accurate drug
property prediction, Comput. Res. Repos. abs/1803.0 (2018).
http://arxiv.org/abs/1803.06236 (accessed July 19, 2018).

T. Loftsson, Physicochemical Properties and Pharmacokinetics, in: Essent.
Pharmacokinet., Academic Press, online, 2015: pp. 85-104.
https://doi.org/10.1016/B978-0-12-801411-0.00003-2.

C.A.S. Bergstrom, P. Larsson, Computational prediction of drug solubility in
water-based systems: Qualitative and quantitative approaches used in the
current drug discovery and development setting, Int. J. Pharm. 540 (2018) 185-
193. https://doi.org/10.1016/J.1JPHARM.2018.01.044.

F. Meng, W. Xu, Drug permeability prediction using PMF method, J. Mol.

-186-

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Model. 19 (2013) 991-997. https://doi.org/10.1007/s00894-012-1655-1.

K.R. Chu, E. Lee, S.H. Jeong, E.-S. Park, Effect of particle size on the
dissolution behaviors of poorly water-soluble drugs, Arch. Pharm. Res. 35
(2012) 1187-1195. https://doi.org/10.1007/s12272-012-0709-3.

R.B. Hammond, K. Pencheva, K.J. Roberts, T. Auffret, Quantifying solubility
enhancement due to particle size reduction and crystal habit modification: Case
study of acetyl salicylic acid, J. Pharm. Sci. 96 (2007) 1967-1973.
https://doi.org/10.1002/jps.20869.

R. Censi, P. Di Martino, Polymorph Impact on the Bioavailability and Stability
of Poorly Soluble Drugs, Molecules. 20 (2015) 18759-18776.
https://doi.org/10.3390/molecules201018759.

A.J. Cruz-Cabeza, S.M. Reutzel-Edens, J. Bernstein, Facts and fictions about
polymorphism, Chem. Soc. Rev. 44 (2015) 8619-8635.
https://doi.org/10.1039/c5¢s00227c.

H.P.G. Thompson, G.M. Day, Which conformations make stable crystal
structures? Mapping crystalline molecular geometries to the conformational
energy landscape, Chem. Sci. 5 (2014) 3173-3182.
https://doi.org/10.1039/c4sc01132e.

AY. Lee, D. Erdemir, A.S. Myerson, Crystal Polymorphism in Chemical
Process Development, Annu. Rev. Chem. Biomol. Eng. 2 (2011) 259-280.
https://doi.org/10.1146/annurev-chembioeng-061010-114224.

J.B.O. Mitchell, Machine learning methods in chemoinformatics, Comput. Mol.
Sci. 4 (2014) 468-481.

S. Pirhadi, F. Shiri, J.B. Ghasemi, Multivariate statistical analysis methods in
QSAR, RSC Adv. 5 (2015) 104635-104665.
https://doi.org/10.1039/C5RA10729F.

A.G. Dossetter, E.J. Griffen, A.G. Leach, Matched Molecular Pair Analysis in
drug discovery, Drug Discov. Today. 18 (2013) 724-731.
https://doi.org/10.1016/j.drudis.2013.03.003.

D. Weininger, SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules, J. Chem. Inf. Model. 28

-187-

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

(1988) 31-36. https://doi.org/10.1021/ci00057a005.

F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, G. Monfardini, The
Graph Neural Network Model, IEEE Trans. Neural Networks. 20 (2009) 61—
80. https://doi.org/10.1109/TNN.2008.2005605.

M. Ladd, R. Palmer, Lattices and Space-Group Theory, in: Struct. Determ. by
X-Ray Crystallogr., Springer US, Boston, MA, 2013: pp. 51-110.
https://doi.org/10.1007/978-1-4614-3954-7 2.

H. Arnold, M.1. Aroyo, E.F. Bertaut, H. Burzlaff, G. Chapuis, W. Fischer, H.D.
Flack, A.M. Glazer, H. Grimmer, B. Gruber, T. Hahn, H. Klapper, E. Koch, P.
Konstantinov, V. Kopsky, D.B. Litvin, A. Looijenga-Vos, K. Momma, U.
Mdller, U. Shmueli, B. Souvignier, J.C.H. Spence, P.M. de Wolff, H.
Wondratschek, H. Zimmermann, International Tables for Crystallography:

Space-group symmetry, Int. Union Crystallogr. A (2016).
J.W. Mullin, Crystallization, 4th ed., Butterworth-Heinemann, Oxford, 2001.

J.D. Wright, Molecular Crystals, 2nd ed., Cambridge University Press,
Cambridge, 1995.

J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed., Academic Press,
Online, 2011.
https://www.sciencedirect.com/book/9780123751829/intermolecular-and-
surface-forces#book-description.

A. Shahi, E. Arunan, Why are Hydrogen Bonds Directional?, J. Chem. Sci. 128
(2016) 1571-1577. https://doi.org/10.1007/s12039-016-1156-3.

P.A. Wood, T.S.G. Olsson, J.C. Cole, S.J. Cottrell, N. Feeder, P.T.A. Galek,
C.R. Groom, E. Pidcock, Evaluation of molecular crystal structures using Full
interaction maps, CrystEngComm. 15 (2013) 65-72.

B.A. Kolesov, M.A. Mikhailenko, E. V. Boldyreva, Dynamics of the
intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to
crystal packing and conformational transitions: A variable-temperature
polarized Raman spectroscopy study, Phys. Chem. Chem. Phys. 13 (2011)
14243-14253. https://doi.org/10.1039/c1cp20139e.

C. Hammond, Introduction to crystallography, revised, Oxford University

-188-

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Press, New York, New York, USA, 1992.

A.K. Tiwary, Modification of Crystal Habit and Its Role in Dosage Form
Performance, Drug Dev. Ind. Pharm. 27 (2001) 699-709.
https://doi.org/10.1081/DDC-100107327.

Z.B. Kuvadia, M.F. Doherty, Effect of Structurally Similar Additives on Crystal
Habit of Organic Molecular Crystals at Low Supersaturation, Cryst. Growth
Des. 13 (2013) 1412-1428. https://doi.org/10.1021/cg3010618.

N. Pudasaini, C.R. Parker, S.U. Hagen, A.D. Bond, J. Rantanen, Role of
Solvent Selection on Crystal Habit of 5-Aminosalicylic Acid—Combined
Experimental and Computational Approach, J. Pharm. Sci. 107 (2018) 1112—
1121. https://doi.org/10.1016/J.XPHS.2017.12.005.

R.L. Marchese Robinson, K.J. Roberts, E.B. Martin, The influence of solid state
information and descriptor selection on statistical models of temperature
dependent aqueous solubility, J. Cheminform. 10 (2018) 44.
https://doi.org/10.1186/s13321-018-0298-3.

R. Docherty, K. Pencheva, Y.A. Abramov, Low solubility in drug development:
de-convoluting the relative importance of solvation and crystal packing., J.
Pharm. Pharmacol. 67 (2015) 847-56. https://doi.org/10.1111/jphp.12393.

T.W. Boyle, Glaxo Inc. v. Novopharm Ltd., 931 F. Supp. 1280 (E.D.N.C.
1996), Eastern District of North Carolina, 1996.
https://law.justia.com/cases/federal/district-courts/FSupp/931/1280/2346630/
(accessed August 23, 2018).

CCDC, (n.d.). https://www.ccdc.cam.ac.uk/.

C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, The Cambridge Structural
Database, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72 (2016)
171-179. https://doi.org/10.1107/S2052520616003954.

M. Ishikawa, Y. Hashimoto, Improving the Water-Solubility of Compounds By
Molecular Modification to Disrupt Crystal Packing, in: C.G. Wermuth, D.
Aldous, P. Raboisson, D. Rognan (Eds.), Pract. Med. Chem. Fourth Ed., 4th
ed., Academic Press, Online, 2015. https://doi.org/10.1016/B978-0-12-417205-
0.00031-6.

-189-

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

S.N. Bhattachar, L.A. Deschenes, J.A. Wesley, Solubility: it’s not just for
physical chemists, Drug Discov. Today. 11 (2006) 1012-1018.
https://doi.org/10.1016/J.DRUDIS.2006.09.002.

J.L. McDonagh, N. Nath, L. De Ferrari, T. Van Mourik, J.B.O. Mitchell,
Uniting cheminformatics and chemical theory to predict the intrinsic aqueous
solubility of crystalline druglike molecules, J. Chem. Inf. Model. 54 (2014)
844-856. https://doi.org/10.1021/ci4005805.

Y. Zhang, N. Wang, L. Zou, M. Zhang, R. Chi, Molecular dynamics simulation
on the dissolution process of Kaempferol cluster, J. Mol. Lig. 304 (2020)
112779. https://doi.org/10.1016/j.molliq.2020.112779.

N. Feeder, E. Pidcock, A.M. Reilly, G. Sadig, C.L. Doherty, K.R. Back, P.
Meenan, R. Docherty, The integration of solid-form informatics into solid-form
selection, J. Pharm. Pharmacol. (2015). https://doi.org/10.1111/jphp.12394.

S.H. Yalkowsky, Y. He, P. Jain, Handbook of Aqueous Solubility Data, 2nd
ed., Taylor and Francis Group, Boca Raton, 2010.

J.L. McDonagh, T. van Mourik, J.B.O. Mitchell, Predicting Melting Points of
Organic Molecules: Applications to Agqueous Solubility Prediction Using the
General Solubility Equation, Mol. Inform. 34 (2015) 715-724.
https://doi.org/10.1002/minf.201500052.

J.C. Bradley, A. Lang, A. Willaims, Open Melting Point Data, Online. (2011).
http://Ixsrv7.oru.edu/~alang/meltingpoints/download.php.

I. V. Tetko, D. M. Lowe, A.J. Williams, The development of models to predict
melting and pyrolysis point data associated with several hundred thousand
compounds mined from PATENTS, J. Cheminform. 8 (2016) 2.
https://doi.org/10.1186/s13321-016-0113-y.

M. Salahinejad, T.C. Le, D.A. Winkler, Capturing the crystal: Prediction of
enthalpy of sublimation, crystal lattice energy, and melting points of organic
compounds, J. Chem. Inf. Model. (2013). https://doi.org/10.1021/ci3005012.

M.J. Bryant, S.N. Black, H. Blade, R. Docherty, A.G.P. Maloney, S.C. Taylor,
The CSD Drug Subset: The Changing Chemistry and Crystallography of Small
Molecule Pharmaceuticals, J. Pharm. Sci. 108 (2019) 1655-1662.

-190-

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

https://doi.org/10.1016/J.XPHS.2018.12.011.

H. Kopp, On the Relation between Boiling-Point and Composition in Organic
Compounds, Philos. Trans. R. Soc. London. 150 (1860) 257-276.
https://www.jstor.org/stable/108772?seq=1#metadata_info_tab_contents
(accessed May 14, 2019).

J.B. Austin, A Relationship between the molecular weights and melting points
of organic compounds, J. Am. Chem. Soc. 52 (1930) 1049-1053.
https://doi.org/10.1021/ja01366a032.

S.M. Free, JW. Wilson, A Mathematical Contribution to Structure-Activity
Studies, J. Med. Chem. 7 (1964) 395-399.
https://doi.org/10.1021/jm00334a001.

R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH
Verlag GmbH, Weinheim, 2008.

P. Smialowski, D. Frishman, S. Kramer, Pitfalls of supervised feature selection,
Bioinformatics. 26 (2010) 440-443.
https://doi.org/10.1093/bioinformatics/btp621.

N.M. O’Boyle, D.S. Palmer, F. Nigsch, J.B. Mitchell, Simultaneous feature
selection and parameter optimisation using an artificial ant colony: case study
of melting point prediction., Chem. Cent. J. 2 (2008) 21.
https://doi.org/10.1186/1752-153X-2-21.

H. Moriwaki, Y.-S. Tian, N. Kawashita, T. Takagi, Mordred: a molecular
descriptor calculator, J. Cheminform. 10 (2018) 4.
https://doi.org/10.1186/s13321-018-0258-y.

H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. Perkins, W. Tong,
Mold2 , Molecular Descriptors from 2D Structures for Chemoinformatics and
Toxicoinformatics, J. Chem. Inf. Model. 48 (2008) 1337-1344.
https://doi.org/10.1021/ci800038f.

Y.A. Abramov, Major Source of Error in QSPR Prediction of Intrinsic
Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?,
Mol. Pharm. 12 (2015) 2126-2141.
https://doi.org/10.1021/acs.molpharmaceut.5b00119.

-191-

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

S. Emami, A. Jouyban, H. Valizadeh, A. Shayanfar, Are Crystallinity
Parameters Critical for Drug Solubility Prediction?, J. Solution Chem. 44
(2015) 2297-2315. https://doi.org/10.1007/s10953-015-0410-5.

O. Isayev, D. Fourches, E.N. Muratov, C. Oses, K. Rasch, A. Tropsha, S.
Curtarolo, Materials Cartography: Representing and Mining Materials Space
Using Structural and Electronic Fingerprints, Chem. Mater. 27 (2015) 735-743.
https://doi.org/10.1021/cm503507h.

D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gomez-Bombarelli,
T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional Networks on Graphs
for Learning Molecular Fingerprints, Comput. Res. Repos. abs/1509.09292
(2015). http://arxiv.org/abs/1509.09292 (accessed July 19, 2018).

T. Cheng, Q. Li, Y. Wang, S.H. Bryant, Binary Classification of Aqueous
Solubility Using Support Vector Machines with Reduction and Recombination
Feature Selection, J. Chem. Inf. Model. 51 (2011) 229-236.
https://doi.org/10.1021/ci100364a.

M. Yang, B. Tao, C. Chen, W. Jia, S. Sun, T. Zhang, X. Wang, Machine
Learning Models Based on Molecular Fingerprints and an Extreme Gradient
Boosting Method Lead to the Discovery of JAK2 Inhibitors, J. Chem. Inf.
Model. 59 (2019) 5002-5012. https://doi.org/10.1021/acs.jcim.9b00798.

H. Cai, V.W. Zheng, K.C.-C. Chang, A Comprehensive Survey of Graph
Embedding: Problems, Techniques, and Applications, IEEE Trans. Knowl.
Data Eng. 30 (2018) 1616-1637. https://doi.org/10.1109/TKDE.2018.2807452.

P. Zhang, J. Yellen, J.L. Gross, Handbook of graph theory, 2nd ed., Taylor &
Francis Group, New York, New York, USA, 2015.

J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message
Passing for Quantum Chemistry, Comput. Res. Repos. abs/1704.0 (2017).
http://arxiv.org/abs/1704.01212 (accessed July 20, 2018).

T. Pham, T. Tran, S. Venkatesh, Graph Memory Networks for Molecular
Activity Prediction, Comput. Res. Repos. abs/1801.02622 (2018).
http://arxiv.org/abs/1801.02622 (accessed July 19, 2018).

M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph

-192-

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

domains, in: Int. Jt. Conf. Neural Networks., IEEE, 2005: pp. 729-734.
https://doi.org/10.1109/IJCNN.2005.1555942.

Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated Graph Sequence Neural
Networks, Comput. Res. Repos. abs/1511.0 (2015).
http://arxiv.org/abs/1511.05493 (accessed July 20, 2018).

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, Molecular graph
convolutions: moving beyond fingerprints, J. Comput. Aided. Mol. Des. 30
(2016) 595-608. https://doi.org/10.1007/s10822-016-9938-8.

P.W. Battaglia, R. Pascanu, M. Lai, D. Rezende, K. Kavukcuoglu, Interaction
Networks for Learning about Objects, Relations and Physics, Artif. Intell.
(2016). http://arxiv.org/abs/1612.00222 (accessed July 1, 2019).

A. Dey, Machine Learning Algorithms: A Review, Int. J. Comput. Sci. Inf.
Technol. 7 (2016) 1174-1179.

Y. Li, Deep Reinforcement Learning, Eprint ArXiv:1810.06339. (2018).
http://arxiv.org/abs/1810.06339 (accessed May 31, 2019).

M. Khanum, T. Mahboob, W. Imtiaz, H.A. Ghafoor, R. Sehar, A Survey on
Unsupervised Machine Learning Algorithms for Automation, Classification
and Maintenance, Int. J. Comput. Appl. 113 (2015) 34-39.
https://www.semanticscholar.org/paper/A-Survey-on-Unsupervised-Machine-
Learning-for-and-Khanum-
Mahboob/0c63ae912aa3264013b70c15d1c0c040d27219f7 (accessed May 11,
2019).

G.C. Cawley, N.L.C. Talbot, On Over-fitting in Model Selection and
Subsequent Selection Bias in Performance Evaluation, J. Mach. Learn. Res. 11
(2010) 2079-2107. http://jmlr.org/papers/vll/cawleylOa.html (accessed
September 25, 2020).

D. Baumann, K. Baumann, Reliable estimation of prediction errors for QSAR
models under model uncertainty using double cross-validation, J. Cheminform.
6 (2014) 47. https://doi.org/10.1186/5s13321-014-0047-1.

J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimization, J.
Mach. Learn. Res. 13 (2012) 281-305. http://scikit-learn.sourceforge.net.

-193-

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

(accessed April 15, 2019).

N. Srivastava, G. Hinton, A. Krizhevsky, R. Salakhutdinov, Dropout: A Simple
Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res. 15
(2014) 1929-1958.
http://jmlr.org/papers/volumel5/srivastaval4a.old/srivastavalda.pdf (accessed
June 4, 2019).

P.J. Huber, Robust Estimation of a Location Parameter, Ann. Math. Stat. 35
(1964) 73-101. https://doi.org/10.1214/aoms/1177703732.

S. Jadon, A survey of loss functions for semantic segmentation, Image Video
Process. (2020). http://arxiv.org/abs/2006.14822 (accessed September 25,
2020).

D.L.J. Alexander, A. Tropsha, D.A. Winkler, Beware of R2: Simple,
Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR
Models, J. Chem. Inf. Model. 55 (2015) 1316-1322.
https://doi.org/10.1021/acs.jcim.5b00206.

L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, A. Verri, Are Loss Functions
All the Same?, Neural Comput. 16 (2004) 1063-1076.
https://doi.org/10.1162/089976604773135104.

N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
https://doi.org/10.1017/cb09780511801389.

L.E. Raileanu, K. Stoffel, Theoretical Comparison between the Gini Index and
Information Gain Criteria, Ann. Math. Artif. Intell. 41 (2004) 77-93.
https://doi.org/10.1023/B:AMAI.0000018580.96245.c6.

N. Chinchor, MUC-4 evaluation metrics, in: Proc. 4th Conf. Messag. Underst.
- MUC4 °92, Association for Computational Linguistics (ACL), Morristown,
NJ, USA, 1992: p. 22. https://doi.org/10.3115/1072064.1072067.

L. Breiman, Random Forest, Mach. Learn. 45 (2001) 5-32.
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf (accessed July
7,2019).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

-194-

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
Learning in Python, J. Mach. Learn. Res. 12 (2011) 2825-2830.
http://jmir.org/papers/v12/pedregosalla.html (accessed August 24, 2018).

B.H. Menze, B.M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich,
F.A. Hamprecht, A comparison of random forest and its Gini importance with
standard chemometric methods for the feature selection and classification of
spectral data, BMC Bioinformatics. 10 (2009) 213.
https://doi.org/10.1186/1471-2105-10-213.

W.S. Noble, What is a support vector machine?, Nat. Biotechnol. 24 (2006)
1565-1567. https://doi.org/10.1038/nbt1206-1565.

C.J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Min. Knowl. Discov. 2 (1998) 121-167. https://www.microsoft.com/en-
us/research/publication/a-tutorial-on-support-vector-machines-for-pattern-

recognition/ (accessed September 26, 2020).

W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (1943) 115-133.
https://doi.org/10.1007/BF02478259.

Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521 (2015) 436—444.
https://doi.org/10.1038/nature14539.

S. Hochreiter, J.J. Urgen Schmidhuber, Long short -term memory, Neural
Comput. 9 (1997) 1735-1780. http://mwww7.informatik.tu-

muenchen.de/~hochreithttp://www.idsia.ch/~juergen (accessed July 7, 2019).

M. Hagan, H.B. Demuth, M.H. Beale, O. De Jesus, Neural Network Design,
2nd ed., PWS Publishing Co, Boston, 2016. https://hagan.okstate.edu/nnd.html
(accessed September 25, 2020).

F. Siddique, S. Sakib, M.A.B. Siddique, Recognition of handwritten digit using
convolutional neural network in python with tensorflow and comparison of
performance for various hidden layers, in: 2019 5th Int. Conf. Adv. Electr. Eng.
ICAEE 2019, Institute of Electrical and Electronics Engineers Inc., 2019: pp.
541-546. https://doi.org/10.1109/ICAEE48663.2019.8975496.

-195-

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

S. Ruder, An overview of gradient descent optimization algorithms, Mach.
Learn. (2016). http://arxiv.org/abs/1609.04747 (accessed May 2, 2019).

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: 13th Int. Conf. Artif. Intell. Stat., PMLR, 2010: pp. 249—
256. http://proceedings.mir.press/v9/glorot10a.html (accessed May 11, 2019).

Y.A. LeCun, L. Bottou, G.B. Orr, K.-R. Miiller, Efficient BackProp, in:
Montavon G, Orr G B, Miiller KR (Eds.), Neural Networks: Tricks of the Trade,
2nd ed., Springer, Berlin, 2012: pp. 9-48. https://doi.org/10.1007/978-3-642-
35289-8 3.

B. Hanin, D. Rolnick, How to Start Training: The Effect of Initialization and
Architecture, Mach. Learing. (2018). http://arxiv.org/abs/1803.01719 (accessed
May 12, 2019).

AM. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks, Neural Evol. Comput.
(2013). http://arxiv.org/abs/1312.6120 (accessed May 12, 2019).

D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: 3rd Int.
Conf. Learn. Represent., San Diego, 2015. http://arxiv.org/abs/1412.6980
(accessed May 2, 2019).

G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning machines:
A review, Neural Networks. 61 (2015) 32-48.
https://doi.org/10.1016/j.neunet.2014.10.001.

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient Flow in
Recurrent Nets: The Difficulty of Learning LongTerm Dependencies, in: J.F.
Kolen, S.C. Kremer (Eds.), A F. Guid. to Dyn. Recurr. Networks, IEEE, 2009.
https://doi.org/10.1109/9780470544037.ch14.

Duchi John, E. Hazan, Y. Singer, Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization * Elad Hazan, J. Mach. Learn. Res. 12
(2011) 2121-2159.

M. Claesen, B. De Moor, Hyperparameter Search in Machine Learning, XI
Metaheuristics Int. Conf. (2015). http://arxiv.org/abs/1502.02127 (accessed
April 15, 2019).

-196-

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

O. Obrezanova, G. Csanyi, J.M.R. Gola, M.D. Segall, Gaussian processes: A
method for automatic QSAR modeling of ADME properties, J. Chem. Inf.
Model. 47 (2007) 1847-1857. https://doi.org/10.1021/ci7000633.

S. Ding, H. Li, C. Su, J. Yu, F. Jin, Evolutionary artificial neural networks: a
review, Artif. Intell. Rev. 39 (2013) 251-260. https://doi.org/10.1007/s10462-
011-9270-6.

J.T. Tsai, J.H. Chou, T.K. Liu, Tuning the Structure and Parameters of a Neural
Network by Using Hybrid Taguchi-Genetic Algorithm, IEEE Trans. Neural
Networks. 17 (2006) 69-80. https://doi.org/10.1109/TNN.2005.860885.

J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian Optimization of
Machine Learning Algorithms, ArXiv:1206.2944v2 . (2012).
http://arxiv.org/abs/1206.2944 (accessed April 15, 2019).

J. Bergstra, D. Yamins, D.D. Cox, Hyperopt: A Python Library for Optimizing
the Hyperparameters of Machine Learning Algorithms, in: PROC. 12th
PYTHON Sci. CONF, 2013: pp. 13-20.
http://www.youtube.com/watch?v=Mp1xnPfE4PY! (accessed April 15, 2019).

J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for Hyper-Parameter
Optimization, Adv. Neural Inf. Process. Syst. (2011).
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-
optimization.pdf (accessed April 15, 2019).

D.R. Jones, A Taxonomy of Global Optimization Methods Based on Response
Surfaces, J. Glob. Optim. 21 (2001) 345-383.
https://doi.org/10.1023/A:1012771025575.

J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the
global optimization of expensive-to-evaluate functions, J. Glob. Optim. 44
(2009) 509-534. https://doi.org/10.1007/s10898-008-9354-2.

F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential Model-Based Optimization
for General Algorithm Configuration, Learn. Intell. Optim. 6683 (2011) 507—
523. https://doi.org/10.1007/978-3-642-25566-3_40.

J. Francisco, M. Diaz, C. Maurice, F. Lerasle, F.L. Hyper, F. Madrigal, F.

Lerasle, F. Madrigal, C. Maurice, F. Lerasle, Hyper-parameter optimization

-197-

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

tools comparison for Multiple Object Tracking applications, Mach. Vis. Appl.
30 (2018) 269-289. https://doi.org/10.1007/s00138-018-0984-1i.

P.D. Tsakanikas, S.H. Yalkowsky, Estimation of melting point of flexible
molecules: Aliphatic hydrocarbons, Toxicol. Environ. Chem. 17 (1988) 19-33.
https://doi.org/10.1080/02772248809357275.

T. Hanser, C. Barber, J.F. Marchaland, S. Werner, Applicability domain:
towards a more formal definition, SAR QSAR Environ. Res. 27 (2016) 893-
909. https://doi.org/10.1080/1062936X.2016.1250229.

F. Svensson, N. Aniceto, U. Norinder, I. Cortes-Ciriano, O. Spjuth, L. Carlsson,
A. Bender, Conformal Regression for Quantitative Structure-Activity
Relationship Modeling - Quantifying Prediction Uncertainty, J. Chem. Inf.
Model. 58 (2018) 1132-1140. https://doi.org/10.1021/acs.jcim.8b00054.

H. Kopp, On a great regularity in the physical properties of analogous organic
compounds, Philos. Mag. 130 (1842) 187-197.

L.P. Hammett, The Effect of Structure upon the Reactions of Organic
Compounds. Benzene Derivatives, J. Am. Chem. Soc. 59 (1937) 96-103.
https://doi.org/10.1021/ja01280a022.

J. Taskinen, J. Yliruusi, Prediction of physicochemical properties based on
neural network modelling, Adv. Drug Deliv. Rev. 55 (2003) 1163-1183.
https://doi.org/10.1016/S0169-409X(03)00117-0.

AR. Katrizky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, 1. Kahn, D.A.
Dobchev, Quantitative correlation of physical and chemical properties with
chemical structure- Utility for prediction, Chem. Rev. 110 (2010) 5714-57809.

W.L. Jorgensen, E.M. Duffy, Prediction of drug solubility from structure, Adv.
Drug Deliv. Rev. 54 (2002) 355-366. https://doi.org/10.1016/S0169-
409X(02)00008-X.

S.R. Johnson, W. Zheng, Recent progress in the computational prediction of
aqueous solubility and absorption, AAPS J. 8 (2006) E27—E40.

B.F. Begam, J.S. Kumar, A Study on Cheminformatics and its Applications on
Modern Drug Discovery, Procedia Eng. 38 (2012) 1264-1275.
https://doi.org/10.1016/J.PROENG.2012.06.156.

-198-

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

C. Hansch, P.P. Maloney, T. Fujita, R.M. Muir, Correlation of biological
activity of phenoxyacetic acids with Hammett substituent constants and
partition coefficients, Nature. 194 (1962) 178-180.
https://doi.org/10.1038/194178b0.

C. Hansch, T. Fujita, p-o-m Analysis. A Method for the Correlation of
Biological Activity and Chemical Structure, J. Am. Chem. Soc. 86 (1964)
1616-1626. https://doi.org/10.1021/ja01062a035.

Y.C. Martin, Hansch analysis 50 years on, Wiley Interdiscip. Rev. Comput.
Mol. Sci. 2 (2012) 435-442. https://doi.org/10.1002/wcms.1096.

C. Hansch, R.M. Muir, T. Fujita, P.P. Maloney, F. Geiger, M. Streich, The
Correlation of Biological Activity of Plant Growth Regulators and
Chloromycetin Derivatives with Hammett Constants and Partition Coefficients,
J. Am. Chem. Soc. 85 (1963) 2817-2824. https://doi.org/10.1021/ja00901a033.

H. Briem, J. Giinther, Classifying “Kinase Inhibitor-Likeness” by Using
Machine-Learning Methods, ChemBioChem. 6 (2005) 558-566.
https://doi.org/10.1002/cbic.200400109.

S.-S. So, M. Karplus, Three-Dimensional Quantitative Structure—Activity
Relationships from Molecular Similarity Matrices and Genetic Neural
Networks. 1. Method and Validations, J. Med. Chem. 40 (1997) 4347-4359.
https://doi.org/10.1021/JM970487V.

D.-S. Cao, Q.-S. Xu, Y.-Z. Liang, X. Chen, H.-D. Li, Prediction of aqueous
solubility of druglike organic compounds using partial least squares, back-
propagation network and support vector machine, J. Chemom. 24 (2010) n/a-
n/a. https://doi.org/10.1002/cem.1321.

S. Enami, A. Jouyban, H. Valizadeh, A. Shayanfar, Are Crystallinity
Parameters Critical for Drug Solubility Prediction, J. Solution Chem. 44 (2015)
2297-2315. http://link.springer.com/article/10.1007%2Fs10953-015-0410-5.

I. V. Tetko, Y. Sushko, S. Novotarskyi, L. Patiny, . Kondratov, A.E. Petrenko,
L. Charochkina, A.M. Asiri, How Accurately Can We Predict the Melting
Points of Drug-like Compounds?, J. Chem. Inf. Model. 54 (2014) 3320-3329.
https://doi.org/10.1021/ci5005288.

-199-

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

N. Jain, S.H. Yalkowsky, UPPER IlI: Unified physical property estimation

relationships. Application to non-hydrogen bonding aromatic compounds, J.

Pharm. Sci. 88 (1999) 852-860. https://doi.org/10.1021/JS990117P.

M. Karthikeyan, R.C.G. And, A. Bender*, General Melting Point Prediction
Based on a Diverse Compound Data Set and Artificial Neural Networks, J.
Chem. Inf. Model. 45 (2005) 581-59. https://doi.org/10.1021/C10500132.

A.U. Bhat, S.S. Merchant, S.S. Bhagwat, Prediction of Melting Points of
Organic Compounds Using Extreme Learning Machines, Ind. Eng. Chem. Res.
47 (2008) 920-925. https://doi.org/10.1021/IE0704647.

C.A.S. Bergstrom, U. Norinder, K. Luthman, P. Artursson, Molecular
Descriptors Influencing Melting Point and Their Role in Classification of Solid
Drugs, J. Chem. Inf. Comput. Sci. 43 (2003) 1177-1185.
https://doi.org/10.1021/C1020280X.

L. Zhao, S.H. Yalkowsky, A Combined Group Contribution and Molecular
Geometry Approach for Predicting Melting Points of Aliphatic Compounds,
Ind. Eng. Chem. Res. 33 (1999) 1405-1409.
https://doi.org/10.1021/1E990281N.

M. Zhou, N. Duan, S. Liu, H.Y. Shum, Progress in Neural NLP: Modeling,
Learning, and Reasoning, Engineering. 6 (2020) 275-290.
https://doi.org/10.1016/j.eng.2019.12.014.

N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, The Computational
Limits of Deep Learning, Machine Learn. (2020).
http://arxiv.org/abs/2007.05558 (accessed September 26, 2020).

M. Salahinejad, T.C. Le, D.A. Winkler, Aqueous Solubility Prediction- Do
Crystal Lattice Interactions Help, Mol. Pharm. 10 (2013) 2757-2766.

C. Tyrchan, E. Evertsson, Matched Molecular Pair Analysis in Short:
Algorithms, Applications and Limitations, Comput. Struct. Biotechnol. J. 15
(2017) 86-90. https://doi.org/10.1016/j.csbj.2016.12.003.

J. Hussain, C. Rea, Computationally Efficient Algorithm to Identify Matched
Molecular Pairs (MMPs) in Large Data Sets, J. Chem. Inf. Model. 50 (2010)
339-348. http://pubs.acs.org/doi/abs/10.1021/ci900450m (accessed July 8,

-200-

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

2016).

R.P. Sheridan, The Most Common Chemical Replacements in Drug-Like
Compounds, J. Chem. Inf. Comput. Sci. 42 (2001) 103-108.
https://doi.org/10.1021/ci0100806.

D.J. Warner, E.J. Griffen, S.A. St-Gallay, WizePairZ: A Novel Algorithm to
Identify, Encode, and Exploit Matched Molecular Pairs with Unspecified Cores
in Medicinal Chemistry, J. Chem. Inf. Model. 50 (2010) 1350-1357.
http://pubs.acs.org/doi/abs/10.1021/ci100084s (accessed July 8, 2016).

J. Weber, J. Achenbach, D. Moser, E. Proschak, VAMMPIRE: A Matched
Molecular Pairs Database for Structure-Based Drug Design and Optimization,
J. Med. Chem. 56 (2013) 5203-5207.
http://pubs.acs.org/doi/abs/10.1021/jm400223y (accessed July 8, 2016).

J. Weber, J. Achenbach, D. Moser, E. Proschak, VAMMPIRE-LORD: A Web
Server for Straightforward Lead Optimization Using Matched Molecular Pairs,
J. Chem. Inf. Model. 55 (2015) 207-213.
http://pubs.acs.org/doi/abs/10.1021/ci5005256 (accessed July 8, 2016).

C. Kramer, J.E. Fuchs, S. Whitebread, P. Gedeck, K.R. Liedl, Matched
Molecular Pair Analysis- Significance and the Impact of Experimental
Uncertainty, J. Med. Chem. 57 (2014) 3786-3802.

A.G. Leach, H.D. Jones, D.A. Cosgrove, P.W. Kenny, L. Ruston, P. MacFaul,
J.M. Wood, N. Colclough, B. Law, Matched molecular pairs as a guide in the
optimization of pharmaceutical properties; a study of aqueous solubility,
plasma protein binding and oral exposure, J. Med. Chem. (2006).
https://doi.org/10.1021/jm0605233.

S.-Y. Chen, Z. Feng, X. Yi, A general introduction to adjustment for multiple
comparisons., J. Thorac. Dis. 9 (2017) 1725-1729.
https://doi.org/10.21037/jtd.2017.05.34.

P. Ranganathan, C.S. Pramesh, M. Buyse, Common pitfalls in statistical
analysis: The perils of multiple testing., Perspect. Clin. Res. 7 (2016) 106-7.
https://doi.org/10.4103/2229-3485.179436.

I. Giangreco, J.C. Cole, E. Thomas, Mining the Cambridge Structural Database

-201-

[190]

[191]

[192]

[193]

[194]

[195]

[196]

for Matched Molecular Crystal Structures: A Systematic Exploration of
Isostructurality, Cryst. Growth Des. 17 (2017) 3192-3203.
https://doi.org/10.1021/acs.cgd.7b00155.

G. Papadatos, M. Alkarouri, V.J. Gillet, P. Willett, V. Kadirkamanathan, C.N.
Luscombe, G. Bravi, N.J. Richmond, S.D. Pickett, J. Hussain, J.M. Pritchard,
AW.J. Cooper, S.J.F. Macdonald, Lead Optimization Using Matched
Molecular Pairs: Inclusion of Contextual Information for Enhanced Prediction
of hERG Inhibition, Solubility, and Lipophilicity, J. Chem. Inf. Model. 50
(2010) 1872-1886. https://doi.org/10.1021/ci100258p.

L. Zhang, H. Zhu, A. Mathiowetz, H. Gao, Deep understanding of structure—
solubility relationship for a diverse set of organic compounds using matched
molecular pairs, Bioorg. Med. Chem. 19 (2011) 5763-5770.
https://doi.org/10.1016/j.bmc.2011.08.036.

S. Schultes, C. de Graaf, H. Berger, M. Mayer, A. Steffen, E.E.J. Haaksma,
I.J.P. de Esch, R. Leurs, O. Kramer, A medicinal chemistry perspective on
melting point- matched molecular pair analysis of the effects of simple
descriptors on the melting point of drug-like compounds, Med. Chem.
Commun. 3 (2012) 584-591. https://doi.org/10.1039/c2md00313a.

T. Geppert, B. Beck, Fuzzy Matched Pairs: A Means To Determine the
Pharmacophore Impact on Molecular Interaction, J. Chem. Inf. Model. 54
(2014) 1093-1102. http://pubs.acs.org/doi/abs/10.1021/ci400694q (accessed
July 8, 2016).

A.M. Wassermann, J. Bajorath, A Data Mining Method To Facilitate SAR
Transfer, J. Chem. Inf. Model. 51 (2011) 1857-1866.
https://doi.org/10.1021/ci200254Kk.

D. Dimova, Y. Hu, J. Bajorath, Matched Molecular Pair Analysis of Small
Molecule Microarray Data Identifies Promiscuity Cliffs and Reveals Molecular
Origins of Extreme Compound Promiscuity, J. Med. Chem. 55 (2012) 10220-
10228.

A.M. Wassermann, D. Dimova, P. lyer, J. Bajorath, Advances in computational
medicinal chemistry: Matched molecular pair analysis, Drug Dev. Res. 73
(2012) 518-527. https://doi.org/10.1002/ddr.21045.

-202-

[197]

[198]

J.M. Beck, C. Springer, Quantitative Structure—Activity Relationship Models
of Chemical Transformations from Matched Pairs Analyses, J. Chem. Inf.
Model. 54 (2014) 1226-1234. https://doi.org/10.1021/ci500012n.

Y. Sushko, S. Novotarskyi, R. Korner, J. Vogt, A. Abdelaziz, 1. V Tetko,
Prediction-driven matched molecular pairs to interpret QSARs and aid the
molecular optimization process, J. Cheminform. 6 (2014) 48.
https://doi.org/10.1186/s13321-014-0048-0.

[199] A. de la V. de Ledn, J. Bajorath, Compound Optimization through Data Set-

[200]

[201]

[202]

[203]

[204]

[205]

[206]

Dependent Chemical Transformations, J. Chem. Inf. Model. 53 (2013) 1263-
1271. http://pubs.acs.org/doi/abs/10.1021/ci400165a (accessed July 8, 2016).

J. Janowiak, E.B. Martin, K.J. Roberts, Marchese Robinson, Richard L,
Maloney, Andrew, Giangreco, llenia, K. Pencheva, Adaptation of a Matched
Molecular Pair Identification Algorithm for Solid State Informatics Analysis of
the Cambridge Structural Database, in: UK QSAR, University of Cardiff, 2018.

A. Dalke, J. Hert, C. Kramer, Mmpdb: An Open-Source Matched Molecular
Pair Platform for Large Multiproperty Data Sets, J. Chem. Inf. Model. 58
(2018) 902-910. https://doi.org/10.1021/acs.jcim.8b00173.

Open-source cheminformatics, RDK:it, (n.d.). http://www.rdkit.org.

G.R. Desiraju, Supramolecular Synthons in Crystal Engineering—A New
Organic Synthesis, Angew. Chemie Int. Ed. English. 34 (1995) 2311-2327.
https://doi.org/10.1002/anie.199523111.

G.M. Day, A. V. Trask, W.D.S. Motherwell, W. Jones, Investigating the latent
polymorphism of maleic acid, Chem. Commun. (2006) 54-56.
https://doi.org/10.1039/B513442K.

R.S. Payne, R.J. Roberts, R.C. Rowe, R. Docherty, Examples of successful
crystal structure prediction: Polymorphs of primidone and progesterone, Int. J.
Pharm. 177 (1999) 231-245. https://doi.org/10.1016/S0378-5173(98)00348-2.

J. Kendrick, G.A. Stephenson, M.A. Neumann, F.J.J. Leusen, Crystal structure
prediction of a flexible molecule of pharmaceutical interest with unusual
polymorphic behavior, Cryst. Growth Des. 13 (2013) 581-589.
https://doi.org/10.1021/cg301222m.

-203-

[207]

[208]

[209]

[210]

[211]

L. luzzolino, P. McCabe, S.L. Price, J.G. Brandenburg, Crystal structure
prediction of flexible pharmaceutical-like molecules: density functional tight-
binding as an intermediate optimisation method and for free energy estimation,
Faraday Discuss. 211 (2018) 275-296. https://doi.org/10.1039/c8fd00010g.

AM. Reilly, R.I. Cooper, C.S. Adjiman, S. Bhattacharya, A.D. Boese, J.G.
Brandenburg, P.J. Bygrave, R. Bylsma, J.E. Campbell, R. Car, D.H. Case, R.
Chadha, J.C. Cole, K. Cosburn, H.M. Cuppen, F. Curtis, G.M. Day, R.A.
DiStasio, A. Dzyabchenko, B.P. Van Eijck, D.M. Elking, J.A. Van Den Ende,
J.C. Facelli, M.B. Ferraro, L. Fusti-Molnar, C.A. Gatsiou, T.S. Gee, R. De
Gelder, L.M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D.W.M. Hofmann, J.
Hoja, R.K. Hylton, L. luzzolino, W. Jankiewicz, D.T. De Jong, J. Kendrick,
N.J.J. De Klerk, H.Y. Ko, L.N. Kuleshova, X. Li, S. Lohani, F.J.J. Leusen, A.M.
Lund, J. Lv, Y. Ma, N. Marom, A.E. Masunov, P. McCabe, D.P. McMahon, H.
Meekes, M.P. Metz, A.J. Misquitta, S. Mohamed, B. Monserrat, R.J. Needs,
M.A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A.R. Oganov, A.M. Orendt,
G.l. Pagola, C.C. Pantelides, C.J. Pickard, R. Podeszwa, L.S. Price, S.L. Price,
A. Pulido, M.G. Read, K. Reuter, E. Schneider, C. Schober, G.P. Shields, P.
Singh, 1.J. Sugden, K. Szalewicz, C.R. Taylor, A. Tkatchenko, M.E.
Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y.
Wang, R.E. Watson, G.A. De Wijs, J. Yang, Q. Zhu, C.R. Groom, Report on
the sixth blind test of organic crystal structure prediction methods, Acta
Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72 (2016) 439-459.
https://doi.org/10.1107/S2052520616007447.

K. Kersten, R. Kaur, A. Matzger, Survey and analysis of crystal polymorphism
in organic structures, IUCrJ Chem. Cryst. Eng. 5 (2018) 124-129.
https://doi.org/10.1107/S2052252518000660.

P. Crafts, The Role of Solubility Modeling and Crystallization in the Design of
Active Pharmaceutical Ingredients, in: Ka M. Ng, Rafiqul Gani, Kim Dam-
Johansen (Eds.), Comput. Aided Chem. Eng., Elsevier, 2007: pp. 23-85.
https://doi.org/10.1016/S1570-7946(07)80005-8.

J. van de Streek, Searching the Cambridge Structural Database for the "best’
representative of each unique polymorph, Acta Crystallogr. Sect. B Struct. Sci.

-204-

62 (2006) 567-579. https://doi.org/10.1107/S0108768106019677.

[212] J.G.P. Wicker, R.l. Cooper, Beyond Rotatable Bond Counts: Capturing 3D
Conformational Flexibility in a Single Descriptor, J. Chem. Inf. Model. 56
(2016) 2347—-2352. https://doi.org/10.1021/acs.jcim.6b00565.

[213] P. Tosco, N. Stiefl, G. Landrum, Bringing the MMFF force field to the RDKit:
implementation and validation, J. Cheminform. 6 (2014) 37.
https://doi.org/10.1186/s13321-014-0037-3.

[214] Y.L. Slovokhotov, I.S. Neretin, J.A.K. Howard, Symmetry of van der Waals
molecular shape and melting points of organic compounds, New J. Chem. 28
(2004) 967-979. https://doi.org/10.1039/b310787f.

[215] CCDC, CSD Python API, (n.d.).
https://downloads.ccdc.cam.ac.uk/documentation/API/.

[216] W. McKinney, Data Structures for Statistical Computing in Python, in: S. van
der Walt, J. Millman (Eds.), Proc. 9th Python Sci. Conf., 2010: pp. 51-56.
http://conference.scipy.org/proceedings/scipy2010/mckinney.html (accessed
August 24, 2018).

[217] W. Michael, B. Olga, O. Drew, P. Hobson, J. Ostblom, L. Saulius, G. David C,
T. Augspurger, H. Yaroslav, C. John B., W. Jordi, de R. Julian, P. Cameron,
H. Stephan, V. Jake, V. Santi, Seaborn, (2018).
https://doi.org/10.5281/zenodo.1313201.

[218] J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9
(2007) 90-95. d0i:10.1109/MCSE.2007.55.

[219] A. Farcomeni, A review of modern multiple hypothesis testing, with particular
attention to the false discovery proportion, Stat. Methods Med. Res. 17 (2008)
347-388. https://doi.org/10.1177/0962280206079046.

[220] W.C. McCrone, Physics and Chemistry of the Organic Solid State, A.
Weissbergerinterscience Publishers, New York, 1965.

[221] M.R. Abu Bakar, Z.K. Nagy, C.D. Rielly, S.E. Dann, Investigation of the riddle
of sulfathiazole polymorphism, Int. J. Pharm. 414 (2011) 86-103.
https://doi.org/10.1016/J.1JPHARM.2011.05.004.

-205-

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

J. van de Streek, S. Motherwell, Searching the Cambridge Structural Database
for polymorphs, Acta Crystallogr. Sect. B Struct. Sci. 61 (2005) 504-510.
https://doi.org/10.1107/S0108768105020021.

A.A. Moldovan, I. Rosbottom, V. Ramachandran, C.M. Pask, O. Olomukhoro,
K.J. Roberts, Crystallographic Structure, Intermolecular Packing Energetics,
Crystal Morphology and Surface Chemistry of Salmeterol Xinafoate (Form 1),
J. Pharm. Sci. 106 (2017) 882-891.
https://doi.org/10.1016/J.XPHS.2016.11.016.

J.A. Chisholm, S. Motherwell, COMPACK: a program for identifying crystal
structure similarity using distances, J. Appl. Crystallogr. 38 (2005) 228-231.
https://doi.org/10.1107/S0021889804027074.

S. Boslaugh, Statistics in a Nutshell, 2nd ed., O’Reilly, online, 2012.
https://www.oreilly.com/library/view/statistics-in-a/9781449361129/
(accessed September 13, 2020).

J.E. Jackson, A Use’s Guide to Principal Components, John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 1991. https://doi.org/10.1002/0471725331.

X. Hu, Y. Hu, M. Vogt, D. Stumpfe, J. Bajorath, MMP-CIiffs: Systematic
Identification of Activity Cliffs on the Basis of Matched Molecular Pairs, J.
Chem. Inf. Model. 52 (2012) 1138-1145.
http://pubs.acs.org/doi/abs/10.1021/ci3001138 (accessed July 8, 2016).

D. Dimova, J. Bajorath, Extraction of SAR information from activity cliff
clusters via matching molecular series, Eur. J. Med. Chem. 87 (2014) 454-460.
https://doi.org/10.1016/j.ejmech.2014.09.087.

I. Pefia, M. Pilar Manzano, J. Cantizani, A. Kessler, J. Alonso-Padilla, A.l.
Bardera, E. Alvarez, G. Colmenarejo, I. Cotillo, I. Roquero, F. de Dios-Anton,
V. Barroso, A. Rodriguez, D.W. Gray, M. Navarro, V. Kumar, A. Sherstnev,
D.H. Drewry, J.R. Brown, J.M. Fiandor, J. Julio Martin, New Compound Sets
Identified from High Throughput Phenotypic Screening Against Three
Kinetoplastid Parasites: An Open Resource, Sci. Rep. 5 (2015) 8771.
https://doi.org/10.1038/srep08771.

A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring Network Structure,

-206-

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

Dynamics, and Function using NetworkX, in: G. Varoquaux, T. Vaught (Eds.),
Proc. Python Sci. Conf,, Pasadena, 2008: pp. 11-15.
http://conference.scipy.org/proceedings/SciPy2008/paper_2/ (accessed August
28, 2019).

M. Bastian, S. Heymann, M. Jacomy, Gephi: an open source software for
exploring and manipulating networks, in: Int. AAAI Conf. Weblogs Soc.
Media, San Jose, 2009. https://gephi.org/.

M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a Continuous
Graph Layout Algorithm for Handy Network Visualization Designed for the
Gephi Software, PLoS One. 9 (2014) €98679.
https://doi.org/10.1371/journal.pone.0098679.

E.J. Mills, D.F.R.S. Sc, On melting-point and boiling-point as related to
chemical composition, London, Edinburgh, Dublin Philos. Mag. J. Sci. 17
(1884) 173-187. https://doi.org/10.1080/14786448408627502.

R. Todeschini, P. Gramatica, SD-modelling and Prediction by WHIM
Descriptors. Part 5. Theory Development and Chemical Meaning of WHIM
Descriptors, Quant. Struct. Relationships. 16 (1997) 113-1109.
https://doi.org/10.1002/qgsar.19970160203.

D. Cherqaoui, D. Villemin, V. Kvasnicka, Application of neural network
approach for prediction of some thermochemical properties of alkanes,
Chemom. Intell. Lab. Syst. 24 (1994) 117-128. https://doi.org/10.1016/0169-
7439(94)00012-3.

J.C. Dearden, Quantitative structure-property relationships for prediction of
boiling point, vapor pressure, and melting point, Environ. Toxicol. Chem. 22
(2003) 1696. https://doi.org/10.1897/01-363.

J. Janowiak, E.B. Martin, R.L. Marchese Robinson, I. Giangreco, Melting Point
Prediction using Message Passing Neural Networks based on Molecular and
Crystal Structures, (2019).

V. Korolev, A. Mitrofanov, A. Korotcov, V. Tkachenko, Graph Convolutional

Neural Networks as “general-Purpose” Property Predictors: The Universality

and Limits of Applicability, J. Chem. Inf. Model. 60 (2020) 22-28.

-207-

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

https://doi.org/10.1021/acs.jcim.9b00587.

J. Lim, S. Ryu, K. Park, Y.J. Choe, J. Ham, W.Y. Kim, Predicting Drug-Target
Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded
Graph Representation, J. Chem. Inf. Model. 59 (2019) 3981-3988.
https://doi.org/10.1021/acs.jcim.9b00387.

K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the Properties of
Neural Machine Translation: Encoder-Decoder Approaches, Comput. Lang.
(2014). http://arxiv.org/abs/1409.1259 (accessed August 15, 2019).

P.C. St. John, C. Phillips, T.W. Kemper, A.N. Wilson, M.F. Crowley, M.R.
Nimlos, R.E. Larsen, Message-passing neural networks for high-throughput
polymer screening, ARXIV. 1807 (2018). http://arxiv.org/abs/1807.10363
(accessed October 12, 2018).

L. Laugier, D. Bash, J. Recatala, H.K. Ng, S. Ramasamy, C.-S. Foo, V.R.
Chandrasekhar, K. Hippalgaonkar, Predicting thermoelectric properties from
crystal graphs and material descriptors - first application for functional
materials, ArXiv:1811.06219. (2018). http://arxiv.org/abs/1811.06219
(accessed March 20, 2019).

A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard 111, W.M. Skiff, UFF,
a full periodic table force field for molecular mechanics and molecular
dynamics simulations, J. Am. Chem. Soc. 25 (1992) 10024-10035.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.7677&rep=rep
1&type=pdf (accessed September 19, 2020).

M.J. Bryant, A.G.P. Maloney, R.A. Sykes, Predicting mechanical properties of
crystalline materials through topological analysis, CrystEngComm. 20 (2018)
2698-2704. https://doi.org/10.1039/c8ce00454d.

Pande group, DeepChem, (2014). https://deepchem.io/docs/index.html.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.

-208-

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:

Large-scale machine learning on heterogeneous systems, (2015).

[247] E. Jones, T. Oliphant, P. Peterson, Others, SciPy: Open Source Scientific Tools
for Python, (2001).

[248] Microsoft, Gated Graph Neural Networks, (2018).

https://github.com/microsoft/gated-graph-neural-network-samples.

[249] I. Rosbottom, K.J. Roberts, R. Docherty, The solid state, surface and
morphological properties of p-aminobenzoic acid in terms of the strength and
directionality of its intermolecular synthons, CrystEngComm. 17 (2015) 5768—
5788. https://doi.org/10.1039/C5CE00302D.

[250] A. Vriza, A.B. Canaj, R. Vismara, L.J. Kershaw Cook, T.D. Manning, M.W.
Gaultois, P.A. Wood, V. Kurlin, N. Berry, M.S. Dyer, M.J. Rosseinsky, One
class classification as a practical approach for accelerating m-n co-crystal
discovery, Chem. Sci. 12 (2021) 1702-1719.
https://doi.org/10.1039/d0sc04263c.

[251] R.L. Marchese Robinson, I. Lynch, W. Peijnenburg, J. Rumble, F. Klaessig, C.
Marquardt, H. Rauscher, T. Puzyn, R. Purian, C. Aberg, S. Karcher, H. Vriens,
P. Hoet, M.D. Hoover, C.O. Hendren, S.L. Harper, How should the
completeness and quality of curated nanomaterial data be evaluated?,
Nanoscale. 8 (2016) 9919-9943. https://doi.org/10.1039/C5NR08944A.

[252] S. Kang, K. Cho, Conditional Molecular Design with Deep Generative Models,
Comput. Res. Repos. abs/1805.00108 (2018). http://arxiv.org/abs/1805.00108
(accessed July 19, 2018).

[253] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods, and
analytics, Int. J. Inf. Manage. 35 (2015) 137-144.
https://doi.org/10.1016/j.ijinfomgt.2014.10.007.

[254] M.D. Wilkinson, M. Dumontier, 1j.J. Aalbersberg, G. Appleton, M. Axton, A.
Baak, N. Blomberg, J.W. Boiten, L.B. da Silva Santos, P.E. Bourne, J.
Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds,
C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble,
J.S. Grethe, J. Heringa, P.A.C. t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J.

-209-

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M.
Roos, R. van Schaik, S.A. Sansone, E. Schultes, T. Sengstag, T. Slater, G.
Strawn, M.A. Swertz, M. Thompson, J. Van Der Lei, E. Van Mulligen, J.
Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons,
Comment: The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data. 3 (2016) 1-9. https://doi.org/10.1038/sdata.2016.18.

EPSRC, Expectations - EPSRC website, (n.d.).
https://epsrc.ukri.org/about/standards/researchdata/expectations/ (accessed
September 9, 2020).

B. Louis, V.K. Agrawal, P. V. Khadikar, Prediction of intrinsic solubility of
generic drugs using MLR, ANN and SVM analyses, Eur. J. Med. Chem. 45
(2010) 4018-4025. https://doi.org/10.1016/j.ejmech.2010.05.059.

A. Lusci, G. Pollastri, P. Baldi, Deep Architectures and Deep Learning in
Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like
Molecules, J. Chem. Inf. Model. 53 (2013) 1563-1575.
https://doi.org/10.1021/ci400187y.

I. Robinson, J. Webber, E. Eifrem, Graph Databases, 2nd ed., O’Reilly,
Sebastopol, 2015.

W. Zheng, A. Tropsha, Novel Variable Selection Quantitative
Structure—Property Relationship Approach Based on the k -Nearest-Neighbor
Principle, J. Chem. Inf. Comput. Sci. 40 (2000) 185-194.
https://doi.org/10.1021/ci980033m.

Organisation for Economic Co-operation and Development, OECD principles
for the validation, for regulatory purposes, of (quantitative) structure-activity
relationship models, 2004. hhttp://www.oecd.org/env/ehs/risk-

assessment/validationofgsarmodels.htm (accessed September 6, 2019).

M.T. Ribeiro, S. Singh, C. Guestrin, Why Should I Trust You? Explaining the
Predictions of Any Classifier, ARXIV Mach. Learn. (2016).
https://doi.org/10.1145/2939672.2939778.

M. Salahinejad, T.C. Le, D.A. Winkler, Aqueous Solubility Prediction: Do
Crystal Lattice Interactions Help?, Mol. Pharm. 10 (2013) 2757-2766.

-210-

https://doi.org/10.1021/mp4001958.

[263] G. Clydesdale, K.J. Roberts, R. Docherty, HABIT95 — a program for
predicting the morphology of molecular crystals as a function of the growth
environment, J. Cryst. Growth. 166 (1996) 78-83.

[264] K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification, Comput. Vis. Pattern
Recognit. (2015). http://arxiv.org/abs/1502.01852 (accessed May 12, 2019).

-211-

Appendix 1
Matched Molecular Pairs
Database scripts

Purpose:

This appendix contains all scripts used to generate a Matched Molecular Pair
Database (Chapter 3) and carry out the analysis (Chapter 4). Scripts that generate
required files for Matched Molecular Graph generation (Chapter 6) is also included
here.

Folder structure and uses:

e mmpdb

__init__.py

tables.py

get_smiles.py

frag.py

indexfrag.py

mmp_identification

e csd_addon.py: prepares input for database.py if using CSD as source

e (database.py: creates MMP database

e analysis.py: performs MMPA on database, optionally prepares data for MMG

o

O O O O O

-212-

__init__.py

import tables

import frag

import indexfrag

import mmp identification

-213-

tables.py

def solids table(c):
c.execute (' CREATE TABLE IF NOT EXISTS '
'Solid properties '
'(Solid_id VARCHAR (10) PRIMARY KEY, Structure_family
VARCHAR (6) , '

' polymorph count INTEGER, structure count INTEGER)')

def smiles table(c):
c.execute ('CREATE TABLE IF NOT EXISTS '
'all smiles '
'(line_id INTEGER PRIMARY KEY, Solid_id VARCHAR (10),
mol id INTEGER '

"))

def frag table(c):
c.execute ('CREATE TABLE IF NOT EXISTS '
'rfrag '
'(rfrag id INTEGER PRIMARY KEY, mol id INTEGER, core
TEXT, core ni TEXT, core id INTEGER, chain TEXT, '
'chain size INTEGER, chain id, single cut INTEGER
DEFAULT 0, indexed INTEGER DEFAULT 0)')

def trans table(c):
c.execute ('CREATE TABLE IF NOT EXISTS Transformation ('

! trans_id INTEGER NOT NULL, '
! Rl_id INTEGER NOT NULL, '
! R2_id INTEGER NOT NULL, '
' SMIRKS TEXT NOT NULL, '
' PRIMARY KEY(tranS_id) !
")

def mmp table(c):
c.execute ('CREATE TABLE IF NOT EXISTS MMP '

'(mmp_id INTEGER PRIMARY KEY, trans_id INTEGER NOT
NULL, '

'moll_id INTEGER NOT NULL, molZ_id INTEGER NOT NULL,
context INTEGER, '

'FOREIGN KEY (trans_id) REFERENCES
Transformation(trans_id)) ")

def context table(c):
c.execute ("CREATE TABLE IF NOT EXISTS context table "

" ("
" context id INTEGER PRIMARY KEY,
" context smi VARCHAR (1000) NOT

NULL UNIQUE, "
" context size INTEGER, "
" single cut INTEGER DEFAULT 0 "
M

def core table(c):

-214-

c.execute ("CREATE TABLE IF NOT EXISTS fragments"
" ("
" Contextiid INTEGER NOT NULL,'
" cmpdiid INTEGER NOT NULL,"
" core id INTEGER, "
" core size INTEGER,"
" ratio REAL,"
" single cut INTEGER,"
" significant INTEGER NOT NULL

DEFAULT O"

n n

n)H)

def unique core table(c):
c.execute ("CREATE TABLE IF NOT EXISTS “core table™ ("

" “core id’ INTEGER, "
" “core smi’ TEXT UNIQUE, "
" “core smi ni° TEXT, "

" PRIMARY KEY(core id") "
"); ")

def mol descriptor table(c):
c.execute ("CREATE TABLE IF NOT EXISTS mol properties "
"(mol_id INTEGER PRIMARY KEY, "
"smiles VARCHAR(1000),cmpd size INTEGER, fragmented
INTEGER DEFAULT O, MMP_identified INTEGER DEFAULT O, "
"n conf 20 INTEGER "

H) H)

def all tables(c):
solids table(c)
smiles table(c)
frag table(c)
trans_table(c)
mmp_table (c)
context table(c)
core table(c)
unique core table(c)
mol descriptor table(c)

-215-

get_smiles.py
#

This script can be used for any purpose without limitation subject
to the

conditions at
http://www.ccdc.cam.ac.uk/Community/Pages/Licences/v2.aspx

#

This permission notice and the following statement of attribution
must be

included in all copies or substantial portions of this script.

#

2017-02-07: created by the Cambridge Crystallographic Data Centre

from ccdc import search
from rdkit import Chem

def heavy atom count(smi):
m = Chem.MolFromSmiles (smi)
return m.GetNumAtoms ()

def get rdkit mol(ccdc_mol):

"""Return RDKit molecule, with 2D coordinates, from a CCDC
molecule.
mol block = Chem.MolFromMolBlock(ccdc mol)

rdkit mol smiles = Chem.MolToSmiles (mol block,
isomericSmiles=True)
return rdkit mol smiles

def generate smiles from mol block(mol):

"""Return an RDKit SMILES from a sdf mol block of a CCDC
molecule.”"""
mol block = mol.to string('sdf')
return get rdkit mol(mol block)

def generate smiles from kekulized mol block(mol):

"""Return an RDKit SMILES from a sdf mol block of a kekulized
CCDC molecule."""

mol.kekulize ()

kekulized mol = mol.to string('sdf')

return get rdkit mol (kekulized mol)

def generate smiles from csd(mol):
"""Return an CSD SMILES from a CCDC molecule.
csd _smiles = mol.smiles
return Chem.MolToSmiles(Chem.MolToSmiles (csd smiles),
isomericSmiles=True)

class RDKitChargeConventionSetter:
def init (self):
self.editors = []
You can add in any other edits you need here
The pairs (1,-1) mean 'transform the atom labeled '1l' in
the SMARTS to have a charge '-1', etc.'
self. add editor('[OX1:1]-[nX3:21",[(1,-1),(2,1) 1)

-216-

self. add_editor (' [!#1]=[N:1]=[N:2]",[(1,1),(2,-1) 1)

def add editor(self, smarts pattern, charge transformation):
searcher = search.SubstructureSearch ()
sub = search.SMARTSSubstructure(smarts_pattern)
searcher.add substructure (sub)
self.editors.append((searcher, sub,
charge transformation))

def charge balance molecule with editor(self, mol, editor):
hits = editor[0].search(mol)
for hit in hits:
hit atom indexes = hit.match atoms(indices=True)
substructure = editor[1]
for pair in editor[2]:
sub_atom index =
substructure.label to atom index(pair[0])

mol.atoms[hit atom indexes[sub atom index]].partial charge
float(pair[1])

mol.atoms[hit atom indexes[sub_atom index]].formal charge
int(pair[1])

def charge balance molecule(self, mol):

for editor in self.editors:
self. charge balance molecule with editor(mol,editor)

def generate smiles(entry):

mol = entry.molecule
try:
smiles = generate smiles from mol block(mol)
method = 'mol block'
except:
try:
smiles = generate smiles from kekulized mol block(mol)
method = 'kekulized mol block’
except:
try:

setter = RDKitChargeConventionSetter ()
setter.charge balance molecule(mol)

smiles = generate smiles from mol block(mol)
method = "mol block with charges for N-oxide"
except:
try:
smiles = generate smiles from csd(mol)
method = "CSD and canonicalised with RDKit"
except:
smiles = "'
method = 'unable'

return smiles, method

-217-

frag.py

Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are

met:

#

* Redistributions of source code must retain the above
copyright

notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided

with the distribution.

* Neither the name of GlaxoSmithKline Research & Development
Ltd.

nor the names of its contributors may be used to endorse or
promote

products derived from this software without specific prior
written

permission.

#

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

#

Created by Jameed Hussain, July 2013

#

Modifications and optimizations by Greg Landrum, July 2015

#

import re

from rdkit import Chem
from rdkit.Chem import rdMMPA

def find correct(f array):

core =

-218-

side chains = ""

for f in f array:

attachments = f.count ("*")
if (attachments == 1):
side chains = "%$s.%s" % (side_chains, f)
else:
core = f
side chains = side chains.lstrip('.")

#cansmi the side chains
temp = Chem.MolFromSmiles (side chains)
side chains = Chem.MolToSmiles(temp, isomericSmiles=True)

#and cansmi the core
temp = Chem.MolFromSmiles (core)
core = Chem.MolToSmiles (temp, isomericSmiles=True)

return core, side chains

def delete bonds(smi, id, mol, bonds, out):

#use the same parent mol object and create editable mol
em = Chem.EditableMol (mol)

#loop through the bonds to delete
isotope = 0
isotope track = {}
for i in bonds:
isotope += 1
#remove the bond
em.RemoveBond (i[0], 1[1])

#now add attachement points
newAtomA = em.AddAtom(Chem.Atom(0))
em.AddBond (i[0], newAtomA, Chem.BondType.SINGLE)

newAtomB = em.AddAtom(Chem.Atom(0))
em.AddBond (i[1], newAtomB, Chem.BondType.SINGLE)

#keep track of where to put isotopes
isotope track[newAtomA] = isotope
isotope track[newAtomB] = isotope

#should be able to get away without sanitising mol
#as the existing valencies/atoms not changed
modifiedMol = em.GetMol ()

#canonical smiles can be different with and without the isotopes

#hence to keep track of duplicates use fragmented smi nolIsotopes

fragmented smi nolIsotopes = Chem.MolToSmiles (modifiedMol,
isomericSmiles=True)

valid = True
fragments = fragmented smi nolIsotopes.split(".")

#check if its a valid triple cut

if (isotope == 3):
valid = False

-219-

for f in fragments:
matchObj = re.search('*.**_**', f)
if matchObj:
valid = True

break
if valid:
if (isotope == 1):
fragmented smi nolIsotopes = re.sub('\[*\]"', '"[*:1]",

fragmented smi nolIsotopes)
fragments = fragmented smi nolIsotopes.split(".")
#print fragmented smi noIsotopes

sl Chem.MolFromSmiles (fragments[0])
s2 = Chem.MolFromSmiles (fragments[1])

#need to cansmi again as smiles can be different
output = '%s,%s,,%s.%s' % (smi, id, Chem.MolToSmiles(sl,
isomericSmiles=True),
Chem.MolToSmiles (s2,
isomericSmiles=True))
if ((output in out) == False):
out.add (output)

elif (isotope >= 2):
#add the isotope labels
for key in isotope track:
#to add isotope lables

modifiedMol.GetAtomWithIdx (key) .SetIsotope(isotope trackl[key])
fragmented smi = Chem.MolToSmiles (modifiedMol,
isomericSmiles=True)

#change the isotopes into labels - currently can't add SMARTS
or labels to mol

fragmented smi = re.sub('\[1*\]', "[*:1]"', fragmented smi)
fragmented smi = re.sub('\[2*\]"', "[*:2]', fragmented smi)
fragmented smi = re.sub('\[3*\]"', '"[*:3]', fragmented smi)

fragments = fragmented smi.split(".")

#identify core/side chains and cansmi them
core, side chains = find correct(fragments)

#now change the labels on sidechains and core
#to get the new labels, cansmi the dot-disconnected side
chains

#the first fragment in the side chains has attachment label 1,
2nd: 2, 3rd: 3
#then change the labels accordingly in the core

#this is required by the indexing script, as the side-chains
are "keys" in the index

#this ensures the side-chains always have the same numbering

isotope track = {}
side chain fragments = side chains.split(".")

for s in range(len(side chain fragments)):

-220-

matchObj = re.search('\[*\: ([123])\]",
side chain fragments[s])
if matchObj:
#add to isotope track with key: old isotope, value:
isotope track[matchObj.group(l)] = str(s + 1)

#change the labels if required
if (isotope track['l'] != '1"):
core = re.sub('\[*\:1\]"', '"[*:XX' 4+ isotope track['l'] +
'XX]"', core)
side chains = re.sub('\[*\:I\]', "[*:XX' +
isotope track['l'] + '"XX]', side chains)
if (isotope track['2'] != '2"):
core = re.sub('\[*\:2\]"', '"[*:XX' 4+ isotope track['2'] +
'XX]"', core)
side chains = re.sub('\[*\:2\]"', "[*:XX' +
isotope track['2'] + '"XX]', side chains)

if (isotope == 3):
if (isotope track['3'] != "3"):
core = re.sub('\[*\:3\]", '"[*:XX' + isotope track['3'] +
'XX]', core)
side chains = re.sub('\[*\:3\]"', "[*:XX' +
isotope track['3'] + "XX]', side chains)

#now remove the XX

core = re.sub('XxX', '', core)

side chains = re.sub('XX', "', side chains)

output = '%s,%s,%s,%s' % (smi, id, core, side chains)
if ((output in out) == False):

out.add (output)

def fragment mol(smi, id):
mol = Chem.MolFromSmiles (smi)

#different cuts can give the same fragments
#to use outlines to remove them

outlines = set()
if (mol == None):
print("Can't generate mol for: %s\n" % (smi))
return
else:
frags = rdMMPA.FragmentMol (mol,
pattern="[#6+0; ! S (*=,#[!#6])]!e!=1#[*]", resultsAsMols=False)
for core, chains in frags:
output = (str(smi),str(id),str(core),str(chains))

if (not (output in outlines)):
outlines.add (output)
return outlines

-221-

indexfrag.py

Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are

met:

#

* Redistributions of source code must retain the above
copyright

notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided

with the distribution.

* Neither the name of GlaxoSmithKline Research & Development
Ltd.

nor the names of its contributors may be used to endorse or
promote

products derived from this software without specific prior
written

permission.

#

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

#

Created by Jameed Hussain, July 2013

#

modifications by Jakub Janowiak, 2018

import pandas as pd

import re
from rdkit import Chem

\\N\NNNNNNNNNNNNNNNNN\N\Ncore side//////// /7117777777777 7

def core db(conn):

-222-

nun

"""Return pandas.DataFrame with cores from database.

sql = "''SELECT core_id, core smi FROM core table''"'
cores old = pd.read sql query(sgl, conn)
cores_old['old'] = True

they are loaded in random order for some reason

cores old =
cores_old.sort values(by=['core id']) .reset index().drop('index',
axis=1)

return cores old

def get cores(frag df):
"""Return pandas.Dataframe with cores from frag df."""
cores_new = frag df.drop duplicates(subset='core smi')
cores _new.drop(['cmpd size', 'context size', 'core size',
'ratio', 'context smi', 'mol id', 'single cut'], axis=l,
inplace=True)
cores new['old'] = False
return cores new

def core all(cores new, cores_old):

"""Return a combined pandas.DataFrame with old and new
contexts"""

if cores old.empty is True:

line = {'core smi': ["[*:1][H]"], 'core id': [0], 'old':
[False]}

cores = pd.DataFrame(line, columns=line.keys())

cores = pd.concat([cores, cores new])

cores = cores.reset index() .drop('index', axis=l)

assert cores.loc[0, 'core id'] == 0, 'something went wrong

with generating core table; index issue'

else:
cores = pd.concat([cores old, cores new]).reset index()
cores.rename (columns={'core id': 'core old'}, inplace=True)
drops the contexts that were already in the database
cores.drop duplicates(subset='core smi', keep='first',
inplace=True)
cores.drop('index', axis=1, inplace=True)

cores = cores.reset index()
cores.drop('index', axis=1, inplace=True)
check the old index didnt change

row _index = len(cores[(cores['old'] == True) & (cores.index
== cores['core 0ld'])])

row _old = len(cores[cores['old'] == Truel])

assert row old == row index, 'duplicate cores found in
database.'

cores.drop('core old', axis=1l, inplace=True)
cores['core id'] = cores.index

return cores

def get smi ni(smi):
"""Return fragment string without numbered cuts """

-223-

smi = re.sub(r'\[*\:I\]", '"[*]', smi)
smi = re.sub(r'\[*\:2\]", '"[*]', smi)
smi = re.sub(r"\[*\:3\]", "[*]', smi)

return smi

def core to db(cores, conn):
"""Tnsert contexts to database and return the corresponding
pandas.Dataframe"""

new cores = cores[cores['old'] == False]
drop 'old' column
new cores = new_cores.drop('old', axis=l)
if not new cores.empty:
new cores['core smi ni'] = new cores.apply(lambda row:

get smi ni(row['core smi']), axis=1l)
new cores.to sqgl('core table', conn, if exists='append',
index=False) # TODO check this, hasnt been done yet

\\NNNNNNNNNNNNNNNNN\N\\N\context side///// /111771177 1777777/

def context db(conn):
"""Return pandas.DataFrame with contexts from database.
sql = '"''SELECT context smi, context id, context size,
single cut FROM context table'''
contexts old = pd.read sql gquery(sgl, conn)
contexts old['old'] = True
contexts old =
contexts old.sort values(by=['context id']).reset index().drop('inde

x', axis=l)

return contexts old

def get contexts(frag df):
"""Return pandas.Dataframe with contexts from frag df."""
contexts new = frag df.drop duplicates(subset='context smi')

contexts new = contexts new.reset index()

contexts new = contexts new.drop(['cmpd size', 'core size',
'ratio', 'core smi', 'mol id', 'index'], axis=l)

contexts new['old'] = False

return contexts new

def context all(contexts new, contexts old):
"""Return a combined pandas.DataFrame with old and new
contexts"""
if contexts old.empty is True:
contexts = contexts new
else:
contexts = pd.concat([contexts old,
contexts new]) .reset index()
contexts.rename (columns={'context id': 'context old'},
inplace=True)
drops the contexts that were already in the database
contexts.drop duplicates(subset='context smi', keep='first',
inplace=True)
contexts.drop('index', axis=1l, inplace=True)

contexts = contexts.reset index()

-224-

contexts.drop('index', axis=1, inplace=True)
check the old index didnt change

row _index = len(contexts[(contexts['old'] == True) &
(contexts.index == contexts['context old'])])

row _old = len(contexts[contexts['old'] == Truel])

if row index != row old:

raise Exception('duplicate contexts found in database.')
contexts.drop('context old', axis=1l, inplace=True)

contexts['context id'] = contexts.index

return contexts

def context to db(contexts, conn):

Insert contexts to database and return the corresponding
pandas.Dataframe"""

new_contexts = contexts[contexts['old'] == False]
drop 'old' column
new_contexts = new_contexts.drop('old', axis=l)

if not new contexts.empty:
new_contexts.to sgl('context table', conn,
if exists='append', index=False) # TODO check this, hasnt been done
yet

return new contexts

def h change(smi):

replace [1] with H

smi = re.sub(r'\[*\:I\]", "[H]', smi)

construct a mol

temp = Chem.MolFromSmiles (smi)

if temp is None:
print('failed to generate Chem.Mol for {}'.format(smi))
mol = None

else:
mol = Chem.MolToSmiles (temp, isomericSmiles=True)

return smiles
return mol

def index h change(new contexts, conn):

new contexts['mol'] = new contexts.apply(lambda row:
h change(row['context smi']) if (row['single cut'] == 1) else None,
axis=1)

drop na

new contexts.drop('single cut',axis=1, inplace=True)

new contexts.dropna(axis=0, how='any', inplace=True)

new contexts['context id'] = new contexts.index # loses index
on merge

merge with all smiles (inner)

sgql = 'SELECT smiles, mol id FROM mol properties'
all smiles = pd.read sgl query(sgl,conn)
new contexts = new contexts.merge(all smiles, how='inner',

left on="mol', right on='smiles")
new_contexts.drop(['smiles', 'mol'], axis=1l, inplace=True)
new contexts['ratio'] = 0
new contexts['core size']l = 0

-225-

new contexts['core smi']l = '"[*:1][H]'
new contexts['core id'] = 0
new contexts['single cut'] =1

new contexts.rename (columns={'unique smiles id': 'smiles id'},

inplace=True)

return new contexts

OANNNNNNNNNNNNNNNNNNNfragments////// /1777777777 777777
def get id(frag df, contexts, cores):
"""Return pandas.DataFrame with context id and core_ id"""
contexts.drop(['context size', 'old', 'single cut'], axis=l,
inplace=True)
cores.drop('old', axis=1l, inplace=True)
frag df.drop('cmpd size', axis=1l, inplace=True)

frag df = frag df.merge(contexts, how='left', on='context smi')

frag df = frag df.merge(cores, how='left', on='core smi')

return frag df

ANNNNNNNNNNNNNNNNNNNNmain///// /7777777777777 77

def index core(frag df, conn):

cores_old core _db(conn)
cores new = get cores(frag_ df)

cores = core_all(cores new, cores_old)
core to db(cores, conn)

return cores

def index context(frag df, conn):

contexts old context db(conn)
contexts new = get contexts(frag df)

contexts = context all(contexts new, contexts old)

if not contexts[contexts['old'] == False].empty:
h frag = context to db(contexts, conn)
h frag = index h change(h frag, conn)

else:
h frag = None

return contexts, h frag

def index main(frag df, conn):
cores = index core(frag df, conn)
contexts, h frag = index context(frag df, conn)
frag df = get id(frag df,contexts,cores)

if h frag is not None:

frag df = pd.concat([frag df,
h fragl]) .reset index(drop=True)

-226-

frag df = frag df.drop(['context smi', 'core smi',
'context size'l]l, axis=l)
frag df.rename(columns={'mol id': 'cmpd id'}, inplace=True)
frag df.to sqgl('fragments', conn, if exists='append',
index=False)

-227-

mmp_identification.py

import pandas as pd

import numpy as np

from joblib import Parallel, delayed
import time

#from main import conn
#from main import c
context = {}

class DatabaseException (Exception) :
pass

"""returns compound list (cmpd id, cmpd size) and DataFrame with
fragments"""

def load data(ratio, max size, conn):
sgql cmpd = ("'
'SELECT distinct (cmpd id), cmpd size '
'FROM fragments, mol properties '
'"WHERE cmpd id = mol id AND MMP identified = 0 '
T
)

sql frag = ("'
'SELECT fragments.cmpd id, fragments.core id,
fragments.context id, context size '
'FROM fragments, context table '
'WHERE significant 1 AND context table.context id
= fragments.context id '
'AND ratio <= {ratio} AND core size <= {size}'
")
var = {'ratio': ratio, 'size': max size}
sql frag = sqgl frag.format(**var)
df cmpd = pd.read sql query(sgl cmpd, conn)
cmpd list = df cmpd.values.tolist()
global fragmts
fragmts = pd.read sql query(sgl frag, conn)

return cmpd list

def get contexts(cmpd) :
"""creates a dictionary with cmpd id: [context id,...]..."""
c id = cmpd[0]
contexts = fragmts.context id[fragmts.cmpd id == c_id]
context list = contexts.values.tolist()
context[c id] = context list

def find mmp (cmpd) :

"""finds MMPs of a molecule. Uses context dict and frag
DataFrame"""

c_id, c¢_size = cmpd

contexts = context[c id]

-228-

all mmp = fragmts[(fragmts.context id.isin(contexts)) &
(fragmts.cmpd id '= c_id)].groupby(fragmts['cmpd id']) # TODO change
the conditions removed: & (c _size - fragmts.context id < 15)
mmp list = []
for mmp in list(all mmp):
df = mmp[1]
pair = df.ix[df['context size'].idxmax()]
mmp list.append(pair)
if mmp list:
mmps = pd.concat (mmp list, axis=l).T.reset index()
else:
mmps = None
return c id, mmps

def sort mmp(mmp_ set):

"""combines the generated mmp tables of each molecule into
one"""
full mmp set = []
NoneType = type (None)

for i in mmp set:

if type(i[1]) is NoneType:

continue
else:
table = i[1]
table = table.rename(columns={'cmpd id': 'mol2',
'core id': 'R2', 'context id': 'context'})

table = table.assign(moll=i[0])
table = table.astype (int)

full mmp set.append(table)
TODO sort it out for the case for no MMPs
mmp table = pd.concat(full mmp set)
mmp table = mmp table.reset index()
mmp_ table.drop(['level 0', '"index'], axis=1l, inplace=True)
mmp table = mmp table[mmp table['moll'] !=
mmp_table['mol2']].reset index()
mmp table.drop('index', axis=1l, inplace=True)
return mmp table

def find rl(mmp):

"""adds symmetrical transformation to mmp dataframe"""

mmp = mmp.merge (fragmts[['cmpd id', 'core id', 'context id']l],
left on=['moll', 'context'l, right on=['cmpd id', 'context id'],
how='left")

mmp['R1'] = mmp['RI"].fillna(mmp['core id'])

mmp.drop (['context id', 'core id', 'cmpd id'], axis=l,
inplace=True)

mmp['R1"'] = mmp['R1'].astype (int)

return mmp

def reorganise (mmp) :
"""reorganises mmps and transformation to avoid counting
symmetrical pairs as separate"""
reorders moll, mol2 and R1l, R2 so all are in order of R2 > Rl
idx = (mmp['R1'] > mmp['R2'])
mmp.loc[idx, ['moll', '"mol2']] = mmp.loc[idx, ['mol2',
'moll"]].values

mmp.loc[idx, ['R1', '"R2']] = mmp.loc[idx, ['R2', 'R1']].values

-229-

drops duplicate

mmp = mmp.drop duplicates(subset=['moll', 'mol2']).reset index()
mmp .drop ('index', axis=1, inplace=True)

return mmp

def get trans(mmp) :
"""selects all unique R1-R2 combinations from identified mmps"""
trans = mmp[['R1"', 'R2']].drop duplicates(subset=['R1',
'R2"]) .reset _index()
trans.drop('index', axis=1, inplace=True)
trans['old'] = False
trans.index.rename('trans id', inplace=True)
return trans

def trans db(conn):
"""]oads all transformations from the database"""
sql = "''SELECT trans id, R1 id, R2 id FROM Transformation'''
trans old = pd.read sql query(sql, conn, index col='trans id'")
trans _old['old'] = True
trans old = trans old.rename(columns={'Rl id': 'R1', 'R2 id':
'R2"})
return trans old

def trans all(trans old, trans new):

"""combines newly identified transformations with ones from the
database"""

if trans old.empty is True:

trans = trans_new

else:
trans = pd.concat([trans old, trans newl]).reset index()
trans = trans.rename(columns={'trans id': 'transid old'})

drops the transformations that were already in the
database

trans.drop duplicates(subset=['R1', 'R2'], keep='first',
inplace=True)

TODO see context and core workflows, see if index needs to
be reset

check the old index didnt change by accident

row _index = len(trans[(trans['old'] == True) & (trans.index
== trans['transid old'])])

row_old = len(trans[trans['old'] == True])

if row index != row old:

raise DatabaseException('duplicate transformations found
in database')
trans.drop('transid old', axis=1l, inplace=True)
trans['trans id']l = trans.index
return trans

def get smirks(trans, conn):

sgql = 'SELECT core_ id, core smi FROM core table'

cores = pd.read sql query(sgl, conn)

trans = trans.merge(cores, how='left', left on='R1l id',
right on='core id")

trans.rename (columns={'core smi': 'R1'}, inplace=True)

trans.drop('core id', axis=l, inplace=True)

trans = trans.merge(cores, how='left', left on='R2 id',

right on='core id")

-230-

trans.rename (columns={'core smi': 'R2'}, inplace=True)
trans.drop('core id', axis=l, inplace=True)
trans['SMIRKS'] = trans['R1'] + '">>' + trans['R2']
trans.drop(['R1', 'R2'], axis=1l, inplace=True)

return trans

def trans to db(trans, conn):
"""appends the new unique transformations to the database"""
remove the old ones that are already in the database

trans = trans[trans['old'] == False]

adjust the table so it matches the database table

trans = trans.rename(columns={'R1': 'R1 id', 'R2': 'R2 id'})
trans.drop('old', axis=1, inplace=True)

trans = get smirks(trans, conn)

trans.to_sqgl('Transformation', conn, 1f exists='append',
index=False)

def mmp to db(trans, mmp, conn):

"""gppends the newly identified mmps to the database"""

merge transformations and mmps on R1 and R2 to get transid for
mmps

mmp = pd.merge (mmp, trans, how='left', left on=['R1', 'R2'],
right on=['R1"', 'R2'])

adjust the DataFrame to match the database table

mmp.drop(['R1', 'R2', 'context size'], axis=1l, inplace=True)

mmp = mmp.rename (columns={'moll': 'moll id"', 'mol2': 'mol2 id'})

mmp.to sql('MMP', conn, if exists='append',6 index=False)

def identify mmps(ratio, max size, conn, c):
cmpd list = load data(ratio, max size, conn)
for i in cmpd list:
get contexts (i)
potentially combine the two so contexts are searched on the
fly. might save memory & time
ti = time.time ()
mmps = Parallel(n jobs=2) (delayed(find mmp) (i) for i in
cmpd _list)
mmp list = []
for i in cmpd list:
mmp = find mmp (i)
mmp list.append (mmp)
tf = time.time ()
print(tf-ti)
ti = time.time ()
mmps = sort mmp (mmp list)
tf = time.time ()
print(tf-ti)

mmps['R1'] = np.nan # add rl column
ti = time.time ()
mmps = find rl (mmps)

tf = time.time ()
print(tf-ti)

ti = time.time ()

mmps = reorganise (mmps)

tf = time.time ()
print(tf-ti)

ti = time.time ()

trans new = get trans (mmps)

-231-

trans_old = trans_db(conn)
trans = trans all(trans old, trans new) #TODO check if works
tf = time.time ()
print(tf - ti)
ti = time.time ()
trans_to _db(trans, conn)
tf = time.time ()
print(tf - ti)
ti = time.time ()
trans.drop('old', axis=1l, inplace=True)
mmp_ to db(trans, mmps, conn)
tf = time.time ()
print(tf - ti)
ti = time.time ()
c.execute ('UPDATE mol properties
'SET MMP identified = 1 '
'WHERE MMP_identified = 0 AND '
'mol id IN (SELECT distinct(cmpd id) FROM fragments)

]

tf = time.time ()
print(tf - ti)
conn.commit ()

-232-

database.py

import sglite3

import time

import argparse

import sys

import re

import os

import glob

import csv

import pandas as pd
from rdkit import Chem

try:

import mmpdb # TODO check if it imports from the folder or
outside of it
except ImportError:

print('could not import necessary files. Ensure mmpdb folder is
in a directory python can access')

sys.exit (1)

- Input smiles ————-————=—--————————
def heavy atom count (smi):
try:
mol = Chem.MolFromSmiles (smi)
return mol.GetNumAtoms ()
except AttributeError:
return None

def solid in db(input smiles, conn):
check if solid id in database already
remove once that already in
return the df
sgql = 'SELECT solid id FROM solid properties'
in db = pd.read sgl query(sgl, conn)
if not in db.empty:
input smiles = input smiles.merge(in db, how='outer',
indicator=True, on='solid id")
input smiles =
input smiles[input smiles[' merge']l=='left only']
input smiles = input smiles.drop(' merge',6axis=l)
return input smiles

def solid to db(input smiles, conn):

select distinct solid id

append to db

no returns

solids = input smiles.drop duplicates(subset='solid id")

solids.drop('smiles', axis=1l, inplace=True)

solids.to sgl('Solid properties', conn, if exists='append',
index=False)

def all smiles to db(input smiles, conn):
add all smiles to perserve stoich
to db = input smiles.drop(['smiles', 'old'], axis=l)
to db.to sgl('all smiles', conn, if exists='append',
index=False)

def get smiles(input smiles):

-233-

smiles new = input smiles.drop duplicates(subset='smiles')
smiles new = smiles new.reset index(drop=True)

smiles new['old'] = False
return smiles new

def smiles db(conn):
sql = 'SELECT mol id, smiles FROM mol properties' # check names
smiles old = pd.read sgl query(sgl, conn)
smiles old['old'] = True
smiles old =
smiles old.sort values(by=['mol id']).reset index(drop=True)
return smiles old

def smiles all(smiles new, smiles old):
if smiles old.empty is True:

smiles = smiles new
else:
smiles =
pd.concat([smiles old,smiles new]) .reset index(drop=True)
smiles.rename (columns={'mol id':'smiles old'}, inplace=True)

smiles.drop duplicates(subset='smiles', keep='first',
inplace=True)
smiles.reset index(drop=True)
row_index = len(smiles[(smiles['old'] == True) &
(smiles.index == smiles['smiles old'])])
row old = len(smiles[smiles['old'] == True])
if row index != row old:
raise Exception('duplicate {} found in
database.'.format('smiles'))
smiles.drop('smiles old', axis=1l, inplace=True)
smiles['mol id'] = smiles.index
return smiles

def smiles to db(smiles, conn):

smiles['cmpd size'] = smiles.apply(lambda row:
heavy atom count(row['smiles']) ,axis=1)

smiles['fragmented'] = 0

smiles['MMP identified'] = 0

smiles.to sqgl('mol properties', conn, if exists='append',
index=False)

def input smiles(input file, conn):
input smiles = pd.read csv(input file, header=None)

col count = len(input smiles.columns)
if col count ==

solid state = False

input smiles.columns = ['smiles']
elif col count ==

solid state = True

input smiles.columns
else:
print('something wrong with input')
sys.exit (1)
in some cases there might be empty smiles (failure on the
input side)
input smiles.dropna(axis=0, how='any', inplace=True)

['smiles','solid id']

if solid state:

-234-

input smiles = solid in db(input smiles, conn)
solid to db(input smiles, conn)
smiles new =
get smiles(input smiles.drop('solid id',axis=1))
create a all smiles df without adding to db
else:
smiles new = get smiles(input smiles)
assign smiles ids to all new molecules

smiles old = smiles_db(conn)
smiles = smiles_all(smiles new,smiles old)
if solid state:
merge with all smiles on smiles to get the new mol id
add to db from all smiles df
input smiles = input smiles.merge(smiles, how='left',
on='smiles")
all smiles to db(input smiles, conn)
drop 'old' column
smiles = smiles[smiles['old']==False]
smiles.drop('old',axis=1, inplace=True)
smiles to db(smiles, conn)

need to change unique smiles id = smiles id bit everywhere

F e Fragmentation -—-——-------=----—————
def get context size(context, attachments):
mol = Chem.MolFromSmiles (context)
size = mol.GetNumAtoms () - attachments

return size

def fragmnt(smi, id, cmpd size):

o = mmpdb. frag.fragment mol (smi, id)

frags = []

if o:

for 1 in o:
core = 1[2]
chains = 1[3]
no fragments
if core == '' and chains ==
continue

.

#single cut
elif core == '':
single cut =1
side chains = chains.split('.")

fragl-frag2 -> context: fragl, change: frag2

context, change = side chains

context size = get context size(context, 1)

f = {'mol id': id, 'context smi': context,
'core smi': change, 'single cut': single cut,

'cmpd size': cmpd size, 'context size':

context size}

frags.append(f)

fragl-frag2 -> context: frag2, change: fragl

change, context = side chains
context size = get context size(context, 1)

-235-

f = {'mol id': id, 'context smi': context,
'core smi': change, 'single cut': single cut,
'cmpd size': cmpd size, 'context size':
context size}
frags.append(f)

double / triple cut

else:

single cut = 0

context = chains

change = core

attachments = context.count ('*")

context size = get context size(context,
attachments)

f = {'mol id': id, 'context smi': context,
'core smi': change, 'single cut': single cut,

'cmpd size': cmpd size, 'context size':

context size}
frags.append(f)

return frags

def fragment(c):
c.execute ('SELECT smiles, mol id, cmpd size
'FROM mol properties '
'"WHERE fragmented = 0 ')
results = c.fetchall()
all frags = []
tl = time.time ()
for line in results:
frags = fragmnt(line[0], line[l], line[2])
all frags = all frags + frags
t2 = time.time ()
print (t2-t1)
frag df = pd.DataFrame(all frags,columns=['mol id'
'context smi', 'core smi', 'single cut', 'cmpd size',
'context size'])

~

frag df['core size']l = frag df['cmpd size']l -
frag df['context size']
frag df['ratio'] = frag df['core size'] / frag df['cmpd size']
t3 = time.time ()
print(t3 - t2)
c.execute ('UPDATE mol properties
'SET fragmented = 1') # there should be no need to add

this, make sure it aint done anywhere else
return frag df

v

done in main ()

def screen cores(min core count, conn, c):
if min core count != 0:
c.execute ('UPDATE fragments SET significant = 0'
c.execute ('UPDATE fragments SET significant = 1

core id IN '

)
WHERE

v

' (SELECT core id FROM fragments

-236-

'"GROUP BY core_ id HAVING count (core id) > ?)',
(min_core count,))
else:
c.execute ('UPDATE fragmnets SET significant = 1")
conn.commit ()

o MMP identification ----------—-—----——-
done in main ()
- Main --—---—=-—=-——-——-——-
def main():
parser = argparse.ArgumentParser('''CGenerates SMILES from CSD

entries based on

the refcodes in the input file or CSD search.

Unique SMILES are fragmented and indexed using rdkit/MMPA.
Identified MMPs are added to database.''')

parser.add argument ('input', help='input text file with refcodes
or type "CSD"'")

parser.add argument('-o', '--output', default='MMP.db',
help='database name (default = MMP.db)'")

parser.add argument('-r', '--ratio', default=0.3, help='max
ratio of change allowed. ratio = size of change / cmpd.'

' Set to
1 to ignore ratios. (default = 0.3)"')
parser.add argument('-c', '--change', default=10, help='max size
of change allowed. Set to a high number (eg 100) to'

ignore
max size of change. (default = 10)'
ll)
parser.add argument('-s', '--screen', default=1l, help='min count
of core to be considered for MMP identification.'
' Higher

value reduces processing time and eliminates the '

'likelihood of identifying transformations with low MMPs count'
'(default

=1)")

args = parser.parse_args()

MMP identification settings
max_size = int(args.change)
ratio = float(args.ratio)

min core num = int(args.screen)

connect to database

db = re.search('\.db', args.output)

if db is None:
print('database name must end with .db')
sys.exit (1)

dbname = args.output

conn = sqglite3.connect (dbname)

c = conn.cursor ()

input file = args.input # samplel0000.csv
try:

mmpdb . tables.all tables(c)
print('tables created')

-237-

input smiles (input file, conn)
print ('SMILES added')

frag df = fragment (c)
print ('SMILES fragmented')

mmpdb . indexfrag.index main(frag df, conn)
screen cores(min core num, conn, c)
print('indexing done')

mmpdb.mmp_identification.identify mmps(ratio, max size,
conn, c)

print ('MMPs identified")

finally:

conn.commit ()

conn.close()
if name == ' main ':
main ()

-238-

analysis.py

import argparse

import sglite3

import pandas as pd
from scipy import stats

$ - load data---------—"-=-—-=-——-
def load data(properties, conn):
if properties == 'all':
sgql = 'SELECT * FROM mol properties'

data = pd.read sgl query(sql, conn)
data.drop(['smiles', 'fragmented', 'MMP identified',
'cmpd size']l, axis=1l, inplace=True)
else:
sql = 'SELECT mol id'
for prop in properties:
sgql = sgl + ', ' + prop
sql = sql + ' FROM mol properties' # add table selection
data = pd.read sgl query(sgl, conn)
return data

def load mmp(conn):
"""returns a DF with all MMPs"""
sgql = 'SELECT trans_id, moll id, mol2 id FROM MMP'
mmp pd.read sgl query(sgl, conn)
return mmp

def load smirks(conn):
sgql = 'SELECT trans_id, SMIRKS FROM Transformation'
smirks = pd.read sgl query(sgl, conn, index col='trans id')
return smirks

def mmp data(mmp, data):
rename property values
prop names = data.columns.tolist()
prop_ names.remove ('mol id")
data 1 = data.copy()
data 2 = data.copy()

names 1 = {}

names 2 = {}

for name in prop names:
names_1[name] = name + ' 1'
names_2[name] = name + ' 2

data l.rename(columns=names_ 1, inplace=True)
data 2.rename (columns=names 2, inplace=True)

do the merges

mmp = mmp.merge(data 1, left on='moll id', right on='mol id',
how='inner')

mmp.drop ('mol id', axis=1l, inplace=True)

mmp = mmp.merge(data 2, left on='mol2 id', right on='mol id',
how='inner')

mmp.drop('mol id', axis=1, inplace=True)

drop rows with missing values due to dataset limitations
mmp .dropna (axis=1, how='any', inplace=True)

-239-

return mmp, prop names

def change(mmpa, prop names):

for

name in prop names:

change = name +' change'

data 1 = name + ' 1'

data 2 = name + ' 2'

mmpa [change] = mmpa[data 2] - mmpa[data 1]

return mmpa

def t test(ml, sl, nl, m2, s2, n2):
score = stats.ttest ind from stats(ml, sl, nl, m2, s2, n2)
return score.pvalue

def do stats(mmpa, prop names, min count):
all stats = []

for

axis=1)

' count'

name in prop names:

change = name +' change'
data 1 = name + ' 1'
data 2 = name + ' 2'

headings = [change, data 1, data 2]

change data
data all = mmpa.groupby('trans id') [headings]
data change = mmpa.groupby('trans id'") [change]
mean headings = {}
std dev_headings = {}
for heading in headings:
mean headings[heading] = heading +' mean'
std dev_headings[heading] = heading +' std dev'

av = data_all.mean()
av.rename (columns=mean headings, inplace=True)

std dev = data all.std()
std dev.rename (columns=std dev_headings, inplace=True)

med = data change.median ()

med = med.to frame(name + ' median')

cnt = data change.count ()

cnt = cnt.to frame(name + ' count')

std err = data change.sem()

std err = std err.to frame(name + ' sem')

stats _data = pd.concat([av,std dev, med, std err, cnt],
see best way to combine these

either concat, or join or merge

concat should be fine since trans id is the index

remove based on minimum count
stats_data = stats_data[stats data[name +
1>min count]

paired t test

ttest
stats_datal[name + ' ttest pvalue'] = stats data.apply(

-240-

lambda x: t test(x[data 1 + ' mean']l, x[data 1 +
' std dev'], x[name + ' count'], x[data 2 +' mean'], x[data 2 +
' std dev'], x[name + ' count']l), axis=l)

drop for failed ones
stats_data.dropna(axis=0, how='any', inplace=True)
remove useless columns now
stats_data.drop([data 1 + ' mean', data 1 + ' std dev',
data 2 + ' mean', data 2 + ' std dev'], axis=l, inplace=True)
stats _datal[name + ' abs mean'] = stats_datal[change +
' mean'].abs()
all stats.append(stats_data)
mmp stats = pd.concat(all stats, axis=l)
return mmp stats

def drop insignificant (mmp data, prop names, p crit, drop any):
so messy because the number/ names of columns not known
drop = mmp data[mmp data[[name + ' ttest pvalue' for name in
prop names]] <=p crit][[name + ' ttest pvalue' for name in
prop_names]]

if drop_any:

drop.dropna (axis=0, how='any')
else:

drop.dropna (axis=0, how='all'")
#drop.drop (columns=[name + '
prop name])

to keep = drop.index.tolist()

mmp data = mmp data[mmp data.index.isin(to keep)]

return mmp data

_ttest pvalue' for name in

def prepare mmn(mmpa, stats data, prop names, data):

edges = mmpa.rename (columns={'moll id': 'Source', 'mol2 id':
'"Target'})
drop col = [name +' 1' for name in prop names] + [name +' 2' for

name in prop names]

edges.drop(columns=drop col, inplace=True)

edges = edges.merge(stats data, how='inner', left on='trans id',
right index=True)

nodes = data.rename(columns={'mol id': 'Id', 'smiles': 'Label'})

edges.to csv('edges.csv', index=False)
nodes.to csv('nodes.csv', index=False)

main
def main():

parser = argparse.ArgumentParser('''Carries out MMPA of desired
subset of the MMP database.

Transformations with statistically significant results are
identified''"')

parser.add argument ('database', help='database name')

parser.add argument('-c', '--count', help='min number of MMPs
for a transformation to be considered, integer',

default=1l, type=int)

parser.add argument('-t', '--t crit', help=' statistical
significance level for a transformation to be considered using
paired t-test, '

-241-

'default=no limit',

default=1l)

parser.add argument('-n', '--network', help='create an output
file for MMN',

action='store true')

parser.add argument('-p', '--property', nargs='*',help='list of

property/s to focus on. default=all)',
default='all")

parser.add argument('-s','--subset', help='perform analysis only
on subset. input txt file with SQL queries needed')
parser.add argument('-d', '--drop any', help='a transformation

will be dropped where t-test p value for any of the properties is
below p crit. No effect if MMPA of single variable.',
action='store true')

args = parser.parse_args()

min mmp = args.count
p_crit = float(args.t crit)
dbname = args.database
properties = args.property
drop _any = args.drop any

subset = args.subset

g orrrrrrrrrrrrrri it move to input file

#sgl trans = '''SELECT trans_id FROM Transformation '''
#sgl data = '''SELECT smiles_id, polymorph count FROM

all smiles, Solid properties WHERE Solid properties.refcode =
all smiles.refcode GROUP BY all smiles.refcode ''"'
#sgl mol = '''SELECT smiles id FROM all smiles GROUP BY refcode

#sgl smirks = 'SELECT trans_id, SMIRKS FROM Transformation'

connect to database
try:
conn = sqglite3.connect (dbname)
data = load data(properties, conn)
smirks = load smirks(conn)
mmp = load mmp (conn)
if subset:
trans of interest and mol of interest
add this at a later date
pass
finally:
conn.close()

do analysis

mmpa, prop names = mmp data (mmp,data) #property names are not
extracted from args.property in case of 'all' case, this way,
property data is extracted consistently

mmpa = change (mmpa, prop names)

mmp stats = do stats(mmpa, prop names, min_ mmp)
mmp stats = drop insignificant(mmp stats, prop names, p crit,
drop_any)

mmp stats = mmp stats.merge(smirks, how='left',
right index=True, left index=True)

generate output

mmp_ stats.to csv('trans data.csv')
mmpa.to csv('mmp data.csv', index=False)

-242-

if args.network:
prepare mmn (mmpa,mmp stats,prop names, data)

if name ==' main ':
main ()

-243-

csd_addon.py

import argparse

import os

import glob

import csv

import sys

from ccdc import search
from ccdc import io

try:
from mmpdb import get smiles

except ImportError:
print('import of smiles gen from mmpdb failed')
sys.exit (1)

def csd entry to smiles(refcode, csd reader):

try:
entry = csd reader.entry(refcode)
crystal = csd reader.crystal (refcode)
except RuntimeError:
return
if crystal.has disorder:
return
if entry.has disorder:
return

smiles all, method = get smiles.generate smiles(entry)
smiles list = smiles all.split('.")
rows = []
for smi in smiles list:
rows.append([smi,refcode])
return rows

def smiles from csd(csd reader, settings):
all rows = []
for e in csd reader:
if settings.test(e):
try:
ref = e.identifier
rows = csd _entry to smiles(ref, csd reader)
all rows = all rows + rows
except RuntimeError:
continue
return all rows

def smiles from refcode(sourcefile, csd reader):
all rows = []
with open(sourcefile, 'r') as source:
for line in source:

ref code = line.rstrip()
rows = csd entry to smiles(ref code, csd reader)
all rows = all rows + rows

return all rows

def write output(smiles, output file):
with open(output file, 'wb') as csv_file:
writer = csv.writer(csv_file,delimiter=",")
writer.writerows (smiles)

-244-

def main():

parser = argparse.ArgumentParser('''Generates SMILES from CSD
entries based on

the refcodes in the input file or CSD search. Outputs file with
smiles for MMP analysis''')

parser.add argument ('input', help='input text file with refcodes
or type "CSD" to do a search')

parser.add argument('-o', '--output', default='smiles.csv',
help='output name (default = smiles.csv)')
parser.add argument('-d', '--directory',

default=io.csd directory(), help='directory of the CSD-like database
(default=CSD) ")
args = parser.parse_args()

setup input source
useCSD = False

if args.input == 'CSD':
useCSD = True

else:
input file = args.input

#setup output
output file = args.output

CSD search settings

csd dir = args.directory

csd_location = glob.glob(os.path.join(csd dir, '*.inf'"))
csd_reader = io.EntryReader(csd location)

if useCSD:

settings = search.Search.Settings()

settings.has 3d coordinates = True

settings.only organic = True

settings.not polymeric = True

settings.no powder = True

settings.no disorder = True

settings.max r factor = 7.5

settings.no metals = True

settings.must not have elements = ['As', 'Te', 'At', 'He',
lNe|, 'AI', 'KI', 'Xe', anl, 'B', lAll’ lGal’ lInl’

lev’ 'Si', 'Ge', 'SD',

"Pb', 'Sb', 'Po']

if useCSD:
smiles = smiles from csd(csd reader, settings)
else:
smiles = smiles from refcode(input file, csd reader)

write output(smiles, output file)

if name =="' "

main ()

main

-245-

Appendix 2
Matched Molecular Database
Schema

Purpose:

A4 size version of the Matched Molecular Pairs Database

-246-

» refcode

* refcode family
* Property 1

* Property 2

» Mol_id

* Smiles_id
* Property 1
* Property 2

.
.

1 » smiles_id

refcode
Unique_smiles_id
smiles

method

cmpd_size
Fragmented(0/1)
MMP_identified (0/1)

Key:
» Primary key
One —» Many

Matched Molecular Pairs data

Used for MMP identification

mmp_id
trans_id
moll_id
mol2_id
context

» frag_ id

* context_id

e core_id

* core_size

* ratio

* Single_cut(0/1)
* mol_id

context_table

» context_id
* context_smi
* context size

Core_table

» core_id
* core_smi

Transformation

» trans_id
+ R1

> e R2

* SMIRKS

-247-

Appendix 3
Polymorph and
Redetermination Classification

Purpose:

This appendix contains scripts used prepare datasets for the benchmark study
(Chapter 5) and the training of machine learning based models.

Folder structure and uses:

e pre_process.py: prepares datasets for the study
e train.py: carries out the training process on the datasets

-248-

pre_process.py

import pandas as pd

import numpy as np

import glob

import os

import re

from collections import defaultdict

import itertools

import json

import pickle

from sklearn.model selection import train test split

from ccdc import io
from ccdc import crystal

class SpectraMethod:

def init (self, cluster f name='CSDplus clusters s.txt'):
with open(cluster f name, 'r') as f:
lines = f.readlines()

self.clusters = defaultdict (list)

self.all refs = []

self.ref groups = defaultdict(list)

for line in lines:
cluster = line.split()
self.all refs.extend(cluster)
fam = re.sub('[0-9]+", "', cluster[0])
self.clusters[fam].append(cluster)
self.ref groups[fam].extend(cluster)

def get polymorph id(ref, cluster):
id = None
for i, pol in enumerate(cluster):
if ref in pol:
id = 1
return id

def check polymorphism(self, pair, clusters=None):
refl, ref2 = pair
if clusters is None:
clusters = self.clusters
pol = None
faml = re.sub('[0-9]+", "', refl)

cluster = clusters.get(faml)
if cluster:
id 1 = self.get polymorph id(refl, cluster)

id 2 = self.get polymorph id(ref2, cluster)
if id 1 is None or id 2 is None:
print('refoces not in cluster {} {}'.format(refl,
ref2))
else:
if id 1 == id 2:
pol =0
else:
pol =1
else:
print('refcode fam {} not in clusters'.format(faml))

-249-

return pol

class ManualMethod:
def init (self, all refs, info=None, csd reader=None) :
self.all refs = all refs

if info is None:
assert csd reader is not None, 'if info is not provided,
csd reader needed'’
info = self.get info(csd reader)
self.info = info

def get info(self, csd reader):

info = {}
for ref in self.all refs:
try:
e = csd reader.entry(ref)
lit = e.publication

pol = e.polymorph
info[ref] = {'1lit': 1lit, 'polymorph': pol}
except RuntimeError:
continue
return info

def check polymorphism(self, pair):
refl, ref2 = pair
infol, info2 = self.info.get(refl), self.info.get(ref2)
if infol is not None and info2 is not None:
poll, pol2 = infol['polymorph'], info2['polymorph']
if poll is None or pol2 is None:

pol = None
elif poll == pol2:
pol = 0
else:
pol =1

return pol

def check 1lit source(self, pair):
refl, ref2 = pair
same = False
if self.info.get(refl) is not None and self.info.get(ref2)
is not None:
if self.infol[refl]['1lit'] == self.infol[ref2]['1lit']:
same = True
return same

class BestRMethod:
def init (self, all refs, best r file):
with open(best r file, 'r') as f:
lines = f.readlines()
self.in best r = defaultdict(list)
for ref in lines:
ref = ref.rstrip()
if ref in all refs:
fam = re.sub('[0-9]+', '', ref)
self.in best r[fam].append(ref)

def check polymorphism(self, pair):

-250-

refl, ref2 = pair
pol = None
fam = re.sub('[0-9]+', '', refl)
cluster = self.in best r[fam]
if refl in cluster and ref2 in cluster:
pol =1
else:
if len(cluster) ==
pol = 0

return pol

class Datasets:

def

__init (self, ref groups, all refs=None):
self.ref groups = ref groups
if all refs is None:
all refs = []
for , refs in ref groups.iteritems():
all refs.extend(refs)
self.refs = all refs

get stuff for packing similirity
self.packing sim = crystal.PackingSimilarity()
self.packing shell size =

self.packing sim.settings.packing shell size

def

def

self.combs = self.get combinations()
self.crystal data = None

get combinations(self):

all combs = []

for , refs in self.ref groups.iteritems():
comb = list(itertools.combinations(refs, 2))
all combs.append (comb)

return all combs

get structure data(self, reader):
id list = self.refs
crystal data = {}
total = len(id list)
step = int(round(float(total) / 50))
for i, ref in enumerate(id list):

if i % step ==

print('data obtained for {} % of

structures'.format (round(float(i + 1) / total, 2) * 100))

try:
cryst = reader.crystal (ref)
entry = reader.entry(ref)
except RuntimeError:
print('failed to access data for {}'.format(ref))
continue
temperature
T = entry.temperature

if T:
T re = re.search(' (?P<temp>-2[0-9]+(\. [0~
9])?2)\s? (?P<units>\S+)"', T)
if T re:
if T re.group('units') != 'K': # when deg.C

T num = float(T re.group('temp')) + 273.2

-251-

else:
T num = float(T re.group('temp'))
else:
print(T)
else:
T num = np.nan

crystal data[ref] = {'length a': cryst.cell lengths[0],
'"length b': cryst.cell lengths[1],
'"length c': cryst.cell lengths[2],
'angle a': cryst.cell angles[0],
'angle b': cryst.cell angles[1],
'angle g': cryst.cell angles[2],

'r factor': entry.r factor,
'crystal system': cryst.crystal system,
'temperature': T num}

self.crystal data = crystal data

def get descriptors(self, csd reader, classify func,
do_rmsd=True, check lit=None):
"""classify func is a dict with name (string) as key and
classifying function as value"""
crystal data = self.crystal data
packing comp = self.packing sim
packing shell size = self.packing shell size

def check fam(pair):

assert pair is not None, 'empty pair found'

assert len(pair)==2, 'missing refcode with
{}'.format (pair)

refl, ref2

faml, fam2
9]+', '", ref2)

assert faml == fam2, 'refcode family dont match. {},
{}'".format(refl,ref2)

pair
re.sub('[0-9]+", "', refl), re.sub('[0-

def compare structures(refs):
handle missing data
if not all(_ in crystal data.keys() for in refs):
return None

refl
ref?2

refs[0]
refs[1]

datal = crystal datal[refl]
data2 = crystal datal[ref2]
crystl = {'x': (datal['length a'], datal['angle a']),
y': (datal['length b'], datal['angle b']),
'z': (datal['length c'], datal['angle g'])}
cryst2 = {'x': (data2['length a'l], data2['angle a'l),
v': (data2['length b'], data2['angle b']),
'z': (dataz['length c'], dataZ2['angle g'])}

v

change = {}
cell parameters
for axis in ['x', 'y', 'z']:
dl = abs(crystl[axis][0] - cryst2[axis][0]) #
change in length
da = abs(crystl[axis][1] - cryst2[axis][1]) #
change in angle

-252-

change['length {}'.format(axis)] = dl
change['angle {}'.format(axis)] = da

for prop name in ['r factor', 'temperature']:
if datal[prop name] is not None and data2[prop name]
is not None:

prop = abs(datal[prop name] - dataZ[prop namel])
else:

prop = np.nan
change[prop name] = prop

RMSD
if do_rmsd:

try:
packing sim = packing comp # had insane RAM
usage for some reason, this seems to solve it
similarity =
packing sim.compare (csd reader.crystal (refl),
csd_reader.crystal (ref2))
if similarity:
#rmsd = similarity.rmsd
its not actually rmsd, its the number of
molecules that match within the tolerance
rmsd = similarity.nmatched molecules
rmsd float(rmsd) / packing shell size

else:
rmsd = np.nan
except RuntimeError:
rmsd = np.nan
change['rmsd'] = rmsd

crystal system

if datal['crystal system'] == data2['crystal system']:
cryst sys = 0

else:
cryst sys =1

change['crystal system'] = cryst sys

change['refs'] = (refl, ref2)
return change

data = []
total = len(self.combs)
step = int(round(float(total) / 20))
for i, comb in enumerate (self.combs):
if i & step ==
print('comparison done for {} % of the
data'.format (int (round(float(i + 1) / total, 2) * 100)))
for pair in comb:
try:
check fam(pair)
except AssertionError, e:
print(e)
continue
change = compare structures (pair)
if change:
for name, classifier in
classify func.iteritems():
change[name] = classifier(pair)

-253-

if check 1lit:
change['1lit'] = check lit(pair)
data.append (change)
append to data
create dataframe

data df = pd.DataFrame (data)
return data df

csd dir = io.csd directory()
csd location = glob.glob(os.path.join(csd dir, '*.inf'))
csd_reader = io.EntryReader (csd location)

spectra = SpectraMethod()
all refs = spectra.all refs
ref groups = spectra.ref groups

manual = ManualMethod(all refs, csd reader=csd reader)

best r = BestRMethod(all refs, r'C:\Program Files
(x86) \CCDC\CSD _2018\CSD 539\subsets\best R factor list.gcd')

classify func = {'spectra': spectra.check polymorphism, 'manual':
manual.check polymorphism,

'best R': best r.check polymorphism}
datasets = Datasets(ref groups, all refs)
datasets.get structure data(csd reader)
data = datasets.get descriptors(csd reader, classify func,

check lit=manual.check lit source, do rmsd=True)

data.to _csv('new data backup.csv', index=False)

split the datasets
len(data[~data['manual'].isnull()])

len(datal[(~data['manual'].isnull())&(~data['best R'].isnull())])

train size 24660
valid size 2594
test size = 3415

spectra train pol = data[(~data['best R'].isnull()) &
(data['manual'].isnull()) & (data['best R']==1)]

spectra train red = data[(~data['best R'].isnull()) &
(data['manual'].isnull()) & (data['best R']==0)].sample(n=

train size - len(spectra train pol))

spectra train = pd.concat([spectra train pol, spectra train red])

manual train = datal[(data['best R'].isnull()) &
(~data['manual'].isnull())]
manual valid = data[(~data['best R'].isnull()) &

(~data['manual '] .isnull()) & (data['lit'] ==
False)].sample(n=valid size)

-254-

spectra valid = datal[(~data['best R"'].isnull()) &
(~data['manual'].isnull()) & (data['lit'] == False) &
(~data.index.isin(manual valid.index))]

assert len(spectra valid) == valid size

benchmark valid = data[(~data['best R'].isnull()) &
(~data['manual'].isnull()) & (data['lit'] ==

True)] .sample(n=valid size)

benchmark test = datal(~data['best R'].isnull()) &

(~data['manual'].isnull()) & (data['lit'] == True) &
(~data.index.isin(benchmark valid.index))]
assert len(benchmark test) == test size
sets = {
'manual train': manual train,
'manual valid': manual valid,
'spectra train': spectra train,
'spectra valid': spectra valid,

'"benchmark valid': benchmark valid,
'benchmark test': benchmark test

for set name in sets.keys():
sets[set name]l['refl'], sets[set name]['ref2'] =
zip(*sets[set name]['refs'])

for set name, table in sets.iteritems():
f name = set name + '.csv'
table.to _csv(f name, index=False)

-255-

train.py

import argparse

import itertools

import sys

import glob

import os

import re

import numpy as np

import pandas as pd

import json

import pickle

from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive bayes import GaussianNB

from sklearn import metrics

#from sklearn.neural network import MLPClassifier
from sklearn.model selection import RandomizedSearchCV
#from sklearn.model selection import StratifiedShuffleSplit
#from sklearn.model selection import GridSearchCV

from ccdc import io
from ccdc import crystal

train settings = {
'retrain': False,
'all refs': 'single-red-powder.txt',
'best r': 'single-powder.txt',
'fill na': 'drop',
'verbose': False,

'csd dir': None,
'do rmsd': False,
'valid frac': 0.1,
'test frac': 0.1

}

def fix datasets(df):

df['refs'] = df[['refl', 'ref2']].apply(lambda row:
(row['refl']l, row['ref2']), axis=l)

cols = ['angle x', 'angle y', 'angle z', 'crystal system',
'length x',
'length y','length z','r factor', 'refs',6'rmsd','target', ' 'temperature
"1

return df[cols].copy()

class PolymorphClassifier:
def init (self, train, valid, test, nan method='drop',
use rmsd=True) :

cols = list(train.columns)
cols.remove('target')
if not use rmsd:

if 'rmsd' in cols:

cols.remove ('rmsd")
else:

-256-

if '"rmsd' not in cols:
print('rmsd not calculated')
if 'refs' in list(train.columns) :
cols.remove('refs'")

set indexes as refl-ref2 so it stays with the rows
datasets = {'train': train, 'valid': valid, 'test': test}
datasets = self.handle nans(datasets, method=nan method)

self.train with refs datasets['train']
self.valid with refs = datasets['valid']
self.test with refs = datasets['test']

for name, dataset in datasets.iteritems():

dataset.index = dataset['refs'].apply(lambda row: '{}-

{}'".format (row[0], row[1]))
split into X, Y
Xs = {}
¥Ys = {}
for name, dataset in datasets.iteritems{()
Xs[name] = dataset[cols].copy()
Ys[name] = dataset['target']

= train['target']

H= FH =
XX
o

= X[cols].copy ()
Y valid = valid['target']

X valid

X valid = X valid[cols].copy ()

Xs['train']

= Ys['train']
~valid = Ys['valid'l]
self.X valid = Xs['valid']
self.Y test Ys['test']
self.X test = Xs['test']

n
D
'_l
Hh
MR
I

valid.loc[:, valid.columns !=

= train.loc[:, train.columns != 'target']

'target']

self.classifiers = {'RI'': RandomForestClassifier,

'"logistic regression': LogisticRegression,

"KNN': KNeighborsClassifier, 'bayes':

GaussianNB, 'SVM': SVC}

Ao+t ~matrhAA
@staticmetnoa

def handle nans(datasets, method='drop'):

dict with inputs {'train':train, 'wvalid':valid}

processed = {}
for name, dataset in datasets.iteritems()
if method == 'drop':
processed[name] = dataset.dropna(axis=0, how='any')
elif method == 'mean':

processed[name] =
dataset.fillna(datasets['train'].mean())

elif method == 'median':
processed[name] =
dataset.fillna(datasets['train'].median())

else:

print('choose one of: drop, mean,
return processed

-257-

median')

@staticmethod

def ref as index(datasets):
pass

def fit models(self):
models = {}
X, Y = self.X, self.Y

for name, model in self.classifiers.iteritems{():

print('fitting {}'.format(name))
models[name] = model().fit(X ,Y)

rows = []
for name, model in models.iteritems{():
print('testing {}'.format(name))

pred = pd.DataFrame (model.predict(self.X valid))

pred.index = self.Y valid.index

C = metrics.confusion matrix(self.Y valid, pred)

true pos rate = float(C[1][1]) / (C[11[1] + C[O]1[1]) #
sensitivity, recall = TP/ (TP+NF)
false pos rate = float(C[1][0]) / (C[11[0] + C[O1[0])
FP/ (FP+TN)
specificity = 1 - false pos rate
pos pred value = float(C[1]1[1]) / (C[1][1] + C[1]1I[0])
precision = TP/ (TP+FP)
row = {'model': name, 'precision': pos pred value,
'recall': true pos rate,
'specificity': 1 - false pos rate,
'Fl score': 2 * (pos pred value * true pos rate)

/ (pos_pred value + true pos_rate)
}
rows.append (row)
models summary = pd.DataFrame (rows)
self.models summary = models summary
return models summary

def optimise random forest(self, n iter=100, scoring='fl"):
n _estimators = [int(x) for x in np.linspace(start=200,

stop=2000, num=10)]
criterions = ['gini', 'entropy']
max features = ['sqgrt', "log2']
max_depth = [int(x) for x in np.linspace(10,
max_depth.append (None)

min samples split = [2, 5, 10]

min samples leaf = [1, 2, 4]
bootstrap = [True, False]
random grid = {'n estimators': n estimators,
'max features': max features,
'max depth': max depth,
'min samples split': min samples split,
'min samples leaf': min samples leaf,

'bootstrap': bootstrap,
'criterion': criterions}
rf = RandomForestClassifier()
rf random = RandomizedSearchCV(estimator=rf,
param distributions=random grid, n iter=n iter, cv=3,

-258-

#

#

random state=42, n jobs=-1,
scoring=scoring)
Fit the random search model
rf random.fit(self.X, self.Y)
return rf random

def optimise svm(self, n iter=100, scoring='fl'):

C range = np.logspace(-4, 3, 15)

gamma range = np.logspace(-4, 3, 15)

random grid = {'gamma': gamma_ range, 'C': C_range}

svm = SVC()

cv = StratifiedShuffleSplit (n splits=5, test size=0.2,
random state=42)

svm random = GridSearchCV (SVC(), param grid=param grid,
CV=CV)

svin_random = RandomizedSearchCV (estimator=svm,
param distributions=random grid, n_iter=n iter, cv=3,

random state=42, n jobs=2,

scoring=scoring)

svim_random.fit (self.X, self.Y)

return svm random

def compare performance(self, params dicts):

rows = []

for name, param in params dicts.iteritems():
model =

self.classifiers[name] (**param).fit(self.X valid, self.Y valid)

pred = pd.DataFrame (model.predict(self.X valid))
C = metrics.confusion matrix(self.Y valid, pred)
if train settings['verbose']:

pd.DataFrame(C) .to csv('{} confusion valid.csv'.format (name))

true pos rate = float(C[1][1]) / (C[11[1] + CIOI1[1]) +#
sensitivity, recall = TP/ (TP+NF)

false pos rate = float(C[1]1[0]) / (C[1]1[0] + C[O1[0]) +#
FP/ (FP+TN)

specificity = 1 - false pos rate

pos _pred value = float(C[1]1[1]) / (C[1][1] + C[1]1I[0]1) +#
precision = TP/ (TP+FP)

row = {'model': name, 'precision': pos pred value,
'recall': true pos rate,
'specificity': 1 - false pos rate,
'Fl score': 2 * (pos_pred value * true pos rate)
/ (pos pred value + true pos_rate)
}

rows.append (row)
models summary = pd.DataFrame (rows)
if train settings['verbose']:
models summary.to csv('comparison valid.csv',
index=False)
select best F1 score model
best model = models summary[models summary['Fl score'] ==
models summary['Fl score'].max()]
print('best performing model:
{}'".format (best model['model'].tolist () [0]))
print('Fl score:
{}'.format(best model['Fl score'].tolist()[0]))
return best model['model'].tolist () [0]

-259-

def retrain(self, name, params, test=True):
"""retrains the model on train + valid or train + valid +

train (for application)™""
if test:

X = pd.concat([self.X, self.X validl])

Y = pd.concat([self.Y, self.Y validl])
else:

X = pd.concat([self.X, self.X valid, self.X test])

Y = pd.concat([self.Y, self.Y valid, self.Y test])

model = self.classifiers[name] (**params).fit (X, Y)
if test:
Y test = self.Y test

X test = self.X test

pred = pd.DataFrame (model.predict (X test),
columns=['predicted'])

pred.index = Y test.index

C = metrics.confusion matrix(Y test, pred)

if train settings['verbose']:

pd.DataFrame(C) .to csv('{} confusion test.csv'.format(name))

Y test = Y test.to frame('actual')

compare = Y test.merge(pred, right index=True,
left index=True)

compare['refs'] = compare.index

compare['refl'], compare['ref2'] =
zip (*compare['refs'].str.split('-"))

compare = compare.merge (X test, right index=True,
left index=True)

cols = list(X test.columns)

cols += ['refl', 'ref2', 'predicted', 'actual']

compare[cols].to csv('comparison.csv', index=False)

true pos rate = float(C[1][1]) / (CI[11[1] + C[O1[1]) #
sensitivity, recall = TP/ (TP+NF)

false pos rate = float(C[1][0]) / (C[11[0] + C[O]1[0]) #
FP/ (FP+TN)

specificity = 1 - false pos rate

pos pred value = float(C[1]1[1]) / (C[1]1[1] + C[1]1[0]1) #
precision = TP/ (TP+FP)

performance = {'model': name, 'precision':
pos_pred value, 'recall': true pos rate,
'specificity': 1 - false pos rate,
'Fl score': 2 * (pos pred value *
true pos rate) / (pos_pred value + true pos_ rate)
}

return performance
else:
return model

def train():
if not all(dataset in train settings.keys() for dataset in
['train', 'valid', 'test']):
get datasets
preprocess =
Preprocess(train settings['all refs'],train settings['best r'])

-260-

connect to CSD
if train settings['csd dir'] is None:

csd dir = io.csd directory()
else:

csd _dir = train settings['csd dir']
csd_location = glob.glob(os.path.join(csd dir, '*.inf'))
csd_reader = io.EntryReader(csd location)

preprocess.get structure data(csd reader)

preprocess.get datasets(csd reader,train settings['do rmsd'l])

train, valid, test =
preprocess.train valid test split(train settings['valid frac'l],
train settings['test frac'])

train.to _csv('train.csv'")
valid.to csv('valid.csv')
test.to _csv('test.csv')

else:
#train = json.load(open(train settings['train'], 'r'))
train = pd.read csv(train settings['train'l])
train = fix datasets(train)

#valid = json.load(open(train settings['valid']l, 'r'))
valid = pd.read csv(train settings['valid'l])
valid = fix datasets(valid)
#test = json.load(open(train settings['test'], 'r'))
test = pd.read csv(train settings['test'])
test = fix datasets(test)
classifier = PolymorphClassifier(train,valid, test,
nan _method=train settings['fill na'l,
use rmsd=train settings['do rmsd'l])
model summary = classifier.fit models()
model summary = model summary.sort values(by='Fl score',
ascending=False) .reset index(drop=True)
if train settings['verbose']:
model summary.to csv('model summary.csv', index=False)
best models =
(model summary['model'][0],model summary['model"][1])
opti params = {}
for model in best models:
if model == 'SVM':
svm_random = classifier.optimise svm()
svim_summary = pd.DataFrame(svm random.cv_results)
if train settings['verbose']:
svm_summary.to csv('SVM optimisation.csv',
index=False)
svm_params =
svin_summary.sort values(by='mean test score',ascending=False) .reset
index (drop=True) ['params '] [0]
print('SVM classifier optimised with params:')
for k,v in svm params.iteritems():
print('{}: {}'.format(k,v))
opti params['SVM'] = svm params

elif model == 'RI':
rf random = classifier.optimise random forest ()
rf summary = pd.DataFrame(rf random.cv_results)
if train settings['verbose']:
rf summary.to _csv('REF optimisation.csv',
index=False)

-261-

rf params =
rf summary.sort values(by='mean test score',ascending=False) .reset i
ndex (drop=True) ['params'][0]
print ('RF classifier optimised with params:')
for k,v in rf params.iteritems():
print('{}: {}'.format(k,v))
opti params['RF'] = rf params

else:
print('cant optimise {} algorithm at the
moment ' .format (model))
sys.exit (1)

best = classifier.compare performance (opti params)
performance = classifier.retrain(best, opti params[best])
model = classifier.retrain(best, opti params[best], test=False)

pickle.dump (model, open('polymorph classifier.p','w'))

json.dump (opti params[best],open('{} hyper parameters.json'.format (b
est),'w'))

return model

def main():

global hydrates

TODO: sort these out

parser = argparse.ArgumentParser('''Trains polymorph
redetermination classifier on CSD dataset''')

parser.add argument('--all refs', help='file with all refcodes')

parser.add argument ('--best r', help='file with best R factor
structures')

parser.add argument('--train', help='training dataset')

parser.add argument('--valid', help='validation dataset')

parser.add argument ('--test', help='test dataset')

parser.add argument ('--retrain', action='store true', help='To
retrain best performing algorithm before saving to a pickle')
#remove this, always retrained

parser.add argument('--fill na', help='strategy for handling
missing values. [mean, median, drop] default=drop')

parser.add argument ('--verbose', action='store true')

parser.add argument('--csd dir', help='CSD directory')

parser.add argument('--do rmsd', action='store true', help='do
RMSD comparison as one of the descriptors')

parser.add argument('--valid frac', type=float, help='validation
set fraction')

parser.add argument('--test frac', type=float, help='validation
set fraction')

args = parser.parse_args()

input settings = vars(args)
for key, setting in input settings.iteritems():
if setting is not None:
if key == '"fill na':
if setting not in ['mean', 'median', 'drop']:
print ('WARNING: invalid fill na strategy
selected. drop used')
continue

-262-

train_ settings[key] = setting
model = train()

if name ==
main ()

main

-263-

Appendix 4
Message Passing Neural
Network scripts

Purpose:

This appendix contains scripts used in Chapter 7 to train and hyperparameter
optimise Message Passing Neural Networks for melting point prediciton. The pre-
processing scripts which generate graph input and calculate crystal features are
shown under Pre-processing. The modified tensorflow models are included. The
hyperparameter optimisation script is available as well.

Files and uses:

Pre-processing (local):

e crystal_graph.py: takes csv file (Refcode, melting point) and generates a
graph input
e crystal_rmsd.py: calculates the shape change descriptor

Training (HPC)

e Tensorflow models
The following scripts were adapted from GGNN. (See Chapter 7 for details)
The original scripts by Microsoft available under MIT license (relevant text
on the next page).
o util.py: utility functions
o chem_tensorflow.py: base tensorflow model
o chem_tensorflow_sparse.py: specific tensorflow model for training
o apply_chem_tensorflow.py: tensorflow model, for testing
e Training scripts and hyperparamter optimisation
o optimiser.py: hyperparameter optimisation script

-264-

https://github.com/microsoft/gated-graph-neural-network-samples
https://github.com/microsoft/gated-graph-neural-network-samples/blob/master/LICENSE

The following license terms apply to util.py , chem_tensorflow.py,
chem_tensorflow_sparse.py, and apply_chem_tensorflow.py.

MIT License
Copyright (c) Microsoft Corporation. All rights reserved.

Permission 1is hereby granted, free of charge, to any person
obtaining a copy

of this software and associated documentation files (the
"Software"), to deal

in the Software without restriction, including without limitation
the rights

to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell

copies of the Software, and to permit persons to whom the Software
is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE
SOFTWARE

-265-

crystal_graph.py

Python 2

import pandas as pd
import glob

import os

import sys

import json

import csv

import argparse
import random
import numpy as np
from collections import defaultdict

from ccdc import io
from crystal rmsd import CrystalRMSD

import HBond Dimensionality as HBond

def read csv():
use pandas df.to dict('record')
pass

def from csv(file name):

raw = []
with open(file name, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=',")
for row in reader:
if row[l] == "':

continue
raw.append({'refcode':row[0], 'v':float(row[1l])})
return raw

def split data(raw, valid frac, normalise=True):
raw data = {'train':[], 'valid':[]}

size = len(raw)

#-> n random numbers within range(len(raw data))

valid = random.sample (range(size), int(round(size*valid frac)))
only y = []

print('splitting data')

for i, data in enumerate (raw) :

if 1 % 1000 ==
done = (float(i)/size)*100
print('done: {} % '.format(round(done, 2)))

if normalise:
only y.append(datal['y'])
#process
if i not in valid:
raw _data['train'].append(data)
else:
raw data['valid'].append(data)
get std dev and mean of y (datalll])
if normalise:
mean = np.mean(only y)
std = np.std(only y)
else:
mean, std = None, None

-266-

return raw_data, mean, std

def onehot (feature, feature vector):

z = [0 for in range(len(feature vector))]
z[feature vector.index(feature)] = 1
return z

class CrystalGraph:
def init (self, csd reader, atom list=None, mean=None,
std=None, crystal rmsd=None, h dims=False, vwd=True):
if atom list:
self.atom list = atom list
self.get elements = False
else:
self.atom list = []
self.get elements = True

self.csd reader = csd reader

self.mean = mean
self.std = std
if std is None and mean is None:
self.to normalise = False
else:
self.to normalise = True
self.graphs = defaultdict (list)
self.bond dict = {'SINGLE': 1, 'DOUBLE': 2, 'TRIPLE': 3,
"AROMATIC": 4, "HBOND":5, "VDW_INTER": 6, "VDW_INTRA": 7}
self.h dim features = ['Ring/enclosed', 'Chain (1D)', 'Sheet
(2D) ', 'Lattice (3D)']
self.skip refcode = [] # list of refcodes that were trouble
self.rmsd = crystal rmsd
self.do h dims = h dims
self.do vwd = vwd
self.atom counts = {}

def normalise(self, y):
return (y - self.mean) / self.std

def index atoms(self, mol):

label to index = {}

index to label = {}

nodes = []

elements list = []

for i, atom in enumerate (mol.atoms):
label to index[atom.label] = i
index to label[i] = atom.label

if self.get elements:
nodes.append(atom.atomic_ symbol)
elements list.append(atom.atomic_symbol)
self.atom list = list(set(self.atom list +
elements list)) # add unique atoms to the list
else:
nodes.append (onehot (atom.atomic symbol,
self.atom list)) # do one hot already if atom list available
return nodes, label to index, index to label

def get bonds(self, mol, label to index):

-267-

edges = []
for bond in mol.bonds:
atoml, atom2 = bond.atoms
edge type = str(bond.bond type) .upper ()

edge = [label to index[atoml.labell,
self.bond dict[edge type], label to index[atom2.labell]

edges.append (edge)
return edges

def get h bonds(self, cryst, label to index):

edges = []

hbonded = {} # so they can be eliminated from VDW

for hbond in cryst.hbonds () :
donor = hbond.atoms[0].label
acceptor = hbond.atoms[2].label
edge = [label to index[donor],

self.bond dict['hbond'.upper()], label to index[acceptor]]

edges.append (edge)

for atom in hbond.atoms:
all atoms = list(hbond.atoms)
all atoms.remove (atom)
hbonded[atom.label] = [a.label for a in all atoms]
return edges, hbonded

def get vdw(self, cryst, label to index, bonded): # only
intermolecular interactions
edges = []

for contact in cryst.contacts():

if contact.atoms[0].label in bonded.keys() :
if contact.atoms[1].label in
bonded[contact.atoms[0].label]: # already covered in H-bond
continue

could add a bit that would eliminate some based on
contact.strength

if contact.intermolecular:
edge type = 'VDW INTER'
else:
edge type = 'VDW INTRA'

edge = [label to index[contact.atoms[0].labell,
self.bond dict[edge typel,
label to index[contact.atoms[1].label]]
edges.append (edge)

return edges

def get graphs(self, refcode):
mol = self.csd reader.molecule(refcode)
cryst = self.csd reader.crystal (refcode)
nodes, label to index, index to label =
self.index atoms (mol)
try:
bonds = self.get bonds(mol, label to index)

-268-

hbonds, interaction = self.get h bonds(cryst,
label to_index)
if self.do vwd:
vdw = self.get vdw(cryst, label to index,
interaction)
edges = bonds + hbonds + vdw
else:
edges = bonds + hbonds
except KeyError:
print('something wrong with labels with:
{}'.format (refcode))
self.skip refcode.append(refcode)
return None, None
return nodes, edges

def get crystal properties(self, refcode):
graph features = {}
if self.rmsd:
try:
print('calculating RMSD for {}'.format(refcode))
graph features['RMSD'] =
self.rmsd.calculate (refcode)
except RuntimeError:
print ('RMSD failed with {}'.format(refcode))
self.skip refcode.append(refcode)
return None

if self.do h dims:
h dim text =
HBond.dimensionality(self.csd reader.crystal (refcode))
if h dim text == 'No Hydrogen bonds':
h dim = [0, O, O, O]
else:
h dim = onehot(h dim text, self.h dim features)
graph features['H dims'] = h dim
if len(graph features) !'= 0:
return graph features
else:
return None

def update nodes(self):

"""now that all mols are processed, the atom list 1is
complete and ready for one hot""'

for section, data in self.graphs.iteritems():

for i, mol in enumerate(data):
for j, atom in enumerate (mol['node features']):
self.graphs[section] [i] ['node features'][]] =

onehot (atom, self.atom list) # could use map() maybe, will have to

look into it

def process(self, raw data):
for section, data in raw data.iteritems():
total = len(data)
for i, mol in enumerate(data):
refcode, y = mol['refcode'], mol['y']
if self.to normalise:
y = self.normalise (y)
nodes, edges = self.get graphs(refcode)
if refcode in self.skip refcode:
continue
else:

-269-

atom count = len(nodes)

self.atom counts[refcode] = atom count
row = {'targets': [[y]], 'graph': edges,
'node features': nodes, 'id': refcode}

graph features =
self.get crystal properties(refcode)
if graph features is not None:

row['graph features'] = graph features
self.graphs[section].append (row)
if i % 1000 ==
print('{} graphs processed: {}%'.format(section,

round (float (i) /total,3)*100))
if self.get elements:
self.update nodes()
return self.graphs

def output data(processed data, header=None):
if header is None: B
header='data'
for section in processed data.keys():
with open('{} {}.Jjson'.format(header, section), 'w') as f:

Json.dump (processed datal[section], f)

def main():

parser = argparse.ArgumentParser ('''REFCODE, target to GNN
input'''")

parser.add argument ('input', help='input csv with REFCODE,
target per line')

parser.add argument('--atoms', help='file with list of atoms')

parser.add argument('-n', '--normalise', action='store true',
help='normalise the target values')

parser.add argument('-s', '--split frac', default=0.1,
help='valid set fraction')

parser.add argument ('--rmsd', action='store true', help='Do

crystal rmsd as a graph level descriptor')
parser.add argument ('--hdim', action='store true', help='Do H-
bond dimensionality as a graph level descriptor')

parser.add argument ('--vdw', action='store true', help='include
VdW interaction in crystal graph')
parser.add argument('--atom count', action='store true',

help='output atom count file')
args = parser.parse_args()

csd dir = io.csd directory()
csd location = glob.glob(os.path.join(csd dir, '*.inf'"))
csd reader = io.EntryReader(csd location)

in f = args.input
valid frac = float(args.split frac)
to normalise = args.normalise
if args.atoms:
with open(args.atoms, 'r') as csvfile:

reader = csv.reader(csvfile, delimiter=',6")
for row in reader:
atom list = row
atom list = reader.next() # didnt work for some
reason
else:

atom list = None

-270-

if args.rmsd:
crystal rmsd
else:
crystal rmsd = None

CrystalRMSD(csd reader)

raw = from csv(in_f)
out name = in f.split('."')[0O]
raw_data, mean, std = split data(raw, valid frac, to normalise)

crystal graphs = CrystalGraph(csd reader, atom list, mean, std,
crystal rmsd, args.hdim)

graphs = crystal graphs.process(raw_data)

output data(graphs, out name)

print('failed to process the following refcodes: ')
for ref in crystal graphs.skip refcode:
print(ref)

if to normalise:
with open('{} statistics.json'.format(out name), 'w') as f:
Jjson.dump ({ 'mean': mean, 'std': std}, f)
if crystal graphs.get elements:
with open('{} atoms.csv'.format(out name), 'w') as f:
writer = csv.writer(f, delimiter="',")
writer.writerow(crystal graphs.atom list)

if args.atom count:
with open('{} atom counts.json'.format(out name), 'w') as f:
json.dump (crystal graphs.atom counts, f)

if name = ' main ':

main () -

-271-

crystal_rmsd.py
from rdkit import Chem
from rdkit.Chem import rdMolAlign

from conf gen import ConformerGenerator

class CrystalRMSD:
def init (self, csd reader, force field='mmff'):
self.csd reader = csd reader
self.conformer generator =
ConformerGenerator (force field=force field)

def calculate(self, refcode):
csd mol = self.csd reader.molecule(refcode)

csd mols
in the crystal

csd mol.components # get a list of all molecules

csd moll
conformer
moll = Chem.MolFromMolBlock(csd moll.to string('sdf'))
if moll is None:
print('cant construct the molecule')
raise RuntimeError
try:
conf = self.conformer generator(moll)
if Chem.AllChem.EmbedMolecule(conf) == -1: # = -1 if
failed, id assigned otherwise 0,1, ..
print('molecule too large to generate conformer')
raise RuntimeError
rmsds = []
for mol in csd mols:
mol = Chem.MolFromMolBlock(mol.to string('sdf'))
rmsd = rdMolAlign.GetBestRMS (mol, conf)
rmsds.append (rmsd)
except AttributeError:
print('something went wrong with minimisation of
conformer')
raise RuntimeError
rmsd = sum(rmsds) / len(rmsds)

csd mols[0] # get the first mol to get the

return rmsd

-272-

util.py
#!/usr/bin/env/python

import numpy as np
import tensorflow as tf
import queue

import threading

SMALL NUMBER = le-7

def glorot init (shape):
initialization range = np.sqrt(6.0 / (shape[-2] + shape[-1]))
return np.random.uniform(low=-initialization range,
high=initialization range, size=shape) .astype(np.float32)

class ThreadedIterator:

def init (self, original iterator, max queue size: int=2):
self. queue = queue.Queue(maxsize=max queue size)
self. thread = threading.Thread(target=lambda:
self.worker(original iterator))
self. thread.start()

def worker(self, original iterator):
for element in original iterator:
assert element is not None, 'By convention, iterator
elements much not be None'
self. queue.put(element, block=True)
self. queue.put (None, block=True)

def iter (self):
next element = self. queue.get(block=True)
while next element is not None:
yield next element
next element = self. queue.get(block=True)
self. thread.join()

class MLP (object) :

def init (self, in size, out size, hid sizes,
dropout keep prob, family='MLP layer'):
self.in size = in size
self.out size = out size
self.hid sizes = hid sizes

self.family = family
self.dropout keep prob = dropout keep prob
self.params = self.make network params ()

def make network params(self):

dims = [self.in size] + self.hid sizes + [self.out size]

weight sizes = list(zip(dims[:-1], dims[1:]1))

weights = [tf.Variable(self.init weights(s),
name='MLP W layersi' % 1)

for (i, s) in enumerate (weight sizes)]

biases = [tf.Variable(np.zeros(s[-1]) .astype(np.float32),

name='MLP b layersi' % 1)

-273-

for (i, s) in enumerate(weight sizes)]

network params = {
"weights": weights,
"biases": biases,

}

return network params

def init weights(self, shape):
return np.sqrt (6.0 / (shape[-2] + shape[-1]1)) * (2 *
np.random.rand (*shape) .astype(np.float32) - 1)

def call (self, inputs):
acts = inputs
for W, b in zip(self.params["weights"],
self.params["biases"]):
tf.summary.histogram('MLP weights', W,
family=self.family)
tf.summary.histogram('MLP biases', b,
family=self.family)
hid = tf.matmul (acts, tf.nn.dropout (W,
self.dropout keep prob)) + b
acts = tf.nn.relu(hid)
last _hidden = hid
return last hidden

-274-

chem_tensorflow_.py
#!/usr/bin/env/python

from typing import Tuple, List, Any, Sequence

import tensorflow as tf
import time

import os

import json

import numpy as np
import pickle

import random

from utils import MLP, ThreadedIterator, SMALL NUMBER

class ChemModel (object) :
@classmethod

def

def

default params(cls):

return {
'num_epochs': 3000,
'patience': 25,
'learning rate': 0.001,
'clamp gradient norm': 1.0,
'out layer dropout keep prob': 1.0,
'gated regression keep prob': 1.0,
'graph representation size': 100,
'prediction layers architecture': [50, 20],

'hidden size': 100,
'num_ timesteps': 4,
'use graph': True,

'tie fwd bkwd': True,
"task ids': [0],

'random seed': O,

'"train file': 'molecules train.json',
'valid file': 'molecules valid.json'

__init (self, args):

self.args = args
self.edge dict = {l: '"SINGLE', 2: 'DOUBLE', 3: 'TRIPLE', 4:

'AROMATIC', 5: '"HBOND', 6: 'VDW INTER', 7: 'VDW INTRA'}

for the

run_id])

self.best r = float('-inf') # best R"2 will be stored here

hyper optimiser to access

Collect argument things:

data dir = "'

if '--data dir' in args and args['--data dir'] is not None:
data dir = args['--data dir']

self.data dir = data dir

run_id = str(args.get('--run id')) or str(os.getpid())
self.run id = " ".join([time.strftime("%Y-sm-%d-3H-3M-35"),

log dir = args.get('--run dir') or '.'
self.log dir = log dir
self.log file = os.path.join(log dir, "%s log.json" %

self.run_id)

-275-

self.best model file = os.path.join(log dir,
"%s model best.pickle" % self.run_ id)

Collect parameters:
params = self.default params()
config file = args.get('--config-file')
if config file is not None:
with open(config file, 'r') as f:
params.update(json.load(f))
config = args.get('--config')
if config is not None:
params.update (json.loads (config))
conf = args.get('conf')
if conf is not None: # only for hyperopt
params.update (conf)
self.params = params
with open(os.path.join(log dir, "%s params.json" %
self.run id), "w") as f:
json.dump (params, f)
print ("Run %s starting with following parameters:\n%s" %
(self.run _id, Jjson.dumps(self.params)))
random.seed(params|['random seed'])
np.random.seed(params['random seed'])

Load data:
self.max num vertices =
self.num edge types = 0
self.annotation size = 0
self.num graph features = 0

self.graph features list = []

self.graph feature lengths = {}

modify usable data

edge types = params.get('edge types')

graph descriptors = params.get('graph descriptors')

0

self.train data = self.load data(params['train file'],
edge types, graph descriptors, is_ training data=True)

self.valid data = self.load data(params['valid file'],
edge types, graph descriptors, is_training data=False)

Build the actual model
config = tf.ConfigProto()
config.gpu options.allow growth = True
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph, config=configqg)
self.writer = tf.summary.FileWriter(self.log dir)
with self.graph.as default():
tf.set random seed(params['random seed'])
self.placeholders = {}
self.weights = {}
self.ops = {}
self.make model ()
self.make train step()

Restore/initialize variables:
restore file = args.get('--restore')
if restore file is not None:
self.restore model (restore file)
else:
self.initialize model()

-276-

def load data(self, file name, edge types, graph descriptors,
is training data: bool):
full path = os.path.join(self.data dir, file name)

print("Loading data from %s" % full path)
with open(full path, 'r') as f:
data = json.load(f)

restrict = self.args.get("--restrict data'")
if restrict is not None and restrict > 0:
data = data[:restrict]

block out edge types and graph features that are not to be
used
if edge types is not None or graph descriptors is not None:
for i, g in enumerate (data):
if edge types:
edges = []
for edge in g['graph']:
if self.edge dict[edge[l]] in edge types:
edges.append (edge)
data[i] ['graph'] = edges

if graph descriptors:
features = {}
for feature, value in
gl'graph features'].items():
if feature in graph descriptors:
features[feature] = wvalue
data[i] ['graph features'] = features

Get some common data out:
num_ fwd edge types = 0
for g in data:
self.max num vertices = max(self.max num vertices,
max ([v for e in g['graph']l for v in [e[0], e[2]111]))
num fwd edge types = max(num_ fwd edge types, max([e[l]
for e in g['graph'll))
self.num edge types = max(self.num edge types,
num fwd edge types * (1 if self.params['tie fwd bkwd'] else 2))
self.annotation size = max(self.annotation size,
len(data[0] ["node features"][0]))

get the number of graph features
if is_training data:
if 'graph features' in data[0].keys():
self.num graph features =
len(data[0] ['graph features'])
self.graph features list =
list(data[0] ['graph features'].keys())
for feature in self.graph features list:
try:
dims =
len(data[0] ['graph features'] [feature])
except TypeError:
dims 1
self.graph feature lengths[feature] = dims
return self.process raw graphs(data, is training data)

-277-

@staticmethod
def graph string to array(graph string: str) -> List[List[int]]:
return [[int(v) for v in s.split(' ")]
for s in graph string.split('\n')]

def process raw _graphs(self, raw data: Sequence[Any],
is training data: bool) -> Any:
raise Exception("Models have to implement
process_raw_graphs!")

def make model (self) :
self.placeholders['target values'] =
tf.placeholder (tf.float32, [len(self.params['task ids']), None],

name='target values')
self.placeholders['target mask'] =
tf.placeholder (tf.float32, [len(self.params['task ids']), None],

name='target mask')
self.placeholders['num graphs'] = tf.placeholder (tf.inté64,
[]1, name='num graphs')
self.placeholders['gated regression keep prob'] =
tf.placeholder (tf.float32, [], name='gated regression keep prob')
self.placeholders['out layer dropout keep prob'] =
tf.placeholder (tf.float32, [], name='out layer dropout keep prob')
get placeholder for each graph feature
if self.num graph features > 0:
for graph feature in self.graph features list:
dims = self.graph feature lengths[graph feature]
self.placeholders[graph feature] =
tf.placeholder (tf.float32, [dims, None], name=graph feature)

with tf.variable scope ("graph model"):
self.prepare specific graph model ()
This does the actual graph work:
if self.params['use graph']:
self.ops['final node representations']
self.compute final node representations()
else:
self.ops['final node representations']
tf.zeros like(self.placeholders['initial node representation'])

with tf.variable scope('gated regression'):
with tf.variable scope("regression gate"):

self.weights['regression gate'] = MLP(2 *
self.params['hidden size'],
self.params['graph representation size'], [],

self.placeholders]|
'gated regression keep prob'], 'gated regression')
with tf.variable scope ("regression"):
self.weights['regression transform'] =
MLP (self.params['hidden size'],
self.params['graph representation size'], [],

self.placeholders|

'gated regression keep prob'], 'gated regression')

-278-

graph representation =
self.gated regression(self.ops['final node representations'],

self.weights['regression gate'],

self.weights|['regression transform'])
print ('graph representation shape: ')
print (graph representation.get shape())

out size = len(self.params['task ids'])
get the total length of all graph level features
graph features length = 0
for feature in self.graph features list:
graph features length +=
self.graph feature lengths[feature]

in size = self.params['graph representation size'] +
graph features length
print ('the in size is {}'.format(in_ size))
with tf.variable scope('prediction layers'):
input tensors = [self.placeholders[feature] for feature
in self.graph features list]
input tensors.append(graph representation)
prediction input = tf.concat (input tensors, 0,
name='prediction input')

print ('prediction input size: ')

print (prediction_ input.get shape())

print ('this will be transposed')

prediction layer = MLP(in size, out size,
self.params['prediction layers architecture'],

self.params['out layer dropout keep prob'], 'prediction MLP')
computed values =

prediction layer (tf.transpose(prediction input))
computed values = tf.transpose (computed values)
print ('computed value shape: ')
print (computed values.get shape())
self.ops['predicted'] = computed values

with tf.variable scope('performance measure'):

diff tf.subtract (computed values,
self.placeholders['target values'], name='diff')
diff tf.multiply(diff,

[
self.placeholders['target mask'])
print ('diff shape')
print (diff.get shape())
task target num =
tf.reduce sum(self.placeholders|['target mask'], axis=1,
name='batch size') + SMALL NUMBER

#batch mean = tf.div(tf.reduce sum(computed values,
1) ,task target num, name='batch mean')

with tf.variable scope('mean squared error'):

squared diff = tf.reduce sum(tf.square(diff),
name="'squared diff')

loss = tf.div(squared diff, task target num, 'MSE')

self.ops['loss'] = tf.reduce sum(loss) # total loss
across all tasks

tf.summary.scalar('loss', self.ops['loss'],
family='overall performance')

-279-

with tf.variable scope('mean abs error'):
mae = tf.div(tf.reduce sum(tf.abs(diff), 1),
task target num)
print ('MAE shape: ')
print (mae.get shape())
self.ops['MAE'] = tf.reduce_ sum(mae) # Mean Absolute
Error

with tf.variable scope('R2'):

#tss = tf.subtract (tf.multiply(computed values,
self.placeholders['target mask']), tf.expand dims(batch mean,1l)) # y
- y mean

tss =
tf.subtract (tf.multiply(self.placeholders['target values'],
self.placeholders['target mask']), tf.constant (0, dtype=tf.float32))

y mean = 0,bcuz standarised in preprocessing
tss = tf.reduce sum(tf.square(tss), axis=1,
name='TSS') # sum((y-y mean)"2)

print ('TSS shape: ')

print (tss.get shape())

r squared = tf.subtract(tf.constant (1,
dtype=tf.float32), tf.div(squared diff, tss))

print ('R*2 shape: ')

print (r squared.get shape())

self.ops['R2'] = tf.reduce sum(r_ squared)

for internal id, task id in

enumerate (self.params['task ids']):

tf id = tf.constant([internal id],
name='task {} id'.format (task id))

task diff = tf.nn.embedding lookup (diff, tf id)

print ('task diff: ")

print (task diff.get shape())

tf.summary.histogram('diff', task diff,
family="task {} performance'.format (task id))

task mae = tf.nn.embedding lookup(mae, tf id)

print ('task MAE')

print (task mae.get shape())

tf.summary.scalar('task MAE', tf.squeeze (task mae),
family="task {} performance'.format (task id))

task loss = tf.nn.embedding lookup (loss, tf id)

tf.summary.scalar('task loss',
tf.squeeze (task loss), family='task {} performance'.format (task id))

task r squared = tf.nn.embedding lookup (r squared,
tf id)

tf.summary.scalar ('task R2"',
tf.squeeze (task r squared),
family="'task {} performance'.format (task id))

#task tss = tf.nn.embedding lookup(tss, tf id)
#tf.summary.scalar('task_tss', tf.squeeze (task tss),
family="'task {} performance'.format (task id))
Currently not done
Normalise loss to account for fewer task-specific
examples in batch:
task loss = task loss * (1.0 /
(self.params|['task sample ratios'].get(task id) or 1.0))

self.merged summary = tf.summary.merge all ()

-280-

def make train step(self):
trainable vars =
self.sess.graph.get collection(tf.GraphKeys.TRAINABLE VARIABLES)
if self.args.get ('--freeze-graph-model"') :
graph vars =
set (self.sess.graph.get collection(tf.GraphKeys.TRAINABLE VARIABLES,
scope="graph model"))
filtered vars = []
for var in trainable vars:
if var not in graph vars:
filtered vars.append(var)
else:
print ("Freezing weights of variable %s.

o

var.name)
trainable vars = filtered vars
optimizer =
tf.train.AdamOptimizer (self.params['learning rate'])
grads_and vars =
optimizer.compute gradients(self.ops['loss'],
var list=trainable vars)
clipped grads = []
with tf.variable scope('clib by norm'):
for grad, var in grads_and vars:
if grad is not None:
clipped grads.append((tf.clip by norm(grad,
self.params['clamp gradient norm']), var))
else:
clipped grads.append((grad, var))
self.ops['train step'] =
optimizer.apply gradients(clipped grads)
Initialize newly-introduced variables:
self.sess.run(tf.local variables initializer())

def gated regression(self, last h, regression gate,
regression_ transform) :
raise Exception ("Models have to implement
gated regression!")

def prepare specific graph model (self) -> None:
raise Exception("Models have to implement
prepare specific graph model!")

def compute final node representations(self) -> tf.Tensor:
raise Exception ("Models have to implement
compute final node representations!")

def make minibatch iterator(self, data: Any, is training: bool):
raise Exception ("Models have to implement

make minibatch iterator!")

def run epoch(self, epoch name: str, data, is training: bool):

loss = 0

maes = []

start time = time.time ()
processed _graphs = 0

batch iterator =
ThreadedIterator (self.make minibatch iterator(data, is training),
max queue size=5)

-281-

for step, batch data in enumerate (batch iterator):
num_graphs = batch data[self.placeholders['num graphs']]
processed graphs += num graphs
if is_training:

batch data[self.placeholders['out layer dropout keep prob']] =
self.params['out layer dropout keep prob']

batch data[self.placeholders['gated regression keep prob']] =
self.params|
'gated regression keep prob']

fetch list = [self.ops['loss'], self.ops['MAE'],
self.ops['train step'], self.ops['R2']]
else:
batch data[self.placeholders['out layer dropout keep prob']] = 1.0

batch data[self.placeholders['gated regression keep prob']] = 1.0
fetch list = [self.ops['loss'], self.ops['MAE'],
self.merged summary, self.ops['R2']]
result = self.sess.run(fetch list, feed dict=batch data)
(batch loss, batch mae) = (result[0], result[1l])
loss += batch loss * num graphs
maes.append (np.array (batch mae) * num graphs)
if not is_training:

summary = result[2]
else:
summary = None
print ("Running %s, batch %i (has %i graphs). Loss so

far: %.4f" % (epoch name,
step,
num_graphs,

loss / processed graphs),
end="'\r")

MAE = np.sum(maes, axis=0) / processed graphs
loss = loss / processed graphs
instance per sec = processed graphs / (time.time() -
start time)
return loss, MAE, instance per sec, summary, result[3] # R"2

def train(self):
log _to_save = []

total time start = time.time ()
with self.graph.as default():
if self.args.get('—--restore') is not None:
, , , r = self.run epoch ("Resumed

(validation)", self.valid data, False)
best r = np.sum(r)
best val r epoch = 0
best val loss = None
print ("\r\xlb[KResumed operation, initial
R*2: %.5f" % best r)
else:
(best_r, best val r epoch) = (float("-inf"), O0)
best val loss, best val mae = None, None
for epoch in range(l, self.params['num epochs'] + 1):

-282-

print ("== Epoch %i" % epoch)
train loss, train mae, train speed, , train r =
self.run epoch ("epoch %i (training)" % epoch,

self.train _data, True)

print ('\r[Train: epoch: {}, MSE: {}, MAE: {}, R"2:
{} instances/sec: {}'.format (epoch, train loss, train mae, train r,
train speed))

valid loss, valid mae, valid speed, summary, valid r

o

= self.run epoch("epoch %i (validation)" % epoch,

self.valid data, False)
self.writer.add summary (summary, epoch)

print ('\r[Valid: epoch: {}, MSE: {}, MAE: {}, R"2:
{}, instances/sec: {}'.format (epoch, valid loss, valid mae, valid r,

valid speed))

epoch time = time.time() - total time start

log _entry = {
'epoch': epoch,
'time': epoch time,
'train results': (float(train loss),
float (train mae), float(train r), train speed),
'valid results': (valid loss, valid mae,
float(valid r), valid speed),
}
log to save.append(log entry)
with open(self.log file, 'w') as f:
json.dump (log to save, f, indent=4)

type: float
if valid r > best r:
self.save model (self.best model file)

print (" (Best epoch so far, R"2 decreased
to %$.5f from %.5f. Saving to '%s')" % (valid r, best r,

self.best model file))

best r = valid r

best val mae = valid mae

best val loss = valid loss

best val r epoch = epoch

elif epoch - best val r epoch >=

self.params|['patience']:

print ("Stopping training after %i epochs without
improvement on validation accuracy." % self.params|['patience'])

print the performance summary

full path = os.path.join(self.log dir,
'performance.json')

date = self.run id.split('_

run id = self.run id.split ('

self.best r = best r

with open (full path, 'w') as f:

json.dump ({'date': date, 'run id': run_id,

'MAE': float (best val mae),

") [0]
") [1]

-283-

'MSE': float (best val loss),
'R2': float (best r), 'epochs': best val r epoch}, f)
break

def save model (self, path: str) -> None:
weights to save = {}
for variable in
self.sess.graph.get collection(tf.GraphKeys.GLOBAL VARIABLES) :
assert variable.name not in weights to save
weights to save[variable.name] = self.sess.run(variable)

data to_save = {
"params": self.params,
"weights": weights to save

with open(path, 'wb') as out file:
pickle.dump (data to save, out file,
pickle.HIGHEST PROTOCOL)

def initialize model(self) -> None:
init op = tf.group(tf.global variables initializer(),
tf.local variables initializer())
self.sess.run(init op)
self.writer.add graph(self.sess.graph)
self.merged summary = tf.summary.merge all ()

def restore model (self, path: str) -> None:
print ("Restoring weights from file %s." % path)
with open(path, 'rb') as in file:
data to load = pickle.load(in_ file)

Assert that we got the same model configuration
assert len(self.params) == len(data to load['params'])
for (par, par value) in self.params.items():
Fine to have different task ids:
if par not in ['task ids', 'num epochs']:
assert par value == data to load['params'] [par]

variables to initialize = []
with tf.name scope("restore"):
restore ops = []
used vars = set()
for variable in
self.sess.graph.get collection(tf.GraphKeys.GLOBAL VARIABLES) :
used vars.add(variable.name)
if variable.name in data to load['weights']:

restore ops.append(variable.assign(data to load['weights'] [variable.
name]))
else:
print ('Freshly initializing %s since no saved
value was found.' % variable.name)
variables to initialize.append(variable)
for var name in data to load['weights']:
if var name not in used vars:
print ('Saved weights for %$s not used by

o)

model.' % var_ name)

restore ops.append(tf.variables initializer(variables to initialize)

)

-284-

self.sess.run(restore ops)

-285-

chem_tensorflow_sparse.py
#!/usr/bin/env/python

Usage:
chem tensorflow sparse.py [options]

Options:

-h --help Show this screen.

--config-file FILE Hyperparameter configuration file path
(in JSON format) .

--config CONFIG Hyperparameter configuration dictionary
(in JSON format) .

--run _dir DIR Run dir name.

-—data_dir DIR Data dir name.

--restore FILE File to restore weights from.

-—-freeze-graph-model Freeze weights of graph model
components.

--run_id ID Run id.

from typing import List, Tuple, Dict, Sequence, Any

from docopt import docopt

from collections import defaultdict, namedtuple
import numpy as np

import tensorflow as tf

import sys, traceback

import pdb

from chem tensorflow import ChemModel
from utils import glorot init, SMALL NUMBER

GGNNWeights = namedtuple ('GGNNWeights', ['edge weights',
'edge biases',

'edge type attention weights',
'rnn cells',])

class SparseGGNNChemModel (ChemModel) :
def init (self, args):
super (). init (args)

@classmethod
def default params(cls):
params = dict(super().default params())
params.update ({
'batch size': 100000,
'use edge bias': False,
'use propagation attention': False,
'use _edge msg avg aggregation': True,

'residual connections': { # For layer i, specify list
of layers whose output is added as an input
H2H: [O],
TAv. [0, 2]

'layer timesteps': [2, 2, 1, 2, 1], # number of layers
& propagation steps per layer

'graph rnn cell': 'GRU', # GRU or RNN

-286-

'graph rnn activation': 'tanh', # tanh, RelLU
'graph state dropout keep prob': 1.,
'task sample ratios': ({},

})

return params

def prepare specific graph model (self) -> None:
h dim = self.params['hidden size']
self.placeholders['initial node representation'] =
tf.placeholder(tf.float32, [None, h dim],

name='node features')
self.placeholders['adjacency lists'] =
[tf.placeholder (tf.int32, [None, 2], name='adjacency e3s' % e)
for e in
range (self.num edge types)]
self.placeholders['num incoming edges per type'] =
tf.placeholder (tf.float32, [None, self.num edge types],

name='num incoming edges per type')
self.placeholders['graph nodes list'] =

tf.placeholder(tf.int64, [None, 2], name='graph nodes list')
self.placeholders['graph state keep prob'] =

tf.placeholder (tf.float32, None, name='graph state keep prob')

activation name =
self.params['graph rnn activation'].lower ()
if activation name == 'tanh':
activation fun = tf.nn.tanh
elif activation name == 'relu':
activation fun = tf.nn.relu
else:
raise Exception ("Unknown activation function type
'$s'." % activation name)

Generate per-layer values for edge weights, biases and
gated units:
self.weights = {} # Used by super-class to place generic
things
self.gnn weights = GGNNWeights([], [1, [1, [1])
for layer idx in range(len(self.params['layer timesteps'])):
with tf.variable scope('gnn layer %i' % layer idx):
edge weights =
tf.Variable(glorot init([self.num edge types * h dim, h dim]),
name='gnn edge weights %i' % layer idx)
edge _weights = tf.reshape (edge weights,
[self.num edge types, h dim, h dim])
self.gnn weights.edge weights.append(edge weights)

if self.params|['use propagation attention']:

self.gnn weights.edge type attention weights.append(tf.Variable(np.o
nes ([self.num edge types], dtype=np.float32),

name='edge type attention weights %i' % layer idx))

if self.params|['use edge bias']:

self.gnn weights.edge biases.append(tf.Variable (np.zeros([self.num e
dge types, h dim], dtype=np.float32),

-287-

[

name='gnn edge biases %i' % layer idx))

cell type = self.params['graph rnn cell'].lower ()
if cell type == 'gru':
cell = tf.nn.rnn _cell.GRUCell (h dim,
activation=activation fun)
elif cell type == 'rnn':
cell = tf.nn.rnn cell.BasicRNNCell (h dim,
activation=activation fun)
else:
raise Exception ("Unknown RNN cell type '%s'." %
cell type)
cell = tf.nn.rnn_cell.DropoutWrapper (cell,

state keep prob=self.placeholders['graph state keep prob'])
self.gnn weights.rnn cells.append(cell)

def compute final node representations(self) -> tf.Tensor:
node states per layer = [] # one entry per layer (final
state of that layer), shape: number of nodes in batch v x D

node states per layer.append(self.placeholders['initial node represe
ntation'])

num _nodes =
tf.shape(self.placeholders['initial node representation'],
out type=tf.int32) [0]

message targets = [] # list of tensors of message targets
of shape [E]

message _edge types = [] # list of tensors of edge type of
shape [E]

for edge type idx, adjacency list for edge type in
enumerate (self.placeholders['adjacency lists']):
edge targets = adjacency list for edge typel[:, 1]
message_ targets.append(edge targets)
message edge types.append(tf.ones like (edge targets,
dtype=tf.int32) * edge type idx)

message targets = tf.concat (message targets, axis=0) #
Shape [M]

message_edge types = tf.concat (message edge types, axis=0)
Shape [M]

for (layer idx, num timesteps) in
enumerate (self.params['layer timesteps']):
with tf.variable scope('gnn layer %i' % layer idx):
Used shape abbreviations:
V ~ number of nodes
D ~ state dimension
E ~ number of edges of current type
M ~ number of messages (sum of all E)

Extract residual messages, if any:
layer residual connections
self.params['residual connections'].get (str (layer idx))
if layer residual connections is None:
layer residual states = []
else:
layer residual states =
[node states per layer[residual layer idx]

-288-

for residual layer idx
in layer residual connections]

if self.params|['use propagation attention']:
message_ edge type factors =
tf.nn.embedding lookup (params=self.gnn weights.edge type attention w
eights[layer idx],

ids=message edge types) # Shape [M]
for edge type idx in
range (len(self.placeholders['adjacency lists'])):

tf.summary.histogram('GNN layer {} edge type {}'.format (layer idx,
edge type idx),

self.gnn weights.edge weights[layer idx][edge type idx])

Record new states for this layer. Initialised to
last state, but will be updated below:
node states per layer.append(node states per layer|[-
17)
for step in range(num_timesteps):
with tf.variable scope('timestep %i' % step):
messages = [] # list of tensors of messages
of shape [E, D]
message_source states = [] # list of
tensors of edge source states of shape [E, D]

Collect incoming messages per edge type
for edge type idx,
adjacency list for edge type in
enumerate (self.placeholders['adjacency lists']):
edge sources =
adjacency list for edge typel[:, 0]
edge_ source_ states =
tf.nn.embedding lookup (params=node states per layer[-1],

ids=edge_ sources) # Shape [E, D]

all messages for edge type =
tf.matmul (edge source_ states,
self.gnn weights.edge weights[layer idx][edge type idx]) # Shape
[E, D]
messages.append (all messages for edge type)

message_ source states.append(edge source states)

messages = tf.concat (messages, axis=0) #
Shape [M, D]

if self.params|['use propagation attention']:
message source states =
tf.concat (message source states, axis=0) # Shape [M, D]
message target states =
tf.nn.embedding lookup (params=node states per layer[-1],

ids=message_ targets) # Shape [M, D]

-289-

message_attention scores =
tf.einsum('mi,mi->m', message source states, message target states)
Shape [M]

message_ attention scores =
message_attention scores * message edge type factors

The following is softmax-ing over the
incoming messages per node.

As the number of incoming varies, we
can't just use tf.softmax. Reimplement with logsumexp trick:

Step (1): Obtain shift constant as max
of messages going into a node

message attention score max per target =
tf.unsorted segment max(data=message attention scores,

segment ids=message targets,

num_segments=num nodes) # Shape [V]

Step (2): Distribute max out to the
corresponding messages again, and shift scores:

message attention score max per message
= tf.gather (params=message attention score max per target,

indices=message targets) # Shape [M]

message_attention scores -=
message attention score max per message

Step (3): Exp, sum up per target,
compute exp (score) / exp(sum) as attention prob:

message_attention scores exped =
tf.exp(message attention scores) # Shape [M]

message attention score sum per target =
tf.unsorted segment sum(data=message attention scores_ exped,

segment ids=message targets,
num_segments=num nodes) # Shape [V]

message_ attention normalisation sum per message =
tf.gather (params=message attention score sum per target,

indices=message targets) # Shape [M]

message_ attention =
message_attention scores exped /
(message attention normalisation sum per message + SMALL NUMBER) #
Shape [M]

Step (4): Weigh messages using the
attention prob:

messages = messages *
tf.expand dims (message_ attention, -1)

incoming messages =
tf.unsorted segment sum(data=messages,

segment ids=message targets,
num_ segments=num nodes) # Shape [V, D]
if self.params['use edge bias']:

incoming messages +=
tf.matmul (self.placeholders['num incoming edges per type'l],

-290-

self.gnn weights.edge biases[layer idx]) # Shape [V, D]

if
self.params['use edge msg _avg aggregation']:
num_incoming edges =
tf.reduce sum(self.placeholders['num incoming edges per type'l],

keep dims=True, axis=-1) # Shape [V, 1]
incoming messages /= num_ incoming edges
+ SMALL NUMBER

incoming information =
tf.concat (layer residual states + [incoming messages],
axis=-1) #
Shape [V, D*(1 + num of residual connections)]

pass updated vertex features into RNN cell
node states per layer([-1] =
self.gnn weights.rnn cells[layer idx] (incoming information,

node states per layer[-1])[1] # Shape [V, D]
return node states per layer[-1]

def gated regression(self, last h, regression gate,
regression_ transform) :
last_h: [v x h]

gate input = tf.concat([last _h,
self.placeholders['initial node representation']], axis=-1) # [v x
2h]

gated outputs = tf.nn.sigmoid(regression gate (gate input)) *
regression transform(last h) # [v x 1]

Sum up all nodes per-graph
num nodes = tf.shape(gate input, out type=tf.int64) [0]
graph nodes =

tf.SparseTensor (indices=self.placeholders['graph nodes list'],

values=tf.ones like(self.placeholders['graph nodes list'][:, O],
dtype=tf.float32),

dense shape=[self.placeholders|['num graphs'], num nodes]) # [g x V]
return

tf.transpose (tf.sparse tensor dense matmul (graph nodes,

gated outputs)) # [g]

- Data preprocessing and chunking into minibatches:
def process raw graphs(self, raw data: Sequence[Any],
is training data: bool) -> Any:
processed graphs = []
for d in raw_data:
(adjacency lists, num incoming edge per type) =
self. graph to adjacency lists(d['graph'])
if self.num graph features > 0:
processed graphs.append({"adjacency lists":
adjacency lists,

"num incoming edge per type": num incoming edge per type,

-291-

"init": d["node features"],

"labels":
[d["targets"] [task id] [0] for task id in self.params['task ids']],
'graph features':
d['graph features']
})
else:
processed graphs.append({"adjacency lists":
adjacency lists,

"num_incoming edge per type": num incoming edge per type,

"init": d["node features"],

"labels":
[d["targets"] [task id] [0] for task id in self.params['task ids']]
b

if is_training data:
np.random.shuffle (processed graphs)
for task id in self.params['task ids']:
task sample ratio =

self.params['task sample ratios'].get(str(task id))
if task sample ratio is not None:
ex to sample = int(len(processed graphs) *

task sample ratio)
for ex id in range(ex to_sample,
len (processed graphs)) :
processed graphs[ex id]['labels'] [task id]
None

return processed graphs

def graph to adjacency lists(self, graph) -> Tuple[Dict[int,
np.ndarray], Dict[int, Dict[int, int]]]:
adj lists = defaultdict(list)
num_ incoming edges dicts per type = defaultdict (lambda:
defaultdict (lambda: 0))
for src, e, dest in graph:
fwd edge type = e - 1 # Make edges start from 0
adj lists[fwd edge type].append((src, dest))
num_incoming edges dicts per type[fwd edge type] [dest]

if self.params['tie fwd bkwd']:
adj lists[fwd edge type].append((dest, src))

num_incoming edges dicts per type[fwd edge type][src] += 1

final adj lists = {e: np.array(sorted(lm), dtype=np.int32)
for e, Im in adj lists.items()}

Add backward edges as an additional edge type that goes
backwards:
if not (self.params['tie fwd bkwd']):
for (edge type, edges) in adj lists.items():
bwd edge type = self.num edge types + edge type

final adj lists[bwd edge type] = np.array(sorted((y,

x) for (x, y) in edges), dtype=np.int32)
for (x, y) in edges:

num_incoming edges dicts per typel[bwd edge type][y] += 1

return final adj lists, num incoming edges dicts per type

-292-

def make minibatch iterator(self, data: Any, is_training: bool):
"""Create minibatches by flattening adjacency matrices into
a single adjacency matrix with
multiple disconnected components."""
if is_training:
np.random.shuffle (data)
Pack until we cannot fit more graphs in the batch
dropout keep prob =
self.params['graph state dropout keep prob'] if is training else 1.
num graphs = 0
while num graphs < len(data):
num graphs in batch = 0
batch node features = []
batch target task values
batch target task mask =
batch adjacency lists = [
range (self.num edge types)]
batch num incoming edges per type = []
batch graph nodes list = []
node offset = 0
batch graph features = defaultdict(list)

] for in

while num graphs < len(data) and node offset +

len(data[num graphs]['init']) < self.params['batch size']:
cur_graph = data[num graphs]
num_nodes in graph = len(cur graph['init'])
padded features = np.pad(cur graph['init'],
((0, 0), (0,
self.params['hidden size'] - self.annotation size)),
'constant')

batch node features.extend(padded features)
batch graph nodes list.extend(
(num_graphs_ in batch, node offset + i) for i in
range (num_nodes_in graph))
for i in range(self.num edge types):
if 1 in cur graph['adjacency lists']:

batch adjacency lists[i].append(cur graph['adjacency lists'][i] +
node offset)

Turn counters for incoming edges into np array:

num_incoming edges per type =
np.zeros ((num nodes in graph, self.num edge types))

for (e _type, num incoming edges per type dict) in
cur_graph['num incoming edge per type'].items():

for (node id, edge count) in
num_incoming edges per type dict.items():
num_incoming edges per type[node id, e type]

= edge_count

batch num incoming edges per type.append(num incoming edges per type

)

target task values = []
target task mask = []
for target val in cur graph['labels']:
if target val is None: # This is one of the
examples we didn't sample...
target task values.append(0.)
target task mask.append(0.)

-293-

else:
target task values.append(target val)
target task mask.append(1l.)
batch target task values.append(target task values)
batch target task mask.append(target task mask)
for feature in self.graph features list:

batch graph features[feature].append(cur graph['graph features'] [fea
ture])

num_graphs += 1

num_graphs_ in batch += 1

node offset += num nodes in graph

batch feed dict = {
self.placeholders['initial node representation']:
np.array (batch node features),
self.placeholders['num incoming edges per type']:
np.concatenate (batch num incoming edges per type, axis=0),
self.placeholders|['graph nodes list']:
np.array(batch graph nodes list, dtype=np.int32),
self.placeholders['target values']:
np.transpose (batch target task values, axes=[1,0]),
self.placeholders['target mask']:
np.transpose (batch target task mask, axes=[1l, 0]),
self.placeholders['num graphs']:
num_graphs_ in batch,
self.placeholders['graph state keep prob']:
dropout keep prob,
}
add graph features
for feature in self.graph features list:
have to adjust the shape to match the desired
input shape
if self.graph feature lengths[feature] ==
feed = np.array([batch graph features[feature]],
dtype=np.float32)
else:
feed =
np.transpose (batch graph features[feature], axes=[1, 0])

batch feed dict[self.placeholders[feature]] = feed

Merge adjacency lists and information about incoming

nodes:
for i in range(self.num edge types):
if len(batch adjacency lists[i]) > O0:
adj list =
np.concatenate (batch adjacency lists[i])
else:
adj list = np.zeros((0, 2), dtype=np.int32)
batch feed dict[self.placeholders['adjacency lists'][i]] = adj list

yield batch feed dict

def main () :
args = docopt(_ doc)
try:
model = SparseGGNNChemModel (args)

-294-

model.train ()
except:
typ, value, tb = sys.exc info()
traceback.print exc()
pdb.post mortem (tb)

if name == " main ":
main ()

-295-

apply_chem_tensorflow.py

Usage:
chem tensorflow sparse.py [options]

Options:

-h --help Show this screen.

--config-file FILE Hyperparameter configuration file path
(in JSON format) .

--config CONFIG Hyperparameter configuration dictionary
(in JSON format) .

--run _dir DIR Run dir name.

--data dir DIR Data dir name.

—-—-restore FILE File to restore weights from.

—-—freeze-graph-model Freeze weights of graph model
components.

--run_id ID Run id.

from typing import List, Tuple, Dict, Sequence, Any

from docopt import docopt

import os

from collections import defaultdict, namedtuple
import numpy as np

import tensorflow as tf

import sys, traceback

import pdb

import time

import json

import pickle

from chem tensorflow import ChemModel, ThreadedIterator
from chem tensorflow sparse import GGNNWeights, SparseGGNNChemModel
from utils import glorot init, SMALL NUMBER

class ApplyGGNNChemModel (SparseGGNNChemModel) :
def init (self, args):
super (). init (args)

def process raw graphs(self, raw data: Sequence[Any],
is training data: bool) -> Any:
processed graphs = []
for d in raw data:
(adjacency lists, num incoming edge per type) =
self. graph to adjacency lists(d['graph'l])
if self.num graph features > 0:
processed graphs.append({"adjacency lists":
adjacency lists,

"num incoming edge per type'": num_ incoming edge per type,
"init": d["node features"],
"labels":
[d["targets"][task 1id][0] for task id in self.params['task ids']],
'graph features':
d['graph features'],
TidT: d["id"]
})

else:

-296-

processed graphs.append({"adjacency lists":
adjacency lists,

"num incoming edge per type': num incoming edge per type,
"init": d["node features"],
"labels™":

[d["targets"] [task 1d][0] for task id in self.params['task ids'l],
Hid": d["id"]
H)

if is_training data:
np.random.shuffle (processed graphs)
for task id in self.params['task ids']:
task sample ratio =

self.params['task sample ratios'].get(str(task id))
if task sample ratio is not None:
ex to sample = int (len(processed graphs) *

task sample ratio)
for ex id in range(ex to sample,
len (processed graphs)) :
processed graphs[ex id]['labels'][task id] =
None

return processed graphs

def graph to adjacency lists(self, graph) -> Tuple[Dict[int,
np.ndarray], Dictl[int, Dict[int, int]]]:
adj lists = defaultdict(list)
num_incoming edges dicts per type = defaultdict (lambda:
defaultdict (lambda: 0))
for src, e, dest in graph:
fwd edge type = e - 1 # Make edges start from 0
adj lists[fwd edge type].append((src, dest))
num_incoming edges dicts per type[fwd edge type] [dest]

if self.params['tie fwd bkwd']:
adj lists[fwd edge type].append((dest, src))

num_incoming edges dicts per type[fwd edge type] [src] += 1

final adj lists = {e: np.array(sorted(lm), dtype=np.int32)
for e, Im in adj lists.items()}

Add backward edges as an additional edge type that goes
backwards:
if not (self.params['tie fwd bkwd']):
for (edge type, edges) in adj lists.items():
bwd edge type = self.num edge types + edge type
final adj lists[bwd edge type] = np.array(sorted((y,
x) for (x, y) in edges), dtype=np.int32)
for (x, y) in edges:

num_incoming edges_dicts per type[bwd edge type][y] += 1

return final adj lists, num incoming edges dicts per type

def restore model (self, path: str) -> None:
print ("Restoring weights from file %s." % path)

with open(path, 'rb') as in file:
data to load = pickle.load(in file)

-297-

Assert that we got the same model configuration
assert len(self.params) == len(data to load['params'])
for (par, par value) in self.params.items():
Fine to have different task ids:
if par not in ['task ids', 'num epochs']:
try:
assert par value == data to load['params'] [par]
except AssertionError:
print ('"WARNING: params dont match')
print ('expected:
{}'.format (data_to load['params'] [par]))
print('got: {}'.format (par value))

variables to initialize = []
with tf.name scope ("restore"):
restore ops = []
used vars = set()
for variable in
self.sess.graph.get collection(tf.GraphKeys.GLOBAL VARIABLES) :
used vars.add(variable.name)
if variable.name in data to load['weights']:

restore ops.append(variable.assign(data to load['weights'] [variable.
name]))
else:
print ('Freshly initializing %s since no saved
value was found.' % variable.name)
variables to initialize.append(variable)
for var name in data to load['weights']:
if var name not in used vars:
print ('Saved weights for %s not used by

[

model.' % var name)

restore ops.append(tf.variables initializer(variables to initialize)
)
self.sess.run(restore ops)
self.writer.add graph(self.sess.graph)
self.merged summary = tf.summary.merge all ()

def make minibatch iterator(self, data: Any, is_training: bool):
"""Create minibatches by flattening adjacency matrices into
a single adjacency matrix with
multiple disconnected components."""
if is_training:
np.random.shuffle (data)
Pack until we cannot fit more graphs in the batch
dropout keep prob =
self.params['graph state dropout keep prob'] if is training else 1.
num_graphs = 0
while num graphs < len(data):
num _graphs in batch = 0
batch node features = []
batch target task values = []
batch target task mask = []
batch info = []
batch adjacency lists = [[] for _ in
range (self.num edge types)]
batch num incoming edges per type = []
batch graph nodes list = []
node offset = 0
batch graph features = defaultdict(list)

-298-

while num graphs < len(data) and node offset +

len(data[num graphs]['init']) < self.params['batch size']:
cur _graph = data[num graphs]
num nodes in graph = len(cur _graph['init'])
padded features = np.pad(cur_graph['init'],
((0, 0), (0,
self.params['hidden size'] - self.annotation size)),
'constant')

batch node features.extend(padded features)
batch graph nodes list.extend(
(num_graphs_in batch, node offset + i) for i in
range (num_nodes_ in graph))
for 1 in range(self.num edge types):
if 1 in cur graph['adjacency lists']:

batch adjacency lists[i].append(cur_graph['adjacency lists'][i] +
node offset)

Turn counters for incoming edges into np array:

num_incoming edges per type =
np.zeros ((num nodes in graph, self.num edge types))

for (e _type, num incoming edges per type dict) in
cur_graph['num incoming edge per type'].items():

for (node id, edge count) in
num_incoming edges per type dict.items():
num_incoming edges per type[node id, e typel]

= edge_ count

batch num incoming edges per type.append(num_ incoming edges per type

)

target task values = []
target task mask = []

for target val in cur graph['labels']:
if target val is None: # This is one of the
examples we didn't sample...
target task values.append(0.)
target task mask.append(0.)
else:
target task values.append(target val)
target task mask.append(l.)
batch target task values.append(target task values)
batch target task mask.append(target task mask)
batch info.append({'id': cur graph['id'], 'target':
target task values})

for feature in self.graph features list:

batch graph features|[feature].append(cur graph['graph features'][fea
ture])

num _graphs += 1

num_graphs_in batch += 1

node offset += num nodes in graph

batch feed dict = {
self.placeholders['initial node representation']:
np.array (batch node features),
self.placeholders['num incoming edges per type']:
np.concatenate (batch num incoming edges per type, axis=0),

-299-

self.placeholders['graph nodes list']:
np.array(batch graph nodes list, dtype=np.int32),
self.placeholders['target values']:
np.transpose (batch target task values, axes=[1,0]),
self.placeholders['target mask']:
np.transpose (batch target task mask, axes=[1l, 0]),
self.placeholders['num graphs']:
num graphs in batch,
self.placeholders['graph state keep prob']:
dropout keep prob,
}
add graph features
for feature in self.graph features list:
have to adjust the shape to match the desired
input shape
if self.graph feature lengths[feature] ==
feed = np.array([batch graph features[feature]],
dtype=np.float32)

else:
feed =
np.transpose (batch graph features[feature], axes=[1l, 0])
batch feed dict[self.placeholders[feature]] = feed

Merge adjacency lists and information about incoming

nodes:
for i in range(self.num edge types):
if len(batch adjacency lists[i]) > O0:
adj list =
np.concatenate (batch adjacency lists[i])
else:
adj list = np.zeros((0, 2), dtype=np.int32)
batch feed dict[self.placeholders['adjacency lists'][i]] = adj list

yield batch feed dict, batch info

def run epoch(self, epoch name: str, data):

loss = 0

maes = []

performance = []

start time = time.time ()
processed graphs = 0

batch iterator =
ThreadedIterator(self.make minibatch iterator(data, False),
max_ queue size=5)
for step, (batch data, batch info) in
enumerate (batch iterator):
num _graphs = batch data[self.placeholders['num graphs']]
processed graphs += num graphs

batch data[self.placeholders['out layer dropout keep prob']] = 1.0
batch data[self.placeholders['gated regression keep prob']] = 1.0
fetch list = [self.ops['loss'], self.ops['MAE'],
self.merged summary, self.ops['R2'], self.ops['predicted']]
result = self.sess.run(fetch list, feed dict=batch data)
(batch loss, batch mae) = (result[0], result[l])

loss += batch loss * num graphs

-300-

maes.append (np.array (batch mae) * num graphs)

summary = result[2]
predicted = result[4].T
try:
assert len(batch info)==len(predicted)
except AssertionError:
print ("#'*100)

print ('batch info:")
print (batch info)
print ("#'*100)

print ('predicted:")

print (predicted)
for i in range(len(batch info)):
json _ready = []
for j in list (predicted[i]):
#assumes only one target property
json_ready.append (float (j))

batch info[i] ['predicted'] = json_ ready
performance.extend (batch info)
print ("Running %s, batch %i (has %i graphs). Loss so

far: %.4f" % (epoch name,
step,
num_graphs,

loss / processed graphs),

end="\r")
MAE = np.sum(maes, axis=0) / processed graphs
loss = loss / processed graphs

instance per sec = processed graphs / (time.time() -
start time)

return loss, MAE, instance per sec, summary, result[3],
performance

def apply(self):
with self.graph.as default():
loss, MAE, instance per sec, summary, r, perf =
self.run epoch ("Application run", self.valid data)
self.writer.add summary (summary, O0)
full path = os.path.join(self.log dir,
'validation performance.json')
date = self.run id.split ('
run_id = self.run id.split ('
with open(full path, 'w') as f:
json.dump ({'date': date, 'run id': run id, 'MAE':

") [0]
") [1]

float (MAE),
'MSE': float(loss), 'R2': float(r),
'epochs': 0}, f)

predicted path = os.path.join(self.log dir,
'{} predicted.json'.format (run_id))
print ('saving to {}'.format (predicted path))
with open(predicted path, 'w') as f:
json.dump (perf, f)

def main() :
args = docopt(_ doc)

-301-

try:
model = ApplyGGNNChemModel (args)
model.apply ()

except:
typ, value, tb = sys.exc info()
traceback.print exc()
pdb.post mortem (tb)

if name == " main ":
main ()

-302-

optimiser.py
import pickle
import argparse
import os
import json

from hyperopt import hp # hyperparameters space
from hyperopt import tpe # the optimisation algorithm
from hyperopt import Trials # history

from hyperopt import fmin # minimalisation
from hyperopt import STATUS OK

from

def

def

def

get max run id(base dir):
sub dirs = glob.glob(os.path.join(base dir,
max_run_id = -1
if sub dirs:
for d in sub dirs:

m = re.search('[0-9]+", d)

run_id = int(m.group(0))

if run id > max run_ id:

max run id = run id

return max run id

basic param():

return {
'patience': 25,
'learning rate': 0.001,

'clamp gradient norm': 1.0,

'out layer dropout keep prob': 0.9,
'gated regression keep prob': 0.9,
'use graph': True,

'tie fwd bkwd': True,

"task ids': [0],

'random seed': O,

'use edge bias': False,

'use propagation attention': False,
'use edge msg _avg aggregation': True,
'task sample ratios': {},

"num epochs": 300,

"residual connections": {},
"graph rnn _activation": "ReLU"

convert param(params) :
conf = basic_param()
get each parameter
graph _descriptors = []
if params['use rmsd']:
graph descriptors.append('RMSD")
if params['use h-dim']:
graph _descriptors.append('H dims")

edge types = ['SINGLE', 'DOUBLE', 'TRIPLE',

if params['use h-bond']:
edge_types.append('HBOND")

-303-

chem tensorflow sparse import SparseGGNNChemModel

'runi*/'))

'"AROMATIC']

if params['use vdw-intra']:

edge types.append('VDW INTRA'")
if params['use vdw-inter']:

edge types.append('VWD INTER'")

graph representation size = int(params['graph vector'l])
hidden size = int(params['node vector'])
prediction layers architecture = [int(params['p layer 1']),

int(params['p layer 2'1)]

layer timesteps = [int(params['rnn timestep']['rnn timestep'])
for in range(int(params['rnn timestep']l['rnn layers'l))]

graph rnn cell = params['rnn cell']

put it in the conf

conf['graph descriptors'] = graph descriptors

conf['edge types'] = edge types

conf['graph representation size'] = graph representation size
conf['hidden size'] = hidden size

conf['prediction layers architecture'] =
prediction layers architecture

conf['layer timesteps'] = layer timesteps

conf['graph rnn cell'] = graph rnn cell

from globals
conf['train file']
conf['valid file']
return conf

train
valid

def set up dir():
run_id = get max run id(base dir)
run_id += 1
while True:

try:
full dir = os.path.join(base dir,
'run {}'.format(run id), ''")
assert os.path.isdir(full dir) is False
break

except AssertionError:
print('failed at creating run directory')
print('run id is: {}'.format(run id))
print('will try next number up')
run_id += 1

os.makedirs (full dir)
return full dir, run id
def objective(params) :
conf = convert param(params)
full dir, run id = set up dir()
args = {'conf': conf, '--run id': run id, '--run dir': full dir}

model = SparseGGNNChemModel (args)
model.train ()

-304-

r = model.best r

loss =1 -1

return {'loss': loss, 'status': STATUS OK, 'run id': run id,
'param': params, 'config': conf}

def get trials(trial name=None) :
if trial name:
trial dir = os.path.join(base dir, trial name)
if os.path.isfile(trial dir):
trials = pickle.load(open(trial dir, 'rb'"))
else:
trials = Trials()

return trials

def define domain space():
space = {

'use rmsd': hp.choice('use rmsd', [False, True]),
'use h-dim': hp.choice('use h-dim', [False, True]),
'use h-bond': hp.choice('use h-bond', [False, True]),
'use vdw-intra': hp.choice('use vdw-intra', [False, True]),
'use vdw-inter': hp.choice('use vdw-inter',6 [False, True]),
"graph vector': hp.quniform('graph vector',100,1500,100),
'node vector': hp.quniform('node vector', 30, 150, 10),
'p layer 1': hp.quniform('p layer 1', 40, 600, 20),
'p layer 2': hp.quniform('p layer 2', 10, 300, 10),
'rnn timestep': hp.choice('rnn timestep', [{'rnn timestep':

1, 'rnn layers': hp.quniform('rnn layers 1', 1, 5, 1)},
{'rnn_timestep':
2, 'rnn layers': hp.quniform('rnn layers 2', 1, 2, 1)},

{'rnn_ timestep':
3, 'rnn layers': 1}
1),
'"rnn cell': hp.choice('rnn cell', ['GRU', 'RNN']),

}

return space

def define mol only domain space():
space = {

'use rmsd': hp.choice('use rmsd', [Falsel),
'use h-dim': hp.choice('use h-dim', [False]),
'use h-bond': hp.choice('use h-bond', [False]),
'use vdw-intra': hp.choice('use vdw-intra', [False]),
'use vdw-inter': hp.choice('use vdw-inter', [False]),
'graph vector': hp.quniform('graph vector', 300, 1200, 100),
'node vector': hp.quniform('node vector', 70, 120, 10),
'p layer 1': hp.quniform('p layer 1', 200, 500, 20),
'p layer 2': hp.quniform('p layer 2', 80, 300, 20),
'rnn_ timestep': hp.choice('rnn timestep',

[{'rnn timestep': 1, 'rnn layers':
hp.quniform('rnn layers 1', 1, 8, 1)},

{'rnn_timestep': 2, 'rnn layers':
hp.quniform('rnn layers 2', 1, 4, 1)},

{'rnn_timestep': 3, 'rnn layers':

hp.quniform('rnn layers 3', 1, 3, 1)},

-305-

{'rnn_timestep': 4, 'rnn layers':
hp.quniform('rnn layers 4', 1, 2, 1)},
{'rnn timestep': 5, 'rnn layers':
1}
1),
'rnn cell': hp.choice('rnn cell', ['RNN']),
}

return space

def define intermol interact search space():
space = {

'use rmsd': hp.choice('use rmsd', [False]),
'use h-dim': hp.choice('use h-dim', [Falsel),
'use h-bond': hp.choice('use h-bond', [False, Truel),
'use vdw-intra': hp.choice('use vdw-intra', [Falsel),
'use vdw-inter': hp.choice('use vdw-inter', [False, True]),
'graph vector': hp.quniform('graph vector', 300, 1200, 100),
'node vector': hp.quniform('node vector', 60, 140, 10),
'p layer 1': hp.quniform('p layer 1', 200, 500, 20),
'p layer 2': hp.quniform('p layer 2', 80, 300, 20),
'rnn timestep': hp.choice('rnn timestep',

[{'rnn timestep': 1, 'rnn layers':
hp.quniform('rnn layers 1', 1, 8, 1)},

{'rnn_timestep': 2, 'rnn layers':
hp.quniform('rnn layers 2', 1, 4, 1)},

{'rnn timestep': 3, 'rnn layers':
hp.quniform('rnn layers 3', 1, 3, 1)},

{'rnn_timestep': 4, 'rnn layers':
hp.quniform('rnn layers 4', 1, 2, 1)},

{'rnn_timestep': 5, 'rnn layers':

1}
ID
'rnn cell': hp.choice('rnn cell', ['RNN', 'GRU']),
}

return space

def run optimiser(batch size, max evals, space, trials, algorithm):
current eval = len(trials)
pickle f = True

while current eval < max evals:
if max evals - current eval < batch size:
current eval = max evals
else:
current eval += batch size

= fmin(objective, space=space, algo=algorithm,
trials=trials, max evals=current eval)

best not taken as trials includes everything + can get run
id

if pickle f:
pickle f = False

pickle name = 'trials dump l.pickle'
else:

pickle f = True

pickle name = 'trials dump 2.pickle’

-306-

pickle.dump(trials, open(os.path.join(base dir,
pickle name), 'wb'))

return trials

def get best param(trials):
min loss = float('+inf'")
best id = None
best param = {}
conf = {}
for i, run in enumerate(trials.results):
if run['loss'] < min loss:
min loss = run['loss']
best id = run['run id']
best param = run['param']
conf = run['config']
print('best run: {}'.format(best id))
best param['id'] = best id
json.dump (best param, open(os.path.join(base dir,
'best hyperparam.json'), 'w'))
json.dump (conf, open(os.path.join(base dir, 'best conf.json'),

IWI))

def main():
parser = argparse.ArgumentParser ("""Hyperparameter
optimisation""")

parser.add argument ("--step size", default=2, type=int,
help='number of iteration before backing up')

parser.add argument ("--max eval", default=100, type=int,
help='max number of iterations')

parser.add argument ("--restore", type=str, help='restore from
trails pickle')

parser.add argument('-d', '--dir', type=str,
default=os.getcwd(), help='project directory with datasets.")

parser.add argument('--mol', action='store true', help='use
molecular information only')

parser.add argument('--int mol', action='store true', help='use

mol info + intermol interaction')
parser.add argument('train', help='training set')
parser.add argument('valid', help='validation set')
args = parser.parse_args()
global base dir, train, valid
base dir = args.dir
train = args.train
valid = args.valid

batch size = args.step size
max evals = args.max eval
if args.mol:
space = define mol only domain space ()
elif args.int mol:
space = define intermol interact search space()
else:
space = define domain space()
trials = get trials(args.restore)

algorithm = tpe.suggest

try:

-307-

trials = run optimiser(batch size, max evals, space, trials,
algorithm)
finally:
pickle.dump(trials, open('trials dump.pickle', 'wb'))
get best param(trials)

1.

if name == ' main
main ()

-308-

	Chapter 1 Introduction
	1.1 Context
	1.2 Aim and objectives
	1.3 Structure of the thesis

	Chapter 2 Literature Context and Theoretical Background
	2.1 Pharmaceutical product development
	2.1.1 History
	2.1.2 Modern approach
	2.1.2.1 Discovery
	2.1.2.2 Development

	2.1.3 Key challenge
	2.1.4 Material Science Tetrahedron
	2.1.4.1 Vertices and edges of the tetrahedron
	2.1.4.2 Focus on Structure-Property Relationship (SPR)
	2.1.4.3 Structures and properties of interest
	2.1.4.4 Structure-Property Relationship (SPR) methodologies

	2.2 Scales of structure
	2.2.1 Molecules
	2.2.2 Crystal structure
	2.2.2.1 Crystal lattice
	2.2.2.2 Crystal packing
	2.2.2.3 Polymorphism

	2.2.3 Crystal habit

	2.3 Properties and data sources
	2.3.1 Polymorph propensity
	2.3.2 Solubility
	2.3.3 Melting point

	2.4 Quantitative Structure Property Relationship (QSPR)
	2.4.1 A quantitative description of the structure
	2.4.1.1 Structure descriptors
	2.4.1.2 Graph embedding

	2.4.2 Principles of machine learning
	2.4.2.1 Definition of the task
	2.4.2.2 Generalisation

	2.4.3 Performance measures
	2.4.3.1 Regression task
	2.4.3.2 Classification task

	2.4.4 Random Forest (RF)
	2.4.4.1 Algorithm description
	2.4.4.2 Training methodology

	2.4.5 Support Vector Machine (SVM)
	2.4.5.1 Algorithm description
	2.4.5.2 Training methodology

	2.4.6 Neural Networks (NN)
	2.4.6.1 Algorithm description
	2.4.6.2 Training methodology

	2.4.7 Hyperparameter optimisation
	2.4.7.1 Uninformed methods
	2.4.7.2 Informed approaches
	2.4.7.3 Sequential model-based optimisation (SMBO)

	2.4.8 Application of QSPR

	2.5 Matched Molecular Pair Analysis (MMPA)
	2.5.1 Identification of pairs and analysis procedure
	2.5.1.1 Terminology
	2.5.1.2 Identification
	2.5.1.3 Analysis

	2.5.2 Application of MMPA

	2.6 Summary of the chapter

	Chapter 3 Matched Molecular Pair Database
	3.1 Introduction
	3.1.1 Need for database
	3.1.2 Hussain and Rea Fragmentation (HRF) method

	3.2 Database design
	3.2.1 Schema
	3.2.2 Workflow for population of the database
	3.2.3 Modifications to the MMP identification
	3.2.3.1 Updatability
	3.2.3.2 Elimination of duplicate MMPs

	3.3 Comparison to another MMP databases approach
	3.4 Summary

	Chapter 4 Polymorph Propensity Prediction
	4.1 Introduction
	4.2 Method and Data
	4.2.1 Dataset
	4.2.1.1 CSD single component dataset
	4.2.1.2 Monomorphic adjustment

	4.2.2 Molecular structure information
	4.2.2.1 Matched Molecular Pairs
	4.2.2.2 Molecular flexibility and other molecular information

	4.2.3 Software

	4.3 Results and Discussion
	4.3.1 Polymorphism in the CSD
	4.3.2 Effects of molecular transformations
	4.3.2.1 CSD single component dataset
	4.3.2.2 Adjusted CSD single component dataset
	4.3.2.3 MMPs limited by the ratio of the change

	4.3.3 Effects of molecular flexibility
	4.3.4 Issue of unknown polymorphs
	4.3.4.1 Exploration of the issues
	4.3.4.2 Challenges

	4.4 Conclusion

	Chapter 5 Benchmarking of Automated Approaches for Differentiating Between Polymorphs and Redeterminations
	5.1 Introduction
	5.2 Methods and Data
	5.2.1 Datasets
	5.2.1.1 Best R dataset
	5.2.1.2 Manual label and benchmark datasets
	5.2.1.3 Dataset split

	5.2.2 Descriptors
	5.2.3 Descriptor analysis
	5.2.3.1 Correlation matrix
	5.2.3.2 Principal Component Analysis

	5.2.4 Classifier development
	5.2.4.1 Development process

	5.2.5 Computational details

	5.3 Results and Discussion
	5.3.1 Descriptor Selection
	5.3.1.1 Correlation matrix
	5.3.1.2 Principal Component Analysis
	5.3.1.3 Packing similarity
	5.3.1.4 Lattice type

	5.3.2 Classifier development
	5.3.2.1 Training
	5.3.2.2 Validation
	5.3.2.3 Test

	5.4 Conclusion

	Chapter 6 Matched Molecular Graphs
	6.1 Introduction
	6.2 Method and Data
	6.2.1 Dataset
	6.2.2 Graph construction
	6.2.2.1 Matched Molecular Pair identification
	6.2.2.2 Pairs to graph
	6.2.2.3 Visualisation

	6.2.3 Software

	6.3 Results and Discussion
	6.3.1 Monomorphic adjusted single component CSD dataset
	6.3.2 Dataset size
	6.3.3 Datasets across the Pharmaceutical Product Development

	6.4 Conclusion

	Chapter 7 Melting Point Prediction Using Message Passing Neural Networks Based on Molecular and Crystal Structures
	7.1 Introduction
	7.2 Methods and data
	7.2.1 Datasets
	7.2.2 Model architecture
	7.2.2.1 Graph model
	7.2.2.2 Prediction layers

	7.2.3 Model construction
	7.2.4 Performance analysis
	7.2.4.1 Matched molecular Pairs
	7.2.4.2 Polymorph Pairs

	7.2.5 Software

	7.3 Results and Discussion
	7.3.1 Model performance and architecture
	7.3.2 Does crystal information help?
	7.3.2.1 Underrepresentation
	7.3.2.2 Capturing crystal information
	7.3.2.3 Relative importance of solid state changes
	7.3.2.4 When does crystal change matter?

	7.4 Conclusion

	Chapter 8 Conclusion
	8.1 Introduction
	8.2 Data Management
	8.2.1 Quality
	8.2.2 Availability
	8.2.3 Suitability

	8.3 Empirical Method
	8.3.1 Message Passing Neural Networks
	8.3.2 Matched Molecular Pairs – Graphs and Analysis

	8.4 Research Topic
	8.4.1 Polymorph propensity
	8.4.2 Solid state specific melting point
	8.4.3 Future research topics

	8.5 Concluding Remarks

	Appendix 1 Matched Molecular Pairs Database scripts
	Appendix 2 Matched Molecular Database Schema
	Appendix 3 Polymorph and Redetermination Classification
	Appendix 4 Message Passing Neural Network scripts

