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Abstract 

There is a proliferation of the number of operational data centres (DCs) across the 

globe to meet present and future demands for on-demand computational offerings. In 

spite of the many efforts to improve the utilisation and power efficiency of traditional 

DCs, results achieved remain sub-optimal. This is  primarily because of the rigid 

utilisation boundaries of traditional server architecture. Disaggregation of server 

resource components and dynamic orchestration of such resources over a suitable 

network has been proposed to improve efficiency of next generation composable DCs. 

This thesis conducts a study on the best setup for such composable DC infrastructure 

to achieve optimal energy efficiency.  

First, we formulate a mixed integer linear programming (MILP) model to investigate 

the optimal scale and scope of resource disaggregation for energy efficient 

composable DCs. Concurrently, we also investigate the most suitable network for 

optimal energy efficiency. By placing CPU and memory intensive workloads energy 

efficiently in different composable DCs, we found that implementing logical 

disaggregation at rack-scale in composable DCs that adopt all-optical network enables 

optimal energy efficiency. Physical resource disaggregation of traditional DC servers 

at rack-scale leads to up to 8% and 20% savings in overall power consumption when 

CPU intensive and memory intensive workloads are provisioned respectively. We also 

found that adoption of micro-service architecture in conjunction with the logical 

disaggregation and rack-scale resource disaggregation can further improve efficiency 

in composable DCs. A combination of disaggregation and micro-services enabled 

optimal resources utilisation and energy efficiencies. Thus, relative to the traditional 

DC up to 23% reduction in the total power consumption is achieved by combining both 

approaches. 

Secondly, we describe two variants of a practical and scalable network for composable 

DC that leverages optical technologies and techniques. Additionally, we formulate a 

MILP model to evaluate the performance of the novel network in rack-scale 

composable DCs that implement different forms of disaggregation. The electrical-

optical variant of the novel topology achieves similar performance as a reference 

network while utilising fewer transceivers per compute node. The targeted adoption of 

optical technologies by both variants of the proposed network achieves greater (4 - 5 

times greater) utilisation of available network throughput than the reference network 

which implemented a generic design. 

Furthermore, we also formulate a MILP model and develop a comparable heuristic to 

study the benefits of adopting server disaggregation in the fog computing tier. We 

evaluate the energy efficient placement of interactive apps in a future fog 6G network 
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in our study. Relative to the present practice of deploying traditional servers in the fog 

computing layer, adoption of disaggregated servers reduces total fog computing power 

consumption by up to 18% when a network with low delay penalty is considered.  

Finally, we recommend that logical disaggregation and rack-scale disaggregation 

should be implemented in composable DCs that desire energy efficiency. This is  

because of the advantages and flexibility that both approaches jointly offer as reported 

in this thesis. We also recommend the targeted use of optical network technologies 

and techniques. Relative to a general-purposed design, this provides a more efficient 

approach to mitigate network challenges of composable DCs. Furthermore, these 

recommendations should be extended to the fog computing tier and edge of future 

networks to enable greater energy efficiency of the cloud-of-things architecture.
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Chapter 1 : Introduction 

Datacentres (DCs) are critical infrastructures that provide platforms driving 

wide adoption of digital technologies. These indispensable infrastructures 

provide computing resources needed to run public internet-facing applications 

and private enterprise-critical applications alike. DCs provide environments 

that satisfy the requirements of cloud computing and data analytics 

applications. Such requirements include on-demand resource provisioning, 

multitenant isolation, parallel computation, and security. Examples of cloud 

computing and data analytics applications include web services, web-search, 

instant messaging and social media, distributed file systems, analytics, and 

content delivery applications. A typical DC comprise of compute, storage and 

network resources and peripheral systems. A traditional server is the basic 

compute unit in traditional DCs. Each server is a modular node with intrinsic 

CPU, memory, storage, and network resources. The number of severs in a 

traditional DC ranges from a few hundreds to tens or hundreds of thousands 

of servers. This number varies based on the purpose for which a DC is built. 

Cloud computing became an integral part of the global society over the 

last two decades. This is because cloud computing enabled improved capital 

and operational efficiencies relative to the traditional distributed computing 

architecture. Adoption of cloud computing in its different service offerings such 

as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and 

Software as a Service (SaaS) spans across a variety of personal, enterprise 

and public applications. In 2020, it is predicted that 83% of enterprise 

workloads will be in the cloud. Some of the key drivers of this trend include 

digital transformation, artificial intelligence and machine learning and Internet 

of Things (IoT) [1]. By 2022, it is estimated that the global spending on IoT will 

reach $1.2 trillion [2]. Furthermore, Cisco predicts that about 500 billion smart 

devices will be connected by 2030 [3]. In addition to these widely used cloud 

computing applications, strong emergence of other disruptive technologies is 

also expected to increase the variety of applications deployed in datacentres 

(DCs) [4] in the near future. Examples of such disruptive technologies include 

network function virtualisation, big data analytics and smart grids and smart 

cities. Consequentially, the number and size of DCs is expected to increase. 

The expected growth in the proliferation of DCs and DC applications has 

become an important motivation for increased flexibility, resource utilisation 

efficiency and energy efficiency. This is essential in DCs to attain desired 
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performance at low cost, energy efficiently and in an environment friendly and 

sustainable manner. 

Furthermore, the growing uptake of the cloud computing and IoT 

paradigms is expected to enable a new range of applications at the edge of 

telecommunication networks. However, the quasi-distributed or semi-

centralised architecture of the traditional cloud computing paradigm is a major 

inhibiting factor to the emergence of some of applications. This is because 

such application may require real-time or near-real-time computation. In 

addition, the volume, velocity, and variety of data generated by geo-distributed 

IoT-devices and end-users of these emerging Cloud-IoT applications 

combined with traditional network traffic is expected to overwhelm network 

infrastructures. This will also significantly increase the cost of owning and 

operating these networks and may increase their carbon footprint. Ultimately, 

the centralised cloud computing architecture will degrade the performance of 

some future applications due to increased network congestion. In other cases, 

the centralised cloud computing architecture will outrightly prevent the 

emergence of some applications which are infeasible under the centralised 

cloud computing architecture. Hence, the concept of edge/fog computing [5]–

[7] has been proposed in recent times to address some of these challenges. 

The fog computing paradigm extends cloud computing to the network 

edge to support emerging and future internet applications and services. This 

is enabled via the introduction of a new intermediate computation tier called 

the fog computing tier. The fog computing tier is located between the 

centralised cloud computing tier and geo-distributed IoT-devices and end-

users of emerging applications at the network edge. The fog tier comprises of 

heterogeneous devices and nodes called fog nodes. Examples of fog nodes 

include edge routers, access points, specialised servers, and a range of 

endpoints such as connected vehicles, surveillance cameras and mobile 

phones. These heterogeneous fog nodes/devices adopt heterogeneous 

network infrastructures (both wireless and wired) for connectivity. The geo-

distributed heterogeneous nodes may also be orchestrated collectively as a 

fog federation to enable a fog as a service (FaaS) or fog Infrastructure as a 

service (IaaS, FIaaS) business model [8]–[10]. The goals of the fog computing 

paradigm include: minimisation of response time for real-time and mission 

critical applications (such as vehicle to vehicle communication, intelligent 

processing/analytics, wireless sensors and actuation networks and game 

streaming) via in-situ computation [11], [12]; the reduction of cloud computing 
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destined workloads; and the reduction of total end to end traffic in networks 

[11]. 

In recent times, hyper-scale DC infrastructure providers such as 

Facebook and Microsoft have begun to explore the use of the server resource 

disaggregation concept. They aim to use server resource disaggregation as a 

tool to further improve on DC infrastructure overall efficiency [13]. Server 

resource disaggregation proposes the physical or logical separation of 

traditional server (TS) intrinsic resources into pools of homogeneous 

resources. Such resources are subsequently composed, decomposed, and 

recomposed on-demand over high bandwidth and low latency networks, to 

support applications. Hence, a composable DC or computing infrastructure is 

enabled. This concept addresses the limitations associated with computing 

infrastructures and DCs that employ traditional server architecture. Such 

limitations include poor resource modularity and lifecycle management, the 

need for purpose-built servers in computing clusters, high power consumption 

and capital expenditure resulting from inefficient resource utilisation [14]–[17]. 

Furthermore, the adoption of the composable infrastructure concept in the fog 

computing tier can also enable potential improvements in fog computing 

efficiency. Consequently, fog computing efficiency could approach efficiencies 

that are traditionally attributed to the cloud computing tier. In spite of the 

potential benefits attainable when resource disaggregation is implemented to 

achieve a composable DC, there are a few inherent implementation 

challenges and open issues that must be addressed.  

For example, although different scales of resource disaggregation are 

possible in composable DCs, the optimal and practical scale of resource 

disaggregation in composable DC infrastructures remains an open issue. 

Furthermore, in spite of some preliminary works on the design of suitable 

network topologies to support resource disaggregation in composable DCs 

with little or no performance degradation, additional research is required. Such 

research is required to achieve practical networks to maximise the benefits 

enabled by resource disaggregation. In this thesis, we compare different 

scales and scopes of resource disaggregation in composable DC 

infrastructures via the formulation of a mixed integer linear programming 

(MILP) model. We also review electrical, optical and hybrid network topologies 

proposed for composable DC infrastructure in existing literature and evaluate 

the performance of selected prototype topologies. The concept of logical 

resource disaggregation in composable DC where resource utilisation 

boundaries are virtually relaxed is also explored. We also evaluate the impact 
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of using micro-services to form integrated workloads in both traditional and 

composable DCs over the deployment of monolithic workloads. A generic 

heuristic for energy efficient placement of workload resource demands into a 

rack-scale composable DC is also proposed in this thesis. 

Furthermore, to unleash and to maximise the potential benefits of 

employing resource disaggregation in composable DCs, two variants of a 

high-capacity, simple and practical network for composable DC are proposed 

in this thesis. The proposed topologies leverage optical networking 

component, technologies, and techniques. Consequently, full mesh physical 

topology within each rack in the composable DC is achieved while using 

minimal number of interfaces and transceivers. A MILP model is formulated 

as proof of concept of the proposed topologies. The MILP model also aided 

comprehensive evaluations of the proposed network topology relative to a 

reference network topology in the literature. We also evaluate the overall 

energy efficiency of composable DCs that implement the novel network 

topologies by extending the MILP model to energy efficiently provision 

workload demands.  

Additionally, although adoption of the disaggregated servers at the 

edge of the network seems intuitively practical, a comprehensive study is 

necessary to validate the proposition relative to the use of traditional servers. 

Furthermore, it is also important to investigate the impact of such proposition 

on existing network infrastructure and the performance of interactive fog 

applications. Therefore, in this thesis, a MILP model is formulated to place 

delay sensitive and insensitive fog applications in a metro-access fog 

computing tier. The metro-access fog computing tier replaces traditional 

servers with disaggregated servers. We also study the impact of user-

distribution in a network of federated fog computing sites in the metro and 

access networks. Finally, we develop a fast and scalable policy (heuristic) 

which mimics the MILP model for practical deployment in large scenarios, and 

to verify the MILP. 

1.1 Research Objectives 

The primary research objectives presented in this thesis include: 

1. To determine the optimal and practical scale and scope of resource 

disaggregation in composable DCs by formulating a MILP model that 

performs energy efficient placement of workloads over electrical, 

optical and hybrid network topologies. 

2. To design a novel, simple, practical, and scalable network for 

composable DCs and to study the performance of the network by 
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formulating a MILP model that maximises network throughput and 

another MILP model that performs energy efficient routing and 

forwarding over the novel network. 

3. To further evaluate the performance of the proposed network in 

composable DCs by formulating a MILP model that places workload 

resource demands energy efficiently in composable DCs that deploy 

the novel network. 

4. To investigate the impact of adopting disaggregated servers in metro 

and access networks comprising of federated fog computing sites 

relative to the adoption of traditional servers by formulating a MILP 

model that performs energy efficient placement of delay sensitive and 

insensitive fog applications at the edge of the network. 

5. To establish the factors that impact the energy efficient placement of 

delay sensitive and insensitive fog applications at the edge of the 

network and to determine optimal fog computing sites, at the edge of 

the network, for present and future fog applications. 

1.2 Original Contributions 

The main contributions of this thesis include: 

1. The formulation of a MILP models that performs energy efficient 

placement of monolithic workloads in different types of composable 

DCs over electrical, hybrid and optical networks. The MILP model 

demonstrated that disaggregation at rack-scale in a composable DC 

that employs an optical network is sufficient to achieve optimal 

efficiency. The model was extended to consider the impact of replacing 

monolithic workloads in rack-scale composable DCs with comparable 

integrated workloads. The integrated workload is created concurrently 

by provisioning more modular related micro-services derived from 

decomposing a monolithic workload. We showed that up to 23% 

reduction in total DC power consumption can be achieved by deploying 

integrated workloads in a composable DC relative the deployment of 

monolithic workloads in a traditional DC. 

2. A heuristic for energy efficient placement (HEEP) of workloads in rack-

scale composable DCs that deploys an optical network was developed 

for real-time placement of workloads in composable DCs. Compared to 

the MILP, the HEEP algorithm achieved comparable power 

consumption. 

3. An electrical and an electrical-optical variants of a novel, simple and 

practical network for composable DCs (NetCoD) are proposed in this 

thesis. As a proof of concept, a MILP formulation that models both 

proposed variants of NetCoD and another reference network topology 

from the literature is formulated. The performance of the networks were 

compared using the MILP formulation. Under similar loads and physical 

setup, it was observed that both variant of NetCoD achieved 

comparable performance as the reference network which does not 

scale well for practical DCs. The MILP was extended to study the 
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performance of all networks when energy efficient placement of 

workloads is required in a rack-scale composable DC. It was observed 

that Electrical-Optical-NetCoD (EO-NetCoD) achieved comparable 

performance and power consumption as the reference topology. On 

the other hand, the Electrical-NetCoD (E-NetCoD) incurred higher 

power consumption while achieving comparable performance as both 

EO-NetCoD and the reference network. 

4. A MILP was formulated to study the impact of adopting the 

disaggregated servers in an energy efficient fog computing tier. The 

adoption of disaggregated servers achieved up to 18% reduction in 

total fog computing power consumption relative to the use of traditional 

servers in the fog computing layer. It was also observed that more 

instances of interactive fog applications are provisioned when a fog 

network is implemented in metro and access networks with high delay 

penalty. The proximity of metro central offices and radio cell sites to 

geo-distributed users of interactive fog applications (apps) made them 

suitable locations for provisioning moderately delay sensitive fog 

applications to enable optimal energy efficiency in the fog computing 

tier. 

5. A heuristic for energy efficient and delay aware placement (HEEDAP) 

of workloads in metro-fog network was proposed. The HEEDAP 

algorithm achieved comparable performance and power savings 

relative to the MILP. 

1.3 Related Publications 

The following publications support the original contributions in this thesis: 

Journals 

1. O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Energy 

Efficient Placement of Workloads in Composable Data Center 

Networks,” IEEE/OSA Journal of Lightwave Technology, 3 March 

2021, DOI: 10.1109/JLT.2021.3063325. 

2. O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, 

“Disaggregation for Energy Efficient Fog in Future 6G Networks,” 

submitted for publication in IEEE Internet of Things Journal. 

3. O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Network 

Topologies for Composable Data Centres,” submitted for publication in 

IEEE/OSA Journal of Lightwave Technology. 

Conferences 

4. O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “On Energy 

Efficiency of Networks for Composable Datacentre Infrastructures,” in 

2018 20th International Conference on Transparent Optical Networks 

(ICTON), 2018, pp. 1–5. 

5. O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, 

“Disaggregation for Improved Efficiency in Fog Computing Era,” in 
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2019 21th International Conference on Transparent Optical Networks 

(ICTON), 2019, pp. 1–7.  

6. O. O. Ajibola, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “A Network 

Topology for Composable Infrastructures,” in 2020 22nd International 

Conference on Transparent Optical Networks (ICTON), 2020, pp. 1–4. 

1.4 Outline of Thesis 

Following the introduction in Chapter 1, the rest of this thesis is organised as 

follows: 

Chapter 2 gives an overview of important components and concepts in 

this thesis. A review of DC infrastructure evolution along with software and 

infrastructure centric techniques used to enable greater efficiency in DCs are 

given. A brief review of WDM networks and enabling optical devices and 

architecture are also presented in Chapter 2. The Chapter also gives 

description of the virtual topology design problem in WDM networks, the MILP, 

non-linear programming and metaheuristic optimisation approaches.  

Chapter 3 presents an overview of composable DC infrastructure along 

with a review of its enabling technologies and implementation challenges. We 

also review research on composable DC infrastructure from existing literature. 

Using MILP, Chapter 4 conducts a study of energy efficient placement 

of different types of workloads in a range of composable DC infrastructure 

over selected electrical, hybrid and optical networks. MILP is also used to 

compare the adoption of integrated workloads, comprising of more modular 

related micro-services, to the adoption of monolithic workloads in both 

traditional and composable DCs. The chapter presents a heuristic for energy 

efficient placement (HEEP) of workloads in DCs and compares the 

performance of HEEP to the MILP model formulated.  

In Chapter 5, the description of a novel, simple and practical network 

for composable DC is given. Using MILP, the chapter evaluates the 

performance of the novel network topology relative to an existing network from 

the literature. Furthermore, MILP is also used to perform energy efficient 

placement of workloads in a range of rack-scale composable DC 

infrastructures that deploy the proposed topology. The chapter also compares 

the performance of the novel network to that of the reference network topology 

from the literature after the energy efficient placement of workloads. 

Chapter 6 investigates the benefits and impact of adopting 

disaggregated servers for greater energy efficiency in the fog computing era. 

In this chapter, a MILP model is formulated to optimally provision delay 
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sensitive and insensitive fog apps in a fog network. The fog network comprises 

of federated fog computing sites in the metro and access networks. The 

chapter also proposes a heuristic for energy efficient and delay aware 

placement (HEEDAP) of fog applications in a fog network at the edge of the 

network. Finally, the chapter compares the performance of the HEEDAP 

algorithm to that of the formulated MILP model. 

Chapter 7 concludes this thesis. A summary of the main contributions 

in the thesis are given and future works are proposed. 
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Chapter 2 : Review of Data Centre Infrastructure and 

Wavelength Division Multiplexing (WDM) Networks 

2.1 Introduction 

In this chapter, an overview of important components and concepts in this 

thesis is presented. A review of data centre (DC) infrastructure evolution is 

given along with an overview of software and hardware techniques used to 

enable greater efficiency in DCs. We follow this with a brief overview of WDM 

networks and enabling optical devices and architectures. We also give a brief 

overview of the virtual topology design problem in WDM networks, which is 

considered in this thesis and is often formulated as a mixed integer linear 

programming (MILP) model. Finally, we give a short review of the MILP 

optimisation approach used widely in this thesis and we briefly review non-

linear programming and metaheuristic optimisation methods. 

2.2 Traditional Data Centre infrastructure 

A data centre (DC) comprises of compute, storage and network resources and 

peripheral systems. A server is the basic compute unit in DCs. Each server is 

a modular node with intrinsic CPU, memory, storage, and network resources. 

In traditional DCs, servers were bespoke hardware designed to support a 

single instance of a monolithic application. Hence, one to one allocation of 

monolithic application instances to servers contributed to low (between 10-

30%) utilisation of installed resource capacity. Up to 48 servers are placed in 

cabinet-like structures called racks, servers within a rack are inter-connected 

by an intra-rack communication network. Multiple co-located racks are 

connected by an inter-rack network to form a DC cluster. Peripheral systems 

including management and orchestration platforms, power and cooling 

systems are critical for daily operation and management of DCs. 

A network topology in the DC connects several servers, storage devices 

and other resources together to support east-west traffic (within each DC) and 

north-south traffic (between the DC and users or other remote DCs). The 

legacy network topology deployed in traditional DC was a three-tier 

hierarchical topology comprising of access, aggregation and core layers [18] 

as shown in Figure 2.1. In the access layer, each rack accommodates multiple 

servers. Each rack has a Top of Rack (ToR) switch that connects to these 

servers via 1 Gbps or 2 Gbps links. The aggregation layer consists of 

aggregation switches interconnecting multiple ToR switches via 10 Gbps links. 
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Aggregation switches route traffic between different racks and from ToR 

switches to the core layer. The core layer consists of core routers which are 

intermediate routers between the DC and the Internet. The aggregation 

switches are connected to the core routers via 10 Gbps or 100 Gbps links. In 

the three-tier hierarchical topology, there are no physical links between 

switches in the same layer, links only exists between switches of adjacent 

layers. The traditional DC network is limited because oversubscribed links in 

higher layers of the network topology become bottlenecks when the volume 

of traffic in the lower layer links increases. Traditional DC networks provide 

poor support for on-demand horizontal scaling of servers. Traditional DC 

networks also have a single point of failure as a failure in a higher-layer switch 

or link can affect several racks and servers [19]. 

 

Figure 2.1: Traditional datacentre infrastructure 

DCs have been classified into university campus, private enterprise and 

cloud categories [18], [20]. This classification is based on the mix of 

applications in the DC and the organisation that owns and operates the 

infrastructure. On the one hand, university campus and private enterprise DCs 

are on-premises infrastructures with a few hundreds of servers. On the other 

hand, cloud DCs (operated by cloud providers such as Amazon, Google, 

Microsoft and Facebook) usually comprise of tens or hundreds of thousands 

of servers. These servers are often distributed across the globe into 

distributed cloud DCs to ensure that user’s quality of service and regulatory 

requirements are met. To operate at large scale and remain profitable while 

maintaining the flexible and affordable pricing model offered to users, 
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sustainable and efficient operations is required in cloud DCs. Therefore, 

improvements in cloud centric DCs in the last two decades are largely 

responsible for significant changes in DC environments. 

2.3 Modern Data Centre Infrastructure 

A common practise in most modern cloud DCs is the adoption of commodity 

server hardware instead of bespoke server hardware used in traditional DCs. 

This aided capital expenditure (CAPEX) and operational (OPEX) reduction 

because such technology is widely available and well understood. However, 

utilisation remained low because the capacity and agility of the DC was 

defined by the capacity of each physical server. Each physical server 

supported a single monolithic application. The advent of virtualisation at the 

beginning of this millennium enabled multiple applications to share a single 

physical server by running in independent virtual environments. Virtualisation 

decouples compute, network and storage resources from their underlying 

physical hardware. Virtualisation also enables on-demand allocation, de-

allocation, and re-allocation of logical instances of these resources which are 

aggregated as virtual machines (VMs). A software or firmware called 

hypervisor which runs on physical resources is the entity that makes this 

abstraction possible. Wide adoption of virtualisation in DCs enabled improved 

utilisation (to about 50%) and energy efficiency. Thus, leading to reductions in 

CAPEX and OPEX of DC infrastructure providers and consequently reduced 

user’s consumption bills. 

Even though virtualisation enabled the pooling of compute, storage and 

networking resources to support on-demand provisioning for dynamic 

applications, DC network bottlenecks inhibited the maximal agility [21]. This is 

because of increased east-west traffic within virtualised DCs. Subsequent 

estimates by Cisco put such east-west traffic within DCs at 77% of global 

traffic in modern virtualised DC [4]. Hence, to mitigate link oversubscription 

resulting from increased east-west traffic in virtualised DCs, adoption of 

virtualisation was initially limited; consequently, resource fragmentation 

persisted in DCs.  

The historical challenges of DC network fabrics were addressed via 

switch-centric and server-centric DC network topologies proposed by the 

industrial and academic communities. Switch-centric DC network topologies 

are hierarchical networks that adopt switches as relay nodes during traffic 

forwarding between DC components. Such network topologies scale by 

introducing additional switches at different layers. The fat-tree topology [22], 
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[23] is a cheap switch-centric topology proposed for the DC environment 

which adopts identical commodity switches in all three layers. The spine-and-

leaf network topology has also been proposed to provide predictable low-

latency communication in virtualised DCs with increased east-west traffic [24]. 

Spine-and-leaf topology is often a two-tiered network comprising of leaf 

switches in the lower tier and spine switches in the upper tier. In the 

southbound direction, the leaf switches connect to DC servers. While in the 

northbound direction, leaf switches connect to all spine switches to form a full 

mesh as shown in Figure 2.2. Occasionally spine-and-leaf topology may be 

implemented as a three-tier topology. Figure 2.2 shows a three-tier topology 

where an additional spine layer comprising of high capacity super-spine 

switches is present. The super-spine switches interconnect spine switches in 

large DCs and connect the DC to the Internet and other remote DCs. The 

spine-and-leaf network topology supports non-disruptive scaling via the 

addition of new switches and links. Server-centric DC network topologies 

which use servers as relay node for multi-hop communication have also been 

proposed. In addition to their computing functions, servers in such topologies 

are also equipped with multiple network interfaces. A portion of servers 

computing capacity is dedicated to packet processing and forwarding 

functions. However, the recent emergence of smart network interface cards 

(NICs) that can perform some or all network traffic processing in the server 

can minimise CPU usage in server centric topologies [25]. Examples of server 

centric topologies include Bcube [26], DCell [19] and FiConn [27]. 

Although, copper-based Ethernet links were deployed in traditional DCs, 

recent trends show that advances in silicon photonics technology has enabled 

the deployment of optical transceivers in DCs. Hence, optical links are being 

adopted to replace copper links in DCs [23]. Further use of optics in DC has 

also been proposed in other instances where optical components complement 

the electronic switching technologies in hybrid network topologies. Examples 

of such hybrid network topologies include C-through [28], Helios [29] and 

optical switching architecture [30]. All-optical network topologies such as 

Lightness [31] and datacentre optical switch [32] have also been proposed for 

DC environments. Motivating benefits of adopting optical communication in 

DC include, lower power consumption, longer transmission distances, lower 

latency, and higher capacity. For instance, passive optical network (PON) 

based optical topologies for DCs, which achieved significant power savings, 

were proposed in [33]. Figure 2.3 gives a summary of some network 

topologies proposed for modern DCs. 
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Figure 2.2: Three-tier spine-and-leaf data centre network topology 

 

Figure 2.3: A summary of networks for modern datacentres 
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instance of an application is called a container. A container is a packaged 

software that is abstracted from the operating system (OS) of a VM or server, 

comprising of the source code of an application and all dependencies required 

for the application to run on various physical and virtual platforms [35]. Unlike 

VMs, multiple containers can share a common OS in a given server. An open-

source orchestration platform such as Kubernetes [36] can be used to manage 

multiple containers. Containerisation enables significant improvement in DC 

efficiency by reducing the number of servers required and by improving active 

server utilisation. 

 

Figure 2.4: A overview of techniques for improved efficiency in data centres 

The concept of containerisation has also promoted the improvements 

in application design architecture for greater efficiency and utilisation by 

supporting containerised micro-services of the cloud native application 
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Each micro-service performs a specific business function that can be 

developed, tested, deployed, managed and scaled individually [38]. These 

related micro-services performing different business functions are thereafter 

combined to form an integrated application which is comparable to the 

decomposable monolithic workload. Communication between these loosely 

coupled micro-services, which are associated with the same integrated 

application, is facilitated using well-defined standards or application 

programming interfaces (APIs) [39]–[41]. The APIs isolate inner workings of 

each micro-service. This novel approach enables features such as massive 

scalability, agility, and improved resource utilisation (and the corresponding 

energy efficiency it enables) desired for distributed applications deployed in 

cloud computing DCs. Integrated applications scale by replicating only the 

micro-service implementing desired business functions; thus, enabling a new 

level of workload modularity. 

DC operators have also adopted the concept of software defined 

infrastructure (SDI) to achieve holistic efficiency in the entire DC infrastructure. 

SDI uses automation enabled by software to control DC functions including 

deployment, provisioning, configuration, and operations. In addition to the 

virtualisation of servers, other components of the DC such as network, power 

and cooling infrastructure are also controlled via software. SDI enables 

centralised control of DCs to support on-demand rightsizing of the 

infrastructure to temporal workloads requirements. This enables new levels of 

agility and efficiency in the DCs which is expected to increase the utilisation 

of installed capacity to a maximum of 70% [42]. The SDI concept has also 

promoted the introduction of the serverless computing service by leading 

cloud providers [43]–[46]. The serverless computing paradigm provides 

computing capability as a managed service to users. Simultaneously, the 

cloud service providers utilise SDI capabilities at the backend to ensure that 

compute resources are provisioned optimally in real-time to fit exact resource 

demands of cloud user’s applications. This combination of SDI and serverless 

computing significantly increases the economic and environmental 

sustainability of DCs [47]. 

These software-centric approaches used in today’s DCs are sub-optimal 

relative to the expected future growth in computing capacity usage. Hence, 

the ratio of computing capacity to its corresponding cost remains low, primarily 

because of the architecture of traditional servers used in computing 

infrastructures. Therefore, other approaches are also being actively explored 
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by DC infrastructure providers to improve the economic and environmental 

sustainability of computing infrastructures. 

2.4.2 Hardware and Infrastructure Centric Techniques 

In the last decade, hardware and infrastructure centric measures have been 

taken to complement software centric approaches directed at improving power 

efficiency, cooling technologies and management of DCs. Forecasts, such as 

a prediction that DCs will account for 3-13% of global electricity consumption 

in 2030 relative to 1% in 2010 [48], are primary motivators for the development 

of these hardware and infrastructure centric approaches. Moreover, some 

characteristics of the traditional DCs have revealed the inefficiencies of DC 

infrastructure. For example, the traditional DC is known to have high power 

usage effectiveness (PUE). Hence, up to a third of the input power to the 

traditional DC is used for cooling alone [21]. Examples of hardware centric 

measures used to improve efficiency include the introduction of high-capacity 

multi-core processors with multi-threading features and lower power 

consumption. Hence, more computation is enabled at lower power 

consumption and low physical footprint. The thermal efficiency of such 

processors was also improved so that less cooling infrastructure is required in 

modern DC. Highly energy and water efficient evaporative cooling and free-

air cooling method are increasingly being adopted to supplement or replace 

mechanical chillers in massive DC [49], [50].  

Additionally, cloud giants such as Facebook have adopted the hyper-

scale design in DCs to provide much needed agility, reduced total cost of 

ownership (TCO) and improved resource utilisation. Hyper-scale design 

adopts easily swappable commodity computing components in streamlined 

modular servers which are deployed in massive DCs. The open compute 

project (OCP) was formed to promote an open-source hardware ecosystem 

for hyper-scale DCs. OCP aims to re-design DC infrastructure using 

commodity hardware for increased energy and cost efficiency. An initial 

contribution to the OCP by Facebook enabled a DC that achieved an initial 

PUE ratio of 1.07 and was 38% more energy efficient while achieving a 24% 

reduction in operation cost [51], [52]. Intel, a contributor to OCP, has also 

proposed a reference architecture called the Rack Scale Design (RSD) [53]. 

Intel’s RSD simplifies the adoption of hyperscale design in small DCs 

deployed in enterprises and telecommunication industry. As a result, Intel’s 

RSD partners [54] such as Ericsson, Dell, HPE and Inspur have adopted the 

reference architecture to produce computing infrastructures that delivers 

benefits enjoyed by cloud giants to enterprise of various sizes. For example, 
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the network functions virtualisation (NFV) [55] can leverage on the benefits 

enabled by hyper-scale design for greater efficiency at the edge of the 

network. The NFV paradigm in the telecommunication industry promotes the 

virtualisation of network functions and components to run in commodity 

hardware. 

Operators of massive DCs have also made significant efforts to reduce 

the carbon footprints of DC infrastructure in parallel with improvements in 

operational and energy efficiencies. To this end, the construction of cloud 

computing infrastructure near renewable energy sources (such as wind and 

solar) has been explored by DCs operators [56]. However, sole adoption of 

this approach can lead to performance degradation because temporal and 

geographical availability of renewable energy and user population distribution 

are not always in sync. Hence, cloud infrastructure providers are known to 

offset their carbon footprint via bulk purchase of renewable energy through 

power purchase agreements [57]. More recently, Google has committed to 

operate (all services including cloud computing) solely on carbon-free energy 

by 2030 [58]. 

In spite of significant improvements to traditional DC infrastructure, some 

shortfalls of the infrastructure persist. These include integration of resource 

and server proportionalities during infrastructure rollouts and upgrades; 

resource fragmentation and utilisation inefficiencies [59], [16]; high workload 

blockage probability [16], [60]; high infrastructure CAPEX and OPEX [61], [62]; 

and poor support for wide range of emerging applications (such as 

applications adopting in-memory computing architecture) that require ultra-

low latency access to large data sets. The rigid architecture of today’s DCs 

also limits the integration/adoption of advanced hardware technologies. For 

example, it is difficult to adopt novel storage class memory (SCM) [63] in 

today’s DC. SCM have higher storage capacity and lower latency compared 

to traditional HDDs. As a result, disaggregation of computing servers has been 

proposed in recent times to complement other existing techniques that 

improve DC infrastructure efficiency. 

2.5 Wavelength Division Multiplexing Networks 

Wavelength Division Multiplexing (WDM) technology enables the 

maximisation of the usable bandwidth in an optical fibre by supporting 

concurrent transmission of multiple wavelengths over a single optical fibre. 

Each wavelength conveys independent signals at the maximum data rate 

supported by electronic processing speed. WDM technology is widely used in 
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communication networks including core, metro, and access networks. 

Traditionally, such networks deploy the WDM technology in a point-to-point 

system architecture where optical-electrical-optical (OEO) conversion is 

required at each intermediate node on an end-to-end communication path. 

However, advances in optical devices which support optical routing and 

switching in the optical domain, has enabled the adoption of WDM technology 

for networking [64]. In recent times, the WDM technology is also being 

deployed in the DCs where there is a strong desire to leverage on the benefits 

of optical technologies. This is expected to enable high capacity, low cost, and 

low power communication. 

2.5.1 Optical Devices 

A brief review of some optical devices that enabled the use of WDM 

technology for networking is as follows. 

 Optical fibre: A high-speed medium that supports transmission in the 

optical domain. A fibre supports high transmission bandwidth. Optical 

fibres also support low attenuation transmission in certain areas of the 

spectrum where greater distances are covered by optical signal 

transmissions. 

 Coupler: A coupler combines or splits signals in optical networks, it 

combines/splits signals from different sources into one or more output 

fibres. Couplers can be designed to be wavelength independent or 

wavelength selective. 

 Splitter and combiner: A splitter is a passive device that splits optical 

signals carried by an optical fibre into multiple output fibres. For 

instance, a 1:N splitter splits optical signals conveyed by an optical fibre 

into multiple output fibres. On the other hand, a combiner combines 

optical signal from multiple optical fibres into one optical fibre. 

 Arrayed Waveguide Grating (AWG): A passive and data rate agnostic 

device used as a multiplexer or a de-multiplexer in WDM networks. As 

a multiplexer, the AWG combines a set of wavelengths into an optical 

fibre. On the other hand, as a de-multiplexer, the AWG separates 

optical signals on distinct wavelengths on an optical fibre into different 

output ports. A single AWG can function as a multiplexer in the forward 

direction and as a de-multiplexer in the reserve direction as a result of 

the cyclic property of the AWG. 

 Arrayed Waveguide Grating Router (AWGR): An NxN passive 

wavelength router capable of supporting contention free all-to-all 

communication between N nodes by using N wavelengths. To 

communicate with N nodes concurrently, each node requires N 

transceivers. AWGR has a fixed routing matrix determined by an 

inherent cyclic routing property. Hence, a wavelength that enters the 

device at a specific input port exits at a specific output port. A 

wavelength supported by the AWGR can be reused concurrently over 
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the routing fabric provided every active instance of the wavelength 

enters the device at a different input port. An AWGR can be adopted to 

implement an optical cross connect (OXC) in a WDM network, since it 

can facilitate optical signal switching without conversion.   

 Wavelength Selective Switch (WSS): An active optical component 

that can independently route any wavelength at its shared input port to 

any one of its multiple output ports. For instance, a 1xN WSS can 

switch a set of wavelengths at its common input port to any of the N 

output ports. Wavelength routing and switching of a WSS can be 

modified via an electronic control interface on the device. The WSS can 

also be adopted to implement an OXC in a WDM network. 

 Circulator: A multiport device that allows optical signals to travel in one 

direction only. The device ensures that optical signals entering any of 

its ports leaves at the next port. Circulators can facilitate bi-directional 

transmission on a single strand of optical fibre. 

 Fibre Bragg Grating (FBG): A passive optical device that reflects an 

optical signal of a specific wavelength while allowing transparent 

transmission of other wavelengths. This is achieved by periodically 

changing the refractive index of the fibre core along the length of the 

fibre. The FBG can be made tuneable to control the reflected 

wavelength by stretching the FBG or by changing the temperature. 

FBG has a typical tuning latency in the milliseconds, for example 2 

milliseconds as stated in [65].  

2.5.2 WDM Network Architectures 

There are two classes of WDM network architecture i.e., broadcast and select 

WDM networks and wavelength routed WDM networks.  

2.5.2.1 Broadcast and Select WDM Networks 

A common medium is shared in broadcast and select WDM networks and a 

simple broadcast mechanism facilitates the transmission and reception of 

optical signals between network nodes. The star topology is a popular 

example of the broadcast and select WDM network. In the star topology, a 

passive coupler is the hub to which all network nodes are connected. The 

coupler combines the wavelength transmitted from each network node in the 

topology and forwards it to all other network nodes. Each node tunes its 

receiver(s) to the wavelengths intended for it. 

2.5.2.2 Wavelength-Routed WDM Networks 

Circuit-switched light-paths are established between communicating pairs of 

nodes in a wavelength-routed WDM network architecture. A light-path is a 

directed all-optical connection between a pair of nodes. It may traverse 

multiple optical fibres and may use multiple wavelengths without undergoing 

OEO conversion at intermediate nodes. In wavelength-routed WDM networks 
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establishment of light-paths is controlled by certain constraints such as 

wavelength distinct constraints, wavelength reuse property and wavelength 

continuity.  

Wavelength distinct constraints ensure that each active wavelength in 

an optical fibre link is unique. The wavelength reuse property of wavelength 

routed WDM network architecture enables the reuse of a given wavelength on 

disjoint optical fibres. Hence, space division multiplexing (SDM) can 

complement WDM to increase network throughput. In the absence of 

wavelength conversion in the optical domain, a light-path must use the same 

wavelength on all links traversed; this is the wavelength continuity constraint 

in WDM networks which may limit wavelength utilisation and connection 

request satisfaction in the network. 

2.5.3 Virtual Topology Design Problem in WDM Networks 

Given the physical topology of a WDM network, network limitations and the 

connection request between pairs of nodes, the task of creating a set of light-

paths over the physical topology to support traffic demands while optimising 

network performance is called a virtual topology design problem [64]. Virtual 

topology design problem can be formulated as a MILP problem. Examples of 

network limitations includes number of wavelengths available on an optical 

fibre link, the number of transceivers available at each node. Network 

performance metrics may include end-to-end delay, congestion, and network 

power consumption.  

A connection request between a pair of nodes in a WDM network may 

be provisioned by single light-path or by multiple distinct light-paths on an end-

to-end communication path. When multiple light-paths are provisioned to 

satisfy a network connection request, OEO conversion is performed at the 

terminal node of each light-path (at intermediate nodes between two light-

paths). OEO conversions at such intermediate nodes can increase network 

performance in terms of throughput, utilisation, and availability. However, this 

is achieved at the cost of additional processing and queuing delay on the end-

to-end communication path. 

The virtual topology design problem entails the creation of light-paths, 

subsequent routing of the light-paths over the physical topology, the 

assignment of wavelengths to each light-path and finally, the routing of 

connection requests over all created light-paths. The virtual topology forms a 

transparent optical layer that lies between the physical layer and higher layers 

(i.e., IP, SDH/SONET and ATM) of the WDM network topology. Some network 
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design problems considered in this thesis are virtual topology design problems 

and are formulated as MILP models.  

2.6 Mixed Integer Linear Programming 

A linear programming problem aims to optimise (either maximise or minimise) 

a linear objective function subject to linear constraints. The optimal solution of 

a linear programming problem lies in the feasible region bounded by the linear 

constraints of the problem [66]. The general form of a linear programming 

problem comprises of parameters, variables, constraints, and an objective 

function [67]. 

 Objective function: This is the optimisation goal of a linear 

programming problem; it is a linear equation which comprises of 

variables that are optimised to obtain the optimal solution. 

 Variables: These are unknown values or decision variables that are 

optimised to obtain an optimal value that satisfies the linear constraints 

of the linear programme. 

 Constraints: These are linear equalities and/or inequalities that limit 

the values taken by decision variables. The constraints of linear 

programme problem collectively define the feasible region where an 

optimal solution can be found for the problem.  

 Parameters: These are known values that are given as an input to the 

linear programme. They represent costs and (lower or upper) 

thresholds which are associated with variables, constraints, and the 

objective function of a linear programme.  

Along with linear objective function and constraints, all variables of a linear 

programme take real values by default. However, when some variables take 

integer values, the problem is an integer linear programme (ILP). Another 

variant of linear programmes where some variable take integer values while 

other variables take real values is a MILP. For example, given, the demand 

volume and the cost of forwarding traffic via each link in the network, an un-

capacitated network design problem that minimises total network cost can be 

represented by the following MILP model as given in Chapter 2 of [67]. 

Set and Parameters 

𝐷 Set of demands 

𝐸 Set of links  

𝑃 Set of paths in the network  

𝜉𝑒 Cost incurred on the link 𝑒 ∈ 𝐸 
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ℎ𝑑 Demand volume 𝑑 ∈ 𝐷 

Variables 

𝑥𝑑𝑝 The flow of demand 𝑑 ∈ 𝐷 on path 𝑝 ∈ 𝑃 

𝛿𝑒𝑑𝑝 𝛿𝑒𝑑𝑝 = 1 if a flow of demand 𝑑 ∈ 𝐷 on path 𝑝 ∈ 𝑃 traverses 

link 𝑒 ∈ 𝐸. Otherwise, 𝛿𝑒𝑑𝑝 = 0 

𝑦𝑒 Unknown capacity of link  𝑒 ∈ 𝐸 

Objective: Minimise: 

∑ 𝜉𝑒 𝑦𝑒

𝑒 ∈𝐸

 (2.1) 

Equation (2.1) is the objective function, it minimises the total network cost.  

Subject to: 

∑ 𝑥𝑑𝑝

𝑝 ∈𝑃

= ℎ𝑑  

∀ 𝑑 ∈ 𝐷 

(2.2) 

Equation (2.2) are the demand constraints. 

∑ ∑ 𝛿𝑒𝑑𝑝 𝑥𝑑𝑝

𝑝 ∈𝑃𝑑 ∈𝐷

≤ 𝑦𝑒 

∀ 𝑒 ∈ 𝐸 

(2.3) 

Equation (2.3) are the capacity constraints. 

Network design and resource assignment problems in DCs can be 

formulated as MILP problems which yield exact results. However, MILP 

problems are known to be NP-hard and are consequentially computationally 

intractable [64]; therefore, it is unsuitable for application in online scenarios 

and in large networks and DC scenarios. Heuristic algorithms that mimic the 

MILP solution are often designed to obtain approximate optimal solution for 

such a problem. Additionally, an analysis of an (approximate) optimal solution 

from solving MILP programme for small scenarios can provide insights to aid 

the design of heuristic algorithms. These algorithms can then be adopted for 

larger on-line scenarios. This approach is adopted in this thesis, where MILP 

problems are formulated for the workload resource demand placement in DCs 

and network connection request satisfaction. The formulated problems are 

evaluated under small illustrative scenarios and the exact results obtained are 

analysed to derive useful insights/patterns. These insights guide the design of 

heuristic algorithms that mimic the MILP approach to quickly obtain 

approximate optimal solutions for large practical scenarios. The MILP 
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equations in this thesis are coded using AMPL (A Mathematical Programming 

Language) [68] and solved with the IBM ILOG CPLEX solver [69] on the ARC3 

supercomputing nodes with 24 CPU cores and 128 GB of memory [70]. 

2.7 Non-Linear Programming and Metaheuristics 

2.7.1 Non-Linear Programming 

Unlike linear programming problems where both objective function and 

constraint functions are linear, many practical problems are non-linear. A 

problem that has non-linear objective function and/or non-linear constraint 

function(s) is called a non-linear programming problem. There are different 

classes of non-linear programmes. The class of a non-linear programming 

problem depends on the features of its objective function and the constraints 

[66]. Classes of non-linear programming problems are as follows: 

 Unconstrained optimisation problems: Problems in this class of 

non-linear programming problems do not have constraints, they only 

have a non-linear objective function. 

 Linearly constrained optimisation problems: Linearly constrained 

optimisation problems have a non-linear objective function, but all the 

constraints are linear. 

 Convex optimisation problem: The constraints of a convex 

optimisation problem are all convex functions while the objective 

function is a concave function if minimising or is a convex function if 

maximising. The feasible region of a convex optimisation problem is a 

convex region.  

 Non-convex optimisation problem: A problem that has a non-convex 

objective function and/or one or more non-convex constraints. Non-

convex programming problems are unable to guarantee that a local 

maximum will also be a global maximum. 

It is important to note that a concave function always curves downward 

while a convex function always curves upwards. A function that curves 

upwards and downwards is a non-convex function. There are few instances 

of non-linearity in this thesis. However, such instances of non-linear 

constraints are adequately reformulated as linear constraints. Hence, all 

problems formulated in this thesis are linear programming optimisation 

problems. 
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2.7.2 Metaheuristic Optimisation Methods 

In contrast to the design of targeted heuristics for the specific problems 

formulated in the thesis, more generic metaheuristics can also be considered. 

Generic metaheuristics are effective at finding global optimal solutions for non-

linear programming problems. Simulated annealing and particle swarm 

optimisation are good examples of such metaheuristic optimisation methods. 

2.7.2.1 Simulated Annealing 

Simulated annealing is stochastic optimization method that is based on the 

analogy to the physical annealing process. Given enough time, the approach 

adopted in simulated annealing can yield a global optimum solution because 

local optimum solutions are escaped [66]. This is achieved by always 

accepting a better solution while also occasionally accepting worse solutions 

with a certain acceptance probability. In early stages of the running the 

algorithm, this acceptance probability is high but decreased as iterations of 

the algorithm increases. Hence, more solutions are explored in the early 

stages but the algorithm becomes conservative over time by tending to accept 

only better solutions. Generally, the functions the determines the acceptance 

probability for worse solutions encourages acceptance of worse solutions that 

are relatively close to the best know current solution. Acceptance of solutions 

that are significantly worse-off are discouraged by the function. 

2.7.2.2 Particle Swarm Optimisation 

Particle swarm optimisation (PSO) algorithm is a population-based stochastic 

optimisation method modelled after swarming and flocking behaviour in 

animals. PSO algorithm has a swarm (i.e., a constant population) of particles. 

Each particle is a possible solution to the optimisation problem. A particle 

moves through the search space by changing its position based on its own 

experience and the experience of its neighbours [71]. In each iteration of the 

PSO algorithm, a particle is accelerated towards its best-known position, since 

the algorithm began, and towards the best-known position in its 

neighbourhood [72]. A best neighbourhood position is determined by social 

information exchange in that neighbourhood. PSO is a simple and 

computationally efficient algorithm that effectively escapes local optimum 

solutions in the search for the global optimum. 

This thesis does not adopt any metaheuristic optimisation method. As an 

extension of the work in this thesis, metaheuristic optimisation methods may 

be used to validate the MILP and targeted heuristics proposed later in the 

thesis. Additionally, other metaheuristic optimisation methods such genetic 
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algorithm [66], [71] and ant colony optimisation [73] can also be adopted to 

solve both linear and non-linear programming problems.  

2.8 Summary 

This chapter presented an overview of the evolution of DC infrastructure and 

DC networks while highlighting the historical challenges of DCs and their 

intrinsic networks. We have also given an up-to-date review of the software-

centric and hardware/infrastructure-centric approaches that have been 

employed to improve the efficiency in DC infrastructure. Furthermore, we have 

presented a brief overview of WDM networks and enabling optical 

components and architectures. Furthermore, we described the virtual 

topology design problem in WDM networks which can be formulated as a 

MILP model. We gave an introduction of the MILP optimisation approach that 

is adopted to formulate workload demand placement in DCs and network 

connection request problems in this thesis. Finally, we also gave a brief review 

of non-linear programming problems and metaheuristic optimisation methods. 

The discussions in this chapter give background knowledge and serve as a 

motivation for the concepts considered and methods adopted in the remaining 

Chapters of this thesis. 
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Chapter 3 : Review of Composable Data Centre 

Infrastructure 

3.1 Introduction 

The work presented in this thesis evaluates the energy efficiency of 

composable DC infrastructure and the application of the disaggregation 

concept in the fog computing tier. This chapter presents an overview of 

composable DC infrastructure. We also briefly review the three primary 

enabling technologies for composable DCs i.e., resource disaggregation, 

software defined infrastructure and optical communication and silicon 

photonics. Furthermore, we highlight the primary benefits that composable 

DCs will enable and also discuss some implementation challenges associated 

with composable DCs. Finally, we present a review of composable DCs 

research and projects in the literature.  

3.2 Composable Data Centre Infrastructure Overview 

Composable data centre (DC) infrastructure deploys software driven 

techniques for on-demand composition, decomposition, and re-composition of 

logical computing nodes to support applications. This is achieved via the 

orchestration of physical or logical pools of disaggregated resource 

components that are inter-connected over appropriate networks. 

3.3 Enabling Technologies 

The key enabling technologies of composable DC infrastructure are resource 

disaggregation, SDI, optical communication, and silicon photonics. 

3.3.1 Resource Disaggregation 

Resource disaggregation is an essential enabling concept in composable DC 

infrastructure. It addresses the resource stranding problem in today’s DCs. 

Resource stranding is the primary cause of the poor utilisation efficiency 

associated with traditional servers in today’s DC. The problem occurs because 

the chassis of a traditional server acts as physical utilisation boundary for the 

server’s intrinsic resources. Hence, if the capacity of a unique resource type 

within a given server is unable to support additional application consolidation, 

components of all other unique resource types also become unavailable 

irrespective of each resource’s idle capacity. Rack 1 in Figure 3.1 shows the 

impact of resource stranding as input applications A-G are provisioned. The 
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introduction of resource disaggregation mitigates this problem in computing 

infrastructures. 

Disaggregation of server hardware resource components can be 

performed under different utilisation scopes (as illustrated in Figure 3.2) to 

achieve the intended benefits. The utilisation scope of a disaggregated 

resource component refers to the maximum utilisation boundary which must 

be maintained when the component is selected to form a logical server. This 

scope can be controlled physically or logically. Additionally, both approaches 

can be combined to achieve hybrid disaggregation. 

 

Figure 3.1: Resource disaggregation in composable DC infrastructure 

This figure shows various forms of resource disaggregation in a 
composable DC infrastructure. Rack 1 comprise of traditional servers 
that do not implement resource disaggregation. Resource components 
in Rack 2 are physically disaggregated at rack-scale; the rack comprises 
of homogeneous compute nodes. Resource components in rack 3 are 
logically disaggregated at rack-scale. Racks 4 and 8 implements hybrid 
disaggregation; 1 compute node in Rack 4 is heterogeneous while others 
are homogenous. Rack 5, 6, and 7 jointly implement physical 
disaggregation at pod-scale.  
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Table 3.1: Infrastructure template of applications 

This table gives the infrastructure template of input applications A-G. The 
infrastructure template of an application is the logical host configuration 
needed to support that application. Each infrastructure template may 
have CPU, memory and storage resource demands and an abstracted 
service level agreement (SLA) for the optimal performance of the 
application it supports. The maximum tolerated intra-logical server 
latency between the resource components of a given application 
represents the SLA requirement of each application. 

Apps CPU 

units 

RAM 

units 

Storage 

units 

Intra-logical 

server latency 

A 1 2 1 Pod 

B 1 1 2 Pod 

C 2 1 1 Pod 

D 1 2 3 Pod 

E 3 1 2 Pod 

F 2 3 1 Pod 

G 1 2 1 Node 

 

Figure 3.2: Scopes of resource disaggregation 

3.3.1.1 Physical Disaggregation 

Physical disaggregation entails physical separation of computing resource 

components into pools of homogenous resource types. A homogenous 

resourced pool can take the form of a server-like node or a sled which can fit 

into a standard rack-chassis. Such a node comprises of one or more 

components of the same resource type and it is the basic unit of all physically 

disaggregated composable DCs as shown in Figure 3.1. The utilisation scope 

of each homogeneous resourced pool can be node-limited, rack-limited, or 

pod-limited relative to the size of the DC under consideration. The allocation 

of heterogeneous nodes and their corresponding utilisation scope determine 

the scale of physical disaggregation in composable DCs as shown in Figure 

3.1.  
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The scales of physical disaggregation are rack-scale, pod-scale and 

DC-scale [62], [17]. At rack-scale, the composable DC comprise of multiple 

racks, each rack comprises of multiple (homogeneous) nodes of different 

resource types and the utilisation scope of each node in each rack is rack-

limited. Rack 2 in Figure 3.1 represents a physically disaggregated 

composable DC at rack-scale which is used to provision input applications A-

F. At pod-scale, the composable DC comprises of multiple racks, each rack 

comprises of multiple homogeneously resourced nodes and the utilisation 

scope of each node in each rack is pod limited. Racks 5-7 of Figure 3.1 shows 

physical disaggregation at pod-scale where applications A-F have been 

provisioned. Finally, at DC-scale, the composable DC comprises of multiple 

racks, each pod in the DC comprises of homogenously resourced racks, and 

each rack comprises of multiple homogeneously resourced nodes. 

3.3.1.2 Logical Disaggregation 

In contrast with physical disaggregation, the utilisation scope of logically 

disaggregated resources is not controlled by physical boundaries within the 

DC. Rather, boundaries are imposed virtually and on-demand by a central 

control entity with global knowledge of the infrastructure’s state. Logical 

disaggregation allows the reuse of traditional server chassis architecture  as 

shown in Rack 3 of Figure 3.1. Hence, a node in a logically disaggregated 

computing infrastructure may comprise of heterogeneous resource 

components like traditional servers. However, it is important to that hyper-

scale design principles be adopted for each physical pool of homogeneous 

resources in a given node within the rack. This will ensure easy 

swapping/upgrade/replacement of modular resource components if required.  

3.3.1.3 Hybrid Disaggregation 

A composable DC infrastructure that adopts the hybrid disaggregation 

approach combines both physical and logical disaggregation concepts. This 

helps to achieve greater efficiency without violating applications quality of 

service requirements. Hence, logical servers can be created to support 

application specific requirements. For example, multiple applications to be 

hosted in the same composable DC may have different intra-logical server 

latency requirements as illustrated in Table 3.1. The setup in Rack 4 of Figure 

3.1, comprising of a mix of homogenously resourced nodes and 

heterogeneously resourced nodes implements hybrid disaggregation. This 

setup enables a composable DC capable of supporting all input applications 

listed in Table 3.1 with optimal efficiency. This contrasts with the situation 

when physical disaggregation is performed at rack-scale or pod-scale where 
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input application G must be rejected. This rejection is because of the violation 

of the intra-logical server latency of App G when physical disaggregation is 

employed at rack-scale or pod-scale. This problem is easily resolve by 

introducing Rack 8 as shown in Figure 3.1. 

3.3.2 Software Defined Infrastructure 

A software defined infrastructure (SDI) is an infrastructure that can mutate on-

demand to simultaneously satisfy changing users' demands and its provider's 

desires by leveraging deep monitoring and underlying infrastructure 

capabilities [74]. Softwarisation and automation of underlying infrastructure's 

hardware resources, such as compute, storage and network lie at the heart of 

SDI. These resources are softwarised independently and become 

programmable. Consequently, software defined compute (SDC), software 

defined storage (SDS) and software defined network (SDN) are achieved 

within the DC infrastructure. A complete SDI is further supported by 

centralised controllers, deep monitoring of underlying resources and a 

management sub-system. In SDI, the creation, scaling and/or deletion of 

softwarised resources and infrastructure are automated as required to achieve 

desired objectives. 

However, a precursor of dynamic transformation of softwarised 

resources in SDI is the abstraction of such resources from their physical 

hardware through virtualisation. Virtualisation enables the creation of logical 

resources from physical resources. These logical resources are subsequently 

aggregated to form logical servers that can support applications seamlessly. 

In the computing domain, virtual compute resources may be instantiated as a 

bare metal, a VM or a container. SDC dynamically controls the instantiation, 

termination, and migration of virtual computing infrastructures to satisfy user 

demands and provider’s constraints. SDS provides similar functions for virtual 

storage in the SDI. These virtual storage resources are created from 

abstracted heterogeneous storage components which are controlled centrally. 

The logical resources of a virtual infrastructure are connected by virtual 

networks. Theses virtual networks are overlaid on underlying physical 

networks to satisfy the performance service level agreements (SLAs) of virtual 

infrastructures. Furthermore, virtual networks in SDIs also provide 

communication paths between logical infrastructures and between the logical 

infrastructures and other external systems. SDN implements dynamic 

mutation of virtual networks to ensure continual satisfaction of desired 

objectives in the SDI.  
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Resource softwarisation entails the separation of the control and data 

planes of the corresponding resource. An independent control plane which is 

unique to each resource type (i.e., SDC controller, SDS controller or SDN 

controller) is responsible for the coordination and orchestration of the 

underlying data plane of that unique resource type. This the coordination and 

orchestration creates virtual instances of the resource via standard interfaces. 

On the other hand, the data plane of a given resource type comprises of one 

or more components of the resource. A central controller of the SDI system 

coordinates all independent resource controllers in the infrastructure to ensure 

that SLAs of virtual infrastructures are always satisfied. The SDI controller also 

performs analytics on data collected by the monitoring subsystem to derive 

proactive and reactive triggers for system mutation. Policies to set-up the SDI 

in the most efficient way using insights from historical knowledge and best 

practices can also be implement at the SDI controller in conjunction with the 

underlying resource controller. 

SDI is essential to all software-oriented approaches focused on 

increasing cost and energy efficiencies in today’s computing infrastructures. 

Before the advent of composable infrastructure, SDI enabled the 

implementation of these software-oriented approaches by providing functions 

such as on-demand scaling of virtual resources; deep monitoring of physical 

and virtual resources relative to defined SLAs; intelligent transformation of 

underlying infrastructure based on insights from monitoring data analytics; on-

demand mapping of virtual resources to physical resources; and the use of 

knowledge base to improve performance and operations [74]. Composable 

DC infrastructures leverage and extend these functions as required to support 

the delivery of greater efficiency. 

3.3.3 Optical Communication and Silicon Photonics 

Disaggregation of computing resources in composable DC brings about the 

need for a high bandwidth, low latency, flexible and energy efficient 

interconnection between disaggregated resource-components. The many 

benefits of optical networking technologies (such as low latency, low 

interference, long-distance, high bandwidth, low energy, and scalable 

communication) make them better candidates over electronic networking 

technologies for such a network. However, buffering in the optical switching 

domain remains challenging, especially in electronic-based computing 

infrastructures where network congestion occurs frequently. Furthermore, 

historically, optical network components often have a large footprint and their 

manufacturing process is expensive. This is in contrast to the cheap and 
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matured manufacturing process of silicon micro-electronics circuits used in 

electronic network technologies. 

The advent of silicon photonics technologies enabled the emergence 

of affordable hybrid networks designed using novel opto-electronic circuits. 

These circuits, which integrate electronics and photonics into a single circuit, 

are manufactured using cost effective and matured traditional silicon IC 

manufacturing processes [75]. Hence, opto-electronic networks that combine 

features of both electronic and optical network technologies are enabled. The 

resulting hybrid network addresses some challenges of electronic network 

technologies and avoids challenges of pure optical network technologies while 

leveraging the advantages of both. This is achieved through integrated silicon 

photonics components manufactured as photonic integrated circuits (PICs). 

PICs can effectively meet capacity, flexibility, energy efficiency, and scalability 

required in networks of composable DCs. 

The use of silicon photonics technologies is not new, as it is widely 

used in optical transceivers in today’s DCs and data communication networks. 

Attractive features of silicon photonics such as dense integration, higher data 

rates, long reach, low energy per bit (few pJ/bit) and low manufacturing cost 

makes them the preferred choice for next generation information and 

communication systems such as composable DCs. Forecasted drop in the 

cost of silicon photonics-based interconnects to $1/Gbps is also expected to 

further encourage the adoption of the technology [76]. Silicon photonics 

enabled opto-electronic networks are widely seen as the choice technology to 

deliver the connectivity required between disaggregated resource 

components [62], [77]. 

Furthermore, the emergence of densely integrated silicon photonic 

switches is expected to support the commercial implementation of 

composable DCs. For example, densely integrated hybrid packet switching 

devices, which co-package optics and ASIC switch chips, can be used in 

composable DCs to implement switches with optical IO. Such devices can 

also be used to design high-speed coherent integrated circuits or to 

manufacture system on chip (SoC) with integrated fabric switch [78]. 

Application of silicon photonics in on-board communication can also aid 

composable DCs. On-board communication can facilitate high speed and 

power efficient optical IO between switch chips and NICs and between 

resource components in nodes of a composable infrastructure. However, 

there are several challenges that inhibit effective commercialisation of silicon 

photonics technologies which will also affect their adoption in composable 
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DCs. These includes low power optoelectronics conversion integrated with 

passive MUXs and DEMUXs, low cost packaging, low loss and energy 

efficient on-chip lasers with low heat dissipation, power efficient modulators, 

integration of CMOS and photonic devices and low insertion loss and 

polarisation independence fibre attach [75], [76]. 

3.4 Benefits of Composable DC Infrastructure 

The composable DC infrastructure offers several benefits which can enhance 

the efficiency of computing infrastructure. Such benefits are not limited to 

cloud DCs alone as they can also enhance deployments of commodity 

hardware to support network function virtualisation (NFV) implementation of 

telecom operators at the edge of the network and on premise hyper converged 

infrastructure (HCI) or DC of enterprises. The benefits of composable DC 

infrastructure include increased modularity, greater agility and flexibility and 

improved efficiency of computing infrastructure. 

3.4.1 Modularity 

The shift from server-wise resource utilisation to component-wise resource 

utilisation in composable DCs enables increased modularity and promotes 

proportional usage of underlying resource components. Furthermore, the 

modular design of underlying resource components in composable DC also 

enables precise upgrade and replacement of resource components. This 

contributes to the improved efficiency enabled by composable DCs.  

3.4.2 Agility and Flexibility 

Intelligent control and deep monitoring of the underlying (hardware) resource 

components of composable DCs supports greater agility and flexibility. The 

ability to guide automated transformation of the infrastructure on-demand with 

insights derived from intelligent analysis of collected monitoring data is 

responsible for this. On-demand slicing and aggregation of physical and virtual 

resource-components in composable DC enables an adaptable infrastructure 

that can scale dynamically at run-time based on temporal resource-demands 

of applications. Applications can also be migrated on-demand to ensure 

optimal performance via the automation of the composable DC. The adoption 

of multiple tiers of abstraction in composable DC effectively makes the 

infrastructure application agnostic despite the heterogeneity and complexity 

of the underlying hardware layer. 
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3.4.3 Greater Efficiencies 

Composable DCs enable greater efficiency in multiple domains; hence, this is 

the most appealing benefit of the concept. Component-wise resource 

utilisation in composable DCs enables proportional usage of resource 

capacity which leads to higher resource utilisation efficiency relative to the 

modern DC. Therefore, the number of active resource components and total 

power consumed in composable DC are expected to be lower. This leads to 

improved energy efficiency because only necessary components are turned 

on while other components remain in an inactive state. Thus, the operational 

expenditure (OPEX) of infrastructure providers is curtailed. The number of 

required resource component in a composable DC is relatively lower than that 

of the modern DC due to increased utilisation of active resource components. 

Hence, capital expenditure (CAPEX) is reduced because fewer components 

are purchased, and the footprint of primary and auxiliary infrastructures is also 

reduced. Increase in the precision of upgrading and replacing modular 

resource components of composable DC can lead to further CAPEX 

reductions.  

The adoption of software to control programmable underlying hardware 

components on-demand enables service-oriented consumption of computing 

capacity. This supports dynamic repurposing of idle compute capacities to 

provision other applications. It also promotes greater efficiency and generates 

revenues that can help infrastructure providers to offset their TCO. Adoption 

of in situ data processing in composable DC also enables greater network 

efficiency in instances where in-memory communication or data sharing is 

required. This is because data is processed at its location; hence, 

transmission over communication networks is minimised. 

3.5 Implementation Challenges 

Relative to state-of-the-art DC infrastructures, the concept of composable DC 

infrastructure introduces a range of challenges that must be addressed. Such 

challenges include but are not limited to the domains of physical networks, 

SDI, high availability, and application development and design. 

3.5.1 Physical Networks 

Exposure of essential intra-logical host communications onto higher tiers of 

DC networks introduces several challenges that inhibit full implementation of 

the composable DC. As illustrated in Table 3.2, these challenges are primarily 

associated with the CPU-memory and CPU-CPU communications. These 
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types of communication require ultra-high communication bandwidth and 

ultra-low latency for efficient performance of some applications. The physical 

limitations of traditional network media (such as fibre optics and copper media) 

control the maximum practical distance between disaggregated resource-

components which form a logical host. Therefore, they control the scope and 

scale of resource disaggregation in composable infrastructure. However, 

propagation delay has minimal impact when optical fibre media are adopted. 

This is because of shorter communication distances in DC environments 

relative to the high speed and low attenuation of light propagation in optical 

fibre. Although, the adoption of optical communication provides a solution to 

many network challenges of composable DCs, today’s optical technologies 

are somewhat limited [17]. For instance, if optical DC interconnects must stay 

competitive against electronic DC interconnects, the targeted energy 

efficiency values in Table 3.3 should be achieved at the different hierarchies 

of DC interconnect [79], [80]. Furthermore, the traditional network protocols 

and software stack [78] also introduces additional delays on the 

communication path between source and destination resource-components. 

Table 3.2: Bandwidth and latency requirements for inter-resource 
communication in DCs[14] 

Communication Type Bandwidth Latency 

CPU – CPU 200 – 320 Gbps/CPU 10 ns 

CPU – Memory 300 – 800Gbps/CPU 10 – 50 ns 

CPU – Disk 5 – 128  Gbps/device 1 – 10 us 

Table 3.3: Targeted energy efficient in future DC interconnects[79], [80] 

DCN hierarchy Range Energy per bit 

Core to core < 1 cm < 0.01 pJ/b 

Chip to chip 1 - 5 cm < 0.1 pJ/b 

Module to module 5 – 30 cm < 0.5 pJ/b 

Board to board 0.3 – 1 m < 1 pJ/b 

Rack to Rack 1 -2000 m < 1 pJ/b 

Inter DC 1 - 100 km < 10 pJ/b[80] 

Parallel high-speed optical communication paths can be formed to 

ensure enough capacity for communication between physically disaggregated 

resource-components that form a logical infrastructure. However, integration 
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of multiple ports and switches onto resource-components in such a scenario 

introduces additional challenges. Adoption of silicon photonic technologies 

promises potential solutions to these challenges. However, as the number of 

disaggregated resource components increases in composable DC, the design 

of scalable physical network topologies must consider some criteria to find 

practical solutions. Such criteria could include flexibility, cost, power 

consumption and port/interface count. 

The traditional network software stack can be streamlined to minimise 

additional delays introduced by the stack. However, this may be sub-optimal 

to satisfy the ultra-low latency communication between CPU and 

memory/CPU as required by some applications. A complementary solution 

could use the network software stack to relax inter-resource latency 

requirement by adopting techniques that amortise the latency related 

performance penalties in composable DCs. Furthermore, revisions in 

component hardware architecture may also be adopted to mitigate network 

challenges introduced by disaggregation. For instance, the use of 

intermediate hardware buffers or memory/data stores could be standardised 

in the physical architecture of composable DCs as observed in some 

prototypes of partially disaggregated DCs [61], [62], [81]. In this prototypes, 

primary and secondary memory tiers are implemented to minimise 

performance degradation. Storage-class memory (SCM), which offer higher 

capacity relative to DRAM and faster access speeds relative to HDDs, are 

suitable candidates to implement the secondary memory tier. DRAMs can 

remain in the primary memory tier [63]. 

Another network challenge which emerges with the advent of 

composable DC is the heterogeneity of interconnect interfaces between 

disaggregated resources. The heterogeneity of interfaces is expected to 

increase as the number, type and versions of resource-components increases 

in composable DCs. The proposition of a universal interface for resource-

components in composable DC by the Gen-Z consortium [82] is a step in the 

right direction to address this problem. Going forward, such universal interface 

can be standardised for components deployed in composable DCs. Amidst 

several physical challenges of the networks of composable DC, exploring 

techniques to achieve greater flexibility and scalability over physical network 

topology of the infrastructure is also important. This is crucial in situations 

where slicing, aggregation and sharing of physical resource components is 

required. Hence, techniques such as network virtualisation and SDN should 
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be deployed to ensure maximum scalability of the physical network topologies 

in composable DCs. 

3.5.2 Software Defined Infrastructure 

Software is required to manage and orchestrate disaggregated resource-

components which are transformed on-demand to create logical 

infrastructure. Beyond the regular features of conventional SDI, such software 

must support on-demand slicing and aggregation of underlying resource 

components to satisfy user demands. Therefore, relative to the conventional 

SDI, the demand for increased granularity in the control and management of 

composable DC introduces increased complexity and additional overheads to 

its management, operation, and maintenance. 

 A technique to simplify the complexity is the use of additional tiers and 

abstraction in the management and control system of composable DCs. Such 

an approach may lead to further loss in low-level control of underlying 

infrastructure which have been significantly abstracted. Furthermore, the SDI 

controllers in conjunction with lower-level controllers must implement policies 

that ensure optimal functioning of the composable DC. An example of such 

policy could be an algorithm which ensures optimal placement of applications 

demands in composable DC in real-time. Solving similar problems in 

traditional DC is difficult. This difficulty increases further in composable DC 

where component-wise resource consumption replaces server-wise resource 

consumption. 

3.5.3 High Availability 

The difficulty of achieving high availability (HA) increases in composable DC 

relative to modern DC. This is because HA must be implemented in both 

logical and physical layers of the data-plane (hardware) to ensure that the 

system is reliable and fault tolerant. For example, the process of creating a 

back-up (logical) server must ensure that selected components are physically 

disjoint from components that form the primary (logical) server to create a fail-

safe system. Hence, the management and orchestration software of 

composable DC must support redundancy across physical and logical 

hardware domains. This introduces additional complexity to the management 

and orchestration software of the composable DC. 

3.5.3 Application Design and Development 

The emergence of composable DCs motivates re-evaluation of application 

design and development process to study the impact of the concept on the 

performance and suitability for legacy, present and future applications. Legacy 
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applications may fail to run on composable DC if the infrastructure design 

requires the optimisation of applications for the novel computing infrastructure 

platform. On the other hand, optimal efficiency of composable DC may be 

inhibited if the details of disaggregation are over-abstracted from the 

applications running on the platform [34]. Hence, the right balance must be 

struck between applications design and development process and 

infrastructure details abstraction. 

3.6 Review of Composable Data Centres Research 

In the past few years, the promise of improved modularity, agility, flexibility, 

and efficiencies has motivated numerous industry and academia led research 

into composable infrastructure. While some research projects are holistic and 

aim to achieve go-to-market products, other projects aim to address 

challenges or demonstrate the efficacy of composable infrastructures. 

 The concept of composable DC infrastructure has been explored by 

notable vendors in the IT infrastructure industry such as HPE [83] and Cisco 

[84]. Their primary aim was to create a programmable infrastructure that can 

simultaneously support legacy enterprise applications used to ensure efficient 

operations of businesses and emerging applications. The integration of CPU 

and memory resources into a common compute module i.e., partial 

disaggregation implies that efficient utilisation of CPU resources is 

constrained by the utilisation of the main memory resources or vice versa. 

This becomes pronounced when applications are memory or CPU intensive. 

Complete separation of CPU and memory resource i.e., full disaggregation 

requires an ultra-low latency and high capacity fabric which are difficult to 

implement using today’s optical communication technologies [17]. To mitigate 

this problem, other composable infrastructure solutions [14], [81], [85]–[89] 

often settle for partial disaggregation. In partial-disaggregation, shared-

independent high capacity memory modules are introduced to provide remote 

memory in the DC. Concurrently, the compute module’s dedicated main 

memory component is maintained to function as a large cache. A comparison 

of DCs that adopt traditional server, partial disaggregation and full 

disaggregation at rack-scale was performed using a first fit algorithm in [17]. 

Scenarios with and without optical interface capacity constraints were 

considered for all DCs. The results showed that limited optical interface 

capacity inhibits optimal performances in full disaggregated DCs. Hence, 

traditional, and partially disaggregated DCs outperformed full disaggregation 

DCs. However, in the absence of such network bottlenecks, full 
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disaggregation performs better than partial disaggregated DC and traditional 

DC architecture. 

 Intel has also proposed a reference model called Rack Scale Design 

(RSD) [81], [85] for rack-scale composable infrastructure by adopting partial 

resource disaggregation. The reference model intends to reduce CAPEX and 

OPEX associated with owning and operating DCs and to ensure high 

scalability in DCs. The RSD reference model provides holistic guidelines to 

support the creation of go-to-market products by Intel RSD adapters. 

Examples of notable partners (original equipment manufacturers and telecom 

equipment manufacturers) that have adopted the Intel RSD reference model 

in commercial products include Super Micro Computers, Ericsson and DELL 

[53]. A multi-tier (electrical) Ethernet based fabric, which adopts silicon 

photonics and optical links, is proposed for interconnecting disaggregated 

resources in Intel’s reference model. Ethernet is the preferred protocol 

because it is a versatile and low-cost networking technology.  

 A similar rack-scale composable infrastructure that adopts an electrical 

network topology and deploys optical links was proposed by Huawei in [86]. 

A pooled resource access protocol is implemented on bespoke electrical top 

of rack (ToR) switches and on cloud controllers attached to each resource 

node within the rack. Gen-Z [82], an industry led consortium, intends to design 

a new computing architecture that supports the disaggregation of processing 

and memory modules. Gen-Z has proposed a universal interface that 

interconnects disaggregated processing and memory modules to support 

access to remote byte addressable memory modules. Such interface enables 

the abstraction of the underlying memory technology; hence, diverse memory 

classes (i.e. legacy DRAM or novel SCM) may be attached to processing 

modules in Gen-Z compliant computing infrastructure. Gen-Z supports the 

interconnection of disaggregated compute modules via both direct-attached 

and switched fabric approaches. The consortium has also proposed high 

bandwidth and low (sub-100ns) latency electrical switches capable of 

interconnecting separated CPU and memory components over a switching 

fabric [90]. Such electrical switches can mitigate performance degradation of 

latency sensitive applications in a composable infrastructure. In other 

literature [62], [91], the adoption of electrical switches such as PCIe and 

InfiniBand switches are proposed for DC infrastructures with composable I/O, 

storage, and accelerators. 

 The disaggregated Recursive Datacentre-in-a-Box (dReDBox) was 

proposed in [61]. dReDBox deploys aggregated low power system on chips 
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(SoCs) in compute modules and aggregated memory components in memory 

modules within racks in the DC. Compute modules also contain DRAM which 

function as main memory; hence, partial disaggregation is employed. A three-

tier network topology comprising of optical switches was proposed for the 

dRedBox in [92]. The primary switching technique adopted in network 

topology is optical circuit switching to achieve ultra-low latency 

communication. However, programmable chips (attached to each resource 

module) and the electronic switch (attached to each middle tier switch) also 

enable electronic packet/circuit switching in the topology. Hence, the topology 

adopts a distributed switching architecture because programmable chips in 

each resource module perform network switching functions.  

 Different variants of a three-tier network topology were proposed for 

composable DCs by the authors of [87]–[89]. The proposed topologies in [89], 

[93] implement a distributed switching architecture. This is because of field-

programmable gate array (FPGA) based switch interface cards (SICs) that are 

adopted to replace the traditional NICs in each compute or memory node. The 

SICs also enable the creation of a full mesh connectivity between resource 

nodes in the same rack for low latency communication and perform network 

routing functions. However, the number of interfaces and links required to 

implement such intra-rack connectivity is about a square of the number of 

resource nodes in the rack. The authors in [78], adopted a 3D torus topology 

to interconnect micro-servers (resource nodes) within the same rack. This is 

because the 3D torus topology requires a small number of links per node. 

Each micro-server comprises of compute, memory, and network interfaces. A 

distributed switching architecture is employed. This is because each micro-

server has an embedded switch fabric that forwards traffic between resource 

nodes in the same rack over a direct point-to-point physical topology. 

 In [14] a hybrid network topology is proposed for a rack-scale 

composable DC infrastructure. An optical switch in each rack is the fast-optical 

backplane that supports intra-rack communication between compute and 

remote memory nodes. A second (generic) backplane that begins in the rack 

and extends into a hybrid leaf-spine network (with both electrical and optical 

spine switches). The generic backplane conveys VM to VM, CPU-IO, RAM-

IO, CPU-disk and RAM-disk traffics of the composable infrastructure. In [94], 

the authors also proposed an hybrid network topology for pod-scale 

composable infrastructure. The topology adopted two tiers of switches in each 

rack. The lower tier in each rack comprise of electronic switches that connect 

directly to each resource module in the rack via optical fibre links. Electronic 
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switches in the lower tier connect to non-blocking optical cross connect (OXC) 

which functions as the ToR switch. The OXC also provides full mesh 

connectivity between adjacent racks. In [95], the SDN-capable two-tiered 

hybrid network topology developed for conventional DCs is also expected to 

be applicable in disaggregated DCs. Table 3.4 gives a summary of some 

(research) projects on composable DCs in literature. 

 Software control is critical in composable DC; hence, SDI is a de facto 

feature of most composable infrastructure commercial solutions and 

prototypes [84], [86], [96]. Additionally, studies have also been conducted to 

demonstrate the efficacy of composable DCs and to derive policies or 

algorithms that will lead to maximum efficiency when deployed in composable 

DC. In [97], an orchestration platform that enables maximum resource 

utilisation in the dReDBox was described. Different algorithms for workload 

demand placement were demonstrated over the orchestration platform. The 

authors in [98] demonstrated that a modern DC scheduler is able to achieve 

better performance when deployed in a disaggregated DC relative to a 

traditional DC. Evaluation metrics used for the demonstration include average 

number of provisioned resource demands and average number of unused 

resource capacity. The work in [60] formulated an integer linear programming 

model and developed a simulated annealing based algorithm to optimally 

allocate virtual DC requests in a rack-scale DC. The optical DC interconnect 

proposed in [88] was adopted for the study. The model compared the benefits 

of disaggregated DCs to traditional DCs using VM rejection and resource 

utilisation as the primary metrics. Other metrics, such as power consumption 

of DC network, were not studied. The authors in [99] developed an energy 

efficient MILP model which optimally placed VMs in a pod-scale composable 

DC. The authors subsequently introduced an energy efficient heuristic in [100] 

as an extension of the initial work to show the advantages of disaggregation 

over traditional DC architecture. 

Although, physical disaggregation at rack-scale and pod-scale have 

been widely studied, comparison of both approaches of disaggregation from 

the energy efficiency perspective is absence in the literature. Additionally, 

comparison of composable DC networks from an energy efficiency 

perspective is also missing. Furthermore, the concept of logical 

disaggregation has not been well explored. Neither has it been compared to 

other forms of disaggregation from an energy efficiency perspective. This 

thesis conducts a comparison of physically and logically disaggregated 

composable DCs over electrical, hybrid and optical DCNs from the energy 



- 42 - 

efficiency perspective. We also explore the adoption of the integrated 

workload architecture, which increases workload modularity, to improve 

overall energy efficiency in composable DCs. 

In spite of the common view that the adoption of optical communication 

and silicon photonics is essential for composable DCs, optimal adoption such 

technologies remain an open issue. In this thesis, propose a novel network for 

composable DCs that optimally uses optical communication and silicon 

photonics in conjunction with electrical switches. Most application of 

disaggregation in literature are often focused on massive DCs. In contrast, 

this thesis, for the first time, considers the impact of adopting disaggregation 

for improved energy efficiency in a group of networked fog sites at the network 

edge. 

Table 3.4: Composable DC research projects in literature 

Project Disaggregation Scope Disaggregation 

Type 

Network Type Network Architecture 

Physical Logical Hybrid Partial Full Electrical Optical Hybrid Centralised Distributed 

[83] - - -  - - - - - - 

[84] - - -  - - - - - - 

Intel RSD 

[81][85] 

 - -  -  - -  - 

HTC-DC [86] - - - - -  - - - - 

Gen-Z [82] - - - - -  - - - - 

dReDBox 

[92][61] 

    - - -  -  

DORIOS [87]  - -  - -  - -  

EVROS [88]   - - -  -  - -  

[89]  - - -  - -  -  

[78]  - -  -  - - -  

[14]  - -  - - -  - - 

[94]  - - -  - -   - 

NEPHELE 

[95] 

- - - - - - -   - 
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3.7 Summary 

This chapter presented an overview of composable DCs and supporting 

technologies. We also discussed the importance and role of supporting 

technologies and concepts of composable DC which include resource 

disaggregation, SDI and optical communication and silicon photonics. 

Furthermore, composable DC can enable increased modularity, greater agility 

and flexibility and improved efficiencies of computing infrastructure. This was 

highlighted. We also discussed network, SDI, and other implementation 

challenges of associated with composable DCs. We gave an extensive review 

of industry-led research and academic research which have been conducted 

to demonstrate the efficacy or to address mentioned challenges of 

composable DC. This thesis focuses on the energy efficiency of composable 

DCs by investigating the optimal scale and scope for resource disaggregation 

in composable DCs while considering compute and network energy 

efficiencies. Furthermore, two variants of a novel, simple, and practical 

network for composable DCs are proposed. Finally, we also conduct a 

pioneering investigation of the benefits and impact of employing composable 

servers for greater energy efficiency in federation of distributed fog computing 

sites at the network edges.  
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Chapter 4 : Energy Efficient Placement of Workloads in 

Composable Data Centres Networks 

4.1 Introduction 

The number and importance of date centres (DCs) continues to grow as the 

uptake of digital technologies spans various sectors of the society. Adoption 

of composable DCs, which employ resource disaggregation along with 

suitable networks, is expected to improve DC efficiency in different domains. 

In this chapter, we compare different scales of resource disaggregation in 

composable DC infrastructures via the formulation of a mixed integer linear 

programming (MILP) model. The MILP performs energy efficient placement of 

both monolithic and integrated workloads over selected electrical, optical and 

hybrid networks deployed in composable DCs. Finally, we develop a heuristic 

for energy efficient placement of workloads in composable DCs which 

replicates the trends produced by the MILP model.  

4.2 A Review of Reference Network Topologies 

A few network topologies have been proposed in existing literature for 

composable DC infrastructure adopting both rack-scale and pod-scale 

disaggregation as reviewed in Section 3.6. These network topologies adopt 

electrical, hybrid (electro-optic) and optical switching components and links. A 

study of energy efficient placement of workloads in composable infrastructure 

is conducted over certain reference network topologies from literature. One 

electrical, one hybrid and one optical network topologies are selected as 

reference network architecture for the purpose of this study. Intel’s multi-tiered 

electrical network topology proposed for the Rack Scale Design (RSD) is the 

adopted electrical network topology. EVROS is the reference optical network 

topology adopted while the hybrid network topology proposed in [94] is also 

adopted as a reference network topology. These reference topologies are 

adapted to support traditional, rack-scale and pod-scale composable DCs as 

required. 

4.2.1 Intel’s RSD Electrical Network Topology 

Intel proposed a multi-tiered Ethernet switching topology to interconnect 

partially disaggregated resources in the Intel RSD reference model [85]. High 

versatility and low cost of Ethernet switches (due to their wide deployment) 

are the primary motivation given for their adoption in the network topology. As 

shown in Figure 4.1, each homogenously resourced node in each rack of the 
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reference model connects to a top of rack (ToR) Ethernet switch via a 10 GbE 

Network Interface Card (NIC) on the node. ToR switches in each rack of a pod 

connect to an aggregation (DC) switch. The aggregation switch provides 

connectivity between intra-pod and inter-pod ToR switches. Aggregation 

switches also provide connectivity to external networks. Optionally, the Intel 

RSD supports a lower network tier. In the lower tier, drawer Ethernet switches 

within the rack act as intermediate switches between resource nodes and the 

ToR switch within a rack. Intel RSD supports optical links at all tiers of the 

proposed network topology. 

 

Figure 4.1: Electrical network topology for Intel's RSD 

4.2.2 EVROS Optical Network Topology 

The EVROS optical network topology comprises of inter-rack and intra-rack 

network topologies as shown in Figure 4.2. The inter-rack network topology 

adopts wavelength selective switches (WSSs) and optical circuit switches 

(OCS) along intra-rack and inter-rack communication paths. WSS perform the 
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connect to both inter-rack and intra-rack networks. In addition, SICs perform 

the following functions:- 

i. Read/write of data between local in-CPU memory and remote 

DRAM chip; 

ii. Dynamic routing of data traffic from source to destination resource 

nodes via the intra-rack network, the inter-rack network or a 

combination of both networks; and  

iii. Traffic aggregation using time division multiplexing mechanism for 

dynamic-sized frames transmission on demand.  

EVROS also adopts low propagation delay hollow-core photonic bandgap 

fibre [101] for all links in the network topology. 

 

Figure 4.2: EVROS optical network topology 

 

Figure 4.3: Hybrid network topology 
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4.2.3 Hybrid Network Topology 

A hybrid network topology was proposed for pod-scale composable DCs in 

[94] . This network topology deploys two tiers of switches in each 

homogenously resourced rack as illustrated in Figure 4.3. The first tier 

comprises of electrical switches, which directly connects to each intra-rack 

resource node via optical links. The switches of the first tier also interface with 

ToR non-blocking optical switches, which provide full mesh connectivity 

between adjacent racks. 

4.3 Energy Efficient Workloads Placement 

4.3.1 Infrastructure Setup 

The reference composable DC infrastructures are setup as follows; a DC 

comprises of one or more pods; each pod comprises of one or more racks and 

each rack comprises of one or more resource nodes. When physical 

disaggregation is implemented at pod-scale, each rack in a pod-scale DC 

comprise of one type (i.e. CPU or memory) of resource only. Hence, a logical 

server can only be formed at the pod-level. On the other hand, when physical 

resource disaggregation is implemented at rack-scale, each node placed in a 

rack of the rack-scale DC comprise of homogenous resources. However, each 

node in the rack can hold different resource types. Therefore, a logical server 

can be formed at the rack-level. Each rack of a traditional DC comprises of 

heterogeneous nodes, each node holds CPU and memory resource 

components. Consequently, a logical server can be formed within a node in 

the rack. 

It is important to note that a memory resource component is used in two 

different contexts in the infrastructure setup. In the first, a memory resource 

component performs the function of RAM as defined in conventional computer 

architecture. In another context, a memory resource component also performs 

the function of a storage device. This is because in-memory computing is 

assumed for groups of workloads deployed in the DC. It is assumed that such 

groups of workloads perform in-memory data shuffle via remote direct memory 

access (RDMA).This reduces the impact of such data exchange on the CPU 

and the operating system. Hence, inter-memory traffic is created in the 

network based on the placement of the memory resource demand of 

workloads in the DC. 
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4.3.2 MILP Model Description 

A MILP model is developed to minimise the total power consumption of 

composable DC infrastructures which employ the reference electrical, hybrid 

or optical network topology. Given resource allocation in composable DC 

infrastructures and workload templates generated by an orchestrator sitting 

above the physical infrastructure layer, the MILP model perform workload 

placement. The MILP model selects the optimum locations for each type of 

resource demanded by each workload so that the total DC power consumption 

is minimised. 

In the modelled DC infrastructure, poor utilisation of direct attached 

storage is mitigated by centralising storage devices in remote systems such 

as a storage area network (SAN). Furthermore, data is retrieved over a unified 

network topology that supports both local area network traffic and SAN traffic 

via a bespoke offload NIC. Consequently, CPU or memory traffic to and from 

IO comprises of both SAN traffic and north-south traffic in the DC. IO traffic in 

the northbound direction always originates from the inter-DC switch interfaces. 

In the southbound direction, the inter-DC switch interfaces are always the 

destination of all IO traffic in the DC. At the inter-DC switch such traffic is 

relayed to the compute nodes, to the Internet or to the independent SAN 

system accordingly. CPU resource components used in the model have 

sufficient local cache to support remote memory access after compute 

disaggregation. Additionally, un-capacitated network state is assumed for all 

reference network topology to ensure fair comparison. This also allows further 

simplification of the model as it can be assumed that network traffic is routed 

through the shortest path. This is the expected best-case behaviour for each 

reference network topology. The sets, parameters and variables of the MILP 

model are introduced as follows. 

Sets: 

𝑁 Set of nodes of resources 

𝑅 Set of racks in the DC 

𝑃 Set of pods in the DC 

𝐶 Set of CPU resources 

𝑀 Set of memory resources  

𝑊 Set of workloads 

𝐷 Set of traffic direction 
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DC Compute Parameters: 

ℂ𝑗 Capacity of CPU module 𝑗 ∈ 𝐶  

𝐶𝑃𝑗 Maximum power consumption of CPU module 𝑗 ∈ 𝐶 

IC Idle power as a fraction of maximum CPU power 

∆𝐶𝑗 Power factor of CPU module 𝑗 ∈ 𝐶; ∆𝐶𝑗 =
𝐶𝑃𝑗−𝐼𝐶∙𝐶𝑃𝑗

ℂ𝑗
 

𝕄𝑗 Capacity of memory module 𝑗 ∈ 𝑀 

𝑀𝑃𝑗 Maximum power consumption of memory module 𝑗 ∈ 𝑀 

IM Idle power as a fraction of maximum memory power 

∆𝑀𝑗 Power factor of memory module 𝑗 ∈ 𝑀; ∆𝑀𝑗 =
𝑀𝑃𝑗−𝐼𝑀∙𝑀𝑃𝑗

𝕄𝑗
 

𝐶𝑁𝑗𝑛 𝐶𝑁𝑗𝑛 = 1, If CPU 𝑗 ∈ 𝐶 is placed in node 𝑛 ∈ 𝑁. Otherwise 

𝐶𝑁𝑗𝑛 = 0 

𝑀𝑁𝑗𝑛 𝑀𝑁𝑗𝑛 = 1 if RAM 𝑗 ∈ 𝑀 is placed in node 𝑛 ∈ 𝑁, Otherwise 

𝑀𝑁𝑗𝑛 = 0  

𝑁𝑅𝑛𝑟 𝑁𝑅𝑛𝑟 = 1, If node 𝑛 ∈ 𝑁 is placed in rack 𝑟 ∈ 𝑅, otherwise 

𝑁𝑅𝑛𝑟 = 0 

𝑅𝑃𝑟𝑝 𝑅𝑃𝑟𝑝 = 1, If rack 𝑟 ∈ 𝑅 is placed in pod 𝑝 ∈ 𝑃, otherwise 

𝑅𝑃𝑟𝑝 = 0 

𝑊𝐶𝑤 CPU capacity required by workload 𝑤 ∈ 𝑊 

𝑊𝑀𝑤 Memory capacity required by workload 𝑤 ∈ 𝑊 

𝕃𝑤 Maximum latency supported by DC infrastructure for 

workload 𝑤 ∈ 𝑊 

𝒯𝑐𝑚 CPU-Memory latency between CPU component 𝑐 ∈ 𝐶 and 

memory component 𝑚 ∈ 𝑀. Inter-component latency. 

𝒬 A big number (100000) 

𝒢 A big number (1000) 

𝛼 A weighing factor in Watt which specifies the cost per 

blocked workload 

DC Network Parameters: 

𝒳 Static power consumption of optical cross-connect (W) 

𝒲 Static power consumption of WSS-based TOR switch (W) 
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𝔼 Load proportionate energy of electrical switch (J/b) 

ℰ Idle power consumption of electrical switch (W) 

𝕒 Number of aggregation switches, 𝕒 ≥ 1; 
𝕒

𝕣
 is a fixed 

aggregation ratio. 

𝕓 Number of inter-pod cross connects, 𝕓 ≥ 1; 
𝕓

𝕡
 is a fixed ratio. 

𝒞𝑤𝑥 CPU-Memory (RAM) traffic (in b/s) of workload 𝑤 ∈ 𝑊 in 

direction 𝑥 ∈ 𝐷. 

ℐ𝑤𝑥 CPU-IO traffic of workload 𝑤 ∈ 𝑊 in direction 𝑥 ∈ 𝐷. 

ℛ𝑤𝑥 Memory(storage)-IO traffic of workload 𝑤 ∈ 𝑊 in 

direction 𝑥 ∈ 𝐷. 

ℳ𝑠𝑑 Inter-memory(storage) traffic between source workload 𝑠 ∈

𝑊 and destination workload 𝑑 ∈ 𝑊. 

𝐸𝑈𝑠𝑑 Electrical network load proportional energy per bit (J/b) due 

to traffic from CPU component 𝑠 ∈ 𝐶 to memory (RAM) 

component  𝑑 ∈ 𝑀. 

𝐸𝐷𝑠𝑑 Electrical network load proportional energy per bit (J/b) due 

to traffic from memory (RAM) component 𝑠 ∈ 𝑀 to CPU 

component  𝑑 ∈ 𝐶. 

𝐸𝐶𝑠𝑑 Electrical network load proportional energy per bit (J/b) due 

to traffic between memory (storage) component 𝑠 ∈ 𝑀 and 

memory (storage) component  𝑑 ∈ 𝑀. 

𝐸𝑁 Electrical network load proportional energy per bit (J/b) due 

to north-south traffic. 

𝐻𝑈𝑠𝑑 Hybrid network load proportional energy per bit (J/b) due to 

traffic from CPU component 𝑠 ∈ 𝐶 to memory (RAM) 

component  𝑑 ∈ 𝑀. 

𝐻𝐷𝑠𝑑 Hybrid network load proportional energy per bit (J/b) due to 

traffic from memory (RAM) component 𝑠 ∈ 𝑀 to CPU 

component  𝑑 ∈ 𝐶. 

𝐻𝐶𝑠𝑑 Hybrid network load proportional energy per bit (J/b) due to 

traffic between memory (storage) component 𝑠 ∈ 𝑀 and 

memory (storage) component  𝑑 ∈ 𝑀. 
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𝐻𝑁 Hybrid network load proportional energy per bit (J/b) due to 

north-south traffic. 

𝑂𝑈𝑠𝑑 Optical network load proportional energy per bit (J/b) due to 

traffic from CPU component 𝑠 ∈ 𝐶 to memory (RAM) 

component  𝑑 ∈ 𝑀. 

𝑂𝐷𝑠𝑑 Optical network load proportional energy per bit (J/b) due to 

traffic from memory (RAM) component 𝑠 ∈ 𝑀 to CPU 

component  𝑑 ∈ 𝐶. 

𝑂𝐶𝑠𝑑 Optical network load proportional energy per bit (J/b) due to 

traffic between memory (storage) component 𝑠 ∈ 𝑀 and 

memory (storage) component  𝑑 ∈ 𝑀. 

𝑂𝑁 Optical network load proportional energy per bit (J/b) due to 

north-south traffic. 

Variables:  

𝓬𝒘𝒋 𝓬𝒘𝒋 = 1 indicates that processing requirements of workload 

𝑤 ∈ 𝑊 are served by CPU 𝑗 ∈ 𝐶. Otherwise, 𝓬𝒘𝒋 = 0 

𝓶𝒘𝒋 𝓶𝒘𝒋 = 1, indicates that memory (RAM) request of workload 

𝑤 ∈ 𝑊 is served by RAM 𝑗 ∈ 𝑀. Otherwise, 𝓶𝒘𝒋 = 0 

𝕔𝒋 𝕔𝒋 = 1, if CPU 𝑗 ∈ 𝐶 is active. Otherwise, 𝕔𝒋 = 0 

𝕞𝒋 𝕞𝒋 = 1, if RAM 𝑗 ∈ 𝑀 is active. Otherwise, 𝕞𝒋 = 0  

𝓹𝒑 𝓹𝒑 = 1, if pod 𝑝 ∈ 𝑃 is active. Otherwise, 𝓹𝒑 = 0 

𝓻𝒓 𝓻𝒓 = 1, if rack 𝑟 ∈ 𝑅 is active. Otherwise, 𝓻𝒓 = 0 

𝕨𝒘 Indicates the state of workload 𝑤 ∈ 𝑊 i.e., served or 

unserved.𝕨𝒘 = 1, if workload 𝑤 is served. Otherwise, 𝕨𝒘 =

0  

𝜷𝒘 Indicates the state of workload 𝑤 ∈ 𝑊 i.e., rejected or active. 

It is the opposite of  𝕨𝒘, 𝜷𝒘 = 1 − 𝕨𝒘 

𝕣 Number of active racks 

𝕡 Number of active pods 

𝓱𝒘𝒓 𝓱𝒘𝒓 = 1, if CPU resource demand of workload 𝑤 ∈ 𝑊 is 

placed in rack 𝑟 ∈ 𝑅. Otherwise,  𝓱𝒘𝒓 = 0 

𝓰𝒘𝒓 𝓰𝒘𝒓 = 1, if memory resource demand of workload 𝑤 ∈ 𝑊 is 

placed in rack 𝑟 ∈ 𝑅. Otherwise, 𝓰𝒘𝒓 = 0 
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𝓪𝒘𝒑 𝓪𝒘𝒑 = 1, if CPU resource demand of workload 𝑤 ∈ 𝑊 is 

placed in pod 𝑝 ∈ 𝑃. Otherwise, 𝓪𝒘𝒑 = 0 

𝓫𝒘𝒑 𝓫𝒘𝒑 = 1, if memory resource demand of workload 𝑤 ∈ 𝑊 is 

placed in pod 𝑝 ∈ 𝑃. Otherwise, 𝓫𝒘𝒑 = 0 

𝔂𝒘𝒄𝒎 Indicates the CPU-memory pair used to provision 

workload 𝑤 ∈ 𝑊.𝔂𝒘𝒄𝒎= 1 if CPU 𝑐 ∈ 𝐶 and memory 𝑚 ∈ 𝑀 

host CPU and memory resource demands of workload 𝑤 ∈

𝑊 respectively. Otherwise,  𝔂𝒘𝒄𝒎 = 0. 

𝔃𝒔𝒅
𝒙𝒚

 𝔃𝒔𝒅
𝒙𝒚

= 1 if memory resource demand of source workload 𝑠 ∈

𝑊 is placed in memory component 𝑥 ∈ 𝑀 and memory 

resource demand of destination workload 𝑑 ∈ 𝑊 is placed in 

memory component 𝑦 ∈ 𝑀. Otherwise, 𝔃𝒔𝒅
𝒙𝒚

= 0 

The creation of the CPU requirements of workload 𝑤, 𝕨𝑤, can be related to 

the workload placement using:  

𝕨𝑤 = ∑ 𝓬𝒘𝒋

𝑗 ∈𝐶𝑅

 

∀ 𝑤 ∈ 𝑊 

(4.1) 

The number of active racks is the DC can be derived from the state of each 

rack using: 

𝕣 =  ∑ 𝓻𝒓

𝑟 ∈𝑅

 (4.2) 

The number of active pods is the DC can be derived from the state of each 

pod using: 

𝕡 =  ∑ 𝓹𝒑

𝑝 ∈𝑃

 (4.3) 

The placement of the CPU resource requirement of workload 𝑤 into rack 𝑟 

can be derived using:  

𝓱𝒘𝒓 = ∑ ∑ 𝓬𝒘𝒋𝐶𝑁𝑗𝑛𝑁𝑅𝑛𝑟

𝑗 ∈𝐶𝑛 ∈ 𝑁 

 

∀ 𝑤 ∈ 𝑊, ∀ 𝑟 ∈ 𝑅 

(4.4) 

The placement of the memory resource requirement of workload 𝑤 into rack 

𝑟 can be derived using:  

𝓰𝒘𝒓 = ∑ ∑ 𝓶𝒘𝒋𝑀𝑁𝑗𝑛𝑁𝑅𝑛𝑟

𝑗 ∈𝑀𝑛 ∈ 𝑁 

 (4.5) 
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∀ 𝑤 ∈ 𝑊, ∀ 𝑟 ∈ 𝑅 

The placement of the CPU resource requirement of workload 𝑤 into pod 𝑝 can 

be derived using:  

𝓪𝒘𝒑 = ∑ ∑ ∑ 𝓬𝒘𝒋𝐶𝑁𝑗𝑛𝑁𝑅𝑛𝑟𝑅𝑃𝑟𝑝

𝑗 ∈𝐶𝑛 ∈ 𝑁 𝑟 ∈𝑅

 

∀ 𝑤 ∈ 𝑊, ∀ 𝑝 ∈ 𝑃 

(4.6) 

The placement of the memory resource requirement of workload 𝑤 into pod 𝑝 

can be derived using:  

𝓫𝒘𝒑 = ∑ ∑ ∑ 𝓶𝒘𝒋𝑀𝑁𝑗𝑛𝑁𝑅𝑛𝑟𝑅𝑃𝑟𝑝

𝑗 ∈𝑀𝑛 ∈ 𝑁 𝑟 ∈𝑅

 

∀ 𝑤 ∈ 𝑊, ∀ 𝑝 ∈ 𝑃 

(4.7) 

Given each network topology, the load proportional power consumption 

of network components traversed and some variables, the total network power 

consumption (TNPC) of electrical, hybrid and optical network topologies are 

derived as follows: 

Electrical network Topology  

𝑇𝑁𝑃𝐶 = ∑ ∑ ∑ 𝔂𝒘𝒄𝒎(𝒞𝑤1 𝐸𝑈𝑐𝑚

𝑤 ∈𝑊𝑚 ∈𝑀𝑐 ∈𝐶

+ 𝒞𝑤2 𝐸𝐷𝑐𝑚)

+ ∑ ∑ ∑ ∑ 𝔃𝒔𝒅
𝒙𝒚

ℳ𝑠𝑑  𝐸𝐶𝑥𝑦

𝑑 ∈𝑊:𝑠≠𝑑𝑠 ∈𝑊𝑦 ∈𝑀: 𝑥≠𝑦𝑥 ∈𝑀

+ 𝐸𝑁 ( ∑ ∑ 𝓬𝒘𝒋(ℐ𝑤1 + ℐ𝑤2)

𝑐 ∈𝐶𝑤 ∈𝑊

+ ∑ ∑ 𝓶𝒘𝒋(ℛ𝑤1 + ℛ𝑤2)

𝑚 ∈𝑀𝑤 ∈𝑊

) + (𝕣 + 𝕒)ℰ 

(4.8) 

Hybrid Network Topology  

𝑇𝑁𝑃𝐶 = ∑ ∑ ∑ 𝔂𝒘𝒄𝒎(𝒞𝑤1 𝐻𝑈𝑐𝑚

𝑤 ∈𝑊𝑚 ∈𝑀𝑐 ∈𝐶

+ 𝒞𝑤2 𝐻𝐷𝑐𝑚)

+ ∑ ∑ ∑ ∑ 𝔃𝒔𝒅
𝒙𝒚

ℳ𝑠𝑑  𝐻𝐶𝑥𝑦

𝑑 ∈𝑊:𝑠≠𝑑𝑠 ∈𝑊𝑦 ∈𝑀: 𝑥≠𝑦𝑥 ∈𝑀

+ 𝐻𝑁 ( ∑ ∑ 𝓬𝒘𝒋(ℐ𝑤1 + ℐ𝑤2)

𝑐 ∈𝐶𝑤 ∈𝑊

+ ∑ ∑ 𝓶𝒘𝒋(ℛ𝑤1 + ℛ𝑤2)

𝑚 ∈𝑀𝑤 ∈𝑊

) + 𝕣(𝒳 + ℰ) 

(4.9) 

Optical Network Topology  
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𝑇𝑁𝑃𝐶 = ∑ ∑ ∑ 𝔂𝒘𝒄𝒎(𝒞𝑤1 𝑂𝑈𝑐𝑚

𝑤 ∈𝑊𝑚 ∈𝑀𝑐 ∈𝐶

+ 𝒞𝑤2 𝑂𝐷𝑐𝑚)

+ ∑ ∑ ∑ ∑ 𝔃𝒔𝒅
𝒙𝒚

ℳ𝑠𝑑  𝑂𝐶𝑥𝑦

𝑑 ∈𝑊:𝑠≠𝑑𝑠 ∈𝑊𝑦 ∈𝑀: 𝑥≠𝑦𝑥 ∈𝑀

+ 𝑂𝑁 ( ∑ ∑ 𝓬𝒘𝒋(ℐ𝑤1 + ℐ𝑤2)

𝑐 ∈𝐶𝑤 ∈𝑊

+ ∑ ∑ 𝓶𝒘𝒋(ℛ𝑤1 + ℛ𝑤2)

𝑚 ∈ 𝑀𝑤 ∈ 𝑊

) + 𝕣 𝒲 + (𝕡 + 𝕓)𝒳 

(4.10) 

Total CPU Power Consumption  

Total power consumption of CPU resources in the composable DC (𝑇𝐶𝑃𝐶) is 

derived as follows.  

𝑇𝐶𝑃𝐶 =  ∑ ∑ ((IC 𝐶𝑃𝑗𝕔𝒋) + (∆𝐶𝑗 𝓬𝒘𝒋 𝑊𝐶𝑤))

𝑤 ∈ 𝑊𝑗 ∈  𝐶

 (4.11) 

Total Memory Power consumption 

Total power consumption of memory resources in the composable DC (𝑇𝑀𝑃𝐶) 

is derived as follows.  

𝑇𝑀𝑃𝐶 =  ∑ ∑ ((IM 𝑀𝑃𝑗𝕞𝒋) + (∆𝑀𝑗  𝓶𝒘𝒋 𝑊𝑀𝑤))

𝑤 ∈ 𝑊𝑗 ∈  𝑀

 (4.12) 

The MILP model is defined as follows: 

Objective: Minimise 

𝑇𝐶𝑃𝐶 + 𝑇𝑀𝑃𝐶 + 𝑇𝑁𝑃𝐶 +  𝛼( ∑ 𝜷𝒘) 

𝑤 ∈ 𝑊

 (4.13) 

Equation (4.13) is the objective of the model; it minimises total power 

consumption of CPU resources, memory resources, and of the network 

topology used. It also minimises the number of rejected workloads in 

scenarios where some workloads cannot be provisioned. 𝛼 is the cost 

(measured in Watt) associated with each rejected workload. 

Subject to:  

∑  𝑊𝐶𝑤

𝑤 ∈ 𝑊

𝓬𝒘𝒋  ≤ ℂ𝑗  

∀ 𝑗 ∈ 𝐶 

(4.14) 

∑ 𝑊𝑀𝑤

𝑤 ∈ 𝑊

𝓶𝒘𝒋 ≤ 𝕄𝑗   

∀ 𝑗 ∈ 𝑀 

(4.15) 



- 55 - 

Constraints (4.14) and (4.15) denote resource capacity constraints for each 

unit of CPU and memory component in the DC.  

∑ 𝓬𝒘𝒋 

𝑗 ∈  𝐶

≤ 1 

∀ 𝑤 ∈ 𝑊 

(4.16) 

∑ 𝓶𝒘𝒋 

𝑗 ∈  𝑀

≤ 1 

∀ 𝑤 ∈ 𝑊 

(4.17) 

Constraints (4.16) and (4.17) limit the maximum number of components that 

can host CPU and memory resource requests of a workload to one. This is 

because neither replication nor slicing of workloads is permitted. These 

constraints also allow workloads to be rejected in scenarios where resource 

capacity is limited. 

∑ 𝓬𝒘𝒋

𝑗 ∈ 𝐶 

= ∑ 𝓶𝒘𝒋

𝑗 ∈  𝑀 

  

∀ 𝑤 ∈ 𝑊 

(4.18) 

Constraint (4.18) ensures that an active workload’s CPU and memory 

resource requirements are satisfied. Otherwise the workload is inactive. 

𝒢 ∑ 𝓬𝒘𝒋

𝑤  ∈  𝑊

 ≥ 𝕔𝒋 

∀ 𝑗 ∈   𝐶 

(4.19) 

∑ 𝓬𝒘𝒋

𝑤  ∈  𝑊

 ≤ 𝒬 𝕔𝒋 

∀ 𝑗 ∈   𝐶 

(4.20) 

𝒢 ∑ 𝓶𝒘𝒋

𝑤  ∈  𝑊

 ≥ 𝕞𝒋 

∀ 𝑗 ∈  𝑀 

(4.21) 

∑ 𝓶𝒘𝒋

𝑤 ∈  𝑊

 ≤ 𝒬 𝕞𝒋 

∀ 𝑗 ∈  𝑀 

(4.22) 

Constraints (4.19) - (4.22) determine each CPU and memory resource state, 

this depends on utilisation of the resource to satisfy resource requirements of 

served workloads. 
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∑ (𝓱𝒘𝒓 + 𝓰𝒘𝒓) 

𝑤  ∈  𝑊

 ≥  𝕣𝑟 

∀ 𝑟 ∈ 𝑅 

(4.23) 

∑ (𝓱𝒘𝒓 + 𝓰𝒘𝒓) 

𝑤  ∈  𝑊

 ≤ 𝒬 𝕣𝑟 

∀ 𝑟 ∈ 𝑅 

(4.24) 

Constraints (4.23) and (4.24) determine the state of each rack, this depends 

on the utilisation of CPU or memory resource in the rack to satisfy resource 

requirements of served workloads. 

𝒢 ∑ (𝓪𝒘𝒑 + 𝓫𝒘𝒑)

𝑤  ∈  𝑊

 ≥ 𝕡𝑝 

∀ 𝑝 ∈ 𝑃 

(4.25) 

∑ (𝓪𝒘𝒑 + 𝓫𝒘𝒑)

𝑤  ∈  𝑊

 ≤ 𝒬 𝕡𝑝 

∀ 𝑝 ∈  𝑃 

(4.26) 

Constraints (4.25) and (4.26) determine the state of each pod, this depends 

on the utilisation of CPU or memory resource in the pod to satisfy resource 

requirements of served workloads. 

𝔂𝒘𝒄𝒎 = 𝓬𝒘𝒄 𝓶𝒘𝒎 

∀ 𝑤 ∈ 𝑊,∀ 𝑐 ∈ 𝐶, ∀𝑚 ∈ 𝑀 

(4.27) 

Constraint (4.27) gives the relationship between components hosting 

processing and memory resource demands of a given workload i.e., 𝔂𝒘𝒄𝒎 

which is a product of 𝓬𝒘𝒄 and 𝓶𝒘𝒎. 

𝔂𝒘𝒄𝒎 ≤ 𝓬𝒘𝒄  

∀ 𝑤 ∈ 𝑊,∀ 𝑐 ∈ 𝐶, ∀𝑚 ∈ 𝑀 

 

(4.28) 

𝔂𝒘𝒄𝒎 ≤ 𝓶𝒘𝒎 

∀ 𝑤 ∈ 𝑊,∀ 𝑐 ∈ 𝐶, ∀ 𝑚 ∈ 𝑀 

 

(4.29) 

𝔂𝒘𝒄𝒎 ≥ 𝓬𝒘𝒄 + 𝓶𝒘𝒎 − 1  

∀ 𝑤 ∈ 𝑊,∀ 𝑐 ∈ 𝐶, ∀ 𝑚 ∈ 𝑀 

(4.30) 

Constraints (4.28) - (4.30) are used to linearise constraint (4.27), which is a 

product of two binary variables. 
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∑ ∑ 𝒯𝑐𝑚 𝔂𝒘𝒄𝒎

𝑚 ∈ 𝑀𝑐 ∈  𝐶

≤ 𝕃𝑤 

∀ 𝑤 ∈ 𝑊 

(4.31) 

Constraint (4.31) ensures that the inter-component latency between the CPU 

and memory components hosting a workload’s resource demands does not 

exceed the set maximum CPU-Memory latency for a given type of 

composable DC infrastructure. This constraint is combined with the allocation 

of components dictates the type of composable DC infrastructure under 

consideration and enforces resource locality. Component allocation is given 

by parameters 𝐶𝑁𝑗𝑛, 𝑀𝑁𝑗𝑛, 𝑁𝑅𝑛𝑟 and 𝑅𝑃𝑟𝑝. 

𝔃𝒔𝒅
𝒙𝒚

= 𝓶𝒔𝒙𝓶𝒅𝒚 

∀ 𝑠 ∈ 𝑊, ∀ 𝑑 ∈ 𝑊, ∀ 𝑥 ∈ 𝑀, ∀ 𝑦 ∈ 𝑀 

(4.32) 

𝔃𝒔𝒅
𝒙𝒚

≤ 𝓶𝒔𝒙  

∀ 𝑠 ∈ 𝑊, ∀ 𝑑 ∈ 𝑊, ∀ 𝑥 ∈ 𝑀, ∀ 𝑦 ∈ 𝑀 

(4.33) 

𝔃𝒔𝒅
𝒙𝒚

≤ 𝓶𝒅𝒚 

∀ 𝑠 ∈ 𝑊, ∀ 𝑑 ∈ 𝑊, ∀ 𝑥 ∈ 𝑀, ∀ 𝑦 ∈ 𝑀 

(4.34) 

𝔃𝒔𝒅
𝒙𝒚

≥ 𝓶𝒔𝒙 + 𝓶𝒅𝒚 − 1  

∀ 𝑠 ∈ 𝑊, ∀ 𝑑 ∈ 𝑊, ∀ 𝑥 ∈ 𝑀, ∀ 𝑦 ∈ 𝑀 

(4.35) 

Constraint (4.32) gives the relationship between two memory components 

(𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑀) hosting memory resource demands of workloads (𝑠 ∈

𝑊 and 𝑑 ∈ 𝑊) respectively i.e., 𝔃𝒔𝒅
𝒙𝒚

 which is a product of binary variables 𝓶𝒔𝒙 

and 𝓶𝒅𝒚. Constraints (4.33) - (4.35) are used to linearise constraint (4.32). 

4.4 Performance Evaluation 

The MILP model is used to study the performance of composable DCs that 

employ physical disaggregation at rack-scale and pod-scale relative to the 

performance of traditional DC infrastructure. Heterogeneous CPU and 

memory resource component are adopted to reflect heterogeneity of 

resources in production DCs. Three classes of servers illustrated in Table 4.1  

are adopted to form a range of heterogeneous resourced DCs. To minimise 

the execution time of the MILP model which grows as the size and complexity 

of the problem increases, a small DC site comprising of 24 servers (i.e., 24 

CPU and 24 memory components) is considered; 8 servers from each server 

class are selected. When the traditional DC is implemented at the site, servers 

maintain their single-box architecture. The implementation of rack-scale and 
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pod-scale DCs at the site requires the disaggregation of the components of 

servers accordingly. 

Table 4.1: Server classification 

Server class  CPU capacity (Peak 

power) 

RAM capacity (Peak 

power) 

High Performance 

(HPS)  

3.6 GHz (130 W) [99] 32 GB (40 W)  

Standard (STDS)  2.66 GHz (95 W) [99] 24 GB (30.72 W) [99] 

Legacy (LS) 2.4 GHz (80 W) [99] 8 GB (10.24 W) [99] 

Resources are allocated as follows: 

 A common DC site is adopted under traditional, rack-scale and pod-scale 

DC scenarios considered in this chapter. The DC site has 2 pods, a pod 

comprises of two heterogeneously/homogenously resourced racks. 

Each rack holds multiple homogenously or heterogeneously resourced 

nodes. The DC site also comprises of 24 CPU and 24 memory 

components which are allocated to nodes within each rack. 

 Each rack of the traditional DC is a heterogeneous rack that holds 6 

heterogeneous nodes i.e., traditional servers (2 servers from each class 

of server defined). The traditional DC represents node-scale 

disaggregation and the performance of rack-scale and pod-scale DC are 

benchmarked against the traditional DC in this chapter.  

 Each rack of rack-scale DC holds 3 homogeneous nodes of CPU 

resources and 3 homogenous nodes of memory resources. Hence, rack-

scale DC comprises of heterogeneously resourced racks, 2 of these 

heterogeneous racks are allocated to each pod. 

 In a pod-scale DC, racks hold 6 homogenous nodes of CPU or memory 

resources i.e., each rack comprises of homogenous nodes of CPU or 

memory resources. Each pod comprises of 1 homogeneous rack of CPU 

resources and 1 homogenous rack of memory resources. 

Allocation of resource components in traditional, rack-scale, and pod-

scale DCs determines the inter-component latency between any CPU and 

memory resource component pair in the DC. Table 4.2 gives the abstracted 

inter-component latency between pair DC components (i.e., CPU and 

memory) in traditional DCs and in a DC that is physically disaggregated DCs 

at rack-scale or pod-scale. The abstraction of latency values in Table 4.2 is 

obtained relative to the minimum physical separation required (between two 

resource components) to implement a desired composable DC. However, 

other metrics such as transmission latency may also be adopted to abstract 
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latency values. Resource component allocation and the choice of maximum 

latency (𝕃𝑤) for each workload in Constraint (4.31) collectively determine the 

composable DC infrastructure being evaluated by the MILP model. For 

simplicity, it is assumed that each traditional server has a single CPU 

component and a single memory component before disaggregation. Hence, 

both CPU and memory components of a given server can share a common 

index. Therefore, 𝒯𝑐𝑚 is derived from resource component allocation i.e., 

𝐶𝑁𝑗𝑛, 𝑀𝑁𝑗𝑛, 𝑁𝑅𝑛𝑟 and 𝑅𝑃𝑟𝑝 as described earlier. This derivation is guided by 

the latency abstraction in Table 4.2. Similarly, allocation of resource 

components in DCs also aids the pre-computation of load proportional energy 

consumption of network components traversed on each reference network 

topology considered i.e., 𝐸𝑈𝑠𝑑, 𝐸𝐷𝑠𝑑, 𝐸𝐶𝑠𝑑, 𝐸𝑁, 𝐻𝑈𝑠𝑑, 𝐻𝐷𝑠𝑑, 𝐻𝐶𝑠𝑑, 𝐻𝑁, 𝑂𝑈𝑠𝑑, 

𝑂𝐷𝑠𝑑, 𝑂𝐶𝑠𝑑, and 𝑂𝑁. 

Table 4.2: Composable DC inter-component latency abstraction 

DC Type Relative location of pair 

component 

Representative 

values 

Traditional Pair components in the same 

server/node. 

1 

Rack-scale Pair components in different 

servers within the same rack. 

2 

Pod-scale Pair components in different 

racks within the same pod. 

3 

DC-scale Pair components in different 

pods within the same DC 

4 

In addition to the fixed idle power consumption, each CPU and memory 

resource component has a linear load proportionate power profile. The “power 

factor” which represents the slope of the linear power profile is the active 

power consumed per resource capacity. This is the basis for calculating the 

load proportionate power of each active CPU and memory components. 

However, the power factor of a resource component alone does not give a full 

picture of its energy efficiency. This is because a resource component with 

low power factor may have little capacity; hence, it can only support a small 

volume of resource demand. Normalising the power factor of components by 

their corresponding capacity gives a better measure of energy efficiency as 

shown in Figure 4.4. Therefore, at full (100%) CPU resource utilisation, high 

performance server (3.6 GHz) CPU is the most energy efficient, followed by 



- 60 - 

standard server (2.66 GHz) CPU. Thereafter, the legacy server (2.4 GHz) 

CPU closely follows standard server CPU as shown in Figure 4.4. Energy 

efficiency of fully utilised memory components also follow the same order. The 

idle power consumption of the CPU and memory resources is 70% of the 

maximum power. This is because a server in an idle state consumes up to 

70% of its peak power[102]. Overall, from Table 4.1, CPU components peak 

power consumption is relatively higher than that of memory components. The 

peak power and idle power as a fraction of maximum power of both CPU and 

memory components are given in Table 4.1 and Table 4.3 respectively. Table 

4.3 also gives the load proportionate energy per bit values of next-generation 

network interfaces (using silicon photonics technologies) at different tiers of 

DC infrastructures. 

 

Figure 4.4: Power factor per capacity of server CPU components 

The power consumption of electrical and optical components in different 

candidate network topologies are evaluated using the parameters given in 

Table 4.3. Because a small DC infrastructure setup is adopted, parameters  

𝕒 and 𝕓 which represent the number of aggregation switches in each pod and 

the number of inter-pod cross connects (in corresponding network topologies) 

respectively are both set to one. The load proportionate energy (28.28 pJ/b) 

of electrical switches is the ratio of dynamic power range (181 W) of the switch 

to the maximum switching capacity (6.4 Tbps) of a Cisco Nexus 3132C-Z [103] 

electrical switch. The dynamic power range of a component is given by the 

difference of the maximum and idle power consumption of that component. 

Programmable Finisar 4x16 WSS [104] (with maximum power consumption of 

50 W) is adopted as the WSS-based ToR switch in the optical network 

topology. An all-optical circuit switch [105] with maximum power consumption 

of 75 W is deployed as the OXC in both optical and hybrid network topologies. 

These values and the energy efficiency values of next generation silicon 
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photonics networks (adopted from [80]) are used as default input parameters. 

to the MILP model. Next-generation networks are expected to be more energy 

and cost efficient than today’s networks; hence, the low values for next-

generations networks as given in Table 4.3. Relative to communication 

between nodes in the same or different racks over longer distances, on-board 

communication between components in compute node requires lower power 

consumption. This is because on-board communication requires a simpler 

design. Compared to long-distance communication between distributed DCs 

over a DC interconnect, inter-node communication between nodes within the 

DC is more energy efficient. This is because shorter distances are travelled 

within the DC. Hence, less complex interfaces with lower power consumption 

are required for intra-DC networks relative to inter-DC networks. 

Table 4.3: DC components and interfaces power consumption 

Description Value 

Idle power as a fraction of maximum CPU power 70% 

Idle power as a fraction of maximum memory power 70% 

On-board network interface energy per bit (J/b) 0.5 pJ/b [80] 

Inter-rack network interface energy per bit (J/b) 1 pJ/b  [80] 

Rack backplane network interface energy per bit (J/b) 1 pJ/b  [80] 

Inter-DC network interface energy per bit (J/b) 10 pJ/b  [80] 

Peak power consumption of optical circuit switch 75 W [105] 

Peak power consumption of WSS-based optical switch 50 W [104] 

Peak power consumption of electrical switch 493 W [103] 

Typical operating (idle) power of electrical switch 312 W [103] 

Load proportional energy of electrical switches 28.28 pJ/b 

 

Heterogeneity of DC workloads is considered by adopting two classes of 

workloads i.e., CPU intensive and memory intensive workloads. The resource 

demand of monolithic workloads in each class is illustrated in Table 4.4. The 

corresponding number of workloads required for each evaluation scenario are 

selected serially from Table 4.4. It is assumed that cache coherent traffic is 

limited to each CPU and does not traverse the DC network fabric [106]. 

Furthermore, fixed inter-resource communication traffics for each workload is 

considered to ensure fair comparison between different composable DC 
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infrastructures. CPU-memory traffic of each workload in the forward and 

backward directions are 120 Gbps and 100 Gbps respectively. CPU-IO traffic 

or Memory-IO traffic of each workload in the forward and reverse directions 

are 2 Gbps and 1 Gbps respectively.  

Table 4.4: Monolithic workloads resource demand 

Workload 

ID 

CPU Intensive Memory Intensive 

CPU demand 

(GHz) 

Memory 

demand (GB) 

CPU demand 

(GHz) 

Memory demand 

(GB) 

1 2.6 6.7 1.6 17.7 

2 2.3 6.3 1.5 15.7 

3 1.8 5.9 1 14.3 

4 2 5.8 1.2 13.7 

5 2.8 7 1.8 19.4 

6 2.2 7.2 1.4 19.8 

7 1.5 6.3 0.8 16 

8 1.6 6.8 0.9 18.1 

9 2.4 7.6 1.6 21.8 

10 3 6.9 2 18.4 

11 1.6 6.7 0.9 17.5 

12 2.8 6.7 1.9 17.6 

13 1.9 8 1.1 23.4 

14 1.6 6.1 0.9 15 

15 2.1 7 1.3 19 

16 2 5.1 1.2 10.2 

17 2.7 6.1 1.7 14.8 

18 1.7 6.7 1 17.9 

19 1.9 6.5 1.1 17.3 

20 1.8 5.1 1.1 10.3 
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In most situation, it is assumed that inter-memory traffic is bandwidth 

intensive or non-bandwidth intensive over a specified range. Uniform 

distribution of non-intensive and intensive in-memory traffic i.e., ℳ𝑠𝑑, between 

workloads is performed over 0 - 10 Gbps and 10 - 70 Gbps ranges 

respectively. Workloads are clustered into groups of five to represent groups 

of associated applications in conventional DCs such as worker and master 

nodes. Each workload group of associated workloads has one-to-one, one-to-

many, many-to-many, or mixed inter-memory traffic patterns between the 

workloads in that group. 

The described MILP model evaluates the impact of electrical, hybrid and 

optical network topologies on the performance of rack-scale or pod-scale 

composable DCs relative to traditional DC infrastructure. The MILP model is 

solved using the 64-bit AMPL/CPLEX solver on the ARC3 supercomputing 

node with 24 CPU cores and 128 GB of memory [70]. The MILP model results 

analysis consider metrics such as CPU, memory and network power 

consumption, number of active DC resources and average active resource 

utilisation. Average active DC resource utilisation represents the average 

utilisation of all active CPU or memory resource components in the DC. The 

average utilisation of network components such as switches is not considered. 

To obtain optimal results, the MILP model bin-packs workloads resource 

demands onto DC resources to achieve optimal resource power and utilisation 

efficiencies. This is performed within capacity and resource locality 

constraints. Consequent of workload placement, inter-resource 

communication (between CPU-memory component pairs for a workload) and 

inter-memory data shuffle traffic traverse different network topologies. 

4.4.1 CPU Intensive Workloads 

Relative to other DC types, the traditional DC infrastructure has the highest 

quantity of active DC resources (CPU and memory i.e., server) under all 

network topologies considered. Similarly, the traditional DC has the lowest 

average active memory utilisation relative to other DC infrastructures 

considered. The results obtained when 20 CPU intensive workload are 

optimally provisioned as illustrated in Figure 4.5 shows this. These 

observations are consistent with the widely reported challenges of 

provisioning monolithic workloads in traditional DCs. Traditional DCs are 

characterised by disproportionate utilisation of DC resource [61], [86]. The 

CPU intensive nature of input workloads is responsible for high average active 

CPU utilisation observed in traditional DC as shown in Figure 4.5. 
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Figure 4.5: Average utilisation of active DC resource components under 20 
CPU intensive workloads 

For each number of CPU intensive workloads provisioned, the total CPU 

power consumption (TCPC) observed is equal for traditional DCs that 

employed electrical and hybrid network topologies. Figure 4.6 and Figure 4.7 

show this. The total memory power consumption (TMPC) also follows the 

same trend under both electrical and hybrid network topologies. On the other 

hand, Figure 4.8 shows that the contributions of TCPC and/or TMPC to the 

total DC power consumption (TDPC) under the optical network topology often 

follow a different trend. Lower network power consumption per active rack in 

the optical network topology is responsible for this. The adoption of the optical 

network promotes the use of a different mix of active servers (CPU and 

memory resource components as seen in Figure 4.9 and Figure 4.10). The 

activated servers are selected from any rack in the DC if it leads to lower 

TCPC and TMPC. Consequently, relative to the hybrid or electrical networks, 

lower TDPC is often observed under the optical network. 

In contrast, there is a preference for consolidation of workloads into a 

few active racks (over the use of servers distributed across racks in the DC) 

when electrical and hybrid network topologies are used. This leads to 

activation of few racks and ensures lower TDPC in traditional DCs and 

consequently leads to better energy efficiency. The presence of electrical 

switches (which have significant idle power consumption) in the lowest tiers 

of electrical and hybrid network topologies encourages this trend. For 

example, consider the scenario where  20 CPU intensive workloads are 

optimally provisioned in traditional DC. The TCPC and TMPC of traditional DC 

with optical network topology are 6% and 11% respectively lower than the 

values reported for traditional DC with electrical or hybrid network topologies. 

Figure 4.9 and Figure 4.10 show the disparity in server (CPU and memory) 
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resource usage under different network topologies when 20 CPU intensive 

workloads are provisioned. 

 

Figure 4.6: Total DC power consumption under CPU intensive workloads 
when electrical network topology is deployed 

 

Figure 4.7: Total DC power consumption under CPU intensive workloads 
when hybrid network topology is deployed 
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Figure 4.8: Total DC power consumption under CPU intensive workloads 
when optical network topology is deployed 

For instance, Figure 4.9 shows that 3.6 GHz or 2.4 GHz CPUs are 

preferred over 2.66 GHz to achieve optimal TDPC when 20 CPU intensive 

workloads are provisioned in a traditional DC that deploys the optical network 

topology. On the one hand, this is because the 3.6 GHz CPU provides 

maximum energy efficiency when highly utilised as shown in Figure 4.4. On 

the other hand, the energy efficiency of 2.66 GHz and 2.4 GHz CPUs are 

somewhat comparable. Hence, a highly utilised 2.4 GHz CPU is more energy 

efficient than a partly utilised 2.66 GHz CPU. Therefore, the use of 3.6 GHz 

CPUs and their corresponding servers is promoted. This enables optimal 

consolidation of workload resource demands in a traditional DC that employs 

the energy efficient optical network. Furthermore, since network power 

consumption of the optical network is low, all eight 3.6 GHz CPU are activated 

to achieve optimal consolidation of workload resource demand. It is important 

to recall that each 3.6 GHz CPU is in a unique server and that servers are 

distributed across different racks in the traditional DC. Such consolidation 

leads to higher energy efficiency since fewer active servers are required. 

Once, all 3.6 GHz CPUs have been utilised for consolidation of workloads, 2.4 

GHz CPUs are selected to provision the CPU resource demand of other 

workloads. These are workloads that are consolidated with other workloads. 

This is because the 2.4 GHz CPU is more energy efficient than the 2.66 GHz 

CPU at lower utilisation. 2.66 GHz CPU only becomes more energy efficient 

that the 2.4 GHz when it is highly utilised. This trend is discouraged when the 

electrical or hybrid network topology is deployed in the traditional DC due to 

the adoption of electrical switches in each rack. Hence, it is preferred to 

minimise the number of active racks. It is also important to note that the 
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selection of active resource components that leads to optimal TDPC is 

expected to change as the input workloads to the MILP model is revised.  

The TNPC in traditional DC depends on the placement of workload 

resource demand into resource components. This is because workload 

resource demand placement determines the number of active racks and traffic 

that flows in the tiers of data centre network (DCN) topologies. As expected, 

TNPC changes with the network topologies as seen in Figure 4.6, Figure 4.7, 

and Figure 4.8. This is because of the variance in the power consumption 

profiles of components and interfaces that are present in the tiers of each 

network topology. In traditional DCs, high bandwidth inter-component traffics 

are node-limited i.e., they are restricted to on-board backplane of servers. On 

the other hand, inbound and outbound traffics of the DC (traffic between DC 

resources and remote systems) flow through higher tiers of each network 

topology. The contributions of node-limited traffic to the TNPC is small and 

constant across all network topologies in the traditional DCs. Relatively higher 

energy efficiency of on-board backplane compared to other tiers of each DCN 

topology (as illustrated in Table 4.3) is responsible for this. Although lower 

bandwidth traffic traverses the electrical network topology in a traditional DC, 

the electrical network topology has the highest TNPC. This is because of 

significant idle power consumption of electrical switches of the multi-tier 

topology. The TNPC of the hybrid network topology closely follows that of the 

electrical network topology. In addition to the fixed low power consumption of 

OXCs present in the higher tier of the hybrid topology, each rack in also has 

an electrical switch with significant idle power consumption. As shown in 

Figure 4.8, the optical network topology has the lowest TNPC. The fixed-low 

power consumption of poorly utilised high-capacity optical switches in the 

topology enabled this. 

 

Figure 4.9: Active CPU components under 20 CPU intensive workloads 
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Figure 4.10: Active memory components under 20 CPU intensive workloads 

For varying number of CPU intensive workloads, the TDPC in the 

traditional DC with electrical or hybrid network topology is largely subjective 

to TNPC. This is because the TCPC and TMPC are relatively constant. Hence, 

a traditional DC that deploys an electrical network topology has the highest 

TDPC. The TDPC of traditional DCs with hybrid network topology follows. The 

TDPC in the traditional DC with optical network topology is the lowest. This is 

because the adoption of optical switches in the topology ensures lower TNPC. 

This consequently encouraged lower TCPC and TMPC as observed when 20 

CPU intensive workloads are provisioned. Under varying number of CPU 

intensive input workloads considered, 10% average percentage reduction in 

TDPC was obtained when the hybrid network topology replaced the electrical 

network topology. Similarly, 27% average percentage reduction in TDPC was 

obtained when the optical network topology replaced the hybrid network 

topology under varying number of CPU intensive input workloads considered. 

Note that in the traditional DC, strict resource locality (required between CPU 

and memory components that host each workload) and resource capacity 

constraints collectively limits effective clustering of memory demands of 

workloads. Memory demands of workloads in the same workload group are 

often placed in different same memory component. Hence, memory data 

shuffle traffic between memory components in different nodes has little impact 

on the placement of workloads in traditional DC when energy minimisation is 

the goal. Memory data shuffle traffic exists between nodes if two workloads 

within the same workload group, with inter-memory traffic (ℳ𝑠𝑑), are placed 

in different nodes. 

Under varying number of CPU intensive workloads considered, physical 

disaggregation of traditional servers at rack-scale improves efficient usage of 
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memory resources relative to the traditional DC. Proportional usage of 

memory resources when disaggregation is implemented under all network 

topologies enabled this. Proportional usage of memory resources enables the 

reductions in the number and diversity of active memory resource components 

as shown in Figure 4.10. Consequently, corresponding reductions in TMPC is 

also achieved as shown in Figure 4.6, Figure 4.7 and Figure 4.8. Both number 

of active memory resource components and their corresponding TMPC 

reduced by more than 50% when traditional DC servers are physically 

disaggregated at rack-scale under all network topologies considered.  

Improvements in average active memory resource utilisation and energy 

efficient (i.e., proportional) usage of active memory resources in the DC is 

responsible for this. Consequently, 32 GB and 24 GB memory components 

are only activated when they can be highly utilised. Otherwise, 8 GB memory 

components are activated if memory capacity constraints permit. The 

relaxation of the inter-resource locality constraint in rack-scale disaggregated 

DCs enabled such flexibility.  

The CPU intensive nature of input workloads implies that there are 

limited opportunities to improve overall CPU power efficiency in the DC via 

physical disaggregation. For example, the scenario where 20 CPU intensive 

workloads were optimally provisioned in the DC with electrical, hybrid or 

optical network topology. The results show that there is no improvement in 

TCPC of rack-scale DC relative to the value obtained when a traditional DC 

with a similar network topology was used. As reported under traditional DC, 

the type of network topology adopted also determines optimum placement of 

workload resource demands in rack-scale DCs after physical disaggregation. 

Hence, relative to the electrical or hybrid network topologies in a rack-scale 

DC, placement of workloads demands changes when the optical network is 

deployed. This revision leads to lower TCPC (6% fall) and (further decrease 

in) TMPC (5%) when the optical network topology is used with minimal 

increase in TNPC. However, this revised placement of CPU and memory 

resource demands which delivers better energy efficiency may increase inter-

rack and inter-pod network traffic. Because of additional inter-memory data 

shuffle traffic between memory components of workloads that belong to the 

same workload group, which are placed in different racks (or pods). In 

summary, in rack-scale DC where resource locality is limited to the rack, 

deployment of optical network topology achieves lower TMPC. This is 

achieved at the cost of higher network traffic and marginal increase in TNPC. 

In contrast, when the hybrid or electrical network topology is deployed, lower 

network traffic and TNPC is preferred at the cost of higher TMPC. 
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In the rack-scale DC, high bandwidth traffic between CPU and memory 

components is rack-limited while low bandwidth DC north-south 

communication traverses higher tiers of the network topology adopted. Hence, 

as observed in the traditional DC, the electrical network topology has the 

highest TNPC in rack-scale DC. The TNPC of hybrid and optical network 

topologies follow in descending order as shown in Figure 4.6, Figure 4.7, and 

Figure 4.8. There is an increase in the number of instances in which memory 

demands of workloads (that belong to the same workload group) are 

collocated within the same memory component or the same homogenous 

memory node. This is because of the inter-resource locality constraint 

between CPU and memory components is relaxed and also because of the 

low memory demand of CPU intensive workloads. This consequently enables 

marginal reductions in TNPC of electrical, hybrid and optical network 

topologies alike under the rack-scale DC. 

In the pod-scale DC, high-bandwidth traffic between CPU and memory 

components is pod-limited while low bandwidth DC north-south 

communication traverses all tier of the network topology in the DC. Hence, 

power consumption of electrical and hybrid network topologies in pod-scale 

DC increases significantly relative to traditional and rack-scale DCs as shown 

in Figure 4.6, Figure 4.7, and Figure 4.8. Sole adoption of power-hungry 

electrical switches in the electrical network topology resulted in very high 

TNPC relative to hybrid and optical network topologies as shown in Figure 4.6, 

Figure 4.7, and Figure 4.8. Unlike observation under traditional and rack-scale 

DCs, network topology does not inhibit optimal selection of CPU and memory 

resources in pod-scale DC. This is because all CPU-memory traffic must 

traverse inter-rack fabric due to the use of homogenous resourced racks in 

the pod-scale DC. As observed in the rack-scale DC, network power 

consumption resulting from inter-workload memory data shuffle is also 

significantly limited in pod-scale DC. This is achieved by placing memory 

demand of workloads of the same workload group in the same component or 

node. However, clustering of workloads memory demands into memory 

components or nodes also depends on memory capacity constraint, the power 

consumption of memory components and their corresponding impact on the 

total DC power consumption. 

Comparison of TCPC and TMPC in rack-scale and pod-scale DCs shows 

that rack-scale DC can achieve similar performance as pod-scale DC as 

shown in Figure 4.6, Figure 4.7, and Figure 4.8. This is because the number 

and diversity of each resource type in each rack of rack-scale DC may be 
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sufficient (e.g., when 5 or 10 CPU intensive workloads are optimally 

provisioned) to enable optimal benefits of resource disaggregation. However, 

greater diversity and higher number of CPU resource components in 

homogenous racks of pod-scale DC relative to the situation in heterogeneous 

racks of rack-scale DC can enable better overall CPU power efficiency in pod-

scale DC relative to the rack-scale DC. This is observed when 20 CPU 

intensive workloads are optimally provisioned in pod-scale DC with hybrid or 

electrical network topology. Hence, if the number and diversity of each 

resource type required by workloads is guaranteed during resource 

component allocation in rack-scale DC, similar TCPC and TMPC can be 

achieved under rack-scale and pod-scale DCs. In DCs that deploy electrical 

or hybrid network topology, satisfaction of the outlined requirement ensures 

lower TNPC in rack-scale DCs relative to the TNPC of pod-scale DCs. On the 

other hand, if an optical network topology such as EVROS is deployed, rack-

scale DC’s TCPC, TMPC and TNPC can match those of the pod-scale DC. 

This is observed when 10 CPU intensive workloads are provisioned in both 

rack-scale and pod-scale DCs that deploy the optical network topology and 

have equal number of active racks as seen in Figure 4.8. 

Generally, under varying number of CPU intensive workloads, the 

highest (7%) average percentage reduction in TDPC is achieved when rack-

scale DC with optical network topology is adopted to replace the traditional 

DC with optical network topology. Compared to the traditional DC with hybrid 

network topology, 3% average percentage reduction in TDPC is achieved 

when rack-scale DC with hybrid network topology is adopted to replace a 

traditional DC with the same network topology. Compared to the traditional 

DC with electrical network topology, the average percentage reduction in the 

TDPC of rack-scale DC with similar network topology is 2%. It is also observed 

that only the optical network topology enabled reductions in the TDPC of 

traditional DC when replaced with the pod-scale DC (except when 5 CPU 

intensive workloads are optimally provisioned). With respect to reduction in 

TDPC, the results also show that physical disaggregation should be limited to 

the rack–scale to ensure TDPC reductions if electrical or hybrid network 

topology are to be deployed for disaggregated DC. Going further by 

disaggregating at pod-scale leads to significant (up to 50%) increase in the 

TNPC of electrical and hybrid network topologies. This surpasses any savings 

in TCPC and TMPC derived from physical disaggregation of traditional DC at 

pod-scale. 
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4.4.2 Memory Intensive Workloads 

Results under memory intensive workloads further highlights trends identified 

when CPU intensive workloads were provisioned. Proportional usage of CPU 

and memory resources in disaggregated DCs (as seen in Figure 4.11) led to 

lower TCPC and TMPC as seen in Figure 4.12, Figure 4.13 and Figure 4.14. 

For instance, when 5 input workloads are provisioned across traditional, rack-

scale, and pod-scale DCs, physical disaggregation of resources at rack-scale 

and pod-scale leads to reductions in TCPC and TMPC relative to the 

traditional DC. This is achieved at the expense of higher TNPC for all network 

topologies considered as observed when CPU intensive workloads were 

considered. 

Relative to similar results obtained when CPU intensive workloads 

were considered, Figure 4.11 shows that memory components are highly 

utilised under all DCs. This is because of the memory intensive nature of the 

input workloads. The average utilisation of CPU resource components is lower 

(about 60%) in traditional DCs compared to about 97% average utilisation 

obtained when physical disaggregation of resources at rack-scale and pod-

scale are employed. The average active utilisation of CPU and memory 

components are 60% and 87% respectively when memory intensive 

workloads are deployed in the same DC as shown in Figure 4.11. On the other 

hand, the average utilisation of CPU and memory components are 84% and 

48% respectively when CPU intensive workloads are deployed in traditional 

DCs as shown in Figure 4.5. Similarly, the average active utilisation of CPU 

and memory resource components are 97% and 87% respectively when 

memory intensive workloads are deployed in physically disaggregated DCs 

as seen in Figure 4.11. Relatively, as shown in Figure 4.5, 86% and 93% are 

the average active resource utilisation of CPU and memory components 

respectively when CPU intensive workloads are deployed in physically 

disaggregated DCs. Hence, greater proportional usage of DC resource 

components is achieved when memory intensive workloads are provisioned 

in both traditional and physically disaggregated DCs compared to when CPU 

intensive workloads are provisioned. 

The power consumption profiles of switching components also affects 

the placement of workload’s memory resource demands in rack-scale DC. 

This is consistent with the observation made when CPU intensive workloads 

were provisioned. This is because the trade-off between TMPC and the 

volume of inter-memory data shuffle traffic remains an important criterion for 

optimal placement of memory resource demands in rack-scale DCs. It can be 
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observed that lower TMPC is achieved when memory intensive workloads are 

provisioned in a rack-scale DC with optical network topology. However, it is 

achieved at the expense of higher network (inter-memory data shuffle) traffic 

and marginal increase in TNPC. In contrast, a rack-scale DC with hybrid or 

electrical network topology reduces network traffic to achieve lower TNPC by 

reducing inter-memory traffic in the network as the expense of higher TMPC. 

 

Figure 4.11: Average utilisation of active DC resource components under 20 
memory intensive workloads 

Comparison of TCPC and TMPC obtained in rack-scale and pod-scale 

DCs under memory intensive workloads also shows that physical 

disaggregation at rack-scale can achieve equal performance in terms of CPU 

and memory power efficiencies as physical disaggregation at pod-scale. This 

is possible (as explained previously) when resource allocation ensures that 

both CPU and memory resources are available in the appropriate diversity 

and number in each rack in the rack-scale DC. This requirement is satisfied 

when 5 memory intensive workloads are provisioned in rack-scale and pod-

scale DCs as shown in Figure 4.12, Figure 4.13 and Figure 4.14. These input 

workloads require one 3.2 GHz and two 2.4 GHz CPU components and one 

32 GB and two 24 GB memory components for optimal placement. Hence, 

they can be adequately provisioned within a single rack of the rack-scale DC 

to achieve the same optimal TCPC and TMPC observed in the pod-scale DC. 

Results obtained under 20 memory intensive workloads also reveal the strong 

impact of capacity constraint during workload placement as shown in Figure 

4.15 and Figure 4.16. For instance, because the memory resource demand of 

all 20 memory intensive workloads exceed 8 GB, the 8 GB memory 

components do not have sufficient capacity. Therefore, there is no active 8 

GB memory component in the DC as seen in Figure 4.16. 
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As expected, TNPC of pod-scale DC with electrical/hybrid network 

topology increases significantly relative to the TNPC of rack-scale DC with 

electrical/hybrid network topology. Note that the TNPC of the electrical 

network topology is always higher than that of the hybrid network topology. 

On the other hand, if optical network topology is adopted in both rack-scale 

and pod-scale DCs and the number of active racks in both DCs are equal, the 

TNPC of the rack-scale DC is approximately equal to the TNPC of the pod-

scale DC (e.g. under 10, 15 and 20 memory intensive workloads). If the 

number of active racks in rack-scale DC is less than the same number in pod-

scale DC, then the additional optical switch required per additional active rack 

is responsible for most of the difference in TNPC as shown in Figure 4.14. 

This is the case when 5 memory intensive workloads are provisioned. 

 

 

Figure 4.12: Total DC power consumption under memory intensive 
workloads when electrical network topology is deployed 

 

Figure 4.13: Total DC power consumption under memory intensive 
workloads when hybrid network topology is deployed 
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Figure 4.14: Total DC power consumption under memory intensive 
workloads when optical network topology is deployed 

Compared to the traditional DC with optical network topology, rack-scale 

DC with optical network topology reduces the TDPC by up to 6-20% under 

varying number of memory intensive workloads as shown in Figure 4.14. This 

is in contrast with 5-8% reduction in TDPC observed when CPU intensive 

workloads were provisioned in a similar setup. Lower CPU resource demand 

of memory intensive workloads is responsible for the savings TDPC observed. 

Relative to the traditional DC with optical network topology, the TDPC of pod-

scale DC with optical network topology is also often lower under varying 

number of memory intensive workloads as shown in Figure 4.14. For example, 

when 5 memory intensive workloads are optimally provisioned the TDPC in 

the pod-scale is less than that of traditional DC. In this case, only one rack is 

active in traditional DC while 2 active racks are required in pod-scale DC. 

 

Figure 4.15: Active CPU components under 20 memory intensive workloads 
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Figure 4.16: Active memory components under 20 memory intensive 
workloads 

Relative to the TDPC of traditional DC that deploy electrical or hybrid 

network topology, the TDPC of rack-scale DC with similar network topology is 

also lower as shown in Figure 4.12 and Figure 4.13. Likewise, relative to the 

TDPC of traditional DC that employ hybrid network topology, the TDPC of pod-

scale with similar network topology is occasionally (e.g. when 15 and 20 

memory intensive workloads are provisioned) lower as shown in Figure 4.13 

(except when 5 memory intensive workloads are optimally provisioned). 

Figure 4.12 also shows that the TDPC of pod-scale DC with electrical network 

topology is often (e.g. under 5, 10 and 15 memory intensive workloads) higher 

than that of traditional DC with a similar network topology. This is because of 

significant increase in TNPC which exceeds savings in TCPC and TMPC. 

However, as the number of workloads increases (i.e. 20 memory intensive 

workloads), the idle power of electrical switches in network topology is 

increasingly shared. Hence. their corresponding impact is reduced. 

Comparison of TDPC in Figure 4.6 - Figure 4.8 to the TDPC in Figure 

4.12 - Figure 4.14 shows that the TDPC is lower in most scenarios when 

memory intensive resources are provisioned in corresponding DC type and 

network. As expected, the TCPC decreases when memory intensive 

workloads are deployed instead of CPU intensive workloads in all DC and 

network types. On the other hand, TMPC increases accordingly in all DC and 

network types. The TNPC is often higher when memory intensive workloads 

are deployed instead of CPU intensive workloads in corresponding DC and 

network types. Since the same inter-memory shuffle traffic and inter-resource 

traffic are adopted when CPU or memory intensive workloads are deployed, 

high intensity of memory resource demand of input workloads is responsible 

for this trend. This is because opportunities to consolidate the memory 
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resource demands of workloads that are in the same group into the same 

memory component or node are reduced when memory intensive workloads 

are deployed. Hence, more traffic traverses higher network tiers compared to 

the situation when CPU intensive workloads with finer memory resource 

demands are deployed in traditional and rack-scale DCs. Relative to 

traditional and rack-scale DCs, increase in network traffic is minimised in pod-

scale DCs. This is because the adoption of homogenously resourced racks 

reduces the increase of network traffic which could be attributed to higher 

memory resource intensity. Furthermore, the impact of increased network 

traffic on the TNPC is low when the optical network topology is deployed in 

DCs compared to when electrical or hybrid topologies are deployed. This is 

because of electrical switches in both electrical and hybrid network topologies. 

These electrical switches have a power consumption profile that is 

proportional to the volume of traffic in the network. 

In spite of the marginal benefits enabled by pod-scale over rack-scale 

resource disaggregation, empirical work by authors in [106] shows that 

average performance degradation increases when CPU and memory 

resources are physically disaggregated beyond rack-scale. Moreover, an 

optical-circuit-switched (OCS) based network topology can also guarantee 

minimal access latency between disaggregated CPU and memory resource 

via temporal path reservation. Hence, the evaluations in subsequent section 

of this chapter adopts the rack-scale physical disaggregation as the maximum 

scale of resource disaggregation. The optical network topology is also 

adopted as the default network topology is succeeding sections of this 

chapter. This setup ensures minimal applications’ performance degradation in 

DCs as the concept of logical disaggregation is explored in traditional DCs. 

4.4.3 Logical Resource Disaggregation at Rack-Scale 

As shown earlier, physical disaggregation of compute resources at rack-scale 

is sufficient to enable the required flexibility if DC resource allocation ensures 

that resources are available in appropriate number and/or diversity. This 

flexibility brings about improvements in resource utilisation and overall DC 

energy efficiency. It was also observed that the use of an optical network 

topology within a rack-scale DC ensures maximal network energy efficiency. 

Furthermore, optical networks are also expected to enable minimal increase 

in resource access latency between separated compute resources. On the 

other hand, optical network topologies are under-utilised in traditional DCs 

where high-bandwidth traffic is node-limited. This negatively impacts the 

energy efficiency of the optical network topology in a traditional DC. However, 
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features, such as high bandwidth and ultra-low latency communication, 

supported by the optical network topology can be effectively used in traditional 

DCs by relaxing the locality constraint to permit resource sharing within the 

rack. This enables a second approach to achieve rack-scale DC via logical 

resource disaggregation. 

In a traditional DC, logical disaggregation implies that CPU and 

memory components remain in heterogeneous resourced nodes. However, 

individual access of each component over a suitable network is allowed and 

resource locality is confined to each rack in the DC to ensure latency related 

SLAs are enforced. This contrasts with a traditional DC where resource 

locality is confined to each node in the DC. Application of logical 

disaggregation to the traditional DC can enable performance that approaches 

those reported under the physically disaggregated rack-scale DC. The 

performance of logical disaggregation in traditional DC is compared to that of 

a physically disaggregated rack-scale DC using power consumption as the 

reference metric. The optical network topology is adopted under both 

scenarios. 

As expected, the performance of the logically disaggregated traditional 

DC with heterogeneous nodes approaches that of a physically disaggregated 

rack-scale DC where homogeneous nodes are placed in heterogeneous 

racks. The results in Figure 4.17 and Figure 4.18 show that the TDPC of a 

logically disaggregated traditional DC is marginally lower than that of a 

physically disaggregated rack-scale DC for varying number of CPU and 

memory intensive workloads. The marginal fall in TNPC due to better network 

utilisation efficiency in logically disaggregated traditional DC is responsible for 

the marginal decrease in TDPC. This is because CPU and memory 

components are co-located within the same node in the logically 

disaggregated traditional DC. Hence, remote memory access over intra-rack 

network fabric is occasionally prevented. Thus, enabling better network 

energy efficiency that lead to lower TNPC. This is not possible in physically 

disaggregated rack-scale DC. Relative to the physically disaggregated rack-

scale DC, the logically disaggregated traditional DC can also guarantee SLAs 

for ultra-latency sensitive workloads. This is because logically disaggregated 

traditional DC can default to a traditional DC infrastructure in extreme 

scenarios to satisfy SLAs while a physically disaggregated rack-scale DC 

cannot. Note that an extreme scenario implies that workloads with very high-

sensitivity to increase in memory access latency are being provisioned. 



- 79 - 

 

Figure 4.17: Total power consumption of physically and logically 
disaggregated rack-scale DCs under CPU intensive workloads 

 

Figure 4.18: Total power consumption of physically and logically 
disaggregated rack-scale DCs under memory intensive workloads 

The placement of CPU and/or memory resource demands in logically 

disaggregated traditional DC may differ from the placement in physical 

disaggregated rack-scale DC. Such placement disparity many necessary to 

ensure that the CPU-memory pairs used to provision some workloads are in 

the same node. Hence, the TCPC and/or TMPC under logically disaggregated 

traditional DC may marginally increase or decrease relative to the TCPC 

and/or TMPC under physically disaggregated rack-scale DC. Additionally, if 

logical disaggregation of traditional DC server is to be adopted, modular 

resource component design must be adopted in such servers. This will ensure 

better resource upgrade lifecycle relative to conventional traditional server 

architecture. 
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4.5 Micro-Service Architecture in Composable DCs 

In the previous sections, monolithic workloads were considered as input 

workloads for the variety of composable DCs studied. A monolithic workload 

has fixed resource demands and is designed to run on bespoke physical or 

virtual hardware for peak performance as seen in previous sections. As an 

alternative workload architecture, the micro-service architecture, proposes the 

decomposition of monolithic workloads into independent components called 

micro-services. A micro-service perform a specific business function and can 

be developed, tested, deployed, managed and scaled individually [38]. 

Related micro-services performing different business functions are thereafter 

provisioned concurrently to form an integrated workload which is comparable 

to the decomposed monolithic workload. For example, a monolithic e-

commerce workload which comprise of different intrinsic units performing 

accounting, inventory and ordering functions can be decoupled into 3 

independent micro-services. The 3 micro-services form a single integrated 

workload.  

Communication between micro-services associated with the same 

integrated workload is facilitated using well-defined standards or application 

programming interfaces (APIs) [39]–[41].  The APIs isolates inner workings of 

each micro-service. This novel approach can further enhance scalability, 

agility, and resource utilisation in DCs. In this section, the use of micro-

services to create integrated workloads in composable DCs (with pre-

allocated heterogeneous CPU and memory resources) is compared to the use 

of monolithic workloads. 

4.5.1 MILP Model Extension 

The model in Section 4.3.2 is extended by introducing set, parameters, 

variables, and constraints to establish the relationship between an integrated 

workload and its micro-services. The additional model set, parameters and 

variable are given as follows. 

Sets: 

𝐼 Set of integrated workloads 

Parameters:  

𝐶𝐼𝑖 CPU capacity of integrated workload 𝑖 

𝑀𝐼𝑖  Memory capacity of integrated workload 𝑖 
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𝑊𝐼𝑤𝑖 Indicates the relationship between a micro-service workload 

𝑤 and integrated workload 𝑖. 𝑊𝐼𝑤𝑖 = 1 if micro-service 

workload 𝑤 is associated with integrated workload 𝑖. 

Otherwise,  𝑊𝐼𝑤𝑖 = 0 

Variables: 

𝕚𝒊 Indicates the state of integrated workload 𝑖 i.e., served or 

unserved. 𝕚𝒊 = 1 indicates the integrated workload 𝑖 is 

served. Otherwise, 𝕚𝒊 = 0  

The model in Section 4.3.2 (where set 𝑊 represents a set of monolithic 

workloads) continues to represent the DCs supporting monolithic workloads. 

On the other hand, in DCs supporting micro-services, integrated workloads 

are represented by set 𝐼 while set 𝑊 is the set of micro-services. A group of 

micro-services make an integrated workload. Based on the results from 

previous sections of this chapter, impact of micro-services is evaluated in a 

logically disaggregated traditional DC. Hence, representing a composable DC 

infrastructure that can support the SLA requirements for both latency sensitive 

and non-sensitive workloads. The OCS-based optical network topology is 

adopted. Hence, inter-memory and inter-resource communication has little 

impact on workload resource placement as reported in the previous sections. 

The MILP model is further simplified by excluding variables and parameters 

required to estimate inter-memory traffic flows. This is because the results 

from the earlier sections show that inter-memory traffic has limited impact on 

workload placement over OCS-based optical network topology. 

In addition to constraints (4.14) – (4.31), the following constraints 

establish the relationship between integrated workloads and micro-services in 

a composable DC. 

∑ ∑ 𝑊𝐶𝑤 𝓬𝒘𝒋  𝑊𝐼𝑤𝑖

𝑗 ∈ 𝐶𝑤 ∈ 𝑊

= 𝐶𝐼𝑖 𝕚𝒊 

∀ 𝑖 ∈  𝐼 

(4.36) 

∑ ∑ 𝑊𝑀𝑤 𝓶𝒘𝒋 𝑊𝐼𝑤𝑖

𝑗 ∈ 𝑀𝑤 ∈ 𝑊

= 𝑀𝐼𝑖  𝕚𝒊 

∀ 𝑖 ∈  𝐼 

(4.37) 

Constraints (4.36) and (4.37) ensure that an integrated workload is served 

only if all micro-services associated with the integrated workloads are served. 

Otherwise, the integrated workload resource demand is rejected. These 

constraints apply only when micro-services are being provisioned. 
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4.5.2 Evaluation Scenarios and Results 

The resource allocation and resource classes described for the traditional DC 

from earlier sections are maintained. Similarly, the 20 CPU and memory 

intensive monolithic workloads used in earlier sections are adopted to 

represent integrated workloads. It is assumed that each integrated workload 

(CPU or memory intensive) is a unit comprising of two related micro-services 

that can function independently. Hence, to study the impact of increased 

workload modularity in composable DCs, each integrated workload is 

decoupled into two independent micro-service workloads. It is conservatively 

assumed that the in/out-bound inter-resource communication traffic for each 

integrated workload is equally shared between its intrinsic micro-services. 

Table 4.5 gives an illustration of all possible evaluation setups for both CPU 

and memory intensive input workload classes, the acronyms outlined in the 

Table 4.5 are used to represent each setup hereafter. 

Table 4.5: List of evaluation setups 

Setup Resource 

allocation 

Resource 

disaggregation 

Workload 

architecture 

TS-Mono Traditional 

server 

- Monolithic 

RS-Mono Traditional 

server 

Logical Monolithic 

TS-Micro Traditional 

server 

- Micro-service 

RS-Micro Traditional 

server 

Logical Micro-service 

The impact of different workload architectures and resource 

disaggregation is studied in DCs. Evaluation metrics  include DC resource 

power consumption, number of active DC resources and average active 

resource utilisation as illustrated in Figure 4.19, Figure 4.20, Figure 4.21 and 

Figure 4.22. The model achieves optimal results via bin-packing of workloads 

demands onto DC resources. The model attempts to achieve optimal resource 

power efficiency and utilisation efficiency within capacity and resource locality 

constraints. 

Note that the placement of workload demands, TCPC and TMPC 

obtained under the both TS-Mono and RS-Mono setups when CPU or memory 

intensive input workloads are provisioned is like results obtained in earlier 
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sections where similar scenarios have been considered. There are marginal 

drops in TMPC and TNPC obtained under both TS-Mono and RS-Mono 

setups relative to values obtained previously. The absence of inter-workload 

traffic in the revised model is responsible for this observation. Thus, the 

discussion of results in this section is focused on the performance of TS-Micro 

and RS-Micro setups and the comparison of such performance to the results 

under TS-Mono and RS-Mono setups. To avoid repetition, the results of the 

TS-Mono and RS-Mono setups are only illustrated in Figures. 

 

Figure 4.19: Power consumption of DCs 

An inspection of the TDPC under the CPU intensive workload in Figure 

4.19 shows that TS-Micro setup reduces the total resource power 

consumption by 9% compared to the TS-Mono setup. This is because of CPU 

intensive nature of input workloads and the dominance of CPU resource 

power consumption over other DC resource types. Reductions in CPU 

resource power consumption is responsible for more than half (74%) of 

savings made in total DC power consumption. Savings in total memory 

resource power consumption is responsible for further savings made. On the 

other hand, TNPC remains constant under both setups. A transit from TS-

Mono setup to TS-Micro setup under CPU intensive workload leads to 10% 

and 16% reductions in power consumption of CPUs and memory components 

respectively. These reductions are enabled via increased workload 

modularity. Increase workload modularity leads to improved bin-packing of 

finer workload resource demands into a different configuration of active 

servers to achieve greater power efficiency as seen in Figure 4.21 and Figure 

4.22. 
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Figure 4.20: Average utilisation of active DC server resources 

 

Figure 4.21: Active DC resources under CPU intensive workloads 

 

Figure 4.22: Active DC resources under memory intensive workloads 

Under the TS-Mono setup, capacity constraint enforced the use of high-

performance server to provision workloads with CPU resource demand that is 
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above 2.66 GHz. However, the finer resource demands under the TS-Micro 

setup enable improved bin-packing of demands into servers. This 

consequently improved active resource utilisation relative to the TS-Mono 

setup as shown in Figure 4.20. Nevertheless, it is important to note that CPU 

intensive nature of input workloads and the strict resource locality constraint 

of traditional servers led to the high number of active servers. Such servers 

have high average CPU utilisation and under-utilised memory resources. 

Therefore, disproportionate utilisation of DC resources under traditional DC 

architecture may persist even with increased workload modularity. 

A transition to the RS-Mono setup for CPU intensive workloads results 

in 7% decrease in TDPC compared to the TS-Mono setup. The relaxation of 

inter-resource locality constraint in logically disaggregated servers is 

responsible for this observation. Reductions in the power consumption of 

memory components is solely responsible for the drop observed. The impact 

of this drop on the TDPC is slightly restricted by the marginal rise in the TNPC 

(as shown in Figure 4.23). The TNPC increased because of the increase in 

the volume of traffic traversing on-board and intra-rack networks. 

 

Figure 4.23: Percentage increase or decrease in DC resource power 
consumption of CPU intensive workloads 

Relative to the TS-Mono setup, logical disaggregation in the RS-Mono 

setup enabled 51% reduction in TMPC at the expense of 1% rise in TNPC as 

shown in Figure 4.23. When monolithic workloads are considered under the 

RS-Mono setup, the same TCPC reported under the TS-Mono setup is 

obtained despite logical server-disaggregation. This is because improved 

packing of workloads’ intensive CPU demands was not feasible. This is sub-

optimal, relative to 10% reductions in TCPC achieved under TS-Micro setup 

as shown in Figure 4.23. Significant reductions in the TMPC under the RS-
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Mono setup relative to the TS-Mono setup is achieved via consolidation of 

granular memory resource demands onto reduced number of highly utilised 

memory components as shown in Figure 4.20 and Figure 4.22. CPU 

components are also highly utilised as shown in Figure 4.20. However, this is 

because of the CPU intensive nature of workload demands and not because 

of improved consolidation. Notwithstanding, disaggregation addresses 

disproportionate usage of DC resources seen in traditional DC infrastructure. 

This is because greater resource modularity enabled by disaggregation 

increases flexibility when CPU and memory components used to provision 

workload demands are selected. Hence, only the minimum number of 

resources needed to effectively satisfy each type of workload resource 

demand are activated. 

Adoption of both logical disaggregation and micro-service architecture 

under the RS-Micro setup addresses the limitation of RS-Mono setup to 

achieve additional savings in TDPC. Relative to TS-Mono, TS-Micro and RS-

Mono setups, RS-Micro leads to 15%, 7% and 8% reduction in total DC power 

consumption respectively. Thus, the RS-Micro setup activates unattained 

potentials of TS-Mono, TS-Micro and RS-Mono setups for optimal DC 

efficiency via improved bin-packing of fine resource demands onto active 

resource components. For example, relative to the RS-Mono setup, a move 

to the RS-micro leads to 8% reduction in TCPC. This power savings is 

achieved via the use of a different configuration of active CPU components as 

shown in Figure 4.21. At the same time, only marginal reduction in TMPC is 

achieved when RS-Micro setup is adopted over the RS-Mono setup. This is 

because the granularity of non-intensive memory resource demands is 

sufficient to achieve optimal memory power consumption in a disaggregated 

DC without adoption of the micro-service architecture. 

Similar observations to those reported above for CPU intensive workload 

class are repeated under memory intensive workload classes. Hence, 7%, 

20% and 23% reduction in the TDPC of the TS-Mono setup was achieved via 

the deployment of TS-Micro, RS-Mono and RS-Micro setups respectively for 

the memory intensive workload class. 

The TS-Micro setup enables reductions in TCPC, TMPC and TNPC 

compared to the TS-Mono setup for memory intensive workloads as shown in 

Figure 4.24. When workloads are memory intensive, the TS-Micro setup is 

more power efficient for provisioning memory demands than the RS-Mono 

setup. On the other hand, the RS-Mono setup is more power efficient for 

provisioning CPU demand of memory intensive workloads compared to the 
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TS-Micro setup as shown in Figure 4.24. This is because the memory 

intensive nature of monolithic workloads limits optimal consolidation of such 

workload memory resource demand in the RS-Mono setup. Thus, resulting 

into higher memory power consumption under RS-Mono setup relative to the 

TS-Micro setup as shown in Figure 4.19 and Figure 4.24. However, reductions 

in the TCPC which significantly dominates memory resource utilisation 

inefficiencies leads to lower TDPC in RS-Mono setup relative to the TS-Micro 

setup when memory intensive monolithic workloads are provisioned. This is 

because of the dominance of CPU resource power consumption over memory 

resources. The RS-Micro setup addresses the limitation of the RS-Mono 

setup. Relative to the TS-Micro, RS-Micro can deliver equal or better TCPC 

and TMPC. Hence, surpassing the limitations of the RS-Mono setup as shown 

in Figure 4.19. 

 

Figure 4.24: Percentage increase or decrease in DC resource power 
consumption of memory intensive workloads 

When the class of input workloads is neither CPU intensive nor memory 

intensive, we expected limited reduction in the TDPC of the TS-Mono setup 

relative to TS-Micro, RS-Mono or RS-Micro setup. This is because the impact 

of capacity constraint is relaxed when workloads are not CPU intensive nor 

memory intensive. Likewise, lower resource intensity of such workloads 

implies that they are likely to approach optimal performance (i.e. energy 

efficiency) under the TS-Mono setup. Hence, only marginal performance gains 

will be achieved if such workloads are provisioned under TS-Micro, RS-Mono 

or RS-Micro setup. 
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4.6 Heuristic for Energy Efficient Placement of Workloads in 

Composable DCs 

Results from the MILP model showed that efficient placement of monolithic 

and micro-service workloads in composable DCs is required to reach optimal 

energy efficiency in DCs with heterogeneous resource types. This task which 

was formulated as MILP model is a multi-dimensional bin packing problem 

with multi-sized bins of different resource types which may or may not be co-

located. The classical one-dimensional bin-packing problem is NP-complete, 

hence multi-dimensional bin packing problem with bins which have varying 

capacity and power consumption is also NP-complete. Therefore, only 

approximation algorithms that mimic the results of the MILP model for different 

workload classes can provide best-fit solutions without the need for exhaustive 

search and permutation of workloads and DC resources. To this end, a 

heuristic for energy efficient placement (HEEP) of workloads in a rack-scale 

composable DCs is proposed. 

4.6.1 HEEP Algorithm Description 

HEEP is a greedy algorithm designed to be deployed with a centralised or 

distributed DC orchestration and control platform. It is required that the 

orchestration platform maintain global knowledge of resource state, utilisation, 

and power consumption across the DC as in software defined DCs. The 

orchestrator should also be aware of input workload resource demands over 

a specific time frame. The orchestrator is responsible for energy efficient 

placement of different workload classes in different DC architectures. The flow 

chart of the HEEP algorithm is given in Figure 4.25. 

Given a set of input workloads with CPU or memory resources 

demands with inter-resource communication traffic, the algorithm achieves 

minimal total DC resource power consumption through the following steps. 

Input workloads are arranged in descending order of CPU/memory resource 

demands with respect to the workload class under consideration. This 

minimises blocking of workloads with ultra-high resource demands since the 

heuristic adopts a greedy approach. The sorted list of workloads is the input 

to the algorithm and is called the job list hereafter. The highest ordered 

workload in job list is set as the default query workload. The central 

orchestrator adopts a divide and conquer approach. It searches all nodes 

across the DC for the best CPU and memory resource component within each 

node to provision the query workload. If feasible, each node returns a 

candidate CPU and/or memory component to provision the query workload 
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alongside the corresponding power consumption and utilisation of such 

component in the candidate node. 

Note that if a rack with sufficient CPU and memory resource capacities 

to host the query workload does not exist (i.e., the workload blocking criterion) 

the query workload is blocked and removed from the job list. Otherwise, the 

central orchestrator selects the best CPU and memory components to 

provision the query workload in each rack. Selections are made using pre-

defined utilisation thresholds for CPU and memory components as illustrated 

in Figure 4.26. Afterwards, the central orchestrator also selects the best rack 

to provision the query workload in each pod based on the utilisation threshold 

of the best candidate CPU component of each rack. Finally, the central 

orchestrator selects the best pod to provision the query workload also based 

on the utilisation threshold of the best candidate CPU component in the best 

candidate rack of each pod. Afterwards, the query workload is removed from 

the job list. These steps imply that the algorithm searches all nodes, racks, 

and pods to obtain the best candidate resource components to host each 

workload resource demand. 

If the job list is not empty, the heuristic attempts to select the next query 

workload by scanning through the job list for a workload that will fit into unused 

capacities of active resources in the present best rack to increase utilisation. 

For resource intensive workloads, the scan attempts to fill the idle CPU 

capacity of the present best CPU component. This is because CPU 

components have higher peak power consumption compared to memory 

components. If the input workload class is CPU or memory intensive, the scan 

orders workloads in descending order of CPU resource demand intensity. 

Thus giving higher preference to CPU resource demand. Higher preference is 

also given to CPU resource demands when memory intensive workloads are 

being considered. This ensures CPU biased resource allocation which leads 

to optimal total DC resource power consumption. 

A successful scan returns a workload which becomes the new query 

workload that is placed in the present best rack. Otherwise, the highest 

ordered unserved workload in the job list is selected as the new query 

workload. When all workloads have been successfully placed or blocked, the 

algorithm estimates the total network power consumption resulting from 

workloads’ CPU and memory resource demand placement across the DC, 

and subsequently reports the total DC resource power consumption before 

stopping. Note that in the algorithm, ties are always broken by selecting the 

first item (i.e. workload, resource component or rack) that appears. 
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Figure 4.25: HEEP algorithm flow chart 
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Figure 4.26: Best component selection based on component’s class 
utilisation 

Given a list of candidate components for a specific resource demand 

type, their component class and the resulting utilisation of placing the resource 

demand in the candidate components, Figure 4.26 gives an illustration of the 

steps taken to select the best components. Selections are made based on 

relative utilisation thresholds of each component class. A component in the 

most energy efficient component class (in the list of candidate components) is 

given priority. However, such component is only adopted as the best 

component under the following conditions: 

 If the corresponding utilisation (𝑈) after the placement of the query 

resource demand is less than or equal to the lower utilisation threshold 

(𝜆𝑘) defined for that component’s class 𝑘. 

 If the corresponding utilisation (𝑈) after the placement of the query 

resource demand is greater than the upper utilisation threshold (Λ𝑘) 

defined for that component’s class 𝑘. 

 If the component is the last (and/or only) component in the list of 

candidate component being evaluated to support the query resource 

demand. 

Otherwise, the most energy efficient component is removed from the list of 

candidate components for the query resource demand. Subsequently, a new 

component is selected from the class of the most energy efficient component 

in list of candidate components. The lower and upper utilisation threshold must 
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be defined based on the relative energy efficiency of classes of resource 

components deployed in the composable DC. 

Using the CPU or memory resource component classes listed in Table 4.1, 

the lower and upper utilisation thresholds for resource component classes are 

defined as follows. 

 Given a set of candidate component classes 𝐾 for a given resource 

type which is sorted in descending order of energy efficiency. 

 The lower utilisation threshold (𝜆𝑘) of all component classes (except 

the last component class) in the set is always 0.5. This is because 

utilising 50% (or less) of a component class’s capacity to provision the 

most intensive resource demand leaves half (or more) of the class’s 

capacity in an idle state. This idle capacity can be utilised to provision 

another intensive resource demand. 

 The upper utilisation threshold (Λ𝑘) of all component classes (except 

last component) in the set is defined by Equation (4.38). This is 

because to energy efficiently utilise a resource component of class 𝑘 

which has higher capacity and power consumption than another 

resource component of class 𝑘 + 1, the resource demanded by all 

workloads placed in the component with greater power efficiency must 

be greater than the capacity of the component with lower power 

efficiency. 

Consequently, if it is assumed that all CPU or memory resource 

component classes listed in Table 4.1 are present in a list of candidate 

components for a given query workload, the relative utilisation thresholds of 

all candidate component classes (except last component) are as given in 

Table 4.6.  

Λ𝑘 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑘+1

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑘
 

∀𝑘 ∈ 𝐾: 𝑘 ≠ |𝐾| 

(4.38) 

Table 4.6: Relative utilisation threshold for component classes  

𝒌 

∈ 𝑲 

CPU 

Capacity 

𝝀𝒌 𝚲𝒌 Memory 

Capacity 

𝝀𝒌 𝚲𝒌 

1 3.6GHz 0.5 0.73889 32GB 0.5 0.75 

2 2.66GHz 0.5 0.90226 24GB 0.5 0.333 

3 2.4GHz N/A N/A 8GB N/A N/A 

It is important to note that the HEEP algorithm was designed for rack-

scale composable DCs based on the discussions in earlier sections of this 
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paper. However, the heuristic can be extended to support a pod-scale 

composable DC should the need arise. This can be achieved by revising the 

workload blocking criterion in the heuristic to consider availability of all suitable 

resource component types at the pod-level rather than at the rack-level as 

described above. 

4.6.2 Complexity Analysis 

The MILP model is computationally intractable especially when larger number 

on binary variable are required. This is the case for in the MILP formulations 

in this chapter. The computational complexity of HEEP algorithm is 𝑂(𝑛). 

Where 𝑛 = (𝑤 ∙ 𝑝 ∙ 𝑟 ∙ 𝑠 ∙ 𝑐); 𝑤 is the number of workloads to be placed; 𝑝 is 

the number of pods in the DC; 𝑟 is the highest number of racks in any pod; 𝑠 

is the highest number of servers/nodes in any rack in the DC; and 𝑐 is the 

maximum number of a unique resource component in a server/node. This is 

because in the worst case, to place all workloads energy efficiently in the 

composable DC, all resource components in the DC must be checked for each 

workload. However, effective use global knowledge in the algorithm is 

expected to ensure lower average execution time in a practical scenario. This 

is because global knowledge of DC infrastructure is obtained after placing the 

first workload. Such knowledge can be used to rapidly place some workloads 

without conducting a fresh search through all components in the DC.   

4.6.3 Performance Evaluation 

The performance of the HEEP algorithm is evaluated via a comparison with 

the optimal results obtained by solving the MILP model in preceding sections 

using similar input parameters. The results show that the total DC resource 

power consumption achieved by the HEEP algorithm replicates the trend 

reported from solving the MILP under different scenarios. Figure 4.27 and 

Figure 4.28 show the results obtained from MILP model and those obtained 

from the HEEP algorithm when 20 CPU and memory intensive are provisioned 

under different workload and DC architectures. 

Similar to results obtained by solving the MILP model, the HEEP 

algorithm also shows that the highest total DC resource power consumption 

is observed when monolithic workloads are deployed in traditional DCs. 

Results obtained using the HEEP algorithm also shows the effectiveness of 

logical server disaggregation and adoption of more granular workload 

architecture towards the reduction of total DC power consumption. Relative to 

the MILP model results, Figure 4.27 shows that the highest percentage 

increase in the total DC resource power consumption observed when HEEP 
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algorithm is deployed for CPU intensive workloads under different DC and 

workload architectures is 14%. Under 20 memory intensive workloads, 

percentage increase in total DC resource power consumption of the HEEP 

algorithm relative to the results obtained from solving the MILP model does 

not exceed 11% for all scenarios in Figure 4.28. 

 

Figure 4.27: HEEP and MILP power consumption under 20 CPU intensive 
workloads 

 

Figure 4.28: HEEP and MILP power consumption under 20 memory 
intensive workloads 

Figure 4.29 and Figure 4.30 show the total DC power consumption when 

varying number of CPU and memory intensive monolithic workloads are used 

as input to both the MILP model and the HEEP algorithm. Figure 4.31 shows 

similar results for 20 integrated workloads comprising of micro-services. For 

the small number of in workloads (i.e. 5 - 20) considered, the results show that 

the HEEP algorithm is more effective for provisioning workloads in 

composable DCs than it is for traditional DCs. Relative to the MILP model, the 



- 95 - 

average percentage increase in the total DC power consumption when the 

HEEP algorithm is adopted in composable DCs are 6% and 8% for CPU and 

memory intensive workloads classes respectively. Compared to the MILP 

model, these values increase to 11% and 19% for CPU and memory intensive 

workload classes respectively when the HEEP algorithm is adopted in the 

traditional DC. Hence, the HEEP algorithm is somewhat less effective than 

the MILP in some scenarios. The greedy approach adopted by the HEEP 

algorithm is responsible for this. On the other hand, the MILP optimisation 

approach performs exhaustive search to obtain an exact solution. It is 

generally expected that the margins between results obtained using the MILP 

model and HEEP algorithm will decrease as the number and diversity of input 

workload demands in each workload class increase. This is because of the 

expected increase in the probability of workload consolidation onto DC 

resources. This will in turn lead to total DC resource power consumption that 

approach those reported from solving the MILP model. 

 

Figure 4.29: Comparison of HEEP and MILP power consumption under CPU 
intensive workloads 
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Figure 4.30: Comparison of HEEP and MILP power consumption under 
memory intensive workloads 

 

Figure 4.31: Comparison of HEEP and MILP model DC power consumption 
for 20 integrated workloads. 

Furthermore, when executed on a basic personal computer with Intel 

Core i5-6400 6400 - 2.7 GHz Quad-Core Processor and 16 GB of memory, 

the execution time of the HEEP algorithm does not exceed 2 seconds in all 

evaluation scenarios. Hence, the HEEP algorithm is more practical and 

scalable for more realistic DC sizes relative to the adoption of a MILP model. 

Solving the MILP model for realistic DC sizes will require significantly larger 

computing power to obtain an exact solution. Future investigations will adopt 

the HEEP algorithm to evaluate the implementation of the composable 

infrastructure concept in realistic DC sizes. To improve the performance of 

both MILP model and heuristics, frequent re-optimisation of the MILP model 

based on changes in workloads distribution could be performed. Insights 
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derived from MILP model re-optimisation would guide re-optimisation of the 

heuristic for more specific scenarios as workload distribution changes. 

4.7 Summary 

In this chapter, we investigated the optimal scale and scope of resource 

disaggregation for an energy efficient composable DC infrastructure. We 

considered electrical, hybrid, and optical network topologies from the literature 

in the evaluation scenario. We developed a MILP model that places workloads 

energy efficiently in composable DCs while minimising both compute and 

network power consumption and workload rejection. By placing CPU intensive 

and memory intensive workloads energy efficiently in the infrastructure setup, 

our results showed that physical disaggregation at rack-scale is sufficient to 

achieve optimal utilisation of compute resources when resource 

configuration/allocation is suitable. Furthermore, our results also showed that 

the optical DC network is most suitable to achieve optimal energy efficiency 

in composable DCs. Relative to the traditional DC, physical disaggregation of 

server resources at rack-scale enable 5-8% and 6-20% saving in the total DC 

power consumptions when CPU and memory intensive workloads were 

considered respectively. In contrast to physical disaggregation of traditional 

servers at rack-scale, we found that logical disaggregation of traditional server 

over an optical network at rack-scale achieved comparable compute energy 

efficiency. Logical disaggregation of traditional server also enabled greater 

network energy efficiency in composable DCs. Furthermore, this chapter also 

studied the impact of increased workload modularity in composable DCs. Our 

result showed that increased workload modularity enable by the micro-service 

architecture complements increased resource modularity which resource 

disaggregation enables. Hence, both techniques should be combined to 

achieve optimal energy efficiency in composable DCs. Finally, we proposed a 

real-time heuristic for energy efficient placement of workloads in composable 

DCs. The heuristic replicated the trends and results produced by solving the 

MILP model. 
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Chapter 5 : Network Topologies for Composable Data Centres 

5.1 Introduction 

In this Chapter, we describe two variants of converged and targeted network 

for rack-scale composable DCs. We compare the performance of the targeted 

networks to that of another topology from the literature that adopts a generic 

design approach by formulating a MILP model. The MILP model conducts 

network load test in multi-rack set-up. Additionally, we conduct further 

evaluation of the novel topologies in realistic scenarios via an extended MILP 

model. The extended MILP model performs energy efficient placement of 

virtual machines in composable DCs that deploy the proposed network 

topologies. The composable DCs concurrently implement logical, hybrid or 

physical disaggregation at rack-scale. 

5.2 Motivation 

A suitable network topology is required to implement disaggregation in a 

composable infrastructure. Such network topology must support low latency 

and high bandwidth physical or logical connections between disaggregated 

resource components which exchange inter-resource traffic. Although, 

traditional DC network topologies may be maintained in composable DCs to 

operate in parallel with a dedicated topology that supports inter-resource data 

exchange, a converged network topology maybe preferred. A converged 

network topology can convey inter-resource traffic, east-west traffic, and 

north-south traffic concurrently. Hence, it may reduce network complexity and 

cost relative to dual topology setup. A converged network can also enable 

greater efficiency by improving network utilisation because both small (mice) 

and large (elephant) flows can be multiplexed into common network links.  

 Silicon photonics transceivers are widely used in today’s DC. Optical 

fibre is also often used to interconnect servers in DCs. Further adoption of 

optical communication components, technologies, and techniques in DC 

environments can aid the emergence of a suitable network topologies for 

composable DC infrastructures. In Chapter 4, a reference all-optical 

composable DC network (EVROS) proved to be more energy efficient when 

compared to electrical and hybrid networks considered. The result was 

obtained in evaluation scenarios that assumed that all composable DC 

networks are un-capacitated. Un-capacitated networks can support the all 

resulting traffic that follows energy efficient placement of workload demands 
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into compute resources. Hence, network constraints were not considered in 

spite of the considering network cost as represented by power consumption. 

In practice, network constraints are extremely important factors that will 

determine the optimal performance of composable DCs. Regardless of the 

enormous potential bandwidth and low latency communication that the 

adoption of optical technology in the DC environment promises, attainable 

capacity remains limited by the following optical network constraints:  

 the maximum data rate of single wavelength,  

 number of interfaces/transceivers that can be packed onto single node, 

 limited optical buffering capability, and  

 lower efficiency associated with all-optical routing with limited or no 

wavelength/OEO conversions.  

 These limitations inhibit practical implementation of the reference all-

optical composable DC network (EVROS) adopted in Chapter 4. For instance, 

adoption of all-optical routing without wavelength conversion in the inter-rack 

network would limit optimal utilisation of the network. Additionally, the 

deployment of EVROS in a practical DC, where each rack comprises of up to 

48 resource nodes, is somewhat technically and financially challenging. This 

is because a practical implementation of the generic design approach adopted 

by EVROS as proposed requires that each resource node must support 48 

interfaces to achieve full mesh physical connectivity within a rack. 

 Poor utilisation of inter-rack fabric of the EVROS topology was 

addressed in [89] where the authors proposed an enhanced variant called an 

all-optical programmable disaggregated DC network (AOPD-DCN). AOPD-

DCN introduced architecture-on-demand (AoD) switches as shown in Figure 

5.1. The AoD switches are deployed to replace the WSS top of cluster (ToC) 

switches and the inter-cluster switch. Each AoD switch comprise of both OCS 

and OPS modules. However, the challenge associated with the number of 

interfaces, which must be integrated onto each node, persists and it poses 

both technical and financial difficulties in a composable DC.  

 The view that high data rate links are required concurrently between all 

co-rack compute nodes in a disaggregated DC as proposed in EVROS and 

AOPD-DCN can be very costly and wasteful. For instance, if a traditional 

server with one CPU, one memory, one storage device and one NIC is 

physically disaggregated into four homogenous compute nodes. Given,  

 CPU-to-memory traffic of 400 Gbps and 200 Gbps in the uplink and 

downlink directions respectively;  

 CPU-to-storage traffic of 60 Gbps and 40 Gbps in the uplink and 

downlink directions respectively; and  
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 CPU-to-IO traffic of 10 Gbps and 8 Gbps in the uplink and downlink 

directions respectively. 

Equation (5.1) shows the corresponding traffic matrix between the 

disaggregated compute components. The traffic matrix shows that the 

compute node with CPU is a hotspot which also requires high capacity 

interfaces. Similarly, the compute node with RAM also requires high 

capacity interfaces because of the high-bandwidth communication with the 

remote CPU. Capacity requirement of compute nodes with HDD and NIC 

require low-medium interface capacity. Furthermore, in rack with multiple 

disaggregated servers, it is unlikely that a compute node in a rack would 

communicate with all other co-rack compute nodes concurrently. 

Additionally, when a compute node holds multiple CPU components, i.e., 

a hotspot, it is unlikely in a practical scenario that such a node 

communicates with all other co-rack nodes at maximum capacity 

concurrently. In this chapter, a novel and more practical Network for 

Composable DCs (NetCoD) architecture is proposed. NetCoD addresses 

the limitation of the approach adopted in EVROS and AOPD-DCN.  

 

Figure 5.1: All-optical programmable disaggregated DC network(AOPD-
DCN) 
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5.3 Network for Composable DC 

Network for Composable DC (NetCoD) is a converged network topology that 

leverages optical communication technologies and silicon photonics. 

Consequently, it supports high-speed and low latency communication in 
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composable DCs. Two variants of NetCoD are described in this chapter i.e., 

electrical and electrical-optical variants. Both variants of NetCoD are designed 

for a composable DC that implements resource disaggregation at rack-scale. 

Therefore, inter-resource communication is limited to the internal network of 

each rack. On the other hand, traditional DC traffic i.e., east-west and north-

south traffic traverses the inter-rack network of the DC. A common intra-rack 

network design is adopted in both variants of NetCoD. However, each variant 

integrates with a different inter-rack network in composable DCs. 

 

Figure 5.2: Network for composable DCs (NetCoD) 

5.3.1 Intra-Rack Network 

The intra-rack network within each rack, as shown in Figure 5.2, leverages 

optical communication components, technologies and techniques. The intra-
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rack network supports high-speed and low latency communication between 

intra-rack resource components. Optical components such as optical 

backplane, optical circulators, combiners, demultiplexers, optical switches 

and silicon photonic transceivers are adopted at each compute node. The 

functions of the intra-rack fabric components are as follows: 

 Passive optical backplane: The optical backplane is a passive 

wavelength routing network within each rack. It supports full mesh 

physical connectivity between nodes in the rack via point-to-point links. 

To minimise the size of the optical backplane within each rack due to 

unidirectional transmission on an optical link, bi-directional 

transmission may be employed.  However, it is required that the same 

wavelength is not active in forward and reverse directions 

simultaneously when bi-directional communication is used. 

Wavelength division multiplexing (WDM) enables increased 

transmission capacity over a point-to-point optical link between two 

compute nodes. Furthermore, space division multiplexing (SDM) 

enables wavelength reuse on the optical backplane within the same 

rack. This is possible because each optical link establishes a dedicated 

point-to-point communication link between unique node pairs in the 

rack 

 Node Controller Hub: Each node in the rack-scale composable DC 

infrastructure has a node controller hub (NCH). The NCH is proposed 

to replace the platform controller hub of traditional servers. As shown 

in Figure 5.2, all resource-components in a node are connected to the 

NCH. Resource components in the same node also maintain direct 

connectivity to one another via the node’s on-board fabric to reduce the 

workload on the NCH, to ensure path diversity within the node and for 

greater energy efficiency. The NCH is a network element which 

performs network related computation in NetCoD. It may be 

implemented on an application-specific integrated circuit (ASIC) in 

commercial deployment and by a field-programmable gate array 

(FPGA) in experimental scenarios. The NCH performs the following 

functions: 

a. End-to-end virtual network setup (i.e., the routing function) for inter-

nodal communication via direct or indirect physical links. 

b. Assignment of wavelengths for hop-to-hop communication (i.e., the 

forwarding function) over physical optical links. 

c. Multiplexing of data onto and the de-multiplexing of data from 

assigned inter-nodal wavelengths. 

d. Acting as an intermediate node on an indirect multi-hop path 

between two nodes. 

e. Optical switch path configuration to prevent wavelength collision on 

the passive optical backplane. 

f. Rate control and traffic scheduling as required to achieve optimal 

performance. 
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At each node, the NCH performs wavelength selection to avoid 

wavelength collision. Wavelength selection is performed based on 

global knowledge of the selection made at other nodes. Hence, all 

NCHs in NetCoD must be centrally controlled and orchestrated. This 

ensures optimal wavelength utilisation and the ability to operate 

NetCoD at maximum capacity. 

 Integrated Interfaces: Integrated with each compute node’s NCH are 

two interfaces. Each interface comprises of an array of optical 

transceivers that transmit and receive a set of pre-defined wavelengths. 

The wavelengths transmitted by one interface are received by the other 

interface and vice versa. This enables a node to use all the 

wavelengths supported by its interface for transmission and reception 

of data concurrently. A common interface pair is deployed in all 

compute nodes within each rack to enable easy replication and to 

leverage the benefits of economies of scale. The interface setup at 

each node promotes wavelength reuse in each rack and minimises the 

number of unique wavelengths required within each rack. Additionally, 

adoption of the interface pair at each node also enables path diversity 

which improves the resilience and capacity of NetCoD. The integration 

of a node’s NCH element and the pair of interfaces may be 

implemented as a co-packaged device with optical IO by leveraging 

silicon photonics technologies. 

 De-multiplexer: In the transmitting direction, the de-multiplexers at 

each node separate the wavelengths transmitted from the interface into 

the appropriate port of the optical switch. On the other hand, in the 

receiving direction, the de-multiplexer receives multiplexed 

wavelengths directed to a corresponding node from the passive optical 

backplane. Afterwards, the de-multiplexer forwards each wavelength to 

the interface that should receive the wavelength. This is achieved via 

pre-configured physical connection between the de-multiplexer and the 

pair of interfaces attached to each node.  

 Optical switches: These are positioned before the point-to-point 

optical link between a node and the optical backplane. The optical 

switches prevent wavelength collision on the optical backplane and at 

the receiving nodes. Path configuration via the optical switch should be 

performed by NCH based on global knowledge. An integrated and 

energy efficient SOA-based optical switch with low switching speed is 

proposed to implement the optical switch. 

 Combiners: In the receiving direction, the combiner at each compute 

node receives all wavelengths that have successfully traversed the 

optical backplane to reach the corresponding compute node. The 

combiner combines and forwards the received wavelengths to the de-

multiplexer. 
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 Optical Circulators: Circulators enable bi-directional communication 

on optical links of the intra-rack backplane. Circulators are optional and 

may be employed between the optical backplane and the optical switch 

and also between the de-multiplexers and the integrated interfaces of 

each compute node. Adoption of bi-directional communication can 

reduce the size of each rack’s optical backplane by half relative to the 

use of unidirectional communication. However, use of bidirectional 

communication over an optical link in the optical backplane may limit 

the attainable capacity because wavelength utilisation efficiency may 

reduce. It is important to note that the sets of transmitting and receiving 

wavelengths on each optical link must be mutually exclusive. This 

minimises the impact of crosstalk noise in the system when bi-

directional transmission is employed over optical links. 

5.3.1.1 Link Setup Process in Intra-Rack Network 

The following process is implemented to setup a link between two nodes 

within a rack that employs NetCoD. The NCH selects wavelengths from the 

pool of wavelengths available at the pair of interfaces at each source node. 

The selected wavelengths must ensure collision free transmission on the 

optical backplane and at the destination node. In the transmitting direction, the 

wavelengths transmitted by the interfaces of each node flow through optical 

circulators to the de-multiplexer. The de-multiplexer separates all transmitted 

wavelengths of each node. and is connected to an optical switch. The optical 

switch directs the transmitted wavelengths to the appropriate link on the rack’s 

optical backplane. Wavelength collision is avoided via the configuration of 

optical switches and via the use of parallel paths on the optical backplane. 

Therefore, dedicated communication paths can be established between each 

communicating nodes pair. 

 In the receiving direction, a combiner receives all transmitted 

wavelengths from other co-rack nodes and forwards the received wavelengths 

to a de-multiplexer. The de-multiplexer separates and forwards each received 

wavelength to the corresponding circulator that leads to the receiving 

interface. At the interface, each transceiver receives its associated 

wavelength and forwards the received data to the NCH. The NCH de-

multiplexes the received data stream and forwards to the appropriate 

resource-component if it is in the destination node. Otherwise, the NCH 

forwards the received data to the corresponding interface linked to the next 

hop on the multi-hop communication path and selects an appropriate 

wavelength(s).  

 On the one hand, optical switches ensure that a wavelength is only 

transmitted to an intended destination node via the optical backplane. On the 
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other hand, combiners receive the ingress traffic (on the selected wavelengths 

destined for each node) from the optical backplane. Consequently, optical 

switches and combiners collectively reduce the number of interfaces required 

for each node to communicate over the full mesh optical backplane in a rack. 

This is because concurrent all-to-all communication is not expected between 

all co-rack nodes. 

 

Figure 5.3: Wavelength assignment between 4 intra-rack nodes of NetCoD 

 As an illustration, consider a rack comprising of 4 compute nodes as 

illustrated in Figure 5.3. “Interface 1” of each NCH emits wavelengths λ0 and 

λ1 and receives λ2 and λ3 while “Interface 2” of each NCH emits wavelengths 

λ2 and λ3 and receives wavelengths λ0 and λ1. Figure 5.3 shows a at each 

node that leads to maximum throughput in the intra-rack network. This 

wavelength assignment does not violate network constraints under 

unidirectional or bi-directional transmission mode on optical links. As 

illustrated in Figure 5.3, Node 1 transmits wavelengths λ0-λ3 to Node 2; Node 

2 transmits wavelengths λ0-λ3 to Node 4; Node 4 transmits wavelengths λ0-

λ3 to Node 1; and Node 3 transmits wavelengths λ0-λ3 to Node 1. Hence, all 

nodes transmit and receive at full capacity by leveraging on WDM. 

Furthermore, SDM enables wavelength reuse on disjoint physical links as 

shown in Figure 5.3. It is important to note that the wavelength routing and 

assignment illustrated in Figure 5.3 is a solution to a MILP model that 

maximises throughput between four intra-rack nodes. Section 5.4.1 gives a 

full description of the MILP model that was solved.  
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5.3.2 Inter-Rack Network 

Two variants of inter-rack network are proposed for NetCoD. The first variant 

called electrical-NetCoD (E-NetCoD) adopts a purely electrical inter-rack 

network because it comprises of only electrical switches. The second variant 

called electrical-optical-NetCoD (EO-NetCoD) adopts a hybrid inter-rack 

network which includes both electrical and optical switches. The physical 

topology depicted in Figure 5.4 is adopted for both variants of NetCoD in multi-

cluster composable DC.  

 

Figure 5.4: NetCoD in multi-cluster DC 

5.3.2.1 Electrical NetCoD 

In the electrical variant of NetCoD (E-NetCoD), the optical backplane of the 

intra-rack network also includes additional point-to-point links. These 

additional links connect compute nodes in each rack to a bespoke electrical 

leaf switch that functions as a top of rack (ToR) switch. The intra-rack network 

integrates with an electrical leaf-spine DCN topology via such links a shown 

in Figure 5.4. The leaf switches are equipped with specialised interfaces to 

enable communication with compute nodes within the same rack via the NCH. 

The bespoke leaf switch within each rack and NCH (attached to each compute 

node in the rack) are centrally orchestrated to avoid wavelength collision. It is 

assumed that the bespoke leaf switch can perform wavelength conversion as 

required. The leaf switch is also expected to possess intrinsic intelligence to 

select wavelengths that avoid collision when communicating with each NCH. 

The leaf switch in each rack connects to the electrical spine (ToC) switches in 

the higher tier of the leaf–spine DCN topology. The spine switches connect to 

electrical super-spine/gateway switch to support inter-cluster communication 

and north-south communication in the composable DC.  
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 All electrical switches in the topologies perform routing and forwarding 

functions. However, the super-spine switch is expected to support higher 

capacity relative to other electrical switches in the leaf-spine physical 

topology. A leaf-spine network topology is employed in the inter-rack fabric 

because of its well-known advantages such as robustness enabled via path 

diversity and non-disruptive scalability. Additionally, the used of multiple 

aggregated physical links between switches in the inter-rack fabric may be 

implemented in large deployment scenarios, as shown in Figure 5.4, to 

improve capacity as required. The integration of intra-rack fabric and inter-

rack leaf-spine topology of E-NetCoD conveys all traffic types (i.e. inter-

resource traffic, east-west traffic, and north-south traffic) in the composable 

DC. However, rack-scale disaggregation ensures that inter-resource traffic is 

limited to each rack. This prevents oversubscription and throughput 

challenges that may otherwise arise in such a converged network that is 

deployed in a composable DC.  

 In addition to supporting inter-rack traffic exchanges, the leaf (ToR) 

switches can also function as an intermediate node for inter-resource traffic 

and east-west traffic exchange within the same rack. A low latency electrical 

switch such as the switch proposed by the Gen-Z consortium [82] may be 

adopted as the leaf (ToR) switch. The integration of the optical backplane and 

the leaf-spine topology in each rack enables additional paths for inter-resource 

communication within the rack. Therefore, improving capacity and robustness. 

However, network bottlenecks resulting from the adoption of a shared medium 

for all communication types may occur at each node. It is expected that higher 

capacity of single wavelength data rate in optical links will mitigate such 

bottlenecks. In recent times, up to 100 Gbps single wavelength transmission 

have been demonstrated [107] and even high capacity is expected as optical 

technologies advance. Notwithstanding, a complex control mechanism is 

required to effectively manage the transmission of heterogeneous traffic types 

concurrently on the same media.  

5.3.2.2 Electrical-Optical NetCoD 

The electrical-optical variant of NetCoD (EO-NetCoD) adopts optical switches 

in place of electrical leaf and spine switches of the E-NetCoD while 

maintaining an electrical gateway switch. This reduces the OEO conversions 

in the network topology to enable reduced latency and reduced power 

consumption. This is because each compute node can select appropriate 

wavelengths to establish both intra-rack and inter-rack light-paths. 

Alternatively, multiple light-paths may be established to facilitate inter-rack 
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communication via intermediate nodes. The electrical gateway switch or 

compute nodes in other racks of the composable DC can act as an 

intermediate node. It is assumed that the high capacity electrical gateway 

switch can perform wavelength conversion as required. It is also assumed that 

the gateway switch has intrinsic intelligence to select wavelengths that avoid 

collision when communicating over the inter-rack network. 

 A limitation of EO-NetCoD is the degradation in network performance 

resulting from wavelength continuity when routing is performed solely in the 

optical domain with limited wavelength and OEO conversions. Wavelength 

continuity leads to reduction in wavelength utilisation and higher number of 

network connection request rejections in optical networks. Hence, it reduces 

network flexibility relative to a network that performs more OEO or wavelength 

conversions. However, this challenge may be mitigated when high single 

wavelength transmission rate is adopted. Higher single wavelength 

transmission rate is constrained by technological advancement. Hence, 

adoption of greater path diversity between switches in the inter-rack network 

is proposed to further mitigate challenges introduced by wavelength continuity 

as given in Figure 5.4. Factors that may determine the number of diverse 

paths provisioned between switches of the inter-rack network include but are 

not limited to DC cluster size, size of the wavelength-pool supported in the 

NetCoD system and network availability criteria desired in the DC. It is 

expected that the adoption of rack-scale disaggregation will enable significant 

reductions in the volume of inter-rack traffic in the composable DC. This is 

because only east-west traffic and north-south traffic types will traverse inter-

rack network. Such traffic types have relatively lower bandwidth and higher 

tolerance to latency. Furthermore, a strategy that groups and places 

workloads with frequent east-west traffic exchange inside the same rack will 

also reduce the east-west traffic between racks in the composable DC. 

 In contrast to E-NetCoD where electrical switches enable wavelength 

and OEO conversions intrinsically, the adoption of optical switches in EO-

NetCoD increases the likelihood of wavelength collision. This consequently 

reduces wavelength reuse opportunities. On the one hand, NCH element 

attached to each compute node can enable wavelength and OEO 

conversions. This can be achieved via selection of appropriate wavelengths 

for hop-to-hop communication over both intra-rack and inter-rack networks. 

Furthermore, the electrical gateway switch forms an important boundary for 

wavelength collision and reuse in the inter-rack network of EO-NetCoD. To 

complement similar functions performed by the NCH, the gateway switch also 
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performs OEO and wavelength conversions. The boundary introduced by the 

gateway switch limits the wavelength collision domain to each cluster of the 

composable DC. Hence, each cluster is an independent wavelength collision 

domain. The pool of supported wavelengths can be independently reused in 

each cluster of the composable DC to maximise wavelength utilisation and 

total network capacity. Additionally, the capacity of links between optical 

switches in the inter-rack network is limited because wavelength collision 

avoidance is required in the all-optical layer. To overcome this limitation, path 

diversity should be employed between switches in the inter-rack network to 

improve capacity in large deployment scenarios. 

It is important to note that a passive all-optical switch such as the arrayed 

waveguide grating router (AWGR) may be used to implement the leaf-spine 

layer of the EO-NetCoD. However, there are inherent disadvantages of using 

a passive optical switch which has a fixed routing matrix. Such design reduces 

cost efficiency and energy efficiency because multiple transceivers must be 

fitted onto each node’s interface. For example, consider a single rack with 48 

servers. To achieve full mesh connectivity between all servers in that rack via 

single hop communication through an AWGR (without the use of time slots on 

wavelengths), a 48x48 AWGR is required. Each node’s interface must support 

the transmission and reception of 48 unique wavelengths. On the other hand, 

multi-hop communication path can be used to achieve virtual full mesh 

connectivity. However, this implies that routing and forwarding costs (power 

consumption) must be incurred at intermediate nodes on the communication 

path. In scenarios with high multi-hop communication, such power 

consumptions may outweigh any power savings achieved via the adoption of 

a passive optical switch with zero power consumption. Therefore, a 

configurable optical switch such as an optical cross connect (OXC) is 

proposed for EO-NetCoD to enable an adaptable and dynamic network for 

composable DCs. 

5.3.3 Scaling in NetCoD 

At the rack level, both variants of NetCoD scale-out via incremental and non-

disruptive installation of additional compute nodes. The newly added compute 

nodes are connected to existing compute nodes and to the ToR switch in that 

rack via the passive optical backplane. At the cluster level, NetCoD scales-out 

via incremental and non-disruptive installation of more racks. The additional 

racks are connected to the dedicated leaf-spine inter-rack network of each 

cluster. Finally, at the DC-level, NetCoD supports on-demand scale-out via 
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incremental and non-disruptive installation of more clusters which are 

connected to the electrical gateway switch of the composable DC.   

5.4 MILP Model for Network Topology for Composable DCs 

This section presents a MILP model that optimises both variants of NetCoD. 

The MILP model is also revised to implement AOPD-DCN. The MILP model 

performs routing and forwarding of network traffic over the corresponding 

network topology to minimise or maximise a specific objective. 

5.4.1 MILP Model for E-NetCoD 

The model sets, parameters, and variables for a composable DC that 

implements E-NetCoD are given as follows. 

Sets: 

𝐴 Set of compute nodes 𝐴 ⊆ 𝑁 

𝐺 Set of DC gateway switches to the Internet 𝐺 ⊆ 𝑁 

𝑌 Set of compute nodes and DC gateway switches 𝑌 ⊆ 𝑁; 𝑌 =

𝐴 ∪ 𝐺  

𝑍 Set of leaf and spine switches 𝑍 ⊆ 𝑁 

𝑄 Set of routing and forwarding nodes in the DC, 𝑄 ⊆ 𝑁; 𝑄 =

𝑍 ∪ 𝐴 ∪ 𝐺 

𝑁 Set of all Nodes, 𝑁 = 𝑍 ∪ 𝐴 ∪ 𝐺 

𝑁𝑚 Set of all neighbour nodes of node 𝑚 ∈ 𝑁; 𝑁𝑚 ⊆ 𝑁. 

𝐵𝑚 Set of all intra-rack neighbour nodes of node 𝑚 ∈ 𝑁; 𝐵𝑚 ⊆

𝑁. 

𝐴𝑚 Set of all compute nodes that are neighbours of compute 

node  𝑚 ∈ 𝐴; 𝐴𝑚 ⊆ 𝐴. 

𝑂 Set of transmission wavelengths supported in the network. 

𝑇 Set of interfaces supported by a compute node. 

Parameters: 

𝕋𝑜𝑓 𝕋𝑜𝑓 = 1 if wavelength 𝑜 ∈ 𝑂 is allocated to interface 𝑓 ∈ 𝑇 

for transmission of data traffic, otherwise 𝕋𝑜𝑓 = 0 

ℝ𝑜𝑓 ℝ𝑜𝑓 = 1 if wavelength 𝑜 ∈ 𝑂 is allocated to interface 𝑓 ∈ 𝑇 

for reception of data traffic, otherwise ℝ𝑜𝑓 = 0 
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𝜇𝑖 Load proportional routing cost for a routing and forwarding 

node 𝑖 ∈ 𝑄, (J/b) 

𝑂𝐵 On-board network interface energy per bit (J/b) 

𝑇𝑋𝑚 Transmitting energy per bit (J/b) of routing and forwarding 

node 𝑚 ∈ 𝑄 

𝑅𝑋𝑚 Receiving energy per bit (J/b) of routing and forwarding node 

𝑚 ∈ 𝑄 

𝑅𝐿𝑚 Relaying energy per bit (J/b) of routing and forwarding node 

𝑚 ∈ 𝑄 

𝒳 Optical switch operational power in Watt 

ℰ Electrical switch operational power in Watt 

𝒮 SOA switch energy per bit (J/b) 

𝜌 Number of spine switches in the composable DC 

𝜚 Number of electrical gateway or super-spine switches in the 

composable DC 

𝕣 Number of active racks in the composable DC 

𝜏𝑠𝑑 Total traffic from node 𝑠 ∈ 𝑄 to node 𝑑 ∈ 𝑄. 

𝒟 Maximum data rate of a single wavelength. 

𝒬 A big number (100000) 

𝒢 A big number (1000) 

Variables  

𝚻𝒔𝒅 Total traffic from node 𝑠 ∈ Q to node 𝑑 ∈ Q. 

𝚻𝒔𝒅
𝒊𝒋

 Volume of Τ𝑠𝑑 traversing virtual link (𝑖, 𝑗). 𝑖 ∈ Q, 𝑗 ∈ 𝑄, 𝑠 ∈

Q, 𝑑 ∈ Q: 𝑖 ≠ 𝑗, 𝑠 ≠ 𝑑. It denotes routing of traffic in the 

virtual network.  

𝓿𝒊𝒋 Volume of traffic on virtual link (𝑖, 𝑗); 𝑖 ∈ 𝑄, 𝑗 ∈ Q 

𝚽𝒊 Traffic transmitted at routing node 𝑖 ∈ 𝑄 

𝚿𝒊 Traffic received at routing node 𝑖 ∈ 𝑄 

𝛀𝒊 Traffic relayed at routing node 𝑖 ∈ 𝑄 

𝝓𝒎 Traffic transmitted at forwarding node 𝑚 ∈ 𝑄 

𝛙𝒎 Traffic received at forwarding node 𝑚 ∈ 𝑄 
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𝛚𝒎 Traffic relayed at forwarding node 𝑚 ∈ 𝑄 

𝓿𝒐𝒎𝒏
𝒊𝒋

 Volume of traffic on virtual link (𝑖, 𝑗) using wavelength 𝑜 ∈ 𝑂 

on physical link (𝑚, 𝑛), 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄,𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝑚: 𝑖 ≠

𝑗,𝑚 ≠ 𝑛  

𝔀𝒐𝒎𝒏 Volume of traffic using wavelength 𝑜 ∈ 𝑂 on physical 

link (𝑚, 𝑛), 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝑚: 𝑚 ≠ 𝑛 

𝓺𝒐𝒎𝒏 𝓺𝒐𝒎𝒏 = 1 if  𝔀𝒐𝒎𝒏 > 0. Otherwise 𝓺𝒐𝒎𝒏 = 0, 𝑜 ∈ 𝑂,𝑚 ∈

𝑁, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

𝓰𝒐𝒎𝒏 𝓰𝒐𝒎𝒏 = 1, if 𝓺𝒐𝒎𝒏 ∨ 𝓺𝒐𝒏𝒎 = 1. Otherwise 𝓰𝒐𝒎𝒏 = 0, 𝑜 ∈

𝑂,𝑚 ∈ 𝑁, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

𝓮𝒐𝒇𝒎 𝓮𝒐𝒇𝒎 = 1 if wavelength 𝑜 ∈ 𝑂 is used on interface 𝑓 ∈ 𝑇 of 

compute node 𝑚 ∈ 𝐴  either to transmit traffic to neighbour 

nodes or receive traffic from neighbour nodes. Otherwise, 

𝓮𝒐𝒇𝒎 = 0. 

The variables are related as follows. 

𝔀𝒐𝒎𝒏 ≥ 𝓺𝒐𝒎𝒏 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝑁, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

(5.2) 

𝔀𝒐𝒎𝒏 ≤ 𝒬 𝓺𝒐𝒎𝒏 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝑁, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

(5.3) 

Equations (5.2) and (5.3) derive the state of each wavelength available on 

each physical link within the rack. 

𝚽𝒊 = ∑ ∑ 𝚻𝒊𝒅
𝒊𝒋

𝑑 ∈ 𝑄𝑗∈𝑄

 

∀𝑖 ∈ 𝑄: 𝑑 ≠ 𝑖, 𝑖 ≠ 𝑗 

(5.4) 

Equation (5.4) derives the traffic transmitted by a routing and forwarding node 

in the virtual layer of the network topology. 

𝚿𝒊  = ∑ ∑ 𝚻𝒔𝒊
𝒋𝒊

𝑗 ∈ Q𝑠∈Q

  

∀𝑖 ∈ Q: 𝑠 ≠ 𝑖, 𝑖 ≠ 𝑗 

(5.5) 

Equation (5.5) derives the traffic received by a routing and forwarding node in 

the virtual layer of the network topology. 

𝛀𝒊  = ∑ ∑ ∑ 𝚻𝒔𝒅
𝒊𝒋

𝑗 ∈ 𝑄𝑑∈𝑄𝑠∈𝑄

 (5.6) 
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∀𝑖 ∈ 𝑄: 𝑠 ≠ 𝑑, 𝑠 ≠ 𝑖, 𝑑 ≠ 𝑖, 𝑖 ≠ 𝑗 

Equation (5.6) derives the traffic relayed by a routing and forwarding node in 

the virtual layer of the network topology. 

𝛟𝒎 = ∑ ∑ ∑ 𝓿𝒐𝒎𝒏
𝒎𝒋

𝑗 ∈ 𝑄𝑛∈𝑁𝑚𝑜 ∈𝑂

 

∀𝑚 ∈ 𝑄: 𝑗 ≠ 𝑚,𝑚 ≠ 𝑛 

(5.7) 

Equation (5.7) derives the traffic transmitted by a routing and forwarding node 

in the physical layer of the network topology. 

𝛙𝒎  =  ∑ ∑ ∑ 𝓿𝒐𝒏𝒎
𝒊𝒎

𝑖 ∈ 𝑄𝑛∈𝑁𝑚𝑜 ∈𝑂

 

∀𝑚 ∈ 𝑄: 𝑖 ≠ 𝑚,𝑚 ≠ 𝑛 

(5.8) 

Equation (5.8) derives the traffic received by a routing and forwarding node in 

the physical layer of the network topology. 

𝛚𝒎  = ∑ ∑ ∑ ∑ 𝓿𝒘𝒎𝒏
𝒊𝒋

𝑖 ∈ 𝑄𝑗 ∈𝑄𝑛 ∈ 𝑁𝑚𝑜 ∈𝑂

 

∀𝑚 ∈ 𝑄: 𝑖 ≠ 𝑗, 𝑖 ≠ 𝑚, 𝑗 ≠ 𝑚,𝑚 ≠ 𝑛 

(5.9) 

Equation (5.9) derives the traffic relayed by a routing and forwarding node in 

the physical layer of the network topology. 

𝑻𝑵𝑹𝑷 = 𝜇𝑖 ∑(𝚽𝒊 + 𝚿𝒊 + 𝛀𝒊)

𝑖 ∈ 𝑄

 (5.10) 

Equation (5.10) derives the total network routing power (TNRP) due to the 

routing function performed by routing and forwarding nodes in the virtual layer. 

This represents any additional power consumed by nodes that perform routing 

in the logical layer. 

𝑻𝑵𝑭𝑷 = ∑(𝛟𝒊 𝑇𝑋𝑖 + 𝛙𝒊 𝑅𝑋𝑖 + 𝛚𝒊 𝑅𝐿𝑖)

𝑖 ∈ 𝑄

 (5.11) 

Equation (5.11) determines the total network forwarding power (TNFP) due to 

the forwarding function performed by routing and forwarding nodes in the 

physical layer. 

𝑻𝑿𝑵𝑷 = ∑(𝛟𝒊 + 𝛚𝒊)

𝑖 ∈ 𝐴

𝒮 + (𝕣 + 𝜌 + 𝜚)ℰ (5.12) 

Equation (5.12) establishes the total other network power (𝑇𝑋𝑁𝑃) for E-

NetCoD which is measured by the power consumed by active physical 

node/components in the network topology. It comprises of the power 
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consumed by SOA switches at compute nodes and the fixed operational 

power of electrical switches in the composable DC. 

Total Network Power Consumption 

𝑻𝑵𝑷𝑪 = 𝑻𝑵𝑭𝑷 + 𝑻𝑵𝑹𝑷 + 𝑻𝑿𝑵𝑷 (5.13) 

The total network power consumption (𝑻𝑵𝑷𝑪) is a sum of the 𝑻𝑵𝑭𝑷, 𝑻𝑵𝑹𝑷 

and 𝑻𝑿𝑵𝑷. 

The model MILP is defined as follows: 

Two distinct objective functions are considered for the model to represent two 

distinct scenarios. 

Objective 1: Maximise: 

∑ ∑ 𝚻𝒔𝒅

𝑑 ∈𝑌:𝑠≠𝑑𝑠∈𝑌

 (5.14) 

Equation (5.14) is the first objective function that maximises the total 

throughput between all desired communicating nodes pairs in the composable 

DC. This objective function maximises the total traffic exchanged between 

selected routing and forwarding nodes in the DC. Note that 𝚻𝒔𝒅 is a variable 

determined by the model under this scenario. 

Objective 2: Minimise: 

𝑻𝑵𝑷𝑪 (5.15) 

Equation (5.15) is the second objective function. It minimises the total network 

power consumed by routing and forwarding the input traffic 𝜏𝑠𝑑 over the 

corresponding network topology under consideration. Hence, 𝜏𝑠𝑑 is an input 

parameter to the model in this scenario.  

Subject to: 

∑ 𝚻𝒔𝒅
𝒊𝒋

 

𝑗 ∈ 𝑄:𝑖≠𝑗

− ∑ 𝚻𝒔𝒅
𝒋𝒊

 

𝑗 ∈ 𝑄:𝑖≠𝑗

= {
𝚻𝒔𝒅         𝑖 = 𝑠
−𝚻𝒔𝒅       𝑖 = 𝑑
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 ∀ 𝑖 ∈ 𝑄, ∀ 𝑠, 𝑑 ∈ 𝑌: 𝑠 ≠ 𝑑 

(5.16) 

Constraint (5.16) enforces flow conservation in the virtual layer setup between 

electronic routing and forwarding nodes in the composable DC. Note that for 

objective 2, 𝚻𝒔𝒅 should be replaced by 𝜏𝑠𝑑 in (5.16). 

∑ ∑ 𝚻𝒔𝒅
𝒊𝒋

 

𝑑 ∈ 𝑌:𝑠≠𝑑𝑠 ∈ 𝑌

= 𝓿𝒊𝒋 

∀ 𝑖 ∈ 𝑄, ∀ 𝑗 ∈ 𝑄: 𝑖 ≠ 𝑗 

(5.17) 
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Constraint (5.17) calculates the volume of traffic on each virtual link 

provisioned between a pair of routing and forwarding nodes in the virtual layer. 

∑ ∑ 𝓿𝒐𝒎𝒏
𝒊𝒋

 

𝑛 ∈ 𝑁𝑚:𝑚≠𝑛𝑜 ∈  𝑂

− ∑ ∑ 𝓿𝒐𝒏𝒎
𝒊𝒋

 

𝑛 ∈ 𝑁𝑚:𝑚≠𝑛𝑜 ∈ 𝑂

= {

𝓿𝒊𝒋         𝑚 = 𝑖

−𝓿𝒊𝒋       𝑚 = 𝑗

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 ∀ 𝑚 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝑄: 𝑖 ≠ 𝑗 

(5.18) 

Constraint (5.18) enforces flow conservation in the physical network topology 

between all nodes in the DC. 

∑ ∑ 𝓿𝒐𝒎𝒏
𝒊𝒋

 

𝑗 ∈ 𝑄:𝑖≠𝑗𝑖 ∈ 𝑄

= 𝔀𝒐𝒎𝒏 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝑁, ∀ 𝑛 ∈ 𝑁𝑚: 𝑚 ≠ 𝑛 

(5.19) 

Constraint (5.19) calculates the volume of traffic on each wavelength on a 

physical link in the network topology. 

𝔀𝒐𝒎𝒏 ≤ 𝒟 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝑚: 𝑚 ≠ 𝑛 

(5.20) 

Constraint (5.20) is the capacity constraint of each wavelength used on a 

physical link. 

∑ ∑ 𝓺𝒐𝒎𝒏 𝕋𝑜𝑓

𝑓 ∈  𝑇𝑛∈𝐵𝑚

 ≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝐴:𝑚 ≠ 𝑛 

(5.21) 

∑ ∑ 𝓺𝒐𝒏𝒎 ℝ𝑜𝑓

𝑓 ∈  𝑇𝑛∈𝐵𝑚

 ≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝐴:𝑚 ≠ 𝑛 

(5.22) 

Constraint (5.21) ensures that each wavelength transmitted by a compute 

node is transmitted once from that node by an interface that is designed to 

emit that wavelength. On the other hand, Constraint (5.22) ensures that each 

wavelength received by a compute node is received once at an interface that 

is designed to receive that wavelength. 

∑ 𝓺𝒐𝒎𝒏 𝕋𝑜𝑓

𝑛∈𝐵𝑚:𝑚≠𝑛

+ ∑ 𝓺𝒐𝒏𝒎 ℝ𝑜𝑓

𝑛∈𝐵𝑚:𝑚≠𝑛

 = 𝓮𝒐𝒇𝒎 

∀ 𝑜 ∈ 𝑂, ∀𝑓 ∈ 𝑇, ∀𝑚 ∈ 𝐴 

(5.23) 

Constraint (5.23) ensures that the same wavelength does not flow in opposite 

directions at a given interface of a compute node. This is required when bi-

directional communication is employed on the physical link that connects each 
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interface to the optical backplane and each interface comprises of an array of 

unique transceivers. 

𝓺𝒐𝒎𝒏 + 𝓺𝒐𝒏𝒎 = 𝓰𝒐𝒎𝒏 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝐴, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

(5.24) 

Constraint (5.24) ensures that same wavelength does not flow in opposite 

directions in a physical link on each rack’s optical backplane. This constraint 

implements bi-directional communication on the passive intra-rack backplane. 

It is not active when unidirectional communication is implemented on the 

passive intra-rack backplane. 

5.4.2 MILP Model for EO-NetCoD 

In contrast to E-NetCoD, some network constraints must be revised to 

represent EO-NetCoD in a MILP model while others must be introduced. 

Consequently, additional set, parameter and variables are introduced while 

others are revised as given below. The additional set enable the 

representation of revised nodes when EO-NetCoD is implemented. The hybrid 

inter-rack network is created via the adoption of optical switches to replace 

electrical leaf and spine switches. The hybrid inter-rack network comprises of 

all nodes that are connected directly to any optical switch in the physical 

network topology. Such nodes include compute nodes, optical switches, and 

DC gateway switch. The additional variables enable representation of traffic 

routing over EO-NetCoD. 

Revised and additional Sets and Parameter 

𝑄 Set of all routing and forwarding nodes  𝑄 = 𝑌 = 𝐴 ∪ 𝐺 

𝑁 Set of all nodes 𝑁 = 𝑋 ∪ 𝐴 ∪ 𝐺 

𝑁𝑚 Set of all neighbour nodes of node 𝑚 ∈ 𝑁,𝑁𝑚 ⊆ 𝑁  

𝑋 Set of optical switches, 𝑋 ⊆ 𝑁 

𝐻𝑚 Set of all neighbour nodes of node 𝑚 ∈ 𝑁; 𝐻𝑚 ⊆ 𝑁 which 

are part of the hybrid inter-rack network. 

 𝜅  Cost associated with each path provisioned in an optical 

switch in Watt 

Additional variables 

𝓾𝒊𝒋 Volume of traffic on virtual link (𝑖, 𝑗), 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄, that 

traverses intra-rack network.  
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𝓵𝒐𝒊𝒋 Volume of traffic using wavelength  𝑜 ∈ 𝑂 on virtual 

link (𝑖, 𝑗), 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄, that traverses the hybrid inter-rack 

network. 

𝓛𝒐𝒊𝒋 𝓛𝒐𝒊𝒋 = 1 if 𝓵𝒐𝒊𝒋 > 0. Otherwise, 𝓛𝒐𝒊𝒋 = 0, 𝑜 ∈ 𝑂 , 𝑖 ∈ 𝑄, 𝑗 ∈

𝑄: 𝑖 ≠ 𝑗 

𝔁𝒐𝒎𝒙𝒏 The configured switching matrix of an optical switch. 

𝔁𝒐𝒎𝒙𝒏 = 1 if the wavelength 𝑜 ∈ 𝑂 from node 𝑚 ∈ 𝐻𝑥 enters 

optical switch 𝑥 ∈ 𝑋 and is relayed to node 𝑛 ∈ 𝐻𝑥. 

Otherwise, 𝔁𝒐𝒎𝒙𝒏 = 0. 

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

 𝒅𝒐𝒎𝒙𝒏
𝒊𝒋

 gives the traffic 𝓿𝒐𝒎𝒙
𝒊𝒋

 that enters optical switch  𝑥 ∈
𝑋: 𝑥 ∈ 𝐻𝑚 from node 𝑚 ∈ 𝐻𝑥 and is relayed to node 𝑛 ∈
𝐻𝑥 on the hybrid inter-rack network. 𝑜 ∈ 𝑂,𝑚 ∈ 𝑁  

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

= 𝓿𝒐𝒎𝒙
𝒊𝒋

 𝔁𝒐𝒎𝒙𝒏 

 An illustration of the derivation of variable 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

 is given by the 

following example in Figure 5.5. Given a 4x4 optical switch with the configured 

switching matrix illustrated in Figure 5.5a, If node 1, transmits W Gbps on 

wavelength 𝜆1 to the optical switch, the traffic will be passively and 

transparently forwarded to node 4. Note that, node 1 is connected to the 

optical switch on port 1 and node 4 is connected to port 4 of the optical switch 

as illustrated in Figure 5.5b. 

 

Figure 5.5:(a) Optical switch configuration (𝔁𝒐𝒎𝒙𝒏). (b) Traffic switching by 

optical switch (𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

). 

 The EO-NetCoD comprise of two intrinsic networks as illustrated in 

Figure 5.4. That is, an intra-rack network between routing and forwarding 

capable compute nodes within the same rack and a hybrid inter-rack network 

enabled by the deployment of optical switches in a leaf-spine topology. Point-

to-point light-paths are setup between routing nodes over the physical links of 

the hybrid inter-rack network. After path configuration, the optical switches are 

in a passive state. Hence, the optical switches are only aware of directly 

connected neighbours on the hybrid inter-rack network. 
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 The 𝑻𝑿𝑵𝑷 for EO-NetCoD can be measured by the power consumed 

by active physical node/components in the network topology. It comprises of 

the power consumed by SOA switches at compute nodes, the fixed operating 

power of optical and electrical switches and the cost of setting up optical paths 

in each optical switch in the composable DC. It is derived as by Equation 5.25. 

𝑻𝑿𝑵𝑷 = ∑(𝛟𝒊 + 𝛚𝒊)

𝑖 ∈ 𝐴

𝒮 + (𝕣 + 𝜌) 𝒳 + 𝜚 ℰ

+ 𝜅 (∑ ∑ ∑ ∑ 𝔁𝒐𝒎𝒙𝒏

𝑛 ∈𝐻𝑥𝑚 ∈𝐻𝑥𝑥 ∈𝑋𝑜∈ 𝑂

) 

(5.25) 

Given the traffic demand 𝚻𝒔𝒅 in the DC, virtual links 𝓿𝒊𝒋 are setup between 

routing and forwarding nodes in the DC to efficiently route traffic over the 

network topology as seen earlier in Constraints (5.16) and (5.17). However, a 

virtual link 𝓿𝒊𝒋 between two routing and forwarding nodes in EO-NetCoD can 

traverse the intra-rack network and/or the hybrid inter-rack network. As a 

result, Constraint (5.18) is no longer applicable in such a setup. To 

accommodate such a unique setup in the MILP model, the following network 

constraints are introduced. 

𝓾𝒊𝒋 + ∑ 𝓵𝒐𝒊𝒋

𝑜 ∈𝑂

= 𝓿𝒊𝒋 

∀ 𝑖 ∈ 𝑄, ∀ 𝑗 ∈ 𝑄: 𝑖 ≠ 𝑗 

(5.26) 

Constraint (5.26) ensures that the volume of traffic on virtual link 𝓋𝑖𝑗 is equal 

to the sum of traffic sent via the intra-rack network and the hybrid inter-rack 

network. This is because the virtual link can be routed via the intra-rack 

network or/and via the inter-rack network.  

∑ ∑ 𝓿𝒐𝒎𝒏
𝒊𝒋

 

𝑛 ∈ 𝐴𝑚:𝑚≠𝑛𝑜 ∈ 𝑂

− ∑ ∑ 𝓿𝒐𝒏𝒎
𝒊𝒋

 

𝑗 ∈𝐴𝑚:𝑚≠𝑛𝑜 ∈ 𝑂

= {

𝓾𝒊𝒋     𝑚 = 𝑖

−𝓾𝒊𝒋        𝑚 = 𝑗

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 ∀ 𝑖, 𝑗 ∈ 𝑄: 𝑠 ≠ 𝑑 ∀ 𝑚 ∈ 𝐴 

(5.27) 

Constraint (5.27) enforces flow conservation in physical links of the intra-rack 

network of each rack in the DC. 

∑ 𝓿𝒐𝒎𝒏
𝒊𝒋

 

𝑛 ∈ 𝐻𝑚:𝑚≠𝑛

− ∑ 𝓿𝒐𝒏𝒎
𝒊𝒋

 

𝑛 ∈ 𝐻𝑚:𝑚≠𝑛

= {

𝓵𝒐𝒊𝒋         𝑚 = 𝑖

−𝓵𝒐𝒊𝒋       𝑚 = 𝑗

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 ∀ 𝑚 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝑄: 𝑖 ≠ 𝑗, ∀ 𝑤 ∈ 𝑊 

(5.28) 
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Constraint (5.28) enforces flow conservation in physical links of the hybrid 

inter-rack network in the DC. It also enforces wavelength continuity on each 

light-path created between two nodes in the inter-rack network. 

𝓵𝒐𝒊𝒋 ≥ 𝓛𝒐𝒊𝒋 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄: 𝑖 ≠ 𝑗 

(5.29) 

𝓵𝒐𝒊𝒋 ≤ 𝒬 𝓛𝒐𝒊𝒋 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄: 𝑖 ≠ 𝑗 

(5.30) 

Constraints (5.29) and (5.30) jointly derive the state of all potential light-paths 

that can traverse the hybrid inter-rack network. 

∑ 𝓛𝒐𝒊𝒋

𝑗 ∈𝑄 

≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖 ∈ 𝐴: 𝑖 ≠ 𝑗 

(5.31) 

Constraint (5.31) ensures that a wavelength is used to setup a single light-

path from a given compute node. Hence, the wavelength must not be used 

more than once on any light-path originating at this compute node. Note that 

the gateway switch is permitted to use a given wavelength on different light-

paths provided that network routing constraints are not violated. This is 

because a sophisticated network switch is assumed. Multiple links emanate 

from the gateway switch i.e., path diversity is employed; hence, the risk of 

wavelength collision is mitigated since a wavelength can be re-used on disjoint 

links. 

Optical network routing constraints 

∑ 𝔁𝒐𝒎𝒙𝒏

𝑛 ∈𝐻𝑥

≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑥 ∈ 𝑋,𝑚 ∈ 𝐻𝑥 

(5.32) 

∑ 𝔁𝒐𝒎𝒙𝒏

𝑚 ∈𝐻𝑥

≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑥 ∈ 𝑋, 𝑛 ∈ 𝐻𝑥 

(5.33) 

Constraint (5.32) ensures that an ingress wavelength to an optical switch from 

a given neighbour node of the optical switch is relayed to at most one 

neighbour node of that optical switch. On the other hand, Constraint (5.33) 

ensures that an egress wavelength from an optical switch, which is relayed to 

a neighbour node of the optical switch, entered the switch from only one 

neighbour node of the optical switch. This avoids wavelength collision at a 
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given output port of the optical switch. Both constraints (5.32) and (5.33) 

implement a passive switching matrix for a configurable optical switch. 

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≤ 𝓿𝒐𝒎𝒙
𝒊𝒋

 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖, 𝑗 ∈ 𝑄, ∀ 𝑥 ∈ 𝑋, ∀ 𝑚, 𝑛 ∈ 𝐻𝑥 

(5.34) 

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≤ 𝒟 𝔁𝒐𝒎𝒙𝒏 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖, 𝑗 ∈ 𝑄, ∀ 𝑥 ∈ 𝑋, ∀ 𝑚, 𝑛 ∈ 𝐻𝑥 

(5.35) 

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≥ 𝓿𝒐𝒎𝒙
𝒊𝒋

− 𝒟(1 − 𝔁𝒐𝒎𝒙𝒏) 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖, 𝑗 ∈ 𝑄, ∀ 𝑥 ∈ 𝑋, ∀ 𝑚, 𝑛 ∈ 𝐻𝑥 

(5.36) 

Constraints (5.34) - (5.36) linearise the derivation of continuous variable 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

 

which includes a product of a continuous variable and a binary variable as 

shown in Constraint (5.37). 

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

= 𝓿𝒐𝒎𝒙
𝒊𝒋

 𝔁𝒐𝒎𝒙𝒏 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖, 𝑗 ∈ 𝑄, ∀ 𝑥 ∈ 𝑋, ∀ 𝑚, 𝑛 ∈ 𝐻𝑥 

(5.37) 

Constraint (5.37) ensures that the traffic that enters an optical switch  is 

relayed according to the path configuration of the optical switch. 

Table 5.1: Evaluation of constraint (5.34) - (5.36) 

𝔁𝒐𝒎𝒙𝒏 (5.34) (5.35) (5.36) 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

 

0 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≤ 𝓿𝒐𝒎𝒙
𝒊𝒋

 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≤ 0 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≥ 𝓿𝒐𝒎𝒙
𝒊𝒋

− 𝒟 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

= 0 

1 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≤ 𝓿𝒐𝒎𝒙
𝒊𝒋

 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≤ 𝒟 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

≥ 𝓿𝒐𝒎𝒙
𝒊𝒋

 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

= 𝓿𝒐𝒎𝒙
𝒊𝒋

 

Given 𝔁𝒐𝒎𝒙𝒏, Table 5.1 gives the evaluation of constraints (5.34) - (5.36) and 

the values of 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

 that satisfies the defined constraints. 

𝓿𝒐𝒎𝒙
𝒊𝒋

= ∑ 𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

𝑚 ∈𝑁:𝑚 ∈ 𝐻𝑥

 

∀ 𝑜 ∈ 𝑂, ∀ 𝑖, 𝑗 ∈ 𝑄, ∀ 𝑥 ∈ 𝑋, ∀ 𝑛 ∈ 𝐻𝑥  

(5.38) 

Constraint (5.38) allows optical switches to route traffic passively over the 

hybrid inter-rack network. This is achieved by ensuring that the traffic that 

enters an optical switch from a given neighbour node is relayed to the 

appropriate output port of the optical switch as specified by the configured 

routing matrix of the switch. 

5.4.3 MILP Model for AOPD-DCN 

A similar approach taken to emulate optical switches in the MILP model for 

EO-NetCoD can be adopted to emulate the wavelength selective switch 
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(WSS) deployed in AOPD-DCN. Additionally, to simplify model formulation we 

assume that the ToC-AoD switches in AOPD-DCN are always configured to 

perform OCS. The inter-cluster AoD switch is setup to perform optical packet 

switching and forwarding. Since, no limitation is specified for interfaces and 

bi-directional communication is not considered, constraints (5.21) - (5.24) are 

not applicable in the intra-rack network of AOPD-DCN. In addition to other 

network constraints from Section 5.4.1 and 5.4.2 the following constraints are 

required to represent AOPD-DCN as MILP Model. 

∑ 𝓺𝒐𝒎𝒏

𝑛 ∈ 𝐻𝑚: 𝑚≠𝑛

≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝐴 

(5.39) 

Constraint (5.39) ensures that a given wavelength from a compute node is 

transmitted only once by that compute node on the inter-rack network.  

∑ 𝓺𝒐𝒏𝒎

𝑛 ∈ 𝐻𝑚: 𝑚≠𝑛

≤ 1 

∀ 𝑜 ∈ 𝑂, ∀ 𝑚 ∈ 𝐴 

(5.40) 

Constraint (5.40) ensures that a given wavelength received from any 

neighbour node of a given compute node on the inter-rack network is received 

only once at the compute node. 

∑ 𝔀𝒐𝒎𝒏

𝑜 ∈𝑂

≤  𝔻 

∀ 𝑚 ∈ 𝐴, ∀ 𝑛 ∈ 𝐴𝑚 

(5.41) 

Constraint (5.41) is the capacity constraint of the physical link between two 

compute nodes in the same rack. Where 𝔻 is the maximum transmitting and 

receiving capacity supported on the point-to-point physical link between nodes 

on the intra-rack backplane. 

5.4.4 Network Setup and Input Parameter 

We compare the performance of both variants of NetCoD to AOPD-DCN in 

the small cluster of a composable DC depicted in Figure 5.6 and Figure 5.7. 

The cluster comprises of 3 racks, each rack holds 4 compute nodes and a 

ToR switch. In all evaluation scenario, use of multiple links between two 

switches to achieve path diversity is not implemented or modelled (as shown 

in Figure 5.6 and Figure 5.7) for further simplicity. This assumption is practical 

in this evaluation scenario because a small cluster is considered. A 

composable DCs with more and bigger clusters would require the 
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implementation of path diversity between network switches for robustness and 

to boost network capacity. 

 

Figure 5.6: A DC cluster with NetCoD 

 

Figure 5.7: A DC cluster with AOPD-DCN 

 The load proportional energy per bit values of DC network tiers are 

given in Table 5.2 along with the fixed power consumption of electrical and 

optical network components. We adopt the energy per bit values predicted for 

on-board, intra-rack and inter-DC tiers of next generation DC networks as 

given in [80]. However, because it is expected that the electrical ToR/ToC 

switch will be relatively more complex than the NCH but less complex than the 

DC gateway switch. Consequently, the inter-rack energy per bit value 

suggested in [80] is not completely suitable in our setup. Hence, we 

conservatively assume that the energy per bit value for each electrical switch 

in the leaf-spine-layers of the inter-rack network is 5 pJ/b in all evaluation 

scenarios. This reflects the relative difference in DCN tier complexity. The 

typical operating (idle) power of all electrical switches in the all network 

topologies consider is 312 W [103].  

Rack 3Rack 2Rack 1

1 2 3 5 6 7 9 10 11

13 14 15

16

18

Leaf switches i.e. top of rack switches 

Compute node including CPU, 
memory or storage components 

Spine switches i.e. top of 
cluster switches

DC gateway switch

17

Inter-rack fabric links

4 8 12

Intra-rack fabric links

Rack 3Rack 2Rack 1

1 2 3 5 6 7 9 10 11

13 14 15

16

17

Top of rack switches 

Compute node including CPU, 
memory or storage components 

Top of cluster switch

DC gateway switch Intra-rack fabric links

Inter-rack fabric links

4 8 12
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The NCH has two functions. Firstly, it has to convert the electrical data 

streams to an appropriate optical wavelength and transmit this data i.e., the 

forwarding function. The associated power consumption is typically 1 pJ/b 

[80]. Secondly, the NCH also has to compute the route to the destination and 

configure the SOA switches and set up the path. It is assumed here that these 

operations consume an equal amount of power in the NCH. Spreading this 

power consumption between all the data streams and wavelengths handled 

by the NCH leads to a power consumption of 1 pJ/b for path computation and 

setup. It should be noted that this choice is on the pessimistic side as the path 

computation tasks can consume much lower power if for example look up 

tables are used. Similarly, it is also conservatively assumed that path 

computation and setup functions performed by all electrical switches also 

leads to a power consumption of 1 pJ/b. 

 We adopt 100 Gbps for single wavelength transmission in the network 

topology given recent practical demonstration of such lane rate [107]. We 

expect even greater single wavelength lane rate for short reach inter-connects 

in the future as optical technologies advance [108]. To simplify the evaluation 

scenario, it is assumed that each interface integrated with the NCH of a 

compute node can emit 4 distinct wavelengths. Hence, a maximum 8 

wavelength is supported under both variants of NetCoD. For fair comparison, 

it is also assumed that the interface used by each compute node in AOPD-

DCN to connect to the inter-rack network also supports 8 wavelengths. Hence, 

enabling 800 Gbps link from each compute node to the ToR switch. 

Additionally, it is assumed that each interface connected to the intra-rack 

backplane of AOPD-DCN can transmit or receive four wavelengths in parallel 

at 100 Gbps lane rate i.e., 𝔻 = 400 𝐺𝑏𝑝𝑠. Hence, representing a 400 Gbps 

transceiver. 

The low-energy SOA switch proposed in [109] which has an energy per 

bit of 15.8 pJ/b at 10 Gbps per single wavelength data rate is adopted to 

implement the integrated optical switch at each compute node. Since, 100 

Gbps single wavelength data rate is adopted, the energy per bit of the SOA 

switch reduces by a factor of 10 at this data rate. As in AOPD-DCN, low power 

and configurable WSSs are selected as optical switches in EO-NetCoD. Each 

WSS has a typical operating power consumption of 50 W [104]. It is important 

to note that similar network setup and input parameters given in this sub-

section are adopted in other sections of this chapter. 
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Table 5.2: Network input parameters 

Parameters Value 

On-board network energy per bit 0.1 pJ/b [80] 

Intra-rack network energy per bit 1 pJ/b [80] 

Electrical switch energy per bit 5 pJ/b 

Inter-DC gateway switch energy per bit 10 pJ/b [80] 

Energy per bit of routing function. 1 pJ/b 

Typical operating (idle) power of electrical 

switch 

312 W [103] 

Typical operating power of WSS-based 

optical switch 

50 W [104] 

SOA-based switch energy per bit at 100 Gbps 

single wavelength transmission data rate  

1.58 pJ/b 

Single wavelength transmission data rate 100 Gbps 

5.4.5 Performance Evaluation 

5.4.5.1 Maximum Throughput 

Under this scenario, Objective 1 of Equation (5.14) is adopted to maximise the 

throughput of all network topologies being evaluated. The results in Table 5.3 

shows that the maximum throughput obtained under bi-directional and 

unidirectional communication is equal under both variant of NetCoD. All nodes 

are transmitting at maximum capacity of 800 Gbps. This also confirms that 

interface constraints are the primary factor that determine the maximum 

throughput achievable. Hence, to increase total throughput, the number of 

wavelengths supported by compute nodes’ interfaces in both variants of 

NetCoD must be increased. Adoption of unidirectional communication paths 

may also be explored to increase network throughput. However, relative to the 

adoption of unidirectional communication within each rack, results obtained 

when bi-directional communication is adopted within each rack in the DC is 

comparable. Hence, given appropriate intelligence in both variants of NetCoD, 

the size of the intra-rack backplane can be effectively halved via the adoption 

of bi-directional communication over a single optical link. 

 AOPD-DCN is also limited by interface constraints since direct point-

to-point communication between compute nodes is limited to 400 Gbps. 

However, compute nodes also utilise the capacity of the inter-rack network to 

increase overall throughput. Consequently, the maximum throughput of 
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AOPD-DCN is greater than the throughput of either variant of NetCoD. The 

maximum transmitting and receiving capacity of the inter-cluster switch of 

AOPD-DCN is limited. This is because a single fibre connects the ToC switch 

to the inter-cluster switch in the DC as shown in Figure 5.7. Hence, the 

maximum transmitting and receiving data rate of the inter-cluster switch is 

capped at 800 Gbps because only eight (8) unique wavelengths are supported 

in the network. This limitation is easily remedied by deploying parallel links 

between the inter-cluster switch and the ToC switch in the AOPD-DCN. The 

adoption of a leaf-spine topology in the inter-rack of EO-NetCoD mitigates 

such limitation. Path diversity is an inherent feature of the leaf-spine physical 

topology. Hence, the maximum transmitting and receiving capacity of DC 

gateway switch is doubled relative to that of the inter-cluster switch of AOPD-

DCN.  

Table 5.3: Maximum throughput of network topologies 

 

AOPD-

DCN 

E-NetCoD EO-NetCoD 

Bi-directional Unidirectional Bi-directional Unidirectional 

Throughput 24.8 Tbps 11.2 Tbps 11.2 Tbps 11.2 Tbps 11.2 Tbps 

5.4.5.2 Energy Efficient Network Load Test 

We further evaluate and compare the performance of both variants of NetCoD 

with that of AOPD-DCN by performing energy efficient network load test. The 

network load test considers the routing and forwarding of input traffic (𝜏𝑠𝑑) 

between nodes in the composable DC. A non-uniform traffic distribution is 

considered between routing and forwarding nodes in the DC. Load between 

80 Gbps and 720 Gbps are considered to represent 10% to 90% utilisation of 

each compute node’s maximum throughput when both variants of NetCoD are 

deployed. The non-uniform traffic distribution (TD) is given by equation (5.42); 

where Nodes A, B, C and D are compute nodes in the same rack; Node R is 

a randomly selected compute node in a remote rack to Nodes A-D; and Node 

G is the gateway switch of the DC.  

 We consider a scenario where intra-rack, inter-rack and north-south 

traffics accounts for 80%, 15% and 5% of each node’s traffic in either 

directions respectively as given in equation (5.42).  Such traffic distribution 

pattern is adopted because it is expected that intra-rack traffic will be the 

dominant traffic within each rack, followed by inter-rack traffic. It is expected 

that north-south traffic will have the lowest percentage. This is based on the 
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de facto knowledge that majority of DCN traffic is within the DC while north-

south traffic accounts for a small percentage of the total traffic in the DCN. 

𝑇𝐷 =

[
 
 
 
 
 
 
𝑵𝒐𝒅𝒆 𝑨 𝑩 𝑪 𝑫 𝑹 𝑮

𝑨 0 0.7 0.1 0 0.15 0.05
𝑩 0 0 0.7 0.1 0.15 0.05
𝑪 0.1 0 0 0.7 0.15 0.05
𝑫 0.7 0.1 0 0 0.15 0.05
𝑹 0.15 0.15 0.15 0.15 0 0.05
𝑮 0.05 0.05 0.05 0.05 0.05 0 ]

 
 
 
 
 
 

 

(5.42) 

 An input traffic 𝜏𝑠𝑑 to the MILP model is derived by multiplying the load 

by the traffic distribution as given in Equation (5.43). Relative to the maximum 

throughput of AOPD-DCN, E-NetCoD and EO-NetCoD obtained in Table 5.3, 

Figure 5.8 shows network utilisation at all network loads considered. 

𝜏𝑠𝑑 = 𝐿𝑜𝑎𝑑 ∙ 𝑇𝐷 (5.43) 

 

Figure 5.8: Network throughput utilisation under different load 

 Given the input traffic 𝜏𝑠𝑑 the energy efficiency load test is performed 

by adopting Objective 2 of Equation (5.15).  The results in Figure 5.9 show 

that comparable TNRP is incurred under all network topologies considered. 

However, marginally higher TNRP is consumed under AOPD-DCN. This is 

because additional routing intelligence is required to avoid wavelength 

collision on the link that connects the ToC switch to the gateway switch. 

Introducing path diversity in the inter-rack network can mitigate such 

limitations. The inherent path diversity of the leaf-spine physical architecture 

adopted in the inter-rack network of EO-NetCoD implies that such limitations 

are mitigated. However, the problem remains a concern. Hence, in a large 

deployment scenario, adoption of multiple links between switches of the inter-

rack network is recommended to further leverage path diversity via spatial 

multiplexing. It is important to note that the introduction of additional links 

between switches to achieve diversity in a practical deployment could also 

enhance load balancing and improve capacity and resilience. Generally, the 

TNFP consumed by EO-NetCoD is comparable to that of AOPD-DCN as 
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illustrated in Figure 5.10. The TNFP increases drastically when the E-NetCoD 

is considered because of the adoption of electrical switches in the network 

topology. 

 

Figure 5.9: Total network routing power 

 

Figure 5.10: Network forwarding power 

 

Figure 5.11: SOA switch power 

 As expected, the power consumed by the SOA switch grows 

proportionally with the network loads under both variants of NetCoD as 

illustrated in Figure 5.11. This is because load proportional power profile is 

adopted for the integrated optical switches. AOPD-DCN does not employ SOA 
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switches, hence, SOA switch power is zero for the network topology. 

Furthermore, AOPD-DCN has the lowest total switch operational power 

(TSWOP) as shown in Figure 5.12. This is because it uses one less optical 

switch than EO-NetCoD. On the other hand, Figure 5.12 also shows that E-

NetCoD has the higher TSWOP because it requires 6 active electrical 

switches. Each active electrical switch has a corresponding operational power 

consumption. 

 

Figure 5.12: Total switch operating power (TSWOP) 

5.5 MILP Model for Energy Efficient Placement of VMs  

A MILP model that minimises total compute power consumption, TNPC, and 

VM rejection in a rack-scale composable DC is given in this section. This MILP 

is an extension of the model given in Section 5.4. The model adds compute 

related sets, parameters, variables, and constraints to those of the network as 

given in Section 5.4. Similar to Section 5.4, AOPD-DCN, E-NetCoD and EO-

NetCoD network topologies are adopted in the rack-scale composable DC. 

Furthermore, the MILP model also evaluates the performance of various forms 

of resource disaggregation in a rack-scale composable DC over different 

network topologies. Given a specific network topology and the resource 

demand template of each VM, the model selects the optimum placement for 

compute resources requested by each VM. The resulting placement  ensures 

the minimisation of total compute power consumption, TNPC and the number 

of rejected VMs. The MILP model constraints include resource capacity 

constraints and resource locality constraints in additions to network 

constraints from Section 5.4. The compute related sets, parameters and 

variables of the MILP model are given as follows. 

Compute Related Sets and Parameters 

𝐶 Set of CPU resource components 
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𝑀 Set of memory resource components 

𝑆 Set of storage resource components 

𝑅 Set of DC racks 

ℂ𝑗 Capacity of CPU component 𝑗 ∈ 𝐶 

IC Idle power as a fraction of maximum CPU power 

consumption 

𝐶𝑃𝑗 Maximum power consumption of CPU component 𝑗 ∈ 𝐶 

∆𝐶𝑗 Power factor of CPU component 𝑗 ∈ 𝐶; ∆𝐶𝑗 =
𝐶𝑃𝑗−𝐼𝐶∙𝐶𝑃𝑗

ℂ𝑗
; in 

W/GHz 

𝕄𝑗 Capacity of memory component 𝑗 ∈ 𝑀 

IM Idle power as a fraction of maximum memory power 

consumption 

𝑀𝑃𝑗 Maximum power consumption of memory component 𝑗 ∈ 𝑀 

∆𝑀𝑗 Power factor of memory component 𝑗 ∈ 𝑀; ∆Mj =
𝑀𝑃𝑗−𝐼𝑀∙𝑀𝑃𝑗

𝕄𝑗
; in W/GB 

𝕊𝑗 Capacity of storage component 𝑗 ∈ 𝑆 

IS Idle power as a fraction of maximum storage power 

𝑆𝑃𝑗 Maximum power consumption of storage component 𝑗 ∈ 𝑆 

∆𝑆𝑗 Power factor of storage component 𝑗 ∈ 𝑆; ∆Sj =
𝑆𝑃𝑗−𝐼𝑆∙ 𝑆𝑃𝑗

𝕊𝑗
; in 

W/GB 

𝐶𝑁𝑗𝑛 𝐶𝑁𝑗𝑛 = 1 if CPU 𝑗 ∈ 𝐶 is placed in node 𝑛 ∈ 𝑁. Otherwise 

𝐶𝑁𝑗𝑛 = 0. Note that CPU components can only be placed in 

compute nodes. 

𝑀𝑁𝑗𝑛 𝑀𝑁𝑗𝑛 = 1 if RAM 𝑗 ∈ 𝑀 is placed in node 𝑛 ∈ 𝑁. Otherwise 

𝑀𝑁𝑗𝑛 = 0. Note that memory components can only be 

placed in compute nodes  

𝑆𝑁𝑗𝑛 𝑆𝑁𝑗𝑛 = 1 if hard disk drive (HDD) 𝑗 ∈ 𝑆 is placed in node 𝑛 ∈

𝑁. Otherwise 𝑆𝑁𝑗𝑛 = 0. Note that storage components can 

only be placed in compute nodes 

𝑁𝑅𝑛𝑟 𝑁𝑅𝑛𝑟 = 1, If node 𝑛 ∈ 𝑁 is placed in rack 𝑟 ∈ 𝑅, otherwise 

𝑁𝑅𝑛𝑟 = 0 

VM related set and parameters 
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𝑉 Set of virtual machines 

𝑉𝐶𝑣 CPU demand of VM 𝑣 ∈ 𝑉 

𝑉𝑀𝑣 RAM demand of VM 𝑣 ∈ 𝑉 

𝑉𝑆𝑣 Storage demand of VM 𝑣 ∈ 𝑉 

𝒞𝑈𝑣 CPU to memory (RAM) traffic required by VM 𝑣 ∈ 𝑉 

𝒞𝐷𝑣 Memory (RAM) to CPU traffic required by VM 𝑣 ∈ 𝑉 

𝒮𝑈𝑣 CPU to storage traffic required by VM 𝑣 ∈ 𝑉 

𝒮𝐷𝑣 Storage to CPU traffic required by VM 𝑣 ∈ 𝑉 

ℐ𝑈𝑣 Uplink north-south traffic of VM 𝑣 ∈ 𝑉 

ℐ𝐷𝑣 Downlink north-south traffic of VM 𝑣 ∈ 𝑉 

ℳ𝑠𝑑 In-memory computing traffic from VM 𝑠 ∈ 𝑉 to VM 𝑑 ∈ 𝑉 

𝑉𝐺𝑣𝑛 𝑉𝐺𝑣𝑛 = 1 denotes that node 𝑛 ∈ 𝐺 is the gateway node for 

north-south traffic of VM 𝑣 ∈ 𝑉 

𝛼 Cost associated with a VM rejection. 

Variables: 

𝓬𝒗𝒋 𝓬𝒗𝒋 = 1 indicates that CPU demand of VM 𝑣 ∈ 𝑉 is served by 

CPU 𝑗 ∈ 𝐶. Otherwise, 𝓬𝒗𝒋 = 0 

𝓶𝒗𝒋 𝓶𝒗𝒋 = 1 indicates that RAM demand of VM 𝑣 ∈ 𝑉 is served 

by memory (RAM) 𝑗 ∈ 𝑀. Otherwise, 𝓶𝒗𝒋 = 0 

𝓼𝒗𝒋 𝓼𝒗𝒋 = 1 indicates that storage resource demand of VM 𝑣 ∈ 𝑉 

is served by HDD 𝑗 ∈ 𝑆. Otherwise, 𝓼𝒗𝒋 = 0 

𝕔𝒋 𝕔𝒋 = 1 if CPU 𝑗 ∈ 𝐶 is active. Otherwise, 𝕔𝒋 = 0 

𝕞𝒋 𝕞𝒋 = 1 if RAM 𝑗 ∈  𝑀 is active. Otherwise, 𝕞𝒋 = 0  

𝕤𝒋 𝕤𝒋 = 1 if HDD 𝑗 ∈  𝑆 is active. Otherwise, 𝕤𝒋 = 0  

𝕒𝒏 𝕒𝒏 = 1 if compute node 𝑛 ∈ 𝐴 is active. Otherwise, 𝕒𝒏 = 0 

𝓻𝒓  𝓻𝒓 = 1 if rack 𝑟 ∈ 𝑅 is active. Otherwise, 𝓻𝒓 = 0 

𝕣 Number of active racks in the composable DC 

𝑪𝑴𝒗𝒔𝒅 𝑪𝑴𝒗𝒔𝒅 = 1 if CPU demand of VM 𝑣 ∈ 𝑉 is placed in compute 

node 𝑠 ∈ 𝐴 and mermory demand of VM 𝑣 ∈ 𝑉 is placed in 

compute node 𝑑 ∈ 𝐴. Otherwise, 𝑪𝑴𝒗𝒔𝒅 = 0. 
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𝑪𝑺𝒗𝒔𝒅 𝑪𝑺𝒗𝒔𝒅 = 1 if CPU demand of VM 𝑣 ∈ 𝑉 is placed in compute 

node 𝑠 ∈ 𝐴 and storage demand of VM 𝑣 ∈ 𝑉 is placed in 

compute node 𝑑 ∈ 𝐴. Otherwise, 𝑪𝑺𝒗𝒔𝒅 = 0. 

𝔃𝒔𝒅
𝒙𝒚

 𝔃𝒔𝒅
𝒙𝒚

= 1 if memory to memory (in-memory computing) traffic 

exists from VM 𝑥 ∈ 𝑉 in compute node  𝑠 ∈ 𝐴 to VM 𝑦 ∈ 𝑉 in 

compute node 𝑑 ∈ 𝐴. Otherwise, 𝔃𝒔𝒅
𝒙𝒚

= 0. 

𝑰𝑹𝒔𝒅 Total inter-resource traffic from compute node  𝑠 ∈ 𝐴 to 

compute node 𝑑 ∈ 𝐴 due to VM demand placement.  

𝑬𝑾𝒔𝒅 Total east-west traffic from node  𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁. 

𝑵𝑺𝒔𝒅 Total north-south traffic from node  𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁. 

𝚻𝒔𝒅 Total traffic from node 𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁. 

𝜷𝒗 𝜷𝒗 = 1 if VM 𝑣 ∈ 𝑉 is rejected. Otherwise, 𝜷𝒗 = 0. 

𝜷 Total number of rejected VMs 

Certain variables in the MILP model are derived from other variables. These 

linear derivations form part of the linear constraints required in the MILP 

model. Such variables are derived as follows: 

𝜷𝒗 = 1 − ∑ 𝓬𝒗𝒋

𝑗 ∈𝐶

 

∀ 𝑣 ∈ 𝑉 

(5.44) 

Equation (5.44) derives the state of a VM using knowledge of the placement 

of the workload’s CPU demand in any CPU component in the composable 

DC. 

∑ 𝓬𝒗𝒋

𝑣 ∈ 𝑉

 ≥ 𝕔𝒋 

∀ 𝑗 ∈ 𝐶 

(5.45) 

∑ 𝓬𝒗𝒋

𝑣 ∈ 𝑉

≤ 𝒬 𝕔𝒋 

∀ 𝑗 ∈ 𝐶 

(5.46) 

∑ 𝓶𝒗𝒋

𝑣 ∈ 𝑉

 ≥ 𝕞𝒋 

∀ 𝑗 ∈ 𝑀 

(5.47) 

∑ 𝓶𝒗𝒋

𝑣 ∈ 𝑉

≤ 𝒬 𝕞𝒋 (5.48) 
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∀ 𝑗 ∈ 𝑀 

∑ 𝓼𝒗𝒋

𝑣 ∈ 𝑉

 ≥ 𝕤𝒋 

∀ 𝑗 ∈ 𝑆 

(5.49) 

∑ 𝓼𝒗𝒋

𝑣 ∈ 𝑉

≤ 𝒬 𝕤𝒋 

∀ 𝑗 ∈ 𝑆 

(5.50) 

Equations (5.45) – (5.50) derive the state of CPU, memory, and storage 

components. The state of each resource component depends on the 

utilisation of each resource type to satisfy resource demands of any active 

VM. 

Total CPU Power Consumption  

Total CPU power consumption (𝑻𝑪𝑷𝑪) in the DC is derived as follows.  

𝑻𝑪𝑷𝑪 = ∑ (𝐼𝐶 𝐶𝑃𝑗  𝕔𝒋 + ∑ ∆𝐶𝑗  𝓬𝒗𝒋 𝑉𝐶𝑣

𝑣 ∈𝑉

)

𝑗 ∈ 𝐶

 
(5.51) 

Total Memory Power Consumption 

Total memory power consumption (𝑻𝑴𝑷𝑪) in the DC is derived as follows. 

𝑻𝑴𝑷𝑪 =  ∑ (𝐼𝑀 𝑀𝑃𝑗  𝕞𝒋 + ∑ ∆𝑀𝑗  𝓶𝒗𝒋 𝑉𝑀𝑣

𝑣 ∈𝑉

)

𝑗 ∈ 𝑀

 
(5.52) 

Total Storage Power Consumption 

Total storage power consumption (𝑻𝑺𝑷𝑪) in the DC is derived as follows. 

𝑻𝑺𝑷𝑪 =  ∑ (𝐼𝑆 𝑆𝑃𝑗  𝕤𝒋 + ∑ ∆𝑆𝑗 𝓼𝒗𝒋 𝑉𝑆𝑣

𝑣 ∈𝑉

)

𝑗 ∈ 𝑆

 
(5.53) 

Total Compute Power Consumption 

Total compute power consumption (𝑻𝑪𝒐𝒎𝑷𝑪) in the DC is derived as follows. 

𝑻𝑪𝒐𝒎𝑷𝑪 =  𝑻𝑪𝑷𝑪 + 𝑻𝑴𝑷𝑪 + 𝑻𝑺𝑷𝑪 (5.54) 

Derived Network Variables 

∑ ∑ 𝓬𝒗𝒄 𝐶𝑁𝑗𝑛

𝑐 ∈ 𝐶𝑣 ∈ 𝑉

+ ∑ ∑ 𝓶𝒗𝒎 𝑀𝑁𝑚𝑛

𝑚 ∈ 𝑀𝑣 ∈ 𝑉

+ ∑ ∑ 𝓼𝒗𝒔 𝑆𝑁𝑠𝑛

𝑠 ∈ 𝑆𝑣 ∈ 𝑉

 ≥ 𝕒𝒏 

∀ 𝑛 ∈ 𝐴 

(5.55) 

∑ ∑ 𝓬𝒗𝒄 𝐶𝑁𝑗𝑛

𝑐 ∈ 𝐶𝑣 ∈ 𝑉

+ ∑ ∑ 𝓶𝒗𝒎 𝑀𝑁𝑚𝑛

𝑚 ∈ 𝑀𝑣 ∈ 𝑉

+ ∑ ∑ 𝓼𝒗𝒔 𝑆𝑁𝑠𝑛

𝑠 ∈ 𝑆𝑣 ∈ 𝑉

≤ 𝒬𝕒𝒏 (5.56) 
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∀ 𝑛 ∈ 𝐴 

Equations (5.55) and (5.56) derive the state of each compute node based on 

the use of CPU, memory, or storage resource in that compute node to satisfy 

the resource demand of any VM. 

∑ 𝕒𝒏 𝑁𝑅𝑛𝑟

𝑛 ∈ 𝐴

 ≥ 𝓻𝒓 

∀ 𝑟 ∈ 𝑅 

(5.57) 

∑ 𝕒𝒏 𝑁𝑅𝑛𝑟

𝑛 ∈ 𝐴

≤ 𝒬 𝓻𝒓 

∀ 𝑟 ∈ 𝑅 

(5.58) 

Equations (5.57) and (5.58) derive the state of each rack based on the state 

of compute nodes in that rack. 

𝕣 =  ∑ 𝓻𝒓

𝑟  ∈ 𝑅

 (5.59) 

Equation (5.59) derives the number of active racks in the DC. 

𝑪𝑴𝒗𝒔𝒅 ≤ ∑ 𝓬𝒗𝒄 𝐶𝑁𝑐𝑠

𝑐 ∈ 𝐶

 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.60) 

𝑪𝑴𝒗𝒔𝒅 ≤ ∑ 𝓶𝒗𝒎 𝑀𝑁𝑚𝑑

𝑚 ∈ 𝑀

 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.61) 

𝑪𝑴𝒗𝒔𝒅 ≥ ∑ 𝓬𝒗𝒄 𝐶𝑁𝑐𝑠

𝑐 ∈ 𝐶

+ ∑ 𝓶𝒗𝒎 𝑀𝑁𝑚𝑑

𝑚 ∈ 𝑀

− 1 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.62) 

Equations (5.60) - (5.62) implement the product of two derived binary 

variables as illustrated in Equation (5.63).  

𝑪𝑴𝒗𝒔𝒅 = ∑ 𝓬𝒗𝒄 𝐶𝑁𝑐𝑠

𝑐 ∈ 𝐶

∑ 𝓶𝒗𝒎 𝑀𝑁𝑚𝑑

𝑚 ∈ 𝑀

 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.63) 

Equation (5.63) derives 𝑪𝑴𝒗𝒔𝒅 which gives the compute nodes where the CPU 

and memory resource demands of VM 𝑣 ∈ 𝑉 are placed. 

𝑪𝑺𝒗𝒔𝒅 ≤ ∑ 𝓬𝒗𝒄 𝐶𝑁𝑐𝑠

𝑐 ∈ 𝐶

 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.64) 
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𝑪𝑺𝒗𝒔𝒅 ≤ ∑ 𝓼𝒗𝒏 𝑆𝑁𝑛𝑑

𝑛 ∈ 𝑆

 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.65) 

𝑪𝑺𝒗𝒔𝒅 ≥ ∑ 𝓬𝒗𝒄 𝐶𝑁𝑐𝑠

𝑐 ∈ 𝐶

+ ∑ 𝓼𝒗𝒏 𝑆𝑁𝑛𝑑

𝑛 ∈ 𝑆

− 1 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.66) 

Equations (5.64) - (5.66) implement the product of two derived binary 

variables as illustrated in Equation (5.67). 

𝑪𝑺𝒗𝒔𝒅 = ∑ 𝓬𝒗𝒄 𝐶𝑁𝑐𝑠

𝑐 ∈ 𝐶

∑ 𝓼𝒗𝒏 𝑆𝑁𝑛𝑑

𝑛 ∈ 𝑆

 

∀ 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.67) 

Equation (5.67) derives 𝑪𝑺𝒗𝒔𝒅 which gives the compute nodes where the CPU 

and storage resource demands of VM 𝑣 ∈ 𝑉 are placed. 

𝔃𝒔𝒅
𝒙𝒚

≤ ∑ 𝓶𝒙𝒎 𝑀𝑁𝑚𝑠

𝑚 ∈ 𝑀

 

∀ 𝑥, 𝑦 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.68) 

𝔃𝒔𝒅
𝒙𝒚

≤ ∑ 𝓶𝒚𝒎 𝑀𝑁𝑚𝑑

𝑚 ∈ 𝑀

 

∀ 𝑥, 𝑦 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.69) 

𝔃𝒔𝒅
𝒙𝒚

≥ ∑ 𝓶𝒙𝒎 𝑀𝑁𝑚𝑠

𝑚 ∈ 𝑀

+ ∑ 𝓶𝒚𝒎 𝑀𝑁𝑚𝑑

𝑚 ∈ 𝑀

− 1 

∀ 𝑥, 𝑦 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.70) 

  

Equations (5.68) - (5.70) implement the product of two derived binary 

variables as illustrated in Equation (5.71). 

𝔃𝒔𝒅
𝒙𝒚

= ∑ 𝓶𝒙𝒎 𝑀𝑁𝑚𝑠

𝑚 ∈ 𝑀

∑ 𝓶𝒚𝒎 𝑀𝑁𝑚𝑑

𝑚 ∈ 𝑀

 

∀ 𝑥, 𝑦 ∈ 𝑉, 𝑠 ∈ 𝑁, 𝑑 ∈ 𝑁 

(5.71) 

Equation (5.71) derives 𝔃𝒔𝒅
𝒙𝒚

 which gives a VM pair (𝑥, 𝑦) that exchanges in-

memory computing traffic via memory-to-memory communication and the 

corresponding compute nodes (𝑠 𝑎𝑛𝑑 𝑑) where the memory components, 

which supports memory resource demand of each VM in the pair, are placed. 

𝑰𝑹𝒔𝒅 = ∑(𝑪𝑴𝒗𝒔𝒅 𝒞𝑈𝑣 + 𝑪𝑴𝒗𝒅𝒔 𝒞𝐷𝑣 + 𝑪𝑺𝒗𝒔𝒅 𝒮𝑈𝑣 + 𝑪𝑺𝒗𝒅𝒔 𝒮𝐷𝑣)

𝑣 ∈ 𝑉

 (5.72) 
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∀ 𝑠, 𝑑 ∈ 𝐴 

Equation (5.72) derives 𝑰𝑹𝒔𝒅 which is the inter-resource traffic between node 

𝑠 ∈ 𝑁 and node 𝑑 ∈ 𝑁. Resource locality constraints (described later) ensure 

that nodes 𝑠 and 𝑑 are always in the same rack. Furthermore, resource 

allocation ensures that source and destination nodes (𝑠 and 𝑑) are compute 

nodes. 

𝑬𝑾𝒔𝒅 = ∑ ∑ 𝔃𝒔𝒅
𝒙𝒚

 ℳ𝑥𝑦

𝑦 ∈𝑉𝑀:𝑥≠𝑦 𝑥 ∈𝑉𝑀

 

∀ 𝑠, 𝑑 ∈ 𝐴 

(5.73) 

 

Equation (5.73) derives 𝑬𝑾𝒔𝒅 which is the east-west traffic between memory 

resource components as a result of the placement of memory resource 

demands of VMs. 

𝑵𝑺𝒔𝒅 = ∑ ∑(𝓬𝒗𝒄 𝐶𝑁𝑐𝑠 ℐ𝑈𝑣 𝑉𝐺𝑣𝑑 + 𝓬𝒗𝒄 𝐶𝑁𝑐𝑑 ℐ𝐷𝑣 𝑉𝐺𝑣𝑠)

𝑐 ∈𝐶𝑣 ∈𝑉

  

∀ 𝑠, 𝑑 ∈ 𝑌 

(5.74) 

 

Equation (5.74) derives 𝑵𝑺𝒔𝒅 which is the north-south traffic from node 𝑠 ∈ 𝑌 

to node 𝑑 ∈ 𝑌 in the DC. Note that the source of south-bound traffic is a 

gateway switch in the DC. A gateway switch is also the destination of north-

bound traffic in the DC.  

𝚻𝒔𝒅 = 𝑰𝑹𝒔𝒅 + 𝑬𝑾𝒔𝒅 + 𝑵𝑺𝒔𝒅 

∀ 𝑠, 𝑑 ∈ 𝑌 

(5.75) 

 

Equation (5.75) derives the traffic demand to be routed and forwarded over 

the composable DC network. 

𝑻𝑶𝑩𝑷 = ∑ ∑ 2 𝑰𝑹𝒔𝒅 𝑂𝐵

 𝑑∈ 𝐴:𝑠=𝑑𝑠 ∈ 𝐴

+ ∑ ∑ 𝚻𝒔𝒅 𝑂𝐵

 𝑑∈ 𝑌:𝑠≠𝑑𝑠 ∈ 𝐴

+ ∑ ∑ 𝚻𝒔𝒅 𝑂𝐵

 𝑠∈ 𝑌:𝑠≠𝑑𝑑 ∈ 𝐴

 

(5.76) 

 

Equation (5.76) derives the total on-board power (𝑻𝑶𝑩𝑷) consumption due to 

the traversal of the on-board fabric by internal, ingress and egress traffic of all 

compute nodes. 

The TNPC from Equation (5.13) is revised to include the 𝑻𝑶𝑩𝑷 as follows in 

Equation (5.77). 

𝑻𝑵𝑷𝑪 = 𝑻𝑵𝑭𝑷 +  𝑻𝑶𝑩𝑷 +  𝑻𝑵𝑹𝑷 + 𝑻𝑿𝑵𝑷 (5.77) 

The model for energy efficient placement of VM in rack-scale composable DC 

is defined as follows: 
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Objective 3: Minimise: 

𝑻𝑪𝒐𝒎𝑷𝑪 + 𝑻𝑵𝑷𝑪 +  𝛼 𝜷 (5.78) 

Equation (5.78) is the objective of the model for energy efficient placement of 

VMs in rack-scale composable DC. It minimises the total compute and 

network power consumption and the number of rejected VMs. 𝛼 is the cost 

(measured in Watt) associated each rejected VM. 𝛼 ≫ 1 denotes that high 

cost is associated with each rejected VM. 

Subject to:  

Compute constraints 

∑ 𝓬𝒗𝒋

𝑗 ∈  𝐶

≤ 1 

∀ 𝑣 ∈ 𝑉 

(5.79) 

∑ 𝓬𝒗𝒋

𝑗 ∈  𝐶

= ∑ 𝓶𝒗𝒋

𝑗 ∈  𝑀

 

∀ 𝑣 ∈ 𝑉 

(5.80) 

∑ 𝓬𝒗𝒋

𝑗 ∈  𝐶

= ∑ 𝓼𝒗𝒋 

𝑗 ∈  𝑆

 

∀ 𝑣 ∈ 𝑉 

(5.81) 

Constraints (5.79) to (5.81) limit the maximum number of nodes that can host 

CPU, memory, and storage resource demand of a VM to one. This is because 

neither replication nor slicing of workloads is permitted. The constraints also 

permit VM rejection in scenarios where resource capacity is limited. The 

constraints ensure that the VM is fully embedded.  

∑ ∑ 𝓬𝒗𝒋 𝐶𝑁𝑗𝑛 𝑁𝑅𝑛𝑟 

𝑗 ∈  𝐶𝑛 ∈  𝑁 

= ∑ ∑ 𝓶𝒗𝒋 𝑀𝑁𝑗𝑛 𝑁𝑅𝑛𝑟

𝑗 ∈  𝑀𝑛 ∈  𝑁 

 

∀ 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 

(5.82)  

∑ ∑ 𝓬𝒗𝒋 𝐶𝑁𝑗𝑛 𝑁𝑅𝑛𝑟 

𝑗 ∈  𝐶𝑛 ∈  𝑁 

= ∑ ∑ 𝓼𝒗𝒋  𝑆𝑁𝑗𝑛 𝑁𝑅𝑛𝑟

𝑗 ∈  𝑆𝑛 ∈  𝑁 

 

∀ 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 

(5.83)  

Constraints (5.82) and (5.83) are the locality constraints of rack-scale 

composable DC. They ensure that CPU, memory, and storage components 

used to provision a given VM are in the same rack but not necessarily in the 

same compute node. 
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∑ 𝑉𝐶𝑣

𝑣 ∈ 𝑉

𝓬𝒗𝒋  ≤ ℂ𝑗  

∀ 𝑗 ∈ 𝐶  

(5.84)  

∑ 𝑉𝑀𝑣

𝑣 ∈ 𝑉

𝓶𝒗𝒋 ≤ 𝕄𝑗  

∀ 𝑗 ∈ 𝑀 

(5.85) 

∑ 𝑉𝑆𝑣

𝑣 ∈ 𝑉

𝓼𝒗𝒋 ≤ 𝕊𝑗   

∀ 𝑗 ∈ 𝑆 

(5.86) 

Constraints (5.84) - (5.86) denote resource capacity constraints for each CPU, 

memory, and storage components. These equations also ensure that a 

compute resource’s capacity is conserved. 

5.6 Energy Efficient Placement of VMs in Single Rack Setup 

Using the combined MILP models from Section 5.4 and Section 5.5, energy 

efficient placement of VMs in rack-scale composable DCs is studied. Rack-

scale DCs that implement logical, hybrid and physical resource disaggregation 

are considered. A zero-cost-and-un-capacitated network and non-zero-cost-

and-capacitated networks (i.e., AOPD-DCN, E-NetCoD or EO-NetCoD) are 

deployed. Two classes of CPU, memory, and storage resource components 

(illustrated in Table 5.4) are considered to reflect heterogeneity of compute 

resources deployed in production DCs. To study the performance of all 

network topologies within a rack, a composable DC with a single rack is 

considered in this section. Allocated to the single rack are 8 CPU, 8 memory 

and 8 storage components. These components are distributed into compute 

nodes according to the resource disaggregation approach adopted as shown 

in Figure 5.13.  

 There are eight heterogenous compute nodes in the single rack of a 

logically disaggregated composable DC. Each heterogeneous compute node 

comprises of one CPU, one memory and one storage resource components 

as shown in Figure 5.13a. The single rack comprises of 10 compute nodes 

when hybrid disaggregation is adopted in the DC as shown in Figure 5.13b. 

Compute nodes 1 – 4 are heterogeneous nodes, each comprising of one CPU, 

one memory and one storage resource components. Compute nodes 5 – 10 

are homogenous, each homogenous node comprise of two CPU or two 

memory or two storage resource components of the same component class. 

The single rack in a physically disaggregated DC comprises of 12 



- 138 - 

homogenous compute nodes. Each compute node comprises of two CPU or 

two memory or two storage resource components from the same class as 

shown in Figure 5.13c. Because the MILP model’s complexity grows as the 

number network nodes increases, we further simplify the MILP model in single 

rack scenario. This is achieved by excluding spine switches or ToC switches 

from corresponding network topologies. A scenario where the ToR switch is 

connected directly to the DC gateway switch is considered. Furthermore, the 

network parameters from Section 5.4.4 are adopted in this section. 

Table 5.4: Compute component capacity and peak power 

Component 

Type 

CPU Memory Storage 

Component 

ID 

Capacity Peak 

power 

Capacity Peak 

power 

Capacity Peak 

power 

1 3.6 GHz 130 W 32 GB 40 W 320 GB 6.19 W 

2 2.66 GHz 95 W 24 GB 30.72 W 250 GB 6.19 W 

3 3.6 GHz 130 W 32 GB 40 W 320 GB 6.19 W 

4 2.66 GHz 95 W 24 GB 30.72 W 250 GB 6.19 W 

5 3.6 GHz 130 W 32 GB 40 W 320 GB 6.19 W 

6 2.66 GHz 95 W 24 GB 30.72 W 250 GB 6.19 W 

7 3.6 GHz 130 W 32 GB 40 W 320 GB 6.19 W 

8 2.66 GHz 95 W 24 GB 30.72 W 250 GB 6.19 W 

  

Since, the complexity of the model also grows with the number of VMs 

and size of the composable DC, only few VMs are considered for placement 

in the single rack. We consider 12 input VMs with a mix of compute resource 

demand intensity as illustrated in Table 5.5. Furthermore, the data rate of each 

VM’s CPU-memory communication, CPU-disk communication and north-

south as also given in Table 5.5. Traffic demands of VMs in Table 5.5 are 

generated via uniform distribution of total CPU-to-memory traffic, CPU-to-

storage traffic and CPU-to-IO traffic over specific ranges. VMs are clustered 

into in-memory communication groups (IMCG), as illustrated in Table 5.5, to 

represent sets of related VMs in conventional DCs. Each set of related VMs 

have one-to-one, one-to-many, many-to-many, or mixed in-memory 

computing traffic patterns between the applications of the group. The range of 
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in-memory computing traffic between two VMs in the same group is 5 Gbps 

to 40 Gbps. 

 

Figure 5.13: Resource disaggregation of single DC rack. 

Table 5.5: VM compute and network demands 

VM 

(IMCG) 

CPU 

demand 

(GHz) 

Memory 

demand 

(GB) 

Storage 

demand 

(GB) 

CPU – RAM 

(Gbps) 

CPU – HDD 

(Gbps) 

CPU – IO (Gbps) 

Egress Ingress Egress Ingress Egress Ingress 

1 (A) 1.8 7.2 80 116.7 50 26 9.3 9.5 6.6 

2 (A) 1.8 24 240 50 66.7 60 9.5 3.3 4 

3 (A) 2.6 10.8 120 100 41.7 64 6 5 3.5 

4 (A) 0.9 13 160 266.7 116.7 86 5 3 4 

5 (A) 0.9 3.6 160 466.7 100 23 9 10 2 

6 (B) 2.6 32 160 466.7 50 20 28 2.6 2.5 

7 (B) 1.8 24 80 333.3 44.4 64 19.5 2.75 3.5 

8 (B) 2.6 10.8 80 133.3 233.3 17.5 14 1.7 5.7 

9 (B) 2.6 32 80 166.7 66.7 10 29 1 8.5 

10 (B) 1.8 7.2 160 116.7 100 14 49 2 3 

11 (C) 1.8 24 240 433.3 66.7 68 45 1.75 3 

12 (C) 2.6 10.8 80 333.3 25 22 9.7 4 2 
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 The MILP model is solved using the 64-bit AMPL/CPLEX solver on the 

ARC3 supercomputing node with 24 CPU cores and 128 GB of memory [70]. 

Our analysis of results from the model focuses on metrics such as total 

computing power consumption, total network power consumption, number of 

active resource components, average active resource component utilisation 

and network available throughput utilisation. To obtain optimal results, the 

MILP model bin-packs VMs resource demands into compute components to 

achieve optimal power and utilisation efficiencies within compute capacity 

constraints and network constraints. 

5.6.1 Zero-Cost-and-Un-capacitated Network 

Under this scenario, energy efficient placement of VM is performed in rack-

scale DCs that employ logical, physical or hybrid disaggregation over an un-

capacitated-and-zero-cost network. The zero-cost-and-un-capacitated 

network has no network capacity constraints and zero power is consumed as 

result of traffic forwarding and routing over network. Results in Figure 5.14, 

Figure 5.15 and Figure 5.16 show that all disaggregation approaches 

achieved optimal efficiencies. The compute resource components are utilised 

based on available capacity and energy efficiency. VM resource demands are 

bin-packed into CPU, memory, and storage components to avoid VM 

rejection. Bin-packing also achieved optimal energy efficiency under the 

corresponding form of resource disaggregation employed in the rack.  

Since any form of network cost is absent under this scenario, optimal 

compute energy efficiency is achieved under all forms of disaggregation 

employed in the single rack. Hence, the utilisation of active resource 

components is maximised within the component’s available capacity and their 

corresponding energy efficiency. Figure 5.15 shows that equal number of 

CPU, memory and storage components are activated under all forms of 

resource disaggregation employed in the DC. While all (8) CPU and memory 

components in the rack are activated to prevent VM rejection, only 6 storage 

components are activated. This is because the storage resource demands of 

VM as given in Table 5.5 are less intensive relative to the capacity of storage 

components considered. Hence, to promote greater energy efficiency, 

consolidation of storage resource demands into 320 GB storage components 

is preferred. Fewer 250 GB storage components are activated as shown in 

Figure 5.14. This is because the 320 GB storage component is more energy 

efficient than the 250 GB storage component. The 320 GB storage can 

support higher capacity at the same peak power consumption as the 250 GB 

storage component. 
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Figure 5.14: Number of active DC compute components 

 Furthermore, equal average active resource component utilisation is 

obtained when all forms of resource disaggregation are employed in the rack-

scale DC as shown in Figure 5.15. Equal TCPC, TMPC and TSPC are also 

obtained under all disaggregation types considered as shown in Figure 5.16. 

This is a consequent of optimal utilisation of CPU, memory and storage 

resource components under all forms of resource disaggregation employed in 

the rack. The fact that the same results are obtain under all resource 

disaggregation approaches does not always imply that the placement of VM 

resource demands is the same under different forms of disaggregation. 

Hence, as is the case in our scenarios, different VM placements may achieve 

the desired optimal performance provided that resource component capacity 

constraint is satisfied. The results obtained under this scenario demonstrates 

the efficacy of all forms of disaggregation to achieve optimal efficiency when 

an arbitrary un-capacitated-and-zero-cost network is available. However, it is 

expected that the results will change when network constraints and cost are 

present in the composable DCs. 

 

Figure 5.15: Average utilisation of active DC compute components 
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Figure 5.16: Total compute power consumption 

5.6.2 Non-Zero-Cost-and-Capacitated Networks 

A non-zero-cost-and-capacitated network is a network with non-zero-power 

consumption and network capacity constraints. As defined in the objective 

function of the MILP model, there are three primary factors that influence 

placement of VM resource demands in non-zero-cost networks. These are VM 

rejection, compute energy efficiency and TNPC. However, because a high 

cost is associated with the rejection of all VMs in the DC, rejection of VMs is 

strongly discouraged. Hence, to achieve optimal results when a non-zero-

cost-and-capacitated network is employed in the rack-scale DC, best-effort 

will be made to prevent VM rejection while trade-offs between compute energy 

efficiency and network energy efficiency are also considered. Placement of 

VMs resource demands is also expected to be constrained by both compute 

and network constraints stated in the MILP model. 

5.6.2.1 Logical Disaggregation 

When logical disaggregation is considered in the rack-scale composable DC, 

similar VM placement is replicated for all network topologies considered as 

illustrated in Table 5.6. Hence, optimal placement of VM resource demands 

does not change with the network topology that is adopted. However, relative 

to the zero-cost-and-un-capacitated network, the placement of VMs when 

AOPD-DCN, E-NetCoD or EO-NetCoD is deployed is sub-optimal. This is 

because of the presence of network constraints and the introduction of 

network power consumption. Even though, the resulting traffic matrix 

generated under un-capacitated-and-zero-cost network can be routed through 

AOPD-DCN, it was not preferred. This is because the additional network 

power that must be consumed to achieve the same compute energy efficiency 

as the zero-cost network scenario outweighs the potential benefits that could 

be achieved. Therefore, an alternative VM placement strategy is adopted 

when AOPD-DCN is deployed to minimise TNPC. On the other hand, the 
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resulting traffic generated under the zero-cost-and-un-capacitated network 

scenario is unrouteable by both variants of NetCoD. Because of the interface 

capacity constraint at compute nodes. Hence, an alternative VM placement 

strategy is required to satisfy network constraints and to minimise TNPC when 

both variants of NetCoD are deployed. 

Table 5.6: VM placement in logically disaggregated rack 

Scenarios Zero-Cost AOPD-DCN E-NetCoD EO-NetCoD 

VM (IMCG) C(N) M(N) S(N) C(N) M(N) S(N) C(N) M(N) S(N) C(N) M(N) S(N) 

1 (A) 3(3) 5(5) 7(7) 1(1) 8(8) 1(1) 7(7) 2(2) 7(7) 1(1) 4(4) 1(1) 

2 (A) 7(7) 3(3) 1(1) 1(1) 4(4) 1(1) 7(7) 6(6) 7(7) 1(1) 6(6) 1(1) 

3 (A) 4(4) 2(2) 8(8) 7(7) 7(7) 7(7) 1(1) 1(1) 1(1) 5(5) 5(5) 5(5) 

4 (A) 3(3) 4(4) 2(2) 5(5) 7(7) 5(5) 3(3) 1(1) 3(3) 7(7) 5(5) 7(7) 

5 (A) 5(5) 8(8) 3(3) 7(7) 7(7) 7(7) 1(1) 1(1) 1(1) 5(5) 5(5) 5(5) 

6 (B) 5(5) 1(1) 5(5) 5(5) 5(5) 5(5) 3(3) 3(3) 3(3) 7(7) 7(7) 7(7) 

7 (B) 1(1) 6(6) 1(1) 3(3) 3(3) 3(3) 5(5) 5(5) 5(5) 3(3) 3(3) 3(3) 

8 (B) 8(8) 8(8) 2(2) 2(2) 2(2) 4(4) 4(4) 4(4) 5(5) 8(8) 8(8) 3(3) 

9 (B) 6(6) 7(7) 3(3) 4(4) 1(1) 4(4) 6(6) 7(7) 6(6) 6(6) 1(1) 6(6) 

10 (B) 7(7) 3(3) 5(5) 3(3) 3(3) 3(3) 5(5) 5(5) 5(5) 3(3) 3(3) 3(3) 

11 (C) 1(1) 5(5) 7(7) 6(6) 6(6) 6(6) 8(8) 8(8) 8(8) 2(2) 2(2) 2(2) 

12 (C) 2(2) 4(4) 3(3) 8(8) 8(8) 3(3) 2(2) 2(2) 6(6) 4(4) 4(4)s 6(6) 

# of active 

components 

8 8 6 8 8 6 8 8 6 8 8 6 

C – CPU Component ID, M – Memory Component ID, S – Storage Component ID, N – Compute Node ID 

 

 A strategy that balances the trade-offs between compute power 

consumption and TNPC is adopted to obtain optimal placement. Energy 

efficient placement of CPU demands is often given higher priority. Hence, 

CPU demands are consolidated (within resource capacity constraint as much 

as possible) to achieved high utilisation of active CPU components. However, 

to ensure that TNPC is minimised, memory demands of some VMs are placed 

in the same compute node as the CPU demand. This strategy is strongly 

applied to VMs that are known to have very high total CPU-to-memory traffic 

as shown in Table 5.6. It is also applied to some VMs that are known to have 

moderately high CPU-to-memory traffic, provided that the capacity of the 

memory component in the corresponding compute node is enough. 

Otherwise, the memory demand of such VMs is placed in different node to 
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achieve lower TMPC by ensuring high utilisation of active memory 

components. The memory demand of VMs that have low-medium volume of 

total CPU-to-memory traffic are often provisioned in a different way. They are 

usually provisioned in memory components that are in a different compute 

node from the CPU component that host the CPU demand. This strategy is 

adopted to ensure high utilisation of active memory components; 

consequently, TMPC is also minimised. The adopted strategy also reduces 

the impact of resource disaggregation on the network by minimising the TNPC 

because lower volume of traffic is sent over the network. 

 Additionally, TNPC is further minimised by placing the storage demand 

of most VMs in the same compute node as the CPU demand of the VM as 

illustrated in Table 5.6. This reduces the volume of traffic in the network and 

the consequential power that would have been consumed. However, the 

storage demand of some VMs are also placed in a different compute node 

from the node hosting the VM’s CPU demand to reduce the TSPC by optimally 

utilising active storage components. This also reduces the number of active 

storage components as illustrated in Figure 5.17. 

 

Figure 5.17: Number for active resource component in DC 

 It is also important to note that, network traffic is also minimised by 

reducing or eliminating in-memory communication between VMs in the same 

IMCG. This is done by placing such VMs into the same memory component. 

For instance, the memory demand of VMs 3, 4, and 5 which belong to the 

IMCG-A are always placed in the same memory component as illustrated in 

Table 5.6. As a result, in-memory communication between such VMs is 

avoided. This is because the CPU allocated to each VM can be granted 

access to the appropriate address on the common (shared) memory 

component to retrieve desired data. However, because in-memory 

communication volume is relatively small, the reduction of the volume of in-
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memory communication in the network does not have a strong effect on VM 

demand placement decisions. 

 

Figure 5.18: Average utilisation of active components 

 

Figure 5.19: Total compute power consumption 

 Relative to the zero-cost-and-un-capacitated network, the total 

compute (CPU, memory, and storage) power consumption increased 

marginally when non-zero-cost-and-capacitated networks are deployed in a 

logically disaggregated rack. Marginal increase in TCPC, TMPC and TSPC 

are responsible for the marginal increase in total compute power consumption. 

The less efficient placement of VM demands when AOPD-DCN, E-NetCoD or 

EO-NerCoD is deployed is responsible for the fall in average utilisation of 

active CPU components as shown in Figure 5.18. The fall in the average 

utilisation of active CPU components is somewhat marginal. Compared to the 

zero-cost-and-un-capacitated network scenario, the average utilisation of 

active memory and storage components marginally increases as shown in 

Figure 5.18. The marginal increase in average utilisation of active memory 

and storage components does not result in a fall in TMPC and TSPC 

respectively. This is because it is achieved by increasing the utilisation of 
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memory and storage components that are less energy efficient. Hence, the 

TMPC and TSPC increased marginally in-spite of the increase in average 

active memory and storage utilisation. 

 The results obtained under the logical disaggregation setup provides 

an excellent basis for another fair comparison of the various network 

topologies being considered. The TNRP is the same for AOPD-DCN and both 

variants of NetCoD. This is because the traffic demand between two 

communicating nodes pair is always routed directly between the two nodes in 

the logical layer of all network topologies considered. Hence, all end-to-end 

logical paths created over the physical topologies (AOPD-DCN, E-NetCoD 

and EO-NetCoD) are direct and do not employ intermediated routing nodes 

along the path. In the physical layer, the TNFP consumed by AOPD-DCN and 

EO-NetCoD are equal. This is because the optical ToR switch is the only 

intermediate node traversed by end-to-end light paths created over the 

physical topology. Since, the optical switch only has a constant (low) operating 

power consumption that is non-load proportional, it has no impact on the 

TNFP of both AOPD-DCN and EO-NetCoD. On the other hand, the E-NetCoD 

topology employs an electrical switch which has both fixed operational and 

load proportional components in its power profile. Hence, relative to the 

AOPD-DCN or EO-NetCoD topologies, the E-NetCoD topologies has higher 

TNFP. The ToR switch is an important intermediate node traversed by some 

direct logical layer links created between communicating nodes pairs. 

 The TOBP is the same across all three topologies because the VMs 

are placed in the same way under all topologies. SOAPC makes no 

contribution to the TNPC of AOPD-DCN since the SOA switches are not 

required at each compute node. On the other, the same SOAPC is obtained 

under both variants of NetCoD. Hence, the contribution of SOAPC to the 

TNPC is the same as shown in Figure 5.20. The TSWOP of AOPD-DCN and 

EO-NetCoD are equal as both topologies employed one optical switch and 

one electrical gateway switch with equal typical operating power consumption. 

The TSWOP of the E-NetCoD is higher as illustrated in Figure 5.20 because 

two electrical switches are required when the topology in deployed in this 

evaluation scenario.  

 The optimal VM placement obtained via MILP optimisation enabled 

zero-hop communication between all intra-rack communicating node pairs. 

This achieved a balanced trade-off between compute power consumption and 

TNPC under all network topologies considered. Furthermore, single hop 

communication is employed for communication between compute nodes and 
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the gateway switch. Hence, the SOAPC and/or the TNRP and TNFP 

consumed due to VMs placement are minimised under the appropriate 

topology. The TNPC increases by 0.7% when AOPD-DCN is replaced by EO-

NetCoD. The energy efficient SOA switches employed in EO-NetCoD are 

solely responsible for the marginal increase in TNPC observed. The TNPC 

increased by 71% when EO-NetCoD is replaced by E-NetCoD. The TSWOP 

and the TNFP consumed by the electrical ToR switch, which is an important 

intermediate node, are responsible for this relative increase in TNPC as 

shown in Figure 5.20. 

 

Figure 5.20: Total network power consumption in DC 

 However, evaluation of power consumption alone is not sufficient to 

evaluate network performance. The AOPD-DCN topology adopts a generic 

design approach to achieve a suitable network for composable DC. Hence, in 

a logically disaggregated DC that employs AOPD-DCN, each compute node 

requires multiple dedicated interfaces to ensure full mesh physical 

connectivity in the rack. This becomes a design problem as the number of 

nodes in each rack increases. This is because multiple (up to 48 high-

capacity) interfaces must be fitted onto each compute node. Both variant of 

NetCoD mitigate this problem by adopting a targeted design approach that 

addresses the specific challenge posed by resource disaggregation in a 

practical composable DC. 

 Relative to AOPD-DCN, the maximum throughput achievable by both 

variants of NetCoD is significantly lower as shown in Figure 5.21. However, it 

is important to remember that in AOPD-DCN, each compute node has a 

dedicated 400 Gbps interface to communicate directly with each co-rack 

compute node. In addition, each compute node in AOPD-DCN also has a total 

of 800Gbps that is available to communicate via the inter-rack network. On 

the other hand, each compute node has a maximum of 800 Gbps to 
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communicate with all nodes in the DC when either variant of NetCoD is 

considered. However, both variants of NetCoD achieve significantly higher 

utilisation of the available network throughput as shown in Figure 5.22. About 

20% of E-NetCoD and EO-NetCoD available capacity is used when logical 

disaggregation is implemented in the composable rack as illustrated in Figure 

5.22. On the other hand, higher throughput provided by AOPD-DCN 

significantly exceeds the practical need in the logically disaggregated DCs. 

Only about 5% of AOPD-DCN available throughput is used as illustrated in 

Figure 5.22. Therefore, relative to the technically challenging generic design 

approach adopted for AOPD-DCN, the specific and simpler design approach 

adopted for NetCoD achieves greater utilisation (4 times greater) while 

delivering similar performance.  

 

Figure 5.21: Maximum network throughput in single rack composable DC 

 

Figure 5.22: Network throughput utilisation in single rack composable DC 

5.6.2.2 Hybrid Disaggregation 

The results show that the general placement strategy observed under in the 

logically disaggregated rack-scale DC is implemented when hybrid 

disaggregation is employed in the rack-scale composable DC. That is, VM 
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rejection remains discouraged as a balance between compute energy 

efficiency and network energy efficiency is found. However, relative to the 

zero-cost-and-un-capacitated network, total compute power consumption is 

marginally (below a percent) higher when AOPD-DCN, E-NetCoD or EO-

NetCoD is employed. This is because maximum compute energy efficiency is 

not achieved when network cost and constraints are introduced. Given both 

compute and network constraints, marginal concessions in compute energy 

efficient are required to achieve an optimal result. 

 Relative to the zero-cost-and-un-capacitated network, the total 

compute power consumption obtained when AOPD-DCN is deployed in rack-

scale composable DC that implements hybrid disaggregation is marginally 

(less that a percent) higher. A marginal increase in the TMPC is solely 

responsible for the marginal increase in total compute power consumption. 

Revisions in the placement of VMs’ memory resource demands as a result of 

network constraints is responsible for the increase in TMPC. Although the 

same number of memory resource components are utilised, and the average 

active utilisation of memory component increased as shown in Figure 5.17, a 

less energy efficient memory component is highly utilised. Therefore, the 

TMPC increased accordingly as shown in Figure 5.19. Relative to the zero-

cost-and-un-capacitated network, the placement of VMs’ CPU and storage 

demands is different, as shown in Table 5.7, when AOPD-DCN was deployed 

the rack-scale DC. However, Figure 5.19, Figure 5.17, and Figure 5.18 

respectively show that the revised placement achieved the same TCPC and 

TSPC as zero-cost-and-un-capacitated network. Equal number of active CPU 

and storage resources and the same average active resource utilisation are 

also achieved. 

 The placement of VMs obtained when E-NetCoD is deployed is a 

replica of the placement obtained when AOPD-DCN was deployed in the rack-

scale composable DC. Hence, equal number of active resource components 

is obtained under both scenarios and the average utilisation of active resource 

CPU, memory and storage components is equal under both scenarios. 

Consequently, equal total compute power consumption (TCPC, TMPC and 

TSPC) is obtained when E-NetCoD is deployed to replace AODP-DCN in a 

rack-scale DC that implements hybrid disaggregation. However, the resulting 

placement of CPU demands obtained under E-NetCoD is different from the 

placement of CPU demands obtained under the zero-cost-and-un-capacitated 

network as illustrated in Table 5.7. 
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Table 5.7: VMs placement in a rack that implements hybrid disaggregation 

Scenarios Zero-Cost AOPD-DCN E-NetCoD EO-NetCoD 

VM (IMCG) C(N) M(N) S(N) C(N) M(N) S(N) C(N) M(N) S(N) C(N) M(N) S(N) 

1 (A) 5(5) 5(6) 5(7) 3(3) 3(3) 3(3) 3(3) 3(3) 3(3) 5(5) 4(4) 5(7) 

2 (A) 5(5) 4(4) 5(7) 7(5) 8(9) 5(7) 5(5) 8(9) 7(7) 5(5) 8(9) 5(5) 

3 (A) 3(3) 2(2) 8(10) 8(8) 2(2) 2(2) 6(8) 2(2) 4(4) 8(8) 2(2) 4(4) 

4 (A) 1(1) 8(9) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 

5 (A) 3(3) 6(9) 1(1) 1(1) 1(1) 7(7) 1(1) 1(1) 5(7) 1(1) 1(1) 5(7) 

6 (B) 4(4) 3(3) 3(3) 5(5) 7(6) 7(7) 8(8) 7(6) 5(7) 7(5) 7(6) 5(7) 

7 (B) 7(5) 1(1) 4(4) 7(5) 6(9) 5(7) 5(5) 6(9) 2(2) 3(3) 6(9) 3(3) 

8 (B) 8(6) 8(9) 8(10) 2(2) 2(2) 2(2) 4(4) 4(4) 4(4) 2(2) 2(2) 2(2) 

9 (B) 2(2) 7(6) 7(7) 6(8) 5(6) 4(4) 7(5) 5(6) 7(7) 6(8) 5(6) 2(2) 

10 (B) 7(5) 1(1) 3(3) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 1(1) 

11 (C) 1(1) 5(6) 7(7) 3(3) 3(3) 3(3) 3(3) 3(3) 3(3) 3(3) 3(3) 3(3) 

12 (C) 6(8) 6(9) 4(4) 4(4) 4(4) 4(4) 2(2) 2(2) 2(2) 4(4) 4(4) 4(4) 

# of active 

components 

8 8 6 8 8 6 8 8 6 8 8 6 

C – CPU Component ID, M – Memory Component ID, S – Storage Component ID, N – Compute Node ID 

 

 The placement of VMs when EO-NetCoD implemented is comparable 

to the placement of VMs obtained when E-NetCoD is deployed in the 

composable DC. Equal TCPC and TSPC are obtained under both scenarios. 

This is because equal number of CPU and storage components are activated 

under both scenarios. The average utilisation of active CPU and storage 

component obtained when EO-NetCoD is deployed is equal to the 

corresponding values obtained when E-NetCoD is implemented in the DC. 8 

RAM components are active under both scenarios. However,  a slight variation 

in the placement of memory demands under EO-NetCoD is responsible for 

marginal increase in the TMPC relative to the corresponding value obtained 

under E-NetCoD. The average utilisation of active memory component under 

EO-NetCoD is marginally higher as shown in Figure 5.18. This is because a 

memory component with less energy efficiency is highly utilised compared to 

when E-NetCoD is deployed in the composable DC.  

 The results obtained by solving the MILP model also show attempts to 

minimise TNPC when AOPD-DCN, E-NetCoD and EO-NetCoD topologies are 

employed in the DC. AOPD-DCN primarily employs zero-hop communication 

between intra-rack compute nodes to ensure that both TNFP and TNRP are 
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minimised. However, in one instance where the capacity of the direct interface 

between nodes is limited, an additional path is established via the optical ToR 

switch to support intra-rack traffic. Note that it is more energy efficient to setup 

a light-path via the optical switch than to use another compute node as an 

intermediate node. This is because of the associated routing and forwarding 

power that will be consumed at the intermediate compute node. In the physical 

layer, direct light-paths are setup between each compute node and the 

gateway switch via the optical ToR switch. The direct light-paths facilitate the 

transmission of north-south traffic in both northbound and southbound 

directions. 

 As observed when AOPD-DCN is employed in the DC, direct light-

paths are often established between communicating node pairs in the DC to 

carry traffic when EO-NetCOD is employed. However, multi-hop 

communication is also periodically used to transmit low data rate (mice) traffic 

to ensure optimal utilisation of provisioned light-paths. Such low data rate 

(mice) traffic is piggybacked on other light-paths that are established to 

convey low-medium data rate traffic to an intermediate node. The intermediate 

node thereafter sets-up another lightpath to jointly forward the transiting mice 

traffic and its own traffic to a final destination node. Multi-hop communication 

paths can be provisioned in both the logical and physical layers of the 

corresponding network topology. It is important to note that a large traffic 

demand between two nodes maybe divided into mice and elephant portions 

to ensure optimal utilisation of the network. On the one hand, the mice portion 

maybe forwarded via multi-hop communication path to optimally utilise the 

network by maximising the utilisation of each active lightpath. On the other 

hand, the elephant portion of the divided traffic is forwarded via zero-hop 

communication path to reduce the SOAPC, TNRP and TNFP. This is because 

forwarding elephant traffic via multi-hop communication paths significantly 

increases TNPC. 

 E-NetCoD adopts a similar approach as EO-NetCoD to maximise 

utilisation the active light-paths and to mitigate the impact of network 

constraints. When the E-NetCoD is employed in rack-scale composable DC, 

direct virtual links are setup between source and destination nodes of the 

traffic demand in the logical layer. However, in the physical layer, mice flow of 

the virtual layer is often forwarded via multi-hop communication path. Such 

flows are carried on a common lightpath with low-medium sized flows that are 

destined for the selected intermediate compute node. At the intermediate 

compute node, the transiting mice flow is piggybacked on a different lightpath 
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that is setup to convey another low-medium sized flow originating at the 

intermediate compute node. This strategy is commonly observed for mice 

flows that originate from compute nodes that comprise of multiple CPU 

components. Such nodes are highly constrained when the CPU demands of 

multiple workloads are placed in them. Hence, multiple light-paths must be 

provisioned to convey inter-resource traffic to and from storage and memory 

components within the rack. Light-paths must also be provisioned to support 

north-south traffic to and from the inter-rack network in the DC. On the other 

hand, the elephant flows are usually forwarded via zero-hop communication 

path to reduce the SOAPC, TNRP and TNFP. 

 Generally, in the DC that implements hybrid disaggregation, AOPD-

DCN has the lowest TNPC, as seen in Figure 5.20. This is because multi-hop 

communication is reduced and AOPD-DCN does not require SOA switches. 

However, AOPD-DCN has inherent technical implementation challenges that 

must be addressed in a practical scenario. Even if such challenges are 

addressed, an implementation of AOPD-DCN will be grossly underutilised as 

shown in the Figure 5.22. In a rack-scale DC that implements hybrid 

disaggregation, the utilisation of the available throughput under either variant 

of NetCoD is greater than similar results obtained under AOPD-DCN. 

Relatively, the utilisation of available throughput is 5 times greater under both 

variant of NetCoD as shown in Figure 5.22.  

 EO-NetCoD has lower TNPC compared E-NetCoD, as seen in Figure 

5.20. This is because energy intensive electrical ToR switches (with relatively 

high load proportional PC and operational PC) are not used in EO-NetCoD. 

TOBP is the same under all topologies considered because similar placement 

strategy adopted. The strategy ensures that maximum traffic is exchanged via 

the highly energy efficient onboard fabric under all topologies. This strategy 

helps to minimise TNPC. As expected, Figure 5.20 shows that the TNFP of E-

NetCoD is the highest because an electrical ToR is used. The TNFP of EO-

NetCoD is higher than that of AOPD-DCN as shown in Figure 5.20. This is 

because single-hop communication (via other compute nodes) is infrequently 

adopted to optimally utilise network capacity under EO-NetCoD. This leads to 

additional forwarding and routing power that are absent when AOPD-DCN is 

employed. Furthermore, both variants of NetCoD require SOA switches, which 

also introduce additional network power while AOPD-DCN does not.  

 For all network topologies considered, relative to when the DC was 

logically disaggregated, the TNPC is marginally higher in a DC that 

implements hybrid disaggregation as seen in Figure 5.20. Relative to the 



- 153 - 

logically disaggregated DC, the TNPC of a DC that implements hybrid 

disaggregation increased by 0.9%, 0.7% and 1.3% when AOPD-DCN, E-

NetCoD and EO-NetCoD are employed respectively. This is because the 

traffic in higher tiers of the network increases when hybrid disaggregation is 

employed. Consequently, both forwarding and routing power increase 

accordingly as shown in Figure 5.20. Furthermore, more SOA switches are 

required in both variants of NetCoD when hybrid disaggregation is 

implemented in the composable DC. TNPC only increases marginally when 

hybrid disaggregation is implemented instead of logical disaggregation. This 

is because next generation energy efficiency values are adopted for different 

tiers of the network. Hence, the transmission of significantly higher volumes 

of traffic when hybrid disaggregation is implemented in the composable DC 

does not lead to drastic increase in TNPC. It is important to note that 

comparable compute power consumption is achieved when logical or hybrid 

disaggregation is adopted in a rack-scale composable DC as shown in Figure 

5.19. 

5.6.2.3 Physical Disaggregation 

In a physically disaggregated DC, the introduction of network constraints and 

cost changes in the placement of VM demands relative to VM placement 

obtained under zero-cost-and-un-capacitated network. A review of the 

placement of VM demands in Table 5.8 shows this. The results obtained when 

AOPD-DCN is deployed show that the placement strategy gives higher priority 

to energy efficient utilisation of active CPU components. This strategy is 

adopted to achieve optimal energy efficiency in the DC. This is because CPU 

components consume more power than other components in the DC. The 

placement of CPU demands obtained when AOPD-DCN is deployed in a 

physically disaggregated DC is different from similar results obtained under 

the zero-cost-and-un-capacitated network. However, the same TCPC is 

achieved under both scenarios as shown in Figure 5.19. Similarly, equal 

number of active CPU component and average active CPU component 

utilisation are obtained under both scenarios as shown in Figure 5.17 and 

Figure 5.18 respectively. 

 Table 5.8 also shows that the memory demand of VMs, which belong 

to a common IMCG, are placed in the same compute node when AOPD-DCN 

is implemented. Hence, physical disaggregation is leveraged to reduce and/or 

eliminate in-memory communication traffic in the network. This kind of 

placement is more feasible under the physical disaggregation scenario. 

Consequently, this also minimises forwarding power in the network and can 
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also reduce multi-hop communication. In most situation, memory demands 

are placed in a manner that ensures that VMs in the same IMCG are placed 

in the same compute node. This minimises in-memory communication in the 

composable DC. Relative to the zero-cost-and-un-capacitated network, the 

placement strategy adopted for memory demands is responsible for a 

marginal (less than 1%) rise in the TMPC under AOPD-DCN. This further 

highlights the need for marginal concessions in compute energy efficiency to 

achieve optimal overall efficiency 

Table 5.8: VMs placement in physically disaggregated rack 

Scenarios Zero-Cost AOPD-DCN E-NetCoD EO-NetCoD 

VM (IMCG) C(N) M(N) S(N) C(N) M(N) S(N) C(N) M(N) S(N) C(N) M(N) S(N) 

1 (A) 1(1) 5(8) 5(9) 7(7) 1(2) 1(3) 1(1) 8(11) 1(3) 7(7) 6(11) 1(3) 

2 (A) 3(1) 7(9) 7(9) 5(7) 1(2) 5(9) 7(7) 6(11) 3(3) 7(7) 8(11) 7(9) 

3 (A) 7(7) 6(11) 6(12) 8(10) 3(3) 8(12) 8(10) 8(11) 2(6) 5(7) 5(8) 3(3) 

4 (A) 5(7) 8(11) 1(3) 5(7) 3(3) 2(6) 3(1) 3(2) 5(9) 5(7) 6(11) 5(9) 

5 (A) 5(7) 8(11) 5(9) 1(1) 3(3) 3(3) 7(7) 8(11) 1(3) 1(1) 5(8) 3(3) 

6 (B) 4(4) 1(2) 1(3) 1(1) 5(8) 3(3) - - - - - - 

7 (B) 5(7) 5(8) 4(6) 3(1) 2(5) 7(9) 2(4) 5(8) 3(3) 4(4) 2(5) 5(9) 

8 (B) 2(4) 4(5) 5(9) 2(4) 4(5) 8(12) 3(1) 3(2) 1(3) 1(1) 5(8) 1(3) 

9 (B) 6(10) 3(2) 3(3) 6(10) 7(8) 5(9) 5(7) 1(2) 7(9) 8(10) 3(2) 5(9) 

10 (B) 1(1) 7(8) 4(6) 3(1) 8(11) 7(9) 1(1) 5(8) 5(9) 3(1) 1(2) 1(3) 

11 (C) 3(1) 2(5) 3(3) 7(7) 6(11) 1(3) 6(10) 4(5) 7(9) 6(10) 4(5) 4(6) 

12 (C) 8(10) 6(11) 7(9) 4(4) 8(11) 7(9) 4(4) 2(5) 2(6) 2(4) 1(2) 7(9) 

# of active 

components 

8 8 6 8 8 6 8 8 5 8 8 5 

C – CPU Component ID, M – Memory Component ID, S – Storage Component ID, N – Compute Node ID 

 

A different storage demand placement under the AOPD-DCN achieved 

the same efficiency as the zero-cost-and-un-capacitated network. This is 

because most storage demands are non-intensive as illustrated in Table 5.5. 

Hence, bin-packing storage demands for maximum energy efficiency is highly 

feasible while achieving optimal total efficiency. Consequently, only 

necessary, and minimal amount of storage components are activated when 

AOPD-DCN is employed in the physically disaggregated DC. The same 

number and type of storage component are activated under both AOPD-DCN 

and the zero-cost-and-un-capacitated network as shown in Figure 5.17. The 
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average active storage component utilisation is also equal under both 

scenarios as shown Figure 5.18. Consequently, the same TSPC is obtained 

under both scenarios as seen in Figure 5.19. 

 When feasible, attempts are made to maximise network utilisation 

under AOPD-DCN via coordinated placement of CPU, memory, and storage 

demands. Such coordination ensures that active light-paths are shared to 

improve their utilisation. In the logical layer direct virtual links is setup between 

all communicating nodes pairs. Intra-rack traffic is often sent via direct point-

to-point links between compute nodes in the rack. However, additional light-

paths may be provisioned over the inter-rack network to supplement the point-

to-point capacity in the intra-rack network. This often occurs when the traffic 

demand between two nodes in the same rack exceeds the capacity of the 

direct link (i.e., 400 Gbps) that connects two compute nodes together. This 

strategy is common for compute nodes which hold multiple CPU components. 

This is because the direct 400 Gbps link between compute nodes may be 

inadequate for very large or aggregated CPU-to-memory traffic in a 

composable DC in such scenarios. A direct virtual link (optical light path) is 

created between the gateway switch and each compute node that has north-

south traffic in either northbound or southbound direction. The optical ToR 

switch serves as a transparent intermediate node between compute nodes 

and the gateway switch in the physical layer. It is also important to note that 

some provisioned direct lightpath are poorly utilised when AOPD-DCN is 

employed. However, since, there is no penalty for poorly utilised lightpath 

under AOPD-DCN this is an acceptable outcome. 

 The placement of VMs as illustrated in Table 5.8 also shows that a VM 

is rejected when both variants of NetCoD are deployed in the physically 

disaggregated DC. Limited network capacity at compute nodes is responsible 

for such VM rejection. However, rejection is easily mitigated via the 

introduction of additional compute node in the rack. Moreover, compared to 

the small evaluation scenarios considered in this chapter, typical DCs usually 

have over-provisioned hardware capacity. This mitigates this kind of rejection 

and ensures that service level agreements at met. Hence, in practice such 

rejection is unlikely to occur. Although results under both variants of NetCoD 

also show that it is important to give high priority to energy efficiency of CPU 

resource component. However, given limited number of CPU compute nodes 

considered, satisfying the CPU demand of all VMs under either variant of 

NetCoD while enforcing network constraints is not feasible. Hence, VM 

rejection is unavoidable. Furthermore, since a common cost of rejection is 
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associate with all VMs considered, the illustration in Table 5.8 shows that VM 

6, is rejected under E-NetCoD and EO-NetCoD. As seen in Table 5.5, VM 6 

has very high compute and network requirement  

 Compared to results obtained under E-NetCoD, the TMPC and TSPC 

obtained under EO-NetCoD are marginally higher. On the other hand, equal 

TCPC is obtained under both variants of NetCoD. Equal number of active 

CPU, memory and storage components were obtained under both scenarios 

as illustrated in Figure 5.17. The average utilisation of each component is also 

comparable under both scenarios as illustrated in Figure 5.18. Generally, the 

TCPC, TMPC and TSPC obtained under both variants of NetCoD are lower 

compared to similar values obtained under zero-cost-and-un-capacitated 

network and AOPD-DCN as shown in Figure 5.19. VM rejection under both 

variants of NetCoD is responsible for this trend. 

 The results also demonstrate the importance of making strategic 

placement of resource demands to achieve optimal result while satisfying 

network constraints. A common strategy employed under both variants of 

NetCoD is to systematically place resource demands into the rack in a manner 

that ensures the satisfaction of network constraints. Resource demand 

placement also attempts to minimise the number of communicating nodes pair 

in the rack. However, this can be especially difficult for compute nodes with 

multiple CPU resource in a physically disaggregated rack-scale composable 

DC. Such compute nodes can host CPU demand of multiple VMs. They also 

must support the aggregated CPU-to-memory, CPU-to-storage, and CPU-to-

gateway traffic in both directions for all VMs placed in them. Multi-hop 

communication is employed to mitigate stringent network constraints by 

ensuring that data traffic is optimally aggregated on provisioned light-paths. 

Multi-hop communication is adopted in two instances as observed when 

hybrid disaggregation was implemented in the composable DC. 

 In the first instance, mice traffic (such as CPU-to-storage and CPU-to-

gateway traffic) originating from compute node are often forwarded via multi-

hop communication path. Such mice flows are aggregated and sent over a 

lightpath established to convey low-medium data rate traffic to intermediate 

compute node. The intermediate compute node receives and processes the 

traffic that is destined for it. It subsequently forwards transiting traffic to the 

next hop on the multi-hop communication path. 

 In another instance, large-sized and/or aggregated CPU-to-memory 

traffic from a compute node can be divided into multiple streams to be 

forwarded on optical light-paths. The single wavelength data rate (100 Gbps) 
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is used as the divisor. On the one hand, larger (elephant) portions of such 

traffic are transmitted via zero-hop paths to minimise network power 

consumption by maximising active light path utilisation. On the other hand, 

small (mice) portion of such traffic are forwarded over multi-hop paths to 

maximise network utilisation and also to mitigate the impact of stringent 

network constraints. However, it is important to note that adoption of multi-hop 

communication in this manner can lead to performance degradation since 

CPU-to-memory traffic type is known to be latency sensitive.   

 The results obtained when E-NetCoD is employed in the physically 

disaggregated DC show that direct virtual links are created between all 

communicating node pairs. Hence, traffic is not relayed in the virtual layer of 

the network. In the physical layer, high data rate (elephant) flows of each 

virtual link are sent via direct physical links. Smaller (mice) flows of each virtual 

link are piggybacked on established light-paths between compute nodes. This 

helps to promote greater lightpath utilisation. However, a practical 

implementation must ensure that latency sensitive traffic, such as CPU-

memory communication, are sent over minimal number of hops. Generally, 

southbound traffic from the gateway switch to compute nodes is transmitted 

over direct light-paths. Such light-paths are established from the gateway 

switch (via the optical ToR ) to each compute node that will receive such traffic. 

Results show that the same routing and forwarding strategies implemented 

when E-NetCoD is deployed in physically disaggregated DC are repeated 

when EO-NetCoD is deployed in a similar DC. 

 In comparison with a DC that implements logical or hybrid 

disaggregation, TNPC is marginally higher in a physically disaggregation DC 

as seen Figure 5.20. Compared to the power consumption of a logically 

disaggregated DC that employed AOPD-DCN, E-NetCoD and EO-NetCoD, 

the TNPC increased by 3.7%, 2.6% and 4.4% respectively when the same DC 

is physically disaggregated. Similar comparison between a DC that 

implements hybrid disaggregation and physical disaggregation shows that the 

TNPC of AOPD-DCN, E-NetCoD and EO-NetCoD increased by 2.8%, 1.8% 

and 3.1% respectively when a DC is physically disaggregated. Increase in 

TNRP and TNFP due to increase in network traffic traversing the intra-rack 

network is primarily responsible for the observed results under all network 

topologies considered. Increase in the SOAPC when physical disaggregation 

is deployed in the rack also contributes to the increase in TNPC when either 

variant of NetCoD is used.  
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 Compared to both variants of NetCoD, the TNFP and TNRP obtained 

when AOPD-DCN is deployed in a rack that implements physical 

disaggregation is higher. This is because all VMs are provisioned when 

AOPD-DCN was deployed. On the other hand, a VM is rejected when both 

variants of NetCoD were deploy in the DC. A similar reason justifies lower 

TOBP under both variants of NetCoD relative to AOPD-DCN. Figure 5.22 

shows the utilisation of the available network throughput of both variants of 

NetCoD is over 5 times greater than that of AOPD-DCN when a physically 

disaggregated rack-scale DC is considered. Hence, it is expected that the cost 

of implementing AOPD-DCN will outweigh the practical benefits that are 

derived. On the other hand, both variants of NetCoD can provide the required 

network capacity to support physical disaggregation using a more specific and 

practical design. This is in contrast to the general-purpose design adopted for 

AOPD-DCN. However, great intelligence is required to achieve optimal 

efficiency. 

5.7 Summary 

In this chapter, the description of two variants of a novel network for 

composable DCs (NetCoD) was given. The proposed topology leveraged 

optical technologies and techniques to reduce complexity and cost of a 

suitable network for composable DCs. In contrast to a general-purposed 

design employed by a reference network, NetCoD adopts a more targeted 

design. Using a MILP model for capacitated networks, we compare the 

performance of both variants of NetCoD to that of a reference network 

topology in a DC with multiple racks. The electrical-optical variant of NetCoD 

achieved comparable network energy efficiency as the reference topology. 

But the energy efficiency of the electrical variant of NetCoD is relatively lower.  

 Subsequently, we extended the MILP model formulation to consider 

energy efficient placement of VMs in rack-scale composable DCs. The 

composable DCs implemented logical, hybrid and physical disaggregation. 

Relative to the reference topology, the results showed that both variants of 

NetCoD achieved similar compute energy efficiency under all types of 

disaggregation considered. The range of scenarios considered highlighted 

various strategies that can be deployed in practical implementations of either 

variant of NetCoD. The strategies improved overall energy efficiency in 

composable DCs while satisfying both compute and network constraints. 

Under all network topologies considered, a logically disaggregated DC 

achieved the best results. Across all network topologies evaluated in this 
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chapter, the average increase in TNPC is 1% when hybrid disaggregation is 

implemented instead of logical disaggregation in the small evaluation scenario 

considered. 3.6% is the average increase in TNPC observed when physical 

disaggregation is implemented instead of logical disaggregation. Additionally, 

the utilisation of available network throughput by both variants of NetCoD 

exceeds that of reference topology. This value was 4 – 5 times greater under 

the different types of disaggregation considered in the rack-scale composable 

DC. 
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Chapter 6 : Disaggregation for Energy Efficient Fog in 

Future 6G Networks 

6.1 Introduction 

The disaggregation concept that promises greater energy and utilisation 

efficiencies in large composable DCs. It may also promote greater efficiencies 

in present and future edge/fog computing infrastructures. In this chapter, we 

conduct a study to evaluate the impact of adopting resource disaggregation in 

the fog computing layer of the cloud-of-things architecture. We consider fog 

network performance influencing factors such as network delay and fog 

application delay requirements and end-user distribution. We develop an 

extensive MILP model for the study that compares the adoption of 

disaggregated servers in the fog computing tier to the adoption of traditional 

servers. Finally, we develop a fast and scalable heuristic for practical 

deployment in large scenarios. The heuristic mimics and verifies the MILP 

model. 

6.2 Fog Networks and Related Works 

6.2.1 Fog Networks 

The fog computing layer is an intelligent intermediate layer between 

centralised cloud computing servers and geo-distributed connected devices 

and end-users. This layer provides distributed computing infrastructure at 

network edges (i.e., metro and access networks) to support connected things 

and end-users. The fog computing layer complements the centralised hyper-

scale cloud computing infrastructure. It extends cloud-like services closer to 

end-users and connected things for improved performance and to support 

new classes of applications. The fog computing layer reduces application 

response time, the volume of communication network traffic and the workload 

on public cloud infrastructure. Consequently, the fog computing layer can also 

enable reductions in computing and network infrastructures [110]–[112]. The 

fog computing paradigm enhances the performance of some existing and 

emerging applications such as IoT, content delivery network, artificial 

intelligence, and data analytics. Furthermore, the fog computing layer enables 

a suitable environment for future internet applications and services.  

In recent times, notable wired communication equipment vendors have 

included extra computation capacity in network routers/switches to support 

the hosting of non-network related functions and application. For example, 
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Cisco’s catalyst 9000 series switches support application hosting capabilities 

to host fog applications at the edge of the network [113]. In the wireless 

communication domain, the concept of mobile edge computing (i.e., a use 

case of fog computing) is expected to feature in the 5G mobile network 

infrastructure which is in the early deployment phase. Furthermore, it is also 

predicted that this concept of mobile edge computing will become more 

prominent in future 6G networks. Machine Learning (ML) and Artificial 

intelligence (AI) are predicted to be key features of 6G network infrastructure 

[114]. Hence, edge computation is required to provide seamless access to 

ML/AI capabilities at the network edge in the 6G era. 

Traditionally, connected devices and end-users in the “things tier” are 

at the farthest edge of the network. Hence, they interact directly with quasi-

distributed cloud computing tier via communication networks (i.e., access, 

metro and core networks).  The introduction of the fog computing tier expands 

the traditional architecture of the cloud of things continuum [8], [10] by one 

tier. The traditional definition of fog computing classifies any device with 

compute, storage and network connectivity as a fog node [11]. However, some 

locations and devices maybe more optimal than others because of factors 

such as energy efficiency, resource capacity, node availability, resource 

reusability and utilisation efficiency. For example, the things tier, which 

generally comprises of sensors and actuators, is often characterised by small 

installed computation capacity and limited network connectivity. Hence, 

resource availability and utilisation efficiency at the things tier is often limited. 

Addressing these limitations by increasing device form-factor and expanding 

network connectivity in the things tier might be an overkill for the purpose. On 

the other hand, increasing the number of end-devices to scale computation 

capacity at the things tier will further increase the total cost of ownership 

(TCO). This will also increase the power consumption and carbon footprint 

associated with the tier. Hence, reducing computation capacity at the extreme 

edge of the network to its optimal limits is important for sustainable growth in 

the 6G fog networking and computing era. However, application specific 

requirements must inform such reductions.  

The placement of fog computational capacity in traditional edge 

network nodes could also improve sustainability. For examples, central offices 

(COs) and radio cell sites (CSs) could be consider. These nodes a of nodes 

can be easily accessed by multiple connected devices and end-users. Such 

strategy also provides effective support for expected high mobility of end-

users and connected devices in the fog networking and computing era [12], 
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[115], [116]. The federation of traditionally independent (fog) computing nodes 

at the edge of the network can improve efficient usage such computing 

capacity. This can be achieved via  coordinated orchestration and control of 

the distributed fog nodes over the network infrastructure. Such a group of 

linked fog nodes with non-application specific resources is called a federated 

fog network [118]. A federated fog network must also be designed to satisfy 

application specific requirement. For example, fog applications can have 

different delay requirement. Some mission critical fog applications such as 

vehicle-to-everything and industrial process control may require sub-

milliseconds (end-to-end) delay, and at most a delay of 20ms or less to be 

practical. On the other hand, other fog applications may be moderately 

sensitive to delay [118]. 

The rising demand for the federation of distributed fog nodes (i.e., fog 

networks) is motivating the emergence of service-oriented access models for 

computing resource in the fog computing era. This could be in the form of Fog 

Infrastructure as a Service (FIaaS) or Fog as a Service (FaaS) [118], [119]. 

Fog networks can also enable new revenue sources which can offset the TCO 

incurred by providers that deploy fog computing nodes [118]. The ecosystem 

of federated distributed fog nodes can also benefit from the adoption of  the 

emerging concept of server disaggregation. This can enable greater efficiency 

as the concept matures. This chapter studies the impact of using 

disaggregated servers in a metro-access network of distributed fog nodes. 

6.2.2 Related Works 

The authors of [110]–[112] conducted extensive studies on how the fog 

computing layer can enable significant power savings in the cloud of things 

architecture relative to the adoption of a 2 tier architecture. The work in [10] 

also showed that a 3 tier cloud of things architecture is better than a 2 tier 

cloud of things architecture especially when energy consumption and latency 

are used as comparison metrics. Hence, a 3-tier cloud of things architecture 

is adopted in this chapter. However, the goal is to minimise the number of 

computational nodes in the lowest tier of the 3-tier architecture by employing 

the concept of server disaggregation for the first time in this context. 

In [8], the authors gave a description of the fog computing architecture. 

The benefits and limitations of using the fog layer as a middleware between 

the cloud and numerous IoT devices were highlighted. Performance 

evaluation showed that the execution of large tasks experiences significant 

processing delay in the fog computing layer. Hence, scaling fog computing 

capacity at the expense of higher financial cost is required. In [118], a platform 
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which orchestrates distributed fog nodes over the network to form fog 

networks was proposed. The fog network supported on-demand deployment 

of applications and services. The authors in [120] introduced a programming 

model for present and emerging geo-distributed, massive and latency-

sensitive applications. The PaaS programming model called “Mobile Fog” 

provides a simplified programming abstraction and supports on-demand 

scaling of applications at runtime to use resources in cloud or fog computing 

tiers. 

In [11], the authors proposed a high-level policy for placing applications 

in the fog computing era based on application latency requirements only. The 

policy is generic and does not consider the impact of factors such as energy 

efficiency, resource utilisation, networks, and disaggregation on optimal 

application placement. Workload offloading and workload assignment are two 

different approaches used to study the minimisation of response time in fog 

computing era [12]. Given a set of fog workloads, the workload assignment 

approach attempts to assign such workloads to fog computing nodes while 

optimising a specific cost such as response time or energy. On the other hand, 

the workload offloading approach aims to design policies that offload fog 

computing requests to other fog nodes or to the cloud while optimising a 

specific cost. In [12], [121], the authors explored the workload offloading 

approach by proposing a general delay minimising policy for fog nodes to 

offload IoT application requests to other fog nodes or to forward these 

requests to the cloud. Using an analytical model, the authors evaluated the 

policy and showed that the proposed policy reduces response time for IoT 

applications. The treatment in [115] adopted the workload assignment 

approach by using a mathematical model formulation. The formulation 

compared fog computing and traditional cloud computing in the IoT era using 

criteria such as power consumption, cost and latency. Results from the model 

showed that a cloud of things architecture with fog computing as middleware 

outperforms an architecture without fog computing layer only when there are 

many latency-sensitive applications. Otherwise, it is better not to deploy the 

fog computing layer to ensure that overhead cost, with little or no performance 

benefit, is not incurred. In [122], the authors studied the trade-off between 

power consumption and latency in the fog-cloud computing system by 

formulating a workload placement problem i.e., using the workload 

assignment approach. Simulation results from the formulated problem 

showed that fog computing can significantly improve the performance of cloud 

computing by reducing communication latency. 
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The workload assignment approach is adopted in this chapter by 

formulating a MILP model to assign varying classes of interactive fog 

applications. This is because the workload offloading approach may be less 

appropriate for interactive workloads with stringent delay requirements. A 

heuristic is proposed from the insights obtained from the MILP model. In 

contrast to existing literatures, this work is focused on the fog computing tier 

only and its associated access and metro networks. The things and cloud 

computing layers of the cloud of thing architecture are not explicitly 

considered. However, the impact of cloud destined network traffic on the 

overall performance of the fog computing system is modelled. A cost is also 

associated with fog servers that are deployed very close to the things layer. 

Like the works of the authors in [110]–[112], [115], this work explores power 

consumption, cost and latency in the fog computing layer. However, the 

novelty of this work is that it also considers disaggregation of fog servers and 

considers different classes of delay sensitive (interactive) applications. The 

gains that can be achieved over traditional practice if fog computing nodes 

adopt disaggregated servers (DSs) over traditional servers (TSs) are 

evaluated. Other factors that may influence performance in such a setup are 

also studied.  

DC networks is not considered in this chapter to simplify the  evaluation 

scenario. Moreover, Chapters 4 and 5 have given good attention to DC 

networks for energy efficient composable computing infrastructures. Hence, 

this chapter exits the domain of DC networks to focus on the application of the 

resource disaggregation concept in the fog computing layer of the cloud-of-

things architecture. Furthermore, logical disaggregation of TSs is adopted as 

a representation of the resource disaggregation concept. 

6.3 MILP Model for Fog Applications Placement 

6.3.1 System Setup 

The placement of fog computing applications in traditional and disaggregated 

fog computing nodes is explored given some constraints. The constraints 

include resource availability, application performance, energy efficiency and 

resource utilisation. Although fog applications may require functions across 

the different tiers of the cloud-of-things architecture, only functions that can be 

performed in the fog computing tier are considered. The primary aim of fog 

computing concept is to host application and services on the nearest fog 

devices. However, this work also assumes that some fog computing sites can 

be better than others based on energy efficiency. The primary assumption is 
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that it is better to host fog applications in central locations at the network edge 

before a local fog node is provisioned for such applications. This is expected 

to improve overall energy efficiency of the layer.  

It is assumed that preferred fog computing nodes in the fog 

infrastructure are either specialised wired/wireless network equipment which 

can support generic application as shown in Figure 6.1. Alternatively, existing 

computing infrastructure owned by an enterprise or a network provider are 

also adopted as fog computing sites. The preferred fog computing sites may 

also support mission critical traditional applications i.e., virtual machine (VM) 

and/or virtual network functions (VNF) required by their owners. Therefore, 

each traditional app (TA) is associated with specific fog computing sites in the 

network topology. The spare computing resource capacity in such sites, which 

is not used to support VM/VNF of TA, is made available to the pool of 

federated fog computing capacity. The use of both traditional and 

disaggregated computing infrastructure in such fog sites, which have been 

integrated into a fog network, are compared. 

 

Figure 6.1: Metro fog network 

Furthermore, a scenario where the fog computing layer must process 

all delay sensitive application is considered. This is because such applications 

cannot be supported by the centralised cloud computing architecture. If a 

delay sensitive application is not provisioned in the fog network, a local fog 

node must be provisioned at the source of the request for that application. 

Every provisioned instance of any fog application leads to corresponding pre-

processing and post-processing traffic in the network. Regular network traffic 

from (to) each access node comprises of traditional network traffic and the 
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traffic from (to) other applications which are processed in centralised cloud 

computing node. Only metropolitan area network (MAN) and access network 

delay is considered in this work. Computation (processing) delay is not 

considered at each fog node. A scenario where the cumulative computation 

requirements of all users served by an instance of a given fog application is 

less than the computing capacity provisioned for that fog application is 

considered. Hence, minimal computation delay is suffered. Delay estimation 

considers only link communication delay. This is a sum of propagation and 

congestion delay experienced on each link in the network topology. 

A scenario where fog applications traffic between a fog computing site 

and end-users follows a single path is considered to simplify delay 

calculations. Such single low latency path is provisioned by the network 

service provider to support interactive fog apps created in the fog network. 

Similar to the work of the authors in [122], a maximum delay threshold is 

adopted for interactive fog apps during delay-aware placement. The network 

components traversed by network traffic in the access layer differ according 

to the different use cases at the access network layer. Figure 6.2 gives 

illustrations of access layer use cases and their corresponding access network 

architecture. 

 

Figure 6.2: Access layer use cases and network architectures in metro fog 
network 

6.3.2 MILP Model Description 

In this sub-section, a MILP model that efficiently assigns instances of 

interactive applications into distributed fog computing nodes within a MAN 

topology is presented. The model minimises network power consumption, fog 

computing power consumption and the resulting power consumption of 

rejected fog applications. The model also minimises the approximated total 

queuing delay incurred in the network. Given:  
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 A MAN topology comprising of sets of metro and access network nodes 

and corresponding inter-connecting physical link capacities as 

illustrated in Figure 6.1;  

 The availability of fog computing capacity in selected fog sites/network 

nodes in the MAN topology; and  

 The locations of clusters of end-users/IoT-devices with explicit demand 

for an instance of fog applications;  

The model determines the number of instances of each fog app that can 

be provisioned and the optimal location of each provisioned instance while 

enforcing defined constraints. The data traffic at a given node is proportional 

to the number of users in that node.  Hence, both pre-processing and post 

processing data traffic of each fog app instance are defined in Gbps per user. 

Furthermore, only an instance of a given fog app is allocated to all users of 

that fog app in each access node. The model parameters and variables are 

given as follows and linear approximations are made as required to ensure 

linearity. 

Network sets and parameters: 

𝑁 Set of all network nodes 

𝑁𝐵𝑚 Set of neighbour nodes of network node 𝑚 ∈ 𝑁 

𝑈 Set of metro network nodes, 𝑈 ⊆ 𝑁 

𝑈𝑚 Set of neighbour metro nodes of metro node 𝑚 ∈ 𝑈 

𝐺 Set of gateway nodes in metro network topology, 𝐺 ⊆ 𝑈 

𝐴𝑁 Set of access network nodes 𝐴𝑁 ⊆ 𝑁 

𝐴𝑁𝑎 Set of metro nodes that are neighbours of access network 

node 𝑎 ∈ 𝐴𝑁 

𝐴𝐶𝑎 𝐴𝐶𝑎 = 1 if access network node 𝑎 ∈ 𝐴𝑁 has a consumer 

premises equipment. Otherwise, 𝐴𝐶𝑎 = 0. 

𝐴𝑃𝑎 𝐴𝑃𝑎 = 1 if access network node 𝑎 ∈ 𝐴𝑁 has a PON ONU. 

Otherwise, 𝐴𝑃𝑎 = 0. 

𝑃𝐿𝑚𝑛 Bandwidth of physical link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

∆𝑎𝑛 ∆𝑎𝑛= 1 if node 𝑛 ∈ 𝑁 is an access network node 𝑎 ∈ 𝐴𝑁. 

Otherwise,  ∆𝑎𝑛= 0 

𝑅𝑇𝑚𝑛 Regular traffic on physical link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝑃𝐷𝑚𝑛 Propagation delay on physical link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 
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𝐿𝑃𝑚𝑛 Set of linear pieces (linear approximations) used to linearise 

the delay curve of the delay experienced on link (𝑚, 𝑛) 𝑚 ∈

𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

∇𝑚𝑛𝑞 Rate of linear piece 𝑞 ∈  𝐿𝑃𝑚𝑛 of the linear approximation of 

the delay experienced on link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝜁𝑚𝑛𝑞 Intercept of linear piece 𝑞 ∈  𝐿𝑃𝑚𝑛 of the linear approximation 

of the delay experienced on link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝐿𝑈𝑚𝑛 Upper bound of queuing delay experienced on link 

(𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝐶𝐸 Consumer premises equipment power consumption  

𝑀𝐴 Metro Ethernet access switch energy per bit 

𝑀𝐺 Metro Ethernet aggregation switch energy per bit 

𝑁𝑈 PON ONU power consumption 

𝑂𝐿 PON OLT energy per bit 

𝛿 Queuing penalty of the network topology in Watt per second.  

Fog applications sets and parameters: 

𝐹 Set of fog apps 

𝑇𝐴 Set of traditional fog apps, 𝑇𝐴 ⊆ 𝐹 

𝐸 Set of emerging fog apps, 𝐸 ⊆ 𝐹 

𝐹𝐶𝑓 Compute resource demand of fog app 𝑓 ∈ 𝐹 

𝐹𝑀𝑓 Memory resource demand of fog app 𝑓 ∈ 𝐹 

𝐹𝑆𝑓 Storage resource demand of fog app 𝑓 ∈ 𝐹 

𝐹𝑈𝑒 Uplink data rate per user of emerging fog app 𝑒 ∈ 𝐸 

𝐹𝐷𝑒 Downlink data rate per user of emerging fog app 𝑒 ∈ 𝐸 

𝑇𝑆𝑡𝑛 𝑇𝑆𝑡𝑛 = 1 if traditional fog app 𝑡 ∈ 𝑇𝐴 is associated with 

network node 𝑛 ∈ 𝑁. Otherwise, 𝑇𝑆𝑡𝑛 = 0 

𝐸𝐺𝑒𝑛 𝐸𝐺𝑒𝑛 = 1 if node 𝑛 ∈  𝐺 is the gateway node of emerging fog 

app 𝑒 ∈ 𝐸. Otherwise, 𝐸𝐺𝑒𝑛 = 0 

𝐸𝐴𝑒𝑎 𝐸𝐴𝑒𝑎 = 1 if users in node 𝑎 ∈  𝐴𝑁 make request for an 

instance of emerging fog app 𝑒 ∈ 𝐸. Otherwise, 𝐸𝐴𝑒𝑎 = 0. 
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𝑈𝑁𝑒𝑎 Number of users in node 𝑎 ∈ 𝐴𝑁 requesting an instance of 

emerging fog app 𝑒 ∈ 𝐸. 

𝐸𝐷𝑒 Emerging fog app 𝑒 ∈ 𝐸 maximum delay threshold. 

𝛾 Cost coefficient of power consumed as a result of rejecting 

traditional fog apps. 

∅ Cost coefficient of power consumed as a result of rejecting 

emerging fog apps. 

Fog computing nodes sets and parameters: 

𝐶 Set of CPU resource components. 

𝑀 Set of memory resource components. 

𝑆 Set of storage resource components. 

ℂ𝑗 Capacity of CPU component 𝑗 ∈ 𝐶 

IC Idle power consumption as a fraction of the maximum CPU 

power consumption. 

𝐶𝑃𝑗 Maximum power consumption of CPU 𝑗 ∈ 𝐶 

∆𝐶𝑗 Power factor of CPU 𝑗 ∈ 𝐶; ∆𝐶𝑗 =
𝐶𝑃𝑗−𝐼𝐶∙𝐶𝑃𝑗

ℂ𝑗
 

𝕄𝑗 Capacity of memory component 𝑗 ∈ 𝑀 

IM Idle power consumption as a fraction of the maximum 

memory power consumption. 

𝑀𝑃𝑗 Maximum power consumption of memory 𝑗 ∈ 𝑀 

∆𝑀𝑗 Power factor of memory 𝑗 ∈ 𝑀; ∆𝑀𝑚 =
𝑀𝑃𝑗−𝐼𝑀∙𝑀𝑃𝑗

𝕄𝑗
 

𝕊𝑗 Capacity of storage component 𝑗 ∈ 𝑆 

IS Idle power consumption as a fraction of the maximum 

storage power consumption. 

 𝑆𝑃𝑗 Maximum power consumption of storage 𝑗 ∈ 𝑆 

∆𝑆𝑗 Power factor of storage 𝑗 ∈ 𝑆; ∆𝑆𝑗 =
𝑆𝑃𝑗−𝐼𝑆∙𝑆𝑃𝑗

𝕊𝑗
 

𝑀∆𝐶 Power factor of CPU component with highest power 

consumption. 

𝐶𝑃𝑀 Maximum power consumption of CPU component with 

highest power consumption. 
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𝑀∆𝑀 Power factor of memory component with highest power 

consumption. 

𝑀𝑃𝑀 Maximum power consumption of memory component with 

highest power consumption. 

𝑀∆𝑆 Power factor of storage component with highest power 

consumption. 

𝑆𝑃𝑀 Maximum power consumption of storage component with 

highest power consumption. 

𝐴 Set of computing nodes 

𝐶𝑁𝑐𝑥 𝐶𝑁𝑐𝑥 = 1 if CPU component  𝑐 ∈ 𝐶 is placed in computing 

node 𝑥 ∈ 𝐴. Otherwise, 𝐶𝑁𝑐𝑥 = 0 . 

𝑀𝑁𝑚𝑥 𝑀𝑁𝑚𝑥 = 1 if memory component 𝑚 ∈ 𝑀 is placed in 

computing node 𝑥 ∈ 𝐴. Otherwise, 𝑀𝑁𝑚𝑥 = 0. 

𝑆𝑁𝑠𝑥 𝑆𝑁𝑠𝑥 = 1 if storage component 𝑠 ∈ 𝑆 is placed in compute 

node 𝑥 ∈ 𝐴. Otherwise, 𝑆𝑁𝑠𝑥 = 0. 

𝐴𝑀𝑥𝑛 𝐴𝑀𝑥𝑛 = 1 if compute node 𝑥 ∈ 𝐴 is placed in network node 

𝑛 ∈ 𝑁. Otherwise, 𝐴𝑀𝑥𝑛 = 0. 

𝒬 A large enough number. 

Variables:  

𝓬𝒇𝒄 𝓬𝒇𝒄 = 1 if an instance of fog app 𝑓 ∈ 𝐹 is in CPU component 

𝑐 ∈ 𝐶. Otherwise, 𝓬𝒇𝒄 = 0. 

𝓶𝒇𝒎 𝓶𝒇𝒎 = 1 if an instance of fog app 𝑓 ∈ 𝐹 is in memory 

component 𝑚 ∈ 𝑀. Otherwise, 𝓶𝒇𝒎 = 0. 

𝓼𝒇𝒔 𝓼𝒇𝒔 = 1 if an instance of fog app 𝑓 ∈ 𝐹 is in storage 

component 𝑠 ∈ 𝑆.Otherwise, 𝓼𝒇𝒔 = 0. 

𝕔𝒄 𝕔𝒄 = 1 if CPU 𝑐 ∈ 𝐶 is active. Otherwise, 𝕔𝒄 = 0. 

𝕞𝒎 𝕞𝒎 = 1 if memory 𝑚 ∈ 𝑀 is active. Otherwise,𝕞𝒎 = 0. 

𝕤𝒔 𝕤𝒔 = 1 if storage 𝑠 ∈ 𝑆 is active. Otherwise, 𝕤𝒔 = 0. 

𝕩𝒆𝒄𝒂 𝕩𝒆𝒄𝒂 = 1 if the instance of emerging fog app 𝑒 ∈ 𝐸 in CPU 

component 𝑐 ∈ 𝐶 is allocated to users in access node 𝑎 ∈

𝐴𝑁. Otherwise, 𝕩𝒆𝒄𝒂 = 0. 

𝕧𝒆𝒂 𝕧𝒆𝒂 = 1 if the emerging app 𝑒 ∈ 𝐸 requested by node 𝑎 ∈

𝐴𝑁 has been provisioned. Otherwise 𝕧𝒆𝒂 = 0. 
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𝝋𝒆𝒔𝒂 𝝋𝒆𝒔𝒂 ≥ 1 if an instance of emerging fog app  𝑒 ∈ 𝐸  in node 

𝑠 ∈ 𝑁 is allocated to users of that app in access node 𝑎 ∈

𝐴𝑁. Otherwise, 𝝋𝒆𝒔𝒂 = 0.  

𝕜𝒔𝒅 

 

Post-processing traffic from instances of all fog apps in 

network node 𝑠 ∈ 𝑁 to gateway node 𝑑 ∈  𝐺.  

𝕪𝒔𝒅𝒆𝒄 

 

Pre-processing traffic from users in node 𝑠 ∈ 𝑁 to node 𝑑 ∈

𝑁 that hosts an instance of emerging fog app 𝑒 ∈ 𝐸   placed 

in CPU component 𝑐 ∈ 𝐶 in node 𝑑 ∈ 𝑁. 

𝕫𝒔𝒅𝒆𝒄 

 

Post-processing traffic from compute node 𝑠 ∈ 𝑁 to users in 

node 𝑑 ∈ 𝑁. Node 𝑠 ∈ 𝑁 hosts an instance of emerging fog 

app 𝑒 ∈ 𝐸   placed in CPU component 𝑐 ∈ 𝐶. The instance 

of emerging fog app 𝑒 ∈ 𝐸   placed in CPU component 𝑐 ∈

𝐶 was allocated to users in node 𝑑 ∈ 𝑁.  

𝑳𝒔𝒅𝒆𝒄 

 

Traffic from node 𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁 due to the presence 

of emerging fog app 𝑒 ∈ 𝐸 in CPU component 𝑐 ∈ 𝐶.  

𝕙𝒎𝒏
𝒔𝒅  Volume of 𝕜𝒔𝒅 traffic routed on physical link (𝑚, 𝑛) 

𝝀𝒎𝒏 Volume of cloud bound traffic on physical link (𝑚, 𝑛). 

𝓗𝒎𝒏
𝒔𝒅𝒆𝒄 Flow of latency sensitive traffic (emerging fog applications 

traffic) 𝑳𝒔𝒅𝒆𝒄 on physical link (𝑚, 𝑛) 

ℍ𝒎𝒏
𝒔𝒅𝒆𝒄 ℍ𝒎𝒏

𝒔𝒅𝒆𝒄 = 1 if a flow of 𝑳𝒔𝒅𝒆𝒄 is present on physical link (𝑚, 𝑛). 

Otherwise ℍ𝒎𝒏
𝒔𝒅𝒆𝒄 = 0. 

𝚲𝒎𝒏 Volume of latency sensitive traffic on physical link (𝑚, 𝑛) 

𝚪𝐦𝐧 Total traffic on physical link (𝑚, 𝑛)  

𝕥𝒕 State of traditional fog app  𝑡 ∈ 𝑇𝐴.  

𝑻𝑪𝑹𝑻𝑨 Total cost of rejected traditional fog apps in Watt. 

𝑻𝑪𝑹𝑬𝑨 Total cost of rejected emerging fog app in Watt. 

𝜶𝒕 Power penalty as a result of rejecting traditional fog app 𝑡 ∈

𝑇𝐴 in Watt. 

𝜷𝒆 Power penalty as a result of rejecting emerging fog app 𝑒 ∈

𝐸 in Watt. 

𝕎𝒎𝒏 M/M/1 queuing delay experienced on physical link (𝑚, 𝑛) 
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𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 

 

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 is the queuing delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 on 

physical link (𝑚, 𝑛) on the path selected for the flow.  

𝑷𝑫𝒎𝒏
𝒔𝒅𝒆𝒄 

 

𝑷𝑫𝒎𝒏
𝒔𝒅𝒆𝒄 is the propagation delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 

on physical link (𝑚, 𝑛) on the path selected for the flow. 

𝑾𝑳𝒔𝒅𝒆𝒄 

 

Total delay of flow 𝑳𝒔𝒅𝒆𝒄 on all physical links. Sum of 

congestion in physical links (queuing delay) and propagation 

delay on physical links on the path.  

𝑹𝑫𝒔𝒅𝒆𝒄 Round trip delay between a node containing users of an 

emerging fog app and the network node hosting the instance 

assigned to the users.   

𝑻𝑸 Approximated total queuing delay experienced on physical 

links of the network topology.  

Delay related variables in the MILP model are derives as follows. 

𝑷𝑫𝒎𝒏
𝒔𝒅𝒆𝒄 = 𝑃𝐷𝑚𝑛 ℍ𝒎𝒏

𝒔𝒅𝒆𝒄 

∀ 𝑠, 𝑑 ∈ 𝑁, ∀ 𝑒 ∈ 𝐸, ∀ 𝑐 ∈ 𝐶, ∀ 𝑚 ∈ 𝑁, ∀ 𝑛 ∈ 𝑁𝐵𝑚 

(6.1) 

Equation (6.1) gives the propagation delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 on 

physical link (𝑚, 𝑛) on the path selected for the flow. 

𝑾𝑳𝒔𝒅𝒆𝒄 = ∑ ∑ (𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 + 𝑷𝑫𝒎𝒏

𝒔𝒅𝒆𝒄)

𝑛 ∈ 𝑁𝐵𝑚𝑚 ∈𝑁 

   

∀ 𝑠, 𝑑 ∈ 𝑁, ∀ 𝑒 ∈ 𝐸, ∀ 𝑐 ∈ 𝐶 

(6.2) 

Equation (6.2) gives the total delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 on all physical 

links. It is a sum of delay experienced due to congestion on physical links and 

propagation delay on physical links on the path. 

𝑹𝑫𝒔𝒅𝒆𝒄 = 𝑾𝑳𝒔𝒅𝒆𝒄 + 𝑾𝑳𝒅𝒔𝒆𝒄  

∀ 𝑠, 𝑑 ∈ 𝑁, ∀ 𝑒 ∈ 𝐸, ∀ 𝑐 ∈ 𝐶 

(6.3) 

Equation (6.3) gives the round-trip delay experienced between a node with 

users of an emerging fog app and the network node hosting the instance 

assigned to the users. 

𝑻𝑸 =  ∑ ∑ 𝕎𝒎𝒏

𝑛 ∈  𝑁𝐵𝑚𝑚 ∈ 𝑁

 (6.4) 

Equation (6.4) gives the approximated total delay experienced on all physical 

links of the network topology. 



- 173 - 

The following equations present the derivation of variables that aid the 

calculation of network traffic and power consumption. 

𝝋𝒆𝒔𝒂 = ∑ ∑ 𝕩𝒆𝒄𝒂 𝐶𝑁𝑐𝑥 𝐴𝑀𝑥𝑠

𝑥 ∈𝐴𝑐 ∈  𝐶

 

∀ 𝑠 ∈ 𝑁, ∀ 𝑎 ∈ 𝐴𝑁, ∀ 𝑒 ∈ 𝐸 

(6.5) 

Equation (6.5) gives the variable 𝝋𝒆𝒔𝒂 which depends on the placement of 

emerging fog application. The compute capacity of an instance of emerging 

fog app 𝑒 ∈ 𝐸 is assumed to be greater than the maximum compute capacity 

required by the cluster of users of that app in all access node. Hence, 𝝋𝒆𝒔𝒂 >

1 is avoided.  

𝕪𝒔𝒅𝒆𝒄 = ∑ ∑ 𝕩𝒆𝒄𝒂 𝐹𝑈𝑒 𝑈𝐴𝑒𝑎 ∆𝑎𝑠 𝐶𝑁𝑐𝑥 𝐴𝑀𝑥𝑑

𝑎 ∈  𝐴𝑁

 

𝑥 ∈𝐴

 

∀ 𝑠, 𝑑 ∈ 𝑁, ∀ 𝑒 ∈ 𝐸, ∀ 𝑐 ∈ 𝐶 

(6.6) 

𝕫𝒔𝒅𝒆𝒄 = ∑ ∑ 𝕩𝒆𝒄𝒂 𝐹𝐷𝑒 𝑈𝐴𝑒𝑎 ∆𝑎𝑑 𝐶𝑁𝑐𝑥 𝐴𝑀𝑥𝑠

𝑎 ∈  𝐴𝑁

 

𝑥 ∈𝐴

 

∀ 𝑠, 𝑑 ∈ 𝑁, ∀ 𝑒 ∈ 𝐸, ∀ 𝑐 ∈ 𝐶 

(6.7) 

𝕜𝒔𝒅 = ∑ ∑ 𝝋𝒆𝒔𝒂 𝐹𝐷𝑒 𝑈𝐴𝑒𝑎 𝐸𝐺𝑒𝑑

𝑒 ∈ 𝐸𝑎∈ 𝐴𝑁

 

∀ 𝑠 ∈ 𝑁, ∀ 𝑑 ∈ 𝐺 

(6.8) 

Equations (6.6) and (6.7) give the pre-processing and post-processing traffic 

respectively between users in access nodes and instances of emerging fog 

applications placed in access and metro nodes. Equation (6.8) gives the post-

processing traffic between instances of emerging fog applications placed in 

access or metro nodes and gateway metro nodes. 

𝑳𝒔𝒅𝒆𝒄 = 𝕪𝒔𝒅𝒆𝒄 + 𝕫𝒔𝒅𝒆𝒄 

∀ 𝑠, 𝑑 ∈ 𝑁, ∀ 𝑒 ∈ 𝐸, ∀ 𝑐 ∈ 𝐶 

(6.9) 

Equation (6.9) gives the total traffic between a pair of nodes due to the 

presence of an instance of an emerging fog app. It is a sum of the pre-

processing and post-processing traffic. 

𝚲𝒎𝒏 = ∑ ∑ ∑ ∑ 𝓗𝒎𝒏
𝒔𝒅𝒆𝒄

𝑐 ∈ 𝐶𝑒 ∈ 𝐸𝑑  ∈ 𝑁𝑠 ∈ 𝑁 

 

∀ 𝑚 ∈ 𝑁, ∀ 𝑛 ∈ 𝑁𝐵𝑚  

(6.10) 

Equation (6.10) gives the latency sensitive traffic routed over a physical link 

by summing all the latency sensitive flows over the link. 
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𝝀𝒎𝒏 = ∑ ∑ 𝕙𝒎𝒏
𝒔𝒅

𝑑  ∈ 𝑁𝑠 ∈ 𝑁 

+ 𝑅𝑇𝑚𝑛 

∀ 𝑚 ∈ 𝑁, ∀ 𝑛 ∈ 𝑁𝐵𝑚 

(6.11) 

Equation (6.11) gives the latency tolerant traffic routed over a physical link by 

summing all the latency tolerant flows over the link and the given regular traffic 

on that physical link. 

𝜞𝒎𝒏 = 𝜦𝒎𝒏 + 𝝀𝒎𝒏 

∀ 𝑚 ∈ 𝑁, ∀ 𝑛 ∈ 𝑁𝐵𝑚 

(6.12) 

Equation (6.12) gives the total traffic over a link by summing latency sensitive 

and latency tolerant traffic routed over the link. 

Total network power consumption 𝑻𝑵𝑷𝑪 is given as 

𝑻𝑵𝑷𝑪 = 𝑻𝑨𝑵𝑷 + 𝑻𝑴𝑵𝑷 (6.13) 

where 𝑻𝑨𝑵𝑷 is the total access network power consumption and is given by 

𝑻𝑨𝑵𝑷 = ∑ (𝐶𝐸 𝐴𝐶𝑎 + 𝑁𝑈 𝐴𝑃𝑎)

𝑎 ∈ 𝐴𝑁

+ ∑ ∑ (𝜞𝒂𝒎 + 𝜞𝒎𝒂)(𝑀𝐴 + 𝐴𝑃𝑎  𝑂𝐿)

𝑚 ∈ 𝐴𝑁𝑎𝑎 ∈ 𝐴𝑁

 

(6.14) 

and 𝑻𝑴𝑵𝑷 is the total metro network power consumption and is given as 

𝑻𝑴𝑵𝑷 = ∑ (𝕦𝒎 + 𝕘𝒎 + 𝕢𝒎)

𝑚 ∈ 𝑈

𝑀𝐺 (6.15) 

where 𝕦𝑚 is the traffic relayed by a metro node 𝑚 and is given as, 

𝕦𝒎 = ∑ ∑ ∑ 𝕙𝒎𝒏
𝒔𝒅

𝑛 ∈ 𝑁𝐵𝑚𝑑∈𝑁𝑠∈𝑁

+ ∑ ∑ ∑ ∑ ∑ 𝓗𝒎𝒏
𝒔𝒅𝒆𝒄

𝑐 ∈ 𝐶𝑒 ∈ 𝐸𝑑  ∈ 𝑁𝑠 ∈ 𝑁 𝑛 ∈𝑁𝐵𝑚

 

∀ 𝑚 ∈ 𝑈, 𝑠, 𝑑 ∈ 𝑁, 𝑠 ≠ 𝑚, 𝑑 ≠ 𝑚 

(6.16) 

where 𝕘𝒎 is the traffic received by a metro node 𝑚 and is given as, 

𝕘𝒎 = ∑ ∑ 𝕙𝒏𝒎
𝒔𝒎

𝑛 ∈ 𝑁𝐵𝑚𝑠∈𝑁

+ ∑ ∑ ∑ ∑ 𝓗𝒏𝒎
𝒔𝒎𝒆𝒄

𝑐 ∈ 𝐶𝑒 ∈ 𝐸𝑛  ∈ 𝑁𝐵𝑚𝑠 ∈ 𝑁 

+ ∑ 𝑅𝑇𝑛𝑚

𝑛 ∈𝑁𝐵𝑚

  

∀ 𝑚 ∈ 𝑈 

(6.17) 

and finally,  𝕢𝒎 is the traffic transmitted by a metro node 𝑚 and is given as, 

𝕢𝒎 = ∑ ∑ 𝕙𝒎𝒏
𝒎𝒅

𝑛 ∈ 𝑁𝐵𝑚𝑑∈𝐺

+ ∑ ∑ ∑ ∑ 𝓗𝒎𝒏
𝒎𝒅𝒆𝒄

𝑐 ∈ 𝐶𝑒 ∈ 𝐸𝑛  ∈ 𝑁𝐵𝑚𝑑∈ 𝑁 

+ ∑ 𝑅𝑇𝑚𝑛

𝑛 ∈𝑁𝐵𝑚

 

∀ 𝑚 ∈ 𝑈 

(6.18) 

Total fog computing power consumption (𝑻𝑭𝑷𝑪) is given by:  
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𝑻𝑭𝑷𝑪 =  𝑻𝑪𝑷𝑪 + 𝑻𝑴𝑷𝑪 +  𝑻𝑺𝑷𝑪 (6.19) 

where 𝑻𝑪𝑷𝑪 is the total power consumption of CPU resources in fog network 

and is given as:  

𝑻𝑪𝑷𝑪 =  ∑ ((𝐼𝐶 𝐶𝑃𝑐  𝕔𝒄) + ∑ ∆𝐶𝑐 𝓬𝒇𝒄 𝐹𝐶𝑓

𝑓 ∈ 𝐹

)

𝑐 ∈  𝐶

 
(6.20) 

𝑻𝑴𝑷𝑪 is the total power consumption of memory resources in fog network 

and is given as: 

𝑻𝑴𝑷𝑪 =  ∑ ((IM 𝑀𝑃𝑚 𝕞𝒎) + ∑ ∆𝑀𝑚 𝓶𝒇𝒎 𝐹𝑀𝑓

𝑓 ∈ 𝐹

)

𝑚 ∈ 𝑀

 
(6.21) 

and 𝑻𝑺𝑷𝑪 is the total power consumption of storage resources in fog network 

and is given as: 

𝑻𝑺𝑷𝑪 =  ∑ ((IS 𝑆𝑃𝑠 𝕤𝒔) + ∑ ∆𝑆𝑠 𝓼𝒇𝒔 𝐹𝑆𝑓

𝑓 ∈ 𝐹

)

𝑠 ∈ 𝑆

 
(6.22) 

The total cost of rejected traditional fog apps in the distributed fog network is 

given as 

𝑻𝑪𝑹𝑻𝑨 = ∑ 𝜶𝒕

𝑡 ∈ 𝑇𝐴

 (6.23) 

where,  

𝜶𝒕 = ((𝐼𝐶 𝐶𝑃𝑀 + 𝑀∆𝐶 𝐹𝐶𝑡) + (𝐼𝑀 𝑀𝑃𝑀 + 𝑀∆𝑀 𝐹𝑀𝑡)  

+ (𝐼𝑆 𝑆𝑃𝑀 + 𝑀∆𝑆 𝐹𝐷𝑡))𝕥𝒕           

∀ 𝑡 ∈ 𝑇𝐴 

(6.24) 

where the state of traditional application 𝑡 is given by: 

𝕥𝒕 = ∑(1 − 𝓬𝒕𝒄)

𝑐 ∈ 𝐶

 

∀ 𝑡 ∈ 𝑇𝐴 

(6.25) 

The total cost of rejected emerging fog apps in the distributed fog network is 

given as 

𝑻𝑪𝑹𝑬𝑨 =  ∑ 𝜷𝒆

𝑒 ∈ 𝐸

 (6.26) 

where 
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𝜷𝒆 = ((𝐼𝐶 𝐶𝑃𝑀 + 𝑀∆𝐶 𝐹𝐶𝑒) + (𝐼𝑀 𝑀𝑃𝑀 + 𝑀∆𝑀 𝐹𝑀𝑒)  

+ (𝐼𝑆 𝑆𝑃𝑀 + 𝑀∆𝑆 𝐹𝑆𝑒)) ∑ (1 − 𝕧𝒆𝒂)

𝑎 ∈ 𝐴𝑁

    

∀ 𝑒 ∈ 𝐸 

(6.27) 

where 𝕧𝒆𝒂 indicates if the emerging application 𝑒 requested by node 𝑎 has 

been provisioned or not, and is given by 

𝕧𝒆𝒂 = ∑ 𝕩𝒆𝒄𝒂

𝑐 ∈  𝐶

 

∀ 𝑒 ∈ 𝐸, ∀ 𝑎 ∈  𝐴𝑁 

(6.28) 

Note that the cost of rejecting an app is defined as the maximum power 

consumed if it is accepted, i.e., the power consumption in the case where 

inactive components must be turned-on to support the app. 

The model is defined as follows: 

Objective: Minimise 

𝑻𝑵𝑷𝑪 + 𝑻𝑭𝑷𝑪 +  𝛾 𝑻𝑪𝑹𝑻𝑨 + ∅ 𝑻𝑪𝑹𝑬𝑨 + 𝛿 𝑻𝑸 (6.29) 

The objective of the model is to minimise a weighted sum of the total network 

power consumption, total fog power consumption and the total cost of rejected 

traditional, emerging fog applications and the cost of approximated total delay 

in the network as given by the expression in (6.29). Setting 𝛾 to a high value 

ensures that the total cost of rejected traditional fog apps is significantly higher 

than the cost of rejected emerging fog apps. Hence, higher priority is given to 

provisioning traditional fog apps in the objective function. ∅ can also be varied 

to increase or decrease the cost of rejected emerging fog apps. The value of 

𝛿 dictates the weight of approximated total queuing delay in the objective 

function. 𝛿 ≪ 1 represents a network with trivial queuing delay penalty while  

𝛿 ≫ 1 represents a network with significant queuing delay penalty. 

Subject to:  

Fog DC related constraints 

∑ 𝓬𝒇𝒄 

𝑐 ∈  𝐶

= ∑ 𝓶𝒇𝒎 

𝑚 ∈  𝑀

 

∀ 𝑓 ∈ 𝐹 

(6.30) 

∑ 𝓬𝒇𝒄 

𝑐 ∈  𝐶

= ∑ 𝓼𝒇𝒔 

𝑠 ∈  𝑆

 

∀ 𝑓 ∈ 𝐹 

(6.31) 
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Constraints (6.30) and (6.31) ensure that the number of instances of CPU 

resources provisioned for any (traditional or emerging) fog app is equal to the 

number of instances of memory and storage resources provisioned for that 

app across the distributed fog network.  

∑ 𝓬𝒇𝒄 𝐶𝑁𝑐𝑥 

𝑐 ∈ 𝐶

= ∑ 𝓶𝒇𝒎 𝑀𝑁𝑚𝑥  

𝑚 ∈ 𝑀

 

∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐴 

(6.32) 

∑ 𝓬𝒇𝒄 𝐶𝑁𝑐𝑥 

𝑐  ∈ 𝐶

= ∑ 𝓼𝒇𝒔 𝑆𝑁𝑠𝑥 

𝑠 ∈ 𝑆

 

∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐴 

(6.33) 

Constraints (6.32) and (6.33) are the locality constraints when the traditional 

server architecture is adopted in compute nodes. They ensure that the CPU, 

memory, and storage components used to provision a given instance of a fog 

app are in the same compute nodes. 

∑ ∑ 𝓬𝒇𝒄 𝐶𝑁𝑐𝑥 𝐴𝑀𝑥𝑛 

𝑐 ∈ 𝐶𝑥 ∈𝐴 

= ∑ ∑ 𝓶𝒇𝒎  𝑀𝑁𝑚𝑥 𝐴𝑀𝑥𝑛 

𝑚 ∈ 𝑀𝑥 ∈ 𝐴

 

∀ 𝑓 ∈ 𝐹, ∀ 𝑛 ∈ 𝑁 

(6.34) 

∑ ∑ 𝓬𝒇𝒄 𝐶𝑁𝑐𝑥 𝐴𝑀𝑥𝑛 

𝑐 ∈ 𝐶𝑥 ∈ 𝐴 

= ∑ ∑ 𝓼𝒇𝒔 𝑆𝑁𝑠𝑥 𝐴𝑀𝑥𝑛

𝑠 ∈ 𝑆𝑥 ∈ 𝐴 

 

∀ 𝑓 ∈ 𝐹, ∀ 𝑛 ∈ 𝑁 

(6.35) 

Constraints (6.34) and (6.35) are the locality constraints when the 

disaggregated server architecture is adopted in compute nodes. They ensure 

that the CPU, memory, and storage components used to provision a given 

instance of a fog app are in the same network node but not necessarily in the 

same compute node. 

∑ ∑ 𝓬𝒕𝒄 𝐶𝑁𝑐𝑥 𝐴𝑀𝑥𝑛 

𝑐 ∈ 𝐶𝑥 ∈ 𝐴 

= 𝑇𝑆𝑡𝑛 

∀ 𝑡 ∈ 𝑇𝐴, ∀ 𝑛 ∈ 𝑁 

(6.36) 

Constraint (6.36) is the workload locality constraint for a traditional fog app 

that is associated with a given network node. 

∑ 𝓬𝒇𝒄 𝐶𝑁𝑐𝑥 

𝑐 ∈  𝐶

≤ 1 

∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐴 

(6.37) 

∑ 𝓶𝒇𝒎 𝑀𝑁𝑚𝑥 

𝑚 ∈  𝑀

≤ 1 (6.38) 
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∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐴 

∑ 𝓼𝒇𝒔 𝑆𝑁𝑠𝑥 

𝑠 ∈  𝑆

≤ 1 

∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐴 

(6.39) 

Constraints (6.37) - (6.39) are SLA constraints which ensure robustness of the 

fog network. They ensure that only an instance of fog app 𝑓 is provisioned 

within a given compute node. Hence, the impact of a compute node failure is 

minimised for a fog app with multiple instances. 

∑  𝐹𝐶𝑓

𝑓 ∈ 𝐹

𝓬𝒇𝒄 ≤ ℂ𝑐  

∀ 𝑐 ∈ 𝐶  

(6.40) 

∑ 𝐹𝑀𝑓

𝑓 ∈ 𝐹

𝓶𝒇𝒎 ≤ 𝕄𝑚  

∀ 𝑚 ∈ 𝑀 

(6.41) 

∑ 𝐹𝑆𝑓

𝑓 ∈ 𝐹

𝓼𝒇𝒔 ≤ 𝕊𝑠 

∀ 𝑠 ∈ 𝑆 

(6.42) 

Constraints (6.40) - (6.42) denotes resource capacity constraints for each 

CPU, memory, and storage component in the fog network. They ensure that 

each resource component capacity is not exceeded. 

∑ 𝓬𝒇𝒄

𝑓 ∈  𝐹

 ≥ 𝕔𝒄 

∀ 𝑐 ∈   𝐶 

(6.43) 

∑ 𝓬𝒇𝒄

𝑓 ∈  𝐹

≤ 𝒬 𝕔𝒄 

∀ 𝑐 ∈   𝐶 

(6.44) 

∑ 𝓶𝒇𝒎

𝑓 ∈  𝐹

 ≥ 𝕞𝒎 

∀ 𝑚 ∈  𝑀 

(6.45) 

∑ 𝓶𝒇𝒎

𝑓 ∈  𝐹

≤ 𝒬 𝕞𝒎 

∀ 𝑚 ∈ 𝑀 

(6.46) 

∑ 𝓼𝒇𝒔

𝑓 ∈  𝐹

 ≥ 𝕤𝒔 (6.47) 
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∀ 𝑠 ∈  𝑆 

∑ 𝓼𝒇𝒔

𝑓 ∈  𝐹

≤ 𝒬 𝕤𝒔 

∀ 𝑠 ∈ 𝑆 

(6.48) 

Constraints (6.43) - (6.48) derive the state of CPU, memory, and storage 

components.  

Fog app instance related constraints  

∑ 𝕩𝒆𝒄𝒂

𝑐 ∈ 𝐶 

≤ 1 

∀ 𝑒 ∈ 𝐸, ∀ 𝑎 ∈ 𝐴𝑁 

(6.49) 

Constraint (6.49) ensures that the cluster of users requesting for an emerging 

fog app is assigned to at most one instance of that app when feasible. 

∑ 𝕩𝒆𝒄𝒂

𝑎 ∈𝐴𝑁 

≥ 𝓬𝒆𝒄 

∀ 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸 

(6.50) 

∑ 𝕩𝒆𝒄𝒂

𝑎 ∈𝐴𝑁 

≤ 𝒬 𝓬𝒆𝒄 

∀ 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸 

(6.51) 

Constraints (6.50) and (6.51) ensure that each instance of an emerging fog 

app in a CPU component is allocated to one or more user clusters in access 

nodes. Otherwise, the instance should not be created. 

𝕩𝒆𝒄𝒂 =  𝐸𝐴𝑒𝑎 𝕧𝒆𝒂 𝓬𝒆𝒄 

∀ 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸, 𝑎 ∈ 𝐴𝑁 

(6.52) 

𝕩𝒆𝒄𝒂 ≤ 𝐸𝐴𝑒𝑎 𝓬𝒆𝒄 

∀ 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸, 𝑎 ∈ 𝐴𝑁 

(6.53) 

𝕩𝒆𝒄𝒂 ≤ 𝐸𝐴𝑒𝑎 𝕧𝒆𝒂 

∀ 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸, 𝑎 ∈ 𝐴𝑁 

(6.54) 

𝕩𝒆𝒄𝒂 ≥ 𝐸𝐴𝑒𝑎(𝕧𝒆𝒂 + 𝓬𝒆𝒄) − 1 

∀ 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸, 𝑎 ∈ 𝐴𝑁 

(6.55) 

Constraint (6.52) derives 𝕩𝒆𝒄𝒂 which gives the instance of an emerging fog 

app in a CPU that is assigned to users of that fog app in an access node. 

𝕩𝒆𝒄𝒂 = 1 if and only if users of an emerging fop app are present in an access 

node, an instance of that fog app is in a CPU component and that instance 
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has been assigned to users of that fog app in access node. Constraints (6.53) 

- (6.55) implement the product of parameter and variables as illustrated in 

Constraint (6.52).  

Network related constraints 

∑ 𝕙𝒎𝒏
𝒔𝒅  

𝑛 ∈ 𝑁𝐵𝑚

− ∑ 𝕙𝒏𝒎
𝒔𝒅  

𝑛 ∈ 𝑁𝐵𝑚

= {
𝕜𝒔𝒅         𝑚 = 𝑠
−𝕜𝒔𝒅       𝑚 = 𝑑
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

∀ 𝑠,𝑚 ∈ 𝑁, ∀ 𝑑 ∈ 𝐺: 𝑠 ≠ 𝑑 

(6.56) 

Constraint (6.56) enforces flow conservation for post-processing traffic to the 

cloud in the physical layer of the network. 

∑ 𝓗𝒎𝒏
𝒔𝒅𝒆𝒄 

𝑛 ∈ 𝑁𝐵𝑚

− ∑ 𝓗𝒏𝒎
𝒔𝒅𝒆𝒄 

𝑛 ∈ 𝑁𝐵𝑚

= {
𝑳𝒔𝒅𝒆𝒄         𝑚 = 𝑠
−𝑳𝒔𝒅𝒆𝒄       𝑚 = 𝑑
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

∀ 𝑠, 𝑑,𝑚 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.57) 

Constraint (6.57) enforces flow conservation for latency sensitive flows in the 

physical layer of the network. 

𝓗𝒎𝒏
𝒔𝒅𝒆𝒄 ≥ ℍ𝒎𝒏

𝒔𝒅𝒆𝒄  

∀ 𝑠, 𝑑,𝑚, 𝑛 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.58) 

𝓗𝒎𝒏
𝒔𝒅𝒆𝒄 ≤ 𝓠 ℍ𝒎𝒏

𝒔𝒅𝒆𝒄 

∀ 𝑠, 𝑑,𝑚, 𝑛 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.59) 

Constraints (6.58) and (6.59) give the binary equivalent of 𝓗𝒎𝒏
𝒔𝒅𝒆𝒄. 

∑ ℍ𝒎𝒏
𝒔𝒅𝒆𝒄 

𝑛 ∈ 𝑁𝐵𝑚

≤ 1 

∀ 𝑠, 𝑑,𝑚 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.60) 

Constraint (6.60) ensures that the flow 𝑳𝒔𝒅𝒆𝒄 is not bifurcated over multiple 

paths. 

𝜞𝒎𝒏 ≤ 𝑃𝐿𝑚𝑛 

∀ 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

(6.61) 

Constraint (6.61) enforces capacity constraint on each physical link (𝑚, 𝑛). 

Network delay related constraints  

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 = 𝕎𝒎𝒏 ℍ𝒎𝒏

𝒔𝒅𝒆𝒄 

∀ 𝑠, 𝑑,𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.62) 

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≤ 𝐿𝑈𝑚𝑛ℍ𝒎𝒏

𝒔𝒅𝒆𝒄 (6.63) 
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∀ 𝑠, 𝑑,𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≤ 𝕎𝒎𝒏 

∀ 𝑠, 𝑑,𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.64) 

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≥ 𝕎𝒎𝒏 − 𝐿𝑈𝑚𝑛 (1 − ℍ𝒎𝒏

𝒔𝒅𝒆𝒄)  

∀ 𝑠, 𝑑,𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.65) 

Constraint (6.62) estimates the queuing delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 on 

physical link(𝑚, 𝑛). It is given by the product of  𝕎𝒎𝒏 and ℍ𝒎𝒏
𝒔𝒅𝒆𝒄. Constraints 

(6.63) - (6.65) linearise Constraint (6.62). 𝐿𝑈𝑚𝑛 is the upper bound of the 

queuing delay experienced on each physical link, it is required to ensure that 

the delay experienced on a physical link does not exceed a predefined 

threshold. Given ℍ𝒎𝒏
𝒔𝒅𝒆𝒄, Table 6.1 gives the evaluation of constraints (6.63) - 

(6.65) and the values of 𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 that satisfies the defined constraints. 

Table 6.1: Evaluation of constraint (6.63) - (6.65) 

ℍ𝒎𝒏
𝒔𝒅𝒆𝒄 (6.63) (6.64) (6.65) 𝑻𝑳𝒎𝒏

𝒔𝒅𝒆𝒄 

0 𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≤ 0 𝑻𝑳𝒎𝒏

𝒔𝒅𝒆𝒄 ≤ 𝕎𝒎𝒏 𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≥ 𝕎𝒎𝒏 − 𝐿𝑈𝑚𝑛  𝑻𝑳𝒎𝒏

𝒔𝒅𝒆𝒄 = 0 

1 𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≤ 𝐿𝑈𝑚𝑛 𝑻𝑳𝒎𝒏

𝒔𝒅𝒆𝒄 ≤ 𝕎𝒎𝒏 𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 ≥ 𝕎𝒎𝒏 𝑻𝑳𝒎𝒏

𝒔𝒅𝒆𝒄 = 𝕎𝒎𝒏 

 

𝕎𝒎𝒏 ≥ ∇𝑚𝑛𝑞 𝜞𝒎𝒏 + 𝜁𝑚𝑛𝑞  

∀ 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚, 𝑞 ∈ 𝐿𝑃𝑚𝑛 

(6.66) 

Constraint (6.66) represent piecewise linear approximation of queuing delay 

experienced on physical link (𝑚, 𝑛). This is because M/M/1 delay is a non-

linear function. 

𝑹𝑫𝒔𝒅𝒆𝒄 ≤ 𝐸𝐷𝑒 

∀ 𝑠, 𝑑 ∈ 𝑁, 𝑒 ∈ 𝐸, 𝑐 ∈ 𝐶: 𝑠 ≠ 𝑑 

(6.67) 

Constraint (6.67) represents the round-trip delay constraint for an emerging 

fog app 𝑒. The round-trip delay experienced by an emerging fog app 𝑒 must 

not exceed the predefined threshold. 

6.4 Evaluation and Results 

6.4.1 Evaluation Scenarios and Input Parameters 

The MILP model described in the previous section is used to study the impact 

of adopting DS architecture in the fog computing layer of the cloud-of-things 

continuum relative to the use of TS architecture. To minimise execution time 
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of the MILP model which grows as the size and complexity of the problem 

increases, a small network topology is considered. The network topology 

comprises of 4 (metro) central offices (COs) and 16 access nodes. The access 

nodes include 4 radio cell sites (CSs), 4 enterprise offices (EOs) and 8 homes. 

Connected to each metro CO are an EO, a radio CS and two residential 

houses as illustrated in  Figure 6.3. The COs and EOs are connected to the 

metro ring via 40 Gbps links. The homes are connected to the metro ring via 

40 Gbps Next-Generation Passive Optical Network 2 (NG-PON2) links. Using 

40 Gbps last mile links between metro and access network nodes ensures 

that network bottlenecks are avoided. Network bottlenecks can lead to the 

rejection of emerging fog apps. 

 

Figure 6.3: Fog Network System Setup 

The figure shows the evaluated network topology, the preferred fog computing 
sites, and the allocation of compute nodes to the fog sites. The figure also 
shows the traditional fog apps associated with each fog computing site and 
un-provisioned emerging fog apps. 

To further maintain simplicity, the evaluation scenario allocates two 

servers to each fog computing site. The fog computing sites comprise of metro 

COs, EOs, and radio CSs in the network topology as illustrated in Figure 6.3. 

When the TS architecture is adopted, the utilisation scope of each server’s 

intrinsic resource components is limited to that server. On the other hand, 

when the DS architecture is adopted, servers are logically disaggregated. This 

expand the utilisation scope of the intrinsic resources of each server at fog 

computing sites. However, access to disaggregated resource components is 

limited to the corresponding fog computing site hosting each component. A 

common configuration is adopted for all servers distributed across the metro 
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network topology. Each server comprises of one CPU, one memory and one 

storage resource components. The characteristics of each compute 

component used to evaluate the MILP model are given in Table 6.2. The 

power consumption profile of each compute component comprises of an idle 

portion and another portion that is linearly dependent on the component’s 

utilisation. Servers are not allocated to residential houses because reduction 

of the number of computing resources deployed at the extreme edge of the 

network is desired. Moreover, it is unusual to have large computing capacity 

in residential houses. 

Table 6.2: Component capacity and power features 

Parameter Value 

CPU capacity, CPU peak power, and idle 

fraction of peak CPU power 

3.6 GHz, 130 W and 

0.7 

Memory capacity, memory peak power, and 

idle fraction of peak memory power 

32 GB, 11.85 W and 

0.7 

Storage capacity, storage peak power, and 

idle fraction of peak storage power 

320 GB, 6.19 W and 

0.7 

Metro Ethernet CPE (on-off) 75 W [123] 

Metro Ethernet aggregation router (load 

proportional) 

0.9 W/Gb [124] 

Metro Ethernet access router (load 

proportional) 

0.243 W/Gb 

PON optical line terminal (load proportional) 1.75 W/Gb 

PON optical network unit (on-off) 15 W [125] 

 

Each designated fog computing site within the federation of fog 

computing nodes has one or two in-situ VM/VNFs for mission critical 

traditional applications (TAs). As illustrated in Figure 6.3, the TAs must be 

provisioned at the corresponding node. Each CO node has 2 VNFs; each EO 

has 2 VMs; and each radio CS has 1 VNF. The resource demand of each 

mission critical TA is illustrated in Table 6.3. Figure 6.4 and Figure 6.5 show 

the corresponding utilisation of each compute components across distributed 

fog nodes after optimal placement of mission critical TAs. The results obtained 

under TS and DS architectures are a solution to the MILP model. The MILP 

model optimally places TAs without considering emerging fog apps. Figure 
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6.4 and Figure 6.5 show the presence of unused computing capacity after TAs 

have been provisioned under both TS and DS architectures. This spare 

compute capacity can be used to support emerging fog applications in 

preferred fog computing sites. Relative to the TS architecture, the DS 

architecture has greater average active resource utilisation and reduced 

number of active resource components across fog computing sites. It is 

expected that these advantages of DS architecture over TS architecture will 

be maintained when placement of emerging fog apps is considered in parallel 

with mission critical TAs. However, to achieve optimal efficiency and minimal 

rejection of emerging fog apps, the placement of each TA within each network 

node may be revised. Furthermore, the analysis of application placement is 

focused on emerging fog applications alone. This is because the placement 

of mission critical TAs is fixed to specific fog computing sites. 

Four types of emerging fog applications, which have distributed users 

in the access layer, are considered. It is assumed that all applications required 

by each enterprise are either hosted locally as VMs or hosted remotely in 

cloud DCs. Hence, distributed users of emerging fog applications are not 

associated with EOs. All user demands for a fog app in each access node are 

grouped together to form a cluster of user demand in that node. Each radio 

CS has a group of 5 end-users which collectively form a single clustered 

demand for each emerging fog app. The users are attached to the radio CS 

via wireless media. A single end-user located in each residential house, this 

user forms a single clustered demand for each emerging fog app at the 

corresponding network node. 

Both VM/VNF of traditional fog apps and emerging fog apps have a mix 

of resource intensity as illustrated in Table 6.3. Relative to the maximum 

compute resource capacity some apps are CPU intensive while others are 

memory intensive. Relative to the capacity of computes resource adopted, fog 

app “U” has medium CPU demand, high memory demand and low storage 

demand.  Fog app “V” has high CPU demand, high memory demand and 

medium storage demand. Fog app “W” has medium CPU demand, low 

memory demand, and low storage demand. Fog app “X” has low CPU, 

memory, and storage demands. Relative to other emerging fog apps, fog apps 

U and X have the highest pre and post processing traffic per user as illustrated 

in Table 6.3. 
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Figure 6.4: Resource component 
utilisation under TS architecture 

 

Figure 6.5: Resource component 
utilisation under DS architecture 

The placement of apps in centralised cloud DCs is not explicitly 

considered. However, the impact of cloud destined traffic on the overall 

performance of metro and access network tiers is considered. It is assumed 

that traffic to and from the centralise cloud DC is part of the regular traffic 

traversing the network topology. Priority is given to traffic of emerging fog apps 

in the fog network but the traffic of other applications and services contribute 

to the regular traffic traversing metro and access networks. The range of 

regular traffic on the metro ring and access links are 114 – 120 Gbps and 4 – 

5 Gbps respectively. Therefore, regular traffic utilises about 60% and 12.5% 

of the capacity of a metro and access link respectively. The pre-processing 

and post-processing data rates per user for each emerging fog app 

considered are given in Table 6.3.  
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Table 6.3: Resource demand of fog apps 

App 

Symbol 

CPU 

demand 

(GHz) 

Memory 

demand 

(GB) 

Storage 

demand 

(GB) 

Pre-

processing 

data rate per 

user (Gbps) 

Post-

processing 

data rate per 

user (Gbps) 

A 1.8 7.2 80 - - 

B 1.8 26 240 - - 

C 2.7 10.8 240 - - 

D 0.9 13 160 - - 

E 0.9 3.6 160 - - 

F 2.7 32 160 - - 

G 1.8 26 80 - - 

H 2.7 10.8 80 - - 

I 2.7 32 80 - - 

J 1.8 7.2 160 - - 

K 1.8 26 240 - - 

L 2.7 10.8 80 - - 

M 0.9 3.6 160 - - 

N 0.9 13 240 - - 

O 2.7 10.8 80 - - 

P 1.8 26 80 - - 

Q 1.8 7.2 160 - - 

R 2.7 10.8 80 - - 

S 0.9 3.6 160 - - 

T 0.9 13 160 - - 

U 1.8 26 120 0.9 0.45 

V 2.7 32 160 0.11 0.05 

W 1.8 7.2 80 0.83 0.41 

X 0.9 3.6 40 0.43 0.22 
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After processing at the optimal location, processed data is sent to the 

requesting users at the edge of the network and to the central cloud for 

further/historical analysis and persistent storage. It is assumed that the ratio 

of post-processing data rate to pre-processing data rate is about 50% as 

illustrated in Table 6.3. In the worst-case scenario, if the request made by a 

user in node 7 for all emerging fog apps is satisfied about 6% of the access 

link capacity will be utilised. Recall that Node 7 is a residential house with a 

single user for each emerging fog app. On the other hand, if the requests 

made by all users in node 6 are satisfied, about 30% of the access link 

capacity will be utilised. Node 6 is a radio CS with multiple users for each 

emerging fog app. Generally, compared to the fog related traffic, regular traffic 

is dominant in the network topology. 

Shared network elements such as Ethernet access and aggregation 

routers and optical line terminals (OLTs) are assumed to have a load 

proportional power profile. On the other hand, dedicated network components 

such as consumer premises equipment (CPE) and optical network units 

(ONUs) have an on-off power profile. Table 6.2 shows the power profile of 

each network element and their corresponding values. The exponential M/M/1 

delay graph of each network link is divided into 6 linear pieces to implement 

piecewise linearisation of the non-linear delay function. Figure 6.6 and Figure 

6.7 give the piecewise linear approximation of both 200 Gbps and 40 Gbps 

network links using the 6 linear pieces. The predefined upper bound for link 

load on both 200 Gbps and 40 Gbps network links are 195 Gbps and 39 Gbps 

respectively. Both values enforce a corresponding upper bound for queuing 

delay on each link. These values maybe varied based on desired network 

performance on the corresponding link. 

This study evaluates the energy efficient placement of delay sensitive 

emerging fog applications in the presence of mission critical traditional fog 

applications in a shared distributed fog network. Analysis of results from the 

model focuses on metrics such as TFPC, TNPC, number of fog app instances 

created, roundtrip delay experienced by users of emerging fog applications. 

Other evaluation metrics include the number of active resource components 

across all fog computing sites in fog network and the corresponding average 

utilisation of each active component type across the fog network. To obtain 

optimal results, the results show that the MILP model effectively bin-packs 

workloads demands onto fog computing resources. Bin-packing attempts to 

achieve optimal resource power and utilisation efficiencies within capacity 

constraints and limited resource utilisation scope. 
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Figure 6.6: M/M/1 average delay experienced on 40 Gbps access link 

 

Figure 6.7: M/M/1 average delay experienced on 200 Gbps metro ring link 

6.4.2 Energy Efficient Placement under Low Delay Penalty 

Under this scenario, VMs/VNFs of both mission critical TAs and emerging fog 

applications are optimally placed in the fog network. All emerging fog apps 

considered are moderately sensitive to end-to-end delay in the network and 

the network has a trivial queuing delay penalty i.e., 𝛿 ≪ 1. The scenario is 

evaluated when TS architecture is adopted and when the DS architecture is 

adopted in fog computing servers. 

6.4.2.1 Placement under Traditional Server Architecture 

The illustration in Figure 6.8 shows the optimal placement of emerging fog 

applications when TSs are deployed in the fog network. A single instance of 

each emerging fog app is provisioned in the fog network. The instance 
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provisioned for each emerging fog app satisfies the computing capacity 

requested by all geo-distributed users of that app. These provisioned 

instances are strategically placed in the fog network to minimise both TNPC 

and TFPC. All mission critical TAs are also placed in their respective 

associated nodes to minimise the high cost of rejecting them as defined in the 

objective. However, network power consumption is dominant because a small 

fog network with a limited number of fog computing nodes, users and 

applications is considered. Moreover, fixed regular traffic in the network 

topology accounts for a significant portion of the TNPC. 

 

Figure 6.8: Energy efficient placement of emerging fog apps in a fog 
network. 

Figure 6.8 shows that there is high preference for metro COs when the 

selection of optimal locations for emerging fog apps is made. This is often the 

situation when surplus compute capacity is available in metro COs. Relative 

to other network nodes, COs are centrally located, closer to geo-distributed 
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users and closer to the metro gateway to the cloud. Hence, placement of fog 

apps in COs reduces the number of hops travelled by the fog traffic and 

therefore reduces TNPC. As illustrated in Figure 6.8, instances of three 

emerging fog apps are placed in metro COs. The power consumption incurred 

by hosting a given emerging fog app in inactive resource components is the 

same across all network nodes. The is because homogenous servers are 

adopted across the distributed fog computing nodes. Likewise, power 

consumption incurred by hosting a given emerging fog app in the idle resource 

capacity (IRC) of active resource components is also equal across all network 

nodes. Therefore, multiple candidate metro COs which lead to the same 

increment of TFPC may exist for a given emerging fog app.  

Such ties are broken by selecting the metro CO which enables lower total 

(i.e., fog computing plus network) power consumption. Network node 1, which 

is also the metro gateway node to the core network in the network topology, 

wins such tie breaks. This is because the placement of emerging fog apps 

close to the metro gateway helps to reduce the number of hops traversed in 

the network topology. Consequently the TNPC is also reduced. Emerging fog 

apps “W” and “X” are placed in network node 1 as shown in Figure 6.8. 

However, when resource capacity in network node 1 is limited, other 

candidate metro COs with adequate compute capacity are considered. 

Consequently, network node 3 is selected to host emerging fog app “U” as 

shown in Figure 6.8. 

In the absence of surplus fog compute capacity in metro COs, fog sites 

in the access network must be selected to support emerging fog apps. 

Candidate fog sites in the access network must have adequate surplus 

computing capacity. However, multiple candidate access nodes may also 

present equal compute energy efficiency to host a given emerging fog 

application. This is because of the homogeneous power profile of fog 

computing nodes across the distributed fog network. Hence, network energy 

efficiency is used as a decision metric to select the optimal network node in 

such scenarios. For example, emerging fog app “V” is placed in network node 

6, an access node as illustrated in Figure 6.8. Fog app “V” requires a 

dedicated server because of the intensive nature of its memory demand. Node 

6 is selected over other network nodes (10, 14 and 18) due to its proximity to 

the metro gateway node. This choice promotes lower total network traffic 

because the number of hops traversed by cloud bound traffic is reduced. It is 

important to note that unused servers are also present in network nodes 10, 

14 and 18 as illustrated in Figure 6.4. 
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6.4.2.2 Placement under Disaggregated Server Architecture 

Replacing TSs with DSs in the fog network leads to changes in the optimal 

placement of emerging fog applications as shown in Figure 6.8. Improved 

consolidation of both traditional and emerging fog apps enabled by the 

adoption of DSs in the distributed fog network is responsible for the revised 

placement observed. Consequently, Figure 6.9 shows corresponding 

increases in the average utilisation of active resources components in the fog 

network that was achieved because of the revision in server architecture. 

When the DS architecture is deployed in the fog network, a primary instance 

of each emerging fog app is provisioned in the network node that leads to 

optimal energy efficiency. Additionally, secondary instances of an emerging 

fog app may be created. The creation of secondary instances should lead to 

marginal rise in TFPC while enabling significant drop in the TNPC. Reductions 

in TNPC is achieved because the creation of secondary instance(s) enable 

reductions in the number of hops traversed. This justifies the creation of two 

instances of emerging fog app “X”. The instance in network node 18 is 

responsible for distributed users of the application in network nodes 6, 7, 8, 

14, 15, 16, 18, 19 and 20. A second instance of emerging fog app “X” in 

network node 10 is responsible for distributed users in network nodes 10, 11, 

and 12. Hence, the number of hops between instances of app “X” and their 

distributed users is minimised. It is important to note that the instance in node 

10 is provisioned using IRC of active resource components. Hence, minimal 

power is consumed to create the additional instance of fog app “X”. This 

instance enables good reductions in TNPC. 

Relative to results obtained when TSs are deployed in the fog network, 

the revisions in fog apps placement observed when DSs are deployed is 

responsible for about 18% fall in TFPC as shown in Figure 6.10. Reduction in 

the TCPC is responsible for over 90% of the fall seen in TFPC. This is because 

power consumption of CPU component is significantly higher than that of 

memory and storage components. Disaggregation enables significant 

improvements in CPU utilisation efficiency (as shown in Figure 6.9). Improved 

consolidation of CPU demands of mission critical traditional apps and 

emerging fog apps in each fog computing site is responsible for this. Hence, 

the number of active CPU component reduced when DS are deployed to 

replace TS in the fog network as shown in Figure 6.11. The same is also true 

for storage components and their corresponding utilisation efficiency. 

However, the 33% drop in the number of storage components observed in 

Figure 6.11 does not lead to significant fall in the TFPC. This is because 
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storage components have a lower peak power consumption relative to CPU 

and memory components as illustrated in Table 6.2. Figure 6.11 only shows 

a marginal drop in the number of active memory components. This is because 

several considered applications have high memory demand relative to the 

capacity of the homogenous memory components as given in Table 6.3. 

Hence, a significant improvement in active memory utilisation could not be 

realised as shown in Figure 6.9. 

 

Figure 6.9: Average utilisation of active components across fog sites 

 

Figure 6.10: Power consumption under EE placement scenarios. 

Figure 6.10 shows a marginal increase in the TNPC after TSs are 

replaced with DSs in the fog network. This marginal rise is bceause of 

increased hop count between the instance of some emerging fog apps and 

their users. Furthermore, the hop count between instance of emerging fog app 
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“W” and “X” and the metro gateway node also increased after a change in 

server architecture. Hence, network traffic traverses more network equipment 

when DSs are deployed in the fog network. Figure 6.12 gives the average and 

maximum round trip time (RTT) between distributed user of each emerging 

fog app and the provisioned instances of the app. Relative to the deployment 

of TS architecture in the fog network, both average and maximum RTT 

increased when DS architecture is adopted in the fog network. Users of 

emerging fog app “U” experience relatively higher delay as shown in Figure 

6.12 compared to other emerging fog apps. Although the placement of fog app 

“U” in network node 6 enables optimal energy efficiency in the fog network, 

this choice also leads to high congestion on the link that connects network 

node 6 to node 1. Consequently, users of emerging fog apps “V”, “W” and “X”, 

which are located in node 6, experience the corresponding maximum delay 

illustrated in Figure 6.12. Since, the moderate delay thresholds of all emerging 

fog apps under this scenario are satisfied, such performance is acceptable. 

However, the performance obtained under both TS and DS architectures 

violates the delay threshold (i.e., sub-20ms) for delay sensitive fog apps. 

Hence, another subsection considers a scenario where requests for a delay 

sensitive emerging fog app are present in the fog network. 

 

Figure 6.11: Number of active components across fog sites 
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Figure 6.12: Round trip delay from app instance to users under EE 
placement scenarios. 

6.4.3 Energy Efficient Placement under High Delay Penalty 

In this subsection, 𝛿 ≫ 1; hence, network delay penalty is high. This 

represents a network where the operator desires minimal impact of emerging 

fog apps on regular traffic.  

6.4.3.1 Placement under Traditional Server Architecture 

Under this scenario, multiple instances of some emerging fog apps are 

created when the TS architecture is adopted as shown in Figure 6.8. This 

reduces the number of hops between instances of replicated fog apps and 

their users. Consequently, the total volume of traffic traversing the network 

topology is reduced and the delay experienced on each link of the network 

topology is also minimised.  Relative to result obtained under low delay 

penalty (𝛿 ≪ 1), the average and maximum RTT between the instance of fog 

apps and their distributed user falls when 𝛿 ≫ 1 as shown in Figure 6.12.  

However, to ensure a balanced trade-off between minimising TFPC and 

the total approximated delay, only applications (app “W” and app “X”) with low-

medium resource demand intensity are replicated as shown in Figure 6.8. The 

primary instances for both apps are placed in centrally located fog sites (i.e., 

COs). These primary instances are responsible for users in directly attached 

access network nodes and also for most distributed users in the network 

topology. On the other hand, additional instances of emerging fog app “W” 

and app “X” are provisioned in some radio CSs. This strategy reduces the 

traffic associated with densely populated user clusters attached to each radio 

CS in the network. This consequently reduces network congestion. Because 
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the app “W” and app “X” have small compute footprint, they are easily 

provisioned with IRC of active TSs. Hence, minimal increase in TFPC is 

incurred compared to the 𝛿 ≪ 1 scenario as shown in Figure 6.10. 

Furthermore, relative to results obtained when 𝛿 ≪ 1, additional compute 

components are not activated to provision the additional instances of app “W” 

and “X” as shown in Figure 6.11. However, replication of fog app instances 

leads to the increase observed in the utilisation of active resource components 

in the fog network as shown in Figure 6.9. Relative to the low delay penalty 

scenario where TSs are deployed, there is a 3% rise in the TFPC when the 

high delay penalty scenario is considered under a similar setup. On the other 

hand, the TNPC consumption fell by 2% as shown in Figure 6.10. 

6.4.3.2 Placement under Disaggregated Server Architecture 

A similar trend is observed when DSs are deployed in the fog network. 

Replicas of certain emerging fog apps are made, as shown in Figure 6.8. This 

strategy enables reductions in the volume of traffic traversing the network 

topology. It also reduces increased network congestions that would have 

occurred due to the creation of a single instance of each fog app. 

Consequently, distributed users of fog apps experienced lower average and 

maximum RTT to assigned fog instances as shown in Figure 6.12. Under the 

high delay penalty scenario, three instances of app “U” and app “X” are 

created. Only two instances of fog app “W” are created under the high delay 

penalty scenario. High CPU and memory demands of emerging fog app “V” 

prevents the replication of the fog app. This helps to avoid significant increase 

in TFPC. As observed when TSs are deployed in the network, radio CSs are 

often used to host instances of emerging fog apps. This helps to ensure that 

the total volume of traffic in the network topology is minimised. This is because 

of the high user density associated with radio CSs in the system setup. For 

example, fog app “V” is placed in network node 14 because the node does not 

require the activation of an additional CPU component to support the CPU 

intensive demands of emerging fog app “V”. 

Replication of app “U” and app ”W” can significantly reduce the total 

volume of traffic and congestion experienced in the network. This is because 

these emerging fog apps have relatively higher data rate per user than other 

emerging fog apps as illustrated in Table 6.3. Additionally, app “X” has non-

intensive CPU and memory demands; therefore, the replication of app “X” 

does not lead to significant increase in the TFPC but can lead to additional 

reduction in the network traffic.  
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Under a similar setup as the low delay penalty scenario, the creation of 

replicas of some emerging fog apps when the DSs are deployed under the 

high delay scenario leads to about 8% rise in the TFPC as seen in Figure 6.10. 

A comparison of TNPC under both scenarios shows about 1% decrease due 

to reduced traffic on the network topology as illustrated in Figure 6.10. Relative 

to the low delay penalty scenario where DSs are used, the replication of some 

emerging fog apps (“U”, “W” and “X”) under a similar setup in the high delay 

penalty scenario increased the number of active compute components as 

shown in Figure 6.11. A similar comparison also shows that the average active 

utilisation of compute components increased in the fog network as shown in 

Figure 6.9. 

Comparison of TS and DS architectures under the high delay penalty 

scenario expectedly shows that the adoption of the DSs enabled notable 

(about 14%) reduction in TFPC as shown in Figure 6.10. This is because 

server resource components are independently and proportionally utilised. A 

marginal fall in TNPC is also observed as a result of the revised server 

architecture. This is because the DS architecture encouraged the creation of 

more distributed replicas of most emerging fog apps relative to when the TS 

architecture is adopted. Compared to the placement obtained under TS 

architecture where replication of emerging fog app “U” is discouraged because 

of the app’s high compute footprint, replicas of emerging fog app “U” are 

created when the DS architecture is deployed. Note that app “U” has moderate 

CPU demand and high memory demand. Hence, proportional usage of 

resource components when DS architecture is employed promotes the 

independent activation of new memory components to support replicas of app 

“U”. The moderate CPU demands of the fog app U’s replicas are aggregated 

with the CPU demand of other applications into active CPU components. 

However, replication of app “V” is still discouraged because of its high CPU 

and memory demands. Therefore, proportional usage of resource 

components does not enable sufficient benefits to promote replication of an 

emerging fog app that is CPU and memory intensive. Relative to the 

deployment of TS under the high delay penalty scenario, Figure 6.12 shows 

that the average and the maximum round trip time are higher for some 

emerging fog apps when DSs are employed. Thus, the number of hops 

between users of such emerging fog apps and the instances of the app that is 

assigned to them increased. This is because more network nodes are 

traversed. 
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6.4.4 Energy Efficient Placement of Delay Sensitive Fog App 

A network with trivial queuing delay penalty (𝛿 ≪ 1) is adopted under this 

scenario. In contrast with the previous scenario, emerging fog app “X” is 

sensitive to end-to-end delay in the network (i.e., sub-20ms delay 

requirement) under this scenario. Other emerging fog apps remain moderately 

sensitive to end-to-end delay in the network as in the previous subsections. 

Under this scenario, EE placement of both traditional and emerging fog apps 

is also evaluated when both TS and DS architectures are deployed in the fog 

computing nodes placed in the fog network. 

Multiple instances of the delay sensitive emerging fog app are 

provisioned at all radio CS in the network topology as shown in Figure 6.8. 

This observation is common for both server architectures adopted in fog 

nodes. This strategy ensures that the delay threshold of the fog app “X” is 

satisfied for users that are directly attached to a radio CS. On the other hand, 

users of emerging fog app “X” which do not have direct access to a radio CS 

are rejected. Hence, local computation capacity, which can lead to higher 

CAPEX and OPEX, is required to support such users. It is expected that a 

similar placement strategy will be implement if users of emerging fog apps are 

associated with enterprise office. Other emerging fog apps, which are 

moderately sensitive to delay, are placed to achieve optimal energy efficiency 

in the fog network as reported in Section 6.4.2. Figure 6.13 shows that the 

TNPC increases marginally when DS architecture is deployed in fog sites to 

replace TS architecture as observed previously. 

 

Figure 6.13: Power consumption under energy efficient placement of a delay 
sensitive fog app scenario 
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Figure 6.14: Number of active components across fog sites 

 

Figure 6.15: Average utilisation of active components across fog sites 
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far from most of the distributed users of each fog app. However, the 

performance of such applications does not degrade because they have 

greater delay-tolerance. It is important to note that the delay experienced by 

served users of the delay sensitive apps is considered to be extremely low 

and insignificant as expected of today’s 5G mobile networks and future 6G 

mobile networks. 

 

Figure 6.16: Round trip delay experienced by users of emerging fog app. 
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control is an essential tool that can enable the efficiencies observed during 

the analysis of results from the solved MILP model. Hence, a heuristic is 

proposed. The heuristic depends on centralised control of distributed fog 

nodes to achieve high efficiency in a fog network. It is also leverages global 

knowledge derived from control information exchange to achieve high 

efficiency in a fog network. The heuristic is a real-time algorithm that optimally 

provisions both mission critical traditional applications and (delay sensitive) 

emerging fog applications in a fog network when possible. 

Given a set of input fog apps (i.e., mission critical traditional apps and 

emerging fog apps), the algorithm attempts to provision instance(s) of these 

applications in a fog network in an energy efficient manner while considering 

the delay requirements of each application. Applications that cannot be 

provisioned are rejected and users whose delay requirements are not satisfied 

by provisioned instance(s) are also rejected. The algorithm supports the use 

of TS and DS architectures in the fog network. Other inputs to the algorithm 

include the user distribution and delay requirement of each emerging fog app; 

the distribution of fog compute nodes in the network topology; the features 

and characteristics of each resource components at each fog site; and the 

load and propagation delay on each network link. 

6.5.1 HEEDAP Algorithm Description 

A high-level description of the heuristic for energy efficient and delay aware 

placement (HEEDAP) of applications in fog networks is illustrated in Figure 

6.17. At inception, the HEEDAP algorithm processes the set of input mission 

critical TAs in each network node. The list of TAs in each network node is 

sorted in descending order of CPU demand intensity. If a tie occurs, memory 

demand intensity is initially adopted to break the tie followed by storage 

demand intensity. The output of this process is the “local job list” (LJ-list) 

created at each network node. 

Secondly, the HEEDAP algorithm processes the set of input emerging 

fog apps to the fog network in two stages. The initial stage identifies fog apps 

that are highly sensitive to network delay. These fog apps form the secondary 

job list at each fog computing site. A delay sensitive fog app is placed in 

secondary job list of a fog site  if some users of that app are directly connected 

to the corresponding fog site via wireless media. This secondary job list 

created at each fog computing site is called the “pseudo-local job list” (PLJ-

list). Emerging fog apps that are classified as delay sensitive are subsequently 

ejected from the list of input emerging fog apps. The PLJ-list at each network 

node is arranged in descending order of resource demand intensity as 
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described for the LJ-list. In the second stage, the HEEDAP algorithm sorts the 

list of input (moderately sensitive) emerging fog apps in descending order of 

resource intensity to create the “real fog job list” (RFJ-list). The RFJ-list also 

(implicitly) holds information about the user distribution. User distribution 

information is represented by the number of users that made a request for 

each emerging fog app at each network node. After input apps processing, 

HEEDAP creates a temporary copy of the RFJ-list. This temporary copy is the 

“pseudo fog job list” (PFJ-list) which is refreshed after each complete iteration 

of the algorithm. It is important to note that an iteration of the HEEDAP 

algorithm is complete when the PFJ-list of that iteration is empty. Furthermore, 

a union of LJ-list and PLJ-list at each network node and the RFJ-list form the 

list of applications in the fog network. 

Whilst the list of applications in the fog network is not empty (this is the 

first check of the HEEDAP algorithm), at each network node with compute 

capacity a “query app” is selected. The mission critical traditional fog app at 

the top of the LJ-list in each network node is selected as the query app. The 

query app at each network node is placed energy-efficiently; new resource 

components may be activated to support the query app as required. If the 

query app could not be placed, it is rejected and removed from the LJ-list. The 

state of all compute resource components in each network node is recorded 

and stored by the central orchestrator.  

Thereafter, at each network node, a candidate app in the LJ-list is 

identified to maximise the utilisation of the IRC of active components in this 

network node where possible. If a candidate app is not found in the LJ-list, the 

PLJ-list is checked for a candidate app. The search for a candidate local or 

pseudo-local app in each network node gives higher priority to maximum 

utilisation of the IRC of active CPU components. This is because CPU 

components consume more power than memory and storage components as 

illustrated in Table 6.2. When the DS architecture is adopted, inactive memory 

and storage components within the same network node may be used to 

complement available IRC of CPU component. A similar approach may be 

adopted when the TS architecture is deployed and a single compute node has 

multiple intrinsic CPU, memory, and storage components; otherwise, the 

resource locality constraint of TS architecture is enforced. 
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Figure 6.17: Flow chart of HEEDAP algorithm. 
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If a candidate app is not found in the LJ-list or PLJ-list of a network node, 

the PFJ-list is searched to identify a moderately sensitive emerging fog app 

that can maximise utilisation of the IRC of active components of such network 

node. This search gives priority to the emerging fog app with more stringent 

delay requirement if the node is within the round-trip delay threshold of one or 

more unserved users of that fog app. The search conducted at each network 

node provides control data that supports the placement of emerging fog apps 

in the PFJ-list in subsequent steps of the HEEDAP algorithm. Such control 

information provides the global knowledge required by the algorithm. 

In each network node, if a candidate app is found in the LJ-list, the app 

is selected as the new query app and placed energy-efficiently. Hence, the 

algorithm gives higher priority to mission critical traditional fog apps of the fog 

computing infrastructure provider. Otherwise, if a candidate app is found in 

the PLJ-list, the app is also selected as the new query app and is placed 

energy-efficiently. Relative to moderately sensitive emerging fog apps, this 

gives greater priority to emerging fog apps that have greater delay sensitivity. 

On the other hand, if a candidate app is not found in LJ-list or PLJ-list in a 

given network node and one is found in the PFJ-list, further checks are 

required. The algorithm checks if other network nodes can also host this 

candidate emerging fog app using IRC before the best network node for the 

fog app is selected. Thus, global knowledge of the central orchestrator must 

be consulted before the best network node is selected from the list of all 

contending network nodes. These contending network nodes are nodes that 

can provision the candidate (moderately sensitive) emerging fog app using 

IRC. 

The best network node for a given moderately emerging fog app in the 

PFJ-List is the network node that leads to the smallest increase in TFPC after 

the placement of the candidate emerging fog app i.e., the most energy efficient 

network node. However, ties may occur when energy efficiency is used as the 

decision metric. Hence, the CO that is closest to the metro gateway node is 

given the highest priority when a tie occurs. This ensures that the (number of 

hops traversed or) traffic in the network is minimised as observed in the 

analysis of the MILP model results. Furthermore, if the list of contending 

network nodes for the emerging fog app comprise of only access network 

nodes, the network node with the highest user density is given higher priority. 

Otherwise, if some contending network nodes have the same user density for 

the emerging fog app, then lower delay to the metro gateway node is used as 

the decision metric to select the best network node. 
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Once the best network node for a given emerging fog app in the PFJ-list 

is found, an instance of the app is provisioned in that network node. All users 

of the app that can be served by this new instance (without violating delay 

requirements and network capacity constraints) are removed from the RFJ-

list. Furthermore, the fog app and its served users are also removed from the 

PFJ-list of the present iteration. Additionally, the provisioned emerging fog app 

is replaced as a candidate emerging fog app at all corresponding fog 

computing sites where it was previously a candidate. A new candidate fog app 

from the PFJ-list is elected to maximise the utilisation of the IRC of active CPU 

component at such network nodes. This approach ensures fair placement for 

each emerging fog app in the fog network. This placement strategy is repeated 

at all network nodes to place all elected candidate emerging fog apps in the 

active iteration. 

After exhausting all opportunities to use the IRC to provision an instance 

of each candidate emerging fog app in the PFJ-list in the active iteration, the 

size of the LJ-list is checked. If the LJ-list is not empty, the HEEDAP algorithm 

repeats all procedures described above. Hence, the algorithm attempts to 

provision all mission critical traditional apps before considering emerging fog 

apps for placement. On the other hand, if the LJ-list is empty, another check 

is made to confirm that the PLJ-list in each network node is empty. If the PLJ-

list in a network node is not empty, the HEEDAP algorithm attempts to 

provision the fog apps at the top of the PLJ-list in each network node. Such 

attempts may activate inactive resource components as required since the LJ-

list in the network node is now empty. Hence, after mission critical TAs, 

emerging fog apps with higher sensitivity to delay have the highest priority. 

Emerging fog apps in the PLJ-list of a network node that are placed 

successfully are removed from the PLJ-list of that network node. Fog apps 

that are rejected are also removed from the PLJ-list of the corresponding 

network node. The HEEDAP algorithm thereafter repeats all procedures 

described above to place all moderately-sensitive emerging fog apps with 

available IRC of active resource components. It is important to note that if both 

LJ-list and PLJ-list of a network node are empty, only fog apps in the PFJ-list 

of the active iteration will be considered for energy efficient placement. Energy 

efficient placement uses IRC as described in earlier steps of the algorithm. 

On the other hand, if the PLJ-list is empty, a new check is made to 

confirm if the PFJ-list of the active iteration of the fog network is empty or not. 

If the PFJ-list is not empty, the emerging fog app with the highest delay 

sensitivity in the PFJ-list is set as query app and energy-efficient placement 
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of the query app is attempted. Inactive resource components may be activated 

as required to provision an instance of this query app. If a query app cannot 

be provisioned, the app is deleted from the PFJ-list and RFJ-list along with the 

information about all un-served distributed users of that app. Otherwise, if an 

instance of the query app was successfully provisioned, users of the query 

app whose delay threshold has been satisfied by the new instance are 

removed from both PFJ-list and RFJ-list. To ensure fairness when placing 

emerging fog apps, the provisioned query app is also removed from the PFJ-

list of the active iteration. However, the details of unserved distributed users 

are retailed in the RFJ-list. Thereafter, the HEEDAP algorithm repeats all 

previous steps in this paragraph to provision one instance of each moderately 

sensitive emerging fog apps in the PFJ-list until the list is emptied.  

An empty PFJ-list implies that an active iteration of the HEEDAP 

algorithm has been completed and that a single instance of each emerging 

fog app has been provisioned. Recall that the HEEDAP algorithm uses the 

RFJ-list to maintain global knowledge of users of some emerging fog apps 

whose delay requirement remain unfulfilled. This knowledge is used to refresh 

PFJ-list. The refreshed PFJ-list comprise of all emerging fog apps with one or 

more unsatisfied users. The HEEDAP algorithm subsequently returns to the 

first check at the top of the algorithm to begin a new iteration since this check 

will be negative. However, if the delay requirements of all users of all emerging 

fog apps has been satisfied or all requests for the emerging fog apps has been 

rejected the first check of the algorithm will be positive and the HEEDAP 

algorithm stops. Note that user request for an emerging fog app could have 

been rejected because delay threshold could not be satisfied. 

The HEEDAP algorithm calculates delay by considering the sum of the 

delay experienced on a link and link’s propagation delay as the delay cost on 

each link in the network topology as given in the MILP model. The path with 

the smallest total delay is always selected as the shortest path between two 

nodes. It is assumed that the information of the network topology such as 

propagation delay and historical traffic (load) on each network link is available 

as input to the HEEDAP algorithm. Given this information, Dijkstra's shortest 

path algorithm is used determine the shortest path between two network 

nodes using total (propagation plus congestion) delay as the cost metric. 

In the HEEDAP algorithm, resource locality constraint distinguishes a fog 

computing site with DS architecture from a fog computing site with TS 

architecture. To reduce the complexity of control and orchestration required 

for the algorithm in a large fog network deployment, big fog networks can be 
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sub-divided into multiple small units. The algorithms can be deployed in a 

stand-alone mode in each small unit. Criteria for deciding the division 

thresholds for big fog networks include delay, number of network nodes and 

fog application user distribution. It is also important to note that an emerging 

fog app is a candidate app in a network node under the following condition. 

That is, if and only if network capacity exists on a selected shortest path that 

satisfies the delay threshold of some users of that fog app after the placement 

of that fog app into the node. Otherwise, the fog app is not an acceptable 

candidate for that network node. Similarly, the users of provisioned fog app at 

a given network node are removed from the RFJ-list when this condition is 

satisfied. That is, if and only if the delay threshold of such users are satisfied 

within specified capacity constraint of links on the selected shortest path 

between users of that app and the network node where the instance has been 

provisioned. 

6.5.2 HEEDAP Performance Evaluation 

To evaluate the performance of the HEEDAP algorithm, two evaluation 

scenarios (i.e. EE and EE placement of delay sensitive fog app) studied with 

the MILP model in previous section are considered. The results obtained when 

the algorithm is deployed in these scenarios are compared with those 

obtained by solving the MILP model. Similar computing and network metrics 

given in the previous section are also adopted. It is assumed that fog network 

providers have SLAs with partners (network service providers) that 

guarantees shortest path delay for emerging fog apps in the network topology. 

This is because the evaluation of fog networks considered a network 

infrastructure that is shared with other services,. 

6.5.2.1 Energy Efficient Placement 

In the absence of fog applications which are sensitive to delay under the EE 

placement scenario, Figure 6.18 shows that the HEEDAP algorithm achieves 

comparable results as those reported when the MILP model is solved. As 

shown in Figure 6.18, Figure 6.14 and Figure 6.15, the HEEDAP algorithm 

achieves the same TFPC, number of active resource components and 

average active resource utilisation as the MILP model when the TS 

architecture is deployed in the fog network. This demonstrates the efficacy of 

the HEEDAP algorithm at mimicking the compute energy efficiency achieved 

by the MILP model in a similar system setup that adopts homogenous 

resource components across the fog network.  A single instance of each 

emerging fog app is provisioned in the fog network as reported when the MILP 

model was solved. As shown in Figure 6.8. The placement of the instance 
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created for each emerging fog app obtained via the HEEDAP algorithm is also 

an exact match with those obtained by solving the MILP model when TS 

architecture is deployed in fog nodes. Consequently, the average and 

maximum RTT from app instance to users obtained by HEEDAP are also 

comparable to those obtained by solving the MILP model when TS 

architecture is adopted in fog network nodes as shown in Figure 6.16. The 

TNPC obtained using the HEEDAP algorithm is marginally (about 2%) lower 

than that of the MILP model as shown in Figure 6.18. Disparity in path 

selection made for cloud bound traffic is responsible for this difference. The 

MILP minimises overall congestion in the network topology by distributing 

such traffic as necessary. This leads to higher network power consumption. 

On the other hand, HEEDAP always selects the shortest path this approach 

minimises network power consumption. 

 

Figure 6.18: Power consumption under energy efficient placement scenario 
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comparable to those obtained by solving the MILP model. However, compared 

to results obtained by solving the MILP model, the placement of emerging fog 

app “U” as obtained by the HEEDAP algorithm is different since the app is 

placed in node 14. This revised placement is responsible for the fall in the 

average and maximum RTT experienced by the distributed users of the app 

as shown in Figure 6.16. This is because node 14 is farther away from node 

1 which is also the metro gateway node to the cloud. Hence, the congestion 

on the paths to node 14 is lower. 

6.5.2.2 Energy Efficient Placement of Delay Sensitive Fog App 

In the presence of a delay sensitive emerging fog application i.e., app X, the 

HEEDAP algorithm is able to mimic the performance of the MILP when TS or 

DS architecture is adopted in the fog network. The resulting placement of 

emerging fog apps, as depleted in Figure 6.8, also shows this. By pre-

processing input application in the initial steps of the HEEDAP algorithm, 

placement or rejection of delay sensitive fog apps is simplified. This 

simplification is irrespective of the presence or absence of in situ computing 

capacity at the source of user request for delay sensitive fog apps. Therefore, 

the HEEDAP algorithm effectively mimicked the MILP model by provisioning 

some instances of delay sensitive emerging fog apps at radio CSs to serves 

users at such location. Users of delay sensitive emerging fog apps located at 

network nodes without local computing capacity are rejected by the fog 

network as discussed previously. 

When TS architecture is deployed in the fog network, the resulting 

placement of emerging fog apps by the HEEDAP algorithm is an exact replica 

of the placement obtained by solving the MILP model. Consequently, the 

same TFPC is achieved by both the MILP model and HEEDAP algorithm 

under the corresponding server architecture as shown in Figure 6.13. As 

shown in Figure 6.14, the HEEDAP algorithm obtained the same number of 

active resource component as those obtained by solving the MILP model. 

Likewise, HEEDAP also replicates the average utilisation of active 

components across fog computing sites obtained by solving the MILP model 

as show in Figure 6.15. The TNPC obtained by the HEEDAP algorithm is also 

comparable to the same value obtained by solving the MILP model under a 

similar scenario. Similarly, the average and maximum RTT to distributed users 

of emerging fog apps obtained by the MILP model is also comparable to those 

obtained by the solving the MILP model as shown in Figure 6.16. 

However, when the DS architecture is employed in the fog network, the 

resulting placement of emerging fog apps by the HEEDAP algorithm is not an 
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exact replica of the placement obtained by solving the MILP. The TFPC 

obtained with the HEEDAP algorithms is about 2% higher than the TFPC 

obtained by solving the MILP model under this scenario as shown in Figure 

6.13. The adoption of homogeneous compute resource across the fog network 

is responsible for the comparable TFPC obtained. Therefore, the number of 

active resource components and the average utilisation of these active 

components across fog computing sites as obtained by the HEEDAP 

algorithm is comparable to those obtained by solving the MILP model. 

Difference in the placement of emerging fog apps is responsible for the 

changes in the average and maximum RTT experienced by users as shown 

in Figure 6.16. Apps “V” and “W” are placed in COs in the metro ring by the 

HEEDAP algorithm. Hence, the average and maximum RTT experienced by 

the distributed users of these fog apps is reduced compared to results 

obtained by solving the MILP model under a similar setup. 

6.6 Summary 

In this chapter, we extended the application of the composable DC 

infrastructure paradigm to the edge of the network to improve energy 

efficiency of the fog computing layer. We considered a fog computing layer 

which comprised of federated fog computing sites and studied the impact of 

replacing TSs with DSs at each fog computing site.  Our investigation was 

conducted by formulating a MILP model that energy efficiently placed both 

interactive and non-interactive fog apps in selected locations. Relative to the 

use of the TSs in the sites of a fog network that is built over a network with 

low delay penalty, the adoption of DSs enabled up to 18% reduction in TFPC. 

Relative to the use TSs in fog network with high delay penalty, the TFPC of 

the fog network that employed DS architecture was 14% lower. Additionally, 

our resulted showed that central offices and radio base stations are important 

edge locations for supporting popular interactive applications. These location 

are important when energy efficiency is a key design criterion and such 

applications are moderately sensitive to round-trip delay. Finally, we proposed 

a heuristic, HEEDAP, which is a real-time algorithm that optimally provisions 

(delay sensitive) emerging fog applications in a fog network. The HEEDAP 

algorithm achieved comparable results as those reported when the MILP 

model was solved under similar scenarios.  
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Chapter 7 : Conclusions and Future Directions 

This chapter gives a summary of the contributions made in this thesis and 

proposes future directions that may be explored.  

7.1 Summary of Contributions 

In this work, an investigation is conducted to determine the optimal scale and 

scope of disaggregation for energy efficient composable DCs under a suitable 

network. Furthermore, an investigation is also conducted to study the impact 

of adopting the resource disaggregation in future edge networks and the fog 

computing tier. Each research problem is formulated at a MILP model and a 

corresponding heuristic was proposed in some instances. 

 In Chapter 1, we gave a general introduction on the importance of DCs 

in supporting both cloud and fog computing paradigms. The emerging trends 

of adopting resource disaggregation in DC environments to enhance 

efficiencies was highlighted. We also outlined the objectives and contributions 

of the work done in this thesis. 

 Chapter 2 presented a general overview of various components and 

concepts in this thesis. A comprehensive review of DC infrastructure evolution 

was made along with a brief review of the software-centric and hardware-

centric techniques that were deployed to improve efficiency in DCs.  An 

overview of WDW networks was presented before the virtual topology design 

problem in WDM networks was briefly reviewed. Lastly, Chapter 2 also 

reviewed the MILP optimisation approach that is widely used in this thesis. 

 Chapter 3 of this thesis focused solely on a review of composable DC 

infrastructure. Firstly, it presented an overview of composable DC 

infrastructure and subsequently reviewed enabling technologies (i.e., 

resource disaggregation, software defined infrastructures and optical 

communication technologies) of composable DC infrastructures. The Chapter 

also highlighted some benefits and implementation challenges of composable 

DC infrastructure. Finally, Chapter 3 was concluded by a review of 

composable DC research in the literature. 

In Chapter 4, we formulated a MILP model to evaluate the performance 

of physical disaggregation of compute resources at rack-scale and pod-scale 

under selected electrical, optical hybrid network topologies. Relative to 

resource disaggregation at pod-scale in composable DCs, our results showed 

that physical disaggregation of compute resources at rack-scale is sufficient 
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to achieve optimal resource utilisation. This is achieved when appropriate 

distribution of resource (both in number and/or diversity) is ensured during 

resource allocation. Adoption of optical network topology in composable DCs 

ensures optimal overall DC energy efficiency. Physical disaggregation of 

traditional DC servers at rack-scale leads to better (6%-20%) savings in 

overall power consumption when memory intensive workloads are 

provisioned. 5% - 8% savings in total DC power consumption obtained when 

CPU intensive workloads are provisioned after physical disaggregation of 

traditional DC servers at rack-scale. Relative to the implementation of physical 

disaggregation at rack-scale, implementation of logical disaggregation of 

traditional servers over an optical network topology within a rack ensures a 

composable infrastructure suitable for all workload categories (i.e., workloads 

with low-sensitivity or high-sensitivity to increase in memory access latency). 

Logical disaggregation of traditional servers at rack-scale also improved 

network power efficiency. 

Secondly, Chapter 4 also explored the impact of micro-service 

architecture on overall DC operational and energy efficiency in both traditional 

and composable DCs. The results show that disproportionate utilisation of DC 

resources may persist when micro-service architecture is adopted in a 

traditional DC. This occurs in spite of improvements in total resource power 

consumption and resource utilisation enabled by increased workload 

modularity. Although, disaggregation addresses disproportionate utilisation  in 

traditional DCs, utilisation in disaggregated DCs could be limited when 

resource intensive monolithic workloads are deployed. Ultimately, a 

combination of composable infrastructure and increased workload modularity 

enables optimal resource utilisation and energy efficiencies in DCs. Hence, 

both approaches are complementary and DC operators should leverage on 

the strengths of both approaches to enable optimal DC resource utilisation 

and energy efficiency. 

Lastly, we proposed a real-time heuristic for energy efficient placement 

(HEEP) of workloads in composable DCs in Chapter 4. The total DC power 

consumption obtained using the HEEP algorithm approached the exact results 

obtained by solving the MILP model under CPU intensive and memory 

intensive workload classes. In contrast to the adoption of un-capacitated 

networks in Chapter 4, network capacity constraints are expected to have 

significant impact on the practicality and performance of all variants of 

composable DCs. Hence, the approach adopted in Chapter 4 is somewhat 

limited in a practical setup. 
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In Chapter 5, we described two variants of a novel network for 

composable DCs i.e., NetCoD. We evaluated the performance of the 

proposed network topologies via a MILP model that performed throughput 

tests over the novel topologies. Under similar network loads, we found that 

the electrical-optical variant achieved comparable network energy efficiency 

as all-optical programmable disaggregated data centre network (AOPD-

DCN), a reference topology from the literature. The sole adoption of electrical 

switches in E-NetCoD led to higher network power consumption. A MILP 

model was also formulated to evaluate the performance of capacitated 

networks (i.e., E-NetCoD, EO-NetCoD and AODP-DCN) when energy 

efficient placement of VMs is required in rack-scale composable DCs. The 

rack-scale composable DCs considered implement logical, physical and 

hybrid scopes of resource disaggregation. This addresses the limitation of 

adopting un-capacitated networks in Chapter 4. The results showed that a 

practical implementation of the resource disaggregation concept may require 

marginal concessions in compute energy efficiency to satisfy network 

constraint. Such concessions are also required to reduce consequential 

network power consumption that may be incurred when disaggregation in 

implemented. 

Chapter 5 also successfully demonstrated the efficacy of both variants 

of NetCoD by considering different scopes (i.e., logical, hybrid and physical) 

of disaggregation in a rack-scale composable DC. The range of scenarios 

considered highlighted various strategies that can be deployed in practical 

implementations of either variant of NetCoD to achieve total energy efficiency. 

Relative to AOPD-DCN, both variants of NetCoD achieved comparable 

performance in-terms of compute energy efficiency. In-terms of network 

energy efficiency, EO-NetCoD achieved comparable performance as AOPD-

DCN using a targeted and more practical topology design. The targeted 

design required fewer interfaces at each compute node. E-NetCoD achieved 

similar performance as EO-NetCoD at higher TNPC because of the high 

operational power of electrical switches. Hence, making the adoption of 

electrical switch less desirable in composable DCs that require high energy 

efficiency. However, the availability of electrical switches (such as the Gen-Z 

switch and the Ethernet switch proposed for Intel’s rack-scale architecture) 

which support disaggregation makes E-NetCoD viable option to be considered 

for composable DC infrastructures. Furthermore, OEO conversion performed 

by electrical switches can improve the utilisation of the inter-rack network. 

Moreover, electrical switches are also ideal for practical implementation DC 

gateway switches. Hence, when deployed in a strategic location as proposed 
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for EO-NetCoD, an electrical switch could be optimally utilised in a 

composable DC while minimally impacting network energy efficiency. 

Under all network topologies considered in Chapter 5, a logically 

disaggregated DC achieved the best results. Logically disaggregated DC 

achieved comparable compute power consumption and compute resource 

utilisation efficiency as hybrid and physical disaggregation but consumes 

marginally lower TNPC under all network topologies considered. This is 

because logical disaggregation enabled optimal use of the highly energy 

efficient on-board fabric in DCs to significantly minimise the TNPC while 

achieving high compute energy efficiency as well. Hence, relative to hybrid 

and physical disaggregation, higher tiers of the DCN are minimally utilised in 

logically disaggregated DCs. Across all network topologies evaluated in 

Chapter 5, the average increase in TNPC is 1% and 3.6% when hybrid and 

physical disaggregation are respectively implemented instead of logical 

disaggregation. This observation further supports the results obtained in 

Chapter 4. Furthermore, the results also showed that physical disaggregation 

significantly exacerbates network capacity constraint, especially for 

homogenous compute nodes with multiple CPU components. Additionally, 

utilisation of available network throughput by both variants of NetCoD exceeds 

that of AOPD-DCN by 4 – 5 times under the different forms of resource 

disaggregation considered in the rack-scale composable DC. Greater 

utilisation of available network throughput by both variants of NetCoD is 

achieved with minimal performance degradation. 

Although, theoretically, the resource disaggregation concept has 

enormous potentials to improve compute energy efficiency in composable 

DCs, joint recommendations from the investigation conducted in Chapters 4 

and 5 include the following: 

1. A practical implementation of the resource disaggregation concept, 

which considers network constraints and power consumption, requires 

a balance between compute and network energy efficiency. This is 

needed to achieve an optimal solution that satisfies both compute and 

network constraints in the DC. 

2. Logical disaggregation and rack-scale disaggregation are the 

recommended scope and scale respectively for energy efficient 

composable DCs. A combination of both can achieve near optimal 

compute power consumption and compute resource utilisation 

efficiency. However, appropriate resource allocation and network in 

composable infrastructures is required. Furthermore, the combination 

of logical disaggregation and rack-scale disaggregation significantly 

minimises network power consumption while maintaining the flexibility 

expected in composable DCs. Logical disaggregation enables a DC 
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infrastructure that can support all workloads type. Additionally, 

increased workload modularity can enhance energy efficiency in 

composable DCs by complementing resource disaggregation enabled 

resource modularity. 

3. In addition to the enabling low latency and high bandwidth 

communication, when rightly adopted, optical networking technologies 

and techniques are important in energy efficient composable DCs. 

Strategic deployment of optical technologies, with relatively lower 

power consumption, in composable DCs can minimise the concession 

required in compute energy efficiency.  Furthermore, strategic use of 

optical technologies and techniques can minimise the complexity and 

cost of compute node interfaces in composable infrastructures where 

full-mesh physical connectivity is desirable between co-rack 

component. This can be achieved by adopting a targeted design 

approach for composable DC networks as proposed for NetCoD in this 

thesis. 

Chapter 6 applied the recommendations (in Chapters 4 and 5) for energy 

efficient composable DCs at the edge of the network and in the fog computing 

tier. We evaluated the energy efficient placement of delay sensitive emerging 

fog applications in the presence of mission critical traditional fog applications 

in a shared distributed fog network. The fog network employed traditional 

server (TS) and disaggregated server (DS) architectures across selected fog 

computing sites at the network edge. Relative to the use of the TS architecture 

in the fog network that is built over a network with low delay penalty, the 

adoption of DSs enabled up to 18% reduction in total fog computing power 

consumption (TFPC). This is because disaggregation enabled proportional 

usage of compute resources at each fog computing site. This consequently 

improved the energy efficiency of the fog network. However, this is achieved 

at the expense of marginal increase in total network power consumption 

(TNPC) and somewhat higher response time when DS architecture is 

adopted.  Setting up a fog network with high delay penalty increased the TFPC 

when either TS or DS architecture are employed in fog computing sites. This 

was done to minimise the congestion experienced on the network by reducing 

the network traffic. Consequently, the TNPC is also reduced. But, the TFPC 

of the fog network that employed DS architecture was 14% lower than that of 

the fog network that adopted TS architecture. Our result also showed that 

central offices and radio cell sites are important edge locations for supporting 

popular interactive applications. This is especially the case when energy 

efficiency is an important design criterion and such applications are 

moderately sensitive to the round-trip delay experienced on the network. 

Otherwise, instances of such fog apps, which are more sensitive to delay, 
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must be provisioned in the nearest network node that satisfies a predefined 

(and acceptable) delay threshold to distributed users. Occasional increase in 

the round-trip delay is experienced by geo-distributed end-users when DSs 

are deployed in fog network. This may be mitigated by increasing the capacity 

of the metro and access links at the network edge. 

We also proposed a heuristic for energy efficient and delay aware 

placement (HEEDAP) of applications for a network of distributed fog 

computing nodes. HEEDAP leverages centralised orchestration and 

management framework of distributed fog computing nodes. The policy is a 

real-time algorithm that optimally provisions both mission critical traditional 

applications and (delay sensitive) emerging fog applications in a fog network 

when possible. The HEEDAP algorithm achieves comparable results as those 

reported when the MILP model was solved under similar evaluation scenarios. 

Often, the HEEDAP algorithm achieved the same application placement 

pattern, compute and network energy efficiencies as the exact results 

obtained by solving the MILP model. Occasional difference between the result 

obtained via by the HEEDAP algorithm and by solving the MILP model are 

marginal. For example, the difference between the TFPC obtained with the 

HEEDAP and that obtained by solving the MILP model is not greater than 2% 

in all scenarios considered. 

7.2 Future Directions 

The future directions that can be explored as extensions of the works in this 

thesis include the following. 

7.2.1 Resource Component Aggregation  

In this thesis, the aggregation of multiple homogenous resource components 

over the network to satisfy a unique resource demand of a workload was not 

explored. Future work can study the implementation of such concept in 

composable DC infrastructure while evaluating the impact of such design on 

workloads performance. The mathematical models presented in Chapters 4 

and 5 of this thesis provide a good foundation that can be extended for such 

a study.  

7.2.2 Adoption of Machine Learning and Artificial Intelligence 

Some problems studied in this thesis can be further validated and enhanced 

using the machine learning and artificial intelligence. In other cases, certain 

trends identified, from our analysis of MILP model results, in this thesis are 

suitable for the application of machine learning and artificial intelligence 
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techniques in a practical setup. Therefore, both directions should be explored 

to further validate the results in thesis and to enhance practical 

implementation of results and trends in this thesis. For example, it was 

observed that intelligence is required to optimally deploy both variants of 

NetCoD in the DC environment. The reinforcement learning branch of 

machine learning is a suitable approach that can aid the design of an 

intelligent agent. Such an intelligent agent would take actions to maximise 

network utilisation and energy efficiency without compromising performance 

during workload placement. Reinforcement learning can also be adopted to 

energy efficiently place fog applications in distributed fog networks. 

Alternatively, placement of fog applications in the fog network can also be 

determined using knowledge of user demand distribution and metro and 

access networks telemetry data. Such information can be fed as input to 

machine learning models that make energy efficient application placement 

predictions and inferences. 

7.2.3 Multi-Rack Scenario and Empirical Validation for NetCoD 

The work in this thesis provided mathematical models for NetCoD and for the 

energy efficient placement of workloads in a composable DC that deploys 

NetCoD. However, only the single rack scenario was studied when energy 

efficient placement of workloads was considered. Conducting a similar study 

in multi-rack composable DCs could not be achieved due to limited availability 

of computing power to solve the MILP model for realistic evaluation scenarios. 

Hence, provided sufficient computational power for a suitable duration, a study 

that evaluates the performance of NetCoD in multi-rack and multi-cluster 

scenarios can be conducted. Additionally, an empirical setup can also be 

created to further validate and verify the performance of NetCoD. Such a 

setup is more suitable for studies that considers of latency, rate control and 

traffic differentiation over the converged network relative to the complex 

mathematical model developed in this thesis. The empirical setup can also 

provide a suitable platform for the implementation of machine learning and 

artificial intelligence that can support NetCoD and the placement of workload 

in DCs that employ NetCoD in realistic scenarios. 

7.2.4 Dynamic Fog Applications 

In contrast to the static association of certain fog applications with specific fog 

site as considered in this thesis, future work can consider scenarios where all 

fog applications can be placed dynamically. Furthermore, inter-workload 

communication may also be introduced between such applications. 

Additionally, the HEEDAP algorithm developed in Chapter 6 can be extended 
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to investigate various placement strategies for dynamic fog applications in 

metro and access fog computing tiers where composable computing 

infrastructure is predominantly deployed. In addition, further studies of the 

impact of user distribution in fog networks can be conducted by introducing a 

capacity constraint to limit the number of users associated with each 

provisioned instance of a fog application. 

7.2.5 Framework for Energy Efficient Placement in Cloud-Fog 

Architecture 

In this thesis, we have successfully developed a scalable algorithm for energy 

efficient placement of workloads in composable DCs. We also developed 

another algorithm for delay aware placement of workloads in metro and 

access fog networks that employ disaggregated servers. Both algorithms can 

be combined to develop a holistic framework and policy for the energy efficient 

deployment of workloads in cloud-fog architecture that spans core, metro, and 

access networks. Such a framework can provide a tool for a comprehensive 

study of the impact of joint deployment of composable computing 

infrastructure in both fog and cloud computing tiers of the cloud-fog 

architecture. Conducting a similar study of such massive architecture using 

the MILP model optimisation approach is expected to be challenging because 

it may not scale well due to high complexity. Combining both algorithms may 

provide acceptable approximated solutions in such a massive scenario. It is 

important that such novel framework should also consider the frequency of 

algorithm re-optimisation. This is because present implementations of the 

formulated MILP models and proposed algorithms are memoryless. Hence, 

temporal variation in the distribution of workload demand in DCs is not 

considered in this thesis. Furthermore, the problems posed by a cloud-fog 

architecture can also be solved using generic meta-heuristic optimisation 

methods which are known to be effective and simple. Results obtained via 

meta-heuristic approaches can be used to validate and improve the 

effectiveness of the targeted heuristics proposed in this thesis. 

7.2.6 Multi-Objective Optimisation 

The problem formulations considered in this thesis can be further extended by 

re-formulating them as multi-objective optimisation problems. For example 

consideration of the cost and power consumption of DC peripheral 

components such as cooling and power systems could be added to the 

objective function. Hence, enabling more realistic representation of practical 

DCs. 
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Appendix: List of MILP Notations 

Chapter 4 MILP Notations 

Sets: 

𝑁 Set of nodes of resources 

𝑅 Set of racks in the DC 

𝑃 Set of Pods in the DC 

𝐶 Set of CPU resources 

𝑀 Set of memory resources  

𝑊 Set of workloads 

𝐷 Set of traffic direction 

𝐼 Set of integrated workloads 

DC Compute Parameters: 

ℂ𝑗 Capacity of CPU module 𝑗 ∈ 𝐶  

𝐶𝑃𝑗 Maximum power consumption of CPU module 𝑗 ∈ 𝐶 

IC Idle power as a fraction of maximum CPU power 

∆𝐶𝑗 Power factor of CPU module 𝑗 ∈ 𝐶; ∆𝐶𝑗 =
𝐶𝑃𝑗−𝐼𝐶∙𝐶𝑃𝑗

ℂ𝑗
 

𝕄𝑗 Capacity of memory module 𝑗 ∈ 𝑀 

𝑀𝑃𝑗 Maximum power consumption of memory module 𝑗 ∈ 𝑀 

IM Idle power as a fraction of maximum memory power 

∆𝑀𝑗 Power factor of memory module 𝑗 ∈ 𝑀; ∆𝑀𝑗 =
𝑀𝑃𝑗−𝐼𝑀∙𝑀𝑃𝑗

𝕄𝑗
 

𝐶𝑁𝑗𝑛 𝐶𝑁𝑗𝑛 = 1, If CPU 𝑗 ∈ 𝐶 is placed in node 𝑛 ∈ 𝑁. Otherwise 

𝐶𝑁𝑗𝑛 = 0 

𝑀𝑁𝑗𝑛 𝑀𝑁𝑗𝑛 = 1 if RAM 𝑗 ∈ 𝑀 is placed in node 𝑛 ∈ 𝑁, Otherwise 

𝑀𝑁𝑗𝑛 = 0  

𝑁𝑅𝑛𝑟 𝑁𝑅𝑛𝑟 = 1, If node 𝑛 ∈ 𝑁 is placed in rack 𝑟 ∈ 𝑅, otherwise 

𝑁𝑅𝑛𝑟 = 0 

𝑅𝑃𝑟𝑝 𝑅𝑃𝑟𝑝 = 1, If rack 𝑟 ∈ 𝑅 is placed in pod 𝑝 ∈ 𝑃, otherwise 

𝑅𝑃𝑟𝑝 = 0 

𝑊𝐶𝑤 CPU capacity required by workload 𝑤 ∈ 𝑊 
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𝑊𝑀𝑤 Memory capacity required by workload 𝑤 ∈ 𝑊 

𝐶𝐼𝑖 CPU capacity of integrated workload 𝑖 

𝑀𝐼𝑖 Memory capacity of integrated workload 𝑖 

𝑊𝐼𝑤𝑖 Indicates the relationship between a micro-service workload 

𝑤 and integrated workload 𝑖. 𝑊𝐼𝑤𝑖 = 1 if micro-service 

workload 𝑤 is associated with integrated workload 𝑖. 

Otherwise,  𝑊𝐼𝑤𝑖 = 0 

𝕃𝑤 Maximum latency supported by DC infrastructure for 

workload 𝑤 ∈ 𝑊 

𝒯𝑐𝑚 CPU-Memory latency between CPU component 𝑐 ∈ 𝐶 and 

memory component 𝑚 ∈ 𝑀. Inter-component latency. 

𝒬 A big number (100000) 

𝒢 A big number (1000) 

𝛼 A weighing factor in Watt which specifies the cost per 

blocked workload 

DC Network Parameters: 

𝒳 Static power consumption of optical cross-connect (W) 

𝒲 Static power consumption of WSS-based TOR switch (W) 

𝔼 Load proportionate energy of electrical switch (J/b) 

ℰ Idle power consumption of electrical switch (W) 

𝕒 Number of aggregation switches, 𝕒 ≥ 1; 
𝕒

𝕣
 is a fixed 

aggregation ratio. 

𝕓 Number of inter-pod cross connects, 𝕓 ≥ 1; 
𝕓

𝕡
 is a fixed ratio. 

𝒞𝑤𝑥 CPU-Memory (RAM) traffic (in b/s) of workload 𝑤 ∈ 𝑊 in 

direction 𝑥 ∈ 𝐷. 

ℐ𝑤𝑥 CPU-IO traffic of workload 𝑤 ∈ 𝑊 in direction 𝑥 ∈ 𝐷. 

ℛ𝑤𝑥 Memory(storage)-IO traffic of workload 𝑤 ∈ 𝑊 in 

direction 𝑥 ∈ 𝐷. 

ℳ𝑠𝑑 Inter-memory(storage) traffic between source workload 𝑠 ∈

𝑊 and destination workload 𝑑 ∈ 𝑊. 
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𝐸𝑈𝑠𝑑 Electrical network load proportional energy per bit (J/b) due 

to traffic from CPU component 𝑠 ∈ 𝐶 to memory (RAM) 

component  𝑑 ∈ 𝑀. 

𝐸𝐷𝑠𝑑 Electrical network load proportional energy per bit (J/b) due 

to traffic from memory (RAM) component 𝑠 ∈ 𝑀 to CPU 

component  𝑑 ∈ 𝐶. 

𝐸𝐶𝑠𝑑 Electrical network load proportional energy per bit (J/b) due 

to traffic between memory (storage) component 𝑠 ∈ 𝑀 and 

memory (storage) component  𝑑 ∈ 𝑀. 

𝐸𝑁 Electrical network load proportional energy per bit (J/b) due 

to north-south traffic. 

𝐻𝑈𝑠𝑑 Hybrid network load proportional energy per bit (J/b) due to 

traffic from CPU component 𝑠 ∈ 𝐶𝑅 to memory (RAM) 

component  𝑑 ∈ 𝑀. 

𝐻𝐷𝑠𝑑 Hybrid network load proportional energy per bit (J/b) due to 

traffic from memory (RAM) component 𝑠 ∈ 𝑀 to CPU 

component  𝑑 ∈ 𝐶. 

𝐻𝐶𝑠𝑑 Hybrid network load proportional energy per bit (J/b) due to 

traffic between memory (storage) component 𝑠 ∈ 𝑀 and 

memory (storage) component  𝑑 ∈ 𝑀. 

𝐻𝑁 Hybrid network load proportional energy per bit (J/b) due to 

north-south traffic. 

𝑂𝑈𝑠𝑑 Optical network load proportional energy per bit (J/b) due to 

traffic from CPU component 𝑠 ∈ 𝐶 to memory (RAM) 

component  𝑑 ∈ 𝑀. 

𝑂𝐷𝑠𝑑 Optical network load proportional energy per bit (J/b) due to 

traffic from memory (RAM) component 𝑠 ∈ 𝑀 to CPU 

component  𝑑 ∈ 𝐶. 

𝑂𝐶𝑠𝑑 Optical network load proportional energy per bit (J/b) due to 

traffic between memory (storage) component 𝑠 ∈ 𝑀 and 

memory (storage) component  𝑑 ∈ 𝑀. 

𝑂𝑁 Optical network load proportional energy per bit (J/b) due to 

north-south traffic. 

Variables:  
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𝓬𝒘𝒋 𝓬𝒘𝒋 = 1 indicates that processing requirements of workload 

𝑤 ∈ 𝑊 are served by CPU 𝑗 ∈ 𝐶. Otherwise, 𝓬𝒘𝒋 = 0 

𝓶𝒘𝒋 𝓶𝒘𝒋 = 1, indicates that memory (RAM) request of workload 

𝑤 ∈ 𝑊 is served by RAM 𝑗 ∈ 𝑀. Otherwise, 𝓶𝒘𝒋 = 0 

𝕔𝒋 𝕔𝒋 = 1, if CPU 𝑗 ∈ 𝐶 is active. Otherwise, 𝕔𝒋 = 0 

𝕞𝒋 𝕞𝒋 = 1, if RAM 𝑗 ∈ 𝑀 is active. Otherwise, 𝕞𝒋 = 0  

𝓹𝒑 𝓹𝒑 = 1, if pod 𝑝 ∈ 𝑃 is active. Otherwise, 𝓹𝒑 = 0 

𝓻𝒓 𝓻𝒓 = 1, if rack 𝑟 ∈ 𝑅 is active. Otherwise, 𝓻𝒓 = 0 

𝕨𝒘 Indicates the state of workload 𝑤 ∈ 𝑊 i.e., served, or 

unserved.𝕨𝒘 = 1, if workload 𝑤 is served. Otherwise, 𝕨𝒘 =

0  

𝜷𝒘 Indicates the state of workload 𝑤 ∈ 𝑊 i.e., rejected, or 

active. It is the opposite of 𝕨𝒘, 𝜷𝒘 = 1 − 𝕨𝒘 

𝕚𝒊 Indicates the state of integrated workload 𝑖 ∈ 𝐼 i.e., served, 

or unserved. 𝕚𝒊 = 1 indicates the integrated workload 𝑖 is 

served. Otherwise, 𝕚𝒊 = 0  

𝕣 Number of active racks 

𝕡 Number of active pods 

𝓱𝒘𝒓 𝓱𝒘𝒓 = 1, if CPU resource demand of workload 𝑤 ∈ 𝑊 is 

placed in rack 𝑟 ∈ 𝑅. Otherwise, 𝓱𝒘𝒓 = 0 

𝓰𝒘𝒓 𝓰𝒘𝒓 = 1, if memory resource demand of workload 𝑤 ∈ 𝑊 is 

placed in rack 𝑟 ∈ 𝑅. Otherwise, 𝓰𝒘𝒓 = 0 

𝓪𝒘𝒑 𝓪𝒘𝒑 = 1, if CPU resource demand of workload 𝑤 ∈ 𝑊 is 

placed in pod 𝑝 ∈ 𝑃. Otherwise, 𝓪𝒘𝒑 = 0 

𝓫𝒘𝒑 𝓫𝒘𝒑 = 1, if memory resource demand of workload 𝑤 ∈ 𝑊 is 

placed in pod 𝑝 ∈ 𝑃. Otherwise, 𝓫𝒘𝒑 = 0 

𝔂𝒘𝒄𝒎 Indicates the CPU-memory pair used to provision 

workload 𝑤 ∈ 𝑊.𝔂𝒘𝒄𝒎= 1 if CPU 𝑐 ∈ 𝐶 and memory 𝑚 ∈ 𝑀 

host CPU and memory resource demands of workload 𝑤 ∈

𝑊 respectively. Otherwise,  𝔂𝒘𝒄𝒎 = 0. 

𝔃𝒔𝒅
𝒙𝒚

 𝔃𝒔𝒅
𝒙𝒚

= 1 if memory resource demand of source workload 𝑠 ∈

𝑊 is placed in memory component 𝑥 ∈ 𝑀 and memory 
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resource demand of destination workload 𝑑 ∈ 𝑊 is placed in 

memory component 𝑦 ∈ 𝑀. Otherwise, 𝔃𝒔𝒅
𝒙𝒚

= 0 

Chapter 5 MILP Notations 

Sets: 

𝐴 Set of compute nodes. 

𝐺 Set of DC gateway switches to the Internet 

𝑌 Set of compute nodes and DC gateway switches  

𝑍 Set of leaf and spine switches  

𝑄 Set of routing and forwarding nodes in the DC 

𝑁 Set of all Nodes 

𝑁𝑚 Set of all neighbour nodes of node 𝑚 ∈ 𝑁; 𝑁𝑚 ⊆ 𝑁. 

𝐵𝑚 Set of all intra-rack neighbour nodes of node 𝑚 ∈ 𝑁; 𝐵𝑚 ⊆

𝑁. 

𝐴𝑚 Set of all compute nodes that are neighbours of compute 

node  𝑚 ∈ 𝐴; 𝐴𝑚 ⊆ 𝐴. 

𝑂 Set of transmission wavelengths supported in the network. 

𝑇 Set of interfaces supported by a compute node. 

𝑋 Set of optical switches, 𝑋 ⊆ 𝑁 

𝐻𝑚 Set of all neighbour nodes of node 𝑚 ∈ 𝑁; 𝐻𝑚 ⊆ 𝑁 which 

are part of the hybrid inter-rack network. 

𝐶 Set of CPU resource components 

𝑀 Set of memory resource components 

𝑆 Set of storage resource components 

𝑅 Set of DC racks 

Parameters: 

𝕋𝑜𝑓 𝕋𝑜𝑓 = 1 if wavelength 𝑜 ∈ 𝑂 is allocated to interface 𝑓 ∈ 𝑇 for 

transmission of data traffic, otherwise 𝕋𝑜𝑓 = 0 

ℝ𝑜𝑓 ℝ𝑜𝑓 = 1 if wavelength 𝑜 ∈ 𝑂 is allocated to interface 𝑓 ∈ 𝑇 

for reception of data traffic, otherwise ℝ𝑜𝑓 = 0 
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𝜇𝑖 Load proportional routing cost for a routing and forwarding 

node 𝑖 ∈ 𝑄, (J/b) 

𝑂𝐵 On-board network interface energy per bit (J/b) 

𝑇𝑋𝑚 Transmitting energy per bit (J/b) of routing and forwarding 

node 𝑚 ∈ 𝑄 

𝑅𝑋𝑚 Receiving energy per bit (J/b) of routing and forwarding node 

𝑚 ∈ 𝑄 

𝑅𝐿𝑚 Relaying energy per bit (J/b) of routing and forwarding node 

𝑚 ∈ 𝑄 

𝒳 Optical switch operational power in Watt 

ℰ Electrical switch operational power in Watt 

𝒮 SOA switch energy per bit (J/b) 

𝜌 Number of spine switches in the composable DC 

𝜚 Number of electrical gateway or super-spine switches in the 

composable DC 

𝕣 Number of active racks in the composable DC 

𝜏𝑠𝑑 Total traffic from node 𝑠 ∈ 𝑄 to node 𝑑 ∈ 𝑄. 

𝒟 Maximum data rate of a single wavelength. 

𝔻 Maximum transmitting and receiving capacity supported on 

the point-to-point physical link between nodes on the intra-

rack backplane in AOPD-DCN 

𝒬 A big number (100000) 

𝒢 A big number (1000) 

𝜅  Cost associated with each path provisioned in an optical 

switch in Watt 

ℂ𝑗 Capacity of CPU component 𝑗 ∈ 𝐶 

IC Idle power as a fraction of maximum CPU power 

consumption 

𝐶𝑃𝑗 Maximum power consumption of CPU component 𝑗 ∈ 𝐶 

∆𝐶𝑗 Power factor of CPU component 𝑗 ∈ 𝐶 in W/GHz 

𝕄𝑗 Capacity of memory component 𝑗 ∈ 𝑀 
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IM Idle power as a fraction of maximum memory power 

consumption 

𝑀𝑃𝑗 Maximum power consumption of memory component 𝑗 ∈ 𝑀 

∆𝑀𝑗 Power factor of memory component 𝑗 ∈ 𝑀 in W/GB 

𝕊𝑗 Capacity of storage component 𝑗 ∈ 𝑆 

IS Idle power as a fraction of maximum storage power 

𝑆𝑃𝑗 Maximum power consumption of storage component 𝑗 ∈ 𝑆 

∆𝑆𝑗 Power factor of storage component 𝑗 ∈ 𝑆 in W/GB 

𝐶𝑁𝑗𝑛 𝐶𝑁𝑗𝑛 = 1 if CPU 𝑗 ∈ 𝐶 is placed in node 𝑛 ∈ 𝑁. Otherwise 

𝐶𝑁𝑗𝑛 = 0. Note that CPU components can only be placed in 

compute nodes. 

𝑀𝑁𝑗𝑛 𝑀𝑁𝑗𝑛 = 1 if RAM 𝑗 ∈ 𝑀 is placed in node 𝑛 ∈ 𝑁. Otherwise 

𝑀𝑁𝑗𝑛 = 0. Note that memory components can only be 

placed in compute nodes  

𝑆𝑁𝑗𝑛 𝑆𝑁𝑗𝑛 = 1 if hard disk drive (HDD) 𝑗 ∈ 𝑆 is placed in node 𝑛 ∈

𝑁. Otherwise 𝑆𝑁𝑗𝑛 = 0. Note that storage components can 

only be placed in compute nodes 

𝑁𝑅𝑛𝑟 𝑁𝑅𝑛𝑟 = 1, If node 𝑛 ∈ 𝑁 is placed in rack 𝑟 ∈ 𝑅, otherwise 

𝑁𝑅𝑛𝑟 = 0 

𝑉𝐶𝑣 CPU demand of VM 𝑣 ∈ 𝑉 

𝑉𝑀𝑣 RAM demand of VM 𝑣 ∈ 𝑉 

𝑉𝑆𝑣 Storage demand of VM 𝑣 ∈ 𝑉 

𝒞𝑈𝑣 CPU to memory (RAM) traffic required by VM 𝑣 ∈ 𝑉 

𝒞𝐷𝑣 Memory (RAM) to CPU traffic required by VM 𝑣 ∈ 𝑉 

𝒮𝑈𝑣 CPU to storage traffic required by VM 𝑣 ∈ 𝑉 

𝒮𝐷𝑣 Storage to CPU traffic required by VM 𝑣 ∈ 𝑉 

ℐ𝑈𝑣 Uplink north-south traffic of VM 𝑣 ∈ 𝑉 

ℐ𝐷𝑣 Downlink north-south traffic of VM 𝑣 ∈ 𝑉 

ℳ𝑠𝑑 In-memory computing traffic from VM 𝑠 ∈ 𝑉 to VM 𝑑 ∈ 𝑉 

𝑉𝐺𝑣𝑛 𝑉𝐺𝑣𝑛 = 1 denotes that node 𝑛 ∈ 𝐺 is the gateway node for 

north-south traffic of VM 𝑣 ∈ 𝑉 
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𝛼 Cost associated with a VM rejection. 

Variables 

𝚻𝒔𝒅 Total traffic from node 𝑠 ∈ Q to node 𝑑 ∈ Q. 

𝚻𝒔𝒅
𝒊𝒋

 Volume of Τ𝑠𝑑 traversing virtual link (𝑖, 𝑗). 𝑖 ∈ Q, 𝑗 ∈ 𝑄, 𝑠 ∈

Q, 𝑑 ∈ Q: 𝑖 ≠ 𝑗, 𝑠 ≠ 𝑑. It denotes routing of traffic in the 

virtual network.  

𝓿𝒊𝒋 Volume of traffic on virtual link (𝑖, 𝑗); 𝑖 ∈ 𝑄, 𝑗 ∈ Q 

𝚽𝒊 Traffic transmitted at routing node 𝑖 ∈ 𝑄 

𝚿𝒊 Traffic received at routing node 𝑖 ∈ 𝑄 

𝛀𝒊 Traffic relayed at routing node 𝑖 ∈ 𝑄 

𝝓𝒎 Traffic transmitted at forwarding node 𝑚 ∈ 𝑄 

𝛙𝒎 Traffic received at forwarding node 𝑚 ∈ 𝑄 

𝛚𝒎 Traffic relayed at forwarding node 𝑚 ∈ 𝑄 

𝓿𝒐𝒎𝒏
𝒊𝒋

 Volume of traffic on virtual link (𝑖, 𝑗) using wavelength 𝑜 ∈ 𝑂 

on physical link (𝑚, 𝑛), 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄,𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝑚: 𝑖 ≠

𝑗,𝑚 ≠ 𝑛  

𝔀𝒐𝒎𝒏 Volume of traffic using wavelength 𝑜 ∈ 𝑂 on physical 

link (𝑚, 𝑛), 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝑚: 𝑚 ≠ 𝑛 

𝓺𝒐𝒎𝒏 𝓺𝒐𝒎𝒏 = 1 if 𝔀𝒐𝒎𝒏 > 0. Otherwise 𝓺𝒐𝒎𝒏 = 0, 𝑜 ∈ 𝑂,𝑚 ∈

𝑁, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

𝓰𝒐𝒎𝒏 𝓰𝒐𝒎𝒏 = 1, if 𝓺𝒐𝒎𝒏 ∨ 𝓺𝒐𝒏𝒎 = 1. Otherwise 𝓰𝒐𝒎𝒏 = 0, 𝑜 ∈

𝑂,𝑚 ∈ 𝑁, 𝑛 ∈ 𝐵𝑚: 𝑚 ≠ 𝑛 

𝓮𝒐𝒇𝒎 𝓮𝒐𝒇𝒎 = 1 if wavelength 𝑜 ∈ 𝑂 is used on interface 𝑓 ∈ 𝑇 of 

compute node 𝑚 ∈ A  either to transmit traffic to neighbour 

nodes or receive traffic from neighbour nodes. Otherwise, 

𝓮𝒐𝒇𝒎 = 0. 

𝓾𝒊𝒋 Volume of traffic on virtual link (𝑖, 𝑗), 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄, that 

traverses intra-rack network.  

𝓵𝒐𝒊𝒋 Volume of traffic using wavelength  𝑜 ∈ 𝑂 on virtual 

link (𝑖, 𝑗), 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄, that traverses the hybrid inter-rack 

network. 

𝓛𝒐𝒊𝒋 𝓛𝒐𝒊𝒋 = 1 if 𝓵𝒐𝒊𝒋 > 0. Otherwise, 𝓛𝒐𝒊𝒋 = 0, 𝑜 ∈ 𝑂 , 𝑖 ∈ 𝑄, 𝑗 ∈

𝑄: 𝑖 ≠ 𝑗 
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𝔁𝒐𝒎𝒙𝒏 The configured switching matrix of an optical switch. 

𝔁𝒐𝒎𝒙𝒏 = 1 if the wavelength 𝑜 ∈ 𝑂 from node 𝑚 ∈ 𝐻𝑥 enters 

optical switch 𝑥 ∈ 𝑋 and is relayed to node 𝑛 ∈ 𝐻𝑥. 

Otherwise, 𝔁𝒐𝒎𝒙𝒏 = 0. 

𝓭𝒐𝒎𝒙𝒏
𝒊𝒋

 𝒅𝒐𝒎𝒙𝒏
𝒊𝒋

 gives the traffic 𝓿𝒐𝒎𝒙
𝒊𝒋

 that enters optical switch  𝑥 ∈
𝑋: 𝑥 ∈ 𝐻𝑚 from node 𝑚 ∈ 𝐻𝑥 and is relayed to node 𝑛 ∈
𝐻𝑥 on the hybrid inter-rack network. 𝑜 ∈ 𝑂,𝑚 ∈ 𝑁  

𝓬𝒗𝒋 𝓬𝒗𝒋 = 1 indicates that CPU demand of VM 𝑣 ∈ 𝑉 is served by 

CPU 𝑗 ∈ 𝐶. Otherwise, 𝓬𝒗𝒋 = 0 

𝓶𝒗𝒋 𝓶𝒗𝒋 = 1 indicates that RAM demand of VM 𝑣 ∈ 𝑉 is served 

by memory (RAM) 𝑗 ∈ 𝑀. Otherwise, 𝓶𝒗𝒋 = 0 

𝓼𝒗𝒋 𝓼𝒗𝒋 = 1 indicates that storage resource demand of VM 𝑣 ∈ 𝑉 

is served by HDD 𝑗 ∈ 𝑆. Otherwise, 𝓼𝒗𝒋 = 0 

𝕔𝒋 𝕔𝒋 = 1 if CPU 𝑗 ∈ 𝐶 is active. Otherwise, 𝕔𝒋 = 0 

𝕞𝒋 𝕞𝒋 = 1 if RAM 𝑗 ∈  𝑀 is active. Otherwise, 𝕞𝒋 = 0  

𝕤𝒋 𝕤𝒋 = 1 if HDD 𝑗 ∈  𝑆 is active. Otherwise, 𝕤𝒋 = 0  

𝕒𝒏 𝕒𝑛 = 1 if compute node 𝑛 ∈ 𝐴 is active. Otherwise, 𝕒𝑛 = 0 

𝓻𝒓  𝓻𝒓 = 1 if rack 𝑟 ∈ 𝑅 is active. Otherwise, 𝓻𝒓 = 0 

𝕣 Number of active racks in the composable DC 

𝑪𝑴𝒗𝒔𝒅 𝑪𝑴𝒗𝒔𝒅 = 1 if CPU demand of VM 𝑣 ∈ 𝑉 is placed in compute 

node 𝑠 ∈ 𝐴 and mermory demand of VM 𝑣 ∈ 𝑉 is placed in 

compute node 𝑑 ∈ 𝐴. Otherwise, 𝑪𝑴𝒗𝒔𝒅 = 0. 

𝑪𝑺𝒗𝒔𝒅 𝑪𝑺𝒗𝒔𝒅 = 1 if CPU demand of VM 𝑣 ∈ 𝑉 is placed in compute 

node 𝑠 ∈ 𝐴 and storage demand of VM 𝑣 ∈ 𝑉 is placed in 

compute node 𝑑 ∈ 𝐴. Otherwise, 𝑪𝑺𝒗𝒔𝒅 = 0. 

𝔃𝒔𝒅
𝒙𝒚

 𝔃𝒔𝒅
𝒙𝒚

= 1 if memory to memory (in-memory computing) traffic 

exists from VM 𝑥 ∈ 𝑉 in compute node  𝑠 ∈ 𝐴 to VM 𝑦 ∈ 𝑉 in 

compute node 𝑑 ∈ 𝐴. Otherwise, 𝔃𝒔𝒅
𝒙𝒚

= 0. 

𝑰𝑹𝒔𝒅 Total inter-resource traffic from compute node  𝑠 ∈ 𝐴 to 

compute node 𝑑 ∈ 𝐴 due to VM resource demand 

placement.  

𝑬𝑾𝒔𝒅 Total east-west traffic from node  𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁. 

𝑵𝑺𝒔𝒅 Total north-south traffic from node  𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁. 

𝚻𝒔𝒅 Total traffic from node 𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁. 



- 227 - 

𝜷𝒗 𝜷𝒗 = 1 if VM 𝑣 ∈ 𝑉 is rejected. Otherwise, 𝜷𝒗 = 0. 

𝜷 Total number of rejected VMs 

Chapter 6 MILP Notations 

Sets: 

𝑁 Set of all network nodes 

𝑁𝐵𝑚 Set of neighbour nodes of network node 𝑚 ∈ 𝑁 

𝑈 Set of metro network nodes, 𝑈 ⊆ 𝑁 

𝑈𝑚 Set of neighbour metro nodes of metro node 𝑚 ∈ 𝑈 

𝐺 Set of gateway nodes in the metro network topology, 𝐺 ⊆ 𝑈 

𝐴𝑁 Set of access network nodes 𝐴𝑁 ⊆ 𝑁 

𝐴𝑁𝑎 Set of metro nodes that are neighbours of access network 

node 𝑎 ∈ 𝐴𝑁 

𝐹 Set of fog apps 

𝑇𝐴 Set of traditional fog apps, 𝑇𝐴 ⊆ 𝐹 

𝐸 Set of emerging fog apps, 𝐸 ⊆ 𝐹 

𝐶 Set of CPU resource components. 

𝑀 Set of memory resource components. 

𝑆 Set of storage resource components. 

𝐴 Set of computing nodes 

Parameters: 

𝐴𝐶𝑎 𝐴𝐶𝑎 = 1 if access network node 𝑎 ∈ 𝐴𝑁 has a consumer 

premises equipment. Otherwise, 𝐴𝐶𝑎 = 0. 

𝐴𝑃𝑎 𝐴𝑃𝑎 = 1 if access network node 𝑎 ∈ 𝐴𝑁 has a PON ONU. 

Otherwise, 𝐴𝑃𝑎 = 0. 

𝑃𝐿𝑚𝑛 Bandwidth of physical link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

∆𝑎𝑛 ∆𝑎𝑛= 1 if node 𝑛 ∈ 𝑁 is an access network node 𝑎 ∈ 𝐴𝑁. 

Otherwise,  ∆𝑎𝑛= 0 

𝑅𝑇𝑚𝑛 Regular traffic on physical link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝑃𝐷𝑚𝑛 Propagation delay on physical link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 
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𝐿𝑃𝑚𝑛 Set of linear pieces (linear approximations) used to linearise 

the delay curve of the delay experienced on link (𝑚, 𝑛) 𝑚 ∈

𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

∇𝑚𝑛𝑞 Rate of linear piece 𝑞 ∈  𝐿𝑃𝑚𝑛 of the linear approximation of 

the delay experienced on link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝜁𝑚𝑛𝑞 Intercept of linear piece 𝑞 ∈  𝐿𝑃𝑚𝑛 of the linear approximation 

of the delay experienced on link (𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝐿𝑈𝑚𝑛 Upper bound of queuing delay experienced on link 

(𝑚, 𝑛) 𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝐵𝑚 

𝐶𝐸 Consumer premises equipment power consumption  

𝑀𝐴 Metro Ethernet access switch energy per bit 

𝑀𝐺 Metro Ethernet aggregation switch energy per bit 

𝑁𝑈 PON ONU power consumption 

𝑂𝐿 PON OLT energy per bit 

𝛿 Queuing penalty of the network topology in Watt per second.  

𝐹𝐶𝑓 Compute resource demand of fog app 𝑓 ∈ 𝐹 

𝐹𝑀𝑓 Memory resource demand of fog app 𝑓 ∈ 𝐹 

𝐹𝑆𝑓 Storage resource demand of fog app 𝑓 ∈ 𝐹 

𝐹𝑈𝑒 Uplink data rate per user of emerging fog app 𝑒 ∈ 𝐸 

𝐹𝐷𝑒 Downlink data rate per user of emerging fog app 𝑒 ∈ 𝐸 

𝑇𝑆𝑡𝑛 𝑇𝑆𝑡𝑛 = 1 if traditional fog app 𝑡 ∈ 𝑇𝐴 is associated with 

network node 𝑛 ∈ 𝑁. Otherwise, 𝑇𝑆𝑡𝑛 = 0 

𝐸𝐺𝑒𝑛 𝐸𝐺𝑒𝑛 = 1 if node 𝑛 ∈  𝐺 is the gateway node of emerging fog 

app 𝑒 ∈ 𝐸. Otherwise, 𝐸𝐺𝑒𝑛 = 0 

𝐸𝐴𝑒𝑎 𝐸𝐴𝑒𝑎 = 1 if users in node 𝑎 ∈  𝐴𝑁 make request for an 

instance of emerging fog app 𝑒 ∈ 𝐸. Otherwise, 𝐸𝐴𝑒𝑎 = 0. 

𝑈𝑁𝑒𝑎 Number of users in node 𝑎 ∈ 𝐴𝑁 requesting an instance of 

emerging fog app 𝑒 ∈ 𝐸. 

𝐸𝐷𝑒 Emerging fog app 𝑒 ∈ 𝐸 maximum delay threshold. 

𝛾 Cost coefficient of power consumed as a result of rejecting 

traditional fog apps. 
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∅ Cost coefficient of power consumed as a result of rejecting 

emerging fog apps. 

ℂ𝑗 Capacity of CPU component 𝑗 ∈ 𝐶 

IC Idle power consumption as a fraction of the maximum CPU 

power consumption. 

𝐶𝑃𝑗 Maximum power consumption of CPU 𝑗 ∈ 𝐶 

∆𝐶𝑗 Power factor of CPU 𝑗 ∈ 𝐶; ∆𝐶𝑗 =
𝐶𝑃𝑗−𝐼𝐶∙𝐶𝑃𝑗

ℂ𝑗
 

𝕄𝑗 Capacity of memory component 𝑗 ∈ 𝑀 

IM Idle power consumption as a fraction of the maximum 

memory power consumption. 

𝑀𝑃𝑗 Maximum power consumption of memory 𝑗 ∈ 𝑀 

∆𝑀𝑗 Power factor of memory 𝑗 ∈ 𝑀; ∆𝑀𝑚 =
𝑀𝑃𝑗−𝐼𝑀∙𝑀𝑃𝑗

𝕄𝑗
 

𝕊𝑗 Capacity of storage component 𝑗 ∈ 𝑆 

IS Idle power consumption as a fraction of the maximum 

storage power consumption. 

 𝑆𝑃𝑗 Maximum power consumption of storage 𝑗 ∈ 𝑆 

∆𝑆𝑗 Power factor of storage 𝑗 ∈ 𝑆; ∆𝑆𝑗 =
𝑆𝑃𝑗−𝐼𝑆∙𝑆𝑃𝑗

𝕊𝑗
 

𝑀∆𝐶 Power factor of CPU component with highest power 

consumption. 

𝐶𝑃𝑀 Maximum power consumption of CPU component with 

highest power consumption. 

𝑀∆𝑀 Power factor of memory component with highest power 

consumption. 

𝑀𝑃𝑀 Maximum power consumption of memory component with 

highest power consumption. 

𝑀∆𝑆 Power factor of storage component with highest power 

consumption. 

𝑆𝑃𝑀 Maximum power consumption of storage component with 

highest power consumption. 

𝐶𝑁𝑐𝑥 𝐶𝑁𝑐𝑥 = 1 if CPU component  𝑐 ∈ 𝐶 is placed in computing 

node 𝑥 ∈ 𝐴. Otherwise, 𝐶𝑁𝑐𝑥 = 0 . 
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𝑀𝑁𝑚𝑥 𝑀𝑁𝑚𝑥 = 1 if memory component 𝑚 ∈ 𝑀 is placed in 

computing node 𝑥 ∈ 𝐴. Otherwise, 𝑀𝑁𝑚𝑥 = 0. 

𝑆𝑁𝑠𝑥 𝑆𝑁𝑠𝑥 = 1 if storage component 𝑠 ∈ 𝑆 is placed in compute 

node 𝑥 ∈ 𝐴. Otherwise, 𝑆𝑁𝑠𝑥 = 0. 

𝐴𝑀𝑥𝑛 𝐴𝑀𝑥𝑛 = 1 if compute node 𝑥 ∈ 𝐴 is placed in network node 

𝑛 ∈ 𝑁. Otherwise, 𝐴𝑀𝑥𝑛 = 0. 

𝒬 A large enough number. 

Variables:  

𝓬𝒇𝒄 𝓬𝒇𝒄 = 1 if an instance of fog app 𝑓 ∈ 𝐹 is in CPU component 

𝑐 ∈ 𝐶. Otherwise, 𝓬𝒇𝒄 = 0. 

𝓶𝒇𝒎 𝓶𝒇𝒎 = 1 if an instance of fog app 𝑓 ∈ 𝐹 is in memory 

component 𝑚 ∈ 𝑀. Otherwise, 𝓶𝒇𝒎 = 0. 

𝓼𝒇𝒔 𝓼𝒇𝒔 = 1 if an instance of fog app 𝑓 ∈ 𝐹 is in storage 

component 𝑠 ∈ 𝑆.Otherwise, 𝓼𝒇𝒔 = 0. 

𝕔𝒄 𝕔𝒄 = 1 if CPU 𝑐 ∈ 𝐶 is active. Otherwise, 𝕔𝒄 = 0. 

𝕞𝒎 𝕞𝒎 = 1 if memory 𝑚 ∈ 𝑀 is active. Otherwise,𝕞𝒎 = 0. 

𝕤𝒔 𝕤𝒔 = 1 if storage 𝑠 ∈ 𝑆 is active. Otherwise, 𝕤𝒔 = 0. 

𝕩𝒆𝒄𝒂 𝕩𝒆𝒄𝒂 = 1 if the instance of emerging fog app 𝑒 ∈ 𝐸 in CPU 

component 𝑐 ∈ 𝐶 is allocated to users in access node 𝑎 ∈

𝐴𝑁. Otherwise, 𝕩𝒆𝒄𝒂 = 0. 

𝕧𝒆𝒂 𝕧𝒆𝒂 = 1 if the emerging app 𝑒 ∈ 𝐸 requested by node 𝑎 ∈

𝐴𝑁 has been provisioned. Otherwise 𝕧𝒆𝒂 = 0. 

𝝋𝒆𝒔𝒂 𝝋𝒆𝒔𝒂 ≥ 1 if an instance of emerging fog app  𝑒 ∈ 𝐸  in node 

𝑠 ∈ 𝑁 is allocated to users of that app in access node 𝑎 ∈

𝐴𝑁. Otherwise, 𝝋𝒆𝒔𝒂 = 0.  

𝕜𝒔𝒅 

 

Post-processing traffic from instances of all fog apps in 

network node 𝑠 ∈ 𝑁 to gateway node 𝑑 ∈  𝐺.  

𝕪𝒔𝒅𝒆𝒄 

 

Pre-processing traffic from users in node 𝑠 ∈ 𝑁 to node 𝑑 ∈

𝑁 that hosts an instance of emerging fog app 𝑒 ∈ 𝐸  placed 

in CPU component 𝑐 ∈ 𝐶 in node 𝑑 ∈ 𝑁. 

𝕫𝒔𝒅𝒆𝒄 

 

Post-processing traffic from compute node 𝑠 ∈ 𝑁 to users in 

node 𝑑 ∈ 𝑁. Node 𝑠 ∈ 𝑁 hosts an instance of emerging fog 

app 𝑒 ∈ 𝐸  placed in CPU component 𝑐 ∈ 𝐶. The instance 



- 231 - 

of emerging fog app 𝑒 ∈ 𝐸  placed in CPU component 𝑐 ∈ 𝐶 

was allocated to users in node 𝑑 ∈ 𝑁.  

𝑳𝒔𝒅𝒆𝒄 

 

Traffic from node 𝑠 ∈ 𝑁 to node 𝑑 ∈ 𝑁 due to the presence 

of emerging fog app 𝑒 ∈ 𝐸 in CPU component 𝑐 ∈ 𝐶.  

𝕙𝒎𝒏
𝒔𝒅  Volume of 𝕜𝒔𝒅 traffic routed on physical link (𝑚, 𝑛) 

𝝀𝒎𝒏 Volume of cloud bound traffic on physical link (𝑚, 𝑛). 

𝓗𝒎𝒏
𝒔𝒅𝒆𝒄 Flow of latency sensitive traffic (emerging fog applications 

traffic) 𝑳𝒔𝒅𝒆𝒄 on physical link (𝑚, 𝑛) 

ℍ𝒎𝒏
𝒔𝒅𝒆𝒄 ℍ𝒎𝒏

𝒔𝒅𝒆𝒄 = 1 if a flow of 𝑳𝒔𝒅𝒆𝒄 is present on physical link (𝑚, 𝑛). 

Otherwise ℍ𝒎𝒏
𝒔𝒅𝒆𝒄 = 0. 

𝚲𝒎𝒏 Volume of latency sensitive traffic on physical link (𝑚, 𝑛) 

𝚪𝐦𝐧 Total traffic on physical link (𝑚, 𝑛)  

𝕦𝒎 The traffic relayed by a metro node 𝑚 ∈ 𝑈 

𝕘𝒎 The traffic received by a metro node 𝑚 ∈ 𝑈 

𝕢𝒎 The fog transmitted by a metro node 𝑚 ∈ 𝑈 

𝕥𝒕 State of traditional fog app  𝑡 ∈ 𝑇𝐴.  

𝑻𝑪𝑹𝑻𝑨 Total cost of rejected traditional fog apps in Watt. 

𝑻𝑪𝑹𝑬𝑨 Total cost of rejected emerging fog app in Watt. 

𝜶𝒕 Power penalty as a result of rejecting traditional fog app 𝑡 ∈

𝑇𝐴 in Watt. 

𝜷𝒆 Power penalty as a result of rejecting emerging fog app 𝑒 ∈

𝐸 in Watt. 

𝕎𝒎𝒏 M/M/1 queuing delay experienced on physical link (𝑚, 𝑛) 

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 

 

𝑻𝑳𝒎𝒏
𝒔𝒅𝒆𝒄 is the queuing delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 on 

physical link (𝑚, 𝑛) on the path selected for the flow.  

𝑷𝑫𝒎𝒏
𝒔𝒅𝒆𝒄 

 

𝑷𝑫𝒎𝒏
𝒔𝒅𝒆𝒄 is the propagation delay experienced by flow 𝑳𝒔𝒅𝒆𝒄 

on physical link (𝑚, 𝑛) on the path selected for the flow. 

𝑾𝑳𝒔𝒅𝒆𝒄 

 

Total delay of flow 𝑳𝒔𝒅𝒆𝒄 on all physical links. Sum of 

congestion in physical links (queuing delay) and propagation 

delay on physical links on the path.  
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𝑹𝑫𝒔𝒅𝒆𝒄 Round trip delay between a node containing users of an 

emerging fog app and the network node hosting the instance 

assigned to the users.   

𝑻𝑸 Approximated total queuing delay experienced on physical 

links of the network topology.  
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