

Solid State Informatics

Studies to Address

Challenges in Pharmaceutics

Development

Jakub Piotr Janowiak

University of Leeds

School of Chemical and Process Engineering

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

September 2020

-i-

Intellectual property statement

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement.

The right of Jakub Piotr Janowiak to be identified as Author of this work has been

asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

© 2020 The University of Leeds and Jakub Piotr Janowiak

-ii-

Acknowledgements

I would like to express my gratitude to everyone that has helped me on my journey

without whom I would not have reached this point.

I would like to thank my supervisors – Elaine Martin and Kevin Roberts, for their

patience and invaluable guidance. Special thanks go to Richard Marchese Robinson,

who has helped me with the technical and scientific understanding. I am grateful for

the insights provided by Andrew Maloney, Ilenia Giangreco, and Klimentina

Pencheva.

I would like to acknowledge the incredible services provided by the University of

Leeds HCP, without which I would still be waiting for my compute jobs to finish.

CP3 CDT has given me an incredible opportunity to do research, for which I am

grateful. I would like to extend my thanks to all my colleagues from the CDT, with

special mention to Alexandru Moldovan, Benjamin Tayler-Barrett, Thomas

Hardcastle for their support and for the many memorable moments.

Although far away, my family has kept me motivated during the years of research.

Thank you to Hannah Stacey for all the support she has given me.

Finally, I would like to thank my late granddad for inspiring my curiosity in the

natural world from a young age, something that stayed with me my whole life and

led me to do a PhD.

-iii-

Abstract

Cheminformatics methods such as Matched Molecular Pair Analysis (MMPA) and

Quantitative Structure-Property Relationship (QSPR) models based on molecular

structure have been widely used to address challenges faced during the Discovery

stage of pharmaceutical product development. This thesis builds upon these concepts

by including the solid state consideration to address challenges associated with the

Development stage.

Polymorph propensity of molecules and solid state specific melting point (as a

surrogate for solubility) were focused upon in the thesis. Matched Molecular Pair

Analysis (MMPA) was used for the propensity study. However, no statistically

significant molecular transformations were identified due to the small number of

MMPs identified and the limited size and quality of polymorphism data.

The issue of the small number of MMPs was further analysed by constructing a

Matched Molecular Graph. The graph approach allowed the comparison of the

properties of datasets from different stages of the pharmaceutical development

process. Datasets taken from Development stage contain fewer molecules with at least

one MMP (25.1 %) and the lower total number of MMPs (2,776) compared to

Discovery datasets of the same size (58.2 % and 10,321), making the analysis method

less suitable.

A benchmarking dataset for crystal structure classification (into polymorphs and

redeterminations) was curated, and the developed machine-learning based method

(F1=0.910) along with existing methods (F1=0.780) of classification were compared.

A Message Passing Neural Network was used to develop a QSPR model using

molecular and crystal information. The best model that only used molecular

information achieved R2 of 0.628 on the validation set, while the model trained with

the crystal information obtained 0.649. The improvements were limited when

compared to the QSPR model that only utilised molecular information; likely due to

the limited polymorphic data and the typically small effect the crystal packing

differences causes. The best model achieved test set R2 value of 0.550.

This thesis provides partial solutions to the challenges of solid form informatics and

forms a starting point for further research in the area.

-iv-

Contents

Chapter 1 Introduction .. 1

1.1 Context .. 2

1.2 Aim and objectives .. 3

1.3 Structure of the thesis .. 4

Chapter 2 Literature Context and Theoretical Background 7

2.1 Pharmaceutical product development ... 8

2.1.1 History.. 8

2.1.2 Modern approach ... 9

2.1.3 Key challenge... 12

2.1.4 Material Science Tetrahedron .. 14

2.2 Scales of structure ... 19

2.2.1 Molecules ... 19

2.2.2 Crystal structure ... 19

2.2.3 Crystal habit ... 23

2.3 Properties and data sources ... 24

2.3.1 Polymorph propensity .. 24

2.3.2 Solubility .. 25

2.3.3 Melting point .. 28

2.4 Quantitative Structure Property Relationship (QSPR) 30

2.4.1 A quantitative description of the structure ... 31

2.4.2 Principles of machine learning... 34

2.4.3 Performance measures ... 36

2.4.4 Random Forest (RF) .. 40

2.4.5 Support Vector Machine (SVM) .. 41

2.4.6 Neural Networks (NN) ... 45

-v-

2.4.7 Hyperparameter optimisation ... 55

2.4.8 Application of QSPR ... 62

2.5 Matched Molecular Pair Analysis (MMPA) ... 64

2.5.1 Identification of pairs and analysis procedure 64

2.5.2 Application of MMPA ... 66

2.6 Summary of the chapter .. 67

Chapter 3 Matched Molecular Pair Database ... 69

3.1 Introduction ... 70

3.1.1 Need for database ... 70

3.1.2 Hussain and Rea Fragmentation (HRF) method 71

3.2 Database design ... 73

3.2.1 Schema ... 73

3.2.2 Workflow for population of the database... 74

3.2.3 Modifications to the MMP identification ... 78

3.3 Comparison to another MMP databases approach 81

3.4 Summary ... 82

Chapter 4 Polymorph Propensity Prediction .. 84

4.1 Introduction ... 85

4.2 Method and Data ... 86

4.2.1 Dataset .. 86

4.2.2 Molecular structure information .. 87

4.2.3 Software ... 88

4.3 Results and Discussion .. 89

4.3.1 Polymorphism in the CSD ... 89

4.3.2 Effects of molecular transformations ... 90

4.3.3 Effects of molecular flexibility .. 97

-vi-

4.3.4 Issue of unknown polymorphs ... 98

4.4 Conclusion ... 101

Chapter 5 Benchmarking of Automated Approaches for Differentiating Between

Polymorphs and Redeterminations .. 103

5.1 Introduction ... 104

5.2 Methods and Data.. 106

5.2.1 Datasets .. 106

5.2.2 Descriptors ... 110

5.2.3 Descriptor analysis ... 112

5.2.4 Classifier development... 113

5.2.5 Computational details .. 114

5.3 Results and Discussion .. 116

5.3.1 Descriptor Selection ... 116

5.3.2 Classifier development... 121

5.4 Conclusion ... 127

Chapter 6 Matched Molecular Graphs.. 129

6.1 Introduction ... 130

6.2 Method and Data ... 131

6.2.1 Dataset.. 131

6.2.2 Graph construction ... 131

6.2.3 Software ... 133

6.3 Results and Discussion .. 134

6.3.1 Monomorphic adjusted single component CSD dataset 134

6.3.2 Dataset size .. 136

6.3.3 Datasets across the Pharmaceutical Product Development 138

6.4 Conclusion ... 140

-vii-

Chapter 7 Melting Point Prediction Using Message Passing Neural Networks

Based on Molecular and Crystal Structures ... 141

7.1 Introduction ... 142

7.2 Methods and data ... 144

7.2.1 Datasets .. 144

7.2.2 Model architecture ... 145

7.2.3 Model construction... 147

7.2.4 Performance analysis ... 148

7.2.5 Software ... 149

7.3 Results and Discussion .. 150

7.3.1 Model performance and architecture ... 150

7.3.2 Does crystal information help? .. 153

7.4 Conclusion ... 161

Chapter 8 Conclusion ... 165

8.1 Introduction ... 166

8.2 Data Management .. 167

8.2.1 Quality .. 167

8.2.2 Availability ... 169

8.2.3 Suitability ... 170

8.3 Empirical Method .. 171

8.3.1 Message Passing Neural Networks .. 171

8.3.2 Matched Molecular Pairs – Graphs and Analysis 172

8.4 Research Topic .. 176

8.4.1 Polymorph propensity .. 177

8.4.2 Solid state specific melting point ... 178

8.4.3 Future research topics .. 179

-viii-

8.5 Concluding Remarks ... 179

Appendix 1: Matched Molecular Pairs Database scripts .. 212

Appendix 2: Matched Molecular Database Schema ... 246

Appendix 3: Machine Learning-based Polymorph and Redetermination

Classification248

Appendix 4: Message Passing Neural Network scripts .. 264

-ix-

List of figures

Figure 1.1: Overview of the structure of the thesis. ... 4

Figure 2.1: Pharmaceutical product development overview. 10

Figure 2.2: Material Science Tetrahedron. ... 14

Figure 2.3: Structure Property Relationship (SPR) at different scales....................... 16

Figure 2.4: Example lattice with illustration of a unit cell. .. 21

Figure 2.5: Three crystal structures of paracetamol, denoted by their CSD refcodes. a

- polymorph 1 (HXACAN07), b – another experimental determination

(“redetermination”) of polymorph 1 (HXACAN09), c - polymorph 2 (HXACAN08)

 .. 23

Figure 2.6: Dissolution of a crystalline structure. .. 26

Figure 2.7: solvation - packing grid. .. 27

Figure 2.8: Distribution of melting points of structures with the CSD single component

melting point dataset. ... 29

Figure 2.9: Quantitative Structure Property Relationship overview. 30

Figure 2.10: Comparison of absolute and squared errors. ... 37

Figure 2.11: support vector machine classification.. 42

Figure 2.12: Training support vector classification. .. 45

Figure 2.13: Simple neuron design. ... 46

Figure 2.14: Examples of fully connected, convolutional, and recursive layers of

neural networks, along with a schematics of a simple recursive neuron. 48

Figure 2.15: Sampling of a search space using Grid search and Random search. 57

Figure 2.16: Overview of SMBO algorithms. .. 61

Figure 2.17: Example of a matched molecular pair. .. 64

Figure 3.1: MMP Database schema. .. 73

Figure 3.2: Schema explaining the indexing processes. .. 75

Figure 3.3: MMP identification stage. ... 76

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327404
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327405
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327406
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327407
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327408
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327409
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327410
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327411
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327412
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327412
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327413
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327414
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327415
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327416
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327417
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327418
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327418
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327419
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327420
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327421
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327422
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327423
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327424

-x-

Figure 3.4: Performance comparison between HRF and database method of MMP

identification for an increasing dataset. ... 79

Figure 3.5: Multiple MMPs that can be identified from the same pair of molecules.80

Figure 3.6: Comparison of frequency of occurrences of transformations. 81

Figure 4.1: Comparison of the R-H → R-CH3 transformation for adjusted and

unadjusted CSD single component dataset. ... 91

Figure 4.2: Distributions of the effects of the selected transformation on polymorph

count. .. 92

Figure 4.3: Example MMP of the hydroxyl to phenyl transformation. 93

Figure 4.4: Comparison of hydrogen to methyl and hydrogen to hydroxyl

transformation for adjusted CSD single component dataset with ratio limited MMPs.

.. 94

Figure 4.5: Effects of nConf20, H-bond donor / acceptor count, compound size on the

change for MMPs with hydrogen to hydroxyl transformation 96

Figure 4.6: Effects of nConf20, H-bond donor / acceptor count, compound size on the

change for MMPs with hydrogen to phenyl transformation. 96

Figure 4.7: Distribution of nConf20 descriptor for compounds with different number

of polymorphs on the CSD adjusted dataset. ... 97

Figure 4.8: The number of polymorphs as a function of molecular weight. 98

Figure 4.9: Number of polymorphs as a function of redeterminations. 100

Figure 5.1: Datasets used in the polymorph redetermination 106

Figure 5.2: Label assignment process flow chart for labels based on the best R factor

list. .. 107

Figure 5.3: Availability of labels from the best R factor list and manual labels. For the

pairs that have a manual label, whether both structures come from the same literature

source was also noted... 109

Figure 5.4: Overview of the model development process 114

Figure 5.5: Pearson Correlation coefficient matrix of the selected descriptors within

the Best R training set .. 116

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327425
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327425
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327426
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327427
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327428
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327428
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327429
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327429
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327430
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327431
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327431
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327431
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327432
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327432
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327433
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327433
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327434
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327434
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327435
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327436
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327437

-xi-

Figure 5.6: Comparison of packing similarity between pairs of polymorphs and

redetermination for the benchmark validation set. The figure is normalised to the area

under the graph = 1. ... 120

Figure 5.7: Comparison between polymorphs and redeterminations for the best R

validation set. The classification based on spectra method (left) and manual label

(right). The graph is normalised to the area under the graph = 1. 121

Figure 5.8: Comparison of false negatives and false positives of the trained machine

learning model 1 and the spectra method. .. 126

Figure 6.1: Datasets selected for MMG study across the pharmaceutical development

process. ... 131

Figure 6.2: Visualisation of the Matched Molecular Graph contruction from a MMP.

 .. 132

Figure 6.3: Matched Molecular Graph of monomorphic adjusted CSD single

component dataset with max change size of 10 heavy atoms and max ratio of change

of 0.3 for all MMPs. ... 134

Figure 6.4: Example of clusters found in the Matched Molecular Graph. 135

Figure 6.5: The fraction of molecules with at least one MMP as a function of the

dataset size for the Patent dataset ... 136

Figure 6.6: Average degree of molecules with at least one MMP as the dataset size

increases for the Patent dataset. ... 137

Figure 6.7: Matched Molecular Graph of GSK TCAKS dataset (Discovery dataset)

 .. 138

Figure 6.8: Comparison of the fraction of molecules with at least one MMP for datasets

taken from different stages of the Pharmaceutical process development. 139

Figure 7.1: Overview of the model architecture. ... 145

Figure 7.2: Target MP and predicted MP by Molecule (left) and Crystal models (right)

on the validation set. .. 152

Figure 7.3: Illustration of molecular and crystal changes along with how these can be

studied using polymorphs and Matched Molecular Pairs (MMPs) 154

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327444
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327444
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327445
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327445
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327446
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327446
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327447
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327447
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327447
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327448
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327449
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327449
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327450
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327450
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327451
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327451
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327452
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327452
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327453
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327454
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327454
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327455
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327455

-xii-

Figure 7.4: Actual and predicted change for polymorph pairs. 155

Figure 7.5: Comparison of the absolute change in MP due to hydrogen to carboxyl and

methyl group substitution, and polymorphic change. .. 159

Figure 7.6: Comparison of absolute change of MP for pairs of polymorphs where

hydrogen bond dimensionality changes or remains constant. 159

Figure 7.7: Example molecules with large MP difference between polymorphs. ... 161

Figure 8.1: The three themes used to discuss the key findings of the thesis. 166

Figure 8.2: Typical data arrangement within research organisations. 170

Figure 8.3: Graph based MMP identification. ... 173

Figure 8.4: MMP based group contribution for QSPR model prediction explanation.

.. 176

Figure 8.5: Structure Property Relationship studied in the thesis. 177

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327456
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327457
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327457
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327458
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327458
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327459
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327460
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327461
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327462
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327463
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327463
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327464

-xiii-

List of tables

Table 2.1: Confusion matrix .. 40

Table 2.2: Activation functions commonly used in neural networks [118] 47

Table 2.3: coefficients to various initialisation strategies. ... 51

Table 2.4: Comparison of the three learning algorithms. ... 54

Table 3.1: Fragmentation of molecules for MMP identification. 72

Table 4.1: Fraction of polymorphic structures within different datasets. 89

Table 4.2: Most common transformations within the CSD single component dataset

 .. 89

Table 5.1: First four principal components for the Manual label and Best R training

sets. ... 118

Table 5.2: Performance of classifiers trained ... 122

Table 5.3: Performance on the validation sets of classifiers trained on Manual and Best

R training dataset, using different descriptor sets. ... 124

Table 5.4: Confusion matrix of the trained machine learning model 1 and the spectra

method on the test set ... 126

Table 7.1: Information used and made available to Molecule and Crystal models. 148

Table 7.2: The best Molecule and Crystal models' hyperparameters along with the

average of the top 10 models for each category. Same treatment was applied to R2. For

categorical hyperparameters the most common value and the corresponding fraction

is reported. .. 150

Table 7.3: List of molecules for which the Crystal model was not able to accurate

predict the difference between polymorphs. Cases where the predicted value of a

specific structure is incorrect by more than the MAE (30.8 C) are highlighted. 156

https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327465
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327466
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327467
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327468
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327469
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327470
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327471
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327471
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327475
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327475
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327476
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477
https://leeds365-my.sharepoint.com/personal/pm11jpj_leeds_ac_uk/Documents/writing/Thesis/Thesis/thesis-final-no-appendix.docx#_Toc52327477

-xiv-

Abbreviations

(G)RU – (Gated) Recurrent Unit

(R)MSE – (Root) Mean Squared Error

(U)FF – (Universal) ForceField

∇𝐶 – Partial derivative of the cost function (loss function) with respect to all the

weights

A – machine learning algorithm

a – output vector of a neuron

Adam - Adaptive Moment Estimation

ANN – Artificial Neural Network

API – Active Pharmaceutical Ingredient, or Application Programming Interface

b – bais term

CCDC – Cambridge Crystallographical Data Centre

CSD – Cambridge Structural Database

D – Dataset (Dtr - training, Dv - validation, Dte - test)

DFT – Density Functional Theory

DHK – Matched Molecular Pairs Database designed by Dalke, Hert, and Kramer

E - set of edges of a graph

EI – Expected improvement

EMA - European Medicines Agency

facq – Acquisition function used during Sequential model-based optimisation

FDA - Food and Drug Administration

fgrad – function to compute the gradients during gradient-based training

finit – initiation function

fmessage – message-passing function of graph-embedding process

-xv-

freadout – function to generate a fix-length of graph-embedding process

fupdate – hidden update function of graph-embedding process, weight update function

during gradient-based training

G – a graph (a set of vertices and edges)

GBO – gradient-based optimisation

GM – Graph Model

GSE – General Solubility Equation

GSK TCAKS – Tres Cantos Anti-Kinetoplastids dataset

h – hidden state vector of a neuron

ℋ – machine learning model

HGP - Hierarchical Gaussian Process

HRF - Hussain and Rea Fragmentation method of Matched Molecular Pair

identification

ICH - International Conference on Harmonisation

KDE – Kernel Density Estimates

kNN – k-Nearest Neighbours

L – Loss function

LIME – Local Interpretable Model-agnostic Explanations

MAE - Mean Absolute Error

MCS - Maximum Common Substructure method of Matched Molecular Pair

identification

MLP – Multi-Layer Perceptron

MMG – Matched Molecular Graph

MMP(s) – Matched Molecular Pair(s)

MMPA – Matched Molecular Pair Analysis

MP – Melting Point

-xvi-

MPNN - Message Passing Neural Network

MST – Material Science Tetrahedron

NN – Neural Network

p – input vector to a neuron

PC(A) – Principal Component (Analysis)

PI – Probability of improvement

PL – Prediction Layer

QbD - Quality by desgin

QSPR – Quantitative Structure Property Relationship

ReLu – Rectified Linear function

RF – Random Forest

RMSD - Root Mean Squared Distance

SGD – Stochastic Gradient Descent

SMAC – Sequential Model based Algorithm Configuration

SMBO – Sequential model-based optimisation

SMILES – Simplified Molecular-Input Line-Entry System

STM - pre-Specified Transformation Methods of Matched Molecular Pair

identification

SVM – Support Vector Machine

TPE – Tree-structured Parzen Estimator

UTM - Unspecified Transformation Methods of Matched Molecular Pair

identification

V - set of vertices of a graph

W, w – weight matrix or vector.

X, X, x – feature set, feature matrix, feature vector

Y, y – set of, or individual target value

-xvii-

γ – width of margins or quantile

η – learning rate during gradient-based optimisation

θ – parameters of a model

λ – hyperparameters of a model

σ2 – variance

-1-

Chapter 1

Introduction

-2-

1.1 Context

Nearly half of the 7.5 years increase in life expectancy during the last half-century of

the 20th century can be related to improvement in medical care [1]. Medicines in the

form of tablets for oral administration play an essential role in improving the quality

and expectancy of life with approximately half of the drugs on WHO’s ‘List of

Essential Medicine’[2] being orally administrated [3]. The majority of these are of

solid form. Engineering frameworks have been developed to better understand the

behaviour of solid state products, thereby enabling the sustainable development of

medical care.

The Material Science Tetrahedron (MST) is one example of such a framework, and it

emphasises the importance of the links between structure, property, processing, and

performance [4]. The objective of the framework is to optimise the Performance by

adjusting the properties of the studied system; this is achieved by processing the

material to alter its structure. The property is determined by the structure of the

product. Key to the successful implementation of the Material Science Tetrahedron

lies in understanding the structure-property relationship. The relationship can be

further expanded to take into account structure at different scales such as molecular,

crystal, and particle. These, in turn, affect properties to a varying degree. The MST

has been utilised when undertaking challenges in pharmaceutical product development

[5].

Pharmaceutical product development can be divided into two stages: Discovery and

Development. During the Discovery stage, a large number of molecules are screened

and optimised for specific properties such as molecular efficacy and toxicity [6,7]. The

work focuses on molecular structure alteration to optimise relevant properties. Once a

project reaches the Development stage, the molecular structure is set and work is

performed on structures at a larger scale, such as solid form and particle. Many key

properties that determine the ultimate performance of a drug are dependent on the solid

state structure. Polymorphs, structures with the same molecule but different crystal

arrangements, can exhibit different solubilities [8]. Therefore, it is highly desirable to

be able to predict how molecular and crystal structures contribute to key properties.

The pharmaceutical product development process generates large amounts of data due

to the trial and error approach, as well as its regulatory obligations [9]. In particular, a

-3-

large number of molecules are screened during the Discovery stage. For this reason,

many empirical methods such as Quantitative Structure-Property Relationship

(QSPR) modelling [6,7,10] and Matched Molecular Pair Analysis (MMPA) [11,12]

have been used to utilise the volume of data generated to better guide the process. In

Discovery settings, the primary objective of the emprical models is to predict the

activity of a molecule – hence the modeling is often called Quantitative Structure-

Activity Relationship. However, in this thesis, activity is considered a property, so

QSPR is used as a collective term for empirical models that predict activity or other

property. Because of the relatively smaller volumes of data (structured data in

particular), the Development side of the process has not utilised methods such as

QSPR to a similar extent. The thesis aims to build upon the limited work in the area

of solid state informatics to address key challenges in Development.

1.2 Aim and objectives

The primary aim of the thesis is to investigate the extent to which techniques deployed

during the Discovery stage can be applied to the Development stage datasets to address

challenges encountered at this stage. The intention is that this will contribute to

increasing the efficiency of the Development stage, as well as facilitate the interaction

between the two phases by allowing the Development stage challenges to be better

anticipated and addressed during Discovery.

Molecular and crystal structures are studied in the thesis as they represent the interface

between Discovery and Development. There are several relevant properties for the

pharmaceutical product development. In the thesis, the emphasis is placed on

polymorph propensity and solid state-specific melting point. Polymorph propensity

refers to the propensity of a molecule to exhibit polymorphism which is of great

importance during Development [9,13]. An empirical model of the propensity could

be used as an additional consideration during lead optimisation (Discovery). The

second property of interest in the thesis is the solid state-specific melting point.

Melting point can be related to solubility, which is one of the key properties of a drug

product due to its influence on bioavailability. A novel method of capturing crystal

information as well as the significance of the solid state information was investigated.

The methods used in the thesis are MMPA and QSPR modelling. Within empirical

modelling, there is typically a trade-off between the model’s ability to capture complex

-4-

relationships and ease with which a model’s prediction can be explained. Complex

model explainability is an active area of research [14,15] and is also touched upon in

Chapter 7. The two techniques selected represent explainability (MMPA) and the

ability to capture complexity (QSPR).

1.3 Structure of the thesis

Chapter 2 expands on the context introduced in 1.1 and provides the theoretical

background necessary for the rest of the thesis. Approach chapter (pink in Figure 1.1)

focuses on the different iterations of the development and explains the principles of

the method. Result chapters (gold in Figure 1.1) provide the specific context and aims,

followed by the methodology used and the discussion of results. Discussion chapters

(grey in Figure 1.1) are used to collate the topics presented in the previous chapters

and offer an overarching discussion of them.

Figure 1.1: Overview of the structure of the thesis.

Context and theory – dark blue (chapter 2). Approach development – pink

(chapter 3). Results – gold (chapters 4 – 7). Conclusion – grey (chapter 8).

Abbreviated chapter names are used in the figure to provide an overview of

the content. MMP DB – Matched Molecular Pair Database. MMG – Matched

Molecular Graph. MPNN – Message Passing Neural Networks

CH 2: Context and Background

CH 3: MMP DB

CH 6: MMG

CH 7: MPNN

CH 4:
Polymorph
Propensity

CH 5:
Crystal

Classification

CH 8: Conclusion

-5-

Chapter 3 presents the method development performed to produce a database of

Matched Molecular Pairs. The developed methodology was applied to the work

presented in Chapter 4, Chapter 6, and Chapter 7. Chapter 4 presents the work on

polymorph propensity prediction. It identifies several issues associated with the study

of this phenomenon which are addressed in subsequent chapters (5 and 6). Chapter 5

addresses the need for a robust, automated method for the classification of pairs of

crystal structures as different or same polymorphs by benchmarking an existing

method and comparing it to the novel machine learning-based approaches. Chapter 6

describes the work done on assessing the suitability of datasets for Matched Molecular

Pair Analysis. Crystal structure-specific melting point prediction is reported in

Chapter 7. Chapter 8 collates the findings from the previous chapters, provides a

discussion on how the work addressed the aims presented in 1.2, and sets out the

direction for future research in this area.

-7-

Chapter 2

Literature Context and

Theoretical Background

-8-

2.1 Pharmaceutical product development

Medicine has been an essential aspect of human civilisation since its beginnings. As

large population centres developed, the need for a systematic approach to healing and

the development of remedies increased [16–18]. Centuries of improvements led us to

the modern drug development process that has brought us numerous treatments and

increased the length and quality of life [1]. However, the process is currently riddled

with a lack of productivity [19]. Identification of the critical challenges and

development of potential solutions is essential to secure a sustainable healthcare

system for future generations [19,20]. The Material Science Tetrahedron is presented

as a framework for addressing these issues. Consequently, the key relationship

between structure and property is identified, and the areas of focus for the thesis are

discussed.

2.1.1 History

The profession of a physician was already established by 3,000 BCE in Mesopotamia

[18,21]. At the time, observation-based treatments like pharmaceutics and surgical

procedures were inseparable from superstitious healing rituals [18]. Pharmaceutical

prescriptions dating back to 3,000 BCE were found to contain botanic, mineral and

alcohol-based ingredients [16,18]. Many of these remedies were developed by

religious reasoning and non-systemic trial-and-error approaches and were documented

on clay tablets [18]. One of the ingredients mentioned in these tablets is willow leaves,

which contains salicylic acid, a precursor to the active ingredient of aspirin

(acetylsalicylic acid) used over 5,000 years later [21]. The fact that laws existed for

punishment for mistreatment suggests that some degree of confidence in the

treatments existed at the time [18]. Despite the limited scientific understanding and

the absence of the modern scientific method, the ancient physicians were able to

develop effective medicine using a rudimentary trial-and-error approach; thus

establishing trial-and-error as a critical element of treatment development which is

used to this day.

The introduction of a more robust, scientific approach to study illnesses and

development of treatments is credited to Hippocrates, who was born around 500 BCE

[22]. He was responsible for removing the assumption of the divine origin of disease,

thus paving the way for a scientific approach based on the observation and

-9-

understanding of nature [22,23]. The Hippocratic School of medicine is based on the

principles of rationality, experiments, patient observation, and deduction [22,23]. The

approach also aims to eliminate the presumptions and biases that the researchers may

have [22,23]. Unfortunately, many of Hippocrates’ followers partially abandoned

these principles [22]. Nonetheless, the approach is evident in modern pharmaceutics

development and forms the basis of the frameworks used. Indeed, due to his principles

forming the basis of modern medicine, Hippocrates is often referred to as the “father

of modern medicine” [23].

A significant step towards the modern approach to the development of medicine was

made at the turn of the 18th and 19th centuries [17]. With the advancement of chemistry,

Friedrich Wilhelm Adam Serturner was able to isolate morphine crystals from poppy

seed juice in 1804 [24]. This was followed by the isolation of other active ingredients

such as quinine (1820), atropine (1833), and cocaine (1860)[17]. In 1869, the first

synthetic drug, chloral hydrate (discovered in 1832) was introduced into the

pharmacopoeia [16]. These advances led drug development into a new era, focused on

molecules as the basis of pharmacological effects.

The history of medicine is as long as the history of humankind itself. Diseases tend to

propagate in areas of high population density, which put pressure on early civilisations

to tackle this challenge [18]. Over the millennia, the techniques used to develop

remedies evolved, resulting in the current pharmaceutical product development

process.

2.1.2 Modern approach

The modern pharmaceutical product development process is the product of millennia

of human ingenuity. It relies on the same principles developed over the ages: trial and

error, the scientific method, and our understanding and mastery of the natural world.

The term “pharmaceutical product development” is sometimes used to refer to only

the late stage of the process of developing new medicine; however, in this thesis, the

term is used to describe the entirety of the process. The modern framework can be

divided into two main stages: Discovery and Development (Figure 2.1) [19,25,26].

The majority of the cost is incurred during the Development stage [19]. An overview

of the process, with an emphasis on orally administrated drugs in the tablet form, is

presented as the majority of drug products are of this form [3]. For the process to be

-10-

initiated, a suitable target needs to be identified [25]. A target is a cell type, enzyme,

gene, receptor, or pathway that has been shown to have an effect on a disease.

2.1.2.1 Discovery

Once a target is identified, high throughput screening is used to identify potential

molecules that may affect it. Millions of molecules are screened using automated High

Throughput setups at rates of 10,000s a day until promising compounds (Hits) are

identified [25]. Due to the large number of data generated, the data management as

well as the false positive rate need to be considered [20,27]. These are then screened

further (Hit to Lead) to reduce the number of compounds of interest to 10 – 15 [19,25].

Figure 2.1: Pharmaceutical product development overview.

With each subsequent stage, the number of molecules considered decreases.

Majority of work in Discovery is done on the scale of molecules. Solid state

considerations are made during late discovery and Development. At the same

time, formulation of the final drug product is investigated. The cost of each

stage is based on values found in literature [19].

-11-

During the Hit-to-Lead stage, assays are repeated to confirm the results of the initial

screening stage, and further experiments are performed to obtain pharmacodynamic

and pharmacokinetic profiles as well as toxicity data [27]. This is followed by lead

optimisation, where small changes to the compound are made to improve the desired

properties further (e.g. IC50 – concentration required to achieve 50 % inhibition [28])

and limit the undesired properties (e.g. toxicity) [25]. Some pre-clinical experiments

are also performed to collect more data. At these early stages, the molecular efficacy

of the potential drug is the key focus. In parallel, ways of synthesis and the delivery

method of the drug candidate for the clinical trials is investigated. During the

discovery stage, most of the work is performed on a molecular scale; traditionally,

solid state considerations, such as polymorph screening and identification, were not

taken into account at this stage [29]. However, this began to change at the dawn of the

21st century, where efforts were made to closely align the Discovery and Development

efforts [29]. The details of this are explained in the Development section (2.1.2.2) and

further considered as a solution to key challenges of the product development process

in 2.1.3. At the end of Discovery, a decision is made whether to continue with the drug

candidate and preceed to the Development phase. Performance and manufacturability

are considered amongst other commercial considerations. To avoid costly late stage

attrition, candidates are often dropped at this stage [30].

2.1.2.2 Development

The Development stage consists of parallel branches; clinical trials, the product

formulation, and the manufacture process development [26,31]. Three stages of

clinical trials are carried out on an increasingly large number of patients to determine

the safety and efficacy of the drug candidate [32,33]. Phase 1 mainly focuses on safety

and dosage, confirming the pre-clinical results. In Phases 2, the efficacy of the drug is

tested on a larger number of patients. The phase 3 trials are the largest, where the drug

performance is compared to a benchmark treatment if it is already available [34].

The second branch of the Development process is the formulation. In this branch, the

key objectives are to ensure adequate stability and Performance of the final drug

product [35]. The structure of the API is determined by the time it reaches the

Development stage. However, the decisions regarding its solid form, particle

characteristics, and final tablet composition leave room for optimisation for the key

-12-

objectives. The drug candidates are screened for possible solid forms such as:

hydrates, solvates, co-crystals, and polymorphs. Different solid forms can exhibit

vastly different properties such as the case of Ritonavir where two polymorphs had

different solubilities (170mg/mL and 30 mg/mL at 5 oC in ethanol-water mixture (3:1))

[8]. The screening is usually completed by repeatedly crystallising the drug candidate

under different conditions such as varied cooling rates and solvents [36]. Based on the

properties of the solid form, formulation at the larger scale is undertaken; optimisation

of particle properties, and finally, the design of the tablet composition.

The formulation process works in tandem with the manufacturing process design. As

the size of the clinical trials increases and the need for large-scale manufacture

approaches, the manufacturing process is developed [37]. Quality by Design (QbD)

framework is applied to the manufacturing process to ensure consistent quality of the

drug product [38]. The guiding principle of this framework is the need for the scientific

understanding of the underlying phenomena when designing the manufacturing route.

Successful clinical trials, formulation with the desired performance and stability, along

with the manufacturing process is submitted to the governing agency for approval. In

Europe, this falls under the European Medicines Agency (EMA), while in the United

States, it is the Food and Drug Administration (FDA). The end of the pharmaceutical

product development is marked by the granting of approval for the drug product.

2.1.3 Key challenge

The modern product development framework has had success in developing many

drugs. However, in recent years, the productivity of the approach came into question

[19,20]. The cost of each stage of discovery has decreased many-fold [19,20,34], yet

the cost of the successful introduction of a novel drug has doubled every nine years

since the 1950s [34]. The main reason for the decrease in productivity is said to be

late-stage attrition, namely, the failures of drug candidates during the Development

process. In fact, in the decade from 1998, 54 % of drug candidates that entered the

Development stage failed to get approval from the FDA [33].

Several strategies have been proposed to address the low productivity within

pharmaceutical product development. These include but are not limited to: human

factor mitigation [39], organisational [19,34], predictive tool improvement [20], and

integration of Discovery and Development processes for better performance

-13-

optimisation [29]. The first two strategies, although important, fall outside of the scope

of the thesis. The remaining two strategies, (1) improvement of predictive tools and

(2) better integration of Discovery and Development, are focused upon in the thesis.

The most common cause of failure is poor efficacy of the drug candidate during the

clinical trials [33]. Unless otherwise stated, efficacy refers to the clinical efficacy

resulting from the bioavailability and molecular efficacy at the target site. Ability to

predict the efficacy of a drug product in humans is the Holy Grail of pharmaceutical

research. However, the problem is difficult due to the number of factors that affect it.

These factors range from difficulty in predicting the biological effect of a molecule

[40,41] to prediction of ADMET (absorption, distribution, metabolism, excretion and

toxicity) [42–44] . The Material Science Tetrahedron (MST) is used to decompose

some of the complexities of the efficacy prediction into simpler components. In

particular, the emphasis is placed on the structures and properties that are focused upon

at the interface of Discovery and Development. The MST framework is used to

contextualise the research focus of this thesis.

-14-

2.1.4 Material Science Tetrahedron

The Material Science Tetrahedron is a framework that emphasises the importance of

the links between structure, property, processing, and Performance (Figure 2.2). The

origin of the tetrahedron can be traced back to a National Academy report from 1989,

“Materials Science and Engineering for the 1990’s”, where it was proposed as a

framework for a holistic view of the developments in the area [4]. The key elements

of the MST are discussed in 2.1.4.1. In 2008, a paper highlighting the usefulness of

the MST in pharmaceutical research and development was published [5]. Emphasis

was placed on the relationship between two elements of the tetrahedron: structure and

property (2.1.4.2). The structures and properties that are focused on in the thesis are

presented in 2.1.4.3. Methodologies for studying the relationship between these are

also discussed (2.1.4.4).

2.1.4.1 Vertices and edges of the tetrahedron

The MST consists of four vertices: structure, property, processing, and Performance

[4,5]. Performance is the primary element of interest and is the reason for the

development of a new product. In the case of the pharmaceutical product development,

the Performance encompasses factors such as manufacturability, bioavailability,

Figure 2.2: Material Science Tetrahedron.

The tetrahedron illustrates the interdependence of structure, property,

processing, and performance.

-15-

toxicity (lack thereof), and molecular efficacy. Property is another vertex of the

tetrahedron; it represents the different properties of the system studied, such as its

physiochemical and mechanical properties. The structure of the system can be

considered at different scales, from molecular through crystal to particle structure and

beyond (formulation and the tablet form). Processing indicates the various actions that

can be carried out on the product to alter it, such as synthesis of the API or milling.

The six edges of the MST represent the relationships between the four elements [4,5].

When attempting to improve Performance, the most trivial approach is to see what

processing can achieve this. The processing-performance relationship is akin to

Hippocratian physicians observing the effects of prepared remedies on patients during

the classical era [23]. However, it does not provide any insight into the reason why

certain processing affects Performance. This is not sufficient for modern-day

regulatory bodies that require a Quality by Design (QbD) approach to be applied to

the pharmaceutical product development [26,38]. For this reason, it is beneficial to

focus on the relationship between processing and Performance via structure and

property; namely, processing – structure, structure – property, and property –

Performance [5].

Moving backwards from Performance, the first relationship is that between property

and Performance. Understanding how properties affect Performance is paramount in

being able to consistently develop methods of improving it. A drug candidate may fail

clinical trials due to insufficient efficacy (Performance) caused by many factors, such

as poor aqueous solubility (property). Beyond knowing which properties to improve,

it is necessary to understand how these arise. This is the purpose of the structure –

property relationship. A crystal structure that forms strong intermolecular interactions

requires more energy to dissociate, thus reducing the solubility [45]. Knowing this,

one can design a process that alters the crystal structure – for example, by forming a

co-crystal. The way in which processing can be used to modify the structure of the

system is captured by the processing – structure edge of the MST. It is possible to

skip the structure and directly map the processing – property relationship. However,

this does not contribute to the understanding of the underlying science behind the

property [5]. The structure – property relationship forms the basis of the scientific

understanding of the studied system’s behaviour.

-16-

In summary, the objective of the MST framework is to optimise the Performance by

adjusting the properties of the studied system. This is achieved by processing the

material to alter its structure. The property is determined by the structure of the

product. Key to the successful implementation of the Material Science Tetrahedron

lies in understanding the structure-property relationship. This relationship is further

explored below.

2.1.4.2 Focus on Structure-Property Relationship (SPR)

Pharmaceutical products are complex, multi-component systems where the

Performance of the product depends on many properties. In such systems, the

Figure 2.3: Structure Property Relationship (SPR) at different scales.

A system of interest (gold box) is affected by processing and determines the

performance (blue arrows). Relationships within the system are indicated by

black arrows. Structure (dark blue) exists at different scales where each

subsequent scale of structure is determined by the prior scale of structures

and the processing carried out. Properties (dark green) at each scale are

determined by structures at that scale and all prior scales of structure.

Processing

Performance

Molecule

Crystal

Particle

Mol.
property Cryst.

property Part.
property

System of interest

Scale of structure

-17-

relationship between structure and property exists at different scales. Furthermore, the

structures at progressively larger scales are affected by the smaller structures of their

component. Similarly, the properties at each scale are determined by the structure at

that scale and the structures at the smaller scales. Different processing techniques can

be applied to modify the structure at different scales as required. This multifaceted

relationship between structures and properties is depicted in Figure 2.3.

An example of a drug that has insufficient efficacy (a key performance indicator) can

be used to illustrate the complexity of this relationship. The majority of modern

pharmaceutical product development is based on the molecular scale; hence, this is

the smallest scale considered in this thesis. One possible reason for the poor

performance is low bioavailability of the drug as a drug even with high molecular

efficacy, cannot produce the desired effect if its bioavailability is too low. To reach

the target, a molecule must dissolve from the tablet into the gastrointestinal tract, and

permeate across the lipid bilayer. The permeability can be determined based on the

molecular structure [46]. The solubility is a function of molecular and crystal

structures. Restricting the consideration to the thermodynamic solubility, it depends

on the energy change of combining solute and solvent molecules and the free energy

needed to remove the molecule from the given crystal structure [45]. Thermodynamic

solubility may refer to the equilibrium between the solution and the most stable crystal

form for a given condition. Here however, thermodynamic solubility is used to refer

to the equilibrium between the solution and any crystal form. The rate of dissolution

is affected by the particle, crystal and molecular structure. The ratio of surface area to

volume decreases as particle size increases [47]. Since dissolution is surface

dependent, particle size affects the rate [48]. The crystal structure determines the

surface chemistry, which affects the rate of dissolution as well. Beyond the three

structures discussed here (molecule, crystal, and particle), bioavailability can be

affected by tablet structure (excipients used).

2.1.4.3 Structures and properties of interest

The relationship between structures and properties exists at different scales. For a

complex system such as a drug product, several scales and properties are important.

In this thesis, the focus is placed on properties that are relevant to the interface between

-18-

Discovery and Development, with the aim of contributing to the integration of the two

stages.

The two scales of structure that are focused upon in this thesis are molecular and

crystal. The Discovery process is focused on molecules. Hence it was selected as one

of the scales of structure. The crystal structure is the other structure that is focused

upon in the thesis as it plays a vital role during Development. Many important

properties are solid form specific [49,50], and earlier incorporation of the solid form

consideration has already been shown to be beneficial [29]. Detailed consideration of

these different scales of structure is presented in section 2.2.

The ability of a molecule to exhibit different packing arrangements in crystal form is

referred to as polymorphism [51]. Different polymorphs have different properties,

such as solubility and stability [8]. The ability to control polymorphism is an essential

task within pharmaceutical product development [8,13,36,49,52]. The tendency of a

compound to form polymorphs is called the polymorph propensity. Solubility has a

direct impact on the bioavailability of the orally administrated drug product and is also

an important property for processing (crystallisation). Bioavailability is defined as the

amount of drug substance found in the circulatory system as a fraction of the amount

of drug administrated where intravenous administration has 100 % bioavailability

[36]. Both properties form part of the decision trees for quality management adopted

by all major drug regulators around the world [9]. More details concerning each

property and the data sources used in the thesis are described in 2.3.

2.1.4.4 Structure-Property Relationship (SPR) methodologies

The relationship between structure and property lies at the heart of the MST, and

significant research effort has been dedicated to developing an understanding of it.

The first principle approach aims to derive the relationship from the scientific

understanding of the phenomena. In cases where the first principle approach is

unfeasible, either due to lack of information, deficient theory, or limited resources due

to computational expense, an empirical approach may be adopted [53].

Two categories of empirical methods are used in the thesis: Quantitative Structure

Property Relationship (QSPR)[54] and Matched Molecular Pair Analysis (MMPA)

[55]. In this thesis, QSPR is defined as any model, derived from the application of

statistical or machine learning algorithms to relevant data, that maps a relationship

-19-

between the structure of a system and a property of the system. The MMPA approach

aims to map a relationship between a change in the structure of a molecule to a change

in a property of the system. The principles of QSPR models are presented in 2.4 and

applied in Chapter 5 and Chapter 7. Similarly, for the MMPA approach, the

fundamental aspects are presented in 2.5 and its specific implementation in Chapter 3

and Chapter 4.

2.2 Scales of structure

Structure is one of the vertices of the MST and is a key focus of this thesis. Within the

scope of pharmaceutical product development and the challenges identified in 2.1.3,

structures can be found on various scales (Figure 2.3). The following sub-sections

describe the different levels of structure associated with a pharmaceutical product. As

discussed in 2.1.4.3, molecular and crystal structures are the main focus of the thesis

and are presented in 2.2.1 and 2.2.2. To better contextualise the structures, crystal habit

and is discussed (2.2.3). Larger structures, such as particles and tablets, are not

discussed here as these fall outside of the scope of the thesis.

2.2.1 Molecules

A molecule is the smallest scale of the system that is considered in this thesis. A

molecule consists of atoms that are covalently bonded to form functional groups and

molecules. The molecular structure determines factors such as molecular toxicity and

molecular efficacy at the site of biological action. It is at this scale that the majority of

the Discovery work is carried out.

Molecules are defined by the identities of their constituent atoms and the way in which

these are covalently bonded together, along with the shape the overall structure takes

(conformers). The primary method used in the thesis to describe molecules is the

simplified molecular-input line-entry system (SMILES) notation [56]. Molecular

structures can also be expressed as graphs[57]; this is elaborated upon in 2.4.1 and

Chapter 7.

2.2.2 Crystal structure

Once the scale of the system is increased to include several molecules, these can be

arranged to create a new scale of the structure. Such groups of molecules exist in three

-20-

different states of matter; gas, liquid, and solid. The focus of the thesis is on the solid

state as most pharmaceutical products are of this state [3]. Solids can be further

categorised into an amorphous and crystalline form. Crystalline structures are

characterised by the regularity of the molecular arrangement. Amorphous solids have

a random arrangement of molecules and fall outside of the scope of the thesis.

2.2.2.1 Crystal lattice

The regularity of crystals can be described using a lattice. An n-dimensional lattice is

an infinite set of points defined by n linearly independent vectors such that

𝒑 = ∑𝑎𝑖𝒙𝒊

𝑛

𝑖

+ 𝒄 Equation 2.1

where the xi is the ith basis vector, 𝑎𝑖 ∈ ℤ, c is an offset vector that is equal to 0 for

lattice points (origin is one of the lattice points), and p is the vector representing a

point on the lattice [58]. In essence, each lattice point is related to every other point

by translation. This also implies that every point has the exact same environment.

Crystal structures have lattices across three-dimensional space while the graphical

example in Figure 2.4 illustrates the two-dimensional case for the sake of clarity.

The smallest repeating unit of the lattice is called the unit cell (shaded area in Figure

2.4). Each point within the unit cell has an equivalent point in every other unit cell by

translation using Equation 2.1, where c is the point of interest in the unit cell. Several

potential unit cells can be defined for a given system, but it is common practice in

crystallography to define it as the smallest repeating unit that clearly captures the

symmetry of the lattice [58]. In the case of the example in Figure 2.4, a rectangular

unit cell can be used to define the repeating pattern. However, a parallelogram without

right angles may be chosen if it represents the internal symmetry of the unit cell better.

-21-

Many crystals exhibit symmetry beyond translational symmetry parallel to the basis

vector set. This is captured using 230 space groups (for a 3D system) and the

respective symmetry operators [59]. The minimum motif required to recreate the full

crystal structure is called the asymmetric unit [60].

2.2.2.2 Crystal packing

The arrangement of molecules, the crystal packing, is determined by the balance

between intra- and inter-molecular interactions [61]. Intramolecular interactions

include the covalent bonds formed between atoms to form a molecule. Intermolecular

interactions consist of Van der Waals (VdW), Hydrogen bonds (H-bond), and

electrostatic interactions [62]. VdW interactions occur between two dipoles, either

permanent-induced or induced-induced. Hydrogen bonding is a directional interaction

between two dipoles [63]. It forms between a hydrogen that is connected to an

electronegative atom (H-bond donor) and an electronegative atom with a lone pair of

electrons (H-bond acceptors). As a result of the directionality of hydrogen bond, they

most commonly occur at around 180o with a lower limit of 110o [63]. Smaller angles

are possible, but may indicate that a more stable crystal packing exists [64].

Figure 2.4: Example lattice with illustration of a unit cell.

The two vectors that define the lattice are x1 = [2,0] and x2 = [1,3]. The shaded

area is the unit cell with dimensions equal to the magnitude of each vector.

x1

x2

-22-

 Electrostatic interaction occurs between ions or between partially charged fragments

of the molecules. An energetically favourable crystal packing is characterised by

maximisation of these intermolecular interactions, while minimising the energy

penalty due to disruption of the intramolecular interaction. It is important to note that

Hydrogen bonds may also occur within the molecule itself, stabilising a particular

conformer. Although intermolecular interactions are weaker than the intramolecular

counterparts, the sum of intermolecular forces may be sufficient to induce a

conformational change [8]. Due to the large number of possible geometries resulting

from the interactions, a number of packing arrangements corresponding to local

energy minima are often possible [50]. The ability of a molecule to exhibit multiple

arrangements in the crystal state is called polymorphism.

2.2.2.3 Polymorphism

Although polymorphs have the same molecular structure, they may exhibit different

physical properties that can lead to differences in the Performance of the chemical

product. It is important to note that in some cases, solid forms such as solvates and co-

crystal are wrongly termed polymorphs (or pseudo-polymorphs). Here, the term is

strictly applied to crystals with the same molecular composition but different

arrangements of these molecules.

Paracetamol is an example of a polymorphic molecule [65]. Figure 2.5 (a and c) show

two polymorphs of the compound. Different intermolecular interactions govern the

crystal packing of the two polymorphs [65]. The two unit cells shown in Figure 2.5 (a

and b) also differ slightly – by an average of 1.7 % change in the unit cell dimensions.

However, these two structures are the same polymorph (I) at different temperatures (-

150.15 oC and room temperature). The two structures are not considered to be

polymorphic due to the same crystal packing seen across the two structures. The

importance of considerations of polymorphism within the context of the Development

process is further discussed in 2.3.1.

-23-

2.2.3 Crystal habit

The unit cell describes the way in which molecules pack to form solid state crystals.

Crystals however, rarely grow in the same shape as the underlying unit cell [66]. The

external structure of a crystal is called the crystal habit. The crystal habit is influenced

by the internal structure of the crystal (packing, discussed in 2.2.2) and the

crystallisation conditions [67]. The set of possible surfaces of the crystal (facets) are

determined by the way in which the molecules pack. The crystallisation conditions,

along with the surface chemistry of the facets, govern the growth rate of the facets.

The crystal habit is defined by the relative growth rates of the facets. Presence of

additives or impurities may selectively inhibit the growth of certain facets, thus

changing the crystal habit [68]. Similarly, the solvent selection affects the binding at

different facets, potentially leading to changes in crystal habit [69]. Other factors such

Figure 2.5: Three crystal structures of paracetamol, denoted by their CSD

refcodes. a - polymorph 1 (HXACAN07), b – another experimental

determination (“redetermination”) of polymorph 1 (HXACAN09), c -

polymorph 2 (HXACAN08)

-24-

as the temperature, the rate of change of temperature, and the degree of agitation can

all have an impact on the resulting crystal habit [67]. The shape of the crystal affects

the structure and properties at larger scales of structures such as particles, powder, and

the final drug product. However, these fall outside of the scope of the thesis.

2.3 Properties and data sources

Polymorph propensity and solubility were identified in 2.1.4.3 as the main properties

of interest in the thesis due to their relevance for the Development. Details of

polymorphism and the data source for acquisition of the relevant information is

presented in 2.3.1 with equivalent discussion for solubility presented in 2.3.2.

However, the amount of solid state specific solubility data is limited [70]. Melting

point can be related to solubility, and some solid state specific data is available for this

property [71]. Details of the ways in which melting point data can be related to

solubility as well as information regarding data acquisition are presented in 2.3.3.

2.3.1 Polymorph propensity

Polymorphism is of great interest within the pharmaceutical product development. For

example, a previously unknown, more stable polymorph of ritonavir appeared two

years after the product launch [8]. The higher stability caused the product to fail

dissolution tests and consequently was removed from the market. Polymorphs may

exhibit different physiochemical properties [36,49]. To avoid such problems, the

regulatory bodies around the world have adopted strict requirements for identification

and control of the solid form of drug products [9,13,52]. Polymorphism also plays an

important role in patent litigation. Separate patents were granted for the two

polymorphs of ranitidine (Zantac) [72].

International Conference on Harmonisation (ICH) of Technical Requirements for

Registration of Pharmaceuticals for Human Use produced a series of guidelines

concerning the requirements for approval of drug products which were subsequently

adopted by all major regulatory bodies. Guideline on Quality Management Q6a

decision tree 4 sets out the acceptance criteria for polymorphism in drug products and

substances [9]. The guideline lists the requirement for identification of all solid forms.

-25-

The ability to accurately predict the likely number of solid forms would be of benefit,

if available ahead of time. The propensity for polymorph formation is defined as the

likelihood that a given compound will form polymorphs. This property of molecules

is investigated in Chapter 4.

The Cambridge Structural Database (CSD) is a curated repository of small organic

and metal-organic crystal structures that contains over 1,000,000 entries and is

maintained by the Cambridge Crystallographic Data Centre (CCDC)[73,74]. The

database contains 3D crystal structures and to varying degree the information

concerning the conditions under which the structure was obtained. Several entries

corresponding to a single molecular composition may be present. These entries

correspond to the polymorphs and redeterminations. A redetermination is an

experimental determination of the crystal structure of a given polymorph with a

slightly different structure. The difference can arise from different conditions or the

way in which the structure was resolved from the experimental data. Issues

surrounding the differentiation between redeterminations of the same polymorphs and

polymorphic structures is discussed in Chapter 5. The data contained within the CSD

formed the basis of the polymorph propensity study (Chapter 4).

2.3.2 Solubility

Solubility is one of the key properties that contribute to the efficacy of the drug product

as it affects the bioavailability of the drug [75]. True thermodynamic solubility

indicates the maximum amount of the dissolved solute possible for a given state for

the most stable crystal structure [76]. Due to kinetic barriers of formation of the most

stable polymorph, the equilibrium between meta-stable polymorph and solution may

be more relevant for drug absorption upon drug administration. Kinetic solubility is

the solubility for a specific crystal structure. Processes such as dissolution and

absorption are relatively quick, thus can be affected by differences in crystal packing

[75].

-26-

To understand the factors that influence solubility, it is useful to deconstruct the

relevant thermodynamic processes – dissolution (Figure 2.6) [75]. Here, it is assumed

that the true thermodynamic solubility and the kinetic solubility is derived via

equilibrium with the specific crystalline form studied. Hence, solubility can be related

to the Gibbs free energy change associated with the dissolution process [77]. The first

step of the process is the release of the solute molecule from the crystal lattice. The

associated free energy change can be related to the strength of the intermolecular

interactions within the crystal. The second step is the creation of a cavity within the

solvent. The size of the solute molecule affects the free energy change associated with

this process. The final step is the solvation of the free solute molecule. In reality, the

dissolution involves formation of molecular clusters that disperse in the solvent [78].

However, this falls outside of the scope of the thesis, so the simplified model is used

hereafter. The process can be split into two factors: (1) molecular and crystal structure-

dependent strength of packing and (2) molecular structure-dependent solvation.

Figure 2.6: Simplified model of dissolution of a crystalline structure.

A molecule of the solute (gold hexagon) is removed from the crystal lattice (1).

A void in the solvent (blue circle) is created (2). The solute molecule solvates

into the void in the solvent (3). Yellow arrows indicate processes where the

crystal structure of the solute plays an dominant role. [75]

(1) (2)

(3)

-27-

The two factors can be used to construct a grid that indicates the relative importance

of the molecular and crystal features [71]. The grid is illustrated in Figure 2.7. The

solubility decreases as molecules move diagonally from quadrant I to IV. In quadrant

II the solubility is limited by solvation and in quadrant III, molecules exhibit solubility

limited by crystal packing. Molecules in quadrant IV have poor solvation properties

as well as strong intermolecular interactions within the crystal structure. The authors

of the paper claim that many of the literature datasets underrepresent quadrant III,

while many of the compounds within the Development stage fall here [71].

Different strategies for solubility improvement can be adopted based on the limiting

factor. For crystal packing limited solubility, the intermolecular interactions can be

weakened by altering the packing arrangement. Different solid form (polymorph,

solvate, or co-crystal) may be selected to achieve this [75]. For solvation-limited

compounds, alternative formulation changes can be used to improve solubility [35].

Therefore, the ability to predict solid form specific solubility, along with the limiting

factor is highly desirable.

Informatics approaches have been shown to be useful tools for solid form selection

[79]. Such informatics-based methods require large datasets to develop. Solubility is

recognised as an important property within pharmaceutical product development, so

Figure 2.7: solvation - packing grid.

The grid is used to identify structures with crystal packing limited and

solvation limited solubility. [71]

Quadrant IV
Limited by solvation

and packing

Quadrant III
Limited by packing

Quadrant II
Limited by solvation

Quadrant I
High solubility

Pa
ck

in
g

en
er

gy

Solvation energy

-28-

curated datasets are available. The Handbook of Aqueous Solubility contains 16,000

data points for 4000 compounds [80]. However, the dataset comprises very limited

crystal structure information. Hence, rather than focusing on modelling solid state

specific solubility, the focus was placed on melting point. This approach does not take

into account the solvation aspect shown in Figure 2.6. However, there is value in

developing better understanding of the solid state-limited solubility [71]. Solid state

specific melting data is available, and the property can be related to the crystal packing

contributions to solubility [70,71].

2.3.3 Melting point

Melting point is the temperature at which a phase transition between solid state and

liquid is thermodynamically favourable. It corresponds to the energy required for the

molecules to break the intermolecular interactions within the crystal structure. The

melting point can be used as an indicator of the energy required to remove a molecule

from the crystal lattice (process (1) in Figure 2.6) [75] and the packing energy in

Figure 2.7 [35,71]. Furthermore, the melting point is used for solubility prediction via

the General Solubility Equation (GSE) [81].

Melting point data is widely available. However, similarly to the solubility data, the

melting points are rarely associated with a specific polymorph. Open Melting Point

Data resource contains 13,000 curated data points for a diverse range of temperatures

[82]. The dataset, along with its subsets, has been used to assess the Performance of

several models [81,83]. A larger, less curated dataset was generated by text mining

patent literature [83]. The Patent Dataset contains 289,379 datapoints, and it was

shown that accurate models can be trained on less curated datasets as well. Based on

the analysis of the datasets, the typical error within literature datasets was estimated

to be approximately 32 - 35 oC [83,84]. The error is not due to instrument error but

rather due to impurities and polymorphism, which is not controlled in many cases.

These datasets do not contain any solid state information.

In contrast to the limited polymorph specific solubility data in curated datasets, CSD

contains some polymorph specific melting point data. Approximately 17 % of single

component structures in the CSD have melting point data reported along with the

crystal structure. A dataset of 53,756 crystal structure specific melting point was

extracted from the CSD. The CSD MP dataset is further discussed in Chapter 7. The

-29-

CSD contains a wide range of structures. To ensure the MP dataset was relevant to the

pharmaceutics, the drug-likeness was investigated. The strict definition of drug-

likeness is not set; however, it is generally accepted that a molecule is “drug-like” if it

is similar to available drug molecules [85]. A number of metrics can be used to

describe “drug-likeliness” such as molecular weight (typically within 300 and 400

g/mol), rotatable bond count (5 and 6), and other molecular properties [85].

Approximately 93 % of structures with the CSD MP dataset fall within the drug-like

melting point range of 50 oC – 250 oC [85] (Figure 2.8).

Figure 2.8: Distribution of melting points of structures with the CSD single

component melting point dataset.

The drug-like melting point range (50 oC – 250 oC) is highlighted. Kernel

Density Estimate (KDE) using gaussian kernel with kde factor of 1 was used

to construct the plot.

-30-

2.4 Quantitative Structure Property Relationship (QSPR)

Quantitative structure property relationship (QSPR) is a paradigm that aims to develop

accurate empirical models that predict a property based on the structure of the system

studied (Figure 2.9). A distinction is often made for models of biological activity,

referred to as Quantitative structure activity relationship (QSAR); however, the two

are considered to be same and are referred to as QSPR models in this thesis. Structures

themselves cannot be used to map the relationship to the property of interest, so some

quantitative description is needed (2.4.1). This description takes the form of a feature

vector. The variables in this feature vector are typically termed “descriptors” within

the QSPR community. Features and descriptors are used interchangeably in the thesis.

The empirical model aims to find a function that accurately maps features onto targets

(𝑓: 𝑿 → 𝑌). The principles of how this is accomplished, by training the models, is

presented in 2.4.2. Section 2.4.3 explains the way in which the Performance of the

models is measured. The machine learning algorithms used in the thesis are discussed

in the subsequent sections – Random Forest in 2.4.4, Support Vector Machine in 2.4.5,

and Neural Networks 2.4.6. Many models also have hyperparameters which are a set

of parameters that remain constant during training but affect the Performance. The

hyperparameters are adjusted by the process of hyperparameter optimisation, which is

discussed in 2.4.7. An overview of the application of QSPR models is presented in

2.4.8.

Figure 2.9: Quantitative Structure Property Relationship overview.

Structure

Quantitative description

Empirical model

Property prediction

-31-

2.4.1 A quantitative description of the structure

The decision on the descriptor set used for a QSPR is crucial, as it has an effect on the

possible performance of the model. The descriptors need to capture relevant and

generalisable structural characteristics which are relevant to modelling the property of

interest. In this thesis, the descriptors are divided into two categories: structure

descriptors and graph embedding. Molecules can be seen as graphs (sets of connected

nodes – atoms); as such graph embedding techniques can be used to generate a

descriptor representation of the structure (2.4.1.2). In the thesis, graph embedding

techniques are defined as techniques that use graph representation of the entire

structure to produce a fixed-length representation of the given structure. Fingerprint

methods also use graph representation of structure; however, only a substructure is

often used to develop several fingerprints followed by one-hot key encoding for the

presence of a given substructure. One-hot key encoding is a process where a feature is

constructed for each unique value of interest (in this case one feature is constructed

for each fingerprint). The value of the generated feature is set to 1 where a given

sample has that specific unique value and set to 0 otherwise. The fingerprint

approaches, along with any other method of encoding the structure as a set of

numerical variables are collectively referred to as a structure descriptor in this thesis

(2.4.1.1).

2.4.1.1 Structure descriptors

For a QSPR model to accurately map the relationship between structure and the

property of interest, the structure needs to be adequately described. The primary

objective of a structure descriptor is to capture some information about the structure

while remaining invariant to artificial differences in the structure representation. This

means that calculation of a feature should always return the same value for the same

molecule, irrespective whether the molecule has been rotated or its atoms numbered

in a different order.

Historically, simple molecular descriptors such as the number of atoms in a molecule

were used to find correlations with properties [86–88]. As the computation and

experimental capabilities increased, so did the number of usable molecular descriptors

[89]. Thousands of molecular descriptors have been developed that have demonstrated

a correlation with some property of interest [89–93].

-32-

The same principles can be extended to crystal descriptors. As discussed in 2.1.4.2 and

2.3.2, properties such as solubility are affected by the solid structure. An inability to

adequately capture the solid state information was given as one of the reasons for the

difficulty of predicting solubility [94]. Experimental melting point data, lattice energy,

and 3D molecular descriptors calculated for structures found in the solid state were

used as crystal descriptors for solubility prediction [70,95].

Further to these descriptors, fingerprints can also be used for QSPR modelling.

Typically, fingerprints encode the presence of a specific molecular feature (e.g.

molecular substructures) [96,97]. The fingerprint approach has been used extensively

to construct QSPR models for solubility [98] and other properties such as activity

[99].The presence of these substructures can then be used as a descriptor. The task-

specific descriptors used in the thesis are discussed in the respective chapters (Chapter

5 and Chapter 7).

2.4.1.2 Graph embedding

Many applications within the broader machine learning community require an

effective representation of graph data [100]. For this reason, a number of graph

embedding techniques have been developed for different tasks. The definition of a

graph is presented, followed by graph embedding methods that can be used to generate

a fixed-length representation of such a graph.

A graph G is defined by a set of vertices V, and edges E; G = (V, E). An edge e ∈

E is defined by the two vertices it links; 𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) [101]. Only undirected graphs

are used in this thesis. Undirected graphs are graphs such that 𝑒𝑖𝑗 ≡ 𝑒𝑗𝑖: 𝑒𝑖𝑗 ∈ E. For

undirected graphs a set of all neighbouring vertices for a given vertex vk is giving by

𝑁𝐵𝑅(𝑣𝑘) = {𝑣𝑖: (𝑣𝑘, 𝑣𝑖) ∈ E } Equation 2.2

Additional information concerning vertices and edges properties can be embedded as

labels lv and le, respectively. Graphs can be further categorised into homogenous –

graphs such that |𝑙𝑣| = |𝑙𝑒| = 1 for all vertices and edges – and heterogeneous graphs.

As molecules tend to have more than one vertex label (atom type) and edge label (bond

type), only heterogeneous graph embedding methods were considered.

-33-

A comprehensive review of graph embedding techniques can be found elsewhere

[100]. Here, the focus is placed on Message Passing Neural Network (MPNN)

framework [102]. The general principles of neural networks are presented in 2.4.6.

MPNN is a class of neural networks that generate a fixed-length representation by

consecutively updating the state of each vertex v (ℎ𝑣
(𝑡)

) followed by pooling all the

states. Each vertex is initialised based on the vertex label (lv),

ℎ𝑣
(0)

= 𝑓𝑖𝑛𝑖𝑡(𝑙𝑣) Equation 2.3

The initialisation (𝑓𝑖𝑛𝑖𝑡) can also be random. The message passed to the vertex (𝑚𝑣
(𝑡+1)

)

is a function of the current state of the vertex (ℎ𝑣
(𝑡)

) and its neighbours using a message

function (fmessage).

𝑚𝑣
(𝑡+1)

= ∑ 𝑓𝑚𝑒𝑠𝑠𝑎𝑔𝑒(ℎ𝑣
(𝑡), ℎ𝑤

(𝑡), 𝑙𝑣𝑤

𝑤∈𝑁𝐵𝑅(𝑣)

, 𝑡) Equation 2.4

The relationship can also be dependent on the timestep t and the edge type that

connects the vertex with its neighbour (lvw). The message is then used to update the

state of the vertex using an update function (fupdate),

ℎ𝑣
(𝑡+1)

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑣
(𝑡),𝑚𝑣

(𝑡+1)
, 𝑡) Equation 2.5

At each time step, each vertex receives message only from its neighbours. However,

as the state of the neighbours is updated based on their neighbours, effectively the

information concerning each vertex is propagated through the graph. At time step t,

information from vertex t-connections away reaches its vertex. After T iterations of

message passing, the fixed-length graph representation is computed based on the state

of all the vertices.

𝑝𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡 ({ℎ𝑣
(𝑇)

: 𝑣 ∈ 𝒱}) Equation 2.6

The difference between the approaches within the MPNN framework comes from the

functions used (𝑓𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑓𝑢𝑝𝑑𝑎𝑡𝑒, 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡) [97,102–107]. The details of the MPNN

method used in the thesis to capture molecular and crystal structures are discussed in

Chapter 7.

-34-

2.4.2 Principles of machine learning

For the empirical models to make useful predictions, some parameters need to be

optimised. In the case of machine learning algorithms, this is referred to as learning or

training and can be split into three categories: supervised, unsupervised, and

reinforcement. In case of supervised learning, a dataset that contains pairs of features

(X) and targets (Y) is fed to the learning algorithm which then aims to find a mapping

between the two (𝑓: 𝑿 → 𝑌) [108]. Reinforcement learning is a method by which an

agent (the model) is given a reward for an action based on observations with the aim

to learn actions that maximises the reward value [109]. Unsupervised learning does

not require labelled data nor rewards for actions; instead, it draws inferences from the

datasets such as clustering or dimensionality reduction [110]. Supervised learning is

used in this thesis. The general learning task is defined below (2.4.2.1), and the key

factor in determining the usefulness of a model – generalisability is defined in 2.4.2.2.

2.4.2.1 Definition of the task

Sets of N instances (examples) of features (𝑋 = {𝒙𝟏, 𝒙𝟐 …𝒙𝑵}) and corresponding

target values (𝑌 = {𝑦1, 𝑦2 …𝑦𝑁}) are arranged in pairs to form a dataset for supervised

learning (𝐷 = {(𝑥𝑖, 𝑦𝑖): 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌, 1 ≤ 𝑖 ≤ 𝑁}). The target can be a discrete

label, a continuous number, or a vector (of labels or continuous values); the type of

the target is used to categorise empirical models. In the case where the target is a label,

the task is called classification. In the case of a regression task, the model outputs a

predicted value(s). The empirical model (ℋθ) is a function constructed from

parameters (θ) given a set of hyperparameters (λ) using the selected algorithm 𝒜.

Machine learning models such as Random Forest (RF), Support Vector Machine

(SVM), Artificial Neural Networks (ANN or NN), k-Nearest Neighbours, and Naïve

Bayes are commonly used within the field of cheminformatics. In this chapter, the

emphasis is placed on RF (2.4.4), SVM (2.4.5), and NN (2.4.6) as these are used in

the thesis (Chapter 5 and Chapter 7). Whilst random forest is typically considered a

non-parametric model, rather than one which constructs a function based upon a pre-

defined functional form and a fixed set of adjustable parameters, the set of split criteria

for the trees can be seen as parameters.

ℋ𝜃 = 𝒜(𝜃; 𝜆) Equation 2.7

-35-

Hyperparameters are kept constant during training. The performance of many machine

learning algorithm is greatly affected by the selection of hyperparameter. The details

of performance measures are presented in 2.4.3 while hyperparameter tuning is

discussed in 2.4.7. The cost function is used to compute the loss of the model for a

specific set of parameters.

𝐶(𝜃; 𝜆) = ℒ(𝑋, 𝑌; ℋ𝜃) Equation 2.8

ℒ is the loss function and is selected prior to training. Several loss functions for

regression and classification tasks are presented in 2.4.3.1 and 2.4.3.2, respectively.

The value of the cost function may be computed for each iteration of training (per

batch in case of Neural Networks) or independently for each branch of a Random

Forest model. The aim of the training is to find a set of parameters (θ*) such that the

cost function is minimised;

𝜃∗ = argmin
𝜃

𝐶(𝜃; 𝜆) Equation 2.9

In case of Random forest, this can be seen as the optimum tree structure for each tree.

Several strategies for finding the optimum parameters (θ*) exists. Each algorithm

involves a different approach to finding the optimum set of parameters. The algorithm-

specific considerations are presented in the respective sections below (2.4.4 – 2.4.6).

Although the optimum set of parameters is based on the training set, it is important to

note that the aim of any supervised model is to generate useful predictions on unseen

data. Some considerations on how this can be estimated are discussed below (2.4.2.2).

2.4.2.2 Generalisation

The ability of a model to make accurate predictions on unseen data taken from the

same distribution as the data used for training is referred to as generalisability [108].

To get an estimate of model generalisability, the available dataset (D) is commonly

split into training (Dtr), test (Dte), and potentially validation (Dv) sets as needed. To

correctly measure generalisability, each dataset should have the same distribution.

The test set is used as the unseen data at the end of the development process and is

split from the remaining data first. If only a single model is trained (one algorithm and

one set of hyperparameters), there is no need to split the remaining data into training

and validation as all of it can be used for training. However, when a number of models

-36-

are to be trained, it is beneficial to split the dataset further into training and validation

sets. This is because a particular set of features or hyperparameters may yield good

predictions on a particular set of data due to chance. Hence, predictions made on data

used to select the best model may be optimistically biased [111,112]. Hence, a separate

validation set should be employed for the model section. The datasets can be split

before the training commences into a training and validation datasets or cross-

validation procedure can be used [113].

Once the datasets are prepared, the model development process can be initiated. The

examples from the training set are used to fit parameters of the model (or construct

decision trees in case of RF). A solution to the minimisation problem defined in

Equation 2.9 is approximated using this dataset.

The validation set is then used to give an estimate of how well the model performs on

unseen examples. The loss or other performance measure is computed for the

predictions made by the model on the validation set. If the performance on the

validation set is significantly worse than on the training set, it is likely that the model

is overfitted [114]. Overfitting is the result of the model mapping the noise within the

training set. The performance on the validation set is typically used for selection of

the best model.

Although no parameter adjustment is directly performed based on the validation set,

the model was adjusted (or selected) based on the validation set performance; hence

the dataset is no longer “unseen”. The test set provides an unbiased evaluation of the

performance of the model. No adjustments to the model are made after it is run on this

dataset. The performance represents the ability of the model to predict unseen

examples. In the section below (2.4.3), methods for assessing the performance of

empirical models are discussed.

2.4.3 Performance measures

Performance measures are required to quantitatively assess the quality of a model.

This is needed for the training process (Equation 2.8) as well as for the understanding

of how well the model generalises. To monitor the iterative training process, easily

computable functions are preferred. These are referred to as loss functions and are

presented for regression and classification task in 2.4.3.1 and 2.4.3.2, respectively. The

measure of generalisability of the trained models is calculated on validation or test

-37-

sets. The loss function used for training the algorithm can be used to assess this;

however, it is sometimes not easily interpretable and may not fully capture the

Performance of the model. For this reason, a number of metrics have been developed

to allow comparison of models. These are also discussed in the respective sections

(2.4.3.1 and 2.4.3.2).

2.4.3.1 Regression task

The aim of a regression task is to predict a value for a given feature vector that closely

corresponds to the actual value. The ‘closeness’ of the prediction can be captured using

different loss functions. For each of the functions, the predicted value for the ith input

is defined as,

𝑦𝑖̂ = ℋ𝜃(𝑥𝑖) Equation 2.10

and the error is,

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖̂ Equation 2.11

Figure 2.10: Comparison of absolute and squared errors.

-38-

L1 and L2 are the two basic loss functions which are used in this thesis. For a dataset

of n items, L1 function, also known as the mean absolute error (MAE) is defined as,

𝑀𝐴𝐸 =
∑ |𝑒𝑖|

𝑛
𝑖=1

𝑛

Equation 2.12

The L2 function, mean squared error (MSE), is defined as,

𝑀𝑆𝐸 =
∑ (𝑒𝑖)

2𝑛
𝑖=1

𝑛

Equation 2.13

The two loss functions are compared in Figure 2.10. The value of squared error

increases fast as the error increases compared to the absolute error (𝑎𝑠 𝑒 → ∞, 𝑒2 ≫

|𝑒|). As a result, an outlier can have a disproportionally large effect on the MSE. This

may result in unstable MSE value when working with datasets that have outliers. MAE

is not affected by the outliers to the same degree. However, the gradient is constant

and independent of the error value. This may affect the training as the correction made

to the model is proportional to the magnitude of the loss function. To address the

shortcomings of the L1 and L2 loss function, other loss functions have been developed

that attempt to capture advantages of each. Huber loss [115] (smooth mean absolute

error) and log cosh loss [116] approximate the behaviour of L2 for small e and L1 for

large e.

A square root may be taken of MSE to convert it to the same units as the target; this is

called root mean squared error (RMSE). Comparison between performances on

different datasets can be made using R2, which is computed by scaling RMSE based

on the distribution of the target values in the dataset (total sum of squares) [117].

𝑅2 = 1 −
𝑅𝑀𝑆𝐸

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2
Equation 2.14

The performance measures defined in this section can be used for training and

performance comparison of regression tasks. In this thesis, only neural networks were

used for regression.

-39-

2.4.3.2 Classification task

Classification tasks aim to predict a correct label based on a given feature vector. In

this thesis, only a binary classification (two labels) was performed so this section

focuses on loss functions that are used for this purpose. Algorithms such as SVM

classifier calculates the confidence of the model in the particular classification. For

this reason the model output ℋ𝜃(𝑥) is not restricted to just the class label ({-1,1}).

The Hinge loss is commonly used for measuring the performance of SVM classifiers

[118,119].

𝐿ℎ𝑖𝑛𝑔𝑒(𝑖) = {
1 − 𝑦𝑖ℋ𝜃(𝑥𝑖) 𝑖𝑓 𝑦𝑖ℋ𝜃(𝑥𝑖) < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 2.15

The multiplication of 𝑦𝑖 and ℋ𝜃(𝑥𝑖) is done to reward predictions where the signs of

ℋ𝜃(𝑥𝑖) and yi align (correct prediction) and penalise cases where the signs are

different (misclassification).

Entropy and Gini index are commonly used measures of impurity of nodes in a

decision tree [120]. For binary classification, the two measures are defined in Equation

2.16 and Equation 2.17, respectively,

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − ∑𝑝𝑐 log2 𝑝𝑐

2

𝑐

Equation 2.16

𝐺𝑖𝑛𝑖 = 1 − ∑𝑝𝑐
2

2

𝑐=1

Equation 2.17

where pc is the fraction of elements with the label c. This is used in Random Forest

models to decide the best split (more details in 2.4.4).

For binary classification, a confusion matrix is a useful tool to analyse the performance

of the model (Table 2.1). Based on the confusion matrix, several performance

measures can be defined.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Equation 2.18

-40-

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation 2.19

The same ratios can also be constructed for the negative class. The overall

performance can be described using accuracy.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 Equation 2.20

In cases where the number of positives and negatives is not similar, the F-score may

be used which focuses on how well the positive class is predicted. The F1 score (𝛽 =

1) is the harmonic average of recall and precision. If more emphasis needs to be placed

on one of the measures, an appropriate 𝛽 may be selected such that 𝛽 ∈ ℝ+ [121].

𝐹𝛽 = (1 + 𝛽2)
1

𝛽2 1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Equation 2.21

2.4.4 Random Forest (RF)

2.4.4.1 Algorithm description

Random Forest (RF) is a machine learning algorithm constructed from an ensemble

of decision trees [122]. Each decision trees makes an independent prediction based on

the input feature vector (x). The predictions made by the decision trees are pooled

together to generate a single prediction. In the original publication of the algorithm,

this was achieved by a majority vote where each decision tree has a single vote [122].

In the implementation used in the thesis, the probabilities for each label are summed

across the entire forest and the label with the highest total value is taken as the

Table 2.1: Confusion matrix

Predicted

Negative Positive

Actual

Negative True negative (TN) False positive (FP)

Positive False negative (FN) True Positive (TP)

-41-

prediction of the RF model [123]. In summary, the prediction is made using a pooling

function on M decision trees (ℎ𝑖(𝒙));

𝑦̂ = 𝑓𝑝𝑜𝑜𝑙({ℎ1(𝒙), ℎ2(𝒙), … , ℎ𝑀(𝒙)}) Equation 2.22

2.4.4.2 Training methodology

For each tree, a subset of the training dataset is selected randomly and independently,

typically using the bootstrap method. In the case of the bootstrap method, a predefined

number of samples (n) is selected from the dataset with replacement. At each node of

each tree, a subset of features is selected based on which the node is split. All possible

split points are considered, and for each, the impurity of the split is computed

according to Gini (Equation 2.16) or entropy (Equation 2.15) impurity measures[124].

The best split point is selected, based on the largest reduction in impurity compared to

the parent node. The process is repeated for each of the two child nodes. The process

terminates when: (1) the child nodes are pure (i.e. the node only contains samples of

a single class), (2) the number of elements in the node is smaller than a predefined

number, or (3) the maximum depth of the tree is reached. Once the set number of trees

are trained, the training of the random forest model is complete.

2.4.5 Support Vector Machine (SVM)

2.4.5.1 Algorithm description

In this thesis, Support Vectors Machines (SVM) are used for a classification task

(Chapter 5). An SVM classifier constructs a hyperplane (decision boundary) to divide

a multidimensional feature space, into two classes (above and below) [53,119,125].

The dimensionality of the feature space corresponds to the number of features with

potentially additional dimensions due to the transformation of the features (kernel

trick). The decision boundary is defined by the weight vector (w) and the bias term b.

𝒘 𝒙 + 𝑏 = 0 Equation 2.23

Figure 2.11 (A and B) illustrates how a decision boundary can be used to linearly

separate examples. Margins (dotted lines in the figure) are parallel to the decision

-42-

boundary, constructed using data points closest to the boundary (the support vectors),

indicate how well the classes are divided.

However, not all data is linearly separable. In such cases, the data can be transformed

into a linearly separable form. This is illustrated in Figure 2.11C for 1-dimensional

feature space. By adding another dimension, where𝜑(𝑥(1)) = sin (𝑥(1)), the two

classes can be easily separated by a linear decision boundary (Figure 2.11D).

The prediction is made using the transformed feature vector and the decision boundary

(Equation 2.23),

𝑦̂ = 𝒘 𝜑(𝒙) + 𝑏 Equation 2.24

A label is assigned based on whether the output of the function is positive or negative.

In Equation 2.24, only the dot product of the transformed feature vector and the weight

vector needs to be computed [119]. The mapping transformation from the original

Figure 2.11: support vector machine classification

A possible decision boundary for separating the two classes (A). Another

decision boundary that increases the separation between the two classes (B).

Kernel trick can be used to transform a linearly inseparable points (C). In the

example in the figure, passing the x1 feature through a sine function

transforms the data into linearly separable distribution (D).

-43-

features and the transformed feature vector does not need to be known. Rather, the dot

product can be computed using a kernel function requiring vectors in the original

descriptor space as input. This is referred to as the kernel trick.

2.4.5.2 Training methodology

In this thesis, SVM is only used as a binary classifier, so only the training procedure

for binary classification is presented. Training of an SVM consists of finding a

decision boundary (hyperplane) that separates the two classes (positive and negative

represented by 1 and -1 respectively). The feature vectors (of size d) can be projected

onto d-dimensional space where the (d-1)-dimensional decision boundary can be

defined. This is illustrated for a feature vector of length of 2 in Figure 2.12 (the three

points that lie on the dotted lines are the support vectors). The aim of training is

twofold:

1) Minimise the amount of misclassifications – performance

2) Maximise the margins that separate the two classes – avoid overfitting

The cost function (Equation 2.9) of SVM can be written as the following.

𝐶(𝒘, 𝑏) = 𝐶𝑚𝑎𝑟𝑔𝑖𝑛(𝒘, 𝑏) + 𝐾 𝐶𝑐𝑙𝑎𝑠𝑠(𝒘, 𝑏) Equation 2.25

K is a hyperparameter responsible for determining the relative importance of

minimisation of misclassification and maximisation of the margins. It is usually

denoted as C, however to avoid confusion with the cost function, K is used here. Hinge

loss (Equation 2.15) is commonly used for Cclass [126].

The aim 2 (maximisation of margin) can be expressed as the following equation.

𝑤 = argmax
𝑤

(min
𝑖

𝛾𝑖) Equation 2.26

where 𝛾𝑖 corresponds to the margin in the ith dimension. The two lines that define the

margin (dotted lines in Figure 2.12) can be defined as follows.

𝒘 𝒙 + 𝑏 = 1 Equation 2.27

𝒘 𝒙 + 𝑏 = −1 Equation 2.28

-44-

Let x1 and x2 denote two points that lie on the two margin lines. The following

relationship can be constructed.

𝒙𝟏 = 𝒙𝟐 + 2𝛾 (
𝒘

|𝒘|
)

Equation 2.29

Using Equation 2.27, Equation 2.28, and Equation 2.29, an expression for the width

of the margin (𝛾) can be derived.

𝒙𝟏 = 𝒙𝟐 + 2𝛾 (
𝒘

|𝒘|
)

𝒘 (𝒙𝟐 + 2𝛾 (
𝒘

|𝒘|
)) + 𝑏 = 1

(𝒘 𝒙𝟐 + 𝑏) + 2𝛾 𝒘 (
𝒘

|𝒘|
) = 1

2𝛾 𝒘 (
𝒘

|𝒘|
) = 2

𝛾 =
|𝒘|

𝒘𝒘

𝛾 =
1

|𝒘|

Equation 2.30

Therefore, the margins can be maximised by minimising|𝒘|, or more conveniently,

by minimising
1

2
|𝒘|2. The cost function component associated with the aim 2 of SVM

training (Cmargin) can be calculated by

𝐶𝑚𝑎𝑟𝑔𝑖𝑛(𝒘) =
1

2
|𝒘|2

Equation 2.31

The full cost function (Equation 2.25) can thus be expressed by substituting the

respective cost function components (Equation 2.15 and Equation 2.31) as follows

𝐶(𝒘, 𝑏) =
1

2
|𝒘|2 + 𝐾 ∑(1 − 𝑦𝑖𝑓(𝒙𝒊))+

𝑖=1

Equation 2.32

Gradient-based optimisation (see 2.4.6.2) can be used to optimise w, b for the given

set of hyperparameters.

-45-

2.4.6 Neural Networks (NN)

2.4.6.1 Algorithm description

First proposed in 1943, artificial neural networks are a type of function approximators

that are inspired by the nervous activity of animal brains [127]. The term Neural

Networks (NN) and Artificial Neural Networks are used interchangeably. Similarly to

their biological counterparts, artificial neural networks are composed of neurons. The

basic functionality of a neuron is expressed mathematically in Equation 2.33 and

graphically in Figure 2.13 .

𝑎 = 𝑓(𝒘𝒑 + 𝑏) Equation 2.33

Figure 2.12: Training support vector classification.

The decision boundary (black) and margins (black dotted) separate two

classes (gold – positive, dark blue – negative). Point A and M used for

calculation of confidence of prediction (blue). Point 1 and 2 used for margin

maximisation (grey). Handling of misclassification illustrated using e

(orange).

w

w x + b = -1

w x + b = 1

e

γ

γ

A

M
1

2

-46-

The input vector (p) is usually either the input to the whole network (x) or the output

of the previous layer (ak-1). It is multiplied by the weight vector (w) where each

element (wi) represents the sensitivity of the neuron to the respective input (pi). A bias

term (b) is usually added to allow 0 values in p to have an influence on the neuron.

The resulting scalar is then passed through an activation function which enables the

output (a) to have a non-linear relation to the input.

In principle, any differentiable function can be used as the activation function. Table

2.2 summarises the activation functions used in this thesis, along with some other

commonly used functions. Rectified Linear function (ReLu) is the most commonly

used activation function in deep neural networks due to its computational efficiency

and reduced chance of encountering the vanishing gradient problem in multi-layered

neural networks [128].

Figure 2.13: Simple neuron design.

Vector input (p), is multiplied by a weight vector (w), a bias term (b) is added,

and the result is passed through an activation function (𝑓) which results in a

scalar output (a).

-47-

The neurons form the basic unit of neural networks. More sophisticated units can be

developed and arranged in a specific manner to suit a specific task (such as Long Short

Term Memory [129]). The neurons are usually arranged in layers, where each may

contain one or more neurons. Three main classes of the arrangement are shown in

Figure 2.14: fully connected, convolutional, and recursive [130].

In a fully connected layer (Figure 2.14 top left), each neuron is fed all the available

inputs (either model inputs or outputs of the previous layer). Each of the neurons has

a different weight vector (wj), and so the weights of a fully connected layer can be

expressed as a single weight matrix (Wk). For a layer k, containing S neurons, the

weight matrix can be expressed as shown in Equation 2.34.

Table 2.2: Activation functions commonly used in neural networks [130]

Name Function Visualisation

Sigmoid

Tanh

ReLU

-48-

𝑾𝒌 =

[

𝒘𝟏𝒌

⋮
𝒘𝒋𝒌

⋮
𝒘𝑺𝒌]

 Equation 2.34

This type of layer is the most common in neural networks and its main advantage is

that it utilises all available inputs.

A convolutional layer (Figure 2.14 top right) consists of neurons that have a restricted

receptive field (i.e. can only “see” a subset of all inputs). Inputs within the receptive

field are fed into the neuron to compute a single value output. The receptive field is

then shifted by a predetermined amount (movement in Figure 2.14 to the right), and

the action is repeated. In case part of the receptive field falls outside of the input vector,

padding with zeroes is sometimes used to ensure the dimensionality of the instance

Figure 2.14: Examples of fully connected, convolutional, and recursive layers

of neural networks, along with a schematics of a simple recursive neuron.

Weights of each neuron are different and are connected to every input in case

of a fully connected layer (top left). In a convolutional layer, a neuron with

same weights is applied to a subset of the input (top right). All of the inputs

and the previous hidden state (h) are fed into a recursive neuron (bottom left).

A simple recursive neuron design (bottom right).

Fully connected Convolutional

Recursive

Wh

Wp ∑p a

h

movement

-49-

input is consistent. This type of layer is used to reduce the number of connections

within a network. It is also used to capture information where there is value in the

segment of the input regardless of where it appears, such as a curved line when

attempting to classify hand-written digits [131]. Convolutional layers are not used in

this thesis. A more detailed explanation of this type of layer can be found elsewhere

[128,130].

In the case of a recursive layer (Figure 2.14 bottom left), the neuron is connected to

the input, but also to itself. For this reason, the basic neuron introduced in the Figure

2.13 needs to be modified to handle two inputs (Figure 2.14 bottom right). The state

that is passed from the neuron to itself is referred to as the hidden state (ht). The

dimensions of h, p, and a are the same to ensure that the neuron can be applied

recursively. The equation describing the operation of a simple recursive neuron is

shown in Equation 2.35 [130].

𝒂 = 𝑓(𝑾𝒉𝒉 + 𝑾𝒑 𝒑) Equation 2.35

The first time a recursive neuron is applied, an initial hidden state (h0) needs to be

given. The order in which the input vectors (p) are fed is dependent on the structure

of the data. In a special case where the inputs are fed sequentially, the layer is referred

to as recurrent.

The activation function used in these layers may be different for each neuron.

However, it is common to see the same activation function being used for all neurons

of layers of a particular type. Different types of layers are sometimes combined within

the same neural network. The output of one layer becomes the input of the following

layer; hence the neural network can be expressed as a composite function of functions

for each layer

𝒚 = (𝑓𝐿(𝑁) ∘ 𝑓𝐿(𝑁−1) ∘ … ∘ 𝑓𝐿(1))(𝒙) Equation 2.36

where 𝑓𝐿(𝑖) is the function of the ith layer of the network and contains the required

weight multiplication and activation as exemplified in Equation 2.33 and Equation

2.35. Neural Network design is a substantial field, so only the architectures relevant

to the thesis are discussed further in Chapter 7. The work in the chapter utilises a

-50-

recurrent layer for graph embedding (as introduced in 2.4.1.2) and fully connected

layers for predictions.

2.4.6.2 Training methodology

Neural Network design often results in models with many parameters (θ) that require

tuning for the model to make meaningful predictions. The training of a Neural

Network is usually carried out by iteratively updating the parameters based on the

gradients of the loss (∇𝐶) until the predefined convergence criteria is met. This

approach is commonly referred to as gradient descent. However, in this thesis, the term

gradient descent is used exclusively for the simplest form of the algorithm

(computation of the full gradient and update with constant learning rate; explained in

more details below) while the whole family of algorithms are referred to as gradient-

based optimisation (GBO) algorithms [132]. The algorithm A.1 describes the basic

components of GBO algorithms. The initial set of parameters 𝜃0 is determined by an

initiation function (𝑓𝑖𝑛𝑖𝑡) and the hyperparameters of the model (𝜆𝑖𝑛𝑖𝑡). Some initiation

strategies are discussed below. The training is initiated with the L being set to arbitrary,

large number. Predictions are made using the initial set of parameters and the

respective loss is calculated using the cost function C. Although loss is a function of

𝜃 parameterised by the hyperparameters 𝜆 (as defined in Equation 2.9), for the sake of

clarity, 𝜆 is omitted in the description as these remain constant for the duration of

training. The differences in algorithms within the GBO family arises from the

differences in implementation of gradient computation (𝑓𝑔𝑟𝑎𝑑(𝐿, 𝜃𝑡)) and the

parameter update strategy (𝑓𝑢𝑝𝑑𝑎𝑡𝑒(𝜃𝑡 , ∇𝐶)). The process is repeated until the

convergence criteria (𝑓𝑐𝑜𝑛𝑣) is met.

-51-

Algorithm A.1: Gradient-based optimisation

𝜃0 ← 𝑓𝑖𝑛𝑖𝑡(𝜆𝑖𝑛𝑖𝑡)

𝑡 ← 0

𝐿𝑜𝑠𝑠 ← +∞

while 𝑓𝑐𝑜𝑛𝑣(𝐶, 𝑡) = 𝐹𝑎𝑙𝑠𝑒 do

 𝐿 ← 𝐶(𝜃𝑡)

 ∇𝐶 ← 𝑓𝑔𝑟𝑎𝑑(𝐿, 𝜃𝑡)

 𝜃 ← 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(𝜃𝑡 , ∇𝐶)

 𝑡 ← 𝑡 + 1

For many neural networks, the initial parameters (weights and biases) have an effect

on how well the network can be trained [133–135]. One generic weight initialisation

technique is to generate a random weight matrix that is orthogonal (i.e. 𝑾𝑇 = 𝑾−1)

[136]. A number of initialisation strategies were developed according to the design of

the network; particularly based on the activation functions used. The weights are

randomly selected from a truncated normal distribution with a mean of 0 and variance

according to,

𝜎2 =
𝑚

𝑛𝑖𝑛 + 𝑘 𝑛𝑜𝑢𝑡
 Equation 2.37

where nin and nout are the sizes of the input and output vectors to the layer, m is 1 or 2,

and k is 0 or 1 depending on the initiation strategy. The values of m and k for different

Table 2.3: coefficients to various initialisation strategies.

Name m k

Lecun [134] 1 0

He [264] 2 0

Glorot[133] 2 1

-52-

initialisation techniques are presented in Table 2.3. A robust comparison of the

initialisation techniques can be found elsewhere [135].

The GBO methods require partial derivatives of the loss with respect to each

parameter. For a model with M parameters, the gradients are defined as

∇𝐶 =

[

𝜕𝐶

𝜕𝜃1

⋮
𝜕𝐶

𝜕𝜃𝑖

⋮
𝜕𝐶

𝜕𝜃𝑀]

 Equation 2.38

Neural networks are differentiable composite functions as defined in Equation 2.36.

Therefore, the partial derivatives with respect to each parameter can be computed

using the chain rule. This is computationally expensive and gives rise to several key

issues which are explored below.

Firstly, all loss functions defined in 2.4.3 involve summation of individual loss over

the entire dataset. This is often computationally expensive so the loss may be

computed for a subset of the dataset (single data point or multiple data points).

Although this is only an approximation of the true gradient, the reduction in the

computational cost is large enough to warrant the use of this method [132,137,138].

As the subsets are often selected at random, the method is referred to as Stochastic

Gradient Descent (SGD).

Another issue arises if the Neural Network has many layers or a recursive layer. In a

recursive network, the input at timestep t depends on outputs for all previous timesteps

(0, 1, …, t-1). When t is a large number, the differential becomes long, potentially

resulting in the “vanishing gradient” problem [139]. However, no more than four

timesteps of a recursive layer were used in this thesis (Chapter 7), so no measure to

counter this was necessary.

The computed gradients are then used to update each of the parameters of the model.

The basic equation for this is given below, where 𝜽(𝑡+1) are the updated parameters

and 𝜂 is the learning rate.

-53-

𝜽(𝑡+1) = 𝜽(𝑡) − 𝜂∇C Equation 2.39

The learning rate controls how much the weights are modified by and is predetermined

in case of GD and SGD. However, selection of the appropriate learning rate is often

challenging; too small and the optimisation will take a long time, too large and the

optimisation will not find a stable minima [132]. In theory, an adjustable learning rate

that decreases as it approaches minima would address this issue. Several methods that

attempt to achieve this have been developed such as Adagrad [140] and Adam [137].

Adam (Adaptive Moment Estimation) optimiser is de facto the standard optimisation

procedure in Neural Network training [132]. It provided adequate convergence

performance in Chapter 7 so no alternatives were used.

Adam uses two variables (𝒎𝒕, 𝒗𝒕), parameterised by 𝛽1, 𝛽2 ∈ [0,1) to update model

parameters (𝜽) [137]. The two variables are decaying averages of gradients and

squared gradients, defined as

𝒎𝒕 = 𝛽1𝒎𝒕−𝟏 + (1 − 𝛽1)𝛁𝐂𝐭 Equation 2.40

𝒗𝒕 = 𝛽2𝒗𝒕−𝟏 + (1 − 𝛽2)𝛁𝐂𝐭
2 Equation 2.41

The terms (𝒗𝒕,𝒎𝒕) are biased towards the initiation values (𝒗𝟎,𝒎𝟎), usually set to 0.

A bias-correction is applied before the weights are updated.

𝒎𝒕
′ =

𝒎𝒕

1 − 𝛽1
𝑡

Equation 2.42

𝒗𝒕
′ =

𝒗𝒕

1 − 𝛽2
𝑡

Equation 2.43

Finally, the model parameters are updated according to the following equation.

𝜽(𝑡+1) = 𝜽(𝑡) −
𝜂

√𝒗′
𝒕 + 𝜖

𝒎𝒕
′

The 𝜖 term is a small number to ensure that the denominator is not zero (usually of the

order of 10-8). Multiplication between vectors in this equation is done element-wise

-54-

where each element corresponds to a parameter of the model [137]. The training

procedure is continued until the convergence criteria is met which is chosen before the

training is initiated. This is usually defined as a number of consecutive iterations with

loss function reduction below a specified amount. In the thesis, this is specified when

training procedure is discussed (Chapter 7). The three methods introduced in this

section are summarised in Table 2.4.

Table 2.4: Comparison of the three learning algorithms.

 GD SGD Adam

Gradient

computation
Full gradient subset Subset

Algorithm

hyperparameters
𝜂 𝜂

𝜂

𝛽1, 𝛽2

𝜖

Model

parameter

update

𝜽(𝑡+1)

= 𝜽(𝑡) − 𝜂𝛁𝐂

𝜽(𝑡+1)

= 𝜽(𝑡) − 𝜂𝛁𝐂𝒔𝒖𝒃𝒔𝒆𝒕

𝜽(𝑡+1)

= 𝜽(𝑡) −
𝜂

√𝒗′
𝒕 + 𝜖

𝒎𝒕
′

comment

Slow

computation of

full gradient

Learning rate

unadjustable

Adjusted update

rate per parameter

-55-

2.4.7 Hyperparameter optimisation

Most machine learning algorithms require some hyperparameters that can greatly

affect the performance of the model [141]. The purpose of the hyperparameters is to

control the balance between under- and over-fitting [141]. The principles of

hyperparameter optimisation are similar to the training procedure discussed in the

training sections of each introduced algorithm. ℋ𝜆
∗ denotes an empirical model based

on a learning algorithm 𝒜, optimised with respect to its parameters on a training set

𝐷𝑡𝑟 with a given set of hyperparameters 𝜆.

ℋ𝜆
∗ = 𝒜(𝐷𝑡𝑟; 𝜆) Equation 2.44

The cost function with respect to the hyperparameter set (λ) can be expressed similarly

to Equation 2.8;

𝐶(𝜆) = ℒ(𝐷𝑣; ℋ𝜆
∗) Equation 2.45

The same loss function ℒ can be used as with training. Alternatively, any quantitative

performance measure (2.4.3) can also be used. In cases such as with Gaussian Process

Regression, hyperparameter inference can be accomplished during training [142].

However, such algorithms were not used in the thesis, thus fall out of scope. The

hyperparameter optimisation task can thus be expressed in an analogous way to the

training task[141];

𝜆∗ = argmin
𝜆

ℒ(𝐷𝒗, 𝒜(𝐷𝑡𝑟 , 𝜆)) Equation 2.46

A key difference between hyperparameter tuning (Equation 2.46) and training

(Equation 2.8) is the computation cost. 𝒜(𝐷𝑡𝑟 , 𝜆) is an optimisation problem in itself

and can be expensive to compute [141]. Furthermore, many of the models have

complex, conditional hyperparameter search spaces [141]. This is particularly true in

the case of Neural Networks where the number of neurons in a layer as well as the

number of layers may be hyperparameters [143]. Gradients are usually not available

for hyperparameter optimisation so the GBO methods discussed in 2.4.6.2 are not

suitable.

-56-

The most basic approach is to tune the hyperparameters manually, using rule of thumb

and experience. However, this can be tedious and is often outperformed by the

methods presented below [113,141]. These methods can be divided into informed and

uninformed approaches. In the thesis, uninformed methods are defined as an approach

where the choice of subsequent hyperparameters is not affected by the previous step.

Grid search and random search falls into this category and are elaborated upon in

2.4.7.1. On the other hand, in informed methods the set of hyperparameters proposed

at each iteration is based on the previous steps. This is a hot topic in machine learning

research and several methods have been developed; these are presented in 2.4.7.2. An

informed method used in Chapter 7, Sequential model-based optimisation (SMBO), is

explained in more details in 2.4.7.3.

2.4.7.1 Uninformed methods

To perform a grid search, a search space of hyperparameters consisting of discrete

values is constructed. A combination of the hyperparameters is used for training of the

model and its performance on the validation set is recorded. The process is repeated

for all combinations of the hyperparameters and the combination that yields a model

with the best performance is selected. This brute force approach is easy to set up and

can be easily parallelised for reduced computation time [113].

However, the grid search does not provide even coverage of the entire search space as

it focuses on the selected discrete values (Figure 2.15). For this reason, and particularly

for high dimension search space, a random search often outperforms grid search [113].

In the case of random search, upper and lower boundaries for each hyperparameter are

defined. The algorithm randomly samples the search space for a predefined number of

iterations. The best performing hyperparameter combination is then selected. By not

being limited by a defined grid, the algorithm is able to sample more varied values for

each of the hyperparameters (Figure 2.15). The random search is often sufficient when

hyperparameter optimising on relatively simple search spaces. The method is often

used as a benchmark for assessment of the performance of the informed methods of

hyperparameter optimisation [113].

-57-

2.4.7.2 Informed approaches

The high computation cost of each iteration of the hyperparameter optimisation makes

methods that can reduce the number of required steps highly desirable. The

computational cost of selecting a new set of hyperparameters to try is negligible

compared to the cost of the evaluation. As a result, a number of algorithms that attempt

to find the global minimum of the hyperparameter search space were developed.

Evolutionary algorithms are based on minor random mutations at each iteration from

the best performing set of models from the previous iteration [143]. Particle swarm

uses a set of “particles” (set of models trained with a set of hyperparameters) that

traverse the search space [144]. The movement of each of these particles is determined

by the location of its current best performing set of hyperparameters and that of the

entire swarm as well as a random component. Bayesian optimisation constructs a

surrogate function that predicts the performance of the trained model for a given set

of hyperparameters [145]. The subsequent combination is selected based on the

Figure 2.15: Sampling of a search space using Grid search and Random

search.

In case of the grid method, the preselected values of each variable are

sampled. The 36 samples only cover ten distinct values (0.0, 0.2,…1) of each

variable. The same number of samples using the random search method cover

36 distinct values of each.

-58-

balance of exploration and exploitation. An exploration step is taken to improve the

accuracy of the surrogate function while exploitation attempts to find the minima

based on the current surrogate function. Algorithms that create a surrogate function

that is sequentially updated are collectively termed Sequential Model Based

Optimisation (SMBO) algorithms.

2.4.7.3 Sequential model-based optimisation (SMBO)

SMBO algorithms were originally developed for experiment design and oil

exploration work. In both of these applications, the computation of the performance

(i.e. yield of a reaction by doing the experiment or test drilling to measure the amount

of oil in an area) is significant; hence the algorithm attempts to minimise the number

of steps required to reach the optimum value [146]. The applicability of these methods

to hyperparameter optimisation is evident based on the similarity of the challenges of

the tasks. Four elements need to be defined for the SMBO algorithms: hyperparameter

search space, objective function (Equation 2.45), surrogate model, and acquisition

function (Figure 2.16).

The definition of the hyperparameter search space is performed similarly to the other

methods introduced. Unlike the grid search method, each variable can be defined using

a truncated distribution function (Gaussian, uniform). Conditional variables can also

be supported by SMBO algorithms [141,146]. Conditional variables refer to variables

that only exist when a specific condition is met; for example, the number of neurons

in the second layer of a Neural Network is only a valid hyperparameter when the

number of layers (another hyperparameter) is two or higher.

The acquisition function is used to determine the following hyperparameter

combination to test which reflects the relative importance of exploration and

exploitation. The hyperparameters are chosen at random based on a distribution

defined by the acquisition function. The general form of the acquisition function can

be defined as,

𝑓𝑎𝑐𝑞(𝜆; 𝐶∗) = ∫ 𝑢(𝜆; 𝐶∗) 𝑝𝑀(𝐶|𝜆) 𝑑𝐶
∞

−∞

Equation 2.47

-59-

where C denotes the cost function for the set of hyperparameters 𝜆 as defined in

Equation 2.45, and 𝐶∗ denotes the baseline value of the cost function [147]. The

baseline value 𝐶∗ can be the lowest observed value so far or some other defined value.

The 𝑢(𝜆; 𝐶∗) is a utility function and the 𝑝𝑀(𝐶|𝜆) corresponds to the probability of

obtaining performance C given set of hyperparameters 𝜆 based on the surrogate model

M. Probability of improvement (PI)[148] is one of the possible acquisition functions

that can be used and the corresponding utility function is defined as

𝑢(𝜆) = {
0 𝐶(𝜆) > 𝐶∗

1 𝐶(𝜆) ≤ 𝐶∗ Equation 2.48

Expected improvement (EI)[148] is another acquisition function for which the utility

function is defined as follows.

𝑢(𝜆) = {
0 𝐶(𝜆) > 𝐶∗

𝐶∗ − 𝐶(𝜆) 𝐶(𝜆) ≤ 𝐶∗ Equation 2.49

The main difference between the two utility functions is the value of reward for finding

a value below the benchmark value (C*). In the case of PI, the same reward is given

regardless of the size of improvement, which may lead to overexploitation of a local

minima found [148]. The reward for EI is scaled based on the size of improvement. EI

is used in this thesis (Chapter 7) for which the acquisition function can be written as

follows (substitution of Equation 2.49 into Equation 2.47).

𝐸𝐼(𝜆; 𝐶∗) = ∫ (𝐶∗ − 𝐶)𝑝𝑀(𝐶|𝜆) 𝑑𝐶
𝐶∗

−∞

Equation 2.50

Other acquisition functions such as entropy-based functions have also been developed

[149].

The difference in SMBO algorithms arises from the different approaches to

constructing the surrogate model (Figure 2.16). Sequential Model-based Algorithm

Configuration (SMAC) uses a random forest for the construction of the surrogate

function [150]. The Hierarchical Gaussian Process (HGP) approach uses Gaussian

Processes which are updated at each iteration [147]. The method used in this thesis

(Chapter 7) is the Tree-structured Parzen Estimator (TPE) approach, details of which

are presented below. A comparison of SMAC and TPE can be found here [151], while

comparison between HGP and TPE is presented here [147].

-60-

HGP and other Gaussian Process-based approaches model 𝑝𝑀(𝐶|𝜆) directly, but the

TPE method instead models 𝑝𝑀(𝜆|𝐶) via two kernel density estimates (KDE) as

follows. The term pM is abbreviated to p hereafter for clarity.

𝑝(𝜆|𝐶) = {
ℓ(𝜆) 𝐶(𝜆) < 𝐶∗

ℊ(𝜆) 𝐶(𝜆) ≥ 𝐶∗
Equation 2.51

The two KDE functions are constructed from the predefined hyperparameter

distributions and the previous observations of pairs of 𝜆 and 𝐶(𝜆) [147]. A quantile γ

can be defined that corresponds to the probability of 𝐶(𝜆) < 𝐶∗.

𝛾 = 𝑝(𝐶 < 𝐶∗) Equation 2.52

For TPE, Bayes’ Theorem is used to modify Equation 2.50 to give

𝐸𝐼(𝜆; 𝐶∗) = ∫ (𝐶∗ − 𝐶)
𝑝(𝜆|𝐶)𝑝(𝐶)

𝑝(𝜆)
 𝑑𝐶

𝐶∗

−∞

=
∫ (𝐶∗ − 𝐶)𝑝(𝜆|𝐶)𝑝(𝐶) 𝑑𝐶

𝐶∗

−∞

𝑝(𝜆)

Equation 2.53

The denominator of Equation 2.53 can be expressed using the Law of Total

Probability, Equation 2.51, and Equation 2.52 as follows.

𝑝(𝜆) = ∫ 𝑝(𝜆|𝐶)𝑝(𝐶)𝑑𝐶
∞

−∞

=

= ∫ 𝑝(𝜆|𝐶)𝑝(𝐶)𝑑𝐶 +
𝐶∗

−∞

∫ 𝑝(𝜆|𝐶)𝑝(𝐶)𝑑𝐶
∞

𝐶∗

= 𝛾ℓ(𝜆) + (1 − 𝛾)ℊ(𝜆) Equation 2.54

The integral in the nominator of Equation 2.53 is within the range where 𝑝(𝜆|𝐶) =

ℓ(𝜆), hence it can be written as

∫ (𝐶∗ − 𝐶)𝑝(𝜆|𝐶)𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

=

= 𝐶∗ℓ(𝜆)∫ 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

− ℓ(𝜆)∫ 𝐶 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

= 𝐶∗ℓ(𝜆)𝛾 − ℓ(𝜆)∫ 𝐶 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

Equation 2.55

-61-

Substituting Equation 2.54 and Equation 2.55 back into Equation 2.53 and rearranging

to aggregate the terms affected by 𝜆, the following equation is obtained [147]

𝐸𝐼(𝜆; 𝐶∗) = (𝛾 + (1 − 𝛾)
ℊ(𝜆)

ℓ(𝜆)
)

−1

(𝐶∗𝛾 − ∫ 𝐶 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

) Equation 2.56

As can be seen from Equation 2.56, the EI can be maximised by minimising the ratio

ℊ(𝜆) ℓ(𝜆)⁄ . In essence, this is achieved by probing areas with high probability of

achieving a score above the target (high ℓ(𝜆)), and low probability of scores below

the target (low ℊ(𝜆)). In a typical implementation of the algorithm, a number of

samples are drawn from ℓ(𝜆) and each of the candidate hyperparameter combinations

are evaluated by the ratio ℊ(𝜆) ℓ(𝜆)⁄ . The 𝜆 with the highest EI is then selected to

obtain 𝐶(𝜆) according to Equation 2.45. The surrogate model is updated based on the

new 𝜆, 𝐶(𝜆) pair and the process is repeated [147].

Figure 2.16: Overview of SMBO algorithms.

Several surrogate models such as Gaussian Process (GP), Tree-structured

Parzen Estimator (TPE), and Random Forest (RF) are available. Expected

Improvement (EI), Probability of Improvement (PI), and Entropy (Ent) are

some of the possible acquisition functions. TPE and EI was used in the thesis.

Hyperparameter
search space

Objective function

TPEGP RF

EI PI Ent

Surrogate model

Acquisition function

-62-

2.4.8 Application of QSPR

QSPR methods are often used in situations where a theoretical chemistry approach is

not suitable. Historically, such empirical models tended to be simple with very limited

scope of applicability such as only hydrocarbons [152]. As the amount of data and

modelling algorithms improve, more complicated relationships with ‘global’

applicability domain were mapped [53]. Although empirical models aim to be

generalisable, the models cannot be expected to reliably extrapolate to instances which

are not represented in the training data. Exact definition and estimation of the

applicability domain remains an active area of research [153,154].

One of the earliest works of QSPR can be traced back to the mid-19th century with

work by Hermann Kopp on the relationship between the molecule size and boiling

point of alkanes [86,155]. Over the following decades, attempts were made to find

relationships between descriptors of the molecular structure and other physical

properties. In the 1930s, a melting point prediction model was published that used

number of atoms and the density of the compound as descriptors [87]. Development

of early descriptors can also be traced to this time period [156]. Cheminformatics

approaches, and the notion that an empirical relationship between structures of

molecules and their properties exists, faced many objections from other chemists [86].

However, these objections were shown to have been misplaced based on the

development of modern QSPR models [6,7,10,40,53,157–161].

Work done in the 1960s is considered to be the origin of the modern QSPR

methodologies [10,153,162–165]. QSPR models have been used extensively within

the areas related to the pharmaceutical product development. Models mapping

molecular structure biological activity, selectivity, and toxicity have been developed

[166,167]. Likewise, predictions of solubility [45,70,98,157,168,169] and melting

point [81,83,170–173] are also of considerable interest within the QSPR community.

The development of QSPR model has been facilitated by the increase in data

availability. In the case of melting point, the datasets were limited to 10s of compounds

in the early 20th century [87]. By the turn of the 21st century, models were typically

trained on datasets in the 100s of data points [171,174,175]. The Patent Dataset

(introduced in 2.3.3), which contains 289,379 datapoints, is the largest melting point

dataset available at the time of writing [83].

-63-

The increase in dataset size allows more complex models with larger applicability

domains. Early melting point models were often restricted to a specific class of

molecules such as rigid, non-hydrogen bonding aromatics [171] or aliphatics with

certain functional groups [175]. QSPR models that can be applied to a wider range of

molecules were later developed [83,172]. This trend is expected to continue in the

future as the dataset sizes increase and the available models become better at capturing

complex relationships. The dataset size can be expected to represent a more diverse

chemical space. The development of more complex algorithms has facilitated

improvements in performance in other fields such as Natural Language Processing

[176], so a similar trend can be expected to extend to QSPR research. The increase in

computational resource efficiency (both the computation and the economic cost) has

also been identified as one of the drivers of progress in the field of predictive

modelling [177].

Solubility and melting points are both dependent on the molecular structure, but also

the crystal structure. However, the crystal structure information is usually not

available and not used. This is cited as one of the limitations of these QSPR models

[172]. Work has been carried out investigating the extent to which incorporation of

crystal descriptors improve the model performance [70,95,178]. No good evidence of

significant improvement was observed. However, this may be attributed to limitations

in the calculated crystal descriptors and uncertainty in the specific polymorph for

which the experimental training set data were measured [70]. The issue of developing

adequate descriptors of the solid state and their importance to accurate property

prediction is addressed in Chapter 7.

-64-

2.5 Matched Molecular Pair Analysis (MMPA)

Matched Molecular Pair Analysis (MMPA) is a statistical method for studying the

effects of molecular changes on a property of interest. Molecules that differ only by

one chemical transformation are considered to be a Matched Molecular Pair (MMP).

Changes in properties across these pairs, for a given transformation, are statistically

analysed to infer the effects of the molecular transformations. The analysis procedure

(2.5.1) and its application within cheminformatics (2.5.2) are discussed here.

2.5.1 Identification of pairs and analysis procedure

2.5.1.1 Terminology

MMPA is based on pairs of molecules that differ by one chemical transformation. An

example of an MMP is toluene and phenol, as shown in Figure 2.17. In this case, the

‘transformation’ is the change from a methyl group (R1) to a hydroxyl group (R2).

These two groups are also referred to as cores. A ring substitution (e.g. phenyl to

Pyridyl group change) can also be considered to be a transformation. In the given

example, phenyl group is named ‘context’ as it is the common molecular substructure

across the two molecules. The two molecules are an MMP with transformation –CH3

→ –OH. For the analysis, other MMPs with the same transformation would be used

to study the effect of substitution of a methyl group to hydroxyl group.

Figure 2.17: Example of a matched molecular pair.

-65-

2.5.1.2 Identification

The simplest way of identification of MMPs is for a chemist to manually compare

molecules. This method becomes unfeasible as the number of molecules increases.

Two categories of automated methods for MMP identification have been developed;

pre-specified transformation methods (STM) and unspecified transformation methods

(UTM). STM can be useful in limiting the computational power required by narrowing

down the search to only the transformations of interest [179]. However, this is also a

weakness of the method – no new transformations can be identified. UTM identify

transformations and MMPs from a given set of molecules.

UTM can be further subdivided into fragmentation [180], maximum common

substructure (MCS) [181,182], and hybrid approaches [183,184]. UTM is used in this

project in order to be able to identify transformations that have an impact on the

properties studied (Chapter 6). In particular, the Hussain and Rea Fragmentation

method (HRF) was selected as it is computationally efficient and can be easily

implemented within the workflow. The details of the algorithm are presented in

Chapter 3.

2.5.1.3 Analysis

Once the transformations of interest have been identified and all corresponding MMPs

identified, the property change is calculated for each of the pairs. Each change

becomes a single datapoint for the analysis. All changes are grouped by the

transformation. For example, all MMPs where the transformation involves a methyl

group being swapped for a hydroxyl group are grouped together to study the effects

of that transformation on a property of interest. Statistical analysis is then performed

to infer the effect of the transformation. Typically, the averages and paired t-test scores

are calculated [179,185,186]. In many cases, the t-test is repeated multiple times (once

for each transformation within the dataset). As such, measures need to be taken to

account for multiple statistical testing [187,188]. The fraction of MMPs that have

positive / negative effect on the property has also been used for the analysis [189]. In

some cases the information about the context of the specific MMP is also included in

analysis [190].

-66-

2.5.2 Application of MMPA

The MMPA framework can be applied to study any property of interest that is affected

by molecular change. It has been widely used for properties that are relevant to the

drug Discovery process [179]. Properties relating to ADMET (absorption, distribution,

metabolism, excretion, and toxicity) such as aqueous solubility [191] and plasma

protein[186] binding were studied using MMPA. Molecular fragment contributions to

melting point, which is a property used in many solubility predictions (e.g. General

Solubility Equation) were investigated using this method as well [192]. MMPA has

also been used to study the effects of chemical transformations on binding to a

particular biological receptors [193,194](such as CYP inhibition) as well as to study

promiscuity [195] (the ability for a molecule to interact with several biological

macromolecules). MMPA was demonstrated to be a versatile method (in terms of

studied properties) which provides easily interpretable results that can be used by

chemists during Discovery [11,55,196].

MMPA has also been used in tandem with other statistical approaches such as QSPR

models. Two ways of combining QSPR with MMPA have been developed; QSPR-by-

MMP [197] and prediction driven MMP [198]. QSPR descriptors were calculated for

the chemical transformations (rather than individual chemical as it is the usual case

for QSAR models). The developed model predicted the activity change for the

chemical transformations. It was noted that for smaller sets of molecules, the number

of well represented transformations in the training set was too low in many cases,

limiting the model to the more commonly occurring transformations [197]. In case of

the prediction driven MMP, a QSPR model was developed for a set of molecules.

MMPA was carried out on the dataset using the predicted values [198]. Application

of MMPA to the output of the QSPR model allowed for a more easily interpretable

results; an increase or decrease in aquatic toxicity associated with a particular chemical

transformation [198]. The study demonstrated that useful knowledge can be extracted

by applying MMPA to calculated property values.

MMPA is a versatile method that can be used for multi-parameter optimisation

[55,199]. This can be achieved by determining the effects of chemical transformation

on multiple properties (such as solubility and plasma binding) and selecting the

transformations that provide the optimum change in the properties [186]. However,

MMPA typically has some shortcomings that need to be addressed. Firstly, the results

-67-

of MMPA can be significantly affected by the errors in the data[185]. Since each data

point used on the analysis is the difference between property values of two molecules,

the errors compound. Secondly, investigation into the varied effect within a

transformation (different MMPs of the same transformation have different effects) has

not been widely studied [185]. Some studies have taken into account the contextual

information (molecular structure surrounding the site of transformation) [190,197]. It

was noted that some transformations had a context chemotype (similar structure)

specific effect that was undistinguishable without this approach. Thirdly, the

application of MMPA has been mostly limited to properties of interest during the

Discovery stage of drug development.

2.6 Summary of the chapter

The modern pharmaceutical product development process was developed as a result

of millennia of human struggle against disease. The process has successfully

contributed to longevity and quality of life improvements. In recent years, the

productivity of drug product development has been decreasing; primarily due to

failures during clinical trials caused by insufficient human efficacy. With the ultimate

goal of predicting the efficacy (out of scope of the thesis), the relationships

underpinning the performance of pharmaceutics was analysed using the framework of

the Material Science Tetrahedron. Molecular structure – polymorph propensity, and

molecular and crystal structure – melting point were identified as the two structure

property relationships that the thesis focuses on. The theoretical framework for two

empirical approaches: Quantitative Structure Property Relationship (QSPR) and

Matched Molecular Pair Analysis (MMPA) were also presented.

In the following chapter, the development of a Matched Molecular Pair Database

(MMPDB) for streamlined MMPA of properties related to performance of

pharmaceutical products is discussed. The chapter focuses on the method development

and explains the design decision behind the database schema. The approach is

contextualised within literature works and its applicability to further research in the

thesis is discussed.

-69-

Chapter 3

Matched Molecular Pair

Database

-70-

3.1 Introduction

Matched Molecular Pair Analysis (MMPA) has been widely used within the

Discovery stage of the Pharmaceutical Product Development [11]. The analysis

provides an easy way to interpret results that can be used to assist in molecular

optimisation. More recently, the MMPA methodology was applied to the Cambridge

Structural Database (CSD) to investigate the effects of molecular transformation on

crystal packing [189]. This is the first application of MMPA to a dataset that resembles

a Development stage dataset. The work in the thesis aims to further this research by

focusing on transformations that affect polymorph propensity. The purpose of

applying empirical methods commonly used in Discovery to address Development

challenges is to allow for better integration of the two stages and to enable the

prediction of Development challenges while still in Discovery.

For systematic MMPA, a database can be a useful method of MMP storage to avoid

repeated, computationally expensive MMP identification (3.1.1). Several MMP

identification algorithms exist (as discussed in 2.5.1.2); the selected algorithm is

presented in 3.1.2. This work (along with work shown in Chapter 6) was presented at

UK QSAR conference [200]. Shortly after the work on this chapter was completed, a

similar MMP database was published [201]. Comparison of the database developed

for this thesis, and the one available in the literature is presented later in the chapter

(3.3).

3.1.1 Need for database

Matched Molecular Pair identification is a relatively slow process. Due to the O(n2)

nature of many algorithms (i.e. the computational cost increases with the square of the

number of samples), repeated identification of MMPs at large scale is computationally

expensive [180]. The CSD has quarterly updates with new structures. To avoid the

necessity to repeat the identification process, a database is desirable. A database

approach allows the molecular fragments generated from the previously seen

structures, matching of which is necessary to identify MMPs, to be stored and indexed

rather than having to generate these each time the dataset used for MMPA is updated.

Beyond storing MMP information, the database can also be used to store a number of

properties. The database also needs to store some crystallographic information in order

to effectively interact with the CSD.

-71-

3.1.2 Hussain and Rea Fragmentation (HRF) method

Hussain and Rea Fragmentation (HRF) method [180] was selected for MMP

identification due to its computational efficiency and the ability to easily integrate it

within Python workflow via its RDkit implementation [202]. Several improvements

to the algorithm were introduced during the development of the workflow for the

database population (3.2.3). The HRF algorithm is an automated MMP identification

algorithm that does not require pre-specification of transformations. It uses SMILES

(simplified molecular-input line-entry system) representations of molecular structure.

The chemical notation system developed to allow computer processing and efficient

substructure searching [56] (e.g. paracetamol is represented by CC(=O)Nc1ccc(O)cc1

). Rdkit was used for SMILES generation [202]. The algorithm can be divided into

three steps, (1) fragmentation, (2) indexing, and (3) MMP identification.

Fragmentation of the input SMILES is performed by one, two, or three cuts (see Table

3.1 for example of single and double cuts). The cuts are limited to acyclic bonds

between non-hydrogen atoms and it is ensured that predefined functional groups are

not cut. This ensures that groups such as a carboxylic acid group(R-COOH) are not

fragmented into a ketone group (R-C(=O)-R’) and a hydroxyl group (R’-OH). All the

fragments are then indexed which includes all the possible ways in which a given

molecule can be fragmented. A matched molecular pair is then identified by grouping

molecules that share the same fragment (context). MMP identification is made by

identifying all molecules that share the same context as the molecule of interest. The

core is the fragment of the molecule that changes across an MMP. Transformation is

the change defined by the core of each of the molecules. The larger a formed core is,

the less likely it is to occur in multiple instances, reducing the likelihood that any

results obtained from it will be statistically significant. From a chemistry perspective,

the study of MMPs with large changes is uninformative as the two molecules are

chemically too different. An example of such MMP is paracetamol and ethanol

(hydroxyl group is the context; the change is from Acetanilide to methyl group).

Therefore, a size limit is imposed to eliminate MMPs where the change is too big to

be meaningfully included in the analysis. The identification step can be repeated for

all molecules to identify all MMPs within a dataset. This can also be accomplished by

limiting the ratio of the change to the molecule size.

-72-

T
a
b

le 3
.1

: F
ra

g
m

en
ta

tio
n

 o
f m

o
lecu

les fo
r M

M
P

 id
en

tifica
tio

n
.

M
o
lecu

le

F
ra

g
m

en
ta

tio
n

F

ra
g
m

en
ts

C
o
m

m
en

t

•
C

y
clic b

o
n
d
s u

n
cu

t

•
N

o
 d

o
u
b
le / trip

le cu
ts can

 b
e

p
erfo

rm
ed

 o
n
 th

is m
o
lecu

le

•
T

h
ree d

ifferen
t sin

g
le cu

ts can

b
e p

erfo
rm

ed

•
T

h
ree u

n
iq

u
e d

o
u
b
le cu

ts can
 b

e

p
erfo

rm
ed

•
T

w
o
 frag

m
en

ts o
n
 eith

er sid
e

are th
e co

n
tex

t (p
art th

at d
o
es

n
o
t ch

an
g
e in

 a M
M

P
)

•
T

h
e frag

m
en

t in
 th

e m
id

d
le (o

n
e

w
ith

 [*
:1

] an
d
 [*

:2
]) is th

e co
re

(p
art th

at ch
an

g
es in

 a M
M

P

•
T

rip
le cu

ts are n
o
t p

o
ssib

le

-73-

3.2 Database design

The database schema and the process to populate it was developed and is discussed in

this section. The aim of the schema is to store MMP data as well as additional property

data to enable easy MMPA. The workflow is based on the RDkit implementation of

the HRF algorithm introduced in 3.1.2. The algorithm was expanded upon in the

current work, with the differences discussed in 3.2.3.

3.2.1 Schema

The database schema was proposed to store the molecular and crystal information

along with the identified MMPs. The schema (presented in Figure 3.1) has three types

of tables, based on their primary purpose. The grey tables (fragments context_table,

and core_table) are used solely for MMP identification process (see 3.2.2 for details

of HRF algorithm implementation). The fragments table contains the fragmented

molecules (single row per cut per molecule). The table also stores information relating

to the resulting fragments such as the fragment size, its size ratio, and whether the

fragmentation was done by a single cut (this distinction is needed for handling

transformations including hydrogen). The context and core tables contain context and

core fragment information, respectively.

All_smiles, MMP, and Transformation are the second type of tables; these contain

information needed to perform MMPA. All_smiles table holds all the molecular

structure information such as SMILES, size, and flag columns used to keep track

Figure 3.1: MMP Database schema.

A larger image of the schema is available in Appendix 1

a

a

a
a

a

a

a

a

a

a

a
a
a

a
a
a

a

a

All_smiles

➢ smiles_id
• refcode
• Unique_smiles_id
• smiles
• method
• cmpd_size
• Fragmented(0/1)
• MMP_identified (0/1)

MMP

➢ mmp_id
• trans_id
• mol1_id
• mol2_id
• context

Transformation

➢ trans_id
• R1
• R2
• SMIRKS

Mol_properties

➢ Mol_id
• Smiles_id
• Property 1
• Property 2

⁞

Solid_roperties

➢ refcode
• refcode family
• Property 1
• Property 2

⁞

Core_table

➢ core_id
• core_smi

context_table

➢ context_id
• context_smi
• context_size

fragments

➢ frag_id
• context_id
• core_id
• core_size
• ratio
• Single_cut(0/1)
• mol_id

➢ Primary key
One Many

Matched Molecular Pairs data
Property data
Used for MMP identification

Key:

-74-

whether a given molecule has been fragmented and its MMPs identified. It also

contains refcode, which is used to associate a crystal structure to the given molecule.

Transformation table contains the unique transformations identified within the dataset.

The core_ids for the cores of the transformations are stored in R1 and R2 columns

respectively. Smirks are generated to allow for each specific transformation. MMP

table contains all the identified MMPs. The smiles_ids of the two molecules are stored

in mol1_id and mol2_id. The transformation identifier (trans_id from Transformation

table) and context identifier (context_id from context_table) complete the information

that is stored for each MMP. This allows for each selection of all MMPs for a given

transformation or the context of interest. By parsing through mol1_id and mol2_id, all

MMPs of a given molecule can be retrieved as well.

All molecular and crystal properties are stored in two respective tables

(Mol_properties and Solid_properties). The properties in these tables are used for

MMPA. For the purposes of the polymorph propensity study discussed in Chapter 4,

the number of known polymorphs was considered a molecular property, so this was

added to the Mol_properties table.

3.2.2 Workflow for population of the database

The workflow for the generation of the MMPs consists of three stages: fragmentation,

indexing, and MMP identification. However, for the process to begin, molecular

structures, expressed as SMILES, are required. In case of a dataset with only molecular

structures, a file containing SMILES and optionally molecule id can be used as the

input. If the dataset contains crystal information (as it was the case for the work

discussed in this thesis), a file containing CSD refcodes can be used as the input.

If refcodes are supplied, the CSD Python API is used to access the molecular structure

of the crystal. Canonised SMILES are generated using a script supplied by the CCDC.

The canonisation is a process that ensures a molecule structure is always represented

in the same way (for example; ethanol could be written as OCC, C(O)C, or CCO). In

case of a multi-component crystal structure, all distinct molecular structures are

retained.

The added SMILES are compared against all molecules already in the database. This

step is skipped if a new database is created. Two types of identifiers are added for each

molecule. Firstly, smiles_id is assigned to every molecule that is added. Additionally,

-75-

unique_smiles_id is assigned to every new molecular structure that is added. The

unique_smiles_id is set equal to the smiles_id, the first time a molecular structure is

encountered, and the unique_smiles_id of the first instance is used for subsequent

entries with the molecular structure. For example, in case of a dataset of two hydrates

(as defined by the CSD API), the first main component (non-water molecule) is

assigned smiles_id and unique_smiles_id of 0. The water molecule from the first

hydrate is assigned 1 for both identifiers. The main component of the second hydrate

is similarly assigned 2 for both. However, the second water molecule is assigned

smiles_id of 3 but unique_smiles_id of 1 (same as the first occurrence of the water

molecule). In this way, all distinct molecular structures can be selected by specifying

the condition that smiles_id must equal unique_smiles_id. This is quicker than

selection based on SMILES string comparison.

The newly added, distinct molecular structures are fragmented using HRF method

(3.1.2). The output of the fragmentation is referred to as ‘rfrag’.These results are stored

in memory and are not inserted as-is into the database. ‘fragmented’ from ‘all_smiles’

Figure 3.2: Schema explaining the indexing processes.

Series of logical tests are done before the fragment data is inserted into the

'context' and 'core' tables. 15 indicates the heavy atom count (non-hydrogen

atoms) that is set as cut off for too large transformations.

-76-

table is set to True (1) for each molecule that was inputted into the fragmentation

algorithm even if fragmentation failed. This ensures that the script can continue to run

even if some errors were encountered. Most errors occur due to the fact that the

molecules are un-fragmentable (such as water). The process creates a large number

of fragments (over 319,000 from 8,879 molecules that are part of the drug subset[85]).

It is impractical to attempt to identify MMPs from this, hence indexing is performed.

Indexing is the stage where the fragments are reorganised to allow easier MMP

identification (Figure 3.2). The ‘rfrag’ data that is stored in memory is iterated over.

Rows with single cut molecules are treated differently to double or triple cut

molecules. The first fragment is selected and its heavy atom count (non-hydrogen

atoms) is compared to the set cut off (typically set to 15). If the fragment is within the

set size, it is inserted into the ‘core’ table. The other fragment is inserted into the

context table. The step is repeated with the other combination of fragments. For single

cut molecules, both “halves” of the molecule may be used as the core or context. For

example for ethanol, the hydroxyl group may be used as the core and methyl group as

the context and vice versa. Due to the fact that SMILES do not explicitly include

Figure 3.3: MMP identification stage.

All molecules are iterated over to identify all relevant MMPs.

-77-

hydrogens, transformations including it are handled separately. For all fragments

resulting from a single cut, a hydrogen is added to where the cut was made and it is

checked if that forms a valid molecule. If valid molecule is formed, all molecules

within the dataset are searched to see if this molecule is present. If the molecule is in

the dataset, a new row is added to fragments table. For example, using the hydroxyl

group fragment of ethanol, a hydrogen is attached to it forming water. If water is

present in the dataset, this will result in a new entry where the core is hydrogen, context

is hydroxyl group, and the molecule is water. In case of double or triple cut, the

fragment that contains the single component is inserted into the ‘core' table if the other

fragment meets the size requirement. Apart from size, the ratio of the heavy atoms of

the core to the molecule may be used (either separately or in tandem).

The final stage is MMP identification where the MMPs are identified for each unique

molecule that has been fragmented. The process involves several steps that are

illustrated in Figure 3.3 For each input SMILES, the heavy atom count (cmpd_size)

and its smiles_id (mo11_id) is retrieved. All possible mol2_id are identified (all

possible MMPs within the dataset for the given mol1) by MMP query. This query

returns several context- R2 combinations for the same pair of molecules. For example,

in case of butane and butanol the following combinations would be returned: context

= butane R2 = hydroxyl group, context = propane R2 = methanol, context = ethane R2

= ethanol, and context = methane R2 = propanol. The context and R2 are selected such

that the context_size is the largest (therefore, smallest change). In the aforementioned

example, this would be context = butane and R2 = hydroxyl group. For each of the

identified MMP, R1 is retrieved from the database. The combination of R1 and R2 are

checked in ‘Transformation' table (Both R1, R2 and R2, R1). If the combination

already exists, the corresponding TransID is retrieved. If Transformation R2, R1 was

already in the database, the molecules are reordered (mol1id becomes mol2id and vice

versa). Otherwise, the newly identified transformation is inserted into the database and

the TransID is retrieved. The combination of mol1id and mol2id are searched in the

‘MMP' table, and if the pair is already in the database, the script proceeds to the next

pair of molecules. Otherwise, the pair of molecules, along with context and TransID

are inserted into the table. This is repeated for all pairs of molecules identified. Once

all pairs are evaluated, the ‘all_smiles' table is updated by setting ‘MMPidentified' to

True (1) for the given molecule. ‘MMPidentified’ is set to True even if no MMP were

-78-

identified for the molecule. The process is repeated for all fragmented molecules in

the ‘all_smiles’ table.

3.2.3 Modifications to the MMP identification

The MMP database generation process follows a similar procedure to the original

implementation of the HRF method. However, some changes were made to address

the shortcomings of the original method. Firstly, using a database allows for addition

of new molecular structures without rerunning the entire process (3.2.3.1). Secondly,

some instances where the HRF method generates multiple MMPs of the same pair of

molecules were addressed (3.2.3.2).

3.2.3.1 Updatability

The updatability of the database was compared to deploying the original

implementation of the HRF method. A dataset of 50,000 randomly selected, organic

molecules with no disorders in the crystal structure (this often broke the SMILES

generation step of the flow) were processed by both methods. The dataset was

consequently increased by 10,000 molecules three times (to a total of 80,000 randomly

selected molecules). In case of the HRF method, the fragmentation was performed

only on the additional molecules, and the MMP identification on the entirety of the

fragments. This was necessary because the implementation of the HRF algorithm does

not support MMP identification between the added dataset and the original dataset. In

case of the database approach, fragmentation is performed on the added molecules and

the MMP identification is only performed on them as well. The identification includes

MMPs between the additional molecules and the molecules in the original dataset. The

benchmarking was performed on a Windows 7 machine with Intel Xeon E3-1226 v3

3.00 GHz 4 core processor and 16GB of RAM. Only a single core was used in the

processing.

-79-

The processing times for the two methods are shown in Figure 3.4. For the initial

identification of MMPs in the 50,000 molecule is twice as long for the database

method compared to the HFR method. This is because both methods perform the same

computation, while the database also performs database read and write actions. The

majority of the HFR algorithm is implemented in a lower-level language (C with

Python wrapper) compared to the majority of the processing logic being implemented

in Python for the database approach (C-based libraries were utilised). However, the

processing time for further 10,000 molecules is shorter for the database method

compared to the HFR method. Despite being computationally less efficient, the

database method has less computation to do. In this particular case, the break-even

point is after the second 10,000 molecule update. The database method shows some

advantages in terms of computation time for rapidly growing sources of data such as

the CSD, which was a key source of data for work presented in the thesis. Alternative

approaches to reducing the processing time by improving the efficiency of the

algorithm itself are likely possible, but fall outside of the scope of the thesis.

Figure 3.4: Performance comparison between HRF and database method of

MMP identification for an increasing dataset.

Comparison performed on a Windows 7 machine with Intel Xeon E3-1226 v3

3.00 GHz 4 core processor and 16GB of RAM. Only single core was used.

-80-

3.2.3.2 Elimination of duplicate MMPs

The database method also addresses some of the shortcomings of the original HRF

implementation. For molecules that can be cut at different points, multiple MMPs for

a given pair of molecules may be identified (illustrated in Figure 3.5). The MMP

resulting from cut 1 (OH>>CH3) in the figure corresponds to the smallest, and likeliest

to repeat across the dataset. The remaining two possible MMPs, although valid, are

not as useful in terms of MMPA artificially increasing the number of MMPs within a

dataset. The database approach addresses this issue because MMP identification is

performed per molecule. Once all MMPs for a given molecule are identified, any

duplicates based on the matching molecules are eliminated. For a given pair of

molecules, the MMP with the largest context (smallest change) is kept. This

Figure 3.5: Multiple MMPs that can be identified from the same pair of

molecules.

The molecules can be cut at different points (1-3). All the cuts are valid (only

a single C-C bond is cut, the resulting fragment size ratio is within limits).

-81-

transformation is the most common and meaningful in terms of MMPA. This

procedure reduces the number of MMPs that rarely occur as shown in Figure 3.6.

3.3 Comparison to another MMP databases approach

Shortly after completion of the work discussed in this chapter and presentation at UK

QSAR in March of 2018 [200], a similar MMP database approach was published in

May of the same year [201] (hereafter referred as DHK method for the names of the

authors). Both, the work presented above and the DHK method address the same issue

regarding MMPA; the extensive processing required to be carried out to identify all

MMPs within a dataset, and aims to aid systematic use of MMPA. The paragraphs

below present a comparison between the work presented in this chapter and the

published approach.

Figure 3.6: Comparison of frequency of occurrences of transformations.

The database method reduces the number of transformation that do not occur

often by removing duplicate MMPs for the same pair of molecules.

-82-

The HRF method is the basis of MMP identification used by both methods (one

presented in the thesis and the DHK method). However, the DHK approach expands

this to handle transformations involving chirality. This is achieved by the “welding”

technique developed as part of the publication [201]. For double-cut MMPs, the order

of attachments is stored, and canonicalization of the re-connected fragments is

checked to ensure it matches that of the original molecule. The approach provides a

useful mechanism for differentiation of stereoisomers.

Another difference between the DHK compared to the work in the thesis is the

inclusion of local environments. In the case of MMP, environment refers to the atoms

that surround the location where a cut is made during fragmentation. This information

is stored in the database and can be used to select MMPs with only the same

environment when conducting the analysis.

However, whilst the DHK approach offers some potential advantages over the

database approach developed, at the same time, in this thesis, it should be noted that

only the approach presented in this chapter was integrated with the population of a

database for analysis of solid state data. Matched Molecular Graph (introduced in

Chapter 6) construction was also added to the capabilities of the database presented in

the thesis. Due to the small number of MMPs, environmental consideration could not

be conducted (Chapter 4).

3.4 Summary

This chapter presented the method used to generate a database of Matched Molecular

Pairs that was subsequently used for the study of the effects of molecular changes on

solid state properties (Chapter 4). The database facilitates repeated analysis with

growing dataset without having to repeat MMP identification. Another advantage of

the method presented here is the ability to limit the MMPs that are not useful. Namely,

repeated MMPs for the same pair of molecules, and reduction in number of rare

transformations (ones that occur only a few times and hence are statistically not

significant). An interactive analysis tool was also created to complement the database

and allow MMPA to be carried out routinely. The scripts written to generate the

database and carry out analysis is available in Appendix 1.

-83-

A similar database was published during the course of this work. The work offers

several advantages in terms of handling of chirality and storing of transformation

environments [201]. However, due to the ease of integration with the CSD and

Matched Molecular Graph capabilities (detailed in Chapter 6), the method presented

in here was used in subsequent research. In the following chapter, this method and

database are used to study the effects of molecular transformation on the propensity

for molecules to exhibit polymorphism.

-84-

Chapter 4

Polymorph Propensity

Prediction

-85-

4.1 Introduction

The ability to predict the propensity to form polymorphs is valuable to the

pharmaceutical industry [9]. Unexpected polymorphism of the drug compound

necessitated the removal of ritonavir from the market [8]. Polymorph screening is

typically carried out during the Development stage of drug product development with

the aim to find all polymorphs within the range of applicable conditions. The ability

to predict the polymorph propensity may potentially allow to anticipate the magnitude

of challenges likely to be faced during the Development stage.

A number of studies have been done to better understand polymorphism. These

typically focus on examining individual crystal structures [8]. Individual

intermolecular interactions are assessed to see whether the structure is stable

[64,79,203]. If the structure does not satisfy all potential intermolecular synthons, it is

likely that other polymorphs exist. The assessment of the synthons can be done based

on the statistically favourable interaction based on the analysis of the CSD [64].

Density Functional Theory (DFT) based approaches have also been used for this

purpose [204]. Considerable work has been carried out in the area of crystal structure

prediction using a range of methods such as DFT and Forcefield (FF) for calculation

of structure stability coupled with search algorithms to explore the set of potential

structures [205–207]. Blind tests for structure prediction have been periodically

organised by CCDC since 1999 with the most recent one taking place in 2020 [208].

There has also been work published on the overall trends in polymorphism

[50,209,210].

In this chapter, the issue of polymorph propensity is studied from the perspective of

molecular transformations. The statistical approach to this is performed using MMPA

(see Chapter 3 for details) on the CSD. The intention for the work is to allow

polymorph propensity to be considered during the drug optimisation stage during

Discovery.

-86-

4.2 Method and Data

4.2.1 Dataset

4.2.1.1 CSD single component dataset

The polymorph propensity study focused on single component organic structures.

Single component structures were identified by checking the number of separate

molecular components. If the number was one, the structure was considered a single

component. If more than one molecular component was identified, SMILES strings

were generated for each of the components. If all of the strings matched, the crystal

structure was considered to be a single component structure. No organometallics were

considered. Based on these criteria, a dataset of 155,040 crystal structures was

identified. This dataset excluded all hydrates and co-crystals.

The CCDC publishes a list of crystal structures with the best R factor for each unique

crystal structure (polymorph) in the CSD. The list is generated based on the

comparison of generated spectra [211]. The details and the effectiveness of the method

are discussed in Chapter 5. The number of occurrences of each of the refcode within

the best R factor list corresponds to the number of polymorphs of that molecular

composition. The number of redeterminations was calculated by subtracting the

number of polymorphs from the total number of refcodes for the specific refcode

family within the CSD.

4.2.1.2 Monomorphic adjustment

The CSD is a repository of published crystal structure so it reflects the research trends

within the scientific community. A number of reasons exist for determining the crystal

structure of a compound. This may be done to confirm the molecular structure and the

crystal information is of secondary importance. In such cases, it is unlikely that

different experimental conditions were investigated and no polymorphs were found.

However, this does not exclude the possibility that multiple polymorphs exist.

For this reason, Monomorphic adjustment was introduced based on the literature

precedence [50]. Structures with only one refcode were considered to be not

sufficiently studied to determine whether these are indeed monomorphic or

polymorphic with undiscovered polymorphs. The unfiltered CSD single component

-87-

dataset has 1 % of polymorphic structures, which is significantly lower than other,

more thoroughly studied datasets presented in Table 4.2. After elimination of

structures with only one refcode, the dataset was reduced to 6,633 structures of which

25 % are polymorphic. The resulting dataset is referred to as the adjusted CSD single

component dataset. The process reduced the dataset by 97 %, which reflects the

prevalence of single-entry compounds. Concerns related to the large reduction in size

are discussed in 4.3.2.2.

4.2.2 Molecular structure information

4.2.2.1 Matched Molecular Pairs

Matched Molecular Pairs were used to study the effects of small molecular

transformations on the polymorph propensity of the molecule. The database method

developed in Chapter 3 was used for the analysis. For details of the method, refer to

the chapter. The maximum size of transformation used was 15 heavy atoms. Based on

the analysis presented in 4.3.2.2, the data was filtered by limiting the ratio of the

transformation to 0.3. The effects of limiting the ratio are discussed in 4.3.2.3.

4.2.2.2 Molecular flexibility and other molecular information

MMPs formed the basis of the study; however, additional information was also used

to further study the effects of small molecular transformations. Molecular properties

relevant to crystal lattice formation were selected.

Some molecules exhibit polymorphism due to the compound’s ability to crystallise in

different conformational forms, such as the case of ritonavir [8]. This was captured by

the molecular flexibility descriptor – nConf20 [212]. Other descriptors such as

rotatable bond count were outperformed by nConf20 in crystallisability prediction

study (86.1 % test set accuracy compared to 74.8 % for rotatable bond). The descriptor

attempts to capture the accessible conformational space of the molecule by generating

and optimising 50 random conformers. The optimisation is done using MMFF94

molecular mechanics forcefield [213]. The lowest energy conformer is selected as the

reference structures. Any symmetrically similar conformers, based on root mean

squared distance (RMSD) of less than 1 Å, to the reference structure was removed.

The molecules were aligned prior to RMSD computation. The energy of each of the

conformer was calculated. If the energy difference between a conformer and the

-88-

reference structure was less than 20 kcal/mol, the value of the nConf20 descriptor was

increased by 1 (initialised by nConf20 = 0). In essence, the descriptor is the number

of conformers that fall within the 20 kcal/mol of the optimal structure. The parameters

of the descriptor (number of random conformers and the energy cut-off) were selected

based on the analysis carried out in the original publication [212].

As discussed in 2.2.2, intermolecular interactions such as hydrogen bonding and Van

der Waals interactions play an important role in determining the crystal structure of

the compound. The number of hydrogen bond donors and acceptors was used to

approximate the molecules ability to form hydrogen bonds. Van der Waals interactions

tend to increase as the size of the molecule increases, so the compound size was used

[214]. Heavy atom count was used as a measure of the compound size.

4.2.3 Software

The work in this chapter was done using Python 2.7. All structures within the CSD

were analysed using the CSD Python API (version 1.5.2) [215]. The database of

MMPs was constructed using the workflow presented in Chapter 3. nConf20

descriptor calculations were done using the script from the original publications [212].

Data processing and visualisation was performed using pandas [216] and seaborn

[217,218]. Scripts used in this chapter can be found in Appendix 1.

-89-

4.3 Results and Discussion

4.3.1 Polymorphism in the CSD

The fraction of polymorphic structures in the dataset derived from the CSD is

significantly lower than for other literature sources presented in Table 4.2. The

discrepancy is most likely due to the nature of the different data sources. As discussed

in 4.2.1.2, the CSD reflects the research interests of a broader community that does

not necessarily focus on polymorphism. Similarly, the microscopy studies were likely

focused on crystal structure observation rather than a search for polymorphism. The

European Pharmacopeia, SSCI (Southern Society for Clinical Investigations)

polymorph screens, and the two pharmaceutical company database were more focused

on finding polymorphs of the different compounds. As a result, these datasets contain

a much higher fraction of polymorphic structures. This suggests the CSD single

component dataset contain some structures that are polymorphic but for which the

polymorphs remain undiscovered. The issues associated with this caveat are discussed

in more details in 4.3.4.

Table 4.2: Fraction of polymorphic structures within different datasets.

Non-CSD information was retrieved from literature [50].

Data source Compounds Polymorphic structures (%)

Microscopy studies 140 25

European Pharmacopeia 598 42

SSCI polymorph screens 245 48

Roche internal database 68 53

Lily internal database 68 66

CSD single component (as is) 155,040 ~1

CSD single component (adjusted) 6,663 25

Table 4.1: Most common transformations within the CSD single component

dataset.

Statistics of the polymorph count change (mean and standard deviation) and

the number of MMPs with that transformation are also included

Transformation Mean Std. dev. Count

R-H → R-CH3 0.037 0.312 6017

R-H → R-Cl 0.044 0.349 2333

R-H → R-OCH3 0.036 0.308 1884

R-H → R-OH 0.018 0.410 1708

R-H → R-Ph 0.040 0.387 1653

R-H → R-Br 0.054 0.309 1396

R-H → R-NO2 0.035 0.392 1391

R-CH3 → R-Ph -0.004 0.328 1310

R-H → R-F 0.043 0.356 1083

R-Ph(meta)-R’ → R-Ph(para)-R’ -0.020 0.337 1002

-90-

4.3.2 Effects of molecular transformations

4.3.2.1 CSD single component dataset

The MMPDB script identified 4,599,447 MMPs with 3,404,016 unique

transformations. The ten most common transformations are shown in Table 4.1. The

transformations represent a wide range of chemical changes such as the introduction

of hydrogen bonding hydroxyl group, or π- π stacking phenyl ring. However, the mean

change for all these transformations is approximately 0 with the biggest deviation from

that being 0.054 (R-H → R-Br). Due to the fact that only 1 % of the structures are

polymorphic (within the dataset), it is unlikely to find a transformation with MMPs

that consistently contain polymorphic structures.

4.3.2.2 Adjusted CSD single component dataset

The analysis workflow was repeated for the adjusted CSD single component dataset.

This dataset is 4 % of the original dataset, hence the number of transformations and

MMPs is significantly reduced to 2,048 and 3,913 respectively. The monomorphic

adjustment also had an impact on the distribution of the transformation effect. Figure

4.1 shows a comparison of the most common transformation (R-H → R-CH3) for the

two datasets.

-91-

The MMP count for this transformation decreased from 6,015 to 211, while the mean

changed from 0.03 to -0.13. The tail of the distribution appears to be more prominent.

This is because a large number of monomorphic entries were removed based on the

adjustment. The change is not significant based on the paired t-test, without

considering multiple hypothesis testing correction [187,219]. Multiple hypothesis

testing is typically performed. This is unsurprising since a small transformation that

does not significantly alter the potential intermolecular interactions was not expected

to have an effect on polymorph propensity. However, it is important to note the

reduction in the number of MMPs that occurs when the monomorphic adjustment is

made as this is a consistent issue across all studied transformation.

Emphasis was placed on transformations that are likely to be statistically significant

based on the paired t-test. No multiple hypothesis testing was performed at this point.

5 % significance level was chosen as the basis of selections of transformations (37

transformations were identified. Distributions for some of these transformations

(selected based on statistical or chemical interest) are shown in Figure 4.2.

Figure 4.1: Comparison of the R-H → R-CH3 transformation for adjusted and

unadjusted CSD single component dataset.

-92-

The hydroxyl to phenyl transformation was focused upon. It contains transformations

that alter the molecule significantly (Figure 4.3). The molecule doubles in size due to

the transformation. The change was considered to be too dramatic for the MMPA to

Figure 4.2: Distributions of the effects of the selected transformation on

polymorph count.

Top: biggest change within 5 % significance interval (blue), most common

transformation (grey), lowest p-value (dark blue). Bottom: highest count

within 5 % significance interval (green), large fragment size change (dark

blue), large change in reactivity (brown)

-93-

be a useful assessment of the effects of transformation change. Similar issue persists

with other MMPs, so the maximum change ratio of 0.3 was imposed (i.e. the heavy

atom count of the change cannot exceed 30 % of the count of the whole molecule)

[180].

4.3.2.3 MMPs limited by the ratio of the change

The imposition of the ratio restriction further reduced the number of MMPs (2,776

MMPs, reduced from 3,913). Transformations with the highest MMP count, largest

mean change, and most likely to be statistically significant were selected for closer

analysis. The hydrogen to phenyl group had the MMP count of 9 and the largest mean

change of -0.667. The paired t-test p value of 0.156 suggests this is not a significant

change. The low MMP count is the likely reason for the high p value. Furthermore,

there is one data point with the change value of -4. This single datapoint shifts the

average by 0.417 from -0.250 (when calculated omitting this point). With the increase

in data quality (monomorphic adjustment) and the focus on chemically meaningful

transformation (ratio limit), the number of MMPs are reduced to the point where a

single data point may sway the overall average.

The hydrogen to chlorine transformation is most likely to be statistically significant

based on p-value, with the paired t-test p-value of 0.085. However, the transformation

is not significant at the 5 % level. Similarly, to the hydrogen to phenyl transformation,

the number of MMPs is low (8).

Figure 4.3: Example MMP of the hydroxyl to phenyl transformation.

Refcodes: GLICAC (left), ZZZMLY (right).

-94-

On the other hand, the transformations with the highest counts tend to have a mean

change of approximately 0. For example, hydrogen to hydroxyl transformation has 72

MMPs and the mean change of 0.041. The distribution of the effect approximately

matched the distribution for hydrogen to methyl transformation (Figure 4.4). This is

likely due to the limited proportion of polymorphic structures within the dataset, even

after the monomorphic adjustment. A number of compounds may have unknown

polymorphs which skew the mean transformation effect towards 0. This is further

discussed in 4.3.4. Another possibility for the observed results is the importance of the

context of the MMP (the part of the molecule that does not change across the pair).

The flexibility (nConf20), potential to form hydrogen bond (donor and acceptor

count), and the Van der Waals interactions (heavy atom count) of the context

(part of an MMP that is same across the pair) of each of the MMP was

calculated. Only single-cut MMPs were used and a hydrogen was placed at the

cut to make a valid molecule. The effects of each of the descriptor on the size of

Figure 4.4: Comparison of hydrogen to methyl and hydrogen to hydroxyl

transformation for adjusted CSD single component dataset with ratio limited

MMPs.

-95-

change for the MMPs with the hydrogen to phenyl transformation are shown in

(

Figure 4.6). No correlations were found for this transformation. The process

was repeated for hydrogen to hydroxyl transformation which had more MMPs

(72) to see if any pattern emerges with larger data size (

Figure 4.5). No correlation was found between any of the descriptors.

1

-4

ch
an

ge
-3

-2

0

-1

1 2 3 4 50
H-acceptor

1

-4

ch
an

ge

-3

-2

0

-1

16 18 20 22 2414
Heavy atom count

1 20
H-donor

1

-4

ch
an

ge

-3

-2

0

-1

4 8 120
nConf20

1

-4

ch
an

ge

-3

-2

0

-1

0

1

-1

2

-2

ch
an

ge

10 15
Heavy atom count

20

2

-3

ch
an

ge

-2

-1

1

0

nConf20
10 20 30 400

0 1 2 3 4 5 6
H-acceptor

2

-3

ch
an

ge

-2

-1

1

0

0 1 2 3 4 5 6
H-donor

2

-3

ch
an

ge

-2

-1

1

0

-96-

Figure 4.5: Effects of nConf20, H-bond donor / acceptor count, compound size

on the change for MMPs with hydrogen to hydroxyl transformation

0

1

-1

2

-2

ch
an

ge

10 15
Heavy atom count

20

2

-3

ch
an

ge

-2

-1

1

0

nConf20
10 20 30 400

0 1 2 3 4 5 6
H-acceptor

2

-3

ch
an

ge

-2

-1

1

0

0 1 2 3 4 5 6
H-donor

2

-3

ch
an

ge

-2

-1

1

0

Figure 4.6: Effects of nConf20, H-bond donor / acceptor count, compound size

on the change for MMPs with hydrogen to phenyl transformation.

1

-4

ch
an

ge

-3

-2

0

-1

1 2 3 4 50
H-acceptor

1

-4

ch
an

ge

-3

-2

0

-1

16 18 20 22 2414
Heavy atom count

1 20
H-donor

1

-4

ch
an

ge

-3

-2

0

-1

4 8 120
nConf20

1

-4

ch
an

ge

-3

-2

0

-1

-97-

4.3.3 Effects of molecular flexibility

Flexibility was considered a potential factor that influences the polymorph propensity.

As well as examining the influence on polymorph propensity due to molecular

transformations, the effects of the flexibility itself on polymorph propensity were

studied. A more flexible compound was expected to be able to form more distinct

crystal packing. The distribution of the nConf20 descriptor for the different number of

polymorphs is shown in Figure 4.7. Visually, there appears to be no difference

between monomorphic and polymorphic compounds. The median for both,

monomorphic and polymorphic structures is 5 with the means of 9.24 and 8.56

respectively. Mann Whitney U test was done to compare the two distributions and the

result was not statistically significant (p value = 0.415). Interestingly, the flexibility of

the polymorphic structures appears to be lower on average than that of the

monomorphic structures. This can be explained by considering the intention behind

the development of the nConf20 descriptor, which was to determine the

crystallisability of a compound [212]. In essence, higher nConf20 value, the more

difficult it is to crystallise a molecule. Therefore, the lower nConf20 value for

polymorphic structures could be the artefact of the ease of crystallisation of these

Figure 4.7: Distribution of nConf20 descriptor for compounds with different

number of polymorphs on the CSD adjusted dataset.

-98-

structures. This may result in an increased likelihood that such structures were

crystallised and added to the CSD. Hence, this trend is most likely an artefact of the

data availability.

4.3.4 Issue of unknown polymorphs

The issue of unknown polymorphs has been mentioned in several sections of this

chapter. In this section, the discussion is collated and further analysis of this is

presented. The unique challenges associated with this issue are also discussed.

4.3.4.1 Exploration of the issues

The number of polymorphic structures is significantly lower within the CSD than other

data sources that focus more on polymorph screening (Table 4.2). Two hypotheses for

explaining this can be constructed: CSD represents a chemical space that is less

polymorphic compared to heavily screened pharmaceutics chemical space, or a

number of structures that are classed as monomorphic are actually polymorphic. The

Figure 4.8: The number of polymorphs as a function of molecular weight.

The mean weight of n-polymorphic compounds were taken. 8-polymorphic

compounds consist of a single molecule (same for 7-polymorphic).

-99-

chemical space of the CSD has been compared to the chemical space of drugs and

other molecules held in pharmaceutical company databases [85]. In the study, heavy

atom count, flexibility, and hydrogen bond donors /acceptors were used to compare

the chemical space of various datasets.

The CSD has a wider range of compound sizes with larger representation in the smaller

range [85]. 13 % of molecules within CSD are smaller than 100g/mol, while the

industrial datasets do not have many molecules in this range. The industrial datasets

tend to have larger molecules than the CSD. The industrial datasets also tend to have

more polymorphic structures (Table 4.2). This leads to the suggestion that larger

molecules tend to have a higher propensity for polymorphism. However, this is not

reflected in the CSD where smaller molecules appear to have a higher propensity for

polymorphism (Figure 4.8), further emphasising the likelihood that the results are

affected by the data artefacts.

A similar trend can be observed for molecular flexibility. In the cited study [85], the

rotatable bond count was used as a descriptor of flexibility. The CSD has more

molecules with no rotatable bonds than the industrial datasets. The industrial datasets

have more molecules with 5 and 6 rotatable bonds. Again, the increase in flexibility

does not correlate with an increase in polymorph propensity. For this reason, it is

unlikely that the difference in polymorphism found in CSD compared to other sources

is due to the difference in chemical space covered.

The lack of polymorphism in the CSD is likely due to the limited effort spend on

finding polymorphs. As stated in 4.3.1, industrial datasets tend to contain results of

polymorph screens. Therefore, polymorphism in the CSD is likely a reflection of the

research interests of the scientific community rather than actual polymorphism.

Smaller, more easily crystallisable compounds (low nConf20) are more likely to be

studied. This then results in more polymorphs for that structure to be found. This was

first noted by McCrone by his now-famous statement that “the number of forms known

for a given compound is proportional to the time and money spent in research on that

compound” [220]. The validity of the statement was tested on the CSD single

component dataset. The time and money spent on research were approximated by the

number of redeterminations a compound has in the CSD. A redetermination is often

the same polymorph studied under different conditions (a refinement of the same

structure being another reason for redeterminations). It represents a repeated study of

-100-

the same compound under different conditions. The relationship between the number

of redeterminations and the number of polymorphs is shown in Figure 4.9.

4.3.4.2 Challenges

The issue of undiscovered polymorphs poses a significant challenge for the study of

polymorph propensity. Firstly, unlike other properties such as melting points, it is

difficult to assess the quality of the data. The number of redeterminations or number

of publications on the compound of interest may be used as an indicator of the quality

(i.e. the likelihood that all polymorphs have been found). However, it is not as rigorous

as the assessment of error for other experimentally determined properties.

Rather than studying polymorph propensity through the number of polymorphs found,

it could be studied by comparison of monomorphic and polymorphic structures to

create a classifier for the task. However, the issues highlighted here are still likely to

affect this analysis. This method also emphasizes the issue of the definition of

Figure 4.9: Number of polymorphs as a function of redeterminations.

The number of redeterminations is calculated by subtracting the number of

polymorphs from the total number of structures for a given compound. Mean

number of redeterminations were taken for each number of polymorphs. It is

important to note that the high polymorph count is rare (single datapoints for

7 and 8 polymorphs compounds, 9 datapoints for 5 polymorphs compounds).

-101-

monomorphism. There is a large set of conditions under which crystallisation may be

attempted, making a definitive polymorph screen to find all physically possible

polymorphs unrealistic. Similar to the polymorph screening done by the

pharmaceutical industry, only the relevant conditions should be considered. At the

time of writing, no such dataset is publicly available, so the use the number of

redeterminations as a surrogate for the data quality remains the only suitable means of

analysing data quality of polymorph counts for the study. This could be expanded by

the inclusion of how wide of a range of conditions were investigated or by the number

of experiments performed within a set range of conditions.

4.4 Conclusion

In this chapter, the factors affecting polymorph propensity were studied. MMPs were

used to assess the effects of small molecular transformations on the propensity to form

polymorphs. However, no statistically significant transformations were identified.

This is partially due to the reduction in the dataset size due to the pursuit of quality in

terms of polymorphism data (monomorphic adjustment) and MMPs (elimination of

pairs where the change is larger than 30 % of either of the molecule based on heavy

atom count). The issues related to the small number of MMPs identified within the

dataset is explored in Chapter 6. The CSD single component dataset contains less

polymorphic structure than other sources (1 % vs 66 % for Lily internal dataset). This

is likely due to the active search for polymorphs within the pharmaceutical industry.

The number of polymorphs in the CSD appears to correlate with the time spend

researching that compound as approximated by the number of redeterminations. Due

to the difficulty in assessing the quality of polymorphism data, high-quality dataset

based on polymorph screened compounds is desirable for the propensity study. This

was attempted using Pfizer internal database. However, the crystal structures found

within the database are not grouped into polymorphs (redeterminations and

polymorphs are not distinguished). This issue was taken as an opportunity to

benchmark the existing automated methods of polymorph and redetermination

classification as well as develop machine learning classifiers for the task. This work

is discussed in the following chapter.

-102-

-103-

Chapter 5

Benchmarking of Automated

Approaches for Differentiating

Between Polymorphs and

Redeterminations

-104-

5.1 Introduction

The ability to predict polymorph propensity is of crucial interest within the

pharmaceutical research community (see 2.1.3 for more details). The research on the

topic presented in the previous chapter identified several challenges. The data quality

and quantity is one of such difficulties. It is difficult to ascertain the number of

polymorphs a structure exhibits because the lack of polymorphs may be due to lack of

emphasis on the determination of crystal structure, rather than lack of possible

polymorphs. Further challenge arises from the differentiation between polymorphs

and redeterminations. CCDC publishes a list of structures of each polymorph for all

structures in the CSD, based on the spectra comparison method [211]. However, no

similar list is available for in-house databases. This opportunity was taken to

benchmark the existing spectra comparison method, and develop alternative methods

of classification of pairs of structures into redeterminations and polymorphs.

In principle, the classification is best carried out “manually”, i.e. by visual inspection

and assessment by an expert in molecular crystallography. In practice, expert

identification of the polymorphs reported in large datasets is challenging, as it is very

labour intensive if the crystal structures were not annotated at the point of curation.

Moreover, inconsistencies can arise during “manual” curation due to fatigue,

insufficient expertise, or different experts assigning different labels to the same

polymorphs. For example, a variety of labels have been reported in the literature for

polymorphs of sulfathiazole [221]. While these inconsistencies could be avoided by

an expert panel working according to a standard operating procedure; this would still

require a considerable investment of time. Accurate, automated approaches to

identifying polymorphs are hugely desirable, with a means of differentiating

polymorphs and redeterminations of the same chemical being an important first step.

Automated approaches for identifying polymorphs are of value for both the CSD and

industrial crystal databases. As many of the latter databases are structured similarly to

the CSD, automated approaches which are applicable to the CSD should be widely

applicable within industry. Currently, manual labelling of polymorphs is reported, if

at all, at the point of deposition by individual researchers. This leads to incomplete

and potentially inconsistent assignments. In industry, in-house databases may not have

been annotated with the polymorph identity, even where this information may have

been experimentally determined.

-105-

An automated method can provide a consistent classification of large datasets. One

automatic method that was developed to classify polymorphs and redeterminations of

structures within the CSD is based on the comparison of simulated powder diffraction

spectra (hereafter referred to as spectra method) [211,222]. The refcode family is used

to group crystal structures of the same molecular composition and then, within each

family, a pairwise diffraction pattern comparison is undertaken. The peak positions of

the spectra are determined by the unit cell parameters, while the intensities are

calculated from the molecular structure and the space groups (i.e. the packing

arrangement) [211,222]. A comparison of the peak locations and the intensities allows

the similarity of the two crystal structures to be determined, hence the classification

of the pair as polymorphs or redeterminations. The effect of the experimental

conditions (temperature and pressure) are accounted for using unit cell volume

normalisation and a peak shift tolerance factor. The peak shift tolerance factor was

introduced to deal with the case of substantial differences in temperature or pressure,

for which cell volume normalisation alone is not sufficient. The spectra method is used

by the CCDC to generate the best_R_factor_list, which is a list that contains the

refcode with the lowest R- factor, a measure of crystallographic data quality, for each

polymorph within the database [211].

However, the spectra method is not as easily implemented for CSD-like databases with

less curated information (such as no refcode family assignment), although chemical

structure representation (InChI, SMILES) based grouping of entries retrieved using

the CSD Python Application Programming Interface (API) [215], might address this

issue. Moreover, the spectra method was only benchmarked on a small set of 386

structures (83 refcode families) [211,222]. This is a small dataset compared to the

entirety of the CSD that the method is applied to. Version used in the study (5.39)

contained, 950,516 crystal structures while currently there are over 1 million

structures. In particular, when developing machine learning algorithms for this task, it

is desirable to have larger datasets which can be used to benchmark the method.

This chapter presents a more thorough, robust evaluation of the spectra method than

has previously been reported in the literature. The performance of the spectra method

is compared to the performance of machine learning methods for classifying pairs of

structures into polymorphs and redeterminations. A large dataset with manually

assigned polymorph labels, filtered to remove inter-expert inconsistencies, was

-106-

constructed to allow for the benchmarking of the classifiers. This analysis identified

the most suitable automated approach for discriminating polymorphs from

redeterminations to automatically identify polymorphs in the CSD or any CSD-like

in-house database.

5.2 Methods and Data

5.2.1 Datasets

The Manual label, Best R, and Benchmark datasets were derived from version 5.39 of

the CSD database. Prior to splitting, all crystal structure entries were filtered only to

retain structures for which the latest implementation of the spectra method from the

CCDC could be applied without raising any errors. All suitable refcodes were grouped

by the refcode family, and all possible combinations of refcode pairs within each group

were identified (81,401 pairs). Manual labels are not available for every structure, and

similarly, the best R factor list cannot be used for every pair, so the putative label

assignment was attempted by both methods for all pairs before they were split into

datasets. For each pair, a classification of 1 was given if the labelling method

determined that the pair are different polymorphs and 0 for pairs of redeterminations.

No value was given in case the labelling method could not be used to give a

classification (e.g. when one of the structures lacks a manual label). The way in which

the classification was done for each of the labelling methods (best R and manual label)

is described in the following sections (5.2.1.1 and 5.2.1.2 respectively). Based on the

obtained classifications, the pairs were split into the three datasets and the respective

subsets (section 5.2.1.3) as illustrated in Figure 5.1.

Figure 5.1: Datasets used in the polymorph redetermination

 Manual, Best R, Benchmark, and In-house. These can be further divided into

training, validation, testing, and application subsets.

-107-

5.2.1.1 Best R dataset

For each pair of refcodes, the classification was assigned based on the process

described in Figure 5.2. If both refcodes are in the best R factor list, the two structures

represent two different polymorphs. In any other case, if there is only one refcode in

the best R factor list for that refcode family, the pair of refcodes is the redetermination

of the same structure. In case there is more than one refcode in the best R factor list, it

is not possible to determine whether the pair is a redetermination or different

polymorphs and so no label is assigned. This limits the number of available pairs for

the best R dataset. 51,649 pairs were given a classification based on Best R factor list

(referred to as Best R classification hereafter).

Figure 5.2: Label assignment process flow chart for labels based on the best R

factor list.

5.2.1.2 Manual label and benchmark datasets

The manual label and benchmark datasets are based on the polymorph label assigned

by the authors submitting the structure to the CSD; this is available for 4 % of the

structures studied. The distinction between polymorphs and redetermination was made

by comparing the manual polymorph labels. If the labels matched, the pair was

considered a set of redeterminations (classification = 0), and polymorphs

(classification = 1) otherwise. In cases where there was no label for one or both of the

structure, no label assignment was carried out (the label is referred to as Manual

classification hereafter).

-108-

For each pair of structures, along with the Manual classification, information

concerning whether the structures came from the same literature source was also

noted. To remove inconsistency in labels due to different polymorph labels by

different researcher [221], for the benchmark dataset, only structures that came from

the same literature source were considered. Furthermore, an effort was made to

eliminate any errors within the labels. However, some false polymorphs may have

been identified due to mismatch of the label caused by spelling mistakes. For example,

JIBCIG04 and JIBCIG06 are redeterminations of the same polymorph with labels:

‘othorhombic’ and ‘orthorhombic’ (the missing ‘r’ was subsequently corrected in the

CSD). The curation workflow attempted to eliminate all such cases; however, the

possibility of some noise in the data cannot be entirely eliminated due to the large

number of pairs considered (17,364).

5.2.1.3 Dataset split

After each pair was labelled using the best R factor list and manual labels, along with

checking if the literature source is the same, the datasets were split into six subsets

according to Figure 5.1. Three intersecting sets were constructed based on the

availability of labelling discussed in 5.2.1.1 and 5.2.1.2.

𝐵𝑒𝑠𝑡 𝑅 = {𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝐵𝑒𝑠𝑡 𝑅 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} Equation 5.1

𝑀𝑎𝑛𝑢𝑎𝑙 = {𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} Equation 5.2

𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑀𝑎𝑛𝑢𝑎𝑙

∩ {𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑒 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒}

Equation 5.3

The total number of available pairs (𝐵𝑒𝑠𝑡 𝑅 ∪ 𝑀𝑎𝑛𝑢𝑎𝑙) for dataset creation is 76,309.

The detailed breakdown of the sets is shown in Figure 5.3. The manual label training

and best R training datasets were selected from pairs that had an only manual label

and best R label respectively (𝑀𝑎𝑛𝑢𝑎𝑙 𝐵𝑒𝑠𝑡 𝑅⁄ , 𝐵𝑒𝑠𝑡 𝑅 𝑀𝑎𝑛𝑢𝑎𝑙⁄). This was to

-109-

ensure that the effects of training machine learning models for distinguishing

polymorphs from redeterminations using different means of assigning the training set

labels were not confounded by differences in the crystal structures used for training

the models. Due to the limited number of pairs available for Manual training dataset,

the training set size was limited to 24,660 pairs.

All the validation and test sets come from pairs that have both manual and best R labels

(𝑉𝑎𝑙𝑖𝑑__𝑎𝑛𝑑_𝑡𝑒𝑠𝑡 = 𝑀𝑎𝑛𝑢𝑎𝑙 ∩ 𝐵𝑒𝑠𝑡_𝑅). This is done to allow for further

comparison between the models trained on the two datasets. The benchmark validation

and test sets were selected where each structure came from the same literature source

(𝑉𝑎𝑙𝑖𝑑_𝑎𝑛𝑑_𝑡𝑒𝑠𝑡 ∩ 𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒). Best R and manual validation sets come from the

remaining pairs that have both labels (𝑉𝑎𝑙𝑖𝑑_𝑎𝑛𝑑_𝑡𝑒𝑠𝑡/𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒). To ensure the

same size for all validation sets, the set size of 2,594 pairs was used. The Benchmark

test set consists of 3,415 pairs. The dataset splits are shown in Figure 5.3.

Figure 5.3: Availability of labels from the best R factor list and manual labels.

For the pairs that have a manual label, whether both structures come from the

same literature source was also noted.

-110-

5.2.2 Descriptors

To build machine learning models for classifying pairs of crystal structures, contained

within CSD-like in-house databases, as polymorphs or redeterminations, suitable

descriptors needed to be identified. Initial descriptor selection was carried out based

on data available within the in-house database and understanding of polymorphism.

Different combinations of descriptors were evaluated based upon analysis of CSD

data, including the effect of removing certain descriptors on the performance of the

machine learning methods, as evaluated using the validation sets.

The following experimental data (structural data and experimental metadata) were

available for crystal structures in the in-house database and were considered relevant

to classifying structures, with the same molecular structure, were polymorphs or

redeterminations. Based upon the assessment described below, a subset of these

parameters was chosen to be used as descriptors, alongside the calculated packing

similarity (see below), for the machine learning models.

All entries in the in-house database and the CSD included information such as cell

parameters (lengths and angles), crystal system, and density, while the experiment

temperature and the R-factor are missing for some cases. Each numeric descriptor was

calculated as the difference across pairs of structures, i.e. difference in temperatures

was taken as the temperature descriptor. Otherwise, for qualitative variables, such as

crystal system, pairs where the values of these variables matched or did not match

were assigned a value of 0 or 1 respectively for the corresponding descriptor.

Cell parameters (angles and lengths) are expected to change across a pair of

polymorphs as different packing arrangements are likely to affect the unit cell

dimensions. In many cases, the crystal system (i.e. lattice type) differs between

polymorphs. In principle, this should not be different for redeterminations, but the

documented crystal system may occasionally differ for some redeterminations. (For

example, a slight difference in apparent cell lengths may lead a cubic polymorph to be

considered orthorhombic for some redeterminations.) However, differentiating

between polymorphs and redeterminations is more difficult for structures with the

same lattice type. If the lattice type is the same across the pair of structures, a value of

0 is assigned (1 is assigned if the system is different).

-111-

Regarding differences in symmetry, there are over 230 space groups possible with

some degree of similarity [59]. A method of grouping similar space groups was not

readily available, so differences in space group, i.e. symmetry differences, were not

encoded as a descriptor. For a given molecule, only a combination of cell parameters

and the space group can change the density, i.e. the ratio between the mass of all atoms

in a unit cell and the volume of the cell (the mass of all atoms in the unit cell is

determined by the number of molecules per unit cell – determined by the symmetry

operators, and the volume is determined by the cell parameters.) Therefore, it is

expected that any information captured by density is largely included within the cell

parameters. Crystallisation temperature along with other experiement conditions can

affect the cell parameters, and the same polymorph can have different apparent cell

parameters if studied at a different temperature. The R-factor is an indicator of how

well the structure calculated from a crystallographic model agrees with the

experimental X-ray diffraction data. In some cases, a redetermination with improved

R-factor can have different apparent cell parameters to the original structure [223]. To

capture these phenomena, the changes in R factor and the temperature across the pairs

of structures were used as descriptors.

Further to the descriptors available within the databases, a comparison of packing can

be made. Crystal polymorphism can be defined as structures with different packing

arrangements. COMPACK[224], as it is available through CSD API[189], can be used

to quantify the packing similarity between pairs of crystal structures. A molecule is

selected from the crystal structure and a 15 molecule packing shell is generated based

on the crystal packing. The packing shells for the two crystal structures are

superimposed and are aligned to minimise the distance between matched atoms of

each molecule from each cluster. The number of molecules that fit within the

predefined distance tolerance (0.2 Å [224]) is returned. A high number indicates that

the packing is similar for the crystal structure pair. In this study, the number was

divided by 15 to scale it within the range of 0 to 1 (1, meaning 15 out of 15 molecules

were within the tolerance distance). The descriptor is referred to as packing similarity

hereafter.

The differences in cell parameters (i.e. cell lengths a, b, c and angles alpha, beta,

gamma), an indicator variable denoting differences in the crystal system as explained

-112-

above, differences in R-factors, differences in the temperature of crystallisation, and

packing similarity were initially selected as descriptors for the model development.

All of these descriptors were available for the set of entries chosen from the CSD to

form the datasets summarised in Figure 5.1. Analysis performed using the training and

validation data was also used to refine the set of descriptors chosen for the final

machine learning model.

5.2.3 Descriptor analysis

Prior to developing models using supervised machine learning, the descriptors were

analysed. The purpose of this step was to (1) assess whether the distributions between

the different CSD derived datasets used for training, validating and testing were

comparable, and (2) develop descriptor sets suitable for the classifier development.

5.2.3.1 Correlation matrix

A correlation matrix was used to eliminate descriptors that are highly correlated based

on the training sets. The Pearson correlation coefficient was used to quantify the

correlation between descriptors [225]. The coefficient for two descriptors (X, Y) is

given by equation (4), where n is the number of samples, i.e. pairs of polymorphs or

redeterminations, 𝑥𝑖 is the value of X for the i th sample and 𝑥̅ is the arithmetic mean

of X (analogous for Y). The correlation coefficient was calculated for all combinations

of descriptors.

𝑟𝑋𝑌 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

Equation 5.4

5.2.3.2 Principal Component Analysis

Principal component analysis (PCA)[226] was performed for two reasons: (1) to

develop an understanding of key descriptors that determine whether a pair of structures

are polymorphs or redeterminations; (2) to assess whether the different training,

validation and test sets were sufficiently similar in order for the validation and test sets

to lie within the applicability domain of the machine learning models developed using

the corresponding training sets. The descriptors selected have different magnitudes of

-113-

scale. Hence, to ensure none of the features dominates the analysis, min-max scaling

was used. This transforms each descriptor to fit within the range of 0 to 1 based on the

minimum and maximum values.

The PCA was fitted to the Best R training set and Manual label training set, resulting

in two sets of loadings for the original descriptors, referred to as PCA-s and PCA-m

respectively. The two sets of loadings were then used to transform the manual label

validation set, Best R validation set, and the benchmark dataset to compare the datasets

based upon their distribution with respect to the principal components associated with

the highest contribution to the variance in the scaled descriptors. The loadings

associated with the principal components which best-separated pairs of polymorphs

from redeterminations were also examined, providing insight into the key descriptors

providing linear discrimination between polymorphs and redeterminations. However,

the supervised machine learning methods used to build the classifiers were also able

to take account of non-linear relationships. This was necessary as linear separation is

not sufficient for classification. For example, unit cell length difference may arise from

polymorphism, but also from temperature difference, hence the interdependent nature

of some the features need to be taken in account.

5.2.4 Classifier development

5.2.4.1 Development process

The model development stage was divided into three steps; training, validation, and

testing. The training subsets from the two datasets (Best R and Manual) were used to

train classifiers, using various machine learning algorithms, to distinguish between

polymorphic and redetermination pairs (Figure 5.4). The evaluated machine learning

algorithms are described below. The best algorithm and algorithm parameters, i.e.

hyperparameters, from each training set was selected for the validation step (selection

criteria discussed in below). The performance of the selected models was assessed

using the validation subsets of the Best R method, Manual label, and benchmark

datasets. Validation using three datasets was used to study the generalisability of the

models and to study the difference in the datasets. The process was repeated for

various descriptor sets developed based on the dataset analysis.

-114-

Finally, the single best performing machine learning model based on the benchmark

validation set, along with the spectra method, was applied to the benchmark test

dataset to assess the performance on a high-quality external dataset.

Figure 5.4: Overview of the model development process

In this work, the following Random Forest (2.4.4) hyperparameter values were

investigated: number of trees 10 – 200, split criterion Gini or entropy, max depth 1 –

110. The following Support Vector Machine (2.4.5) hyperparameter values were

investigated: Gamma (10-4 to 103) and C (10-4 to 103). Random search was used to

probe the hyperparameter search space.

The F1 score (2.4.3, Equation 2.21) is used as the primary performance metric for the

models. It was used for selection of the single best machine learning model out of all

models, based upon different combinations of descriptors and training sets, applied to

the validation sets. It was also used for the selection of the most suitable algorithm, as

well as for the optimisation of SVM and RF models, i.e. the selection of the best

combinations of algorithms and hyperparameters was based upon the combination

which led to the largest mean F1 score obtained from cross-validation on the training

set.

5.2.5 Computational details

All computational work in this paper was performed using Python 2.7 (64-bit, as

installed using the Anaconda Distribution version 4.3.34). Any interaction with the

crystal structure repositories was handled using the CSD Python API (1.5.2) [215].

-115-

The API was also used for calculation of packing similarity between crystal structures.

The pandas (0.19.2) library was used for handling of data and for construction of the

correlation matrix [216]. Principal Component Analysis, Random Forest, Support

Vector Machine, and hyperparameter selection using cross-validation were performed

using SciKit-Learn (0.18.1) [123]. See Appendix 3 for the scripts used.

-116-

5.3 Results and Discussion

5.3.1 Descriptor Selection

5.3.1.1 Correlation matrix

A correlation matrix was created to eliminate any highly correlated descriptors (Figure

5.5). There were no significant correlations between the features, so all selected

descriptors were used.

5.3.1.2 Principal Component Analysis

The PCA was fitted to the manual label training set (PCA-m) and best R training set

(PCA-r). The descriptor contributions to the first four principal components are

summarised in Table 5.1. The explained variance of each of the principal component

is shown in Figure 5.6. The first component (PC1) explains significantly more of the

variance compared to the subsequent components. The largest contribution to the first

Figure 5.5: Pearson Correlation coefficient matrix of the selected descriptors

within the Best R training set

-117-

principal component (PC 1) comes from packing similarity (-0.796 and -0.902

respectively) followed by crystal system (0.564 and 0.390 respectively). However,

there are differences in contributions to PC 2 and PC 3. For manual label dataset,

crystal system and packing similarity are the predominant contributors to the PC 2,

while the temperature and R factor are the largest contributors to the PC 3. The

contributions to PC 2 and PC 3 for best R dataset are similar to the contributions to

PC 3 and PC 2 for the manual label dataset respectively.

Figure 5.6: explained variance of PCA fit to manual train dataset (top) and

Best R dataset (bottom).

-118-

Packing similarity and crystal system are the two factors that contribute the most to

the principal components and were further analysed to develop suitable descriptor sets

for the classifier development.

The Best R validation dataset transformed using PCA-m is shown in Figure 5.7. The

figure shows that the polymorphs and redeterminations are not linearly separatable.

Thus, the use of machine learning algorithms capable of capturing a more complex

relationship between the descriptors and the target (polymorph or redetermination) is

required.

5.3.1.3 Packing similarity

Polymorphism is the difference in the crystal packing. For this reason, it can be argued

that packing similarity alone should be sufficient in developing a classifier for

polymorph-redetermination. Based on the PCA, packing similarity is an important

descriptor, and so it was investigated how well it can separate polymorphic and

redeterminations pairs (Figure 5.8). As the figure shows, redeterminations tend to have

high packing similarity. 97.6 % of redetermination pairs in the benchmark validation

set have packing similarity of >0.8. For this reason, a single descriptor model was

considered in the classifier development stage (5.3.2).

Table 5.1: First four principal components for the Manual label and Best R

training sets.

Descriptor
Fitted to Manual Training Fitted to Best R training

PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4

Alpha 0.049 0.047 -0.028 -0.042 0.051 0.021 0.082 -0.019

Beta 0.150 0.053 0.029 0.019 0.087 0.033 0.096 -0.006

Gamma 0.095 0.119 -0.001 -0.034 0.071 0.022 0.117 -0.020

a 0.077 -0.007 -0.037 0.067 0.062 0.018 0.054 0.011

b 0.064 -0.020 0.001 0.053 0.080 0.021 0.075 0.017

c 0.044 -0.022 0.005 0.034 0.072 0.020 0.076 0.015

Crystal

system
0.564 0.796 -0.050 -0.001 0.390 0.086 0.874 -0.075

Temperatu

re
0.027 0.030 0.843 -0.531 0.005 0.882 -0.135 -0.450

Packing

similarity
-0.796 0.588 0.022 0.036 -0.902 0.082 0.417 0.023

R factor 0.043 0.003 0.533 0.840 0.058 0.452 -0.004 0.889

-119-

Although it is a useful indicator, there is an overlap between the polymorphs and

redeterminations. For the benchmark validation set, 10.6 % of polymorphic pairs have

packing similarity of >0.8. Calculation of the packing similarity is computationally

expensive, so a descriptor set that does not use it was also used in the classifier

development (5.3.2).

Figure 5.7: Best R validation dataset transformed using the PCA-m (PCA

fitted to the manual label training dataset.

-120-

Figure 5.8: Comparison of packing similarity between pairs of polymorphs and

redetermination for the benchmark validation set. The figure is normalised to the

area under the graph = 1.

5.3.1.4 Lattice type

The lattice type is the second descriptor with the largest contribution to the first

principal component. The relationship between the lattice type descriptor and the

polymorph and redetermination classification using spectra method (left) and the

manual label (right) is shown in Figure 5.9. There are no redeterminations based on

the manual label that have different lattice types, whereas 18 % of redeterminations

based on the spectra method have different lattice types. TMACNZ07 and TMACN09

are a pair of structures that are in the 18 %. The only difference in cell angles is a

change of 0.42o of β from 90o. For this reason, TMACNZ07 is classed as a monoclinic

lattice and TMACNZ09 is orthogonal. Comparing the two crystal structures further,

the average percentage change between the cell lengths is 0.7 %, with the change in b

from 15.309 Å to 15.105 Å being the largest difference. The packing similarity is 1.0,

indicating that all molecules within the 15 molecule packing shell align within the

-121-

tolerance of 0.2 Å. It is plausible that the two structures are the same polymorph, with

the difference in the unit cell parameters being due to the difference in the R factor

(6.4 and 2.6) and the temperature (200 K and 100 K). Another similar example is the

pair of COQNUR and CONQNUR01, where different lattice type was assigned due to

a difference of the angle β of 0.02o, while the difference in cell lengths is below 0.9%

and the packing similarity is 1.0. It is possible that in some of the cases, a different

polymorph label was assigned based on the different lattice type assignment without

a thorough comparison of the crystal packing. For this reason, a descriptor set that

excludes lattice type was used for the classifier development (5.2.4).

Figure 5.9: Comparison between polymorphs and redeterminations for the best

R validation set. The classification based on spectra method (left) and manual

label (right). The graph is normalised to the area under the graph = 1.

5.3.2 Classifier development

5.3.2.1 Training

Two training datasets, Manual training and Best R training sets were used to train

classifiers. For every combination of the training dataset and descriptor set (All, no

packing similarity, and no lattice), a RF and SVM classifiers were trained and

optimised. The F1 score on the cross-validation set for the best performing models is

summarised in Table 5.2. RF outperformed SVM for all descriptor sets, trained on the

Best R training dataset. The performance of the two algorithms was much closer in

case of models trained on the Manual training dataset, but the SVM models had the

-122-

higher F1 score. For the single descriptor model that only uses packing similarity, only

a random forest model was trained. It obtained a F1 score of 0.867.

The best performing algorithm for each combination of training set and descriptor set

were selected for the validation step of the classifier development.

Table 5.2: F1 scores of the trained classifiers.

Descriptor set

Manual Best R

RF SVM RF SVM

All 0.897 0.899 0.882 0.794

No Packing 0.892 0.900 0.811 0.681

No Lattice 0.893 0.898 0.880 0.793

5.3.2.2 Validation

The models with the highest F1 scores from each combination of training dataset and

descriptor set were applied to the three validation sets (Manual, Best R, and

Benchmark). The results are summarised in Table 5.3.

The performance on the homogenous validation set (i.e. performance of model trained

with manual label training set on manual label validation set and vice versa),

heterogeneous validation set (i.e. performance of model trained with manual label

training set on spectra method validation set and vice versa), and benchmark validation

set was analysed.

All models performed better on the homogeneous validation sets compared to

heterogenous validation sets with the exception of model 4, which had a similar F1

score for both (0.886 and 0.887). Out of the models trained on the Manual training

dataset (model 1 - 4), the single descriptor model (4) had the highest F1 score, in

contrast to model 2 which did not use packing similarity as a descriptor and had the

lowest F1 score. This further strengthens the argument for the usefulness of packing

similarity for the polymorph redetermination classification. Out of the models trained

-123-

on the Best R training dataset (model 5 – 8), single descriptor model (8) had the lowest

F1 score due to the very low recall (0.175) while the precision is high (0.933). Unlike

in the case of model 3, in model 7, the exclusion of the lattice type as a descriptor does

not improve the performance. As discussed in 5.3.1.4, in some cases, lattice type may

be incorrectly used to classify polymorphs and redeterminations manually. This is not

the base for Best R dataset, so no improvement was observed by dropping it as a

descriptor. Omitting packing similarity, reduced the F1 score to 0.886 (from 0.938).

-124-

Table 5.3: Performance on the validation sets of classifiers trained on Manual

and Best R training dataset, using different descriptor sets.

Trained

on

Model

ID
Descriptors

Performance on

Manual valid Best R valid
Benchmark

valid

Manual

1 ALL

F1 : 0.883

Precision: 0.861

 Recall: 0.906

 F1 : 0.801

Precision: 0.679

 Recall: 0.977

F1 : 0.920

Precision: 0.966

 Recall: 0.878

2
NO

PACKING
 F1 : 0.879 F1 : 0.797 F1 : 0.911

3
NO

LATTICE

F1 : 0.881

Precision: 0.860

 Recall: 0.903

F1 : 0.803

Precision: 0.679

 Recall: 0.982

F1 : 0.918

Precision: 0.965

 Recall: 0.875

4
PACKING

ONLY

F1 : 0.886

Precision: 0.956

 Recall: 0.825

F1 : 0.887

Precision: 0.814

 Recall: 0.974

F1 : 0.907

Precision: 0.952

 Recall: 0.868

Best R

5 ALL

F1 : 0.852

Precision: 0.988

 Recall: 0.749

 F1 : 0.938

Precision: 0.925

 Recall: 0.952

 F1 : 0.816

Precision: 0.989

 Recall: 0.694

6
NO

PACKING
 F1 : 0.819 F1 : 0.886 F1 : 0.790

7
NO

LATTICE

F1 : 0.850

Precision: 0.988

 Recall:0.746

 F1 : 0.934

Precision: 0.923

 Recall: 0.945

 F1 : 0.813

Precision: 0.989

 Recall: 0.875

8
PACKING

ONLY

F1 : 0.217

Precision: 0.982

 Recall: 0.121

F1 : 0.295

Precision: 0.933

 Recall: 0.175

F1 : 0.176

Precision: 0.896

 Recall: 0.097

-125-

The performance on the heterogenous validation datasets is worse than on the

homogeneous datasets. The only exception is model 4, which has a consistent

performance across the two validation datasets. However, the similar F1 score is

caused by a proportional drop in precision and an increase in recall.

The performance on the benchmark validation set was higher for the models trained

on the Manual dataset (model 1 – 4) compared to the models trained on the Best R

dataset (model 5 – 8). The PCA did not indicate any clear differences between the two

datasets; however, the consistent difference in performances indicate that some

difference exists.

Model 8 has the worst performance overall, caused by low recall values. However, the

same descriptor set trained on the Manual dataset achieved F1 score of 0.907. Not

using lattice type as a descriptor has a minimal effect on the performance of the models

for the two groups (model 1 and 3, and model 5 and 7). The best performing models

for each training set are ones that use all descriptors (model 1 and 5) with model 1

having the highest F1 core (0.920). This model was selected for the testing stage

discussed below.

5.3.2.3 Test

The best performing model (trained on manual label dataset with all descriptor set)

achieved a F1 score of 0.910 (recall = 0.864, precision = 0.962) on the benchmark test

set (Table 5.4). The performance is similar to the one achieved on the benchmark

validation set. The spectra method was also compared to the manual labels from the

benchmark test set; the confusion matrix for which is presented in Table 5.4. The F1

score of the spectra method is 0.780 with recall of 0.645 and precision of 0.988. The

spectra method had fewer false positives compared to the model 1, but a higher rate

of false positives. Comparison of the misclassifications by the two methods are

visualised in Figure 5.10. It was attempted to find differences in the descriptor

distributions across the different subsets of the misclassified pairs. However, none of

these were statistically significant (at 5 % confidence level).

-126-

Table 5.4: Confusion matrix of the trained machine learning model 1 and the spectra

method on the test set

 Model 1 Spectra method

Red. Pol. Red. Pol.

Manual

label

Redetermination 943 67 994 26

Polymorph 265 1676 689 1252

Figure 5.10: Comparison of false negatives and false positives of the trained machine

learning model 1 and the spectra method.

-127-

5.4 Conclusion

A dataset for benchmarking the performance of automated methods of classifying

polymorphic and redetermination pairs of crystal structures was developed. The

dataset consists of pairs of structures that have been manually assigned a polymorph

label and came from the same publication to ensure consistency of labels. 6,009 such

pairs were identified in total, making this the largest available benchmarking dataset

for assessing the polymorph redetermination classification.

A number of machine learning models were developed for the task of classifying

structures into polymorphs and redeterminations. The model with the highest F1 score

was selected and its performance was compared to the currently used method of based

on spectra comparison. The best performing model achieved an F1 score of 0.910,

while F1 score for the spectra method was 0.780. The machine learning approach

appears to be a promising avenue for the development of automated methods for

classification of polymorphs and redeterminations.

The work in this chapter shed some light on the data quality regarding polymorph

propensity study presented in Chapter 4. The spectra comparison method was used for

the polymorph count. This chapter showed that the polymorph count derived in this

way, may not be accurate (F1 score of 0.780). This likely contributed to the lack of

statistically significant trends observed on the polymorph propensity study. However,

the correlation between research intensity and polymorph count along with

challenging properties of the dataset itself are likely to have a more significant

contribution to the lack of trends observed. In the following chapter, the property of

the dataset itself, namely how suitable it is for MMPA is assessed.

-129-

Chapter 6

Matched Molecular Graphs

-130-

6.1 Introduction

In Chapter 4, several issues relating to MMPA of polymorph propensity were

identified. In this chapter, the datasets are examined and compared to other literature

data sources to assess the suitability for MMPA. Herein, the focus is upon issues which

prevent MMPA yielding statistically significant results, even when those trends exist

and would be statistically significant given adequate datasets.

The MMP approach was first utilised to analyse the most common substitutions found

in drug-like substances [181]. Since then, it has been used for lead optimisation tasks

within the Discovery stage of pharmaceutical product development

[11,12,184,190,196,199]. A range of properties related to the early stage of the drug

development was studied, such as molecular solubility (as typically taken as a

molecular property rather than an equilibrium between the solid state and the

continuous phase) [190,192], activity [12,227,228] and clearance [55]. With one

notable exception where the effects of molecular transformation on crystal packing

were studied [189], the applications of MMPA are typically limited to properties of

interest during Discovery (i.e. where solid form may not be known or not focused

upon). As such, the datasets that are used for the analysis are predominantly derived

from Discovery datasets.

The datasets from different stages of pharmaceutical product development are

compared to develop a better understanding of the potential reasons for the low MMP

count for the CSD dataset used in Chapter 4. This is accomplished using Matched

Molecular Graphs (MMG), details of which are presented in 6.2.2

-131-

6.2 Method and Data

6.2.1 Dataset

Datasets from a range of stages of the pharmaceutical product development were

selected (Figure 6.1). ChEMBL-NTD set 14 (GSK TCAKS (Tres Cantos Anti-

Kinetoplastids Set) dataset) [229] was taken as a representative dataset of the

Discovery stage where MMPA is typically applied. The dataset was selected due to its

size and the fact that it came from a single pharmaceutical company. The CSD

monomorphic adjusted single component dataset (as defined in Chapter 4)

corresponds to the Development stage. Patent melting point dataset (2.3.3) [83] was

used to systematically study the effects of dataset size on the properties of the MMG.

6.2.2 Graph construction

The MMG method uses a graph constructed from the MMPs. The basic concepts of

graphs were introduced in 2.4.1.2. In this chapter, some of the properties of graphs are

examined. The degree of a vertex is defined as the number of edges that connect to the

vertex. For graphs that do not have multiple edges (connecting the same pair of

vertices) nor loops, the degree of a vertex is equivalent to the cardinality of the set of

neighbours of the vertex (Equation 2.2).

Figure 6.1: Datasets selected for MMG study across the pharmaceutical

development process.

The process diagram adapted from [19]. Discovery stages illustrated in blue.

Development stages shown in orange.

Target-to-hit

Hit-to-lead

Lead optimisation

Pre-clinical

Phase 1

Phase 2

Phase 3

Submission

GSK TCAKS CSD

-132-

deg(𝑣) = |𝑁𝐵𝑅(𝑣)| Equation 6.1

6.2.2.1 Matched Molecular Pair identification

The method described in Chapter 3 was used to identify MMPs within each of the

datasets. If not explicitly specified, the maximum change size was limited to 10 heavy

atoms, and the ratio of the change to the whole molecular was limited to 0.3.

6.2.2.2 Pairs to graph

Each MMP can be seen as an edge (small molecular change - transformation as defined

in Chapter 4) that connects two vertices (molecules), as shown in Figure 6.2. All

compounds within a dataset are initialised as vertices with some identifier (typically

SMILES or refcode family) as a label. Additional labels such as the number of

polymorphs can also be added. List of all MMPs is used to construct the edges. The

molecules in the MMP are joined via an edge with the transformation being stored as

an edge label. Additional labels such as the property change for that transformation

may also be used. The created edge is a directed edge (e12 in Figure 6.2) and the reverse

edge should be added (e21). However, the script used to create the MMP Database

orders the transformations consistently. For this reason, the edge e21 is redundant as

all hydroxyl to methyl MMPs would be ordered in the same way. Hence, the e21 edge

is not added to the graph.

Figure 6.2: Visualisation of the Matched Molecular Graph contruction from

a MMP.

Labels such as molecular structure (SMILES) can be assigned to each of the

vertices. Labels such as the transformation (SMIRKS) can be assigned to

edges.

>>

>>

 1 2

e12

e21

-133-

6.2.2.3 Visualisation

Any graph operations can be performed in Python using NetworkX library [230].

However, it is often useful to visualise the graph and interact with it graphically. For

this purpose, Gephi software package was used [231]. ForceAtlas2 algorithm was used

for the vertex placement for visualisation [232]. The principle behind this algorithm is

that vertices repel one another, but edges attract. The result is that clusters of

interconnected vertices remain close, while vertices without many edges get repelled

further away.

6.2.3 Software

Matched Molecular Pair were extracted from the database introduced in Chapter 3.

Scripts were written to directly interact with the database. Graph visualisation was

carried out using Gephi [231]. Python 2.7 was used for data manipulation. Figures that

were not generated using Gephi were created using matplotlib [218] and seaborn

[217]. The scripts used for the Gephi input generation is available in Appendix 1.

-134-

6.3 Results and Discussion

6.3.1 Monomorphic adjusted single component CSD dataset

A Matched Molecular Graph was constructed from the data used in the polymorph

propensity study in Chapter 4. The dataset contained 6,633 entries with 2776 MMPs.

The constructed graph is shown in Figure 6.3. Due to the nature of the ForceAtlas2

algorithm, molecules with no MMPs (no edges) are pushed to the outside, while

molecules with MMPs tend to remain closer to the centre. This results in the graph to

consist of three components. The outer ring of vertices (dark blue in the figure)

consists of molecules with no MMPs. The middle ring (gold in the figure) contains

Figure 6.3: Matched Molecular Graph of monomorphic adjusted CSD single

component dataset with max change size of 10 heavy atoms and max ratio of

change of 0.3 for all MMPs.

The outer ring (dark blue) consists of molecules with no MMPs. The middle

ring (gold) consists of molecules with few (typically one or two) MMPs. The

inner circle (yellow) contains large clusters of molecules that share many

MMPs.

-135-

molecules that have few MMPs. These typically consist of small clusters of molecules

(left in Figure 6.4). In here, the term clusters are not used in accordance with the graph

theory definition, but rather as a synonym for a disjointed subgraph. As can be seen

from the graph, these clusters may be a pair of molecules (a single MMP) or a group

of molecules that share multiple MMPs. Much larger clusters can be found within the

inner circle of the graph in Figure 6.3. Molecules in these large clusters have up to 42

MMPs with other molecules from the cluster.

A closer examination of the relative size and properties of the three identified

components in the MMG was performed to identify aspects that affect the performance

of the MMPA procedure. The outer layer contains 74.9 % of the molecules (4,847)

from the dataset, yet contain none of the MMPs (no edges). This means that any

MMPA done on this dataset ignores almost three-quarters of the available data. This

is particularly problematic for small datasets such as the one used in Chapter 4. The

lack of MMPs for 74.9 % of the molecules suggests that these molecules are dissimilar

from one another.

The middle ring contains 17.7 % of molecules (1,146) and 41.3 % of the MMPs. 482

molecules (7.4 %) are found in the inner circle. These molecules contribute to the rest

of the MMPs (58.7 %). This means that over half of MMPA result comes from 7.4 %

Figure 6.4: Example of clusters found in the Matched Molecular Graph.

On the left, typical clusters found in the mid-ring of the graph. On the right,

a large cluster found in the central circle of the graph. Emphasised are all

MMPs that contain the central molecule. Vertices were moved manually to

avoid overlap for the sake of clarity.

-136-

of the molecules. In the case of polymorph propensity study where polymorphic

structures are rare, this may result in polymorphic structures being underrepresented.

The analysis of the MMG suggests that MMPA carried out on this dataset may not be

robust nor representative. To see which factors contribute to such MMG properties,

two dataset characteristics were considered: dataset size and the origin within the

pharmaceutical product development of the dataset. These are explored below.

6.3.2 Dataset size

The dataset size was expected to have an impact on the number of MMPs within a

dataset. The Patent Dataset was used for the study of the effects of the dataset size as

it is a large dataset (289,379 entries). MMGs for randomly selected subsets of 1,000,

2,000, 5,000, 10,000, 20,000, 40,000, 60,000 and 80,000 molecules were constructed.

The number of structures with at least one MMP (in the middle ring or inner circle in

Figure 6.3) were tracked for the increasing dataset size (Figure 6.5). For the MMG

made from 1,000 molecules, the fraction is only 2.2 % meaning that only 22 molecules

have MMP and therefore can be involved in MMPA. For the Patent dataset, this

Figure 6.5: The fraction of molecules with at least one MMP as a function of

the dataset size for the Patent dataset

-137-

fraction increases to 7.5 % for dataset size of 5,000. This is notably lower than the

CSD dataset of the comparable size (6,633 molecules) in which 25.2 % of molecules

had at least one MMP. The effects of the origin and purpose of the dataset are further

discussed in the following section (6.3.3). The fraction of molecules with one or more

MMPs continues to increase as the dataset size increases, making the MMPA more

applicable.

Further to the increase in the fraction of molecules that can be used in MMPA (at least

one MMP), the average number of MMPs (average degree of vertices) increases as

well (Figure 6.6). The average degree was computed only for molecules that have at

least one MMP in order to distinguish this measure from the fraction of molecules

with at least one MMP discussed above. For the 1,000 dataset, the average degree is

1, indicating that there are only pairs and no clusters forming. This changes as the

dataset size increases, with the average degree increasing to 3.3 for the 80,000 dataset.

Based on the analysis, the dataset size plays an important role two-fold. Firstly, the

fraction of molecules that have at least one MMP increases with the dataset size.

Secondly, the average number of MMPs for molecules that have at least one increases

Figure 6.6: Average degree of molecules with at least one MMP as the dataset

size increases for the Patent dataset.

-138-

with size as well. As a result, analysis based on small datasets, such as the one done

in Chapter 4, may not produce meaningful results due to the small number of MMPs

and molecules that are included in the MMPA.

6.3.3 Datasets across the Pharmaceutical Product Development

The Patent dataset, which had a smaller fraction of molecules with at least one MMP

compared to the CSD dataset, represents a more diverse range of molecules. The

effects of the data source on the MMG were investigated further. The GSK TCAKS

dataset was taken as a representative of the Discovery dataset as it comes from a single

company against a specific target. In reality, pharmaceutical companies hold

significantly larger datasets within Discovery stage compared to Development

datasets, based on the attrition rate through the pharmaceutical development process.

However, to study the effects of the data source, a subset of the same size as the

Figure 6.7: Matched Molecular Graph of GSK TCAKS dataset (Discovery

dataset)

-139-

Development dataset was randomly selected. The CSD dataset was used as a surrogate

for a Development dataset.

The MMG of the Discovery dataset is shown in Figure 6.7. The difference compared

to the MMG of the Development dataset (Figure 6.3) is visually apparent. 58.2 % of

molecules in the Discovery dataset have at least one MMP compared to 25.1 % for the

Development dataset (Figure 6.8). This means that for the same dataset size, more than

twice as many molecules can be involved in MMPA of Discovery datasets compared

to a Development counterpart. Comparison of the MMGs can also reveal that the

Discovery dataset has larger clusters. The average degree of molecules with at least

one MMP is 5.34 for Discovery and 3.33 for Development. The total number of MMPs

is 10,321 and 2,776, respectively, indicating the difference in suitability of MMPA for

the two datasets.

Figure 6.8: Comparison of the fraction of molecules with at least one MMP for

datasets taken from different stages of the Pharmaceutical process development.

CSD monomorphic adjusted single component dataset used as an example of

Development dataset. GSK TCAKS dataset is used as a representative example

of a Discovery dataset.

-140-

6.4 Conclusion

The concept of Matched Molecular Graphs (MMGs) was developed to address the

issue of the small number of MMPs found within the CSD dataset studied in Chapter

4. The analysis of the MMG constructed from the dataset revealed that 74.9 % of the

structures do not contribute to MMPA as they do not have a single MMP. The majority

of the MMPs (58.7 %) comes from a small fraction (7.4 %) of molecules that form

dense clusters. The effects of dataset size and source (Discovery or Development) on

the key MMG parameters were investigated. Unsurprisingly, the larger the dataset, the

larger the fraction of molecules with at least one MMP and the more MMPs overall.

The effect is particularly crucial for smaller dataset sizes (<10,000 molecules). The

change in MMG parameters decreases as the dataset size increases. Datasets of the

same size, taken from Discovery and Development, also show a difference in MMG

parameters. The Discovery dataset contained approximately four times more MMPs

(10,321 against 2,776). The number of molecules with at least one MMP was also

considerably higher for the Discovery dataset (58.2 %) compared to the Development

dataset (25.1 %). The analysis was performed only on a single dataset from each of

the stages, so further analysis of more datasets is necessary to establish whether this

trend is representative.

However, based on the analysis carried out here, it is clear that performing MMP-

based analysis is likely to exclude some data. This is particularly significant when

working with Development datasets which tend to be smaller and more diverse. Given

the focus of the thesis on Development stage related property prediction, the emphasis

shifted to QSPR approach. In the next chapter, work on a QSPR model for solid state-

specific prediction of melting point is discussed with a particular focus on the ability

to capture crystal information.

-141-

Chapter 7

Melting Point Prediction Using

Message Passing Neural

Networks Based on Molecular

and Crystal Structures

-142-

7.1 Introduction

Thus far in the thesis, work on identifying polymorphs and predicting the propensity

to form polymorphs was presented. This chapter focuses on the effects of

polymorphism on the properties of the solid state. An attempt is made to develop ways

to capture the solid state information to allow accurate solid state property prediction.

Melting point is used as a case study in this chapter.

Melting point is the temperature at which a solid transitions into a liquid. The process

consists of breaking of the intermolecular interactions that hold the molecules within

the crystal lattice. The temperature at which this occurs is the ratio of enthalpy and

entropy of melting [152]. The property, along with logP, can be used to estimate the

solubility of a compound via the General Solubility Equation (GSE) [81]. The melting

point can also be used as a descriptor of the strength of intermolecular interactions

within the crystal [35,71]. This can be used to identify “brick dust” compounds, where

the solubility is limited by the solid state interactions [35,71].

Melting point has been of interests to scientists for a long time. Earliest work on

melting point prediction can be traced back to the 19th century [233]. Most of the work

performed in the area focused on a narrow applicability domain such as alkenes or

chlorobenzenes [234,235]. As the availability of data increased, predictive models that

are applicable to a wider range of molecules were developed [172]. Less curated,

larger datasets have also been shown to produce models with large applicability

domain [83,84]. Reviews of the melting point prediction can be found elsewhere

[45,83,236].

A number of common challenges were identified in the previous works on the melting

point prediction. In particular, it has been suggested that the molecular descriptors are

unable to capture the long range intermolecular interactions that need to be broken for

the crystal to melt [94]. However, another significant contribution which limits model

performance is the experimental error, which may be interpreted as the inconsistency

between measurements reported in different studies. Analyses have suggested that

experimental errors vary with melting point and may be of the order of 32-35 oC [83].

However, these estimates are based upon analysis of the variability of measurements

for the same molecule and may be affected by polymorphism or impurity.

-143-

However, the value of incorporating solid state information can only be properly

assessed by focusing on the prediction of melting points which directly correspond to

that solid state information, i.e. polymorph specific melting point data are required.

Hence, to assess the importance of the solid state contributions, a dataset for crystal

structure-specific melting point was used in this study. The Cambridge Structural

Database (CSD) is a curated repository of small organic and metal-organic crystal

structures [74]. Some of the entries contain melting points measured for the specific

crystal structure. These entries formed the bases on the dataset used in this study.

Previous work done on incorporating solid state information into predictive models

for temperature-dependent solubility did not yield expected improvements [70]. The

inadequacy of the solid state descriptor was cited as one potential reason for the lack

of significant improvement in performance, along with the lack of polymorph specific

solubility data.

In this work, an attempt was made to capture the crystal information by a combination

of different kind of descriptors, including a novel graph embedding representation of

intermolecular interactions. The approach was presented at Computational Molecular

Science conference in March of 2019 [237]. Since then, a similar approach to

capturing crystal information [238] and ligand-protein intermolecular interaction

[239] has been published.

Graph embedding techniques such as Message Passing Neural Networks (MPNN) can

generate a fixed-length descriptor of a graph [104]. In MPNN, for each node (v), a

message (𝑚𝑣
(𝑡+1)

) is passed from each of the neighbouring nodes (NBR(v)) based on

the edges type (le) where each edge is defined by the two nodes (e = vw). In the

implementation used, this is achieved by the following function [105]

𝑚𝑣
(𝑡+1)

= ∑ 𝑊𝑙𝑣𝑤
ℎ𝑤

(𝑡)

𝑤∈𝑁𝐵𝑅(𝑣)

Equation 7.1

𝑊𝑙𝑣𝑤
 is the weight matrix for the specific edge type (interaction between atoms) and

ℎ𝑤
(𝑡)

 is the state of the node (atom) at iteration t. The state of each node is updated at

the end of the message passing stage using a Gated Recurrent Unit (GRU) [240] or a

Recurrent Unit. (RU) [105]

ℎ𝑣
(𝑡+1)

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑣
(𝑡),𝑚𝑣

(𝑡+1)
) Equation 7.2

-144-

The message passing is repeated T times after which all states are pooled to generate

the fixed-length representation of the graph using gated regression layer [105].

𝑝𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ∑ 𝜎 (𝑖(ℎ𝑣
(𝑇)

, ℎ𝑣))

𝑣∈𝑉

⨀(𝑗(ℎ𝑣
(𝑇)

))
Equation 7.3

In the implementation used in this work, i and j are Multi-Layer Perceptrons (MLP)

with no hidden layers and ReLu (rectified linear unit) activation function. 𝜎 is the

sigmoid activation function and ⨀ indicates a Hadamard product (element-wise

multiplication).

A detailed description of the principles of MPNN can be found elsewhere [241].

MPNN have been used to model many types of graph information, ranging from

knowledge graphs to molecules [43,57,104,106,241,242]. Prediction of thermoelectric

properties of materials using crystal graphs have also been studied [242].

In this work, the suitability of MPNN as a method of embedding crystal information

for melting point prediction is assessed. This is achieved by comparing models that

only had molecular information to ones that had access to molecular and crystal

information, as well as through Matched Molecular Pair Analysis (MMPA as

discussed in Chapter 3) and comparison of polymorph predictions.

7.2 Methods and data

7.2.1 Datasets

The CSD Melting point dataset (CSD MP set) was used in the study to develop models

to predict the melting point. Approximately 17 % of single component structures in

the CSD have melting point data reported along with the crystal structure. The melting

point data was converted to consistent units and entries where the reported melting

point range for a specific crystal structure was more than 5 oC were ignored. This was

performed to minimise the effects of experimental errors on the dataset. Measurements

of more than 5 oC range for a specific crystal structure were considered unreliable.

Entries where instead of a melting point, a temperature of degradation or sublimation

was reported, were ignored as well. This resulted in a dataset of 61,250 crystal

structure specific melting points. The CSD MP set was split into training (75 %,

45,938), validation (15 %, 9,187), and tests (10 %, 6,125).

-145-

7.2.2 Model architecture

The model developed here consists of a graph model and prediction layers (Figure

7.1). Message Passing Neural Network is used as the graph model to generate a fixed-

length representation of the graph inputs as per Equation 7.1 – Equation 7.3. The

details of the graph model used and the respective hyperparameters are presented

below (7.2.2.1). The graph representation along with additional descriptors are fed into

the prediction layers which make the melting point prediction (7.2.2.2).

7.2.2.1 Graph model

The Graph Model (GM) uses a varied size graph as an input and outputs a fixed-length

representation of it. The graphs were constructed using CSD Python API. The graphs

contain nodes information (atom information) and edge information (intra- and inter-

molecular interactions). Atom type (element identity) information was one hotkey

encoded and padded with zeroes to the predefined size (node size). This was used as

the initial node vector values. Edge types were categorised into: single, double, triple,

or aromatic covalent bonds. Additionally, intramolecular Van der Waals (VdW),

intermolecular VdW, and hydrogen bonds were used. Hydrogen bonds and Van der

Waals interactions were identified using the distance and line of sight as defined by

the default settings of the Python API.

Figure 7.1: Overview of the model architecture.

G
rap

h
 m

o
d

e
l

Recurrent layer

Recurrent layer

Recurrent layer

Gated regression

Prediction layers

Shape
descriptor

Predicted value

H-bond
dimensionality

Architecture

Graph representation vector size

Size of node vector

Number of layers

Types of intermolecular interactions used

Key:
Network design
Hyperparameters
Crystal information

Number of timesteps

-146-

A GM cell was assigned to each node (atom). These cells were either recurrent units

(RU) or gated recurrent unit (GRU) [240]. A message is passed between each

connected node based on the edge type (i.e. different weight matrix for each of the

edge types) as per Equation 7.1 and Equation 7.2. The number of times the message

is passed is divided into two hyperparameters: GM layers and GM timesteps. GM

layers indicate how many different weight matrices are used for each of the edges. GM

timesteps indicates how many times the message is passed using the same weights.

For example, two GM layers with timesteps of two and one respectively indicate the

passing of the messages using W1 twice followed by message passing using W2 once

(where Wi is the weight matrix for a particular edge type for layer i). This is performed

to allow the model to treat neighbouring atoms (e.g. within the same functional group)

differently to ones further away. The total number of message passing steps (t)

indicates how many neighbours is each of the nodes ‘aware’ of. After the message

passing step is complete, all the messages are aggregated to produce a fixed-length

representation of the graph (graph vector). All the nodes are summed and passed

through a gated regression Equation 7.3. Similarly to GRU, the gated regression uses

an update gate to select which information is passed. The generated fixed-length graph

representation is then fed to the prediction layers. In the original implementation of

the algorithm [57], the message passing step was repeated until all nodes vectors

converged. However, later work showed that Gated Graph Neural Networks could use

the gated pooling step to generate the fixed-length graph feature [105].

7.2.2.2 Prediction layers

The prediction layers (PL) are a multilayer perceptron (MLP). The graph

representation along with the additional descriptors are the inputs to PL. The number

of neurons per each of the two layer are two hyperparameters. ReLu was used as the

activation function for all neurons except the outer layer, where a linear activation

function was used to generate a single value prediction. The graph representations do

not store any geometrical information; the additional descriptors focus on capturing

this. The two additional descriptors attempt to capture the molecular and crystal

interaction geometrical information respectively.

Shape change. The Root Mean Squared Deviation (RMSD) between the molecule in

the crystal and the molecule in the gas phase is used as the molecular shape change

-147-

descriptor. The descriptor intends to represent the energy required to distort the shape

from its optimal conformation to the conformation found in the crystal.

A molecule is taken from the unit cell of the crystal, and 10 random conformers are

generated. Each of these is then optimised in the gas phase using the Universal

Forcefield [243] as implemented in RDkit [213]. The lowest energy one is taken to

represent the global minimum conformation. RMSD is computed between the

optimised molecule and each molecule in the unit cell of the crystal, following the

maximum alignment of the structure. The average RMSD value is used as the

descriptor.

Hydrogen bond dimensionality. Hydrogen bonds are captured by the graph model;

however, the dimensionality of it may be lost. Hydrogen bond dimensionality was

calculated using the method presented in this paper [244]. The possible outputs are: 0-

D (point), 1-D (chain), 2-D (plane), or 3-D. One hotkey encoding was used to express

this where a vector of zeroes was used for structures with no hydrogen bonds.

7.2.3 Model construction

Two types of models were developed to investigate the effect of incorporation of

crystal information. Molecule model is constructed only from molecular information.

This includes the atom type and the intramolecular bonds between them. Crystal model

also has access to the additional crystal information. Usage of each type of crystal

information is a hyperparameter where the model can learn to use or ignore it. The

comparison of the information available and the information used is presented in Table

7.1.

Each model was trained using Adam optimiser [137]. The training was stopped after

300 epochs or after 25 consecutive epochs with no improvement in MSE on the

validation set. Weight initiation was performed using Glorot initiation [133] (see

2.4.6.2). Hyperparameter optimisation was performed using Tree-structured Parzen

Estimator (TPE) algorithm [147] as introduced in 2.4.7. Hyperopt [146] – Python

implementation of the algorithm was used. Up to 1,000 steps of optimisation, with

early stopping if no performance improvement was observed for 10 consecutive

iterations, for each of the types of model were performed. The top 10 models of each

type were analysed to determine the optimum combination of hyperparameters.

-148-

Optional information for the Crystal model (Table 7.1) were used as optional

hyperparameters (Use / not use). The graph model hyperparameters were: node size,

node cell type (GRU or RU), graph representation size, number of timesteps and the

number of layers. The prediction layers (MLP) hyperparameters were the two hidden

layer sizes.

7.2.4 Performance analysis

The performance of the models was evaluated using Mean Absolute Error (MAE), and

R2 (mean coefficient of determination) value. Root Mean Squared Error (RMSE) was

also reported. Further to this, Matched Molecular Pairs (MMPs) and polymorph pair

comparison was used to de-convolute the relative importance of molecular and crystal

information.

7.2.4.1 Matched molecular Pairs

Matched Molecular Pair database as introduced in Chapter 3 was used in this study.

The MMPs were used to compare the actual change of melting point to the predicted

change to see how well the model is able to predict small molecular changes. It was

Table 7.1: Information used and made available to Molecule and Crystal

models.

Y – available to the model, N – not available to the model, O – optionally

available to the model.

Input to Information Molecule Crystal

Graph model

Atom type Y Y

Covalent bonds Y Y

Hydrogen bonds N O

Intra-molecular VdWs N O

Inter-molecular VdWs N O

Prediction

layers

Shape change N O

Hydrogen bond

dimensionality
N O

-149-

also used to estimate the typical effect a small molecular change has on melting point

as a point of comparison against melting point differences of polymorphs.

7.2.4.2 Polymorph Pairs

Polymorph pairs were defined as pairs of crystal structures with the same molecular

composition (based upon SMILES comparison) but different melting points.

Structures with the same molecular composition and same melting point were

considered to be redeterminations of the same crystal structure and were not used for

this analysis. The change in actual melting point across polymorph pairs was used to

estimate the average effect a polymorphic change has on the melting point. The change

was compared to the predicted difference to approximate how well the model is able

to predict the effects of solid state changes.

7.2.5 Software

The work in this paper was done using Python 2.7 and Python 3.6 environments due

to the requirements of different libraries. The preparation of the CSD MP dataset was

doing using the Python 2.7 environment. All interaction with the CSD was done using

the CSD Python API (version 1.5.2) distributed by the CCDC with the database [215].

RDkit was used for molecule optimisation [202]. Script by Steven Kearnes from

DeepChem library was used for the molecule optimisation workflow [245]. The

Python 3.6 environment was used for the model development. Tensorflow [246] was

used to construct the neural networks and was run on University of Leeds ARC

facilities. Hyperopt [146] was used for hyperparameter optimisation. Pandas [216],

scipy [247], matplotlib [218], and seaborn [217] were used for data processing and

visualisation. The scripts used for the network construction was based on work

available from GitHub [248]. The modified scripts along with ones developed

specifically for this work are available in Appendix 4.

-150-

7.3 Results and Discussion

7.3.1 Model performance and architecture

The hyperparameter optimisation was continued for up to 1,000 iterations. The Crystal

and Molecule models with the highest R2 value (equivalent to MSE as calculated on

the same dataset) are reported in Table 7.2. The optimisation converged on the best

combination of hyperparameters; the top 10 best performing models have a similar set

of hyperparameters (Table 7.2). The best performing Crystal model achieved R2 value

of 0.649 on the validation set and 0.550 on the test set (the optimisation curve shown

Table 7.2: The best Molecule and Crystal models' hyperparameters along

with the average of the top 10 models for each category. Same treatment was

applied to R2. For categorical hyperparameters the most common value and

the corresponding fraction is reported.

Hyperparameter
Molecule Crystal

Best Top 10 Best Top 10

Graph vector 300 400 500 690

Node vector 110 117 90 94

PL layer 1 380 412 300 336

PL layer 2 160 200 230 252

GM cell type RU RU (1.00) RU RU (1.00)

GM timestep 2 2.00 2 2.00

GM layers 1 1.00 1 1.00

Use H-bond - - False False (1.00)

Use intra-VdW - - True True (1.00)

Use inter-VdW - - False False (1.00)

Use shape change - - True True (1.00)

Use H-bond dim - - True True (1.00)

R2 0.628 0.621 0.649 0.631

-151-

in Figure 7.2). The corresponding best Molecule model achieved R2 of 0.628 on the

validation set and 0.500 on the test set.

Methods such as dropout [114] were utilised to reduce the risk of overfitting. However,

the decrease in the R2 value between the validation set and the test set (from 0.649 to

0.550 for the crystal model) may be indicative of overfitting. The Molecule model also

underperformed on the test set (0.628 on the validation set and 0.500 on the test set).

However, the mean absolute error remained relatively unchanged for the Molecule

model (31.8 oC for both) and reduced from 30.8 oC to 29.5 oC on the test set for the

Crystal model. The subsequent analysis needs to be considered with the caveat that

some overfitting occurred. It was still considered valuable to compare the

performances of the Molecule and Crystal models, as well as investigate how well the

crystal model performed on pairs of polymorphs.

The major difference between the top 10 Crystal models comes from the size of the

layers. In particular, the graph vector size ranges from 500 to 1,200. This suggests that

the size of 500 is sufficient to capture graph information and any size above that does

Figure 7.2: Optimisation curve for the training of the Crystal model.

The graph was extracted from Tensorboard as part of the used Tensorflow

library. Each datapoint represents an iteration of training. The MAE is

expressed in terms of the normalised data (standard deviation of 60.2).

N
o

rm
al

is
e

d
 M

A
E

Time [hours]

-152-

not contribute to the improvement of the model. This is reinforced by the fact that the

best performing Crystal model had the graph size vector of 500.

The graph vector size was bigger for Crystal models compared to Molecule models.

The Crystal models are able to store more information concerning the graph structure,

since crystal graphs are more complex than molecular graphs. However, the optimal

size of the node vector is smaller for the Crystal models compared to the Molecule

models. Intuitively, this can be explained by the need of the Molecule models to

implicitly capture information about the possible inter-molecular interaction that the

Crystal models can capture explicitly. Therefore, the Molecule model needs a bigger

vector to store the information. The optimal graph model set up, in terms of the GM

layers and GM timesteps, was similar for the two types of models. Using only a single

set of weights (one GM layer) seems to be sufficient. This is potentially due to the

increase in number of trainable parameters associated with multiple GM layers which

the model might not be able to fit adequately. Two GM timesteps, two degrees of

separation, are sufficient for each node to learn about its neighbours. This appears

consistent with the fact that a typical functional group can be identified by atom

connection within two degrees of separation. For larger groups such as aromatic rings,

a unique edge type is used, reducing the number of timesteps required for the model

to learn the presence of this kind of a functional group.

Interestingly, hydrogen bonds are not as useful as part of the graph model component

of the Crystal model. This is potentially because the possibility of forming hydrogen

bonds is implicitly captured by the graph based on the functional groups present.

Furthermore, the hydrogen bond dimensionality descriptor captures the complexity of

Figure 7.3: Target MP and predicted MP by Molecule (left) and Crystal

models (right) on the validation set.

-153-

the hydrogen bonding formed within the crystal structure, making the explicit

hydrogen bonding encoding superfluous.

Based on the hyperparameter optimisation, the intermolecular Van der Waals

interactions were not selected as useful. This is potentially due to the fact that VdW

interactions are implicit in the molecular shape in the crystal structure, which is

partially taken into account by both the information regarding molecular functional

groups and intramolecular VdW interactions. This is encoded in the graph model via

the intramolecular VdW, and the molecular shape descriptor representing how the

molecular shape is distorted in the crystal from the gas phase preferred structure. This

may also be the reason for the inclusion of intramolecular Van der Waals interactions.

This may be complementing the shape descriptor in capturing the relative positions of

the atoms within the crystal structure, since the VdW interactions were obtained purely

based on distance.

To test these hypotheses regarding the reasons why the hydrogen bonding and VdW

intermolecular interactions were not selected for the graph model component of the

Crystal model, a new model which had access to crystal edges (H-bonds and VdWs)

but not the H-bond dimensionality and the molecule shape descriptor, was trained and

hyperparameter optimised. This model achieved R2 of 0.630, worse than the best

performing Crystal model, but comparable to the top 10 models and surpassing all the

Molecule models. This suggests that in the absence of H-bond dimensionality, the H-

bond and VdWs edges contribute to the performance of the model. The molecular

shape change descriptor is a useful descriptor as the graphs do not store any

geometrical information.

7.3.2 Does crystal information help?

Molecule and Crystal models were compared to see the relative importance of the

additional crystal information. The best Crystal model achieved the R2 of 0.649 and

0.550 on the validation and test sets, while the Molecule model achieved 0.628 and

0.500 (Figure 7.3 and Table 7.2). The top 20 best performing Crystal models are

statistically different compared to the top 20 Molecule models based on the Mann-

Whitney U test (p value = 2.937 × 10−6). The addition of crystal information does

improve the performance of the model. However, the improvement is relatively small,

considering the amount of effort that is required to obtain a crystal structure. Three

-154-

possible reasons for the limited improvement were investigated: (1) under-

representation of polymorphic structures in the dataset, (2) inability to capture solid

state-specific information, and (3) the lack of importance of solid state information.

7.3.2.1 Underrepresentation

The difference between two crystal structures can be separated into a molecular

change and crystal change (Figure 7.4). Crystal change corresponds to the change in

molecular shape and arrangement as is seen when comparing two polymorphs. A

molecular change alone cannot be easily observed as a pair of different molecules also

pack differently. Therefore, a molecular change is also associated with a crystal

change.

The CSD MP dataset contains 672 molecules that are polymorphic (1.1 %). For the

majority of training, different target values were presented along with different

molecular and crystal changes. The model likely did not effectively learn the effects

of crystal changes as these were often linked with molecular changes. The small

number of occurrences of entries with the same molecular structure but different

Figure 7.4: Illustration of molecular and crystal changes along with how these

can be studied using polymorphs and Matched Molecular Pairs (MMPs)

Polymorphs is a crystal change with no associated molecular change. A small

change in the molecular structure (MMP) results in a molecular and crystal

change as the crystal packing is affected by the molecular structure.

Molecular change

C
ry

st
al

 c
h

an
ge

Po
ly

m
o

rp
h

-155-

crystal structure (polymorphs) may have led the model to incorporate crystal change

as part of the molecular change.

7.3.2.2 Capturing crystal information

Despite being underrepresented, analysis on polymorph specific MP prediction can be

performed. 21 pairs of polymorphs were identified within the validation set. Firstly,

as a surrogate for relative polymorph stability, the order of melting points between

polymorphs was investigated. 13 pairs of the 21 polymorphic pairs were predicted in

the right order (62 %). A score of -1 was given where the order of melting points was

incorrect and +1 if the order was correctly predicted. Random guessing is expected to

result in a symmetric distribution around 0 (equal number of correct and incorrect

guesses). Wilcoxon test was used to see if the model is statistically different from the

random guessing. The p value calculated was 0.275, thus the null hypothesis that the

distribution is symmetric around 0 (i.e. equivalent of random guessing) cannot be

rejected. This is consistent with the hypothesis that the model failed to adequately

capture the crystal change specific contributions to the melting point. However, it is

important to note that the sample size is very small (21 pairs).

Figure 7.5: Actual and predicted change for polymorph pairs.

-156-

The ability of the Crystal model to predict the solid state-specific melting point was
Table 7.3: List of molecules for which the Crystal model was not able to accurate predict

the difference between polymorphs. Cases where the predicted value of a specific structure

is incorrect by more than the MAE (30.8 oC) are highlighted.

Refcode Target [C] Predicted [C] Molecule

FPAMCA12 120.7 151.7

FPAMCA14 124.2 70.0

JATFUF02 122.0 102.2

 JATFUF03 135.9 208

CEPXHP 119.6 126.1

CEPXHP01 127.6 99.8

KARCOW 254.6 142.7

KARCOW01 292.3 147.1

-157-

investigated further by seeing how well the model is able to predict the difference

between polymorphs. The comparison of the predicted and actual differences between

polymorphs is presented in Figure 7.5. The magnitude of the actual change ranges

from 0.5 oC to 37.8 oC while the predicted change is typical below 13.0 oC (two cases

of the change predicted to be 21 and 26 oC shown in Figure 7.5 and two cases of over

80 oC not shown in the figure). Polymorphs where the discrepancy between actual

difference and predicted difference was the largest were examined closer. A select few

pairs of molecules are shown in Table 7.3.

A number of structures where the large difference in the actual melting points was due

to errors in the data were left out of the analysis. XEHGOH and XEHGOH01 have

target values of 138.9 and 163.9 oC respectively, but based on the comparison of

packing [211], the two structures appear to be the same polymorph. Hence, these

should have the same melting point. The model made a prediction that is 6.2 oC apart

(141.2 and 147.4 oC respectively) which is consistent with the similarity of packing

between the two crystal structures. In case of FPAMCA (12/14) and JATFUF(02/03),

as shown in Table 7.3, one of the structures was predicted within the mean absolute

error (30.8 oC) while the other was outside of that range. This suggests that in these

cases, the solid state effect was not adequately captured. The pair of molecules of the

refcode family KARCOW were both predicted inaccurately by over 100 oC. The order

of polymorphs stability (melting point) was predicted correctly, but this is likely a

coincidence considering the overall poor prediction for the structures.

Several shortcomings of the model setup may be the cause of the inability to accurately

predict the solid state specific melting point. The intermolecular interactions are based

purely on the geometric relationship between atoms rather than force-based

consideration. This may result in the inaccurate assignment of the intermolecular

interactions, especially in cases such as the π- π interaction between aromatic rings. In

cases where hydrogen bonds do not form, the π- π stacking interaction may play an

important role in contributing to the lattice energy such as in case of p-aminobenzoic

acid [249].

7.3.2.3 Relative importance of solid state changes

The importance of the additional crystal information is useful only if crystal change

(polymorphism) plays an important role in melting point. To assess this, the effects of

-158-

polymorphs were compared to the transformations corresponding to matched

molecular pairs (MMPs) identified within the CSD dataset. Representative

transformations were selected and their impact on the melting point was compared.

The most common transformation was the substitution of hydrogen by a methyl group

(1,302 occurrences). It was expected to be relatively insignificant due to the small size

of the methyl group and the lack of the change of hydrogen bond acceptor/donor count.

The transformation was expected to have limited impact on molecular packing and

VdW interactions. As an example of a transformation that may affect the melting point

more, a substitution of a hydrogen with a carboxyl group was selected as it changes

the number of potential hydrogen bonds. Considering transformations with at least 10

MMPs within the used dataset, this transformation had the third-highest mean effect

on the melting point. The top two are hydrogen to carbamoyl and methyl to carboxyl.

However, hydrogen to carboxyl has much higher MMP count within the dataset (74

against 15 and 19 respectively) so it was selected, as its effects on melting point could

be assessed more robustly.

The addition of the hydrogen bonding carboxyl group has the largest effect on the

melting point, with the mean and median change of 95 oC and 107 oC. The hydrogen

to methyl transformation, albeit small, has an average mean and median change of -7

and -4 oC. The differences between polymorph pairs were always taken as a positive

number. The mean and median change for polymorphs are 11 and 4.5 oC, respectively.

The absolute change for the two selected molecular transformations and polymorph

pairs are presented in Figure 7.6. The absolute change was selected rather than change

as the focus of the study is to compare the potential magnitude of effect rather than

-159-

determining the effect itself. This is lower than the mean and median of the absolute

change for the hydrogen to methyl transformation which is 30 and 23 oC, respectively.

This analysis suggests that even small molecular changes tend to have a larger effect

on the melting point than do crystal packing changes. This is in agreement with

literature which suggests that the typical energy difference between polymorphs is

small (less than 1 kcal/mol) [50].

7.3.2.4 When does crystal change matter?

The melting point difference between polymorphs is typically small (median of 4.5

oC). However, there are cases where the difference is more profound. An attempt was

made to identify molecules where crystal change results in a significant change in the

melting point. The focus was placed on intermolecular interactions and the molecular

shape change.

The number of hydrogen bond donors and acceptors, and their ratio were compared to

the change in melting point, but no statistically significant relationship was found. The

potential importance of hydrogen bonding was further studied using the hydrogen

dimensionality descriptor (Figure 7.7). The polymorph pairs were separated into two

Figure 7.6: Comparison of the absolute change in MP due to hydrogen to

carboxyl and methyl group substitution, and polymorphic change.

Figure 7.7: Comparison of absolute change of MP for pairs of polymorphs

where hydrogen bond dimensionality changes or remains constant.

-160-

groups: no hydrogen dimensionality change occurs between the pair, and pairs where

there is a change in dimensionality. For the purpose of the study, the degree of change

was not considered (i.e. no differentiation between a change from 1D to 2D and a

change from 1D to 3D). Pairs of polymorphs where the dimensionality of the hydrogen

bonds change have higher median change (6.7 oC) compared to pairs where there is

no change in the dimensionality (4.0 oC). Polymorphs where the dimensionality of

the hydrogen bonding changes, typically have 68 % higher change in melting points.

The two distributions are statistically different based on the Mann-Whitney U test (p

value = 4.665 × 10−4). This indicates the potential future avenue of research, focused

on data-driven tools to study what molecular properties lead to larger changes in solid

state properties across polymorphs. However, it is important to note that the median

difference for the two types of polymorphs discussed here is smaller than the change

caused by molecular transformations. This may be the reason why the performance

difference between the Molecule and Crystal models is small, as even a model that

perfectly captures the crystal difference can only be expected to improve the

performance by the average of 4.5 oC.

Apart from the hydrogen bonds, another important intermolecular interaction is the π-

π stacking. This interaction was not fully captured by the model as this interaction

typically occurs between aromatic rings and not individual atoms which is what the

graph is based on. A number of polymorphs with the largest melting point difference

were structures with multiple aromatic rings and one or none hydrogen bonding sites

(Figure 7.8). The dataset was sliced based on the number of aromatic rings present and

-161-

whether there were any hydrogen bonds present, but no statistically significant

difference was observed. A caveat to note here is the fact that only 21 pairs were

studied here.

A number of molecular descriptors were used to study its effect on the difference in

melting point across polymorphs. No statistically significant correlation was found

between the melting point difference and molecular size (heavy atom count) nor

molecular flexibility (nConf20 [212]). The flexibility descriptor was developed to

predict the crystallisability of a molecule, so lack of correlation may be an artefact of

the lack of polymorph data for difficult to crystallise molecules. The number of

conformers that can coexist within a crystal structure was also considered as a

descriptor. With the higher number of conformers, the number of possible

intermolecular interactions can be expected to increase. The highest observed Z prime

in all polymorphs of a given molecule was used as the conformer compatibility

descriptor. Z prime is the number of molecules within the asymmetric unit of the

crystal structure. For molecules with no self-symmetry, the value is one for structures

with one conformer present. However, no statistically significant difference was

observed for molecules with different conformer compatibility descriptor values.

7.4 Conclusion

Message Passing Neural Network was used to construct two QSPR models to predict

the melting point. The Molecule model, one constructed from molecular graphs,

Figure 7.8: Example molecules with large MP difference between polymorphs.

Left – XUYHOO (86.0 C), right top – QAPKOH (132.5 C), right bottom –

ICAKAY (129.7 C)

-162-

achieved R2 value of 0.628 on the validation set and 0.500 on the test set. The Crystal

model, one constructed from molecular and intermolecular graphs along with

additional crystal descriptors, achieved an R2 value of 0.649 and 0.550 on the

validation and test sets respectively. The graph-based approach has shown some

promise in capturing the molecular and crystal properties. However, further work is

necessary to the suitability of the approach for melting point prediction. Recent work

in the use of molecular graph has shown promise in the QSPR field [238,239].

Some insights can be derived from the study regarding the ability to capture crystal

information and its relative importance. A statistically significant (p value=

2.937 × 10−6), albeit small improvement (average R2 = 0.621 and 0.631 on the

validation set) was observed between the Molecule and Crystal models. The small

performance improvement between the two types of models is likely due to a

combination of three reasons: (1) underrepresentation of polymorphs in the dataset,

(2) inability of the model to capture solid state specific information, and (3) the

typically small property difference between polymorphs.

Only 1.1 % of the molecules are polymorphic within the CSD MP dataset; hence the

trained models had limited exposure to structures with only solid state differences.

The model did not predict the relative stability of polymorphs (as approximated by

comparison of melting points) in a way that is statistically significant. However, this

may be due to the small number of polymorph pairs that were studied (21 pairs).

Only geometric considerations were undertaken when assessing the intermolecular

interactions which potentially reduced the usefulness of the information captured by

the models. The π- π interaction were not explicitly captured by the model which may

have contributed to the inability to fully capture the various intermolecular interactions

that affect the melting point. Geometry of the π- π interaction affects the strength of

the interaction [250], so a way of capturing this beyond the graph method is required.

The typical melting point difference between polymorphs is 4.5 oC, much smaller than

the effects of molecular changes such as the substitution of a hydrogen with a methyl

group. Therefore, the potential performance improvement from capturing the crystal

information is also small. However, in some cases, the difference between polymorphs

is large (over 30 oC). Potential factors that contribute to the large difference were

investigated. Hydrogen bond dimensionality is a potential indicator of this

-163-

phenomenon; whereas molecular flexibility, the presence of aromatic rings appear not

to be indicative, although this may be due to the issue of unknown polymorphs

discussed in Chapter 4.

The study has shown that there is some benefit to including crystal information for

solid state-specific melting point prediction. The graph-based approach to capturing

molecular and crystal information also shows some promise, although further work is

required. The ability to predict whether a molecule exhibits polymorphs with a wide

range of melting points would be a useful tool to complement the molecule structure-

based melting point prediction.

-165-

Chapter 8

Conclusion

-166-

8.1 Introduction

In this thesis, the extent to which techniques deployed during the Discovery stage can

be applied to the Development stage datasets to address challenges encountered at this

stage was investigated. Chapter 2 contextualised this challenge within the

pharmaceutical product development process and the Material Science Tetrahedron

(MST). Based on the survey of the challenges, two specific topics were identified as

the focus of the thesis. The topics are: (1) the prediction of the propensity of molecules

to form polymorphs and (2) the prediction of crystal structure-specific melting points

as an indication of potential solid state-specific solubility. Chapter 2 also provided an

overview of the techniques used in the thesis. Matched Molecular Pair Analysis

(MMPA) and Quantitative Structure Property Relationship (QSPR) were selected as

the two methods of addressing the topics identified. In Chapter 3, a novel database

approach to the MMPA was introduced. The MMP database workflow was utilised to

study the effects of small molecular transformations on the polymorph propensity

(Chapter 4). Issues related to the quality of the polymorphism data is partially

addressed in Chapter 5 by the development of a machine learning-based polymorph-

redetermination classification method which was benchmarked against the existing

methods. The issue related to the low number of MMPs present in the MMPA of

polymorph propensity was explored within the context of the different stages of the

drug development process in Chapter 6 by introducing Matched Molecular Graphs as

a method of exploring the dataset suitability for MMPA. Work on the second topic

identified in Chapter 2, crystal structure specific melting point prediction, was

discussed in Chapter 7.

Figure 8.1: The three themes used to discuss the key findings of the thesis.

Data

Method Topic

-167-

The key findings from the thesis are discussed within the framework of three

interconnected aspects: Data, Empirical method, and research topic, as illustrated in

Figure 8.1. Conclusions are drawn on the specific topics studied, as well as on the

broader implications for the research in the area of solid state informatics for

pharmaceutical development.

The framework was selected due to the unique nature of the data-driven approaches,

where the available data and its quality plays a vital role on the suitability of methods

and topics. For example, polymorph specific solubility prediction may not be a

suitable research topic if the required data availability is limited [70,251]. Similarly,

multi-layered neural networks may not be the most suitable tool for QSPR modelling

if the dataset has only 10s or 100s of examples due to the high likelihood of overfitting.

Any research project needs to consider the interdependence of these three aspects.

These are discussed within the scope of the project and as learning outcomes that can

be used to inform further research.

8.2 Data Management

The availability and quality of data is a crucial consideration when undertaking a data

driven project. The importance of the quality of data is indicated by Wilf Hey’s maxim

– “Garbage in, Garbage out”. Assuming consistent quality, the more data is available,

the better empirical models can be developed. The two aspects are discussed within

the scope of the project below. Based on the work, recommendations for future

projects in a similar research area are presented.

8.2.1 Quality

In Chapter 4 and Chapter 5, several issues related to the polymorphism data were

identified. Firstly, many of the molecules in the CSD have not been studied under

different conditions to identify all polymorphs (within a reasonable set of conditions).

This results in underestimation of polymorphism in the database. Monomorphic

adjustment [50] (as described in Chapter 4) was implemented to mitigate the issue by

eliminating molecules that are likely to have not been studied extensively. Further

adjustments can be done by, for instance, eliminating all molecules that do not have at

least 3 distinct structures (as opposed to two as done in the original publication [50]

-168-

and the thesis where the dataset was reduced by 97 % to 6,633 structures). The process

can be continued until the fraction of polymorphic structures matches that of the more

heavily screened, smaller datasets. However, this approach also introduces a new bias

– where the more commonly studied compounds are overrepresented. This may result

in developing a model to predict popular compounds, rather than polymorphic

compounds. The process also reduces the dataset size, making it difficult to identify

any statistically significant trends.

The uniqueness of the challenges associated with polymorph propensity lies in the

inability to assess the data quality and completeness on individual entry level. Namely,

the lack of polymorphic data cannot be distinguished between the lack of

polymorphism or the lack of research done on the molecule. In the case of melting

point, it is easy to identify molecules that have no information on the property. A

public database of polymorph screens with studied conditions and resulting crystal

structure information, even if no distinct structures were identified, would be a useful

tool to aid this challenge. The number of entries to this database would be an indication

of how much the molecule has been studied, and the range of conditions of these

studies would inform the completeness of polymorph search. Running polymorph

screening is typically expensive, so it is unlikely that such a database could be purpose-

built by an individual group. However, crystallisation is a commonly studied process,

so there is a possibility for such a database to be successfully constructed based on

inter-institutional collaboration. Similar databases may also be constructed in-house

by pharmaceutical companies to better utilise the data already at their disposal.

The second issue related to the polymorphism data quality is the classification of

structures into polymorphs and redeterminations. Majority of crystallographic

research focuses on specific molecule or group of molecules. Systematic studies of

polymorphism are relatively rare [50,209]. The systematic studies rely on automated

methods for polymorph-redetermination classification. The method commonly used is

the simulated spectra comparison method[211] (discussed in Chapter 5). However, the

method was only tested on a small subset of 386 structures (83 molecular

compositions). A more detailed benchmarking was performed in Chapter 5 where the

existing and novel machine learning-based automated methods were compared against

manually assigned labels on a dataset of 2,951 pairs filtered to eliminate inconsistent

manual labels. The best machine learning model achieved a F1 score (defined in

-169-

Equation 2.21) of 0.910 with recall and precision of 0.864 and 0.962 respectively. The

F1 score of the spectra comparison method was 0.780 with relatively lower recall

value of 0.645 (precision was 0.987). The spectra comparison method had lower false

positive rate but a higher false negative rate.

The benchmarking also shed light on some of the inconsistencies found with

polymorph identification. A research community-wide effort to more vigorously label

polymorphs and develop an appropriate automated classification method is needed.

The lack of standard method has an impact on other areas of research such as the solid

state-specific melting point prediction explored in Chapter 7. A community endorsed,

vigorous method of crystal structure classification would clarify these situations and

allow research in solid state-specific property prediction to accelerate. To this end, the

benchmarking dataset was curated.

8.2.2 Availability

The availability and the dataset size is another consideration that needs to be made

when undertaking empirical modelling. This was lightly touched upon above (8.2.1)

with the issue of decreasing dataset size of polymorph counts. However, the issue of

data availability is an important aspect of any data-driven project in its own right. The

history of empirical modelling of molecular properties begun with work on 10s of

compounds and a narrow applicability domain [87]. With time, the dataset sizes

increased and so did the applicability domain of the empirical models based on the

data [171,174]. A more general melting point models were developed using a dataset

of over 280,000 molecules [83]. A similar trend can be observed in other areas of

empirical modelling, in particular machine learning, where dataset sizes and the

capability of the models increased over time [252].

Therefore, the acquisition of data should be one of the priorities when it comes to

future development in the area. In most cases, the data is already present; however, in

a difficult to use format. According to some estimates, up to 95 % of data is

unstructured, meaning it is difficult to access and utilise [253]. In research-driven

organisations such as universities, the data is typically arranged project-wise (Figure

8.2). This allows easy retrieval of data for a specific project.

-170-

However, search for specific information, such as property data, is difficult if not

unfeasible to do on a large scale. There are typically no consistent naming conventions

enforced at the organisation level and the data is structured appropriately for the needs

of the specific project. Along with the difficulty in accessing the data itself, metadata

extraction is also challenging. There is little incentive for individuals responsible for

these projects to make the data more easily accessible across projects as this often

requires additional work. Notable exceptions exist where data from multiple sources

was curated [80,82,83]. These datasets can be utilised within the cheminformatics

community for the study of the respective properties. Approaches such as the FAIR

data management principles [254] and EPSRC expectation around data availability

[255] attempt to address some of these issues. However, as long as the data producers

(ones who hold responsibility for data generation) and the data consumers (ones that

reap the benefits of data availability) are disjointed, the problems are likely to persist.

Therefore, for a consistent solution to the problem, an organisational level and

preferable inter-organisational strategy is required. Improving the data accessibility is

likely to increase further research using empirical methods.

8.2.3 Suitability

The Matched Molecular Graph (MMG) was developed (Chapter 6) to assess the

suitability of a dataset for MMPA. MMG allows for dataset comparison and

visualisation of MMPs. The analysis of the constructed graph on the monomorphism-

corrected CSD single component dataset revealed that 74.9 % of molecules did not

Figure 8.2: Typical data arrangement within research organisations.

The data is arranged per project bases, making it easy to locate all relevant

data for a particular project, however it results in difficulty in accessing

similar data across multiple projects.

Project 1

Project 2

Project 3

Project 4

Property

-171-

have any MMPs, thus were not taken into account when performing MMPA.

ChEMBL-NTD set 14 (GSK TCAKS (Tres Cantos Anti-Kinetoplastids Set) dataset)

[229] was selected as a representative Discovery-like dataset. The graph property

analysis revealed that the Discovery dataset had 58.2 % of molecules with at least one

MMP (compared to 25.1 %) and the molecules that had at least one MMP, typically

had 5.34 MMPs (compared to 3.33). These factors resulted in the large difference in

the number of MMPs for the two datasets despite the same size (10,321 MMPs in

Discovery dataset, 2,776 in the used CSD dataset).

The MMG analysis between the two datasets indicated that there are some differences

in the datasets between Discovery and Development. Such differences should be

considered when attempting to utilise other data-driven approaches, that have been

successfully implemented in Discovery settings, to Development datasets. The

analysis also showed the need to consider dataset suitability beyond the size and the

target value quality. Although not quantitatively vigorous, MMG can be used to assess

the suitability of datasets for MMPA.

8.3 Empirical Method

A number of empirical methods ranging from simple linear regression[256] to deep

learning [257] have been used within cheminformatics. In this thesis Matched

Molecular Pairs Analysis (Chapter 4), machine learning (Chapter 5) and deep learning

(Chapter 7) were used. MMPA represent an easily interpretable empirical method

while the Neural Network represents a more capable of capturing complex

relationships but more difficult to interpret class of methods. The performance of the

two methods within the project, as well as potential future implementations are

discussed here.

8.3.1 Message Passing Neural Networks

The Message Passing Neural Networks (MPNN) were used to develop melting point

QSPR models using molecular and crystal information. The model uses simple

descriptors (element and covalent bond type) to obtain molecular information which

is complemented by crystal information based on the potential intermolecular

interaction, hydrogen bond dimensionality, and conformation change between

-172-

structure in the solid state and gas phase (shape change descriptor). A set of Molecule

models (only had access to molecular structure) and Crystal models (had access to

molecular and crystal information) were trained. Some improvement of the Crystal

model (R2 = 0.550) was observed compared to the Molecule model (R2 = 0.500). This

suggest that the model is capable of capturing some intermolecular interactions to

improve the performance. The inability to capture the strength of interactions as well

as limited ability to capture π-π interactions likely contributed to the small

improvement of the models, Recently, a similar model architecture was used to

successfully embed drug-target interactions using a graph-based approach to classify

molecules into active and inactive (Area Under the Curve = 0.968 and 0.935 on two

test sets) [239]. Although the test set performance of the Crystal model was lower than

on validation set (0.649), it has shown the ability of MPNNs to capture some

intermolecular interactions.

8.3.2 Matched Molecular Pairs – Graphs and Analysis

The Matched Molecular Pair framework was used for typical MMPA as well as for

construction of Matched Molecular Graph (MMG) and related analysis of the dataset

suitability for MMPA. The first step in the process is the identification of the MMPs

within a given dataset as discussed in Chapter 3. Several key issues relating to this

step were identified and addressed. As identified in other works on MMPs

identification using unspecified transformation methods (defined in 2.5.1.2), it is

important to limit the maximum size of the change of a MMP [180]. This is done either

by limiting the maximum size of the change or the ratio of the size of change to the

molecule. However, even within the limited scope, many unnecessary MMPs are

maintained. This includes a set of MMPs between the same pair of molecules. The

same pair of molecules may be cut in different ways to yield several MMPs. The

smallest change is most likely to be observed across multiple pairs of molecules,

contributing to the analysis. The other MMPs of the same molecule only contribute to

an increase in the number of MMPs. In the developed MMP Database, only one MMP

is kept for a pair of molecules based on the largest context (i.e. the smallest change as

these are more common). The adjustments made to the MMP identification procedure

reduce the number of total MMPs identified within a dataset, but ensures that the pairs

identified are likely to contain transformations that are more common (thus more

useful).

-173-

However, the reduction in the number of MMPs along with the reduction in the dataset

(monomorphic correction) resulted in MMPA that did not identify any statistically

significant transformations for polymorph propensity (Chapter 4). Lack of polymorph

data (discussed in 8.2) and the small number of MMPs were identified as the most

likely reason for the lack of statistically significant transformation.

The MMPA carried out in the thesis led to the development of the concept of MMG.

MMG can be further expanded to extract more information from an MMP Database.

Work can be performed to improve the process of database construction by

abandoning relational databases for graph databases. These types of database put more

emphasis on the relationships between elements (edges) [258]. The database structure

allows for more computationally efficient parsing based in the edges. The MMP

identification step could be replaced by simpler, more computationally efficient,

graph-based operations. Graph databases typically allow the specification of different

types of nodes and edges, as well as the addition of properties to these. Molecules can

be added to the database as nodes, with attached properties such as the molecule ID,

structure information (SMILES), properties value (dark blue nodes in Figure 8.3).

Upon fragmentation, the context-core pairs can be screened based on the maximum

size of the change and maximum ratio of change criteria (as discussed in Chapter 3

and Chapter 4). The filtered contexts can be added to the database as a different type

Figure 8.3: Graph based MMP identification.

Two types of nodes are used: contexts (gold) and molecules (blue). Edges

contain information on the core associated with the connected context and

molecule.

-174-

of node (gold nodes in Figure 8.3). An edge can be added between the molecule and

the added context, containing the core structure as its property (arrow in Figure 8.3).

MMPs can be identified by finding all molecules that are connected via a context node.

The search can be easily modified to find all MMPs with a given context, or all MMPs

of a given molecule or a set of molecules. Another layer to the graph can be added to

incorporate crystal information. A new type of node, a crystal node, can be added that

contains the crystal ID (refcode) and any other relevant crystal property (e.g lattice

type). These can be connected to molecule nodes based on the molecular composition.

Solvates and co-crystals would be connected to multiple molecules, so an edge

property used to indicate whether a molecule is a primary component or a solvent

molecule may be added.

The MMG can also be potentially used for property prediction based on MMPA if a

dense enough graph can be constructed. For a new molecule (m) with an unknown

property value (pm), all MMPs can be identified. A set of all molecules that are MMPs

with the given molecule are given by the following equation where E represents all

edges (MMPs) in an MMG.

𝑀𝑀𝑃(𝑚) = {𝑛: (𝑚, 𝑛) ∈ E } Equation 8.1

A series of predictions can be made based on each molecule and the corresponding

transformations, where pi is the property of the molecule i and ti is the average effect

of the transformation that links molecule i and m.

𝑝𝑚̂𝑖
= 𝑝𝑖 + 𝑡𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝑀𝑀𝑃(𝑚) Equation 8.2

A weight (wi) may be assigned to each of the MMP based on how well the effects of

the transformation are studied (number of occurrences of the given transformation

within the MMG). Hence, the final property prediction of the new molecule (m) can

be calculated based on the following.

𝑝𝑚̂ =
∑ (𝑝𝑖 + 𝑡𝑖)𝑖∈𝑀𝑀𝑃(𝑚)

∑ 𝑤𝑖𝑖∈𝑀𝑀𝑃(𝑚)
 Equation 8.3

The method is akin to the k-Nearest Neighbours (kNN) method [259]. kNN method

predicts the target value using k samples with the nearest feature values. In the

proposed method, the neighbour identification is performed based on molecular

transformations instead. A further distinction is the way in which the predicted value

-175-

is calculated. The effects of the transformation are used (along with a weighting based

on statistical confidence in the effect and its size) to compute the predicted property

value. In this way, a molecule that differs only slightly from a known one may be

predicted a vastly different property value if the transformation relating the two

molecules is known to have a large effect on the studied property. In this way,

knowledge of activity cliffs [41] may be included in the predictive model. Further

work is required to assess the feasibility and usefulness of such an approach.

As stated above, for this method to work, a dense MMG is required, unlike the ones

studied in the thesis (Chapter 6). However, the concept can be applied in tandem with

a QSPR model on a more sparse MMG. Prediction-driven MMPA was previously used

to generate new MMPs to enable better analysis of transformations with low MMP

count [198] (introduced in 2.5.2).

Model explainability is an important aspect of regulatory approval of QSPR models

[260] as well as an active area of research within the machine learning community

[15,261]. Local Interpretable Model-agnostic Explanations (LIME) relies on sampling

random values in the feature space surrounding the prediction of interests and

constructs a local, easily interpretable model (decision tree, linear model etc.) [261].

In many QSPR cases, the feature space may be not continuous and the meaning behind

each feature may be difficult to interpret by a researcher. Instead, a chemical space

surrounding the prediction of interest may be sampled using MMPs (Figure 8.4). A set

of new predictions (dark blue in the figure) can be made to generate MMPs with the

prediction of interest (gold in the figure). Several strategies for the MMP generation

are feasible. Pairs such that each functional group on the molecule of interest is

replaced with an inert functional group is one possibility. This is illustrated in Figure

8.4 with the replacement of terminating functional groups with a methyl group and

chain functional groups with a methylene bridge. This may result in the ability to

obtain the group contribution to the predicted property value of the molecule of interest

which can lead to increased model explainability.

-176-

Alternatively, MMPs may be generated to match common transformations within the

studied dataset. Rather than increasing the number of MMPs for better MMPA [198],

it can be used to compare the predicted MMPs to the ones from the datasets. This

allows for the assessment of the QSPR model’s ability to adequately map the effect of

these transformations. Similar analysis, without the generation of new molecules, was

carried out in Chapter 7 to assess the melting point model performance. The method

provided some means of more in-depth analysis of model performance which can be

further expanded with future research in this area.

8.4 Research Topic

The research topics covered in the thesis were contextualised within the Material

Science Tetrahedron presented in Chapter 2. The focus was placed on the multi-level

structure property relationship for properties relevant to the pharmaceutical product

development as visualised in Figure 8.5. The key findings of the for the polymorph

propensity study and the solid state specific melting point prediction are summarised

below. Based on the discussion of data (8.2) and the empirical method analysis (8.3),

future research topics are suggested.

Figure 8.4: MMP based group contribution for QSPR model prediction

explanation.

For a given prediction (gold) a set of MMPs can be generated (blue) to

determine the group contributions to the prediction.

-177-

8.4.1 Polymorph propensity

Polymorph propensity was studied using MMP approach in Chapter 4. No statistically

significant transformations were identified. Beyond the data related limitations

discussed earlier, the phenomenon of polymorphism may be too complex to capture

using MMPA. The way in which a transformation affects the propensity may be highly

dependent on the context of the pair (part of the MMP that does not change). However,

even when some properties of the context (such as flexibility and number of hydrogen

bond donors/acceptors) were taken into account, no meaningful correlations were

found. Furthermore, previous research into the effects of molecular transformations

on crystal packing found that some transformations had consistent effect [189].

Therefore, it is likely that the MMPA did not yield any statistically significant results

due to the analysis technique selected and the available data as previously discussed

(8.2.1 and 8.3.2). An empirical method that utilises the entirety of the dataset (such as

QSPR modelling) are likely to be more suitable for the propensity study as it can utilise

the entirety of the dataset. The challenge of the low data quality may be partially

Figure 8.5: Structure Property Relationship studied in the thesis.

The figure is based on the adapted Material Science Tetrahedron introduced

in Chapter 2.

Processing

Performance

Molecule

Crystal

Polymorph
propensity Melting

Point

System of interest

Scale of structure

-178-

addressed by focusing on prediction of polymorphism (i.e. classification into

monomorphic and polymorphic compounds). If at least two polymorphs are identified,

the molecule would be considered to be polymorphic without the need to have found

all possible polymorphs (as is the case for polymorph propensity study). However, this

does not fully solve the issue of unknown polymorphs, as many false monomorphic

molecules will skew the results. Industrial, polymorph screened datasets suggest that

up to 66 % of compounds may be polymorphic [50], which is much higher than the

observed rate of polymorphism in the CSD. Polymorphism and polymorph propensity

are of great interest, however it may be difficult to construct empirical models without

access to datasets with adequate quality.

8.4.2 Solid state specific melting point

Many properties relevant to the pharmaceutical product development are solid state-

dependent (see 2.1.4.3). In this thesis, melting point was studied due to the availability

of solid state specific data within the CSD. Previous work done on incorporating solid

state information indicated the inability to appropriately capture the crystal structure

as a reason for little improvement in model performance compared to molecule-based

models [70,262]. Graph-based structure description complemented by crystal

descriptors were used here in an attempt to capture solid state information.

The improvement between models that did not have any crystal information and ones

that did was relatively small (0.628 to 0.649 on the validation set and 0.500 to 0.550

on the test set). This can be interpreted in two ways, either the crystal structure

typically does not affect the property studied or the crystal structure information is not

adequately captured. It is also possible that a combination of the two factors

contributes to the small improvement. The improvement is particularly disappointing

if the labour intensity for the acquisition of the additional crystal structure features are

considered. These features require the crystal structure to be solved before computing

the values. This is much more demanding than features computed based on molecular

structure alone. Furthermore, the change in property across polymorphs is typically

small, especially compared to the effects of small molecular changes (MMPs).

Therefore, further attempts to capture crystal structure information for solid state-

specific bulk property prediction may not yield significant improvements in predictive

power in relation to the labour intensity in acquiring solid state specific data. This is

-179-

not to diminish the importance of solid state informatics in developing better

predictive models in areas where crystal structure plays an important role such as

crystal surface properties [76,79].

8.4.3 Future research topics

Analysis of polymorph propensity was complicated due to the reduction in dataset and

unreliability of data. However, the MMP approach has previously been used to see

which transformation maintain isostructurality [189]. This can be expanded by

considering lattice energy changes caused by the molecular transformation. It is

possible to calculate group contribution to lattice energy [263]. The group contribution

of the context of the MMP can be calculated. A large change indicates a disruption to

the intermolecular interaction. By carrying out MMPA, it may be possible to

determine what transformations are likely to disrupt the intermolecular interactions.

This can potentially be linked to morphology modification. Some crystals grow as

needles due to the preferential intermolecular interactions [249]. By disrupting its

intermolecular interactions, it may be possible to avoid molecules with undesirable

morphological tendencies. In contrast, it may also be useful to identify transformations

that do not disrupt the crystal packing but influence some other property of interest or

vice versa.

The work on solid state-specific melting point, as well as previous works [50]

indicated that property difference between polymorphs is typically small, with few

notable exceptions where the difference is significant as such as the case of the

solubility of ritonavir [8]. A molecular structure based QSPR model to predict the size

of the property difference between polymorphs would be of great interest. However,

the issue of unknown polymorphs with unknown property value poses a similar

challenge as the one encountered in Chapter 4.

8.5 Concluding Remarks

The thesis aimed to investigate the extent to which data-driven techniques, typically

used during Discovery, could be used to address challenges commonly addressed

during the Development stage of the pharmaceutical development process. The

research was contextualised with the MST [5]. Emphasis was placed on the structure-

-180-

property relationship, where the framework was expanded to explicitly include the

concept of scale – for structures (molecular and crystal structure) as well as the

properties. The difference in the relevant scales of structure presents a major difference

between the two stages of drug development process where in Discovery, molecular

structure is considered, while in Development larger structures such as crystals and

particles are relevant.

Effects of molecular changes on the propensity of the molecule to exhibit

polymorphism were studied using MMPA, a method commonly used for the analysis

of Discovery-related properties [11]. To carry out the analysis, a database was

developed independently of other researchers [201]. A database of single component

crystal structures from the CSD was constructed and the analysis was carried out.

However, no statistically significant transformations were observed. Several potential

reasons were investigated for the lack of any noticeable trends. A Matched Molecular

Graph was constructed to investigate the properties of the dataset itself that may have

affected the analysis. Despite a large total number of MMPs identified, only 25.2 %

of molecules had at least one MMP. A Discovery dataset of the same size (TCAKS

dataset) [229] had 58.2 % of molecules with at least one MMP. This indicates that the

Development datasets may be less suitable for MMPA analysis compared to the

Discovery datasets.

The subsequent analysis focused on the data quality of the polymorph dataset.

Unobserved polymorphs have likely skewed the results of the analysis. A general trend

was observed that the more commonly studied structures (as approximated by the

number of redeterminations within the CSD) had more polymorphs as well.

Another issue related to the study of polymorphism that was addressed is the need for

automated methods for polymorph and redetermination classification of crystal

structures. A benchmark dataset was derived from the CSD based on the availability

of polymorph labelling provided by a single research group (per molecular

composition). The commonly used spectra comparison method achieved an F1 score

of 0.780 with relatively low recall value of 0.645 (precision was 0.987). Machine

learning-based approach achieved F1 score of 0.910 with recall and precision of 0.864

and 0.962, respectively. The benchmark dataset may be used as a starting point for

future work aimed at addressing the issue of polymorph and redetermination

classification.

-181-

Another challenge that was addressed in the thesis is the ability to adequately capture

crystal structure information for machine learning-based modelling. A graph was

constructed based on identified intermolecular interactions, along with other crystal

descriptors (shape change descriptor and hydrogen bond dimensionality) to investigate

if this improves the performance of melting point models. The observed improvement

(0.628 to 0.649 on the validation set and 0.500 to 0.550 on the test set) was relatively

small. This may be due to the inability to capture solid state information. However,

the typically small effect of solid state changes on the melting point is also likely to

have contributed to the small performance improvement.

The research opened several avenues for further investigation. Although MMPA of

polymorph propensity did not identify any statistically significant trends, the ease of

interpretability remains an attractive feature of MMPA. The method could be applied

to study the effects of molecular transformation on the disruption of intermolecular

interactions via lattice energy analysis. This would build on existing MMPA of iso-

structurality [189]. However, issues of systematic and accurate lattice energy

calculation need to be addressed [70].

Polymorphs typically have similar properties with a small fraction of notable

exceptions [50]. An interesting scope of future research is the prediction of the

difference of property values between solid state structures based on the molecular

structure. If successful, this would allow to anticipate the potential Development

challenges during Discovery.

The research and development of treatments for illnesses has been a major challenge

for civilisations for millennia [16,18]. In recent years, the efficiency of the

pharmaceutical product development process has been decreasing [33,34]. The studies

presented in this thesis provide partial solutions to problems addressed at the

Development stage. A novel method of analysing datasets – Matched Molecular

Graphs – showed that Development datasets tend to have less similar molecules,

resulting in methods that are commonly used in the Discovery stage (such as MMPA)

being less suitable. A graph-based approach to capturing crystal information showed

some promising results. The work in the thesis can inform future research in the area

of solid state informatics to address the challenges encountered when developing new

pharmaceutical products.

-182-

References

[1] J.P. Bunker, The role of medical care in contributing to health improvements

within societies, Int. J. Epidemiol. 30 (2001) 1260–1263.

https://doi.org/10.1093/ije/30.6.1260.

[2] World Health Organization, Essential Medicines List, World Health

Organization, 2015. http://www.who.int/selection_medicines/list/en/ (accessed

February 8, 2017).

[3] M. Lindenberg, S. Kopp, J.B. Dressman, Classification of orally administered

drugs on the World Health Organization Model list of Essential Medicines

according to the biopharmaceutics classification system, Eur. J. Pharm.

Biopharm. 58 (2004) 265–278. https://doi.org/10.1016/j.ejpb.2004.03.001.

[4] Science Engineering Committee on Materials, Solid State Sciences Committee,

Board on Physics and Astronomy, and R. Commission on Physical Sciences,

Mathematics, Board National Materials Advisory, Commission on Engineering

and Technical Systems, National Research Council, MATERIALS SCIENCE

AND ENGINEERING FOR THE 1990s, National Academy Press, Washington

DC, 1989. https://www.nap.edu/read/758/chapter/1.

[5] C. Sun, Materials Science Tetrahedron—A Useful Tool for Pharmaceutical

Research and Development, J. Pharm. Sci. 98 (2009) 1671–1687.

[6] N. Kawashita, H. Yamasaki, T. Miyao, K. Kawai, Y. Sakae, T. Ishikawa, K.

Mori, S. Nakamura, H. Kaneko, <Review> A Mini-review on

Chemoinformatics Approaches for Drug Discovery, J. Comput. Aided Chem.

16 (2015) 15–29. https://doi.org/10.2751/jcac.16.15.

[7] Y.-C. Lo, S.E. Rensi, W. Torng, R.B. Altman, Machine learning in

chemoinformatics and drug discovery, Drug Discov. Today. 23 (2018) 1538–

1546. https://doi.org/10.1016/J.DRUDIS.2018.05.010.

[8] J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter, J. Morris,

Ritonavir: An Extraordinary Example of Conformational Polymorphism,

Pharm. Res. 18 (2001) 859–866. https://doi.org/10.1023/A:1011052932607.

[9] International Conference on Harmonisation of Technical Requirements for

-183-

Registration Of Pharmaceuticals for Human Use, Specifications: Test

Procedures and Acceptance Criteria for New Drug Substances and New Drug

Products: Chemical Substances Q6A, 1999.

https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Q

uality/Q6A/Step4/Q6Astep4.pdf (accessed July 4, 2019).

[10] C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, V. Prachayasittikul,

A PRACTICAL OVERVIEW OF QUANTITATIVE STRUCTURE-

ACTIVITY RELATIONSHIP, EXCLI J. 8 (2009) 74–88.

https://www.excli.de/vol8/Prachayasittikul_04_2009/Prachayasittikul_050509

_proof.pdf (accessed May 14, 2019).

[11] K. Müller, The Power of MMPA and a Teaching Lesson in Medicinal

Chemistry, J. Med. Chem. 55 (2012) 1815–1816.

http://pubs.acs.org/doi/abs/10.1021/jm300163y (accessed July 8, 2016).

[12] A. de la V. de León, J. Bajorath, Prediction of Compound Potency Changes in

Matched Molecular Pairs Using Support Vector Regression, J. Chem. Inf.

Model. 54 (2014) 2654–2663. http://pubs.acs.org/doi/abs/10.1021/ci5003944

(accessed July 8, 2016).

[13] A.S. Raw, M.S. Furness, D.S. Gill, R.C. Adams, F.O. Holcombe, L.X. Yu,

Regulatory considerations of pharmaceutical solid polymorphism in

Abbreviated New Drug Applications (ANDAs), Adv. Drug Deliv. Rev. 56

(2004) 397–414. https://doi.org/10.1016/J.ADDR.2003.10.011.

[14] P. Polishchuk, Interpretation of Quantitative Structure-Activity Relationship

Models: Past, Present, and Future, J. Chem. Inf. Model. 57 (2017) 2618–2639.

https://doi.org/10.1021/acs.jcim.7b00274.

[15] E. Štrumbelj, I. Kononenko, Explaining prediction models and individual

predictions with feature contributions, Knowl. Inf. Syst. 41 (2014) 647–665.

https://doi.org/10.1007/s10115-013-0679-x.

[16] A.W. Jones, Early drug discovery and the rise of pharmaceutical chemistry,

Drug Test. Anal. 3 (2011) 337–344. https://doi.org/10.1002/dta.301.

[17] D.J. W, Pharmaceutical Industry, Britannica. (2018).

https://www.britannica.com/technology/pharmaceutical-industry.

-184-

[18] E.K. Teall, Medicine and Doctoring in Ancient Mesopotamia, Gd. Val. J. Hist.

3 (2014) 1–8.

http://scholarworks.gvsu.edu/gvjhhttp://scholarworks.gvsu.edu/gvjh/vol3/iss1/

2 (accessed April 5, 2019).

[19] S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R.

Lindborg, A.L. Schacht, How to improve R&D productivity: the

pharmaceutical industry’s grand challenge, Nat. Rev. Drug Discov. 9 (2010)

203–214. https://doi.org/10.1038/nrd3078.

[20] J.W. Scannell, J. Bosley, When Quality Beats Quantity: Decision Theory, Drug

Discovery, and the Reproducibility Crisis., PLoS One. 11 (2016) e0147215.

https://doi.org/10.1371/journal.pone.0147215.

[21] J.G. Mahdi, A.J. Mahdi, A.J. Mahdi, I.D. Bowen, The historical analysis of

aspirin discovery, its relation to the willow tree and antiproliferative and

anticancer potential, Cell Prolif. 39 (2006) 147–155.

https://doi.org/10.1111/j.1365-2184.2006.00377.x.

[22] W. Hamilton, The history of medicine, surgery and anatomy, Henry Colburn

and Richard Bentley, London, 1831.

https://archive.org/details/historyofmedicin02unse.

[23] C. Yapijakis, Hippocrates of Kos, the father of clinical medicine, and

Asclepiades of Bithynia, the father of molecular medicine, In Vivo (Brooklyn).

23 (2009) 507–14. http://www.ncbi.nlm.nih.gov/pubmed/19567383 (accessed

April 9, 2019).

[24] C. Krishnamurti, S.C. Rao, The isolation of morphine by Serturner., Indian J.

Anaesth. 60 (2016) 861–862. https://doi.org/10.4103/0019-5049.193696.

[25] D. Taylor, The Pharmaceutical Industry and the Future of Drug Development,

Royal Society of Chemistry, Online, 2015.

https://doi.org/10.1039/9781782622345-00001.

[26] L.X. Yu, Pharmaceutical Quality by Design: Product and Process

Development, Understanding, and Control, Pharm. Res. 25 (2008) 781–791.

https://doi.org/10.1007/s11095-007-9511-1.

[27] M. Entzeroth, H. Flotow, P. Condron, Overview of high-throughput screening,

-185-

Curr. Protoc. Pharmacol. 44 (2009) 9.4.1-9.4.27.

https://doi.org/10.1002/0471141755.ph0904s44.

[28] H. Gubler, U. Schopfer, E. Jacoby, Theoretical and experimental relationships

between percent inhibition and IC50 data observed in high-throughput

screening, J. Biomol. Screen. 18 (2013) 1–13.

https://doi.org/10.1177/1087057112455219.

[29] M. Palucki, J.D. Higgins, E. Kwong, A.C. Templeton, Strategies at the Interface

of Drug Discovery and Development: Early Optimization of the Solid State

Phase and Preclinical Toxicology Formulation for Potential Drug Candidates,

J. Med. Chem. 53 (2010) 5897–5905. https://doi.org/10.1021/jm1002638.

[30] M. Segall, A. Chadwick, The risks of subconscious biases in drug-discovery

decision making, Futur. Med. Chem. 3 (2011) 771–4.

https://doi.org/10.4155/FMC.11.33.

[31] T.J. DiFeo, Drug Product Development: A Technical Review of Chemistry,

Manufacturing, and Controls Information for the Support of Pharmaceutical

Compound Licensing Activities, Drug Dev. Ind. Pharm. 29 (2003) 939–958.

https://doi.org/10.1081/DDC-120025452.

[32] K.M. Lee, Overview of Drug Product Development, Curr. Protoc. Pharmacol. .

(2001) 7.3.1-7.3.10. https://doi.org/10.1002/0471141755.ph0703s15.

[33] T.J. Hwang, D. Carpenter, J.C. Lauffenburger, B. Wang, J.M. Franklin, A.S.

Kesselheim, Failure of Investigational Drugs in Late-Stage Clinical

Development and Publication of Trial Results, JAMA Intern. Med. 176 (2016)

1826. https://doi.org/10.1001/jamainternmed.2016.6008.

[34] J.W. Scannell, A. Blanckley, H. Boldon, B. Warrington, Diagnosing the decline

in pharmaceutical R&D efficiency, Nat. Rev. Drug Discov. 11 (2012)

191–200. https://doi.org/10.1038/nrd3681.

[35] C.A.S. Bergström, W.N. Charman, C.J.H. Porter, Computational prediction of

formulation strategies for beyond-rule-of-5 compounds, Adv. Drug Deliv. Rev.

101 (2016) 6–21. https://doi.org/10.1016/J.ADDR.2016.02.005.

[36] K. Raza, P. Kumar, S. Ratan, R. Malik, S. Arora, Polymorphism: The

Phenomenon Affecting the Performance of Drugs, SOJ Pharm. Pharm. Sci. 1

-186-

(2014) 10. https://doi.org/10.15226/2374-6866/1/2/00111.

[37] A.J. Blacker, M.T. Williams, Introduction, in: A.J. Blacker, M.T. Williams

(Eds.), Pharm. Process Dev., Royal Society of Chemistry, Cambridge, 2011.

[38] U.S. Food and Drug Administration, Pharmaceutical Quality for the 21st

Century A Risk-Based Approach Progress Report, 2007.

https://www.fda.gov/about-fda/center-drug-evaluation-and-

research/pharmaceutical-quality-21st-century-risk-based-approach-progress-

report (accessed June 21, 2019).

[39] A.T. Chadwick, M.D. Segall, Overcoming psychological barriers to good

discovery decisions, Drug Discov. Today. 15 (2010) 561–569.

https://doi.org/10.1016/J.DRUDIS.2010.05.007.

[40] E. Gawehn, J.A. Hiss, G. Schneider, Deep Learning in Drug Discovery, Mol.

Inform. 35 (2016) 3–14. https://doi.org/10.1002/minf.201501008.

[41] D. Stumpfe, H. Hu, J. Bajorath, Evolving Concept of Activity Cliffs, ACS

Omega. 4 (2019) 14360. https://doi.org/10.1021/acsomega.9b02221.

[42] Y. Zhou, S. Cahya, S.A. Combs, C.A. Nicolaou, J. Wang, P. V. Desai, J. Shen,

Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial

ADME Data Sets, J. Chem. Inf. Model. (2019) acs.jcim.8b00671.

https://doi.org/10.1021/acs.jcim.8b00671.

[43] K. Liu, X. Sun, L. Jia, J. Ma, H. Xing, J. Wu, H. Gao, Y. Sun, F. Boulnois, J.

Fan, Chemi-Net: A molecular graph convolutional network for accurate drug

property prediction, Comput. Res. Repos. abs/1803.0 (2018).

http://arxiv.org/abs/1803.06236 (accessed July 19, 2018).

[44] T. Loftsson, Physicochemical Properties and Pharmacokinetics, in: Essent.

Pharmacokinet., Academic Press, online, 2015: pp. 85–104.

https://doi.org/10.1016/B978-0-12-801411-0.00003-2.

[45] C.A.S. Bergström, P. Larsson, Computational prediction of drug solubility in

water-based systems: Qualitative and quantitative approaches used in the

current drug discovery and development setting, Int. J. Pharm. 540 (2018) 185–

193. https://doi.org/10.1016/J.IJPHARM.2018.01.044.

[46] F. Meng, W. Xu, Drug permeability prediction using PMF method, J. Mol.

-187-

Model. 19 (2013) 991–997. https://doi.org/10.1007/s00894-012-1655-1.

[47] K.R. Chu, E. Lee, S.H. Jeong, E.-S. Park, Effect of particle size on the

dissolution behaviors of poorly water-soluble drugs, Arch. Pharm. Res. 35

(2012) 1187–1195. https://doi.org/10.1007/s12272-012-0709-3.

[48] R.B. Hammond, K. Pencheva, K.J. Roberts, T. Auffret, Quantifying solubility

enhancement due to particle size reduction and crystal habit modification: Case

study of acetyl salicylic acid, J. Pharm. Sci. 96 (2007) 1967–1973.

https://doi.org/10.1002/jps.20869.

[49] R. Censi, P. Di Martino, Polymorph Impact on the Bioavailability and Stability

of Poorly Soluble Drugs, Molecules. 20 (2015) 18759–18776.

https://doi.org/10.3390/molecules201018759.

[50] A.J. Cruz-Cabeza, S.M. Reutzel-Edens, J. Bernstein, Facts and fictions about

polymorphism, Chem. Soc. Rev. 44 (2015) 8619–8635.

https://doi.org/10.1039/c5cs00227c.

[51] H.P.G. Thompson, G.M. Day, Which conformations make stable crystal

structures? Mapping crystalline molecular geometries to the conformational

energy landscape, Chem. Sci. 5 (2014) 3173–3182.

https://doi.org/10.1039/c4sc01132e.

[52] A.Y. Lee, D. Erdemir, A.S. Myerson, Crystal Polymorphism in Chemical

Process Development, Annu. Rev. Chem. Biomol. Eng. 2 (2011) 259–280.

https://doi.org/10.1146/annurev-chembioeng-061010-114224.

[53] J.B.O. Mitchell, Machine learning methods in chemoinformatics, Comput. Mol.

Sci. 4 (2014) 468–481.

[54] S. Pirhadi, F. Shiri, J.B. Ghasemi, Multivariate statistical analysis methods in

QSAR, RSC Adv. 5 (2015) 104635–104665.

https://doi.org/10.1039/C5RA10729F.

[55] A.G. Dossetter, E.J. Griffen, A.G. Leach, Matched Molecular Pair Analysis in

drug discovery, Drug Discov. Today. 18 (2013) 724–731.

https://doi.org/10.1016/j.drudis.2013.03.003.

[56] D. Weininger, SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules, J. Chem. Inf. Model. 28

-188-

(1988) 31–36. https://doi.org/10.1021/ci00057a005.

[57] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, G. Monfardini, The

Graph Neural Network Model, IEEE Trans. Neural Networks. 20 (2009) 61–

80. https://doi.org/10.1109/TNN.2008.2005605.

[58] M. Ladd, R. Palmer, Lattices and Space-Group Theory, in: Struct. Determ. by

X-Ray Crystallogr., Springer US, Boston, MA, 2013: pp. 51–110.

https://doi.org/10.1007/978-1-4614-3954-7_2.

[59] H. Arnold, M.I. Aroyo, E.F. Bertaut, H. Burzlaff, G. Chapuis, W. Fischer, H.D.

Flack, A.M. Glazer, H. Grimmer, B. Gruber, T. Hahn, H. Klapper, E. Koch, P.

Konstantinov, V. Kopský, D.B. Litvin, A. Looijenga-Vos, K. Momma, U.

Müller, U. Shmueli, B. Souvignier, J.C.H. Spence, P.M. de Wolff, H.

Wondratschek, H. Zimmermann, International Tables for Crystallography:

Space-group symmetry, Int. Union Crystallogr. A (2016).

[60] J.W. Mullin, Crystallization, 4th ed., Butterworth-Heinemann, Oxford, 2001.

[61] J.D. Wright, Molecular Crystals, 2nd ed., Cambridge University Press,

Cambridge, 1995.

[62] J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed., Academic Press,

Online, 2011.

https://www.sciencedirect.com/book/9780123751829/intermolecular-and-

surface-forces#book-description.

[63] A. Shahi, E. Arunan, Why are Hydrogen Bonds Directional?, J. Chem. Sci. 128

(2016) 1571–1577. https://doi.org/10.1007/s12039-016-1156-3.

[64] P.A. Wood, T.S.G. Olsson, J.C. Cole, S.J. Cottrell, N. Feeder, P.T.A. Galek,

C.R. Groom, E. Pidcock, Evaluation of molecular crystal structures using Full

interaction maps, CrystEngComm. 15 (2013) 65–72.

[65] B.A. Kolesov, M.A. Mikhailenko, E. V. Boldyreva, Dynamics of the

intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to

crystal packing and conformational transitions: A variable-temperature

polarized Raman spectroscopy study, Phys. Chem. Chem. Phys. 13 (2011)

14243–14253. https://doi.org/10.1039/c1cp20139e.

[66] C. Hammond, Introduction to crystallography, revised, Oxford University

-189-

Press, New York, New York, USA, 1992.

[67] A.K. Tiwary, Modification of Crystal Habit and Its Role in Dosage Form

Performance, Drug Dev. Ind. Pharm. 27 (2001) 699–709.

https://doi.org/10.1081/DDC-100107327.

[68] Z.B. Kuvadia, M.F. Doherty, Effect of Structurally Similar Additives on Crystal

Habit of Organic Molecular Crystals at Low Supersaturation, Cryst. Growth

Des. 13 (2013) 1412–1428. https://doi.org/10.1021/cg3010618.

[69] N. Pudasaini, C.R. Parker, S.U. Hagen, A.D. Bond, J. Rantanen, Role of

Solvent Selection on Crystal Habit of 5-Aminosalicylic Acid—Combined

Experimental and Computational Approach, J. Pharm. Sci. 107 (2018) 1112–

1121. https://doi.org/10.1016/J.XPHS.2017.12.005.

[70] R.L. Marchese Robinson, K.J. Roberts, E.B. Martin, The influence of solid state

information and descriptor selection on statistical models of temperature

dependent aqueous solubility, J. Cheminform. 10 (2018) 44.

https://doi.org/10.1186/s13321-018-0298-3.

[71] R. Docherty, K. Pencheva, Y.A. Abramov, Low solubility in drug development:

de-convoluting the relative importance of solvation and crystal packing., J.

Pharm. Pharmacol. 67 (2015) 847–56. https://doi.org/10.1111/jphp.12393.

[72] T.W. Boyle, Glaxo Inc. v. Novopharm Ltd., 931 F. Supp. 1280 (E.D.N.C.

1996), Eastern District of North Carolina, 1996.

https://law.justia.com/cases/federal/district-courts/FSupp/931/1280/2346630/

(accessed August 23, 2018).

[73] CCDC, (n.d.). https://www.ccdc.cam.ac.uk/.

[74] C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, The Cambridge Structural

Database, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72 (2016)

171–179. https://doi.org/10.1107/S2052520616003954.

[75] M. Ishikawa, Y. Hashimoto, Improving the Water-Solubility of Compounds By

Molecular Modification to Disrupt Crystal Packing, in: C.G. Wermuth, D.

Aldous, P. Raboisson, D. Rognan (Eds.), Pract. Med. Chem. Fourth Ed., 4th

ed., Academic Press, Online, 2015. https://doi.org/10.1016/B978-0-12-417205-

0.00031-6.

-190-

[76] S.N. Bhattachar, L.A. Deschenes, J.A. Wesley, Solubility: it’s not just for

physical chemists, Drug Discov. Today. 11 (2006) 1012–1018.

https://doi.org/10.1016/J.DRUDIS.2006.09.002.

[77] J.L. McDonagh, N. Nath, L. De Ferrari, T. Van Mourik, J.B.O. Mitchell,

Uniting cheminformatics and chemical theory to predict the intrinsic aqueous

solubility of crystalline druglike molecules, J. Chem. Inf. Model. 54 (2014)

844–856. https://doi.org/10.1021/ci4005805.

[78] Y. Zhang, N. Wang, L. Zou, M. Zhang, R. Chi, Molecular dynamics simulation

on the dissolution process of Kaempferol cluster, J. Mol. Liq. 304 (2020)

112779. https://doi.org/10.1016/j.molliq.2020.112779.

[79] N. Feeder, E. Pidcock, A.M. Reilly, G. Sadiq, C.L. Doherty, K.R. Back, P.

Meenan, R. Docherty, The integration of solid-form informatics into solid-form

selection, J. Pharm. Pharmacol. (2015). https://doi.org/10.1111/jphp.12394.

[80] S.H. Yalkowsky, Y. He, P. Jain, Handbook of Aqueous Solubility Data, 2nd

ed., Taylor and Francis Group, Boca Raton, 2010.

[81] J.L. McDonagh, T. van Mourik, J.B.O. Mitchell, Predicting Melting Points of

Organic Molecules: Applications to Aqueous Solubility Prediction Using the

General Solubility Equation, Mol. Inform. 34 (2015) 715–724.

https://doi.org/10.1002/minf.201500052.

[82] J.C. Bradley, A. Lang, A. Willaims, Open Melting Point Data, Online. (2011).

http://lxsrv7.oru.edu/~alang/meltingpoints/download.php.

[83] I. V. Tetko, D. M. Lowe, A.J. Williams, The development of models to predict

melting and pyrolysis point data associated with several hundred thousand

compounds mined from PATENTS, J. Cheminform. 8 (2016) 2.

https://doi.org/10.1186/s13321-016-0113-y.

[84] M. Salahinejad, T.C. Le, D.A. Winkler, Capturing the crystal: Prediction of

enthalpy of sublimation, crystal lattice energy, and melting points of organic

compounds, J. Chem. Inf. Model. (2013). https://doi.org/10.1021/ci3005012.

[85] M.J. Bryant, S.N. Black, H. Blade, R. Docherty, A.G.P. Maloney, S.C. Taylor,

The CSD Drug Subset: The Changing Chemistry and Crystallography of Small

Molecule Pharmaceuticals, J. Pharm. Sci. 108 (2019) 1655–1662.

-191-

https://doi.org/10.1016/J.XPHS.2018.12.011.

[86] H. Kopp, On the Relation between Boiling-Point and Composition in Organic

Compounds, Philos. Trans. R. Soc. London. 150 (1860) 257–276.

https://www.jstor.org/stable/108772?seq=1#metadata_info_tab_contents

(accessed May 14, 2019).

[87] J.B. Austin, A Relationship between the molecular weights and melting points

of organic compounds, J. Am. Chem. Soc. 52 (1930) 1049–1053.

https://doi.org/10.1021/ja01366a032.

[88] S.M. Free, J.W. Wilson, A Mathematical Contribution to Structure-Activity

Studies, J. Med. Chem. 7 (1964) 395–399.

https://doi.org/10.1021/jm00334a001.

[89] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH

Verlag GmbH, Weinheim, 2008.

[90] P. Smialowski, D. Frishman, S. Kramer, Pitfalls of supervised feature selection,

Bioinformatics. 26 (2010) 440–443.

https://doi.org/10.1093/bioinformatics/btp621.

[91] N.M. O’Boyle, D.S. Palmer, F. Nigsch, J.B. Mitchell, Simultaneous feature

selection and parameter optimisation using an artificial ant colony: case study

of melting point prediction., Chem. Cent. J. 2 (2008) 21.

https://doi.org/10.1186/1752-153X-2-21.

[92] H. Moriwaki, Y.-S. Tian, N. Kawashita, T. Takagi, Mordred: a molecular

descriptor calculator, J. Cheminform. 10 (2018) 4.

https://doi.org/10.1186/s13321-018-0258-y.

[93] H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. Perkins, W. Tong,

Mold2 , Molecular Descriptors from 2D Structures for Chemoinformatics and

Toxicoinformatics, J. Chem. Inf. Model. 48 (2008) 1337–1344.

https://doi.org/10.1021/ci800038f.

[94] Y.A. Abramov, Major Source of Error in QSPR Prediction of Intrinsic

Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?,

Mol. Pharm. 12 (2015) 2126–2141.

https://doi.org/10.1021/acs.molpharmaceut.5b00119.

-192-

[95] S. Emami, A. Jouyban, H. Valizadeh, A. Shayanfar, Are Crystallinity

Parameters Critical for Drug Solubility Prediction?, J. Solution Chem. 44

(2015) 2297–2315. https://doi.org/10.1007/s10953-015-0410-5.

[96] O. Isayev, D. Fourches, E.N. Muratov, C. Oses, K. Rasch, A. Tropsha, S.

Curtarolo, Materials Cartography: Representing and Mining Materials Space

Using Structural and Electronic Fingerprints, Chem. Mater. 27 (2015) 735–743.

https://doi.org/10.1021/cm503507h.

[97] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli,

T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional Networks on Graphs

for Learning Molecular Fingerprints, Comput. Res. Repos. abs/1509.09292

(2015). http://arxiv.org/abs/1509.09292 (accessed July 19, 2018).

[98] T. Cheng, Q. Li, Y. Wang, S.H. Bryant, Binary Classification of Aqueous

Solubility Using Support Vector Machines with Reduction and Recombination

Feature Selection, J. Chem. Inf. Model. 51 (2011) 229–236.

https://doi.org/10.1021/ci100364a.

[99] M. Yang, B. Tao, C. Chen, W. Jia, S. Sun, T. Zhang, X. Wang, Machine

Learning Models Based on Molecular Fingerprints and an Extreme Gradient

Boosting Method Lead to the Discovery of JAK2 Inhibitors, J. Chem. Inf.

Model. 59 (2019) 5002–5012. https://doi.org/10.1021/acs.jcim.9b00798.

[100] H. Cai, V.W. Zheng, K.C.-C. Chang, A Comprehensive Survey of Graph

Embedding: Problems, Techniques, and Applications, IEEE Trans. Knowl.

Data Eng. 30 (2018) 1616–1637. https://doi.org/10.1109/TKDE.2018.2807452.

[101] P. Zhang, J. Yellen, J.L. Gross, Handbook of graph theory, 2nd ed., Taylor &

Francis Group, New York, New York, USA, 2015.

[102] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message

Passing for Quantum Chemistry, Comput. Res. Repos. abs/1704.0 (2017).

http://arxiv.org/abs/1704.01212 (accessed July 20, 2018).

[103] T. Pham, T. Tran, S. Venkatesh, Graph Memory Networks for Molecular

Activity Prediction, Comput. Res. Repos. abs/1801.02622 (2018).

http://arxiv.org/abs/1801.02622 (accessed July 19, 2018).

[104] M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph

-193-

domains, in: Int. Jt. Conf. Neural Networks., IEEE, 2005: pp. 729–734.

https://doi.org/10.1109/IJCNN.2005.1555942.

[105] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated Graph Sequence Neural

Networks, Comput. Res. Repos. abs/1511.0 (2015).

http://arxiv.org/abs/1511.05493 (accessed July 20, 2018).

[106] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, Molecular graph

convolutions: moving beyond fingerprints, J. Comput. Aided. Mol. Des. 30

(2016) 595–608. https://doi.org/10.1007/s10822-016-9938-8.

[107] P.W. Battaglia, R. Pascanu, M. Lai, D. Rezende, K. Kavukcuoglu, Interaction

Networks for Learning about Objects, Relations and Physics, Artif. Intell.

(2016). http://arxiv.org/abs/1612.00222 (accessed July 1, 2019).

[108] A. Dey, Machine Learning Algorithms: A Review, Int. J. Comput. Sci. Inf.

Technol. 7 (2016) 1174–1179.

[109] Y. Li, Deep Reinforcement Learning, Eprint ArXiv:1810.06339. (2018).

http://arxiv.org/abs/1810.06339 (accessed May 31, 2019).

[110] M. Khanum, T. Mahboob, W. Imtiaz, H.A. Ghafoor, R. Sehar, A Survey on

Unsupervised Machine Learning Algorithms for Automation, Classification

and Maintenance, Int. J. Comput. Appl. 113 (2015) 34–39.

https://www.semanticscholar.org/paper/A-Survey-on-Unsupervised-Machine-

Learning-for-and-Khanum-

Mahboob/0c63ae912aa3264013b70c15d1c0c040d27219f7 (accessed May 11,

2019).

[111] G.C. Cawley, N.L.C. Talbot, On Over-fitting in Model Selection and

Subsequent Selection Bias in Performance Evaluation, J. Mach. Learn. Res. 11

(2010) 2079–2107. http://jmlr.org/papers/v11/cawley10a.html (accessed

September 25, 2020).

[112] D. Baumann, K. Baumann, Reliable estimation of prediction errors for QSAR

models under model uncertainty using double cross-validation, J. Cheminform.

6 (2014) 47. https://doi.org/10.1186/s13321-014-0047-1.

[113] J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimization, J.

Mach. Learn. Res. 13 (2012) 281–305. http://scikit-learn.sourceforge.net.

-194-

(accessed April 15, 2019).

[114] N. Srivastava, G. Hinton, A. Krizhevsky, R. Salakhutdinov, Dropout: A Simple

Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res. 15

(2014) 1929–1958.

http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf (accessed

June 4, 2019).

[115] P.J. Huber, Robust Estimation of a Location Parameter, Ann. Math. Stat. 35

(1964) 73–101. https://doi.org/10.1214/aoms/1177703732.

[116] S. Jadon, A survey of loss functions for semantic segmentation, Image Video

Process. (2020). http://arxiv.org/abs/2006.14822 (accessed September 25,

2020).

[117] D.L.J. Alexander, A. Tropsha, D.A. Winkler, Beware of R2: Simple,

Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR

Models, J. Chem. Inf. Model. 55 (2015) 1316–1322.

https://doi.org/10.1021/acs.jcim.5b00206.

[118] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, A. Verri, Are Loss Functions

All the Same?, Neural Comput. 16 (2004) 1063–1076.

https://doi.org/10.1162/089976604773135104.

[119] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

https://doi.org/10.1017/cbo9780511801389.

[120] L.E. Raileanu, K. Stoffel, Theoretical Comparison between the Gini Index and

Information Gain Criteria, Ann. Math. Artif. Intell. 41 (2004) 77–93.

https://doi.org/10.1023/B:AMAI.0000018580.96245.c6.

[121] N. Chinchor, MUC-4 evaluation metrics, in: Proc. 4th Conf. Messag. Underst.

- MUC4 ’92, Association for Computational Linguistics (ACL), Morristown,

NJ, USA, 1992: p. 22. https://doi.org/10.3115/1072064.1072067.

[122] L. Breiman, Random Forest, Mach. Learn. 45 (2001) 5–32.

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf (accessed July

7, 2019).

[123] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

-195-

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: Machine

Learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

http://jmlr.org/papers/v12/pedregosa11a.html (accessed August 24, 2018).

[124] B.H. Menze, B.M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich,

F.A. Hamprecht, A comparison of random forest and its Gini importance with

standard chemometric methods for the feature selection and classification of

spectral data, BMC Bioinformatics. 10 (2009) 213.

https://doi.org/10.1186/1471-2105-10-213.

[125] W.S. Noble, What is a support vector machine?, Nat. Biotechnol. 24 (2006)

1565–1567. https://doi.org/10.1038/nbt1206-1565.

[126] C.J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,

Data Min. Knowl. Discov. 2 (1998) 121–167. https://www.microsoft.com/en-

us/research/publication/a-tutorial-on-support-vector-machines-for-pattern-

recognition/ (accessed September 26, 2020).

[127] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous

activity, Bull. Math. Biophys. 5 (1943) 115–133.

https://doi.org/10.1007/BF02478259.

[128] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521 (2015) 436–444.

https://doi.org/10.1038/nature14539.

[129] S. Hochreiter, J.J. Urgen Schmidhuber, Long short -term memory, Neural

Comput. 9 (1997) 1735–1780. http://www7.informatik.tu-

muenchen.de/~hochreithttp://www.idsia.ch/~juergen (accessed July 7, 2019).

[130] M. Hagan, H.B. Demuth, M.H. Beale, O. De Jesus, Neural Network Design,

2nd ed., PWS Publishing Co, Boston, 2016. https://hagan.okstate.edu/nnd.html

(accessed September 25, 2020).

[131] F. Siddique, S. Sakib, M.A.B. Siddique, Recognition of handwritten digit using

convolutional neural network in python with tensorflow and comparison of

performance for various hidden layers, in: 2019 5th Int. Conf. Adv. Electr. Eng.

ICAEE 2019, Institute of Electrical and Electronics Engineers Inc., 2019: pp.

541–546. https://doi.org/10.1109/ICAEE48663.2019.8975496.

-196-

[132] S. Ruder, An overview of gradient descent optimization algorithms, Mach.

Learn. (2016). http://arxiv.org/abs/1609.04747 (accessed May 2, 2019).

[133] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward

neural networks, in: 13th Int. Conf. Artif. Intell. Stat., PMLR, 2010: pp. 249–

256. http://proceedings.mlr.press/v9/glorot10a.html (accessed May 11, 2019).

[134] Y.A. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient BackProp, in:

Montavon G, Orr G B, Müller KR (Eds.), Neural Networks: Tricks of the Trade,

2nd ed., Springer, Berlin, 2012: pp. 9–48. https://doi.org/10.1007/978-3-642-

35289-8_3.

[135] B. Hanin, D. Rolnick, How to Start Training: The Effect of Initialization and

Architecture, Mach. Learing. (2018). http://arxiv.org/abs/1803.01719 (accessed

May 12, 2019).

[136] A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks, Neural Evol. Comput.

(2013). http://arxiv.org/abs/1312.6120 (accessed May 12, 2019).

[137] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: 3rd Int.

Conf. Learn. Represent., San Diego, 2015. http://arxiv.org/abs/1412.6980

(accessed May 2, 2019).

[138] G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning machines:

A review, Neural Networks. 61 (2015) 32–48.

https://doi.org/10.1016/j.neunet.2014.10.001.

[139] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient Flow in

Recurrent Nets: The Difficulty of Learning LongTerm Dependencies, in: J.F.

Kolen, S.C. Kremer (Eds.), A F. Guid. to Dyn. Recurr. Networks, IEEE, 2009.

https://doi.org/10.1109/9780470544037.ch14.

[140] Duchi John, E. Hazan, Y. Singer, Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization * Elad Hazan, J. Mach. Learn. Res. 12

(2011) 2121–2159.

[141] M. Claesen, B. De Moor, Hyperparameter Search in Machine Learning, XI

Metaheuristics Int. Conf. (2015). http://arxiv.org/abs/1502.02127 (accessed

April 15, 2019).

-197-

[142] O. Obrezanova, G. Csányi, J.M.R. Gola, M.D. Segall, Gaussian processes: A

method for automatic QSAR modeling of ADME properties, J. Chem. Inf.

Model. 47 (2007) 1847–1857. https://doi.org/10.1021/ci7000633.

[143] S. Ding, H. Li, C. Su, J. Yu, F. Jin, Evolutionary artificial neural networks: a

review, Artif. Intell. Rev. 39 (2013) 251–260. https://doi.org/10.1007/s10462-

011-9270-6.

[144] J.T. Tsai, J.H. Chou, T.K. Liu, Tuning the Structure and Parameters of a Neural

Network by Using Hybrid Taguchi-Genetic Algorithm, IEEE Trans. Neural

Networks. 17 (2006) 69–80. https://doi.org/10.1109/TNN.2005.860885.

[145] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian Optimization of

Machine Learning Algorithms, ArXiv:1206.2944v2 . (2012).

http://arxiv.org/abs/1206.2944 (accessed April 15, 2019).

[146] J. Bergstra, D. Yamins, D.D. Cox, Hyperopt: A Python Library for Optimizing

the Hyperparameters of Machine Learning Algorithms, in: PROC. 12th

PYTHON Sci. CONF, 2013: pp. 13–20.

http://www.youtube.com/watch?v=Mp1xnPfE4PY! (accessed April 15, 2019).

[147] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for Hyper-Parameter

Optimization, Adv. Neural Inf. Process. Syst. (2011).

https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-

optimization.pdf (accessed April 15, 2019).

[148] D.R. Jones, A Taxonomy of Global Optimization Methods Based on Response

Surfaces, J. Glob. Optim. 21 (2001) 345–383.

https://doi.org/10.1023/A:1012771025575.

[149] J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the

global optimization of expensive-to-evaluate functions, J. Glob. Optim. 44

(2009) 509–534. https://doi.org/10.1007/s10898-008-9354-2.

[150] F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential Model-Based Optimization

for General Algorithm Configuration, Learn. Intell. Optim. 6683 (2011) 507–

523. https://doi.org/10.1007/978-3-642-25566-3_40.

[151] J. Francisco, M. Diaz, C. Maurice, F. Lerasle, F.L. Hyper, F. Madrigal, F.

Lerasle, F. Madrigal, C. Maurice, F. Lerasle, Hyper-parameter optimization

-198-

tools comparison for Multiple Object Tracking applications, Mach. Vis. Appl.

30 (2018) 269–289. https://doi.org/10.1007/s00138-018-0984-1ï.

[152] P.D. Tsakanikas, S.H. Yalkowsky, Estimation of melting point of flexible

molecules: Aliphatic hydrocarbons, Toxicol. Environ. Chem. 17 (1988) 19–33.

https://doi.org/10.1080/02772248809357275.

[153] T. Hanser, C. Barber, J.F. Marchaland, S. Werner, Applicability domain:

towards a more formal definition, SAR QSAR Environ. Res. 27 (2016) 893–

909. https://doi.org/10.1080/1062936X.2016.1250229.

[154] F. Svensson, N. Aniceto, U. Norinder, I. Cortes-Ciriano, O. Spjuth, L. Carlsson,

A. Bender, Conformal Regression for Quantitative Structure-Activity

Relationship Modeling - Quantifying Prediction Uncertainty, J. Chem. Inf.

Model. 58 (2018) 1132–1140. https://doi.org/10.1021/acs.jcim.8b00054.

[155] H. Kopp, On a great regularity in the physical properties of analogous organic

compounds, Philos. Mag. 130 (1842) 187–197.

[156] L.P. Hammett, The Effect of Structure upon the Reactions of Organic

Compounds. Benzene Derivatives, J. Am. Chem. Soc. 59 (1937) 96–103.

https://doi.org/10.1021/ja01280a022.

[157] J. Taskinen, J. Yliruusi, Prediction of physicochemical properties based on

neural network modelling, Adv. Drug Deliv. Rev. 55 (2003) 1163–1183.

https://doi.org/10.1016/S0169-409X(03)00117-0.

[158] A.R. Katrizky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, I. Kahn, D.A.

Dobchev, Quantitative correlation of physical and chemical properties with

chemical structure- Utility for prediction, Chem. Rev. 110 (2010) 5714–5789.

[159] W.L. Jorgensen, E.M. Duffy, Prediction of drug solubility from structure, Adv.

Drug Deliv. Rev. 54 (2002) 355–366. https://doi.org/10.1016/S0169-

409X(02)00008-X.

[160] S.R. Johnson, W. Zheng, Recent progress in the computational prediction of

aqueous solubility and absorption, AAPS J. 8 (2006) E27–E40.

[161] B.F. Begam, J.S. Kumar, A Study on Cheminformatics and its Applications on

Modern Drug Discovery, Procedia Eng. 38 (2012) 1264–1275.

https://doi.org/10.1016/J.PROENG.2012.06.156.

-199-

[162] C. Hansch, P.P. Maloney, T. Fujita, R.M. Muir, Correlation of biological

activity of phenoxyacetic acids with Hammett substituent constants and

partition coefficients, Nature. 194 (1962) 178–180.

https://doi.org/10.1038/194178b0.

[163] C. Hansch, T. Fujita, ρ-σ-π Analysis. A Method for the Correlation of

Biological Activity and Chemical Structure, J. Am. Chem. Soc. 86 (1964)

1616–1626. https://doi.org/10.1021/ja01062a035.

[164] Y.C. Martin, Hansch analysis 50 years on, Wiley Interdiscip. Rev. Comput.

Mol. Sci. 2 (2012) 435–442. https://doi.org/10.1002/wcms.1096.

[165] C. Hansch, R.M. Muir, T. Fujita, P.P. Maloney, F. Geiger, M. Streich, The

Correlation of Biological Activity of Plant Growth Regulators and

Chloromycetin Derivatives with Hammett Constants and Partition Coefficients,

J. Am. Chem. Soc. 85 (1963) 2817–2824. https://doi.org/10.1021/ja00901a033.

[166] H. Briem, J. Günther, Classifying “Kinase Inhibitor-Likeness” by Using

Machine-Learning Methods, ChemBioChem. 6 (2005) 558–566.

https://doi.org/10.1002/cbic.200400109.

[167] S.-S. So, M. Karplus, Three-Dimensional Quantitative Structure−Activity

Relationships from Molecular Similarity Matrices and Genetic Neural

Networks. 1. Method and Validations, J. Med. Chem. 40 (1997) 4347–4359.

https://doi.org/10.1021/JM970487V.

[168] D.-S. Cao, Q.-S. Xu, Y.-Z. Liang, X. Chen, H.-D. Li, Prediction of aqueous

solubility of druglike organic compounds using partial least squares, back-

propagation network and support vector machine, J. Chemom. 24 (2010) n/a-

n/a. https://doi.org/10.1002/cem.1321.

[169] S. Enami, A. Jouyban, H. Valizadeh, A. Shayanfar, Are Crystallinity

Parameters Critical for Drug Solubility Prediction, J. Solution Chem. 44 (2015)

2297–2315. http://link.springer.com/article/10.1007%2Fs10953-015-0410-5.

[170] I. V. Tetko, Y. Sushko, S. Novotarskyi, L. Patiny, I. Kondratov, A.E. Petrenko,

L. Charochkina, A.M. Asiri, How Accurately Can We Predict the Melting

Points of Drug-like Compounds?, J. Chem. Inf. Model. 54 (2014) 3320–3329.

https://doi.org/10.1021/ci5005288.

-200-

[171] N. Jain, S.H. Yalkowsky, UPPER III: Unified physical property estimation

relationships. Application to non‐hydrogen bonding aromatic compounds, J.

Pharm. Sci. 88 (1999) 852–860. https://doi.org/10.1021/JS990117P.

[172] M. Karthikeyan, R.C.G. And, A. Bender*, General Melting Point Prediction

Based on a Diverse Compound Data Set and Artificial Neural Networks, J.

Chem. Inf. Model. 45 (2005) 581–59. https://doi.org/10.1021/CI0500132.

[173] A.U. Bhat, S.S. Merchant, S.S. Bhagwat, Prediction of Melting Points of

Organic Compounds Using Extreme Learning Machines, Ind. Eng. Chem. Res.

47 (2008) 920–925. https://doi.org/10.1021/IE0704647.

[174] C.A.S. Bergström, U. Norinder, K. Luthman, P. Artursson, Molecular

Descriptors Influencing Melting Point and Their Role in Classification of Solid

Drugs, J. Chem. Inf. Comput. Sci. 43 (2003) 1177–1185.

https://doi.org/10.1021/CI020280X.

[175] L. Zhao, S.H. Yalkowsky, A Combined Group Contribution and Molecular

Geometry Approach for Predicting Melting Points of Aliphatic Compounds,

Ind. Eng. Chem. Res. 33 (1999) 1405–1409.

https://doi.org/10.1021/IE990281N.

[176] M. Zhou, N. Duan, S. Liu, H.Y. Shum, Progress in Neural NLP: Modeling,

Learning, and Reasoning, Engineering. 6 (2020) 275–290.

https://doi.org/10.1016/j.eng.2019.12.014.

[177] N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, The Computational

Limits of Deep Learning, Machine Learn. (2020).

http://arxiv.org/abs/2007.05558 (accessed September 26, 2020).

[178] M. Salahinejad, T.C. Le, D.A. Winkler, Aqueous Solubility Prediction- Do

Crystal Lattice Interactions Help, Mol. Pharm. 10 (2013) 2757–2766.

[179] C. Tyrchan, E. Evertsson, Matched Molecular Pair Analysis in Short:

Algorithms, Applications and Limitations, Comput. Struct. Biotechnol. J. 15

(2017) 86–90. https://doi.org/10.1016/j.csbj.2016.12.003.

[180] J. Hussain, C. Rea, Computationally Efficient Algorithm to Identify Matched

Molecular Pairs (MMPs) in Large Data Sets, J. Chem. Inf. Model. 50 (2010)

339–348. http://pubs.acs.org/doi/abs/10.1021/ci900450m (accessed July 8,

-201-

2016).

[181] R.P. Sheridan, The Most Common Chemical Replacements in Drug-Like

Compounds, J. Chem. Inf. Comput. Sci. 42 (2001) 103–108.

https://doi.org/10.1021/ci0100806.

[182] D.J. Warner, E.J. Griffen, S.A. St-Gallay, WizePairZ: A Novel Algorithm to

Identify, Encode, and Exploit Matched Molecular Pairs with Unspecified Cores

in Medicinal Chemistry, J. Chem. Inf. Model. 50 (2010) 1350–1357.

http://pubs.acs.org/doi/abs/10.1021/ci100084s (accessed July 8, 2016).

[183] J. Weber, J. Achenbach, D. Moser, E. Proschak, VAMMPIRE: A Matched

Molecular Pairs Database for Structure-Based Drug Design and Optimization,

J. Med. Chem. 56 (2013) 5203–5207.

http://pubs.acs.org/doi/abs/10.1021/jm400223y (accessed July 8, 2016).

[184] J. Weber, J. Achenbach, D. Moser, E. Proschak, VAMMPIRE-LORD: A Web

Server for Straightforward Lead Optimization Using Matched Molecular Pairs,

J. Chem. Inf. Model. 55 (2015) 207–213.

http://pubs.acs.org/doi/abs/10.1021/ci5005256 (accessed July 8, 2016).

[185] C. Kramer, J.E. Fuchs, S. Whitebread, P. Gedeck, K.R. Liedl, Matched

Molecular Pair Analysis- Significance and the Impact of Experimental

Uncertainty, J. Med. Chem. 57 (2014) 3786–3802.

[186] A.G. Leach, H.D. Jones, D.A. Cosgrove, P.W. Kenny, L. Ruston, P. MacFaul,

J.M. Wood, N. Colclough, B. Law, Matched molecular pairs as a guide in the

optimization of pharmaceutical properties; a study of aqueous solubility,

plasma protein binding and oral exposure, J. Med. Chem. (2006).

https://doi.org/10.1021/jm0605233.

[187] S.-Y. Chen, Z. Feng, X. Yi, A general introduction to adjustment for multiple

comparisons., J. Thorac. Dis. 9 (2017) 1725–1729.

https://doi.org/10.21037/jtd.2017.05.34.

[188] P. Ranganathan, C.S. Pramesh, M. Buyse, Common pitfalls in statistical

analysis: The perils of multiple testing., Perspect. Clin. Res. 7 (2016) 106–7.

https://doi.org/10.4103/2229-3485.179436.

[189] I. Giangreco, J.C. Cole, E. Thomas, Mining the Cambridge Structural Database

-202-

for Matched Molecular Crystal Structures: A Systematic Exploration of

Isostructurality, Cryst. Growth Des. 17 (2017) 3192–3203.

https://doi.org/10.1021/acs.cgd.7b00155.

[190] G. Papadatos, M. Alkarouri, V.J. Gillet, P. Willett, V. Kadirkamanathan, C.N.

Luscombe, G. Bravi, N.J. Richmond, S.D. Pickett, J. Hussain, J.M. Pritchard,

A.W.J. Cooper, S.J.F. Macdonald, Lead Optimization Using Matched

Molecular Pairs: Inclusion of Contextual Information for Enhanced Prediction

of hERG Inhibition, Solubility, and Lipophilicity, J. Chem. Inf. Model. 50

(2010) 1872–1886. https://doi.org/10.1021/ci100258p.

[191] L. Zhang, H. Zhu, A. Mathiowetz, H. Gao, Deep understanding of structure–

solubility relationship for a diverse set of organic compounds using matched

molecular pairs, Bioorg. Med. Chem. 19 (2011) 5763–5770.

https://doi.org/10.1016/j.bmc.2011.08.036.

[192] S. Schultes, C. de Graaf, H. Berger, M. Mayer, A. Steffen, E.E.J. Haaksma,

I.J.P. de Esch, R. Leurs, O. Kramer, A medicinal chemistry perspective on

melting point- matched molecular pair analysis of the effects of simple

descriptors on the melting point of drug-like compounds, Med. Chem.

Commun. 3 (2012) 584–591. https://doi.org/10.1039/c2md00313a.

[193] T. Geppert, B. Beck, Fuzzy Matched Pairs: A Means To Determine the

Pharmacophore Impact on Molecular Interaction, J. Chem. Inf. Model. 54

(2014) 1093–1102. http://pubs.acs.org/doi/abs/10.1021/ci400694q (accessed

July 8, 2016).

[194] A.M. Wassermann, J. Bajorath, A Data Mining Method To Facilitate SAR

Transfer, J. Chem. Inf. Model. 51 (2011) 1857–1866.

https://doi.org/10.1021/ci200254k.

[195] D. Dimova, Y. Hu, J. Bajorath, Matched Molecular Pair Analysis of Small

Molecule Microarray Data Identifies Promiscuity Cliffs and Reveals Molecular

Origins of Extreme Compound Promiscuity, J. Med. Chem. 55 (2012) 10220–

10228.

[196] A.M. Wassermann, D. Dimova, P. Iyer, J. Bajorath, Advances in computational

medicinal chemistry: Matched molecular pair analysis, Drug Dev. Res. 73

(2012) 518–527. https://doi.org/10.1002/ddr.21045.

-203-

[197] J.M. Beck, C. Springer, Quantitative Structure–Activity Relationship Models

of Chemical Transformations from Matched Pairs Analyses, J. Chem. Inf.

Model. 54 (2014) 1226–1234. https://doi.org/10.1021/ci500012n.

[198] Y. Sushko, S. Novotarskyi, R. Körner, J. Vogt, A. Abdelaziz, I. V Tetko,

Prediction-driven matched molecular pairs to interpret QSARs and aid the

molecular optimization process, J. Cheminform. 6 (2014) 48.

https://doi.org/10.1186/s13321-014-0048-0.

[199] A. de la V. de León, J. Bajorath, Compound Optimization through Data Set-

Dependent Chemical Transformations, J. Chem. Inf. Model. 53 (2013) 1263–

1271. http://pubs.acs.org/doi/abs/10.1021/ci400165a (accessed July 8, 2016).

[200] J. Janowiak, E.B. Martin, K.J. Roberts, Marchese Robinson, Richard L,

Maloney, Andrew, Giangreco, Ilenia, K. Pencheva, Adaptation of a Matched

Molecular Pair Identification Algorithm for Solid State Informatics Analysis of

the Cambridge Structural Database, in: UK QSAR, University of Cardiff, 2018.

[201] A. Dalke, J. Hert, C. Kramer, Mmpdb: An Open-Source Matched Molecular

Pair Platform for Large Multiproperty Data Sets, J. Chem. Inf. Model. 58

(2018) 902–910. https://doi.org/10.1021/acs.jcim.8b00173.

[202] Open-source cheminformatics, RDKit, (n.d.). http://www.rdkit.org.

[203] G.R. Desiraju, Supramolecular Synthons in Crystal Engineering—A New

Organic Synthesis, Angew. Chemie Int. Ed. English. 34 (1995) 2311–2327.

https://doi.org/10.1002/anie.199523111.

[204] G.M. Day, A. V. Trask, W.D.S. Motherwell, W. Jones, Investigating the latent

polymorphism of maleic acid, Chem. Commun. (2006) 54–56.

https://doi.org/10.1039/B513442K.

[205] R.S. Payne, R.J. Roberts, R.C. Rowe, R. Docherty, Examples of successful

crystal structure prediction: Polymorphs of primidone and progesterone, Int. J.

Pharm. 177 (1999) 231–245. https://doi.org/10.1016/S0378-5173(98)00348-2.

[206] J. Kendrick, G.A. Stephenson, M.A. Neumann, F.J.J. Leusen, Crystal structure

prediction of a flexible molecule of pharmaceutical interest with unusual

polymorphic behavior, Cryst. Growth Des. 13 (2013) 581–589.

https://doi.org/10.1021/cg301222m.

-204-

[207] L. Iuzzolino, P. McCabe, S.L. Price, J.G. Brandenburg, Crystal structure

prediction of flexible pharmaceutical-like molecules: density functional tight-

binding as an intermediate optimisation method and for free energy estimation,

Faraday Discuss. 211 (2018) 275–296. https://doi.org/10.1039/c8fd00010g.

[208] A.M. Reilly, R.I. Cooper, C.S. Adjiman, S. Bhattacharya, A.D. Boese, J.G.

Brandenburg, P.J. Bygrave, R. Bylsma, J.E. Campbell, R. Car, D.H. Case, R.

Chadha, J.C. Cole, K. Cosburn, H.M. Cuppen, F. Curtis, G.M. Day, R.A.

DiStasio, A. Dzyabchenko, B.P. Van Eijck, D.M. Elking, J.A. Van Den Ende,

J.C. Facelli, M.B. Ferraro, L. Fusti-Molnar, C.A. Gatsiou, T.S. Gee, R. De

Gelder, L.M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D.W.M. Hofmann, J.

Hoja, R.K. Hylton, L. Iuzzolino, W. Jankiewicz, D.T. De Jong, J. Kendrick,

N.J.J. De Klerk, H.Y. Ko, L.N. Kuleshova, X. Li, S. Lohani, F.J.J. Leusen, A.M.

Lund, J. Lv, Y. Ma, N. Marom, A.E. Masunov, P. McCabe, D.P. McMahon, H.

Meekes, M.P. Metz, A.J. Misquitta, S. Mohamed, B. Monserrat, R.J. Needs,

M.A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A.R. Oganov, A.M. Orendt,

G.I. Pagola, C.C. Pantelides, C.J. Pickard, R. Podeszwa, L.S. Price, S.L. Price,

A. Pulido, M.G. Read, K. Reuter, E. Schneider, C. Schober, G.P. Shields, P.

Singh, I.J. Sugden, K. Szalewicz, C.R. Taylor, A. Tkatchenko, M.E.

Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y.

Wang, R.E. Watson, G.A. De Wijs, J. Yang, Q. Zhu, C.R. Groom, Report on

the sixth blind test of organic crystal structure prediction methods, Acta

Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72 (2016) 439–459.

https://doi.org/10.1107/S2052520616007447.

[209] K. Kersten, R. Kaur, A. Matzger, Survey and analysis of crystal polymorphism

in organic structures, IUCrJ Chem. Cryst. Eng. 5 (2018) 124–129.

https://doi.org/10.1107/S2052252518000660.

[210] P. Crafts, The Role of Solubility Modeling and Crystallization in the Design of

Active Pharmaceutical Ingredients, in: Ka M. Ng, Rafiqul Gani, Kim Dam-

Johansen (Eds.), Comput. Aided Chem. Eng., Elsevier, 2007: pp. 23–85.

https://doi.org/10.1016/S1570-7946(07)80005-8.

[211] J. van de Streek, Searching the Cambridge Structural Database for the `best’

representative of each unique polymorph, Acta Crystallogr. Sect. B Struct. Sci.

-205-

62 (2006) 567–579. https://doi.org/10.1107/S0108768106019677.

[212] J.G.P. Wicker, R.I. Cooper, Beyond Rotatable Bond Counts: Capturing 3D

Conformational Flexibility in a Single Descriptor, J. Chem. Inf. Model. 56

(2016) 2347–2352. https://doi.org/10.1021/acs.jcim.6b00565.

[213] P. Tosco, N. Stiefl, G. Landrum, Bringing the MMFF force field to the RDKit:

implementation and validation, J. Cheminform. 6 (2014) 37.

https://doi.org/10.1186/s13321-014-0037-3.

[214] Y.L. Slovokhotov, I.S. Neretin, J.A.K. Howard, Symmetry of van der Waals

molecular shape and melting points of organic compounds, New J. Chem. 28

(2004) 967–979. https://doi.org/10.1039/b310787f.

[215] CCDC, CSD Python API, (n.d.).

https://downloads.ccdc.cam.ac.uk/documentation/API/.

[216] W. McKinney, Data Structures for Statistical Computing in Python, in: S. van

der Walt, J. Millman (Eds.), Proc. 9th Python Sci. Conf., 2010: pp. 51–56.

http://conference.scipy.org/proceedings/scipy2010/mckinney.html (accessed

August 24, 2018).

[217] W. Michael, B. Olga, O. Drew, P. Hobson, J. Ostblom, L. Saulius, G. David C,

T. Augspurger, H. Yaroslav, C. John B., W. Jordi, de R. Julian, P. Cameron,

H. Stephan, V. Jake, V. Santi, Seaborn, (2018).

https://doi.org/10.5281/zenodo.1313201.

[218] J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9

(2007) 90–95. doi:10.1109/MCSE.2007.55.

[219] A. Farcomeni, A review of modern multiple hypothesis testing, with particular

attention to the false discovery proportion, Stat. Methods Med. Res. 17 (2008)

347–388. https://doi.org/10.1177/0962280206079046.

[220] W.C. McCrone, Physics and Chemistry of the Organic Solid State, A.

WeissbergerInterscience Publishers, New York, 1965.

[221] M.R. Abu Bakar, Z.K. Nagy, C.D. Rielly, S.E. Dann, Investigation of the riddle

of sulfathiazole polymorphism, Int. J. Pharm. 414 (2011) 86–103.

https://doi.org/10.1016/J.IJPHARM.2011.05.004.

-206-

[222] J. van de Streek, S. Motherwell, Searching the Cambridge Structural Database

for polymorphs, Acta Crystallogr. Sect. B Struct. Sci. 61 (2005) 504–510.

https://doi.org/10.1107/S0108768105020021.

[223] A.A. Moldovan, I. Rosbottom, V. Ramachandran, C.M. Pask, O. Olomukhoro,

K.J. Roberts, Crystallographic Structure, Intermolecular Packing Energetics,

Crystal Morphology and Surface Chemistry of Salmeterol Xinafoate (Form I),

J. Pharm. Sci. 106 (2017) 882–891.

https://doi.org/10.1016/J.XPHS.2016.11.016.

[224] J.A. Chisholm, S. Motherwell, COMPACK: a program for identifying crystal

structure similarity using distances, J. Appl. Crystallogr. 38 (2005) 228–231.

https://doi.org/10.1107/S0021889804027074.

[225] S. Boslaugh, Statistics in a Nutshell, 2nd ed., O’Reilly, online, 2012.

https://www.oreilly.com/library/view/statistics-in-a/9781449361129/

(accessed September 13, 2020).

[226] J.E. Jackson, A Use’s Guide to Principal Components, John Wiley & Sons, Inc.,

Hoboken, NJ, USA, 1991. https://doi.org/10.1002/0471725331.

[227] X. Hu, Y. Hu, M. Vogt, D. Stumpfe, J. Bajorath, MMP-Cliffs: Systematic

Identification of Activity Cliffs on the Basis of Matched Molecular Pairs, J.

Chem. Inf. Model. 52 (2012) 1138–1145.

http://pubs.acs.org/doi/abs/10.1021/ci3001138 (accessed July 8, 2016).

[228] D. Dimova, J. Bajorath, Extraction of SAR information from activity cliff

clusters via matching molecular series, Eur. J. Med. Chem. 87 (2014) 454–460.

https://doi.org/10.1016/j.ejmech.2014.09.087.

[229] I. Peña, M. Pilar Manzano, J. Cantizani, A. Kessler, J. Alonso-Padilla, A.I.

Bardera, E. Alvarez, G. Colmenarejo, I. Cotillo, I. Roquero, F. de Dios-Anton,

V. Barroso, A. Rodriguez, D.W. Gray, M. Navarro, V. Kumar, A. Sherstnev,

D.H. Drewry, J.R. Brown, J.M. Fiandor, J. Julio Martin, New Compound Sets

Identified from High Throughput Phenotypic Screening Against Three

Kinetoplastid Parasites: An Open Resource, Sci. Rep. 5 (2015) 8771.

https://doi.org/10.1038/srep08771.

[230] A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring Network Structure,

-207-

Dynamics, and Function using NetworkX, in: G. Varoquaux, T. Vaught (Eds.),

Proc. Python Sci. Conf., Pasadena, 2008: pp. 11–15.

http://conference.scipy.org/proceedings/SciPy2008/paper_2/ (accessed August

28, 2019).

[231] M. Bastian, S. Heymann, M. Jacomy, Gephi: an open source software for

exploring and manipulating networks, in: Int. AAAI Conf. Weblogs Soc.

Media, San Jose, 2009. https://gephi.org/.

[232] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a Continuous

Graph Layout Algorithm for Handy Network Visualization Designed for the

Gephi Software, PLoS One. 9 (2014) e98679.

https://doi.org/10.1371/journal.pone.0098679.

[233] E.J. Mills, D.F.R.S. Sc, On melting-point and boiling-point as related to

chemical composition, London, Edinburgh, Dublin Philos. Mag. J. Sci. 17

(1884) 173–187. https://doi.org/10.1080/14786448408627502.

[234] R. Todeschini, P. Gramatica, SD-modelling and Prediction by WHIM

Descriptors. Part 5. Theory Development and Chemical Meaning of WHIM

Descriptors, Quant. Struct. Relationships. 16 (1997) 113–119.

https://doi.org/10.1002/qsar.19970160203.

[235] D. Cherqaoui, D. Villemin, V. Kvasnic̆ka, Application of neural network

approach for prediction of some thermochemical properties of alkanes,

Chemom. Intell. Lab. Syst. 24 (1994) 117–128. https://doi.org/10.1016/0169-

7439(94)00012-3.

[236] J.C. Dearden, Quantitative structure‐property relationships for prediction of

boiling point, vapor pressure, and melting point, Environ. Toxicol. Chem. 22

(2003) 1696. https://doi.org/10.1897/01-363.

[237] J. Janowiak, E.B. Martin, R.L. Marchese Robinson, I. Giangreco, Melting Point

Prediction using Message Passing Neural Networks based on Molecular and

Crystal Structures, (2019).

[238] V. Korolev, A. Mitrofanov, A. Korotcov, V. Tkachenko, Graph Convolutional

Neural Networks as “general-Purpose” Property Predictors: The Universality

and Limits of Applicability, J. Chem. Inf. Model. 60 (2020) 22–28.

-208-

https://doi.org/10.1021/acs.jcim.9b00587.

[239] J. Lim, S. Ryu, K. Park, Y.J. Choe, J. Ham, W.Y. Kim, Predicting Drug-Target

Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded

Graph Representation, J. Chem. Inf. Model. 59 (2019) 3981–3988.

https://doi.org/10.1021/acs.jcim.9b00387.

[240] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the Properties of

Neural Machine Translation: Encoder-Decoder Approaches, Comput. Lang.

(2014). http://arxiv.org/abs/1409.1259 (accessed August 15, 2019).

[241] P.C. St. John, C. Phillips, T.W. Kemper, A.N. Wilson, M.F. Crowley, M.R.

Nimlos, R.E. Larsen, Message-passing neural networks for high-throughput

polymer screening, ARXIV. 1807 (2018). http://arxiv.org/abs/1807.10363

(accessed October 12, 2018).

[242] L. Laugier, D. Bash, J. Recatala, H.K. Ng, S. Ramasamy, C.-S. Foo, V.R.

Chandrasekhar, K. Hippalgaonkar, Predicting thermoelectric properties from

crystal graphs and material descriptors - first application for functional

materials, ArXiv:1811.06219. (2018). http://arxiv.org/abs/1811.06219

(accessed March 20, 2019).

[243] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF,

a full periodic table force field for molecular mechanics and molecular

dynamics simulations, J. Am. Chem. Soc. 25 (1992) 10024–10035.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.7677&rep=rep

1&type=pdf (accessed September 19, 2020).

[244] M.J. Bryant, A.G.P. Maloney, R.A. Sykes, Predicting mechanical properties of

crystalline materials through topological analysis, CrystEngComm. 20 (2018)

2698–2704. https://doi.org/10.1039/c8ce00454d.

[245] Pande group, DeepChem, (2014). https://deepchem.io/docs/index.html.

[246] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,

M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I.

Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.

-209-

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:

Large-scale machine learning on heterogeneous systems, (2015).

[247] E. Jones, T. Oliphant, P. Peterson, Others, SciPy: Open Source Scientific Tools

for Python, (2001).

[248] Microsoft, Gated Graph Neural Networks, (2018).

https://github.com/microsoft/gated-graph-neural-network-samples.

[249] I. Rosbottom, K.J. Roberts, R. Docherty, The solid state, surface and

morphological properties of p-aminobenzoic acid in terms of the strength and

directionality of its intermolecular synthons, CrystEngComm. 17 (2015) 5768–

5788. https://doi.org/10.1039/C5CE00302D.

[250] A. Vriza, A.B. Canaj, R. Vismara, L.J. Kershaw Cook, T.D. Manning, M.W.

Gaultois, P.A. Wood, V. Kurlin, N. Berry, M.S. Dyer, M.J. Rosseinsky, One

class classification as a practical approach for accelerating π-π co-crystal

discovery, Chem. Sci. 12 (2021) 1702–1719.

https://doi.org/10.1039/d0sc04263c.

[251] R.L. Marchese Robinson, I. Lynch, W. Peijnenburg, J. Rumble, F. Klaessig, C.

Marquardt, H. Rauscher, T. Puzyn, R. Purian, C. Åberg, S. Karcher, H. Vriens,

P. Hoet, M.D. Hoover, C.O. Hendren, S.L. Harper, How should the

completeness and quality of curated nanomaterial data be evaluated?,

Nanoscale. 8 (2016) 9919–9943. https://doi.org/10.1039/C5NR08944A.

[252] S. Kang, K. Cho, Conditional Molecular Design with Deep Generative Models,

Comput. Res. Repos. abs/1805.00108 (2018). http://arxiv.org/abs/1805.00108

(accessed July 19, 2018).

[253] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods, and

analytics, Int. J. Inf. Manage. 35 (2015) 137–144.

https://doi.org/10.1016/j.ijinfomgt.2014.10.007.

[254] M.D. Wilkinson, M. Dumontier, Ij.J. Aalbersberg, G. Appleton, M. Axton, A.

Baak, N. Blomberg, J.W. Boiten, L.B. da Silva Santos, P.E. Bourne, J.

Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds,

C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble,

J.S. Grethe, J. Heringa, P.A.C. t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J.

-210-

Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M.

Roos, R. van Schaik, S.A. Sansone, E. Schultes, T. Sengstag, T. Slater, G.

Strawn, M.A. Swertz, M. Thompson, J. Van Der Lei, E. Van Mulligen, J.

Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons,

Comment: The FAIR Guiding Principles for scientific data management and

stewardship, Sci. Data. 3 (2016) 1–9. https://doi.org/10.1038/sdata.2016.18.

[255] EPSRC, Expectations - EPSRC website, (n.d.).

https://epsrc.ukri.org/about/standards/researchdata/expectations/ (accessed

September 9, 2020).

[256] B. Louis, V.K. Agrawal, P. V. Khadikar, Prediction of intrinsic solubility of

generic drugs using MLR, ANN and SVM analyses, Eur. J. Med. Chem. 45

(2010) 4018–4025. https://doi.org/10.1016/j.ejmech.2010.05.059.

[257] A. Lusci, G. Pollastri, P. Baldi, Deep Architectures and Deep Learning in

Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like

Molecules, J. Chem. Inf. Model. 53 (2013) 1563–1575.

https://doi.org/10.1021/ci400187y.

[258] I. Robinson, J. Webber, E. Eifrem, Graph Databases, 2nd ed., O’Reilly,

Sebastopol, 2015.

[259] W. Zheng, A. Tropsha, Novel Variable Selection Quantitative

Structure−Property Relationship Approach Based on the k -Nearest-Neighbor

Principle, J. Chem. Inf. Comput. Sci. 40 (2000) 185–194.

https://doi.org/10.1021/ci980033m.

[260] Organisation for Economic Co-operation and Development, OECD principles

for the validation, for regulatory purposes, of (quantitative) structure-activity

relationship models, 2004. hhttp://www.oecd.org/env/ehs/risk-

assessment/validationofqsarmodels.htm (accessed September 6, 2019).

[261] M.T. Ribeiro, S. Singh, C. Guestrin, Why Should I Trust You? Explaining the

Predictions of Any Classifier, ARXIV Mach. Learn. (2016).

https://doi.org/10.1145/2939672.2939778.

[262] M. Salahinejad, T.C. Le, D.A. Winkler, Aqueous Solubility Prediction: Do

Crystal Lattice Interactions Help?, Mol. Pharm. 10 (2013) 2757–2766.

-211-

https://doi.org/10.1021/mp4001958.

[263] G. Clydesdale, K.J. Roberts, R. Docherty, HABIT95 — a program for

predicting the morphology of molecular crystals as a function of the growth

environment, J. Cryst. Growth. 166 (1996) 78–83.

[264] K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification, Comput. Vis. Pattern

Recognit. (2015). http://arxiv.org/abs/1502.01852 (accessed May 12, 2019).

-212-

Appendix 1

Matched Molecular Pairs

Database scripts

Purpose:

This appendix contains all scripts used to generate a Matched Molecular Pair

Database (Chapter 3) and carry out the analysis (Chapter 4). Scripts that generate

required files for Matched Molecular Graph generation (Chapter 6) is also included

here.

Folder structure and uses:

• mmpdb

o __init__.py

o tables.py

o get_smiles.py

o frag.py

o indexfrag.py

o mmp_identification

• csd_addon.py: prepares input for database.py if using CSD as source

• database.py: creates MMP database

• analysis.py: performs MMPA on database, optionally prepares data for MMG

-213-

__init__.py

import tables

import frag

import indexfrag

import mmp_identification

-214-

tables.py

def solids_table(c):

 c.execute(' CREATE TABLE IF NOT EXISTS '

 'Solid_properties '

 '(solid_id VARCHAR(10) PRIMARY KEY, structure_family

VARCHAR(6),'

 ' polymorph_count INTEGER, structure_count INTEGER)')

def smiles_table(c):

 c.execute('CREATE TABLE IF NOT EXISTS '

 'all_smiles '

 '(line_id INTEGER PRIMARY KEY, solid_id VARCHAR(10),

mol_id INTEGER '

 ')')

def frag_table(c):

 c.execute('CREATE TABLE IF NOT EXISTS '

 'rfrag '

 '(rfrag_id INTEGER PRIMARY KEY, mol_id INTEGER, core

TEXT, core_ni TEXT, core_id INTEGER, chain TEXT, '

 'chain_size INTEGER, chain_id, single_cut INTEGER

DEFAULT 0, indexed INTEGER DEFAULT 0)')

def trans_table(c):

 c.execute('CREATE TABLE IF NOT EXISTS Transformation ('

 ' trans_id INTEGER NOT NULL, '

 ' R1_id INTEGER NOT NULL, '

 ' R2_id INTEGER NOT NULL, '

 ' SMIRKS TEXT NOT NULL,'

 ' PRIMARY KEY(trans_id) '

 ');')

def mmp_table(c):

 c.execute('CREATE TABLE IF NOT EXISTS MMP '

 '(mmp_id INTEGER PRIMARY KEY, trans_id INTEGER NOT

NULL, '

 'mol1_id INTEGER NOT NULL, mol2_id INTEGER NOT NULL,

context INTEGER, '

 'FOREIGN KEY (trans_id) REFERENCES

Transformation(trans_id))')

def context_table(c):

 c.execute("CREATE TABLE IF NOT EXISTS context_table "

 " ("

 " context_id INTEGER PRIMARY KEY, "

 " context_smi VARCHAR(1000) NOT

NULL UNIQUE, "

 " context_size INTEGER, "

 " single_cut INTEGER DEFAULT 0 "

 ")")

def core_table(c):

-215-

 c.execute("CREATE TABLE IF NOT EXISTS fragments"

 " ("

 " context_id INTEGER NOT NULL,"

 " cmpd_id INTEGER NOT NULL,"

 " core_id INTEGER, "

 " core_size INTEGER,"

 " ratio REAL,"

 " single_cut INTEGER,"

 " significant INTEGER NOT NULL

DEFAULT 0"

 " "

 ")")

def unique_core_table(c):

 c.execute("CREATE TABLE IF NOT EXISTS `core_table` ("

 " `core_id` INTEGER, "

 " `core_smi` TEXT UNIQUE, "

 " `core_smi_ni` TEXT, "

 " PRIMARY KEY(`core_id`) "

 "); ")

def mol_descriptor_table(c):

 c.execute("CREATE TABLE IF NOT EXISTS mol_properties "

 "(mol_id INTEGER PRIMARY KEY, "

 "smiles VARCHAR(1000),cmpd_size INTEGER, fragmented

INTEGER DEFAULT 0, MMP_identified INTEGER DEFAULT 0, "

 "n_conf_20 INTEGER "

 ")")

def all_tables(c):

 solids_table(c)

 smiles_table(c)

 # frag_table(c)

 trans_table(c)

 mmp_table(c)

 context_table(c)

 core_table(c)

 unique_core_table(c)

 mol_descriptor_table(c)

-216-

get_smiles.py

This script can be used for any purpose without limitation subject

to the

conditions at

http://www.ccdc.cam.ac.uk/Community/Pages/Licences/v2.aspx

This permission notice and the following statement of attribution

must be

included in all copies or substantial portions of this script.

2017-02-07: created by the Cambridge Crystallographic Data Centre

from ccdc import search

from rdkit import Chem

def heavy_atom_count(smi):

 m = Chem.MolFromSmiles(smi)

 return m.GetNumAtoms()

def get_rdkit_mol(ccdc_mol):

 """Return RDKit molecule, with 2D coordinates, from a CCDC

molecule."""

 mol_block = Chem.MolFromMolBlock(ccdc_mol)

 rdkit_mol_smiles = Chem.MolToSmiles(mol_block,

isomericSmiles=True)

 return rdkit_mol_smiles

def generate_smiles_from_mol_block(mol):

 """Return an RDKit SMILES from a sdf mol block of a CCDC

molecule."""

 mol_block = mol.to_string('sdf')

 return get_rdkit_mol(mol_block)

def generate_smiles_from_kekulized_mol_block(mol):

 """Return an RDKit SMILES from a sdf mol block of a kekulized

CCDC molecule."""

 mol.kekulize()

 kekulized_mol = mol.to_string('sdf')

 return get_rdkit_mol(kekulized_mol)

def generate_smiles_from_csd(mol):

 """Return an CSD SMILES from a CCDC molecule."""

 csd_smiles = mol.smiles

 return Chem.MolToSmiles(Chem.MolToSmiles(csd_smiles),

isomericSmiles=True)

class RDKitChargeConventionSetter:

 def __init__(self):

 self.editors = []

 # You can add in any other edits you need here

 # The pairs (1,-1) mean 'transform the atom labeled '1' in

the SMARTS to have a charge '-1', etc.'

 self._add_editor('[OX1:1]-[nX3:2]',[(1,-1),(2,1)])

-217-

 self._add_editor('[!#1]=[N:1]=[N:2]',[(1,1),(2,-1)])

 def _add_editor(self, smarts_pattern, charge_transformation):

 searcher = search.SubstructureSearch()

 sub = search.SMARTSSubstructure(smarts_pattern)

 searcher.add_substructure(sub)

 self.editors.append((searcher, sub,

charge_transformation))

 def _charge_balance_molecule_with_editor(self, mol, editor):

 hits = editor[0].search(mol)

 for hit in hits:

 hit_atom_indexes = hit.match_atoms(indices=True)

 substructure = editor[1]

 for pair in editor[2]:

 sub_atom_index =

substructure.label_to_atom_index(pair[0])

mol.atoms[hit_atom_indexes[sub_atom_index]].partial_charge =

float(pair[1])

mol.atoms[hit_atom_indexes[sub_atom_index]].formal_charge =

int(pair[1])

 def charge_balance_molecule(self, mol):

 for editor in self.editors:

 self._charge_balance_molecule_with_editor(mol,editor)

def generate_smiles(entry):

 mol = entry.molecule

 try:

 smiles = generate_smiles_from_mol_block(mol)

 method = 'mol block'

 except:

 try:

 smiles = generate_smiles_from_kekulized_mol_block(mol)

 method = 'kekulized mol block'

 except:

 try:

 setter = RDKitChargeConventionSetter()

 setter.charge_balance_molecule(mol)

 smiles = generate_smiles_from_mol_block(mol)

 method = "mol block with charges for N-oxide"

 except:

 try:

 smiles = generate_smiles_from_csd(mol)

 method = "CSD and canonicalised with RDKit"

 except:

 smiles = ''

 method = 'unable'

 return smiles, method

-218-

frag.py

Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are

met:

* Redistributions of source code must retain the above

copyright

notice, this list of conditions and the following

disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials

provided

with the distribution.

* Neither the name of GlaxoSmithKline Research & Development

Ltd.

nor the names of its contributors may be used to endorse or

promote

products derived from this software without specific prior

written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

Created by Jameed Hussain, July 2013

Modifications and optimizations by Greg Landrum, July 2015

import re

from rdkit import Chem

from rdkit.Chem import rdMMPA

def find_correct(f_array):

 core = ""

-219-

 side_chains = ""

 for f in f_array:

 attachments = f.count("*")

 if (attachments == 1):

 side_chains = "%s.%s" % (side_chains, f)

 else:

 core = f

 side_chains = side_chains.lstrip('.')

 #cansmi the side chains

 temp = Chem.MolFromSmiles(side_chains)

 side_chains = Chem.MolToSmiles(temp, isomericSmiles=True)

 #and cansmi the core

 temp = Chem.MolFromSmiles(core)

 core = Chem.MolToSmiles(temp, isomericSmiles=True)

 return core, side_chains

def delete_bonds(smi, id, mol, bonds, out):

 #use the same parent mol object and create editable mol

 em = Chem.EditableMol(mol)

 #loop through the bonds to delete

 isotope = 0

 isotope_track = {}

 for i in bonds:

 isotope += 1

 #remove the bond

 em.RemoveBond(i[0], i[1])

 #now add attachement points

 newAtomA = em.AddAtom(Chem.Atom(0))

 em.AddBond(i[0], newAtomA, Chem.BondType.SINGLE)

 newAtomB = em.AddAtom(Chem.Atom(0))

 em.AddBond(i[1], newAtomB, Chem.BondType.SINGLE)

 #keep track of where to put isotopes

 isotope_track[newAtomA] = isotope

 isotope_track[newAtomB] = isotope

 #should be able to get away without sanitising mol

 #as the existing valencies/atoms not changed

 modifiedMol = em.GetMol()

 #canonical smiles can be different with and without the isotopes

 #hence to keep track of duplicates use fragmented_smi_noIsotopes

 fragmented_smi_noIsotopes = Chem.MolToSmiles(modifiedMol,

isomericSmiles=True)

 valid = True

 fragments = fragmented_smi_noIsotopes.split(".")

 #check if its a valid triple cut

 if (isotope == 3):

 valid = False

-220-

 for f in fragments:

 matchObj = re.search('*.**.**', f)

 if matchObj:

 valid = True

 break

 if valid:

 if (isotope == 1):

 fragmented_smi_noIsotopes = re.sub('\[*\]', '[*:1]',

fragmented_smi_noIsotopes)

 fragments = fragmented_smi_noIsotopes.split(".")

 #print fragmented_smi_noIsotopes

 s1 = Chem.MolFromSmiles(fragments[0])

 s2 = Chem.MolFromSmiles(fragments[1])

 #need to cansmi again as smiles can be different

 output = '%s,%s,,%s.%s' % (smi, id, Chem.MolToSmiles(s1,

isomericSmiles=True),

 Chem.MolToSmiles(s2,

isomericSmiles=True))

 if ((output in out) == False):

 out.add(output)

 elif (isotope >= 2):

 #add the isotope labels

 for key in isotope_track:

 #to add isotope lables

modifiedMol.GetAtomWithIdx(key).SetIsotope(isotope_track[key])

 fragmented_smi = Chem.MolToSmiles(modifiedMol,

isomericSmiles=True)

 #change the isotopes into labels - currently can't add SMARTS

or labels to mol

 fragmented_smi = re.sub('\[1*\]', '[*:1]', fragmented_smi)

 fragmented_smi = re.sub('\[2*\]', '[*:2]', fragmented_smi)

 fragmented_smi = re.sub('\[3*\]', '[*:3]', fragmented_smi)

 fragments = fragmented_smi.split(".")

 #identify core/side chains and cansmi them

 core, side_chains = find_correct(fragments)

 #now change the labels on sidechains and core

 #to get the new labels, cansmi the dot-disconnected side

chains

 #the first fragment in the side chains has attachment label 1,

2nd: 2, 3rd: 3

 #then change the labels accordingly in the core

 #this is required by the indexing script, as the side-chains

are "keys" in the index

 #this ensures the side-chains always have the same numbering

 isotope_track = {}

 side_chain_fragments = side_chains.split(".")

 for s in range(len(side_chain_fragments)):

-221-

 matchObj = re.search('\[*\:([123])\]',

side_chain_fragments[s])

 if matchObj:

 #add to isotope_track with key: old_isotope, value:

 isotope_track[matchObj.group(1)] = str(s + 1)

 #change the labels if required

 if (isotope_track['1'] != '1'):

 core = re.sub('\[*\:1\]', '[*:XX' + isotope_track['1'] +

'XX]', core)

 side_chains = re.sub('\[*\:1\]', '[*:XX' +

isotope_track['1'] + 'XX]', side_chains)

 if (isotope_track['2'] != '2'):

 core = re.sub('\[*\:2\]', '[*:XX' + isotope_track['2'] +

'XX]', core)

 side_chains = re.sub('\[*\:2\]', '[*:XX' +

isotope_track['2'] + 'XX]', side_chains)

 if (isotope == 3):

 if (isotope_track['3'] != '3'):

 core = re.sub('\[*\:3\]', '[*:XX' + isotope_track['3'] +

'XX]', core)

 side_chains = re.sub('\[*\:3\]', '[*:XX' +

isotope_track['3'] + 'XX]', side_chains)

 #now remove the XX

 core = re.sub('XX', '', core)

 side_chains = re.sub('XX', '', side_chains)

 output = '%s,%s,%s,%s' % (smi, id, core, side_chains)

 if ((output in out) == False):

 out.add(output)

def fragment_mol(smi, id):

 mol = Chem.MolFromSmiles(smi)

 #different cuts can give the same fragments

 #to use outlines to remove them

 outlines = set()

 if (mol == None):

 print("Can't generate mol for: %s\n" % (smi))

 return

 else:

 frags = rdMMPA.FragmentMol(mol,

pattern="[#6+0;!$(*=,#[!#6])]!@!=!#[*]", resultsAsMols=False)

 for core, chains in frags:

 output = (str(smi),str(id),str(core),str(chains))

 if (not (output in outlines)):

 outlines.add(output)

 return outlines

-222-

indexfrag.py

Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are

met:

* Redistributions of source code must retain the above

copyright

notice, this list of conditions and the following

disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials

provided

with the distribution.

* Neither the name of GlaxoSmithKline Research & Development

Ltd.

nor the names of its contributors may be used to endorse or

promote

products derived from this software without specific prior

written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

Created by Jameed Hussain, July 2013

modifications by Jakub Janowiak, 2018

import pandas as pd

import re

from rdkit import Chem

\\\\\\\\\\\\\\\\\\\\\core side///////////////////////

def core_db(conn):

-223-

 """Return pandas.DataFrame with cores from database."""

 sql = '''SELECT core_id, core_smi FROM core_table'''

 cores_old = pd.read_sql_query(sql, conn)

 cores_old['old'] = True

 # they are loaded in random order for some reason

 cores_old =

cores_old.sort_values(by=['core_id']).reset_index().drop('index',

axis=1)

 return cores_old

def get_cores(frag_df):

 """Return pandas.Dataframe with cores from frag_df."""

 cores_new = frag_df.drop_duplicates(subset='core_smi')

 cores_new.drop(['cmpd_size', 'context_size', 'core_size',

'ratio', 'context_smi', 'mol_id', 'single_cut'], axis=1,

inplace=True)

 cores_new['old'] = False

 return cores_new

def core_all(cores_new, cores_old):

 """Return a combined pandas.DataFrame with old and new

contexts"""

 if cores_old.empty is True:

 line = {'core_smi': ['[*:1][H]'], 'core_id': [0], 'old':

[False]}

 cores = pd.DataFrame(line, columns=line.keys())

 cores = pd.concat([cores, cores_new])

 cores = cores.reset_index().drop('index', axis=1)

 assert cores.loc[0, 'core_id'] == 0, 'something went wrong

with generating core_table; index issue'

 else:

 cores = pd.concat([cores_old, cores_new]).reset_index()

 cores.rename(columns={'core_id': 'core_old'}, inplace=True)

 # drops the contexts that were already in the database

 cores.drop_duplicates(subset='core_smi', keep='first',

inplace=True)

 cores.drop('index', axis=1, inplace=True)

 cores = cores.reset_index()

 cores.drop('index', axis=1, inplace=True)

 # check the old index didnt change

 row_index = len(cores[(cores['old'] == True) & (cores.index

== cores['core_old'])])

 row_old = len(cores[cores['old'] == True])

 assert row_old == row_index, 'duplicate cores found in

database.'

 cores.drop('core_old', axis=1, inplace=True)

 cores['core_id'] = cores.index

 return cores

def get_smi_ni(smi):

 """Return fragment string without numbered cuts """

-224-

 smi = re.sub(r'\[*\:1\]', '[*]', smi)

 smi = re.sub(r'\[*\:2\]', '[*]', smi)

 smi = re.sub(r'\[*\:3\]', '[*]', smi)

 return smi

def core_to_db(cores, conn):

 """Insert contexts to database and return the corresponding

pandas.Dataframe"""

 new_cores = cores[cores['old'] == False]

 # drop 'old' column

 new_cores = new_cores.drop('old', axis=1)

 if not new_cores.empty:

 new_cores['core_smi_ni'] = new_cores.apply(lambda row:

get_smi_ni(row['core_smi']), axis=1)

 new_cores.to_sql('core_table', conn, if_exists='append',

index=False) # TODO check this, hasnt been done yet

\\\\\\\\\\\\\\\\\\\\\context side///////////////////////

def context_db(conn):

 """Return pandas.DataFrame with contexts from database."""

 sql = '''SELECT context_smi, context_id, context_size,

single_cut FROM context_table'''

 contexts_old = pd.read_sql_query(sql, conn)

 contexts_old['old'] = True

 contexts_old =

contexts_old.sort_values(by=['context_id']).reset_index().drop('inde

x', axis=1)

 return contexts_old

def get_contexts(frag_df):

 """Return pandas.Dataframe with contexts from frag_df."""

 contexts_new = frag_df.drop_duplicates(subset='context_smi')

 contexts_new = contexts_new.reset_index()

 contexts_new = contexts_new.drop(['cmpd_size', 'core_size',

'ratio', 'core_smi', 'mol_id', 'index'], axis=1)

 contexts_new['old'] = False

 return contexts_new

def context_all(contexts_new, contexts_old):

 """Return a combined pandas.DataFrame with old and new

contexts"""

 if contexts_old.empty is True:

 contexts = contexts_new

 else:

 contexts = pd.concat([contexts_old,

contexts_new]).reset_index()

 contexts.rename(columns={'context_id': 'context_old'},

inplace=True)

 # drops the contexts that were already in the database

 contexts.drop_duplicates(subset='context_smi', keep='first',

inplace=True)

 contexts.drop('index', axis=1, inplace=True)

 contexts = contexts.reset_index()

-225-

 contexts.drop('index', axis=1, inplace=True)

 # check the old index didnt change

 row_index = len(contexts[(contexts['old'] == True) &

(contexts.index == contexts['context_old'])])

 row_old = len(contexts[contexts['old'] == True])

 if row_index != row_old:

 raise Exception('duplicate contexts found in database.')

 contexts.drop('context_old', axis=1, inplace=True)

 contexts['context_id'] = contexts.index

 return contexts

def context_to_db(contexts, conn):

 """Insert contexts to database and return the corresponding

pandas.Dataframe"""

 new_contexts = contexts[contexts['old'] == False]

 # drop 'old' column

 new_contexts = new_contexts.drop('old', axis=1)

 if not new_contexts.empty:

 new_contexts.to_sql('context_table', conn,

if_exists='append', index=False) # TODO check this, hasnt been done

yet

 return new_contexts

def h_change(smi):

 """ """

 # replace [1] with H

 smi = re.sub(r'\[*\:1\]', '[H]', smi)

 # construct a mol

 temp = Chem.MolFromSmiles(smi)

 if temp is None:

 print('failed to generate Chem.Mol for {}'.format(smi))

 mol = None

 else:

 mol = Chem.MolToSmiles(temp, isomericSmiles=True)

 # return smiles

 return mol

def index_h_change(new_contexts, conn):

 new_contexts['mol'] = new_contexts.apply(lambda row:

h_change(row['context_smi']) if (row['single_cut'] == 1) else None,

axis=1)

 # drop na

 new_contexts.drop('single_cut',axis=1, inplace=True)

 new_contexts.dropna(axis=0, how='any', inplace=True)

 # new_contexts['context_id'] = new_contexts.index # loses index

on merge

 # merge with all_smiles (inner)

 sql = 'SELECT smiles, mol_id FROM mol_properties'

 all_smiles = pd.read_sql_query(sql,conn)

 new_contexts = new_contexts.merge(all_smiles, how='inner',

left_on='mol', right_on='smiles')

 new_contexts.drop(['smiles', 'mol'], axis=1, inplace=True)

 new_contexts['ratio'] = 0

 new_contexts['core_size'] = 0

-226-

 new_contexts['core_smi'] = '[*:1][H]'

 new_contexts['core_id'] = 0

 new_contexts['single_cut'] = 1

 new_contexts.rename(columns={'unique_smiles_id': 'smiles_id'},

inplace=True)

 return new_contexts

\\\\\\\\\\\\\\\\\\\\\fragments///////////////////////

def get_id(frag_df, contexts, cores):

 """Return pandas.DataFrame with context_id and core_id"""

 contexts.drop(['context_size', 'old', 'single_cut'], axis=1,

inplace=True)

 cores.drop('old', axis=1, inplace=True)

 frag_df.drop('cmpd_size', axis=1, inplace=True)

 frag_df = frag_df.merge(contexts, how='left', on='context_smi')

 frag_df = frag_df.merge(cores, how='left', on='core_smi')

 return frag_df

\\\\\\\\\\\\\\\\\\\\\main///////////////////////

def index_core(frag_df, conn):

 """ """

 cores_old = core_db(conn)

 cores_new = get_cores(frag_df)

 cores = core_all(cores_new, cores_old)

 core_to_db(cores, conn)

 return cores

def index_context(frag_df, conn):

 """ """

 contexts_old = context_db(conn)

 contexts_new = get_contexts(frag_df)

 contexts = context_all(contexts_new, contexts_old)

 if not contexts[contexts['old'] == False].empty:

 h_frag = context_to_db(contexts, conn)

 h_frag = index_h_change(h_frag, conn)

 else:

 h_frag = None

 return contexts, h_frag

def index_main(frag_df, conn):

 cores = index_core(frag_df, conn)

 contexts, h_frag = index_context(frag_df, conn)

 frag_df = get_id(frag_df,contexts,cores)

 if h_frag is not None:

 frag_df = pd.concat([frag_df,

h_frag]).reset_index(drop=True)

-227-

 frag_df = frag_df.drop(['context_smi', 'core_smi',

'context_size'], axis=1)

 frag_df.rename(columns={'mol_id': 'cmpd_id'}, inplace=True)

 frag_df.to_sql('fragments', conn, if_exists='append',

index=False)

-228-

mmp_identification.py

import pandas as pd

import numpy as np

from joblib import Parallel, delayed

import time

#from __main__ import conn

#from __main__ import c

context = {}

class DatabaseException(Exception):

 pass

"""returns compound list (cmpd_id, cmpd_size) and DataFrame with

fragments"""

def load_data(ratio, max_size, conn):

 sql_cmpd = (''

 'SELECT distinct(cmpd_id), cmpd_size '

 'FROM fragments, mol_properties '

 'WHERE cmpd_id = mol_id AND MMP_identified = 0 '

 '')

 sql_frag = (''

 'SELECT fragments.cmpd_id, fragments.core_id,

fragments.context_id, context_size '

 'FROM fragments, context_table '

 'WHERE significant = 1 AND context_table.context_id

= fragments.context_id '

 'AND ratio <= {ratio} AND core_size <= {size}'

 '')

 var = {'ratio': ratio, 'size': max_size}

 sql_frag = sql_frag.format(**var)

 df_cmpd = pd.read_sql_query(sql_cmpd, conn)

 cmpd_list = df_cmpd.values.tolist()

 global fragmts

 fragmts = pd.read_sql_query(sql_frag, conn)

 return cmpd_list

def get_contexts(cmpd):

 """creates a dictionary with cmpd_id: [context_id,...]..."""

 c_id = cmpd[0]

 contexts = fragmts.context_id[fragmts.cmpd_id == c_id]

 context_list = contexts.values.tolist()

 context[c_id] = context_list

def find_mmp(cmpd):

 """finds MMPs of a molecule. Uses context dict and frag

DataFrame"""

 c_id, c_size = cmpd

 contexts = context[c_id]

-229-

 all_mmp = fragmts[(fragmts.context_id.isin(contexts)) &

(fragmts.cmpd_id != c_id)].groupby(fragmts['cmpd_id']) # TODO change

the conditions removed: & (c_size - fragmts.context_id < 15)

 mmp_list = []

 for mmp in list(all_mmp):

 df = mmp[1]

 pair = df.ix[df['context_size'].idxmax()]

 mmp_list.append(pair)

 if mmp_list:

 mmps = pd.concat(mmp_list, axis=1).T.reset_index()

 else:

 mmps = None

 return c_id, mmps

def sort_mmp(mmp_set):

 """combines the generated mmp tables of each molecule into

one"""

 full_mmp_set = []

 NoneType = type(None)

 for i in mmp_set:

 if type(i[1]) is NoneType:

 continue

 else:

 table = i[1]

 table = table.rename(columns={'cmpd_id': 'mol2',

'core_id': 'R2', 'context_id': 'context'})

 table = table.assign(mol1=i[0])

 table = table.astype(int)

 full_mmp_set.append(table)

 # TODO sort it out for the case for no MMPs

 mmp_table = pd.concat(full_mmp_set)

 mmp_table = mmp_table.reset_index()

 mmp_table.drop(['level_0', 'index'], axis=1, inplace=True)

 mmp_table = mmp_table[mmp_table['mol1'] !=

mmp_table['mol2']].reset_index()

 mmp_table.drop('index', axis=1, inplace=True)

 return mmp_table

def find_r1(mmp):

 """adds symmetrical transformation to mmp dataframe"""

 mmp = mmp.merge(fragmts[['cmpd_id', 'core_id', 'context_id']],

left_on=['mol1', 'context'], right_on=['cmpd_id', 'context_id'],

how='left')

 mmp['R1'] = mmp['R1'].fillna(mmp['core_id'])

 mmp.drop(['context_id', 'core_id', 'cmpd_id'], axis=1,

inplace=True)

 mmp['R1'] = mmp['R1'].astype(int)

 return mmp

def reorganise(mmp):

 """reorganises mmps and transformation to avoid counting

symmetrical pairs as separate"""

 # reorders mol1, mol2 and R1, R2 so all are in order of R2 > R1

 idx = (mmp['R1'] > mmp['R2'])

 mmp.loc[idx, ['mol1', 'mol2']] = mmp.loc[idx, ['mol2',

'mol1']].values

 mmp.loc[idx, ['R1', 'R2']] = mmp.loc[idx, ['R2', 'R1']].values

-230-

 # drops duplicate

 mmp = mmp.drop_duplicates(subset=['mol1', 'mol2']).reset_index()

 mmp.drop('index', axis=1, inplace=True)

 return mmp

def get_trans(mmp):

 """selects all unique R1-R2 combinations from identified mmps"""

 trans = mmp[['R1', 'R2']].drop_duplicates(subset=['R1',

'R2']).reset_index()

 trans.drop('index', axis=1, inplace=True)

 trans['old'] = False

 trans.index.rename('trans_id', inplace=True)

 return trans

def trans_db(conn):

 """loads all transformations from the database"""

 sql = '''SELECT trans_id, R1_id, R2_id FROM Transformation'''

 trans_old = pd.read_sql_query(sql, conn, index_col='trans_id')

 trans_old['old'] = True

 trans_old = trans_old.rename(columns={'R1_id': 'R1', 'R2_id':

'R2'})

 return trans_old

def trans_all(trans_old, trans_new):

 """combines newly identified transformations with ones from the

database"""

 if trans_old.empty is True:

 trans = trans_new

 else:

 trans = pd.concat([trans_old, trans_new]).reset_index()

 trans = trans.rename(columns={'trans_id': 'transid_old'})

 # drops the transformations that were already in the

database

 trans.drop_duplicates(subset=['R1', 'R2'], keep='first',

inplace=True)

 # TODO see context and core workflows, see if index needs to

be reset

 # check the old index didnt change by accident

 row_index = len(trans[(trans['old'] == True) & (trans.index

== trans['transid_old'])])

 row_old = len(trans[trans['old'] == True])

 if row_index != row_old:

 raise DatabaseException('duplicate transformations found

in database')

 trans.drop('transid_old', axis=1, inplace=True)

 trans['trans_id'] = trans.index

 return trans

def get_smirks(trans, conn):

 sql = 'SELECT core_id, core_smi FROM core_table'

 cores = pd.read_sql_query(sql, conn)

 trans = trans.merge(cores, how='left', left_on='R1_id',

right_on='core_id')

 trans.rename(columns={'core_smi': 'R1'}, inplace=True)

 trans.drop('core_id', axis=1, inplace=True)

 trans = trans.merge(cores, how='left', left_on='R2_id',

right_on='core_id')

-231-

 trans.rename(columns={'core_smi': 'R2'}, inplace=True)

 trans.drop('core_id', axis=1, inplace=True)

 trans['SMIRKS'] = trans['R1'] + '>>' + trans['R2']

 trans.drop(['R1', 'R2'], axis=1, inplace=True)

 return trans

def trans_to_db(trans, conn):

 """appends the new unique transformations to the database"""

 # remove the old ones that are already in the database

 trans = trans[trans['old'] == False]

 # adjust the table so it matches the database table

 trans = trans.rename(columns={'R1': 'R1_id', 'R2': 'R2_id'})

 trans.drop('old', axis=1, inplace=True)

 trans = get_smirks(trans, conn)

 trans.to_sql('Transformation', conn, if_exists='append',

index=False)

def mmp_to_db(trans, mmp, conn):

 """appends the newly identified mmps to the database"""

 # merge transformations and mmps on R1 and R2 to get transid for

mmps

 mmp = pd.merge(mmp, trans, how='left', left_on=['R1', 'R2'],

right_on=['R1', 'R2'])

 # adjust the DataFrame to match the database table

 mmp.drop(['R1', 'R2', 'context_size'], axis=1, inplace=True)

 mmp = mmp.rename(columns={'mol1': 'mol1_id', 'mol2': 'mol2_id'})

 mmp.to_sql('MMP', conn, if_exists='append', index=False)

def identify_mmps(ratio, max_size, conn, c):

 cmpd_list = load_data(ratio, max_size, conn)

 for i in cmpd_list:

 get_contexts(i)

 # potentially combine the two so contexts are searched on the

fly. might save memory & time

 ti = time.time()

 # mmps = Parallel(n_jobs=2)(delayed(find_mmp)(i) for i in

cmpd_list)

 mmp_list = []

 for i in cmpd_list:

 mmp = find_mmp(i)

 mmp_list.append(mmp)

 tf = time.time()

 print(tf-ti)

 ti = time.time()

 mmps = sort_mmp(mmp_list)

 tf = time.time()

 print(tf-ti)

 mmps['R1'] = np.nan # add r1 column

 ti = time.time()

 mmps = find_r1(mmps)

 tf = time.time()

 print(tf-ti)

 ti = time.time()

 mmps = reorganise(mmps)

 tf = time.time()

 print(tf-ti)

 ti = time.time()

 trans_new = get_trans(mmps)

-232-

 trans_old = trans_db(conn)

 trans = trans_all(trans_old, trans_new) #TODO check if works

 tf = time.time()

 print(tf - ti)

 ti = time.time()

 trans_to_db(trans, conn)

 tf = time.time()

 print(tf - ti)

 ti = time.time()

 trans.drop('old', axis=1, inplace=True)

 mmp_to_db(trans, mmps, conn)

 tf = time.time()

 print(tf - ti)

 ti = time.time()

 c.execute('UPDATE mol_properties '

 'SET MMP_identified = 1 '

 'WHERE MMP_identified = 0 AND '

 'mol_id IN (SELECT distinct(cmpd_id) FROM fragments)

')

 tf = time.time()

 print(tf - ti)

 conn.commit()

-233-

database.py

import sqlite3

import time

import argparse

import sys

import re

import os

import glob

import csv

import pandas as pd

from rdkit import Chem

try:

 import mmpdb # TODO check if it imports from the folder or

outside of it

except ImportError:

 print('could not import necessary files. Ensure mmpdb folder is

in a directory python can access')

 sys.exit(1)

-------------------- Input smiles --------------------

def heavy_atom_count(smi):

 try:

 mol = Chem.MolFromSmiles(smi)

 return mol.GetNumAtoms()

 except AttributeError:

 return None

def solid_in_db(input_smiles, conn):

 # check if solid_id in database already

 # remove once that already in

 # return the df

 sql = 'SELECT solid_id FROM solid_properties'

 in_db = pd.read_sql_query(sql, conn)

 if not in_db.empty:

 input_smiles = input_smiles.merge(in_db, how='outer',

indicator=True, on='solid_id')

 input_smiles =

input_smiles[input_smiles['_merge']=='left_only']

 input_smiles = input_smiles.drop('_merge',axis=1)

 return input_smiles

def solid_to_db(input_smiles, conn):

 # select distinct solid_id

 # append to db

 # no returns

 solids = input_smiles.drop_duplicates(subset='solid_id')

 solids.drop('smiles', axis=1, inplace=True)

 solids.to_sql('Solid_properties', conn, if_exists='append',

index=False)

def all_smiles_to_db(input_smiles, conn):

 # add all smiles to perserve stoich

 to_db = input_smiles.drop(['smiles', 'old'], axis=1)

 to_db.to_sql('all_smiles', conn, if_exists='append',

index=False)

def get_smiles(input_smiles):

-234-

 smiles_new = input_smiles.drop_duplicates(subset='smiles')

 smiles_new = smiles_new.reset_index(drop=True)

 smiles_new['old'] = False

 return smiles_new

def smiles_db(conn):

 sql = 'SELECT mol_id, smiles FROM mol_properties' # check names

 smiles_old = pd.read_sql_query(sql, conn)

 smiles_old['old'] = True

 smiles_old =

smiles_old.sort_values(by=['mol_id']).reset_index(drop=True)

 return smiles_old

def smiles_all(smiles_new, smiles_old):

 if smiles_old.empty is True:

 smiles = smiles_new

 else:

 smiles =

pd.concat([smiles_old,smiles_new]).reset_index(drop=True)

 smiles.rename(columns={'mol_id':'smiles_old'}, inplace=True)

 smiles.drop_duplicates(subset='smiles', keep='first',

inplace=True)

 smiles.reset_index(drop=True)

 row_index = len(smiles[(smiles['old'] == True) &

(smiles.index == smiles['smiles_old'])])

 row_old = len(smiles[smiles['old'] == True])

 if row_index != row_old:

 raise Exception('duplicate {} found in

database.'.format('smiles'))

 smiles.drop('smiles_old', axis=1, inplace=True)

 smiles['mol_id'] = smiles.index

 return smiles

def smiles_to_db(smiles, conn):

 smiles['cmpd_size'] = smiles.apply(lambda row:

heavy_atom_count(row['smiles']),axis=1)

 smiles['fragmented'] = 0

 smiles['MMP_identified'] = 0

 smiles.to_sql('mol_properties', conn, if_exists='append',

index=False)

def input_smiles(input_file, conn):

 input_smiles = pd.read_csv(input_file, header=None)

 col_count = len(input_smiles.columns)

 if col_count == 1:

 solid_state = False

 input_smiles.columns = ['smiles']

 elif col_count == 2:

 solid_state = True

 input_smiles.columns = ['smiles','solid_id']

 else:

 print('something wrong with input')

 sys.exit(1)

 # in some cases there might be empty smiles (failure on the

input side)

 input_smiles.dropna(axis=0, how='any', inplace=True)

 if solid_state:

-235-

 input_smiles = solid_in_db(input_smiles, conn)

 solid_to_db(input_smiles, conn)

 smiles_new =

get_smiles(input_smiles.drop('solid_id',axis=1))

 # create a all_smiles df without adding to db

 else:

 smiles_new = get_smiles(input_smiles)

 # assign smiles_ids to all new molecules

 smiles_old = smiles_db(conn)

 smiles = smiles_all(smiles_new,smiles_old)

 if solid_state:

 # merge with all_smiles on smiles to get the new mol_id

 # add to db from all_smiles df

 input_smiles = input_smiles.merge(smiles, how='left',

on='smiles')

 all_smiles_to_db(input_smiles, conn)

 # drop 'old' column

 smiles = smiles[smiles['old']==False]

 smiles.drop('old',axis=1, inplace=True)

 smiles_to_db(smiles, conn)

need to change unique_smiles_id = smiles_id bit everywhere

 # -------------------- Fragmentation --------------------

def get_context_size(context, attachments):

 mol = Chem.MolFromSmiles(context)

 size = mol.GetNumAtoms() - attachments

 return size

def fragmnt(smi, id, cmpd_size):

 """ """

 o = mmpdb.frag.fragment_mol(smi, id)

 frags = []

 if o:

 for l in o:

 core = l[2]

 chains = l[3]

 # no fragments

 if core == '' and chains == '':

 continue

 #single cut

 elif core == '':

 single_cut = 1

 side_chains = chains.split('.')

 # frag1-frag2 -> context: frag1, change: frag2

 context, change = side_chains

 context_size = get_context_size(context, 1)

 f = {'mol_id': id, 'context_smi': context,

'core_smi': change, 'single_cut': single_cut,

 'cmpd_size': cmpd_size, 'context_size':

context_size}

 frags.append(f)

 # frag1-frag2 -> context: frag2, change: frag1

 change, context = side_chains

 context_size = get_context_size(context, 1)

-236-

 f = {'mol_id': id, 'context_smi': context,

'core_smi': change, 'single_cut': single_cut,

 'cmpd_size': cmpd_size, 'context_size':

context_size}

 frags.append(f)

 # double / triple cut

 else:

 single_cut = 0

 context = chains

 change = core

 attachments = context.count('*')

 context_size = get_context_size(context,

attachments)

 f = {'mol_id': id, 'context_smi': context,

'core_smi': change, 'single_cut': single_cut,

 'cmpd_size': cmpd_size, 'context_size':

context_size}

 frags.append(f)

 return frags

def fragment(c):

 c.execute('SELECT smiles, mol_id, cmpd_size '

 'FROM mol_properties '

 'WHERE fragmented = 0 ')

 results = c.fetchall()

 all_frags = []

 t1 = time.time()

 for line in results:

 frags = fragmnt(line[0], line[1], line[2])

 all_frags = all_frags + frags

 t2 = time.time()

 print(t2-t1)

 frag_df = pd.DataFrame(all_frags,columns=['mol_id',

'context_smi', 'core_smi', 'single_cut', 'cmpd_size',

'context_size'])

 frag_df['core_size'] = frag_df['cmpd_size'] -

frag_df['context_size']

 frag_df['ratio'] = frag_df['core_size'] / frag_df['cmpd_size']

 t3 = time.time()

 print(t3 - t2)

 c.execute('UPDATE mol_properties '

 'SET fragmented = 1') # there should be no need to add

this, make sure it aint done anywhere else

 return frag_df

 # -------------------- Indexing --------------------

done in main()

def screen_cores(min_core_count, conn, c):

 if min_core_count != 0:

 c.execute('UPDATE fragments SET significant = 0')

 c.execute('UPDATE fragments SET significant = 1 WHERE

core_id IN '

 '(SELECT core_id FROM fragments '

-237-

 'GROUP BY core_id HAVING count(core_id) > ?)',

(min_core_count,))

 else:

 c.execute('UPDATE fragmnets SET significant = 1')

 conn.commit()

 # -------------------- MMP identification --------------------

done in main()

 # -------------------- Main --------------------

def main():

 parser = argparse.ArgumentParser('''Generates SMILES from CSD

entries based on

the refcodes in the input file or CSD search.

Unique SMILES are fragmented and indexed using rdkit/MMPA.

Identified MMPs are added to database.''')

 parser.add_argument('input', help='input text file with refcodes

or type "CSD"')

 parser.add_argument('-o', '--output', default='MMP.db',

help='database name (default = MMP.db)')

 parser.add_argument('-r', '--ratio', default=0.3, help='max

ratio of change allowed. ratio = size of change / cmpd.'

 ' Set to

1 to ignore ratios. (default = 0.3)')

 parser.add_argument('-c', '--change', default=10, help='max size

of change allowed. Set to a high number (eg 100) to'

 ' ignore

max size of change. (default = 10)'

 '')

 parser.add_argument('-s', '--screen', default=1, help='min count

of core to be considered for MMP identification.'

 ' Higher

value reduces processing time and eliminates the '

'likelihood of identifying transformations with low MMPs count'

 '(default

= 1)')

 args = parser.parse_args()

 # MMP identification settings

 max_size = int(args.change)

 ratio = float(args.ratio)

 min_core_num = int(args.screen)

 # connect to database

 db = re.search('\.db', args.output)

 if db is None:

 print('database name must end with .db')

 sys.exit(1)

 dbname = args.output

 conn = sqlite3.connect(dbname)

 c = conn.cursor()

 input_file = args.input # sample10000.csv

 try:

 mmpdb.tables.all_tables(c)

 print('tables created')

-238-

 input_smiles(input_file, conn)

 print('SMILES added')

 frag_df = fragment(c)

 print('SMILES fragmented')

 mmpdb.indexfrag.index_main(frag_df, conn)

 screen_cores(min_core_num, conn, c)

 print('indexing done')

 mmpdb.mmp_identification.identify_mmps(ratio, max_size,

conn, c)

 print('MMPs identified')

 finally:

 conn.commit()

 conn.close()

if __name__ == '__main__':

 main()

-239-

analysis.py

import argparse

import sqlite3

import pandas as pd

from scipy import stats

--------------------load data--------------------

def load_data(properties, conn):

 if properties == 'all':

 sql = 'SELECT * FROM mol_properties'

 data = pd.read_sql_query(sql, conn)

 data.drop(['smiles', 'fragmented', 'MMP_identified',

'cmpd_size'], axis=1, inplace=True)

 else:

 sql = 'SELECT mol_id'

 for prop in properties:

 sql = sql + ', ' + prop

 sql = sql + ' FROM mol_properties' # add table selection

 data = pd.read_sql_query(sql, conn)

 return data

def load_mmp(conn):

 """returns a DF with all MMPs"""

 sql = 'SELECT trans_id, mol1_id, mol2_id FROM MMP'

 mmp = pd.read_sql_query(sql, conn)

 return mmp

def load_smirks(conn):

 sql = 'SELECT trans_id, SMIRKS FROM Transformation'

 smirks = pd.read_sql_query(sql, conn, index_col='trans_id')

 return smirks

--------------------MMPA--------------------

def mmp_data(mmp, data):

 # rename property values

 prop_names = data.columns.tolist()

 prop_names.remove('mol_id')

 data_1 = data.copy()

 data_2 = data.copy()

 names_1 = {}

 names_2 = {}

 for name in prop_names:

 names_1[name] = name + '_1'

 names_2[name] = name + '_2'

 data_1.rename(columns=names_1, inplace=True)

 data_2.rename(columns=names_2, inplace=True)

 # do the merges

 mmp = mmp.merge(data_1, left_on='mol1_id', right_on='mol_id',

how='inner')

 mmp.drop('mol_id', axis=1, inplace=True)

 mmp = mmp.merge(data_2, left_on='mol2_id', right_on='mol_id',

how='inner')

 mmp.drop('mol_id', axis=1, inplace=True)

 # drop rows with missing values due to dataset limitations

 mmp.dropna(axis=1, how='any', inplace=True)

-240-

 return mmp, prop_names

def change(mmpa, prop_names):

 for name in prop_names:

 change = name +'_change'

 data_1 = name + '_1'

 data_2 = name + '_2'

 mmpa[change] = mmpa[data_2] - mmpa[data_1]

 return mmpa

def t_test(m1, s1, n1, m2, s2, n2):

 score = stats.ttest_ind_from_stats(m1, s1, n1, m2, s2, n2)

 return score.pvalue

def do_stats(mmpa, prop_names, min_count):

 all_stats = []

 for name in prop_names:

 change = name +'_change'

 data_1 = name + '_1'

 data_2 = name + '_2'

 headings = [change, data_1, data_2]

 # change data

 data_all = mmpa.groupby('trans_id')[headings]

 data_change = mmpa.groupby('trans_id')[change]

 mean_headings = {}

 std_dev_headings = {}

 for heading in headings:

 mean_headings[heading] = heading +'_mean'

 std_dev_headings[heading] = heading +'_std_dev'

 av = data_all.mean()

 av.rename(columns=mean_headings, inplace=True)

 std_dev = data_all.std()

 std_dev.rename(columns=std_dev_headings, inplace=True)

 med = data_change.median()

 med = med.to_frame(name + '_median')

 cnt = data_change.count()

 cnt = cnt.to_frame(name + '_count')

 std_err = data_change.sem()

 std_err = std_err.to_frame(name + '_sem')

 stats_data = pd.concat([av,std_dev, med, std_err, cnt],

axis=1) # see best way to combine these

 # either concat, or join or merge

 # concat should be fine since trans_id is the index

 # remove based on minimum count

 stats_data = stats_data[stats_data[name +

'_count']>min_count]

 # paired t test

 # ttest

 stats_data[name + '_ttest_pvalue'] = stats_data.apply(

-241-

 lambda x: t_test(x[data_1 + '_mean'], x[data_1 +

'_std_dev'], x[name + '_count'], x[data_2 +'_mean'], x[data_2 +

'_std_dev'], x[name + '_count']), axis=1)

 # drop for failed ones

 stats_data.dropna(axis=0, how='any', inplace=True)

 # remove useless columns now

 stats_data.drop([data_1 + '_mean', data_1 + '_std_dev',

data_2 + '_mean', data_2 + '_std_dev'], axis=1, inplace=True)

 stats_data[name + '_abs_mean'] = stats_data[change +

'_mean'].abs()

 all_stats.append(stats_data)

 mmp_stats = pd.concat(all_stats, axis=1)

 return mmp_stats

def drop_insignificant(mmp_data, prop_names, p_crit, drop_any):

 # so messy because the number/ names of columns not known

 drop = mmp_data[mmp_data[[name + '_ttest_pvalue' for name in

prop_names]] <=p_crit][[name + '_ttest_pvalue' for name in

prop_names]]

 if drop_any:

 drop.dropna(axis=0, how='any')

 else:

 drop.dropna(axis=0, how='all')

 #drop.drop(columns=[name + '_ttest_pvalue' for name in

prop_name])

 to_keep = drop.index.tolist()

 mmp_data = mmp_data[mmp_data.index.isin(to_keep)]

 return mmp_data

def prepare_mmn(mmpa, stats_data, prop_names, data):

 edges = mmpa.rename(columns={'mol1_id': 'Source', 'mol2_id':

'Target'})

 drop_col = [name +'_1' for name in prop_names] + [name +'_2' for

name in prop_names]

 edges.drop(columns=drop_col, inplace=True)

 edges = edges.merge(stats_data, how='inner', left_on='trans_id',

right_index=True)

 nodes = data.rename(columns={'mol_id': 'Id', 'smiles': 'Label'})

 edges.to_csv('edges.csv', index=False)

 nodes.to_csv('nodes.csv', index=False)

main

def main():

 parser = argparse.ArgumentParser('''Carries out MMPA of desired

subset of the MMP database.

 Transformations with statistically significant results are

identified''')

 parser.add_argument('database', help='database name')

 parser.add_argument('-c', '--count', help='min number of MMPs

for a transformation to be considered, integer',

 default=1, type=int)

 parser.add_argument('-t', '--t_crit', help=' statistical

significance level for a transformation to be considered using

paired t-test, '

-242-

 'default=no limit',

default=1)

 parser.add_argument('-n', '--network', help='create an output

file for MMN',

 action='store_true')

 parser.add_argument('-p', '--property', nargs='*',help='list of

property/s to focus on. default=all)',

 default='all')

 parser.add_argument('-s','--subset', help='perform analysis only

on subset. input txt file with SQL queries needed')

 parser.add_argument('-d', '--drop_any', help='a transformation

will be dropped where t-test p value for any of the properties is

below p_crit. No effect if MMPA of single variable.',

action='store_true')

 args = parser.parse_args()

 min_mmp = args.count

 p_crit = float(args.t_crit)

 dbname = args.database

 properties = args.property

 drop_any = args.drop_any

 subset = args.subset

 # !!!!!!!!!!!!!!!!!!!! move to input file

 #sql_trans = '''SELECT trans_id FROM Transformation '''

 #sql_data = '''SELECT smiles_id, polymorph_count FROM

all_smiles, Solid_properties WHERE Solid_properties.refcode =

all_smiles.refcode GROUP BY all_smiles.refcode '''

 #sql_mol = '''SELECT smiles_id FROM all_smiles GROUP BY refcode

'''

 #sql_smirks = 'SELECT trans_id, SMIRKS FROM Transformation'

 # connect to database

 try:

 conn = sqlite3.connect(dbname)

 data = load_data(properties, conn)

 smirks = load_smirks(conn)

 mmp = load_mmp(conn)

 if subset:

 # trans of interest and mol of interest

 # add this at a later date

 pass

 finally:

 conn.close()

 # do analysis

 mmpa, prop_names = mmp_data(mmp,data) #property names are not

extracted from args.property in case of 'all' case, this way,

property data is extracted consistently

 mmpa = change(mmpa, prop_names)

 mmp_stats = do_stats(mmpa, prop_names, min_mmp)

 mmp_stats = drop_insignificant(mmp_stats, prop_names, p_crit,

drop_any)

 mmp_stats = mmp_stats.merge(smirks, how='left',

right_index=True, left_index=True)

 # generate output

 mmp_stats.to_csv('trans_data.csv')

 mmpa.to_csv('mmp_data.csv', index=False)

-243-

 if args.network:

 prepare_mmn(mmpa,mmp_stats,prop_names, data)

if __name__=='__main__':

 main()

-244-

csd_addon.py

import argparse

import os

import glob

import csv

import sys

from ccdc import search

from ccdc import io

try:

 from mmpdb import get_smiles

except ImportError:

 print('import of smiles_gen from mmpdb failed')

 sys.exit(1)

def csd_entry_to_smiles(refcode, csd_reader):

 try:

 entry = csd_reader.entry(refcode)

 crystal = csd_reader.crystal(refcode)

 except RuntimeError:

 return

 if crystal.has_disorder:

 return

 if entry.has_disorder:

 return

 smiles_all, method = get_smiles.generate_smiles(entry)

 smiles_list = smiles_all.split('.')

 rows = []

 for smi in smiles_list:

 rows.append([smi,refcode])

 return rows

def smiles_from_csd(csd_reader, settings):

 all_rows = []

 for e in csd_reader:

 if settings.test(e):

 try:

 ref = e.identifier

 rows = csd_entry_to_smiles(ref, csd_reader)

 all_rows = all_rows + rows

 except RuntimeError:

 continue

 return all_rows

def smiles_from_refcode(sourcefile, csd_reader):

 all_rows = []

 with open(sourcefile, 'r') as source:

 for line in source:

 ref_code = line.rstrip()

 rows = csd_entry_to_smiles(ref_code, csd_reader)

 all_rows = all_rows + rows

 return all_rows

def write_output(smiles, output_file):

 with open(output_file, 'wb') as csv_file:

 writer = csv.writer(csv_file,delimiter=',')

 writer.writerows(smiles)

-245-

def main():

 parser = argparse.ArgumentParser('''Generates SMILES from CSD

entries based on

 the refcodes in the input file or CSD search. Outputs file with

smiles for MMP analysis''')

 parser.add_argument('input', help='input text file with refcodes

or type "CSD" to do a search')

 parser.add_argument('-o', '--output', default='smiles.csv',

help='output name (default = smiles.csv)')

 parser.add_argument('-d', '--directory',

default=io.csd_directory(), help='directory of the CSD-like database

(default=CSD)')

 args = parser.parse_args()

 # setup input source

 useCSD = False

 if args.input == 'CSD':

 useCSD = True

 else:

 input_file = args.input

 #setup output

 output_file = args.output

 # CSD search settings

 csd_dir = args.directory

 csd_location = glob.glob(os.path.join(csd_dir, '*.inf'))

 csd_reader = io.EntryReader(csd_location)

 if useCSD:

 settings = search.Search.Settings()

 settings.has_3d_coordinates = True

 settings.only_organic = True

 settings.not_polymeric = True

 settings.no_powder = True

 settings.no_disorder = True

 settings.max_r_factor = 7.5

 settings.no_metals = True

 settings.must_not_have_elements = ['As', 'Te', 'At', 'He',

'Ne', 'Ar', 'Kr', 'Xe', 'Rn', 'B', 'Al', 'Ga', 'In',

 'Tl', 'Si', 'Ge', 'Sn',

'Pb', 'Sb', 'Po']

 if useCSD:

 smiles = smiles_from_csd(csd_reader, settings)

 else:

 smiles = smiles_from_refcode(input_file, csd_reader)

 write_output(smiles, output_file)

if __name__ == '__main__':

 main()

-246-

Appendix 2

Matched Molecular Database

Schema

Purpose:

A4 size version of the Matched Molecular Pairs Database

-247-

-248-

Appendix 3

Polymorph and

Redetermination Classification

Purpose:

This appendix contains scripts used prepare datasets for the benchmark study

(Chapter 5) and the training of machine learning based models.

Folder structure and uses:

• pre_process.py: prepares datasets for the study

• train.py: carries out the training process on the datasets

-249-

pre_process.py

import pandas as pd

import numpy as np

import glob

import os

import re

from collections import defaultdict

import itertools

import json

import pickle

from sklearn.model_selection import train_test_split

from ccdc import io

from ccdc import crystal

class SpectraMethod:

 def __init__(self, cluster_f_name='CSDplus_clusters_s.txt'):

 with open(cluster_f_name, 'r') as f:

 lines = f.readlines()

 self.clusters = defaultdict(list)

 self.all_refs = []

 self.ref_groups = defaultdict(list)

 for line in lines:

 cluster = line.split()

 self.all_refs.extend(cluster)

 fam = re.sub('[0-9]+', '', cluster[0])

 self.clusters[fam].append(cluster)

 self.ref_groups[fam].extend(cluster)

 @staticmethod

 def get_polymorph_id(ref, cluster):

 id = None

 for i, pol in enumerate(cluster):

 if ref in pol:

 id = i

 return id

 def check_polymorphism(self, pair, clusters=None):

 ref1, ref2 = pair

 if clusters is None:

 clusters = self.clusters

 pol = None

 fam1 = re.sub('[0-9]+', '', ref1)

 cluster = clusters.get(fam1)

 if cluster:

 id_1 = self.get_polymorph_id(ref1, cluster)

 id_2 = self.get_polymorph_id(ref2, cluster)

 if id_1 is None or id_2 is None:

 print('refoces not in cluster {} {}'.format(ref1,

ref2))

 else:

 if id_1 == id_2:

 pol = 0

 else:

 pol = 1

 else:

 print('refcode fam {} not in clusters'.format(fam1))

-250-

 return pol

class ManualMethod:

 def __init__(self, all_refs, info=None, csd_reader=None):

 self.all_refs = all_refs

 if info is None:

 assert csd_reader is not None, 'if info is not provided,

csd_reader needed'

 info = self.get_info(csd_reader)

 self.info = info

 def get_info(self, csd_reader):

 info = {}

 for ref in self.all_refs:

 try:

 e = csd_reader.entry(ref)

 lit = e.publication

 pol = e.polymorph

 info[ref] = {'lit': lit, 'polymorph': pol}

 except RuntimeError:

 continue

 return info

 def check_polymorphism(self, pair):

 ref1, ref2 = pair

 info1, info2 = self.info.get(ref1), self.info.get(ref2)

 if info1 is not None and info2 is not None:

 pol1, pol2 = info1['polymorph'], info2['polymorph']

 if pol1 is None or pol2 is None:

 pol = None

 elif pol1 == pol2:

 pol = 0

 else:

 pol = 1

 return pol

 def check_lit_source(self, pair):

 ref1, ref2 = pair

 same = False

 if self.info.get(ref1) is not None and self.info.get(ref2)

is not None:

 if self.info[ref1]['lit'] == self.info[ref2]['lit']:

 same = True

 return same

class BestRMethod:

 def __init__(self, all_refs, best_r_file):

 with open(best_r_file, 'r') as f:

 lines = f.readlines()

 self.in_best_r = defaultdict(list)

 for ref in lines:

 ref = ref.rstrip()

 if ref in all_refs:

 fam = re.sub('[0-9]+', '', ref)

 self.in_best_r[fam].append(ref)

 def check_polymorphism(self, pair):

-251-

 ref1, ref2 = pair

 pol = None

 fam = re.sub('[0-9]+', '', ref1)

 cluster = self.in_best_r[fam]

 if ref1 in cluster and ref2 in cluster:

 pol = 1

 else:

 if len(cluster) == 1:

 pol = 0

 return pol

class Datasets:

 def __init__(self, ref_groups, all_refs=None):

 self.ref_groups = ref_groups

 if all_refs is None:

 all_refs = []

 for _, refs in ref_groups.iteritems():

 all_refs.extend(refs)

 self.refs = all_refs

 # get stuff for packing similirity

 self.packing_sim = crystal.PackingSimilarity()

 self.packing_shell_size =

self.packing_sim.settings.packing_shell_size

 self.combs = self.get_combinations()

 self.crystal_data = None

 def get_combinations(self):

 all_combs = []

 for _, refs in self.ref_groups.iteritems():

 comb = list(itertools.combinations(refs, 2))

 all_combs.append(comb)

 return all_combs

 def get_structure_data(self, reader):

 id_list = self.refs

 crystal_data = {}

 total = len(id_list)

 step = int(round(float(total) / 50))

 for i, ref in enumerate(id_list):

 if i % step == 0:

 print('data obtained for {} % of

structures'.format(round(float(i + 1) / total, 2) * 100))

 try:

 cryst = reader.crystal(ref)

 entry = reader.entry(ref)

 except RuntimeError:

 print('failed to access data for {}'.format(ref))

 continue

 # temperature

 T = entry.temperature

 if T:

 T_re = re.search('(?P<temp>-?[0-9]+(\.[0-

9])?)\s?(?P<units>\S+)', T)

 if T_re:

 if T_re.group('units') != 'K': # when deg.C

 T_num = float(T_re.group('temp')) + 273.2

-252-

 else:

 T_num = float(T_re.group('temp'))

 else:

 print(T)

 else:

 T_num = np.nan

 crystal_data[ref] = {'length_a': cryst.cell_lengths[0],

'length_b': cryst.cell_lengths[1],

 'length_c': cryst.cell_lengths[2],

'angle_a': cryst.cell_angles[0],

 'angle_b': cryst.cell_angles[1],

'angle_g': cryst.cell_angles[2],

 'r_factor': entry.r_factor,

'crystal_system': cryst.crystal_system,

 'temperature': T_num}

 self.crystal_data = crystal_data

 def get_descriptors(self, csd_reader, classify_func,

do_rmsd=True, check_lit=None):

 """classify_func is a dict with name (string) as key and

classifying function as value"""

 crystal_data = self.crystal_data

 packing_comp = self.packing_sim

 packing_shell_size = self.packing_shell_size

 def check_fam(pair):

 assert pair is not None, 'empty pair found'

 assert len(pair)==2, 'missing refcode with

{}'.format(pair)

 ref1, ref2 = pair

 fam1, fam2 = re.sub('[0-9]+', '', ref1), re.sub('[0-

9]+', '', ref2)

 assert fam1 == fam2, 'refcode family dont match. {},

{}'.format(ref1,ref2)

 def compare_structures(refs):

 # handle missing data

 if not all(_ in crystal_data.keys() for _ in refs):

 return None

 ref1 = refs[0]

 ref2 = refs[1]

 data1 = crystal_data[ref1]

 data2 = crystal_data[ref2]

 cryst1 = {'x': (data1['length_a'], data1['angle_a']),

'y': (data1['length_b'], data1['angle_b']),

 'z': (data1['length_c'], data1['angle_g'])}

 cryst2 = {'x': (data2['length_a'], data2['angle_a']),

'y': (data2['length_b'], data2['angle_b']),

 'z': (data2['length_c'], data2['angle_g'])}

 change = {}

 # cell parameters

 for axis in ['x', 'y', 'z']:

 dl = abs(cryst1[axis][0] - cryst2[axis][0]) #

change in length

 da = abs(cryst1[axis][1] - cryst2[axis][1]) #

change in angle

-253-

 change['length_{}'.format(axis)] = dl

 change['angle_{}'.format(axis)] = da

 for prop_name in ['r_factor', 'temperature']:

 if data1[prop_name] is not None and data2[prop_name]

is not None:

 prop = abs(data1[prop_name] - data2[prop_name])

 else:

 prop = np.nan

 change[prop_name] = prop

 # RMSD

 if do_rmsd:

 try:

 packing_sim = packing_comp # had insane RAM

usage for some reason, this seems to solve it

 similarity =

packing_sim.compare(csd_reader.crystal(ref1),

csd_reader.crystal(ref2))

 if similarity:

 #rmsd = similarity.rmsd

 # its not actually rmsd, its the number of

molecules that match within the tolerance

 rmsd = similarity.nmatched_molecules

 rmsd = float(rmsd) / packing_shell_size

 else:

 rmsd = np.nan

 except RuntimeError:

 rmsd = np.nan

 change['rmsd'] = rmsd

 # crystal system

 if data1['crystal_system'] == data2['crystal_system']:

 cryst_sys = 0

 else:

 cryst_sys = 1

 change['crystal_system'] = cryst_sys

 change['refs'] = (ref1, ref2)

 return change

 data = []

 total = len(self.combs)

 step = int(round(float(total) / 20))

 for i, comb in enumerate(self.combs):

 if i % step == 0:

 print('comparison done for {} % of the

data'.format(int(round(float(i + 1) / total, 2) * 100)))

 for pair in comb:

 try:

 check_fam(pair)

 except AssertionError, e:

 print(e)

 continue

 change = compare_structures(pair)

 if change:

 for name, classifier in

classify_func.iteritems():

 change[name] = classifier(pair)

-254-

 if check_lit:

 change['lit'] = check_lit(pair)

 data.append(change)

 # append to data

 # create dataframe

 data_df = pd.DataFrame(data)

 return data_df

csd_dir = io.csd_directory()

csd_location = glob.glob(os.path.join(csd_dir, '*.inf'))

csd_reader = io.EntryReader(csd_location)

spectra = SpectraMethod()

all_refs = spectra.all_refs

ref_groups = spectra.ref_groups

manual = ManualMethod(all_refs, csd_reader=csd_reader)

best_r = BestRMethod(all_refs, r'C:\Program Files

(x86)\CCDC\CSD_2018\CSD_539\subsets\best_R_factor_list.gcd')

classify_func = {'spectra': spectra.check_polymorphism, 'manual':

manual.check_polymorphism,

 'best_R': best_r.check_polymorphism}

datasets = Datasets(ref_groups, all_refs)

datasets.get_structure_data(csd_reader)

data = datasets.get_descriptors(csd_reader, classify_func,

check_lit=manual.check_lit_source, do_rmsd=True)

data.to_csv('new_data_backup.csv', index=False)

split the datasets

len(data[~data['manual'].isnull()])

len(data[(~data['manual'].isnull())&(~data['best_R'].isnull())])

train_size = 24660

valid_size = 2594

test_size = 3415

spectra_train_pol = data[(~data['best_R'].isnull()) &

(data['manual'].isnull()) & (data['best_R']==1)]

spectra_train_red = data[(~data['best_R'].isnull()) &

(data['manual'].isnull()) & (data['best_R']==0)].sample(n=

train_size - len(spectra_train_pol))

spectra_train = pd.concat([spectra_train_pol, spectra_train_red])

manual_train = data[(data['best_R'].isnull()) &

(~data['manual'].isnull())]

manual_valid = data[(~data['best_R'].isnull()) &

(~data['manual'].isnull()) & (data['lit'] ==

False)].sample(n=valid_size)

-255-

spectra_valid = data[(~data['best_R'].isnull()) &

(~data['manual'].isnull()) & (data['lit'] == False) &

(~data.index.isin(manual_valid.index))]

assert len(spectra_valid) == valid_size

benchmark_valid = data[(~data['best_R'].isnull()) &

(~data['manual'].isnull()) & (data['lit'] ==

True)].sample(n=valid_size)

benchmark_test = data[(~data['best_R'].isnull()) &

(~data['manual'].isnull()) & (data['lit'] == True) &

(~data.index.isin(benchmark_valid.index))]

assert len(benchmark_test) == test_size

sets = {

 'manual_train': manual_train,

 'manual_valid': manual_valid,

 'spectra_train': spectra_train,

 'spectra_valid': spectra_valid,

 'benchmark_valid': benchmark_valid,

 'benchmark_test': benchmark_test

}

for set_name in sets.keys():

 sets[set_name]['ref1'], sets[set_name]['ref2'] =

zip(*sets[set_name]['refs'])

for set_name, table in sets.iteritems():

 f_name = set_name + '.csv'

 table.to_csv(f_name, index=False)

-256-

train.py

import argparse

import itertools

import sys

import glob

import os

import re

import numpy as np

import pandas as pd

import json

import pickle

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn import metrics

#from sklearn.neural_network import MLPClassifier

from sklearn.model_selection import RandomizedSearchCV

#from sklearn.model_selection import StratifiedShuffleSplit

#from sklearn.model_selection import GridSearchCV

from ccdc import io

from ccdc import crystal

train_settings = {

 'retrain': False,

 'all_refs': 'single-red-powder.txt',

 'best_r': 'single-powder.txt',

 'fill_na': 'drop',

 'verbose': False,

 'csd_dir': None,

 'do_rmsd': False,

 'valid_frac': 0.1,

 'test_frac': 0.1

 }

def fix_datasets(df):

 df['refs'] = df[['ref1', 'ref2']].apply(lambda row:

(row['ref1'], row['ref2']), axis=1)

 cols = ['angle_x', 'angle_y', 'angle_z', 'crystal_system',

'length_x',

'length_y','length_z','r_factor','refs','rmsd','target','temperature

']

 return df[cols].copy()

class PolymorphClassifier:

 def __init__(self, train, valid, test, nan_method='drop',

use_rmsd=True):

 cols = list(train.columns)

 cols.remove('target')

 if not use_rmsd:

 if 'rmsd' in cols:

 cols.remove('rmsd')

 else:

-257-

 if 'rmsd' not in cols:

 print('rmsd not calculated')

 if 'refs' in list(train.columns):

 cols.remove('refs')

 # set indexes as ref1-ref2 so it stays with the rows

 datasets = {'train': train, 'valid': valid, 'test': test}

 datasets = self.handle_nans(datasets, method=nan_method)

 self.train_with_refs = datasets['train']

 self.valid_with_refs = datasets['valid']

 self.test_with_refs = datasets['test']

 for name, dataset in datasets.iteritems():

 dataset.index = dataset['refs'].apply(lambda row: '{}-

{}'.format(row[0], row[1]))

 # split into X, Y

 Xs = {}

 Ys = {}

 for name, dataset in datasets.iteritems():

 Xs[name] = dataset[cols].copy()

 Ys[name] = dataset['target']

 # Y = train['target']

 # X = train.loc[:, train.columns != 'target']

 # X = X[cols].copy()

 # Y_valid = valid['target']

 # X_valid = valid.loc[:, valid.columns != 'target']

 # X_valid = X_valid[cols].copy()

 self.X = Xs['train']

 self.Y = Ys['train']

 self.Y_valid = Ys['valid']

 self.X_valid = Xs['valid']

 self.Y_test = Ys['test']

 self.X_test = Xs['test']

 self.classifiers = {'RF': RandomForestClassifier,

'logistic_regression': LogisticRegression,

 'KNN': KNeighborsClassifier, 'bayes':

GaussianNB, 'SVM': SVC}

 @staticmethod

 def handle_nans(datasets, method='drop'):

 # dict with inputs {'train':train, 'valid':valid}

 processed = {}

 for name, dataset in datasets.iteritems():

 if method == 'drop':

 processed[name] = dataset.dropna(axis=0, how='any')

 elif method == 'mean':

 processed[name] =

dataset.fillna(datasets['train'].mean())

 elif method == 'median':

 processed[name] =

dataset.fillna(datasets['train'].median())

 else:

 print('choose one of: drop, mean, median')

 return processed

-258-

 @staticmethod

 def ref_as_index(datasets):

 pass

 def fit_models(self):

 models = {}

 X, Y = self.X, self.Y

 for name, model in self.classifiers.iteritems():

 print('fitting {}'.format(name))

 models[name] = model().fit(X ,Y)

 rows = []

 for name, model in models.iteritems():

 print('testing {}'.format(name))

 pred = pd.DataFrame(model.predict(self.X_valid))

 pred.index = self.Y_valid.index

 C = metrics.confusion_matrix(self.Y_valid, pred)

 true_pos_rate = float(C[1][1]) / (C[1][1] + C[0][1]) #

sensitivity, recall = TP/(TP+NF)

 false_pos_rate = float(C[1][0]) / (C[1][0] + C[0][0]) #

FP/(FP+TN)

 # specificity = 1 - false_pos_rate

 pos_pred_value = float(C[1][1]) / (C[1][1] + C[1][0]) #

precision = TP/(TP+FP)

 row = {'model': name, 'precision': pos_pred_value,

'recall': true_pos_rate,

 'specificity': 1 - false_pos_rate,

 'F1_score': 2 * (pos_pred_value * true_pos_rate)

/ (pos_pred_value + true_pos_rate)

 }

 rows.append(row)

 models_summary = pd.DataFrame(rows)

 # self.models_summary = models_summary

 return models_summary

 def optimise_random_forest(self, n_iter=100, scoring='f1'):

 n_estimators = [int(x) for x in np.linspace(start=200,

stop=2000, num=10)]

 criterions = ['gini', 'entropy']

 max_features = ['sqrt', 'log2']

 max_depth = [int(x) for x in np.linspace(10, 110, num=11)]

 max_depth.append(None)

 min_samples_split = [2, 5, 10]

 min_samples_leaf = [1, 2, 4]

 bootstrap = [True, False]

 random_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'bootstrap': bootstrap,

 'criterion': criterions}

 rf = RandomForestClassifier()

 rf_random = RandomizedSearchCV(estimator=rf,

param_distributions=random_grid, n_iter=n_iter, cv=3,

-259-

 random_state=42, n_jobs=-1,

scoring=scoring)

 # Fit the random search model

 rf_random.fit(self.X, self.Y)

 return rf_random

 def optimise_svm(self, n_iter=100, scoring='f1'):

 C_range = np.logspace(-4, 3, 15)

 gamma_range = np.logspace(-4, 3, 15)

 random_grid = {'gamma': gamma_range, 'C': C_range}

 svm = SVC()

 # cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2,

random_state=42)

 # svm_random = GridSearchCV(SVC(), param_grid=param_grid,

cv=cv)

 svm_random = RandomizedSearchCV(estimator=svm,

param_distributions=random_grid, n_iter=n_iter, cv=3,

 random_state=42, n_jobs=2,

scoring=scoring)

 svm_random.fit(self.X, self.Y)

 return svm_random

 def compare_performance(self, params_dicts):

 rows = []

 for name, param in params_dicts.iteritems():

 model =

self.classifiers[name](**param).fit(self.X_valid, self.Y_valid)

 pred = pd.DataFrame(model.predict(self.X_valid))

 C = metrics.confusion_matrix(self.Y_valid, pred)

 if train_settings['verbose']:

pd.DataFrame(C).to_csv('{}_confusion_valid.csv'.format(name))

 true_pos_rate = float(C[1][1]) / (C[1][1] + C[0][1]) #

sensitivity, recall = TP/(TP+NF)

 false_pos_rate = float(C[1][0]) / (C[1][0] + C[0][0]) #

FP/(FP+TN)

 # specificity = 1 - false_pos_rate

 pos_pred_value = float(C[1][1]) / (C[1][1] + C[1][0]) #

precision = TP/(TP+FP)

 row = {'model': name, 'precision': pos_pred_value,

'recall': true_pos_rate,

 'specificity': 1 - false_pos_rate,

 'F1_score': 2 * (pos_pred_value * true_pos_rate)

/ (pos_pred_value + true_pos_rate)

 }

 rows.append(row)

 models_summary = pd.DataFrame(rows)

 if train_settings['verbose']:

 models_summary.to_csv('comparison_valid.csv',

index=False)

 # select best F1 score model

 best_model = models_summary[models_summary['F1_score'] ==

models_summary['F1_score'].max()]

 print('best performing model:

{}'.format(best_model['model'].tolist()[0]))

 print('F1 score:

{}'.format(best_model['F1_score'].tolist()[0]))

 return best_model['model'].tolist()[0]

-260-

 def retrain(self, name, params, test=True):

 """retrains the model on train + valid or train + valid +

train (for application)"""

 if test:

 X = pd.concat([self.X, self.X_valid])

 Y = pd.concat([self.Y, self.Y_valid])

 else:

 X = pd.concat([self.X, self.X_valid, self.X_test])

 Y = pd.concat([self.Y, self.Y_valid, self.Y_test])

 model = self.classifiers[name](**params).fit(X, Y)

 if test:

 Y_test = self.Y_test

 X_test = self.X_test

 pred = pd.DataFrame(model.predict(X_test),

columns=['predicted'])

 pred.index = Y_test.index

 C = metrics.confusion_matrix(Y_test, pred)

 if train_settings['verbose']:

pd.DataFrame(C).to_csv('{}_confusion_test.csv'.format(name))

 Y_test = Y_test.to_frame('actual')

 compare = Y_test.merge(pred, right_index=True,

left_index=True)

 compare['refs'] = compare.index

 compare['ref1'], compare['ref2'] =

zip(*compare['refs'].str.split('-'))

 compare = compare.merge(X_test, right_index=True,

left_index=True)

 cols = list(X_test.columns)

 cols += ['ref1', 'ref2', 'predicted', 'actual']

 compare[cols].to_csv('comparison.csv', index=False)

 true_pos_rate = float(C[1][1]) / (C[1][1] + C[0][1]) #

sensitivity, recall = TP/(TP+NF)

 false_pos_rate = float(C[1][0]) / (C[1][0] + C[0][0]) #

FP/(FP+TN)

 # specificity = 1 - false_pos_rate

 pos_pred_value = float(C[1][1]) / (C[1][1] + C[1][0]) #

precision = TP/(TP+FP)

 performance = {'model': name, 'precision':

pos_pred_value, 'recall': true_pos_rate,

 'specificity': 1 - false_pos_rate,

 'F1_score': 2 * (pos_pred_value *

true_pos_rate) / (pos_pred_value + true_pos_rate)

 }

 return performance

 else:

 return model

def train():

 if not all(dataset in train_settings.keys() for dataset in

['train', 'valid', 'test']):

 # get datasets

 preprocess =

Preprocess(train_settings['all_refs'],train_settings['best_r'])

-261-

 # connect to CSD

 if train_settings['csd_dir'] is None:

 csd_dir = io.csd_directory()

 else:

 csd_dir = train_settings['csd_dir']

 csd_location = glob.glob(os.path.join(csd_dir, '*.inf'))

 csd_reader = io.EntryReader(csd_location)

 preprocess.get_structure_data(csd_reader)

preprocess.get_datasets(csd_reader,train_settings['do_rmsd'])

 train, valid, test =

preprocess.train_valid_test_split(train_settings['valid_frac'],

train_settings['test_frac'])

 train.to_csv('train.csv')

 valid.to_csv('valid.csv')

 test.to_csv('test.csv')

 else:

 #train = json.load(open(train_settings['train'], 'r'))

 train = pd.read_csv(train_settings['train'])

 train = fix_datasets(train)

 #valid = json.load(open(train_settings['valid'], 'r'))

 valid = pd.read_csv(train_settings['valid'])

 valid = fix_datasets(valid)

 #test = json.load(open(train_settings['test'], 'r'))

 test = pd.read_csv(train_settings['test'])

 test = fix_datasets(test)

 classifier = PolymorphClassifier(train,valid, test,

nan_method=train_settings['fill_na'],

use_rmsd=train_settings['do_rmsd'])

 model_summary = classifier.fit_models()

 model_summary = model_summary.sort_values(by='F1_score',

ascending=False).reset_index(drop=True)

 if train_settings['verbose']:

 model_summary.to_csv('model_summary.csv', index=False)

 best_models =

(model_summary['model'][0],model_summary['model'][1])

 opti_params = {}

 for model in best_models:

 if model == 'SVM':

 svm_random = classifier.optimise_svm()

 svm_summary = pd.DataFrame(svm_random.cv_results_)

 if train_settings['verbose']:

 svm_summary.to_csv('SVM_optimisation.csv',

index=False)

 svm_params =

svm_summary.sort_values(by='mean_test_score',ascending=False).reset_

index(drop=True)['params'][0]

 print('SVM classifier optimised with params:')

 for k,v in svm_params.iteritems():

 print('{}: {}'.format(k,v))

 opti_params['SVM'] = svm_params

 elif model == 'RF':

 rf_random = classifier.optimise_random_forest()

 rf_summary = pd.DataFrame(rf_random.cv_results_)

 if train_settings['verbose']:

 rf_summary.to_csv('RF_optimisation.csv',

index=False)

-262-

 rf_params =

rf_summary.sort_values(by='mean_test_score',ascending=False).reset_i

ndex(drop=True)['params'][0]

 print('RF classifier optimised with params:')

 for k,v in rf_params.iteritems():

 print('{}: {}'.format(k,v))

 opti_params['RF'] = rf_params

 else:

 print('cant optimise {} algorithm at the

moment'.format(model))

 sys.exit(1)

 best = classifier.compare_performance(opti_params)

 performance = classifier.retrain(best, opti_params[best])

 model = classifier.retrain(best, opti_params[best], test=False)

 pickle.dump(model, open('polymorph_classifier.p','w'))

json.dump(opti_params[best],open('{}_hyper_parameters.json'.format(b

est),'w'))

 return model

def main():

 # global hydrates

 # TODO: sort these out

 parser = argparse.ArgumentParser('''Trains polymorph

redetermination classifier on CSD dataset''')

 parser.add_argument('--all_refs', help='file with all refcodes')

 parser.add_argument('--best_r', help='file with best R factor

structures')

 parser.add_argument('--train', help='training dataset')

 parser.add_argument('--valid', help='validation dataset')

 parser.add_argument('--test', help='test dataset')

 parser.add_argument('--retrain', action='store_true', help='To

retrain best performing algorithm before saving to a pickle')

#remove this, always retrained

 parser.add_argument('--fill_na', help='strategy for handling

missing values. [mean, median, drop] default=drop')

 parser.add_argument('--verbose', action='store_true')

 parser.add_argument('--csd_dir', help='CSD directory')

 parser.add_argument('--do_rmsd', action='store_true', help='do

RMSD comparison as one of the descriptors')

 parser.add_argument('--valid_frac', type=float, help='validation

set fraction')

 parser.add_argument('--test_frac', type=float, help='validation

set fraction')

 args = parser.parse_args()

 input_settings = vars(args)

 for key, setting in input_settings.iteritems():

 if setting is not None:

 if key == 'fill_na':

 if setting not in ['mean', 'median', 'drop']:

 print('WARNING: invalid fill_na strategy

selected. drop used')

 continue

-263-

 train_settings[key] = setting

 model = train()

if __name__ == '__main__':

 main()

-264-

Appendix 4

Message Passing Neural

Network scripts

Purpose:

This appendix contains scripts used in Chapter 7 to train and hyperparameter

optimise Message Passing Neural Networks for melting point prediciton. The pre-

processing scripts which generate graph input and calculate crystal features are

shown under Pre-processing. The modified tensorflow models are included. The

hyperparameter optimisation script is available as well.

Files and uses:

Pre-processing (local):

• crystal_graph.py: takes csv file (Refcode, melting point) and generates a

graph input

• crystal_rmsd.py: calculates the shape change descriptor

Training (HPC)

• Tensorflow models

The following scripts were adapted from GGNN. (See Chapter 7 for details)

The original scripts by Microsoft available under MIT license (relevant text

on the next page).

o util.py: utility functions

o chem_tensorflow.py: base tensorflow model

o chem_tensorflow_sparse.py: specific tensorflow model for training

o apply_chem_tensorflow.py: tensorflow model, for testing

• Training scripts and hyperparamter optimisation

o optimiser.py: hyperparameter optimisation script

https://github.com/microsoft/gated-graph-neural-network-samples
https://github.com/microsoft/gated-graph-neural-network-samples/blob/master/LICENSE

-265-

The following license terms apply to util.py , chem_tensorflow.py,

chem_tensorflow_sparse.py, and apply_chem_tensorflow.py.

 MIT License

 Copyright (c) Microsoft Corporation. All rights reserved.

 Permission is hereby granted, free of charge, to any person

obtaining a copy

 of this software and associated documentation files (the

"Software"), to deal

 in the Software without restriction, including without limitation

the rights

 to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell

 copies of the Software, and to permit persons to whom the Software

is

 furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be

included in all

 copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR

 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,

 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

SHALL THE

 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER

 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM,

 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE

 SOFTWARE

-266-

crystal_graph.py
Python 2

import pandas as pd

import glob

import os

import sys

import json

import csv

import argparse

import random

import numpy as np

from collections import defaultdict

from ccdc import io

from crystal_rmsd import CrystalRMSD

import HBond_Dimensionality as HBond

def read_csv():

 # use pandas df.to_dict('record')

 pass

def from_csv(file_name):

 raw = []

 with open(file_name, 'r') as csvfile:

 reader = csv.reader(csvfile, delimiter=',')

 for row in reader:

 if row[1] == '':

 continue

 raw.append({'refcode':row[0], 'y':float(row[1])})

 return raw

def split_data(raw, valid_frac, normalise=True):

 raw_data = {'train':[], 'valid':[]}

 size = len(raw)

 #-> n random numbers within range(len(raw_data))

 valid = random.sample(range(size), int(round(size*valid_frac)))

 only_y = []

 print('splitting data')

 for i, data in enumerate(raw):

 if i % 1000 == 0:

 done = (float(i)/size)*100

 print('done: {} % '.format(round(done, 2)))

 if normalise:

 only_y.append(data['y'])

 #process

 if i not in valid:

 raw_data['train'].append(data)

 else:

 raw_data['valid'].append(data)

 # get std_dev and mean of y (data[1])

 if normalise:

 mean = np.mean(only_y)

 std = np.std(only_y)

 else:

 mean, std = None, None

-267-

 return raw_data, mean, std

def onehot(feature, feature_vector):

 z = [0 for _ in range(len(feature_vector))]

 z[feature_vector.index(feature)] = 1

 return z

class CrystalGraph:

 def __init__(self, csd_reader, atom_list=None, mean=None,

std=None, crystal_rmsd=None, h_dims=False, vwd=True):

 if atom_list:

 self.atom_list = atom_list

 self.get_elements = False

 else:

 self.atom_list = []

 self.get_elements = True

 self.csd_reader = csd_reader

 self.mean = mean

 self.std = std

 if std is None and mean is None:

 self.to_normalise = False

 else:

 self.to_normalise = True

 self.graphs = defaultdict(list)

 self.bond_dict = {'SINGLE': 1, 'DOUBLE': 2, 'TRIPLE': 3,

"AROMATIC": 4, "HBOND":5, "VDW_INTER":6, "VDW_INTRA": 7}

 self.h_dim_features = ['Ring/enclosed', 'Chain (1D)', 'Sheet

(2D)', 'Lattice (3D)']

 self.skip_refcode = [] # list of refcodes that were trouble

 self.rmsd = crystal_rmsd

 self.do_h_dims = h_dims

 self.do_vwd = vwd

 self.atom_counts = {}

 def normalise(self, y):

 return (y - self.mean) / self.std

 def index_atoms(self, mol):

 label_to_index = {}

 index_to_label = {}

 nodes = []

 elements_list = []

 for i, atom in enumerate(mol.atoms):

 label_to_index[atom.label] = i

 index_to_label[i] = atom.label

 if self.get_elements:

 nodes.append(atom.atomic_symbol)

 elements_list.append(atom.atomic_symbol)

 self.atom_list = list(set(self.atom_list +

elements_list)) # add unique atoms to the list

 else:

 nodes.append(onehot(atom.atomic_symbol,

self.atom_list)) # do one hot already if atom list available

 return nodes, label_to_index, index_to_label

 def get_bonds(self, mol, label_to_index):

-268-

 edges = []

 for bond in mol.bonds:

 atom1, atom2 = bond.atoms

 edge_type = str(bond.bond_type).upper()

 edge = [label_to_index[atom1.label],

self.bond_dict[edge_type], label_to_index[atom2.label]]

 edges.append(edge)

 return edges

 def get_h_bonds(self, cryst, label_to_index):

 edges = []

 hbonded = {} # so they can be eliminated from VDW

 for hbond in cryst.hbonds():

 donor = hbond.atoms[0].label

 acceptor = hbond.atoms[2].label

 edge = [label_to_index[donor],

self.bond_dict['hbond'.upper()], label_to_index[acceptor]]

 edges.append(edge)

 for atom in hbond.atoms:

 all_atoms = list(hbond.atoms)

 all_atoms.remove(atom)

 hbonded[atom.label] = [a.label for a in all_atoms]

 return edges, hbonded

 def get_vdw(self, cryst, label_to_index, bonded): # only

intermolecular interactions

 edges = []

 for contact in cryst.contacts():

 if contact.atoms[0].label in bonded.keys():

 if contact.atoms[1].label in

bonded[contact.atoms[0].label]: # already covered in H-bond

 continue

 # could add a bit that would eliminate some based on

contact.strength

 if contact.intermolecular:

 edge_type = 'VDW_INTER'

 else:

 edge_type = 'VDW_INTRA'

 edge = [label_to_index[contact.atoms[0].label],

self.bond_dict[edge_type],

 label_to_index[contact.atoms[1].label]]

 edges.append(edge)

 return edges

 def get_graphs(self, refcode):

 mol = self.csd_reader.molecule(refcode)

 cryst = self.csd_reader.crystal(refcode)

 nodes, label_to_index, index_to_label =

self.index_atoms(mol)

 try:

 bonds = self.get_bonds(mol, label_to_index)

-269-

 hbonds, interaction = self.get_h_bonds(cryst,

label_to_index)

 if self.do_vwd:

 vdw = self.get_vdw(cryst, label_to_index,

interaction)

 edges = bonds + hbonds + vdw

 else:

 edges = bonds + hbonds

 except KeyError:

 print('something wrong with labels with:

{}'.format(refcode))

 self.skip_refcode.append(refcode)

 return None, None

 return nodes, edges

 def get_crystal_properties(self, refcode):

 graph_features = {}

 if self.rmsd:

 try:

 print('calculating RMSD for {}'.format(refcode))

 graph_features['RMSD'] =

self.rmsd.calculate(refcode)

 except RuntimeError:

 print('RMSD failed with {}'.format(refcode))

 self.skip_refcode.append(refcode)

 return None

 if self.do_h_dims:

 h_dim_text =

HBond.dimensionality(self.csd_reader.crystal(refcode))

 if h_dim_text == 'No Hydrogen bonds':

 h_dim = [0, 0, 0, 0]

 else:

 h_dim = onehot(h_dim_text, self.h_dim_features)

 graph_features['H_dims'] = h_dim

 if len(graph_features) != 0:

 return graph_features

 else:

 return None

 def update_nodes(self):

 """now that all mols are processed, the atom_list is

complete and ready for one hot"""

 for section, data in self.graphs.iteritems():

 for i, mol in enumerate(data):

 for j, atom in enumerate(mol['node_features']):

 self.graphs[section][i]['node_features'][j] =

onehot(atom, self.atom_list) # could use map() maybe, will have to

look into it

 def process(self, raw_data):

 for section, data in raw_data.iteritems():

 total = len(data)

 for i, mol in enumerate(data):

 refcode, y = mol['refcode'], mol['y']

 if self.to_normalise:

 y = self.normalise(y)

 nodes, edges = self.get_graphs(refcode)

 if refcode in self.skip_refcode:

 continue

 else:

-270-

 atom_count = len(nodes)

 self.atom_counts[refcode] = atom_count

 row = {'targets': [[y]], 'graph': edges,

'node_features': nodes, 'id': refcode}

 graph_features =

self.get_crystal_properties(refcode)

 if graph_features is not None:

 row['graph_features'] = graph_features

 self.graphs[section].append(row)

 if i % 1000 == 0:

 print('{} graphs processed: {}%'.format(section,

round(float(i)/total,3)*100))

 if self.get_elements:

 self.update_nodes()

 return self.graphs

def output_data(processed_data, header=None):

 if header is None:

 header='data'

 for section in processed_data.keys():

 with open('{}_{}.json'.format(header, section), 'w') as f:

 json.dump(processed_data[section], f)

def main():

 parser = argparse.ArgumentParser('''REFCODE, target to GNN

input''')

 parser.add_argument('input', help='input csv with REFCODE,

target per line')

 parser.add_argument('--atoms', help='file with list of atoms')

 parser.add_argument('-n', '--normalise', action='store_true',

help='normalise the target values')

 parser.add_argument('-s', '--split_frac', default=0.1,

help='valid set fraction')

 parser.add_argument('--rmsd', action='store_true', help='Do

crystal rmsd as a graph level descriptor')

 parser.add_argument('--hdim', action='store_true', help='Do H-

bond dimensionality as a graph level descriptor')

 parser.add_argument('--vdw', action='store_true', help='include

VdW interaction in crystal graph')

 parser.add_argument('--atom_count', action='store_true',

help='output atom count file')

 args = parser.parse_args()

 csd_dir = io.csd_directory()

 csd_location = glob.glob(os.path.join(csd_dir, '*.inf'))

 csd_reader = io.EntryReader(csd_location)

 in_f = args.input

 valid_frac = float(args.split_frac)

 to_normalise = args.normalise

 if args.atoms:

 with open(args.atoms, 'r') as csvfile:

 reader = csv.reader(csvfile, delimiter=',')

 for row in reader:

 atom_list = row

 # atom_list = reader.next() # didnt work for some

reason

 else:

 atom_list = None

-271-

 if args.rmsd:

 crystal_rmsd = CrystalRMSD(csd_reader)

 else:

 crystal_rmsd = None

 raw = from_csv(in_f)

 out_name = in_f.split('.')[0]

 raw_data, mean, std = split_data(raw, valid_frac, to_normalise)

 crystal_graphs = CrystalGraph(csd_reader, atom_list, mean, std,

crystal_rmsd, args.hdim)

 graphs = crystal_graphs.process(raw_data)

 output_data(graphs, out_name)

 print('failed to process the following refcodes: ')

 for ref in crystal_graphs.skip_refcode:

 print(ref)

 if to_normalise:

 with open('{}_statistics.json'.format(out_name), 'w') as f:

 json.dump({'mean': mean, 'std': std}, f)

 if crystal_graphs.get_elements:

 with open('{}_atoms.csv'.format(out_name), 'w') as f:

 writer = csv.writer(f, delimiter=',')

 writer.writerow(crystal_graphs.atom_list)

 if args.atom_count:

 with open('{}_atom_counts.json'.format(out_name), 'w') as f:

 json.dump(crystal_graphs.atom_counts, f)

if __name__ == '__main__':

 main()

-272-

crystal_rmsd.py
from rdkit import Chem

from rdkit.Chem import rdMolAlign

from conf_gen import ConformerGenerator

class CrystalRMSD:

 def __init__(self, csd_reader, force_field='mmff'):

 self.csd_reader = csd_reader

 self.conformer_generator =

ConformerGenerator(force_field=force_field)

 def calculate(self, refcode):

 csd_mol = self.csd_reader.molecule(refcode)

 csd_mols = csd_mol.components # get a list of all molecules

in the crystal

 csd_mol1 = csd_mols[0] # get the first mol to get the

conformer

 mol1 = Chem.MolFromMolBlock(csd_mol1.to_string('sdf'))

 if mol1 is None:

 print('cant construct the molecule')

 raise RuntimeError

 try:

 conf = self.conformer_generator(mol1)

 if Chem.AllChem.EmbedMolecule(conf) == -1: # = -1 if

failed, id assigned otherwise 0,1,..

 print('molecule too large to generate conformer')

 raise RuntimeError

 rmsds = []

 for mol in csd_mols:

 mol = Chem.MolFromMolBlock(mol.to_string('sdf'))

 rmsd = rdMolAlign.GetBestRMS(mol, conf)

 rmsds.append(rmsd)

 except AttributeError:

 print('something went wrong with minimisation of

conformer')

 raise RuntimeError

 rmsd = sum(rmsds) / len(rmsds)

 return rmsd

-273-

util.py
#!/usr/bin/env/python

import numpy as np

import tensorflow as tf

import queue

import threading

SMALL_NUMBER = 1e-7

def glorot_init(shape):

 initialization_range = np.sqrt(6.0 / (shape[-2] + shape[-1]))

 return np.random.uniform(low=-initialization_range,

high=initialization_range, size=shape).astype(np.float32)

class ThreadedIterator:

 """An iterator object that computes its elements in a parallel

thread to be ready to be consumed.

 The iterator should *not* return None"""

 def __init__(self, original_iterator, max_queue_size: int=2):

 self.__queue = queue.Queue(maxsize=max_queue_size)

 self.__thread = threading.Thread(target=lambda:

self.worker(original_iterator))

 self.__thread.start()

 def worker(self, original_iterator):

 for element in original_iterator:

 assert element is not None, 'By convention, iterator

elements much not be None'

 self.__queue.put(element, block=True)

 self.__queue.put(None, block=True)

 def __iter__(self):

 next_element = self.__queue.get(block=True)

 while next_element is not None:

 yield next_element

 next_element = self.__queue.get(block=True)

 self.__thread.join()

class MLP(object):

 def __init__(self, in_size, out_size, hid_sizes,

dropout_keep_prob, family='MLP_layer'):

 self.in_size = in_size

 self.out_size = out_size

 self.hid_sizes = hid_sizes

 self.family = family

 self.dropout_keep_prob = dropout_keep_prob

 self.params = self.make_network_params()

 def make_network_params(self):

 dims = [self.in_size] + self.hid_sizes + [self.out_size]

 weight_sizes = list(zip(dims[:-1], dims[1:]))

 weights = [tf.Variable(self.init_weights(s),

name='MLP_W_layer%i' % i)

 for (i, s) in enumerate(weight_sizes)]

 biases = [tf.Variable(np.zeros(s[-1]).astype(np.float32),

name='MLP_b_layer%i' % i)

-274-

 for (i, s) in enumerate(weight_sizes)]

 network_params = {

 "weights": weights,

 "biases": biases,

 }

 return network_params

 def init_weights(self, shape):

 return np.sqrt(6.0 / (shape[-2] + shape[-1])) * (2 *

np.random.rand(*shape).astype(np.float32) - 1)

 def __call__(self, inputs):

 acts = inputs

 for W, b in zip(self.params["weights"],

self.params["biases"]):

 tf.summary.histogram('MLP_weights', W,

family=self.family)

 tf.summary.histogram('MLP_biases', b,

family=self.family)

 hid = tf.matmul(acts, tf.nn.dropout(W,

self.dropout_keep_prob)) + b

 acts = tf.nn.relu(hid)

 last_hidden = hid

 return last_hidden

-275-

chem_tensorflow_.py
#!/usr/bin/env/python

from typing import Tuple, List, Any, Sequence

import tensorflow as tf

import time

import os

import json

import numpy as np

import pickle

import random

from utils import MLP, ThreadedIterator, SMALL_NUMBER

class ChemModel(object):

 @classmethod

 def default_params(cls):

 return {

 'num_epochs': 3000,

 'patience': 25,

 'learning_rate': 0.001,

 'clamp_gradient_norm': 1.0,

 'out_layer_dropout_keep_prob': 1.0,

 'gated_regression_keep_prob': 1.0,

 'graph_representation_size': 100,

 'prediction_layers_architecture': [50, 20],

 'hidden_size': 100,

 'num_timesteps': 4,

 'use_graph': True,

 'tie_fwd_bkwd': True,

 'task_ids': [0],

 'random_seed': 0,

 'train_file': 'molecules_train.json',

 'valid_file': 'molecules_valid.json'

 }

 def __init__(self, args):

 self.args = args

 self.edge_dict = {1: 'SINGLE', 2: 'DOUBLE', 3: 'TRIPLE', 4:

'AROMATIC', 5: 'HBOND', 6: 'VDW_INTER', 7: 'VDW_INTRA'}

 self.best_r = float('-inf') # best R^2 will be stored here

for the hyper optimiser to access

 # Collect argument things:

 data_dir = ''

 if '--data_dir' in args and args['--data_dir'] is not None:

 data_dir = args['--data_dir']

 self.data_dir = data_dir

 run_id = str(args.get('--run_id')) or str(os.getpid())

 self.run_id = "_".join([time.strftime("%Y-%m-%d-%H-%M-%S"),

run_id])

 log_dir = args.get('--run_dir') or '.'

 self.log_dir = log_dir

 self.log_file = os.path.join(log_dir, "%s_log.json" %

self.run_id)

-276-

 self.best_model_file = os.path.join(log_dir,

"%s_model_best.pickle" % self.run_id)

 # Collect parameters:

 params = self.default_params()

 config_file = args.get('--config-file')

 if config_file is not None:

 with open(config_file, 'r') as f:

 params.update(json.load(f))

 config = args.get('--config')

 if config is not None:

 params.update(json.loads(config))

 conf = args.get('conf')

 if conf is not None: # only for hyperopt

 params.update(conf)

 self.params = params

 with open(os.path.join(log_dir, "%s_params.json" %

self.run_id), "w") as f:

 json.dump(params, f)

 print("Run %s starting with following parameters:\n%s" %

(self.run_id, json.dumps(self.params)))

 random.seed(params['random_seed'])

 np.random.seed(params['random_seed'])

 # Load data:

 self.max_num_vertices = 0

 self.num_edge_types = 0

 self.annotation_size = 0

 self.num_graph_features = 0

 self.graph_features_list = []

 self.graph_feature_lengths = {}

 # modify usable data

 edge_types = params.get('edge_types')

 graph_descriptors = params.get('graph_descriptors')

 self.train_data = self.load_data(params['train_file'],

edge_types, graph_descriptors, is_training_data=True)

 self.valid_data = self.load_data(params['valid_file'],

edge_types, graph_descriptors, is_training_data=False)

 # Build the actual model

 config = tf.ConfigProto()

 config.gpu_options.allow_growth = True

 self.graph = tf.Graph()

 self.sess = tf.Session(graph=self.graph, config=config)

 self.writer = tf.summary.FileWriter(self.log_dir)

 with self.graph.as_default():

 tf.set_random_seed(params['random_seed'])

 self.placeholders = {}

 self.weights = {}

 self.ops = {}

 self.make_model()

 self.make_train_step()

 # Restore/initialize variables:

 restore_file = args.get('--restore')

 if restore_file is not None:

 self.restore_model(restore_file)

 else:

 self.initialize_model()

-277-

 def load_data(self, file_name, edge_types, graph_descriptors,

is_training_data: bool):

 full_path = os.path.join(self.data_dir, file_name)

 print("Loading data from %s" % full_path)

 with open(full_path, 'r') as f:

 data = json.load(f)

 restrict = self.args.get("--restrict_data")

 if restrict is not None and restrict > 0:

 data = data[:restrict]

 # block out edge types and graph features that are not to be

used

 if edge_types is not None or graph_descriptors is not None:

 for i, g in enumerate(data):

 if edge_types:

 edges = []

 for edge in g['graph']:

 if self.edge_dict[edge[1]] in edge_types:

 edges.append(edge)

 data[i]['graph'] = edges

 if graph_descriptors:

 features = {}

 for feature, value in

g['graph_features'].items():

 if feature in graph_descriptors:

 features[feature] = value

 data[i]['graph_features'] = features

 # Get some common data out:

 num_fwd_edge_types = 0

 for g in data:

 self.max_num_vertices = max(self.max_num_vertices,

max([v for e in g['graph'] for v in [e[0], e[2]]]))

 num_fwd_edge_types = max(num_fwd_edge_types, max([e[1]

for e in g['graph']]))

 self.num_edge_types = max(self.num_edge_types,

num_fwd_edge_types * (1 if self.params['tie_fwd_bkwd'] else 2))

 self.annotation_size = max(self.annotation_size,

len(data[0]["node_features"][0]))

 # get the number of graph features

 if is_training_data:

 if 'graph_features' in data[0].keys():

 self.num_graph_features =

len(data[0]['graph_features'])

 self.graph_features_list =

list(data[0]['graph_features'].keys())

 for feature in self.graph_features_list:

 try:

 dims =

len(data[0]['graph_features'][feature])

 except TypeError:

 dims = 1

 self.graph_feature_lengths[feature] = dims

 return self.process_raw_graphs(data, is_training_data)

-278-

 @staticmethod

 def graph_string_to_array(graph_string: str) -> List[List[int]]:

 return [[int(v) for v in s.split(' ')]

 for s in graph_string.split('\n')]

 def process_raw_graphs(self, raw_data: Sequence[Any],

is_training_data: bool) -> Any:

 raise Exception("Models have to implement

process_raw_graphs!")

 def make_model(self):

 self.placeholders['target_values'] =

tf.placeholder(tf.float32, [len(self.params['task_ids']), None],

name='target_values')

 self.placeholders['target_mask'] =

tf.placeholder(tf.float32, [len(self.params['task_ids']), None],

name='target_mask')

 self.placeholders['num_graphs'] = tf.placeholder(tf.int64,

[], name='num_graphs')

 self.placeholders['gated_regression_keep_prob'] =

tf.placeholder(tf.float32, [], name='gated_regression_keep_prob')

 self.placeholders['out_layer_dropout_keep_prob'] =

tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob')

 # get placeholder for each graph feature

 if self.num_graph_features > 0:

 for graph_feature in self.graph_features_list:

 dims = self.graph_feature_lengths[graph_feature]

 self.placeholders[graph_feature] =

tf.placeholder(tf.float32, [dims, None], name=graph_feature)

 with tf.variable_scope("graph_model"):

 self.prepare_specific_graph_model()

 # This does the actual graph work:

 if self.params['use_graph']:

 self.ops['final_node_representations'] =

self.compute_final_node_representations()

 else:

 self.ops['final_node_representations'] =

tf.zeros_like(self.placeholders['initial_node_representation'])

 with tf.variable_scope('gated_regression'):

 with tf.variable_scope("regression_gate"):

 self.weights['regression_gate'] = MLP(2 *

self.params['hidden_size'],

self.params['graph_representation_size'], [],

self.placeholders[

'gated_regression_keep_prob'], 'gated_regression')

 with tf.variable_scope("regression"):

 self.weights['regression_transform'] =

MLP(self.params['hidden_size'],

self.params['graph_representation_size'], [],

self.placeholders[

'gated_regression_keep_prob'], 'gated_regression')

-279-

 graph_representation =

self.gated_regression(self.ops['final_node_representations'],

self.weights['regression_gate'],

self.weights['regression_transform'])

 print('graph representation shape: ')

 print(graph_representation.get_shape())

 out_size = len(self.params['task_ids'])

 # get the total length of all graph level features

 graph_features_length = 0

 for feature in self.graph_features_list:

 graph_features_length +=

self.graph_feature_lengths[feature]

 in_size = self.params['graph_representation_size'] +

graph_features_length

 print('the in_size is {}'.format(in_size))

 with tf.variable_scope('prediction_layers'):

 input_tensors = [self.placeholders[feature] for feature

in self.graph_features_list]

 input_tensors.append(graph_representation)

 prediction_input = tf.concat(input_tensors, 0,

name='prediction_input')

 print('prediction_input_size: ')

 print(prediction_input.get_shape())

 print('this will be transposed')

 prediction_layer = MLP(in_size, out_size,

self.params['prediction_layers_architecture'],

self.params['out_layer_dropout_keep_prob'], 'prediction_MLP')

 computed_values =

prediction_layer(tf.transpose(prediction_input))

 computed_values = tf.transpose(computed_values)

 print('computed value shape: ')

 print(computed_values.get_shape())

 self.ops['predicted'] = computed_values

 with tf.variable_scope('performance_measure'):

 diff = tf.subtract(computed_values,

self.placeholders['target_values'], name='diff')

 diff = tf.multiply(diff,

self.placeholders['target_mask'])

 print('diff shape')

 print(diff.get_shape())

 task_target_num =

tf.reduce_sum(self.placeholders['target_mask'], axis=1,

name='batch_size') + SMALL_NUMBER

 #batch_mean = tf.div(tf.reduce_sum(computed_values,

1),task_target_num, name='batch_mean')

 with tf.variable_scope('mean_squared_error'):

 squared_diff = tf.reduce_sum(tf.square(diff),

name='squared_diff')

 loss = tf.div(squared_diff,task_target_num, 'MSE')

 self.ops['loss'] = tf.reduce_sum(loss) # total loss

across all tasks

 tf.summary.scalar('loss', self.ops['loss'],

family='overall_performance')

-280-

 with tf.variable_scope('mean_abs_error'):

 mae = tf.div(tf.reduce_sum(tf.abs(diff), 1),

task_target_num)

 print('MAE shape: ')

 print(mae.get_shape())

 self.ops['MAE'] = tf.reduce_sum(mae) # Mean Absolute

Error

 with tf.variable_scope('R2'):

 #tss = tf.subtract(tf.multiply(computed_values,

self.placeholders['target_mask']), tf.expand_dims(batch_mean,1)) # y

- y_mean

 tss =

tf.subtract(tf.multiply(self.placeholders['target_values'],

self.placeholders['target_mask']), tf.constant(0, dtype=tf.float32))

y_mean = 0,bcuz standarised in preprocessing

 tss = tf.reduce_sum(tf.square(tss), axis=1,

name='TSS') # sum((y-y_mean)^2)

 print('TSS shape: ')

 print(tss.get_shape())

 r_squared = tf.subtract(tf.constant(1,

dtype=tf.float32), tf.div(squared_diff, tss))

 print('R^2 shape: ')

 print(r_squared.get_shape())

 self.ops['R2'] = tf.reduce_sum(r_squared)

 for internal_id, task_id in

enumerate(self.params['task_ids']):

 tf_id = tf.constant([internal_id],

name='task_{}_id'.format(task_id))

 task_diff = tf.nn.embedding_lookup(diff, tf_id)

 print('task diff: ')

 print(task_diff.get_shape())

 tf.summary.histogram('diff', task_diff,

family='task_{}_performance'.format(task_id))

 task_mae = tf.nn.embedding_lookup(mae, tf_id)

 print('task MAE')

 print(task_mae.get_shape())

 tf.summary.scalar('task_MAE', tf.squeeze(task_mae),

family='task_{}_performance'.format(task_id))

 task_loss = tf.nn.embedding_lookup(loss, tf_id)

 tf.summary.scalar('task_loss',

tf.squeeze(task_loss), family='task_{}_performance'.format(task_id))

 task_r_squared = tf.nn.embedding_lookup(r_squared,

tf_id)

 tf.summary.scalar('task_R2',

tf.squeeze(task_r_squared),

family='task_{}_performance'.format(task_id))

 #task_tss = tf.nn.embedding_lookup(tss, tf_id)

 #tf.summary.scalar('task_tss', tf.squeeze(task_tss),

family='task_{}_performance'.format(task_id))

 # Currently not done

 # Normalise loss to account for fewer task-specific

examples in batch:

 # task_loss = task_loss * (1.0 /

(self.params['task_sample_ratios'].get(task_id) or 1.0))

 self.merged_summary = tf.summary.merge_all()

-281-

 def make_train_step(self):

 trainable_vars =

self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)

 if self.args.get('--freeze-graph-model'):

 graph_vars =

set(self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,

scope="graph_model"))

 filtered_vars = []

 for var in trainable_vars:

 if var not in graph_vars:

 filtered_vars.append(var)

 else:

 print("Freezing weights of variable %s." %

var.name)

 trainable_vars = filtered_vars

 optimizer =

tf.train.AdamOptimizer(self.params['learning_rate'])

 grads_and_vars =

optimizer.compute_gradients(self.ops['loss'],

var_list=trainable_vars)

 clipped_grads = []

 with tf.variable_scope('clib_by_norm'):

 for grad, var in grads_and_vars:

 if grad is not None:

 clipped_grads.append((tf.clip_by_norm(grad,

self.params['clamp_gradient_norm']), var))

 else:

 clipped_grads.append((grad, var))

 self.ops['train_step'] =

optimizer.apply_gradients(clipped_grads)

 # Initialize newly-introduced variables:

 self.sess.run(tf.local_variables_initializer())

 def gated_regression(self, last_h, regression_gate,

regression_transform):

 raise Exception("Models have to implement

gated_regression!")

 def prepare_specific_graph_model(self) -> None:

 raise Exception("Models have to implement

prepare_specific_graph_model!")

 def compute_final_node_representations(self) -> tf.Tensor:

 raise Exception("Models have to implement

compute_final_node_representations!")

 def make_minibatch_iterator(self, data: Any, is_training: bool):

 raise Exception("Models have to implement

make_minibatch_iterator!")

 def run_epoch(self, epoch_name: str, data, is_training: bool):

 loss = 0

 maes = []

 start_time = time.time()

 processed_graphs = 0

 batch_iterator =

ThreadedIterator(self.make_minibatch_iterator(data, is_training),

max_queue_size=5)

-282-

 for step, batch_data in enumerate(batch_iterator):

 num_graphs = batch_data[self.placeholders['num_graphs']]

 processed_graphs += num_graphs

 if is_training:

batch_data[self.placeholders['out_layer_dropout_keep_prob']] =

self.params['out_layer_dropout_keep_prob']

batch_data[self.placeholders['gated_regression_keep_prob']] =

self.params[

 'gated_regression_keep_prob']

 fetch_list = [self.ops['loss'], self.ops['MAE'],

self.ops['train_step'], self.ops['R2']]

 else:

batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0

batch_data[self.placeholders['gated_regression_keep_prob']] = 1.0

 fetch_list = [self.ops['loss'], self.ops['MAE'],

self.merged_summary, self.ops['R2']]

 result = self.sess.run(fetch_list, feed_dict=batch_data)

 (batch_loss, batch_mae) = (result[0], result[1])

 loss += batch_loss * num_graphs

 maes.append(np.array(batch_mae) * num_graphs)

 if not is_training:

 summary = result[2]

 else:

 summary = None

 print("Running %s, batch %i (has %i graphs). Loss so

far: %.4f" % (epoch_name,

step,

num_graphs,

loss / processed_graphs),

 end='\r')

 MAE = np.sum(maes, axis=0) / processed_graphs

 loss = loss / processed_graphs

 instance_per_sec = processed_graphs / (time.time() -

start_time)

 return loss, MAE, instance_per_sec, summary, result[3] # R^2

 def train(self):

 log_to_save = []

 total_time_start = time.time()

 with self.graph.as_default():

 if self.args.get('--restore') is not None:

 _, _, _, _, r = self.run_epoch("Resumed

(validation)", self.valid_data, False)

 best_r = np.sum(r)

 best_val_r_epoch = 0

 best_val_loss = None

 print("\r\x1b[KResumed operation, initial

R^2: %.5f" % best_r)

 else:

 (best_r, best_val_r_epoch) = (float("-inf"), 0)

 best_val_loss, best_val_mae = None, None

 for epoch in range(1, self.params['num_epochs'] + 1):

-283-

 print("== Epoch %i" % epoch)

 train_loss, train_mae, train_speed, _, train_r =

self.run_epoch("epoch %i (training)" % epoch,

self.train_data, True)

 print('\r[Train: epoch: {}, MSE: {}, MAE: {}, R^2:

{} instances/sec: {}'.format(epoch, train_loss, train_mae, train_r,

train_speed))

 valid_loss, valid_mae, valid_speed, summary, valid_r

= self.run_epoch("epoch %i (validation)" % epoch,

self.valid_data, False)

 self.writer.add_summary(summary, epoch)

 print('\r[Valid: epoch: {}, MSE: {}, MAE: {}, R^2:

{}, instances/sec: {}'.format(epoch, valid_loss, valid_mae, valid_r,

valid_speed))

 epoch_time = time.time() - total_time_start

 log_entry = {

 'epoch': epoch,

 'time': epoch_time,

 'train_results': (float(train_loss),

float(train_mae), float(train_r), train_speed),

 'valid_results': (valid_loss, valid_mae,

float(valid_r), valid_speed),

 }

 log_to_save.append(log_entry)

 with open(self.log_file, 'w') as f:

 json.dump(log_to_save, f, indent=4)

 # type: float

 if valid_r > best_r:

 self.save_model(self.best_model_file)

 print(" (Best epoch so far, R^2 decreased

to %.5f from %.5f. Saving to '%s')" % (valid_r, best_r,

self.best_model_file))

 best_r = valid_r

 best_val_mae = valid_mae

 best_val_loss = valid_loss

 best_val_r_epoch = epoch

 elif epoch - best_val_r_epoch >=

self.params['patience']:

 print("Stopping training after %i epochs without

improvement on validation accuracy." % self.params['patience'])

 # print the performance summary

 full_path = os.path.join(self.log_dir,

'performance.json')

 date = self.run_id.split('_')[0]

 run_id = self.run_id.split('_')[1]

 self.best_r = best_r

 with open(full_path, 'w') as f:

 json.dump({'date': date, 'run_id': run_id,

'MAE': float(best_val_mae),

-284-

 'MSE': float(best_val_loss),

'R2': float(best_r), 'epochs': best_val_r_epoch}, f)

 break

 def save_model(self, path: str) -> None:

 weights_to_save = {}

 for variable in

self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):

 assert variable.name not in weights_to_save

 weights_to_save[variable.name] = self.sess.run(variable)

 data_to_save = {

 "params": self.params,

 "weights": weights_to_save

 }

 with open(path, 'wb') as out_file:

 pickle.dump(data_to_save, out_file,

pickle.HIGHEST_PROTOCOL)

 def initialize_model(self) -> None:

 init_op = tf.group(tf.global_variables_initializer(),

 tf.local_variables_initializer())

 self.sess.run(init_op)

 self.writer.add_graph(self.sess.graph)

 self.merged_summary = tf.summary.merge_all()

 def restore_model(self, path: str) -> None:

 print("Restoring weights from file %s." % path)

 with open(path, 'rb') as in_file:

 data_to_load = pickle.load(in_file)

 # Assert that we got the same model configuration

 assert len(self.params) == len(data_to_load['params'])

 for (par, par_value) in self.params.items():

 # Fine to have different task_ids:

 if par not in ['task_ids', 'num_epochs']:

 assert par_value == data_to_load['params'][par]

 variables_to_initialize = []

 with tf.name_scope("restore"):

 restore_ops = []

 used_vars = set()

 for variable in

self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):

 used_vars.add(variable.name)

 if variable.name in data_to_load['weights']:

restore_ops.append(variable.assign(data_to_load['weights'][variable.

name]))

 else:

 print('Freshly initializing %s since no saved

value was found.' % variable.name)

 variables_to_initialize.append(variable)

 for var_name in data_to_load['weights']:

 if var_name not in used_vars:

 print('Saved weights for %s not used by

model.' % var_name)

restore_ops.append(tf.variables_initializer(variables_to_initialize)

)

-285-

 self.sess.run(restore_ops)

-286-

chem_tensorflow_sparse.py
#!/usr/bin/env/python

"""

Usage:

 chem_tensorflow_sparse.py [options]

Options:

 -h --help Show this screen.

 --config-file FILE Hyperparameter configuration file path

(in JSON format).

 --config CONFIG Hyperparameter configuration dictionary

(in JSON format).

 --run_dir DIR Run dir name.

 --data_dir DIR Data dir name.

 --restore FILE File to restore weights from.

 --freeze-graph-model Freeze weights of graph model

components.

 --run_id ID Run_id.

"""

from typing import List, Tuple, Dict, Sequence, Any

from docopt import docopt

from collections import defaultdict, namedtuple

import numpy as np

import tensorflow as tf

import sys, traceback

import pdb

from chem_tensorflow import ChemModel

from utils import glorot_init, SMALL_NUMBER

GGNNWeights = namedtuple('GGNNWeights', ['edge_weights',

 'edge_biases',

'edge_type_attention_weights',

 'rnn_cells',])

class SparseGGNNChemModel(ChemModel):

 def __init__(self, args):

 super().__init__(args)

 @classmethod

 def default_params(cls):

 params = dict(super().default_params())

 params.update({

 'batch_size': 100000,

 'use_edge_bias': False,

 'use_propagation_attention': False,

 'use_edge_msg_avg_aggregation': True,

 'residual_connections': { # For layer i, specify list

of layers whose output is added as an input

 "2": [0],

 "4": [0, 2]

 },

 'layer_timesteps': [2, 2, 1, 2, 1], # number of layers

& propagation steps per layer

 'graph_rnn_cell': 'GRU', # GRU or RNN

-287-

 'graph_rnn_activation': 'tanh', # tanh, ReLU

 'graph_state_dropout_keep_prob': 1.,

 'task_sample_ratios': {},

 })

 return params

 def prepare_specific_graph_model(self) -> None:

 h_dim = self.params['hidden_size']

 self.placeholders['initial_node_representation'] =

tf.placeholder(tf.float32, [None, h_dim],

name='node_features')

 self.placeholders['adjacency_lists'] =

[tf.placeholder(tf.int32, [None, 2], name='adjacency_e%s' % e)

 for e in

range(self.num_edge_types)]

 self.placeholders['num_incoming_edges_per_type'] =

tf.placeholder(tf.float32, [None, self.num_edge_types],

name='num_incoming_edges_per_type')

 self.placeholders['graph_nodes_list'] =

tf.placeholder(tf.int64, [None, 2], name='graph_nodes_list')

 self.placeholders['graph_state_keep_prob'] =

tf.placeholder(tf.float32, None, name='graph_state_keep_prob')

 activation_name =

self.params['graph_rnn_activation'].lower()

 if activation_name == 'tanh':

 activation_fun = tf.nn.tanh

 elif activation_name == 'relu':

 activation_fun = tf.nn.relu

 else:

 raise Exception("Unknown activation function type

'%s'." % activation_name)

 # Generate per-layer values for edge weights, biases and

gated units:

 self.weights = {} # Used by super-class to place generic

things

 self.gnn_weights = GGNNWeights([], [], [], [])

 for layer_idx in range(len(self.params['layer_timesteps'])):

 with tf.variable_scope('gnn_layer_%i' % layer_idx):

 edge_weights =

tf.Variable(glorot_init([self.num_edge_types * h_dim, h_dim]),

name='gnn_edge_weights_%i' % layer_idx)

 edge_weights = tf.reshape(edge_weights,

[self.num_edge_types, h_dim, h_dim])

 self.gnn_weights.edge_weights.append(edge_weights)

 if self.params['use_propagation_attention']:

self.gnn_weights.edge_type_attention_weights.append(tf.Variable(np.o

nes([self.num_edge_types], dtype=np.float32),

name='edge_type_attention_weights_%i' % layer_idx))

 if self.params['use_edge_bias']:

self.gnn_weights.edge_biases.append(tf.Variable(np.zeros([self.num_e

dge_types, h_dim], dtype=np.float32),

-288-

name='gnn_edge_biases_%i' % layer_idx))

 cell_type = self.params['graph_rnn_cell'].lower()

 if cell_type == 'gru':

 cell = tf.nn.rnn_cell.GRUCell(h_dim,

activation=activation_fun)

 elif cell_type == 'rnn':

 cell = tf.nn.rnn_cell.BasicRNNCell(h_dim,

activation=activation_fun)

 else:

 raise Exception("Unknown RNN cell type '%s'." %

cell_type)

 cell = tf.nn.rnn_cell.DropoutWrapper(cell,

state_keep_prob=self.placeholders['graph_state_keep_prob'])

 self.gnn_weights.rnn_cells.append(cell)

 def compute_final_node_representations(self) -> tf.Tensor:

 node_states_per_layer = [] # one entry per layer (final

state of that layer), shape: number of nodes in batch v x D

node_states_per_layer.append(self.placeholders['initial_node_represe

ntation'])

 num_nodes =

tf.shape(self.placeholders['initial_node_representation'],

out_type=tf.int32)[0]

 message_targets = [] # list of tensors of message targets

of shape [E]

 message_edge_types = [] # list of tensors of edge type of

shape [E]

 for edge_type_idx, adjacency_list_for_edge_type in

enumerate(self.placeholders['adjacency_lists']):

 edge_targets = adjacency_list_for_edge_type[:, 1]

 message_targets.append(edge_targets)

 message_edge_types.append(tf.ones_like(edge_targets,

dtype=tf.int32) * edge_type_idx)

 message_targets = tf.concat(message_targets, axis=0) #

Shape [M]

 message_edge_types = tf.concat(message_edge_types, axis=0)

Shape [M]

 for (layer_idx, num_timesteps) in

enumerate(self.params['layer_timesteps']):

 with tf.variable_scope('gnn_layer_%i' % layer_idx):

 # Used shape abbreviations:

 # V ~ number of nodes

 # D ~ state dimension

 # E ~ number of edges of current type

 # M ~ number of messages (sum of all E)

 # Extract residual messages, if any:

 layer_residual_connections =

self.params['residual_connections'].get(str(layer_idx))

 if layer_residual_connections is None:

 layer_residual_states = []

 else:

 layer_residual_states =

[node_states_per_layer[residual_layer_idx]

-289-

 for residual_layer_idx

in layer_residual_connections]

 if self.params['use_propagation_attention']:

 message_edge_type_factors =

tf.nn.embedding_lookup(params=self.gnn_weights.edge_type_attention_w

eights[layer_idx],

ids=message_edge_types) # Shape [M]

 for edge_type_idx in

range(len(self.placeholders['adjacency_lists'])):

tf.summary.histogram('GNN_layer_{}_edge_type_{}'.format(layer_idx,

edge_type_idx),

self.gnn_weights.edge_weights[layer_idx][edge_type_idx])

 # Record new states for this layer. Initialised to

last state, but will be updated below:

 node_states_per_layer.append(node_states_per_layer[-

1])

 for step in range(num_timesteps):

 with tf.variable_scope('timestep_%i' % step):

 messages = [] # list of tensors of messages

of shape [E, D]

 message_source_states = [] # list of

tensors of edge source states of shape [E, D]

 # Collect incoming messages per edge type

 for edge_type_idx,

adjacency_list_for_edge_type in

enumerate(self.placeholders['adjacency_lists']):

 edge_sources =

adjacency_list_for_edge_type[:, 0]

 edge_source_states =

tf.nn.embedding_lookup(params=node_states_per_layer[-1],

ids=edge_sources) # Shape [E, D]

 all_messages_for_edge_type =

tf.matmul(edge_source_states,

self.gnn_weights.edge_weights[layer_idx][edge_type_idx]) # Shape

[E, D]

messages.append(all_messages_for_edge_type)

message_source_states.append(edge_source_states)

 messages = tf.concat(messages, axis=0) #

Shape [M, D]

 if self.params['use_propagation_attention']:

 message_source_states =

tf.concat(message_source_states, axis=0) # Shape [M, D]

 message_target_states =

tf.nn.embedding_lookup(params=node_states_per_layer[-1],

ids=message_targets) # Shape [M, D]

-290-

 message_attention_scores =

tf.einsum('mi,mi->m', message_source_states, message_target_states)

Shape [M]

 message_attention_scores =

message_attention_scores * message_edge_type_factors

 # The following is softmax-ing over the

incoming messages per node.

 # As the number of incoming varies, we

can't just use tf.softmax. Reimplement with logsumexp trick:

 # Step (1): Obtain shift constant as max

of messages going into a node

 message_attention_score_max_per_target =

tf.unsorted_segment_max(data=message_attention_scores,

segment_ids=message_targets,

num_segments=num_nodes) # Shape [V]

 # Step (2): Distribute max out to the

corresponding messages again, and shift scores:

 message_attention_score_max_per_message

= tf.gather(params=message_attention_score_max_per_target,

indices=message_targets) # Shape [M]

 message_attention_scores -=

message_attention_score_max_per_message

 # Step (3): Exp, sum up per target,

compute exp(score) / exp(sum) as attention prob:

 message_attention_scores_exped =

tf.exp(message_attention_scores) # Shape [M]

 message_attention_score_sum_per_target =

tf.unsorted_segment_sum(data=message_attention_scores_exped,

segment_ids=message_targets,

num_segments=num_nodes) # Shape [V]

message_attention_normalisation_sum_per_message =

tf.gather(params=message_attention_score_sum_per_target,

indices=message_targets) # Shape [M]

 message_attention =

message_attention_scores_exped /

(message_attention_normalisation_sum_per_message + SMALL_NUMBER) #

Shape [M]

 # Step (4): Weigh messages using the

attention prob:

 messages = messages *

tf.expand_dims(message_attention, -1)

 incoming_messages =

tf.unsorted_segment_sum(data=messages,

segment_ids=message_targets,

num_segments=num_nodes) # Shape [V, D]

 if self.params['use_edge_bias']:

 incoming_messages +=

tf.matmul(self.placeholders['num_incoming_edges_per_type'],

-291-

self.gnn_weights.edge_biases[layer_idx]) # Shape [V, D]

 if

self.params['use_edge_msg_avg_aggregation']:

 num_incoming_edges =

tf.reduce_sum(self.placeholders['num_incoming_edges_per_type'],

keep_dims=True, axis=-1) # Shape [V, 1]

 incoming_messages /= num_incoming_edges

+ SMALL_NUMBER

 incoming_information =

tf.concat(layer_residual_states + [incoming_messages],

 axis=-1) #

Shape [V, D*(1 + num of residual connections)]

 # pass updated vertex features into RNN cell

 node_states_per_layer[-1] =

self.gnn_weights.rnn_cells[layer_idx](incoming_information,

node_states_per_layer[-1])[1] # Shape [V, D]

 return node_states_per_layer[-1]

 def gated_regression(self, last_h, regression_gate,

regression_transform):

 # last_h: [v x h]

 gate_input = tf.concat([last_h,

self.placeholders['initial_node_representation']], axis=-1) # [v x

2h]

 gated_outputs = tf.nn.sigmoid(regression_gate(gate_input)) *

regression_transform(last_h) # [v x 1]

 # Sum up all nodes per-graph

 num_nodes = tf.shape(gate_input, out_type=tf.int64)[0]

 graph_nodes =

tf.SparseTensor(indices=self.placeholders['graph_nodes_list'],

values=tf.ones_like(self.placeholders['graph_nodes_list'][:, 0],

dtype=tf.float32),

dense_shape=[self.placeholders['num_graphs'], num_nodes]) # [g x v]

 return

tf.transpose(tf.sparse_tensor_dense_matmul(graph_nodes,

gated_outputs)) # [g]

 # ----- Data preprocessing and chunking into minibatches:

 def process_raw_graphs(self, raw_data: Sequence[Any],

is_training_data: bool) -> Any:

 processed_graphs = []

 for d in raw_data:

 (adjacency_lists, num_incoming_edge_per_type) =

self.__graph_to_adjacency_lists(d['graph'])

 if self.num_graph_features > 0:

 processed_graphs.append({"adjacency_lists":

adjacency_lists,

"num_incoming_edge_per_type": num_incoming_edge_per_type,

-292-

 "init": d["node_features"],

 "labels":

[d["targets"][task_id][0] for task_id in self.params['task_ids']],

 'graph_features':

d['graph_features']

 })

 else:

 processed_graphs.append({"adjacency_lists":

adjacency_lists,

"num_incoming_edge_per_type": num_incoming_edge_per_type,

 "init": d["node_features"],

 "labels":

[d["targets"][task_id][0] for task_id in self.params['task_ids']]

 })

 if is_training_data:

 np.random.shuffle(processed_graphs)

 for task_id in self.params['task_ids']:

 task_sample_ratio =

self.params['task_sample_ratios'].get(str(task_id))

 if task_sample_ratio is not None:

 ex_to_sample = int(len(processed_graphs) *

task_sample_ratio)

 for ex_id in range(ex_to_sample,

len(processed_graphs)):

 processed_graphs[ex_id]['labels'][task_id] =

None

 return processed_graphs

 def __graph_to_adjacency_lists(self, graph) -> Tuple[Dict[int,

np.ndarray], Dict[int, Dict[int, int]]]:

 adj_lists = defaultdict(list)

 num_incoming_edges_dicts_per_type = defaultdict(lambda:

defaultdict(lambda: 0))

 for src, e, dest in graph:

 fwd_edge_type = e - 1 # Make edges start from 0

 adj_lists[fwd_edge_type].append((src, dest))

 num_incoming_edges_dicts_per_type[fwd_edge_type][dest]

+= 1

 if self.params['tie_fwd_bkwd']:

 adj_lists[fwd_edge_type].append((dest, src))

num_incoming_edges_dicts_per_type[fwd_edge_type][src] += 1

 final_adj_lists = {e: np.array(sorted(lm), dtype=np.int32)

 for e, lm in adj_lists.items()}

 # Add backward edges as an additional edge type that goes

backwards:

 if not (self.params['tie_fwd_bkwd']):

 for (edge_type, edges) in adj_lists.items():

 bwd_edge_type = self.num_edge_types + edge_type

 final_adj_lists[bwd_edge_type] = np.array(sorted((y,

x) for (x, y) in edges), dtype=np.int32)

 for (x, y) in edges:

num_incoming_edges_dicts_per_type[bwd_edge_type][y] += 1

 return final_adj_lists, num_incoming_edges_dicts_per_type

-293-

 def make_minibatch_iterator(self, data: Any, is_training: bool):

 """Create minibatches by flattening adjacency matrices into

a single adjacency matrix with

 multiple disconnected components."""

 if is_training:

 np.random.shuffle(data)

 # Pack until we cannot fit more graphs in the batch

 dropout_keep_prob =

self.params['graph_state_dropout_keep_prob'] if is_training else 1.

 num_graphs = 0

 while num_graphs < len(data):

 num_graphs_in_batch = 0

 batch_node_features = []

 batch_target_task_values = []

 batch_target_task_mask = []

 batch_adjacency_lists = [[] for _ in

range(self.num_edge_types)]

 batch_num_incoming_edges_per_type = []

 batch_graph_nodes_list = []

 node_offset = 0

 batch_graph_features = defaultdict(list)

 while num_graphs < len(data) and node_offset +

len(data[num_graphs]['init']) < self.params['batch_size']:

 cur_graph = data[num_graphs]

 num_nodes_in_graph = len(cur_graph['init'])

 padded_features = np.pad(cur_graph['init'],

 ((0, 0), (0,

self.params['hidden_size'] - self.annotation_size)),

 'constant')

 batch_node_features.extend(padded_features)

 batch_graph_nodes_list.extend(

 (num_graphs_in_batch, node_offset + i) for i in

range(num_nodes_in_graph))

 for i in range(self.num_edge_types):

 if i in cur_graph['adjacency_lists']:

batch_adjacency_lists[i].append(cur_graph['adjacency_lists'][i] +

node_offset)

 # Turn counters for incoming edges into np array:

 num_incoming_edges_per_type =

np.zeros((num_nodes_in_graph, self.num_edge_types))

 for (e_type, num_incoming_edges_per_type_dict) in

cur_graph['num_incoming_edge_per_type'].items():

 for (node_id, edge_count) in

num_incoming_edges_per_type_dict.items():

 num_incoming_edges_per_type[node_id, e_type]

= edge_count

batch_num_incoming_edges_per_type.append(num_incoming_edges_per_type

)

 target_task_values = []

 target_task_mask = []

 for target_val in cur_graph['labels']:

 if target_val is None: # This is one of the

examples we didn't sample...

 target_task_values.append(0.)

 target_task_mask.append(0.)

-294-

 else:

 target_task_values.append(target_val)

 target_task_mask.append(1.)

 batch_target_task_values.append(target_task_values)

 batch_target_task_mask.append(target_task_mask)

 for feature in self.graph_features_list:

batch_graph_features[feature].append(cur_graph['graph_features'][fea

ture])

 num_graphs += 1

 num_graphs_in_batch += 1

 node_offset += num_nodes_in_graph

 batch_feed_dict = {

 self.placeholders['initial_node_representation']:

np.array(batch_node_features),

 self.placeholders['num_incoming_edges_per_type']:

np.concatenate(batch_num_incoming_edges_per_type, axis=0),

 self.placeholders['graph_nodes_list']:

np.array(batch_graph_nodes_list, dtype=np.int32),

 self.placeholders['target_values']:

np.transpose(batch_target_task_values, axes=[1,0]),

 self.placeholders['target_mask']:

np.transpose(batch_target_task_mask, axes=[1, 0]),

 self.placeholders['num_graphs']:

num_graphs_in_batch,

 self.placeholders['graph_state_keep_prob']:

dropout_keep_prob,

 }

 # add graph features

 for feature in self.graph_features_list:

 # have to adjust the shape to match the desired

input shape

 if self.graph_feature_lengths[feature] == 1:

 feed = np.array([batch_graph_features[feature]],

dtype=np.float32)

 else:

 feed =

np.transpose(batch_graph_features[feature], axes=[1, 0])

 batch_feed_dict[self.placeholders[feature]] = feed

 # Merge adjacency lists and information about incoming

nodes:

 for i in range(self.num_edge_types):

 if len(batch_adjacency_lists[i]) > 0:

 adj_list =

np.concatenate(batch_adjacency_lists[i])

 else:

 adj_list = np.zeros((0, 2), dtype=np.int32)

batch_feed_dict[self.placeholders['adjacency_lists'][i]] = adj_list

 yield batch_feed_dict

def main():

 args = docopt(__doc__)

 try:

 model = SparseGGNNChemModel(args)

-295-

 model.train()

 except:

 typ, value, tb = sys.exc_info()

 traceback.print_exc()

 pdb.post_mortem(tb)

if __name__ == "__main__":

 main()

-296-

apply_chem_tensorflow.py
"""

Usage:

 chem_tensorflow_sparse.py [options]

Options:

 -h --help Show this screen.

 --config-file FILE Hyperparameter configuration file path

(in JSON format).

 --config CONFIG Hyperparameter configuration dictionary

(in JSON format).

 --run_dir DIR Run dir name.

 --data_dir DIR Data dir name.

 --restore FILE File to restore weights from.

 --freeze-graph-model Freeze weights of graph model

components.

 --run_id ID Run_id.

"""

from typing import List, Tuple, Dict, Sequence, Any

from docopt import docopt

import os

from collections import defaultdict, namedtuple

import numpy as np

import tensorflow as tf

import sys, traceback

import pdb

import time

import json

import pickle

from chem_tensorflow import ChemModel, ThreadedIterator

from chem_tensorflow_sparse import GGNNWeights, SparseGGNNChemModel

from utils import glorot_init, SMALL_NUMBER

class ApplyGGNNChemModel(SparseGGNNChemModel):

 def __init__(self, args):

 super().__init__(args)

 def process_raw_graphs(self, raw_data: Sequence[Any],

is_training_data: bool) -> Any:

 processed_graphs = []

 for d in raw_data:

 (adjacency_lists, num_incoming_edge_per_type) =

self.__graph_to_adjacency_lists(d['graph'])

 if self.num_graph_features > 0:

 processed_graphs.append({"adjacency_lists":

adjacency_lists,

"num_incoming_edge_per_type": num_incoming_edge_per_type,

 "init": d["node_features"],

 "labels":

[d["targets"][task_id][0] for task_id in self.params['task_ids']],

 'graph_features':

d['graph_features'],

 "id": d["id"]

 })

 else:

-297-

 processed_graphs.append({"adjacency_lists":

adjacency_lists,

"num_incoming_edge_per_type": num_incoming_edge_per_type,

 "init": d["node_features"],

 "labels":

[d["targets"][task_id][0] for task_id in self.params['task_ids']],

 "id": d["id"]

 })

 if is_training_data:

 np.random.shuffle(processed_graphs)

 for task_id in self.params['task_ids']:

 task_sample_ratio =

self.params['task_sample_ratios'].get(str(task_id))

 if task_sample_ratio is not None:

 ex_to_sample = int(len(processed_graphs) *

task_sample_ratio)

 for ex_id in range(ex_to_sample,

len(processed_graphs)):

 processed_graphs[ex_id]['labels'][task_id] =

None

 return processed_graphs

 def __graph_to_adjacency_lists(self, graph) -> Tuple[Dict[int,

np.ndarray], Dict[int, Dict[int, int]]]:

 adj_lists = defaultdict(list)

 num_incoming_edges_dicts_per_type = defaultdict(lambda:

defaultdict(lambda: 0))

 for src, e, dest in graph:

 fwd_edge_type = e - 1 # Make edges start from 0

 adj_lists[fwd_edge_type].append((src, dest))

 num_incoming_edges_dicts_per_type[fwd_edge_type][dest]

+= 1

 if self.params['tie_fwd_bkwd']:

 adj_lists[fwd_edge_type].append((dest, src))

num_incoming_edges_dicts_per_type[fwd_edge_type][src] += 1

 final_adj_lists = {e: np.array(sorted(lm), dtype=np.int32)

 for e, lm in adj_lists.items()}

 # Add backward edges as an additional edge type that goes

backwards:

 if not (self.params['tie_fwd_bkwd']):

 for (edge_type, edges) in adj_lists.items():

 bwd_edge_type = self.num_edge_types + edge_type

 final_adj_lists[bwd_edge_type] = np.array(sorted((y,

x) for (x, y) in edges), dtype=np.int32)

 for (x, y) in edges:

num_incoming_edges_dicts_per_type[bwd_edge_type][y] += 1

 return final_adj_lists, num_incoming_edges_dicts_per_type

 def restore_model(self, path: str) -> None:

 print("Restoring weights from file %s." % path)

 with open(path, 'rb') as in_file:

 data_to_load = pickle.load(in_file)

-298-

 # Assert that we got the same model configuration

 assert len(self.params) == len(data_to_load['params'])

 for (par, par_value) in self.params.items():

 # Fine to have different task_ids:

 if par not in ['task_ids', 'num_epochs']:

 try:

 assert par_value == data_to_load['params'][par]

 except AssertionError:

 print('WARNING: params dont match')

 print('expected:

{}'.format(data_to_load['params'][par]))

 print('got: {}'.format(par_value))

 variables_to_initialize = []

 with tf.name_scope("restore"):

 restore_ops = []

 used_vars = set()

 for variable in

self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):

 used_vars.add(variable.name)

 if variable.name in data_to_load['weights']:

restore_ops.append(variable.assign(data_to_load['weights'][variable.

name]))

 else:

 print('Freshly initializing %s since no saved

value was found.' % variable.name)

 variables_to_initialize.append(variable)

 for var_name in data_to_load['weights']:

 if var_name not in used_vars:

 print('Saved weights for %s not used by

model.' % var_name)

restore_ops.append(tf.variables_initializer(variables_to_initialize)

)

 self.sess.run(restore_ops)

 self.writer.add_graph(self.sess.graph)

 self.merged_summary = tf.summary.merge_all()

 def make_minibatch_iterator(self, data: Any, is_training: bool):

 """Create minibatches by flattening adjacency matrices into

a single adjacency matrix with

 multiple disconnected components."""

 if is_training:

 np.random.shuffle(data)

 # Pack until we cannot fit more graphs in the batch

 dropout_keep_prob =

self.params['graph_state_dropout_keep_prob'] if is_training else 1.

 num_graphs = 0

 while num_graphs < len(data):

 num_graphs_in_batch = 0

 batch_node_features = []

 batch_target_task_values = []

 batch_target_task_mask = []

 batch_info = []

 batch_adjacency_lists = [[] for _ in

range(self.num_edge_types)]

 batch_num_incoming_edges_per_type = []

 batch_graph_nodes_list = []

 node_offset = 0

 batch_graph_features = defaultdict(list)

-299-

 while num_graphs < len(data) and node_offset +

len(data[num_graphs]['init']) < self.params['batch_size']:

 cur_graph = data[num_graphs]

 num_nodes_in_graph = len(cur_graph['init'])

 padded_features = np.pad(cur_graph['init'],

 ((0, 0), (0,

self.params['hidden_size'] - self.annotation_size)),

 'constant')

 batch_node_features.extend(padded_features)

 batch_graph_nodes_list.extend(

 (num_graphs_in_batch, node_offset + i) for i in

range(num_nodes_in_graph))

 for i in range(self.num_edge_types):

 if i in cur_graph['adjacency_lists']:

batch_adjacency_lists[i].append(cur_graph['adjacency_lists'][i] +

node_offset)

 # Turn counters for incoming edges into np array:

 num_incoming_edges_per_type =

np.zeros((num_nodes_in_graph, self.num_edge_types))

 for (e_type, num_incoming_edges_per_type_dict) in

cur_graph['num_incoming_edge_per_type'].items():

 for (node_id, edge_count) in

num_incoming_edges_per_type_dict.items():

 num_incoming_edges_per_type[node_id, e_type]

= edge_count

batch_num_incoming_edges_per_type.append(num_incoming_edges_per_type

)

 target_task_values = []

 target_task_mask = []

 for target_val in cur_graph['labels']:

 if target_val is None: # This is one of the

examples we didn't sample...

 target_task_values.append(0.)

 target_task_mask.append(0.)

 else:

 target_task_values.append(target_val)

 target_task_mask.append(1.)

 batch_target_task_values.append(target_task_values)

 batch_target_task_mask.append(target_task_mask)

 batch_info.append({'id': cur_graph['id'], 'target':

target_task_values})

 for feature in self.graph_features_list:

batch_graph_features[feature].append(cur_graph['graph_features'][fea

ture])

 num_graphs += 1

 num_graphs_in_batch += 1

 node_offset += num_nodes_in_graph

 batch_feed_dict = {

 self.placeholders['initial_node_representation']:

np.array(batch_node_features),

 self.placeholders['num_incoming_edges_per_type']:

np.concatenate(batch_num_incoming_edges_per_type, axis=0),

-300-

 self.placeholders['graph_nodes_list']:

np.array(batch_graph_nodes_list, dtype=np.int32),

 self.placeholders['target_values']:

np.transpose(batch_target_task_values, axes=[1,0]),

 self.placeholders['target_mask']:

np.transpose(batch_target_task_mask, axes=[1, 0]),

 self.placeholders['num_graphs']:

num_graphs_in_batch,

 self.placeholders['graph_state_keep_prob']:

dropout_keep_prob,

 }

 # add graph features

 for feature in self.graph_features_list:

 # have to adjust the shape to match the desired

input shape

 if self.graph_feature_lengths[feature] == 1:

 feed = np.array([batch_graph_features[feature]],

dtype=np.float32)

 else:

 feed =

np.transpose(batch_graph_features[feature], axes=[1, 0])

 batch_feed_dict[self.placeholders[feature]] = feed

 # Merge adjacency lists and information about incoming

nodes:

 for i in range(self.num_edge_types):

 if len(batch_adjacency_lists[i]) > 0:

 adj_list =

np.concatenate(batch_adjacency_lists[i])

 else:

 adj_list = np.zeros((0, 2), dtype=np.int32)

batch_feed_dict[self.placeholders['adjacency_lists'][i]] = adj_list

 yield batch_feed_dict, batch_info

 def run_epoch(self, epoch_name: str, data):

 loss = 0

 maes = []

 performance = []

 start_time = time.time()

 processed_graphs = 0

 batch_iterator =

ThreadedIterator(self.make_minibatch_iterator(data, False),

max_queue_size=5)

 for step, (batch_data, batch_info) in

enumerate(batch_iterator):

 num_graphs = batch_data[self.placeholders['num_graphs']]

 processed_graphs += num_graphs

batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0

batch_data[self.placeholders['gated_regression_keep_prob']] = 1.0

 fetch_list = [self.ops['loss'], self.ops['MAE'],

self.merged_summary, self.ops['R2'], self.ops['predicted']]

 result = self.sess.run(fetch_list, feed_dict=batch_data)

 (batch_loss, batch_mae) = (result[0], result[1])

 loss += batch_loss * num_graphs

-301-

 maes.append(np.array(batch_mae) * num_graphs)

 summary = result[2]

 predicted = result[4].T

 try:

 assert len(batch_info)==len(predicted)

 except AssertionError:

 print('#'*100)

 print('batch info:')

 print(batch_info)

 print('#'*100)

 print('predicted:')

 print(predicted)

 for i in range(len(batch_info)):

 json_ready = []

 for j in list(predicted[i]):

 #assumes only one target property

 json_ready.append(float(j))

 batch_info[i]['predicted'] = json_ready

 performance.extend(batch_info)

 print("Running %s, batch %i (has %i graphs). Loss so

far: %.4f" % (epoch_name,

step,

num_graphs,

loss / processed_graphs),

 end='\r')

 MAE = np.sum(maes, axis=0) / processed_graphs

 loss = loss / processed_graphs

 instance_per_sec = processed_graphs / (time.time() -

start_time)

 return loss, MAE, instance_per_sec, summary, result[3],

performance

 def apply(self):

 with self.graph.as_default():

 loss, MAE, instance_per_sec, summary, r, perf =

self.run_epoch("Application run", self.valid_data)

 self.writer.add_summary(summary, 0)

 full_path = os.path.join(self.log_dir,

'validation_performance.json')

 date = self.run_id.split('_')[0]

 run_id = self.run_id.split('_')[1]

 with open(full_path, 'w') as f:

 json.dump({'date': date, 'run_id': run_id, 'MAE':

float(MAE),

 'MSE': float(loss), 'R2': float(r),

'epochs': 0}, f)

 predicted_path = os.path.join(self.log_dir,

'{}_predicted.json'.format(run_id))

 print('saving to {}'.format(predicted_path))

 with open(predicted_path, 'w') as f:

 json.dump(perf, f)

def main():

 args = docopt(__doc__)

-302-

 try:

 model = ApplyGGNNChemModel(args)

 model.apply()

 except:

 typ, value, tb = sys.exc_info()

 traceback.print_exc()

 pdb.post_mortem(tb)

if __name__ == "__main__":

 main()

-303-

optimiser.py
import pickle

import argparse

import os

import json

from hyperopt import hp # hyperparameters space

from hyperopt import tpe # the optimisation algorithm

from hyperopt import Trials # history

from hyperopt import fmin # minimalisation

from hyperopt import STATUS_OK

from chem_tensorflow_sparse import SparseGGNNChemModel

def get_max_run_id(base_dir):

 sub_dirs = glob.glob(os.path.join(base_dir, 'run_*/'))

 max_run_id = -1

 if sub_dirs:

 for d in sub_dirs:

 m = re.search('[0-9]+', d)

 run_id = int(m.group(0))

 if run_id > max_run_id:

 max_run_id = run_id

 return max_run_id

def basic_param():

 return {

 'patience': 25,

 'learning_rate': 0.001,

 'clamp_gradient_norm': 1.0,

 'out_layer_dropout_keep_prob': 0.9,

 'gated_regression_keep_prob': 0.9,

 'use_graph': True,

 'tie_fwd_bkwd': True,

 'task_ids': [0],

 'random_seed': 0,

 'use_edge_bias': False,

 'use_propagation_attention': False,

 'use_edge_msg_avg_aggregation': True,

 'task_sample_ratios': {},

 "num_epochs": 300,

 "residual_connections": {},

 "graph_rnn_activation": "ReLU"

 }

def convert_param(params):

 conf = basic_param()

 # get each parameter

 graph_descriptors = []

 if params['use_rmsd']:

 graph_descriptors.append('RMSD')

 if params['use_h-dim']:

 graph_descriptors.append('H_dims')

 edge_types = ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC']

 if params['use_h-bond']:

 edge_types.append('HBOND')

-304-

 if params['use_vdw-intra']:

 edge_types.append('VDW_INTRA')

 if params['use_vdw-inter']:

 edge_types.append('VWD_INTER')

 graph_representation_size = int(params['graph_vector'])

 hidden_size = int(params['node_vector'])

 prediction_layers_architecture = [int(params['p_layer_1']),

int(params['p_layer_2'])]

 layer_timesteps = [int(params['rnn_timestep']['rnn_timestep'])

for _ in range(int(params['rnn_timestep']['rnn_layers']))]

 graph_rnn_cell = params['rnn_cell']

 # put it in the conf

 conf['graph_descriptors'] = graph_descriptors

 conf['edge_types'] = edge_types

 conf['graph_representation_size'] = graph_representation_size

 conf['hidden_size'] = hidden_size

 conf['prediction_layers_architecture'] =

prediction_layers_architecture

 conf['layer_timesteps'] = layer_timesteps

 conf['graph_rnn_cell'] = graph_rnn_cell

 # from globals

 conf['train_file'] = train

 conf['valid_file'] = valid

 return conf

def set_up_dir():

 run_id = get_max_run_id(base_dir)

 run_id += 1

 while True:

 try:

 full_dir = os.path.join(base_dir,

'run_{}'.format(run_id), '')

 assert os.path.isdir(full_dir) is False

 break

 except AssertionError:

 print('failed at creating run directory')

 print('run_id is: {}'.format(run_id))

 print('will try next number up')

 run_id += 1

 os.makedirs(full_dir)

 return full_dir, run_id

def objective(params):

 conf = convert_param(params)

 full_dir, run_id = set_up_dir()

 args = {'conf': conf, '--run_id': run_id, '--run_dir': full_dir}

 model = SparseGGNNChemModel(args)

 model.train()

-305-

 r = model.best_r

 loss = 1 - r

 return {'loss': loss, 'status': STATUS_OK, 'run_id': run_id,

'param': params, 'config': conf}

def get_trials(trial_name=None):

 if trial_name:

 trial_dir = os.path.join(base_dir, trial_name)

 if os.path.isfile(trial_dir):

 trials = pickle.load(open(trial_dir, 'rb'))

 else:

 trials = Trials()

 return trials

def define_domain_space():

 space = {

 'use_rmsd': hp.choice('use_rmsd', [False, True]),

 'use_h-dim': hp.choice('use_h-dim', [False, True]),

 'use_h-bond': hp.choice('use_h-bond', [False, True]),

 'use_vdw-intra': hp.choice('use_vdw-intra', [False, True]),

 'use_vdw-inter': hp.choice('use_vdw-inter', [False, True]),

 'graph_vector': hp.quniform('graph_vector',100,1500,100),

 'node_vector': hp.quniform('node_vector', 30, 150, 10),

 'p_layer_1': hp.quniform('p_layer_1', 40, 600, 20),

 'p_layer_2': hp.quniform('p_layer_2', 10, 300, 10),

 'rnn_timestep': hp.choice('rnn_timestep', [{'rnn_timestep':

1, 'rnn_layers': hp.quniform('rnn_layers_1', 1, 5, 1)},

 {'rnn_timestep':

2, 'rnn_layers': hp.quniform('rnn_layers_2', 1, 2, 1)},

 {'rnn_timestep':

3, 'rnn_layers': 1}

]),

 'rnn_cell': hp.choice('rnn_cell', ['GRU', 'RNN']),

 }

 return space

def define_mol_only_domain_space():

 space = {

 'use_rmsd': hp.choice('use_rmsd', [False]),

 'use_h-dim': hp.choice('use_h-dim', [False]),

 'use_h-bond': hp.choice('use_h-bond', [False]),

 'use_vdw-intra': hp.choice('use_vdw-intra', [False]),

 'use_vdw-inter': hp.choice('use_vdw-inter', [False]),

 'graph_vector': hp.quniform('graph_vector', 300, 1200, 100),

 'node_vector': hp.quniform('node_vector', 70, 120, 10),

 'p_layer_1': hp.quniform('p_layer_1', 200, 500, 20),

 'p_layer_2': hp.quniform('p_layer_2', 80, 300, 20),

 'rnn_timestep': hp.choice('rnn_timestep',

 [{'rnn_timestep': 1, 'rnn_layers':

hp.quniform('rnn_layers_1', 1, 8, 1)},

 {'rnn_timestep': 2, 'rnn_layers':

hp.quniform('rnn_layers_2', 1, 4, 1)},

 {'rnn_timestep': 3, 'rnn_layers':

hp.quniform('rnn_layers_3', 1, 3, 1)},

-306-

 {'rnn_timestep': 4, 'rnn_layers':

hp.quniform('rnn_layers_4', 1, 2, 1)},

 {'rnn_timestep': 5, 'rnn_layers':

1}

]),

 'rnn_cell': hp.choice('rnn_cell', ['RNN']),

 }

 return space

def define_intermol_interact_search_space():

 space = {

 'use_rmsd': hp.choice('use_rmsd', [False]),

 'use_h-dim': hp.choice('use_h-dim', [False]),

 'use_h-bond': hp.choice('use_h-bond', [False, True]),

 'use_vdw-intra': hp.choice('use_vdw-intra', [False]),

 'use_vdw-inter': hp.choice('use_vdw-inter', [False, True]),

 'graph_vector': hp.quniform('graph_vector', 300, 1200, 100),

 'node_vector': hp.quniform('node_vector', 60, 140, 10),

 'p_layer_1': hp.quniform('p_layer_1', 200, 500, 20),

 'p_layer_2': hp.quniform('p_layer_2', 80, 300, 20),

 'rnn_timestep': hp.choice('rnn_timestep',

 [{'rnn_timestep': 1, 'rnn_layers':

hp.quniform('rnn_layers_1', 1, 8, 1)},

 {'rnn_timestep': 2, 'rnn_layers':

hp.quniform('rnn_layers_2', 1, 4, 1)},

 {'rnn_timestep': 3, 'rnn_layers':

hp.quniform('rnn_layers_3', 1, 3, 1)},

 {'rnn_timestep': 4, 'rnn_layers':

hp.quniform('rnn_layers_4', 1, 2, 1)},

 {'rnn_timestep': 5, 'rnn_layers':

1}

]),

 'rnn_cell': hp.choice('rnn_cell', ['RNN', 'GRU']),

 }

 return space

def run_optimiser(batch_size, max_evals, space, trials, algorithm):

 current_eval = len(trials)

 pickle_f = True

 while current_eval < max_evals:

 if max_evals - current_eval < batch_size:

 current_eval = max_evals

 else:

 current_eval += batch_size

 _ = fmin(objective, space=space, algo=algorithm,

trials=trials, max_evals=current_eval)

 # best not taken as trials includes everything + can get run

id

 if pickle_f:

 pickle_f = False

 pickle_name = 'trials_dump_1.pickle'

 else:

 pickle_f = True

 pickle_name = 'trials_dump_2.pickle'

-307-

 pickle.dump(trials, open(os.path.join(base_dir,

pickle_name), 'wb'))

 return trials

def get_best_param(trials):

 min_loss = float('+inf')

 best_id = None

 best_param = {}

 conf = {}

 for i, run in enumerate(trials.results):

 if run['loss'] < min_loss:

 min_loss = run['loss']

 best_id = run['run_id']

 best_param = run['param']

 conf = run['config']

 print('best run: {}'.format(best_id))

 best_param['id'] = best_id

 json.dump(best_param, open(os.path.join(base_dir,

'best_hyperparam.json'), 'w'))

 json.dump(conf, open(os.path.join(base_dir, 'best_conf.json'),

'w'))

def main():

 parser = argparse.ArgumentParser("""Hyperparameter

optimisation""")

 parser.add_argument("--step_size", default=2, type=int,

help='number of iteration before backing up')

 parser.add_argument("--max_eval", default=100, type=int,

help='max number of iterations')

 parser.add_argument("--restore", type=str, help='restore from

trails pickle')

 parser.add_argument('-d', '--dir', type=str,

default=os.getcwd(), help='project directory with datasets.')

 parser.add_argument('--mol', action='store_true', help='use

molecular information only')

 parser.add_argument('--int_mol', action='store_true', help='use

mol info + intermol interaction')

 parser.add_argument('train', help='training set')

 parser.add_argument('valid', help='validation set')

 args = parser.parse_args()

 global base_dir, train, valid

 base_dir = args.dir

 train = args.train

 valid = args.valid

 batch_size = args.step_size

 max_evals = args.max_eval

 if args.mol:

 space = define_mol_only_domain_space()

 elif args.int_mol:

 space = define_intermol_interact_search_space()

 else:

 space = define_domain_space()

 trials = get_trials(args.restore)

 algorithm = tpe.suggest

 try:

-308-

 trials = run_optimiser(batch_size, max_evals, space, trials,

algorithm)

 finally:

 pickle.dump(trials, open('trials_dump.pickle', 'wb'))

 get_best_param(trials)

if __name__ == '__main__':

 main()

	Chapter 1 Introduction
	1.1 Context
	1.2 Aim and objectives
	1.3 Structure of the thesis

	Chapter 2 Literature Context and Theoretical Background
	2.1 Pharmaceutical product development
	2.1.1 History
	2.1.2 Modern approach
	2.1.2.1 Discovery
	2.1.2.2 Development

	2.1.3 Key challenge
	2.1.4 Material Science Tetrahedron
	2.1.4.1 Vertices and edges of the tetrahedron
	2.1.4.2 Focus on Structure-Property Relationship (SPR)
	2.1.4.3 Structures and properties of interest
	2.1.4.4 Structure-Property Relationship (SPR) methodologies

	2.2 Scales of structure
	2.2.1 Molecules
	2.2.2 Crystal structure
	2.2.2.1 Crystal lattice
	2.2.2.2 Crystal packing
	2.2.2.3 Polymorphism

	2.2.3 Crystal habit

	2.3 Properties and data sources
	2.3.1 Polymorph propensity
	2.3.2 Solubility
	2.3.3 Melting point

	2.4 Quantitative Structure Property Relationship (QSPR)
	2.4.1 A quantitative description of the structure
	2.4.1.1 Structure descriptors
	2.4.1.2 Graph embedding

	2.4.2 Principles of machine learning
	2.4.2.1 Definition of the task
	2.4.2.2 Generalisation

	2.4.3 Performance measures
	2.4.3.1 Regression task
	2.4.3.2 Classification task

	2.4.4 Random Forest (RF)
	2.4.4.1 Algorithm description
	2.4.4.2 Training methodology

	2.4.5 Support Vector Machine (SVM)
	2.4.5.1 Algorithm description
	2.4.5.2 Training methodology

	2.4.6 Neural Networks (NN)
	2.4.6.1 Algorithm description
	2.4.6.2 Training methodology

	2.4.7 Hyperparameter optimisation
	2.4.7.1 Uninformed methods
	2.4.7.2 Informed approaches
	2.4.7.3 Sequential model-based optimisation (SMBO)

	2.4.8 Application of QSPR

	2.5 Matched Molecular Pair Analysis (MMPA)
	2.5.1 Identification of pairs and analysis procedure
	2.5.1.1 Terminology
	2.5.1.2 Identification
	2.5.1.3 Analysis

	2.5.2 Application of MMPA

	2.6 Summary of the chapter

	Chapter 3 Matched Molecular Pair Database
	3.1 Introduction
	3.1.1 Need for database
	3.1.2 Hussain and Rea Fragmentation (HRF) method

	3.2 Database design
	3.2.1 Schema
	3.2.2 Workflow for population of the database
	3.2.3 Modifications to the MMP identification
	3.2.3.1 Updatability
	3.2.3.2 Elimination of duplicate MMPs

	3.3 Comparison to another MMP databases approach
	3.4 Summary

	Chapter 4 Polymorph Propensity Prediction
	4.1 Introduction
	4.2 Method and Data
	4.2.1 Dataset
	4.2.1.1 CSD single component dataset
	4.2.1.2 Monomorphic adjustment

	4.2.2 Molecular structure information
	4.2.2.1 Matched Molecular Pairs
	4.2.2.2 Molecular flexibility and other molecular information

	4.2.3 Software

	4.3 Results and Discussion
	4.3.1 Polymorphism in the CSD
	4.3.2 Effects of molecular transformations
	4.3.2.1 CSD single component dataset
	4.3.2.2 Adjusted CSD single component dataset
	4.3.2.3 MMPs limited by the ratio of the change

	4.3.3 Effects of molecular flexibility
	4.3.4 Issue of unknown polymorphs
	4.3.4.1 Exploration of the issues
	4.3.4.2 Challenges

	4.4 Conclusion

	Chapter 5 Benchmarking of Automated Approaches for Differentiating Between Polymorphs and Redeterminations
	5.1 Introduction
	5.2 Methods and Data
	5.2.1 Datasets
	5.2.1.1 Best R dataset
	5.2.1.2 Manual label and benchmark datasets
	5.2.1.3 Dataset split

	5.2.2 Descriptors
	5.2.3 Descriptor analysis
	5.2.3.1 Correlation matrix
	5.2.3.2 Principal Component Analysis

	5.2.4 Classifier development
	5.2.4.1 Development process

	5.2.5 Computational details

	5.3 Results and Discussion
	5.3.1 Descriptor Selection
	5.3.1.1 Correlation matrix
	5.3.1.2 Principal Component Analysis
	5.3.1.3 Packing similarity
	5.3.1.4 Lattice type

	5.3.2 Classifier development
	5.3.2.1 Training
	5.3.2.2 Validation
	5.3.2.3 Test

	5.4 Conclusion

	Chapter 6 Matched Molecular Graphs
	6.1 Introduction
	6.2 Method and Data
	6.2.1 Dataset
	6.2.2 Graph construction
	6.2.2.1 Matched Molecular Pair identification
	6.2.2.2 Pairs to graph
	6.2.2.3 Visualisation

	6.2.3 Software

	6.3 Results and Discussion
	6.3.1 Monomorphic adjusted single component CSD dataset
	6.3.2 Dataset size
	6.3.3 Datasets across the Pharmaceutical Product Development

	6.4 Conclusion

	Chapter 7 Melting Point Prediction Using Message Passing Neural Networks Based on Molecular and Crystal Structures
	7.1 Introduction
	7.2 Methods and data
	7.2.1 Datasets
	7.2.2 Model architecture
	7.2.2.1 Graph model
	7.2.2.2 Prediction layers

	7.2.3 Model construction
	7.2.4 Performance analysis
	7.2.4.1 Matched molecular Pairs
	7.2.4.2 Polymorph Pairs

	7.2.5 Software

	7.3 Results and Discussion
	7.3.1 Model performance and architecture
	7.3.2 Does crystal information help?
	7.3.2.1 Underrepresentation
	7.3.2.2 Capturing crystal information
	7.3.2.3 Relative importance of solid state changes
	7.3.2.4 When does crystal change matter?

	7.4 Conclusion

	Chapter 8 Conclusion
	8.1 Introduction
	8.2 Data Management
	8.2.1 Quality
	8.2.2 Availability
	8.2.3 Suitability

	8.3 Empirical Method
	8.3.1 Message Passing Neural Networks
	8.3.2 Matched Molecular Pairs – Graphs and Analysis

	8.4 Research Topic
	8.4.1 Polymorph propensity
	8.4.2 Solid state specific melting point
	8.4.3 Future research topics

	8.5 Concluding Remarks

	Appendix 1 Matched Molecular Pairs Database scripts
	Appendix 2 Matched Molecular Database Schema
	Appendix 3 Polymorph and Redetermination Classification
	Appendix 4 Message Passing Neural Network scripts

