
UNIVERSITY OF SHEFFIELD

DOCTORAL THESIS

Rapid Analysis of Backfilled Masonry
Arch Bridges

Author:
Qi DANG

Supervisors:
Prof. Matthew GILBERT

Dr. Colin C. SMITH

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Computational Mechanics and Design Research Group
Geotechnical Engineering Research Group

Department of Civil and Structural Engineering

June 28, 2021

https://www.sheffield.ac.uk/
https://www.linkedin.com/in/qi-dang-279790128/
https://www.sheffield.ac.uk/civil/people/academic/matthew-gilbert
https://www.sheffield.ac.uk/civil/people/academic/matthew-gilbert
https://www.sheffield.ac.uk/civil/research
https://www.sheffield.ac.uk/civil/research
https://www.sheffield.ac.uk/civil




iii

Declaration of Authorship
I, Qi DANG, declare that this thesis titled, ‘Rapid Analysis of Backfilled Masonry
Arch Bridges’ and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at the University of Sheffield.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at the University of Sheffield or any other institution,
this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:





v

Abstract

This thesis presents analysis methods designed to rapidly estimate the load-carrying
capacity of backfilled masonry arches. To help engineers to analyse backfilled ma-
sonry arches, various methods exist. However, some of these are over-simplified;
others are in contrast very complicated and time consuming for engineers to master.
In industry simple, accurate, and rapid methods are potentially very useful. Thus
the development of such methods has been the main focus of this thesis.

One available numerical strategy is computational limit analysis. Limit analysis
is a method that can obtain the failure load without the need to carry out an itera-
tive elastic-plastic analysis. Limit analysis theorems are employed to obtain upper-
and lower-bounds on the collapse load. Discontinuity layout optimization (DLO) is
a limit analysis procedure that can be used to determine the critical layout of dis-
continuities and associated upper-bound limit load for plane plasticity problems.
However, the computational cost of DLO can be quite high. In order to address
this, a fast running DLO procedure is proposed. For lower-bound analysis, a soil-fill
stress field model is proposed. In this model the Mohr-Coulomb criterion is strictly
obeyed in the stress field in the backfilled masonry arches. Both literature bench-
mark problems and backfilled masonry arch bridge problems are solved to show the
efficacy of the upper- and lower-bound methods.

Another strategy is limit equilibrium. The limit equilibrium method has been
used to obtain approximate solutions for stability problems. The method is usually
considered as an approximate means of constructing a slip-line field. Differential
planar soil elements are proposed here to simulate concave or convex arching effects
in the retained soil backfill around arch barrels. An anisotropic stress distribution
is applied to model the backfill material that in reality is often heterogeneous in na-
ture. In this method, equilibrium considerations can be used to solve the masonry
arch bridge problems by simple static methods. A number of examples from the
literature and industry are analysed to demonstrate the efficacy of the limit equilib-
rium method.

The choice of method is dependent on the principal goal of the assessment. To
balance degree of accuracy and computational cost, the proposed rapid analysis
strategies have been designed to provide a simple and fast means of assessing bridge
load-carrying capacity. The upper- and lower-bound strategies provide rigorous so-
lutions, but sometimes underestimate the bridge load-carrying capacity especially
of the weak backfill strength. The limit equilibrium strategy provides approximate
solutions which could address this issue.
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Chapter 1

Introduction

1.1 Background

Masonry arch bridges continue to form a significant part of the transportation net-
work in the UK and many other countries. The majority of these bridges on the
railway and highway network have been in service for more than 120 years (Sarho-
sis et al. 2016). In recent decades most of these carry traffic far heavier than they
were designed for, with potential economic and environmental costs. In this situa-
tion it is important that the existing infrastructure is carefully managed. Repair and
strengthening works are also needed to deal with changes in the requirements of
transport systems and the gradual deterioration of existing bridges.

Although there are many variations that exist around the same structural con-
cept, the main elements presented schematically in Figure 1.1(a) and Figure 1.1(b).
The primary element of a complete masonry arch bridge is the arch barrel. Widely
used arch geometries include semi-circular, pointed, segmental, parabolic and el-
liptical, with combinations of a number of circular segments used to achieve forms
intended to optimise the structural performance of the arch and its function. Arch
barrels were commonly constructed using brick units or stone voussoirs. In brick-
work constructions, the arch barrel contains multi-rings of bricks with or without
headers, but arch barrels without headers were especially common in the UK. In
stone constructions, the arch barrel commonly comprises a single ring of large vous-
soirs. In order to provide a level formation, soil-fill was used above the extrados of
the arch barrel. Distribution of the load from the rail or the road surface through the
fill contributes to load-carrying capacity. Spandrel walls presented at the arch edges
retain the soil-fill around the arch barrel and extend into the wing walls beyond the
abutments.

At present a high proportion of these historical bridges show evidence of de-
terioration. The processes of gradual deterioration brought about by environmen-
tal effects and repeated application of applied loads are relentless and weaken the
strength of the construction materials from the day of their creation. The processes
are typically slow, but after long periods of time become significant and weaken the
masonry elements of the structure, affecting bridge load-carrying capacity.
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FIGURE 1.1: Main elements of masonry arch bridges: (a) highway
bridge with stonework; (b) railway bridge with brickwork (after Mel-

bourne et al. 2006)
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1.2 Motivation and Objectives

In order to predict the in-service behaviour and load-carrying capacity of masonry
arch bridges, there are various options available, ranging from empirical rules based
procedures (Pippard 1948), to limit analysis based approaches (Gilbert and Mel-
bourne 1994), to advanced non-linear computational formulations (Crisfield 1993).
Selection of the most appropriate method to use is dependent on: (i) the level of ac-
curacy desired; (ii) the material properties data; (iii) the expertise available. It can
be expected that different methods will lead to different results, depending on the
efficiencies of the approach and the information available. A higher level modelling
approach may not always lead to a higher predicted load-carrying capacity. The ap-
proach for modelling masonry arch bridges should provide an acceptable degree of
accuracy, within sustainable time and cost limits.

Most masonry arch bridges in the UK consist of an arch barrel and soil-fill above
the arch extrados. The soil-fill distributes the applied load and contributes to the
load-carrying capacity. Due to the importance of the soil-fill, both the constitutive
model and the inputted material properties should be chosen carefully. However,
current commonly used tools (e.g. Obvis 2016, LimitState 2019b) only consider self-
weight, load dispersion and passive restraint effects of the soil-fill, rather than ex-
plicitly modelling the soil-fill material itself. This limits their range of application
and their accuracy.

In order to directly model both masonry and soil-fill elements, a technique called
discontinuity layout optimization (DLO) was proposed and its reliability was proved
by comparison with experimental tests on large-scale models (Gilbert et al. 2010).
However, the computational cost of DLO becomes quite high if there are many load
positions to consider.

The aim of the research is to address these issues. The main objective is to
develop numerical strategies for the rapid assessment of soil-filled masonry arch
bridges. In order to achieve this objective, the following tasks were undertaken:

• development of a computationally efficient DLO procedure, and verification
of this through application to masonry arch bridges;

• development of a lower bound stress field model, and verification of this through
application to masonry arch bridges;

• development of a limit equilibrium model, and verification of this through
application to masonry arch bridges.
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1.3 Structure of the Thesis

This thesis is divided into four parts. In Part I, the motivation and goals of the
research are defined and framed within the current state-of-the-art.

Chapter 2 reviews structural behaviour and discusses currently available numer-
ical models developed for masonry arch bridges. Limit state analysis based meth-
ods for assessing the load-carrying capacity of soil-filled masonry arch bridges are
reviewed, and an overview of the approaches used in this thesis is provided.

Part II presents computational strategies, namely the lower bound, limit equilib-
rium and upper bound methods developed in this thesis.

Chapter 3 describes the development of a simplified, computational inexpensive,
DLO procedure. This is validated against literature benchmarks and compared with
results obtained from carefully controlled tests carried out on soil-filled masonry
arch bridges.

Chapter 4 introduces a lower bound stress field model. It outlines the assump-
tions of the lower bound theorem and the masonry stress fields to be satisfied to
comply with the requirements of the lower bound theorem. The use of soil-fill stress
fields in conjunction with rigid block limit analysis is described and the procedures
for modelling global and local failure modes are explained.

Chapter 5 introduces a limit equilibrium model. It demonstrates the anisotropic
effect of the soil-fill due to the surface load, describes the arching effect considered
in the soil-fill, and interprets outcomes of the procedure when applied to masonry
arch bridges.

Part III presents a discussion of the developed numerical models.

Chapter 6 documents case studies of applications of the upper bound, limit equi-
librium and lower bound methods to estimate of the load-carrying capacity of ma-
sonry arch bridges. The limitations associated with the numerical strategies are then
discussed.

In Part IV, Chapter 7 provides general conclusions and outlines future work re-
quired in this field.
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Chapter 2

Literature Review

2.1 Bridge Construction Materials and Behaviour

An overview of a typical masonry arch bridge has been shown in section 1.1. Due
to the absence of modern design codes and standards for materials used in con-
struction, masonry arch bridges vary considerably in terms of geometry, structural
details and construction materials. In this section, bridge construction materials and
behaviour will be introduced as follows:

2.1.1 Construction Materials

A masonry arch bridge was usually constructed using brick or stone masonry units
and backfill. The arch barrel usually comprises masonry units separated by mortar.
Backfill materials above the extrados of an arch barrel were usually granular and/or
cohesive in nature.

Masonry materials

The term masonry describes a construction formed from brickwork or stonework.
It is a composite material involving masonry units and mortar. Masonry properties
are derived both from the properties of the masonry units and the properties of the
mortar. Figure 2.1 shows masonry units separated by joints.

Masonry units may be brick or stone, or sometimes concrete. For brick material,
the compressive strength of a locally sourced soft red brick is approx. 10 N/mm2,
whereas that of a modern engineering bricks may approach 150 N/mm2 . Solid
bricks were normally used and were often fired locally. For stone material, the com-
pressive strength of locally sourced material may range from less than 10 N/mm2 to
over 300 N/mm2. Stone properties are sometimes anisotropic.

For the mortar, this used formed using lime or Roman or Portland cement. In the
case of lime mortar, composed of lime and sand, the compressive strength is typi-
cally 0.5∼ 1.0 N/mm2. In the case of Portland cement mortar, usually composed of
cement, lime and sand, compressive strengths of greater than 10 N/mm2 are possi-
ble.
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The composite masonry material is strong in compression but normally weak in
tension.

σz σ z
b

σ z
m

Brick

Mortar

σb
σb

σm
σm

FIGURE 2.1: Masonry under uniaxial compression (Melbourne et al.
2006)

Backfill material

The backfill material in masonry arch bridges may be cohesionless, cohesive or
cohesive-frictional. Cohesionless soil is granular material (e.g. sand and gravel).
Its shear strength is dependent on the inter-particle friction. Sometimes water is
present; in this case, due to pore water pressures reducing the normal stresses, the
shear strength will reduce. Cohesive materials (e.g. clay) are fine-grained, with the
cohesive shear strength dependent on moisture content. Locally sourced cohesive-
frictional materials are commonly used in retaining walls and masonry arch bridges.
In this case material properties are dependent on the inter-particle friction and mois-
ture content.

The top layer of backfill is often well compacted due to the repeated action of
vehicle loading. In general, the presence of water has a significant influence on the
material properties of the backfill. The strength of fully saturated backfill will be
much lower than the strength of the same soil material in dry conditions, reducing
bridge load-carrying capacity (Hulet et al. 2006).

2.1.2 Bridge Makeup

The main components of a masonry arch bridge are the arch barrel, abutments, and
spandrel zone. The spandrel zone above the arch barrel is commonly filled with soil
backfill.
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Arch barrel

The arch barrel is constructed using brick units or stone voussoirs. A stone arch
barrel typically consists of a single ring. When using brick units, various bonding
patterns may be employed, as shown in Figure 2.2.

(a) (b) (c)

FIGURE 2.2: Typical bonding patterns: (a) Multi-ring (stretcher); (b)
Intermediate (some header-bonded rings); (c) Bonded (header) (after

Melbourne and Gilbert 1995)

Abutments

Abutments may often be constructed from solid masonry as shown in Figure 2.3 (e.g.
from brick or stone). Compared with a stone masonry skewback, a brick skewback
may fail along a number of possible shear planes.

(d)(c)

(b)(a)

FIGURE 2.3: Diagram of abutment: (a) photograph of stone abutment;
(b) photograph of brick abutment; (c) diagram of stone skewback; (d)

diagram of brick skewback
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Spandrel zone

Soil backfill is commonly used to fill the spandrel zone above the arch barrel. Par-
ticularly in the case of larger structures, this is sometimes supplemented by concrete
backing and/or internal spandrel walls, helping to form a level traffic surface as
shown in Figure 2.4. Both soil backfill and internal spandrel walls have a strong in-
fluence on bridge load-carrying capacity (Gilbert et al. 2019, Amodio et al. 2019). In
this thesis, the spandrel zone is considered to solely comprise of soil backfill.

(a) (b)

FIGURE 2.4: Spandrel zone in bridges: (a) backing of Royal Bor-
der Bridge (Bruce 1851); (b) internal spandrel walls of London Road

Brighton viaduct (BrightonWorks 2020)

2.1.3 Bridge Behaviour

In order to represent the typical behaviour of masonry arch bridges, it is important to
properly understand how arch resistance mechanisms are mobilised under loading
and how failure takes place. For typical single-span masonry arch bridges, the main
resistance mechanisms are as follows:

• Geometry: an arch geometry should be the anti-funicular shape of a dominant
set of loads. Figure 2.5 shows the typical shapes of circular, pointed, ellip-
tical and parabolic arches. The self-weight and anti-funicular arch geometry
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provides ‘pre-stress’ and further resists arch sway under loads as shown in
Figure 2.6. The geometrical way in which arches resist loads means that the
load-carrying capacity is dependent on the shape of the whole arch, rather
than only the arch span and rise.

(a) (b)

(c) (d)

Pointed

Circular

Elliptical Parabolic

FIGURE 2.5: Arch geometries: (a) circular; (b) pointed; (c) elliptical;
(d) parabolic

(b)(a)
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FIGURE 2.6: Robert Hooke’s hanging chain: (a) one of Stevin’s draw-
ings of force equilibrium of hanging weights on a string (Stevin 1973);
(b) Poleni’s drawing of Hooke’s analogy between an arch and a hang-

ing chain (Poleni et al. 1748)
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• Soil-fill: as a structural material, soil-fill has a significant influence on the load-
carrying capacity of a bridge. Figure 2.7 shows that as the arch moves against
the soil-fill under external actions, then the strength of the soil-fill is mobilised.
This effect can be seen as a series of lateral earth pressures applied on the arch
extrados, in addition to those induced by the weight of the soil-fill.

• Dispersal of live load: load from the road or rail surface is distributed by the
soil-fill on a large area of the arch extrados. It is therefore a factor contributing
to load-carrying capacity. Figure 2.7 shows the spread of the load through the
soil-fill, but the extent of this in practice is unknown.

• Failure by formation of four hinged mechanism: if a load is applied at or near
the quarter span of an arch, four cracks or hinges will generally gradually form
as the load is increased. Figure 2.7 shows that hinges often form at both abut-
ments, under the axle load and approximately half way between the axle load
and the far abutment.

• Failure by formation of three hinges and abutment sliding mechanism: if a
load is applied at the quarter span of an arch the far abutment may slide, with
three hinges gradually forming in the arch as the load is increased.

• Snap-through: in the case of a flat arch, or an arch with flat regions, only three
hinges may form at failure, with elastic or inelastic shortening of sections of the
arch barrel lying between the outer hinges enabling a so-called snap through
failure.

Abutment

movement

Abutment

movement

Passive Active 

earth pressures

Arch sways

Live load

earth pressures

Dispersal

FIGURE 2.7: Four hinged failure mechanism of a masonry arch bridge
(after Page 1993)
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2.2 Theoretical Basis

Limit analysis has been used for many years to rapidly estimate the load-carrying of
masonry arch bridges. In this section, the theoretical basis of limit analysis will be
considered below.

2.2.1 Perfectly Plastic Assumption

A perfectly plastic material is a hypothetical material that undergoes no work hard-
ening or softening after yield. Thus the stress-strain diagram of the perfectly plastic
material exhibits a horizontal line at constant stress when it reaches its yield point.
In a perfectly plastic material the Young’s modulus below the yield point is ignored,
so that it takes on any value. A rigid-perfectly plastic material is one step further
removed from reality. It is a material that undergoes no deformation until it yields,
and is then perfectly plastic. Because of E = σ/ε and ε = 0, the Young’s modulus of
a rigid-perfectly plastic material is infinite.

Rotation

Strain

Peak

Soft clay

Dense sand

S
tr

es
s

Masonry pier

Rigid perfectly plastic

A
p

p
li

ed
 l

o
ad

(c) (d)

c dLive load

σ3σ3

σ1

σ1

(a) (b)

Peak

Linear-elastic

Non-linear

FIGURE 2.8: Perfectly plastic assumption: (a) a soil stress diagram;
(b) stress-strain relationship for soils; (c) a masonry pier diagram; (d)

idealised response curves of laterally loaded masonry pier
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Figure 2.8 shows a typical stress-strain diagram for soils and an ‘applied load vs.
rotation’ diagram for a masonry pier respectively. For the stress-strain behaviour of
most dense sand, it is characterised by an initial linear portion and a peak stress fol-
lowed by softening to a residual stress. For the typical soft clay, it is characterised by
an initial linear portion and a peak stress. Considering the ‘applied load vs. rotation’
behaviour of a masonry pier, this is characterised by an initial linear portion, failure,
followed by a falling branch. In limit analysis, it is necessary to ignore the falling
branch in these diagrams. For a normal perfectly plastic material, it is usual to ide-
alise behaviour as bi-linear. For a rigid-perfectly plastic material, a single horizontal
line can be used to describe the behaviour.

2.2.2 Equilibrium Condition Based on Stresses

If the solution of a problem is rigorous, it is necessary to require the computed
stresses strictly satisfy the equilibrium condition. The stress fields in a solid body
are illustrated by Figure 2.9. Figure 2.9(a) shows a unit element of a solid body
which is subjected by the self-weight of γ dx dz. For an infinitesimal element acted
upon by given stresses, the equilibrium equations can be expressed as


∂σz

∂z
+

∂τzx

∂x
= γ

∂σx

∂x
+

∂τxz

∂z
= 0

(2.1)

These equations are satisfied if



σx =
∂2F
∂z2

σz =
∂2F
∂x2

τxz = −
∂2F

∂x∂z
+ γx + C

(2.2)

where F is the arbitrary function of x and z; C is the constant of integration. Equa-
tion 2.2 indicates that there are an infinite number of stresses that satisfy equation
2.1. However, only one of them corresponds to reality. In order to solve the problem,
equations 2.1 must be supplemented by boundary condition information.
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FIGURE 2.9: Diagrams illustrating the equilibrium condition (Terza-
ghi 1943)

2.2.3 Mohr-Coulomb Yield Condition

The stress-strain relationship of soil (or masonry materials when subject to shear) can
be characterised by a simple shear test or a triaxial compression test. It is important
to know the yield strength of the soil and masonry materials for a complex stress
state. It is necessary to design a possible form of the condition, which satisfies in
the yield state. This condition characterise the change of the material from an elastic
state to a plastic flow state. When the plastic flow occurs at any point in a given
body, the equation of the yield condition can be expressed as

τ = c + σ tan φ (2.3)

where τ is the shear stress; c is the cohesion stress; σ is the compressive stress; φ

is the angle of friction. The constants c and φ can be determined simply as param-
eters which characterise the shear strength of the soil and masonry materials. This
equation was first suggested by Coulomb (1973).

Figure 2.10 shows a diagram of the Coulomb yield condition. If the Mohr circle
at a stress state touches the boundary lines, then equation 2.3 can be expressed as√(

σx − σz

2

)2

+ τ2
xz −

σx + σz

2
sin φ = c cos φ (2.4)

In a perfectly plastic material, the stresses are computed by equations 2.2 with
a set of supplementary equations obtained by establishing the effective boundary
conditions, and satisfy the Coulomb yield condition for perfectly plastic equilibrium
in every point of the given body.
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FIGURE 2.10: Mohr’s representation of a stress and the Coulomb
yield condition (after Terzaghi 1943)

2.2.4 Mechanism Condition Based on Thrust Line

The line of thrust represents the location and trajectory of the line of compressive
force in an arch. In a masonry arch, since the effective moment of resistance varies
continuously, the bending moment diagram is difficult to interpret. However, be-
cause the ‘no-tension’ yield condition dictates that the thrust line must lie entirely
within the thickness of the masonry, the line of thrust can be used to provide an in-
dication of the safety of a masonry arch under a given set of loads. The thrust line
can be plotted by computing the eccentricity of the compressive force at each ‘cross-
section’ (where eccentricity = moment / compressive force). The resulting thrust
line at collapse for a masonry pier and arch are shown in Figure 2.11.

(a) (b)

Lines of thrust

Hinges

FIGURE 2.11: Failure mechanisms: (a) pier, showing thrust line; (b)
masonry arch, showing thrust line (Gilbert 2007)

In the case of the masonry pier as shown in Figure 2.11(a), because the structure
is statically determinate, there is only one position of the thrust line up to the point
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of failure. In contrast, in the case of the masonry arch, shown in Figure 2.11(b),
since the structure is statically indeterminate, there are many possible positions of
the thrust line prior to failure, but only one position at failure.

2.2.5 Limit Analysis Method

Upper-bound theorem

As stated in the upper-bound theorem, if a failure mechanism can be found, and the
rate of work done by the external forces exceeds the internal rate of energy dissipa-
tion, then the imposed loads cannot be carried by a given body (Chen 1975). Thus
equating external to internal work done for any such mechanism gives an unsafe,
or ‘upper bound’ solution. A velocity field satisfying all these conditions is called a
kinematically admissible velocity field. The velocity fields must satisfy

• velocity boundary conditions;

• velocity compatibility conditions.

From these rules, an upper bound technique considers only failure modes and
energy dissipation.

Lower-bound theorem

As stated in the lower-bound theorem, if a complete stress field can be found, every-
where satisfying the equilibrium and stress boundary conditions, then the imposed
loads can be carried without yield in a given body. Thus any such stress field gives
a safe, or ‘lower bound’, solution. The stress field satisfying all these conditions is
called statically admissible stress field. The stress fields must satisfy

• the equilibrium equations;

• the stress boundary conditions;

• nowhere violate the yield criteria.

From these rules, a lower-bound technique considers only equilibrium and yield
conditions.

2.2.6 Limit Equilibrium Method

Limit equilibrium methods have traditionally been used to obtain approximate so-
lutions for rock and soil mechanics stability problems. The method can be described
as an approximate approach to finding the most dangerous position of the failure
surface. With limit equilibrium methods, an overall equilibrium equation involv-
ing stress resultants can be written for a given problem. The stress distribution
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along the failure surface satisfies the yield criteria and the associated flow rule in
the stress—strain relationship of the material involved. However, the stress distri-
bution in a limit equilibrium method is not defined anywhere inside or outside the
assumed failure surface, so that the method cannot definitely satisfy the equilibrium,
stress boundary and yield criteria conditions. Also, although a failure surface is as-
sumed, it usually does not precisely satisfy the requirements of the upper bound
theorem. Therefore, a solution obtained using a limit equilibrium method is not
necessarily a lower or an upper bound, but is an approximate solution.

2.3 Analysis Methods

The principal analytical methods for estimating the load-carrying capacity of ma-
sonry arch bridges involve linear-elastic analysis, plastic limit analysis, and non-
linear analysis. A review of these methods is provided as follows:

2.3.1 Linear-elastic analysis

Conventional linear-elastic analysis methods assume materials are perfectly elastic.
These methods are simple and widely used in practice. However, when such analy-
ses are applied to masonry arch bridges, the results should be treated with caution.
This is because in a linear-elastic analysis, it is implicitly assumed that both compres-
sive and tensile stresses can be resisted, whereas in reality masonry is often not ca-
pable of resisting even very small tensile stresses. However, a linear-elastic analysis
can be used to check stresses against predefined stress criteria to assess vulnerability
to load effects. Alternatively, modified elastic analysis methods that use an iterative
procedure in which masonry is progressively thinned in regions with the presence
of tensile stresses can be useful (Castigliano 1966, Choo et al. 1991, Brencich 2001,
Brencich and De Francesco 2004).
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FIGURE 2.12: Linear-elastic analysis of a single span: (a) elastic
no tensile resistant-plastic analysis (after Brencich and De Francesco
2004); (b) Pippard’s two-pinned parabolic arch (Wang and Melbourne

2010)

As a linear-elastic analysis, the semi-empirical ‘MEXE’ (e.g. derived by Military
Engineering Experimental Establishment) method, which employed an elastic rib
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spanning between two pinned abutments, is simple and has proven to be popular
over the years (Pippard & Chitty 1951). However, in recent decade research indi-
cates that a modified version of the method can provide non-conservative bridge
assessments (Wang and Melbourne 2010).

2.3.2 Plastic limit analysis

Plastic limit analysis methods assume materials are rigid-plastic. These methods
usually model masonry as a no-tension material, overcoming a limitation of linear-
elastic analysis methods. Consequently, they have been widely used to estimate the
load-carrying capacity of masonry arch bridges in recent decades, with workers such
as Kooharian (1952), most notably, Heyman (1982) using what we can refer to as the
‘line of thrust method’ to assess arch stability. The classical assumptions proposed
by Heyman are as follows

• arch has no tensile strength,

• arch has infinite compressive strength, and

• sliding cannot occur.

If a line of thrust can be found that lies within the middle third of the masonry,
as shown in Figure 2.13(b), then the solution does not no violate the no-tension yield
constraint if elastic methods are used. It also satisfies the lower bound theorem of
plastic limit analysis. Funicular methods utilizing Heyman’s statement of the lower
bound theorem have been developed to analyse masonry structures. In such meth-
ods, an equilibrium path can be found to verify the safety of the structure. This
method has been developed by many researchers over the years (O’Dwyer 1999,
Ochsendorf 2006). For example, Block et al. (2006) developed an interactive analysis
tool for masonry structures in which the user can move the supports or alter the ge-
ometry of the structure, with the thrust line within the structure then automatically
redrawn.

(a) (b) (c)

λ Pc

Hinge

Line of thrust

FIGURE 2.13: Possible thrust lines: (a) min/max thrust, (b) thrust line
with a geometric safety factor, and (c) thrust at collapse (Block 2009)
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Although the arch barrel can be modelled using continuum idealisations, the
fact that the joints in the masonry form predefined planes of weakness makes dis-
crete analysis attractive. Livesley (1978) developed a discrete limit analysis model
which could be used to assess the stability of assemblages of masonry blocks. Addi-
tionally, several authors developed simpler ‘automated hand calculation’ limit anal-
ysis procedures which involve using heuristic methods to identify the critical failure
mechanism; these initially found favour for masonry arch bridge analysis (Crisfield
and Packham 1987, Harvey 1988).

Rigid-block analysis

Following validation against experimental results (e.g. Melbourne and Gilbert 1995,
Melbourne et al. 1997), the more general ‘rigid-block’ analysis procedures found
favour (Livesley 1992, Gilbert and Melbourne 1994). In this case the solution pro-
cedure uses linear programming (LP) techniques and is implemented in the Limit-
State:RING software (Gilbert 2001, LimitState 2019b), as shown in Figure 2.15(a). In
this model, the inter-block contact behaviour is controlled by constraint equations
and a no tension criterion is adopted. The ‘no sliding’ restriction is also removed,
which increases the generality of the method. An equilibrium formulation is pre-
sented below:

Assuming there are b blocks and c contact surfaces, the problem is stated as fol-
lows (LimitState 2019b)

max λ (2.5)

subject to equilibrium constraints:

B · q − λ · fL = fD (2.6)

and no-tension yield constraints (e.g. for each contact, i = 1, . . . c):
Mi 6 0.5 ti Ni

Mi > −0.5 ti Ni

(2.7)

and sliding yield constraints (e.g. for each contact, i = 1, . . . c):
Si 6 µ Ni

Si > −µ Ni

(2.8)



2.3. Analysis Methods 21

where λ is the load factor; B is a suitable (3b × 3c) equilibrium matrix; q con-
tains vectors of contact forces and qT = {N1, S1, M1, N2, S2, M2, . . . Nc, Sc, Mc}; fD

and fL are respectively vectors of dead and live loads (e.g. block loads) applied at
the centroid of blocks. Figure 2.14 shows contact and block forces, arch thickness,
frictional property. In this formulation, the LP variables are the contact forces q con-
taining Ni, Si, Mi (e.g. Ni > 0, Si and Mi are unrestricted variables). If fL is assumed
as unit, maximizing the load factor λ can obtain the collapsed load factor. Details of
the formulation of the DLO method are provided in Appendix A.

Block j

Interface i

(thickness t , friction µ )i i

S i

Ni

M i

FIGURE 2.14: Block j and contact forces for interface i (Gilbert 2007)

Considering soil backfill material, the program models the anticipated effects of
the soil in the soil-arch interaction. The backfill is assumed: (i) to disperse applied
loading, (ii) to provide self-weight, and (iii) to provide passive restraint, as shown in
Figure 2.15(a). However, fixed earth pressures need to be defined before the analysis
is run; the bridge load-carrying capacity is highly dependent on the magnitudes of
these pressures.

(a)

(b)

Passive restraint

Dispersal

FIGURE 2.15: Analysis of masonry arch bridge using: (a) Limit-
State:RING, and (b) LimitState:GEO
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Discontinuity layout optimization

In order to provide a better representation of the soil-arch interaction, the soil back-
fill needs to be modelled explicitly. Due to the importance of the backfill, and to en-
able other geotechnical problems to be solved, a limit analysis technique called dis-
continuity layout optimization has been proposed (Smith and Gilbert 2007, Gilbert
et al. 2010). The solutions obtained have been validated against experimental results
(Gilbert et al. 2010, Callaway et al. 2012).

The DLO limit analysis technique procedure also uses linear programming (LP)
to obtain solutions and is implemented in the LimitState:GEO software (Smith and
Gilbert 2007, LimitState 2019a), as shown in Figure 2.15(b). In this model, the yield
constraints employed are based on the Mohr-Coulomb criteria, which is used for
both masonry and soil-fill elements.

(b) (c) (d)(a)

FIGURE 2.16: Stages in DLO procedure: (a) initial solid body; (b) dis-
cretize with nodes; (c) interconnect nodes with potential discontinu-
ities; (d) identify critical subset of discontinuities using optimization

(Smith and Gilbert 2007)

Stages in the DLO procedure are outlined diagrammatically in Figure 2.16. In
DLO a limit analysis problem is formulated in terms of the potential discontinuities
that interconnect the discrete nodes in the solid body. These discontinuities are al-
lowed to cross over one another. The formulation of the primal DLO problem is
presented below:

Assuming there are n nodes and m discontinuities in a single load case, the prob-
lem is stated as follows (LimitState 2019a)

min λ fT
L d = −fT

D d + gT p (2.9)

subject to:

B d = 0 (2.10)

N p − d = 0 (2.11)

fT
L d = 1 (2.12)

p > 0 (2.13)
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where λ is the load factor; fD and fL are respectively vectors of dead and live
loads at discontinuities; d contains displacements along the discontinuities; p is
a vector of plastic multipliers and g contains the corresponding dissipation coef-
ficients. B is an equilibrium matrix containing direction cosines, and N is a flow
matrix. Details of the formulation of the DLO method are provided in Appendix B.

2.3.3 Other analysis methods

A wide range of other analysis approaches can be applied to backfilled masonry arch
bridges, including non-linear finite element analysis (e.g. Crisfield 1993), finite ele-
ment limit analysis (Cavicchi and Gambarotta 2005, Gilbert 2007), discrete element
based methods (e.g. Cundall and Strack 1979), and physics engine based methods
(Pytlos 2015). Results from a finite element limit analysis model and a physics en-
gine based model are shown in Figure 2.17. Models capable of modelling material
non-linearity and geometrical non-linearity can be used to identify specific modes
of behaviour (e.g. ‘snap through’, as described in section 2.1.3).

maxγ maxγ · 10
-1

maxγ · 10
-2

maxγ · 10
-3

maxγ · 10
-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Total displacement: m

(a)

(b)

FIGURE 2.17: The deformed shape of masonry arch bridges: (a) fi-
nite element limit analysis result (Cavicchi and Gambarotta 2005); (b)

physics engine based method result (Pytlos 2015)
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However, non-linear analysis models can be cumbersome to use in practice. This
is because the initial stress state in an existing bridge is effectively unknowable,
meaning that a range of starting points for the analysis should be used, and also
many of the material properties required to run the analysis will be difficult to es-
tablish. Thus considering the data preparation, run time and expertise required for
non-linear analysis tools, it can be concluded that these are not yet suitable for rou-
tine use.

2.3.4 Choosing a Suitable Analysis Method

The choice of analysis method for masonry arch bridges is dependent on the goal
of the assessment, including whether there is a need to establish the service load
behaviour, to estimate the ultimate load carrying capacity, or to predict displace-
ments under traffic loads. Considering the methods described in the previous sec-
tions, these are categorised in Table 2.1, ranging from Level 1 (simple) to Level 3
(advanced). The choice of method will in practice partly depend on the importance
and complexity of the masonry arch bridge to be assessed.

TABLE 2.1: Applicability of analysis methods

Establishing service

load behaviour

Estimating ultimate

load carrying capacity

Modelling displacements

under traffic loads

Objective

Plastic limit analysis

(e.g. ArchieM,

LimitState:RING,

LimitState:GEO)

Linear-elastic analysis

(e.g. MEXE)

Non-linear analysis

(e.g. ABAQUS, LUSAS)

Level 1 Level 2 Level 3

Run time: Run time: Run time:

2.4 Laboratory and Field Tests on Masonry Arch Bridges

In this thesis, plastic limit analysis of masonry arch bridges will be the main focus. In
order to illustrate application of the methods developed, three bridges will be used
as examples. These include a Bolton laboratory arch bridge (Melbourne and Gilbert
1995) and a Salford laboratory arch bridge (Smith et al. 2006, Gilbert et al. 2010). The
Bridgemill bridge that was tested in the field is also considered (Hendry et al. 1985).
In this section, the data required to model these bridges are described.
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2.4.1 Bolton arch bridge

The Bolton arch bridge considered herein was tested at Bolton Institute (now Uni-
versity). The 5 m span bridge comprised four arch rings. In order to simplify the
arch barrel, the four arch rings were assumed in this thesis to act as one ring made of
87 blocks (Melbourne and Gilbert 1995). Figure 2.18 shows the simplified bridge ge-
ometry, and the main material properties are listed in Table 2.2. The effective bridge
width is assumed as unit.

755

5000

17801220 30303010

350

1250 Load
Surface layer

Main soil-fill
445

1250

FIGURE 2.18: Geometry of Bolton arch bridge (all dimensions in mm)

TABLE 2.2: Material properties of Bolton arch bridge (Melbourne and
Gilbert 1995)

Masonry properties Values

Crushing strength (N/mm2) 18.1

Coefficient of friction 0.64

Unit weight (kN/m3) 22.7

Main soil-fill properties Values

Cohesion, c (kN/m2) 0

Internal angle of friction, φ (degrees) 60

Soil-arch interface strength multiplier 0.33

Unit weight (kN/m3) 22.2
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2.4.2 Salford arch bridge

The Salford arch bridge considered herein was tested at the University of Salford
(Smith et al. 2006). The bridge had a span of 3 m and comprised 48 units. The
bridge was housed in a large test chamber which had very stiff low friction walls,
providing effectively plane-strain conditions. Figure 2.19 shows the geometry of the
bridge tested, and the main material properties involved are provided in Table 2.3.
The position of the arch within the test chamber varied, dependent on the soil-fill
material present so that the full failure mechanism could be captured. The effective
bridge width is assumed as unit.

8300

3000320 320Varies Varies

300

230

1
6
7
5

Main soil-fill

Surface layer750300

750

215

220

Load

FIGURE 2.19: Geometry of Salford arch bridge (all dimensions in mm)

TABLE 2.3: Material properties of Salford arch (Gilbert et al. 2010)

Masonry properties Values

Crushing strength (N/mm2) 25

Coefficient of friction 0.64

Unit weight (kN/m3) 23.7

Main soil-fill properties Values

Cohesion, c (kN/m2) 3.3

Internal angle of friction, φ (degrees) 54.5

Soil-arch interface strength multiplier 0.33

Unit weight (kN/m3) 19.1
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2.4.3 Bridgemill arch bridge

The Bridgemill arch bridge was tested at Girvan, Scotland. It was a relatively shal-
low arch bridge incorporating an arch barrel made up of 62 sandstone blocks (Hendry
et al. 1985). The geometry of the real bridge is shown in Figure 2.20. A load was ap-
plied to a 750 mm length concrete strip crossing the whole bridge width and centered
at the quarter span of the bridge, considered the weakest position for the structure.
The masonry and soil-fill material parameters for the bridge are provided in Ta-
ble 2.4. The effective bridge width is assumed as unit.

711

18 290

2840

Main soil-fill

Surface layer
750

2965

203

4572.5

Load

FIGURE 2.20: Geometry of Bridgemill arch (all dimensions in mm)

TABLE 2.4: Material properties of Bridgemill arch (Brencich and De
Francesco 2004)

Masonry properties Values

Crushing strength (N/mm2) 4

Coefficient of friction 0.64

Unit weight (kN/m3) 21

Main soil-fill properties Values

Cohesion, c (kN/m2) 0

Internal angle of friction, φ (degrees) 60

Soil-arch interface strength multiplier 0.33

Unit weight (kN/m3) 22
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2.4.4 Discontinuity Layout Optimization Modelling

In order to rapidly assess the safety of these bridges, plastic limit analysis based
methods can be applied. From the description of the plastic limit analysis meth-
ods in section 2.3.2, it is clear that rigid-block analysis method and the DLO proce-
dure are simple and easy to use compared with non-linear analysis methods. Lim-
itState:RING and LimitState:GEO are commercial software packages that utilise the
rigid-block analysis method and the DLO procedure respectively. Application of the
two methods can be illustrated by considering the Salford arch bridge.

To compare rigid-block analysis method and the DLO procedure, the arch barrel
of the Salford bridge can be modelled by both methods. The load is positioned
at the quarter span of the structure. Numerical failure mechanisms are shown in
Figure 2.21, and the load factor is 18.2 in both cases. It indicates that both the rigid-
block analysis method and the DLO procedure are capable of modelling masonry
arch structures.

LoadLoad

(b)(a)

FIGURE 2.21: Four hinged failure mechanisms: (a) rigid-block analy-
sis; (b) DLO output

However, when soil backfill is placed around the arch, differences arise. Soil-fill
is modelled indirectly in LimitState:RING, where it is assumed that it disperses live
load and provides self-weight and passive restraint to parts of arch barrel pushing
into the backfill. In contrast, DLO can directly model both masonry and soil ele-
ments.

Consider a DLO model of the bridge with backfill, as shown in Figure 2.22. This
model consists of a series of geometrical regions (potential active and passive re-
gions), 48× block unit, and a rigid loading beam. Appropriate material properties
were then assigned to each geometrical region. All regions were then discretized
using nodes.

For the masonry elements of the model, masonry units were modelled using
a rigid material, and masonry joints were modelled using a Mohr-Coulomb mate-
rial model and a limiting ‘tension and/or compression’ material model. The Mohr-
Coulomb material involved zero cohesion and an angle of friction derived from
‘φ = tan−1 (0.64)’ (Gilbert et al. 2010). The masonry compressive strength was as-
signed a value of 25 N/mm2.
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FIGURE 2.22: Geometrical model of Salford arch bridge: (a) geometry
dimensions (all dimensions in mm); (b) DLO input

For the soil model, (Gilbert 2007) indicated that soil strains in the passive re-
gions of a masonry arch bridge are very small when the collapse load is reached.
Thus if peak soil strength is used in the model, bridge load-carrying capacity will
be over-predicted. In order to address this issue, strain compatibility at the soil-arch
interface also needs to be carefully considered. On the passive side, an approximate
displacement of the arch under the load of between 1 and 5 mm will give rise to a
rotation of each arch segment of approximately 0.1–0.5% (Gilbert et al. 2010). Bolton
(1992) indicated that for a clay soil, approximately 0.33 of the shear strength might
be mobilised at a shear strain of mobilised at a shear strain of 0.25%. Based on the
above, a soil-arch interface strength multiplier of 0.33 or 0.5 was used in the model,
and a mobilization factor of 0.33 or 0.5 was applied to the soil strength c and tan φ in
passive regions.

Although the DLO result is in this case in closer agreement with the test result,
in this case the DLO procedure took around 120 seconds (when using 5000 nodes) to
obtain the solution. If a large number of load positions need to be considered then
the DLO run time becomes an issue. The DLO result of Salford arch bridge analysis
is shown in Figure 2.23.

The LimitState:RING result is in this case also in good agreement with the exper-
imental result, but the gap will only be small when the load position is close to the
quarter span of the bridge, when a characteristic 4 hinge mechanism forms. In other
scenarios the gap can be expected to be far wider.
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FIGURE 2.23: Applied load against deformation at the quarter-span
of Salford arch bridge
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FIGURE 2.24: Four hinged failure mechanism for Salford arch bridge:
(a) deformation of soil from PIV image; (b) DLO failure mechanism

(e.g. mobilization factor of soil strength is 0.33)



2.4. Laboratory and Field Tests on Masonry Arch Bridges 31
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FIGURE 2.25: DLO model of Bolton arch bridge: (a) geometry dimen-
sions (all dimensions in mm); (b) DLO output
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FIGURE 2.26: DLO model of Bridgemill arch bridge: (a) geometry
dimensions (all dimensions in mm); (b) DLO output

For the Bolton and Bridgemill bridges, similar DLO models can be developed;
see Figure 2.25(a) and 2.26(a) respectively. In this case a total of 5000 nodes were
employed. The failure mechanisms identified are as shown in Figure 2.25(b) and
2.26(b).
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2.5 Knowledge Gaps

At a strategic level, the knowledge gaps for the assessment of masonry arch bridges
are as follows

• LimitState:GEO is a powerful DLO-based limit analysis software tool that can
be used model masonry arch bridges. Masonry and soil elements can both be
modelled directly. Introducing more nodes produces more accurate results,
albeit at increased computational cost. In order to rapidly estimate the load-
carrying capacity of masonry arch bridges where multiple load positions need
to be considered, it would be useful to devise a means of reducing computa-
tional cost.

• Currently the LimitState:RING rigid block analysis tool uses a simplified indi-
rect model of soil-arch interaction, considering dispersal of the applied load,
self-weight and passive restraint. The current version of the software assumes
that the effects of an applied load can be approximated using stress incre-
ments described by vertical Boussinesq stresses, with the horizontal and shear
stresses neglected. However, the horizontal and shear stresses (e.g. along the
extrados of an arch barrel) can be beneficial or detrimental depending on the
scenario. According to lower-bound plastic theory, vertical, horizontal and
shear stresses should all be considered. Incorporating proposed stress fields
into LimitState:RING would therefore allow the software to furnish true lower-
bound solutions at minimal additional computational cost.

• Using upper and lower bound analyses to bracket the true load carrying ca-
pacity is potentially computationally expensive considering that many load
positions need to be considered; thus alternative strategies are worthy of con-
sideration. The current version of LimitState:RING uses a ‘Boussinesq’ load
dispersion model but the distribution is restricted by a dispersion angle. This
is highly simplistic. In addition, ‘Rankine’ earth pressure is used to represent
passive restraint but the principal soil pressure is restricted by direction. Thus
a more realistic soil-arch interaction model is needed, to better simulate disper-
sal of the applied load andto represent soil earth pressures. Thus an alternative
limit equilibrium method could provide a simple, effective and very fast alter-
native approach, potentially suitable for use in industry.
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Numerical Strategies
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Chapter 3

Computationally Efficient Upper
Bound Method

Preface

With the goal of developing a rapid and effective means of estimating the load-
carrying capacity of masonry arch bridges, potential numerical limit analysis meth-
ods will be explored. Discontinuity layout optimization (DLO) is a useful limit anal-
ysis technique that can directly model both masonry and soil elements. Using DLO
a given body is discretized using a suitable number of nodes laid out on a grid, with
the failure mechanism deemed to comprise the slip-line pattern of potential discon-
tinuities inter-connecting these nodes, identified using mathematical programming
techniques. However, the computational cost of DLO is higher than the traditional
rigid-block analysis method. Although coarse grid problems containing relatively
few nodes often take only a few seconds to solve on a modern PC, introducing more
nodes to produce more accurate results may significantly increase computational.
In order to enhance the computational efficiency of the DLO limit analysis process,
adopting an alternative nodal positioning strategy is considered in this chapter.
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3.1 Introduction

Limit analysis provides a simple and effective means of estimating the load-carrying
capacity of masonry arch bridges. Although empirical analysis methods are still
used, a number of numerical limit analysis methods for masonry structures have
been developed. However, most of these limit analysis methods only model the ma-
sonry elements directly, and the surrounding soil-fill is modelled indirectly. Because
both masonry elements and soil-fill are important, the DLO technique has been pro-
posed to model all elements directly. A key feature of DLO is that singularities can
be modelled without difficulty, unlike with finite element limit analysis (e.g. Cav-
icchi and Gambarotta 2007), which needs to employ adaptive mesh refinement or
high-order shape functions to obtain accurate solutions. However, arch bridge as-
sessment typically involves consideration of many vehicle load positions, so compu-
tational cost becomes very important. Unfortunately the standard DLO procedure,
although much less computationally expensive than incremental non-linear finite
element methods, is still quite computationally expensive. Thus in this chapter, al-
ternative nodal distribution strategies are considered.

3.2 Comparison of LimitState:GEO and LimitState:RING

LimitState:RING and LimitState:GEO are commercial software programs that can
be used to estimate the load carrying capacity of masonry arch bridges. Limit-
State:RING models masonry elements using the rigid-block analysis method and
adopts a simplified model strategy for the soil backfill, considering self-weight, live
load dispersion and passive restraint. In contrast, LimitState:GEO utilises the upper-
bound DLO limit analysis procedure to model both masonry and soil backfill ele-
ments directly. In order to develop a more computationally inexpensive DLO proce-
dure, it is necessary to better understand what influences the computational cost.

3.2.1 Arch Barrel Model

Initially, two models of the arch barrels of a bridge were developed to help estab-
lish the computational cost of the DLO procedure. Both were 3 m span arches with
0.75 m rise and 0.215 m thickness. The unit weight of masonry was 23.7 kN/m3. Fig-
ure 3.1(a) shows 12 × block units in the arch barrel, with a total of 26 nodes and 39
discontinuities. The masonry in the arch is assumed to have infinite compressive
strength and the structure is subject to a load positioned at quarter span. A series of
contact discontinuities are available to model the opening of cracks. A four hinged
arch failure mechanism is shown in Figure 3.1(b). Similarly, an arch barrel composed
of masonry units with a finite compressive strength of 1 N/mm2 can be modelled.
In order to allow crushing of the masonry to be simulated, regularly spaced nodes
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(5 nodes along the radial face of each block) were used. Thus Figure 3.1(c) shows a
model that comprises 65 nodes and 76 discontinuities. When the load is applied at
1/4 of the span in this case crushing can be approximately modelled using the DLO
procedure, as shown in Figure 3.1(d).

When finite masonry crushing strength is specified in a rigid-block analysis model,
an iterative analysis is required. In the iterative analysis the failure envelope is pro-
gressively refined using a series of linear constraints until the true non-linear failure
envelope is properly represented (e.g. see Appendix A).

(a) (b)

λ Pc

λ Pc

(c) (d)

λ c=20.9

λ c=17.2

FIGURE 3.1: Arch barrel modelled using DLO: (a) arrangement of
nodes (no crushing); (b) collapse mechanism corresponding to (a); (c)
arrangement of nodes (with crushing); (d) collapse mechanism corre-

sponding to (c) (P is a unit load)

λ Pcλ Pc

(a)

(b) (c)

λc=20.9 λc=17.0

FIGURE 3.2: Arch barrel modelled using the rigid-block analysis
method: (a) arrangement of masonry block elements; (b) failure
mechanism (no-crushing); (c) failure mechanism (with crushing) (P

is a unit load)
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This means that compared with the DLO procedure, a much lower number of
masonry elements are required in the rigid-block analysis model, contributing to the
efficiency of the method.

3.2.2 Backfill Model

When the soil backfill located around the arch barrel is included the bridge model
becomes more complex. Consider a bridge backfilled with a strong soil with a unit
weight of 19.1 kN/m3 , soil friction angle of 54.5 ◦ cohesion of 3.3 kN/m2, filled up to
a level of 0.3 m above the crown. Assume that the soil-arch interface and passive soil
strength mobilization factor multipliers are both taken as 0.33. If the applied load
is positioned at quarter span then there will be an active zone close to the applied
load and a passive zone remote from the load. In the DLO model, soil regions are
discretized using nodes, as shown in Figure 3.3(a). Potential discontinuities interlink
these nodes to form the full limit analysis problem. Linear programming is used to
identify the layout of the critical failure mechanism (shown in Figure 3.3(b)). In the
case of the rigid-block model, dispersal of the applied load through the backfill is
modelled, as is passive resistance, as shown in Figure 3.4, so the computational cost
of this model is virtually ‘free’. Figure 3.3(b) shows a coarse grid (250 nodes used) in
DLO procedure, but increasing the number of nodes delivers a more accurate result.

(a)

(b)

Active soil zone Passive soil zone

λ Pc

λ c =146.2

FIGURE 3.3: Backfilled arch bridge model using the standard DLO
procedure (DLO-standard): (a) nodal discretization; (b) slip-lines (P

is a unit load)
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FIGURE 3.4: Soil model in rigid-block analysis

3.2.3 Commentary

By considering both LimitState:GEO and LimitState:RING models, contributors to
their respective computational costs have been established. If a large number of
nodes is used in the DLO model (e.g. 6000), then a more accurate predicted bridge
load-carrying capacity (123 kN) is obtained than when using a coarse nodal grid
(capacity = 146 kN). However, its computational cost is also significantly increased.

To obtain the solutions a 2.2 GHz Intel Core PC equipped with 8 GB of memory,
running under 64 bit Windows 10 Professional. Mosek version 7.0, a commercially
available interior point LP solver was used. Quoted CPU times involve the time
required to make all connections between nodes and to solve the LP problem. In
this case, the CPU time comparison between DLO and rigid-block analysis results
is listed in Figure 3.5. The LimitState:RING bridge collapse load was in this case
122 kN.
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FIGURE 3.5: CPU time comparison between ‘DLO-standard’ and
rigid-block analysis results
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From Figure 3.5, it can be seen that the difference between the LimitState:GEO
(220 s) and LimitState:RING (1.5 s) CPU times is caused by the computational ex-
pense associated with the soil backfill model. If a new DLO procedure can be de-
vised to improve computational efficiency then the LimitState:GEO can be faster
running, facilitating the analysis of masonry arch bridges subject to axle loads that
move across the bridge, generating many load cases.

3.3 Fast Running Discontinuity Layout Optimization

In order to improve the computational efficiency of the original DLO procedure, a
fast running DLO procedure will be proposed to assess the safety of masonry arch
bridges. The ‘DLO-edge’ procedure will be similar to the ‘DLO-standard’ procedure;
both are outlined diagrammatically in Figure 3.6. With DLO-edge a limit analysis
problem is also formulated in terms of the potential discontinuities that interlink
nodes used to discretize the solid body under consideration. However, the nodes
used in the DLO-edge are only placed along the edges of the given body.

(a) Discretization of a body using 

nodes

(b) Interconnection of nodes 

with potentional discontinuities

interlinking all nodes

(c) Identification of critical subset

of potential discontinuities using

optimization

(d) Discretization of a body using 

nodes

(e) Interconnection of nodes 

with potentional discontinuities

interlinking all nodes

(f) Identification of critical subset

of potential discontinuities using

optimization

FIGURE 3.6: Stages in the DLO procedure: (a)∼ (c) for DLO-standard;
(d) ∼ (f) for DLO-edge



3.3. Fast Running Discontinuity Layout Optimization 41

3.3.1 Simple Example

In order to demonstrate the computational efficacy of DLO-edge a simple example
problem will be considered. The example is a planar limit analysis problem. Fig-
ure 3.7 shows a 3× 2 unit design domain and also indicates the support and load
conditions. The locations of nodes are indicated and each node is connected to every
other node by a potential discontinuity.

Figure 3.7(a) shows two wedges, with the critical layout of slip-line discontinu-
ities obtained using the standard DLO procedure. Figure 3.8(a) presents a velocity
diagram for the virtual displacements of the two wedges and a ‘rigid’ load. In the
problem the self weight of soil is for simplicity ignored. There is assumed to be zero
cohesion along the free boundaries and unit cohesion along the fixed boundaries.
In accordance with the upper bound theorem, the total internal energy dissipated is
equal to the total external work done. Thus the work equation can be expressed as:

cu
√

2 ·
√

2δ + cu
√

5 · 1.4907δ + cu
√

2 · 0.4714δ = V 2 · δ (3.1)

where cu is the undrained cohesion of the soil body; δ is the virtual displacement
of the slip-line discontinuity; V is the applied load at the foundation. Calculating
the equation 3.1, the collapsed load Vc is equal to 3 in this case.
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FIGURE 3.7: Analogy between standard and fast DLO: (a) standard
DLO; (b) fast DLO

Figure 3.7(b) shows one wedge with the critical layout of slip-line discontinuities
obtained using the fast DLO procedure. Figure 3.8(b) represents a velocity diagram
for the virtual displacements of a wedge and a load. The material properties and
boundary conditions in this case are same as for standard DLO. According to the
upper bound theorem, the work balance equation can be expressed as:

cu
√

13 ·
√

3.25δ = V 2 · δ (3.2)
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FIGURE 3.8: Hodograph and Maxwell force diagrams: (a) standard
DLO; (b) fast DLO

Thus the collapse load V in this case is equal to 3.25. These solutions in the two
cases can be also obtained using the LP solver. The accuracy of the fast DLO in the
problem is equal to (3.25− 3)/3 = 0.0833 which is potentially acceptable (since it is
< 10%).

In fact the total number of possible discontinuities, including overlapping dis-
continuities, can be shown to be m = n(n− 1)/2. In the DLO-standard model, the
number of discontinuities is equal to 12 · (12− 1)/2 = 66; in contrast, the number of
DLO-edge discontinuities is 10 · (10− 1)/2 = 45. If the number of nodes employed
is a very large value, the difference in computational cost between DLO-standard
and DLO-edge will become very large.

(a)

(b)

Active soil zone Passive soil zone

λ Pc

λc=138.5

FIGURE 3.9: Backfilled arch bridge modelled using DLO-edge strat-
egy: (a) nodal discretization; (b) slip-lines (P is a unit load)
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3.3.2 Typical Example of Backfilled Masonry Arch Bridge

Following the description of the proposed DLO-edge procedure in the previous sec-
tion, the backfilled masonry arch bridge problem considered previously can be revis-
ited, though with nodes used in the backfill model now only placed at the edges of
the solid regions, as shown in Figure 3.9. Using the same number of nodes as before,
the predicted failure load of the bridge using DLO-edge is 138.5 kN versus 146.2 kN
when using DLO-standard. If an increased number of nodes is used, an improved
DLO-edge solution will be obtained (i.e. a solution with a reduced load factor). It
is therefore useful to ascertain the extent to which the DLO-edge procedure can be
used to reduce the total CPU time required to achieve a solution of a given accuracy.
Table 3.1 and Figure 3.10 show results for the backfilled masonry arch bridge prob-
lem, indicating that use of the DLO-edge procedure can indeed reduce the number
of nodes used required to give a solution of a given accuracy.

TABLE 3.1: Influence of number of using nodes

DLO-standard DLO-edge

No. of Load factor CPU No. of Load factor CPU

nodes (error) seconds nodes (error) seconds

500 138.1 (28.0%) 2.71 500 130.2 (16.4%) 2.56

1000 129.8 (11.7%) 4.98 1000 125.6 (5.15%) 5.27

5000 123.6 (3.20%) 120 1500 123.2 (2.66%) 14.9

10000 122.3 (1.33%) 330 2000 122.3 (1.33%) 25.8
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FIGURE 3.10: Number of nodes used vs. percentage error when using
DLO-standard and DLO-edge
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In Figure 3.10, it can be seen that DLO-edge provides a reasonably rapid means
of the analysing bridges. Although the rigid-block analysis method is still faster, the
range of the application is restricted by the highly simplified backfill model used.
DLO-standard is a rigorous upper-bound method to model arch bridges, but the
computational time is high if a high degree of accuracy is required. Potential advan-
tages of DLO-edge will be illustrated by considering its application to three literature
arch bridges in the next section, with multiple load positions employed.
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Soil backfill

Blocks only Arch barrel only + Soil backfill

LimitState:GEO 

(DLO-Standard)

    LimitState:RING

(Rigid-block analysis)

Soil backfill

Blocks only

DLO-Edge

Soil backfill

FIGURE 3.11: CPU time comparison of DLO-standard, DLO-edge
and rigid-block analysis

For a single load case and fixed 1.33% error, Figure 3.11 indicates that the differ-
ence between the current version of LimitState:GEO (330 s) and fast running DLO
(25.8 s) CPU times is also caused by the computational expense associated with the
soil backfill model.

3.4 Application to Case Studies

The use of the DLO-edge method can be illustrated by using it to model the Bolton,
Salford and Bridgemill arch bridges. The geometry and main properties are shown
in section 2.4 of the thesis. In order to provide reasonable accuracy, 2000 nodes were
used in the DLO-edge models. Results from DLO-edge can be used to compare with
DLO-standard (LimitState:GEO) and LimitState:RING results. The number of nodes
used in LimitState:GEO using DLO-standard model was 5000.

Predicted failure mechanisms obtained using DLO-edge and DLO-standard are
shown in Table 3.2, considering quarter span loading. Considering CPU time, it is
evident that DLO-standard models take a longer time to solve, and in these cases
obtain solutions that are less accurate than the DLO-edge results.
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TABLE 3.2: Comparison of DLO-standard and DLO-edge in bridges
(5000 nodes used in DLO-standard, 1500 nodes used in DLO-edge)

Problem LimitState:GEO
CPU time (s)

DLO-Edge CPU
time (s)

Speed up

Bolton arch 14532 684 21.25

Salford arch 12020 621 19.36

Bridgemill arch 13836 669 20.68

TABLE 3.3: Comparison of DLO-edge and rigid-block analysis in
bridges (1500 nodes used in DLO-edge)

Problem DLO-Edge CPU
time (s)

LimitState:RING
CPU time (s)

Speed up

Bolton arch 684 106 6.45

Salford arch 621 95 6.54

Bridgemill arch 669 101 6.62

If a hundred load positions are considered, moving the load from the left to the
right abutment, the cumulative CPU time difference between the LimitState:RING,
LimitState:GEO and DLO-edge models is relatively large. Figure 3.12 shows hori-
zontal profiles of the collapse load along the extrados of each arch barrel. The weak
position for each bridge ranges from 0.2 to 0.3 of the x/span (where x is measured
from the left abutment to the load position) or from 0.7 to 0.8. In order to effi-
ciently manage computational cost, a hundred load position cases were run using
1500 nodes.

Table 3.2 shows that the time consumed by LimitState:RING for this problem is
around 100 seconds, with a single load position case requiring approximately one
second to run. In contrast, the time consumed by LimitState:GEO was very high,
exceeding ten thousand seconds. Table 3.3 shows that the time required to consider
the six additional load positions cases was around 650 seconds. Table 3.2 and 3.3
also show the speed up using LimitState:GEO CPU time divided by DLO-edge and
using DLO-edge CPU time divided by LimitState:RING. For this hundred load po-
sition problem, the run time for DLO-edge is much lower than that required to run
the corresponding LimitState:GEO models. Although the CPU time associated with
DLO-edge is higher than that associated with LimitState:RING, the range of applica-
tion of DLO-edge is wider, since LimitState:RING only provides reasonable results
when the load is at or near the quarter span of the bridge.
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TABLE 3.4: DLO-standard and DLO-edge solution of bridges (P is a
unit load)

DLO solution

λ Pc

λ Pc

λ Pc

λ Pc

λ Pc

λ Pc

Bolton arch bridge:

5000 nodes used in 

DLO-standard;

2000 nodes used in

DLO-edge.

DLO-standard

DLO-edge

λ c =

λ c =

DLO-edge λ c =

DLO-standard λ c =

CPU time:

CPU time:

CPU time:

CPU time:

DLO-edge λ c = CPU time:

DLO-standard λ c = CPU time:

Salford arch bridge:

5000 nodes used in

DLO-standard;

2000 nodes used in

DLO-edge.

Bridgemill arch bridge:

5000 nodes used in

DLO-standard;

2000 nodes used in

DLO-edge.

Problem

388.2

381.8

114.1

116.2

636.4

648.4

23.5

110.7

27.9

126.9

32.6s

s

s

s

s

146.8s
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FIGURE 3.12: Load-carrying capacity at different load position (5000
nodes used in DLO-standard, 1500 nodes used in DLO-edge): (a)

Bolton bridge; (b) Salford bridge; (c) Bridgemill bridge
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3.5 Discussion

The literature bridge examples considered thus far assume that fixed abutments are
used to support each bridge. However, bridge abutments are in reality often ‘free’,
which allows them to slide into the backfill. Although differences in the predicted
collapse loads for bridges that have fixed or free abutments may often be small (e.g.
see Gilbert et al. 2010), considering free abutments in the analysis presents an issue
for the DLO-edge model.

The Salford arch bridge is here chosen to illustrate the application of DLO-edge
for the analysis of arch bridges with free abutments. The geometry of the bridge
is shown in Figure 2.19 from section 2.4.2, and the main material properties are the
same as for the Salford arch bridge considered previously.

If a live load is applied at quarter span, it is found that an abutment remote from
the load slides into the fill and three hinges form in the arch barrel. Figure 3.13(a)
shows the bridge failure mechanism obtained using DLO-standard and the pre-
dicted collapse load is 88.1 kN lower than the 116.2 kN that could be carried when
using fixed abutments. In the passive region of the backfill, the soil failure surface
is initially a log-spiral curve, and then a straight slip-line from the abutment up to
the traffic surface. If DLO-edge is used to analyse this bridge the nodes are placed
only at the edges of the geometrical regions, as shown in Figure 3.13(b). However,
the predicted capacity is 100 kN, which is higher than the DLO-standard result. This
is because the family of potential discontinuities present in the DLO-edge model are
not able to simulate the log-spiral failure surface.

If two are added at the bottom of the abutments and are discretized with nodes,
then DLO-edge can approximately model the log-spiral rupture surface, as shown in
Figure 3.14. The predicted collapse load in this DLO-edge scenario becomes 90.5 kN
which is now close to the DLO-standard result.

Now consider the same bridge for multiple load positions, with free and fixed
abutments. The numbers of nodes used in DLO-standard and DLO-edge were 5000
and 2000 respectively. A relationship of collapse load versus load position/span is
presented in Figure 3.14. For the bridge with fixed abutments, differences between
the DLO-standard and DLO-edge solutions are relatively small. However for the
bridge with free abutments the difference becomes larger, at 8% (DLO-standard vs.
DLO-edge).

Although the DLO-edge method does have difficultly identifying the curved
slip-line pattern associated with local failure in a problem, this can be alleviated
by adding suitable lines into a DLO-edge model.
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FIGURE 3.13: Failure mechanisms of bridge which had free abut-
ments: (a) DLO-standard output; (b) DLO-edge scenario I; (c) DLO-

edge scenario II (P is a unit load)
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3.6 Concluding Remarks

In summary:

• A fast running discontinuity layout optimization (DLO-edge) limit analysis
procedure has been introduced to reduce the computational cost of analysing
masonry arch bridges. To save time, an alternative nodal discretization strat-
egy has been proposed, in which nodes are only placed at edges of solid re-
gions. Results from DLO-edge have been compared with results from the stan-
dard DLO procedure and high-quality data obtained from laboratory tests on
full-scale masonry arch bridges.

• The DLO-edge procedure has also been applied to more complex arch bridge
problems where failure mechanisms have been found that are in good agree-
ment with the solutions from a standard DLO analysis containing a suitably
larger number nodes. In order to provide acceptable results for problems in-
volving multiple load positions, an increased number of nodes can be used
for the positions found to be most critical in an initial analysis. The computa-
tional cost of DLO-edge has been compared with that of the current version of
the LimitState:GEO and LimitState:RING commercial limit analysis software
tools.
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Chapter 4

Lower Bound Stress Fields Method

Preface

With the goal of developing rapid and effective means of estimating the load-carrying
capacity of masonry arch bridges, potential strategies employing numerical limit
analysis methods are explored. One strategy involves lower bound limit analysis.
Whilst most available arch analysis tools (e.g. Obvis 2016, LimitState 2019b) model
the masonry elements explicitly, soil-fill material is normally modelled in an indi-
rect manner, with the anticipated effects of the soil-fill (self-weight, load dispersion
and passive restraint) only approximately represented. Although it is possible to
model the soil-fill explicitly in a numerical limit analysis model, e.g. via use of fi-
nite element limit analysis (Cavicchi and Gambarotta 2007, Gilbert et al. 2007) or
discontinuity layout optimization (Smith and Gilbert 2007, Gilbert et al. 2010), addi-
tional computational costs are incurred. Therefore, closed form lower bound stress
fields combined with numerically modelled arch elements are proposed to obviate
the need for potentially computationally costly analyses, permitting rapid estima-
tion of the load-carrying capacity of soil-filled masonry arch bridges.
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4.1 Introduction

Lower bound limit analysis is useful to predict the largest loads that a plastic sys-
tem can sustain without failure. The loads are determined from stress fields which
satisfy the equilibrium, stress boundary conditions and nowhere violate yield. The
challenge is to generate the stress fields for soil-filled masonry arch bridges, mod-
elling both soil and masonry elements.

Rigid-block limit analysis has been previously applied to masonry arch barrels
(Gilbert and Melbourne 1994) and when a LP solver is used to obtain a solution then
this will simultaneously be a lower and upper bound for the given discrete blocks.
Thus the arch structures can be straightforward modelled approach using rigid-
block analysis. For the soil-fill components, combinations of lower bound stress
fields are proposed that superimpose the distributions due to live loads and simple
stress fields which combine to make the effect of surface loads on the extrados of a
masonry arch.

In the soil model, the Mohr-Coulomb criteria is used. In the masonry model, the
compressive strength is considered. If a stress field of masonry exceeds the crush
compression, it means the stress distribution yields.

In this chapter, the lower bound stress fields applicable to masonry and soil will
be introduced, then the model is applied to soil-filled masonry arch bridges, with
results compared with the upper bound solutions obtained using DLO limit analysis
procedure.

4.2 Masonry Stress Fields

To generate a lower bound in the arch, a rigid block assemblage is assumed for a
masonry structure. For the sake of simplicity, infinite compressive strength is as-
sumed in this chapter. It gives no consideration for any stress fields inside of each
masonry block, but it is necessary to know the stress distributions at each contact
between adjacent blocks. A solution in a critical failure mechanism of a masonry
arch bridge using rigid-block analysis gives shear force S, normal force N and mo-
ment M at each contact. These forces can be used to obtain valid lower-bound stress
distributions along each contact.

Stress distribution at cross-section is assumed as linear. The normal force N and
moment M at each contact can be used to calculate the normal stress σ over the
cross-section of the arch at the contact. Similarly, the shear force S can be used to
calculate the shear stress τ over the cross-section of the arch. Thus there are two
cases to show the stress distribution, involving Case A of non-crack as shown in
Figure 4.1(a) and Case B of crack as shown in Figure 4.1(b). In order to guarantee
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nowhere yielding in the masonry model, all normal and shear stresses should be
lower than the compressive and shear strength at each contact. The procedures for
equating the largest value of these stresses are as follows

(a)

σmax

σmin

N

M

t

σmax

N

M

t

d
y

NA NA

1/3

(b)

σmin

N

d

FIGURE 4.1: Contact stress distribution: (a) non-crack; (b) crack

(i) For each contact i, initially compute the minimum normal stress σmin to deter-
mine the stress distribution. If σmin is larger than zero, it means ‘no-tension’ at
the contact; in contrast, if σmin is lower than zero, a crack will occur at the con-
tact. In accordance with the assumption of linear distribution, the minimum
normal stress can be written as

σmin =
N
wt
− M y

I
(4.1)

where t is the height of the cross-section; w is the width of the cross-section; I
is the second moment of area of the cross-section; y is the distance between the
neutral axis and the top edge of the cross-section. σmax is always larger than
σmin.

(ii) Calculate the largest value of normal and shear stress at each contact.

For Case A, σmin is larger than zero, thus no-crack occurs at the contact. The
maximum normal stress at the contact can be expressed as

σmax =
N
wt

+
M y

I
(4.2)

For Case B, σmin is lower than zero, thus the crack occurs at the contact and the
stress distributions will be rearranged. Taking the moment at the top edge of
the cross-section, the moment equilibrium can be written as
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N · d
3
= N · t

2
−M (4.3)

Deriving this equation, the no-crack length can be written as

d =
3
2

t− 3
M
N

(4.4)

Taking the force equilibrium, the maximum normal stress can be derived as

σmax =
2N
wd

(4.5)

In accordance with ‘no-sliding’ constraint for plastic analysis, yield inequality
gives as follows

S 6 N µ + c′d (4.6)

where µ is the joint frictional coefficient and c′ is the cohesion. Considering
yield factor ζ, the yield constraint can be expressed as

ζ 6
S

N µ + c′d
(4.7)

The lower-bound stress fields of masonry can be illustrated by considering an
example of arch barrel. The geometry of the arch barrel is shown in Figure 4.2(a).
An axle load is acted at the quarter span of the arch barrel. The unit weight of the
masonry is assumed as 23.7 kN/m3 and the joint frictional coefficient µ is 0.66. Nu-
merical failure mechanism obtained from rigid-block analysis is presented in Fig-
ure 4.2(b). The estimation of the arch load-carrying capacity is 18.9 kN. The com-
puted no-crack length d, maximum normal stress σmax and shear stress τmax at each
contact are shown in Table 4.1. According to Mohr-Coulomb yield criteria, S 6 N µ

for no cohesion at contact, it is clearly to know from this table that nowhere violate
yield.
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FIGURE 4.2: Example of an arch barrel: (a) geometry of an arch barrel
(all dimensions in mm); (b) failure mechanism (P is a unit load)

TABLE 4.1: Results of an arch barrel

Contact S
(kN)

N
(kN)

M
(kN m)

d
(m)

σmax
(kN/m2)

|S/N|

0 0.17 29.76 3.27 0.00 ∞ 0.01

1 -3.45 28.49 2.76 0.04 1424.5 0.12

2 -6.70 26.84 1.19 0.20 268.4 0.25

3 -9.55 24.89 -1.31 0.17 292.8 0.38

4 6.03 16.96 -1.87 0.00 ∞ 0.36

5 4.67 17.48 -0.22 0.22 52.2 0.27

6 3.27 17.99 1.00 0.16 224.9 0.19

7 1.79 18.49 1.77 0.04 924.5 0.10

8 0.20 18.95 2.08 0.00 ∞ 0.01

9 -1.51 19.36 1.89 0.04 968 0.08

10 -3.38 19.67 1.14 0.16 245.9 0.17

11 -5.40 19.86 -0.20 0.22 65.5 0.27

12 -7.59 19.87 -2.19 0.00 ∞ 0.38
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4.3 Soil Stress Fields

4.3.1 Introduction

The challenge is to find a stress field in the soil-fill due to an applied surface load that
is a true lower bound solution. When a vehicle traverses a masonry arch bridge, each
wheel of the vehicle applies a load to the level traffic surface and will be assumed
to be uniform. For the sake of simplicity, a single load only is considered in this
chapter.

If a single load is applied at the quarter span of a masonry arch bridge (e.g.
shown as Figure 4.3), the collapsed mechanism (upper bound solution) is a typi-
cal four hinged mechanism as shown in Figure 4.4. The active zone is specified on
the loading side. In contrast, the passive zone is on the side of the arch ring moving
into the fill. The surface layer is on the crown of the arch ring. Because the road on
a masonry arch bridge has strong strength, the road with depth SC was assumed to
be cemented material.

Surface layer

q

Main soil-fill

Main soil-fill

Base Base

Masonry arch

S Cemented soil

Point (      )x, z

B

x
z

C

FIGURE 4.3: Lower bound stress fields due to live load
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γzγz
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FIGURE 4.4: Lower bound stress fields due to dead load
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4.3.2 Stress Fields Due to Surface Load
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FIGURE 4.5: Cross section through long flexible strip on infinite soil
carrying surcharge q

In this work, equilibrium stress fields used an anisotropic ‘Boussinesq’ distribu-
tion (1877) are adopted as the part of a lower bound solution. The degree of the
anisotropy is evaluated by means of the Young’s modulus ratio n = Ex/Ez, where
Ez and Ex are the elastic modulus in the vertical and horizontal direction respec-
tively (e.g. shown as Figure 4.5). The stress formulae (e.g. see Appendix C) under a
uniformly distributed load were introduced by Moroto (1973) as follows



∆σz =
q
π

1
η2 − η1

(η2 k1 − η1 k2)

∆σx =
q
π

η1 η2

η2 − η1
(−η1 k1 + η2 k2)

∆τxz =
q

2π

η1 η2

η2 − η1
k3

(4.8)

where η1 =
√

n and η2 = 1.



k1 = tan−1
[

2bη1z
(η1z)2 + x2 − b2

]
+ iπ

k2 = tan−1
[

2bη2z
(η2z)2 + x2 − b2

]
+ iπ

k3 = ln
[
(b + x)2 + (η1z)2

(b + x)2 + (η2z)2
(b− x)2 + (η2z)2

(b− x)2 + (η1z)2

]
(4.9)
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where i = 0 unless k1 < 0 or k2 < 0, in which case i = 1. If n is equal to one, the
equations 4.8 become ‘Boussinesq’ stress distributions

∆σz =
q
π
[α + sinα cos(α + 2β)]

∆σx =
q
π
[α− sinα cos(α + 2β)]

∆τxz =
q
π
[sinα sin(α + 2β)]

(4.10)

where

β = tan−1 [(x− b)/z], α = tan−1 [(x + b)/z]− β

The mean stress ∆p and maximum shear stress ∆s can be expressed as
∆p =

(∆σ1 + ∆σ3)

2

∆s =
(∆σ1 − ∆σ3)

2

(4.11)

where


∆σ1 =

1
2
(∆σx + ∆σz) +

√
1
4
(∆σx − ∆σz)2 + ∆τ2

xz

∆σ3 =
1
2
(∆σx + ∆σz)−

√
1
4
(∆σx − ∆σz)2 + ∆τ2

xz

(4.12)

In order to visualise increment of stress distribution, contours of increment ∆p
and ∆s are demonstrated in Figure 4.6 and 4.7 respectively. In Figure 4.6, it can be
seen that a smaller n brings a greater concentration of stress and a greater n brings
a greater spreading of stress. In the Figure 4.7, if n is less than one, the maximum
intensity locates at the loading center. In contrast, if n is higher than one, higher
stresses diverge in a form of dipole starting from the both loading edges.

In these equations, it is assumed that self-weight of the soil-fill is zero. Thus the
computations furnish the stress fields only due to a surface load. In order to obtain
the total stresses including the soil self-weight one has to combine the stress fields
due to a surface load with those produced by the weight of the supporting material.
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FIGURE 4.6: Contours of ∆p/q: (a) n = 0.5; (b) n = 1.0; (c) n = 2.0
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4.3.3 Stress Fields Due to Fill Self Weight

For stress fields from dead loads of soil-fill, the initial stress distribution due to the
effect of soil self-weight is shown in Figure 4.4 (b). The principal stress orientations
of the initial stress distribution are vertical and horizontal. The equations for the
stress fields due to the weight of the soil-fill can be expressed as

σv = γ z

σh = K(z) σv

(4.13)

where K(z) is the lateral earth pressure coefficient for the soil and may vary with
depth z, and γ is the soil unit weight.

4.3.4 Combined Stress Fields

A combination of stress fields due to a strip load and the soil self-weight is shown
in Figure 4.8. The total stresses of the combination were introduced by Dang et al.
(2019), then they can be written as

σz = ∆σz + σv

σx = ∆σx + σh

τxz = ∆τxz

(4.14)
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FIGURE 4.8: Diagrams illustrating equilibrium for soil stress fields



62 Chapter 4. Lower Bound Stress Fields Method

4.3.5 Yield Constraints

General Formulations

In accordance with the rules of lower bound limit analysis, a stress field due to a
surcharge and a dead weight of soil, must nowhere violate the yield criteria. The
Mohr-Coulomb yield condition can be expressed as

(σ1 + σ3)

2
sin φ =

(σ1 − σ3)

2
− c cos φ (4.15)

where 
σ1 =

1
2
(σx + σz) +

√
1
4
(σx − σz)2 + τ2

xz

σ3 =
1
2
(σx + σz)−

√
1
4
(σx − σz)2 + τ2

xz

(4.16)

For the masonry arch bridge problem, the yield conditions must be checked at
any location within the soil body. Thus for any given depth, it is necessarily to
determine the values of K(z). The range of K(z) is limited by the Rankine (1857)
active and passive lateral earth pressure coefficients as follows

K∞,min = Ka 6 K(z) 6 Kp = K∞,max (4.17)

where 
Ka = tan2

(
π

4
− φ

2

)

Kp = tan2
(

π

4
+

φ

2

) (4.18)

where φ is the internal frictional angle of soil-fill.

For cohesion soil, c is equal to zero, then the mobilised friction sin φm can be
derived from equation 4.15 and obtained as

sin φm =
(σ1 − σ3)/2
(σ1 + σ3)/2

=

√
1
4
(σx − σz)2 + τ2

xz

1
2
(σx + σz)

(4.19)

When K(z) is equal to Ka at any given position, a combined stress field does not
lead to yield violation as illustrated using Mohr’s circles as shown in Figure 4.9(a).
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For cohesive soil, φ is equal to zero, then the equation 4.15 becomes

c =
(σ1 − σ3)

2
=

√
1
4
(σx − σz)2 + τ2

xz (4.20)

In this case K(z) is equal to one, a combined stress field does not lead to yield
violation as illustrated using Mohr’s circles as shown in Figure 4.9(b).

For frictional-cohesive soil-fill, the material yield criteria can be simplified as
the equivalent cohesionless material yield condition of Mohr-Coulomb as shown in
Figure 4.9(c). The equivalent frictional angle φe can be defined as (Ni et al. 2018)

φe = tan−1
(

tan φ +
c

γz

)
(4.21)

Substitute equation 4.21 into equation 4.19 and replace phi by φe, then the equa-
tion 4.19 can be expressed as

sin φe = sin

tan−1

tan

sin−1


√

1
4
(σx − σz)2 + τ2

xz

1
2
(σx + σz)


+

c
γz


 (4.22)

In the frictional-cohesive soil-fill, when K(z) is equal to Ka obtained using the
value of φe, a combined stress field does not lead to yield violation as illustrated in
Figure 4.9(c).

Simple Example of Footing

The use of stress fields can be illustrated by considering a strip footing. The strip
footing with length B of 0.5 m, positioned on the surface of soil with unit weight γ

of 20 kN/m3. A strip load of 100 kN/m positioned on the cohesionless soil surface
(Figure 4.10(a)) and the frictional-cohesive soil surface (Figure 4.10(b)), respectively.
To visualize the flow of required frictional strength in supporting soil material, it is
necessary to plot contours of the greatest mobilized frictional angle.

Figure 4.11 shows the contours of mobilised frictional angle of cohesionless and
frictional-cohesive soil respectively. Stress fields combine the ‘Boussinesq’ stress
fields (e.g. anisotropic ratio n is equal to one) and earth pressures due to the self
weight of soil. In this case the value of K(z) is assumed as one at any depth. In Fig-
ure 4.11(a), it can be seen that the weakest zone is at the surface of the soil on both
sides of the loaded strip footing. In Figure 4.11(b), the surface includes cohesion, so
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that the surface zone does not violate yield condition when the cohesion provides
enough shear strength.

Footing

q = 100 kN/m

B=0.5m

Soil

Footing

B=0.5m

Soil

(a) (b)

γ =20 kN/m3

c =2kN/m2

γ =20 kN/m3

c =0

q = 100 kN/m

FIGURE 4.10: Example of footing on the surface of (a) cohesionless
and (b) cohesive soil
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FIGURE 4.12: Superposition of initial and induced stresses in ideal
soil (original gravity stresses assumed spherical) (after Bolton 1979)

In order to generate sufficient friction to make such shear stresses viable, it is
necessary to provide a cohesion c to avoid yield for the layer and this provides the
sufficient strength and depth of the ‘cemented’ layer SC. Figure 4.12 shows an ideal
soil in which the initial stress distribution has been assumed to be spherical and to
increase linearly with depth. Superposition between initial and induced stresses can
obtain the total principal stresses as follows

σ1 =
q
π
(α− sin α) + γz

σ3 =
q
π
(α− sin α) + γz

(4.23)

Then the greatest mobilised friction can be derived from the total principal stresses
mobilised at any point, and that is

sin φe =
(σ1 − σ3)/2
(σ1 + σ3)/2

=

q
π

sin α

γz +
q
π

α
(4.24)

It is necessary to find the largest mobilised friction in order to check that the yield
condition has not been yielded. Thus the mobilised friction can be achieved by using
calculus such as d(sin φm)/dα = 0. In that α can take any value between zero and π,
and by differentiation using z = SC

d(sin φe)

dα
=

(
γSc +

q
π

α
) ( q

π
cos α

)
−
( q

π
sin α

) q
π( q

π
cos α

)2 (4.25)
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When this equation is equal to zero, then

α = tan α− πγSc

q
(4.26)

Substitute this equation into the denominator of equation 4.24, and using z = Sc,
then the equation becomes

sin φe =

q
π

sin α

γSc +
q
π

tan α− γSc

= cos α (4.27)
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Thus the critical angle of α can be obtained as

α =
π

2
− φe (4.28)

Equation 4.26 can then be written as

π

2
− φe = cot φe −

πγSc

q
(4.29)

Substituting equation 4.21 into equation 4.29, then equation can be rewritten as

q =
πγSc

tan−1
(

tan φ +
c

γSc

)
+ cot

[
tan−1

(
tan φ +

c
γSc

)]
− π

2

(4.30)

Figure 4.13(a) shows the greater friction angle φ brings the increasing of the al-
lowable surface load. This figure also indicates that the friction of cohesionless soil at
the surface cannot provide shear strength to avoid yield. However, if add cohesion
strength in the soil, the surface load can be supported by sufficient shear strength to
avoid yield. Figure 4.13(b) also shows the greater cohesion c brings the increasing of
the allowable surface load.

In order to automatically determine the sufficient lateral earth pressure coeffi-
cient K(z) at depths to avoid yield, it is necessary to derive a series of equations to
check yield for combined stress fields.

Yield Check for Combined Stress Fields

In order to automatically constraint stress field, substituting equation 4.14 into 4.18,
expression of combined stress fields can be re-written as

σz = ∆σz + γz

σx = ∆σx + K(z) γz

τxz = ∆τxz

(4.31)

To simplify an expression of K(z), two parameters are defined as
D1 = ∆σx + ∆σz

D2 = ∆σx − ∆σz

(4.32)
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Substitute equation 4.14 and 4.32 into 4.15, then the required lateral earth pres-
sure coefficient (Appendix D) can be derived as

K(z) =
−χ±

√
χ2 − 4ψκ

2ψ
(4.33)

where

ψ = γ2z2(sin2 φ− 1)

χ = 2γ2z2(sin2 φ + 1) + 2γz(D1 sin2 φ− D2)

κ = γ2z2(sin2 φ− 1) + 2γz(D1 sin2 φ + D2) + D1 sin2 φ− D2
2 − 4∆τ2

xz

(4.34)

The equation gives two solutions, the higher of which gives an active lateral
pressure coefficient, the lower of which gives a passive lateral pressure coefficient.
Figure 4.14 shows the required active lateral earth pressure coefficients computed by
applied load and soil frictional strength.

Cemented Layer

When equation 4.25 has no solution, it means that no suitable value of K can avoid
yield. Thus, it is necessary to provide a cohesion c to avoid yield for the layer and
this provides the criterion for the strength and depth of the cemented layer SC. The
base of the cemented layer can be found as

χ2 − 4ψκ = 0 (4.35)

Substitute equation 4.34 and 4.35 into 4.33, then the critical K(SC) can be derived
as follows

K(SC) = tan2 φ

(
1 +

D1

γSC

)
+ sec2 φ

(
1− D2

γSC

)
(4.36)

Substituting equation 4.36 into 4.31 and then into equation 4.21 gives the required
cohesion cC as

cC = (tan φ′e − tan φ) · γSC (4.37)

where

tan φ′e = tan

sin−1


√

1
4
[D2 + γSC(K(SC)− 1))]2 + ∆τ2

xz

1
2
[D1 + γSC(K(SC) + 1)]


 (4.38)

Figure 4.14 shows the required depth of the cemented layer SC.
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4.3.6 Determination of Lower Bound Stress Fields

Pragmatically it is necessary to divide the soil body into horizontal layers of fi-
nite thickness and determine a sufficient value of Kmin or Kmax for each layer in
the active or passive zones that maintains a lower bound. As illustrated in Fig-
ure 4.15(c), 4.16(c) and 4.17(c), it can be seen that for Kmin the critical (highest) value
will either be where the arch intersects the layer (or on the load centreline if there
is no intersection) or it will be at x = ±∞. For Kmax the critical (lowest) value is at
an intermediate minimum point. Due to the complexity of the Moroto equations it
is necessary to identify this point using a standard rapid 1D min/max search algo-
rithm or at the arch/layer intersection. Figure 4.18 and 4.19 show the contours of
mobilised friction with different n.



4.3. Soil Stress Fields 71

(b)

(a)

(c)

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=1,min

Kn=1,max

c/γB = 0.5

Kn=1,min

Kn=1,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=1,min

Kn=1,max

c/γB = 0.5

Kn=1,min

Kn=1,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=1,min

Kn=1,max

c/γB = 0.5

Kn=1,min

Kn=1,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

z/B = 0.30

z/B = 0.44

z/B = 0.70

FIGURE 4.15: Lateral variation of Kmin and Kmax for n = 1.0 and q/γB
= 10 at depths: (a) z/B= 0.30; (b) z/B= 0.44; (c) z/B= 0.70



72 Chapter 4. Lower Bound Stress Fields Method

(b)

(a)

(c)

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=0.5,min

Kn=0.5,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

z/B = 0.26c/γB = 0.5

Kn=0.5,min

Kn=0.5,max

c/γB = 0

Kn=0.5,min

Kn=0.5,max

z/B = 0.30c/γB = 0.5

Kn=0.5,min

Kn=0.5,max

c/γB = 0

Kn=0.5,min

Kn=0.5,max

z/B = 0.70c/γB = 0.5

Kn=0.5,min

Kn=0.5,max

FIGURE 4.16: Lateral variation of Kmin and Kmax for n = 0.5 and q/γB
= 10 at depths: (a) z/B= 0.26; (b) z/B= 0.30; (c) z/B= 0.70



4.3. Soil Stress Fields 73

(b)

(a)

(c)

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=2,min

Kn=2,max

c/γB = 0.5

Kn=2,min

Kn=2,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=2,min

Kn=2,max

c/γB = 0.5

Kn=2,min

Kn=2,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

0L
at

er
al

 v
ar

ia
ti

o
n

 o
f 

K

15

20

B

-10

30

Layer

c/γB = 0

Kn=2,min

Kn=2,max

c/γB = 0.5

Kn=2,min

Kn=2,max

0-B-2B-3B-4B-5B-6B-7B-8B-9B-10B

z/B = 0.30

z/B = 0.59

z/B = 0.70

FIGURE 4.17: Lateral variation of Kmin and Kmax for n = 2.0 and q/γB
= 10 at depths: (a) z/B= 0.30; (b) z/B= 0.59; (c) z/B= 0.70



74 Chapter 4. Lower Bound Stress Fields Method

q

q

q

(a)

0

B

2B

4B
0-B-2B-3B B 2B 4B

0.6

0.5

0.4

0.8

0.1 0.1

0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.6 0.6

0.8

0.7 0.70.9 0.9

0.3

-4B 3B

3B

(b)

0

B

2B

4B
0-B-2B-3B B 2B 4B

0.6

0.5

0.4 0.3

0.5

0.5

0.4 0.4

0.3 0.3
0.2 0.2

0.6 0.6

0.8 0.80.9 0.9

-4B 3B

3B

0.1

0.2

(c)

0

B

2B

4B
0-B-2B-3B B 2B 4B

0.6

0.5

0.4 0.3

0.5
0.4 0.4

0.3 0.30.2 0.2

0.6
0.7 0.7

0.9 0.9

-4B 3B

3B

0.2 0.1

0.5

0.1

0.7 0.7

0.6

0.8 0.8

0.2

0.5

FIGURE 4.18: Contours of mobilised friction sin φm with q/γB = 10
and c/γB = 0: (a) n = 0.5; (b) n = 1.0; (c) n = 2.0



4.3. Soil Stress Fields 75

q

q

q

(a)

0

B

2B

4B
0-B-2B-3B B 2B 4B

0.6

0.50.4

0.2

0.5

0.8

0.1 0.1

0.5
0.4 0.4

0.3 0.3
0.2 0.2

0.6 0.6

0.8
0.9 0.9

0.4

0.1

-4B 3B

3B

(b)

0

B

2B

4B
0-B-2B-3B B 2B 4B

0.6

0.50.4 0.3

0.5

0.8

0.7

0.5
0.4 0.4

0.3 0.3
0.2 0.2

0.6 0.6

0.8
0.9 0.9

-4B 3B

3B

0.1
0.2

(c)

0

B

2B

4B
0-B-2B-3B B 2B 4B

0.6

0.50.4 0.3

0.5

0.7

0.5
0.4 0.4

0.3 0.30.2 0.2

0.6 0.6

0.80.9 0.9

-4B 3B

3B

0.1 0.2

0.8

0.7 0.7

0.70.7

0.7 0.7

FIGURE 4.19: Contours of mobilised friction sin φe with q/γB = 10
and c/γB = 0.2: (a) n = 0.5; (b) n = 1.0; (c) n = 2.0



76 Chapter 4. Lower Bound Stress Fields Method

4.3.7 Iterative Procedure

Combined stress field and its yield constraint were introduced in previous sections.
Utilizing combined stress field to rigid-block analysis and maximizing the load fac-
tor λ can obtain the collapse load factor λc which is a true lower bound solution. In
order to clearly explain the use of the proposed stress field, we need to make a flow
chart interpret the application of stress field to numerical limit analysis procedure.

In the iterative procedure, initially an anisotropic ratio n is selected in input data.
The choice of n value has a significant effect on the computed arch collapse load
magnitude, because the soil stress spreading capacity is evaluated by the single pa-
rameter n (Figure 4.20. However, it is difficult to know the real Young’s modulus at
limit state. Main flow chart of the programme is shown in Figure 4.21. The presented
flow chart specifies a function that will give the optimal lower bound load q for any
given value of n using the current method q = f (n). If desired a better solution can be
found more rigorously using numerical optimization and a search for the maximum
value of f (n). This can be done for example using the MATLAB function fminbnd

(e.g. nopt = fminbnd( f , nlow, nhigh), where nlow and nhigh might be selected as e.g. 0.1
and 10.0).
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FIGURE 4.20: Vertical stress distribution at depth B

After determination of n, apply active lateral earth pressure coefficient K0 (K0

assumed as one) and passive coefficient Kp into rigid-block analysis and utilizing
linear programming (LP) optimization to find a load q0. Input q0 into equation 4.25
then Ki=1(z) can be obtained. Use Ki=1(z) to calculate a new load qi=1, then compute
the difference between qi=1 and q0 (e.g. |∆qinitial - ∆qNew|< tol, where tol is the value
of tolerance). If the difference of them is larger than an effective value of tolerance,
then the computation programme will implement a loop to obtain a better lower
bound solution.
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4.4 Application to Case Studies

The use of lower bound stress fields method can be illustrated by considering liter-
ature bridges (e.g. Bolton, Salford and Bridgemill arch bridge). The main material
properties and geometry are shown in section 2.4 of literature. Bridge upper-bound
solutions obtained using the discontinuity layout optimization (DLO) limit analysis
technique (Smith and Gilbert 2007) are introduced in section 2.4 and 3.4. The results
obtained using the proposed lower-bound calculations can be compared with the
upper-bound solutions.

In order to ensure good converge of the potential discontinuities in DLO model,
the number of nodes used in DLO-normal was 5000. For the CPU times, it is nec-
essary to compare different methods for a single load case. Figure 4.22 indicates
that the lower-bound stress fields method (4.9 s) is faster than the current version of
LimitState:GEO (330 s) and fast runing DLO (25.8 s) CPU times.
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Soil backfill

FIGURE 4.22: CPU time comparison of DLO-normal, DLO-fast and
lower-bound stress fields

In order to investigate some of key parameters utilised in the analysis of masonry
arch bridge, a parametric study was carried out in the application of lower- and
upper-bound method to literature bridges. There are three parameters (e.g. cohesion
c, frictional angle φ and passive mobilisation factor) was varied in turn while others
were kept fixed. The default values of three parameters for each bridge are listed
in section 2.4 of literature. The results are shown in Figure 4.23∼ 4.25. The bridge
load-carrying capacity is seen to relatively sensitive to the soil strength, particularly
for ‘passive side’ mobilisation factor.
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In this parametric study, the gaps between lower- and upper-bound solutions
are approximately 4% ∼ 23%. This probably is the influence of thinner layer as-
sumption. In section 4.3.5, although an example of footing was designed to show
the error from layer less than 8%, the insensible thinner layer could produce a wide
gap between lower- and upper-bound solution.

4.5 Discussion

The results presented in the masonry and soil model studies appear to indicate that
all models satisfy the lower bound theorem, extended to model local failure mecha-
nisms, provides stress fields to lower bound analysis and other analysis procedures
for a broad range of problem types.

The masonry arch bridge study illustrates the potential for lower bound limit
analysis method, to be applied to challenging soil-structure interaction problems.
In this work, lower bound stress fields are simplified as superimposed stresses in-
volving the specified ‘Boussinesq’ distribution and the stresses due to the loads with
those produced by the weight of the supporting material. However, for a good lower
bound solution, a complete stress field should be found, to be directly computed by
the differential equation of equilibrium and to be supplemented by any effective
boundary conditions.

In addition, soil-arch interface is assumed as full rough friction in this chapter,
which means the interface frictional strength is same with backfill. In general, fric-
tion of the extrados of arch bridges presents δ equal to 0.33 φ (soil frictional angle).
Thus the soil-arch interface should check yield constraint of τ < σ tan δ + c′, where
τ and σ is the shear and normal stress at the interface respectively; c′ is the cohe-
sion at the interface. To address it, next step would be develop the computational
programme to consider a yield constraint for soil-arch interface.
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4.6 Concluding Remarks

In summary:

• It has been demonstrated that lower-bound stress fields can be used in conjunc-
tion with rigid block limit analysis to provide rapid lower bound estimates of
the load carrying capacity of a masonry arch bridge. The lower bound results
obtained for a case study bridge model were found to be close to correspond-
ing upper bound solutions obtained using the discontinuity layout optimiza-
tion (DLO) limit analysis procedure. It was also observed that global and local
failure could be modeled using lower bound stress fields (e.g. signaling cases
where failure of the traffic surface would in practice occur before failure of the
bridge, or alternatively signaling that unrealistically low soil strength proper-
ties were used in the model).

• Currently LimitState:RING uses a simplified indirect model of soil-arch inter-
action, considering dispersal of the applied load, self-weight and passive re-
straint. The current version of the software assumes that the effects of an ap-
plied load can be approximated using stress increments described by vertical
Boussinesq stresses, with the horizontal and shear stresses neglected. How-
ever, the horizontal and shear stresses (e.g. along the extrados of an arch bar-
rel) can be beneficial or detrimental depending on the scenario. According to
lower-bound plastic theory, vertical, horizontal and shear stresses should all
be considered. Incorporating the proposed stress fields into LimitState:RING,
would therefore allow the software to furnish true lower bound solutions at
minimal computational cost.





85

Chapter 5

Rational Limit Equilibrium
Method

Preface

Another strategy of masonry arch bridge analysis in this thesis is the limit equilib-
rium method. As introduced in Chapter 4, the lower bound stress fields were pro-
posed to be used in conjunction with rigid block limit analysis to provide rapid lower
bound estimates of the load-carrying capacity of a masonry arch bridge. However,
when very heavy loads are applied on a masonry arch bridge, then lower bound lo-
cal failure in the soil-fill would in practice occur before failure of the bridge. Thus the
soil stress fields are often excessively sensitive, and underestimate the bridge load-
carrying capacity. In order to concentrate on the masonry arch bearing capacity, the
soil yield constraints are relaxed. The limit equilibrium method is potentially better
in this regard as it models stresses in the soil approximately more realistically. Soil
earth pressures considering the effects of soil arching and vertical stress distribution
due to anisotropic load spreading are used to model the stresses in the soil-fill.
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5.1 Introduction

The limit equilibrium method has traditionally been used to obtain approximate so-
lutions for the load-carrying capacity of masonry arch bridges. The method of lower
bound stress fields has been proposed to obtain true lower bound solutions and the
method of discontinuity layout optimization (DLO) has been also introduced to ob-
tain true upper bound solutions. In both of the two methods, soil-fill models in the
global system of masonry arch bridges are very sensitive. If low strength of soil
is used, failure of the soil-fill often occurs before failure of the arch bridge. In a
soil-filled masonry arch bridge, the most important component is the arch ring. Its
surrounding soil-fill provides a contribution to the load-carrying capacity of the arch
bridge.

LimitState:RING is a commonly used software to estimate the load-carrying ca-
pacity of masonry arch bridges. In the current version of LimitState:RING, the soil-
fill is assumed to provide self-weight of soil, to disperse applied loading, and to pro-
vide restraint to parts of an arch barrel moving into the soil-fill. For dispersion of live
loads, the ‘Boussinesq’ distribution model is used but the distribution is restricted by
a dispersed angle to prevent excessive distribution. It is a highly simplified manner.
For passive restraint, the ‘Rankine’ lateral earth pressure theory is used to estimate
the amount of horizontal soil stresses. However, this theory is originally developed
for retaining walls with a smooth back. In fact the passive earth pressures of ma-
sonry arch bridges also need to consider the effect of the roughness of the extrados
of the arch.

In this chapter, anisotropic stress formulae and soil earth pressures considering
arching effect will be introduced, then the model is applied to soil-filled masonry
arch bridges, with results compared with the upper-bound solutions obtained using
DLO limit analysis technique procedure.

5.2 Anisotropic Stresses Due to Surface Load

The ‘Boussinesq’ distribution for isotropic material has been often used for an esti-
mation of stresses in loaded soil. However, natural soils often exhibit anisotropic be-
haviour (Barden 1962, 1963). Moroto (1973, 1990) derived stress solutions in a cross
anisotropic soil media under plane strain conditions. These solutions represent dif-
ferent surcharges, such as strip, triangular loads. In this chapter, strip surcharge is
used to simulate contact force from a wheel of a vehicle.

For the sake of simplicity, the horizontal and shear stress distributions due to sur-
face loads are neglected in the model of masonry arch bridges. The model generates
a suitable ‘bell-shaped’ distribution of a single load, which the experimental tests
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have indicated better approximates reality than the excessive ‘Boussinesq’ distribu-
tion. To address it, vertical anisotropic ‘Boussinesq’ distribution will be introduced
in this chapter.

Figure 5.1 shows a strip surcharge, and a vertical stress ∆σz from equation 4.8
can be re-written as

∆σz =
1
π

η1η2

η2 − η1
·
{

1
η1

[
tan−1 b− x

η1 z
+ tan−1 b + x

η1 z

]

− 1
η2

[
tan−1 b− x

η2 z
+ tan−1 b + x

η2 z

]} (5.1)

where η1 =
√

n and η2 = 1. The degree of anisotropy n is equal to Ex/Ez, where
Ex is the horizontal Young’s modulus and Ez is the vertical Young’s modulus.
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FIGURE 5.1: Cross section through long flexible strip on half-infinite
soil carrying surcharges: (a) diagram of a wheel load; (b) diagram of

triangular surcharges

To visualize the increment of stress distribution, the vertical stress increment is
demonstrated in Figure 4.20; contours of vertical stress ∆σz under a strip load q are
demonstrated in Figure 5.2(a)∼ (c). In these figures, a smaller n brings a greater
stress concentration and a greater n brings a greater stress spreading.
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5.3 Soil Earth Pressures of Masonry Arch Bridge

5.3.1 Assumptions

A medium-scale test of a typical bridge has been designed by Pytlos to investi-
gate the soil-arch interaction and record soil kinematics of backfilled masonry arch
bridges. Figure 5.3 shows the soil displacement of partial image velocity (PIV) at a
peak load for the test bridge. The vectors indicated general movement of soil be-
neath the applied load above the quarter-span, but also show clearly the volume of
soil involved in resisting the outward deflection of the arch barrel on the passive side
of the arch, remote from the load. In the passive zone, the soil displacement vectors
are oriented on average at an angle to the horizontal.

FIGURE 5.3: PIV soil kinematics for a bridge test (after Pytlos 2015)

According to the PIV results, a series of soil-arch interaction models can be as-
sumed. In a problem of a single span masonry arch bridge, a vertical stress distribu-
tion from a single load is employed in the limit equilibrium solution which satisfies
the equilibrium condition ( Figure 5.4). When the arch ring moves out the soil-fill
and into the soil-fill, finite planar elements are considered as shown in Figure 5.5.
For the sake of simplicity, the soil-fill between the extrados and crown of the arch
ring are divided into two zones: active and passive zones. The surface layer above
the crown is assumed to be surcharges due to self-weight of soil.

q

Base Base

Masonry arch

B

Δσz Surface layer

Main soil-fill Main soil-fill

FIGURE 5.4: Vertical stress distribution for live load
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FIGURE 5.5: Finite planar elements for soil-fill

For active zone, a problem of the soil model is similar with a trapdoor test as
shown in Figure 5.6(a). Soil arching theory through the trapdoor test has been pro-
posed by Terzaghi (1936, 1943). Arching, as the word suggests, is a stress redistribu-
tion process where stress is transferred around a region of the soil mass. In order to
investigate the state of stress in the soil considering arching, two parallel and vertical
walls are assumed. Figure 5.6(b) shows the weight of a differential planar element in
the soil is supported by the wall frictional resistances (Fang & Ishibashi 1986, 1994).
These frictional resistances cause changes in the direction of the principal stresses
acting on the differential element. The concave arch represented by the dotted lines
as shown in Figure 5.6(b).

An experimental study can be used to illustrate the soil arching effect. When a
retaining wall moves away from the retained soil, the soil near the wall will drop to
fill the gap (Fang et al. 1994, 2002). A concave profile of soil arch between the vertical
wall and the shear surface is then mobilized as illustrated in Figure 5.6(b). From the
illustration test, it can be seen that failure mechanism of soil wedge behind the wall
is different from the assumption of Coulomb theory using a rigid failure wedge. The
calculation of the active earth pressures will be illustrated in the next section.
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τahv

Trajectory of minor

principal stress

σ1

σ1σ1

(a) (b)

FIGURE 5.6: Soil arching effect: (a) experimental results; (b) trajectory
of minor principal stresses (after Paik K. H. and Salgado R. 2003)



5.3. Soil Earth Pressures of Masonry Arch Bridge 91

5.3.2 Active Earth Pressures Against Rigid Wall

In order to estimate active earth pressures, it is important to determine passive earth
pressure coefficients. The non-vertical rigid retaining wall is also used to show com-
putations for earth pressures. The retaining wall is considered to retain a cohesion-
less soil (Figure 5.7(a)). The soil-structure interaction is inclined at an angle ε from
vertical. H is the height of the retaining wall and the surcharge loading qs on the
ground is considered. AC is the finite flat element of thickness dz at a depth z from
the ground surface. σaw and τaw are the normal and shear stresses subjected on the
soil-structure interface.

According to soil arching principle, the direction of minor principal stress σ3 in
the soil sliding body in limit state is no longer horizontal, but deflection occurs as
shown in Figure 5.7(b). δ is the friction angle at the soil-structure interface and φ is
soil friction angle. The inclination β of the rupture surface can be obtained as (Lambe
and Whitman 1979)

β = tan−1
{

tan φ ·
[

1 +
√

1 + cot φ cot (φ + δ)

]}
(5.2)
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FIGURE 5.7: Concave arch analysis: (a) soil model in active case; (b)
stresses on a finite planar element

Determination of θa

In Figure 5.7(b), the minor principal stress σ3, on the finite planar element behind the
wall acts along the concave arch shown in Figure 5.7(a), whereas the major principal
stress σ1 are perpendicular to the concave arch. The shape of the concave arch has
been observed or inferred to be elliptic, catenary, or parabolic (Handy 1985). In this
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FIGURE 5.8: Mohr-circle for stresses at active retaining wall : (a)
stresses at wall; (b) Mohr-circle of stresses at a point

study it is assumed that the trajectory of minor principal stresses takes the form of
an arc of a circle (Janssen 1895). The width Dz of the finite planar element at a depth
z can be expressed as

Dz = R cos θa (5.3)

where R is the radius of the minor principal stress trajectory and θa is the angle
of the minor principal plane with respect to the horizontal line.

Figure 5.8 shows the Mohr-circle representations of stress due to soil arching
close to the wall. The normal stress σaw on the wall is given by

σaw = σ1 cos2 (θa − ε) + σ3 sin2 (θa − ε) (5.4)

Similarly, the normal stress σah at point D of the concave arch, which was origi-
nally located at point B, is given by

σah = σ1 cos2 ψ + σ3 sin2 ψ (5.5)

The vertical stress acting on the soil element σv is given by

σv = σ1 sin2 ψ + σ3 cos2 ψ (5.6)

The rotation angle θ of the principal stresses for the wall with wall frictional
angle of δ can be obtained using the Mohr-circle, as shown in Figure 5.8(b). The
shear stress τw can be defined as

τw = σaw tan δ = (σaw − σ3) tan (θa − ε) (5.7)
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Substitution of equation 5.4 into equation 5.7 yields the second-order equation

tan (θa − ε) =
N + tan2 (θa − ε)

N − 1
tan δ (5.8)

where N = tan2(45◦ + φ/2). N is the ratio of major to minor principal stresses.

Solving this equation for θa gives

θa = tan−1

[
(N − 1) +

√
(N − 1)2 − 4N tan2 δ

2 tan δ

]
+ ε (5.9)

Determination of Kan

The differential vertical force dV on the shaded element at point B in Figure 5.7(b)
can be expressed as

dV = σv dA = σ1

(
sin2 ψ +

1
N

cos2 ψ

)
(R · dψ · sin ψ) (5.10)

where dA is the width of the shaded element at point B. The average vertical
stress σv across the differential planar element, as shown in Figure 5.7(b), can be
obtained by dividing the total vertical force V acting on the soil element by the length
of the element Dz = R cos θa

σv =
V
Dz

=
1

Dz

∫ π
2

θ
dV =

R
Dz

∫ π
2

θ
σ1

(
sin2 ψ +

1
N

cos2 ψ

)
sin ψ

cos θa
· dψ (5.11)

Integration of this equation yields

σv = σ1

(
1− N − 1

3N
cos2 θa

)
(5.12)

Dividing equation 5.4 by 5.12 gives a ratio Kan of the passive normal stress at the
wall to the average vertical stress over the finite planar element

Kan =
σaw

σv
=

3[Ncos2 (θa − ε) + sin2 (θa − ε)]

3N − (N − 1) cos2 θa
(5.13)

Force equilibrium of z-direction

Taking the sliding wedge as an isolated unit, as shown in Figure 5.8, an element of
thickness dz is taken from the wedge at a depth z below the ground surface.
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FIGURE 5.9: Force equilibrium analysis in active zone: (a) diagram of
an isolated element unit; (b) force analysis

The forces on this element involve the vertical pressure σv on the top of the ele-
ment, the vertical reaction σv + dσv on the bottom of the element, the normal stress
σaw on the retaining wall, the shear stress τw on the back of the retaining wall, the
normal stress σn of the soil at rest, the shear stress τn on the retained soil, the weight
dw of the element expressed as

dw =
γ

2
(Bz + Bz − dBz) dz = γ Bz dz (5.14)

omitting the second-order differential terms. The width of the soil element Bz at
a depth of z can be expressed as

Bz =
H − z
cos ε

· cos (β− ε)

sin β
= (H − z) · 1 + tan ε tan β

tan β
(5.15)

The increase of the element width dBz at a depth of z + dz can be expressed as

dBz = dz (tan ε + cot β) (5.16)

The force equilibrium in the z-direction can be defined as

σv Bz + dw− (σv + dσv) (Bz − dBz)− σaw
dz

cos ε
sin ε

− τw
dz

cos ε
cos ε− σn

dz
sin β

cos β− τn
dz

sin β
sin β = 0

(5.17)

Substituting equations 5.14 ∼ 5.16 into equation 5.17, one may get the simplifi-
cation as
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dσv

dz
= γ +

σv

H − z
− σaw tan ε tan β + σn + (τw + τn) tan ε

(H − z) (1− tan β tan ε)
(5.18)

Force equilibrium of x-direction

The force equilibrium in the x-direction can be defined as

σaw
dz

cos ε
cos ε− τw

dz
cos ε

sin ε− σn
dz

sin β
sin β + τn

dz
sin β

cos β = 0 (5.19)

and can be written as

σaw − τw tan ε = σn − τn cot ε (5.20)

For the shear stress acting on the soil element at the point A, τw is given by

τw = σaw tan δ (5.21)

For the shear stress acting on the soil element at the point C, τn is given by

τn = σn tan φ (5.22)

Equations 5.21 and 5.22 can be substituted into equation 5.20 to derive an expres-
sion for σn in terms of σaw. Then, substituting the expression of σn, and equation 5.28
into equation 5.18, it can be simplified to

dσv

dz
= γ +

σv

H − z
· Ca (5.23)

where

Ca =

{
tan ε + cot β− Kan

[
tan ε + tan δ +

1− tan δ tan ε

1− tan φ cot β
(cot β + tan φ)

]}
tan β

cot β + tan ε

Equation 5.22 is a first-order differential equation for the vertical unit earth pres-
sure. This equation may be solved based on the boundary condition. In the absence
of surcharge pressure at the ground surface, the boundary condition will be σv = 0
at z = 0. But in the presence of surcharge pressure say qs, the boundary condition
will be σv = qs at z = 0.

If assume that there is a surcharge pressure qs at the ground surface, the solution
of the equation 5.23 is expressed as

σv =

(
qs +

γH
Ca + 1

)(
1− z

H

)−Ca
− γH

Ca + 1

(
1− z

H

)
(5.24)
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The active normal stress at any depth acting on the wall can be calculated by
multiplying equation 5.23 by Kan which is given by equation 5.12

σaw = Kan

[(
qs +

γH
Ca + 1

)(
1− z

H

)−Ca
− γH

Ca + 1

(
1− z

H

)]
(5.25)

Parametric study

In order to visualize the sensitivity of soil-wall interface friction and inclined angle,
a parametric study (see Figure 5.10) was conducted to investigate the influence of
interface friction and soil strength. Figure 5.10(a) shows that with a smooth-faced
vertical retaining wall the lateral stress distribution is same to the ‘Rankine’ active
lateral earth pressure. In the case of a rough-faced vertical retaining wall, higher
interface friction brings smaller active earth pressures. The resultants of active earth
pressure against the inclined retaining wall are larger than the resultants against the
vertical wall. The relationship between vertical and lateral stress is non-linearly.
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5.3.3 Passive Earth Pressures Against Rigid Wall

A series of retaining wall tests have been designed by Niedostatkiewicz et al. (2011)
to investigate the earth pressures. The experimental results indicated the earth pres-
sures against the rigid wall is due to the thrust exerted by a series of soil wedges
between the wall and the rupture surface (Figure 5.11(a)). The lower part of the sur-
face could be concave, convex or plane, but the entire surface tends to be a plane.
For the sake of simplicity, in this chapter it defines this surface as a plane. The re-
taining wall is rigid with an inclination angle ε, and the surcharge loading qs on the
ground level is considered. The rupture surface passes through the heel of the wall
and it is a plane with an inclination of α. In order to calculate the earth pressures,
the soil-structure friction δ and internal soil friction angle φ need to be determined.
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δ ε
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FIGURE 5.11: Soil wedge analysis: (a) soil model in passive case; (b)
stresses on a finite planar element

Force equilibrium

Taking a soil wedge ABCD as an isolated unit, it is part of the thrust wedge in Fig-
ure 5.11(a) at depth z and the upper surface BD is parallel to the lower surface AC.
The soil wedge ABCD is subjected to the stresses as shown in Figure 5.11(b), where
the resultant passive earth pressure is dP, the top surface stress is qs, the lower sur-
face stress is f, the upper surface stress is f− df and the self-weight of the soil wedge
dG. The geometric parameters of the soil wedge ABCD are expressed as


AB =

dz
cos ε

and DC =
dz

cos ε
· cos (α− ε) · 1

sin α

AC =
z

sin α
and BD = AC− dz sin (α− ε)

cos ε
− dz cos (α− ε)

cos ε tan θ

(5.26)
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omitting the second-order differential terms. The self-weight of the soil wedge
dG can be obtained as

dG =
1
2

γ (AC + BD)
dz cos (α− ε)

cos ε
=

dz cos (α− ε)

sin α cos ε
· γz (5.27)

The passive earth pressure dP is given by

dP = σp · dz (5.28)

where σp is the passive earth pressure.

The force equilibrium in the x-direction can be defined as

dP cos (ε− δ) + (f− df) BD sin (α + φ) = f AC sin (α + φ) (5.29)

and can be written as

(f− df) BD = f AC− dP · cos (ε− δ)

sin (α + φ)
(5.30)

The force equilibrium in the z-direction can be defined as

dP sin (ε− δ) + f AC cos (α + φ) = dG + (f− df) BD cos (α + φ) + qs DC (5.31)

Substituting equations 5.27 and 5.30 into equation 5.31, one may get the simpli-
fication as

σp =
cos (α− ε)/(sin α cos ε)

sin (ε− δ) + cos (ε− δ) cot (α + φ)
(γz + qs) = g(α) (γz + qs) (5.32)

omitting the second-order differential terms. Thus the expression of the initial
passive earth pressure coefficient is given by

g(α) =
cos (α− ε)/(sin α cos ε)

sin (ε− δ) + cos (ε− δ) cot (α + φ)
(5.33)

Determine inclination angle of rupture surface

In order to determine the inclination angle α, it can be achieved by using calculus
such as dg(α)/dα = 0 and d2g(α)/dα2 > 0 to determine the mathematical minimum
for g(α) as α is allowed to vary.
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According to trigonometry theorems, the expressions of cos (α− ε) and sin α can
be derived as



cos (α− ε) = cos [(α + φ)− (φ + ε)]

= cos (α + φ) cos (φ + ε) + sin (α + φ) sin (φ + ε)

sin α = sin [(α + φ)− φ] = sin (α + φ) cos φ− cos (α + φ) sin φ

(5.34)

Substitute equation 5.34 into equation 5.33, then one may get the simplification
as

g(α) =
tan (α + φ)

[tan (α + φ) sin (ε− δ) + cos (ε− δ)] cos ε
·

cos (φ + ε) + tan (α + φ) sin (φ + ε)

tan (α + φ) cos φ− sin φ

(5.35)

The variable α of equation 5.35 can be replaced by tan (φ + ε), then the calculus
can be expressed as

dg(tan (φ + ε))

d(tan (φ + ε))
= 0 (5.36)

This first-order differential equation can be derived as

Cp tan2 (φ + ε) + Dp tan (φ + ε) + Ep = 0 (5.37)

where 

Cp = cos ε tan (ε− δ)− sin (φ + ε) cos φ

Dp = cos ε− cos (2φ + ε)

Ep = sin φ cos (φ + ε)

(5.38)

The solutions of equation 5.37 can be obtained as

tan (φ + ε) = ωp =
−Dp ±

√
D2

p − 2 Cp Ep

2 Cp
(5.39)

The lower of the two solutions gives a valid inclination angle α, and the value of
α is given by
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α = tan−1 ωp − φ (5.40)

Substituting equation 5.39 into equation 5.35, one may get the simplification as
following

Kpφ = g(α) =
ωp

[ωp sin (ε− δ) + cos (ε− δ)] cos ε

cos (φ + ε) + ωp sin (φ + ε)

ωp cos φ− sin φ
(5.41)

Substitute equation 5.41 into equation 5.32, then the passive normal earth pres-
sure can be obtained as

σpw = Kpφ (γz + qs) cos δ (5.42)
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FIGURE 5.12: Parametric study for passive retaining wall
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Parametric study

To visualize the sensitivity of soil-structure interface friction and inclined angle, it
is necessary to conduct a parametric study (Figure 5.12). In Figure 5.12(a), it can be
seen that in case of smooth vertical retaining wall, passive earth pressure coefficients
Kpφ are the same to the ‘Rankine’ passive lateral earth pressure coefficients. When
‘passive side’ mobilisation factor is equal to zero, it means the soil mass becomes the
ideal material, and the value of Kpφ equals one. In the case of a rough-faced vertical
retaining wall, higher interface friction brings larger passive earth pressures. The
resultants of passive earth pressure against the inclined retaining wall are smaller
than the resultants against the vertical wall.

5.3.4 Simple Example of Rigid Embedded Cantilever Retaining Wall

A rigid embedded cantilever retaining wall (Figure 5.13) that retains soil of height H
and is embedded a depth d into the soil is considered to illustrate the application of
the theoretical soil models. Such an analysis requires that moments induced by as-
sumed active and passive earth pressure distributions either side of the wall, above
an assumed point of rotation, are in static equilibrium; that is

λ γ Ka (d + h)3

6
=

γKpd3

6
(5.43)

where Ka and Kp are the active and passive earth pressure coefficients respec-
tively, γ is the soil unit weight, d is the depth to the point of rotation, and λ is a
load factor on the retained soil weight. In this problem, Kp is equal to Kpφ expressed
in equation 5.41. The value of Ka can be equivalent to the resultant active force Pah

divided by γH2/2. The active force Pah on the wall can be obtained by integrating
equation 5.25 with respect to z

Pa =
∫ H

0
σaw dz =

Kan

1− Ca

(
qs H +

γH2

2

)
(5.44)

In this problem, qs is equal to zero then Ka can be expressed as

Ka =
Kan

1− Ca
(5.45)

Comparisons with the DLO results are made by evaluating the value of φ re-
quired in the DLO analysis to replicate the theoretical value of λ. Table 5.1 and 5.2
show the results of comparison between the theoretical soil models and the numeri-
cal DLO models. It can be seen that the error of the smooth wall case is less than 2%
and the rough wall case is approximately 8%.
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FIGURE 5.13: DLO simulation of embedded cantilever wall (d =3 m,
h = 4 m) using 2000 nodes with φ = 45◦ and δ = 0.33 (wall thickness

increased to 0.1 m for visual clarity)

TABLE 5.1: Comparison of theory and DLO results for the embedded
cantilever retaining wall with δ = 0 (2000 nodes used in DLO)

φ: ◦ Ka Kp λtheory φ2000: ◦ φ2000/φ

30 0.33 3.00 0.71 29.5 0.98

35 0.27 3.69 1.07 34.5 0.99

40 0.22 4.60 1.66 39.6 0.99

45 0.17 5.83 2.67 44.4 0.99

TABLE 5.2: Comparison of theory and DLO results for the embedded
cantilever retaining wall with δ = 0.33 φ (2000 nodes used in DLO)

φ: ◦ Ka Kp λtheory φ2000: ◦ φ2000/φ

30 0.29 4.14 1.16 32.0 1.07

35 0.20 5.68 2.35 37.8 1.08

40 0.14 8.15 4.94 43.2 1.08

45 0.09 12.47 10.91 48.6 1.08
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5.3.5 Simple Example of Backfilled Masonry Arch Bridge

A masonry arch bridge that fills soil of internal friction angle φ is considered to
illustrate the application of the theoretical soil models. The main geometric param-
eters are shown in Figure 5.14(a). It was designed that a point load is subjected at
quarter-span of the bridge, the ‘passive side’ mobilisation factor is the third of φ.
Considering the passive restraints of the bridge, the passive zone model (remote to
the load) requires that the soil friction φ is mobilised as one-third of φ.

For active earth pressures, the calculation is simplified that each voussoir is an
isolated ‘retaining wall’ against these soil stresses σaw and τaw which are expressed
as


σaw = Kan

[(
qs +

γH
Ca + 1

)(
1− z

H

)−Ca
− γH

Ca + 1

(
1− z

H

)]

τaw = σaw · tan δ

(5.46)

Similarly, in passive zone the calculation is also simplified that each voussoir is
an isolated ‘retaining wall’ against passive earth pressures σpw and τpw which are
expressed as


σpw = Kpφ (γz + qs) cos δ

τpw = σpw · tan δ

(5.47)

These soil pressures are used in conjunction with rigid-block limit analysis to
provide rapid estimation of the load-carrying capacity of the masonry arch.

Comparisons with the DLO results for the adequacy factor λ of bridge load-
bearing capacity, are useful to validate the application of theoretical soil models in
the masonry arch bridge problem. A failure mechanism of DLO simulation is shown
in Figure 5.14(b). Table 5.3 shows the results of comparison between the theoretical
soil models and the numerical DLO models. From this table, it can be seen that the
error of the smooth soil-arch interaction case is less than 2% and the rough case is
approximately 4%.
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FIGURE 5.14: A simple example of masonry arch bridge: (a) theoreti-
cal models (all dimensions in mm); (b) DLO simulation with δ = 0.33

(2000 nodes used)

TABLE 5.3: Comparison of theory and DLO results for the masonry
arch bridge (2000 nodes used in DLO)

φ: ◦ δ = 0 δ = 0.33

λequ λDLO λequ/λDLO λequ λDLO λequ/λDLO

30 60.46 61.02 0.99 61.70 63.17 0.98

35 62.12 63.06 0.99 63.39 65.70 0.96

40 63.80 65.23 0.98 65.75 68.41 0.96

45 66.62 67.57 0.99 68.59 71.51 0.96

50 68.98 70.25 0.98 72.46 75.13 0.96

55 72.47 73.44 0.99 77.91 79.53 0.96

60 77.51 77.41 1.00 86.32 85.28 1.02



5.4. Application to Case Studies 105

5.4 Application to Case Studies

The use of the proposed limit equilibrium method can be illustrated by considering
literature bridges (e.g. Bolton, Salford, Bridgemill arch bridge). The main bridge
geometry and the relative material properties are shown in section 2.4. The upper-
bound solutions obtained using DLO limit analysis technique can be compared with
the proposed limit equilibrium solutions.

In the limit equilibrium soil models, the cohesive material with strength cohe-
sion c and friction φ can be equivalent to friction φe using equation 5.25. For the
anisotropic ‘Boussinesq’ vertical stress distribution, the most sensitive parameter, n,
was used to evaluate the soil stress spreading capacity. Because of no yield condi-
tions to constraint the anisotropic factor n, here an exponential function was created
to determine the value of n in the analysis of masonry arch bridges. Through the
trail error, the expression of n is given as

n = ζ ·
(

φe

φc

)
· exp

[(
φe

φc

)
− 1
]

(5.48)

where ζ is the soil-arch interface strength multiplier; φc is the internal friction
angle of 60◦ which is the soil strength commonly used in masonry arch bridges.

In the DLO simulations, a geometrical model common to the masonry arch bridge
was created. Appropriate material properties, same as the limit equilibrium, were
then applied to each geometrical region. All regions were then discretised using
nodes, with a relatively large target number of nodes (5000) being employed.
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For the CPU times, it is necessary to compare different methods for a single load
case. Figure 5.15 indicates that the limit equilibrium method (1.2 s) is faster than the
current version of LimitState:GEO (330 s) and fast running DLO (25.8 s) and lower-
bound stress fields (4.9 s) CPU times.

In order to investigate key three parameters (e.g. internal friction angle φ, ‘pas-
sive side’ mobilisation factor and soil-arch interface strength multiplier ζ) utilized
in the assessment of masonry arch bridge, a parametric study was carried out in
the application of limit equilibrium and upper-bound method to literature bridges.
The three parameters were varied in turn while others. The default values of three
parameters for each bridge are listed in section 2.4. The results are shown in Fig-
ure 5.16∼ 5.18. From these figures, it can be seen that the assessments of the bridge
load-carrying capacity using limit equilibrium (n was obtained from equation 5.48)
have a good agreement with the results of DLO limit analysis.

In this parametric study, the gaps between limit equilibrium and upper-bound
solutions in the global failure cases are less than 4%. However, the local failure is
not considered in the limit equilibrium so that in the cases of local failure (e.g. low-
strength fill) the gaps between the two methods are more than 23%.

5.5 Discussion

The results presented in the masonry arch bridge study appear to indicate that the
limit equilibrium method provides approximate solutions for the estimation of the
bridge load-carrying capacity. In this method, it makes sufficient assumptions re-
garding the stress distribution along the extrados of an arch. A series of equilibrium
equation of soil pressures, in terms of stress resultants, can be written for a given
problem. This simplified approach makes it possible to solve the bridge problems
by simple statics.

This study indicated that the stress spreading due to live loads has a significant
influence in the estimation of the bridge load-carrying capacity. The stress spreading
capacity is evaluated by a single parameter, anisotropic ratio n. Smaller n brings a
greater stress concentration; in contrast, greater n yields greater stress spreading.
In this work, the value of n was assumed as the multiplier of soil-arch interface
and dependent on a simple empirical exponential function. In this respect a natural
next step would be to develop a more systematic means of determining suitable
anisotropic factor for use in such models.
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5.6 Concluding Remarks

In summary:

• Limit equilibrium analysis provides a conceptually simple and effective means
of analyzing the load-carrying capacity of masonry arch bridges. The current
version of LimitState:RING allow explicit modelling masonry components to
be obtained rapidly, and with a set of input data of soil pressures in the mathe-
matical programming system. The soil arching effect is explicitly considered to
derive the earth pressure for both cohesionless and cohesive soil at the stress
state. In order to facilitate calculation of earth pressures using the proposed
equations, modified active and passive pressure coefficients are provided as
functions of the internal frictional angle of soil and the angle of soil-arch inter-
face friction.

• The modelling of soil components also provides stress spreading due to ap-
plied loads. The stress spreading capacity can use a single parameter, deforma-
tion modulus ratio n = Ex/Ez, to evaluate. An empirical exponential function
is used to determine suitable anisotropic ratio n, which provides reasonable
agreement with results of the discontinuity layout optimisation (DLO) limit
analysis procedure when four hinge failures are involved. Both of earth pres-
sures and live load spreading through the fill can be set up into the input data,
then utilize the mathematical optimization solvers to obtain results rapidly.
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Chapter 6

Discussion

6.1 Introduction

The proposed numerical strategies provide powerful methods for assessing the safety
of masonry arch bridges. These techniques have now been successfully applied to
the analysis of soil-filled masonry arch bridges, using the lower bound, limit equilib-
rium and upper bound methods. The complex nature of the masonry arch bridges
makes modelling them challenging. A number of issues relating to the application
of these numerical strategies will be discussed in this chapter.

6.2 Issues in Soil Earth Pressures

The challenge is to model soil-arch interaction in masonry arch bridge problems.
‘Rankine’ earth pressure is assumed in lower-bound stress fields method. Estimation
of earth pressure considering arching effect is applied in limit equilibrium method.
Both them are simplified in the soil model. In this chapter, DLO model can be used
to compare the two simplified soil models.

A masonry arch bridge is designed to show the soil stress distribution on the
extrados of the arch barrel. The geometry and main material properties are shown
in Figure 6.1 and Table 6.1 respectively. If the load positioned at quarter span of
the arch bridges, the critical failure mechanism can be obtained using DLO limit
analysis as shown in Figure 6.2. In a case of an arch bridge was acted by a line load
over a unit width of bridge. The load carrying capacity of upper bound is equal to
78.45 kN versus 77.87 kN of lower bound solution. The difference between them is
very small. It means that the assumption of Rankine earth pressure theory is useful
to model the soil-fill. Figure 6.3(a) shows the normal and shear stress distributions
on the extrados of an arch barrel. There are four hinges appearing when the arch
collapsed. From Figure 6.3(a), it is very clear to see the normal and shear stresses
of the lower bound which is good to match the DLO from ‘Crown’ to ‘Hinge 4’.
However, the stress distributions of the lower bound can not highly match the DLO
in the active side. The reason is that the active arch segment likes the downward
open door, rather than the active retaining wall.
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TABLE 6.1: Main material parameters of a masonry arch bridge
(based on Smith et al. 2006)

Masonry properties Values

Crushing strength (N/mm2) 25

Coefficient of friction 0.64

Unit weight (kN/m3) 23.7

Soil properties Values

Cohesion, c (kN/m2) 0

Internal angle of friction, φ (degrees) 55

Soil-arch interface strength multiplier 1.0

Unit weight (kN/m3) 19.1
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Load
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FIGURE 6.1: Geometrical model of a sample of masonry arch bridge
with fixed abutments (all dimensions in mm): (a) case of pointed load;

(b) case of uniform load

After modelling the simple point load case, it is essential to model the case of
an uniform load on the surface of an arch bridge. In the DLO model, the surface
height is also assumed on the extrados of the arch crown. Surface backfill weight is
acted on the crown surface. An uniform load is applied at the quarter span of the
arch and on the crown surface. In the lower bound model, the superimposed soil
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pressure is assumed. Soil dead load utilises the Rankine earth pressure theory; Live
load through soil-fill utilises the Boussinesq stress theory.

Figure 6.1(b) shows the failure mechanism of a masonry arch under an uni-
form load. The load carrying capacity of upper bound is equal to 108.6 kN versus
104.08 kN of lower bound solution. The difference between them is very small. It
means that the assumption of the superimposed model is useful to this case of the
very shallow masonry arch. Figure 7 shows the normal and shear stress distribu-
tions on the extrados of an arch barrel. There are four hinges appearing when the
arch collapsed. From Figure 6.3(b), it can be seen that the normal stresses of the
lower bound which is not very good to match the DLO. From ‘Hinge 1’ to ‘Crown’,
the stress distributions of DLO have two peaks around the loading centre; the lower
bound only has one peak under the loading centre.

Therefore, both ‘Rankine’ theory and soil model considering arching effect have
the issue of simulating soil-arch interaction.

λ Pc

Arch sways

λ Pc

Arch sways

(a)

(b)

FIGURE 6.2: Failure mechanisms of a sample of masonry arch bridge
with fixed abutments (all dimensions in mm): (a) case of pointed load;

(b) case of uniform load (P is a unit load)

6.3 Issues in Complex Masonry Arch Bridge Failure Mecha-
nisms

Four-hinged mechanism is typically failure mode in masonry arch bridges. How-
ever, some of other complex failure mechanisms (e.g. ‘three-hinged plus sliding’)
would occur in some situations. In chapter 3 the abutment sliding problem was dis-
cussed. DLO-fast method needs adding lines in regions to allow the slip-line may
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form. However, using ‘Rankine’ theory and soil model considering arching effect
may not solve the issue in complex masonry arch failure mechanisms because the
simple masonry arch bridge with free abutments is difficult to use these methods to
model accurately.
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FIGURE 6.3: Stress distributions on extrados of masonry arch bridge
with cohesionless backfill: (a) normal stresses; (b) shear stresses
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

The masonry arch bridge analysis methods developed in the thesis have been de-
signed to provide a rapid computational capability for use in industry. Limit analy-
sis and limit equilibrium methods have been used to furnish methods that are sim-
ple, effective and fast. The major research contributions can be summarized as fol-
lows:

• To estimate the load-carrying capacity of masonry arches, the upper bound
limit analysis technique of discontinuity layout optimization (DLO) has been
found to be a simple but efficient means of identifying the critical failure mech-
anism and associated collapse load. DLO is attractive as it can model both ma-
sonry and soil elements directly. The method is now used in industry due to
its power and simplicity. However, a problem is that accuracy is dependent
upon the number of nodes, and for some problems large numbers of nodes
are needed to give good solutions. In this case the associated computational
cost is high. This is a particular issue for bridge assessment problems since a
large number of load positions need to be considered. To address this a ‘DLO-
fast’ procedure has been proposed; this involves positioning nodes only along
the edges of any given body. The procedure has been shown to give results
of a given accuracy much more rapidly than when using the standard DLO
procedure.

• Although the DLO-fast procedure can reduce the computational cost, the as-
sociated computational cost remains much higher than for LimitState:RING,
which uses rigid-block analysis to estimate the load-carrying capacity of ma-
sonry arch bridges. Thus there is merit in enhancing LimitState:RING, which
is already widely used in industry. Currently LimitState:RING uses highly
simplified soil-arch interaction assumptions, considering dispersal of the ap-
plied load, self-weight and passive restraint of the backfill material surround-
ing the arch barrel. In addition, the current version of the software assumes
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that the load dispersal distribution can be approximated using vertical Boussi-
nesq stresses, with horizontal and shear stresses neglected. In accordance with
lower-bound theorem, vertical, horizontal and shear stresses should also be
considered. Incorporating the proposed stress fields into LimitState:RING,
would enable the software to furnish true (‘safe’) lower-bound solutions at
minimal computational cost.

• The lower-bound stress fields method proposed for use in LimitState:RING
requires a number of iterations to find the optimal stress field. According to
the lower-bound theorem, an admissible stress field must not be violated at
any point in the solid body. In order to find a better lower bound solution, an
optimal anisotropic factor needs to be obtained via iteration. Considering the
need for two iterative steps, an alternative is to devise a simple but efficient
limit equilibrium formulation. This has therefore been done. In the limit equi-
librium soil model developed arching effects are considered, which provide a
suitably realistic model of soil-arch interaction. A vertical anisotropic stress
distribution is used to model dispersal of the applied load. Benefits of the
method developed are that, if implemented, it would have a negligible effect
on the run time of LimitState:RING.

7.2 Recommendations of Future Work

Areas for further work are indicated below:

• It has been shown that the accuracy of the solutions obtained using the DLO-
fast procedure are lower when complex masonry arch bridge failure mech-
anisms are involved (e.g. abutment sliding mechanisms). Although in this
thesis steps have been taken to address this (e.g. adding lines in regions where
slip-lines may form), these may not always be effective. There is therefore the
potential to address the issue of complex failure mechanisms issue more rigor-
ously, with less, or even no, impact on the quality of the solutions.

• In this thesis, efforts have been made to develop the lower bound stress fields
method. However, as discussed earlier, the iterations needed to check for yield
and to find improved lower-bound solutions has scope for improvement. Al-
though the limit equilibrium method considers arching effects, passive lateral
earth pressures on the extrados of an arch bridge give rise to very high stresses
around an abutment. This is due to an imperfection in the applicable mathe-
matical equation, which could be improved.

• The efficacy of the rigid-block analysis method when applied to 2D problems
has been demonstrated in this thesis. However, to make the software more
powerful for use in industry, real-world 3D masonry arch bridges geometries
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should be able to be considered, particularly in the case of skew bridges. This
will be of interest to many engineers working in industry.
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Appendix A

Formulations in Rigid-Block Limit
Analysis

A.1 Joint Equilibrium Formulation

A joint equilibrium formulation is used in rigid-block limit analysis for estimating
the load-carrying capacity of masonry arch bridges. Because an arch barrel is built by
a series of very-stiff voussoirs, in the limit state a masonry structure can be assumed
as a rigid block assemblage. Therefore, a joint equilibrium formulation for the rigid-
block analysis, perfectly plastic body discretized using b blocks, c contacts and a
single load case can be stated as follows

max λ (A.1)

subject to equilibrium constraints:

B · q − λ · fL = fD (A.2)

and no-tension yield constraints (e.g. for each contact, i = 1, . . . c):
Mi 6 0.5 ti Ni

Mi > −0.5 ti Ni

(A.3)

and sliding yield constraints (e.g. for each contact, i = 1, . . . c):
Si 6 µ Ni

Si > −µ Ni

(A.4)

where λ is the load factor; B is a suitable (3b × 3c) equilibrium matrix; and q
is a vector of shear and normal forces and moment acting on contacts, i.e. qT =

{S1, N1, M1, S2, N2, M2, . . . , Mc}, where Si and Ni and Mi represent, respectively,
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the shear and the normal force and the moment acting on contact i (i = 1, . . . , c).
fT

D = { f x
D1, f y

D1, f ω
D1, . . . , f ω

Db} and fT
L = { f x

L1, f y
L1, f ω

L1, . . . , f ω
Lb}; and f x

Dj, f y
Dj, f ω

Dj and
f x
Lj, f y

Lj, f ω
Lj present, respectively, the horizontal and vertical and moment dead and

live loads applied locally at block j (j = 1, . . . , b). Thus, the linear programming (LP)
variables are Si and Ni and Mi (e.g. Ni > 0, Si and Mi are unrestricted variables),
and the live load factor λ. The objective is therefore to maximize λ while ensuring
that the yield condition is not violated along any contacts.
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FIGURE A.1: Block and contact forces: (a) the discretization of blocks;
(b) force vectors of a block and its contacts

Alternatively, the required equilibrium constraint can be written for a block j as
follows (Figure A.1)

Bj · qj − λ · fLj = fDj (A.5)

or in expanded form as

sA nA mA 0 0 0

0 0 0 sB nB mB





SA

NA

MA

SB

NB

MB


− λ


f x
Lj

f y
Lj

f ω
Lj

 =


f x
Dj

f y
Dj

f ω
Dj

 (A.6)

where sA, nA and mA are vectors of the shear and normal and rotational forces
at contact A, respectively; sB, nB and mB are vectors of the horizontal and vertical
forces and moments at contact B, respectively.
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A.2 Including Finite Masonry Material Strength

The yield constraints (equation A.3) given in Appendix A.1 are valid only, if the
material is infinitely strong in compression. If it is assumed that the masonry pos-
sesses finite masonry strength and that the thrust is transmitted through a rectangu-
lar crush block, then equation A.3 can be replaced with

Mi 6 Ni

(
0.5ti −

Ni

2σcrushb

)

Mi > −Ni

(
0.5ti −

Ni

2σcrushb

) (A.7)

where σcrush is the crushed compressive strength of the masonry material; b is the
width of the masonry arch ring.
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FIGURE A.2: Contact surface moment vs. normal force failure en-
velopes (LimitState 2019b)

However, the constraints in equation A.7 are non-linear (Figure A.2). Therefore
if a linear programming (LP) solver is still to be used to obtain a solution to the
global problem, then these constraints need to be approximated as a series of linear
constraints. In order to minimise the number of constraints in the problem (and to
maximise computational efficiency) an iterative solution algorithm which involves
only refining the representation of the failure envelope where required is used:
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(i) For each contact i, initially add three linear constraints (i.e. OA, OB, and AB in
Figure).

(ii) Obtain a solution to the global LP problem.

(iii) For each contact i, substitute ni from the last solution into the inequality con-
straints in equation. If a constraint is violated, calculate the violation factor ki.
i.e.

ki =
|Mi|

Ni

(
0.5ti −

Ni

2σcrushb

) (A.8)

(iv) For each contact with ki > 1.0 (i.e. violation), add an additional linear con-
straint (e.g. in the case of point X in Figure, introduce a new linear constraint
tangential to the true non-linear constraint at X′).

(v) Repeat from step ii until the maximum value of ki < 1 + tol, where tol is taken
as a suitably small value.

A.3 Limiting Horizontal Fill Stresses

The horizontal soil stresses applied to the extrados of a given voussoir are limited
in current LimitState:RING to those which would just cause sliding of the overlying
strip of soil. The relevant vertical and horizontal stresses, are shown in Figure A.3.
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FIGURE A.3: Stresses acting on extrados of a voussoir subject to back-
fill pressures

For case A, the force equilibrium along the AB and normal AB can be expressed
as 

σv dx cos θ + σh dz sin θ = σn,sw dl

σv dx sin θ − σh dz cos θ = τsw dl

(A.9)
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For case B, the force equilibrium along the AB and normal AB can be expressed
as 

σv dx cos θ + σh dz sin θ = σn,sw dl

σh dx sin θ − σv dz cos θ = τsw dl

(A.10)

Then the normal and shear stresses due to backfill self-weight are derived as
σn,sw = σv cos2 θ + σh sin2 θ

τsw = σv sin θ cos θ − σh sin θ cos θ

(A.11)

and 
σn,sw = σv cos2 θ + σh sin2 θ

τsw = σh sin θ cos θ − σv sin θ cos θ

(A.12)

Consider the soil-arch interface yield constraint of τsw ≤ σsw tan δ + cw, then


σv sin θ cos θ − σh sin θ cos θ ≤ (σv cos2 θ + σh sin2 θ) tan δ + cw

σh sin θ cos θ − σv sin θ cos θ ≤ (σv cos2 θ + σh sin2 θ) tan δ + cw

and then
σv (sin θ cos θ − cos2 θ tan δ)− cw ≤ σh (sin θ cos θ + sin2 θ tan δ)

σh (sin θ cos θ − sin2 θ tan δ) ≤ σv (sin θ cos θ + cos2 θ tan δ) + cw

(A.13)

Consider the limiting horizontal fill stresses σh,min and σh,max, then the equa-
tion (A.13) can be rewritten as

σh,min =
σv (sin θ cos θ − cos2 θ tan δ)− cw

(sin θ cos θ + sin2 θ tan δ)

σh,max =
σv (sin θ cos θ + cos2 θ tan δ) + cw

(sin θ cos θ − sin2 θ tan δ)

(A.14)
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Appendix B

Formulations in Discontinuity
Layout Optimization

B.1 Primal Problem

The contribution of each potential discontinuity i to the local compatibility constraint
equation can be written as follows

Bi di = ui (B.1)

where Bi, di and ui are the local compatibility matrix, discontinuity and nodal
displacement vectors, respectively. Now consider a cohesive-frictional material gov-
erned by the Mohr–Coulomb failure criteria. In this case, the associated flow rule can
be written for discontinuity i as



αi − βi tan φi −αi − βi tan φi 0.5liβi −0.5liβi

βi + αi tan φi −βi + αi tan φi −0.5liαi 0.5liαi

0 0 1 −1

−αi + βi tan φi αi + βi tan φi 0.5liβi −0.5liβi

−βi − αi tan φi βi − αi tan φi −0.5liαi 0.5liαi

0 0 −1 1




s+i

s−i

ω+
i

ω−i

 =



ux
Ai

uy
Ai

uω
Ai

ux
Bi

uy
Bi

uω
Bi


(B.2)

where αi and βi are the x-axis and y-axis direction cosines for discontinuity i, con-
necting nodes A and B. Figure B.1 shows that the shear and rotational and normal
displacement along a discontinuity i. The actual shear displacement at the disconti-
nuity is si = s+i − s−i ; and the actual rotational displacement at the discontinuity is
ωi = ω+

i −ω−i . The associated flow rule can be written for the discontinuity as

ni = (s+i + s−i ) tan φi + (ω+
i + ω−i ) uili (B.3)
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where φi is the frictional angle and ni is the normal displacement accompany-
ing the sliding. In the equation B.4, when rotations are focused within an adjacent
yielding region, ui is expressed as

ui = 0.5− 1
1 + eπ tan φi

(B.4)

Alternatively, if rotations can occur only at the boundary, ui is taken as 0.5 (Gilbert
et al. 2010).

or in expanded form as

Bi di =



αi −βi 0.5liβi

βi αi −0.5liαi

0 0 1

−αi βi 0.5liβi

−βi −αi −0.5liαi

0 0 −1




si

ni

ωi

 =



ux
Ai

uy
Ai

uω
Ai

ux
Bi

uy
Bi

uω
Bi


(B.5)

l i

θ i

(a) (b)

n i

s i

ω i
θ i

p iWi

O

O’

A

B

A

B

FIGURE B.1: Discontinuity relative displacements: (a) translational
and rotational displacements; (b) strip of material lying vertically

above a discontinuity

In order to present a more generally applicable limit analysis formulation, with
new linear programming (LP) variables and with compatibility and flow constraints
decoupled. Now using LP variables si, ni and ωi in di, to present the shear and
normal and rotational displacement at discontinuity i, respectively, the local com-
patibility constraint becomes

Then, the flow rule is enforced by introducing the following constraint
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Ni pi − di =


1 −1 0 0

tan φi tan φi uili uili

0 0 1 −1




p1
i

p2
i

p3
i

p4
i

−


si

ni

ωi

 = 0 (B.6)

where Ni is a local plastic flow matrix; pi is a vector containing plastic multipliers
plastic multiplier variables p1

i , p2
i , p3

i , p4
i , where p1

i , p2
i , p3

i , p4
i > 0.

In the LP problem, the objective is to minimize the work done by the external live
loads. In many problems, dead loads (including body forces) and energy dissipation
are present to the work balance equation. Thus, the work balance equation can be
written as follows

λ fT
L d = −fT

D d + gT p (B.7)

where λ is the load factor; fT
D = { f s

D1, f n
D1, f ω

D1, . . . , f ω
Dm} and fT

L = { f s
L1, f n

L1, f ω
L1,

. . . , f ω
Lm}; and f s

Di, f n
Di, f ω

Di and f s
Li, f n

Li, f ω
Li present, respectively, the shear and normal

and moment dead and live loads applied locally at discontinuity i (i = 1, . . . , m).

It is convenient to distinguish between loads applied at external boundaries and
those applied within a body itself. The contribution made by discontinuity i to the
fT

D d term in equation can be written as follows

fT
Di di =

[
−Wiβi −Wiαi −Wi p̄i

] 
si

ni

ωi

 (B.8)

where Wi is the total weight of the strip of material lying vertically above discon-
tinuity i; p̄i is the horizontal distance from the centroid of the strip of material to the
mid-point of the discontinuity i (Figure B.1).

For the specification of live loads, now taking u = 0, all live loads can be speci-
fied by imposing the following unit displacement constraint fT

L d = 1.

Therefore, a primal kinematic problem formulation for the plane strain analy-
sis, perfectly plastic cohesive-frictional body discretized using m discontinuities, n
nodes and a single load case can be stated as follows

min λ fT
L d = −fT

D d + gT p (B.9)

subject to:
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B d = 0 (B.10)

N p − d = 0 (B.11)

fT
L d = 1 (B.12)

p > 0 (B.13)

where fD and fL are respectively vectors of dead and live loads at discontinu-
ities; d contains displacements along the discontinuities, dT = {s1, n1, ω1, . . . , ωm},
where si and ni and ωi are the relative shear and normal and rotational displace-
ments at discontinuity i; when rotations are focused within an adjacent soil mass
gT = {c1l1, c1l1, c1l2

1u1/tan φ1, c1l2
1u1/tan φ1, . . . , cml2

mum/tan φm}, when rotations
are between two uncemented rigid bodies gT = {c1l1, c1l1, c1l2

1π/4, c1l2
1π/4, . . . ,

cml2
mπ/4}, where li and ci are respectively the length and the cohesive shear strength

of discontinuity i. B is a suitable (3n × 3m) compatibility matrix; N is a suitable
(3m× 4m) flow matrix; and p is a (4m) vector of plastic multipliers. The discontinu-
ity displacements in d and the plastic multipliers in p are the LP variables.

B.2 Dual Problem

In accordance with duality principals, the equations B.8∼ B.9 of the DLO primal
problem can be used to derive the equations of its dual problem. Thus, for a planar
body discretized using m discontinuities and n nodes, the equations can be stated as
follows

max λ (B.14)

subject to :

BT t + λfL − q = −fD (B.15)

NT q 6 g (B.16)

where tT = {tx
1 , ty

1, tω
1 , tx

2 , ty
2, tω

2 , . . . , tω
n } and tx

j and ty
j and tω

j can be interpreted
as horizontal and vertical and rotated direction equivalent nodal forces acting at
node j (j = 1, . . . , n); and q is a vector of shear and normal forces and moment
acting on discontinuities, i.e. qT = {S1, N1, M1, S2, N2, M2, . . . , Mm}, where Si and
Ni and Mi represent, respectively, the shear and the normal force and the moment
acting on discontinuity i (i = 1, . . . , m). Thus, the LP variables are tx

j , ty
j , tω

j , Si and
Ni and Mi and the live load factor λ. The objective is therefore to maximize λ while
ensuring that the yield condition is not violated along any potential discontinuity.
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S i

l i

θ i
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ω
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ω
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ω
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ω
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FIGURE B.2: Discontinuity forces in equilibrium with equivalent
nodal forces (no external load): (a) excluding external dead loads; (b)

including external dead loads

Alternatively, the required equilibrium constraint can be written for a potential
discontinuity i as follows (Figure B.2)

BT
i ti + λfLi − qi = −fDi (B.17)

or in expanded form as


αi βi 0 −αi −βi 0

−βi αi 0 βi −αi 0

0.5liβi −0.5liαi 1 0.5liβi −0.5liαi −1





tx
A

ty
A

tω
A

tx
B

ty
B

tω
B


+ λ


f s
Li

f n
Li

f ω
Li

−


Si

Ni

Mi

 = −


f s
Di

f n
Di

f ω
Di



(B.18)

The required yield constraint can also be written for a potential discontinuity i
as follows

NT
i qi 6 gi (B.19)

or in expanded form for the Mohr–Coulomb yield condition as
1 tan φi 0

−1 tan φi 0

0 uili 1

0 uili −1




Si

Ni

Mi

 6


cili

cili

cil2
i ui/tan φi

cil2
i ui/tan φi

 (B.20)
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Appendix C

Formulations in Anisotropic Stress
Distribution

Soil material has both inherent and induced anisotropy. The former is produced by
sedimentation and the latter occurs in shear. Degree of the anisotropy is evaluated
by means of the deformation modulus ratio n = Ex/Ez.

In order to evaluate the anisotropic effect n on the stress in soil body, a simple
case of anisotropy is treated herein. Stress solutions in a cross-anisotropic soil shall
be derived under plane strain condition. A system of Cartesian coordinates is taken
as shown in Figure C.1(a). Consider the case of the principal axis of the material
being coincidence with coordinates axis.

1 x δ(x)

xO

δ(x): Dirac’s δ-function

z

Ex

Ez

q

xO

l

z

l

(a) (b)

Ex

Ez

FIGURE C.1: Applied load and coordinates: (a) unit line load; (b)
uniformly distributed load

The stress-strain relations are written as follow by neglecting the second order
terms with respect to Poisson’s ratios

εx =
1

Ex
σx −

νzx

Ez
σz, εz = −

νxz

Ex
σx +

1
Ez

σz, γxz =
1

Gxz
τxz (C.1)

The stresses can be expressed by Airy’s stress function F as
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σx =
∂2F
∂z2 , σz =

∂2F
∂x2 , τxz = −

∂2F
∂x∂z

(C.2)

The strain compatibility equation is

∂2εz

∂x2 +
∂2εx

∂z2 =
∂2γxz

∂x∂z
(C.3)

Substituting equation C.2 into equation C.1 and then into equation C.3 gives

1
Ez

∂4F
∂x4 +

(
1

Gxz
− νxz

Ex
− νzx

Ez

)
∂2F

∂x2∂z2 +
1

Ex

∂4F
∂z4 = 0 (C.4)

Assuming
νzx

Ez
=

νxz

Ex
and using the Barden’s assumption which expresses as

1
Gxz

=
1
Ez

+
1

Ex
+

2νzx

Ez
(C.5)

Substitute equation C.5 into equation C.4, then the compatibility equation re-
duces to

n
∂4F
∂x4 + (n + 1)

∂4F
∂x2∂z2 +

∂4F
∂z4 = 0 (C.6)

Let the Airy’s stress function F be assumed as follows

F =
∫ ∞

0
f (z, m) cos mx dm (C.7)

where m is a positive parameter. Substituting equation C.7 into equation C.6
gives

d4 f
dz4 − (n + 1)

d2 f
dz2 + n = 0 (C.8)

The solution of the differential equation C.8 is obtained as

f = B1e−η1mz + B2e−η2mz (C.9)

where η1 and η2 are available characteristics roots which are given by η1 =
√

n,
η2 = 1, and B1, B2 are constants.

Substituting equation C.9 into equation C.2 gives

σz =
∂2F
∂x2 = −

∫ ∞

0
(B1e−η1mz + B2e−η2mz)×m2cos mx dm (C.10)
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σx =
∂2F
∂z2 =

∫ ∞

0
(B1η2

1e−η1mz + B2e−η2mz)×m2cos mx dm (C.11)

τxz = −
∂2F
∂z2 =

∫ ∞

0
(B1η1e−η1mz + B2η2e−η2mz)×m2sin mx dm (C.12)

In the case that unit load is applied vertically at the origin of the coordinates
(Figure C.1(a)), the boundary conditions are as follows

σz|z=0 = 1× δ(x) =
1
π

∫ ∞

0
cos mx dm (C.13)

τxz|z=0 = 0 (C.14)

Substituting Equation C.13 into Equation C.10 gives

− (B1 + B2)m2 =
1
π

(C.15)

Substituting Equation C.14 into Equation C.12 gives

η1B1 + η2B2 = 0 (C.16)

Consider the integral of eax · cos(bx) and eax · sin(bx) then derive as

∫
eax · cos(bx)dx = eax · 1

b
sin(bx)−

∫ 1
b

sin(bx) · a · eaxdx

=
eax

b
sin(bx)− a

b

∫
eax · sin(bx)dx

=
eax

b2 · [b · sin(bx) + a · cos(bx)]− a2

b2

∫
eax · cos(bx)dx

=
eax

a2 + b2 · [b · sin(bx) + a · cos(bx)] + C

(C.17)

∫
eax · sin(bx)dx = eax · −1

b
cos(bx)−

∫ −1
b

cos(bx) · a · eaxdx

=
−eax

b
cos(bx) +

a
b

∫
eax · cos(bx)dx

=
eax

b2 · [−b · cos(bx) + a · sin(bx)]− a2

b2

∫
eax · sin(bx)dx

=
eax

a2 + b2 · [a · sin(bx)− b · cos(bx)] + C

(C.18)

Determining the constants B1 and B2 from equations C.15 and C.16, and substi-
tuting them into equations C.10, C.11 and C.12 (considering a = −η1z or −η2z and
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b = x in equations C.17 and C.18), then the stresses σz, σx and τxz can be calculated.

For σz expression, the mathematical derivation is as follows

σz = −
∫ ∞

0
(B1e−η1mz + B2e−η2mz)×m2cos mx dm

=
1

π(B1 + B2)

∫ ∞

0
(B1e−η1mz + B2e−η2mz) · cos mx dm

=
1

π(B1 + B2)

{
B1

[
e−η1zm

η2
1z2 + x2

(x · sin xm− η1z · cos xm)

]∞

0

+B2

[
e−η2zm

η2
2z2 + x2

(x · sin xm− η2z · cos xm)

]∞

0

}

=
1

π(B1 + B2)

(
B1η1z

η2
1z2 + x2

+
B2η2z

η2
2z2 + x2

)
=

1
π(B1 + B2)

η1η2z3(B1η2 + B2η1)

[(η1z)2 + x2] [(η2z)2 + x2]

=
1

π

(
η2B2

−η1
+ B2

) η1η2z3
(

η2B2

−η1
η2 + B2η1

)
[(η1z)2 + x2] [(η2z)2 + x2]

=
1

π

(
η2 − η1

−η1

) η1η2z3
(

η2
2 − η2

1
−η1

)
[(η1z)2 + x2] [(η2z)2 + x2]

=
1
π

η1η2z3(η2 + η1)

[(η1z)2 + x2] [(η2z)2 + x2]

(C.19)

For σx expression, the mathematical derivation gives

σx =
∫ ∞

0
(B1η2

1e−η1mz + B2e−η2mz)×m2cos mx dm

=
−1

π(B1 + B2)

∫ ∞

0
(B1e−η1mz + B2e−η2mz) · cos mx dm

=
−1

π(B1 + B2)

{
B1η2

1

[
e−η1zm

η2
1z2 + x2

(x · sin xm− η1z · cos xm)

]∞

0

+B2

[
e−η2zm

η2
2z2 + x2

(x · sin xm− η2z · cos xm)

]∞

0

}

=
−1

π(B1 + B2)

(
B1η2

1η1z
η2

1z2 + x2
+

B2η2z
η2

2z2 + x2

)
=

−1
π(B1 + B2)

z3(B1η3
1η2

2 + B2η2η2
1) + x2z(B1η3

1 + B2η2)

[(η1z)2 + x2] [(η2z)2 + x2]

=
−1

π(B1 + B2)

z3(−B2η2
1η3

2 + B2η2η2
1) + x2z(−B2η2

1η2 + B2η2)

[(η1z)2 + x2] [(η2z)2 + x2]

(C.20)
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Since η2 = 1, then σx in equation C.20 can be simplified as

σx =
−1

π(B1 + B2)

z3(−B2η2
1η3

2 + B2η2η2
1) + x2z(−B2η2

1η2 + B2η2)

[(η1z)2 + x2] [(η2z)2 + x2]

=
−1

π

(
η2B2

−η1
+ B2

) z3(−B2η2
1η3

2 + B2η2η2
1) + x2z(−B2η2

1η2 + B2η2)

[(η1z)2 + x2] [(η2z)2 + x2]

=
1

πB2

(
η2 − η1

η1

) z3(−B2η2
1 + B2η2

1) + x2zB2η2(−η2
1 + 1)

[(η1z)2 + x2] [(η2z)2 + x2]

=
1

π

(
η2 − η1

η1

) x2z(η2
2 − η2

1)

[(η1z)2 + x2] [(η2z)2 + x2]

=
1
π

η1η2x2z(η2 + η1)

[(η1z)2 + x2] [(η2z)2 + x2]

(C.21)

For τxz expression, the mathematical derivation gives

τxz =
∫ ∞

0
(B1η1e−η1mz + B2η2e−η2mz)×m2sin mx dm

=
−1

π(B1 + B2)

∫ ∞

0
(B1e−η1mz + B2e−η2mz) · sin mx dm

=
−1

π(B1 + B2)

{
B1η1

[
e−η1zm

η2
1z2 + x2

(−η1z · sin xm− x · cos xm)

]∞

0

+B2η2

[
e−η2zm

η2
2z2 + x2

(−η2z · sin xm− x · cos xm)

]∞

0

}

=
−1

π(B1 + B2)

(
B1η1x

η2
1z2 + x2

+
B2η2x

η2
2z2 + x2

)
=

−1
π(B1 + B2)

(B1η1η2
2z2x + B1η1x3) + (B2η2η2

1z2x + B2η2x3)

(η2
1z2 + x2)(η2

2z2 + x2)

=
−1

π(B1 + B2)

z2x(B1η1η2
2 + B2η2η2

1) + x3(B1η1 + B2η2)

(η2
1z2 + x2)(η2

2z2 + x2)

=
−1

π(B1 + B2)

z2x(B1η1η2
2 + B2η2η2

1)

(η2
1z2 + x2)(η2

2z2 + x2)

=
−1

π(B1 + B2)

z2x(−B2η2)(η2
2 − η2

1)

(η2
1z2 + x2)(η2

2z2 + x2)

=
1

π

(
η2 − η1

η1

) z2xη2(η2
2 − η2

1)

(η2
1z2 + x2)(η2

2z2 + x2)

=
1
π

η1η2z2x(η2 + η1)

[(η1z)2 + x2] [(η2z)2 + x2]

(C.22)
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Thus the expressions of σz, σx and τxz in the case of unit load can be summarised
as 

σz =
η1η2(η1 + η2)

π

z3

[(η1z)2 + x2] [(η2z)2 + x2]

σx =
η1η2(η1 + η2)

π

x2z
[(η1z)2 + x2] [(η2z)2 + x2]

τxz =
η1η2(η1 + η2)

π

xz2

[(η1z)2 + x2] [(η2z)2 + x2]

(C.23)

In the case that uniformly load is applied vertically at the x-direction of the co-
ordinates (Figure C.1(b)), multiplying equation C.23 by q · dx and integrating from
(l − x) to −(l + x), the stress formulae under uniformly distributed load can be de-
rived.

For σz expression, the mathematical derivation is as follows

σz =
∫ l−x

−(l+x)

η1η2(η1 + η2)

π

z3 · q · dx
[(η1z)2 + x2] [(η2z)2 + x2]

=
η1η2(η1 + η2)z3 · q

π

∫ l−x

−(l+x)

dx
[(η1z)2 + x2] [(η2z)2 + x2]

=
q
π
· 1

η2 − η1

[
η2 · tan−1

(
x

η1z

)
− η1 · tan−1

(
x

η2z

)]l−x

−(l+x)

=
q
π
· 1

η2 − η1

{[
η2 · tan−1

(
l − x
η1z

)
− η1 · tan−1

(
l − x
η2z

)]
−
[

η2 · tan−1
(
−(l + x)

η1z

)
− η1 · tan−1

(
−(l + x)

η2z

)]}
=

q
π
· 1

η2 − η1

{
η2

[
tan−1

(
l − x
η1z

)
− tan−1

(
−(l + x)

η1z

)]
− η1

[
tan−1

(
l − x
η2z

)
− tan−1

(
−(l + x)

η2z

)]}

=
q
π
· 1

η2 − η1

η2 · tan−1


l − x
η1z
− −(l + x)

η1z

1 +
l − x
η1z
· −(l + x)

η1z



− η1 · tan−1


l − x
η2z
− −(l + x)

η2z

1 +
l − x
η2z
· −(l + x)

η2z




=
q
π
· 1

η2 − η1

[
η2tan−1 2lη1z

(η1z)2 + x2 − l2 − η1tan−1 2lη2z
(η2z)2 + x2 − l2

]

(C.24)
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For σx expression, the mathematical derivation gives

σx =
∫ l−x

−(l+x)

η1η2(η1 + η2)

π

zx2 · q · dx
[(η1z)2 + x2] [(η2z)2 + x2]

=
η1η2(η1 + η2)z · q

π

∫ l−x

−(l+x)

x2 · dx
[(η1z)2 + x2] [(η2z)2 + x2]

=
q
π
· η1η2

η2 − η1

[
−η1 · tan−1

(
x

η1z

)
+ η2 · tan−1

(
x

η2z

)]l−x

−(l+x)

=
q
π
· η1η2

η2 − η1

{
−η1

[
tan−1

(
l − x
η1z

)
− tan−1

(
−(l + x)

η1z

)]
+ η2

[
tan−1

(
l − x
η2z

)
− tan−1

(
−(l + x)

η2z

)]}

=
q
π
· η1η2

η2 − η1

−η1 · tan−1


l − x
η1z
− −(l + x)

η1z

1 +
l − x
η1z
· −(l + x)

η1z



+ η2 · tan−1


l − x
η2z
− −(l + x)

η2z

1 +
l − x
η2z
· −(l + x)

η2z




=
q
π
· η1η2

η2 − η1

[
−η1tan−1 2lη1z

(η1z)2 + x2 − l2 + η2tan−1 2lη2z
(η2z)2 + x2 − l2

]

(C.25)

For τxz expression, the mathematical derivation gives

τxz =
∫ l−x

−(l+x)

η1η2(η1 + η2)

π

z2x · q · dx
[(η1z)2 + x2] [(η2z)2 + x2]

=
η1η2(η1 + η2)z2 · q

π

∫ l−x

−(l+x)

x · dx
[(η1z)2 + x2] [(η2z)2 + x2]

=
q

2π
· η1η2

η2 − η1

[
ln
(η1z)2 + x2

(η2z)2 + x2

]l−x

−(l+x)

=
q
π
· η1η2

η2 − η1

{
−η1

[
tan−1

(
l − x
η1z

)
− tan−1

(
−(l + x)

η1z

)]
+ η2

[
tan−1

(
l − x
η2z

)
− tan−1

(
−(l + x)

η2z

)]}

=
q
π
· η1η2

η2 − η1

−η1 · tan−1


l − x
η1z
− −(l + x)

η1z

1 +
l − x
η1z
· −(l + x)

η1z



+ η2 · tan−1


l − x
η2z
− −(l + x)

η2z

1 +
l − x
η2z
· −(l + x)

η2z




=
q

2π
· η1η2

η2 − η1
· ln
[
(l + x)2 + (η1z)2

(l + x)2 + (η2z)2 ·
(l − x)2 + (η2z)2

(l − x)2 + (η1z)2

]

(C.26)
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Thus the expressions of σz, σx and τxz in the case of uniformly load can be sum-
marised as



σz =
q
π

1
η2 − η1

[
η2tan−1 2lη1z

(η1z)2 + x2 − l2 − η1tan−1 2lη2z
(η2z)2 + x2 − l2

]

σx =
q
π

η1η2

η2 − η1

[
−η1tan−1 2lη1z

(η1z)2 + x2 − l2 + η2tan−1 2lη2z
(η2z)2 + x2 − l2

]

τxz =
q

2π

η1η2

η2 − η1
ln
[
(l + x)2 + (η1z)2

(l + x)2 + (η2z)2 ·
(l − x)2 + (η2z)2

(l − x)2 + (η1z)2

]
(C.27)
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Appendix D

Formulations in Lateral Earth
Pressure Coefficient

In accordance with lower bound theorems, a combined stress fields must not yield.
The conventional Mohr-Coulomb yield condition is considered and can be expressed
as

(σ1 + σ3)

2
sin φ =

(σ1 − σ3)

2
− c cos φ (D.1)

where 
σ1 =

1
2
(σx + σz) +

√
1
4
(σx − σz)2 + τ2

xz

σ3 =
1
2
(σx + σz)−

√
1
4
(σx − σz)2 + τ2

xz

(D.2)

The ‘Boussinesq’ stress fields and backfill self-weight stresses can be combined
to generate a stress field. The combined vertical stress σz, horizontal stress σx and
shear stress τxz can be given by

σz = ∆σz + γz

σx = ∆σx + K(z)γz

τxz = ∆τxz

(D.3)

Introduce two parameters as follows
D1 = ∆σx + ∆σz

D2 = ∆σx − ∆σz

(D.4)
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To automatically compute required lateral earth pressure coefficient K(z), it can
be derived by substituting equations D.3 and D.4 into equation D.1, using c = 0,
then

1
2
[D1 + (K + 1)γz] sin φ =

√
1
4
[D2 + (K− 1)γz]2 + ∆τ2

xz (D.5)

Equation (D.5) can be rewritten as

[D2
1 + 2D1(K + 1)γz + (K + 1)2γ2z2] sin2 φ

= [D2
2 + 2D2(K− 1)γz + (K− 1)2γ2z2] + 4∆τ2

xz

(D.6)

expanding,

D2
1 sin2 φ + K(2D1γz sin2 φ) + 2D1γz sin2 φ + K2(γ2z2 sin2 φ)

+ K(2γ2z2 sin2 φ) + γ2z2 sin2 φ = D2
2 + K(2D2γz)− 2D2γz

+ K2(γ2z2)− K(2γ2z2) + γ2z2 + 4∆τ2
xz

(D.7)

Combining similar terms, equation (D.7) can be written as

K2(γ2z2 sin2 φ− γ2z2) + K(2D1γz sin2 φ + 2γ2z2 sin2 φ

− 2D2γz + 2γ2z2) + (D2
1 sin2 φ + 2D1γz sin2 φ + γ2z2 sin2 φ

− γ2z2 − D2
2 + 2D2γz− 4∆τ2

xz) = 0

(D.8)

The coefficients of equation (D.8) in K2, K and 1 can be given as

ψ = γ2z2(sin2 φ− 1)

χ = 2γ2z2(sin2 φ + 1) + 2γz(D1 sin2 φ− D2)

κ = γ2z2(sin2 φ− 1) + 2γz(D1 sin2 φ + D2) + D1 sin2 φ− D2
2 − 4∆τ2

xz

(D.9)

Then solve equation (D.8), and obtain the lateral earth pressure coefficient ex-
pression at any depth

K(z) =
−χ±

√
χ2 − 4ψκ

2ψ
(D.10)
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