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Abstract 

Cheminformatics methods such as Matched Molecular Pair Analysis (MMPA) and 

Quantitative Structure-Property Relationship (QSPR) models based on molecular 

structure have been widely used to address challenges faced during the Discovery 

stage of pharmaceutical product development. This thesis builds upon these concepts 

by including the solid state consideration to address challenges associated with the 

Development stage.  

Polymorph propensity of molecules and solid state specific melting point (as a 

surrogate for solubility) were focused upon in the thesis. Matched Molecular Pair 

Analysis (MMPA) was used for the propensity study. However, no statistically 

significant molecular transformations were identified due to the small number of 

MMPs identified and the limited size and quality of polymorphism data.  

The issue of the small number of MMPs was further analysed by constructing a 

Matched Molecular Graph. The graph approach allowed the comparison of the 

properties of datasets from different stages of the pharmaceutical development 

process. Datasets taken from Development stage contain fewer molecules with at least 

one MMP (25.1 %) and the lower total number of MMPs (2,776) compared to 

Discovery datasets of the same size (58.2 % and 10,321), making the analysis method 

less suitable. 

A benchmarking dataset for crystal structure classification (into polymorphs and 

redeterminations) was curated, and the developed machine-learning based method 

(F1=0.910) along with existing methods (F1=0.780) of classification were compared.  

A Message Passing Neural Network was used to develop a QSPR model using 

molecular and crystal information. The best model that only used molecular 

information achieved R2 of 0.628 on the validation set, while the model trained with 

the crystal information obtained 0.649. The improvements were limited when 

compared to the QSPR model that only utilised molecular information; likely due to 

the limited polymorphic data and the typically small effect the crystal packing 

differences causes. The best model achieved test set R2 value of 0.550. 

This thesis provides partial solutions to the challenges of solid form informatics and 

forms a starting point for further research in the area.  
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Chapter 1  

Introduction 
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1.1 Context 

Nearly half of the 7.5 years increase in life expectancy during the last half-century of 

the 20th century can be related to improvement in medical care [1].  Medicines in the 

form of tablets for oral administration play an essential role in improving the quality 

and expectancy of life with approximately half of the drugs on WHO’s ‘List of 

Essential Medicine’[2] being orally administrated [3]. The majority of these are of 

solid form. Engineering frameworks have been developed to better understand the 

behaviour of solid state products, thereby enabling the sustainable development of 

medical care. 

The Material Science Tetrahedron (MST) is one example of such a framework, and it 

emphasises the importance of the links between structure, property, processing, and 

performance [4]. The objective of the framework is to optimise the Performance by 

adjusting the properties of the studied system; this is achieved by processing the 

material to alter its structure. The property is determined by the structure of the 

product. Key to the successful implementation of the Material Science Tetrahedron 

lies in understanding the structure-property relationship. The relationship can be 

further expanded to take into account structure at different scales such as molecular, 

crystal, and particle. These, in turn, affect properties to a varying degree. The MST 

has been utilised when undertaking challenges in pharmaceutical product development 

[5]. 

Pharmaceutical product development can be divided into two stages: Discovery and 

Development. During the Discovery stage, a large number of molecules are screened 

and optimised for specific properties such as molecular efficacy and toxicity [6,7]. The 

work focuses on molecular structure alteration to optimise relevant properties. Once a 

project reaches the Development stage, the molecular structure is set and work is 

performed on structures at a larger scale, such as solid form and particle. Many key 

properties that determine the ultimate performance of a drug are dependent on the solid 

state structure. Polymorphs, structures with the same molecule but different crystal 

arrangements, can exhibit different solubilities [8]. Therefore, it is highly desirable to 

be able to predict how molecular and crystal structures contribute to key properties.  

The pharmaceutical product development process generates large amounts of data due 

to the trial and error approach, as well as its regulatory obligations [9]. In particular, a 
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large number of molecules are screened during the Discovery stage. For this reason, 

many empirical methods such as Quantitative Structure-Property Relationship 

(QSPR) modelling [6,7,10] and Matched Molecular Pair Analysis (MMPA) [11,12] 

have been used to utilise the volume of data generated to better guide the process. In 

Discovery settings, the primary objective of the emprical models is to predict the 

activity of a molecule – hence the modeling is often called Quantitative Structure-

Activity Relationship. However, in this thesis, activity is considered a property, so 

QSPR is used as a collective term for empirical models that predict activity or other 

property. Because of the relatively smaller volumes of data (structured data in 

particular), the Development side of the process has not utilised methods such as 

QSPR to a similar extent. The thesis aims to build upon the limited work in the area 

of solid state informatics to address key challenges in Development.   

1.2 Aim and objectives 

The primary aim of the thesis is to investigate the extent to which techniques deployed 

during the Discovery stage can be applied to the Development stage datasets to address 

challenges encountered at this stage. The intention is that this will contribute to 

increasing the efficiency of the Development stage, as well as facilitate the interaction 

between the two phases by allowing the Development stage challenges to be better 

anticipated and addressed during Discovery. 

Molecular and crystal structures are studied in the thesis as they represent the interface 

between Discovery and Development. There are several relevant properties for the 

pharmaceutical product development. In the thesis, the emphasis is placed on 

polymorph propensity and solid state-specific melting point. Polymorph propensity 

refers to the propensity of a molecule to exhibit polymorphism which is of great 

importance during Development [9,13]. An empirical model of the propensity could 

be used as an additional consideration during lead optimisation (Discovery). The 

second property of interest in the thesis is the solid state-specific melting point. 

Melting point can be related to solubility, which is one of the key properties of a drug 

product due to its influence on bioavailability. A novel method of capturing crystal 

information as well as the significance of the solid state information was investigated.  

The methods used in the thesis are MMPA and QSPR modelling. Within empirical 

modelling, there is typically a trade-off between the model’s ability to capture complex 
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relationships and ease with which a model’s prediction can be explained. Complex 

model explainability is an active area of research [14,15] and is also touched upon in 

Chapter 7. The two techniques selected represent explainability (MMPA) and the 

ability to capture complexity (QSPR).  

1.3 Structure of the thesis 

Chapter 2 expands on the context introduced in 1.1 and provides the theoretical 

background necessary for the rest of the thesis. Approach chapter (pink in Figure 1.1) 

focuses on the different iterations of the development and explains the principles of 

the method. Result chapters (gold in Figure 1.1) provide the specific context and aims, 

followed by the methodology used and the discussion of results. Discussion chapters 

(grey in Figure 1.1) are used to collate the topics presented in the previous chapters 

and offer an overarching discussion of them.  

 

Figure 1.1: Overview of the structure of the thesis. 

Context and theory – dark blue (chapter 2). Approach development – pink 

(chapter 3). Results – gold (chapters 4 – 7). Conclusion – grey (chapter 8). 

Abbreviated chapter names are used in the figure to provide an overview of 

the content. MMP DB – Matched Molecular Pair Database. MMG – Matched 

Molecular Graph. MPNN – Message Passing Neural Networks 

CH 2: Context and Background

CH 3: MMP DB

CH 6: MMG

CH 7: MPNN

CH 4:
Polymorph
Propensity

CH 5:
Crystal 

Classification

CH 8: Conclusion
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Chapter 3 presents the method development performed to produce a database of 

Matched Molecular Pairs. The developed methodology was applied to the work 

presented in Chapter 4, Chapter 6, and Chapter 7. Chapter 4 presents the work on 

polymorph propensity prediction. It identifies several issues associated with the study 

of this phenomenon which are addressed in subsequent chapters (5 and 6). Chapter 5 

addresses the need for a robust, automated method for the classification of pairs of 

crystal structures as different or same polymorphs by benchmarking an existing 

method and comparing it to the novel machine learning-based approaches. Chapter 6 

describes the work done on assessing the suitability of datasets for Matched Molecular 

Pair Analysis. Crystal structure-specific melting point prediction is reported in 

Chapter 7. Chapter 8 collates the findings from the previous chapters, provides a 

discussion on how the work addressed the aims presented in 1.2, and sets out the 

direction for future research in this area. 
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Chapter 2  

Literature Context and 

Theoretical Background 

 

  



-8- 

 

2.1 Pharmaceutical product development 

Medicine has been an essential aspect of human civilisation since its beginnings. As 

large population centres developed, the need for a systematic approach to healing and 

the development of remedies increased [16–18]. Centuries of improvements led us to 

the modern drug development process that has brought us numerous treatments and 

increased the length and quality of life [1]. However, the process is currently riddled 

with a lack of productivity [19]. Identification of the critical challenges and 

development of potential solutions is essential to secure a sustainable healthcare 

system for future generations [19,20]. The Material Science Tetrahedron is presented 

as a framework for addressing these issues. Consequently, the key relationship 

between structure and property is identified, and the areas of focus for the thesis are 

discussed. 

2.1.1 History 

The profession of a physician was already established by 3,000 BCE in Mesopotamia 

[18,21]. At the time, observation-based treatments like pharmaceutics and surgical 

procedures were inseparable from superstitious healing rituals [18]. Pharmaceutical 

prescriptions dating back to 3,000 BCE were found to contain botanic, mineral and 

alcohol-based ingredients [16,18]. Many of these remedies were developed by 

religious reasoning and non-systemic trial-and-error approaches and were documented 

on clay tablets [18]. One of the ingredients mentioned in these tablets is willow leaves, 

which contains salicylic acid, a precursor to the active ingredient of aspirin 

(acetylsalicylic acid) used over 5,000 years later [21]. The fact that laws existed for 

punishment for mistreatment suggests that some degree of confidence in the 

treatments existed at the time [18]. Despite the limited scientific understanding and 

the absence of the modern scientific method, the ancient physicians were able to 

develop effective medicine using a rudimentary trial-and-error approach; thus 

establishing trial-and-error as a critical element of treatment development which is 

used to this day.  

The introduction of a more robust, scientific approach to study illnesses and 

development of treatments is credited to Hippocrates, who was born around 500 BCE 

[22]. He was responsible for removing the assumption of the divine origin of disease, 

thus paving the way for a scientific approach based on the observation and 
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understanding of nature [22,23]. The Hippocratic School of medicine is based on the 

principles of rationality, experiments, patient observation, and deduction [22,23]. The 

approach also aims to eliminate the presumptions and biases that the researchers may 

have [22,23]. Unfortunately, many of Hippocrates’ followers partially abandoned 

these principles [22]. Nonetheless, the approach is evident in modern pharmaceutics 

development and forms the basis of the frameworks used. Indeed, due to his principles 

forming the basis of modern medicine, Hippocrates is often referred to as the “father 

of modern medicine” [23]. 

A significant step towards the modern approach to the development of medicine was 

made at the turn of the 18th and 19th centuries [17]. With the advancement of chemistry, 

Friedrich Wilhelm Adam Serturner was able to isolate morphine crystals from poppy 

seed juice in 1804 [24]. This was followed by the isolation of other active ingredients 

such as quinine (1820), atropine (1833), and cocaine (1860)[17]. In 1869, the first 

synthetic drug, chloral hydrate (discovered in 1832) was introduced into the 

pharmacopoeia [16]. These advances led drug development into a new era, focused on 

molecules as the basis of pharmacological effects.  

The history of medicine is as long as the history of humankind itself. Diseases tend to 

propagate in areas of high population density, which put pressure on early civilisations 

to tackle this challenge [18]. Over the millennia, the techniques used to develop 

remedies evolved, resulting in the current pharmaceutical product development 

process. 

2.1.2 Modern approach 

The modern pharmaceutical product development process is the product of millennia 

of human ingenuity. It relies on the same principles developed over the ages: trial and 

error, the scientific method, and our understanding and mastery of the natural world. 

The term “pharmaceutical product development” is sometimes used to refer to only 

the late stage of the process of developing new medicine; however, in this thesis, the 

term is used to describe the entirety of the process. The modern framework can be 

divided into two main stages: Discovery and Development (Figure 2.1) [19,25,26]. 

The majority of the cost is incurred during the Development stage [19]. An overview 

of the process, with an emphasis on orally administrated drugs in the tablet form, is 

presented as the majority of drug products are of this form [3]. For the process to be 
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initiated, a suitable target needs to be identified [25]. A target is a cell type, enzyme, 

gene, receptor, or pathway that has been shown to have an effect on a disease. 

2.1.2.1 Discovery 

Once a target is identified, high throughput screening is used to identify potential 

molecules that may affect it. Millions of molecules are screened using automated High 

Throughput setups at rates of 10,000s a day until promising compounds (Hits) are 

identified [25]. Due to the large number of data generated, the data management as 

well as the false positive rate need to be considered [20,27]. These are then screened 

further (Hit to Lead) to reduce the number of compounds of interest to 10 – 15 [19,25]. 

 

Figure 2.1: Pharmaceutical product development overview. 

With each subsequent stage, the number of molecules considered decreases. 

Majority of work in Discovery is done on the scale of molecules. Solid state 

considerations are made during late discovery and Development. At the same 

time, formulation of the final drug product is investigated. The cost of each 

stage is based on values found in literature [19]. 
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During the Hit-to-Lead stage, assays are repeated to confirm the results of the initial 

screening stage, and further experiments are performed to obtain pharmacodynamic 

and pharmacokinetic profiles as well as toxicity data [27]. This is followed by lead 

optimisation, where small changes to the compound are made to improve the desired 

properties further (e.g. IC50 – concentration required to achieve 50 % inhibition [28]) 

and limit the undesired properties (e.g. toxicity) [25]. Some pre-clinical experiments 

are also performed to collect more data. At these early stages, the molecular efficacy 

of the potential drug is the key focus. In parallel, ways of synthesis and the delivery 

method of the drug candidate for the clinical trials is investigated. During the 

discovery stage, most of the work is performed on a molecular scale; traditionally, 

solid state considerations, such as polymorph screening and identification, were not 

taken into account at this stage [29]. However, this began to change at the dawn of the 

21st century, where efforts were made to closely align the Discovery and Development 

efforts [29]. The details of this are explained in the Development section (2.1.2.2) and 

further considered as a solution to key challenges of the product development process 

in 2.1.3. At the end of Discovery, a decision is made whether to continue with the drug 

candidate and preceed to the Development phase. Performance and manufacturability 

are considered amongst other commercial considerations. To avoid costly late stage 

attrition, candidates are often dropped at this stage [30]. 

2.1.2.2 Development 

The Development stage consists of parallel branches; clinical trials, the product 

formulation, and the manufacture process development [26,31]. Three stages of 

clinical trials are carried out on an increasingly large number of patients to determine 

the safety and efficacy of the drug candidate [32,33]. Phase 1 mainly focuses on safety 

and dosage, confirming the pre-clinical results. In Phases 2, the efficacy of the drug is 

tested on a larger number of patients. The phase 3 trials are the largest, where the drug 

performance is compared to a benchmark treatment if it is already available [34].  

The second branch of the Development process is the formulation. In this branch, the 

key objectives are to ensure adequate stability and Performance of the final drug 

product [35]. The structure of the API is determined by the time it reaches the 

Development stage. However, the decisions regarding its solid form, particle 

characteristics, and final tablet composition leave room for optimisation for the key 
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objectives. The drug candidates are screened for possible solid forms such as: 

hydrates, solvates, co-crystals, and polymorphs. Different solid forms can exhibit 

vastly different properties such as the case of Ritonavir where two polymorphs had 

different solubilities (170mg/mL and 30 mg/mL at 5 oC in ethanol-water mixture (3:1)) 

[8]. The screening is usually completed by repeatedly crystallising the drug candidate 

under different conditions such as varied cooling rates and solvents [36]. Based on the 

properties of the solid form, formulation at the larger scale is undertaken; optimisation 

of particle properties, and finally, the design of the tablet composition.  

The formulation process works in tandem with the manufacturing process design. As 

the size of the clinical trials increases and the need for large-scale manufacture 

approaches, the manufacturing process is developed [37].  Quality by Design (QbD) 

framework is applied to the manufacturing process to ensure consistent quality of the 

drug product [38]. The guiding principle of this framework is the need for the scientific 

understanding of the underlying phenomena when designing the manufacturing route.  

Successful clinical trials, formulation with the desired performance and stability, along 

with the manufacturing process is submitted to the governing agency for approval. In 

Europe, this falls under the European Medicines Agency (EMA), while in the United 

States, it is the Food and Drug Administration (FDA). The end of the pharmaceutical 

product development is marked by the granting of approval for the drug product. 

2.1.3 Key challenge 

The modern product development framework has had success in developing many 

drugs. However, in recent years, the productivity of the approach came into question 

[19,20]. The cost of each stage of discovery has decreased many-fold [19,20,34], yet 

the cost of the successful introduction of a novel drug has doubled every nine years 

since the 1950s [34]. The main reason for the decrease in productivity is said to be 

late-stage attrition, namely, the failures of drug candidates during the Development 

process. In fact, in the decade from 1998, 54 % of drug candidates that entered the 

Development stage failed to get approval from the FDA [33].  

Several strategies have been proposed to address the low productivity within 

pharmaceutical product development. These include but are not limited to: human 

factor mitigation [39], organisational [19,34], predictive tool improvement [20], and 

integration of Discovery and Development processes for better performance 
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optimisation [29]. The first two strategies, although important, fall outside of the scope 

of the thesis. The remaining two strategies, (1) improvement of predictive tools and 

(2) better integration of Discovery and Development, are focused upon in the thesis. 

The most common cause of failure is poor efficacy of the drug candidate during the 

clinical trials [33]. Unless otherwise stated, efficacy refers to the clinical efficacy 

resulting from the bioavailability and molecular efficacy at the target site. Ability to 

predict the efficacy of a drug product in humans is the Holy Grail of pharmaceutical 

research. However, the problem is difficult due to the number of factors that affect it. 

These factors range from difficulty in predicting the biological effect of a molecule 

[40,41] to prediction of ADMET (absorption, distribution, metabolism, excretion and 

toxicity) [42–44] . The Material Science Tetrahedron (MST) is used to decompose 

some of the complexities of the efficacy prediction into simpler components. In 

particular, the emphasis is placed on the structures and properties that are focused upon 

at the interface of Discovery and Development. The MST framework is used to 

contextualise the research focus of this thesis. 
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2.1.4 Material Science Tetrahedron 

The Material Science Tetrahedron is a framework that emphasises the importance of 

the links between structure, property, processing, and Performance (Figure 2.2). The 

origin of the tetrahedron can be traced back to a National Academy report from 1989, 

“Materials Science and Engineering for the 1990’s”, where it was proposed as a 

framework for a holistic view of the developments in the area [4]. The key elements 

of the MST are discussed in 2.1.4.1. In 2008, a paper highlighting the usefulness of 

the MST in pharmaceutical research and development was published [5]. Emphasis 

was placed on the relationship between two elements of the tetrahedron: structure and 

property (2.1.4.2). The structures and properties that are focused on in the thesis are 

presented in 2.1.4.3. Methodologies for studying the relationship between these are 

also discussed (2.1.4.4).  

2.1.4.1 Vertices and edges of the tetrahedron 

The MST consists of four vertices: structure, property, processing, and Performance 

[4,5]. Performance is the primary element of interest and is the reason for the 

development of a new product. In the case of the pharmaceutical product development, 

the Performance encompasses factors such as manufacturability, bioavailability, 

 

Figure 2.2: Material Science Tetrahedron. 

The tetrahedron illustrates the interdependence of structure, property, 

processing, and performance. 
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toxicity (lack thereof), and molecular efficacy. Property is another vertex of the 

tetrahedron; it represents the different properties of the system studied, such as its 

physiochemical and mechanical properties. The structure of the system can be 

considered at different scales, from molecular through crystal to particle structure and 

beyond (formulation and the tablet form). Processing indicates the various actions that 

can be carried out on the product to alter it, such as synthesis of the API or milling. 

The six edges of the MST represent the relationships between the four elements [4,5]. 

When attempting to improve Performance, the most trivial approach is to see what 

processing can achieve this. The processing-performance relationship is akin to 

Hippocratian physicians observing the effects of prepared remedies on patients during 

the classical era [23]. However, it does not provide any insight into the reason why 

certain processing affects Performance. This is not sufficient for modern-day 

regulatory bodies that require a Quality by Design (QbD) approach to be applied to 

the pharmaceutical product development [26,38]. For this reason, it is beneficial to 

focus on the relationship between processing and Performance via structure and 

property; namely, processing – structure, structure – property, and property – 

Performance [5]. 

Moving backwards from Performance, the first relationship is that between property 

and Performance. Understanding how properties affect Performance is paramount in 

being able to consistently develop methods of improving it. A drug candidate may fail 

clinical trials due to insufficient efficacy (Performance) caused by many factors, such 

as poor aqueous solubility (property). Beyond knowing which properties to improve, 

it is necessary to understand how these arise. This is the purpose of the structure – 

property relationship. A crystal structure that forms strong intermolecular interactions 

requires more energy to dissociate, thus reducing the solubility [45]. Knowing this, 

one can design a process that alters the crystal structure – for example, by forming a 

co-crystal. The way in which processing can be used to modify the structure of the 

system is captured by the processing – structure edge of the MST.  It is possible to 

skip the structure and directly map the processing – property relationship. However, 

this does not contribute to the understanding of the underlying science behind the 

property [5]. The structure – property relationship forms the basis of the scientific 

understanding of the studied system’s behaviour. 
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In summary, the objective of the MST framework is to optimise the Performance by 

adjusting the properties of the studied system. This is achieved by processing the 

material to alter its structure. The property is determined by the structure of the 

product. Key to the successful implementation of the Material Science Tetrahedron 

lies in understanding the structure-property relationship. This relationship is further 

explored below. 

2.1.4.2 Focus on Structure-Property Relationship (SPR) 

Pharmaceutical products are complex, multi-component systems where the 

Performance of the product depends on many properties. In such systems, the 

 

Figure 2.3: Structure Property Relationship (SPR) at different scales. 

A system of interest (gold box) is affected by processing and determines the 

performance (blue arrows). Relationships within the system are indicated by 

black arrows. Structure (dark blue) exists at different scales where each 

subsequent scale of structure is determined by the prior scale of structures 

and the processing carried out. Properties (dark green) at each scale are 

determined by structures at that scale and all prior scales of structure. 
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relationship between structure and property exists at different scales. Furthermore, the 

structures at progressively larger scales are affected by the smaller structures of their 

component. Similarly, the properties at each scale are determined by the structure at 

that scale and the structures at the smaller scales. Different processing techniques can 

be applied to modify the structure at different scales as required. This multifaceted 

relationship between structures and properties is depicted in Figure 2.3. 

An example of a drug that has insufficient efficacy (a key performance indicator) can 

be used to illustrate the complexity of this relationship. The majority of modern 

pharmaceutical product development is based on the molecular scale; hence, this is 

the smallest scale considered in this thesis. One possible reason for the poor 

performance is low bioavailability of the drug as a drug even with high molecular 

efficacy, cannot produce the desired effect if its bioavailability is too low.  To reach 

the target, a molecule must dissolve from the tablet into the gastrointestinal tract, and 

permeate across the lipid bilayer. The permeability can be determined based on the 

molecular structure [46]. The solubility is a function of molecular and crystal 

structures. Restricting the consideration to the thermodynamic solubility, it depends 

on the energy change of combining solute and solvent molecules and the free energy 

needed to remove the molecule from the given crystal structure [45]. Thermodynamic 

solubility may refer to the equilibrium between the solution and the most stable crystal 

form for a given condition. Here however, thermodynamic solubility is used to refer 

to the equilibrium between the solution and any crystal form. The rate of dissolution 

is affected by the particle, crystal and molecular structure. The ratio of surface area to 

volume decreases as particle size increases [47]. Since dissolution is surface 

dependent, particle size affects the rate [48]. The crystal structure determines the 

surface chemistry, which affects the rate of dissolution as well. Beyond the three 

structures discussed here (molecule, crystal, and particle), bioavailability can be 

affected by tablet structure (excipients used).  

2.1.4.3 Structures and properties of interest 

The relationship between structures and properties exists at different scales. For a 

complex system such as a drug product, several scales and properties are important. 

In this thesis, the focus is placed on properties that are relevant to the interface between 
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Discovery and Development, with the aim of contributing to the integration of the two 

stages. 

The two scales of structure that are focused upon in this thesis are molecular and 

crystal. The Discovery process is focused on molecules. Hence it was selected as one 

of the scales of structure. The crystal structure is the other structure that is focused 

upon in the thesis as it plays a vital role during Development. Many important 

properties are solid form specific [49,50], and earlier incorporation of the solid form 

consideration has already been shown to be beneficial [29]. Detailed consideration of 

these different scales of structure is presented in section 2.2. 

The ability of a molecule to exhibit different packing arrangements in crystal form is 

referred to as polymorphism [51]. Different polymorphs have different properties, 

such as solubility and stability [8]. The ability to control polymorphism is an essential 

task within pharmaceutical product development [8,13,36,49,52]. The tendency of a 

compound to form polymorphs is called the polymorph propensity. Solubility has a 

direct impact on the bioavailability of the orally administrated drug product and is also 

an important property for processing (crystallisation). Bioavailability is defined as the 

amount of drug substance found in the circulatory system as a fraction of the amount 

of drug administrated where intravenous administration has 100 % bioavailability 

[36]. Both properties form part of the decision trees for quality management adopted 

by all major drug regulators around the world [9]. More details concerning each 

property and the data sources used in the thesis are described in 2.3. 

2.1.4.4 Structure-Property Relationship (SPR) methodologies 

The relationship between structure and property lies at the heart of the MST, and 

significant research effort has been dedicated to developing an understanding of it. 

The first principle approach aims to derive the relationship from the scientific 

understanding of the phenomena. In cases where the first principle approach is 

unfeasible, either due to lack of information, deficient theory, or limited resources due 

to computational expense, an empirical approach may be adopted [53].  

Two categories of empirical methods are used in the thesis: Quantitative Structure 

Property Relationship (QSPR)[54] and Matched Molecular Pair Analysis (MMPA) 

[55]. In this thesis, QSPR is defined as any model, derived from the application of 

statistical or machine learning algorithms to relevant data, that maps a relationship 
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between the structure of a system and a property of the system. The MMPA approach 

aims to map a relationship between a change in the structure of a molecule to a change 

in a property of the system. The principles of QSPR models are presented in 2.4 and 

applied in Chapter 5 and Chapter 7. Similarly, for the MMPA approach, the 

fundamental aspects are presented in 2.5 and its specific implementation in Chapter 3 

and Chapter 4. 

 

2.2 Scales of structure 

Structure is one of the vertices of the MST and is a key focus of this thesis. Within the 

scope of pharmaceutical product development and the challenges identified in 2.1.3, 

structures can be found on various scales (Figure 2.3). The following sub-sections 

describe the different levels of structure associated with a pharmaceutical product. As 

discussed in 2.1.4.3, molecular and crystal structures are the main focus of the thesis 

and are presented in 2.2.1 and 2.2.2. To better contextualise the structures, crystal habit 

and is discussed (2.2.3). Larger structures, such as particles and tablets, are not 

discussed here as these fall outside of the scope of the thesis. 

2.2.1 Molecules 

A molecule is the smallest scale of the system that is considered in this thesis. A 

molecule consists of atoms that are covalently bonded to form functional groups and 

molecules. The molecular structure determines factors such as molecular toxicity and 

molecular efficacy at the site of biological action. It is at this scale that the majority of 

the Discovery work is carried out.  

Molecules are defined by the identities of their constituent atoms and the way in which 

these are covalently bonded together, along with the shape the overall structure takes 

(conformers). The primary method used in the thesis to describe molecules is the 

simplified molecular-input line-entry system (SMILES) notation [56]. Molecular 

structures can also be expressed as graphs[57]; this is elaborated upon in 2.4.1 and 

Chapter 7. 

2.2.2 Crystal structure 

Once the scale of the system is increased to include several molecules, these can be 

arranged to create a new scale of the structure. Such groups of molecules exist in three 
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different states of matter; gas, liquid, and solid. The focus of the thesis is on the solid 

state as most pharmaceutical products are of this state [3]. Solids can be further 

categorised into an amorphous and crystalline form. Crystalline structures are 

characterised by the regularity of the molecular arrangement. Amorphous solids have 

a random arrangement of molecules and fall outside of the scope of the thesis.  

2.2.2.1 Crystal lattice 

The regularity of crystals can be described using a lattice. An n-dimensional lattice is 

an infinite set of points defined by n linearly independent vectors such that 

𝒑 =  ∑𝑎𝑖𝒙𝒊

𝑛

𝑖

+ 𝒄 Equation 2.1 

where the xi is the ith basis vector, 𝑎𝑖 ∈  ℤ, c is an offset vector that is equal to 0 for 

lattice points (origin is one of the lattice points), and p is the vector representing a 

point on the lattice [58]. In essence, each lattice point is related to every other point 

by translation. This also implies that every point has the exact same environment. 

Crystal structures have lattices across three-dimensional space while the graphical 

example in Figure 2.4 illustrates the two-dimensional case for the sake of clarity.  

The smallest repeating unit of the lattice is called the unit cell (shaded area in Figure 

2.4). Each point within the unit cell has an equivalent point in every other unit cell by 

translation using Equation 2.1, where c is the point of interest in the unit cell. Several 

potential unit cells can be defined for a given system, but it is common practice in 

crystallography to define it as the smallest repeating unit that clearly captures the 

symmetry of the lattice [58]. In the case of the example in Figure 2.4, a rectangular 

unit cell can be used to define the repeating pattern. However, a parallelogram without 

right angles may be chosen if it represents the internal symmetry of the unit cell better. 
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Many crystals exhibit symmetry beyond translational symmetry parallel to the basis 

vector set. This is captured using 230 space groups (for a 3D system) and the 

respective symmetry operators [59]. The minimum motif required to recreate the full 

crystal structure is called the asymmetric unit [60].  

2.2.2.2 Crystal packing 

The arrangement of molecules, the crystal packing, is determined by the balance 

between intra- and inter-molecular interactions [61]. Intramolecular interactions 

include the covalent bonds formed between atoms to form a molecule. Intermolecular 

interactions consist of Van der Waals (VdW), Hydrogen bonds (H-bond), and 

electrostatic interactions [62].  VdW interactions occur between two dipoles, either 

permanent-induced or induced-induced. Hydrogen bonding is a directional interaction 

between two dipoles [63]. It forms between a hydrogen that is connected to an 

electronegative atom (H-bond donor) and an electronegative atom with a lone pair of 

electrons (H-bond acceptors). As a result of the directionality of hydrogen bond, they 

most commonly occur at around 180o with a lower limit of 110o [63]. Smaller angles 

are possible, but may indicate that a more stable crystal packing exists [64]. 

 

Figure 2.4: Example lattice with illustration of a unit cell. 

The two vectors that define the lattice are x1 = [2,0] and x2 = [1,3]. The shaded 

area is the unit cell with dimensions equal to the magnitude of each vector. 

 

x1

x2



-22- 

 

 Electrostatic interaction occurs between ions or between partially charged fragments 

of the molecules. An energetically favourable crystal packing is characterised by 

maximisation of these intermolecular interactions, while minimising the energy 

penalty due to disruption of the intramolecular interaction. It is important to note that 

Hydrogen bonds may also occur within the molecule itself, stabilising a particular 

conformer. Although intermolecular interactions are weaker than the intramolecular 

counterparts, the sum of intermolecular forces may be sufficient to induce a 

conformational change [8]. Due to the large number of possible geometries resulting 

from the interactions, a number of packing arrangements corresponding to local 

energy minima are often possible [50]. The ability of a molecule to exhibit multiple 

arrangements in the crystal state is called polymorphism. 

2.2.2.3 Polymorphism 

Although polymorphs have the same molecular structure, they may exhibit different 

physical properties that can lead to differences in the Performance of the chemical 

product. It is important to note that in some cases, solid forms such as solvates and co-

crystal are wrongly termed polymorphs (or pseudo-polymorphs). Here, the term is 

strictly applied to crystals with the same molecular composition but different 

arrangements of these molecules. 

Paracetamol is an example of a polymorphic molecule [65]. Figure 2.5 (a and c) show  

two polymorphs of the compound. Different intermolecular interactions govern the 

crystal packing of the two polymorphs [65]. The two unit cells shown in Figure 2.5 (a 

and b) also differ slightly – by an average of 1.7 % change in the unit cell dimensions. 

However, these two structures are the same polymorph (I) at different temperatures (-

150.15 oC and room temperature). The two structures are not considered to be 

polymorphic due to the same crystal packing seen across the two structures. The 

importance of considerations of polymorphism within the context of the Development 

process is further discussed in 2.3.1.  
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2.2.3 Crystal habit 

The unit cell describes the way in which molecules pack to form solid state crystals. 

Crystals however, rarely grow in the same shape as the underlying unit cell [66]. The 

external structure of a crystal is called the crystal habit. The crystal habit is influenced 

by the internal structure of the crystal (packing, discussed in 2.2.2) and the 

crystallisation conditions [67]. The set of possible surfaces of the crystal (facets) are 

determined by the way in which the molecules pack. The crystallisation conditions, 

along with the surface chemistry of the facets, govern the growth rate of the facets. 

The crystal habit is defined by the relative growth rates of the facets. Presence of 

additives or impurities may selectively inhibit the growth of certain facets, thus 

changing the crystal habit [68]. Similarly, the solvent selection affects the binding at 

different facets, potentially leading to changes in crystal habit [69]. Other factors such 

 

Figure 2.5: Three crystal structures of paracetamol, denoted by their CSD 

refcodes. a - polymorph 1 (HXACAN07), b – another experimental 

determination (“redetermination”) of polymorph 1 (HXACAN09), c - 

polymorph 2 (HXACAN08) 
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as the temperature, the rate of change of temperature, and the degree of agitation can 

all have an impact on the resulting crystal habit [67]. The shape of the crystal affects 

the structure and properties at larger scales of structures such as particles, powder, and 

the final drug product. However, these fall outside of the scope of the thesis. 

 

 

2.3 Properties and data sources 

Polymorph propensity and solubility were identified in 2.1.4.3 as the main properties 

of interest in the thesis due to their relevance for the Development. Details of 

polymorphism and the data source for acquisition of the relevant information is 

presented in 2.3.1 with equivalent discussion for solubility presented in 2.3.2. 

However, the amount of solid state specific solubility data is limited [70]. Melting 

point can be related to solubility, and some solid state specific data is available for this 

property [71]. Details of the ways in which melting point data can be related to 

solubility as well as information regarding data acquisition are presented in 2.3.3.  

2.3.1 Polymorph propensity 

Polymorphism is of great interest within the pharmaceutical product development. For 

example, a previously unknown, more stable polymorph of ritonavir appeared two 

years after the product launch [8]. The higher stability caused the product to fail 

dissolution tests and consequently was removed from the market. Polymorphs may 

exhibit different physiochemical properties [36,49]. To avoid such problems, the 

regulatory bodies around the world have adopted strict requirements for identification 

and control of the solid form of drug products [9,13,52]. Polymorphism also plays an 

important role in patent litigation. Separate patents were granted for the two 

polymorphs of ranitidine (Zantac) [72]. 

International Conference on Harmonisation (ICH) of Technical Requirements for 

Registration of Pharmaceuticals for Human Use produced a series of guidelines 

concerning the requirements for approval of drug products which were subsequently 

adopted by all major regulatory bodies. Guideline on Quality Management Q6a 

decision tree 4 sets out the acceptance criteria for polymorphism in drug products and 

substances [9]. The guideline lists the requirement for identification of all solid forms. 
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The ability to accurately predict the likely number of solid forms would be of benefit, 

if available ahead of time. The propensity for polymorph formation is defined as the 

likelihood that a given compound will form polymorphs. This property of molecules 

is investigated in Chapter 4. 

The Cambridge Structural Database (CSD) is a curated repository of small organic 

and metal-organic crystal structures that contains over 1,000,000 entries and is 

maintained by the Cambridge Crystallographic Data Centre (CCDC)[73,74]. The 

database contains 3D crystal structures and to varying degree the information 

concerning the conditions under which the structure was obtained. Several entries 

corresponding to a single molecular composition may be present. These entries 

correspond to the polymorphs and redeterminations. A redetermination is an 

experimental determination of the crystal structure of a given polymorph with a 

slightly different structure. The difference can arise from different conditions or the 

way in which the structure was resolved from the experimental data. Issues 

surrounding the differentiation between redeterminations of the same polymorphs and 

polymorphic structures is discussed in Chapter 5. The data contained within the CSD 

formed the basis of the polymorph propensity study (Chapter 4). 

 

2.3.2 Solubility 

Solubility is one of the key properties that contribute to the efficacy of the drug product 

as it affects the bioavailability of the drug [75]. True thermodynamic solubility 

indicates the maximum amount of the dissolved solute possible for a given state for 

the most stable crystal structure [76]. Due to kinetic barriers of formation of the most 

stable polymorph, the equilibrium between meta-stable polymorph and solution may 

be more relevant for drug absorption upon drug administration. Kinetic solubility is 

the solubility for a specific crystal structure. Processes such as dissolution and 

absorption are relatively quick, thus can be affected by differences in crystal packing 

[75].  
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To understand the factors that influence solubility, it is useful to deconstruct the 

relevant thermodynamic processes – dissolution (Figure 2.6) [75]. Here, it is assumed 

that the true thermodynamic solubility and the kinetic solubility is derived via 

equilibrium with the specific crystalline form studied. Hence, solubility can be related 

to the Gibbs free energy change associated with the dissolution process [77]. The first 

step of the process is the release of the solute molecule from the crystal lattice. The 

associated free energy change can be related to the strength of the intermolecular 

interactions within the crystal. The second step is the creation of a cavity within the 

solvent. The size of the solute molecule affects the free energy change associated with 

this process. The final step is the solvation of the free solute molecule. In reality, the 

dissolution involves formation of molecular clusters that disperse in the solvent [78]. 

However, this falls outside of the scope of the thesis, so the simplified model is used 

hereafter. The process can be split into two factors: (1) molecular and crystal structure-

dependent strength of packing and (2) molecular structure-dependent solvation.  

 

Figure 2.6: Simplified model of dissolution of a crystalline structure. 

A molecule of the solute (gold hexagon) is removed from the crystal lattice (1). 

A void in the solvent (blue circle) is created (2). The solute molecule solvates 

into the void in the solvent (3). Yellow arrows indicate processes where the 

crystal structure of the solute plays an dominant role. [75] 

 

(1) (2)

(3)
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The two factors can be used to construct a grid that indicates the relative importance 

of the molecular and crystal features [71]. The grid is illustrated in Figure 2.7. The 

solubility decreases as molecules move diagonally from quadrant I to IV. In quadrant 

II the solubility is limited by solvation and in quadrant III, molecules exhibit solubility 

limited by crystal packing. Molecules in quadrant IV have poor solvation properties 

as well as strong intermolecular interactions within the crystal structure. The authors 

of the paper claim that many of the literature datasets underrepresent quadrant III, 

while many of the compounds within the Development stage fall here [71]. 

Different strategies for solubility improvement can be adopted based on the limiting 

factor. For crystal packing limited solubility, the intermolecular interactions can be 

weakened by altering the packing arrangement. Different solid form (polymorph, 

solvate, or co-crystal) may be selected to achieve this [75]. For solvation-limited 

compounds, alternative formulation changes can be used to improve solubility [35]. 

Therefore, the ability to predict solid form specific solubility, along with the limiting 

factor is highly desirable. 

Informatics approaches have been shown to be useful tools for solid form selection 

[79]. Such informatics-based methods require large datasets to develop. Solubility is 

recognised as an important property within pharmaceutical product development, so 

 

Figure 2.7: solvation - packing grid. 

The grid is used to identify structures with crystal packing limited and 

solvation limited solubility. [71] 

 

Quadrant IV
Limited by solvation 

and packing

Quadrant III
Limited by packing

Quadrant II
Limited by solvation

Quadrant I
High solubility

Pa
ck

in
g 

en
er

gy

Solvation energy



-28- 

 

curated datasets are available. The Handbook of Aqueous Solubility contains 16,000 

data points for 4000 compounds [80]. However, the dataset comprises very limited 

crystal structure information. Hence, rather than focusing on modelling solid state 

specific solubility, the focus was placed on melting point. This approach does not take 

into account the solvation aspect shown in Figure 2.6. However, there is value in 

developing better understanding of the solid state-limited solubility [71].  Solid state 

specific melting data is available, and the property can be related to the crystal packing 

contributions to solubility [70,71]. 

2.3.3 Melting point 

Melting point is the temperature at which a phase transition between solid state and 

liquid is thermodynamically favourable. It corresponds to the energy required for the 

molecules to break the intermolecular interactions within the crystal structure. The 

melting point can be used as an indicator of the energy required to remove a molecule 

from the crystal lattice (process (1) in Figure 2.6) [75] and the packing energy in 

Figure 2.7 [35,71]. Furthermore, the melting point is used for solubility prediction via 

the General Solubility Equation (GSE) [81].  

Melting point data is widely available. However, similarly to the solubility data, the 

melting points are rarely associated with a specific polymorph. Open Melting Point 

Data resource contains 13,000 curated data points for a diverse range of temperatures 

[82]. The dataset, along with its subsets, has been used to assess the Performance of 

several models [81,83]. A larger, less curated dataset was generated by text mining 

patent literature [83]. The Patent Dataset contains 289,379 datapoints, and it was 

shown that accurate models can be trained on less curated datasets as well. Based on 

the analysis of the datasets, the typical error within literature datasets was estimated 

to be approximately 32 - 35 oC [83,84]. The error is not due to instrument error but 

rather due to impurities and polymorphism, which is not controlled in many cases. 

These datasets do not contain any solid state information.  

In contrast to the limited polymorph specific solubility data in curated datasets, CSD 

contains some polymorph specific melting point data. Approximately 17 % of single 

component structures in the CSD have melting point data reported along with the 

crystal structure. A dataset of 53,756 crystal structure specific melting point was 

extracted from the CSD. The CSD MP dataset is further discussed in Chapter 7. The 
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CSD contains a wide range of structures. To ensure the MP dataset was relevant to the 

pharmaceutics, the drug-likeness was investigated. The strict definition of drug-

likeness is not set; however, it is generally accepted that a molecule is “drug-like” if it 

is similar to available drug molecules [85]. A number of metrics can be used to 

describe “drug-likeliness” such as molecular weight (typically within 300 and 400 

g/mol), rotatable bond count (5 and 6), and other molecular properties [85].  

Approximately 93 % of structures with the CSD MP dataset fall within the drug-like 

melting point range of 50 oC – 250 oC [85] (Figure 2.8). 

 

 

  

 

Figure 2.8: Distribution of melting points of structures with the CSD single 

component melting point dataset.  

The drug-like melting point range (50 oC – 250 oC) is highlighted. Kernel 

Density Estimate (KDE) using gaussian kernel with kde factor of 1 was used 

to construct the plot. 
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2.4 Quantitative Structure Property Relationship (QSPR) 

Quantitative structure property relationship (QSPR) is a paradigm that aims to develop 

accurate empirical models that predict a property based on the structure of the system 

studied (Figure 2.9). A distinction is often made for models of biological activity, 

referred to as Quantitative structure activity relationship (QSAR); however, the two 

are considered to be same and are referred to as QSPR models in this thesis. Structures 

themselves cannot be used to map the relationship to the property of interest, so some 

quantitative description is needed (2.4.1). This description takes the form of a feature 

vector. The variables in this feature vector are typically termed “descriptors” within 

the QSPR community. Features and descriptors are used interchangeably in the thesis. 

The empirical model aims to find a function that accurately maps features onto targets 

( 𝑓: 𝑿 → 𝑌). The principles of how this is accomplished, by training the models, is 

presented in 2.4.2. Section 2.4.3 explains the way in which the Performance of the 

models is measured. The machine learning algorithms used in the thesis are discussed 

in the subsequent sections – Random Forest in 2.4.4, Support Vector Machine in 2.4.5, 

and Neural Networks 2.4.6.  Many models also have hyperparameters which are a set 

of parameters that remain constant during training but affect the Performance. The 

hyperparameters are adjusted by the process of hyperparameter optimisation, which is 

discussed in 2.4.7. An overview of the application of QSPR models is presented in 

2.4.8. 

 

Figure 2.9: Quantitative Structure Property Relationship overview. 
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2.4.1 A quantitative description of the structure 

The decision on the descriptor set used for a QSPR is crucial, as it has an effect on the 

possible performance of the model. The descriptors need to capture relevant and 

generalisable structural characteristics which are relevant to modelling the property of 

interest. In this thesis, the descriptors are divided into two categories: structure 

descriptors and graph embedding. Molecules can be seen as graphs (sets of connected 

nodes – atoms); as such graph embedding techniques can be used to generate a 

descriptor representation of the structure (2.4.1.2). In the thesis, graph embedding 

techniques are defined as techniques that use graph representation of the entire 

structure to produce a fixed-length representation of the given structure. Fingerprint 

methods also use graph representation of structure; however, only a substructure is 

often used to develop several fingerprints followed by one-hot key encoding for the 

presence of a given substructure. One-hot key encoding is a process where a feature is 

constructed for each unique value of interest (in this case one feature is constructed 

for each fingerprint). The value of the generated feature is set to 1 where a given 

sample has that specific unique value and set to 0 otherwise. The fingerprint 

approaches, along with any other method of encoding the structure as a set of 

numerical variables are collectively referred to as a structure descriptor in this thesis 

(2.4.1.1).  

2.4.1.1 Structure descriptors 

For a QSPR model to accurately map the relationship between structure and the 

property of interest, the structure needs to be adequately described. The primary 

objective of a structure descriptor is to capture some information about the structure 

while remaining invariant to artificial differences in the structure representation. This 

means that calculation of a feature should always return the same value for the same 

molecule, irrespective whether the molecule has been rotated or its atoms numbered 

in a different order.   

Historically, simple molecular descriptors such as the number of atoms in a molecule 

were used to find correlations with properties [86–88]. As the computation and 

experimental capabilities increased, so did the number of usable molecular descriptors 

[89]. Thousands of molecular descriptors have been developed that have demonstrated 

a correlation with some property of interest [89–93]. 
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The same principles can be extended to crystal descriptors. As discussed in 2.1.4.2 and 

2.3.2, properties such as solubility are affected by the solid structure. An inability to 

adequately capture the solid state information was given as one of the reasons for the 

difficulty of predicting solubility [94]. Experimental melting point data, lattice energy, 

and 3D molecular descriptors calculated for structures found in the solid state were 

used as crystal descriptors for solubility prediction [70,95].  

Further to these descriptors, fingerprints can also be used for QSPR modelling. 

Typically, fingerprints encode the presence of a specific molecular feature (e.g. 

molecular substructures) [96,97]. The fingerprint approach has been used extensively 

to construct QSPR models for solubility [98] and other properties such as activity 

[99].The presence of these substructures can then be used as a descriptor. The task-

specific descriptors used in the thesis are discussed in the respective chapters (Chapter 

5 and Chapter 7). 

2.4.1.2 Graph embedding 

Many applications within the broader machine learning community require an 

effective representation of graph data [100]. For this reason, a number of graph 

embedding techniques have been developed for different tasks. The definition of a 

graph is presented, followed by graph embedding methods that can be used to generate 

a fixed-length representation of such a graph. 

A graph G is defined by a set of vertices V, and edges E; G = (V, E ). An edge e ∈ 

E is defined by the two vertices it links;  𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) [101]. Only undirected graphs 

are used in this thesis. Undirected graphs are graphs such that 𝑒𝑖𝑗 ≡ 𝑒𝑗𝑖: 𝑒𝑖𝑗 ∈ E. For 

undirected graphs a set of all neighbouring vertices for a given vertex vk is giving by 

𝑁𝐵𝑅(𝑣𝑘) = {𝑣𝑖: (𝑣𝑘, 𝑣𝑖) ∈ E } Equation 2.2 

Additional information concerning vertices and edges properties can be embedded as 

labels lv and le, respectively. Graphs can be further categorised into homogenous – 

graphs such that |𝑙𝑣| = |𝑙𝑒| = 1 for all vertices and edges – and heterogeneous graphs. 

As molecules tend to have more than one vertex label (atom type) and edge label (bond 

type), only heterogeneous graph embedding methods were considered. 
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A comprehensive review of graph embedding techniques can be found elsewhere 

[100]. Here, the focus is placed on Message Passing Neural Network (MPNN) 

framework [102]. The general principles of neural networks are presented in 2.4.6. 

MPNN is a class of neural networks that generate a fixed-length representation by 

consecutively updating the state of each vertex v (ℎ𝑣
(𝑡)

) followed by pooling all the 

states. Each vertex is initialised based on the vertex label (lv), 

ℎ𝑣
(0)

= 𝑓𝑖𝑛𝑖𝑡(𝑙𝑣) Equation 2.3 

The initialisation (𝑓𝑖𝑛𝑖𝑡) can also be random. The message passed to the vertex (𝑚𝑣
(𝑡+1)

) 

is a function of the current state of the vertex (ℎ𝑣
(𝑡)

) and its neighbours using a message 

function (fmessage). 

𝑚𝑣
(𝑡+1)

= ∑ 𝑓𝑚𝑒𝑠𝑠𝑎𝑔𝑒(ℎ𝑣
(𝑡), ℎ𝑤

(𝑡), 𝑙𝑣𝑤

𝑤∈𝑁𝐵𝑅(𝑣)

, 𝑡) Equation 2.4 

The relationship can also be dependent on the timestep t and the edge type that 

connects the vertex with its neighbour (lvw). The message is then used to update the 

state of the vertex using an update function (fupdate), 

ℎ𝑣
(𝑡+1)

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑣
(𝑡),𝑚𝑣

(𝑡+1)
, 𝑡)  Equation 2.5 

At each time step, each vertex receives message only from its neighbours. However, 

as the state of the neighbours is updated based on their neighbours, effectively the 

information concerning each vertex is propagated through the graph. At time step t, 

information from vertex t-connections away reaches its vertex. After T iterations of 

message passing, the fixed-length graph representation is computed based on the state 

of all the vertices. 

𝑝𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡 ({ℎ𝑣
(𝑇)

: 𝑣 ∈ 𝒱}) Equation 2.6 

The difference between the approaches within the MPNN framework comes from the 

functions used (𝑓𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑓𝑢𝑝𝑑𝑎𝑡𝑒, 𝑓𝑟𝑒𝑎𝑑𝑜𝑢𝑡) [97,102–107]. The details of the MPNN 

method used in the thesis to capture molecular and crystal structures are discussed in 

Chapter 7. 
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2.4.2 Principles of machine learning 

For the empirical models to make useful predictions, some parameters need to be 

optimised. In the case of machine learning algorithms, this is referred to as learning or 

training and can be split into three categories: supervised, unsupervised, and 

reinforcement. In case of supervised learning, a dataset that contains pairs of features 

(X) and targets (Y) is fed to the learning algorithm which then aims to find a mapping 

between the two (𝑓: 𝑿 → 𝑌) [108]. Reinforcement learning is a method by which an 

agent (the model) is given a reward for an action based on observations with the aim 

to learn actions that maximises the reward value [109].  Unsupervised learning does 

not require labelled data nor rewards for actions; instead, it draws inferences from the 

datasets such as clustering or dimensionality reduction [110]. Supervised learning is 

used in this thesis. The general learning task is defined below (2.4.2.1), and the key 

factor in determining the usefulness of a model – generalisability is defined in 2.4.2.2.  

2.4.2.1 Definition of the task 

Sets of N instances (examples) of features (𝑋 = {𝒙𝟏, 𝒙𝟐 …𝒙𝑵}) and corresponding 

target values (𝑌 = {𝑦1, 𝑦2 …𝑦𝑁}) are arranged in pairs to form a dataset for supervised 

learning (𝐷 = {(𝑥𝑖, 𝑦𝑖): 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌, 1 ≤ 𝑖 ≤ 𝑁}). The target can be a discrete 

label, a continuous number, or a vector (of labels or continuous values); the type of 

the target is used to categorise empirical models. In the case where the target is a label, 

the task is called classification. In the case of a regression task, the model outputs a 

predicted value(s). The empirical model (ℋθ) is a function constructed from 

parameters (θ) given a set of hyperparameters (λ) using the selected algorithm  𝒜. 

Machine learning models such as Random Forest (RF), Support Vector Machine 

(SVM), Artificial Neural Networks (ANN or NN), k-Nearest Neighbours, and Naïve 

Bayes are commonly used within the field of cheminformatics. In this chapter, the 

emphasis is placed on RF (2.4.4), SVM (2.4.5), and NN (2.4.6) as these are used in 

the thesis (Chapter 5 and Chapter 7). Whilst random forest is typically considered a 

non-parametric model, rather than one which constructs a function based upon a pre-

defined functional form and a fixed set of adjustable parameters, the set of split criteria 

for the trees can be seen as parameters. 

ℋ𝜃 = 𝒜(𝜃; 𝜆) Equation 2.7 
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Hyperparameters are kept constant during training. The performance of many machine 

learning algorithm is greatly affected by the selection of hyperparameter. The details 

of performance measures are presented in 2.4.3 while hyperparameter tuning is 

discussed in 2.4.7. The cost function is used to compute the loss of the model for a 

specific set of parameters. 

𝐶(𝜃; 𝜆) = ℒ(𝑋, 𝑌; ℋ𝜃)  Equation 2.8 

ℒ is the loss function and is selected prior to training. Several loss functions for 

regression and classification tasks are presented in 2.4.3.1 and 2.4.3.2, respectively. 

The value of the cost function may be computed for each iteration of training (per 

batch in case of Neural Networks) or independently for each branch of a Random 

Forest model. The aim of the training is to find a set of parameters (θ*) such that the 

cost function is minimised; 

𝜃∗ = argmin
𝜃

𝐶(𝜃; 𝜆) Equation 2.9 

In case of Random forest, this can be seen as the optimum tree structure for each tree. 

Several strategies for finding the optimum parameters (θ*) exists. Each algorithm 

involves a different approach to finding the optimum set of parameters. The algorithm-

specific considerations are presented in the respective sections below (2.4.4 – 2.4.6).  

Although the optimum set of parameters is based on the training set, it is important to 

note that the aim of any supervised model is to generate useful predictions on unseen 

data. Some considerations on how this can be estimated are discussed below (2.4.2.2). 

2.4.2.2 Generalisation 

The ability of a model to make accurate predictions on unseen data taken from the 

same distribution as the data used for training is referred to as generalisability [108]. 

To get an estimate of model generalisability, the available dataset (D) is commonly 

split into training (Dtr), test (Dte), and potentially validation (Dv) sets as needed. To 

correctly measure generalisability, each dataset should have the same distribution. 

The test set is used as the unseen data at the end of the development process and is 

split from the remaining data first. If only a single model is trained (one algorithm and 

one set of hyperparameters), there is no need to split the remaining data into training 

and validation as all of it can be used for training. However, when a number of models 
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are to be trained, it is beneficial to split the dataset further into training and validation 

sets. This is because a particular set of features or hyperparameters may yield good 

predictions on a particular set of data due to chance. Hence, predictions made on data 

used to select the best model may be optimistically biased [111,112]. Hence, a separate 

validation set should be employed for the model section. The datasets can be split 

before the training commences into a training and validation datasets or cross-

validation procedure can be used [113].  

Once the datasets are prepared, the model development process can be initiated. The 

examples from the training set are used to fit parameters of the model (or construct 

decision trees in case of RF). A solution to the minimisation problem defined in 

Equation 2.9 is approximated using this dataset.  

The validation set is then used to give an estimate of how well the model performs on 

unseen examples. The loss or other performance measure is computed for the 

predictions made by the model on the validation set. If the performance on the 

validation set is significantly worse than on the training set, it is likely that the model 

is overfitted [114].  Overfitting is the result of the model mapping the noise within the 

training set. The performance on the validation set is typically used for selection of 

the best model. 

Although no parameter adjustment is directly performed based on the validation set, 

the model was adjusted (or selected) based on the validation set performance; hence 

the dataset is no longer “unseen”. The test set provides an unbiased evaluation of the 

performance of the model. No adjustments to the model are made after it is run on this 

dataset. The performance represents the ability of the model to predict unseen 

examples. In the section below (2.4.3), methods for assessing the performance of 

empirical models are discussed. 

2.4.3 Performance measures 

Performance measures are required to quantitatively assess the quality of a model. 

This is needed for the training process (Equation 2.8) as well as for the understanding 

of how well the model generalises. To monitor the iterative training process, easily 

computable functions are preferred. These are referred to as loss functions and are 

presented for regression and classification task in 2.4.3.1 and 2.4.3.2, respectively. The 

measure of generalisability of the trained models is calculated on validation or test 
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sets. The loss function used for training the algorithm can be used to assess this; 

however, it is sometimes not easily interpretable and may not fully capture the 

Performance of the model. For this reason, a number of metrics have been developed 

to allow comparison of models. These are also discussed in the respective sections 

(2.4.3.1 and 2.4.3.2). 

 

2.4.3.1 Regression task 

The aim of a regression task is to predict a value for a given feature vector that closely 

corresponds to the actual value. The ‘closeness’ of the prediction can be captured using 

different loss functions. For each of the functions, the predicted value for the ith input 

is defined as, 

𝑦𝑖̂ = ℋ𝜃(𝑥𝑖) Equation 2.10 

and the error is, 

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖̂  Equation 2.11 

 

Figure 2.10: Comparison of absolute and squared errors. 
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L1 and L2 are the two basic loss functions which are used in this thesis. For a dataset 

of n items, L1 function, also known as the mean absolute error (MAE) is defined as, 

𝑀𝐴𝐸 =
∑ |𝑒𝑖|

𝑛
𝑖=1

𝑛
 

Equation 2.12 

The L2 function, mean squared error (MSE), is defined as, 

𝑀𝑆𝐸 =
∑ (𝑒𝑖)

2𝑛
𝑖=1

𝑛
 

Equation 2.13 

The two loss functions are compared in Figure 2.10. The value of squared error 

increases fast as the error increases compared to the absolute error (𝑎𝑠 𝑒 → ∞, 𝑒2 ≫

|𝑒|). As a result, an outlier can have a disproportionally large effect on the MSE. This 

may result in unstable MSE value when working with datasets that have outliers. MAE 

is not affected by the outliers to the same degree. However, the gradient is constant 

and independent of the error value. This may affect the training as the correction made 

to the model is proportional to the magnitude of the loss function. To address the 

shortcomings of the L1 and L2 loss function, other loss functions have been developed 

that attempt to capture advantages of each. Huber loss [115] (smooth mean absolute 

error) and log cosh loss [116] approximate the behaviour of L2 for small e and L1 for 

large e. 

A square root may be taken of MSE to convert it to the same units as the target; this is 

called root mean squared error (RMSE). Comparison between performances on 

different datasets can be made using R2, which is computed by scaling RMSE based 

on the distribution of the target values in the dataset (total sum of squares) [117].  

 

𝑅2 = 1 −
𝑅𝑀𝑆𝐸

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2 
Equation 2.14 

The performance measures defined in this section can be used for training and 

performance comparison of regression tasks. In this thesis, only neural networks were 

used for regression.  
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2.4.3.2 Classification task 

Classification tasks aim to predict a correct label based on a given feature vector. In 

this thesis, only a binary classification (two labels) was performed so this section 

focuses on loss functions that are used for this purpose. Algorithms such as SVM 

classifier calculates the confidence of the model in the particular classification. For 

this reason the model output ℋ𝜃(𝑥) is not restricted to just the class label ({-1,1}). 

The Hinge loss is commonly used for measuring the performance of SVM classifiers 

[118,119].  

𝐿ℎ𝑖𝑛𝑔𝑒(𝑖) = {
1 − 𝑦𝑖ℋ𝜃(𝑥𝑖) 𝑖𝑓 𝑦𝑖ℋ𝜃(𝑥𝑖) < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Equation 2.15 

The multiplication of 𝑦𝑖 and ℋ𝜃(𝑥𝑖) is done to reward predictions where the signs of 

ℋ𝜃(𝑥𝑖) and yi align (correct prediction) and penalise cases where the signs are 

different (misclassification). 

Entropy and Gini index are commonly used measures of impurity of nodes in a 

decision tree [120]. For binary classification, the two measures are defined in Equation 

2.16 and Equation 2.17, respectively, 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − ∑𝑝𝑐 log2 𝑝𝑐

2

𝑐

  
Equation 2.16 

 

𝐺𝑖𝑛𝑖 = 1 − ∑𝑝𝑐
2

2

𝑐=1

 

Equation 2.17 

where pc is the fraction of elements with the label c. This is used in Random Forest 

models to decide the best split (more details in 2.4.4). 

For binary classification, a confusion matrix is a useful tool to analyse the performance 

of the model (Table 2.1). Based on the confusion matrix, several performance 

measures can be defined. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Equation 2.18 
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𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation 2.19 

The same ratios can also be constructed for the negative class. The overall 

performance can be described using accuracy. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 Equation 2.20 

In cases where the number of positives and negatives is not similar, the F-score may 

be used which focuses on how well the positive class is predicted. The F1 score (𝛽 =

1) is the harmonic average of recall and precision. If more emphasis needs to be placed 

on one of the measures, an appropriate 𝛽 may be selected such that 𝛽 ∈ ℝ+ [121]. 

𝐹𝛽 = (1 + 𝛽2)
1

𝛽2 1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 
Equation 2.21 

 

2.4.4 Random Forest (RF) 

2.4.4.1 Algorithm description 

Random Forest (RF) is a machine learning algorithm constructed from an ensemble 

of decision trees [122]. Each decision trees makes an independent prediction based on 

the input feature vector (x). The predictions made by the decision trees are pooled 

together to generate a single prediction. In the original publication of the algorithm, 

this was achieved by a majority vote where each decision tree has a single vote [122]. 

In the implementation used in the thesis, the probabilities for each label are summed 

across the entire forest and the label with the highest total value is taken as the 

Table 2.1: Confusion matrix 

 
Predicted 

Negative Positive 

Actual 

Negative True negative (TN) False positive (FP) 

Positive False negative (FN) True Positive (TP) 
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prediction of the RF model [123]. In summary, the prediction is made using a pooling 

function on M decision trees (ℎ𝑖(𝒙)); 

𝑦̂ = 𝑓𝑝𝑜𝑜𝑙({ℎ1(𝒙), ℎ2(𝒙), … , ℎ𝑀(𝒙)}) Equation 2.22 

 

2.4.4.2 Training methodology 

For each tree, a subset of the training dataset is selected randomly and independently, 

typically using the bootstrap method. In the case of the bootstrap method, a predefined 

number of samples (n) is selected from the dataset with replacement. At each node of 

each tree, a subset of features is selected based on which the node is split. All possible 

split points are considered, and for each, the impurity of the split is computed 

according to Gini (Equation 2.16) or entropy (Equation 2.15) impurity measures[124]. 

The best split point is selected, based on the largest reduction in impurity compared to 

the parent node. The process is repeated for each of the two child nodes. The process 

terminates when: (1) the child nodes are pure (i.e. the node only contains samples of 

a single class), (2) the number of elements in the node is smaller than a predefined 

number, or (3) the maximum depth of the tree is reached. Once the set number of trees 

are trained, the training of the random forest model is complete. 

2.4.5 Support Vector Machine (SVM) 

2.4.5.1 Algorithm description 

In this thesis, Support Vectors Machines (SVM) are used for a classification task 

(Chapter 5). An SVM classifier constructs a hyperplane (decision boundary) to divide 

a multidimensional feature space, into two classes (above and below) [53,119,125]. 

The dimensionality of the feature space corresponds to the number of features with 

potentially additional dimensions due to the transformation of the features (kernel 

trick). The decision boundary is defined by the weight vector (w) and the bias term b. 

𝒘 𝒙 + 𝑏 = 0 Equation 2.23 

Figure 2.11 (A and B) illustrates how a decision boundary can be used to linearly 

separate examples. Margins (dotted lines in the figure) are parallel to the decision 
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boundary, constructed using data points closest to the boundary (the support vectors), 

indicate how well the classes are divided.  

However, not all data is linearly separable. In such cases, the data can be transformed 

into a linearly separable form. This is illustrated in Figure 2.11C for 1-dimensional 

feature space. By adding another dimension, where𝜑(𝑥(1)) = sin (𝑥(1)), the two 

classes can be easily separated by a linear decision boundary (Figure 2.11D).  

The prediction is made using the transformed feature vector and the decision boundary 

(Equation 2.23), 

𝑦̂ = 𝒘 𝜑(𝒙) + 𝑏 Equation 2.24 

A label is assigned based on whether the output of the function is positive or negative. 

In Equation 2.24, only the dot product of the transformed feature vector and the weight 

vector needs to be computed [119]. The mapping transformation from the original 

 

Figure 2.11: support vector machine classification 

A possible decision boundary for separating the two classes (A). Another 

decision boundary that increases the separation between the two classes (B). 

Kernel trick can be used to transform a linearly inseparable points (C). In the 

example in the figure, passing the x1 feature through a sine function 

transforms the data into linearly separable distribution (D). 
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features and the transformed feature vector does not need to be known. Rather, the dot 

product can be computed using a kernel function requiring vectors in the original 

descriptor space as input. This is referred to as the kernel trick. 

 

2.4.5.2 Training methodology 

In this thesis, SVM is only used as a binary classifier, so only the training procedure 

for binary classification is presented. Training of an SVM consists of finding a 

decision boundary (hyperplane) that separates the two classes (positive and negative 

represented by 1 and -1 respectively). The feature vectors (of size d) can be projected 

onto d-dimensional space where the (d-1)-dimensional decision boundary can be 

defined. This is illustrated for a feature vector of length of 2 in Figure 2.12 (the three 

points that lie on the dotted lines are the support vectors). The aim of training is 

twofold: 

1) Minimise the amount of misclassifications – performance  

2) Maximise the margins that separate the two classes – avoid overfitting 

The cost function (Equation 2.9) of SVM can be written as the following. 

𝐶(𝒘, 𝑏) = 𝐶𝑚𝑎𝑟𝑔𝑖𝑛(𝒘, 𝑏) + 𝐾 𝐶𝑐𝑙𝑎𝑠𝑠(𝒘, 𝑏) Equation 2.25 

K is a hyperparameter responsible for determining the relative importance of 

minimisation of misclassification and maximisation of the margins. It is usually 

denoted as C, however to avoid confusion with the cost function, K is used here. Hinge 

loss (Equation 2.15) is commonly used for Cclass [126].  

The aim 2 (maximisation of margin) can be expressed as the following equation. 

𝑤 = argmax
𝑤

(min
𝑖

𝛾𝑖) Equation 2.26 

where 𝛾𝑖 corresponds to the margin in the ith dimension. The two lines that define the 

margin (dotted lines in Figure 2.12) can be defined as follows. 

𝒘 𝒙 + 𝑏 = 1 Equation 2.27 

𝒘 𝒙 + 𝑏 = −1 Equation 2.28 
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Let x1 and x2 denote two points that lie on the two margin lines. The following 

relationship can be constructed. 

𝒙𝟏 = 𝒙𝟐 + 2𝛾 (
𝒘

|𝒘|
) 

Equation 2.29 

Using Equation 2.27, Equation 2.28, and Equation 2.29, an expression for the width 

of the margin (𝛾) can be derived. 

𝒙𝟏 = 𝒙𝟐 + 2𝛾 (
𝒘

|𝒘|
) 

𝒘 (𝒙𝟐 + 2𝛾 (
𝒘

|𝒘|
)) + 𝑏 = 1 

(𝒘 𝒙𝟐 + 𝑏) +  2𝛾 𝒘 (
𝒘

|𝒘|
) = 1 

2𝛾 𝒘 (
𝒘

|𝒘|
) = 2 

𝛾 =  
|𝒘|

𝒘𝒘
 

𝛾 =
1

|𝒘|
 

Equation 2.30 

Therefore, the margins can be maximised by minimising|𝒘|, or more conveniently, 

by minimising 
1

2
|𝒘|2. The cost function component associated with the aim 2 of SVM 

training (Cmargin) can be calculated by 

𝐶𝑚𝑎𝑟𝑔𝑖𝑛(𝒘) =
1

2
|𝒘|2 

Equation 2.31 

The full cost function (Equation 2.25) can thus be expressed by substituting the 

respective cost function components (Equation 2.15 and Equation 2.31) as follows 

𝐶(𝒘, 𝑏) =
1

2
|𝒘|2 + 𝐾 ∑(1 − 𝑦𝑖𝑓(𝒙𝒊))+

𝑖=1

  
Equation 2.32 

Gradient-based optimisation (see 2.4.6.2) can be used to optimise w, b for the given 

set of hyperparameters. 
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2.4.6 Neural Networks (NN) 

2.4.6.1 Algorithm description 

First proposed in 1943, artificial neural networks are a type of function approximators 

that are inspired by the nervous activity of animal brains [127]. The term Neural 

Networks (NN) and Artificial Neural Networks are used interchangeably. Similarly to 

their biological counterparts, artificial neural networks are composed of neurons. The 

basic functionality of a neuron is expressed mathematically in Equation 2.33 and 

graphically in Figure 2.13 . 

𝑎 = 𝑓(𝒘𝒑 + 𝑏) Equation 2.33 

 

Figure 2.12: Training support vector classification. 

The decision boundary (black) and margins (black dotted) separate two 

classes (gold – positive, dark blue – negative). Point A and M used for 

calculation of confidence of prediction (blue). Point 1 and 2 used for margin 

maximisation (grey). Handling of misclassification illustrated using e 

(orange). 
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The input vector (p) is usually either the input to the whole network (x) or the output 

of the previous layer (ak-1). It is multiplied by the weight vector (w) where each 

element (wi) represents the sensitivity of the neuron to the respective input (pi). A bias 

term (b) is usually added to allow 0 values in p to have an influence on the neuron. 

The resulting scalar is then passed through an activation function which enables the 

output (a) to have a non-linear relation to the input.  

In principle, any differentiable function can be used as the activation function. Table 

2.2 summarises the activation functions used in this thesis, along with some other 

commonly used functions. Rectified Linear function (ReLu) is the most commonly 

used activation function in deep neural networks due to its computational efficiency 

and reduced chance of encountering the vanishing gradient problem in multi-layered 

neural networks [128]. 

 

 

Figure 2.13: Simple neuron design. 

Vector input (p), is multiplied by a weight vector (w), a bias term (b) is added, 

and the result is passed through an activation function (𝑓) which results in a 

scalar output (a). 
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The neurons form the basic unit of neural networks. More sophisticated units can be 

developed and arranged in a specific manner to suit a specific task (such as Long Short 

Term Memory [129]). The neurons are usually arranged in layers, where each may 

contain one or more neurons. Three main classes of the arrangement are shown in 

Figure 2.14: fully connected, convolutional, and recursive [130].  

In a fully connected layer (Figure 2.14 top left), each neuron is fed all the available 

inputs (either model inputs or outputs of the previous layer). Each of the neurons has 

a different weight vector (wj), and so the weights of a fully connected layer can be 

expressed as a single weight matrix (Wk). For a layer k, containing S neurons, the 

weight matrix can be expressed as shown in Equation 2.34.  

Table 2.2: Activation functions commonly used in neural networks [130] 

 

Name Function Visualisation

Sigmoid

Tanh

ReLU
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𝑾𝒌 = 

[
 
 
 
 
𝒘𝟏𝒌

⋮
𝒘𝒋𝒌

⋮
𝒘𝑺𝒌]

 
 
 
 

 Equation 2.34 

This type of layer is the most common in neural networks and its main advantage is 

that it utilises all available inputs.  

A convolutional layer (Figure 2.14 top right) consists of neurons that have a restricted 

receptive field (i.e. can only “see” a subset of all inputs). Inputs within the receptive 

field are fed into the neuron to compute a single value output. The receptive field is 

then shifted by a predetermined amount (movement in Figure 2.14 to the right), and 

the action is repeated. In case part of the receptive field falls outside of the input vector, 

padding with zeroes is sometimes used to ensure the dimensionality of the instance 

 

Figure 2.14: Examples of fully connected, convolutional, and recursive layers 

of neural networks, along with a schematics of a simple recursive neuron. 

Weights of each neuron are different and are connected to every input in case 

of a fully connected layer (top left). In a convolutional layer, a neuron with 

same weights is applied to a subset of the input (top right). All of the inputs 

and the previous hidden state (h) are fed into a recursive neuron (bottom left). 

A simple recursive neuron design (bottom right). 
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input is consistent. This type of layer is used to reduce the number of connections 

within a network. It is also used to capture information where there is value in the 

segment of the input regardless of where it appears, such as a curved line when 

attempting to classify hand-written digits [131]. Convolutional layers are not used in 

this thesis. A more detailed explanation of this type of layer can be found elsewhere 

[128,130].  

In the case of a recursive layer (Figure 2.14 bottom left), the neuron is connected to 

the input, but also to itself. For this reason, the basic neuron introduced in the Figure 

2.13 needs to be modified to handle two inputs (Figure 2.14 bottom right). The state 

that is passed from the neuron to itself is referred to as the hidden state (ht). The 

dimensions of h, p, and a are the same to ensure that the neuron can be applied 

recursively. The equation describing the operation of a simple recursive neuron is 

shown in Equation 2.35 [130]. 

𝒂 = 𝑓(𝑾𝒉𝒉 + 𝑾𝒑 𝒑) Equation 2.35 

The first time a recursive neuron is applied, an initial hidden state (h0) needs to be 

given. The order in which the input vectors (p) are fed is dependent on the structure 

of the data.  In a special case where the inputs are fed sequentially, the layer is referred 

to as recurrent.  

The activation function used in these layers may be different for each neuron. 

However, it is common to see the same activation function being used for all neurons 

of layers of a particular type. Different types of layers are sometimes combined within 

the same neural network. The output of one layer becomes the input of the following 

layer; hence the neural network can be expressed as a composite function of functions 

for each layer 

𝒚 = (𝑓𝐿(𝑁) ∘ 𝑓𝐿(𝑁−1) ∘ … ∘ 𝑓𝐿(1))(𝒙) Equation 2.36 

where 𝑓𝐿(𝑖)  is the function of the ith layer of the network and contains the required 

weight multiplication and activation as exemplified in Equation 2.33 and Equation 

2.35. Neural Network design is a substantial field, so only the architectures relevant 

to the thesis are discussed further in Chapter 7. The work in the chapter utilises a 
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recurrent layer for graph embedding (as introduced in 2.4.1.2) and fully connected 

layers for predictions.  

2.4.6.2 Training methodology 

Neural Network design often results in models with many parameters (θ) that require 

tuning for the model to make meaningful predictions. The training of a Neural 

Network is usually carried out by iteratively updating the parameters based on the 

gradients of the loss (∇𝐶) until the predefined convergence criteria is met. This 

approach is commonly referred to as gradient descent. However, in this thesis, the term 

gradient descent is used exclusively for the simplest form of the algorithm 

(computation of the full gradient and update with constant learning rate; explained in 

more details below) while the whole family of algorithms are referred to as gradient-

based optimisation (GBO) algorithms [132]. The algorithm A.1 describes the basic 

components of GBO algorithms. The initial set of parameters 𝜃0 is determined by an 

initiation function (𝑓𝑖𝑛𝑖𝑡) and the hyperparameters of the model (𝜆𝑖𝑛𝑖𝑡). Some initiation 

strategies are discussed below. The training is initiated with the L being set to arbitrary, 

large number. Predictions are made using the initial set of parameters and the 

respective loss is calculated using the cost function C. Although loss is a function of 

𝜃 parameterised by the hyperparameters 𝜆 (as defined in Equation 2.9), for the sake of 

clarity, 𝜆 is omitted in the description as these remain constant for the duration of 

training. The differences in algorithms within the GBO family arises from the 

differences in implementation of gradient computation (𝑓𝑔𝑟𝑎𝑑(𝐿, 𝜃𝑡)) and the 

parameter update strategy (𝑓𝑢𝑝𝑑𝑎𝑡𝑒(𝜃𝑡  , ∇𝐶)). The process is repeated until the 

convergence criteria (𝑓𝑐𝑜𝑛𝑣) is met.  
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Algorithm A.1: Gradient-based optimisation  

𝜃0  ← 𝑓𝑖𝑛𝑖𝑡(𝜆𝑖𝑛𝑖𝑡) 

𝑡 ←  0 

𝐿𝑜𝑠𝑠 ←  +∞ 

while 𝑓𝑐𝑜𝑛𝑣(𝐶, 𝑡)  =  𝐹𝑎𝑙𝑠𝑒 do 

        𝐿 ← 𝐶(𝜃𝑡) 

        ∇𝐶 ← 𝑓𝑔𝑟𝑎𝑑(𝐿, 𝜃𝑡)  

        𝜃 ← 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(𝜃𝑡 , ∇𝐶) 

       𝑡 ← 𝑡 + 1 

 

For many neural networks, the initial parameters (weights and biases) have an effect 

on how well the network can be trained [133–135]. One generic weight initialisation 

technique is to generate a random weight matrix that is orthogonal (i.e. 𝑾𝑇 = 𝑾−1) 

[136]. A number of initialisation strategies were developed according to the design of 

the network; particularly based on the activation functions used. The weights are 

randomly selected from a truncated normal distribution with a mean of 0 and variance 

according to, 

𝜎2 =
𝑚

𝑛𝑖𝑛 + 𝑘 𝑛𝑜𝑢𝑡
 Equation 2.37 

where nin and nout are the sizes of the input and output vectors to the layer, m is 1 or 2, 

and k is 0 or 1 depending on the initiation strategy. The values of m and k for different 

Table 2.3: coefficients to various initialisation strategies. 

Name m k 

Lecun [134] 1 0 

He [264] 2 0 

Glorot[133] 2 1 
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initialisation techniques are presented in Table 2.3. A robust comparison of the 

initialisation techniques can be found elsewhere [135]. 

The GBO methods require partial derivatives of the loss with respect to each 

parameter. For a model with M parameters, the gradients are defined as 

 

∇𝐶 =  

[
 
 
 
 
 
 
 
 
𝜕𝐶

𝜕𝜃1

⋮
𝜕𝐶

𝜕𝜃𝑖

⋮
𝜕𝐶

𝜕𝜃𝑀]
 
 
 
 
 
 
 
 

 Equation 2.38 

Neural networks are differentiable composite functions as defined in Equation 2.36. 

Therefore, the partial derivatives with respect to each parameter can be computed 

using the chain rule. This is computationally expensive and gives rise to several key 

issues which are explored below. 

Firstly, all loss functions defined in 2.4.3 involve summation of individual loss over 

the entire dataset. This is often computationally expensive so the loss may be 

computed for a subset of the dataset (single data point or multiple data points). 

Although this is only an approximation of the true gradient, the reduction in the 

computational cost is large enough to warrant the use of this method [132,137,138]. 

As the subsets are often selected at random, the method is referred to as Stochastic 

Gradient Descent (SGD).  

Another issue arises if the Neural Network has many layers or a recursive layer. In a 

recursive network, the input at timestep t depends on outputs for all previous timesteps 

(0, 1, …, t-1). When t is a large number, the differential becomes long, potentially 

resulting in the “vanishing gradient” problem [139]. However, no more than four 

timesteps of a recursive layer were used in this thesis (Chapter 7), so no measure to 

counter this was necessary.  

The computed gradients are then used to update each of the parameters of the model. 

The basic equation for this is given below, where 𝜽(𝑡+1) are the updated parameters 

and 𝜂 is the learning rate. 
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𝜽(𝑡+1) = 𝜽(𝑡) − 𝜂∇C Equation 2.39 

The learning rate controls how much the weights are modified by and is predetermined 

in case of GD and SGD. However, selection of the appropriate learning rate is often 

challenging; too small and the optimisation will take a long time, too large and the 

optimisation will not find a stable minima [132]. In theory, an adjustable learning rate 

that decreases as it approaches minima would address this issue. Several methods that 

attempt to achieve this have been developed such as Adagrad [140]  and Adam [137]. 

Adam (Adaptive Moment Estimation) optimiser is de facto the standard optimisation 

procedure in Neural Network training [132]. It provided adequate convergence 

performance in Chapter 7 so no alternatives were used.  

Adam uses two variables (𝒎𝒕, 𝒗𝒕), parameterised by 𝛽1, 𝛽2 ∈ [0,1) to update model 

parameters (𝜽) [137]. The two variables are decaying averages of gradients and 

squared gradients, defined as 

𝒎𝒕 = 𝛽1𝒎𝒕−𝟏 + (1 − 𝛽1)𝛁𝐂𝐭 Equation 2.40 

 

 

𝒗𝒕 = 𝛽2𝒗𝒕−𝟏 + (1 − 𝛽2)𝛁𝐂𝐭
2 Equation 2.41 

The terms (𝒗𝒕,𝒎𝒕) are biased towards the initiation values (𝒗𝟎,𝒎𝟎), usually set to 0. 

A bias-correction is applied before the weights are updated. 

𝒎𝒕
′ =

𝒎𝒕

1 − 𝛽1
𝑡 

Equation 2.42 

𝒗𝒕
′ =

𝒗𝒕

1 − 𝛽2
𝑡 

Equation 2.43 

Finally, the model parameters are updated according to the following equation. 

𝜽(𝑡+1) = 𝜽(𝑡) −
𝜂

√𝒗′
𝒕 + 𝜖

𝒎𝒕
′  

The 𝜖 term is a small number to ensure that the denominator is not zero (usually of the 

order of 10-8). Multiplication between vectors in this equation is done element-wise 
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where each element corresponds to a parameter of the model [137]. The training 

procedure is continued until the convergence criteria is met which is chosen before the 

training is initiated. This is usually defined as a number of consecutive iterations with 

loss function reduction below a specified amount. In the thesis, this is specified when 

training procedure is discussed (Chapter 7). The three methods introduced in this 

section are summarised in Table 2.4.  

 

 

 

  
Table 2.4: Comparison of the three learning algorithms. 

 GD SGD Adam 

Gradient 

computation 
Full gradient subset Subset 

Algorithm 

hyperparameters 
𝜂 𝜂 

𝜂 

𝛽1, 𝛽2 

𝜖 

Model 

parameter 

update 

𝜽(𝑡+1)

= 𝜽(𝑡) − 𝜂𝛁𝐂 

𝜽(𝑡+1)

= 𝜽(𝑡) − 𝜂𝛁𝐂𝒔𝒖𝒃𝒔𝒆𝒕 

𝜽(𝑡+1)

= 𝜽(𝑡) −
𝜂

√𝒗′
𝒕 + 𝜖

𝒎𝒕
′ 

comment 

Slow 

computation of 

full gradient 

Learning rate 

unadjustable 

Adjusted update 

rate per parameter 

 



-55- 

 

 

2.4.7 Hyperparameter optimisation 

Most machine learning algorithms require some hyperparameters that can greatly 

affect the performance of the model [141]. The purpose of the hyperparameters is to 

control the balance between under- and over-fitting [141]. The principles of 

hyperparameter optimisation are similar to the training procedure discussed in the 

training sections of each introduced algorithm. ℋ𝜆
∗ denotes an empirical model based 

on a learning algorithm 𝒜, optimised with respect to its parameters on a training set 

𝐷𝑡𝑟 with a given set of hyperparameters 𝜆.  

ℋ𝜆
∗ = 𝒜(𝐷𝑡𝑟;  𝜆) Equation 2.44 

The cost function with respect to the hyperparameter set (λ) can be expressed similarly 

to Equation 2.8; 

𝐶(𝜆) = ℒ(𝐷𝑣;  ℋ𝜆
∗) Equation 2.45 

The same loss function ℒ can be used as with training. Alternatively, any quantitative 

performance measure (2.4.3) can also be used. In cases such as with Gaussian Process 

Regression, hyperparameter inference can be accomplished during training [142]. 

However, such algorithms were not used in the thesis, thus fall out of scope. The 

hyperparameter optimisation task can thus be expressed in an analogous way to the 

training task[141]; 

𝜆∗ = argmin
𝜆

ℒ( 𝐷𝒗, 𝒜(𝐷𝑡𝑟 , 𝜆))   Equation 2.46 

A key difference between hyperparameter tuning (Equation 2.46) and training 

(Equation 2.8) is the computation cost. 𝒜(𝐷𝑡𝑟 , 𝜆) is an optimisation problem in itself 

and can be expensive to compute [141]. Furthermore, many of the models have 

complex, conditional hyperparameter search spaces [141]. This is particularly true in 

the case of Neural Networks where the number of neurons in a layer as well as the 

number of layers may be hyperparameters [143]. Gradients are usually not available 

for hyperparameter optimisation so the GBO methods discussed in 2.4.6.2 are not 

suitable.  
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The most basic approach is to tune the hyperparameters manually, using rule of thumb 

and experience. However, this can be tedious and is often outperformed by the 

methods presented below [113,141]. These methods can be divided into informed and 

uninformed approaches. In the thesis, uninformed methods are defined as an approach 

where the choice of subsequent hyperparameters is not affected by the previous step. 

Grid search and random search falls into this category and are elaborated upon in 

2.4.7.1. On the other hand, in informed methods the set of hyperparameters proposed 

at each iteration is based on the previous steps. This is a hot topic in machine learning 

research and several methods have been developed; these are presented in 2.4.7.2. An 

informed method used in Chapter 7, Sequential model-based optimisation (SMBO), is 

explained in more details in 2.4.7.3. 

2.4.7.1 Uninformed methods 

To perform a grid search, a search space of hyperparameters consisting of discrete 

values is constructed. A combination of the hyperparameters is used for training of the 

model and its performance on the validation set is recorded. The process is repeated 

for all combinations of the hyperparameters and the combination that yields a model 

with the best performance is selected. This brute force approach is easy to set up and 

can be easily parallelised for reduced computation time [113]. 

However, the grid search does not provide even coverage of the entire search space as 

it focuses on the selected discrete values (Figure 2.15). For this reason, and particularly 

for high dimension search space, a random search often outperforms grid search [113]. 

In the case of random search, upper and lower boundaries for each hyperparameter are 

defined. The algorithm randomly samples the search space for a predefined number of 

iterations. The best performing hyperparameter combination is then selected. By not 

being limited by a defined grid, the algorithm is able to sample more varied values for 

each of the hyperparameters (Figure 2.15). The random search is often sufficient when 

hyperparameter optimising on relatively simple search spaces. The method is often 

used as a benchmark for assessment of the performance of the informed methods of 

hyperparameter optimisation [113]. 



-57- 

 

2.4.7.2 Informed approaches 

The high computation cost of each iteration of the hyperparameter optimisation makes 

methods that can reduce the number of required steps highly desirable. The 

computational cost of selecting a new set of hyperparameters to try is negligible 

compared to the cost of the evaluation. As a result, a number of algorithms that attempt 

to find the global minimum of the hyperparameter search space were developed. 

Evolutionary algorithms are based on minor random mutations at each iteration from 

the best performing set of models from the previous iteration [143].  Particle swarm 

uses a set of “particles” (set of models trained with a set of hyperparameters) that 

traverse the search space [144]. The movement of each of these particles is determined 

by the location of its current best performing set of hyperparameters and that of the 

entire swarm as well as a random component. Bayesian optimisation constructs a 

surrogate function that predicts the performance of the trained model for a given set 

of hyperparameters  [145]. The subsequent combination is selected based on the 

 

Figure 2.15: Sampling of a search space using Grid search and Random 

search. 

In case of the grid method, the preselected values of each variable are 

sampled. The 36 samples only cover ten distinct values (0.0, 0.2,…1) of each 

variable. The same number of samples using the random search method cover 

36 distinct values of each. 
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balance of exploration and exploitation. An exploration step is taken to improve the 

accuracy of the surrogate function while exploitation attempts to find the minima 

based on the current surrogate function. Algorithms that create a surrogate function 

that is sequentially updated are collectively termed Sequential Model Based 

Optimisation (SMBO) algorithms. 

2.4.7.3 Sequential model-based optimisation (SMBO) 

SMBO algorithms were originally developed for experiment design and oil 

exploration work. In both of these applications, the computation of the performance 

(i.e. yield of a reaction by doing the experiment or test drilling to measure the amount 

of oil in an area) is significant; hence the algorithm attempts to minimise the number 

of steps required to reach the optimum value [146]. The applicability of these methods 

to hyperparameter optimisation is evident based on the similarity of the challenges of 

the tasks. Four elements need to be defined for the SMBO algorithms: hyperparameter 

search space, objective function (Equation 2.45), surrogate model, and acquisition 

function (Figure 2.16).  

The definition of the hyperparameter search space is performed similarly to the other 

methods introduced. Unlike the grid search method, each variable can be defined using 

a truncated distribution function (Gaussian, uniform).  Conditional variables can also 

be supported by SMBO algorithms [141,146]. Conditional variables refer to variables 

that only exist when a specific condition is met; for example, the number of neurons 

in the second layer of a Neural Network is only a valid hyperparameter when the 

number of layers (another hyperparameter) is two or higher. 

The acquisition function is used to determine the following hyperparameter 

combination to test which reflects the relative importance of exploration and 

exploitation. The hyperparameters are chosen at random based on a distribution 

defined by the acquisition function. The general form of the acquisition function can 

be defined as, 

 

𝑓𝑎𝑐𝑞(𝜆; 𝐶∗) = ∫ 𝑢(𝜆; 𝐶∗) 𝑝𝑀(𝐶|𝜆) 𝑑𝐶
∞

−∞

 
Equation 2.47 
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where C denotes the cost function for the set of hyperparameters 𝜆 as defined in 

Equation 2.45, and 𝐶∗ denotes the baseline value of the cost function [147]. The 

baseline value 𝐶∗ can be the lowest observed value so far or some other defined value. 

The 𝑢(𝜆; 𝐶∗) is a utility function and the 𝑝𝑀(𝐶|𝜆) corresponds to the probability of 

obtaining performance C given set of hyperparameters 𝜆 based on the surrogate model 

M. Probability of improvement (PI)[148] is one of the possible acquisition functions 

that can be used and the corresponding utility function is defined as 

𝑢(𝜆) = {
0 𝐶(𝜆) > 𝐶∗

1 𝐶(𝜆) ≤ 𝐶∗ Equation 2.48 

Expected improvement (EI)[148] is another acquisition function for which the utility 

function is defined as follows. 

𝑢(𝜆) = {
0 𝐶(𝜆) > 𝐶∗

𝐶∗ − 𝐶(𝜆) 𝐶(𝜆) ≤ 𝐶∗ Equation 2.49 

The main difference between the two utility functions is the value of reward for finding 

a value below the benchmark value (C*). In the case of PI, the same reward is given 

regardless of the size of improvement, which may lead to overexploitation of a local 

minima found [148]. The reward for EI is scaled based on the size of improvement. EI 

is used in this thesis (Chapter 7) for which the acquisition function can be written as 

follows (substitution of Equation 2.49 into Equation 2.47). 

𝐸𝐼(𝜆; 𝐶∗) = ∫ (𝐶∗ − 𝐶)𝑝𝑀(𝐶|𝜆) 𝑑𝐶
𝐶∗

−∞

 
Equation 2.50 

Other acquisition functions such as entropy-based functions have also been developed 

[149]. 

The difference in SMBO algorithms arises from the different approaches to 

constructing the surrogate model (Figure 2.16). Sequential Model-based Algorithm 

Configuration (SMAC) uses a random forest for the construction of the surrogate 

function [150]. The Hierarchical Gaussian Process (HGP) approach uses Gaussian 

Processes which are updated at each iteration [147]. The method used in this thesis 

(Chapter 7) is the Tree-structured Parzen Estimator (TPE) approach, details of which 

are presented below. A comparison of SMAC and TPE can be found here [151], while 

comparison between HGP and TPE is presented here [147].  
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HGP and other Gaussian Process-based approaches model 𝑝𝑀(𝐶|𝜆) directly, but the 

TPE method instead models 𝑝𝑀(𝜆|𝐶) via two kernel density estimates (KDE) as 

follows. The term pM is abbreviated to p hereafter for clarity. 

𝑝(𝜆|𝐶) = {
ℓ(𝜆) 𝐶(𝜆) < 𝐶∗

ℊ(𝜆) 𝐶(𝜆) ≥ 𝐶∗ 
Equation 2.51 

The two KDE functions are constructed from the predefined hyperparameter 

distributions and the previous observations of pairs of 𝜆 and 𝐶(𝜆) [147]. A quantile γ 

can be defined that corresponds to the probability of 𝐶(𝜆) < 𝐶∗. 

𝛾 = 𝑝(𝐶 < 𝐶∗) Equation 2.52 

For TPE, Bayes’ Theorem is used to modify Equation 2.50 to give  

𝐸𝐼(𝜆; 𝐶∗) = ∫ (𝐶∗ − 𝐶)
𝑝(𝜆|𝐶)𝑝(𝐶)

𝑝(𝜆)
 𝑑𝐶

𝐶∗

−∞

 

= 
∫ (𝐶∗ − 𝐶)𝑝(𝜆|𝐶)𝑝(𝐶) 𝑑𝐶

𝐶∗

−∞

𝑝(𝜆)
 

Equation 2.53 

The denominator of Equation 2.53 can be expressed using the Law of Total 

Probability, Equation 2.51, and Equation 2.52 as follows. 

𝑝(𝜆) = ∫ 𝑝(𝜆|𝐶)𝑝(𝐶)𝑑𝐶
∞

−∞

= 

= ∫ 𝑝(𝜆|𝐶)𝑝(𝐶)𝑑𝐶 +
𝐶∗

−∞

∫ 𝑝(𝜆|𝐶)𝑝(𝐶)𝑑𝐶
∞

𝐶∗

 

= 𝛾ℓ(𝜆) + (1 − 𝛾)ℊ(𝜆) Equation 2.54 

The integral in the nominator of Equation 2.53 is within the range where 𝑝(𝜆|𝐶) =

ℓ(𝜆), hence it can be written as 

∫ (𝐶∗ − 𝐶)𝑝(𝜆|𝐶)𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

= 

= 𝐶∗ℓ(𝜆)∫ 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

− ℓ(𝜆)∫ 𝐶 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

  

= 𝐶∗ℓ(𝜆)𝛾 − ℓ(𝜆)∫ 𝐶 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

 
Equation 2.55 
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Substituting Equation 2.54 and Equation 2.55 back into Equation 2.53 and rearranging 

to aggregate the terms affected by 𝜆, the following equation is obtained [147] 

𝐸𝐼(𝜆; 𝐶∗) = (𝛾 + (1 − 𝛾)
ℊ(𝜆)

ℓ(𝜆)
)

−1

(𝐶∗𝛾 − ∫ 𝐶 𝑝(𝐶) 𝑑𝐶
𝐶∗

−∞

) Equation 2.56 

As can be seen from Equation 2.56, the EI can be maximised by minimising the ratio 

ℊ(𝜆) ℓ(𝜆)⁄ . In essence, this is achieved by probing areas with high probability of 

achieving a score above the target (high ℓ(𝜆)), and low probability of scores below 

the target (low ℊ(𝜆)). In a typical implementation of the algorithm, a number of 

samples are drawn from ℓ(𝜆) and each of the candidate hyperparameter combinations 

are evaluated by the ratio ℊ(𝜆) ℓ(𝜆)⁄ . The 𝜆 with the highest EI is then selected to 

obtain 𝐶(𝜆) according to Equation 2.45. The surrogate model is updated based on the 

new 𝜆, 𝐶(𝜆) pair and the process is repeated [147]. 

 

Figure 2.16: Overview of SMBO algorithms. 

Several surrogate models such as Gaussian Process (GP), Tree-structured 

Parzen Estimator (TPE), and Random Forest (RF) are available. Expected 

Improvement (EI), Probability of Improvement (PI), and Entropy (Ent) are 

some of the possible acquisition functions. TPE and EI was used in the thesis. 

 

Hyperparameter
search space

Objective function

TPEGP RF

EI PI Ent

Surrogate model

Acquisition function
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2.4.8 Application of QSPR 

QSPR methods are often used in situations where a theoretical chemistry approach is 

not suitable. Historically, such empirical models tended to be simple with very limited 

scope of applicability such as only hydrocarbons [152]. As the amount of data and 

modelling algorithms improve, more complicated relationships with ‘global’ 

applicability domain were mapped [53]. Although empirical models aim to be 

generalisable, the models cannot be expected to reliably extrapolate to instances which 

are not represented in the training data. Exact definition and estimation of the 

applicability domain remains an active area of research [153,154]. 

One of the earliest works of QSPR can be traced back to the mid-19th century with 

work by Hermann Kopp on the relationship between the molecule size and boiling 

point of alkanes [86,155]. Over the following decades, attempts were made to find 

relationships between descriptors of the molecular structure and other physical 

properties. In the 1930s, a melting point prediction model was published that used 

number of atoms and the density of the compound as descriptors [87]. Development 

of early descriptors can also be traced to this time period [156]. Cheminformatics 

approaches, and the notion that an empirical relationship between structures of 

molecules and their properties exists, faced many objections from other chemists [86]. 

However, these objections were shown to have been misplaced based on the 

development of modern QSPR models [6,7,10,40,53,157–161]. 

Work done in the 1960s is considered to be the origin of the modern QSPR 

methodologies [10,153,162–165]. QSPR models have been used extensively within 

the areas related to the pharmaceutical product development. Models mapping 

molecular structure biological activity, selectivity, and toxicity have been developed 

[166,167]. Likewise, predictions of solubility [45,70,98,157,168,169] and melting 

point [81,83,170–173] are also of considerable interest within the QSPR community. 

The development of QSPR model has been facilitated by the increase in data 

availability. In the case of melting point, the datasets were limited to 10s of compounds 

in the early 20th century [87]. By the turn of the 21st century, models were typically 

trained on datasets in the 100s of data points [171,174,175]. The Patent Dataset 

(introduced in 2.3.3), which contains 289,379 datapoints, is the largest melting point 

dataset available at the time of writing [83]. 



-63- 

 

The increase in dataset size allows more complex models with larger applicability 

domains. Early melting point models were often restricted to a specific class of 

molecules such as rigid, non-hydrogen bonding aromatics [171] or aliphatics with 

certain functional groups [175]. QSPR models that can be applied to a wider range of 

molecules were later developed [83,172]. This trend is expected to continue in the 

future as the dataset sizes increase and the available models become better at capturing 

complex relationships. The dataset size can be expected to represent a more diverse 

chemical space. The development of more complex algorithms has facilitated 

improvements in performance in other fields such as Natural Language Processing 

[176], so a similar trend can be expected to extend to QSPR research. The increase in 

computational resource efficiency (both the computation and the economic cost) has 

also been identified as one of the drivers of progress in the field of predictive 

modelling [177]. 

Solubility and melting points are both dependent on the molecular structure, but also 

the crystal structure. However, the crystal structure information is usually not 

available and not used. This is cited as one of the limitations of these QSPR models 

[172]. Work has been carried out investigating the extent to which incorporation of 

crystal descriptors improve the model performance [70,95,178]. No good evidence of 

significant improvement was observed. However, this may be attributed to limitations 

in the calculated crystal descriptors and uncertainty in the specific polymorph for 

which the experimental training set data were measured [70]. The issue of developing 

adequate descriptors of the solid state and their importance to accurate property 

prediction is addressed in Chapter 7. 
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2.5 Matched Molecular Pair Analysis (MMPA) 

Matched Molecular Pair Analysis (MMPA) is a statistical method for studying the 

effects of molecular changes on a property of interest. Molecules that differ only by 

one chemical transformation are considered to be a Matched Molecular Pair (MMP). 

Changes in properties across these pairs, for a given transformation, are statistically 

analysed to infer the effects of the molecular transformations. The analysis procedure 

(2.5.1) and its application within cheminformatics (2.5.2) are discussed here. 

2.5.1 Identification of pairs and analysis procedure 

2.5.1.1 Terminology 

 

MMPA is based on pairs of molecules that differ by one chemical transformation. An 

example of an MMP is toluene and phenol, as shown in Figure 2.17. In this case, the 

‘transformation’ is the change from a methyl group (R1) to a hydroxyl group (R2). 

These two groups are also referred to as cores. A ring substitution (e.g. phenyl to 

Pyridyl group change) can also be considered to be a transformation. In the given 

example, phenyl group is named ‘context’ as it is the common molecular substructure 

across the two molecules. The two molecules are an MMP with transformation –CH3 

→ –OH. For the analysis, other MMPs with the same transformation would be used 

to study the effect of substitution of a methyl group to hydroxyl group. 

 

 

Figure 2.17: Example of a matched molecular pair. 
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2.5.1.2 Identification 

The simplest way of identification of MMPs is for a chemist to manually compare 

molecules. This method becomes unfeasible as the number of molecules increases. 

Two categories of automated methods for MMP identification have been developed; 

pre-specified transformation methods (STM) and unspecified transformation methods 

(UTM). STM can be useful in limiting the computational power required by narrowing 

down the search to only the transformations of interest [179]. However, this is also a 

weakness of the method – no new transformations can be identified. UTM identify 

transformations and MMPs from a given set of molecules. 

UTM can be further subdivided into fragmentation [180], maximum common 

substructure (MCS) [181,182], and hybrid approaches [183,184]. UTM is used in this 

project in order to be able to identify transformations that have an impact on the 

properties studied (Chapter 6). In particular, the Hussain and Rea Fragmentation 

method (HRF) was selected as it is computationally efficient and can be easily 

implemented within the workflow. The details of the algorithm are presented in 

Chapter 3. 

2.5.1.3 Analysis 

Once the transformations of interest have been identified and all corresponding MMPs 

identified, the property change is calculated for each of the pairs. Each change 

becomes a single datapoint for the analysis. All changes are grouped by the 

transformation. For example, all MMPs where the transformation involves a methyl 

group being swapped for a hydroxyl group are grouped together to study the effects 

of that transformation on a property of interest. Statistical analysis is then performed 

to infer the effect of the transformation. Typically, the averages and paired t-test scores 

are calculated [179,185,186]. In many cases, the t-test is repeated multiple times (once 

for each transformation within the dataset). As such, measures need to be taken to 

account for multiple statistical testing [187,188]. The fraction of MMPs that have 

positive / negative effect on the property has also been used for the analysis [189]. In 

some cases the information about the context of the specific MMP is also included in 

analysis [190]. 
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2.5.2 Application of MMPA 

The MMPA framework can be applied to study any property of interest that is affected 

by molecular change. It has been widely used for properties that are relevant to the 

drug Discovery process [179]. Properties relating to ADMET (absorption, distribution, 

metabolism, excretion, and toxicity) such as aqueous solubility [191] and plasma 

protein[186] binding were studied using MMPA. Molecular fragment contributions to 

melting point, which is a property used in many solubility predictions (e.g. General 

Solubility Equation) were investigated using this method as well [192]. MMPA has 

also been used to study the effects of chemical transformations on binding to a 

particular biological receptors [193,194](such as CYP inhibition) as well as to study 

promiscuity [195] (the ability for a molecule to interact with several biological 

macromolecules). MMPA was demonstrated to be a versatile method (in terms of 

studied properties) which provides easily interpretable results that can be used by 

chemists during Discovery [11,55,196].  

MMPA has also been used in tandem with other statistical approaches such as QSPR 

models. Two ways of combining QSPR with MMPA have been developed; QSPR-by-

MMP [197] and prediction driven MMP [198]. QSPR descriptors were calculated for 

the chemical transformations (rather than individual chemical as it is the usual case 

for QSAR models). The developed model predicted the activity change for the 

chemical transformations. It was noted that for smaller sets of molecules, the number 

of well represented transformations in the training set was too low in many cases, 

limiting the model to the more commonly occurring transformations [197]. In case of 

the prediction driven MMP, a QSPR model was developed for a set of molecules. 

MMPA was carried out on the dataset using the predicted values [198]. Application 

of MMPA to the output of the QSPR model allowed for a more easily interpretable 

results; an increase or decrease in aquatic toxicity associated with a particular chemical 

transformation [198]. The study demonstrated that useful knowledge can be extracted 

by applying MMPA to calculated property values.  

MMPA is a versatile method that can be used for multi-parameter optimisation 

[55,199]. This can be achieved by determining the effects of chemical transformation 

on multiple properties (such as solubility and plasma binding) and selecting the 

transformations that provide the optimum change in the properties [186]. However, 

MMPA typically has some shortcomings that need to be addressed. Firstly, the results 
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of MMPA can be significantly affected by the errors in the data[185]. Since each data 

point used on the analysis is the difference between property values of two molecules, 

the errors compound. Secondly, investigation into the varied effect within a 

transformation (different MMPs of the same transformation have different effects) has 

not been widely studied [185]. Some studies have taken into account the contextual 

information (molecular structure surrounding the site of transformation) [190,197]. It 

was noted that some transformations had a context chemotype (similar structure) 

specific effect that was undistinguishable without this approach. Thirdly, the 

application of MMPA has been mostly limited to properties of interest during the 

Discovery stage of drug development. 

 

2.6 Summary of the chapter 

The modern pharmaceutical product development process was developed as a result 

of millennia of human struggle against disease. The process has successfully 

contributed to longevity and quality of life improvements. In recent years, the 

productivity of drug product development has been decreasing; primarily due to 

failures during clinical trials caused by insufficient human efficacy. With the ultimate 

goal of predicting the efficacy (out of scope of the thesis), the relationships 

underpinning the performance of pharmaceutics was analysed using the framework of 

the Material Science Tetrahedron. Molecular structure – polymorph propensity, and 

molecular and crystal structure – melting point were identified as the two structure 

property relationships that the thesis focuses on. The theoretical framework for two 

empirical approaches: Quantitative Structure Property Relationship (QSPR) and 

Matched Molecular Pair Analysis (MMPA) were also presented.  

In the following chapter, the development of a Matched Molecular Pair Database 

(MMPDB) for streamlined MMPA of properties related to performance of 

pharmaceutical products is discussed. The chapter focuses on the method development 

and explains the design decision behind the database schema. The approach is 

contextualised within literature works and its applicability to further research in the 

thesis is discussed. 
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Chapter 3  

Matched Molecular Pair 

Database 
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3.1 Introduction 

Matched Molecular Pair Analysis (MMPA) has been widely used within the 

Discovery stage of the Pharmaceutical Product Development [11]. The analysis 

provides an easy way to interpret results that can be used to assist in molecular 

optimisation. More recently, the MMPA methodology was applied to the Cambridge 

Structural Database (CSD) to investigate the effects of molecular transformation on 

crystal packing [189]. This is the first application of MMPA to a dataset that resembles 

a Development stage dataset. The work in the thesis aims to further this research by 

focusing on transformations that affect polymorph propensity. The purpose of 

applying empirical methods commonly used in Discovery to address Development 

challenges is to allow for better integration of the two stages and to enable the 

prediction of Development challenges while still in Discovery.  

For systematic MMPA, a database can be a useful method of MMP storage to avoid 

repeated, computationally expensive MMP identification (3.1.1). Several MMP 

identification algorithms exist (as discussed in 2.5.1.2); the selected algorithm is 

presented in 3.1.2. This work (along with work shown in Chapter 6) was presented at 

UK QSAR conference [200]. Shortly after the work on this chapter was completed, a 

similar MMP database was published [201]. Comparison of the database developed 

for this thesis, and the one available in the literature is presented later in the chapter 

(3.3). 

3.1.1 Need for database 

Matched Molecular Pair identification is a relatively slow process. Due to the O(n2) 

nature of many algorithms (i.e. the computational cost increases with the square of the 

number of samples), repeated identification of MMPs at large scale is computationally 

expensive [180]. The CSD has quarterly updates with new structures. To avoid the 

necessity to repeat the identification process, a database is desirable. A database 

approach allows the molecular fragments generated from the previously seen 

structures, matching of which is necessary to identify MMPs, to be stored and indexed 

rather than having to generate these each time the dataset used for MMPA is updated. 

Beyond storing MMP information, the database can also be used to store a number of 

properties. The database also needs to store some crystallographic information in order 

to effectively interact with the CSD. 
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3.1.2 Hussain and Rea Fragmentation (HRF) method 

Hussain and Rea Fragmentation (HRF) method [180] was selected for MMP 

identification due to its computational efficiency and the ability to easily integrate it 

within Python workflow via its RDkit implementation [202]. Several improvements 

to the algorithm were introduced during the development of the workflow for the 

database population (3.2.3). The HRF algorithm is an automated MMP identification 

algorithm that does not require pre-specification of transformations. It uses SMILES 

(simplified molecular-input line-entry system) representations of molecular structure. 

The chemical notation system developed to allow computer processing and efficient 

substructure searching [56] (e.g. paracetamol is represented by CC(=O)Nc1ccc(O)cc1 

). Rdkit was used for SMILES generation [202]. The algorithm can be divided into 

three steps, (1) fragmentation, (2) indexing, and (3) MMP identification. 

Fragmentation of the input SMILES is performed by one, two, or three cuts (see Table 

3.1 for example of single and double cuts). The cuts are limited to acyclic bonds 

between non-hydrogen atoms and it is ensured that predefined functional groups are 

not cut. This ensures that groups such as a carboxylic acid group( R-COOH) are not 

fragmented into a ketone group (R-C(=O)-R’) and a hydroxyl group (R’-OH). All the 

fragments are then indexed which includes all the possible ways in which a given 

molecule can be fragmented. A matched molecular pair is then identified by grouping 

molecules that share the same fragment (context). MMP identification is made by 

identifying all molecules that share the same context as the molecule of interest. The 

core is the fragment of the molecule that changes across an MMP. Transformation is 

the change defined by the core of each of the molecules. The larger a formed core is, 

the less likely it is to occur in multiple instances, reducing the likelihood that any 

results obtained from it will be statistically significant. From a chemistry perspective, 

the study of MMPs with large changes is uninformative as the two molecules are 

chemically too different. An example of such MMP is paracetamol and ethanol 

(hydroxyl group is the context; the change is from Acetanilide to methyl group).  

Therefore, a size limit is imposed to eliminate MMPs where the change is too big to 

be meaningfully included in the analysis. The identification step can be repeated for 

all molecules to identify all MMPs within a dataset. This can also be accomplished by 

limiting the ratio of the change to the molecule size. 
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3.2 Database design 

The database schema and the process to populate it was developed and is discussed in 

this section. The aim of the schema is to store MMP data as well as additional property 

data to enable easy MMPA. The workflow is based on the RDkit implementation of 

the HRF algorithm introduced in 3.1.2. The algorithm was expanded upon in the 

current work, with the differences discussed in 3.2.3. 

3.2.1 Schema 

The database schema was proposed to store the molecular and crystal information 

along with the identified MMPs. The schema (presented in Figure 3.1) has three types 

of tables, based on their primary purpose. The grey tables (fragments context_table, 

and core_table) are used solely for MMP identification process (see 3.2.2 for details 

of HRF algorithm implementation). The fragments table contains the fragmented 

molecules (single row per cut per molecule). The table also stores information relating 

to the resulting fragments such as the fragment size, its size ratio, and whether the 

fragmentation was done by a single cut (this distinction is needed for handling 

transformations including hydrogen). The context and core tables contain context and 

core fragment information, respectively.  

All_smiles, MMP, and Transformation are the second type of tables; these contain 

information needed to perform MMPA. All_smiles table holds all the molecular 

structure information such as SMILES, size, and flag columns used to keep track 

 

Figure 3.1: MMP Database schema. 

A larger image of the schema is available in Appendix 1 
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whether a given molecule has been fragmented and its MMPs identified. It also 

contains refcode, which is used to associate a crystal structure to the given molecule. 

Transformation table contains the unique transformations identified within the dataset. 

The core_ids for the cores of the transformations are stored in R1 and R2 columns 

respectively. Smirks are generated to allow for each specific transformation. MMP 

table contains all the identified MMPs. The smiles_ids of the two molecules are stored 

in mol1_id and mol2_id. The transformation identifier (trans_id from Transformation 

table) and context identifier (context_id from context_table) complete the information 

that is stored for each MMP. This allows for each selection of all MMPs for a given 

transformation or the context of interest. By parsing through mol1_id and mol2_id, all 

MMPs of a given molecule can be retrieved as well.  

All molecular and crystal properties are stored in two respective tables 

(Mol_properties and Solid_properties). The properties in these tables are used for 

MMPA. For the purposes of the polymorph propensity study discussed in Chapter 4, 

the number of known polymorphs was considered a molecular property, so this was 

added to the Mol_properties table. 

3.2.2 Workflow for population of the database 

The workflow for the generation of the MMPs consists of three stages: fragmentation, 

indexing, and MMP identification. However, for the process to begin, molecular 

structures, expressed as SMILES, are required. In case of a dataset with only molecular 

structures, a file containing SMILES and optionally molecule id can be used as the 

input. If the dataset contains crystal information (as it was the case for the work 

discussed in this thesis), a file containing CSD refcodes can be used as the input.  

If refcodes are supplied, the CSD Python API is used to access the molecular structure 

of the crystal. Canonised SMILES are generated using a script supplied by the CCDC. 

The canonisation is a process that ensures a molecule structure is always represented 

in the same way (for example; ethanol could be written as OCC, C(O)C, or CCO). In 

case of a multi-component crystal structure, all distinct molecular structures are 

retained. 

The added SMILES  are compared against all molecules already in the database. This 

step is skipped if a new database is created. Two types of identifiers are added for each 

molecule. Firstly, smiles_id is assigned to every molecule that is added. Additionally, 
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unique_smiles_id is assigned to every new molecular structure that is added. The 

unique_smiles_id is set equal to the smiles_id, the first time a molecular structure is 

encountered, and the unique_smiles_id of the first instance is used for subsequent 

entries with the molecular structure. For example, in case of a dataset of two hydrates 

(as defined by the CSD API), the first main component (non-water molecule) is 

assigned smiles_id and unique_smiles_id of 0. The water molecule from the first 

hydrate is assigned 1 for both identifiers. The main component of the second hydrate 

is similarly assigned 2 for both. However, the second water molecule is assigned 

smiles_id of 3 but unique_smiles_id of 1 (same as the first occurrence of the water 

molecule). In this way, all distinct molecular structures can be selected by specifying 

the condition that smiles_id must equal unique_smiles_id.  This is quicker than 

selection based on SMILES string comparison. 

The newly added, distinct molecular structures are fragmented using HRF method 

(3.1.2). The output of the fragmentation is referred to as ‘rfrag’.These results are stored 

in memory and are not inserted as-is into the database. ‘fragmented’ from ‘all_smiles’ 

 

Figure 3.2: Schema explaining the indexing processes. 

Series of logical tests are done before the fragment data is inserted into the 

'context' and 'core' tables. 15 indicates the heavy atom count (non-hydrogen 

atoms) that is set as cut off for too large transformations. 
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table is set to True (1) for each molecule that was inputted into the fragmentation 

algorithm even if fragmentation failed. This ensures that the script can continue to run 

even if some errors were encountered. Most errors occur due to the fact that the 

molecules are un-fragmentable (such as water).  The process creates a large number 

of fragments (over 319,000 from 8,879 molecules that are part of the drug subset[85]). 

It is impractical to attempt to identify MMPs from this, hence indexing is performed. 

Indexing is the stage where the fragments are reorganised to allow easier MMP 

identification (Figure 3.2). The ‘rfrag’ data that is stored in memory is iterated over. 

Rows with single cut molecules are treated differently to double or triple cut 

molecules. The first fragment is selected and its heavy atom count (non-hydrogen 

atoms) is compared to the set cut off (typically set to 15). If the fragment is within the 

set size, it is inserted into the ‘core’ table. The other fragment is inserted into the 

context table. The step is repeated with the other combination of fragments. For single 

cut molecules, both “halves” of the molecule may be used as the core or context. For 

example for ethanol, the hydroxyl group may be used as the core and methyl group as 

the context and vice versa. Due to the fact that SMILES do not explicitly include 

 

Figure 3.3: MMP identification stage. 

All molecules are iterated over to identify all relevant MMPs. 
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hydrogens, transformations including it are handled separately. For all fragments 

resulting from a single cut, a hydrogen is added to where the cut was made and it is 

checked if that forms a valid molecule. If valid molecule is formed, all molecules 

within the dataset are searched to see if this molecule is present. If the molecule is in 

the dataset, a new row is added to fragments table. For example, using the hydroxyl 

group fragment of ethanol, a hydrogen is attached to it forming water. If water is 

present in the dataset, this will result in a new entry where the core is hydrogen, context 

is hydroxyl group, and the molecule is water. In case of double or triple cut, the 

fragment that contains the single component is inserted into the ‘core' table if the other 

fragment meets the size requirement. Apart from size, the ratio of the heavy atoms of 

the core to the molecule may be used (either separately or in tandem). 

The final stage is MMP identification where the MMPs are identified for each unique 

molecule that has been fragmented. The process involves several steps that are 

illustrated in Figure 3.3 For each input SMILES, the heavy atom count (cmpd_size) 

and its smiles_id (mo11_id) is retrieved. All possible mol2_id are identified (all 

possible MMPs within the dataset for the given mol1) by MMP query. This query 

returns several context- R2 combinations for the same pair of molecules. For example, 

in case of butane and butanol the following combinations would be returned: context 

= butane R2 = hydroxyl group, context = propane R2 = methanol, context = ethane R2 

= ethanol, and context = methane R2 = propanol. The context and R2 are selected such 

that the context_size is the largest (therefore, smallest change). In the aforementioned 

example, this would be context = butane and R2 = hydroxyl group.  For each of the 

identified MMP, R1 is retrieved from the database. The combination of R1 and R2 are 

checked in ‘Transformation' table (Both R1, R2 and R2, R1). If the combination 

already exists, the corresponding TransID is retrieved. If Transformation R2, R1 was 

already in the database, the molecules are reordered (mol1id becomes mol2id and vice 

versa). Otherwise, the newly identified transformation is inserted into the database and 

the TransID is retrieved. The combination of mol1id and mol2id are searched in the 

‘MMP' table, and if the pair is already in the database, the script proceeds to the next 

pair of molecules. Otherwise, the pair of molecules, along with context and TransID 

are inserted into the table. This is repeated for all pairs of molecules identified. Once 

all pairs are evaluated, the ‘all_smiles' table is updated by setting ‘MMPidentified' to 

True (1) for the given molecule. ‘MMPidentified’ is set to True even if no MMP were 
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identified for the molecule.  The process is repeated for all fragmented molecules in 

the ‘all_smiles’ table.  

3.2.3 Modifications to the MMP identification 

The MMP database generation process follows a similar procedure to the original 

implementation of the HRF method. However, some changes were made to address 

the shortcomings of the original method. Firstly, using a database allows for addition 

of new molecular structures without rerunning the entire process (3.2.3.1). Secondly, 

some instances where the HRF method generates multiple MMPs of the same pair of 

molecules were addressed (3.2.3.2).  

3.2.3.1 Updatability 

The updatability of the database was compared to deploying the original 

implementation of the HRF method. A dataset of 50,000 randomly selected, organic 

molecules with no disorders in the crystal structure (this often broke the SMILES 

generation step of the flow) were processed by both methods. The dataset was 

consequently increased by 10,000 molecules three times (to a total of 80,000 randomly 

selected molecules). In case of the HRF method, the fragmentation was performed 

only on the additional molecules, and the MMP identification on the entirety of the 

fragments. This was necessary because the implementation of the HRF algorithm does 

not support MMP identification between the added dataset and the original dataset. In 

case of the database approach, fragmentation is performed on the added molecules and 

the MMP identification is only performed on them as well. The identification includes 

MMPs between the additional molecules and the molecules in the original dataset. The 

benchmarking was performed on a Windows 7 machine with Intel Xeon E3-1226 v3 

3.00 GHz 4 core processor and 16GB of RAM. Only a single core was used in the 

processing. 
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The processing times for the two methods are shown in Figure 3.4. For the initial 

identification of MMPs in the 50,000 molecule is twice as long for the database 

method compared to the HFR method. This is because both methods perform the same 

computation, while the database also performs database read and write actions. The 

majority of the HFR algorithm is implemented in a lower-level language (C with 

Python wrapper) compared to the majority of the processing logic being implemented 

in Python for the database approach (C-based libraries were utilised). However, the 

processing time for further 10,000 molecules is shorter for the database method 

compared to the HFR method. Despite being computationally less efficient, the 

database method has less computation to do. In this particular case, the break-even 

point is after the second 10,000 molecule update. The database method shows some 

advantages in terms of computation time for rapidly growing sources of data such as 

the CSD, which was a key source of data for work presented in the thesis. Alternative 

approaches to reducing the processing time by improving the efficiency of the 

algorithm itself are likely possible, but fall outside of the scope of the thesis. 

 

Figure 3.4: Performance comparison between HRF and database method of 

MMP identification for an increasing dataset. 

Comparison performed on a Windows 7 machine with Intel Xeon E3-1226 v3 

3.00 GHz 4 core processor and 16GB of RAM.  Only single core was used. 

 



-80- 

 

 

3.2.3.2 Elimination of duplicate MMPs 

The database method also addresses some of the shortcomings of the original HRF 

implementation. For molecules that can be cut at different points, multiple MMPs for 

a given pair of molecules may be identified (illustrated in Figure 3.5). The MMP 

resulting from cut 1 (OH>>CH3) in the figure corresponds to the smallest, and likeliest 

to repeat across the dataset. The remaining two possible MMPs, although valid, are 

not as useful in terms of MMPA artificially increasing the number of MMPs within a 

dataset.  The database approach addresses this issue because MMP identification is 

performed per molecule. Once all MMPs for a given molecule are identified, any 

duplicates based on the matching molecules are eliminated. For a given pair of 

molecules, the MMP with the largest context (smallest change) is kept. This 

 

Figure 3.5: Multiple MMPs that can be identified from the same pair of 

molecules. 

The molecules can be cut at different points (1-3). All the cuts are valid (only 

a single C-C bond is cut, the resulting fragment size ratio is within limits).  
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transformation is the most common and meaningful in terms of MMPA. This 

procedure reduces the number of MMPs that rarely occur as shown in Figure 3.6. 

 

 

3.3 Comparison to another MMP databases approach 

Shortly after completion of the work discussed in this chapter and presentation at UK 

QSAR in March of 2018 [200], a similar MMP database approach was published in 

May of the same year [201] (hereafter referred as DHK method for the names of the 

authors). Both, the work presented above and the DHK method address the same issue 

regarding MMPA; the extensive processing required to be carried out to identify all 

MMPs within a dataset, and aims to aid systematic use of MMPA. The paragraphs 

below present a comparison between the work presented in this chapter and the 

published approach. 

 

Figure 3.6: Comparison of frequency of occurrences of transformations. 

The database method reduces the number of transformation that do not occur 

often by removing duplicate MMPs for the same pair of molecules. 
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The HRF method is the basis of MMP identification used by both methods (one 

presented in the thesis and the DHK method). However, the DHK approach expands 

this to handle transformations involving chirality. This is achieved by the “welding” 

technique developed as part of the publication [201]. For double-cut MMPs, the order 

of attachments is stored, and canonicalization of the re-connected fragments is 

checked to ensure it matches that of the original molecule. The approach provides a 

useful mechanism for differentiation of stereoisomers.  

Another difference between the DHK compared to the work in the thesis is the 

inclusion of local environments. In the case of MMP, environment refers to the atoms 

that surround the location where a cut is made during fragmentation. This information 

is stored in the database and can be used to select MMPs with only the same 

environment when conducting the analysis. 

However, whilst the DHK approach offers some potential advantages over the 

database approach developed, at the same time, in this thesis, it should be noted that 

only the approach presented in this chapter was integrated with the population of a 

database for analysis of solid state data. Matched Molecular Graph (introduced in 

Chapter 6) construction was also added to the capabilities of the database presented in 

the thesis. Due to the small number of MMPs, environmental consideration could not 

be conducted (Chapter 4). 

 

3.4 Summary 

This chapter presented the method used to generate a database of Matched Molecular 

Pairs that was subsequently used for the study of the effects of molecular changes on 

solid state properties (Chapter 4). The database facilitates repeated analysis with 

growing dataset without having to repeat MMP identification. Another advantage of 

the method presented here is the ability to limit the MMPs that are not useful. Namely, 

repeated MMPs for the same pair of molecules, and reduction in number of rare 

transformations (ones that occur only a few times and hence are statistically not 

significant).  An interactive analysis tool was also created to complement the database 

and allow MMPA to be carried out routinely. The scripts written to generate the 

database and carry out analysis is available in Appendix 1. 
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A similar database was published during the course of this work. The work offers 

several advantages in terms of handling of chirality and storing of transformation 

environments [201]. However, due to the ease of integration with the CSD and 

Matched Molecular Graph capabilities (detailed in Chapter 6), the method presented 

in here was used in subsequent research. In the following chapter, this method and 

database are used to study the effects of molecular transformation on the propensity 

for molecules to exhibit polymorphism.  
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Chapter 4  

Polymorph Propensity 

Prediction 
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4.1 Introduction 

The ability to predict the propensity to form polymorphs is valuable to the 

pharmaceutical industry [9]. Unexpected polymorphism of the drug compound 

necessitated the removal of ritonavir from the market [8]. Polymorph screening is 

typically carried out during the Development stage of drug product development with 

the aim to find all polymorphs within the range of applicable conditions. The ability 

to predict the polymorph propensity may potentially allow to anticipate the magnitude 

of challenges likely to be faced during the Development stage.  

A number of studies have been done to better understand polymorphism. These 

typically focus on examining individual crystal structures [8]. Individual 

intermolecular interactions are assessed to see whether the structure is stable 

[64,79,203]. If the structure does not satisfy all potential intermolecular synthons, it is 

likely that other polymorphs exist. The assessment of the synthons can be done based 

on the statistically favourable interaction based on the analysis of the CSD [64]. 

Density Functional Theory (DFT) based approaches have also been used for this 

purpose [204]. Considerable work has been carried out in the area of crystal structure 

prediction using a range of methods such as DFT and Forcefield (FF) for calculation 

of structure stability coupled with search algorithms to explore the set of potential 

structures [205–207]. Blind tests for structure prediction have been periodically 

organised by CCDC since 1999 with the most recent one taking place in 2020 [208]. 

There has also been work published on the overall trends in polymorphism 

[50,209,210].  

In this chapter, the issue of polymorph propensity is studied from the perspective of 

molecular transformations. The statistical approach to this is performed using MMPA 

(see Chapter 3 for details) on the CSD. The intention for the work is to allow 

polymorph propensity to be considered during the drug optimisation stage during 

Discovery.  
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4.2 Method and Data 

4.2.1 Dataset 

4.2.1.1 CSD single component dataset 

The polymorph propensity study focused on single component organic structures. 

Single component structures were identified by checking the number of separate 

molecular components. If the number was one, the structure was considered a single 

component. If more than one molecular component was identified, SMILES strings 

were generated for each of the components. If all of the strings matched, the crystal 

structure was considered to be a single component structure. No organometallics were 

considered. Based on these criteria, a dataset of 155,040 crystal structures was 

identified. This dataset excluded all hydrates and co-crystals. 

The CCDC publishes a list of crystal structures with the best R factor for each unique 

crystal structure (polymorph) in the CSD. The list is generated based on the 

comparison of generated spectra [211]. The details and the effectiveness of the method 

are discussed in Chapter 5. The number of occurrences of each of the refcode within 

the best R factor list corresponds to the number of polymorphs of that molecular 

composition. The number of redeterminations was calculated by subtracting the 

number of polymorphs from the total number of refcodes for the specific refcode 

family within the CSD. 

4.2.1.2 Monomorphic adjustment 

The CSD is a repository of published crystal structure so it reflects the research trends 

within the scientific community. A number of reasons exist for determining the crystal 

structure of a compound. This may be done to confirm the molecular structure and the 

crystal information is of secondary importance. In such cases, it is unlikely that 

different experimental conditions were investigated and no polymorphs were found. 

However, this does not exclude the possibility that multiple polymorphs exist. 

For this reason, Monomorphic adjustment was introduced based on the literature 

precedence [50]. Structures with only one refcode were considered to be not 

sufficiently studied to determine whether these are indeed monomorphic or 

polymorphic with undiscovered polymorphs. The unfiltered CSD single component 
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dataset has 1 % of polymorphic structures, which is significantly lower than other, 

more thoroughly studied datasets presented in Table 4.2. After elimination of 

structures with only one refcode, the dataset was reduced to 6,633 structures of which 

25 % are polymorphic. The resulting dataset is referred to as the adjusted CSD single 

component dataset. The process reduced the dataset by 97 %, which reflects the 

prevalence of single-entry compounds. Concerns related to the large reduction in size 

are discussed in 4.3.2.2. 

4.2.2 Molecular structure information 

4.2.2.1 Matched Molecular Pairs 

Matched Molecular Pairs were used to study the effects of small molecular 

transformations on the polymorph propensity of the molecule. The database method 

developed in Chapter 3 was used for the analysis. For details of the method, refer to 

the chapter. The maximum size of transformation used was 15 heavy atoms. Based on 

the analysis presented in 4.3.2.2, the data was filtered by limiting the ratio of the 

transformation to 0.3. The effects of limiting the ratio are discussed in  4.3.2.3. 

4.2.2.2 Molecular flexibility and other molecular information 

MMPs formed the basis of the study; however, additional information was also used 

to further study the effects of small molecular transformations. Molecular properties 

relevant to crystal lattice formation were selected. 

Some molecules exhibit polymorphism due to the compound’s ability to crystallise in 

different conformational forms, such as the case of ritonavir [8]. This was captured by 

the molecular flexibility descriptor – nConf20 [212]. Other descriptors such as 

rotatable bond count were outperformed by nConf20 in crystallisability prediction 

study (86.1 % test set accuracy compared to 74.8 % for rotatable bond). The descriptor 

attempts to capture the accessible conformational space of the molecule by generating 

and optimising 50 random conformers. The optimisation is done using MMFF94 

molecular mechanics forcefield [213]. The lowest energy conformer is selected as the 

reference structures. Any symmetrically similar conformers, based on root mean 

squared distance (RMSD) of less than 1 Å, to the reference structure was removed. 

The molecules were aligned prior to RMSD computation. The energy of each of the 

conformer was calculated. If the energy difference between a conformer and the 



-88- 

 

reference structure was less than 20 kcal/mol, the value of the nConf20 descriptor was 

increased by 1 (initialised by nConf20 = 0). In essence, the descriptor is the number 

of conformers that fall within the 20 kcal/mol of the optimal structure. The parameters 

of the descriptor (number of random conformers and the energy cut-off) were selected 

based on the analysis carried out in the original publication [212]. 

As discussed in 2.2.2, intermolecular interactions such as hydrogen bonding and Van 

der Waals interactions play an important role in determining the crystal structure of 

the compound. The number of hydrogen bond donors and acceptors was used to 

approximate the molecules ability to form hydrogen bonds. Van der Waals interactions 

tend to increase as the size of the molecule increases, so the compound size was used 

[214]. Heavy atom count was used as a measure of the compound size. 

4.2.3 Software 

The work in this chapter was done using Python 2.7. All structures within the CSD 

were analysed using the CSD Python API (version 1.5.2) [215]. The database of 

MMPs was constructed using the workflow presented in Chapter 3. nConf20 

descriptor calculations were done using the script from the original publications [212]. 

Data processing and visualisation was performed using pandas [216] and seaborn 

[217,218]. Scripts used in this chapter can be found in Appendix 1. 
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4.3 Results and Discussion 

4.3.1 Polymorphism in the CSD 

The fraction of polymorphic structures in the dataset derived from the CSD is 

significantly lower than for other literature sources presented in Table 4.2. The 

discrepancy is most likely due to the nature of the different data sources. As discussed 

in 4.2.1.2, the CSD reflects the research interests of a broader community that does 

not necessarily focus on polymorphism. Similarly, the microscopy studies were likely 

focused on crystal structure observation rather than a search for polymorphism. The 

European Pharmacopeia, SSCI (Southern Society for Clinical Investigations) 

polymorph screens, and the two pharmaceutical company database were more focused 

on finding polymorphs of the different compounds. As a result, these datasets contain 

a much higher fraction of polymorphic structures. This suggests the CSD single 

component dataset contain some structures that are polymorphic but for which the 

polymorphs remain undiscovered. The issues associated with this caveat are discussed 

in more details in 4.3.4. 

Table 4.2: Fraction of polymorphic structures within different datasets. 

Non-CSD information was retrieved from literature [50]. 

Data source Compounds Polymorphic structures (%) 

Microscopy studies 140 25 

European Pharmacopeia 598 42 

SSCI polymorph screens 245 48 

Roche internal database 68 53 

Lily internal database 68 66 

CSD single component (as is) 155,040 ~1 

CSD single component (adjusted) 6,663 25 

 

Table 4.1: Most common transformations within the CSD single component 

dataset. 

Statistics of the polymorph count change (mean and standard deviation) and 

the number of MMPs with that transformation are also included 

Transformation Mean Std. dev. Count 

R-H → R-CH3 0.037 0.312 6017 

R-H → R-Cl 0.044 0.349 2333 

R-H → R-OCH3 0.036 0.308 1884 

R-H → R-OH 0.018 0.410 1708 

R-H → R-Ph 0.040 0.387 1653 

R-H → R-Br 0.054 0.309 1396 

R-H → R-NO2 0.035 0.392 1391 

R-CH3 → R-Ph -0.004 0.328 1310 

R-H → R-F 0.043 0.356 1083 

R-Ph(meta)-R’ → R-Ph(para)-R’ -0.020 0.337 1002 
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4.3.2 Effects of molecular transformations 

4.3.2.1 CSD single component dataset 

The MMPDB script identified 4,599,447 MMPs with 3,404,016 unique 

transformations. The ten most common transformations are shown in Table 4.1. The 

transformations represent a wide range of chemical changes such as the introduction 

of hydrogen bonding hydroxyl group, or π- π stacking phenyl ring. However, the mean 

change for all these transformations is approximately 0 with the biggest deviation from 

that being 0.054 (R-H → R-Br). Due to the fact that only 1 % of the structures are 

polymorphic (within the dataset), it is unlikely to find a transformation with MMPs 

that consistently contain polymorphic structures.  

4.3.2.2 Adjusted CSD single component dataset 

The analysis workflow was repeated for the adjusted CSD single component dataset. 

This dataset is 4 % of the original dataset, hence the number of transformations and 

MMPs is significantly reduced to 2,048 and 3,913 respectively. The monomorphic 

adjustment also had an impact on the distribution of the transformation effect. Figure 

4.1 shows a comparison of the most common transformation (R-H → R-CH3) for the 

two datasets.  
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The MMP count for this transformation decreased from 6,015 to 211, while the mean 

changed from 0.03 to -0.13. The tail of the distribution appears to be more prominent. 

This is because a large number of monomorphic entries were removed based on the 

adjustment. The change is not significant based on the paired t-test, without 

considering multiple hypothesis testing correction [187,219]. Multiple hypothesis 

testing is typically performed. This is unsurprising since a small transformation that 

does not significantly alter the potential intermolecular interactions was not expected 

to have an effect on polymorph propensity. However, it is important to note the 

reduction in the number of MMPs that occurs when the monomorphic adjustment is 

made as this is a consistent issue across all studied transformation. 

Emphasis was placed on transformations that are likely to be statistically significant 

based on the paired t-test. No multiple hypothesis testing was performed at this point. 

5 % significance level was chosen as the basis of selections of transformations (37 

transformations were identified. Distributions for some of these transformations 

(selected based on statistical or chemical interest) are shown in Figure 4.2. 

 

 

Figure 4.1: Comparison of the R-H → R-CH3 transformation for adjusted and 

unadjusted CSD single component dataset. 
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The hydroxyl to phenyl transformation was focused upon. It contains transformations 

that alter the molecule significantly (Figure 4.3). The molecule doubles in size due to 

the transformation. The change was considered to be too dramatic for the MMPA to 

 

Figure 4.2: Distributions of the effects of the selected transformation on 

polymorph count.  

Top: biggest change within 5 % significance interval (blue), most common 

transformation (grey), lowest p-value (dark blue). Bottom: highest count 

within 5 % significance interval (green), large fragment size change (dark 

blue), large change in reactivity (brown) 
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be a useful assessment of the effects of transformation change. Similar issue persists 

with other MMPs, so the maximum change ratio of 0.3 was imposed (i.e. the heavy 

atom count of the change cannot exceed 30 % of the count of the whole molecule) 

[180]. 

4.3.2.3 MMPs limited by the ratio of the change 

The imposition of the ratio restriction further reduced the number of MMPs (2,776 

MMPs, reduced from 3,913). Transformations with the highest MMP count, largest 

mean change, and most likely to be statistically significant were selected for closer 

analysis. The hydrogen to phenyl group had the MMP count of 9 and the largest mean 

change of -0.667. The paired t-test p value of 0.156 suggests this is not a significant 

change. The low MMP count is the likely reason for the high p value. Furthermore, 

there is one data point with the change value of -4. This single datapoint shifts the 

average by 0.417 from -0.250 (when calculated omitting this point). With the increase 

in data quality (monomorphic adjustment) and the focus on chemically meaningful 

transformation (ratio limit), the number of MMPs are reduced to the point where a 

single data point may sway the overall average. 

The hydrogen to chlorine transformation is most likely to be statistically significant 

based on p-value, with the paired t-test p-value of 0.085. However, the transformation 

is not significant at the 5 % level. Similarly, to the hydrogen to phenyl transformation, 

the number of MMPs is low (8).  

 

 

Figure 4.3: Example MMP of the hydroxyl to phenyl transformation. 

Refcodes: GLICAC (left), ZZZMLY (right). 
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On the other hand, the transformations with the highest counts tend to have a mean 

change of approximately 0. For example, hydrogen to hydroxyl transformation has 72 

MMPs and the mean change of 0.041. The distribution of the effect approximately 

matched the distribution for hydrogen to methyl transformation (Figure 4.4). This is 

likely due to the limited proportion of polymorphic structures within the dataset, even 

after the monomorphic adjustment. A number of compounds may have unknown 

polymorphs which skew the mean transformation effect towards 0. This is further 

discussed in 4.3.4. Another possibility for the observed results is the importance of the 

context of the MMP (the part of the molecule that does not change across the pair). 

The flexibility (nConf20), potential to form hydrogen bond (donor and acceptor 

count), and the Van der Waals interactions (heavy atom count) of the context 

(part of an MMP that is same across the pair) of each of the MMP was 

calculated. Only single-cut MMPs were used and a hydrogen was placed at the 

cut to make a valid molecule. The effects of each of the descriptor on the size of 

 

Figure 4.4: Comparison of hydrogen to methyl and hydrogen to hydroxyl 

transformation for adjusted CSD single component dataset with ratio limited 

MMPs. 
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change for the MMPs with the hydrogen to phenyl transformation are shown in 

(  

Figure 4.6). No correlations were found for this transformation. The process 

was repeated for hydrogen to hydroxyl transformation which had more MMPs 

(72) to see if any pattern emerges with larger data size (

 

Figure 4.5). No correlation was found between any of the descriptors. 
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Figure 4.5: Effects of nConf20, H-bond donor / acceptor count, compound size 

on the change for MMPs with hydrogen to hydroxyl transformation 
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Figure 4.6: Effects of nConf20, H-bond donor / acceptor count, compound size 

on the change for MMPs with hydrogen to phenyl transformation. 
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4.3.3 Effects of molecular flexibility 

Flexibility was considered a potential factor that influences the polymorph propensity. 

As well as examining the influence on polymorph propensity due to molecular 

transformations, the effects of the flexibility itself on polymorph propensity were 

studied. A more flexible compound was expected to be able to form more distinct 

crystal packing. The distribution of the nConf20 descriptor for the different number of 

polymorphs is shown in Figure 4.7. Visually, there appears to be no difference 

between monomorphic and polymorphic compounds. The median for both, 

monomorphic and polymorphic structures is 5 with the means of 9.24 and 8.56 

respectively. Mann Whitney U test was done to compare the two distributions and the 

result was not statistically significant (p value = 0.415). Interestingly, the flexibility of 

the polymorphic structures appears to be lower on average than that of the 

monomorphic structures. This can be explained by considering the intention behind 

the development of the nConf20 descriptor, which was to determine the 

crystallisability of a compound [212]. In essence, higher nConf20 value, the more 

difficult it is to crystallise a molecule. Therefore, the lower nConf20 value for 

polymorphic structures could be the artefact of the ease of crystallisation of these 

 

Figure 4.7: Distribution of nConf20 descriptor for compounds with different 

number of polymorphs on the CSD adjusted dataset. 

 



-98- 

 

structures. This may result in an increased likelihood that such structures were 

crystallised and added to the CSD. Hence, this trend is most likely an artefact of the 

data availability. 

 

4.3.4 Issue of unknown polymorphs 

The issue of unknown polymorphs has been mentioned in several sections of this 

chapter. In this section, the discussion is collated and further analysis of this is 

presented. The unique challenges associated with this issue are also discussed. 

4.3.4.1 Exploration of the issues 

The number of polymorphic structures is significantly lower within the CSD than other 

data sources that focus more on polymorph screening (Table 4.2). Two hypotheses for 

explaining this can be constructed: CSD represents a chemical space that is less 

polymorphic compared to heavily screened pharmaceutics chemical space, or a 

number of structures that are classed as monomorphic are actually polymorphic. The 

 

Figure 4.8: The number of polymorphs as a function of molecular weight. 

The mean weight of n-polymorphic compounds were taken. 8-polymorphic 

compounds consist of a single molecule (same for 7-polymorphic). 
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chemical space of the CSD has been compared to the chemical space of drugs and 

other molecules held in pharmaceutical company databases [85]. In the study, heavy 

atom count, flexibility, and hydrogen bond donors /acceptors were used to compare 

the chemical space of various datasets.  

The CSD has a wider range of compound sizes with larger representation in the smaller 

range [85]. 13 % of molecules within CSD are smaller than 100g/mol, while the 

industrial datasets do not have many molecules in this range. The industrial datasets 

tend to have larger molecules than the CSD. The industrial datasets also tend to have 

more polymorphic structures (Table 4.2). This leads to the suggestion that larger 

molecules tend to have a higher propensity for polymorphism. However, this is not 

reflected in the CSD where smaller molecules appear to have a higher propensity for 

polymorphism (Figure 4.8), further emphasising the likelihood that the results are 

affected by the data artefacts. 

A similar trend can be observed for molecular flexibility. In the cited study [85], the 

rotatable bond count was used as a descriptor of flexibility. The CSD has more 

molecules with no rotatable bonds than the industrial datasets. The industrial datasets 

have more molecules with 5 and 6 rotatable bonds. Again, the increase in flexibility 

does not correlate with an increase in polymorph propensity. For this reason, it is 

unlikely that the difference in polymorphism found in CSD compared to other sources 

is due to the difference in chemical space covered. 

The lack of polymorphism in the CSD is likely due to the limited effort spend on 

finding polymorphs. As stated in 4.3.1, industrial datasets tend to contain results of 

polymorph screens. Therefore, polymorphism in the CSD is likely a reflection of the 

research interests of the scientific community rather than actual polymorphism. 

Smaller, more easily crystallisable compounds (low nConf20) are more likely to be 

studied. This then results in more polymorphs for that structure to be found. This was 

first noted by McCrone by his now-famous statement that “the number of forms known 

for a given compound is proportional to the time and money spent in research on that 

compound” [220]. The validity of the statement was tested on the CSD single 

component dataset. The time and money spent on research were approximated by the 

number of redeterminations a compound has in the CSD. A redetermination is often 

the same polymorph studied under different conditions (a refinement of the same 

structure being another reason for redeterminations). It represents a repeated study of 
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the same compound under different conditions. The relationship between the number 

of redeterminations and the number of polymorphs is shown in Figure 4.9. 

4.3.4.2 Challenges 

The issue of undiscovered polymorphs poses a significant challenge for the study of 

polymorph propensity. Firstly, unlike other properties such as melting points, it is 

difficult to assess the quality of the data. The number of redeterminations or number 

of publications on the compound of interest may be used as an indicator of the quality 

(i.e. the likelihood that all polymorphs have been found). However, it is not as rigorous 

as the assessment of error for other experimentally determined properties. 

Rather than studying polymorph propensity through the number of polymorphs found, 

it could be studied by comparison of monomorphic and polymorphic structures to 

create a classifier for the task. However, the issues highlighted here are still likely to 

affect this analysis. This method also emphasizes the issue of the definition of 

 

Figure 4.9: Number of polymorphs as a function of redeterminations. 

The number of redeterminations is calculated by subtracting the number of 

polymorphs from the total number of structures for a given compound. Mean 

number of redeterminations were taken for each number of polymorphs. It is 

important to note that the high polymorph count is rare (single datapoints for 

7 and 8 polymorphs compounds, 9 datapoints for 5 polymorphs compounds). 
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monomorphism. There is a large set of conditions under which crystallisation may be 

attempted, making a definitive polymorph screen to find all physically possible 

polymorphs unrealistic. Similar to the polymorph screening done by the 

pharmaceutical industry, only the relevant conditions should be considered. At the 

time of writing, no such dataset is publicly available, so the use the number of 

redeterminations as a surrogate for the data quality remains the only suitable means of 

analysing data quality of polymorph counts for the study. This could be expanded by 

the inclusion of how wide of a range of conditions were investigated or by the number 

of experiments performed within a set range of conditions. 

 

4.4 Conclusion 

In this chapter, the factors affecting polymorph propensity were studied. MMPs were 

used to assess the effects of small molecular transformations on the propensity to form 

polymorphs. However, no statistically significant transformations were identified. 

This is partially due to the reduction in the dataset size due to the pursuit of quality in 

terms of polymorphism data (monomorphic adjustment) and MMPs (elimination of 

pairs where the change is larger than 30 % of either of the molecule based on heavy 

atom count). The issues related to the small number of MMPs identified within the 

dataset is explored in Chapter 6. The CSD single component dataset contains less 

polymorphic structure than other sources (1 % vs 66 % for Lily internal dataset). This 

is likely due to the active search for polymorphs within the pharmaceutical industry. 

The number of polymorphs in the CSD appears to correlate with the time spend 

researching that compound as approximated by the number of redeterminations. Due 

to the difficulty in assessing the quality of polymorphism data, high-quality dataset 

based on polymorph screened compounds is desirable for the propensity study. This 

was attempted using Pfizer internal database. However, the crystal structures found 

within the database are not grouped into polymorphs (redeterminations and 

polymorphs are not distinguished). This issue was taken as an opportunity to 

benchmark the existing automated methods of polymorph and redetermination 

classification as well as develop machine learning classifiers for the task. This work 

is discussed in the following chapter. 
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Chapter 5  

Benchmarking of Automated 

Approaches for Differentiating 

Between Polymorphs and 

Redeterminations 

  



-104- 

 

5.1 Introduction 

The ability to predict polymorph propensity is of crucial interest within the 

pharmaceutical research community (see 2.1.3 for more details). The research on the 

topic presented in the previous chapter identified several challenges. The data quality 

and quantity is one of such difficulties. It is difficult to ascertain the number of 

polymorphs a structure exhibits because the lack of polymorphs may be due to lack of 

emphasis on the determination of crystal structure, rather than lack of possible 

polymorphs. Further challenge arises from the differentiation between polymorphs 

and redeterminations. CCDC publishes a list of structures of each polymorph for all 

structures in the CSD, based on the spectra comparison method [211]. However, no 

similar list is available for in-house databases. This opportunity was taken to 

benchmark the existing spectra comparison method, and develop alternative methods 

of classification of pairs of structures into redeterminations and polymorphs. 

In principle, the classification is best carried out “manually”, i.e. by visual inspection 

and assessment by an expert in molecular crystallography. In practice, expert 

identification of the polymorphs reported in large datasets is challenging, as it is very 

labour intensive if the crystal structures were not annotated at the point of curation. 

Moreover, inconsistencies can arise during “manual” curation due to fatigue, 

insufficient expertise, or different experts assigning different labels to the same 

polymorphs. For example, a variety of labels have been reported in the literature for 

polymorphs of sulfathiazole [221]. While these inconsistencies could be avoided by 

an expert panel working according to a standard operating procedure; this would still 

require a considerable investment of time. Accurate, automated approaches to 

identifying polymorphs are hugely desirable, with a means of differentiating 

polymorphs and redeterminations of the same chemical being an important first step.  

Automated approaches for identifying polymorphs are of value for both the CSD and 

industrial crystal databases. As many of the latter databases are structured similarly to 

the CSD, automated approaches which are applicable to the CSD should be widely 

applicable within industry. Currently, manual labelling of polymorphs is reported, if 

at all, at the point of deposition by individual researchers. This leads to incomplete 

and potentially inconsistent assignments. In industry, in-house databases may not have 

been annotated with the polymorph identity, even where this information may have 

been experimentally determined.  
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An automated method can provide a consistent classification of large datasets. One 

automatic method that was developed to classify polymorphs and redeterminations of 

structures within the CSD is based on the comparison of simulated powder diffraction 

spectra  (hereafter referred to as spectra method) [211,222]. The refcode family is used 

to group crystal structures of the same molecular composition and then, within each 

family, a pairwise diffraction pattern comparison is undertaken. The peak positions of 

the spectra are determined by the unit cell parameters, while the intensities are 

calculated from the molecular structure and the space groups (i.e. the packing 

arrangement) [211,222]. A comparison of the peak locations and the intensities allows 

the similarity of the two crystal structures to be determined, hence the classification 

of the pair as polymorphs or redeterminations. The effect of the experimental 

conditions (temperature and pressure) are accounted for using unit cell volume 

normalisation and a peak shift tolerance factor. The peak shift tolerance factor was 

introduced to deal with the case of substantial differences in temperature or pressure, 

for which cell volume normalisation alone is not sufficient. The spectra method is used 

by the CCDC to generate the best_R_factor_list, which is a list that contains the 

refcode with the lowest R- factor, a measure of crystallographic data quality, for each 

polymorph within the database [211].  

However, the spectra method is not as easily implemented for CSD-like databases with 

less curated information (such as no refcode family assignment), although chemical 

structure representation (InChI, SMILES) based grouping of entries retrieved using 

the CSD Python Application Programming Interface (API) [215], might address this 

issue. Moreover, the spectra method was only benchmarked on a small set of 386 

structures (83 refcode families) [211,222]. This is a small dataset compared to the 

entirety of the CSD that the method is applied to. Version used in the study (5.39) 

contained, 950,516 crystal structures while currently there are over 1 million 

structures. In particular, when developing machine learning algorithms for this task, it 

is desirable to have larger datasets which can be used to benchmark the method.  

This chapter presents a more thorough, robust evaluation of the spectra method than 

has previously been reported in the literature. The performance of the spectra method 

is compared to the performance of machine learning methods for classifying pairs of 

structures into polymorphs and redeterminations. A large dataset with manually 

assigned polymorph labels, filtered to remove inter-expert inconsistencies, was 
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constructed to allow for the benchmarking of the classifiers. This analysis identified 

the most suitable automated approach for discriminating polymorphs from 

redeterminations to automatically identify polymorphs in the CSD or any CSD-like 

in-house database.   

5.2 Methods and Data 

5.2.1 Datasets 

The Manual label, Best R, and Benchmark datasets were derived from version 5.39 of 

the CSD database. Prior to splitting, all crystal structure entries were filtered only to 

retain structures for which the latest implementation of the spectra method from the 

CCDC could be applied without raising any errors. All suitable refcodes were grouped 

by the refcode family, and all possible combinations of refcode pairs within each group 

were identified (81,401 pairs). Manual labels are not available for every structure, and 

similarly, the best R factor list cannot be used for every pair, so the putative label 

assignment was attempted by both methods for all pairs before they were split into 

datasets. For each pair, a classification of 1 was given if the labelling method 

determined that the pair are different polymorphs and 0 for pairs of redeterminations. 

No value was given in case the labelling method could not be used to give a 

classification (e.g. when one of the structures lacks a manual label). The way in which 

the classification was done for each of the labelling methods (best R and manual label) 

is described in the following sections (5.2.1.1 and 5.2.1.2 respectively). Based on the 

obtained classifications, the pairs were split into the three datasets and the respective 

subsets (section 5.2.1.3) as illustrated in Figure 5.1. 

 

Figure 5.1: Datasets used in the polymorph redetermination  

 Manual, Best R, Benchmark, and In-house. These can be further divided into 

training, validation, testing, and application subsets. 
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5.2.1.1 Best R dataset 

For each pair of refcodes, the classification was assigned based on the process 

described in Figure 5.2. If both refcodes are in the best R factor list, the two structures 

represent two different polymorphs. In any other case, if there is only one refcode in 

the best R factor list for that refcode family, the pair of refcodes is the redetermination 

of the same structure. In case there is more than one refcode in the best R factor list, it 

is not possible to determine whether the pair is a redetermination or different 

polymorphs and so no label is assigned. This limits the number of available pairs for 

the best R dataset. 51,649 pairs were given a classification based on Best R factor list 

(referred to as Best R classification hereafter).  

 

Figure 5.2: Label assignment process flow chart for labels based on the best R 

factor list. 

 

5.2.1.2 Manual label and benchmark datasets 

The manual label and benchmark datasets are based on the polymorph label assigned 

by the authors submitting the structure to the CSD; this is available for 4 % of the 

structures studied. The distinction between polymorphs and redetermination was made 

by comparing the manual polymorph labels. If the labels matched, the pair was 

considered a set of redeterminations (classification = 0), and polymorphs 

(classification = 1) otherwise. In cases where there was no label for one or both of the 

structure, no label assignment was carried out (the label is referred to as Manual 

classification hereafter).  
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For each pair of structures, along with the Manual classification, information 

concerning whether the structures came from the same literature source was also 

noted. To remove inconsistency in labels due to different polymorph labels by 

different researcher [221], for the benchmark dataset, only structures that came from 

the same literature source were considered. Furthermore, an effort was made to 

eliminate any errors within the labels. However, some false polymorphs may have 

been identified due to mismatch of the label caused by spelling mistakes. For example,  

JIBCIG04 and JIBCIG06 are redeterminations of the same polymorph with labels: 

‘othorhombic’ and ‘orthorhombic’ (the missing ‘r’ was subsequently corrected in the 

CSD). The curation workflow attempted to eliminate all such cases; however, the 

possibility of some noise in the data cannot be entirely eliminated due to the large 

number of pairs considered (17,364). 

 

5.2.1.3 Dataset split 

After each pair was labelled using the best R factor list and manual labels, along with 

checking if the literature source is the same, the datasets were split into six subsets 

according to Figure 5.1. Three intersecting sets were constructed based on the 

availability of labelling discussed in 5.2.1.1 and 5.2.1.2. 

𝐵𝑒𝑠𝑡 𝑅 = {𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝐵𝑒𝑠𝑡 𝑅 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} Equation 5.1 

 

𝑀𝑎𝑛𝑢𝑎𝑙 = {𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} Equation 5.2 

 

𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑀𝑎𝑛𝑢𝑎𝑙 

∩ {𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑒 𝑓𝑟𝑜𝑚 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒}  

Equation 5.3 

 

The total number of available pairs (𝐵𝑒𝑠𝑡 𝑅 ∪ 𝑀𝑎𝑛𝑢𝑎𝑙) for dataset creation is 76,309. 

The detailed breakdown of the sets is shown in Figure 5.3. The manual label training 

and best R training datasets were selected from pairs that had an only manual label 

and best R label respectively (𝑀𝑎𝑛𝑢𝑎𝑙 𝐵𝑒𝑠𝑡 𝑅⁄ , 𝐵𝑒𝑠𝑡 𝑅 𝑀𝑎𝑛𝑢𝑎𝑙⁄  ). This was to 
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ensure that the effects of training machine learning models for distinguishing 

polymorphs from redeterminations using different means of assigning the training set 

labels were not confounded by differences in the crystal structures used for training 

the models. Due to the limited number of pairs available for Manual training dataset, 

the training set size was limited to 24,660 pairs. 

All the validation and test sets come from pairs that have both manual and best R labels 

(𝑉𝑎𝑙𝑖𝑑__𝑎𝑛𝑑_𝑡𝑒𝑠𝑡 =  𝑀𝑎𝑛𝑢𝑎𝑙 ∩ 𝐵𝑒𝑠𝑡_𝑅). This is done to allow for further 

comparison between the models trained on the two datasets. The benchmark validation 

and test sets were selected where each structure came from the same literature source 

(𝑉𝑎𝑙𝑖𝑑_𝑎𝑛𝑑_𝑡𝑒𝑠𝑡 ∩ 𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒).  Best R and manual validation sets come from the 

remaining pairs that have both labels (𝑉𝑎𝑙𝑖𝑑_𝑎𝑛𝑑_𝑡𝑒𝑠𝑡/𝐿𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒). To ensure the 

same size for all validation sets, the set size of 2,594 pairs was used. The Benchmark 

test set consists of 3,415 pairs. The dataset splits are shown in Figure 5.3. 

 

 

 

Figure 5.3: Availability of labels from the best R factor list and manual labels. 

For the pairs that have a manual label, whether both structures come from the 

same literature source was also noted. 
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5.2.2 Descriptors 

To build machine learning models for classifying pairs of crystal structures, contained 

within CSD-like in-house databases, as polymorphs or redeterminations, suitable 

descriptors needed to be identified. Initial descriptor selection was carried out based 

on data available within the in-house database and understanding of polymorphism. 

Different combinations of descriptors were evaluated based upon analysis of CSD 

data, including the effect of removing certain descriptors on the performance of the 

machine learning methods, as evaluated using the validation sets. 

The following experimental data (structural data and experimental metadata) were 

available for crystal structures in the in-house database and were considered relevant 

to classifying structures, with the same molecular structure, were polymorphs or 

redeterminations. Based upon the assessment described below, a subset of these 

parameters was chosen to be used as descriptors, alongside the calculated packing 

similarity (see below), for the machine learning models.  

All entries in the in-house database and the CSD included information such as cell 

parameters (lengths and angles), crystal system, and density, while the experiment 

temperature and the R-factor are missing for some cases. Each numeric descriptor was 

calculated as the difference across pairs of structures, i.e. difference in temperatures 

was taken as the temperature descriptor. Otherwise, for qualitative variables, such as 

crystal system, pairs where the values of these variables matched or did not match 

were assigned a value of 0 or 1 respectively for the corresponding descriptor. 

Cell parameters (angles and lengths) are expected to change across a pair of 

polymorphs as different packing arrangements are likely to affect the unit cell 

dimensions. In many cases, the crystal system (i.e. lattice type) differs between 

polymorphs. In principle, this should not be different for redeterminations, but the 

documented crystal system may occasionally differ for some redeterminations. (For 

example, a slight difference in apparent cell lengths may lead a cubic polymorph to be 

considered orthorhombic for some redeterminations.)  However, differentiating 

between polymorphs and redeterminations is more difficult for structures with the 

same lattice type. If the lattice type is the same across the pair of structures, a value of 

0 is assigned (1 is assigned if the system is different). 
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Regarding differences in symmetry, there are over 230 space groups possible with 

some degree of similarity [59]. A method of grouping similar space groups was not 

readily available, so differences in space group, i.e. symmetry differences, were not 

encoded as a descriptor. For a given molecule, only a combination of cell parameters 

and the space group can change the density, i.e. the ratio between the mass of all atoms 

in a unit cell  and the volume of the cell (the mass of all atoms in the unit cell is 

determined by the number of molecules per unit cell – determined by the symmetry 

operators, and the volume is determined by the cell parameters.) Therefore, it is 

expected that any information captured by density is largely included within the cell 

parameters. Crystallisation temperature along with other experiement conditions can 

affect the cell parameters, and the same polymorph can have different apparent cell 

parameters if studied at a different temperature. The R-factor is an indicator of how 

well the structure calculated from a crystallographic model agrees with the 

experimental X-ray diffraction data. In some cases, a redetermination with improved 

R-factor can have different apparent cell parameters to the original structure [223]. To 

capture these phenomena, the changes in R factor and the temperature across the pairs 

of structures were used as descriptors. 

Further to the descriptors available within the databases, a comparison of packing can 

be made. Crystal polymorphism can be defined as structures with different packing 

arrangements. COMPACK[224], as it is available through CSD API[189], can be used 

to quantify the packing similarity between pairs of crystal structures. A molecule is 

selected from the crystal structure and a 15 molecule packing shell is generated based 

on the crystal packing. The packing shells for the two crystal structures are 

superimposed and are aligned to minimise the distance between matched atoms of 

each molecule from each cluster. The number of molecules that fit within the 

predefined distance tolerance (0.2 Å [224]) is returned. A high number indicates that 

the packing is similar for the crystal structure pair. In this study, the number was 

divided by 15 to scale it within the range of 0 to 1 (1, meaning 15 out of 15 molecules 

were within the tolerance distance). The descriptor is referred to as packing similarity 

hereafter. 

 

The differences in cell parameters (i.e. cell lengths a, b, c and angles alpha, beta, 

gamma), an indicator variable denoting differences in the crystal system as explained 
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above, differences in R-factors, differences in the temperature of crystallisation, and 

packing similarity were initially selected as descriptors for the model development.  

All of these descriptors were available for the set of entries chosen from the CSD to 

form the datasets summarised in Figure 5.1. Analysis performed using the training and 

validation data was also used to refine the set of descriptors chosen for the final 

machine learning model. 

 

5.2.3 Descriptor analysis 

Prior to developing models using supervised machine learning, the descriptors were 

analysed. The purpose of this step was to (1) assess whether the distributions between 

the different CSD derived datasets used for training, validating and testing were 

comparable, and (2) develop descriptor sets suitable for the classifier development.  

5.2.3.1  Correlation matrix 

A correlation matrix was used to eliminate descriptors that are highly correlated based 

on the training sets. The Pearson correlation coefficient was used to quantify the 

correlation between descriptors [225]. The coefficient for two descriptors (X, Y) is 

given by equation (4), where n is the number of samples, i.e. pairs of polymorphs or 

redeterminations, 𝑥𝑖 is the value of X for the i th sample and 𝑥̅ is the arithmetic mean 

of X (analogous for Y). The correlation coefficient was calculated for all combinations 

of descriptors. 

𝑟𝑋𝑌 = 
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1  √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 
Equation 5.4 

 

5.2.3.2 Principal Component Analysis 

Principal component analysis (PCA)[226] was performed for two reasons: (1) to 

develop an understanding of key descriptors that determine whether a pair of structures 

are polymorphs or redeterminations; (2) to assess whether the different training, 

validation and test sets were sufficiently similar in order for the validation and test sets 

to lie within the applicability domain of the machine learning models developed using 

the corresponding training sets.  The descriptors selected have different magnitudes of 
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scale. Hence, to ensure none of the features dominates the analysis, min-max scaling 

was used. This transforms each descriptor to fit within the range of 0 to 1 based on the 

minimum and maximum values.   

The PCA was fitted to the Best R training set and Manual label training set, resulting 

in two sets of loadings for the original descriptors, referred to as PCA-s and PCA-m 

respectively. The two sets of loadings were then used to transform the manual label 

validation set, Best R validation set, and the benchmark dataset to compare the datasets 

based upon their distribution with respect to the principal components associated with 

the highest contribution to the variance in the scaled descriptors. The loadings 

associated with the principal components which best-separated pairs of polymorphs 

from redeterminations were also examined, providing insight into the key descriptors 

providing linear discrimination between polymorphs and redeterminations. However, 

the supervised machine learning methods used to build the classifiers were also able 

to take account of non-linear relationships. This was necessary as linear separation is 

not sufficient for classification. For example, unit cell length difference may arise from 

polymorphism, but also from temperature difference, hence the interdependent nature 

of some the features need to be taken in account. 

5.2.4 Classifier development 

5.2.4.1 Development process 

The model development stage was divided into three steps; training, validation, and 

testing. The training subsets from the two datasets (Best R and Manual) were used to 

train classifiers, using various machine learning algorithms, to distinguish between 

polymorphic and redetermination pairs (Figure 5.4). The evaluated machine learning 

algorithms are described below. The best algorithm and algorithm parameters, i.e. 

hyperparameters, from each training set was selected for the validation step (selection 

criteria discussed in below). The performance of the selected models was assessed 

using the validation subsets of the Best R method, Manual label, and benchmark 

datasets. Validation using three datasets was used to study the generalisability of the 

models and to study the difference in the datasets. The process was repeated for 

various descriptor sets developed based on the dataset analysis. 
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Finally, the single best performing machine learning model based on the benchmark 

validation set, along with the spectra method, was applied to the benchmark test 

dataset to assess the performance on a high-quality external dataset. 

 

Figure 5.4: Overview of the model development process 

 

In this work, the following Random Forest (2.4.4) hyperparameter values were 

investigated: number of trees 10 – 200, split criterion Gini or entropy, max depth 1 – 

110. The following Support Vector Machine (2.4.5) hyperparameter values were 

investigated: Gamma (10-4 to 103) and C (10-4 to 103). Random search was used to 

probe the hyperparameter search space. 

The F1 score (2.4.3, Equation 2.21) is used as the primary performance metric for the 

models. It was used for selection of the single best machine learning model out of all 

models, based upon different combinations of descriptors and training sets, applied to 

the validation sets. It was also used for the selection of the most suitable algorithm, as 

well as for the optimisation of SVM and RF models, i.e. the selection of the best 

combinations of algorithms and hyperparameters was based upon the combination 

which led to the largest mean F1 score obtained from cross-validation on the training 

set. 

5.2.5 Computational details 

All computational work in this paper was performed using Python 2.7 (64-bit, as 

installed using the Anaconda Distribution version 4.3.34).  Any interaction with the 

crystal structure repositories was handled using the CSD Python API (1.5.2) [215]. 
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The API was also used for calculation of packing similarity between crystal structures. 

The pandas (0.19.2) library was used for handling of data and for construction of the 

correlation matrix [216]. Principal Component Analysis, Random Forest, Support 

Vector Machine, and hyperparameter selection using cross-validation were performed 

using SciKit-Learn (0.18.1) [123]. See Appendix 3 for the scripts used. 
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5.3 Results and Discussion 

5.3.1 Descriptor Selection 

5.3.1.1 Correlation matrix 

A correlation matrix was created to eliminate any highly correlated descriptors (Figure 

5.5). There were no significant correlations between the features, so all selected 

descriptors were used. 

5.3.1.2 Principal Component Analysis 

The PCA was fitted to the manual label training set (PCA-m) and best R training set 

(PCA-r). The descriptor contributions to the first four principal components are 

summarised in Table 5.1. The explained variance of each of the principal component 

is shown in Figure 5.6. The first component (PC1) explains significantly more of the 

variance compared to the subsequent components.  The largest contribution to the first 

 

Figure 5.5: Pearson Correlation coefficient matrix of the selected descriptors 

within the Best R training set 
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principal component (PC 1) comes from packing similarity (-0.796 and -0.902 

respectively) followed by crystal system (0.564 and 0.390 respectively). However, 

there are differences in contributions to PC 2 and PC 3. For manual label dataset, 

crystal system and packing similarity are the predominant contributors to the PC 2, 

while the temperature and R factor are the largest contributors to the PC 3. The 

contributions to PC 2 and PC 3 for best R dataset are similar to the contributions to 

PC 3 and PC 2 for the manual label dataset respectively. 

 

 

Figure 5.6: explained variance of PCA fit to manual train dataset (top) and 

Best R dataset (bottom). 
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Packing similarity and crystal system are the two factors that contribute the most to 

the principal components and were further analysed to develop suitable descriptor sets 

for the classifier development.  

The Best R validation dataset transformed using PCA-m is shown in Figure 5.7. The 

figure shows that the polymorphs and redeterminations are not linearly separatable. 

Thus, the use of machine learning algorithms capable of capturing a more complex 

relationship between the descriptors and the target (polymorph or redetermination) is 

required. 

5.3.1.3 Packing similarity 

Polymorphism is the difference in the crystal packing. For this reason, it can be argued 

that packing similarity alone should be sufficient in developing a classifier for 

polymorph-redetermination. Based on the PCA, packing similarity is an important 

descriptor, and so it was investigated how well it can separate polymorphic and 

redeterminations pairs (Figure 5.8). As the figure shows, redeterminations tend to have 

high packing similarity. 97.6 % of redetermination pairs in the benchmark validation 

set have packing similarity of >0.8. For this reason, a single descriptor model was 

considered in the classifier development stage (5.3.2). 

Table 5.1: First four principal components for the Manual label and Best R 

training sets. 

Descriptor 
Fitted to Manual Training Fitted to Best R training 

PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4 

Alpha 0.049 0.047 -0.028 -0.042 0.051 0.021 0.082 -0.019 

Beta 0.150 0.053 0.029 0.019 0.087 0.033 0.096 -0.006 

Gamma 0.095 0.119 -0.001 -0.034 0.071 0.022 0.117 -0.020 

a 0.077 -0.007 -0.037 0.067 0.062 0.018 0.054 0.011 

b 0.064 -0.020 0.001 0.053 0.080 0.021 0.075 0.017 

c 0.044 -0.022 0.005 0.034 0.072 0.020 0.076 0.015 

Crystal 

system 
0.564 0.796 -0.050 -0.001 0.390 0.086 0.874 -0.075 

Temperatu

re 
0.027 0.030 0.843 -0.531 0.005 0.882 -0.135 -0.450 

Packing 

similarity 
-0.796 0.588 0.022 0.036 -0.902 0.082 0.417 0.023 

R factor 0.043 0.003 0.533 0.840 0.058 0.452 -0.004 0.889 
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Although it is a useful indicator, there is an overlap between the polymorphs and 

redeterminations. For the benchmark validation set, 10.6 % of polymorphic pairs have 

packing similarity of >0.8. Calculation of the packing similarity is computationally 

expensive, so a descriptor set that does not use it was also used in the classifier 

development (5.3.2). 

 

Figure 5.7: Best R validation dataset transformed using the PCA-m (PCA 

fitted to the manual label training dataset. 
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Figure 5.8: Comparison of packing similarity between pairs of polymorphs and 

redetermination for the benchmark validation set. The figure is normalised to the 

area under the graph = 1. 

 

5.3.1.4 Lattice type 

The lattice type is the second descriptor with the largest contribution to the first 

principal component. The relationship between the lattice type descriptor and the 

polymorph and redetermination classification using spectra method (left) and the 

manual label (right) is shown in Figure 5.9. There are no redeterminations based on 

the manual label that have different lattice types, whereas 18 % of redeterminations 

based on the spectra method have different lattice types.  TMACNZ07 and TMACN09 

are a pair of structures that are in the 18 %. The only difference in cell angles is a 

change of 0.42o of β from 90o. For this reason, TMACNZ07 is classed as a monoclinic 

lattice and TMACNZ09 is orthogonal. Comparing the two crystal structures further, 

the average percentage change between the cell lengths is 0.7 %, with the change in b 

from 15.309 Å to 15.105 Å being the largest difference. The packing similarity is 1.0, 

indicating that all molecules within the 15 molecule packing shell align within the 
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tolerance of 0.2 Å. It is plausible that the two structures are the same polymorph, with 

the difference in the unit cell parameters being due to the difference in the R factor 

(6.4 and 2.6) and the temperature (200 K and 100 K). Another similar example is the 

pair of COQNUR and CONQNUR01, where different lattice type was assigned due to 

a difference of the angle β of 0.02o, while the difference in cell lengths is below 0.9% 

and the packing similarity is 1.0. It is possible that in some of the cases, a different 

polymorph label was assigned based on the different lattice type assignment without 

a thorough comparison of the crystal packing. For this reason, a descriptor set that 

excludes lattice type was used for the classifier development (5.2.4). 

 

  

Figure 5.9: Comparison between polymorphs and redeterminations for the best 

R validation set. The classification based on spectra method (left) and manual 

label (right). The graph is normalised to the area under the graph = 1. 

 

5.3.2 Classifier development 

5.3.2.1 Training 

Two training datasets, Manual training and Best R training sets were used to train 

classifiers. For every combination of the training dataset and descriptor set (All, no 

packing similarity, and no lattice), a RF and SVM classifiers were trained and 

optimised.  The F1 score on the cross-validation set for the best performing models is 

summarised in Table 5.2. RF outperformed SVM for all descriptor sets, trained on the 

Best R training dataset. The performance of the two algorithms was much closer in 

case of models trained on the Manual training dataset, but the SVM models had the 
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higher F1 score. For the single descriptor model that only uses packing similarity, only 

a random forest model was trained. It obtained a F1 score of 0.867.  

The best performing algorithm for each combination of training set and descriptor set 

were selected for the validation step of the classifier development. 

 

 

 

Table 5.2: F1 scores of the trained classifiers. 

Descriptor set 

Manual Best R 

RF SVM RF SVM 

All 0.897 0.899 0.882 0.794 

No Packing 0.892 0.900 0.811 0.681 

No Lattice 0.893 0.898 0.880 0.793 

5.3.2.2 Validation 

The models with the highest F1 scores from each combination of training dataset and 

descriptor set were applied to the three validation sets (Manual, Best R, and 

Benchmark). The results are summarised in Table 5.3.  

The performance on the homogenous validation set (i.e. performance of model trained 

with manual label training set on manual label validation set and vice versa), 

heterogeneous validation set (i.e. performance of model trained with manual label 

training set on spectra method validation set and vice versa), and benchmark validation 

set was analysed. 

All models performed better on the homogeneous validation sets compared to 

heterogenous validation sets with the exception of model 4, which had a similar F1 

score for both (0.886 and 0.887). Out of the models trained on the Manual training 

dataset (model 1 - 4), the single descriptor model (4) had the highest F1 score, in 

contrast to model 2 which did not use packing similarity as a descriptor and had the 

lowest F1 score. This further strengthens the argument for the usefulness of packing 

similarity for the polymorph redetermination classification. Out of the models trained 
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on the Best R training dataset (model 5 – 8), single descriptor model (8) had the lowest 

F1 score due to the very low recall (0.175) while the precision is high (0.933).  Unlike 

in the case of model 3, in model 7, the exclusion of the lattice type as a descriptor does 

not improve the performance. As discussed in 5.3.1.4, in some cases, lattice type may 

be incorrectly used to classify polymorphs and redeterminations manually. This is not 

the base for Best R dataset, so no improvement was observed by dropping it as a 

descriptor. Omitting packing similarity, reduced the F1 score to 0.886 (from 0.938).  
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Table 5.3: Performance on the validation sets of classifiers trained on Manual 

and Best R training dataset, using different descriptor sets. 

Trained 

on 

Model 

ID 
Descriptors 

Performance on 

Manual valid Best R valid 
Benchmark 

valid 

Manual 

1 ALL 

F1 : 0.883 

Precision: 0.861  

 Recall: 0.906 

 F1 : 0.801 

Precision: 0.679  

 Recall: 0.977 

F1 : 0.920 

Precision: 0.966 

 Recall: 0.878 

2 
NO 

PACKING 
 F1 : 0.879  F1 : 0.797  F1 : 0.911 

3 
NO 

LATTICE 

F1 : 0.881 

Precision: 0.860 

 Recall: 0.903 

F1 : 0.803 

Precision: 0.679 

 Recall: 0.982 

F1 : 0.918 

Precision: 0.965 

 Recall: 0.875 

4 
PACKING 

ONLY 

F1 : 0.886 

Precision: 0.956 

 Recall: 0.825 

F1 : 0.887 

Precision: 0.814 

 Recall: 0.974 

F1 : 0.907 

Precision: 0.952 

 Recall: 0.868 

Best R 

5 ALL 

F1 : 0.852 

Precision: 0.988 

 Recall: 0.749 

 F1 : 0.938 

Precision: 0.925 

 Recall: 0.952 

 F1 : 0.816 

Precision: 0.989 

 Recall: 0.694 

6 
NO 

PACKING 
 F1 : 0.819  F1 : 0.886  F1 : 0.790 

7 
NO 

LATTICE 

F1 : 0.850 

Precision: 0.988 

 Recall:0.746 

 F1 : 0.934 

Precision: 0.923 

 Recall: 0.945 

 F1 : 0.813 

Precision: 0.989 

 Recall: 0.875 

8 
PACKING 

ONLY 

F1 : 0.217 

Precision: 0.982 

 Recall: 0.121 

F1 : 0.295 

Precision: 0.933 

 Recall: 0.175 

F1 : 0.176 

Precision: 0.896 

 Recall: 0.097 
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The performance on the heterogenous validation datasets is worse than on the 

homogeneous datasets. The only exception is model 4, which has a consistent 

performance across the two validation datasets. However, the similar F1 score is 

caused by a proportional drop in precision and an increase in recall. 

 

The performance on the benchmark validation set was higher for the models trained 

on the Manual dataset (model 1 – 4) compared to the models trained on the Best R 

dataset (model 5 – 8). The PCA did not indicate any clear differences between the two 

datasets; however, the consistent difference in performances indicate that some 

difference exists.  

Model 8 has the worst performance overall, caused by low recall values. However, the 

same descriptor set trained on the Manual dataset achieved F1 score of 0.907. Not 

using lattice type as a descriptor has a minimal effect on the performance of the models 

for the two groups (model 1 and 3, and model 5 and 7). The best performing models 

for each training set are ones that use all descriptors (model 1 and 5) with model 1 

having the highest F1 core (0.920). This model was selected for the testing stage 

discussed below. 

 

5.3.2.3 Test 

The best performing model (trained on manual label dataset with all descriptor set) 

achieved a F1 score of 0.910 (recall = 0.864, precision = 0.962) on the benchmark test 

set (Table 5.4). The performance is similar to the one achieved on the benchmark 

validation set. The spectra method was also compared to the manual labels from the 

benchmark test set; the confusion matrix for which is presented in Table 5.4. The F1 

score of the spectra method is 0.780 with recall of 0.645 and precision of 0.988. The 

spectra method had fewer false positives compared to the model 1, but a higher rate 

of false positives. Comparison of the misclassifications by the two methods are 

visualised in Figure 5.10. It was attempted to find differences in the descriptor 

distributions across the different subsets of the misclassified pairs. However, none of 

these were statistically significant (at 5 % confidence level).  
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Table 5.4: Confusion matrix of the trained machine learning model 1 and the spectra 

method on the test set 

 Model 1 Spectra method 

Red. Pol. Red. Pol. 

Manual 

label 

Redetermination 943 67 994 26 

Polymorph 265 1676 689 1252 

 

 

 

Figure 5.10: Comparison of false negatives and false positives of the trained machine 

learning model 1 and the spectra method. 
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5.4 Conclusion 

A dataset for benchmarking the performance of automated methods of classifying 

polymorphic and redetermination pairs of crystal structures was developed. The 

dataset consists of pairs of structures that have been manually assigned a polymorph 

label and came from the same publication to ensure consistency of labels. 6,009 such 

pairs were identified in total, making this the largest available benchmarking dataset 

for assessing the polymorph redetermination classification. 

A number of machine learning models were developed for the task of classifying 

structures into polymorphs and redeterminations. The model with the highest F1 score 

was selected and its performance was compared to the currently used method of based 

on spectra comparison. The best performing model achieved an F1 score of 0.910, 

while F1 score for the spectra method was 0.780. The machine learning approach 

appears to be a promising avenue for the development of automated methods for 

classification of polymorphs and redeterminations.  

The work in this chapter shed some light on the data quality regarding polymorph 

propensity study presented in Chapter 4. The spectra comparison method was used for 

the polymorph count. This chapter showed that the polymorph count derived in this 

way, may not be accurate (F1 score of 0.780). This likely contributed to the lack of 

statistically significant trends observed on the polymorph propensity study. However, 

the correlation between research intensity and polymorph count along with 

challenging properties of the dataset itself are likely to have a more significant 

contribution to the lack of trends observed. In the following chapter, the property of 

the dataset itself, namely how suitable it is for MMPA is assessed. 
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Chapter 6  

Matched Molecular Graphs 
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6.1 Introduction 

In Chapter 4, several issues relating to MMPA of polymorph propensity were 

identified. In this chapter, the datasets are examined and compared to other literature 

data sources to assess the suitability for MMPA. Herein, the focus is upon issues which 

prevent MMPA yielding statistically significant results, even when those trends exist 

and would be statistically significant given adequate datasets. 

The MMP approach was first utilised to analyse the most common substitutions found 

in drug-like substances [181]. Since then, it has been used for lead optimisation tasks 

within the Discovery stage of pharmaceutical product development 

[11,12,184,190,196,199].  A range of properties related to the early stage of the drug 

development was studied, such as molecular solubility (as typically taken as a 

molecular property rather than an equilibrium between the solid state and the 

continuous phase) [190,192], activity [12,227,228] and clearance [55]. With one 

notable exception where the effects of molecular transformation on crystal packing 

were studied [189], the applications of MMPA are typically limited to properties of 

interest during Discovery (i.e. where solid form may not be known or not focused 

upon). As such, the datasets that are used for the analysis are predominantly derived 

from Discovery datasets. 

The datasets from different stages of pharmaceutical product development are 

compared to develop a better understanding of the potential reasons for the low MMP 

count for the CSD dataset used in Chapter 4. This is accomplished using Matched 

Molecular Graphs (MMG), details of which are presented in 6.2.2 
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6.2 Method and Data 

6.2.1 Dataset 

 

Datasets from a range of stages of the pharmaceutical product development were 

selected (Figure 6.1). ChEMBL-NTD set 14 (GSK TCAKS (Tres Cantos Anti-

Kinetoplastids Set) dataset) [229] was taken as a representative dataset of the 

Discovery stage where MMPA is typically applied. The dataset was selected due to its 

size and the fact that it came from a single pharmaceutical company.  The CSD 

monomorphic adjusted single component dataset (as defined in Chapter 4) 

corresponds to the Development stage. Patent melting point dataset (2.3.3) [83] was 

used to systematically study the effects of dataset size on the properties of the MMG. 

6.2.2 Graph construction 

The MMG method uses a graph constructed from the MMPs. The basic concepts of 

graphs were introduced in 2.4.1.2. In this chapter, some of the properties of graphs are 

examined. The degree of a vertex is defined as the number of edges that connect to the 

vertex. For graphs that do not have multiple edges (connecting the same pair of 

vertices) nor loops, the degree of a vertex is equivalent to the cardinality of the set of 

neighbours of the vertex (Equation 2.2). 

 

Figure 6.1: Datasets selected for MMG study across the pharmaceutical 

development process. 

The process diagram adapted from [19]. Discovery stages illustrated in blue. 

Development stages shown in orange. 

Target-to-hit

Hit-to-lead

Lead optimisation

Pre-clinical

Phase 1

Phase 2

Phase 3

Submission

GSK TCAKS CSD
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deg(𝑣) = |𝑁𝐵𝑅(𝑣)| Equation 6.1 

6.2.2.1 Matched Molecular Pair identification 

The method described in Chapter 3 was used to identify MMPs within each of the 

datasets. If not explicitly specified, the maximum change size was limited to 10 heavy 

atoms, and the ratio of the change to the whole molecular was limited to 0.3. 

6.2.2.2 Pairs to graph 

Each MMP can be seen as an edge (small molecular change - transformation as defined 

in Chapter 4) that connects two vertices (molecules), as shown in Figure 6.2. All 

compounds within a dataset are initialised as vertices with some identifier (typically 

SMILES or refcode family) as a label. Additional labels such as the number of 

polymorphs can also be added. List of all MMPs is used to construct the edges. The 

molecules in the MMP are joined via an edge with the transformation being stored as 

an edge label. Additional labels such as the property change for that transformation 

may also be used. The created edge is a directed edge (e12 in Figure 6.2) and the reverse 

edge should be added (e21). However, the script used to create the MMP Database 

orders the transformations consistently. For this reason, the edge e21 is redundant as 

all hydroxyl to methyl MMPs would be ordered in the same way. Hence, the e21 edge 

is not added to the graph.  

 

Figure 6.2:  Visualisation of the Matched Molecular Graph contruction from 

a MMP. 

Labels such as molecular structure (SMILES) can be assigned to each of the 

vertices. Labels such as the transformation (SMIRKS) can be assigned to 

edges. 

 

>>

>>

 1  2

e12

e21
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6.2.2.3 Visualisation 

Any graph operations can be performed in Python using NetworkX library [230]. 

However, it is often useful to visualise the graph and interact with it graphically. For 

this purpose, Gephi software package was used [231]. ForceAtlas2 algorithm was used 

for the vertex placement for visualisation [232]. The principle behind this algorithm is 

that vertices repel one another, but edges attract. The result is that clusters of 

interconnected vertices remain close, while vertices without many edges get repelled 

further away.  

6.2.3 Software 

Matched Molecular Pair were extracted from the database introduced in Chapter 3. 

Scripts were written to directly interact with the database.  Graph visualisation was 

carried out using Gephi [231]. Python 2.7 was used for data manipulation. Figures that 

were not generated using Gephi were created using matplotlib [218] and seaborn 

[217]. The scripts used for the Gephi input generation is available in Appendix 1. 
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6.3 Results and Discussion 

6.3.1 Monomorphic adjusted single component CSD dataset 

A Matched Molecular Graph was constructed from the data used in the polymorph 

propensity study in Chapter 4. The dataset contained 6,633 entries with 2776 MMPs. 

The constructed graph is shown in Figure 6.3. Due to the nature of the ForceAtlas2 

algorithm, molecules with no MMPs (no edges) are pushed to the outside, while 

molecules with MMPs tend to remain closer to the centre. This results in the graph to 

consist of three components. The outer ring of vertices (dark blue in the figure) 

consists of molecules with no MMPs. The middle ring (gold in the figure) contains 

 

Figure 6.3: Matched Molecular Graph of monomorphic adjusted CSD single 

component dataset with max change size of 10 heavy atoms and max ratio of 

change of 0.3 for all MMPs. 

The outer ring (dark blue) consists of molecules with no MMPs. The middle 

ring (gold) consists of molecules with few (typically one or two) MMPs. The 

inner circle (yellow) contains large clusters of molecules that share many 

MMPs. 
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molecules that have few MMPs. These typically consist of small clusters of molecules 

(left in Figure 6.4). In here, the term clusters are not used in accordance with the graph 

theory definition, but rather as a synonym for a disjointed subgraph. As can be seen 

from the graph, these clusters may be a pair of molecules (a single MMP) or a group 

of molecules that share multiple MMPs. Much larger clusters can be found within the 

inner circle of the graph in Figure 6.3. Molecules in these large clusters have up to 42 

MMPs with other molecules from the cluster. 

A closer examination of the relative size and properties of the three identified 

components in the MMG was performed to identify aspects that affect the performance 

of the MMPA procedure. The outer layer contains 74.9 % of the molecules (4,847) 

from the dataset, yet contain none of the MMPs (no edges). This means that any 

MMPA done on this dataset ignores almost three-quarters of the available data. This 

is particularly problematic for small datasets such as the one used in Chapter 4. The 

lack of MMPs for 74.9 % of the molecules suggests that these molecules are dissimilar 

from one another. 

The middle ring contains 17.7 % of molecules (1,146) and 41.3 % of the MMPs. 482 

molecules (7.4 %) are found in the inner circle. These molecules contribute to the rest 

of the MMPs (58.7 %). This means that over half of MMPA result comes from 7.4 % 

 

Figure 6.4: Example of clusters found in the Matched Molecular Graph. 

On the left, typical clusters found in the mid-ring of the graph. On the right, 

a large cluster found in the central circle of the graph. Emphasised are all 

MMPs that contain the central molecule. Vertices were moved manually to 

avoid overlap for the sake of clarity. 
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of the molecules. In the case of polymorph propensity study where polymorphic 

structures are rare, this may result in polymorphic structures being underrepresented. 

The analysis of the MMG suggests that MMPA carried out on this dataset may not be 

robust nor representative. To see which factors contribute to such MMG properties, 

two dataset characteristics were considered: dataset size and the origin within the 

pharmaceutical product development of the dataset. These are explored below. 

 

6.3.2 Dataset size 

The dataset size was expected to have an impact on the number of MMPs within a 

dataset. The Patent Dataset was used for the study of the effects of the dataset size as 

it is a large dataset (289,379 entries). MMGs for randomly selected subsets of 1,000, 

2,000, 5,000, 10,000, 20,000, 40,000, 60,000 and 80,000 molecules were constructed. 

The number of structures with at least one MMP (in the middle ring or inner circle in 

Figure 6.3) were tracked for the increasing dataset size (Figure 6.5). For the MMG 

made from 1,000 molecules, the fraction is only 2.2 % meaning that only 22 molecules 

have MMP and therefore can be involved in MMPA. For the Patent dataset, this 

 

Figure 6.5: The fraction of molecules with at least one MMP as a function of 

the dataset size for the Patent dataset 
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fraction increases to 7.5 % for dataset size of 5,000. This is notably lower than the 

CSD dataset of the comparable size (6,633 molecules) in which 25.2 % of molecules 

had at least one MMP. The effects of the origin and purpose of the dataset are further 

discussed in the following section (6.3.3). The fraction of molecules with one or more 

MMPs continues to increase as the dataset size increases, making the MMPA more 

applicable.  

Further to the increase in the fraction of molecules that can be used in MMPA (at least 

one MMP), the average number of MMPs (average degree of vertices) increases as 

well (Figure 6.6). The average degree was computed only for molecules that have at 

least one MMP in order to distinguish this measure from the fraction of molecules 

with at least one MMP discussed above. For the 1,000 dataset, the average degree is 

1, indicating that there are only pairs and no clusters forming. This changes as the 

dataset size increases, with the average degree increasing to 3.3 for the 80,000 dataset. 

Based on the analysis, the dataset size plays an important role two-fold. Firstly, the 

fraction of molecules that have at least one MMP increases with the dataset size. 

Secondly, the average number of MMPs for molecules that have at least one increases 

 

Figure 6.6: Average degree of molecules with at least one MMP as the dataset 

size increases for the Patent dataset. 
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with size as well. As a result, analysis based on small datasets, such as the one done 

in Chapter 4, may not produce meaningful results due to the small number of MMPs 

and molecules that are included in the MMPA. 

6.3.3 Datasets across the Pharmaceutical Product Development 

The Patent dataset, which had a smaller fraction of molecules with at least one MMP 

compared to the CSD dataset, represents a more diverse range of molecules. The 

effects of the data source on the MMG were investigated further. The GSK TCAKS 

dataset was taken as a representative of the Discovery dataset as it comes from a single 

company against a specific target. In reality, pharmaceutical companies hold 

significantly larger datasets within Discovery stage compared to Development 

datasets, based on the attrition rate through the pharmaceutical development process. 

However, to study the effects of the data source, a subset of the same size as the 

 

Figure 6.7: Matched Molecular Graph of GSK TCAKS dataset (Discovery 

dataset) 
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Development dataset was randomly selected. The CSD dataset was used as a surrogate 

for a Development dataset.  

The MMG of the Discovery dataset is shown in Figure 6.7. The difference compared 

to the MMG of the Development dataset (Figure 6.3) is visually apparent. 58.2 % of 

molecules in the Discovery dataset have at least one MMP compared to 25.1 % for the 

Development dataset (Figure 6.8). This means that for the same dataset size, more than 

twice as many molecules can be involved in MMPA of Discovery datasets compared 

to a Development counterpart. Comparison of the MMGs can also reveal that the 

Discovery dataset has larger clusters. The average degree of molecules with at least 

one MMP is 5.34 for Discovery and 3.33 for Development. The total number of MMPs 

is 10,321 and 2,776, respectively, indicating the difference in suitability of MMPA for 

the two datasets. 

 

 

Figure 6.8: Comparison of the fraction of molecules with at least one MMP for 

datasets taken from different stages of the Pharmaceutical process development. 

CSD monomorphic adjusted single component dataset used as an example of 

Development dataset. GSK TCAKS dataset is used as a representative example 

of a Discovery dataset. 

 



-140- 

 

6.4 Conclusion 

The concept of Matched Molecular Graphs (MMGs) was developed to address the 

issue of the small number of MMPs found within the CSD dataset studied in Chapter 

4. The analysis of the MMG constructed from the dataset revealed that 74.9 % of the 

structures do not contribute to MMPA as they do not have a single MMP. The majority 

of the MMPs (58.7 %) comes from a small fraction (7.4 %) of molecules that form 

dense clusters. The effects of dataset size and source (Discovery or Development) on 

the key MMG parameters were investigated. Unsurprisingly, the larger the dataset, the 

larger the fraction of molecules with at least one MMP and the more MMPs overall. 

The effect is particularly crucial for smaller dataset sizes (<10,000 molecules). The 

change in MMG parameters decreases as the dataset size increases. Datasets of the 

same size, taken from Discovery and Development, also show a difference in MMG 

parameters. The Discovery dataset contained approximately four times more MMPs 

(10,321 against 2,776). The number of molecules with at least one MMP was also 

considerably higher for the Discovery dataset (58.2 %) compared to the Development 

dataset (25.1 %). The analysis was performed only on a single dataset from each of 

the stages, so further analysis of more datasets is necessary to establish whether this 

trend is representative. 

However, based on the analysis carried out here, it is clear that performing MMP-

based analysis is likely to exclude some data. This is particularly significant when 

working with Development datasets which tend to be smaller and more diverse.  Given 

the focus of the thesis on Development stage related property prediction, the emphasis 

shifted to QSPR approach. In the next chapter, work on a QSPR model for solid state-

specific prediction of melting point is discussed with a particular focus on the ability 

to capture crystal information. 

 

 

  



-141- 

 

Chapter 7  

Melting Point Prediction Using 

Message Passing Neural 

Networks Based on Molecular 

and Crystal Structures 
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7.1 Introduction 

Thus far in the thesis, work on identifying polymorphs and predicting the propensity 

to form polymorphs was presented. This chapter focuses on the effects of 

polymorphism on the properties of the solid state. An attempt is made to develop ways 

to capture the solid state information to allow accurate solid state property prediction. 

Melting point is used as a case study in this chapter. 

Melting point is the temperature at which a solid transitions into a liquid. The process 

consists of breaking of the intermolecular interactions that hold the molecules within 

the crystal lattice. The temperature at which this occurs is the ratio of enthalpy and 

entropy of melting [152]. The property, along with logP, can be used to estimate the 

solubility of a compound via the General Solubility Equation (GSE)  [81]. The melting 

point can also be used as a descriptor of the strength of intermolecular interactions 

within the crystal [35,71]. This can be used to identify “brick dust” compounds, where 

the solubility is limited by the solid state interactions [35,71]. 

Melting point has been of interests to scientists for a long time. Earliest work on 

melting point prediction can be traced back to the 19th century [233]. Most of the work 

performed in the area focused on a narrow applicability domain such as alkenes or 

chlorobenzenes [234,235]. As the availability of data increased, predictive models that 

are applicable to a wider range of molecules were developed [172]. Less curated, 

larger datasets have also been shown to produce models with large applicability 

domain [83,84]. Reviews of the melting point prediction can be found elsewhere 

[45,83,236]. 

A number of common challenges were identified in the previous works on the melting 

point prediction. In particular, it has been suggested that the molecular descriptors are 

unable to capture the long range intermolecular interactions that need to be broken for 

the crystal to melt [94]. However, another significant contribution which limits model 

performance is the experimental error, which may be interpreted as the inconsistency 

between measurements reported in different studies. Analyses have suggested that 

experimental errors vary with melting point and may be of the order of 32-35 oC [83]. 

However, these estimates are based upon analysis of the variability of measurements 

for the same molecule and may be affected by polymorphism or impurity. 
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However, the value of incorporating solid state information can only be properly 

assessed by focusing on the prediction of melting points which directly correspond to 

that solid state information, i.e. polymorph specific melting point data are required. 

Hence, to assess the importance of the solid state contributions, a dataset for crystal 

structure-specific melting point was used in this study. The Cambridge Structural 

Database (CSD) is a curated repository of small organic and metal-organic crystal 

structures [74].  Some of the entries contain melting points measured for the specific 

crystal structure. These entries formed the bases on the dataset used in this study.  

Previous work done on incorporating solid state information into predictive models 

for temperature-dependent solubility did not yield expected improvements [70]. The 

inadequacy of the solid state descriptor was cited as one potential reason for the lack 

of significant improvement in performance, along with the lack of polymorph specific 

solubility data.  

In this work, an attempt was made to capture the crystal information by a combination 

of different kind of descriptors, including a novel graph embedding representation of 

intermolecular interactions. The approach was presented at Computational Molecular 

Science conference in March of 2019 [237]. Since then, a similar approach to 

capturing crystal information [238] and ligand-protein intermolecular interaction 

[239] has been published. 

Graph embedding techniques such as Message Passing Neural Networks (MPNN) can 

generate a fixed-length descriptor of a graph [104]. In MPNN, for each node (v), a 

message (𝑚𝑣
(𝑡+1)

) is passed from each of the neighbouring nodes (NBR(v)) based on 

the edges type (le) where each edge is defined by the two nodes (e = vw). In the 

implementation used, this is achieved by the following function [105] 

𝑚𝑣
(𝑡+1)

= ∑ 𝑊𝑙𝑣𝑤
ℎ𝑤

(𝑡)

𝑤∈𝑁𝐵𝑅(𝑣)

 
Equation 7.1 

𝑊𝑙𝑣𝑤
 is the weight matrix for the specific edge type (interaction between atoms) and 

ℎ𝑤
(𝑡)

 is the state of the node (atom) at iteration t. The state of each node is updated at 

the end of the message passing stage using a Gated Recurrent Unit (GRU) [240] or a 

Recurrent Unit. (RU) [105] 

ℎ𝑣
(𝑡+1)

= 𝑓𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑣
(𝑡),𝑚𝑣

(𝑡+1)
)  Equation 7.2 
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The message passing is repeated T times after which all states are pooled to generate 

the fixed-length representation of the graph using gated regression layer [105]. 

𝑝𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = ∑ 𝜎 (𝑖(ℎ𝑣
(𝑇)

, ℎ𝑣))

𝑣∈𝑉

⨀(𝑗(ℎ𝑣
(𝑇)

)) 
Equation 7.3 

In the implementation used in this work, i and j are Multi-Layer Perceptrons (MLP) 

with no hidden layers and ReLu (rectified linear unit) activation function. 𝜎 is the 

sigmoid activation function and ⨀ indicates a Hadamard product (element-wise 

multiplication).  

A detailed description of the principles of MPNN can be found elsewhere [241]. 

MPNN have been used to model many types of graph information, ranging from 

knowledge graphs to molecules [43,57,104,106,241,242]. Prediction of thermoelectric 

properties of materials using crystal graphs have also been studied [242].  

In this work, the suitability of MPNN as a method of embedding crystal information 

for melting point prediction is assessed. This is achieved by comparing models that 

only had molecular information to ones that had access to molecular and crystal 

information, as well as through Matched Molecular Pair Analysis (MMPA as 

discussed in Chapter 3) and comparison of polymorph predictions. 

7.2 Methods and data 

7.2.1 Datasets 

The CSD Melting point dataset (CSD MP set) was used in the study to develop models 

to predict the melting point. Approximately 17 % of single component structures in 

the CSD have melting point data reported along with the crystal structure. The melting 

point data was converted to consistent units and entries where the reported melting 

point range for a specific crystal structure was more than 5 oC were ignored. This was 

performed to minimise the effects of experimental errors on the dataset. Measurements 

of more than 5 oC range for a specific crystal structure were considered unreliable.  

Entries where instead of a melting point, a temperature of degradation or sublimation 

was reported, were ignored as well. This resulted in a dataset of 61,250 crystal 

structure specific melting points. The CSD MP set was split into training (75 %, 

45,938), validation (15 %, 9,187), and tests (10 %, 6,125). 
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7.2.2 Model architecture 

The model developed here consists of a graph model and prediction layers (Figure 

7.1). Message Passing Neural Network is used as the graph model to generate a fixed-

length representation of the graph inputs as per Equation 7.1 – Equation 7.3. The 

details of the graph model used and the respective hyperparameters are presented 

below (7.2.2.1). The graph representation along with additional descriptors are fed into 

the prediction layers which make the melting point prediction (7.2.2.2).  

7.2.2.1 Graph model 

The Graph Model (GM) uses a varied size graph as an input and outputs a fixed-length 

representation of it. The graphs were constructed using CSD Python API. The graphs 

contain nodes information (atom information) and edge information (intra- and inter-

molecular interactions). Atom type (element identity) information was one hotkey 

encoded and padded with zeroes to the predefined size (node size). This was used as 

the initial node vector values. Edge types were categorised into: single, double, triple, 

or aromatic covalent bonds. Additionally, intramolecular Van der Waals (VdW), 

intermolecular VdW, and hydrogen bonds were used. Hydrogen bonds and Van der 

Waals interactions were identified using the distance and line of sight as defined by 

the default settings of the Python API. 

 

Figure 7.1: Overview of the model architecture. 
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A GM cell was assigned to each node (atom). These cells were either recurrent units 

(RU) or gated recurrent unit (GRU) [240]. A message is passed between each 

connected node based on the edge type (i.e. different weight matrix for each of the 

edge types) as per Equation 7.1 and Equation 7.2. The number of times the message 

is passed is divided into two hyperparameters: GM layers and GM timesteps. GM 

layers indicate how many different weight matrices are used for each of the edges. GM 

timesteps indicates how many times the message is passed using the same weights. 

For example, two GM layers with timesteps of two and one respectively indicate the 

passing of the messages using W1 twice followed by message passing using W2 once 

(where Wi is the weight matrix for a particular edge type for layer i). This is performed 

to allow the model to treat neighbouring atoms (e.g. within the same functional group) 

differently to ones further away. The total number of message passing steps (t) 

indicates how many neighbours is each of the nodes ‘aware’ of. After the message 

passing step is complete, all the messages are aggregated to produce a fixed-length 

representation of the graph (graph vector). All the nodes are summed and passed 

through a gated regression Equation 7.3. Similarly to GRU, the gated regression uses 

an update gate to select which information is passed. The generated fixed-length graph 

representation is then fed to the prediction layers. In the original implementation of 

the algorithm [57], the message passing step was repeated until all nodes vectors 

converged. However, later work showed that Gated Graph Neural Networks could use 

the gated pooling step to generate the fixed-length graph feature [105]. 

7.2.2.2 Prediction layers 

The prediction layers (PL) are a multilayer perceptron (MLP). The graph 

representation along with the additional descriptors are the inputs to PL. The number 

of neurons per each of the two layer are two hyperparameters. ReLu was used as the 

activation function for all neurons except the outer layer, where a linear activation 

function was used to generate a single value prediction. The graph representations do 

not store any geometrical information; the additional descriptors focus on capturing 

this. The two additional descriptors attempt to capture the molecular and crystal 

interaction geometrical information respectively. 

Shape change. The Root Mean Squared Deviation (RMSD) between the molecule in 

the crystal and the molecule in the gas phase is used as the molecular shape change 
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descriptor. The descriptor intends to represent the energy required to distort the shape 

from its optimal conformation to the conformation found in the crystal.  

A molecule is taken from the unit cell of the crystal, and 10 random conformers are 

generated. Each of these is then optimised in the gas phase using the Universal 

Forcefield [243] as implemented in RDkit [213]. The lowest energy one is taken to 

represent the global minimum conformation. RMSD is computed between the 

optimised molecule and each molecule in the unit cell of the crystal, following the 

maximum alignment of the structure. The average RMSD value is used as the 

descriptor.  

Hydrogen bond dimensionality. Hydrogen bonds are captured by the graph model; 

however, the dimensionality of it may be lost. Hydrogen bond dimensionality was 

calculated using the method presented in this paper [244]. The possible outputs are: 0-

D (point), 1-D (chain), 2-D (plane), or 3-D. One hotkey encoding was used to express 

this where a vector of zeroes was used for structures with no hydrogen bonds. 

7.2.3 Model construction 

Two types of models were developed to investigate the effect of incorporation of 

crystal information. Molecule model is constructed only from molecular information. 

This includes the atom type and the intramolecular bonds between them. Crystal model 

also has access to the additional crystal information. Usage of each type of crystal 

information is a hyperparameter where the model can learn to use or ignore it. The 

comparison of the information available and the information used is presented in Table 

7.1. 

Each model was trained using Adam optimiser [137]. The training was stopped after 

300 epochs or after 25 consecutive epochs with no improvement in MSE on the 

validation set. Weight initiation was performed using Glorot initiation [133] (see 

2.4.6.2). Hyperparameter optimisation was performed using Tree-structured Parzen 

Estimator (TPE) algorithm [147] as introduced in 2.4.7. Hyperopt [146] – Python 

implementation of the algorithm was used.   Up to 1,000 steps of optimisation, with 

early stopping if no performance improvement was observed for 10 consecutive 

iterations, for each of the types of model were performed. The top 10 models of each 

type were analysed to determine the optimum combination of hyperparameters.  
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Optional information for the Crystal model (Table 7.1) were used as optional 

hyperparameters (Use / not use). The graph model hyperparameters were: node size, 

node cell type (GRU or RU), graph representation size, number of timesteps and the 

number of layers. The prediction layers (MLP) hyperparameters were the two hidden 

layer sizes. 

 

7.2.4 Performance analysis 

The performance of the models was evaluated using Mean Absolute Error (MAE), and 

R2 (mean coefficient of determination) value. Root Mean Squared Error (RMSE) was 

also reported. Further to this, Matched Molecular Pairs (MMPs) and polymorph pair 

comparison was used to de-convolute the relative importance of molecular and crystal 

information. 

7.2.4.1 Matched molecular Pairs 

Matched Molecular Pair database as introduced in Chapter 3 was used in this study. 

The MMPs were used to compare the actual change of melting point to the predicted 

change to see how well the model is able to predict small molecular changes. It was 

Table 7.1: Information used and made available to Molecule and Crystal 

models. 

Y – available to the model, N – not available to the model, O – optionally 

available to the model. 

Input to Information Molecule Crystal 

Graph model 

Atom type Y Y 

Covalent bonds Y Y 

Hydrogen bonds N O 

Intra-molecular VdWs N O 

Inter-molecular VdWs N O 

Prediction 

layers 

Shape change N O 

Hydrogen bond 

dimensionality 
N O 
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also used to estimate the typical effect a small molecular change has on melting point 

as a point of comparison against melting point differences of polymorphs. 

7.2.4.2 Polymorph Pairs 

Polymorph pairs were defined as pairs of crystal structures with the same molecular 

composition (based upon SMILES comparison) but different melting points. 

Structures with the same molecular composition and same melting point were 

considered to be redeterminations of the same crystal structure and were not used for 

this analysis. The change in actual melting point across polymorph pairs was used to 

estimate the average effect a polymorphic change has on the melting point. The change 

was compared to the predicted difference to approximate how well the model is able 

to predict the effects of solid state changes. 

 

7.2.5 Software 

The work in this paper was done using Python 2.7 and Python 3.6 environments due 

to the requirements of different libraries. The preparation of the CSD MP dataset was 

doing using the Python 2.7 environment. All interaction with the CSD was done using 

the CSD Python API (version 1.5.2) distributed by the CCDC with the database [215]. 

RDkit was used for molecule optimisation [202]. Script by Steven Kearnes from 

DeepChem library was used for the molecule optimisation workflow [245]. The 

Python 3.6 environment was used for the model development. Tensorflow [246] was 

used to construct the neural networks and was run on University of Leeds ARC 

facilities. Hyperopt [146] was used for hyperparameter optimisation. Pandas [216], 

scipy [247], matplotlib [218], and seaborn [217] were used for data processing and 

visualisation. The scripts used for the network construction was based on work 

available from GitHub [248]. The modified scripts along with ones developed 

specifically for this work are available in Appendix 4. 



-150- 

 

7.3 Results and Discussion 

7.3.1 Model performance and architecture 

The hyperparameter optimisation was continued for up to 1,000 iterations. The Crystal 

and Molecule models with the highest R2 value (equivalent to MSE as calculated on 

the same dataset) are reported in Table 7.2. The optimisation converged on the best 

combination of hyperparameters; the top 10 best performing models have a similar set 

of hyperparameters (Table 7.2).  The best performing Crystal model achieved R2 value 

of 0.649 on the validation set and 0.550 on the test set (the optimisation curve shown 

Table 7.2: The best Molecule and Crystal models' hyperparameters along 

with the average of the top 10 models for each category. Same treatment was 

applied to R2. For categorical hyperparameters the most common value and 

the corresponding fraction is reported. 

Hyperparameter 
Molecule Crystal 

Best Top 10 Best Top 10 

Graph vector 300 400 500 690 

Node vector 110 117 90 94 

PL layer 1 380 412 300 336 

PL layer 2 160 200 230 252 

GM cell type RU RU (1.00) RU RU (1.00) 

GM timestep  2 2.00 2 2.00 

GM layers 1 1.00 1 1.00 

Use H-bond - - False False (1.00) 

Use intra-VdW - - True True (1.00) 

Use inter-VdW - - False False (1.00) 

Use shape change - - True True (1.00) 

Use H-bond dim - - True True (1.00) 

R2 0.628 0.621 0.649 0.631 
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in Figure 7.2). The corresponding best Molecule model achieved R2 of 0.628 on the 

validation set and 0.500 on the test set. 

Methods such as dropout [114] were utilised to reduce the risk of overfitting. However, 

the decrease in the R2 value between the validation set and the test set (from 0.649 to 

0.550 for the crystal model) may be indicative of overfitting. The Molecule model also 

underperformed on the test set (0.628 on the validation set and 0.500 on the test set). 

However, the mean absolute error remained relatively unchanged for the Molecule 

model (31.8 oC for both) and reduced from 30.8 oC to 29.5 oC on the test set for the 

Crystal model. The subsequent analysis needs to be considered with the caveat that 

some overfitting occurred. It was still considered valuable to compare the 

performances of the Molecule and Crystal models, as well as investigate how well the 

crystal model performed on pairs of polymorphs. 

The major difference between the top 10 Crystal models comes from the size of the 

layers. In particular, the graph vector size ranges from 500 to 1,200. This suggests that 

the size of 500 is sufficient to capture graph information and any size above that does 

 

Figure 7.2: Optimisation curve for the training of the Crystal model. 

The graph was extracted from Tensorboard as part of the used Tensorflow 

library. Each datapoint represents an iteration of training. The MAE is 

expressed in terms of the normalised data (standard deviation of 60.2). 
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not contribute to the improvement of the model. This is reinforced by the fact that the 

best performing Crystal model had the graph size vector of 500.  

The graph vector size was bigger for Crystal models compared to Molecule models. 

The Crystal models are able to store more information concerning the graph structure, 

since crystal graphs are more complex than molecular graphs. However, the optimal 

size of the node vector is smaller for the Crystal models compared to the Molecule 

models. Intuitively, this can be explained by the need of the Molecule models to 

implicitly capture information about the possible inter-molecular interaction that the 

Crystal models can capture explicitly. Therefore, the Molecule model needs a bigger 

vector to store the information. The optimal graph model set up, in terms of the GM 

layers and GM timesteps, was similar for the two types of models. Using only a single 

set of weights (one GM layer) seems to be sufficient. This is potentially due to the 

increase in number of trainable parameters associated with multiple GM layers which 

the model might not be able to fit adequately. Two GM timesteps, two degrees of 

separation, are sufficient for each node to learn about its neighbours. This appears 

consistent with the fact that a typical functional group can be identified by atom 

connection within two degrees of separation. For larger groups such as aromatic rings, 

a unique edge type is used, reducing the number of timesteps required for the model 

to learn the presence of this kind of a functional group. 

Interestingly, hydrogen bonds are not as useful as part of the graph model component 

of the Crystal model. This is potentially because the possibility of forming hydrogen 

bonds is implicitly captured by the graph based on the functional groups present. 

Furthermore, the hydrogen bond dimensionality descriptor captures the complexity of 

  

Figure 7.3: Target MP and predicted MP by Molecule (left) and Crystal 

models (right) on the validation set. 
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the hydrogen bonding formed within the crystal structure, making the explicit 

hydrogen bonding encoding superfluous.  

Based on the hyperparameter optimisation, the intermolecular Van der Waals 

interactions were not selected as useful. This is potentially due to the fact that VdW 

interactions are implicit in the molecular shape in the crystal structure, which is 

partially taken into account by both the information regarding molecular functional 

groups and intramolecular VdW interactions. This is encoded in the graph model via 

the intramolecular VdW, and the molecular shape descriptor representing how the 

molecular shape is distorted in the crystal from the gas phase preferred structure. This 

may also be the reason for the inclusion of intramolecular Van der Waals interactions. 

This may be complementing the shape descriptor in capturing the relative positions of 

the atoms within the crystal structure, since the VdW interactions were obtained purely 

based on distance.  

To test these hypotheses regarding the reasons why the hydrogen bonding and VdW 

intermolecular interactions were not selected for the graph model component of the 

Crystal model, a new model which had access to crystal edges (H-bonds and VdWs) 

but not the H-bond dimensionality and the molecule shape descriptor, was trained and 

hyperparameter optimised. This model achieved R2 of 0.630, worse than the best 

performing Crystal model, but comparable to the top 10 models and surpassing all the 

Molecule models. This suggests that in the absence of H-bond dimensionality, the H-

bond and VdWs edges contribute to the performance of the model. The molecular 

shape change descriptor is a useful descriptor as the graphs do not store any 

geometrical information.  

7.3.2 Does crystal information help? 

Molecule and Crystal models were compared to see the relative importance of the 

additional crystal information. The best Crystal model achieved the R2 of 0.649 and 

0.550 on the validation and test sets, while the Molecule model achieved 0.628 and 

0.500 (Figure 7.3 and Table 7.2). The top 20 best performing Crystal models are 

statistically different compared to the top 20 Molecule models based on the Mann-

Whitney U test (p value = 2.937 × 10−6).  The addition of crystal information does 

improve the performance of the model. However, the improvement is relatively small, 

considering the amount of effort that is required to obtain a crystal structure. Three 
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possible reasons for the limited improvement were investigated: (1) under-

representation of polymorphic structures in the dataset, (2) inability to capture solid 

state-specific information, and (3) the lack of importance of solid state information.  

7.3.2.1 Underrepresentation 

The difference between two crystal structures can be separated into a molecular 

change and crystal change (Figure 7.4). Crystal change corresponds to the change in 

molecular shape and arrangement as is seen when comparing two polymorphs. A 

molecular change alone cannot be easily observed as a pair of different molecules also 

pack differently. Therefore, a molecular change is also associated with a crystal 

change.  

The CSD MP dataset contains 672 molecules that are polymorphic (1.1 %). For the 

majority of training, different target values were presented along with different 

molecular and crystal changes. The model likely did not effectively learn the effects 

of crystal changes as these were often linked with molecular changes. The small 

number of occurrences of entries with the same molecular structure but different 

 

Figure 7.4: Illustration of molecular and crystal changes along with how these 

can be studied using polymorphs and Matched Molecular Pairs (MMPs) 

Polymorphs is a crystal change with no associated molecular change. A small 

change in the molecular structure (MMP) results in a molecular and crystal 

change as the crystal packing is affected by the molecular structure. 
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crystal structure (polymorphs) may have led the model to incorporate crystal change 

as part of the molecular change. 

7.3.2.2 Capturing crystal information 

Despite being underrepresented, analysis on polymorph specific MP prediction can be 

performed. 21 pairs of polymorphs were identified within the validation set. Firstly, 

as a surrogate for relative polymorph stability, the order of melting points between 

polymorphs was investigated. 13 pairs of the 21 polymorphic pairs were predicted in 

the right order (62 %). A score of -1 was given where the order of melting points was 

incorrect and +1 if the order was correctly predicted. Random guessing is expected to 

result in a symmetric distribution around 0 (equal number of correct and incorrect 

guesses). Wilcoxon test was used to see if the model is statistically different from the 

random guessing. The p value calculated was 0.275, thus the null hypothesis that the 

distribution is symmetric around 0 (i.e. equivalent of random guessing) cannot be 

rejected. This is consistent with the hypothesis that the model failed to adequately 

capture the crystal change specific contributions to the melting point. However, it is 

important to note that the sample size is very small (21 pairs). 

 

Figure 7.5: Actual and predicted change for polymorph pairs. 
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The ability of the Crystal model to predict the solid state-specific melting point was 
Table 7.3: List of molecules for which the Crystal model was not able to accurate predict 

the difference between polymorphs. Cases where the predicted value of a specific structure 

is incorrect by more than the MAE (30.8 oC) are highlighted. 

Refcode Target [C] Predicted [C] Molecule 

FPAMCA12 120.7 151.7 

 

FPAMCA14 124.2 70.0 

JATFUF02 122.0 102.2 

 JATFUF03 135.9 208 

CEPXHP 119.6 126.1 

 

CEPXHP01 127.6 99.8 

KARCOW 254.6 142.7 

 

KARCOW01 292.3 147.1 
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investigated further by seeing how well the model is able to predict the difference 

between polymorphs. The comparison of the predicted and actual differences between 

polymorphs is presented in Figure 7.5. The magnitude of the actual change ranges 

from 0.5 oC to 37.8 oC while the predicted change is typical below 13.0 oC (two cases 

of the change predicted to be 21 and 26 oC shown in Figure 7.5 and two cases of over 

80 oC not shown in the figure). Polymorphs where the discrepancy between actual 

difference and predicted difference was the largest were examined closer. A select few 

pairs of molecules are shown in Table 7.3. 

A number of structures where the large difference in the actual melting points was due 

to errors in the data were left out of the analysis. XEHGOH and XEHGOH01 have 

target values of 138.9 and 163.9 oC respectively, but based on the comparison of 

packing [211], the two structures appear to be the same polymorph. Hence, these 

should have the same melting point. The model made a prediction that is 6.2 oC apart 

(141.2 and 147.4 oC respectively) which is consistent with the similarity of packing 

between the two crystal structures. In case of FPAMCA (12/14) and JATFUF(02/03), 

as shown in Table 7.3, one of the structures was predicted within the mean absolute 

error (30.8 oC) while the other was outside of that range. This suggests that in these 

cases, the solid state effect was not adequately captured. The pair of molecules of the 

refcode family KARCOW were both predicted inaccurately by over 100 oC. The order 

of polymorphs stability (melting point) was predicted correctly, but this is likely a 

coincidence considering the overall poor prediction for the structures. 

Several shortcomings of the model setup may be the cause of the inability to accurately 

predict the solid state specific melting point. The intermolecular interactions are based 

purely on the geometric relationship between atoms rather than force-based 

consideration. This may result in the inaccurate assignment of the intermolecular 

interactions, especially in cases such as the π- π interaction between aromatic rings. In 

cases where hydrogen bonds do not form, the π- π stacking interaction may play an 

important role in contributing to the lattice energy such as in case of p-aminobenzoic 

acid [249].  

7.3.2.3 Relative importance of solid state changes 

The importance of the additional crystal information is useful only if crystal change 

(polymorphism) plays an important role in melting point. To assess this, the effects of 
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polymorphs were compared to the transformations corresponding to matched 

molecular pairs (MMPs) identified within the CSD dataset. Representative 

transformations were selected and their impact on the melting point was compared.  

The most common transformation was the substitution of hydrogen by a methyl group 

(1,302 occurrences). It was expected to be relatively insignificant due to the small size 

of the methyl group and the lack of the change of hydrogen bond acceptor/donor count. 

The transformation was expected to have limited impact on molecular packing and 

VdW interactions. As an example of a transformation that may affect the melting point 

more, a substitution of a hydrogen with a carboxyl group was selected as it changes 

the number of potential hydrogen bonds. Considering transformations with at least 10 

MMPs within the used dataset, this transformation had the third-highest mean effect 

on the melting point. The top two are hydrogen to carbamoyl and methyl to carboxyl. 

However, hydrogen to carboxyl has much higher MMP count within the dataset (74 

against 15 and 19 respectively) so it was selected, as its effects on melting point could 

be assessed more robustly.  

The addition of the hydrogen bonding carboxyl group has the largest effect on the 

melting point, with the mean and median change of 95 oC and 107 oC. The hydrogen 

to methyl transformation, albeit small, has an average mean and median change of -7 

and -4 oC. The differences between polymorph pairs were always taken as a positive 

number. The mean and median change for polymorphs are 11 and 4.5 oC, respectively. 

The absolute change for the two selected molecular transformations and polymorph 

pairs are presented in Figure 7.6. The absolute change was selected rather than change 

as the focus of the study is to compare the potential magnitude of effect rather than 
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determining the effect itself. This is lower than the mean and median of the absolute 

change for the hydrogen to methyl transformation which is 30 and 23 oC, respectively. 

This analysis suggests that even small molecular changes tend to have a larger effect 

on the melting point than do crystal packing changes. This is in agreement with 

literature which suggests that the typical energy difference between polymorphs is 

small (less than 1 kcal/mol) [50].  

7.3.2.4 When does crystal change matter? 

The melting point difference between polymorphs is typically small (median of 4.5 

oC). However, there are cases where the difference is more profound. An attempt was 

made to identify molecules where crystal change results in a significant change in the 

melting point. The focus was placed on intermolecular interactions and the molecular 

shape change.  

The number of hydrogen bond donors and acceptors, and their ratio were compared to 

the change in melting point, but no statistically significant relationship was found. The 

potential importance of hydrogen bonding was further studied using the hydrogen 

dimensionality descriptor (Figure 7.7). The polymorph pairs were separated into two 

 

Figure 7.6: Comparison of the absolute change in MP due to hydrogen to 

carboxyl and methyl group substitution, and polymorphic change. 

 

 

Figure 7.7: Comparison of absolute change of MP for pairs of polymorphs 

where hydrogen bond dimensionality changes or remains constant. 

 



-160- 

 

groups: no hydrogen dimensionality change occurs between the pair, and pairs where 

there is a change in dimensionality. For the purpose of the study, the degree of change 

was not considered (i.e. no differentiation between a change from 1D to 2D and a 

change from 1D to 3D). Pairs of polymorphs where the dimensionality of the hydrogen 

bonds change have higher median change (6.7 oC) compared to pairs where there is 

no change in the dimensionality (4.0 oC).  Polymorphs where the dimensionality of 

the hydrogen bonding changes, typically have 68 % higher change in melting points. 

The two distributions are statistically different based on the Mann-Whitney U test (p 

value = 4.665 × 10−4).  This indicates the potential future avenue of research, focused 

on data-driven tools to study what molecular properties lead to larger changes in solid 

state properties across polymorphs. However, it is important to note that the median 

difference for the two types of polymorphs discussed here is smaller than the change 

caused by molecular transformations. This may be the reason why the performance 

difference between the Molecule and Crystal models is small, as even a model that 

perfectly captures the crystal difference can only be expected to improve the 

performance by the average of 4.5 oC. 

Apart from the hydrogen bonds, another important intermolecular interaction is the π- 

π stacking. This interaction was not fully captured by the model as this interaction 

typically occurs between aromatic rings and not individual atoms which is what the 

graph is based on. A number of polymorphs with the largest melting point difference 

were structures with multiple aromatic rings and one or none hydrogen bonding sites 

(Figure 7.8). The dataset was sliced based on the number of aromatic rings present and 
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whether there were any hydrogen bonds present, but no statistically significant 

difference was observed. A caveat to note here is the fact that only 21 pairs were 

studied here.  

A number of molecular descriptors were used to study its effect on the difference in 

melting point across polymorphs. No statistically significant correlation was found 

between the melting point difference and molecular size (heavy atom count) nor 

molecular flexibility (nConf20 [212]). The flexibility descriptor was developed to 

predict the crystallisability of a molecule, so lack of correlation may be an artefact of 

the lack of polymorph data for difficult to crystallise molecules. The number of 

conformers that can coexist within a crystal structure was also considered as a 

descriptor. With the higher number of conformers, the number of possible 

intermolecular interactions can be expected to increase. The highest observed Z prime 

in all polymorphs of a given molecule was used as the conformer compatibility 

descriptor. Z prime is the number of molecules within the asymmetric unit of the 

crystal structure. For molecules with no self-symmetry, the value is one for structures 

with one conformer present. However, no statistically significant difference was 

observed for molecules with different conformer compatibility descriptor values.  

7.4 Conclusion 

Message Passing Neural Network was used to construct two QSPR models to predict 

the melting point. The Molecule model, one constructed from molecular graphs, 

 

 

 

Figure 7.8: Example molecules with large MP difference between polymorphs. 

Left – XUYHOO (86.0 C), right top – QAPKOH (132.5 C), right bottom – 

ICAKAY (129.7 C) 
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achieved R2 value of 0.628 on the validation set and 0.500 on the test set. The Crystal 

model, one constructed from molecular and intermolecular graphs along with 

additional crystal descriptors, achieved an R2 value of 0.649 and 0.550 on the 

validation and test sets respectively. The graph-based approach has shown some 

promise in capturing the molecular and crystal properties. However, further work is 

necessary to the suitability of the approach for melting point prediction. Recent work 

in the use of molecular graph has shown promise in the QSPR field [238,239].  

Some insights can be derived from the study regarding the ability to capture crystal 

information and its relative importance. A statistically significant (p value= 

2.937 × 10−6 ), albeit small improvement (average R2 = 0.621 and 0.631 on the 

validation set) was observed between the Molecule and Crystal models. The small 

performance improvement between the two types of models is likely due to a 

combination of three reasons: (1) underrepresentation of polymorphs in the dataset, 

(2) inability of the model to capture solid state specific information, and (3) the 

typically small property difference between polymorphs. 

Only 1.1 % of the molecules are polymorphic within the CSD MP dataset; hence the 

trained models had limited exposure to structures with only solid state differences. 

The model did not predict the relative stability of polymorphs (as approximated by 

comparison of melting points) in a way that is statistically significant. However, this 

may be due to the small number of polymorph pairs that were studied (21 pairs). 

Only geometric considerations were undertaken when assessing the intermolecular 

interactions which potentially reduced the usefulness of the information captured by 

the models. The π- π interaction were not explicitly captured by the model which may 

have contributed to the inability to fully capture the various intermolecular interactions 

that affect the melting point. Geometry of the π- π interaction affects the strength of 

the interaction [250], so a way of capturing this beyond the graph method is required. 

The typical melting point difference between polymorphs is 4.5 oC, much smaller than 

the effects of molecular changes such as the substitution of a hydrogen with a methyl 

group. Therefore, the potential performance improvement from capturing the crystal 

information is also small. However, in some cases, the difference between polymorphs 

is large (over 30 oC). Potential factors that contribute to the large difference were 

investigated. Hydrogen bond dimensionality is a potential indicator of this 
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phenomenon; whereas molecular flexibility, the presence of aromatic rings appear not 

to be indicative, although this may be due to the issue of unknown polymorphs 

discussed in Chapter 4.  

The study has shown that there is some benefit to including crystal information for 

solid state-specific melting point prediction. The graph-based approach to capturing 

molecular and crystal information also shows some promise, although further work is 

required. The ability to predict whether a molecule exhibits polymorphs with a wide 

range of melting points would be a useful tool to complement the molecule structure-

based melting point prediction. 
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Chapter 8  

Conclusion 
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8.1 Introduction 

In this thesis, the extent to which techniques deployed during the Discovery stage can 

be applied to the Development stage datasets to address challenges encountered at this 

stage was investigated. Chapter 2 contextualised this challenge within the 

pharmaceutical product development process and the Material Science Tetrahedron 

(MST). Based on the survey of the challenges, two specific topics were identified as 

the focus of the thesis. The topics are: (1) the prediction of the propensity of molecules 

to form polymorphs and (2) the prediction of crystal structure-specific melting points 

as an indication of potential solid state-specific solubility. Chapter 2 also provided an 

overview of the techniques used in the thesis. Matched Molecular Pair Analysis 

(MMPA) and Quantitative Structure Property Relationship (QSPR) were selected as 

the two methods of addressing the topics identified. In Chapter 3, a novel database 

approach to the MMPA was introduced. The MMP database workflow was utilised to 

study the effects of small molecular transformations on the polymorph propensity 

(Chapter 4). Issues related to the quality of the polymorphism data is partially 

addressed in Chapter 5 by the development of a machine learning-based polymorph-

redetermination classification method which was benchmarked against the existing 

methods. The issue related to the low number of MMPs present in the MMPA of 

polymorph propensity was explored within the context of the different stages of the 

drug development process in Chapter 6 by introducing Matched Molecular Graphs as 

a method of exploring the dataset suitability for MMPA. Work on the second topic 

identified in Chapter 2, crystal structure specific melting point prediction, was 

discussed in Chapter 7. 

 

Figure 8.1: The three themes used to discuss the key findings of the thesis. 

 

 

Data

Method Topic
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The key findings from the thesis are discussed within the framework of three 

interconnected aspects: Data, Empirical method, and research topic, as illustrated in 

Figure 8.1. Conclusions are drawn on the specific topics studied, as well as on the 

broader implications for the research in the area of solid state informatics for 

pharmaceutical development.  

The framework was selected due to the unique nature of the data-driven approaches, 

where the available data and its quality plays a vital role on the suitability of methods 

and topics. For example, polymorph specific solubility prediction may not be a 

suitable research topic if the required data availability is limited [70,251]. Similarly, 

multi-layered neural networks may not be the most suitable tool for QSPR modelling 

if the dataset has only 10s or 100s of examples due to the high likelihood of overfitting. 

Any research project needs to consider the interdependence of these three aspects. 

These are discussed within the scope of the project and as learning outcomes that can 

be used to inform further research. 

 

8.2 Data Management 

The availability and quality of data is a crucial consideration when undertaking a data 

driven project. The importance of the quality of data is indicated by Wilf Hey’s maxim 

– “Garbage in, Garbage out”. Assuming consistent quality, the more data is available, 

the better empirical models can be developed.  The two aspects are discussed within 

the scope of the project below. Based on the work, recommendations for future 

projects in a similar research area are presented. 

8.2.1 Quality 

In Chapter 4 and Chapter 5, several issues related to the polymorphism data were 

identified. Firstly, many of the molecules in the CSD have not been studied under 

different conditions to identify all polymorphs (within a reasonable set of conditions). 

This results in underestimation of polymorphism in the database. Monomorphic 

adjustment [50] (as described in Chapter 4) was implemented to mitigate the issue by 

eliminating molecules that are likely to have not been studied extensively. Further 

adjustments can be done by, for instance, eliminating all molecules that do not have at 

least 3 distinct structures (as opposed to two as done in the original publication [50] 
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and the thesis where the dataset was reduced by 97 % to 6,633 structures). The process 

can be continued until the fraction of polymorphic structures matches that of the more 

heavily screened, smaller datasets. However, this approach also introduces a new bias 

– where the more commonly studied compounds are overrepresented. This may result 

in developing a model to predict popular compounds, rather than polymorphic 

compounds. The process also reduces the dataset size, making it difficult to identify 

any statistically significant trends. 

The uniqueness of the challenges associated with polymorph propensity lies in the 

inability to assess the data quality and completeness on individual entry level. Namely, 

the lack of polymorphic data cannot be distinguished between the lack of 

polymorphism or the lack of research done on the molecule. In the case of melting 

point, it is easy to identify molecules that have no information on the property. A 

public database of polymorph screens with studied conditions and resulting crystal 

structure information, even if no distinct structures were identified, would be a useful 

tool to aid this challenge. The number of entries to this database would be an indication 

of how much the molecule has been studied, and the range of conditions of these 

studies would inform the completeness of polymorph search. Running polymorph 

screening is typically expensive, so it is unlikely that such a database could be purpose-

built by an individual group. However, crystallisation is a commonly studied process, 

so there is a possibility for such a database to be successfully constructed based on 

inter-institutional collaboration. Similar databases may also be constructed in-house 

by pharmaceutical companies to better utilise the data already at their disposal. 

The second issue related to the polymorphism data quality is the classification of 

structures into polymorphs and redeterminations. Majority of crystallographic 

research focuses on specific molecule or group of molecules. Systematic studies of 

polymorphism are relatively rare [50,209]. The systematic studies rely on automated 

methods for polymorph-redetermination classification. The method commonly used is 

the simulated spectra comparison method[211] (discussed in Chapter 5). However, the 

method was only tested on a small subset of 386 structures (83 molecular 

compositions). A more detailed benchmarking was performed in Chapter 5 where the 

existing and novel machine learning-based automated methods were compared against 

manually assigned labels on a dataset of 2,951 pairs filtered to eliminate inconsistent 

manual labels. The best machine learning model achieved a F1 score (defined in 
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Equation 2.21) of 0.910 with recall and precision of 0.864 and 0.962 respectively. The 

F1 score of the spectra comparison method was 0.780 with relatively lower recall 

value of 0.645 (precision was 0.987). The spectra comparison method had lower false 

positive rate but a higher false negative rate.  

The benchmarking also shed light on some of the inconsistencies found with 

polymorph identification. A research community-wide effort to more vigorously label 

polymorphs and develop an appropriate automated classification method is needed. 

The lack of standard method has an impact on other areas of research such as the solid 

state-specific melting point prediction explored in Chapter 7. A community endorsed, 

vigorous method of crystal structure classification would clarify these situations and 

allow research in solid state-specific property prediction to accelerate. To this end, the 

benchmarking dataset was curated. 

8.2.2 Availability 

The availability and the dataset size is another consideration that needs to be made 

when undertaking empirical modelling. This was lightly touched upon above (8.2.1) 

with the issue of decreasing dataset size of polymorph counts. However, the issue of 

data availability is an important aspect of any data-driven project in its own right. The 

history of empirical modelling of molecular properties begun with work on 10s of 

compounds and a narrow applicability domain [87]. With time, the dataset sizes 

increased and so did the applicability domain of the empirical models based on the 

data [171,174]. A more general melting point models were developed using a dataset 

of over 280,000 molecules [83]. A similar trend can be observed in other areas of 

empirical modelling, in particular machine learning, where dataset sizes and the 

capability of the models increased over time [252]. 

Therefore, the acquisition of data should be one of the priorities when it comes to 

future development in the area. In most cases, the data is already present; however, in 

a difficult to use format. According to some estimates, up to 95 % of data is 

unstructured, meaning it is difficult to access and utilise [253]. In research-driven 

organisations such as universities, the data is typically arranged project-wise (Figure 

8.2). This allows easy retrieval of data for a specific project.  
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However, search for specific information, such as property data, is difficult if not 

unfeasible to do on a large scale. There are typically no consistent naming conventions 

enforced at the organisation level and the data is structured appropriately for the needs 

of the specific project. Along with the difficulty in accessing the data itself, metadata 

extraction is also challenging. There is little incentive for individuals responsible for 

these projects to make the data more easily accessible across projects as this often 

requires additional work.  Notable exceptions exist where data from multiple sources 

was curated [80,82,83]. These datasets can be utilised within the cheminformatics 

community for the study of the respective properties. Approaches such as the FAIR 

data management principles [254] and EPSRC expectation around data availability 

[255] attempt to address some of these issues. However, as long as the data producers 

(ones who hold responsibility for data generation) and the data consumers (ones that 

reap the benefits of data availability) are disjointed, the problems are likely to persist.  

Therefore, for a consistent solution to the problem, an organisational level and 

preferable inter-organisational strategy is required. Improving the data accessibility is 

likely to increase further research using empirical methods.  

8.2.3 Suitability 

The Matched Molecular Graph (MMG) was developed (Chapter 6) to assess the 

suitability of a dataset for MMPA. MMG allows for dataset comparison and 

visualisation of MMPs. The analysis of the constructed graph on the monomorphism-

corrected CSD single component dataset revealed that 74.9 % of molecules did not 

 

Figure 8.2: Typical data arrangement within research organisations. 

The data is arranged per project bases, making it easy to locate all relevant 

data for a particular project, however it results in difficulty in accessing 

similar data across multiple projects. 

 

Project 1

Project 2

Project 3

Project 4

Property
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have any MMPs, thus were not taken into account when performing MMPA. 

ChEMBL-NTD set 14 (GSK TCAKS (Tres Cantos Anti-Kinetoplastids Set) dataset) 

[229] was selected as a representative Discovery-like dataset. The graph property 

analysis revealed that the Discovery dataset had 58.2 % of molecules with at least one 

MMP (compared to 25.1 %) and the molecules that had at least one MMP, typically 

had 5.34 MMPs (compared to 3.33). These factors resulted in the large difference in 

the number of MMPs for the two datasets despite the same size (10,321 MMPs in 

Discovery dataset, 2,776 in the used CSD dataset).  

The MMG analysis between the two datasets indicated that there are some differences 

in the datasets between Discovery and Development. Such differences should be 

considered when attempting to utilise other data-driven approaches, that have been 

successfully implemented in Discovery settings, to Development datasets. The 

analysis also showed the need to consider dataset suitability beyond the size and the 

target value quality. Although not quantitatively vigorous, MMG can be used to assess 

the suitability of datasets for MMPA. 

 

8.3 Empirical Method 

A number of empirical methods ranging from simple linear regression[256] to deep 

learning [257] have been used within cheminformatics. In this thesis Matched 

Molecular Pairs Analysis (Chapter 4),  machine learning (Chapter 5) and deep learning 

(Chapter 7) were used. MMPA represent an easily interpretable empirical method 

while the Neural Network represents a more capable of capturing complex 

relationships but more difficult to interpret class of methods. The performance of the 

two methods within the project, as well as potential future implementations are 

discussed here. 

8.3.1 Message Passing Neural Networks 

The Message Passing Neural Networks (MPNN) were used to develop melting point 

QSPR models using molecular and crystal information. The model uses simple 

descriptors (element and covalent bond type) to obtain molecular information which 

is complemented by crystal information based on the potential intermolecular 

interaction, hydrogen bond dimensionality, and conformation change between 



-172- 

 

structure in the solid state and gas phase (shape change descriptor). A set of Molecule 

models (only had access to molecular structure) and Crystal models (had access to 

molecular and crystal information) were trained. Some improvement of the Crystal 

model (R2 = 0.550) was observed compared to the Molecule model (R2 = 0.500). This 

suggest that the model is capable of capturing some intermolecular interactions to 

improve the performance. The inability to capture the strength of interactions as well 

as limited ability to capture π-π interactions likely contributed to the small 

improvement of the models, Recently, a similar model architecture was used to 

successfully embed drug-target interactions using a graph-based approach to classify 

molecules into active and inactive (Area Under the Curve = 0.968 and 0.935 on two 

test sets) [239]. Although the test set performance of the Crystal model was lower than 

on validation set (0.649), it has shown the ability of MPNNs to capture some 

intermolecular interactions.  

8.3.2 Matched Molecular Pairs – Graphs and Analysis 

The Matched Molecular Pair framework was used for typical MMPA as well as for 

construction of Matched Molecular Graph (MMG) and related analysis of the dataset 

suitability for MMPA. The first step in the process is the identification of the MMPs 

within a given dataset as discussed in Chapter 3. Several key issues relating to this 

step were identified and addressed. As identified in other works on MMPs 

identification using unspecified transformation methods (defined in 2.5.1.2), it is 

important to limit the maximum size of the change of a MMP [180]. This is done either 

by limiting the maximum size of the change or the ratio of the size of change to the 

molecule. However, even within the limited scope, many unnecessary MMPs are 

maintained. This includes a set of MMPs between the same pair of molecules. The 

same pair of molecules may be cut in different ways to yield several MMPs. The 

smallest change is most likely to be observed across multiple pairs of molecules, 

contributing to the analysis. The other MMPs of the same molecule only contribute to 

an increase in the number of MMPs.  In the developed MMP Database, only one MMP 

is kept for a pair of molecules based on the largest context (i.e. the smallest change as 

these are more common). The adjustments made to the MMP identification procedure 

reduce the number of total MMPs identified within a dataset, but ensures that the pairs 

identified are likely to contain transformations that are more common (thus more 

useful). 
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However, the reduction in the number of MMPs along with the reduction in the dataset 

(monomorphic correction) resulted in MMPA that did not identify any statistically 

significant transformations for polymorph propensity (Chapter 4). Lack of polymorph 

data (discussed in 8.2) and the small number of MMPs were identified as the most 

likely reason for the lack of statistically significant transformation.  

The MMPA carried out in the thesis led to the development of the concept of MMG.  

MMG can be further expanded to extract more information from an MMP Database.  

Work can be performed to improve the process of database construction by 

abandoning relational databases for graph databases. These types of database put more 

emphasis on the relationships between elements (edges) [258]. The database structure 

allows for more computationally efficient parsing based in the edges. The MMP 

identification step could be replaced by simpler, more computationally efficient, 

graph-based operations. Graph databases typically allow the specification of different 

types of nodes and edges, as well as the addition of properties to these. Molecules can 

be added to the database as nodes, with attached properties such as the molecule ID, 

structure information (SMILES), properties value (dark blue nodes in Figure 8.3). 

Upon fragmentation, the context-core pairs can be screened based on the maximum 

size of the change and maximum ratio of change criteria (as discussed in Chapter 3 

and Chapter 4). The filtered contexts can be added to the database as a different type 

 

Figure 8.3: Graph based MMP identification. 

Two types of nodes are used: contexts (gold) and molecules (blue). Edges 

contain information on the core associated with the connected context and 

molecule. 
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of node (gold nodes in Figure 8.3). An edge can be added between the molecule and 

the added context, containing the core structure as its property (arrow in Figure 8.3). 

MMPs can be identified by finding all molecules that are connected via a context node. 

The search can be easily modified to find all MMPs with a given context, or all MMPs 

of a given molecule or a set of molecules. Another layer to the graph can be added to 

incorporate crystal information. A new type of node, a crystal node, can be added that 

contains the crystal ID (refcode) and any other relevant crystal property (e.g lattice 

type). These can be connected to molecule nodes based on the molecular composition. 

Solvates and co-crystals would be connected to multiple molecules, so an edge 

property used to indicate whether a molecule is a primary component or a solvent 

molecule may be added. 

The MMG can also be potentially used for property prediction based on MMPA if a 

dense enough graph can be constructed. For a new molecule (m) with an unknown 

property value (pm), all MMPs can be identified. A set of all molecules that are MMPs 

with the given molecule are given by the following equation where E represents all 

edges (MMPs) in an MMG. 

𝑀𝑀𝑃(𝑚) = {𝑛: (𝑚, 𝑛) ∈ E } Equation 8.1 

A series of predictions can be made based on each molecule and the corresponding 

transformations, where pi is the property of the molecule i and ti is the average effect 

of the transformation that links molecule i and m. 

𝑝𝑚̂𝑖
= 𝑝𝑖 + 𝑡𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝑀𝑀𝑃(𝑚) Equation 8.2 

A weight (wi) may be assigned to each of the MMP based on how well the effects of 

the transformation are studied (number of occurrences of the given transformation 

within the MMG). Hence, the final property prediction of the new molecule (m) can 

be calculated based on the following. 

𝑝𝑚̂ =
∑ (𝑝𝑖 + 𝑡𝑖)𝑖∈𝑀𝑀𝑃(𝑚)

∑ 𝑤𝑖𝑖∈𝑀𝑀𝑃(𝑚)
 Equation 8.3 

The method is akin to the k-Nearest Neighbours (kNN) method [259]. kNN method 

predicts the target value using k samples with the nearest feature values. In the 

proposed method, the neighbour identification is performed based on molecular 

transformations instead. A further distinction is the way in which the predicted value 
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is calculated. The effects of the transformation are used (along with a weighting based 

on statistical confidence in the effect and its size) to compute the predicted property 

value. In this way, a molecule that differs only slightly from a known one may be 

predicted a vastly different property value if the transformation relating the two 

molecules is known to have a large effect on the studied property. In this way, 

knowledge of activity cliffs [41] may be included in the predictive model. Further 

work is required to assess the feasibility and usefulness of such an approach. 

As stated above, for this method to work, a dense MMG is required, unlike the ones 

studied in the thesis (Chapter 6). However, the concept can be applied in tandem with 

a QSPR model on a more sparse MMG. Prediction-driven MMPA was previously used 

to generate new MMPs to enable better analysis of transformations with low MMP 

count [198] (introduced in 2.5.2). 

Model explainability is an important aspect of regulatory approval of QSPR models 

[260] as well as an active area of research within the machine learning community 

[15,261]. Local Interpretable Model-agnostic Explanations (LIME) relies on sampling 

random values in the feature space surrounding the prediction of interests and 

constructs a local, easily interpretable model (decision tree, linear model etc.) [261]. 

In many QSPR cases, the feature space may be not continuous and the meaning behind 

each feature may be difficult to interpret by a researcher. Instead, a chemical space 

surrounding the prediction of interest may be sampled using MMPs (Figure 8.4). A set 

of new predictions (dark blue in the figure) can be made to generate MMPs with the 

prediction of interest (gold in the figure). Several strategies for the MMP generation 

are feasible. Pairs such that each functional group on the molecule of interest is 

replaced with an inert functional group is one possibility. This is illustrated in Figure 

8.4 with the replacement of terminating functional groups with a methyl group and 

chain functional groups with a methylene bridge. This may result in the ability to 

obtain the group contribution to the predicted property value of the molecule of interest 

which can lead to increased model explainability.   
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Alternatively, MMPs may be generated to match common transformations within the 

studied dataset. Rather than increasing the number of MMPs for better MMPA [198], 

it can be used to compare the predicted MMPs to the ones from the datasets. This 

allows for the assessment of the QSPR model’s ability to adequately map the effect of 

these transformations. Similar analysis, without the generation of new molecules, was 

carried out in Chapter 7 to assess the melting point model performance. The method 

provided some means of more in-depth analysis of model performance which can be 

further expanded with future research in this area. 

 

8.4 Research Topic 

The research topics covered in the thesis were contextualised within the Material 

Science Tetrahedron presented in Chapter 2. The focus was placed on the multi-level 

structure property relationship for properties relevant to the pharmaceutical product 

development as visualised in Figure 8.5. The key findings of the for the polymorph 

propensity study and the solid state specific melting point prediction are summarised 

below. Based on the discussion of data (8.2) and the empirical method analysis (8.3), 

future research topics are suggested. 

 

 

Figure 8.4: MMP based group contribution for QSPR model prediction 

explanation. 

For a given prediction (gold) a set of MMPs can be generated (blue) to 

determine the group contributions to the prediction. 
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8.4.1 Polymorph propensity 

Polymorph propensity was studied using MMP approach in Chapter 4. No statistically 

significant transformations were identified. Beyond the data related limitations 

discussed earlier, the phenomenon of polymorphism may be too complex to capture 

using MMPA. The way in which a transformation affects the propensity may be highly 

dependent on the context of the pair (part of the MMP that does not change). However, 

even when some properties of the context (such as flexibility and number of hydrogen 

bond donors/acceptors) were taken into account, no meaningful correlations were 

found. Furthermore, previous research into the effects of molecular transformations 

on crystal packing found that some transformations had consistent effect [189]. 

Therefore, it is likely that the MMPA did not yield any statistically significant results 

due to the analysis technique selected and the available data as previously discussed 

(8.2.1 and 8.3.2). An empirical method that utilises the entirety of the dataset (such as 

QSPR modelling) are likely to be more suitable for the propensity study as it can utilise 

the entirety of the dataset. The challenge of the low data quality may be partially 

 

Figure 8.5: Structure Property Relationship studied in the thesis. 

The figure is based on the adapted Material Science Tetrahedron introduced 

in Chapter 2. 

 

Processing

Performance

Molecule

Crystal

Polymorph 
propensity Melting 

Point

System of interest

Scale of structure



-178- 

 

addressed by focusing on prediction of polymorphism (i.e. classification into 

monomorphic and polymorphic compounds). If at least two polymorphs are identified, 

the molecule would be considered to be polymorphic without the need to have found 

all possible polymorphs (as is the case for polymorph propensity study). However, this 

does not fully solve the issue of unknown polymorphs, as many false monomorphic 

molecules will skew the results. Industrial, polymorph screened datasets suggest that 

up to 66 % of compounds may be polymorphic [50], which is much higher than the 

observed rate of polymorphism in the CSD. Polymorphism and polymorph propensity 

are of great interest, however it may be difficult to construct empirical models without 

access to datasets with adequate quality. 

8.4.2 Solid state specific melting point 

Many properties relevant to the pharmaceutical product development are solid state-

dependent (see 2.1.4.3). In this thesis, melting point was studied due to the availability 

of solid state specific data within the CSD. Previous work done on incorporating solid 

state information indicated the inability to appropriately capture the crystal structure 

as a reason for little improvement in model performance compared to molecule-based 

models [70,262]. Graph-based structure description complemented by crystal 

descriptors were used here in an attempt to capture solid state information. 

The improvement between models that did not have any crystal information and ones 

that did was relatively small (0.628 to 0.649 on the validation set and 0.500 to 0.550 

on the test set). This can be interpreted in two ways, either the crystal structure 

typically does not affect the property studied or the crystal structure information is not 

adequately captured. It is also possible that a combination of the two factors 

contributes to the small improvement. The improvement is particularly disappointing 

if the labour intensity for the acquisition of the additional crystal structure features are 

considered. These features require the crystal structure to be solved before computing 

the values. This is much more demanding than features computed based on molecular 

structure alone. Furthermore, the change in property across polymorphs is typically 

small, especially compared to the effects of small molecular changes (MMPs). 

Therefore, further attempts to capture crystal structure information for solid state-

specific bulk property prediction may not yield significant improvements in predictive 

power in relation to the labour intensity in acquiring solid state specific data. This is 
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not to diminish the importance of solid state informatics in developing better 

predictive models in areas where crystal structure plays an important role such as 

crystal surface properties [76,79]. 

8.4.3 Future research topics 

Analysis of polymorph propensity was complicated due to the reduction in dataset and 

unreliability of data. However, the MMP approach has previously been used to see 

which transformation maintain isostructurality [189]. This can be expanded by 

considering lattice energy changes caused by the molecular transformation. It is 

possible to calculate group contribution to lattice energy [263]. The group contribution 

of the context of the MMP can be calculated. A large change indicates a disruption to 

the intermolecular interaction. By carrying out MMPA, it may be possible to 

determine what transformations are likely to disrupt the intermolecular interactions. 

This can potentially be linked to morphology modification. Some crystals grow as 

needles due to the preferential intermolecular interactions [249]. By disrupting its 

intermolecular interactions, it may be possible to avoid molecules with undesirable 

morphological tendencies. In contrast, it may also be useful to identify transformations 

that do not disrupt the crystal packing but influence some other property of interest or 

vice versa. 

The work on solid state-specific melting point, as well as previous works [50]  

indicated that property difference between polymorphs is typically small, with few 

notable exceptions where the difference is significant as such as the case of the 

solubility of ritonavir [8]. A molecular structure based QSPR model to predict the size 

of the property difference between polymorphs would be of great interest. However, 

the issue of unknown polymorphs with unknown property value poses a similar 

challenge as the one encountered in Chapter 4. 

 

8.5 Concluding Remarks 

The thesis aimed to investigate the extent to which data-driven techniques, typically 

used during Discovery, could be used to address challenges commonly addressed 

during the Development stage of the pharmaceutical development process. The 

research was contextualised with the MST [5]. Emphasis was placed on the structure-
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property relationship, where the framework was expanded to explicitly include the 

concept of scale – for structures (molecular and crystal structure) as well as the 

properties. The difference in the relevant scales of structure presents a major difference 

between the two stages of drug development process where in Discovery, molecular 

structure is considered, while in Development larger structures such as crystals and 

particles are relevant.  

Effects of molecular changes on the propensity of the molecule to exhibit 

polymorphism were studied using MMPA, a method commonly used for the analysis 

of Discovery-related properties [11]. To carry out the analysis, a database was 

developed independently of other researchers [201]. A database of single component 

crystal structures from the CSD was constructed and the analysis was carried out. 

However, no statistically significant transformations were observed. Several potential 

reasons were investigated for the lack of any noticeable trends. A Matched Molecular 

Graph was constructed to investigate the properties of the dataset itself that may have 

affected the analysis. Despite a large total number of MMPs identified, only 25.2 % 

of molecules had at least one MMP. A Discovery dataset of the same size (TCAKS 

dataset) [229] had 58.2 % of molecules with at least one MMP. This indicates that the 

Development datasets may be less suitable for MMPA analysis compared to the 

Discovery datasets.  

The subsequent analysis focused on the data quality of the polymorph dataset. 

Unobserved polymorphs have likely skewed the results of the analysis. A general trend 

was observed that the more commonly studied structures (as approximated by the 

number of redeterminations within the CSD) had more polymorphs as well.  

Another issue related to the study of polymorphism that was addressed is the need for 

automated methods for polymorph and redetermination classification of crystal 

structures.  A benchmark dataset was derived from the CSD based on the availability 

of polymorph labelling provided by a single research group (per molecular 

composition). The commonly used spectra comparison method achieved an F1 score 

of 0.780 with relatively low recall value of 0.645 (precision was 0.987). Machine 

learning-based approach achieved F1 score of 0.910 with recall and precision of 0.864 

and 0.962, respectively. The benchmark dataset may be used as a starting point for 

future work aimed at addressing the issue of polymorph and redetermination 

classification. 
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Another challenge that was addressed in the thesis is the ability to adequately capture 

crystal structure information for machine learning-based modelling. A graph was 

constructed based on identified intermolecular interactions, along with other crystal 

descriptors (shape change descriptor and hydrogen bond dimensionality) to investigate 

if this improves the performance of melting point models. The observed improvement 

(0.628 to 0.649 on the validation set and 0.500 to 0.550 on the test set) was relatively 

small. This may be due to the inability to capture solid state information. However, 

the typically small effect of solid state changes on the melting point is also likely to 

have contributed to the small performance improvement.  

The research opened several avenues for further investigation. Although MMPA of 

polymorph propensity did not identify any statistically significant trends, the ease of 

interpretability remains an attractive feature of MMPA. The method could be applied 

to study the effects of molecular transformation on the disruption of intermolecular 

interactions via lattice energy analysis. This would build on existing MMPA of iso-

structurality [189]. However, issues of systematic and accurate lattice energy 

calculation need to be addressed [70]. 

Polymorphs typically have similar properties with a small fraction of notable 

exceptions [50]. An interesting scope of future research is the prediction of the 

difference of property values between solid state structures based on the molecular 

structure. If successful, this would allow to anticipate the potential Development 

challenges during Discovery.  

The research and development of treatments for illnesses has been a major challenge 

for civilisations for millennia [16,18]. In recent years, the efficiency of the 

pharmaceutical product development process has been decreasing [33,34]. The studies 

presented in this thesis provide partial solutions to problems addressed at the 

Development stage. A novel method of analysing datasets – Matched Molecular 

Graphs – showed that Development datasets tend to have less similar molecules, 

resulting in methods that are commonly used in the Discovery stage (such as MMPA) 

being less suitable. A graph-based approach to capturing crystal information showed 

some promising results. The work in the thesis can inform future research in the area 

of solid state informatics to address the challenges encountered when developing new 

pharmaceutical products. 
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Appendix 1  

Matched Molecular Pairs 

Database scripts 
 

 

 

 

 

Purpose: 

This appendix contains all scripts used to generate a Matched Molecular Pair 

Database (Chapter 3) and carry out the analysis (Chapter 4). Scripts that generate 

required files for Matched Molecular Graph generation (Chapter 6) is also included 

here. 

 

 

 

Folder structure and uses: 

• mmpdb 

o __init__.py 

o tables.py 

o get_smiles.py 

o frag.py 

o indexfrag.py 

o mmp_identification 

• csd_addon.py: prepares input for database.py if using CSD as source 

• database.py: creates MMP database 

• analysis.py: performs MMPA on database, optionally prepares data for MMG 
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__init__.py 

import tables 

import frag 

import indexfrag 

import mmp_identification 
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tables.py 

 

 

def solids_table(c): 

    c.execute(' CREATE TABLE IF NOT EXISTS ' 

              'Solid_properties ' 

              '(solid_id VARCHAR(10) PRIMARY KEY, structure_family 

VARCHAR(6),' 

              ' polymorph_count INTEGER, structure_count INTEGER)') 

 

 

def smiles_table(c): 

    c.execute('CREATE TABLE IF NOT EXISTS ' 

              'all_smiles ' 

              '(line_id INTEGER PRIMARY KEY, solid_id VARCHAR(10), 

mol_id INTEGER ' 

              ' )') 

 

 

def frag_table(c): 

    c.execute('CREATE TABLE IF NOT EXISTS ' 

              'rfrag ' 

              '(rfrag_id INTEGER PRIMARY KEY, mol_id INTEGER, core 

TEXT, core_ni TEXT, core_id INTEGER, chain TEXT, ' 

              'chain_size INTEGER, chain_id, single_cut INTEGER 

DEFAULT 0, indexed INTEGER DEFAULT 0)') 

 

 

def trans_table(c): 

    c.execute('CREATE TABLE IF NOT EXISTS Transformation ( ' 

              ' trans_id    INTEGER NOT NULL, ' 

              ' R1_id   INTEGER NOT NULL, ' 

              ' R2_id   INTEGER NOT NULL, ' 

              ' SMIRKS TEXT NOT NULL,' 

              ' PRIMARY KEY(trans_id) ' 

              ');') 

 

 

def mmp_table(c): 

    c.execute('CREATE TABLE IF NOT EXISTS MMP ' 

              '(mmp_id INTEGER PRIMARY KEY, trans_id INTEGER NOT 

NULL, ' 

              'mol1_id INTEGER NOT NULL, mol2_id INTEGER NOT NULL, 

context INTEGER, ' 

              'FOREIGN KEY (trans_id) REFERENCES 

Transformation(trans_id))') 

 

 

def context_table(c): 

    c.execute("CREATE TABLE IF NOT EXISTS context_table " 

              "                  ( " 

              "                    context_id INTEGER PRIMARY KEY, " 

              "                    context_smi VARCHAR(1000) NOT 

NULL UNIQUE, " 

              "                    context_size INTEGER, " 

              "                    single_cut INTEGER DEFAULT 0 " 

              "    )") 

 

 

def core_table(c): 
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    c.execute("CREATE TABLE IF NOT EXISTS fragments" 

              "                  (" 

              "                    context_id INTEGER NOT NULL," 

              "                    cmpd_id INTEGER NOT NULL," 

              "                    core_id INTEGER, " 

              "                    core_size INTEGER," 

              "                    ratio REAL," 

              "                    single_cut INTEGER," 

              "                    significant INTEGER NOT NULL 

DEFAULT 0" 

              "                    " 

              "    )") 

 

 

def unique_core_table(c): 

    c.execute("CREATE TABLE IF NOT EXISTS `core_table` ( " 

              " `core_id`   INTEGER, " 

              " `core_smi`  TEXT UNIQUE, " 

              " `core_smi_ni`   TEXT, " 

              " PRIMARY KEY(`core_id`) " 

              "); ") 

 

 

def mol_descriptor_table(c): 

    c.execute("CREATE TABLE IF NOT EXISTS mol_properties  " 

              "( mol_id INTEGER PRIMARY KEY, " 

              "smiles VARCHAR(1000),cmpd_size INTEGER, fragmented 

INTEGER DEFAULT 0, MMP_identified INTEGER DEFAULT 0, " 

              "n_conf_20 INTEGER " 

              ")") 

 

 

def all_tables(c): 

    solids_table(c) 

    smiles_table(c) 

    # frag_table(c) 

    trans_table(c) 

    mmp_table(c) 

    context_table(c) 

    core_table(c) 

    unique_core_table(c) 

    mol_descriptor_table(c) 
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get_smiles.py 

# 

# This script can be used for any purpose without limitation subject 

to the 

# conditions at 

http://www.ccdc.cam.ac.uk/Community/Pages/Licences/v2.aspx 

# 

# This permission notice and the following statement of attribution 

must be 

# included in all copies or substantial portions of this script. 

# 

# 2017-02-07: created by the Cambridge Crystallographic Data Centre 

 

from ccdc import search 

from rdkit import Chem 

 

 

def heavy_atom_count(smi): 

    m = Chem.MolFromSmiles(smi) 

    return m.GetNumAtoms() 

 

 

def get_rdkit_mol(ccdc_mol): 

    """Return RDKit molecule, with 2D coordinates, from a CCDC 

molecule."""  

    mol_block = Chem.MolFromMolBlock(ccdc_mol) 

    rdkit_mol_smiles = Chem.MolToSmiles(mol_block, 

isomericSmiles=True) 

    return rdkit_mol_smiles 

 

     

def generate_smiles_from_mol_block(mol): 

    """Return an RDKit SMILES from a sdf mol block of a CCDC 

molecule.""" 

    mol_block = mol.to_string('sdf') 

    return get_rdkit_mol(mol_block) 

 

     

def generate_smiles_from_kekulized_mol_block(mol): 

    """Return an RDKit SMILES from a sdf mol block of a kekulized 

CCDC molecule.""" 

    mol.kekulize() 

    kekulized_mol = mol.to_string('sdf') 

    return get_rdkit_mol(kekulized_mol) 

 

     

def generate_smiles_from_csd(mol): 

    """Return an CSD SMILES from a CCDC molecule.""" 

    csd_smiles = mol.smiles 

    return Chem.MolToSmiles(Chem.MolToSmiles(csd_smiles), 

isomericSmiles=True)   

 

 

class RDKitChargeConventionSetter: 

    def __init__(self): 

        self.editors = [] 

        # You can add in any other edits you need here 

        # The pairs (1,-1) mean 'transform the atom labeled '1' in 

the SMARTS to have a charge '-1', etc.' 

        self._add_editor('[OX1:1]-[nX3:2]',[ (1,-1),(2,1) ]) 
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        self._add_editor('[!#1]=[N:1]=[N:2]',[ (1,1),(2,-1) ]) 

     

    def _add_editor(self, smarts_pattern, charge_transformation): 

        searcher = search.SubstructureSearch() 

        sub = search.SMARTSSubstructure(smarts_pattern) 

        searcher.add_substructure(sub) 

        self.editors.append( (searcher, sub, 

charge_transformation ) ) 

         

    def _charge_balance_molecule_with_editor(self, mol, editor):    

        hits = editor[0].search(mol) 

        for hit in hits: 

            hit_atom_indexes = hit.match_atoms(indices=True) 

            substructure = editor[1] 

            for pair in editor[2]: 

                sub_atom_index = 

substructure.label_to_atom_index(pair[0]) 

                

mol.atoms[ hit_atom_indexes[sub_atom_index] ].partial_charge = 

float(pair[1]) 

                

mol.atoms[ hit_atom_indexes[sub_atom_index] ].formal_charge  = 

int(pair[1]) 

 

    def charge_balance_molecule(self, mol): 

        for editor in self.editors: 

            self._charge_balance_molecule_with_editor(mol,editor) 

 

            

def generate_smiles(entry): 

    mol = entry.molecule 

    try: 

        smiles = generate_smiles_from_mol_block(mol) 

        method = 'mol block'  

    except: 

        try: 

            smiles = generate_smiles_from_kekulized_mol_block(mol) 

            method = 'kekulized mol block' 

        except: 

            try: 

                setter = RDKitChargeConventionSetter() 

                setter.charge_balance_molecule(mol) 

                smiles = generate_smiles_from_mol_block(mol) 

                method = "mol block with charges for N-oxide"  

            except: 

                try: 

                    smiles = generate_smiles_from_csd(mol) 

                    method = "CSD and canonicalised with RDKit" 

                except: 

                    smiles = '' 

                    method = 'unable' 

    return smiles, method 
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frag.py 

# Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd. 

# All rights reserved. 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions 

are 

# met: 

# 

#     * Redistributions of source code must retain the above 

copyright 

#       notice, this list of conditions and the following 

disclaimer. 

#     * Redistributions in binary form must reproduce the above 

#       copyright notice, this list of conditions and the following 

#       disclaimer in the documentation and/or other materials 

provided 

#       with the distribution. 

#     * Neither the name of GlaxoSmithKline Research & Development 

Ltd. 

#       nor the names of its contributors may be used to endorse or 

promote 

#       products derived from this software without specific prior 

written 

#       permission. 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS 

# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

FOR 

# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 

COPYRIGHT 

# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, 

# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 

USE, 

# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 

ANY 

# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 

TORT 

# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE 

# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE. 

# 

# Created by Jameed Hussain, July 2013 

# 

# Modifications and optimizations by Greg Landrum, July 2015 

# 

 

import re 

from rdkit import Chem 

from rdkit.Chem import rdMMPA 

 

 

def find_correct(f_array): 

 

  core = "" 
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  side_chains = "" 

 

  for f in f_array: 

    attachments = f.count("*") 

    if (attachments == 1): 

      side_chains = "%s.%s" % (side_chains, f) 

    else: 

      core = f 

 

  side_chains = side_chains.lstrip('.') 

 

  #cansmi the side chains 

  temp = Chem.MolFromSmiles(side_chains) 

  side_chains = Chem.MolToSmiles(temp, isomericSmiles=True) 

 

  #and cansmi the core 

  temp = Chem.MolFromSmiles(core) 

  core = Chem.MolToSmiles(temp, isomericSmiles=True) 

 

  return core, side_chains 

 

 

def delete_bonds(smi, id, mol, bonds, out): 

 

  #use the same parent mol object and create editable mol 

  em = Chem.EditableMol(mol) 

 

  #loop through the bonds to delete 

  isotope = 0 

  isotope_track = {} 

  for i in bonds: 

    isotope += 1 

    #remove the bond 

    em.RemoveBond(i[0], i[1]) 

 

    #now add attachement points 

    newAtomA = em.AddAtom(Chem.Atom(0)) 

    em.AddBond(i[0], newAtomA, Chem.BondType.SINGLE) 

 

    newAtomB = em.AddAtom(Chem.Atom(0)) 

    em.AddBond(i[1], newAtomB, Chem.BondType.SINGLE) 

 

    #keep track of where to put isotopes 

    isotope_track[newAtomA] = isotope 

    isotope_track[newAtomB] = isotope 

 

  #should be able to get away without sanitising mol 

  #as the existing valencies/atoms not changed 

  modifiedMol = em.GetMol() 

 

  #canonical smiles can be different with and without the isotopes 

  #hence to keep track of duplicates use fragmented_smi_noIsotopes 

  fragmented_smi_noIsotopes = Chem.MolToSmiles(modifiedMol, 

isomericSmiles=True) 

 

  valid = True 

  fragments = fragmented_smi_noIsotopes.split(".") 

 

  #check if its a valid triple cut 

  if (isotope == 3): 

    valid = False 
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    for f in fragments: 

      matchObj = re.search('\*.*\*.*\*', f) 

      if matchObj: 

        valid = True 

        break 

 

  if valid: 

    if (isotope == 1): 

      fragmented_smi_noIsotopes = re.sub('\[\*\]', '[*:1]', 

fragmented_smi_noIsotopes) 

 

      fragments = fragmented_smi_noIsotopes.split(".") 

 

      #print fragmented_smi_noIsotopes 

      s1 = Chem.MolFromSmiles(fragments[0]) 

      s2 = Chem.MolFromSmiles(fragments[1]) 

 

      #need to cansmi again as smiles can be different 

      output = '%s,%s,,%s.%s' % (smi, id, Chem.MolToSmiles(s1, 

isomericSmiles=True), 

                                 Chem.MolToSmiles(s2, 

isomericSmiles=True)) 

      if ((output in out) == False): 

        out.add(output) 

 

    elif (isotope >= 2): 

      #add the isotope labels 

      for key in isotope_track: 

        #to add isotope lables 

        

modifiedMol.GetAtomWithIdx(key).SetIsotope(isotope_track[key]) 

      fragmented_smi = Chem.MolToSmiles(modifiedMol, 

isomericSmiles=True) 

 

      #change the isotopes into labels - currently can't add SMARTS 

or labels to mol 

      fragmented_smi = re.sub('\[1\*\]', '[*:1]', fragmented_smi) 

      fragmented_smi = re.sub('\[2\*\]', '[*:2]', fragmented_smi) 

      fragmented_smi = re.sub('\[3\*\]', '[*:3]', fragmented_smi) 

 

      fragments = fragmented_smi.split(".") 

 

      #identify core/side chains and cansmi them 

      core, side_chains = find_correct(fragments) 

 

      #now change the labels on sidechains and core 

      #to get the new labels, cansmi the dot-disconnected side 

chains 

      #the first fragment in the side chains has attachment label 1, 

2nd: 2, 3rd: 3 

      #then change the labels accordingly in the core 

 

      #this is required by the indexing script, as the side-chains 

are "keys" in the index 

      #this ensures the side-chains always have the same numbering 

 

      isotope_track = {} 

      side_chain_fragments = side_chains.split(".") 

 

      for s in range(len(side_chain_fragments)): 
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        matchObj = re.search('\[\*\:([123])\]', 

side_chain_fragments[s]) 

        if matchObj: 

          #add to isotope_track with key: old_isotope, value: 

          isotope_track[matchObj.group(1)] = str(s + 1) 

 

      #change the labels if required 

      if (isotope_track['1'] != '1'): 

        core = re.sub('\[\*\:1\]', '[*:XX' + isotope_track['1'] + 

'XX]', core) 

        side_chains = re.sub('\[\*\:1\]', '[*:XX' + 

isotope_track['1'] + 'XX]', side_chains) 

      if (isotope_track['2'] != '2'): 

        core = re.sub('\[\*\:2\]', '[*:XX' + isotope_track['2'] + 

'XX]', core) 

        side_chains = re.sub('\[\*\:2\]', '[*:XX' + 

isotope_track['2'] + 'XX]', side_chains) 

 

      if (isotope == 3): 

        if (isotope_track['3'] != '3'): 

          core = re.sub('\[\*\:3\]', '[*:XX' + isotope_track['3'] + 

'XX]', core) 

          side_chains = re.sub('\[\*\:3\]', '[*:XX' + 

isotope_track['3'] + 'XX]', side_chains) 

 

      #now remove the XX 

      core = re.sub('XX', '', core) 

      side_chains = re.sub('XX', '', side_chains) 

      output = '%s,%s,%s,%s' % (smi, id, core, side_chains) 

      if ((output in out) == False): 

        out.add(output) 

 

 

def fragment_mol(smi, id): 

 

  mol = Chem.MolFromSmiles(smi) 

 

  #different cuts can give the same fragments 

  #to use outlines to remove them 

  outlines = set() 

 

  if (mol == None): 

    print("Can't generate mol for: %s\n" % (smi)) 

    return 

  else: 

    frags = rdMMPA.FragmentMol(mol, 

pattern="[#6+0;!$(*=,#[!#6])]!@!=!#[*]", resultsAsMols=False) 

    for core, chains in frags: 

      output = (str(smi),str(id),str(core),str(chains)) 

      if (not (output in outlines)): 

        outlines.add(output) 

  return outlines 
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indexfrag.py 

# Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd. 

# All rights reserved. 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions 

are 

# met: 

# 

#     * Redistributions of source code must retain the above 

copyright 

#       notice, this list of conditions and the following 

disclaimer. 

#     * Redistributions in binary form must reproduce the above 

#       copyright notice, this list of conditions and the following 

#       disclaimer in the documentation and/or other materials 

provided 

#       with the distribution. 

#     * Neither the name of GlaxoSmithKline Research & Development 

Ltd. 

#       nor the names of its contributors may be used to endorse or 

promote 

#       products derived from this software without specific prior 

written 

#       permission. 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS 

# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

FOR 

# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 

COPYRIGHT 

# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, 

# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 

USE, 

# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 

ANY 

# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 

TORT 

# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE 

# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGE. 

# 

# Created by Jameed Hussain, July 2013 

# 

# modifications by Jakub Janowiak, 2018 

 

import pandas as pd 

import re 

from rdkit import Chem 

 

 

 

 

# \\\\\\\\\\\\\\\\\\\\\core side/////////////////////// 

def core_db(conn): 
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    """Return pandas.DataFrame with cores from database.""" 

    sql = '''SELECT core_id, core_smi FROM core_table''' 

    cores_old = pd.read_sql_query(sql, conn) 

    cores_old['old'] = True 

    # they are loaded in random order for some reason 

    cores_old = 

cores_old.sort_values(by=['core_id']).reset_index().drop('index', 

axis=1) 

 

    return cores_old 

 

 

def get_cores(frag_df): 

    """Return pandas.Dataframe with cores from frag_df.""" 

    cores_new = frag_df.drop_duplicates(subset='core_smi') 

    cores_new.drop(['cmpd_size', 'context_size', 'core_size', 

'ratio', 'context_smi', 'mol_id', 'single_cut'], axis=1, 

inplace=True) 

    cores_new['old'] = False 

    return cores_new 

 

 

def core_all(cores_new, cores_old): 

    """Return a combined pandas.DataFrame with old and new 

contexts""" 

    if cores_old.empty is True: 

        line = {'core_smi': ['[*:1][H]'], 'core_id': [0], 'old': 

[False]} 

        cores = pd.DataFrame(line, columns=line.keys()) 

        cores = pd.concat([cores, cores_new]) 

        cores = cores.reset_index().drop('index', axis=1) 

 

        assert cores.loc[0, 'core_id'] == 0, 'something went wrong 

with generating core_table; index issue' 

 

    else: 

        cores = pd.concat([cores_old, cores_new]).reset_index() 

        cores.rename(columns={'core_id': 'core_old'}, inplace=True) 

        # drops the contexts that were already in the database 

        cores.drop_duplicates(subset='core_smi', keep='first', 

inplace=True) 

        cores.drop('index', axis=1, inplace=True) 

 

        cores = cores.reset_index() 

        cores.drop('index', axis=1, inplace=True) 

        # check the old index didnt change 

        row_index = len(cores[(cores['old'] == True) & (cores.index 

== cores['core_old'])]) 

        row_old = len(cores[cores['old'] == True]) 

        assert row_old == row_index, 'duplicate cores found in 

database.' 

 

        cores.drop('core_old', axis=1, inplace=True) 

 

    cores['core_id'] = cores.index 

 

    return cores 

 

 

def get_smi_ni(smi): 

    """Return fragment string without numbered cuts """ 
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    smi = re.sub(r'\[\*\:1\]', '[*]', smi) 

    smi = re.sub(r'\[\*\:2\]', '[*]', smi) 

    smi = re.sub(r'\[\*\:3\]', '[*]', smi) 

    return  smi 

 

 

def core_to_db(cores, conn): 

    """Insert contexts to database and return the corresponding 

pandas.Dataframe""" 

    new_cores = cores[cores['old'] == False] 

    # drop 'old' column 

    new_cores = new_cores.drop('old', axis=1) 

    if not new_cores.empty: 

        new_cores['core_smi_ni'] = new_cores.apply(lambda row: 

get_smi_ni(row['core_smi']), axis=1) 

        new_cores.to_sql('core_table', conn, if_exists='append', 

index=False) # TODO check this, hasnt been done yet 

 

 

# \\\\\\\\\\\\\\\\\\\\\context side/////////////////////// 

 

def context_db(conn): 

    """Return pandas.DataFrame with contexts from database.""" 

    sql = '''SELECT context_smi, context_id, context_size, 

single_cut FROM context_table''' 

    contexts_old = pd.read_sql_query(sql, conn) 

    contexts_old['old'] = True 

    contexts_old = 

contexts_old.sort_values(by=['context_id']).reset_index().drop('inde

x', axis=1) 

 

    return contexts_old 

 

 

def get_contexts(frag_df): 

    """Return pandas.Dataframe with contexts from frag_df.""" 

    contexts_new = frag_df.drop_duplicates(subset='context_smi') 

    contexts_new = contexts_new.reset_index() 

    contexts_new = contexts_new.drop(['cmpd_size', 'core_size', 

'ratio', 'core_smi', 'mol_id', 'index'], axis=1) 

    contexts_new['old'] = False 

 

    return contexts_new 

 

 

def context_all(contexts_new, contexts_old): 

    """Return a combined pandas.DataFrame with old and new 

contexts""" 

    if contexts_old.empty is True: 

        contexts = contexts_new 

    else: 

        contexts = pd.concat([contexts_old, 

contexts_new]).reset_index() 

        contexts.rename(columns={'context_id': 'context_old'}, 

inplace=True) 

        # drops the contexts that were already in the database 

        contexts.drop_duplicates(subset='context_smi', keep='first', 

inplace=True) 

        contexts.drop('index', axis=1, inplace=True) 

 

        contexts = contexts.reset_index() 
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        contexts.drop('index', axis=1, inplace=True) 

        # check the old index didnt change 

        row_index = len(contexts[(contexts['old'] == True) & 

(contexts.index == contexts['context_old'])]) 

        row_old = len(contexts[contexts['old'] == True]) 

        if row_index != row_old: 

            raise Exception('duplicate contexts found in database.') 

        contexts.drop('context_old', axis=1, inplace=True) 

 

    contexts['context_id'] = contexts.index 

 

    return contexts 

 

 

def context_to_db(contexts, conn): 

    """Insert contexts to database and return the corresponding 

pandas.Dataframe""" 

    new_contexts = contexts[contexts['old'] == False] 

    # drop 'old' column 

    new_contexts = new_contexts.drop('old', axis=1) 

    if not new_contexts.empty: 

        new_contexts.to_sql('context_table', conn, 

if_exists='append', index=False) # TODO check this, hasnt been done 

yet 

 

    return new_contexts 

 

 

def h_change(smi): 

    """ """ 

    # replace [1] with H 

    smi = re.sub(r'\[\*\:1\]', '[H]', smi) 

    # construct a mol 

    temp = Chem.MolFromSmiles(smi) 

    if temp is None: 

        print('failed to generate Chem.Mol for  {}'.format(smi)) 

        mol = None 

    else: 

        mol = Chem.MolToSmiles(temp, isomericSmiles=True) 

 

    # return smiles 

    return mol 

 

 

def index_h_change(new_contexts, conn): 

    new_contexts['mol'] = new_contexts.apply(lambda row: 

h_change(row['context_smi']) if (row['single_cut'] == 1) else None, 

axis=1) 

    # drop na 

    new_contexts.drop('single_cut',axis=1, inplace=True) 

    new_contexts.dropna(axis=0, how='any', inplace=True) 

    # new_contexts['context_id'] = new_contexts.index # loses index 

on merge 

    # merge with all_smiles (inner) 

    sql = 'SELECT smiles, mol_id FROM mol_properties' 

    all_smiles = pd.read_sql_query(sql,conn) 

    new_contexts = new_contexts.merge(all_smiles, how='inner', 

left_on='mol', right_on='smiles') 

    new_contexts.drop(['smiles', 'mol'], axis=1, inplace=True) 

    new_contexts['ratio'] = 0 

    new_contexts['core_size'] = 0 
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    new_contexts['core_smi'] = '[*:1][H]' 

    new_contexts['core_id'] = 0 

    new_contexts['single_cut'] = 1 

    new_contexts.rename(columns={'unique_smiles_id': 'smiles_id'}, 

inplace=True) 

 

    return new_contexts 

 

 

# \\\\\\\\\\\\\\\\\\\\\fragments/////////////////////// 

def get_id(frag_df, contexts, cores): 

    """Return pandas.DataFrame with context_id and core_id""" 

    contexts.drop(['context_size', 'old', 'single_cut'], axis=1, 

inplace=True) 

    cores.drop('old', axis=1, inplace=True) 

    frag_df.drop('cmpd_size', axis=1, inplace=True) 

    frag_df = frag_df.merge(contexts, how='left', on='context_smi') 

    frag_df = frag_df.merge(cores, how='left', on='core_smi') 

 

    return frag_df 

 

 

# \\\\\\\\\\\\\\\\\\\\\main/////////////////////// 

 

 

def index_core(frag_df, conn): 

    """ """ 

    cores_old = core_db(conn) 

    cores_new = get_cores(frag_df) 

 

    cores = core_all(cores_new, cores_old) 

 

    core_to_db(cores, conn) 

 

    return cores 

 

 

def index_context(frag_df, conn): 

    """ """ 

    contexts_old = context_db(conn) 

    contexts_new = get_contexts(frag_df) 

 

    contexts = context_all(contexts_new, contexts_old) 

     

    if not contexts[contexts['old'] == False].empty: 

        h_frag = context_to_db(contexts, conn) 

        h_frag = index_h_change(h_frag, conn) 

    else: 

        h_frag = None 

    return contexts, h_frag 

 

 

def index_main(frag_df, conn): 

    cores = index_core(frag_df, conn) 

    contexts, h_frag = index_context(frag_df, conn) 

    frag_df = get_id(frag_df,contexts,cores) 

     

    if h_frag is not None: 

        frag_df = pd.concat([frag_df, 

h_frag]).reset_index(drop=True) 
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    frag_df = frag_df.drop(['context_smi', 'core_smi', 

'context_size'], axis=1) 

    frag_df.rename(columns={'mol_id': 'cmpd_id'}, inplace=True) 

    frag_df.to_sql('fragments', conn, if_exists='append', 

index=False) 
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mmp_identification.py 

import pandas as pd 

import numpy as np 

# from joblib import Parallel, delayed 

import time 

 

#from __main__ import conn 

#from __main__ import c 

 

 

context = {} 

 

 

class DatabaseException(Exception): 

    pass 

 

 

 

"""returns compound list (cmpd_id, cmpd_size) and DataFrame with 

fragments""" 

 

 

def load_data(ratio, max_size, conn): 

    sql_cmpd = ('' 

                'SELECT distinct(cmpd_id), cmpd_size ' 

                'FROM fragments, mol_properties ' 

                'WHERE cmpd_id = mol_id  AND MMP_identified = 0 ' 

                '') 

 

    sql_frag = ('' 

                'SELECT fragments.cmpd_id, fragments.core_id, 

fragments.context_id, context_size ' 

                'FROM fragments, context_table ' 

                'WHERE significant = 1 AND context_table.context_id 

= fragments.context_id ' 

                'AND ratio <= {ratio} AND core_size <= {size}' 

                '') 

    var = {'ratio': ratio, 'size': max_size} 

    sql_frag = sql_frag.format(**var) 

    df_cmpd = pd.read_sql_query(sql_cmpd, conn) 

    cmpd_list = df_cmpd.values.tolist() 

    global fragmts 

    fragmts = pd.read_sql_query(sql_frag, conn) 

 

    return cmpd_list 

 

 

def get_contexts(cmpd): 

    """creates a dictionary with cmpd_id: [context_id,...]...""" 

    c_id = cmpd[0] 

    contexts = fragmts.context_id[fragmts.cmpd_id == c_id] 

    context_list = contexts.values.tolist() 

    context[c_id] = context_list 

 

 

def find_mmp(cmpd): 

    """finds MMPs of a molecule. Uses context dict and frag 

DataFrame""" 

    c_id, c_size = cmpd 

    contexts = context[c_id] 
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    all_mmp = fragmts[(fragmts.context_id.isin(contexts)) & 

(fragmts.cmpd_id != c_id)].groupby(fragmts['cmpd_id']) # TODO change 

the conditions removed:  & (c_size - fragmts.context_id < 15) 

    mmp_list = [] 

    for mmp in list(all_mmp): 

        df = mmp[1] 

        pair = df.ix[df['context_size'].idxmax()] 

        mmp_list.append(pair) 

    if mmp_list: 

        mmps = pd.concat(mmp_list, axis=1).T.reset_index() 

    else: 

        mmps = None 

    return c_id, mmps 

 

 

def sort_mmp(mmp_set): 

    """combines the generated mmp tables of each molecule into 

one""" 

    full_mmp_set = [] 

    NoneType = type(None) 

    for i in mmp_set: 

        if type(i[1]) is NoneType: 

            continue 

        else: 

            table = i[1] 

            table = table.rename(columns={'cmpd_id': 'mol2', 

'core_id': 'R2', 'context_id': 'context'}) 

            table = table.assign(mol1=i[0]) 

            table = table.astype(int) 

 

            full_mmp_set.append(table) 

    # TODO sort it out for the case for no MMPs 

    mmp_table = pd.concat(full_mmp_set) 

    mmp_table = mmp_table.reset_index() 

    mmp_table.drop(['level_0', 'index'], axis=1, inplace=True) 

    mmp_table = mmp_table[mmp_table['mol1'] != 

mmp_table['mol2']].reset_index() 

    mmp_table.drop('index', axis=1, inplace=True) 

    return mmp_table 

 

 

def find_r1(mmp): 

    """adds symmetrical transformation to mmp dataframe""" 

    mmp = mmp.merge(fragmts[['cmpd_id', 'core_id', 'context_id']], 

left_on=['mol1', 'context'], right_on=['cmpd_id', 'context_id'], 

how='left') 

    mmp['R1'] = mmp['R1'].fillna(mmp['core_id']) 

    mmp.drop(['context_id', 'core_id', 'cmpd_id'], axis=1, 

inplace=True) 

    mmp['R1'] = mmp['R1'].astype(int) 

    return mmp 

 

 

def reorganise(mmp): 

    """reorganises mmps and transformation to avoid counting 

symmetrical pairs as separate""" 

    # reorders mol1, mol2 and R1, R2 so all are in order of R2 > R1 

    idx = (mmp['R1'] > mmp['R2']) 

    mmp.loc[idx, ['mol1', 'mol2']] = mmp.loc[idx, ['mol2', 

'mol1']].values 

    mmp.loc[idx, ['R1', 'R2']] = mmp.loc[idx, ['R2', 'R1']].values 
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    # drops duplicate 

    mmp = mmp.drop_duplicates(subset=['mol1', 'mol2']).reset_index() 

    mmp.drop('index', axis=1, inplace=True) 

    return mmp 

 

 

def get_trans(mmp): 

    """selects all unique R1-R2 combinations from identified mmps""" 

    trans = mmp[['R1', 'R2']].drop_duplicates(subset=['R1', 

'R2']).reset_index() 

    trans.drop('index', axis=1, inplace=True) 

    trans['old'] = False 

    trans.index.rename('trans_id', inplace=True) 

    return trans 

 

 

def trans_db(conn): 

    """loads all transformations from the database""" 

    sql = '''SELECT trans_id, R1_id, R2_id FROM Transformation''' 

    trans_old = pd.read_sql_query(sql, conn, index_col='trans_id') 

    trans_old['old'] = True 

    trans_old = trans_old.rename(columns={'R1_id': 'R1', 'R2_id': 

'R2'}) 

    return trans_old 

 

 

def trans_all(trans_old, trans_new): 

    """combines newly identified transformations with ones from the 

database""" 

    if trans_old.empty is True: 

        trans = trans_new 

    else: 

        trans = pd.concat([trans_old, trans_new]).reset_index() 

        trans = trans.rename(columns={'trans_id': 'transid_old'}) 

        # drops the transformations that were already in the 

database 

        trans.drop_duplicates(subset=['R1', 'R2'], keep='first', 

inplace=True) 

        # TODO see context and core workflows, see if index needs to 

be reset 

        # check the old index didnt change by accident 

        row_index = len(trans[(trans['old'] == True) & (trans.index 

== trans['transid_old'])]) 

        row_old = len(trans[trans['old'] == True]) 

        if row_index != row_old: 

            raise DatabaseException('duplicate transformations found 

in database') 

        trans.drop('transid_old', axis=1, inplace=True) 

    trans['trans_id'] = trans.index 

    return trans 

 

 

def get_smirks(trans, conn): 

    sql = 'SELECT core_id, core_smi FROM core_table' 

    cores = pd.read_sql_query(sql, conn) 

    trans = trans.merge(cores, how='left', left_on='R1_id', 

right_on='core_id') 

    trans.rename(columns={'core_smi': 'R1'}, inplace=True) 

    trans.drop('core_id', axis=1, inplace=True) 

    trans = trans.merge(cores, how='left', left_on='R2_id', 

right_on='core_id') 
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    trans.rename(columns={'core_smi': 'R2'}, inplace=True) 

    trans.drop('core_id', axis=1, inplace=True) 

    trans['SMIRKS'] = trans['R1'] + '>>' + trans['R2'] 

    trans.drop(['R1', 'R2'], axis=1, inplace=True) 

    return trans 

 

 

def trans_to_db(trans, conn): 

    """appends the new unique transformations to the database""" 

    # remove the old ones that are already in the database 

    trans = trans[trans['old'] == False] 

    # adjust the table so it matches the database table 

    trans = trans.rename(columns={'R1': 'R1_id', 'R2': 'R2_id'}) 

    trans.drop('old', axis=1, inplace=True) 

    trans = get_smirks(trans, conn) 

    trans.to_sql('Transformation', conn, if_exists='append', 

index=False) 

 

 

def mmp_to_db(trans, mmp, conn): 

    """appends the newly identified mmps to the database""" 

    # merge transformations and mmps on R1 and R2 to get transid for 

mmps 

    mmp = pd.merge(mmp, trans, how='left', left_on=['R1', 'R2'], 

right_on=['R1', 'R2']) 

    # adjust the DataFrame to match the database table 

    mmp.drop(['R1', 'R2', 'context_size'], axis=1, inplace=True) 

    mmp = mmp.rename(columns={'mol1': 'mol1_id', 'mol2': 'mol2_id'}) 

    mmp.to_sql('MMP', conn, if_exists='append', index=False) 

 

 

def identify_mmps(ratio, max_size, conn, c): 

    cmpd_list = load_data(ratio, max_size, conn) 

    for i in cmpd_list: 

        get_contexts(i) 

    # potentially combine the two so contexts are searched on the 

fly. might save memory & time 

    ti = time.time() 

    # mmps = Parallel(n_jobs=2)(delayed(find_mmp)(i) for i in 

cmpd_list) 

    mmp_list = [] 

    for i in cmpd_list: 

        mmp = find_mmp(i) 

        mmp_list.append(mmp) 

    tf = time.time() 

    print(tf-ti) 

    ti = time.time() 

    mmps = sort_mmp(mmp_list) 

    tf = time.time() 

    print(tf-ti) 

    mmps['R1'] = np.nan # add r1 column 

    ti = time.time() 

    mmps = find_r1(mmps) 

    tf = time.time() 

    print(tf-ti) 

    ti = time.time() 

    mmps = reorganise(mmps) 

    tf = time.time() 

    print(tf-ti) 

    ti = time.time() 

    trans_new = get_trans(mmps) 
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    trans_old = trans_db(conn) 

    trans = trans_all(trans_old, trans_new) #TODO check if works 

    tf = time.time() 

    print(tf - ti) 

    ti = time.time() 

    trans_to_db(trans, conn) 

    tf = time.time() 

    print(tf - ti) 

    ti = time.time() 

    trans.drop('old', axis=1, inplace=True) 

    mmp_to_db(trans, mmps, conn) 

    tf = time.time() 

    print(tf - ti) 

    ti = time.time() 

    c.execute('UPDATE mol_properties ' 

              'SET MMP_identified = 1 ' 

              'WHERE MMP_identified = 0 AND ' 

              'mol_id IN (SELECT distinct(cmpd_id) FROM fragments) 

') 

    tf = time.time() 

    print(tf - ti) 

    conn.commit() 
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database.py 

 

import sqlite3 

import time 

import argparse 

import sys 

import re 

import os 

import glob 

import csv 

import pandas as pd 

from rdkit import Chem 

 

try: 

    import mmpdb # TODO check if it imports from the folder or 

outside of it 

except ImportError: 

    print('could not import necessary files. Ensure mmpdb folder is 

in a directory python can access') 

    sys.exit(1) 

 

# -------------------- Input smiles -------------------- 

def heavy_atom_count(smi): 

    try: 

        mol = Chem.MolFromSmiles(smi) 

        return mol.GetNumAtoms() 

    except AttributeError: 

        return None 

 

def solid_in_db(input_smiles, conn): 

    # check if solid_id in database already 

    # remove once that already in 

    # return the df 

    sql = 'SELECT solid_id FROM solid_properties' 

    in_db = pd.read_sql_query(sql, conn) 

    if not in_db.empty: 

        input_smiles = input_smiles.merge(in_db, how='outer', 

indicator=True, on='solid_id') 

        input_smiles = 

input_smiles[input_smiles['_merge']=='left_only'] 

        input_smiles = input_smiles.drop('_merge',axis=1) 

    return input_smiles 

 

def solid_to_db(input_smiles, conn): 

    # select distinct solid_id 

    # append to db 

    # no returns 

    solids = input_smiles.drop_duplicates(subset='solid_id') 

    solids.drop('smiles', axis=1, inplace=True) 

    solids.to_sql('Solid_properties', conn, if_exists='append', 

index=False) 

 

def all_smiles_to_db(input_smiles, conn): 

    # add all smiles to perserve stoich 

    to_db = input_smiles.drop(['smiles', 'old'], axis=1) 

    to_db.to_sql('all_smiles', conn, if_exists='append', 

index=False) 

 

def get_smiles(input_smiles): 
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    smiles_new = input_smiles.drop_duplicates(subset='smiles') 

    smiles_new = smiles_new.reset_index(drop=True) 

     

    smiles_new['old'] = False 

    return smiles_new     

 

def smiles_db(conn): 

    sql = 'SELECT mol_id, smiles FROM mol_properties' # check names 

    smiles_old = pd.read_sql_query(sql, conn) 

    smiles_old['old'] = True 

    smiles_old = 

smiles_old.sort_values(by=['mol_id']).reset_index(drop=True) 

    return smiles_old 

 

def smiles_all(smiles_new, smiles_old): 

    if smiles_old.empty is True: 

        smiles = smiles_new 

    else: 

        smiles = 

pd.concat([smiles_old,smiles_new]).reset_index(drop=True) 

        smiles.rename(columns={'mol_id':'smiles_old'}, inplace=True) 

        smiles.drop_duplicates(subset='smiles', keep='first', 

inplace=True) 

        smiles.reset_index(drop=True) 

        row_index = len(smiles[(smiles['old'] == True) & 

(smiles.index == smiles['smiles_old'])]) 

        row_old = len(smiles[smiles['old'] == True]) 

        if row_index != row_old: 

            raise Exception('duplicate {} found in 

database.'.format('smiles')) 

        smiles.drop('smiles_old', axis=1, inplace=True) 

    smiles['mol_id'] = smiles.index 

    return smiles 

 

def smiles_to_db(smiles, conn): 

    smiles['cmpd_size'] = smiles.apply(lambda row: 

heavy_atom_count(row['smiles']),axis=1) 

    smiles['fragmented'] = 0 

    smiles['MMP_identified'] = 0 

    smiles.to_sql('mol_properties', conn, if_exists='append', 

index=False) 

 

def input_smiles(input_file, conn): 

    input_smiles = pd.read_csv(input_file, header=None) 

 

    col_count = len(input_smiles.columns) 

    if col_count == 1: 

        solid_state = False 

        input_smiles.columns = ['smiles'] 

    elif col_count == 2: 

        solid_state = True 

         

        input_smiles.columns = ['smiles','solid_id'] 

    else: 

        print('something wrong with input') 

        sys.exit(1) 

    # in some cases there might be empty smiles (failure on the 

input side) 

    input_smiles.dropna(axis=0, how='any', inplace=True) 

     

    if solid_state: 
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        input_smiles = solid_in_db(input_smiles, conn) 

        solid_to_db(input_smiles, conn) 

        smiles_new = 

get_smiles(input_smiles.drop('solid_id',axis=1)) 

        # create a all_smiles df without adding to db 

    else: 

        smiles_new = get_smiles(input_smiles) 

    # assign smiles_ids to all new molecules 

 

    smiles_old = smiles_db(conn) 

    smiles = smiles_all(smiles_new,smiles_old) 

    if solid_state: 

        # merge with all_smiles on smiles to get the new mol_id 

        # add to db from all_smiles df 

        input_smiles = input_smiles.merge(smiles, how='left', 

on='smiles') 

        all_smiles_to_db(input_smiles, conn) 

    # drop 'old' column 

    smiles = smiles[smiles['old']==False] 

    smiles.drop('old',axis=1, inplace=True) 

    smiles_to_db(smiles, conn) 

 

 

# need to change unique_smiles_id = smiles_id bit everywhere 

 # -------------------- Fragmentation -------------------- 

def get_context_size(context, attachments): 

    mol = Chem.MolFromSmiles(context) 

    size = mol.GetNumAtoms() - attachments 

    return size 

 

 

def fragmnt(smi, id, cmpd_size): 

    """ """ 

    o = mmpdb.frag.fragment_mol(smi, id) 

    frags = [] 

    if o: 

        for l in o: 

            core = l[2] 

            chains = l[3] 

            # no fragments 

            if core == '' and chains == '': 

                continue 

 

            #single cut 

            elif core == '': 

                single_cut = 1 

                side_chains = chains.split('.') 

 

                # frag1-frag2 -> context: frag1, change: frag2 

                context, change = side_chains 

                context_size = get_context_size(context, 1) 

                f = {'mol_id': id, 'context_smi': context, 

'core_smi': change, 'single_cut': single_cut, 

                     'cmpd_size': cmpd_size, 'context_size': 

context_size} 

                frags.append(f) 

 

                # frag1-frag2 -> context: frag2, change: frag1 

                change, context = side_chains 

                context_size = get_context_size(context, 1) 
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                f = {'mol_id': id, 'context_smi': context, 

'core_smi': change, 'single_cut': single_cut, 

                     'cmpd_size': cmpd_size, 'context_size': 

context_size} 

                frags.append(f) 

 

            # double / triple cut 

            else: 

                single_cut = 0 

                context = chains 

                change = core 

                attachments = context.count('*') 

                context_size = get_context_size(context, 

attachments) 

                f = {'mol_id': id, 'context_smi': context, 

'core_smi': change, 'single_cut': single_cut, 

                     'cmpd_size': cmpd_size, 'context_size': 

context_size} 

                frags.append(f) 

 

    return frags 

 

 

def fragment(c): 

    c.execute('SELECT smiles, mol_id, cmpd_size ' 

              'FROM mol_properties ' 

              'WHERE fragmented = 0 ') 

    results = c.fetchall() 

    all_frags = [] 

    t1 = time.time() 

    for line in results: 

        frags = fragmnt(line[0], line[1], line[2]) 

        all_frags = all_frags + frags 

    t2 = time.time() 

    print(t2-t1) 

    frag_df = pd.DataFrame(all_frags,columns=['mol_id', 

'context_smi', 'core_smi', 'single_cut', 'cmpd_size', 

'context_size']) 

 

    frag_df['core_size'] = frag_df['cmpd_size'] - 

frag_df['context_size'] 

    frag_df['ratio'] = frag_df['core_size'] / frag_df['cmpd_size'] 

    t3 = time.time() 

    print(t3 - t2) 

    c.execute('UPDATE mol_properties ' 

              'SET fragmented = 1') # there should be no need to add 

this, make sure it aint done anywhere else 

    return frag_df    

    

 

 # -------------------- Indexing -------------------- 

  

# done in main() 

 

def screen_cores(min_core_count, conn, c): 

    if min_core_count != 0: 

        c.execute('UPDATE fragments SET significant = 0') 

        c.execute('UPDATE fragments SET significant = 1 WHERE 

core_id IN ' 

                  '(SELECT core_id FROM fragments ' 
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                  'GROUP BY core_id HAVING count(core_id) > ?)', 

(min_core_count,)) 

    else: 

        c.execute('UPDATE fragmnets SET significant = 1') 

    conn.commit() 

 # -------------------- MMP identification -------------------- 

# done in main() 

 # -------------------- Main -------------------- 

def main(): 

    parser = argparse.ArgumentParser('''Generates SMILES from CSD 

entries based on 

the refcodes in the input file or CSD search. 

Unique SMILES are fragmented and indexed using rdkit/MMPA. 

Identified MMPs are added to database.''') 

 

    parser.add_argument('input', help='input text file with refcodes 

or type "CSD"') 

    parser.add_argument('-o', '--output', default='MMP.db', 

help='database name (default = MMP.db)') 

    parser.add_argument('-r', '--ratio', default=0.3, help='max 

ratio of change allowed. ratio = size of change / cmpd.' 

                                                           ' Set to 

1 to ignore ratios. (default = 0.3)') 

    parser.add_argument('-c', '--change', default=10, help='max size 

of change allowed. Set to a high number (eg 100) to' 

                                                           ' ignore 

max size of change. (default = 10)' 

                                                           '') 

    parser.add_argument('-s', '--screen', default=1, help='min count 

of core to be considered for MMP identification.' 

                                                          ' Higher 

value reduces processing time and eliminates the ' 

                                                          

'likelihood of identifying transformations with low MMPs count' 

                                                          '(default 

= 1)') 

     

    args = parser.parse_args() 

 

 

    # MMP identification settings 

    max_size = int(args.change) 

    ratio = float(args.ratio) 

    min_core_num = int(args.screen) 

     

    # connect to database 

    db = re.search('\.db', args.output) 

    if db is None: 

        print('database name must end with .db') 

        sys.exit(1) 

     

    dbname = args.output 

    conn = sqlite3.connect(dbname) 

    c = conn.cursor() 

     

    input_file = args.input # sample10000.csv 

     

    try: 

        mmpdb.tables.all_tables(c) 

        print('tables created') 
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        input_smiles(input_file, conn) 

        print('SMILES added') 

         

        frag_df = fragment(c) 

        print('SMILES fragmented') 

         

        mmpdb.indexfrag.index_main(frag_df, conn) 

        screen_cores(min_core_num, conn, c) 

        print('indexing done') 

         

        mmpdb.mmp_identification.identify_mmps(ratio, max_size, 

conn, c) 

        print('MMPs identified') 

    finally: 

        conn.commit() 

        conn.close() 

 

if __name__ == '__main__': 

    main() 
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analysis.py 

 

import argparse 

import sqlite3 

import pandas as pd 

from scipy import stats 

 

 

# --------------------load data-------------------- 

def load_data(properties, conn): 

    if properties == 'all': 

        sql = 'SELECT * FROM mol_properties' 

        data = pd.read_sql_query(sql, conn) 

        data.drop(['smiles', 'fragmented', 'MMP_identified', 

'cmpd_size'], axis=1, inplace=True) 

    else: 

        sql = 'SELECT mol_id' 

        for prop in properties: 

            sql = sql + ', ' + prop 

        sql = sql + ' FROM mol_properties'  # add table selection 

        data = pd.read_sql_query(sql, conn) 

    return data 

 

def load_mmp(conn): 

    """returns a DF with all MMPs""" 

    sql = 'SELECT trans_id, mol1_id, mol2_id FROM MMP' 

    mmp = pd.read_sql_query(sql, conn) 

    return mmp 

 

def load_smirks(conn): 

    sql = 'SELECT trans_id, SMIRKS FROM Transformation' 

    smirks = pd.read_sql_query(sql, conn, index_col='trans_id') 

    return smirks 

 

 

# --------------------MMPA-------------------- 

def mmp_data(mmp, data): 

    # rename property values 

    prop_names = data.columns.tolist() 

    prop_names.remove('mol_id') 

    data_1 = data.copy() 

    data_2 = data.copy() 

    names_1 = {} 

    names_2 = {} 

    for name in prop_names: 

        names_1[name] = name + '_1' 

        names_2[name] = name + '_2' 

    data_1.rename(columns=names_1, inplace=True) 

    data_2.rename(columns=names_2, inplace=True) 

     

    # do the merges 

    mmp = mmp.merge(data_1, left_on='mol1_id', right_on='mol_id', 

how='inner') 

    mmp.drop('mol_id', axis=1, inplace=True) 

    mmp = mmp.merge(data_2, left_on='mol2_id', right_on='mol_id', 

how='inner') 

    mmp.drop('mol_id', axis=1, inplace=True) 

     

    # drop rows with missing values due to dataset limitations 

    mmp.dropna(axis=1, how='any', inplace=True) 
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    return mmp, prop_names 

     

def change(mmpa, prop_names): 

    for name in prop_names: 

        change = name +'_change' 

        data_1 = name + '_1' 

        data_2 = name + '_2' 

        mmpa[change] = mmpa[data_2] - mmpa[data_1] 

     

    return mmpa 

 

def t_test(m1, s1, n1, m2, s2, n2): 

    score = stats.ttest_ind_from_stats(m1, s1, n1, m2, s2, n2) 

    return score.pvalue 

 

def do_stats(mmpa, prop_names, min_count): 

    all_stats = [] 

    for name in prop_names: 

        change = name +'_change' 

        data_1 = name + '_1' 

        data_2 = name + '_2' 

        headings = [change, data_1, data_2] 

         

        # change data 

        data_all = mmpa.groupby('trans_id')[headings] 

        data_change = mmpa.groupby('trans_id')[change] 

        mean_headings = {} 

        std_dev_headings = {} 

        for heading in headings: 

            mean_headings[heading] = heading +'_mean' 

            std_dev_headings[heading] = heading +'_std_dev' 

         

        av = data_all.mean() 

        av.rename(columns=mean_headings, inplace=True) 

         

        std_dev = data_all.std() 

        std_dev.rename(columns=std_dev_headings, inplace=True) 

         

        med = data_change.median() 

        med = med.to_frame(name + '_median') 

         

        cnt = data_change.count() 

        cnt = cnt.to_frame(name + '_count') 

         

        std_err = data_change.sem() 

        std_err = std_err.to_frame(name + '_sem') 

     

        stats_data = pd.concat([av,std_dev, med, std_err, cnt], 

axis=1) # see best way to combine these 

        # either concat, or join or merge 

        # concat should be fine since trans_id is the index 

         

        # remove based on minimum count 

        stats_data = stats_data[stats_data[name + 

'_count']>min_count] 

         

        # paired t test 

        # ttest 

        stats_data[name + '_ttest_pvalue'] = stats_data.apply( 
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            lambda x: t_test(x[data_1 + '_mean'], x[data_1 + 

'_std_dev'], x[name + '_count'], x[data_2 +'_mean'], x[data_2 + 

'_std_dev'], x[name + '_count']), axis=1) 

     

        # drop for failed ones 

        stats_data.dropna(axis=0, how='any', inplace=True) 

        # remove useless columns now 

        stats_data.drop([data_1 + '_mean', data_1 + '_std_dev', 

data_2 + '_mean', data_2 + '_std_dev'], axis=1, inplace=True) 

        stats_data[name + '_abs_mean'] = stats_data[change + 

'_mean'].abs()         

        all_stats.append(stats_data) 

    mmp_stats = pd.concat(all_stats, axis=1) 

    return mmp_stats 

 

def drop_insignificant(mmp_data, prop_names, p_crit, drop_any): 

    # so messy because the number/ names of columns not known 

    drop = mmp_data[mmp_data[[name + '_ttest_pvalue' for name in 

prop_names]] <=p_crit][[name + '_ttest_pvalue' for name in 

prop_names]] 

     

    if drop_any: 

        drop.dropna(axis=0, how='any') 

    else: 

        drop.dropna(axis=0, how='all') 

     

    #drop.drop(columns=[name + '_ttest_pvalue' for name in 

prop_name]) 

    to_keep = drop.index.tolist() 

    mmp_data = mmp_data[mmp_data.index.isin(to_keep)] 

    return mmp_data 

 

 

def prepare_mmn(mmpa, stats_data, prop_names, data): 

    edges = mmpa.rename(columns={'mol1_id': 'Source', 'mol2_id': 

'Target'}) 

     

    drop_col = [name +'_1' for name in prop_names] + [name +'_2' for 

name in prop_names] 

    edges.drop(columns=drop_col, inplace=True) 

    edges = edges.merge(stats_data, how='inner', left_on='trans_id', 

right_index=True) 

     

    nodes = data.rename(columns={'mol_id': 'Id', 'smiles': 'Label'}) 

     

    edges.to_csv('edges.csv', index=False) 

    nodes.to_csv('nodes.csv', index=False) 

     

# main 

def main(): 

    parser = argparse.ArgumentParser('''Carries out MMPA of desired 

subset of the MMP database. 

    Transformations with statistically significant results are 

identified''') 

    parser.add_argument('database', help='database name') 

    parser.add_argument('-c', '--count', help='min number of MMPs 

for a transformation to be considered, integer', 

                        default=1, type=int) 

    parser.add_argument('-t', '--t_crit', help=' statistical 

significance level for a transformation to be considered using 

paired t-test, ' 
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                                               'default=no limit', 

default=1) 

    parser.add_argument('-n', '--network', help='create an output 

file for MMN',  

                            action='store_true') 

    parser.add_argument('-p', '--property', nargs='*',help='list of 

property/s to focus on. default=all)',  

                       default='all') 

    parser.add_argument('-s','--subset', help='perform analysis only 

on subset. input txt file with SQL queries needed') 

    parser.add_argument('-d', '--drop_any', help='a transformation 

will be dropped where t-test p value for any of the properties is 

below p_crit. No effect if MMPA of single variable.', 

action='store_true') 

     

    args = parser.parse_args() 

     

    min_mmp = args.count 

    p_crit = float(args.t_crit) 

    dbname = args.database 

    properties = args.property 

    drop_any = args.drop_any 

    subset = args.subset 

    # !!!!!!!!!!!!!!!!!!!! move to  input file 

    #sql_trans = '''SELECT trans_id FROM Transformation ''' 

    #sql_data = '''SELECT smiles_id, polymorph_count FROM 

all_smiles, Solid_properties WHERE Solid_properties.refcode = 

all_smiles.refcode GROUP BY all_smiles.refcode ''' 

    #sql_mol = '''SELECT smiles_id FROM all_smiles GROUP BY refcode 

''' 

    #sql_smirks = 'SELECT trans_id, SMIRKS FROM Transformation' 

     

     

    # connect to database 

    try: 

        conn = sqlite3.connect(dbname) 

        data = load_data(properties, conn) 

        smirks = load_smirks(conn) 

        mmp = load_mmp(conn) 

        if subset: 

            # trans of interest and mol of interest 

            # add this at a later date 

            pass 

    finally: 

        conn.close() 

     

    # do analysis 

    mmpa, prop_names = mmp_data(mmp,data) #property names are not 

extracted from args.property in case of 'all' case, this way, 

property data is extracted consistently 

    mmpa = change(mmpa, prop_names) 

    mmp_stats = do_stats(mmpa, prop_names, min_mmp) 

    mmp_stats = drop_insignificant(mmp_stats, prop_names, p_crit, 

drop_any) 

    mmp_stats = mmp_stats.merge(smirks, how='left', 

right_index=True, left_index=True) 

     

    # generate output 

    mmp_stats.to_csv('trans_data.csv') 

    mmpa.to_csv('mmp_data.csv', index=False) 
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    if args.network: 

        prepare_mmn(mmpa,mmp_stats,prop_names, data) 

 

if __name__=='__main__': 

    main() 
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csd_addon.py 

import argparse 

import os 

import glob 

import csv 

import sys 

from ccdc import search 

from ccdc import io 

 

try: 

    from mmpdb import get_smiles 

except ImportError: 

    print('import of smiles_gen from mmpdb failed') 

    sys.exit(1) 

     

def csd_entry_to_smiles(refcode, csd_reader): 

    try: 

        entry = csd_reader.entry(refcode) 

        crystal = csd_reader.crystal(refcode) 

    except RuntimeError: 

        return 

    if crystal.has_disorder: 

        return 

    if entry.has_disorder: 

        return 

     

    smiles_all, method = get_smiles.generate_smiles(entry) 

    smiles_list = smiles_all.split('.') 

    rows = [] 

    for smi in smiles_list: 

        rows.append([smi,refcode]) 

    return rows 

 

 

def smiles_from_csd(csd_reader, settings): 

    all_rows = [] 

    for e in csd_reader: 

        if settings.test(e): 

            try: 

                ref = e.identifier 

                rows = csd_entry_to_smiles(ref, csd_reader) 

                all_rows = all_rows + rows 

            except RuntimeError: 

                continue 

    return all_rows 

 

def smiles_from_refcode(sourcefile, csd_reader): 

    all_rows = [] 

    with open(sourcefile, 'r') as source: 

        for line in source: 

            ref_code = line.rstrip() 

            rows = csd_entry_to_smiles(ref_code, csd_reader) 

            all_rows = all_rows + rows 

    return all_rows 

 

 

def write_output(smiles, output_file): 

    with open(output_file, 'wb') as csv_file: 

        writer = csv.writer(csv_file,delimiter=',') 

        writer.writerows(smiles) 
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def main(): 

    parser = argparse.ArgumentParser('''Generates SMILES from CSD 

entries based on 

    the refcodes in the input file or CSD search. Outputs file with 

smiles for MMP analysis''') 

     

    parser.add_argument('input', help='input text file with refcodes 

or type "CSD" to do a search') 

    parser.add_argument('-o', '--output', default='smiles.csv', 

help='output name (default = smiles.csv)') 

    parser.add_argument('-d', '--directory', 

default=io.csd_directory(), help='directory of the CSD-like database 

(default=CSD)') 

    args = parser.parse_args() 

     

    # setup input source 

    useCSD = False 

    if args.input == 'CSD': 

        useCSD = True 

    else: 

        input_file = args.input 

     

    #setup output 

    output_file = args.output 

     

    # CSD search settings 

    csd_dir = args.directory 

    csd_location = glob.glob(os.path.join(csd_dir, '*.inf')) 

    csd_reader = io.EntryReader(csd_location) 

     

    if useCSD: 

        settings = search.Search.Settings() 

        settings.has_3d_coordinates = True 

        settings.only_organic = True 

        settings.not_polymeric = True 

        settings.no_powder = True 

        settings.no_disorder = True 

        settings.max_r_factor = 7.5 

        settings.no_metals = True 

        settings.must_not_have_elements = ['As', 'Te', 'At', 'He', 

'Ne', 'Ar', 'Kr', 'Xe', 'Rn', 'B', 'Al', 'Ga', 'In', 

                                           'Tl', 'Si', 'Ge', 'Sn', 

'Pb', 'Sb', 'Po'] 

    if useCSD: 

        smiles = smiles_from_csd(csd_reader, settings) 

    else: 

        smiles = smiles_from_refcode(input_file, csd_reader) 

     

    write_output(smiles, output_file) 

 

if __name__ == '__main__': 

    main() 
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Appendix 2  

Matched Molecular Database 

Schema 
 

 

 

 

 

 

 

Purpose: 

A4 size version of the Matched Molecular Pairs Database 
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Appendix 3  

Polymorph and 

Redetermination Classification 
 

 

 

Purpose: 

This appendix contains scripts used prepare datasets for the benchmark study 

(Chapter 5) and the training of machine learning based models. 

 

 

 

Folder structure and uses: 

• pre_process.py: prepares datasets for the study 

• train.py: carries out the training process on the datasets  
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pre_process.py 

import pandas as pd 

import numpy as np 

import glob 

import os 

import re 

from collections import defaultdict 

import itertools 

import json 

import pickle 

from sklearn.model_selection import train_test_split 

 

from ccdc import io 

from ccdc import crystal 

 

 

class SpectraMethod: 

    def __init__(self, cluster_f_name='CSDplus_clusters_s.txt'): 

        with open(cluster_f_name, 'r') as f: 

            lines = f.readlines() 

 

        self.clusters = defaultdict(list) 

        self.all_refs = [] 

        self.ref_groups = defaultdict(list) 

        for line in lines: 

            cluster = line.split() 

            self.all_refs.extend(cluster) 

            fam = re.sub('[0-9]+', '', cluster[0]) 

            self.clusters[fam].append(cluster) 

            self.ref_groups[fam].extend(cluster) 

 

    @staticmethod 

    def get_polymorph_id(ref, cluster): 

        id = None 

        for i, pol in enumerate(cluster): 

            if ref in pol: 

                id = i 

        return id 

 

    def check_polymorphism(self, pair, clusters=None): 

        ref1, ref2 = pair 

        if clusters is None: 

            clusters = self.clusters 

        pol = None 

        fam1 = re.sub('[0-9]+', '', ref1) 

 

        cluster = clusters.get(fam1) 

        if cluster: 

            id_1 = self.get_polymorph_id(ref1, cluster) 

            id_2 = self.get_polymorph_id(ref2, cluster) 

            if id_1 is None or id_2 is None: 

                print('refoces not in cluster {} {}'.format(ref1, 

ref2)) 

            else: 

                if id_1 == id_2: 

                    pol = 0 

                else: 

                    pol = 1 

        else: 

            print('refcode fam {} not in clusters'.format(fam1)) 
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        return pol 

 

 

class ManualMethod: 

    def __init__(self, all_refs, info=None, csd_reader=None): 

        self.all_refs = all_refs 

 

        if info is None: 

            assert csd_reader is not None, 'if info is not provided, 

csd_reader needed' 

            info = self.get_info(csd_reader) 

        self.info = info 

 

    def get_info(self, csd_reader): 

        info = {} 

        for ref in self.all_refs: 

            try: 

                e = csd_reader.entry(ref) 

                lit = e.publication 

                pol = e.polymorph 

                info[ref] = {'lit': lit, 'polymorph': pol} 

            except RuntimeError: 

                continue 

        return info 

 

    def check_polymorphism(self, pair): 

        ref1, ref2 = pair 

        info1, info2 = self.info.get(ref1), self.info.get(ref2) 

        if info1 is not None and info2 is not None: 

            pol1, pol2 = info1['polymorph'], info2['polymorph'] 

            if pol1 is None or pol2 is None: 

                pol = None 

            elif pol1 == pol2: 

                pol = 0 

            else: 

                pol = 1 

 

        return pol 

 

    def check_lit_source(self, pair): 

        ref1, ref2 = pair 

        same = False 

        if self.info.get(ref1) is not None and self.info.get(ref2) 

is not None: 

            if self.info[ref1]['lit'] == self.info[ref2]['lit']: 

                same = True 

        return same 

 

 

class BestRMethod: 

    def __init__(self, all_refs, best_r_file): 

        with open(best_r_file, 'r') as f: 

            lines = f.readlines() 

        self.in_best_r = defaultdict(list) 

        for ref in lines: 

            ref = ref.rstrip() 

            if ref in all_refs: 

                fam = re.sub('[0-9]+', '', ref) 

                self.in_best_r[fam].append(ref) 

 

    def check_polymorphism(self, pair): 
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        ref1, ref2 = pair 

        pol = None 

        fam = re.sub('[0-9]+', '', ref1) 

        cluster = self.in_best_r[fam] 

        if ref1 in cluster and ref2 in cluster: 

            pol = 1 

        else: 

            if len(cluster) == 1: 

                pol = 0 

 

        return pol 

 

 

class Datasets: 

    def __init__(self, ref_groups, all_refs=None): 

        self.ref_groups = ref_groups 

        if all_refs is None: 

            all_refs = [] 

            for _, refs in ref_groups.iteritems(): 

                all_refs.extend(refs) 

        self.refs = all_refs 

 

        # get stuff for packing similirity 

        self.packing_sim = crystal.PackingSimilarity() 

        self.packing_shell_size = 

self.packing_sim.settings.packing_shell_size 

 

        self.combs = self.get_combinations() 

 

        self.crystal_data = None 

 

    def get_combinations(self): 

        all_combs = [] 

        for _, refs in self.ref_groups.iteritems(): 

            comb = list(itertools.combinations(refs, 2)) 

            all_combs.append(comb) 

        return all_combs 

 

    def get_structure_data(self, reader): 

        id_list = self.refs 

        crystal_data = {} 

        total = len(id_list) 

        step = int(round(float(total) / 50)) 

        for i, ref in enumerate(id_list): 

            if i % step == 0: 

                print('data obtained for {} % of 

structures'.format(round(float(i + 1) / total, 2) * 100)) 

            try: 

                cryst = reader.crystal(ref) 

                entry = reader.entry(ref) 

            except RuntimeError: 

                print('failed to access data for {}'.format(ref)) 

                continue 

            # temperature 

            T = entry.temperature 

            if T: 

                T_re = re.search('(?P<temp>-?[0-9]+(\.[0-

9])?)\s?(?P<units>\S+)', T) 

                if T_re: 

                    if T_re.group('units') != 'K':  # when deg.C 

                        T_num = float(T_re.group('temp')) + 273.2 
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                    else: 

                        T_num = float(T_re.group('temp')) 

                else: 

                    print(T) 

            else: 

                T_num = np.nan 

 

            crystal_data[ref] = {'length_a': cryst.cell_lengths[0], 

'length_b': cryst.cell_lengths[1], 

                                 'length_c': cryst.cell_lengths[2], 

'angle_a': cryst.cell_angles[0], 

                                 'angle_b': cryst.cell_angles[1], 

'angle_g': cryst.cell_angles[2], 

                                 'r_factor': entry.r_factor, 

'crystal_system': cryst.crystal_system, 

                                 'temperature': T_num} 

 

        self.crystal_data = crystal_data 

 

    def get_descriptors(self, csd_reader, classify_func, 

do_rmsd=True, check_lit=None): 

        """classify_func is a dict with name (string) as key and 

classifying function as value""" 

        crystal_data = self.crystal_data 

        packing_comp = self.packing_sim 

        packing_shell_size = self.packing_shell_size 

 

        def check_fam(pair): 

            assert pair is not None, 'empty pair found' 

            assert len(pair)==2, 'missing refcode with 

{}'.format(pair) 

            ref1, ref2 = pair 

            fam1, fam2 = re.sub('[0-9]+', '', ref1), re.sub('[0-

9]+', '', ref2) 

            assert fam1 == fam2, 'refcode family dont match. {}, 

{}'.format(ref1,ref2) 

 

        def compare_structures(refs): 

            # handle missing data 

            if not all(_ in crystal_data.keys() for _ in refs): 

                return None 

 

            ref1 = refs[0] 

            ref2 = refs[1] 

 

            data1 = crystal_data[ref1] 

            data2 = crystal_data[ref2] 

            cryst1 = {'x': (data1['length_a'], data1['angle_a']), 

'y': (data1['length_b'], data1['angle_b']), 

                      'z': (data1['length_c'], data1['angle_g'])} 

            cryst2 = {'x': (data2['length_a'], data2['angle_a']), 

'y': (data2['length_b'], data2['angle_b']), 

                      'z': (data2['length_c'], data2['angle_g'])} 

 

            change = {} 

            # cell parameters 

            for axis in ['x', 'y', 'z']: 

                dl = abs(cryst1[axis][0] - cryst2[axis][0])  # 

change in length 

                da = abs(cryst1[axis][1] - cryst2[axis][1])  # 

change in angle 
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                change['length_{}'.format(axis)] = dl 

                change['angle_{}'.format(axis)] = da 

 

            for prop_name in ['r_factor', 'temperature']: 

                if data1[prop_name] is not None and data2[prop_name] 

is not None: 

                    prop = abs(data1[prop_name] - data2[prop_name]) 

                else: 

                    prop = np.nan 

                change[prop_name] = prop 

 

            # RMSD 

            if do_rmsd: 

 

                try: 

                    packing_sim = packing_comp  # had insane RAM 

usage for some reason, this seems to solve it 

                    similarity = 

packing_sim.compare(csd_reader.crystal(ref1), 

csd_reader.crystal(ref2)) 

                    if similarity: 

                        #rmsd = similarity.rmsd 

                        # its not actually rmsd, its the number of 

molecules that match within the tolerance 

                        rmsd = similarity.nmatched_molecules 

                        rmsd = float(rmsd) / packing_shell_size 

 

                    else: 

                        rmsd = np.nan 

                except RuntimeError: 

                    rmsd = np.nan 

                change['rmsd'] = rmsd 

 

            # crystal system 

            if data1['crystal_system'] == data2['crystal_system']: 

                cryst_sys = 0 

            else: 

                cryst_sys = 1 

            change['crystal_system'] = cryst_sys 

 

            change['refs'] = (ref1, ref2) 

            return change 

 

        data = [] 

        total = len(self.combs) 

        step = int(round(float(total) / 20)) 

        for i, comb in enumerate(self.combs): 

            if i % step == 0: 

                print('comparison done for {} % of the 

data'.format(int(round(float(i + 1) / total, 2) * 100))) 

            for pair in comb: 

                try: 

                    check_fam(pair) 

                except AssertionError, e: 

                    print(e) 

                    continue 

                change = compare_structures(pair) 

                if change: 

                    for name, classifier in 

classify_func.iteritems(): 

                        change[name] = classifier(pair) 
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                    if check_lit: 

                        change['lit'] = check_lit(pair) 

                    data.append(change) 

                    # append to data 

                    # create dataframe 

 

        data_df = pd.DataFrame(data) 

        return data_df 

 

 

 

 

csd_dir = io.csd_directory() 

csd_location = glob.glob(os.path.join(csd_dir, '*.inf')) 

csd_reader = io.EntryReader(csd_location) 

 

spectra = SpectraMethod() 

all_refs = spectra.all_refs 

ref_groups = spectra.ref_groups 

 

manual = ManualMethod(all_refs, csd_reader=csd_reader) 

 

best_r = BestRMethod(all_refs, r'C:\Program Files 

(x86)\CCDC\CSD_2018\CSD_539\subsets\best_R_factor_list.gcd') 

 

classify_func = {'spectra': spectra.check_polymorphism, 'manual': 

manual.check_polymorphism, 

                 'best_R': best_r.check_polymorphism} 

 

datasets = Datasets(ref_groups, all_refs) 

datasets.get_structure_data(csd_reader) 

data = datasets.get_descriptors(csd_reader, classify_func, 

check_lit=manual.check_lit_source, do_rmsd=True) 

 

data.to_csv('new_data_backup.csv', index=False) 

 

 

# split the datasets 

 

len(data[~data['manual'].isnull()]) 

 

len(data[(~data['manual'].isnull())&(~data['best_R'].isnull())]) 

 

train_size = 24660 

valid_size = 2594 

test_size = 3415 

 

spectra_train_pol = data[(~data['best_R'].isnull()) & 

(data['manual'].isnull()) & (data['best_R']==1)] 

spectra_train_red = data[(~data['best_R'].isnull()) & 

(data['manual'].isnull()) & (data['best_R']==0)].sample(n= 

train_size - len(spectra_train_pol)) 

spectra_train = pd.concat([spectra_train_pol, spectra_train_red]) 

 

 

manual_train = data[(data['best_R'].isnull()) & 

(~data['manual'].isnull())] 

 

manual_valid = data[(~data['best_R'].isnull()) & 

(~data['manual'].isnull()) & (data['lit'] == 

False)].sample(n=valid_size) 
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spectra_valid = data[(~data['best_R'].isnull()) & 

(~data['manual'].isnull()) & (data['lit'] == False) & 

(~data.index.isin(manual_valid.index))] 

assert len(spectra_valid) == valid_size 

 

benchmark_valid = data[(~data['best_R'].isnull()) & 

(~data['manual'].isnull()) & (data['lit'] == 

True)].sample(n=valid_size) 

 

benchmark_test = data[(~data['best_R'].isnull()) & 

(~data['manual'].isnull()) & (data['lit'] == True) & 

(~data.index.isin(benchmark_valid.index))] 

assert len(benchmark_test) == test_size 

 

sets = { 

    'manual_train': manual_train, 

    'manual_valid': manual_valid, 

    'spectra_train': spectra_train, 

    'spectra_valid': spectra_valid, 

    'benchmark_valid': benchmark_valid, 

    'benchmark_test': benchmark_test 

} 

 

 

for set_name in sets.keys(): 

    sets[set_name]['ref1'], sets[set_name]['ref2'] = 

zip(*sets[set_name]['refs']) 

 

 

for set_name, table in sets.iteritems(): 

    f_name = set_name + '.csv' 

    table.to_csv(f_name, index=False) 
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train.py 

import argparse 

import itertools 

import sys 

import glob 

import os 

import re 

import numpy as np 

import pandas as pd 

import json 

import pickle 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import SVC 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn import metrics 

#from sklearn.neural_network import MLPClassifier 

from sklearn.model_selection import RandomizedSearchCV 

#from sklearn.model_selection import StratifiedShuffleSplit 

#from sklearn.model_selection import GridSearchCV 

 

from ccdc import io 

from ccdc import crystal 

 

train_settings = { 

    'retrain': False, 

    'all_refs': 'single-red-powder.txt', 

    'best_r': 'single-powder.txt', 

    'fill_na': 'drop', 

    'verbose': False, 

    'csd_dir': None, 

    'do_rmsd': False, 

    'valid_frac': 0.1, 

    'test_frac': 0.1 

    } 

 

 

def fix_datasets(df): 

    df['refs'] = df[['ref1', 'ref2']].apply(lambda row: 

(row['ref1'], row['ref2']), axis=1) 

    cols = ['angle_x', 'angle_y', 'angle_z', 'crystal_system', 

'length_x', 

'length_y','length_z','r_factor','refs','rmsd','target','temperature

'] 

    return df[cols].copy() 

 

 

class PolymorphClassifier: 

    def __init__(self, train, valid, test, nan_method='drop', 

use_rmsd=True): 

 

        cols = list(train.columns) 

        cols.remove('target') 

        if not use_rmsd: 

            if 'rmsd' in cols: 

 

                cols.remove('rmsd') 

        else: 
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            if 'rmsd' not in cols: 

                print('rmsd not calculated') 

        if 'refs' in list(train.columns): 

            cols.remove('refs') 

            # set indexes as ref1-ref2 so it stays with the rows 

        datasets = {'train': train, 'valid': valid, 'test': test} 

        datasets = self.handle_nans(datasets, method=nan_method) 

 

        self.train_with_refs = datasets['train'] 

        self.valid_with_refs = datasets['valid'] 

        self.test_with_refs = datasets['test'] 

        for name, dataset in datasets.iteritems(): 

            dataset.index = dataset['refs'].apply(lambda row: '{}-

{}'.format(row[0], row[1])) 

        # split into X, Y 

        Xs = {} 

        Ys = {} 

        for name, dataset in datasets.iteritems(): 

            Xs[name] = dataset[cols].copy() 

            Ys[name] = dataset['target'] 

 

        # Y = train['target'] 

        # X = train.loc[:, train.columns != 'target'] 

        # X = X[cols].copy() 

 

        # Y_valid = valid['target'] 

        # X_valid = valid.loc[:, valid.columns != 'target'] 

        # X_valid = X_valid[cols].copy() 

 

        self.X = Xs['train'] 

        self.Y = Ys['train'] 

        self.Y_valid = Ys['valid'] 

        self.X_valid = Xs['valid'] 

        self.Y_test = Ys['test'] 

        self.X_test = Xs['test'] 

 

        self.classifiers = {'RF': RandomForestClassifier, 

'logistic_regression': LogisticRegression, 

                            'KNN': KNeighborsClassifier, 'bayes': 

GaussianNB, 'SVM': SVC} 

 

 

    @staticmethod 

    def handle_nans(datasets, method='drop'): 

        # dict with inputs {'train':train, 'valid':valid} 

        processed = {} 

        for name, dataset in datasets.iteritems(): 

            if method == 'drop': 

                processed[name] = dataset.dropna(axis=0, how='any') 

 

            elif method == 'mean': 

                processed[name] = 

dataset.fillna(datasets['train'].mean()) 

 

            elif method == 'median': 

                processed[name] = 

dataset.fillna(datasets['train'].median()) 

 

            else: 

                print('choose one of: drop, mean, median') 

        return processed 
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    @staticmethod 

    def ref_as_index(datasets): 

        pass 

 

    def fit_models(self): 

        models = {} 

        X, Y = self.X, self.Y 

 

        for name, model in self.classifiers.iteritems(): 

            print('fitting {}'.format(name)) 

            models[name] = model().fit(X ,Y) 

 

        rows = [] 

        for name, model in models.iteritems(): 

            print('testing {}'.format(name)) 

 

            pred = pd.DataFrame(model.predict(self.X_valid)) 

            pred.index = self.Y_valid.index 

            C = metrics.confusion_matrix(self.Y_valid, pred) 

 

            true_pos_rate = float(C[1][1]) / (C[1][1] + C[0][1])  # 

sensitivity, recall = TP/(TP+NF) 

            false_pos_rate = float(C[1][0]) / (C[1][0] + C[0][0])  # 

FP/(FP+TN) 

            # specificity = 1 - false_pos_rate 

            pos_pred_value = float(C[1][1]) / (C[1][1] + C[1][0])  # 

precision = TP/(TP+FP) 

 

            row = {'model': name, 'precision': pos_pred_value, 

'recall': true_pos_rate, 

                   'specificity': 1 - false_pos_rate, 

                   'F1_score': 2 * (pos_pred_value * true_pos_rate) 

/ (pos_pred_value + true_pos_rate) 

                   } 

            rows.append(row) 

        models_summary = pd.DataFrame(rows) 

        # self.models_summary = models_summary 

        return models_summary 

 

    def optimise_random_forest(self, n_iter=100, scoring='f1'): 

        n_estimators = [int(x) for x in np.linspace(start=200, 

stop=2000, num=10)] 

        criterions = ['gini', 'entropy'] 

        max_features = ['sqrt', 'log2'] 

        max_depth = [int(x) for x in np.linspace(10, 110, num=11)] 

        max_depth.append(None) 

 

        min_samples_split = [2, 5, 10] 

        min_samples_leaf = [1, 2, 4] 

        bootstrap = [True, False] 

        random_grid = {'n_estimators': n_estimators, 

                       'max_features': max_features, 

                       'max_depth': max_depth, 

                       'min_samples_split': min_samples_split, 

                       'min_samples_leaf': min_samples_leaf, 

                       'bootstrap': bootstrap, 

                       'criterion': criterions} 

        rf = RandomForestClassifier() 

        rf_random = RandomizedSearchCV(estimator=rf, 

param_distributions=random_grid, n_iter=n_iter, cv=3, 
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                                       random_state=42, n_jobs=-1, 

scoring=scoring) 

        # Fit the random search model 

        rf_random.fit(self.X, self.Y) 

        return rf_random 

 

    def optimise_svm(self, n_iter=100, scoring='f1'): 

        C_range = np.logspace(-4, 3, 15) 

        gamma_range = np.logspace(-4, 3, 15) 

        random_grid = {'gamma': gamma_range, 'C': C_range} 

        svm = SVC() 

        # cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, 

random_state=42) 

        # svm_random = GridSearchCV(SVC(), param_grid=param_grid, 

cv=cv) 

        svm_random = RandomizedSearchCV(estimator=svm, 

param_distributions=random_grid, n_iter=n_iter, cv=3, 

                                        random_state=42, n_jobs=2, 

scoring=scoring) 

        svm_random.fit(self.X, self.Y) 

 

        return svm_random 

 

    def compare_performance(self, params_dicts): 

        rows = [] 

        for name, param in params_dicts.iteritems(): 

            model = 

self.classifiers[name](**param).fit(self.X_valid, self.Y_valid) 

            pred = pd.DataFrame(model.predict(self.X_valid)) 

            C = metrics.confusion_matrix(self.Y_valid, pred) 

            if train_settings['verbose']: 

                

pd.DataFrame(C).to_csv('{}_confusion_valid.csv'.format(name)) 

 

            true_pos_rate = float(C[1][1]) / (C[1][1] + C[0][1])  # 

sensitivity, recall = TP/(TP+NF) 

            false_pos_rate = float(C[1][0]) / (C[1][0] + C[0][0])  # 

FP/(FP+TN) 

            # specificity = 1 - false_pos_rate 

            pos_pred_value = float(C[1][1]) / (C[1][1] + C[1][0])  # 

precision = TP/(TP+FP) 

 

            row = {'model': name, 'precision': pos_pred_value, 

'recall': true_pos_rate, 

                   'specificity': 1 - false_pos_rate, 

                   'F1_score': 2 * (pos_pred_value * true_pos_rate) 

/ (pos_pred_value + true_pos_rate) 

                   } 

            rows.append(row) 

        models_summary = pd.DataFrame(rows) 

        if train_settings['verbose']: 

            models_summary.to_csv('comparison_valid.csv', 

index=False) 

        # select best F1 score model 

        best_model = models_summary[models_summary['F1_score'] == 

models_summary['F1_score'].max()] 

        print('best performing model: 

{}'.format(best_model['model'].tolist()[0])) 

        print('F1 score: 

{}'.format(best_model['F1_score'].tolist()[0])) 

        return best_model['model'].tolist()[0] 
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    def retrain(self, name, params, test=True): 

        """retrains the model on train + valid or train + valid + 

train (for application)""" 

        if test: 

            X = pd.concat([self.X, self.X_valid]) 

            Y = pd.concat([self.Y, self.Y_valid]) 

        else: 

            X = pd.concat([self.X, self.X_valid, self.X_test]) 

            Y = pd.concat([self.Y, self.Y_valid, self.Y_test]) 

 

        model = self.classifiers[name](**params).fit(X, Y) 

 

        if test: 

            Y_test = self.Y_test 

            X_test = self.X_test 

            pred = pd.DataFrame(model.predict(X_test), 

columns=['predicted']) 

            pred.index = Y_test.index 

            C = metrics.confusion_matrix(Y_test, pred) 

            if train_settings['verbose']: 

                

pd.DataFrame(C).to_csv('{}_confusion_test.csv'.format(name)) 

                Y_test = Y_test.to_frame('actual') 

                compare = Y_test.merge(pred, right_index=True, 

left_index=True) 

                compare['refs'] = compare.index 

                compare['ref1'], compare['ref2'] = 

zip(*compare['refs'].str.split('-')) 

                compare = compare.merge(X_test, right_index=True, 

left_index=True) 

                cols = list(X_test.columns) 

                cols += ['ref1', 'ref2', 'predicted', 'actual'] 

                compare[cols].to_csv('comparison.csv', index=False) 

 

            true_pos_rate = float(C[1][1]) / (C[1][1] + C[0][1])  # 

sensitivity, recall = TP/(TP+NF) 

            false_pos_rate = float(C[1][0]) / (C[1][0] + C[0][0])  # 

FP/(FP+TN) 

            # specificity = 1 - false_pos_rate 

            pos_pred_value = float(C[1][1]) / (C[1][1] + C[1][0])  # 

precision = TP/(TP+FP) 

 

            performance = {'model': name, 'precision': 

pos_pred_value, 'recall': true_pos_rate, 

                           'specificity': 1 - false_pos_rate, 

                           'F1_score': 2 * (pos_pred_value * 

true_pos_rate) / (pos_pred_value + true_pos_rate) 

                           } 

 

            return performance 

        else: 

            return model 

 

 

def train(): 

    if not all(dataset in train_settings.keys() for dataset in 

['train', 'valid', 'test']): 

        # get datasets 

        preprocess = 

Preprocess(train_settings['all_refs'],train_settings['best_r']) 
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        # connect to CSD 

        if train_settings['csd_dir'] is None: 

            csd_dir = io.csd_directory() 

        else: 

            csd_dir = train_settings['csd_dir'] 

        csd_location = glob.glob(os.path.join(csd_dir, '*.inf')) 

        csd_reader = io.EntryReader(csd_location) 

        preprocess.get_structure_data(csd_reader) 

        

preprocess.get_datasets(csd_reader,train_settings['do_rmsd']) 

        train, valid, test = 

preprocess.train_valid_test_split(train_settings['valid_frac'], 

train_settings['test_frac']) 

 

        train.to_csv('train.csv') 

        valid.to_csv('valid.csv') 

        test.to_csv('test.csv') 

 

    else: 

        #train = json.load(open(train_settings['train'], 'r')) 

        train = pd.read_csv(train_settings['train']) 

        train = fix_datasets(train) 

        #valid = json.load(open(train_settings['valid'], 'r')) 

        valid = pd.read_csv(train_settings['valid']) 

        valid = fix_datasets(valid) 

        #test = json.load(open(train_settings['test'], 'r')) 

        test = pd.read_csv(train_settings['test']) 

        test = fix_datasets(test) 

    classifier = PolymorphClassifier(train,valid, test, 

nan_method=train_settings['fill_na'], 

use_rmsd=train_settings['do_rmsd']) 

    model_summary = classifier.fit_models() 

    model_summary = model_summary.sort_values(by='F1_score', 

ascending=False).reset_index(drop=True) 

    if train_settings['verbose']: 

        model_summary.to_csv('model_summary.csv', index=False) 

    best_models = 

(model_summary['model'][0],model_summary['model'][1]) 

    opti_params = {} 

    for model in best_models: 

        if model == 'SVM': 

            svm_random = classifier.optimise_svm() 

            svm_summary = pd.DataFrame(svm_random.cv_results_) 

            if train_settings['verbose']: 

                svm_summary.to_csv('SVM_optimisation.csv', 

index=False) 

            svm_params = 

svm_summary.sort_values(by='mean_test_score',ascending=False).reset_

index(drop=True)['params'][0] 

            print('SVM classifier optimised with params:') 

            for k,v in svm_params.iteritems(): 

                print('{}: {}'.format(k,v)) 

            opti_params['SVM'] = svm_params 

 

        elif model == 'RF': 

            rf_random = classifier.optimise_random_forest() 

            rf_summary = pd.DataFrame(rf_random.cv_results_) 

            if train_settings['verbose']: 

                rf_summary.to_csv('RF_optimisation.csv', 

index=False) 
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            rf_params = 

rf_summary.sort_values(by='mean_test_score',ascending=False).reset_i

ndex(drop=True)['params'][0] 

            print('RF classifier optimised with params:') 

            for k,v in rf_params.iteritems(): 

                print('{}: {}'.format(k,v)) 

            opti_params['RF'] = rf_params 

 

 

        else: 

            print('cant optimise {} algorithm at the 

moment'.format(model)) 

            sys.exit(1) 

    best = classifier.compare_performance(opti_params) 

 

    performance = classifier.retrain(best, opti_params[best]) 

 

    model = classifier.retrain(best, opti_params[best], test=False) 

 

    pickle.dump(model, open('polymorph_classifier.p','w')) 

    

json.dump(opti_params[best],open('{}_hyper_parameters.json'.format(b

est),'w')) 

 

    return model 

 

 

def main(): 

    # global hydrates 

    # TODO: sort these out 

    parser = argparse.ArgumentParser('''Trains polymorph 

redetermination classifier on CSD dataset''') 

    parser.add_argument('--all_refs', help='file with all refcodes') 

    parser.add_argument('--best_r', help='file with best R factor 

structures') 

    parser.add_argument('--train', help='training dataset') 

    parser.add_argument('--valid', help='validation dataset') 

    parser.add_argument('--test', help='test dataset') 

    parser.add_argument('--retrain', action='store_true', help='To 

retrain best performing algorithm before saving to a pickle') 

#remove this, always retrained 

    parser.add_argument('--fill_na', help='strategy for handling 

missing values. [mean, median, drop] default=drop') 

    parser.add_argument('--verbose', action='store_true') 

    parser.add_argument('--csd_dir', help='CSD directory') 

    parser.add_argument('--do_rmsd', action='store_true', help='do 

RMSD comparison as one of the descriptors') 

    parser.add_argument('--valid_frac', type=float, help='validation 

set fraction') 

    parser.add_argument('--test_frac', type=float, help='validation 

set fraction') 

    args = parser.parse_args() 

 

    input_settings = vars(args) 

    for key, setting in input_settings.iteritems(): 

        if setting is not None: 

            if key == 'fill_na': 

                if setting not in ['mean', 'median', 'drop']: 

                    print('WARNING: invalid fill_na strategy 

selected. drop used') 

                    continue 
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            train_settings[key] = setting 

    model = train() 

 

 

if __name__ == '__main__': 

    main() 
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Appendix 4  

Message Passing Neural 

Network scripts 
 

 

Purpose: 

This appendix contains scripts used in Chapter 7 to train and hyperparameter 

optimise Message Passing Neural Networks for melting point prediciton. The pre-

processing scripts which generate graph input and calculate crystal features are 

shown under Pre-processing. The modified tensorflow models are included. The 

hyperparameter optimisation script is available as well. 

 

Files and uses: 

Pre-processing (local):  

• crystal_graph.py: takes csv file (Refcode, melting point) and generates a 

graph input 

• crystal_rmsd.py: calculates the shape change descriptor 

Training (HPC) 

• Tensorflow models  

The following scripts were adapted from GGNN. (See Chapter 7 for details) 

The original scripts by Microsoft available under MIT license (relevant text 

on the next page). 

o util.py: utility functions 

o chem_tensorflow.py: base tensorflow model 

o chem_tensorflow_sparse.py: specific tensorflow model for training 

o apply_chem_tensorflow.py: tensorflow model, for testing 

• Training scripts and hyperparamter optimisation 

o optimiser.py: hyperparameter optimisation script 

  

https://github.com/microsoft/gated-graph-neural-network-samples
https://github.com/microsoft/gated-graph-neural-network-samples/blob/master/LICENSE
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The following license terms apply to util.py , chem_tensorflow.py, 

chem_tensorflow_sparse.py, and apply_chem_tensorflow.py. 

    MIT License 

 

    Copyright (c) Microsoft Corporation. All rights reserved. 

 

    Permission is hereby granted, free of charge, to any person 

obtaining a copy 

    of this software and associated documentation files (the 

"Software"), to deal 

    in the Software without restriction, including without limitation 

the rights 

    to use, copy, modify, merge, publish, distribute, sublicense, 

and/or sell 

    copies of the Software, and to permit persons to whom the Software 

is 

    furnished to do so, subject to the following conditions: 

 

    The above copyright notice and this permission notice shall be 

included in all 

    copies or substantial portions of the Software. 

 

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

EXPRESS OR 

    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, 

    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT 

SHALL THE 

    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

OTHER 

    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

ARISING FROM, 

    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN THE 

    SOFTWARE 
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crystal_graph.py 
# Python 2 

import pandas as pd 

import glob 

import os 

import sys 

import json 

import csv 

import argparse 

import random 

import numpy as np 

from collections import defaultdict 

 

from ccdc import io 

 

from crystal_rmsd import CrystalRMSD 

import HBond_Dimensionality as HBond 

 

 

def read_csv(): 

    # use pandas df.to_dict('record') 

    pass 

 

 

def from_csv(file_name): 

    raw = [] 

    with open(file_name, 'r') as csvfile: 

        reader = csv.reader(csvfile, delimiter=',') 

        for row in reader: 

            if row[1] == '': 

                continue 

            raw.append({'refcode':row[0], 'y':float(row[1])}) 

    return raw 

 

 

def split_data(raw, valid_frac, normalise=True): 

    raw_data = {'train':[], 'valid':[]} 

 

    size = len(raw) 

 

    #-> n random numbers within range(len(raw_data)) 

    valid = random.sample(range(size), int(round(size*valid_frac))) 

    only_y = [] 

    print('splitting data') 

    for i, data in enumerate(raw): 

        if i % 1000 == 0: 

            done = (float(i)/size)*100 

            print('done: {} % '.format(round(done, 2))) 

        if normalise: 

            only_y.append(data['y']) 

        #process 

        if i not in valid: 

            raw_data['train'].append(data) 

        else: 

            raw_data['valid'].append(data) 

        # get std_dev and mean of y (data[1]) 

    if normalise: 

        mean = np.mean(only_y) 

        std = np.std(only_y) 

    else: 

        mean, std = None, None 
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    return raw_data, mean, std 

 

 

def onehot(feature, feature_vector): 

    z = [0 for _ in range(len(feature_vector))] 

    z[feature_vector.index(feature)] = 1 

    return z 

 

 

class CrystalGraph: 

    def __init__(self, csd_reader, atom_list=None, mean=None, 

std=None, crystal_rmsd=None, h_dims=False, vwd=True): 

        if atom_list: 

            self.atom_list = atom_list 

            self.get_elements = False 

        else: 

            self.atom_list = [] 

            self.get_elements = True 

 

        self.csd_reader = csd_reader 

 

        self.mean = mean 

        self.std = std 

        if std is None and mean is None: 

            self.to_normalise = False 

        else: 

            self.to_normalise = True 

        self.graphs = defaultdict(list) 

        self.bond_dict = {'SINGLE': 1, 'DOUBLE': 2, 'TRIPLE': 3, 

"AROMATIC": 4, "HBOND":5, "VDW_INTER":6, "VDW_INTRA": 7} 

        self.h_dim_features = ['Ring/enclosed', 'Chain (1D)', 'Sheet 

(2D)', 'Lattice (3D)'] 

        self.skip_refcode = [] # list of refcodes that were trouble 

        self.rmsd = crystal_rmsd 

        self.do_h_dims = h_dims 

        self.do_vwd = vwd 

        self.atom_counts = {} 

 

    def normalise(self, y): 

        return (y - self.mean) / self.std 

 

    def index_atoms(self, mol): 

        label_to_index = {} 

        index_to_label = {} 

        nodes = [] 

        elements_list = [] 

        for i, atom in enumerate(mol.atoms): 

            label_to_index[atom.label] = i 

            index_to_label[i] = atom.label 

 

            if self.get_elements: 

                nodes.append(atom.atomic_symbol) 

                elements_list.append(atom.atomic_symbol) 

                self.atom_list = list(set(self.atom_list + 

elements_list)) # add unique atoms to the list 

            else: 

                nodes.append(onehot(atom.atomic_symbol, 

self.atom_list)) # do one hot already if atom list available 

        return nodes, label_to_index, index_to_label 

 

    def get_bonds(self, mol, label_to_index): 
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        edges = [] 

        for bond in mol.bonds: 

            atom1, atom2 = bond.atoms 

            edge_type = str(bond.bond_type).upper() 

 

            edge = [label_to_index[atom1.label], 

self.bond_dict[edge_type], label_to_index[atom2.label]] 

 

            edges.append(edge) 

        return edges 

 

    def get_h_bonds(self, cryst, label_to_index): 

        edges = [] 

        hbonded = {}  # so they can be eliminated from VDW 

        for hbond in cryst.hbonds(): 

            donor = hbond.atoms[0].label 

            acceptor = hbond.atoms[2].label 

            edge = [label_to_index[donor], 

self.bond_dict['hbond'.upper()], label_to_index[acceptor]] 

            edges.append(edge) 

 

            for atom in hbond.atoms: 

                all_atoms = list(hbond.atoms) 

                all_atoms.remove(atom) 

                hbonded[atom.label] = [a.label for a in all_atoms] 

        return edges, hbonded 

 

    def get_vdw(self, cryst, label_to_index, bonded):  # only 

intermolecular interactions 

        edges = [] 

 

        for contact in cryst.contacts(): 

 

            if contact.atoms[0].label in bonded.keys(): 

                if contact.atoms[1].label in 

bonded[contact.atoms[0].label]:  # already covered in H-bond 

                    continue 

 

            # could add a bit that would eliminate some based on 

contact.strength 

 

            if contact.intermolecular: 

                edge_type = 'VDW_INTER' 

            else: 

                edge_type = 'VDW_INTRA' 

 

            edge = [label_to_index[contact.atoms[0].label], 

self.bond_dict[edge_type], 

                    label_to_index[contact.atoms[1].label]] 

            edges.append(edge) 

 

 

        return edges 

 

    def get_graphs(self, refcode): 

        mol = self.csd_reader.molecule(refcode) 

        cryst = self.csd_reader.crystal(refcode) 

        nodes, label_to_index, index_to_label = 

self.index_atoms(mol) 

        try: 

            bonds = self.get_bonds(mol, label_to_index) 
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            hbonds, interaction = self.get_h_bonds(cryst, 

label_to_index) 

            if self.do_vwd: 

                vdw = self.get_vdw(cryst, label_to_index, 

interaction) 

                edges = bonds + hbonds + vdw 

            else: 

                edges = bonds + hbonds 

        except KeyError: 

            print('something wrong with labels with: 

{}'.format(refcode)) 

            self.skip_refcode.append(refcode) 

            return None, None 

        return nodes, edges 

 

    def get_crystal_properties(self, refcode): 

        graph_features = {} 

        if self.rmsd: 

            try: 

                print('calculating RMSD for {}'.format(refcode)) 

                graph_features['RMSD'] = 

self.rmsd.calculate(refcode) 

            except RuntimeError: 

                print('RMSD failed with {}'.format(refcode)) 

                self.skip_refcode.append(refcode) 

                return None 

 

        if self.do_h_dims: 

            h_dim_text = 

HBond.dimensionality(self.csd_reader.crystal(refcode)) 

            if h_dim_text == 'No Hydrogen bonds': 

                h_dim = [0, 0, 0, 0] 

            else: 

                h_dim = onehot(h_dim_text, self.h_dim_features) 

            graph_features['H_dims'] = h_dim 

        if len(graph_features) != 0: 

            return graph_features 

        else: 

            return None 

 

    def update_nodes(self): 

        """now that all mols are processed, the atom_list is 

complete and ready for one hot""" 

        for section, data in self.graphs.iteritems(): 

            for i, mol in enumerate(data): 

                for j, atom in enumerate(mol['node_features']): 

                    self.graphs[section][i]['node_features'][j] = 

onehot(atom, self.atom_list) # could use map() maybe, will have to 

look into it 

 

    def process(self, raw_data): 

        for section, data in raw_data.iteritems(): 

            total = len(data) 

            for i, mol in enumerate(data): 

                refcode, y = mol['refcode'], mol['y'] 

                if self.to_normalise: 

                    y = self.normalise(y) 

                nodes, edges = self.get_graphs(refcode) 

                if refcode in self.skip_refcode: 

                    continue 

                else: 
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                    atom_count = len(nodes) 

                    self.atom_counts[refcode] = atom_count 

                    row = {'targets': [[y]], 'graph': edges, 

'node_features': nodes, 'id': refcode} 

                    graph_features = 

self.get_crystal_properties(refcode) 

                    if graph_features is not None: 

                        row['graph_features'] = graph_features 

                    self.graphs[section].append(row) 

                if i % 1000 == 0: 

                    print('{} graphs processed: {}%'.format(section, 

round(float(i)/total,3)*100)) 

        if self.get_elements: 

            self.update_nodes() 

        return self.graphs 

 

 

def output_data(processed_data, header=None): 

    if header is None: 

        header='data' 

    for section in processed_data.keys(): 

        with open('{}_{}.json'.format(header, section), 'w') as f: 

            json.dump(processed_data[section], f) 

 

 

def main(): 

    parser = argparse.ArgumentParser('''REFCODE, target to GNN 

input''') 

    parser.add_argument('input', help='input csv with REFCODE, 

target per line') 

    parser.add_argument('--atoms', help='file with list of atoms') 

    parser.add_argument('-n', '--normalise', action='store_true', 

help='normalise the target values') 

    parser.add_argument('-s', '--split_frac', default=0.1, 

help='valid set fraction') 

    parser.add_argument('--rmsd', action='store_true', help='Do 

crystal rmsd as a graph level descriptor') 

    parser.add_argument('--hdim', action='store_true', help='Do H-

bond dimensionality as a graph level descriptor') 

    parser.add_argument('--vdw', action='store_true', help='include 

VdW interaction in crystal graph') 

    parser.add_argument('--atom_count', action='store_true', 

help='output atom count file') 

    args = parser.parse_args() 

 

    csd_dir = io.csd_directory() 

    csd_location = glob.glob(os.path.join(csd_dir, '*.inf')) 

    csd_reader = io.EntryReader(csd_location) 

 

    in_f = args.input 

    valid_frac = float(args.split_frac) 

    to_normalise = args.normalise 

    if args.atoms: 

        with open(args.atoms, 'r') as csvfile: 

            reader = csv.reader(csvfile, delimiter=',') 

            for row in reader: 

                atom_list = row 

                # atom_list = reader.next() # didnt work for some 

reason 

    else: 

        atom_list = None 
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    if args.rmsd: 

        crystal_rmsd = CrystalRMSD(csd_reader) 

    else: 

        crystal_rmsd = None 

 

    raw = from_csv(in_f) 

    out_name = in_f.split('.')[0] 

    raw_data, mean, std = split_data(raw, valid_frac, to_normalise) 

 

    crystal_graphs = CrystalGraph(csd_reader, atom_list, mean, std, 

crystal_rmsd, args.hdim) 

 

    graphs = crystal_graphs.process(raw_data) 

 

    output_data(graphs, out_name) 

    print('failed to process the following refcodes: ') 

    for ref in crystal_graphs.skip_refcode: 

        print(ref) 

 

    if to_normalise: 

        with open('{}_statistics.json'.format(out_name), 'w') as f: 

            json.dump({'mean': mean, 'std': std}, f) 

    if crystal_graphs.get_elements: 

        with open('{}_atoms.csv'.format(out_name), 'w') as f: 

            writer = csv.writer(f, delimiter=',') 

            writer.writerow(crystal_graphs.atom_list) 

 

    if args.atom_count: 

        with open('{}_atom_counts.json'.format(out_name), 'w') as f: 

            json.dump(crystal_graphs.atom_counts, f) 

 

 

if __name__ == '__main__': 

    main() 
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crystal_rmsd.py 
from rdkit import Chem 

from rdkit.Chem import rdMolAlign 

 

from conf_gen import ConformerGenerator 

 

 

class CrystalRMSD: 

    def __init__(self, csd_reader, force_field='mmff'): 

        self.csd_reader = csd_reader 

        self.conformer_generator = 

ConformerGenerator(force_field=force_field) 

 

    def calculate(self, refcode): 

        csd_mol = self.csd_reader.molecule(refcode) 

 

        csd_mols = csd_mol.components # get a list of all molecules 

in the crystal 

 

        csd_mol1 = csd_mols[0] # get the first mol to get the 

conformer 

        mol1 = Chem.MolFromMolBlock(csd_mol1.to_string('sdf')) 

        if mol1 is None: 

            print('cant construct the molecule') 

            raise RuntimeError 

        try: 

            conf = self.conformer_generator(mol1) 

            if Chem.AllChem.EmbedMolecule(conf) == -1: # = -1 if 

failed, id assigned otherwise 0,1,.. 

                print('molecule too large to generate conformer') 

                raise RuntimeError 

            rmsds = [] 

            for mol in csd_mols: 

                mol = Chem.MolFromMolBlock(mol.to_string('sdf')) 

                rmsd = rdMolAlign.GetBestRMS(mol, conf) 

                rmsds.append(rmsd) 

        except AttributeError: 

            print('something went wrong with minimisation of 

conformer') 

            raise RuntimeError 

        rmsd = sum(rmsds) / len(rmsds) 

 

        return rmsd 
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util.py 
#!/usr/bin/env/python 

 

import numpy as np 

import tensorflow as tf 

import queue 

import threading 

 

SMALL_NUMBER = 1e-7 

 

 

def glorot_init(shape): 

    initialization_range = np.sqrt(6.0 / (shape[-2] + shape[-1])) 

    return np.random.uniform(low=-initialization_range, 

high=initialization_range, size=shape).astype(np.float32) 

 

 

class ThreadedIterator: 

    """An iterator object that computes its elements in a parallel 

thread to be ready to be consumed. 

    The iterator should *not* return None""" 

 

    def __init__(self, original_iterator, max_queue_size: int=2): 

        self.__queue = queue.Queue(maxsize=max_queue_size) 

        self.__thread = threading.Thread(target=lambda: 

self.worker(original_iterator)) 

        self.__thread.start() 

 

    def worker(self, original_iterator): 

        for element in original_iterator: 

            assert element is not None, 'By convention, iterator 

elements much not be None' 

            self.__queue.put(element, block=True) 

        self.__queue.put(None, block=True) 

 

    def __iter__(self): 

        next_element = self.__queue.get(block=True) 

        while next_element is not None: 

            yield next_element 

            next_element = self.__queue.get(block=True) 

        self.__thread.join() 

 

 

class MLP(object): 

    def __init__(self, in_size, out_size, hid_sizes, 

dropout_keep_prob, family='MLP_layer'): 

        self.in_size = in_size 

        self.out_size = out_size 

        self.hid_sizes = hid_sizes 

        self.family = family 

        self.dropout_keep_prob = dropout_keep_prob 

        self.params = self.make_network_params() 

 

    def make_network_params(self): 

        dims = [self.in_size] + self.hid_sizes + [self.out_size] 

        weight_sizes = list(zip(dims[:-1], dims[1:])) 

        weights = [tf.Variable(self.init_weights(s), 

name='MLP_W_layer%i' % i) 

                   for (i, s) in enumerate(weight_sizes)] 

        biases = [tf.Variable(np.zeros(s[-1]).astype(np.float32), 

name='MLP_b_layer%i' % i) 
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                  for (i, s) in enumerate(weight_sizes)] 

 

        network_params = { 

            "weights": weights, 

            "biases": biases, 

        } 

 

        return network_params 

 

    def init_weights(self, shape): 

        return np.sqrt(6.0 / (shape[-2] + shape[-1])) * (2 * 

np.random.rand(*shape).astype(np.float32) - 1) 

 

    def __call__(self, inputs): 

        acts = inputs 

        for W, b in zip(self.params["weights"], 

self.params["biases"]): 

            tf.summary.histogram('MLP_weights', W, 

family=self.family) 

            tf.summary.histogram('MLP_biases', b, 

family=self.family) 

            hid = tf.matmul(acts, tf.nn.dropout(W, 

self.dropout_keep_prob)) + b 

            acts = tf.nn.relu(hid) 

        last_hidden = hid 

        return last_hidden 
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chem_tensorflow_.py 
#!/usr/bin/env/python 

 

from typing import Tuple, List, Any, Sequence 

 

import tensorflow as tf 

import time 

import os 

import json 

import numpy as np 

import pickle 

import random 

 

from utils import MLP, ThreadedIterator, SMALL_NUMBER 

 

 

class ChemModel(object): 

    @classmethod 

    def default_params(cls): 

        return { 

            'num_epochs': 3000, 

            'patience': 25, 

            'learning_rate': 0.001, 

            'clamp_gradient_norm': 1.0, 

            'out_layer_dropout_keep_prob': 1.0, 

            'gated_regression_keep_prob': 1.0, 

            'graph_representation_size': 100, 

            'prediction_layers_architecture': [50, 20], 

 

            'hidden_size': 100, 

            'num_timesteps': 4, 

            'use_graph': True, 

 

            'tie_fwd_bkwd': True, 

            'task_ids': [0], 

 

            'random_seed': 0, 

 

            'train_file': 'molecules_train.json', 

            'valid_file': 'molecules_valid.json' 

        } 

 

    def __init__(self, args): 

        self.args = args 

        self.edge_dict = {1: 'SINGLE', 2: 'DOUBLE', 3: 'TRIPLE', 4: 

'AROMATIC', 5: 'HBOND', 6: 'VDW_INTER', 7: 'VDW_INTRA'} 

        self.best_r = float('-inf') # best R^2 will be stored here 

for the hyper optimiser to access 

        # Collect argument things: 

        data_dir = '' 

        if '--data_dir' in args and args['--data_dir'] is not None: 

            data_dir = args['--data_dir'] 

        self.data_dir = data_dir 

 

        run_id = str(args.get('--run_id')) or str(os.getpid()) 

        self.run_id = "_".join([time.strftime("%Y-%m-%d-%H-%M-%S"), 

run_id]) 

        log_dir = args.get('--run_dir') or '.' 

        self.log_dir = log_dir 

        self.log_file = os.path.join(log_dir, "%s_log.json" % 

self.run_id) 
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        self.best_model_file = os.path.join(log_dir, 

"%s_model_best.pickle" % self.run_id) 

 

        # Collect parameters: 

        params = self.default_params() 

        config_file = args.get('--config-file') 

        if config_file is not None: 

            with open(config_file, 'r') as f: 

                params.update(json.load(f)) 

        config = args.get('--config') 

        if config is not None: 

            params.update(json.loads(config)) 

        conf = args.get('conf') 

        if conf is not None: # only for hyperopt 

            params.update(conf) 

        self.params = params 

        with open(os.path.join(log_dir, "%s_params.json" % 

self.run_id), "w") as f: 

            json.dump(params, f) 

        print("Run %s starting with following parameters:\n%s" % 

(self.run_id, json.dumps(self.params))) 

        random.seed(params['random_seed']) 

        np.random.seed(params['random_seed']) 

 

 

        # Load data: 

        self.max_num_vertices = 0 

        self.num_edge_types = 0 

        self.annotation_size = 0 

        self.num_graph_features = 0 

        self.graph_features_list = [] 

        self.graph_feature_lengths = {} 

        # modify usable data 

        edge_types = params.get('edge_types') 

        graph_descriptors = params.get('graph_descriptors') 

 

        self.train_data = self.load_data(params['train_file'], 

edge_types, graph_descriptors, is_training_data=True) 

        self.valid_data = self.load_data(params['valid_file'], 

edge_types, graph_descriptors, is_training_data=False) 

 

        # Build the actual model 

        config = tf.ConfigProto() 

        config.gpu_options.allow_growth = True 

        self.graph = tf.Graph() 

        self.sess = tf.Session(graph=self.graph, config=config) 

        self.writer = tf.summary.FileWriter(self.log_dir) 

        with self.graph.as_default(): 

            tf.set_random_seed(params['random_seed']) 

            self.placeholders = {} 

            self.weights = {} 

            self.ops = {} 

            self.make_model() 

            self.make_train_step() 

 

            # Restore/initialize variables: 

            restore_file = args.get('--restore') 

            if restore_file is not None: 

                self.restore_model(restore_file) 

            else: 

                self.initialize_model() 
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    def load_data(self, file_name, edge_types, graph_descriptors, 

is_training_data: bool): 

        full_path = os.path.join(self.data_dir, file_name) 

 

        print("Loading data from %s" % full_path) 

        with open(full_path, 'r') as f: 

            data = json.load(f) 

 

        restrict = self.args.get("--restrict_data") 

        if restrict is not None and restrict > 0: 

            data = data[:restrict] 

 

        # block out edge types and graph features that are not to be 

used 

        if edge_types is not None or graph_descriptors is not None: 

            for i, g in enumerate(data): 

                if edge_types: 

                    edges = [] 

                    for edge in g['graph']: 

                        if self.edge_dict[edge[1]] in edge_types: 

                            edges.append(edge) 

                    data[i]['graph'] = edges 

 

                if graph_descriptors: 

                    features = {} 

                    for feature, value in 

g['graph_features'].items(): 

                        if feature in graph_descriptors: 

                            features[feature] = value 

                    data[i]['graph_features'] = features 

 

        # Get some common data out: 

        num_fwd_edge_types = 0 

        for g in data: 

            self.max_num_vertices = max(self.max_num_vertices, 

max([v for e in g['graph'] for v in [e[0], e[2]]])) 

            num_fwd_edge_types = max(num_fwd_edge_types, max([e[1] 

for e in g['graph']])) 

        self.num_edge_types = max(self.num_edge_types, 

num_fwd_edge_types * (1 if self.params['tie_fwd_bkwd'] else 2)) 

        self.annotation_size = max(self.annotation_size, 

len(data[0]["node_features"][0])) 

 

 

 

        # get the number of graph features 

        if is_training_data: 

            if 'graph_features' in data[0].keys(): 

                self.num_graph_features = 

len(data[0]['graph_features']) 

                self.graph_features_list = 

list(data[0]['graph_features'].keys()) 

                for feature in self.graph_features_list: 

                    try: 

                        dims = 

len(data[0]['graph_features'][feature]) 

                    except TypeError: 

                        dims = 1 

                    self.graph_feature_lengths[feature] = dims 

        return self.process_raw_graphs(data, is_training_data) 
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    @staticmethod 

    def graph_string_to_array(graph_string: str) -> List[List[int]]: 

        return [[int(v) for v in s.split(' ')] 

                for s in graph_string.split('\n')] 

 

    def process_raw_graphs(self, raw_data: Sequence[Any], 

is_training_data: bool) -> Any: 

        raise Exception("Models have to implement 

process_raw_graphs!") 

 

    def make_model(self): 

        self.placeholders['target_values'] = 

tf.placeholder(tf.float32, [len(self.params['task_ids']), None], 

                                                            

name='target_values') 

        self.placeholders['target_mask'] = 

tf.placeholder(tf.float32, [len(self.params['task_ids']), None], 

                                                          

name='target_mask') 

        self.placeholders['num_graphs'] = tf.placeholder(tf.int64, 

[], name='num_graphs') 

        self.placeholders['gated_regression_keep_prob'] = 

tf.placeholder(tf.float32, [], name='gated_regression_keep_prob') 

        self.placeholders['out_layer_dropout_keep_prob'] = 

tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob') 

        # get placeholder for each graph feature 

        if self.num_graph_features > 0: 

            for graph_feature in self.graph_features_list: 

                dims = self.graph_feature_lengths[graph_feature] 

                self.placeholders[graph_feature] = 

tf.placeholder(tf.float32, [dims, None], name=graph_feature) 

 

        with tf.variable_scope("graph_model"): 

            self.prepare_specific_graph_model() 

            # This does the actual graph work: 

            if self.params['use_graph']: 

                self.ops['final_node_representations'] = 

self.compute_final_node_representations() 

            else: 

                self.ops['final_node_representations'] = 

tf.zeros_like(self.placeholders['initial_node_representation']) 

 

            with tf.variable_scope('gated_regression'): 

                with tf.variable_scope("regression_gate"): 

                    self.weights['regression_gate'] = MLP(2 * 

self.params['hidden_size'], 

self.params['graph_representation_size'], [], 

                                                                           

self.placeholders[ 

                                                                               

'gated_regression_keep_prob'], 'gated_regression') 

                with tf.variable_scope("regression"): 

                    self.weights['regression_transform'] = 

MLP(self.params['hidden_size'], 

self.params['graph_representation_size'], [], 

                                                                                

self.placeholders[ 

                                                                                    

'gated_regression_keep_prob'], 'gated_regression') 
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                graph_representation = 

self.gated_regression(self.ops['final_node_representations'], 

                                                                

self.weights['regression_gate'], 

                                                                

self.weights['regression_transform']) 

                print('graph representation shape: ') 

                print(graph_representation.get_shape()) 

 

        out_size = len(self.params['task_ids']) 

        # get the total length of all graph level features 

        graph_features_length = 0 

        for feature in self.graph_features_list: 

            graph_features_length += 

self.graph_feature_lengths[feature] 

 

        in_size = self.params['graph_representation_size'] + 

graph_features_length 

        print('the in_size is {}'.format(in_size)) 

        with tf.variable_scope('prediction_layers'): 

            input_tensors = [self.placeholders[feature] for feature 

in self.graph_features_list] 

            input_tensors.append(graph_representation) 

            prediction_input = tf.concat(input_tensors, 0, 

name='prediction_input') 

 

            print('prediction_input_size: ') 

            print(prediction_input.get_shape()) 

            print('this will be transposed') 

            prediction_layer = MLP(in_size, out_size, 

self.params['prediction_layers_architecture'], 

                                                 

self.params['out_layer_dropout_keep_prob'], 'prediction_MLP') 

            computed_values = 

prediction_layer(tf.transpose(prediction_input)) 

            computed_values = tf.transpose(computed_values) 

            print('computed value shape: ') 

            print(computed_values.get_shape()) 

            self.ops['predicted'] = computed_values 

        with tf.variable_scope('performance_measure'): 

            diff = tf.subtract(computed_values, 

self.placeholders['target_values'], name='diff') 

            diff = tf.multiply(diff, 

self.placeholders['target_mask']) 

            print('diff shape') 

            print(diff.get_shape()) 

            task_target_num = 

tf.reduce_sum(self.placeholders['target_mask'], axis=1, 

name='batch_size') + SMALL_NUMBER 

 

            #batch_mean = tf.div(tf.reduce_sum(computed_values, 

1),task_target_num, name='batch_mean') 

 

            with tf.variable_scope('mean_squared_error'): 

                squared_diff = tf.reduce_sum(tf.square(diff), 

name='squared_diff') 

                loss = tf.div(squared_diff,task_target_num, 'MSE') 

                self.ops['loss'] = tf.reduce_sum(loss) # total loss 

across all tasks 

                tf.summary.scalar('loss', self.ops['loss'], 

family='overall_performance') 
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            with tf.variable_scope('mean_abs_error'): 

                mae = tf.div(tf.reduce_sum(tf.abs(diff), 1), 

task_target_num) 

                print('MAE shape: ') 

                print(mae.get_shape()) 

                self.ops['MAE'] = tf.reduce_sum(mae) # Mean Absolute 

Error 

 

            with tf.variable_scope('R2'): 

                #tss = tf.subtract(tf.multiply(computed_values, 

self.placeholders['target_mask']), tf.expand_dims(batch_mean,1)) # y 

- y_mean 

                tss = 

tf.subtract(tf.multiply(self.placeholders['target_values'], 

self.placeholders['target_mask']), tf.constant(0, dtype=tf.float32)) 

# y_mean = 0,bcuz standarised in preprocessing 

                tss = tf.reduce_sum(tf.square(tss), axis=1, 

name='TSS')  # sum((y-y_mean)^2) 

                print('TSS shape: ') 

                print(tss.get_shape()) 

                r_squared = tf.subtract(tf.constant(1, 

dtype=tf.float32), tf.div(squared_diff, tss)) 

                print('R^2 shape: ') 

                print(r_squared.get_shape()) 

                self.ops['R2'] = tf.reduce_sum(r_squared) 

 

 

            for internal_id, task_id in 

enumerate(self.params['task_ids']): 

                tf_id = tf.constant([internal_id], 

name='task_{}_id'.format(task_id)) 

                task_diff = tf.nn.embedding_lookup(diff, tf_id) 

                print('task diff: ') 

                print(task_diff.get_shape()) 

                tf.summary.histogram('diff', task_diff, 

family='task_{}_performance'.format(task_id)) 

                task_mae = tf.nn.embedding_lookup(mae, tf_id) 

                print('task MAE') 

                print(task_mae.get_shape()) 

                tf.summary.scalar('task_MAE', tf.squeeze(task_mae), 

family='task_{}_performance'.format(task_id)) 

                task_loss = tf.nn.embedding_lookup(loss, tf_id) 

                tf.summary.scalar('task_loss', 

tf.squeeze(task_loss), family='task_{}_performance'.format(task_id)) 

                task_r_squared = tf.nn.embedding_lookup(r_squared, 

tf_id) 

                tf.summary.scalar('task_R2', 

tf.squeeze(task_r_squared), 

family='task_{}_performance'.format(task_id)) 

 

                #task_tss = tf.nn.embedding_lookup(tss, tf_id) 

                #tf.summary.scalar('task_tss', tf.squeeze(task_tss), 

family='task_{}_performance'.format(task_id)) 

            # Currently not done 

            # Normalise loss to account for fewer task-specific 

examples in batch: 

            # task_loss = task_loss * (1.0 / 

(self.params['task_sample_ratios'].get(task_id) or 1.0)) 

 

        self.merged_summary = tf.summary.merge_all() 
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    def make_train_step(self): 

        trainable_vars = 

self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) 

        if self.args.get('--freeze-graph-model'): 

            graph_vars = 

set(self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 

scope="graph_model")) 

            filtered_vars = [] 

            for var in trainable_vars: 

                if var not in graph_vars: 

                    filtered_vars.append(var) 

                else: 

                    print("Freezing weights of variable %s." % 

var.name) 

            trainable_vars = filtered_vars 

        optimizer = 

tf.train.AdamOptimizer(self.params['learning_rate']) 

        grads_and_vars = 

optimizer.compute_gradients(self.ops['loss'], 

var_list=trainable_vars) 

        clipped_grads = [] 

        with tf.variable_scope('clib_by_norm'): 

            for grad, var in grads_and_vars: 

                if grad is not None: 

                    clipped_grads.append((tf.clip_by_norm(grad, 

self.params['clamp_gradient_norm']), var)) 

                else: 

                    clipped_grads.append((grad, var)) 

        self.ops['train_step'] = 

optimizer.apply_gradients(clipped_grads) 

        # Initialize newly-introduced variables: 

        self.sess.run(tf.local_variables_initializer()) 

 

    def gated_regression(self, last_h, regression_gate, 

regression_transform): 

        raise Exception("Models have to implement 

gated_regression!") 

 

    def prepare_specific_graph_model(self) -> None: 

        raise Exception("Models have to implement 

prepare_specific_graph_model!") 

 

    def compute_final_node_representations(self) -> tf.Tensor: 

        raise Exception("Models have to implement 

compute_final_node_representations!") 

 

    def make_minibatch_iterator(self, data: Any, is_training: bool): 

        raise Exception("Models have to implement 

make_minibatch_iterator!") 

 

    def run_epoch(self, epoch_name: str, data, is_training: bool): 

 

 

        loss = 0 

        maes = [] 

        start_time = time.time() 

        processed_graphs = 0 

        batch_iterator = 

ThreadedIterator(self.make_minibatch_iterator(data, is_training), 

max_queue_size=5) 



-282- 

 

        for step, batch_data in enumerate(batch_iterator): 

            num_graphs = batch_data[self.placeholders['num_graphs']] 

            processed_graphs += num_graphs 

            if is_training: 

                

batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 

self.params['out_layer_dropout_keep_prob'] 

                

batch_data[self.placeholders['gated_regression_keep_prob']] = 

self.params[ 

                    'gated_regression_keep_prob'] 

 

                fetch_list = [self.ops['loss'], self.ops['MAE'], 

self.ops['train_step'], self.ops['R2']] 

            else: 

                

batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0 

                

batch_data[self.placeholders['gated_regression_keep_prob']] = 1.0 

                fetch_list = [self.ops['loss'], self.ops['MAE'], 

self.merged_summary, self.ops['R2']] 

            result = self.sess.run(fetch_list, feed_dict=batch_data) 

            (batch_loss, batch_mae) = (result[0], result[1]) 

            loss += batch_loss * num_graphs 

            maes.append(np.array(batch_mae) * num_graphs) 

            if not is_training: 

                summary = result[2] 

            else: 

                summary = None 

            print("Running %s, batch %i (has %i graphs). Loss so 

far: %.4f" % (epoch_name, 

                                                                               

step, 

                                                                               

num_graphs, 

                                                                               

loss / processed_graphs), 

                  end='\r') 

 

        MAE = np.sum(maes, axis=0) / processed_graphs 

        loss = loss / processed_graphs 

        instance_per_sec = processed_graphs / (time.time() - 

start_time) 

        return loss, MAE, instance_per_sec, summary, result[3] # R^2 

 

    def train(self): 

        log_to_save = [] 

        total_time_start = time.time() 

        with self.graph.as_default(): 

            if self.args.get('--restore') is not None: 

                _, _, _, _, r = self.run_epoch("Resumed 

(validation)", self.valid_data, False) 

                best_r = np.sum(r) 

                best_val_r_epoch = 0 

                best_val_loss = None 

                print("\r\x1b[KResumed operation, initial 

R^2: %.5f" % best_r) 

            else: 

                (best_r, best_val_r_epoch) = (float("-inf"), 0) 

                best_val_loss, best_val_mae = None, None 

            for epoch in range(1, self.params['num_epochs'] + 1): 
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                print("== Epoch %i" % epoch) 

                train_loss, train_mae, train_speed, _, train_r = 

self.run_epoch("epoch %i (training)" % epoch, 

                                                                                 

self.train_data, True) 

 

                print('\r[Train: epoch: {}, MSE: {}, MAE: {}, R^2: 

{} instances/sec: {}'.format(epoch, train_loss, train_mae, train_r, 

train_speed)) 

 

                valid_loss, valid_mae, valid_speed, summary, valid_r 

= self.run_epoch("epoch %i (validation)" % epoch, 

                                                                                 

self.valid_data, False) 

                self.writer.add_summary(summary, epoch) 

 

                print('\r[Valid: epoch: {}, MSE: {}, MAE: {}, R^2: 

{}, instances/sec: {}'.format(epoch, valid_loss, valid_mae, valid_r, 

                                                                                        

valid_speed)) 

 

                epoch_time = time.time() - total_time_start 

 

 

 

                log_entry = { 

                    'epoch': epoch, 

                    'time': epoch_time, 

                    'train_results': (float(train_loss), 

float(train_mae), float(train_r), train_speed), 

                    'valid_results': (valid_loss, valid_mae, 

float(valid_r), valid_speed), 

                } 

                log_to_save.append(log_entry) 

                with open(self.log_file, 'w') as f: 

                    json.dump(log_to_save, f, indent=4) 

 

                # type: float 

                if valid_r > best_r: 

                    self.save_model(self.best_model_file) 

                    print("  (Best epoch so far, R^2 decreased 

to %.5f from %.5f. Saving to '%s')" % (valid_r, best_r, 

self.best_model_file)) 

                    best_r = valid_r 

                    best_val_mae = valid_mae 

                    best_val_loss = valid_loss 

                    best_val_r_epoch = epoch 

                elif epoch - best_val_r_epoch >= 

self.params['patience']: 

                    print("Stopping training after %i epochs without 

improvement on validation accuracy." % self.params['patience']) 

                    # print the performance summary 

                    full_path = os.path.join(self.log_dir, 

'performance.json') 

                    date = self.run_id.split('_')[0] 

                    run_id = self.run_id.split('_')[1] 

                    self.best_r = best_r 

                    with open(full_path, 'w') as f: 

                        json.dump({'date': date, 'run_id': run_id, 

'MAE': float(best_val_mae), 
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                                   'MSE': float(best_val_loss), 

'R2': float(best_r), 'epochs': best_val_r_epoch}, f) 

                    break 

 

    def save_model(self, path: str) -> None: 

        weights_to_save = {} 

        for variable in 

self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): 

            assert variable.name not in weights_to_save 

            weights_to_save[variable.name] = self.sess.run(variable) 

 

        data_to_save = { 

                         "params": self.params, 

                         "weights": weights_to_save 

                       } 

 

        with open(path, 'wb') as out_file: 

            pickle.dump(data_to_save, out_file, 

pickle.HIGHEST_PROTOCOL) 

 

    def initialize_model(self) -> None: 

        init_op = tf.group(tf.global_variables_initializer(), 

                           tf.local_variables_initializer()) 

        self.sess.run(init_op) 

        self.writer.add_graph(self.sess.graph) 

        self.merged_summary = tf.summary.merge_all() 

 

    def restore_model(self, path: str) -> None: 

        print("Restoring weights from file %s." % path) 

        with open(path, 'rb') as in_file: 

            data_to_load = pickle.load(in_file) 

 

        # Assert that we got the same model configuration 

        assert len(self.params) == len(data_to_load['params']) 

        for (par, par_value) in self.params.items(): 

            # Fine to have different task_ids: 

            if par not in ['task_ids', 'num_epochs']: 

                assert par_value == data_to_load['params'][par] 

 

        variables_to_initialize = [] 

        with tf.name_scope("restore"): 

            restore_ops = [] 

            used_vars = set() 

            for variable in 

self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): 

                used_vars.add(variable.name) 

                if variable.name in data_to_load['weights']: 

                    

restore_ops.append(variable.assign(data_to_load['weights'][variable.

name])) 

                else: 

                    print('Freshly initializing %s since no saved 

value was found.' % variable.name) 

                    variables_to_initialize.append(variable) 

            for var_name in data_to_load['weights']: 

                if var_name not in used_vars: 

                    print('Saved weights for %s not used by 

model.' % var_name) 

            

restore_ops.append(tf.variables_initializer(variables_to_initialize)

) 
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            self.sess.run(restore_ops) 
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chem_tensorflow_sparse.py 
#!/usr/bin/env/python 

""" 

Usage: 

    chem_tensorflow_sparse.py [options] 

 

Options: 

    -h --help                Show this screen. 

    --config-file FILE       Hyperparameter configuration file path 

(in JSON format). 

    --config CONFIG          Hyperparameter configuration dictionary 

(in JSON format). 

    --run_dir DIR            Run dir name. 

    --data_dir DIR           Data dir name. 

    --restore FILE           File to restore weights from. 

    --freeze-graph-model     Freeze weights of graph model 

components. 

    --run_id ID              Run_id. 

""" 

from typing import List, Tuple, Dict, Sequence, Any 

 

from docopt import docopt 

from collections import defaultdict, namedtuple 

import numpy as np 

import tensorflow as tf 

import sys, traceback 

import pdb 

 

from chem_tensorflow import ChemModel 

from utils import glorot_init, SMALL_NUMBER 

 

 

GGNNWeights = namedtuple('GGNNWeights', ['edge_weights', 

                                         'edge_biases', 

                                         

'edge_type_attention_weights', 

                                         'rnn_cells',]) 

 

 

class SparseGGNNChemModel(ChemModel): 

    def __init__(self, args): 

        super().__init__(args) 

 

    @classmethod 

    def default_params(cls): 

        params = dict(super().default_params()) 

        params.update({ 

            'batch_size': 100000, 

            'use_edge_bias': False, 

            'use_propagation_attention': False, 

            'use_edge_msg_avg_aggregation': True, 

            'residual_connections': {  # For layer i, specify list 

of layers whose output is added as an input 

                                     "2": [0], 

                                     "4": [0, 2] 

                                    }, 

 

            'layer_timesteps': [2, 2, 1, 2, 1],  # number of layers 

& propagation steps per layer 

 

            'graph_rnn_cell': 'GRU',  # GRU or RNN 
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            'graph_rnn_activation': 'tanh',  # tanh, ReLU 

            'graph_state_dropout_keep_prob': 1., 

            'task_sample_ratios': {}, 

        }) 

        return params 

 

    def prepare_specific_graph_model(self) -> None: 

        h_dim = self.params['hidden_size'] 

        self.placeholders['initial_node_representation'] = 

tf.placeholder(tf.float32, [None, h_dim], 

                                                                          

name='node_features') 

        self.placeholders['adjacency_lists'] = 

[tf.placeholder(tf.int32, [None, 2], name='adjacency_e%s' % e) 

                                                for e in 

range(self.num_edge_types)] 

        self.placeholders['num_incoming_edges_per_type'] = 

tf.placeholder(tf.float32, [None, self.num_edge_types], 

                                                                          

name='num_incoming_edges_per_type') 

        self.placeholders['graph_nodes_list'] = 

tf.placeholder(tf.int64, [None, 2], name='graph_nodes_list') 

        self.placeholders['graph_state_keep_prob'] = 

tf.placeholder(tf.float32, None, name='graph_state_keep_prob') 

 

        activation_name = 

self.params['graph_rnn_activation'].lower() 

        if activation_name == 'tanh': 

            activation_fun = tf.nn.tanh 

        elif activation_name == 'relu': 

            activation_fun = tf.nn.relu 

        else: 

            raise Exception("Unknown activation function type 

'%s'." % activation_name) 

 

        # Generate per-layer values for edge weights, biases and 

gated units: 

        self.weights = {}  # Used by super-class to place generic 

things 

        self.gnn_weights = GGNNWeights([], [], [], []) 

        for layer_idx in range(len(self.params['layer_timesteps'])): 

            with tf.variable_scope('gnn_layer_%i' % layer_idx): 

                edge_weights = 

tf.Variable(glorot_init([self.num_edge_types * h_dim, h_dim]), 

                                           

name='gnn_edge_weights_%i' % layer_idx) 

                edge_weights = tf.reshape(edge_weights, 

[self.num_edge_types, h_dim, h_dim]) 

                self.gnn_weights.edge_weights.append(edge_weights) 

 

                if self.params['use_propagation_attention']: 

                    

self.gnn_weights.edge_type_attention_weights.append(tf.Variable(np.o

nes([self.num_edge_types], dtype=np.float32), 

                                                                                    

name='edge_type_attention_weights_%i' % layer_idx)) 

 

                if self.params['use_edge_bias']: 

                    

self.gnn_weights.edge_biases.append(tf.Variable(np.zeros([self.num_e

dge_types, h_dim], dtype=np.float32), 
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name='gnn_edge_biases_%i' % layer_idx)) 

 

                cell_type = self.params['graph_rnn_cell'].lower() 

                if cell_type == 'gru': 

                    cell = tf.nn.rnn_cell.GRUCell(h_dim, 

activation=activation_fun) 

                elif cell_type == 'rnn': 

                    cell = tf.nn.rnn_cell.BasicRNNCell(h_dim, 

activation=activation_fun) 

                else: 

                    raise Exception("Unknown RNN cell type '%s'." % 

cell_type) 

                cell = tf.nn.rnn_cell.DropoutWrapper(cell, 

                                                     

state_keep_prob=self.placeholders['graph_state_keep_prob']) 

                self.gnn_weights.rnn_cells.append(cell) 

 

    def compute_final_node_representations(self) -> tf.Tensor: 

        node_states_per_layer = []  # one entry per layer (final 

state of that layer), shape: number of nodes in batch v x D 

        

node_states_per_layer.append(self.placeholders['initial_node_represe

ntation']) 

        num_nodes = 

tf.shape(self.placeholders['initial_node_representation'], 

out_type=tf.int32)[0] 

 

        message_targets = []  # list of tensors of message targets 

of shape [E] 

        message_edge_types = []  # list of tensors of edge type of 

shape [E] 

        for edge_type_idx, adjacency_list_for_edge_type in 

enumerate(self.placeholders['adjacency_lists']): 

            edge_targets = adjacency_list_for_edge_type[:, 1] 

            message_targets.append(edge_targets) 

            message_edge_types.append(tf.ones_like(edge_targets, 

dtype=tf.int32) * edge_type_idx) 

        message_targets = tf.concat(message_targets, axis=0)  # 

Shape [M] 

        message_edge_types = tf.concat(message_edge_types, axis=0)  

# Shape [M] 

 

        for (layer_idx, num_timesteps) in 

enumerate(self.params['layer_timesteps']): 

            with tf.variable_scope('gnn_layer_%i' % layer_idx): 

                # Used shape abbreviations: 

                #   V ~ number of nodes 

                #   D ~ state dimension 

                #   E ~ number of edges of current type 

                #   M ~ number of messages (sum of all E) 

 

                # Extract residual messages, if any: 

                layer_residual_connections = 

self.params['residual_connections'].get(str(layer_idx)) 

                if layer_residual_connections is None: 

                    layer_residual_states = [] 

                else: 

                    layer_residual_states = 

[node_states_per_layer[residual_layer_idx] 
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                                             for residual_layer_idx 

in layer_residual_connections] 

 

                if self.params['use_propagation_attention']: 

                    message_edge_type_factors = 

tf.nn.embedding_lookup(params=self.gnn_weights.edge_type_attention_w

eights[layer_idx], 

                                                                       

ids=message_edge_types)  # Shape [M] 

                for edge_type_idx in 

range(len(self.placeholders['adjacency_lists'])): 

                    

tf.summary.histogram('GNN_layer_{}_edge_type_{}'.format(layer_idx, 

edge_type_idx), 

                                         

self.gnn_weights.edge_weights[layer_idx][edge_type_idx]) 

 

                # Record new states for this layer. Initialised to 

last state, but will be updated below: 

                node_states_per_layer.append(node_states_per_layer[-

1]) 

                for step in range(num_timesteps): 

                    with tf.variable_scope('timestep_%i' % step): 

                        messages = []  # list of tensors of messages 

of shape [E, D] 

                        message_source_states = []  # list of 

tensors of edge source states of shape [E, D] 

 

                        # Collect incoming messages per edge type 

                        for edge_type_idx, 

adjacency_list_for_edge_type in 

enumerate(self.placeholders['adjacency_lists']): 

                            edge_sources = 

adjacency_list_for_edge_type[:, 0] 

                            edge_source_states = 

tf.nn.embedding_lookup(params=node_states_per_layer[-1], 

                                                                        

ids=edge_sources)  # Shape [E, D] 

                            all_messages_for_edge_type = 

tf.matmul(edge_source_states, 

                                                                   

self.gnn_weights.edge_weights[layer_idx][edge_type_idx])  # Shape 

[E, D] 

 

                            

messages.append(all_messages_for_edge_type) 

                            

message_source_states.append(edge_source_states) 

 

                        messages = tf.concat(messages, axis=0)  # 

Shape [M, D] 

 

                        if self.params['use_propagation_attention']: 

                            message_source_states = 

tf.concat(message_source_states, axis=0)  # Shape [M, D] 

                            message_target_states = 

tf.nn.embedding_lookup(params=node_states_per_layer[-1], 

                                                                           

ids=message_targets)  # Shape [M, D] 
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                            message_attention_scores = 

tf.einsum('mi,mi->m', message_source_states, message_target_states)  

# Shape [M] 

                            message_attention_scores = 

message_attention_scores * message_edge_type_factors 

 

                            # The following is softmax-ing over the 

incoming messages per node. 

                            # As the number of incoming varies, we 

can't just use tf.softmax. Reimplement with logsumexp trick: 

                            # Step (1): Obtain shift constant as max 

of messages going into a node 

                            message_attention_score_max_per_target = 

tf.unsorted_segment_max(data=message_attention_scores, 

                                                                                             

segment_ids=message_targets, 

                                                                                             

num_segments=num_nodes)  # Shape [V] 

                            # Step (2): Distribute max out to the 

corresponding messages again, and shift scores: 

                            message_attention_score_max_per_message 

= tf.gather(params=message_attention_score_max_per_target, 

                                                                                

indices=message_targets)  # Shape [M] 

                            message_attention_scores -= 

message_attention_score_max_per_message 

                            # Step (3): Exp, sum up per target, 

compute exp(score) / exp(sum) as attention prob: 

                            message_attention_scores_exped = 

tf.exp(message_attention_scores)  # Shape [M] 

                            message_attention_score_sum_per_target = 

tf.unsorted_segment_sum(data=message_attention_scores_exped, 

                                                                                             

segment_ids=message_targets, 

                                                                                             

num_segments=num_nodes)  # Shape [V] 

                            

message_attention_normalisation_sum_per_message = 

tf.gather(params=message_attention_score_sum_per_target, 

                                                                                        

indices=message_targets)  # Shape [M] 

                            message_attention = 

message_attention_scores_exped / 

(message_attention_normalisation_sum_per_message + SMALL_NUMBER)  # 

Shape [M] 

                            # Step (4): Weigh messages using the 

attention prob: 

                            messages = messages * 

tf.expand_dims(message_attention, -1) 

 

                        incoming_messages = 

tf.unsorted_segment_sum(data=messages, 

                                                                    

segment_ids=message_targets, 

                                                                    

num_segments=num_nodes)  # Shape [V, D] 

 

                        if self.params['use_edge_bias']: 

                            incoming_messages += 

tf.matmul(self.placeholders['num_incoming_edges_per_type'], 
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self.gnn_weights.edge_biases[layer_idx])  # Shape [V, D] 

 

                        if 

self.params['use_edge_msg_avg_aggregation']: 

                            num_incoming_edges = 

tf.reduce_sum(self.placeholders['num_incoming_edges_per_type'], 

                                                               

keep_dims=True, axis=-1)  # Shape [V, 1] 

                            incoming_messages /= num_incoming_edges 

+ SMALL_NUMBER 

 

                        incoming_information = 

tf.concat(layer_residual_states + [incoming_messages], 

                                                         axis=-1)  # 

Shape [V, D*(1 + num of residual connections)] 

 

                        # pass updated vertex features into RNN cell 

                        node_states_per_layer[-1] = 

self.gnn_weights.rnn_cells[layer_idx](incoming_information, 

                                                                                          

node_states_per_layer[-1])[1]  # Shape [V, D] 

 

        return node_states_per_layer[-1] 

 

    def gated_regression(self, last_h, regression_gate, 

regression_transform): 

        # last_h: [v x h] 

 

        gate_input = tf.concat([last_h, 

self.placeholders['initial_node_representation']], axis=-1)  # [v x 

2h] 

        gated_outputs = tf.nn.sigmoid(regression_gate(gate_input)) * 

regression_transform(last_h)  # [v x 1] 

 

        # Sum up all nodes per-graph 

        num_nodes = tf.shape(gate_input, out_type=tf.int64)[0] 

        graph_nodes = 

tf.SparseTensor(indices=self.placeholders['graph_nodes_list'], 

                                      

values=tf.ones_like(self.placeholders['graph_nodes_list'][:, 0], 

                                                          

dtype=tf.float32), 

                                      

dense_shape=[self.placeholders['num_graphs'], num_nodes])  # [g x v] 

        return 

tf.transpose(tf.sparse_tensor_dense_matmul(graph_nodes, 

gated_outputs)) # [g] 

 

    # ----- Data preprocessing and chunking into minibatches: 

    def process_raw_graphs(self, raw_data: Sequence[Any], 

is_training_data: bool) -> Any: 

        processed_graphs = [] 

        for d in raw_data: 

            (adjacency_lists, num_incoming_edge_per_type) = 

self.__graph_to_adjacency_lists(d['graph']) 

            if self.num_graph_features > 0: 

                processed_graphs.append({"adjacency_lists": 

adjacency_lists, 

                                         

"num_incoming_edge_per_type": num_incoming_edge_per_type, 
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                                         "init": d["node_features"], 

                                         "labels": 

[d["targets"][task_id][0] for task_id in self.params['task_ids']], 

                                         'graph_features': 

d['graph_features'] 

                                         }) 

            else: 

                processed_graphs.append({"adjacency_lists": 

adjacency_lists, 

                                         

"num_incoming_edge_per_type": num_incoming_edge_per_type, 

                                         "init": d["node_features"], 

                                         "labels": 

[d["targets"][task_id][0] for task_id in self.params['task_ids']] 

                                         }) 

 

        if is_training_data: 

            np.random.shuffle(processed_graphs) 

            for task_id in self.params['task_ids']: 

                task_sample_ratio = 

self.params['task_sample_ratios'].get(str(task_id)) 

                if task_sample_ratio is not None: 

                    ex_to_sample = int(len(processed_graphs) * 

task_sample_ratio) 

                    for ex_id in range(ex_to_sample, 

len(processed_graphs)): 

                        processed_graphs[ex_id]['labels'][task_id] = 

None 

 

        return processed_graphs 

 

    def __graph_to_adjacency_lists(self, graph) -> Tuple[Dict[int, 

np.ndarray], Dict[int, Dict[int, int]]]: 

        adj_lists = defaultdict(list) 

        num_incoming_edges_dicts_per_type = defaultdict(lambda: 

defaultdict(lambda: 0)) 

        for src, e, dest in graph: 

            fwd_edge_type = e - 1  # Make edges start from 0 

            adj_lists[fwd_edge_type].append((src, dest)) 

            num_incoming_edges_dicts_per_type[fwd_edge_type][dest] 

+= 1 

            if self.params['tie_fwd_bkwd']: 

                adj_lists[fwd_edge_type].append((dest, src)) 

                

num_incoming_edges_dicts_per_type[fwd_edge_type][src] += 1 

 

        final_adj_lists = {e: np.array(sorted(lm), dtype=np.int32) 

                           for e, lm in adj_lists.items()} 

 

        # Add backward edges as an additional edge type that goes 

backwards: 

        if not (self.params['tie_fwd_bkwd']): 

            for (edge_type, edges) in adj_lists.items(): 

                bwd_edge_type = self.num_edge_types + edge_type 

                final_adj_lists[bwd_edge_type] = np.array(sorted((y, 

x) for (x, y) in edges), dtype=np.int32) 

                for (x, y) in edges: 

                    

num_incoming_edges_dicts_per_type[bwd_edge_type][y] += 1 

 

        return final_adj_lists, num_incoming_edges_dicts_per_type 
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    def make_minibatch_iterator(self, data: Any, is_training: bool): 

        """Create minibatches by flattening adjacency matrices into 

a single adjacency matrix with 

        multiple disconnected components.""" 

        if is_training: 

            np.random.shuffle(data) 

        # Pack until we cannot fit more graphs in the batch 

        dropout_keep_prob = 

self.params['graph_state_dropout_keep_prob'] if is_training else 1. 

        num_graphs = 0 

        while num_graphs < len(data): 

            num_graphs_in_batch = 0 

            batch_node_features = [] 

            batch_target_task_values = [] 

            batch_target_task_mask = [] 

            batch_adjacency_lists = [[] for _ in 

range(self.num_edge_types)] 

            batch_num_incoming_edges_per_type = [] 

            batch_graph_nodes_list = [] 

            node_offset = 0 

            batch_graph_features = defaultdict(list) 

 

            while num_graphs < len(data) and node_offset + 

len(data[num_graphs]['init']) < self.params['batch_size']: 

                cur_graph = data[num_graphs] 

                num_nodes_in_graph = len(cur_graph['init']) 

                padded_features = np.pad(cur_graph['init'], 

                                         ((0, 0), (0, 

self.params['hidden_size'] - self.annotation_size)), 

                                         'constant') 

                batch_node_features.extend(padded_features) 

                batch_graph_nodes_list.extend( 

                    (num_graphs_in_batch, node_offset + i) for i in 

range(num_nodes_in_graph)) 

                for i in range(self.num_edge_types): 

                    if i in cur_graph['adjacency_lists']: 

                        

batch_adjacency_lists[i].append(cur_graph['adjacency_lists'][i] + 

node_offset) 

 

                # Turn counters for incoming edges into np array: 

                num_incoming_edges_per_type = 

np.zeros((num_nodes_in_graph, self.num_edge_types)) 

                for (e_type, num_incoming_edges_per_type_dict) in 

cur_graph['num_incoming_edge_per_type'].items(): 

                    for (node_id, edge_count) in 

num_incoming_edges_per_type_dict.items(): 

                        num_incoming_edges_per_type[node_id, e_type] 

= edge_count 

                

batch_num_incoming_edges_per_type.append(num_incoming_edges_per_type

) 

 

                target_task_values = [] 

                target_task_mask = [] 

                for target_val in cur_graph['labels']: 

                    if target_val is None:  # This is one of the 

examples we didn't sample... 

                        target_task_values.append(0.) 

                        target_task_mask.append(0.) 
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                    else: 

                        target_task_values.append(target_val) 

                        target_task_mask.append(1.) 

                batch_target_task_values.append(target_task_values) 

                batch_target_task_mask.append(target_task_mask) 

                for feature in self.graph_features_list: 

                    

batch_graph_features[feature].append(cur_graph['graph_features'][fea

ture]) 

                num_graphs += 1 

                num_graphs_in_batch += 1 

                node_offset += num_nodes_in_graph 

 

            batch_feed_dict = { 

                self.placeholders['initial_node_representation']: 

np.array(batch_node_features), 

                self.placeholders['num_incoming_edges_per_type']: 

np.concatenate(batch_num_incoming_edges_per_type, axis=0), 

                self.placeholders['graph_nodes_list']: 

np.array(batch_graph_nodes_list, dtype=np.int32), 

                self.placeholders['target_values']: 

np.transpose(batch_target_task_values, axes=[1,0]), 

                self.placeholders['target_mask']: 

np.transpose(batch_target_task_mask, axes=[1, 0]), 

                self.placeholders['num_graphs']: 

num_graphs_in_batch, 

                self.placeholders['graph_state_keep_prob']: 

dropout_keep_prob, 

            } 

            # add graph features 

            for feature in self.graph_features_list: 

                # have to adjust the shape to match the desired 

input shape 

                if self.graph_feature_lengths[feature] == 1: 

                    feed = np.array([batch_graph_features[feature]], 

dtype=np.float32) 

                else: 

                    feed = 

np.transpose(batch_graph_features[feature], axes=[1, 0]) 

 

                batch_feed_dict[self.placeholders[feature]] = feed 

 

 

            # Merge adjacency lists and information about incoming 

nodes: 

            for i in range(self.num_edge_types): 

                if len(batch_adjacency_lists[i]) > 0: 

                    adj_list = 

np.concatenate(batch_adjacency_lists[i]) 

                else: 

                    adj_list = np.zeros((0, 2), dtype=np.int32) 

                

batch_feed_dict[self.placeholders['adjacency_lists'][i]] = adj_list 

 

            yield batch_feed_dict 

 

 

def main(): 

    args = docopt(__doc__) 

    try: 

        model = SparseGGNNChemModel(args) 
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        model.train() 

    except: 

        typ, value, tb = sys.exc_info() 

        traceback.print_exc() 

        pdb.post_mortem(tb) 

 

 

if __name__ == "__main__": 

    main() 
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apply_chem_tensorflow.py 
""" 

Usage: 

    chem_tensorflow_sparse.py [options] 

 

Options: 

    -h --help                Show this screen. 

    --config-file FILE       Hyperparameter configuration file path 

(in JSON format). 

    --config CONFIG          Hyperparameter configuration dictionary 

(in JSON format). 

    --run_dir DIR            Run dir name. 

    --data_dir DIR           Data dir name. 

    --restore FILE           File to restore weights from. 

    --freeze-graph-model     Freeze weights of graph model 

components. 

    --run_id ID              Run_id. 

""" 

 

from typing import List, Tuple, Dict, Sequence, Any 

 

from docopt import docopt 

import os 

from collections import defaultdict, namedtuple 

import numpy as np 

import tensorflow as tf 

import sys, traceback 

import pdb 

import time 

import json 

import pickle 

 

from chem_tensorflow import ChemModel, ThreadedIterator 

from chem_tensorflow_sparse import GGNNWeights, SparseGGNNChemModel 

from utils import glorot_init, SMALL_NUMBER 

 

 

class ApplyGGNNChemModel(SparseGGNNChemModel): 

    def __init__(self, args): 

        super().__init__(args) 

 

    def process_raw_graphs(self, raw_data: Sequence[Any], 

is_training_data: bool) -> Any: 

        processed_graphs = [] 

        for d in raw_data: 

            (adjacency_lists, num_incoming_edge_per_type) = 

self.__graph_to_adjacency_lists(d['graph']) 

            if self.num_graph_features > 0: 

                processed_graphs.append({"adjacency_lists": 

adjacency_lists, 

                                         

"num_incoming_edge_per_type": num_incoming_edge_per_type, 

                                         "init": d["node_features"], 

                                         "labels": 

[d["targets"][task_id][0] for task_id in self.params['task_ids']], 

                                         'graph_features': 

d['graph_features'], 

                                         "id": d["id"] 

                                         }) 

            else: 



-297- 

 

                processed_graphs.append({"adjacency_lists": 

adjacency_lists, 

                                         

"num_incoming_edge_per_type": num_incoming_edge_per_type, 

                                         "init": d["node_features"], 

                                         "labels": 

[d["targets"][task_id][0] for task_id in self.params['task_ids']], 

                                         "id": d["id"] 

                                         }) 

 

        if is_training_data: 

            np.random.shuffle(processed_graphs) 

            for task_id in self.params['task_ids']: 

                task_sample_ratio = 

self.params['task_sample_ratios'].get(str(task_id)) 

                if task_sample_ratio is not None: 

                    ex_to_sample = int(len(processed_graphs) * 

task_sample_ratio) 

                    for ex_id in range(ex_to_sample, 

len(processed_graphs)): 

                        processed_graphs[ex_id]['labels'][task_id] = 

None 

 

        return processed_graphs 

 

    def __graph_to_adjacency_lists(self, graph) -> Tuple[Dict[int, 

np.ndarray], Dict[int, Dict[int, int]]]: 

        adj_lists = defaultdict(list) 

        num_incoming_edges_dicts_per_type = defaultdict(lambda: 

defaultdict(lambda: 0)) 

        for src, e, dest in graph: 

            fwd_edge_type = e - 1  # Make edges start from 0 

            adj_lists[fwd_edge_type].append((src, dest)) 

            num_incoming_edges_dicts_per_type[fwd_edge_type][dest] 

+= 1 

            if self.params['tie_fwd_bkwd']: 

                adj_lists[fwd_edge_type].append((dest, src)) 

                

num_incoming_edges_dicts_per_type[fwd_edge_type][src] += 1 

 

        final_adj_lists = {e: np.array(sorted(lm), dtype=np.int32) 

                           for e, lm in adj_lists.items()} 

 

        # Add backward edges as an additional edge type that goes 

backwards: 

        if not (self.params['tie_fwd_bkwd']): 

            for (edge_type, edges) in adj_lists.items(): 

                bwd_edge_type = self.num_edge_types + edge_type 

                final_adj_lists[bwd_edge_type] = np.array(sorted((y, 

x) for (x, y) in edges), dtype=np.int32) 

                for (x, y) in edges: 

                    

num_incoming_edges_dicts_per_type[bwd_edge_type][y] += 1 

 

        return final_adj_lists, num_incoming_edges_dicts_per_type 

 

    def restore_model(self, path: str) -> None: 

        print("Restoring weights from file %s." % path) 

        with open(path, 'rb') as in_file: 

            data_to_load = pickle.load(in_file) 
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        # Assert that we got the same model configuration 

        assert len(self.params) == len(data_to_load['params']) 

        for (par, par_value) in self.params.items(): 

            # Fine to have different task_ids: 

            if par not in ['task_ids', 'num_epochs']: 

                try: 

                    assert par_value == data_to_load['params'][par] 

                except AssertionError: 

                    print('WARNING: params dont match') 

                    print('expected: 

{}'.format(data_to_load['params'][par])) 

                    print('got: {}'.format(par_value)) 

 

        variables_to_initialize = [] 

        with tf.name_scope("restore"): 

            restore_ops = [] 

            used_vars = set() 

            for variable in 

self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): 

                used_vars.add(variable.name) 

                if variable.name in data_to_load['weights']: 

                    

restore_ops.append(variable.assign(data_to_load['weights'][variable.

name])) 

                else: 

                    print('Freshly initializing %s since no saved 

value was found.' % variable.name) 

                    variables_to_initialize.append(variable) 

            for var_name in data_to_load['weights']: 

                if var_name not in used_vars: 

                    print('Saved weights for %s not used by 

model.' % var_name) 

            

restore_ops.append(tf.variables_initializer(variables_to_initialize)

) 

            self.sess.run(restore_ops) 

        self.writer.add_graph(self.sess.graph) 

        self.merged_summary = tf.summary.merge_all() 

 

    def make_minibatch_iterator(self, data: Any, is_training: bool): 

        """Create minibatches by flattening adjacency matrices into 

a single adjacency matrix with 

        multiple disconnected components.""" 

        if is_training: 

            np.random.shuffle(data) 

        # Pack until we cannot fit more graphs in the batch 

        dropout_keep_prob = 

self.params['graph_state_dropout_keep_prob'] if is_training else 1. 

        num_graphs = 0 

        while num_graphs < len(data): 

            num_graphs_in_batch = 0 

            batch_node_features = [] 

            batch_target_task_values = [] 

            batch_target_task_mask = [] 

            batch_info = [] 

            batch_adjacency_lists = [[] for _ in 

range(self.num_edge_types)] 

            batch_num_incoming_edges_per_type = [] 

            batch_graph_nodes_list = [] 

            node_offset = 0 

            batch_graph_features = defaultdict(list) 
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            while num_graphs < len(data) and node_offset + 

len(data[num_graphs]['init']) < self.params['batch_size']: 

                cur_graph = data[num_graphs] 

                num_nodes_in_graph = len(cur_graph['init']) 

                padded_features = np.pad(cur_graph['init'], 

                                         ((0, 0), (0, 

self.params['hidden_size'] - self.annotation_size)), 

                                         'constant') 

                batch_node_features.extend(padded_features) 

                batch_graph_nodes_list.extend( 

                    (num_graphs_in_batch, node_offset + i) for i in 

range(num_nodes_in_graph)) 

                for i in range(self.num_edge_types): 

                    if i in cur_graph['adjacency_lists']: 

                        

batch_adjacency_lists[i].append(cur_graph['adjacency_lists'][i] + 

node_offset) 

 

                # Turn counters for incoming edges into np array: 

                num_incoming_edges_per_type = 

np.zeros((num_nodes_in_graph, self.num_edge_types)) 

                for (e_type, num_incoming_edges_per_type_dict) in 

cur_graph['num_incoming_edge_per_type'].items(): 

                    for (node_id, edge_count) in 

num_incoming_edges_per_type_dict.items(): 

                        num_incoming_edges_per_type[node_id, e_type] 

= edge_count 

                

batch_num_incoming_edges_per_type.append(num_incoming_edges_per_type

) 

 

                target_task_values = [] 

                target_task_mask = [] 

 

                for target_val in cur_graph['labels']: 

                    if target_val is None:  # This is one of the 

examples we didn't sample... 

                        target_task_values.append(0.) 

                        target_task_mask.append(0.) 

                    else: 

                        target_task_values.append(target_val) 

                        target_task_mask.append(1.) 

                batch_target_task_values.append(target_task_values) 

                batch_target_task_mask.append(target_task_mask) 

                batch_info.append({'id': cur_graph['id'], 'target': 

target_task_values}) 

 

                for feature in self.graph_features_list: 

                    

batch_graph_features[feature].append(cur_graph['graph_features'][fea

ture]) 

                num_graphs += 1 

                num_graphs_in_batch += 1 

                node_offset += num_nodes_in_graph 

 

            batch_feed_dict = { 

                self.placeholders['initial_node_representation']: 

np.array(batch_node_features), 

                self.placeholders['num_incoming_edges_per_type']: 

np.concatenate(batch_num_incoming_edges_per_type, axis=0), 



-300- 

 

                self.placeholders['graph_nodes_list']: 

np.array(batch_graph_nodes_list, dtype=np.int32), 

                self.placeholders['target_values']: 

np.transpose(batch_target_task_values, axes=[1,0]), 

                self.placeholders['target_mask']: 

np.transpose(batch_target_task_mask, axes=[1, 0]), 

                self.placeholders['num_graphs']: 

num_graphs_in_batch, 

                self.placeholders['graph_state_keep_prob']: 

dropout_keep_prob, 

            } 

            # add graph features 

            for feature in self.graph_features_list: 

                # have to adjust the shape to match the desired 

input shape 

                if self.graph_feature_lengths[feature] == 1: 

                    feed = np.array([batch_graph_features[feature]], 

dtype=np.float32) 

                else: 

                    feed = 

np.transpose(batch_graph_features[feature], axes=[1, 0]) 

 

                batch_feed_dict[self.placeholders[feature]] = feed 

 

 

            # Merge adjacency lists and information about incoming 

nodes: 

            for i in range(self.num_edge_types): 

                if len(batch_adjacency_lists[i]) > 0: 

                    adj_list = 

np.concatenate(batch_adjacency_lists[i]) 

                else: 

                    adj_list = np.zeros((0, 2), dtype=np.int32) 

                

batch_feed_dict[self.placeholders['adjacency_lists'][i]] = adj_list 

 

            yield batch_feed_dict, batch_info 

 

    def run_epoch(self, epoch_name: str, data): 

        loss = 0 

        maes = [] 

        performance = [] 

        start_time = time.time() 

        processed_graphs = 0 

        batch_iterator = 

ThreadedIterator(self.make_minibatch_iterator(data, False), 

max_queue_size=5) 

        for step, (batch_data, batch_info) in 

enumerate(batch_iterator): 

            num_graphs = batch_data[self.placeholders['num_graphs']] 

            processed_graphs += num_graphs 

 

            

batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0 

            

batch_data[self.placeholders['gated_regression_keep_prob']] = 1.0 

            fetch_list = [self.ops['loss'], self.ops['MAE'], 

self.merged_summary, self.ops['R2'], self.ops['predicted']] 

            result = self.sess.run(fetch_list, feed_dict=batch_data) 

            (batch_loss, batch_mae) = (result[0], result[1]) 

            loss += batch_loss * num_graphs 
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            maes.append(np.array(batch_mae) * num_graphs) 

 

            summary = result[2] 

            predicted = result[4].T 

            try: 

                assert len(batch_info)==len(predicted) 

            except AssertionError: 

                print('#'*100) 

                print('batch info:') 

                print(batch_info) 

                print('#'*100) 

                print('predicted:') 

                print(predicted) 

            for i in range(len(batch_info)): 

                json_ready = [] 

                for j in list(predicted[i]): 

                    #assumes only one target property 

                    json_ready.append(float(j)) 

                batch_info[i]['predicted'] = json_ready 

            performance.extend(batch_info) 

            print("Running %s, batch %i (has %i graphs). Loss so 

far: %.4f" % (epoch_name, 

                                                                               

step, 

                                                                               

num_graphs, 

                                                                               

loss / processed_graphs), 

                  end='\r') 

 

        MAE = np.sum(maes, axis=0) / processed_graphs 

        loss = loss / processed_graphs 

        instance_per_sec = processed_graphs / (time.time() - 

start_time) 

        return loss, MAE, instance_per_sec, summary, result[3], 

performance 

 

    def apply(self): 

        with self.graph.as_default(): 

            loss, MAE, instance_per_sec, summary, r, perf = 

self.run_epoch("Application run", self.valid_data) 

            self.writer.add_summary(summary, 0) 

            full_path = os.path.join(self.log_dir, 

'validation_performance.json') 

            date = self.run_id.split('_')[0] 

            run_id = self.run_id.split('_')[1] 

            with open(full_path, 'w') as f: 

                json.dump({'date': date, 'run_id': run_id, 'MAE': 

float(MAE), 

                           'MSE': float(loss), 'R2': float(r), 

'epochs': 0}, f) 

 

            predicted_path = os.path.join(self.log_dir, 

'{}_predicted.json'.format(run_id)) 

            print('saving to {}'.format(predicted_path)) 

            with open(predicted_path, 'w') as f: 

                json.dump(perf, f) 

 

 

def main(): 

    args = docopt(__doc__) 
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    try: 

        model = ApplyGGNNChemModel(args) 

        model.apply() 

    except: 

        typ, value, tb = sys.exc_info() 

        traceback.print_exc() 

        pdb.post_mortem(tb) 

 

 

if __name__ == "__main__": 

    main() 
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optimiser.py 
import pickle 

import argparse 

import os 

import json 

 

from hyperopt import hp # hyperparameters space 

from hyperopt import tpe # the optimisation algorithm 

from hyperopt import Trials # history 

from hyperopt import fmin # minimalisation 

from hyperopt import STATUS_OK 

 

from chem_tensorflow_sparse import SparseGGNNChemModel 

 

 

def get_max_run_id(base_dir): 

    sub_dirs = glob.glob(os.path.join(base_dir, 'run_*/')) 

    max_run_id = -1 

    if sub_dirs: 

        for d in sub_dirs: 

            m = re.search('[0-9]+', d) 

            run_id = int(m.group(0)) 

            if run_id > max_run_id: 

                max_run_id = run_id 

    return max_run_id 
 

 

def basic_param(): 

    return { 

        'patience': 25, 

        'learning_rate': 0.001, 

        'clamp_gradient_norm': 1.0, 

        'out_layer_dropout_keep_prob': 0.9, 

        'gated_regression_keep_prob': 0.9, 

        'use_graph': True, 

        'tie_fwd_bkwd': True, 

        'task_ids': [0], 

        'random_seed': 0, 

        'use_edge_bias': False, 

        'use_propagation_attention': False, 

        'use_edge_msg_avg_aggregation': True, 

        'task_sample_ratios': {}, 

        "num_epochs": 300, 

        "residual_connections": {}, 

        "graph_rnn_activation": "ReLU" 

 

    } 

 

 

def convert_param(params): 

    conf = basic_param() 

    # get each parameter 

    graph_descriptors = [] 

    if params['use_rmsd']: 

        graph_descriptors.append('RMSD') 

    if params['use_h-dim']: 

        graph_descriptors.append('H_dims') 

 

    edge_types = ['SINGLE', 'DOUBLE', 'TRIPLE', 'AROMATIC'] 

    if params['use_h-bond']: 

        edge_types.append('HBOND') 
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    if params['use_vdw-intra']: 

        edge_types.append('VDW_INTRA') 

    if params['use_vdw-inter']: 

        edge_types.append('VWD_INTER') 

 

    graph_representation_size = int(params['graph_vector']) 

 

    hidden_size = int(params['node_vector']) 

 

    prediction_layers_architecture = [int(params['p_layer_1']), 

int(params['p_layer_2'])] 

 

    layer_timesteps = [int(params['rnn_timestep']['rnn_timestep']) 

for _ in range(int(params['rnn_timestep']['rnn_layers']))] 

 

    graph_rnn_cell = params['rnn_cell'] 

 

    # put it in the conf 

    conf['graph_descriptors'] = graph_descriptors 

    conf['edge_types'] = edge_types 

    conf['graph_representation_size'] = graph_representation_size 

    conf['hidden_size'] = hidden_size 

    conf['prediction_layers_architecture'] = 

prediction_layers_architecture 

    conf['layer_timesteps'] = layer_timesteps 

    conf['graph_rnn_cell'] = graph_rnn_cell 

 

    # from globals 

    conf['train_file'] = train 

    conf['valid_file'] = valid 

    return conf 

 

 

def set_up_dir(): 

    run_id = get_max_run_id(base_dir) 

    run_id += 1 

    while True: 

        try: 

            full_dir = os.path.join(base_dir, 

'run_{}'.format(run_id), '') 

            assert os.path.isdir(full_dir) is False 

            break 

        except AssertionError: 

            print('failed at creating run directory') 

            print('run_id is: {}'.format(run_id)) 

            print('will try next number up') 

            run_id += 1 

 

    os.makedirs(full_dir) 

 

    return full_dir, run_id 

 

 

def objective(params): 

    conf = convert_param(params) 

    full_dir, run_id = set_up_dir() 

 

    args = {'conf': conf, '--run_id': run_id, '--run_dir': full_dir} 

 

    model = SparseGGNNChemModel(args) 

    model.train() 
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    r = model.best_r 

    loss = 1 - r 

    return {'loss': loss, 'status': STATUS_OK, 'run_id': run_id, 

'param': params, 'config': conf} 

 

 

def get_trials(trial_name=None): 

    if trial_name: 

        trial_dir = os.path.join(base_dir, trial_name) 

        if os.path.isfile(trial_dir): 

            trials = pickle.load(open(trial_dir, 'rb')) 

    else: 

        trials = Trials() 

 

    return trials 

 

 

def define_domain_space(): 

    space = { 

        'use_rmsd': hp.choice('use_rmsd', [False, True]), 

        'use_h-dim': hp.choice('use_h-dim', [False, True]), 

        'use_h-bond': hp.choice('use_h-bond', [False, True]), 

        'use_vdw-intra': hp.choice('use_vdw-intra', [False, True]), 

        'use_vdw-inter': hp.choice('use_vdw-inter', [False, True]), 

        'graph_vector': hp.quniform('graph_vector',100,1500,100), 

        'node_vector': hp.quniform('node_vector', 30, 150, 10), 

        'p_layer_1': hp.quniform('p_layer_1', 40, 600, 20), 

        'p_layer_2': hp.quniform('p_layer_2', 10, 300, 10), 

        'rnn_timestep': hp.choice('rnn_timestep', [{'rnn_timestep': 

1, 'rnn_layers': hp.quniform('rnn_layers_1', 1, 5, 1)}, 

                                                   {'rnn_timestep': 

2, 'rnn_layers': hp.quniform('rnn_layers_2', 1, 2, 1)}, 

                                                   {'rnn_timestep': 

3, 'rnn_layers': 1} 

                                                   ]), 

        'rnn_cell': hp.choice('rnn_cell', ['GRU', 'RNN']), 

 

    } 

 

    return space 

 

 

def define_mol_only_domain_space(): 

    space = { 

        'use_rmsd': hp.choice('use_rmsd', [False]), 

        'use_h-dim': hp.choice('use_h-dim', [False]), 

        'use_h-bond': hp.choice('use_h-bond', [False]), 

        'use_vdw-intra': hp.choice('use_vdw-intra', [False]), 

        'use_vdw-inter': hp.choice('use_vdw-inter', [False]), 

        'graph_vector': hp.quniform('graph_vector', 300, 1200, 100), 

        'node_vector': hp.quniform('node_vector', 70, 120, 10), 

        'p_layer_1': hp.quniform('p_layer_1', 200, 500, 20), 

        'p_layer_2': hp.quniform('p_layer_2', 80, 300, 20), 

        'rnn_timestep': hp.choice('rnn_timestep', 

                                  [{'rnn_timestep': 1, 'rnn_layers': 

hp.quniform('rnn_layers_1', 1, 8, 1)}, 

                                   {'rnn_timestep': 2, 'rnn_layers': 

hp.quniform('rnn_layers_2', 1, 4, 1)}, 

                                   {'rnn_timestep': 3, 'rnn_layers': 

hp.quniform('rnn_layers_3', 1, 3, 1)}, 
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                                   {'rnn_timestep': 4, 'rnn_layers': 

hp.quniform('rnn_layers_4', 1, 2, 1)}, 

                                   {'rnn_timestep': 5, 'rnn_layers': 

1} 

                                   ]), 

        'rnn_cell': hp.choice('rnn_cell', ['RNN']), 

    } 

 

    return space 

 

 

def define_intermol_interact_search_space(): 

    space = { 

        'use_rmsd': hp.choice('use_rmsd', [False]), 

        'use_h-dim': hp.choice('use_h-dim', [False]), 

        'use_h-bond': hp.choice('use_h-bond', [False, True]), 

        'use_vdw-intra': hp.choice('use_vdw-intra', [False]), 

        'use_vdw-inter': hp.choice('use_vdw-inter', [False, True]), 

        'graph_vector': hp.quniform('graph_vector', 300, 1200, 100), 

        'node_vector': hp.quniform('node_vector', 60, 140, 10), 

        'p_layer_1': hp.quniform('p_layer_1', 200, 500, 20), 

        'p_layer_2': hp.quniform('p_layer_2', 80, 300, 20), 

        'rnn_timestep': hp.choice('rnn_timestep', 

                                  [{'rnn_timestep': 1, 'rnn_layers': 

hp.quniform('rnn_layers_1', 1, 8, 1)}, 

                                   {'rnn_timestep': 2, 'rnn_layers': 

hp.quniform('rnn_layers_2', 1, 4, 1)}, 

                                   {'rnn_timestep': 3, 'rnn_layers': 

hp.quniform('rnn_layers_3', 1, 3, 1)}, 

                                   {'rnn_timestep': 4, 'rnn_layers': 

hp.quniform('rnn_layers_4', 1, 2, 1)}, 

                                   {'rnn_timestep': 5, 'rnn_layers': 

1} 

                                   ]), 

        'rnn_cell': hp.choice('rnn_cell', ['RNN', 'GRU']), 

    } 

 

    return space 

 

 

def run_optimiser(batch_size, max_evals, space, trials, algorithm): 

    current_eval = len(trials) 

    pickle_f = True 

 

    while current_eval < max_evals: 

        if max_evals - current_eval < batch_size: 

            current_eval = max_evals 

        else: 

            current_eval += batch_size 

 

        _ = fmin(objective, space=space, algo=algorithm, 

trials=trials, max_evals=current_eval) 

        # best not taken as trials includes everything + can get run 

id 

 

        if pickle_f: 

            pickle_f = False 

            pickle_name = 'trials_dump_1.pickle' 

        else: 

            pickle_f = True 

            pickle_name = 'trials_dump_2.pickle' 
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        pickle.dump(trials, open(os.path.join(base_dir, 

pickle_name), 'wb')) 

 

    return trials 

 

 

def get_best_param(trials): 

    min_loss = float('+inf') 

    best_id = None 

    best_param = {} 

    conf = {} 

    for i, run in enumerate(trials.results): 

        if run['loss'] < min_loss: 

            min_loss = run['loss'] 

            best_id = run['run_id'] 

            best_param = run['param'] 

            conf = run['config'] 

    print('best run: {}'.format(best_id)) 

    best_param['id'] = best_id 

    json.dump(best_param, open(os.path.join(base_dir, 

'best_hyperparam.json'), 'w')) 

    json.dump(conf, open(os.path.join(base_dir, 'best_conf.json'), 

'w')) 

 

 

def main(): 

    parser = argparse.ArgumentParser("""Hyperparameter 

optimisation""") 

    parser.add_argument("--step_size", default=2, type=int, 

help='number of iteration before backing up') 

    parser.add_argument("--max_eval", default=100, type=int, 

help='max number of iterations') 

    parser.add_argument("--restore", type=str, help='restore from 

trails pickle') 

    parser.add_argument('-d', '--dir', type=str, 

default=os.getcwd(), help='project directory with datasets.') 

    parser.add_argument('--mol', action='store_true', help='use 

molecular information only') 

    parser.add_argument('--int_mol', action='store_true', help='use 

mol info + intermol interaction') 

    parser.add_argument('train', help='training set') 

    parser.add_argument('valid', help='validation set') 

    args = parser.parse_args() 

    global base_dir, train, valid 

    base_dir = args.dir 

    train = args.train 

    valid = args.valid 

 

    batch_size = args.step_size 

    max_evals = args.max_eval 

    if args.mol: 

        space = define_mol_only_domain_space() 

    elif args.int_mol: 

        space = define_intermol_interact_search_space() 

    else: 

        space = define_domain_space() 

    trials = get_trials(args.restore) 

    algorithm = tpe.suggest 

 

    try: 
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        trials = run_optimiser(batch_size, max_evals, space, trials, 

algorithm) 

    finally: 

        pickle.dump(trials, open('trials_dump.pickle', 'wb')) 

        get_best_param(trials) 

 

 

if __name__ == '__main__': 

    main() 
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