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Abstract

Gravity currents are a ubiquitous and crucial class of geophysical flow, being

a key driver of sediment transport in rivers and oceans. The body typically

forms the largest part of such flows, yet body structure remains poorly under-

stood. Research into gravity current structure has primarily focused on the

head of the flow in unsteady lock-exchange type currents (due to the highly

turbulent nature of the head, and the simplicity of the lock-exchange setup).

The work presented consists of experimental and numerical investigations into

the structure of constant-influx solute-based gravity currents. Particle image

velocimetry, particle tracking velocimetry (Shake-the-Box), and direct numer-

ical simulation are used to generate instantaneous whole-field two- and three-

dimensional velocity measurements. These are used to discuss large-scale

structures within the flow. Results question several common assumptions

regarding gravity current dynamics.

Through application of Fourier transforms, wavelet transforms, and dynamic

mode decomposition, empirical data (from both particle image velocimetry

and Shake-the-Box) reveals internal waves, sometimes associated with three-

dimensional motions, within the current body. These waves are shown to form

a critical layer near the height of the velocity maximum. Wave breaking at

this critical layer has the potential to limit dilution of the lower part of the

flow, and accelerate the flow downstream at the height of the critical layer.

The presence of these waves therefore questions the accuracy of extant models

assuming a statistically steady body.

Existing numerical research concerning gravity currents has almost always

assumed a Schmidt number of approximately unity. Using direct numeri-

cal simulation, it is shown that some flow features (such as the presence of

structures in the upper part of the body) are highly Schmidt number depen-

dent. Further, it is demonstrated that the difference in Schmidt number may

explain the structural differences between the experimental and numerical

components of this work.
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Chapter 1

Introduction

1.1 Introduction

Gravity currents, also known as density currents, are a common and diverse class of geo-

physical flow with real-world examples ranging from thunderstorm outflows and haboobs

to the flow resulting from opening the door to a heated house on a cold day. They are an

important class of flow, often having a dramatic impact on their surroundings (such as

the uprooting of trees (Feistl et al., 2015) and the breaking of submarine cables (Simp-

son, 1997)) as well as being the primary source of transport in oceans. Their propagation

is a result of a density difference between the current and surrounding ambient fluids.

This could be a result of a temperature difference (e.g. atmospheric cold fronts), or the

presence of a solute (e.g. salt wedge propagation) or suspended particulates (e.g. powder

snow avalanches and sea floor turbidity currents) (Huppert, 2006; Simpson, 1997).

Due to their prevalence, the structure of gravity current flows has been extensively

researched. However, despite the fact that the body often forms by far the largest part

of the flow (Azpiroz-Zabala et al., 2017), the existing work has primarily focused on the

head. Further, much of the existing experimental research considers constant-volume

(a) (b)

Figure 1.1: Examples of real-world gravity current flows, (left) a powder snow avalanche (Feistl et al.,
2015), and (right) a haboob (Crouvi et al., 2017).
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lock-exchange type flows (Alahyari & Longmire, 1996; Cantero et al., 2007; Hacker et al.,

1996; Hallworth et al., 1996; Härtel et al., 2000; Middleton, 1966; Nogueira et al., 2014;

Sher & Woods, 2015; Simpson, 1969; Thomas et al., 2003) which have a more pronounced

head region than constant-flux type flows and may not be an accurate representation of

constant-flux flows (Peakall et al., 2001). In general, the body is assumed to be statisti-

cally two-dimensional and statistically steady (Cantero et al., 2007; Gerber et al., 2010;

Gray et al., 2006; Kneller & Buckee, 2000; Meiburg et al., 2015; Simpson, 1997). Those

experimental studies that have considered the body have mostly done so using time-

averaged statistics and at-a-point measurements (Buckee et al., 2001; Cossu & Wells,

2012; Gray et al., 2006; Kneller et al., 1997, 1999). These are limiting in terms of under-

standing the turbulence structure of the flow.

More recent measurements, consisting of particle image velocimetry measurements of

the body combined with simultaneous density measurements, have focused on entrain-

ment and mixing without discussing large-scale structures within the flow (Krug et al.,

2013; Odier et al., 2009, 2012). The only works presenting three-dimensional volumet-

ric experimental measurements of the gravity current body are Krug et al. (2015) and

Lefauve et al. (2018). The work of Krug et al. (2015) was restricted to a small area in the

mixed region and again focused on entrainment and mixing, while Lefauve et al. (2018)

considers a flow with equivalent downstream velocity magnitude in the dense and less-

dense fluids (resulting in greater shear than in flows with small to no average downstream

velocity in the ambient). Both works employed quasi-instantaneous scanning methods

rather than fully instantaneous methods. Therefore, understanding of the structure of

the body of gravity current flows, and in particular the three-dimensional structure, is

currently very limited.

Numerical investigations have also largely considered constant-volume flows (Bha-

ganagar, 2017; Birman & Meiburg, 2006; Cantero et al., 2007, 2008; Espath et al., 2014;

Härtel et al., 2000; Necker et al., 2002; Ooi et al., 2009; Özgökmen et al., 2004, 2006;

Pelmard et al., 2020). Additionally, despite Schmidt number (the ratio of momentum

and mass diffusivities) effecting large-scale structural changes in other flows (Hanazaki

et al., 2009; Langham et al., 2020; Rahmani et al., 2016), numerical investigations of

gravity current flows have typically assumed Schmidt number to have little impact on

the flow. The only work to consider flows with Schmidt number greater than 1, Bonometti

& Balachandar (2008), is largely based on two-dimensional simulations, which are known

to exhibit unphysical vortices and incorrectly estimate the energy budget of the flow

(Cantero et al., 2007, 2008; Härtel et al., 2000; Necker et al., 2002).

The work presented in this thesis is a combined experimental and numerical investiga-

tion of constant-influx solute-based gravity current flows. Data is collected using planar

particle image velocimetry, volumetric Shake-the-Box particle tracking velocimetry, and
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three-dimensional direct numerical simulation, to provide whole-field instantaneous ve-

locity measurements. The data is used to address some of the unanswered questions

regarding the structure of the gravity current body. In particular:

� What is the nature of large-scale structures within the gravity current body?

� How are these structures affected by the flow Reynolds number?

� What do these structures imply for the existing understanding of gravity currents

and how they interact with the environment?

� How does Schmidt number affect the structure of the head and body of the flow?

� Which of the changes associated with increased Schmidt number are also seen with

increased Reynolds number?

� Under what circumstances is assuming a low Schmidt number, in order to reduce

computational cost, justified?

1.2 Thesis Outline

Chapter 2 provides a summary of the existing literature investigating gravity currents.

The anatomy and structure of gravity currents is described, along with some of the ways

in which the flows can be categorised. Current understanding of gravity current body

structure is presented, with a description of the investigative approaches that have been

applied to the body to date.

In Chapter 3, details of the experimental domain and the measurement techniques

used to generate the data in this thesis are presented.

In Chapter 4, two-dimensional particle image velocimetry measurements in the cross-

stream centre of the domain for a variety of Reynolds numbers are presented. This data

is used to quantify the turbulence structure of the gravity current body, and how that

structure is affected by increased Reynolds number, through a combination of Fourier

transforms, wavelet transforms, and dynamic mode decomposition. This analysis demon-

strates that internal waves are present in the body of the flow, that these waves are of

the right frequency to be internal gravity waves, and that they may be forming a critical

layer within the flow. This questions the general assumption of statistically steady flow.

The implications of these waves for gravity current flows are discussed.

In Chapter 5, three-dimensional volumetric Shake-the-Box particle tracking velocime-

try measurements are presented. Vertical and cross-stream velocities and velocity fluctu-

ations within the current body are shown to be equivalent in magnitude. Using similar

analysis to Chapter 4, internal gravity waves that may be forming a critical layer within
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the flow are again identified in the data. In one of the cases, the identified waves are

shown to be associated with three-dimensional motions.

In Chapter 6, three-dimensional direct numerical simulation of the experimental do-

main is used to investigate the effect of Schmidt and Reynolds numbers on the structure

of gravity current flows. Increasing Schmidt number is shown to cause large-scale struc-

tural changes in the flow, such as causing lobe-and-cleft structures within the head, and

wave-like structures in the mixed layer behind the head. These changes are shown to

be a result of sharpening of the density profile, which decreases the gradient Richard-

son number in the current-ambient interface behind the head from above to below the

critical value. This suggests that Schmidt number affects the stability of stratification

in the body. The effects of increased Reynolds number and increased Schmidt number

are compared, and structural changes unique to increased Schmidt number identified.

Recommendations are made regarding when assuming a low Schmidt number is justified

for numerical investigations of gravity current flows.

In Chapter 7, the three methodologies are brought together and their comparability

established. It is suggested that the difference in Schmidt number between the experimen-

tal and numerical components of the work may account for the differences in structure,

and further that this may explain why existing numerical literature has not identified the

presence of internal waves in the gravity current flow. Limitations of the presented work

are discussed, and suggestions are made for the direction of future research.



Chapter 2

Background

Gravity currents are a common class of geophysical flow, with examples ranging from

thunderstorm outflows and haboobs to the flow that forms when the door of a heated

house is left open on a cold day (Simpson, 1997). Their ubiquitous nature has resulted in

extensive research into their structure and dynamics. However this research has focused

on the head of the flow through lock-exchange type flows, while the body remains com-

paratively poorly understood. In this chapter the existing literature considering gravity

current flows will be summarised, with a focus on the structure of the body.

2.1 Gravity Current Anatomy

Gravity currents are primarily horizontal flows, driven by gravity, due to a density dif-

ference between the current and surrounding ambient fluids (Huppert, 2006; Simpson,

1997). Such a broad definition covers a wide range of real-world flows, and there are

several ways in which gravity currents can be further categorised. For example, the den-

sity difference could be a result of the presence of a solute or suspended sediment, or a

difference in temperature between the current and ambient fluids (Simpson, 1997). A

conservative current is one in which density variations are only a result of mixing with

the ambient fluid, while a non-conservative current also entrains bed particles or deposits

suspended sediment (Kneller & Buckee, 2000; Nogueira et al., 2014). Gravity current

flows are often separated by mode of generation, into constant-volume and constant-flux

flows (Hallworth et al., 1996; Nogueira et al., 2014; Ottolenghi et al., 2016a). An unsteady

(constant-volume) flow is one in which a fixed volume of fluid is abruptly released, com-

parable with the flows resulting from seismogenic slumping (Kneller & Buckee, 2000). In

contrast, a steady (constant-flux) flow is generated by a constant influx of current fluid,

comparable with quasi-permanent flows such as that in the Black Sea (Dorrell et al.,

2019).

The structure of gravity current flows, according to Kneller & Buckee (2000), is illus-

trated in Figure 2.1. At the front of the flow is a head region, with a raised nose at the
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Figure 2.1: Flow visualisation from the work presented in this thesis, overlaid by the gravity current
structure diagram of Kneller & Buckee (2000).

height of the downstream velocity maximum. The height of this velocity maximum is

determined by the ratio of shear at the bed and at the current/ambient interface. High

levels of drag at the bed raise the height of the velocity maximum, while high levels of

drag at the current/ambient interface lower the height of the velocity maximum (Islam

& Imran, 2010). Behind the head is the body, with a dense inner region and a less-dense

outer region including a layer of mixed fluid. Typically, the inner region forms a smaller

portion of the flow than the outer region (approximately 20% to 30% of the flow height

(Kneller & Buckee, 2000)), but understanding the characteristics of this region (in par-

ticular the shear stress structure) is crucial to understanding the erosional/depositional

capacity of the flow and thus the flow duration (Cossu & Wells, 2012). The relative

importance of the head and body varies between flows, and is determined by factors such

as mode of generation.

2.1.1 Differences Between Flow Types

The dynamics of different classes of gravity current flows vary significantly. A steady flow

has a small head and prolonged body, that remain largely undiluted due to the constant

replenishment of dense fluid (Gerber et al., 2010; Hallworth et al., 1996; Kneller & Buckee,

2000; Middleton, 1966; Sher & Woods, 2017). An unsteady flow has a better defined and

more dominant head region compared with steady flows, a significantly shorter body

section, and different sediment deposition characteristics (for example there is an area of

low-sedimentation near the lock gate of a lock-exchange flow not present near the inlet

of a constant-flux flow) (Hallworth et al., 1996; Huang et al., 2008). Peakall et al. (2001)

suggest that steady currents may be better suited to modelling real-world flows, whether

surge-type or continuous, and that the focus on lock-exchange type experimental flows

has led to the importance of the current body being underestimated.

Additionally, a sediment-laden flow may not behave in the same way as a solute-based

flow, though it is thought that nearly-conservative sedimented flows are comparable to

solute-driven flows (Cossu & Wells, 2012; Gray et al., 2006; Islam & Imran, 2010). Gray
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et al. (2006) considered constant-flux solute-based and sediment-laden flows with the

same excess density and influx rate over a horizontal surface. They found that the

sediment-laden flow will be thicker, with a larger head and a slower front velocity but

faster averaged maximum velocities within the body. As a result, the solute-based flow

has a smaller Reynolds number, larger Froude number, and smaller gradient Richardson

number in the upper part of the flow. Gray et al. (2006) also demonstrated that bed

slope has a smaller effect on sediment-laden compared with solute-based flows. Islam &

Imran (2010) found no significant difference in the vertical structures of turbulent kinetic

energy and Reynolds stress in sediment-laden and solute-based flows. While Gray et al.

(2006) found that the magnitude of cross-stream and vertical contributions to turbulent

kinetic energy is larger in sediment-laden flows compared with solute-based flows, Islam

& Imran (2010) and Cossu & Wells (2012) found the opposite (possibly as a result of the

low temporal frequency of Gray et al. (2005)).

Compared with flows on the flat, solute-based gravity currents flowing down a slope

have higher maximum average downstream velocities and larger head volumes (Gray

et al., 2006; Simpson, 1997). On the other hand, if the slope is at least a few degrees the

current front velocity is dependent on the influx of dense material but not on the slope

(Simpson, 1997). Rates of entrainment and mixing also increase with bed slope in solute-

based flows (Ellison & Turner, 1959; Gray et al., 2006; Huang et al., 2009; Kneller et al.,

2016; Stacey & Bowen, 1988), with increased slope associated with a reduction in the

stability of the current-ambient interface (Kneller et al., 2016). Gray et al. (2006) found

that in sediment-laden flows the effect of slope is less pronounced, including a smaller

velocity increase compared with equivalent solute-based flows and rates of mixing that

are independent of slope, though Sequeiros et al. (2010) found that increasing bed slope

increases the bed shear in turbidity currents and may change the character of the flow

from depositional to erosional. An abrupt change in slope, such as flow over a ledge, can

impact gravity current structure. Such slope changes often result in a hydraulic jump

near to the ledge as a result of the internal Froude number being equal to 1 at the ledge

and supercritical beyond it (see Section 2.1.2 below for a discussion of Froude number)

(Armi, 1986; Negretti et al., 2017; Simpson, 1997), and the fluid velocity may begin to

increase a short distance before the drop (Negretti et al., 2017). Despite this, many

investigations include an abrupt drop above the outlet to prolong the duration of the

flow (Buckee et al., 2001; Cossu & Wells, 2012; Gray et al., 2006; Islam & Imran, 2010;

Lefauve et al., 2018).

Some gravity current flows are laterally constrained, for example flow in submarine

channels (Peakall & Sumner, 2015). The presence of side-walls can influence the dy-

namics of the flow, and has been investigated by considering channels of different aspect

ratio, and by comparing numerical work using no slip and periodic boundary conditions

(Chadha, 2015; Hallez & Magnaudet, 2009). In the initial stages, the front velocity of
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horizontal lock-exchange type flows is not thought to be affected by side-walls (Chadha,

2015; Hallez & Magnaudet, 2009), though when considering flows propagating down a

slope the presence of side-walls results in a faster flow (Chadha, 2015). In the later stages

of the flow Hallez & Magnaudet (2009) suggest that side-walls result in a slower travel-

ling current, while Chadha (2015) suggests that side-walls result in a faster propagating

flow. This discrepancy could be due to the difference in Reynolds number between the

two works, or the sediment-laden nature of the flows in Chadha (2015). The presence of

side-walls is found to produce a flatter head (Hallez & Magnaudet, 2009), which is fur-

ther flattened by reducing the separation of the side-walls (Chadha, 2015), and a faster

transition from the slumping regime to the viscous buoyant regime (Hallez & Magnaudet,

2009). In sediment-laden flows, side-walls increase the rate of sediment deposition (with

the rate increased still further in a narrower channel), and three-dimensional instabilities

originating with the side-walls result in faster breakdown of coherent structures (Chadha,

2015). Side-walls also lead to less pronounced lobe-and-cleft structures in the head of the

flow (Chadha, 2015; Hallez & Magnaudet, 2009).

2.1.2 Dimensionless Parameters

Gravity current properties may be characterised using a small number of dimensionless

parameters (Kneller & Buckee, 2000; Wells & Dorrell, 2021). In particular; Reynolds

number, Froude number, gradient Richardson number, and Schmidt/Prandtl number.

The ratio of viscous and inertial forces captured in the Reynolds number,

Re =
UcLc
ν

, (2.1)

where Uc and Lc are some characteristic velocity and length scales, and ν is the kine-

matic viscosity of the fluid, is an indicator of flow turbulence. In gravity current flows,

Reynolds number affects whether the primary mixing mechanism is Holmboe waves,

Kelvin-Helmholtz vortices, or Kelvin-Helmholtz billows, and this has a substantial impact

on mixing and entrainment (Balasubramanian & Zhong, 2018; Hogg et al., 2015; Nogueira

et al., 2014). At high Reynolds number, over time the flow becomes three-dimensional

and turbulent as instabilities in the head and body increase (Cantero et al., 2007). It is

thought that above some critical value of Rec ≈ 1000 (Parsons & Garćıa, 1998; Simpson,

1969, 1997) gravity current flow patterns are independent of Reynolds number (though

a much higher value O(104) is needed for similar turbulent dynamics) (Simpson, 1997;

Wells & Dorrell, 2021). When investigating real-world gravity current flows, where the

Reynolds number is typically too large to investigate numerically or in a laboratory-based

flow (e.g. O(108) for thunderstorm outflows (Simpson, 1997)), it is necessary to ensure

the flow Reynolds number is beyond this critical value.
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An appropriate choice of Lc is an area of debate, however the integral scale defined

by Ellison & Turner (1959) is often chosen (Buckee et al., 2001; Cossu & Wells, 2012),

Lc =

(∫ ¯̄UdY
)2

∫ ¯̄U2dY
, (2.2)

where ¯̄U is the mean velocity relative to that in the ambient. In this thesis, X will

refer to the downstream, Y to the vertical, and Z to the cross-stream directions (with

corresponding velocities U, V, and W ).

The ratio of inertial to buoyant forces captured in the densimetric Froude number,

FrD =
Uc√
g′Lc

, (2.3)

(or similarly the bulk Richardson number RiB = Fr−2
D ) where g′ is the reduced gravity,

determines the propagation speed of the current (Wells & Dorrell, 2021), and is an indi-

cator of stability. Turbulence is expected to be more damped in a low Froude number

flow (Buckee et al., 2001). The Froude number can be interpreted as the ratio of mean

flow speed to the speed of a wave propagating along the flow surface (Hogg, 2006; Sum-

ner et al., 2013). In this case Fr > Frc (Fr < Frc), where Frc is some critical Froude

number, indicates that the wave speed is smaller (greater) than the mean flow speed and

wave disturbances cannot (can) propagate upstream and affect the flow front. A current

below/above Frc is called subcritical/supercritical. The commonly used critical value

of Frc = 1 may not be applicable to gravity current flows as a result of their highly

non-uniform velocity and density profiles coupled with their capacity for entrainment,

erosion, and deposition (Huang et al., 2009; Sumner et al., 2013). Froude number is still

considered to be an important parameter for the flow, with flows that transition from

supercritical to subcritical experiencing hydraulic jumps (Sumner et al., 2013).

The gradient Richardson number,

Ri = − g

ρc

∂ρ/∂Y

(∂U/∂Y )2
, (2.4)

where ρc is some characteristic density scale for the flow, is a measure of local density

stratification stability. It is commonly quoted that above some critical value of Ric = 0.25,

density stratification is sufficiently stable that energy generated through shear is dissi-

pated and vertical mixing is suppressed (Buckee et al., 2001; Kneller & Buckee, 2000). For

small gradient Richardson numbers, the flow is unstable to Kelvin-Helmholtz instabilities

as buoyancy effects are dominated by shear (Odier et al., 2009).

The ratio of momentum and mass diffusivities is captured in the Schmidt number (or

analogously the Prandtl number in temperature-driven flows) (Bonometti & Balachandar,
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2008; Miller, 1991),

Sc =
ν

D
, (2.5)

where D is the mass diffusivity. The value of Schmidt number is highly fluid dependent,

being O(1) for gases in air, O(1000) for solutes in water, and O(∞) for oil in water (An-

dersson et al., 2011; Bird et al., 2007; Bonometti & Balachandar, 2008; Reynolds, 1974).

This property indicates whether mass transfer is primarily a result of momentum, or of

diffusion. It defines the size of the smallest length scales within the flow, reducing the

smallest scales from the Kolmogorov scale (ηK) to the Batchelor scale (ηB = ηKSc
−1/2)

(Andersson et al., 2011; Donzis et al., 2014). Increasing Schmidt number is expected

to decrease mixing (Miller, 1991; Rahmani et al., 2016), and sharpen density profiles

(increasing density gradients), which can cause large-scale structural changes such as

stronger three-dimensional motions (Hanazaki et al., 2009; Langham et al., 2020; Rah-

mani et al., 2016). The product of the Reynolds and Schmidt (or Prandtl) numbers is

known as the Peclet number, Pe = ReSc = LU/D, and is the ratio of advection to solute

(or thermal) diffusion (Chung, 2002; Johnson & Hogg, 2013).

2.2 The Structure of the Head

The structure of the head has been extensively researched, largely through measurements

of unsteady, lock-exchange type flows (Alahyari & Longmire, 1996; Cantero et al., 2007;

Hacker et al., 1996; Hallworth et al., 1996; Härtel et al., 2000; Middleton, 1966; Nogueira

et al., 2014; Sher & Woods, 2015; Simpson, 1969; Thomas et al., 2003) and arrested

head flows (Britter & Simpson, 1978; Garćıa & Parsons, 1996; Martin & Garćıa, 2009;

Parsons & Garćıa, 1995, 1998; Simpson & Britter, 1979). The head is highly turbulent,

three-dimensional, and is a region of intense mixing (Alahyari & Longmire, 1996; Cantero

et al., 2007; Hallworth et al., 1996; Nogueira et al., 2014). This highly turbulent head

has a substantial effect on bed erosion, and is therefore critical for understanding the

dynamics of the flow (Kneller & Buckee, 2000).

There are two primary mixing mechanisms in the head of the flow, illustrated by

Simpson (1997) (shown in Figure 2.2). First, shear with the ambient fluid leads to

Kelvin-Helmholtz billows that form at the top of the head and persist into the flow

wake (Bhaganagar, 2017; Garćıa & Parsons, 1996; Nogueira et al., 2014; Simpson, 1969,

1997; Simpson & Britter, 1979). Second, the raised nose at the head over-rides buoyant

ambient fluid, which then rises and causes a three-dimensional lobe-and-cleft structure

(Alahyari & Longmire, 1996; Bhaganagar, 2017; Garćıa & Parsons, 1996; Nogueira et al.,

2014; Simpson, 1969; Simpson & Britter, 1979). These mixing mechanisms are associated

with areas of large negative Reynolds stress at the top of the head (associated with the

Kelvin-Helmholtz billows) and under the nose (associated with the over-riding of buoyant
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Figure 2.2: The two primary mixing mechanisms in the head of gravity current flows, specifically (left)
Kelvin-Helmholtz billows and (right) lobe-and-cleft structures, as illustrated by Simpson (1997, p. 142).

ambient). While for a constant-volume flow, the strongest mixing is in the head (Sher

& Woods, 2015), Sher & Woods (2017) observe that the location of greatest mixing in

a constant-influx gravity current is dependent on the Froude number at the inlet. In a

high source Froude number flow, mixing largely happens at the inlet, while if the source

Froude number is low mixing is primarily at the head.

The turbulence structure is dominated by shear at the upper boundary (Martin &

Garćıa, 2009), with corresponding peaks in turbulent kinetic energy. In high Reynolds

number flows, entrainment is mostly a result of the breakdown of Kelvin-Helmholtz struc-

tures. In lower Reynolds number flows, this breakdown is less important relative to vis-

cous effects and mixing rates are lower (Kneller & Buckee, 2000). The shape of the head

is dependent on Schmidt number, with increased Schmidt number leading to a more de-

fined head region with denser fluid reaching closer to the front of the flow, though front

velocity and the formation of lobe-and-cleft structures are not thought to be affected

(Bonometti & Balachandar, 2008).

2.3 The Structure of the Body

The body of gravity current flows often forms by far the largest part of the flow, persisting

for hours or even days (see Figure 2.4) (Azpiroz-Zabala et al., 2017). Despite this, the

structure of the body remains poorly understood (Wells & Dorrell, 2021). The gravity

current body is typically assumed to be statistically two-dimensional (Cantero et al.,

2007; Meiburg et al., 2015; Simpson, 1997; Thomas et al., 2003) and statistically steady

(here meaning that when averaged over time, quantities such as downstream velocity

and density appear constant though there are still fluctuations and instabilities) (Gerber

et al., 2010; Gray et al., 2006; Kneller & Buckee, 2000; Simpson, 1997). Such flows are

therefore frequently described using averaged velocity and density profiles such as those

in Figure 2.3 (Abad et al., 2011; Altinakar et al., 1996; Davarpanah Jazi et al., 2020;

Garćıa, 1994; Gray et al., 2006; Kneller & Buckee, 2000; Sequeiros et al., 2010).
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Figure 2.3: The currently accepted idealised structure of gravity current body (left) velocity and (right)
density profiles (Abad et al., 2011; Altinakar et al., 1996; Davarpanah Jazi et al., 2020; Garćıa, 1994;
Kneller & Buckee, 2000; Sequeiros et al., 2010).

The velocity profile can be divided into two layers by the height of the velocity max-

imum, the location of which is determined by the ratio of drag at the upper and lower

boundaries and is dependent on the flow Reynolds number (Buckee et al., 2001). Above

the velocity maximum the shape of the velocity profile is similar to that of a turbulent

wall-bounded jet (Dorrell et al., 2019; Pelmard et al., 2020), while below the velocity

maximum the shape is closer to that of an open-channel flow (Dorrell et al., 2019). While

mean vertical velocities are thought to be small compared to mean downstream velocities

(about 5% of the maximum mean downstream velocity), instantaneous vertical velocities

may be an order of magnitude larger than the mean (Buckee et al., 2001).

Depending on the flow type, the density profile may be stepped (in the case of low slope

solute-based flows), or smooth (in the case of sediment-laden flows) (Gray et al., 2006;

Kneller & Buckee, 2000). In sediment-laden flows, coarse-grained material is concentrated

in the lower part of the flow while fine-grained material is more evenly distributed verti-

cally (Gray et al., 2006; Kneller & Buckee, 2000). The thickness of the mixed layer, and

thus the density profile, is strongly affected by Schmidt number, with a higher Schmidt

number flow having a thinner mixed region and stronger density gradients (Bonometti &

Balachandar, 2008).

There are significant velocity fluctuations in the body associated with the passage

of coherent structures (Buckee et al., 2001). The presence of these large instantaneous

velocity fluctuations suggests that the body makes a substantial contribution to sediment

entrainment in flows over an erodible bed (Kneller & Buckee, 2000; Kneller et al., 1999).

Instantaneous downstream velocities within the body can be as much as 40% greater

than the mean value, and up to 50% greater than the current front velocity, and mean

downstream velocities in the body can exceed current front velocity by 30% (Bhaganagar,
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Figure 2.4: Comparison of flow durations based on real-world flow observations (Azpiroz-Zabala et al.,
2017).

Figure 2.5: A snapshot taken of a dyed flow run from the work of Sher & Woods (2017), modified to
include a black line showing the current-ambient interface (determined by choosing a pixel near the
interface, and changing all pixels in the image that share that colour to black) and evenly spaced blue
circles showing the wavelength of a possible wave (with spacing determined by the separation of the first
two peaks).

2017; Kneller & Buckee, 2000; Kneller et al., 1997; Sher & Woods, 2015). There are also

significant fluctuations in density (and thus reduced gravity) sufficient to increase gravita-

tional acceleration by up to 30% (Buckee et al., 2001). Additionally, vortical Lagrangian

coherent structures capable of affecting the height of the turbulent/non-turbulent inter-

face (Neamtu-Halic et al., 2019) and wave-like structures at the current-ambient interface

(Gray et al., 2006) have been identified. Though they are not addressed, evidence of such

waves can be seen in flow visualisation images of a sub-critical flow with source Froude

number 0.4 presented by Sher & Woods (2017) (Figure 2.5). As well as meaning that

waves generated at the inlet may interact with the flow front, if the Froude number moves

from sub- to super-critical at some distance from the inlet a hydraulic jump may occur

causing an abrupt shift in flow thickness (Sumner et al., 2013). Time-averaged profiles

are therefore limiting when discussing the structure of the body.

It has recently been suggested that the current model of the gravity current body may

need to be updated to a new and dynamic model. Measurements of a real-world flow

in the Black Sea revealed a self-sharpened downstream velocity profile, with momentum
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Figure 2.6: An illustration of internal gravity wave driven antidiffusive mixing from Wells & Dorrell
(2021), as proposed by Dorrell et al. (2019) to explain the concentration of momentum at the height of
the velocity maximum, and strongly stepped density profile, observed in measurements of flow in the
Black Sea. The solid yellow and dashed blue lines illustrate the velocity and density fields respectively,
the dot-dash black line the centre of mass of the flow, and the brown arrows/lines the incidence of
turbulent mixing and internal waves.

concentrated towards the velocity maximum, and a highly stepped density profile featur-

ing a sharp decrease above the velocity maximum (Dorrell et al., 2019). To explain these

observations, Dorrell et al. (2019) proposed internal gravity waves resulting from inter-

facial instabilities or bedforms. Irreversible wave breaking at some critical layer within

the flow (see below) may cause local flow acceleration (Bühler, 2014), and result in the

formation of an eddy transport barrier. This barrier is capable of maintaining the density

difference within the body over larger distances than previously thought (Dorrell et al.,

2019; Wells & Dorrell, 2021). This mechanism is illustrated by Wells & Dorrell (2021)

(see Figure 2.6). However, this explanation questions key assumptions about the gravity

current body. An accelerating flow is inherently not statistically steady. Further, the

presence of an eddy transport barrier requires a three-dimensional flow (Dorrell et al.,

2019; Wells & Dorrell, 2021).

Critical layers are of particular importance in the atmosphere and oceans (Booker &

Bretherton, 1967; Bretherton, 1966; Hines, 1968). A critical layer is a region within the

flow where the wave speed is close to the mean flow speed (Baines, 1998; Maslowe, 1986).

When considering a density-stratified shear flow the importance of this region can be seen

in the Taylor Goldstein equation that governs flow stability (Baines, 1998),

(U − c)2

(
d2φ̂

dY 2
+

[
N2

(U − c)2
− d2U/dY 2

(U − c)
− k2

]
φ̂

)
= 0, (2.6)

where U is the local mean downstream velocity, φ = φ̂eik(x−ct) is a perturbation stream

function, c is the wave speed, N the buoyancy frequency, and k the downstream wave

number. A region with U = c constitutes a singularity in this equation, the presence

of which suggests that a process assumed to be negligible during the derivation of the

equation (e.g. dissipation or non-linearity) may be significant near the critical layer
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(Baines, 1998; Booker & Bretherton, 1967). In order for this equation to hold, when

the magnitude of the term multiplying φ becomes very large near the critical layer, the

magnitude of ∂φ2/∂Y 2 must also be very large. Therefore, φ may oscillate rapidly in Y ,

with the oscillations becoming infinitely rapid as the point where U = c is approached

(Vallis, 2017). The transmission of wave energy across a critical layer is very small,

with the critical layer reflecting or absorbing internal waves (Baines, 1998). Energy

absorbed at a critical layer, as a result of wave breaking, is transferred to the mean

flow causing acceleration local to the critical layer (Baines, 1998; Booker & Bretherton,

1967). Additionally critical layers can be a region of local mixing, resulting in a region of

near-uniform velocity and density with wave breaking resulting in the homogenisation of

potential vorticity either side of the critical layer (potential vorticity being a measure of

circulation that is conserved in the absence of dissipation, defined as the product of density

stratification and vorticity) (Baines, 1998; Dorrell et al., 2019). This homogenisation

produces strong potential vorticity gradients, which act as barriers to eddy transport and

prevent mixing between regions above and below the critical layer (Dritschel & Scott,

2011). In a gravity current, this would maintain the density difference between the

current and ambient fluids.

2.3.1 Turbulence in the Body

There are two mechanisms for turbulence generation in the body – shear, and buoyancy

(Bhaganagar, 2017; Buckee et al., 2001; Kneller & Buckee, 2000). If the gradient Richard-

son number is greater than the critical value, then energy produced by shear is dissipated

(being insufficient to overcome the stability of the density stratification), while a low gra-

dient Richardson number indicates unstable stratification (Buckee et al., 2001). However,

the gradient Richardson number may be below the critical value in the head of the flow,

and above critical in the body. In this case, Kelvin-Helmholtz billows generated in the

less stable head, and which significantly enhance mixing, dissipate some distance into

the stable body (Pelmard et al., 2020). Turbulence production by buoyancy is possible

even in stable stratification, as turbulent kinetic energy may be generated by the conver-

sion of potential energy if sections of fluid are displaced from their equilibrium positions

(Buckee et al., 2001). Interface stability is weakly dependent on Schmidt number, with

the current-ambient interface becoming slightly more stable as Schmidt number increases

(Bonometti & Balachandar, 2008).

Turbulence in the current is strongly linked to mixing (Bhaganagar, 2017). The

strongest mixing in the gravity current body is a result of detrainment near the current-

ambient interface (current fluid being lost to the ambient), while a smaller amount of

mixing also occurs near the bed as a result of ambient entrainment (Odier et al., 2012).

For low Richardson numbers, turbulent mixing lengths scale with shear, not buoyancy.
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However, at high Richardson number (e.g. in the ocean) the mixing length scale is

determined by buoyancy (Odier et al., 2009). Entrainment rates are reduced by increased

density stratification (Krug et al., 2015).

The highest levels of turbulence (turbulent velocities, Reynolds stresses, and turbu-

lent kinetic energies) are a result of shear (Bhaganagar, 2017; Buckee et al., 2001; Gray

et al., 2006; Islam & Imran, 2010; Kneller et al., 1999). Instantaneous turbulent velocity

calculations identify the movement of eddies through the flow with size comparable to

the height of the lower layer of the body (Kneller et al., 1999). Large eddies are generated

through shear in the upper layer (Cantero et al., 2008; Kneller et al., 1999), while smaller

eddies are generated through shear with the lower boundary (Kneller et al., 1999). The

formation of vortices on the current-ambient interface is highly Schmidt number depen-

dent (Bonometti & Balachandar, 2008).

Reynolds stress, τR = −ρ(U ′V ′) where ρ is density, U ′ and V ′ are the downstream

and vertical fluctuations from the mean velocity, and (·) indicates an averaged property,

gives an indication of turbulence in the flow (Buckee et al., 2001) and contributes to

mean momentum transfer by turbulent motion, as gradients in Reynolds stress lead to

net acceleration (Gray et al., 2006). The largest values of U ′V ′ within the body are

associated with bed shear, while above the velocity maximum Reynolds stress associated

with shear at the current-ambient interface is negative (indicating a downwards transfer of

momentum) (Bhaganagar, 2017; Buckee et al., 2001; Cossu & Wells, 2012; Kneller et al.,

1997). This may be a result of large-scale coherent structures (Buckee et al., 2001).

Typical averaged turbulent kinetic energy profiles are shown in Figure 2.7 (Buckee

et al., 2001; Gray et al., 2006). Turbulent kinetic energy is at a minimum at the height of

minimum shear, around the same height as the velocity maximum, and with local maxima

above and below this point within the body (Buckee et al., 2001; Islam & Imran, 2010;

Kneller et al., 1999; Pelmard et al., 2020). In flows with a stepped density profile (see

Figure 2.3), the area of low turbulent kinetic energy at the velocity maximum may be a

result of strong stratification at the step in the concentration profile (Buckee et al., 2001).

Further, the strength of stratification at this point could lead to low transport of mass

between the lower and upper parts of the current, maintaining the density difference be-

tween current and ambient (Buckee et al., 2001). However, Islam & Imran (2010) suggest

that the turbulent kinetic energy at the height of the velocity maximum is large enough

to allow transport across the velocity maximum, with diffusion increasing turbulence at

the height of minimum shear and facilitating vertical redistribution of turbulence.

There is some dispute regarding the magnitude of cross-stream contributions to body

flow. Islam & Imran (2010) conclude that the contribution of cross-stream flow to total

turbulent kinetic energy is at least as large as that of vertical velocity and should be

included in calculations of turbulent kinetic energy. Krug et al. (2015), on the other hand,

conclude that cross-stream variations are small and can be neglected when considering
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Figure 2.7: Plots of turbulent kinetic energy for two flows from the work of (left) Buckee et al. (2001) (re-
made) and (right) Gray et al. (2006). The horizontal lines indicate the height of the average downstream
velocity maximum.

entrainment of ambient fluid. Whether this apparent contradiction is attributable to the

low spatial resolution of Islam & Imran (2010), the additional source of turbulence in

Krug et al. (2015), or a difference in Reynolds or Richardson number between the two

works is unclear. Pelmard et al. (2020) conclude that cross-stream velocity fluctuations

are equivalent to vertical in an unsteady lock-exchange type flow.

2.4 Investigative Approaches

Direct measurements of real-world flows are challenging as a result of their often inacces-

sible location, their hazardous nature, their unpredictability, and the length and velocity

scales involved (Azpiroz-Zabala et al., 2017; Kneller & Buckee, 2000; Peakall & Sumner,

2015; Simpson, 1997; Wells & Dorrell, 2021). Therefore, many observations of field-scale

flows have been indirect (Kneller & Buckee, 2000), for example estimates of gravity cur-

rent front velocity based on the breaking of submarine cables 300 miles apart over 13

hours in Newfoundland in 1929 (Simpson, 1997). Recent technological advances (such as

autonomous underwater vehicles) have allowed far more real-world measurements than

previously possible and in far more detail (Azpiroz-Zabala et al., 2017; Dorrell et al.,

2019; Sumner et al., 2013), however to date laboratory-based and numerical investiga-

tions provide the highest resolution measurements of flow in the gravity current body.
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2.4.1 Experimental Approaches

Experimental investigations into flow in the head have applied a wide variety of techniques

to establish flow properties. Early works used shadowgraphs (Simpson, 1969), and tracked

tracer particles and dye droplets across photographs (Britter & Simpson, 1978; Middleton,

1966; Simpson, 1969) to improve understanding of flow structure. Velocity structure has

been investigated using hot film probe techniques (Britter & Simpson, 1978; Simpson &

Britter, 1979), particle tracking velocimetry (Thomas et al., 2003), and particle image

velocimetry (Alahyari & Longmire, 1996; Martin & Garćıa, 2009). Density structure

has been investigated using conductivity probes (Parsons & Garćıa, 1998; Simpson &

Britter, 1979), laser induced fluorescence (Parsons & Garćıa, 1998), and planar laser

induced fluorescence (Martin & Garćıa, 2009). Additionally, mixing in the head has been

investigated using neutralisation (Hallworth et al., 1996) and light attenuation (Nogueira

et al., 2014; Sher & Woods, 2015, 2017) techniques.

Fewer techniques have been applied to flow in the body. Kneller et al. (1997) and

Kneller et al. (1999) used laser Doppler anemometry to measure the instantaneous two-

dimensional velocity profile of an unsteady lock-exchange type current with a very short

duration of body flow, O(5 s). Buckee et al. (2001) applied the same technique to a

constant-influx type flow, again with measurements limited to two components of velocity

and with low spatial resolution. This work was extended by Gray et al. (2006) (with

a low temporal sampling frequency) and Cossu & Wells (2012) to consider all three

components of velocity using ultrasonic Doppler velocity profilers and acoustic Doppler

velocity profilers. All of these works exclusively considered a cross-stream central location

within the flow.

In recent years, the gravity current body has been investigated using techniques ca-

pable of producing whole-field data. High spatial resolution, whole-field, instantaneous

particle image velocimetry measurements on a central plane, in some cases combined with

simultaneous density measurements using laser induced fluorescence, have been used to

discuss entrainment and mixing in constant-influx gravity currents (Krug et al., 2013;

Odier et al., 2009, 2012). However, some of these measurements had low temporal res-

olution (Odier et al., 2009, 2012), and all three investigations considered flows with a

source of turbulence at the domain inlet, additional to the shear and buoyancy sources

expected in such a flow. These flows are shown to be expanding downstream and have

heights linked to the size of the domain outlet, despite being described as statistically

steady gravity current bodies (Krug et al., 2013; Odier et al., 2009, 2012).

Sher & Woods (2017) used a light attenuation technique to investigate mixing in the

constant-influx body, though as the focus was on concentration no instantaneous velocity

measurements were presented. Krug et al. (2015) used simultaneous three-dimensional

volumetric measurements of the velocity and density fields of a constant-influx flow using
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scanning particle tracking velocimetry and scanning laser induced fluorescence to con-

sider entrainment in the gravity current body. The volume considered in this work was

small (4 cm× 4 cm× 2 cm in a domain 200 cm× 50 cm× 50 cm). A larger measurement

volume in the same experimental domain (four connected regions of 9 cm× 9 cm× 4 cm)

was considered by Neamtu-Halic et al. (2019) to investigate vortical Lagrangian coher-

ent structures at the turbulent/non-turbulent interface using three-dimensional particle

tracking velocimetry. In both of these works, measurements were limited to the current-

ambient interface, and the techniques were again applied to an expanding flow (as in

(Krug et al., 2013)).

Lefauve et al. (2018) investigated the formation of Holmboe waves in an exchange

type flow, with equivalent downstream velocity magnitude in both fluids. This would

increase the level of shear compared with other gravity current flows such as that in Krug

et al. (2015) where average downstream velocity in the ambient is near 0. As in Krug

et al. (2015), these measurements were taken using a scanning PIV technique so were

not instantaneous. Experimental measurements in the existing literature have largely

been limited planes at a single cross-stream location (the exceptions being volumetric

measurements in Krug et al. (2015), Lefauve et al. (2018), Neamtu-Halic et al. (2019),

and a single plane in Alahyari & Longmire (1996)), and the extent and nature of three-

dimensional flow within the body remains unclear.

Laboratory-based flows are typically limited to much lower Reynolds numbers than

real-world flows, and rely on dynamic similarity of the laboratory-based and real-world

flows (Meiburg & Kneller, 2010). This is justified by similar values of the dimension-

less parameters such as Froude and Reynolds numbers (see Chapter 3, (Heller, 2011;

Rubinato, 2015)). Many experimental techniques have additional restrictions that limit

the investigable parameter ranges. For instance, the available values of reduced gravity

are limited in optical techniques requiring refractive index matching. There are also pa-

rameters that cannot typically be investigated through experimental methods, like the

Schmidt number. These restrictions are reduced with numerical methods. Numerical

work also typically has far fewer restrictions on available data, being capable of providing

high-resolution, whole-domain, instantaneous velocity and density fields simultaneously.

2.4.2 Numerical Approaches

Numerical contributions to this chapter have come from direct numerical simulation

(DNS) (Cantero et al., 2008; Espath et al., 2014; Necker et al., 2002; Özgökmen et al.,

2006), and large eddy simulation (LES) (Bhaganagar, 2017; Ooi et al., 2009; Pelmard

et al., 2020) of unsteady lock-exchange type gravity current flows. Direct numerical sim-

ulation is the more accurate method, but is extremely computationally expensive (with

the cost scaling like Re3Sc2; see Chapter 3) (Meiburg & Kneller, 2010; Pope, 2001; Wilcox,
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2006). It requires the resolution of all length scales down to the Kolmogorov scale (or

the Batchelor scale when Schmidt number is above 1 (Andersson et al., 2011; Donzis

et al., 2014)). Due to the high computational cost, three-dimensional direct numeri-

cal simulation has only become an option in recent years. Even with recent advances in

computational power, three-dimensional simulations are limited to laboratory-scale flows.

LES does not require resolution of all turbulence scales, instead resolving the large

eddy scales and modelling motions below some limit (Meiburg & Kneller, 2010; Pope,

2001; Wilcox, 2006). This is significantly less computationally expensive, and is therefore

applicable to a wider range of flows, but has the additional complexity of requiring a

subgrid-scale model such as an eddy-viscosity approximation (Meiburg & Kneller, 2010).

LES can be applied to much higher Reynolds number flows (Ooi et al., 2009; Pelmard

et al., 2020). However, even this method cannot yet be applied to gravity currents with

field-scale Reynolds numbers as a result of the lower boundary, which introduces energy

containing, small-scale eddies that must be captured (Meiburg & Kneller, 2010).

To overcome the high computational cost of numerical work, many investigations

have relied on two-dimensional simulations (for example, Birman & Meiburg (2006);

Bonometti & Balachandar (2008); Ooi et al. (2007)). Two-dimensional simulations allow

investigation of a much wider range of Reynolds number flows, for example Härtel et al.

(2000) were limited to Re = 750 for their three-dimensional simulations, but were able to

achieve Re = 30000 in two-dimensions. However, the three-dimensional nature of gravity

current flows means the reliability of such simulations is suspect.

While some characteristics of gravity current flows are captured well by two-dimensional

numerics, for example the height of the over hanging nose and the Froude number, other

characteristics such as the thickness of the mixed layer and the current front velocity

are different between two- and three-dimensional simulations (Cantero et al., 2007, 2008;

Härtel et al., 2000; Özgökmen et al., 2004). Two-dimensional simulations are unable to

capture edge effects in cross-stream constrained flows (Özgökmen et al., 2004), and are

known to exhibit large and unphysical vortices not present in three-dimensional work

(illustrated in Figure 2.8) (Cantero et al., 2007, 2008; Espath et al., 2014; Härtel et al.,

2000; Necker et al., 2002).

The effect of Kelvin-Helmholtz roll-up is stronger in two-dimensional simulations, as

vortex stretching (ω·∇u = 0) is suppressed and three-dimensionality helps to break up the

cross-stream coherence (Cantero et al., 2007). The presence of strong vortices, and their

interactions, results in greater entrainment compared with three-dimensional simulations,

and periods of large acceleration and deceleration not found in three-dimensional work

(Cantero et al., 2007; Özgökmen et al., 2004). In a particulate flow, vortices transport

particles vertically within the flow. Unphysical vortices can lead to overestimates of the

capacity of the flow to maintain particle suspensions, and thus overestimates of run-out

lengths (Necker et al., 2002, 2005). The vortices also impact the energy budget of the
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Figure 2.8: Taken from Cantero et al. (2007), contours of swirling strength defined by Zhou et al. (1999)
illustrating the unphysical vortices present in two-dimensional simulations, by comparing equivalent two-
dimensional (bottom) and cross-stream averaged three-dimensional (top) simulations of the same flow.
The dashed line is a contour of density demonstrating the flow boundary, and numbers indicate local
values of swirling strength.

flow, with kinetic energy decaying less rapidly in two-dimensional work (Necker et al.,

2002). Even three-dimensional simulations can overestimate entrainment compared with

real-world flows because of the idealised nature of the domain (Özgökmen et al., 2004).

Despite the capacity of numerical work to investigate the effect of Schmidt/Prandtl

number, very few works have so far applied this ability to gravity current flows. The vast

majority of numerical works assume Sc ∼ 1 (Bhaganagar, 2017; Birman & Meiburg, 2006;

Cantero et al., 2007, 2008; Härtel et al., 2000; Necker et al., 2002; Özgökmen et al., 2004,

2006; Pelmard et al., 2020). A few justify this assumption with test calculations (Birman

et al., 2005; Necker et al., 2005), but to the author’s knowledge only two investigations

have performed simulations of gravity currents with Sc� 1. Ooi et al. (2007) compared

a single Sc = 600 simulation to an otherwise equivalent Sc = 1 flow, and concluded that

there was little impact on front velocity. Bonometti & Balachandar (2008) conducted a

more extensive parameter study considering 100 < Re < 10000 and 1 < Sc < 1000, with

the highest Schmidt numbers achieved by removing the term that is inversely proportional

to the Schmidt number from the governing equations (i.e. setting the right hand side of

(3.13) to 0). In both cases, the conclusions are heavily (Bonometti & Balachandar, 2008)

or exclusively (Ooi et al., 2007) based on two-dimensional simulations. The effect of

Schmidt number on three-dimensional flow features is therefore unknown.
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2.5 Summary

A summary of existing understanding of gravity current structure has been presented,

with an emphasis on those investigations considering the flow body. Despite the ex-

tensive research into gravity current flows in general, understanding of body structure

remains limited. This chapter has highlighted the need for additional experimental and

numerical investigations to resolve remaining questions regarding the gravity current

body, specifically: the nature of large-scale structures within the body, the level of three-

dimensionality within the body, and the importance of Schmidt number to body structure.



Chapter 3

Methodology

The ubiquitous nature of gravity currents means that they have been extensively studied,

as discussed in Chapter 2. However, this work has primarily focused on the head, despite

the body often forming the largest part of the flow. Additionally, the majority of the

existing work has focused on lock-exchange rather than constant-influx type flows. There

therefore remain significant gaps in understanding of the structure and mechanics of the

gravity current body.

The following chapter outlines the technical details of the investigations here used to

quantify the velocity structure of constant-influx gravity currents. Both laboratory-based

and numerical techniques are discussed, including all experimental variables and parame-

ters. Section 3.1 describes the details of the planar laboratory investigations, Section 3.2

the volumetric laboratory investigations, and Section 3.3 the three-dimensional numerical

work.

3.1 Planar Particle Image Velocimetry

In the present study, two experimental techniques were employed to establish the effect

of Reynolds number on the turbulence structure of the body of constant-influx gravity

currents – planar particle image velocimetry (PIV) and Shake-the-Box particle tracking

velocimetry (STB). In this section, the experimental setup is outlined, with justification

of design choices, along with details of seeding particles, timings, camera configuration

and reconstruction settings for the PIV work.

3.1.1 Background

Planar PIV is a non-intrusive technique for generating the two-dimensional velocity field

of a flow. It is described in detail in several places, e.g. Adrian & Westerweel (2011);

Raffel et al. (2018), and the steps involved are summarised in Figure 3.1. PIV has

been used extensively to study a wide variety of flows, including gravity currents. Some
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Figure 3.1: The steps involved in generating a velocity field from planar PIV images.

examples of work investigating gravity current structure using PIV are summarised in

Table 3.1. The technique is able to rapidly collect large amounts of data that qualitatively

and quantitatively describe the flow (Norconk, 2011; Unsworth, 2015). Additionally, the

whole-field nature of PIV allows application of analysis techniques not applicable to data

collected with point-wise techniques. However, as PIV is an optical technique there is a

restriction on density difference due to the need for refractive index matching.

3.1.2 Experimental Setup

When investigating environmental flows, it is not typically possible to consider a full-scale

flow. Therefore scale models that demonstrate some level of similarity with the real-world

flow are designed (Heller, 2011; Rubinato, 2015). The similarity could be:

� geometric,

� kinematic, and/or

� dynamic.

Geometric similarity indicates that the model and full-scale structures have the same

shape, with all linear dimensions having the same scaling ratio. Kinematic similarity

requires geometrically similar motions, for example the ratio between horizontal and

vertical velocities in the model and the real-world flows should be the same. In this case,

motion that is circular in one case will also be circular in the other. Dynamic similarity
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Definition Force Balance

Froude number (Fr) Uc√
gLc

Inertial/Gravitational

Euler number (Eu) ρU2
c

∆p
Inertial/Pressure

Reynolds number (Re) ρUcLc

µ
Inertial/Viscous

Weber number (We) Uc√
σ/ρLc

Inertial/Capillarity

Peclet number (Pe) LcUc

D
Advection/Diffusion

Table 3.2: Dimensionless parameters for dimensional analysis, where Uc and Lc are characteristic velocity
and length scales, g is gravitational acceleration, ρ is density, ∆p is pressure difference, µ is dynamic
viscosity, σ is surface tension, and D is the mass diffusivity (Birman et al., 2005; Chung, 2002; Heller,
2011; Johnson & Hogg, 2013).

indicates that the magnitudes of forces at corresponding points in the full-scale flow and

the model are in a fixed ratio (Zohuri, 2015).

These similarities are established by considering a dimensional analysis that takes

into account fluid properties such as density and viscosity, the geometry of the flow, and

flow properties such as velocity, and results in a number of dimensionless parameters

(specifically the Froude, Euler, Reynolds, Weber, and Peclet numbers) (Chung, 2002;

Heller, 2011). The critical dimensionless parameter or parameters to match depend on

the forces that dominate in the system, and must match exactly between the laboratory-

scale and real-world flows. For this work, the key parameter to match is the Reynolds

number.

Prototypes

The work in this thesis focuses on solute-based flows. This is justified as in Kneller

& Buckee (2000) by considering that while many natural examples of gravity currents

are particulate based, solute-based flows are the simplest case and thus form a sensible

control data set without the addition of particles limiting the measurement tools available.

Additionally, solute-based flows are considered analogous to conservative fine-grained

particulate flows while being easier to control experimentally (Garćıa & Parsons, 1996;

Parsons & Garćıa, 1995).

A ducted flow was considered, in an attempt to avoid the surface waves that appear

at the air-ambient interface of open-channel gravity current flows. If the ambient fluid is

of finite thickness, there may be interactions between ambient surface waves and current

flow. The effects of these interactions, such as a reduction in front velocity and a decrease

in turbulence (Baker et al., 2017; Musumeci et al., 2017; Viviano et al., 2018) can be

difficult to separate from the current (Ho et al., 2018).

Before arriving at the final experimental setup, two prototypes as shown in Figure 3.2

were designed. First, a proof of concept simply involving an airtight 10 cm×10 cm duct

with an inflow at one end and an outlet at the other. This successfully demonstrated
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Author Tank Dimensions (H ×W ×D) (m)
Ellison & Turner (1959) 0.20× 0.15× 5.00

Middleton (1966) 0.50× 0.154× 5.00
Hacker et al. (1996) 0.50× 0.21× 3.48
Kneller et al. (1997) 0.18× 0.20× 4.50
Kneller et al. (1999) 0.10× 0.2× 2.15
Buckee et al. (2001) 1.50× 0.50× 6.0
Thomas et al. (2003) 0.25× 0.20× 2.00

Gray et al. (2005) 0.50× 0.30× 6.00
Martin & Garćıa (2009) 0.50× 0.30× 3.00

Gerber et al. (2010) 0.30× 0.25× 3.00
Adduce et al. (2011) 0.30× 0.20× 3.00

Nogueira et al. (2014) 0.30× 0.20× 3.00
Sher & Woods (2015) 0.36× 0.15× 3.00
Sher & Woods (2017) 0.50× 0.10× 5.00

Table 3.3: Some examples of the dimensions of tanks used to investigate gravity currents experimentally
in previous work.

that, having filled the system with ambient, opening the outlet and pumping dense fluid

in through the inlet would not cause the overall level of fluid to change. For the second

prototype, a drop was added above the outlet to prolong the duration of the flow prior

to the ambient becoming polluted. The system was made taller relative to the width (a

cross-section of 10 cm× 20 cm) to minimise interaction between the lid and the current.

The extra height also increased the amount of ambient fluid relative to the current height

and therefore slowed the rate of pollution. Flow visualisation was carried out in each

prototype by adding dye to the dense fluid, shown in Figure 3.3.

Tank Geometry

The final experimental design is shown in Figure 3.4, and is made from ∼10 mm thick

Perspex. The dimensions were considered reasonable as both the dimension magnitudes

and the aspect ratio are similar to those used to investigate gravity currents in previous

work (see Table 3.3). From the second prototype, raised sections were added at either

end to capture any air entering through the inlet or outlet. A bubble trap was also

added to remove any small bubbles entering the system as a result of pumping of the

dense fluid. These measures prevented any bubbles entering the measurement region and

causing laser reflections that could reduce the quality of the data, and potentially damage

the camera. The tank was mounted on a mechanism that could be tilted to produce a

variable bed slope, θ, and coarse mesh was placed over the inlet in an attempt to produce

a homogeneous inflow. The drop above the outlet was extended and the tank lengthened

to further prolong the duration of the pseudo-steady body (see Figure 3.5). The 6 mm

thick full-width Perspex sheet near the inlet was included to promote horizontal spreading

of the dense fluid, and limit the initial height of the flow to 0.05 m.
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Figure 3.2: The prototypes. Figure 3.3: Visualisation of flow in prototype 2.
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Figure 3.4: Experimental setup.

Figure 3.5: Plots demonstrating statistically steady flow in the current body for one case, (left) compari-
son of downstream velocity time averages over different durations, (right) maximum downstream velocity
over time.
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Substance ρ (kg m−3) n η (Pa s)
Current KDP solution, 6% by mass 1041.4 1.3400 0.001133
Ambient Glycerol solution, 6% by mass 1012.0 1.3400 0.001157

Table 3.4: Properties of the fluids making up the ambient and the current (Haynes, 2014).

Fluids

As PIV is an optical technique, the current and ambient fluids, as well as mixtures of the

two, must be refractive index (RI) matched (Norconk, 2011; Unsworth, 2015). This means

that when light travels between the fluids there is no reflection or refraction, effectively

rendering the entire system transparent and preventing any blurring or distortion of

the images produced (Alahyari & Longmire, 1994). According to Alahyari & Longmire

(1994), in order to obtain usable PIV images the RI within the measurement region

must be constant to within 0.0002. They recommend solutions of glycerol and potassium

dihydrogen phosphate (KDP) in tap water, as they have certain useful properties such as

being inert, easy to mix, and stable enough to be left for a few days. In this work 6% by

mass solutions of glycerol (ambient fluid) and KDP (current fluid) were used, producing

a 3% density difference (see Table 3.4 for details), a slightly larger density difference than

the sodium chloride and ethanol combination used by Krug et al. (2015); Odier et al.

(2012).

The solutions were produced in mixer tanks as shown in Figure 3.6 with LAFERT IEC-

60034 motors. In order to produce KDP solution in the volumes needed, a large batch was

mixed in a 130 L tank, and then a smaller quantity placed in a 30 L transfer tank connected

to the gear pump. The density and RI of these solutions were measured using an Anton

Paar DMATM 35 basic portable density meter (accurate to 0.001 g cm−3) and a Reichert

AR200 automatic digital refractometer (accurate to 0.0001 units). The temperature

was also measured during production of the solutions to ensure that any temperature

difference would not significantly impact on the RI matching later on. To ensure the

solutions were fully mixed, it was required that there be 3 consistent consecutive RI

measurements per solution taken 5 minutes apart, and that the RI of the two solutions

be matched exactly (to the precision of the refractometer) in those measurements. The

density was then measured to ensure that it was within the expected range based on

temperature and RI.

The tank was initially filled with ambient fluid using the glycerol mixer pump to

around 1 cm from the top of the raised sections at either end of the tank. This level

remained approximately fixed throughout all experiments, and never dropped below the

level of the main section lid. Denser fluid was pumped in through the inlet using a

Universal Motors IEC34-30 gear pump fitted with an LS Industrial Systems SV-iC5

inverter, to provide a smooth and continuous influx that could be manually varied from

run to run. Figure 3.7 shows the relationship between pump frequency and flow rate

produced by the gear pump. To vary the Reynolds number of the flow, the influx was
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To Glycerol

Inlet

Mixer Tank 130L

(Glycerol)

Glycerol Mixer Pump

To 30L KDP

Mixer Tank

Mixer Tank 130L

(KDP)

KDP Mixer Pump

Figure 3.6: The equipment used to mix the glycerol and KDP solutions.

Case 1 2 3 4 5 6 7
Influx (Ls−1) 0.07 0.09 0.11 0.12 0.14 0.16 0.18
FrS 1.65 2.05 2.44 2.84 3.24 3.64 4.04
∆t (ms) 20 20 20 20 20 20 20

Table 3.5: Details of the influx, the source Froude number (FrS), and the time between images for each
planar PIV case.

varied while keeping the bed slope fixed (see Table 3.5 for a list of cases). The bed slope

was always chosen to be ∼ 0.1◦ to avoid the formation of large, static bubbles on the

lid which could cause strong reflections and damage the camera. Also included in Table

3.5 is a source Froude number for each case, FrS = Uc/
√
g′Lc, where the characteristic

velocity scale Uc = Q/A, Q (m3 s−1) is the fluid influx Q, divided by the area of the

inlet A = 5.07× 10−4 m2, g′ is the reduced gravity, and Lc = 0.0254 m is the diameter of

the inlet. For all cases, FrS is above 1 (in the range 1.65 to 4.04) suggesting that wave

disturbances generated at the inlet cannot affect the flow front.

Seeding Particles

In PIV, the fluids involved are seeded with tracer particles that are visible to the camera.

There are a number of factors related to these particles to be optimised (Adrian & Wester-

weel, 2011; Raffel et al., 2018; Wieneke, 2017). They should fulfil various criteria, namely

being: small enough to follow the flow without influencing it; large enough to have good

illumination properties; chemically inert; close to neutrally buoyant; and symmetrical

(Hadad & Gurka, 2013). Silver-plated hollow glass spheres with mean diameter 10µm

(distribution 2−20 µm) and density 1400 kg m−3 were therefore selected. The particles

are symmetrical, and highly reflective. They are also small enough to follow the flow,

as can be shown by calculating the Stokes velocity (Ug =
d2p(ρp−ρ)g

18η
= 1.72 × 10−5m s−1

where dp is particle diameter, ρp the particle density, ρ the liquid density, g the grav-

itational acceleration, and η the dynamic viscosity of the fluid) and relaxation time

(τr =
d2pρp

18η
= 6.86 × 10−6s) using the particle details and KDP fluid details in Table
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Figure 3.7: Flow rate vs. pump setting for the gear pump in the planar PIV work.

3.4 (Raffel et al., 2018). These indicate that the settling velocity is significantly smaller

than the typical measured velocity, and that the particles accelerate rapidly to the fluid

velocity. Therefore the particles selected are appropriate for the measurements taken.

The PIV System

Creation of a light sheet in PIV typically uses lasers as they produce coherent, monochro-

matic light with high energy density that can be shaped into a thin sheet (Raffel et al.,

2018). As two images are taken very close together a double-pulsed laser is often used

to avoid the need for a second laser, with the pulses synchronised with image collection

(Adrian & Westerweel, 2011). Additionally, pulsed laser systems provide the needed

light intensity while also effectively freezing particle motions by controlling image expo-

sure (Grayson, 2018). The light sheet should be kept as thin as possible, as the goal is to

capture two-dimensional flow and this technique is not able to distinguish motion in the

third dimension. Here, a pulsed 532 nm Nd:YAG laser with maximum energy of 50 mJ

was used to illuminate a central vertical plane in the tank parallel to the flow.

A camera, positioned perpendicular to the flow, is used to take images synchronised

with the laser pulses at a specified time difference (∆t). In this work, the camera used

was a DANTEC Dynamics SpeedSense camera with a Zeiss ZF.2 50 mm f/1.4 lens with

aperture set to f/2.0 that captured roughly 0.2 m of flow horizontally (approximately

halfway between the inlet and outlet) and 0.18 m vertically. The top and back of the

tank were covered with a black aluminium polyethylene composite panel both to improve

the image quality and contain the laser light. This panel also covered the top 2 cm of the

front to further protect against camera damage due to bubbles. The tank was surrounded

with light-tight laser curtains, and ambient illumination was minimised. To maximise the

measurement duration while still capturing the full flow, the images were collected after

the dense fluid had started being pumped into the tank but several seconds before the

head would reach the measurement region. In each case, images were collected for 70 s

at a rate of 50 Hz.
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Figure 3.8: Flow chart illustrating the steps involved in planar PIV.

Figure 3.9: Images illustrating the adaptive PIV technique from a PIV case in this work. The left image
illustrates a section of the vector field after the first adaptive PIV iteration, and the right image the
same section after the second iteration. The blue squares indicate the locations of interrogation areas
associated with the identified velocity vectors scaled such that they do not overlap, and the red/yellow
squares show actual interrogation area size for the vector in the middle of the section.

3.1.3 The Adaptive PIV Algorithm

Preprocessing

Prior to processing, the images were modified to improve their quality. The effects of

image artefacts (such as reflections from the Perspex walls of the tank, and shadows

due to residual seeding from previous runs or bubbles attached to the side-walls) were

removed. This was achieved by calculating a mean of all collected images from a single

run, and subtracting this mean from each image individually.

Adaptive PIV

The velocity field was generated using the adaptive PIV method in DANTEC Dynamic

Studio version 6.4 (described in detail in DantecDynamics (2018)). This technique ini-

tially establishes a scale factor – the conversion ratio between pixel displacement and

displacement in metres – by the user specifying a known physical distance in a calibra-
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tion image. The images are then divided into interrogation areas (IAs) with user-specified

size and spacing. In this work, for all cases the space between IAs was set to 16 pixels

both horizontally and vertically. A cross-correlation technique is used to compare each

IA between images (separated by time ∆t). In essence, a matrix is created for each IA

containing the possible pixel displacements due to each particle in the first image having

moved to the position of each particle in the second image. If the IA is sufficiently small,

the ‘actual’ displacement of every particle within an IA will be similar, and different to the

contributions from the ‘incorrect’ possible motions. Therefore, when the cross-correlation

matrix is examined there will be a peak at the ‘correct’ displacement.

The choice of ∆t is crucial, as a major source of error in PIV is the loss of a particle

between the first and second images. When this is a result of in-plane motion, namely

because the original particle was close to the edge of the interrogation area, the effect may

be minimised by overlapping the interrogation areas, which also increases the resolution of

the velocity field produced (Willert & Gharib, 1991). In order to maximise the ability of

the software to track a particle between images, it is recommended that particles not move

more than ∼ 1/4 of the size of the IA in time ∆t (Adrian & Westerweel, 2011). Out-of-

plane motions, where particles move out of the illuminated plane due to three-dimensional

motions, are harder to overcome. The only remedy is to reduce ∆t. Therefore, ∆t should

be sufficiently large to detect the particle motions and sufficiently small to prevent too

many particles leaving the measurement region. Figure 3.11 demonstrates typical motion

of particles in this work between images with the chosen value of ∆t = 20 ms as stated

in Table 3.5.

When conducting adaptive PIV, the size and shape of the IAs, and hence the reso-

lution of the velocity field, is dependent on the number of seeding particles in a given

volume of fluid. Therefore, to an extent increasing the number of particles results in a

higher-resolution velocity field. However, the particles must not become so closely packed

that they are indistinguishable. Keane & Adrian (1992) and Unsworth (2015) recommend

at least ∼ 10 particles per IA. Through trial and error, it was determined that a concen-

tration of 0.0015 g L−1 in the current and 0.0014 g L−1 in the ambient was appropriate for

these experiments, as shown in Figures 3.10 and 3.11.

User-specified conditions dictate whether the generated displacement is accepted or

rejected, for example by considering a minimum required signal to noise ratio (which uses

the root mean square of the negative correlation values to estimate the noise level and

assumes the displacement to be valid if correlation peak to noise level ratio is larger than

the user-specified value) or an absolute peak height requirement. In this work, a particle

was deemed to have been detected if the grey scale peak was 5 times the background

noise floor, and only correlation peaks above 0.25 were accepted. Any rejected values

are replaced with an average of the results from neighbouring IAs (here, validation and

substitution was based on a 5 × 5 neighbourhood with a minimum normalisation of 0.1
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Figure 3.10: Example whole-field PIV image illustrating seeding density.

Figure 3.11: PIV images showing seeding density and movement of particles in time ∆t, with yellow
lines indicating interrogation areas.
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Figure 3.12: Histograms showing (left) potential peak locking and (right) no peak locking.

and an acceptance limit of 2). In this way an estimated pixel displacement for each IA

is obtained, which can be converted to a velocity using the time between images and the

scale factor.

In adaptive PIV, the size and shape of the IAs subsequently iterates through smaller

and smaller sizes, repeating this process until user-specified conditions on local seeding

density and velocity gradients within each IA are met. The minimum and maximum

allowable IA sizes are user-specified (here, the minimum and maximum IA sizes were

chosen to be 32 and 128 pixels respectively both horizontally and vertically), and the

maximum size is used for the first iteration. Subsequent iterations reduce the size of the

IA only where this is justified by seeding density and flow gradients. In this work, the

IA size was adjusted in order to find ∼ 10 particles per IA. The shape of the IAs was

automatically adjusted in an attempt to enforce the magnitude of each velocity gradient

being ≤ 0.1, and the combined effect of the gradients√(
∂U

∂X

)2

+

(
∂V

∂X

)2

+

(
∂U

∂Y

)2

+

(
∂V

∂Y

)2

≤ 0.2, (3.1)

where U and V are the downstream and vertical velocity vectors (here in the form of

pixel displacements) and X and Y are the horizontal and vertical directions (here with

units of pixels). This resizing/reshaping was done iteratively, with iterations stopping for

a particular IA once the translational component of the shape correction for that IA was

less than 0.01 or once ten iterations had been reached.

Repeating this method using the second and third images (and so on) allows the

velocity field over time to be generated. The velocity field produced in this work was on

a grid with spacial resolution 3 mm× 3 mm.

Checking Data Quality

The generated displacements were inspected to ensure effects such as peak locking (in

which the measured displacements are biased towards integer values) were not present

(Michaelis et al., 2016). This was done by considering histograms of downstream and

vertical pixel displacement for a particular timestep (see Figure 3.12). These histograms
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Figure 3.13: Scatter plot illustrating the identification of spurious vectors.

also aided in the identification of spurious vectors, with displacements well outside the

typical range. Figure 3.13 shows an example scatter plot of downstream and vertical

displacements. Vectors outside the box were considered spurious. For the data presented

in this work, the number of spurious vectors identified in each data set was low (< 0.5%

of the total vectors in the body).

3.2 Shake-the-Box Particle Tracking Velocimetry

3.2.1 Background

A different experimental method is needed to investigate the third component of velocity.

Generally, two classes of technique have been used to conduct time-resolved measurement

of flows with velocity in three dimensions: extensions to the PIV method (for example

tomographic PIV, tomo-PIV), and particle tracking velocimetry (PTV) (Schanz et al.,

2013, 2014). Like planar PIV, they are non-intrusive, optical techniques for generating

instantaneous whole-field velocity fields. Tomo-PIV requires a tomographic reconstruc-

tion of the particle field and a subsequent three-dimensional cross-correlation to establish

a gridded velocity field (Elsinga & Westerweel, 2012; Scarano, 2012). This allows the

use of high seeding densities, and the gridded nature of the fields produced allows easy

computation of quantities like vorticity and swirling strength. However, there is also

a high incidence of ghost particles that may bias velocity results, and each timestep is

computationally expensive (Schanz et al., 2013).

PTV uses triangulation to establish particle positions and constructs Lagrangian par-

ticle tracks by finding matching particles across timesteps (Schanz et al., 2013; Tan et al.,

2019). The computational cost of each timestep is lower than for tomo-PIV, and particle

tracks can give additional information about the flow compared to a gridded field (for

example more accurate accelerations). However, the seeding density is typically required

to be an order of magnitude lower than that used in tomo-PIV, reducing the resolution

of the reconstructed velocity field (Raffel et al., 2018; Schanz et al., 2015).

The Shake-the-Box PTV (STB) algorithm overcomes the seeding density limitations

of PTV (Novara et al., 2016; Schanz et al., 2013, 2014, 2016; Tan et al., 2019). The
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Author Flow Type

Schröder et al. (2016) Coherent structures in near-wall turbulence.

Huhn et al. (2017) Flow in a thermal plume.

Jux et al. (2018) Flow around a full-scale cyclist.

Steinmann et al. (2019) Drop impact at air-water interface.

Usherwood et al. (2020) Lift generated by gliding raptors.

Table 3.6: Some examples of the existing research using Shake-the-Box PTV.

MiniShaker
LED 
array

Steps t,
t ⩽ n

Initialisation

Steps t,
t > n

Triangulate new / 
untracked particle 

locations from residual

Predict positions using 
step t-1 tracks, shake to 

minimise residual

Add new tracks of 
length n to get step 

t tracks

Images from 4 cameras

Image processing
(mean subtraction etc.)

Calibration

Figure 3.14: The steps involved in generating particle tracks from Shake-the-Box images.

algorithm assumes that if the trajectory of a particle is known for several timesteps,

then that particle should not disappear within the measurement region and its location

in the next timestep can be accurately predicted. Small errors can be corrected using

image matching schemes. This assumption allows reconstruction of a particular timestep

with greater accuracy, with higher seeding densities and faster reconstruction times. The

technique is described in detail in Schanz et al. (2013, 2016), and the steps involved are

summarised in Figure 3.14. As a relatively new technique it has not yet been applied to as

wide a range of flows as planar PIV, however Table 3.6 lists some of the existing research

using STB. The produced velocity fields have been demonstrated to be comparable in

quality to those from tomo-PIV with similar seeding densities, but are generated in a

much shorter time frame (Novara et al., 2016; Schanz et al., 2013, 2014). What follows

is a more detailed description of those steps, ways in which high quality data can be

obtained, and the experimental setup used in this work.
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Figure 3.15: Flow rate vs. pump setting for the gear pump in the STB work.

3.2.2 Experimental Setup

Fluids

The STB experiments were conducted in the same experimental setup as the PIV work.

Similar to planar PIV, STB is an optical technique and the same refractive index re-

strictions apply to the choice of fluids. Therefore the same fluids were used as for the

planar PIV work, prepared in the same way. However, due to a significant amount of

time elapsing between the planar PIV and STB work, the gear pump had been serviced

resulting in a significantly different relationship between pump frequency and flow rate,

shown in Figure 3.15.

Seeding Particles

The particles needed for STB have similar requirements to planar PIV. However, as

the particles across the entire measurement depth must be in focus (requiring a smaller

optical aperture), larger particles are needed to increase the image intensity (Scarano

et al., 2015). As with planar PIV, the particle concentration must be low enough to

identify individual particles (Schanz et al., 2015). As a volume is illuminated and imaged

rather than a plane, the particle concentration in the fluid must be lower than for planar

PIV. For accurate reconstruction of the velocity field, the seeding density should be

restricted to O(0.1) particles per pixel (Schanz et al., 2014).

For this work, two different particle types were used. First, LaVision Polyamide par-

ticles HQ with mean diameter 60 µm and density 1030 kg m−3 were used at concentration

0.003 g L−1 in both the current and ambient fluids. Second, Cospheric polyethylene mi-

crospheres UVPMS-BO-1.00 125-150µm with density 1000 kg m−3 and > 90% of particle

diameters within the stated range were used at concentration 0.033 g L−1 in the current

fluid and 0.020 g L−1 in the ambient fluid. The Cospheric particles were coloured fluo-

rescent orange. The wavelengths of the light reflected by these particles are different to

that reflected by the Perspex walls of the tank. Therefore application of an appropriate
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Case 8 9 10 11 12 13
Influx (Ls−1) 0.03 0.03 0.08 0.08 0.15 0.15
FrS 0.73 0.73 1.86 1.86 3.36 3.36
∆t (ms) 20 20 20 10 10 10
Seeding Pa Fl Pa Fl Pa Fl

Table 3.7: Details of the influx, source Froude number, time between images, and seeding type for each
STB case. Fl refers to the fluorescent Cospheric particles, and Pa to the LaVision polyamide particles.

filter, with a cutoff at wavelength 610 nm, to the camera lens resulted in improved image

quality with less impact from Perspex and bubble reflections.

The Cospheric particles are hydrophobic. In order to encourage homogeneous distri-

bution of the particles in the experimental fluids, they must be coated with surfactant

prior to use. After weighing out the desired quantity of particles, the seeding particles

for each fluid were placed in a solution of 20 mL deionised water and 0.1 g Tween 80

surfactant, and rotated for at least 4 hours in a Stuart SB3 tube rotator. While this did

appear to improve the distribution of particles, a large proportion of the particles floated

on the fluid and remained in the mixing tanks rather than being evenly distributed. The

polyamide particles also required a small amount of surfactant, in this case ILFORD IL-

FOTOL wetting agent, and were shaken by hand with a small volume of the experimental

fluids and a drop of surfactant.

The Stokes velocity (Ug) and relaxation times (τr) of these particles can be calculated

to demonstrate their suitability for this work. Considering these particles in the two

experimental fluids, the fluorescent Cospheric particles had Ug between −3.77×10−4m s−1

and −1.07× 10−4m s−1 and τr between 9.08× 10−4s and 9.27× 10−4s and the polyamide

particles had Ug between −1.97× 10−5m s−1 and 3.05× 10−5m s−1 and τr between 3.20×
10−4s and 3.27×10−4s. These indicate that the settling velocity was significantly smaller

than the typical measured velocity, and that the particles accelerated rapidly to the fluid

velocity. Therefore the particles selected were appropriate for the measurements taken.

The STB System

The STB setup consisted of illumination from a LaVision Blue LED-Flashlight 300, an

array of 72 LEDs operated above nominal LED current to generate short pulses with very

high light intensities. This was combined with a LaVision MiniShaker TR-L, a set of 4

Imager M-lite 2M cameras in a fixed arrangement, that captured a volume within the tank

that extended throughout the entire height, to ∼5 mm from each side-wall, and ∼0.275 m

horizontally, with the closest edge being 0.5 m from the closest point of the outlet drop

(illustrated in Figure 3.16). To maximise the measurement duration while still capturing

the full flow, the images were collected after the dense fluid had started being pumped

into the tank but several seconds before the head reached the measurement region. Data

were collected for either 25 s or 50 s, depending on whether images were collected at 50 Hz
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Figure 3.17: Flow chart illustrating the steps involved in Shake-the-Box PTV. Here, OTF refers to the
optical transfer function.

or 100 Hz (see Table 3.7). In order to calibrate the images, a LaVision 106-10 double-

sided calibration plate was used and placed on the bottom surface of the tank, central in

the cross-stream direction and approximately central within the illuminated volume in

the downstream direction.

3.2.3 The Shake-the-Box Algorithm

Figure 3.17 shows the steps involved in generating velocity fields using STB. What follows

is a description of each step in turn. The software used for this work was a combination

of LaVision DaVis 10.0.5 and 10.1.0.

Preprocessing

Prior to processing, the images were modified to improve their quality. Reflections from

Perspex walls, and scratches, fixed bubbles, or smearing on internal walls, were removed.

A mask was also applied to any areas outside the measurement region. The steps taken

to improve image quality in each case depended on the seeding particles used. For the

polyamide particles, an average of all images was subtracted from each image, while for

the Cospheric particles the minimum intensity value for each pixel across all images was

identified and subtracted. For both particle types, any pixel intensities below a certain

value were set to 0 and the LaVision image preprocessing tool was applied. This involved

subtracting a 5-pixel sliding minimum from each image, along with applying 5× 5 pixel

Gaussian smoothing, sharpening, and multiplication of each pixel intensity by a factor of

5.
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Figure 3.18: Example image of the calibration target after mark identification.

Calibration

Calibration for STB involves three stages. The first requires collection of images of a

three-dimensional image plate, positioned centrally in the cross-stream direction (Schanz

et al., 2013; Schröder et al., 2015). These images were analysed using pinhole calibration.

As many as possible of the white marks on the calibration plate images are identified,

thereby identifying the conversion between pixel and metre distances for each camera. In

order to identify a sufficient proportion of the marks, the images needed some masking

and processing to remove the effects of bubbles and remnants of seeding from previous

runs. A separate set of calibration plate images, with collection of 10 target images per

camera, were collected for each data set, barring two cases that were conducted on the

same day. For 5 out of 6 cases, > 98.5% of marks were successfully identified during

calibration, while only 93% were identified for the final case. An example target image,

after automated identification of the mark positions, is included in Figure 3.18.

The second stage – volume self-calibration – is an iterative process intended to refine

the previous calibration step (Schanz et al., 2012; Wieneke, 2018). Errors could arise, for

example, due to slight inaccuracies in target manufacture, thermal expansion, errors in

the identified mark locations, or slight movement of the cameras between target image

and data image collection. In this work, between 250 and 500 images from the actual

data set were used for this purpose. The two-dimensional positions of each seeding

particle are identified, and possible three-dimensional locations from the combination of

two-dimensional images proposed based on an allowed error larger than the maximum

expected calibration error (Schanz et al., 2012; Wieneke, 2018). Mapping these three-

dimensional locations back on to two-dimensional images results in slightly different two-

dimensional locations to the original images. A disparity map is then produced for each
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Figure 3.19: Example disparity field from volume self-calibration of one camera in this work.

camera, with concentrated signals corresponding to the ‘true’ disparity while false values

due to ‘ghost’ particles are randomly distributed (Wieneke, 2018). To allow the disparity

to vary spatially, each three-dimensional volume is divided into nx×ny×nz subvolumes,

and the disparity for each subvolume calculated separately. One example disparity field

from this work is shown in Figure 3.19.

The final part of volume self-calibration requires calculation of an optical transfer

function (OTF) – a mapping between pixel and voxel intensities which describes how,

for example, a spherical particle in voxel space would be imaged by a camera in two-

dimensions (Schanz et al., 2012). The optical transfer function is allowed to vary in

space and for each camera to ensure that when two-dimensional images are used to

reconstruct the three-dimensional volume, the particles within the reconstructed volume

are spherical regardless of imaging distortions (Schanz et al., 2012; Wieneke, 2012). An

example representation of an OTF for one camera in this work is included in Figure 3.20.

With this function, the projection of a particle p with position (Xp, Yp, Zp) and intensity

Ip onto the image recorded by camera i can be calculated (I ipart) (Wieneke, 2012).

Initialisation

A key principle of STB is that existing particle tracks may be used to predict particle posi-

tions at future times (Novara et al., 2016; Schanz et al., 2013, 2014, 2016; Wieneke, 2012).

However, for the first few timesteps no particle track data is known. These timesteps

are known as the initialisation phase, during which all potential particle locations are

identified using iterative triangulation, also called iterative reconstruction of volumetric

particle distribution (IPR) (Wieneke, 2012).

IPR uses triangulation with an allowed error of 1 voxel to identify a possible volumetric

particle distribution. By combining the expected contributions of particles located at

these triangulated potential positions to the two-dimensional camera images (I ipart), an
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Figure 3.20: Example optical transfer function from one camera for this work.

overall projected image can be generated for each camera i (Wieneke, 2012),

I iproj =
∑
p

I ipart. (3.2)

Subtraction of these projected two-dimensional images from the originally captured flow

images (Iorig) generates a residual image

I ires = I iorig − I iproj. (3.3)

The particle positions and intensities are updated through a number of iterations

of ‘shaking’ (described below) and new residual images are generated (Schanz et al.,

2016). In this work, 4 iterations of shaking were performed. Further IPR iterations (in

this work 3 further iterations) are carried out on the residual images for each timestep

(Schanz et al., 2016; Wieneke, 2012). Before each iteration, as many traces of previously

identified particles as possible are removed from the residual images using the optical

transfer function (Schanz et al., 2016). Having identified the particle distributions in

this manner for a set number of timesteps, n (in this work, n = 4), a search radius is

applied around each particle in the reconstructed volume from timesteps t + 1 − n to

t, allowing the identification of particle tracks of length n (Schanz et al., 2016). These

tracks are checked to ensure velocities and accelerations are within certain limits, here

displacements no greater than 20 voxel with 1 voxel maximum absolute change in particle

position.
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Shaking

The initial volumetric locations (Xp, Yp, Zp) and intensities (Ip) of the particles are

updated to (X ′p, Y
′
p , Z

′
p) and I ′p by analysing the particle-augmented residual (Schanz

et al., 2016). The particles are iteratively moved in small steps (here δS = 0.1 voxel) in

each spatial direction. Beginning with the downstream position, the particles are moved

from their initial positions to X ′1 = Xp− δS, X ′2 = Xp, X
′
3 = Xp + δS. The local residual

(R) is calculated using the recorded images, Iorig, the projected images, Iproj, and the

projection of the currently treated particle, Ipart[X,Y,Z,IP ], as

R[X ′, Y ′, Z ′, Ip] =
∑
i,xi,yi

(I ires+p − I ipart[X′,Y ′,Z′,Ip])
2, (3.4)

where I ires+p = I ires + I ipart[X,Y,Z,Ip], and R is the sum over all cameras and over a small

window around the projected particle centre (with size determined by the OTF and with

spatial positions x, y) (Schanz et al., 2016; Wieneke, 2012). The 3 values of R, calculated

at X ′1, X
′
2, X

′
3, are fitted using a second order polynomial function, and the minimum of

this function determined. The particle position is updated to the point between X ′1 and

X ′3 that minimises the residual (Schanz et al., 2016; Wieneke, 2012). This is repeated for

the Y and Z directions using the updated X (and Y ) location as an initial position. The

particle intensities are updated as (Schanz et al., 2016; Wieneke, 2012)

I ′p = Ip

√ ∑
p,xi,yi

(Ires+p)∑
p,xi,yi

(Ipart[X′I ,Y ′I ,Z′I ,Ip])
. (3.5)

Here, particles were deleted if their intensity dropped below 10% of the average particle

intensity, if they were within 1 voxel of another particle, or if their predicted location was

outside the measurement region.

Tracking

For the remaining timesteps, the computational effort involved in locating particles in

space can be considerably reduced by using the known particle track information (Schanz

et al., 2013, 2014, 2016). The tracks are extended by applying a Weiner filter to give

predicted particle locations, with parameters adjusted to account for reduced accuracy

of particle positions due to experimental noise, or to consider the increased accuracy of

longer tracks. These predicted locations are assumed to be within a couple of pixels of

the ‘true’ locations, which are identified through a few iterations of ‘shaking’. The use

of tracks to validate particles eliminates most ‘ghost’ particles, which typically do not

produce coherent tracks over several timesteps (Novara et al., 2016).

Having used this tracking technique to identify the locations of the majority of par-

ticles (Schanz et al., 2013, 2014, 2016), untracked particles and those newly entering the
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each timestep for one case.

measurement region are identified. This is done by applying IPR to the residual images

calculated after removing the contributions of tracked particles. These residuals will be

considerably sparser than the original images, resulting in a less complex reconstruction

problem than in the initialisation phase and fewer/faster IPR iterations are needed. When

calculating the residuals, to ensure that the identified particles are removed from the im-

ages as thoroughly as possible, a wide sampling of the OTF is used (unlike the narrow

sampling applied when calculating R during a shake step) and the particle intensities are

multiplied by a constant (here 1.5). Having identified the new potential particles, any

new particle tracks of length n are identified in the same way as during initialisation.

Here, to ensure the identified tracks were sufficiently smooth, a median filter was applied.

For the algorithm to accurately and rapidly reproduce particle tracks, the positions of

a high percentage of particles should be tracked rather than triangulated (Schanz et al.,

2016). A plot showing the distribution of identified particles, tracked particles, and newly

added tracks at each timestep for an example case in this work is shown in Figure 3.21.

Export and Postprocessing

In order to analyse the velocity field and compare to the PIV work, the particle tracks

were converted into a gridded velocity field. This was done through ‘binning’. Here, the

velocity components at a grid point were calculated by 2nd order polynomial regression of

the closest available particles over 5 timesteps. The values were ‘binned’ using subvolumes

of 128 voxel, with 83.33% overlap. This corresponded to grids with spacing 21 voxels, or

2.6 mm. Grid points corresponding to subvolumes with no tracked particles contained no

velocity information.
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3.3 Direct Numerical Simulation

In the present study, the spectral element solver Nek5000 (Nek5000, 2017) was employed

to establish the effects of both Reynolds and Schmidt numbers on turbulence in the body

of constant-influx gravity currents through three-dimensional direct numerical simulation

(DNS). Below, the numerical setup is outlined, with justifications of design choices and

setup parameters.

3.3.1 Background

As with PIV, numerical methods in general and DNS in particular have been used exten-

sively to investigate the structure and dynamics of gravity currents. DNS is a technique

for generating quantitative data characterising a flow by numerically solving the govern-

ing equations of the flow, resolving all scales of motion. It is described in detail in several

places, e.g. Moin & Mahesh (1998), and the steps involved are summarised in the follow-

ing sections. The DNS data can be compared directly to the experimental data described

previously, but is not limited by the density and Schmidt number restrictions resulting

from refractive index matching requirements. However, there are limitations such as the

large computational cost that limits the range of Reynolds and Schmidt numbers that

can be investigated. Table 3.8 summarises some of the existing numerical investigations

into gravity current work.

3.3.2 The Governing Equations

Before conducting any numerical investigation, the equations that govern the system of

interest must be identified. Gravity current flows are governed by the incompressible

Navier-Stokes, salinity and continuity equations, which take the form

ρ (∂tU +U · ∇U) = −∇p+∇ · τ + ρg, (3.6)

∂tS +U · ∇S = D∇ · (∇S) , (3.7)

∇ ·U = 0, (3.8)

where τ = µ[∇U +∇UT ], and g = gĝ. Here ρ is density, U fluid velocity, p pressure, τ

the stress tensor, µ dynamic viscosity, g and ĝ the magnitude and direction of the body

force g (in this case gravitational acceleration), S salinity, and D mass diffusivity.

As the difference in density between the current and ambient fluids in this work is

small, the Boussinesq approximation can be applied (Härtel et al., 2000; Simpson &
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Ö
zg

ök
m

en
&

C
h
as

si
gn

et
(2

00
2)

D
N

S
,

tw
o-

d
im

en
si

on
al

so
lu

te
,

lo
ck

-
re

le
as

e
E

ff
ec

t
of

b
ot

to
m

sl
op

e
an

d
sa

li
n
it

y
on

cu
rr

en
t

st
ru

ct
u
re

.

Ö
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Parameter Non-Dimensionalisation

Length x̃ = x/Lc

Velocity Ũ = U/Uc

Time t̃ = (Uc/Lc)t = t/tc

Pressure ∇P̃ = (Lc/ρaU
2
c )∇P

Stress tensor ∇ · τ̃ = (L2
c/Ucνρa)∇ · τ

Salinity ∆S̃ = (S − Sa)/(SI − Sa) = ∆S/∆SI

Table 3.9: Definitions of the non-dimensionalisations used in this work, where x is position, t is time,
tc = Lc/Uc a characteristic time, ∆S = S − Sa, and ∆SI = SI − Sa.

Britter, 1979). This states that the density may be assumed to be constant (ρ = ρa

where ρa is the density of the ambient fluid) everywhere except for the ρg term. For this

term, the dependence of density on salinity must be considered. Specifically, here the

simplified linear dependence described by Penney (2017) will be employed,

ρ ≈ ρa(1 + β(S − Sa)) = ρa(1 + β∆S), (3.9)

where (·)a is a property of the ambient fluid, (·)I a property of the dense fluid, and

β = 1
ρ
∂ρ
∂S

the coefficient of haline contraction. Applying these to (3.6) results in

ρa (∂tU +U · ∇U) = −∇p+∇ · τ + ρa(1 + β∆S)g. (3.10)

The non-dimensionalisations defined in Table 3.9 can then be used to find the non-

dimensional, Boussinesq Navier-Stokes equation,

∂Ũ

∂t̃
+ Ũ · ∇Ũ = −∇P̃ +

1

Re
∇ · τ̃ +

1

Fr2
d

∆S̃ĝ, (3.11)

where (̃·) indicates a dimensionless variable, P = p + ρgY , and the Reynolds (Re) and

densimetric Froude (Frd) numbers are defined as Re = UcLc/ν, and Frd = Uc/
√
g′Lc =

Uc/
√
β∆SIgLc with Uc and Lc being characteristic velocity and length scales of the flow.

The effect of adding a slope θ on g must also be considered, specifically

g = (g sin(θ), g cos(θ), 0). (3.12)

Similar treatment can be applied to the equation for salinity. Applying the non-

dimensional parameters in Table 3.9 to (3.7) results in the non-dimensional salinity equa-

tion

∂t̃S̃ + Ũ · ∇S̃ =
1

ReSc
∇ · ∇S̃, (3.13)

where Sc = ν/D is the Schmidt number, and ν the kinematic viscosity. The product of
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Re and Sc can also be called the Peclet number, Pe = ReSc = UcLc/D.

3.3.3 Direct Numerical Simulation

The governing equations may be modified to make them less computationally expensive

to solve. The most accurate choice is not to modify the equations at all and instead

to carry out direct numerical simulation (DNS) (Meiburg & Kneller, 2010; Pope, 2001;

Wilcox, 2006). In this case, the mesh used must be sufficiently fine to resolve all scales

of motion explicitly. This requires a very fine grid combined with a small timestep, and

as such can be extremely computationally expensive. DNS is therefore not typically an

option for environmental flows, though it is becoming increasingly popular as the requisite

hardware becomes more available and less expensive.

A computationally cheaper option is large eddy simulation (LES), in which scales

of motion below a certain level (determined by the grid spacing) are not resolved but

rather are modelled (Meiburg et al., 2015; Pope, 2001; Wilcox, 2006). The governing

equations are filtered to remove the smaller scale motions, and the effect of all filtered

motion appears as an additional subgrid-scale (SGS) stress term, ξij =

(

UiUj −

(

Ui

(

Uj, in

the momentum equation and an SGS flux term, κj =

(

UiS−
(

Ui
(

S, in the salinity equation

∂

(

Uj
∂xj

= 0, (3.14)

∂

(

Ui
∂t

+

(

Uj
∂

(

Ui
∂xj

= − ∂

(p

∂xi
+ ν

∂2

(

Ui
∂xjxj

− ∂ξij
∂xj

, (3.15)

∂

(

S

∂t
+

(

Ui
∂

(

S

∂xi
= D

∂2

(

S

∂xi∂xi
− ∂κj
∂xj

, (3.16)

where

(

(·) indicates a filtered quantity (Akselvoll & Moin, 1996; Chumakov, 2005; Chu-

makov & Rutland, 2005). Both (3.15) and (3.16) have terms that require a model for

closure. Many such models have been proposed, such as eddy-viscosity or Smagorin-

sky models, each with their own advantages (Kumar & Dewan, 2016). LES is able to

produce detailed, time-dependent large-scale flow structures, using a coarser mesh than

would be needed for DNS. This reduces computational cost, allowing the study of flows

with higher Reynolds numbers. However, when simulating flow in gravity currents even

LES is typically limited to lower Reynolds numbers than are seen in environmental flows

due to the presence of a solid boundary (which introduces a need to resolve small eddies

and boundary layers in the near-wall region). Additionally, the solutions obtained using

LES are less accurate than those from DNS, though depending on the purpose of the

simulations they may be sufficient.
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Reynolds-Averaged Navier-Stokes (RANS) simulations reduce the computational cost

still further, allowing the study of high Reynolds number flows (Magoulès, 2011; Meiburg

et al., 2015). The solution is found by numerically integrating the RANS equations,

which themselves are found by time- or ensemble-averaging the governing equations for

continuity, momentum and density (Meiburg et al., 2015; Tu et al., 2018). The equations

look similar to (3.14), (3.15), and (3.16), however

(

(·) indicates an ensemble-averaged

quantity, ξij represents the Reynolds stresses and κj the scalar fluxes (Meiburg et al.,

2015). In order to compute ξij and κj, additional closure equations are required, often

in the form of a transport equation for turbulent kinetic energy (k) and dissipation rate

(ε) (Magoulès, 2011; Meiburg et al., 2015; Tu et al., 2018). Such simulations produce

only mean flow characteristics, and the solutions found are less accurate than either LES

or DNS. Additionally, while the SGS terms in the LES equations depend primarily on

the more universal smaller unresolved eddies, the equivalent terms in the RANS equa-

tions depend on larger flow structures that vary with boundary conditions. This makes

a universal RANS model difficult to construct, and obtaining high quality RANS predic-

tions requires significant modification depending on the flow conditions (Magoulès, 2011;

Meiburg et al., 2015; Tu et al., 2018).

As the purpose of this work is to consider turbulence structures within the body of

the flow, and therefore time-dependent solutions of high accuracy are required, DNS was

employed. As a result, the Reynolds and Schmidt numbers will be limited to those that

can be simulated using the available computational resources.

3.3.4 The Spectral Element Method

In a situation where it is not possible to find an analytical solution to the governing

equations, as in this work, they must be solved numerically. This requires appropriate

discretisation in space and time. What follows is a brief summary of some of the common

methods of spatial discretisation, along with their advantages and disadvantages. For

simplicity, any descriptions will be in 1D space only.

Among the simplest techniques is the finite difference method (Iserles, 2009; van Kan

et al., 2005). Here, the domain is divided into a grid with spacing ∆x. The location of

each grid point can be expressed as xi, where i indicates the horizontal position. Boundary

conditions are imposed such that the solution is known on the domain boundaries, and

the solution to the governing equations at each grid point is estimated by approximating

derivatives using Taylor series expansions (Causon & Mingham, 2010):

Ui+1 = Ui +

(
∂U

∂x

)
i

∆x+

(
∂2U

∂x2

)
i

(∆x)2

2
+

(
∂3U

∂x3

)
i

(∆x)3

6
+ ... ,

Ui−1 = Ui −
(
∂U

∂x

)
i

∆x+

(
∂2U

∂x2

)
i

(∆x)2

2
−
(
∂3U

∂x3

)
i

(∆x)3

6
+ ... .

(3.17)
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As ∆x is small, (3.17) can be simplified by assuming that higher order terms of ∆x

are sufficiently small that they can be neglected – i.e. the sequence may be truncated.

The expression is said to be first order accurate if terms of order (∆x)2 and above are

truncated, second order accurate if terms of order (∆x)3 and above are truncated, and

so on.

Rearranging the first order truncation of (3.17) leads to the first order forward and

backward difference expressions (Iserles, 2009; van Kan et al., 2005),(
∂U

∂x

)
i

=
Ui+1 − Ui

∆x
+ O(∆x),(

∂U

∂x

)
i

=
Ui − Ui−1

∆x
+ O(∆x),

(3.18)

where Ui is the velocity at grid point xi, and O(∆x) indicates that the magnitude of the

truncation error (that is, the error introduced by truncating (3.17)) is of the same order

of magnitude as the grid spacing ∆x. The truncation error for these expressions may

be reduced by using a smaller ∆x (i.e. by using more points), by including higher order

terms from (3.17), or by using higher order polynomials that include more distant points.

The central difference expression for example, found by subtracting the expressions in

(3.17), looks like (Iserles, 2009; van Kan et al., 2005)(
∂U

∂x

)
i

=
Ui+1 − Ui−1

2∆x
+ O(∆x)2, (3.19)

which achieves the same increase in accuracy using a factor
√

2 decrease in grid spacing

that forward differencing achieves with a factor 2 decrease (LeVeque, 2007; van Kan et al.,

2005). This method is generally comparatively straightforward to implement and easy to

parallelise, but non-uniform meshes and some boundary conditions can be more complex

(Coleman & Sandberg, 2010). Finite volume methods are an alternative method, in which

the domain is divided into arbitrary control volumes. They avoid the need for coordi-

nate transforms (sometimes required in finite difference methods), by definition conserve

properties such as mass, momentum, and energy, and allow use of both structured and

unstructured meshes (making finite volume methods more applicable to complex geome-

tries) (Blazek, 2015; Tu et al., 2018). However, as well as being easier to implement in

general, finite difference methods allow easier use of high-order approximations (leading

to high-order accuracy of the spatial discretization) (Blazek, 2015; Tu et al., 2018).

The finite element method (FEM) divides the domain into elements that need not

be of the same size or shape (Hutton, 2004; Iserles, 2009; Liu & Quek, 2013; van Kan

et al., 2005). The solution is explicitly calculated on the vertices of these elements, or

nodes, and interpolation is used to approximate the solution within the elements. If a

general differential or integral equation in the domain x ∈ [0, L], LU(x, t) − f(x) = 0,
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is considered, where L is some differential or integral operator, the weak form of the

problem is established through multiplying by some test function and integrating,∫ L

0

ψ(x)LU(x)−
∫ L

0

ψ(x)f(x) = 0, (3.20)

where ψ(x) is the test function. The weak form is discretised, with the nodal solution

values treated as unknown variables and the problem solution expressed as a sum of the

nodal values multiplied by global basis functions that are only locally non-zero (e.g. tent

functions),

U(x, t) =
N∑
i=1

Ui(t)φi(x), (3.21)

where φi(x) are basis functions. This expansion is substituted back into the weak for-

mulation, and the integrals evaluated locally. This gives rise to an expression containing

two sparse matrices, which can be solved algebraically.

As in FEM, spectral methods approximate the solution to the differential equation

LU(x) = f(x) as a sum of basis functions φn(x),

U(x) ≈ UN(x) =
N∑
n=0

anφn(x), (3.22)

however these basis functions are here high order polynomials. The derivatives can then

be defined globally rather than locally (Boyd, 2001; Mendes et al., 2019), and as a result

the solution can be approximated in the whole domain rather than one small section

at a time. The coefficients an are chosen to minimise the residual function, which is

defined to be R = LUN(x) − f(x) and is equal to 0 for the exact solution. One way

to calculate these coefficients is using ‘collocation’, or the ‘pseudospectral method’, for

which the residual, U(x) − UN(x), is required to be equal to 0 at a set of points equal

in number to the undetermined coefficients (Boyd, 2001). This requires a conversion

between these grid points (‘real’ space) and the expansion coefficients (‘Fourier’ space) –

a Fourier transform. This can be costly, however if a Fast Fourier Transform (FFT) can be

used, the cost of which is relatively low (O(N logN)), it is less computationally expensive

than alternative methods of calculating an (which typically require evaluating integrals).

Generally, nonlinear products are computed in ‘real’ space, and spatial derivatives in

‘Fourier’ space, with linear operations being performed in whichever space minimises the

number of transforms required.

Spectral methods exhibit exponential convergence, giving them a significant advantage

over grid-based methods when it comes to high accuracy requirements. Additionally,

the high order of such methods results in higher accuracy, and fewer degrees of freedom

being required (Boyd, 2001; Mendes et al., 2019). Spectral methods are therefore memory
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minimising, and are able to tackle some problems that cannot be solved using grid-based

methods owing to memory limitations. However, each degree of freedom in a spectral

method is more computationally expensive than grid-based methods due to, for example,

the ability of FEMs to utilise sparse matrix equations. Spectral methods are therefore

not well suited to problems where the geometry is irregular or the solution is not smooth

(Boyd, 2001; Mendes et al., 2019).

Spectral element methods (SEM) are a subclass of Galerkin methods which are similar

to FEM, but use high degree piecewise polynomials as basis functions (such as

φi(x) =
P ′N(x)(x2 − 1)

N(N + 1)PN(xi)(x− xi)
, (3.23)

constructed from high order Legendre polynomials PN shown in Figure 3.22 (Boyd, 2001;

Fornberg, 1998; Lotfi & Alipanah, 2019; Rud, 2016)). Typically, this is done in con-

junction with a non-equidistant point distribution such as the Gauss-Legendre-Lobatto

(GLL) distribution shown in Figure 3.23 to avoid the large oscillations that result from

a regular grid (the Runge phenomenon) (Malm, 2011). This leads to an exponential de-

crease in the error in the calculated solution as in spectral methods, with the ability to

model more complex geometries of FEM. They therefore require fewer degrees of freedom

than a general FEM (which requires a much finer mesh to achieve the same accuracy),

however complex geometries are still more difficult to model (Wang et al., 2013). Due

to the slightly complicated nature of the domain considered in this work, as well as the

desire to minimise file size (thus reducing transfer times and storage requirements) and

take advantage of the exponential convergence properties of spectral methods, a spectral

element method was considered most appropriate.

3.3.5 Nek5000

The DNS work was conducted using the spectral element code Nek5000 to solve the non-

dimensional governing equations. This software was chosen because it is free and open

source, with strong parallelisability and scalability. Additionally, it has previously been

used to study similar flows to good effect (e.g. by Özgökmen et al. (2004)).

Time Discretisation

As well as spatial discretisation, the equations need to be discretised in time. Time

stepping in Nek5000 is done through a semi-implicit method combining kth order (in

this work 2nd order) backwards differencing and extrapolation (BDFk/EXTk) schemes

(Nek5000, 2015). A general time-dependent problem subject to initial conditions U 0 is

given by
∂U

∂t
= L[U ], U(t0,x) = U 0, (3.24)
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Figure 3.22: Illustration of (a) the first 5 Legendre polynomials, and (b) the basis functions constructed
from the first 5 Legendre polynomials (Boyd, 2001; Fornberg, 1998; Lotfi & Alipanah, 2019; Rud, 2016).
Six GLL points are also included, demonstrating that at each GLL point there is a single non-zero
Legendre basis function with value 1.

(a) (b)

Figure 3.23: Two-dimensional GLL distribution with 9 spatial points within each element in each di-
mension (order 8 polynomials) for (a) a single element, and (b) a combination of 9 elements (Boyd,
2001).
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where L[·] incorporates all spatial operators. The k-th order backward differentiation

formula for approximation of the partial time derivative looks like

k∑
j=0

bjU
n+1−j = ∆tL[Un+1], (3.25)

where Un is the solution at timestep n. As backwards differentiation is implicit, and

therefore computationally expensive, removal of at least some of the implicit behaviour

in L[·] is desirable. This can be done using the k-th order extrapolation formula

L[Un+1] =
k∑
j=1

ajL[Un+1−j]. (3.26)

When using an explicit time stepping method, the maximum timestep that can be

used while maintaining stability is determined by the Courant number (Iserles, 2009;

Morton & Mayers, 2005),

C =
URMS∆t

∆x
< 1, (3.27)

where URMS is the root mean square of the velocity. To maintain the stability of the

simulations, the Courant number in this work was limited to 0.5. While restricting it

to less than 1 should be sufficient, the size of a particular timestep is based on the flow

behaviour during the previous timestep. Restriction to 0.5 allows for acceleration without

breaking the stability requirement.

Computational Cost

In order to resolve all scales of motion, as required for DNS, the magnitude of the smallest

motions must be identified. For turbulent flows, this is generally stated as being the

Kolmogorov scales (Pope, 2001) for length (ηK), time (τη), and velocity (uη), which are

given by

ηK ≡
(
ν3

ε

)1/4

, τη ≡
(ηK
ε

)1/2

, and uη ≡ (νε)1/4, (3.28)

where ε is the rate of kinetic energy dissipation and ν the kinematic viscosity. For cases

with Sc > 1, it is in fact the more restrictive Batchelor scale (Andersson et al., 2011;

Donzis et al., 2014),

ηB = ηKSc
−1/2, (3.29)

which characterises the diffusion length for the solute that needs to be resolved. What

follows is a discussion of the impact of this requirement on the computational cost of

DNS.
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The number of grid points, Np, along a mesh with increments of size ∆x must be

Np∆x > LE, (3.30)

where LE is the length scale associated with the larger eddies in the flow. It can be shown

that (Lipatnikov, 2012; Sheng et al., 2000)

ε ≈ U3
RMS/LE, (3.31)

where

URMS =

√
U ′

2
+ V ′

2
+W ′2

3
, and U ′

2
= (Ui − Ui)2 . (3.32)

Substituting, this results in the expression

ηK =

(
ν3LE
U3
RMS

)1/4

. (3.33)

It is required that ∆x ≤ ηB in order to resolve this scale, and therefore

Np >
LE
ηB

. (3.34)

Substituting the expression for ηB,

LE
ηB

=

(
URMSLE

ν

)3/4

Sc1/2. (3.35)

A Reynolds number can be defined using URMS and LE as velocity and length scales,

ReT = URMSLE

ν
is the turbulent Reynolds number. From there, it can be seen that

LE
ηB

= Re
3/4
T Sc1/2. (3.36)

Therefore, in three dimensions, the number of required grid points

N3
p > Re

9/4
T Sc3/2. (3.37)

The total cost of the DNS is dependent not only on the number of grid points, but

also on the number of timesteps. For stability, the Courant number is restricted to C < 1

(Iserles, 2009; Morton & Mayers, 2005). The total time simulated is generally on the

order of four times the turbulence time scale (Pope, 2001), τ ≈ 4LE/URMS. The total

number of timesteps may therefore be estimated as

τ

∆t
=

4LE
URMS

URMS

C∆x
=

4LE
C∆x

=
4LE
CηB

. (3.38)
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However, as

Np >
LE
ηB

, (3.39)

(3.38) can also be approximated as

τ

∆t
=

4LE
CηB

≈ 4Np

C
≈ 4Re

3/4
T Sc1/2. (3.40)

Therefore, the total number of timesteps Nt ∝ Re
3/4
T Sc1/2.

The total number of operations, No, which provides an indication of the computational

cost of the calculation, is proportional to both the number of grid points, N3, and the

number of timesteps, Nt, i.e.

No ∝ Re
9/4
T Sc3/2Re

3/4
T Sc1/2, (3.41)

or when simplified,

No ∝ Re3
TSc

2 . (3.42)

This level of computational cost is clearly prohibitive, not only for environmental

flows (Meiburg et al., 2015) but also for the experimental work described earlier (for

which Re = O(5000) is typical and Sc = O(1000) (Andersson et al., 2011; Bird et al.,

2007; Bonometti & Balachandar, 2008; Reynolds, 1974)). As a result, compromises were

necessary regarding the maximum value of Sc that could be considered in this work. It

was, however, possible to establish patterns in the effect of increasing Sc and therefore

predict whether this limitation was responsible for any differences between the experimen-

tal and DNS work. Bonometti & Balachandar (2008) assert that at high Re = O(10, 000),

the effect of Sc on the head of gravity currents is small. This leads to an expectation

that for the higher Re cases, there should be little difference between the two strands of

work. However their discussion of the effects of Sc on the far less chaotic body, and on

three-dimensional flow features, is limited.

3.3.6 Numerical Setup

The numerical domain is depicted in Figure 3.24. All walls are no-slip, i.e. U = 0 on

the walls. The non-dimensionalisation, and how the values of Re and Fr will be varied,

must be considered. The parameters are chosen to closely replicate the experimental

work. Taking the height of the horizontal plastic near the inlet, which restricts the initial

current height, as the characteristic length scale (Lc = 0.05 m), the maximum average

velocity within the flow as the characteristic velocity scale (Uc = 0.065 m s−1), the ratio of

the two as the characteristic time scale (tc = Lc/Uc = 0.77 s), and accepting that the fluid

viscosities are sufficiently close that the viscosity of the dense fluid can be chosen rather

than allowing it to vary throughout the flow, the lowest influx PIV case has Re = 3250.
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Figure 3.24: DNS setup.

Re Sc Pe ν (m2 s−1) FrD UI (m s−1) D (m2 s−1)
100 1 100 3.26× 10−5 0.54 0.22 3.26× 10−5

100 10 1000 3.26× 10−5 0.54 0.22 3.26× 10−6

100 100 10000 3.26× 10−5 0.54 0.22 3.26× 10−7

500 1 500 6.53× 10−6 0.54 0.22 6.53× 10−6

500 10 5000 6.53× 10−6 0.54 0.22 6.53× 10−7

1000 1 1000 3.26× 10−6 0.54 0.22 3.26× 10−6

3000 1 3000 1.09× 10−6 0.54 0.22 1.09× 10−6

Table 3.10: Parameters for the various simulations conducted in this work, along with a haline contraction
coefficient of β = 1 and SI−Sa = 0.03 to achieve a 3% density difference. The characteristic length (Lc),
velocity (Uc) and time (tc) scales for every case are Lc = 0.05 m, Uc = 0.065 m s−1, and tc = Lc/Uc =
0.77 s.

A Re = 3000 DNS case can be constructed to match this PIV case. The viscosity and Lc

are chosen to be the same as for the PIV case, and Uc = 0.065 m s−1 chosen to give the

desired Re = 3000. To ensure that the lower Reynolds number DNS cases are comparable

to this Re = 3000 case, fluid viscosity is varied from the experimental value while keeping

the characteristic velocity and length scales constant. This gives a constant value of Fr

for all cases. Similarly, the inlet velocity from the Re = 3250 PIV case can be estimated

by dividing the influx by the inlet area. This is used as the inlet velocity for all DNS

cases (resulting in a fixed supercritical source Froude number of FrS = 1.65). See Table

3.10 for the parameters for each case, and the characteristic scales.

Modelling was performed for the inlet flow, with the inlet velocity distribution in-

tended to mimic the effects of the coarse mesh placed over the inlet in the experimental

domain. Seven smaller circles were defined within the original inlet circle, which had a

dimensionless radius of 0.254 and was centred at (Ỹ , Z̃) = (0.35, 1). The smaller circles

each had dimensionless radius 0.078 as defined experimentally, and were centred at

(Ỹ , Z̃) = (0.350, 1.000), (0.531, 1.000), (0.169, 1.000), (0.441, 1.150),

(0.260, 1.150), (0.441, 0.850), (0.260, 0.850).
(3.43)
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(Re, Sc)
No.

Elements
Polynomial

Order
(100, 1) 28720 8
(100, 10) 28720 12
(100, 100) 28720 12
(500, 1) 28720 12
(500, 10) 28720 12
(1000, 1) 28720 10
(3000, 1) 28720 12

Table 3.11: The number of elements and polynomial order used for each DNS case.

As the exact inlet velocity distribution could not be easily measured, a simple distri-

bution described by

Ũ = ŨI
√

sin((0.5 + 0.5r̃2)π) (3.44)

was employed (where r̃ varied from 0 to 1 across each small circle). Where the velocity on

the inlet was non-zero, the salinity was chosen to be S̃ = 1.03 compared to 1 in the rest

of the domain (and therefore ∆SI = 0.03), with a haline contraction coefficient of β = 1.

The outlet was also simplified, with a square outlet placed in a corner of the lowest plane

of the domain rather than a central circle in the same plane as in the experimental work.

Both simplifications were far from the DNS measurement region.

The domain was divided into elements, with the point distribution within each element

based on a GLL distribution. This was done using a Nek5000 tool, genbox, which divides

the domain into connected cubic regions (or elements) with a user-specified number of

elements in each dimension. The elements were clustered towards the bottom of the main

section, near the flow of interest. The elements were minimised in the raised sections at

either end of the domain, and in the drop above the outlet, where the flow was not of

interest to the investigation. Table 3.11 shows the number of elements and the polynomial

order used for each case. Figure 3.25 shows slices from an example mesh used in this

work.

3.3.7 Establishing sufficient resolution

As noted by Esfeh et al. (2017), while many publications state that mesh independence

analysis has been conducted, most fail to describe the techniques or criteria that have

been used. While the resolution in areas of the domain far from the measurement region

and that do not impact the main flow (specifically the raised sections at either end

of the domain, and the drop above the outlet) will likely not have been sufficient to

capture all scales of motion, within the main section of the domain sufficient resolution

was established. Here, two different techniques were used to establish that the meshes

were sufficiently refined to capture all scales of motion. First, the wall y+, x+, and z+
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Figure 3.25: Slices from one of the meshes used in this work including (bottom) an overall X-Y slice,
(top left) an overall Y-Z slice from the measurement region, (top centre) a partial X-Y plane from the
measurement region, and (top right) a partial X-Z plane from the measurement region.

Figure 3.26: Example energy spectrum, taken from Pope (2001, p. 229) showing the energy spectrum (E)
as a function of wave number (k) normalised by the Kolmogorov length (ηK) and velocity (uη) scales.
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Re (→)
Sc (↓) 100 500 1000 3000

1 • • • •
10 • •
100 •

Table 3.12: Parameter space, • = case conducted.

values were considered (Wilcox, 2006). These are defined as y+ = uwy/ν (and equivalent

statements for the other two spatial dimensions) where y is the distance from the grid

point to the nearest wall, uw =
√
τw/ρ the friction velocity, and τw the wall shear stress

(Magoulès, 2011). For turbulent flows, these values should be kept below 0.05 for the

first point away from the wall, and the first 10 points should be within y+ < 10 (Coleman

& Sandberg, 2010; Kim et al., 1987). Working within these constraints should ensure

sufficient resolution in the near-wall regions.

As discussed by Pope (2001), the energy spectrum can also be considered. The tur-

bulent fluctuations in the velocity field must be identified, and the two-point correlation

function of these fluctuations calculated. A log-log plot of the absolute value of the

Fourier transform of the correlation function is then plotted against the frequency. In

the centre of the frequency range, the gradient of the plot will in theory be −5/3. If the

resolution is sufficient to capture all scales of motion, the dissipative subrange, identified

by a steeper negative gradient, will also be captured (see Figure 3.26). If this steeper

section is not present, the spatial resolution may not be sufficient to capture all energy

levels in the flow. Bonometti & Balachandar (2008); Cantero et al. (2006, 2007); Necker

et al. (2002) claim, however, that 6 to 8 decades of decay in the energy spectrum for

all variables indicates sufficient resolution in a turbulent flow. In this work, the more

stringent change in gradient indicating the dissipative subrange was used to indicate suf-

ficient resolution. In regions considered sufficiently far from the flow of interest that the

main flow would not be affected (the raised sections at either end of the domain, and the

drop above the outlet), the spatial resolution was reduced to save computational cost. In

these outlying regions, it is therefore likely that the smallest scales of motion were not

captured.

3.3.8 Cases Investigated

The parameter space investigated was as shown in Table 3.12. The Reynolds and Schmidt

numbers were varied by changing the kinematic viscosity and the mass diffusivity. To

keep the DNS cases comparable to the experimental work, the bed slope was chosen to

be θ = 0.1◦. Cases were conducted on the ARC3 and ARC4 high performance computing

clusters at the University of Leeds.



Chapter 4

The Structure of the Pseudo-Steady

Body

Internal gravity waves have been postulated to exist in gravity currents, yet they have

never been observed experimentally. In this chapter, Particle Image Velocimetry (PIV)

is used to generate instantaneous two-dimensional experimental measurements of grav-

ity current body flow. The modal dynamics of internal waves are directly observed in

the body of a constant-influx experimental gravity current flow. Spectral analysis and

dynamic mode decomposition, of streamwise and vertical velocity, are used to identify

the dominant internal waves within the flow. The estimated, Doppler shifted, Brunt-

Väisälä buoyancy frequencies of these key spectral modes show that they are gravity

waves. The experimental data, gathered using particle image velocimetry, enables the

instantaneous, whole-field, dynamics of constant-influx solute gravity currents to be re-

solved. The internal waves observed in the gravity current propagating over a smooth

surface are thus demonstrated as generated by interfacial instabilities between the flow

and ambient fluid. A critical layer is identified within the flow, located at the height

of the maximum internal velocity. Irreversible internal wave breaking that has been

postulated to occur at this critical layer suggests formation of internal eddy transport

barriers, demonstrating that new dynamic models of turbulent mixing in gravity currents

are needed.

4.1 Background

Gravity currents, also known as density currents, are a common class of geophysical flow

that occur in many natural and man-made environments (Simpson, 1997; Ungarish, 2009).

They are of particular relevance to the study of atmospheres and oceans, with examples

including thunderstorm outflows, and sediment transport in lakes and oceans (Bonnecaze

et al., 1993; Britter & Linden, 1980; Parsons & Garćıa, 1998; Simpson, 1997; Talling,

2014). Owing to their prevalence, and the fact that they are the primary mechanism for



63

the transport of sediment, solutes, and heat in oceans (Dorrell et al., 2019; Talling, 2014),

extensive research has been conducted to establish the structure and dynamics of gravity

currents through both experimental (Ellison & Turner, 1959; Gray et al., 2005; Hacker

et al., 1996; Hallworth et al., 1996; Kneller et al., 1999; Middleton, 1966) and numerical

investigations (Cantero et al., 2007; Hogg et al., 2016; Meiburg et al., 2015; Özgökmen

et al., 2004; Stacey & Bowen, 1988).

Experimentally, gravity currents can be categorised by mode of generation. Two often-

discussed examples are constant-flux and constant-volume flows. There are significant

differences in structure between the two flow types (Gerber et al., 2010; Nogueira et al.,

2014). In a constant-flux current, the continuous replenishment of dense fluid results in

the bulk of the head and body of the current remaining undiluted (Hallworth et al., 1996).

This category of flow has a prolonged body, which is assumed to be statistically steady

with only small variations in characteristic variables, such as velocity and density (Gerber

et al., 2010; Kneller & Buckee, 2000). In a constant-volume flow, this body section is much

shorter with a proportionally far more prominent head section. Existing experimental

research has primarily considered constant-volume type flows, and examined the structure

of the head of the flow over periods ranging from 10 s to a few minutes (Hacker et al.,

1996; Hallworth et al., 1996; Middleton, 1966). However, in oceanic gravity currents the

head typically is not present, or forms only a small portion of the flow. Such currents

are either quasi-permanent (for example the flow resulting from the connection between

the Mediterranean Sea and the Black Sea (Sumner et al., 2014)) or have been observed

to persist for several hours, or even days, and as a result the flow is assumed to be

predominantly statistically steady (Azpiroz-Zabala et al., 2017; Khripounoff et al., 2003;

Parsons et al., 2007; Peakall & Sumner, 2015; Simpson, 1997). However, despite the body

of gravity currents normally forming the bulk of the flow (Azpiroz-Zabala et al., 2017;

Özsoy et al., 2001; Sumner et al., 2014), the structure of turbulence within the body

remains poorly understood (Wells & Dorrell, 2021).

There are two primary mixing processes that occur in the head of the flow (Hacker

et al., 1996; Kneller & Buckee, 2000; Simpson, 1997; Ungarish, 2009): vortices that form

as a result of Kelvin-Helmholtz instabilities generated by shear between the current and

ambient fluid; and ambient fluid incorporated into the current as the raised nose of

the current propagates over a no-slip surface, leading to a three-dimensional lobe-and-

cleft structure (Simpson, 1997). Existing experimental work has primarily considered

lock-exchange constant-volume type flows with short statistically steady sections, or are

based on at-a-point or profile measurements of constant-flux flows which limit the analysis

techniques available (Buckee et al., 2001; Cossu & Wells, 2012; Davarpanah Jazi et al.,

2020; Gray et al., 2006; Islam & Imran, 2010; Kneller et al., 1999). Properties such

as instantaneous and time-averaged Reynolds stress and turbulent kinetic energy have

been measured in several previous works (Buckee et al., 2001; Cossu & Wells, 2012; Gray
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et al., 2006; Islam & Imran, 2010). For example, Buckee et al. (2001) examined a time-

averaged profile of turbulent kinetic energy, and identified shear from the mean flow as

the primary source of turbulence in the body of gravity currents, and Kneller et al. (1999)

used instantaneous velocity fluctuations and Reynolds stresses to suggest the presence of

eddies with size on the same order as the height of the body. Interfacial instabilities, in

the form of Holmboe waves, between the flow and the ambient, have been observed in a

gravity current in an inclined duct (Lefauve et al., 2018). However, there remains very

little work on coherent flow structures within the body of gravity currents.

The currently accepted structure of gravity current body velocity and density profiles

are shown in Figure 4.1a (Abad et al., 2011; Buckee et al., 2001; Dorrell et al., 2019;

Kneller & Buckee, 2000; Kneller et al., 2016; Sequeiros et al., 2010). The body is generally

assumed to be two-dimensional and quasi-steady, with structure that can be divided into

upper and lower layers by the height of the velocity maximum (Gray et al., 2006; Islam

& Imran, 2010; Kneller & Buckee, 2000). The upper layer structure is determined by

density stratification and shear with ambient fluid, and the shape appears comparable

with that of a wall-bounded jet. Unlike the jet, however, the lower layer of the gravity

current can be approximated as similar to an open-channel flow (Dorrell et al., 2019).

Recent field measurements and laboratory experiments have suggested that this model

may need to be revised to a dynamic version considering forcing of flow-scale turbulent

structures (Best et al., 2005; Dorrell et al., 2018; Kostaschuk et al., 2018). Flow-scale

mixing by periodic internal gravity waves has been postulated to explain the structure

of field-scale gravity currents in data collected from the body of a natural saline gravity

current (Dorrell et al., 2019). A thorough understanding of the structure of the body of

gravity currents is critical for accurate predictions of flow duration and interaction with

the surroundings (Azpiroz-Zabala et al., 2017; Kneller et al., 1999).

In this chapter, particle image velocimetry (PIV) is used to generate non-intrusive

whole-field measurements of the instantaneous velocity structure of constant-influx, solute-

based gravity currents. Quantification of the turbulence structure within the pseudo-

steady body is used to improve existing understanding of gravity current flows. There-

fore, it enables a far more detailed analysis of the nature of turbulence and flow structure

within the body of a density current. Specifically, the key aims are to assess: i) whether

the pseudo-steady body of gravity currents can be described by flow-scale structures in

the form of internal gravity waves, ii) how these waves change with flow Reynolds num-

ber, iii) what these waves imply for our existing understanding of gravity currents, and

iv) how such waves interact with the environment. The experimental setup is described

in Section 4.2, followed by discussion of the turbulence structure in Sections 4.3 and 4.4.
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Figure 4.1: (a) the currently accepted idealised structure of gravity current body velocity and density
profiles (Abad et al., 2011; Altinakar et al., 1996; Davarpanah Jazi et al., 2020; Garćıa, 1994; Kneller
& Buckee, 2000; Sequeiros et al., 2010) and (b) a postulated flow structure from Dorrell et al. (2019)
based on field-scale gravity current measurements and comparison with zonal jet flows (Dritschel &
Scott, 2011). In (b), the coherent structure associated with large-scale mixing is equivalent to a wave
depending on frame of reference. The presence of dispersive waves leads to momentum transport due
to anti-diffusive mixing and radiation stresses (Dorrell et al., 2019). Internal waves break close to the
critical layer, leading to deposition of angular momentum and flow acceleration.

4.2 Methodology

The constant-flux gravity current experiments are conducted in a tank 0.1 m wide, 0.2 m

deep and 2 m long (schematic shown in Figure 4.2). The system is designed such that

fluid leaves the outlet at the same rate that it is pumped in through the inlet. Raised

sections, added at either end, prevent air entrainment through the inlet or outlet reaching

the measurement region. The bed slope (θ) for these experiments is set to 0.1◦. A large

sump at the outlet prolongs flow duration by slowing the rate of current fluid pollution

into the ambient fluid. The tank is initially filled with ambient solution, a 6% by mass

solution of glycerol. The dense fluid, a 6% by mass solution of potassium dihydrogen

Figure 4.2: Schematic of the experimental setup.
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Solute ρ (kg m−3) ν (m2 s−1) n
Glycerol (ambient fluid) 1012.0 1.14× 10−6 1.3400
Potassium dihydrogen phosphate (current fluid) 1041.4 1.09× 10−6 1.3400

Table 4.1: Details of the density, ρ, kinematic viscosity, ν, and refractive index, n, of 6% by mass
solutions of the ambient (glycerol) and dense (potassium dihydrogen phosphate) solutes in tap water at
20 ◦C, from Haynes (Haynes, 2014).

phosphate (KDP), is pumped in at a constant rate through the inlet using a positive-

displacement gear pump to provide a steady inflow with an inverter to control the flow

rate. A coarse mesh with holes of diameter 7.8 mm is fitted over the inlet to provide

a homogeneous inflow. Before entering the tank, the dense fluid first passes through a

bubble trap, removing any air entrained by the gear pump. The bubble trap consists of

a 1 m long, 0.1 m diameter cylinder filled with dense fluid. The dense fluid is pumped in

to the top of this cylinder and out at the bottom, removing any small bubbles. The top

and back of the tank are covered in black aluminium polyethylene composite panels to

improve the image quality and contain the laser light.

4.2.1 Refractive Index Matching

Two 150 L mixing tanks are used to mix the ambient and dense fluids, which have a

∼ 3% density difference (see Table 4.1). These two fluids, as well as a mixture of the

two, are refractive index matched as required for PIV (Alahyari & Longmire, 1994). The

fluid concentration and refractive index matching is tested using both a Reichert AR200

digital refractometer and an Anton Paar DMATM 35 Basic density meter as well as by

monitoring the temperature (which can have a significant impact on refractive index).

The refractive index of each fluid is required to be equal to the reference value in Table

4.1 to the precision of the refractometer (5 significant figures) and constant across 3

consecutive readings at least 5 minutes apart. The density of the fluids is allowed to

vary from the reference values due to temperature variation, with readings in the ranges

1012.9± 0.2 kg m−3 for the glycerol solution and 1043.0± 0.5 kg m−3 for the KDP.

4.2.2 The PIV System

Planar particle image velocimetry (PIV) is used to generate measurements of downstream

and vertical velocities (Adrian & Westerweel, 2011; Raffel et al., 2018). Silver-coated

hollow glass spheres are used as PIV seeding particles, with mean diameter of 10 µm

and density of 1400 kg m−3, at concentrations of 0.0015 g L−1 and 0.0014 g L−1 for the

current and ambient fluids respectively. The Stokes velocity of these seeding particles,

Ug =
d2p(ρp−ρ)g

18µ
≈ 1.70 × 10−8m s−1, and their relaxation time, τr =

d2pρp

18µ
≈ 6.50 × 10−9s,

suggests that they follow the flow sufficiently for them to be suitable for use as PIV

seeding particles.
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A central vertical plane, parallel to the flow direction, is illuminated using a 532 nm

Nd:YAG laser (with maximum energy 50 mJ). The images are captured using a DANTEC

Dynamics SpeedSense camera with a Zeiss ZF.2 50 mm f/1.4 lens with aperture set to f/2.0

that captures approximately 0.3 m of flow horizontally and 0.18 m vertically (see Figure

4.2). The images are captured at a rate of 50 Hz in single-frame mode, and processed

using DANTEC Dynamic Studio version 6.4 adaptive PIV. The resulting velocity field is

on a grid with spatial resolution 0.003 m× 0.003 m.

4.2.3 The Experimental Cases

A series of experiments are designed to establish the effect of influx (and therefore

Reynolds number) on gravity current dynamics, in particular the turbulence structure of

the body of the gravity current. The influx rates for this set of experiments are shown

in Table 4.2, along with characteristic length Lc, velocity Uc and time tc scales, and

Reynolds (Re = UcLc/ν) and densimetric Froude (FrD = Uc/
√
g′Lc) numbers, where ν

is the kinematic viscosity, and g′ is the reduced gravity. Here, the characteristic scales

are defined using averaged profiles. In order to calculate time averages of the body data

(U , V ), the location of the body must be identified. Here, the body is defined by mea-

suring the time taken for the current front to travel across the measurement region, and

then waiting that length of time again before averaging across all downstream locations

and time. For all cases this results in consistent downstream velocity averages, whether

averaging over 5 s or 20 s of data (shown in Figure 4.3), suggesting that this section of

flow is approximately quasi-steady.

The characteristic velocity scale is taken to be the maximum downstream average

velocity, Uc = Umax, and the length scale the Ellison and Turner integral length scale

(Ellison & Turner, 1959). This scale is defined as

Lc =

(∫ ¯̄UdY
)2

∫ ¯̄U2dY
, (4.1)

where ¯̄U is the mean velocity relative to that in the ambient. The Ellison and Turner

length scale is observed to be different from the current height (where the downstream

velocity averaged over time U = 0). The characteristic time scale is the ratio of the two,

tc = Lc/Uc. The kinematic viscosities of the dense and ambient fluids are very similar

(see Table 4.1) and for these calculations we use the viscosity of the dense fluid. These

characteristic scales lead to Reynolds and Froude numbers that are output parameters,

and therefore a doubling of influx does not result in a doubling of Reynolds number. The

experiments captured between 35 and 55 s of data, including both the head and body of

the flow, dependent on the rate of pollution of the ambient as a result of mixing. This
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Case Influx (L s−1) Lc (m) Uc (m s−1) tc (s) Re FrD
1 0.07 0.035 0.071 0.50 2292 0.69
2 0.09 0.038 0.081 0.48 2842 0.76
3 0.11 0.041 0.080 0.52 3034 0.73
4 0.12 0.043 0.085 0.51 3325 0.75
5 0.14 0.047 0.091 0.52 3927 0.77
6 0.16 0.048 0.086 0.56 3778 0.72
7 0.18 0.050 0.094 0.53 4284 0.78

Table 4.2: Details of the influx rate, characteristic length (Lc), velocity (Uc) and time (tc) scales, and
Reynolds and Froude numbers for cases 1 − 7, Re = UcLc/ν and FrD = Uc/

√
g′Lc where Uc = Umax,

Lc is the Ellison and Turner integral length scale (Ellison & Turner, 1959), and tc = Lc/Uc.

flow duration is shorter for the higher influx cases owing to the higher rate of mixing,

and the smaller ratio of ambient fluid to dense fluid.

4.3 Results

As seen in some previous works (Best et al., 2005; Kostaschuk et al., 2018), the height of

the velocity maximum oscillates over time for influx values greater than 0.11 L s−1 (see

Figure 4.4), which may be linked to cross-stream flow, the presence of low frequency

waves, and enhanced turbulent mixing (Dorrell et al., 2018). Mean velocity profiles

collapse by shifting velocities by dividing by Uc, and the vertical location by subtracting

the averaged height of the velocity maximum, and then dividing by Lc,

U∗ = U/Uc,

Y ∗ = (Y − YUmax
)/Lc,

t∗ = t/tc .

(4.2)

For all cases, this normalisation unexpectedly results in average non-dimensional current

height ∼ 1. The downstream velocity averages for data in the body of each case are shown

in Figure 4.5a, with averaged (dU∗/dt) and dU∗/dY ∗ for two cases in Figures 4.5b and

4.5c. The addition of lines illustrating the average height of the velocity maximum, the

height of minimum dU∗/dY ∗, and current height h, defined as the point where the average

downstream velocity changes from positive to negative allows closer comparison between

the two cases. Both cases have local maxima in dU∗/dt∗ (Figure 4.5b) that coincide with

the height of the local minimum in dU∗/dY ∗ (Figure 4.5c), suggesting flow acceleration

at this height. The higher influx case also has a local maximum in acceleration at the

average height of the velocity maximum, though the lower influx case is decelerating at

this height.

Subtracting the average profiles in Figure 4.5a from the instantaneous data in the

body gives the downstream and vertical fluctuations from the mean (U∗′ = U∗ − U∗,
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Figure 4.3: Averages of downstream velocity over downstream location and time windows ranging from
5 s to 20 s for (left) Q = 0.07 L s−1 and (right) Q = 0.18 L s−1.

V ∗′ = V ∗ − V ∗). As in previous work (Buckee et al., 2001), cross-stream velocity fluc-

tuations W ∗′ are assumed to be small compared with U∗′ and V ∗′ and the averaged

normalised turbulent kinetic energy is defined as k∗ = 0.5(U∗′2 + V ∗′2). There are sig-

nificant similarities between the profiles of time-averaged normalised turbulent kinetic

energy presented in Figure 4.5d and those presented in previous studies (Buckee et al.,

2001; Cossu & Wells, 2012; Gray et al., 2006; Islam & Imran, 2010), specifically a local

minimum just above the velocity maximum and a local maximum between the velocity

maximum and current height, here close to the height of maximum negative shear. The

maximum value of k∗ is highly dependent on the time range chosen for averaging (sug-

gesting significant temporal variation) though the profile shape remains similar. All cases

here have a maximum value of k∗ located below the velocity maximum.

In order to examine the structure within the body, the instantaneous data U∗′, V ∗′,

and k∗ = 0.5(U∗′2 + V ∗′2) are presented for each case. Figure 4.6 shows vertical velocity

fluctuations at a central non-dimensional downstream location, i.e. fixed X∗ (where

X∗ = X/Lc and X is downstream location), as a function of Y ∗ within the body over

time. This central location is defined as the centre of the images, with the exact location

varying slightly from case to case but always ∼ 1.5 m from the inlet. In the low influx

cases there is a regular pattern within the current body. As Reynolds number increases,

this pattern becomes less regular and higher frequency. Additionally, as influx increases,

a second regular structure appears at the height of the current with a frequency that

decreases with increasing Reynolds number.

Figure 4.7 shows k∗ at a central downstream location for each case. These plots

suggest significant temporal variation within the body. For the lowest influx cases, this

takes the form of intermittent peaks at the height of maximum negative shear (marked

with a dashed line). As influx increases, intermittent peaks begin to appear at the height
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Figure 4.4: Plots of the height of the velocity maximum over time at a central downstream location for
the body data for each case, defined as in Figure 4.5a. This location is always ∼ 1.5 m from the inlet.

of the velocity maximum. By Q = 0.16 L s−1, these intermittent peaks are also present

at the upper interface. Time averaging turbulence statistics may therefore discard data

important for the understanding and modelling of turbulence structure. As V is small

compared with U , U2
max is representative of the kinetic energy in the mean flow. As

the magnitudes of k∗ and k∗ are small (� 1), the energy contained within turbulent

fluctuations is small compared with that in the mean flow.

Having established the presence of spatio-temporal structure in the body, suitable

techniques to analyse this structure are required. This analysis will focus on two rep-

resentative cases with the lowest incidence of spurious vectors – one low influx case

(Q = 0.09 L s−1), and one high influx case (Q = 0.16 L s−1). Some motions with signifi-

cant impact on the flow can be identified purely by examination of the plots of V ∗′. Figure

4.8 is a closer view of the vertical velocity fluctuations in these two cases. Figure 4.8a
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Figure 4.5: (a) Normalised downstream velocity averaged over all downstream locations and 10 s body
timesteps for all cases, (b) differential of the same data for the cases with Q = 0.09 L s−1 and Q =
0.16 L s−1 with respect to time, then averaged over all downstream locations and included timesteps, (c)
the plots from (a) for the same two cases differentiated with respect to Y ∗, and (d) k∗ = 0.5(U∗′2 + V ∗′2)
for the same two cases, where k∗ is averaged over the same range as the profiles in (a). The horizontal
lines indicate (solid) the height of the upper interface defined as the point where the downstream velocity
changes direction, (dashed) the height of maximum negative shear, and (dot-dash) the height of the
downstream velocity maximum from the downstream velocity average defined in (a) (where the body
is defined by measuring the time taken for the current front to cross the measurement region and then
waiting that time again before including data).
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Figure 4.6: Plots of (left) U∗′ and (right) V ∗′ data over time for (top to bottom) increasing influx from
Q = 0.07 L s−1 to Q = 0.18 L s−1. The velocity fluctuations U∗′ and V ∗′ are defined by subtracting the
averaged vertical velocity profiles (averaged over the same range as the profiles in Figure 4.5a) from the
instantaneous data used to calculate the averages. These plots show the data at the central downstream
location within the measurement area as defined in Figure 4.4.
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Figure 4.7: Plots of k∗ = 0.5(U∗′2 + V ∗′2)/U∗
2

max over time for increasing influx from Q = 0.07 L s−1 to
(b) Q = 0.18 L s−1 in the body (defined as in Figure 4.5a) at a central downstream location (defined as
in Figure 4.4).

shows motions with period ∼ 3 s above the velocity maximum in the 0.09 L s−1 case, and

Figure 4.8b motions with a period ∼ 5 s on the upper interface in the 0.16 L s−1 case. It

is therefore expected that motions with frequency ∼ 0.33 Hz and ∼ 0.20 Hz respectively

have a significant impact on the flow. For a more detailed analysis of these motions and

their structure, we here employ discrete Fourier transforms, wavelet transforms, and Dy-

namic Mode Decomposition (DMD). These techniques will be used in combination, with

the aim of providing a thorough understanding of the flow structure, and will be applied

to the data in dimensional form.

4.3.1 Fast Fourier Transform

A discrete Fourier transform in time (Briggs & Henson, 1995; Iftekharuddin & Awwal,

2012) is used to decompose a signal of N data snapshots that are equally spaced over time

into the frequencies that make up that signal, ς → ς̂ where ς̂ is the data ς transformed

into the frequency domain. Here, a central downstream location is selected and a fast

Fourier transform over time performed using the MATLAB fft function (MATLAB,

2020) on the body data (defined as the data used to calculate the averages shown in

Figure 4.5a). Figure 4.9 shows the frequencies that dominate the flow. For Q = 0.09 L s−1,

the FFT identifies key frequencies of interest: 0.35 Hz, 0.50 Hz, 0.65 Hz, and 0.85 Hz. As
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Figure 4.8: Plots of V ∗′ data over 10t∗ of time for (a) Q = 0.09 L s−1 and (b) Q = 0.16 L s−1 showing
the presence of structure with period (a) ∼ 3 s and (b) ∼ 5 s. The vertical velocity fluctuations V ∗′

are defined by subtracting the averaged vertical velocity profiles (averaged over the same range as the
profiles in Figure 4.5a) from the instantaneous data used to calculate the averages. These plots show the
data at the central downstream location within the measurement area as defined in Figure 4.4.

the frequency of these modes increases, the height of the relevant mode gradually moves

from the height of maximum negative shear to slightly above. There is far more variation

in the FFT data for Q = 0.16 L s−1. A mode with frequency 0.20 Hz is present at the

height of the current. Compared with the lower influx case, other key modes are more

difficult to identify. There is an indication of modes at 0.35 Hz and 0.50 Hz at the height

of maximum negative shear, along with a variety of higher frequency modes with smaller

magnitude at the same height and that of the height of maximum downstream velocity.

However, this analysis does not show us the structure of these motions.

4.3.2 Wavelet Transform

The Fourier transform uses global functions, sines and cosines, to decompose a signal.

Wavelet analysis uses local functions with a variety of scales, and is therefore able to

capture how the frequencies of the most significant modes within the flow change over

time (Grossmann et al., 1990; Sadowsky, 1994). Here a continuous wavelet transform is

used to plot the scalogram (Bolós & Beńıtez, 2014),

Sx(d, b) =
1

|d|

∣∣∣∣∫ ∞
−∞
x(t)ϑ†

(
t− b
d

)
dt

∣∣∣∣2 , (4.3)

where S is the energy of the signal x at scale d (where d > 0) and time b, (·)† indicates

the complex conjugate, and ϑ is the selected wavelet. The scalogram illustrates the

energy contained in the data ς at each scale over time (Bolós & Beńıtez, 2014), and
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Figure 4.9: Amplitude spectrum of the FFT data of (a,c) downstream velocity and (b,d) vertical velocity
data from (a,b) Q = 0.09 L s−1 and (c,d) Q = 0.16 L s−1 cases at a central downstream location. The
vertical lines indicate the frequencies of the most significant motions identified in this work by combined
inspection of the FFT and DMD mode amplitudes.

allows the identification of the scales that contribute the most energy to the signal at

each timestep. The choice of wavelet has a significant impact on the result of the wavelet

decomposition; however, as only the scalogram is being considered, here any wavelet

shape should provide the same qualitative result (Torrence & Compo, 1998). For this

work, we use the Morlet wavelet and the MATLAB cwt function (MATLAB, 2020). This

wavelet has been shown to be appropriate for gravity current flows (Felix et al., 2005). The

Morlet wavelet is non-orthogonal and complex which is desirable for oscillatory behaviour

with continuous variations in wavelet power (Kostaschuk et al., 2018; Torrence & Compo,

1998). This technique is applied to the same timesteps and downstream location as the

Fourier transform, both at the average height of the downstream velocity maximum and

the height of maximum negative shear.

The scalograms are shown in Figure 4.10. For Q = 0.09 L s−1 (Figure 4.10a), the

scalogram data identifies significant modes with very similar frequencies to the FFT

data (as shown by the dotted horizontal lines). The lowest frequency modes, 0.35 Hz

and 0.50 Hz, are present throughout the body data. The mode at 0.63 Hz, however, is

intermittent and present only between 10 s and 15 s. A mode with frequency 0.85 Hz not

clearly identified by the FFT data is also highlighted, present between 5 s and 10 s. For

Q = 0.16 L s−1 (Figure 4.10b), the lowest two frequency modes (0.20 Hz and 0.35 Hz)

identified from the FFT are again present throughout the body data. The 0.50 Hz mode

suggested by the FFT appears to be present only between 5 s and 10 s. The scalogram data

suggests possible intermittent modes not highlighted by the FFT data with frequencies

0.75 Hz (present between 5 s and 7.5 s and between 12.5 s and 17.5 s), 1.10 Hz (present
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between 2.5 s and 7.5 s and between 15 s and 17.5 s), and 1.35 Hz (present between 5 s

and 8 s and between 12.5 s and 17.5 s). We still wish to identify the structure of these

motions.

4.3.3 Dynamic Mode Decomposition

To consider the structure of the motions, DMD is utilised to decompose the body data

(defined as in the FFT analysis) into modes in the form of waves with particular frequen-

cies (Kou & Zhang, 2017; Schmid, 2010; Tu et al., 2014). In this work, the downstream

and vertical velocities for each timestep were combined into a single matrix such that

the technique was applied to all data simultaneously. A linear relationship is assumed

between N data snapshots ς1:N = {ς1, ς2, ..., ςN} separated by time ∆t,

ς2:N = Aς1:N−1. (4.4)

As the relationship is linear, the eigenvalues of A contain the dynamical characteristics

of the system (Tu et al., 2014). However, the dimensionality of A is very large, so for

practicality and accuracy in this work a similar matrix toA, À, is constructed, with fewer

dimensions (Kou & Zhang, 2017). This can be done using singular value decomposition,

which is a generalisation of eigendecomposition to a non-square matrix. This decomposes

a data matrix of size p× q into 2 unitary matrices, C and D, with sizes p× p and q × q
respectively, and a diagonal matrix, Λ, of size p× q containing the ‘singular values’

ς1:N−1 = CΛDH , (4.5)

À = CHς2:NDΛ
−1

, (4.6)

where H indicates a Hermitian transpose. As they are similar matrices, the eigenvalues

and eigenvectors of À, ζj and χj , are a subset of those of A, and contain the same

dynamical information. These eigenvalues and eigenvectors are used to calculate the

dynamic modes ϕj = Cχj , the modal angular frequencies ωj = Im(log(ζj))/∆t (and

corresponding modal physical frequencies fj = ωj/2π), growth rates %j = Re(log(ζj))/∆t,

and amplitudes aj = 1/||G(:, j)|| (whereG = DΛ−1χ). Each mode is a wave of the form

ϕj = aje
(%j+iωj)t (Kou & Zhang, 2017; Richecoeur et al., 2012; Schmid, 2011; Tu et al.,

2014). In this case, singular value decomposition was carried out using the MATLAB

svd function with the ‘econ’ parameter (MATLAB, 2020).

Figure 4.11 shows the amplitudes of the dynamic modes for the Q = 0.09 L s−1 and

Q = 0.16 L s−1 cases. These mode amplitudes align well with the FFT analysis data,

highlighting significant modes with similar frequencies in the same locations within the

flow. Figures 4.12a and 4.12b show the structures of those modes, including plots of the
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(a)

(b)

Figure 4.10: Wavelet transform of 20 s body data (as defined in Figure 4.5a) of (top) U and (bottom)
V at the height of (left) average height of Umax and (right) average height of maximum negative shear
at a central downstream location for (a) Q = 0.09 L s−1 and (b) Q = 0.16 L s−1. The solid black lines
show the cone of interest of the wavelet transform, and the horizontal lines indicate the frequencies of
the most significant motions identified in this work.
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Figure 4.11: Plots of DMD mode amplitude against mode frequency for cases with (left) Q = 0.09 L s−1

and (right) Q = 0.16 L s−1, with circles indicating the modes plotted in Figures 4.12a and 4.12b. These
amplitudes were calculated based on DMD of 20 s body data for these two cases (as defined in Figure
4.5a).

downstream and vertical velocities and vorticity associated with the example modes, along

with streamlines of downstream and vertical velocity. These streamlines were determined

using the MATLAB streamslice function (MATLAB, 2020). As indicated by the FFT

data, the vertical location of these waves varies between the height of the current and the

height of the velocity maximum. For the Q = 0.09 L s−1 case, the waves are at the height

of maximum negative shear. For Q = 0.16 L s−1, there are also waves at the current

height and the height of the velocity maximum. The abrupt end to many of the velocity

streamlines in the regions of rotation suggests possible three-dimensional motions not

captured by the two-dimensional velocity data presented here.

Similar modes can be identified across all cases, and their frequencies and phase

speeds compared. Figure 4.13a shows the wavelength of particular modes plotted against

Reynolds number. These wavelengths were estimated by inspection of the mode velocity

and vorticity plots (as in Figure 4.12). The cases with Re < 3250 contain modes with

a smaller range of frequencies than the higher Re cases. The frequencies of most modes

stay roughly constant, with only small increases as Re increases. The frequency of those

modes present at both high and low Re however experiences a significant increase when

Re increases beyond ∼ 3750. Figure 4.13b shows the wavelengths of those modes against

frequency, and demonstrates two distinct categories of wave with the modes collapsing

onto two separate lines. When plotting the phase speed, c = fλ, of the modes against Re

as in Figure 4.13c, those modes on the lower line in Figure 4.13b all have c ≈ 0.025 m s−1.

Those modes on the upper line have a wider spread of phase speeds, between 0.06 m s−1

and 0.1 m s−1. Those cases with Re < 3250 exclusively have modes with c ≈ 0.025 m s−1,
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Q (L s−1) 0.0720 0.0896 0.107 0.125 0.142 0.160 0.177
FI (kg s−1) 0.0021 0.0026 0.0031 0.0037 0.0042 0.0047 0.0052

ρmaxe (kg m−3) 13 13 14.75 15.5 15.5 17.25 16.25

Table 4.3: Details of the inlet excess density flux FI calculated by taking the product of the fluid influx
and the excess density of the KDP, and the estimated maximum excess density within the body calculated
by requiring FI = Fe (where Fe is defined in (4.8)).

while the higher Re cases contain internal waves with a wider spread of phase speeds.

To demonstrate whether the observed waves are due to buoyancy, inspection of the

density profile would be advantageous. This data is not available from the PIV experi-

ments, and instead simplifying assumptions are employed to obtain a heuristic estimate

of the Brunt-Väisälä buoyancy frequency, N , which is the upper bound on the angular

frequency of internal waves due to buoyancy gradient (Sutherland, 2010),

N ≈

√
− g

ρ0

dρ

dY
, (4.7)

where ρ is the average density profile, and ρ0 is taken to be the mean of the glycerol

and KDP densities. An excess density distribution similar to that in Figure 4.1 for

solute-based flows is assumed based on profiles obtained through three-dimensional direct

numerical simulation, with constant excess density (ρe = ρ − ρa, where ρe is the excess

density, and ρa = 1012 kg m−3 is the density of the ambient fluid) both above the current

height and below the velocity maximum and a linear distribution between the two. Above

the current, the excess density is taken to be ρe = 0. Below the velocity maximum, the

excess density is estimated by requiring conservation of density flux between the inlet

and the data. The inlet excess density flux (FI) is estimated by taking the product of

the fluid influx, Q, and the excess density of the KDP. If the velocity and density profiles

are assumed to be constant in the cross-stream direction, the excess density flux from the

data (Fe) may be estimated by

Fe = WT

∫
ρUdY, (4.8)

where WT is the width of the tank. The excess density below the velocity maximum is

estimated for each case by requiring that FI = Fe (Table 4.3), and hence an approximate

density profile for each case is established. As the maximum velocity will slow towards

the side-walls, these are likely underestimates of the maximum density within the body.

Figure 4.14 shows the percentage difference between our observed wave frequencies

and the estimated buoyancy frequencies after applying the Doppler shift due to the mean

flow (Sutherland, 1999),

NDS = N + U0kx, (4.9)

where NDS is the frequency measured by a stationary observer, and kx the downstream
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wavenumber, as it has been assumed that the waves propagate purely downstream. As

seen in Figure 4.14 many of the observed waves are within 25% of the estimated values.

Given that the vertical location and wavenumber of the wave, and therefore the mean

flow speed and hence Doppler shift, are approximate, that any wave propagation in the

cross-stream or vertical directions would act to decrease the observed frequencies, and

that the exact density profile is unknown, all frequencies observed here are the right order

of magnitude and are considered sufficiently close to indicate that these are internal waves

due to buoyancy. The greater difference between the observed waves and the estimated

values included in Figure 4.14b may be attributed to larger uncertainty in the height of

the wave compared to those in Figure 4.14a, or could be the result of some more complex

three-dimensional structure. Figure 4.15 demonstrates that the phase speed of some of

these gravity waves is approximately equal to the mean downstream flow speed at the

wave height. This suggests the presence of critical layers, defined to be where U = c

(Maslowe, 1986), within the flow.

4.4 Discussion

Fourier transforms, wavelet transforms, and dynamic mode decomposition have been

used to identify the most energetic motions in the body of gravity current flows. This

analysis has been used to identify flow-scale internal gravity waves centred on the height of

maximum negative shear, and the velocity maximum. The wavelet transforms suggest a

wave with a particular frequency may not be permanent, but the importance of the waves

as a whole does not decrease over time. As Reynolds number increases, the frequencies

of the dominant waves within the flow change. The modes at the height of maximum

negative shear become less significant, and the wavelengths of the most energetic modes

decrease and their frequencies increase. At this point we also find the height of the velocity

maximum starts to vary, and modes on the velocity maximum become significant in terms

of flow dynamics.

It has been shown that for some of these waves the wave phase speed is approximately

equal to the mean flow speed, indicating a potential critical layer within the gravity

current body. The presence of internal waves in the gravity current body has been

postulated by Dorrell et al. (2019), who suggest that the gravity current body has a

structure similar to that of a zonal jet (Figure 4.1b) (Bower & Hogg, 1996; Dritschel

& Scott, 2011; Maxworthy, 1984; Rossby & Zhang, 2001). In zonal jets, the breaking

of dispersive internal waves near a critical layer results in self-organisation of the flow

and net momentum transport towards the jet core (Bühler, 2014; Dorrell et al., 2019;

Dritschel & McIntyre, 2008; Dritschel & Scott, 2011). Close to critical layers, breaking

waves homogenise potential vorticity and steepen the potential vorticity gradient (Dorrell

et al., 2019). Unless they have sufficient strength, this steep gradient is difficult for
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Figure 4.13: Plots tracking similar modes showing (a) modes with a particular frequency tracked across
each influx investigated, with the frequency of the mode plotted as a function of Re, (b) mode wavelength
plotted against frequency as a function of influx and mode location, and (c) modes with a particular
frequency tracked across each influx investigated, with the phase speed of the mode plotted as a function
of Re.
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Figure 4.14: Scatter plots of the observed mode frequencies divided by the buoyancy frequency Doppler
shifted by the mean flow at the estimated wave height for (a) modes at the velocity maximum and (b)
modes above the velocity maximum.
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Figure 4.15: Scatter plots showing the phase speed of the observed waves divided by the mean flow speed
at the estimated wave height for (a) modes at the velocity maximum and (b) modes above the velocity
maximum.

eddies to penetrate. The gradient therefore acts as a barrier to mixing between the

flow above and below the critical layer, preventing dilution of the lower part of the flow

and sharpening the density profile. Thus, the presence of a critical layer may result in

the maintenance of far stronger density stratification than predicted by existing models

(Booker & Bretherton, 1967; Dorrell et al., 2019; Dritschel & McIntyre, 2008; Maslowe,

1986). This would lead to faster flow velocities and longer flow durations than expected

from the current theory.

Internal waves absorbed at the critical layer transfer horizontal momentum into the

mean flow (Booker & Bretherton, 1967; Maslowe, 1986; Thorpe, 1975), increasing the

mean downstream velocity. This would imply that the gravity current body may not be

statistically steady as typically assumed (Gray et al., 2006; Islam & Imran, 2010; Kneller

& Buckee, 2000). Indeed, acceleration of the flow at the height of the internal waves has

been identified in this work. As this acceleration is largely in the upper part of the flow,

this acceleration would change the profile of dU/dt, with the maximum downwards shear

moving further from the velocity maximum and closer to the current height over time. The

presence of these waves thus may help to explain discrepancies between data from a real-

world flow in the Black Sea (Dorrell et al., 2019) and predictions from traditional models
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of the gravity current body. As waves are present even in flows over smooth surfaces, and a

rough surface would act to increase the prevalence of gravity waves (Aguilar & Sutherland,

2006; Sarkar & Scotti, 2017), their existence may be an inherent characteristic of gravity

current body flow. This reinforces the need for a dynamic model of body flow, allowing

for sharpening of density and velocity profiles.

Real-world thermohaline gravity currents (Ivanov et al., 2004; Legg et al., 2009), for

example flow at the Strait of Gibraltar, are a crucial and common class of geophysical

flow responsible for driving oceanic circulation. Furthermore, comparison can be made

between the structures of thermohaline flows and of sediment-driven turbidity currents

(Garćıa, 1994; Kneller & Buckee, 2000; Moodie, 2002). It is, therefore, interesting to

consider how applicable the results presented in this work are to such sediment-laden

flows. It has previously been claimed that solute-based flows are dynamically similar to

fine-grained conservative gravity current flows (Cossu & Wells, 2012; Kneller & Buckee,

2000). While the structure of coarse-grained non-conservative gravity currents may differ

in some respects (Cossu & Wells, 2012; Hogg et al., 2005; Kneller & Buckee, 2000; Stacey

& Bowen, 1988; Wells & Dorrell, 2021), for example an expected decrease in current

height, increase in downstream velocity, and greater stratification of the density profile in

the lower part of the current, the potential for internal gravity waves to form requires only

that stable stratification of density exists (Staquet & Sommeria, 2002). The formation

of a critical layer requires only that the phase speed of these waves equals the flow speed

(Maslowe, 1986). It is, therefore, reasonable to suppose that similar structures may be

present in sediment-laden flows also.

4.5 Conclusions

For the first time, internal gravity waves have been identified within the pseudo-steady

body of laboratory-scale constant-influx solute-based gravity currents using dynamic

mode decomposition. The presence of these gravity waves during flow over a smooth

surface implies that they are an inherent characteristic of the body flow due to insta-

bility at the upper interface. There is also an indication that, due to internal velocity

variation, these waves may form a critical layer within the flow, generating a barrier

to mixing, preventing the dilution of the lower part of the current, and changing the

expected structure of the density and velocity profiles. The presence of internal waves

suggests that the body is not statistically steady as typically assumed. Instead, internal

waves transfer horizontal momentum within the flow, deposited at critical layers. Wave

breaking at critical layers acts as a barrier to mixing between the upper and lower parts

of the current, controlling flow concentration and velocity profiles.



Chapter 5

The Three-Dimensional Structure of

the Pseudo-Steady Body

In this chapter, Shake-the-Box particle tracking velocimetry (STB) is used to present in-

stantaneous, volumetric, whole-field velocity measurements of experimental gravity cur-

rent flows. Flow in the body of gravity currents is typically assumed to be statistically

two-dimensional, and cross-stream flow is neglected (Meiburg et al., 2015; Simpson, 1997).

The measurements presented in this chapter indicate that cross-stream and vertical ve-

locities, and velocity fluctuations, are equivalent in magnitude. As in Chapter 4, spectral

analysis and dynamic mode decomposition of the velocity data (extended to consider the

full volume and to include cross-stream velocity) are used to identify internal gravity

waves within the current body, along with a critical layer at the height of the down-

stream velocity maximum. It is demonstrated that in the highest Reynolds number case

the identified waves are associated with coherent three-dimensional motions within the

flow.

5.1 Background

As described in Chapter 2, gravity currents are flows driven by gravity, due to a density

difference between the current and surrounding ambient fluids (Simpson, 1997; Ungarish,

2009). This density difference could result from, for example, the presence of a tempera-

ture difference, suspended sediment, or a solute. They are a common class of geophysical

flow, with the potential to cause significant environmental damage as well as being a key

driver of global sediment transport (Gray et al., 2006; Kneller & Buckee, 2000; Simpson,

1997). Therefore, there has been significant research into their structure and dynamics.

As stated by Hacker et al. (1996); Hallworth et al. (1996); Islam & Imran (2010);

Middleton (1966); Wells & Dorrell (2021), the majority of existing research considering

the structure of gravity currents has focused on the head, despite the fact that the body

often forms by far the largest part of the flow (Azpiroz-Zabala et al., 2017; Özsoy et al.,
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2001; Sumner et al., 2014). In a constant-flux current, dense fluid is continuously replen-

ished and the bulk of the head and body is not diluted. Such flows have a prolonged body

section, which can be quasi-permanent or persist for hours or days (Azpiroz-Zabala et al.,

2017; Khripounoff et al., 2003; Parsons et al., 2007; Peakall & Sumner, 2015; Simpson,

1997; Sumner et al., 2014). This body is often assumed to be statistically steady and

two-dimensional, as observed by Dorrell et al. (2019); Kneller et al. (2016); Meiburg et al.

(2015); Simpson (1997).

Gravity current body structure, as described in the existing literature, is divided into

two layers by the height of the velocity maximum (Altinakar et al., 1996; Dorrell et al.,

2019; Wells & Dorrell, 2021). The upper layer structure, determined by shear between

the current and ambient fluids and by density stratification, is similar to that in a wall-

bounded jet while the lower layer structure is similar to that of an open-channel flow

(Altinakar et al., 1996; Dorrell et al., 2019; Kneller et al., 1999; Sequeiros et al., 2010).

However, the presence of periodic internal gravity waves has been postulated to explain

the structure observed in recent field measurements (Dorrell et al., 2019), suggesting that

a revised, dynamic model of the gravity current body is needed.

In Chapter 4, internal gravity waves were identified in two-dimensional PIV measure-

ments of a gravity current flow. Further, these waves were shown to form a critical layer

within the flow (a region where the mean flow speed is similar to the wave phase speed

(Bühler, 2014)). It has been suggested that internal gravity waves interacting with a

critical layer in the flow could transfer momentum to the mean flow (Dorrell et al., 2019;

Wells & Dorrell, 2021). This would cause local flow acceleration, questioning the assump-

tion of a statistically steady flow. Additionally, wave breaking at the critical layer could

reinforce an eddy transport barrier resulting from sharp density gradients across the ve-

locity maximum (Dorrell et al., 2019; Wells & Dorrell, 2021). This would in turn sharpen

the density profile and maintain the current/ambient density difference over larger dis-

tances than previously thought. However, this eddy transport barrier cannot exist in a

two-dimensional flow, instead requiring cross-stream flow and density variations (Dorrell

et al., 2019; Wells & Dorrell, 2021), questioning the validity of neglecting cross-stream

flow.

Three-dimensional structures are known to exist in gravity current flows, for example

the lobe-and-cleft structures that form when the head over-runs buoyant ambient fluid

(see Figure 6.6). At high enough Reynolds number, the flow is known to be highly three-

dimensional as a result of, for example, the breakdown of Kelvin-Helmholtz structures

behind the head (Balasubramanian & Zhong, 2018; Cantero et al., 2008; Lowe et al.,

2002; Pelmard et al., 2020). Three-dimensional motions may also originate with, or be

enhanced by, side-wall effects in cross-stream constrained flows (such as flow in submarine

channels (Peakall & Sumner, 2015)), or with flow over three-dimensional bed forms (Nasr-

Azadani & Meiburg, 2014; Paik et al., 2009). Indeed, Islam & Imran (2010) performed



87

instantaneous three-dimensional velocity measurements along vertical lines within the

body of a gravity current flow, and concluded that cross-stream velocity had a larger

contribution to turbulent kinetic energy than did vertical, and that it should therefore

be included in calculations.

Volumetric velocity measurements of gravity current flows have been conducted by

Krug et al. (2015), Neamtu-Halic et al. (2019) and Lefauve et al. (2018), though unan-

swered questions regarding three-dimensional flow structures remain. The volume con-

sidered by Krug et al. (2015) was small (4 cm×4 cm×2 cm in a domain 200 cm×50 cm×
50 cm), and while this was expanded by Neamtu-Halic et al. (2019) (four connected regions

of 9 cm × 9 cm × 4 cm in the same domain) both volumes were limited to the current-

ambient interface. The work of Lefauve et al. (2018) considers the formation of waves

in an exchange-type flow, in which the magnitude of downstream velocity is equivalent

in the two fluids. Most gravity current research considers flows in which the magnitude

of downstream velocity in the current is much greater than that in the ambient. This

difference will result in a substantial change in the amount of shear. Additionally, both

Krug et al. (2015) and Lefauve et al. (2018) use quasi-instantaneous scanning techniques

rather than instantaneous measurements such as those generated through Shake-the-Box

particle tracking velocimetry (STB).

In this chapter, STB is used to generate instantaneous, whole-field, three-dimensional

velocity measurements of an experimental gravity current body. These measurements

are used to discuss the three-dimensional nature of the flow, and to further quantify the

turbulence structure of the body. Specifically, the key aims are to assess whether: i) it is

reasonable to neglect cross-stream flow in the gravity current body, ii) similar structures

to those identified in the planar PIV data are also present in this volumetric velocity data,

iii) these structures are associated with three-dimensional motions, and iv) the nature of

the structures is affected by increased Reynolds number.

5.2 Methodology

5.2.1 The Experimental Setup

The experiments in this work consist of constant-influx, solute-based gravity current flows

in a tank 0.1 m wide, 0.2 m deep and 2 m long (see Figure 5.1). The raised sections at

either end capture air entrained through the inlet or outlet, and the 0.5 m drop above the

outlet prolongs the body section of the flow by slowing the rate of current fluid pollution

into the ambient fluid. In order to prevent the formation of bubbles on the lid of the

tank, the bed slope is set to 0.1◦.

Initially, the tank is filled with ambient fluid (a 6% by mass solution of glycerol

(GLY)). Dense fluid (a 6% by mass solution of potassium dihydrogen phosphate (KDP))
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Figure 5.1: Schematic of the STB setup.

ρ (kg m−3) ν (m2 s−1) n
Glycerol (ambient fluid) 1012.0 1.14× 10−6 1.3400

Potassium dihydrogen phosphate (current fluid) 1041.4 1.09× 10−6 1.3400

Table 5.1: Details of the density, ρ, kinematic viscosity, ν, and refractive index, n, of 6% by mass
solutions of ambient (glycerol) and dense (potassium dihydrogen phosphate) solutes in tap water at 20◦,
from Haynes (2014).

is then pumped in through the inlet at a constant rate using a positive-displacement

gear pump to provide a steady inflow with an inverter to control the flow rate. A coarse

mesh, with holes of diameter 7.8 mm, is fitted over the inlet to provide a homogeneous

inflow. Before entering the tank, the dense fluid passes through a bubble trap (a 1 m

long, 0.1 m diameter cylinder filled with dense fluid) to remove air entrained by the gear

pump. The airtight design results in fluid flowing through the outlet at the same rate

that it is pumped through the inlet by the gear pump. Black aluminium polyethylene

composite panels are used to cover the back and top of the tank to improve the image

quality.

5.2.2 The Experimental Fluids

The experimental fluids, which have a density difference of 3% (see Table 5.1) are mixed

in two 130 L mixing tanks. The two fluids, as well as a mixture of the two, are refractive

index matched as required for optical techniques such as PIV and STB (Alahyari &

Longmire, 1994). The density and refractive index of each fluid is tested using both a

Reichert AR200 digital refractometer and an Anton Paar DMATM 35 Basic density meter,

and the temperature is monitored. To be deemed refractive index matched, the fluids

are required to be equal to the value in Table 5.1 to the precision of the refractometer

(5 significant figures) and consistent across 3 readings at least 5 minutes apart. While

temperature differences result in variations, density was always within the range 1012.9±
0.1 kg m−3 for the glycerol solution and 1041.5± 0.5 kg m−3 for the KDP.
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dp (µm) ρ (kg m−3) Concentration (g L−1) Ug (m s−1) τr (s)
Pa 60 1030 0.003/0.003 3× 10−5 3.2× 10−4

Fl 138 1000 0.020/0.033 3× 10−4 9.2× 10−4

Table 5.2: Details of the average particle diameter, dp, density, ρ, concentration of seeding used in fluid
(GLY/KDP), and estimates of Stokes velocity (Ug), and relaxation time (τr) for each of the seeding
particles used in the Shake-the-Box experiments. The first, Pa, being LaVision polyamide particles HQ,
and the second, Fl, being fluorescent Cospheric polyethylene microspheres UVPMS-BO-1.00.

5.2.3 The STB System

Shake-the-Box particle tracking velocimetry (STB) is used to generate instantaneous

three-dimensional volumetric measurements of velocity (Schanz et al., 2016; Wieneke,

2012). This method consists of adding seeding particles to the flow, and repeatedly

photographing an illuminated volume at a known time interval using a synchronised array

of cameras with overlapping fields of view. Particle positions are reconstructed using

triangulation and by extrapolation of particle tracks identified from previous timesteps

(see Section 3.2 for a full method description).

Two different kinds of seeding particle are used in this work – LaVision Polyamide

particles HQ (Pa), and fluorescent Cospheric, polyethylene microspheres UVPMS-BO-

1.00 (Fl). Table 5.2 includes details of these particles, the concentrations of each used in

the STB work, and estimates of the Stokes velocity and relaxation times for the particles

demonstrating that they are suitable for use as seeding in these experiments.

A volume within the flow is illuminated using a LaVision Blue LED-Flashlight 300.

The images are captured using a LaVision MiniShaker TR-L that captures 0.275 m hor-

izontally, 0.15 m vertically, and to within 5 mm of the side-walls. The location of this

measurement volume is shown in Figure 5.1. When fluorescent seeding particles are

used, a filter with a cutoff at wavelength 610 nm is applied to each camera to reduce the

effect of reflections from the perspex walls.

Image collection begins several seconds before the current head reaches the measure-

ment region. Data storage limitations restrict the duration of flow measurement, with

collected images covering either 25 s or 50 s depending on whether image collection is

at 100 Hz or 50 Hz (see Table 5.3). The binned velocity field is on a grid with spatial

resolution 2.6 mm× 2.6 mm× 2.6 mm. Image calibration is done using a LaVision 106-10

double-sided calibration plate on the bottom surface of the tank in a central cross-stream

location and approximately central within the measurement region in the downstream

direction. The three-dimensional velocity field is reconstructed using the Shake-the-Box

algorithm in LaVision DaVis 10.0.5 and 10.1.0.

5.2.4 The Experimental Cases

The cases considered cover a range of influx values (Q) determined by the pump. The

lowest and highest influx cases are dictated by the minimum (Q = 0.032 L s−1) and



90

Case 8 9 10 11 12 13
Influx (L s−1) 0.032 0.032 0.082 0.082 0.148 0.148

∆t (m s−1) 20 20 20 10 10 10
Seeding Pa Fl Pa Fl Pa Fl

Table 5.3: Details of the influx, time between images, and seeding type for each STB case (additional to
the seven PIV cases conducted in Chapter 4). Fl refers to the fluorescent Cospheric particles, and Pa to
the LaVision polyamide particles.

maximum (Q = 0.148 L s−1) stable settings of the pump, and the third is an intermediate

value (Q = 0.082 L s−1). Each influx case is carried out twice, once with each seeding

type. The details of the influx, collection frequency, and seeding for each STB case are

shown in Table 5.3.

5.3 Flow on a Central Slice

Body flow is defined as in Chapter 4, by measuring the time taken for the current front to

travel across the measurement region and then waiting that length of time again before

averaging across all downstream locations and time. As with the PIV data, this gives

consistent averages, whether averaging over 5 s or 20 s of data taken from the beginning

of the body section (Figure 5.2). Profiles of downstream velocity, averaged over all

downstream locations and time within the body are shown in Figure 5.3. Excepting

the lowest Reynolds number case (which has positive flow in the ambient, possibly as a

result of an air valve not being fully closed), all cases have the same averaged structure.

Non-dimensionalising vertical location, by subtracting the average height of the velocity

maximum and dividing by the Ellison and Turner integral length scale, and downstream

velocity, by dividing by maximum average downstream velocity,

Y ∗ = (Y − YUmax
)/Lc, X

∗ = X/Lc, Z
∗ = (Z − 0.05)/Lc,

U∗ = U/Uc, V
∗ = V/Uc, W

∗ = W/Uc,

Lc =

(∫ ¯̄Udy
)2

∫ ¯̄U2dy
,

Uc = Umax,

(5.1)

where ¯̄U is the mean velocity relative to that in the ambient, collapses the profiles.

Suitable characteristic length (Lc) and velocity (Uc) scales for calculation of Reynolds

number, Re = UcLc/ν, and densimetric Froude number, FrD = Uc/
√
g′Lc (where g′

is the reduced gravity), are therefore chosen to be the Ellison and Turner length scale

and the maximum average downstream velocity. From this, a characteristic time scale,

tc = Lc/Uc, can be defined. These parameters are shown in Table 5.4.
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5 s to 20 s from the beginning of the body data for (left) Q = 0.032 L s−1 and (right) Q = 0.148 L s−1

from data gathered using the fluorescent seeding.
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Figure 5.3: (a) Downstream velocity and (b) non-dimensional downstream velocity, averaged over all
downstream locations and body timesteps on a central Z∗ = 0 plane.
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Case Uc (m s−1) Lc (m) tc (s) Re FrD
8 0.037 0.036 0.99 1216 0.35
9 0.037 0.039 1.06 1341 0.35
10 0.065 0.045 0.68 2688 0.57
11 0.069 0.043 0.63 2743 0.61
12 0.087 0.054 0.62 4322 0.69
13 0.093 0.054 0.58 4606 0.74

Table 5.4: Characteristic velocity, Uc = Umax, length, Lc, and time, tc, scales, along with the Reynolds,
Re = UcLc/ν, and densimetric Froude, FrD = Uc/

√
g′Lc numbers for each STB case (additional to the

seven PIV cases conducted in Chapter 4).

Figures 5.4 and 5.5 show instantaneous plots of velocity (U, V, W ) and velocity

fluctuations from the mean (U ′ = U − U , V ′ = V − V , and W ′ = W −W ) at central

cross-stream and downstream locations over time. In all cases the vertical velocity has

a similar structure of alternating positive/negative regions, though the magnitude of

the velocity increases significantly with Reynolds number, as does the frequency of the

motions. In the lowest Reynolds number case these regions are less well defined.

As well as the magnitude of cross-stream velocity increasing with increased Reynolds

number, the structure changes. In the lowest Reynolds number case, cross-stream velocity

takes the form of low magnitude bands. As Reynolds number increases, the structure

becomes similar to that of the vertical velocity – alternating regions of positive and

negative velocity. The pairs of cases with similar Reynolds number always have similar

structure. Figure 5.5 demonstrates that in every case the magnitude of the cross-stream

velocity fluctuations, W ′, is equivalent to those in the vertical velocity, suggesting that

it may not be reasonable to neglect cross-stream flow as often assumed (Meiburg et al.,

2015; Simpson, 1997).

Figure 5.6a shows the two-dimensional turbulent kinetic energies on this central slice,

k∗2D = 0.5(U∗′2 + V ∗′2).

These averaged turbulent kinetic energies have a similar structure to those in the existing

literature (Buckee et al., 2001; Cossu & Wells, 2012; Gray et al., 2006; Islam & Imran,

2010) and those presented in Chapter 4, with a local minimum close to the velocity

maximum and a local maximum between the velocity maximum and current height. In

the highest Reynolds number cases there is an additional local maximum just above the

velocity maximum. The difference in magnitude between cases (for example the low

magnitude in the Re = 2688 case) may be linked to the time-dependent nature of the

data, which can be seen in the instantaneous turbulent kinetic energy plots in Figure

5.6b. The instantaneous turbulent kinetic energy is intermittent, particularly at higher

Reynolds numbers, suggesting that by averaging information about the structure of the

flow is lost.
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Figure 5.6: Plots of k∗2D = 0.5(U∗′2 + V ∗′2) on a central cross-stream slice, (a) averaged over all down-
stream locations and body timesteps for each of the STB cases, and (b) the instantaneous data at a
central downstream location over time. The solid horizontal line indicates the height of the current on
the central cross-stream slice (defined as where downstream velocity changes from positive to negative),
and the dot-dash line the height of the average velocity maximum on the central cross-stream slice.
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The three-dimensional velocity measurements in this work allow consideration of the

effect of cross-stream velocity on the calculation of turbulent kinetic energy,

k∗3D = 0.5(U∗′2 + V ∗′2 +W ∗′2).

Figures 5.7a and 5.7b show the difference between the two- and three-dimensional calcu-

lations. The average contribution (Figure 5.7a) has almost the same structure in every

case – the biggest contributions being at the height of the velocity maximum (where

the contribution from W ∗′ is equivalent in magnitude to the contributions from U∗′ and

V ∗′), and a smaller increase at the current height. This hides some significant struc-

tural differences between cases (5.7b). At the lowest Reynolds number, the contribution

at the current height decreases over time, and that at the velocity maximum increases.

However, the contributions are relatively consistent. As Reynolds number increases, the

effect of cross-stream velocity at the velocity maximum becomes intermittent, and the

contribution at the current height no longer decreases over time.

5.4 Alternative Slices

Figure 5.8 shows downstream velocity averaged over time and downstream locations for

a variety of cross-stream locations covering the central half of the tank. For all cases,

moving towards the walls decreases the average magnitude of the downstream velocity

of the flow. This effect is reduced as Reynolds number increases, with little difference

between the central profile and that at Z∗ = 0.25 for the highest Reynolds number cases.

This may be a result of greater variability in cross-stream velocity. Figure 5.9 shows

velocity fluctuations at Z∗ = 0.5 and a central downstream location over time. Compared

with 5.5, the velocity fluctuations have broadly similar structure and amplitude regardless

of the plane considered for each case.

Figure 5.10 shows flow on X-Z planes over time at the height of maximum downstream

velocity at a central downstream location, and the fluctuations from the mean calculated

by averaging over all body timesteps. From here on, only the data gathered using the

fluorescent seeding particles will be presented, as despite the lower seeding density a

greater depth of the flow was captured compared to the other seeding. Again, these

plots demonstrate that the magnitude of cross-stream and vertical velocities and velocity

fluctuations are equivalent. As Reynolds number increases there are significant changes

in the velocity components. For the lowest Reynolds number case, the cross-stream

velocity shows the fluid moving towards the centre of the measurement region at this

height. There is a clear separation of positive and negative cross-stream velocities along

a line close to the cross-stream centre. As Reynolds number increases, this separation



97

0 1 2 3 4

10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

(a)

(b)

Figure 5.7: The difference between two- and three-dimensional calculation of turbulent kinetic energy
calculations, k∗3D − k∗2D = 0.5W ∗′2 on a central cross-stream slice, (a) averaged over all downstream
locations and body timesteps for each of the STB cases, and (b) the instantaneous data at a central
downstream location over time. The solid horizontal line indicates the height of the current on the
central cross-stream slice (defined as where downstream velocity changes from positive to negative), and
the dot-dash line the height of the average velocity maximum on the central cross-stream slice.
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breaks down, and the centreline has alternating positive/negative regions. By the highest

Reynolds number case, the centreline is far less clear in the cross-stream velocity plots.

There are alternating regions of positive and negative vertical velocity in every case.

However as Reynolds number increases their structure changes. In the lowest Reynolds

number case, the negative vertical velocity motions are concentrated towards the side-

walls and are smaller in magnitude than the higher Reynolds number cases. Some do

not extend across the full domain width. The intermediate Reynolds number case has

alternating regions of positive and negative vertical velocity that are concentrated in the

centre of the domain. In the highest Reynolds number case, these regions are smaller,

less regular, and are not limited to the centreline.

5.5 The Three-Dimensional Structure of Coherent

Motions

Dynamic mode decomposition can be performed on all three components of velocity in the

entire volume simultaneously to give a three-dimensional representation of the coherent

structures. As in Chapter 4, all velocity components and time steps are combined into a

single matrix such that dynamic mode decomposition is applied to all data simultaneously,

and singular value decomposition is carried out using the MATLAB svd function with

the ‘econ’ parameter (MATLAB, 2020). In order for this to be computationally realistic,

the dimensionality of the data must be reduced. Therefore, the data is cropped to just

above the current height and alternating downstream locations are discarded. In order

to carry out dynamic mode decomposition using the MATLAB functions selected, there

cannot be any missing data points. In the Re = 2743 and Re = 4606 cases, the vast

majority of missing data is at the edges of the illuminated volume. As this can be rectified

by removing the edge rows or columns with missing data, with small gaps internal to the

measurement region filled in using linear interpolation and the MATLAB interp function

(MATLAB, 2020), frequency analysis is applied to these two cases and not the Re = 1341

case. This lower Reynolds number case has more experimental noise, particularly in the

cross-stream velocity measurements, and more missing data (possibly as a result of less

even distribution of the seeding particles, a greater difference in refractive index between

the fluids, or less optimal timestep or reconstruction settings).

As in Chapter 4, the modes with significant contribution to the flow must be identi-

fied. This is done using a combination of swirling strength, Fourier transform, wavelet

decomposition, and dynamic mode amplitude. Figures 5.11a and 5.11b show plots of

swirling strength ζci for the two cases, defined by Zhou et al. (1999) as the imaginary
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component of the complex eigenvalue of the velocity gradient tensor,

∇U = ΓBΓT , (5.2)

where

Γ = [Γr Γcr Γci], B =


ζr 0 0

0 ζcr ζci

0 −ζci ζcr

 , (5.3)

∇U is the velocity gradient tensor, ζr and Γr are the real eigenvalue and eigenvector,

and ζcr ± iζci the complex conjugate pair of complex eigenvalues with corresponding

eigenvectors Γcr ± iΓci. The exclusively positive values of swirling strength presented

here are likely a result of shear between the current and ambient fluids. In both cases, the

plots show regions of large magnitude swirling strength alternately above and below the

velocity maximum. In the highest Reynolds number case, these regions take up less of

the flow height. These plots can be compared directly with similar plots from the direct

numerical simulation in Chapter 6.

Figure 5.12 shows the amplitudes of the dynamic modes, and Figures 5.13 and 5.14

the Fourier transform (where the Fourier transform is here performed over time on both

data at central downstream and cross-stream locations, and at a central downstream

location and the height of the velocity maximum) and wavelet decomposition (where the

wavelet decomposition is here performed on data at a central downstream and cross-

stream location, and at both the height of the velocity maximum and the height of

maximum negative shear) of the velocity data. For both the Re = 2743 and Re = 4606

cases, significant frequencies were found.

Combining the FFT, wavelet, and dynamic mode amplitude plots, the frequencies

of motions with significant impact on the flow, their vertical position within the flow,

and the times over which they affect the flow can be identified. Figure 5.13 identifies

a mode with frequency 0.40 Hz in the Re = 2743 case. This mode is primarily seen

in the vertical velocity plots, at the height of the downstream velocity maximum. The

motion is concentrated in the cross-stream centre of the domain but extends throughout

the domain width, and is present throughout the flow duration. The Re = 4606 case

contains a broader range of frequencies, and frequencies with significant cross-stream

FFT amplitude. In particular, a mode with frequency 0.80 Hz is identified. Again, this

mode is at the height of the velocity maximum and concentrated in the cross-stream

centre of the flow. However, the motions extend less far in the cross-stream direction and

unlike the 0.40 Hz mode, it is seen equally in the downstream and cross-stream FFT, and

becomes more significant in the wavelet decomposition over time.

Visualisation of the dynamic modes illuminates the structure of the dominant motions

for each case. Figure 5.15 illustrates the downstream, vertical, and cross-stream motions
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(a)

(b)

Figure 5.11: Plots of swirling strength for (a) the Re = 2743, and (b) the Re = 4606 cases on (top) a
central cross-stream and central downstream position over time, (middle) a central downstream location
and Y ∗ position above the velocity maximum over time, (bottom left) a central cross-stream X-Y slice
and (bottom right) an X-Z slice above the velocity maximum for a timestep within the body.
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Figure 5.12: Dynamic mode amplitudes for the (left) Re = 2743, and (right) Re = 4606 cases.

associated with a mode at each Reynolds number. The other dynamic modes from each

case have similar structure. In both cases, the dynamic mode shows motions at the

expected position within the flow. For the Re = 2743 mode, the vertical velocities

extend further across the domain width than the Re = 4606 mode. Considering the

velocity streamlines, the Re = 4606 mode is associated with full-width three-dimensional

coherent motions (i.e. motions with equivalent magnitude in the cross-stream and vertical

directions) not clearly visible in the Re = 2743 mode streamlines. The downstream and

vertical velocities on the central cross-stream slice have very similar structure to the

modes identified in the planar PIV data (Chapter 4), suggesting that similar motions are

being identified in both data sets.

In order to establish whether these motions are due to gravity, as in Chapter 4 a

heuristic estimate of the Brunt-Väisälä frequency is obtained,

N ≈

√
− g

ρ0

dρ

dY
, (5.4)

where g is the acceleration due to gravity, ρ is the average density profile, and ρ0 is

taken to be the mean of the glycerol and KDP densities. The average density profile is

estimated as in Chapter 4. Specifically, excess density (ρe = ρ−ρa, where ρe is the excess

density, and ρa = 1012 kg m−3 is the density of the ambient fluid) is estimated to be

constant both above the current height (where ρe = 0 is assumed) and below the velocity

maximum (where ρe is estimated by requiring conservation of excess density flux between

the inlet and the data) with a linear distribution between the two. Inlet density flux (FI)

is estimated by multiplying fluid influx and the excess density of the dense fluid. In order

to maintain comparability between the strands of work, the excess density flux from the

data (Fe) is again estimated by considering the downstream velocity and density profiles
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Q (L s−1) 0.082 0.148
FI (kg s−1) 0.0024 0.0044

ρmaxe (kg m−3) 13.5 14.0

Table 5.5: Details of the inlet excess density flux FI calculated by taking the product of the fluid influx
and the excess density of the KDP, and the estimated maximum excess density within the body calculated
by requiring FI = Fe (where Fe is defined in (5.5)).

Re f (Hz) ω λ (m) NDS
ω

NDS
c (m s−1) c

Uwave

2743 0.40 2.51 0.086 3.88 0.65 0.034 1.24
4606 0.81 5.09 0.13 6.30 0.81 0.11 1.13
4606 1.11 6.99 0.10 7.49 0.93 0.11 1.23

Table 5.6: Details of the frequency, f , angular frequency, ω, wavelength, λ, expected maximum frequency
of waves due to buoyancy after Doppler shift, NDS , the ratio of ω and NDS , the wave speed, c = fλ,
and the ratio of wave speed to mean flow speed at the approximate wave height c/Uwave for dynamic
modes identified as having a significant impact on the flow.

only on a central cross-stream plane,

Fe = WT

∫
ρU

Z∗=0
dY, (5.5)

where WT is the width of the tank. Excess density below the velocity maximum is

estimated by requiring FI = Fe (Table 5.5).

The Brunt-Väisälä frequency, N , is the upper bound on the angular frequency of

internal waves due to buoyancy. A Doppler shift due to the mean flow must be applied,

NDS = N + U0k, (5.6)

where NDS is the frequency measured by a stationary observer, U0 is the mean flow at

the height of the wave, and k the wavenumber, which is here taken to be the down-

stream wavenumber kx as all observed waves propagate downstream. Details of the fre-

quency, wavelength (estimated by inspecting the velocities in Figure 5.15), wave speed,

and Doppler shifted buoyancy frequency for each mode are shown in Table 5.6, along

with a comparison of the measured frequency and the upper limit on the expected mode

frequency and the wave speed and measured flow speed at the height of the wave. For the

Re = 2743 case, the mode height is above the velocity maximum (here estimated to be

the height of maximum negative shear), while the Re = 4606 waves are at the height of

the velocity maximum. Given that the density profile is estimated rather than observed,

and the wavelengths are approximated by inspecting mode plots such as Figure 5.15, the

observed frequencies for all cases are on the right order of magnitude for the modes to be

considered internal waves due to gravity. Additionally, given the approximations involved

in the wave height and mode wavelength, the estimated wave speed is very close to the

measured flow speed at the height of the wave. This indicates the presence of a critical

layer in the flow at the height of the velocity maximum.
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5.6 Discussion

The volumetric velocity data presented in this chapter questions the validity of neglect-

ing cross-stream flow when discussing the gravity current body. While it is true that the

alternating positive/negative regions of vertical and cross-stream velocities leads to small

averaged values, the magnitudes of vertical and cross-stream velocity fluctuations are sig-

nificant and equivalent (Figures 5.5, 5.9, and 5.10). Vertical and cross-stream velocities

therefore both have significant and equivalent contribution to the calculation of turbu-

lent kinetic energy. Temporal variations in the presented data highlight that averaging

properties such as vertical velocity, cross-stream velocity, and turbulent kinetic energy

gives a misleading impression of the flow (Figures 5.4, 5.6, and 5.7).

Further, the volumetric measurements indicate that the cross-stream centreline, which

has often been used as the sole measurement location (for example Islam & Imran (2010)

and Gray et al. (2006)), is not representative of the flow in general and the cross-stream

velocity in particular (Figure 5.10). While this is especially true at lower Reynolds

numbers, there is still a noticeable effect in the Re = 4606 data. While it may be argued

that this could linked to the comparatively narrow domain width in this work, the aspect

ratio of the flow is comparable to that of previous works quantifying the velocity structure

in the current body (Cossu & Wells, 2012; Gray et al., 2006; Islam & Imran, 2010).

Fourier transforms, wavelet transforms, and dynamic mode decomposition (Figures

5.13, 5.14, and 5.15) have been used to illuminate the structure of the body of gravity

current flows. As in Chapter 4, the gravity current body has been shown to contain

internal gravity waves, and the same changes in these waves have been observed with

increased Reynolds number (namely the wave frequency increases and the position moves

towards the velocity maximum).

Internal gravity waves have previously been observed in the core of stratified plane

channel flows (Garćıa-Villalba & del Álamo, 2011; Zonta & Soldati, 2018). These originate

from the vertical displacement of a fluid parcel in a stably stratified flow with density

decreasing with distance from the lower boundary. The parcel is subject to buoyancy

forces aiming to restore the parcel to its original vertical position, with overcorrection

resulting in wavy motions (Zonta & Soldati, 2018). The waves observed by Garćıa-Villalba

& del Álamo (2011) are only associated with vertical velocity data, not cross-stream,

suggesting that the associated motions are largely two-dimensional. This is similar to the

waves identified in the Re = 2743 case here, where peaks in the FFT are found in the

downstream and vertical velocity data but not cross-stream (Figure 5.13).

By contrast, the waves identified in the Re = 4606 case are associated with peaks

in the FFT of cross-stream velocity (Figure 5.14). The streamlines of dynamic modes

from this case illustrate coherent motions in all three dimensions, with the mode having a



110

corkscrew-like structure with associated cross-stream velocities being equivalent in mag-

nitude to vertical (Figure 5.15). This cross-stream motion may originate with side-wall

effects due to the relatively narrow domain considered here. However, the downstream

velocity profiles in Figure 5.8 demonstrate that the highest Reynolds number flow (the

only case shown to contain motions affecting the cross-stream FFT data) is less affected

by side-walls than the lower Reynolds number flows. Additionally, real-world flows may

also be at least partly constrained in the cross-stream direction (for example turbidity

currents in submarine channels (Peakall & Sumner, 2015)). This data has demonstrated

that even at the moderate Reynolds numbers considered here the flow is unstable to

three-dimensional perturbations. The flow could reasonably be expected to become more

three-dimensional as Reynolds number (and hence turbulence) is increased further, what-

ever the original instability triggering the three-dimensionality (for example the break-

down of Kelvin-Helmholtz structures (Meiburg et al., 2015), or flow over bed structures

(Bhaganagar & Pillalamarri, 2017)).

It has again been demonstrated that the phase speed of the waves is approximately

equal to the mean flow speed, indicating a critical layer within the body. As described

in Chapter 4, the presence of a critical layer within the flow, combined with the demon-

strated three-dimensional motions, has significant implications for possible flow structure

(Dorrell et al., 2019). Wave breaking at the critical layer has the potential to form a

barrier to mixing, maintaining a larger density difference than expected based on current

understanding of body flow, thus increasing flow speeds and duration. Additionally, ab-

sorption of internal waves at the critical layer transfers horizontal momentum to the mean

flow, increasing downstream velocities over time and suggesting that the assumption of

a statistically steady flow may not be accurate.

5.7 Conclusions

The gravity current body has often been described through averaged properties, and

investigated through measurements taken at-a-point or on a single plane. The influence of

cross-stream flow has typically been neglected, with few seeking to quantify the magnitude

and structure of three-dimensional motions within the body. In this chapter, Shake-

the-Box particle tracking velocimetry has been used to generate instantaneous, three-

dimensional, volumetric measurements of velocity in constant-influx solute-based gravity

current flows.

The presented velocity measurements have been used to illustrate that cross-stream

and vertical velocities (and velocity fluctuations) in the flow body are equivalent in mag-

nitude, and therefore that the contribution of these two velocity components to turbulent

kinetic energy are equivalent (with cross-stream velocity being most significant at the

height of the velocity maximum). This suggests that cross-stream velocity should not be
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neglected when discussing the gravity current body. Additionally, instantaneous velocity

and turbulent kinetic energy data have demonstrated variation (in some cases with a

regular pattern) over time, and as such averaging these quantities leads to an inaccurate

impression of flow structure.

The presence of three-dimensional motions is significant. In Chapter 4, planar PIV

measurements were used to identify internal waves and a critical layer within the grav-

ity current body. The potential for this to lead to an eddy transport barrier and the

associated implications (such as sharper density profiles, and maintenance of the density

difference over larger distances than previously anticipated) were discussed. However, the

formation of this eddy transport barrier requires three-dimensional motions and cross-

stream density gradients within the flow. As in Chapter 4, analysis of the velocity data

through Fourier transforms, wavelet transforms, and dynamic mode decomposition led

to identification of internal gravity waves forming a critical layer within the flow. The

volumetric nature of these measurements has allowed three-dimensional corkscrew-like

motions associated with these waves to be identified in the highest Reynolds number

case.



Chapter 6

Using Direct Numerical Simulation

to Establish The Effect of Reynolds

and Schmidt Numbers on Gravity

Current Flow

In this chapter, Direct Numerical Simulation (DNS) is used to quantify the changes in

gravity current flow structure resulting from increased Schmidt number. The data pre-

sented indicates that, at the Reynolds numbers considered in this work (ReI = 100 to

ReI = 3000), increasing Schmidt number from 1 reduces the size of the mixed region be-

tween current and ambient fluids and produces a more defined head region. Additionally,

increasing Schmidt number results in the formation of a lobe-and-cleft structure in the

head, and the formation of structures in the mixed layer behind the head. Assuming a

Schmidt number of 1 may, therefore, lead to substantial structural differences compared

with high Schmidt number flows with equivalent Reynolds number.

6.1 Background

As noted in the introductory chapter, gravity currents are primarily horizontal flows

arising from a density difference between the current and surrounding ambient fluids. This

density difference could be the result of, for example, the presence of solute, suspended

sediment, or a temperature difference (Simpson, 1997; Ungarish, 2009). As they are a

common class of flow, with examples including thunderstorm outflows and powder snow

avalanches (Britter & Linden, 1980; Simpson, 1997), and are the primary mechanism of

transport in oceans (Dorrell et al., 2019; Talling, 2014), there exists extensive research

into their structure, including numerical investigations (Cantero et al., 2007; Hogg et al.,

2016; Meiburg et al., 2015; Özgökmen et al., 2004; Stacey & Bowen, 1988).
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The Schmidt number, analogous to the Prandtl number, is defined as the ratio of

momentum and mass diffusivities (Sc = ν/D), and is a key parameter in understand-

ing mixing on the molecular level (see (6.1)) (Bonometti & Balachandar, 2008; Miller,

1991). As Schmidt number increases, diffusion decreases and momentum becomes the

dominant mass transfer mechanism. Increasing the Schmidt number from 1 reduces the

length scales that must be resolved from the Kolmogorov scale (ηK) to the Batchelor

scale (ηB = ηKSc
−1/2) (Andersson et al., 2011; Donzis et al., 2014), and mixing is ex-

pected to decrease (Miller, 1991; Rahmani et al., 2016). It has also been demonstrated

that increasing Schmidt/Prandtl number may cause larger scale structural changes in

the flow, such as increased plume length in turbulent jets (Miller, 1991), and stronger

three-dimensional motions resulting from changes to density profiles and stronger density

gradients (Hanazaki et al., 2009; Langham et al., 2020; Rahmani et al., 2016).

The Reynolds number is defined as the ratio of inertia to viscous forces (Re = UcLc

ν
).

Increasing Reynolds number, below the point of similarity (Re ≈ 1000, (Simpson, 1997)),

changes the head shape in a gravity current including the formation of the lobe-and-cleft

structures resulting from the over-riding of ambient fluid and Kelvin-Helmholtz billows

behind the head (Garćıa & Parsons, 1996; Parsons & Garćıa, 1998; Simpson, 1997).

Reynolds number also significantly affects rates of mixing and entrainment, with mixing

rates affected by whether the primary mechanism is Holmboe waves, Kelvin-Helmholtz

vortex rolls, or Kelvin-Helmholtz billows (Balasubramanian & Zhong, 2018; Hogg et al.,

2015).

The value of Schmidt number varies dramatically depending on the fluid, for example

O(1) for gases in air, O(1000) for solutes in water, and O(∞) for oil in water (Andersson

et al., 2011; Bird et al., 2007; Bonometti & Balachandar, 2008; Reynolds, 1974). Despite

this, the existing investigations typically assume Sc = 1 (Birman et al., 2005; Bonometti

& Balachandar, 2008; Cantero et al., 2007; Hogg et al., 2016; Meiburg et al., 2015; Necker

et al., 2005; Özgökmen et al., 2004; Stacey & Bowen, 1988). The large computational cost

involved (the cost of DNS scaling with Re3Sc2, as demonstrated in Chapter 3) means that

few works have so far considered the effect of Schmidt number on gravity current flows.

Birman et al. (2005) and Necker et al. (2005) justify their use of Sc = 1 through test

calculations that suggest Schmidt number has little influence on gravity current structure

for values between 0.2 and 5.

The exception is Bonometti & Balachandar (2008), who use a combination of a pseudo-

spectral method and a finite-volume/volume of fluid interface capturing method to in-

vestigate the parameter space 1 ≤ Sc ≤ ∞ and 100 ≤ Re ≤ 10000. For Re = 10000,

they conclude that neither the front velocity nor the level of mixing are strongly depen-

dent on Sc, though decreasing Sc does increase the size of the mixing region. For the

lower Reynolds number flows, they observe that increasing Sc changes head shape, with

a depression separating head from body appearing as Sc increases, and that the effect of
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Figure 6.1: Scatter plot showing the distribution of stable/unstable interfaces based on a bulk Richardson
number from a table in the work of Bonometti & Balachandar (2008) as a function of Sc and Re.

Sc on front velocity in these flows is highly dependent on the density contour chosen to

define the front. They also claim that while the pattern of lobe-and-cleft structures is not

strongly dependent on the Schmidt number, the formation of vortices along the body is.

Figure 6.1 is a scatter plot based on a table from Bonometti & Balachandar (2008) show-

ing the distribution of stable/unstable interfaces based on a bulk Richardson number for

their work and a few other investigations. This suggests that the interface stability is only

weakly dependent on Schmidt number, with the interface becoming slightly more stable

with increased Sc. However, this data is based almost entirely on two-dimensional data

sets. Two-dimensional simulation of gravity currents is not able to reproduce large-scale

coherent motions and three-dimensional flow features, such as the formation of lobe-and-

cleft structures and the breakdown of interfacial billows, or accurately estimate the energy

budget of the flow (Cantero et al., 2008; Espath et al., 2014; Meiburg et al., 2015; Necker

et al., 2002; Özgökmen et al., 2004; Paik et al., 2009; Stancanelli et al., 2018). Therefore,

three-dimensional simulations are needed to confirm the relationship between interface

stability and Schmidt number.

In this work, three-dimensional direct numerical simulation (DNS) is used to provide

the instantaneous density field, in addition to the velocity field which can be compared

directly with the experimental data in previous chapters, further improving understanding

of the flow. As well as considering the effect of Reynolds number, the impact of varying the

Schmidt number will be investigated (something that was not possible in the experimental

work of Chapters 4 and 5 due to refractive index matching requirements). Questions

remain regarding how reasonable an assumption of Sc = 1 is for such flows. The effects

of varying Reynolds and Schmidt numbers on the head of a gravity current flow will

be considered. Specifically, the key aims are to discuss: i) how Reynolds and Schmidt

numbers affect the structure of the head, in particular the formation of lobe-and-cleft

structures, ii) how Reynolds and Schmidt numbers affect the structure of flow behind the



115

head, in particular the stability of the current-ambient interface, iii) which of the changes

observed with increased Schmidt number also occur with increased Reynolds number, and

iv) when assuming a low Schmidt number to reduce the computational cost of numerical

investigations may be justified.

6.2 Methodology

The spectral element solver Nek5000 is used to simulate three-dimensional gravity cur-

rent flow in the domain illustrated in Figure 6.2. The governing equations are the non-

dimensional, incompressible, Boussinesq Navier-Stokes, salinity, and continuity equations,

∂Ũ

∂t̃
+ Ũ · ∇Ũ = −∇P̃ +

1

Re
∇.τ̃ +

1

Fr2
d

∆S̃ĝ,

∂S̃

∂t̃
+ Ũ · ∇S̃ =

1

ReSc
∇ · ∇S̃,

∇ · Ũ = 0,

(6.1)

where U is the velocity vector, t time, P = p + ρagh where p is the pressure field

and h the elevation, Re = UcLc/ν the Reynolds number, τ the stress tensor, Frd =

Uc/
√
g′Lc the densimetric Froude number, g and ĝ the magnitude and direction of the

gravitational acceleration, S salinity, Sc = ν/D the Schmidt number with ν the kinematic

viscosity and D the mass diffusivity, β = 1
ρ
∂ρ
∂S

the haline contraction coefficient, and

(̃·) indicates a dimensionless variable. The dimensionless variables are defined relative

to some characteristic length, velocity, and time scales as shown in Table 6.1. Time

advancement is performed using a semi-implicit method combining implicit backwards

differentiation and explicit Runge-Kutta schemes as described in Fischer (1997), and

spatial discretisation is based on the spectral element method (Boyd, 2001; Fischer, 1997;

Fornberg, 1998). To ensure sufficient resolution, the wall y+, x+, and z+ values (defined

as y+ = uwy/ν where y is the distance to the nearest wall, and uw the wall friction velocity

with equivalent statements for the other spatial dimensions) are kept below 0.05 for the

nearest grid point to the wall, and the first 10 points are within y+ < 10 (Coleman &

Sandberg, 2010; Kim et al., 1987). Additionally, decay of several orders of magnitude is

observed in the energy spectrum for all variables (Cantero et al., 2006, 2007). In the raised

sections at either end of the domain and in the drop above the outlet, the resolution was

lower to reduce computational cost. Resolution in these regions was therefore likely not

sufficient to capture all ranges of motion, however these areas were considered sufficiently

far from the current that the flow data would not be affected.

The characteristic length Lc, velocity Uc, and time tc scales are defined a priori. The

characteristic length scale for all cases is chosen to be the height of the internal fitting to
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Parameter Non-Dimensionalisation

Length x̃ = x/Lc

Velocity Ũ = U/Uc

Time t̃ = (Uc/Lc)t = t/tc

Pressure ∇P̃ = (Lc/ρaU
2
c )∇P

Stress tensor ∇ · τ̃ = (L2
c/Ucνρa)∇ · τ

Salinity ∆S̃ = (S − Sa)/(SI − Sa) = ∆S/∆SI

Table 6.1: Definition of non-dimensionalisations used in this work, where x is position, t is time, tc =
Lc/Uc a characteristic time, ∆S = S − Sa, and ∆SI = SI − Sa.

Figure 6.2: DNS setup.

ReI Sc Pe ν (m2 s−1) FrD,I UI (m s−1) D (m2 s−1)
100 1 100 3.26× 10−5 0.54 0.22 3.26× 10−5

100 10 1000 3.26× 10−5 0.54 0.22 3.26× 10−6

100 100 10000 3.26× 10−5 0.54 0.22 3.26× 10−7

500 1 500 6.53× 10−6 0.54 0.22 6.53× 10−6

500 10 5000 6.53× 10−6 0.54 0.22 6.53× 10−7

1000 1 1000 3.26× 10−6 0.54 0.22 3.26× 10−6

3000 1 3000 1.09× 10−6 0.54 0.22 1.09× 10−6

Table 6.2: Parameters for the various simulations conducted in this work, along with a haline contraction
coefficient of β = 1 and SI−Sa = 0.03 to achieve a 3% density difference. The characteristic length (Lc),
velocity (Uc) and time (tc) scales for every case are Lc = 0.05 m, Uc = 0.065 m s−1, and tc = Lc/Uc =
0.77 s.
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limit initial flow height, Lc = 0.05 m. For the highest Reynolds number DNS case, the

viscosity is chosen to match that of the experimental work in Chapter 4, ν = 1.09 m2 s−1,

and the characteristic velocity, Uc = 0.065 m s−1, is chosen to give the desired input

Reynolds number ReI = 3000. This represents an average velocity under the initial

internal fitting. The characteristic time scale is chosen to be tc = Lc/Uc = 0.77 s. To

reduce the Reynolds number, the characteristic velocity scale is kept constant and the

fluid viscosity varied. Schmidt number is varied by changing mass diffusivity, D. The

input densimetric Froude number, FrD,I = Uc/
√
g′Lc = 0.54, is the same for all cases.

The input parameters for each case are shown in Table 6.2.

The inlet flow is again intended to match that of the work in Chapter 4. Therefore,

the maximum inlet velocity, UI , is approximated by dividing the influx of the lowest influx

PIV case by the inlet area. The inlet has dimensionless radius 0.254, and is covered with

a coarse mesh with holes of dimensionless radius 0.078. For the DNS, these holes are

centred at locations

(Ỹ , Z̃) = (0.350, 1.000), (0.531, 1.000), (0.169, 1.000), (0.441, 1.150),

(0.260, 1.150), (0.441, 0.850), (0.260, 0.850),
(6.2)

with the inlet velocity approximated by

Ũ = ŨI
√

sin((0.5 + 0.5r̃2)π) , (6.3)

where r̃ varies from 0 to 1 from the centre to the edge of each small circle. Where the

velocity on the inlet is non-zero, the salinity S̃ = 1.03 compared to S̃ = 1.00 in the rest

of the domain (and therefore ∆SI = 0.03), with a haline contraction coefficient of β = 1

for simplicity. The outlet is approximated by a square outlet placed in the bottom right

corner of the domain.

6.3 The Effect of Reynolds and Schmidt Numbers on

The Head

6.3.1 Density

The effect of Schmidt number on the density structure of the flow can be established by

considering contours of proportional excess density (∆S̃). Figure 6.3 shows contours of

∆S̃ at t̃ = 23.4 at a central cross-stream location. The right-most column of this figure

shows two contours for each case – that with density just above the ambient density,

∆S̃ = 0.03, and that with density approximately halfway between the densities of the

ambient fluid and that pumped in at the inlet, ∆S̃ = 0.48. The contour with ∆S̃ = 0.03
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Figure 6.4: Scatter plots showing the effect of Reynolds number on (left) current height (where h̃ is the
dimensionless current height) and (right) mixed layer size as a percentage of current height.

is considered to be the current boundary. Increasing Schmidt number has little impact

on current front velocity over the short time frame considered here, though increasing

Reynolds number increases front velocity as expected. Increasing either Reynolds number

or Schmidt number leads to a depression behind the head, angled towards the current

front.

For each case, the current height (defined as the height of the ∆S̃ = 0.03 contour),

the thickness of the mixed region (defined as the difference in height of the two contours

at the left-most point of the figure), and the difference in front positions of the ∆S̃ = 0.03

and ∆S̃ = 0.48 contours are estimated by inspecting Figure 6.3, and listed in Table 6.3.

The height of the head is approximately constant across cases with constant Schmidt

number. For Sc = 1 the head height is ∼ 1, reducing to ∼ 0.8 for Sc = 10. Increasing

Schmidt number consistently reduces body height, the thickness of the mixed layer as a

proportion of total flow height (Figure 6.4), and the difference in front position of the

two contours (illustrating that increasing Schmidt number leads to dense fluid reaching

closer to the front of the flow).

The height of the ∆S̃ = 0.48 contour, however, is not strongly affected by increasing

Schmidt number, suggesting that evidence of the effect of Schmidt number on quantities

such as current height or front velocity is highly dependent on the contour chosen to

define the current boundary. In fact, the height of this contour is the same across all

cases excepting ReI = 3000, suggesting a greater degree of mixing in this case. Increasing

Schmidt number reduces current height, with a 33% decrease between the (ReI , Sc) =

(100, 1) and (100, 10) cases (with a further decrease of 25% between (ReI , Sc) = (100, 10)

and (100, 100)), though this decrease is reduced to 25% between (ReI , Sc) = (500, 1) and

(500, 10). Similarly increasing Schmidt number reduces the percentage of the current

height taken up by the mixed layer, from 67% to 38% between the (ReI , Sc) = (100, 1)

and (100, 10) cases (to only 17% in the (ReI , Sc) = (100, 100) case), and from 50% to

33% between (ReI , Sc) = (500, 1) and (500, 10). Dense fluid reaches closer to the front

of the flow as Schmidt number is increased, with the percentage of the flow covered by

the ∆S̃ = 0.48 contour increasing from 58% to 88% between the (ReI , Sc) = (100, 1) and
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(ReI , Sc) ∆S̃height0.03 ∆S̃height0.48
∆S̃height

0.03 −∆S̃height
0.48

∆S̃height
0.03

∆S̃front
0.48

∆S̃front
0.03

(100, 1) 1.20 0.40 67% 58%

(100, 10) 0.77 (36%) 0.48 38% 88%

(100, 100) 0.60 (50%/22%) 0.48 17% 100%

(500, 1) 0.77 (36%) 0.39 50% 80%

(500, 10) 0.60 (22%/22%) 0.40 33% 88%

(1000, 1) 0.67 (44%) 0.39 43% 81%

(3000, 1) 0.63 (48%) 0.21 67% 83%

Table 6.3: Estimates of the current height (determined by the ∆S̃ = 0.03 contour), the mixed layer
thickness as a percentage of current height (defined as the difference in heights of the ∆S̃ = 0.03 and
∆S̃ = 0.48 contours) and the percentage of flow length covered by the ∆S̃ = 0.48 contour. These are
based on inspection of Figure 6.3. (Brown text indicates the % decrease from the Sc = 1 case with the
same ReI , magenta text the % decrease from the Sc = 10 case with the same ReI , and cyan text the %
decrease from the ReI = 100 case with the same Sc).

(ReI , Sc) = (100, 10) cases (further increasing to 100% in the (100, 100) case) and from

80% to 88% between the (ReI , Sc) = (500, 1) and (500, 10) cases. This demonstrates

that increasing Reynolds number reduces the influence of increased Schmidt number on

some flow features, with increasing Schmidt number from 1 to 10 having more impact

than increasing beyond 10. Additionally, this Sc = 100 case has dense fluid reaching

the very front of the flow. This suggests that a further increase to Sc = O(1000) to

match real-world solute based flows would likely result in only minor changes in these

parameters.

The effect of Reynolds number is more complex (see Figure 6.4). While reducing

viscosity (increasing Reynolds number) consistently reduces current height (in this case,

the decrease at Sc = 1 is proportional to Re−0.5) and increases the percentage of flow

length covered by the ∆S̃ = 0.48 contour, the percentage of current height covered by

the mixed layer increases in the ReI = 3000 case compared with ReI = 1000, perhaps a

result of increased mixing by the Kelvin-Helmholtz structures that form with increased

Reynolds number (see Figure 6.5). These structures are also present in the ReI = 1000

case, and may be emerging in the (ReI , Sc) = (500, 10) case, in which the mixed layer

thickness decreases as a proportion of current height compared with the lower ReI cases.

However, the rate of decrease between ReI = 500 and ReI = 1000 is slower than that

between ReI = 100 and ReI = 500, which may also be a result of the Kelvin-Helmholtz

structures.

The three-dimensional density isosurfaces (Figure 6.5) indicate that these trends ex-

tend across the width of the tank. These isosurfaces show signs of structural change

with increasing Reynolds and Schmidt numbers. At ReI = 100, the isosurfaces from the

cases with Sc = 1 and Sc = 10 are completely smooth. At Sc = 100, ridges appear

in the highest density isosurface. In the (ReI , Sc) = (1000, 1) case the lowest density
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isosurface has oscillations behind the head. By (ReI , Sc) = (3000, 1), all isosurfaces have

lost the smoothness of the (ReI , Sc) = (100, 1) case, as expected owing to the increase

in turbulence. Depending on the Reynolds and Schmidt numbers of the flow, there may

be evidence of additional structure in the highest density isosurface, the lowest density

isosurface, both, or neither. Additionally, with increasing Reynolds number the perturba-

tions in the density isosurfaces are most pronounced near the head, while for increasing

Schmidt number the perturbations become more pronounced with increasing distance

from the head. This suggests that there are at least two distinct mechanisms influencing

the flow structure.

To investigate the mechanisms responsible for these changes, pseudocolour plots of

density both in an X̃−Z̃ plane at Ỹ = 0.1 and in a Z̃−Ỹ plane near the current front (Fig-

ure 6.6) can be inspected. These plots show that cases (ReI , Sc) = (100, 100), (500, 10),

and (3000, 1) contain regions of less-dense fluid surrounded by the denser fluid of the

head. The Z̃ − Ỹ plane illustrates that this fluid is absorbed upwards, originating from

the over-running of ambient by the raised nose of the flow. Therefore, as well as causing

dense fluid to reach closer to the front of the flow, increasing Schmidt number at fixed

Reynolds number leads to the formation of lobe-and-cleft structures within the head.

These structures also form with increasing Reynolds number.

6.3.2 Velocity

In order to obtain a thorough understanding of the flow structure, the velocity structure

will be inspected. Pseudocolour plots of all three velocity components for each case are

shown on an X̃ − Z̃ slice close to the bottom boundary (Figure 6.7) and on X̃ − Ỹ slices

(Figures 6.8 and 6.9). In addition to Figures 6.5 and 6.6, Figure 6.7 highlights a strong

symmetry about the central Z̃-plane in all but the (ReI , Sc) = (3000, 1) case. Only

in this case does the increase in non-linearity owing to higher Reynolds number cause

this symmetry to break. Excepting this highest Reynolds number case, the cross-stream

velocity for all cases has negligible magnitude on the central Z̃ = 0 plane (Figure 6.8),

indicating a symmetric solution. However, away from this central plane the magnitude of

cross-stream and vertical velocities have equivalent magnitude in all cases (for example

the plane at Z̃ = 0.5 shown in Figure 6.9). This suggests that the flow is not two-

dimensional as commonly assumed (Meiburg et al., 2015; Simpson, 1997). Downstream

velocity on the two X̃ − Ỹ planes has the same structure and magnitude in all cases, as

does cross-stream velocity in the ReI = 3000 case.

The vertical velocity plots confirm the over-riding of ambient fluid, with Figure 6.7

showing areas of large positive vertical velocity close to the bottom boundary and near

the front of the current for the (ReI , Sc) = (100, 100), (500, 10), and (3000, 1) cases, cor-

responding to the rising buoyant fluid over-ridden by the current front. Additionally, as
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expected from the density contours, increasing Reynolds number increases downstream

velocity within the flow. Increasing Reynolds number also increases variation in all com-

ponents of velocity within the body, including alternating positive and negative vertical

velocity near the side-walls in the ReI = 1000, 3000 cases. Visible in both Figures 6.7 and

6.8, increasing Schmidt number results in a regular alternating pattern of positive and

negative vertical velocity at a central cross-stream location, and corresponding positive

and negative cross-stream velocity either side of the centre, behind the head of the cur-

rent. The regular alternating vertical velocity pattern established by increasing Schmidt

number is localised to the cross-stream centre of the flow, though increasing Reynolds

number increases the width of the motions (Figures 6.7 and 6.9).

Figure 6.10 illustrates the flow behind the head in the (ReI , Sc) = (500, 1), (500, 10)

cases at t̃ = 66.3, demonstrating that these are not short-term changes. As well as

velocity plots, this figure contains plots of density fluctuations from cross-stream averaged

density (∆S̃ −∆S̃Z̃ , where ∆S̃Z̃ is density averaged in the cross-stream direction). The

density fluctuations in the Sc = 10 case contain a pattern of alternating positive and

negative regions correlated with those in vertical velocity but with a 1/4−wavelength

offset (characteristic of internal gravity waves (Garćıa-Villalba & del Álamo, 2011)). To

understand why decreasing mass diffusivity leads to large-scale changes in flow structure,

plots of swirling strength and gradient Richardson number will be inspected.

Figure 6.11 shows plots of swirling strength ζci as defined by Zhou et al. (1999), as

the imaginary component of the complex eigenvalue of the velocity gradient tensor,

∇̃Ũ = ΓBΓT , (6.4)

where

Γ = [Γr Γcr Γci], B =


ζr 0 0

0 ζcr ζci

0 −ζci ζcr

 , (6.5)

∇̃Ũ is the velocity gradient tensor, ζr and Γr are the real eigenvalue and eigenvector,

and ζcr ± iζci the complex conjugate pair of complex eigenvalues with corresponding

eigenvectors Γcr ± iΓci. These plots reveal that increasing Schmidt number leads to

the formation of structures in the mixed layer between the current and the ambient in

the centre of the tank in the cross-stream direction (with the mixed layer here defined

as the region between the ∆S̃ = 0.03 and ∆S̃ = 0.48 contours). The placement of these

structures is identical for the (ReI , Sc) = (100, 10), (100, 100) cases, and their spacing in

the downstream direction is the same for all three Sc > 1 cases. Figure 6.11 shows that

increasing Reynolds number also leads to the formation of structures within the body,

though they differ from those resulting from increased Schmidt number. While some of

the structures resulting from increased Reynolds number are within the mixed region,
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the structures in the higher Reynolds number cases have a less regular pattern (with a

different physical spacing to the high Schmidt number cases), and are not limited to the

centre in the cross-stream direction. The exclusively positive values of swirling strength

are likely a result of the influence of shear between the current and ambient. Figure

6.11 also includes plots of the X̃ component of vorticity, Ωx̃ = ∂W̃
∂Ỹ
− ∂Ṽ

∂Z̃
on an X̃ − Z̃

plane, indicating the level of motion perpendicular to the downstream flow. It can be

seen that the central structures that appear with increased Schmidt number are linked

to three-dimensional motions within the flow.

This change in large-scale structures with Schmidt number is not immediately antic-

ipated, given that Schmidt number is expected to result in changes at the small scale.

Figure 6.12 shows the density and downstream velocity profiles on a central cross-stream

location averaged over downstream location at the timestep illustrated in Figure 6.10.

The change in diffusivity resulting from the Schmidt number increase leads to a change

in density profile, specifically the anticipated increase in density in the lower part of the

flow and sharper transition from dense to ambient fluid. As there is a greater density dif-

ference, there is a corresponding increase in downstream velocity within the body. These

changes may affect the stability of the interface. To illustrate this, a gradient Richardson

number can be calculated,

Ri =
g

ρc

∂ρ/∂Y

(∂U/∂Y )2
, (6.6)

where ρc is the density of the fluid pumped in at the inlet, which gives a measure of the

stability of density stratification. If Ri > 0.25, then the energy produced by shear is not

sufficient to overcome the density stratification and is therefore dissipated (Buckee et al.,

2001). Profiles of Ri for the cases with ReI = 500 are shown in Figure 6.12c. Increasing

Schmidt number from 1 changes the Ri profile such that the value at the current height

moves from above to below this critical level. The same change is seen for every case with

Sc > 1, while for every case with Sc = 1, Ri > 0.25 in this area. Therefore, changes in

the density and velocity profiles resulting from decreasing mass diffusivity (and therefore

increasing Schmidt number) lead to the density stratification becoming less stable such

that energy produced from shear is no longer dissipated but instead leads to large-scale

structural changes in the flow.

6.4 Discussion

Reducing the fluid viscosity, and thus increasing the flow Reynolds number, has been

shown to result in a shorter head, with more velocity fluctuations, and greater front

and internal velocities. Excepting the highest Reynolds number case considered in this

work, a strong symmetry plane is present at a central cross-stream location for all cases.

Attempting to quantify such flows using exclusively a central cross-stream plane could,
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Figure 6.12: Comparison of (a) excess density and (b) downstream velocity averaged over downstream
locations at the timestep illustrated in Figure 6.10, and (c) Ri profile for the cases with (ReI , Sc) =
(500, 1) and (500, 10) based on the excess density and velocity profiles shown in (a) and (b). The
horizontal lines show (dashed) the height of the current based on where the average downstream velocity
profile changes from positive to negative, and (dot-dash) the average height of the maximum downstream
velocity, and the vertical line indicates the critical value of Ri = 0.25. The insert shows a magnified view
of the high Schmidt number case plot near the upper interface, illustrating where flow Ri moves from
above to below the critical value.
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depending on flow Reynolds number, give a misleading impression of the overall flow

particularly in terms of the cross-stream velocity (Figures 6.7, 6.8, and 6.9). For most

cases, W̃ was found to be 0 on the central cross-stream plane but elsewhere the magnitude

of cross-stream velocity was equivalent to that of vertical velocity suggesting that the flow

is not two-dimensional as often assumed (Meiburg et al., 2015; Simpson, 1997).

6.4.1 The Effect of Reynolds and Schmidt Numbers on Flow in

the Head

Figure 6.3 and Table 6.3 show that increasing either Schmidt or Reynolds number results

in a more defined head, with a forward angled depression in the density contour behind the

head. The head height, based on the ∆S̃ = 0.03 density contour, decreases slightly from

Ỹ ≈ 1.2 at ReI = 100 to Ỹ ≈ 1 at ReI = 500 with no further decrease when Reynolds

number is increased further. Increasing Schmidt number does consistently reduce the

head height, with a more significant change at lower Reynolds number and when Schmidt

number is increased from 1 to 10 compared with 10 to 100. The difference between the

right-most positions of the ∆S̃ = 0.03 and ∆S̃ = 0.48 contours as a proportion of current

front position decreases with both increased Reynolds and Schmidt numbers, indicating

that dense fluid is reaching closer to the front of the flow. In the (ReI , Sc) = (100, 100)

case, the ∆S̃ = 0.48 contour reaches the front of the flow, suggesting that a further

increase in Schmidt number would likely have little impact.

The lobe-and-cleft structures resulting from the over-running of ambient fluid by the

current front are present in some cases but not others (Figure 6.6). As lobe-and-cleft

structures are associated with some of the largest bed shear stresses (Meiburg & Kneller,

2010; Necker et al., 2002), and changes in rates of mixing (Simpson & Britter, 1979),

accurately capturing this feature is important to understanding the flow structure. While

the (ReI , Sc) = (100, 1), (100, 10) and (500, 1) cases do not exhibit over-running of

ambient fluid, the (ReI , Sc) = (100, 100) and (500, 10) cases do. Therefore, for Reynolds

numbers O(100) the presence of lobes-and-clefts in the current head is dependent on the

Schmidt number (with Figure 6.13b showing the phase space where these structures are

found in this work). This conflicts with the findings of Bonometti & Balachandar (2008),

who suggest that lobe-and-cleft structures are not Schmidt number dependent. However,

varying Schmidt number here was only possible at Reynolds numbers sufficiently low that

these structures were not already present at Sc = 1. As over-running of ambient fluid is

observed in the (ReI , Sc) = (3000, 1) case (Figure 6.6), providing the Reynolds number of

the flow is sufficiently high this flow feature may be captured without increasing Schmidt

number above 1.
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Figure 6.13: Scatter plots showing the Schmidt and Reynolds numbers where (a) Kelvin-Helmholtz
structures, and (b) lobe-and-cleft structures are present.

6.4.2 The Effect of Reynolds and Schmidt Numbers on Flow

Behind the Head

Considering flow behind the head, current height decreases with both Reynolds and

Schmidt numbers (Figure 6.3 and Table 6.3). However, the height of the ∆S̃ = 0.48

contour seems to be relatively consistent regardless of the Reynolds and Schmidt number

of the flow. Increasing Reynolds number from ReI = 100 to ReI = 500 leads to a smaller

percentage decrease in current height as Schmidt number is increased. At the Reynolds

and Schmidt number range considered in this work, the percentage change in thickness

of the mixed layer of fluid behind the head as Schmidt number is increased from 1 to 10

is equivalent in both ReI = 100 and ReI = 500 cases. A further increase from Sc = 10 to

Sc = 100, however, results in a smaller change. Increasing Reynolds number was found

to have a more complex effect on mixed layer thickness, with the percentage of flow

height taken up by the mixed layer initially decreasing and then increasing when ReI =

3000. This may be a result of increased mixing from the Kelvin-Helmholtz structures

(visible in Figure 6.5) that begin to form as ReI increases. Close examination of the

density contours in Figure 6.3 and the isosurfaces in Figure 6.5 indicates that the Kelvin-

Helmholtz structures may be emerging in the (ReI , Sc) = (500, 10) case (but not the

(ReI , Sc) = (500, 1) case). This suggests that increasing Schmidt number may reduce

flow stability.

Several changes resulting from increased Schmidt number have been noted in the

data from this chapter. In many cases, the impact of increasing Schmidt number beyond

one is either reduced by increasing Reynolds number (for example the change in current



134

height), or the same changes are observed with increased Reynolds number (for example

the presence of lobes-and-clefts). There are, however, features that are not captured if

Sc = 1 is assumed. In particular, increasing Schmidt number is related to the formation

of structures at the current-ambient interface behind the head. This can be seen in several

of the plots presented, for example the waviness in the density contours (Figure 6.3), in

the velocity plots (Figures 6.7 and 6.8), and in the swirling strength plots (Figure 6.11),

in which wave-like distortions in the density contours correlate with peaks in swirling

strength.

All cases with Sc > 1 exhibit the formation of structures on the current-ambient inter-

face behind the head that are not diminished as distance from the head increases (Figure

6.11). This appears to be a distinct mechanism from the formation of Kelvin-Helmholtz

vortices, the influence of which decreases with distance from the head in this data, and

which are present in some cases with Sc = 1 (see Figure 6.13a). The vorticity plots in

Figure 6.11 indicate that these structures are associated with three-dimensional motions.

The velocity and density perturbations associated with these structures (Figure 6.10) have

correlated patterns of alternating positive and negative regions, with the 1/4−wavelength

offset characteristic of internal gravity waves (Garćıa-Villalba & del Álamo, 2011). The

formation of these waves is a result of the decrease in mass diffusivity sharpening the

density profile, leading to a change in the stability of the interface. This stability can be

quantified by a decrease in gradient Richardson number in the upper part of the flow.

In all cases with Sc = 1, even those with Kelvin-Helmholtz structures behind the head,

the gradient Richardson number in the upper part of the flow is above the critical value.

As discussed by Pelmard et al. (2020), a gradient Richardson number below 0.25 in the

head may lead to the formation of Kelvin-Helmholtz structures that then dissipate some

distance behind the head if the value rises above the critical level in the body. There-

fore the current-ambient interface in the body may be stable even with the presence of

Kelvin-Helmholtz structures near the head.

All cases with Sc > 1 have Ri < 0.25 in the upper part of the flow, suggesting

that density stratification is no longer stable enough to dissipate the energy generated

through shear. Crucially, unlike other characteristics, it does not appear to be the case

that this effect of increased Schmidt number is diminished by increased Reynolds number

in the range considered here. The perturbations in density field are at least as prominent

in the ReI = 500 case as in the ReI = 100 cases (Figure 6.3). The effect is also not

captured purely by increasing Reynolds number in the range considered in this work.

While peaks in swirling strength are found in the ReI = 1000, 3000 cases, they are

missing the regularity of those in the higher Sc cases and are not limited to the centre in

the cross-stream direction, supporting the suggestion that this is a separate mechanism

to those seen with increased Reynolds number.
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Examining the velocity and swirling strength plots from Chapter 5 (Figure 5.11), the

structure of the motions in the experimental cases has more in common with the higher

Schmidt number cases than the lower Schmidt number cases. In both the experimental

data and the high Schmidt number numerical data, the motions have a regularity and

central cross-stream location. This contrasts with the low Schmidt number cases where

the motions are concentrated towards the side-walls. A Schmidt number of 1 is often

assumed when performing numerical investigations of gravity current flows. This is largely

a result of the rapidly escalating computational cost of DNS, which scales with Re3Sc2

(see Chapter 3). The work in this chapter suggests that assuming a Schmidt number of

1 in numerical investigations leads to substantial structural differences compared with

higher Schmidt number experimental flows.

When computational resources are limited, deciding whether to prioritise increasing

Schmidt or Reynolds number is a complex issue dependent on several factors. There may

be no benefit to prioritising Schmidt number at the expense of Reynolds number if data

analysis will focus on parameters that are not Schmidt number dependent (such as front

velocity), or that are also seen with increased Reynolds number (such as the formation of

lobe-and-cleft structures). However, for low Reynolds number flows it is recommended to

have Schmidt number sufficiently large that the gradient Richardson number is below the

critical value of 0.25. The importance of considering Schmidt number may also depend

on flow type, for example the data presented in this work suggests that Schmidt number

impact may be greater in a more viscous flow (such as transitional flows).

6.4.3 Application to Real-World Transitional Flows

In this work, Reynolds number was varied by changing the fluid viscosity. As a result of

computational cost restrictions, the cases considering the effect of Schmidt number had

significantly higher viscosity than the experimental fluids. The ReI = 500 and ReI = 100

cases have viscosity ∼ 6 and ∼ 30 times that of the fluids used in Chapters 4 and 5,

equivalent to that in flows with ∼ 10% to ∼ 50% by volume clay (Amy et al., 2005).

Therefore, it may be that the effects of increasing Schmidt number (such as the forma-

tion of lobe-and-cleft structures, and structures within the body) are more pronounced in

higher viscosity flows. When investigating flows such as real-world transitional flows (de-

fined as flows with behaviour that is transitional between laminar and turbulent states),

which typically have ∼ 15% by volume clay (Amy et al., 2005; Peakall et al., 2020), it

may therefore be particularly important to consider the effect of Schmidt number. Given

the computational costs involved, this may at first seem insurmountable. However, in

the data presented in this work, even at ReI = 100 the changes resulting from further

increasing Schmidt number from 10 to 100 are largely quantitative rather than qualita-
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tive. Therefore, even when investigating a Schmidt number dependent feature of a high

Schmidt number flow some concessions to computational cost are likely justified.

6.5 Conclusions

Many numerical investigations of gravity current flows have sought to mitigate the high

computational cost of three-dimensional direct numerical simulation (scaling like Re3Sc2)

by claiming the effect of increasing Schmidt number from 1 is negligible. However, the

justifiability of this assumption has been questionable given the lack of understanding

regarding the effect of Schmidt number on three-dimensional flow features. In this work,

the effects of Reynolds and Schmidt number on constant-influx solute-based gravity cur-

rent flow structure have been investigated through three-dimensional direct numerical

simulation performed using the spectral element solver Nek5000. These results have been

used to draw conclusions regarding when a Sc = 1 assumption is justified.

The importance of considering Schmidt number is dependent on the flow property of

interest, and on the flow itself. Some flow features appear to be independent of Schmidt

number (for example current front velocity). Additionally, some of the effects of increased

Schmidt number also occur with increased Reynolds number (such as the appearance

of lobe-and-cleft structures in the head) or are reduced by increased Reynolds number

(such as the change in current height). A notable exception is the reduction in gradient

Richardson number.

In flows with ReI = 100, 500, increasing Schmidt number from 1 to 10 was found to

reduce the gradient Richardson number in the body of the flow from above to below the

critical value, resulting in the presence of structures in the mixed layer. When moving

from ReI = 100 to ReI = 500, this effect of increased Schmidt number was not reduced.

Further, equivalent structures were not apparent in the ReI = 3000 case, suggesting

that this feature may not be captured purely by increasing Reynolds number. When

considering the structure of the gravity current body in a high Schmidt number flow,

assuming Sc = 1 may therefore lead to qualitative changes in flow structure. This may be

particularly true in higher viscosity cases (such as clay-based transitional flows), though

further work considering the impact of Reynolds number on such flows is needed. Even

at ReI = 100 the effect of increasing Schmidt number from 10 to 100 was quantitative

rather than qualitative, and therefore the structure of solute-based flows (Sc = O(1000))

can likely be captured with the comparatively minor cost of a small increase in Schmidt

number rather than the large cost of matching Schmidt number exactly.



Chapter 7

Synthesis

In previous chapters, the turbulence structure of constant-influx, solute-based, gravity

current flows has been quantified using data generated through Particle Image Velocime-

try (PIV), Shake-the-Box Particle Tracking Velocimetry (STB), and Direct Numerical

Simulation (DNS). Instantaneous whole-field velocity measurements have been used to

identify internal gravity waves and a critical layer within the gravity current body in

Chapter 4. Instantaneous three-dimensional whole-field velocity measurements have been

presented in Chapter 5, demonstrating that vertical and cross-stream motions are equiv-

alent in magnitude within the body, and that the identified internal waves are sometimes

associated with three-dimensional motions. While a Schmidt number of 1 is typically

assumed in numerical gravity current research, in Chapter 6 it has been shown that for a

range of Reynolds numbers increasing Schmidt number beyond this value results in the

formation of lobe-and-cleft structures within the head and structures in the mixed layer

behind the head. This final chapter will bring together these strands of work, establish

their comparability, and suggest possible directions for future research.

7.1 Comparison of Averaged Quantities

To establish the comparability of the three data sets, two of the DNS cases described

in Chapter 6 have been extended to allow inspection of 10 s of body flow – (ReI , Sc) =

(1000, 1) and (ReI , Sc) = (3000, 1). The ReI = 3000 case has viscosity equivalent to that

in the experimental work, but this viscosity is increased to lower the Reynolds number in

the ReI = 1000 case. To demonstrate that only body data is being considered, spatial and

temporal averages of downstream velocity and density at a central cross-stream location

over a range of time frames (from 1 s to 10 s from the beginning of the data) are shown in

Figures 7.1 and 7.2. As all averages are consistent, the measurements included are from

body flow.

Having identified the body flow data, downstream velocity profiles may be plotted for

each case (both dimensional, Figure 7.3a, and non-dimensional, Figure 7.3b). In order



138

0 0.02 0.04 0.06

0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06

0

0.02

0.04

0.06

0.08

0.1

Figure 7.1: Downstream velocity averaged over downstream locations and time for (a) (ReI , Sc) =
(1000, 1) and (b) (ReI , Sc) = (3000, 1) over 1 s to 10 s from the beginning of the data.
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Figure 7.2: Density averaged over downstream locations and time for (a) (ReI , Sc) = (1000, 1) and (b)
(ReI , Sc) = (3000, 1) over 1 s to 10 s from the beginning of the data. The vertical lines show the densities
of the ambient (ρ = 1012 kg m−3) and current (ρ = 1041.4 kg m−3) fluids.

to make all three data sets (PIV, STB, DNS) comparable, a new non-dimensionalisation is

defined for the DNS cases to match the laboratory-based data. The non-dimensionalisation

of vertical position is achieved by subtracting the average height of the velocity maxi-

mum from vertical location and dividing by some characteristic length scale (here the

Ellison and Turner integral length scale (Ellison & Turner, 1959)). Velocity is non-
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Figure 7.3: (a) Dimensional and (b) non-dimensional average downstream velocity profile at a central
cross-stream location for each PIV, STB (using both polyamide, Pa, and fluorescent polyethylene, Fl,
seeding particles), and DNS case.

dimensionalised through dividing by a characteristic velocity scale (here the maximum

average downstream velocity), i.e.

U ∗ = U/Umax,

Y ∗ = (Y − YUmax)/Lc,

Lc =

(∫
UdY

)2

∫
U

2
dY

,

(7.1)

where U is the mean velocity relative to that in the ambient. In all cases, across all

data collection techniques, this collapses the average downstream velocity data to a set

of profiles with height Y ∗ ≈ 1. The positive flow in the ambient in the Re = 1216 STB

case (Chapter 5) is unexpected, and is likely a result of an experimental error (such as

an air valve being slightly open).

A new output Reynolds number (Re) is calculated for each DNS case to be compa-

rable to those of the laboratory-based flows presented in Chapters 4 and 5, based on the

Ellison and Turner integral length scale and the maximum average downstream velocity

within the flow (shown in Table 7.1). By plotting parameters such as maximum aver-

age downstream velocity, the Ellison and Turner length scale, the height of the velocity

maximum, and the height of the current as a function of this Reynolds number, the flows
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Technique Q (L s−1) Lc (m) Uc (m s−1) ν (kg m−3) Sc Re FrD
PIV 0.072 0.0358 0.0707 1.09× 10−6 O(1000) 2326 0.69
PIV 0.090 0.0390 0.0806 1.09× 10−6 O(1000) 2891 0.75
PIV 0.107 0.0415 0.0799 1.09× 10−6 O(1000) 3045 0.72
PIV 0.125 0.0433 0.0845 1.09× 10−6 O(1000) 3364 0.75
PIV 0.142 0.0463 0.0909 1.09× 10−6 O(1000) 3868 0.78
PIV 0.160 0.0487 0.0855 1.09× 10−6 O(1000) 3823 0.71
PIV 0.177 0.0491 0.0938 1.09× 10−6 O(1000) 4234 0.78
DNS 0.072 0.0337 0.0538 3.26× 10−6 1 557 0.54
DNS 0.072 0.0288 0.0613 1.09× 10−6 1 1619 0.67
STB Fl 0.032 0.0393 0.0372 1.09× 10−6 O(1000) 1346 0.35
STB Pa 0.032 0.0362 0.0366 1.09× 10−6 O(1000) 1219 0.36
STB Fl 0.082 0.0434 0.0689 1.09× 10−6 O(1000) 2749 0.61
STB Pa 0.082 0.0448 0.0654 1.09× 10−6 O(1000) 2691 0.57
STB Fl 0.148 0.0537 0.0933 1.09× 10−6 O(1000) 4606 0.74
STB Pa 0.148 0.0541 0.0869 1.09× 10−6 O(1000) 4322 0.69

Table 7.1: Details of the influx, characteristic length scale (here, the Ellison and Turner integral scale), Lc,
characteristic velocity scale (here, the maximum average downstream velocity), Uc, kinematic viscosity
of the fluid, ν, Schmidt number, Sc, and corresponding Reynolds, Re = UcLc/ν, and densimetric Froude,
FrD = Uc/

√
g′Lc, numbers for each case.

can be directly compared as in Figure 7.4. All cases with the same viscosity follow the

same trends in these parameters with increasing Reynolds number. Discrepancies, such

as the lower current height in the highest Reynolds number STB case or the larger char-

acteristic length scale in the lower Reynolds number STB cases, are attributable to small

variations in experimental parameters such as temperature differences causing variation

in fluid density between cases. The higher viscosity DNS case is taller than expected

based on the other data sets, with the velocity maximum higher in the flow.

7.2 Comparison of Instantaneous Data

The instantaneous velocity field from equivalent slices of the STB, DNS, and PIV data

can be compared directly. Figure 7.5 shows instantaneous velocity components at a cen-

tral cross-stream and downstream location over time. In all cases, downstream velocity

has the same structure. The Re = 2749 STB case and the Re = 2891 PIV case have sim-

ilar vertical velocity structure, with alternating regions of positive and negative vertical

velocity at Y ∗ = 0, with similar magnitude between the two cases. There are also similar-

ities in vertical velocity structure between the Re = 4234 PIV and Re = 4606 STB cases.

In both cases, below Y ∗ = 0 are small regions of alternating positive/negative vertical

velocity, with much larger alternating regions above. Again, the velocity magnitude is

similar for these two cases. Therefore, the STB and PIV velocity data show both similar

structure and similar structural changes with increased Reynolds number.

While the DNS data has some similarities, there are also significant differences. In
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Figure 7.4: Plots of (top left) maximum average downstream velocity, (top right) characteristic length
scale, (bottom left) height of the average velocity maximum, and (bottom right) current height defined
as the point where average downstream velocity changes from positive to negative for each case against
Reynolds number.

Figure 7.5, the vertical velocities in the Re = 1346 STB case and the Re = 1619 DNS case

both have a solid line of constant velocity at Y ∗ = 1 and have similar velocity magnitude.

However, the DNS case also has a solid line of constant vertical velocity at the base of

the flow. While cross-stream velocity on the X − Y plane in the Re = 557 DNS case

has little resemblance to the other flows, in the Re = 1619 DNS case there is a solid line

at Y ∗ = 1 and alternating positive and negative regions at Y ∗ = 0 as seen in the higher

Reynolds number STB flows.

Figure 7.6 shows instantaneous data from the cases with volumetric measurement at

a central downstream location at Y ∗ = 0 over time. Again, the downstream velocity is

similar across all cases. However, these plots make the structural differences between the

STB and DNS cases more apparent. While the STB cases have alternating regions of

positive and negative vertical velocity (whether full-width, centred in the cross-stream di-

rection, or smaller regions distributed throughout the domain width), the DNS cases have

regions of positive vertical velocity concentrated at the side-walls and negative velocity

throughout the remaining width.

Discrepancies are also evident in the cross-stream velocity plots in Figure 7.6. The

Re = 1346 STB case has a cross-stream central divide, with positive cross-stream veloc-

ity in one half of the domain and negative in the other. The DNS cases have a different

structure. While positive and negative cross-stream velocities are still largely split be-

tween the two sides, in the Re = 557 DNS case there are perturbations in the central

division. These perturbations increase to form alternating regions of positive/negative

cross-stream velocity in the Z∗ = 0 line by the Re = 1619 DNS case. The structure of

cross-stream velocity in the Re = 1619 DNS case is closer to that of the Re = 4606 STB

case, though the vertical velocity structure is different. Therefore, there are significant
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structural differences in vertical and cross-stream velocity between the DNS and the STB

data.

7.3 Comparison of Frequency Analyses

Frequency analysis can be used to examine the mechanisms leading to these structural

differences, in particular Fourier transform over time and dynamic mode decomposition.

Figure 7.7 shows the Fourier transform of the velocity data for the DNS cases. In both

cases, the dominant frequencies in vertical velocity are concentrated towards the side-walls

in the lower part of the domain, though the range of dominant frequencies is greater for

the Re = 1619 case. For the Re = 557 case, the frequencies of cross-stream velocity

with highest amplitude are either side of the velocity maximum, while in the Re = 1619

case the dominant frequencies are centred in the cross-stream direction. In contrast,

Figure 7.8 shows the Fourier transform over time of the velocity data for the Re = 2743

STB case. Here, the dominant frequencies are again concentrated at the height of the

velocity maximum, but are centred in the cross-stream direction with little contribution

from cross-stream velocity. While the Re = 1346 STB case is closer in Reynolds number

to the DNS cases, the Re = 2743 case was chosen for frequency analysis comparison

because of the low level of missing data points (whereas the Re = 1346 STB case has

more experimental noise, particularly in the cross-stream velocity measurements, and has

several regions of missing data, possibly as a result of less evenly distributed seeding or

greater differences in refractive index).

As in Chapter 4, the same timestep range is used for the Fourier transform and dy-

namic mode decomposition, and all velocity components and time steps are combined

into a single matrix such that dynamic mode decomposition is applied to all data simul-

taneously. Singular value decomposition is carried out using the MATLAB svd function

with the ‘econ’ parameter (MATLAB, 2020). The amplitudes of each of the modes iden-

tified through dynamic mode decomposition for the two DNS cases are shown in Figure

7.9. The identified modes with significant amplitude, which correspond with peaks in the

Fourier transform plots, are shown in Figures 7.10 and 7.11. As indicated by the Fourier

transforms, the structure of the modes is similar in both cases, with alternating regions

of vertical velocity near the side-walls that connect in the centre in a U or V shape. The

cross-stream velocity structure of the modes is similar to the vertical, though the largest

magnitudes are in the cross-stream centre of the flow rather than close to the side-walls.

In contrast, the example mode from the Re = 2743 STB case (Figure 7.12) has verti-

cal velocity centred in the cross-stream direction and alternating regions of positive and

negative cross-stream velocity either side of the central cross-stream position.
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(a)

(b)

Figure 7.7: Fourier transform of velocity data for the (a) Re = 557 and (b) Re = 1619 DNS cases, at
a central downstream location and (top) at Z∗ = 0, and (bottom) at Y ∗ = 0 for (left) downstream,
(centre) vertical, and (right) cross-stream velocities. The vertical lines indicate the frequencies of the
dominant dynamic modes identified in Figure 7.9, and the horizontal lines the (dashed) averaged height
of the velocity maximum and (solid) current height.

Figure 7.8: Fourier transform of velocity data for the STB case with Re = 2743 at a central downstream
location and (top) at Z∗ = 0, and (bottom) at Y ∗ = 0.5 for (left) downstream, (centre) vertical, and
(right) cross-stream velocities. The vertical line indicates the frequency of the example dynamic mode
identified in Figure 7.12, and the horizontal lines the (dashed) averaged height of the velocity maximum
and (solid) current height.
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Figure 7.9: Amplitudes of modes resulting from dynamic mode decomposition of the velocity fields in
(a) the Re = 557 and (b) Re = 1619 cases. The circles indicate the modes illustrated in Figures 7.10
and 7.11.

7.4 Summary of PIV/STB/DNS Comparability

Comparing the three strands of work presented in this thesis, all averaged downstream

velocity profiles collapse using the same non-dimensionalisation (Figure 7.3). Addition-

ally, trends in average flow properties such as flow height and velocity maximum are

consistent across all cases, excepting discrepancies attributable to the higher fluid viscos-

ity in the Re = 557 DNS case and minor variations between experimental cases (Figure

7.4). Therefore, the DNS reliably reproduces averaged properties of the laboratory-based

flows.

Plots of instantaneous velocity (Figures 7.5 and 7.6) illustrate that while the PIV and

STB datasets have very similar structure, there are significant differences in instantaneous

vertical and cross-stream velocity between the laboratory-based and the DNS data. This

is particularly evident in the plots of vertical velocity on a cross-stream plane (Figure

7.6), where regions of positive vertical velocity are concentrated towards the side-walls

in the DNS data, but there are alternating regions of positive and negative vertical

velocity along the Z∗ = 0 line in the STB data. The frequency analysis, in the form

of Fourier transform over time and dynamic mode decomposition of the data, confirms

this structural difference. Motions identified in the DNS data have vertical velocity

concentrated towards the side-walls in the lower part of the flow (Figures 7.7, 7.10, and

7.11). In comparison, the STB case with Re = 2743 contains motions with alternating

positive and negative velocity in the upper part of the flow in the cross-stream centre of
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(a)

(b)

Figure 7.10: Modes with frequencies 0.20 Hz, 0.47 Hz, and 0.73 Hz from dynamic mode decomposition of
velocity data for the (Re, Sc) = (557, 1) DNS case (a) on an X−Y plane at Z∗ = 0 and (b) on an X−Z
plane at Y ∗ = 0.
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(a)

(b)

Figure 7.11: Modes with frequencies 0.44 Hz, 0.72 Hz, 1.03 Hz, and 1.36 Hz from dynamic mode decom-
position of velocity data for the (Re, Sc) = (1619, 1) DNS case (a) on an X −Y plane at Z∗ = 0 and (b)
on an X − Z plane at Y ∗ = 0.
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Figure 7.12: An example dynamic mode with frequency 0.40 Hz from the (Re, Sc) = (2743,O(1000))
STB case to compare with the DNS modes, on (top) an X −Y plane at Z∗ = 0, and (bottom) an X −Z
plane at Y ∗ = 0.30.

the domain (Figures 7.8 and 7.12).

As illustrated in Chapter 6, increasing Schmidt number from 1 produces additional

modes in the upper region of the flow behind the head, with cross-stream and vertical

motions centred in the cross-stream direction. The structure of the density and veloc-

ity fluctuations associated with increased Schmidt number cases are correlated with a

1/4−wavelength offset, characteristic of internal gravity waves (Garćıa-Villalba & del

Álamo, 2011). Further, the motions have a similar structure to the modes identified in

the PIV/STB data corresponding to internal gravity waves. While there are other dif-

ferences between the DNS and STB cases, namely the simplified outlet, the exact inlet

velocity distribution, and the Reynolds number, it has been demonstrated that the dif-

ference in Schmidt number (Sc = 1 for the DNS cases compared with Sc = O(1000) for

the PIV/STB cases) could account for the structural differences between the data sets.

Therefore, numerical simulations that assume a Schmidt number of 1 may not accurately

reproduce flow in the body.

7.5 Project Conclusions

This work has investigated gravity current flows using three different experimental and

numerical techniques – particle image velocimetry, Shake-the-Box particle tracking ve-

locimetry, and direct numerical simulation. The flows considered were constant-influx

solute-based flows, with a 3% by mass density difference. The techniques generate the

instantaneous whole-field two- or three-dimensional velocity field, and in the case of DNS

the concentration field, within the body of the flow. The PIV and STB data sets were

shown to have very similar structure, and similar structural changes with increasing

Reynolds number. While there were some structural differences between the DNS and

PIV/STB flows, the DNS method was shown to accurately reproduce averaged quantities.

The work presented has led to a number of advances in understanding gravity current
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flows (summarised in Figure 7.13 and described below), questioning several common as-

sumptions about the structure of the gravity current body.

First, while it has generally been assumed that the gravity current body can be well

described by averaged properties, experimental measurements of flows with a variety of

Reynolds numbers identified the formation of internal gravity waves within the body.

Further, a critical layer was identified near the height of the velocity maximum. Possible

wave breaking that may occur at this level, with associated transfer of momentum to

the mean flow, implies that any model of gravity current body flow should allow for

acceleration at the height of the critical layer. However, such waves were not identified

in the Sc = 1 DNS cases. This difference in structure was explained by the observed

sharpening of the density profile between the Sc = 1 and Sc > 1 DNS cases, leading to a

change in gradient Richardson number from above to below the critical value in the upper

part of the body. This suggests that two models are needed depending on the stability

of the current/ambient interface.

Second, cross-stream motion in the gravity current body is typically neglected. The

three-dimensional velocity data, from both STB and DNS, illustrated that regardless of

Schmidt number cross-stream and vertical velocities are equivalent in magnitude with

cross-stream velocity being particularly important near the height of the velocity max-

imum. Additionally, the waves identified in the highest Reynolds number STB case

were shown to be associated with three-dimensional motions. Therefore, a full charac-

terisation of the gravity current body requires measurement of the cross-stream velocity

as well as downstream and vertical. In particular when conducting numerical research,

two-dimensional simulations will be unable to reproduce three-dimensional flow features

within the body, just as they are unable to accurately reproduce such features within

the head. The volumetric velocity measurements (both STB and DNS) highlighted that

exclusively using a single vertical plane within the domain (as has been done in almost

all existing literature for flows with comparable aspect ratio and Reynolds number), in

particular a central cross-stream plane, may give a misleading impression of flow struc-

ture.

Third, the high computational cost involved in investigating the effect of Schmidt

number has led to numerical simulations of gravity current flows typically assuming a

Schmidt number of ∼ 1. While comparison of experimental and numerical data in this

work showed consistent trends in averaged properties within the body across all strands of

this work, increasing Schmidt number beyond 1 led to qualitative changes in instantaneous

velocity structure in and behind the head. Some of these changes, such as the over-running

of ambient fluid by the raised nose at the front of the flow, also occurred with increasing

Reynolds number at fixed Schmidt number. However, within the Reynolds number range

considered in this work some changes, for example the presence of structures in the upper

part of the flow behind the head, did not. A noteworthy change with increased Schmidt
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number was the reduction in gradient Richardson number. All Sc = 1 DNS cases were

found to have Ri > 0.25 in the body (where 0.25 is the critical value) while all Sc > 1

DNS cases had Ri < 0.25.

It was shown that the structural differences observed between the PIV/STB data and

the DNS data could be a result of choosing Sc = 1 to reproduce a Sc = O(1000) flow. In-

deed, this may explain why DNS in existing literature has not identified the internal waves

present in the PIV/STB strands of this work. It was argued that works considering high

Schmidt number flows with larger viscosities (viscosity larger than that of the fluids used

in the experimental work in this thesis), or those that consider the structure of the body

in high Schmidt number flows, should consider the effect of increased Schmidt number.

However, some concessions to computational cost are likely justified when attempting

to qualitatively capture such flows. The numerical investigations presented suggest that

increasing Schmidt number beyond 10 led to only quantitative changes in the flow even

at Reynolds numbers as low as ReI = 100.

Many real-world gravity current flows are sediment-driven, rather than solute-based.

While the findings presented in this work are based purely on solute-based flows, they

may also be applicable to sediment-laden flows. Comparisons can be drawn between

thermohaline and sediment-laden flows (Garćıa, 1994; Kneller & Buckee, 2000; Moodie,

2002), for example fine-grained conservative sediment-laden flows are thought to be dy-

namically similar to solute-based flows (Cossu & Wells, 2012; Kneller & Buckee, 2000). As

discussed in Chapter 4, the structural differences in coarse-grained and non-conservative

flows (Cossu & Wells, 2012; Hogg et al., 2005; Kneller & Buckee, 2000; Stacey & Bowen,

1988; Wells & Dorrell, 2021) would not remove the potential for the formation of internal

gravity waves and critical layers which require only that there exists stable stratification

of density, and that the speed of the resulting waves is equal to the flow speed (Maslowe,

1986; Staquet & Sommeria, 2002). Further, while the Schmidt number of sediment-laden

flows varies depending on grain size, it can be significantly higher than solute-based flows

(for example being O(109) for 100 µm sand) (Benes et al., 2007). This suggests that the

effects of high Schmidt number observed here in solute-based flows likely also apply to

sediment-laden flows.

7.6 Future Work

While the work presented in this thesis has provided several new insights into the struc-

ture of the gravity current body, there remain many unanswered questions. The largest

limitation of this study stems from the lack of density measurements in the experimental

runs. The sealed nature of the domain in this work, combined with the focus on volu-

metric velocity measurements, meant that no experimental observations of density were

made. The buoyancy analysis was therefore based on an assumed and idealised density
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profile derived from the existing literature and backed up by the numerical investigations.

While beyond the scope of this work, future research simultaneously measuring both the

volumetric velocity and density fields could be used to remove the element of speculation

inherent in concluding that the identified internal waves are a result of buoyancy.

The refractive index matching requirements of the experimental techniques led to the

considered flows in this work being solute-based. While it was argued that such flows

are analogous to conservative fine-grained particulate flows, non-conservative particulate

currents are fundamentally different (Wells & Dorrell, 2021), and the applicability of

the presented findings to particulate flows is currently speculative. A natural extension

to this work, that would extend the applicability of the findings to real-world flows, is

measurement of particulate flows and flows with double-diffusive instabilities (such as

flows in which the density difference is a result of both a temperature difference and the

presence of a solute).

The main controls considered in this thesis were flow aspect ratio, densimetric Froude

number (Fr), Reynolds number (Re), and Schmidt number (Sc). While comparable to

previous experimental works, the width of the flows considered in this thesis was con-

stant and relatively narrow. Further volumetric measurements of flows in domains with

a variety of widths (up to and including flows with no side-walls), whether conducted ex-

perimentally or numerically, are needed for a full understanding of the three-dimensional

structure of the gravity current body. These additional measurements could also be used

to discuss the origins of three-dimensionality within the body, and to establish the extent

to which the identified cross-stream motions are a result of side-wall effects.

Investigation of Froude number effects on body structure was beyond the scope of this

investigation. While not fixed, there was little variation in densimetric Froude number

between cases, with all flows having Fr < 1 (typically O(0.7), see Table 7.1). In real-world

flows, Froude numbers can be both above and below 1. The parameter range here could

be extended by considering flows on different slopes, or with different density differences.

Additionally, while Reynolds number was varied (taking values between ∼ 2000 and

∼ 4500 in the experimental flows), increases in Reynolds number were always observed

to produce changes in body structure. This suggests that the highest Reynolds number

may not have been sufficiently high to reach a point of structural similarity. The Reynolds

number range could be extended, by considering larger and/or faster flows, to establish

the importance of the identified flow features in high Reynolds number real-world flows.

Further investigation is also needed regarding the effect of Schmidt number. In this

chapter, it was suggested that the low Schmidt number of the DNS cases was responsible

for the difference in velocity structure (namely the formation of internal waves). However,

due to the limitations of the data from the low Reynolds number STB case, the DNS

cases were compared with PIV/STB data with significantly higher Reynolds number.

Comparison of flows closer in Reynolds number would lend credibility to this conclusion,
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as would extending the duration of the Sc > 1 DNS cases to allow for a more thorough

investigation of the effect of Schmidt number on the body.

The impact of Schmidt number being greater than 1 on flows with Reynolds number

O(1000) and above was beyond the scope of this project. However, this investigation

is needed to establish whether a sufficiently high Reynolds number leads to the same

qualitative changes as increased Schmidt number, or whether as suggested here, an accu-

rate quantification of a Sc > 1 gravity current flow requires consideration of flows with

Sc > 1. An additional source of information regarding the effect of Schmidt/Prandtl

number could come from whole-field instantaneous measurements of experimental flows

with a significantly different Schmidt/Prandtl number to a typical solute-based flow, for

example a gas-based (such as carbon dioxide) or temperature-driven flow.
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