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Abstract

A causal graph can be generated from a dataset using a particular causal algorithm, for

instance, the PC algorithm, Fast Causal Inference (FCI) or Really Fast Causal Inference

(RFCI). This research provides two contributions for learning causal graphs: an easy way

to handle mixed data so that it can be used to learn causal graphs using the PC algo-

rithm/FCI/RFCI and a method to evaluate the learned graph structure when the true

graph is unknown. This research proposes using kernel functions and kernel alignment

to handle mixed data. The two main steps of this approach are computing a kernel ma-

trix for each variable and calculating a pseudo-correlation matrix using kernel alignment.

The kernel alignment matrix is used as a substitute for the correlation matrix, the main

component used in computing a partial correlation for the conditional independence test

for Gaussian data in the PC algorithm, FCI, and RFCI. The advantage of this idea is

it is then possible to handle more data types when there is a suitable kernel function to

compute a kernel matrix for an observed variable. The proposed method is successfully

applied to learn a causal graph from mixed data containing categorical, binary, ordinal,

and continuous variables. We also introduce the Modal Value of Edges Existence (MVEE)

method, a new method to evaluate the structure of learned graphs represented by a Partial

Ancestral Graph (PAG) when the true graph is unknown. MVEE produces an agreement

graph as a proxy to the true graph to evaluate the structure of the learned graph. MVEE

is successfully used for choosing the best-learned graph when the true graph is unknown.
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Chapter 1

Introduction

1.1 Background and Motivation

Statistical learning can be used to infer dependence among random variables from obser-

vational data. Correlation measures a relationship between two variables but a correlation

does not imply causation. This means that statistical properties alone do not determine

causal structures [56]. Understanding two variables moving together is not enough to know

whether one variable causes another.

A distribution function does not show how the distribution will be different if external

conditions are changed. It happens because the laws of probability theory do not instruct

how one variable should change when another variable is modified [54]. This problem can

be solved by causal assumptions which identify relationships that remain the same when

external conditions change. Causal learning and analysis help answer the cause-effect

questions in some areas, for instance, medical treatment, health, economic, and politics.

The studies in inferring causal graphs in health and medical treatments have been done

in previous research [36] [38] [55] [68] [77]. Causal inference in economics appears in

some publications [13] [73] [81]. Causal inference in political science has been studied by

Blackwell [10].

A causal graph is a graphical model used to describe the cause-effect relationship

between variables. Examples of algorithms for learning causal graphs from a dataset are

the PC algorithm [62], Fast Causal Inference (FCI) [62] and Really Fast Causal Inference

(RFCI) [20]. The PC, FCI, and RFCI algorithms use conditional independence tests to

generate a causal graph from a dataset [62] [39]. A dataset that includes both discrete and

continuous variables is called mixed data. Testing for conditional independence is more

1



Chapter 1: Introduction

complex when data is mixed than when it is either entirely discrete or entirely continuous.

Conditional independence testing is even more complicated when the dataset is mixed

data containing missing values.

The motivation to develop a method for causal learning from mixed data is that it

would be useful for real datasets that possibly have different data types. The real datasets

are recorded from real events, for instance, patient datasets. A patient’s dataset might con-

tain patient’s id, age, gender, blood type, blood pressure, heart beat, disease, treatment,

time for recovery and other details. Causal discovery from this dataset can be beneficial,

for example, discovering the causal relationship between medicine, blood pressure, and

recovery rate. In reality, it is possible to encounter the situation when we need to learn

causal graphs from mixed data containing missing values. The missing values probably

happen because of instrument error or human error during data collection. Missing data

also creates a problem in causal learning.

After generating a graph from a dataset, it is necessary to evaluate the quality of

the learned graph. Evaluating the learned graph is important to ensure that the learned

graph has a certain quality for further use, i.e., data analysis, decision support system, etc.

Evaluating the learned graph is easy when there is a true graph; for instance, one needs

only to compare the structure of the true graph and the learned graph then analyze the

mismatch. In a situation where the true graph is unknown, it is difficult to evaluate the

quality of the learned graph. The unknown true graph means that there is a true graph

but we do not know its identity. Developing a method to create a proxy of the true graph

is useful to measure the quality of the learned graph.

Some applications were designed for learning causal graphs from mixed data. deal is

an R package for learning the Bayesian networks from discrete and continuous variables

restricted to conditionally Gaussian networks [12] [11]. It outputs a DAG and the limita-

tion is this method works only for datasets without missing values and no latent variables.

Latent variables are variables that are not measured or recorded [20]. Selection variables

are unmeasured variables that determine whether or not a measured unit is included in

the data sample [20]. MXM is an R package for conditional independence test for mixed

data [71] [43]. MXM was successfully implemented to learn a Bayesian network using the

PC algorithm [70] and in this paper, we call it the PC MXM. MXM is equipped with

a simple method for missing values handling; if there are missing values in the dataset

column wise imputation takes place. MXM applies median and mode for the imputation

2



1.2 Research Question

procedure for continuous and categorical variables, respectively. It is a naive and not so

clever method, so the user is encouraged to make sure their data contain no missing val-

ues. Greedy search Hill-Climbing (HC) is a score-based learning algorithm in R package

bnlearn to explore the space of the directed acyclic graphs [60] [51] [50]. The algorithm

explore the search space starting from the empty graph and adding, deleting, or reserving

one arc at a time until the score can no longer be improved [51].

1.2 Research Question

The issues addressed in this research are learning causal graphs from mixed data containing

missing values and evaluating the learned graph when the true graph is unknown. In this

study, there are two research questions: (i) how to handle mixed data containing missing

values in learning causal graphs (ii) how to evaluate the learned graph structure when

the true graph is unknown. We propose kernel functions and kernel alignment to handle

mixed data in a way that allows existing algorithms (e.g. PC, FCI, RFCI) to be used. In

this research, we use the PC, FCI, and RFCI implementation from pcalg [40]. The second

goal is evaluating the structure of a learned graph when the ground truth is unknown.

This research introduces a new method called Modal Value of Edges Existence (MVEE)

to evaluate different learned PAGs (Partial Ancestral Graphs). This research implements

kernel functions to compute kernel matrices where we have a choice of kernel parameters.

Different kernel parameter choices can produce different learned graphs. This research

uses the MVEE method to choose between these various learned graphs, since in real

applications we do not have the ground truth to help us make this choice.

1.3 Research Contributions

The contributions of this research are:

� Kernel Alignment PC (KAPC), Kernel Alignment FCI (KAFCI), and Kernel Align-

ment RFCI (KARFCI) are methods for learning causal graphs from mixed data

containing missing values. Those methods implement kernel functions and kernel

alignment to produce a kernel alignment matrix from a dataset. The kernel align-

ment matrix is used as a substitute correlation matrix for conditional independence

tests in the PC, FCI, and RFCI.

3
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� Modal Value of Edge Existence (MVEE) is a method to evaluate the structure of

learned graphs represented by PAG when the true graph is unknown. This method

is useful for choosing the best learned graph when the true graph is unknown.

1.4 Thesis Structure

This thesis contains several chapters:

Chapter 1 Introduction: this chapter contains the background and motivation,

research questions, research contributions, and thesis structure.

Chapter 2 Literature Review: this chapter contains the literature review related

to the probabilistic graphical model, causal algorithm, mixed data, and missing values

data.

Chapter 3 Learning Causal Graphs from Mixed Data: this chapter describes

related works in causal learning from mixed data in the presence of latent variables, the

detailed explanation of kernel function and kernel alignment to handle mixed data for

causal learning using the PC, FCI, and RFCI, generating mixed datasets, experimental

results and discussion.

Chapter 4 Learning Causal Graphs from Mixed Data Containing Missing

Values: this chapter describes related works in missing values handling, kernel extension

to handle mixed data containing missing values and latent variables for causal learning,

generating mixed data containing missing values, experimental results and discussion.

Chapter 5 Evaluating Graph Structure When The True Graph is Unknown:

this chapter describes related work in measuring graph structure when the true graph

is unknown, a new method Modal Value of Edge Existence (MVEE) to evaluate the

graph structure represented by Partial Ancestral Graphs (PAGs) when the true graph is

unknown, experimental result and discussion.

Chapter 6 Evaluation and Conclusion: this chapter describes the evaluation of

the proposed methods, conclusion, and future work.
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Chapter 2

Literature Review

2.1 Probabilistic Graphical Models

2.1.1 Probability Theory

The word probability refers to a degree of confidence that an event of an uncertain nature

will occur. An example of probability is a weather forecast, for example, “there is a high

probability of heavy snow in the afternoon”. A probability distribution P over (Ω, S) is a

mapping from events in S to real values that satisfies [42]:

� P (α) ≥ 0 for all α ∈ S

� P (Ω) = 1

� If α, β ∈ S and β = ∅ then P (α ∪ β) = P (α) + P (β)

The probability values lie between 0 and 1 [42]. P (α) = 1 means that there is certainty

one of the outcomes in α occurs. P (α) = 0 means that all of the outcomes are impossible.

Probabilities can be viewed as subjective degrees of belief. P (α) = 0.3 represents one’s

own degree of belief that the event α will occur.

The probability of two events happening together can be explained by conditional

probability. Let the event α be “student with the jacket size M” and the event β be “all

female students”. We can consider the probability of α∩β (set of female students who wear

jacket size M). The conditional probability of β given α is defined as P (β|α) = P (α∩β)
P (α) [42].

The conditional probability is not defined when P (α) = 0.

The chain rule of conditional probabilities is defined by P (α ∩ β) = P (α)P (β|α). If

α1, ..., αk are events then it can be written as P (α1 ∩ ... ∩ αk) = P (α1)P (α2|α1)...P (αk ∩
5
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α1 ∩ ... = ∩αk−1) [42]. The Bayes rule is a consequence of the definition of conditional

probability [42]:

P (α|β) =
P (β|α)P (α)

P (β)
(2.1)

A random variable is defined by a function that associates with each outcome in Ω a

value. For example, Size is defined by a function fsize that maps each person in Ω his or her

jacket size (one of H, M, L). The event Size = M refers to the event {ω ∈ Ω : fsize(ω) = M}.

The random variable for the student’s gender takes as values either “female” or “male”.

Random variables can take different sets of values. Discrete random variables take one

of a finite number of values. Random variables can take infinitely many values (integer

or real values); for instance, Height denotes a student’s height [42]. Let X be a random

variable and V al(X) denote the set of values that a random variable X can take. The

distribution over random variable X is denoted by P (X).

The marginal distribution over Gender assigns a probability to specific events such as

P (Gender = female) and P (Gender = male), as well as to the trivial event P (Gender ∈

{Female,Male}). Note that these probabilities are defined by the probability distribution

over the original space, for instance, P (Gender = female) = 0.4 and P (Gender = male)

= 0.6. In the same way, we can define the marginal distribution for Size: P (Size = H) =

0.2, P (Size = M) = 0.5, P (Size = L) = 0.3.

In a specific situation, we are interested in questions that involve the values of several

random variables, for example, we might be interested in the event “Size = M ” and

“Gender = female”. We need to consider the joint distribution over these two random

variables. The joint distribution over a set X = {X1, ..., Xn} of random variables is denoted

by P (X1, ..., Xn). The joint distribution of two random variables has to be consistent with

the marginal distribution, in that, P (x) =
∑

y P (x, y) [42].

The notation P (Gender|Size = M) denotes the conditional distribution over the

events describable by Gender given the knowledge that the jacket’ size is M . The no-

tation P (X|Y ) represents a set of conditional probability distributions.

An event α is independent of event β in P, denoted P |= (α ⊥ β) , if P (α|β) = P (α)

or if P (β) = 0. A distribution P satisfies (α ⊥ β) if and only if P (α∩β) = P (α)P (β). An

event α is conditionally independent of event β given event γ in P, denoted P |= (α ⊥ β|γ),

if P (α|β ∩γ) = P (α|γ) or if P (β ∩γ) = 0. P satisfies (α|β ∩γ) if and only if P (α∩β|γ) =

P (α|γ)P (β|γ) [42].
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Let X, Y, Z be sets of random variables. X is conditionally independent of Y given Z

in a distribution P if P satisfies (X = x ⊥ Y = y|Z = z) for all values x ∈ V al(X),

y ∈ V al(Y ) and z ∈ V al(Z). The variables in the set Z are often said to be ob-

served. If the set Z is empty, then it is written as (X ⊥ Y) and X and Y are said

to be marginally independent. The distribution P satisfies (X ⊥ Y|Z) if and only if

P (X,Y |Z) = P (X|Z)P (Y |Z) [42].

A random variable X has a Gaussian distribution with mean µ and variance σ2, de-

notedX ∼ N (µ;σ2), if it has the a probability density function (PDF) p(x) = 1√
2πσ

e−
(x−µ)2

2σ2

[42]. A function p : R 7→ R is a probability density function or (PDF) for X if it is a

non negative integrable function such that
∫
V al(X) p(x)dx = 1. A standard Gaussian is

one with mean 0 and variance 1. A set of random variables is independent and identically

distributed (IID) if each random variable has the same probability distribution and all are

mutually independent. Let A, B, C be sets of continuous random variables with joint

density p(A,B,C). A is conditionally independent of B given C if p(a|c) = p(a, b|c) for

all a, b, c such that p(c) > 0.

2.1.2 Graphs

A graph is a data structure K containing nodes and edges. Formally, a graph is defined

by K = (X , E), where X is a set of nodes (vertices) X = {X1, X2, ..., Xn} and E is a set

of edges E ⊆ X × X [42] [39]. The set of edges E is a set of pairs, where each pair is one

of Xi → Xj , Xj → Xi, or Xi—Xj , for Xi, Xj ∈ X , i < j [42]. Two nodes are said to

be adjacent if there is an edge connecting them. Adjacent edges are edges that share a

common node. A directed edge connects two nodes Xi and Xj and it has an arrowhead.

Examples of a directed edge are Xi → Xj or Xi ← Xj . Xi ↔ Xj is an example of a bi-

directed edge. An undirected edge connects two nodes without an arrowhead. An example

of an undirected edge is Xi—Xj . A graph is directed if all edges are either Xi → Xj or

Xi ← Xj [42]. A graph is undirected if all edges are Xi—Xj [42]. If a graph has directed

and undirected edges, it is called a partially directed graph. An acyclic graph is a graph

without a cycle. A graph containing all directed edges with no cycle is called Directed

Acyclic Graph (DAG) [39].

Let Xi → Xj ∈ E , Xj is called the child of Xi in K and Xi is called the parent of Xj in

K. Suppose Xi—Xj , Xi is a neighbor of Xj in K, and vice versa. Xi is called an ancestor

of Xj and Xj is called a descendant of Xi if there is a directed path from Xi to Xj . PaX ,

7
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ChX , NbX , and AnX denote parent, children, neighbor and ancestor of X, respectively.

A directed cycle occurs in K when Xj → Xi is in K and Xi ∈ AnXj . An almost directed

cycle occurs when Xi ↔ Xj in K and Xi ∈ AnXj [78].

A path in K is a sequence of distinct nodes 〈X1, ..., Xn〉 such that for 1 6 i 6 n − 1,

Xi and Xi+1 are adjacent in K [78]. A directed path from X1 to Xn in K is a sequence

of distinct nodes 〈X1, ..., Xn〉 such that for 1 6 i 6 n − 1, Xi is a parent of Xi+1 in

K [78]. X1, .., Xn form a trail in K if for every i = 1, .., n − 1, there is Xi 
 Xi+1 [42].

Xi 
 Xj represents that Xi and Xj are connected via some edges, whether directed (in

any direction) or undirected [42]. The node X3 on the path X1 → X3 ← X2 is called an

unshielded collider if X1 and X2 are not adjacent.

A graph can be used to represent the conditional independence relations, for example,

those relations that are true for some probability distribution. d-separation is a test

for conditional independence. d-separation only works for DAGs. Suppose, three nodes

Xi, Xj , Xk then Xi and Xj are d-separated given Xk if there is no active trail between Xi

and Xj given Xk. Let X1 
 ...
 Xn be a trail in graph G and Z be a subset of observed

variables. The trail X1 
 ...
 Xn is active given Z if whenever there is a v − structure

Xi−1 → Xi ← Xi+1, then Xi or one of its descendants are in Z and no other node along

the trail is in Z [42]. Figure 2.1 shows an example of active trail (a and b) and not active

trail (c). Figure 2.2 shows the possible relationships of a trail: direct connection, common

cause, common effect (v − structure), and indirect causal/evidential effect.

Figure 2.1: Example of active trail (a and b) and not active trail (c)

The skeleton of a DAG G is the undirected graph obtained from G by replacing the

directed edges with undirected edges. Triple nodes Xi, Xj , Xk form a v-structure in DAG

G contains directed edge Xi → Xj and Xk → Xj , and Xi and Xk are not adjacent in

G [39].

A mixed graph is a graph containing three kinds of edges: directed (→), bi-directed

(↔), and undirected (—), and at most one edge between any two vertices [78]. The two

ends of an edge are called marks or orientations. Two kinds of marks are arrowhead (>)

8
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Figure 2.2: Possible relationships in a trail

and tails (-), for instance, a bi-directed edge has both arrowheads and an undirected edge

has both tails.

2.1.3 Partially Directed Acyclic Graph (PDAG)

Directed Acyclic Graphs (DAGs) are used as statistical models and causal models [78].

The causal information between variables can be represented by a directed acyclic graph

(DAG) in which the nodes represent random variables and the edges represent direct causal

effects [20]. In a simple graph X1 → X2, X1 is a direct cause of X2 [20]. Some DAGs

can describe exactly the same conditional independence information and they are called

Markov equivalent. Two DAGs are Markov equivalent if and only if they have the same

adjacencies and the same unshielded colliders [1]. In other words, two DAGs are equivalent

if and only if they have the same skeleton and the same v-structures [39]. Figure 2.3 shows

an example of Markov equivalence class of DAGs because they imply the single conditional

independence relationship “X1 ⊥ X3|X2” (X1 is conditionally independent of X3 given

X2) [20]. The number of possible DAGs is super-exponential in the number of nodes so the

estimation of DAG from data is difficult and computationally non-trivial [39]. A completed

partially directed acyclic graph (CPDAG) describes Markov equivalence classes of DAGs.

A partially directed acyclic graph (PDAG) is a graph where some edges are directed

and some are undirected and one cannot trace a cycle by following the direction of directed

edges and any direction for undirected edges [39]. A PDAG is completed if it satisfies the

following:

1. every directed edge exists also in every DAG belonging to the equivalence class of

the DAG

2. for every undirected edge Xi—Xj there exists a DAG with Xi → Xj and a DAG

9
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Figure 2.3: Markov equivalence class

with Xi ← Xj in the equivalence class

A completed partially directed acyclic graph (CPDAG) is a unique equivalence class

of Directed Acyclic Graphs (DAG) [42]. A CPDAG is a common tool for visualizing

equivalence classes of DAGs [39]. There are two main parts for estimating the CPDAG:

estimation of the skeleton and partial orientation of edges [39]. Figure 2.4 shows the

example of a DAG and a CPDAG.

Figure 2.4: The example of (i) DAG and (ii) CPDG

2.1.4 Maximal Ancestral Graph (MAG)

Assuming there are no latent variables in a dataset, some causal algorithms work for

learning causal graphs and their output is properly representable by a DAG. However,

in practice, there maybe latent variables that might exist on the datasets. If we put an

assumption that there are latent variables on the dataset, the causal structure might not

be suitably representable by a DAG. Ancestral graph models were developed to represent

the causal graph structure when these graphs are generated by the assumption that there

are latent variables in the dataset. The nodes of an ancestral graph represent random

variables and the graph is interpreted as encoding a set of conditional independence [78].

10
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Figure 2.5 shows (i) a DAG with latent variables and (ii) the ancestral graph representing

the latent variable using bi-directed between X2 and X4 [1].

Figure 2.5: (i) A DAG with a latent variable L; (ii) The ancestral graph for (i)

Figure 2.6: (i) An ancestral graph that is not maximal; (ii) A maximal ancestral graph

A mixed graph is ancestral if it satisfies this condition [78]:

� there is no directed cycle

� there is no almost directed cycle

� for any undirected edge X1 — X2, X1 and X2 have no parents or spouses

Figure 2.6 shows an example of ancestral graphs [78]. In a mixed graph, a non-endpoint

node X on path p is called a collider if the two edges incident to X on p are both into

X; otherwise X is called a non-collider on p. Figure 2.6 (i) shows X2 is a collider on the

path 〈X1, X2, X4〉, but it is a non-collider on the path 〈X3, X2, X4〉. An ancestral graph is

maximal if and only if there is no primitive inducing path between any two non-adjacent

nodes in the graph [78]. Let X1 and X2 be nodes and L,S be two disjoint sets of nodes

not containing X1 and X2 in an ancestral graph. A path p between X1 and X2 is called an

inducing path relative to L,S if every non-endpoint node on p is either in L or a collider,

and every collider on p is an ancestor of either X1, X2, or a member of S. A primitive

inducing path between X1 and X2 occurs when L = S = Ø. The path X3, X1, X2, X4

on Figure 2.6 (i) is a primitive inducing path between X3 and X4, so the graph is not

maximal. Figure 2.6 (ii) shows a maximal ancestral graph. The meaning of three kinds of

edges on a MAG can be explained as follows [78].
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� X1 → X2 means that X1 is a cause of X2 or of some selection variable, but X2 is

not a cause of X1 or of any selection variable;

� X1 ↔ X2 means that X1 is not a cause of X2 or of any selection variable, and X2 is

not a cause of X1 or of any selection variable;

� X1 — X2 means that X1 is a cause of X2 or of some selection variable, and X2 is a

cause of X1 or of some selection variable.

Figure 2.7: Two MAGs that show Markov equivalence

Every DAG with latent and selection variables can be represented by a unique MAG

over the observed variables [20]. Some MAGs can describe exactly the same conditional

independence relationship [1] [20]. These graphs are called Markov equivalent MAG [1].

Figure 2.7 shows two MAGs that have Markov equivalence. A partial ancestral graph

(PAG) can be used to represent MAGs that form a Markov equivalence class [20].

2.1.5 Partial Ancestral Graph (PAG)

Let [G] be the Markov equivalence class of MAG G. A Partial Ancestral Graph (PAG)

for [G] is a graph P that possibly has three kinds of endpoints {circle (◦), arrow (>),tail

(−)}. These endpoints on the X2 end of an edge between X1 and X2 have the following

meanings [42]:

� An arrowhead > implies that X2 is not an ancestor of X1 in any graph in G.

� A straight end –– implies that X2 is an ancestor of X1 in all graphs in G.

� A circle ◦ implies that neither of the two previous cases hold.

The endpoints might form six kinds of edges ◦→ (partially directed), ↔ (bi-directed),

◦−◦ (nondirected),→ (directed), ◦− (partially undirected), and−− (undirected) [78]. P has
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the same adjacencies as G and any member of [G], and every non-circle mark in P is an

invariant mark in [G] [78]. The interpretation of the different edge types is as follows [42]:

� An edge X1 → X2 has (almost) the standard meaning: X1 is an ancestor of X2 in

all graphs in G and X2 is not an ancestor of X1 in any graph.

� X1 ↔ X2 means that X1 is never an ancestor of X2 and X2 is never an ancestor of

X1.

� An edge X1◦→ X2 means that X2 is not an ancestor of X1 in any graph but X1 is

an ancestor of X2 in some, but not all, graphs.

Figure 2.8 shows an example of a PAG and several members of the (infinite) equivalence

class that it represents. All of the graphs in the equivalence class have one or more active

trails between X1 and X2, none of which are directed from X2 to X1. A PAG is only a

partial graph structure, and not a full model; thus, it cannot be used directly for answering

causal queries [42].

Figure 2.8: A PAG and several members of the (infinite) equivalence class that it represents

Figure 2.9: (i) DAG with latent variables; (ii) CPDAG; (iii) PAG [20]

13
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Figure 2.10: A PAG P represents two MAGs G1 and G2 that form Markov equivalence
class

Figure 2.9 (i) shows a DAG contains three observed variables X = {X1, X2, X3} and

two latent variables L1 and L2 [20]. Figure 2.9 (i) implies a single conditional indepen-

dence relationship X1 ⊥ X3. Figure 2.9 (ii) shows a DAG representing the conditional

independence relationship for X1 ⊥ X3. Figure 2.9 (ii) is an incorrect representation for

DAG that has latent variables because there must be no directed path from X1 to X2

and from X3 to X2 [20]. Figure 2.9 (iii) gives a better representation of Figure 2.9 (i).

Figure 2.9 (iii) shows that a PAG implies X2 is not a cause of X1, X3 or a selection

variable and this is relevant for conditional independence case X1 ⊥ X3 in Figure 2.9 (i).

The circle marks at X1 and X3 in Figure 2.9 (iii) represent uncertainty about whether or

not X1 and X3 are causes of X2. Figure 2.9 (iii) describes the conditional independence

relationship X1 ⊥ X3 from Figure 2.9 (ii) where X1 and X3 are causes of X2 and it also

represents X1 ⊥ X3 from Figure 2.9 (i) in which X1 and X3 are not causes of X2 [20].

Figure 2.10 shows an example of two MAGs G1 and G2 that describe the same conditional

independence relationships and a PAG P represents those MAGs.

2.2 Bayesian Network Representation

Bayesian Network is also known as a belief graph in which the structures are used to

represent knowledge. Two common approaches to study Bayesian Network are parameter

learning and structure learning. Parameter learning is applied when there exists a graph

structure. Structure learning is used to build a Bayesian Network from datasets [42].

A Bayesian Network is a pair B = (G, P ), where P is a set of conditional probability

distributions (CPD) associated with nodes in graph G [42]. Let G be a Bayesian Network

graph over the variables X1, ..., Xn. The chain rule of the Bayesian Network can be

expressed using equation 2.2 [42]. The conditional probability distribution (CPD) or local

probabilistic models is the individual factors
∏n
i=1 P (Xi|PaGXi).

14



2.3 Parameter Learning

P (X1, ..., Xn) =

n∏
i=1

P (Xi|PaGXi) (2.2)

The Bayesian network representation is a directed acyclic graph (DAG) G, where nodes

represent the random variables and edges correspond to the direct influence between one

node on another [42]. Graph G can be viewed as a data structure that uses a skeleton

for representing a joint distribution and a compact representation for a set of conditional

independence assumptions about a distribution.

Let X be a continuous variable, U = {U1, ..., Um} be its discrete parents and Y =

{Y1, ..., Yk} be its continuous parents. X has a conditional linear Gaussian (CLG) CPD

if, for every value u ∈ V al(U), there is a set of k+1 coefficients au,0, ..., au,k and a variance

σ2
u such that p(X|u,y) = N

(
au,0 +

∑k
i=1 au,iyi;σ

2
u

)
[42]. A Bayesian network is called

a CLG network if every discrete variable has only discrete parents and every continuous

variable has a CLG CPD.

2.3 Parameter Learning

Parameter learning from the data is required because obtaining numerical parameters from

a human expert is difficult. There are two approaches for parameter learning: maximum

likelihood estimation and the Bayesian approach.

2.3.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method to estimate the parameter value that

maximizes the likelihood. Let L(θ : D) be a likelihood function, Maximum Likelihood

Estimation can be explained as follows. Given a dataset D, it chooses parameters θ̂ that

satisfy L(θ̂ : D) = max
θ∈Θ

L(θ : D) [42]. Suppose, a sequence data X is recorded from a

simple experiment by throwing a thumbtack, x = H if it shows head on the top and x = T if

it shows tail on top. Suppose we have random variables X = (H,T,H, T,H, T,H, T, T, T )

which are independent and identically distributed (IID). The probability a head (H)

appears is θ and the probability tail (T ) appears is 1− θ. The probability of the sequence

is (P 〈H,T,H, T,H, T,H, T, T, T 〉 : θ) = θ(1 − θ)θ(1 − θ)θ(1 − θ)θ(1 − θ)(1 − θ)(1 − θ) =

θ4(1 − θ)6. This probability is dependent on the value θ. Different values of θ produce

different probability for the sequence. The likelihood function can be defined as (θ :

〈H,T,H, T,H, T,H, T, T, T 〉) = P (〈H,T,H, T,H, T,H, T, T, T 〉 : θ) = θ4(1− θ)6.
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Suppose, the dataset D of this observation contains M [H] heads and M [T ] tails. The

value θ̂ that maximizes the likelihood of θ relative to D can be estimated using equation

2.3.

θ̂ =
M [H]

M [H] +M [T ]
(2.3)

This is a simple example of estimating parameters for a Bayesian network. Suppose, a

simple network X → Y consists of two binary variables X and Y . For a single parameter,

the goal of maximum likelihood estimation is to maximize the likelihood (or log-likelihood)

function [42]. This network is parameterized by parameter vector θ. The parameterization

consists of the following parameters: θx1 and θx0 specify the probability of the two values

of X; θy1|x1 and θy0|x1 specify the probability of Y given that X = x1; and θy1|x0 and θy0|x0

describe the probability of Y given that X = x0. The notation θY |x0 refers to the set

{θy1|x0 , θy0|x0} and θY |X refers to θY |x1 ∪ θY |x0 .

Let each training instance be a tuple 〈x[m], y[m]〉 that describes a particular assignment

to X and Y . The likelihood function is L(θ : D) =
∏M
m=1 P (x[m], y[m] : θ). The network

model specifies that P (X,Y : θ) has a product form, so the likelihood function can be

written as L(θ : D) =
∏
m P (x[m] : θ)P (y[m]|x[m] : θ).

The likelihood function decomposes into a product of terms, one for each group of

parameters in θ. The decomposability of the likelihood function can be explained using

equation 2.4 and θY |x0 can be maximized using equation 2.5 [42].

∏
m:x[m]=x0

P (y[m]|x[m] : θY |x0) = θ
M [x0,y1]
y1|x0 .θ

M [x0,y0]
y0|x0 (2.4)

θy1|x0 =
M [x0, y1]

M [x0, y1] +M [x0, y0]
=
M [x0, y1]

M [x0]
(2.5)

The implementation of the likelihood function of a Bayesian network for learning the

parameters for a Bayesian network with structure G and parameters θ can be explained

as follows. The likelihood can be written as equation 2.6 [42].
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L(θ : D) =
∏
m

PG(ξ[m] : θ)

=
∏
m

∏
i

P (xi[m]|paxi [m] : θ)

=
∏
i

[∏
m

P (xi[m]|paxi [m] : θ)

] (2.6)

The conditional likelihood of a particular variable given its parents in the network can

be defined using equation 2.7. θXi |Paxi denotes the subset of parameters that determines

P (Xi|PaXi) in the model [42]. The local likelihood function for Xi can be defined by

equation 2.8. Each local likelihood function can be maximized independently of the rest

of the network and the solutions are combined to get an MLE solution. The decomposition

of the global problem to independent sub-problems is an efficient way to solve the MLE

problem.

L(θ : D) =
∏
i

Li(θXi|PaXi
: D) (2.7)

Li(θXi|PaXi
: D) =

∏
m

P (xi[m]|paXi [m] : θXi|Paxi ) (2.8)

The issue in MLE is the number of experiments that affect the estimation parameter.

For example, the thumbtack experiment produces 3 heads out of 10 and it gives the

parameter θ = 0.3. The value of parameter θ estimates the probability of the event

coming out as heads. Moreover, 1,000,000 tosses of the thumbtack come out as 300,000

heads. It also estimates the parameter as 0.3. Maximum Likelihood Estimation does not

give a distinction between observations from 10 to 1,000,000 experiments. Regarding this

case, the Bayesian approach produces better parameter estimation [42].

2.3.2 Bayesian Parameter Estimation

In the Bayesian Parameter Estimation approach, the prior knowledge about parameter

θ is encoded with a probability distribution. The distribution represents how likely we

are a priori to believe the different choices of parameters. In the experiment of throwing

thumbtacks, assume that the tosses are conditionally independent given θ. Parameter

estimation using the Bayesian approach implements the concept of the prior and posterior

[42]. Prior is knowledge before doing experiments and posterior is knowledge after doing
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experiments. P (θ) is a prior distribution over the value of θ.

Suppose, a set of data D consists of M outcomes: X[1], X[2], ..., X[M ]. A joint distri-

bution P (D, θ) over the data and the parameters can be written as P (D, θ) = P (D|θ)P (θ).

The prior distribution over the possible values in Θ captures the initial uncertainty about

the parameters and the previous experience before starting the experiment. After spec-

ifying the likelihood function and the prior, the data can be used to derive the poste-

rior distribution over the parameters. The posterior can be derived by the Bayes rule

P (θ|D) = P (D|θ)P (θ)
P (D) [42]. The term P (D) is the marginal likelihood of the data P (D) =

∫
Θ
P (D|θ)P (θ)dθ

The MLE approach estimates the parameters θ̂ in parameter space Θ that are ‘best’

given the data. The Bayesian approach estimates the parameters by keeping track of

‘beliefs’ about the value of θ.

2.4 Structure Learning

There are two main approaches for structure learning in a Bayesian Network: constraint-

based and score based approach. Constraint-based structure learning methods observe the

Bayesian Network as a representation of interdependencies [42]. The graph is built from

the data based on conditional independence tests. This method works well for learning a

graph from the data for a simple graph. If the graph is complex, it involves a huge number

of variables, and many tests are required to learn the structure, so there will a fair number

of erroneous test results. Constraint-based structure learning methods produce an almost

correct structure and work efficiently if there are few variables and a large sample size.

The PC Algorithm, FCI, and RFCI are examples of constraint-based algorithms. The PC

Algorithm, FCI, and RFCI are explained in Chapter 2.5.

Score-based structure learning methods learn a Bayesian Network by specifying a sta-

tistical model and choose the model that fits the observed data [42]. It uses the hypoth-

esis space of possible graph structures, then a scoring function method to find the best

graph. The goal of the score-based structure learning method is to find the highest-scoring

graph structure. The most important thing in the score-based structure learning method

is choosing the proper scoring function. An example of score-based learning method is

Greedy Equivalence Search (GES). GES is explained in Chapter 2.5. Learning the optimal
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structure using the Bayesian scoring criterion is an NP-hard problem [16]. The searching

problem is usually an NP-hard problem that makes it an inefficient solution [42]. A study

shows that causal model discovery is not an NP-hard problem for sparse graphs bounded

by node degree k [18]. It leads to a theoretical worst-case running time O(N2(k+2)) in the

number of independence tests [18].

Both constraint-based and score-based learning can be used individually, but recent

research shows that the hybrid approach possibly improves causal discovery. An example

of the hybrid algorithms of constraint-based and score-based learning is Greedy Search for

Maximal Ancestral Graph [69].

The Bayesian score is a scoring function that is based on a Bayesian perspective. The

Bayesian score defines a structure prior P (G) that puts a prior probability on different

graph structures, and a parameter prior P (θG |G), that puts a probability on a different

choice of parameters once the graph is given. In the implementation of Bayesian rule, it

applies P (G|D) = P (D|G)P (G)
P (D) . The Bayesian score can be defined as SCOREB(G : D) =

logP (D|G) + logP (G) [42].

The ability to credit a prior over structures gives us an opportunity of preferring

some structures over others. P (D|G) takes into consideration the uncertainty over the

parameters P (D|G)] =
∫

ΘG
P (D|θG ,G)P (θG |G)dθG , where P (D|θG ,G) is the likelihood of

the data given the network 〈G, θG〉 and P (θG |G) is the prior distribution over different

parameter values for the network G [42]. P (D|G) is called the marginal likelihood of the

data given the structure. The marginal likelihood is the average value of this function,

where we average based on the prior measure P (θG |G). By integrating P (D|θG ,G) over

the different choices of parameters θG , we are measuring the expected likelihood, averaged

over different possible choices of θG .

The relationship between speed and accuracy of structure learning algorithms is not

simple. A recent study has revealed the comparison of speed and accuracy among score-

based, constraint-based and hybrid algorithms [59]. Different algorithms have different

computational complexities, so their speed might be different between large and small

graphs [59].
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2.5 Causal Algorithms

2.5.1 Greedy Equivalence Search

Greedy Equivalence Search (GES) is a score-based algorithm for Bayesian Network struc-

ture learning. GES has two main steps : Forward Equivalence Search (FES) and Backward

Equivalence Search (BES) [17].

The Forward Equivalence Search (FES) is started by an empty CPDAG. In this step,

all vertices (nodes) have no edges. The algorithm applies GES insert operator greedily

until no operator has a positive score. After GES reaches a local maximum, it applies a

Backward Equivalence Search (BES). In this step, the algorithm applies a delete operator

until no operator has a positive score. The procedure of Insert and Delete can be defined

as follows [16].

Insert (X,Y,T):

For non-adjacent nodes X and Y in P c, and for any subset T of the neighbors of Y that

are not adjacent to X, the Insert(X,Y,T) operator modifies P c by:

(1) inserting the directed edge X → Y

(2) for each T ∈ T, directing the previously undirected edge between T and Y as T → Y

Delete (X,Y,H):

For adjacent nodes X and Y in P c connected either as X––Y or X → Y , and for any

subset H of the neighbours of Y that are adjacent to X, the Delete(X,Y,H) operator

modifies P c deleting the edge between X, and for each H ∈ H:

(1) directing the previously undirected edge between Y and H as Y → H

(2) directing any previously undirected edge between X and H as X → H

The ‘T’ refers to the set-argument in the Insert operator. Every node of T becomes a

tail node in a new v-structure as an outcome of the operator. The ‘H’ in Delete operator

means every node in this list becomes a head node in a new v-structure.

2.5.2 PC algorithm

The PC algorithm is a constraint-based structure learning method introduced by Peter

Spirtes and Clark Glymour [62]. Generally, the PC algorithm consists of two main stages:

generating a skeleton and orienting the edges [62]. The detailed procedure PC algorithm

can be explained by Algorithm 1 and Algorithm 2 (see Appendix A.1) [19]. Figure 2.11

shows the illustration to generate a skeleton in the PC. Suppose, a dataset X has 5

20



2.5 Causal Algorithms

variables and n data points. The first step is generating a complete undirected network

containing p nodes, where p is the number of variables in the dataset. For every triplet

node, it runs a conditional independence test. Suppose, it tests three variables A,B,C,

“Is A conditionally independent to C given B?”, if the test result “A ⊥ C|B = true”, then

the edge A − C is deleted and B is saved as a separation set Sepset(A,C). It repeats

for each ordered pair of adjacent nodes. The output of this step is an undirected graph

that is called the skeleton S. The information of the conditional independence test in step

one will be applied to orient the edges. Figure 2.12 shows the procedure in the second

step to orient the unshielded triplets in the skeleton S based on the information in the

separation set. Suppose, for triplets C,D,E, the pair (C,E) is adjacent in S but the pair

(C,D) is not adjacent in S. It orients C − E −D as C → E ← D if and only if E is not

in Sepset(C,D). Let Xi, Xj , Xk be the triplet, the algorithm applies R1, R2, R3 to orient

the remaining undirected edges [19].

R1 : orient Xi −Xk as Xi → Xk whenever there is a directed edge Xi → Xj such that Xi

and Xk are not adjacent (otherwise a new v-structure is created);

R2 : orient Xi −Xj as Xi → Xj whenever there is a chain Xi → Xk → Xj (otherwise a

directed cycle is created);

R3 : orient Xi − Xj as Xi → Xj whenever there are two chains Xi − Xk → Xj and

Xi − Xl → Xj such that Xk and Xl are not adjacent (otherwise a new v-structure or a

directed cycle is created).

The PC algorithm identifies the equivalence class of a Bayesian Network in polynomial

time if the graph structure is a Directed Acyclic Graph (DAG) and each node has a limited

degree [17]. The output of the PC algorithm is represented by a Completed Partially

Directed Acyclic Graph (CPDAG) [39]. The PC algorithm is a causal algorithm that can

be used to learn causal graphs by assuming there are no latent variables in the dataset.

2.5.3 Fast Causal Inference (FCI)

Fast Causal Inference (FCI) is a constraint-based structure learning method. The early

steps of FCI includes generating a skeleton graph then orienting the edges. The advantage

of FCI is that it allows the presence of the latent variables. The FCI procedure can be

found in Algorithms 3, 4, 5, and 6 (see Appendix A.2) [20]. FCI produces a causal graph

that is represented by a Partial Ancestral Graph (PAG) [20]. A PAG has three different

marks to form six types of edges: ◦→, ↔, ◦−◦, →, ◦−, and−− [78].
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Figure 2.11: PC Algorithm Step 1: Creating Skeleton

Figure 2.13 illustrates the rule for orienting the edges in FCI. FCI orientation procedure

applies the rules developed by Zhang [78]. There are some terms used in the rules that

can be defined as follows. A path p = 〈V0, ..., Vn〉 is said to be uncovered if for every

1 ≤ i ≤ n− 1, Vi−1, and Vi+1 are not adjacent, i.e., if every consecutive triple on the path

is unshielded. A path p = 〈V0, ..., Vn〉 is said to be potentially directed (p.d.) from V0 to

Vn if for every 0 ≤ i ≤ n− 1, the edge between Vi and Vi+1 is not into Vi or out of Vi+1. A

special case of a p.d. path is where every edge on the path is of the form ◦––◦, this path

is called a circle path. FCI orientation rules can be explained as follows [78]:

R0: For each unshielded triple 〈α, γ, β〉 in P , orient it as a collider α∗→ γ ←∗β if and

only if γ is not in Sepset(α, β).

R1: If α∗→ β ◦––∗ γ, and α and γ are not adjacent, then orient the triple as α∗→ β → γ.

R2: If α→ β∗→ γ or α∗→ β → γ, and α ∗––◦ γ, then orient α ∗––◦ γ as α∗→ γ.

R3: If α∗→ β ←∗γ, α ∗––◦ θ ◦––∗ γ, α and γ are not adjacent, and θ ∗––◦ β, then orient

θ ∗––◦ β as θ∗→ β.
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Figure 2.12: PC Algorithm Step 2: Orienting the skeleton

R4: if u = 〈θ, ..., α, β, γ〉 is a discriminating path between θ and γ for β, and β ◦––∗ γ;

then if β ∈ Sepset(θ, γ), orient β ◦––∗ γ as β → γ; otherwise orient the triple 〈α, β, γ〉 as

α↔ β ↔ γ.

R5: For every (remaining) α ◦––◦ β, if there is an uncovered circle path p = 〈α, γ, ..., θ, β〉

between α and β s.t. α, θ are not adjacent and β, γ are not adjacent, then orient α ◦––◦ β

and every edge on p as undirected edges (––).

R6: If α––◦ β ◦––∗ γ (α and γ may or may not be adjacent), then orient β ◦––∗ γ as β––∗ γ.

R7: If α––◦ β ◦––∗ γ and α, γ are not adjacent, then orient β ◦––∗ γ as β––∗ γ.

R8: If α→ β → γ or α––◦ β → γ, and α◦→ γ , orient α◦→ γ as α→ γ.

R9: If α◦→ γ, and p = 〈α, β, θ, ..., γ〉 is an uncovered p.d. path from α to γ such that γ

and β are not adjacent, then orient α◦→ γ as α→ γ.

R10: Suppose α◦→ γ, β → γ ← θ, p1 is an uncovered p.d. path from α to β, and p2 is an

uncovered p.d. path from α to θ. Let µ be the vertex adjacent to α on p1 (µ could be β),
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and ω be the vertex adjacent to α on p2 (ω could be θ). If µ and ω are distinct, and are

not adjacent, then orient α◦→ γ as α→ γ.

Figure 2.13: FCI Orientation Rule

2.5.4 Really Fast Causal Inference (RFCI)

Really Fast Causal Inference (RFCI) is a constraint-based structure learning algorithm

for learning PAGs. RFCI is much faster than FCI because it applies fewer conditional

independence tests than FCI [20]. RFCI applies the conditional independence tests on a

smaller number of variables but its output may be less informative. The detailed procedure

of RFCI can be explained by Algorithms 7, 8, 9, and 10 (see Appendix A.3) [20].

Figure 2.14 (a) shows a DAG consisting of observed variablesX = {X1, X2, X3, X4, X5, X6},

latent variables L = {L1, L2}, and no selection variables S = ∅ [20]. Suppose, all condi-

tional independence relationships over X that can be read off from this DAG are used as

input for FCI and RFCI. Figure 2.14 (b) shows the initial skeleton C1 and Figure 2.14 (c)

shows the output of FCI and RFCI. The edge X1 ◦––◦X5 exists in the skeleton in Figure

2.14 (b) but is absent in the final output (see Figure 2.14 (c)). Figure 2.14 (c) shows

X1 ⊥ X5|{X2, X3, X5}.

Figure 2.15 (a) shows a DAG consisting of observed variablesX = {X1, X2, X3, X4, X5},
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Figure 2.14: The example where outputs of FCI and RFCI are identical

Figure 2.15: The example where outputs of FCI and RFCI are not identical

latent variables L = {L1, L2}, and no selection variables S = ∅ [20]. Suppose, all con-

ditional independence relationships over X that can be read off from this DAG are used

as input for FCI and RFCI. Figure 2.15 (b) shows the output of RFCI and Figure 2.15

(c) shows the output of FCI. The output of RFCI has an extra edge X1 ↔ X5. The

RFCI-PAG in Figure 2.15 (b) describes two Markov equivalence classes.

Let FCI-PAG be a PAG output from the FCI algorithm and FCI-PAG be a PAG output

from the RFCI algorithm. Every FCI-PAG is an RFCI-PAG. Different RFCI-PAGs for the

same underlying DAG may have different skeletons, while the FCI-PAG skeleton is unique.

The RFCI-PAG skeleton is a supergraph of the FCI-PAG skeleton. An RFCI-PAG can

correspond to more than one Markov equivalence class of DAGs.
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2.6 Structural Hamming Distance

Structural Hamming Distance (SHD) is a method to evaluate the structure of a learned

graph when we know the true graph. The SHD method computes the mismatch of the

structure of a learned graph to the true graph. This paper uses some terms that can

be defined as follows. A true graph is the ground truth and a learned graph is a graph

generated from a dataset using a causal algorithm. A true edge is an edge in the learned

graph that has exactly the same position and marks with the edge on the true graph. A

missing edge is an edge that does not appear in the learned graph but exists in the true

graph. An extra edge is an edge in the learned graph but originally it does not exist in the

true graph. A wrong marked edge is an edge in the learned graph that exists in the true

graph but has a different mark on one or both sides. The SHD score S is a summation of

the number of extra edges, missing edges, and wrong orientation edges [72].

Figure 2.16: Structural Hamming Distance for PDAG

Figure 2.16 shows an example of how to compute the SHD score [72]. Figure 2.16 (a)
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shows a hypothetical true DAG and its corresponding PDAG. Figure 2.16 (b) shows a

learned DAG (from data sampled from the true DAG) and its corresponding PDAG with

SHD = 0 (notice that, the actual DAGs are different). Figure 2.16 (c) shows PDAG2 has

an SHD = 2; it can match the true PDAG by adding one edge direction and by reversing

another.

Snorm =
S(
n
2

)
/2

(2.9)

Figure 2.17: Structural Hamming Distance for PAG

The normalized SHD score Snorm can be computed using equation 2.9, where
(
n
2

)
is

the binomial coefficient and n is the number of observed variables in a dataset [46]. The

lower SHD score means that the learned graph has less mismatch to the true graph. It

implies that the learned graph has a high similarity to the true graph.

The original SHD was developed for PDAG. We implement SHD to evaluate the struc-

ture of the learned graph represented by PAG. Figure 2.17 shows an example of how

to implement the SHD method to evaluate the PAGs. It applies the general concept of

SHD by summing the number of extra edges, missing edges, and wrong orientation edges.

Figure 2.17 shows that two different graph structures might have the same SHD score.

2.7 Mixed Data

Mixed data is defined as a dataset containing different data types. The data types refer

to continuous and discrete (binary, ordinal, categorical).
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A continuous variable is a variable which has infinite possible values. A continuous

variable has a real number. A continuous variable can be measured on a continuous

scale, for instance, time or human height and weight. The height of a person can be

154.376325635 centimeters, but sometimes it is unnecessary to use that degree of accuracy.

Table 2.1 shows a dataset consisting of three continuous variables: height in centimeters,

weight in kilograms and BMI (Body Mass Index).

Table 2.1: A dataset contains continuous variables
No Student ID Heigh Weight BMI (Body Mass Index)

1 S01 165.78 50.55 20.8
2 S02 175.44 75.54 24.5
3 S03 150.23 45.12 19.9
4 S04 180.67 67.34 20.6
5 S05 150.67 40.31 17.7

A discrete Variable is a variable where values are countable. Binary, ordinal, and

categorical variables are kinds of discrete variables. An ordinal variable is a discrete

variable with values that can be ordered from smallest to largest [30]. For instance, the

number of absences in a class during a term and the number of voluntary jobs in a year.

Table 2.2 shows a dataset containing ordinal variables. In this example, the value of the

number of absences and the number of voluntary jobs can be ordered.

Table 2.2: A dataset contains ordinal variables
No Student ID Number of Absences Number of Voluntary Jobs

1 S01 0 1
2 S02 2 3
3 S03 1 2
4 S04 2 4
5 S05 3 3

A binary variable admits exactly two values [49]. Examples of binary values are

“yes/no”, “male/female”, and “on/off”. A categorical variable is a discrete variable. A

categorical variable is called a nominal variable or quantitative variable. The average of

the categorical variables has no purpose although they are coded by number [49]. An

example of a categorical variable is human blood type. Human blood type has four values:

A, B, O and AB. The value of a categorical variable shows v1 6= v2 6= ... 6= vn. Originally,

the categorical variables cannot be ordered as v1 � v2 � ... � vn. The ordering might be

done by coding into a number, but it cannot absolutely replace the meaning of sequence.

Table 2.3 shows an example of a dataset containing categorical variables. The dataset in
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Table 2.3 consists of a binary variable (Gender) and categorical variables (Blood Type

and Sport Activity).

Table 2.3: A dataset contains categorical variables
No Student ID Gender Blood Type Sport Activity

1 S01 Female A Badminton
2 S02 Male O Football
3 S03 Female B Basketball
4 S04 Male AB Football
5 S05 Female A Swimming

Table 2.4 shows an example of mixed data. The dataset consists of 5 variables: Height

and Weight (continuous), Blood Type (categorical), Gender (binary), and Number of

Absences (ordinal).

Table 2.4: An example of mixed data

No Student ID Height Weight Blood Type Gender Number of Absences

1 S01 165.78 50.55 A Female 0
2 S02 175.44 75.54 O Male 2
3 S03 150.23 45.12 B Female 1
4 S04 180.67 67.34 AB Male 2
5 S05 150.23 40.31 A Female 3

2.8 Missing Values Data

Missing value data means that data are missing for some but not all variables and for some

but not all cases [2]. Table 2.5 shows an example of mixed data containing missing values,

where “NA” represents the missing values. The missing data can be categorized into

several groups according to the distribution of the data absence. This is called a missing

data mechanism: missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR) [2] [41] [44]. Suppose, there are two variables X and

Z, variable Z represents a variable containing missing data. The value of RZ = 1 if Z

is missing, otherwise RZ = 0. The missing completely at random (MCAR) assumption

can be defined as P (RZ = 1|X,Z) = P (RZ = 1). MCAR happens if the probability of Z

missing is not dependent either on the observed variable X or on the chance missing value

of Z. Missing at random (MAR) assumption is expressed as P (RZ = 1|X,Z) = P (RZ =

1|X). Missing at random (MAR) occurs if the absence of Z depends on variable X, but it

does not depend on Z. If the assumption of the absence of MAR is violated, the missing
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data can be categorized as missing not at random (MNAR).

Table 2.5: An example of mixed data containing missing values

No Student ID Height Weight Blood Type Gender Number of Absences

1 S01 NA 50.55 A Female 0
2 S02 175.44 75.54 O Male 2
3 S03 150.23 NA B Female 1
4 S04 180.67 67.34 AB Male 2
5 S05 NA 40.31 NA Female 3
6 S06 187.67 80.54 A Male NA

Missing Completely at Random (MCAR)

Suppose there are missing data for variable Y . These data are categorized as Missing

Completely at Random (MCAR) if the probability of missing data on Y is unrelated to

the value of Y itself or to the value of any other variables in the dataset [2]. MCAR allows

for the probability that “missingness” on Y is related to “missingness” on some other

variable X. The data could still be categorized as MCAR, for instance, if people who

refuse to report their age always reject reporting their income. The MCAR assumption

would be violated if people who reject reporting their income were younger or older than

the average age who did report their income [2].

Missing at Random (MAR)

Data on Y can be categorized as MAR if the probability of missing data on Y is unre-

lated to the value of Y , after controlling for the other variables in the analysis. Suppose,

there are two variables X and Y , where X is observed and Y sometimes missing. The

MAR assumption is expressed as P (Ymissing|X,Y ) = P (Ymissing|X) [2]. It means that the

conditional probability of missing data on Y , given Y and X is equal to the probability of

missing data on Y given X [2]. Suppose, a dataset consists of two variables (income and

marital status), the MAR assumption would be satisfied if the probability of missing data

on income depends on a person’s marital status, but within the marital status category,

the probability of missing income was unrelated to income [2]. The missing data mecha-

nism can be ignored if the data are MAR and the parameters that determine the missing

data process are unrelated to the parameters to be estimated [2]. It means that there is

no need to model the missing data mechanism as part of the estimation process [2].

Missing Not at Random (MNAR)

If the assumption of missingness of MAR is violated, the missing data can be catego-

rized as missing not at random (MNAR). The missing data mechanism cannot be ignored
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if the data are not MAR [2]. In this situation, the missing data mechanism must be

modeled to get good estimates of good parameters of interest [2].

2.9 Measuring Dependence of Variables

2.9.1 Measuring Dependence using Partial Correlation

The correlation coefficient measures the relationship between two variables. Let X and

Y be random variables with covariance σXY and standard deviations σX for variable X

and σY for variable Y . The correlation coefficient of X and Y is ρXY = σXY
σXσY

[75]. The

covariance of variables X and Y for discrete and continuous variables can be computed

using equations 2.10 and 2.11, respectively. The notations µX and µY refer to the mean

for X and Y , respectively. The correlation coefficient satisfies −1 ≤ ρ ≤ 1.

σXY = E[(X − µX)(Y − µY )] =
∑
x

∑
y

(x− µx)(y − µy)f(x, y) (2.10)

σXY = E[(X − µX)(Y − µY )] =

∫ ∞
−∞

∫ ∞
−∞

(x− µx)(y − µy)f(x, y)dxdy (2.11)

Formally, the partial correlation between two variablesXi andXj given Y = (Y1, Y2, . . . , Yk)

is the correlation between residual e(Xi) resulting from the linear regression of Xi with Y

and e(Xj) produced from the linear regression of Xj with Y . The regression Xi on Y ∗

is then defined as the conditional mean value E(Xi | Y ∗) [48]. Partial correlation has a

range value [-1,1].

Computing the partial correlation from the correlation coefficient can be explained

as follows. Let ρ be the correlation coefficient and r be partial correlation. The partial

correlation of zero order corresponds to the paired correlation coefficient. The partial

correlation coefficient of the first order r1,i(j) can be defined from the paired correlation

coefficients between residuals εj = X1−E(X1 | Yj) and the residuals κj = Xi−E(Xi | Yj).

The partial correlation of the first order r1,i(j) can be computed using equation 2.12 [48].

r1,i(j) =
ρ1i − ρ1jρij√(

1− ρ2
1i

) (
1− ρ2

ij

) (2.12)

The partial correlation coefficients of the second order r1,i(j,k) can be defined as the
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paired correlation coefficients of residuals εj,k = X1 − E(X1 | (Yj , Yk)) and the residuals

κj,k = Xi − E(Xi | (Yj , Yk)) and can be computed using equation 2.13 [48].

r1,i(j,k) =
ρ1i(j) − ρ1j(k)ρij(k)√(
1− ρ2

1j(k)

)(
1− ρ2

ij(k)

) (2.13)

The partial correlation coefficient of the (m−1)th order r1,i(2,3,...,m) corresponds to the

paired correlation coefficient between residuals ε2,..,m = X1 − E(X1 | Y ∗) and residuals

κ2,..,m = Xi − E(Xi | Y ∗), where Y ∗ contains the components Y2, Y3, ..., Yi−1, Yi+1, ...Ym

[48].

The partial correlation coefficient of the higher orders are estimated according to a re-

cursive formula r1,j(2,3,...,j−1) = A−BC√
(1−B2)(1−C2)

, whereA = ρ1,j(2,3,...,j−2), B = ρ1,j−1(2,3,...,j−2),

and A = ρj,j−1(2,3,...,j−2). Let ρ be the correlation matrix and ρi,j be the matrix formed

by leaving out the ith row and the jth column of the correlation matrix. Computing

the partial correlation coefficients using matrix notation can be defined by the equation

2.14 [48].

r1,i(2,3,...,m) =
det(ρ1,i)√

det(ρ1,1) det(ρi,i)
(2.14)

Let X,Y, Z be random variables and ρ be the correlation coefficient between two vari-

ables. The partial correlation r can be computed from the correlation matrix using the

equation 2.15, where Z is a single variable.

rXY.Z =
ρXY − ρXZρZY√

(1− ρ2
XZ)(1− ρ2

ZY )
(2.15)

A conditional independence test for Gaussian data can be done using equation 2.16

[39] [24]. It tests the question “is a variable Zu conditionally independent of Zv given

ZS?”, where n is the number of samples, S is the separation set, ρ̂ is partial correlation,

α is a significance level, and Φ(.) denotes the cumulative distribution function (cdf) of

N (0, 1) [24]. Assume, the distribution P of the random variables X is multivariate normal.

For i 6= j ∈ {1, ..., p}, k ⊆ {1, ..., p}\{i, j} and the partial correlation between Xi and Xj

given {Xr; r ∈ k} is denoted by ρi,j|k. ρi,j|k = 0 if and only if Xi and Xj are conditionally

independent given {Xr; r ∈ k}. The estimated partial correlation ρ̂i,j|k can be computed

via the regression, inversion of part of the covariance matrix or recursively. Fisher’s z-

transform is used to test whether the partial correlation is equal to zero or not. We reject
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the null hypothesis H0(i, j | k) : ρi,j|k = 0 against the two-sided alternative HA(i, j | k) :

ρi,j|k 6= 0 if
√
n− | k | −3 | Z(i, j | k) |> Φ−1(1− α/2) [39].

Zu⊥Zv | ZS ⇔
√
n− | S | −3

∣∣∣∣12 log

(
1 + ρ̂uv|S

1− ρ̂uv|S

)∣∣∣∣ ≤ Φ−1(1− α/2). (2.16)

2.9.2 Measuring Dependence using Distance Correlation

A Distance correlation is a method to measure the dependence between random vari-

ables [66]. Similar to the product-moment correlation ρ, a Distance correlation has char-

acteristics of a true dependence measure. The Distance correlation satisfies 0 ≤ R ≤ 1

and R = 0 if X and Y are independent. The R is a function of ρ and R(X,Y ) ≤ |ρ(X,Y )|

with equality when ρ = ±1 in the bivariate normal case. Suppose, fX and fY are

characteristic functions of X and Y , and fX,Y is a joint function of X and Y , then

Distance covariance, Distance variance, and Distance correlation can be computed us-

ing equations 2.17, 2.18, and 2.19, respectively [66]. For the observed random variables

(X,Y ) = (Xk, Yk); k = 1, 2, ..., n from the joint distribution of random vector X in Rp and

Y in Rq where p and q are positive integers, we can define akl = |Xk−Xl|p, āk. = 1
n

n∑
l=1

akl,

ā.l = 1
n

n∑
k=1

akl, ā.. = 1
n2

n∑
k,l=1

akl, and Akl = akl − āk. − ā.l + ā.., for k, l = 1, 2, ..., n. It

also defines bkl = |Yk − Yl|q and Bkl = bkl − b̄k. − b̄.l + b̄.., for k, l = 1, 2, ..., n. Thus, the

empirical distance covariance and variance can be defined by equations 2.20 and 2.21, re-

spectively [66]. The Distance correlation is more suitable for a dataset containing outliers

rather than classic correlation.

V2(X,Y ) = ||fX,Y (t, s)− fX(t)fY (s)||2 (2.17)

V2(X) = V2(X,X) = ||fX,X(t, s)− fX(t)fX(s)||2 (2.18)

R2(X,Y ) =


V2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0

0, V2(X)V2(Y ) = 0

(2.19)

V2(X,Y ) =
1

n2

n∑
k,l=1

AklBkl (2.20)
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V2(X) = V2(X,X) =
1

n2

n∑
k,l=1

A2
kl (2.21)

Suppose T (X,Y, α, n) is the test that rejects independence if nV2
n(X,Y )
S2

> (Φ−1(1 −

α/2))2. The Φ(.) denotes the standard normal cumulative distribution function, α(X,Y, n)

denote the achieved significance level of T (X,Y, α, n), and S2 = 1
n2

n∑
k,l=1

|Xk−Xl|p 1
n2 |Yk−

Yl|q [66].

2.9.3 Measuring Dependence using Hilbert-Schmidt Norms

Gretton et al. proposed an independence criterion based on the eigenspectrum of covari-

ance operators in reproducing kernel Hilbert spaces [33]. Given separable reproducing

kernel Hilbert spaces (RKHSs), F ,G and a joint measure pxy over (X × Y,Γ × Λ), the

Hilbert-Schmidt Independence Criterion (HSIC) is defined as the squared HS-norm of

the associated cross-covariance operator Cxy : HSIC(pxy,F × G) = ‖Cxy‖2. Γ be the

Borel sets on X and Λ the Borel sets on Y. Borel sets are the sets that can be created

from open or closed sets by repeatedly taking countable unions and intersections. Let

Z := {(x1, y1), ..., (xm, ym)} ⊆ X × Y be a series of m independent observations drawn

from pxy. The estimator of Hilbert-Schmidt Independence Criterion (HSIC) can be defined

by equation 2.22 [33].

HSIC(Z,F,G) = (m− 1)−2tr(KHLH) (2.22)

where H,K,L ∈ Rm×m,Kij = k(xi, xj), Lij = l(yi, yj), Hij = δij−m−1, and k, l are kernel

functions. ‖Cxy‖HS = 0 if and only if x and y are independent [33]. It is guaranteed to

detect any existing dependence with a high probability as the sample size m is increased

[33]. Other estimators of HSIC (the block-based estimator, the Nyström estimator and

the random Fourier feature (RFF) estimator) have been studied in [79].

2.10 Summary

Causal inference is one of the data analysis methods to solve causal relationship problems

by generating a causal graph from the dataset then analyzing the causal relations among

variables. The main goal of learning causal graph from the datasets is finding as much

as possible the true causal relations among variables from the equivalence graph. The

34



2.10 Summary

two main elements for learning causal graphs are the causal algorithms and the datasets.

Structure learning can be implemented for learning causal graphs from datasets. Structure

learning has two approaches: score-based learning and constraint-based learning.

Score-based learning methods, for example, Greedy Equivalence Search (GES), gener-

ate an equivalence causal graph from the data and compute a score optimizing the learned

graphs. This method finds an equivalence graph that fits the data based on the optimum

score. The challenge of this method is defining the best scoring function [42]. The GES

is developed for learning causal graphs from datasets which have no latent variable. GES

produces graphs represented by CPDAG.

Constraint-based learning methods generate causal graphs from the datasets using

conditional independence tests [42]. Examples of constraint-based learning algorithms

are the PC algorithm, FCI, and RFCI. The PC algorithm is a constraint-based causal

algorithm that can be used to learn causal graphs from datasets with the assumption that

there is no latent variable. The PC algorithm produces graphs represented by a CPDAG.

FCI and RFCI can be applied to learn causal graphs from datasets that allow the presence

of latent variables. They output learned graphs represented by a PAG. Theoretically,

constraint-based structure learning can be applied to learn causal graphs from the datasets

if there is an appropriate conditional independence test. Structural Hamming Distance

is a method used to measure the mismatch between two graphs originally developed for

PDAGs.

A dataset containing discrete and continuous variables is called mixed data. A dataset

containing no missing values is complete data. Missing value datasets (incomplete datasets)

are datasets that have some missing values. Datasets containing missing values can be

categorized as MAR, MCAR, and MNAR.

The conditional independence test for Gaussian data uses partial correlation. Partial

correlation can be computed from a correlation matrix. This conditional independence

test applies Fisher’s z-transform. Distance correlation and HSIC are other methods to

measure the dependence between random variables.
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Learning Causal Graphs from

Mixed Data

3.1 Introduction

Learning causal graphs from mixed data is an interesting issue. Developing a new causal

algorithm for mixed data needs more attention. Methods have been developed to learn

causal graphs from mixed data using the existing algorithms (e.g. PC algorithm and

FCI). The first approach is developing a method to compute a matrix that looks like a

correlation matrix from mixed data then uses this matrix as an input for a conditional

independence test. This idea was successfully implemented for Rank PC [53] and adopted

in the Copula PC [24]. Harris and Drton improved the PC algorithm to non-parametric

Gaussian (nonparanormal) models [53]. Let f = (fv)v∈V be a collection of strictly increas-

ing functions of function fv : R → R and let Σ ∈ RV×V be a positive definite correlation

matrix. The nonparanormal distribution NPN (f,Σ) is the distribution of the random

vector (fv(Zv))v∈V for (Zv)v∈V ∼ N(0,Σ). Harris and Drton applied the PC algorithm

by replacing the Pearson correlation matrix with rank-based measures of correlation; their

method is called Rank PC (RPC). RPC works well for normal data and considerably bet-

ter for non-normal data. The second approach is developing a conditional independence

test for mixed data. This approach was successfully implemented in [58] and [70].

The PC algorithm and FCI are computationally feasible. PC and FCI are not restricted

for specific kinds of datasets as long as there is a suitable conditional independence test

for those datasets. Hence, it is beneficial to extend those algorithms so that they can be

used to learn causal graphs from mixed data. One of the challenges of learning causal
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graphs from mixed data is how to treat different data types without discriminating one or

another.

This study proposes to use kernel alignment to compute a kernel alignment matrix

from mixed data so that this matrix can be an input for the conditional independence test

in the PC, FCI, and RFCI. This approach is similar to the method used in the Copula

PC [24] [26]. The goal of this research is to develop an easy method to handle mixed data

so that it can be used to learn causal graphs using PC, FCI, and RFCI. The improvement

of the proposed method from the Copula PC algorithm is to treat categorical variables

as continuous, binary, and ordinal variables. The kernel-based approach is not restricted

by the type of the data distribution. The kernel-based approach is a general model that

can be applied to any data type as long as there exists a suitable kernel function for the

related data type.

3.2 Related Works in Learning Causal Graphs

3.2.1 Measuring Dependence using Kernel-based Approach

Kernel methods have been used to measure conditional (in)dependence. Kernel Gener-

alized Variance (KGV) was developed to measure conditional dependence and it can be

used to learn a hybrid network from discrete and continuous variables [7]. KGV allows

discrete and continuous variables to be treated as Gaussians obtained from Mercer kernels

in a feature space. Kernel Canonical Correlation (KCC) was proposed as a measure of

independence [6]. Gretton et al. proposed Kernel Mutual Information (KMI) to measure

the degree of independence of random variables [34]. Sun et al. developed a causal learning

method for discrete and continuous variables by measuring the strength of statistical de-

pendencies in terms of the Hilbert-Schmidt norm of kernel-based cross-covariance operators

and used incomplete Cholesky decomposition [65]. Fukumizu et al. proposed a method

to measure conditional dependence using kernels based on a normalized cross-covariance

operator on reproducing kernel Hilbert spaces [29]. The kernel PC (kPC) implements a

kernel-based conditional dependence measure similar to HSIC in the first step to identify

the Markov equivalence class [67]. The centered kernel target alignment (KTA) coefficient

has been used to construct nonlinear canonical variables for multivariate functional data

and is useful to investigate the dependency between two sets of variables [32].
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3.2.2 Causal Algorithms for Mixed Data

Methods have been developed to handle mixed data for learning causal graphs. Conditional

Gaussian (CG) score, Mixed Variable Polynomial (MVP) score, and Degenerate Gaussian

(DG) score are score-based methods for learning DAG from mixed continuous and discrete

variables [3] [4]. The other methods are constraint-based structure learning for mixed data.

Tsagris et al. proposed the likelihood-ratio test based on an appropriate regression model

then derived symmetric conditional independence tests [70]. This test only works well

when certain conditions hold. Raghu et al. proposed a conditional independence test

based on linear and logistic regression to handle mixed data for causal discovery [58].

It was implemented together with the modification of FCI for the causal discovery of

latent variables from mixed data. Raghu et al. assumed linear and logistic regression were

accurate models of the interactions between continuous and discrete variables, but it is not

clear how well these assumptions will hold in certain continuous nonlinear cases [58]. The

Copula PC algorithm is a method for causal discovery from mixed data with an assumption

that the data is drawn from a Gaussian copula model [24]. The Copula PC algorithm

implements Gibbs sampling based on the extended rank likelihood, then estimates a scale

matrix and degrees of freedom from the Gibbs samples. The scale matrix substitutes for a

correlation matrix and the degrees of freedom acts as the effective number of data points

for the conditional independence test. The Copula PC algorithm can be used to learn

causal graphs from mixed data containing binary, ordinal, and continuous variables but is

not appropriate for non-binary categorical variables whose values cannot be ranked, such

as blood type.

3.3 Kernel Function and Kernel Alignment for Learning

Causal Graphs from Mixed Data

In this research, we use the standard conditional independence test for Gaussian data which

requires partial correlations [39]. Partial correlations can be computed from a correlation

matrix [48]. We propose an easy way to compute a correlation matrix from mixed data

using kernels. This approach is inspired by learning graphical models using KGV [7].

The KGV method was proposed by Bach and Jordan who map data into a feature space

using a set of Mercer kernels, with different kernels for different data types [7]. They

then treat all data equally as Gaussian in the feature space. Suppose X1, ..., Xm are m
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random variables with values in space X1, ...,Xm. A Mercer kernel ki is assigned to each

input space Xi, with feature space Fi and feature map Φi. The random vectors of feature

images φ = (φ1, ..., φm) , ((Φ1(X1), ...,Φm(Xm))) have a covariance matrix C defined

by blocks. Block Cij is the covariance matrix between φi = Φi(Xi) and φj = Φj(Xj).

Suppose φG = (φG1 , ..., φ
G
m) denotes a jointly Gaussian vector with the same mean and

covariance as φ = (φ1, ..., φm). The vector φG will be used as the random vector on which

the learning of the graphical model structure is based. KGV is a general framework that

can be applied to any type of variable [7].

Computing sample covariances using the kernel trick need high computation, and for

efficient implementation it uses incomplete Cholesky decomposition. Our idea is to trans-

form each variable in the mixed data using a suitable kernel function for each data type

into a single Gaussian variable in the feature space. We then use kernel alignment to com-

pute pairwise ‘covariances’ and thus construct a pseudo-covariance matrix. In this way we

obtain a pseudo-correlation matrix which can be used for conditional independence tests

in the normal way. The prefix ‘pseudo-’ is used to emphasize that the resulting matrix is

not a correlation matrix for the original variables.

3.3.1 Kernel Function

A kernel is a function κ that for all x, z ∈ X satisfies κ(x, z) = 〈φ(x), φ(z)〉, where

φ is a mapping from X to an (inner product) feature space F, φ : x → φ(x) ∈ F

[61]. Given a set of vectors S = {x1, ..., x`}, the Gram matrix is an ` × ` matrix G

whose entries are Gij = 〈xi, xj〉. Using a kernel function κ to evaluate the inner prod-

ucts in a feature space with feature map φ, the associated Gram matrix has entries

Gij = 〈φ(xi), φ(xj)〉 = κ(xi, xj). In this case the matrix is often referred to as the kernel

matrix. The example of kernel functions are the RBF kernel and the Categorical kernel.

RBF Kernel and Categorical kernel can be computed using equation 3.1 [61] and equation

3.2 [8], respectively.

RBF Kernel:

κ (xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, σ > 0 (3.1)

40



3.3 Kernel Function and Kernel Alignment for Learning Causal Graphs from Mixed Data

Categorical Kernel:

κ (zi, zj) =

 hθ (PZ (zi)) if zi = zj

0 if zi 6= zj .
(3.2)

P is probability and hθ(.) is a function that depends on the parameter θ. It is defined as

hθ(z) =
(
1− zθ

)1/θ
, θ > 0 [8]. Note that our method is not restricted to these particular

choices of kernel.

The kernel matrix consists of the scalar product of the data points in feature space.

In the feature space, the matrix K is called ‘ill-condition’ if it has about the same value

because the origin is far away from the convex hull of the data [47]. Centering data is

applied to solve the ‘ill-condition’ problem. Centering the data in the feature space can

be done by centering the kernel matrix [61]. The goal of centering data is transferring

the origin of the feature space to the center of mass of the samples. The centered kernel

matrix K̃ can be computed using equation 3.3, where K is kernel matrix size `× ` and j

is the whole 1st vector [61].

K̃ = K − 1

`

∑̀
i=1

jj′K − 1

`
Kjj′ +

1

`2
(j′Kj)jj′ (3.3)

In the experiment, we use the RBF kernel and Categorical kernel if the dataset has

no missing values. The RBF kernel is one of the common and popular kernel functions

in the Machine Learning area. Another alternative kernel function that popular to use

is the Polynomial kernel [61]. There are not many choice kernel functions for categori-

cal variables, the Categorical kernel function is reasonable and easy to implement. The

proposed method is not restricted to the choices of kernel functions. The combination of

RBF kernel and Categorical kernel is not mandatory. Further investigation in learning

graphs from mixed datasets containing missing values (see Chapter 4) implements kernel

extension.

3.3.2 Positive Semi-definite Matrix

A square matrix is a matrix with the same number of rows and columns. A symmetric

matrix M is a square matrix whose value Mij = Mji, thus the transpose matrix MT = M .

A symmetric matrix is positive semi-definite if it has eigenvalues that are all non-negative,

equivalently v′Mv ≥ 0, v 6= 0 [61]. Eigenvalues are a set of scalars associated with a linear

transformation.
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3.3.3 Kernel Alignment

Given a sample S = {x1, ..., xm}, the inner product between two kernel matrices is

〈K1,K2〉 =
∑m

i,j=1K1(xi, xj)K2(xi, xj). The alignment between kernel k1 and k2 of the

sample S is defined as equation 3.4 where Ki is the kernel matrix of the sample S using

kernel function ki [23] [22].

Â(S, k1, k2) =
〈K1,K2〉√

〈K1,K1〉〈K2,K2〉
=

〈K1,K2〉
‖ K1 ‖‖ K2 ‖

(3.4)

The centered kernel alignment was introduced by Cortes et al. (2012) [21]. Let K1 ∈

Rn×n and K2 ∈ Rn×n be two kernel matrices such that ‖K̃1‖F 6= 0 and ‖K̃2‖F 6= 0. The

centered kernel alignment between K1 and K2 is defined by equation 3.5, where K̃1 and

K̃2 are the centered kernel matrices [32].

Ac(K1,K2) =
〈K̃1, K̃2〉

‖K̃1‖F ‖K̃2‖F
(3.5)

We use kernel alignment as follows. Figure 3.1 shows the kernel alignment approach to

compute a kernel alignment matrix from the data. Suppose, a mixed dataset consists of

two variables (X and Y ) and ` data point, i.e., X = {x1, x2, ..., x`} and Y = {y1, y2, ..., y`}.

We compute kernel matrices KX and KY using kernel functions k1 and k2, respectively.

Kernel matrices KX and KY correspond to variables X and Y , respectively. KX(i, j) can

be thought of as the similarity between xi and xj , the ith and jth observed values of

X. It is also the inner product of the xi and xj in the feature space. In the same way

KY encodes similarities between observed values of Y and contains inner products in the

feature space for Y .

The alignment A(KX ,KY ) is built from the inner product between KX and KY (and so

is a (normalised) inner product of inner products). Equation 3.6 defines kernel alignment.

A(KX ,KY ) = 〈KX ,KY 〉√
〈KX ,KX〉〈KY ,KY 〉

= 〈KX ,KY 〉
‖KX‖‖KY ‖

=
∑n
i,j=1 k1(xi,xj)k2(yi,yj)√

(
∑
k1(xi,xj)k1(xi,xj))(

∑
k2(yi,yj)k2(yi,yj))

(3.6)

Suppose a dataset D = {V1, .., Vp} consists of p variables and a set of kernel matrices

K = {K1, ...,Kp} is computed from those variables. The kernel alignment matrix A is

a p × p Gram matrix where each entry A(s, t) is an inner product of the two vectors
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Figure 3.1: Kernel Alignment Approach

produced by flattening the kernel matrices Ks and Kt. A Gram matrix is a positive

semi-definite matrix [61]. Every positive semi-definite matrix is a covariance matrix, so

a kernel alignment matrix A is a covariance matrix. Given any covariance matrix, it

is possible to construct a Gaussian distribution with that covariance matrix. Thus the

use of kernels in this proposed method can be viewed as a way of (implicitly) generating

a Gaussian distribution whose covariance matrix is the kernel alignment matrix. This

proposed method differs from [7] in that the (implicitly constructed) Gaussian always has

the same dimension as the original data (since unlike them we use kernel alignment), but in

common with Bach and Jordan there is a separate kernel for each of the original variables.

Like Bach and Jordan in [7], we do not view this treating-variables-separately approach

as unduly restrictive. (Note that for Copula PC the mapping is in the other direction:

the observed variables are viewed as the result of a mapping from some latent Gaussian

distribution.) The alignment between a kernel matrix and itself is A(s, s) = A(Ks,Ks) =

〈Ks,Ks〉√
〈Ks,Ks〉〈Ks,Ks〉

= 1, so that σs =
√

1 = 1. A(s, s) and A(t, t) can be viewed as variance

σ2
s and σ2

t , respectively. Thus, the entry of the correlation matrix can be defined as

ρst = σst
σsσt

= A(Ks,Kt)
A(Ks,Ks)A(Kt,Kt)

= A(Ks,Kt)
(1)(1) = A(Ks,Kt). Hereafter, this correlation matrix

is called a pseudo-correlation matrix A. Note that the entries in any kernel alignment

matrix are in the range [0, 1] [61].
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3.4 Kernel Alignment Substitutes Pearson Correlation for

Conditional Independence Test

A correlation matrix and the number of data points are inputs for the conditional inde-

pendence test in PC, FCI, and RFCI. Figure 3.2 (A) shows a flowchart for learning causal

graphs using the original PC algorithm/FCI/RFCI. The original PC algorithm, FCI, and

RFCI computes the correlation matrix from the data then uses this matrix as an input to

generate causal graphs. Figure 3.2 (B) describes the procedure to learn causal graphs using

KAPC/KAFCI/KARFCI. In KAPC, KAFCI, and KARFCI, a kernel matrix is computed

for each variable using a suitable kernel function. We apply a centering kernel matrix

using equation 3.3 to compute a centered kernel matrix. The kernel alignment matrix is

computed from the centered kernel matrices. The kernel alignment matrix is implemented

to substitute the correlation matrix and it is used as an input for conditional independence

test in the PC, FCI, and RFCI. The kernel alignment matrix substitutes the correlation

matrix then the partial correlation is computed from the kernel alignment matrix.

Figure 3.2: (A) The original PC algorithm/FCI/RFCI and (B) KAPC/KAFCI/KARFCI

3.5 The Connection of Kernel Alignment, HSIC, Pearson

Correlation, Distance Correlation, and Cosine Similar-

ity

Suppose, X and Y are two random vectors, then the inner product 〈X,Y 〉 =
∑

i xiyi.

Using the procedure to find the angle θ between two vectors X and Y , the uncentered

correlation coefficient is identical with the cosine similarity and it can be computed using

equation 3.7. Meanwhile, Pearson correlation ρr of variables X and Y can be computed

using equation 3.8. The Pearson correlation ρr is a cosine between X and Y centered by

their mean. Therefore the Pearson correlation is a centered correlation coefficient.
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The alignment satisfies −1 ≤ A ≤ 1 because it can be viewed as the cosine of the angle

between `2-dimensional vectors of `×` matrices [61]. Figure 3.3 illustrates cosine similarity

between two vectors VKX and VKY , where VKX and VKY are vectors formed by flatten-

ing the kernel matrix KX and KY , respectively. KX and KY are positive semi-definite

matrices, therefore the value of 〈KX ,KY 〉 ≥ 0 [61]. As a consequence, kernel alignment

has a range of values 0 ≤ A(KX ,KY ) ≤ 1. According to equation 3.6, kernel alignment

A(KX ,KY ) is equivalent to cos(KX ,KY ). Hence, kernel alignment can be considered a

correlation coefficient. Rearranging equation 2.19 when V2(X)V2(Y ) > 0 [66], we can de-

fine the empirical Distance correlation R2
n as a cosine similarity function in equation 3.9.

Pearson Correlation ρr, empirical Distance Correlation Rn, and kernel alignment A can be

defined as cosine similarity function: ρr(X,Y ) ≡ R2
n(X,Y ) ≡ A(KX ,KY ) ≡ cos(X,Y ).

cos(X,Y ) =

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

=
〈X,Y 〉
‖X‖‖Y ‖

(3.7)

ρr(X,Y ) =
∑
i(xi−x̄)(yi−ȳ)√∑

(xi−x̄)2
√∑

(yi−ȳ)2

= 〈x−x̄,y−ȳ〉
‖x−x̄‖‖y−ȳ‖ = cos(x− x̄, y − ȳ)

(3.8)

R2
n =

1
n2

∑n
k,l=1 AklBkl√

1
n2

∑n
k,l=1 A

2
kl

√
1
n2

∑n
k,l=1B

2
kl

=
1
n2

∑n
k,l=1 AklBkl(

1
n

√∑n
k,l=1 A

2
kl

)(
1
n

√∑n
k,l=1B

2
kl

)
=

∑n
k,l=1 AklBkl(√∑n

k,l=1 A
2
kl

)(√∑n
k,l=1B

2
kl

)
= 〈Akl,Bkl〉
‖Akl‖‖Bkl‖ = cos(Akl, Bkl)

(3.9)

Figure 3.3: Kernel Alignment as cosine of two vectors
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The kernel alignment matrix has the same range of values as Distance correlation. In

our case, kernel alignment A between two kernel matrices is similar to the distance between

two vectors resulting from flattening those kernel matrices (see equation 3.6). However,

kernel alignment values are connected to the angle between pairs of vectors resulting from

flattening kernel matrices (see equation 3.6). In contrast, the Distance correlation between

two variables is related to their Euclidean distance apart.

Suppose, K and L are two kernel matrices. The transpose matrix KT of the kernel

matrix K has the same values as itself. The tr(KL) is obtained by removing H and

(m − 1)−2 from equation 2.22 (see Chapter 2.9.3). The tr(KL) = 〈KT , L〉 implies the

connection of the HSIC and the kernel alignment.

We implement kernel alignment to approximate the estimated values of HSIC. The

greater the sample size m, the closer the kernel alignment value is to the estimated value

HSIC and to the true values of HSIC. The computation cost of HSIC is expensive and a low-

rank decomposition of the Gram matrices via incomplete Cholesky decomposition is needed

to compute an accurate approximation to HSIC [33]. It means that in the implementation

we never actually use equation 2.22. Implementing the incomplete Cholesky factorization

for efficient implementation is not numerically stable [67]. The kernel alignment offers a

faster computation to approximate the HSIC.

3.6 Generating Mixed Data

We use two different methods to generate mixed datasets. The first method is Conditional

Linear Gaussian (CLG) models. The other method is generating continuous datasets, then

discretizing some variables. The mixed datasets for simulation in learning causal graphs

are generated using forward sampling from a hybrid network and we apply Conditional

Linear Gaussian (CLG) models [42]. First we generate random DAGs containing 10, 20

and 30 nodes. Each variable is given a data type. For each different group of nodes, there

are 10 different graphs and each graph produces five different datasets. We generate two

groups of datasets according to the kind of data types: mixed dataset 1 (binary, ordinal

and continuous variables) and mixed dataset 2 (binary, ordinal, categorical and continuous

variables). The mixed datasets generated by discretizing some variables from continuous

datasets are used for conditional independence test experiments.
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3.7 Experimental Design for Learning Causal Graphs from

Mixed Data

The experiment is divided into 3 different groups: experiment using benchmark datasets,

experiment using mixed data 1, and experiment using mixed data 2. KAPC is run to

generate the learned graphs from benchmark datasets. The goal of this experiment is to

ensure that the proposed method works well to learn graphs from homogeneous data as

well as mixed data. In the experiment using mixed data 1, it uses datasets containing

binary, ordinal and continuous variables. In the experiment using mixed data 2, it uses

mixed data containing categorical, binary, ordinal and continuous variables. One variable

is deleted from datasets of 10 variables. Four and eight variables are deleted from data

sets of 20 and 30 variables, respectively. Those deleted variables represent latent variables.

After deleting some variables from the datasets, the remaining variables are used to learn

causal graphs using the KAFCI and KARFCI.

The experiments use the PC algorithm, FCI, and RFCI in pcalg [40]. Structural Ham-

ming Distance (SHD) is used to measure the quality of the learned graphs. The SHD score

is obtained by computing the mismatch between the true graph and the learned graph,

so the lower SHD score means that the learned graph has less mismatch. The normalized

SHD score is computed using equation 2.9 [46] (see Chapter 2.6). The normalized SHD

has the same meaning as the original SHD where the lower SHD score means that the

learned graph has less mismatch to the true graph. The normalized SHD score is used to

make a fair comparison of quality learned graphs with a different number of nodes.

The experiments implement a kernel alignment matrix and the number of data points

as the input for conditional independence test in the PC, FCI and RFCI. We name our

method Kernel Alignment PC (KAPC), Kernel Alignment FCI (KAFCI), and Kernel

Alignment RFCI (KARFCI). The number of data points refers to the data points in each

variable, where all variables in a dataset have the same data points. All datasets for

this experiment have no missing values. We also run some existing applications: Copula

PC [24], greedy search Hill-Climbing from bnlearn [60], deal [11], and PC MXM [70].
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3.8 Experimental Results

3.8.1 Kernel Alignment Matrix for Conditional Independence Test

The goal of the experiment of conditional independence test (CI test) using the kernel

alignment matrix is to analyze the impact of choosing kernel parameter values for the CI

test result. We apply the kernel alignment matrix for conditional independence tests for

simple graphs. The datasets for simulations are generated based on the simple graphs in

Figure 3.4. The datasets are grouped into 7 different cases. The reason for creating 7

different cases for 3 graphs is to create various types of datasets. The various datasets

are beneficial to test our proposed method in different conditions. The 7 cases consist of

datasets containing homogeneous variables (all discrete (Case 1) and all continuous (Case

4)) and mixed datasets (Case 2, 3, 5, 6, and 7). The mixed datasets are distinguished into

two groups: mixed data from graphs where no discrete child has continuous parents (graph

G1 and G2 Case 2, 3 and G3 Case 2, 3, 7) and where a discrete child has a continuous

parent (graph G1 and G2 Case 5, 6, 7 and G3 Case 5, 6). Table 3.1 shows the 7 cases

of datasets based on the data type of each variable. Figure 3.5 shows the graphs with

data types for each variable. The concern of this experiment is using the kernel alignment

to substitute the correlation matrix for conditional independence test using equation 2.16

(see Chapter 2.9.1). Therefore, the conditional independence tests are run to test three

different things:

� X ⊥ Y | Z.

� X ⊥ Z | Y .

� Y ⊥ Z | X.

Figure 3.4: Simple graphs for case study
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Table 3.1: Data types for each variable in the datasets
No Cases X Y Z

1 Case 1 Discrete Discrete Discrete
2 Case 2 Discrete Discrete Continuous
3 Case 3 Discrete Continuous Continuous
4 Case 4 Continuous Continuous Continuous
5 Case 5 Continuous Discrete Discrete
6 Case 6 Continuous Continuous Discrete
7 Case 7 Discrete Continuous Discrete

Figure 3.5: The three graphs with their data type for each node

For each case of each graph, we generate 10 different datasets. Forward sampling

from the hybrid network is used to generate datasets when a discrete variable has no

continuous parents. The datasets of G1, G2, G3 for Case 1, Case 2, Case 3, and G3 for

Case 7 are generated using the forward sampling from a hybrid network and it implements

Conditional Linear Gaussian models. We define discrete variables D = {d1, d2, ..., dn}

with the probability p = {p1, p2, ..., pn}, where Σn
i pi = 1. Let X and Y be continuous

variables, the CPD for P (X|D) and P (Y |D,X) can be defined by equation 3.10 and 3.11,

respectively, where b 6= 0 and e is a Gaussian coefficient.

P (X|D) =


N (µi;σi) D = di

...

N (µn;σn) D = dn;

(3.10)
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P (Y |D,X) =


N (biX + ei;σi) D = di

...

N (bnX + en;σn) D = dn;

(3.11)

In a condition where the discrete variable has a continuous parent and/or continu-

ous and discrete parents, we generate datasets consisting of all continuous variables then

discretize the particular variable. Figure 3.6 shows the formulae to generate continuous

datasets for each graph, where µ = mean, σ = deviation standard, b 6= 0, and e = Gaussian

coefficient. The method to discretize the variables can be explained as follows. Suppose

X = {x1, x2, ..., xn} is a continuous variable, we generate a binary variable Z with entries:

Zi =


v1 if Xi ≤ Q2(X)

v2 otherwise

We generate a non-binary variable Z with entries:

Zi =



v1 if Xi ≤ Q1(X)

v2 if Xi > Q1(X) and Xi ≤ Q2(X)

v3 if Xi > Q2(X) and Xi ≤ Q3(X)

v4 otherwise

The Q1(X), Q2(X), Q3(X) refer to the first quartile, median and the third quartile of

variable X, respectively. We use quantiles as thresholds when discretizing the variable

to minimize destroy the probabilistic structure of the data. For instance, in graph G2

Case 5 (see Figure 3.5), first, we generate a dataset consisting of all continuous variables,

then discretize variables Y and Z separately. We create two different types of discrete

variables: binary and non-binary. The motivation to produce binary and non-binary is to

ensure that our datasets are varied. The true distribution of the generated mixed data

using this method is the distribution of the one that the dataset is sampling from.

We compute the kernel matrix for each variable in a dataset using a suitable kernel

function for each data type. It implements RBF kernel for continuous data type and

Categorical kernel for discrete data type. Tables B.1, B.2, and B.3 show a list of kernel

parameter values σ for RBF kernel and θ for Categorical kernel. The kernel parameter
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Figure 3.6: The formulae for generating continuous dataset

values are positive numbers, σ > 0 and θ > 0, chosen randomly and we use 6 kernel

parameter values for each case. The kernel alignment matrix A is computed from the

kernel matrices. The kernel alignment matrix A and the number of data points are used

as inputs for the conditional independence test. The number of data points that are used

in this study is N = {1000, 3000, 5000}.

Table 3.2: Ground Truth
No Test Case G1 G2 G3

1 X ⊥ Y | Z FALSE FALSE FALSE
2 X ⊥ Z | Y FALSE TRUE FALSE
3 Y ⊥ Z | X FALSE FALSE TRUE

Figure 3.7: Confusion Matrix

The conditional independence tests implement Fisher’s z-transform (see equation 2.16

in Chapter 2.9.1). The tests are run for α = {0.01, 0.05, 0.1, 0.5, 0.7}. In a common

situation, we usually use the values α = {0.01, 0.05, 0.1}. We run the experiment using
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α = {0.5, 0.7} to test the behaviour of our proposed method. The test result returns one

of two classes {TRUE,FALSE}. For instance, in graph G3, it is true that Y ⊥ Z | X,

so the actual class is TRUE. In graph G3, X 6⊥ Z | Y so the actual class for the test case

“X ⊥ Z | Y ” is FALSE. Table 3.2 shows the list of the actual classes. Given a generated

dataset from graph G3, we run a test ‘is X ⊥ Z | Y ?’; the result might return TRUE or

FALSE. The test result is called the predicted class. Figure 3.7 (a) shows the confusion

matrix and it is utilized to analyze the experimental results. Figure 3.7 (b) shows the

equations to compute True Positive Rate (TPR) and False Positive Rate (FPR). The

graph G1 has no actual class TRUE because it has no variables that are conditionally

independent to others, so there is no TPR value. It uses a confusion matrix to summarize

the number of true positives, false positives, false negatives, and true negatives. To clarify

the meaning of table 3.7 (a) and (b), we explain those terms as follows. The True Positive

is defined as the actual class is TRUE and the test result is TRUE. The False Positive is

defined as the actual class is FALSE and the test result is TRUE. The False Negative is

defined as the actual class is TRUE and the test result is FALSE. The True Negative is

defined as the actual class is FALSE and the test result is FALSE. The condition positive

is defined as the number of the actual classes that are TRUE and the condition negative

refers to the number of the actual classes that are FALSE.

The experimental result of the conditional independence tests using kernel alignment

can be explained as follows. Tables B.4 - B.12 show the values of True Positive Rate (TPR)

and False Positive Rate (FPR) for each experiment. P1-P6 in Tables B.4 - B.12 and Figures

3.8, 3.9, and 3.10 represent kernel parameter values (see Tables B.1, B.2, B.3). The ROC

Curves in Figures 3.8, 3.9, and 3.10 show the performance of the kernel parameter values

for each case. The line in the upper left in the ROC curve shows the suitable kernel

parameter values because it represents these kernel parameter values producing a high

TPR and low FPR. In general, the results shows that α = {0.01, 0.05, 0.1} produce a

high True Positive Rate (TPR) and a low False Positive Rate (FPR). Meanwhile, the

α = {0.5, 0.7} produce a low True Positive Rate (TPR) and a high False Positive Rate

(FPR). The performance of the kernel-based approach is affected by the choice of kernel

parameter values.

Tables B.4, B.5, and B.6 show the detailed TPR and FPR for graph G1. In graph G1,

there is no ‘TRUE’ class for conditional independence among variables, so the TPR value

is not available. We prefer to put (-) and do not write 0 to fill up the value of TPR in
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the table of graph G1 in order to avoid the misleading perception. Figure 3.8 shows the

ROC curve for graph G1. The CI test results show there are no kernel parameter values

used in the experiments that produce FPR > 0.5 for Case 1 and Case 7 when α ≤ 0.1. At

least one of six kernel parameter produce the FPR < 0.5 in Case 2, 3, 4, 5, and 6 when

α ≤ 0.1. It means that there exist kernel parameter values suitable for the datasets so the

kernel alignment matrix can be used to catch dependencies among variables. The ROC

curve for graph G1 presents the best kernel parameter values when it produces the lowest

FPR. The best kernel parameter values are displayed by the line at the bottom left.

Tables B.7, B.8, and B.9 show the detailed TPR and FPR for graph G2. The worst

kernel parameter values produce zero TPR and higher FPR, for instance, P6 in Case 4.

The different datasets on graph G2 need different kernel parameter values to produce

precise CI test results. There exist at least one of 6 kernel parameter values that produce

TPR > 0.5 and FPR < 0.5 when α ≤ 0.1 for each case in Graph 2, except Case 7. The high

TPR and low FPR indicates that the kernel alignment is successfully applied to measure

dependencies. Figure 3.9 shows the suitable kernel parameter values for each case. The

lines in the upper left perform the suitable kernel parameter for the dataset.

Tables B.10, B.11, and B.12 show the detailed TPR and FPR for graph G3. The

kernel parameter values used in the experiment of Graph G3 mostly produce TPR > 0.5

and FPR < 0.5 when α ≤ 0.1 except for Case 5. The optimum kernel parameter values

are different for each dataset. Figure 3.10 shows the ROC curve and it visualizes the

performance of kernel parameter values for Graph 3. The best kernel parameter values

are displayed by the line in the upper left.

Implementing θ < 1 for the Categorical kernel might produce very small values in the

kernel matrix, almost zero, and/or zero. It can be used as a reason that θ < 1 is less

recommended. KAPC using the Categorical kernel with kernel parameter θ ≥ 2 for the

datasets containing all discrete variables always produces the same learned graphs. The

experimental result shows that the proper parameter values for the Categorical kernel are

θ ≥ 2. Different kernel parameter values might generate different test results. If it uses the

proper kernel parameter values, the test result is correct. The choices of kernel parameters

that only small toy datasets have been considered in this research and the results obtained

may not generalize to bigger datasets such as those found in real-world applications.

The more data points used in the experiment reduces the FPR. The experimental

results for Case 7 graph G1 and G2 and Case 5 graph 3 produce higher FPR than other
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cases. The similarity of those cases is the dataset for the experiments contain two variables

discretized from continuous variables. We also run the experiment using the original

continuous data and obtain a high TPR and low FPR. It shows that coarse discretization

possibly makes it hard to detect conditional dependencies.
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Figure 3.8: The ROC curve for Graph G1
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Figure 3.9: The ROC curve for Graph G2
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Figure 3.10: The ROC curve for Graph G3
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3.8.2 Learning Causal Graphs from Benchmark Datasets

To further investigate the performance of the proposed method, we also ran experiments

using the datasets gaussian.test (sampled from a Gaussian) and clgaussian.test from the

R package bnlearn, and gmD (discrete variables) and gmG (Continuous variables) from

the R package pcalg. The distribution from which clgaussian.test was sampled contains

one Gaussian variable, 4 discrete variables (2 binary and 2 categorical variables) and 3

conditional Gaussian variables.

Figure 3.11: The true graph and learned graphs generated from gaussian.test dataset

Figure 3.12: The true graph and learned graphs generated from gmG dataset

Figure 3.11 shows the learned graphs generated by the PC algorithm and KAPC

using gaussian.test at α = 0.05. KAPC implements the RBF kernel. KAPC successfully
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Figure 3.13: The true graph and learned graphs from gmD dataset

Figure 3.14: The true graph of clgaussian.test and learned graphs

generates all true edges but it produces one extra edge(red edge). The original PC using

Pearson correlation produces the learned graph that exactly matches the true graph. The

learned graphs obtained by KAPC and the PC using Distance correlation have the same

graph structure. Figure 3.12 shows the true graph and learned graphs using dataset

gmG at α = 0.01. PC algorithm using Pearson correlation, PC algorithm using Distance

correlation and KAPC generate the learned graphs which have the same skeleton to the

skeleton true graph. Figure 3.13 shows the true graph and learned graphs generated

from the gmD dataset at α = 0.1. The original PC algorithm and KAPC produce the

same graph skeleton as the true graph skeleton but they have one wrongly marked edge.

KAPC creates a learned graph from gmD data using Categorical kernel (equation 3.2)

with kernel parameter θ = 3. Figure 3.14 shows the true graph and learned graphs

generated from clgaussian.test data using KAPC, Copula PC, PC MXM at α = 0.05, deal

and Hill-Climbing (HC). KAPC implements the RBF kernel for continuous variables and
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Categorical kernel for categorical variables. KAPC generates a learned graph containing

10 true edges and 1 extra edge. Meanwhile, Copula PC algorithm generates a learned

graph containing 6 true edges, 2 wrong marked edges, 3 extra edges, and 2 missing edges.

The experiment using clgaussian.test shows that Copula PC algorithm does not work well

for mixed data containing categorical variables. Hill-Climbing (HC) generates the learned

graph containing no error. deal generates a learned graph which has 10 true edges and 3

extra edges. PC MXM generated a learned graph containing 8 true edges, 1 missing edge,

1 extra edge and 1 wrong orientation edge.

3.8.3 Kernel Alignment PC Algorithm/FCI/RFCI for Binary, Ordinal,

and Continuous Variables

We run KAPC, Copula PC [24], deal [11], PC MXM [70], and Hill-Climbing [60] for learn-

ing causal graphs from generated mixed data containing binary, ordinal, and continuous

variables (mixed data 1). This experiment implements kernel parameters for RBF kernel

σ and Categorical kernel θ, P = {P1(σ = 0.001, θ = 0.5), P2(σ = 0.01, θ = 1), P3(σ =

0.001, θ = 1), P4(σ = 0.01, θ = 1.5), P5(σ = 0.001, θ = 1.5). The experiments using PC,

FCI and RFCI implement α = 0.05. We use the default option for Hill-Climbing in the bn-

learn. The default options that are used in the bnlearn are very similar to the gaussCItest

function by pcalg implementing Fisher’s Z test at α = 0.05 [51]. Figure 3.15 shows the

SHD score of learned graphs generated from mixed data containing binary, ordinal, and

continuous variables (KAPC using different kernel parameters (P1-P5), Copula PC (C),

PC MXM (M), Hill-Climbing (H), and deal (D)). Copula PC produces lower SHD scores

for graphs with 10 nodes. KAPC using kernel parameter P1, P3, and P5 slightly outper-

forms Copula PC for graphs with 20 and 30 nodes. Copula PC successfully generates the

learned graphs from 92% of all datasets. Hill-Climbing method produces the highest SHD

score for graphs containing 10 nodes, but it outperforms Copula and KAPC for graphs

with 20 and 30 nodes. KAPC always outperforms deal. Some learned graphs produced by

KAPC have lower SHD scores than learned graphs generated using PC MXM.

We delete some variables to represent latent variables, then use the remaining variables

to learn graphs using KAFCI, KARFCI and Copula FCI. Figure 3.16 shows the SHD

scores of learned graphs produced by KAFCI using different kernel parameters (P1-P5),

KARFCI using different kernel parameters (R1-R5) and Copula FCI (C). KAFCI and

KARFCI produce lower SHD scores than Copula FCI. KAFCI and KARFCI generate
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Figure 3.15: SHD score of learned graphs generated from mixed dataset (binary, ordinal,
continuous data types)

graphs that have no significant difference for SHD scores. The more data points used to

learn causal graphs, the more similar the resulting learned graph to the true graph. Copula

FCI successfully generates the learned graphs from 98.67% of total datasets. Copula PC

and Copula FCI fail to generate the learned graphs from a few datasets; meanwhile KAPC,

KAFCI, and KARFCI successfully generate the learned graphs from all datasets used in the

experiments. We do not run MXM for FCI and RFCI due to no ready-to-use application.

Figure 3.16: SHD score of learned graphs generated from mixed dataset (binary, ordinal,
continuous data types) containing latent variables

3.8.4 Kernel Alignment PC Algorithm/FCI/RFCI for Categorical, Bi-

nary, Ordinal, and Continuous Variables

The experiments using mixed data containing categorical, binary, ordinal and continuous

variables (mixed data 2) apply kernel parameters for RBF kernel σ = {1, 0.1, 0.01, 0.001, 0.0001}

and Categorical kernel θ = 2. The experiments using PC, FCI and RFCI implement

α = 0.05.

Figure 3.17 shows the SHD score of learned graphs generated from mixed datasets

containing categorical, binary, ordinal and continuous variables. P1-P5 refer to KAPC

using different kernel parameters, C refers to Copula PC, M refers to PC MXM, D is deal,
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and H is Hill-Climbing. We run Hill-Climbing using default options. Generally, KAPC

outperforms Copula PC and deal. Copula PC works well for some datasets. There is

an error in the implementation of Copula PC where non-positive definite matrices are

being sampled as correlation matrices. This error happened randomly for some datasets.

Copula PC successfully generates learned graphs only from 32.67% of all datasets used in

this experiment. Hill-Climbing outperforms KAPC in the graphs with 10 and 30 nodes.

The SHD scores of PC MXM for the 10 nodes dataset are slightly lower than the SHD

score for KAPC. However, PC MXM failed to generate learned graphs from datasets with

20 and 30 nodes due to a software error. deal runs very slowly for datasets with 30 nodes,

so we decided to terminate the experiment. The experimental results from graphs with

10 and 20 nodes show KAPC outperforms deal.

Figure 3.17: SHD score of learned graphs generated from mixed dataset (categorical,
binary, ordinal, continuous data types)

Figure 3.18: SHD score of learned graphs generated from mixed dataset (categorical,
binary, ordinal, continuous data types) containing latent variables

We delete some variables to represent latent variables and use the remaining variables

to learn graphs using KAFCI, KARFCI and Copula FCI. Figure 3.18 shows SHD scores of

KAFCI using different kernel parameter values (P1-P5), KARFCI using different kernel

parameter values (R1-R5), and Copula FCI (C) for mixed data containing categorical,

binary, ordinal and continuous variables. The kernel matrices and kernel alignment matrix

are computed from the remaining variables. The SHD scores of KAFCI and KARFCI from
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graphs with 9 observed variables are not significantly different but P2(R2) generates the

lower SHD score for sample size N = 5000. The SHD scores of graphs with 16 observed

variables show that the values of kernel parameter P4/R4 and P5/R5 produce lower SHD

scores than others. In graphs with 22 observed variables, P1(R1) produces a higher SHD

score among P1-P5(R1-R5). The more sample data used to learn the graphs, decreases

the SHD score. In general, this experimental result shows that KAFCI and KARFCI

outperforms Copula FCI. Copula FCI only successfully generates the learned graphs from

35.33% of total datasets. KAPC, KAFCI, and KARFCI successfully generates the learned

graphs from all datasets used in the experiments. There is no significant difference between

the KAFCI SHD score and the KARFCI SHD score. The learned graphs generated using

KAFCI from this experiment are used as input for MVEE. MVEE will be discussed in

Chapter 5.

3.8.5 Running Time

The kernel-based approach computes the kernel matrix from each variable in the dataset

and computes the kernel alignment matrix from those kernel matrices, then uses the

kernel alignment matrix as an input for a conditional independence test. The Copula

method refers to Copula PC computing the scale matrix and the degree of freedom from

the dataset, then using the scale matrix to substitute the correlation matrix and degree

of freedom as the number of data points for the input of the conditional independence

test [24]. The running time refers to the time spent by the Copula method and our kernel-

based method to process the mixed data into the outputs ready to be used as inputs for

the conditional independence test. Running time for Hill-Climbing and PC MXM is how

long the algorithms generate a graph from a dataset. It estimates how long the process

to generate graphs from the datasets in the simulation. Note that this is limited to the

datasets in the simulation so it does not lead to generalized cases. Figure 3.19 A and B

shows the comparison running time of the kernel-based approach, the Copula approach,

PC MXM, Hill-Climbing, and deal for mixed data 1 and mixed data 2, respectively. In

a condition when the dataset has no missing values, the kernel-based approach is faster

than the Copula approach. The algorithm runs more slowly if the dataset contains more

variables and data points. Hill-Climbing and PC MXM run faster than the kernel-based

approach. deal runs faster than the kernel based approach except for 30 nodes datasets

containing categorical, binary, ordinal, and continuous variables. deal runs very slowly on
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large numbers of variables.

Figure 3.19: Running time for datasets having no missing value

3.9 Discussion

The reason to develop the kernel-based approach is that it provides a procedure to treat

categorical variables similarly to the binary, ordinal and continuous variable in learning a

causal graph from mixed data using PC, FCI and RFCI. Copula PC algorithm computes

the scale matrix and degree of freedom then uses them as input for a conditional inde-

pendence test [24]. Copula PC algorithm uses around 80% of the actual number of data

points. The kernel-based approach uses n data points for conditional independence test,

where n is the number of data points in the dataset. Having more data typically leads to

more accurate learned graphs.

The main goal of learning causal graphs from the data is producing the learned graphs

similar to the true graphs. The advantage of KAPC is it works for categorical variables as

well as binary, ordinal, and continuous variables, so it is a step further than Copula PC.

When the dataset has no missing values, the kernel-based approach is running faster than

the Copula model. KAPC, KAFCI, and KARFCI successfully generate learned graphs

from mixed data when the other methods (Copula PC/FCI, PC MXM and deal) could

not do for some datasets. The kernel-based approach gives a simple solution for learning

causal graphs from mixed data using PC, FCI, and RFCI. The experiments using different
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values of parameters show that KAPC, KAFCI, KARFCI produce graphs with a lower

SHD score when given proper kernel parameter values. This proposed method might

generate the wrong graph when we use the wrong kernel parameter. All experiments in

Chapter 3 use the datasets without missing values. This proposed method is possible to

implement for mixed data containing missing values (see Chapter 4). In general, Hill-

Climbing generates learned graphs with an average lower SHD score than KAPC. Some

learned graphs produced by KAPC have lower SHD scores than learned graphs produced

by PC MXM. Based on the experimental results, KAPC always outperforms deal. Greedy

search Hill-Climbing and deal are score-based methods to learn graphs from mixed data

assuming there is no latent variable in the datasets.

FCI and RFCI allow the presence of latent variables. The advantage of the kernel-

based approach is it can be implemented for FCI and RFCI, so KAFCI/KARFCI can

be used to learn graphs from a dataset that has latent variables. Copula PC and PC

MXM do not work for some datasets due to a bug in the software. We do not carry out

a further investigation because it is not our main concern. Meanwhile, KAPC, KAFCI

and Hill-Climbing succeed in generating the learned graphs for all datasets used in the

simulation.

In the situation when learning causal graphs from the datasets but the ground truth

(true graph) is unknown, it is difficult to choose the best kernel function. The learned

graphs structure cannot be compared to the true graph. We propose a Modal Value of

Edges Existence (MVEE) method to measure the quality of the learned graph’s structure

when the true graph is unknown. MVEE can be used to choose the proper values of

the kernel parameters or to choose the best kernel function. MVEE will be explained in

Chapter 5.

3.10 Summary

The kernel-based approach is a method proposing to handle mixed data so that it can

be used to learn causal graphs using PC, FCI and RFCI. Two main steps of the kernel-

based approach are computing the kernel matrix from each variable and computing the

kernel alignment matrix. The kernel alignment between two variables is computed from

kernel matrices from those variables. The kernel alignment matrix is used to substitute

the normal correlation matrix for conditional independence test in PC, FCI, and RFCI.

The datasets for simulation of learning graphs are generated using forward sampling
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from the hybrid network. It implements the Conditional Linear Gaussian (CLC). First,

it generates random DAGs that contain 10, 20, and 30 nodes, then each node is given

a data type. The second step is to generate the mixed data from those graphs. The

data types are categorical, binary, ordinal and continuous. This experiment applies the

RBF kernel and the Categorical kernel for continuous and discrete variables, respectively.

The experiments using benchmark datasets are run to ensure that the proposed method is

reasonable to learn causal graphs. The quality of the learned graph’s structure is measured

using the SHD score. The SHD score is obtained by comparing the learned graph to the

true graph. The lower SHD score means that the learned graph has a high similarity to

the true graph. The outputs of our kernel-based approach are compared to the output

of Copula method [24], PC MXM [70], deal [11], and greedy search Hill-Climbing [60].

Based on the experimental results using generated datasets, KAPC and KAFCI/KARFCI

outperform Copula PC and Copula FCI. KAPC also outperforms deal. KAPC shows a

slightly better performance than PC MXM. However, greedy search Hill-Climbing shows a

better performance than KAPC. The advantage of the kernel-based approach compared to

Hill-Climbing and deal is it can be used for FCI and RFCI that allow the presence of latent

variables. There is no significant difference in SHD scores from learned graphs produced

by KAFCI and KARFCI. The kernel-based approach is successful in generating learned

graphs from all generated datasets. The kernel-based approach is a promising method

for learning a causal graph from mixed data containing categorical, binary, ordinal, and

continuous variables using the PC, FCI, and RFCI. The kernel-based approach offers better

treatment for the categorical variable in mixed data which cannot be handled properly

using the Copula model [24].
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Learning Causal Graphs from

Mixed Data Containing Missing

Values

4.1 Introduction

Missing value data might occur during data collection because of instrumental error or hu-

man error. Missing value data is a common problem in data analysis because conventional

statistical methods and software were developed for fully measured data. Missing data

also has a significant effect on the conclusion produced from the data [41]. Algorithms for

data analysis were designed for data matrices with no missing values [31]. Missing data

causes some problems: reducing the sample size might affect the performance of algo-

rithms and statistical methods, mislead the experimental results, and disturb significantly

the outcome of the research study.

KAPC, KAFCI, and KARFCI are successful for learning causal graphs from mixed

data and they are not restricted to the specific datasets and choices of kernel functions.

It is an advantage to choose the kernel functions suitable for the dataset, i.e., a dataset

containing missing values. If some kernel functions (e.g. RBF kernel and Categorical

kernel) are not working when the dataset contains missing values, it is possible to change

the kernel functions suitable for the dataset’s condition. The goal of this experiment is

to learn causal graphs from mixed data containing missing values using a kernel-based

approach. We run two different approaches to learn graphs from mixed data containing
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missing values: apply the kernel function for missing values data and apply the imputation

method. The strategies extend the performance of the kernel-based approach for learning

causal graphs not only from mixed data but also when the dataset contains missing values.

4.2 Related Work in Causal Learning with Missing Values

Data

Several methods were developed to handle missing data, e.g. listwise deletion, pairwise

deletion, dummy-variable adjustment, imputation, and maximum likelihood [2]. Listwise

deletion is removing cases with missing data, then analyzing the remaining data. It en-

ables analyzing cases with available data on each variable. Listwise deletion method is

a simple method but it might lead to a loss of more information. Strobl et al. imple-

mented test-wise deletion which refers to the process of listwise deletion, then using those

datasets for learning causal graphs using FCI and RFCI [64]. The experimental result

shows that FCI and RFCI with test-wise deletion outperform their list-wise deletion and

imputation on MNAR datasets. However, the deletion procedure also eliminates good

samples that contain only a few missing values. It drives much information loss. Pairwise

deletion removes the data only if the specific data point required to test a particular as-

sumption vanishes. It enables analyzing all cases in which the variables of interest exist.

A dummy variable is created for each predictor with missing data to indicate the presence

of missingness. A constant value (e.g. mean) is given to the cases with missing data on

a predictor. This method uses all available data but the result is biased. The imputation

method is guessing and estimating a particular value to substitute for the missing value,

for example, substitute the missing value with the mean or median of the remaining data

for continuous/ordinal variables and mode for categorical variables. This is not smart im-

putation, especially for categorical variables because it produces the ‘new data’ dominated

by majority values. Some research has been done to develop the imputation method for

missing data handling [80] [63] [57]. Two examples of imputation methods are regression

imputation and multiple imputations. Multiple imputation replaces each missing value

with two or more admissible values that represent a distribution of possibilities [44]. It

leads to uncertainty because there are many different ways to do multiple imputations [2].

Westreich et al. applied multiple imputations and the parametric g-formula [76]. The im-

putation method works by creating a copy of the full dataset where the missing values are
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predicted using an imputation model. Maximum likelihood estimates the value which is

most possible to have appeared in the observed data. This method works well if there are

large amounts of data but it works poorly in a small sample. Copula PC algorithm used

Gibbs sampling to draw correlation matrix samples from mixed data under missingness at

random (MAR) [25] [26]. These samples are translated into an average correlation matrix

and an effective sample size. Copula PC estimates a more accurate correlation matrix and

causal structure under MCAR and MAR. PC MXM applies a simple imputation method

to replace the missing data using mode/median value [70].

4.3 Kernel Extension for Missing Values Data

Kernel extension was developed to compute a kernel matrix from missing value data [52].

Kernel extension works for discrete and continuous variables. The advantages of applying

a kernel extension is to reduce information loss because there is no removing a sample when

it has missing values. The other benefit is there is no need to apply the preprocessing

method for missing values data (e.g. imputation or deletion).

Let X = {x1, x2, ..., xn} be a continuous variable containing missing values and let

H ∈ R be any bounded subset, then denote b = sup
x,y∈H

|x−y| and a = inf
x,y∈H

|x−y|. The

kernel extension using uniform Kernel Density Estimation (KDE) for continuous variables

can be computed using equation 4.1, where M is missing value, g1 and G1 are defined by

equations 4.2 and 4.3, respectively.

K̂1(xi, xj) =



1− |xi−xj |b−a , if xi, xj 6=M

g1(xi), if xi 6=M and xj =M

g1(xj), if xi =M and xj 6=M

G1, if xi = xj =M and i 6= j

1, if xi = xj =M and i = j

(4.1)
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g1(z) =
∫∞
−∞ f̂(x)(1− |x−z|b−a )dx

=
∫∞
−∞

1
nh

∑n
i=1 ϕ(x−xih )(1− x−z

b−a )dx

= 1
nh

∑n
i=1

∫∞
−∞ ϕ(x−xih )(1− x−z

b−a )dx

= 1
2nh

∑n
i=1

1
2

∫ xi+h
xi−h (1− |x−z|b−a )dx

= 1
2nh

∑n
i=1 αi(z)

(4.2)

Where αi(z) can be defined as

αi(z) =



2h(b−z+xi−a)
b−a , if z > xi + h

2h(b−a)−(xi−z)2−h2
b−a , if xi − h ≤ z ≤ xi + h

2h(b−xi+z−a)
b−a , if z < xi − h

G1 =
∫∞
−∞ f̂(z)g1(z)dz

= 1
2nh

∑n
i=1

∫∞
−∞

1
nh

∑n
j=1 ϕ(

z−xj
h )αi(z)dz

= ( 1
2nh)2

∑n
i=1

∑n
j=1

∫ xj+h
xj−h αi(z)dz

= ( 1
2nh)2

∑n
i=1

∑n
j=1 βij

(4.3)

Where βij can be defined as

βij =



4h2(b−xj+xi−a)
b−a , if xi + h < xj − h

12(b−a)h2−(xi−xj)3−2h(4h2+3(xi−xj)2)
3(b−a) , if xj − h ≤ xi + h < xj + h

4h2(3(b−a)−2h)
3(b−a) , if xj = xi

12(b−a)h2+(xi−xj)3−2h(4h2+3(xi−xj)2)
3(b−a) , if xj − h < xi + h ≤ xj + h

4h2(b−xi+xj−a)
b−a , if xj + h < xi − h

Suppose a categorical variable has a set of finite values V = {v1, ..., vl}. The kernel

extension for discrete variables can be computed using equation 4.4, where M is missing

value.
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K̂2(vi, vj) =



I{vi=vj}, if vi, vj 6=M;

g2(vi), if vi 6=M and vj =M

g2(vj), if vi =M and vj 6=M

G2, if vi = vj =M and i 6= j

1, if vi = vj =M and i = j

(4.4)

The g2(z) =
∑l

i=1 f(vi)I{vi=vj} = f(z) and G2 =
∑l

i=1 f(vi)
2, is a kernel in V ∪ {M}.

After computing the kernel matrices, it computes the kernel alignment matrix from

these kernel matrices. The kernel alignment matrix A is used as an input for conditional

independence test in PC, FCI and RFCI.

4.4 Experimental Design for Learning Causal Graphs from

Incomplete Mixed Data

We run two strategies for learning causal graphs from mixed data containing missing values

using the kernel-based approach. The first way is to implement the kernel functions that

can be used to compute a kernel matrix from missing values data. The second approach

is to apply the preprocessing method to handle missing values data. The preprocessing

methods might apply imputation or deletion. We prefer to apply the imputation method

to keep the dataset and reduce the information loss.

There are only a few kernel functions that can be used to compute kernel matrix from a

dataset containing missing values. This experiment implements kernel extension proposed

by Troyano and Munoz [52] to compute kernel matrices from variables containing missing

values. We implement kernel extension using uniform KDE for continuous variables and

kernel extension for categoric features for discrete variables. The reason for implementing

the kernel extension is it is available for discrete and continuous variables. In the situation

when a dataset containing some variables has missing values and other variables have no

missing values, the kernel extension is used to compute a kernel matrix for a variable

containing missing values. We implement kernel extension for continuous variables using

the kernel parameter value h = 0.0001. For the other variables which have no missing

values, we use the RBF kernel and the Categorical kernel for continuous and discrete

variables, respectively.
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The function imputeFAMD from R package missMDA is an imputation method de-

veloped based on a principal components method for the factorial analysis for mixed data

(FAMD) [5] [37]. It applies the iterative FAMD algorithm or the regularised iterative

FAMD algorithm to impute the missing entries of mixed data. We run function impute-

FAMD from R package missMDA to create the complete datasets from missing values

data, then apply the RBF and the Categorical kernel to compute the kernel matrix from

the continuous and discrete variables, respectively. The kernel parameters values are set

for RBF kernel σ = {1, 0.1, 0.01, 0.001, 0.0001} and Categorical kernel θ = 2.

The centered kernel matrices are computed using equation 3.3 (see Chapter 3.3.1). We

apply kernel alignment to compute the kernel alignment matrix from the centered kernel

matrices. Hereafter, the kernel alignment matrix is applied to substitute the correlation

matrix for the conditional independence test in PC, FCI, and RFCI. The experiments

use three different data point amounts N = {1000, 3000, 5000}. The experiments for the

kernel-based approach, the Copula method, and PC MXM are run at α = 0.05. We run

Hill-Climbing using the default option.

We use the mixed data 2 (the dataset containing categorical, binary, ordinal, and

continuous variables) previously employed for the experiment in Chapter 3.8.4. The miss-

ing values datasets (incomplete datasets) for simulation are generated from mixed data

2 containing categorical, binary, ordinal and continuous data types. We employ three

kinds of missing values datasets according to the missingness: MAR, MCAR, and MNAR.

The missing values datasets are generated using ‘function ampute’ from the R package

mice [14] [15]. It generates three groups of datasets based on the missingness methods:

MAR, MCAR, and MNAR. The incomplete datasets contain 10-15% missing values. Some

variables are removed from the mixed data to represent latent variables and the remaining

variables are used to learn graphs using KAFCI, KARFCI and Copula FCI.

The proportion of 15% missing data is common in educational and psychological stud-

ies [28]. The missing rate of 5% or less is possibly inconsequential [27]. The results of

statistical analysis might be biased when the dataset containing more than 10% miss-

ing values [9] [27]. The results should only be considered as hypothesis-generating when

the dataset containing more than 40% missingness [45]. KAPC/KAFCI/KARFCI possi-

bly generate more accurate learned graphs from datasets containing a small amount of

missingness (< 10%) than when the proportion of missing data is increased (> 15%).
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4.5 Experimental Results and Discussion

The kernel-based approach, the Copula method [24], PC MXM [70], greedy search Hill-

Climbing [60], and deal [11] are run to learn graphs from mixed data containing missing

values. The Copula method [26] and PC MXM [70] can be used to learn causal graphs

from mixed data containing missing values [26]. Hill-Climbing (HC) and deal (D) are not

working for datasets containing missing values. In the experiment using Hill-Climbing

and deal, we implement the imputation method, function imputeFAMD, from R package

missMDA [37].

Figures 4.1, 4.2 and 4.3 show the SHD scores of graphs generated from a mixed dataset

containing missing values. The prefix i in iKE/iC/iHC/iM/iD/iP refers to ‘incomplete’

and it is used to identify the output from algorithms for mixed data containing missing val-

ues (incomplete datasets). iHC, iC, iM, and iD refer to Hill-Climbing, Copula method, PC

MXM, and deal, respectively. Greedy search Hill-Climbing using the imputation method

outperforms KAPC in the graphs of 10 and 30 nodes. Note that Hill-Climbing is a score-

based learning method. Meanwhile, KAPC, PC MXM, and Copula PC are constraint-

based learning methods. KAPC shows better performance than deal, Copula PC and PC

MXM. We run deal to learn graphs only from datasets with 10 and 20 nodes because deal

runs very slowly for datasets with 30 nodes.

Figure 4.1: The SHD scores of graphs learned from mixed data containing missing values
for graphs with 10 nodes

Figures 4.4, 4.5 and 4.6 show the SHD score of graphs generated from a mixed dataset
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Figure 4.2: The SHD scores of graphs learned from mixed data containing missing values
for graphs with 20 nodes

Figure 4.3: The SHD scores of graphs learned from mixed data containing missing values
for graphs with 30 nodes

containing missing values and latent variables. iKEF and iKER refer to KAFCI and

KARFCI using kernel extension. The kernel-based approach using the imputation method

applies the RBF and the Categorical kernel. KAFCI(iP1-iP5) and KARFCI(iR1-iR5) im-

plement different kernel parameter values for the RBF kernel and Categorical kernel. iC

refers to Copula FCI. There is no significant difference between the SHD scores of KAFCI

and KARFCI. The experimental results show that KAFCI and KARFCI outperform Cop-
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ula FCI.

Figure 4.4: The SHD scores of graphs learned from mixed data containing missing values
and latent variables for graphs with 9 observed variables

Figure 4.5: The SHD scores of graphs learned from mixed data containing missing values
and latent variables for graphs with 16 observed variables

The performance of KAPC and KAFCI/KARFCI using the kernel extension and im-

putation shows no significant difference. KAPC, KAFCI, and KARFCI produce learned

graphs which have no significantly different SHD scores for MAR, MCAR, and MNAR

datasets. The experimental results show that the performance of the kernel-based ap-
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Figure 4.6: The SHD scores of graphs learned from mixed data containing missing values
and latent variables for graphs with 22 observed variables

Figure 4.7: Running time for missing values data

proach for missing values data is not restricted to the specific missing data. The more

data points used in the experiment, the more similar the outputs of the learned graph from

the kernel-based approach to their true graph. KAPC, KAFCI, and KARFCI produce a

high quality learned graph when they are given the suitable kernel parameter values.

PC, greedy search Hill-Climbing and deal are methods to learn graphs assuming the

dataset has no latent variables. In the condition when the mixed datasets contain missing

values and have no latent variables, Hill-Climbing outperforms KAPC. The advantage of
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4.6 Summary

the kernel-based approach is it can be implemented for FCI and RFCI which allows the

presence of latent variables. The experimental result shows that when the mixed datasets

contain missing values and latent variables, KAFCI and KARFCI outperform Copula FCI

when KAFCI and KARFCI are given suitable kernel parameter values. KAPC, KAFCI,

and KARFCI work for the incomplete data with a small number of missing values as well

as with complete data. Note that these experiments use the datasets containing a small

number of missing values (10-15% missing values). If the datasets have more missing

values (more than 15%) the results might be different.

KAPC, KAFCI, and KARFCI with the kernel extension use the remaining data points

from the dataset without applying the deletion or imputation method to fill up the missing

values. KAPC, KAFCI, and KARFCI using kernel extension offer a solution to learn the

graphs from missing values data when we want to maintain the original data and avoid

any modifications (deletion or imputation). KAPC, KAFCI, and KARFCI using the

imputation methods are another way to handle the datasets containing missing values.

The imputation methods play an important role in generating high-quality learned graphs.

The sophisticated imputation method supports the performance of KAPC, KAFCI and

KARFCI. However, a very simple imputation method (e.g. replace the missing values

using mean or mode values) might cause KAPC, KAFCI, and KARFCI to generate a

poor learned-graph.

The weakness of KAPC, KAFCI, and KARFCI using kernel extension is they run

more slowly than when they implement the RBF kernel and the Categorical kernel. Fig-

ure 4.7 shows the running time for missing values data. iKE refers to the kernel-based

approach using kernel extension and imKA refers to the kernel-based approach using impu-

tation. The kernel extension has more complex computation than the RBF kernel and the

Categorical kernel. The Copula method draws samples from the datasets using the same

procedure no matter whether the dataset has missing values or not. As a consequence, the

Copula method’s running time remains the same for a complete and incomplete dataset.

Hill-Climbing (iH), PC MXM (M), and deal (D) run much faster than the kernel-based

approach using kernel extension and the Copula method (iC).

4.6 Summary

The kernel-based approach applies two different ways to handle missing values data. The

first is to apply the kernel extension for missing values and the second is to implement the
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imputation method. KAPC, KAFCI, and KARFCI using kernel extension are methods

that can be used to learn causal graphs from mixed data containing missing values. The

kernel extension is applied to compute the kernel matrix from the variables that have

missing values. The kernel extension works for discrete and continuous variables. KAPC,

KAFCI, and KARFCI implement the function imputeFAMD to handle missing values

data, then apply the RBF kernel and the Categorical kernel to compute the kernel matrices

from the dataset. After computing the kernel matrix from each variable in the dataset,

we compute the kernel alignment matrix A. The kernel matrix A is used as an input for

conditional independence test in PC, FCI, and RFCI.

We use three groups of missing value data related to the mechanism of missingness:

MAR, MCAR, and MNAR. The experimental results show that KAPC, KAFCI, and

KARFCI work well to learn causal graphs from mixed data containing missing values for

MAR, MCAR, and MNAR datasets. Assuming the mixed datasets containing missing

values have no latent variable, KAPC outperforms deal, Copula PC, and PC MXM, but

the greedy search Hill-Climbing outperforms KAPC. The advantage of a kernel-based

approach is it can be implemented for FCI and RFCI which allow the presence of latent

variables. KAFCI and KARFCI generate the learned graphs which have a lower SHD

score than the learned graphs generated using Copula FCI.
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Chapter 5

Evaluating The Graph Structure

When The True Graph is

Unknown

5.1 Introduction

Structural learning in the context of causal graph inference is learning a graph from a

dataset. The learned graph is generated from the dataset using a particular causal al-

gorithm, for instance, the PC algorithm, FCI or RFCI. The learned graph output of the

PC is represented by a Completed Partially Directed Acyclic Graph (CPDAG). There

are some algorithms that can be used to generate causal graphs that allow the presence

of latent variables, for instance, FCI and RFCI. FCI and RFCI produce a causal graph

represented by a Partial Ancestral Graph (PAG).

Suppose KAFCI with different kernel parameters can be viewed as different algorithms.

The different algorithms might produce different graph structures from the same dataset.

KAFCI with different kernel parameters are applied to learn causal graphs from the same

dataset and they output the same type of graphs that are represented by an FCI-PAG.

Suppose we have competing algorithms that are used to generate learned graphs from

the same dataset and they output the same type of graph (e.g. PAG). Figure 5.1 shows

4 different FCI-PAGs generated from the same dataset using 4 different algorithms. It

is difficult to choose the best-learned graph when the true graph is unknown. In this

situation, we assume that an edge (resp. non-edge) that exists in most of the learned graphs
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has a high possibility of being a true edge (resp. non-edge). Based on this assumption, we

propose a method based on the modal value of the edge type for any node pair to create

a proxy to the true graph when the true graph is unknown.

Figure 5.1: Four PAGs generated from a dataset using 4 different algorithms.

The goal of this research was to evaluate the learned graphs when the true graph is

unknown. The unknown true graph means that there is a true graph we do not know. We

introduced a new method called a Modal Value of Edges Existence (MVEE) to evaluate

graph structure represented by a PAG. MVEE adopts the idea of the agreement graph

from InterVal [74] and uses the agreement graph as a proxy for the true graph. MVEE

can be used to choose the best-learned graph among several learned graphs.

5.2 Related Work

Intersection-validation (InterVal) is a method for evaluating CPDAG learning algorithms

when the ground truth is unknown [74]. The basic idea is to generate an agreement graph

from the CPDAGs learned by different algorithms from the same dataset. The agreement

graph is then used as a proxy for the ground truth.

Let G = (V,E) be a graph with node set V and edge set E ⊆ V × V . Denote a node

pair (u, v) by uv and say that its type in G (or, in E) is bidirected, forward, backward,

or non adjacent if, respectively, both uv and vu, only uv, only vu, or neither belongs

to E. Agreement graphs are partial graphs where a partial graph on a set of node pairs

S ⊆ V × V is a pair (S,E) where E ⊆ S [74]. An ordinary graph on V is obtained as a

special case with S = V × V .

Suppose, a set of CPDAGs G = {G1, G2, ..., Gk} are learned from a dataset using

algorithms Alg = {A1, A2, ..., Ak} as input graphs. Figure 5.2 (a) shows the original

InterVal method to generate an agreement graph, which is a partial graph, from two

CPDAGs (dashed lines connect excluded node pairs not in S) [74]. In this example, the

agreement graph has the following node pairs S = {(A,B), (A,C), (B,C)} and only one
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edge E = {(A,C)}.

Figure 5.2: Intersection-Validation on CPDAGs and PAGs

InterVal applies a strict rule where it only includes a node pair in the agreement graph

when all input graphs agree on that node pair. InterVal might produce an agreement

graph containing no node pairs when there is no exact matching node pair type from all

input graphs, especially when we create an agreement graph from PAGs. A PAG has three

kinds of marks that form six different types of edges (◦→,↔, ◦−◦,→, ◦−, and−−), so to get

an exact match for all input graphs is difficult. Figure 5.2 (b) shows that the agreement

graph of two PAGs has two node pairs (A,D) and (B,C). InterVal was designed to choose

between CPDAGs and MVEE to choose between PAGs which contain more edge types

than CPDAGs.

5.3 Modal Value of Edges Existence (MVEE)

Modal Value of Edges Existence (MVEE) is modified from the original InterVal concept

proposed by Viinikka et al. [74]. Like InterVal MVEE adopts the idea of an agreement

graph that is generated from input graphs and uses the agreement graph as a proxy for

the true graph. Specifically, we consider the PAG output from the FCI algorithm. For

a given pair of a graph G and a distribution P faithful to it, there may be two different

FCI-PAGs that represent graph G but they will have the same skeleton [20], so ‘true’

PAGs have the same skeleton. Since they will all share the same skeleton, it is useful to
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use a skeleton agreement graph as a proxy for the skeleton of the true PAG and use it to

choose the ‘best’ graph from the output of competing PAG-learning algorithms. MVEE

finds a skeleton agreement graph using a majority vote from the skeletons of a set of input

graphs. This differs from InterVal where (i) all graphs must agree on a node pair for that

node pair to be included in the agreement graph and where (ii) the agreement graph is

not just a skeleton (see Fig 5.2(a)).

5.3.1 MVEE From Two Input Graphs

Generating an agreement graph from two input graphs can be explained as follows. An

agreement graph is built by taking the edges that exist in both input graphs. Figure

5.3 shows two input FCI-PAGs (G1 and G2), input graph skeletons (S1 and S2), and

an agreement graph skeleton. The skeletons (S1 and S2) are made from G1 and G2 by

removing the marks on the edges. An agreement graph is produced by taking the edges

that exist in both input skeletons, so in this example the agreement graph has two edges

(A––B and A––C). The edges B––D and C––D are not added to the agreement graph

because they only exist in one of the input skeletons. The agreement graph has node pairs:

A––B, A––C, A––D, and B––C and two edges A––B and A––C.

Figure 5.3: Two PAGs and their agreement graph created using MAEE

5.3.2 MVEE From More Than Two Input Graphs

The detailed implementation of MVEE for more than two PAGs can be explained as

follows. MVEE creates a skeleton by taking the majority edges that appear in the input

graphs. Figure 5.4 shows the input graphs represented by PAGs, the skeleton of input

graphs and the skeleton agreement graph. In this example, a tie happens: two graphs have

an edge between node C and D and two other graphs do not. In this situation, MVEE

decides to abstain and so does not include (C,D) in the node pairs for MVEE’s skeleton

agreement graph (dashed line connects excluded node pair). If every node pair on input
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graphs results in a tie, the MVEE agreement graph has no node pairs. Figure 5.5 shows

a case where most node pairs on input graphs are a tie (dashlines connect excluded node

pairs). If there are no ties then S, the set of node pairs in the MVEE agreement graph is

all possible pairs. Figure 5.6 shows an example of a case of no tie in each node pair. If all

input graphs were empty, the MVEE agreement graph is (S,E) where S is V × V and E

is the empty set.

The ‘ties’ imply that the threshold for including an edge in MVEE is that it appears

in 50% of the input graphs. It is possible to use other thresholds (less or more than 50%),

e.g. greater threshold might create a sparse agreement graph.

Figure 5.4: Four PAGs and their agreement graph created using MAEE

After generating an agreement graph, it is used as a proxy of the true graph. The

next step is computing the mismatch between each input graph and the agreement graph.

Partial Hamming Distance (PHD) is used to measure the mismatch between a CPDAG

and a partial graph. Partial Hamming Distance between two partial graphs P = (S,E)

and P ′ = (S,E′) denoted by PHD(P, P ′) is the number of node pairs in S whose types are

different in P and P ′ [74]. Partial Hamming Distance is a metric in the set of partial graphs

on a fixed set of node pairs. In this case, we use the Partial Hamming Distance (PHD)

method to compute the mismatch between two skeletons, and the score is called a Partial

Skeleton Error score. The Partial Skeleton Error (PSE) score is computed by comparing

the skeleton of the input graph to the skeleton agreement graph. Figure 5.7 shows an
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Figure 5.5: MVEE agreement graph when every node pair in the input graphs ties

Figure 5.6: MVEE agreement graph with no tie in the input graphs

example of computing the PSE score. The PSE(Si, S0) computes the mismatch of the

skeleton Si to the skeleton agreement graph S0. For instance, the skeleton of agreement

graph S0 has 5 node pairs. The PSE observes the edges that exist in the agreement graph
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skeleton and computes the mismatch node pairs. The PSE(S1, S0) and PSE(S3, S0)

score is 0 because S1 and S3 have 5 node pairs matching the S0 and PSE ignores the

edges that do not exist in the agreement graph. The PSE(S2, S0) score is 1 because S2

does not have an edge B––D that exists in the agreement graph. The PSE(S4, S0) score

is 2 and it is obtained from missing edge A––B and extra edge C––B.

Figure 5.7: The example of computing Partial Skeleton Error (PSE) Score

The agreement graph can be used to measure the quality of the graph structure of

the input graphs. The input graph which has the lowest mismatch to the agreement

graph can be viewed as the best learned graph. It also shows that the best-learned graph

is produced by KAFCI using the appropriate kernel parameters. The skeleton S4 (see

Figure 5.7) is a worse graph than the three others because it has the highest PSE score

= 2. Suppose, those input graphs G1, G2, G3, G4 are generated by KAFCI using different

kernel parameters P1, P2, P3, P4, respectively. It implies that the kernel parameter values

P1 and P3 are more precise than P2 and P4. Implementing the Partial Skeleton Error

score to measure the mismatch between the learned graph and the agreement graph then

using this score to choose the best-learned graph might provide multiple outputs. Suppose

there are two learned graphs that have the lowest PSE score but their graph structures are

different. In this situation, both learned graphs are the best-learned graphs. For instance,

the graphs S1 and S3 have different skeletons but they produce the same PSE score.

5.4 Experimental Results and Discussion

We use MVEE to estimate the best learned graph when the true graph is unknown. In

this experiment we use mixed data 2 (see section 3.6), the dataset containing categorical,

binary, ordinal and continuous variables, and we delete some variables to represent latent

variables. First, we generate learned graphs using KAFCI with different kernel parameter

values. An agreement graph is generated from the skeletons of the learned graphs from
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the same dataset.

The InterVal approach uses subsamples of the data to analyze how close the resulting

graph is to the agreement graph. Our goal is different from InterVal, so we do not use

exactly the same approach. Our goal is to use MVEE to estimate the best learned graph

produced by KAFCI with different kernel parameters when the true graph is unknown.

Suppose, G = {G1, G2, ..., Gn} is a set of learned graphs generated from the same dataset

using a different kernel parameter P = {P1, P2, ..., Pn}. KAFCI using different kernel

parameter values can be viewed as different algorithms. These learned graphs are used as

input for MVEE to produce an agreement graph S0. We apply Partial Hamming Distance

(PHD) proposed by Viinikka et al. [74]. We call the score a Partial Skeleton Error (PSE)

score. The learned graph with the lowest PSE score is considered the best learned graph.

Figure 5.8 (A) shows an example of how to choose the ground truth of the best-learned

graph. In this case, the ground truth of the best-learned graph is G4 because it has the

lowest SHD score. Figure 5.8 (B) shows how to choose the best learned-graph using the

MVEE agreement graph. The best-learned graph is the learned-graph that has the lowest

PSE score. The SHD and PHD methods allow two or more learned graphs with different

structures to have the same score. As a consequence, the best-learned graph might not be

unique. In this example, the best-learned graphs are G1, G3, and G4. MVEE is successful

in choosing the best-learned graph if it finds at least one learned-graph that is a member

of a ground-truth list of the best-learned graph. Finding the best-learned graph implies

that we also discover suitable kernel parameter values. In the example in Figure 5.8, the

highest PSE score is produced by graph S2 and it indicates that the kernel parameter

values P2 to generate graph G2 are worse than kernel parameters P1, P3, and P4.

To evaluate MVEE, we first find which learned graphs have a minimal (i.e., best) SHD

score when compared to the true graph; this is the set of optimal learned graphs. We

generate an MVEE agreement graph from the learned graphs generated using KAFCI

with different values of kernel parameters from the same dataset. We estimate a best

learned graph by computing the PSE score between the learned graphs and the agreement

graph; the estimated best learned graph is some learned graph with a minimal PSE score.

In our evaluation of MVEE we have found that MVEE identifies an optimal graph 91.56%

of the time.

We analyze the agreement graphs to understand their performance as a proxy for the

true graph. First, we compute the mismatch between the skeleton of the agreement graph
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Figure 5.8: Selecting the best-learned graph

Figure 5.9: MVEE Evaluation

and the skeleton of the true graph. This score is named the skeleton error score. Figure

5.9 (A) shows the MVEE skeleton agreement graph has slightly less mismatch than the In-

terVal skeleton agreement graph. Figure 5.9 (B) shows MVEE skeleton agreement graphs

have slightly more true edges than Interval skeleton agreement graphs. Unsurprisingly
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both methods are more accurate as of the number of data points increases.

5.5 Summary

MVEE is a new method to evaluate the structure of a learned graph when the true graph is

unknown. MVEE slightly outperforms InterVal to generate agreement graphs which have

more true edges and less skeleton error score. The experimental result shows that MVEE

produces agreement graphs that have a higher number of edges than Interval. The MVEE

agreement graph is more confident as a proxy of the true graph. The MVEE agreement

graph is successfully used as a proxy to the true graph and produces accuracy of 91.56%.

Finding the best-learned graph implies we also find the suitable kernel-parameter values for

the dataset, because this graph is generated using these kernel parameter values. MVEE

is helpful in choosing the value of the kernel parameter for KAFCI if the true graph is

unknown.

The proposed method is only based on the structure of the graph without analyzing

the statistical meaning. However, it is easy to implement. For future work, it is possible

to combine MVEE with the statistical based evaluation method to develop a sophisticated

evaluation method when the true graph is unknown.
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Evaluation and Conclusions

6.1 Evaluation of Kernel-based Approach for Learning Causal

Graphs from Mixed Data Containing Missing Values

The kernel-based approach is a promising method to learn causal graphs from mixed data

containing binary, ordinal, categorical, and continuous variables when the datasets are

complete or incomplete. Table 6.1 shows the comparison of the kernel-based approach

and other methods. The kernel-based approach (KAPC, KAFCI, and KARFCI), Copula

PC [24], PC MXM [70], greedy search Hill-Climbing [60] [50], and deal [11] are methods

that can be used to learn causal graphs from mixed data. Those methods work for mixed

data containing missing values except deal and greedy search Hill-Climbing. Table 6.2

shows the list of data types that can be handled by each algorithm.

Table 6.1: Comparison of the kernel-based approach to other methods
Algorithm Mixed Data Missing Values

KAPC 3 3

KAFCI and KARFCI 3 3

Copula PC 3 3

PC MXM 3 3

Greedy search based on Hill-Climbing 3 7

deal 3 7

The kernel-based approach offers better treatment for categorical variables than the

Copula method. deal is a method for learning causal graphs from mixed data and it is

restricted for conditionally Gaussian networks. PC MXM is a method for learning graphs

from mixed data and it implements the column-wise imputation method based on median

and mode for the datasets that contain missing values. It is not a smart method and
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Table 6.2: List of data types that fit for each algorithm
Algorithm Binary Ordinal Categorical Continuous

KAPC 3 3 3 3

KAFCI/KARFCI 3 3 3 3

Copula PC 3 3 7 3

PC MXM 3 3 3 3

Greedy search Hill-Climbing 3 3 3 3

deal 3 3 3 3

might produce misleading data when the ‘real’ missing value is not a modal value.

In the experiments to learn graphs from mixed data, we compare the performance

of the kernel-based approach to the Copula method [24], PC MXM [70], deal [11], and

greedy search Hill-Climbing [60]. KAPC outperforms deal. The SHD scores of KAPC are

mostly lower than the SHD score of Copula PC and PC MXM. In general, the SHD scores

of KAFCI and KARFCI are lower than the SHD score of Copula FCI. The experimental

results confirm that KAPC, KAFCI, and KARFCI work well for complete and incom-

plete mixed data. When there are no missing values in the datasets, the kernel-based

approach runs faster than the Copula method. However, when the datasets contain miss-

ing values, the kernel-based approach using kernel extension runs more slowly than the

Copula method. The slow running time of the kernel-based approach is caused by matrix

computation using kernel extension function and is time-consuming. The greedy search

Hill-Climbing outperforms KAPC. However, greedy search Hill-Climbing can not be ap-

plied directly to missing values data. The missing values dataset must be pre-processed to

treat the missingness before it is implemented to learn graphs using Hill-Climbing and deal.

The advantage of the kernel-based approach compared to greedy search Hill-Climbing and

deal is the kernel-based approach can be implemented for FCI and RFCI that allow the

presence of latent variables.

Figures 6.1, 6.2, and 6.3 show the comparison of the SHD KAPC for complete data

and incomplete data. Figures 6.4, 6.5, and 6.6 show the comparison of the SHD KAFCI

for complete data and incomplete data. The P1, P2, P3, P4, P5 refer to the kernel-

based method using different kernel parameter values for complete data, iKE refers to the

kernel-based approach using kernel extension and iP1, iP2, iP3, iP4, iP5 refers to the

kernel-based approach using different kernel parameters for datasets after imputation. The

comparison of SHD scores of the learned graphs generated from complete and incomplete

datasets using KAPC and KAFCI indicates that KAPC and KAFCI work for incomplete
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data with a small number of missing values as good as complete data. There are no

significant SHD scores of KAPC and KAFCI from complete and incomplete data.

Figure 6.1: Comparison of SHD score KAPC for complete datasets and MAR datasets

Figure 6.2: Comparison of SHD score KAPC for complete datasets and MCAR datasets

The kernel-based approach is a framework to handle mixed data containing missing

values for learning causal graphs when there exists a kernel function that works for this

condition. The kernel-based approach is not restricted to specific data distribution. The

advantage of the kernel-based approach is this method can be applied to any data type

as long as there is a suitable kernel function for the related data type. The kernel-based
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Figure 6.3: Comparison of SHD score KAPC for complete datasets and MNAR datasets

Figure 6.4: Comparison of SHD score KAFCI for complete datasets and MAR datasets

approach depends on the availability of the kernel function for the data type and its

condition (e.g. the dataset has missing values). Our investigation to use the kernel align-

ment to substitute the correlation matrix for the conditional independence test shows

that the kernel-based approach can be used to learn causal graphs from mixed datasets

not only from datasets under the Conditional Linear Gaussian model but also datasets

under circumstances when a graph contains a discrete child with continuous parent. The

kernel-based approach can handle more data types than the Copula method proposed by
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Figure 6.5: Comparison of SHD score KAFCI for complete datasets and MCAR datasets

Figure 6.6: Comparison of SHD score KAFCI for complete datasets and MNAR datasets

Cui et al. [24]. The other advantage of the kernel-based approach is not only can it be

implemented for PC but also FCI/RFCI that allows the presence of latent variables.

The choice of the kernel parameter values affects the result of the learned graph. The

kernel-based approach might produce different learned graphs when it is given different

kernel parameter values. Finding the proper kernel parameter values is tricky. We imple-

ment MVEE to choose the best-learned graphs from a set of learned graphs output from

KAFCI using different kernel parameter values when the ground truth is unknown.
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Implementing the Structural Hamming Distance (SHD) method to measure the quality

graph structure represented by PAG is acceptable but it is not the best choice. Figure

6.7 shows a true graph G0 and a learned graph G1. There is neither a missing edge nor

extra edge in graph G1 but it has the wrong marked edges. A PAG has six different

types of edges, where each edge has two marks on an edge (say at the start and end of

the edge). The SHD method was originally developed for PDAG only caring about the

wrong orientation edge. It does not include a procedure to handle the edge which has two

different marks on each point. For instance, the edges between node A − B and A − C

on graph G1 are assigned as the wrong orientation edges because they don’t have exactly

the same marks as the true graph G0 even though they only have one wrong mark. As a

consequence, two graphs with different skeletons, the learned graph G1 and the learned

graph G2, have the same SHD score. It sounds unfair because the learned graph G1 has

more true edges than the learned graph G2 based on the skeleton’s structure.

Figure 6.7: Structural Hamming Distance for PAG

6.2 Evaluation of MVEE as a Proxy of the True Graph

Modal Value of Edge Existence (MVEE) is a method to choose the best-learned graph

from a set of learned graphs generated from the same dataset when the true graph is

unknown. MVEE is developed to create a proxy of the true graph from a set of input

graphs represented by FCI-PAG. It is an easy method to evaluate the learned graph when

we do not know the true graph. MVEE is developed only based on the graph structure

without considering the statistical meaning from the graph structure. The limitation of

MVEE is this method is developed for FCI-PAG, where it is possible two different FCI-
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PAGs represent a DAG but they have the same skeleton. Although MVEE procedures

can be implemented to generate an agreement graph from RFCI-PAGs, this agreement

graph has no theoretical support. Unlike FCI-PAG, different RFCI-PAGs for the same

underlying DAG may have different skeletons and an RFCI-PAG can correspond to more

than one Markov equivalence class of DAGs [20]. It is more difficult to create a proxy of

the true graph for RFCI-PAG using a simple method.

Table 6.3: Comparison of InterVal and MVEE
InterVal MVEE

Graph’s type CPDAG FCI-PAG
Input Graphs as whole Graph’s skeleton
Output Graphs with marks on each edge Graph’s skeleton

MVEE applies the Partial Hamming Distance (PHD) method to compute the mis-

match of the learned-graphs to the agreement graph. The PHD method enables more

than two different graph structures to have the same PHD score. Suppose, we generate

learned graphs from a dataset using KAFCI with three different kernel parameter values

P1, P2, P3 and we get the three different learned graphs. We generate a proxy of the true

graph from those three learned graphs and then compute the skeleton error score. It is

possible all learned graphs have the same skeleton error score. In this case, all learned

graphs might potentially be the best-learned graphs. In other words, we can not choose a

unique graph as the best learned-graph.

6.3 Conclusion

In conclusion, KAPC, KAFCI, and KARFCI are a promising methods for learning causal

graphs from mixed data containing missing values. KAPC works for mixed datasets,

assuming the datasets have no latent variables. KAFCI and KARFCI allow the presence

of latent variables in the mixed data. KAPC, KAFCI, and KARFCI employ the kernel

function to compute a kernel matrix from each variable in the mixed data. The kernel

matrices represent variables in the feature space. KAPC and KAFCI implement the kernel

alignment method to compute the kernel alignment matrix from those kernel matrices.

The kernel alignment matrix is a covariance matrix and thus the correlation matrix is

then produced. The generated correlation matrix is used as an input for the conditional

independence test for the PC, FCI, and RFCI. KAPC, KAFCI, and KARFCI are not

restricted to the choices of kernel functions, so they can be implemented to learn causal
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graphs from mixed data containing missing values as long as there is a kernel function

suitable for the data.

In the experiment using the RBF kernel for continuous variables and the Categorical

for discrete variables, the performance of KAPC, KAFCI, and KARFCI are affected by

the values of the kernel parameters. KAPC, KAFCI, and KARFCI generate the best-

learned graph when they are given the proper kernel parameter values. KAPC, KAFCI,

and KARFCI might generate different learned graphs or the same learned graphs from

the same dataset when they are given different parameter values.

In a situation when the true graph is unknown, it is difficult to choose the best-learned

graphs from a set of learned graphs from the same dataset. MVEE is a method for selecting

the best-learned graph from a set of learned graphs generated from the same dataset when

the learned graphs are represented by FCI-PAGs. MVEE generates an agreement graph

from a set of skeleton input graphs based on the modal values of the edge existence. The

agreement graph is used as a proxy of the true graph. The MVEE agreement graph is

a graph’s skeleton. Each skeleton of the learned graph is compared to their agreement

graph and their mismatch is recorded. The number of mismatches is named skeleton

error score. The best-learned graph is the learned graph that has the lowest skeleton error

score. When MVEE finds the best-learned graph, MVEE also identifies the suitable kernel

parameter values for the dataset. The best-learned graph is generated using the particular

kernel parameter values, so the kernel parameter values used for this graph are the best

among other values for other graphs. Two different skeleton graphs might have the same

skeleton error score so that the best learned-graph is not unique. The ground truth of the

best-learned graphs is selected from the set of learned graphs generated from the same

dataset. First, we compute the SHD score by comparing a set of the learned graphs to

the true graph. The ground truth of the best-learned graph is the learned graph which

has the lowest SHD score. In the experiment to choose the best-learned graph, MVEE

produces an accuracy of 91.56%.

6.4 Future Work

6.4.1 Future Work to Improve the Kernel-based Approach

Two main concerns that need to be improved in the kernel-based approach are how to

speed-up running time and how to choose proper kernel parameter values automatically.
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Although MVEE can be used to choose the best learn-graph among several input graphs,

we still need to generate the learned graphs among a huge choice of kernel parameter

values. For future work, the improvement of the kernel-based approach will be focused on

two major issues:

6.4.1.1 Decrease the Running Time of the Kernel-based Approach using Par-

allel Computing

Parallel computing is a computation method where many calculations or executions of the

process can be done simultaneously. Parallel computing is a common method applied for

matrix computation. The kernel-based approach involves matrix computation in which

it is possible to apply parallel computing to increase the running time. Figure 6.8 shows

the schema for computing a kernel alignment matrix from a dataset. Suppose a dataset

consists of p variables and n data points for each variable. The first step is computing

kernel matrices K = {K1,K2,K3, ..,Kp} and each kernel matrix corresponds to each

variable. In sequential computing, computing kernel matrices K = {K1,K2,K3, ..,Kp}

will be done one by one from K1 to Kp and it is time consuming. To increase the running

time of the kernel-based method, computation of kernel matrices can be parallelized, so

the computation of K can be done at the same time. It does not affect the output because

each kernel matrix K can be computed independently. Parallel computing also can be

implemented to compute a kernel alignment matrix.

6.4.1.2 Automatic Tuning Parameter Values

The issue in the kernel-based approach for learning causal graphs from mixed data con-

taining missing values is how to choose the best kernel function for each variable and how

to choose the proper values of the kernel parameter. The kernel-based approach is not

limited to the choice of kernel functions. There are a lot of kernel functions that are pos-

sible to be implemented for particular variables. It also opens the opportunity to create

new kernel functions for causal learning from incomplete mixed data.

Unlike implementing a kernel function for classification problems, tuning kernel pa-

rameters for causal learning problem is more challenging. Moreover, the difficulties of

choosing the kernel parameter values are increased when we learn a graph from the real

data where the true graph is unknown. In this research, we introduce MVEE to choose the

best kernel parameter values. However, MVEE is not run automatically because it still
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Figure 6.8: The schema for computing kernel alignment matrix

requires inputting kernel parameter values from the user. For future research, it is possible

to apply a hybrid of searching method and MVEE to find the best kernel-parameter values

in the range of possible values [a, b].

6.4.1.3 Creating New Kernel Functions for Missing Values Data

There are not many choices of kernel functions that work for missing value datasets. It

opens the opportunity to develop a new kernel function for missing value data. The new

kernel functions are expected to support the kernel-based approach as a framework for

learning causal graphs from mixed data containing missing values.

6.4.2 Improving the Performance of MVEE to Evaluate the Graph Struc-

ture when the True Graph is Unknown

Developing a method to evaluate graph structure when the true graph is unknown is

one of the interesting topics in learning graphical models. It is very useful when learning

graphs from real datasets where the true graphs are often unknown. MVEE is a promising

graph evaluation method when the true graph is unknown. MVEE implements Partial

Hamming Distance to compute the mismatch between a proxy of the true graph and the

learned graph and it allows more than two different graphs to produce the same score.

As a consequence, MVEE might output all input graphs as the best learned graphs even
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though they have different graph structures when they have the same score as their proxy

graph. Structural Hamming Distance is less appropriate to implement compared to two

PAGs. Suppose, three edges E1 : A ↔ B, E2 : A◦→ B and E3 : A ← B, the SHD

score between E1 and E3 is the same as the SHD score between E2 and E3. To improve

MVEE, firstly, a new standard measurement needs to be created for comparing two PAGs

when considering the types of edges. The MVEE agreement graph is only built based

on the modal values of the present edges in the input graphs. Secondly, it is useful to

implement a scoring function to compute a score that measures the statistical relationship.

The best-learned graphs are chosen based in the statistical score and structural score.

In this research, MVEE is limited for FCI-PAG. The MVEE might be improved to

create a proxy graph from RFCI-PAGs and/or FCI-PAGs and RFCI-PAGs.
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Appendix A

The first appendix

A.1 PC Algorithm

Algorithm 1 PC algorithm

Require: Conditional Independence information among all variables in V, and an ordering order (V) on the
variables

Ensure: Return output graph (C) and separation set (sepset)
1: Find the skeleton C and separation sets using Algorithm 2
2: Orient unshielded triplets in the skeleton C based on the separation sets
3: In orient as many of the remaining undirected edges as possible by repeated application of rule R1-R3

Algorithm 2 Creating Skeleton on PC algorithm

Require: Conditional independence information among all variables in V, and ordering order (V) on the
variables

Ensure: C, Sepset
1: Form the complete undirected graph C on the vertex set V
2: Let `=-1
3: repeat
4: Let ` = ` + 1
5: repeat
6: Select a (new) ordered pair of vertices (Xi, Xj) that are adjacent in C and satisfy |adj(C,Xi)\{Xj}| ≥

` using order V
7: repeat
8: Chose a(new) set S ⊆ adj(C,Xi) \ {Xj} with |S| = `, using order V
9: if Xi and Xj are conditionally independent given S then

10: Delete edge Xi −Xj from C
11: Let Sepset(Xi, Xj) = Sepset(Xj , Xi) = S
12: end if
13: until Xi and Xj are no longer adjacent in C or all S ⊆ adj(C,Xi) \ {Xj} with |S| = ` have been

considered
14: until all ordered pairs of adjacent vertices (Xi, Xj) in C with |adj(C,Xi) \ {Xj}| ≥ ` have been

considered
15: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |adj(C,Xi) \ {Xj}| ≤ `
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A.2 Fast Causal Inference (FCI)

Algorithm 3 FCI algorithm

Require: Conditional Independence information among all variables in X given S
Ensure: C, Sepset
1: Finding an initial skeleton C using algorithm 4, separation sets (sepset) and unshielded triple list M
2: Orienting v-structures using algorithm 5 (update C)
3: Finding final skeleton using algorithm 6 (update C and sepset)
4: Orienting v-structures using algorithm 5 (update C)
5: Orienting as many as edge marks as possible using rule (R1-R10) (update C)

Algorithm 4 Obtaining an initial skeleton for FCI

Require: Conditional independence information among all variables in X given S
Ensure: C, Sepset, M
1: Form the complete graph C on the vertex set X with edges ◦––◦
2: Let ` = −1
3: repeat
4: Let ` = `+ 1
5: repeat
6: for all vertices Xi in C do
7: Compute adj(C,Xi)
8: end for
9: Select a (new) ordered pair vertices (Xi, Xj) that are adjacent in C and satisfy |adj(C,Xi)\{Xj}| ≥ `

10: repeat
11: Choose a (new) set Y ⊆ adj(C,Xi) \ {Xj} with |Y | = `
12: if Xi and Xj are conditionally independent given Y ∪ S then
13: Delete edge Xi ◦––◦Xj from C
14: Let Sepset(Xi, Xj) = Sepset(Xj , Xi) = Y
15: end if
16: until Xi and Xj are no longer adjacent in C or all Y ⊆ adj(C,Xi) Xj with |Y | = ` have been

considered
17: until all pairs of adjacent vertices (Xi, Xj) in C with adj(C,Xi) \ {Xj}| ≥ ` have been considered
18: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |adj(C,Xi) \ {Xj}| ≤ `
19: Form a list M of all unshielded triplets 〈Xk, ., Xm〉 (i.e. the middle vertex is left unspecified) in C with

k < m

Algorithm 5 Orienting v-structures in the FCI Algorithm

Require: Initial skeleton C, separation sets (sepset) and unshielded triple list M
Ensure: C, Sepset
1: for all elements 〈Xi, Xj , Xk〉 of M do
2: if Xi /∈ Sepset(Xi, Xk) then
3: Orient Xi ∗––◦Xj ◦––∗Xk as Xi∗→ Xj ←∗Xk in C
4: end if
5: end for

Definition 1 [20]. Let C be a graph with any of the following edge types: ◦––◦, ◦→, ↔.

Possible-d-separation(Xi, Xj) in C, denoted in shorthand by pds(C,Xj , Xj), is defined as

follows: Xk ∈ pds(C,Xi, Xj) if and only if there is a path π between Xi and Xk in C

such that for every subpath 〈Xm, Xl, Xh〉 of π, Xl is a collider on the subpath in C or

〈Xm, Xl, Xh〉 is a triangle in C.
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Algorithm 6 Obtaining the final skeleton in the FCI Algorithm

Require: Partially oriented graph C and separation sets (sepset)
Ensure: C, Sepset, M
1: for all vertices Xi in C do
2: Compute pds(C,Xi, .) as defined in Definition 1
3: for all vertices Xj ∈ adj(C,Xi) do
4: Let ` = −1
5: repeat
6: Let ` = `+ 1
7: repeat
8: Choose a (new) set Y ⊆ pds(C,Xi, .) \ {Xj} with |Y | = `
9: if Xi and Xj are conditional independent given Y ∪ S then

10: Delete edge Xi ∗––∗Xj from C
11: Let Sepset(Xi, Xj) = Sepset(Xj , Xi) = Y
12: end if
13: until Xi and Xj are no longer adjacent in C or all Y ⊆ pds(C,Xi, .) \ {Xj} with |Y | = ` have

been considered
14: until Xi and Xj are no longer adjacent in C or |pds(C,Xi, .) \Xj | ≤ `
15: end for
16: end for
17: Reorient all edges in C as ◦––◦
18: Form a list M of all unshielded triplets 〈Xk, ., Xm〉 in C with k < m
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A.3 Really Fast Causal Inference (RFCI)

Algorithm 7 RFCI algorithm

Require: Conditional Independence information among all variables in X given S
Ensure: C, Sepset
1: Finding an initial skeleton C using Algorithm 8 separation sets (sepset) and unshielded triple list(M)
2: Orient v-structures using algorithm 9 (update C and sepset)
3: Orient as many as edge marks as possible (update C and sepset)

Algorithm 8 Obtaining an initial skeleton for RFCI

Require: Conditional independence information among all variables in X given S
Ensure: C, Sepset, M
1: Form the complete graph C on the vertex set X with edges ◦––◦
2: Let ` = −1
3: repeat
4: Let ` = `+ 1
5: repeat
6: for all vertices Xi in C do
7: Compute adj(C,Xi)
8: end for
9: Select a (new) ordered pair vertices (Xi, Xj) that are adjacent in C and satisfy |adj(C,Xi)\{Xj}| ≥ `

10: repeat
11: Choose a (new) set Y ⊆ adj(C,Xi) \Xj with |Y | = `
12: if Xi and Xj are conditionally independent given Y ∪ S then
13: Delete edge Xi ◦––◦Xj from C
14: Let Sepset(Xi, Xj) = Sepset(Xj , Xi) = Y
15: end if
16: until Xi and Xj are no longer adjacent in C or all Y ⊆ adj(C,Xi) \ {Xj} with |Y | = ` have been

considered
17: until all ordered pairs of adjacent vertices (Xi, Xj) in C with adj(C,Xi)\{Xi} ≥ ` have been considered
18: until all pairs of adjacent vertices (Xi, Xj) in C satisfy adj(C,Xi) \ {Xi} ≤ `
19: Form a list M of all unshielded triplets 〈Xk, ., Xm〉 (i.e. the middle vertex is left unspecified) in C with

k < m
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A.3 Really Fast Causal Inference (RFCI)

Algorithm 9 Orienting v-structures in the RFCI Algorithm

Require: Initial skeleton C, separation sets (sepset) and unshielded triple list M from algorithm 8
Ensure: C, Sepset
1: Let L be an empty list
2: whileM is non-empty do
3: Choose an unshielded triple 〈Xi, Xj , Xk〉 from M
4: if both (Xi and Xj) and (Xj and Xk) are conditionally dependent given (Sepset(Xi, Xk) \ {Xj} ∪ S)

then
5: Add 〈Xi, Xj , Xk〉 to L
6: else
7:
8: for r ∈ i, k do
9: if Xr and Xj are conditionally independent given (Sepset(Xi, Xk) \ {Xj} ∪ S) then

10: Find a minimal separating set Y ⊆ Sepset(Xi, Xk) \ {Xk} for Xr and Xj
11: Let Sepset(Xr, Xj) = Sepset(Xj , Xr) = Y
12: Add to M all triplets 〈Xmin(r,j),.,Xmax(r,j)

〉 that form a triangle in C

13: Delete from M and L all triplets containing (Xr, Xj):〈Xr, Xj , .〉,〈Xj , Xr, .〉,〈., Xj , Xr〉, and
〈., Xr, Xj〉

14: Delete edge Xr ∗––∗Xj from C
15: end if
16: end for
17: end if
18: Remove 〈Xi, Xj , Xk〉 from M
19: end while
20: for all elements 〈Xi, Xj , Xk〉 of L do
21: if Xj /∈ Sepset(Xi, Xk) and both edges Xi ∗––∗Xj and Xj ∗––∗Xk are parent in C then
22: Orient Xi ∗––◦Xj ◦––∗Xk as Xi∗→ Xj ←∗Xk in C
23: end if
24: end for
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Algorithm 10 Orientation rules for RFCI-algorithm

Require: Skeleton C, separation set(sepset) and unshielded triplet list M from Algorithm 9
Ensure: C, Sepset
1: repeat
2: Orient as many edge marks as possible in by applying rules(R1) - (R3) (see Chapter 2.5.3)
3: while a triangle between three vertices 〈Xl, Xj , Xk〉 exists such that Xj ◦––∗ Xk, Xl ←∗Xj , and

Xl → Xk in C do
4: Find a shortest discriminating path for 〈Xl, Xj , Xk〉
5: if a discriminating path π for 〈Xl, Xj , Xk〉 exists between Xk and say Xi then
6: for all pairs of vertices (Xr, Xq) that are adjacent on π do
7: ` = −1
8: repeat
9: Let ` = `+ 1

10: repeat
11: Choose a (new) subset Y ⊆ Sepset(Xi, Xk) \ {Xr, Xq} with |Y | = `
12: if Xr and Xq are conditionally independent given Y ∪ S then
13: Let Sepset(Xr, Xq) = Sepset(Xq, Xr) = Y
14: Create a list M of all triplets 〈Xr, ., Xq〉 with r < q that form a triangle in C
15: Delete edge Xr ∗––∗Xq from C
16: Run Algorithm 9 with input {C, Sepset,M} and update C and sepset
17: end if
18: until Xr and Xq are no longer adjacent in C or all Y ⊆ Sepset(Xi, Xk) \ {Xr, Xq} with

|Y | = ` have been considered
19: until |Sepset(Xi, Xk) \ {Xr, Xq}| < `
20: end for
21: if If all of the edges between adjacent vertices on π are present in C then then
22: if Xi ∈ Speset(Xi, Xk) then
23: Orient Xj ◦––∗Xk as Xj → Xk in C
24: else
25: Orient the triple Xl ←∗Xj ◦––∗Xk as Xl ↔ Xj ↔ Xk in C
26: end if
27: end if
28: end if
29: end while
30: Orient as many edge marks as possible in C by applying rules (R5)-(R10) (see Chapter 2.5.3)
31: until C remains unchanged throughout lines 2-30 above
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Table B.1: Kernel parameter values for G1
X Y Z

P1 θ = 0.00001 θ = 0.00001 θ = 0.00001
P2 θ = 0.01 θ = 0.01 θ = 0.01

Case 1 P3 θ = 1 θ = 1 θ = 1
P4 θ = 2 θ = 2 θ = 2
P5 θ = 5 θ = 5 θ = 5
P6 θ = 10 θ = 10 θ = 10

P1 θ = 2 θ = 2 σ = 0.0001
P2 θ = 2 θ = 2 σ = 0.01

Case 2 P3 θ = 2 θ = 2 σ = 2
P4 θ = 2 θ = 2 σ = 5
P5 θ = 2 θ = 2 σ = 10
P6 θ = 2 θ = 2 σ = 100

P1 θ = 2 σ = 0.00001 σ = 0.00001
P2 θ = 2 σ = 0.01 σ = 0.01

Case 3 P3 θ = 2 σ = 2 σ = 2
P4 θ = 2 σ = 0.00001 σ = 2
P5 θ = 2 σ = 2 σ = 0.00001
P6 θ = 2 σ = 2 σ = 0.1

P1 σ = 0.000001 σ = 0.000001 σ = 0.000001
P2 σ = 0.00001 σ = 0.00001 σ = 0.00001

Case 4 P3 σ = 0.0001 σ = 0.0001 σ = 0.0001
P4 σ = 0.01 σ = 0.01 σ = 0.01
P5 σ = 2 σ = 2 σ = 2
P6 σ = 10 σ = 10 σ = 10

P1 σ =1E-14 θ = 2 θ = 2
P2 σ = 0.000001 θ = 2 θ = 2

Case 5 P3 σ = 0.00001 θ = 2 θ = 2
P4 σ = 0.01 θ = 2 θ = 2
P5 σ = 10 θ = 2 θ = 2
P6 σ = 100 θ = 2 θ = 2

P1 σ = 0.000001 σ = 0.000001 θ = 2
P2 σ = 0.0001 σ = 0.0001 θ = 2

Case 6 P3 σ = 0.01 σ = 0.01 θ = 2
P4 σ = 0.1 σ = 0.1 θ = 2
P5 σ = 10 σ = 10 θ = 2
P6 σ = 100 σ = 100 θ = 2

P1 θ = 2 σ = 0.00001 θ = 2
P2 θ = 2 σ = 0.0001 θ = 2

Case 7 P3 θ = 2 σ = 0.01 θ = 2
P4 θ = 2 σ = 0.1 θ = 2
P5 θ = 2 σ = 10 θ = 2
P6 θ = 2 σ = 100 θ = 2
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Table B.2: Kernel parameter values for G2
X Y Z

P1 θ = 0.00001 θ = 0.00001 θ = 0.00001
P2 θ = 0.01 θ = 0.01 θ = 0.01

Case 1 P3 θ = 1 θ = 1 θ = 1
P4 θ = 2 θ = 2 θ = 2
P5 θ = 5 θ = 5 θ = 5
P6 θ = 10 θ = 10 θ = 10

P1 θ = 2 θ = 2 σ = 0.0001
P2 θ = 2 θ = 2 σ = 0.01

Case 2 P3 θ = 2 θ = 2 σ = 2
P4 θ = 2 θ = 2 σ = 5
P5 θ = 2 θ = 2 σ = 10
P6 θ = 2 θ = 2 σ = 100

P1 θ = 2 σ =1E-13 σ =1E-13
P2 θ = 2 σ =1E-11 σ =1E-11

Case 3 P3 θ = 2 σ =1E-12 σ =1000
P4 θ = 2 σ =1E-11 σ =100
P5 θ = 2 σ =1E-14 σ =100000
P6 θ = 2 σ =1E-15 σ =10000

P1 σ = 0.00001 σ = 0.00001 σ = 100
P2 σ = 0.0001 σ = 100 σ = 0.00001

Case 4 P3 σ = 0.001 σ = 10 σ = 100
P4 σ = 0.01 σ = 100 σ = 10
P5 σ = 0.1 σ = 10 σ = 10
P6 σ = 10 σ = 0.00001 σ = 100

P1 σ = 0.00001 θ = 2 θ = 2
P2 σ = 0.01 θ = 2 θ = 2

Case 5 P3 σ = 1 θ = 2 θ = 2
P4 σ = 10 θ = 2 θ = 2
P5 σ = 100 θ = 2 θ = 2
P6 σ = 1000 θ = 2 θ = 2

P1 σ =1E-07 σ =1E-12 θ = 2
P2 σ =1E-08 σ =1E-12 θ = 2

Case 6 P3 σ =1E-12 σ =1E-12 θ = 2
P4 σ =1E-14 σ =1E-11 θ = 2
P5 σ =1E-15 σ = 0.000000001 θ = 2
P6 σ =1E-16 σ = 0.00000001 θ = 2

P1 θ = 2 σ = 0.00001 θ = 2
P2 θ = 2 σ = 0.01 θ = 2

Case 7 P3 θ = 2 σ = 0.9 θ = 2
P4 θ = 2 σ = 10 θ = 2
P5 θ = 2 σ = 100 θ = 2
P6 θ = 2 σ = 1000 θ = 2
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Table B.3: Kernel parameter values for G3
X Y Z

P1 θ = 0.00001 θ = 0.00001 θ = 0.00001
P2 θ = 0.01 θ = 0.01 θ = 0.01

Case 1 P3 θ = 1 θ = 1 θ = 1
P4 θ = 2 θ = 2 θ = 2
P5 θ = 5 θ = 5 θ = 5
P6 θ = 10 θ = 10 θ = 10

P1 θ = 2 θ = 2 σ = 0.0001
P2 θ = 2 θ = 2 σ = 0.01

Case 2 P3 θ = 2 θ = 2 σ = 2
P4 θ = 2 θ = 2 σ = 5
P5 θ = 2 θ = 2 σ = 10
P6 θ = 2 θ = 2 σ = 100

P1 θ = 2 σ = 0.00001 σ = 0.00001
P2 θ = 2 σ = 0.01 σ = 0.01

Case 3 P3 θ = 2 σ = 2 σ = 2
P4 θ = 2 σ = 0.00001 σ = 2
P5 θ = 2 σ = 2 σ = 0.00001
P6 θ = 2 σ = 2 σ = 0.1

P1 σ = 0.00001 σ = 0.00001 σ = 0.00001
P2 σ = 10 σ = 10 σ = 10

Case 4 P3 σ = 300 σ = 300 σ = 300
P4 σ = 500 σ = 500 σ = 500
P5 σ = 1000 σ = 1000 σ = 1000
P6 σ = 3000 σ = 3000 σ = 3000

P1 σ = 10 θ = 2 θ = 2
P2 σ = 0.00001 θ = 2 θ = 2

Case 5 P3 σ =1E-15 θ = 2 θ = 2
P4 σ =1E-16 θ = 2 θ = 2
P5 σ =1E-17 θ = 2 θ = 2
P6 σ =1E-18 θ = 2 θ = 2

P1 σ = 30 σ = 30 θ = 2
P2 σ = 300 σ = 300 θ = 2

Case 6 P3 σ = 3000 σ = 3000 θ = 2
P4 σ = 30000 σ = 30000 θ = 2
P5 σ = 300000 σ = 30000 θ = 2
P6 σ = 3000000 σ = 3000000 θ = 2

P1 θ = 2 σ = 0.00001 θ = 2
P2 θ = 2 σ = 0.1 θ = 2

Case 7 P3 θ = 2 σ = 2 θ = 2
P4 θ = 2 σ = 5 θ = 2
P5 θ = 2 σ = 10 θ = 2
P6 θ = 2 σ = 100 θ = 2
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Table B.4: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G1 N = 1000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 - 1 - 1 - 0.97 - 0.97 - 0.97 - 0.97
α = 0.05 - 1 - 1 - 0.93 - 0.97 - 0.97 - 0.97

Case1 α = 0.1 - 1 - 1 - 0.93 - 0.93 - 0.93 - 0.93
α = 0.5 - 1 - 1 - 0.76 - 0.8 - 0.8 - 0.8
α = 0.7 - 1 - 1 - 0.5 - 0.5 - 0.5 - 0.5

α = 0.01 - 0.23 - 0.76 - 0.67 - 0.67 - 0.7 - 0.7
α = 0.05 - 0.23 - 0.63 - 0.63 - 0.63 - 0.63 - 0.66

Case2 α = 0.1 - 0.2 - 0.53 - 0.56 - 0.6 - 0.6 - 0.63
α = 0.5 - 0.06 - 0.36 - 0.3 - 0.33 - 0.36 - 0.33
α = 0.7 - 0 - 0.33 - 0.2 - 0.16 - 0.2 - 0.23

α = 0.01 - 0.23 - 0.3 - 0.57 - 0.63 - 0.53 - 0.47
α = 0.05 - 0.23 - 0.27 - 0.53 - 0.6 - 0.53 - 0.3

Case3 α = 0.1 - 0.2 - 0.23 - 0.5 - 0.5 - 0.47 - 0.27
α = 0.5 - 0.06 - 0.03 - 0.37 - 0.4 - 0.2 - 0.06
α = 0.7 - 0 - 0 - 0.13 - 0.27 - 0.1 - 0.03

α = 0.01 - 0.06 - 0.06 - 0.06 - 0.2 - 0.73 - 0.73
α = 0.05 - 0 - 0 - 0 - 0.2 - 0.63 - 0.7

Case4 α = 0.1 - 0 - 0 - 0 - 0.13 - 0.63 - 0.66
α = 0.5 - 0 - 0 - 0 - 0.1 - 0.43 - 0.4
α = 0.7 - 0 - 0 - 0 - 0.06 - 0.33 - 0.36

α = 0.01 - 0.46 - 0.46 - 0.46 - 0.46 - 0.6 - 0.63
α = 0.05 - 0.36 - 0.36 - 0.36 - 0.36 - 0.56 - 0.63

Case5 α = 0.1 - 0.3 - 0.3 - 0.3 - 0.3 - 0.56 - 0.63
α = 0.5 - 0.1 - 0.1 - 0.1 - 0.1 - 0.3 - 0.43
α = 0.7 - 0.06 - 0.06 - 0.06 - 0.06 - 0.2 - 0.36

α = 0.01 - 0.43 - 0.43 - 0.43 - 0.46 - 0.63 - 0.73
α = 0.05 - 0.33 - 0.33 - 0.3 - 0.3 - 0.6 - 0.7

Case6 α = 0.1 - 0.23 - 0.23 - 0.2 - 0.16 - 0.56 - 0.66
α = 0.5 - 0.06 - 0.06 - 0.06 - 0.06 - 0.4 - 0.3
α = 0.7 - 0.06 - 0.06 - 0.06 - 0.06 - 0.3 - 0.13

α = 0.01 - 0.66 - 0.66 - 0.66 - 0.7 - 0.7 - 0.76
α = 0.05 - 0.66 - 0.66 - 0.66 - 0.66 - 0.7 - 0.73

Case7 α = 0.1 - 0.63 - 0.63 - 0.63 - 0.63 - 0.7 - 0.7
α = 0.5 - 0.6 - 0.6 - 0.6 - 0.6 - 0.63 - 0.66
α = 0.7 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6
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Table B.5: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G1 N = 3000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 - 1 - 1 - 0.93 - 0.93 - 0.93 - 0.93
α = 0.05 - 1 - 1 - 0.9 - 0.9 - 0.9 - 0.9

Case1 α = 0.1 - 1 - 1 - 0.83 - 0.83 - 0.83 - 0.83
α = 0.5 - 1 - 1 - 0.5 - 0.5 - 0.5 - 0.5
α = 0.7 - 1 - 1 - 0.4 - 0.36 - 0.36 - 0.36

α = 0.01 - 0.16 - 0.5 - 0.56 - 0.56 - 0.6 - 0.63
α = 0.05 - 0.16 - 0.46 - 0.43 - 0.53 - 0.53 - 0.6

Case2 α = 0.1 - 0.13 - 0.43 - 0.4 - 0.46 - 0.5 - 0.6
α = 0.5 - 0.03 - 0.3 - 0.2 - 0.2 - 0.2 - 0.26
α = 0.7 - 0 - 0.13 - 0.16 - 0.16 - 0.16 - 0.2

α = 0.01 - 0.16 - 0.13 - 0.5 - 0.53 - 0.4 - 0.2
α = 0.05 - 0.16 - 0.06 - 0.5 - 0.46 - 0.33 - 0.13

Case3 α = 0.1 - 0.13 - 0.06 - 0.5 - 0.46 - 0.3 - 0.13
α = 0.5 - 0.03 - 0.03 - 0.16 - 0.23 - 0.03 - 0.06
α = 0.7 - 0 - 0 - 0.13 - 0.16 - 0 - 0.03

α = 0.01 - 0 - 0 - 0 - 0.13 - 0.6 - 0.73
α = 0.05 - 0 - 0 - 0 - 0.13 - 0.56 - 0.7

Case4 α = 0.1 - 0 - 0 - 0 - 0.1 - 0.56 - 0.63
α = 0.5 - 0 - 0 - 0 - 0.06 - 0.4 - 0.46
α = 0.7 - 0 - 0 - 0 - 0.06 - 0.33 - 0.36

α = 0.01 - 0.3 - 0.3 - 0.3 - 0.3 - 0.53 - 0.63
α = 0.05 - 0.23 - 0.23 - 0.23 - 0.23 - 0.5 - 0.56

Case5 α = 0.1 - 0.16 - 0.16 - 0.16 - 0.16 - 0.46 - 0.53
α = 0.5 - 0.1 - 0.1 - 0.1 - 0.06 - 0.23 - 0.4
α = 0.7 - 0.06 - 0.06 - 0.06 - 0.06 - 0.13 - 0.3

α = 0.01 - 0.23 - 0.23 - 0.23 - 0.16 - 0.5 - 0.66
α = 0.05 - 0.13 - 0.13 - 0.13 - 0.13 - 0.46 - 0.6

Case6 α = 0.1 - 0.13 - 0.13 - 0.13 - 0.1 - 0.46 - 0.56
α = 0.5 - 0.06 - 0.06 - 0.06 - 0.06 - 0.33 - 0.4
α = 0.7 - 0.06 - 0.06 - 0.06 - 0.06 - 0.23 - 0.26

α = 0.01 - 0.6 - 0.6 - 0.6 - 0.6 - 0.7 - 0.7
α = 0.05 - 0.6 - 0.6 - 0.6 - 0.6 - 0.66 - 0.7

Case7 α = 0.1 - 0.6 - 0.6 - 0.6 - 0.6 - 0.66 - 0.7
α = 0.5 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.63
α = 0.7 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6
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Table B.6: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G1 N = 5000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 - 1 - 1 - 0.9 - 0.9 - 0.9 - 0.9
α = 0.05 - 1 - 1 - 0.8 - 0.77 - 0.77 - 0.77

Case1 α = 0.1 - 1 - 1 - 0.73 - 0.77 - 0.77 - 0.77
α = 0.5 - 1 - 1 - 0.43 - 0.43 - 0.43 - 0.43
α = 0.7 - 1 - 1 - 0.33 - 0.33 - 0.33 - 0.33

α = 0.01 - 0.16 - 0.46 - 0.43 - 0.53 - 0.53 - 0.6
α = 0.05 - 0.1 - 0.4 - 0.36 - 0.43 - 0.46 - 0.6

Case2 α = 0.1 - 0.06 - 0.36 - 0.33 - 0.36 - 0.43 - 0.53
α = 0.5 - 0 - 0.13 - 0.16 - 0.16 - 0.2 - 0.26
α = 0.7 - 0 - 0.13 - 0.16 - 0.16 - 0.16 - 0.2

α = 0.01 - 0.16 - 0.06 - 0.5 - 0.46 - 0.33 - 0.13
α = 0.05 - 0.1 - 0.06 - 0.46 - 0.46 - 0.26 - 0.06

Case3 α = 0.1 - 0.06 - 0.06 - 0.4 - 0.46 - 0.23 - 0.06
α = 0.5 - 0 - 0.03 - 0.13 - 0.23 - 0.03 - 0.03
α = 0.7 - 0 - 0 - 0.1 - 0.1 - 0 - 0

α = 0.01 - 0 - 0 - 0 - 0.13 - 0.56 - 0.73
α = 0.05 - 0 - 0 - 0 - 0.1 - 0.56 - 0.63

Case4 α = 0.1 - 0 - 0 - 0 - 0.1 - 0.53 - 0.63
α = 0.5 - 0 - 0 - 0 - 0.06 - 0.33 - 0.46
α = 0.7 - 0 - 0 - 0 - 0.06 - 0.26 - 0.36

α = 0.01 - 0.23 - 0.23 - 0.23 - 0.23 - 0.5 - 0.6
α = 0.05 - 0.13 - 0.13 - 0.13 - 0.13 - 0.36 - 0.53

Case5 α = 0.1 - 0.13 - 0.13 - 0.13 - 0.13 - 0.36 - 0.5
α = 0.5 - 0.06 - 0.06 - 0.06 - 0.06 - 0.16 - 0.3
α = 0.7 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06 - 0.2

α = 0.01 - 0.13 - 0.13 - 0.13 - 0.13 - 0.46 - 0.6
α = 0.05 - 0.13 - 0.1 - 0.1 - 0.06 - 0.46 - 0.56

Case6 α = 0.1 - 0.06 - 0.06 - 0.06 - 0.06 - 0.43 - 0.5
α = 0.5 - 0.06 - 0.06 - 0.06 - 0.06 - 0.23 - 0.4
α = 0.7 - 0.06 - 0.06 - 0.06 - 0.06 - 0.23 - 0.3

α = 0.01 - 0.6 - 0.6 - 0.6 - 0.6 - 0.66 - 0.7
α = 0.05 - 0.6 - 0.6 - 0.6 - 0.6 - 0.63 - 0.7

Case7 α = 0.1 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.66
α = 0.5 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6
α = 0.7 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6 - 0.6
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Table B.7: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G2 N = 1000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 1 1 1 1 1 0.7 1 0.7 1 0.7 1 0.7
α = 0.05 1 1 1 1 1 0.6 1 0.6 1 0.6 1 0.6

Case1 α = 0.1 1 1 1 1 1 0.6 1 0.6 1 0.6 1 0.6
α = 0.5 1 1 1 1 1 0.4 1 0.4 1 0.4 1 0.4
α = 0.7 1 1 1 1 1 0.3 1 0.3 1 0.3 1 0.3

α = 0.01 1 0.5 1 0.5 1 0.5 1 0.45 1 0.5 1 0.5
α = 0.05 1 0.4 1 0.5 1 0.35 1 0.35 1 0.3 1 0.35

Case2 α = 0.1 1 0.4 1 0.45 1 0.25 1 0.2 1 0.15 1 0.15
α = 0.5 0.8 0 0.8 0.2 1 0 1 0 1 0 1 0
α = 0.7 0.4 0 0.5 0.15 1 0 1 0 1 0 0.6 0

α = 0.01 1 0.5 1 0.5 0.9 0.45 0.7 0.45 1 0.5 1 0.45
α = 0.05 1 0.5 1 0.5 0.9 0.45 0.6 0.35 1 0.5 0.9 0.45

Case3 α = 0.1 1 0.5 1 0.5 0.7 0.45 0.6 0.3 1 0.5 0.9 0.45
α = 0.5 1 0.5 1 0.5 0.5 0.3 0.4 0.2 0.4 0.4 0.5 0.4
α = 0.7 1 0.5 1 0.5 0.2 0.2 0.1 0.15 0.4 0.4 0.3 0.35

α = 0.01 0.9 0.45 0 0.3 1 0 0.9 0.4 0.9 0 0 0.5
α = 0.05 0.9 0.45 0 0 1 0 0.9 0.15 0.9 0 0 0.45

Case4 α = 0.1 0.8 0.4 0 0 1 0 0.9 0.1 0.8 0 0 0.45
α = 0.5 0 0 0 0 0.9 0 0.1 0 0 0 0 0.4
α = 0.7 0 0 0 0 0.7 0 0 0 0 0 0 0.15

α = 0.01 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.4 0.7 0.45 0.7 0.45
α = 0.05 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.7 0.45 0.7 0.45

Case5 α = 0.1 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.45 0.7 0.45
α = 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.4 0.6 0.45
α = 0.7 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.4 0.6 0.45

α = 0.01 0.8 0.4 1 0.5 1 0.5 1 0.45 0.9 0.4 0.9 0.15
α = 0.05 0.7 0.35 1 0.5 1 0.5 1 0.45 0.9 0.35 0.9 0.15

Case6 α = 0.1 0.7 0.35 1 0.5 1 0.5 1 0.45 0.9 0.35 0.9 0.15
α = 0.5 0.6 0.3 0.8 0.4 1 0.5 1 0.45 0.8 0.3 0.5 0.1
α = 0.7 0.4 0.2 0.8 0.4 1 0.5 1 0.45 0.3 0.2 0.4 0.1

α = 0.01 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.8
α = 0.05 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75

Case7 α = 0.1 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75
α = 0.5 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.55
α = 0.7 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.6 0.7 0.5
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Table B.8: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G2 N = 3000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 1 1 1 1 1 0.5 1 0.5 1 0.5 1 0.5
α = 0.05 1 1 1 1 1 0.4 1 0.4 1 0.4 1 0.4

Case1 α = 0.1 1 1 1 1 1 0.4 1 0.4 1 0.4 1 0.4
α = 0.5 1 1 1 1 1 0.4 1 0.4 1 0.4 1 0.4
α = 0.7 1 1 1 1 1 0.3 1 0.3 1 0.3 1 0.3

α = 0.01 1 0.3 1 0.35 1 0.1 1 0.1 1 0.1 1 0.05
α = 0.05 1 0.1 1 0.3 1 0 1 0 1 0 1 0

Case2 α = 0.1 0.9 0 1 0.2 1 0 1 0 1 0 1 0
α = 0.5 0.6 0 0.7 0.1 0.9 0 0.9 0 0.9 0 0.9 0
α = 0.7 0.6 0 0.5 0.05 0.8 0 0.8 0 0.8 0 0.8 0

α = 0.01 1 0.5 0.6 0.3 0.7 0.45 0.6 0.3 1 0.45 0.9 0.45
α = 0.05 1 0.5 0.6 0.3 0.7 0.35 0.5 0.25 0.9 0.45 0.9 0.45

Case3 α = 0.1 1 0.5 0.6 0.3 0.6 0.3 0.4 0.2 0.9 0.45 0.7 0.45
α = 0.5 1 0.5 0.6 0.3 0.4 0.2 0.2 0.15 0.5 0.4 0.6 0.3
α = 0.7 1 0.5 0.6 0.3 0.1 0.15 0.1 0.15 0.4 0.35 0.2 0.2

α = 0.01 0.8 0 0 0 0.9 0 0.9 0.4 0.9 0 0 0.5
α = 0.05 0.3 0 0 0 0.9 0 0.9 0.15 0.9 0 0 0.45

Case4 α = 0.1 0.2 0 0 0 0.9 0 0.9 0.1 0.8 0 0 0.45
α = 0.5 0 0 0 0 0.3 0 0.1 0 0 0 0 0.4
α = 0.7 0 0 0 0 0.2 0 0 0 0 0 0 0.15

α = 0.01 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.45 0.7 0.45
α = 0.05 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.45 0.7 0.45

Case5 α = 0.1 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.45 0.6 0.45
α = 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.4 0.6 0.45
α = 0.7 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.3 0.6 0.45

α = 0.01 0.7 0.35 1 0.5 1 0.5 1 0.45 0.9 0.3 0.6 0.1
α = 0.05 0.7 0.35 0.9 0.45 1 0.5 1 0.45 0.9 0.25 0.6 0.1

Case6 α = 0.1 0.7 0.35 0.9 0.45 1 0.5 1 0.45 0.9 0.25 0.6 0.1
α = 0.5 0.6 0.3 0.8 0.4 1 0.5 1 0.4 0.5 0.15 0.3 0.1
α = 0.7 0.4 0.2 0.7 0.35 1 0.5 0.8 0.35 0.4 0 0.2 0.1

α = 0.01 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75
α = 0.05 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75

Case7 α = 0.1 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75
α = 0.5 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.7
α = 0.7 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.7 0.7 0.5
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Appendix B: The second appendix

Table B.9: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G2 N = 5000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 1 0.95 1 0.95 1 0.4 1 0.4 1 0.4 1 0.4
α = 0.05 1 0.95 1 0.95 1 0.4 1 0.4 1 0.4 1 0.4

Case1 α = 0.1 1 0.95 1 0.95 1 0.4 1 0.4 1 0.4 1 0.4
α = 0.5 1 0.95 1 0.95 1 0.35 1 0.35 1 0.35 1 0.35
α = 0.7 1 0.95 1 0.95 1 0.2 1 0.25 1 0.25 1 0.25

α = 0.01 1 0.1 1 0.3 1 0 1 0 1 0 1 0
α = 0.05 0.9 0 1 0.2 1 0 1 0 1 0 1 0

Case2 α = 0.1 0.9 0 1 0.15 1 0 1 0 1 0 1 0
α = 0.5 0.6 0 0.6 0.1 0.9 0 0.9 0 0.0 0 0.9 0
α = 0.7 0.4 0 0.4 0 0.7 0 0.8 0 0.8 0 0.9 0

α = 0.01 0.9 0.45 0.5 0.25 0.7 0.35 0.5 0.25 1 0.45 0.9 0.45
α = 0.05 0.9 0.45 0.5 0.25 0.6 0.3 0.4 0.2 0.9 0.45 0.7 0.45

Case3 α = 0.1 0.9 0.45 0.5 0.25 0.6 0.3 0.4 0.2 0.9 0.45 0.7 0.4
α = 0.5 0.9 0.45 0.5 0.25 0.3 0.2 0.1 0.15 0.5 0.35 0.4 0.25
α = 0.7 0.9 0.45 0.5 0.25 0.1 0.15 0 0.1 0.2 0.2 0.1 0.2

α = 0.01 0.3 0.15 0 0 0.9 0 0.9 0.4 0.9 0 0 0.5
α = 0.05 0.1 0.05 0 0 0.9 0 0.9 0.15 0.9 0 0 0.45

Case4 α = 0.1 0 0 0 0 0.8 0 0.9 0.1 0.8 0 0 0.45
α = 0.5 0 0 0 0 0.3 0 0.1 0 0 0 0 0.4
α = 0.7 0 0 0 0 0 0 0 0 0 0 0 0.15

α = 0.01 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.45 0.7 0.45
α = 0.05 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.45 0.6 0.45

Case5 α = 0.1 0.6 0.3 0.6 0.3 0.6 0.3 0.7 0.3 0.6 0.4 0.6 0.45
α = 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.45
α = 0.7 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.45

α = 0.01 0.7 0.35 1 0.5 1 0.5 1 0.45 0.9 0.2 0.6 0.1
α = 0.05 0.7 0.35 1 0.5 1 0.5 1 0.45 0.9 0.2 0.6 0.1

Case6 α = 0.1 0.6 0.3 0.8 0.4 1 0.5 1 0.45 0.9 0.2 0.3 0.1
α = 0.5 0.4 0.2 0.8 0.4 1 0.5 1 0.35 0.5 0.15 0.2 0.1
α = 0.7 0.3 0.15 0.7 0.35 1 0.5 0.7 0.35 0.2 0.1 0.2 0.1

α = 0.01 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75
α = 0.05 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75

Case7 α = 0.1 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75
α = 0.5 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75
α = 0.7 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.75 0.7 0.65
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Table B.10: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G3 N =
1000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 1 1 1 1 1 0.8 1 0.75 1 0.75 1 0.75
α = 0.05 1 1 1 1 1 0.65 1 0.6 1 0.6 1 0.6

Case1 α = 0.1 1 1 1 1 1 0.55 1 0.5 1 0.5 1 0.5
α = 0.5 1 1 1 1 1 0.15 1 0.15 1 0.15 1 0.15
α = 0.7 1 1 1 1 1 0 1 0.05 1 0.05 1 0.05

α = 0.01 1 0.35 1 0.3 1 0.25 1 0.25 1 0.25 1 0.2
α = 0.05 1 0.2 1 0.2 1 0.2 1 0.15 1 0.1 1 0.05

Case2 α = 0.1 1 0.2 0.9 0.2 1 0.1 1 0.1 1 0.05 1 0.05
α = 0.5 0.3 0.15 0.5 0.1 0.8 0 0.8 0 0.8 0 0.9 0
α = 0.7 0.1 0.15 0.4 0.1 0.7 0 0.7 0 0.7 0 0.5 0

α = 0.01 0.6 0.15 0.5 0.1 0.9 0 0.8 0.25 0.8 0.25 0.9 0.05
α = 0.05 0.4 0.15 0.5 0.1 0.9 0 0.8 0.25 0.8 0.25 0.8 0.05

Case3 α = 0.1 0.4 0.1 0.5 0.1 0.9 0 0.8 0.25 0.8 0.25 0.8 0.05
α = 0.5 0.2 0.05 0.4 0.05 0.8 0 0.6 0.2 0.6 0.2 0.7 0
α = 0.7 0.2 0.05 0.3 0.05 0.8 0 0.4 0.15 0.4 0.15 0.6 0

α = 0.01 0 0 0.9 0.25 0.8 0.1 0.8 0.2 0.9 0.25 1 0.35
α = 0.05 0 0 0.8 0.15 0.8 0.05 0.8 0.05 0.8 0.15 0.9 0.25

Case4 α = 0.1 0 0 0.8 0.05 0.8 0 0.8 0 0.8 0.05 0.9 0.2
α = 0.5 0 0 0.6 0 0.2 0 0.4 0 0.6 0 0.7 0
α = 0.7 0 0 0.2 0 0 0 0.1 0 0.2 0 0.5 0

α = 0.01 0 0.7 0 0.5 0.1 0.5 0.2 0.65 0.4 0.9 1 1
α = 0.05 0 0.65 0 0.5 0.1 0.5 0.2 0.6 0.4 0.8 1 1

Case5 α = 0.1 0 0.55 0 0.5 0.1 0.5 0.2 0.6 0.4 0.8 1 1
α = 0.5 0 0.5 0 0.5 0.1 0.5 0.2 0.5 0.4 0.8 1 1
α = 0.7 0 0.5 0 0.5 0.1 0.5 0.2 0.5 0.4 0.8 1 1

α = 0.01 0.1 0 0.7 0.05 0.9 0.05 0.9 0.2 0.9 0.4 0.9 0.4
α = 0.05 0 0 0.4 0.05 0.6 0 0.9 0.2 0.9 0.4 0.9 0.4

Case6 α = 0.1 0 0 0.2 0.05 0.6 0 0.8 0.05 0.9 0.3 0.9 0.4
α = 0.5 0 0 0 0 0 0 0.2 0 0.6 0 0.8 0.2
α = 0.7 0 0 0 0 0 0 0 0 0.2 0 0.6 0

α = 0.01 1 0.5 1 0.5 1 0.5 1 0.5 1 0.55 1 0.6
α = 0.05 1 0.35 1 0.35 1 0.35 1 0.35 1 0.35 1 0.4

Case7 α = 0.1 1 0.2 1 0.25 1 0.3 1 0.25 1 0.25 1 0.3
α = 0.5 0.8 0.15 0.5 0.2 1 0.1 1 0.1 0.9 0.1 0.8 0.1
α = 0.7 0.3 0 0.4 0.05 0.8 0 1 0 0.7 0 0.1 0
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Appendix B: The second appendix

Table B.11: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G3 N =
3000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 1 1 1 1 1 0.5 1 0.4 1 0.4 1 0.4
α = 0.05 1 1 1 1 1 0.3 1 0.3 1 0.3 1 0.3

Case1 α = 0.1 1 1 1 1 1 0.3 1 0.25 1 0.25 1 0.25
α = 0.5 1 1 1 1 1 0.05 1 0.05 1 0.05 1 0.05
α = 0.7 1 1 1 1 1 0 1 0 1 0 1 0

α = 0.01 0.9 0.2 0.9 0.15 1 0.1 1 0.05 1 0.05 1 0.05
α = 0.05 0.6 0.2 0.6 0.15 1 0 1 0 1 0 1 0

Case2 α = 0.1 0.6 0.2 0.6 0.1 1 0 1 0 1 0 1 0
α = 0.5 0.4 0.1 0.4 0.1 0.7 0 0.7 0 0.7 0 0.8 0
α = 0.7 0.2 0.1 0.4 0.1 0.6 0 0.7 0 0.7 0 0.7 0

α = 0.01 0.6 0.15 0.5 0.1 0.9 0 0.8 0.25 0.8 0.25 0.8 0.05
α = 0.05 0.6 0.15 0.5 0.05 0.9 0 0.7 0.25 0.7 0.25 0.8 0

Case3 α = 0.1 0.6 0.15 0.5 0.05 0.9 0 0.6 0.25 0.6 0.25 0.7 0
α = 0.5 0.5 0.1 0.5 0.05 0.5 0 0.5 0.15 0.5 0.15 0.6 0
α = 0.7 0.4 0.05 0.4 0.05 0.5 0 0.4 0.15 0.4 0.15 0.6 0

α = 0.01 0 0 0.8 0 0.6 0 0.8 0 0.8 0 0.9 0.2
α = 0.05 0 0 0.7 0 0.5 0 0.6 0 0.7 0 0.8 0

Case4 α = 0.1 0 0 0.6 0 0.5 0 0.5 0 0.6 0 0.8 0
α = 0.5 0 0 0 0 0 0 0 0 0 0 0.4 0
α = 0.7 0 0 0 0 0 0 0 0 0 0 0 0

α = 0.01 0 0.55 0 0.5 0 0.5 0.2 0.6 0.4 0.8 0.9 1
α = 0.05 0 0.5 0 0.5 0 0.5 0.2 0.6 0.4 0.8 0.9 1

Case5 α = 0.1 0 0.5 0 0.5 0 0.5 0.2 0.6 0.4 0.8 0.9 1
α = 0.5 0 0.5 0 0.5 0 0.5 0.2 0.55 0.4 0.8 0.9 1
α = 0.7 0 0.5 0 0.5 0 0.5 0.2 0.55 0.4 0.8 0.9 1

α = 0.01 0 0 0.2 0.05 0.6 0 0.8 0.05 0.9 0.2 0.9 0.4
α = 0.05 0 0 0.1 0 0.3 0 0.6 0 0.8 0.2 0.9 0.4

Case6 α = 0.1 0 0 0.1 0 0.1 0 0.6 0 0.8 0.05 0.9 0.3
α = 0.5 0 0 0 0 0 0 0 0 0.3 0 0.6 0
α = 0.7 0 0 0 0 0 0 0 0 0 0 0.2 0

α = 0.01 1 0.2 1 0.2 1 0.25 1 0.25 1 0.2 1 0.25
α = 0.05 1 0.2 1 0.2 1 0.15 1 0.15 1 0.15 0.9 0.15

Case7 α = 0.1 1 0.15 0.8 0.2 1 0.1 1 0.1 0.9 0 0.9 0
α = 0.5 0.5 0 0.4 0 0.8 0 0.9 0 0.9 0 0.9 0
α = 0.7 0.3 0 0.3 0 0.6 0 0.9 0 0.9 0 0.8 0
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Table B.12: True Positive Rate (TPR) and False Positive Rate (FPR) Graph G3 N =
5000

P1 P2 P3 P4 P5 P6

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

α = 0.01 1 1 1 1 1 0.3 1 0.3 1 0.3 1 0.3
α = 0.05 1 1 1 1 1 0.25 1 0.2 1 0.2 1 0.2

Case1 α = 0.1 1 1 1 1 1 0.1 1 0.1 1 0.15 1 0.15
α = 0.5 1 1 1 1 1 0 1 0.05 1 0.05 1 0.05
α = 0.7 1 1 1 1 1 0 1 0 1 0 1 0

α = 0.01 0.6 0.2 0.6 0.15 1 0 1 0 1 0 1 0
α = 0.05 0.5 0.2 0.6 0.1 1 0 1 0 1 0 1 0

Case2 α = 0.1 0.4 0.15 0.4 0.1 0.9 0 0.8 0 0.8 0 0.8 0
α = 0.5 0.4 0.1 0.4 0.1 0.6 0 0.7 0 0.7 0 0.7 0
α = 0.7 0.4 0.1 0.3 0.1 0.5 0 0.5 0 0.5 0 0.5 0

α = 0.01 0.6 0.15 0.5 0.05 0.9 0 0.6 0.25 0.6 0.25 0.8 0
α = 0.05 0.6 0.15 0.5 0.05 0.9 0 0.6 0.25 0.6 0.25 0.7 0

Case3 α = 0.1 0.6 0.15 0.5 0.05 0.7 0 0.6 0.2 0.6 0.2 0.7 0
α = 0.5 0.5 0.15 0.4 0.05 0.5 0 0.3 0.15 0.3 0.15 0.6 0
α = 0.7 0.4 0.1 0.4 0.05 0.5 0 0.2 0.1 0.2 0.1 0.6 0

α = 0.01 0 0 0.7 0 0.5 0 0.6 0 0.7 0 0.8 0.05
α = 0.05 0 0 0.5 0 0.4 0 0.5 0 0.5 0 0.8 0

Case4 α = 0.1 0 0 0.5 0 0.1 0 0.4 0 0.5 0 0.6 0
α = 0.5 0 0 0 0 0 0 0 0 0 0 0 0
α = 0.7 0 0 0 0 0 0 0 0 0 0 0 0

α = 0.01 0 0.55 0 0.5 0 0.5 0.1 0.6 0.4 0.85 0.9 1
α = 0.05 0 0.5 0 0.5 0 0.5 0.1 0.55 0.4 0.85 0.9 1

Case5 α = 0.1 0 0.5 0 0.5 0 0.5 0.1 0.55 0.4 0.8 0.9 1
α = 0.5 0 0.5 0 0.5 0 0.5 0.1 0.55 0.4 0.8 0.9 1
α = 0.7 0 0.5 0 0.5 0 0.5 0.1 0.55 0.4 0.8 0.9 1

α = 0.01 0 0 0.1 0 0.3 0 0.6 0 0.8 0.2 0.9 0.4
α = 0.05 0 0 0 0 0.1 0 0.6 0 0.8 0.05 0.9 0.25

Case6 α = 0.1 0 0 0 0 0 0 0.3 0 0.8 0 0.9 0.2
α = 0.5 0 0 0 0 0 0 0 0 0.1 0 0.4 0
α = 0.7 0 0 0 0 0 0 0 0 0 0 0.1 0

α = 0.01 1 0.2 1 0.2 1 0.15 1 0.15 1 0.15 1 0.2
α = 0.05 1 0.15 0.8 0.2 1 0 1 0 1 0 0.9 0

Case7 α = 0.1 0.9 0.1 0.8 0.1 1 0 1 0 1 0 0.9 0
α = 0.5 0.4 0 0.4 0 0.8 0 0.9 0 0.9 0 0.9 0
α = 0.7 0.3 0 0.4 0 0.6 0 0.8 0 0.7 0 0.8 0
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Abbreviations

BES BES Equivalence Search

BMI Body Mass Index

CFD Cumulative Distribution Function

CPD Conditional Probability Distribution

CPDAG Completed Partially Directed Acyclic Graph

CLC Conditional Linear Gaussian

DAG Direted Acyclic Graph

FCI Fast Causal Inference

FES Forward Equivalence Search

FNR False Negative Rate

FPR False Positive Rate

GES Greedy Equivalence Search

IID Independent and Identically Distributed

InterVal Intersection Validation

KAFCI Kernel Alignment Fast Causal Inference

KAPC Kernel Alignment PC Algorithm

KGV Kernel Generalized Variance
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KMI Kernel Mutual Information

MAG Maximal Ancestral Graph

MAR Missing At Random

MCAR Missing Completely At Random

MLE Maximum Likelihood Estimation

MMCI Max-Min Hill Climbing

MNAR Missing Not At Random

MVEE Modal Value of Edges Existence

MXM Mens eX Machina

PAG Partial Ancestral Graph

PDAG Partially Directed Acyclic Graph

PDF Probability Density Function

PHD Partial Hamming Distance

PSE Partial Skeleton Error

RBF Radial Basis Function

ROC Receiver Operating Characteristic

RFCI Really Fast Causal Inference

SHD Structural Hamming Distance

TNR True Negative Rate

TPR True Positive Rate
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