Automating Abstraction
For Potential-Based Reward
Shaping

John Burden

Doctor of Philosophy

Computer Science
University of York
December 2020

Abstract

Within the field of Reinforcement Learning (RL) the successful application of
abstraction can play a huge role in decreasing the time required for agents to
learn competent policies. Many examples of this speed-up have been observed
throughout the literature. Reward Shaping is one such technique for utilising
abstractions in this way.

This thesis focuses on how an agent can learn its own abstractions from its own
experiences to be used for Potential Based Reward Shaping. As the thesis pro-
gresses, the environments for which the abstraction construction is automated
grow in complexity and scope — while also utilising less external knowledge of
the domains. This culminates in the approaches Uniform Property State Ab-
straction (UPSA) and Latent Property State Abstraction (LPSA), which can
both augment existing RL algorithms and allow them to construct abstractions
from their own experience and then effectively make use of these abstractions
to improve convergence time. Empirical results from this thesis demonstrate
that this approach can outperform existing deep RL algorithms such as Deep
Q-Networks over a range of domains.

Contents

1 Introduction 13
1.1 Hypothesis and Scope oo 14
1.2 A Note On Abstraction 15
1.3 Overview of the Thesis 16

2 Background and Literature 17
2.1 Reinforcement Learning L. 17

2.1.1 Markov Decision Processes 18
2.1.2 Value Iteration 19
2.1.3 Q-Learningo o 21
2.1.4 SARSA . . . 22
2.1.5 Off-Policy and On-Policy 22
2.1.6 Limitations of Reinforcement Learning 23

2.2 Eligibility Traces And Watking’ Q(\) 24
2.3 Generalisation in Reinforcement Learning 25
2.3.1 Linear Approximation 26
232 TileCoding 27

2.4 Abstraction In Reinforcement Learning 28
2.4.1 Semi Markov Decision Processes 29
2.4.2 Options 30
2.4.3 Using Options 32
2.4.4 Option Generation 32
2.4.4.1 Bottlenecks L 33

2.4.4.1.1 Clustering o 33

2.4.4.1.2 Ant System Optimisation 34

Contents

2.4.4.1.3 Other Methods 35

2.4.4.2 Extended Sequence Trees 35

2.4.4.3 Association Rule Mining 37

2.4.4.4 Concluding Remarks For Option Generation . . 38

2.4.5 Abstract Markov Decision Processes 39

2.5 Guided Learningo 40
2.5.1 Curriculum Learning 40

2.6 Reward Shaping 41
2.6.1 Reward Shaping With AMDPs 42
2.6.2 Knowledge Revision 43
2.6.3 Automatic Shaping and Decomposition of Reward Functions 44

2.6.4 Multi-Grid Reinforcement Learning 46

2.7 Unification of AMDPs and SMDPs 46
2.8 Deep Learning o oo Lo 47
2.8.1 Deep Q-Learning 48
2.8.2 Convolutional Neural Networks 49
2.8.3 Deep Reinforcement Learning and Abstraction 50
2.84 Option Heads, 52
2.8.5 Hierarchical Actor-Critic. 52
2.8.6 Overview 53

2.9 Concluding Remarkso oL 54

3 Empirical Analysis of the Feasibility of Uniform State Ab-

straction For Reward Shaping 55
3.1 Flag Collection Domains 56
3.2 Constructing the AMDP 56
3.3 Utilising the AMDP 61
34 Results.o 62
3.5 [Issues with this Approach 66
3.5.1 Domain Knowledge 66
3.5.2 Intuitive Objections 67
3.5.3 Time Taken To Solve the AMDP 68

3.6 Conclusion 68
4 TUniform State Abstraction For Reinforcement Learning 71
4.1 Uniform Partition State Abstraction 71
4.2 Constructing the AMDP 72

Contents

4.2.1 Partitioning the State-space 72
4.2.2 Exploration Lo L 73
4.2.3 Abstract Reward 75
4.2.4 Abstract Goals 76
4.2.5 Putting it all togethero 76
4.3 Utilising The AMDP 7
4.4 MultiGrid Reinforcement Learning 78
4.4.1 Differences 79
4.5 Alternative Approaches 80
4.6 Experiments And Results 80
4.6.1 Mountain Car. 81
4.6.2 Continuous Puddle World 81
4.6.3 Catcher L 82
4.6.4 Experimental Detail 82
4.7 Limitations and Next Steps 84
4.8 Conclusion 87
5 Latent State Abstraction 88
5.1 High Dimensional State-Spaces 88
5.2 Continuous Abstract States 89
5.3 Latent State-Spaces 89
5.4 Auto-Encoders 90
5.4.1 Variational Auto-encoders 92

5.5 Using Auto-encoders and Latent State-spaces with Reinforcement
Learning L 93
5.5.1 World Models 93
5.5.2 Robotics. 94
5.5.3 Structured Latent State-spaces 95
5.6 Latent State-spaces as Abstraction 96
5.7 Utilising Latent State-spaces 97
5.8 Method Overview 98
5.9 Experimental Domain 00 0L 99
5.10 Training the Auto-encoder 101
5.10.1 Auto-encoder Reconstruction 105
5.11 Training the Abstract Network 105
5.11.1 Differences to Uniform Partition State Abstraction 109
5.11.2 Architecture and Hyper-parameters 110

Contents

5.12 Utilising the Abstraction 110

5.12.1 Training the Ground Network 111

513 Results. e 112

513.1 LPSAResults, 113

5.13.2 Caveats oo 116

5.13.3 Comparing Abstraction Functions 117

5.14 Conclusion 120

6 Conclusion And Future Work 121

6.1 Summary Of Contributions 121
6.1.1 Comparison of uniform partitions and hand-labelled ex-

amples. e 121

6.1.2 Learning abstract transition functions 122

6.1.3 Latent property state abstraction 123

6.2 Limitations L 124

6.3 Generality 125

6.4 Future Worko 126

6.4.1 Abstraction Integration 126

6.4.2 Abstraction Height 126

6.4.3 Abstraction Width 0L 127

6.5 Concluding Remarks 128

3.1

4.1

5.1

5.2

5.3

List of Tables

Descriptions of the variations on the Flag Collection domain that
were selected. Lo 57

Hyper-parameters used for experiments 84

Comparison of properties of MultiGrid-RL, Uniform Partition
State Abstraction and Latent Property State Abstraction 110

Hyper-parameters used for experiments 110

Average number of steps per second performed by each agent over
the 25 training runs (rounded to two decimal places). 116

2.1

3.1

3.2

3.3

3.3

3.4

3.5

4.1

4.2

List of Figures

Convolutional Layer Process 50

Graphic representation of each variation on the Flag Collecting
domain. The agent begins at the red cell marked ‘S’ and must
traverse to the green cell marked ‘G’, whilst moving through yel-
low flag cells marked ‘F”. 0oL 58

Visualisation of the partitioning of the states-pace into abstract
states of size 7 x 7 for the basic Flag Collection domain 59

Reward graphs for each Flag Collection variation using different
sized abstractions. Results shown on the left side are smoothed
with a moving average of reward of the previous NumberO f Episodes/10
episodes, with shaded regions denoting a confidence interval of
95%. On the right are the unsmoothed results. 63

Reward graphs for each Flag Collection variation using different
sized abstractions. Results shown on the left side are smoothed
with a moving average of reward of the previous NumberO f Episodes/10
episodes, with shaded regions denoting a confidence interval of
95%. On the right are the unsmoothed results. 64

Time taken to solve each abstraction and simulate 10,000 episodes
for the basic Flag Collection domain 65

Possible scenario in which the reward shaping may slow down the
learning process due to the AMDP’s granularity. 69
Visualisation of mapping from ground-transitions to abstract-

transitions. e 74

The environments used to evaluate our method. 81

List of Figures

4.3

4.4

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Neural network architecture for each of the agents utilised in this
chapter. The architecture is shared across environments also,
changing only the number of input dimensions and output actions. 83

Results Comparing DQN, MRL and Uniform State Abstraction
for each environment The end of the exploration phase is denoted
with a dotted vertical line. We show both the raw mean results
as well as a smoothed figure for visual clarity. In the smoothed
figure a moving mean window is applied with size 25 in order
to smooth the curves. We plot the unsmoothed results for each
episode before this point, explaining the oscillation observed in
the figure. Lo 85

Results Comparing DQN, MRL and Uniform State Abstraction
for each environment The end of the exploration phase is denoted
with a dotted vertical line. We show both the raw mean results
as well as a smoothed figure for visual clarity. In the smoothed
figure a moving mean window is applied with size 25 in order
to smooth the curves. We plot the unsmoothed results for each
episode before this point, explaining the oscillation observed in
the figure. Lo 86

Neural network architecture for an auto-encoder 91

A broad overview of the Latent Property State Abstract method.
Arrows denote the flow of informational dependencies. Stages
coloured blue correspond to the auto-encoder, red to the abstrac-
tion process, orange to the ground agent and green to the envi-
ronment. Lo 100

Visualisation OpenAl Gym’s Car Racing domain, image captured
from the domain running with visualisation on. This is what the
agent “perceives” as an array of RGB pixel values. 101

The encoder-decoder components of the auto-encoder architecture.103

A typical plot of loss against the number of training steps for our
Variational Auto-encoder when trained on frames from the Car
Racing environment. o0 oL 104

A sample of environment frames and their reconstructions after

50 and 500 training epochs Lo 106

A sample of environment frames and their reconstructions after
5000 training steps Lo 107

List of Figures

5.8

5.9

Abstract Agent Neural Network Architecture

Ground Agent Neural Network Architecture

5.10 The average reward received by an agent plotted against the num-

5.11

ber of elapsed episodes. Each agent was trained for approximately
24 hours. The averages are based on 25 repetitions of the learning
process for each agent and the shaded regions represent a 95%
confidence interval. The smoothed agent used a moving average
of window size 20 for World Models and 200 for the other agents
(Due to the difference in the number of episodes).

Simple domain demonstrating that two states, X and Y, sharing
an abstract state can be further away from each other than a
state Z in a separate abstract state..

10

Acknowledgements

I would like to thank the many supervisors that I've had throughout this project.
Daniel Kudenko, your advice, ideas, and continued support long after you have
been my official supervisor has been immensely helpful throughout the PhD
programme. I look forward to hopefully continuing to collaborate in future.
James Cussens and Victoria Hodge, the feedback you both have provided on
the thesis has been invaluable and has helped to shape it into something that
I can be proud of. I want to give you both additional thanks for taking on the
supervision role for this project despite it not being in your primary areas of
interest. Rob Alexander, your help for the final push of completing this project
has been very helpful, and again additional thanks for taking on the supervision
of this project despite it being outside of your main research interests.

I would also like to thank Tom for being the best friend I could ask for. Your
moral support throughout the PhD has been crucial. My mother, Wendy, you
have been vital for the completion of this thesis and PhD. Thank you for always
believing in me. You were always there for me during trying times and I really
could not have done this without your support.

Finally, Katerina, thank you for all of the encouragement throughout the pro-
gramme, as well as for always cheering me on. You have given me the confidence
to work through all of the challenges this thesis has posed. Your love has inspired
and motivated me beyond description.

11

Declaration

I declare that this thesis is a presentation of original work and I am the sole
author. This work has not previously been presented for an award at this, or
any other, University. All sources are acknowledged as References.

The contents of Chapter three appeared in:

e John Burden and Daniel Kudenko. Using Uniform State Abstractions For
Reward Shaping With Reinforcement Learning. In Workshop on Adaptive
Learning Agents (ALA) at the Federated Al Meeting. 2018.

While the contents of Chapter four appeared in:

e John Burden and Daniel Kudenko. Uniform State Abstraction For Rein-
forcement Learning. In proceedings of the 24th European Conference on
Artificial Intelligence (ECAI 2020).

Work based on Chapter five appeared in:

e John Burden, Sajjad Kamali Siahroudi, and Daniel Kudenko. Latent
Property State Abstraction For Reinforcement learning. In Workshop
on Adaptive Learning Agents (ALA) at 20th International Conference on
Autonomous Agents and Multiagent Systems (Virtual). 2021

Additionally, Sajjad Kamali Siahroudi was also responsible for adapting an im-
plementation of the World Models algorithm (based on [30]) which the LPSA
algorithm (the main contribution of Chapter five) was compared against in
Chapter five.

12

Chapter 1

Introduction

Reinforcement Learning (RL) is a sub-discipline of Machine Learning. It differs
from both supervised and unsupervised ML. Instead, RL is an agent based
approach to ML. In RL agents explore an environment and observe how it
reacts. After each action performed by the agent it receives a numerical reward.
This reward is used to alter the agent’s behaviour in order to increase the future
expected reward received. This makes RL an interaction driven ML paradigm.

Unfortunately RL typically suffers from the so-called “Curse of Dimensionality”
[6]. Due to the number of states in an environment growing exponentially
with the number of state dimensions, many naive RL methods have difficulty
converging on decent behaviour because there isn’t sufficient time to visit each
state a sufficient number of times. This can make RL ill-suited for complex
tasks unless preventative measures are taken.

Many methods have been created to deal with this issue. Such methods often
revolve around either trying to give the agent the capability to generalise over
states in order to share the effect of learning over similar states, or the methods
attempt to use external knowledge to guide the agent. Reward shaping is an
example of the latter, where the agent is given an additional reward based on
expert knowledge in order to guide the agent to more fruitious behaviour. The
knowledge to construct the additional reward often has to come from an external
source, usually a human expert. This is clearly not ideal due to the costs of
employing human experts to encode their domain knowledge into a suitable
form for the agent. Further, some tasks may be too difficult for even human
experts to solve adequately.

The work here focuses on automatically generating this knowledge through the
use of abstractions. If knowledge of sufficient quality can be generated in this

13

1.1. Hypothesis and Scope

way, it may remove the need for human experts to encode knowledge. This
could also prevent human error from entering the additional reward which may
hinder learning. Methods which remove human expertise from the learning
process are often highly sought after — humans are expensive and prone to
error. Whilst the idea of automatically constructing domain knowledge is not
new, our approaches are novel and original, and give performance boosts to the
learning processes that are not specific to any one RL algorithm.

1.1 Hypothesis and Scope

The hypothesis we try to demonstrate over the course of this thesis is thus:

“Abstractions of problem domains can be automatically learned by
the agent from its own experiences utilising little knowledge from a
domain expert. These abstractions can then be utilised to reduce the
time required for an agent to converge upon a satisfactory solution
to the original task.”

Throughout the thesis we primarily focus on abstractions over state-spaces
rather than other aspects of the environment. This is justified by the state-
spaces often growing exponentially with the number of state-dimensions, mak-
ing sufficient exploration infeasible. Other environmental factors do not tend
to grow at such explosive rates, and thus we reason that applying abstrac-
tions over states-spaces will likely give the most utility. For completion, other
abstraction paradigms are explored in Chapter 2: Background and Literature
Review. We also limit ourselves to the single-agent case to allow more focus on
the abstraction concepts without needing to fret over inter-agent interactions.
The abstractions created are used to create Potential-Based Reward Shaping
(PBRS) functions. There are other methods for delivering advice and knowl-
edge to agents but PBRS provides attractive theoretical guarantees for policy
invariance as well as strong empirical performance over a wide range of do-
mains. Other approaches to imparting such advice or knowledge to agents are
again detailed in Chapter 2. In brief, the contributions of this thesis are three-
fold. First is a detailed comparison between the capabilities, when used for
potential-based reward shaping, of hand-labelled abstractions and abstractions
generated using uniform partitioning of the state-space. This comparison occurs
in a simple gridworld reinforcement learning setting. The second contribution
is an extension of a pre-existing reinforcement learning algorithm for automati-
cally abstracting a reinforcement learning state-space. The extension improves
performance of the pre-existing method in the deep learning scenario. The fi-
nal primary contribution is a new approach, Latent Property State Abstraction,
for automatically creating state-space abstractions learned by the reinforcement

14

1.2. A Note On Abstraction

learning agent itself. The potential function induced by this abstraction can im-
prove the learning rate when compared to standard benchmarks. Each of these
contributions push towards demonstrating the hypothesis directly.

1.2 A Note On Abstraction

Throughout this thesis, we grapple with the notion of abstraction. As with many
words in the English lexicon, abstraction can have many varied meanings. Before
we begin using the term in a technical sense it is worth discussing exactly what
it is we mean by “abstraction”. In modern English, the adjective “abstract”
typically refers to entities “existing as an idea, feeling, or quality, not as a
material object” [1] There is a verb “abstract” with the meaning “to draw away”.
Both of these words have the same Latin root abstrahere, again meaning “to
draw away”. This verb is actually key to understanding what we really mean by
“abstraction” — corporeal objects have their principal properties “drawn away”,
yielding an ephemeral Platonic ideal of these properties. We can think of this
view of abstraction as an “is a” function. Socrates “is a” man. Aristotle “is a”
man. Fido “is a” dog. There is some property of “man”-ness that both Socrates
and Aristotle share, but not Fido. We can encapsulate the previous relations
with a function Species: Species(Socrates) = man, Species(Fido) = Dog.

Equally, it is also the case that Socrates, Aristotle and Fido are (“is a”) ani-
mals. A function Kingdom can again encapsulate this, where this time, all three
entities share the same property of “animal”-ness. Other functions could distin-
guish Socrates as separate from Fido and Aristotle, perhaps Hair-Colour, or
Favourite-Food. There are no “wrong” abstractions. Certainly some are more
useful than others for certain purposes, but none are “wrong”.

This emphasises the “drawing away” of the etymological root. The process
of abstraction — the function that maps “concrete” objects to their abstract
counterparts — defines the properties that the abstract states embody.

We therefore, from a pragmatic perspective, want to find the abstraction pro-
cess that gives the most useful abstract entities — embodying the most useful
properties — for the task at hand. The purpose of this section on abstraction
has been to highlight that the process of abstraction itself determines the prop-
erties the abstract entities will have and that this will in turn determine their
utility. Abstract as a verb is more relevant than abstract as an adjective for the
purposes of finding or constructing useful relationships between entities. This
thesis focuses on trying to find abstractions over state-spaces for use within
Reinforcement Learning that will decrease the time required for learning.

15

1.3. Overview of the Thesis

1.3 Overview of the Thesis

We begin the thesis proper in the next chapter, Chapter 2, with a comprehensive
overview of the required background knowledge of Reinforcement Learning and
relevant related fields.

Chapter 3 then explores the feasibility of creating reward shaping functions when
they are based on abstract states that are formed from uniform partitions of the
environment’s state space. This chapter will show that uniformly partitioned
state-spaces can yield reward shaping functions that are able to compete with
shaping functions derived from hand-labelled abstract state-spaces.

In Chapter 4 we expand on the method from Chapter 3, removing more do-
main knowledge given to the agent. The agent instead learns to discover this
knowledge for itself through environmental interaction. Here we see vast im-
provements over standard RL algorithms in popular benchmarking domains.

More complex tasks are introduced in Chapter 5, where we scale the central
idea of the previous method to much larger domains. This involves the agent
itself learning new ways to represent abstractions of states. So-called “latent
state-spaces” are utilised to create a smaller abstract counterpart to the desired
environment to train an agent. The agent can train in this abstract environment
to produce a reward shaping function. Afterwards the agent can use the shaping
function to assist its learning in the original environment.

Chapter 6 concludes the thesis, bringing together a detailed summary of contri-
butions. Both the achievements and limitations of the work performed in the
thesis are also discussed, in addition to how these limits could be overcome with
future work.

16

Chapter 2

Background and Literature

This chapter introduces many of the topics and concepts which are required
to understand the thesis. The fundamentals to Reinforcement Learning and
Markov Decision Processes are given in Section 2.1. Extensions to Reinforce-
ment Learning in the form of abstraction are introduced in Section 2.4. Reward
Shaping, a key mechanism for delivering knowledge to RL agents, is introduced
in Section 2.6. Deep Learning, a powerful technique when paired with RL | is
introduced in Section 2.8 along with alterations to the basic concept, including
the utilisation of abstractions.

This chapter also comprises an extensive literature review of the use of ab-
straction within Reinforcement Learning, highlighting many of the researched
methods for creating such abstractions and delivering the insight they provide
to the agent for improved learning.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is an interaction driven machine learning paradigm
[65]. RL attempts to mimic learning processes that occur in nature, with agents
altering their behaviour in order to avoid repeating mistakes. It is in this man-
ner that RL differs from most other branches of machine learning. In RL there
are no training examples of correct behaviour. Instead, an agent interacts with
its environment and receives — typically numerical — feedback. This feedback
is then used by the agent in order to alter its behaviour to be more fruitful.

From a practical perspective, most of the agents and environments used in RL
are simulated. The distinction between real and simulated environments is im-

17

2.1. Reinforcement Learning

portant to make, there are important differences between the two. Whilst it is
possible to apply RL techniques to the real world, it is impractical and time
consuming to do so. Simulated environments and agents operate many times
faster than “real-time”. In addition, there is no cost of building physical appa-
ratus when working in simulated environments. On the other hand, simulated
environments require construction by the user. Doing so requires some knowl-
edge of the domain, chiefly the dynamics of the environment, as well as how to
provide the feedback. This potentially limits the applications of RL to domains
in which these factors are known. Like other machine learning methods, RL
suffers from the “Curse of Dimensionality” [6], which also limits its practical
use, unless steps are taken to overcome this. This “curse” will be explained in
detail in Section 2.1.6.

Despite these setbacks, Reinforcement Learning has enjoyed something of a
renaissance in recent years. This is principally due to methods being composed
to overcome the aforementioned limitations. These include Deep Learning and
other methods that fully utilise Reward Shaping and generalisation frameworks.
Combined with attention from large corporations and research groups, this has
led to large scale deployment of RL in impressive projects. Among these is the
agent that learnt to play the popular game “Go” [62] and defeated the world
champion — a first for the game. Agents have also been trained to outperform
humans in a large number of games for the Atari 2600 using Deep Q-Learning
[45].

These recent events show that RL is a promising field for future study. But —
to use the famous aphorism — in order to “stand on the shoulders of giants”,
one must first climb their back. The rest of this chapter is to be exactly that
— a review of the previous work done within RL, from its humble beginnings
to the most recent work on abstraction representation and inducement.

2.1.1 Markov Decision Processes

Reinforcement Learning is often modelled as interaction with a Markov Decision
Process (MDP). An MDP is a tuple (S, A, R, P,v). Here S is a set of states. A is
a set of actions for each state. R(s,a,s’) is the immediate reward received by the
agent when moving from state s to s’ using action a. P(s,a,s’) = P(s' | s,a),
that is, the probability of transitioning to state s’ when in state s and performing
action a. Finally, v is the discounting factor, this is used to weigh immediate
reward against expected future reward.

MDPs have what is referred to as the “Markov property”. The Markov property
states that the future distribution of states depends only on the current state
(and action selected) and not the sequence states prior. For an MDP to fully
capture the dynamics of an environment, the environment should also have this

property.

18

2.1. Reinforcement Learning

An agent explores (or interacts with) the MDP beginning in some initial state,
and ending in some final state. A single run of the MDP is referred to as an
episode. The agent has a function 7 called a policy that maps states in the MDP
to an action for the agent to perform. The goal for the agent is to maximise the
cumulative reward received over a single episode. The policy that does this is
referred to as optimal.

Iterative approaches are often used to solve MDPs. These utilise what are
known as “Temporal Difference” (TD) updates. These update values of states
V(s) or state-action pairs Q(s,a), based on estimates of these value functions
at different times.

Throughout the thesis, we will often refer to agents beginning in state s, per-
forming action a and moving into state s’. We will often refer to this as a
transition s % s’

When an agent is selecting actions, it is important to balance both exploration
and exploitation [65]. This helps prevent the agent from becoming trapped in a
locally optimum policy, while also allowing the agent to utilise the discoveries it
has made. An example of a policy that does this is the e-greedy policy. Under
this policy, the agent selects the action it considers best with probability 1 — €.
With probability € the agent selects an action at random. This guarantees that
eventually every state-action pair will have been visited an infinite number of
times, thus the agent will converge upon the optimal policy [65].

2.1.2 Value Iteration

Value Iteration [6] is a dynamic programming approach to solving MDPs —
that is, finding a value function V', where V (s) denotes the maximum expected
return from state s. From this, Value Iteration also derives a policy selecting
actions to achieve this expected return.

The core of Value Iteration is that the value of a state can be computed based
on the values of its neighbours and the rewards and transition probabilities of
moving to them. For an optimal value function V*, the following equation
holds:
V*(s) = mgxz P(s,a,s')(R(s,a,s") +~yV*(s"))
™

Intuitively we can read this equation as saying that the value of a state s is
equal to the sum of the immediate reward received and the discounted value of
its neighbours when the best action is taken and is appropriately weighted by
the MDP’s transition probabilities.

Iterative approximations of V* can be made by applying the above equation to
previous approximations:

19

2.1. Reinforcement Learning

Viz1(s) := mngP(s,a,) (R(s,a,s") +vVi(s"))

Repeatedly applying this equation to all states will converge on a fixed solu-
tion [54]. An accuracy threshold 0* is used to bound the maximum distance
between successive iterations before convergence — the algorithm is guaranteed
to converge in the infinite limit, so approximations are needed practically.

The complete Value Iteration algorithm is given in Algorithm 1.

Algorithm 1 Value Iteration

procedure VALUE ITERATION(MDP M: (S, A, R, P), discount factor v, ac-
curacy threshold 6*)
Set Vo(s) =0 for all s

6=

t=1

while 6* < § do
6=0
for s€ S do

Vi(s) « max, Y, P(s,a,s")(R(s,a,s") + yVi—1(s)
6 — 64| Vi(s) = Viea(s) |
t—t+1
Initialise empty policy 7
for se S do
m(s) < argmax, ., P(s,a,s")(R(s,a,s") +vVi(s"))

Return 7

Value Iteration has a few flaws that make it unsuitable for practical use in most
cases. The first major obstacle is that Value Iteration requires the transition
function P and reward function R to be known. For many environments, par-
ticularly complex ones, these functions are often not known, They can often be
approximated through interaction with the environment, but this is costly. The
second major obstacle to practical use of Value Iteration is the computation
time required to converge on a sufficiently accurate solution. A single sweep
through of the states to update all V;(s) requires O(|S|?|A|) steps. Further, due
to the Curse of Dimensionality [6], for high dimensional problems there are an
exponential number of states to begin with. This causes a single sweep through
of states for Value Iteration to be of order O(n??|A|) for the number of states per
dimension n and number of dimensions d. For large-scale, practical problems
this is simply intractable.

Due to needing the transition and reward functions, Value Iteration is referred
to as a model-based approach to solving MDPs. This is in contrast to “model-
free” techniques. There are many RL algorithms that fall into both categories.

20

2.1. Reinforcement Learning

The ones we focus on in the coming sections (and for the majority of the thesis)
are model-free because they more accurately represent the case where an agent
is interacting with a new, unknown environment. Additionally, model-free al-
gorithms are more likely to benefit from the inclusion of abstraction and the
imparting of domain knowledge.

2.1.3 Q-Learning

Q-Learning is a basic example of a temporal difference RL algorithm [65]. In
Q-Learning the agent records estimates of the expected return for each state-
action pair. This is recorded by function @, often in the form of a look-up
table. Q(s,a) is then the estimated expected return for the agent when in state
s, performing action a and thereafter following a greedy policy.

The crux of the Q-Learning algorithm is that after the agent makes transition
s % s', the estimates are updated:

Q(s,a) := Q(s,a) + a(r + 7y max Q(s',a*) — Q(s,a))

The intuition behind this update rule is that if the agent can transition between
state-action pairs (s, a) and (s, a’), then the value estimates of these pairs should
be closer, as they are not that far apart in the agent’s state-action space of the
MDP.

The full Q-Learning algorithm is presented in Algorithm 2.

Algorithm 2 Q-Learning

procedure Q-LEARNING(MDP M: (S, A, R, P), policy 7, discount factor v)
Set Q(s,a) =0 for all (s,a)
for Each Episode do
s < Initial State
while s is not terminal do
action « 7(s)
Perform action a, yield r, s’

Q(s,a) := Q(s,a) + a(r + ymax,x Q(s', a*) — Q(s, a))

5« s

Q-Learning is often used with e-greedy policies to ensure convergence guaran-
tees [65]. In the case of Q-Learning, an e-greedy algorithm would correspond
to selecting the action argmax, Q(s,a) with probability 1 — ¢ and a random
action with probability e. Other policy types also have convergence guarantees.
An example of another policy of this sort is fully-random action choice with a
decaying learning rate.

21

2.1. Reinforcement Learning

The most important thing to note about Q-Learning is that the agent never
needs to see the reward function or transition function of the underlying MDP.
Consequently, this means that Q-Learning can be utilised when such functions
are unknown, allowing learning in environments that do not have fully known
environment models.

2.1.4 SARSA

Another basic RL algorithm that is worth introducing is SARSA. SARSA is an
acronym for State-action-reward-state-action derived from the necessary com-
ponents for the update rule. Originally introduced as “Modified Connectionist
Q-Learning” [60], the catchier SARSA name has become far more common.

Similarly to Q-Learning, SARSA uses a function @, where Q(s,a) is again the
expected return for the agent when in state s, performing action a and thereafter
following the policy that selected a.

The chief difference between SARSA and Q-Learning comes from the update
rule. SARSA updates its Q-Function according to:

Q(Sv a) = Q(Sv CL) + Ot(?” + 7@(513 a/) - Q(Sa a))

Here, a’ comes from the same policy that selected a. For completeness, the full
SARSA algorithm is given in Algorithm 3.

Algorithm 3 SARSA

procedure SARSA(MDP M: (S, A, R, P), policy =, discount factor)
Set Q(s,a) =0 for all (s, a)
for Each Episode do
s « Initial State
action a < 7(s) Initial Action
while s is not terminal do
Perform action a, yield r, s’
action a’ < m(s’)

Q(s,a) := Q(s,a) + a(r +7Q(s',ad") — Q(s, a))

s—sia<—a

2.1.5 Off-Policy and On-Policy

Ostensibly the differences between SARSA and Q-Learning are minor; though
this is actually not the case — the differences between these two algorithms
form a dichotomy within RL algorithms.

22

2.1. Reinforcement Learning

These two types of algorithm are referred to as on-policy and off-policy. To see
the exact difference we need to directly compare the update rules for Q-Learning

and SARSA:

Qs,0) == Q(s.a) + ar + ymax Q(s',a*) = Q(s,a)) (2.1)
Q(s,a) := Q(s,a) + alr +1Q(s', ') — Q(s,) (2.2)

With equation 2.1 being Q-Learning and 2.2 SARSA.

These both follow the same pattern of incrementally moving the current Q(s, a)
value towards the immediate reward plus the discounted expected future value.
However, Q-Learning’s expected future value assumes that a greedy policy will
be followed after the action a — this is given by the max,x Q(s’,a*). On the
other hand, SARSA assumes that the same policy will be used throughout.

This entails that SARSA will yield Q-values detailing expected returns for the
training policy, whereas Q-Learning’s Q-values reflect the expected returns for
a greedy policy. We say that SARSA is an “on-policy” algorithm and that
Q-learning is “off-policy”.

Off-policy algorithms have the advantage that non-optimal policies can still learn
optimal Q-values [65], whereas this does not hold for on-policy algorithms. For
training, Q-learning with a random policy would (eventually) lead to Q-values
that, if followed greedily, would still perform optimally. The same does not hold
for SARSA. However Off-policy methods can also contribute to algorithmic
instability, especially when combined with function approximation and boot-
strapping. The three of these together are referred to as the “deadly triad” [66]
due to their volatile combination.

Both SARSA and Q-Learning are examples of so-called “tabular” approaches.
By this it is meant that they explicitly store values in a Q)-table against exact
states. States which are not covered in the @-table have no defined value as-
sociated with them. Tabular approaches are unable to generalise or interpolate
values to unseen states.

2.1.6 Limitations of Reinforcement Learning

Due to the aforementioned “Curse of Dimensionality” the amount of states in
an environment often grows exponentially with the size of its state representa-
tion (i.e., the number of dimensions used to represent a state). The Q-Learning
algorithm typically requires that each state-action pair is visited at least once
(though more than this) in order for the Q-function estimates to approach sen-

23

2.2. Eligibility Traces And Watkins’ Q(\)

sible values. This is problematic as for larger environments Q-Learning will take
too long to converge on a suitable policy.

To address this issue, there are two primary options. The first of these is to
give the agent the ability to generalise. This will aid the agent by allowing
it to recognise that some state-action pairs are similar to others, and to make
updates pertaining to this generalisation instead of just individual states and
actions. Exactly how the generalisation is performed varies, but will typically
be some form of gradient descent method that perhaps utilises Neural Network
architectures.

The second option to address the limitations of RL is to use external knowledge
in order to “guide” the agent towards more rewarding behaviour. Doing so
prevents the agent from wasting a lot of time on policies that are very sub-
optimal. There are a few methods in which this guidance is given. One approach
is Imitation Learning, where domain experts “perform” desirable behaviour and
the agent learns to mimic and improve upon this demonstration (See [32] for
a survey of Imitation Learning methods). Another typical method in which
guidance is given is called Reward Shaping and is discussed in more detail in
Section 2.6. The downside to such methods is that very often, some knowledge
about the domain is required. This is not always available or may be expensive
to encode for the agent. On the other hand, the speed up in learning when using
reward shaping can be a large factor, and not that much knowledge about the
environment is typically required.

Whichever option is selected, the resulting RL system can become very powerful
at effectively learning to perform at near-optimal levels for very large environ-
ments.

2.2 Eligibility Traces And Watkins’ Q(\)

Eligibility traces (first proposed in the field of Neurophysiology by Klopf[37]
before being introduced to the field of RL [68][63]) provide a simple yet effective
method for updating multiple Q-values at once. The central idea to eligibility
traces is to propagate @Q-value updates backwards through the agent’s trajectory,
“crediting” recent states more. In order to achieve this, a list of “eligibilities” is
kept. E(s,a) represents the eligibility of state-action pair (s,a). The idea here
being that a higher eligibility value will result in a larger @-value update and
that more recent states will have a larger eligibility that will decay over time
until the state is revisited.

We describe the most common variation of how eligibility traces are imple-
mented. This is referred to as an “Accumulating” eligibility trace. Initially,
E(s,a) := 0 for all state-action pairs. When the agent enters state s and per-

24

2.3. Generalisation in Reinforcement Learning

forms action a, E(s,a) is updated to the value E(s,a) + 1. After each action,
E(s,a) is updated for each state-action pair to E(s,a) := yAE(s,a) for dis-
counting factor v and hyper-parameter 0 < A < 1.

Watkinsg’ Q(X) [74] is an algorithm that takes advantage of eligibility traces in
order to update multiple state-action pairs after each transition. This algorithm
is essentially @Q-learning with the eligibility traces added.

Algorithm 4 Watkins’ Q(\)

procedure WATKINS’ Q(MDP M: (S, A, R, P), policy 7, discount factor v)
Set Q(s,a) =0 for all (s, a)
Set E(s,a) =0 for all (s,a)
for Each Episode do
s « Initial State
a — m(s)
while s is not terminal do
Perform action a, yield r, s’
Select next action a' < 7(s’)
Select optimal action a* « argmax, (Q(s’, @)
51+ Qs) — Q(s,a)
E(s,a) <« E(s,a) +1
for (s,a) e S x A do
Q(s,a) < Q(s,a) + adE(s,a)
if «’ = a* then
E(s,a) < v0E(s,a)
else
E(s,a) < 0

s—sia«—d

Watkins’” Q(A) takes the additional step of reducing E(s,a) to 0 if the action
selected was not greedy — it makes no sense to punish prior state-action pairs
in the trajectory for unfortunate exploration steps. The A parameter has the
effect of determining the extent to credit previous transitions in the agent’s
trajectory. It is worth noting that Q(0) — that is, A «— 0 — is equivalent to
standard @Q-learning.

2.3 Generalisation in Reinforcement Learning

One of the approaches to overcoming the Curse of Dimensionality is the use
of generalisation. By generalisation we mean the agent makes decisions and
updates based on not only the exact state it is considering, but also states that
are in some way similar. This allows the agent to draw on a wider selection of
experiences when making decisions.

25

2.3. Generalisation in Reinforcement Learning

A common way of giving this generalisation ability is through the use of function
approximation. When state-spaces are very large or continuous it is infeasible
to store them and their associated values tabularly. The solution to this is to
construct an approximation function that either reduces the state space size or
discretises continuous spaces. We will now look at a few examples of function
approximation methods and how they are used within RL.

2.3.1 Linear Approximation

A simple function approximator is that of Linear Approximation. Despite its
relative simplicity, it is easy to understand and gives valuable insight into func-
tion approximation in RL. For linear function approximation we require a fea-
ture extraction function, ¢, mapping state-action pairs to a vector of features,
¢:S—>A—->TR"

The value of a state-action pair (s, a) is then simply the dot-product of a weight
vector 6 and ¢(s,a). Q(s,a) = 6 - ¢(s,a). This makes the value of a state
dependent only on features of (s,a) and the learned weights. Since the features
of state-action pair (s,a) are static over the course of learning, the problem
reduces to learning suitable values for 6.

Gradient Descent methods can be used to learn these values for 6. Let’s recall
a general gradient descent update rule:

0t+1 = Gt - aVF(Ht)

Where F' is defined as a suitable cost function. Let us recall the tabular Q-
Learning update rule:

Q(sa CL) = Q(Sa a) + O[(?“ + ’ymaX(Q(S/a a) - Q(Sv (L))
If we consider § = r + ymax, Q(s’,a) to be our “ground truth” value, and
y = Q(s,a) our predicted value, then taking
1 N
F(0) = 5(y—9)*

as our cost function for gradient descent yields update rule

0i11 =0, — aVy, [%(r + 7 max Q(s',a) — Q(s,a))z] (2.3)
Orp1 = 0; — oz[(r +ymax Q(s',a) — Q(s,a)) Ve, (r + 7 max Q(s',a) — Q(s, a))]
(2.4)

26

2.3. Generalisation in Reinforcement Learning

However, calculus is hard, and we are only humble Computer Scientists, so when
calculating the gradient Vy, (r ++ max, Q(s',a) — Q(s,a)), we elect to calculate
only Vj,(—Q(s,a)). More seriously, this is done because r + ymax, Q(s',a)
is actually only an estimate of the expected return and not actually a ground
truth value. This value depends on 6 and is therefore not an unbiased estimator
[66]. The simplification of the gradient calculation is used for this reason and
works well.

As Q(s,a) =0 - ¢(s,a):

Orir = 0, — o] (r + ymax Q(s',a) = Q(s, @) Vo, (~06(s,a) | (25)
Orr1 = 0: + a(r + 'YmgXQ(S/7 a) — Q(s,a))¢(s, a) (2.6)

This is very similar to the original Q-update rule, except weighted by the feature
vectors appropriately. Methods of this type are referred to as Semi-Gradient
Descent methods [66] — since part of the gradient was ignored when deriving
the weight update rule.

2.3.2 Tile Coding

Tile Coding [64] is an example of a linear function approximation method for
RL. Tile Coding allows the representation of approximate value functions and
provides local generalisation to the agent. Under Tile Coding, an environment’s
state-space is partitioned by multiple overlapping offset grids — although what
we refer to as “grids” do not have to be strictly square or uniform, they just
need to fully partition the environment.

Since these are partitions in the strict sense of the term, it follows that any state
in the environment appears in exactly one “tile” in each partition. A feature
vector ¢ can be constructed to denote which tiles the state is in for each of the
partitions. This feature vector contains one dimension for each partition, with
element ¢ consisting of which tile — enumerated appropriately — is occupied
by the state in feature 7. To utilise this more abstract feature representation of
the state-space, RL algorithms are applied to state spaces, learning values 6 for
Q(s,a) =0 - P(s,a). This is a linear function with respect to the feature vector
function ¢.

Action selection is then based upon this @-value evaluated for each available
action. Weight updates are performed the same as as we saw in the preceding
section on Linear Approximation methods, applying Q-update rule.

One big advantage of this method is a form of generalisation. Due to the offset

27

2.4. Abstraction In Reinforcement Learning

nature of these grids and split weight updates, learning information about tile
i in feature j generalises to even when all of the other tiles are not the same as
when the agent experienced .

A disadvantage to this method is that this generalisation is only local. Local,
nearby states may always not be similar in value, whereas far off states encapsu-
lating the same overall situation may in fact be more similar. Examples of this
difference in value of nearby states can easily occur in fairly complex domains
such as Chess, where a single piece being in a subtly different position can have
huge ramifications for determining a player’s advantage (or the board’s value).
Another disadvantage is that Tile Coding loses the ability to discern between
states if they are sufficiently close. This may become an issue when very fine
precision is needed.

2.4 Abstraction In Reinforcement Learning

Abstraction is a key element of human learning and thought; it is the process
which allows humanity to relate ideas and consider events and implications far
removed from their current situation or scale. Abstractions can be viewed as
a similarity function, mapping similar “concrete” objects to the same abstract
object. Different abstraction functions can be created to define what “similar”
means, depending on what the creator wishes to abstract. Examples of abstract
qualities that could be selected are colour, size, species, time, and so on. Chains
of abstraction can be layered onto each other, weaving together vast hierarchical
structures which give objects order by their properties.

These abstractions and structures permeate through the world that we know.
We use it in learning — we apply solutions to multiple problems of the same
type. Abstraction is also an incredible tool for categorisation, allowing us to
group together objects of similar purpose. We can even view some aspects of
science as aiming to construct abstractions about the world around us from
many observations.

Due to the advantages abstraction can give us in terms of learning, it is also
useful for improving the field of Reinforcement Learning. Doing so will often
allow agents to make value updates for many states (those that fulfil some
notion of similarity) from a single experience. Equally, abstraction can be used
to drastically cut down the number of states that need considering at each
action-selection step.

Abstractions in RL transcend space and time — that is, we can use both tem-
poral and spatial abstractions to consider the effect of groups of long chains
of actions trying to achieve the same thing, as well as abstractions over state-
spaces, creating abstract states composed of multiple constituent states which

28

2.4. Abstraction In Reinforcement Learning

all share some property. Now, in the coming sections, we will overview some
of the prominent methods of abstraction in the RL literature.

2.4.1 Semi Markov Decision Processes

The aforementioned limitations of naive RL severely hinder its utility to modern,
realistic applications. Considering each state-action pair as individual, orthogo-
nal entities is one of the main reasons behind this limitation. Generalising chains
of primitive actions effectively can allow learning to occur on a larger scale more
efficiently. A Semi-Markov Decision Process (SMDP) [9] is a generalisation of
the MDP framework. SMDPs allow actions to take a continuous amount of time,
rather than the single unit amount of time each action takes in an MDP. The
introduction of continuous time allows for more accurate modelling of decision
processes as well as essentially grouping actions.

Intuitively, the SMDP operates by selecting an action a when in state s. This
action will lead stochastically to some state s’ with well-defined transition prob-
abilities much like with an MDP. However, this transition is not assumed to
take unit time, but rather any continuous real value. Until this transition is
complete, the SMDP cannot take any more actions. Whilst this transition is
taking place, the SMDP accrues reward at a specified rate according to the
reward function. The goal of the SMDP is still to find a policy that gives the
maximum cumulative reward.

The differences between SMDPs and MDPs are worth highlighting. Apart from
the obvious extension of time to a continuous random variable, reward is now
given as a rate over time for the duration of a transition. This means that the
same transition can have different reward values based on its duration. Further-
more, transitions taking a variable amount of time also affects the discounting
applied to transitions of different lengths.

Formally, an SMDP is defined as a tuple (5, A, p, P, x). Where S is a finite set of
states, A is a set of actions for each state. p(s,a, s’) is the constant rate of reward
when transitioning from state s to s’ via action a. P(s,a, s’) is the probability of
transitioning from state s to s’ when action a is performed. Finally, x(t|s,a, s)
is the probability distribution for the time taken to complete the transition
between state s to s’ using action a. If s(t) and a(t) denote the state and
action at time ¢, then the goal of the SMDP is to maximise the expected infinite
horizon by finding an appropriate policy. For convenience (and sanity), the
expected reward and discounting for a given transition and policy are defined

29

2.4. Abstraction In Reinforcement Learning

(and the derivation not left as an exercise for the reader):

s,a,8) = ’ te_ﬂm s,a,s)dz s,a,s)
Ris.as) = [| e pts.a.8) ded(xtls.a.) (2.7)
v(s,a,s’) :L e Pt d(x(t]s,a,s")) (2.8)

The expected reward is the discounted rate of reward over the transition with
respect to the random time variable. It is the accumulation of this expected
reward over an episode that is desired to be maximised. Doing so is clearly
not an easy task. Iterative approaches to solve this may be used, extensions of
Q-Learning to account for continuous time exist [10], however they are much
slower to converge than their discrete counterparts.

2.4.2 Options

Using and solving SMDPs is not a trivial task. Further, they are not concep-
tually simple when compared to MDPs. Options can alleviate this, acting as a
more intuitive extension to MDPs while still retaining many of the advantages
provided by SMDPs. Options [67] are an extension of primitive actions within
an MDP. Essentially, Options allow primitive actions to be chained together
into “macro actions”. Each Option corresponds to one macro action. Many
solutions to problems are best thought of as long chains of actions performed
in sequence. Using Options allows any agent exploring an MDP to learn about
chains of actions all at once.

More formally, an Option is defined in [67] as a tuple (Z,w,B). Here, Z is
the initiation set, a subset of S in the MDP designating from which states the
Option may be invoked. That is, Option o is only available in states s € S if
s e Z. 7 is the Option policy. This functions similarly to a policy over an MDP.
The Option policy is a function mapping states s € S to primitive actions. This
policy is used whilst the agent is invoking the relevant Option. This Option
policy function is what describes the behaviour of the Option. Finally, B is a
termination set, giving probabilities for each state s € S for termination of the
Option.

The agent interacting with the MDP can choose to invoke an Option if it is in
a valid initiation state for that Option. The Option then takes over control of
action selection until the option terminates. The agent then re-assumes control
and continues selecting Options. It is common to view Options as sub-policies
that are designed to solve a particular sub-task. The agent then does not need
to learn to perform the primitive actions in sequence, only which Options to
invoke and when. The Option policy can also only being defined over relevant
areas of the state-space in accordance with its initialisation and termination

30

2.4. Abstraction In Reinforcement Learning

sets.

In order for the agent to use Options, the MDP needs to be reformulated to take
them into consideration. For each state s € S, Option O is available if s € Oz.
O, is used to denote the Options available in state s. There is a large similarity
between how actions and Options are viewed by the agent within the MDP.
Instead of giving the agent access to both Options and actions, each primitive
action is encoded as a trivial one-step option. The set of Options available in
each state then replaces the action set in the formulation of an MDP. Instead of
having a policy 7 to select actions, the agent exploring the MDP with options
now uses a policy u to select Options in a similar manner.

Strictly speaking, an MDP using Options is no longer Markov. This is because
“actions” — which are now Options — can take longer than one unit of time
to complete. This causes the “flat” sequence of events to lose the Markov prop-
erty as future states depend not on the current state, but on the state when
the Option was initiated. The Options themselves (viewed as atomic entities),
however, are Markov.

In [67], it is shown that MDPs augmented with Options are actually discrete-
time SMDPs. This allows many problems that can be modelled with SMDPs
to also be modelled by the conceptually simpler MDPs with Options. Sutton et
al. [67] use &(o, s,t) to denote the event that option o is initiated in state s and
at time ¢. Then they go on to give the appropriate reward model for an option
beginning in a specific state and terminating after k-steps :

trh
g = E(Z Y're+il€(0, 8,1))

i=t

This is the discrete form of the reward for a SMDP in equation 2.7.

Sutton et al. then show that the transition function also needs to be updated
in order to account for Options; if §(s, k) denotes the probability that an option
terminates in state s after k steps, then A , = Zkoo=1 §(s', k)y* gives the prob-
ability of an Option o beginning in s and terminating in s’. An MDP utilising
Options can now be defined formally as (S, O, r, A), where S is a set of states, O
a set of options, r a reward function and A a transition function, all as defined
above. Further, Sutton et al. show that the optimal state-Option pairs Q*(s, 0)
must satisfy the equation:

Q*(s,0) = ro + Z A2 max Q*(s,0))
S

Finally Sutton et al. go on to show how Q-Learning can be extended to handle
MDPs with Options, producing the update rule:

Q(5,0) « Q(s,0) + a(r +7* max Q(s',) — Q(s,0))

31

2.4. Abstraction In Reinforcement Learning

after each transition between states s and s’ taking k steps, For a discount factor
5.

2.4.3 Using Options

Options can be interpreted as abstracting over time with respect to the action
space of an MDP. Options allow chains of primitive actions (or sub-policies) to
be viewed as atomic entities. Options have found a lot of use within RL. A few
notable examples are given here to show the scope at which Options can be used.
In [67], Options are used to represent sub-policies for moving between rooms
in a navigational grid-like environment. The Options contrast with primitive
actions that only allow the agent to move between adjacent grid cells. Encoding
Options in this manner allows the agent to move between larger rooms with ease
when searching for the goal state. It helps prevent the agent from becoming
“lost” in any one room, and locate small hallways. Using Options for this task
increased the convergence speed to near-optimal policies by a factor of 10.

Options and Deep Learning are combined in [39] in order to learn to play the
Atari 2600 game “Montezuma’s Revenge”. This game requires the player to
direct an avatar through a two dimensional environment, collecting keys and
navigating through doors. In this work, the agent learned to play from pixel
input. A convolutional neural network is used to learn to recognise objects
from the visual input. A second large convolutional neural network is then used
in two steps. Initially learning possible goals, then formulating these goals as
Options and learning which Options to select to maximise reward. This touches
on the next topic; that of Option generation. In [39] Options are generated
from goals identified using a neural network. Generating Options is preferable
to hand-coding them, due to concerns of time and difficulty. The next section
describes this process in greater detail.

2.4.4 Option Generation

It cannot be assumed that pre-made Options will always be available to learn
policies over. Creating Options by hand typically requires a domain expert and
is expensive. Moreover, the number of possible options is exponential in Option
length and the number of primitive actions. If Options are to be used as realistic
solutions, then a way of generating possible sets of useful Options are needed.

By far the most common method for this is to identify “sub-goals” within the
environment. The intuition behind this is that in order for an agent to complete
its primary goal, it must first complete a number of sub-goals. Options direct
the agent between these sub-goals. Then the overall problem is broken down
into completing sub-goals in the optimal order, or deciding if any sub-goals

32

2.4. Abstraction In Reinforcement Learning

are superfluous. Examples of potential sub-goals are picking up a key in
order to unlock a door, or navigating between two rooms. Identifying sub-
goals is seemingly the difficult part of generating Options. This is because the
agent has no a priori knowledge of what is expected of it within a designated
environment. We now look at some examples of Option generation that have
appeared in recent research.

2.4.4.1 Bottlenecks

One heuristic for discovering sub-goals is to look for bottlenecks in the under-
lying state-space of the environment. Again, there are multiple ways in which
this is attempted.

2.4.4.1.1 Clustering

In [34], a transition graph is created. Each state transition is examined and
clusters are created on the basis of reachability by multiple paths. Then any
transition connecting a cluster is the only one that does so. This edge of the
transition graph is then considered to be the bottleneck between these two
clusters, and utilised as a sub-goal. Options can then be created to and from
the associated nodes of this bottleneck. The process of identifying bottlenecks
takes time O(FE), where E is the set of transition edges, so does not scale
impossibly with the size of the state-space. This method suffers from the same
typical disadvantage as a lot of other Bottleneck methods, chiefly that it only
captures bottlenecks of unitary “width”. For larger state-spaces this may not
ever be the case — for example, in a gridworld environment where rooms are
separated by doors with a width of two states. This can be somewhat alleviated
by forming clusters based on different levels of reachability, perhaps requiring
more transitions between clusters in order to join them. However, this is still a
static heuristic, optimal values of which may not be known a priori.

The paper [34] also proposes locating bottlenecks based on state value, not just
environment topology. This seemingly attempts to address the issue of bottle-
neck width by considering the difference in state value when forming clusters,
rather than the number of transitions between clusters — of course, states must
still be adjacent to a cluster in order to be added. Whilst this does help allevi-
ate the issue of bottleneck width, the clusters formed may be far from optimal,
since the only state values that the algorithm has access to are the current es-
timates. If these were close to the optimal values, then there would be no need
for further learning. This is a particular issue at the beginning of the learning
process, when state values are far from their optimal values. This may set up
bottlenecks that are non-conducive to learning.

33

2.4. Abstraction In Reinforcement Learning

Regardless of the clustering method, the paper [34] then goes on to augment this
with frequent item-set mining in order to deduce which bottlenecks are impor-
tant in order to minimise the length of Options. Options are then generated by
using Dynamic Programming to determine policies between neighbouring clus-
ters, as well creating Options based on the frequent sequences constructively.

The results from [34] are somewhat positive. The proposed method was tested
on a maze navigation task, as well as the “Taxi” domain and “Soccer bed”
task. Within the maze navigation task, the proposed method performs only
slightly better than standard Q-Learning. However the bottleneck method out-
performs standard Q-Learning by a factor of approximately 2 after a few thou-
sand episodes on the Taxi and Soccer bed domains.

2.4.4.1.2 Ant System Optimisation

Another method for identifying bottlenecks is proposed in [25], utilising the
“Ant System Optimisation” algorithm which was pioneered in [14]. Intuitively,
this algorithm uses n agents (or ants) to explore a state-space in the form of a
graph G = (V, E), where V is the set of states and E the set of state-transitions.
The ants drop “pheromone” on each edge they traverse. The ants move ran-
domly, but with a bias towards edges laced with pheromone, to which they are
attracted. After each transition, some of the pheromones that have accumulated
on each edge “evaporate” in order to prevent cyclical behaviour. The amount
of pheromone deposited by an ant decreases in proportion to the amount of
transitions made so far. The idea here is that shorter routes will accrue larger
amounts of pheromone and will therefore attract more ants and thus, even more
pheromone. Moreover, any bottlenecks will have a much larger proportion of
ants moving through them. The authors of [25] construct a criterion they call
“Roughness” which is a measure of the variance of pheromone gradient over
time divided by the square of the total time difference. Lower roughness values
indicate a higher likelihood of being a bottleneck. These edges are separated by
analysing for growths in roughness when the edges are ordered by roughness. As
with most bottleneck methods, once the bottleneck edges are found, Options are
created that direct the agent between the bottlenecks. This proposed method
again has the disadvantages that it favours bottleneck edges of width one, even
when this may not constitute a bottleneck for particularly large environments.
The Ant System Optimisation method for identifying bottlenecks [25] was tested
on the Taxi Domain and the Playroom environment. The proposed method con-
verges on a near-optimal policy 10 and 5 times faster than Q-Learning for each
of these environments respectively. It is important, however, to reiterate that
these environments are actually quite simple, and that the bottlenecks are all
of unitary width.

34

2.4. Abstraction In Reinforcement Learning

2.4.4.1.3 Other Methods

The two methods highlighted here are only a small sample of methods composed
to identify bottlenecks within environments. There are numerous others for
which detail will need to be omitted for space considerations. These include
methods that perform Spectral Clustering on the MDPs estimated transition
graph to obtain similarity clusters [70] [38], as well as clustering based on entropy
measures of the estimated transition graph in addition to the number of edges

joining these clusters [41].

Ultimately, the method used to identify bottlenecks is somewhat irrelevant. The
core idea common to all of these papers is to use the identified bottlenecks as sub-
goals and to define Options directing the agent between them. The clusters that
appear from the bottlenecks are often considered small enough that Dynamic
Programming methods can be employed to find optimal policies between these
clusters. Most methods for identifying bottlenecks lack the ability to work with
bottleneck widths larger than 1. This does not scale well for larger environments
when a “bottleneck” may actually consist of multiple states or edges.

2.4.4.2 Extended Sequence Trees

Extended Sequence Trees (ESTs) are another method for creating Options au-
tomatically. ESTs construct Options based on the state transition history of the
agent. They were pioneered in [27]. In order to understand ESTs, the notion of
a Conditionally Terminating Sequence (CTS) must be introduced.

Given an MDP defined in the usual manner, (S, A, R, P,7), A CTS is defined
in [27] as a sequence of ordered pairs o = {(C;,a;) | 0 < i < n). Here, C; € S
is a subset of the states from the MDP and is referred to as the continuation
set. a; € A is an action available to the agent. After each time-step, action a;
is performed. This yields some state s', if s’ € C;, then the agent continues to
follow the CTS, otherwise it terminates the CTS. The paper goes on to give
a construction showing that each CTS has a corresponding Option. Properly
utilising CTSs is therefore equivalent to applying Options, and brings all of the
corresponding benefits.

The paper [27] then introduces the notion of an extended sequence tree (EST).
The purpose of the EST is to compactly represent a set of CTSs, which is
important due to the fact that the amount of possible CTSs typically grows
exponentially with the length of a CTS. An extended sequence tree is then
defined as (N, E) where N is a set of nodes and E is a set of edges. Each node
represents a unique sequence of actions. Node p is connected to node g by an
edge representing action a if ¢ can be formed by appending a to p. The edge
representing this is denoted as (a,¥) where 1) is an eligibility value. . Each node

35

2.4. Abstraction In Reinforcement Learning

also contains a list of tuples {s;, 0y, ;) which denote the continuation set of the
incident action, as well as appropriate rewards and eligibilities for each state
in the continuation set. Intuitively, the tree is formed to compactly represent
a “union” of CTSs. The EST also needs ¥ and o decay rates and threshold
values in order to determine by how much the eligibility of each node decays
after every transition, as well as when to remove nodes from the tree.

A path from the root to another node (not necessarily a leaf) then represents
a CTS. Furthermore, the sequence tree can encode many CTSs in a compact
structure by taking advantage of branching. The eligibility values are updated to
reflect the number of times the agent follows specific CTSs and their quality, with
higher eligibility values representing more commonly used CTSs with higher
rewards. New CTSs are added to the tree as they occur. The tree is periodically
pruned to save space, removing branches with low eligibility values.

In order to use the EST, an agent must select which CTS it wishes the follow. It
can then follow that CTS down the tree as a guide for which actions are valid,
checking the continuation states at each step. The EST paper [27] suggests
learning or using a probability distribution over the CTS to select actions. This
allows the whole EST to be used as a high-level policy, deciding which CTS
branches to follow. When the agent performs an action not in the tree or enters
a state not in a relevant continuation set the agent defaults to its own policy.
The agent will add new nodes and edges to the tree (representing new useful
CTSs) as it repeatedly encounters transition histories of high reward.

Sarsa()), Q-Learning and SMDP Q-Learning agents augmented with an EST
were tested on three domains in the paper [27]. The agents were tested against
agents based using the same RL algorithm without the EST augmentation. The
domains they were tested on were a navigational maze, the Taxi Domain and
the game of Keep Away.

For smaller Taxi Domain environments, Sarsa(A) and Q-Learning using ESTs
converged to a near-optimal solution in 5 times fewer episodes than their more
basic counterparts. For larger variations of this environment, the EST aug-
mented agents performed even better comparatively. For the navigational maze
environment, the EST augmented agents again massively outperform their coun-
terparts. A notable result is that the EST augmented Q-Learning performs on
par with SMDP Q-Learning with hand-crafted Options. This is important, as
the ESTs have — over time — crafted Options comparable to a human ex-
pert. SMDP Q-Learning also does not improve when augmented with an EST,
suggesting these Options are already optimal.

For the game of Keep Away, an SMDP adaptation of Sarsa()) taking advantage
of Tile Coding was used. This was then augmented with an EST. Both agents
eventually learned to keep possession of the ball out of the other team’s hands
for a maximum of 16 seconds. The EST augmentation agent, however, achieved

36

2.4. Abstraction In Reinforcement Learning

this in a third of the learning time. It is worth pointing out the the SMDP-
Sarsa(\) does not use handcrafted Options, but derives them from Tile Coding,
thus the Options can be improved.

A limitation of ESTs to consider is how the size of the EST grows over time.
After all, trees with paths of length n can grow to have (b™) nodes, where b is
the average branching factor — or number of actions available at each decision
point in this case. With reference to an EST, this would represent every possible
Option. However, even storing Options with very few initial actions can lead to
a large tree. In [27], the authors have considered this issue. The total number
of nodes in the tree seemingly tends to a certain value based on the EST’s
decay rate. As the decay rate increases, the total amount of nodes in the tree
seems to increase exponentially. A trade-off appears to be required between
performance and size of the tree; based on the decay rate. This parallels the
minimum threshold value for storing A eligibility values in Sarsa(X). The size
of the tree will also affect running time in the obvious way.

The authors of [77] extend ESTs to allow for only partially observable envi-
ronments. This is done by introducing belief states, where the agent estimates
which state it is in based on its limited observations and previous beliefs. The
agent models the belief state-space as an infinite grid that is discretised at reg-
ular intervals. These belief states are then used instead of states in the EST.
This approach is tested on a large number of partially observable environments.
Agents using adaptations of Q-Learning for partially observable environments
are used. Multiple methods of dicretising the state-space are also compared.
The important result, however, is that regardless of which dicretisation method
is used, the corresponding belief-EST augmented agent outperforms the unaug-
mented agent.

2.4.4.3 Association Rule Mining

The third method we explore for constructing Options is Association Rule Min-
ing (ARM). Whilst Association Rule Mining has been a general Machine Learn-
ing method for some time, it was first introduced for Option generation for RL
in [26].

Within ARM, a trajectory of visited states {so, ..., s, } is referred to as a trans-
action. The goal is to find rules that explain the trajectory causality. A rule
takes the form A — B, where A and B are disjoint sets and is interpreted as “if
set A occurs, then with high probability, B occurs also”. Two prominent notions
in ARM are that of support and confidence. Support is the rate at which both
A and B occur together. On the other hand, the confidence is the frequency at
which both A and B occur relative to how often A occurs. The support is often
used to disregard a rule that occurs too infrequently. The confidence measures
the reliability of the rule. Threshold values to compare these against are often

37

2.4. Abstraction In Reinforcement Learning

used, with algorithms specifying a minimum support and confidence required
for each rule.

For each sub-goal candidate — which need to be identified a priori — the support
of the rules {sgo, ..., $gi—1,8Gi+1,---Sgn} — {8g:} are computed for each i and
permutation based on the state trajectories. Rules with a support lower than
the minimum support threshold are removed. The confidence of surviving rules
is then computed. Again, these values are compared against the minimum
confidence threshold and unreliable rules are removed. The remaining rules are
then used to construct a tree structure in a similar manner to an EST, with
rules sharing paths until they differ, at which point the tree branches. The goal
is the root of the tree, and leaves are sub-goals in reverse order. The agent then
starts working towards sub-goals at a leaf and aims toward the root.

Options are then constructed using an external method (possibly dynamic pro-
gramming or the like) between sub-goals in accordance with the constructed
tree. The agent then selects Options based on the sub-goal to which it is closest
and progresses through the tree toward the route.

This method was tested on a number of environments similar to a Grid-world
domain, except the agent has to collect multiple coloured and numbered keys
in a certain order. Variations on this are used, with larger grids, and more
keys. Q-Learning was compared to Q-Learning with Options determined by
the proposed method. The ARM method massively outperformed Q-Learning,
requiring vastly fewer episodes to achieve similar performance.

The main drawback of this method however is that there are exponentially many
potential association rules to evaluate. This is somewhat alleviated by the fact
that the rules only need to consider sub-goals and not individual states. There
are typically a lot fewer sub-goals when compared to the number of states. The
other obvious drawback is that this method requires sub-goals to have been
identified beforehand. It does not identify them itself. However, it does provide
a strong ordering to achieve these sub-goals in.

2.4.4.4 Concluding Remarks For Option Generation

As has been discussed, lots of methods have been proposed in recent years for
generating Options automatically. Whilst the majority of these are based on
identifying bottlenecks, other more niche methods have also been proposed.
Overall, each of the methods has shown improvement over standard Q-Learning
or other basic RL algorithms. Unfortunately the Option generation methods
are often not directly comparable since the algorithms are not tested against
other methods of generating Options. There are also variations in environment
and hyper-parameters that prevent this from being done. This is quite disap-
pointing since it is unclear whether any of these methods outperform others or if

38

2.4. Abstraction In Reinforcement Learning

they each have strengths and weaknesses. Comparing the performance of these
Option generating agents against other advanced RL methods such as Reward
Shaping and Deep Learning could also aid the understanding of the efficacy and
suitability of these methods.

2.4.5 Abstract Markov Decision Processes

When aiming to solve complex problems, it is often helpful to consider the
problem from a more general perspective, with focus on the larger picture rather
than the fine details. Abstract MDPs are the embodiment of this idea within
RL.

An Abstract Markov Decision Process (AMDP) is very similar to an MDP.
AMDPs typically correspond to an abstraction of a specific MDP. It is important
to note that an AMDP is an MDP in itself. The main draw of AMDPs is that
they are used to generalise large MDPs into smaller, more manageable parts,
grouping similar aspects together.

The formal definition of an AMDP is similar to that of an MDP, but specifies
an abstract entity. An AMDP A is a tuple (S4, A4, Ra, P4). Sa is a set of
abstract states. A4 is a function mapping abstract state to abstract actions
available in the given abstract state. These are typically higher-level actions
designating movements between abstract states. R 4 is the reward function for
the AMDP. Finally, P4 is the abstract transition function, this works in the
same way as for an MDP.

For the AMDP to have any use, we also require a set of abstraction functions Z =
(Zs,Za,Zr, Zp) which map elements (states, actions, rewards, and transition
functions respectively) from a “ground level” MDP to an AMDP. This Z is not
considered part of the AMDP, but is characteristic of the abstraction relation
between the MDP and AMDP.

The abstraction Z needs to be constructed in a way that captures a distillation
of the essence of the underlying MDP. The methods for how we do this form
the core of research into AMDPs, but AMDPs can also be hand crafted by a
domain expert.

In general, throughout this thesis, for an element of an MDP, we will denote its
abstract counterpart using an overbar. Here we assume that the appropriate
element of Z is applied to the MDP element. For example, if we have a state
s € Sy, and abstraction Z, then we take s = Zg(s), similarly, for an action
a € Ay we take a = Z4(a). Using this notation helps keep our equations clear
and concise.

39

2.5. Guided Learning

2.5 Guided Learning

Learning can also be sped up if the learner is guided through the process. This
is in fact, the whole basis for teaching within society. Two of the primary
approaches to guiding agents in this way are Reward Shaping and Curriculum
Learning. The work that this doctorate has utilised is Reward Shaping, but
both methods are briefly overviewed here as some nice parallels can be drawn
between them.

2.5.1 Curriculum Learning

Curriculum Learning (CL) is a Machine Learning technique that aims to increase
convergence speed. It attempts to do so through constructing a curriculum of
training examples, guiding the agent from “easy” examples to “hard”. The
intuition is that if the agent is trained on easier examples first, it should attain
a level of competence that makes the harder examples more manageable. In
CL’s introductory paper [7] — which occurred a few years prior to the recent
explosion in very deep neural networks — results show that a simple curriculum
approach can improve a model’s performance at identifying simple geometric
shapes as well as predicting the next word in a simple English sentence.

For identifying geometric objects, the first curriculum stage reduced the set
of images to circles, squares and equilateral triangles, as opposed to the final
curriculum state (i.e., the task) where the images contained ellipses, rectangles
or triangles. For the task of predicting the next word, after each curriculum
stage the word vocabulary size was increased. It is clear that CL’s biggest
disadvantage is the need to construct curricula prior to training. This can be
costly, as well as requiring an understanding of which training examples are
“hard”.

Curriculum Learning has also been extended to Reinforcement Learning in re-
cent years [48]. As opposed to utilising easier training examples in the earlier
stages of the curriculum, in RL easier “tasks” are used for training. These tasks
are just simpler MDPs. The first paper to utilise this approach gave a myr-
iad of ways in which these simpler MDPs can be constructed. These methods
include focusing on scaled down areas of the original problem to achieve a sub-
goal (which translate into Options), detecting mistakes made by the agent and
having them replay the moments leading up to the mistake, as well as reducing
the action space unless prerequisites are met.

For the game of “Ms. Pacman”, simply training the agent on previous lev-
els (which entail simpler mazes) was enough to yield significantly improved
performance compared to the Q-Learning baseline. A similar improvement in
performance was achieved for the game of “Half Field Offence” — a sub-game of

40

2.6. Reward Shaping

“RoboSoccer”. The aim of this game is for your players to score a goal against
a number of defenders and goalie. The curriculum used here were a series of
sub-tasks dedicated to teaching the agents to shoot and dribble the ball. This
effectively taught the agents the skills needed to coordinate and position them-
selves. Some of the approaches presented in the paper [48] still require a high
level of domain knowledge and knowledge of sub-task difficulty is still assumed.
However this paper still extended Curriculum Learning to RL and other guid-
ance methods typically suffer from the same drawbacks.

Recent work has focused on trying to address this issue of selecting tasks for
a curriculum [49][69][50], and they have been successful in the limited domains
they have been tested in. However a detailed explication of these approaches is
beyond the scope of this brief overview.

2.6 Reward Shaping

Reward shaping is another example of guided learning within the field of RL.
Domain experts can assist the learning agent to find state-action trajectories of
high reward.

In reward shaping an additional reward is given to the agent based on the
current transition. This additional reward function is termed F' and referred
to as the extrinsic reward, and represents prior knowledge of the environment
that is given to the agent. Using Reward Shaping the Q-Learning update rule
becomes:

Q(s,a) :=Q(s,a) + a(R(s, a,s') + F(s,a,s") + 7 max Q(s',ad") — Q(s, a))

For transitions with a high extrinsic reward, the new Q(s, a) value will become
larger than without F'. This leads to the agent being more likely to select action
a in state s. If the extrinsic reward is chosen arbitrarily, then the policy that
the agent converges to may change, and no longer be the optimal policy for the
non-shaped problem [55]. In order to avoid this, each state must be given a
potential ¢(s). This potential is provided by a domain expert and may broadly
correspond to the desirability of a state. The specific potential function used is
not so important as how it is used to create the shaped reward. The extrinsic
reward is defined as F(s,a,s’) = w(yd(s’) — ¢(s)) for a scaling constant w. Tt
has been shown that doing this keeps the convergence properties of Q-Learning
[51]. This is referred to as Potential-Based Reward Shaping (PBRS). Intuitively
this occurs because the additional rewards “cancel out” over the course of the
trajectory. In [51], the authors demonstrate that the total effect from this reward
on the optimal Q-functions for the original MDP M and the shaped MDP M’
is no larger than a constant (¢(s) for terminal state s). It follows from this
that an optimal policy for M’ is also optimal for M. One thing that we cannot

41

2.6. Reward Shaping

guarantee is the type of optimal policy that will be identified. It is possible that
new concerns such as reward hacking or safety issues with the shaped policy
could occur, however these are not more likely to occur than with the unshaped
policy and could just as likely be safer or prevent reward hacking.

Using PBRS can yield some impressive speed-up when compared to traditional
RL. However, the potential function, representing domain knowledge, must be
given as an input to the agent. It has also been shown that “bad” potential
functions can slow learning [55]. Therefore care must be taken when selecting
the domain knowledge to encode as a potential function to ensure it is correct.
Consideration must also be given to the feasibility and cost of such an encoding.

The potential function used can be altered to include actions. This is re-
ferred to as Potential-Based Advice [75]. The extrinsic reward function can
then be formulated as F(s,a,s’,a') = w(yé(s',a’) — ¢(s,a)). Here o’ is se-
lected according to the agent’s learning update. With @-Learning this entails
a’ = argmax,(Q(s’,a)). In order to keep the same guarantees of policy in-
variance the agent must be what is called “biased-greedy”. That is, the policy

satisfies:
7(s) = argmax(Q(s,a) + ¢(s,a))

a

This is proven to be required for policy invariance [75]. An advantage potential-
based advice has over standard PBRS is that potential-based advice can encode
knowledge about both states and actions into the shaped reward. PBRS can
only encode state-based knowledge. The state-action-based advice can be more
useful if we want to encode information about desirable behaviour, rather than
a desirable state. This can help avoid becoming trapped in local optima, where
the agent reaches a locally optimum state and then is punished for any action
it takes — potential-based advice will reward the agent for selecting a desirable
action.

2.6.1 Reward Shaping With AMDPs

Instead of setting the value of the extrinsic reward for every transition — which
represents an inordinate amount of domain knowledge — an AMDP approxi-
mation of the environment can be solved in order to yield the potential function
[L7]. The AMDP, and as consequence, abstract dynamics of the environment,
are assumed to be given by a domain expert. It is also possible to construct
this AMDP by exploring the state-space of the MDP, as is done in [42].

For small enough AMDPs we can solve them using Value Iteration. Value
iteration gives a value V(8) for each s € Sy of the AMDP. It has also been
shown in [51] that shaping using ¢(s) = V(s) for s € S of the MDP gives
the optimal shaping function, although the authors are keen to point out that

42

2.6. Reward Shaping

even when ¢(s) and V(s) are far apart, then ¢(s) can still be a useful shaping
function.

The potential function is then set as ¢(s) = V(Zg(s)). This means that the
potential of each state is set as the value of its abstract counterpart s € Sy
where § = Zg(s). Whilst this is not the optimal ¢(s) = V(s), experiments in
both [17] and [12] show AMDP based reward shaping outperforming Q-Learning
by large margins.

2.6.2 Knowledge Revision

As previously mentioned, the AMDP, or important parts of it, are often assumed
to be available as knowledge provided by an expert. Whilst this assumption
cannot always be held true, the amount of knowledge imparted to the agent can
vary with the level of abstraction used. This allows the knowledge requirements
to vary.

Another concerning factor is the matter of the provided knowledge being incor-
rect. Much of the time, the abstractions are given by human domain experts.
Humans are notorious for their ability to make mistakes — look outside for
confirmation of this. Even machines may occasionally falter if the environment
dynamics are not specified correctly, or if the environment suddenly changes.
It therefore seems likely that the abstractions may, at times, contain incorrect
knowledge that will guide the agent off-course. This can impede the learning
abilities of the agent.

The solution to this issue is to allow the agent to update its abstractions to reflect
its experiences. This is done in [18], where the agent keeps track of which low-
level transitions were performed in an episode. These low-level transitions are
then mapped to transitions in the AMDP. That is, if transition s — s’ occurs
on the low level, then 5 = § is recorded, where a is the abstract action between
5= Zg(s) and § = Zg(s'). The transition probabilities for the AMDP — that
is P4 — are then updated using:

PA(5,a,5) + a(l — Pa(5,a,5)), if § % § occurred
P4(3,a,5) + a(0 — Pa(3,a,s")), otherwise

Pu(3,a,5) = {

Note that we have altered the notation used in [18] in order to more coherently
fit with the notations used throughout this thesis.

The intuition behind this update is that the agent is correcting the transition
probabilities based on its empirical experiences to more accurately reflect the
MDP it inhabits. Similar to the Q-learning update rule, this approach “nudges”
the probability in the direction observed. If the agent observes a transition that

43

2.6. Reward Shaping

is previously unseen, it adds this transition with probability 1. After each
episode — or batch of episodes — the AMDP is re-solved with these new prob-
abilities.

Doing all of this lowers the probability of a transition if it does not occur — ei-
ther because it is a transition that gives low return, or because it is not actually
possible to make. When the AMDP is re-solved, this smaller transition prob-
ability lowers the value given to these transitions, thus reducing the extrinsic
reward accordingly.

In [18], this approach is tried on domains which extend the navigational grid-
world problem. The Knowledge Revision agent is given varying incorrect knowl-
edge, including irrelevant, missing and incorrect information about the locations
of the goals. An AMDP-based reward shaping agent without knowledge revision
is given the same incorrect knowledge. And a third agent, identical to the sec-
ond, is given correct knowledge. The knowledge revision agent outperforms the
agent with incorrect knowledge and no revision, and also performs comparably
to the agent given correct information.

This is a positive result as the agent can, over time, self-correct any mistakes
that the domain expert made. However, it must be said that this approach only
fixes errors that were made when defining the transition probabilities. it does
not address any issues that may arise from incorrect knowledge relating to the
existence of abstract states or actions.

2.6.3 Automatic Shaping and Decomposition of Reward
Functions

In Marthi’s paper Automatic Shaping and Decomposition of Reward Functions
[42] the author gives an algorithm for constructing an AMDP from ground-
level observations. This approach shares some similarities with the approach we
propose in the upcoming Chapter 4. We detail the approach here and highlight
the differences in detail after our proposed method is introduced.

Marthi’s approach begins with an initial learning phase. The process is given
a state abstraction function z and a set of Options O. The agent repeatedly
selects and follows options selected at random from O until Option termination.
The agent records the initial state s, final state s’, the option invoked o and
the cumulative reward received r. This Option experience (Zs(s), 0,7, Zs(s'))
is used to update estimates to AMDP transition and reward functions P and
R using a running average. This process is repeated until a certain number of
steps has elapsed. Then the AMDP (Zs(S),0, P, R) is returned.

One notable aspect of this approach is that it requires the state abstraction
function Zg and available options to be defined a priori, somewhat limiting

44

2.6. Reward Shaping

its power to domains wherein these are already known. However, the authors
do claim that the option set O can simply be primitive actions if no options
are known. From the state abstraction function and options it infers abstract
transitions and reward function directly, which would correspond to abstraction
functions Zp(P) and Zgr(R), though the functions themselves are not made
explicit.

In [17], this approach is used to augment a Q-Learning agent play Othello.
While this approach drastically improves the agent’s performance compared to
Vanilla Q-Learning, the details of the state abstraction function Zg encode a lot
of knowledge about the game. The baseline agent uses features to handle the
game’s size. The board positions are segmented into corners, edges, pre-corners
(diagonally adjacent to corners) and internal positions. A notion of “advantage”
is introduced over a set of states, detailing the number of pieces one player
has over the other in that set of states. The game is further partitioned into
three phases of equal length, and for each phase there is a feature equal to the
advantage of the agent for each of the board position types. The baseline agent
uses these features as the ground representation for Q-Learning.

The state abstraction function is then a map from the board position to essen-
tially a tuple consisting of the advantage of corner squares, the phase of the
game, and the advantage of non-corner squares binned into 5 intervals. This
is implicitly encoding a lot of knowledge about the importance of corner po-
sitions and game-phase relative to the other features in Othello. It does this
by merging the other features (pre-corner, edge and internal positions) into one
and introducing binning to reduce the number of values that the merged feature
can take on.

Two Options are then used, one-step random and one-step greedy, in the shap-
ing function learning process. Although it is not made clear what the greedy
option is greedy relative to given that this occurs prior to the Othello learning
process, in the AMDP learning process. It may be that the one-step greedy
Option is selecting action a = argmax, (Y, P(s,a,s')R(s,a,s"))) — the esti-
mated weighted mean abstract reward the AMDP has learned so far, but this
is an educated guess. Unfortunately the link to the code in the paper no longer
works.

Whilst this approach is a definite improvement over manually labelling ¢(s) for
each state from a domain expert, a non-trivial amount of domain knowledge is
still required, not just knowledge of the specifications of the game, but knowledge
of advantageous board positions.

45

2.7. Unlification of AMDPs and SMDPs

2.6.4 Multi-Grid Reinforcement Learning

Multi-Grid Reinforcement Learning (MRL) [29] is another method for shaping
(using AMDP-based reward shaping techniques outlined in Section 2.6.1). a
learning agent based on its own abstract experiences. In MRL, the environment
is twice partitioned uniformly at resolutions. The finer-grained partition is used
to represent the ground state-space, and the coarser partition is used to represent
the abstract state-space. MRL was designed with continuous state-spaces in
mind, and uses these two partitionings to discretise a continuous state-space
in order to allow traditional tabular RL methods to work. The corresponding
ground or abstract state for a continuous state is given by the functions Gg and
Zg respectively.

The agent utilises a () function to record its estimation of the values of ground-
state-action pairs — similar to most tabular RL algorithms. Additionally, an
agent utilising MRL keeps a function V' to record its estimation of the value
of abstract-states. At every interaction the agent makes with its environment,
it receives an experience tuple (s,a,r,s), the Q-function is updated for values
(Gs(s),a) similarly to a PBRS-augmented agent, basing its tabular RL update
onr+V(Zs(s) —v—V(Zs(s)). If Zs(s) # Zs(s") then the values V(Zg(s))
are also updated, performing a simple update based on the accumulated reward
Y., — the cumulative reward received by the agent while it was in abstract state

Zs(s).

Whilst no explicit AMDP is used by MRL, the value function of the abstract
states of one is implicitly built up in a model-free manner. MRL was shown
to achieve higher performance in the Mountain Car domain when compared to
a simple Q-Learning agent operating on just the fine-grained state-space. MRL
is, however, a product of its time. MRL was published in 2008 — five years
before neural networks came to dominate the RL landscape and change how
continuous state-spaces are handled entirely.

One of the initial contributions of this thesis has been to modernise and improve
MRL for this brave new world of Deep RL. It is not enough to simply replace the
tabular ground partitioning with a neural network, changes must also be made
to how the algorithm computes and utilises abstract values and transitions. The
method itself is given in 4.4. Further, empirical results are given that show the
improved version outperforms DQN as well as MRL with a neural network.

2.7 Unification of AMDPs and SMDPs

RL algorithms that use AMDPs and SMDPs share many similarities. Discrete-
time SMDPs can be considered as analogous to MDPs with Options. Both of

46

2.8. Deep Learning

these methods abstract away aspects of the MDP, making the problem easier to
solve. They also both have a hierarchical structure — MDPs augmented with
Options can elect to invoke Options to temporarily control the agent and there
is an intrinsic hierarchical relationship between an AMDP and its associated
MDP. Both systems are dependent on external knowledge. Options need to
be defined (although recent methods do exist for generating these empirically),
AMDPs need state abstractions and abstract transitions. In either case, solving
either an AMDP or MDP with options is far easier than solving an SMDP due
to the added complexity of calculating the continuous time-steps and solving
the integral for SMDP reward .

Options (and SMDPs) provide temporal abstractions to the agent , they chain
together primitive actions to provide macro-actions. AMDPs; on the other
hand, provide both spatial and temporal abstractions (strictly, we are only
“abstracting” over space, but moving through this space takes time and we are
considering this an atomic action in the abstraction). This is an important
difference. Consequently, every AMDP-MDP relationship has a corresponding
MDP with Options formulation. To see this, for some MDP and AMDP, create
an Option representing each abstract transition over appropriate states. These
Options are then equipped for us by the MDP.

The reverse is not true, however. Since MDP states can belong to many different
Option initialisation sets. Typically each state in an MDP only maps to one
abstract state in an AMDP. Options that use initialisation sets of these sorts
cannot be represented in AMDP form. This makes SMDPs more expressive.
However an AMDP-MDP relationship contains more structure. It is not entirely
clear which property is more conducive to increasing learning speed. There has
been very little (if any) work on comparing the two.

2.8 Deep Learning

In order to keep up with the relentless pace of modern RL research, an under-
standing of deep learning is necessary. The last decade has seen RL research
move away from tabular methods and traditional function approximation meth-
ods, instead focusing on utilising Deep Learning. This has had a profound effect
on RL as a whole, allowing much more complex and realistic tasks to be solved,
but at the cost of apparent post-hoc analysis and theorising.

Deep Learning is usually comprised of using a neural network with many hidden
layers, in order for the network to learn suitable salient features to help it achieve
its goal.

A neural network consists of a number of nodes which take values as inputs,
and output a new value based on the node’s internal function, and the inputs

47

2.8. Deep Learning

the node receives. Chaining nodes together output-to-input, allows the network
to grow deeper and perform more complex calculations. The output of a node
is multiplied by the weight of the edge before being received by another node
as input. This means that for a single node receiving vector = as input, with

weights w and biases b, the output of a node will be g(w - & + b), where g is the
node’s internal function.

Propagating an input through the network is referred to as Forward Propaga-
tion. This is often repeated for many values at once, and can be sped up by
replacing the vector calculation with a matrix calculation.

In order to train the network to made accurate predictions, a cost function is
used to evaluate outputs from the neural network when compared against known
values. From this cost function, derivatives are “back propagated” through the
network using the chain rule in order to update the necessary parameters to
decrease the cost.

After sufficiently many iterations of back-propagation, the cost function becomes
close enough to a minimum value and the network is able to predict values
accurately.

From a historical perspective, algorithms utilised neural networks before they
became “deep”. The Perception algorithm [58] enabled individual “neurons” to
learn linear classification functions. The introduction of the back-propagation
algorithm [59] allowed for an easy method to update weights of connected neu-
rons. This led to what we now refer to as feed-forward neural networks. Their
application to large-scale problems was limited by the available computing power
at the time. The modern increase in available computing allowed for training
larger, deeper networks. In the next section we see how this was applied to RL.

2.8.1 Deep Q-Learning

Deep Neural Networks can be used as a function approximation method for RL.
A simple example of this is with Deep Q-Learning (DQN) [45]. DQN uses a
neural network to represent the Q-Table from Q-learning. As an input, the net-
work takes a state, and outputs a single value per available action — the Qg (s, a)
approximation. The DQN algorithm mimics tabular Q-learning, selecting an ac-
tion a* = max, Qg (s, a), computing the next state s’ from s and a, and then
receiving reward r. DQN differs from tabular Q-Learning by storing these ex-
periences e = (s,a,s’,r) in a memory buffer. Samples from the memory buffer
are then drawn uniformly for the Q-update step in order promote a smoother
learning process. Given a sample E = {(s1,a1,$1,71), .-(Sm, @m, Shys Tm) }s Ui is
computed as 7; +ymax, Qo(s;,a). 21" (v — Qo(s;,a;))? is then used as the cost
and the network updates its weights 6 for each of the m examples using back
propagation. This is principally the same as the tabular Q-Learning update

48

2.8. Deep Learning

rule, except operating on batches of sampled experiences.

DQN was one of the first RL algorithms to utilise Deep Learning, and has al-
ready had its performance surpassed by newer approaches and iterations, how-
ever it still performs admirably one complex domains such as Atari games, as
outlined in the original paper [45].

2.8.2 Convolutional Neural Networks

The real power of DQN and other deep learning becomes manifest when Con-
volutional Neural Networks (CNNs) are introduced. CNNs are a type of neural
network architecture that are able to work with high dimensional data easily
— most notably, images. CNNs were instrumental in DQN performing well
on Atari games due to the fact that Atari games have pixel-based visual state-
spaces.

A CNN utilises — as one would expect — layers that perform convolution
operations on their input. A convolution — or, to be more accurate, a cross-
correlation — is a binary operation that can be performed on matrices.

Allow us to represent images as matrices where I(z,y,z) refers to element
(z,y,2) of image I. We need three dimensions to account for colour-depth.
Three-dimensional convolutions will also be necessary when we come to convo-
lutional layers that take the output of previous convolutional layers as input.

We will denote convolutions as @, where the convolution of image k& with image
Iis:

N M O
I'(z,y,2) = (k®I)(z,y,2) = Z Z Z k(s,t,u)l(z — s,y —t,z — u)

s=—Nt=—M u=—0

Where I’ is the resulting matrix. For simplicity we are assuming the Image is
of size (2N +1) x (2M + 1) x (20 + 1), although it’s easy to account for images
with an even number of pixels.

It’s important to note that this operation is not associative. The matrix k is
referred to as a kernel. Kernels are often much smaller than the image matrix
and can be used to identify features present in the original image, with the
relevant features appearing with higher values in the resultant matrix.

Within a neural network a convolutional layer consists of ¢ kernels of three di-
mensions (width, height and depth), which are each applied to the input to that
layer. It is important to note that typically the kernel depth is made to match
the input depth. Each of the ¢ resultant matrices are then two dimensional and
can be “stacked” to create a three-dimensional output of depth ¢ . The output

49

2.8. Deep Learning

[

Convolve Each convolution
c makes up an
o [J
i EaCh | activation map of ’7 i‘:ﬁﬁ;\he
2 erne the kernel 9
z with input convolutions
= F O I 0
o —_ . SN - @000 O @ @0
e — Ml
% Input
E
e 0

Figure 2.1: Convolutional Layer Process

is also passed through an activation function. Figure 2.1 gives a visualisation of
this process.

The keys to identifying useful features are the kernels. There are seemingly
no “universal” kernels that always identify desirable features. The kernels are
therefore learned by the agent as weights in the network.

The intuitive idea between chaining convolutional layers together is that each
layer identifies certain features from its input, which the next layer can then
deduce “higher-level” features from.

After a number of convolutional layers, there are usually fully-connected layers
in order to interpret these identified features. The rest of the neural network is
the same as a standard neural network.

Back-propagation operates on the same principle as fully connected-layers, al-
though accounting for the difference in how the network nodes are connected.
The kernel weights are updated from the back-propagation algorithm in the
same way that the connection weights are updated in fully-connected layers.

As with any architecture or technique, the variations upon this basic idea are
innumerable and this description is just an introduction to utilising convolutions
within neural networks. CNNs see broad use within deep learning, particularly
when working with images. We will make extensive use of CNNs in Chapter 5
in order to handle image-based RL environments.

2.8.3 Deep Reinforcement Learning and Abstraction

One of the appeals of deep RL is that the agent learns its own abstract features
during training in an end-to-end fashion. However, due to the opaque nature

50

2.8. Deep Learning

of neural networks, relying on these end-to-end learned abstract features may
not yield optimal abstractions. Some efforts to improve learning performance
by learning additional abstractions have been made.

A notable example is Hierarchical Deep Q-Learning (HDQN) [39]. This method
operates on two levels, a controller which learns to achieve sub-goals (Options)
on a ground-level, and a meta-controller which learns to set sub-goals accord-
ingly. The two levels of agent utilise an actor-critic structure, with the meta-
controller providing a reward relating to achieving sub-goals to the controller.
This approach was applied to the Atari game Montezuma’s Revenge (MR). An
unsupervised object detection algorithm was utilised to identify candidate ob-
jects from the screen. The meta-controller then learned to formulate goals as
moving the agent to candidate objects or positions, for example, moving to a key
or a door. This approach outperformed DQN which cannot make any significant
progress in MR after millions of training steps.

AMDPs have been employed to increase learning performance in Deep RL in
Deep Abstract Q-Networks (DAQN)[57]. Here, two levels of agent are used, sim-
ilar to HDQN. The difference between DAQN and HDQN is chiefly that DAQN
has its varying levels of agents operate over different state-spaces. HDQN uses
the same state-space for both levels of agent. In DAQN;, the abstract state-space
is sets of attributes defining the current low-level state-space at a high-level.
Abstract actions can then be considered as the intended changes in attributes.
The low-level agent is given rewards based on achieving goals set by the abstract
agent. The abstract agent receives rewards from the environment based on the
low-level agent’s actions. The abstract agent sets goals based on abstract actions
it selects, and has learnt to exist from previous experience. Another difference
between HDQN and DAQN is that in DAQN, the abstract level uses a tabular
representation, and the lower level uses a neural network. DAQN was tested
on a toy version of MR. This toy version reduced the continuous pixel repre-
sentation into a gridworld-esque environment. An abstract state function was
supplied to the agent, outlining locations of doors and items. DAQN outper-
formed Double DQN and HDQN on this environment, however performs worse
on the real MR domain. The authors of DAQN [57] contend that this is because
in the real MR environment, there are timing based elements that the abstract
level cannot handle well. Although it is also possible that the tabular-AMDP
representation is hindering learning as well, and that a more powerful abstract
representation could improve upon this.

Both of the above approaches suffer from needing information about the envi-
ronment provided a-priori, either in the form of a pre-trained object detector as
in HDQN, or as abstract states being predefined and identifying areas of inter-
est as in DAQN. Both of these options are expensive, either in terms of human
effort, or computational time.

o1

2.8. Deep Learning

2.8.4 Option Heads

The concept of Option heads [5] is a method that has tried to utilise Options
within Deep RL. The idea here is to use a Neural Network for a few layers to
identify features, after these features are identified the network branches into
smaller layers which are kept separated. These branched layers are referred to
as “Option heads” and intuitively represent different Options for the network
to learn and use. During training, an Oracle is used to select which option
head to evaluate and train based on the current time. Each Option head has
its own memory replay buffer and learns in the same manner as vanilla DQN.
During evaluation, a separate supervisory network selects which option heads to
evaluate. This is trained to select option heads separately. It is not clear how to
justify the existence of an oracle for training, nor why the supervisory network
is not trained concurrently with the option heads. The option heads paper [5]
seems to be trying to show that the initial layers of the neural network can learn
common features that are useful to different Options, (Especially when these
initial layers are convolutional) reminiscent of transfer learning. While their
results confirm that for their simple testing domain this is true, the paper does
not expound on how such a network could realistically be trained without the
use of an Oracle.

As an interesting note, [53] tries a similar sharing of convolution layers for the
more challenging domain of Atari games and finds that the agent learns to
become more proficient in certain games at the expense of others. Vanilla DQN
outperforms their convolution sharing variant.

2.8.5 Hierarchical Actor-Critic

Another approach to employing abstraction within deep RL is that of Hierar-
chical Actor-Critic (HAC) [40]. learns a hierarchy of policies of varying levels of
abstraction simultaneously. The abstractions are constructed temporally rather
than spatially. All of the hierarchical levels share the same state-space. Each
hierarchical level proposes a “goal” in the form of a state for the lower level to
reach. These goal propositions are the actions of the above-ground-level agents.
The ground-agent uses the primitive actions of the environment.

This algorithm is heavily influenced by Hindsight Experience Replays (HER)[3],
HER is an extension of standard experience replays where goals are added to
the learning agent’s experience replay as well as states, actions and rewards.
The goals added are both the actual goal, which may or may not have been
achieved, as well as the actual state reached reformulated as an “achieved” goal.

HAC aims to reformulate HER into a hierarchical setting. Within the HAC
approach, each level operates by attempting to achieve its goal in a set number

92

2.8. Deep Learning

of actions (or sub-goal propositions). After this set number of actions, a SARSA-
like tuple is added to the experience replay. These so called “hindsight action
transitions” are novel in the fact that the “action” is replaced with the state
that was actually reached. In essence this is using “hindsight” to change the
“intention” of the action.

Additional transitions called “hindsight goal transitions” are also added to the
experience replay. This time, two transitions are added. The first is the original
transition that actually occurred. The second is where the proposed goal is
changed to reflect the final state that was actually reached by the agent. The
intuition behind this is that, even though the goal wasn’t achieved, the agent
has learned a viable path to the state that was reached, and that this might be
useful later on.

These two transition types added to the experience replay work in tandem to
reduce the sparsity of the environment reward. They make up the core of the
method, and other aspects of the method exist only to ensure that proposed
goals are sensible and that sufficient exploration occurs on each level without
damaging the levels above.

The HAC method was evaluated on a grid-world domain, as well as more chal-
lenging physics-based simulation environments. They demonstrated that their
approach outperformed relevant baselines, as well as showing that a 3-level ver-
sion of HAC outperforms a 2-level version.

One detail about HAC that is worth criticising is that it is not clear how to
test whether sub-goals or goals were achieved. Since the goals are states, there
is clearly some distance measure to the goal that needs to be evaluated (in the
case of continuous environments). However, useful distance measures are hard
to construct in very high-dimensional space. In the Appendix of the HAC paper
it is said that “Goal and sub-goal achievement thresholds were hand-crafted.”.
It is hard to evaluate from this the extent to which domain knowledge was used
to hand-craft such thresholds and the extent to which these thresholds transfer
over to other environments.

2.8.6 Overview

Each of these approaches utilises abstraction in some form for deep learning.
The different methods share similarities in the “spirit” of what they are trying to
achieve. They differ in either the dimension they abstract (space or time) or by
the external information they require. None of the approaches are “end-to-end”
and require some form of expert knowledge to properly operate.

93

2.9. Concluding Remarks

2.9 Concluding Remarks

This past chapter has been a rather whirlwind overview of the current state of
RL — particularly in its relation to abstraction. There are a great many other
aspects to RL that have not been covered, the field is so vast and moving at
such a relentless pace now that it is impossible to cover it all.

Focusing on what we have seen, however, shows a plethora of methods for util-
ising and generating abstractions, whether that be through Options or AMDPs
or any of the myriad of other approaches.

Abstractions in general imbue the agent with a sense of the “bigger picture”. The
abstraction allows planning and feedback with regards to this “bigger picture”
which helps the agent consider its actions and experiences in a broader context.
It is no surprise that utilising these abstractions can help the agent learn faster.

It is the generation of these abstractions that are most interesting and have the
most potential for improvement. We saw that even simple methods, such as
generating abstractions from bottlenecks in state transitions, have been used
effectively to increase learning performance.

Whilst a vast amount of research has been done into this area, there are still
many directions in which further work into abstraction generation can be done.
It is this direction that my work has ventured.

The following chapters delve into this topic further. Chapter 3 shows that
AMDPs based on uniformly partitioned state-spaces can improve learning per-
formance for a flag collection domain so long as the available abstract transitions
are known a priori. Chapter 4 builds on this approach, removing the assumption
of existing abstract transition knowledge. This chapter also elevates the tech-
nique to handle environments with small continuous state-spaces utilising neural
networks. Chapter 5 removes the discretization in abstract states and allows for
continuous state abstraction. This chapter also begins to utilise convolutional
layers and auto-encoders in order to handle higher dimensional data.

o4

Chapter 3

Empirical Analysis of the
Feasibility of Uniform State
Abstraction For Reward Shaping

In this chapter we take a first look at a simple method for utilising reward
shaping based on uniform state-space partitions irrespective of the dynamics of
structure of the underlying domain. We construct an AMDP from these state-
space partitions and formulate a reward shaping function from this AMDP.
Many such AMDPs are constructed from uniform partitionings of varying gran-
ularities. We utilise variations of a basic navigation domain to evaluate our
shaping functions and compare them to shaping functions devised by a domain
expert. The aim here is not to produce a generalised algorithm for generating
shaping functions but instead to focus on the feasibility of successfully using
shaping functions constructed from AMDPs consisting of uniformly abstracted
states.

We see broadly positive results from this method, performing comparably to or
better than agents shaped by functions derived from hand-crafted AMDPs. We
go on to note some potential issues that may arise when constructing AMDPs
from uniformly partitioned state-spaces, but we also see that these issues do not
manifest in practice. The overall method outlined in this chapter also serves as
an introduction to the method in Chapter 4, which builds and expands on the
approach here.

99

3.1. Flag Collection Domains

3.1 Flag Collection Domains

The class of domains which we utilise for this feasibility study are that of Flag
Collection domains. A Flag Collection domain is an augmentation of the navi-
gational Gridworld environment. The agent is tasked with traversing a discrete
grid of cells, locating and picking up flags and taking them to the goal. The
states of the environment are the grid cells, as well as which flags have been
picked up so far. The agent can move in the four cardinal directions one cell
at a time. In this environment the agent is given a reward of —1 after almost
every transition. The exceptions to this are when it reaches the goal, at which
point the agent receives a reward proportional to the number of flags collected
(1000 for each flag collected). The agent also receives a smaller reward of 100
when it picks up a flag. The agent’s task is made more difficult by impassable
walls, spread throughout the domain. Further, the domain does not “roll”, the
agent cannot move out of the area and reappear on the other side. Episodes
within the flag domain only terminate when the agent reaches the goal state.

Flag collection domains were chosen for their low difficulty and the ease of creat-
ing AMDPs due to the intuitive “natural” abstraction structure the state-space
allows. Further, the simplicity of the transition dynamics of the environment
makes analysis of the agent’s decisions and policies easier. These domains are
small and simple enough that they can be solved easily with tabular RL meth-
ods. The focus then can be on evaluating the effects of introducing reward shap-
ing via AMDPs with uniform states and comparing those to agents employing
shaping functions from hand-labelled AMDPs as well as unshaped agents.

Six variations on the flag collection domains were used, each trying to high-
light a property the domain may possess. Table 3.1 summarises the individual
variations. A visual depiction of each domain is further given in Figure 3.1.

3.2 Constructing the AMDP

Recall that an AMDP shares the same form as an MDP, that is, we must
construct an AMDP A = (S4, Aa, R4, Pa), along with abstraction functions
Z mapping elements from the original MDP M to A. We will visit each of
these elements in turn and show how we construct them. Many of these are
constructed by hand utilising domain knowledge for the Flag Collection task.
This is fine, however, since we only want to show that reward shaping func-
tions based on the uniform partitions of the state-space can be beneficial to the
learning process.

The state-space S 4 is constructed using a uniform state-space partition. With
discrete state-spaces there are two options for how this can be done. Either the

96

3.2. Constructing the AMDP

Name

Description

Standard (see Figure 3.1a)

This is the basic environment for the Flag Collection domain.
This has been used to test many RL algorithms previously and
serves as a standard benchmark [16][18].

Big

The ‘Big’ variation is the same as the basic one, except every
cell in the basic environment becomes a set of 3x3 cells. This
increase in size will test the scalability of the method.

Open

This variation is mostly open space with a few obstacles to tra-
verse around. This variation was selected to see how the agent
handles a lot of wide open space and many action choices avail-
able.

Strips

The ‘Strips’ variation is composed of rooms of long, thin strips.
These were chosen to directly contradict the assumptions made
by the upcoming method that abstractions are uniformly square.
This was done in order to see if the agent is able to adapt to
environments that are very different from their abstract repre-
sentation.

High Connectivity

The ‘High Connectivity’ environment is full of rooms that are
very interconnected. This fits with the abstract agents assump-
tion that it can always transition from one room to the next.

Low Connectivity

The ‘Low Connectivity’ variation uses the same room layout as
the ‘High Connectivity’ variation, except now the agent cannot
transition between most rooms. More walls are present to block
off its movement. Both the high and low connectivity versions
were selected in order to compare how the agent copes when
transitions the abstract agent uses for shaping do not exist.

Table 3.1: Descriptions of the variations on the Flag Collection domain that

were selected.

o7

3.2. Constructing the AMDP

HH

TTrT
TIrT
F F
7 f

T

(a) Standard Flag Collection domain b) Big Flag Collection domain
E] 4H> i
(c) Open Space Flag Collection domain (d) Long Strips Flag Collection domain

(e) High Connectivity Flag Collection domain (f) Low Connectivity Flag Collection domain

Figure 3.1: Graphic representation of each variation on the Flag Collecting
domain. The agent begins at the red cell marked ‘S’ and must traverse to the
green cell marked ‘G’, whilst moving through yellow flag cells marked ‘F”.

58

3.2. Constructing the AMDP

Figure 3.2: Visualisation of the partitioning of the states-pace into abstract
states of size 7 x 7 for the basic Flag Collection domain

state-space can be split into a given number of abstract states of roughly equal
size (accounting for dimensions where the number of states is not divisible by
the desired number of abstract states) or abstract states of uniform size can be
tiled along the state-space until there is no further room for tiles, if there is any
space left over (due to, again, the divisibility of the state-space size and number
of abstract states) then we fill in the remaining space as one abstract state.
Neither of these approaches are perfect. Here we went with the latter when
necessary to try and keep most of the abstract states as uniform as possible.

We give a visualisation of the abstract state partition for our basic flag collection
domain in Figure 3.2. This figure uses abstract states of size 7 x 7. That is,
each abstract state consists of 7 ground states in each direction until there is
no further space. In continuous settings this issue does not appear as the state
dimensions can always be partitioned equally due to each state dimension being
continuously divisible.

The state abstraction function Z : Syy — S 4 is then simply a map from ground
states to the abstract state in which they lie. This is easy to compute —
particularly for this domain, we simply need to store the ground-state values for
the bounding box of each abstract state and can compare against the desired

99

3.2. Constructing the AMDP

ground-state. This operation will take time proportional to O(]S4|) and will
require memory proportional to O(|S4|). Equally, if space is more abundant
than time, each state could also be assigned its abstract state as a label, requiring
O(1) time and O(|Sa|) space instead.

We desire that abstract actions correspond to a change in abstract states. There-
fore a pass is performed over the state-space, checking which abstract states are
adjacent and are not obstructed by walls. A4 is then created as a function
mapping an abstract state to a set of adjacent abstract states that are not ob-
structed. The transition function P4 is built very simply. It is a deterministic
map from state-action-state tuples (s, a,s’) denoting 1 if the abstract states s
and s’ are adjacent and a is the same action that achieves this (with this action
usually being denoted as s’ also). That is:

Pu.a,) = {1,if (s, 5’)‘ adjacent and a = &
0, otherwise

The abstract action space and abstract transition function are intertwined here.
Despite being found in an “automatic” manner, this is only possible due to
the simplistic nature of the environment. Domain knowledge was exploited —
knowledge that the ground agent can only move in cardinal directions one cell at
a time. This lets us easily find adjacent states in the ground transition function.
From there, identifying adjacent abstract states is easy. However, it is important
to note that this is not the case for vast numbers of environments, particularly
when state dimensions do not correspond to physical space. Therefore, we
treat the abstract action space and abstract transition function here as domain
knowledge. In later chapters we work to remove this domain knowledge from
our approach.

Finally, the abstract reward function R4 is fairly sparse, it gives the agent a
reward upon entering the abstract state containing the terminal state of 1000 x
No. of Flags collected and a smaller reward of 100 for entering the same abstract
state as a flag. In all other cases the abstract reward given is 0. Again, we must
note that the abstract reward function comprises domain knowledge. We must
know a priori which abstract states contain flags or the terminal state.

Combining these yields the desired AMDP A = (S4, A, Ra, P4) as well as
state abstraction function Zg (which once we have constructed the AMDP is
the only part of Z we really need). This is a fully-fledged AMDP that can be
treated as if it were an MDP — in fact it is. This AMDP represents an abstract
instantiation of the original environment. Much of the complexity has been
removed while retaining the core elements of the task.

As a fleshed out example, let’s consider the AMDP that would be created for
the MDP in Figure 3.1a using the state-space partitioning from Figure 3.2. In
the original MDP, the state-space consists of a tuple (x,y, a, b, ¢), where x and
y corresponds to the agent’s position on the grid and a,b and ¢ are Boolean

60

3.3. Utilising the AMDP

variables denoting whether the associated flag has been collected. There is
additionally a special abstract goal state to denote the agent has completed the
task. The partition defines the state-space abstraction function Zg which splits
the MDP across each dimension, giving an abstract state set S, = us for each
coloured region in Figure 3.2. Abstract states therefore take a similar form to
that of the MDP (z,y, a, b, ¢), where & and y now correspond to the enumerated
position of the abstract state and @, b and ¢ correspond to the flags in the same
manner as before. The abstract action function A 4 maps abstract states to their
actions moving the agent to adjacent abstract states. There is also an abstract
action to collect any available flags as well as enter the goal state (available if
the agent is in the correct abstract state). The transition function P4 enables
the movement deterministically, as well as allowing the pick up of flags. For
instance, if the abstract agent is in abstract state (,%,a,b,¢) and picks up
the flag corresponding to b, the agent moves into abstract state (z,7,a,1,¢).
Finally the abstract reward function is 0 except when a flag is collected (giving
100 reward) or when the agent completes the task (giving 1000x the number of
flags collected).

To construct this AMDP we utilised a lot of domain knowledge. In some form
or another, knowledge of the environment was used to create each component of
the AMDP except for the abstract state space S4 (where even then, knowledge
of how many partitions to divide S into has been used). However this is not an
issue for now, the focus of this chapter is to show that AMDPs constructed from
uniform partitions can be beneficial to learning and comparable to hand-crafted
abstract state-spaces. In future chapters as much of this domain knowledge will
be removed as is feasible.

3.3 Utilising the AMDP

Value iteration can be used to solve the constructed AMDP. This produces a
mapping V from abstract states to values, representing the expected abstract
return received by an abstract agent selecting abstract actions greedily based
on value.

Utilising potential-based reward shaping (PBRS), after each ground transi-
tion s — s’, we check for a change in abstract states. After each such ab-
stract transition we then give the agent an additional reward of F(s,a,s’) =
w(YV(Zs(s)) = V(Zs(s"))) for a scaling constant w.

This is identical to the AMDP-based reward shaping we saw in Section 2.6.1.
As with previous work utilising PBRS, we hope that the additional rewards will
shape the agent’s behaviour to yield more potent policies more quickly.

61

3.4. Results

3.4 Results

We now look at the results of applying the proposed PBRS method based on
uniformly partitioned AMDPs on the variations of the Flag Collection domain
as described in Section 3.1. The reward graphs are presented in Figure 3.3.
Each variation of the Flag Collection environment was completed by the agent
ten times. The results shown are the mean values of each attempt. Each
agent is using the standard Q()) algorithm as its underlying learning algorithm.
The agents utilising reward shaping are Q(\) simply augmented to receive the
additional reward calculated by PBRS. The uniform tiling was performed using
tiles of varying sizes depending on the variation size — but typically using tiles
from size 3 x 3 up to 10 x 10. The agent also completed each variation using a
‘True’ hand-labelled abstraction which was labelled by the author based on the
bottlenecks between rooms, as well as comparing against an agent that uses no
reward shaping — just the standard Q()) algorithm.

Each algorithm and environment used the same parameters, with the exception
of the number of episodes the environment was run for (but this was still kept
constant for each agent type) — this was tuned for each environment to show
the differences in convergence times easier to visualise. The parameters used
were a = 0.1, A = 0.9, v = 0.99, w = 20, and ¢ = 0.5 initially and linearly
decaying to 0.05. These parameters were all found empirically to give strong
results over a wide range of environment variations and abstractions.

In Figure 3.3 there is a clear trend showing that many of the uniform tilings actu-
ally can compete with hand-labelled examples over a range of domain variations,
and sometimes even converge more quickly. This is actually quite intuitive, as
using smaller tilings over a state-space will typically yield more transitions be-
tween abstract states. This means that there are more states in which reward
shaping is fully utilised, as ¢(s) = ¢(s') if both s, s’ € t for abstract state t. The
extrinsic reward is then equal to v¢(s') — @¢(s) = (v — 1)¢p(s). In the case of the
these experiments, the extrinsic reward then becomes —0.01 x ¢(s). The point
here is that having more state transitions with a high extrinsic reward will give
the agent more guidance. Therefore, even though the hand-labelled abstrac-
tions have “better” domain knowledge, the uniformly shaped abstractions can
perform better in some cases.

Whilst using smaller tilings may improve the number of episodes required to
converge to a near-optimal policy, solving the AMDP created becomes harder
the more abstract states it has. In Figure 3.4 the time taken to solve each
abstraction and simulate 10000 episodes is shown — that is, the total time
a single run of the experiment took to perform. This figure shows the vast
increase in time required for smaller tilings. Many of the smaller tilings take
much longer than the hand labelled abstraction. However, the 5 x 5 tiling
actually takes a time that is not egregiously dissimilar to that taken by the hand

62

No. Of Flags Collected

No. Of Flags Collected

No. Of Flags Collected

3.0

2.5

g
o

-
«

-
=)

0.5

0.0

3.0

25

g
o

=
w

=
o

0.5

0.0

3.0

25

g
o

-
o

-
=3

0.5

0.0

3.4. Results

True

3x3 Tiling
4x4 Tiling
5x5 Tiling
7x7 Tiling
9x9 Tiling
10x10 Tiling
No Shaping

ARRRNERR

2000 4000 6000 8000
Episode No.

10000

(a) Basic Smoothed

—— True
—— 9x9 Tiling
—— 12x12 Tiling
—— 15x15 Tiling
—— 21x21 Tiling
—— 27x27 Tiling
——— 32x24 Tiling
—— No Shaping

20000 30000 40000

Episode No.

10000 50000

(c) Big Smoothed

True

3x3 Tiling
4x4 Tiling
5x5 Tiling
7x7 Tiling
9x9 Tiling
10x10 Tiling
No Shaping

20 40 60
Episode No.

@

0 100

(e) Open Space Smoothed

1.50

1.25

1.00

2.0

1.8

1.6

1.4

1.2

1.0

0.8

15

1.0

0.5

0.0

0 2000 4000 6000 8000 10000

(b) Basic Unsmoothed

0 10000 20000 30000 40000 50000

(d) Big Unsmoothed Results

(f) Open Space Unsmoothed

Figure 3.3: Reward graphs for each Flag Collection variation using different
sized abstractions. Results shown on the left side are smoothed with a moving
average of reward of the previous NumberO f Episodes/10 episodes, with shaded
regions denoting a confidence interval of 95%. On the right are the unsmoothed

results.

3.4. Results

3.0

3.0
25
25
o
220
3 2.0
<
o
515
E —— True 1.5
5 —— 3x3 Tiling
g10 — 4xaTiing
/— 55 Tiling 10
—— 7x7 Tiling
0.5 —— 9x9 Tiling
~——— 10x10 Tiling
—— No Shaping 05
0.0 . v : v r r - - ,
0 200 400 600 800 1000 0 200 400 600 800
Episode No.
(g) Long Strips Smoothed (h) Long Strips Unsmoothed
3.0 1
3.0
25
25
22
z 0 20
s
o
815 15
rEB — True
s} —— 3x3Tiling
g 10 —— 4x4 Tiling 1.0
—— 5x5 Tiling
—— 7x7 Tiling 05
0.5 —— 9x9 Tiling !
h ~——— 10x10 Tiling
—— No Shaping 0.0
0.0 - " r . . " . y :
0 20 40 60 80 100 0 20 40 60 80
Episode No.
(i) High Connectivity Smoothed (j) High Connectivity Unsmoothed
3.0 25
25 20
o
220
o 15
3
o
815
E — True 1.0
5 ~—— 3x3Tiling 1
g 10 —— 4x4Tiling |
—— 5x5 Tiling
—— 7x7 Tiling 0.5
0.5 —— 9x9 Tiling
~—— 10x10 Tiling
—— No Shaping 0.0 dlusboboallismony 1w P 1
0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
Episode No.
(k) Low Connectivity Smoothed (1) Low Connectivity Unsmoothed

Figure 3.3: Reward graphs for each Flag Collection variation using different
sized abstractions. Results shown on the left side are smoothed with a moving
average of reward of the previous NumberO f Episodes/10 episodes, with shaded
regions denoting a confidence interval of 95%. On the right are the unsmoothed
results. 64

3.4. Results

468.0

400 A

300 A

200 A

Time Taken In Seconds

100 4

True 3x3 4x4 5x5 7x7 9x9 10x8 None
Abstraction Used

Figure 3.4: Time taken to solve each abstraction and simulate 10,000 episodes
for the basic Flag Collection domain

65

3.5. Issues with this Approach

labelled abstraction. The 5x 5 tiling and hand labelled abstraction both perform
similarly. This is a very positive result due to the difference in knowledge given
to each agent and abstraction. The larger tilings take much less time, and
although they perform worse than the hand labelled abstraction, they do not
perform particularly badly. In fact, every tiling outperformed the standard Q(\)
algorithm.

Throughout the rest of the results in Figure 3.3, this trend continues. It is worth
noting that many of these variations of the flag collection problem required
markedly fewer episodes in order for most of the abstractions to converge upon
the optimal policy. A lot of the uniform abstractions converge more quickly
than the hand-labelled abstraction.

The agent in the “Big” variation of the environment (Figure 3.3¢) appears to
get stuck in a local optimum and the agent’s policy doesn’t converge on a final
flag. This is likely to do with the initial parameters, the size of the domain
and also the accuracy required to achieve reward. The abstract states are also
much larger in comparison to individual states — meaning that navigating to
an abstract state is not as useful. It is worth noting that this largeness also
applies to the hand-crafted abstraction.

Overall these results are broadly positive. They indicate that an easily created
uniform partition of the appropriate size can compete with a hand-crafted ab-
stract state-space when used for AMDP-based reward shaping. Even in the cases
when they perform noticeably worse than a hand-crafted abstract state-space,
shaping from any uniformly partitioned state-space is better than no shaping
at all.

3.5 Issues with this Approach

Whilst this approach displays the efficacy an AMDP based on a uniformly parti-
tioned state-space can have when utilised for reward shaping, there are a number
of issues with this approach. We now address the most pressing concerns.

3.5.1 Domain Knowledge

The most glaring issue is that we provided a lot of domain knowledge about the
class of environments. This domain knowledge includes the transition function,
reward function, notions of the abstract actions, as well as the abstract state in
which the flags reside. None of these constitute “trivial” domain knowledge, nor
can they easily be applied to a vast number of other domains. For example, in
a lot of domains — particularly those not based around physical, discrete nav-

66

3.5. Issues with this Approach

igation — the adjacency of two states does not necessarily mean an agent can
transition between the two. This applies equally to abstract states. Our encod-
ing of the transition function utilised our knowledge that for this particular class
of environments adjacency through a door is enough to ensure transitionabil-
ity. The AMDP’s reward function implicitly encodes the approximate location
of the flag, giving the abstract state in which it lies. This too is considerable
domain knowledge, as the vanilla agent that we are comparing against does not
have this knowledge.

This large amount of domain knowledge required is the primary reason that
we cannot really claim that the current implementation of our method is actu-
ally improving on the performance of a vanilla Q()) agent. However, what we
can show, is that in many cases our agents performed comparably to a hand-
labelled partitioning of the environment which was given the same knowledge.
Even though the intrinsic abstract state structure of the domain has been lost,
applying the same knowledge can give comparable or better results. If this
utilised knowledge can be learnt or acquired through interaction with the envi-
ronment, then we could potentially expect a tangible improvement to the vanilla
agent. The crux of the matter is that we want as little external knowledge to
be utilised as possible.

3.5.2 Intuitive Objections

Due to the uncertain nature of the walls within the environment and a uniform
size of abstract state, it is expected that at some point in the partitioning, an
abstract state will straddle one or more walls. By this, we mean that a wall will
divide an abstract state and make it impossible to manoeuvre from one part of
the abstract state to another. This has the potential to cause an issue. If we
consider Figure 3.5, we can see that from the AMDP’s perspective, the optimal
path is from abstract state A to B to C. This route, of course, is not viable,
since B is divided by an impassable wall. The agent has to retrieve the flag from
B, then return to A and take the longer route round to C. The issue causing this
to arise is that abstract state adjacency is not, in some sense, transitive. There
are possible transitions from A to B and from B to C, but it is impossible to
move from A to C' via B. The uniformity of the state-space partitioning did not
take into account the ground-level dynamics of the abstract states it created.
A hand-labelled abstract state-space, on the other hand, would likely not have
done this.

More complex versions of this scenario played out in our experiments with many
abstract states straddling walls in this manner. This never appeared to be an
issue — the AMDP is not in control of the agent and can only reward or pe-
nalise the agent for abstract transitions. If the agent does move from A to B,
it is indeed rewarded and picks up the flag, however the AMDP can only en-

67

3.6. Conclusion

courage the agent to move from B to C' if the agent actually does it. Since this
is impossible from this side of B, the agent cannot be rewarded for this. The
AMDP can penalise the agent for moving back to A — since the AMDP views
this as a step backward in the path to the goal. However, since this is really the
only option for the agent other than staying in B forever, the agent eventually
overcomes its desire to avoid A. As the episodes progress, the larger overall
reward of returning through A and eventually moving to the goal propagates
backwards to overcome this aversion to moving back through A entirely. This
scenario may cause some slowdown in the learning process compared to if this
problem was not present. However, in all of the performed experiments, any
potential slowdown caused by this issue was outweighed by the overall benefits
of reward shaping and were still comparable to hand-labelled abstract states
where this scenario does not occur. Further, this scenario highlights the at-
tractive property of policy invariance that PBRS provides. Even though the
shaping function discourages what could be an optimal solution, the ground
agent will not be prevented from achieving this solution — it might just take
longer (however for our agent here it does not).

3.5.3 Time Taken To Solve the AMDP

Comparing our uniform partitions of the state-space to the hand-labelled ab-
stract states comes with the caveat that as the abstract state-space resolution
increases, so too does the time taken to solve the AMDP. Again, we can look at
Figure 3.4 to see an example of the increase in time taken to solve and utilise
the higher resolution AMDPs. This increase in time would also happen for a
higher resolution hand-labelled abstract state-space, but generally the labeller
can be more efficient with space (not requiring uniform partitions) and can make
better use of the domain’s natural structure. However we must also remember
the cost of hand-labelling such an AMDP’s state-space in the first place. For
the easy example of our Flag Collection tasks, envisioning the abstract state
spaces as “rooms” was relatively simple, but still took time to actually encode
into the environment — more time than was taken by Value Iteration to solve
the highest resolution uniformly partitioned AMDP.

Overall, for many of the environment variations, one of the middling sized ab-
stract state space resolutions performed as well as the hand-labelled state-space
and took a comparable time to solve.

3.6 Conclusion

The goal of this feasibility study has been to discover how effectively AMDPs
with abstract states formed by uniform partitions of the original state-space

68

3.6. Conclusion

Figure 3.5: Possible scenario in which the reward shaping may slow down the
learning process due to the AMDP’s granularity.

69

3.6. Conclusion

can be used for potential-based reward shaping. We are especially interested
in comparing the efficacy of these AMDPs to AMDPs utilising hand-crafted
abstract state-spaces. We saw that, in general, the results for the uniformly
partitioned AMDPs were comparable to the AMDPs with hand-crafted state-
spaces — in some cases even outperforming them. This is significant as the cost
of experts encoding domain knowledge into useful AMDPs is often prohibitive;
removing this cost with a simple, intuitive approach that gives much of the same
benefits could make AMDP-based reward shaping more applicable to a wider
variety of domains. This came with the caveat that the very high resolution uni-
formly partitioned AMDPs can take much longer to solve with Value Iteration
— but this is balanced by the time taken to encode the expert’s abstract states,
and in many cases, solving the uniformly partitioned AMDP is still less costly.
The method outlined in this chapter would nevertheless be largely suitable for
low-dimensional environments in which the dynamics are relatively simple and
based on already understood heuristics — such as the requirement to move to
directly adjacent states through physical space. Additionally, some notion of
the location of the abstract rewards or goal should be understood beforehand to
craft the AMDP. Despite these requirements, there are many types of scenarios
in which they are met — for instance guiding a robot towards a tag emitting
some sort of signal that the robot has access to. In the coming chapters we
wish to expand the range of domains in which this approach can be applied by
removing these requirements.

Now that we have seen the surprising efficacy and potential of uniform abstract
state-space AMDPs, we wish to remove the onerous domain knowledge that
we utilised to create the rest of the AMDP. Moving forwards, we will look at
exploration methods for gleaning much of this knowledge from pure interaction
with the environment. Expanding the approach to incorporate this in order to
remove this domain knowledge reliance is the focus of the next chapter.

70

Chapter 4

Uniform State Abstraction For
Reinforcement Learning

This chapter introduces an extension to the previously detailed MultiGrid Re-
inforcement Learning (MRL) [29]. The new method — which we will often refer
to as Uniform Partition State Abstraction (UPSA) — is an improvement to
MRL within the Deep Learning scenario. We show this empirically over three
domains with continuous state-spaces. This extension is also an improvement
over the Uniformly Partitioned State-spaces of the previous chapter and requires
less domain knowledge to construct the required AMDP.

The exact differences between the two lie in when and how the abstraction
is created and solved. UPSA explicitly models the abstraction and solving the
abstract problem as soon as possible to produce a static reward shaping function.
MRL on the other hand only implicitly models the abstraction process and is
continually changing the shaping function.

Further, throughout this chapter we examine both methods in detail and in
Section 4.4.1 elucidate the differences between UPSA and MRL, pointing out
justifications for why UPSA is a more desirable approach for Deep Learning
specifically.

4.1 Uniform Partition State Abstraction

Utilising UPSA for reward shaping proceeds broadly in the following steps.
Initially, a set of abstract states is constructed simply by uniformly partitioning
the state-space. Secondly, an abstract model of the domain is built up as an

71

4.2. Constructing the AMDP

AMDP by observing agent interaction with the environment as viewed through
an abstract lens. In this exploration stage, an exploration policy is followed in
order to maximise the diversity of states visited and actions performed. Once the
allotted time for exploration has elapsed, the AMDP is constructed according
to the interactions observed. Special attention is given to the abstract reward
function, which we discuss thoroughly in section 4.2.3. This AMDP is then
easily solved using Value Iteration; yielding abstract state values. Finally, the
agent can begin interacting with the environment with the intent to maximise
reward. A Potential-Based reward shaping function using a potential function
based on the values of abstract states is used to shape the reward and guide the
agent to more fruitious behaviour.

UPSA is intended as a conceptually simple, yet surprisingly effective augmen-
tation for existing RL algorithms such as DQN. In the proceeding sections, we
give a much more detailed breakdown of each step in the method, along with
justifications and empirical results.

4.2 Constructing the AMDP

We now give a detailed view of the construction process for the AMDP. Through-
out this section there are references to two levels of learning occurring. Firstly,
there is the agent updating its QQ-value estimates for state-action pairs in the
environment — we refer to this as ground learning. The other type of learning is
abstract learning, where the AMDP dynamics are learned and abstract values
are computed. This nomenclature is simply how we distinguish between the
different learning types.

While each of the coming sections is part of the sequential process of constructing
the AMDP, we often fully construct aspects of the AMDP early on in the process,
some of which are used to construct later parts. This will be detailed where it
occurs and how it relates to the abstraction process overall.

4.2.1 Partitioning the State-space

The first step of the method is to partition the state-space uniformly in each
dimension. The only hyper-parameter to consider is the number of partitions per
dimension. More partitions per dimension will allow a greater level of guidance
for the agent over that dimension. The downside to using more partitions is
an increased computational cost of solving the AMDP later on. For continuous
state dimensions that have no upper or lower bound on the values we must also
pick suitable upper and lower limits. Any encountered values outside of this
range are set to partitions capturing any such values.

72

4.2. Constructing the AMDP

This allows us to easily define a state abstraction function Zg which maps a
continuous ground state s to the partition in which it lies Zg(s). This function
is quick to compute for a given s. Since a different number of partitions can be
used for each dimension, this further allows more important state dimensions
to be partitioned more finely, granting a greater level of guidance to the agent
without increasing the granularity in less important dimensions.

Visually this partitioning process is illustrated in Figure 4.1. This figure has
been adapted from a similar figure in [17] but modified to map ground states
to abstract states rather than an element of a STRIPS [21] plan. This figure
shows the intuition behind identifying abstract states and abstract transitions
for continuous ground state-spaces and discrete abstract state-spaces.

The notion of identifying abstract transitions in this manner is useful and we will
refer to this as viewing the ground transition through an “abstract lens”. This
view through an abstract lens allows us to construct the transition function —
and thus the AMDP as a whole — without any knowledge of abstract transitions
a priori.

Sometimes we may want to utilise the ground values represented by abstract
states — particularly when finding criteria for abstract goals. To do this, we
refer to an abstract state Zg(s) as having the values of ground state s* where
s* is the central ground state of Zg(s).

At the end of this section, we have both our set of abstract states and the
corresponding abstraction function. The set of abstract states, while almost
trivial to produce is actually a key element in constructing the rest of the AMDP.
The abstraction function acts as a “lens”, allowing us to view agent interactions
from an abstract perspective — without this, the abstract dynamics could not
be constructed and abstract values could not be assigned.

4.2.2 Exploration

Since there is no prior knowledge of the dynamics of the environment the agent
interacts with, the AMDP cannot be fully constructed until the agent has ex-
plored the environment sufficiently (i.e., we need to estimate a Zp and Zg).
To do this, we allow the agent to follow an exploration policy, observing and
recording the abstract transitions that are taking place.

In order to allow shaping to begin sooner it is desirable to minimise the time
spent within the exploration phase. To achieve this, we do not perform any
ground learning during the exploration phase. We simply focus on building
up the AMDP by observing the ground agent’s transitions through an abstract
lens.

73

4.2. Constructing the AMDP

Abstract state-space

Ground state-space

Figure 4.1: Visualisation of mapping from ground-transitions to abstract-
transitions.

74

4.2. Constructing the AMDP

During the exploration phase, the agent will move between ground states and
consequently abstract states. For exploration we also utilise a different level of
states which we refer to as exploration states.

A dynamic exploration policy is given for the agent to follow. The exploration
policy simply has the agent pick the action that has been selected the least
when in its current abstract state in an e-greedy fashion. This encourages the
agent to explore previously unseen states earlier. For this exploration method,
it turned out to be advantageous to use so-called exploration states instead of
the AMDP states. By exploration states, all we mean are an even coarser uni-
form partitioning of the state-space (than the AMDP’s abstract states). These
exploration states are formed identically to how AMDP states were created —
they really are just a coarser partitioning. The reason for using these very
coarse exploration states with our exploration policy is to encourage the agent
to explore on a macro-scale. Despite using these exploration states, it is crucial
to remember that it is the AMDP state-transitions that are recorded, not the
exploration state-transitions. This allows us to build up a comprehensive model
the transitions available within the AMDP.

At the end of this section, we now have our approach for constructing the
abstract transition function — we add each of the observed abstract transitions
as available in the AMDP.

4.2.3 Abstract Reward

Whilst the transition function detailing the dynamics of the environment viewed
through abstract states can easily be approximated through observation, defin-
ing a useful reward function has a few more possibilities and challenges.

For an abstract transition s — &', one could opt to estimate the average ob-
served cumulative reward over that transition period. However this may not
be ideal for environments where there are many ways of achieving the abstract
transition, with large variances in the cumulative ground reward observed. As a
consequence, the abstraction is not able to distinguish between poor sequences
of ground actions and a potentially optimal sequence, if the poor sequences are
more frequent. This was also observed empirically, where using observed cumu-
lative reward values worked well for environments such as Mountain Car, but
performed poorly in environments where the ground reward can vary more, e.g.
Puddle World.

A simpler alternative that was found to work well empirically was to set the
abstract reward R4 to —1 for every transition. Combined with the set of ter-
minal abstract goal states, the value of an abstract state becomes the transition
distance between the current abstract state and a goal. Despite our abstract
states being the same size, this does not ensure that each abstract transition

7

4.2. Constructing the AMDP

takes the same number of ground transitions — particularly when some state-
spaces incorporate agent velocity. This means that in some cases, where the
agent moves through abstract states very slowly, that the AMDP will be re-
warding non-optimal behaviour. Empirically, this doesn’t seem to cause much
of an issue — the AMDP’s extra reward and guidance being helpful most of
the time is enough to improve performance. This supposed issue is exacerbated
in the Catcher environment (Section 4.6.3), where one of the state dimensions
is velocity — determining exactly how quickly the agent can move through the
position-dimension abstract state. Despite this, we still see notable improve-
ments to the convergence speed in Catcher.

4.2.4 Abstract Goals

UPSA requires that one or more abstract states are selected as goal states.
When the value function for the AMDP is being computed, the values of ab-
stract goal states are set to 0. This provides an endpoint for the step-penalty
reward function. This usually does not require much additional knowledge of
the domain — goals are often part of the task description or easy to describe.

Some environments require a single goal to be repeatedly achieved, for example
the Catcher domain in Section 4.6.3. Our method handles this with no required
alterations, repeatedly guiding the agent to the goal.

Our method can also be applied to environments which do not have conventional
“goals” or domains with an infinite horizon. In such cases, the abstract goal
can simply be set to “desirable” behaviour. This will then reward repeated
completion of the abstract goal more-so than other behaviour.

4.2.5 Putting it all together

Now we have all of the constituent parts of the AMDP and we simply need to put
it together. We have the set of abstract states S4 defined by the partitioning.
We also have the set of observed transitions. We create an abstract action set
Au(5) = {58 : § > § was observed}. That is, if abstract transition § — § was
observed, then we give abstract state 5 an action § representing the action that
causes such a transition. We also need the transition probability function — for
this we can use

1, If transition 5 — 5’ was observed

0, otherwise

Py(5,5) = {

We can construct the AMDP to be deterministic, this is justified by the fact that
we are only using the AMDP for reward shaping. If we are considering s — &

76

4.3. Utilising The AMDP

in the shaping stage, then even if the underlying environment is stochastic, we
need not worry about how that affects this transition since we only consider
transitions after they have occurred. We also include the constructed reward
function R 4. All of this together yields the AMDP (S, A, Ra, Pa).

The overall algorithm is given in Algorithm 5; here the resulting abstract tran-
sition function is deterministic as described above, and each abstract action is
rewarded with a step penalty.

Algorithm 5 AMDP Generation

procedure AMDP GENERATION(MDP M, Partition List D, Exploration
Policy 7g)

S = set of MDP states

Partition S uniformly into D; bins for dimension ¢

Denote these bins as elements of S4 = (X Zp,)

Create function Zg mapping state s to bin containing s

Initialise abstract transitions P4(S,a,5) := 0

Initialise abstract Rewards R4(S,a,) :=0

for each exploration episode do
s := Initial State
while episode not complete do
Select action a according to mg
Perform action a and observe s’,r
if ZS(S) #* Zs(sl) then
Pa(Zs(s), Zs(s'), Zs(s)) = 1
Ra(Zs(s), Zs(s), Zs(s') = —1
return (S, Aa, Ra, Pa)

4.3 Utilising The AMDP

Now that the appropriate AMDP is constructed, dynamic programming meth-
ods such as Value Iteration can be used to compute a value V(s) for each
abstract state 5. We now can use our value function to augment an existing RL
algorithm (We utilised DQN [46]) using potential-based reward shaping. When-
ever the agent changes abstract state from 5 € Sy to § € S4 we consider this
an abstract transition s — §'. If such an abstract transition happens from our
ground-level observations — that is, we observe s — s’, such that s € s, s’ € §
— the agent is given additional reward F(s,5) = w(yV(8") — V(8)) for suitable
scaling factor w.

Intuitively, this shaping rewards the agent for moving towards more promis-

7

4.4. MultiGrid Reinforcement Learning

ing abstract states (i.e., abstract states that have a higher potential). It is
worth noting that despite DQN itself having no convergence guarantees, utilis-
ing potential-based reward shaping with DQN in this manner will uphold the
sacrosanctity of policy invariance guarantees that PBRS provides; the proof
given in [51] still holds for deep learning agents.

The exploitation policy utilises an e-greedy approach where the € value is an-
nealed over the course of the total number of episodes (For details see the hyper-
parameter table 4.1). It is worth mentioning that this is an entirely different e
than is used in the exploration phase — both the exploration and exploitation
policies both employ an e-greedy action selection, but they do not share the
same e-variable.

It is possible that during the exploration phase some abstract state s is missed.
If 5 is then encountered in this exploitation phase, then the AMDP has no
appropriate value V(5). In this case, we return a value 0 and then resolve the
AMDP with value iteration. The time to resolve the AMDP is very short due
to the small size of the AMDP. In all of our test domains this did not occur
even once.

4.4 MultiGrid Reinforcement Learning

Before we look at the results yielded by our uniform state abstraction ap-
proach we should overview MultiGrid Reinforcement Learning (MRL) [29] —
the method our result extends and improves upon.

In MRL, the same partitioning method is used as UPSA. However, in MRL it
is used twice, once to discretize the continuous state-space and produce a set of
ground states and a second time to produce a set of abstract states the same
way that we do. It is worth mentioning that MRL was developed before the
onset of deep learning based RL methods that we see today — that is why the
ground states are produced by a discretization.

MRL proceeds like tabular Sarsa, updating Q-values using the appropriate up-
date rule. However, there is an additional reward function reward, (r) represent-
ing some form of external knowledge, usually representing as domain expert’s
hand-coded function encapsulating a goal or desired behaviour. This is used
to update a function V' using a Temporal Difference (TD) update. Finally, the
potential function for shaping is ¢(s) = V (s).

8

4.4. MultiGrid Reinforcement Learning

4.4.1 Differences

Disregarding properties that are simply a product of their time, such as ground
state representation and the use of on-policy Sarsa, the chief difference between
MRL and our approach is the explicit building of the model. MRL does not
construct an AMDP, it simply performs TD updates on its abstract states. This
difference has many consequences and is something of a double-edged sword.

The first result of this model-free approach to abstract learning is that MRL
can begin shaping immediately — whereas our approach requires an exploration
stage. However, at the beginning of training, shaping has the potential to hinder
learning since the abstract values are initialised randomly and have not had time
to converge on suitable values. On the other hand, once the exploration stage
is complete, our method can quickly solve the AMDP using Value Iteration and
provide a final static shaping function with very close to the exact values of the
abstract states given our model.

If we try to compare the performance of MRL and our UPSA (As we do in Sec-
tion 4.6), the first issue we encounter is how do we make the comparisons fair?
In the original MRL paper, it was evaluated on just the Mountain Car environ-
ment, using discretized ground states. Comparing that against our DQN-based
approach is unfair. DQN is able to generalise on a global level and each weight
update can improve the policy over many separate states. MRL, on the other
hand, uses Sarsa on a discretized ground state-space, and thus each update can
only improve the policy for a small, local region of the state-space. This ulti-
mately leads to DQN being able to converge on a near-optimal policy far faster
than MRL.

To address this issue, a slight alteration is made to MRL to allow easier compar-
ison. The ground state representation is replaced with a neural network. This
is likely what the authors would have elected to do if DQN had been feasible at
the time. Introducing this ground state representation, however, reveals a flaw
in utilising this model-free approach. As we see in the upcoming results, MRL
generally performs less well than UPSA, despite all else being the same. The
mixing of two model free methods of very different sample complexities prevents
shaping from being very useful. That is, DQN converges on a solution before the
TD-updates have had a chance to make V into a useful shaping function. Our
method does not suffer from this; in UPSA DQN does not even start learning
until the abstract values are finalised by the exploration stage. However, we
cannot simply opt not to use Deep Learning for the ground state representation
in MRL, the improvements in convergence time and speed in these domains are
too large to ignore.

79

4.5. Alternative Approaches

4.5 Alternative Approaches

The method proposed in this chapter (and the preceding chapter) share a simi-
larities with function-approximation-based approaches. Both types of approach
are, at their core, trying to reduce complex (and possibly continuous) state-
spaces into something smaller that captures the “essence” of the states and is
less costly to learn. Function approximation approaches such as Tile Coding
(which we saw in Section 2.3.2) and N-tuple Neural Networks [15] typically use
some method of feature extraction (for Tile Coding, it is the boolean mask of
which tiles the state lies in) and then learns directly on the extracted features.
For coarse feature extractions, however, this can lead to a loss of accuracy due
to inability to distinguish between states that map to the same features. The
proposed method from this chapter, UPSA, does not have the same disadvan-
tage, since the abstract state — the extracted feature, if you will — is used
to inform the learning process of an agent training on the ground state-space.
The use of abstraction in this way, doesn’t “blind” an agent to differences in
ground states belonging to the same abstract state. However, we must remember
that dealing with large or continuous state-space directly, such as the environ-
ments we will use to evaluate UPSA, is a relatively recent possibility due in
a large part to the advancement in processing power from recent years. Many
function-approximation approaches were developed due to these limitations and
comparing these against a modern implementation of a deep RL algorithm isn’t
a particularly fair comparison.

4.6 Experiments And Results

We now examine the results attained when we compare DQN, DQN augmented
with MRL and DQN augmented with UPSA. We evaluated these across three
domains: Mountain Car, Catcher and Puddle World. These domains are all
commonly used benchmark environments. Additionally, each domain has in-
tuitive state transition dynamics, enabling easy conception of what a “good”
abstraction may look like — it is important that our chosen environments do
not have optimal abstractions for AMDP-based PBRS that just happen to line
up with our proposed uniform partitions.

Figure 4.2 shows a visual depiction of each environment. We will now give a
brief overview of each environment.

80

4.6. Experiments And Results

ﬂ

(a) Mountain Car (b) Puddle World (¢) Catcher

Figure 4.2: The environments used to evaluate our method.

4.6.1 Mountain Car

In the Mountain Car environment, the agent is positioned somewhere inside a
valley and must reach the top of the right hand side. The state-space consists
of the x-position and velocity of the car. The agent has three actions, left,
neutral and right, indicating an amount of force to apply in the designated
direction. A reward of —1 is received after each action the agent makes. An
episode terminates upon reaching an x-position of 0.6 or after 200 steps have
elapsed. It is important to note that the car cannot reach the top of the hill
simply by moving to the right — the car needs to build up momentum first by
swinging back and forth. Any abstract state with a central x-position greater
than 0.5 was considered an abstract goal. The implementation of Mountain Car
used in our experiments was from OpenAT’s gym suite [11].

4.6.2 Continuous Puddle World

In the Continuous Puddle World environment the agent is situated on a two-
dimensional plane, ranging on values from (0,0) to (1,1). The agent begins in
the bottom left quadrant and must reach very close to (1,1). There are five
actions available to the agent: the agent may move in any cardinal directions
(by a randomly determined, but bounded amount), as well as standing still.
There are puddles occupying certain areas of the plane (shown in the depiction).
The agent receives a reward of —1 for each step, as well as additional negative
reward based on how deep into the puddle the agent is. Ideally we want the
agent to move to the top right corner receiving as large a reward as possible.
An episode terminates on reaching (close to) (1,1) or if 250 steps elapse. The
optimal strategy is therefore to move to the top right via the shortest route
while avoiding the puddles. Any abstract state with both an x and y value of
greater than 0.9 was considered an abstract goal. For our experiments we used
the Gym-Puddle implementation of Puddle World [19].

81

4.6. Experiments And Results

4.6.3 Catcher

In the catcher game, the agent embodies a one dimensional, horizontal line.
Small squares fall from above the agent, perpendicular to the agent’s axis of
movement. This agent has three actions, left, neutral and right which moves
the agent in the corresponding direction. The agent’s goal is to move itself to
intercept the falling square. The state-space consists of the agent’s x position
and velocity, as well as the square’s x and y position. For each square the agent
intercepts, it receives a reward of 1. For each square that it misses it receives
a reward of —1. After 3 misses in total, the episode ends. The episode also
terminates after 500 steps in order to prevent episodes becoming inordinately
long as the agent improves. This allows the collection of approximately 15 balls.
An abstract state is considered an abstract goal if the x positions of the paddle
and square are within ten pixels of each other and the velocity of the paddle is
less than three pixels per step. Our experiments utilised an implementation of
catcher from the PyGame Learning Environment suite of domains [71].

4.6.4 Experimental Detail

The hyper-parameters for each agent and environments are in table 4.1. The
shared hyper-parameters were chosen empirically in order to optimise the per-
formance of the baseline DQN agent. In order to achieve this, many variations
of hyper-parameters were tested manually to identify the highest performing
policy. The hyper-parameters that were only used by our method were chosen
empirically (In the same way as above) in order to maximise the performance
against time.The total number of states in each AMDP is given by the product
of the partition sizes for each state dimension. These sizes can be found in
Table 4.1 (Abs. Size). The total number of abstract states in each environment
was 2500. This ensured that each AMDP captured a sufficient level of detail of
the environment whilst keeping the optimal policy quick to solve (less than ten
seconds) with Value Iteration.

All of the approaches utilised the same network architecture. This is a simple
feed-forward network with fully connected layers. The architecture was also
the same across each environment, only different in the input size and output
size for the number of actions. A visual representation of the architecture is
given in Figure 4.3. The input to the network is a vector representation of the
environment’s state perceived by the agent — the exact size of this will depend
on the environment. Each available action has a corresponding output node
in the final layer, the output of an action a’s node on a given input state s
represents the learned value Q(s, a).

For MRL in each environment, the sum of the ground rewards received during
the transition between coarse aggregations was used to update the coarse value

82

4.6. Experiments And Results

Fully Connected Fully Connected Fully Connected Fully Connected
RelU Activation RellU Activation Rell Activation Linear Activation

(0000000

(O0000000)

(00000000
(00000000
:(000C00000

Input (Number of Actions)

{observation state
space)

Figure 4.3: Neural network architecture for each of the agents utilised in this
chapter. The architecture is shared across environments also, changing only the
number of input dimensions and output actions.

function, as defined in the original MRL paper.

The abstract reward function used for Mountain Car was the sum of received
ground rewards during the abstract transition. This was chosen to enable an
easier comparison with MRL (Mountain Car was the only domain used for
evaluation in the original MRL paper [29]). For both Puddle World and Catcher
we used an abstract reward function of —1 for each abstract transition as this
was found to perform better for UPSA.

We show our empirical results for each domain. In each of the below results, the
mean reward of each agent is plotted, with confidence intervals of 95% shaded.
Our augmented agent is shown in grey against the unaugmented DQN agent
in blue and DQN augmented with MRL in green. Since UPSA initially follows
an exploration policy to construct the AMDP - it uses more episodes than
the others. For a fair comparison, we opt to compare the agents by plotting
reward against elapsed time — including the exploration phase. This also fairly
accounts for any extra computation our method uses to solve the AMDP or
compute the extrinsic reward. The end of the exploration phase is indicated
by the vertical dotted black line. We ran the three agents for a set number of
episodes, meaning the agents varied in the amount of time taken to complete the
task. Since we are more interested in comparing performance against time, the
shortest time taken to complete all of the episodes was taken as a benchmark and
the other agents had their results truncated to that time-step. Comparing the
agents episodically directly is somewhat misleading, this is because our method
completes a lot of episodes very quickly during the exploration phase. However

83

4.7. Limitations and Next Steps

Parameter Mountain Car | Puddle World Catcher
« le —3 5e — 4 le—5
5y 0.995 0.99 0.95
T le —2 le — 2 le—2
w 1 1 1
€ 0.1 - 0.01 0.2 — 0.05 0.1 - 0.01
Abs. Size (50, 50) (50, 50) (20,10, 20, 10)
Exp. Size (5,5) (5,5) (10,5, 10,5)
Episodes 500 1000 1000
Exp. Episodes 500 1000 500
Action Rep. 64 64 16

Table 4.1: Hyper-parameters used for experiments

if we offset for the exploration episodes we see similar results to those shown for
time.

In each domain we can see that our approach beats both other approaches with
a significant margin. The exploration phase takes very little time and gives a
large performance boost very quickly. MRL is more of a mixed-bag, improving
the learning performance of DQN mildly in Catcher and Puddle World, while
somewhat hindering it Mountain Car. It is notable however that in none of the
environments did MRL out perform our approach.

Overall these results show that MRL is ill-suited for Deep Learning due to the
large amount of interactions required for learning its abstract value function.
The results further show that our extension of MRL is an improvement for
the Deep Learning setting, and that DQN augmented with UPSA significantly
outperforms Vanilla DQN, without the need to provide much domain knowledge.

4.7 Limitations and Next Steps

Whilst the UPSA approach has proven itself a useful tool for continuous-state-
discrete-action tasks there are some innate limitations that should be noted.
The simplest limitation is that of requiring a goal. Due to the fact that the
abstract reward selected is typically —1 — that is, they are step-penalties —
the abstract states that constitute goals are given as a (limited) form of domain
knowledge. These goal specifications need not be overly precise as shown in
our results, and constructing goal specifications for tasks like Mountain Car,
Catcher and Puddle World is simplistic. The limitation comes from interacting
with unknown or very complex environments, where desirable behaviour is not
necessarily known a priori. This could potentially be solved by introducing a

84

4.7. Limitations and Next Steps

~100
~120
120
~140
- 140+ e
2 2
© ©
% % -160 A :
& —160 =4
—180 A ~180 A
—— DON Vanilla —— DQN Vanilla
—— AMDP-Based Reward Shaping —— AMDP-Based Reward Shaping
—2007 — MultiGridRL 200 + —— MultiGridRL
1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s)
(a) Mountain Car Unsmoothed (b) Mountain Car Smoothed
15 1 i
1 1
1 1
1 1
1 1
1 1049 1
10 4 H
1
i
1
54 1
T 359 2 1
© o 1
= 2 H
& & '
0 o4
1
i
[
-5 AN f —— DON Vanilla -S54 LA —— DQN Vanilla
—— AMDP-Based Reward Shaping) —— AMDP-Based Reward Shaping
| —— MultiGridRL 1 —— MultiGridRL
1 1
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (s) Time (s)
(c) Catcher Unsmoothed (d) Catcher Smoothed

Figure 4.4: Results Comparing DQN, MRL and Uniform State Abstraction for
each environment The end of the exploration phase is denoted with a dotted
vertical line. We show both the raw mean results as well as a smoothed figure
for visual clarity. In the smoothed figure a moving mean window is applied with
size 25 in order to smooth the curves. We plot the unsmoothed results for each
episode before this point, explaining the oscillation observed in the figure.

85

4.7. Limitations and Next Steps

1 —— MultiGridRL

—— DOQN Vanilla
—— AMDP-Based Reward Shaping

=250 4

—— DQN Vanilla

—300 7

—— MultiGridRL

—350

—— AMDP-Based Reward Shaping

200 300 600 100 200 300 400 500
Time (s) Time (s)

(e) Puddle World Unsmoothed (f) Puddle World Smoothed

Figure 4.4: Results Comparing DQN, MRL and Uniform State Abstraction for
each environment The end of the exploration phase is denoted with a dotted
vertical line. We show both the raw mean results as well as a smoothed figure
for visual clarity. In the smoothed figure a moving mean window is applied with
size 25 in order to smooth the curves. We plot the unsmoothed results for each
episode before this point, explaining the oscillation observed in the figure.

more complex abstract reward function based upon the agent’s experiences. —
although further work would be needed to verify the efficacy of this approach.

The second limitation (and one that also applies to MRL) is that the number
of abstract states grows exponentially with the number of state dimensions.
Suppose the domain has a d-dimensional state representation, and that each
dimension is split into n partitions. The total number of states is then n¢. This
is — again — the Curse of Dimensionality. For environments with large state
representations this poses an issue with the tractability of computing (or even
storing) the values of abstract states within the AMDP. To compound this, many
domains of interest within the RL community at the time of writing consist of
very high-dimensional state-spaces such as controlling agents based on pixel
input. One such domain is that of Atari games - where each game-play frame
consists of 210 x 160 pixels, each consisting of three sub-pixels denoting colour.
This is essentially a 210 x 160 x 3 = 100,800 dimensional state representation.
Even with appropriate cropping, downsampling and greyscale conversions, this
is far too many dimensions to handle with the method at current.

The next steps then are to try and address these issues. The greater limitation is
that of the exponential growth of the abstract state-space. Since this will be the
case for any discrete partition of state-spaces —not just those that are uniformly
partitioned — “natively” utilising a continuous abstract state-space would be
the ideal solution. Of course, this raises questions about what a continuous

86

600

4.8. Conclusion

abstract state-space would look like and how we would go about constructing
state abstraction functions, as well as how we learn abstract models. The next
chapter explores this question in detail.

4.8 Conclusion

This chapter has introduced a new method — UPSA — for speeding up Re-
inforcement Learning agents with very little external domain knowledge. This
method employs an exploration stage to build up an abstract model of its en-
vironment, when viewed through the “abstract lens” of uniformly partitioned
abstract states. The agent builds up its knowledge of which transitions are
available and computes a distance (in abstract transitions) to its pre-specified
goal. Value Iteration is used to produce a reward shaping function that helps
guide the agent toward more fruitious behaviour. The agent can then shift to
an exploitation stage, where it utilises the shaping function.

In terms of external domain knowledge, we have reduced the required knowl-
edge down from the transition function, reward function and abstract state size
required in the previous chapter to just the abstract state size and a goal for
the agent. The transition function and general reward function represent the
vast majority of external knowledge that is typically required to utilise reward
shaping in this manner. Our newer method therefore requires far less knowledge
than that of the previous chapter.

For the domains that we applied this method to, the decrease in convergence
time was significant, even allowing for the time spent in the exploration phase.
We compared our approach to an older approach with a similar intent — Multi-
Grid Reinforcement Learning (MRL) — and found that our newer method out-
performs both Vanilla DQN and DQN augmented with MRL.

Finally, we saw the need to extend our method to be more suitable to higher-
dimensional tasks. In order to achieve that, we will need to break away from
the discrete abstract states that we have so far used to model our abstraction
of the environment. The next chapter will focus on this as well as other aspects
of dealing with high-dimensional state-spaces.

87

Chapter 5

Latent State Abstraction

This chapter builds and improves upon the Uniform Partition State Abstrac-
tion (UPSA) approach to constructing a shaping function. The aim here is to
significantly extend the range of domains for which the method can be effective.
We achieve this by removing two of the assumptions made by UPSA. These
assumptions are that abstract states are discrete and also that the abstractions
originate from uniform partitions over the ground state-space.

The combination of discrete abstract states and the fact that these states orig-
inate from uniform partitions over the ground state-space is problematic for
learning due to the aforementioned Curse of Dimensionality [6]— the number of
abstract states grows exponentially with the number of dimensions in the state
representation. To overcome this we introduce the idea of latent state-space
based abstractions, and demonstrate how these can be used for reward shaping
to the same effect as the method from the previous chapter. This chapter cul-
minates in the introduction of a new method, which we will refer to as Latent
Property State Abstraction (LPSA).

Before we can begin to introduce our method, there are a few prerequisite

techniques and terminologies that need to be understood. In the following
sections we will introduce these prerequisites.

5.1 High Dimensional State-Spaces

Many high dimensional state-spaces contain vast amounts of redundant infor-
mation. This is seen often in “visual” domains, where instead of a concise state
description, the state of the domain is represented by a visual depiction of the

88

5.2. Continuous Abstract States

scenario. Even low-resolution domains such as Atari games contain a vast num-
ber of pixels to convey the current state. This yields an overly large number of
state dimensions, one for each possible colour for each pixel. This often gives
millions of state dimensions.

To mitigate this somewhat, convolutional layers are nearly always used when
working with visual domains within RL — identifying salient features from
the images and essentially reducing the number of dimensions. The reduction
achieved by this method can be vast, however the convolutional layers must
have their weights learned and thus are not instantly effective. The benefit
from using convolutional layers occurs later during the training process as the
layers begin to represent useful abstractions.

5.2 Continuous Abstract States

Constructing continuous abstract state-spaces is not as intuitive as the uniform
partition approach that we used in prior chapters. Our previous abstract state-
spaces were just discretizations of the existing ground state-space. Obviously if
we take this discretization to the “continuous limit”, we are just left with the
original ground state-space. This is of no help for creating a continuous abstract
state-space.

Instead of trying to abstract each state dimension individually, we look to ab-
stract the states as a whole. For most high-dimensional environments — par-
ticularly environments represented as visual information where there is a lot of
redundant information — the individual state dimensions are not inseparable.
This allows us to reduce the number of dimensions when abstracting the state
space. We opt to base our abstractions on the hidden variables within state-
spaces that determine the values of large numbers of states. These are often
referred to as “latent states”. The next section gives more explicit details about
latent states.

5.3 Latent State-Spaces

Oftentimes environments contain properties that are not explicitly observed
or part of the state representation. Such properties are referred to as latent.
Despite being unobserved, latent properties can contain valuable information
and can determine the values of many states. For example, if working with a
pixel representation of a simple maze environment, the agent’s position is not
directly available to the agent as part of the state-space representation and is
thus latent. Crucially, the agent’s position within the maze can be inferred

89

5.4. Auto-Encoders

from the state-space — if one knows what to look for. It is extremely useful
for the agent to know its position within a maze environment. Further, from a
latent position variable, the pixels surrounding the position (in the shape of the
visual depiction of the agent) can have their values determined by the agent’s
occupation of that position — supposing the agent takes up physical space.

If the agent understands the rules of an environment’s pixel representation,
then from a relatively small amount of appropriate latent properties, much of
the original, visual state-space can be reconstructed. It can be a much simpler
problem for the agent to learn policies on state-spaces consisting only of these
latent properties. The ability of these policies to perform well will depend on
the extent to which the original state-space can be reconstructed from these
latent properties — this corresponds to how well the agent’s abstract model
matches its “reality”.

When the state-space of an environment is altered to consist of latent variables,
we will refer to this as a latent state-space, the individual states consisting of
latent variables we will call latent states.

The question remains of how an abstraction function to map states to latent
counterparts will be learnt. The next few sections will delve into the preexisting
topic of autoencoders that we will adapt for this purpose. We will also take
a look at how latent state-spaces and auto-encoders have previously been used
within RL before moving on to how we will utilise them for reward shaping and
the LPSA approach.

5.4 Auto-Encoders

An auto-encoder [28] is a neural network architecture consisting of an encoder-
decoder pair. The purpose of an auto-encoder is to simultaneously learn both
an encoder and decoder by feeding the combined pair training examples (z, x)
— that is, the network tries to learn the identity function. After training has
completed, the encoder and decoder can be split and used in a modular fashion.
Typically auto-encoders bottleneck in size towards the middle of the network —
the end of the encoder and beginning of the decoder. This forces the network to
learn a compressed representation of the data. The idea being that the encoder
then compresses the data into a smaller form and the decoder then decompresses
this smaller form into the original data.

We can think of the encoded representation of the states as a latent state rep-
resentation. Each variable in the compressed form can correspond to a latent
variable — assuming the network learns to reconstruct the original data accu-
rately then these latent variables are certainly sufficient. The latent variables
learnt, however, may not correspond to any intuitive properties that a human

90

Fully Connected

00000000

Input

5.4. Auto-Encoders

Fully Connected Fully Connected

© © O

Latent
Representation

Encoder Decoder

Figure 5.1: Neural network architecture for an auto-encoder

domain expert may identify.

Figure 5.1 displays the basic auto-encoder design, highlighting the bottleneck
into a compressed representation consisting of latent variables. The standard
auto-encoder utilises fully-connected layers throughout the architecture.

The auto-encoder is trained using standard back-propagation on the reflective
training pairs (x, 2) drawn from a training set. More formally, if we have a neural
network for encoding and one for decoding representing functions ey : X — Z
and dy : Z — X, then the loss function is based on the error between the
original input € X and the reconstruction dg(eg(x)) € X. For example, the
loss function using mean squared error for a basic auto-encoder would be:

L(z) = |o — dy(eq(x))|?

91

Fully Connected

(00000000

5.4. Auto-Encoders

Back-propagation with gradient descent can then find the weights # and ¢ to
minimise this loss, and thus find the best possible encoder-decoder pair.

5.4.1 Variational Auto-encoders

Many alterations and improvements can be made to the basic auto-encoder
design. One such improvement are auto-encoders that can utilise convolu-
tional layers in the encoder The Decoder can correspondingly use so-called
“de-convolutional” layers which attempt to undo the previously applied convo-
lutions. This allows the auto-encoder as a whole to handle higher dimensional
data and learn latent representations for entities such as images.

The main problem with auto-encoders is the generative capability — the latent
spaces learned by the encoder can often be discontinuous or sparse, causing the
decoder to struggle to generate meaningful examples from much of the latent
space.

A solution to this comes in the form of Variational Auto-Encoders (VAEs)
[56][35]. A VAE differs from an ordinary auto-encoder by splitting the out-
put in the last layer of the encoder. Instead of the encoder outputting a vector
of n dimensions, two n-dimensional vectors are output. Rather than outputting
an exact vector in the latent space, the encoder now gives a vector of means
and a vector of standard deviations g = [p1, flo, ..., in], o = [01,09,...,0,]. A
single n-dimensional vector is then sampled from each dimension distribution:
z = [N(u1,01), ..., N(pin, 0,)]. This z is then fed to the decoder to produce an
output. Intuitively, this adds some noise to the input of the VAE and forces a
higher level of generalisation to take place.

More formally, if we have a neural network for encoding and one for decoding
representing functions ey : X — Z and dg : Z — X, then a derivation using
Bayes’ laws and basic probability theory [36] shows us that we should select 6
and ¢ such that:

0,¢ = argmin(—](E| : [log de(z | z)] + KL(ep(z | x),dg(ac)))
07;[) x~eg(z|x

Where KIL(p(z), ¢())) = Epp(a) [log(ggi;)] is the Kullback-Leibler divergence,
a measure of how different two probability distributions are from each other.
The equation —E, e, (z(z) [log dy(z | 2)] +KL(eg(z | x), dg(x)) can then be used
as a loss to minimise with standard gradient descent approaches, in order to find
0 and ¢.

92

5.5. Using Auto-encoders and Latent State-spaces with Reinforcement
Learning

5.5 Using Auto-encoders and Latent State-spaces
with Reinforcement Learning

In recent years auto-encoders have seen some use within the field of RL. We
will briefly review some of the most influential work in which they appear and
highlight their function and the benefits they bring to the learning process. It is
important to additionally note that both auto-encoders and latent state-spaces
see use outside of RL, but in the interest of relevancy and space we limit this
section to applications or techniques that directly utilise RL.

5.5.1 World Models

In the paper “World Models” [30], the authors train a VAE to reconstruct frames
from the OpenAl Gym [11] Car Racing environment. This is used in tandem
with a Recurrent Neural Network to select actions.

The network model for this approach consists of three major components. These
are the vision, memory and controller components. The vision component is
a VAE that maps visual information into 32-dimensional latent states. The
memory component learns to predict a distribution of future latent states based
on the latent state history, action and current latent state. This component
uses a mixture density network RNN [G1] to do so. The controller is a single
layer perceptron with an identity activation function. The controller receives
a concatenation of the latent state and the distribution of the predicted future
state. From this the controller selects an action.

After each time step, the agent receives a new observation frame from the envi-
ronment. This is passed to the encoder and the latent state is identified. This is
then passed to both the memory model and the controller. The memory model
takes the latent state, the previous action performed, and its own previous out-
put, and assigns probabilities to future latent states, which are then passed to
the controller. Finally the controller selects a new action based on both the
current latent state and the output of the memory component. This procedure
can then repeat until the episode terminates.

At the time this paper was written (and it appears to still be the case at the
time this thesis was written) this approach yielded state-of-the-art performance
on the Car Racing domain, reaching the criteria for “solving” the domain.

The same paper then goes on to show how VAEs can be used to simulate
environments, namely ViZDoom [33] (an RL domain adapted from the first-
person shooter “Doom”), and train entirely within these “dreams” — the RNN
repeatedly predicts the next latent state and this prediction is used to select

93

5.5. Using Auto-encoders and Latent State-spaces with Reinforcement
Learning

an action. These “dream” policies are then shown to transfer well to the real
environment.

A few downsides to this approach are that on occasion the agent learned to
exploit the dream representation in ways that do not transfer to the environ-
ment. Further, the RNN is learning the dynamics of the dream environment
and allowing the agent to view these inferred hidden states which may give more
access to hidden states than the original observations. The authors note these
limitations in the paper.

5.5.2 Robotics

Another VAE based approach is found in [22], where the authors attempt to
tackle a domain based around manipulating a physical robotic arm in order to
complete a variety of tasks.

Here the auto-encoder is used to bring down the state-space of webcam frames
down to a more manageable size, this latent representation of the images is
combined with non-visual state dimensions such as joint angles and velocities.
Further, the algorithm utilises “feature presence” on the latent space which es-
sentially filters out latent features which are not highly “activated” in one area
of the image. The idea behind this feature presence concept is to remove aberra-
tions from lighting or camera anomalies, it also smooths out latent trajectories.
The final algorithm then uses model-based RL to train on the present latent
states and non-visual state dimensions.

The approach was evaluated on a robotics-based task, where the agent’s action-
space consists of a seven dimensional, continuous value, where each dimension
corresponds to a torque value to be applied at a robotic arm’s specified joint.
There are a number of tasks for the robotic arm to complete, ranging from
sliding a Lego block to a designated position to scooping up a bag of rice with
a spatula and transferring it to a bowl. The VAE-based approach was far more
capable than an agent learning without any visual information using the same
model-based RL algorithm. Further, this approach also outperformed other
auto-encoder-based approaches at the same task.

There is an appealing conceptual contrast in the approach that the prior two ap-
proaches utilise their auto-encoders. The World Models approach aimed to use
the auto-encoder to make the state-space a lower dimension and to train on this
smaller state-space directly. The robotics approach, on the other hand, sought
to augment an existing low-dimensional state-space with salient features iden-
tified from visual data. This contrast further emphasises the range of possible
methods and approaches provided by auto-encoders and latent state-spaces.

94

5.5. Using Auto-encoders and Latent State-spaces with Reinforcement
Learning

5.5.3 Structured Latent State-spaces

In “Plannable Approximations to MDP Homomorphisms: Equivariance under
Actions” [72], the authors introduce a method for constructing latent state-
spaces that retain a structure closely resembling that of the original state-space.
This approach attempts to create an “abstract” MDP that is arbitrarily close
to a homomorphism with the MDP of the original domain. To distinguish this
type of abstract MDP from the AMDPs we introduced earlier we will refer to
these as “homomorphic MDPs” or “HMDPs”.

From the original, ground-level deterministic MDP M = (S, A, R, T), an HMDP
H = (S,A,R,T) is desired to be constructed. Functions Z and Y denote
respective mappings from states and actions to their latent-space counterparts.
To achieve this homomorphic quality of the latent representation, two properties
are required. The first, and most important of these is action equivariance. This
is a property of a mapping denoting that transitions in the state-space match
those in the latent state-space. More formally, action equivariance is represented
by .
Z(T(s,0)) = T(Z(5),Y ()

Secondly, it is also required that

R(S7 a’ 8/) = R(Z7 y’ Z/)
for z = Z(s),2' = Z(s'),y = Y(a).

Distance functions for the above property equations are included as terms in the
loss function for learning the latent representations of states, actions, transition,
and reward functions. Also included is a term attempting to maximise the
distance between non-adjacent states in the latent state-space to avoid learning
trivial representations. The authors prove that at a loss of zero, the learned
HMDP is an exact homomorphism of the original MDP.

Once the HMDP has been constructed, it is discretised to allow Value Iteration
to learn optimal @-values (and thus an optimal policy) within this discretized
setting. The agent can then interact with the original state-space, observe state
s, map s to z = Z(s) and identify Q(z,a) for each a € A by interpolating
the discretized Q-values. This can then be repeated until an episodes termina-
tion, giving a final policy as close to optimal in original, ground domain as the
discretization granularity and homomorphic loss allow.

The policy from the HMDP is used directly in the ground MDP rather than
informing a ground policy or designating macro-actions to be taken. The smaller
size of the latent representation, in theory, makes the HMDP easier or quicker
to find an optimal solution. The homomorphic property of the HMDP then
ensures that the learned HMDP policy is also suitable for the original MDP.

95

5.6. Latent State-spaces as Abstraction

The method was evaluated on a few simple visual domains. This approach out-
performed other baselines utilising latent state-spaces including an adaption of
the World Models [30] algorithm. Principal Component Analysis (PCA) visu-
alisations also showed that the latent representations learned by their approach
appear cleaner and more similar to the original state-space than other latent
representation methods. However, this doesn’t necessarily tell the whole story
as the 50-dimensional latent space is reduced to 3-dimensions by PCA. Much of
the ground-space structure of the original state-space could have been kept in
the other latent representations and been lost or distorted in the PCA visuali-
sation.

Further, the environments used and the general outline of the approach imply
a deterministic MDP. Many complex environments do not have deterministic
transition functions. The authors state that the approach can be adapted for
stochastic MDPs however.

A possible future avenue of work could be to leverage structured latent state-
spaces for a reward shaping approach similar to the core idea that has been used
throughout this thesis. In this approach, a much larger loss could be allowed for
creating the HMDP. The HMDP could then be thought of as a much broader
approximation to the real MDP. Reward Shaping could be used in the same
manner that we saw in previous chapters, using Potential Based Reward Shaping
and setting the potential function ¢(s) = V(Z(s)). The advantage to this type
of approach is that the HMDP does not have to be very accurate which could
take a lot of computation to achieve, yet, through reward shaping would still
provide a useful shaped reward. While this idea is not explored further in this
thesis (due to other approaches appearing more promising) it does seem worthy
of consideration by the RL community.

5.6 Latent State-spaces as Abstraction

A common theme running through the papers overviewed in the previous section
is the use of a network to reduce the size of the representation. This is where
the “abstraction” occurs. At the core of it, the networks mapping from ground
state-spaces to latent state-spaces are an abstraction. While this may seem self-
evident, explicitly reframing these networks as such as opposed to “compression”
or “encoding” can remind us of the other utilities that these networks and latent
state-spaces may have for improving RL performance.

It turns out that we have seen applications of latent state-spaces already in this
thesis. In a CNN the convolutional layers are mapping the high-dimensional
visual observation into a lower-dimensional latent representation of salient fea-
tures. This is then a small enough representation to be handled by fully-
connected layers. In fact, the only difference between the encoding component

96

5.7. Utilising Latent State-spaces

of a convolutional auto-encoder followed by fully-connected layers of a neural
network and a CNN is the training technique.

This abstraction philosophy of reducing the representation size of states is dis-
tinct from those typically seen in AMDPs. Reducing the representation size
doesn’t seek to create an “abstract” instantiation of the domain, representing
a high-level overview of the task. Instead, they try to recreate the domain as
closely as possible in a smaller latent representation. The intuition being that
in these smaller domain spaces it will be easier or quicker to find an optimal
solution.

The research so far into latent state-spaces and RL has focused on training
directly on a latent state space and transferring or using the learned policy;
little-to-no research appears to have been done on using autoencoders for the
hierarchical approaches to abstraction, such as reward shaping from AMDPs or
Hierarchical Deep Q-Learning. This is the direction in which we will orient our
research, focusing specifically on AMDPs.

5.7 Utilising Latent State-spaces

We can think of the structures that map state-spaces to latent variables as an
abstraction mapping and the space contrived from latent variables output as an
abstract state-space. We will refer to the state-spaces contrived from latent state
dimensions specifically as latent state-spaces for the remainder of this thesis to
help distinguish the types of abstract state-spaces we have utilised.

Many methods could be used to create suitable latent state-spaces. This work
will focus on utilising variational auto-encoders to achieve this; they are easy to
train and can reduce the size of state-spaces effectively.

Taking this approach we can use latent state-spaces for reward shaping. To do
this there are a few things which we require. We need an auto-encoder, trained
to encode a visual representation of an environment into a smaller number of
dimensions. We also need a neural network architecture that takes as input
the encoded state and outputs a learned value denoting that encoded state’s
value — this is essentially a deep AMDP. Finally we also require an ordinary
deep Q-network for the environment we wish to train and augment with reward
shaping.

For this approach to be “worthwhile” from an efficiency perspective, we need
our approach to reach the same or higher performance as a Vanilla DQN in the
same amount of time (or similarly, reach the optimum performance in less time).
However, since this approach has hitherto not been used for shaping, even just
a proof of concept is a novel contribution, showing that agents learning latent

97

5.8. Method Overview

states can be used to shape rewards effectively. It is with this proof of concept
that this chapter culminates. In the proceeding sections, a brief overview of
the method is given followed by a more detailed look at each component of the
method.

5.8 Method Overview

Here we give a very broad overview of the Latent Property State Abstraction
(LPSA) method before detailing the individual steps in the proceeding sections.
The first step is to train the auto-encoder; random rollouts of episodes from
the environment produce samples of high-dimensional states. The auto-encoder
trains in a self-supervised manner using these states.

Once the allotted training time for the auto-encoder has elapsed, the encoder
and decoder are split and function as a state abstraction function and its (ap-
proximate) inverse.

Now that the abstraction function is available (the encoder), the neural network
representing the AMDP’s Q-function can be trained using a suitable RL algo-
rithm (such as DQN) on the environment but first passing the high-dimensional
states from the environment through the encoder to yield abstract states. The
AMDP’s Q-function is then learning to associate states from the latent state-
space to Q-values for each action.

Once the AMDP is trained, we can use it for shaping in the same manner as
UPSA (from Chapter 4) and other shaping methods; the ground network is
trained on the desired environment as normal, except that an additional reward
is given to the agent based upon the discounted difference in the values of the
abstract states it has just moved between.

As long as the learned abstraction function is mapping similar states to similar
areas of the latent state-space — requiring the auto-encoder to be “good” —
and the abstract network is learning to perform “acceptably” on the latent
state-space then the reward shaping can boost the ground agent’s learning,
particularly early on in the training process. A diagrammatic overview of the
method is given in Figure 5.2.

The two-step “pre-processing” can be computationally costly. Obviously if the
cost of pre-processing is larger than the reduction in convergence time that
the method provides then the approach is not “worth it” from an efficiency
perspective. This will depend on the environment used and how robust the auto-
encoder and abstract policy need to be to attain a suitable shaping function.
Unfortunately in the domain we used here (car racing), the cost outweighs the
gain. Nevertheless, the pre-processing is something that, in principle, can be

98

5.9. Experimental Domain

made far more efficient through parallelization that was not leveraged in this
project due to the added complexity of implementation. Instead, this approach
is modelled as a proof of concept and demonstrates that the shaping function
provided by the self-learned abstraction is useful for improving the performance
when compared to an unshaped agent.

We will explore these stages in more detail in the coming sections, but first
we introduce the domain we will use to evaluate our method. Introducing the
domain first allows us to explain some of the finer details of the method with
reference to a concrete environment example.

5.9 Experimental Domain

Due to the fact that this approach for abstraction is able to handle higher
dimensional input we would like to move away from the simple experimental
domains of the previous chapters. The domain we will primarily use to evaluate
this approach is a discretized version of OpenAI Gym’s Car Racing domain [11].
A visual depiction of the environment is given in Figure 5.3.

In this environment the agent exerts control over a car, and must guide it around
a procedurally generated track. The agent must try and keep the car within the
track. The car receives a reward of —0.1 after each time step as well as 1000/ N
for each segment of track visited for IV the total number of track segments.

The agent perceives a 96 x 96 pixel representation of the environment, including
visual cues for the vehicle’s speed, ABS (anti-lock braking system) sensors and
the angle of the steering wheel.

In the original environment the action-space is essentially [0, 1], the accelerator,
brakes and steering each take a continuous value between 0 and 1 denoting the
extent to which the control is activated.

In our version of the environment we gave the car 20 discrete actions corre-
sponding to different applications of the accelerator, brakes and steering. The
reason for doing so is to evaluate agents with a focus on the high-dimensional
state-space rather than a more complex action space. We are trying to show
that utilising a reward shaping function derived from an agents interactions with
an abstract environment can improve learning speed — the continuous action
space is not necessary to demonstrate this.

Since the original environment uses a continuous action space, our agents may
not reach the same level of performance overall as those that can utilise the con-
tinuous actions — however, we can still highlight the improvement to learning
speed that our method brings compared to Vanilla DQN on the same discretised

99

5.9. Experimental Domain

Random rollouts of
environment to
collect set of states

Train Variational
Auto-Encoder

Figure 5.2: A broad overview of the Latent Property State Abstract method.
Arrows denote the flow of informational dependencies. Stages coloured blue
correspond to the auto-encoder, red to the abstraction process, orange to the
ground agent and green to the environment.

100

5.10. Training the Auto-encoder

0002

Figure 5.3: Visualisation OpenAIl Gym’s Car Racing domain, image captured
from the domain running with visualisation on. This is what the agent “per-
ceives” as an array of RGB pixel values.

environment.

In order to speed up the learning for the agents, we utilise an early stopping
method for the environment; if the agent fails to enter a new track segment in
12 time-steps (and therefore experience a positive reward) the episode termi-
nates. This is necessary as otherwise the environment only terminates if the
car completely leaves the playing field. This can take a long time for very little
benefit. Note that we do not employ this for our implementation of the World
Models approach which we compare our algorithm against. The reasons for this
are given in Section 5.13.1.

5.10 Training the Auto-encoder

The encoder is the crux of the LPSA method. The quality of the abstraction
function will determine how well the abstract agent can learn a policy for the
latent state-space as well as how applicable the shaping is to the current state.
It is therefore imperative that the auto-encoder has minimal reconstruction loss.

There are important decisions to make for training the autoencoder, the two
most important are that of architecture and the number of latent state dimen-

101

5.10. 'Training the Auto-encoder

sions.

We opt to use a variational auto-encoder primarily for its ability to create a
densely populated latent state space — this will be pertinent for encoding states
outside of those encountered by the autoencoder during training. The exact
architecture is in figure 5.4, where the separate encoder and decoder components
are detailed. Combining the output of the encoder to the input of the decoder
constitutes the full auto-encoder architecture.

To begin, we downsample the original 96 x 96 x 3 image from the environment
into a 64 x 64 x 3 image. This reduction in resolution helps reduce the amount
of information that needs to be compressed without drastically altering the
quality of the image. The number of latent state dimensions will affect the
amount of information that can reasonably be encoded. A higher number of
latent state dimensions will intuitively allow for a lower final reconstruction loss
with diminishing returns. On the other hand, increase the number of dimensions
will add more parameters to the abstract model and make it take longer to train,
as well as reducing the degree to which the environment is “abstracted”.

An agent interacts with the environment using a random policy for a speci-
fied number of time-steps. This policy favours acceleration in order to visit
more states. Additionally, random start positions are used to again maximise
the diversity of states visited. For each training step, a batch of states are
drawn uniformly from the training set, the loss is calculated and the weights
are updated using the loss function and procedure outlined in Section 5.4. Once
enough episodes have elapsed the training ends. This will unfortunately depend
on the environment and needs to be found empirically.

For our experiments with the Car Racing domain a batch size of 128 was used
for each training step and 5000 batches were used for training. Further, 128
dimensions were utilised for the latent state-space. The auto-encoder and
rollout policy implementation from the GitHub repository: [13] was utilised to
train our auto-encoder. This repository itself was based on the author of [13]’s
initial attempts to implement the aforementioned World Models[30] paper, and
contained an auto-encoding architecture adapted for the Car Racing domain.
Alterations to the exact architecture are made to better suit our purposes.

Figure 5.5 shows the typical change in VAE reconstruction loss over the course
of the training procedure. As expected, the loss initially rapidly decreases before
slowing down at a relatively stable value.

It is necessary to highlight that VAEs (like many deep generative models) do
not typically perform as well or as reliably when the underlying data distribu-
tion changes [73]. Even within the same environment, this poses issues if the
distribution of states during the random rollouts is different from the distribu-
tion of states during training and evaluation. This highlights the importance of

102

5.10. 'Training the Auto-encoder

Flatten
Convolution Convelution Convalution Convolution Fully Gonnected
(d=4) Kemal (4xd) Kernal (4x4) Kemal (4xd) Kernal J— —
(2x2) Stride {2x2) Stride (2x2) Stride {2x2) Stride
alid Padding Valid Padding Valid Padding Valid Padding O O
o @)
—
O (128) Sample
Fully Connected * oMo
O ——
—
@ @
(64 x 64 x3) (31 x 31x32)
(14 x 14 x64) (6% 6 x128) (2 X 2 x256) O O—
(a) Encoder O O
(1024) (128)
Fully Connected
_—
—
De-Convolution De-Convalution De-Convolution De-Convalution
O [5%5) Kernal (5x5) Kernal (Ex6) Kernal (Bx6) Kernal
(2x2) Stride {2x2) Stride (2x2) Stride {2x2) Stride
O Valid Padding ‘alid Padding Valid Padding ‘alid Padding
.
Output
O (64 x 64 x3)
Input
(128) O
(5x 5 x128) (13 x 13 x64) (30 x 30 x32)
O (b) Decoder
)

(1024)

Figure 5.4: The encoder-decoder components of the auto-encoder architecture.

103

Output
(128)

5.10. 'Training the Auto-encoder

600 +

500 A

400 A

Loss

300 ~

200 ~

100 +

T T T T T
0 1000 2000 3000 4000 5000
Training Steps Elapsed

Figure 5.5: A typical plot of loss against the number of training steps for our

Variational Auto-encoder when trained on frames from the Car Racing environ-
ment.

104

5.11. 'Training the Abstract Network

a strong exploration policy for the rollout phase. In our approach we used the
randomised rollout policy that favoured acceleration as well as using randomised
track starting positions. These help to ensure that the auto-encoder is being
trained on a distribution as close as possible to that encountered during eval-
uation of a fully trained agent. However, this does pose a potential limitation
for environments where this is not feasible or where exploration is very tricky.
More sophisticated approaches may be necessary for such domains.

5.10.1 Auto-encoder Reconstruction

While there are no theoretical guarantees for ensuring that the autoencoder
will reach an acceptable level of loss, or that this level of loss will transfer well
to visual construction, it is easy to intuitively see approximately how well the
autoencoder is learning by comparing the input images and the reconstructed
output.

Figures 5.6 and 5.7 show some of the reconstruction attempts from throughout
the training process; highlighting the auto-encoders reconstructive capabilities
after 50, 500 and 5000 auto-encoder training epochs. Each epoch corresponds
to an update to the auto-encoder’s weights utilising a batch size of 128 samples.

At the point when 50 epochs have elapsed, The reconstructed images largely
look the same and there is very little resemblance to the original image. The
auto-encoder does seem to be beginning to capture that there is usually a track
segment somewhere in the centre of the image, indicated by the grey blob. After
500 steps the reconstructions are beginning to resemble the original image far
more. However, zoomed out portions of the track and certain edge cases still
reconstructed unsatisfactorily. Finally, once training has completed and 5000
epochs have passed, the replications are more accurate. Track edges appear
more defined. The network still struggles with extremely zoomed out frames
due to the high level of detail required to represent these. However the other
frames are replicated with a high degree of accuracy. While they are not per-
fect reconstructions and perhaps a little blurry, the auto-encoder has certainly
managed to capture a decent approximation of the current frame. Recall that
our purpose of using the autoencoder is not perfect reconstruction — we want
to utilise the autoencoder as an abstraction function. This will typically require
less-than-perfect reconstructions due to the very nature of abstraction.

5.11 Training the Abstract Network

Now that the auto-encoder has concluded its training, we can utilise the encoder
portion of the auto-encoder to act as a state abstraction function. We denote

105

5.11. Training the Abstract Network

(a) 50 training steps

(b) 500 training steps

Figure 5.6: A sample of environment frames and their reconstructions after 50
and 500 training epochs

106

5.11. Training the Abstract Network

Figure 5.7: A sample of environment frames and their reconstructions after 5000
training steps

107

5.11. 'Training the Abstract Network

this encoder as a function Zg, mapping elements of the ground state-space to
the latent state-space.

We train a neural network using DQN on the environment with the latent
state-dimensions as the input. Each action is repeated three times by the agent
to reduce the computation time required — updates and queries to the neural
network are then performed only every third frame, rather than after each frame.
This essentially triples the amount of episodes we can train in a given time-frame
while having little effect on the performance of an agent due to the fact that
thirty frames are occurring every second, so the impact of an individual action
is relatively low. Further, the observation received by the agent is a stack of
four latent states from when an action was last selected. Therefore the shape
of each observation is (128 x 4) and consists of latent states from time-steps
t=0,—-3,—-6,-9.

After each observation, The agent adds the following to its experience replay:
(0,a,r, o) for current observation o, action a, new observation o’ and immediate
reward r. Note that o and o are stacks of the latent states as described above.
It is the observations that are added to the experience replay instead of the
ground states as in ordinary DQN. From here on, DQN proceeds as normal to
learn a policy over the latent state-space with the ground actions available.

It is important to note that even though the abstract agent is learning to asso-
ciate stacks of latent states with values, the agent is interacting with the ground
environment viewed through an abstract “lens”. This means that no abstract
transition function needs to be learned or provided to the agent — the abstract
transition function of the environment is the ground transition function with
states mapped into latent space.

Slightly more formally, assuming that the ground transition function of the envi-
ronment is Ppy, then the abstract transition function will be P4(Z5(s), a, Zs(s))
Pp(s,a,s"). Of course, this is not known to the agent at the point of learning
since Py is hidden, however this is the transition function that the abstract
agent is subject to. Similarly, for rewards, the ground reward is given to the
agent, but associated with latent values. R4(Zs(s),a, Zs(s")) = Ram(s,a,s’).

Once a predetermined number of episodes or steps have elapsed, training finishes
and the Q-Network represents the function mapping latent states and actions to
values — that is, the abstract Q-function. For our experiments we chose to train
both the ground agent and abstract agent for the same number of episodes —
8000. A single episode took less time for the abstract agent however, owing to
the smaller neural network requiring fewer calculations to update the weights,
as well as the abstract agent generally not surviving as long in the environment
in a given episode.

Since the abstract agent is capable of interacting with the ground environment

108

5.11. 'Training the Abstract Network

(because of the identical action-space), we can evaluate its performance directly.
It is worth noting that we do not expect the abstract agent to perform spectac-
ularly, its perception is limited by only receiving latent states. However, we do
not require that the abstract agent performs well, only that the value function
it learns is useful for reward shaping, this could take the form of discouraging
behaviour that it has identified as “bad”.

For completion we will include the abstract agent’s performance in results to
verify that training directly on latent states is not inherently superior to Vanilla
DQN. This will further support our hypothesis that the “abstractness” of the
shaping is providing the boost to learning speed, rather than access to a simpler
environment model.

5.11.1 Differences to Uniform Partition State Abstraction

There are some other important properties of LPSA that differ from the UPSA
method proposed in the previous chapter. The first and most obvious is that of
abstract state-shape. No longer is the state abstraction function restricted to
uniform partitions along each state dimension. This allows for more flexibility in
the state abstraction function, as well as allowing redundant information to be
minimised. Further, the abstract state-space in the latent-state-based method
is continuous, allowing for more nuance in categorising abstract space.

A further difference in the approaches is that in the previous chapter, the AMDP
was explicitly constructed and then solved through Value Iteration. Now that
we are in a continuous state-space, this is not so feasible. Instead we opt to use
a model-free RL approach to ascertain the values of abstract states — this is
the task of the abstract network. This approach is similar to that employed by
Multigrid Reinforcement learning (MRL) [29] (see Section 2.6.4 for an overview)
for learning the abstract policy — although due to the difference in abstract
problem scales, our method uses DQN to achieve this rather than SARSA. In
this way the method detailed in this chapter can also be viewed as an extension
of MRL, but in a different direction than the prior uniform state abstraction.

A final difference is that in UPSA we constructed a new abstract action set,
denoting the states reachable from the current abstract states. Both MRL and
LPSA, on the other hand, retain the ground action set. For LPSA specifically,
the continuous nature of the abstract state-space make it infeasible to have an
abstract action for each reachable abstract state. However, we can utilise the ex-
isting ground actions as abstract actions within the latent state-space. Keeping
the ground actions also allows our abstract agent to interact with the environ-
ment fully and provides a means of evaluating the abstract agent’s performance.

Table 5.1 gives an overview of the dimensions in which each of these methods
differ.

109

5.12. Utilising the Abstraction

Property MRL UPSA LPSA
Abstract state-space Discrete Discrete Continuous
State-dimension aligned? Yes Yes No
Model-based AMDP? No Yes No
Abstract Actions Ground Actions | Adjacent Abs. States | Ground Actions

Table 5.1: Comparison of properties of MultiGrid-RL, Uniform Partition State
Abstraction and Latent Property State Abstraction

Parameter Ground Agent | Abstract Agent

o 4 %1071 4x 1071

~y 0.95 0.95

T 1x1072 1x1072

w 2.5 x 1073 N/A

€ 0.1 - 0.01 0.1 - 0.01
Batch Size 128 128
Episodes 8000 8000

Warm up Steps 10000 10000

Table 5.2: Hyper-parameters used for experiments

5.11.2 Architecture and Hyper-parameters

A feed forward neural network is used to train the abstract network. Figure
5.8 gives the exact architecture for this network. Hyper-parameters are given
in Table 5.2.

5.12 Utilising the Abstraction

The abstraction is utilised in exactly the same way as in the previous chapter. To
reiterate, a DQN agent is learning on the environment as normal, the difference
comes from the modified reward function. As the agent makes transition s — s,
the abstraction function Zg, which is now a VAE, maps s and s to their abstract,
latent states Zg(s) and Zg(s').

The abstract Q-function then maps these abstract states to their values V(s) =
maxXeA,, Q(Z(s),a).

The reward given to the agent for this transition s — s’ is then the observed
reward from the environment plus the discounted difference in abstract state

110

5.12. Utilising the Abstraction

Fully Connected Fully Connected Fully Connected Fully Connected
RelU Activation Rell Activation RelU Activation Linear Activation

o000
o000
o000
0000
o000
0000
0000

O000O)

Input
(Latent state space)
(128 x 4)

(Number of Actions)
(20)

(00000000
§(00000000
3(00000000)

(@000 0C0

™
&
=2

Figure 5.8: Abstract Agent Neural Network Architecture

values: r + vV (Zs(s")) — V(Zs(s)). The experience
(s,a,8', 1 +9V(Zs(s') = V(Zs(s)))

is added to the agent’s experience replay for training.

5.12.1 Training the Ground Network

Apart from the modified reward function to utilise reward shaping and architec-
tural differences, the compared agents are identical. Here we detail the network
architecture and training procedure, along with all relevant hyperparameters.

Again there is a small amount of pre-processing performed to the environment
states in order to aid the learning process. This time the image is converted to
grey-scale from colour, where each pixel can now take a value between 0 and
255. Each action is repeated three times by the agent to reduce the computation
time required (following the same reasoning as for the abstract agent, repeating
the same action three times reduces the number of times the neural network
needs to be updated and queried). Once again the observation received by the
agent is a stack of four frames from when an action was last selected. Therefore
the shape of each observation is (96 x 96 x 4) and consists of the frames from
time-steps t = 0, —3, —6, —9.

The ground network used consisted of two convolutional layers interleaved with
Max Pooling followed by a flattening and two fully-connected layers, with an

111

5.13. Results

Flatten
Convolution Max Poaling Caonvolution Max Pooling Fully Connected
(7x7) Kernal (2x2) Pooling (3x3) Kernal (2x2) Pooling —
[3x3) Stride alid Padding {1x1) Stride Valid Padding

Valid Padding Walid Padding O
O O
Input Ll O O

06 x 96 x4 30 x 30 x8

(96x96x4)) (15 x 15 x8) (13 x 13 x18) (6 x 6 x16) O O
O (256)

(576)

Figure 5.9: Ground Agent Neural Network Architecture

output node for each available action. The exact architecture is given in figure
5.9.The hyperparameters of note are listed in Table 5.2.

5.13 Results

Here we give some results evaluating the performance of our approach against
benchmark agents (notably DQN and World Models). We end this section with
the final results comparing the Vanilla DQN against our DQN augmented with
LPSA. We also compare both of these methods against learning directly on the
latent state-space (the AMDP) to ensure that the latent representation is not
simply easier to learn on overall.

We do not compare against MRL or UPSA primarily due to the infeasible
amount of memory that would be required. Each state dimension corresponds
to one pixel. Each pixel can take a value between 0 and 255. Further, there are
96 x 96 = 9216 pixels in total. If we wanted to just split each state dimension
into two equally sized partitions, there would be a total of 29216 abstract states.
Whilst this is far fewer than the original state-space of 2569216 states it is still
far too many to handle discretely or tabularly — especially since it is estimated
that there are approximately 1080 atoms in the universe. It was therefore deter-
mined that successfully implementing these algorithms for such a large domain

112

Fully Connected

5.13. Results

was somewhat out of scope for a PhD thesis.

5.13.1 LPSA Results

In figure 5.10 we can see that utilising reward shaping provides a significant
boost to the initial learning performance when compared to Vanilla DQN. This
is kept up until the agent converges on the near-optimal score for the Car Racing
environment.

Both LPSA and DQN eventually converge on similar policies with similar scores,
however it is clear that our LPSA approach performs better than DQN after
any fixed number of episodes.

We also see that the abstract agent can quickly converge to a sub-optimal policy.
However it is also clear that the abstract agent will not converge on the same
near-optimal policy as the other two methods — at least in a feasible amount of
time. The abstract agent is seemingly limited by the granularity of the abstract
environment.

It is therefore clear that it is the shaping function derived from the abstract
agent that is giving LPSA the boost to learning performance and that it is not
the case that the abstract representation of the environment is inherently easier
and that we are passing the abstract agent’s solution to the ground agent.

The abstract agent’s solution to the abstraction of the environment is capturing
key skills that are transferable to the ground environment. This makes it ap-
parent that LPSA’s use of an auto-encoder is successfully capturing important
abstract aspects of the environment.

The aforementioned World Models paper [30] at the time of writing claims to
have the highest performance on the Car Racing domain and is the current state
of the art. We also compare our results against their method . Their approach
also utilises auto-encoders and was outlined in Section 5.5.1.

The World Models approach takes far fewer episodes than LPSA to converge
on a strong policy, however each individual episode takes vastly more time
to complete. Whilst their approach does allow for an ultimately more stable
policy able to perform to a near-optimal level, the time taken to achieve this
becomes disproportionately prohibitive with diminishing returns. We ran the
World Models approach for a approximately the same amount of time as the
other agents (roughly 24 hours) and report the results for the amount of episodes
that elapsed. At the end of the set training time, World Models has a marginally

IThe method used here was adapted by Sajjad Kamali Siahroudi from L3S, University of
Hanover, from an existing code-base [24] as part of an as-yet unpublished paper based on this
chapter

113

5.13. Results

—— DQN Vanilla
8001 —— DOQN-Latent-Space
— LPSA
World Models
600 4
B
o
= 400
&
2004
0_
T T T T T T T T T
0 1000 2000 3000 4000 5000 ©000 7000 8000
Number of Episodes
(a) Smoothed Results
— DAQN Vanilla
—— DQN-Latent-Space
8004 — LPSA

World Models

600

200 A

T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Episodes

(b) Unsmoothed Results

Figure 5.10: The average reward received by an agent plotted against the num-
ber of elapsed episodes. Each agent was trained for approximately 24 hours.
The averages are based on 25 repetitions of the learning process for each agent
and the shaded regions represent a 95% confidence interval. The smoothed
agent used a moving average of window size 20 for World Models and 200 for
the other agents (Due to the difference in the number of episodes).

114

5.13. Results

worse performance than either Vanilla DQN or LPSA. Additionally it is worth
noting that since the action-space in our environment is discrete, the World
Models approach may perform differently than reported in the original paper.

The results given here highlight the difficulties that may occur when trying
to compare methods that are very different. Since we may not wholly rely
on comparisons by episodes or time alone a more detailed analysis is required,
utilising elements from both.

The Car Racing domain is not ideal for comparing time taken — an episode
varies wildly in length depending on performance. Due to this, we opt to plot
the mean reward against the number of elapsed episodes while separately noting
the average number of agent steps per second. This way, we can compare the
performance fairly over a set period of time, without disadvantaging the agent
for learning to perform well early on. Table 5.3 lists the average number of steps
performed per second by each agent.

Further, we cannot easily make useful comparisons between Vanilla DQN or
LPSA against World Models. The reason for this is due to the sheer difference
in approaches. World Models relies on an evolutionary approach known as
CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) [31]. Under
this approach, multiple members of the “population” are evaluated concurrently,
each having their performance scored over a number of episodes (in our case, 4
episodes) taking the average of these scores to assess each member. After each
member has been evaluated, the next generation is created based on properties
and strategies favoured by the most fit members of the previous generation. The
complete details are beyond the scope of the thesis and given in [31].

In order to maximise computational throughput, we opt to disable the early-
stopping mechanism for the World Models approach. This way, each member
of the population can always be learning, rather than waiting after potentially
stopping early — the majority of this time will have to be spent anyway as
certain agents begin to excel and would not trigger the early-stopping mecha-
nism (recall the members of the population are evaluated concurrently). There
is a slight trade-off here as even the best agents don’t always use the maximum
number of steps in this domain, but this seems the best choice when there is a
large number of members in the population.

This is all relevant to our evaluation because each episode now takes many more
steps to complete — at least initially in the training procedure. The effects of
this are two-fold — first, each episode takes longer as it consists of more steps,
and second, more insight can potentially be gleaned from each episode (again,
there are more steps).

Another interesting point of comparison is the way in which the methods, LPSA
and World Models, differ in their approach to creating a model. World Models

115

5.13. Results

Vanilla DQN | AMDP | LPSA | World Models
18.45 22.42 13.38 10.63

Table 5.3: Average number of steps per second performed by each agent over
the 25 training runs (rounded to two decimal places).

attempts to learn a model of the environment that map states to latent states
as well as being able to predict the next latent state from the current latent
state and action. On the other hand, LPSA aims to learn just a map from
ground to latent states — A sort of pseudo-model. As a result, World Models
contains a more capable model at the cost of a more complex architecture that
continues to use computation during training. Comparatively, LPSA uses a
simpler architecture (just the VAE) but cannot predict future latent states.
Instead, LPSA leverages the existing environment and trains the abstract agent
using the real environment viewed through an “abstract lens”. The benefit of this
approach is that once the shaping function has been learnt, the simpler ground
agent’s architecture can be exploited more efficiently than World Models’ more
complex structure. Having some kind of model can potentially bring many
benefits, such as allowing the agent to estimate the effects of its actions or
calculate counterfactual situations.

All of these factors together make for a difficult comparison. However, we do
not need to decide that one approach is inherently better than the other —
what this really shows is that LPSA is able to utilise reward shaping from
an automatically learned shaping function to perform on a similar level to the
World Models approach.

5.13.2 Caveats

Both LPSA and World Models include warm-up stages that are not included
in our comparison — For LPSA this is training the auto-encoder and abstract
agent, for World Models this is training the auto-encoder and recurrent neural
network for the environment model. In the case of our experiments, at present,
it is not “efficient” to do this approach. However, this can, in principle, be ad-
dressed with parallelization of the pre-processing stages. This was not done in
this thesis due to the added implementation complexity and other issues. It is
also worth mentioning that the same downside also applied to World Models in
our experiments, which took longer to converge to a strong policy than Vanilla
DQN. This is likely due to the simplified (discretized) action space of our Car
Racing environment, which is easier to learn in. That being said, this is accept-
able as our goal has not been to create a practicable RL algorithm, but rather
to demonstrate that suitable abstractions can be created using auto-encoders
for the state abstraction function and that these abstractions can be utilised to

116

5.13. Results

improve an agent’s learning rate through reward shaping. This we have indeed
demonstrated as the difference in agent performance during the early stages of
training is significant.

5.13.3 Comparing Abstraction Functions

Now that we have seen the effect that utilising LPSA can give, we give a detailed
analysis comparing properties of the abstraction functions used by UPSA and
LPSA.

The primary advantage UPSA has over LPSA is its simplicity and understand-
able nature. This rises from the fact that it preserves not just the state-
adjacencies, but also (assuming each state dimension has a linear ordering of its
elements) the orderings of states within their relative state dimensions. That is,
for 5,5’ € RN, it follows that s; > s; = Zgs(s'); = Zs(s)i. It’s worth noting
that a stricter version of the reverse is also the case: Zg(s'); > Zs(s); = s} >
si, however in the case where Zg(s'); = Zg(s); we can not say anything about
the ordering of s} and s;.

While this may be a trivial property from the perspective of an RL agent,
it makes the abstract states and transitions more understandable to human
experts, particularly when the ground state transitions are easily understood to
humans also. Having abstractions that are easily understandable can help give
insight to the decisions that the agent’s are making — which in turn can help
improve or verify the agent’s policies. This is obviously limited to a rather small
subset of environments — for larger domains the complexity on both ground
and abstract levels quickly grows beyond that which humans are capable of fully
“grokking” or comprehending.

There isn’t much that we can say about the distances between states. Firstly a
distance function needs to be selected. Secondly, many commonly used distance
functions do not scale particularly well into a large number of dimensions —
they tend to define states as close to uniformly separated [8].

However, even for simple distance measures in low-dimensional environments,
there is little useful information that we can deduce. Consider the scenario
outlined in Figure 5.11, here there are four abstract states, representing each
quadrant of this two dimensional grid. Ground states x and z are closer to-
gether than x and y by most sensible distance metrics despite and y sharing
an abstract state. It is clearly not the case then that sharing an abstract state
ensures closer proximity to other ground states within that abstract state. We
may be able to provide an upper bound for the distance between two ground
states sharing an abstract state. For example, with the Euclidean distance func-
tion over R"™, where abstract states have partition length I, we can say that for

states s,8', Zs(s) = Z(s') = d(s,s') = /21 (si —)2 < /20 2 = 1y/n.

117

5.13. Results

Figure 5.11: Simple domain demonstrating that two states, X and Y, sharing an
abstract state can be further away from each other than a state Z in a separate
abstract state.

However this provides only limited utility, particularly in higher dimensional
space. This also raises the question of how distance between abstract states can
be measured. Returning to Figure 5.11, what is the abstract distance between
A and D? Does Euclidean distance make sense with discrete states? If we
opt to take the Manhattan distance instead then the distance from A to D is
two. But does it make conceptual sense for X and Z to be further away in the
abstract state-space than X and anything in C7 This problem only becomes
more pronounced in higher dimensional space. There are no entirely satisfactory
solutions to this, and ultimately we cannot make any useful guarantees about
ground-distance or how this relates to abstract-distance.

On the other hand, LPSA does not have the state ordering property. First of
all, the number of dimensions in both state-spaces usually do not match, So any

118

5.13. Results

attempt at preserving the ordering over each state dimension is simply folly.
Even in the case where the state-spaces do share the same dimensionality, the
autoencoders employ many levels of non-linear nodes in fully-connected manner,
removing any guarantee of order preservation. It is therefore quite difficult to
understand exactly what the state-abstraction function has learned to do. It
will also suffer from any biases or distributional anomalies that are present in
the training set — even though autoencoders are self-supervised, there is the
question of how we obtain the states and the importance or frequency we assign
each one. Both of these issues, understandability and data-set bias, are not only
present in this thesis but a large part of neural network research as a whole.
Work is being done to make deep learning more explainable and interpretable
[52] [12] [4], but is still largely in its infancy.

The lack of the order-preserving property in LPSA, while making it less under-
standable to a human, allows LPSA to learn a more generalised state abstraction
function. For our state abstraction function we want to map “similar” ground
states to “similar” abstract states. By similar we mean in terms of agent trajec-
tory and overall behaviour. We don’t care how different the ground states are if
they are capturing “similar” scenarios and behaviours. It is therefore necessary
for the order preserving property to be removed to allow for potent state ab-
straction functions. This is the case precisely because similar scenarios can play
out over very different areas of the ground state-space. For an intuitive example
of this, in the Car Racing domain, shifting both the car and a straight track to
the left of the screen changes nothing about the overall scenario or the quality
of the agent’s behaviour, however such a shift can cause the ground states to be
very different — hundreds of pixels now take on many different values. Equally
the reverse is also true, if two ground states are very near to each other, that
does not imply a behavioural or scenario similarity. Again in the Car Racing
domain, it only takes a few pixel changes in order to drastically change what
the car will do in the next few steps — for example applying steering.

What we lose in human understandability in LPSA, we gain in the generalis-
ability of our abstractions across the domain. This trade-off between under-
standability and generalisability is certainly not to be taken lightly, however,
and will depend on the application and the extent to which it is safety-critical.
For our purposes, we are aiming to demonstrate that state abstraction can be
performed effectively by autoencoders and then utilised by reward shaping to
improve and agent’s learning speed. We therefore prioritise generalisability in
the automated construction of state abstraction functions due to the additional
abstraction potency provided.

119

5.14. Conclusion

5.14 Conclusion

In this chapter we have introduced a new method that extends on both MRL and
UPSA. This new approach — LPSA — removes the limitation of constructing
abstract states to be of a uniform size and aligned with each state dimension.
LPSA is capable of improving an agent’s learning performance through reward
shaping by utilising auto-encoders to create an abstract state space. LPSA is
capable of handling high dimensional state-spaces — vastly larger in size than
MRL or UPSA. We saw that LPSA outperforms Vanilla DQN in the Car Racing
domain — with the caveat that the shaping function and auto-encoder have been
learned a priori. Nevertheless, this is a significant contribution, as it shows an
entirely automatic process for an agent to create its own abstraction and for
this abstraction to give a pronounced boost to early learning performance.

120

Chapter 6

Conclusion And Future Work

Now that the primary contributions of this thesis have been presented, we can
conclude the thesis with a summary of the contributions, reflection upon the
limitations of the approaches as well as potential avenues for future work.

6.1 Summary Of Contributions

This thesis has focused primarily on finding new methods to generate abstrac-
tions for use with reward shaping. Reducing the required external domain
knowledge to create these abstractions has been an overarching goal throughout
the research presented. This has been achieved in various ways throughout the
research and will be highlighted in the coming subsections.

6.1.1 Comparison of uniform partitions and hand-labelled
examples.

In Chapter 3, we investigated the performance of three agent types. The first
agent type was a simple, unshaped agent applying the Q(\) algorithm. The
second and third agent types utilised the same Q(X) algorithm, but were aug-
mented with a shaped reward function constructed from an Abstract Markov
Decision Process (AMDP). The AMDPs in the second and third agent type dif-
fered in that the second used an AMDP with a hand-labelled abstract states and
the third utilised an AMDP where the states were formed from a uniform par-
titioning of the state-space. These agents were evaluated in the Flag Collection
domain.

121

6.1. Summary Of Contributions

We found that in many cases, the AMDPs constructed according to uniformly
partitioned ground state-spaces were able to compete with their hand-labelled
counterparts in their shaping capabilities, occasionally outperforming them.
This, of course, depended on the partitioning resolution, or “granularity” of the
AMDP’s abstract states. As expected, as the abstract states decrease in size, the
more nuanced the shaping function can be — allowing more useful knowledge
to be passed to the ground-level agent. Conversely, it took longer to compute
the value function of the AMDPs using finer-resolution uniform partitions when
compared to the hand-labelled AMDP. With the uniformly partitioned AMDPs
there is a clear trade-off between the utility of the AMDP and the time required
to solve the AMDP using Value Iteration. We found that an approximate bal-
ance can be struck where the uniformly partitioned AMDP requires roughly a
similar time to solve and yields a similar benefit to the hand-labelled AMDP. If
more time is available for solving the uniformly partitioned AMDP, then they
can often give a better shaping benefit to the ground agent.

It is worth noting again that each uniformly partitioned AMDP took less time
to solve than encoding the abstract state-space manually. This is where the
real significance of the research lies. Encoding AMDP states for even simple
environments such as the flag collection domain can take a non-trivial amount
of time for a human expert to perform. Further, even the agents utilising very
coarse-grained resolutions performed better than unshaped agents.

To expand briefly on the cost of labelling the abstract states of an AMDP,
Amazon’s Mechanical Turk charges (at the time of writing) $870 per 1000 im-
age segmentations [2] (the closest analogy to partitioning a maze-based AMDP).
Were we to attempt to extend this work to deal with environments with ran-
domised room layouts and need thousands of AMDPs, the cost here would be
far too large and it would be far too onerous to perform manually. Addition-
ally, for more complex environments, such as the Car Racing domain we saw
in Chapter 5, encoding AMDP states becomes not simply time consuming, but
also difficult. It is unclear how to manually create a state abstraction function
for such a domain, this is further complicated by the continuous nature of both
the ground and abstract state-spaces. Some recent data-set corpora (indepen-
dent of RL) have begun to include the cost of labelling [23] and the costs can
be high. A more thorough analysis of data-set annotation cost can be found in
[47]. Overall it is clear that automated solutions have an edge here in terms of
speed, price and desirability.

6.1.2 Learning abstract transition functions

In Chapter 4 we devised an extension of Multi-Grid Reinforcement Learning
(MRL) to incorporate deep learning. This extension utilised the same abstract
transition function learning as MRL, and the abstract states were constructed

122

6.1. Summary Of Contributions

in the same way (identically to the uniform partitionings).

Our extension differed from MRL by constructing an explicit abstract model
of the environment and fully solving that to produce a static reward shaping
function. Our approach outperformed both Vanilla DQN and MRL (extended
naively to deep learning) over a range of continuous control domains.

Both MRL and our approach reduce the required domain knowledge to an ab-
stract reward function. However, MRL’s is unspecified in the general case,
whereas our approach simply signifies an abstract goal and reduces the abstract
reward function to a distance measure to the abstract goal in terms of the num-
ber of required abstract transitions.

Our approach is an improvement over MRL due to its performance in the deep
learning scenario as well as its simplified and specified abstract reward function
that utilises only a small amount of domain knowledge that is easy to obtain or
often understood a priori.

6.1.3 Latent property state abstraction

Chapter 5 introduced the idea of using latent properties as an abstract method
for reward shaping. This method we call latent property state abstraction
(LPSA).

Here an auto-encoder was used to identify the required latent properties to
represent a high-dimensional state in a low-dimensional abstraction. Utilising
an auto-encoder in this manner allows the abstraction of far more complex
domains that our previous methods.

We then demonstrated that agents interacting with the environment through
these low-dimensional abstractions are capable of learning abstract policies that
provide a good boost to learning speed when used with reward shaping. We saw
that our reward shaping approach outperformed a DQN agent learning on the
ground environment when the AMDP was available a priori within the Car
Racing domain. Further, we saw that our method converges on a strong policy
in fewer episodes than DQN as well and is comparable to the World Models[30]
approach.

The significance of this research is that it demonstrates that the structure of
the latent representation learned by the auto-encoder is suitable structure for
performing RL with reward shaping in mind. Previous work, overviewed and
analysed in Section 5.5, had shown a spattering of techniques for using latent
state-spaces to increase learning speed. However, nothing previously had shown
that the structure of the learnt latent representation is suitable for learning
useful reward shaping value functions.

123

6.2. Limitations

6.2 Limitations

Due to the nature of the thesis, many of the later chapters work on address-
ing limitations of the previous chapters. For example, a limitation of creating
AMDPs from uniform partitions that was developed in Chapter 3 was that
domain knowledge was utilised extensively to create a transition and reward
function. This is the reason that this approach was not a definitive improve-
ment over the existing Q(\) algorithm, but rather a proof of concept. However
these limitations were addressed in Chapter 4 where we utilised MRL’s ap-
proach to learning the transition function, as well as reducing the knowledge
required for the reward function to an abstract goal state. Similarly, a limi-
tation of the method from Chapter 4 was that the uniformity of the abstract
state-space caused the number of abstract states to grow exponentially in the
number of state dimensions, rendering the approach intractable for large-scale
tasks. Again, this limitation was addressed in the following chapter, Chapter 5,
where the concept of latent state-space abstractions was introduced.

The limitations we describe in this section then, will mostly refer to the limita-
tions of the method outlined in Chapter 5 as well as any issues that affect each
of the methods that have not been addressed elsewhere.

A limitation of this final method in particular is that the process for training
an abstract network now takes a significant amount of time, particularly when
compared to the prior methods of earlier chapters. Of course, this is to be ex-
pected, it is a more complex method, utilising deep learning rather than tabular
methods and able to abstract tasks themselves are also correspondingly more
complex. However, training both an auto-encoder to act as a state-abstraction
function, as well as training DQN over this abstract environment can take longer
than the speed up benefit provided by the shaping compared to vanilla DQN.
However, producing a practical algorithm, ready for deployment was not the
aim of this chapter or thesis as a whole; instead the aim was to demonstrate
that latent properties of the state-space can be identified to reduce the state-
space to a manageable size and then crucially that reward shaping based on the
learned values of these abstract states could improve agent performance. All of
this was also achieved in a fully automated manner. The only real knowledge
required from a human expert is the number of latent state dimensions to allow
the auto-encoder to identify. The amount required will clearly depend on the
complexity of the environment, but will be easily empirically identifiable before
any RL on the task begins.

The second limitation of this final approach is that the latent states require that
the environment is amenable to auto-encoder reconstruction. This means that
environments with very fine visual details that may be lost by the convolutional
layers in the autoencoder may be less suited to this method than other envi-
ronments. This is not to say that latent state-space abstraction based methods

124

6.3. Generality

are not applicable to these finely detailed environments, however, these envi-
ronments would instead possibly require an alternative method for identifying
salient latent properties.

6.3 (Generality

A quintessential requirement for many machine learning approaches is their
generality; what range of domains do these techniques apply well to? It is well
worth discussing the expectations of generality for the three core approaches
proposed in this thesis. Broadly, as the thesis progresses and the methods be-
come more complex, they also become more generalisable. If we consider the
(unnamed) approach from Chapter 3 (which was intended more as a feasibility
study of uniform state abstractions) we see limited applicability to environments
other than Flag Collection — too much domain knowledge was used. However,
it must be said that there are lots of “Flag-Collection-Like” domains that have
practical use. Examples include warehouse or bomb disposal robotics, where
there are clearly defined spatial state-spaces and knowledge of the goal or “flag”
location is known a priori. Uniform Property State Abstraction from Chap-
ter 4 extends the generalisability of the previous method by learning abstract
transitions. This approach could, in theory, be applied to a far wider range of
domains. The main limitations to this come from requiring a state-space with
relatively few dimensions (due to using Value Iteration and the Curse of Dimen-
sionality), as the environment needing to be easy to explore in order to build
up an accurate AMDP. This limits the use of UPSA mostly to continuous-state
control problems. Finally, Latent Property State Abstraction, from Chapter 5,
is the most generally applicable. Not only can LPSA handle large numbers of
state-dimensions (possibly pixel-based images), it also learns its own abstraction
function, and leverages this with the existing environment to interpret ground
transitions as abstract transitions. This allows LPSA to learn a strong abstract
policy over the abstract states. The primary aspects of LPSA that would pre-
vent its use on other RL domains would be, again, requiring a good level of prior
exploration to build up the set of states for training the auto-encoder. There are
some domains where this is simply infeasible. Additionally, some environments
with pixel-based state-spaces may contain very small details that are easily lost
by the auto-encoder. These domains may prove a challenge, though it may be
possible to explore alternatives to auto-encoders for extracting the key informa-
tion and then create an abstract state in a different manner, Overall, however,
LPSA is applicable to a large variety of environments from across the RL spec-
trum, domains similar to Atari games are a prime example, as well as scenarios
where an agent is interacting with the real world through a camera.

125

6.4. Future Work

6.4 Future Work

As with any large body of research, the number of possible directions are seem-
ingly exponential — the Curse of Dimensionality strikes again. Here we will
outline some of the more promising areas for investigation.

Broadly speaking, the topics of most promise are abstraction width, abstraction
height and abstraction integration. We will briefly outline each of these in the
following sections.

6.4.1 Abstraction Integration

In order to fully reap the benefits of reward shaping from latent state-spaces
the additional time taken caused by training the abstract agent needs to be
addressed. The most obvious approach to doing this would be to reduce the
time required to train the agent operating on the latent state-space. However
this may not be feasible for complex tasks where the latent dynamics are also
complex.

Another possible approach would be to interweave the training procedures for
the ground agent and abstract agent. The two agents could either alternate
control after a fixed number of episodes, or perhaps the abstract agent could
learn entirely from the ground agent’s experiences. Either way, some form of
parallel learning could potentially give the required speed-up.

The ideal approach for achieving this isn’t immediately clear, but once achieved
would provide a deployable, efficient algorithm able to use its own abstraction
to increase its learning rate with almost no human expertise.

6.4.2 Abstraction Height

As the tasks we utilise RL for become more and more complex, abstraction in
some form becomes more crucial to learning a satisfactory policy in a timely
manner. However, as the problem domains grow in complexity, the abstractions
themselves must grow in complexity in order to capture the essence of the task
and be useful abstractions. This can lead to the abstraction itself requiring a
lot of computational time to attain a satisfactory abstract policy or values for
use with shaping.

There are two possible solutions to this issue. The first is to increase the ca-
pabilities of the abstract representation. We saw an example of this during
this thesis; the AMDPs based on uniform partitions of the ground state-space

126

6.4. Future Work

are less “abstractly powerful” than the latent state-space based abstractions.
It is not immediately clear what changes to the latent state-space based ab-
stractions would increase its abstracting power. On the other hand, stacking
abstractions could be beneficial to the training process. In this approach, a
very “coarse” abstraction would be trained and shape a “finer-grained”, more
complex abstraction. This second-level abstraction would then be used to shape
the ground-level task. This could allow the training of inherently more com-
plex tasks than current methods allow. This concept of abstraction stacking
appeared in the paper [72] highlighted in Section 5.5.3, but integrating these
“abstraction stacks” with LPSA could allow for some very potent agents.

Increasing what we have termed “abstraction height” (i.e., the height of an
abstraction stack) could also be combined with the prior section on abstraction
integration. If these multiple levels can learn their own policies and shape more
grounded agents concurrently, then further time could be saved by removing
the need for abstract “pre-training”. This, of course, would need to be balanced
against the shaping benefit that is lost by shaping before the abstract policy is
complete.

6.4.3 Abstraction Width

The final proposed research direction is that of improving “abstraction width”.
By abstraction width we mean the breadth of domain variations that a single
abstraction can be applied to and shape.

Over the course of this thesis, we have typically only considered domains that
remain very similar each episode. For instance, the Flag Collection domains,
Puddle World, Mountain Car and Catcher from Chapters 3 and 4 were essen-
tially identical in every episode. Car Racing from Chapter 5 did consist of a
racing track that was generated randomly from track segments, however there
were only a few segments and they could almost be tackled independently of
other parts of the track.

Many real-world domains are not so. Tasks can often have variations and dif-
ferences that occur within each episode. An example of this within one of the
smaller environments that we have used would be an alternate version of Moun-
tain Car where the profile of the Mountain is randomised or the car has a varying
mass or drive capabilities. To overcome these types of environments, the agent
has to learn a more “general” solution to the problem based on its perceptions.

The work in this thesis could be extended to this type of problem. At present
the abstractions constructed are verifiably useful for only the domain for which
they were constructed in. However due to the nature of abstraction, it is possible
that it may be easy to create abstractions that can be useful for solving many
variations of the same task.

127

6.5. Concluding Remarks

Slightly more formally, our tasks can be drawn from a distribution D and each
episode draws a new environment d from this distribution: d ~ D. We would
then like our abstractions to encapsulate D and be useful for shaping agents
that are also drawing their environments from D in the same manner.

Inevitably, some of the tasks will be more difficult than others. We also want
to balance the range of tasks within D that an agent can perform in against
the performance in each individual task. Psychometrics provides an interesting
way of evaluating tasks of this sort. Item Response Theory (IRT) [20] outlines
methods of statistically scoring each task d from D a “difficulty” score h, as
well as evaluating an agent’s performance over the task domain as difficulty
increases. This is referred to as an Agent Characteristic Curve (ACC). IRT goes
on to derive some notions of performance from this curve. The two most notable
are generality and capability — these give notions of the range of domains the
agent learns to perform over as well as the overall performance of the agent over
the task distribution set as a whole.

IRT has recently seen use within machine learning [43] [44], where it has been
used to evaluate the generalisation power of a large number of Al agents on
Atari games as well as classifiers on various data-sets.

The further work to be proposed is an investigation of the trade-offs between
generality and capability (when defined in this manner) against abstraction
utility. A low-capability, high-generality abstraction could perhaps shape agents
to be evaluated on D more effectively than one with low-generality and high-
capability. On the other hand, high-generality abstractions used with shaping
could lead to higher-generality ground agents.

This proposed research is potentially of import due to the current nature of very
specialised learning algorithms that markedly worsen when even small changes
to the environment are made [76]. Overcoming this overspecialisation of agents
and algorithms is necessary for the eventual rise of Artificial General Intelligence.

6.5 Concluding Remarks

In recent years RL has become something of a juggernaut in the machine learn-
ing community. Exploration into the potential of this field is abound in every
direction. Much effort from the community has gone into showing the power of
imparting prior knowledge to agents, and that this knowledge can be based on
abstractions of the task domain. We have seen more recent work beginning to
automate this process of abstraction creation. As with many aspects of RL —
and life in general — there is not always only one correct method to achieve
something. It is among these more recent abstraction creation methods in which
this body of work resides. We have tried to keep the methods intuitive and (rel-

128

6.5. Concluding Remarks

atively) simple, whilst also attempting to keep the abstractions that arise from
these methods robust, useful and respecting a notion of an abstract hierarchy.
The work here is hopefully to be used and improved upon by those inhabiting
the future.

129

1]

[9]

[10]

Bibliography

Cambridge dictionary. https://dictionary.cambridge.org/
dictionary/english/abstract. Accessed 2020-04-27.

Mechanical turk pricing. https://www.mturk.com/pricing Last Accessed:
2021-05-10.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Woj-
ciech Zaremba. Hindsight experience replay, 2017.

Plamen Angelov and Eduardo Soares. Towards explainable deep neural
networks (xdnn), 2019.

Kai Arulkumaran, Nat Dilokthanakul, Murray Shanahan, and Anil An-
thony Bharath. Classifying options for deep reinforcement learning. CoRR,
abs/1604.08153, 2016.

Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 2010.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 09, pages 41-48, New York, NY, USA,
2009. ACM.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is “nearest neighbor” meaningful? In Catriel Beeri and Peter Bune-
man, editors, Database Theory — ICDT’99, pages 217-235, Berlin, Heidel-
berg, 1999. Springer Berlin Heidelberg.

Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods
for continuous-time markov decision problems. In Advances in Neural In-
formation Processing Systems, pages 393-400. MIT Press, 1994.

Steven J. Bradtke and Michael O. Duff. Reinforcement learning meth-
ods for continuous-time markov decision problems. In Proceedings of the

130

https://dictionary.cambridge.org/dictionary/english/abstract
https://dictionary.cambridge.org/dictionary/english/abstract

Bibliography

[15]

[16]

[17]

[20]

[21]

[22]

[23]

7th International Conference on Neural Information Processing Systems,
NIPS’94, page 393-400, Cambridge, MA, USA, 1994. MIT Press.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris
Olah. Activation atlas. Distill, 2019. https://distill.pub/2019/activation-
atlas.

Dario Cazzani. World-models-tensorflow. https://github.com/
dariocazzani/World-Models-TensorFlow, 2018. Accessed 2020-05-13.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 26(1):29-41, Feb 1996.

J.R. Doyle. Supervised learning in n-tuple neural networks. International
Journal of Man-Machine Studies, 33(1):21-40, 1990.

Kyriakos Efthymiadis, Sam Devlin, and Daniel Kudenko. Overcoming in-
correct knowledge in plan-based reward shaping. The Knowledge Engineer-
ing Review, 31(1):31-43, 2016.

Kyriakos Efthymiadis and Daniel Kudenko. A comparison of plan-based
and abstract mdp reward shaping. Connect. Sci, 26(1):85-99, January
2014.

Kyriakos Efthymiadis and Daniel Kudenko. Knowledge revision for rein-
forcement learning with abstract mdps. In Proceedings of the 2015 In-
ternational Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’15, pages 763-770, Richland, SC, 2015. International Foundation
for Autonomous Agents and Multiagent Systems.

ElsanEl. Gym-puddle. https://github.com/EhsanEIl/gym-puddle. Ac-
cessed: 2020-3-6.

S. E. Embretson and S. P. Reise. Item response theory for psychologists. L.
Erlbaum, 2000.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence,
2(3):189 — 208, 1971.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and
Pieter Abbeel. Learning visual feature spaces for robotic manipulation with
deep spatial autoencoders. CoRR, abs/1509.06113, 2015.

Nicholas FitzGerald, Julian Michael, Luheng He, and Luke Zettlemoyer.
Large-scale QA-SRL parsing. CoRR, abs/1805.05377, 2018.

131

https://github.com/dariocazzani/World-Models-TensorFlow
https://github.com/dariocazzani/World-Models-TensorFlow
https://github.com/EhsanEI/gym-puddle

Bibliography

[24]

[25]

[26]

[27]

[30]

[31]

David Foster. World models. https://github.com/
AppliedDataSciencePartners/WorldModels, 2018. 2020-012-16.

Mohsen Ghafoorian, Nasrin Taghizadeh, and Hamid Beigy. Automatic
abstraction in reinforcement learning using ant system algorithm. pages
9-14, 01 2013.

Behzad Ghazanfari and Matthew E. Taylor. Autonomous extracting a
hierarchical structure of tasks in reinforcement learning and multi-task re-
inforcement learning. CoRR, abs/1709.04579, 2017.

Sertan Girgin, Faruk Polat, and Reda Alhajj. Improving reinforcement
learning by using sequence trees. Machine Learning, 81(3):283-331, Dec
2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Marek Grze$ and Daniel Kudenko. Multigrid reinforcement learning with
reward shaping. In Véra Kurkové, Roman Neruda, and Jan Koutnik, ed-
itors, Artificial Neural Networks - ICANN 2008, pages 357-366, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

David Ha and Jiirgen Schmidhuber. World models. CoRR, abs/1803.10122,
2018.

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation dis-
tributions in evolution strategies: the covariance matrix adaptation. In
Proceedings of IEEE International Conference on Evolutionary Computa-
tion, pages 312-317, 1996.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina
Jayne. Imitation learning: A survey of learning methods. ACM Comput.
Surv., 50(2), April 2017.

Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaskowski. Vizdoom: A doom-based Al research platform for
visual reinforcement learning. CoRR, abs/1605.02097, 2016.

Ghorban Kheradmandian and Mohammad Rahmati. Automatic abstrac-
tion in reinforcement learning using data mining techniques. Robotics and
Autonomous Systems, 57(11):1119 — 1128, 2009.

Diederik P. Kingma and M. Welling. Auto-encoding variational bayes.
CoRR, abs/1312.6114, 2014.

Diederik P. Kingma and Max Welling. An introduction to variational au-
toencoders. CoRR, abs/1906.02691, 2019.

132

https://github.com/AppliedDataSciencePartners/WorldModels
https://github.com/AppliedDataSciencePartners/WorldModels
http://www.deeplearningbook.org

Bibliography

[37]

[38]

[45]

[46]

[47]

A H. Klopf and Air Force Cambridge Research Laboratories (U.S.). Brain
Function and Adaptive Systems: A Heterostatic Theory. Special Reports.
Air Force Cambridge Research Laboratories, Air Force Systems Command,
United States Air Force, 1972.

Ramnandan Krishnamurthy, Aravind S. Lakshminarayanan, Peeyush Ku-
mar, and Balaraman Ravindran. Hierarchical reinforcement learning
using spatio-temporal abstractions and deep neural networks. CoRR,
abs/1605.05359, 2016.

Tejas D. Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Joshua B.
Tenenbaum. Hierarchical deep reinforcement learning: Integrating tempo-
ral abstraction and intrinsic motivation. CoRR, abs/1604.06057, 2016.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning
multi-level hierarchies with hindsight, 2017.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstrac-
tion in reinforcement learning via clustering. In Proceedings of the Twenty-
first International Conference on Machine Learning, ICML ’04, pages 71—,
New York, NY, USA, 2004. ACM.

Bhaskara Marthi. Automatic shaping and decomposition of reward func-
tions. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pages 601-608, New York, NY, USA, 2007. ACM.

Fernando Martinez-Plumed and José Hernandez-Orallo. Analysing results
from ai benchmarks: Key indicators and how to obtain them. ArXiv,
abs/1811.08186, 2018.

Fernando Martinez-Plumed, Ricardo B.C. Prudéncio, Adolfo Martinez-Usd,
and José Herndndez-Orallo. Item response theory in ai: Analysing machine
learning classifiers at the instance level. Artificial Intelligence, 271:18 — 42,
2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

James F. Mullen, Franklin R. Tanner, and Phil A. Sallee. Comparing the
effects of annotation type on machine learning detection performance. In
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 855-861, 2019.

133

Bibliography

[48]

[54]

[55]

[56]

[57]

[58]

Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source
task creation for curriculum learning. In Proceedings of the 15th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2016), Singapore, May 2016.

Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous task se-
quencing for customized curriculum design in reinforcement learning. In
Proceedings of the 26th International Joint Conference on Artificial Intel-
ligence (IJCAI), Melbourne, Australia, August 2017.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for rein-

forcement learning. CoRR, abs/1812.00285, 2018.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance un-
der reward transformations: Theory and application to reward shaping. In
Proceedings of the Sixteenth International Conference on Machine Learn-
ing, ICML 99, pages 278-287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

Chris Olah, Arvind Satyanarayan, lan Johnson, Shan Carter, Ludwig Schu-
bert, Katherine Ye, and Alexander Mordvintsev. The building blocks of
interpretability. Distill, 2018. https://distill.pub/2018/building-blocks.

Emilio Parisotto, Jimmy Ba, and Ruslan R. Salakhutdinov. Actor-
mimic: Deep multitask and transfer reinforcement learning. CoRR,
abs/1511.06342, 2016.

Martin L. Puterman. Chapter 8 markov decision processes. In Stochastic
Models, volume 2 of Handbooks in Operations Research and Management
Science, pages 331 — 434. Elsevier, 1990.

Jette Randlgv and Preben Alstrgm. Learning to drive a bicycle using
reinforcement learning and shaping. In Proceedings of the Fifteenth Inter-
national Conference on Machine Learning, ICML ’98, pages 463-471, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochas-
tic backpropagation and approximate inference in deep generative models.
In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st Inter-
national Conference on Machine Learning, volume 32 of Proceedings of
Machine Learning Research, pages 1278-1286, Bejing, China, 22-24 Jun
2014. PMLR.

Melrose Roderick, Christopher Grimm, and Stefanie Tellex. Deep abstract
g-networks. CoRR, abs/1710.00459, 2017.

F. Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65 6:386—408, 1958.

134

Bibliography

[59]

[65]

[66]

[67]

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
Representations by Back-Propagating Errors, page 696-699. MIT Press,
Cambridge, MA, USA, 1988.

G. Rummery and Mahesan Niranjan. On-line g-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR 166, 11 1994.

Mike Schuster. Better generative models for sequential data problems:
Bidirectional recurrent mixture density networks. In S. A. Solla, T. K.
Leen, and K. Miiller, editors, Advances in Neural Information Processing
Systems 12, pages 589-595. MIT Press, 2000.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484-503, 2016.

Satinder Singh, Richard Sutton, and P. Kaelbling. Reinforcement learning
with replacing eligibility traces. Machine Learning, 22, 11 1995.

Richard Sutton. Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. 08 1996.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1 edition, 1998.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA, 2 edition, 2018.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps
and semi-mdps: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112(1):181 — 211, 1999.

Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement
Learning. PhD thesis, 1984. AAI8410337.

Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker,
and Peter Stone. Automatic curriculum graph generation for reinforcement
learning agents, 2017.

Nasrin Taghizadeh and Hamid Beigy. A novel graphical approach to au-
tomatic abstraction in reinforcement learning. Robotics and Autonomous
Systems, 61(8):821 — 835, 2013.

Norman Tasfi. Pygame learning environment. https://github.com/
ntasfi/PyGame-Learning-Environment, 2016.

135

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

Bibliography

[72]

73]

Elise van der Pol, Thomas N. Kipf, Frans A. Oliehoek, and Max Welling.
Plannable approximations to MDP homomorphisms: Equivariance under
actions. CoRR, abs/2002.11963, 2020.

Ziyu Wang, Bin Dai, David Wipf, and Jun Zhu. Further analysis of out-
lier detection with deep generative models. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 8982-8992. Curran Associates,
Inc., 2020.

Christopher Watkins. Learning from delayed rewards. 01 1989.

Eric Wiewiora, Garrison Cottrell, and Charles Elkan. Principled methods
for advising reinforcement learning agents. 07 2003.

Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M. Hospedales.
Investigating generalisation in continuous deep reinforcement learning,
2019.

E. Cilden and F. Polat. Toward generalization of automated temporal ab-
straction to partially observable reinforcement learning. IEEE Transactions
on Cybernetics, 45(8):1414-1425, Aug 2015.

136

	Introduction
	Hypothesis and Scope
	A Note On Abstraction
	Overview of the Thesis

	Background and Literature
	Reinforcement Learning
	Markov Decision Processes
	Value Iteration
	Q-Learning
	SARSA
	Off-Policy and On-Policy
	Limitations of Reinforcement Learning

	Eligibility Traces And Watkins' Q()
	Generalisation in Reinforcement Learning
	Linear Approximation
	Tile Coding

	Abstraction In Reinforcement Learning
	Semi Markov Decision Processes
	Options
	Using Options
	Option Generation
	Bottlenecks
	Clustering
	Ant System Optimisation
	Other Methods

	Extended Sequence Trees
	Association Rule Mining
	Concluding Remarks For Option Generation

	Abstract Markov Decision Processes

	Guided Learning
	Curriculum Learning

	Reward Shaping
	Reward Shaping With AMDPs
	Knowledge Revision
	Automatic Shaping and Decomposition of Reward Functions
	Multi-Grid Reinforcement Learning

	Unification of AMDPs and SMDPs
	Deep Learning
	Deep Q-Learning
	Convolutional Neural Networks
	Deep Reinforcement Learning and Abstraction
	Option Heads
	Hierarchical Actor-Critic
	Overview

	Concluding Remarks

	Empirical Analysis of the Feasibility of Uniform State Abstraction For Reward Shaping
	Flag Collection Domains
	Constructing the AMDP
	Utilising the AMDP
	Results
	Issues with this Approach
	Domain Knowledge
	Intuitive Objections
	Time Taken To Solve the AMDP

	Conclusion

	Uniform State Abstraction For Reinforcement Learning
	Uniform Partition State Abstraction
	Constructing the AMDP
	Partitioning the State-space
	Exploration
	Abstract Reward
	Abstract Goals
	Putting it all together

	Utilising The AMDP
	MultiGrid Reinforcement Learning
	Differences

	Alternative Approaches
	Experiments And Results
	Mountain Car
	Continuous Puddle World
	Catcher
	Experimental Detail

	Limitations and Next Steps
	Conclusion

	Latent State Abstraction
	High Dimensional State-Spaces
	Continuous Abstract States
	Latent State-Spaces
	Auto-Encoders
	Variational Auto-encoders

	Using Auto-encoders and Latent State-spaces with Reinforcement Learning
	World Models
	Robotics
	Structured Latent State-spaces

	Latent State-spaces as Abstraction
	Utilising Latent State-spaces
	Method Overview
	Experimental Domain
	Training the Auto-encoder
	Auto-encoder Reconstruction

	Training the Abstract Network
	Differences to Uniform Partition State Abstraction
	Architecture and Hyper-parameters

	Utilising the Abstraction
	Training the Ground Network

	Results
	LPSA Results
	Caveats
	Comparing Abstraction Functions

	Conclusion

	Conclusion And Future Work
	Summary Of Contributions
	Comparison of uniform partitions and hand-labelled examples.
	Learning abstract transition functions
	Latent property state abstraction

	Limitations
	Generality
	Future Work
	Abstraction Integration
	Abstraction Height
	Abstraction Width

	Concluding Remarks

