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Abstract 

Before being approved for use, pesticides undergo ecological risk assessment (ERA) to identify any 

adverse effects they may have on non-target species. For terrestrial mammals, dietary toxicity studies 

on laboratory animals, lasting up to two years, are used to assess chronic toxicity. However, such studies 

are limited in their ability to assess ecological risk, as constant dietary exposure to pesticides over long 

periods is an unrealistic scenario in the field. In silico models have long been suggested as a way of 

addressing the limitations of laboratory testing, by simulating the processes underlying toxicity. 

Toxicokinetic-toxicodynamic (TK-TD) models simulate both the uptake of a chemical into an animal’s 

body, and the resulting stress on biological processes which leads to observed effects. This thesis 

comprises a series of studies in which TK-TD models were developed to simulate the effects of dietary 

toxicity on the growth of rodents, and applications for ERA and the reduction of animal testing were 

explored. Unpublished raw data from regulatory toxicokinetics and toxicity studies on several pesticides 

were provided by Syngenta. First, a protocol for TK-TD modelling with regulatory datasets was 

developed. This produced TK-TD models that successfully predicted the growth rate of laboratory rats 

exposed to various pesticides and dietary dose levels. These TK-TD models were then used to facilitate 

comparisons between in vitro and in vivo toxicity data. While no predictive relationships were 

identified, this study demonstrated how in vitro and in silico methods may be combined to obviate the 

need for animal testing in future. Finally, a new method for converting observed feeding data into 

growth model inputs was developed, improving model accuracy and realism. This enhances the ability 

of models to separate the effects of toxicity and feeding avoidance on body weight, a valuable insight 

for assessing ecological risk.  
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Chapter 1 - Introduction 

1.1 Overview 

Mechanistic effect models (MEMs) are viewed as potentially important tools for chemical risk 

assessment (Grimm and Martin, 2013, Ducrot et al., 2016). Such models aim to approximate 

biological processes with sufficient accuracy to predict responses to scenarios such as exposure 

to toxins. Mechanistic, rather than empirical, predictions are of greater value for extrapolation 

from laboratory to field and from individuals to populations and ecological systems. It is therefore 

argued that modelling methods can provide more relevant proxies for risk assessment than the 

results of laboratory testing on individuals (Grimm and Martin, 2013) and, if utilised effectively, 

can improve chemical safety outcomes while reducing the need for animal testing (Jager, 2016). 

This project focusses on the development of in silico models able to accurately simulate the 

growth of rodents exposed to pesticides in their diet for periods of up to two years. Prior to this 

project, there had been very few attempts to develop such models for mammals (Desforges et al., 

2017). This task involves modelling the processes of resource assimilation and allocation 

involved in growth, the exposure and uptake of pesticides, and the stress this places on the 

organism.  

The first aim of this project is to develop a model that can contribute to pesticide risk assessment. 

For example, as an analytical tool, providing new insight into the results of laboratory toxicity 

studies, or as a means of extrapolating from laboratory data to untested, ecologically relevant 

scenarios. Secondly, we will investigate how toxicological models can facilitate comparisons 

between in vitro and in vivo data. This could allow the prediction of organism level effects from 

experiments on cultured cells, potentially reducing the need for animal testing in chemical risk 

assessment.  

This chapter provides a literature review with respect to each of these broad objectives, 

identifying the knowledge gaps the project aims to address, potential obstacles to overcome, and 

suitable methods for doing so. The chapter concludes with an overview of the thesis structure, 

providing a chapter-by-chapter summary of how our objectives were approached over the course 

of the project. 

1.2 Objective 1: Develop TK-TD growth model for rodents to address the 

limitations of pesticide risk assessment 

1.2.1 Limitations of current long-term risk assessment measures 

Predicting the long-term effects that a chemical, such as a pesticide, will have on wildlife when 

used in the environment is a major challenge. To be truly certain of a chemical’s ecological impact, 
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we would have to test it “on every species, include the effects from all other natural and 

anthropogenic stressors, assess effects on populations and ecosystems in all regions and under 

all environmental conditions of concern, and use endpoints for quantifying risk that would 

perfectly indicate whether or not the effect on the environment is acceptable” (Grimm and Martin, 

2013). Clearly, this would not be feasible for a number of reasons. In reality, ecological risk 

assessment (ERA) relies on studies conducted on just a few species, for one chemical at a time 

and under standard conditions. Such assessment may on occasion fail to highlight the adverse 

effects of pesticides. For example, pesticide risk assessment in the USA is criticised for its lenience, 

with 72 pesticides which are banned in the EU - for their impacts on human health or the 

environment - still approved by the Environmental Protection Agency (Donley, 2019). 

Conversely, it is also possible that stringent risk assessments may overestimate the risk of a 

chemical by investigating only the effects of constant exposure, an unlikely scenario in the field 

(Ducrot et al., 2016). In such cases, chemicals which could benefit food production without 

damaging the environment may not be approved. Through addressing the gap between 

laboratory and field, ERA can be made more realistic, avoiding either kind of error occurring.  

At a 2005 workshop devoted to long term risk assessment of pesticides to birds and mammals, 

five main obstacles were identified. The first was relating toxicity endpoints measured in 

laboratory testing, which are generally reported as summary statistics, in a relevant way to 

animals living in the field. The second was accurately predicting sensitivity to a chemical from 

one species to another. Third was estimating the exposure of animals which are free to move in a 

dynamic environment. Next was accounting for the mismatch in exposure between laboratory 

and field. The final challenge was evaluating effects at population level when laboratory testing 

only provides data on individual level effects  (Hart and Thompson, 2005).  

While these obstacles were identified fifteen years ago, they remain relevant and are worth 

bearing in mind when considering the current framework for assessing long term toxicity of 

pesticides in mammals and the ecological risk this poses. The subacute to chronic toxic effects of 

new active ingredients are assessed with repeated oral dose studies lasting from 28 days to 2 

generations. The laboratory bred form of the brown rat, Rattus norvegicus (Palm, 1975), is the 

most common subject although a few other mammalian species may be used (Mineau, 2005). The 

highest dose should induce toxic effects but not severe suffering or death and generally dose 

levels decrease as test duration increases. Many endpoints are monitored; these include body 

weight, reproductive output, reproductive defects, responses to neurological stimuli and organ 

damage or malformation (OECD, 1998). These data are then used to determine a number of 

reference doses. The no observed effect level (NOEL) is the highest dose at which there are no 

statistically significant effects on any endpoint (EFSA, 2006). The no observed adverse effect level 
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(NOAEL) is the highest dose at which any observed effects are not deemed biologically or 

ecologically relevant (EFSA, 2009b). The lowest observed adverse effect level (LOAEL) is the 

lowest dose at which biologically relevant effects are observed (EFSA, 2009a).  

Whether the collection of summary statistics is appropriate for ecological risk assessment (ERA) 

is the subject of much debate among scientists (Murado and Prieto, 2013, Green et al., 2013, Jager, 

2012, Jager, 2011, Sanchez-Bayo, 2012). One of the issues with this approach identified by 

regulators themselves is how to interpret the ecological relevance of effects in tests that were 

designed to protect human health (EFSA, 2006). Humans’ exposure to pesticides typically results 

from accidental ingestion or inhalation by workers handling them (chronic or acute exposure) or 

consumption of pesticide residues on food (chronic exposure). Neither of these scenarios are 

particularly representative of the fluctuating exposure faced by wildlife. Moreover, some of the 

endpoints monitored in toxicity studies are difficult to relate to ecological impacts. According to 

guidance it should be considered ‘whether the effect could lead to a functional deficit later on’ 

however this still leaves a degree of subjectivity and requires consideration on a “case by case 

basis” (EFSA, 2009b).  

Tier 1 risk assessment aims to determine the risk to species that inhabit agricultural land by first 

calculating the daily dietary dose (DDD) of ‘generic focal species’, considered representative of 

the species at risk. These species should be small in body size and abundant in the relevant crop 

type in the area of interest. For example, the wood mouse, Apodemus sylvaticus, and the field vole, 

Microtus agrestis are commonly considered in European risk assessment (The Danish 

Environmental Protection Agency, 2014, EFSA, 2009b) 

The full calculation of DDD is as follows: 

𝑫𝑫𝑫 =  
𝑨𝑹 × 𝑹𝑼𝑫 × 𝑭𝑰𝑹 × 𝑷𝑻 ×𝑷𝑫

𝑩𝑾
                     (1.1) 

Where AR is application rate (kgA.I. × Ha-1), RUD is the mean residue per unit dose resulting from 

an application rate of 1kg/Ha (mg × kgfood-1 × kgAI-1 × Ha-1), FIR is food intake rate (g × day-1), PT is 

the proportion of diet from the treated area, PD is the proportion of the affected food type in the 

diet and BW is body weight (kg). In practice, the daily dietary dose is initially calculated as 

𝐷𝐷𝐷 = 𝐴𝑅 × 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 𝑉𝑎𝑙𝑢𝑒 × 𝑇𝑊𝐴 × 𝑀𝐴𝐹𝑚                                                                                                (1.2) 

using a shortcut value for the crop/generic species of interest and where TWA is time weighted 

average factor and MAFm is the multiple application factor. The chronic toxicity exposure ratio 

(TER) is then calculated as:  
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𝑻𝑬𝑹 =  
𝑵𝑶𝑨𝑬𝑳

𝑫𝑫𝑫
                       (1.3) 

The NOAEL value used is the lowest from the 2 generational study (as a daily dose, mgAI × kgBW
-1 

× d-1). If the DDD is greater than one fifth of the NOAEL (TER < 5) then this stage of assessment is 

failed, and further risk assessment must be conducted. The RUD is calculated as the average 

residue over a 21-day period assuming that the pesticide in question has a 10 day half-life (DT50), 

that is the time taken for half of the chemical to degrade in the environment. The 21 day and 10 

day periods are selected arbitrarily (EFSA, 2009b). 

While TER based assessment is certainly protective (based on NOAEL derived from two year 

exposure, far longer than would be expected in the field), there are clear areas for improvement 

with regard to ecological realism and the obstacles identified by Hart and Thompson (2005). 

There is a major disparity in the exposure patterns used to derive the values that determine the 

TER. The DDD is calculated for exposure over 21 days while the NOAEL is derived from constant 

exposure over 2 generations. Moreover, the true DT50 of a pesticide is not considered, instead it 

is assumed to be 10 days. Finally, this method treats the animal as a ‘black box’ considering only 

the external dose and ignoring the internal processes of absorption, distribution, metabolism and 

elimination (ADME) despite data on these processes often being available (EFSA, 2009b).  Finally, 

this method also assumes that the species used in laboratory testing is representative of the focal 

species in the field. This assumption is more difficult to avoid without testing on a wider range of 

species, an undesirable solution for multiple reasons. 

1.2.2 Modelling approaches for ecological risk assessment 

In toxicity studies, the toxic effects of a chemical are generally related to the administered dose; 

this may be an ingested, dermal or inhaled dose for terrestrial species or toxicant concentration 

in water for aquatic species (OECD, 2020). However, the biologically effective dose is the portion 

of the administered dose that reaches its target within the organism (Pelkonen and Turpeinen, 

2007, Tsaioun et al., 2016). Toxicants may vary greatly in the rate at which they are taken up or 

eliminated and so there is a clear advantage to relating toxic effects to internal rather than the 

external concentration.  

Toxicokinetics (TK) refers to a chemical’s absorption, distribution, metabolism and excretion by 

a biological system. TK models mathematically describe these processes and so are able to 

translate an external concentration into an internal concentration over time and vice-versa 

(Tsaioun et al., 2016). Toxicodynamic (TD) models meanwhile predict how the internal 

concentration will impact upon biological processes. The effect on these processes is then related 

to endpoints such as growth, reproduction or survival. When used in combination, the resulting 
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TK-TD models are able to predict toxic effects of exposure to a toxicant, which may vary through 

time (Ashauer and Escher, 2010).  

TK-TD models work at organism level and are a part of a broader class of predictive models 

known collectively as mechanistic effect models (MEMs). This term refers to models that simulate 

the mechanisms by which chemicals affect various levels of biological organisation, from 

individuals to eco-systems (Grimm and Martin, 2013). These are a valuable tool for extrapolating 

from laboratory to field scenarios and it is considered that making MEMs an integral part of 

chemical risk assessment will make the process more comprehensive, ecologically relevant & cost 

effective while reducing uncertainty (Hommen et al., 2016a).  

ERA is generally concerned with higher levels of biological organisation such as populations and 

communities. However, experimental data collection at these levels is highly impractical and the 

resulting data are difficult to interpret. In order to make higher level predictions, the level of the 

individual is vital because it is compatible with experimentation and has direct relevance to 

population level effects (Jager, 2016). Individual level data are of particular relevance to risk 

assessment for birds and mammals, as guidelines state that no mortality associated with pesticide 

use should be accepted (EFSA, 2009b).  

The potential of TK-TD modelling to enhance ERA is great. In a workshop organised to investigate 

how MEMs can be applied in ERA, researchers were provided with data sets on hypothetical 

pesticides that had failed tier 1 risk assessment (Hommen et al., 2016a). Modelling techniques 

were then used to address specific protection goals from the EFSA guidance. While the data used 

in these case studies were artificial, they were also realistic and intended to explore the capacity 

of modelling to improve ERA. Among the applications identified were using TK modelling to 

predict internal pesticide concentration in skylarks and wood mice feeding in crops, and to 

identify the residue levels that would cause mortality (Ducrot et al., 2016). Another study used 

the general unified threshold for survival (GUTS) model to provide survival rules in individual 

based population models (IBMs) for three important aquatic arthropod species (Dohmen et al., 

2016). 

The European Food Safety Authority (EFSA) has long recognised that TK models can be a 

powerful tool and may serve to reduce the need for animal testing in pesticide risk assessment 

(EFSA, 2009b). More recently, TK-TD models based on the GUTS framework (Jager et al., 2011) 

were recommended for use in ERA for aquatic invertebrates (EFSA, 2018). However models 

based on dynamic energy budget (DEB) theory (Kooijman, 2000) - which are able to predict 

sublethal effects on graded endpoints such as body weight and reproductive output (Ashauer et 
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al., 2011) - are currently deemed unsuitable for use in ERA. This is due to the current lack of user-

friendly modelling tools (EFSA, 2018).  

Developing ‘DEBtox’ (Kooijman and Bedaux, 1996b) or ‘DEB-TKTD’ models (Sherborne et al., 

2020) suitable for use in ERA is now an active area of research with renewed interest in 

simplifying the framework (Jager, 2020). Up to now, very few studies have developed DEB-TKTD 

models for vertebrates (Zimmer et al., 2018, Sadoul et al., 2018). Outside of this project, only one 

published study applied this approach to a mammalian species, the American mink, (Mustela 

vison), producing promising results despite limited data (Desforges et al., 2017).  

1.2.3 Modelling growth in mammals 

Bodyweight is an important endpoint in mammalian risk assessment and making predictions on 

how this will be affected by toxicant exposure over time requires a suitable growth model. The 

growth of many species follows a sigmoid pattern and three mathematical models which have 

been frequently applied to mammalian growth are the logistic, Gompertz and Von Bertalanffy 

models. In order to compare the abilities of these three models to predict mammalian growth 

Zullinger (1984) fitted all three models to growth data for 49 species from across mammalian 

taxa. The Von Bertalanffy had the lowest residual sum of squares for the growth curves of 27 of 

these species, Gompertz for 8 and logistic for 14. The differences in model performance were 

reduced for larger data sets and it was concluded that in general the models are all reasonably 

well suited to empirically describing mammal growth.  

Of these, only the Von Bertalanffy curve was developed for the purpose of modelling animal 

growth. In the original form of the equation, growth was defined as the difference between 

‘anabolism’ and ‘catabolism’. These processes were poorly defined in his original paper and the 

suggestion that the anabolism would be proportional to surface area while catabolism would be 

proportional to volume has also been criticised. With this in mind, all three models can be 

regarded as purely empirical models (Ricker, 1979) and therefore not suitable for extrapolation 

to novel scenarios such as restricted feeding or exposure to toxins. 

While the biological rationale of Von Bertalanffy was heavily criticised, models have since been 

developed that make use of its general form while ascribing new biological theory. When 

modelling toxicity, these give the advantage that toxic effects can be modelled as stress on specific 

biological processes rather than simply the growth rate. One such theory is the Dynamic Energy 

Budget (DEB) (Kooijman, 2000). DEB theory considers body mass to be divided into structure 

(bones, muscles, organs etc.) and reserve (stored lipids, carbohydrates etc.). The theory is based 

on the principle that certain processes, such as somatic maintenance, are limited by volume while 

others, such as feeding and assimilation, are limited by surface area (e.g. surface area of feeding 
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appendages, gut surface area). The theory also relies on the well-known scaling relationships 

𝑉𝑜𝑙𝑢𝑚𝑒 ∝ 𝐿𝑒𝑛𝑔𝑡ℎ3 and 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 ∝ 𝑉𝑜𝑙𝑢𝑚𝑒2/3 ∝ 𝐿𝑒𝑛𝑔𝑡ℎ2, provided body shape remains 

the same (isomorphic growth). While the DEB model equations are much more complex and the 

biological rationale much more thorough, the DEB growth model can be reduced to the form of 

the Von Bertalanffy curve.  

One of the criticisms commonly levelled at DEB is that it contains many parameters, particularly 

when reserve is considered, which cannot be directly measured or even easily estimated (van der 

Meer, 2006a). An alternative growth model that claims to address these issues is that of the 

metabolic theory of ecology (MTE) (Brown and Sibly, 2012). The central equation of MTE states 

that a 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑅𝑎𝑡𝑒 ∝ 𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠  𝛼 , with α generally assigned the value ¾ based on Kleiber’s 

law (Kleiber, 1932). MTE provides a biological rationale to Kleiber’s law, suggesting that the 

vascular systems of plants and vertebrates supply resources to cells at a rate which scales with 

body mass to the power ¾ (Brown and Sibly, 2012, West et al., 2001, West et al., 1997). However, 

this proposed scaling relationship has faced some strong criticism (Kozlowski and Konarzewski, 

2004).  

The resulting growth model is considerably simpler than that of DEB, in terms of the number of 

species-specific parameters. Most parameter values are taxon-specific, based on interspecies 

trends, so are fixed across related species. However, despite the difference in theory the growth 

curve is very similar. So similar that, if α is given the value ⅔, the MTE growth model also reduces 

to the Von Bertalanffy equation. For all the debate around scaling exponents, this change has little 

effect on predictions (Sibly et al., 2013). In fact, the same data have been employed to 

demonstrate both a ¾ (Karasov, 2012) and ⅔ (Kearney and White, 2012) scaling relationship 

between mass and gut surface area of mammals. 

While MTE may offer some advantages, it has many of the same drawbacks as DEB and some of 

its own. While the MTE growth model does have only three basic parameters, and so claims to be 

more efficient than DEB (Marquet et al., 2014), it is debatable whether their values are truly 

measurable. All are derived through fitting various model equations to interspecific data (Moses 

et al., 2008). Moreover, the mathematical and biological basis of MTE has also received significant 

criticism (Kerkhoff, 2012, Painter, 2005, Kozlowski and Konarzewski, 2004, Van Der Meer, 

2006b). The greater number of parameters in DEB is not necessarily a negative for the purpose 

of TK-TD modelling, as this provides greater scope for hypothesising how the toxicant acts. 

Additionally, DEBkiss, a simplified version of DEB, was developed more recently (Jager et al., 

2013). DEBkiss contains fewer parameters and omits reserve, thereby avoiding the most complex 

elements of DEB theory (van der Meer, 2006a). The first published study to use DEBkiss to model 
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toxic effects on growth and reproduction in mammals (Desforges et al., 2017) produced good fits 

to data. Good fits do not necessarily validate the theory underlying a model (Moses et al., 2008), 

independent data must be predicted successfully in order to test a theory. Nevertheless, a simpler 

version of DEB may provide a good starting point when exploring new applications for TK-TD 

modelling.  

1.2.4 Modelling toxicokinetics and toxicodynamics 

One of the challenges of modelling toxicokinetics in terrestrial mammals is that the primary route 

of pesticide uptake is oral consumption and so ingestion rate is a major consideration. This 

challenge may be approached using body burden models (BBMs) or more complex 

physiologically based toxicokinetic (PBTK) models. Body burden models treat the whole body as 

a single compartment, with the gut added as a ‘depot’ compartment from where the toxicant must 

be absorbed before it is truly considered inside the body. In this way, internal concentration can 

be predicted from oral dosing over time. BBMs are relatively simple and provide general 

suitability for toxicants that distribute evenly throughout the body of an organism without a 

specific target site (Bednarska et al., 2013a). PBTK models (Nichols et al., 1991, Li et al., 2017, 

Louisse et al., 2015) divide the body into a number of compartments, corresponding to organs 

and tissues, and predict the concentrations in those different compartments. Such models are 

more mechanistic but require a great deal of information about the species physiology, the 

toxicant’s behaviour and how they interact. While PBTK models have been developed for the rat 

(Li et al., 2017, Louisse et al., 2015), standard toxicity experiments (OECD, 2010) are not designed 

with model validation in mind and are limited in terms of sample size and dose regimens. This 

makes it challenging to demonstrate the advantages of PBTK modelling over simpler models. In 

ecotoxicology, where many species and chemicals are considered, such an approach is often not 

possible nor necessary (Jager, 2015a). Indeed, for the purpose of wildlife risk assessment, a 

stronger need is felt for simplicity, generality and flexibility of models (Hunka et al., 2013) with 

total body burden often deemed sufficient (Bednarska et al., 2013a).  

Toxicodynamics describes how a dose metric, for example the internal concentration, of a 

toxicant is linked to effects on the endpoints of interest. A common assumption in quantifying 

these processes is that of thresholds (Jager, 2015a). A well-known adage in toxicology is that ‘the 

dose makes the poison’, meaning that all substances, even nutrients or water, will become toxic 

at high enough concentrations within the body (Paracelsus, 1565, Trautmann, 2005). The TD 

module of DEB-TKTD model assumes that, for any xenobiotic, there exists a ‘no effect 

concentration’ (NEC) below which it causes no stress to any biological processes. Unlike the 

similarly named NOEL or NOAEL, the NEC is time independent and therefore has no relationship 

with duration of exposure. This assumption allows us to focus on the toxicant only by postulating 
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that all other xenobiotics within the organism are below their respective NECs. When the toxicant 

exceeds its NEC, it places ‘stress’ on one or more biological process. Assuming every molecule of 

toxicant beyond its threshold has the same effect on a given biological process leads to a ‘linear 

with threshold’ relationship, with which stress can be modelled quite simply. This does not mean 

that the effects on the endpoint will also show a linear relationship, this depends on the role of 

the stressed parameter in the model of growth, reproduction or other endpoint (Jager, 2015a). 

The same principle may also be used in survival modelling by assuming an organism’s probability 

to die increases linearly when damage (a function of internal toxicant concentration) passes a 

threshold (Ashauer et al., 2015). If there is evidence that stress on a biological process does not 

show a linear relationship with toxicant concentration, then other relationships can be modelled. 

For example, if stress increases exponentially as toxicant concentration increases beyond its NEC, 

or if the stressed process has a maximum or minimum rate. Equally, this approach to modelling 

chemical stress could be applied to models which are not based on DEB. 

The threshold approach is not without disadvantages though. Its simplicity is beneficial from a 

modelling perspective but not entirely representative of responses to toxicants. For example, 

hormesis describes a bi-phasic response to a chemical whereby low doses bring about beneficial 

effects while higher doses are toxic (Mattson, 2008). Additionally, thresholds may themselves be 

altered by chemical exposure through changes to chemical tolerance (Pietrzykowski and 

Treistman, 2008, Miller, 2001).  

1.2.5 Obstacles to long-term Toxicity Modelling 

So how well do TK-TD modelling approaches compare to other methods for addressing the five 

obstacles to long-term pesticide risk in mammals identified earlier (Hart and Thompson, 2005)? 

The first obstacle identified was the relevance of endpoints collected as part of chronic toxicity 

testing (Mineau, 2005). The published summary statistics like NOAEL and LOAEL are heavily 

criticised as they are external doses which are time dependent and so vary depending on the 

length of exposure (Jager, 2012, Murado and Prieto, 2013). It is also argued that the testing 

procedures in standardised conditions provide too little information on the role of biotic and 

abiotic factors that will undoubtedly play a role in the field. Indeed it has been argued that the 

laboratory testing procedures should be totally rethought in order to make risk assessment more 

ecologically relevant (Bednarska et al., 2013b) and also to provide data required by models rather 

than models be designed around the available data (Jager, 2016). TK-TD models can be used to 

derive more relevant endpoints such as average or peak internal concentration and the no effect 

concentration (NEC). Published data are generally of limited value to modellers but the raw 

datasets contain a great deal of useful information recorded on an individual basis. This includes 

many measured endpoints and often data on recovery after treatment (OECD, 1998, OECD, 2008). 
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Greater access to existing raw data can therefore be of great benefit to model development. Due 

to the commercial sensitivity of such data this requires cooperation with industry. If modelling 

were to become an integral part of ERA (Jager, 2016, Grimm and Martin, 2013, Hommen et al., 

2016a, Forbes et al., 2009), then those working in industry would be the users. As such they would 

always have access to full data sets rather than only the published figures, thus removing this 

obstacle. 

Another difficulty is the extrapolation of toxicity between species. A widely used measure is the 

species sensitivity distribution (SSD). This involves plotting the sensitivities of different species 

to a toxicant (in terms of NOAEL or other reference dose) against the proportion of tested species 

affected. By fitting a curve through the points a dose can be determined at which only X% of 

species will be affected (Shaw-Allen and Suter, 2016). The data requirements are normally only 

met for acute toxicity tests on vertebrates since chronic testing more costly, both in terms of 

animal use and man hours. This method is also not suitable for extrapolating to a specific focal 

species as it can only make predictions about the proportion of species in a community affected 

by a particular dose. An alternative method is interspecies correlation estimation (ICE), this 

involves plotting known reference doses of two species against each other and determining the 

relationship in sensitivity between them (Raimondo et al., 2007). This approach can be used to 

make predictions from one species to another, however only if both species have undergone the 

same testing for a selection of chemicals. This rules out predictions for any wild species not used 

in animal testing and the required paired data are generally unavailable for chronic toxicity. Cao 

et al. (2014) developed a method of predicting equivalent doses between species based on scaling 

of metabolic rate with body size within taxa. These predictions appear reasonably accurate, 

however testing this method relies on paired data and again this is generally only available for 

acute toxicity testing. TK modelling offers a more mechanistic approach by incorporating an 

organism’s surface area to volume ratio into model equations. Whether absorption is through the 

gut, lungs, or skin, it can reasonably be postulated that the rate of absorption is governed by 

surface area. Once absorbed however, the internal concentration depends on the organism’s 

volume or mass. This approach was used by Gergs et al. (2016) to predict the effects of exposure 

on survival of the freshwater planktonic crustacean Daphnia magna  at different life stages. Using 

the same TD parameters, and so assuming that individuals of different sizes are equally sensitive 

to the same internal concentrations, survival was predicted reasonably well. While in this case 

the method was used for intraspecific predictions, using it to make predictions between species 

would in principle be no different to using allometric relationships. Though, this would rely on 

the assumption that body size is the only variable and differences in morphology and physiology 

between species have no impact on sensitivity to a toxicant.  
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The next major obstacle was how to address the mismatch in exposure between laboratory and 

field when relating exposure to effects. The approach used when calculating a TER is by using a 

time weighted average whereby the average pesticide residue over 21 days is determined 

assuming it has a DT50 of 10 days. Naturally, the time over which exposure is averaged has a major 

effect on this figure and should have some justification (Fischer, 2005) however 21 day averaging 

time and 10 day DT50 are selected arbitrarily (EFSA, 2009b). TK modelling avoids this issue by 

making dynamic predictions of how internal concentration varies throughout the period of 

exposure. One approach is to link TK predictions such as maximum internal concentration (Cmax) 

or total internal exposure, calculated as the area under the curve (AUC), to time dependent 

reference doses such as NOAEL (Gajewska et al., 2014). TD modelling takes a different approach, 

instead linking internal concentrations to the stress on biological processes in real time (Jager, 

2015a). TK-TD models can then make more appropriate predictions with regard to toxic effects, 

either using the same assumed consumption as in the TER calculation or more detailed data.  

Quantifying pesticide exposure in field conditions is a very complex task. It has been noted by 

scientists that the current measures fail to capture the true dynamics of exposure in time and 

space (Di Guardo and Hermens, 2013). Several criticisms of the daily dietary dose estimate 

(equation 1.1) have already been discussed, chiefly the lack of ecological relevance of the time 

periods considered. There is though, a great deal of pertinent information that is overlooked by 

this calculation, as identified by Crocker (Crocker, 2005). For example, pesticide residue may vary 

between food types or in space, and animals may show a preference to forage in untreated areas 

(these are approximated by the parameters PT and PD in equation 1.1). Another consideration is 

that, depending on the length of exposure considered and the life stage of the focal species, an 

individual’s body weight may change significantly during exposure. Weight changes during 

exposure as well as other temporal considerations can be captured by a TK-TD growth model, 

however describing spatial variation is beyond the capability of this approach. Fully accounting 

for spatio-temporal variation would require either careful calculation of exposure or the use of 

an individual based model within which a TK-TD model could be implemented (Liu et al., 2014).  

The final hurdle identified in assessing long term pesticide risk to mammals was how to make 

predictions at the population level (Sibly et al., 2005). Again, this is beyond the scope of TK-TD 

modelling. However, as has been mentioned, several studies have already begun exploring the 

potential of TK-TD sub-models to enhance the predictions of IBMs (Gergs et al., 2016, Liu et al., 

2014, Ashauer, 2010, Hommen et al., 2016b, Dohmen et al., 2016). As both methods improve, the 

prospect of using them in tandem to improve our understanding of population level risks of 

pesticide use is highly promising.  
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1.2.6 Knowledge gaps and next steps 

Many limitations of the current ecological risk assessment of pesticides have been identified and 

it has already been demonstrated, at least in principle, that modelling approaches can address 

many of them. TK-TD modelling is capable of accounting for many of the temporal differences 

between exposure in the laboratory and those expected in the field. It can also relate exposure to 

toxic effects in a more direct way than summary statistics provided by laboratory tests designed 

to protect human health. While bodyweight is an important endpoint in mammalian chronic 

toxicity testing, TK-TD models able to predict toxic effects on mammalian growth are in their 

infancy. Such capability would significantly aid interpretation of dietary toxicity data and help to 

relate findings to the exposure of wild mammals in the agricultural landscape. Numerous hurdles 

remain but these are not insurmountable given recent improvements in modelling methods. 

DEBkiss has shown good fits to growth and reproduction of American mink under toxic stress 

(Desforges et al., 2017). However, due to limited data, many parameters were fitted or assigned 

default values. Our study on the other hand will use raw data from standard laboratory studies, 

provided by Syngenta, which will provide individual measurements of dosing, body weight, and 

feeding rate throughout the test period and data on recovery after exposure ends (OECD, 1998, 

OECD, 2008). This will present an unparalleled opportunity to test predictions and theories. In 

particular, detailed feeding data will facilitate the generation of high-resolution inputs 

representing feeding rate and pesticide ingestion, giving new insight into laboratory data.  

This project aims initially to develop a generic TK-TD growth model for rodents that is suitable 

for use in pesticide ecological risk assessment and able to address some of the limitations of 

laboratory testing. Using raw data from dietary toxicity studies on 6 pesticides, we will develop a 

framework for model calibration and validation. We will identify any remaining issues and 

suggest how they may be addressed in future work. 

1.3 Objective 2: Use TK-TD growth model to facilitate in vitro – in vivo 

extrapolation of sublethal toxic effects on rodents 

1.3.1 Animal testing and the three Rs 

As has been discussed, animal testing plays a major role in the risk assessment of pesticides. This 

is also true for many other chemicals used in industry or available to the general public, such as 

clothing dyes, adhesives or cleaning products, which may pose a risk to human health or the 

environment (ICCA, 2011). Despite its importance to product safety, the use of animal testing has 

long been the subject of intense scrutiny due to the surrounding ethical concerns. In particular, 

animal testing of beauty products has been the subject of great opposition and is now banned in 

the EU. From 2013 even the sale of cosmetic products tested on animals anywhere in the world 
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was prohibited in the EU (European Commission, 2013a). This is part of a general drive to 

minimise the practice even where it can be more easily justified.  

The UK government is committed to the replacement, reduction and refinement of animal testing 

(the three R’s) (Home Office, 2017) and there is demand for the development of alternative 

methods from across industries and scientific disciplines. This is because, in addition to ethical 

issues, animal testing is slow, financially costly and limited in its predictive ability. As an example, 

the cost of advancing a new pharmaceutical drug to phase 1 human trials may reach $100 million. 

Failures at this stage are hugely expensive and the differences in kinetics between humans and 

animal test species account for many of these (Tsaioun et al., 2016). To account for these 

interspecies differences, PBTK modelling has become a crucial tool in the pharmaceutical 

industry (Zhuang and Lu, 2016). Meanwhile, the average research and development costs of a 

new pesticide are $286 million (Phillips McDougall, 2016). The sheer number of animals required 

is a large part of what makes animal testing so costly and contentious. Across the EU, 28.8 million 

animals were used in experiments from 2015-2017 (European Commission, 2019) while the most 

recent figures show 3.4 million animals were used in the UK in 2019 alone (Home Office, 2020). 

In anticipation of the EU ban on animal tested cosmetics, an expert panel was convened in 2010 

by the European Commission to review the capabilities of in vitro methods (Adler et al., 2011). 

The report concluded that the integration of in vitro and in silico (virtual modelling) methods is 

essential for quantitative in vitro to in vivo extrapolation (QIVIVE). 

1.3.2 Obstacles to quantitative in vitro to in vivo extrapolation 

Even without the use of modelling, toxicity responses in vivo can, to a degree, be predicted from 

in vitro results. For example, literature reviews have found good correlations between the 

reference doses in fish and cultured fish cells (Castano et al., 2003, Schirmer, 2006). Such 

correlations cannot always be relied upon though, in vitro assays generally show low absolute 

sensitivity and there may be significant differences in behaviour of different assays. One possible 

reason for this is that in cultures of a single cell type there will be a relatively low number of target 

sites for toxicants to act upon. Another is that cells will not function in the same way in vitro as 

they would in vivo, so transport proteins, enzymes and receptors may be present at different 

levels (Schirmer, 2006, Groothuis et al., 2015). More complex assays can be constructed to 

compensate for these differences however they are more complicated to work with and so reduce 

throughput (Astashkina et al., 2012). 

An additional contributor to low sensitivity and inter-assay variation is inappropriate choice of 

dose metric. Like in toxicity testing with live animals, where administered dose is most commonly 

linked to effects, the dose metric chosen to predict effects in vitro is often not the most suitable. 
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The commonly used nominal concentration refers to the amount of toxicant added to the medium, 

divided by the volume of the medium. In vitro, a chemical can meet a number of fates including 

metabolism, binding to proteins in the medium, adsorption to the plastic container, evaporation 

if volatile or precipitation if insoluble (Tsaioun et al., 2016). The composition of the culture 

medium differs between cell lines and so toxicant’s affinity for proteins in the medium will vary 

too. Naturally, this can result in contrasting results between assays with the same nominal 

concentration because the toxicant is present in different concentrations at its target site. The 

toxicant concentration within the cells would therefore be the most appropriate metric. Even if 

intracellular measurements are not feasible there are external measures that are preferable to 

the nominal concentration. For example, the free concentration in the medium, that which is 

unbound to medium proteins and therefore available for uptake by cells (Groothuis et al., 2015) 

1.3.3 In vitro TK modelling 

Once again, TK-TD modelling can be applied to this problem. It has already been discussed how 

TK-TD modelling is able to relate toxicant exposure to internal concentration and resulting effects 

at the organism level. This alone however is insufficient to circumvent animal testing. A vital 

missing component is the ability to make predictions at the cellular level within an in vitro 

environment. In order for QIVIVE to be successful, a thorough understanding of TK both in vitro 

and in vivo  is vital. Specialised in vitro TK models are therefore required to predict the 

intracellular toxicant concentration that results from a given nominal concentration (Tsaioun et 

al., 2016, Hamon et al., 2015).  

The in vitro TK models developed by Wilmes et al. (2013) and Stadnicka-Michalak et al. (2014) 

both take a similar approach, although the latter is more simply formulated. Both consider the 

relative concentrations of the toxicant in 3 compartments, namely, the culture medium, the cells 

and the plastic to which the toxicant may bind (Hamon et al., 2015, Wilmes et al., 2013). In the 

case of volatile compounds the airspace in the container may be added as a fourth compartment 

(Stadnicka-Michalak et al., 2014). With a known initial pesticide concentration in the medium, the 

intracellular concentration at equilibrium can then be modelled. 

Due to differences in cell properties and composition of the culture medium, in vitro TK models 

must be calibrated to the specific cell line and the chemical being tested. One approach is to 

dissolve known quantities of radiolabelled pesticides in the medium and use liquid scintillation 

counting to quantify the amount of the sample in the medium, absorbed by cells and adsorbed to 

plastic over time (Stadnicka-Michalak et al., 2014). Model parameters can then be fitted to 

toxicant concentration in each compartment over time. Repeating this process for enough 

different chemicals with a range of chemical properties may demonstrate trends in model 
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parameter values. These values may eventually be reliably predicted from chemical properties, 

such as the octanol water coefficient, without the need for experimental work.  

1.3.4 Reverse Dosing 

TK models can be used to predict intracellular toxicant concentration at equilibrium based on 

initial concentration in the culture medium. This is not necessarily a one-way process though; TK 

models can also be used in reverse to derive the initial conditions required to result in a desired 

intracellular concentration. This is known as reverse dosing and is a crucial step toward QIVIVE. 

Reverse dosing may be performed using in vivo or in vitro TK models depending on the aim of the 

study. 

Some reverse dosing studies have been conducted with the laboratory rat as their subject, 

attempting to predict in vivo reference doses based on in vitro results. For example, Louisse et al. 

(2015) and Li et al. (2017) have adopted this approach with increasing success to predict effects 

of a pharmaceutical and a fungicide respectively. In both studies in vitro tests were used to 

determine the intracellular concentration at which 10% of rat stem cells failed to differentiate. 

This was taken as a proxy for the in vivo benchmark dose at which developmental malformations 

occur in 10% of individuals (BMD10). A PBTK model for the laboratory rat was then used in 

reverse, to calculate the oral dose at which the same concentration would be reached in the blood. 

The predicted doses were roughly one sixth (Louisse et al.) and one third (Li et al.) of the BMD10 

published in vivo studies. While this approach is certainly relevant to current developmental 

toxicity testing, the relevance of time dependent reference doses like BMD10 to ecological risk is 

questionable (Hart and Thompson, 2005, Jager, 2011, Jager, 2012). Regardless, the reference 

doses used in chronic toxicity studies, such as NOAEL, are not dependent on the proportion of 

subjects showing a response but depend on the level of response. As such, it would be more 

beneficial to extrapolate the size of the effect resulting from a given level and duration of 

exposure. 

Stadnicka-Michalak et al. (2015) used in silico and in vitro methods to predict the effects of two 

fungicides on fish growth. In vivo data came from fish early life stage (FELS) tests on two species, 

the fathead minnow and the rainbow trout. An established PBTK model (Nichols et al., 1991, 

Nichols et al., 1990, Stadnicka et al., 2012) was used to predict toxicant concentrations in the gills 

of fish in FELS tests. Reverse dosing was then used to determine the experimental conditions 

required to achieve the same intracellular concentration in cultured rainbow trout gill cells. Cell 

population growth under these conditions was then observed over a few days and extrapolated 

through time using the Von Bertalanffy growth curve. Over the same durations as the FELS tests, 

the predicted growth inhibition (relative to controls) matched closely with in vivo observations. 
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These results demonstrate the potential of in vitro testing and reverse dosing as an alternative to 

animal testing able to predict toxic effects in vivo.  

1.3.5 Knowledge gaps and next steps 

As yet, the approach used to extrapolate toxic effects on the growth of fish from in vitro results 

(Stadnicka-Michalak et al., 2015) has not been adapted for rodents and this presents a great 

opportunity to contribute to the three Rs. According to EU figures, around 1.12 million fish were 

used in experiments in 2017. However, this was only 12% of the 9.39 million animals used in 

total, rats and mice accounted for 73% (European Commission, 2019). In the UK, over 224,000 

rats and mice were used for regulatory testing, with one third of regulatory procedures 

concerning chemical toxicity and safety (Home Office, 2020). Since long term animal testing uses 

the most animals and is most costly (Hartung and Rovida, 2009), it is logical to focus on endpoints 

measured in chronic toxicity testing like bodyweight. 

In vitro – in vivo extrapolation of rodent growth under toxic stress will involve addressing several 

challenges and knowledge gaps. The first is the development of the TK-TD growth model itself, 

which was discussed in the previous section. Even with a TK-TD model, the procedure developed 

to extrapolate effects on the growth of fish will not be simple to replicate. For example, relating 

intracellular in vitro and in vivo intracellular concentrations to one another presents a greater 

challenge when considering rodents. A major difference between the toxicity testing frameworks 

for fish and mammals is the dosing method. While fish in regulatory tests are exposed to constant 

concentrations of pesticides in their water (OECD, 2014), mammals are dosed via the diet in 

longer studies (OECD, 1998, OECD, 2008, OECD, 2001). Therefore, the internal pesticide 

concentration reached depends on feeding rate relative to body size, which fluctuates 

substantially as animals grow (Laaksonen et al., 2013). Moreover, dosing may impact food 

consumption which will in turn alter the daily ingested dose and contribute to observed effects 

on body weight over time. These issues present major challenges for any comparison of in vitro 

and in vivo data. A further challenge that has not yet been covered is the identification of a cell 

line suitable for use as an assay for rodents. The specific gill cell line used by Stadnicka-Michalak 

et al. (2015) is derived from gill cells of healthy fish. Most mammalian cell lines tend to be 

transformed and/or cancer derived and so are less representative of the organism.  

This project will explore the role that TK-TD modelling can play in facilitating in vitro – in vivo 

extrapolation of toxic effects on rodents and so helping to achieve the three Rs. Our TK-TD growth 

model will be used to simulate the effects of constant internal exposure to pesticides on rodent 

growth in vivo. This will provide a scenario that is comparable to cultured cells exposed to a 

constant pesticide concentration via their medium. In vitro TK modelling will then be used to 
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determine the experimental conditions required to match in vivo intracellular concentration. The 

results of these experiments will then be analysed to determine whether they indicate the level 

of growth inhibition predicted in vivo. 

1.4 Thesis summary 

The rest of this thesis is separated into five chapters. Chapters 2-5 each represent a standalone 

article or research paper. Chapter 2 presents a side-by-side comparison of the MTE and DEBkiss 

growth models in their simplest forms, allowing the most fundamental differences in their theory 

and assumptions to be identified and scrutinised. This exercise was initially conducted in order 

to determine which modelling framework was most suitable for use in this project. This formed 

the basis of a short article, providing an entry point for beginners to this subject, which was 

published in Ecological Modelling.  

Chapter 3 is a research paper describing the development of a TK-TD growth model using data 

from dietary toxicity studies on rats. This was among the very first attempts to model sublethal 

toxicity in mammals. Additionally, having access to unpublished raw data meant that this study 

provided a novel implementation of existing modelling approaches, with high resolution model 

inputs representing pesticide intake and food consumption over time. This was published as a 

research article in Chemical Research in Toxicology. 

In Chapter 4 is a research paper in which the potential of TK-TD models to act as a bridge between 

in vitro and in vivo data is investigated. The TK-TD growth model developed in the previous 

chapter was used to model the effects of constant internal concentrations of five pesticides. In 

vitro TK models were calibrated using experimental data and then used to design cell 

proliferation experiments. The results were analysed to determine any relationships between cell 

population growth and in vivo growth rate under chemical stress. 

Chapter 5 is a methodological study focussing on how feeding data are converted into model 

inputs. This was conducted to address remaining issues with the growth model developed in 

Chapter 3. A novel method for deriving feeding inputs was proposed as an alternative to that used 

in Chapter 3 or the method conventionally used in DEB models. Models using each of the three 

methods were assessed in terms of accuracy, generality, and biological realism.  

Finally, Chapter 6 draws conclusions from the thesis as a whole; reflecting on how successfully 

project objectives were met and identifying areas for future work. 
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Chapter 2 - Common ground between growth models of rival theories: 

a useful illustration for beginners 

2.1 Preface 

One of the first tasks I faced in this project was the identification of suitable modelling techniques. 

With respect to growth modelling, I considered methods based on two metabolic theories: the 

metabolic theory of ecology (MTE), and dynamic energy budget (DEB) theory. These theories 

represent two different schools of thought within the metabolic modelling community, and 

several papers have been written debating the merits of one over the other. I researched the 

growth models of each theory and found that comparing them in their simplest forms highlighted 

both the considerable overlap and the fundamental differences between them. I felt that such a 

comparison would be very useful to any newcomers to the subject area but was missing from the 

literature. This exercise was written up and subsequently published as a discussion article in 

Ecological Modelling. This article is presented below. 

2.2 Abstract 

Dynamic energy budget theory (DEB) and the metabolic theory of ecology (MTE) both seek to 

quantify the processes of resource acquisition and allocation but differ in their underlying 

mechanisms and assumptions. Some in-depth comparisons of the theories have been conducted 

in the literature but require a level of knowledge that is likely to be beyond most newcomers to 

the topic.  

We reduce the theories to their simplest forms, their models for growth under optimal conditions, 

and present a side-by-side comparison of the model equations and key assumptions. This shows 

considerable overlap in how both theories characterise growth rate while also highlighting 

fundamental differences, such as MTE’s use of taxon specific parameters. Comparing DEB and 

MTE in this way provides an accessible platform to help beginners gain a better understanding 

from the existing literature. 

2.3 Introduction 

DEB (Kooijman, 2000) and MTE (Brown et al., 2004b) are both well-known theories which aim 

to quantify the processes of acquisition and use of resources, to explain biological patterns. These 

theories differ fundamentally in their underlying assumptions and mechanisms. DEB assumes 

that resource assimilation scales with the surface area over which resources are absorbed into 

the body. This leads to a ⅔ scaling relationship between energetic supply and body mass within 

a species during isometric growth, in which body shape remains constant  (Kooijman, 2000). MTE 

meanwhile, proposes that fractally branched vascular networks, possessed by plants and many 
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animals, deliver resources to cells at a rate which scales with body mass to the ¾ power (Brown 

and Sibly, 2012, Brown et al., 2004b). This scaling relationship and its underlying mechanism 

faced strong biological and mathematical criticism (Kozlowski and Konarzewski, 2004), however 

it was contended that this criticism was based on a misunderstanding of the theory’s assumptions 

(Brown et al., 2005). In any case, neither mechanism precludes the other (Maino et al., 2014). It 

is possible, perhaps likely, that vascular supply networks and the surface area to volume ratio 

both play a role in limiting energetic supply rates. 

The two theories have rarely been directly compared (Maino et al., 2014), leading to a lack of 

understanding across them and researchers often working only with one or the other (Kearney 

and White, 2012). This situation is somewhat at odds with the vision of MTE’s creators that the 

theories should be complementary since they have different strengths and applications (Brown 

et al., 2004a).   

Those comparisons that have been carried out focus on theoretical differences and 

inconsistencies (Marquet et al., 2014, Kearney and White, 2012, Van Der Meer, 2006b), inspiring 

spirited debate between proponents of the theories (Kearney et al., 2015, Houlahan et al., 2015, 

Marquet et al., 2015). The conversation, however, is often inaccessible for newcomers to the topic. 

We suggest that a different approach may be beneficial in this regard, focusing first on the 

similarity between the theories. The theories are most similar to one another when used to 

predict growth under constant conditions. We therefore use their most basic growth model as a 

starting point to clearly highlight the similarities and then isolate the core differences between 

them. 

2.4 Common Ground 

Both theories seek to mechanistically model the processes involved in metabolism. Research on 

DEB began around 1980 (Kooijman, 2000) while the precursor to MTE was published in the late 

1990s (West et al., 1997). The growth models of both theories produce a sigmoid curve, as is 

observed in many species, and follow very similar biological rationale. The central equation of 

MTE states that metabolic rate (B) scales with total body mass (w) (Brown and Sibly, 2012): 

𝑩 = 𝑩𝟎𝒘𝜶                      (2.1) 

Where 𝐵0 is the metabolic scaling coefficient and α is the exponent (usually ¾) with which 

metabolic rate scales allometrically (all parameters and dimensions are given in table 2.1). 

Assuming constant temperature and ad libitum food availability, the resulting growth model is 

expressed as: 
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𝒅𝒘

𝒅𝒕
=

𝟏

𝑬𝒎
(𝑩𝟎𝒘𝜶 − 𝑩𝒎𝒘)                    (2.2) 

Where 𝐵𝑚 is the maintenance rate per unit mass and 𝐸𝑚 represents the energetic cost per unit 

growth (Kerkhoff, 2012).  The energetic supply term in this model is the metabolic rate, defined 

in equation 2.1, since this represents energy that must be supplied for survival and growth.  

Unlike that of MTE, the DEB growth model explicitly divides biomass into reserve (stored 

resources) and structure (functional body mass) (Kooijman, 2000). Therefore DEBkiss (Jager et 

al., 2013), a simplified version of DEB which does not consider reserve, is a better choice to 

illustrate the parallels with MTE. Under the same constant conditions, the basic growth model is: 

𝒅𝒘 

𝒅𝒕
=  𝒚𝑽𝑨(𝐤 𝑱𝒂

𝑨𝑴 𝒘
𝟐

𝟑– 𝑱𝒗
𝑴𝒘 )                                (2.3) 

Where 𝑦𝑉𝐴  represents conversion efficiency of assimilates to structure, k is the portion of 

assimilates allocated to structural maintenance and growth, 𝐽𝐴𝑚
𝑎

 is the maximum assimilation rate 

per unit area and 𝐽𝑀
𝑉  the maintenance rate per unit mass. It is clear at this point that both models 

can be characterised in the same way, illustrated in figure 2.1.  

 

 

Figure 2.1 The same general formula for conversion of resources to biomass is followed by both the 
MTE and DEBkiss growth models.   

Both models describe the conversion of resources into body mass, though their dimensions differ. 

While MTE considers the energy content of assimilates from food, DEBkiss considers their mass 

since food consumption is typically measured in terms of mass rather than energy. However, 

DEBkiss assumes constant composition of structure (and therefore a constant conversion factor 

between mass and energy) so both theories ultimately consider energy fluxes, regardless of the 
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units. This difference is somewhat trivial then, but important to note before comparing the model 

parameters.  

A full description of the model parameters can be found in table 2.1. Except for k and α (both 

dimensionless), parameters relating to resource supply, maintenance or conversion efficiency 

have equivalent dimensions, differing only in how resources are measured. 

Table 2.1 List of parameters used in each growth model and their dimensions (b.m. = body mass). 
Thick borders divide parameters relating to (from top to bottom) conversion efficiency, resource 
supply and maintenance costs. 

 

Much discourse has concerned whether metabolic rate scales with body size to the power of ⅔ 

or ¾ (Brown and Sibly, 2012, White and Kearney, 2014, White and Seymour, 2003). While MTE 

suggests an α value of ¾, this is not fixed (Kerkhoff, 2012, Moses et al., 2008, Brown and Sibly, 

Parameter Theory Explanation Dimensions 

𝒚𝑽𝑨  DEBkiss New biomass per unit of 

resources used 

Mass(b.m.). Mass(resources)-1 

𝟏

𝑬𝒎
  MTE New biomass per unit of 

energy used 

Mass(b.m.). Energy(resources)-1 

k DEBkiss Proportion of resources 

allocated to growth & 

maintenance 

Dimensionless 

𝑱𝑨𝒎
𝒂   DEBkiss Maximum assimilation rate 

per unit of surface area 

Mass(resources). Mass(b.m.)-2/3. Time-1 

α MTE Scaling exponent of energy 

supply with mass  

Dimensionless 

B0 MTE Supply rate per unit of 

biomass α 

Energy(resources). Mass(b.m.)-α. Time-1 

𝑱𝑴
𝑽   DEBkiss Maintenance rate per unit 

of biomass 

Mass(resources). Mass(b.m.)
-1. Time-1 

Bm MTE Maintenance rate per unit 

of biomass  

Energy(resources). Mass(b.m.)-1. Time-1 
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2012). It has been noted that setting α to ⅔ actually makes little difference to the growth curve 

produced (Kerkhoff, 2012) and may be considered preferable in terms of mathematical simplicity 

(Sibly et al., 2013). This means that the ultimate body mass (W∞) can be expressed: 

𝑾∞ = (
𝑩𝟎

𝑩𝒎
)

𝟑
                      (2.4) 

Substituting this into equation 2.2 means that the growth rate can be expressed in the form of the 

Von Bertalanffy growth equation:   

𝒅𝒘 

𝒅𝒕
=  

𝟏

𝑬𝒎
𝑩𝒎𝒘[(

𝑾∞

𝒘
)

𝟏

𝟑
– 𝟏]                     (2.5) 

In DEBkiss, the ultimate body mass is calculated as: 

𝑾∞ =  (𝒌
𝑱𝒂

𝑨𝑴

𝑱𝒗
𝑴

)
𝟑

                     (2.6) 

By combining equations 2.3 and 2.6 the DEBkiss growth model can also be expressed in the form: 

𝒅𝒘 

𝒅𝒕
=  𝒚𝑽𝑨 𝑱𝒗

𝑴𝒘[(
𝑾∞

𝒘
)

𝟏

𝟑
– 𝟏]                     (2.7) 

Equations 2.5 and 2.7 are mathematically and conceptually equivalent, further demonstrating the 

considerable overlap between the two growth models. Parameter values could therefore be 

transferred between the two models to produce the same growth curve. However, their values 

would not be consistent with the estimation methods of both theories. 

2.5 What Differences Remain?  

The growth models may have a great deal in common but, even at this most basic level, important 

differences remain. The parameters of DEB are generally species-specific and full parameter 

estimation requires growth and reproduction data, preferably under varying conditions 

(Kooijman et al., 2008, Lika et al., 2011). A growing, curated database containing DEB parameters 

for almost 2000 species has been made freely available (Marques et al., 2018, Kooijman et al., 

2019) as has software to carry out parameter estimation (Martin et al., 2012). Nevertheless, an 

understanding of the underlying equations and how parameter values are derived still requires 

significant investment of time and effort (Jager et al., 2013). One of the goals of MTE was to make 

this process simpler and less data demanding (Brown and Sibly, 2012), but the devil is in the 

detail.  

It was initially suggested that the cost of growth in MTE, Em, should be measured as the energy 

content of tissue (West et al., 2001), however such a simple measure negates any additional 
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‘overhead’ energy cost of growth. New estimation methods were subsequently developed by 

Moses et al. (2008) using the growth curves of animals in early life stages, when it is assumed that 

maintenance costs are negligible as virtually all energy is devoted to growth. Such data 

requirements are not dissimilar to those of DEB (Kooijman et al., 2008), so the energetic cost of 

tissue synthesis remains a property that is not easily measured or estimated. This could 

potentially be measured in vitro using assays measuring energy metabolism (Zhang et al., 2012) 

in combination with cell proliferation assays.  However, to simplify the process, generic values of 

Em are recommended for taxa such as mammals, birds and fish, on the basis that alternative 

methods (Sibly and Calow, 1986b, Moses et al., 2008) have produced similar estimates for these 

groups (Sibly et al., 2013).  

As a taxon specific measure, MTE’s metabolic scaling coefficient, B0, is derived by fitting equation 

1 to data on the metabolic rates (measured as respiration) of related species ranging in size 

(Brown and Sibly, 2012). As such the value of B0 does not scale with the ultimate size of a species. 

For some this is an oversimplification as it assumes that variation in ultimate mass between 

species results solely from interspecific differences in maintenance rate, Bm (equation 2.4). By 

extension, this means that “the maintenance costs of a lizard are much higher than those of a baby 

crocodile of the same size” (Van Der Meer, 2006b). Instead, DEB suggests that the maintenance 

rate per unit of structure is probably very similar among related species. Therefore, differences 

in the ultimate mass of species are influenced more by interspecific variability in assimilation rate 

(Van Der Meer, 2006b). In principle, this debate could be settled by measuring the growth and 

caloric intake of related species. The energy requirements of an adult lizard vs a growing 

crocodile of the same size would reflect their respective volume specific maintenance costs. 

Finally, the kappa rule in DEB states that, for any species, a constant proportion, k (ranging from 

0-1), of available resources are allocated to maintenance and growth. The remainder (1-k) is 

invested toward maturation and reproduction (Kooijman, 2000). An equivalent parameter would 

be redundant in the MTE growth model, as the supply term describes only the energy used by 

cells for growth and maintenance rather than the total assimilated. As a wider theory MTE does 

have a similar rule, assuming that resources are allocated in fixed proportions to maintenance, 

growth and reproduction. However, unlike in DEB, it is also assumed that these proportions are 

constant across all species (Sibly, 2012), a simplification which has major implications. As a 

species-specific parameter in DEB, k plays an important role in capturing interspecific variability 

in ultimate mass (equation 2.6) and reproductive output when this is included model predictions. 

Estimates of k for different species vary almost across the full range possible, from 0.0388 for the 

Humboldt squid (Kooijman, 2018) to 0.996 for the frilled anemone (Kooijman, 2020). 
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2.6 Conclusions 

Ultimately all models exist to provide a simplified representation of complex processes and this 

requires compromise between realism and ease of use. DEB provides a powerful framework for 

modelling organism life cycles but the data requirements for full parameterisation are 

substantial, as is the investment needed to fully understand model equations (Jager et al., 2013).  

MTE aimed to simplify further by utilising interspecific patterns to derive taxon-specific 

parameters. The only species-specific parameter in MTE’s growth model (the maintenance rate 

Bm) can be calculated from the ultimate weight of a new species of interest. However, subsequent 

work has detailed how DEB parameters can also be estimated using only the ultimate size of a 

species if necessary, by scaling the parameter values for a related species (Kooijman et al., 2008). 

In both cases though, such simplicity comes at a cost in terms of accuracy since parameter values 

are, in reality, individual specific and vary within and between species.  

While our comparison has focused on growth, the purpose of these theories is not simply to mimic 

observed patterns (for which the Von Bertalanffy equation would suffice) but to provide a 

mechanistic basis for predictions in novel scenarios and at higher levels of biological organisation. 

Implementation within individual based models (IBMs) of populations has highlighted the scope 

for model development in both theories. MTE successfully predicted observed patterns in the 

mass density of tree seedlings provided there was little competition for nutrients and water but 

not when these resources were limited (Lin et al., 2014). DEB meanwhile has been used to 

successfully predict population level patterns observed in Daphnia magna but it was found that 

predictions were just as accurate if reserve was omitted (Martin et al., 2013). This finding inspired 

the development of the DEBkiss model (Jager et al., 2013) which, as we have demonstrated, offers 

comparable simplicity to MTE. In addition, the DEBtox framework (Kooijman and Bedaux, 1996b) 

uses DEB as the basis for predicting the effects of toxic exposure on biological processes. This has 

now been used to predict observed effects in several invertebrate (Ashauer and Jager, 2018) and 

vertebrate species (Desforges et al., 2017, Zimmer et al., 2018) demonstrating the ability of DEB 

to realistically respond to environmental change. 

The aim of this article was to compare DEB and MTE in a way that is targeted to beginners and 

currently missing in the literature. While DEB is indeed a complex theoretical framework, since 

the creation of MTE it has been developed to offer similar simplicity both in terms of model 

equations and parameter estimation. At this point, the distinction between the two theories 

hinges on the underlying mechanisms and assumptions. We hope that, by providing an accessible 

introduction to this ongoing discussion, this article helps newcomers to the topic to better 

understand the arguments and feel equipped make their own model choice with confidence.   
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Chapter 3 – Toxicokinetic-toxicodynamic modelling of the effects of 

pesticides on growth of Rattus norvegicus 

3.1 Preface 

Syngenta’s involvement in this project presented a rare opportunity in terms of data availability. 

I was provided with the unpublished raw data from toxicokinetics and dietary toxicity studies on 

seven pesticides. Having identified methods to model growth, toxicokinetics and toxicodynamics, 

the challenge was then deciding how to best make use of such an abundance of data. I had met 

with toxicologists at Syngenta’s offices and discussed typical patterns that often emerged in 

dietary toxicology studies. Through these discussions it became clear that feeding rate is a crucial 

factor influencing the growth rate and the ingested pesticide dose over time. Therefore, properly 

utilising food consumption data would be absolutely vital to model the effects of dietary toxicity. 

With such an abundance of data, another question was which data should be used to calibrate 

model parameters or to test model predictions. The process of model development with 

regulatory datasets formed a research paper which was published in Chemical Research in 

Toxicology and is presented below.  

3.2 Abstract 

Ecological risk assessment is carried out for chemicals such as pesticides before they are released 

into the environment. Such risk assessment currently relies on summary statistics gathered in 

standardised laboratory studies. However, these statistics extract only limited information and 

depend on duration of exposure. Their extrapolation to realistic ecological scenarios is inherently 

limited. Mechanistic effect models simulate the processes underlying toxicity and so have the 

potential to overcome these issues. Toxicokinetic-toxicodynamic (TK-TD) models predict the 

internal concentration of a chemical over time and the stress it places on an individual organism. 

TK-TD models are particularly suited to addressing the difference in exposure patterns between 

laboratory (constant) and field (variable) scenarios. Few studies have sought to predict sub-lethal 

effects of pesticide exposure to mammals in the field, although such effects are of particular 

interest with respect to longer term exposure. We developed a TK-TD model based on the 

dynamic energy budget (DEB) theory, which can be parameterised and tested solely using 

standard regulatory studies on rodents. We demonstrate that this approach is effective in 

predicting toxic effects on the body weight of rats over time, ≥75% of observations were 

predicted to within one standard deviation of the mean in 28 of 34 datasets. Model predictions 

separate the impacts of feeding avoidance and toxic action, highlighting which was the primary 

driver of effects on growth. Such information is relevant to the ecological risk posed by a 

compound because in the environment alternative food sources may or may not be available to 
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focal species. While this study focused on a single endpoint, growth, this approach could be 

expanded to include reproductive output. The framework developed is simple to use and could 

be of great utility for ecological and toxicological research as well as to risk assessors in industry 

and regulatory agencies. 

3.3 Introduction 

Before chemicals can be registered for use, they undergo ecological risk assessment (ERA), this 

process is particularly rigorous for agricultural pesticides, which are designed to be toxic to pest 

species  (EFSA, 2009b, van Leeuwen and Vermeire, 2007). It is not practically possible to 

determine a chemical’s ecological impact experimentally. Instead, risk assessment relies on 

extrapolation from summary statistics such as the ‘no observed adverse effect level’ (NOAEL) 

generated for a few species in standardised laboratory studies (Grimm and Martin, 2013). 

However, such statistics should only be extrapolated with caution as they do not account for the 

processes that lead to toxic effects and are dependent on duration of exposure (Jager, 2012, 

Murado and Prieto, 2013).  Moreover, they are generated in controlled (supposedly optimal) 

conditions - regulated temperature and freely available food and water (OECD, 2001) - that are 

unrealistic in the field. The resulting lack of ecological realism in current standard risk 

assessment methods is problematic (European Commission, 2014). 

Mechanistic effects models (MEMs) aim to simulate the mechanisms by which chemicals affect 

individuals, populations and communities and therefore enable us to predict how they will 

respond in untested and more ecologically relevant conditions (Grimm and Martin, 2013). This is 

an appealing prospect with great potential for use in ERA of pesticides (Forbes et al., 2009, Forbes 

and Calow, 2012). By focussing on the underlying processes, modelling techniques can add 

ecological realism to extrapolations and even reduce animal testing requirements (Jager et al., 

2006).  

Accounting for the mismatch in exposure between laboratory and field (Fischer, 2005) was 

identified as one of five key obstacles to long term risk assessment of pesticides for mammals 

(along with selection of suitable toxicity endpoints, extrapolation of toxicity between species, 

exposure assessment and evaluation of population level effects (Hart and Thompson, 2005)). In 

chronic toxicity tests rats or mice are exposed to a constant concentration of a pesticide in their 

diet for periods as long as 2 years (OECD, 2008, OECD, 1998, OECD, 2001). Such constant 

exposure is unrealistic in the field where pesticides are not applied at a constant rate all year 

round. This disparity can be addressed through the use of toxicokinetic-toxicodynamic (TK-TD) 

modelling (Jager et al., 2006). TK-TD models work at the individual level, predicting an internal 

measure of chemical concentration over time (toxicokinetics) and the stress this places on an 
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organism (toxicodynamics). As such, the effects on a given endpoint resulting from time varied 

exposure can be predicted (Jager, 2016, Nyman et al., 2012, Ashauer et al., 2017).  

The use of TK-TD modelling has now been recommended for certain regulatory purposes, such 

as predicting survival of aquatic organisms (EFSA, 2018). However, European protection goals 

for birds and mammals state that there should be no visible mortality associated with pesticide 

use (EFSA, 2009b), so sublethal effects are more relevant with respect to realistic exposure. 

Sublethal effects can be predicted using the ‘DEBtox’ modelling framework (Kooijman and 

Bedaux, 1996b, Kooijman and Bedaux, 1996a), combining TK-TD modelling with the Dynamic 

Energy Budget (DEB) theory (Kooijman, 2000). DEB is an established metabolic theory which has 

been applied to a range of taxa (Marques et al., 2018), mathematically describing the processes 

of energy acquisition and allocation that determine the life history of an organism. Using TK-TD 

modelling to place stress on these processes can produce predictions of effects on sublethal 

endpoints such as growth and reproduction. Very little research has concerned mammals 

however, as DEBtox studies have thus far mainly focused on invertebrates (Ashauer and Jager, 

2018) and more recently fish (Zimmer et al., 2018, Sadoul et al., 2018). 

At present DEBtox is limited to research applications as it is not regarded as user friendly enough 

for use by regulators (EFSA, 2018).  To this end, a simplified version of the theory, ‘DEBkiss’, was 

developed in which only structural body mass (bones, muscle, organs etc.) is considered with no 

reserve storage (Jager et al., 2013). The model retains many DEB principles but with fewer 

parameters and model equations. It was developed for applications where simplicity and ease of 

use are important, such as the analysis of toxicity data or for use within individual based 

population models. The only published study to date in which TK-TD modelling has been used to 

predict sublethal effects in mammals utilised DEBkiss (Desforges et al., 2017). Although limited 

data were available, the model accurately simulated observed effects of environmental toxicants 

on growth and reproduction in the American mink (Mustela vison). These results suggest that this 

simplified framework may be sufficient for practical and regulatory applications.  

Here we tested the utility of DEBkiss by working with raw data from repeated dietary dose 

toxicity tests and modelled the effects of several pesticides on rats. As the first study to use 

regulatory data for this purpose, we adopted the practice of beginning with the simplest possible 

methods and identifying areas where more complex techniques may be required. Internal 

pesticide concentration was modelled with a one compartment model and a single endpoint, body 

weight, was modelled over time using the DEBkiss growth model. We only considered a single 

endpoint for simplicity as we  aimed to establish a practical procedure for the parameterisation, 

calibration and validation of DEBtox models using regulatory data and to assess the quality and 
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utility of predictions. With an established procedure in place, other endpoints can be considered 

in future studies. Furthermore, we aimed to improve the interpretation of standard toxicity 

studies by extracting novel, meaningful information using modelling. In this regard, keeping the 

number of state variables in the model to a minimum provided greater clarity. The data used in 

this study only came from unmated animals, so reproduction was not omitted from the model, it 

simply did not occur during the observation period considered. 

3.4 Methods 

3.4.1 Data 

All data used here were made available from existing regulatory studies (Syngenta, unpublished) 

carried out according to 94/79/EC (European Commission, 1994), investigating toxicokinetics 

and chronic toxicity of acibenzolar-S-methyl (benzothiadiazole; fungicide, insecticide and plant 

activator (PPDB, 2019a)), azoxystrobin (strobilurin; fungicide (PPDB, 2019b)), fenpropidin 

(unclassified; fungicide (PPDB, 2019c)), fludioxonil (phenylpyrrole; fungicide (PPDB, 2019d)), 

mandipropamid (mandelamide; fungicide (PPDB, 2019e)) and prosulfuron (sulfonylurea; 

herbicide (PPDB, 2019f)) and thiamethoxam (neonicotinoid; insecticide (PPDB, 2019g)) in 

laboratory rats (Rattus norvegicus). 

The toxicokinetics studies followed OECD test no. 417 (2010)  guidelines. Animals were treated 

with a single oral (gavage) dose of a 14C radiolabelled pesticide with total radioactivity found in 

various tissues and excreta monitored over a period of days. The animals were allowed free 

access to a certified standard diet.  

Data sets differed between pesticides but followed a common framework. At least two dose levels 

were studied with typically three male and three female animals in each treatment group. The 

reports include data detailing the proportion of the initial dose excreted in faeces, urine and bile 

over ~48 hours after a single oral dose, providing an average percentage of the dose which was 

absorbed into the body. Pesticide concentration in the blood of animals was measured over ~48 

hours following a single high or low dose. Pesticide concentration was also measured in different 

body tissues from animals terminated at ~4 time points following a single high or low dose. 

Details of dosing, including exact dose (mg(AI)), body weight (g) at the start (and in some cases the 

end) of testing and achieved dose (mg(AI) × kg(BW)-1) were provided for each individual animal.  

Chronic toxicity studies lasting 28 days (OECD test no. 407 (2008)), 90 days (OECD test no. 408 

(1998)) or 2 years (OECD test no. 416 (2001), 451 (2018a) or 452 (2018b)) were carried out 

according to OECD guidelines. Animals of around 5-7 weeks in age were provided with a diet 

containing pesticide and multiple toxicological endpoints monitored over the study period. 
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Animals were kept in standard conditions with food and water available ad libitum. Each study 

provides individual weekly observations of body weight (g) and food consumption (g(diet) × day-

1). Sample size was typically 5 animals per sex per treatment in 28 day studies, 10 animals per 

sex in 90 day studies and 50-80 animals per sex in 2 year studies. The measured concentration of 

pesticide in the diet of each treatment was also reported. Each study comprised a control group 

and at least 3 treatments fed diets containing different concentrations of pesticide. As study 

duration was increased dietary doses were generally decreased. 

3.4.2 Toxicokinetic model 

For each toxicant (denoted ‘AI’ for active ingredient), the internal concentration was modelled 

using a one compartment TK model with first order kinetics. The internal concentration here 

refers only to toxicant present in body tissues at a given time and excludes any in the gut which 

has not yet been absorbed. As terrestrial mammals are primarily exposed to pesticides via the 

diet, the toxicant concentration in the gut was also modelled as an intermediate ‘depot’ 

compartment. This was a very similar approach to Bednarska et al. (2013a) but we also account 

for change in body size by including dilution by growth and changes to surface area to volume 

ratio as per Gergs et al. (2016). The model equations are shown below. 

∆𝐶𝐺𝑢𝑡 = 𝐼 −
𝐿∞

𝐿⁄ 𝑘𝑎𝐶𝐺𝑢𝑡𝐹 − 𝐶𝐺𝑢𝑡(∆𝑊
𝑊⁄ )                   (3.1) 

 

∆𝐶𝐼𝑛𝑡 =
𝐿∞

𝐿⁄ 𝑘𝑎𝐶𝐺𝑢𝑡𝐹 −  
𝐿∞

𝐿⁄ 𝑘𝑒𝐶𝐼𝑛𝑡 − 𝐶𝐼𝑛𝑡(∆𝑊
𝑊⁄ )                 (3.2) 

 
Where ∆𝐶 indicates change in the body weight (denoted ‘BW’) normalized dose, C, of toxicant 

over time (Mass(AI)× Mass(BW)−1 × t−1) and subscripts Gut and Int denote gut and internal 

respectively; I is toxicant ingestion rate (Mass(AI) × Mass(BW)−1 × t−1); F represents bioavailability 

(dimensionless); ka and ke represent the rate constants of toxicant absorption from the gut and 

toxicant elimination from the system respectively (t−1); W denotes body weight and ΔW is change 

in weight over time; L is volumetric length (the cube root of body volume) and L∞ is the ultimate 

volumetric length of the test species.  

DEB states that volume, V, surface area, a, and volumetric length, L, scale such that 𝑉 =  𝐿3, 𝑎 = 𝐿2 

and 𝑎 =  𝑉2 3⁄ . Thus, the surface area to volume ratio can be calculated as 𝑉 𝑎⁄ = 𝐿, so 𝐿∞ 𝐿⁄  gives 

an animal’s surface area relative to that of a fully grown adult. Uptake and elimination are area 

mediated processes while internal concentration is determined relative to volume or weight. 

Multiplying the uptake and elimination terms by 𝐿∞ 𝐿⁄  therefore accounts for changes to these 

rates that occur as animals grow. The final term of equations 3.1 and 3.2 accounts for dilution by 

growth, that is the change to concentration that occurs if there is no uptake or elimination but the 
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compartment changes in size. Egestion is not explicitly considered in this model. Instead, fitted 

elimination rate constants are assumed to account for elimination by egestion.   

 

3.4.3 Growth model 

 
Growth was modelled with the DEBkiss (Jager et al., 2013) growth equation: 

∆𝑊 =  𝑦𝑉𝐴(𝑘𝑓 𝐽𝑎
𝐴𝑀 𝑊

2
3⁄  – 𝐽𝑣

𝑀𝑊 )                   (3.3) 

Where ΔW represents the change in total body weight (W) over time, 𝑦𝑉𝐴  represents the efficiency 

with which assimilates are converted to structural mass (Mass(BW) × Mass(Assimilates)
-1), k is the 

proportion of assimilates allocated to the soma, f is the scaled feeding rate (unitless), 𝐽𝐴𝑚
𝑎  is the 

maximum surface area specific assimilation rate (Mass(Assimilates) × Mass(BW)-2/3 × t-1) and 𝐽𝑀
𝑉  the 

mass specific maintenance rate (Mass(Assimilates) × Mass(BW)
-1 ×  t-1). The DEBkiss model is 

represented graphically in figure 3.1.  

Endotherms are also subject to surface area specific maintenance costs, accounting for heat loss 

to the environment. However as long as the ambient temperature is within the thermoneutral 

zone of a species (Kingma et al., 2014) these are assumed to be zero as heating costs are at their 

minimum so are simply part of volume specific maintenance (Lika et al., 2011). Laboratory 

guidelines require rodents to be kept at 22±3°C, as this was considered to be within the 

thermoneutral zone of the rat (Poole and Stephenson, 1977). More recent research has suggested 

that this temperature range is below the thermoneutral zone of the rat (Le and Brown, 2008) but 

for simplicity it was assumed that heat loss could be omitted. Omitting heating costs would have 

minimal impact on model predictions themselves but would impact on the relative values of 𝐽𝐴𝑚
𝑎  

and 𝐽𝑀
𝑉 . However, any costs near the thermoneutral zone would be minimal.  

 



46 
 

Figure 3.1 A graphical representation of the DEBkiss model. The value of k determines the 
proportion of resources assimilated from food allocated to maintenance and growth or maturity 
and reproduction. Processes outlined in red are those that can be subjected to stress.  

The parameter k represents the proportion of assimilates allocated to maintenance and growth 

with the remainder (1-k) going towards maturation and reproduction. DEBkiss theory states that 

up to puberty, these resources are used up as animals develop and are stored as ‘reproduction 

buffer’ during puberty and adulthood (Jager et al., 2013). This buffer is generally used to 

represent mass for egg production which is not applicable to mammals. Additionally, as 

reproduction was not modelled in this study, the reproduction buffer would serve no purpose 

other than as a reserve for use under starvation. As there were no data for body length, there 

could be no distinction between growth and weight gain as fat, so all body weight was simply 

modelled as structure. This necessitated the assumption that 1-k branch continues to be used up 

as the animals develop into sexually mature adults (at 70- 90 days of age (Tacutu et al., 2018)) 

and then to maintain maturity, a process which can also be included in DEBkiss (Jager et al., 2013). 

Only un-mated animals were included in this study, so body mass was not impacted upon by 

pregnancy.  

If food intake is reduced such that 𝑘𝑓 𝐽𝑎
𝐴𝑀 𝑊

2
3⁄  <  𝐽𝑣

𝑀𝑊 but the total assimilation rate 

𝑓 𝐽𝑎
𝐴𝑀 𝑊

2
3⁄ ≥  𝐽𝑣

𝑀𝑊 (i.e. in a situation where food intake is sufficient to maintain homeostasis 

but not to grow), then ∆𝑊 = 0 as available resources are diverted from the 1-k branch to meet 

maintenance costs. If the total assimilation rate is insufficient to meet maintenance costs, that is 

𝑓 𝐽𝑎
𝐴𝑀 𝑊

2
3⁄ <  𝐽𝑣

𝑀𝑊, then the growth rate becomes negative as tissue is metabolised to meet 

maintenance requirements. 

∆𝑊 =  (𝑓 𝐽𝐴𝑚
𝑎 𝑊

2
3⁄  – 𝐽𝑀

𝑉 𝑊 )/𝑦𝐴𝑉                    (3.4) 
 
Where 𝑦𝐴𝑉  is conversion efficiency of structure to assimilates. The value of k therefore determines 

the point at which the feeding rate becomes insufficient for growth but does not impact the onset 

of weight loss. While it would be possible to model the effects of starvation on survival using  the 

GUTS framework (Jager et al., 2011), there is a lack of data on the topic as the experiments 

required would be unethical. Any treatment that induced drastic reductions in feeding would be 

abandoned as guidelines state that dosing should not cause ‘death or severe suffering’ (OECD, 

1998, OECD, 2008). 

3.4.4 Toxicodynamic model 

Finally, the DEBtox toxicodynamic model (Kooijman and Bedaux, 1996b, Kooijman and Bedaux, 

1996a, Jager, 2015b) was used to link internal toxicant concentration to stress on growth. It is 
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assumed that for any xenobiotic, there exists a ‘no effect concentration’ (NEC) below which it 

causes no stress to any biological processes. The NEC is a time independent threshold and 

therefore has no relationship with duration of exposure. Assuming that every molecule of toxicant 

beyond its NEC creates the same amount of ‘stress’ leads to a ‘linear with threshold’ relationship, 

which can be modelled quite simply (figure 3.2): 

 

Figure 3.2 Stress increases with internal toxicant concentration beyond a threshold. Where S is 
dimensionless stress and CT is the ‘tolerance concentration’ (Mass(AI) × Mass(BW)-1). Here the NEC 
determines the point at which stress exceeds zero while CT is the increase in CInt corresponding to an 
increase in S of 1. This means the gradient of S is 1/CT when CInt exceeds the NEC.    

 
In our approach, stress can be applied to one of three growth parameters (‘physiological modes 

of action’ (Kooijman and Bedaux, 1996a, Alvarez et al., 2006)) each of which respond differently 

to stress, these are the maximum assimilation rate, 𝐽𝐴𝑚
𝑎 , the maintenance rate, 𝐽𝑀

𝑉 , or the 

conversion efficiency, 𝑦𝑉𝐴  (figure 3.3). The proportion of resources allocated to the soma, k, could 

theoretically be affected by a toxicant, but data on reproduction would be required to distinguish 

this from effects on assimilation and such effects are not well documented (Jager, 2015b). Details 

of all TK-TD and growth model parameters are included in table 3.1. 
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Figure 3.3 Plots showing how growth model parameters respond to internal toxicant concentration 
when stress is applied. A. The maximum assimilation rate, 𝐽𝐴𝑚

𝑎 , decreases linearly with stress until it 
reaches zero when S=1. B. The maintenance rate, 𝐽𝑀

𝑉 , increases linearly with stress and is doubled 
when S=1.   C. The costs per unit of tissue synthesis increase linearly with stress, doubling when S=1. 
At this point conversion efficiency 𝑦𝑉𝐴 is halved as it approaches zero asymptotically.  

Table 3.1 contains a full list of model parameters. Parameter values marked with a *  are default 
values suggested by Jager, Martin & Zimmer (2013).  

Name Explanation Value Dimensions 

Growth 

k Fraction of assimilates for growth 

and maintenance 

0.8 * - 

𝐽𝐴𝑚
𝑎   Maximum assimilation rate per unit 

of surface area 

Fitted to data g(Assimilates)×g(BW)-

2/3×t-1 

𝐽𝑀
𝑉   Maintenance rate per unit of biomass Fitted to data g(Assimilates)×g(BW)-

1×t-1 

𝑦𝑉𝐴  New biomass per unit assimilates 0.45 (as per Sibly and Calow 

(1986a)) 

g(BW)×g(Assimilates)-1 

𝑦𝐴𝑉  Yield of assimilates per unit biomass 0.8 * g(Assimilates)×g(BW)-1 

Toxicokinetics 

F Proportion absorbed from gut Calculated from data  - 

ka Absorption rate constant Fitted to data t-1 

ke Elimination rate constant Fitted to data t-1 

Toxicodynamics 

NEC No effect concentration Fitted to data mg(AI)×kg(BW)−1 

CT Tolerance Concentration Fitted to data mg(AI)×kg(BW)
−1 

Other Parameters 

f Scaled feeding rate Calculated from data - 

I Pesticide ingestion rate Calculated from data mg(AI)×kg(BW)
−1×t−1 

L Volumetric Length W1/3 cm 

L∞ Ultimate volumetric Length W∞ 
1/3   or 𝒌𝒇

𝑱𝒂
𝑨𝑴

𝑱𝒗
𝑴

  cm 

Lm Maximum volumetric Length Wm 
1/3   or 𝒌

𝑱𝒂
𝑨𝑴

𝑱𝒗
𝑴

  cm 

W∞ Ultimate structural body mass 782 (as per Hubert et al. (2000)) 

or L∞
3 

g 

Wm Maximum structural body mass Lm
3 g 

State Variables 
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3.4.5 Model implementation 

All models were implemented in Matlab (ver. R2016b). TK and TK-TD growth models were 

developed with the BYOM (Jager, 2019) flexible model platform (ver. 4.1), several additional 

functions and scripts were also developed as part of this study. All fitted parameter values were 

derived using the Nelder Mead simplex algorithm to maximise the likelihood function, given the 

observed data (Pan and Fang, 2002). Likelihood profiling was also used to check that initial fits 

were not local optima (Kreutz et al., 2013). TK model parameters were fitted to mean internal 

pesticide concentration over time, while growth and TD model parameters were fitted to mean 

body weight over time. 

Toxicodynamic modelling also required selection of a physiological mode of action. The best 

fitting physiological mode of action was determined  using the Akaike information criterion 

(Burthe et al., 2010). As the alternative models were not nested, the likelihood ratio test would 

be inappropriate however the AIC has no such requirement (Murtaugh, 2014). 

3.4.6 TK Modelling 

3.4.6.1 Parameterisation 

The percentage of the dose which was absorbed into the body was reported in excretion studies. 

This data provided the value of the parameter F in the TK model (eqn. 1 & 2). If the percentage 

absorbed was very high (>90%) then F was assigned the value 1 as this represents the worst-case 

scenario. For single dose studies the value of I was zero while the starting gut concentration was 

the average achieved dose for each treatment. If body weight was recorded at the beginning and 

end of testing then ΔW was calculated as the linear growth rate observed in each treatment. If 

not, it was assumed that ΔW = 0 as dilution by growth has a minimal effect on the model over the 

short testing period, typically 48 hours.  

Ultimate length was calculated as the cube root of 782cm3 which is the average ultimate volume 

of male Sprague Dawley rats with ad libitum food availability (Hubert et al., 2000), assuming that 

average wet tissue density is equal to that of water (Lika et al., 2011).  

CGut Pesticide concentration in gut 

(∆𝐶𝐺𝑢𝑡) 

𝐼 −
𝐿∞

𝐿⁄ 𝑘𝑎𝐶𝐺𝑢𝑡𝐹 −

 𝐶𝐺𝑢𝑡(∆𝑊
𝑊⁄ )   

mg(AI)×kg(BW)
−1×t-1  

CInt Internal pesticide concentration  
∫

𝐿∞
𝐿⁄ 𝑘𝑎𝐶𝐺𝑢𝑡𝐹 − 

𝐿∞
𝐿⁄ 𝑘𝑒𝐶𝐼𝑛𝑡

−  𝐶𝐼𝑛𝑡(∆𝑊
𝑊⁄ ) 

mg(AI)×kg(BW)
−1×t-1 

W Structural body mass (∆𝑊) 𝑦𝑉𝐴(𝑘𝑓 𝐽𝑎
𝐴𝑀 𝑊

2
3⁄  – 𝐽𝑣

𝑀𝑊 )  g(BW)×t-1 



50 
 

3.4.6.2 Calibration 

Having determined the other model inputs directly from experimental data, two free TK model 

parameters were left to be fitted to data, the absorption and elimination rate constants ka and ke. 

The best time course data for internal toxicant concentration (highest number of time points) 

came from the blood as it can be sampled without terminating animals. In order to ascertain 

whether pesticide concentration in the blood was a suitable proxy for overall body burden, the 

Pearson correlation coefficient was used to determine if it was significantly correlated with the 

concentration in all other sampled tissues. If so, then blood concentration data (in μg× g(blood)-1) 

were deemed representative of CInt (in mg× kg(BW)-1) and could be used to fit ΔCInt (eqn. 2). Where 

available, whole carcass concentration could be used as an alternative however, fewer data points 

were available. 

Data were first inspected to determine whether there were obvious differences in kinetics 

between males and females. Properties considered were the mean peak concentration (Cmax), the 

time after dosing at which it was reached (Tmax) and the time taken to eliminate the pesticide from 

the blood. If clear differences were evident then models were calibrated separately for males and 

females. 

For some pesticides, the same individual animals were sampled for the whole observation period 

after dosing, for others only partial time course data were available for each individual. Where 

complete time course data were available, the model was first fitted to data for each individual. A 

multi-way ANOVA was conducted to determine whether there were significant differences in 

fitted values of ka and ke associated with sex, dose level (both discrete) or weight (continuous). If 

more than one radiolabel was used then this was also included as a factor. This was to determine 

whether data needed to be separated for calibration or the dataset could be used as a whole, 

which would be preferable in terms of sample size. 

If sex was the only factor to have a significant effect, then the model was calibrated to males and 

females separately. If both sex and weight were shown to have significant effects, then a Mann 

Whitney U test was used to determine whether there was a significant difference in weight 

between males and females. If so, then the ANOVA was repeated with the data separated by sex. 

If no effects were found within each sex then the model was simply fitted to males and females 

separately. If the rate constants were significantly affected by factors other than sex then this was 

noted along with the full TK results.  

Finally, models were calibrated to mean (at each time point) blood concentration observed in the 

high and low dose groups simultaneously. Where appropriate, this was carried out separately for 
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males and females. Parameters were not fitted individually and then averaged as this was not 

possible for all compounds due to data availability. 

3.4.6.3 Validation  

As part of the toxicokinetics studies, pesticide concentration was measured different body tissues 

of animals terminated at different time points following a single oral dose. These tissues included 

the blood. Blood samples from these animals were arranged to provide an independent time 

course data set of internal toxicant concentration. These were then used to assess the model 

performance by comparing to the internal concentration predicted by the model with fixed 

parameters.  

Generally, these data covered the same two dose levels as the calibration data set so could not 

provide validation per se, since the model inputs (i.e. dose levels) were virtually the same. Any 

differences in achieved doses were generally very small so differences between observed 

toxicokinetics were primarily due to individual variability. This did however provide an 

indication of how well the true average response was represented by the calibration data set and 

therefore the calibrated model.  

In most cases blood concentration data sets included only three samples for each time point and 

responses could be highly variable between individuals. We did not carry out any quantitative 

assessment of predictions because this would be misleading due to the low sample size combined 

with strong inter-individual variability 

3.4.7 TK-TD Growth Modelling 

3.4.7.1 Parameterisation 

The full TK-TD growth model comprises all the model equations (eqns. 3.1, 3.2 & 3.3) and 

simultaneously predicts toxicant concentration in the gut (mg(AI) × kg(BW)-1), internal toxicant 

concentration (mg(AI)×kg(BW)−1) and body weight (g). 

The growth parameter k describes the proportion of resources allocated to maintenance and 

growth. When only modelling growth, its precise value is not crucial (only its product with the 

fitted parameter 𝐽𝐴𝑚
𝑎  contributes to the model) so this was fixed at its default value of 0.8 (Jager 

et al., 2013) which estimates suggest is reasonable for the species (Kooijman, 2015, Rakel and 

Gergs, 2018). Physiological studies suggest assimilated energy is converted to new tissue by 

homeotherms with an efficiency between 0.4 and 0.5 (Sibly and Calow, 1986a) so the parameter 

𝑦𝑉𝐴  was fixed at 0.45. If strong evidence were provided suggesting different values for either of 

these parameters, 𝐽𝐴𝑚
𝑎

 and 𝐽𝑀
𝑉  would simply need to be adjusted by the appropriate correction 
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factor. Stress functions would continue to have the same impact and so would not need 

adjustment. 

In repeated dose toxicity tests each animal’s weight and food consumption were recorded at least 

weekly for some or all of the study period (OECD, 2001, OECD, 1998, OECD, 2008). In some cases, 

food consumption was recorded per cage, so the values provided were an average per animal but 

each weight measurement had a corresponding measurement of food consumption. The achieved 

toxicant concentration in the diet of each treatment group was also measured. This allowed the 

growth parameter f (scaled feeding rate) and the TK parameter I (toxicant ingestion rate) to be 

calculated directly from the data. 

The maximum feeding rate at a given food density is assumed to be proportional to surface area. 

The scaled feeding rate, f, is equal to an individual’s actual feeding rate at a given food density 

divided by the maximum feeding rate for its size and therefore ranges from 0 to 1 (Jager et al., 

2013).  

Measured food consumption per day was converted into surface area specific feeding rate by 

dividing by the associated body weight raised to the power 2/3. Dividing these values by the 

maximum feeding rate recorded in the study group (separated by sex) provided scaled f values 

between 0 and 1 for each individual in each week of the study period. A matrix was then produced 

containing average weekly feeding rates for each treatment group, these provided the value of f 

for each treatment in each weekly interval. 

Multiplying the achieved toxicant concentration in the diet (mg(AI) × kg(diet)-1) by the mass specific 

daily feeding rate (kg(diet) × kg(BW)-1 × d-1) provides the ingested dose (mg(AI) × kg(BW)-1 × d-1). Again, 

a matrix was produced, this time containing the weekly averages of daily ingested dose for each 

treatment. This provided the values of the toxicant ingestion rate I which fluctuates with feeding 

rate throughout the study period. All other TK parameters remain fixed at the values determined 

during TK model calibration (ka and ke were multiplied by 24 to convert them from hourly to daily 

rates). 

3.4.7.2 Calibration 

The data from 90 day toxicity studies (OECD 408) were intermediate in terms of sample size and 

dietary dose levels. Thus, these data were more representative than the 28 day studies (OECD 

407) while the observed effects on growth were generally larger than in 2 year studies (OECD 

416, 451 or 452). For this reason, the 90 day studies were used to calibrate the TK-TD model. 

Calibration of the growth and TD parameters was conducted separately for males and females. 
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The two free growth model parameters, 𝐽𝐴𝑚
𝑎  and 𝐽𝑀

𝑉 , were fitted to the growth data from the 

control group and then fixed. Next, the model was run for all treatments but with no stress 

applied. This step was used to identify the lowest dose group in which observed growth was lower 

than predicted by the growth model based on feeding rate alone (i.e. the lowest dose group in 

which chemical stress occurred). The initial value for the estimation of the TD parameter NEC was 

then set to half the average internal concentration predicted by the TK model for that treatment. 

Only two treatments (the lowest affected treatment and the top dose) were used for fitting as this 

allowed more of the data to be used for testing predictions while still providing a wide range of 

internal concentration predictions.  

The TD parameters NEC and CT were then fitted to the lowest affected treatment and the top dose 

group simultaneously, this was repeated for each physiological mode of action. The fit which 

produced the lowest AIC value was selected. The physiological mode of action and resulting TD 

parameter values were then fixed.  

3.4.7.3 Validation 

For verification, the resulting model was then run for all treatments in the 90 day study producing 

interpolations to the intermediate dose groups. This was to show how the model could be 

validated with data from only one study. Then, the model was used to predict growth in the 28 

day and two year studies. Only the first 12-14 weeks of growth data from two year studies were 

used to test model predictions. The reasons for this cut-off point are addressed in detail in the 

discussion.  

Matrices containing weekly averages of feeding rate, f, and toxicant ingestion rate, I, were 

generated from the data as described previously. While the TK and TD parameters remained 

fixed, it was necessary to repeat the fitting of growth parameters (𝐽𝐴𝑚
𝑎  and 𝐽𝑀

𝑉 ) to the control group 

data. This was important so that the effects of feeding rate on growth were predicted relative to 

the control group of each study rather than to that of a separate study in which conditions 

(laboratory rat strain, feed, average temperature) may have differed.  

All model parameters were then fixed and the model was used to predict effects on growth in all 

treatments. Predictions were compared to observed data for each treatment at each observed 

time point. Predictions were considered in terms of animal weight (g) or the proportional effect 

on body weight relative to the control group (mean weight(treatment) × mean weight(control)-1). 

Predictions were deemed accurate if they were within one standard deviation of the mean 

observed value at each time point as this measure takes into account the individual variability 

within the data. The percentage of predictions that were accurate was reported and any 
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exceptions were noted. Exceptions were used to determine the limitations of the model and to 

infer the underlying reasons why they arise. 

3.5 Results 

Results are summarised in this section however, due to the number of studies used to calibrate 

and test models, it was not practical to include all tables and figures here. These can be found in 

the Appendix A.   

3.5.1 Toxicokinetics 

For all the pesticides the concentration reached in the blood was significantly correlated with that 

in all other tissues sampled (p<0.01) except for the concentration of fenpropidin in fat which was 

not significant (p = 0.0574). However when one outlier (residual > 3 s.d. from mean) was removed 

from the analysis, the correlation was highly significant (p<0.001).  

All the compounds exhibited first order kinetics, producing blood concentration time curves 

which could be reproduced by fitting of a one compartment TK model. In some cases adjustments 

to the modelling procedure were required which will be described in turn.  

For thiamethoxam (fig. A6), global model fits at both high (R2 = 0.83 for males and 0.74 for 

females) and low dose levels (R2 = 0.68 for males and 0.71 for females) closely matched the 

observed data. When model predictions were tested against independent blood concentration 

data, the predicted curves again closely emulated the observed data.  

For four of the compounds, acibenzolar-S-methyl, azoxystrobin, fludioxonil and fenpropidin (figs. 

A1-A4), the global model fits better represented blood kinetics in the high dose group 

(0.65<R2≤0.89), with modelled curves not reaching the peak blood concentration (Cmax) observed 

in the low dose groups (-0.48<R2≤0.37). In all these cases this same pattern was observed when 

model predictions were tested against an independent blood concentration data set. The likely 

explanation for this phenomenon is that, as pesticide concentration in the gut is increased, 

absorption rate becomes saturated and reaches a maximum (Sjovall et al., 1985). However, with 

only two dose levels tested in most toxicokinetics studies, generally differing by a factor of at least 

100, it is not possible to estimate the point at which this occurs or to determine whether it is a 

gradual process or happens suddenly. Lower model accuracy at low internal concentrations has 

little impact upon eventual predictions of effects, and none at all if below the NEC. As the high 

dose levels were more relevant to the dietary ingestion rates associated with effects on body 

weight, these parameter values were accepted. 

Male rats administered a high dose (100mg × kg(BW)-1) of fenpropidin appeared to exhibit a double 

peak in the concentration reached in the blood. An initial peak was reached 1 hour after dosing 
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with a second, lower peak after around 8 hours. Double peaks have been attributed to variable 

absorption in different regions of the gut, enterohepatic recirculation or delayed gastric emptying 

(Godfrey et al., 2011). Were the dose delivered at a more constant rate in the diet rather than as 

a single large dose one would expect the overall rates of absorption and elimination to reach 

equilibrium and so any of these mechanisms would have less impact on blood kinetics. As the 

intended application of the model was to predict the effects of dietary dosing, it was decided to 

fit the model for males with the data collected 2h, 3h, 4h and 6h after dosing excluded in the high 

dose group. This allowed the model to fit a single peak in which the observed Cmax, the time at 

which it was reached (Tmax) and time for total elimination of the dose were matched closely by the 

model (fig. A3).   

Following administration of a high dose, peak concentration of prosulfuron in the blood (μg(AI) × 

g(Blood)−1) exceeded the body weight normalised dose (mg(AI) × kg(BW)−1). This could not be modelled 

by our TK model (equations 3.1 & 3.2) which uses blood concentration as a proxy for overall 

internal concentration. However, blood only accounts for around 7% of body mass (Lindstedt and 

Schaeffer, 2002) so in reality only >7% of the dose needs to be present in the blood at one time 

for this to occur. Nevertheless, this phenomenon was unusual among the chemicals included in 

the study. 

In order to address this, the relationship between prosulfuron concentration in the blood (CBlood) 

and overall carcass concentration of terminated animals was investigated. Only male animals 

were used in the tissue sampling experiments with three animals sampled at each of four time 

points following a high or low dose. Blood and carcass concentration were strongly and 

significantly correlated (Pearson’s correlation coefficient, r =  0.99, n=24, p <0.0001) . The line of 

best fit, intercepting the y axis at zero, was derived by finding the least squares solution to the 

equation CBlood = XCInt. The gradient, X=2.4337, was determined as the concentration factor by 

which prosulfuron concentration in the blood exceeds that in the body as a whole.  

A third equation, incorporating that concentration factor but otherwise identical to equation 3.2, 

was then added to the TK model to describe blood concentration over time as: 

∆𝐶𝐵𝑙𝑜𝑜𝑑 = 2.4337
𝐿∞

𝐿⁄ 𝑘𝑎𝐶𝐺𝑢𝑡𝐹 − 
𝐿∞

𝐿⁄ 𝑘𝑒𝐶𝐼𝑛𝑡 −  𝐶𝐼𝑛𝑡(∆𝑊
𝑊⁄ )                (3.5) 

This determines that, CBlood = 2.4337×CInt at any given time point, with ΔCInt modelled by equation 

3.2. Blood and whole body internal concentration could then be modelled simultaneously. The 

fitted model produced curves matching the data well for both variables at the high dose (R2 = 0.95 

for CBlood and 0.97 for Cint, fig. A5).   
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In contrast to other compounds the prosulfuron model predicted higher than observed internal 

concentrations at the low dose level. This was the case for concentration in the whole body as 

well as in the blood so the concentration factor was not the cause of the discrepancy. In fact, for 

the low dose group alone the concentration factor was higher than the overall figure. A possible 

explanation in this case is that the elimination rate becomes saturated beyond a certain internal 

concentration (Lesko, 1979, Caccia et al., 1990), this would be consistent with the unusually high 

internal concentrations measured in the high dose groups. The high dose in the prosulfuron 

toxicokinetics experiments was around 450mg(AI) × kg(BW)−1, several times higher than the high 

dose used for other chemicals included in this study (100 mg(AI) × kg(BW)−1). Had the other 

chemicals been tested at such high doses it is possible that a similar pattern would have been 

evident. This meant that, of the compounds in this study, only thiamethoxam showed no dose 

dependence in uptake. Yet again, only two dose levels (in this case differing by a factor of around 

900) provide insufficient data to determine the maximum elimination rate and the internal 

concentration at which it is reached. 

With fixed parameters and independent data, the model again predicted higher prosulfuron 

concentration in the blood than was observed at the low dose. The data were predicted well at 

the high dose however. For both sexes, Cmax and Tmax were predicted with reasonable accuracy. 

Elimination of the compound was slower than predicted in females, but the parameters were 

deemed acceptable and the model was not fitted to males and females separately.  

3.5.2 Growth 

The fitted DEBkiss growth curve was able to accurately model growth of rats aged around 6-20 

weeks. In total, the model was fitted to 34 control group datasets comprising weekly observations 

of body weight and food consumption rate. Modelled body weight was within 1 standard 

deviation of the observed mean at all time points in 30 out of 34 cases and at >90% of time points 

in 32 out of 34 cases (figs. A7 – A40).  The deviations were most pronounced in two data sets. For 

the female control group in the 28 day toxicity study of fenpropidin, the modelled body weight 

was lower than the observed mean by more than one standard deviation at week one only. As a 

result, only 75% of the modelled weights were within one standard deviation. For the male 

control group in the 90 day toxicity study of azoxystrobin, the modelled body weight was lower 

than the mean by more than one standard deviation in weeks two and four. This resulted in only 

84.6% of the modelled weights being within one standard deviation of the observed mean. For 

every data set, all predictions of body weight in the control group were within 10% of the mean 

at all time points. 
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3.5.3 Toxicodynamics 

With the growth and toxicokinetic parameter values fixed, the toxicodynamic parameters, NEC 

and CT, were fitted to selected data as described in the methods section. Predictions were 

interpolated to other treatments in the 90 day studies and extrapolated to 28 day and 2 year 

studies.  

In terms of body weight ≥75% of predictions were within 1 standard deviation of observed means 

for 28 out of the 34 study groups. In terms of effect on body weight, ≥75% of predictions were 

within 1 standard deviation of observed means for 30 out of the 34 study groups. Model accuracy 

was low for male and female rats given acibenzolar-S-methyl over 28 days and males given 

fenpropidin over 28 days. A summary of results is shown in table 3.2. For female rats 

administered thiamethoxam or fludioxonil, TD parameters were fitted to a single treatment 

group. This was because, in studies of both compounds, body weight reductions beyond those 

predicted based on feeding rate were only evident in the top dose group. In the case of 

thiamethoxam, significant body weight reductions were only observed in females dosed with 

10,000mg/kg(diet) of thiamethoxam over 28 days (fig. A39). Females administered fludioxonil in 

their diet did show significant body weight reductions. However, these were predicted entirely 

based on reduced feeding rate in all but one treatment, those dosed with 20,000mg/kg(diet) over 

90 days (fig. A27). The consequence was that while the NEC was consistent with data from several 

treatments, CT was determined using data from only one treatment. However, since toxicant 

ingestion rate was dynamic, CT was fitted to a range of internal concentrations even within one 

treatment. 



 
 

Table 3.2 Toxicodynamic parameters used to model the effects of each compound on male and female rats. The percentage of predictions (in terms of 
absolute body weight and effect on body weight relative to the control group at each time point) within one standard deviation of the observed mean, are 
shown. Percentages  ≥75% are  highlighted in green, those of ≥50% and <75% are shown in blue while those  <50% are highlighted in orange. Those 
marked with a ‘*’ were fitted to only one treatment group. pMoA: best fitting physiological Mode of Action. 

Compound Acibenzolar-S-methyl Azoxystrobin Fenpropidin 

Sex Male Female Male Female Male Female 

pMoA Maintenance Growth Efficiency Assimilation Growth Efficiency Maintenance Assimilation 

NEC 
(mg × kg(BW)-1) 

1.08E-06 7.93E-07 1.20E-04 4.62E-08 1.40E-07 0.21 

CT 

(mg × kg(BW)-1) 
507.4 79.99 424.77 270 24.02 31.86 

Study 90d 28d 2y 90d 28d 2y 90d 28d 2y 90d 28d 2y 90d 28d 2y 90d 28d 2y 

% weight 
predictions 

±1s.d. of mean 
92% 42% 92% 75% 25% 73% 87% 94% 100% 92% 100% 100% 77% 25% 70% 100% 63% 80% 

% effects 
 predictions 

±1s.d. of mean 
100% 42% 90% 85% 33% 75% 90% 94% 98% 100% 94% 100% 80% 25% 70% 100% 75% 83% 

                                      

Compound Fludioxonil Prosulfuron Thiamethoxam 

Sex Male Female* Male Female Male Female* 

pMoA Maintenance Maintenance Maintenance Growth Efficiency Maintenance Maintenance 

NEC 
(mg × kg(BW)-1) 

7.32E-11 38.09 1.01E-06 3.26E-07 1.34E-08 50.64 

CT 

(mg × kg(BW)-1) 
251.7 49.33 2676 561.5 656.3 154.6 

Study 90d 28d 2y 90d 28d 2y 90d 28d 2y 90d 28d 2y 90d 28d 2y 90d 28d 2y 

% weight 
predictions 

±1s.d. of mean 
100% 75% - 98% 100% - 100% 95% 96% 94% 100% 100% 86% 75% 90% 91% 100% 96% 

% effects 
predictions 

±1s.d. of mean 
100% 75% - 100% 100% - 100% 100% 100% 96% 100% 100% 100% 75% 100% 98% 100% 100% 



 
 

 Model predictions were also used to investigate the extent to which reductions in body weight 

could be attributed to reduced feeding or direct toxic action. This was done by comparing 

experimental data to model simulations in which no stress was applied, producing growth curves 

predicted based solely on feeding rate. Comparisons between expected growth modelled with 

actual feeding rates and observed growth were conducted separately for every treatment group. 

The observed and predicted body weights in each treatment were converted to proportions of 

the control body weight (observed and predicted respectively) at each time point. The proportion 

of any observed body weight reductions (relative to controls) that were predicted based on 

feeding rate alone could then be calculated. The remainder was attributed to toxic action. If body 

weight predicted based purely on actual feeding data was below that observed at a given 

timepoint then any observed weight reduction (relative to controls) was attributed entirely to 

reduced feeding rate. Likewise, if body weight predicted based on actual feeding rate in a given 

treatment group was higher than controls, then any observed weight reduction was attributed 

entirely to toxic action. An example of this process is shown in figure 3.4; selected results for all 

compounds are shown in figure 3.5.  

 

Figure 3.4 Growth modelled based on feeding rate only (lines) and observed growth (circles) of 
male rats. The control group and those dosed with 20,000 mg × kg(diet)

-1 fludioxonil are shown. The 
proportional breakdown of the observed reduction in body weight of treated rats vs controls at the 
end of testing is represented in a bar chart. 

For azoxystrobin, prosulfuron, thiamethoxam and fludioxonil there appeared to be a pattern 

across the sexes, with reduced growth being driven more by feeding rate in females and by 

toxicity in males (figure 3.5). This was most evident in the case of fludioxonil, which was 

associated with significant body weight reductions in both sexes. While reductions in male body 

weight were attributed largely to toxicity, the reductions observed in females were predicted 

based entirely on reduced feeding rate in all but the highest dose group across two studies. A 
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similar pattern was seen for thiamethoxam. Once again toxic effects were only predicted to 

impact upon female bodyweight in the highest dose group. In this case however, reductions in 

female body weight were not observed in most treatments as feeding rate was not affected either.  
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Figure 3.5 Bar charts showing the proportion of observed weight reductions relative to the control 

group attributed to reduced feeding rate and/or toxic stress by the growth model. All treatments in 

which a weight reduction was evident at the end of the analysed period are included. X-axis labels 

denote the observation date and dietary dose, in some cases treatments were duplicated between 
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studies. No bar is displayed where there was no reduction in weight. Note that bars are the same size 

regardless of the magnitude of the observed effect. 

3.6 Discussion 

3.6.1 Predicting Growth Under Chemical Stress 

Raw data from chronic toxicity studies were used to test DEBtox predictions of sublethal toxic 

effects in mammals. Weekly measurements of body weight and food consumption as well as 

precisely measured dietary concentration provide good quality data with which to calibrate 

models. As the regulatory framework requires several such studies, abundant data are available 

to test predictions (OECD, 1998, OECD, 2008, OECD, 2001). As has been noted previously, the 

focus on novelty means that funding for academic studies is rarely allocated to corroboration 

studies. Moreover, any such studies which are funded are also unlikely to be published in the 

scientific journals  for the same reason (Jager and Ashauer, 2018). 

Our findings showed good agreement between predictions and data. With minimal model fitting 

(only selected treatments from 90 day study), observed effects on body weight were predicted 

reliably (≥75% of predictions accurate to within one standard deviation of the observed mean in 

all studies for which data were available) in males and females for four of the six chemicals 

modelled. This suggests TK predictions were at least proportional to actual internal 

concentration over time and that the ‘linear past threshold’ TD model (figure 3.2) is based on 

reasonable assumptions.  

3.6.2 Feeding Rate vs Toxicant Ingestion 

An obstacle when analysing the effects of dietary toxicant exposure is that the ingested dose 

depends as much on the feeding rate of the study animals as it does on the concentration in the 

diet. While a high feeding rate will have a positive effect on growth, the corresponding toxicant 

ingestion will place stress on growth parameters. Understanding of this trade-off is important 

(Thompson, 2007) as ingestion is considered the primary exposure route for terrestrial mammals 

to pesticides in the field (Bednarska et al., 2013a) although it is argued that other routes should 

receive greater attention (Mineau, 2011, EFSA, 2009b). In the modelling approach used here, both 

the scaled feeding rate and pesticide ingestion rate were calculated as dynamic model inputs, 

directly from the data. This allowed model predictions to separate the competing effects of 

feeding rate and toxic action on growth. For example, male rats given 2500 mg/kg(diet) 

thiamethoxam over 90 days grew larger than those given 1250 mg/kg(diet). This result was 

correctly predicted by the model as the higher feeding rate of the 2500 mg/kg(diet) group partially 

counteracted the chemical stress (fig A35). 
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Model predictions can therefore provide new insight into the observed data by comparing data 

to model simulations in which no stress is applied. Such predictions only require the calibrated 

growth model and data on feeding rate. Thus, even if toxic effects cannot be reliably predicted, 

growth model predictions can indicate the degree to which observed reductions in body weight 

were driven by toxicity or reduced feeding relative to controls. Such information is valuable for 

assessing the risk that a chemical poses to terrestrial mammals in the field. If strong avoidance is 

observed, then this may increase or decrease the risk posed depending on whether animals would 

have a choice of food items in the field scenario (EFSA, 2009b, Thompson, 2007). The degree to 

which reduced feeding can be regarded a toxic effect is an interesting question and depends on 

the underlying cause. Reduced feeding due to nausea or suppressed appetite could be considered 

a toxic effect but reduced feeding due to palatability is simply a behavioural response. 

For several compounds there appeared to be a pattern across the sexes, with reduced growth 

being driven more by feeding rate in females but by toxicity in males. This pattern was strongest 

for fludioxonil and thiamethoxam and in both cases was reflected by a large difference in the 

values assigned to the NEC for each sex. This would suggest that while females exhibit a higher 

tolerance for these compounds, at least with respect to growth, they show stronger feeding 

avoidance. Such inconsistency in the toxicodynamic parameters of males and females may seem 

surprising however, large differences between reference doses for each sex have long been 

documented in rats (Calabrese, 1986). Moreover, the results were unequivocal with respect to 

thiamethoxam, as females were unaffected at several dose levels which affected males. In several 

cases, differences have been noted in the sensitivity of the liver and kidneys to toxicity (Calabrese, 

1986, Seralini et al., 2007), possibly related to variable enzyme production between the sexes 

(Moser et al., 1998). The liver and kidneys were identified as the target organs of these pesticides 

in mammals so these results would appear consistent with previous findings (Syngenta, 

unpublished). Given that such differences in chemical sensitivity can occur between the sexes it 

should not be surprising either that the models suggested different modes of action for several of 

the compounds in males and females (table 3.2). Mode of action in DEBtox refers to abstract 

processes rather than specific chemical pathways so, this simply implies that the effects on the 

growth curve differed between the sexes (Jager, 2015b). 

3.6.3 Model Limitations 

A fundamental limitation to any model of a complex system is the trade-off between realism and 

simplicity. As user friendliness is a significant consideration for regulatory use (EFSA, 2018), 

DEBkiss was selected as the simplest possible approach to investigate how raw lab data should 

be utilised to parameterise and calibrate models with data from dietary toxicity studies. Another 

reason for prioritising simplicity was so that potential issues could be clearly identified at this 
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early stage for future models to develop, with scope for further elaboration if necessary. Several 

such issues were highlighted by our results which are discussed in this section. 

While our results demonstrate that DEBtox is a useful framework, predictions of growth under 

chemical stress were not reliable in all cases. The effects of fenpropidin and acibenzolar-S-methyl 

were predicted accurately in several treatments, but overall model accuracy was lower than for 

the other chemicals. When considering in vivo effects, any observed deviations from predictions 

are unlikely to result from measurement error, more often, individual variability is the cause. This 

represents a hurdle to predictive modelling, even for genetically similar laboratory strains kept 

in controlled conditions. Indeed, individual variability in growth is still evident in studies using 

genetically identical springtail (Folsomia candida) clones kept individually and provided 

unlimited food (Jager, 2013). As such, we cannot know for sure how treated animals would have 

grown without a toxicant in their diet, so growth parameters fitted to the control group must be 

fixed across treatments. Consequently, models provide predictions of mean body weight over 

time under specified conditions but do not account for individual variability in parameter values. 

Another consequence of individual variability is that it can be difficult to identify the underlying 

causes of model inaccuracy. For example, several treatment groups of female rats fed lower 

dietary doses of acibenzolar-S-methyl grew larger than controls despite feeding at a lower rate. 

This is clearly a result the model would not predict and could simply be the result of variability 

in average growth parameters between treatment groups. Alternatively, this could be interpreted 

as evidence of hormesis (Mattson, 2008), the phenomenon by which lower doses of a chemical 

have the opposite effect of higher doses on a given endpoint. If this were the case, then the stress 

function rather than the growth parameters would require alteration, but we cannot be sure 

which. In a few treatments the opposite issue arose when the animals fed at a relatively high rate 

but did not grow as expected. Since feeding rate was calculated based on actual body size rather 

than predicted size, modelled growth continued at a higher than observed rate. For these 

treatments, model predictions far exceeded observed growth. This issue could be somewhat 

resolved by calculating feeding rate relative to the predicted body size over time. However, it is 

likely that variability in growth parameters also played a role. 

Furthermore, growth is not the only modelled property subject to individual variability. 

Tolerance to a toxicant (Barata et al., 2002) or the rates at which it is taken up and eliminated 

(Bednarska et al., 2013a) may be highly variable among individuals in a population.  Inter-

treatment differences in any one or more of these properties could result in observed effects not 

being uniformly correlated with internal concentration and are therefore difficult to predict 

without further knowledge. This was evident for mandipropamid; results were not reported as 
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the data were not suitable to test model predictions. In the 90 day study, males in the highest dose 

group grew larger than those at a lower dose despite feeding at roughly the same rate. Females 

meanwhile grew larger than predicted based on their feeding rate in all dose groups. The highest 

dose groups in the 28 day study were terminated early due to unacceptable reductions to feeding 

rate, while reduced growth was not observed in the 2 year study so toxicodynamic predictions 

could not possibly be validated.  

Poor model accuracy (<50% predictions accurate to within one standard deviation) only 

occurred when predicting the effects of 28 day dietary exposure. This is not entirely surprising as 

there are several factors making these data sets more challenging to model. In 28 day studies 

sample size was lowest, with only 5 individuals per sex and only four time points observed so 

naturally, individual and temporal variability would be expected to have a larger impact. 

Moreover, in the early weeks of dietary studies feeding rate can be highly variable between 

treatments and over time, as animals react behaviourally to a novel ingredient added to their diet. 

In all 3 data sets for which predictions were poor, growth predictions in the highest dose groups 

were substantially lower than observed. This may have resulted from internal dose being 

overpredicted as dose-dependent uptake was apparent for these compounds. Another possibility 

is that the default value of k played a role here. If this value were too low this would stop growth 

when it could still occur, though this would be almost entirely compensated for in the fitting of 

other growth parameters. Including the reproduction buffer could have delayed the need to 

metabolise structure (Jager et al., 2013), but using up the buffer would still correspond to a 

reduction in overall body weight. Moreover, the model only predicted starvation to occur in the 

early weeks of testing. At this point, the rats were around the onset of puberty (Rakel and Gergs, 

2018) when the buffer begins to accumulate (Jager et al., 2013), so any buffer amassed by this 

point would be almost negligible.  

It is quite possible that the dual stresses of reduced feeding and toxicity elicit compensatory 

physiological or behavioural responses not predicted by the model. Reduced body temperature 

has been documented as a response to starvation in rats (Sakurada et al., 2000) meanwhile 

chemical stress has been shown to induce reductions in body temperature and activity (Buwalda 

et al., 2001). Such responses would likely correspond to a reduction in the maintenance rate,  𝐽𝑀
𝑉 , 

and should be considered in future models of physical and chemical stress. 

Individual variability was also evident in the toxicokinetics data. Individual responses varied with 

regard to the toxicant concentration reached in the blood and the speed with which it was 

absorbed and eliminated. The low sample size of three individuals per treatment meant that mean 

observations for each time point, to which the models were fitted, could be heavily influenced by 
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variability on either axis. As an example, even if three individuals exhibited a single peak with 

very little variability in Cmax, the average data could show a double peak if just one individual 

peaked later than the other two. Moreover, both peaks would likely be lower than the Cmax of any 

individual. Even simple quantitative assessment of model fits, such as whether model predictions 

were in the observed range for toxicokinetic statistics such as Cmax, Tmax or area under the curve, 

were therefore problematic. Besides, which of these statistics would be more relevant for 

predicting the internal concentration resulting from prolonged dietary exposure is debatable and 

none of them they are used by TK-TD models to predict effects. Nevertheless, TK model 

predictions provide plausible estimates of internal concentration resulting from the recorded 

time varied ingestion rates, with parameter values fitted to the best available data. It is likely that 

the predictions are at least proportional to the true values and therefore form a credible basis for 

the fitting of TD parameters.  

While it is not possible to separate variability in TD and growth parameters, future model 

iterations could incorporate stochasticity in growth parameters by utilising the wealth of control 

data available from studies on R. norvegicus (Jager, 2013). This would also be possible for TK 

parameters although low sample size would present a challenge. An alternative would be to fit 

the TK model individually (where appropriate data are available) and use the average parameter 

values, rather than fitting to average data. However, suitable individual data were not available 

for all the compounds in this study. 

3.6.4 Implications for DEB theory 

In this study, precise food consumption data were available, rather than simply food availability. 

This allowed the mean surface area specific feeding rate to be calculated on a weekly basis for 

each treatment in a study, before being scaled as a proportion of the maximum value in each data 

set. Consequently, the growth parameters were fitted to controls in each data set to account for 

variability in feeding rate within and between studies. Previously, it has been assumed that the 

scaled feeding rate, f, is equal to 1 when food is available ad libitum (Desforges et al., 2017). For 

certain purposes this is a reasonable and necessary assumption. When modelling growth in the 

field for example, detailed data are unlikely to be available and so feeding rate must be estimated 

as a fraction of ad libitum feeding in laboratory studies. However, this was not satisfactory in this 

study as variability in feeding rate over time and between treatments was an important driver of 

effects. Moreover, several treatment groups fed at a higher rate than controls, so it was important 

not to assume the maximum value of f as the default.  

Growth ceases at the ultimate weight, W∞, as this is the point at which the maximum assimilation 

rate can only match the maintenance requirements of the organism (Jager et al., 2013). Assuming 
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f = 1 means that W∞ is equal to the theoretical maximum weight, Wm, when food is available ad 

libitum (see table 3.1). However, a marked trend in the data was that, even with unrestricted 

access to food, feeding rate relative to surface area declined as the animals grew. This presents a 

clear issue in that it places an additional limit on the assimilation rate and ensures that the growth 

curve reaches a plateau before Wm is reached. In many cases, by week 13-14 of observation, the 

value of f was well below the maximum and so the theoretical Wm based on fitted parameter 

values was unrealistically high. 

Recent DEBtox studies of toxic effects on rainbow trout have also sought to account for variability 

in f, however this has focused on differences between study groups rather than within treatment 

changes over time (Zimmer et al., 2018, Sadoul et al., 2018). Much effort has gone into deriving 

standard DEB parameters for species of interest (Rakel and Gergs, 2018, Marques et al., 2018, 

Kooijman, 2015). However, lifetime variation in f must be considered for these to be compatible 

with time varied feeding data rather than the constant food density. For laboratory strains of 

R.norvegicus this could certainly be addressed; due to their extensive use in regulatory testing 

there exists a vast database of growth and food consumption in control conditions. If the 

relationship between feeding rate and body size were described mathematically, this could be 

utilised for scaling observed feeding rate such that the maximum feeding rate decreases with size 

and the resulting value of f remains roughly constant over the lifetime.  

Although longer term data were available, predictions of toxic effects on body weight were not 

reported beyond around 12-14 weeks of dietary exposure for the two year studies. Beyond this 

point the intervals between body weight and food consumption observations increased. Since 

observed feeding rate was used as a model input, this reduction in data resolution would be 

expected to adversely affect predictions. There were also more fundamental reasons behind this 

cut-off. While sigmoidal curves such as the Von Bertalanffy growth model (to which DEBkiss 

simplifies (Jager et al., 2013)) can approximate the growth curve of rats, there are distinct stages 

where observed growth deviates from such a model. It has previously been reported that the 

Gompertz function – also sigmoid – matches data closely when fitted to the first 70-105 days of 

rat growth but that longer term predictions are problematic (Pahl, 1969). When fitted to the full 

two years of control data the DEBkiss curve also showed systematic errors. For both males and 

female rats, predicted body weight was lower than observed for roughly the first three months, 

higher than observed until around month 14 and then lower than observed for the final 10 

months.  

A possible explanation is that k (the allocation to soma and reproduction), does not remain 

constant throughout the rat’s lifespan. A logical suggestion is that a greater proportion of energy 
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may be allocated to growth earlier in life with more energy used for sexual maturation during 

puberty. Indeed, it has been postulated that k may change in humans at puberty (Kooijman, 2000). 

It is also likely that reserve dynamics become more important in adult rats, as continued ad 

libitum food availability allows animals to develop significant reserve stores after structural 

growth has ceased. The full DEB model which, unlike DEBkiss, models reserve as well as structure 

may therefore be better able to address this issue.  

Another issue with long term predictions is that there is insufficient knowledge regarding 

recovery after inhibition of growth in rats. By default, after a stressor is removed, modelled body 

weight may theoretically reach Wm if feeding rate is high enough. Based on our analysis, this 

assumption appeared sound for rats up to around 23 weeks of age. Model predictions agreed well 

with data in cases where 90 day studies included four weeks of recovery for the highest dose 

group. However, skeletal growth is known to stop in rats at around 26 weeks of age, the 

underlying processes are complex but appear to be related to age rather than size (Roach et al., 

2003). Logically, if growth has been suppressed up to a critical age then a full recovery, relative 

to controls, will not be possible as growth will cease before W∞, let alone Wm, can be reached. We 

hypothesise that this occurs because, beyond a certain age, energy is allocated to processes other 

than growth, such as maturation and reproduction. This would correspond to a reduction in the 

parameter k, resulting in a reduced growth rate and, crucially, a lower W∞, for animals that had 

experienced stress (Jager et al., 2013, Kooijman, 2000).  

Realistic constraint of recovery is essential for long term predictions to be of use. Otherwise, to 

match observed data, TD parameters must continually stress growth even when it is no longer 

possible, and so exaggerate the toxicity of a chemical. Recovery may be limited as a function of 

the (structural) weight reached by a critical age. However, determining rules by which to 

accurately decrease the value of k thereafter would likely require significant experimental work. 

Removing a given stressor at different timepoints may identify the age at which a full recovery 

becomes impossible. However, subsequent experiments would still be required to examine how 

potential for recovery is affected by the level of stress as well as the duration. Such experimental 

work was beyond the scope of this study. In any case, for regulatory purposes such long term 

predictions are of limited relevance as pesticides are not applied at constant rates for years at a 

time. The 12-14 week exposure periods modelled in study go well beyond the 21day exposure 

considered in ecological risk assessment (EFSA, 2009b)so should be sufficient for extrapolation 

to realistic exposure scenarios  
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3.7 Conclusions 

This study shows that DEBtox modelling with DEBkiss can provide an effective and simple to use 

tool for predicting toxic effects on growth in rats. We show how time varying model inputs for 

feeding rate and pesticide ingestion rate can be calculated directly from data generated in 

standard chronic toxicity studies, providing additional insight into data by indicating to what 

extent body weight is impacted by feeding rate or toxic effects over time.  

We also identify several difficulties which future models should aim to overcome. Individual 

variability presents a significant obstacle to assessing model accuracy. Our models simulate 

toxicokinetics, toxicodynamics and growth, all of which may be subject to variability. In most 

cases predictions were accurate to within one standard deviation of the observed mean and so 

provide useful estimates of the mean but not exact projections including variability. 

Our findings support DEB theory as an effective basis for predictions of sub-lethal toxic effects in 

mammals. However, some issues became apparent regarding its compatibility with chronic 

toxicity data. Given the extensive use of R. norvegicus in laboratory testing and the resulting 

wealth of control data, these complications can be addressed. Further analysis of lifetime 

variation in feeding rate and energy allocation to the soma may improve model accuracy and 

realistically constrain recovery. Such adjustments would broaden the range of applications for 

which DEBtox may be used. 
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Chapter 4 - Can TK-TD modelling bridge the gap between in vitro and in 

vivo mammalian toxicity data? 

4.1 Preface 

The aim of this chapter was to build on research by Stadnicka-Michalak et al. (2015), which used 

TK-TD modelling and in vitro  assays to predict toxic effects on the growth rate of fish. As an 

experimental study, this chapter is very different to the others in the thesis, but the models 

developed in Chapter 3 were an integral part of the methodology being tested.  

Having built TK-TD models to predict the growth of rats under toxic stress, I began to consider 

how they might be used to develop in vitro – in vivo extrapolation methods for rodents. The 

dietary dosing route, used in studies on terrestrial species, means that ingested dose and the 

resulting internal concentration can be highly variable over time. Therefore, any direct 

comparison between in vitro and in vivo data is not meaningful, so model predictions of growth 

under constant pesticide exposure must serve as a proxy for in vivo observations. With this in 

mind, I formulated an in vitro/in silico approach and planned experiments to determine whether 

toxic effects on in vivo growth could be predicted. These were carried out in labs at the University 

Hertfordshire. Chapter 4 is a research paper describing this study.  

4.2 Abstract 

Repeated dietary dose testing is used to assess longer term toxicity of chemicals, such as 

pesticides, to mammals. However, the internal pesticide concentration varies significantly as 

feeding rate relative to body size fluctuates over time. Toxicokinetic-toxicodynamic (TK-TD) 

models estimate internal toxicant concentration over time and link this directly to observed 

effects on growth rate of laboratory rats. Using TK-TD models it is therefore possible to predict 

the effects that would result from a constant internal concentration of a pesticide. This presents 

the possibility of comparison with data from in vitro experiments, potentially facilitating 

quantitative in vitro to in vivo extrapolation (QIVIVE). We used in vivo TK-TD models to identify 

relevant internal concentrations and then estimated the experimental conditions required to 

replicate these in cultured cells, using in vitro TK models. Cell population growth was measured, 

with a view to extrapolating through time and comparing effect sizes with in vivo predictions. 

However, observed cell proliferation was not significantly affected (p>0.05) by the tested 

concentrations of any of the five pesticides in this study and so extrapolation was not possible. In 

light of this negative result, we highlight areas for future work toward QIVIVE of graded sublethal 

effects in mammals. The most pressing objective is to improve the accuracy of in vivo TK 

predictions. The inclusion of a dietary dose group in regulatory TK studies would facilitate this 

by providing calibration data better suited to predicting internal concentration in dietary toxicity 
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studies. If the current issues can be addressed, TK-TD modelling may yet serve as a vital bridge 

between in vitro and in vivo data, enabling accurate QIVIVE methods for mammals. This would 

represent a major step toward the reduction and replacement of animal testing. 

4.3 Introduction 

Though it is an important part of chemical safety testing, the use of animal testing has long been 

the subject of intense scrutiny due to ethical concerns. The European Union (European 

Parliament, 2010) and many national governments including those of the UK (Home Office et al., 

2014), and US (EPA Press Office, 2019) are committed to the replacement, reduction and 

refinement of animal testing (the 3 R’s) through the development of alternative methods. 

However, the push towards new methods is not driven solely by policy makers, there is also 

demand from across industries and scientific disciplines. This is because, in addition to ethical 

issues, animal testing is time consuming, financially costly and limited in its predictive ability for 

human safety. In the development of a new pesticide for example, an average of $29 million is 

spent on toxicology assessment (Phillips McDougall, 2016). Meanwhile, the cost of advancing a 

new pharmaceutical to phase 1 human trials, may reach $100 million and failures at this stage are 

often due to differences in drug kinetics between humans and animal test species (Tsaioun et al., 

2016).   

The need for high throughput alternatives to animal testing is made more pressing by the EU’s 

REACH legislation, requiring many more chemical products to undergo risk assessment (Rovida 

and Hartung, 2009) and the US EPA’s recent pledge to end funding for tests on mammals by 2035 

(EPA Press Office, 2019). To this end, the adverse outcome pathway (AOP) framework has been 

developed (Willett, 2019), seeking to mechanistically link processes that lead from molecular 

interactions to adverse outcomes at higher levels of biological organisation. In this framework, 

non-animal methods such as quantitative structure-activity relationships (QSARS) and in vitro 

assays may be used to identify potential hazards associated with a compound. This can reduce 

the need for in vivo assays through targeted testing. However, the risks posed at organ, organism 

and population level cannot yet be quantified without in vivo data (Sewell et al., 2018). 

Quantitative in vitro-in vivo extrapolation (QIVIVE) could eventually obviate the need for testing 

on animals. However, there are many obstacles to overcome before this can be achieved 

(Blaauboer, 2010). Although correlations have been observed between reference doses 

determined in vitro and in vivo (Castano et al., 2003, Schirmer, 2006), such simple relationships 

cannot be relied upon. Cultured cells generally show low absolute sensitivity and there may be 

significant differences in behaviour of different cell lines. One possible reason for this is that in 

cultures of a single cell type there will be a relatively low number of target sites for toxicants to 
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act upon. Another issue is differences in cell function between different cell lines and between in 

vitro or in vivo assays, specifically with regards to metabolic clearance and toxic metabolite 

formation (Schirmer, 2006, Groothuis et al., 2015).  

Another essential consideration is the dose metric. In in vitro studies, the nominal concentration 

(simply the amount of test compound divided by the volume of the medium) is often linked to 

effects. However, this measure is inappropriate for extrapolation (Groothuis et al., 2015). For 

example, the same nominal concentration is not necessarily even an equivalent dose between two 

cell lines requiring different culture media due to chemical partitioning. The test compound’s 

affinity for proteins and lipids in each medium will likely vary, leading to different free 

concentrations available for absorption by cells in each assay (Fischer et al., 2017). Additionally, 

differences in absorption and clearance rates of the cells themselves will result in further 

disparity in the toxicant’s concentration at its target site between the two assays. The intracellular 

concentration is therefore a more appropriate dose metric for comparison of responses between 

different cultured cell lines and between in vitro and in vivo assays but, is more complex to 

measure. 

A further complication is that the risk posed to an organism by a compound depends not just on 

the dose level but also the duration and route of exposure (Groothuis et al., 2015, Jager, 2011). 

This is a particularly important issue in respect to chronic toxicity, generally leading to graded, 

sublethal effects such as reduced growth rather than binary endpoints such as mortality (Ashauer 

et al., 2011). This is a key hurdle to the development of alternative methods for the ecological risk 

assessment (ERA) of agricultural pesticides. Due to the nature of these products, it is inevitable 

that wildlife will be exposed and so it is vital to identify application rates at which they are 

effective against their targets without causing adverse effects to wildlife. For birds and mammals, 

European guidelines state that no mortality should occur as a result of pesticide application 

(EFSA, 2009b) so chronic toxicity data is essential for decision making. The benefits of 

alternatives to long-term in vivo studies, lasting up to two years (OECD, 2001), are clear as these 

are the costliest in terms of animal use, man hours and resources. 

A potential solution to the issues outlined above is to combine in vitro assays with in silico 

modelling of toxic effects (Stadnicka-Michalak et al., 2015, Adler et al., 2011, Li et al., 2017, Louisse 

et al., 2015). Toxicokinetic-toxicodynamic (TK-TD) models predict an internal measure of 

toxicant concentration over time based on exposure rate (toxicokinetics) and use this as the basis 

for prediction of effects (toxicodynamics) (Jager and Zimmer, 2012, Ashauer et al., 2011). This 

method accounts for exposure duration and profile, allowing for prediction of effects resulting 

from prolonged, constant or fluctuating exposure (Nyman et al., 2012, Martin et al., 2019, Ashauer 
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et al., 2017). In recent years models have been developed for the prediction of graded sublethal 

effects in vertebrate species (Zimmer et al., 2018, Sadoul et al., 2018, Martin et al., 2019, Desforges 

et al., 2017). Crucially, the use of internal concentration as a dose metric means that TK-TD 

models can play an important role in linking in vitro and in vivo data to facilitate quantitative 

predictions of in vivo effects based on in vitro observations.  

Using in vivo and in vitro TK modelling, Stadnicka-Michalak et al. (2015) designed experiments in 

which predicted pesticide concentration in the gills of fish in regulatory toxicity studies could be 

replicated in cultured gill cells. The effects of two pesticides on in vivo growth rate could be 

accurately predicted from observed cell population growth over a few days. While many fish are 

used in animal testing, they are not the most common test subjects. In the UK, mice and rats were 

the subjects in 69% of all experimental procedures using animals in 2018 (Home Office, 2019). A 

means of predicting effects on rodents from in vitro data could be a major step towards the 

reduction and replacement of animal testing. However, differences in exposure route between 

fish and rodents present an additional hurdle. While fish in regulatory tests are exposed to 

pesticides at a constant rate in water (OECD, 2014), mammals are dosed via the diet in longer 

studies (OECD, 1998, OECD, 2008, OECD, 2001). Therefore, internal pesticide concentration 

depends on feeding rate relative to body size, which fluctuates substantially over time (Martin et 

al., 2019). Moreover, any effects on feeding rate associated with dosing, such as avoidance of 

feeding, also contribute to observed effects on body weight over time. These issues present major 

challenges for any comparison of in vitro and in vivo data.  

In this study we investigated the potential of QIVIVE methods to predict the effects of pesticides 

on growth in rats. We employed similar methods to Stadnicka-Michalak et al. (2015). However, 

adaptations to the approach were required to account for dietary dosing in mammalian toxicity 

studies. An important additional step was the use of in vivo TK-TD modelling to simulate a 

constant exposure scenario comparable to in vitro dosing. This step also allowed the prediction 

of effects at internal concentrations relevant to regulatory in vivo test conditions, without 

interference from effects on feeding rate. We aimed to determine whether the intracellular 

pesticide concentrations predicted in vivo would also inhibit cell population growth in vitro. Any 

consistent relationships between in vitro and in vivo effects could form the basis for predictions 

across the two scales. This would represent a promising step towards QIVIVE and, more 

immediately, a useful early screen for toxic effects which could be applicable as an alternative to 

dose setting studies.  
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4.4 Materials and Methods 

4.4.1 Pre-Existing Models and Data 

This study made use of toxicokinetic-toxicodynamic (TK-TD) models developed by Martin et al. 

(2019) and existing data made available from regulatory testing of several pesticides (Syngenta, 

unpublished). These studies investigated toxicokinetics, sub-chronic and chronic dietary toxicity 

in laboratory rats (Rattus norvegicus) according to 94/79/EC (European Commission, 1994). 

4.4.2 Test Compounds 

The pesticides included in this study were acibenzolar-S-methyl (benzothiadiazole; fungicide, 

insecticide and plant activator (PPDB, 2019a)), azoxystrobin (strobilurin; fungicide (PPDB, 

2019b)), fludioxonil (phenylpyrrole; fungicide (PPDB, 2019d)), prosulfuron (sulfonylurea; 

herbicide (PPDB, 2019f)) and thiamethoxam (neonicotinoid; insecticide (PPDB, 2019g)). These 

compounds covered a range of octanol: water partition coefficient, P, with log(P) values from -

0.13 to 4.12 and all were of low volatility (Henry's law constant ≤1.3 x 10-7 atm x m3 x mol-1 at 

25°C). Analytical grade samples were purchased from Sigma Aldrich while radiolabelled (14C) 

samples of each pesticide compound were provided by Syngenta. Pesticides were dissolved in 

dimethyl sulfoxide (DMSO) before being added to culture medium such that the medium DMSO 

content of the experimental media was always 0.3%. 

4.4.3 Cell Culture 

The L6 (ATCC® CRL-1458™) rat skeletal muscle cell line was selected for this study. Rat skeletal 

muscle cells (L6 cells) were grown in Nunclon™ T25 and T75 flasks (Thermo Scientific) and used 

between passage numbers 2 and 12 from purchase. L6 cells were maintained in a humidified 

atmosphere at 37 °C with 5% v/v CO2 and cultured in high glucose Dulbecco’s Modified Eagle’s 

Medium (DMEM), containing 10% v/v heat inactivated fetal bovine serum (FBS), 100 IU/mL 

penicillin-100 µg/mL streptomycin solution and 2 mM L-glutamine (Sigma Aldrich). Cells were 

routinely sub-cultured when 70-80% confluent and seeded onto 96 well plates. 

4.4.4 Model Implementation 

All models were implemented in Matlab (ver. R2016b) and were developed with the BYOM (Jager, 

2019) flexible model platform (ver. 4.1). TK model rate constants were fitted to mean pesticide 

concentration in medium, cells and on plastic over time. The fitting procedure was the Nelder 

Mead simplex algorithm to maximise the likelihood function, given the observed data (Pan and 

Fang, 2002). Likelihood profiling was also used to check that initial fits were not local optima 

(Kreutz et al., 2013) and to calculate parameter confidence intervals.  
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4.4.5 Modelling effects of constant internal exposure in vivo 

Dietary toxicity studies (OECD, 1998, OECD, 2008, OECD, 2001), do not provide constant 

exposure to test compounds. While test diets contain a constant concentration of test compound, 

body weight specific feeding rate and resulting ingested dose vary significantly over time. As well 

as temporal variability, inter-treatment effects on feeding rate are common, particularly in the 

early stages of testing as animals react to a novel ingredient in the diet (Martin et al., 2019). This 

presents a major obstacle for any comparison between in vivo and in vitro data.  

Models were used to remove the inherent noise from experimental data sets. We used the TK-TD 

models developed by Martin et al. (2019) to simulate a scenario in which all treatments fed at the 

same rate as the control group and internal pesticide concentration was constant for each 

treatment. For each treatment group, the average internal concentration predicted under test 

conditions was calculated (as the mean of all values predicted by the TK model over the test 

period) and used as a constant input to the TD model.  This produced growth predictions within 

the range observed (figure 4.1) which were suitable for comparison with in vitro data. 

In Martin et al. (2019), the data used to calibrate TK models were pesticide concentration in the 

blood. For all the pesticides in this and the aforementioned study, pesticide concentration in the 

blood was significantly correlated with that in all other tissues, so was deemed a suitable proxy 

for overall internal concentration or ‘body burden’. As the L6 muscle cell line was chosen for our 

experiments, it was necessary to estimate the corresponding pesticide concentration in the 

muscle. Correlations between pesticide concentration in the blood and muscle were highly 

significant (p<0.0001), and linear relationships were assumed and fitted to these data (table B1 

and figure B1). This enabled estimation of target intracellular muscle concentrations to be 

replicated in vitro.  
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Figure 4.1 Plots showing predicted effects on growth in response to various internal concentrations 
of prosulfuron. These predictions are based on growth and toxicodynamics parameters estimated 
using experimental data in Martin et al.  (2019). 

4.4.6 In Vitro Toxicokinetic experiments  

To assess the in vitro kinetics of the pesticides in this study, liquid scintillation counting was used 

to determine the quantity of radiolabelled pesticide in the medium, in cells and adsorbed to 

plastic over time. Samples were added to 8 mL HDPE Hinge Cap Vials™ (Perkin Elmer) along with 

4 ml Ultima Gold™ scintillation cocktail (Perkin Elmer). The total radioactivity in each vial was 

then measured in decays per minute by a scintillation counter. The radioactivity could then be 

converted to quantity, and ultimately concentration, of pesticide based on the known specific 

activity of the radiolabelled samples.      

Cells were seeded in 96 well plates in complete culture medium at a density of 1.56 x 105 cells×cm-

2in 100 uL complete cell culture medium and incubated at 37 °C, 5% v/v CO2. After 24 hours, cell 

culture medium was removed and replaced with 100 µL cell culture medium containing 2.5% v/v 

FBS, 0.3 % v/v DMSO and radiolabelled pesticide at a designated high or low concentration (these 

concentrations were different for each test compound). FBS content was reduced from 10% in 

order to maintain cell viability but limit proliferation.  This was to ensure a roughly constant 

number of cells over the 48-hour observation period (supporting figure B2, appendix B).  All 

solutions were filtered through a 0.22µm filter syringe to ensure sterility prior to addition to cells. 

After 3, 24 and 48 hours, 100 µL supernatant was removed and added to 4 mL scintillation fluid 

for analysis. Cells were then incubated with 50 µL trypsin-EDTA (0.1 % w/v) for 10 mins and then 

scraped with a pipette tip to ensure detachment. The trypsin solution and detached cells were 

transferred to 4 mL scintillation fluid for analysis. Finally, 200 µl DMSO was added to each well 

and incubated at room temperature to dissolve any pesticide adsorbed to the plastic. After 15 

mins the DMSO was transferred to 4 mL scintillation fluid for analysis. Each pesticide was 

assessed using four individual samples for each treatment, at each timepoint. The experiment was 

repeated a second time with a different cell passage number. Throughout, the CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (Promega) was performed on duplicate plates – 

containing unlabelled pesticides – to confirm cell population size remained relatively constant. 

No toxicokinetic studies for these pesticides have been performed in mammalian cell culture in 

vitro previously, therefore the concentrations of pesticide used for this study were deduced from 

previous studies in fish. Relationships between pesticide log(P) and uptake by fish gill cells have 

been identified by Stadnicka-Michalak et al. (2014). These relationships were used to estimate 

appropriate nominal concentrations for these studies, albeit provisionally as this study used a 

mammalian cell line, requiring different conditions (culture medium, incubation temperature). 
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For each test compound, the aim was to estimate the nominal concentration that would result in 

the highest intracellular concentration predicted in the muscle in vivo and use this as the high 

concentration treatment. Preliminary experiments had indicated that the dose levels in these 

experiments were not sufficient to result in cytotoxicity.  

4.4.7 In Vitro Toxicokinetics Model and Reverse Dosing 

To model in vitro toxicokinetics, a three-compartment model based on Stadnicka-Michalak et al. 

(2014) was used, modelling pesticide concentration in culture medium, in cells and on plastic 

over time. The model comprised the following equations: 

 
𝒅𝑪𝒎𝒆𝒅𝒊𝒖𝒎

𝒅𝒕
= (𝑉𝑐𝑒𝑙𝑙 𝑉𝑚𝑒𝑑𝑖𝑢𝑚)⁄ 𝑘𝑜𝑢𝑡_𝑐𝑒𝑙𝑙𝐶𝑐𝑒𝑙𝑙 + (𝐴𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑉𝑚𝑒𝑑𝑖𝑢𝑚)⁄ 𝑘𝑜𝑢𝑡_𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐             (4.1)  

        − (𝑉𝑐𝑒𝑙𝑙 𝑉𝑚𝑒𝑑𝑖𝑢𝑚)⁄  𝑘𝑖𝑛_𝑐𝑒𝑙𝑙𝐶𝑚𝑒𝑑𝑖𝑢𝑚  − 𝑘𝑖𝑛_𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝐶𝑚𝑒𝑑𝑖𝑢𝑚    

𝒅𝑪𝒄𝒆𝒍𝒍

𝒅𝒕
= 𝑘𝑖𝑛_𝑐𝑒𝑙𝑙𝐶𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑘𝑜𝑢𝑡_𝑐𝑒𝑙𝑙𝐶𝑐𝑒𝑙𝑙                                 (4.2) 

𝒅𝑪𝒑𝒍𝒂𝒔𝒕𝒊𝒄

𝒅𝒕
= (𝑉𝑚𝑒𝑑𝑖𝑢𝑚 𝐴𝑝𝑙𝑎𝑠𝑡𝑖𝑐)⁄ 𝑘𝑖𝑛_𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝐶𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑘𝑜𝑢𝑡_𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐                (4.3) 

 

Where Cx is concentration, with the subscript denoting the compartment (mass×cm-3 Cmedium & Ccell 

and mass×cm-2 for Cplastic), t is time, kin_x and kout_x are the rate constants of uptake and elimination 

in each compartment (time-1), Vx is volume of a compartment (cm3) and Ax is surface area of a 

compartment (cm2). 

As pesticide moves into the medium from the cells, or vice versa, the change to the Cmedium is equal 

to the corresponding change to Ccell multiplied by Vcell/ Vmedium (dimensionless ratio). This accounts 

for the different volumes of the compartments relative to the amount of pesticide exchanged. 

Similarly, in order to model uptake from medium on to the plastic surface, the change in Cplastic is 

multiplied by Vmed/Aplastic (cm3/cm2 = cm). This accounts for the relative sizes of the two 

compartments and performs the necessary unit conversion from mass×cm-3×t-1 to mass×cm-2×t-

1. Likewise, as the test compound is eliminated from the plastic into the medium the change in 

Cmedium is multiplied by Aplastic/ Vmed (cm2/cm3 = cm-1) which performs the opposite conversion. The 

volume or surface area of the respective compartments were known, as were the starting 

concentrations. The rate constants were fitted to the first LSC dataset. As there was some 

variation in starting concentration between repeats, the data from the repeated LSC experiments 

were used to test model predictions with fixed parameters. 
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Using the calibrated model parameters, it was then possible to calculate the initial value of Cmedium 

to estimate the nominal concentration required to result in a desired intracellular concentration 

(Ccell) at equilibrium. For each pesticide the nominal concentration required to match the highest 

intracellular concentration predicted in vivo was estimated as the reference dose to investigate 

the effects on cell population growth. 

4.4.8 Cell proliferation and cytotoxicity experiments 

Cells were seeded at 3.1 x 104 cells×cm-2 (104 cells per well) in 100 µL cell culture medium and 

incubated at 37 °C, 5% v/v CO2. After 24 hours, medium was removed and replaced with complete 

cell culture medium containing 10 % v/v FBS and 0.3 % v/v DMSO, and 0.5, 1, 2.5, 5 or 10x the 

reference dose for each pesticide, identified by reverse dosing. Cell proliferation and percentage 

mortality were assessed after 24, 48 and 72-hour incubation times with pesticide solutions (n=5).  

Cell proliferation was assessed using the CellTiter 96® AQueous One Solution Cell Proliferation 

Assay. In this colorimetric method, the tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, or MTS) is metabolised by viable 

cells to a coloured formazan product. The amount of formazan produced in a given time period is 

quantified as absorbance at 490nm with a microplate reader. This absorbance is often assumed 

to increase linearly with viable cell count. However, the metabolic rate of cells can be affected by 

test compounds, so no such relationship was assumed here. Instead, the assay was used to 

identify proportional effects on overall mitochondrial activity between treatments, as an 

indicator of effects on cell proliferation. The assay was conducted in accordance with the 

manufacturer’s protocol. Controls in place to identify anomalous background absorbance were 

medium without cells and untreated cells lysed with 0.5% v/v Triton X-100 (n ≥ 3).  

Significant effects of pesticide treatment on mitochondrial activity - relative to the vehicle control 

treatment - were identified by analysis of variance (ANOVA) and pairwise comparison (Tukey's 

honest significance test) at each timepoint. Linear modelling was used to identify significant 

relationships between initial pesticide concentration in the medium and mitochondrial activity. 

Cytotoxicity was monitored using the The CytoTox-ONE™ Homogeneous Membrane Integrity 

Assay (Promega). This fluorometric assay quantifies the proportion of non-viable cells in the well 

by measuring the release of lactate dehydrogenase (LDH) from cells with compromised 

membrane integrity. The enzymatic reaction results in the conversion of resazurin into resorufin 

which can be measured by a microplate reader as fluorescence with an excitation wavelength of 

560nm and an emission wavelength of 590nm. The assay was carried out in line with the 

manufacturer’s protocol. As an additional control measure, for each experimental treatment, cells 

in three wells were lysed with 0.5% v/v Triton X- 100 to establish fluorescence corresponding to 
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100% cell mortality while accounting for differences in cell number between treatments (Smith 

et al., 2011). This allowed cell mortality to be calculated as a percentage using equation 4.4. 

 

% 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = 100 × [
(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝐹𝑙𝑢𝑟𝑜𝑒𝑠𝑒𝑛𝑐𝑒−𝑀𝑒𝑑𝑖𝑢𝑚 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

(100% 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 − 𝑀𝑒𝑑𝑖𝑢𝑚 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
]               (4.4) 

 
Results were analysed using the bootstrapping method of Smith et al. (2011). For each treatment, 

at each timepoint, percentage mortality was computed by entering every combination of 

experimental (n=5), medium background (n=3) and 100% mortality wells (n=3) into equation 

4.4, producing a sample of 45 values. Mean percentage mortality was calculated as the mean of 

these 45 values. Next, the sample was used to generate 200 random bootstrap samples (n=5, the 

number of experimental wells per treatment), from which 95% confidence intervals were 

derived. If the lower confidence interval of an experimental treatment was both positive and 

higher than the upper confidence interval of the controls, this was deemed a significant effect on 

cell mortality.   
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4.5 Results  

4.5.1 In vitro toxicokinetics 

Initial pesticide concentration in the medium was determined as the mean total recovered at the 

3h timepoint - rather than from samples taken immediately after medium preparation - to control 

for sample loss due to additional pipetting. Generally, pesticide concentration in medium, cells 

and on plastic quickly reached equilibrium and modelled uptake matched well with observations 

(figure 4.2).  

Due to low sample size (n=4 per treatment per timepoint), quantitative analysis of the model 

predictions by treatment would be of limited value. By normalising data as a percentage of the 

initial dose (the mean total recovered at 3h in each treatment) recovered from each compartment 

at each time point, all treatments could be aggregated into a larger dataset. This was a suitable 

measure by which to assess model performance, as the model parameters - which were constant 

across treatments - simply predict proportional uptake at equilibrium (determined by ratio of 

rate constants) and speed of uptake (determined by magnitude of rate constants). The purpose 

of the TK model in this study was to determine the initial conditions required to achieve a given 

intracellular concentration at equilibrium. As such, the 24h and 48h timepoints (at which all 

models had reached equilibrium) were of greatest relevance. 

Predictions at equilibrium were compared to the mean recovery of each compound by 

compartment across treatments at 24h and 48h (table 4.1). Uptake by cells was predicted to 

within one standard deviation of the overall mean at both timepoints for thiamethoxam, 

prosulfuron & acibenzolar-S-methyl and at 24h for azoxystrobin and fludioxonil. For both 

fludioxonil and azoxystrobin, uptake by cells was underpredicted at 48h, suggesting that these 

compounds exhibited slower kinetics and had not fully equilibrated by this point. Due to practical 

constraints, it was not possible to verify this with a longer observation period, however, in both 

cases it appeared that uptake had slowed and that substantial increases in intracellular 

concentration were unlikely. 

Mean percentage sorption to plastic was predicted to within one standard deviation at both 

timepoints for thiamethoxam, prosulfuron and fludioxonil, at 24h for acibenzolar-S-methyl and 

at neither timepoint for azoxystrobin. Sorption of azoxystrobin was predicted to within 0.6% of 

the observed mean at both timepoints but, due to low variability in the data, still differed by more 

than 1 standard deviation. Recovery of acibenzolar-S-methyl from plastic decreased with time 

(figure 4.2 & table 4.1) suggesting that soaking in DMSO may have been insufficient to remove 

sample adsorbed to the plastic after longer periods.  
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Figure 4.2 Model outputs showing observed (circles) and predicted (lines) concentration in 
medium, cells and on plastic over time. Solid lines and circles denote treatments used for model 
calibration while dashed lines and hollow circles denote treatments used for validation. 

Pesticide retention in the medium was predicted to within one standard deviation of the overall 

mean at 24h and 48h for all compounds except acibenzolar-S-methyl. Acibenzolar-S-methyl was 

the only compound for which losses of over 5% (as evaporation or otherwise unrecovered) were 

observed. This was the most volatile of the compounds tested and was also the second most 

lipophilic. In all treatments, medium concentration dropped below model predictions, as the 

model assumes all of the initial dose remains in the system. However, losses were smaller in the 
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treatments used for model calibration, and predictions of uptake by cells were not adversely 

affected. 

Table 4.1 A summary of observed and predicted recovery of each compound at the 24h and 48h 
timepoints, normalised as a percentage of the mean total recovered at 3h in each treatment. The 
overall mean is based on all data points from all treatments (n=16), also shown are the lowest and 
highest mean uptake in a single treatment (n=4). Colour coding denotes whether model predictions 
were within one standard deviation of the overall mean at both (green), one (yellow) or neither (red) 
of the timepoints. 

 Percentage Recovery by Compartment 

24hr 48hr Model 

Prediction 

at 

Equilibrium 

Chemical Compartment Overall 

Mean ± s.d. 

Lowest 

Group 

Mean 

Highest 

Group 

Mean 

Overall Mean 

± s.d. 

Lowest  

Group 

Mean 

Highest 

Group 

Mean 

Thiamethoxam Medium 100.99±8.93 94.31 108.63 94.15±13.01 87.47 99.36 97.81 

Cells 2.26±0.48 1.79 2.67 2.30±0.55 2.25 2.38 2.04 

Plastic 0.19±0.089 0.12 0.27 0.19±0.082 0.18  0.20 0.19 

Prosulfuron Medium 99.28±8.06 95.54 107.30 105.03±10.42 95.79 113.62 97.75 

Cells 2.12±0.53 1.73 2.68 2.22±0.48 1.93 2.57 2.03 

Plastic 0.25±0.15 0.19 0.35 0.17±0.11 0.12 0.19 0.22 

Azoxystrobin Medium 90.87±8.67 85.57 94.20 89.03±11.13 74.98 96.70 93.75 

Cells 4.14±0.67 3.69 4.64 4.86±0.67 4.35 5.58 4.10 

Plastic 1.52±0.35 1.37 1.66 1.66±0.22 1.51 1.83 2.11 

Acibenzolar-

S-Methyl 

Medium 65.60±15.55 50.22 83.58 73.43±15.87 57.61 91.18 93.85 

Cells 1.99±0.54 1.62 2.54 2.11±0.47 1.83 2.62 2.20 

Plastic 2.93±1.40 2.13 3.74 1.33±0.66 0.67 1.77 3.96 

Fludioxonil Medium 72.17±7.39 64.39 80.39 69.25±6.33 62.71 73.82 74.50 

Cells 21.61±2.75 19.18 24.32 24.59±2.69 22.39 28.19 21.34 

Plastic 4.13±1.00 3.06 4.93 4.03±0.96 3.22 4.88 4.20 

 

The percentage uptake by cells and plastic increased with hydrophobicity (figure 4.3). Both were 

strongly (r = 0.98 and 0.87 respectively) and significantly (p<0.0001) correlated with octanol: 

water partition coefficient, P. A more comprehensive data set may yield a predictive relationship 

between P and TK parameters. However, with only five compounds in total and substantial losses 

of one of those, any relationship derived from this data set would be questionable. 
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Figure 4.3 Percentage recovery by compartment for each compound at 48h. Results shown are an 
average from all treatments normalised as percentages of the total recovered at 3h in each 
treatment. In one case the total recovered at 48h exceeded that recovered at 3h. Henry’s law 
constant, KH, is given in atm x m3 x mol-1 at 25°C. 

4.5.2 Reverse dosing 

The calibrated models were then used to determine the nominal concentration required to result 

in a desired intracellular concentration. For each pesticide, the target concentration was the 

average predicted in the highest dose group in in vivo dietary toxicity testing, using the models 

developed in Martin et al. (2019). The model parameters and experimental conditions derived 

from reverse dosing are shown in table 4.2. 

Table 4.2 Summary of reverse dosing. The calibrated absorption and elimination rate constants for 
each compound are represented in the form kin_x and kout_x respectively, with x denoting the relevant 
model compartment. The target intracellular concentration and the medium concentration 
required to achieve this, as calculated by the in vitro TK model, are also shown. 

Compound kin_cell  

(h-1) 
kout_cell  

(h-1) 
kin_plastic 

(h-1) 
kout_plastic 

(h-1) 
Target 
Intracellular 
Conc. (µg/g) 

Required 
nominal 
medium 
concentration 
(mg/L) 

Thiamethoxam 113.9 9.676 0.005532 2.827 62.70 5.443 
Prosulfuron 128.0 10.91 0.005374 2.419 213.7 18.63 
Azoxystrobin 16.71 0.6770 0.05167 2.295 45.57 1.998 
Acibenzolar-S-
Methyl 

111.6 8.428 0.1277 3.027 4.583 0.3702 

Fludioxonil 277.5 1.715 0.03200 0.5675 26.02 0.2155 
 

4.5.3 Effects on cell proliferation 

Linear modelling showed a significant negative relationship between concentration of 

acibenzolar-S-methyl and mean mitochondrial activity of cells after 24 hours exposure (p = 
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0.0013). However, this pattern did not persist beyond this timepoint. The only other significant 

relationships between chemical concentration and mitochondrial activity were positive. These 

were thiamethoxam (p = 0.012) and fludioxonil (p = 0.049) at 48 hours exposure. ANOVA and 

pairwise comparison showed that after 72 hours exposure, mitochondrial activity was not 

significantly reduced, relative to the vehicle control treatment, by any dose of any of the 

compounds tested. As such, these data were not suitable for extrapolating effects on growth in 

vivo (see ‘Discussion’ for more details).     

 

Figure 4.4 Mitochondrial activity (determined by CellTiter 96® AQueous One Solution Cell 
Proliferation Assay) normalised against vehicle control treatment at each time point, over 72 hours 
exposure to pesticides. Lines represent the mean for each treatment (n=5), with error bars showing 
95% confidence intervals.  

4.5.4 Effects on cell mortality 

After 24 hours exposure, anomalous background fluorescence (untreated medium, no cells) 

exceeded that of several experimental treatments. This resulted in equation 4.4 producing 

theoretically impossible negative values of percentage mortality for most treatments, including 

controls. Additionally, the fluorescence of maximum LDH release wells also was low relative to 

background at this timepoint (due to cell number still being low shortly after seeding), meaning 

that effects were amplified. Estimated mortality at this time point ranged from −24.4% to 24.8%, 
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with −23.6% estimated in the vehicle control treatment.  For this reason, the results at this 

timepoint were not considered reliable and were excluded from further analyses. Significant 

increases in mortality were recorded in two azoxystrobin treatments at 48 hours (2.5x and 10x 

the reference dose). Mortality was also significantly increased in the highest prosulfuron 

treatment and two fludioxonil treatments (2.5x and 5x the reference dose) at 72 hours only. The 

highest average mortality was recorded at 72 hours exposure in the highest prosulfuron dose 

group, with a mean value of 13.5%.  
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4.6 Discussion 

4.6.1 In Vitro TK Modelling 

Achieving specific pesticide concentrations in the medium was challenging due to unpredictable 

loss of pesticides during sterile filtering. Samples were measured before and after filtration and 

losses were quite different between experimental repeats. The second experimental run was 

intended to assess the repeatability of results and increase sample size but in most cases the 

achieved nominal concentrations were substantially different from the first run. However, as 

concentration was measured in all cases, this was not a problem for the aims of the study. In fact, 

it increased the range over which model predictions could be tested.  

For all compounds, the three-compartment model used was able to predict uptake by cells with 

reasonable accuracy. However, in the cases of azoxystrobin and fludioxonil the intracellular 

concentration at equilibrium may have been underestimated as the data suggested that these 

compounds had not fully equilibrated after 48 hours. Sorption to plastic and retention in the 

medium were also generally well predicted by the model. The most notable exception was 

acibenzolar-S-methyl for which inaccurate predictions appeared to be caused by loss of the test 

compound, most likely due to evaporation. The TK model could be adapted to consider 

evaporation (Stadnicka-Michalak et al., 2014) but, as intracellular concentration was accurately 

predicted across treatments, this was not deemed necessary for the purposes of this study. 

Intracellular concentration at equilibrium was the endpoint of greatest interest in this study. 

Model predictions of this endpoint result from the ratio of absorption and elimination rate 

constants. However, it is the absolute values of these model parameters that determine the time 

taken for equilibrium to be reached. Azoxystrobin and fludioxonil showed slower kinetics but for 

the other three compounds, equilibrium appeared to have been reached by the first data point at 

three hours after exposure. Due to practical constraints, it was not possible to collect data at 

multiple observation times shortly after dosing or beyond 48 hours after exposure. Both would 

have been desirable in order to improve the accuracy, particularly in terms of absolute value, of 

fitted parameter values and this should be considered in the design of future kinetics studies. 

Another consideration for future studies is the role of FBS concentration. The concentration of 

FBS in the medium was reduced to 2.5% during TK experiments in order to minimise cell 

proliferation, however, it has been shown that increased FBS concentration can reduce the free 

concentration of test compounds and, therefore, uptake by cells (Fischer et al., 2018). In fact, this 

process of serum mediated passive dosing stabilizes cell dose and compensates for chemical 

depletion as a result of cell proliferation. It would have been preferable then to have kept FBS 

concentration constant at 10% for all experiments. As a result of changing the FBS concentration, 
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intracellular concentration was likely overpredicted in the cell proliferation experiments (at 10% 

v/v FBS). However, none of the relationships between cellular uptake and FBS concentration 

reported by Fischer et al. (2018) were linear, a twentyfold (0.5% to 10% v/v) increase in FBS 

concentration led to a maximum 4.5-fold reduction in cellular uptake. Therefore, at the very least, 

it is likely that >2.5 times the intracellular concentration predicted in vivo was achieved in our 

cell proliferation experiments.          

The compounds in this study were not selected for their range of chemical properties but because 

in vivo experimental data for these pesticides had previously been made available for the 

development of a TK-TD model (Martin et al., 2019). However, as was expected based on previous 

studies (Stadnicka-Michalak et al., 2014), cellular uptake and sorption to plastic were correlated 

with octanol: water partition coefficient, P. This suggests it may be possible to estimate model 

parameters from chemical properties in future. A similar study including more compounds and a 

broader spectrum of chemical properties could uncover significant patterns from which 

parameter values could be accurately predicted without further experimental work. As well as 

hydrophobicity, volatility should also be considered. A previous study found this posed no issues 

for compounds with low volatility (KH  < 1 x 10-6 atm x m3 x mol-1) in culture with fish cells at 25°C 

(Stadnicka-Michalak et al., 2014) however, evaporation of acibenzolar-S-methyl (KH =1.3 x 10-7 

atm x m3 x mol-1 at 25°C, (PPDB, 2019a)) did occur within our test system where mammalian cells 

are cultured at 37°C. This may place limits on the estimation of parameter values from chemical 

properties and highlights the influence of temperature on in vitro toxicokinetics. 

Finally, because culture medium needed to be re-sterilised after the radiolabelled samples were 

added, it was difficult to achieve a specific nominal concentration. To avoid this issue in future, it 

would be preferable to have a sterile workspace designated for dispensation of radioactive stocks. 

However, as previously mentioned, this was not a major problem because concentration was still 

measured with LSC in this study.  

4.6.2 Cell proliferation and mortality 

Cells were cultured for 72 hours in medium containing up to 10x the reference dose – identified 

by reverse dosing – of each pesticide. Due to culture medium containing 10 % v/v FBS in these 

experiments, the intracellular concentrations achieved were probably lower than expected 

(Fischer et al., 2018). However, in the highest dose groups, intracellular concentration was likely  

>2.5x the highest concentrations predicted in vivo in dietary toxicity studies (associated with 

body weight reductions of >10% (Martin et al., 2019)). At only one time point, for one compound 

(acibenzolar-S-methyl at 24 hours), was a significant negative relationship between pesticide 

concentration and mean mitochondrial activity found. After 72 hours exposure, mitochondrial 
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activity was not significantly inhibited by any pesticide treatment, indicating no effects on cell 

proliferation.  

In some treatments, significantly increased cell mortality was observed. For data to be suitable 

for extrapolation, any observed effects must be significant, consistent over time and exhibit a dose 

related response so that they can be attributed to the presence of the test compound. Additionally, 

doses should be below the threshold for effects on mortality so that cytotoxicity can be discounted 

from effects on cell population growth (Stadnicka-Michalak et al., 2015). No chemical in this study 

met these criteria and as such it was not possible to use these data to predict effects on in vivo 

growth. 

4.6.3 Obstacles to QIVIVE 

There are several possible factors that may underlie the negative results of the cell proliferation 

experiments. First is simply that the sensitivity of the chosen cell line to the compounds in this 

study did not represent that of the whole animal. The rationale for selecting of the L6 cell line was 

twofold. As muscle accounts for 35.3% of rat body mass, the largest proportion of any tissue 

(Lindstedt and Schaeffer, 2002), it was deemed the most appropriate tissue to investigate 

chemical effects on growth. Additionally, with a lack of information as to the role of metabolites 

in the toxic mode of action of each pesticide, it was assumed that effects are caused by parent 

compounds. As such, a cell line with limited propensity for biotransformation was desirable in 

order to test this assumption. In past studies using the L6 cell line, concentration dependent 

responses to known toxins have been demonstrated using the same assays employed in this study 

(Kalam et al., 2011, Cybulski et al., 2015). However, these studies were investigating large effects 

on cell viability rather than simply reduced population growth. This would agree with previous 

observations of low absolute sensitivity in cultured cells, possibly the result of few target sites 

being present in a single cell type relative to an organism (Schirmer, 2006, Groothuis et al., 2015). 

The sensitivity of L6 cells relative to other cell lines varies in the literature, depending on the test 

compound (Kalam et al., 2011, Cybulski et al., 2015). However, unlike other cell lines, L6 did show 

higher sensitivity to membrane damage by certain chemicals than reduced mitochondrial activity 

(Cybulski et al., 2015) which could present an obstacle for separating effects on cell proliferation 

and cell death. Many mammalian cell lines are available and naturally this choice will impact on 

the observed responses to chemicals. As was noted by Stadnicka et al. (2015), one advantage of 

the RT-gill-W1 is that it is derived from healthy gill cells whereas mammalian cell lines, such as 

L6 (Yaffe, 1968), are often established by exposure to carcinogens. The ES-D3 cell line, derived 

from embryos of Mus musculus, could be a suitable candidate for future studies. This cell line was 

not cancer derived (Doetschman et al., 1985) and has produced promising results in the past (Li 

et al., 2017, Louisse et al., 2015). While biological rationale can be applied in the selection of a cell 
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line, any issues will not become apparent before experiments begin and finding a cell line with 

the desired attributes could be a time-consuming task involving a degree of trial and error. 

A related issue is that metabolites of the compounds may contribute significantly to the toxicity 

of the compounds in vivo (Pirmohamed et al., 1994) and these metabolic pathways are not 

necessarily replicated in vitro (Coecke et al., 2006). For example, thiamethoxam is mostly 

excreted untransformed but its main metabolite, clothianidin (FAO and WHO, 2011), is more toxic 

to mammals than the parent compound (PPDB, 2019g, PPDB, 2021). For the fitting of TK model 

parameters, total radioactivity was converted to concentrations on the assumption it 

corresponded to the presence of the parent compound, without accounting for 

biotransformation. One reason that a muscle cell line was selected over tissues involved in 

biotransformation, such as the liver, was in order to meet this assumption. Previous studies have 

also made this assumption (Stadnicka-Michalak et al., 2015, Li et al., 2017) yet found close 

relationships between dose-response predictions based on in vitro data and observed in vivo data. 

The assumption may be necessary because proposed metabolic pathways would be impossible 

to replicate in vitro. For example, of the compounds in this study, prosulfuron, azoxystrobin and 

fludioxonil are broken down into at least 14, 15 and 20 metabolites respectively, with significant 

differences observed between the sexes (European Commission, 2013c, European Commission, 

2009, European Commission, 2006). Models of in vivo toxicokinetics would need to predict the 

uptake of the parent compound, biotransformation into toxic metabolites, and elimination the 

metabolites and parent compound. If impacts on growth are not predictable without accurately 

accounting for biotransformation in vitro, this method may not be a viable alternative to animal 

testing due to requirements for detailed data on in vivo metabolism and because of the number 

of chemicals with complex metabolic pathways.  

It has been demonstrated that observed effects on fish growth can be predicted by replicating the 

intracellular toxicant concentration and using in vitro data to calibrate a growth model before 

extrapolating through time (Stadnicka-Michalak et al., 2015). However, it may not be possible to 

directly predict mammalian growth in this way due to the relative size of observed effects in 

toxicity testing using fish versus mammals. The highest in vivo doses of cyproconazole and 

propiconazole caused average body weight reductions in fish of 49% and 77% respectively, 

relative to controls (Stadnicka-Michalak et al., 2015). In mammalian chronic toxicity studies, body 

weight reductions relative to controls rarely reach 20% by the end of testing (Wang et al., 2019). 

Logically, prediction of smaller effects in vivo requires the detection of smaller effects in vitro, 

which can be challenging due to variability in data. It may instead be necessary to induce larger 

effects in vitro before extrapolating to realistic intracellular concentrations or effect sizes and 

investigating the relationships between predictions and in vivo data. This was part of the rationale 
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for aiming to achieve 10 times the intracellular concentration predicted in vivo however, this was 

not high enough to induce significant effects. Another consideration is that cells are neither male 

nor female yet chemical effects on endpoints such as body weight can vary greatly between the 

sexes in animals (Calabrese, 1986, Martin et al., 2019). Such differences will be extremely 

challenging to predict from in vitro data so it will be necessary to account for this uncertainty 

when interpreting any future extrapolations from in vitro data.   

Finally, and perhaps most crucially, it may be that the in vivo TK predictions, from which target 

concentrations were derived, were not sufficiently accurate. Although the in vivo model had been 

used to produce accurate TK-TD predictions, the requirements for QIVIVE are different. A TK-TD 

model only requires that predicted internal concentration is proportional to the actual value at 

the target site (e.g. ‘scaled internal concentration’ in the most simplified TK-TD models), as the 

fitting of TD parameters will compensate for the difference (Jager and Zimmer, 2012). To 

compare in vitro and in vivo effects however, it is important that the intracellular concentrations 

actually match (Stadnicka-Michalak et al., 2015). Predictions of chemical concentration in muscle 

tissue were derived from simple observed correlations with blood concentration. This may 

appear a simplistic method but, at equilibrium, more complex physiologically based TK models 

also predict that chemical concentrations in different tissues are simply multiples of one another 

(Li et al., 2017, Louisse et al., 2015). No matter how simple or realistic the TK model, predictions 

are only as good as the data used for calibration and this is an area that could be improved. 

Animals in regulatory toxicokinetics studies are generally given a single gavage dose (OECD, 

2010). Whilst this does represent an oral exposure, it is not representative of the dietary dosing 

used in longer term toxicity studies (OECD, 2001, OECD, 1998, OECD, 2008). Toxicokinetics may 

vary substantially between gavage and dietary dose groups (Foster et al., 2015, Vandenberg et al., 

2014, Kapetanovic et al., 2006). Additionally, equilibrium is never reached in single dose 

treatments because the intake is not sustained. A major advantage of the testing framework for 

fish is that the route of exposure is consistent throughout testing with animals exposed to a 

constant toxicant concentration in their water (except in the case of hydrophobic compounds for 

which dietary exposure is more relevant) (OECD, 2012, OECD, 2013, OECD, 1984, OECD, 2019, 

OECD, 2014). The inclusion of dietary exposure in mammalian toxicokinetics studies would be 

the surest way of improving the accuracy of TK modelling, which will be crucial if the 

methodology is to help replace animal testing in future.  

4.6.4 Future Work 

While it was not possible to extrapolate in vivo effects on growth from in vitro data, this study 

demonstrates how, in principle, TK-TD models can act as a bridge between in vitro and in vivo 

data from mammalian dietary toxicity studies.  
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Before further attempts are made to develop QIVIVE methods using TK-TD models it is worth 

evaluating the place of such methods within wider efforts to find alternatives to animal testing. 

The establishment of AOPs, which link molecular interactions to ‘key events’ which in turn cause 

adverse effects at higher levels of biological organisation, has received a great deal of focus at 

policy level (Willett, 2019). At lower levels of organisation, predictive QSARs and in vitro methods 

are used to highlight a compound’s propensity to initiate key events. However, at higher levels, in 

vivo assays are still required. At present, the information gained from AOPs is generally 

qualitative and more suited to identify hazards presented by a compound rather than quantifying 

the environmental or health risk it poses (Sewell et al., 2018). A need for quantifying thresholds 

for progression from one key event to the next has been identified as well as the need to account 

for level, duration and route of exposure in quantifying risk. It is for these purposes that TK-TD 

modelling is particularly well suited because TK-TD model parameters have a biological or 

chemical interpretation. Further, linking toxic responses at cellular level to responses at the 

organism level can be aided by models that allow parameterisation from bioassays at either level 

(Stadnicka-Michalak et al., 2015, Ashauer and Jager, 2018).  

Previous studies using mammal cells have shown that benchmark doses, or BMDs, (i.e. the dose 

required to induce a given effect) can be predicted to within threefold of observed values using 

in vitro and in silico methods (Louisse et al., 2015, Li et al., 2017). However, BMDs are time 

dependent measures and their value to assessing risk has been questioned (Jager, 2011, Jager, 

2012). As such, a method of predicting the degree to which graded endpoints, such as growth rate, 

are affected by a given level and duration of exposure would be an extremely valuable tool. 

Promising results with fish cells (Stadnicka-Michalak et al., 2015) suggest this may be possible 

but there is still some way to go in order to replicate that success for mammals. 

Reliable in vivo TK-TD models can be developed using existing datasets from regulatory toxicity 

studies on mammals but these do not require precise TK predictions. TK models that can 

accurately predict internal concentration will be required. For this to be achieved, more relevant 

data with which to calibrate and validate models must be collected. While this would represent 

an increase in the number of animals used in toxicokinetics studies, such studies have small 

sample sizes (OECD, 2010) and the resulting data could facilitate major progress towards 

alternative methods in future. Models have been developed which can be parameterised using 

without in vivo  data (Li et al., 2017, Louisse et al., 2015).  However, their validation still requires 

animal data. Developing the capability to model kinetics following dietary exposure in rodents 

could fulfil a crucial role in improving the utility of non-animal methods in the AOP framework 

going forward. 
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Chapter 5 - Modelling effects of variability in feeding rate on growth – a vital 

step for DEB-TKTD modelling 

5.1 Preface 

One of the aims stated at the start of the project was to explore applications of TK-TD models in 

ecological risk assessment, such as extrapolating the effects of realistic pesticide exposure on wild 

rodents. However, despite some success in separating the effects of toxicity and feeding rate on 

the growth of rats, Chapter 3 highlighted important issues around the way model inputs were 

derived from feeding data. Without  accurately modelling growth based on feeding rate, any 

inhibition that results from chemical toxicity cannot be differentiated from the effects of reduced 

feeding. Therefore toxicodynamic parameters cannot accurately reflect the toxicity of a chemical, 

limiting their value for extrapolation. Therefore, I felt that the final research chapter should 

return to the growth model and address the issues identified around feeding inputs.  

In Chapter 3.6, an alternative method of deriving feeding inputs was briefly outlined. Chapter 5 

presents a research paper in which this new approach was fully developed, and compared to the 

previously employed methods, both in terms of model accuracy and theoretical consistency. 

5.2 Abstract 

A major limitation of dietary toxicity studies on rodents is that food consumption often differs 

between treatments. The control treatment serves as a reference of how animals would have 

grown if not for the toxicant in their diet, but this comparison unavoidably conflates the effects of 

toxicity and feeding rate on body weight over time. A key advantage of toxicity models based on 

dynamic energy budget theory (DEB) is that chemical stress and food consumption are separate 

model inputs, so their effects on growth rate can be separated.  

To reduce data requirements, DEB convention is to derive a simplified feeding input, f, from food 

availability; its value ranges from zero (starvation) to one (food available ad libitum). Data show 

that the feeding rate of rats does not scale with body size, contradicting DEB assumptions 

regarding. Relatively little work has focused on addressing this mismatch, but accurately 

modelling the effects of food intake on growth rate is essential for the effects of toxicity to be 

isolated. This can provide greater insight into the results of chronic toxicity studies, allowing 

accurate extrapolation of toxic effects from laboratory data.  

Here we trial a new method for calculating f, based on the observed relationships between food 

consumption and body size in laboratory rats. We compare model results with those of the 

conventional DEB method and another method from a previous study. Our results showed that 

the new method improved model accuracy (R2 ≥ 0.97 when calibrated) while modelled reserve 
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dynamics closely followed observed body fat percentage over time (closest to independent data 

at six out of seven timepoints). The new method assumes that digestive efficiency increases with 

body size. Verifying this relationship through data collection would strengthen the basis of DEB 

theory and support the case for its use in ecological risk assessment. 

5.3 Introduction 

Mechanistic effects models (MEMs) aim to simulate the mechanisms by which chemicals affect 

individuals, populations and communities (Grimm and Martin, 2013). This is an appealing 

prospect with great potential for use in ecological risk assessment (ERA) of chemicals such as 

pesticides (Forbes et al., 2009, Forbes and Calow, 2012). Simulating underlying processes confers 

several advantages over traditional analysis of data from laboratory-based toxicity studies and 

extrapolations to field scenarios based on summary statistics. Mechanistic modelling enables the 

prediction of toxic effects in untested, ecologically relevant conditions. This can add ecological 

realism to extrapolations and potentially even reduce animal testing requirements (Jager et al., 

2006).  

Accounting for the mismatch in exposure between laboratory and field is a key obstacles to long 

term risk assessment of pesticides for mammals (Fischer, 2005). For example, in chronic toxicity 

testing of pesticides, rats are exposed to a constant concentration of test compound in their diet 

for up to two years (OECD, 2018b, OECD, 2018a, OECD, 2001). Such constant exposure is 

unrealistic in the field as pesticides are not applied at a constant rate all year round. This disparity 

can be addressed using toxicokinetic-toxicodynamic (TK-TD) models (Jager et al., 2006). These 

are a class of MEMs that work at the individual level, predicting an internal measure of chemical 

concentration over time (toxicokinetics) and the stress this places on an organism 

(toxicodynamics). As such, the effects on a given endpoint resulting from realistic, time varied 

exposure can be predicted (Nyman et al., 2012). 

The use of TK-TD modelling has now been recommended for certain regulatory purposes, such 

as predicting survival of aquatic organisms (EFSA, 2018). However, for birds and mammals 

sublethal effects are most relevant at realistic exposure levels, as no mortality associated with 

pesticide use is accepted under European regulations (EFSA, 2009b). The ‘DEBtox’ or ‘DEB-TKTD’ 

modelling framework (Kooijman and Bedaux, 1996b, Kooijman and Bedaux, 1996a, Sherborne et 

al., 2020), combining TK-TD modelling with the Dynamic Energy Budget (DEB) theory (Kooijman, 

2000) provides a means of predicting sublethal toxic effects. DEB is an established metabolic 

theory, mathematically describing the processes of energy acquisition and allocation to predict 

endpoints such as body size and reproductive output. DEB has been applied to a wide range of 

taxa, with parameters available in the Add My Pet (AmP) library (Marques et al., 2018). The 
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majority of DEB-TKTD studies thus far have focused on invertebrates (Ashauer and Jager, 2018) 

and more recently fish (Zimmer et al., 2018, Sadoul et al., 2018), with very few studies concerning 

terrestrial vertebrates (Martin et al., 2019, Desforges et al., 2017). 

A particular advantage of DEB-TKTD modelling is the ability to separate the effects of feeding rate 

and toxic action on growth rate. This is particularly important in dietary toxicity studies, where 

ingested dose is directly related to feeding rate. This property is relatively unexplored but, in fact, 

it is crucial for TD models to accurately reflect toxicity and therefore to be of use for extrapolation 

to novel scenarios. Temporal and inter-treatment variability in feeding rate is a crucial driver of 

observed growth so any observed effects on body weight cannot simply be attributed to toxic 

action. Moreover, the extent to which a compound induces feeding avoidance may increase or 

decrease the risk posed to wildlife, depending on whether animals would have a choice of food 

items in the field scenario (Thompson, 2007). A previous study (Martin et al., 2019) developed 

methods to account for variability in feeding while modelling the effects of dietary toxicity on 

growth of domestic laboratory rats (Rattus norvegicus). However, some important issues with 

these methods were identified as areas for improvement in future. 

In DEB theory, feeding rate is assumed to be limited by surface area (e.g. area of feeding 

appendages in filter feeders), which is proportional to body mass to the power 2/3. Where data 

are available, observed area specific feeding rate is divided by a maximum value so that it can be 

entered into the model as a dimensionless parameter ranging from zero to one (Jager et al., 2013, 

Kooijman, 2000). In Martin et al. (2019), we generated model inputs by scaling weekly area 

specific feeding rate in each treatment relative to the maximum observed rate within each 

dataset. While this was a logical approach, two major issues became apparent.  

The first issue was that, in rats, area specific feeding rate decreases as animals grow (Laaksonen 

et al., 2013, Martin et al., 2019). As such, the scaled feeding rate entered into the model dropped 

well below one in the latter stages of growth. This meant that, according to model equations, 

animals could have grown to many times their maximum observed body weight if they had 

continued to feed at the maximum observed rate throughout their lifetime. While this was a 

theoretical rather than a practical issue, it must be addressed for models to realistically represent 

the processes involved in growth.  

The second issue arose because area specific feeding rate was calculated relative to observed 

(rather than predicted) body size. This meant that when predictions differed from observed data, 

this could result in a positive feedback loop or ‘snowball effect’ (figure 5.1). For example, if a rat 

with area of 40cm2 ate 20g food/day at time t this would be a feeding rate 0.5 g/cm2/day. 

However, if predicted surface area at time t were larger than that observed, say 50cm2, then 0.5 
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g/cm2/day would equate to 25g/day. Therefore, the modelled growth rate in the next time step 

would correspond to 25% higher food consumption than was observed, exacerbating the 

problem with each time step. 

 

 

Figure 5.1 Flowchart illustrating the positive feedback loop (‘snowball effect’) that can occur when 
area specific is calculated directly from data as in Martin et al. (2019). 

Here we investigate the potential of new methods to solve these issues and the implications for 

DEB theory. As suggested in  Martin et al. (2019), we look to mathematically describe the 

relationship between feeding rate and body size in rats over the entire growth period and use this 

as a reference for scaling observed area specific feeding rate. We assess the resulting models from 

three standpoints: accuracy - how closely fitted models agreed with observed growth curves; 

generality – how well independent data are predicted without additional fitting; biological 

realism – how realistically the models simulate the processes underlying growth. We use a model 

based on the DEBkiss modelling framework (Jager et al., 2013) - a simplified version of DEB, 

following the same fundamental principles but with fewer parameters. It was desirable to 

prioritise model simplicity in this study. Firstly, because eliminating complex reserve dynamics 

from the model meant that the effects of different feeding inputs on model predictions could be 

more easily analysed. Reproduction was also omitted for this reason. Additionally, the lack of 

user-friendly modelling tools was recently identified as a barrier preventing the use of DEB-TKTD 

models by regulators (EFSA, 2018) which has prompted renewed interest in DEBkiss (Jager, 

2020). 

5.4 Methods 

5.4.1 Data 
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All data used here were made available from existing regulatory studies (Syngenta, unpublished) 

required under 94/79/EC (European Commission, 1994), investigating chronic toxicity of 

acibenzolar-S-methyl, prosulfuron and thiamethoxam in Sprague Dawley laboratory rats (Rattus 

norvegicus) (Palm, 1975). 

Chronic toxicity studies lasting two years were carried out according to OECD guidelines (OECD, 

2018b, OECD, 2018a, OECD, 2001). Animals were kept in standard conditions with food and water 

available ad libitum. Each study comprised a control group and at least three dose groups with 

individual observations of body weight (g) initially at weekly intervals (later observations were 

up to five weeks apart). Food consumption (g(food) × day-1) was recorded alongside body weight 

either individually or per cage (2-5 individuals), providing the average per animal per day. 

Sample size was initially 80 animals per treatment per sex and only data for unmated animals 

were included in this study. 

5.4.1.1. Calibration dataset  

 
The control group from the two-year dietary toxicity study of acibenzolar-S-methyl was selected 

as the calibration data in this study, as it was intermediate in terms of total food consumption for 

both sexes. This dataset, henceforth referred to as group A, comprised observations of an initial 

80 animals of each sex at 37 timepoints over 104 weeks (a total of 2659 observations for males 

and 2678 for females). Animals in this study were fed a diet of Nafag 890 pelleted food.  

5.4.1.2 Independent datasets 

 
Independent datasets B and C were the control groups from the two-year dietary toxicity studies 

of prosulfuron and thiamethoxam respectively. Initial sample size in both datasets was 80 

animals of each sex.  Animals in group B were fed a diet of Rodent Chow #5002 pellets and 

observations took place at 37 timepoints over 104 weeks. Animals in group C were fed a diet of 

Nafag 890 pelleted food and observations took place at 36 timepoints over 103 weeks. Nafag 890 

and Rodent Chow #5002 are similar in protein (18-20%), fat (3-4.5%) and energy content (12-

14kJ/g) although Nafag 890 is substantially higher in fibre (Ruhlen et al., 2011, Leonhardt and 

Langhans, 2002, Silberbauer et al., 2000). 

5.4.2 Theoretical basis of the bioenergetic model 

 
To simulate rat growth, we used a slightly modified version of the DEBkiss modelling framework 

(Jager et al., 2013). The model in this study employs the most basic rules for starvation and the 

storage of assimilates. The reason for this choice was to determine how accurately growth can be 
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predicted using simple equations, if feeding data are used to produce accurate and high-

resolution model inputs.   

All DEB (Kooijman, 2000) models are based on the principle that certain processes are limited by 

volume or surface area and that an animal’s length, surface area and volume scale such that 

𝑉𝑜𝑙𝑢𝑚𝑒 ∝ 𝐿𝑒𝑛𝑔𝑡ℎ3 and 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 ∝ 𝑉𝑜𝑙𝑢𝑚𝑒2/3 ∝ 𝐿𝑒𝑛𝑔𝑡ℎ2, provided body shape remains 

the same (isomorphic growth). In DEBkiss (Jager et al., 2013), an animal’s total wet weight, 𝑊𝑤, 

is divided into structural (bones, muscle, organs etc.) weight, 𝑊𝑉, and stored assimilates known 

as the reproduction buffer, 𝑊𝑅 . DEBkiss was developed with invertebrates in mind and so the 

reproduction buffer is generally meant to provide mass for egg production. This function does 

not apply to viviparous mammals, for which the main costs of reproduction – foetal development 

and milk production- only occur post-fertilisation. Since reproduction is not modelled in this 

study, this buffer is used only for its secondary function, as a reserve to maintain structure in 

times of starvation. As such, it is more intuitive to think of 𝑊𝑅 simply as mass of ‘reserve’ and it 

will be referred to as such throughout. In this model implementation, the term reserve simply 

refers to stored assimilates and so its definition differs from that given in full DEB models 

(Kooijman, 2000). DEBkiss assumes that juvenile animals allocate all available resources to 

growth and maturation, and so 𝑊𝑅=0 until the onset of puberty. From this point on a portion of 

assimilates are stored for reproductive investment (Jager et al., 2013). We make the same 

assumption, with the distinction that assimilates are stored to cover the costs of reproduction or 

maintenance as needed.  

Wet weight is more practical to measure than structural volume, V. Assuming that average wet 

tissue density, 𝑑𝑤 (g × cm-3), is equal to that of water, that is 𝑑𝑤 = 1 (Lika et al., 2011), means that 

in juvenile animals 𝑉 = 𝑊𝑤/1 g × cm-3. Rather than any specific measure of length, such as nose 

to tail, the volumetric length, L, is defined as V1/3 and surface area, a, is equal to L2 or V2/3. It is also 

helpful to estimate the density of structure, dV (g × cm-3), allowing conversion between dry weight 

and volume such that 𝑊𝑣 = 𝑉 ×  𝑑𝑉 and 𝑊𝑤 =  𝑊𝑉 𝑑𝑉⁄ + 𝑊𝑅 . Multiple studies have estimated 

average tissue water content of R. norvegicus as between 64% and 74% (Reinoso et al., 1997) 

suggesting that 0.3 is a realistic value of dV for this species. 

5.4.3 Model notation 

 
J - Flux or rate 

y - Yield or efficiency 

d - Density  
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X - Food 

A – Assimilates 

M – Maintenance 

R - Reserve 

W – Weight or mass 

V - Structural volume 

a - Surface area 

L - Volumetric length 

w - Wet tissue 

m – Maximum 

5.4.4 Growth model 

 
Assimilation of nutrients from food into the body occurs across membranes and so this process 

is assumed to be mediated by surface area. Assimilation flux, JA, is defined as 

𝐽𝐴 = 𝑓𝐽𝐴𝑚
𝑎 𝑉

2

3                        (5.1) 

where 𝐽𝐴𝑚
𝑎  is the maximum surface area specific assimilation rate (g(assimilates) × cm(L)-2 × d-1) and V 

is volume. The parameter f is ‘scaled functional response’ to food availability (Jager et al., 2013, 

Kooijman et al., 2008) or ‘scaled feeding rate’ depending on how it is calculated. The distinction 

between these two terms is detailed later.  

Maintenance flux, JM, is given as 

𝐽𝑀 = 𝐽𝑀
𝑉 𝑉                        (5.2) 

Where 𝐽𝑀
𝑉  is the mass specific maintenance rate (g(assimilates) × cm(L)-3 × d-1). Endotherms are also 

subject to surface area specific maintenance costs, accounting for heat loss to the environment. 

However as long as the ambient temperature is within the thermoneutral zone of a species 

(Kingma et al., 2014) these are assumed to be zero (Lika et al., 2011). Laboratory guidelines 

require rodents to be kept at 22±3°C, as this was considered to be within the thermoneutral zone 

of the rat (Poole and Stephenson, 1977). More recent research has suggested that this 
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temperature range is too low (Le and Brown, 2008) but for simplicity we assumed that heat loss 

could be omitted. 

It is assumed that a certain proportion of assimilates are allocated to structural maintenance and 

growth and this is denoted k (dimensionless).  

𝐼𝑓 𝑘𝐽𝐴 > 𝐽𝑀, that is, assimilation is sufficient for growth and reserve storage 

∆𝑊𝑉 = 𝑦𝑉𝐴(𝑘𝐽𝐴 − 𝐽𝑀)                      (5.3) 

∆𝑊𝑅 = (1 − 𝑘)𝐽𝐴                       (5.4) 

Where 𝑦𝑉𝐴 (g(structure) × g(assimilates)-1) is the yield of structure over assimilates, (i.e. the efficiency 

with which assimilates can be converted into structure). Puberty is estimated to begin in rats at 

5-7 weeks of age (Rakel and Gergs, 2018) which is also the age of the study animals at the start of 

observation. As such, we assumed that 𝑊𝑅 = 0 initially and begins to accumulate immediately. 

Like the full DEB model, our model implementation divides wet weight into structure and reserve 

(although reserve is more narrowly defined in this case). However, the model equations used are 

unaltered from DEBkiss and follow the simple assumption that any assimilates not required for 

maintenance, or allocated to growth, are stored. This system is represented in figure 5.2. 

 

 

Figure 5.2 A graphical representation of the DEBkiss model used when assimilation is sufficient for 
growth. The value of k determines the proportion of resources assimilated from food allocated to 
maintenance and growth or stored for reproductive investment. 

At any constant value of f, growth ceases when 𝐽𝐴 = 𝐽𝑀. This is the point at which the ultimate 

structural volume, 𝑉∞, is reached, which can be calculated as (𝑘𝑓𝐽𝐴𝑚
𝑎 𝐽𝑀

𝑣⁄ )3. The theoretical 

maximum structural volume, 𝑉𝑚, is reached when 𝐽𝐴 = 𝐽𝑀 and f =1 such that 𝑉𝑚 = (𝑘𝐽𝐴𝑚
𝑎 𝐽𝑀

𝑣⁄ )3. At 

all times ∆𝑊𝑤 = ∆𝑊𝑉/𝑑𝑉 + ∆𝑊𝑅 but ∆𝑊𝑉 and ∆𝑊𝑅 depend on the value of f. 
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If 𝑘𝐽𝐴 < 𝐽𝑀 < 𝐽𝐴, that is, overall assimilation flux JA is sufficient for homeostasis but not growth 

then 

∆𝑊𝑉 = 0                       (5.5) 

∆𝑊𝑅 = 𝐽𝐴 − 𝐽𝑀                      (5.6) 

Maintenance is prioritised above growth, with the 1-k branch utilised to pay maintenance costs 

and any remainder stored as reserve. Equations 5.5 and 5.6 also describe change in body mass 

when 𝐽𝐴 < 𝐽𝑀 and 𝑊𝑅 > 0. In this scenario, the animal is starving, and 𝑊𝑉 is maintained by 

utilising reserve. Both ∆𝑊𝑅 and ∆𝑊𝑊 become negative as the reserve decreases. 

If 𝐽𝐴 < 𝐽𝑀 and 𝑊𝑅 =  0, that is, reserve has been used up and assimilation is insufficient to meet 

maintenance costs 

∆𝑊𝑉 = ( 𝐽𝐴 − 𝐽𝑀)/𝑦𝐴𝑉                       (5.7) 

∆𝑊𝑅 = 0                       (5.8) 

where 𝑦𝐴𝑉  (g(assimilates) × mass(structure)-1) is the yield of assimilates over structure (i.e. the efficiency 

with which assimilates can be extracted from structure). Therefore, structural weight is lost until 

it can be sustained by feeding. 

The values of k and 𝑦𝑉𝐴, 0.9472 and 0.7988 respectively, were taken from the most recent AmP 

entry for R. norvegicus (Rakel and Gergs, 2018), while 𝑦𝐴𝑉  was assigned its default value of 0.8 

(Jager et al., 2013). The maximum surface area specific assimilation rate, 𝐽𝐴𝑚
𝑎  and volume specific 

maintenance rate, 𝐽𝑀
𝑉 , were fitted to data. The value of f was calculated from data or food 

availability. Various approaches to this calculation, and their theoretical implications, are now 

summarised. 

5.4.5 Methods for calculating f 

 

5.4.5.1 Method 1: f = scaled functional response to food availability 

 
The approach used most commonly in DEB literature is to calculate the value of f based on food 

availability because, in most cases, detailed feeding data are unavailable. This approach uses the 

Holling Type II functional response 

𝑓 = 𝑋/(𝑋 + 𝐻)                       (5.9) 

where X denotes the density of food in the environment (g(food) × m-2) and H (g(food) × m-2) is the 

half-saturation food density at which food consumption rate, 𝐽𝑋 (g(food) × day-1) is half of its 
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maximum. When food is available ad libitum, 𝑋 =  ∞ and therefore 𝑓 = 1 (van der Meer, 2006a, 

Kooijman et al., 2008, Jager et al., 2013). Using food availability as a proxy for observations of food 

consumption in this way relies on the assumption that, when provided with as much food as they 

can eat, animals eat as much as they can. 

In other studies, f has been fixed to one during calibration and then estimated for independent 

data (Sadoul et al., 2018). This approach was not followed in this study as it is based on observed 

growth rather than feeding data, so the mechanistic basis is unclear. An alternative would be to 

compare overall average area specific feeding rate in the independent dataset to that of the 

calibration dataset and adjust f accordingly. However, this would not test whether food 

availability is a suitable proxy for feeding observations. Since feeding availability was always ad 

libitum in all datasets included in this study, f was fixed at its maximum value of 1 for all datasets 

in this study.  

5.4.5.2 Methods 2 & 3: From scaled functional response to scaled feeding rate 

The rate at which an animal can consume food depends on body size and so 𝐽𝑋 has no fixed upper 

limit. Instead, it is assumed that feeding rate is limited by surface area so  

𝐽𝑋 = 𝑓𝐽𝑋𝑚
𝑎 𝐿2                    (5.10) 

where  𝐽𝑋𝑚
𝑎  (g(food) × cm(L)-2 × day-1) is the maximum area specific feeding rate for a species and 𝐿 

is the animal’s volumetric length (cm) (Jager et al., 2013).  

𝐽𝑋𝑚
𝑎 = 𝐽𝐴𝑚

𝑎 𝑦𝐴𝑋⁄                     (5.11) 

where 𝑦𝐴𝑋  is the yield of assimilates from food or digestive efficiency (g(assimilates) × g(food)-1) and 𝐽𝐴𝑚
𝑎  

is the maximum surface area specific assimilation rate (g(assimilates) × cm(L)-2 × d-1). Since 𝑦𝐴𝑋 ≤ 1, 

𝐽𝑋𝑚
𝑎  provides the upper limit when fitting 𝐽𝐴𝑚

𝑎 . 

Dividing equation 5.10 by 𝐿2gives 

𝐽𝑋
𝑎 = 𝑓𝐽𝑋𝑚

𝑎                     (5.12) 

where 𝐽𝑋
𝑎 is area specific feeding rate (g(food) × cm(L)-2 × day-1). Solving for f gives 

𝑓 =  𝐽𝑋
𝑎 / 𝐽𝑋𝑚

𝑎                     (5.13) 

So, where 𝐽𝑋
𝑎 can be calculated from observed data, it is more appropriate to calculate f using 

equation 5.13 and define it as ‘scaled feeding rate’ rather than scaled functional response. In 

Methods 2 and 3, 𝐽𝑋
𝑎 is calculated for each observation interval by dividing observed of daily food 

consumption by the associated observation of wet weight, 𝑊𝑤, raised to the power of 2/3. Strictly 
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speaking, calculations of 𝐽𝑋
𝑎 should be based on structural surface area, a or V2/3. However, since 

V is not quantifiable from observed data, 𝑊𝑤 was used instead. While both Methods 2 and 3 use 

equation 5.13, they differ is in how 𝐽𝑋𝑚
𝑎  is calculated.  

5.4.5.3 Method 2: 𝑱𝑿𝒎
𝒂  = maximum observed area specific feeding rate 

 
In this approach, previously employed in  Martin et al. (2019), 𝐽𝑋𝑚

𝑎  is defined as the maximum 

individual observed area specific feeding rate within a dataset (separated by sex). In group A, 𝐽𝑋𝑚
𝑎  

was 0.822g × cm-2 × day-1 for males and 0.715g × cm-2 × day-1 for females. These values were used 

for all datasets. Identifying 𝐽𝑋𝑚
𝑎  in this way guarantees that scaled f values do not exceed one for 

the calibration data set. It is possible, though unlikely, for f to exceed one when using (mean) 

independent data. This would require the average feeding in the independent dataset to exceed 

the highest individual observation in the calibration dataset. 

5.4.5.4 Method 3: 𝑱𝑿𝒎
𝒂  = predicted 𝑱𝑿

𝒂  at a given body size, maximum food availability 

 
In this method, observed daily food consumption,  𝐽𝑋 (g(food) × day-1), and area specific feeding rate, 

𝐽𝑋
𝑎 (g(food) × cm(L)-2 × day-1) with food available ad libitum, were described empirically as functions 

of surface area (calculated as 𝑊𝑤
2/3). Visual inspection showed that, rather than continually 

increasing as animals grew, 𝐽𝑋 roughly followed a sigmoid pattern when plotted against surface 

area. The generalised logistic function (Richards, 1959) was selected as a flexible sigmoid curve 

which could meet the necessary conditions to model 𝐽𝑋 as a function of body size. It was specified 

that the curve must pass through the origin, as an animal with zero mass would be unable to 

consume any food.   

One expression of the generalised logistic formula to describe JX in terms of surface area, a, is 

𝐽𝑋 = 𝐺 +  
𝑈−𝐺

1+𝑒−𝐵(𝑎−𝑀)                   (5.14) 

Where G is the lower asymptote (g(food)
 × day-1), U is the upper asymptote (g(food)

 × day-1), M is 

inflection point (cm2) and B is the growth rate (cm-2). The simplest way (minimum number of 

parameters) in which this can be adjusted to pass through the origin is as a symmetrical curve 

with its inflection point at (0,0). This can be done by stipulating that 𝐺 =  −𝑈 and 𝑀 = 0 such that 

𝐽𝑋 =
2𝑈

(1+𝑒−𝐵(𝑎))
− 𝑈                   (5.15) 

With only two free parameters, U and B, this function was then fitted to mean 𝐽𝑋 (at each unique 

value of a) in the calibration dataset (figure 5.3). The coefficient of determination, R2, was then 

calculated.  This showed that, for males (U=26.03 and B=0.07693), 82% of variation in in mean 𝐽𝑋 
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was explained by the fitted function of surface area. For females (U=17.72 and B=0.1096), this 

figure was 38%, as data were more variable particularly at extreme body sizes with fewer 

observations (figure 5.3 ii). In order to eliminate values of 𝐽𝑋 that were insufficient to meet 

maintenance costs, any data collected after mean body size had peaked (day 539 for males, day 

686 for females) were excluded. Area specific feeding rate, 𝐽𝑋
𝑎, was then simply modelled as  

𝐽𝑋
𝑎 =  𝐽𝑋/𝑎                                  (5.16) 

This explained 98% of variability in mean area specific feeding rate for males and females (figure 

5.3 iii-iv). Modelled 𝐽𝑋
𝑎, as a function of a, was then used as the reference for scaling observed 𝐽𝑋

𝑎, 

meaning that 𝐽𝑋𝑚
𝑎  was redefined as predicted area specific feeding rate at a given body size, at 

maximum food availability (equation 5.16). 

 

Figure 5.3 Plots i & ii show observed (circles) and modelled (line) daily food consumption 𝐽𝑋 vs 
surface area, a, of males and females respectively. Raw data are plotted in light grey while mean 
values are plotted in black. Method 3 uses equation 5.15, fitted to mean data to model food 
consumption per day, 𝐽𝑋. Plots iii & iv show observed (circles) and modelled (line) area specific 
feeding rate 𝐽𝑋

𝑎 vs surface area, a, of males and females respectively. Raw data are plotted in light 
grey while mean values are plotted in black. Models plot the fitted formula for 𝐽𝑋 divided by surface 
area, a. 

Redefining 𝐽𝑋𝑚
𝑎  has several important theoretical implications. Since 𝐽𝑋𝑚

𝑎  is no longer a true 

maximum, the scaled feeding rate, f, may exceed one. Because 𝐽𝐴
𝑎 = 𝑓𝐽𝐴𝑚

𝑎  this means 𝐽𝐴𝑚
𝑎  no longer 

represents the maximum area specific assimilation rate and is redefined as the area specific 

assimilation rate at maximum food availability. Crucially, as per equation 5.11, if 𝐽𝐴𝑚
𝑎  remains 

fixed but 𝐽𝑋𝑚
𝑎  decreases as animals grow, then digestive efficiency, 𝑦𝐴𝑋 , must increase with body 

size. Furthermore, 𝑦𝐴𝑋 ≤ 1 ∴  𝐽𝐴𝑚
𝑎 ≤ 𝐽𝑋𝑚

𝑎 , so the lowest predicted 𝐽𝑋𝑚
𝑎  within the observed range 

of body size provides an upper limit for 𝐽𝐴𝑚
𝑎 . 
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5.4.5.5 Addressing the ‘snowball effect’ in Methods 2 and 3  

 
To avoid the feedback loop described in the introduction (Martin et al., 2019), 𝐽𝑋

𝑎 was calculated 

in real time from observed food consumption, 𝐽𝑋 (g × day -1), and modelled surface area, a (cm2). 

Surface area, a, at time t was defined as modelled 𝑊𝑤
2/3 (in order to be consistent with how 𝐽𝑋

𝑎 

was calculated from data). Mean observed food consumption, 𝐽𝑋, at time t was then divided by a, 

to yield 𝐽𝑋
𝑎 for the next time step. In Method 2, 𝐽𝑋

𝑎 was simply divided by the fixed value of 𝐽𝑋𝑚
𝑎  to 

give a value of 𝑓 at time t. In Method 3, 𝐽𝑋𝑚
𝑎  was calculated by entering modelled a at time t into 

equations 5.15 and 5.16 before using equation 5.13 to yield f.  

This meant that growth rate was modelled based on observed food consumption rather than 

observed area specific feeding rate over time. 

5.4.5 Model assessment 

 
Initially, the growth model was fitted to wet weight data from the calibration dataset A using each 

method of f calculation. To reduce the impact of heteroscedasticity, the square root 

transformation was used during fitting. The accuracy of the model fits was then assessed in a 

variety of ways. Overall goodness of fit was measured with the coefficient of determination, R2, 

and the root mean square error, RMSE. Additionally, the proportion of observations predicted to 

within one standard deviation of the mean was calculated.  

Next, the models were used to predict independent datasets B and C, without recalibration, to 

assess the generality of the model parameters derived using each method. Again, predictions 

were assessed using R2, RMSE and the proportion of observations predicted to within one 

standard deviation of the mean.  

The biological realism of each method was then assessed through comparison of the theoretical 

maximum volume, 𝑉𝑚, and modelled reserve, 𝑊𝑅 , to relevant literature data. Finally, the impact 

of real time f calculation to avoid positive feedback was assessed with a worked example. 

5.4.6 Model implementation 

 
All models were implemented in Matlab (ver. R2016b). Growth models were developed with the 

BYOM (Jager, 2019) flexible model platform (ver. 4.1). All fitted parameter values were derived 

using the Nelder Mead simplex algorithm to maximise the likelihood function, given the observed 

data (Pan and Fang, 2002). Likelihood profiling was also used to check that initial fits were not 

local optima (Kreutz et al., 2013).   
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5.5 Results 

 

5.5.1 Calibrated Growth Curves 

 
The growth curve was fitted to mean wet weight, 𝑊𝑤, observed over two years in group A, using 

each of the three methods for determining the scaled feeding rate, f (figure 5.4). Fitted parameter 

values as well as various measures to assess goodness of fit are given in table 5.1. Goodness of fit 

measures only relate to total body weight, 𝑊𝑤, as this was the only model variable monitored in 

the dietary toxicity studies which provided data for this investigation. For illustrative purposes, 

the breakdown of modelled 𝑊𝑤 into reserve and structure is shown on plots. Modelled reserve 

dynamics are assessed with respect to literature data in the Biological Realism subsection. Full 

size plots of calibration results can be found Appendix C (figures C1-C6 and C19-C24). 

Table 5.1 Fitted parameter values, selected observed and modelled endpoints, and goodness of fit 
measures for each method of calculating the scaled feeding rate, f. 

Sex Males Females 

Observed max. 𝑊𝑤 (g) 839.0 486.2 

Method 1 2 3 1 2 3 

𝐽𝐴𝑀
𝑎  (g × cm-2 × d-1) 0.2312 0.1196 0.1921 0.1775 0.07966 0.1313 

𝐽𝑀
𝑉  (g × cm-3 × d-1) 0.02794 0.004829 0.02183 0.02575 0.004295 0.01754 

Modelled max. 𝑊𝑤  (g) 1006.6 781.4 847.3 560.0 460.4 518.0 

R2 0.857 0.970 0.983 0.900 0.968 0.971 

RMSE 79.55 36.35 27.53 33.67 19.13 18.18 

% 𝑊𝑤  observations 
modelled to within 1 SD 

61.11 86.11 91.67 66.67 86.11 88.89 

 

In Method 1, f = 1 for the duration of the study. This meant that a smooth curve was produced and 

stored reserve, 𝑊𝑅 , rose continuously. Consequently, this method produced the weakest fits to 

mean body weight, 𝑊𝑤, over time. For both sexes, this method produced the lowest R2, the highest 

RMSE and modelled the fewest observations to within 1 s.d. of the mean.  

Method 2 defined 𝐽𝑋𝑚
𝑎  as the highest observed area specific feeding rate in group A. Good fits were 

calculated for mean 𝑊𝑤 over time (R2 > 0.96). Modelled growth rate fluctuated in response to 

variation in food intake over time and became negative toward the end of the study period, 

matching observations. The overall shape of the curve was similar for males and females, showing 

signs of systematic error. Modelled growth rate lagged behind that observed until modelled body 

weight overtook observations after around 9-11 weeks. This persisted until modelled body 

weight fell below observations once again after 50-58 weeks (figure 5.4 iii-iv).  
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In Method 3, 𝐽𝑋𝑚
𝑎  was calculated as a function of surface area, a. The calculated fits to mean data 

were slightly better, for all measures, than those of Method 2. Modelled growth rate was highly 

responsive to fluctuations in f, becoming negative as area specific feeding rate dropped in the late 

stages. For both sexes, modelled body weights were very close to observed data for most of the 

observation period, with significant deviations only occurring late in the study. Maximum 

modelled 𝑊𝑤 was only 1% higher than the maximum observed body weight in males and 6.5% 

higher for females.  

 

Figure 5.4 Plots showing models (solid line) fitted to observed mean body weight of group A male 
and female rats over 2 years (circles). The shaded area under the model curves shows structure (dark 
grey) and reserve (light grey) while dashed lines represent observed mean ± SD. The results of 
Method 1 are shown in plots i-ii, Method 2 in plots iii-iv, and Method 3 in plot v-vi. 

5.5.2 Summary analysis of food consumption and body weight data  

 
Based on mean observed body weight and food consumption at each timepoint, summary 

analyses were conducted to highlight broad differences between the data sets (table 5.2). For 

both males and females, total food consumption was highest in group B, intermediate in group A 

and lowest in group C. Males and females in group A had the lowest starting weight but were 

intermediate in terms of maximum body weight and final body weight, with the highest weight 
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gain (final weight minus initial weight) over two years. Weight gain, maximum weight and final 

weight were lowest for males and females in group C. 

Table 5.2 Summary data based on mean observed body weight and food consumption at each 
timepoint. 

Sex Male Female 

Dataset A 
(Calibration) 

B C A 
(Calibration) 

B C 

Total Food 
Consumption (kg) 

17.97 18.36 17.32 12.24 13.76 12.16 

Initial Weight (g) 113.37 209.38 190.35 104.14 189.22 144.69 

Max Weight (g) 839.04 859.78 695.08 486.21 559.79 433.77 

Final Weight (g) 742.35 784.36 672.11 464.31 549.12 430.20 

Weight gain (g) 628.99 574.98 481.76 360.17 359.90 285.51 

 

5.5.3 Feeding Rate Predictions 

 
As part of Method 3, the generalised logistic curve was fitted to mean observed daily feeding rate, 

𝐽𝑋 (g × day-1), as a function of surface area, a, (cm2) of male and female rats in group A. This 

produced R2 values of 0.82 and 0.37 respectively. Dividing fitted 𝐽𝑋 by a to predict, mean area 

specific feeding rate at maximum food availability, 𝐽𝑋
𝑎, produced R2 values of 0.98 for males and 

females.  

To assess the uniformity of the relationship between 𝐽𝑋
𝑎 and a across study groups, the predictions 

of the calibrated curves were compared to independent datasets B and C (figure 5.5). For males, 

variation in mean 𝐽𝑋
𝑎 was well predicted by surface area with R2 values of 0.90 for group B and 

0.95 for group C. Observed 𝐽𝑋
𝑎 in group B agreed closely with predictions at medium body sizes 

but exceeded predictions at large sizes and showed a decrease at low body size that was not 

evident in the calibration data. Observed 𝐽𝑋
𝑎 in group C showed a similar shape to the predicted 

curve but was generally slightly lower. The relationship was less consistent for females though, 

R2 was 0.68 for group B and 0.95 for group C. Observed 𝐽𝑋
𝑎 in group B was higher than predicted, 

particularly at larger body sizes. As was the case for males, 𝐽𝑋
𝑎 in group C was slightly lower than 

predicted for most body sizes. 

The relationship between 𝐽𝑋
𝑎 and a appears less uniform among female rats. However, deviations 

from predicted 𝐽𝑋
𝑎 may be reflected by a predictable increase or decrease in growth rate. 
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Figure 5.5 Plots comparing independent data (circles) to predictions (lines) of area specific feeding 
rate, 𝐽𝑋

𝑎 vs surface area, a. Raw data are plotted in light grey while mean values are plotted in black. 
Data for males and females in group B are shown in plots i & ii respectively while data for males and 
females in group C are shown in plots iii & iv respectively. 

5.5.4 Growth curve validation 

 
The calibrated growth models were used to predict independent datasets B and C. The accuracy 

of the predictions produced by each method was assessed by calculating R2, RMSE and the 

percentage of observations predicted to within one standard deviation (table 5.3). Full size plots 

of all model predictions of independent data are included in Appendix C (figures C7-C18 and C25-

C36). 

Table 5.3 Selected measures of the accuracy of each method when used to predict independent data. 

Sex Male 

Dataset B C 

Method 1 2 3 1 2 3 

R2 0.7749 0.9641 0.9434 0.0889 0.7311 0.8624 

RMSE 86.25 34.44 43.23 137.7 74.82 53.52 

% observations 
predicted to ±1 s.d. 

36.11 86.11 80.56 34.29 54.29 80.00 

Sex Female 

Dataset B C 

Method 1 2 3 1 2 3 

R2 0.8831 0.9263 0.2609 0.5513 0.7970 0.6098 

RMSE 40.25 31.95 101.2 54.55 36.69 50.87 

% observations 
predicted to ±1 s.d. 

83.33 75.00 16.67 71.43 74.29 71.43 
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Method 1 produced virtually identical curves for all datasets. This is because initial weight was 

the only model input that differed from the calibration data. This method produced the poorest 

predictions of mean body weight over time for males in both independent datasets and for 

females in group C. For females in group B, Method 1 produced the highest proportion (83.33%) 

of predictions within one standard deviation of the observed mean (figure 5.6). However, had the 

model continued to run, modelled body weight would have continued to increase, as reserve 

accumulated indefinitely.  

 

Figure 5.6 Plots showing predicted (black lines) and mean observed body weight of female rats over 
2 years (circles), using Method 1 to calculate the scaled feeding rate, f. The shaded area under the 
model curves shows structure (dark grey) and reserve (light grey) while dashed lines represent 
observed mean ± SD. Results for group B and C are shown in plots i & ii respectively. 

Method 2 produced the most accurate predictions (highest R2 and lowest MRSE) of mean growth 

rate for males and females in group B. Body weight of both sexes in group C was overpredicted 

for all but the early stages of observation. Despite this, Method 2 did produce the most accurate 

predictions for females in this dataset (figure 5.7). 

 

Figure 5.7 Plots showing predicted (black lines) and mean observed body weight of female rats over 
2 years (circles), using Method 2 to calculate the scaled feeding rate, f. The shaded area under the 
model curves shows structure (dark grey) and reserve (light grey) while dashed lines represent 
observed mean ± SD. Results for group B and C are shown in plots i & ii respectively. 

Method 3 predicted growth of males in group B slightly less accurately than Method 2, and was 

the most accurate for males in group C. In both cases, model predictions closely followed the 
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observations until the late stages of observation. This was also the case for females in group C, for 

which this method produced the second most accurate predictions. However, growth of females 

in group B was poorly predicted. Modelled body weight was well above that observed for almost 

all of the observation period. These predictions are shown in figure 5.8. 

 

Figure 5.8 Plots showing predicted (solid line) and mean observed body weight of rats over 2 years 
(circles), using Method 3 to calculate the scaled feeding rate, f. The shaded area under the model 
curves shows structure (dark grey) and reserve (light grey) while dashed lines represent observed 
mean ± SD. The results for males and females in group B are shown in plots i-ii respectively while the 
results for males and females in group C are shown in plots iii-iv respectively. 

5.5.5 Biological Realism 

 
Although goodness of fit to observed 𝑊𝑤 (the only model endpoint measured in toxicity studies) 

quantifies model accuracy, it gives no information as to the biological realism of the model itself. 

In order to address this question, literature data were utilised to assess other model variables. No 

data are available for 𝑊𝑅 , as this represents stored assimilates from food. This would include not 

only stored lipids but also carbohydrates stored as glycogen, and fat-soluble vitamins. 

Nevertheless, observed body fat percentage of ad libitum fed rats is a useful, if not ideal, 

comparator, as it would be expected to follow very similar temporal patterns.  

Data from Tekus et al. (2018) provide reference values of body fat percentage of rats at various 

ages up to two years. While the study used only male Wistar (rather than Sprague Dawley) rats, 

other studies indicate that body fat percentage is similar across the two strains (Reed et al., 2011) 

and between male and female Sprague Dawley rats (Rojas et al., 2018). Figure 5.9 shows 
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literature data plotted against calibrated model simulations (group A) of 𝑊𝑅  as a percentage of 

modelled 𝑊𝑤. 

 

Figure 5.9 Plots showing mean ± SE body fat percentage (left hand axis) recorded in rats of various 
ages by Tekus et al. (2018), Reed et al. (2011) and Rojas et al. (2018), and calibrated model 
simulations of 𝑊𝑅 as a percentage of 𝑊𝑤 over time (right hand axis) for male (plot i) and female rats 
(plot ii). * denotes that data were available for male animals only. 
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Method 1 assumes that f = 1 at all times where food is available ad libitum, leading to constant 

accumulation of reserve. For both sexes, modelled 𝑊𝑅  was around 50% of modelled 𝑊𝑤 after 2 

years, over five times the value reported at that age and more than double the maximum reported 

percentage body fat. Using Method 2, the observed decline in body fat in the late life stages was 

reflected by model simulations. 𝑊𝑅 peaked at 10.48% of modelled 𝑊𝑤 of males and 11.22% for 

females, only about half of the value reported by Tekus et al. (2018).  

With Method 3, model simulations were relatively consistent with observations. For both sexes, 

𝑊𝑅 as a percentage of 𝑊𝑤 matched observed body fat percentage at 6 months of age before 

reaching a peak between the ages of 18 months and two years and declining thereafter. Peak 𝑊𝑅 

percentage was 28.85% for males and 27.49%, slightly exceeding the highest mean body fat 

percentage + standard error (27.33%) reported by Tekus et al. (2018).  

The maximum volume of structure, 𝑉𝑚, is a theoretical maximum calculated from model 

parameters as (𝑘𝐽𝐴𝑚
𝑎 𝐽𝑀

𝑣⁄ )3. Multiplying  𝑉𝑚 by the density of wet tissue, dw, (assumed to be 1 g × 

cm-3 (Lika et al., 2011))  gives the maximum wet weight of structure, 𝑊𝑉𝑤𝑚. Peak lean weight 

would serve as a sensible proxy for comparison but is not measured in toxicity studies. Instead, 

we can assume that the weights of structure and reserve peak simultaneously, meaning that 

𝑊𝑉𝑤𝑚 can be estimated from data as  

𝑊𝑉𝑤𝑚 = 𝑚𝑎𝑥. 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 × (1 − 𝑚𝑎𝑥. 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑏𝑜𝑑𝑦 𝑓𝑎𝑡)              (17) 

Using the relevant values from group A (used in calibration) and Tekus et al., gives 839.04g × 

0.783 = 656.97g for males and 486.21g × 0.783 = 380.70g for females (table 5.4).  

Table 5.4 A comparison of maximum wet weight of structure, 𝑊𝑉𝑚𝑤, estimated from data and 
calculated from model parameters. 

Sex Male Female 

Estimated 𝑊𝑉𝑚𝑤 (g) 656.97 380.7 

Method 1 2 3 1 2 3 

Modelled 𝑊𝑉𝑚𝑤 (g) 481.5 12910 579.1 278.3 5422 356.5 

Model/ Estimate 0.733 19.7 0.882 0.731 14.2 0.936 

 

Modelled 𝑊𝑉𝑚𝑤 was lowest when using Method 1, for both sexes its value was 73% of that 

estimated from data. Method 2 meanwhile produced very high values of 𝑊𝑉𝑚𝑤, almost 20 times 

the estimated value for males and over 14 times the estimate for females. The values of 𝑊𝑉𝑤𝑚 

given by Method 3 were closest to the estimates at only 12% and 6% lower for males and females 

respectively. This was also the only method for which 𝑊𝑉𝑚𝑤 was not a strict maximum, as f could 
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exceed one. The highest modelled wet weights of structure using this method were closer still at 

602.8g for males and 375.6g for females.  

5.5.6 Impact of real time f calculations 

 
For Methods 2 and 3, the scaled feeding rate f was calculated in real time as the growth model 

ran. This was not applicable to Method 1 as f was not derived from feeding data in that approach. 

This was in order to ensure that the models reflected growth based on the quantity of food 

consumed, rather than observed area specific feeding rate which could lead to a ‘snowball effect’ 

where predictions deviate from data (figure 5.1). Hypothetical data were used to illustrate the 

impact this had on modelled ∆𝑊𝑤 (using the fitted parameter values given in table 5.1). A male 

rat was considered, weighing 300g and consuming 24g food per day, with Methods 2 and 3 

returning f values 0.65 and 0.98 respectively (table 5.5).   

Table 5.5 Calculations of scaled feeding rate, f, using Methods 2 and 3 for the same hypothetical 
data. 

Method 
𝐽𝑋, 

gfood × day-1 
𝑊𝑤, 

g 

𝐽𝑋
𝑎, 

gfood × cm-2 × 
day-1 

𝐽𝑋𝑚
𝑎  

(Method 2), 
gfood × cm-2 × 

day-1 

Predicted  
𝐽𝑋𝑚

𝑎  at 300g 
(Method 3), 
gfood × cm-2 × 

day-1 

f 

2 
24 300 0.54 0.82 N/A 0.65  

3 
24 300 0.54 N/A 0.55 0.98  

 

We then supposed that modelled 𝑊𝑤 was either accurate (300g) or 50g above or below that 

observed at time t (in all cases 𝑊𝑤 was broken down into 88% structure and 12% reserve). We 

then calculated ∆𝑊𝑤 for the next time step. Using Method 2 and the f value (table 5.5) derived 

directly from data, as in Martin et al. (2019), showed that f always corresponds to the same area 

specific feeding rate, 𝐽𝑋
𝑎, equating to a higher 𝐽𝑋 in larger animals and vice versa (table 5.6). 

Therefore, modelled growth rate does not reflect the quantity of food consumed, this leads to 

positive feedback between modelled 𝑊𝑤 and ∆𝑊𝑤. As a result, once predictions of 𝑊𝑤 deviate 

from data, they become less accurate with each time step. Using Method 3, the value of 𝐽𝑋
𝑎 

corresponding to the given value of f decreases with body size (table 5.6). In this case, negative 

feedback occurs between modelled 𝑊𝑤 and ∆𝑊𝑤 at a given value of f. However, a positive 

relationship still exists between modelled 𝑊𝑤  and 𝐽𝑋, so ∆𝑊𝑤 does not exactly reflect the quantity 

of food consumed. 
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Table 5.6 Food consumption, 𝐽𝑋,  and growth rate, ∆𝑊𝑤, as calculated from predicted body weight, 
𝑊𝑤, and observed scaled feeding rate, f, using Methods 2 and 3. This approach was not used in this 
study due to positive feedback. 

 Method 
Inputted 
f value 

Predicted 
𝑊𝑤 at time t, 
g 

Corresponding 𝐽𝑋
𝑎 

at time t, 
g(food) × cm-2 × day-1 

Corresponding 𝐽𝑋 
at time t,  
g(food) × day-1 

Predicted 
∆𝑊𝑤,  
g × day-1 

Method 2 

0.65 350 0.54 26.60 1.68 

0.65 300 0.54 24.00 1.57 

0.65 250 0.54 21.25 1.44 

Method 3 

0.98 350 0.49 24.48 1.60 

0.98 300 0.54 24.00 1.68 

0.98 250 0.59 23.27 1.72 

 

The exercise was then repeated, this time using the approach employed throughout this study. In 

this case, f was instead derived from observed food consumption, 𝐽𝑋, and modelled 𝑊𝑤 (table 5.7). 

When the calculations are performed in this order, 𝐽𝑋 is fixed so 𝐽𝑋
𝑎 and f decrease as modelled 

body size increases, and vice versa. For Method 2, this curtails the ‘snowball effect’, instead 

leading to negative feedback between modelled 𝑊𝑤 and ∆𝑊𝑤 at a given value of 𝐽𝑋. For Method 3, 

negative feedback between 𝑊𝑤 and ∆𝑊𝑤 is strengthened (a difference of 0.44 g × day-1 between 

∆𝑊𝑤 at 250g and 350g body weight) as predicted growth rate accurately reflects observed daily 

food consumption.  

Table 5.7 Scaled feeding rate, f, and growth rate, ∆𝑊𝑤, calculated from predicted body weight, 𝑊𝑤, 
and observed food consumption, 𝐽𝑋, using Methods 2 and 3. This is the approach used in this study. 

Method  
Observed 𝐽𝑋 
at time t,  
g(food) × day-1 

Predicted 𝑊𝑤 
at time t,  
(g) 

Corresponding 𝐽𝑋
𝑎  

at time t,  
g(food) × cm-2 × day-1 

Inputted f 
value 

Predicted 
∆𝑊𝑤,  
g × day-1 

2 

24 350 0.48 0.59 1.40 

24 300 0.54 0.65 1.57 

24 250 0.60 0.74 1.74 

3 

24 350 0.48 0.96 1.46 

24 300 0.54 0.98 1.68 

24 250 0.60 1.01 1.90 

 

 



116 
 

5.6 Discussion 

DEB models are designed to function without the need for detailed feeding data (Kooijman, 2000, 

Jager et al., 2013). However, this presents the question of what to do with such data when they 

are available. The conventional approach to deriving feeding inputs in DEB models does not 

reflect temporal or intertreatment variability in feeding rate, only food availability. In a previous 

study (Martin et al., 2019), we developed a method to derive feeding inputs directly from feeding 

data, but this approach had problems of its own. In this study, a novel method was developed, 

with the aim of addressing all the issues previously identified. We used a simple model based on 

DEBkiss to assess three approaches, for their impact on model accuracy, generality, and realism.   

5.6.1 Accuracy and generality 

 
Model accuracy was assessed by fitting the models to growth data for Group A. Method 3 

produced the most accurate fits to calibration data for both males and females. Method 2 was only 

slightly less accurate. However, errors appeared more systematic in nature when using Method 

2, following a similar pattern over time for both males and females. Method 1 was the least 

accurate, producing a smooth curve which did not respond to temporal variability in area specific 

feeding rate. 

Model generality was then assessed by using the models to predict independent growth data 

(Groups B and C) without recalibration. Method 2 performed best in terms of model generality, 

despite systematic errors still being apparent. Without recalibration, body weight over time was 

predicted most accurately using this method for females in both independent datasets and for 

males in group B. Method 1 was again least accurate for all but one dataset. Using this method, 

the only model input to change between datasets was initial body weight which has minimal 

effects on predictions. The resulting model outputs for Method 1 were essentially different 

sections of the same curve for all datasets. While body weight of group B females was predicted 

relatively well, this result was coincidental as this dataset was quite different to that used in the 

calibration (table 5.2).  

Predictions using Method 3 were most accurate for group C males and a close second for males 

in group B. Results were mixed for females however, this method was second most accurate for 

group C females but the least accurate for those in group B. It is notable that observed feeding 

patterns in this dataset were most different from predictions of 𝐽𝑋𝑚
𝑎 (figure 5.5) and that animals 

were fed on a different diet to those in groups A and C. While predictions of total body weight of 

group B females were poor, it is notable that predicted structural weight followed observed wet 

weight very closely (figure 5.8). This suggests that the profile of the scaled feeding rate, f, over 
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time was accurate, if not the values themselves. This could potentially be remedied by fitting the 

logistic curve to feeding data for each dataset. However, in this study no additional fitting was 

performed in order to ensure a fair comparison of all three methods. 

5.6.2 Addressing the ‘snowball effect’ 

 
We showed that real time calculation of f works effectively to stop the ‘snowball effect’ that 

occurred in a previous study. The large impact this had on ∆𝑊𝑤 predicted by Method 2, calls into 

question the findings of Martin et al. (2019) regarding the relative contributions of feeding 

toxicity to observed effects on body weight over time. In most cases, growth rate without chemical 

stress would have been overestimated due to positive feedback, leading to the effects of feeding 

avoidance being understated. Method 3 mitigated this problem even without this additional step; 

however, the extent of this mitigation would vary depending on fitted parameter values. It should 

be considered good practice in future studies to calculate f as the model runs, at least when 

predicting independent data. 

5.6.3 Biological realism 

 
Method 1, that is suggested by DEB literature (Kooijman et al., 2008, van der Meer, 2006a, Jager 

et al., 2013), assumes that f = 1 when food is freely available. In our growth model, this meant that 

𝑊𝑉𝑚𝑤 was approached quickly with ∆𝑊𝑅 becoming linear ad infinitum. Modelled 𝑊𝑅  reached over 

50% of 𝑊𝑤 after 2 years, more than twice the maximum reported percentage body fat in the 

literature.  

It should be mentioned that our model did not include the maturity maintenance parameter, this 

represents the costs of maintaining sexual maturity and is taken from the 1- k branch of the 

model. However, these costs are assumed to be proportional to structural weight at puberty and 

so remain constant as animals grow larger (Jager et al., 2013). Maturity maintenance would have, 

therefore, only slightly mitigated the issue of constant reserve accumulation. A potential solution 

would be to implement the full DEB model which uses a more complex equation to model reserve 

dynamics. This includes an additional parameter, the maximum reserve density (g(reserve) × 

g(structure)
-1), which provides a limit on reserve accumulation. However, despite using the same 

simple equations, constant reserve accumulation was not an issue with Methods 2 and 3. It may 

then be the case that, rather than representing a real biological processes or limits, maturity 

maintenance and maximum reserve density simply serve to compensate for the oversimplicity of 

the feeding input.  
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However, the major issue with Method 1 is that rats provided with food ad libitum do not feed at 

the maximum area specific rate, as is assumed (figure 5.10). Rats moderate their feeding 

significantly as they grow (Laaksonen et al., 2013, Martin et al., 2019). In fact, data in this study 

and others (Hubert et al., 2000, Tekus et al., 2018) show that weight loss occurs as rats approach 

two years of age. These patterns cannot possibly be modelled based on constant ad libitum food 

availability (equation 5.9). Therefore, f ≠ 1 and/or digestive efficiency, 𝑦𝐴𝑋 , and maximum area 

specific feeding rate,  𝐽𝑋𝑚
𝑎 , are not fixed values.  

 

Figure 5.10 Observed area specific feeding rate, 𝐽𝑋
𝑎, of male rats in group A plotted against surface 

area, a. Raw data are plotted in light grey while mean values are plotted in black. The dashed line 
shows the relationship required for scaled feeding rate, f = 1 if digestive efficiency, 𝑦𝐴𝑋, is fixed as a 
primary parameter. Maximum area specific feeding rate, 𝐽𝑋𝑚

𝑎 , is assigned the value of the highest 
observation in the dataset. 

In Method 2, previously employed in  Martin et al. (2019), f is a dynamic input calculated based 

on observed area specific feeding rate over time. However, as before, the values of 𝑦𝐴𝑋 and 𝐽𝑋𝑚
𝑎  

remain fixed as animals grow. Using this method, 𝑊𝑅 relative to 𝑊𝑤 was substantially lower than 

body fat percentages reported in the literature (Reed et al., 2011, Rojas et al., 2018, Tekus et al., 

2018) although observed patterns in fat storage over time were reflected by the model (figure 

5.9). As previously noted, the observed negative relationship between body size and area specific 

feeding rate leads to f values that decline to well below one. Fitted parameter values must 

compensate for this and as a result, 𝑉𝑚 is extremely high. The parameter values in this study 

meant that, in theory, male rats could grow to almost 13kg if they fed at a sufficiently high rate. 

This suggests that this method is fundamentally flawed, as such sizes are far beyond the highest 

observations in the literature (Hubert et al., 2000, Rojas et al., 2018). The strong performance of 

Method 2, both in terms of model fits and predictions of independent data, is therefore an example 
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of a model being right for the wrong reasons. Based on accuracy and generality, Method 2 would 

appear to perform best overall, but assessing biological realism reveals serious faults. 

Method 3 attempts to address issues with both the previous methods by positing that the values 

of 𝑦𝐴𝑋 and 𝐽𝑋𝑚
𝑎  vary as functions of body size and allowing f to fluctuate and exceed one. This 

attempt seems to have been largely successful. Using this method, modelled percentage body 

weight given by 𝑊𝑅 was closest to observed body fat percentage for both sexes at all but one 

timepoint. Moreover, the modelled maximum wet weight of structure, 𝑊𝑉𝑤𝑚, was only slightly 

lower than estimated peak lean weight in the calibration dataset. 

5.6.4 What issues remain? 

 
Conventionally, digestive efficiency, 𝑦𝐴𝑋 , is treated as a primary (fixed) parameter (Jager et al., 

2013, Kooijman et al., 2008) but Method 3 changes this, such that this value increases with body 

size. This is highly plausible; several literature studies report increases in digestive efficiency 

associated with body size in a range of species (Smith, 1995, Illius and Gordon, 1992, Hansson 

and Jaarola, 1989, Demment and Vansoest, 1985). This occurs because increased gut capacity of 

larger animals allows the same volume of food to attain a greater surface area, while increased 

gut length leads to increased retention time for the extraction of nutrients.  

In lieu of digestive efficiency data for rats, the generalised logistic model was fitted to food 

consumption data. This relationship relies on the assumption that growing rats, supplied with 

food ad libitum, consume enough food for area specific assimilation to equal 𝐽𝐴𝑚
𝑎  and for structural 

volume to reach 𝑉𝑚. This appeared to be most true of male animals, with growth predictions being 

more accurate than for females. This would be consistent with the behavioural ecology of the 

species. Whereas females do not compete for mates and tend not to migrate, heavier males fare 

better in competition for dominance with unfamiliar individuals so there is selective pressure to 

grow as large as possible (Macdonald et al., 1999).  

However, predictions with Method 3 were not always accurate for males either. Generally, 

predictions matched data well up until around day 500 but substantial deviations from data did 

occur thereafter. One possible explanation is that this occurred because the model allowed 

structural growth in older animals despite skeletal growth in rats generally ceasing after around 

6 months; a process that appears related to age rather than body size (Roach et al., 2003). This 

certainly contributed to higher assimilation and reserve accumulation late on. Another possibility 

though, is that predicted 𝐽𝑋𝑚
𝑎  was too low at large body sizes making even small deviations from 

predictions proportionally larger than they should have been. This would exaggerate fluctuations 

in f and therefore ∆𝑊𝑤 in the later stages of growth. 
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A relatively minor issue is our lack of knowledge around weight loss and starvation in rats. Based 

on the data in this study and the literature, it appears to be typical for rats to reduce feeding and 

lose weight as body fat as they approach two years of age (Hubert et al., 2000, Tekus et al., 2018). 

This weight loss was overestimated by the model for males in group A. A possible reason is that 

reduced feeding elicits compensatory physiological or behavioural responses not included in the 

model’s starvation rules. For example reduced body temperature has been documented as a 

response to short-term starvation in rats (Sakurada et al., 2000), which would correspond to a 

reduction in maintenance rate, 𝐽𝑀
𝑉 . Finding the data needed to refine the starvation rules proposed 

by DEBkiss represents a challenge though. While some studies have restricted food availability 

(Hubert et al., 2000), enforcing longer term starvation leading to weight loss would be unethical 

due to the suffering this would cause. 

In order to address the remaining issues, the clear solution is to simply measure digestive 

efficiency of standard laboratory diets (Batzli and Cole, 1979, Veloso and Bozinovic, 1993) 

alongside food consumption and body weight in growing rats. This would allow the relationship 

between 𝐽𝑋𝑚
𝑎  and body size to be determined mechanistically and for equation 5.11 to be solved, 

providing the value of the maximum assimilation rate 𝐽𝐴𝑚
𝑎 . Inevitably, empirical relationships can 

only provide an imperfect representation of reality. Indeed, at extreme body sizes (>1.577kg for 

males and >1.567kg for females) our parameters mean that 𝐽𝑋𝑚
𝑎 < 𝐽𝐴𝑚

𝑎  and therefore 𝑦𝐴𝑋 > 1. 

This is a physical impossibility as assimilates from food cannot exceed the mass of the food itself. 

The strong performance of Method 2 in predicting independent data suggests that the reality may 

sit between Methods 2 and 3. It appears likely that 𝐽𝑋𝑚
𝑎  does decrease as animals grow, though 

perhaps less dramatically than Method 3 predicts. Likewise, f likely does fall as animals grow, but 

less markedly than suggested by Method 2.   

5.7 Conclusions 

 
DEBkiss (Jager et al., 2013) inevitably made some compromises in order to simplify the DEB 

framework. However, our results suggest that it is a property common to all versions of DEB, the 

calculation used to derive feeding inputs (Kooijman et al., 2008), which represents an over-

simplification. This was designed to circumvent the need for detailed feeding data, which are 

rarely available (Kooijman, 2000, van der Meer, 2006a). However, observed patterns between the 

feeding rate and surface area of rats clearly contradict model assumptions and so changes are 

required.  

We have developed methods which extract more information from feeding data in order to 

broaden the applicability of models based on DEBkiss. With this approach we have produced 
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accurate and biologically sound models that use simple equations to model growth and reserve 

dynamics.  This removes the assumption of first order dynamics of reserve density, which is the 

most difficult aspect of the full DEB growth model (van der Meer, 2006a). Where feeding data are 

unavailable, conventional methods by which constant or simple f inputs are assumed, may still be 

most suitable. However, we suggest that 𝑦𝐴𝑋 and 𝐽𝑋𝑚
𝑎  are dynamic variables that vary with surface 

area and that, even if these relationships cannot be quantified for most species, DEB theory should 

reflect this. 

While the new method is a significant step in the right direction, relying on empirical 

relationships is not ideal and several issues remain that could be addressed by data collection. 

Models able to accurately predict how animals in dietary toxicity studies would have grown if fed 

a control diet are now within reach. Such models are a prerequisite for DEB-TKTD models that 

accurately reflect a compound’s toxicity. Equally though, they represent an exciting new tool with 

which to analyse toxicological data, avoiding the conflation of effects due to toxicity and 

differences in feeding rate. This will allow assessment of how feeding avoidance impacts upon the 

ecological risk posed by a chemical in a way that was not previously possible. 
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Chapter 6 – Thesis Conclusions 

This chapter presents conclusions from the entire thesis; each section relates to one of the broad 

challenges approached during the project. The final section presents suggestions for continued 

research towards this project’s objectives and identifies the challenges that will need to be 

overcome.  

6.1 Identifying Suitable Methods 

When this project began, the potential of TK-TD modelling to refine vertebrate ecological risk 

assessment (ERA) had been recognised for some time. Regulators (EFSA, 2009b) and researchers 

(Ducrot et al., 2016) had identified TK-TD modelling as a relevant approach for risk assessment 

refinement, able to bring more realism to the risk assessment by simulating realistic exposure 

scenarios. However, few attempts had been made to apply these methods to vertebrate species 

and those efforts had focused on acute toxicity and risks to survival. Up until relatively recently, 

it was considered that no available TK-TD modelling techniques were suitable to simulate 

vertebrate growth under chemical stress (Ashauer et al., 2011). This was a clear knowledge gap 

as protection goals state that no mortality of birds and mammals associated with the use of 

pesticides must occur (EFSA, 2009b). Therefore, sublethal impacts should be the only risk 

relevant to realistic pesticide exposure to terrestrial mammals. 

The primary aim of the project was to develop a TK-TD growth model for rodents using data from 

dietary toxicity studies using laboratory rats (Rattus norvegicus), with the secondary objectives 

of exploring model applications for ERA and quantitative in vitro-in vivo extrapolation (QIVIVE). 

For any endpoint of interest, whether survival, reproduction or growth, the process model is the 

fundamental component of a TK-TD model. The initial task was therefore to identify suitable 

methods to model growth in rats. Almost coinciding with the start of this project, Desforges et al. 

(2017) published promising results having used TK-TD models based on dynamic energy budget 

theory (DEB, Kooijman (2000)) to model effects of polychlorinated biphenyls on growth and 

reproduction of the American mink (Mustela vison). This study used the simplified DEB 

framework, DEBkiss (Jager et al., 2013), suggesting that this method may be applicable to 

mammals, despite having been developed primarily for invertebrates. 

A common criticism of DEB models is that they contain too many species-specific parameters, 

which must be fitted to data as they do not represent directly measurable processes (Marquet et 

al., 2014). In chapter 2 we conducted a side by side comparison of the DEBkiss growth model with 

that of the metabolic theory of ecology (MTE, Brown et al. (2004b)), which claims to remedy this 

issue. By reducing the models to the simplest form, growth under constant conditions, we showed 

that they share many common features, offer comparable simplicity, and are similarly reliant on 
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fitted parameters. The meaningful difference between the two methods is in their underlying 

mechanisms and assumptions. DEB is founded upon the undisputed scaling relationships 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 ∝ 𝐿𝑒𝑛𝑔𝑡ℎ2, 𝑉𝑜𝑙𝑢𝑚𝑒 ∝ 𝐿𝑒𝑛𝑔𝑡ℎ3 and 𝑀𝑎𝑠𝑠 ∝ 𝑉𝑜𝑙𝑢𝑚𝑒, with certain processes 

assumed to be area or mass specific (Kooijman, 2000). MTE, meanwhile, proposes that the 

fractally branched vascular networks of many plants and animals, deliver resources to cells at a 

rate which scales with body mass to the 3/4 power (Brown et al., 2004b). This proposed 

relationship has faced criticism from mathematicians (Kozlowski and Konarzewski, 2004) and so 

we found that, at this point in time, there is no compelling reason to reject DEB in favour of MTE 

for use in TK-TD modelling. Additionally, the DEBtox framework (Kooijman and Bedaux, 1996a) 

provides an established method for applying chemical stress to the model parameters. 

6.2 Modelling growth with abundant data – an opportunity and a challenge 

In general, experiments are not conducted with model parameterisation in mind, rather 

modellers work with the data available from published studies (Jager, 2020). An added obstacle 

is that multiple datasets are required to calibrate models and then validate their predictions. Due 

to funding structures in science, corroboration studies are rarely conducted in academia or 

published in the scientific journals as they are not considered novel (Jager and Ashauer, 2018). 

By contrast, ecological risk assessment requires multiple animal studies for each new pesticide, 

varying in duration and dose level. However, only summary data from regulatory studies are 

normally made public. In this project we had access to raw data from dietary toxicity studies on 

rats for several pesticides. Such access to unpublished data represented a major opportunity but 

also a challenge, which was first approached in chapter 3.   

The challenge arose because DEB models are designed to be compatible with the data generally 

available to modellers, or lack thereof. Field studies and summaries of regulatory studies do not 

provide the detailed data necessary to determine primary DEB parameters concerning feeding 

(Jager et al., 2013). To deal with this, DEB uses a simplified feeding input, the scaled functional 

response, f, which is dimensionless and ranges from zero to one according to food availability. It 

is generally assumed that f = 1 when food is available ad libitum (Jager et al., 2013, Kooijman et 

al., 2008). However, the data made available for this project did include observations of animals’ 

food consumption, recorded on a regular basis alongside body weight (OECD, 2001, OECD, 2008, 

OECD, 1998). Simply assuming that f =1 because animals in all treatments are provided with food 

ad libitum would disregard these data, possibly conflating the effects of toxicity and feeding rate 

on growth rate over time. 

DEB assumes that feeding rate is limited by surface area (e.g. area of feeding appendages in filter 

feeders), which is proportional to body mass to the power 2/3 (Kooijman, 2000). In DEBkiss, the 
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scaled functional response or scaled feeding rate, f, is the observed area specific feeding rate, 𝐽𝑋
𝑎 

(g(food) × cm(length)-2 × day-1) scaled as a proportion of the maximum area specific feeding rate, 𝐽𝑋𝑚
𝑎  

(g(food) × cm(length)-2 × day-1), for a species (Jager et al. (2013) & equation 5.13). The challenge was 

therefore assigning a value to 𝐽𝑋𝑚
𝑎 , which is not simple to determine. In chapter 3, the highest 

observed area specific feeding rate in a dataset was used, producing feeding inputs that reflected 

temporal and intertreatment variability in feeding rate. For the first time, this allowed the effects 

of feeding rate and chemical stress on growth to be modelled separately at high resolution. This 

capability represents a key advantage of DEB based models over traditional data analysis. We 

showed how it was possible to isolate the toxic component of observed effects on body weight 

over time, using only a growth model with no TK-TD model required. 

However, the findings presented in chapter 3 should be regarded as a proof of concept rather 

than accurate breakdowns of observed effects. This is because of significant issues with the way 

feeding data were entered into the growth model. These issues were noted in chapter 3, but their 

true extent was shown when they were investigated fully in chapter 5. The first issue was a 

practical one. The value of f for each weekly interval was calculated - based on the mean area 

specific feeding rate observed in each treatment - before the model ran. This led to a positive 

feedback loop or ‘snowball effect’ when predictions differed from data, as a given f value would 

correspond to a different mass of food at the predicted body weight than was consumed. This 

issue is explained in detail in chapter 5 and visualised in figure 5.1. We showed that this problem 

could be dealt with effectively by instead calculating f as the model runs. This meant that 

predicted growth rate reflected the mass of food consumed rather than the observed area specific 

feeding rate. This practice should be adopted in future models of growth which make use of 

feeding data, particularly when those models are used to predict independent data or extrapolate 

to novel scenarios. 

The second issue was theoretical, concerning DEB assumptions regarding feeding rate. Data 

showed that area specific feeding rate of rats falls dramatically as they grow (figure 5.10). This 

contradicts the assumption that animals provided with food ad libitum feed at the maximum rate 

possible for their body size, meaning that the value of f cannot be fixed at 1. The explanatory 

mechanism we propose is that digestive efficiency increases with body size as increased gut 

length leads to longer gut transit time as well as greater surface area. If this is indeed the case, 

then it is likely true for many other species. In chapter 3, f was not fixed but the maximum area 

specific feeding rate, 𝐽𝑋𝑚
𝑎 , was. The result was a modelled growth curve that plateaued not 

because assimilation from food could no longer exceed maintenance costs, but because animals 

apparently opted to limit their growth substantially by regulating their feeding. The upper limits 
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of body weight calculated from model parameters in that study were well above the highest 

observations for the species, suggesting a major flaw in this method of calculating f. 

Again, this issue was addressed in chapter 5. We proposed a new method for calculating f. Rather 

than being assigned a fixed value,  𝐽𝑋𝑚
𝑎  was calculated as a function of surface area, fitted to 

observed area specific feeding rates under ad libitum food availability. The new approach resulted 

in improved model fits to mean body weight over time, relative to the methods employed in 

previous studies. The new method also appeared to increase model realism. Modelled reserve 

dynamics followed similar patterns to observed body fat percentage as rats age while the upper 

limit of the growth model was closest to the peak lean weight estimated from observed data.  

This new method makes a fundamental adjustment to DEB assumptions. Whereas DEB literature 

states that the efficiency of digestion is a fixed primary parameter (Kooijman et al., 2008, Jager et 

al., 2013, van der Meer, 2006a), it is instead assumed that digestive efficiency increases with body 

size. This would be consistent with observed interspecific patterns, which are related to increases 

in gut surface area and gut transit time (Demment and Vansoest, 1985, Hansson and Jaarola, 1989, 

Illius and Gordon, 1992, Smith, 1995). Were the project to continue, collecting intraspecific data 

to verify or refute this relationship in the laboratory rat would clearly be the next step. Regardless 

of the outcome, collecting such data for a species commonly used in laboratory studies would be 

extremely valuable to inform DEB theory and increase model accuracy and applicability.  

6.3 Experimental design limits toxicokinetics models 

Modelling toxicokinetics in terrestrial vertebrates is a challenge as the primary exposure route 

for animals in the field is through dietary consumption. Therefore, toxicant concentration inside 

the body is not simply a function of the concentration of a toxicant in an animal’s diet but is also 

dependent on the rate at which food is consumed. Models developed by Bednarska et al. (2013a) 

provided a simple method by which to simulate this, with the toxicant being ingested into a depot 

compartment representing the gut, before being absorbed into, and eliminated from, a single 

internal compartment according to first order kinetics. In chapter 3, those model equations were 

adapted to account for dilution by growth, which is essential for predicting internal toxicant 

concentration in growing animals (Gergs et al., 2016).  

We used data from regulatory toxicokinetics studies (OECD, 2010) to calibrate and test the TK 

models. These data were the best available for the pesticides included in this study but were far 

from ideal for model development. Firstly, the experiments are designed to assess risk to humans 

rather than to wildlife exposed to pesticides. For humans working with pesticides, any ingestion 

would be accidental so toxicokinetics studies generally only consider a single oral dose delivered 

by gavage rather than in food. Repeated dosing may be included to investigate bioaccumulation, 
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but this is not a requirement. Sample size is typically only 3-4 individuals of each per treatment, 

with only two dose levels used throughout.  

Using pesticide concentration in the blood as a proxy for overall body burden, the simple TK 

model based on Bednarska et al. (2013a) was fitted to observed kinetics data for the selected 

pesticides. However, the models could not be validated per se as all experiments used the same 

two dose levels. Therefore, independent data simply reflected individual variability rather than a 

different set of conditions. The accuracy of model fits to calibration data was the only way to 

assess models and these were satisfactory with the simple TK model. While more physiologically 

accurate TK models have been developed for R.norvegicus (Li et al., 2017, Louisse et al., 2015), 

this limitation of the data meant there was no way to determine whether added model complexity 

conferred a meaningful advantage.  A TK-TD model only requires that predicted internal 

concentration is proportional to the true value (Jager and Zimmer, 2012). So long as this 

requirement is met, the fitting of TD parameters can compensate for the mismatch. 

6.4 Modelling growth under chemical stress – a promising first attempt 

Much like toxicokinetics studies, dietary toxicity studies are designed to assess the risk of chronic 

pesticide exposure to humans, primarily through residues left on food (EFSA, 2006). Accordingly, 

the summary statistics derived from results, such as the no observed adverse effect level 

(NOAEL), relate to the concentration in food resulting, or not, in a specified effect. Measures like 

the NOAEL are just as dependent on duration of exposure as toxicant concentration (Jager, 2011, 

Jager, 2012). Moreover, in dietary toxicity studies, dose is also dependent on the rate of food 

consumption. This this leads to a lack of ecological realism when using the results to determine 

ecological risk posed by a pesticide(EFSA, 2006). TK-TD models have been advocated as a means 

of dealing with these issues by providing a more detailed assessment of exposure profiles and 

intrinsic toxicity of pesticides (Ashauer et al., 2013, Ducrot et al., 2016).  

In Chapter 3, our simple TK model, DEBkiss growth model, and DEBtox stress functions were 

combined as a TK-TD growth model and assessed against 34 dietary toxicity datasets for six 

pesticides. TK predictions could not be verified, as internal pesticide concentration is not 

monitored during dietary toxicity studies. Likewise, modelled ‘stress’ (figs. 3.2 & 3.3) could not 

be compared to data as this is an abstract concept for which data cannot be collected. However, 

the data provided - pesticide concentration in diet, food consumption per day  and body weight – 

could be combined to produce accurate records of mean ingested dose per treatment (mg(pesticide) 

× kg(body weight)
-1× day-1), which varied substantially over time. These served as highly detailed TK 

model inputs. While the model components could not be assessed individually, performance of 

the full TK-TD growth model could be assessed through comparison to observed growth under 



127 
 

chemical stress. For 28 out of 34 datasets, ≥75% of mean body weight observations were 

predicted to within one standard deviation.  

Again, these results represent proof of concept rather than the finished product. It is unlikely that 

the values of the fitted TD parameters truly reflected the intrinsic toxicity of the compounds. 

There were no data to verify the predictions of internal concentration and the TK models were 

calibrated to data from studies which used a different dosing method. Without the inclusion of 

reproduction data, the mode of action can only be provisionally identified (Desforges et al., 2017, 

Jager et al., 2006) and there were the issues with the calculation of the scaled feeding rate, 

discussed above. Regardless of all these issues though, the effects of dietary toxicity on growth 

were generally predicted accurately - across datasets differing in sample size, dose level, duration, 

and food consumption rates - with fixed TK-TD parameters. The results suggest that predictions 

of internal pesticide concentrations were at least proportional to their actual values and that 

average uptake and elimination rates were consistent between groups. Likewise, the stress 

placed on growth parameters by the pesticides also appeared consistent and predictable, lending 

support to the assumptions of the DEBtox stress functions. These findings are extremely 

encouraging, especially considering this was the first attempt at using regulatory data to model 

the effects of dietary toxicity on growth of a mammalian species. Moreover, an emphasis was 

placed on using the simplest available methods and, though some issues remain, they appeared 

sufficient for the task. 

6.5 Mismatch in dose route hinders in vitro – in vivo extrapolation of growth effects 

Perhaps the most ambitious application of TK-TD modelling considered in this study was 

quantitative in vitro-in vivo extrapolation of growth effects in rats. This capability has been 

demonstrated previously for effects on growth in fish (Stadnicka-Michalak et al., 2015). In 

Chapter 4, we investigated whether this was also possible for rodents, which make up around 

76% of the animals used in toxicology studies in the EU (European Commission, 2013b). We 

found that several additional obstacles made QIVIVE more complex for mammals and found no 

relationships between effects of intracellular pesticide concentration on in vitro popultaion and 

in vivo growth rate.  

The principal issue throughout was the difference in dose route between studies. Chronic toxicity 

in fish is monitored by exposing fish to a constant concentration of a pesticide in their water 

(OECD, 2013), this dose route is also used in toxicokinetics studies on fish (OECD, 2012). This is 

analogous to cultured cells being exposed to a constant concentration of a compound in their 

medium, meaning that in vitro and in vivo data can be readily compared. For mammals in dietary 

toxicity studies, the situation is more complex. While pesticide concentration in the diet is 
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constant (OECD, 2008, OECD, 1998, OECD, 2001), the ingested dose (mg(pesticide) × kg(body weight)-1× 

day-1) varies substantially over the study period. Therefore, direct comparison between in vitro 

and in vivo data is not possible. In this regard, TK-TD models have great potential to act as a 

bridge, by predicting the effects of a truly constant exposure scenario (constant internal 

concentration) on growth, eliminating noise from observed data. However, this requires great 

confidence in the precision of TK-TD model predictions, and at this point the required precision 

cannot be achieved.  

Again, the problem is primarily related to dose route. Rats in toxicokinetics studies are dosed 

orally but this is delivered by gavage rather than in the diet (OECD, 2010). This leaves uncertainty 

as to how bioavailability changes between toxicokinetics studies and dietary toxicity studies. As 

discussed above, this mismatch is not a major issue for an in vivo TK-TD growth model (Jager and 

Zimmer, 2012). However, for QIVIVE it is vital that internal concentration is predicted accurately, 

so that it can be replicated in vitro (Stadnicka-Michalak et al., 2015). In Chapter 4, experiments 

found no consistent effects of pesticide concentration on cell population growth. Even if effects 

had been shown, without confidence in the relationship between intracellular concentration 

achieved in vitro and in vivo, it would still not have been possible to accurately extrapolate effects 

between the two.  

While there are other obstacles - such as identifying the optimal cell line and assays - the 

inconsistency in dose route between datasets is the most fundamental barrier to QIVIVE of effects 

on graded sublethal endpoints, such as growth, in rodents. Without the inclusion of dietary dosing 

in toxicokinetics studies it is not possible to predict internal pesticide concentration in vivo with 

the necessary precision to inform in vitro experimental design. This gap in the data must be 

addressed before any further attempts to use the methods outlined in Chapter 4 can be successful.     

6.6 Final thoughts 

This project has shown that the DEBtox modelling framework is suitable to predict the effects of 

chemical stress on growth rate in one of the world’s most commonly used study animals 

(European Commission, 2013b), the laboratory rat. Moreover, this has been achieved using 

models based on the DEBkiss framework throughout, helping to address issues around 

accessibility for regulators who are not DEB specialists (EFSA, 2018). However, further work is 

needed to develop models suitable for use in ERA. 

Ultimately, it is not enough for a TK-TD model to simply predict observed effects accurately. The 

modelling procedure must derive time independent TD parameters that precisely reflect the 

intrinsic toxicity of a compound. This allows extrapolation of toxic effects to realistic exposure 

scenarios, conferring a clear advantage over time dependent summary statistics such as the 
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NOAEL (Ducrot et al., 2016), which are more suited to assessing risk to human health than 

ecological risk. The task is not a simple one and, while the existing modelling frameworks 

themselves are fit for purpose, data requirements remain the key barrier to overcome. 

In this project, specific data gaps have been identified that, if filled, would greatly improve the 

prospect of DEBtox models meeting the requirements for use in ERA. Data concerning the 

relationship between digestive efficiency and body size would validate, or more likely refine, the 

methods proposed in Chapter 5. Not only would this improve the accuracy of TD parameters by 

minimising conflation of effects due to toxicity and feeding rate, but this would also make the 

growth model alone an extremely valuable tool with which to analyse the results of dietary 

toxicity studies. The inclusion of dietary dosing in toxicokinetics studies would greatly increase 

the accuracy of TK models used to predict internal concentration in dietary toxicity studies. This 

would in turn increase the accuracy of TD parameters and remove a significant obstacle to QIVIVE 

of graded sublethal effects linked to chronic dietary exposure to pesticides. 

TK-TD models and other in silico methods have great potential to complement and even replace 

animal testing in risk assessment. However, animal data are required for that potential to be 

realised and the window for these data to be collected appears limited. The US Environmental 

Protection Agency has committed to a 30% reduction in its requests for, and funding of, mammal 

studies by 2025 and the elimination of requests and funding by 2035 (EPA Press Office, 2019). 

The EU meanwhile is committed to the refinement, reduction and replacement of animal testing 

(European Commission, 2013a) and has faced public pressure to strengthen existing legislation 

limiting the use of animal testing (Peter, 2015). I echo calls for a break from the status quo (Jager, 

2020). Rather than modellers making do with the data made available to them, a more cyclical 

process is required, with animal experiments designed to consider model parameterisation. 

Without this shift in approach occurring soon, we risk a situation where animal testing is phased 

out before in silico methods are fit to act as replacements.   
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Appendix A – Supporting Figures for Chapter 3 

Acibenzolar-S-Methyl Toxicokinetics 

 

Figure A1 Modelled gut (A) and internal (B) concentrations over time when fitted to mean blood 
concentration data (circles) from female rats at three dose levels.  

Plots C-F show model predictions with fixed parameters, data points (circles) are from two different groups 
of male rats dosed at 0.5mg/kg body weight (C&D) and 100mg/kg body weight (E&F). Slightly different 
curves are produced owing to differences in the average achieved dose for each group.  

Plots I-J show model predictions with fixed parameters, data points (circles) are from two different groups 
of female rats dosed at 0.5mg/kg body weight (G&H) and 100mg/kg body weight (I&J). Slightly different 
curves are produced owing to differences in the average achieved dose for each group.  
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Azoxystrobin Toxicokinetics

 

Figure A2 Modelled gut (A) and internal (B) concentrations over time when fitted to mean blood 
concentration data (circles) from male rats at two dose levels. Plots C-F show model predictions with fixed 
parameters. Data points (circles) are from different groups of male rats also dosed at 1mg/kg body weight 
(C&D) and 100mg/kg body weight (E&F).   

Modelled gut (G) and internal (H) concentrations over time when fitted to blood concentration data 
(circles) from female rats at two dose levels. Plots I-L show model predictions with fixed parameters.  Data 
points (circles) are from different groups of female rats also dosed at 1mg/kg body weight (I&J) and 
100mg/kg body weight (K&L).   
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Fenpropidin Toxicokinetics 

 

 

Figure A3 Modelled gut (A) and internal (B) concentrations over time when fitted to mean blood 
concentration data (circles) from male rats at two dose levels. Plots C-F show model predictions with fixed 
parameters. Data points (circles) are from different groups of male rats also dosed at 1mg/kg body weight 
(C&D) and 100mg/kg body weight (E&F).   

Modelled gut (G) and internal (H) concentrations over time when fitted to mean blood concentration data 
(circles) from female rats at two dose levels. No alternative data set was available for females to compare 
to predictions with fixed parameters. 
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Fludioxonil Toxicokinetics 

 

Figure A4 Modelled gut (A) and internal (B) concentrations over time when fitted to mean blood 
concentration data (circles) from male rats at two dose levels. Plots C-F show model predictions with fixed 
parameters. Data points (circles) are from different groups of male rats also dosed at 0.5mg/kg body weight 
(C&D) and 100mg/kg body weight (E&F).   

Modelled gut (G) and internal (H) concentrations over time when fitted to mean blood concentration data 
(circles) from female rats at two dose levels. Plots I-L show model predictions with fixed parameters.  Data 
points (circles) are from different groups of female rats also dosed at 0.5mg/kg body weight (I&J) and 
100mg/kg body weight (K&L).   
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Prosulfuron Toxicokinetics 

 

Figure A5 Modelled gut (A), blood (B) and carcass (C) toxicant concentrations over time when fitted to 
mean blood and carcass concentration data (circles) from male rats at two dose levels.  

Plots D-G show model predictions with fixed parameters. Data points (circles) are from different groups of 
male rats also dosed at 0.5mg/kg body weight (D&E) and ~500mg/kg body weight (F&G).   

Plots G-J show model predictions with fixed parameters. Data points (circles) are from different groups of 
female also dosed at 0.5mg/kg body weight (G&H) and ~500mg/kg body weight (I&J).   
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Thiamethoxam Toxicokinetics 

 

Figure A6 Modelled gut (A) and internal (B) concentrations over time when fitted to mean blood 
concentration data (circles) from male rats at two dose levels. Plots C-F show model predictions with fixed 
parameters. Data points (circles) are from different groups of male rats also dosed at 0.5mg/kg body weight 
(C&D) and 100mg/kg body weight (E&F).   

Modelled gut (G) and internal (H) concentrations over time when fitted to mean blood concentration data 
(circles) from female rats at two dose levels. Plots I-L show model predictions with fixed parameters.  Data 
points (circles) are from different groups of female rats also dosed at 0.5mg/kg body weight (I&J) and 
100mg/kg body weight (K&L).   

  



136 
 

TK-TD model outputs for male rats dosed with Acibenzolar-S-Methyl 

90 Day Study 

 

Figure A7: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). NOTE: The control group and the highest dose group were observed for an additional 4 weeks 
with no pesticide in the diet to investigate recovery. 

28 Day Study 

 

Figure A8: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

A) B) 

C) 

A) B) 

C) 
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Two Year Study 

 

Figure A9: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

TK-TD model outputs for female rats dosed with Acibenzolar-S-Methyl 

90 Day Study 

 

Figure A10: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). NOTE: The control group and the highest dose group were observed for an additional 4 weeks 
with no pesticide in the diet to investigate recovery. 

A) B) 

C) 

A) B) 

C) 
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28 Day Study 

 

Figure A11: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 Two Year Study 

 

Figure A12: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 

 

A) B) 

C) 

A) B) 

C) 
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TK-TD model outputs for male rats dosed with Azoxystrobin 

90 Day Study 

 

Figure A13: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). NOTE: The highest dose group was initially 6000 mg.kg-1 food but was reduced after 2 weeks to 
4000 mg.kg-1 food following 5 days of feeding on a control diet. 

 28 Day Study 

  

Figure A14: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

A) B) 

C) 

A) B) 

C) 
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 Two Year Study 

 

Figure A15: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

TK-TD model outputs for female rats dosed with Azoxystrobin 

90 Day Study 

  

Figure A16: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). NOTE: The highest dose group was initially 6000 mg.kg-1 food but was reduced after 2 weeks to 
4000 mg.kg-1 food following 5 days of feeding on a control diet. 

A) B) 

C) 

A) B) 

C) 
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 28 Day Study 

  

Figure A17: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 Two Year Study 

  

Figure A18: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 

 

A) B) 

C) 

A) B) 

C) 
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TK-TD model outputs for male rats dosed with Fenpropidin 

90 Day Study 

  

Figure A19: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). NOTE: The control group and the highest dose group were observed for an additional 4 weeks 
with no pesticide in the diet to investigate recovery. 

28 Day Study 

  

Figure A20: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

A) B) 

C) 

A) B) 

C) 
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 Two Year Study 

  

Figure A21: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

TK-TD model outputs for female rats dosed with Fenpropidin 

90 Day Study 

  

Figure A22: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). NOTE: The control group and the highest dose group were observed for an additional 4 weeks 
with no pesticide in the diet to investigate recovery. 

A) B) 

C) 

A) B) 

C) 
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 28 Day Study 

  

Figure A23: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 Two Year Study 

  

Figure A24: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 

  

A) B) 

C) 

A) B) 

C) 
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TK-TD model outputs for male rats dosed with Fludioxonil 

90 Day Study 

  

Figure A25: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

28 Day Study 

  

Figure A26: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 

A) B) 

C) 

A) B) 

C) 
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TK-TD model outputs for female rats dosed with Fludioxonil 

90 Day Study 

  

Figure A27: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 28 Day Study 

  

Figure A28: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

  

A) B) 

C) 

A) B) 

C) 
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TK-TD model outputs for male rats dosed with Prosulfuron 

90 Day Study 

  

Figure A29: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

28 Day Study 

  

Figure A30: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 

A) B) 

C) 

A) B) 

C) 
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 Two Year Study 

  

Figure A31: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

TK-TD model outputs for female rats dosed with Prosulfuron 

90 Day Study 

  

Figure A32: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). 

 

A) B) 

C) 

A) B) 

C) 
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 28 Day Study 

  

Figure A33: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 Two Year Study 

  

Figure A34: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

  

A) B) 

C) 

A) B) 

C) 
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TK-TD model outputs for male rats dosed with Thiamethoxam 

90 Day Study 

  

Figure A35: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

28 Day Study 

  

Figure A36: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 

A) B) 

C) 

A) B) 

C) 
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 Two Year Study 

  

Figure A37: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

TK-TD model outputs for female rats dosed with Thiamethoxam 

90 Day Study 

  

Figure A38: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles). 

 

A) B) 

C) 

A) B) 

C) 
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 28 Day Study 

  

Figure A39: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

 Two Year Study 

  

Figure A40: Model predictions (lines) of toxicant concentration in the gut (A), internal toxicant 
concentration (B) and body weight (C) over time. Weekly observations of body weight are also shown 
(circles).  

  

A) B) 

C) 

A) B) 

C) 
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Appendix B - Supporting Information for Chapter 4 

Identifying target concentration in muscle 

The TK model used in Martin et al. (2019) was calibrated using blood concentration data. 
Concentration in blood was used as a proxy for overall internal concentration or ‘body burden’. 
Predictions of internal concentration over the duration of repeated dietary dose toxicity tests 
were then used to calculate mean values over the testing period in different treatments. The 
highest average internal concentration in any treatment was identified as a ‘reference 
concentration in blood’ for each pesticide. However, the tissue chosen for use in cell culture was 
skeletal muscle. For all the pesticides in the study, concentration in the blood was significantly 
(p<0.0001) correlated with that in muscle (n≥23). These relationships were determined (Table 
B1 & figure S1) and used to estimate the concentration in muscle corresponding to reference 
concentration in the blood for each pesticide. Concentrations in muscle were estimated for male 
and female rats and the higher of the two was used as the reference for in vitro experiments. 

Table B1 shows the details of the relationship between pesticide concentration in blood and in 
muscle. For prosulfuron, data were only available to determine this relationship in males. These 
relationships were used to estimate the highest average muscle concentration reached in 
repeated dose dietary toxicity testing.  

Pesticide Sex Correlation 
coefficient 

Muscle 
Conc. / 
Blood 
Conc. 

95% CI Reference 
conc. in 
blood 

Reference 
conc. in 
muscle 

Thiamethoxam Male 0.994 1.05 1.01 - 1.08 49.36 51.58 
Female 0.999 1.03 1.02 - 1.04 60.80 62.70 

Prosulfuron Male 0.972 0.40 0.36 - 0.44 536.47 213.67 
Female ‘’ ‘’ ‘’ 499.04 198.77 

Azoxystrobin Male 0.936 0.33 0.29 - 0.37 93.94 31.01 
Female 0.936 0.56 0.49 - 0.62 82.07 45.57 

Acibenzolar-S-
Methyl 

Male 0.999 0.13 0.129 -0.134 34.96 4.58 
Female 0.994 0.11 0.106 -0.116 37.66 4.17 

Fludioxonil Males 0.930 0.36 0.31 - 0.41 43.17 15.36 
Female 0.893 0.64 0.52 - 0.77 40.35 26.02 

 

 

 

 

 

 

  



154 
 

   

Figure B1 Scatterplots showing observed pesticide concentration in blood and in muscle (blue 
circles) for five pesticides with line of best fit shown in red.   
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Effects of FBS concentration on cell proliferation 

Cell proliferation was monitored over two days in culture medium contain five different FBS 
concentrations. This was to identify the FBS concentration sufficient to maintain cell population 
while inhibiting proliferation. Mitochondrial activity after 48 hours was similar to that recorded 
at day 0 in medium containing 1-5% w/v FBS. As the intermediated value, 2.5% was selected for 
use in the TK experiments.  

 

Figure B2 Mean mitochondrial activity over two days in medium containing various 
concentrations of FBS, plotted as the proportion of mean mitochondrial activity recorded at day 
0. Error bars represent 95% confidence intervals.  
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Calculation of concentration from measured radioactivity 

In the in vitro toxicokinetics experiments, the pesticide concentration in different compartments 
was determined by measuring radioactivity though liquid scintillation counting. Radioactivity, 
measured in DPM, was first converted to mgpesticide × well-1. DPM was divided by 60 to give Bq × 
well-1 and then by 106 to give MBq × well-1. This was then divided by the specific activity of the 
test compound (MBq × mg-1), giving to mgpesticide × well-1. 

These values were then divided by the size of each compartment to convert to concentrations. 
Each well contained 0.1ml medium, so mgpesticide × well-1 recovered from the medium was divided 
by 0.0001Lmedium × well-1 to give concentration in mg × L-1medium. The internal surface area of each 
well was calculated as 2.53cm2, so mgpesticide × well-1 recovered from the plastic was divided by 
2.53cm2plastic × well-1 and then multiplied by 1000 to give concentration in µg × cm-2plastic.  

Finally, the volume of cells × well-1 was estimated by first using Image J to measure the diameter 
of detached cells photographed on a haemocytometer, the average value (n=24) was 15.97µm. 
Assuming detached cells to be spherical, the average cell volume was calculated to be 2135.25 
µm3. This was multiplied by 85,000 (the average number of cells, to the nearest 5000), to give a 
value of 0.00018cm3cells × well-1. Pesticide recovered from cells (mgpesticide × well-1) was then 
divided by 0.00018cm3cells × well-1 and then multiplied by 1000 to give concentration in µg × cm-

3
cells. 
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In vitro TK results 

Full results for of the in vitro toxicokinetics experiments are given in tables S2-S21. 

Thiamethoxam 

Table B2 shows the mean and standard deviation of thiamethoxam concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 6.40 mg/L.   

  Initial Medium Concentration: 6.40 mg/L 

  Medium (mg/L) Cells (µg/cm3) Plastic (µg/cm2) 
Time 
(h) Mean s.d. Mean s.d. Mean s.d. 

3 6.27 0.10 65.78 10.20 5.07E-04 4.03E-05 

24 6.04 0.39 64.71 6.37 4.53E-04 1.34E-04 

48 6.34 0.15 82.17 13.54 4.70E-04 2.61E-04 
 

Table B3 shows the mean and standard deviation of thiamethoxam concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 3.10 mg/L.   

  Initial Medium Concentration: 3.10 mg/L 

  Medium (mg/L) Cells (µg/cm3) Plastic (µg/cm2) 
Time 
(h) Mean s.d. Mean s.d. Mean s.d. 

3 3.01 0.19 39.47 4.35 2.99E-04 7.01E-05 

24 3.06 0.14 43.26 5.79 2.23E-04 1.47E-04 

48 3.07 0.10 40.19 19.63 2.23E-04 1.26E-04 
 

Table B4 shows the mean and standard deviation of thiamethoxam concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 9.76 mg/L.   

  Initial Medium Concentration: 9.76 mg/L 

  
Medium 
(mg/L) Cells (µg/cm3) Plastic (µg/cm2) 

Time 
(h) Mean s.d. Mean s.d. Mean s.d. 

3 9.34 2.06 150.30 57.82 1.49E-03 9.68E-04 

24 9.82 1.08 113.66 22.44 4.75E-04 2.07E-04 

48 8.43 2.21 122.67 8.34 7.71E-04 3.17E-04 
 

Table B5 shows the mean and standard deviation of thiamethoxam concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 3.76 mg/L.   

  Initial Medium Concentration: 3.76 mg/L 

  Medium (mg/L) Cells (µg/cm3) Plastic (µg/cm2) 
Time 
(h) Mean s.d. Mean s.d. Mean s.d. 

3 3.67 0.27 48.88 10.82 3.11E-04 1.70E-04 

24 4.09 0.32 56.87 9.76 4.05E-04 9.93E-05 

48 3.42 0.48 50.64 6.15 2.77E-04 1.06E-04 
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Prosulfuron 

Table B6 shows the mean and standard deviation of prosulfuron concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 12.50 mg/L.   

  Initial Medium Concentration: 12.50 mg/L 

  
Medium 
(mg/L) Cells (µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 12.13 0.47 170.33 57.23 1.41E-03 6.29E-04 

24 12.22 0.75 121.58 11.02 9.55E-04 1.26E-04 

48 12.22 0.53 140.01 23.16 9.26E-04 1.49E-04 
 

Table B7 shows the mean and standard deviation of prosulfuron concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 6.20 mg/L.   

  Initial Medium Concentration: 6.20 mg/L 

  
Medium 
(mg/L) Cells (µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 6.03 0.38 68.05 2.66 4.90E-04 1.00E-04 

24 5.89 0.10 68.71 21.51 4.75E-04 8.00E-05 

48 5.90 0.18 67.20 3.61 4.63E-04 2.01E-04 
 

Table B8 shows the mean and standard deviation of prosulfuron concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 14.95 mg/L.   

  Initial Medium Concentration: 14.95 mg/L 

  
Medium 
(mg/L) Cells (µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 14.46 0.40 245.91 130.65 2.12E-03 2.15E-04 

24 14.38 1.13 176.17 17.80 2.06E-03 1.75E-03 

48 16.98 0.49 204.72 115.00 1.13E-03 1.22E-03 
 

Table B9 shows the mean and standard deviation of prosulfuron concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 6.24 mg/L.   

  Initial Medium Concentration: 6.42 mg/L 

  
Medium 
(mg/L) Cells (µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 6.25 0.71 83.56 11.90 7.08E-04 1.59E-04 

24 6.89 0.67 97.33 20.28 6.64E-04 1.86E-04 

48 7.23 0.79 93.25 5.25 3.07E-04 9.46E-05 
 

  



159 
 

Azoxystrobin 

Table B10 shows the mean and standard deviation of azoxystrobin concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.24 mg/L.   

  Initial Medium Concentration: 0.24 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.22 0.01 4.78 0.91 2.78E-04 2.01E-04 

24 0.22 0.01 4.83 0.77 1.52E-04 1.70E-05 

48 0.22 0.01 5.72 0.70 1.60E-04 1.12E-05 
 

Table B11 shows the mean and standard deviation of azoxystrobin concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.12 mg/L.   

  Initial Medium Concentration: 0.12 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.11 0.004 2.20 0.20 6.18E-05 1.03E-05 

24 0.10 0.004 2.71 0.06 6.78E-05 8.25E-06 

48 0.11 0.004 3.24 0.17 6.84E-05 1.16E-05 
 

Table B12 shows the mean and standard deviation of azoxystrobin concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.243 mg/L.   

  Initial Medium Concentration: 0.243 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.23 0.05 5.16 0.96 6.47E-05 1.78E-05 

24 0.21 0.03 5.38 1.33 1.44E-04 5.26E-05 

48 0.18 0.01 5.98 0.73 1.76E-04 1.02E-05 
 

Table B13 shows the mean and standard deviation of azoxystrobin concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.096 mg/L.   

  Initial Medium Concentration: 0.096 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.09 0.01 2.21 0.48 2.86E-05 1.50E-05 

24 0.09 0.01 2.51 0.27 5.21E-05 1.60E-05 

48 0.08 0.01 3.02 0.21 5.73E-05 7.68E-06 
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Acibenzolar-S-Methyl 

Table B14 shows the mean and standard deviation of acibenzolar-S-methyl concentration 
detected in culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.08 mg/L.   

  Initial Medium Concentration: 0.08 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time (h) Mean s.d. Mean s.d. Mean s.d. 

3 0.07 0.004 1.74 0.24 1.40E-04 1.40E-05 

24 0.06 0.006 0.72 0.09 1.11E-04 4.84E-05 

48 0.07 0.0003 0.85 0.04 3.57E-05 9.85E-06 
 

Table B15 shows the mean and standard deviation of acibenzolar-S-methyl concentration 
detected in culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.045 mg/L.   

  Initial Medium Concentration: 0.045 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time (h) Mean s.d. Mean s.d. Mean s.d. 

3 0.03 0.00 0.70 0.13 2.18E-04 2.21E-04 

24 0.03 0.00 0.38 0.07 4.81E-05 3.37E-05 

48 0.03 0.00 0.46 0.12 1.09E-05 9.58E-06 
 

Table B16 shows the mean and standard deviation of acibenzolar-S-methyl concentration 
detected in culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.144 mg/L.   

  Initial Medium Concentration: 0.144 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time (h) Mean s.d. Mean s.d. Mean s.d. 

3 0.13 0.01 3.85 0.81 3.38E-04 2.56E-05 

24 0.09 0.02 1.70 0.22 1.65E-04 4.27E-05 

48 0.08 0.02 1.49 0.33 9.57E-05 1.18E-05 
 

Table B17 shows the mean and standard deviation of acibenzolar-S-methyl concentration 
detected in culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.073 mg/L.   

  Initial Medium Concentration: 0.073 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time (h) Mean s.d. Mean s.d. Mean s.d. 

3 0.07 0.01 1.65 0.27 1.83E-04 2.44E-05 

24 0.04 0.01 1.04 0.31 6.12E-05 1.95E-05 

48 0.05 0.01 1.08 0.18 5.10E-05 2.36E-05 
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Fludioxonil 

Table B18 shows the mean and standard deviation of fludioxonil concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.091 mg/L.   

  Initial Medium Concentration: 0.091 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.07 0.003 8.49 1.11 1.30E-04 1.34E-05 

24 0.07 0.003 10.60 1.01 1.63E-04 1.73E-05 

48 0.06 0.003 11.81 0.35 1.37E-04 8.67E-06 
 

Table B19 shows the mean and standard deviation of fludioxonil concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.047 mg/L.   

  Initial Medium Concentration: 0.047 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.03 0.002 3.86 0.27 5.94E-05 8.72E-06 

24 0.03 0.001 5.18 0.43 8.38E-05 9.70E-06 

48 0.03 0.001 5.76 0.49 6.84E-05 2.28E-05 
 

Table B20 shows the mean and standard deviation of fludioxonil concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.55 mg/L.   

  Initial Medium Concentration: 0.55 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.45 0.02 45.45 4.61 6.83E-04 1.30E-04 

24 0.35 0.03 59.40 1.80 6.62E-04 1.28E-04 

48 0.34 0.02 69.33 5.83 6.97E-04 9.27E-05 
 

Table B21 shows the mean and standard deviation of fludioxonil concentration detected in 
culture, medium and on plastic at 3, 24 and 48 hours after dosing at 0.21 mg/L.   

  Initial Medium Concentration: 0.21 mg/L 

  
Medium 
(mg/L) 

Cells 
(µg/cm3) Plastic (µg/cm2) 

Time(h) Mean s.d. Mean s.d. Mean s.d. 

3 0.17 0.01 22.38 2.41 3.31E-04 8.96E-05 

24 0.15 0.01 29.36 4.22 3.20E-04 8.81E-05 

48 0.15 0.02 34.03 2.01 4.12E-04 6.96E-05 
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Cell Proliferation 

Results of MTS assay measuring cell proliferation in the presence of each pesticide are given in 
tables S22-S26. Results were analysed by ANOVA or Kruskall Wallis if assumptions of normality 
and homoscedasticity were not met and pairwise comparisons were made using Tukey's honest 
significant difference criterion. 

Table B22 shows mean and standard deviation of mitochondrial activity relative to the vehicle 
control treatment measured 24, 48 and 72 hours after dosing with thiamethoxam. Any mean 
values marked with an asterisk are significantly different the vehicle control at that timepoint. 

 Thiamethoxam 
  

Mitochondrial activity relative to the vehicle control treatment 

24h 48h 72h 

Treatment 
(mg/Lmedium) Mean SD Mean SD Mean SD 

Untreated 1.04 0.23 1.13 0.23 1.05 0.21 

Vehicle Control 1.00 0.22 1.00 0.21 1.00 0.12 

2.72 1.08 0.27 0.89 0.18 1.02 0.25 

5.44 0.77 0.25 1.08 0.22 1.01 0.17 

13.6 0.87 0.15 1.00 0.15 0.99 0.21 

27.2 0.85 0.36 1.21 0.38 0.90 0.14 

54.40 0.92 0.09 1.29 0.30 0.86 0.11 
 

Table B23 shows mean and standard deviation of mitochondrial activity relative to the vehicle 
control treatment measured 24, 48 and 72 hours after dosing with prosulfuron. Any mean values 
marked with an asterisk are significantly different the vehicle control at that timepoint. 

Prosulfuron 
Mitochondrial activity relative to the vehicle control treatment 

24h 48h 72h 

Treatment 
(mg/Lmedium) Mean SD Mean SD Mean SD 

Untreated 1.04 0.23 1.13 0.23 1.05 0.21 

Vehicle Control 1.00 0.22 1.00 0.21 1.00 0.12 

9.3 1.19 0.51 1.75* 0.19 1.12 0.36 

18.6 1.09 0.32 1.41 0.53 1.04 0.25 

46.5 0.94 0.50 1.58 0.11 0.89 0.09 

93 1.25 0.23 1.52 0.52 0.80 0.25 

186 0.89 0.20 1.65 0.41 0.97 0.13 
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Table B24 shows mean and standard deviation of mitochondrial activity relative to the vehicle 
control treatment measured 24, 48 and 72 hours after dosing with azoxystrobin. Any mean values 
marked with an asterisk are significantly different the vehicle control at that timepoint. 

Azoxystrobin 
Mitochondrial activity relative to the vehicle control treatment 

24h 48h 72h 

Treatment 
(mg/Lmedium) Mean SD Mean SD Mean SD 

Untreated 1.04 0.23 1.13 0.23 1.05 0.21 

Vehicle Control 1.00 0.22 1.00 0.21 1.00 0.12 

0.995 0.55* 0.17 1.58* 0.11 1.00 0.14 

1.99 0.64 0.14 1.65* 0.21 1.06 0.33 

4.98 0.78 0.28 1.61* 0.18 1.00 0.24 

9.95 0.73 0.16 1.33 0.52 1.14 0.20 

19.9 0.77 0.23 1.21 0.25 0.85 0.07 
 

Table B25 shows mean and standard deviation of mitochondrial activity relative to the vehicle 
control treatment measured 24, 48 and 72 hours after dosing with acibenzolar-S-Methyl. Any 
mean values marked with an asterisk are significantly different the vehicle control at that 
timepoint. 

Acibenzolar-S-
Methyl 
  

Mitochondrial activity relative to the vehicle control treatment 

24h 48h 72h 

Treatment 
(mg/Lmedium) Mean SD Mean SD Mean SD 

Untreated 1.04 0.23 1.13 0.23 1.05 0.21 

Vehicle Control 1.00 0.22 1.00 0.21 1.00 0.12 

0.185 0.82 0.06 1.37 0.34 0.80 0.25 

0.37 0.70 0.24 1.50 0.22 0.89 0.36 

0.925 0.79 0.32 1.45 0.32 0.86 0.18 

1.85 0.67 0.09 1.21 0.38 0.77 0.10 

3.7 0.50* 0.16 1.46 0.20 0.94 0.20 
 

  



164 
 

Table B26 shows mean and standard deviation of mitochondrial activity relative to the vehicle 
control treatment measured 24, 48 and 72 hours after dosing with fludioxonil. Any mean values 
marked with an asterisk are significantly different the vehicle control at that timepoint. 

Fludioxonil 
Mitochondrial activity relative to the vehicle control treatment 

24h 48h 72h 

Treatment 
(mg/Lmedium) Mean SD Mean SD Mean SD 

Untreated 1.04 0.23 1.13 0.23 1.05 0.21 

Vehicle Control 1.00 0.22 1.00 0.21 1.00 0.12 

0.11 1.18 0.23 1.56 0.37 1.04 0.14 

0.22 1.31 0.26 1.18 0.15 0.95 0.19 

0.55 0.96 0.27 1.83* 0.38 0.87 0.11 

1.11 1.09 0.17 1.70* 0.51 0.96 0.21 

2.22 0.96 0.32 1.63 0.26 1.06 0.28 
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Cell mortality 

Percentage mortality was estimated alongside cell proliferation by quantifying the amount lactate 
dehydrogenase (LDH) released by dead cells at 24, 48 and 72 hours after dosing. Mortality data 
were analysed by generating bootstrap confidence intervals. Significant effects were determined 
when confidence intervals did not overlap with those of either control treatment.  

Table B27 shows estimated mortality rates 24 hours after dosing. These results were not 
analysed as unusually high background readings led to the estimation of theoretically impossible 
large negative mortality rates. 

Compound Treatment 
(mg/Lmedium) 

Mean Mortality (%) Lower CI Upper CI 

None Untreated -18.89 -43.21 -0.22 

Vehicle Control -23.65 -55.71 -4.86 

Thiamethoxam 2.72 -6.45 -28.60 9.18 

5.44 -8.26 -30.51 11.79 

13.6 -15.98 -38.38 -0.06 

27.2 -22.68 -56.10 -3.21 

54.40 -24.35 -57.50 -3.82 

Prosulfuron 9.3 -6.16 -11.30 -1.32 

18.6 -8.11 -14.87 -2.26 

46.5 6.27 -11.08 23.52 

93 -12.41 -23.59 -3.55 

186 -16.00 -27.77 -6.78 

Azoxystrobin 0.995 8.03 2.53 13.44 

1.99 11.38 4.14 18.22 

4.98 9.27 1.72 17.00 

9.95 17.01 1.59 29.17 

19.9 3.49 -3.54 11.57 

Acibenzolar-S-
Methyl 

0.185 15.10 -12.50 50.75 

0.37 9.54 3.27 27.74 

0.925 20.07 1.03 34.36 

1.85 16.23 6.03 14.32 

3.7 24.76 -6.20 27.86 

Fludioxonil 0.11 -6.43 -17.21 5.36 

0.22 -21.34 -34.50 -10.02 

0.55 -12.80 -34.37 9.80 

1.11 -10.02 -19.72 -0.29 

2.22 -9.43 -21.81 4.28 
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Table B28 shows estimated mortality rates 48 hours after dosing. Any mean values marked with 
an asterisk are significantly different from the vehicle control treatment. 

  

Compound Treatment Mean Mortality (%) Lower CI Upper CI 

None Untreated 1.14 -2.14 4.01 
Vehicle Control -1.09 -4.01 2.12 

Thiamethoxam 2.72 -2.10 -3.64 -0.23 
5.44 -2.17 -6.05 0.61 
13.6 -3.63 -6.08 -1.45 
27.2 -4.46 -6.24 -2.78 
54.40 -5.27 -7.31 -2.78 

Prosulfuron 9.3 1.56 0.44 3.15 
18.6 1.77 0.72 3.07 
46.5 1.86 0.69 3.48 
93 1.33 -0.36 3.04 
186 3.18 1.16 5.47 

Azoxystrobin 0.995 5.68  3.47 7.34 
1.99 4.97 3.23 6.98 
4.98 8.57 * 4.37 13.00 
9.95 6.66  3.94 9.14 
19.9 10.55 * 4.90 15.06 

Acibenzolar-S-
Methyl 

0.185 4.18 -1.22 4.40 
0.37 -0.30 -0.32 3.23 
0.925 0.64 -1.19 2.06 
1.85 1.63 -1.25 0.58 
3.7 2.25 0.56 7.99 

Fludioxonil 0.11 0.63 -0.42 1.68 
0.22 0.12 -0.76 1.26 
0.55 0.11 -0.74 1.42 
1.11 1.02 -0.65 3.04 
2.22 2.47 -0.14 4.64 
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Table B29 shows estimated mortality rates 72 hours after dosing. Any mean values marked with 
an asterisk are significantly different from the vehicle control treatment. 

 

 

 

  

Compound Treatment Mean Mortality (%) Lower CI Upper CI 

None Untreated 0.13 -2.75 2.85 
Vehicle Control 1.84 -1.11 5.72 

Thiamethoxam 2.72 -0.65 -4.52 2.86 
5.44 -2.49 -6.18 1.20 
13.6 -0.60 -5.43 3.83 
27.2 0.72 -3.67 5.49 
54.40 1.29 -3.85 6.39 

Prosulfuron 9.3 4.78  2.11 7.54 
18.6 6.12  4.20 8.22 
46.5 5.47  2.84 8.58 
93 8.22  5.60 11.01 
186 13.49 * 9.38 17.27 

Azoxystrobin 0.995 1.91 0.72 3.21 
1.99 2.06 -2.83 7.02 
4.98 2.36 -0.70 6.34 
9.95 1.69 -2.24 5.31 
19.9 2.07 -0.72 4.56 

Acibenzolar-S-
Methyl 

0.185 -1.17 -2.38 0.52 
0.37 -2.03 -3.60 3.69 
0.925 -1.35 -2.72 0.07 
1.85 0.93 -3.43 -0.37 
3.7 -1.09 -2.85 0.59 

Fludioxonil 0.11 9.16  5.39 13.44 
0.22 8.30  2.81 12.23 
0.55 9.90 * 7.19 12.65 
1.11 8.41 * 6.11 10.94 
2.22 7.96  4.55 13.50 
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Appendix C – Supporting Figures for Chapter 5 

Modelled Wet Weight – Calibration Data 

Method 1 – Dataset A 

 

Figure C1 Wet weight of male rats in group A over two years, modelled using Method 1 (solid 

line), fitted to mean observations (black circles). Grey circles represent raw data while dashed 

lines show the observed mean ±1 SD. 

 

Figure C2 Wet weight of female rats in group A over two years, modelled using Method 1 (solid 

line), fitted to mean observations (black circles). Grey circles represent raw data while dashed 

lines show the observed mean ±1 SD. 
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Method 2 - Dataset A 

 

Figure C3 Wet weight of male rats in group A over two years, modelled using Method 2 (solid 

line), fitted to mean observations (black circles). Grey circles represent raw data while dashed 

lines show the observed mean ±1 SD. 

 

Figure C4 Wet weight of female rats in group A over two years, modelled using Method 2 (solid 

line), fitted to mean observations (black circles). Grey circles represent raw data while dashed 

lines show the observed mean ±1 SD. 
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Method 3 – Dataset A 

 

Figure C5 Wet weight of male rats in group A over two years, modelled using Method 3 (solid 

line), fitted to mean observations (black circles). Grey circles represent raw data while dashed 

lines show the observed mean ±1 SD. 

 

Figure C6 Wet weight of female rats in group A over two years, modelled using Method 3 (solid 

line), fitted to mean observations (black circles). Grey circles represent raw data while dashed 

lines show the observed mean ±1 SD. 
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Predicted Wet Weight – Independent Data 

Method 1 – Dataset B 

 

Figure C7 Observed (circles) and predicted (solid line) wet weight of male rats in group B over 

two years, using Method 1. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD. 

 

Figure C8 Observed (circles) and predicted (solid line) wet weight of female rats in group B over 

two years, using Method 1. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD. 
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Method 1 – Dataset C 

 

Figure C9 Observed (circles) and predicted (solid line) wet weight of male rats in group C over 

two years, using Method 1. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD. 

 

Figure C10 Observed (circles) and predicted (solid line) wet weight of female rats in group C over 

two years, using Method 1. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD. 
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Method 2 - Dataset B 

 

Figure C11 Observed (circles) and predicted (solid line) wet weight of male rats in group B over 

two years, using Method 2. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD. 

 

Figure C12 Observed (circles) and predicted (solid line) wet weight of female rats in group B 

over two years, using Method 2. Mean observations are shown in black while grey circles 

represent raw data. Dashed lines show the observed mean ±1 SD. 
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Method 2 - Dataset C 

 

Figure C13 Observed (circles) and predicted (solid line) wet weight of male rats in group C over 

two years, using Method 2. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD. 

 

Figure C14 Observed (circles) and predicted (solid line) wet weight of female rats in group C over 

two years, using Method 2. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD.  
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Method 3 – Dataset C 

 

Figure C15 Observed (circles) and predicted (solid line) wet weight of male rats in group B over 

two years, using Method 3. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD.

 

Figure C16 Observed (circles) and predicted (solid line) wet weight of female rats in group B 

over two years, using Method 3. Mean observations are shown in black while grey circles 

represent raw data. Dashed lines show the observed mean ±1 SD.  
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Method 3 – Dataset C 

 

Figure C17 Observed (circles) and predicted (solid line) wet weight of male rats in group C over 

two years, using Method 3. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD.

 

Figure C18 Observed (circles) and predicted (solid line) wet weight of female rats in group C over 

two years, using Method 3. Mean observations are shown in black while grey circles represent 

raw data. Dashed lines show the observed mean ±1 SD.  
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Modelled Structure, Reserve and Wet Weight– Calibration Data 

Method 1 – Dataset A 

 

Figure C19 Wet weight of male rats in group A over two years, modelled using Method 1 (solid 

line), fitted to mean observations (black circles). The shaded area under the model curves shows 

structure (dark grey) and reserve (light grey). 

 

Figure C20 Wet weight of female rats in group A over two years, modelled using Method 1 (solid 

line), fitted to mean observations (black circles). The shaded area under the model curves shows 

structure (dark grey) and reserve (light grey). 
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Method 2- Dataset A 

 

Figure C21 Wet weight of male rats in group A over two years, modelled using Method 2 (solid 

line), fitted to mean observations (black circles). The shaded area under the model curves shows 

structure (dark grey) and reserve (light grey). 

 

Figure C22 Wet weight of female rats in group A over two years, modelled using Method 2 (solid 

line), fitted to mean observations (black circles). The shaded area under the model curves shows 

structure (dark grey) and reserve (light grey). 
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Method 3 – Dataset A 

 

Figure C23 Wet weight of male rats in group A over two years, modelled using Method 3 (solid 

line), fitted to mean observations (black circles). The shaded area under the model curves shows 

structure (dark grey) and reserve (light grey). 

 

Figure C24 Wet weight of female rats in group A over two years, modelled using Method 3 (solid 

line), fitted to mean observations (black circles). The shaded area under the model curves shows 

structure (dark grey) and reserve (light grey). 
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Predicted Structure, Reserve and Wet Weight – Independent Data 

Method 1 – Dataset B 

 

Figure C25 Observed (circles) and predicted (solid line) wet weight of male rats in group B over 

two years, using Method 1. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 

 

Figure C26 Observed (circles) and predicted (solid line) wet weight of female rats in group B 

over two years, using Method 1. The shaded area under the model curves shows structure (dark 

grey) and reserve (light grey). 
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Method 1 – Dataset C 

 

Figure C27 Observed (circles) and predicted (solid line) wet weight of male rats in group C over 

two years, using Method 1. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 

 

Figure C28 Observed (circles) and predicted (solid line) wet weight of female rats in group C over 

two years, using Method 1. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 
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Method 2 - Dataset B 

 

Figure C29 Observed (circles) and predicted (solid line) wet weight of male rats in group B over 

two years, using Method 2. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 

 

Figure C30 Observed (circles) and predicted (solid line) wet weight of female rats in group B 

over two years, using Method 2. The shaded area under the model curves shows structure (dark 

grey) and reserve (light grey).  
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Method 2 - Dataset C 

 

Figure C31 Observed (circles) and predicted (solid line) wet weight of male rats in group C over 

two years, using Method 2. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 

 

Figure C32 Observed (circles) and predicted (solid line) wet weight of female rats in group C over 

two years, using Method 2. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 
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Method 3 – Dataset C 

 

Figure C33 Observed (circles) and predicted (solid line) wet weight of male rats in group B over 

two years, using Method 3. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 

 

 

Figure C34 Observed (circles) and predicted (solid line) wet weight of female rats in group B 

over two years, using Method 3. The shaded area under the model curves shows structure (dark 

grey) and reserve (light grey). 
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Method 3 – Dataset C 

 

Figure C35 Observed (circles) and predicted (solid line) wet weight of male rats in group C over 

two years, using Method 3. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 

 

Figure C36 Observed (circles) and predicted (solid line) wet weight of female rats in group c over 

two years, using Method 3. The shaded area under the model curves shows structure (dark grey) 

and reserve (light grey). 
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