
Seeing to learn:
Observational learning of robotic manipulation tasks

by
Leo Pauly

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

University of Leeds
July 2021

School of Civil Engineering School of Computing

Declaration

The candidate confirms that the work submitted is his own and that appropriate
credit has been given where reference has been made to the work of others. This
copy has been supplied on the understanding that it is copyrightmaterial and that
no quotation from the thesismay be publishedwithout proper acknowledgement.
The right of Leo Pauly to be identified as Author of this work has been asserted
by him in accordance with the Copyright, Designs and Patents Act 1988.

i

Abstract

Learning new tasks has always been a challenging problem in robotics. Even
though several approaches have been proposed, from manual programming to
learning from demonstrations, the field has directions which require further re-
search and development. This thesis focuses on one of these relatively unexplored
areas: observational learning.

We present O2A, a novel method for learning to perform robotic manipula-
tion tasks from a single (one-shot) third-person demonstration video. The key
novelty lies in pre-training a feature extractor for creating an abstract feature rep-
resentation for actions that we call ‘action vectors’. The action vectors are extracted
using a 3D-CNN network pre-trained for action recognition on a generic action
dataset. The distance between the action vectors from the observed third-person
demonstration and trial robot executions is used as a reward/cost for learning of
the demonstrated task.

We report on experiments in simulation and on a real robot, with changes in
viewpoint of observation, properties of the objects involved, scene background
and morphology of the manipulator between the demonstration and the learning
domains. O2A outperforms baseline approaches under different domain shifts
and has comparable performance with an oracle (that uses an ideal reward func-
tion). We also plot visualisation of trajectories and show that ourmethod has high
reward for desired trajectories. Videos of the results, including demonstrations,
can be found in our: project-website.

Finally, we present a framework for extending observational learning with
multi modal observations. We report our initial experiments and results in the
future works.

ii

https://leopauly.github.io/s2l/

Acknowledgement

First and foremost I thank my supervisors, Professor Raul Fuentes and Pro-
fessor David Hogg, for their guidance throughout this PhD. From not missing
any of our meetings to reviewing all the drafts and manuscripts, it was a great
privilege to be your student. You mentored me as a researcher in many ways: in-
spired to come up with new ideas, helped to formulate research problems and
advised with deep insights in implementation and evaluation of the solutions.
You were always there for me no matter how difficult the situation was. Thank
you for everything.

I thank the University of Leeds for awarding the Leeds Anniversary Research
Scholarshipwhich fundedmy research. Without the scholarship, Iwould not have
been able to pursue my dream of higher studies and research. Also, I thank the
university for providing such a vibrant student environment which helped me to
balance my social life throughout the rigours of doing a PhD.

I’m grateful to all my friends and fellow researchers for helping with this jour-
ney. I dare not list any names for the fear the list is (too!) long and may miss
a name. I had a great time with you all. Thank you for your friendship, care,
guidance, advice and support.

I owe all my success tomy loving parents Pauly andMary. You always suppor-
ted and encouraged me to pursue my dreams. For all the sacrifices you made to
provide me with a good life and education, I love you both so much. Also special
gratitude to my siblings Geyo and Leya for their closeness even though I was half
the world away from home.

Finally, I express my affection to Juka for your love and care. I will miss you.

iii

Contents

List of Figures viii

List of Tables xiv

1 Introduction 1
1.1 Defining observational learning . 3
1.2 Motivation . 5
1.3 Aim and objectives . 7
1.4 List of contributions . 8
1.5 Publications . 9
1.6 Thesis summary and outline . 9

2 Literature review 12
2.1 Introduction . 12
2.2 Observation . 15

2.2.1 Assisted observation . 15
2.2.2 Direct observation . 18

2.3 Abstract feature representation . 19
2.3.1 Deep metric learning . 19
2.3.2 Generative adversarial learning 21
2.3.3 Domain translation . 22

iv

2.3.4 Transfer learning . 24
2.3.5 Geometrical representation learning 24
2.3.6 Action primitives . 25
2.3.7 Predictive modelling . 26
2.3.8 Video to text translation . 27

2.4 Execution . 28
2.4.1 Inverse reinforcement learning 28
2.4.2 Direct regression . 30
2.4.3 Model predictive control . 31
2.4.4 Action templates . 32
2.4.5 Generative adversarial learning 33
2.4.6 Meta-learning . 33

2.5 Discussion . 34
2.6 Comparative study . 35
2.7 Conclusion . 39

3 Action vectors 40
3.1 Introduction . 40
3.2 Pre-training with large generic datasets 41
3.3 Action vectors . 42

3.3.1 Dataset . 42
3.3.2 Network architecture . 44
3.3.3 Pre-training objective . 46
3.3.4 Pre-training and action vector extraction 48

3.4 Analysing action vectors . 50
3.4.1 LMD evaluation Dataset . 50
3.4.2 Clustering analysis . 50
3.4.3 Class similarity scores . 55
3.4.4 Visualisation . 58
3.4.5 Discussion . 62
3.4.6 Pre-training accuracy and transfer performance 62

3.5 Conclusion . 64

v

4 One-shot observational learning 65
4.1 Introduction . 65
4.2 O2A overview . 65
4.3 Simulation experiment . 68

4.3.1 DDPG (Deep Deterministic Policy Gradient) RL algorithm . 68
4.3.2 Experimental setup . 74
4.3.3 Oracle and baselines . 75
4.3.4 Correlation of rewards . 77
4.3.5 Trajectory maps . 80
4.3.6 Limitations . 90
4.3.7 Reach - Push . 91

4.4 Real robot experiment . 93
4.4.1 Stochastic Trajectory Optimisation (STO) 93
4.4.2 Experimental setup . 95
4.4.3 Results . 98

4.5 Conclusion . 98

5 Conclusion and Future Work 100
5.1 Conclusion of the thesis . 100
5.2 Limitations . 103
5.3 Future works . 104

5.3.1 Multi-modal (one-shot) observational learning 104
5.3.2 Pre-training objectives . 105
5.3.3 Reducing number of trial robot executions 106
5.3.4 O2A beyond manipulation tasks 107
5.3.5 Observational learning of long horizon manipulation tasks . 107

6 Appendix 109
6.1 Recent Action datasets . 109
6.2 UCF101 Dataset . 109

6.2.1 Action catagories . 110
6.3 Feature selection . 111
6.4 3D visualisation . 111

vi

6.5 Clustering analysis after PCA . 116
6.6 Simulation experiment environment designs 116

6.6.1 Reach . 116
6.6.2 Push . 117

6.7 DDPG RL algorithm . 119
6.8 MIME dataset task categories . 120

Bibliography 121

vii

List of Figures

1.1 Imitation learning by (a) teleoperation [1] and (b) kinesthetic teach-
ing [2] . 2

1.2 Observational learning consists of observing the demonstrations,
extracting an abstract feature representations and executing the demon-
strated task. 4

1.3 Thesis summary . 11

2.1 Different approaches used for learning robotic manipulation tasks.
Observational learning approaches are used when demonstrations
with domain shifts are provided for learning tasks. 13

2.2 Organisational structure of remaining sections in the chapter. 14
2.3 Motion capture system. Note the inconvenience for the demon-

strator in wearing on body sensors. Figure from [3] 16
2.4 LED trackers used for recording the positions and velocities of the

manipulated objects. Figure from [4]. 16
2.5 Visual detectors used for assisting observations. Figure from [5] . . 17
2.6 Full body skeleton tracking of the task demonstrator. Figure from

[6]. 17

viii

List of Figures

2.7 Training time-contrastive networks with triplet loss for feature ex-
traction from demonstration videos. The anchor and the positive
images are encouraged to be closer in the feature space, while be-
ing further away from the negative image. Figure from [7]. 20

2.8 Basic generative adversarial learning framework.Figure from [8]. . 21
2.9 Domain translation. Images are translated from the demonstration

domain (top row) to the observers domain (bottom row). Figure
from [9] . 22

2.10 Domain translationmethodusing generator-discriminator network.
Fig. from [10] . 24

2.11 Representing insertion manipulation task in terms of geometrical
primitives (a): points (coloured: blue) and lines (coloured: red,
yellow, pink) and their associations(b). Figure from [11]. 25

2.12 Decomposing actions into action primitives for task of (a) Pick and
place (b) Pushing away (c) Opening bottle. Colour bars indicates
the time duration of the action primitives in the task video. Figure
from [12]. 26

2.13 Textual descriptions from demonstrations. Figure from [13] 27
2.14 Values from a learned reward function for videos depicting (a) suc-

cessful and (b) failed execution of the pouring task. It can be seen
that the reward value drops, as the task fails to execute in (b). Fig-
ure from [13] . 30

2.15 Illustration of a general MPC system . Figure from [14] 31
2.16 MAML algorithm illustration. Figure from [15] 34

3.1 An illustration of the conceptual action vector space. Action vectors
from videos of a task are closer to each other irrespective of the
domain settings in which they are recorded and further away from
other classes. 43

3.2 Selected few classes from UCF101 action dataset illustrating the di-
versity in terms actions and domain settings. Figure from [16] . . . 45

3.3 (a) 2D convolution (b) 3D convolution. Figure adapted from [17] . 46
3.4 3D pooling . 46

ix

List of Figures

3.5 Downsampling training video before feeding into the network. Down-
sampled size (Nf) set to 5 frames for ease of illustration. 48

3.6 Testing accuracy (on UCF101 test set) per epoch during action re-
cognition pre-training with UCF101 dataset 49

3.7 Tasks of (a) reaching (b) pushing and (c) reach-push from LMD . 51
3.8 Diversity in the data collected for the task of pushing. (a) Normal

pushing and pushing with changes in: (b) viewpoint of observa-
tion (c) object properties (d) scene background and (e) morpho-
logy of the manipulator. Similar diversity can be observed in other
classes as well. 52

3.9 Visualising LMD using action vectors for Baseline-R (features from
pool5 layer of NN:UCF101 with randomly initialised weights are
used) . 58

3.10 Visualising LMD using action vectors from (a) pool5 and (b) fc6
layers of NN:UCF101 . 59

3.11 Visualising LMD (after merging reach and push classes) using ac-
tion vectors for Baseline-R (features frompool5 layer ofNN:UCF101
with randomly initialised weights are used). 60

3.12 Visualising LMD (after merging reach and push classes) using ac-
tion vectors from (a) pool5 and (b) fc6 layers of NN:UCF101 61

3.13 ARI scores when NN:UCF101 network is pre-trained for higher ac-
tion recognition accuracies on UCF101 dataset. 63

4.1 Overview of O2A method. A 3D-CNN action vector extractor is
used to extract action vectors XD and XR from the video clips of
the demonstration and robot trial execution respectively. A reward
function is used to compare XD and XR in the action vector space,
generating a reward signal (r) based on their closeness. The RL
algorithm then iteratively learns an optimal control policy by max-
imizing this reward signal, thus enabling observational learning. . . 66

4.2 Sample environments available in OpenAI Gym 68
4.3 Custom designed environments for the tasks of (a) reaching and

(b) pushing in simulation experiments 70

x

List of Figures

4.4 Critic network architecture . 71
4.5 Actor network architecture . 72
4.6 Snapshots of the demonstration and the execution of corresponding

learned policies in the simulation experiment for selected domain
shifts. (Results shown for action vectors extracted from pool5 layer
of NN:UCF101 network). 75

4.7 Task completionmeasures for the task of (a) reaching and (b) push-
ing in the simulation experiment. O2Aoutperforms both the baselines
and has performance comparable to the oracle under all domain
shifts. The oracle score is shown only once since it is unaffected by
the domain shifts (refer to Table 4.3 for domain shift definitions). . 79

4.8 Selected few examples (execution by human and robotic manipu-
lator) from MIME action dataset. The tasks are (clockwise from
top-left) stirring, pouring, stacking, wiping, opening a bottle and
passing. Figure from [18] . 80

4.9 Testing accuracy (on MIME test set) per epoch during pre-training
the action vector extractor on MIME dataset 82

4.10 Trajectory maps obtained during task learning under identical do-
main settings for (a) reaching (left) (b) pushing (right). High re-
wards are obtained for desired trajectories in all the cases. 83

4.11 Trajectorymaps obtainedduring task learningwith changes in view-
point of observation for (a) reaching (left) (b) pushing (right).
High rewards are obtained for desired trajectorieswhen theNN:UCF101
network is used. 84

4.12 Trajectory maps obtained during task learning under identical do-
main settings for (a) reaching (left) (b) pushing (right). High re-
wards are obtained for desired trajectories in all the cases. 85

4.13 Trajectorymaps obtainedduring task learningwith changes in view-
point of observation and object properties for (a) reaching (left) (b)
pushing (right). High rewards are obtained for desired trajectories
when the NN:UCF101 network is used. 86

xi

List of Figures

4.14 Trajectory maps obtained during task learning when background
clutter is introduced in to the background for (a) reaching (left) (b)
pushing (right). High rewards are obtained for desired trajectories
in all the cases. 87

4.15 Trajectory maps obtained during task learning when demonstra-
tion is provided by a human hand for (a) reaching (left) (b) push-
ing (right). High rewards are obtained for desired trajectories only
when NN:UCF101 network is used. 88

4.16 Trajectory maps obtained during task learning for (a) reaching and
(b)pushing. New layout for the learning environment is generated
by moving target region to the left. O2A was unable to identify de-
sired trajectories for the domain shift. 90

4.17 Trajectory maps obtained during task learning for (a) reaching and
(b) pushing. New layout for the learning environment is generated
by moving target region to the right. O2A was unable to identify
desired trajectories for the domain shift. 91

4.18 Snapshots of the video samples of the reach-push task collected. It
includes a demonstration (D) and video samples showing varying
degrees of task completion (A-E). 92

4.19 Normalised reward values for video pairs D-A to D-E. Higher re-
wards are obtainedwhen taskmoves towards completion, showing
O2A can successfully model the more complete reach-push task as
well. 92

4.20 Real robot experiment tasks. From left-right: pushing, hammering,
sweeping and striking . 93

4.21 Real robot experimental setup overview 95
4.22 (a) Execution system experimental setup built for running real ro-

bot experiments. It consists of a local laptop workstation (A), cus-
tom made camera holder (B), camera (C) and the end effector (D)
attached to the UR5 robot (E). (b) View of the robot. 96

xii

List of Figures

4.23 Snapshot of the demonstration and execution of the corresponding
optimal control sequences obtained for selected domain shifts from
the real robot experiment (Results shown for action vectors extrac-
ted from the pool5 layer of the NN:UCF101 network). 98

4.24 Task completionmeasures for the task of pushing, hammering, sweep-
ing and striking in the real robot experiment. The result shows that
O2A performs well under different domain shifts on a real robot. . . 99

5.1 Overviewof pre-training soundvector extractors usingUrabanSound8k
dataset and its usage during observational learning. 106

5.2 Modified LunarLander RL environment 107

6.1 Examples from LMD_Sup dataset for the task classes (a)Move and
(b) Displace. 111

6.2 ARI scores when different subsets of features from pool5 and fc6
layers are used as the action vector. High ARI scores when only the
top 20% of features (based on ANOVA F-values) are used, indicate
the existence of a subset of features more significant than others in
representing manipulation tasks. Tags at each point give the cor-
responding number of features selected. 112

6.3 Visualising LMD using action vectors for Baseline-R (features from
pool5 layer of NN:UCF101 with randomly initialised weights) . . . 113

6.4 Visualising LMDusing action vectors frompool5 layer ofNN:UCF101114
6.5 Visualising LMD using action vectors from fc6 layer of NN:UCF101 115
6.6 DDPG RL algorithm . 119

xiii

List of Tables

1.1 Differences between imitation learning and observational learning . 3

2.1 Advantages and disadvantages of different methods used for as-
sisted observation . 18

2.2 Observational learningmethods in existing literature are compared,
based on approaches used in different stages. 37

2.3 Observational learningmethods in existing literature are compared.
O2Arequires only a single demonstration to learn new tasks. It does
not use any robot data for training the action vector extractor. And
also works well under different all domain shifts. 38

3.1 Publicly available action datasets. UCF101 dataset was the most
suited at the time for pre-training, in terms of number action classes
and video samples per class. 44

3.2 Network architecture for the action vector extractor 47
3.3 Details of action recognition pre-training on the UCF101 dataset . . 49
3.4 Leeds Action Dataset details . 51
3.5 K-means algorithm parameters used 53
3.6 ARI scores (higher the better). Results show that the features from

layers pool5 and fc6 of the NN:UCF101 network are best suited to
be used as action vectors. 54

xiv

List of Tables

3.7 ARI scores when features from different layers are concatenated
and used as the action vector. Results do not show any significant
improvement in the performance. 55

3.8 Class similarity scores. The intraclass similarity (diagonal values)
are greater than the rest of the values, indicating adequate task-
discrimination and domain-invariance. 57

3.9 Transfer performance evaluationwhen action vector extractor (NN:UCF101)
is pre-trained for higher action recognition testing accuracies. 63

4.1 Task definitions and completion measures 67
4.2 Comparing OpenAI gym and rllab RL frameworks. It shows our

criteria for selecting the RL framework for the simulation experi-
ment. ’?’ symbol shows a better performance. OpenAI Gym is a
clear choice for us satisfying all the requirements. 69

4.3 Domain shifts used in our experiment 76
4.4 DDPG parameters settings . 76
4.5 Pearson correlation coefficients between the rewards from the or-

acle, and from O2A and two baselines. The coefficients are highest
in most of the cases and positive for O2A rewards compared to
baseline approaches. 78

4.6 Robotic manipulation tasks video datasets. MIME is the largest
available robotic manipulation tasks video dataset containing both
human and robotic demonstrations. However, building ImageNet[19]
scale robotic manipulation datasets is crucial for future research. . . 81

4.7 Details of pre-training the action vector extractor on theMIMEdataset 82

5.1 Inter-class and intra-class distances for LSD in the action vector space.
Class-1 is ’hammering on target’ and Class-2 is ’hammering on table’.105

6.1 Recently released larger action datasets 109
6.2 UCF101 action recognition dataset details 110
6.3 ARI scores after applying PCA dimensionality reduction on fea-

tures from different layers of NN:UCF101 116

xv

1
Introduction

"Research means that you don’t know, but are willing to find out."

– Charles F. Kettering

The twenty-first century has seen a considerable growth in robotic techno-
logies. From room-cleaning to advanced medical applications, robots are making
their way into human lives [20, 21, 22]. But one of the major challenges faced
by even the most advanced robotic technologies lies in the inability to learn tasks
fromdemonstrations like human beings. The traditionalmethod of teaching tasks
to robots is by manual step by step programming [23, 24]. But this approach can-
not be applied in real world scenarios especially for consumer robotics, where the
robotic operators need not be programmers. A practical solution for this problem
is to adapt the human approach of learning from demonstrations. For example, a
3 year old child is taught new tasks not by algorithmic programming but rather by
showing simple demonstrations. Hence Learning from Demonstration (LfD) has
been a top priority in robotics research for the past few decades. Comprehensive
surveys of the methods and techniques developed for LfD over the years can be
found in [25, 26, 27, 28, 29, 30, 31].

Even though LfD has been studied in robotics for a very long time, the major
share of the research works fall into the category of imitation learning. In imit-
ation learning, the robotic system is made to learn from first person demonstra-
tions. The demonstrations can be provided by teleoperation [1] or kinesthetic
teaching [2] as shown in Figure 1.1. In teleoperation, the demonstrator guides

1

the robotic system indirectly using teleoperation devices to perform a task. Dur-
ing teleoperation, the robotic system records it’s joint trajectories and/or visually
observes it’s own actions, to be used as the demonstrations for learning the task.
Whereas in kinesthetic teaching, the demonstrator directly guides the robotic sys-
tem to perform the task. The robotic joint trajectories obtained during this process
are recorded and used as the demonstrations.

Figure 1.1: Imitation learning by (a) teleoperation [1] and (b) kinesthetic teaching
[2]

Several approaches have been developed for implementing imitation learning
in robotics with high degrees of success [1, 2]. However, imitation learning meth-
ods suffer from a key limitation in terms of the demonstrations that can be used for
learning a task. The demonstrations have to be provided as first person observa-
tions, with access to robot joint trajectories during demonstration. This limits the
ability of robotic systems to learn from demonstrations which occur naturally. For
example, a search for task demonstrations on the web invariably retrieves videos
mostly recorded as third person observations with no access to the corresponding
robotic joint trajectories during demonstrations.

Observational learning [31, 32, 33] methods aim at overcoming this challenge.
The origin of observational learning can be traced back to works published in
the early 1990s [34, 35, 36]. It differs from imitation learning in that the demon-
strations are observed as a third person without access to robotic joint trajector-
ies. Observing demonstrations from a third person also give rise to domain shifts
between the demonstration and learning environments. The domain shifts can be

2

1.1. Defining observational learning

changes in viewpoint of observation, object properties, scene background and/or
morphology of the manipulators. This makes observational learning even harder
to solve. The differences between imitation learning and observational learning
are summarised in Table 1.1. A plain imitation of the demonstration will not be
sufficient to achieve the desired behaviour. The robotic system will have to first
learn a domain-agnostic abstract feature representation of the task demonstrated
and then perform an execution which will have a similar representation.

Table 1.1: Differences between imitation learning and observational learning

Imitation learning Observational learning

Domain shift No domain shift. The demonstra-
tions are performed in the same
environment in which robots are
learning.

Domain shifts can occur as
changes in viewpoint of obser-
vation, object properties, scene
background and/or morphology
of the manipulator.

Access to joint
trajectories

Robotic system has access to it’s
own joint trajectories during the
demonstration.

Does not have access to robotic
joint trajectories.

Observational learning is also refereed to as Learning byWatching[35], Teach-
ing by Showing[37], Plan from Observation [36], Visual Imitation Learning [38],
Third person Imitation Learning [39], Imitation from Observation [40], Imitation
LearningwithDomain shift [41] andThird personVisual Imitation Learning [10].
Even though the definitions vary slightly between articles, the core concept of ob-
servational learning remains the same. In the next section we explain the concept
of observational learning and its stages in detail.

1.1 Defining observational learning

It is worth noting that the concept of observational learning has long been invest-
igated in the fields of cognitive and behavioral psychology. American psycho-
logists Bandura and Walters [42, 43, 44], postulated that people learn from one
another via observation, mimicking and modeling the demonstrator’s behaviors
and coined the term ‘observational learning′ or ‘social learning′ to describe this be-

3

1.1. Defining observational learning

haviour. They suggested that observational learning has four parts: attention, re-
tention, reproduction and motivation. Attention is observing what is happening,
retention refers to memorising and creating a mental model of the task, reproduc-
tion is the execution of the task inspired by an incentive referred to as motivation.
A detailed interdisciplinary overview of this line of work on observational and
imitation learning can be found in the book ‘Imitation in Animals and Artifacts′
[45].

Inspired by the concepts in psychology and existing robotics literature, obser-
vational learning in robotics can be decomposed into three stages: observation,
abstract feature representation and execution as illustrated in the Fig 1.2. We de-
scribe each of these in the following subsections.

Figure 1.2: Observational learning consists of observing the demonstrations, ex-
tracting an abstract feature representations and executing the demonstrated task.

Observation

In the ‘Observation’ stage, the robotic system views the demonstrator performing
the task. Demonstrations can be observed directly, i.e as raw images/videos or
with assistance using trackers or visual detectors.

Abstract feature representation

In this stage, abstract feature representations of the demonstrations invariant to
domain shifts are extracted. For example (referring to Figure 1.2), the represent-
ations for the task of opening a door should be identical, irrespective of the angle
from which it was observed. The features are extracted frame by frame or from
the video as a whole.

4

1.2. Motivation

Execution

Execution is the last stage of observational learning where the robotic system per-
forms the demonstrated task. It involves finding robotic controls to execute the
task from the abstract representations of the demonstrations. The robotic system
can obtain the controls for execution either by trial and error or using direct map-
ping techniques.

Given the breadth of the observational learning problem, in this thesis we limit
the scope to simplify the problem with the following assumptions.

• Only manipulation tasks are considered.

• The tasks are non-collaborative, i.e the tasks are demonstrated by a single
demonstrator.

• Demonstrations are viewed with a single RGB video camera.

• The demonstrations are provided by a human using one hand to perform a
task on one or more objects, directly or with the use of a hand-held tool (e.g.
a gripper).

• Once the demonstrations are given, the demonstrator does not provide any
further assistance.

1.2 Motivation

A key challenge in observational learning approaches until recently was the diffi-
culty to directly observe the demonstrations. The robotic systems had to be pre-
programmed ‘what to observe’ in the demonstrations. This was implemented us-
ing trackers, visual detectors or motion capture mechanisms (covered in chapter
2). However, this limited the scope of observational learning to demonstrations
that used pre-defined objects and also the demonstrators had the inconvenience of
attaching on-body sensors or trackers. It waswith the emergence of deep learning
[46, 47] and its applications [48, 49], sidelining classical computer visionmethods

5

1.2. Motivation

[50, 51, 52], that direct observation of demonstrations became possible. In deep
learning feature representations can be extracted directly from rawdemonstration
videos.

Deep neural network (DNN) feature extractors have been widely used in ob-
servational learning methods in the last few years as detailed in Chapter 2. How-
ever, the current methods lack generalisation to unseen manipulation tasks. The
feature extractors are trained in a way that is dependent on the tasks. For each
new task to be learned, the feature extractors have to be re-trained. This requires
a large number of demonstrations for each new task to be learned. It is very time
consuming to collect hundreds of demonstrations for each task especially in real
world robotic application scenarios. This thesis addresses the problem of learning
a task from a single demonstration. We propose a task-independent abstract fea-
ture representation extractionmethod that can generalise to unseenmanipulation
tasks without re-training.

Another challenging aspect of observational learning is the domain shifts between
the demonstration and learning environments. As described earlier, domain shift
can be changes in viewpoint of observation, object properties, scene background
or morphology of manipulator. Humans have a remarkable ability to handle do-
main shifts. For example, we can learn cooking from internet videos, even if
the learner has different types of utensils or cooking apparatus from that of the
demonstrator. This ability comes from an abstract level understanding of the task
by humans, which is independent of variables such as the object properties or
morphology of the manipulator. However, equipping robotic systems with this
ability is technically challenging. The existing methods handle domain shifts in
constrained settings. For example, Liu et al. [53] used tools to handle domain
shift in morphology of the manipulators. Similarly work by Sermanet et al. [54]
used the assumption that the viewpoint of observation remains the same. A tab-
ular review of domain shifts handled by different methods is given in chapter 2.
In this thesis we aim to extract more robust domain-agnostic abstract feature rep-
resentations that can handle unconstrained domain shifts.

Also, the existing methods [40, 55] perform frame by frame extraction of fea-
tures from the demonstration videos. These features are then concatenated to
represent the demonstrated task. A consequence of such representations is that it

6

1.3. Aim and objectives

places higher emphasis in the path taken to perform the task than the task itself.
This restricts the freedom of the robotic system to follow a different trajectory than
what is demonstrated. For example, in a task such as pushing an object, the task
can be considered complete if the object is pushed into the target region irrespect-
ive of the path taken.

Similarly, the demonstrationmight contain states that are not achievable by the
learner as pointed out by Lee et al. [56]. Forcing to follow the demonstrated path
in such cases will prevent task learning. In these scenarios, the robotic system
should have the freedom to deviate from the trajectory followed by the demon-
strator.

1.3 Aim and objectives

Based on the issues and challenges outlined in the previous section, we define the
aim of our research as: ‘Develop an observational learning method that requires only a
single demonstration (one-shot) of the task to be learned’. Note that, one-shot does not
refer to the number of trial and error executions by the robot during learning from
that single demonstration. The objectives for achieving this are outlined below:

• Develop an abstract feature representation extractionmethod that can gen-
eralise to unseen manipulation tasks without re-training. This will elim-
inate the need for re-training the feature extractor for each new task to be
learned. The features are intended to be extracted from the video as awhole,
rather than individually from each frame.

• Develop a domain-agnostic feature representation method for the tasks.
A domain-agnostic feature representation of the tasks is essential to handle
the domain shifts between demonstrator’s and learner’s environments.

• Integrate the developed feature representation method into a learning
framework for robotic manipulation tasks. The feature representation of
demonstrated tasks can be used to generate a reward/cost to be optimized
during task learning.

7

1.4. List of contributions

• Design and implement experimental setups and evaluationmethods. Eval-
uations are to be performed for: (A) understanding generalisation of the
feature representationmethod to unseenmanipulation tasks and (B) testing
the performance of the overall observational learning system developed.

1.4 List of contributions

With respect to the aim and objectives laid out in section 1.3, we present our re-
search contributions as follows:

• We developed O2A (One-shotObservational learning with Action vectors),
a method that learns new manipulation tasks from a single third-person
demonstration. O2A works by extracting an abstract feature representation
of tasks from the demonstration videos. We call it the ‘action vector’. Action
vectors are extracted with the novel approach of using a 3D convolutional
neural network (CNN) pre-trained on a generic action dataset for action re-
cognition. The pre-trained action vector extractor generalises to unseen ma-
nipulation tasks by learning the shared underlying visual dynamics during
pre-training. Action vectors are domain-agnostic which handles the domain
shifts between the demonstrator’s and the learner’s environment. The dis-
tance between the action vectors from the observed third-person demonstra-
tion and trial robot executions is used as a reward/cost for learning of the
demonstrated task.

• We collected an evaluation dataset of manipulation tasks, the Leeds Manip-
ulation Dataset (LMD), for evaluating the performance of the pre-trained
action vector extractor on unseenmanipulation tasks. We conducted cluster-
ing analysis, calculated class similarity scores and also visualised the action
vectors fromLMD.We also designed novel experiments for testingO2Aboth
in simulation andwith a real robot. We used the tasks of reaching and push-
ing (in simulation) and pushing, hammering, sweeping and striking (with
the real robot). We evaluated O2A by plotting trajectory maps, measuring
task completion measures and calculating correlation with oracle rewards.

8

1.5. Publications

1.5 Publications

Our research has been published/presented at the following venues.

Journal

L. Pauly, W. C. Agboh, D. C. Hogg, and R. Fuentes, ‘’O2A: One-shot Observational
learning with Action vectors”, at Frontiers in Robotics and AI (Accepted), 2021[57]

Workshops

‘’One-shot observation learning”, at IROS Workshop: Examining Sensing Modalities
for Robust and Dexterous manipulation, IROS, 2018.

‘’One-shot observation learning using visual activity features”, at 3rd UK robotics
manipulation workshop, 2019.

‘’One-shot observational learning”, at AI @ Leeds workshop, 2019.

1.6 Thesis summary and outline

The thesis summary is illustrated in Figure 1.3 and an outline of each chapter is
given below:
Chapter 1: Introduction
The chapter introduces and defines the concept of observational learning. Re-
searchmotivation, aim andobjectives, list of contributions and outline of the thesis
are also presented in the chapter.
Chapter 2: Literature review
In this chapterwe present a comprehensive survey of existing observational learn-
ing literature. The introductory section explains when observational learning can
be used. Subsequent sections describe methods and techniques used in the dif-
ferent stages of observational learning.
Chapter 3: Action vectors
In this chapter we explain the concept of action vectors. We present the action

9

1.6. Thesis summary and outline

vector extractor network architecture, the generic action dataset used and other
pre-training details. We also present details of LMD and report on experiments
conducted.
Chapter 4: One-shot observational learning
In this chapter we present O2A in detail. We explain how the action vectors are
used in the one-shot observational learning method. We also report on experi-
ments conducted both in simulation and on a real robot.
Chapter 5: Conclusion and future work
The final chapter presents a summery of the research. It also discusses the limit-
ations and future directions of the presented research.

**

10

1.6. Thesis summary and outline

Fi
gu

re
1.3

:T
he

sis
su

m
m
ar
y

11

2
Literature review

Observational learning of manipulation tasks has been at the center of robotics
research for a very long time. In this chapter we provide an extensive review of
existing approaches for observational learning of manipulation tasks in the liter-
ature.

2.1 Introduction

Robotic systems can learn manipulation tasks in many different ways. The meth-
ods will vary based on the mode of supervision and guidance they use. Figure 2.1
presents the different approaches in the literature for learningmanipulation tasks
and when to use them in the form of a flow chart. Standard learning methods
are used when a reward (or a cost) function is available [58, 59, 60, 61, 62, 63]. If
the reward function is not available the next option is to look for the availability
of task demonstrations. In the absence of demonstrations, external human assist-
ance (for example, binary goal completion queries) is requested [64, 65, 66]. If
the demonstrations are available, Learning from Demonstration (LfD) [27] can
be used. LfD approaches fall under two paradigms: imitation learning and obser-
vational learning. The nature of the demonstrations available determines which
of these two methods is to be used. If first person demonstrations are available,
imitation learning methods are to be used [67, 68, 69, 70, 71]. Imitation learning
approaches can be broadly classified into Behavioral Cloning (BC) [67, 68, 70] and

12

2.1. Introduction

Inverse Reinforcement Learning (IRL) [69, 72] methods. In BC a control policy
is learned directly from the demonstrations. In IRL, a reward function is first de-
duced from the demonstrations and then a control policy is learned by optimiz-
ing this deduced reward function. However, a direct imitation of the demonstra-
tion is insufficient if the observations are made from a third person point of view.
Third person observations are identified by a domain shift between the demon-
stration and the robot’s learning environment. Observational learning [31, 32, 33]
approaches are used in such scenarios. These approaches handle the domain shift
by extracting domain-agnostic abstract feature representations which are used for
learning the demonstrated task.

Figure 2.1: Different approaches used for learning robotic manipulation tasks.
Observational learning approaches are used when demonstrations with domain
shifts are provided for learning tasks.

13

2.1. Introduction

In the upcoming sections of this chapter, we present a comprehensive reviewof
the existing approaches in observational learning. We analyse different methods
and techniques used at different stages of observational learning: observation, ab-
stract feature representation and execution. Figure 2.2 presents this overall organ-
isational structure for the chapter. In section 2.2, the first stage of observational
learning is surveyed. The section discusses two ways of observing demonstra-
tions: assisted and direct. Section 2.3, discusses in detail the different approaches
of feature representations and extraction from observed video demonstrations.
And in Section 2.4, different approaches for executing the learned task are dis-
cussed. In Section 2.5, we discuss how our method fits into the existing literature
and Section 2.6 presents a qualitative comparison of the existing methods with
O2A. We compare in terms of number of demonstrations required for learning a
new task and types of domain shifts handled. A direct quantitative comparison
is difficult due to the diversity of approaches used and lack of standardised eval-
uation metrics. The chapter is summarised and concluded in section. 2.7

2.2 Observation
—————-
2.2.1 Assisted
2.2.2 Direct

2.3 Feature representation
———————

2.3.1 Deep metric learning
2.3.2 Generative

adversarial learning
2.3.3 Domain translation
2.3.4 Transfer learning

2.3.7 Predictive modelling
2.3.5 Geometric

representation learning
2.3.6 Action primitives
2.3.8 Video to text

translation

2.4 Execution
———————
2.4.1 Inverse RL
2.4.2 Regression

2.4.3 Model predictive
control

2.4.4 Action templates
2.4.5 Generative
adversarial
learning

Figure 2.2: Organisational structure of remaining sections in the chapter.

14

2.2. Observation

2.2 Observation

Observation is the process of observing the demonstration. It includes observing
items (objects and manipulators) and their interactions which are relevant in un-
derstanding the demonstrated task. Observations can be of two types: assisted
and direct. In assisted observations the robotic systems are explicitly provided
with assistance in identifying relevant items and interactions to observe. Whereas
in direct observation, videos are observedwithout any assistance. The feature rep-
resentations are then extracted from these raw videos.

2.2.1 Assisted observation

Assisted observation is the classical way of observing demonstrations. The as-
sistance is provided with sensing techniques such as trackers, visual detectors,
motion capture systems, skeleton tracking or a combination of the above. Each
method is explained briefly below and a comparison is shown in Table 2.1.

Using trackers

Motion capture [3, 73, 74, 75] : Motion capture (illustrated in Figure 2.3) records
motion of bodies (objects, humans or animals) using different sensors (inertial,
electro-mechanical or acoustic) placed on the body to be tracked. It has wide ap-
plications in fields such as entertainment, sports, medical treatments, computer
vision, graphics and robotics. It was one of the most widely used methods for as-
sisting observation in the earlier days of research into observational learning due
to its high accuracy. However, the requirement of expensive body-worn instru-
mentation and inability to work on demonstration videos from the internet are
major drawbacks for this method.

Trackers[4, 76]: In thismethod special tags ormarkers (for example, QR codes)
are used to identify and locate the objects to detect and track in a demonstration
video. Gupta et al.[4] use LED trackers (shown in Figure 2.4) for recording the
positions and velocities of the manipulated objects and in [76] magnetic track-
ers are used for recording object movements in the demonstrated videos. Tracker
based methods are comparatively easier to implement and have relatively higher

15

2.2. Observation

Figure 2.3: Motion capture system. Note the inconvenience for the demonstrator
in wearing on body sensors. Figure from [3]

accuracy compared to the other methods.

Figure 2.4: LED trackers used for recording the positions and velocities of the
manipulated objects. Figure from [4].

Visual Detection

Visual detectors [5, 77, 78, 79, 80, 81, 82]: Here, pre-defined visual detectors using
computer vision algorithms (as shown in Figure 2.5) are used for assisting ob-
servations. Simplicity of usage, implementation easiness and compatibility to use
with demonstration videos from the internet make this method popular. Also the
accuracy of the visual detectors have increased considerably with implementation
of deep learning based object detectors[83, 84] compared to the classical methods
based on hand-crafted features[85, 86].

16

2.2. Observation

Figure 2.5: Visual detectors used for assisting observations. Figure from [5]

Skeleton tracking [6, 37, 87]: Skeleton tracking is used for tracking human
motion and pose estimation. It does not require any on-body sensors and instead
uses computer vision algorithms for tracking human motion. An example of full
body skeleton tracking in shown in Figure 2.6. Like visual detectors, skeleton
tracking has also seen considerable increase in performances by the use of deep
neural networks [88, 89, 90]. Also recently, more sophisticated approaches that
can track even partial body parts (for example handwith fingers [91])with higher
accuracy levels have been developed.

Figure 2.6: Full body skeleton tracking of the task demonstrator. Figure from [6].

Hybrid methods

Combination of the above [92]: Here a combination of two or more of the above
techniques is used to assist the robotics systems in the process of observation. In
[92] a combination of motion capture techniques with visual detectors is used for

17

2.2. Observation

observing demonstrations. Such combinations could improve overall efficiency
and help to overcome the shortcomings of using a single method.

Table 2.1: Advantages and disadvantages of different methods used for assisted
observation

Method Advantages Disadvantages

Motion capture • Very high accuracy • Expensive
• Require specialised instrumenta-
tion and settings
•Demonstrator has to wear on-body
sensors or suits

Visual detectors • Easy to implement as detection is
performed by the computer vision
algorithms
• Low cost of implementation
• Does not require additional hard-
ware or devices

•Moderate precision and accuracy

Trackers • Can be set up with low cost track-
ers like QR codes and colour tags

•Moderate precision and accuracy
• Inconvenience of wearing ad-
ditional tags and markers by the
demonstrator

Skeleton tracking • Easy to implement
• Additional hardware or devices
not required

• Can be used only with human
demonstrations
•Moderate precision and accuracy

Hybrid methods • Higher accuracy
• Can overcome drawbacks of
using methods individually

• Implementing an hybrid pipeline
for observation will require expert-
ise with multiple methods

2.2.2 Direct observation

One major drawback for the assisted observation methods is that its scope is lim-
ited to pre-defined objects and manipulators. The items (objects and manipulat-
ors) to be observed have to be known beforehand and only manipulation tasks
using these items can be learned. For instance, a robotic system equipped with
the hand skeleton tracking method cannot be used to learn tasks demonstrated
with tools, as the tracking system will fail. So for learning each class of tasks, the

18

2.3. Abstract feature representation

observation process has to be customised. This limits the scope of observational
learning methods in real world applications. A solution for this is to observe the
demonstrations directly without any assistance. However, this will make the ob-
servational learning problem harder. It will require intelligent feature extractors,
which can extract relevant features directly from the raw demonstration videos.

Observational learning with direct observation is a new branch of research
with one of the introductory works published in 2017 [39]. It was the emer-
gence of deep learning [46, 47],that made direct observation of demonstrations
possible. DNNs [93, 94, 95] can extract meaningful hierarchical features with dif-
ferent levels of abstraction directly from images and videos [96, 97, 98]. In section
2.3we reviewhowdifferent observational learning approaches extract feature rep-
resentations directly from video demonstrations.

2.3 Abstract feature representation

Abstract feature representation is the process of extracting abstract representation
of tasks from the demonstration videos. These representations should be invari-
ant to domain specific aspects such as viewpoint of observation, object proper-
ties, scene background and morphology of manipulators. At the same time, they
should capture key aspects of the tasks such as intent and goal. A variety of deep
learning networks and techniques have been used individually and in combina-
tion in literature. This section provides a review of different abstract feature rep-
resentations used.

2.3.1 Deep metric learning

Deep metric learning [99] can be defined as learning the distance metric between
pairs of examples in some embedded feature space, using a metric loss function.
The characteristics of the metric function and feature space learned will depend
on the metric loss function used. Some examples of metric loss functions are:
contrastive [99], triplet [100] , lifted-structured [101], N-pair [102], angular [103]
divergence [104] and cross-entropy [105] loss functions.

The time-contrastive network (TCN) [7] uses deepmetric learningwith triplet

19

2.3. Abstract feature representation

Figure 2.7: Training time-contrastive networks with triplet loss for feature extrac-
tion from demonstration videos. The anchor and the positive images are encour-
aged to be closer in the feature space, while being further away from the negative
image. Figure from [7].

loss function to learn frame by frame feature representation of the demonstration
video. The triplet loss function takes in a triplet of images called anchor, positive
and negative images respectively. The anchor and positive examples with sim-
ilar labels are encouraged to be close to each other in the embedding space and
the negative example is forced to be further away. Here the anchor and posit-
ive images are taken from the same time-point from different viewpoints and the
negative image is taken at a different time-point from the same demonstration as
show in Figure 2.7. The frame by frame TCN embeddings from the demonstration
video are concatenated and used as the feature representation.

20

2.3. Abstract feature representation

2.3.2 Generative adversarial learning

Generative adversarial learning is a machine learning framework introduced by
by Goodfellow et al. [106]. The basic structure is illustrated in Figure 2.8. It con-
sists of two competing functions (generally represented with DNNs) called gen-
erator (G) and discriminator (D) trained in an adversarial manner. The generator
generates synthetic data (X ′) and the discriminator compares it with the real data
(X). The generator is trained to generate synthetic data realistic enough to fool
the discriminator, while the discriminator is trained to distinguish between the
real and synthetic data. Upon convergence the generator learns to produce syn-
thetic data which has a similar distribution as that of the real data.

Figure 2.8: Basic generative adversarial learning framework.Figure from [8].

Stadie et al.[39] used domain confusion loss [107] with the generative ad-
versarial framework to extract domain-agnostic features from the demonstration
video. The domain confusion loss is generated by a classifier that attempts to dis-
tinguish samples coming from two different domains. Here the generator is the
feature extractor and the discriminator is the domain classifier. The feature ex-
tractor tries to generate domain agnostic features from the demonstrations and the
domain classifier tries to distinguish between observations coming from different
domains and to maximise domain confusion loss. Consequently the feature ex-
tractor will learn to produce domain invariant features from the demonstrations.

21

2.3. Abstract feature representation

2.3.3 Domain translation

In domain translation methods, feature extractors are trained for frame by frame
translation of demonstrations from the domain of the demonstrator to that of ob-
server. Figure 2.9 illustrates the concept of domain translation. Each frame in the
coffee making demonstration video is translated from the demonstrator’s domain
into observer’s (robot’s) domain at the pixel level. Note that the method accounts
for the changes in the domain settings (such as manipulator morphology) that
exist between the demonstration and the observer’s domain. Training to translate
from one domain to the other, enables feature extractors to learn to extract domain
independent features.

Figure 2.9: Domain translation. Images are translated from the demonstration
domain (top row) to the observers domain (bottom row). Figure from [9]

Different approaches have been developed for feature extraction with domain
translation using autoencoder networks [40], cyclic generative adversarial net-
works (CycleGAN) [9] and generator-discriminator networks [10]. Each of these
approaches are reviewed in detail below.

Autoencoder

Autoencoders [108] are one of the most commonly used DNN structures for fea-
ture extraction. An autoencoder consists of two components: encoder and de-
coder. The encoder converts the input into an encoded feature vector represent-
ation. The inputs could be videos, images or even a 1D audio clip. The decoder

22

2.3. Abstract feature representation

converts this feature vector back into the decoded form. The properties and the
characteristics of the feature representation generated by the encoder can be cus-
tomised by placing different constraints in the structure of encoder-decoder net-
work and customising the loss functions used for training the autoencoder [108].
In[40], an autoencoder is trained to convert demonstration videos from demon-
stration domain into the observers domain. After training, the latent representa-
tions produced by the encoder network are used for learning the task execution.

CycleGAN

CycleGAN[109] is used for translating images between domains. The advantage
of this method is that it does not require paired images from the source and the
target domain and hence can be trained in a unsupervised manner. It learns two
mappings, one from the source to the target domain and the other from the tar-
get to the source domain. Two discriminators are used to distinguish between
the original and the translated images for each of these mappings. The mappings
are then learned by optimising a combined loss function of these two discrimin-
ator losses and a cycle consistency loss[109]. Smithe et al. [9], uses the cycleG-
ANs to translate demonstrations between the demonstrator domain to the observ-
ers domain. Contrary to the autoencoder based approach, the domain translated
demonstration image is used in the execution stage.

Generator-discriminator network

In this approach a generator-discriminator network is used for feature extraction
with domain translation. The generator-discriminator network is trained in a ad-
versarial manner as described in section 2.3.2. Unlike the previous domain trans-
lation methods, the change in the demonstration video frames are translated in-
stead of translating the entire image between the domains. The generator network
is trained to translate the current frame to the next in the robot domain, the same
way the corresponding frames in the demonstration video is translated. Thus the
generator is forced to learn the pixel movements instead of having to learn to gen-
erate entire pixel distributions. Figure 2.10 illustrates the presented approach in
[10]. A U-Net [110] based network architecture is used as the generator. The

23

2.3. Abstract feature representation

discriminator loss with an addition L1 reconstruction loss [108] is used for train-
ing. The reconstruction loss ensures that correct frames are generated, while the
discriminator loss ensures generation of realistic images.

Figure 2.10: Domain translation method using generator-discriminator network.
Fig. from [10]

2.3.4 Transfer learning

Transfer learning [111] is used for solving problems in onedomain byusing know-
ledge gained from another closely related domain. Transfer learning has been
widely used for feature extraction with DNNs. Pre-trained image feature extract-
ors have been reused for generic visual feature extraction, in domains like robotic
vision [112, 113], where large datasets are scarce or not available.

Sermanet et al.[54] use the Inception network [114] pre-trained for ImageNet
classification [115] as the feature extractor. Similarly, pre-trained models from
[116] are used by Sharma et al.[117], to extract features fromdemonstration videos.

2.3.5 Geometrical representation learning

Geometric representation learning is motivated by the human ability to represent
manipulation tasks as a combination of geometric primitives. Geometric prim-
itives can be defined as the simplest or irreducible geometric objects (with the
attributes and characteristics of a physical object) that a system can handle [118,
119]. Points, lines, splines, planes and arcs are examples of geometric primitives.

24

2.3. Abstract feature representation

Geometric representation learning methods infer geometric primitives and their
association relationships from the demonstration video and use that to learn a
feature representation of the task as illustrated in Figure 2.11.

Figure 2.11: Representing insertion manipulation task in terms of geometrical
primitives (a): points (coloured: blue) and lines (coloured: red, yellow, pink)
and their associations(b). Figure from [11].

In [11, 38] constraint association [120] between the geometric primitives are
learned with graph structured kernel functions. These graph kernels called geo-
metrical skill kernels are composite function structures that describe the associ-
ation constraint between geometric primitives. The graph nodes represent the
geometric primitives (points, lines etc.) and graph edges represent the association
between them. These learned primitive constraint associations are then combined
in parallel and sequentially to represent the complex manipulation task in the
demonstrated video.

2.3.6 Action primitives

Action primitives can be defined as the elementary building blocks of an action
or an activity [3]. Every task can be broken down into these predefined action
primitives. Figure 2.12 shows a few examples of different tasks (pick and place,

25

2.3. Abstract feature representation

pushing and bottle opening) broken down into its pre-defined component action
primitives.

Figure 2.12: Decomposing actions into action primitives for task of (a) Pick and
place (b) Pushing away (c) Opening bottle. Colour bars indicates the time dura-
tion of the action primitives in the task video. Figure from [12].

Jia et al.[12] use the concept of action primitives. Demonstrated tasks are
decomposed into pre-defined action primitives for creating task representations.
The pre-defined action primitives used in this work are: idle, move, pick, place,
push, tilt and rotate, which are selected manually based on observing every day
human activities. They are identified in the demonstration videos with an action
primitive recognition network, built by stacking an LSTM [121] network on top of
pre-trained CNN architectures.

2.3.7 Predictive modelling

Future-frame video prediction is a widely studied problem in computer vision
[122, 123, 124]. It can be used as an unsupervised learning technique to learn
meaningful representation fromvideos. It leverages the vast collection of available
videos (example: internet videos) to learn features that can be used for several

26

2.3. Abstract feature representation

applications like action recognition [124]. Recently video prediction has been ex-
tended to robotic task learning as action-conditioned video prediction [125, 126].
In action-conditioned video prediction, predicted future frames are a function of
the current frame and also the action taken by an agent at the current time. This
action-conditioned prediction can then be used tomodel the environment dynam-
ics in reinforcement learning and other robot learning approaches. The proposed
method in [127] uses video prediction to model the demonstration and action-
conditioned video prediction to model the robot environment. Predicted frames
by these models are then used to learn to execute the demonstrated task.

2.3.8 Video to text translation

In this approach, natural language descriptions of the video demonstrations are
used to represent the demonstrated task. For that, first the problem of feature ex-
traction is cast as a video captioning problem [128, 129]. Video captioning meth-
ods generates textual descriptions of the demonstrated task as shown in Figure
2.13, which can be converted into commands for a robotic planner [130]. A vari-
ety of video captioning approaches have been proposed recently utilising the ad-
vances in the field of deep learning [131, 132].

Figure 2.13: Textual descriptions from demonstrations. Figure from [13]

Nguyen et al.[13] use amodified video captioningmethod to generate captions
for the video demonstrations. Contrary to the normal video captionmethods, this

27

2.4. Execution

approach generates video captions in a grammar free form instead of the natural
language form. The video caption network architecture is based on the encoder-
decoder architecture [133] adapted from themachine translation sequence-sequence
[134] network structure. The video caption system is trained using a custom data-
set, the ’video-to-command’ (V2C) dataset. The dataset is created by using videos
taken from the ’Breakfast’ dataset [135]. These videos (2-3min long) are segmen-
ted into short clips (10-15 seconds long) and annotated with a caption that de-
scribes the human action in the clip. These annotated videos are then used for
training the video captioning system in a supervised manner.

Yang et al.[136] further improve on this video captioning approach to make it
more adaptable to robotic manipulation tasks. This method extracts both global
and local features from the demonstrated videos, and then fuses them together
and use for video caption generation. The global features are extracted directly
from each frame and local features are extracted from the ’video difference map’
(VDM) obtained by subtracting first and last frames of the demonstration video.

2.4 Execution

Execution is the last stage of observational learning. It involves finding robotic
manipulator controls to execute the demonstrated task by utilising feature rep-
resentations obtained in the previous stage. Controls are obtained with learn-
ing approaches like reinforcement learning, motion planning methods like model
predictive control or even by direct regression. In this section we review these
different approaches employed in existing literature for task execution.

2.4.1 Inverse reinforcement learning

IRL [137] is a commonly used approach for learning controls in robotic manip-
ulation tasks. IRL formulates observational learning as finding the solution to
a Markov decision process (MDP)[138] using reinforcement learning (RL). An
MDP is represented with a tuple (St, At, St+1, r), where St is the state of the envir-
onment at time t, At the action taken on the environment (by the robotic manip-
ulator), r is the reward obtained for taking the action and St+1 is the new state.

28

2.4. Execution

In the observational learning scenario, solving the MDP means to find a function
i.e. a control policy (π(S|A)) to control the robotic manipulator to perform the
demonstrated task.

RL methods have been successfully used to solve MDPs [139], given a reward
function. In IRL the reward (r) function is inferred from the task demonstration
videos. The reward function may be learned [54] or engineered [55] and may not
be the actual reward that the demonstrator was trying optimize while providing
the demonstrations. The inferred reward function is only an estimate of the actual
reward. Theses rewards can then be used with a standard reinforcement learning
algorithm to solve the MDP (i.e to learn the task). Based on the methods used
for generating rewards IRL methods can be divided into reward engineering and
reward learning methods.

IRL with reward engineering

In this approach, a user-defined reward function is used to learn the demonstrated
task. In [40], the reward function is the negative of the euclidean distance between
extracted features from the demonstration and the robot state (as observed by the
robot) at each time step. Sermanet et al.[55] further enhance this reward formu-
lation by adding a Huber-style loss [140] to the squared euclidean distance. The
euclidean distance will provide the RL algorithm with stronger gradients when
the features are further away at the beginning of the learning process. The Huber-
style loss comes into play when the features get close to each other as the learning
progresses, ensuring fine-tuning of the learned motion at the end.

IRL with reward learning

In reward learning, a learning approach is used to learn the reward functions,
instead of manually engineering them. In [54], Maximum Entropy (MaxEnt) IRL
[141] method is applied to learn rewards as a function of deep visual features
extracted from the demonstrations. The demonstration videos are first divided
into segments, where each segment refer to an intermediate step or a sub-goal.
The number of segments is treated as a hyper-parameter in this work. However,
unsupervised video segmentation methods [142, 143] can also be used. Then a

29

2.4. Execution

quadratic reward function is fit into each of these segments that provides rewards
as a function of the visual features extracted from the video segment. Figure 2.14
shows reward values from a learned reward function, for a successful and failed
pouring task execution.

Figure 2.14: Values from a learned reward function for videos depicting (a) suc-
cessful and (b) failed execution of the pouring task. It can be seen that the reward
value drops, as the task fails to execute in (b). Figure from [13]

2.4.2 Direct regression

Direct regression refers to the direct mapping of the feature representations from
demonstration videos to the robotic controls. The challenging aspect of this ap-
proach is that it requires a dataset with third person demonstrations and corres-
ponding first person robotic controls for executing the task, to learn this mapping.
These datasets are scarce and practically hard to collect.

Sharma et al.[117] collect such a dataset. It consists of 8260 videos of human-
robot demonstrations over 20 tasks ranging from the simple pushing tasks to com-
plex stacking tasks. The dataset consists of task demonstration videos observed
from different viewpoints, and corresponding first person kinesthetic trajectories
for the robot executions. This dataset is then used to learn a direct mapping of
visual features from the demonstrations to the robot trajectories using an LSTM
based network architecture in a supervised manner.

The direct regression approach can further be extended to develop end-end
learning methods (referred as ‘pixel to torque′ methods [112]) for observational

30

2.4. Execution

learning. This will eradicate the need for the intermediate feature representations
and relevant features will be extracted implicitly from the video demonstrations.

2.4.3 Model predictive control

Model predictive control (MPC) [144] is an optimal control approach from con-
trol theory used formotion planning in roboticmanipulation tasks [145, 146, 147].
MPC methods works on the assumption of a known world model. The model
of the world can be numerically derived [148], modelled in simulation [149] or
learned interactively [150]. A general framework of MPC systems is illustrated
in Figure 2.15. Model predictive control first uses the known world model to per-
formoffline planing for a certain number of steps into the future, called ‘imaginary
rollouts′. The cost/reward for each of these imaginary rollouts is calculated and
an optimal control sequence is selected. MPC then executes the first step in this se-
lected optimal imaginary rollout. Upon receiving the observation/measurements
of the new state, MPC performs the imaginary rollouts again. This process of re-
planing using imaginary rollouts and executing single step actions goes on until
the robotic system has obtained an optimal trajectory for executing the desired
manipulation task.

Figure 2.15: Illustration of a general MPC system . Figure from [14]

In [9], a learning based approach with the features extracted from the demon-
strations is applied for task modelling. A probabilistic temporally-structured lat-
ent variable model learned with amortized variational inference [151] is used

31

2.4. Execution

here. Thismodel is utilised by the latent-spaceMPC [152] algorithmwith a sampling
based optimisation procedure (the ’Cross Entropy Method’ [153]), to search for
the optimal sequence of actions.

2.4.4 Action templates

In this approach the demonstrated task is performed by invoking one or more
combinations of pre-defined action templates (actions or actionprimitives), which
the robotic system already knows how to execute. Action templates only require
details like location or orientation of the objects to be manipulated to execute the
corresponding action [154].

In [13], textual descriptions in the grammar-free form are extracted from the
demonstration videos. These textual descriptions are directly mapped into ro-
botic commands, which are used to invoke corresponding action templates. The
relevant objects and their affordance are detected using a AffordanceNet frame-
work [155]. A similar approach of generating textual robot commands is also
used in Yang et al.[136]. A grasp detection network is applied to provide grasp
solutions (grasp rectangle center and orientation) for the objects to be manip-
ulated. Task templates are executed using these grasp solutions of the objects.
An action primitive recognition network is employed in [12] to directly recognise
action templates from the demonstration videos. Here a Mask-RCNN [156] net-
work is used to detect objects and extract their binary segmentation masks from
the video frames. Object poses to be manipulated are then extracted from these
binary object masks.

These action template based approaches for task execution, can further benefit
from the rich literature of knowledge representation based robotic manipulation
methods [157]. It can facilitate integration of symbolic and geometric planning
[158] for observational learning of more complicated multi-step tasks. However,
this category of execution approaches suffers from the limitation that only pre-
defined action templates can be executed by the system. In scenarios where a task
that cannot be represented with the action templates is demonstrated, the system
fails to execute them. Also this approach cannot be generalised for executing tasks
with unseen objects during the training of object, affordance or grasp detection

32

2.4. Execution

networks. For example, failure cases are reported by Jia et al.[12] when the object
detectors failed to detect objects in the scene to be manipulated and also when
the action primitives extracted from the demonstration are incompatible with the
pre-defined action templates.

2.4.5 Generative adversarial learning

Basics of generative adversarial learning approach is already explained in section
2.3.2 of this chapter. It involves training a generator and a discriminator in an ad-
versarial manner. This concept is applied to learn control policies by [39]. The
generator here is a policy gradient method (TRPO[159]), that generates control
policies to execute the demonstrated task. The discriminator tries to distinguish
between the demonstrator (expert) and robots (novice) trajectories. The traject-
ories here refers to the sequence of domain-agnostic task aware features extracted
from the videos of the demonstration and of the robot executions. Upon conver-
gence the policy gradient method will generate an optimal policy that can suc-
cessfully execute the demonstrated task.

2.4.6 Meta-learning

Meta-learning is the process of learning to learn tasks [160]. It has been used
widely in robotic manipulation learning problems to learn new tasks with fewer
examples by leveragingprevious task learning experiences [161]. Recently, Finn et
al. developed the Model Agnostic Meta-learning (MAML) [15] algorithm, a gen-
eral meta-learning approach compatible with any other gradient descent model
(hence model agnostic). MAML aims to find a set of highly adaptable parameters
θ, such that the parameters are closer to the optimal value θi, for a gradient step
with respect to task i, as shown in Figure 2.16.

Yu et al. presented Domain Adaptive Meta-Learning (DAML) [162], by ex-
tending MAML method into observational learning settings. In [163], Yu et al.
further extends DAML to observational learning of long horizon tasks. Here, the
task to be learned is decomposed into component tasks called, primary skill tasks,
which the robot had already seen during the meta-training phase. Each of these

33

2.5. Discussion

Figure 2.16: MAML algorithm illustration. Figure from [15]

primary skill tasks are then learned sequentially to learn the demonstrated long
horizon (multi-step) task.

2.5 Discussion

In this section we discuss how the proposed method, O2A, connects with existing
literature. Works by Liu et al. [40] and Sermanet et al. [55] can be considered
as the closest predecessors to O2A. We adopt the general framework presented in
these works for implementing O2A. Here the demonstrations and the trial robot
executions are projected into a perceptual feature space and the distance between
them are used as the reward/cost to be optimised. The primary differentiator in
our method is that it requires only a single demonstration, while the other ap-
proaches require large number of demonstrations per task as shown in Table 2.3.
Additionally our method can handle a variety of domain shifts, without the need
for constraining the domain shift, for example by using tools as in [40].

Furthermore, our feature extractionmethod closely relates to the transfer learn-
ing methods used in [117] and [54]. The key difference lies in using a generic hu-
man action dataset as the pre-training dataset and a 3D CNN architecture for the
feature extractor. This allows for the capture of the spatio-temporal relations in a
task demonstration video, which is crucial for representing the visual dynamics of
a manipulation task. The existing approaches use an image-based transfer of fea-
tures, applied frame by frame to demonstration videos, which cannot capture the
temporal connections. Finally, O2A employs an IRL with reward engineering ap-

34

2.6. Comparative study

proach [40] [55] for learning the robotic controls for executing the demonstrated
tasks. As mentioned above, the distance between the demonstration and the trial
robot executions in the feature representation space is used as the reward. This
reward is then used by a standard RL algorithm for learning controls. However,
it would be an interesting future work to learn the reward function (instead of
engineering them) as used in [54].

2.6 Comparative study

Even though several observational learning methods have been proposed in liter-
ature, a direct comparison of thesemethods toO2A is difficult due to the following
reasons:

• The field’s wide scope and diversity in the approaches used. For example,
it is hard to compare the TCN feature representation [7] with the textual
representation of tasks [13], as one is a numerical feature vector and the
other being a textual sequence.

• Lack of standardised metrics and evaluation protocols make a direct quant-
itative comparison not possible. For example, the task of reaching can be
evaluated as the ratio of the initial and final distances between the manip-
ulator and the target region [40]. However, the task completion can also
be evaluated by checking if the manipulator reaches within a certain radius
around the target [10]. A set of standard evaluation protocols are neces-
sary to enable a fast and direct comparison of different methods, without
the need for re-implementing each one of them from scratch.

• Moreover, different approaches use different robotic hardware, simulation
environments and programming frameworks. This makes reproducibility
of works by a third party all the more difficult. An interesting future work
would be to build a cloud based evaluation task-suite with a leaderboard
where different observational learning methods can be deployed and com-
pared under identical robotic manipulators and environments.

35

2.6. Comparative study

Lynnerup et al. present a detailed survey [164] of such issues in deep rein-
forcement learning for robotics in general, which are also applicable to observa-
tional learning. Hence in Tables 2.2 and 2.3, we present a qualitative study of
observational learning methods that are comparable to our method, O2A. Table
2.2 shows approaches used in each stage of observational learning. And in Table
2.3 (column 2), the comparison is based on the number of demonstrations re-
quired for learning a new task, including the demonstrations required for training
feature representation extractors. It shows that it will require far greater number
of demonstrations if we were to use the existing approaches instead of O2A. The
requirement of substantially larger number of demonstrations required in the ex-
isting methods is because the feature extractors need to be trained separately for
each task. Whereas our method has already been pre-trained on a generic data-
set. We believe that what we show is more general than direct comparison to one
method only. We also show different domain shifts tackled by each method. Our
method does not use any robot data for training the feature extractor and also
works well under different domain shifts.

36

2.6. Comparative study

Table 2.2: Observational learning methods in existing literature are compared,
based on approaches used in different stages.

Reference Observation Abstract feature representation Execution
[55] Direct Metric learning Inverse reinforcement learning
[39] Direct Generative adversarial learning Generative adversarial learning
[40] Direct Domain translation Inverse reinforcement learning
[9] Direct Domain translation Model predictive control
[10] Direct Domain translation Direct regression
[117] Direct Transfer learning Direct regression
[54] Direct Transfer learning Inverse reinforcement learning
[12] Direct Action primitives Action templates
[127] Direct Predictive modelling -NA-
[136] Direct Video to text translation Action templates
[162] Direct Meta-learning Meta-learning
[163] Direct Meta-learning Meta-learning
O2A Direct Transfer learning Inverse reinforcement learning

37

2.6. Comparative study

Ta
bl
e2

.3:
Ob

se
rv
at
io
na

lle
ar
ni
ng

m
et
ho

ds
in

ex
ist

in
gl

ite
ra
tu
re

ar
ec

om
pa

re
d.

O 2
A
re
qu

ire
so

nl
ya

sin
gl
ed

em
on

-
str

at
io
nt

ol
ea
rn

ne
w

ta
sk
s.

It
do

es
no

tu
se

an
yr

ob
ot

da
ta

fo
rt
ra
in
in
gt

he
ac
tio

nv
ec
to
re

xt
ra
cto

r.
An

d
als

ow
or
ks

we
ll
un

de
rd

iff
er
en

ta
ll
do

m
ain

sh
ift
s.

Re
fer

en
ce

Nu
m
be

ro
fv

id
eo

de
m
on

str
at
io
ns

re
qu

ire
d
pe

rt
as
k

(In
clu

di
ng

to
tra

in
th
ef

ea
tu
re

ex
tra

cto
r/
s)

Is
ro
bo

td
at
a

re
qu

ire
d
fo
rt
ra
in
in
g

th
ef

ea
tu
re

ex
tra

cto
r/
s?

Vi
ew

po
in
t

in
va

ria
nt

?

In
va

ria
nt

to
ch

an
ge

so
f

ob
jec

t
pr
op

er
tie

s?

In
va

ria
nt

to
ch

an
ge

si
n

sc
en

e
ba

ck
gr
ou

nd
?

In
va

ria
nt

to
ch

an
ge

so
f

m
or
ph

ol
og

yo
f

th
em

an
ip
ul
at
or

?
[5
5]

∼
40

m
in

of
hu

m
an

de
m
on

str
at
io
ns

+
∼
20

m
in

ra
n-

do
m

ro
bo

tm
an

ip
ul
at
io
n
da

ta
X

X
X

X
X

[3
9]

An
ex
pe

rt
po

lic
yi

su
se
d
in
ste

ad
of

di
re
ct

de
m
on

str
a-

tio
ns

X
X

X
X

X

[4
0]

∼
60
-3
00
0

hu
m
an

de
m
on

str
at
io
ns

us
in
g

ad
di
tio

na
l

to
ol
s

7
X

X
X

7

[9
]

∼
20
-3
0
hu

m
an

de
m
on

str
at
io
ns

+
∼
30
0-
50
0
ra
nd

om
hu

m
an

an
d
ro
bo

ti
m
ag

es
X

7
-N

A-
-N

A-
X

[1
0]

∼
23
0

hu
m
an

de
m
on

str
at
io
ns

+
co
rre

sp
on

di
ng

ro
-

bo
tic

joi
nt

an
gl
ed

at
a

X
X

X
-N

A-
X

[1
17
]

∼
20
0-
40
0

hu
m
an

de
m
on

str
at
io
ns

+
co
rre

sp
on

di
ng

ro
bo

tic
joi

nt
an

gl
ed

at
a

X
X

X
-N

A-
X

[5
4]

∼
12

hu
m
an

de
m
on

str
at
io
ns

7
7

X
-N

A-
X

[1
2]

∼
50
-1
00

hu
m
an

de
m
on

str
at
io
ns

7
X

X
X

X

[1
27
]

Us
es

bo
th

hu
m
an

an
d
ro
bo

tt
as
kd

em
on

str
at
io
ns

(e
x-

ac
tn

um
be

rs
un

kn
ow

n)
X

X
-N

A-
-N

A-
X

[1
36
]

∼
29
90

hu
m
an

de
m
on

str
at
io
ns

7
X

X
X

X

[1
62
]

1
(B

ut
us

es
clo

se
ly

re
lat

ed
su

pp
lem

en
ta
ry

ta
sk

de
m
on

str
at
io
ns

.R
eq

ui
re
s∼

60
0-
12
00

ro
bo

ta
nd
∼
60
0-

12
00

hu
m
an

de
m
on

str
at
io
ns

pe
rt
as
k)

X
X

X
X

X

[1
63
]

1
(B

ut
re
qu

ire
s
lar

ge
nu

m
be

r
of

ac
tio

n
pr
im

iti
ve

de
m
on

str
at
io
ns

.∼
60
0-
12
00

ro
bo

ta
nd
∼
60
0-
12
00

hu
-

m
an

de
m
on

str
at
io
ns

pe
ra

cti
on

pr
im

iti
ve

)

X
-N

A-
X

X
X

O 2
A

On
ly

1d
em

on
str

at
io
n(

hu
m
an

de
m
on

str
at
io
nw

ith
or

w
ith

ou
tu

sin
ga

dd
iti
on

al
to
ol
s)

7
X

X
X

X

38

2.7. Conclusion

2.7 Conclusion

In this chapter we have reviewed previous and ongoing research in the field of ob-
servational learning. Methods and techniques used in observation, abstract fea-
ture representation and execution stages are discussed. In the introductory sec-
tion, we present the motivation for using observational learning. Observational
learning is used when third person demonstrations are available for learning a
task.

In the second section, we discuss different approaches for observing demon-
strations: assisted and direct observation. In assisted observation, external assist-
ance with sensing techniques like motion capture and visual detectors are used.
However, these methods have the disadvantage that their scope is limited. Direct
observation of demonstrations can overcome this drawback.

The third section discusses different approaches for extraction of feature rep-
resentations directly from raw video demonstrations. Even though several tech-
niques have been proposed ranging from domain translation to geometric rep-
resentation learning, there is still room for improvement. Reducing the number
of demonstrations needed to learn a new task and ability for handling different
domain shifts are two areas to be further investigated.

In the fourth section, we review different methods for task executions. It in-
volves exploring and finding the controls for the robotic manipulator to execute
the demonstrated task. IRL is the commonly used approach in this stage. Dir-
ect regression, pre-defined action templates, generative adversarial learning and
planning approaches have also been used.

In the final section, we present a qualitative comparison of existingmethods for
observational learning and O2A. While existing approaches need multiple video
demonstrations to learn a new task, O2A requires only a single demonstration.
Also, our method can handle different domain shifts. We achieved this by devis-
ing a novel approach of using a 3D CNN pre-trained for action recognition on a
generic action dataset, for extracting an abstract feature representation of tasks
from the demonstration videos.

**

39

3
Action vectors

3.1 Introduction

Neuroscience studies [165, 166] in monkeys show that there exists a type of
neurons called ‘mirror neurons’ in the premotor cortex (area F5) of the brain.
These neurons were found to be activated when an individual observes its own
action execution as well as when it observers the same action performed by an-
other individual. Further studies [167] have given evidence for the existence of
mirror neurons in human beings and that the action perception and action ex-
ecution share common neural structure involving these mirror neurons. Italian
neurophysiologist Rizzolatti suggests that this visual-motor interconnection plays
an important role in human observational learning and action recognition [168].
He further explains that the activation of motor neuron system for mere action re-
cognition is not unexpected, even though it may sound odd. Understanding only
the visual aspects without the underlying motor concepts will not provide know-
ledge about what it means to execute the observed action and the links to other
similar actions. Inspired by these studies in neuroscience we asked ourselves the
question: "Can we use action recognition methods to aid observational learning
in robotic systems?". In answering this we have developed O2A , a one-shot ob-
servational learning method that utilizes a feature extractor pre-trained for action
recognition.

Action recognition from videos has seen a surge in performance with the ad-
vent of DNN architectures [169, 170]. These DNNs extract powerful perceptual

40

3.2. Pre-training with large generic datasets

features from the action videos that abstractly represent the action and are gen-
erally discriminative (in terms of actions) and agnostic (to domain settings such
as viewpoint of observation, object properties, scene background and morpho-
logy of manipulators [17]). In the presented method we use such an action re-
cognition network pre-trained on a generic action dataset to extract an abstract
perceptual representation of tasks (the ‘action vector’) from the demonstration
videos. The necessary task-discriminative and domain-agnostic properties come
from pre-training for action recognition on a range of diverse actions and domain
settings which share common underlying visual dynamics. Using these action
vectors, a reward is generated that directly reflects the similarity of the actions
performed by the demonstrator and by the robot. This reward is then used for
reinforcement learning of a optimal robotic control policy for carrying out the
demonstrated task. The overall working of O2A is further detailed with diagram-
matic illustrations (Figure 4.1) in the next chapter (Chapter 4). The concept of
the action vector and its extraction is explained in section 3.3. The evaluation ex-
periments with results are given in section 3.4. Finally section 3.5 summarises the
chapter.

The key innovations of the presented method lie in achieving one-shot learn-
ing with: (a) an action vector extractor pre-trained for action recognition and (b)
using an generic action dataset for pre-training.

3.2 Pre-training with large generic datasets

Pre-training on large generic datasets has become common in the fields of com-
puter vision and natural language processing. Models are first pre-trained on
a large generic dataset(s) in a supervised or unsupervised manner. After pre-
training, the models are used to solve downstream problems with minimum/no
fine-tuning. Generic language models such as ELMo [171], GPT [172, 173, 174],
BERT [175] have shown success in solving several downstream language pro-
cessing problems. Similarly, ImageNet models [176], Image-GPT [177], BiT mod-
els [178], SEER [179] have demonstrated that this approach can be applied for
computer vision problems as well. We introduce this concept into visual robotic
manipulation.

41

3.3. Action vectors

3.3 Action vectors

An action vector is as an abstract task-discriminative and domain-agnostic per-
ceptual representation of the task captured in a video. Task-discriminative and
domain-agnostic means that the action vectors from the videos depicting differ-
ent instances of the same task should be closer to each other irrespective of the
domain in which they are recorded and further away to action vectors from other
classes (as shown in Figure 3.1). Action vectors capture the underlying meaning
of a task at a level of abstraction and is invariant to domain shifts. Ideally, there
will be the right emphasis on both the end goal and the path followed during
task execution. In our method the action vector extractor is pre-trained for action
recognition. A generic action dataset depicting wide variety of actions under dif-
ferent domain settings is used for the pre-training. The action vector extraction is
based on the following two assumptions:

(1) The spatio-temporal features generated by the final layers of an action vec-
tor extractor pre-trained for action recognition on a generic action dataset, are
task-discriminative and domain-agnostic. The assumption is reasonable since the
same layer outputs are used to recognise different actions, independently of cam-
era angles of recordings, varying scene backgrounds, illumination conditions, act-
ors / manipulators, object appearances, interactions, pose and scale.

(2) The action vector extractor pre-trained on a generic dataset can generalise
to unseenmanipulation tasks used in robotic observational learning. The intuition
is that the underlying visual dynamics between the generic action dataset and the
manipulation tasks are the same. For example, it is the same physical laws of
dynamics governing object interactions, both for a cricket shot as well as a robot
striking cubes.

Section 3.4 shows the experiments and results that validate these critical as-
sumptions.

3.3.1 Dataset

We use the UCF101 action recognition dataset [16] as the generic action dataset
for pre-training. The dataset was selected considering the diversity in the variety

42

3.3. Action vectors

Figure 3.1: An illustration of the conceptual action vector space. Action vectors
from videos of a task are closer to each other irrespective of the domain settings
in which they are recorded and further away from other classes.

of actions and domain settings of video samples present. Sufficient diversity in
terms of actions and domain settings is crucial for the action vector extractor to
generalise to unseen manipulation tasks used for observational learning and to
extract task-discriminative and domain-agnostic action vectors from them. Also
in Table 4.6, we present a comparison of the commonly used action datasets in
literature. UCF101 dataset was most suited for pre-training at the time, in terms
of number action classes and video samples per class. However, recently more
advanced datasets with fine-grained action classes are available which are given
in Appendix 6.1 and could be used in future research.

TheUCF101 action dataset consists of 13320 realworld action videos fromYou-
Tube, having 101 action categories. The dataset has a large diversity (as shown
in Figure 3.2) in terms of domain settings such as variations in camera motion,
recording angle, object appearances, pose and scale, scene background and illu-
mination conditions. The range of actions depicted also includes different kinds of
interactions between various objects and a range of body articulations and shapes.
The videos are collected at a fixed 25fps frame rate, 320x 240 resolution and have
a mean clip length of 7.21 seconds. The training and validation sets are selected
with a random split function. Further details of the dataset with the full list of 101
action categories are given in Appendix 6.2.

43

3.3. Action vectors

Table 3.1: Publicly available action datasets. UCF101 dataset was the most suited
at the time for pre-training, in terms of number action classes and video samples
per class.

Release

year

No: of

action

classes

Video samples

per class
Resource

Hollywood2[180] 2009 12 61-278 Movies
UCF50[181] 2010 50 > 100 YouTube

HMDB51[182] 2011 51 > 101 Movies, YouTube, Web
ASLAN[183] 2012 432 ∼8 YouTube
UCF101[16] 2012 101 ∼132 YouTube

3.3.2 Network architecture

A 3D convolution [17, 184] based neural network (3D CNN) is used for action re-
cognition in our research. This architecture was selected based on the ease of im-
plementation and training. However, any DNN based architecture such as LSTM
network [129], Two stream CNN [185], 2D CNN [186], Temporal segmentation
network [187] or even a custom designed network can be used.

3D convolution and 3D pooling

3D convolutions are 2D convolutions extended to a third dimension, to extract
temporal information from 3D data structures such as videos or volumetric CT
scans as illustrated in Figure 3.3. In Figure 3.3.a, a 2D data structure with height
H , width W is convolved with 2D kernel of size kxk, where k is the kernel size.
And in Figure 3.3.b, a 3D data structure with height H , width W and temporal
length L is convolved with 3D kernel of size dxkxk, where k and d are the kernel
spatial size and temporal depth respectively.

Similarly, 2D pooling is also extended to 3D pooling [17], where pooling is
applied to input data within a 3D pooling cube as shown in Figure 3.4. Here a
dxkxk input data block is mapped (by pooling) into a single point in the output.

44

3.3. Action vectors

Figure 3.2: Selected few classes from UCF101 action dataset illustrating the
diversity in terms actions and domain settings. Figure from [16]

Network architecture

The network architecture is modelled based on the original VGGNet [19] archi-
tecture, with convolution layers arranged in five blocks and with fully connected
layers following them. The layer wise network architecture along with the kernel
sizes, input and output dimensions are given in Table 3.2. Variable ‘NC’ denotes
the number of classes. The network consist of eight 3D convolutional layers, five
3D maxpooling layers and three fully connected layers. The ReLU [188] activa-
tion function is used for all the convolutional and fully connected layers except
the final layer, where a linear activation function followed by a Softmax function
is used. A dropout of .5 is used for the fully connected layers during training to

45

3.3. Action vectors

Figure 3.3: (a) 2D convolution (b) 3D convolution. Figure adapted from [17]

Figure 3.4: 3D pooling

avoid overfitting. We also use a zero-padding layer between the last convolution
and pooling layers to control shrinkage of dimensions.

3.3.3 Pre-training objective

As mentioned, our pre-training objective is action recognition. We use the cross-
entropy loss [189] function, L(y, y) as given below:

L(y, y) = −
NC−1∑
i=0

yilog(yi) (3.1)

where, yi is the ith value in the predicted output and yi is the corresponding one-
hot encoded ground truth value, both ofwhich are expressed as probabilities. NC
is the number of classes and for UCF101 dataset NC=101.

46

3.3. Action vectors

Table 3.2: Network architecture for the action vector extractor

Layer Type Kernel size Input size Output size

conv1 Conv3D (3, 3, 3) (16, 112, 112, 3) (16, 112, 112, 64)
pool1 MaxPooling3D (1, 2, 2) (16, 112, 112, 64) (16, 56, 56, 64)

conv2 Conv3D (3, 3, 3) (16, 56, 56, 64) (16, 56, 56, 128)
pool2 MaxPooling3D (2, 2, 2) (16, 56, 56, 128) (8, 28, 28, 128)

conv3a Conv3D (3, 3, 3) (8, 28, 28, 128) (8, 28, 28, 256)
conv3b Conv3D (3, 3, 3) (8, 28, 28, 256) (8, 28, 28, 256)
pool3 MaxPooling3D (2, 2, 2) (8, 28, 28, 256) (4, 14, 14, 256)

conv4a Conv3D (3, 3, 3) (4, 14, 14, 256) (4, 14, 14, 512)
conv4b Conv3D (3, 3, 3) (4, 14, 14, 512) (4, 14, 14, 512)
pool4 MaxPooling3D (2, 2, 2) (4, 14, 14, 512) (2, 7, 7, 512)

conv5a Conv3D (3, 3, 3) (2, 7, 7, 512) (2, 7, 7, 512)
conv5b Conv3D (3, 3, 3) (2, 7, 7, 512) (2, 7, 7, 512)
zeropad5 ZeroPadding3D (0, 1, 1) (2, 7, 7, 512) (2, 8, 8, 512)
pool5 MaxPooling3D (2, 2, 2) (2, 8, 8, 512) (1, 4, 4, 512)
flatten1 Flatten - (1, 4, 4, 512) (8192)

fc6 Dense (4096) (8192) (4096)
fc7 Dense (4096) (4096) (4096)
fc8 Dense (NC) (4096) (NC)

47

3.3. Action vectors

3.3.4 Pre-training and action vector extraction

For pre-training, we first uniformily downsample the UCF101 videos in time into
Nf=16 frames as illustrated in Figure 3.5 for providing a fixed-length represent-
ation for each video clip. We also resize video frames (with bilinear interpola-
tion) into 112 x 112 pixels to standardize the size. These downsampled and res-
ized videos are then used for training the network for action recognition. The
action vector extraction network trained with the UCF101 dataset is referred to
as ‘NN:UCF101’ hereafter. The training details are given in Table 3.3 and test-
ing accuracies (on UCF101 test set) during training are plotted in Figure 3.6. We
apply the same pre-processing steps of down-sampling and resizing to videos of
demonstrations and robot trial executions for action vector extraction during ob-
servational learning.

However, obtaining high testing accuracies on source datasets alone cannot
guarantee better performance on target datasets/downstream tasks in transfer
learning [190]. When to stop training on the source dataset to obtain themost use-
ful transfer features is still an open area of research. We further evaluated transfer
performances of models with varying testing accuracies (on source UCF101 data-
set) as reported in Section 3.4.6. The results show that the transfer performance
has indeed plateaued.

Figure 3.5: Downsampling training video before feeding into the network.
Downsampled size (Nf) set to 5 frames for ease of illustration.

After training, we use features from one of the final layers of NN:UCF101 as
the action vector. Our experiment (reported in Section 3.4) shows that the features
from layers pool5 (size: 8192) and fc6 (size: 4096) are best suited to be used as
the action vector. We report results, both when the features from pool5 and fc6
layers are used as the action vector in this thesis.

48

3.3. Action vectors

Figure 3.6: Testing accuracy (on UCF101 test set) per epoch during action
recognition pre-training with UCF101 dataset

Table 3.3: Details of action recognition pre-training on the UCF101 dataset

NN:UCF101

Number of classes (NC) 101
Batch size 16
Input size (16, 16, 112, 112, 3)
Output size (16, 101)
GPUs used 2 x Nvidia K80
Training time 48 hrs
Optimizer ADAGRAD [191]
Learning rate 0.001
Number of training examples 9,990
Number of testing examples 3,330
Total number of

trainable parameters
78,409,573

Number of epochs 119
Best testing accuracy 60.72%

49

3.4. Analysing action vectors

3.4 Analysing action vectors

In this section, we aim to validate the assumptions for our action vector extraction
method explained in Section 3.3. First we collect a manipulation tasks dataset,
the LMD (detailed in Section 3.4.1). Note that LMD is only used for evaluation
and not used in anyway during pre-training of the network for action recognition.
Using this dataset we conduct the clustering analysis to identify which one of the
final layers of NN:UCF101 provides the best action vector for manipulation tasks.
We also calculate the class similarity scores and do visualisation for the action
vectors from LMD. In the next sections we detail the experiments and discuss the
results obtained.

3.4.1 LMD evaluation Dataset

LMD consists of videos of three different manipulation tasks: reach, push and
reach-push, examples of which are shown in Figure 3.7. The task videos are col-
lected directly with a human hand and by using tools resembling robotic manipu-
lators/end effectors. Each class consists of 17 videos with variations in viewpoint
of observation, object properties, scene background and morphology of manip-
ulator as illustrated in Figure 3.8. Note that very similarly looking task classes
were carefully selected and the same set of objects and manipulators were used
across tasks for collecting the videos. These choices are deliberate tomake the task
differentiation more challenging. Under these circumstances, only an efficient ac-
tion vector extractor can produce task-discriminative and domain-agnostic action
vectors for different task classes in LMD. The details of the dataset are summar-
ised in Table 3.4. Note that audio/sound is not recorded during data collection.
This could be a future extension for multi-modal robotic manipulation learning
as described in chapter 5.3.1.

3.4.2 Clustering analysis

We conduct the clustering analysis to evaluate which one of the final layers of
NN:UCF101 network provides the best action vector for manipulation tasks. We
use the quality of the clusters in the action vector space as a measure to under-

50

3.4. Analysing action vectors

Figure 3.7: Tasks of (a) reaching (b) pushing and (c) reach-push from LMD

Table 3.4: Leeds Action Dataset details

Dataset property Value

No: of actions 3
Total no: of videos 51
Videos per class 17
Total no: of frames 10,246
Min no: of frames per video 80
Max no: of frames per video 410
Avg no: of frames per video 201
Avg no: of frames per video in class reach 165
Avg no: of frames per video in class push 195
Avg no: of frames per video in reach-push 242

stand how task-discriminative and domain-agnostic are the action vectors, when
features from different layers of NN:UCF101 are used. The more the action vec-
tors are task-discriminative and domain-agnostic, the better the clustering of the
action vectors from the same class will be. To analyse the quality of the clusters
we propose to use a standard clustering algorithm and evaluation metric. The hy-
pothesis behind this is that, the quality of the clusters will be directly correlated

51

3.4. Analysing action vectors

Figure 3.8: Diversity in the data collected for the task of pushing. (a) Normal
pushing and pushing with changes in: (b) viewpoint of observation (c) object
properties (d) scene background and (e)morphology of themanipulator. Similar
diversity can be observed in other classes as well.

to the performance of the clustering algorithm, if all the other factors remain the
same.

First, we extract the features from the pool5, fc6, fc7 and fc8 layers of the
NN:UCF101 network, for all the 17 videos in LMD. The Baseline-R is obtained
using features from the pool5 layer of the same NN:UCF101 network but ini-
tialised with random weights. The features extracted from each layer are then
clustered with a supervised clustering algorithm. In our experiment we use K-
means [192] with the value of K=3, corresponding to the number of task classes.

52

3.4. Analysing action vectors

After applying the clustering algorithm, the predicted labels are evaluated against
the ground truth labels. We use the standard metric of Adjusted Random Index
(ARI) [193, 194] for evaluation. The ARI score gives the extent to which the pre-
dicted clustering corresponds to the ground truth clusters by counting pairs that
are assigned to the same and different clusters. The ARI score will indicate the
quality of clustering and thereby give a measure of task discrimination and do-
main invariance of the action vectors from different layers of NN:UCF101. In our
experiment we use the implementation of K-means clustering algorithm available
from [195] with the default settings as given in Table 3.5.

Table 3.5: K-means algorithm parameters used

Parameter value

No: of clusters 3
Method of initialisation k-means++ [196]
Algorithm Elkan method [197]
No: of runs 10
Max: number of iterations per run 300
Relative tolerance 1e−4

Adjusted random index (ARI)

The Adjusted Random Index or ARI metric is used for evaluating the perform-
ance of the clustering algorithms. Even though other metrics such as V-Measure
[198] can be used, we have selected ARI due to the simplicity in implementa-
tion and also it is normalised against chance. ARI values are bounded by [−1, 1],
where −1 is the lowest score, 0 indicates random clustering and 1 shows that the
predicted clustering corresponds to the ground truth perfectly. Normalisation
against chance ensures a value close to 0 for random labeling, independently of
the number of clusters and samples and exactly 1when the clustering are identical.

ARI can be calculated as follows: Let x be the number of pairs of items in
the same clusters in ground truth clustering and predicted clustering and y be
the number of pairs of items in different clusters in ground truth clustering and

53

3.4. Analysing action vectors

predicted clustering. Then the Random Index (raw RI) is given by Equation 3.2.

RI =
(x+ y)

Ctotal
2

(3.2)

where,Ctotal
2 is the possible number of pairs in the datasetwithout ordering. How-

ever, raw RI is not normalised for chance, which means that a random labelling
may not always return a score of 0. This drawback is overcome by defining ARI
as given in Equation 3.3.

ARI =
RI − E(RI)

Max(RI)− E(RI)
(3.3)

where, E(RI) is the expected RI for random labelling and Max(RI) is the max-
imum RI value, which is 1.

Results

Table 3.6: ARI scores (higher the better). Results show that the features from
layers pool5 and fc6 of theNN:UCF101 network are best suited to be used as action
vectors.

Layer Vector size ARI score

Baseline-R 8192 0.07
pool5 8192 0.26

fc6 4096 0.34

fc7 4096 0.19
fc8 101 0.14

The results of the experiment are tabulated in Table. 3.6. The ARI value for
Baseline-R is close to zero as expected and gives us the baseline to compare with.
The ARI score increases when features from pool5 to fc6 layers are used as the
action vector, but drops for the final fc7 and fc8 layers. The results indicate that the
features from pool5 or fc6 layer of the NN:UCF101 network are the most suitable

54

3.4. Analysing action vectors

to be used as the action vector. These results are in agreement with the previous
works [199, 200] that study transferability of features from different layers of a
pre-trained CNN to new downstream problems. Specifically, Azizpour et.al [199]
have shown that the first fully connected layer after the convolutional layers of a
pre-trained (for classification) network produced the most generic features for a
range of 15 downstream problems.

Furthermore, we also performed clustering analysis when features from dif-
ferent layers are concatenated and used as the action vector. The results are tab-
ulated in Table 3.7. Concatenating features did not produce any improvement in
the performance. Hence we use features from each layer (pool5 and fc6) of the
NN:UCF101 network separately as the action vector in O2A. However, it would
be interesting to study how to exploit the consistency in performance while con-
catenating layer outputs, to reduce the dependency on individual layers. Addi-
tionally, we also conducted the clustering analysis when only a set of features
(unsupervised selection) are used. Experiment details and the results are given
in Appendix 6.3.

Table 3.7: ARI scores when features from different layers are concatenated and
used as the action vector. Results do not show any significant improvement in the
performance.

Layer Vector size ARI score

pool5+fc6 12288 0.26
pool5+fc7 12288 0.26
pool5+fc8 8293 0.26
fc6+fc7 8192 0.29
fc6+fc8 4197 0.27
fc7+fc8 4197 0.20

3.4.3 Class similarity scores

In this experiment we calculate the interclass and intraclass similarity scores for
different classes of LMD in the action vector space. The similarity score between

55

3.4. Analysing action vectors

a pair of action vectors is shown as the cosine of the angle between them as given
in Equation 3.4.

Similarity = Cos θ =
A ·B

||A|| × ||B|| (3.4)

where, A and B are two vectors, A · B is the dot product between them and
||A||, ||B|| are the vector magnitudes. The similarity scores are bounded by [−1, 1]
with−1 indicating diametrically opposite vectors and 1 indicating coinciding vec-
tors.

The results are tabulated in Table 3.8. For each chosen feature layer, the di-
agonal values represent the average of similarity scores between pairs of action
vectors from the same class and the non-diagonal values are the average of sim-
ilarity scores between pairs of action vectors from different classes. The diagonal
values are greater than the rest of the values indicating task discrimination and
domain invariance for the action vectors extracted. Through experiments repor-
ted in Chapter 4, we show that this is adequate for one-shot observational learn-
ing. The only exception is for layer fc6 where a greater inter-class similarity score
is observed between reach and push classes than the intraclass similarity score
for reach class. Provided that both tasks are extremely similar, these results are
promising.

56

3.4. Analysing action vectors

Table 3.8: Class similarity scores. The intraclass similarity (diagonal values) are
greater than the rest of the values, indicating adequate task-discrimination and
domain-invariance.

Random weights Reach Push Reach-Push

Reach 0.9873 0.9870 0.9870
Push 0.9870 0.9874 0.9868
Reach-Push 0.9870 0.9868 0.9889

NN:UCF101(pool5) Reach Push Reach-Push

Reach 0.7391 0.7371 0.6897
Push 0.7371 0.7547 0.6852
Reach-Push 0.6897 0.6852 0.7578

NN:UCF101(fc6) Reach Push Reach-Push

Reach 0.4994 0.5001 0.4052
Push 0.5001 0.5352 0.4022
Reach-Push 0.4052 0.4022 0.4978

57

3.4. Analysing action vectors

3.4.4 Visualisation

We also visualize the action vectors fromLMD, projected into 2D using PCA[201],
which are shown in Figures 3.9, 3.10a and 3.10b . The clustering of action vectors
from the same classes, when compared to the Baseline-R is evident. This further
indicates the domain-agnostic and task-discriminative nature of our action vec-
tors. It must be noted that this visualisation collapses the vectors, of much greater
dimensions (8192 for Baseline-R/pool5 and 4096 for fc6), into a 2D space, which
might be causing some ‘artificial’ overlaps. Additionally, we also experimented
with 3D visualisation of LMD, results of which are shown in Appendix 6.4.

(a)

Figure 3.9: Visualising LMD using action vectors for Baseline-R (features from
pool5 layer of NN:UCF101 with randomly initialised weights are used)

58

3.4. Analysing action vectors

(a)

(b)

Figure 3.10: Visualising LMD using action vectors from (a) pool5 and (b) fc6
layers of NN:UCF101

59

3.4. Analysing action vectors

And to further understand the clustering of LMD, we visualised the dataset by
merging the reach and push classes into a single class. Considering that both the
classes have very similar looking motion dynamics, this merging is justified. The
results are shown in 3.11, 3.12a and 3.12b. A clear class based clustering is now
evident in the visualisations.

(a)

Figure 3.11: Visualising LMD (after merging reach and push classes) using action
vectors for Baseline-R (features from pool5 layer of NN:UCF101 with randomly
initialised weights are used).

60

3.4. Analysing action vectors

(a)

(b)

Figure 3.12: Visualising LMD (after merging reach and push classes) using
action vectors from (a) pool5 and (b) fc6 layers of NN:UCF101

61

3.4. Analysing action vectors

3.4.5 Discussion

Here we present a critical analysis of the experiments conducted and the results
obtained for action vector analysis.

The effectiveness of K-means clustering algorithm tends to reduce as the di-
mensionality of the features increases, which is commonly referred as the ’curse
of dimensionality’. In the higher dimensions, the ratio of distances to the nearest
and furthest points approaches to one for the euclidean distance metric used in
the K-means clustering [202] algorithm. Hence we further performed PCA di-
mensionality reduction on features from different layers of NN:UCF101, before
being used as the action vectors. The results (reported in the Appendix 6.5), are
in agreement with that of when using K-means clustering without dimensionality
reduction, showing that the features from pool5 and fc6 layers are best suited to
be used as the action vectors.

The intra-class similarity scores are comparatively lower for the tasks of reach-
ing and pushing. However it has to be noted that the tasks of reaching and push-
ing require similar manipulator movements/trajectories. The intra-class similar-
ity scores are higher for the the third class of reach-push which has different ma-
nipulator movements/trajectories from other classes. Similarly, while visualizing
the action vectors we rely on PCA to compress action vectors from a very high
dimension into 2D. This could possibly create artificial overlaps and cause dif-
ficulty in understanding how well the clusters are formed. However, taken all
together these experiments provide enough evidence to be confident that the ac-
tion vectors generated from the pre-trained extractor have task-discriminative and
domain-agnostic properties when applied to unseen manipulation tasks.

3.4.6 Pre-training accuracy and transfer performance

Herewe study the transfer performance of the action vector extractor (NN:UCF101)
when trained further for higher testing accuracies on the source (UCF101) data-
set. We evaluate the transfer performance using clustering analysis on LMD. The
results are tabulated in Table 3.9 and plotted in Figure 3.13. The ARI scores for
features from pool5 layer increase to .34 from .26, linearly with increase in testing
accuracies. However, ARI scores for features from fc6 layer show no significant

62

3.4. Analysing action vectors

improvements and varies non-linearly with testing accuracies. The results show
that transfer performances have plateaued for the given pair of source (UCF101)
dataset and the downstream task of generating action vectors from LMD.

Table 3.9: Transfer performance evaluation when action vector extractor
(NN:UCF101) is pre-trained for higher action recognition testing accuracies.

Training details

Training time
48 hrs

(Base model)
60 hrs 72 hrs 84 hrs 96 hrs

Testing accuracy (UCF101 test set) 60.72% 70.23% 77.05% 79.52% 80.62%
ARI scores (transfer performance)

pool5 .26 .33 .33 .34 .34
fc6 .34 .23 .33 .36 .35

Figure 3.13: ARI scoreswhenNN:UCF101 network is pre-trained for higher action
recognition accuracies on UCF101 dataset.

63

3.5. Conclusion

3.5 Conclusion

In this chapter we discussed in detail, the concept of action vectors and our pro-
posed method of action vector extraction from videos. The action vector extractor
is pre-trained on a large generic action dataset for action recognition. We hypo-
thesised that these extractors can generalize to unseenmanipulation tasks that we
wish the robot to learn with observational learning. We also reported the results
of experiments conducted to study these assumptions. The results showed that
the action vectors generated by pre-trained extractors have a certain degree of task
discrimination and domain invariance when evaluated with a challenging LMD
dataset we collected, containing manipulation tasks unseen during pre-training.

However, a critical question remains: Are the action vectors sufficient to enable
one-shot observational learning of manipulation tasks in robotic systems? In the
next chapter, we aim to answer this question with a range of experiments, both in
simulation and with a real robot.

**

64

4
One-shot observational learning

4.1 Introduction

In the previous chapterwe introduced and explained the concept of action vectors.
We proposed a novel method for extracting action vectors from unseen manipu-
lation tasks, using an action vector extractor pre-trained for action recognition on
a generic action dataset. Through the experiments, we showed that these action
vectors can be task-discriminative and domain-agnostic. Now the question that
remains to be answered is: Can these action vectors be used for one-shot observa-
tional learning of robotic manipulation tasks ? In this chapter we present O2A in
detail, a method for one-shot observational learning with action vectors. We also
report on extensive robotic experiments and their results conducted to evaluate
the performance of O2A.

4.2 O2A overview

A diagrammatic overview of O2A is given in Figure 4.1. The method takes as in-
put a video clip (observed in third-person view point) of someone demonstrating
a task for a single time. The objective is to replicate the task with a robotic manip-
ulator. The robot views the scene from an egocentric camera mounted in a fixed
position. The demonstration video clip is then transformed into an action vector.
In a similar fashion, an action vector is obtained from each of the trial executions
by the robotic manipulator. The rewards are then calculated as the negative of

65

4.2. O2A overview

the Euclidean distance between the action vectors computed from the video clips
of the demonstration and trial executions. Then we use a reinforcement learning
(RL) algorithm to acquire an optimal control policy for performing the demon-
strated task using this reward.

Figure 4.1: Overview of O2A method. A 3D-CNN action vector extractor is used
to extract action vectors XD and XR from the video clips of the demonstration
and robot trial execution respectively. A reward function is used to compare XD

and XR in the action vector space, generating a reward signal (r) based on their
closeness. The RL algorithm then iteratively learns an optimal control policy by
maximizing this reward signal, thus enabling observational learning.

With reference to Fig 4.1, letD be the single demonstration video clip of a task
to be learned. We extract the n-dimensional action vectors XD and XR from the
demonstration video D and the video clip of a robot trial execution respectively.
The reward (r) for the RL algorithm is then calculated as the negative of the euc-
lidean distance between action vectors XD and XR as given below:

r = −||XD −XR||2 (4.1)

66

4.3. Simulation experiment

Thus the reward directly measures the closeness of the demonstrated task and
of the robot trial executions at an abstract level (in the action vector space). The
RL algorithmwill then maximize this reward function to learn an optimal control
policy. This optimal control policywill control the roboticmanipulator to generate
an action like the one shown in the demonstration video. Thereby, O2A enables
one-shot observational learning of the demonstrated task.

In the upcoming sections, we present the robotic experiments and results eval-
uating the performance of the O2A system. We conducted experiments both in
simulation and with a real robot. The tasks used are reaching and pushing in
simulation and pushing, hammering, sweeping and striking for the real robot ex-
periment. The task definitions and completion measures are given in Table 4.1.
Note that the task completion measures are only used for evaluating the perform-
ance of O2A and are not used during task learning.

Table 4.1: Task definitions and completion measures

Task Description Task completion measure

Reaching
(Simulation)

Reach a target zone 1-(final distance / initial distance between
the center of the manipulator and the cen-
ter of the target zone)

Pushing (Sim-
ulation & real
robot)

Push an object into
the target zone

1-(final distance/initial distance between
the centers of the target zone and the
pushed object)

Hammering
(Real robot)

Hammer the target
object

1-(minimum distance / initial distance
between the hammer and the object during
the execution)

Sweeping
(Real robot)

Sweep crumpled
cardboard pieces to
the dustbin

The number of cardboard pieces in the
dustbin after execution / total number of
the cardboard pieces

Striking (Real
robot)

Strike down a block
of cubes

1-(minimum distance / initial distance
between the blocks and manipulator dur-
ing execution)

67

4.3. Simulation experiment

Figure 4.2: Sample environments available in OpenAI Gym

4.3 Simulation experiment

The objective here is to evaluate the performance of O2A in a simulated environ-
ment under different domain shifts and compare its performance with baselines.
The simulation experiment is run on a desktop workstation with an Intel core-i7
processor, 16GB RAM, 500GB hard disk and Linux Ubuntu16.04 operating sys-
tem. The simulation environment is setup using the OpenAI Gym [203] frame-
work. OpenAI Gym is a python framework for implementing and comparing RL
algorithms. We present a comparison of OpenAI Gymwith rllab, another popular
RL framework, based on our selection criteria in Table 4.2. OpenAI Gym provides
a variety of simulation environments for experimenting as illustrated in Figure 4.2
and also facilities integration of third party environments. For our experiment, we
designed customised robotic manipulation setups using the MuJoCo (Multi Joint
dynamics with Contact) physics engine [204]. We designed two environments,
one for reaching and the other for pushing as shown in Figure 4.3. The environ-
ment consists of a 3DoFmanipulator, target region and a 3D cylindrical object (for
pushing). The XML designs are given in Appendix 6.6.

4.3.1 DDPG(DeepDeterministic PolicyGradient)RL algorithm

In the simulation experiment, we use the DDPG RL learning algorithm [205] for
learning a control policy which will generate controls for the robotic manipulator.
DDPG is a model-free and off-policy actor-critic algorithm. DDPG is derived by
combing DQN (Deep Q network) method [206] with the DPG (Deterministic

68

4.3. Simulation experiment

Table 4.2: Comparing OpenAI gym and rllab RL frameworks. It shows our cri-
teria for selecting the RL framework for the simulation experiment. ’?’ symbol
shows a better performance. OpenAI Gym is a clear choice for us satisfying all
the requirements.

OpenAI Gym rllab

Designing custom environments ? ?

Integrating user defined reward functions ?

Modular and flexible architecture ?

Standard RL algorithm implementations ? ?

Documentation and tutorial availability ?

Community support and active development ?

policy gradients) [207] method. It learns both a Q function (using off policy data
and the Bellman equation [208]) and a policy function concurrently. The advant-
ages of using DDPG are:

• It can handle high dimensional and continuous control spaces. Thismakes it
suitable for directly controlling the roboticmanipulatorwithout discretizing
robotic controls into pre-defined movements.

• Sample efficient when compared to other continuous control RL algorithms.

The components of the DDPG algorithm are explained briefly below. The com-
plete algorithm is given in Appendix 6.7.

Critic network

The critic network refers to the Q value function Q(St, At) used to calculate the Q
values for each pair of state (St) and action (At) at time t. The critic network is
updated by minimizing the following loss function:

L =
1

N

∑
i

(yi −Q(Si, Ai))2 (4.2)

69

4.3. Simulation experiment

(a)

(b)

Figure 4.3: Custom designed environments for the tasks of (a) reaching and (b)
pushing in simulation experiments

70

4.3. Simulation experiment

where,N is the number of samples in the mini batch taken from the replay buffer
used for training, i denotes ith sample and yi is the predicted Q value obtained
with the following equation:

yi = ri + γQ
′
(Si+1, π

′
(Si+1)) (4.3)

where, γ is the discount factor, ri is the reward, Q′ and π
′ are the target critic

and actor networks respectively. The concept of target networks and replay buffer
are explained in section 4.3.1. The architecture of the critic network used in our
experiments is given in Figure 4.4. A two stream network is used to incooperate
the actions and states. It consists of two fully connected layers and a output layer.
The action values are included in the second layer of the network. Softplus [209]
functions are used as the activation functions for the layers.

Figure 4.4: Critic network architecture

71

4.3. Simulation experiment

Actor network

The actor network refers to the policy function At = π(St) that outputs the action
at each time step t. DDPG implements a deterministic policy function which out-
puts the actions directly rather than a probability distribution over the possible
set of actions. This makes it suitable for applying in continuous control problems.
The action network is updated by the policy gradient with respect to actor para-
meters (∇θπJ) as given in Equation 4.4.

∇θπJ ≈
1

N

∑
i

∇aQ(Si, Ai)∇θππ(Si) (4.4)

where, ∇ denotes the gradient function, N is the number of samples in the mini
batch taken from the replay buffer used for training, i denotes ith sample, Q is the
value function represented by the critic network and π denotes the policy func-
tion represented by the actor network. The network architecture of the critic net-
work in our experiments is shown in Figure 4.5. The network consists of two fully
connected hidden layers followed by an output layer. We use Softplus activation
functions for the hidden layers and tanh activation for the final output layer.

Figure 4.5: Actor network architecture

In our experiment we use continuous control action space. The actions gener-

72

4.3. Simulation experiment

ated by the actor network are the robotic controls with a size of three correspond-
ing to each of the manipulator joints. The robotic controls could be torques, joint
positions, angles or velocities of the manipulator. In the experiment we have used
joint angles as the robotic controls.

Target Networks and Replay buffer

The DDPG algorithm uses target networks and replay buffers for stabilizing the
training process. The target actor and critic networks are copies of the actor and
critic networks respectively. Target networks aremade to follow the parameters of
the actual actor and critic network slowly with soft updates as given in equations
below:

θQ
′

= τθQ + (1− τ)θQ
′

(4.5)

θπ
′

= τθπ + (1− τ)θπ
′

(4.6)

where τ << 1 and θQ , θπ , θQ
′
, θπ

′ are parameters of the actor, critic, target actor
and target critic networks. In our experiments the value of τ is set to .001.

The replay buffer stores the experiences obtained by exploration of the agent
(in our case the robotic manipulator) during training. The experiences are stored
as tuples (St, At, rt, St+1), where the values represent current state, action, reward
obtained and next state at time t. Mini batches of these values are then randomly
sampled from the replay buffer and used for training. This random sampling from
the replay buffer ensures that the training data is independent of each other and
makes optimization efficient. The size of the replay buffer used in our experiments
is 10,000.

Exploration strategy

Exploration strategy enables RL algorithms to explore unknown areas in the state
space during training. In continuous action state spaces the exploration is done

73

4.3. Simulation experiment

by adding noise directly to the actions or the policy parameters. In DDPG, noise is
added to the actions using the ’Ornstein-Uhlenbeck (OU) [210]’ process to enable
exploration. So the actions taken by the agent (the robotic manipulator) during
training are given by:

At = π(St) +N (4.7)

where, At and St are the action and state respectively at time t and N is the OU
noise added for exploration. It has to be noted that the noise is added only dur-
ing training. During evaluation/testing the actions are obtained directly from the
policy function (actor network) as in equation 4.8.

At = π(St) (4.8)

States

States in the RL algorithm are the instantaneous observations of the environment.
In our case, it is visual observations by the robotic system. In the experiment, we
use VGGNet pre-trained on ImageNet [19] for converting raw RGB images into
visual state features. The 4608 long feature vector obtained from the last convolu-
tional layer of the VGG-16 network is used as the state representation.

4.3.2 Experimental setup

To explore the resilience of our method to shifts between the demonstrator and
learner domains, we conducted the experiment with six different domain shifts,
as defined in Table 4.3. The tasks of reaching and pushing are used in the sim-
ulation experiment. The task definitions and completion measures are given in
Table 4.1. In each setup (characterising a domain shift), we collect a single demon-
stration in the real world and run the DDPG algorithm 10 times. Each run has 20
episodes per run and the number of steps per episode are 60 and 160 for reach-
ing and pushing respectively. The hyperparameters used are given in Table 4.4.

74

4.3. Simulation experiment

For each run, DDPG returns a control policy that corresponds to the maximum
reward obtained. After training, we pick the top-2 [211] control policies with
the highest rewards, and the task completion measures are calculated. The top
control policies were selected to avoid policies from poorly performing runs af-
fecting the overall performance. The output of the control policy are the robotic
controls with a size of three corresponding to each of the joints. We perform the
experiment with action vectors extracted from both the pool5 and fc6 layers of
the NN:UCF101 network. Figure 4.6 shows snapshots of the demonstration and
execution of the corresponding learned policy for selected setups. Videos of the
results including demonstrations are available in our webpage.

Figure 4.6: Snapshots of the demonstration and the execution of corresponding
learned policies in the simulation experiment for selected domain shifts. (Results
shown for action vectors extracted from pool5 layer of NN:UCF101 network).

4.3.3 Oracle and baselines

We compare our method with an oracle and two baseline approaches. The or-
acle is trained by using the corresponding task completion measure specified in
Table 4.1 as the reward, in place of a reward derived from action vectors. It rep-
resents an upper bound on performance. The two baselines represent a video clip
by averaging a ‘static’ representation for each frame, in contrast to the spatio-
temporal representation used in O2A. Rewards are then generated using these
representations. In Baseline-1, features from the output of the last convolutional
layer of the ImageNet [19] pre-trained VGG-16 network are used and in Baseline-
2, HOG [212] features are used. The average of the task completion measures

75

https://leopauly.github.io/s2l/my_docs/stage1

4.3. Simulation experiment

Table 4.3: Domain shifts used in our experiment

Domain shift

I Observation viewpoint, object properties, morphology of the
manipulator and scene background remain the same in the
demonstration and learning domain

V Observation viewpoint is different between the demonstration
and the learning domain; other factors remain unchanged

Obj Objects with different colour (for pushing, reaching and ham-
mering tasks) or shape (hammering task) used in the learning
domain

Obj+V Both the viewpoint of observation and object properties vary
between the demonstration and the learning domains

BG Background clutter is introduced to the scene in learning do-
main, which was not present during the demonstration

M Manipulators with different morphologies used in the demon-
stration and the learning domain. Demonstrations with a hu-
man hand (reaching and pushing tasks) and with a manipu-
lator with a different morphology (hammering task) used.

Table 4.4: DDPG parameters settings

DDPG parameters Value

Actor learning rate 0.0001
Critic learning rate 0.001
State size 4608
Action size 3
Optimiser ADAM
Gamma (γ) 0.99
Tau (τ) 0.001
Mini batch size (N) 64
Replay buffer size 10,000

76

4.3. Simulation experiment

for the top two control policies for oracle, O2A and the baseline approaches are
plotted along with the standard deviations in Figures 4.7a and 4.7b. The learned
policies from O2A were successful in performing the demonstrated task under
different domain shifts with good task completion measures. It also significantly
outperforms both baseline approaches and has a comparable performance to the
oracle.

4.3.4 Correlation of rewards

We further analysed the quality of the rewards generated in O2A, the baseline
approaches and the oracle. To compare, we calculate the Pearson correlation coef-
ficient [213] between the episodic perceptual rewards (O2A, baselines) and the
oracle rewards for the top two runs. Pearson correlation coefficient (ρ) between
two variables X and Y are given by:

ρ =
cov(X, Y)√

var(X)
√
var(Y)

(4.9)

where cov(X, Y) is the covariance of X and Y , var(X) is the variance of X and
var(Y) is the variance of Y . A high positive correlation (typically > 0.5 [201])
indicates that the perceptual rewards are as good as the oracle rewards. All the
results are tabulated in Table 4.5. From the results, the correlation coefficients are
greater than 0.5 in all the cases for O2A, indicating that our rewards are as accurate
as the oracle rewards. Also, the correlation is higher and positive compared to the
baselines for a range of domain shifts showing the superior performance of our
method.

77

4.3. Simulation experiment

Table 4.5: Pearson correlation coefficients between the rewards from the oracle,
and from O2A and two baselines. The coefficients are highest in most of the cases
and positive for O2A rewards compared to baseline approaches.

Task 1: Reaching

I V Obj Obj+V BG M
O2A (NN:UCF101 (pool5)) .8567±.0079 .7807±.0531 .8209±.0157 .6448±.2146 .7736±.0007 .9605±.0048

O2A (NN:UCF101 (fc6)) .8318±.0600 .7911±.0588 .8199±.0718 .8620±.0713 .8108±.1126 .8761±.0032
Baseline-1 .5872±.1744 .4069±2361 .6112±.2612 .6099±0901 .5289±.0189 .0487±.0448
Baseline-2 .7387±.0681 -.8106±.0086 .7115±.1272 -.8189±.0501 -.5738±.0337 .1256±.0629

Task 2: Pushing

O2A (NN:UCF101 (pool5)) .9345±.0034 .9413±.0362 .6943±.1419 .8650±.0847 .8552±.0677 .6594±.1834
O2A (NN:UCF101 (fc6)) .8037±.1125 .8826±.0239 .6898±.1927 .8179±.0702 .9147±.0099 .8489±.0987

Baseline-1 .9372±.0270 .8908±.0615 .5817±.3124 .7488±.0631 .8978±.0704 .5797±.1141
Baseline-2 .0173±.4550 -.1346±.3410 .5900±.1625 -.4352±.1292 -.5386±.1243 .3700±.5195

78

4.3. Simulation experiment

(a)

(b)

Figure 4.7: Task completion measures for the task of (a) reaching and (b) push-
ing in the simulation experiment. O2A outperforms both the baselines and has
performance comparable to the oracle under all domain shifts. The oracle score is
shown only once since it is unaffected by the domain shifts (refer to Table 4.3 for
domain shift definitions).

79

4.3. Simulation experiment

4.3.5 Trajectory maps

Here we plot the trajectories followed by the robotic manipulator (for reaching
task) and pushed object (for pushing task) in each episode during reinforcement
learning of the task. This visualisation will help to understand if high rewards
are obtained for desired trajectories while learning the demonstrated task. The
top-5 trajectories with the highest reward values obtained during task learning
are coloured with red and the rest of the trajectories are in blue.

Additionally, we also show the results when the O2A action vector extractor
is pre-trained with a manipulation task dataset, the Multiple Interactions Made
Easy (MIME) dataset [117]. The aim is to study how well O2A performs when
pre-trained on a manipulation tasks dataset compared to a generic dataset. Also
in Table 4.6, we tabulate details of other publicly available robotic manipulation
tasks video datasets. MIME is the largest available video dataset containing both
human and robotic demonstration videos.

MIME : Multiple Interactions Made Easy dataset

Figure 4.8: Selected few examples (execution by human and robotic manipulator)
fromMIME action dataset. The tasks are (clockwise from top-left) stirring, pour-
ing, stacking, wiping, opening a bottle and passing. Figure from [18]

TheMIME dataset consists of 8260 executions of 20 commonly seen object ma-
nipulation tasks. Each task execution is performed by a human aswell as a robotic
manipulator and is collected from four fixed viewpoints. Common household ob-
jects with variations in object appearances, pose and scale are used. The robotic
executions are performed by a Baxter robot. Figure 4.8 shows selected examples

80

4.3. Simulation experiment

Table 4.6: Robotic manipulation tasks video datasets. MIME is the largest avail-
able robotic manipulation tasks video dataset containing both human and ro-
botic demonstrations. However, building ImageNet[19] scale robotic manipula-
tion datasets is crucial for future research.

Release

year

No: of

classes

Video samples

per class
Description

BAIR Dataset[126] 2016 1 59000 Contains pushing task
demonstrations by a ro-
bot along with their cor-
responding joint traject-
ories.

DAML[162] 2018 3 ∼1200-2400 Contains both human
and robot task demon-
strations.

MIME[117] 2018 20 ∼800-2000 Contain human and ro-
bot task demonstrations
along with correspond-
ing joint trajectories.

RoboTurk-Sim[214] 2018 2 ∼1108 Only task demonstra-
tions performed by a
robot in simulation are
present. Corresponding
joint trajectories are also
included.

RoboTurk-Real[215] 2019 3 ∼1429 Contain only task
demonstrations per-
formed by a robot in
real world and the
corresponding joint
trajectories.

from the dataset. The list of 20 task categories in theMIME dataset is given in Ap-
pendix 6.8. The details of the action vector extractor pre-training onMIMEdataset
are given in Figure 4.9 and Table 4.7. This network is referred to as ‘NN:MIME’.

81

4.3. Simulation experiment

Figure 4.9: Testing accuracy (on MIME test set) per epoch during pre-training
the action vector extractor on MIME dataset

Table 4.7: Details of pre-training the action vector extractor on the MIME dataset

NN:MIME

Number of classes (NC) 20
Batch size 16
Input size (16, 16, 112, 112, 3)
Output size (16, 20)
GPUs used 2 x Nvidia P100
Training time 48 hrs
Optimizer ADAGRAD [191]
Learning rate 0.001
Number of training examples 30,376
Number of testing examples 3,376
Total number of

trainable parameters
78,077,716

Number of epochs 181
Best testing accuracy 86.90%

82

4.3. Simulation experiment

Identical settings (I)

Figure 4.10: Trajectory maps obtained during task learning under identical do-
main settings for (a) reaching (left) (b) pushing (right). High rewards are ob-
tained for desired trajectories in all the cases.

83

4.3. Simulation experiment

Change in viewpoint of observation (V)

Figure 4.11: Trajectory maps obtained during task learning with changes in view-
point of observation for (a) reaching (left) (b) pushing (right). High rewards are
obtained for desired trajectories when the NN:UCF101 network is used.

84

4.3. Simulation experiment

Change in object properties (Obj)

Figure 4.12: Trajectory maps obtained during task learning under identical do-
main settings for (a) reaching (left) (b) pushing (right). High rewards are ob-
tained for desired trajectories in all the cases.

85

4.3. Simulation experiment

Change in object properties and viewpoint of observation (Obj+V)

Figure 4.13: Trajectory maps obtained during task learning with changes in view-
point of observation and object properties for (a) reaching (left) (b) pushing
(right). High rewards are obtained for desired trajectories when the NN:UCF101
network is used.

86

4.3. Simulation experiment

Change in scene background (BG)

Figure 4.14: Trajectory maps obtained during task learning when background
clutter is introduced in to the background for (a) reaching (left) (b) pushing
(right). High rewards are obtained for desired trajectories in all the cases.

87

4.3. Simulation experiment

Change in manipulator (M)

Figure 4.15: Trajectory maps obtained during task learning when demonstration
is provided by a human hand for (a) reaching (left) (b) pushing (right). High
rewards are obtained for desired trajectories only when NN:UCF101 network is
used.

88

4.3. Simulation experiment

Discussion

The trajectory maps help to qualitatively analyse the performance of O2A at a
very fundamental level. We have collected the trajectorymaps under different do-
main shifts characterised by changes in viewpoint of observation, object proper-
ties, scene background and manipulator morphology. We present our inferences
below.
Baseline-R(random weights): The reward values for desired trajectories are low
in all the cases as expected. This performance of the action vector extractor loaded
with random weights serves as the baseline to evaluate other results.
NN:MIME (pool5 and fc6): When features from layers pool5 and fc6 are used
as the action vector, the performance is satisfactory in three out of the six do-
main shifts. Desired trajectories obtain high rewards for: identical settings (I),
changes in object properties (Obj) and scene background (BG). However, the re-
wards failed to identify the required trajectorieswhen therewere changes in view-
point of observation (V, Obj+V) and manipulator morphology (M). This could
be explained based on the MIME dataset used for pre-training the action vector
extractor. Even though the dataset consist of a large number of manipulation task
examples, the variations in terms of viewpoint of observation and manipulators
are limited. The videos are collected from the same four fixed viewpoints of ob-
servation for all the tasks and also identical manipulators are used in all the ex-
amples. These limited variations prevent the action vector extractor from learning
to generalise during pre-training.
NN:UCF101 (pool5 and fc6): When features frompool5 and fc6 layers ofNN:UCF
are used, a better performance is seen for all the domain shifts: I, V, Obj, Obj+V,M
andBG.High rewardswere obtained for desired trajectories in all these cases. This
improved performance can be attributed to the diversity in the UCF101 dataset in
terms of viewpoint of observation, object properties, manipulator morphologies
and scene backgrounds.

These results show that pre-training O2A with a generic action dataset per-
forms better than a dataset of manipulation tasks specifically. Diversity in terms
of actions and domain settings are important factors for O2A towork. An interest-
ing direction for future research would be to increase diversity in MIME dataset

89

4.3. Simulation experiment

using data augmentation techniques [216, 217] and then use for pre-training in
O2A.

Finally, we also performed a visual analysis of trajectory maps to identify out-
liers. Here the outliers are desired trajectories having low reward values and vice
verse. However, we have not found any relevant outliers.

4.3.6 Limitations

To further understand the limitations of O2A to domain shifts we plotted traject-
ory maps during reinforcement learning of tasks, when the task layout changes
between the demonstration and the learning environment. Different layouts were
generated by varying the relative positions of the objects and the manipulator
between the demonstration and learning environments.

Change in task layout (L-L)

Figure 4.16: Trajectory maps obtained during task learning for (a) reaching and
(b)pushing. New layout for the learning environment is generated by moving
target region to the left. O2A was unable to identify desired trajectories for the
domain shift.

90

4.3. Simulation experiment

Change in task layout (L-R)

Figure 4.17: Trajectory maps obtained during task learning for (a) reaching and
(b) pushing. New layout for the learning environment is generated by moving
target region to the right. O2A was unable to identify desired trajectories for the
domain shift.

The results show that O2A is unable to learn the demonstrated tasks of reach-
ing and pushing when the task layout is different between the demonstration and
the learning environments. This could be explained because of the lack of vari-
ations in the UCF101 dataset in terms of task layouts. The actions in the dataset
occur predominantly at the center of the videos. Hence the action vector extractor
could not learn to generalise to domain shifts characterised by task layout changes
during pre-training. In future, this could be addressed by increasing task layout
variations in the pre-training dataset.

4.3.7 Reach - Push

Finally, we also experimented with the reach-push task to show that O2A can gen-
erate high rewards for desired trajectories for more complex tasks as well. We

91

4.3. Simulation experiment

manually collected a set of video samples showing varying degrees of task com-
pletion and calculated reward values with respect to a task demonstration. Figure
4.18 shows snapshots of the video samples including the task demonstration used.
Reward values are calculated for each pair of videos (D-A to D-E) and is plotted
in Figure 4.19. The reward values increase as the task moves towards completion.
This shows that O2A reward function can successfully model more complex tasks
beyond reaching and pushing.

Figure 4.18: Snapshots of the video samples of the reach-push task collected. It
includes a demonstration (D) and video samples showing varying degrees of task
completion (A-E).

Figure 4.19: Normalised reward values for video pairsD-A toD-E.Higher rewards
are obtainedwhen taskmoves towards completion, showingO2A can successfully
model the more complete reach-push task as well.

92

4.4. Real robot experiment

4.4 Real robot experiment

The objective here is to evaluate the performance of O2A in the real world, under
different domain shifts. The tasks used are: pushing, hammering, sweeping and
striking as shown in Figure 4.20. The task definitions and completion measures
were detailed in Table 4.1. We use a 6-DOF UR5 robotic arm with different end
effectors suitable for each task. All six domain shifts (see 4.3) were used for the
pushing and hammering tasks. Whereas, only three domain shifts (I, V and M)
were used for the sweeping and striking tasks, since others did not have ameaning
for these tasks. We only used features from the pool5 layer ofNN:UCF101 network
as the action vector, due to the high cost of running the real robot experiment.

Figure 4.20: Real robot experiment tasks. From left-right: pushing, hammering,
sweeping and striking

4.4.1 Stochastic Trajectory Optimisation (STO)

In the real robot experimentwe use amanipulation planning algorithm, Stochastic
Trajectory Optimization (STO) [218] [219]. Contrary to the RL algorithm, STO
generates an optimal sequence of controls (A = (a1, a2..aT)) instead of an op-
timal control policy (At = π(St)). A different class of algorithms is used because
deep RL (or model-free RL in general) is not suitable in real robots due to data-
inefficiency. An alternative would have been to use a model-based RL algorithm,
where a state transition function (P (St+1/St, At)) is first modelled. The optimal
control policy is then learned using the state transition model, making it data ef-
ficient. But this approach has the following limitations:

• Curse of dimensionality: Modelling state transition models for high dimen-
sional state spaces (like raw images) is still an active area of research and

93

4.4. Real robot experiment

remains a challenging problem [220]. An interesting direction for future
work is to first condensate the state spaces into latent vectors [221] and then
use them for transition function modelling.

• Unavailability of off-the shelf implementations: Unlike model-free deep RL
algorithms, open-source librarieswithmodel-basedRL implementations are
not widely available. Even though attempts have been made in this direc-
tion, like guided policy search library [222], the code bases are still work in
progress.

• Need for domain expertise: Modelling state transition functions for real ro-
bots require domain expertise and a lot of practice. It is often described as
an ’art than science’ by practitioners in the field. Considering the aim and
scope of our research this was not feasible to achieve.

However, using a different algorithm does not undermine the effectiveness of
O2A. Conversely, this displays its robustness to different manipulation control al-
gorithms. We define the cost function C, to be minimized as:

C = r2 (4.10)

where r is the reward obtained from Equation 4.1.

Algorithm implementation

Briefly, we begin with an initial candidate control sequence. We execute this se-
quence using the manipulator to generate an initial cost. Thereafter, at each iter-
ation we create 8 random control sequences by adding Gaussian noise to the can-
didate sequence from the previous iteration and execute themusing the real robot.
At the end of each iteration, we pick the control sequence with the minimum cost.
Then set it as the new candidate sequence, thereby iteratively reducing the cost.
The initial control sequence is initialised by providing a near solution path, fol-
lowing common practice [54]. This limitation can be an important topic of future

94

4.4. Real robot experiment

work for developing a more data efficient real world algorithm for robotic con-
trol. The Gaussian noise used has a mean of zero (as it is additive noise) and the
standard deviation is set as a hyperparameter for each task.

4.4.2 Experimental setup

The real robot experimental setup is shown in the Figure 4.21. The setup consists
of two sub-systems: the server and the execution system. The server runs the
processing heavy functions while the execution system runs the robotic manip-
ulator control and related functionalities. The sub-systems are integrated using
the Robotic Operating system (ROS) [223]. The communications between server
and execution system occurs through ROS nodes via ROS messages. All the pro-
grams, both at the server and the execution system are written using the python
programming language.

Figure 4.21: Real robot experimental setup overview

Server

The server is a desktop workstation with an Intel core-i7 processor, 32GB RAM
and 1TB of memory and has an Linux Ubuntu16.04 operating system with ROS

95

4.4. Real robot experiment

Kinetic running in a virtualmachine (withinVirtualBox). It hosts the action vector
extractor CNN with Tensorflow, the reward function and the server ROS node
which controls the flow of ROS messages in and out of the system.

Execution system

(a) (b)

Figure 4.22: (a) Execution system experimental setup built for running real robot
experiments. It consists of a local laptop workstation (A), custom made camera
holder (B), camera (C) and the end effector (D) attached to the UR5 robot (E).
(b) View of the robot.

The execution system as shown in Figure 4.22 consist of a local laptop work-
station, camera and a UR5 robotic arm. The laptop workstation has a Intel core-i5
processor, 8GB RAM and 500GB memory and has an Linux Ubuntu14.04 operat-
ing system with ROS Indigo. The execution system hosts the STO algorithm that
generates control sequences, the program that enable the robotic manipulator to
execute the generated control sequence and the execution system ROS node for
regulating message flow. It also hosts the camera control program that records

96

4.4. Real robot experiment

the robot actions during each trial execution. The camera used here is a HD 720p
webcam.

Communications

The communications between server and the execution system is through ROS
messages. Messages are sent under 5 different topics:

• Ready message: The ready message is sent from the server to the execution
system. It indicates that the CNN action vector extractor is loaded with pre-
trained weights and is ready to process data.

• Action_completedmessage: Themessage indicates the end of the execution of
a control sequence by the robotic manipulator. It is sent from the execution
system to the server.

• Imagemessage: After every control sequence is executed, the recorded video
of this robot action execution is sent to the server from the execution system.
The videos are sent frame by frame under the image message ROS topic.

• Reward message: The reward message carries the reward from the server
to the execution system. The STO algorithm uses this reward to generate a
control sequence after every iteration.

Overall working

Firstly, the action vector extractor is loaded with pre-trained weights in the server.
After that ready message is sent to the execution system. The execution system
then runs the STO algorithm generating a control sequence to be executed by the
robotic manipulator. While the control sequence is being executed, the camera
control program records the robot action and sends them to the server. After the
control sequence is executed, the action_completed message is sent to the server.
Upon receiving this message the action vector extractor extracts the action vec-
tor from the video of robot action that was executed. The reward function then
generate a reward using this action vector and that of the demonstration which
is sent to the execution system. The stochastic trajectory optimization algorithm

97

4.5. Conclusion

uses this reward to calculate the next control sequence to be executed. This pro-
cess continues until an optimal control sequence is obtained.

4.4.3 Results

Each experiment is run twice. The average task completion measures of the op-
timal control sequence obtained with the standard deviations are plotted in Fig-
ure 4.24. The snapshots of executions of optimal control sequences for the selec-
ted domain shifts along with the demonstrations are given in Figure 4.23. Our
method achieves good task completionmeasures for different domain shifts. This
shows the effectiveness of O2A in learning tasks on a real robot. Videos of the
results including demonstrations are available in our webpage.

Figure 4.23: Snapshot of the demonstration and execution of the corresponding
optimal control sequences obtained for selected domain shifts from the real robot
experiment (Results shown for action vectors extracted from the pool5 layer of the
NN:UCF101 network).

4.5 Conclusion

In this chapter we presented O2A, the method for one-shot observational learning
using action vectors. The action vectors are extracted from the single demonstra-
tion provided and also from the trial robot executions. A reward is generated by

98

https://leopauly.github.io/s2l/my_docs/stage1

4.5. Conclusion

Figure 4.24: Task completion measures for the task of pushing, hammering,
sweeping and striking in the real robot experiment. The result shows that O2A
performs well under different domain shifts on a real robot.

comparing these action vectors using Euclidean distance between them. This re-
ward is then used to guide the learning algorithms to obtain an optimal control
policy or a control sequence for carrying out the demonstrated task.

We conducted extensive experiments to evaluate the performance of ourmethod
under different domain shifts. Using trajectory maps, we showed that high re-
wards are obtained for desired robotic trajectories when features from the pool5
and fc6 layers of the NN:UCF101 network are used as the action vector. However,
the O2A failed to learn the demonstrated task when task layouts varied between
the demonstration and learning environments. We also compared our method
with two baselines and an oracle using task completion measures and Pearson
correlation coefficients. Ourmethod outperformed the baselines in both themeas-
ures. Finally, we conducted real robot experiments to demonstrate the effective-
ness of O2A in real world conditions.

**

99

5
Conclusion and Future Work

This chapter concludes the thesis with an overview of the presented research, its
limitations and detailing the possible future directions of our research.

5.1 Conclusion of the thesis

In this thesis, we investigated the problem of observational learning, with an
aim to develop an one-shot observational learning method which only requires
a single demonstration to learn new robotic manipulation tasks. In Chapter 1,
we defined the ’problem of observational learning’ in detail. We explained the
three stages in observational learning: observation, feature representation extrac-
tion and task execution. We also outlined how observational learning differs from
imitation learning due to domain shifts and lack of access to joint trajectories in
the demonstrations.

In Chapter 2, the existing observational learning methods were reviewed ex-
tensively. Initiallywe discussed the two types of observations: assisted and direct.
Assisted observation uses methods like trackers, visual object detectors, motion
capture systems or skeleton tracking. However, with the advent of deep learning,
direct observation of the demonstrations was possible. Feature representations
are extracted directly from the raw videos of the demonstration. But the methods
we reviewed had amajor drawback in the number of demonstrations required for
learning of a new task. Collecting demonstrations in large numbers is not possible

100

5.1. Conclusion of the thesis

in practical scenarios. Also these methods are not completely robust to domain
shifts. Hence we introduced O2A, the one-shot observational learning method
with robustness to different domain shifts. We studied the domain shifts caused
by changes in viewpoint of observation, object properties, scene background and
manipulator morphology in this thesis.

In Chapter 3, we presented the core concept of O2A, the action vectors. Action
vectors are abstract task-discriminative and domain-agnostic perceptual repres-
entation of a task in a video. We presented a novel way of extracting action vectors
from unseen manipulation tasks using a network pre-trained for action recogni-
tion. We pre-trained a 3D CNN using a generic action dataset, the UCF101 data-
set. For evaluating the generalisation of the pre-trained action vector extractor
to unseen manipulation tasks, we collected a new dataset, the LMD. LMD has 3
task classes: reach, push and reach-push collected under identical domain set-
tings. We conducted clustering analysis on action vectors from LMD, when fea-
tures from pool5, fc6, fc7 and fc8 layers are used. The analysis showed that the
generalisation is the highest for features frompool5 and fc6 layers. The layers have
ARI scores of .26 and .34 respectively, compared to a baseline score of .07. Also,
using features concatenated from different layers as action vectors did not show a
significant improvement in performance.

Further, we calculated inter-class and intra-class similarity scores when fea-
tures from pool5 and fc6 layers are used as the action vectors. We noted high
intra-class similarity scores in both cases. Finally, visualisation of LMD in the ac-
tion vectors space showed emergence of a task-class based clustering compared to
the baseline. The results showed that the action vector extractor pre-trained on a
generic action dataset can generalise to unseen manipulation tasks. And also the
extracted action vectors are task-discriminative and domain-agnostic.

In Chapter 4, we explained O2A in detail. We showed how action vectors can
be used for achieving one-shot observational learning. The action vectors from
the trial robot executions are compared with the action vector from the demon-
stration video and a reward is obtained. The DDPG RL algorithm then finds an
optimal control policy by optimizing this reward. We conducted experiments
both in a simulation and with a real robot to evaluate O2A. The simulation ex-
periment environments were designed using OpenAI Gym RL framework for the

101

5.1. Conclusion of the thesis

the tasks of reaching and pushing. We calculated task completion measures for
each of the tasks and compared the resultswith baselines. The baselineswhere ob-
tained when features from a VGG network pre-trained on a ImageNet dataset and
HOGG featureswere used as the perceptual task representations respectively. The
results showed that our method outperforms both the baselines under different
domain shifts of changes in viewpoint of observation, task properties, scene back-
ground and manipulator morphology. We also compared O2A and the baseline
approaches by calculating Pearson correlation coefficients with hand-engineered
oracle rewards. The coefficients were highest in most of the cases and positive for
O2A rewards compared to the baselines.

Further, we introduced the novel concept of the trajectory maps, which are
visualisations of trajectories taken by the robotic manipulator during task learn-
ing. The visualisations helped to understand which trajectories had the highest
rewards. The trajectory maps showed that O2A had high rewards for desired tra-
jectories under different domain shifts. We also studied the performance when
O2A was pre-trained on a robotic manipulation dataset, the MIME dataset. Our
results showed that that O2Aworks best when UCF101 (a generic action dataset)
is used rather than a more specific MIME (a manipulation tasks dataset). Spe-
cifically, O2A pre-trained with MIME dataset failed to identify desired trajector-
ies when domain shifts were caused by changes in viewpoint of observation and
manipulator morphology. We conclude that the variations in a dataset are more
important than its specificity, in determining the generalisation of a pre-trained
network. The limitations of O2A were also studied. Our method was unable to
provide high rewards for desired trajectories when the domain shift was caused
by changes in task layout. We account this limitation to the lack of variations in
UCF101 in terms of task layouts, as the actions always happen in the center of the
video frames.

Finally, we evaluated O2A on a real UR-5 robot. We used a robotic manipu-
lation planning algorithm, the STO. Using a different algorithm did not under-
mine the effectiveness of O2A. Conversely, it displayed its robustness to different
manipulation control algorithms. We conducted the experiment with four tasks:
pushing, hammering, sweeping and striking, under different domain shifts. Our
method achieved good task completion measures for all the tasks under domain

102

5.2. Limitations

shifts.

5.2 Limitations

Limitations of our research are detailed below:

• In Chapter 3, the locally collected LMD dataset for action vector analysis is
limited in terms of number of tasks and video samples per task. Collecting
a manipulation tasks dataset with more task classes and sample videos per
class would provide an extensive action vector analysis. A human interven-
tion free robot data collection strategy similar to Levine et al. [224] can be
modified and used. We could let a robot perform random actions and set up
a visual/mechanical detection system to identify if the robot have performed
the desired task. For example, in a task such as hammering, the task com-
pletion detection could be via a touch sensor at the end of the manipulator.

• In Chapter 3, our current formulation of O2A, relies on sparse rewards. The
rewards are obtained at the end of each episode rather than after each step.
This could make learning of more complicated tasks difficult. The follow-
ing formulation of O2Awould be able to obtain rewards after each step and
thereby making learning more efficient:
With reference to Section 4.2, for every time step t in RL, a set of frames
{It, It−1..It−Nf+1} can be fed to the action extractor to obtain XR (Nf is the
number of input frames to the extractor network). A reward can then ob-
tained from XR using equation 4.1. Thus every tuple (St, At, rt, St+1) will
have a non-zero reward value that can be used for reinforcement learning of
the task.

• In Chapter 4, O2A is evaluated only for a limited number of instances per
domain shift due to the limitations in computational resources. With avail-
ability of more resources in future, O2A could be evaluated for a variety of
instances per domain shift. Some examples are:

103

5.3. Future works

– Evaluation for every degree of domain shift between 0-360°, will provide
a comprehensive insight into how reward patterns vary with changes
in viewpoint.

– Using manipulators with varying degress of freedom, ideally ranging
from 1 to 10.

• In Chapter 4, O2A requires a large number of trial robot executions to learn
the demonstrated task. This limits the deployability of our method in the
real world. Possible solutions are to reuse control policies or to generate
an optimal control sequence directly from the demonstration as detailed in
Section 5.3.3.

• In Chapter 4, the robotic experiments are conducted with a set of 2D tasks:
reaching and pushing (in simulation) and pushing, hammering, sweeping
and striking (with the real robot). However, it would be interesting in future
to use more complex 3D tasks such as pouring or flipping objects to further
study the generalisation and limitations of O2A.

5.3 Future works

Our research has further led to more open questions. Here we detail the possible
extensions and future directions to the presented work and our initial research
into some of these areas.

5.3.1 Multi-modal (one-shot) observational learning

Observational learning by incorporating other sensing modalities is an important
direction for futurework. Humans combinemultiple sensingmodalitieswhile ob-
serving a demonstration. For example, sound plays an important role in identi-
fying the keys pressed while observing a piano demonstration. Similarly other
modalities such as tactile [225, 226] and olfactory [227] sensing could also be used
to observe demonstrations.

104

5.3. Future works

We have conducted some preliminary research into using the sound modality
for observing demonstrations. We extracted an action vector like abstract repres-
entation of sound waves, the ’Sound Vector’. For our experiment we have used the
MFCC features [228] extracted from sound waves as the sound vector. We report
our results on a locally collected evaluation dataset, the ’Leeds Sound Dataset’
(LSD). LSD consists of sounds samples from two different classes: ’hammering
on target’ (Class-1) and ’hammering on table’ (Class-2), that are generated while
performing the manipulation task of hammering a target object. Table 5.1 shows
the inter-class and intra-class distances for LSD in the sound vector space. The
intra-class distance is lower compared to inter-class distance, showing promise of
using sound vectors for observational learning.

Table 5.1: Inter-class and intra-class distances for LSD in the action vector space.
Class-1 is ’hammering on target’ and Class-2 is ’hammering on table’.

Distance

Intra-class distance: Class-1 742.33

Inter-class distance: Class-1 and Class-2 1525.33

We also attempted generating sound vectors using a pre-trained 2D CNN. An
overview of this approach is shown in Figure 5.1. First the sound waves were
converted into audio spectrograms. And then we extracted sound vectors from
these spectrograms using a 2D CNN network pre-trained for sound classification.
We used the UrbanSound8k [229] dataset as the generic sound dataset for pre-
training. This approach also presents a promising future direction. Furthermore,
it would be also interesting to see if the concept of domain shifts applies to sound
vectors.

5.3.2 Pre-training objectives

In our research we have only used action recognition as the objective for pre-
training the action vector extractor. A direct extension of our research would be
to explore using other objectives for pre-training. Supervised objectives like con-
trastive loss [230] and unsupervised objectives like future frame prediction [231]

105

5.3. Future works

Figure 5.1: Overview of pre-training sound vector extractors using Uraban-
Sound8k dataset and its usage during observational learning.

could be used. An added advantage for using unsupervised objectives is that it
does not require class labels during pre-training. Unsupervised objectives could
also be used for fine-tuning the extractors after a supervised pre-training.

5.3.3 Reducing number of trial robot executions

Another extension of our work is to reduce the number of trial robot executions
required to learn the demonstrated task. Two possible approaches for this are:

• Control policy re-use [232]: Instead of the current practice of reinforce-
ment learning of optimal control policies from scratch, we can reuse con-
trol policies across different tasks and task instances. Future research could
investigate to what extend and order can the policies be reused.s

• Map action vectors directly to robot controls: Currently we use RL/STO
algorithms to learn the demonstrated task by optimizing the reward/cost

106

5.3. Future works

function. These algorithms could be replaced by a mapping function that
can directly map the action vector of the demonstration to the robotic con-
trols. Ideally a fully connected neural network could be used as themapping
function. A training dataset for this mapping function could be created by
collecting action vectors of a set of random robot executions and their corres-
ponding robotic controls. After training, the mapping function can instant-
aneously generate robotic controls for any new task demonstration video.

5.3.4 O2A beyond manipulation tasks

An exciting future direction of this work will be to explore using O2A beyondma-
nipulation tasks. The pre-trained action vector extractor should be able to extract
meaningful perceptual representations for other problems which share similar
visual dynamics. Briefly we experimented with a modified OpenAI Gym Lun-
arLander RL environment shown in Figure 5.2. Our initial experiment shows a
positive correlation of .6167±.1265 between perceptual rewards in O2A and an
Oracle reward under identical conditions, which is promising.

Figure 5.2: Modified LunarLander RL environment

5.3.5 Observational learning of long horizonmanipulation tasks

Another direction of our research could extendO2A to long horizonmanipulation
tasks such as cooking. One approach to tackle this could be to decompose them

107

5.3. Future works

into several shorter tasks learnt using the current method, within a curriculum
learning framework [233].

**

108

6
Appendix

6.1 Recent Action datasets

Recently released advanced datasets with fine-grained action classes are given in
Table 6.1 which could be used in future research.

Table 6.1: Recently released larger action datasets

Release

year

No: of

action

classes

Video samples

per class
Resource

20BN V2[234] 2018 174 ∼620 Crowd sourcing
HACS[235] 2019 200 ∼7500 Web videos
HVU[236] 2019 739 ∼1994 Other datasets

MovieNet[237] 2020 80 ∼562 Movies
Kinetics-700-2020[238] 2020 700 >700 YouTube

6.2 UCF101 Dataset

The details of the UCF101 action recognition dataset used for pre-training the ac-
tion vector extractor are given in Table 6.2.

109

6.2. UCF101 Dataset

Table 6.2: UCF101 action recognition dataset details

Dataset property Value

Total no: of videos 13320
Mean video length 7.21 sec
Total duration 1600 min
Min: video length 1.06 sec
Max: video length 71.04 sec
Frame rate 25 fps
Resolution 320 x 240
Audio Yes (51 videos)

6.2.1 Action catagories

The 101 action categories for UCF101 dataset are: Apply Eye Makeup, Apply
Lipstick, Archery, Baby Crawling, Balance Beam, Band Marching, Baseball Pitch,
Basketball Shooting, Basketball Dunk, Bench Press, Biking, Billiards Shot, Blow
Dry Hair, Blowing Candles, BodyWeight Squats, Bowling, Boxing Punching Bag,
Boxing Speed Bag, Breaststroke, Brushing Teeth, Clean and Jerk, Cliff Diving,
Cricket Bowling, Cricket Shot, Cutting In Kitchen, Diving, Drumming, Fencing,
Field Hockey Penalty, Floor Gymnastics, Frisbee Catch, Front Crawl, Golf Swing,
Haircut, Hammer Throw,Hammering, HandstandPushups, HandstandWalking,
Head Massage, High Jump, Horse Race, Horse Riding, Hula Hoop, Ice Dancing,
Javelin Throw, Juggling Balls, JumpRope, Jumping Jack, Kayaking, Knitting, Long
Jump, Lunges, Military Parade, Mixing Batter, Mopping Floor, Nun chucks, Par-
allel Bars, Pizza Tossing, Playing Guitar, Playing Piano, Playing Tabla, Playing
Violin, Playing Cello, Playing Daf, Playing Dhol, Playing Flute, Playing Sitar, Pole
Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rafting, Rock Climbing In-
door, Rope Climbing, Rowing, Salsa Spins, Shaving Beard, Shotput, Skate Board-
ing, Skiing, Skijet, Sky Diving, Soccer Juggling, Soccer Penalty, Still Rings, Sumo
Wrestling, Surfing, Swing, Table Tennis Shot, Tai Chi, Tennis Swing, Throw Dis-
cus, Trampoline Jumping, Typing, Uneven Bars, Volleyball Spiking, Walking with
a dog, Wall Pushups, Writing On Board, Yo Yo.

110

6.3. Feature selection

6.3 Feature selection

We also perform supervised feature selection on the features from pool5 and fc6
layers. We then use the subsets of selected of features as the action vector. For su-
pervised selection of features we collect a supplementary dataset, the LMD_Sup
dataset. It contains 10 video samples each of twomanipulation task classes: move
and displace, examples of which are shown in Figure 6.1. Note that, LMD_Sup is
only used for supervised feature selection. The subset of features are selected by
calculating ANOVA F-value [239] for each feature using LMD_Sup. The results
are shown in Figure 6.2. ARI scores on LMD are calculated when top 20%, 40%,
60%, 80% and 100% of the the features are used as the action vector respectively.
The results shows an improvement in ARI scores when the top 20% of the features
from pool5 and fc6 layers are used. These results are promising and indicate the
existence of a subset of features, that are more significant than others to represent
manipulation tasks used for observational learning. It will be an interesting dir-
ection for future research to identify and extract these subsets of relevant features.

Figure 6.1: Examples from LMD_Sup dataset for the task classes (a) Move and
(b) Displace.

6.4 3D visualisation

Here we visualize the action vectors from LMD in 3D, which are shown in Fig-
ures 6.3, 6.4 and 6.5. The clustering of action vectors from the same classes, when
compared to the Baseline-R is evident.

111

6.4. 3D visualisation

Figure 6.2: ARI scores when different subsets of features from pool5 and fc6 layers
are used as the action vector. High ARI scores when only the top 20% of features
(based on ANOVA F-values) are used, indicate the existence of a subset of fea-
tures more significant than others in representing manipulation tasks. Tags at
each point give the corresponding number of features selected.

112

6.4. 3D visualisation

(a)

Figure 6.3: Visualising LMD using action vectors for Baseline-R (features from
pool5 layer of NN:UCF101 with randomly initialised weights)

113

6.4. 3D visualisation

(a)

Figure 6.4: Visualising LMD using action vectors from pool5 layer of NN:UCF101

114

6.4. 3D visualisation

(a)

Figure 6.5: Visualising LMD using action vectors from fc6 layer of NN:UCF101

115

6.5. Clustering analysis after PCA

6.5 Clustering analysis after PCA

We performed PCA dimensionality reduction on features from different layers of
NN:UCF101, before being used as the action vectors. We then conduct clustering
analysis on LMD using this dimensionality reduced action vectors. The number
of components are automatically selected in each case such that the amount of
variance that needs to be explained is greater than 70%. The results are tabulated
in Table 6.3. The results show that the features from layers pool5 and fc6 are still
best suited to be used as the action vectors.
Table 6.3: ARI scores after applying PCA dimensionality reduction on features
from different layers of NN:UCF101

Layer ARI score

Baseline-R 0.01
pool5 0.35

fc6 0.33

fc7 0.29
fc8 0.18

6.6 Simulation experiment environment designs

6.6.1 Reach
<mujoco model="arm3d">

<compiler inertiafromgeom="true" angle="radian" coordinate="local" />
<option timestep="0.01" gravity="0 0 0" iterations="20" integrator="Euler" />

<default>
<joint armature=’0.04’ damping="1" limited="true"/>
<geom friction=".8 .1 .1" density="300" margin="0.002" condim="1" contype="1" conaffinity="1"/>

</default>

<worldbody>
<light diffuse=".9 .9 .9" pos="0 0 5" dir="0 0−1"/>
<!−−<geom rgba="0.16470588 0.60392157 0.5372549 1.0" type="plane" pos="0 0.5−0.15" size="2 4 0.1" contype="1" conaffinity="1"/>−−>
<geom rgba="1.0 1.0 1.0 1.0" type="plane" pos="0 0.5−0.15" size="4 4 0.1" contype="1" conaffinity="1"/>

<body name="palm" pos="1 2.1 0">
<geom rgba="0.14117647 0.17647059 0.0. 0. 0. 1." type="capsule" fromto="0 0−0.1 0 0 0.1" size="0.12"/>
<body name="proximal_1" pos="0 0−0.075" axisangle="0 0 1 0.785">

<joint name="proximal_j_1" type="hinge" pos="0 0 0" axis="0 0 1" range="1.5 3.0" damping="1.0" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 1.0 0 0" size="0.03" contype="1" conaffinity="1"/>

116

6.6. Simulation experiment environment designs

<body name="distal_1" pos="1.0 0 0" axisangle="0 0 1−0.785">
<joint name="distal_j_1" type="hinge" pos="0 0 0" axis="0 0 1" range="1.5 3.5" damping="1.0"/>
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 1.1 0 0" size="0.03" contype="1" conaffinity="1"/>
<body name="distal_2" pos="1.1 0 0" axisangle="0 0 1−1.57">

<joint name="distal_j_2" type="hinge" pos="0 0 0" axis="0 0 1" range="0.5 2.0" damping="1.0"/>
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 1.2 0 0" size="0.03" contype="1" conaffinity="1"/>
<body name="distal_4" pos="1.2 0 0">

<site name="tip arml" pos="0.1−0.1 0" size="0.01" />
<site name="tip armr" pos="0.1 0.1 0" size="0.01" />
<!−−<joint name="distal_j_3" type="hinge" pos="0 0 0" axis="1 0 0" range="−3.3213 3.3" damping="0.5"/>−−>
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 0.15 0.15 0" size="0.03" contype="1" conaffinity="1" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0.15 0.15 0 0.3 0.15 0" size="0.03" contype="1" conaffinity="1" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 0.15−0.15 0" size="0.03" contype="1" conaffinity="1" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0.15−0.15 0 0.3−0.15 0" size="0.03" contype="1" conaffinity="1" />

</body>
</body>

</body>
</body>

</body>

<body name="object" pos="0 3 0"> <!−− Object propoerties−−−>
<!−−<geom rgba="1. 1. 1. 1" type="box" size="0.05 0.05 0.05" density=’0.00001’ contype="1" conaffinity="1"/>−−>
<geom rgba="1 0 0 1" type="cylinder" size="0.1 0.0001−.0001" density=’0.00001’ contype="1" conaffinity="1"/>
<joint name="obj_slidey" type="slide" pos="0.025 0.025 0.025" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="obj_slidex" type="slide" pos="0.025 0.025 0.025" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>

<!−− Backgoround Object propoerties−−>

<body name="bgobject0" pos="1.2−0.9 0">
<geom rgba="0 1 0 1" type="box" size="0.1 0.1 .1" density=’0.00001’ contype="1" conaffinity="1"/>
<joint name="obj_slidey_bg0" type="slide" pos="0.025 0.025 0.025" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="obj_slidex_bg0" type="slide" pos="0.025 0.025 0.025" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>
<body name="bgobject1" pos="1.9−0.6 0">

<geom rgba="0 0 0 1" type="ellipsoid" size="0.1 0.1 .1" density=’0.00001’ contype="1" conaffinity="1"/>
<joint name="obj_slidey_bg1" type="slide" pos="0.025 0.025 0.025" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="obj_slidex_bg1" type="slide" pos="0.025 0.025 0.025" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>

<!−− Backgoround Object propoerties−−−>

<body name="goal" pos="0−1.0−0.145">
<!−−<body name="goal" pos="0.0 0.0−0.1"> rgba (brown)="0.4 .26 0.13 1"−−>
<!−−<geom rgba="0.4 .26 0.13 1" type="box" size="0.1 0.1 0.1" density=’0.00001’ contype="0" conaffinity="0"/>−−>
<geom rgba="0 0 1 1" type="box" size="0.2 0.2 0.01" density=’0.00001’ contype="0" conaffinity="0"/>
<joint name="goal_slidey" type="slide" pos="0 0 0" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="goal_slidex" type="slide" pos="0 0 0" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>

</worldbody>

<actuator>
<motor joint="proximal_j_1" ctrlrange="−3 3" ctrllimited="true"/>
<motor joint="distal_j_1" ctrlrange="−3 3" ctrllimited="true"/>
<motor joint="distal_j_2" ctrlrange="−3 3" ctrllimited="true"/>
<!−−<motor joint="distal_j_3" ctrlrange="−3 3" ctrllimited="true"/>−−>

</actuator>
</mujoco>

6.6.2 Push
<mujoco model="arm3d">

<compiler inertiafromgeom="true" angle="radian" coordinate="local" />

117

6.6. Simulation experiment environment designs

<option timestep="0.01" gravity="0 0 0" iterations="20" integrator="Euler" />

<default>
<joint armature=’0.04’ damping="1" limited="true"/>
<geom friction=".8 .1 .1" density="300" margin="0.002" condim="1" contype="1" conaffinity="1"/>

</default>

<worldbody>
<light diffuse=".9 .9 .9" pos="0 0 5" dir="0 0−1"/>
<!−−<geom rgba="0.16470588 0.60392157 0.5372549 1.0" type="plane" pos="0 0.5−0.15" size="2 4 0.1" contype="1" conaffinity="1"/>−−>
<geom rgba="1.0 1.0 1.0 1.0" type="plane" pos="0 0.5−0.15" size="4 4 0.1" contype="1" conaffinity="1"/>

<body name="palm" pos="1 2.1 0">
<geom rgba="0.14117647 0.17647059 0.0. 0. 0. 1." type="capsule" fromto="0 0−0.1 0 0 0.1" size="0.12"/>
<body name="proximal_1" pos="0 0−0.075" axisangle="0 0 1 0.785">

<joint name="proximal_j_1" type="hinge" pos="0 0 0" axis="0 0 1" range="1.5 3.0" damping="1.0" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 1.0 0 0" size="0.03" contype="1" conaffinity="1"/>
<body name="distal_1" pos="1.0 0 0" axisangle="0 0 1−0.785">

<joint name="distal_j_1" type="hinge" pos="0 0 0" axis="0 0 1" range="1.5 3.5" damping="1.0"/>
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 1.1 0 0" size="0.03" contype="1" conaffinity="1"/>
<body name="distal_2" pos="1.1 0 0" axisangle="0 0 1−1.57">

<joint name="distal_j_2" type="hinge" pos="0 0 0" axis="0 0 1" range="0.5 2.0" damping="1.0"/>
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 1.2 0 0" size="0.03" contype="1" conaffinity="1"/>
<body name="distal_4" pos="1.2 0 0">

<site name="tip arml" pos="0.1−0.1 0" size="0.01" />
<site name="tip armr" pos="0.1 0.1 0" size="0.01" />
<!−−<joint name="distal_j_3" type="hinge" pos="0 0 0" axis="1 0 0" range="−3.3213 3.3" damping="0.5"/>−−>
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 0.15 0.15 0" size="0.03" contype="1" conaffinity="1" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0.15 0.15 0 0.3 0.15 0" size="0.03" contype="1" conaffinity="1" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0 0 0 0.15−0.15 0" size="0.03" contype="1" conaffinity="1" />
<geom rgba="0. 0. 0. 1." type="capsule" fromto="0.15−0.15 0 0.3−0.15 0" size="0.03" contype="1" conaffinity="1" />

</body>
</body>

</body>
</body>

</body>

<body name="object" pos="0. 0.3 0"> <!−− Object propoerties−−−>
<!−−<geom rgba="1. 1. 1. 1" type="box" size="0.05 0.05 0.05" density=’0.00001’ contype="1" conaffinity="1"/>−−>
<geom rgba="1 0 0 1" type="cylinder" size="0.1 0.1 1.4" density=’0.00001’ contype="1" conaffinity="1"/>
<joint name="obj_slidey" type="slide" pos="0.025 0.025 0.025" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="obj_slidex" type="slide" pos="0.025 0.025 0.025" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>

<!−− Backgoround Object propoerties−−>

<body name="bgobject0" pos="1.2−0.9 0">
<geom rgba="0 1 0 1" type="box" size="0.1 0.1 .1" density=’0.00001’ contype="1" conaffinity="1"/>
<joint name="obj_slidey_bg0" type="slide" pos="0.025 0.025 0.025" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="obj_slidex_bg0" type="slide" pos="0.025 0.025 0.025" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>
<body name="bgobject1" pos="1.9−0.6 0">

<geom rgba="0 0 0 1" type="ellipsoid" size="0.1 0.1 .1" density=’0.00001’ contype="1" conaffinity="1"/>
<joint name="obj_slidey_bg1" type="slide" pos="0.025 0.025 0.025" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="obj_slidex_bg1" type="slide" pos="0.025 0.025 0.025" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

</body>

<!−− Backgoround Object propoerties−−−>

<body name="goal" pos="0−1.0−0.145">
<!−−<body name="goal" pos="0.0 0.0−0.1">−−>
<!−−<geom rgba="1. 0. 0. 1" type="box" size="0.1 0.1 0.1" density=’0.00001’ contype="0" conaffinity="0"/>−−>
<geom rgba="0. 0. 1. 1" type="box" size="0.2 0.2 0.01" density=’0.00001’ contype="0" conaffinity="0"/>
<joint name="goal_slidey" type="slide" pos="0 0 0" axis="0 1 0" range="−10.3213 10.3" damping="0.5"/>
<joint name="goal_slidex" type="slide" pos="0 0 0" axis="1 0 0" range="−10.3213 10.3" damping="0.5"/>

118

6.7. DDPG RL algorithm

</body>

</worldbody>

<actuator>
<motor joint="proximal_j_1" ctrlrange="−3 3" ctrllimited="true"/>
<motor joint="distal_j_1" ctrlrange="−3 3" ctrllimited="true"/>
<motor joint="distal_j_2" ctrlrange="−3 3" ctrllimited="true"/>
<!−−<motor joint="distal_j_3" ctrlrange="−3 3" ctrllimited="true"/>−−>

</actuator>
</mujoco>

6.7 DDPG RL algorithm

Figure 6.6: DDPG RL algorithm

119

6.8. MIME dataset task categories

6.8 MIME dataset task categories

The 20 task categories in MIME dataset are: 1. Pour 2. Stir 3. Pass 4. Stack 5.
Place objects in box 6. Open Bottles 7. Push 8. Rotate 9. Wipe 10. Press Buttons
11. Close Book 12. Picking (single hand) 13. Picking (both hands) 14. Poke 15.
Pull (two hands) 16. Push (two hands) 17. Toy Car Trajectories 18. Roll 19. Drop
Objects 20. Pull (Single hand).

"If We Knew What it Was We Were Doing, it Would Not be Called Research, Would it?"

– Albert Einstein

120

Bibliography

[1] T. Zhang, Z.McCarthy, O. Jowl, D. Lee, X. Chen, K.Goldberg, andP.Abbeel,
“Deep Imitation Learning for Complex Manipulation Tasks from Virtual
Reality Teleoperation,” Proceedings - IEEE International Conference on Robotics
and Automation, pp. 5628–5635, 2018. (document), 1, 1.1, 1

[2] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and gen-
eralizing a task in a humanoid robot,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286–298, 2007. (doc-
ument), 1, 1.1, 1

[3] V. Krüger, D. Herzog, S. Baby, A. Ude, and D. Kragic, “Learning actions
from observations,” IEEE Robotics and Automation Magazine, vol. 17, no. 2,
pp. 30–43, 2010. (document), 2.2.1, 2.3, 2.3.6

[4] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexterous ma-
nipulation for a soft robotic hand from human demonstrations,” IEEE In-
ternational Conference on Intelligent Robots and Systems, vol. 2016-Novem,
pp. 3786–3793, 2016. (document), 2.2.1, 2.4

[5] D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng, “Humanoid ro-
bot learning and game playing using PC-based vision,” IEEE International
Conference on Intelligent Robots and Systems, vol. 3, pp. 2449–2454, 2002. (doc-
ument), 2.2.1, 2.5

121

Bibliography

[6] A. D. Dragan and S. S. Srinivasa, “Online customization of teleoperation
interfaces,” Proceedings - IEEE International Workshop on Robot and Human
Interactive Communication, pp. 919–924, 2012. (document), 2.2.1, 2.6

[7] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine,
and G. Brain, “Time-contrastive networks: Self-supervised learning from
video,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1134–1141, IEEE, 2018. (document), 2.3.1, 2.7, 2.6

[8] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE Sig-
nal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018. (document), 2.8

[9] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine, “AVID: Learn-
ingMulti-Stage Tasks via Pixel-Level Translation ofHumanVideos,” in Pro-
ceedings of Robotics: Science and Systems, (Corvalis, Oregon, USA), July 2020.
(document), 2.9, 2.3.3, 2.3.3, 2.4.3, 2.2, 2.3

[10] P. Sharma, D. Pathak, and A. Gupta, “Third-person visual imitation learn-
ing via decoupled hierarchical controller,” in Advances in Neural Information
Processing Systems, vol. 32, Curran Associates, Inc., 2019. (document), 1,
2.3.3, 2.3.3, 2.10, 2.6, 2.2, 2.3

[11] J. Jin, L. Petrich, Z. Zhang, M. Dehghan, andM. Jagersand, “Visual geomet-
ric skill inference by watching human demonstration,” in 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 8985–8991, IEEE,
2020. (document), 2.11, 2.3.5

[12] Z. Jia, M. Lin, Z. Chen, and S. Jian, “Vision-based robotmanipulation learn-
ing via human demonstrations,” ArXiv, vol. abs/2003.00385, 2020. (docu-
ment), 2.12, 2.3.6, 2.4.4, 2.2, 2.3

[13] A. Nguyen, D. Kanoulas, L. Muratore, D. G. Caldwell, and N. G. Tsagara-
kis, “Translating Videos to Commands for RoboticManipulationwithDeep
Recurrent Neural Networks,” Proceedings - IEEE International Conference on
Robotics and Automation, pp. 3782–3788, 2018. (document), 2.13, 2.3.8, 2.14,
2.4.4, 2.6

122

Bibliography

[14] M.Arnold, R. R.Negenborn, G.Andersson, and B.De Schutter, “Multi-area
predictive control for combined electricity and natural gas systems,” in 2009
European Control Conference (ECC), pp. 1408–1413, 2009. (document), 2.15

[15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine Learn-
ing, pp. 1126–1135, PMLR, 2017. (document), 2.4.6, 2.16

[16] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human ac-
tions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.
(document), 3.3.1, 3.1, 3.2

[17] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spa-
tiotemporal features with 3d convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, pp. 4489–4497, 2015. (docu-
ment), 3.1, 3.3.2, 3.3.2, 3.3

[18] P. Sharma, L. Mohan, L. Pinto, and A. Gupta, “Multiple interactions made
easy (MIME): large scale demonstrations data for imitation,” in 2nd Annual
Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October
2018, Proceedings, vol. 87 ofProceedings ofMachine Learning Research, pp. 906–
915, PMLR, 2018. (document), 4.8

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning Rep-
resentations, 2015. (document), 3.3.2, 4.3.1, 4.3.3, 4.6

[20] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment: a
study of the roomba vacuum in the home,” in Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, pp. 258–265, ACM,
2006. 1

[21] J. Leven, D. Burschka, R. Kumar, G. Zhang, S. Blumenkranz, X. D. Dai,
M. Awad, G. D. Hager, M. Marohn, M. Choti, et al., “Davinci canvas: a
telerobotic surgical systemwith integrated, robot-assisted, laparoscopic ul-
trasound capability,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 811–818, Springer, 2005. 1

123

Bibliography

[22] L. Pauly, M. Baiju, P. Viswanathan, P. Jose, D. Paul, and D. Sankar, “Cam-
bot: Customer assistance mobile manipulator robot,” in 2015 IEEE Bombay
Section Symposium (IBSS), pp. 1–4, IEEE, 2015. 1

[23] A. Okano, H. Matsubara, and H. Inoue, “Design and implementation of a
task-oriented robot language,” Advanced Robotics, vol. 3, no. 3, pp. 177–191,
1988. 1

[24] T. Lozano-Perez andP.H.Winston, “Lama: A language for automaticmech-
anical assembly,” in IJCAI, 1977. 1

[25] S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends in
Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999. 1

[26] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Survey: Robot program-
ming by demonstration,” Springer Handbook of Robotics, pp. 1371–1394, 2008.
1

[27] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of ro-
bot learning from demonstration,” Robotics and Autonomous Systems, vol. 57,
no. 5, pp. 469–483, 2009. 1, 2.1

[28] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey,” International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013. 1

[29] L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A survey of deep
network solutions for learning control in robotics: From reinforcement to
imitation,” arXiv preprint arXiv:1612.07139, 2016. 1

[30] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters, “An
Algorithmic Perspective on Imitation Learning,” Foundations and Trends in
Robotics, vol. 7, no. 1-2, pp. 1–179, 2018. 1

[31] F. Torabi, G. Warnell, and P. Stone, “Recent advances in imitation learn-
ing from observation,” IJCAI International Joint Conference on Artificial Intel-
ligence, vol. 2019-Augus, no. August, pp. 6325–6331, 2019. 1, 1, 2.1

124

Bibliography

[32] L. Pauly, “Defining the problem of observation learning,” arXiv preprint
arXiv:1808.08288, 2018. 1, 2.1

[33] D. Borsa, N. Heess, B. Piot, S. Liu, L. Hasenclever, R. Munos, and
O. Pietquin, “Observational learning by reinforcement learning,” Proceed-
ings of the International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, vol. 2, pp. 1117–1124, 2019. 1, 2.1

[34] P. Bakker and Y. Kuniyoshi, “Robot see, robot do: An overview of robot
imitation,” in AISB96 Workshop on Learning in Robots and Animals, pp. 3–11,
1996. 1

[35] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by Watching: Extracting
Reusable Task Knowledge from Visual Observation of Human Perform-
ance,” IEEE Transactions on Robotics and Automation, vol. 10, no. 6, pp. 799–
822, 1994. 1, 1

[36] T. Suehiro, “Toward an Assembly Plan from Observation Part I: Task Re-
cognition with Polyhedral Objects,” IEEE Transactions on Robotics and Auto-
mation, vol. 10, no. 3, pp. 368–385, 1994. 1, 1

[37] T. Hamabe, H. Goto, and J. Miura, “A programming by demonstration sys-
tem for human-robot collaborative assembly tasks,” in 2015 IEEE Interna-
tional Conference on Robotics and Biomimetics (ROBIO), pp. 1195–1201, IEEE,
2015. 1, 2.2.1

[38] J. Jin, L. Petrich, M. Dehghan, and M. Jagersand, “A geometric perspective
on visual imitation learning,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5194–5200, 2020. 1, 2.3.5

[39] B. C. Stadie, P. Abbeel, and I. Sutskever, “Third person imitation learning,”
in 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net,
2017. 1, 2.2.2, 2.3.2, 2.4.5, 2.2, 2.3

[40] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from Observa-
tion: Learning to Imitate Behaviors from Raw Video via Context Transla-

125

Bibliography

tion,” Proceedings - IEEE International Conference on Robotics and Automation,
pp. 1118–1125, 2018. 1, 1.2, 2.3.3, 2.3.3, 2.4.1, 2.5, 2.6, 2.2, 2.3

[41] R. Okumura, M. Okada, and T. Taniguchi, “Domain-adversarial and -
conditional state space model for imitation learning,” 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 5179–5186,
2020. 1

[42] A. Bandura and R. H. Walters, Social learning theory, vol. 1. Prentice-hall
Englewood Cliffs, NJ, 1977. 1.1

[43] A. Bandura, Social foundations of thought and action : a social cognitive theory.
Prentice-Hall, 1986. 1.1

[44] A. Bandura and R. H. Walters, Social learning and personality development.
New York, 1963. 1.1

[45] C. L. Nehaniv, K. Dautenhahn, and K. Dautenhahn, Imitation in animals and
artifacts. MIT press, 2002. 1.1

[46] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
1.2, 2.2.2

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015. 1.2, 2.2.2

[48] L. Pauly, H. Peel, S. Luo, D. Hogg, and R. Fuentes, “Deeper networks for
pavement crack detection,” in ISARC. Proceedings of the International Sym-
posium on Automation and Robotics in Construction, vol. 34, 2017. 1.2

[49] L. Pauly, R. D. Raj, and B. Paul, “Hand written digit recognition system for
south indian languages using artificial neural networks,” in 2015 Eighth In-
ternational Conference on Contemporary Computing (IC3), pp. 122–126, IEEE,
2015. 1.2

[50] L. Pauly andD. Sankar, “Non intrusive eye blink detection from low resolu-
tion images using hog-svm classifier,” International Journal of Image, Graphics
and Signal Processing, vol. 8, no. 10, p. 11, 2016. 1.2

126

Bibliography

[51] L. Pauly and D. Sankar, “A new method for sorting and grading of man-
gos based on computer vision system,” in 2015 IEEE International Advance
Computing Conference (IACC), pp. 1191–1195, IEEE, 2015. 1.2

[52] L. Pauly and D. Sankar, “A novel method for eye tracking and blink de-
tection in video frames,” in 2015 IEEE International Conference on Computer
Graphics, Vision and Information Security (CGVIS), pp. 252–257, IEEE, 2015.
1.2

[53] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation:
Learning to imitate behaviors from raw video via context translation,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1118–1125, IEEE, 2018. 1.2

[54] P. Sermanet, K. Xu, and S. Levine, “Unsupervised perceptual rewards for
imitation learning,” Proceedings of Robotics: Science and Systems (RSS), 2017.
1.2, 2.3.4, 2.4.1, 2.4.1, 2.5, 2.2, 2.3, 4.4.1

[55] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine,
and G. Brain, “Time-contrastive networks: Self-supervised learning from
video,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1134–1141, IEEE, 2018. 1.2, 2.4.1, 2.4.1, 2.5, 2.2, 2.3

[56] Y. Lee, E. S. Hu, Z. Yang, and J. J. Lim, “To follow or not to follow: Select-
ive imitation learning from observations,” in Proceedings of the Conference on
Robot Learning (L. P. Kaelbling, D. Kragic, and K. Sugiura, eds.), vol. 100 of
Proceedings of Machine Learning Research, pp. 11–23, PMLR, 30 Oct–01 Nov
2020. 1.2

[57] L. Pauly, W. C. Agboh, D. C. Hogg, and R. Fuentes, “O2A: One-shot Obser-
vational learning with Action vectors,” arXiv e-prints, p. arXiv:1810.07483,
Dec. 2020. 1.5

[58] C. Do, C. Gordillo, and W. Burgard, “Learning to pour using deep determ-
inistic policy gradients,” in 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 3074–3079, IEEE, 2018. 2.1

127

Bibliography

[59] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning.,”
in ICLR (Poster), 2016. 2.1

[60] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Collective
robot reinforcement learning with distributed asynchronous guided policy
search,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 79–86, IEEE, 2017. 2.1

[61] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-
chocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous
in-handmanipulation,” The International Journal of Robotics Research, vol. 39,
no. 1, pp. 3–20, 2020. 2.1

[62] H. van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot in-
hand manipulation with tactile features,” in 2015 IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots (Humanoids), pp. 121–127, 2015. 2.1

[63] A.Nagabandi, K. Konoglie, S. Levine, andV. Kumar, “Deep dynamicsmod-
els for learning dexterous manipulation,” in Conference on Robot Learning
(CoRL), 2019. 2.1

[64] A. Singh, L. Yang, C. Finn, and S. Levine, “End-to-end robotic reinforce-
ment learning without reward engineering.,” in Robotics: Science and Sys-
tems, 2019. 2.1

[65] C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters, “Active reward
learning.,” in Robotics: Science and systems, 2014. 2.1

[66] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” in Advances in
Neural Information Processing Systems, pp. 4299–4307, 2017. 2.1

[67] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Ab-
beel, “Deep imitation learning for complexmanipulation tasks from virtual
reality teleoperation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1–8, IEEE, 2018. 2.1

128

Bibliography

[68] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and general-
ization of motor skills by learning from demonstration,” in 2009 IEEE In-
ternational Conference on Robotics and Automation, pp. 763–768, IEEE, 2009.
2.1

[69] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Ad-
vances in Neural Information Processing Systems, pp. 4565–4573, 2016. 2.1

[70] N. Ratliff, J. A. Bagnell, and S. S. Srinivasa, “Imitation learning for loco-
motion and manipulation,” in 2007 7th IEEE-RAS International Conference
on Humanoid Robots, pp. 392–397, IEEE, 2007. 2.1

[71] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine, “Vision-based
multi-task manipulation for inexpensive robots using end-to-end learning
from demonstration,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3758–3765, IEEE, 2018. 2.1

[72] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,” in
in Proc. 17th International Conf. on Machine Learning, Citeseer, 2000. 2.1

[73] M. Field, D. Stirling, F. Naghdy, and Z. Pan, “Motion capture in robotics
review,” 2009 IEEE International Conference on Control and Automation, ICCA
2009, pp. 1697–1702, 2009. 2.2.1

[74] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for imit-
ation with nonlinear dynamical systems,” IEEE International Conference on
Intelligent Robots and Systems, vol. 2, pp. 752–757, 2001. 2.2.1

[75] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitationwith nonlin-
ear dynamical systems in humanoid robots,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2, no. May, pp. 1398–1403, 2002.
2.2.1

[76] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no. 2-3,
pp. 109–116, 2004. 2.2.1

129

Bibliography

[77] Y. Yang, Y. Li, C. Fermüller, and Y. Aloimonos, “Robot learning manipula-
tion action plans by "watching" unconstrained videos from theWorldWide
Web,” Proceedings of the National Conference on Artificial Intelligence, vol. 5,
pp. 3686–3692, 2015. 2.2.1

[78] Y. Demiris and B. Khadhouri, “Hierarchical attentive multiple models for
execution and recognition of actions,” Robotics and Autonomous Systems,
vol. 54, no. 5, pp. 361–369, 2006. 2.2.1

[79] K. Lee, Y. Su, T. K. Kim, and Y. Demiris, “A syntactic approach to ro-
bot imitation learning using probabilistic activity grammars,” Robotics and
Autonomous Systems, vol. 61, no. 12, pp. 1323–1334, 2013. 2.2.1

[80] K. Ramirez-Amaro, M. Beetz, and G. Cheng, “Transferring skills to hu-
manoid robots by extracting semantic representations from observations
of human activities,” Artificial Intelligence, vol. 247, pp. 95–118, 2017. 2.2.1

[81] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki, “Graph-
structured visual imitation,” in Conference on Robot Learning, pp. 979–989,
PMLR, 2020. 2.2.1

[82] H. Zhang, P. Lai, S. Paul, S. Kothawade, and S. Nikolaidis, “Learning col-
laborative action plans from youtube videos,” in International Symposium on
Robotics Research (ISRR), 2019. 2.2.1

[83] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, andM. Pietikäinen,
“Deep learning for generic object detection: A survey,” International journal
of computer vision, vol. 128, no. 2, pp. 261–318, 2020. 2.2.1

[84] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE transactions on neural networks and learning sys-
tems, vol. 30, no. 11, pp. 3212–3232, 2019. 2.2.1

[85] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,”
arXiv preprint arXiv:1905.05055, 2019. 2.2.1

130

Bibliography

[86] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645,
2009. 2.2.1

[87] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning of dual-
arm manipulation tasks in humanoid robots,” International Journal of Hu-
manoid Robotics, vol. 5, no. 02, pp. 183–202, 2008. 2.2.1

[88] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V.
Gehler, and B. Schiele, “Deepcut: Joint subset partition and labeling for
multi person pose estimation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 4929–4937, 2016. 2.2.1

[89] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose
estimation using part affinity fields,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7291–7299, 2017. 2.2.1

[90] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person pose
estimation,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 2334–2343, 2017. 2.2.1

[91] Bazarevsky, Valentin and Zhang, Fan, “On-device, real-time hand
tracking with mediapipe.” https://ai.googleblog.com/2019/08/

on-device-real-time-hand-tracking-with.html, 2019. [Online; Ac-
cessed: 9-June-2020]. 2.2.1

[92] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by Watching: Extracting
Reusable Task Knowledge from Visual Observation of Human Perform-
ance,” IEEE Transactions on Robotics and Automation, vol. 10, no. 6, pp. 799–
822, 1994. 2.2.1

[93] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017. 2.2.2

131

https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html
https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html

Bibliography

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image re-
cognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016. 2.2.2

[95] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9, 2015. 2.2.2

[96] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,” in
Workshop at International Conference on Learning Representations, 2014. 2.2.2

[97] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision, pp. 818–833, Springer,
2014. 2.2.2

[98] M. Suresha, S. Kuppa, and D. Raghukumar, “A study on deep learning
spatiotemporal models and feature extraction techniques for video under-
standing,” International Journal of Multimedia Information Retrieval, pp. 1–21,
2020. 2.2.2

[99] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learn-
ing an invariantmapping,” in 2006 IEEEComputer Society Conference onCom-
puter Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 1735–1742, IEEE,
2006. 2.3.1

[100] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 815–823, 2015. 2.3.1

[101] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deepmetric learning via
lifted structured feature embedding,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4004–4012, 2016. 2.3.1

132

Bibliography

[102] K. Sohn, “Improved deep metric learning with multi-class n-pair loss ob-
jective,” in Advances in neural information processing systems, pp. 1857–1865,
2016. 2.3.1

[103] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning with
angular loss,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 2593–2601, 2017. 2.3.1

[104] W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon, “Attention-based en-
semble for deep metric learning,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 736–751, 2018. 2.3.1

[105] M. Boudiaf, J. Rony, I. M. Ziko, E. Granger, M. Pedersoli, P. Piantanida,
and I. Ben Ayed, “A unifying mutual information view of metric learning:
cross-entropy vs. pairwise losses,” in European Conference on Computer Vis-
ion, pp. 548–564, Springer, 2020. 2.3.1

[106] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in
neural information processing systems, pp. 2672–2680, 2014. 2.3.2

[107] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance,” arXiv preprint
arXiv:1412.3474, 2014. 2.3.2

[108] D. Charte, F. Charte, S. García, M. J. del Jesus, and F. Herrera, “A practical
tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models,
software and guidelines,” Information Fusion, vol. 44, pp. 78–96, 2018. 2.3.3,
2.3.3

[109] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Computer Vis-
ion (ICCV), 2017 IEEE International Conference on, 2017. 2.3.3

[110] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical im-

133

Bibliography

age computing and computer-assisted intervention, pp. 234–241, Springer, 2015.
2.3.3

[111] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009. 2.3.4

[112] A. Sax, J. O. Zhang, B. Emi, A. Zamir, S. Savarese, L. Guibas, and J. Malik,
“Learning to navigate using mid-level visual priors,” in Conference on Robot
Learning, pp. 791–812, PMLR, 2020. 2.3.4, 2.4.2

[113] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer vision matter for
action?,” Science Robotics, vol. 4, no. 30, p. 6661, 2019. 2.3.4

[114] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 2818–2826, 2016. 2.3.4

[115] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Computer Vision and Pattern Re-
cognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255, IEEE, 2009.
2.3.4

[116] X.Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7794–7803, 2018. 2.3.4

[117] P. Sharma, L. Mohan, L. Pinto, and A. Gupta, “Multiple interactions made
easy (mime): Large scale demonstrations data for imitation,” in Conference
on Robot Learning, pp. 906–915, PMLR, 2018. 2.3.4, 2.4.2, 2.5, 2.2, 2.3, 4.3.5,
4.6

[118] R. A. Gammons, “Eskimo: An expert system for kodak injection molding
operations,” in Artificial Intelligence in Engineering Design, pp. 81–104, El-
sevier, 1992. 2.3.5

[119] Wikipedia contributors, “Geometric primitives: Wikipedia, the free encyc-
lopedia.” https://en.wikipedia.org/w/index.php?title=Geometric_

primitive&oldid=785463009, 2017. [Online; Accessed: 9-June-2020]. 2.3.5

134

https://en.wikipedia.org/w/index.php?title=Geometric_primitive&oldid=785463009
https://en.wikipedia.org/w/index.php?title=Geometric_primitive&oldid=785463009

Bibliography

[120] BuildingSMART International Limited, “Industry foundation classes.”
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/

link/constraint-association.htm, 2016. [Online; Accessed: 9-June-
2020]. 2.3.5

[121] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks:
Lstm cells and network architectures,” Neural computation, vol. 31, no. 7,
pp. 1235–1270, 2019. 2.3.6

[122] R. Goroshin, M. F. Mathieu, and Y. LeCun, “Learning to linearize under
uncertainty,” in Advances in Neural Information Processing Systems, pp. 1234–
1242, 2015. 2.3.7

[123] W. R. Softky, “Unsupervised pixel-prediction,” inAdvances in neural inform-
ation processing Systems, pp. 809–815, 1996. 2.3.7

[124] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning
of video representations using lstms,” in International conference on machine
learning, pp. 843–852, 2015. 2.3.7

[125] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” in
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net,
2017. 2.3.7

[126] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for physical
interaction through video prediction,” in Advances in neural information pro-
cessing systems, pp. 64–72, 2016. 2.3.7, 4.6

[127] A. W. Tow, N. Sünderhauf, S. Shirazi, M. Milford, and J. Leitner, “What
would you do? acting by learning to predict,” in International Conference on
Intelligent Robots and Systems, vol. 24, p. 28. 2.3.7, 2.2, 2.3

[128] X.Wang,W. Chen, J.Wu, Y.-F.Wang, andW. YangWang, “Video captioning
via hierarchical reinforcement learning,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 4213–4222, 2018. 2.3.8

135

https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/link/constraint-association.htm
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/link/constraint-association.htm

Bibliography

[129] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugo-
palan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional net-
works for visual recognition and description,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 2625–2634, 2015. 2.3.8,
3.3.2

[130] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller, and
N. Roy, “Understanding natural language commands for robotic naviga-
tion and mobile manipulation,” in Twenty-fifth AAAI conference on artificial
intelligence, 2011. 2.3.8

[131] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, “Sequence to sequence - video to text,” in The IEEE International
Conference on Computer Vision (ICCV), December 2015. 2.3.8

[132] H. Yu, J.Wang, Z. Huang, Y. Yang, andW. Xu, “Video paragraph captioning
using hierarchical recurrent neural networks,” inProceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 4584–4593, 2016. 2.3.8

[133] V. Ramanishka, A. Das, J. Zhang, andK. Saenko, “Top-down visual saliency
guided by captions,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7206–7215, 2017. 2.3.8

[134] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing systems,
pp. 3104–3112, 2014. 2.3.8

[135] H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recovering
the syntax and semantics of goal-directed human activities,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 780–787,
2014. 2.3.8

[136] S. Yang, W. Zhang, W. Lu, H. Wang, and Y. Li, “Learning Actions from
HumanDemonstrationVideo for RoboticManipulation,” IEEE International
Conference on Intelligent Robots and Systems, pp. 1805–1811, 2019. 2.3.8, 2.4.4,
2.2, 2.3

136

Bibliography

[137] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in Proceedings of the twenty-first international conference on Machine
learning, p. 1, ACM, 2004. 2.4.1

[138] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J., vol. 6,
pp. 679–684, 1957. 2.4.1

[139] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cam-
bridge, MA: MIT Press, 2018. 2.4.1

[140] Wikipedia contributors, “Huber loss — Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=

995902670, 2020. [Online; accessed 12-January-2021]. 2.4.1

[141] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” inProceedings of the 23rdNational Conference
onArtificial Intelligence - Volume 3, AAAI’08, p. 1433–1438, AAAI Press, 2008.
2.4.1

[142] O. Kroemer, H. van Hoof, G. Neumann, and J. Peters, “Learning to predict
phases of manipulation tasks as hidden states,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4009–4014, 2014. 2.4.1

[143] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin, and B. Zhang, “A formal
study of shot boundary detection,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 17, no. 2, pp. 168–186, 2007. 2.4.1

[144] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science &
Business Media, 2013. 2.4.3

[145] M. D. Killpack, A. Kapusta, and C. C. Kemp, “Model predictive control for
fast reaching in clutter,”Autonomous Robots, vol. 40, no. 3, pp. 537–560, 2016.
2.4.3

[146] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz,
and N. Mansard, “Whole-body model-predictive control applied to the
hrp-2 humanoid,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3346–3351, IEEE, 2015. 2.4.3

137

https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=995902670
https://en.wikipedia.org/w/index.php?title=Huber_loss&oldid=995902670

Bibliography

[147] G. Garimella and M. Kobilarov, “Towards model-predictive control for aer-
ial pick-and-place,” in 2015 IEEE international conference on robotics and auto-
mation (ICRA), pp. 4692–4697, IEEE, 2015. 2.4.3

[148] D. Lunni, A. Santamaria-Navarro, R. Rossi, P. Rocco, L. Bascetta, and
J. Andrade-Cetto, “Nonlinear model predictive control for aerial manip-
ulation,” in 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 87–93, IEEE, 2017. 2.4.3

[149] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based robot-
ics: Comparison of bullet, havok, mujoco, ode and physx,” in 2015 IEEE in-
ternational conference on robotics and automation (ICRA), pp. 4397–4404, IEEE,
2015. 2.4.3

[150] D. Limon, J. Calliess, and J. Maciejowski, “Learning-based nonlinearmodel
predictive control,” 20th IFAC World Congress, vol. 50, no. 1, pp. 7769–7776,
2017. 2.4.3

[151] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to sequence
movement primitives from demonstrations,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4414–4421, IEEE, 2014. 2.4.3

[152] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine, “Solar:
Deep structured representations for model-based reinforcement learning,”
in International Conference on Machine Learning, pp. 7444–7453, 2019. 2.4.3

[153] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified ap-
proach to combinatorial optimization, Monte-Carlo simulation and machine learn-
ing. Springer Science & Business Media, 2013. 2.4.3

[154] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis, “Opensot:
a whole-body control library for the compliant humanoid robot coman,”
in 2015 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6248–6253, IEEE, 2015. 2.4.4

138

Bibliography

[155] T.-T.Do, A.Nguyen, and I. Reid, “Affordancenet: An end-to-enddeep learn-
ing approach for object affordance detection,” in 2018 IEEE international con-
ference on robotics and automation (ICRA), pp. 1–5, IEEE, 2018. 2.4.4

[156] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings
of the IEEE International Conference on Computer Vision, pp. 2961–2969, 2017.
2.4.4

[157] D. Paulius and Y. Sun, “A survey of knowledge representation in service
robotics,” Robotics and Autonomous Systems, vol. 118, pp. 13–30, 2019. 2.4.4

[158] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel, “Integrating symbolic
and geometric planning for mobile manipulation,” in 2009 IEEE Interna-
tional Workshop on Safety, Security & Rescue Robotics (SSRR 2009), pp. 1–6,
IEEE, 2009. 2.4.4

[159] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International conference on machine learning,
pp. 1889–1897, 2015. 2.4.5

[160] Wikipedia contributors, “Meta learning — Wikipedia, the free encyclo-
pedia.” https://en.wikipedia.org/w/index.php?title=Meta_learning&
oldid=998509683, 2021. [Online; accessed 23-June-2021]. 2.4.6

[161] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta rein-
forcement learning,” in Conference on Robot Learning, pp. 1094–1100, PMLR,
2020. 2.4.6

[162] T. Yu, C. Finn, S. Dasari, A. Xie, T. Zhang, P. Abbeel, and S. Levine,
“One-shot imitation from observing humans via domain-adaptive meta-
learning,” Proceedings of Robotics: Science and Systems (RSS), 2018. 2.4.6, 2.2,
2.3, 4.6

[163] T. Yu, P. Abbeel, S. Levine, and C. Finn, “One-shot hierarchical imitation
learning of compound visuomotor tasks,” arXiv preprint arXiv:1810.11043,
2018. 2.4.6, 2.2, 2.3

139

https://en.wikipedia.org/w/index.php?title=Meta_learning&oldid=998509683
https://en.wikipedia.org/w/index.php?title=Meta_learning&oldid=998509683

Bibliography

[164] N. A. Lynnerup, L. Nolling, R. Hasle, and J. Hallam, “A survey on reprodu-
cibility by evaluating deep reinforcement learning algorithms on real-world
robots,” in Proceedings of the Conference on Robot Learning, vol. 100 of Proceed-
ings of Machine Learning Research, pp. 466–489, PMLR, 30 Oct–01 Nov 2020.
2.6

[165] G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev.
Neurosci., vol. 27, pp. 169–192, 2004. 3.1

[166] L. Cattaneo and G. Rizzolatti, “Themirror neuron system,”Archives of neur-
ology, vol. 66, no. 5, pp. 557–560, 2009. 3.1

[167] A. Lago-Rodríguez, B. Cheeran, G. Koch, T. Hortobagy, and M. Fernandez-
del Olmo, “The role of mirror neurons in observational motor learning: an
integrative review,” European Journal of Human Movement, vol. 32, pp. 82–
103, 2014. 3.1

[168] G. Rizzolatti, “Themirror neuron system and its function in humans,”Ana-
tomy and embryology, vol. 210, no. 5-6, pp. 419–421, 2005. 3.1

[169] Y. Wang, M. Long, J. Wang, and P. S. Yu, “Spatiotemporal pyramid network
for video action recognition,” in Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, pp. 1529–1538, 2017. 3.1

[170] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recogni-
tion: A survey,” Image and vision computing, vol. 60, pp. 4–21, 2017. 3.1

[171] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualizedword representations,” in Proceedings
of NAACL-HLT, pp. 2227–2237, 2018. 3.2

[172] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improv-
ing language understanding by generative pre-training,” technical report,
OpenAI, 2018. 3.2

[173] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” technical report,
OpenAI, 2019. 3.2

140

Bibliography

[174] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language mod-
els are few-shot learners,” in Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 1877–1901, 2020. 3.2

[175] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceed-
ings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Association for Computational Linguist-
ics, June 2019. 3.2

[176] Y. Xie and D. Richmond, “Pre-training on grayscale imagenet improves
medical image classification,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 0–0, 2018. 3.2

[177] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal, D. Luan, and
I. Sutskever, “Generative pretraining from pixels,” in Proceedings of the 37th
International Conference on Machine Learning, 2020. 3.2

[178] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big transfer (bit): General visual representation learning,”
in ECCV, 2020. 3.2

[179] P. Goyal, M. Caron, B. Lefaudeux, M. Xu, P. Wang, V. Pai, M. Singh, V. Lipt-
chinsky, I. Misra, A. Joulin, et al., “Self-supervised pretraining of visual fea-
tures in the wild,” arXiv preprint arXiv:2103.01988, 2021. 3.2

[180] M. Marszałek, I. Laptev, and C. Schmid, “Actions in context,” in IEEE Con-
ference on Computer Vision & Pattern Recognition, 2009. 3.1

[181] K. K. Reddy andM. Shah, “Recognizing 50 human action categories of web
videos,”Machine vision and applications, vol. 24, no. 5, pp. 971–981, 2013. 3.1

141

Bibliography

[182] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: a large
video database for human motion recognition,” in Proceedings of the Inter-
national Conference on Computer Vision (ICCV), 2011. 3.1

[183] O. Kliper-Gross, T. Hassner, and L. Wolf, “The action similarity labeling
challenge,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 3, pp. 615–621, 2011. 3.1

[184] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for
human action recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 1, pp. 221–231, 2012. 3.3.2

[185] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Advances in neural information processing
systems, pp. 568–576, 2014. 3.3.2

[186] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,
“Large-scale video classification with convolutional neural networks,” in
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 1725–1732, 2014. 3.3.2

[187] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action re-
cognition,” in European conference on computer vision, pp. 20–36, Springer,
2016. 3.3.2

[188] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010. 3.3.2

[189] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural
networks in classification,” in Theoretical Foundations of Machine Learning
(TFML), 2017. 3.3.3

[190] Y. Ding, L. Wang, and B. Gong, “Analyzing deep neural network’s transfer-
ability via frechet distance,” inProceedings of the IEEE/CVFWinter Conference
on Applications of Computer Vision, pp. 3932–3941, 2021. 3.3.4

142

Bibliography

[191] J. Duchi, E. Hazan, andY. Singer, “Adaptive subgradientmethods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011. 3.3, 4.7

[192] J. MacQueen, “Somemethods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, (Berkeley, Calif.), pp. 281–297,
University of California Press, 1967. 3.4.2

[193] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification,
vol. 2, no. 1, pp. 193–218, 1985. 3.4.2

[194] Wikipedia contributors, “Rand index: Wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Rand_index&oldid=

957507615, 2020. [Online; accessed 24-July-2020]. 3.4.2

[195] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Ma-
chine learning in python,” the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011. 3.4.2

[196] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” technical report, Stanford, 2006. 3.5

[197] C. Elkan, “Using the triangle inequality to accelerate k-means,” in Pro-
ceedings of the 20th international conference on Machine Learning (ICML-03),
pp. 147–153, 2003. 3.5

[198] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based
external cluster evaluation measure,” in Proceedings of the 2007 joint confer-
ence on empirical methods in natural language processing and computational nat-
ural language learning (EMNLP-CoNLL), pp. 410–420, 2007. 3.4.2

[199] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson, “Factors
of transferability for a generic convnet representation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 9, pp. 1790–1802, 2015.
3.4.2

143

https://en.wikipedia.org/w/index.php?title=Rand_index&oldid=957507615
https://en.wikipedia.org/w/index.php?title=Rand_index&oldid=957507615

Bibliography

[200] B. Athiwaratkun and K. Kang, “Feature representation in convolutional
neural networks,” arXiv preprint arXiv:1507.02313, 2015. 3.4.2

[201] M. E. Tipping and C. M. Bishop, “Probabilistic principal component ana-
lysis,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
vol. 61, no. 3, pp. 611–622, 1999. 3.4.4, 4.3.4

[202] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising beha-
vior of distance metrics in high dimensional space,” in International confer-
ence on database theory, pp. 420–434, Springer, 2001. 3.4.5

[203] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016. 4.3

[204] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5026–5033, Oct 2012. 4.3

[205] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in International Conference on Learning Representations, 2015. 4.3.1

[206] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015. 4.3.1

[207] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proceedings of the 31st Inter-
national Conference on Machine Learning, vol. 32, pp. 387–395, PMLR, 22–24
Jun 2014. 4.3.1

[208] R. Bellman, “The theory of dynamic programming,” Bull. Amer. Math. Soc.,
vol. 60, pp. 503–515, 11 1954. 4.3.1

[209] H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li, “Improving deep neural net-
works using softplus units,” in 2015 International Joint Conference on Neural
Networks (IJCNN), pp. 1–4, IEEE, 2015. 4.3.1

144

Bibliography

[210] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian mo-
tion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930. 4.3.1

[211] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI, 2018. 4.3.2

[212] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1, pp. 886–893, IEEE, 2005. 4.3.3

[213] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coeffi-
cient,” in Noise reduction in speech processing, pp. 1–4, Springer, 2009. 4.3.4

[214] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Em-
mons, A. Gupta, E. Orbay, et al., “Roboturk: A crowdsourcing platform for
robotic skill learning through imitation,” in Conference on Robot Learning,
pp. 879–893, 2018. 4.6

[215] A. Mandlekar, J. Booher, M. Spero, A. Tung, A. Gupta, Y. Zhu, A. Garg,
S. Savarese, and L. Fei-Fei, “Scaling robot supervision to hundreds of hours
with roboturk: Robotic manipulation dataset through human reasoning
and dexterity,” in 2019 IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), pp. 1048–1055, IEEE, 2019. 4.6

[216] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019. 4.3.5

[217] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regulariza-
tion strategy to train strong classifiers with localizable features,” in Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 6023–6032,
2019. 4.3.5

[218] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp:
Stochastic trajectory optimization for motion planning,” in 2011 IEEE Inter-
national Conference on Robotics and Automation, pp. 4569–4574, IEEE, 2011.
4.4.1

145

Bibliography

[219] W. C. Agboh andM. R. Dogar, “Pushing fast and slow: Task-adaptive plan-
ning for non-prehensile manipulation under uncertainty,” in International
Workshop on the Algorithmic Foundations of Robotics, pp. 160–176, Springer,
2018. 4.4.1

[220] A. Plaat, W. Kosters, and M. Preuss, “Model-based deep reinforce-
ment learning for high-dimensional problems, a survey,” arXiv preprint
arXiv:2008.05598, 2021. 4.4.1

[221] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learn-
ing behaviors by latent imagination,” in International Conference on Learning
Representations, 2019. 4.4.1

[222] C. Finn, M. Zhang, J. Fu, X. Tan, Z. McCarthy, E. Scharff, and S. Levine,
“Guided policy search code implementation,” 2016. Software available
from rll.berkeley.edu/gps. 4.4.1

[223] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop
on open source software, vol. 3, p. 5, Kobe, Japan, 2009. 4.4.2

[224] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, andD. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-scale
data collection,” The International Journal of Robotics Research, vol. 37, no. 4-
5, pp. 421–436, 2018. 5.2

[225] A. Yamaguchi and C. G. Atkeson, “Recent progress in tactile sensing and
sensors for robotic manipulation: can we turn tactile sensing into vision?,”
Advanced Robotics, vol. 33, no. 14, pp. 661–673, 2019. 5.3.1

[226] W. Chen, H. Khamis, I. Birznieks, N. F. Lepora, and S. J. Redmond, “Tactile
sensors for friction estimation and incipient slip detection—toward dexter-
ous robotic manipulation: A review,” IEEE Sensors Journal, vol. 18, no. 22,
pp. 9049–9064, 2018. 5.3.1

146

Bibliography

[227] Y. Shi, F. Gong, M.Wang, J. Liu, Y.Wu, andH.Men, “A deep featuremining
method of electronic nose sensor data for identifying beer olfactory inform-
ation,” Journal of Food Engineering, vol. 263, pp. 437–445, 2019. 5.3.1

[228] V. Tiwari, “Mfcc and its applications in speaker recognition,” International
journal on emerging technologies, vol. 1, no. 1, pp. 19–22, 2010. 5.3.1

[229] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban
sound research,” in 22nd ACM International Conference onMultimedia (ACM-
MM’14), (Orlando, FL, USA), pp. 1041–1044, Nov. 2014. 5.3.1

[230] R. Qian, T. Meng, B. Gong, M.-H. Yang, H. Wang, S. Belongie, and Y. Cui,
“Spatiotemporal contrastive video representation learning,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6964–6974, 2021. 5.3.2

[231] Y. Zhou, H. Dong, and A. El Saddik, “Deep learning in next-frame predic-
tion: A benchmark review,” IEEE Access, vol. 8, pp. 69273–69283, 2020. 5.3.2

[232] R. Glatt and A. Costa, “Policy reuse in deep reinforcement learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, 2017. 5.3.3

[233] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
“Curriculum learning for reinforcement learning domains: A framework
and survey,” Journal of Machine Learning Research, vol. 21, no. 181, pp. 1–50,
2020. 5.3.5

[234] F. Mahdisoltani, G. Berger, W. Gharbieh, D. Fleet, and R. Memisevic,
“Fine-grained video classification and captioning,” arXiv preprint
arXiv:1804.09235, vol. 5, no. 6, 2018. 6.1

[235] H. Zhao, A. Torralba, L. Torresani, and Z. Yan, “Hacs: Human action clips
and segments dataset for recognition and temporal localization,” inProceed-
ings of the IEEE International Conference on Computer Vision, pp. 8668–8678,
2019. 6.1

147

Bibliography

[236] A. Diba, M. Fayyaz, V. Sharma, M. Paluri, J. Gall, R. Stiefelhagen, and
L. Van Gool, “Large scale holistic video understanding,” in European Con-
ference on Computer Vision, pp. 593–610, Springer, 2020. 6.1

[237] Q. Huang, Y. Xiong, A. Rao, J. Wang, and D. Lin, “Movienet: A holistic
dataset for movie understanding,” in The European Conference on Computer
Vision (ECCV), 2020. 6.1

[238] L. Smaira, J. Carreira, E. Noland, E. Clancy, A. Wu, and A. Zisserman, “A
short note on the kinetics-700-2020 human action dataset,” arXiv preprint
arXiv:2010.10864, 2020. 6.1

[239] M. Kuhn and K. Johnson, Feature engineering and selection: A practical ap-
proach for predictive models. CRC Press, 2019. 6.3

148

