
Robust Physics-Based Robotic Manipulation in

Real-Time

Wisdom C. Agboh

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Computing

March 2021

The candidate confirms that the work submitted is his own, except where work

which has formed part of a jointly authored publication has been included.

The contribution of the candidate and the other authors to this work has been

explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of

others.

Some parts of the work presented in this thesis have been published in the

following articles.

Agboh W.C. and Dogar M.R. (2021) Robust Physics-Based Manipulation by

Interleaving Open and Closed-loop Execution, arXiv (2021).

Agboh W.C., Grainger O., Ruprecht D., and Dogar M.R. (2020) Parareal

with a Learned Coarse Model for Robotic Manipulation, Computing and

Visualization in Science. 23, 8 (2020).

Agboh W.C. and Dogar M.R. (2020) Pushing Fast and Slow: Task-Adaptive

Planning for Nonprehensile Manipulation Under Uncertainty. In: Morales

M., Tapia L., Sánchez-Ante G., Hutchinson S. (eds) Algorithmic Founda-

tions of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced

Robotics, vol 14. Springer, Cham.

Agboh W.C., Ruprecht D., and Dogar M.R. (2019) Combining Coarse and Fine

Physics for Manipulation using Parallel-in-Time Integration, Proceedings

of the International Symposium on Robotics Research (ISRR), 2019.

Agboh W.C. and Dogar M.R. (2018) Real-Time Online Re-Planning for Grasp-

ing Under Clutter and Uncertainty. IEEE-RAS 18th International Con-

ference on Humanoid Robots.

The above publications are primarily the work of the candidate.

This copy has been supplied on the understanding that it is copyright mate-

rial and that no quotation from the thesis maybe published without proper

acknowledgement.

©2021 The University of Leeds and Wisdom C. Agboh

Acknowledgements

I would like to say a big thank you to my advisor Mehmet Dogar, for his

friendship, guidance, and continuous support. My PhD journey was fun and I

learnt a lot from you. I would like to thank my secondary advisor Tony Cohn

for all the insightful discussions and guidance throughout my PhD.

To my examiners, Yanlong Huang and Subramanian Ramamoorthy, I want

to say a big thank you. Your feedback and comments have helped me to signif-

icantly improve my thesis.

I would like to thank Gaynor Butterwick for promptly helping me out when-

ever I had official business.

I would like to thank Daniel Ruprecht, whom I collaborated the most with.

Thanks for the fun and your support. I was fortunate to collaborate with many

other great researchers, Matteo Leonetti, Hassan Mohammed, Wissam Bejjani,

Oliver Grainger, and Leo Pauly. Thanks for the fun and hard work.

I enjoyed my time at the robotics lab. I would like to thank my fellow roboti-

cists, Rafael Papallas, Wissam Bejjani, Leo Pauly, Alexia Toumpa, Francesco

Foglino, Ricardo Luna, Luis Figueredo, Lipeng Chen, Hasan Mohammed, and

Logan Dunbar, for their friendship, discussions, support, and the many coffee

breaks that got me through my PhD.

Finally, I want to say a big thank you to my family, Helen, Matthew, Eliza,

Obi, Emmanuel, Anwulie, Ugo, Favour, Ife, and Gift for always being there for

me. This would not be possible without you.

Abstract

This thesis presents planners and controllers for robust physics-based manip-

ulation in real-time. By physics-based manipulation, I refer to manipulation

tasks where a physics model is required to predict the consequences of robot

actions, for example, when a robot pushes obstacles aside in a fridge to retrieve

an object behind them.

There are two major problems with physics-based planning using traditional

techniques. First, uncertainty, both in physics predictions and in state estima-

tion, can result in the failure of many physics-based plans when executed in the

real-world. Second, the computational expense of making physics-based pre-

dictions can make planning slow and can be a major bottleneck for real-time

control. I address both of these problems in this thesis.

To address uncertainty, first, I present an online re-planning algorithm based

on trajectory optimization. It reacts, in real-time, to changes in physics pre-

dictions to successfully complete a manipulation task. Second, some open-loop

physics-based plans succeed in the real-world under uncertainty. How can one

generate such robust open-loop plans with guarantees? I provide conditions for

robustness in the real-world based on contraction theory. I also present a robust

planner and a controller. It autonomously switches between robust open-loop

execution, and closed-loop control to complete a manipulation task. Third, a

robot can be optimistic in the face of uncertainty. It can adapt its actions to the

accuracy requirements of a task. I present such a task-adaptive planner that

embraces uncertainty, pushing fast for easy tasks, and slow for more difficult

tasks.

To address the problem of computationally expensive physics-based predic-

tions, I present learned and analytical coarse physics models for single and

multi-object manipulation. They are cheap to compute but can be inaccurate.

On the other hand, fine physics models provide the best predictions but are

computationally expensive. I present algorithms that combine coarse and fine

physics models through parallel-in-time integration. The result is orders of

magnitude reduction in physics-based planning and control time.

i

Contents

1 Introduction 1

1.1 Main themes . 2

1.2 Contributions . 5

1.3 Roadmap . 6

2 Related Work 7

2.1 Manipulation in Clutter . 8

2.2 Open-Loop Execution . 9

2.3 Robust Open-Loop Execution 10

2.4 Closed-loop Control Policies . 11

2.5 Uncertainty-Aware Planning and Control 13

2.6 Speeding-up Physics Simulators 14

2.7 Combining Different Physics Models 14

2.8 Manipulation with Visual Dynamics 15

2.9 Summary . 16

3 Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty 19

3.1 Physics-based Grasping in Clutter 22

3.2 Physics-based Grasping through Online Re-planning 23

3.3 Experiments and Results . 27

3.4 Discussion . 35

4 Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution 37

4.1 The Robust Manipulation Problem 39

4.2 Interleaving Open and Closed-Loop Execution 40

4.3 Robustness to Uncertainty . 42

4.4 Robust Planning and Control 48

4.5 Robot Experiments and Results 53

4.6 Discussion . 60

ii Contents

5 Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty 61

5.1 Task-Adaptive Planning as an MDP 63

5.2 Approximate Online MDP Solution 65

5.3 Generating a Variety of Actions 68

5.4 Trajectory Optimization . 69

5.5 Baseline Approach . 71

5.6 Experiments . 71

5.7 Discussion . 76

6 Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration 77

6.1 Combining Physics Models for Planning 79

6.2 Push Planning and Control . 84

6.3 Experiments and Results . 86

6.4 Discussion . 91

7 A Learned Coarse Model for Robotic Manipulation

using Parareal 93

7.1 Robotic Manipulation with Parareal 93

7.2 Coarse models . 95

7.3 Planning and control with hybrid models 97

7.4 Experiments and Results . 98

7.5 Summary . 105

8 Conclusion 107

8.1 Limitations and Future Work 108

8.2 Summary . 110

Bibliography 111

iii

List of Figures

3.1 Snapshots from execution with online re-planning. 20

3.2 Goal cost terms . 23

3.3 Edge cost terms . 23

3.4 Top row: The planned control sequence and state evolution.

Middle row: Open-loop execution of the planned control se-

quence fails under medium uncertainty. Bottom row: Online

re-planning, OR succeeds under medium uncertainty. 29

3.5 Simulation results for 100 random scenes. In b-d, I plot the

average with 95% confidence interval of the mean. 31

3.6 Real robot results for 5 random scenes. In (b)-(d), I plot the

average with 95% confidence interval of the mean 32

3.7 Top row: Naive re-planning (no added uncertainty) fails to grasp

the target (in green). Bottom row: Online re-planning succeeds. 33

4.1 A combination of robust open-loop execution and closed-loop

control to reach for the green target object. Top row: Planned

trajectories and execution strategy. Bottom row: Real-robot

open and closed-loop execution to reach for the green target ob-

ject. The robot starts with robust open-loop loop execution due

to motion in free-space. It falls back to closed-loop control dur-

ing multi-contact interactions. Finally, it uses a robust funnelling

motion to get the green target object in the gripper. 38

4.2 Search in a robustness graph to find a combination of robust and

non-robust segments that maximize the number of time-points

that are robust. In the robustness graph, the robust edges are

shown in green, the non-robust edges are shown in blue. 42

iv List of Figures

4.3 Computing the real-world expected divergence metric Êr
e . First,

I compute the divergence metric using the nominal model f (Êf
e).

I draw Nc sample initial states from the observed initial state x0

and roll-out a trajectory from each state, to obtain final state

samples xiN . Since the size of the final state distribution is less

than that of the initial state distribution, Êf
e ă 1, and the tra-

jectory is convergent in f . Thereafter, we randomly create Nw

real-world realizations from f and compute the divergence metric

in each of these Nw worlds. These metrics can be very different

from each other across the real-world realizations. We pick the

metric with the maximum value as a worst-case approximation

of the real-world divergence metric. 46

4.4 Experimental results comparing the interleaved open and closed-

loop execution method (OCL) with other baselines. I randomly

created 20 real-world scenes and ran all five methods on each

scene. I recorded success, planning time, execution time, diver-

gence metrics, and finally what percentage of trajectory segments

are executed open-loop vs. closed-loop in a given scene. All error

bars indicate a 95% confidence interval of the mean. 56

4.5 A sample robust segment from the interleaved open and closed-

loop approach. The left image shows a part of the robustness

metric computation. I see that the initial state uncertainty is

reduced through a funnelling action that pushes the target object

towards the shelf, and grasps it. On the right image I see the

robust segment executed open-loop in the real world. 58

4.6 A sample robust segment from the interleaved open and closed-

loop approach. The left image shows a part of the robustness

metric computation. I see that the initial state uncertainty is

reduced through a stable side push. On the right image I see the

robust segment executed open-loop in the real world. 58

4.7 Examples of successful and failed manipulation plans from dif-

ferent planning and execution methods. 59

5.1 Task-adaptive pushing with 21 slow actions for a high accuracy

task (top) and a single fast action for a low accuracy task (bot-

tom). 62

List of Figures v

5.2 First column: Initialization of the task-adaptive approach with

control sequences including fast (top) and slow (bottom) actions.

Second column: Stochastic trajectory optimization of the initial

candidate control sequences. Last column: Action evaluation

under uncertainty through sampling. 66

5.3 Success rate and total elapsed time versus uncertainty level for

low and high accuracy tasks. 73

5.4 Push planning in a changing environment (top) using a single

fast push initially and then slow pushes later on due to the nar-

row strip. For the L-shaped environment (bottom), the robot

executes many actions to successfully navigate the edge. 74

5.5 Grasping in clutter: The robot uses fast actions initially but

chooses slower actions as it gets closer to the goal object near

the edge of the table. 75

5.6 MPC using a large number of actions to complete a low accuracy

level task (top), and causing the pushed object to fall off for a

high accuracy level task (bottom). 76

6.1 A spectrum of physics predictions from cheapest and least accu-

rate (a) to expensive and most accurate (d). 78

6.2 Combining coarse and fine physics with the Parareal algorithm

(a) Initial coarse physics predictions across time with a cheap

model (C), (b) Fine physics predictions in parallel starting from

coarse initial guesses with F . (c) A Parareal update at time n “ 1

as a linear combination of coarse and fine approximations of the

state (d) A Parareal update at time n “ 2 using the updated

state at time n “ 1, (e) Final trajectory updates after k “ 1

Parareal iteration, (f) Next Parareal iteration begins with fine

physics predictions in parallel. 80

6.3 Coarse physics model . 82

6.4 Push planning with a hybrid physics model to avoid an obstacle

(in black) while pushing the cylindrical slider to a goal location

(in red). 85

6.5 Root mean square error (in log scale) along the full trajectory

for pushing a cylinder (a) and box (b) from the center and side

respectively, for increasing Parareal iterations. The motions are

illustrated lower-right in each plot. 88

6.6 Physics simulation time averaged over 100 runs for a box side

push within 95 % confidence interval of the mean. 89

vi List of Figures

6.7 Total task completion time (within 95 percent confidence interval

of the mean) for push planning with obstacle avoidance using

different physics models for 100 randomly sampled initial states. 91

6.8 Pushing with a hybrid physics model. I complete the push plan-

ning task about four times faster than a physics engine. . . . 92

7.1 Example of a robotic manipulation planning and control task

using physics predictions. The robot controls the motion of the

green object solely through contact. The goal is to push the

green object into the target region marked X. The robot must

complete the task without pushing other objects off the table or

into the goal region. 94

7.2 Root mean square error (in log scale) of Parareal along the full

trajectory for single object pushing using both a learned and an

analytical coarse model (top). These results are for a control se-

quence with 4 actions where the average object displacement is

0.043 ˘ 0.033 m. The error at iteration four is 0. The learned

coarse model gives a better Parareal convergence rate. Sample

motions for the learned coarse model (bottom, right) and the an-

alytical coarse model (bottom, right). The learned coarse model’s

prediction is closer to the fine model prediction shown in green. 98

7.3 Root mean square error (in log scale) along the full trajectory

per slider in a 4-slider pushing experiment (top) using only the

learned model. Two sample motions are illustrated (bottom, left

and right) for multi-object physics prediction. These results are

for a control sequence with 4 actions where the average object

displacement is 0.015 ˘ 0.029 m. The error at iteration four is

0 except for accumulation of round-off errors. I find that the

learned model enables Parareal convergence for the multi-object

case. 101

7.4 Root mean square error (in log scale) along the full trajectory

per object for single object pushing (bottom) and multiple object

pushing (top) using only the learned model. Here I consider a

control sequence of 8 actions. The average object displacement

for multi-object pushing is 0.034˘ 0.082 m and for single object

pushing it is 0.046˘ 0.040 m. The error at iteration eight is 0. I

find that the convergence of Parareal appears similar even with

a longer control sequence. 103

List of Figures vii

7.5 Root mean square error along the full trajectory for all 4 sliders

measured with respect to the real-world pushing data. The ver-

tical bars indicate a 95% confidence interval of the mean. The

learned coarse physics model at iteration 0 has the largest error

and the fine model provides the best prediction w.r.t the real-

world pushing physics. 104

7.6 The resulting sequence of states for applying a random control se-

quence starting from some random initial state in the real-world.

Our goal is to assess the accuracy of the Parareal physics mod-

els with respect to real-world physics. I collect 50 such samples.

These are some snapshots for 3 of such scenes - one per row with

initial state on the left and final state on the right. 104

7.7 Robotic manipulation planning and control for 2 different scenes.

The robot succeeds in all scenes using Parareal with a learned

coarse model for physics predictions. The third planning and

control scene is in Fig. 7.1. 106

8.1 An example of robust and non-robust object motions in a given

trajectory segment. On the left image, each object takes several

possible positions. This illustrates the initial state uncertainty.

After a robot motion that pushes on both a cylinder to the left

and a box to the right, the size of the state uncertainties change.

It is smaller for the cylinder to the left, and larger for the box to

the right. Hence the cylinder’s motion is robust and the boxes’

motion is not. 110

ix

List of Tables

4.1 Experimental parameters . 54

6.1 Open-loop pushing . 90

1

Chapter 1

Introduction

Imagine a future society where robots instead of humans do most of the physical

tasks; for example, house chores like cleaning or factory work like picking and

packing objects into boxes. At the heart of this robotics revolution are robots

that can reason about the result of their physical interactions with objects in

the environment. These physical interactions include a wide variety of actions

such as toppling, throwing, pushing, bending etc. Robots use these actions

to manipulate objects, changing their states, to achieve a desired goal - like a

cleared table-top. This is the physics-based robotic manipulation problem.

Today, I do not see these robots in our everyday lives due to two major

challenges - uncertainty and multi-contact interactions.

Uncertainty: To manipulate an object, a robot needs to know where the

object is - its state. However, this is uncertain, i.e. not exactly known. State

uncertainty is one of the major reasons for failure in robotic manipulation. An-

other source of uncertainty is predicting states with physics models. Incomplete

knowledge about object parameters such as friction, mass, and exact shape at

high resolution contribute to this physics uncertainty. For example, the effects

of a robot’s push on an object can be uncertain. The object can rotate left or

right and this can lead to failures if the correct prediction is not used, or if an

uncertainty-aware strategy is not used.

Multi-contact interactions: Reaching into a shelf can require a robot

to make contact with a single object and maybe push it aside. This pushed

object can then go on to push and dislocate other objects in the shelf. Physics

predictions for such a multi-contact interaction is computationally expensive.

It leads to long manipulation planning times.

In this thesis, I develop planners, controllers, and associated algorithms to

perform robotic manipulation under both sources of uncertainty - in state and

physics model parameters. I also address long prediction times during multi-

contact interactions. I propose planning and control algorithms where physics

predictions play a central role, to achieve robust manipulation in real-time.

2 Chapter 1. Introduction

1.1 Main themes

My goal of robust physics-based robotic manipulation in real-time leads to sev-

eral interesting opportunities and challenges. These are the main themes of this

thesis:

1. Closed-loop physics-based control significantly improves robotic manipula-

tion success rates in the real-world.

Physics-based manipulation in clutter has been addressed with motion

planners tailored for open-loop execution. However, such open-loop meth-

ods are likely to fail, since it is not possible to model the dynamics of the

multi-body multi-contact physical system with enough accuracy, neither

is it reasonable to expect robots to know the exact physical properties of

objects, such as frictional, inertial, and geometrical.

In this thesis, I propose closed-loop approaches to physics-based manip-

ulation under uncertainty. I show significant improvements in real-world

success rates in difficult cluttered environments, compared to traditional

open-loop methods.

2. Real-time re-planning cycles can be achieved through an appropriate un-

derlying planning algorithm — one that accepts warm-starts.

The main challenge in closed-loop methods for physics-based manipu-

lation is the long planning times. It makes fast re-planning and fluent

execution difficult to realize.

In order to address this, I propose an easily parallelizable stochastic tra-

jectory optimization based algorithm that generates a sequence of optimal

controls. During execution, warm-starting this optimizer with portions of

a previous plan leads to convergence after a small number of iterations.

This makes it possible to perform real time re-planning cycles and achieve

reactive manipulation under clutter and uncertainty.

3. Fully robust open-loop plans are desirable but may not exist for many

physics-based manipulation problems. Interleaving robust open-loop exe-

cution and closed-loop control can improve success rates and lead to more

fluent/real-time execution.

Fully robust trajectories are guaranteed to succeed when executed open-

loop, one action after the other, without feedback from the environment.

1.1. Main themes 3

They are desirable for a few reasons. First, physics-based re-planning

time is still high for some problems, inducing noticeable delays during

manipulation plan execution, while robust open-loop execution is fluent.

More importantly, some dynamic tasks may require a much smaller re-

planning time — otherwise a pushed object can quickly roll and fall-off

the table before the robot takes its next action.

Fully robust trajectories can involve a robot’s motion in free space or fun-

nelling actions, for example, where an object is tightly caged between a

robot’s gripper and a shelf. These fully robust trajectories are extremely

difficult to find or may not exist for many multi-contact manipulation

problems. For example, a multi-object robot push that reduces uncer-

tainty in all the objects in contact may not exist, perhaps because of the

specific configuration of objects.

In this thesis, I separate a trajectory into robust and non-robust segments

through a minimum cost path search on a robustness graph. Robust

segments are executed open-loop and non-robust segments are executed

with model-predictive control. This results in improved success rates while

simultaneously achieving a more fluent/real-time execution.

4. Robots can adapt their actions to the accuracy requirements of a task —

pushing fast for low accuracy tasks and slow for high accuracy tasks.

Humans use a wide variety of actions to complete everyday manipula-

tion tasks. For example, reaching quickly into an almost empty shelf to

retrieve an object versus carefully searching a shelf filled with glassware.

An important question is how can robots embrace uncertainty and exhibit

such task-adaptive behaviour.

In this thesis, I propose an algorithm for task-adaptive physics-based ma-

nipulation. The key feature of the algorithm is that it can adapt to the

accuracy requirements of a task, by slowing down and generating “care-

ful” motion when the task requires high accuracy, and by speeding up and

moving fast when the task tolerates inaccuracy. I formulate the problem

as a Markov Decision Process (MDP) with action-dependent stochastic-

ity and propose an approximate online solution to it. I use a trajectory

optimizer with a deterministic model to suggest promising actions to the

MDP, to reduce computation time spent on evaluating different actions.

My real-robot results show that with a task-adaptive planning and control

4 Chapter 1. Introduction

approach, a robot can choose fast or slow actions depending on the task

accuracy and uncertainty level.

5. Coarse and fine physics models can be combined to generate hybrid mod-

els. With such models, physics-based manipulation planning time can be

significantly reduced, without sacrificing success rates.

Given an initial state and a sequence of controls, the problem of pre-

dicting the resulting sequence of states is a key component of a variety

of model-based planning and control algorithms. However, this process is

computationally expensive.

In this thesis, I propose combining a coarse (i.e. computationally cheap

but not very accurate) predictive physics model, with a fine (i.e. compu-

tationally expensive but accurate) predictive physics model, to generate a

hybrid model that is at the required speed and accuracy for a given manip-

ulation task. My approach is based on the Parareal algorithm, a parallel-

in-time integration method used for computing numerical solutions for

general systems of ordinary differential equations. I adapt Parareal to

combine a coarse pushing model with an off-the-shelf physics engine to

deliver physics-based predictions that are as accurate as the physics en-

gine but run in substantially less wall-clock time, thanks to parallelization

across time. With these hybrid physics models, I can achieve the same

success rates as the planner that uses the off-the-shelf physics engine di-

rectly, but significantly faster.

6. A learned coarse physics model can lead to faster Parareal convergence,

and thus faster physics-based manipulation planning and control.

Parallel-in-time integration methods can help to leverage parallel com-

puting to accelerate physics predictions and thus planning. The Parareal

algorithm iterates between a coarse serial integrator and a fine parallel

integrator. A key challenge is to devise a coarse model that is computa-

tionally cheap but accurate enough for Parareal to converge quickly.

In this thesis, I investigate the use of a deep neural network (DNN) physics

model as a coarse model for Parareal in the context of robotic manipula-

tion. It handles the multi-contact cases as opposed to prior work. More

importantly, I find that such a learned DNN model leads to faster Parareal

convergence compared to an analytical coarse model. Faster Parareal con-

vergence then leads to faster physics-based manipulation planning and

control.

1.2. Contributions 5

1.2 Contributions

Here, I provide a list of my contributions:

• An on-line re-planning algorithm to address uncertainty during grasping

in clutter. It is based on a novel stochastic trajectory optimizer where

I minimize a weighted combination of grasping in clutter costs, along a

trajectory. This is the first work that shows real-time re-planning cycles

in difficult and cluttered real-robot physics-based manipulation environ-

ments [3].

• A planning and control framework that autonomously switches between

open-loop execution (for robust trajectory segments), and model-predictive

control (for non-robust segments) to complete a physics-based manipula-

tion task. I formulate the problem of separating a trajectory into robust

and non-robust segments as search on a directed robustness graph [4].

• A derivation of divergence metrics through contraction theory, to quan-

tify robustness to state uncertainty, in the presence of real-world model

inaccuracies. It is a better predictor of real-world robustness compared to

those proposed in prior work [4].

• A novel robust planner based on trajectory optimization. It uses robust-

ness metrics as a cost to be minimized along a trajectory [4].

• A formulation of task-adaptive manipulation planning as a Markov Deci-

sion Process (MDP) with action-dependent stochasticity [2].

• An online solution to the stochastic MDP for task-adaptive manipulation.

I sample the action space with a trajectory optimizer, to generate actions

for evaluation under the MDP setting. The robot generates fast or slow

pushes depending on the task [2].

• Proposing learned and analytical coarse physics models for multi-contact

physics-based manipulation [5, 6].

• A combination of coarse and fine physics models to speed-up physics pre-

dictions during robotic manipulation through parallel-in-time integration

[5, 6].

• An extension of the parallel-in-time integration algorithm, Parareal to

handle infeasible contact state updates through projections to the feasible

state space [5, 6].

6 Chapter 1. Introduction

• Implementation of the aforementioned algorithms on a real-robot plat-

form, the UR5 with a 2-finger gripper, mounted on the ridgeback, an

omni-directional base.

1.3 Roadmap

Chapter 3 introduces the online re-planning algorithm based on trajectory op-

timization for grasping in clutter. Chapter 4 introduces the robust planning

framework that interleaves robust open-loop and closed-loop execution for ma-

nipulation. Chapter 5 introduces a task-adaptive planning algorithm that allows

a robot to embrace uncertainty, adapt to tasks, pushing fast or slow. Chapter 6

combines coarse and fine physics models through parallel-in-time integration.

Chapter 7 introduces a learned coarse model for robotic manipulation.

7

Chapter 2

Related Work

As robots generate plans that involve both prehensile and non-prehensile ac-

tions, the problem of uncertainty is inevitable. This is demonstrated for ex-

ample by Yu et al. [97], where they collect a million controlled object pushes

in the real-world, and show the associated real-world uncertainty. This thesis

addresses two major sources of uncertainty - state uncertainty and model in-

accuracies. Prior work has addressed manipulation under uncertainty through

open-loop execution [52, 24, 102], robust open-loop execution [73, 57, 101],

closed-loop control policies [40, 3, 17], and uncertainty-aware controllers [2, 48,

80].

Clutter is another challenge that is encountered during manipulation. Robots

often need to make multi-contact interactions to reach for a target object [76,

3], retrieve a target object [15], or re-arrange objects on a table surface [39].

During these contact interactions, physics predictions play a central role, but

can be inaccurate and most importantly computationally expensive.

In this thesis I propose a variety of planning and control methods to handle

physics-based manipulation under uncertainty. I investigate robust open-loop

methods, closed-loop methods, combinations of robust open-loop and closed-

loop methods, and uncertainty-aware controllers. This thesis also includes novel

work on combining different physics models to generate hybrid models. The goal

is to speed-up physics predictions, and thus manipulation planning and control.

In Sec. 2.1 I discuss prior work on manipulation tasks with multiple objects

and contact interactions. Sec. 2.2 explains prior work where open-loop exe-

cution is used to complete manipulation tasks. Sec. 2.3 details related work

on methods that account for uncertainty at the planning stage to generate

robust plans. Sec. 2.4 explains prior work on closed-loop policies for manipula-

tion. Sec. 2.5 discusses related work on uncertainty-aware controllers. Sec. 2.6

discusses different methods used to speed-up physics simulators for planning.

Sec. 2.7 explains prior work on combining physics models for planning. Sec. 2.8

8 Chapter 2. Related Work

discusses prior work on using visual dynamics models for robotic manipulation,

and Sec. 2.9 summarizes the related works chapter.

2.1 Manipulation in Clutter

Stilman et al. [87], investigated the manipulation planning amongst movable

obstacles problem. The task involves static and movable objects and the goal is

to place a desired movable object in a target location. They propose an efficient

algorithm that generates quick manipulation plans in a highly nonlinear search

space of exponential dimension. Here, contact interactions between the robot

and objects are not allowed.

Haustein et al. [39] considered the rearrangement planning problem. It

involves re-arranging a scene, placing multiple objects in desired locations,

through pushes. They propose a planner that solves the rearrangement plan-

ning problem through search for dynamic transitions between statically stable

states in the joint configuration space, instead of the state space. Thus, they

reduced the search space by a factor of two.

Dogar et al. [24] propose a method to solve the grasping through clutter

problem. The task is for a robot to reach through multiple objects, and grasp

a target object. In the proposed framework, a grasp approach trajectory is

planned by considering offline computations of robot-object interactions. This

lead to improved grasp success rates, compared to methods that avoided all

contact interactions. However, more complex object-object interactions were

avoided to make the problem computationally tractable.

Srivastava et al. [86] tackle a similar grasping through clutter problem through

a task and motion planning approach. They use off-the-shelf task and motion

planners with a new representational abstraction, and show results on a real

PR2 robot. However, contact interactions were not considered. Laskey et al.

[58] address the grasping in clutter problem. They use a hierarchy of super-

visors for learning from demonstrations. They show the learned policy on a

custom planar robot, where multi-contact interactions were allowed. More re-

cently, Kitaev et al. [53] also tackle the grasping in clutter problem, through

physics-based trajectory optimization. They define a cost for grasping in clut-

ter and minimize it with the iterative linear quadratic regulator (iLQR). They

considered robot-object and object-object interactions, but showed results only

in simulation.

This thesis considers manipulation tasks that involve multiple objects. Most

prior work [87, 39, 24, 86] either completely avoid contact or limit their nature.

2.2. Open-Loop Execution 9

Similar to a few prior works [58, 53], I focus on grasping in clutter and push-

planning tasks with no restrictions on the nature of contact interactions to be

used — all robot-object and object-object contact interactions are allowed.

2.2 Open-Loop Execution

Prior work has presented planners to address the physics-based manipulation

problem, with open-loop execution on a real robot. These planners generate

a manipulation plan without considering uncertainty, and execute the actions

open-loop, without feedback from the environment.

King et al. [52] present a randomized kinodynamic planner to address the

rearrangement planning problem. They carefully select the physics model to re-

duce the state and action space, and thus make the search tractable. Specifically,

they use a quasi-static pushing model and show real-robot full arm manipulation

results.

Dogar et al. [24] present a planning method for grasping in clutter where mul-

tiple robot-object interactions are possible. They pre-compute and cache these

robot-object interactions such that physics-based planning can be tractable.

The resulting manipulation plans are executed open-loop on a real-robot.

Zito et al. [102] present a two-level rapidly exploring random trees (RRT)

planner one for the global path, and the other to plan local pushes. The manip-

ulation problem is split into a planner that works in the object’s configuration

space, and a local planner in the robot’s joint space that moves the object

between a pair of RRT nodes.

Cruciani and Smith [21] proposed a three-stage method for in-hand ma-

nipulation, with a focus on pivoting. It uses a simplified physics model for

pivoting an object in the robot’s gripper. The simplified model uses inertial

forces from the robot’s arm and a controlled rotational friction at the gripper’s

tip for pivoting. They show real-world, open-loop pivoting motions on a Baxter

robot.

Papallas and Dogar [76] include high-level human-operator input at the ma-

nipulation planning stage, to simplify planning. Human inputs are in the form

of an ordered sequence of objects and their approximate goal locations. The

underlying framework uses randomized kinodynamic planning and converts this

high-level plan into a low-level manipulation plan. The resulting plans are then

executed open-loop on a real-robot.

10 Chapter 2. Related Work

While these open-loop methods succeed in limited settings, their success

rates decrease in more complex uncertain environments with increased multi-

contact interactions [3]. In this thesis I conduct experiments that show how

open-loop manipulation plans fail in the real-world.

2.3 Robust Open-Loop Execution

To increase success rates during open-loop execution, prior work has considered

uncertainty at the manipulation planning stage.

Muhayyuddin et al. [73] propose p-KPIECE, a randomized kinodynamic,

physics-based planner that generates robot actions that are robust to both ob-

ject pose and contact dynamics uncertainty.

Anders, Kaelbling, and Lozano-Perez [9] perform belief-space planning to

generate planar robust push actions, through a learned belief-state transition

model. The problem involves contact interactions with multiple objects and the

deterministic belief-state transition model is trained offline through supervised

learning.

Luders, Kothari, and How [65] propose chance-constrained rapidly-exploring

random trees. It handles environmental uncertainty by considering the trade-

off between planner conservatism and the risk of infeasibility. It has mostly

been applied to motion planning problems in the configuration space, without

contact interactions.

Johnson, King, and Srinivasa [47] derive divergence metrics to quantify ro-

bustness to state uncertainty. It is based on contraction theory [63] which

studies the evolution of the infinitesimal distance between any two neighbor-

ing trajectories and provides conclusions on the finite distance between them.

They use these metrics in randomized kinodynamic planners to generate robust

motion plans.

Koval et al. [57] formulate robust open-loop manipulation planning as a

best-arm variant of the multi-armed bandit problem. They use a kinodynamic

planner to generate manipulation plans and evaluate these plans through noisy

rollouts to pick the “best arm”. Given a rollout budget, they use the successive

rejects algorithm to allocate rollouts between candidates. They tackle the rear-

rangement planning problem and show robust open-loop plans on a real-robot.

With these robust open-loop planners, success rates increase compared to

traditional open-loop execution. However, robust open-loop plans are difficult

to find as they may depend on a particular set of “funneling” actions. These

2.4. Closed-loop Control Policies 11

robust plans tend to be pessimistic/conservative and may not exist for many

physics-based manipulation problems.

In this thesis, I also seek robust open-loop plans that complete the manipu-

lation task without feedback. However, I propose methods that find and accept

segments of a plan that are robust and can be executed open-loop. .

2.4 Closed-loop Control Policies

Feedback during execution can help improve success rates in physics-based ma-

nipulation. I discuss two lines of work that include feedback — closed-loop

controllers and learned policies.

2.4.1 Closed-loop controllers

Hogan and Rodriguez [41] introduce the pusher-slider problem, where the mo-

tion of a slider object is controlled solely through contact from the pusher ob-

ject. The work uses a mixture of model-predictive control (MPC) and integer

programming to capture dynamics constraints and achieve real-time control.

However, they rely on a family of contact mode sequences to choose from dur-

ing planning. With MPC, they execute the first action in a planned trajectory,

get feedback, update the internal state, generate a new plan, execute the first

action of this new plan, and repeat until the task is complete. Extending the

prior work in [41], Hogan, Grau, and Rodriguez [40] search for contact mode

sequences offline, and optimal control inputs online in a convex hybrid MPC

setting, for reactive planar contact-based manipulation. Such MPC methods

have also been used in prior work to stabilize complex humanoid behaviours

[90], and visually manipulate fabric [42].

Zhou et al. [101] propose a probabilistic algorithm to sequentially reduce

state uncertainty during grasping until an object’s pose is uniquely known,

under stochastic dynamics. They create an offline planning tree through a

combination of open-loop action sequence search and feedback state estimation

with particle filtering.

Huang, Jia, and Mason [45] solve a tabletop rearrangement planning prob-

lem with policy roll-outs and an iterated local search approach to escape local

minima. Controls are executed with MPC on a real-robot, in densely packed

environments with up to 100 objects.

Papallas, Cohn, and Dogar [75] consider the reaching through clutter prob-

lem under uncertainty. They propose a framework with a human-in-the-loop

12 Chapter 2. Related Work

during closed-loop execution. In the framework, a robot plans and executes a

trajectory autonomously, but can also seek high-level suggestions from a human

operator if required at any point during execution.

While these prior methods have achieved improved success rates under un-

certainty, a major drawback in online control here is computationally expensive

physics predictions that lead to high re-planning times [6, 5].

2.4.2 Learned Policies

Robust learned robot policies have also been developed in prior work for physics-

based manipulation.

Bejjani et al. [16] use a learned value function and look-ahead planning, in an

online setting, to generate physics-based manipulation plans in clutter. Yuan

et al. [98] use deep reinforcement learning to learn an object rearrangement

policy which is then further adapted for the real-world through additional real-

world manipulation data. Laskey et al. [59] learn grasping in clutter from

demonstrations provided by a hierarchy of supervisors, to reduce the burden on

human experts to provide demonstrations. Pauly et al. [77] learn to perform

robot manipulation tasks from a single third-person demonstration video. Li,

Lee, and Hsu [60] propose push-net, a deep recurrent neural network that uses

only an image as input to push objects of unknown physical properties. Bejjani

et al. [14] address the problem of occlusion in lateral access into shelves, with a

hybrid planner based on a learned heuristic. Kiatos and Malassiotis [51] learn an

optimal push policy to singulate objects in cutter with lateral pushing actions.

While these learned policies have shown impressive success rates with typ-

ically low policy-lags for real-world manipulation tasks, they require lots of

training data/demonstrations for a given task, and do not generalize well to new

tasks. There has been recent works aimed at making learning more efficient and

improving generalization to new tasks. Davchev et al. [22] combine behavioural

cloning based dynamic movement primitives (DMP), and a reinforcement learn-

ing based residual correction policy, to improve the generalization abilities of

DMPs for insertion tasks. Angelov et al. [10] combine motion planning trajecto-

ries, dynamic motion primitives and neural network controllers automatically in

a hybrid policy to efficiently complete temporally extended manipulation tasks.

Zhan et al. [99] propose a framework for efficient robotic manipulation based

on data augmentation and unsupervised learning. They demonstrate sample-

efficient training of robotic manipulation policies with sparse rewards for tasks

like reaching, picking, and moving. While these works have improved learning

2.5. Uncertainty-Aware Planning and Control 13

efficiency and generalization, the challenge of generalization for learning-based

systems across manipulation tasks in a data-efficient manner still remains.

2.5 Uncertainty-Aware Planning and Control

There are recent works that develop uncertainty-aware controllers in robotics,

but the focus has mainly been on navigation and collision avoidance. With

these systems the robot exhibits adaptive behaviour in the face of uncertainty.

Richter and Roy [80] proposed safe visual navigation with deep learning.

Given that current deep learning methods produce unsafe predictions when

faced with out-of-distribution inputs, they detect these novel inputs using the

reconstruction loss of an autoencoder and switch to a rule-based safe policy.

Similarly, Choi et al. [20] switch between a learned policy and a rule-based

policy for autonomous driving. However, they estimate uncertainty using a

single mixture density network without Monte Carlo sampling. In this thesis,

I focus on non-prehensile manipulation where designing a rule-based policy for

each new task is not feasible.

Furthermore, Kahn et al. [48] proposed an uncertainty-aware controller for

autonomous navigation with collision avoidance. First, they estimate uncer-

tainty from multiple bootstrapped neural networks using dropout. Thereafter,

they consider a very large number of fixed action sequences at a given current

state. They evaluate these action sequences under an uncertainty-dependent

cost function within an MPC framework. The resulting policy chooses low speed

actions in unfamiliar environments and naturally chooses high speed actions in

familiar environments.While this approach relieves the burden of designing a

rule-based policy, it requires the evaluation of a large number of a priori fixed

action sequences.

Focusing on manipulation, Arruda et al. [11] address the problem of pushing

a single object to a desired goal location. They learn a forward robot pushing

model together with the corresponding uncertainty in the predictions. They use

the forward model in a model predictive path integral controller (MPPI) where

uncertainty is part of the cost function to be minimized. MPPI is an MPC style

online controller where the optimal control problem is solved mainly through

forward sampling of trajectories. The resulting planner avoids high uncertainty

regions as it pushes the object towards a desired target location. Abraham et al.

[1] extend MPPI to generate robust actions. Specifically, they add uncertainty

in physics parameters through an expanded free energy formulation of MPPI.

The resulting controller is initially conservative but becomes more exploitative

14 Chapter 2. Related Work

with more input data. Thus, it is adaptive to model parameter uncertainty.

They show robust robot actions in real-world manipulation problems.

In this thesis, I propose methods that embrace uncertainty in a task-adaptive

sense, pushing fast or slow. I model the problem as a Markov Decision Process

(MDP) and propose an online solution to it, using a trajectory optimizer to

guide my action sampling process.

2.6 Speeding-up Physics Simulators

I can make physics engines faster by using larger simulation time steps. How-

ever, this decreases the accuracy and can result in unstable behavior where

objects have unrealistically large accelerations. To generate stable behaviour at

large time-step sizes, Pan et al. [74] propose an integrator for articulated body

dynamics by using only position variables to formulate the dynamic equation.

Moreover, Fan et al. [27] propose linear-time variational integrators of arbitrar-

ily high order for robotic simulation and use them in trajectory optimization

to complete robotics tasks. In this thesis I use physics simulators at the largest

possible time-step - at the stability limit. Hence, they run as fast as possible.

My goal is to provide much more speed-up beyond this.

2.7 Combining Different Physics Models

Physics predictions for multi-contact interactions are computationally expen-

sive. In this thesis, I combine coarse and fine physics models to speed-up physics

predictions. By coarse I mean computationally cheap but inaccurate and by fine

I mean accurate but can be computationally expensive. I achieve this combina-

tion through parallel-in-time integration. I use a coarse physics model to obtain

a rough initial guess of the state at each time point of a trajectory. Then, I

evaluate the fine physics model in parallel across time starting from the initial

guesses. Thereafter, I combine the coarse and fine predictions using the iter-

ative Parareal algorithm [62, 33]. Coarse models can be quasi-static or even

learned [6] and fine models can be a full physics engine like Mujoco [92].

Parareal has been used in many different areas. Trindade et al., for example,

use it to simulate incompressible laminar flows [93]. Maday et al. have tested it

to simulate dynamics in quantum chemistry [67]. The method was introduced

by Lions et al. in 2001 [62].

Combinations of parallel-in-time integration and neural networks have not

yet been studied widely. Very recently, Yalla and Enquist showed the promise

2.8. Manipulation with Visual Dynamics 15

of using a machine learned model as coarse propagator [96] for test problems.

Going the other way, Schroder [84] and Günther et al. [83] recently showed

that parallel-in-time integration can be used to speed up the process of training

neural networks.

The underlying equations of motion during multi-contact interactions are

differential algebraic equations (DAEs). Results on how Parareal performs for

DAEs are scarce. Guibert et al. [36] demonstrate that Parareal can solve DAEs,

but can experience issues with stability for very stiff problems. Cadeau et

al. [18] propose a combination of Parareal with waveform relaxation to introduce

additional parallelism. For a DAE system of size 100,000, they demonstrate that

adding Parareal does provide speedup beyond the saturation point of waveform

relaxation alone.

Combining different physics models for robotic manipulation has been the

topic of other recent research as well, even though the focus has not been

improving prediction speed. Kloss, Schaal, and Bohg [54] focus on the question

of accuracy and generalization in combined neural-analytical models. Ajay et

al. [8] focus on modeling of the inherent stochastic nature of the real world

physics, by combining an analytical, deterministic rigid-body simulator with a

stochastic neural network.

Furthermore, physics predictions are essential in learning physics-based ma-

nipulation policies. For example, learning gentle object manipulation through

curiosity [46], learning long-horizon robotic agent behaviours through latent

imagination [37], learning visuo-motor policies by formulating exploration as a

latent trajectory optimization problem [64], learning policies for manipulation

in clutter[15], smoothing fabric with a da Vinci surgical robot through deep

imitation learning [85], and learning human-like manipulation policies through

virtual reality demonstrations [38]. The training time for these policies can

potentially be reduced with a parallel-in-time approach to physics predictions.

2.8 Manipulation with Visual Dynamics

Visual dynamics involves using an image to represent the state of a system.

Then given an initial image and a sequence of robot controls, the problem of

(action-conditioned) visual dynamics is to compute the corresponding sequence

of images. Visual dynamics has mainly been used for the manipulation of de-

formable objects such as ropes and cloth. One reason for that is the difficulty

in representing the state of such objects with traditional methods. Finn, Good-

fellow, and Levine [30] developed an action-conditioned video prediction model

16 Chapter 2. Related Work

that explicitly models pixel motion through predictions of distributions over

the motion of pixels from prior frames. By explicitly modelling motion, the

approach was partially invariant to object appearance in robotic pushing tasks.

Babaeizadeh et al. [12] include stochasticity in video prediction and propose the

stochastic variational video prediction (SV2P), for multi-step video prediction

based on variational inference. They show how including sochasticity can sig-

nificantly improve video prediction in a range of robotic pushing tasks. Finn

and Levine [31] propose deep visual foresight for planning robot motion. They

combine action-conditioned video prediction models with model-predictive con-

trol to complete robotic pushing tasks. More recently, Hoque et al. [42] take

a similar visual foresight approach for sequential manipulation of fabric, but

combine domain randomized RGB images and depth maps simultaneously in

simulation. They showed how including depth sensing can significantly improve

performance for sequential fabric manipulation.

While using visual dynamics for manipulation has seen significant progress

in recent years, the challenge of predicting beyond a few future frames still

remains.

2.9 Summary

Similar to prior work, this thesis considers manipulation tasks that involve

multiple objects. Specifically, unlike some prior work [39, 86, 24], I focus on

grasping in clutter and push-planning tasks with no restrictions on the nature

of contact interactions to be used. I show that open-loop execution used in

prior work [52, 102, 21] can lead to task failures due to uncertainty in state and

physics predictions.

This thesis is also related to works in the literature that account for uncer-

tainty at the planning stage to generate robust plans [73, 47, 57]. I seek fully

robust open-loop plans that complete the task. However, I propose methods

that find and accept partially robust open-loop plans wherever possible.

Prior work [41, 101, 45] has developed closed-loop policies for physics-based

manipulation. I take a similar closed-loop approach in this work. A major

drawback in online control here is computationally expensive physics predictions

that lead to high re-planning times [6, 5]. I aim to find fully robust open-loop

plans and fall back to closed-loop control only when needed.

Uncertainty-aware planners and controllers were developed in prior work

[80, 48]. The focus has mainly been on navigation and collision avoidance. In

this thesis, I propose methods that embrace uncertainty during manipulation in

2.9. Summary 17

a task-adaptive sense, pushing fast or slow. I model the problem as a Markov

Decision Process (MDP) and propose an online solution to it, using a trajectory

optimizer to guide my action sampling process.

Physics simulators can be sped-up by increasing the simulation time-step,

but this can lead to unstable simulations. Prior work has proposed different

methods to stabilize simulators at large time-steps [74]. In this thesis I use

physics simulators at the largest possible time-step — at the stability limit.

Hence, they run as fast as possible. My goal is to provide much more speed-up

beyond this.

Combining physics models has also been a topic of recent works [54, 8].

Although the focus has not been on improving physics prediction speed. In this

thesis, I combine coarse and fine physics models to speed-up physics predictions

using parallel-in-time integration.

19

Chapter 3

Real-Time Online Re-Planning

for Grasping

Under Clutter and Uncertainty

This chapter considers the problem where a robot must reach through a clut-

tered environment to grasp a target object. This problem is typically seen in

warehouses where robots are required to retrieve items from shelves to fulfil a

customer’s order, or in our homes where a robot must reach into the fridge to

pick up an object. To do this, the robot needs to contact other objects in the

environment and push them out of the way (Fig. 3.1). An object that is pushed

by the robot may in turn push and dislocate other objects, including the target

object. Undesired events can happen during the interaction, such as objects

falling off the edge of the surface. The problem is the generation of robust and

reactive robot actions that grasp the target object while preventing undesired

events from taking place.

Existing work addresses this problem using motion planning followed by

open-loop execution [53, 52, 24, 73] i.e. the robot executes a sequence of ac-

tions one after the other without getting any feedback from the environment.

These approaches can be divided into two. The first approach uses motion

planning algorithms, e.g. kino-dynamic sampling-based algorithms [52] or tra-

jectory optimization methods [53], within a physics engine to generate the robot

trajectory. Trajectories that are produced this way, however, are likely to fail

in the face of uncertainty during real-world execution. Consider the scene in

Fig. 3.1a, where the target object is near the center of the table. I can model

this scene in a physics engine, plan a sequence of actions with a particular choice

of physical parameters (e.g. friction coefficients, object masses, object shapes)

that take the robot to the grasping goal state. However, if this plan is executed

in an open-loop manner in the real world, it can easily fail as the objects will

not move exactly as predicted during planning. This is due to the uncertainty

20
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

(a) Initial scene

Target ÝÑ

(b) Contact triggers re-planning

(c) Re-planning to ensure success (d) Target object grasped

Figure 3.1: Snapshots from execution with online re-planning.

in the physics model of the physics engine and the assumed physical parameters

of the objects.

The second open-loop approach addresses this problem by accounting for

the uncertainty during planning. This approach extends motion planning al-

gorithms to generate actions that are robust to uncertainty [73, 24, 47]. Ac-

counting for the uncertainty during planning, however, either requires the plan-

ners to limit themselves to a particular set of “funneling” actions, or results

in highly conservative/pessimistic planners which return a solution only when

the sequential execution of multiple actions are guaranteed to succeed under

uncertain dynamics.

This chapter takes a different reactive approach and investigates the poten-

tial of closed-loop methods to address uncertainty during grasping in clutter.

Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty
21

One can use a planner to generate a plan to the goal state, execute a portion of

this plan, observe the environment, and then re-plan from the resulting state to

the goal, repeating this process until task completion. This online re-planning

or model predictive control (MPC) approach has been implemented in many

areas of robotics, including the problem of pushing a single object [41, 11], but

it has not yet been explored for the problem of manipulation in clutter.

The major challenge with online-replanning is that, planning in this domain

requires long times. The average planning time reported in the literature for

the problem of grasping in clutter is in the order of minutes [73, 52, 53, 24].

Then, under the online-replanning approach, the robot would need to execute

a small action, update its world model with feedback and then will need to

wait for possibly minutes before it receives the next action from the planner.

This long re-planning time makes it impractical for robots to use feedback from

the environment in order to create new plans. Thus, this hampers real world

applications and is highly undesirable.

I propose an online-replanning approach to address this challenge. First,

I extend trajectory optimization methods that use parallel trajectory rollouts

[94, 49] in search of a lower-cost trajectory. By performing each roll-out on

a different core, I am able to reduce the time each iteration of our planner

takes to be equivalent to a single roll-out. Second, I track the deviation of the

actual state from the predicted state, and perform replanning only if the state

deviation exceeds a threshold. This prevents us from planning at every time

step and allows us to have an automatic system that can be adjusted between

open-loop execution and standard model predictive control. Finally, I formulate

the problem as optimizing a cost function where reaching the goal is not a hard

constraint, and therefore even if a quick replanning cycle does not produce a

trajectory that reaches the goal (i.e. grasps the target object) within the given

time limit, I can still use it if it is a lower-cost trajectory. This is because we

can rely on future re-planning cycles to grasp the target object.

Our specific contributions include an on-line re-planning (OR) algorithm

to address uncertainty during grasping in clutter. I show that using our ap-

proach, one can achieve real time re-planning cycles with a robot in difficult

and cluttered real environments. Real robot experimental results can be seen

at https://youtu.be/RcWHXL2vJPc. Moreover, I compare OR to open-loop

execution, particularly to naive-replanning (NR), which plans a trajectory, exe-

cutes it open-loop until the end, checks if the goal is achieved, and repeats this

process if not. I show that OR is more successful in grasping the target object

in a time limit, produces lower cost execution trajectories, and is faster.

https://youtu.be/RcWHXL2vJPc

22
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

3.1 Physics-based Grasping in Clutter

As shown in Fig. 3.1, I consider the problem where a robot must plan a trajec-

tory from a given initial pose to a final pre-grasping pose to retrieve an item

from a cluttered environment. I consider a planar robot consisting of an arm

and a gripper as shown in the figure. The robot’s state is defined by a vector

of joint values qR “ tθx, θy, θrotation, θgripperu, where the θ values represent the

x-axis prismatic joint, the y-axis prismatic joint, the rotational joint and the

gripper’s opening joint values, respectively. The scene includes D ` 1 movable

dynamic objects. qi refers to the six-dimensional pose (three translations and

three rotations) of each object, for i “ 1, . . . , D. qTarget refers to the pose of

the target object, i.e. the object to be grasped. I assume a flat surface with

edges, such as the table in Fig. 3.1, and dropping any object off the edges is

undesired.

I use xt to represent the complete state of our system at time t, which

includes the state of the robot and all objects; xt “ tq
R, q1, . . . , qD, qTargetu.

I consider a control input ut applied at time t for a fixed duration ∆t. The

controls in our case are velocities applied to the robot’s degrees of freedom;

ut “ t 9θx, 9θy, 9θrotation, 9θgripperu. Then, the discrete time dynamics of the system

is defined as:

xt`1 “ fpxt,utq (3.1)

where f is the state transition function.

I assume an initial state of the system, x0, and I define our goal as generating

a sequence of control inputs, such that the gripper grasps the target object as

quickly as possible, without dropping objects off the table. I use the notation

u0:n´1 to represent a sequence of control signals through n time steps, each

applied for a fixed duration. Similarly, I use x0:n to represent a sequence of

states.

I use a physics engine [92] simulating rigid-body dynamics to model f . Nev-

ertheless, any physics engine is an inaccurate model of the real-world physics

and uncertainties over the system dynamics are inevitable. Indeed even if I as-

sumed perfect modelling, it is difficult for a robot to know the exact geometric,

frictional, and inertial properties of objects in an environment. In addition, ob-

ject tracking systems come with inaccuracies in the estimation of object poses

in an environment. Therefore, our objective in this chapter is to find a sequence

of controls that would move the system to a goal state even under an inaccurate

model of the system and its dynamics.

3.2. Physics-based Grasping through Online Re-planning 23

Target

φT dT

Figure 3.2: Goal
cost terms

Safe zone

Table

diE

xit

xit`1

Figure 3.3: Edge
cost terms

3.2 Physics-based Grasping through Online Re-

planning

To address the inaccuracies mentioned above, I propose to use an online re-

planning approach, where the robot makes a plan, executes a portion of it,

observes the resulting state, and re-plans.

Below, in Sec. 3.2.1, I first present the planner that I use to generate a

sequence of controls to the goal from a given state. In Sec. 3.2.2, I show how I

use this planner within an online-replanning framework. In Sec. 3.2.3, I present

the baseline approach I compare against in this chapter.

3.2.1 Physics-based trajectory optimization

Recent stochastic trajectory optimization methods such as STOMP [49] and

model predictive control methods such as MPPI [94] show impressive speed by

using parallel rollouts. Moreover, since these are optimization-based methods,

even when they are used with a small time limit, they can still output an im-

proved lower-cost trajectory, even if the trajectory is not necessarily reaching

a goal state. In contrast, sampling-based planners such as RRTs and PRMs

[52, 73] typically do not return a useful solution unless they are run until a

path to the goal is found, which can take minutes. To the best of our knowl-

edge, such parallelizable stochastic trajectory optimization methods have not

yet been used to solve grasping in clutter problems. However, the properties I

mention above make parallelizable stochastic trajectory optimization methods

a promising approach for online re-planning to address problems in this domain.

24
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

I formulate the following problem:

min
u0:n´1

rwg ¨ cgpxnq `
n´1
ÿ

t“0

pwa ¨ ca ` wd ¨ cd ` we ¨ ceqs (3.2)

s.t. xt`1 “ fpxt,utq,

x0 is fixed, ut “ 0 for t ă 0.

where I search for an optimal sequence of controls u0:n´1 that minimizes the

weighted combination of costs. I use four cost terms; cg, cd, ce, ca and corre-

sponding weights wg, wd, we, wa.

• cgpxnq “ d2T `wφ ¨φ
2
T . This is the terminal goal cost term, quantifying how

far the robot hand is from grasping the target object at the final state. I

illustrate how the distance dT and the angle φT are computed in Fig. 3.2.

I first draw a vector from a fixed point in the gripper to the target object.

dT is the length of this vector, i.e. the distance between the fixed point

in the gripper and the target object. φT is the angle between the forward

direction of the gripper and the vector. I use wφ to weight angles relative

to distances.

• cdput´1:t,xt:t`1q “
řD
i px

i
t`1 ´ x

i
tq

2. This is the disturbance cost term,

quantifying how much each object moved between two timesteps. This

term encourages the robot to minimize the change in the configuration of

the rest of the scene.

• ceput´1:t,xt:t`1q “
ř

i e
tk¨diEu for all i out of the safe zone. This is the edge

cost term, penalizing those objects that get too close to the boundary of

the table or that get out of the boundary. As I illustrate in Fig. 3.3, I

define a safe zone that is smaller than the boundary of the table. If at

time t` 1 an object i is out of this safe zone, I compute the distance it is

pushed between t and t` 1, which I define as diE. k is a constant term. I

do not add any edge costs for objects that are in the safe zone.

• caput´1:t,xt:t`1q “ ||ut ´ ut´1||
2. This is the acceleration cost term, with

which I penalize large changes in robot velocities between two time steps.

Note that, instead of imposing the terminal grasping state as a hard con-

straint, I declare it as a cost term, cg. I am able to accept trajectories that

3.2. Physics-based Grasping through Online Re-planning 25

Algorithm 1: Physics-Based Stoch. Traj. Optim. (PBSTO)

Input : x0: Initial state
u0:n´1: Initial control sequence
Imax: Maximum number of iterations

Output : u0:n´1: Control sequence
x0:n: Predicted states

Parameters : K: Number of noisy trajectory rollouts
ν: Sampling variance
Cthresh: Cost threshold implying success
nmin: Minimum number of time steps

Subroutines: Cost: Computes total cost, i.e. the minimized value in
Eq. (2).

1 x0:n Ð Roll out u0:n´1 over x0 to get initial state sequence
2 while Imax not reached and Costpu0:n´1,x0:nq ą Cthresh do
3 for k Ð 0 to K ´ 1 do
4 xk0 Ð x0

5 uk0,n´1 Ð Npu0:n´1, νq

6 for tÐ 0 to n´ 1 do
7 xkt`1 Ð fpxkt ,u

k
t q

8 if Costpuk0:t,x
k
0:t`1q ď Ctresh and t ě nmin then

9 return (uk0:t,x
k
0:t`1)

10 k˚ Ð argmin
k
pCostpuk0:n´1,x

k
0:nqq

11 if Costpuk
˚

0:n´1,x
k˚

0:nq ă Costpu0:n´1,x0:nq then
12 u0:n´1 Ð uk

˚

0:n´1

13 x0:n Ð xk
˚

0:n

14 return pu0:n´1,x0:nq

do not reach the goal completely, because I use this planner in a re-planning

framework, i.e. I can rely on future re-planning cycles to take us to the goal.

I solve this problem using Alg. 1, which adapts the STOMP algorithm [49]

for physics-based grasping through clutter.

I start with an initial candidate control sequence u0:n´1. During each iter-

ation between lines 2-13, I try to improve this control sequence, until the cost

is lower than a threshold, or until a maximum number of iterations is reached

(Line 2). During each iteration, I create K new control sequences, roll out

these controls in parallel using our model of the system, and compute the cost

for each (Lines 3-9), using the Costp.q subroutine which is based on cost terms

in Eq. 3.2. Each new control sequence uk0:n´1 is created by adding stochastic

noise to the candidate control sequence u0:n´1 (Line 5). The control sequence

with the minimum cost is then identified and set as the new candidate control

sequence. The cost threshold Cthresh is chosen for the case where the robot

gets the target object in its gripper at the final state and where no failure occurs

26
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

(e.g. no objects are toppled).

Most robot motion planners that use trajectory optimization formulate the

problem as a fixed horizon problem, i.e. with a pre-determined number of

timesteps/waypoints. In the problem of grasping in clutter however, the length

of the required trajectory can change significantly: For example, the target

object may be pushed and moved away from its initial position, and this may

require a much longer trajectory than a case where the target is grasped at

its original position. Therefore, I initialize the planner with a long enough

control sequence, but also allow it to short-cut trajectories if the cost indicates

success earlier (Lines 8-9). Moreover, physics-based trajectory roll outs are time

consuming, hence truncating the roll out when success has been achieved leads

to lower planning times.

3.2.2 Online Re-planning

If allowed to run for many iterations, i.e. with a large Imax, Alg. 1 can generate

successful plans for the problem of grasping under clutter, as I show in our

results in Sec. 3.3. However, when executed open-loop, these plans are likely

to fail due to the uncertainties in the system dynamics, inaccuracies in the

physical properties of the objects, and the state observations. To address this,

I use Alg. 1 within an online re-planning (OR) algorithm, which I present in

Alg. 2.
On line 2, I generate a locally optimal open-loop trajectory by calling the

PBSTO planner with a large number of iterations. Then I start executing this

trajectory. After execution of every control action (line 4), I observe the current

state (line 7), and then re-plan from this current state (line 12). However, when

I re-plan, I call the planner with only a few iterations, to receive fast, close

to real-time, updates to the plan. I warm-start the trajectory optimizer by

providing the previous plan. Furthermore, I re-plan only if it is necessary. To

do this, I check if the final predicted state of the current plan grasps the target

object (line 8), and I check if there are too few controls left in the plan (line

10). More importantly, if the real observed state is evolving according to the

planner’s predictions, and the other previously mentioned conditions are still

satisfied, I do not re-plan. I check this on line 9, where I compute the deviation

between the observed state and the first state of the planned trajectory, and

verify if this deviation is less than a threshold. This threshold can be used to

adjust how reactive the system is to unexpected events.

3.3. Experiments and Results 27

Algorithm 2: Online Re-planning (OR)

Input : u0:n´1: Initial controls, e.g. straight line motion
Params: SDthresh: State deviation threshold

nmin: Minimum number of controls to optimize
ManyIter: Large number of iterations, e.g. 50
FewIter: Small number of iterations, e.g. 1

1 xcurrent Ð Observe current state
2 pu0:n´1,x0:nq Ð PBSTO(xcurrent,u0:n´1,ManyIter)
3 while target object not grasped do
4 Execute u0

5 Remove u0 from sequence, i.e. u0:n´2 Ð u1:n´1

6 Remove x0 from sequence, i.e. x0:n´1 Ð x1:n

7 xcurrent Ð Observe current state
8 if target object not predicted to be grasped at xn
9 or large state deviation, i.e. ||x0 ´ xcurrent|| ą SDthresh

10 or too few controls left, i.e. n´ 1 ă nmin then
11 u0:n´1 Ð u0:n´2 ` single straight step to target
12 pu0:n´1,x0:nq Ð PBSTO(xcurrent,u0:n´1,FewIter)

13 else
14 nÐ n´ 1 Decrement length of controls

Algorithm 3: Naive Re-planning (NR)

Params: ManyIter: Large number of iterations, e.g. 50
1 while target object not grasped do
2 xcurrent Ð Observe current state
3 u0:n´1 Ð initial controls, e.g. straight to target object
4 pu0:n´1,x0:nq Ð PBSTO(xcurrent,u0:n´1,ManyIter)
5 Execute u0:n´1

3.2.3 Naive Re-planning

Open-loop execution during grasping in clutter can be unsuccessful due to un-

certainty. In this chapter I propose to address this problem through online

feedback control. However, a naive approach to fixing this problem can be re-

planning if success is not achieved after the complete open-loop execution of a

plan. I present this Naive Replanning (NR) approach in Alg. 3, and use it as a

baseline in our experiments.

3.3 Experiments and Results

Through our experiments, I compare the online replanning (OR) approach with

the naive replanning (NR) approach. I hypothesize that OR is more successful

in grasping the target object, that OR results in an execution cost that is

28
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

lower-cost, and that OR is also faster. I investigate whether using the physics-

based stochastic trajectory optimization (PBSTO) method, I can reactively re-

plan close to real-time, or at least fast enough to avoid noticable delays during

execution.

I implemented our algorithms using the Mujoco [92] physics engine. I per-

form experiments both in simulation and on a real robot. As shown in Fig. 3.1,

I assume a world consisting of objects on a table, and a planar robot with a

two finger gripper. I make a distinction between two different type of worlds I

deal with.

Planning world: The planning world is a simulation environment where the

robot generates its plans/controls.

Execution world: The execution world is the environment where the robot

executes actions and observes the resulting actual state. The execution world

is simulated for the simulation experiments and it is the physical world for real

robot experiments.

Whether in simulation or on the real robot, I assume a mismatch between

the physics of the execution world and the planning world, the physical ob-

ject properties of the two worlds, and the state of the two worlds. I use the

term uncertainty level to refer to the degree of this mismatch. For example, no

uncertainty implies a perfect match between the Planning World and the Exe-

cution World, which is only possible in simulation experiments. Low uncertainty

implies a low level of mismatch, and so on.

3.3.1 Simulation experiments

I perform experiments in simulation to evaluate the performance of our planners

in scenes with varying degrees of clutter and uncertainty. I begin by creating

execution worlds. Here, the execution world is created in Mujoco and it consists

of 15 objects (boxes and cylinders), a 0.6m ˆ 0.6m table and our planar robot

as shown in Fig. 3.4.

For each execution world:

• I randomly select a shape (box or cylinder) for each of the 15 objects.

• For each object, I randomly select1 shape dimensions (extents for the

boxes, radius and height for the cylinder), mass, and coefficient of friction.

1The uniform range used for each parameter is given here. Box x-y extents:
r0.03m, 0.05ms; box height: r0.036m, 0.04ms; cylinder radius:r0.035m, 0.04ms; cylinder
height:r0.04m, 0.055ms; mass:r0.2kg, 0.8kgs; coef. fric.:r0.2, 0.6s.

3.3. Experiments and Results 29

P
la

n
n
ed

m
ot

io
n
s

N
R

E
x
ec

u
ti

on
O

R
E

x
ec

u
ti

on

Figure 3.4: Top row: The planned control sequence and state
evolution. Middle row: Open-loop execution of the planned con-
trol sequence fails under medium uncertainty. Bottom row: On-

line re-planning, OR succeeds under medium uncertainty.

• I select a pose for the target object from a Gaussian with a mean at the

center of the table and a variance of 0.01m.

• For the other 15 objects, I randomly select non-colliding object poses on

the table.

I generate 100 such execution worlds. To generate a planning world from

an execution world, I add Gaussian noise onto the physical parameters of the

execution world2. For each execution world, I create four such planning worlds

with increasing amounts of noise, corresponding to the four uncertainty levels:

no uncertainty, low, medium, and high uncertainty. Given a pair of Planning

world and Execution world, I then run and execute one of our planners. More-

over, I simulate physics stochasticity in the execution world by adding Gaussian

2The variance of the Gaussian noise for each parameter under low-uncertainty are given
here. These values are multiplied by 2 for medium, and 3 for high uncertainty. Object pose
translation: 0.005; Object pose rotation around vertical axis: 0.005; Box x-y extents, cylinder
radius, and height: 0.005; mass:0.01; coef. fric.:0.005.

30
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

noise3 on the velocities (linear and angular) v of the robot and dynamic objects

at every simulation time step, using the Mujoco simulator.

ṽ “ v ` µ, µ „ N p0,βq (3.3)

where N is the Gaussian distribution and β is the vector of variances. I give

each planner a timeout of 15 minutes, which includes all planning, re-planning,

and execution times. A planner may return long before this timeout, if the

robot manages to grasp the target object in the execution world. I run and

compare the following planners:

• NR: The naive re-planning algorithm, with ManyIter “ 50, ν “ 0.008,

K “ 8.

• OR: The online re-planning algorithm, with ManyIter “ 50, FewIter “

1, nmin “ 2, ν “ 0.008, K “ 8, SDthresh “ 0.5.

For all planners, I initialize the control sequences to straight line trajectories

towards the goal. Each initial control sequence includes six actions, with an

average resultant velocity of 0.04m{s. Each action is executed for ∆t “ 1s.

The weights and constants used in the cost terms are: wg “ 10000, wφ “ 1.0,

we “ 1.0, k “ 1000, wa “ 0.1, wd “ 800.

3.3.2 Simulation Results

I discuss and compare the performance of OR and NR.

OR is more successful than NR. I call an experiment success, if the ex-

ecution stopped with the target object inside the hand pre-grasp region and

if no other object is dropped off the table. I show the success rates over the

100 random scenes under four different uncertainty levels in Fig. 3.5a. Both

OR and NR succeed in all scenes for the no uncertainty and low uncertainty

conditions. However, as the uncertainty increases, NR shows a dramatic drop

to 50% success rate, while OR can maintain 90%.

I show example plans in Fig. 3.4. In the top row, I show the output of the

planner and the state sequence as predicted by the planner in the Planning

World. In the middle row, I show the NR execution of the same scene in the

Execution World with noise added at the medium uncertainty level. As the

hand pushes on a cylinder, it does not move out of the way as the planner

3In the case of no uncertainty, I did not add any extra noise to the system dynam-
ics. However, the vector of variances of the added Gaussian noise for each object was
β “ t0.003, 0.006, 0.009u1 for low, medium and high uncertainty levels respectively.

3.3. Experiments and Results 31

(a) Success rate (b) Average number of re-plans

(c) Average execution cost (d) Average elapsed time

Figure 3.5: Simulation results for 100 random scenes. In b-d,
I plot the average with 95% confidence interval of the mean.

predicted. It pushes and topples the target object, resulting in a failure. In the

bottom row, I show the OR execution in the same Execution World. Detecting

that the cylinder does not move as predicted, OR re-plans and shifts the gripper

to the side, so that the cylinder can be pushed out of the way.

It is important to note that, the success rates in Fig. 3.5a are not attained

after one planning and execution cycle. In other words, the 100% success rate

for NR under low uncertainty does not mean that open-loop executions of all

plans were successful in this case. Instead, it is more often that the execution

of an open-loop plan fails, but leaves the robot at a close enough point to the

target that, the subsequent plans achieve success. I present Fig. 3.5b to explain

this, which shows the average number of re-plans of each planner under varying

uncertainty. As can be seen, both planners show increasing number of re-plans

with increasing uncertainty. Although, each re-plan is much cheaper for online

re-planning compared to naive re-planning.

OR generates lower execution cost than NR. After execution of a

planner is completed successfully, I compute the total cost of the executed

trajectory. Fig. 3.5c shows the average execution costs of the planners in log

32
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

(a) Success rate (b) Average number of re-plans

(c) Average execution cost (d) Average elapsed time

Figure 3.6: Real robot results for 5 random scenes. In (b)-(d),
I plot the average with 95% confidence interval of the mean

scale versus uncertainty. I use only the successful plans for this plot since failure

examples run until the arbitrary time limit I have set (15 minutes), and can

accumulate arbitrarily large costs. Again, while OR and NR perform similar at

low uncertainties, the execution cost of NR grows significantly with increasing

uncertainty.

OR is faster than NR. I record the total re-planning and execution time a

planner takes after the robot makes its first move. Again, I use the successful

examples only, since failure examples run until the pre-set time limit of 15

minutes and therefore do not give an indication of speed. I plot this total

elapsed time in Fig. 3.5d. Observe that the time NR takes grows rapidly with

uncertainty, while OR is much faster in reaching the goal.

Note that, the above plot does not include the time spent to find the initial

control sequence. I use the PBSTO planner to find this initial sequence as well

for both OR and NR, with a limit of 50 iterations. Averaged over 400 runs (100

scenes, noisified four different ways), the PBSTO planner needed 28 seconds

with a standard deviation of 16 to find a plan.

The advantage of the PBSTO planner, however, is that it can also be used

3.3. Experiments and Results 33

successfully with a small number of iteration limit to quickly adapt plans under

uncertainty. For online re-planning (OR), I ran the PBSTO planner with the

iteration limit of 1 for these quick updates. During 400 executions, the OR

planner performed 7816 such re-plans. On average, each such update took

0.4 seconds with a standard deviation of 0.25 seconds. Therefore, I am

able to perform online grasping through clutter in near real time. Moreover,

in comparison with works in the literature [73, 52, 53, 24] about grasping in

clutter where the average planning time is in the order of minutes, our approach

shows significantly lower planning and re-planning times.

3.3.3 Real robot experiments

N
ai

ve
re

-p
la

n
n
in

g
O

n
li
n
e

re
-p

la
n
n
in

g

Figure 3.7: Top row: Naive re-planning (no added uncertainty)
fails to grasp the target (in green). Bottom row: Online re-

planning succeeds.

In the real robot experiments, I use a Robotiq two finger gripper attached to

a UR5 arm which is then mounted on an omnidirectional robot (ridgeback). As

shown in Fig. 3.1, I fix the orientation of the arm relative to the table such that

is at a specified height, above the table and is parallel to it. This way the gripper

moves with the omnidirectional base yielding a 4 degrees of freedom robot. The

gripper velocities which is the output of our optimization is then transformed to

the omnidirectional base through a fixed velocity transform. I place markers on

objects (cylinders and boxes) and sense their full pose (position and orientation)

in the environment using the OptiTrack motion capture system.

I createN “ 5 execution worlds. I created a mix of difficult (where the target

object is behind many closely packed objects) and easy (where the target object

is easily accessible) scenes for the experiments. All these scenes can be seen

34
Chapter 3. Real-Time Online Re-Planning for Grasping

Under Clutter and Uncertainty

in our video at https://youtu.be/RcWHXL2vJPc. Then, I create a planning

world by using estimated values of mass and shape of objects and then get

the pose information from our motion capture system. In addition, I sample

the coefficient of friction for the various objects from a multivariate Gaussian

distribution with a mean of 0.5 and a variance of 0.01.

I am aware that motion capture systems provide a level of object tracking

performance which cannot be achieved by using a standard vision system espe-

cially in clutter. Therefore, to see how our online replanning approach would

cope in reality with vision systems, I perform experiments where I artificially

insert different levels of pose (x,y positions) uncertainty. I do this by sampling

from a Gaussian distribution where the mean is the measured position from

our motion capture system. I select a variance of t0.005, 0.01, 0.015um for low,

medium and high uncertainty levels respectively.

3.3.4 Real robot experimental results

I ran a total of 40 real robot experiments for 5 scenes and 4 uncertainty levels

using both naive re-planning and online re-planning. Our results are shown in

Fig. 3.6. In general they are similar to the simulation experiments. Moreover,

in Fig. 3.6a, the naive re-planning approach is not always successful even when

no artificial uncertainty is added. This is due to the inherent uncertainty in the

real world dynamics.

In Fig. 3.7, I show an example scene from our real robot experiments. The

naive re-planning approach (top row) was not successful in grasping the target

object even under no additional uncertainty. The reason for this is the inherent

uncertainty in the real world. More specifically, it is due to the mismatch

between the planning environment in simulation and the real world especially

in terms of object shape, mass, and friction coefficient. Moreover, the real

objects are not fully rigid bodies. Hence predictions of physics in the real world

becomes difficult especially for cases where the robot pushes on multiple objects

in contact with each other (second snapshot, top row). Therefore, at the end

of an open-loop execution in the real world, the robot can put the state of

the system in a dead-end (fourth snapshot, top row) from which recovery and

task completion becomes extremely difficult. On the other hand, our online

re-planning approach shown in the bottom row succeeds in this scene. It is able

to track changes between a planned trajectory and the actual state trajectory in

the real world. I re-plan if the changes are large and continue this process until

the robot successfully grasps the target object. Videos of sample executions can

be found at https://youtu.be/RcWHXL2vJPc.

https://youtu.be/RcWHXL2vJPc
https://youtu.be/RcWHXL2vJPc

3.4. Discussion 35

3.4 Discussion

To the best of our knowledge, this is the first work that shows how a robot

can complete physics-based manipulation in clutter with online planning in

real time. Compared to traditional MPC, the online re-planning approach

I introduce in this chapter does not re-plan at every step. It re-plans when

necessary as directed by a state deviation threshold parameter. Thus, it includes

partially open-loop plans.

Our problem set-up includes many simplifications though. Most impor-

tantly, I do not consider static obstacles which may create jamming effects

between the robot and the objects. These are considered in subsequent chap-

ters.

37

Chapter 4

Robust Physics-Based

Manipulation by Interleaving

Open and Closed-Loop

Execution

In this Chapter, I seek more efficient methods to achieve robotic manipulation

success under uncertainty, and to realize more fluent/real-time manipulation

plan execution. Let’s consider the scene in Fig. 4.1, where static obstacle jam-

ming effects make the grasping in clutter problem much more difficult. The

goal is to reach for the green can without pushing other objects off the shelf.

This problem can be solved with a fully closed-loop approach like I intro-

duced in Chapter 3. However, three problems remain. First, re-planning times

are still non-zero and can induce noticeable delays during a robot’s manipulation

plan execution. This is aesthetically not desirable. Second, full state estimation

is required with such closed-loop systems at every step during execution, this

may not be possible for some manipulation tasks. Finally, if re-planning time

is high during dynamic tasks, some objects can quickly roll and fall-off a table

before re-planning is complete, leading to task failures.

Prior work has investigated the generation of robust open-loop manipulation

plans to solve this problem. These robust open-plans are guaranteed to succeed

in the face of uncertainty. They may include certain funneling actions that

reduce uncertainty. For example, grasps where the robot pushes an object

towards a shelf wall, caging the object and uniquely identifying its position,

before grasping it. Such completely open-loop roust plans that complete the

task are difficult to find, or may not exist for many physics-based manipulation

problems.

In this chapter, I propose a planning and control framework that tightly

integrates open and closed-loop execution for physics-based manipulation. It

38
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

Closed-loop
control

Robust
open-loop

Robust
open-loop

Figure 4.1: A combination of robust open-loop execution and
closed-loop control to reach for the green target object. Top
row: Planned trajectories and execution strategy. Bottom row:
Real-robot open and closed-loop execution to reach for the green
target object. The robot starts with robust open-loop loop ex-
ecution due to motion in free-space. It falls back to closed-loop
control during multi-contact interactions. Finally, it uses a ro-
bust funnelling motion to get the green target object in the grip-

per.

autonomously generates a combination of robust open-loop plans (wherever pos-

sible) and closed-loop controllers (wherever needed) to complete a manipulation

task.

Consider the scene in Fig. 4.1. This is a scene that requires a large number of

contact interactions. A robust open-loop plan that solves the complete task here

is difficult to find due to uncertainty in state and more importantly in physics

predictions. A closed-loop physics-based controller may be successful but will

be slow due to computationally expensive physics predictions, re-planning at

each step to reach the goal.

My approach generates a three-part plan for this scene. The first part is a

robust open-loop plan. It is possible mainly due to the near free-space motion

of the robot. The second part is executed closed-loop since there is a significant

amount of contact interactions. The final part is also a robust open-loop plan.

While there are still significant contact interactions, the final part involves a

funnelling action that reduces uncertainty through object contact with the shelf.

4.1. The Robust Manipulation Problem 39

How do I detect what parts are robust open-loop and what parts should be

closed-loop? I need a metric that quantifies robustness to state uncertainty and

model inaccuracies.

I propose such a robustness metric in this work, based on contraction theory

[63]. Prior work by Johnson, King, and Srinivasa [47] and Kong and Johnson [55]

have proposed robustness metrics for state uncertainty. I build on these works,

and derive new metrics to quantify robustness to not only state uncertainty,

but more importantly model inaccuracies. I use the metric in a robust planner

based on trajectory optimization.

After robust planning for a given manipulation task, I analyze the plan to

extract robust parts which are executed open-loop and non-robust parts which

are executed with model-predictive control. I separate a plan into robust and

non-robust segments through search on a directed graph, where nodes are time-

points of a trajectory and edges are robust or non-robust connections between

these time-points.

I found that the interleaved open and closed-loop execution approach leads

to significant success under uncertainty with fluent/real-time execution, com-

pared to baselines in the literature.

I make the following contributions:

• A planning and control framework that autonomously switches between

robust open-loop execution, and model-predictive control to complete a

physics-based manipulation task.

• A derivation of divergence metrics through contraction theory, to quan-

tify robustness to state uncertainty, in the presence of real-world model

inaccuracies.

• A novel robust planner based on trajectory optimization.

The rest of this chapter is organized as follows: Sec. 4.1 formulates the

problem. Sec. 4.2 provides an overview of the interleaved open and closed-loop

execution approach. Sec. 4.3 provides a background on contraction theory and

my robustness metric derivation. Sec. 4.4 introduces the robust planning and

control framework. Sec. 5.6 details robot experiments and results. Sec. 4.6

concludes the chapter.

4.1 The Robust Manipulation Problem

The robot’s goal is to retrieve an item from a cluttered environment under state

uncertainty and model inaccuracies. It starts from an observed initial state and

40
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

generates non-prehensile actions to reach a final pre-grasping state. A scene

includes at most D movable dynamic objects. qi, i “ 1, . . . , D, refers to the

full pose of each dynamic object. The robot’s pose is defined by a vector of

joint values qR. I represent the complete state of my system as xt P Rn at time

t. This includes the pose and velocity of the robot and all dynamic objects;

xt “ tq
R, q1, . . . , qD, 9qR, 9q1, . . . , 9qDu.

The control inputs, ut P Rm are velocities applied to the robot’s joints:

ut “ 9qR for a fixed control duration ∆t. Then, the discrete time dynamics of

the system is:

xt`1 “ fpxt,utq (4.1)

where f : Rn ˆ Rm ÞÝÑ Rn is the state transition function and I assume an

observed initial state of the system, x0.

System dynamics in Eq. 4.1 is modeled with the physics engine Mujoco

[92]. Nevertheless, any physics engine is an inaccurate model of the real-world

physics and uncertainties over the system dynamics are inevitable. Indeed,

even if I assumed perfect modelling, it is difficult for a robot to know the exact

geometric, frictional, and inertial properties of objects in an environment. Thus,

I represent the real-world dynamics as:

xt`1 “ fpxt,utq ` wpxt,utq (4.2)

where wpxt,utq : Rn ˆ Rm ÞÝÑ Rn is an unknown disturbance term due to

model inaccuracies.

My goal in this chapter is to build a robust planning and control framework

for physics-based manipulation in clutter. The robot must generate control in-

puts, ut at time t that drive the system in Eq. 4.2, from an observed initial state

x0, to a desired goal state set, under state uncertainty and model inaccuracies.

In the foregoing paragraphs, U “ rut0 ,ut1 , . . . ,utN´1
s denotes a sequence of

control inputs of lengthN . Similarly, a sequence of states isX “ rxt0 ,xt1 , . . . ,xtN s.

4.2 Interleaving Open and Closed-Loop Execu-

tion

In this section, I provide my overall framework called OCL, for open and closed-

loop execution during physics-based robotic manipulation. My target is open-

loop trajectory execution in the real-world wherever possible. I aim to find

robust plans that are guaranteed to be successful under state uncertainty and

4.2. Interleaving Open and Closed-Loop Execution 41

Algorithm 4: Open and Closed-loop (OCL)

Input : x0: Initial state
U : Initial candidate control sequence

1 X˚,U˚, Ê
r

e Ð RobustSTO px0,Uq

2 RobustSegs, NonRobustSegs Ð GetSegmentspÊ
r

eq

3 AllSegs Ð RobustSegs Y NonRobustSegs
4 for seg in AllSegs do
5 if seg in RobustSegs then
6 Execute U˚

seg open-loop

7 else
8 Execute U˚

seg with MPC

model inaccuracies. However, this is not always possible. Therefore, when

the open-loop trajectory is not guaranteed to be successful, I design and use a

feedback controller.

OCL is presented in Alg. 4. It is the main algorithm that finds robust and

non-robust trajectories and executes them on a real-robot.

It begins with robust planning by minimizing a robust objective function

with trajectory optimization (line 1). By robust trajectories, I mean trajectories

that will succeed in the real-world regardless of state and model parameter

uncertainty. I derive real-world divergence metrics in Sec. 4.3. They quantify

robustness to both state uncertainty and model inaccuracies. I use these metrics

in the robust objective. Details of the robust planner can be found in Sec.4.4.

The robust planner also returns the corresponding robustness metric (Ê
r

e) for

the planned trajectory.

Robust planning does not always find a trajectory that is guaranteed to be

open-loop robust from start to end. However, some parts of this trajectory

may be robust. Hence I seek to divide a given trajectory into a combination of

robust and non-robust segments with the GetSegments(.) subroutine (line 2).

Thereafter, the robust segments are executed open-loop while the non-robust

segments are executed with model-predictive control (lines 3-8).

The GetSegments(.) subroutine generates a directed graph to address the

problem of dividing the trajectory (X˚, U˚) into robust and non-robust parts.

The nodes of this robustness graph are all the time-points of the trajectory

and edges are connections between these nodes, forward in time. An edge

is robust or non-robust, indicating that the trajectory segment between those

two time-points is robust or non-robust. Details of this segment robustness

metric computation can be found in Sec. 4.3.5. To find a complete plan with

as many robust segments as possible, I convert the problem into a graph search

by assigning costs to each edge. A robust edge going from node i to j costs cro
j´i

,

42
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

Trajectory
after robust optimization Robustness graph

Trajectory divided into
robust (red) and

non-robust (blue) segments

Figure 4.2: Search in a robustness graph to find a combination
of robust and non-robust segments that maximize the number of
time-points that are robust. In the robustness graph, the robust
edges are shown in green, the non-robust edges are shown in

blue.

and a non-robust edge costs cnr ¨ pj ´ iq, where cro ăă cnr, and are constants,

and i ă j. I search this robustness graph for the lowest cost path from the start

point 0, to the end point of the trajectory, N. The output is a path consisting

of robust and non-robust segments.

Consider the example in Fig. 4.2. On the left, I have a trajectory with 6

time-points, the output of robust planning. I build a robustness graph with

robustness metrics for the trajectory (center), where robust segments are in

green and non-robust segments are in blue. I search this graph for the lowest

cost path from time-point 0 to time-point 5. It produces a robust segment

(0-1), a non-robust segment (1-3), and a robust segment (3-5). The robust

segments are executed open-loop and the non-robust segment is executed with

model-predictive control.

Note that after computing the robustness metric for a trajectory, the cost of

an edge in the robustness graph is only an algebraic computation (Sec. 4.3.4).

Moreover, some edges can quickly be labelled as non-robust without the alge-

braic computation. For example, looking at Fig. 4.2, if in addition to segment

(3-4), the segment from (4-5) was non-robust, then the segment from (3-5)

would also be non-robust.

4.3 Robustness to Uncertainty

I define divergence metrics through contraction analysis to quantify robust-

ness to state uncertainty for a nominal trajectory, under model inaccuracies. I

provide a brief introduction to contraction analysis, a derivation of divergence

metrics for the real-world case, and a corresponding numerical approximation.

4.3. Robustness to Uncertainty 43

4.3.1 Contraction analysis:

Contraction theory [63] studies the evolution of infinitesimal distance between

any two neighboring trajectories and provides quantification on the finite dis-

tance between them. Note that Lyapunov Characteristic Exponents [89] sim-

ilarly provide a measure of the rate of exponential divergence between neigh-

boring trajectories.

I begin with the continuous time version of the autonomous system in

Eq. 4.1:

9x “ fpxptq,uptqq (4.3)

Consider two neighbouring trajectories separated by a virtual displacement

(infinitesimal variation) δx. The squared distance between them is δxT δx. The

rate of change of this distance is given by:

d

dt
pδxT δxq “ 2δxT δ 9x (4.4)

From Eq. 4.3, δ 9x “ Bf
Bx
δx. Therefore Eq. 4.4 becomes:

d

dt
pδxT δxq “ 2δxT

Bf

Bx
δx (4.5)

The Jacobian of f , Bf
Bx

can be written as a sum of symmetric and skew-symmetric

parts:
Bf

Bx
“

1

2
p
Bf

Bx
`
BfT

Bx
q `

1

2
p
Bf

Bx
´
BfT

Bx
q (4.6)

Let λfmaxpx,uq be the largest eigenvalue of the symmetric part (first term of

Eq. 4.6) of the Jacobian Bf
Bx

. Then, given that the eigenvalue of the skew-

symmetric part is 0 or imaginary, it follows that:

d

dt
pδxT δxq ď 2λfmaxδx

T δx (4.7)

If I define Df
m :“ λfmax as the maximal divergence metric, I find:

||δxptq|| ď ||δxpt0q||e
şt
t0
Dfmpx,u,tqdt (4.8)

From Eq. 4.8, I find that if Df
m is uniformly negative definite, any infinitesimal

distance ||δxptq|| converges exponentially to zero. Moreover, any finite path

converges exponentially to zero (by path integration).

I reach an important result of contraction analysis: Given a nominal trajec-

tory x̄ptq, a solution to Eq. 4.3 with nominal controls ūptq, any other trajectory

44
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

that starts in a region centered on x̄ptq where Df
m is uniformly negative definite

everywhere, converges exponentially to the nominal x̄ptq ([63], Theorem 1).

The system in Eq. 4.3 models the real-world but can be inaccurate. Thus,

I ask the following questions: If the nominal controls ūptq are executed in the

real-world, will the real trajectory x̄rptq be different? More importantly, will

the convergence properties for the real trajectory change?

4.3.2 Contraction analysis for the real-world

Extending beyond contraction analysis used in prior work [47, 55], I consider the

continuous-time version of Eq. 4.2, a representation of the real-world dynamics:

9x “ fpxptq,uptqq ` wpxptq,uptqq (4.9)

Indeed, the resulting real nominal trajectory x̄rptq may be different due to

the disturbance w. More importantly, I show that the resulting convergence

properties may change.

The real maximal divergence metric Dr
m for the system in Eq. 4.9 can be

written as:

Dr
m :“ Df`w

m px,uq (4.10)

where Df`w
m :“ λf`wmax px,uq is the largest eigenvalue of the symmetric part of

the Jacobian Bpf`wq
Bx

. We reach this conclusion directly by applying steps in

Eq.[4.4-4.8] to the system in Eq. 4.9.

Another important divergence metric we consider in this work is the ex-

pected divergence metric. It was first introduced by Johnson, King, and Srini-

vasa [47]. It quantifies the evolution of the expected value of a virtual dis-

placement. From Eq. 4.8, the expected divergence metric Df
e for the system in

Eq. 4.3 can be written as:

Er||δxptq||s “ Er||δxpt0q||se
şt
t0
Dfe px,u,τqdτ (4.11)

Df
e :“

d

dt
lnEr||δxptq||s (4.12)

For the real-world case, similar to the real maximal divergence metric, one

can write the real expected divergence metric for the system in Eq. 4.9 as:

Dr
e :“ Df`w

e (4.13)

4.3. Robustness to Uncertainty 45

Consider now a state trajectory from an initial time t0 to a final time tN , and

define divergence path metrics such that:

Ef
h “ e

ştN
t0

Dfhdt, h P tm, eu (4.14)

The nominal trajectory starting from t0 and ending at tN is convergent if Ef
h ă 1.

Recall that I am also interested in the real nominal trajectory x̄r. Thus, one

can write:

Er
h “ e

ştN
t0

Df`w
h dt, h P tm, eu (4.15)

and the real nominal trajectory is convergent if Er
h ă 1, depending on the

metric of choice - expected or maximal. This means that any other trajectory

that starts in a region centered on the real nominal trajectory x̄r will converge

exponentially to the real nominal trajectory.

4.3.3 Metric approximations

Johnson, King, and Srinivasa [47] approximate divergence metrics Df
m and Df

e

by approximating the virtual displacement δx with finite samples. Let δxptq “

xiptq´ x̄ptq, where xiptq is a solution for sample i to the same system (Eq. 4.3)

for nominal controls ūptq, starting with a different initial condition: δxpt0q “

xipt0q ´ x̄pt0q. Then, from Eq. 4.8 I can write an approximation D̂f
m to the

maximal divergence metric for a small time step δt as:

D̂f
m :“

1

δt
ln max

i

||xipt` δtq ´ x̄pt` δtq||

||xiptq ´ tx̄ptq||
(4.16)

where i “ 1, . . . , Nc, and Nc is the number of finite samples.

Similarly, from Eq. 4.11, I can write an approximation D̂f
e to the expected

divergence metric as:

D̂f
e :“

1

δt
ln

1
Nc

řNc
i“0 ||x

ipt` δtq ´ x̄pt` δtq||

1
Nc

řNc
i“0 ||x

iptq ´ x̄ptq||
(4.17)

From Eq. 4.16 and Eq. 4.17, and considering the definition in Eq. 4.14, I

define approximations Êf
e to the expected divergence path metric and Êf

m to

the maximal divergence path metric valid for a finite time from t0 to tN :

Êf
e :“

1
Nc

řNc
i“0 ||x

iptNq ´ x̄ptNq||

1
Nc

řNc
i“0 ||x

ipt0q ´ x̄pt0q||
(4.18)

46
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

x0: Observed initial state

xi0: Initial state sample i

xiN : Final state sample i

Êf
e ă 1

Ê1
e ą 1

Ê2
e ă 1

ÊNw
e ă 1

Figure 4.3: Computing the real-world expected divergence
metric Êre . First, I compute the divergence metric using the
nominal model f (Êfe). I draw Nc sample initial states from
the observed initial state x0 and roll-out a trajectory from each
state, to obtain final state samples xiN . Since the size of the final
state distribution is less than that of the initial state distribution,
Êfe ă 1, and the trajectory is convergent in f . Thereafter, we
randomly create Nw real-world realizations from f and compute
the divergence metric in each of these Nw worlds. These met-
rics can be very different from each other across the real-world
realizations. We pick the metric with the maximum value as a
worst-case approximation of the real-world divergence metric.

Êf
m :“ max

i

||xiptNq ´ x̄ptNq||

||xipt0q ´ x̄pt0q||
, i “ 0, 1, . . . , Nc (4.19)

If Êf
h ă 1, h P tm, eu, the nominal trajectory x̄ptq from t0 to tN is conver-

gent, depending on one’s choice of robustness metric - maximal (m) or expected

(e). This means that any other trajectory that starts in a region centered on

the nominal trajectory x̄f will converge exponentially to it.

4.3.4 Metric approximations for the real-world

I define approximations to the real-world maximal and expected path divergence

metrics:

Êr
h “ Êf`w

h , h P tm, eu (4.20)

4.3. Robustness to Uncertainty 47

The real-world nominal trajectory is convergent if Êr
h ă 1.

Given that the disturbance term wpx,uq is unknown, an important question

is how to compute Êr
h.

Consider a set of possible deterministic real-worlds:

9x “ fpxptq,uptqq ` wjpxptq,uptqq, j “ 0, . . . , Nw (4.21)

where Nw ą 0 is a finite number.

I assume that model inaccuracies resulting in wj arise only from inaccurate

physics parameters. Specifically, I assume these parameters are the object’s

mass m, coefficient of friction µ, and size p. These physics parameters are

bounded such that:

ml ď m ď mu, µl ď µ ď µu, pl ď p ď pu (4.22)

where ml, mu, µl, µu, are constants and pl,pu, are constant vectors. The size

here is a vector of values describing the geometry of an object. For example,

radius and height for a cylinder or length, breadth, and height for a box.

Then, a sample real-world realization corresponds to running a physics en-

gine that models f with a uniformly sampled set of physics parameters. I

consider a worst-case scenario and define Êr
h as the maximum divergence met-

ric over all Nw real-world realizations:

Êr
h :“ max

j
pÊj

hq, j “ 0, . . . , Nw, h P tm, eu (4.23)

I provide an illustration in Fig. 4.3, for the expected real-world divergence

metric.

4.3.5 Segment metric computation

Consider the discrete time points of a nominal trajectory x̄t, where t “ t0, t1, . . . , tN .

Then, the expected path metric for a one-step trajectory segment from tp to

tp`1 is:

Êe,tp “
1
Nc

řNc
i“0 ||x

i
tp`1

´ x̄tp`1 ||

1
Nc

řNc
i“0 ||x

i
tp ´ x̄tp ||

(4.24)

Thus, I can write the divergence metric vector as:

Êe “ rÊe,t0 , Êe,t1 , . . . , Êe,tN s (4.25)

48
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

It is a list of one-step trajectory segment divergence metrics. Then, it follows

from Eq. 4.24 that the divergence metric for any trajectory segment from time

tp to time tq can be written as the following algebraic computation over Êe:

Êe,tp,tq :“

t“tq
ź

t“tp

Êerts (4.26)

Hence, a trajectory segment starting at tp and ending at tq is robust if

Êe,tp,tq ă 1. Also, the divergence metric for the full trajectory can be written

as:

Êe “
t“tN
ź

t“0

Êerts (4.27)

Recall that the GetSegments(.) subroutine in Alg. 4 returns robust and

non-robust segments after search on a robustness graph. The robustness metric

for each edge is given by the algebraic computation in Eq. 4.27.

4.4 Robust Planning and Control

I generate robust plans through trajectory optimization of a robust objective

function JR.

JRpX,Uq “ veÊ
r
e
2
` vmÊ

r
m

2
` vjJ (4.28)

where ve, vm, and vj are positive constant weights.

To achieve robustness to state uncertainty under real-world model inaccura-

cies, I minimize Êr
e and Êr

m, the real expected and maximal divergence metrics

respectively, for a given initial state and control sequence. They are computed

from Eq. 4.23.

J is a deterministic objective for the task of reaching in clutter. Formally, the

objective is a sum of running costs Lt and terminal cost LtN along a trajectory:

JpX,Uq “ vfLtN pxtN q `

tN´1
ÿ

t“t0

Lt (4.29)

where vf ą 0 is a constant weight. Details of Lt and LtN are given in Sec. 4.4.2.

I directly minimize the roboust objective JR such that:

U˚
“ arg min

U
JRpX,Uq (4.30)

4.4. Robust Planning and Control 49

subject to the dynamics constraint, xt`1 “ fpxt,utq, the terminal set con-

straint, xtN P Xf , and the control sequence constraint, U P U.

The set of feasible terminal states, Xf is an α ě 0 sub-level set of the

terminal cost function. Specifically:

Xf :“ tx | LtN ď αu (4.31)

and the set of control-limited sequences is:

U :“ tU | bl ď ut ď buu (4.32)

where bl and bu are constant vectors of lower and upper bound on the controls.

A trajectory is feasible (in the deterministic sense) if it satisfies the terminal

state constraint, the control limits, and yields a total cost J less than a threshold

β ą 0. The cost threshold depends on the task. For reaching in clutter, it is

defined such that no failures occur. Specifically, β is selected such that no

objects are toppled/dropped from the working surface, and there are no robot

collisions with static obstacles, at the end of plan execution.

4.4.1 Robust sampling-based trajectory optimization

Trajectory optimization methods such as STOMP [49] have shown impressive

speed for motion planning with parallel rollouts on multiple cores of a PC. They

also easily accept arbitrary cost functions that may not be differentiable.

In Alg. 5, I propose a robust sampling-based trajectory optimization algo-

rithm (RobustSTO) for physics-based manipulation. It begins with an initial

candidate control sequence U and seeks lower cost trajectories (lines 4-15) it-

eratively until a feasible and robust control sequence is found or the maximum

number of iterations is reached (line 4). I add random control sequence varia-

tions δU s on the candidate control sequence to generate S new control sequences

at each iteration (line 7). Thereafter on line 8, I roll-out each sample control

sequence and return the corresponding state sequence X and cost J . A roll-out

starts from the initial state x0 and applies each control input in U sequentially,

one after the other.

On line 9, I compute the maximal and expected divergence metric vectors

along a given sample trajectory with the ComputeMetrics() subroutine. It

involves Nc trajectory roll-outs for each of the Nw real-world realizations and

also for the nominal model f . Then, I compute the robust cost of a sample

trajectory using Eq. 4.28, on line 10.

50
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

Algorithm 5: Robust Stochastic Traj. Opt. (RobustSTO)

Input : x0: Initial state
U : Initial candidate controls

Output : U˚: Feasible and robust control sequence
X˚: Feasible state sequence
Ê
r

e: Real-world expected divergence metric
Parameters : S: Number of noisy trajectory roll-outs

ν: Sampling variance vector
Imax: Maximum number of iterations

1 X, J ÐTrajRolloutpx0,Uq, I Ð 0

2 Ê
r

e, Ê
r

m ÐComputeMetricspX,Uq
3 JR Ð Compute robust cost using Eq. 4.28

4 while I ď Imax and (U not feasible or Êr
e ą 1) do

5 for sÐ 0 to S ´ 1 do
6 δU s

Ð Np0, νq
7 U s

“ U ` δU s

8 Xs, Js ÐTrajRolloutpx0,U
s
q

9 Ê
rs

e , Ê
rs

m ÐComputeMetricspXs, U s)
10 JsR Ð Compute robust cost using Eq. 4.28

11 s˚ ÐMinCostSamplepJ0
R, J1

R, . . . , JS´1R)

12 if Js
˚

R ă JR then

13 U Ð U s˚

, X ÐXs˚

, JR Ð Js
˚

R , Ê
r

e Ð Ê
rs˚

e

14 I Ð I ` 1

15 return U , X, Ê
r

e

I take a greedy approach to trajectory updates. The minimum cost trajec-

tory is selected as the update (line 11). However, the update is accepted only

if it provides a lower cost (lines 12-13). Finally, the algorithm returns feasible

and robust controls (U), the corresponding nominal state sequence, X, and the

corresponding real-world expected divergence metric (line 15).

4.4.2 Cost functions

For physics-based manipulation in clutter, I provide details of the objective.

Let’s begin with the running cost:

Ltpxt,xt`1,ut´1,utq “
ÿ

i

vici, i P ta, c, d, yu (4.33)

where vi ě 0 is a constant weight, the cost terms penalize robot acceleration

(ca), scene disturbance (cd), collision (cc), and toppling (cy).

4.4. Robust Planning and Control 51

4.4.2.1 Acceleration cost (ca):

I am interested in robot motion with minimal changes in robot velocity in

between timesteps. I encode this desired behaviour in the robot acceleration

cost:

caput´1,utq “ ||ut ´ ut´1||
2 (4.34)

4.4.2.2 Disturbance cost (cd):

The disturbance cost penalizes displacing each of the D dynamic objects from

their initial positions and velocities:

cdpxt,xt`1q “
D
ÿ

i“1

||xt`1 ´ xt||
2 (4.35)

4.4.2.3 Collision cost (cc):

Here, I penalize collisions between the robot and all static objects in the envi-

ronment through a discontinuous cost:

ccpxt`1q “

$

&

%

1 if robot collides with static objects

0 otherwise
(4.36)

Here, I consider collisions between all robot links (including the end-effector)

with static objects in the environment.

4.4.2.4 Toppling cost (cy):

I penalize toppling of objects during contact interaction through a discontinuous

cost term:

cypxt`1q “
D
ÿ

i“1

Ci
Topple (4.37)

Ci
Topple “

$

&

%

1 if object i is toppled

0 otherwise
(4.38)

In addition to the running cost, I also define the goal cost term for reaching

in clutter as:

cgpxNq “ ||rGO||
2
` wφφ

2
N (4.39)

φN “ arccospv̂G ¨ r̂GOq (4.40)

where rGO is the position vector from a point G inside the gripper to a point O,

the object’s center of mass, v̂G is the gripper’s forward unit direction, wφ ą 0 is

52
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

a constant weight, and φN is the angular distance between the gripper’s forward

unit direction and the unit vector r̂GO.

In some cases, a desired terminal state xd can be provided to the optimizer.

Then, I write the overall final cost function as:

LtN pxq “

$

&

%

||xd ´ x|| if xd is given

cgpxq otherwise
(4.41)

A sampling-based, derivative-free approach is well suited to handle these

discontinuous cost functions.

4.4.3 Time complexity of robust planner

Physics simulation is the most computationally expensive operation for the

RobustSTO algorithm. This is done both in the TrajRollout(.) and in the

ComputeMetrics(.) subroutines.

Let Tu be the physics simulation time for a single control input ut applied

for control duration ∆t. Then, the serial optimization time, T s is a sum of

TuNpline 1q, TuNNcpNw ` 1q (line 2), TuNSI (line 8), and TuNNcpNw ` 1qSI

(line 9).

Thus, the serial computation time is:

T s “ TuNpSI ` 1qpNcpNw ` 1q ` 1q (4.42)

Rollouts either in TrajRollout(.) or in ComputeMetrics(.) can be computed

simultaneously in parallel. Thus, a parallel implementation gives an optimiza-

tion time T p, independent of S, Nw, and Nc:

T p “ TuNpI ` 1q (4.43)

RobustSTO is a polynomial time algorithm with complexity OpNpI ` 1qq.

This means that the algorithm is fast, provided sufficient parallel cores are

available (at least Nc ˆNW ˆ S).

4.4.4 Model-Predictive Control

I use a model-predictive controller (MPC) as the closed-loop controller in this

work. It calls the trajectory optimizer online, during execution, to solve a finite

4.5. Robot Experiments and Results 53

horizon optimal control problem. It executes the first action in the control

sequence, updates the internal state with camera feedback, and then runs the

trajectory optimizer again to generate a new control sequence, and repeats this

process at every step. I use only the deterministic objective J during MPC, i.e,

a version of Alg. 5 without robustness computations.

4.5 Robot Experiments and Results

Through my experiments, I ask two important questions:

• How does the open and closed-loop execution planning and control frame-

work compare with only open-loop and only closed-loop approaches?

• How does the normal divergence metric proposed in prior work compare

with the real-world divergence metric proposed in this chapter, for ma-

nipulation in the real-world?

I answer these questions through real-world robot experiments.

4.5.1 Setup

The robot is a 6 degrees of freedom (DOF) UR5 arm with a 1-DOF Robotiq

2-finger gripper. I use Mujoco[92] as the physics simulator to plan all robot

actions. The planning environment consists of a shelf and 10 different objects,

including some from the YCB dataset [19]. Object pose is captured with the

OptiTrack motion capture system. In Table. 4.1, I detail all parameters used

throughout the experiments.

4.5.2 Baselines

In this work, I compare against four baselines:

4.5.2.1 Open-loop execution (OL)

This is an approach where I minimize the deterministic objective J with tra-

jectory optimization. It produces a sequence of controls that are then executed

open-loop in the real-world.

54
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

Table 4.1: Experimental parameters

Parameter value

Robustness graph

[Cro, Cnr] [1, 1000]

Divergence metrics

rNc, Nws [4, 4]
rml,mus r0.5, 0.8skg
rµl, µus r0.2, 0.4s

Robust planning

rα, βs [10, 50]
rS,N,∆ts [4, 5, 0.2s]
rbl, bus ˘ π rad{s
Imax 10

rve, vm, vjs [2, 0.5, 1]
rva, vc, vd, vy, vφ, vf s [0.001, 200, 1000, 200, 0.019]

Environment

D 10
m 7

4.5.2.2 Robust open-loop execution (ROL)

This baseline minimizes the robust objective with trajectory optimization. The

trajectory is then executed open-loop in the real-world.

4.5.2.3 Convergent planning (CP)

This baseline uses divergence metrics in Johnson, King, and Srinivasa [47] to

generate robust plans through trajectory optimization, and executes them open-

loop.

4.5.2.4 Closed-loop control (CC)

The closed-loop control approach performs trajectory optimization at every

step, during execution, using the deterministic objective J and then executes

only the first planned control. It re-plans online until task completion.

4.5.3 Comparison of OCL with baselines

I randomly generate 20 real-world scenes by placing the target object behind

other objects, such that reaching directly for it is almost impossible. I also pick

different objects to surround the target in each scene. I fix the robot’s initial

configuration in all scenes to allow for easy scene reset. I run each baseline

and OCL to complete the manipulation task. That’s a total of 100 robot

4.5. Robot Experiments and Results 55

manipulation runs - 5 methods per scene. I recorded success, planning time,

execution time, divergence metrics, and finally what percentage of trajectory

segments are executed open-loop vs. closed-loop in a given scene (for OCL).

Results are shown in Fig. 4.4.

4.5.4 Execution success

I find that the proposed method, OCL, is more successful in completing the

reaching in clutter tasks, compared to all the other baselines. As shown in

Fig. 4.4a, open-loop execution (OL) has the least success rate - a difference of

about 35% compared to the interleaved open and closed-loop approach proposed

in this work. An interesting observation is that the interleaved open and closed-

loop approach outperforms closed-loop control. One explanation for this is that

the starting trajectory for OCL is more robust compared to that of CC.

4.5.5 Planning time

The planning time is the total time spent by planners before the robot executes

its first action.

I show the planning time in Fig. 4.4b.

On my PC with 4 cores, we see that the robust planning time is higher

than that of planning without robustness metrics (OL and CC). However, on

a server with 64 cores (S ¨Nc ¨Nw), both standard planning (OL and CC) and

robust planning would have similar planning times. This is thanks to potential

parallelization of trajectory rollouts with time complexity detailed in Sec. 4.4.3.

4.5.6 Execution time

The execution time is the total time spent after the robot starts executing it’s

first action.

As shown in Fig. 4.4c, the execution time of OCL is close to that of tradi-

tional open-loop execution (i.e ROL, OL, and CP) but much lower than full

closed-loop control.

This difference would be much higher for scenes with less number of objects,

since completely open-loop plans could be found. However, even in such simple

scenes, a fully closed-loop approach would stop at each step to re-plan, taking

much more time to complete the manipulation task.

56
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

(a) Success rate (b) Planning time (4 cores)

(c) Execution time (d) Divergence metrics

(e) Open and closed-loop percentages

Figure 4.4: Experimental results comparing the interleaved
open and closed-loop execution method (OCL) with other base-
lines. I randomly created 20 real-world scenes and ran all five
methods on each scene. I recorded success, planning time, exe-
cution time, divergence metrics, and finally what percentage of
trajectory segments are executed open-loop vs. closed-loop in a
given scene. All error bars indicate a 95% confidence interval of

the mean.

4.5. Robot Experiments and Results 57

4.5.7 Real or normal divergence metrics

Normal divergence metrics proposed in prior work do not consider model inaccu-

racies. How does the real divergence metric compare with the normal divergence

metric, for robust planning, and execution in the real-world? Based on data

from the baseline experiments, I attempt to answer this question.

I found that the normal divergence metrics are much lower than the real

divergence metrics, as shown in Fig. 4.4d. Implying that CP should be more

successful than ROL. However, this is not the case. I’ve seen previously in

Fig. 4.4a that ROL is more successful than CP by about 10%. Thus, the real-

world divergence metric is a better estimate of the uncertainty for the reaching

in clutter task.

4.5.8 Composition of OCL plans

Using the interleaved open and closed-loop approach, what percentage of a

trajectory is executed open-loop versus closed-loop?

I recorded the percentages during OCL experiments. Results are shown in

Fig. 4.4e. I found that about 60% of a plan was executed closed-loop, while

about 40% was execute open-loop, on average.

Note that these percentages will change depending on task difficulty, espe-

cially the number of contact interactions. For example, one might see a higher

percentage of open-loop execution for a scene with only a few number of objects.

In this way, the interleaved open and closed-loop approach (OCL) has the

potential to adapt to varying task difficulty, executing fully open-loop or fully

closed-loop or anything inbetween.

4.5.9 Examples of robust trajectory segments

What sort of robust trajectory segments were encountered during experiments?

One major robustness strategy is the funnelling action, where the robot

pushes an object towards the shelf wall and grasps it. This is shown in Fig. 4.5.

On the left image, I show part of the robustness metric computation where

initial state uncertainty is reduced, through a robust robot motion. On the

right, I see the real-world execution during one of my experiments.

Another robustness strategy is a stable side push on an object as shown in

Fig. 4.6. The box is pushed towards the cylinder in a robust way, where the

initial state uncertainties are reduced.

One final robustness strategy for the robot is to avoid any contact and move

completely in free space. I’ve seen this strategy in Fig. 4.1.

58
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

Robustness computation Real-world execution

Figure 4.5: A sample robust segment from the interleaved open
and closed-loop approach. The left image shows a part of the
robustness metric computation. I see that the initial state un-
certainty is reduced through a funnelling action that pushes the
target object towards the shelf, and grasps it. On the right image
I see the robust segment executed open-loop in the real world.

Robustness computation Real-world execution

Figure 4.6: A sample robust segment from the interleaved open
and closed-loop approach. The left image shows a part of the
robustness metric computation. I see that the initial state un-
certainty is reduced through a stable side push. On the right
image I see the robust segment executed open-loop in the real

world.

4.5.10 Sample plans from the different planners

In Fig. 4.7, I show several plans from all baselines tested in the real-world. I

show these in four different scenes.

In the first row, I see an open-loop execution failure. The black box didn’t

move out of the way as planned. It ended up in the gripper at the final state.

This is a failure.

In the second row I see a trajectory planned through the normal divergence

metrics. The motion of the cylinder is different from originally planned in

simulation. Thus, the cylinder ended up in the robot’s gripper - a failure case.

In the third row, I show a successful run from the robust open-loop execution

method where I use the real-world divergence metrics proposed in this work.

The robot pushes the brown cylinder in a robust manner onto other supporting

objects. It successfully reaches for the green target object.

Finally, in the last row, I show a closed-loop control run, where the robot

re-plans at every step to successfully reach for the green target object.

4.5. Robot Experiments and Results 59
O

p
e
n
-l

o
o
p

e
x
e
cu

ti
o
n

(O
L

)
fa

il
u

re

C
o
n
v
e
rg

e
n
t

p
la

n
n
in

g

(C
P

)
fa

il
u
re

R
o
b
u

st
o
p

e
n

-l
o
o
p

(R
O

L
)

su
cc

e
ss

C
lo

se
d
-l

o
o
p

co
n
tr

o
l

(C
C

)
su

cc
e
ss

Figure 4.7: Examples of successful and failed manipulation
plans from different planning and execution methods.

60
Chapter 4. Robust Physics-Based Manipulation by Interleaving

Open and Closed-Loop Execution

4.5.11 Summary of results

In summary, OCL achieves a good trade-off between success rates and execution

time. It spends more time for closed-loop control where needed and resorts to

open-loop execution wherever possible. It realizes a more successful and fluent

execution compared to baselines.

4.6 Discussion

In this chapter, I present for the first time, an interleaved open and closed-loop

control framework for physics-based manipulation under uncertainty. I derived

robustness metrics through contraction theory, and used these metrics to plan

robust robot motions. I separated a trajectory into robust and non-robust seg-

ments through a minimum cost search on a directed robustness graph. Robust

segments are executed open-loop while non-robust segments are executed with

model-predictive control. I show through experiments on a real robotic sys-

tem, that the open and closed-loop approach is more successful for reaching in

clutter, while achieving more fluent/real-time execution in comparison with the

closest competing baseline, closed-loop control.

The method presented in this chapter is similar to the online re-planning

approach proposed in Chapter 3 where the robot does not re-plan at every step.

It uses deviation between the planned state and the current real-world state to

decide whether or not to re-plan. The problem with such an approach is that

the current real-world state may be a failure state or it may be close to such

a failure state, whereas a robust action (if available) would prevent the system

from even reaching such states.

61

Chapter 5

Task-Adaptive Planning for

Non-prehensile Manipulation

Under Uncertainty

Can a robot be optimistic in the face of uncertainty? Can it adapt its ac-

tions to the accuracy requirements of a task? Unlike methods introduced in

prior chapters, I propose a planning and control algorithm for non-prehensile

manipulation that embraces uncertainty. The key feature of my algorithm is

task-adaptivity : the planner can adapt to the accuracy requirements of a task,

performing fast or slow pushes.

For example in Fig. 5.1 (top), the robot is pushing an object on a narrow

strip. The task requires high-accuracy during pushing — otherwise the object

can fall down. The controller therefore generates slow pushing actions that

make small but careful progress to the goal pose of the object. In Fig. 5.1

(bottom), however, the object is on a wide table and the goal region for the

object is large (circle drawn on the table). In this case, the controller generates

only a small number of fast pushing actions to reach the goal quickly — even

if this creates more uncertainty about the object’s pose after each action, the

task can still be completed successfully. I present a controller that can adapt

to tasks with different accuracy requirements, such as in these examples.

A common feature of existing work is the reliance on the quasi-static model

of pushing [69, 43]. While one reason of the popularity of the quasi-static

model may be the simpler analytic equations of motion it enables one to de-

rive, another reason is the slow nature of quasi-static interactions, which keeps

the uncertainty during pushing tightly bounded and therefore easier to control

accurately.

However, accuracy is not the main criterion for every task, as I illustrate in

Fig. 5.1. Fast motions, even if inaccurate, may be desired during some tasks. We

humans also adapt our actions to the task (Fitts’s law [32]). Imagine reaching

62
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

Initial sceneH
ig

h
A

cc
u
ra

cy
T

as
k

Ö
Goal

After 8 actions After 15 actions Goal in 21 actions

Initial sceneL
ow

A
cc

u
ra

cy
T

as
k

Ö
Goal

Goal in 1 action

Figure 5.1: Task-adaptive pushing with 21 slow actions for
a high accuracy task (top) and a single fast action for a low

accuracy task (bottom).

into a fridge shelf that is crowded with fragile objects, such as glass jars and

containers. You move slowly and carefully. However, if the fridge shelf is almost

empty, only with a few plastic containers that are difficult-to-break, you move

faster with less care.

The major requirements to build a task-adaptive planner/controller are:

1. The planner must consider a variety of actions (different push-

ing speeds): The robot should not be limited to moving at quasi-static

speeds. It must consider dynamic actions wherever possible to complete

a given task as fast as possible.

2. The planner must consider action-dependent uncertainty: Different

actions can induce different amounts of uncertainty into the system. For

example, pushing an object for a longer distance (or equivalently pushing

faster for a fixed amount of time) would induce more uncertainty than

pushing a short distance (or equivalently pushing slower for a fixed amount

of time) [97].

One way to build such a controller is to model the problem as a Markov

Decision Process (MDP) with stochastic dynamics, where the stochasticity is

action-dependent. Then, if this MDP is solved for an optimal policy under

a cost that includes time to reach the goal, the resulting policy will use fast

actions when it can, and fall back to slow actions for tasks that require higher

accuracy.

5.1. Task-Adaptive Planning as an MDP 63

In this chapter, I model the problem as an MDP. However, I do not search

for a globally optimal policy as this would be prohibitively computationally ex-

pensive. Instead, I solve the MDP online [78, 50] with an approximate solution.

Even in this online setting, evaluating the value of all possible actions (includ-

ing actions of a wide variety of speeds), proves computationally expensive, since

the cost of physics-based predictions is high. Therefore, instead of evaluating

all possible actions, at any given state, I first use a fast trajectory optimizer to

suggest a reduced set of promising actions, i.e. actions that are known to drive

the system to the goal under the deterministic setting. I then evaluate these

actions under uncertainty to pick the best one.

My specific contributions include a task-adaptive online solution to the

MDP for pushing-based manipulation and a trajectory optimizer to generate

actions for evaluation under the MDP setting. Additionally, I compare my task-

adaptive planner with a standard model predictive control approach where the

initial candidate control sequence for trajectory optimization is composed of

only slow actions, for high and low accuracy tasks under different levels of un-

certainty. I show that my approach achieves higher success rates in significantly

smaller amounts of time, especially for tasks that do not require high accuracy.

Finally, I implement my approach on a real robotic system for tasks requiring

different accuracy levels and compare it with standard MPC. Results can be

found in the video at https://youtu.be/8rz_f_V0WJA.

5.1 Task-Adaptive Planning as an MDP

I consider the problem where a robot must plan a sequence of non-prehensile

actions to take an environment from an initial configuration to a desired goal

configuration. I consider two task categories: In the pushing task the goal is to

push a target object into a goal region; and in the grasping in clutter task the

goal is to bring a target object, among other objects, into the robot’s hand. My

scenes contain D dynamic objects. qi refers to the full pose of each dynamic

object, for i “ 1, . . . , D. I assume a flat working surface and the robot is not

allowed to drop objects off the edges.

The robot is planar with a 1-DOF gripper. The robot’s configuration is

defined by a vector of joint values qR “ tθx, θy, θrotation, θgripperu. I represent the

complete state of my system as xt at time t. This includes the pose and velocity

of the robot and all dynamic objects; xt “ tq
R, q1, . . . , qD, 9qR, 9q1, . . . , 9qDu. My

control inputs are velocities: ut “ 9qR applied to the robot’s joints. I then define

https://youtu.be/8rz_f_V0WJA

64
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

the stochastic discrete time dynamics of my system as:

xt`1 “ fpxt,utq ` ζputq (5.1)

where f is a deterministic function that describes the evolution of state xt

given the action ut. I induce stochasticity in the system dynamics through

ζputq9||ut||, which is proportional to the magnitude of action ut. When I push

an object over a long distance, there are a large number of interactions/contacts

especially in cluttered environments. This implies that the uncertainty in the

resulting state at the end of a long push should be larger than that for a shorter

push [97].

I assume an initial state of the system x0. My goal is to generate a sequence

of actions for the robot such that the desired final goal configuration of the

environment is reached as quickly as possible without dropping objects off the

edge of my working surface. The final goal configuration of the environment

is defined in terms of the terminal cost of the system. It is a sub-level set of

the terminal cost, which I will detail later in this Chapter. In the foregoing

paragraphs, U “ tu0,u1, . . . ,un´1u denotes a sequence of control signals of

fixed duration ∆t applied in n time steps and I use brackets to refer to the

control at a certain time step, i.e. U rts “ ut. Similarly, X is a sequence of

states.

To build a task-adaptive controller, I formulate the problem as an MDP,

and I provide an approximate solution to it. An MDP is defined by a tuple

ă S,A, P, L1 ą, where S is the set of states, A is the set of actions, P is the

probabilistic transition function, and L1 defines the costs. In the problem S is

given by all possible values of xt. Similarly, A is given by all possible values of

ut, and P can be computed using the stochastic transition function in Eq. 5.1.

The optimal policy for an MDP is given by:

π˚pxtq “ arg min
utPA

„

L1pxt,utq ` γ ¨

ż

S

P pxt`1|xt,utq ¨ V
˚
pxt`1q ¨ dxt`1

(5.2)

where 0 ă γ ă 1 is the discount factor, and V ˚ is the optimal value function.

An online one-step lookahead approximate solution to the MDP problem can

be found by sampling and evaluating the average value over samples as in [78,

50]:

rπpxtq “ arg min
utPA

»

–L1pxt,utq `
1

Q
¨

ÿ

xt`1PSpxt,ut,Qq

rV pxt`1q

fi

fl (5.3)

5.2. Approximate Online MDP Solution 65

where Spxt,ut, Qq is the set of Q samples found by stochastically propagating

pxt,utq, and rV is an approximation of the value function. For the problem,

to compute the cost L1pxt,utq, I use a cost function L which also takes into

account the next state xt`1:

Lpxt,xt`1,utq “
D
ÿ

i

twe ¨ e
k¨diE ` ws ¨ px

i
t`1 ´ x

i
tq

2
u ` kact (5.4)

The first term in the cost which I call the edge cost penalizes pushing an object

close to the table’s boundaries or static obstacles. I have shown the edge cost

in Fig. 3.3 where I defined a safe zone smaller than the table’s boundaries. If

an object is pushed out of this safe region as a result of an action between t and

t ` 1, I compute the pushed distance dE. Also note that k is a constant term

and no edge costs are computed for objects in the safe zone. The second term

is the environment disturbance cost which penalizes moving dynamic objects

away from their current states. The third term, kact is a constant cost incurred

for each action taken by the robot. I use we and ws to represent weights for

the edge and environment disturbance costs respectively. Then, I compute

L1pxt,utq using the same set of Q samples:

L1pxt,utq “
1

Q
¨

ÿ

xt`1PSpxt,ut,Qq

Lpxt,xt`1,utq

This solution requires propagating Q samples for every possible action ut, to

find the one with the minimum total cost. Performing this for all actions ut P A

is not feasible for my purposes for a variety of reasons: First, I am interested

in actions that span a wide range of speed profiles (i.e. fast and slow), which

make my potential action set large; second, each propagation in my domain is

a physics simulation which is computationally expensive; and third, my goal is

closed-loop pushing behaviour close to real-time speeds.

5.2 Approximate Online MDP Solution

Instead of considering a large action set in the online MDP solution (Eq. 5.3),

I propose to use a small set of promising actions including both fast and slow

actions. I identify such a set of actions using a trajectory optimizer based on

the deterministic dynamics function f of the system.

Note that my approach does not discretize the action space or the state space

a priori. I adaptively sample the action space using a trajectory optimizer to

66
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

Initialization Trajectory optimization Action evaluation
under uncertainty

U 0

U 1

U 0˚

U 1˚

U 0˚
r0s

U 1˚
r0s

Figure 5.2: First column: Initialization of the task-adaptive
approach with control sequences including fast (top) and slow
(bottom) actions. Second column: Stochastic trajectory opti-
mization of the initial candidate control sequences. Last column:

Action evaluation under uncertainty through sampling.

find high value actions to consider at a given current state. I also get stochastic

next state samples by applying these actions through a physics simulator.

In Alg. 6, I present my online approximate solution to the MDP.

Consider the scene in Fig. 5.2, where I have a planar gripper and an object.

My task is to push the object to a desired goal location (the red spot) while

avoiding the rectangular black obstacle. I begin by generating N candidate

action sequences tU 0, . . . ,UN´1
u to the goal by using the GetActionSequences

procedure (line 1). The number of actions in each sequence varies between

nmin and nmax, and each action is of fixed duration ∆t. In the example task

(Fig. 5.2), I show the candidate action sequences in the first column where

N “ 2, nmin “ 2, and nmax “ 4. Since each action is of fixed duration, the set

of action sequences contain both fast (top) and slow (bottom) actions. Details

of how I generate these candidate control sequences are explained in Sec 5.3.

Using a trajectory optimizer (Sec. 5.4), the procedure GetOptActionSe-

quences returns N optimized control sequences tU 0˚, ¨ ¨ ¨ ,UN´1˚
u, and an ap-

proximation of the value function t rV
0
, ¨ ¨ ¨ , rV

N´1
u along the optimal trajecto-

ries. I visualize the optimized trajectories for the example task in the second

column.

I seek a one-step lookahead solution to the MDP , hence, I get the first

actions U i˚
r0s from each of the optimized control sequences. My task is now to

select the best amongst N actions even under uncertainty. I apply each action Q

times to the stochastic state transition function in Eq. 7.1 to yield Q next state

samples (line 7). More specifically, using my system dynamics model, I apply

5.2. Approximate Online MDP Solution 67

Algorithm 6: Online MDP solver

Input : x0: Initial state
Parameters : Q: Number of stochastic samples

N : Number of initial candidate control sequences
nmin: Min. num. of actions in a control sequence
nmax: Max. num. of actions in a control sequence

1 tU 0, . . . ,UN´1
u ÐGetActionSequencespx0, nmin, nmax, Nq

2 while task not complete do

3 tU 0˚, ¨ ¨ ¨ ,UN´1˚
u, t rV

0
, ¨ ¨ ¨ , rV

N´1
u Ð

4 GetOptActionSequences (x0, tU
0, . . . ,UN´1

uq

5 for iÐ 0 to N ´ 1, do
6 V i “ 0
7 for each sample in Q, do
8 x1 “StochasticExecutionpx0,U

i˚
r0sq

9 V i “ V i ` Lpx0,x1,U
i˚
r0sq ` rV

i
r0s

10 V i “ V i{Q

11 imin = arg miniPN V
i

12 x1 Ð execute U iminr0s
13 check task completion
14 x0 Ð x1

15 tU 0, . . . ,UN´1
u Ð

tGetActionSequencespnmin, nmax, N ´ 1q, U iminr1 : n´ 1su

the controls (velocities) to the robot for the control duration ∆t and thereafter

I wait for a fixed extra time trest for objects to come to rest before returning the

next state and computing the cost. I can see the Q samples in the third column

(Fig. 5.2) for the example pushing task. Thereafter, on line 9, for each sample

I add the immediate cost L to the approximate value rV
i
r0s for the resulting

state. I use the same approximate value for all Q samples. I then compute an

average value for each action (line 10), select the best one and execute it (line

12). If the task is not yet complete, I repeat the whole process but also re-use

the remaining portion of the best control sequence U iminr1 : n ´ 1s from the

current iteration, thus generating only N ´ 1 new action sequences (line 15).

This algorithm chooses slow, low velocity actions for tasks that require high

accuracy but faster actions for tasks that allow inaccuracies.

In the example pushing task, Fig. 5.2 (third column), I see a wider distri-

bution in the resulting state for the fast action (top) compared to the slower

action (bottom) as a result of my uncertainty model. Such a wide distribution

in the resulting state increases the probability of undesired events happening

especially in high accuracy tasks. For example, I see that some samples for

the fast action result in collisions between the robot and the obstacle. This

implies high costs with respect to the slower action, hence my planner chooses

68
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

Algorithm 7: GetActionSequences (x0, nmin, nmax, N)

Output : tU 0, . . . ,UN´1
u: A set of candidate action sequences

Parameters : ∆t: Control duration for each action in an action
sequence

1 for k Ð 0 to N ´ 1 do

2 nk “ r
nmax ´ nmin

N ´ 1
ks` nmin

3 U k
r0 : nk ´ 1s “ t

Distance to goal

nk∆t

u1

4 return tU 0, . . . ,UN´1
u

Algorithm 8: GetOptActionSequences(x0, tU
0, . . . ,UN´1

u)

Output : tU 0˚, ¨ ¨ ¨ ,UN´1˚
u: Optimized set of action sequences

t rV
0
, . . . , rV

N´1
u Approx. value function along N

optimal trajectories
1 for iÐ 0 to N ´ 1 do

2 U i˚, rV
i
ÐTrajectoryOptimization(x0,U

i)

3 return tU 0˚, ¨ ¨ ¨ ,UN´1˚
u, t rV

0
, ¨ ¨ ¨ , rV

N´1
u

the slow action in this case, executes it and starts the whole process again from

the resulting state.

5.3 Generating a Variety of Actions

At each iteration of my online MDP solver, I provide N actions that are eval-

uated under uncertainty. First, using the GetActionSequences procedure in

Alg. 7, I generate N candidate action sequences where the number of actions

in an action sequence increases linearly from nmin to nmax (line 2).

On line 3, each of the action sequences is set to a straight line constant

velocity profile to the goal. This is a simple approach, other more complicated

velocity profiles could also be used here. Furthermore, in the GetOptActionSe-

quences procedure, Alg. 8, I use these candidate action sequences to initialize a

stochastic trajectory optimization algorithm (Sec. 5.4). The algorithm quickly

finds and returns a locally optimal solution for each of the candidate control

sequences. It also returns an approximation of the value function along N op-

timal trajectories. I use this approximate value while evaluating actions in my

online MDP solver.

5.4. Trajectory Optimization 69

Algorithm 9: Stochastic Trajectory Optimization

Input : x0: Initial state
U : Candidate control sequence containing n actions

Output : U˚: Optimal control sequence
Parameters : K: Number of noisy trajectory rollouts

ν: Sampling variance vector
Cthresh: Success definition in terms of cost
Imax: Maximum number of iterations

1 X,C ÐTrajectoryRolloutpx0,Uq
2 while Imax not reached and SumpCq ą Cthresh do
3 for k Ð 0 to K ´ 1 do

4 δU k
Ð Np0,νq Random control sequence variation

5 U k
“ U ` δU k

6 Xk,Ck
ÐTrajectoryRolloutpx0,U

k
q

7 U˚
ÐUpdateTrajectorypU , tδU 0, . . . , δUK´1

u, tC0, . . .CK´1
uq

8 X˚,C˚
ÐTrajectoryRolloutpx0,U

˚
q

9 if SumpC˚
q ă SumpCq then

10 U Ð U˚, X ÐX˚, C Ð C˚

11 for j Ð 0 to n´ 1 do

12 rV rjs “
řn´1
h“j C

˚
rhs Approx. value function for state x˚j along the

optimal trajectory

13 return U˚, rV

5.4 Trajectory Optimization

Trajectory optimization involves finding an optimal control sequence U˚ for

a planning horizon n, given an initial state x0, an initial candidate control

sequence U , and an objective J which can be written as:

JpX,U q “
n´1
ÿ

t“0

Lpxt,xt`1,utq ` wfLf pxnq (5.5)

J is obtained by applying the control sequence U starting from a given initial

state and includes the sum of running costs L and a final cost Lf . I use the

constant wf to weight the terminal cost with respect to the running cost. I

consider a deterministic environment defined by the state transition function

xt`1 “ fpxt,utq. This is a constraint that must be satisfied at all times. Then

the output of trajectory optimization is the minimizing control sequence:

U˚
“ argmin

U
JpX,Uq (5.6)

In this chapter, I propose Alg. 9, which adapts the STOMP algorithm [49]

for non-prehensile object manipulation.

I begin with an initial candidate control sequence U and iteratively seek

70
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

Algorithm 10: TrajectoryRollout

Input : x0: Initial state
U : Control sequence with n actions

Output : X :State sequence
C :Costs along the trajectory

1 for tÐ 0 to n´ 1 do
2 xt`1 “ fpxt,utq
3 Crts “ Lpxt,xt`1,utq Calculate cost using Eq. 5.4
4 if t ““ n´ 1 then
5 Crts “ Crts ` Lf pxt`1q Add final cost

6 return X,C

lower cost trajectories (lines 2-10) until the cost reaches a threshold or until

the maximum number of iterations is reached (line 2). I add random control

sequence variations δU k on the candidate control sequence to generate K new

control sequences at each iteration (line 5). Thereafter on line 6, I do a tra-

jectory rollout for each sample control sequence using the TrajectoryRollout

procedure in Alg. 10. It returns the corresponding state sequence X and costs

C calculated for each state along the resulting trajectory. I.e Crts is the cost

of applying action ut in state xt. After generating K sample control sequences

and their corresponding costs, the next step is to update the candidate con-

trol sequence using the UpdateTrajectory procedure. One way to do this is a

straightforward greedy approach where the minimum cost trajectory is selected

as the update:

k˚ “ argmin
k

n´1
ÿ

t“0

Ck
rts , U˚

“ U ` δU k˚ (5.7)

Another approach is a cost-weighted convex combination similar to [94]:

U˚
rts “ U rts `

řK´1
k“0 rexpp´p 1

λ
qCk

rtsqsδU k
rts

řK´1
k“0 expp´p 1

λ
qCk

rtsq
(5.8)

Where λ is a parameter to regulate the exponentiated cost’s sensitivity. In my

experiments, for a small number of noisy trajectory rollouts K (e.g. K “ 8),

a greedy update performs better. Hence, I use the greedy update in all my

experiments.

Once the trajectory update step is complete, I update the candidate control

sequence only if the new sequence has a lower cost (line 9, Alg. 9). The trajec-

tory optimization algorithm then returns the locally optimal control sequence

and an approximation of the value function for each state along the trajectory,

where the value function is approximated using the sum of costs starting from

5.5. Baseline Approach 71

that state.

The cost terms for the state-action sequences in this algorithm are equal to

the running costs in Eq. 5.4, with the addition of a terminal cost on the final

state depending on the task. The terminal cost for the pushing task is given

by:

Lf “

$

&

%

0 if Ro ´Rg ă 0

pRo ´Rgq
2 if Ro ´Rg ą 0

where Ro is the distance between the pushed object and the center of a circular

goal region of radius Rg. The terminal cost term for the task of grasping in

clutter is given by: Lf “ d2T ` wφ ¨ φ
2
T . I have shown how the distance dT and

the angle φT are computed in Fig. 3.2. I use wφ to weight angles relative to

distances.

5.5 Baseline Approach

I implement a standard model predictive control algorithm (MPC) as a base-

line approach. It involves repeatedly solving a finite horizon optimal control

problem using the stochastic trajectory optimizer presented in Alg. 9 and pro-

ceeds as follows: optimize a finite horizon control sequence, execute the first

action, get the resulting state of the environment and then re-optimize to find

a new control sequence. When re-optimizing, I warm-start the optimization

with the remaining portion of the control sequence from the previous iteration

such that optimization now becomes faster. I initialize the trajectory optimizer

for standard MPC with actions at the quasi-static speed. In addition, I pro-

pose another baseline approach to compare against in this work: uncertainty

aware model predictive control (UAMPC). This is a version of my online MDP

solver where only low speed actions are considered. Specifically, all the candi-

date control sequences are generated with the maximum number of actions i.e.

nmin Ð nmax.

5.6 Experiments

I call my planning approach task-adaptive model predictive control (TAMPC).

I investigate how well my approach is able to handle uncertainty and adapt to

varying tasks. First, I compare the performance of TAMPC with a standard

model predictive control (MPC) approach. Here I hypothesize that TAMPC

will complete a given pushing task within a significantly shorter period of time

72
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

and will be able to adapt to different tasks, maintaining a high success rate

under varying levels of uncertainty.

Next, I compare the performance of my approach with uncertainty aware

MPC (UAMPC). Here I hypothesize that: UAMPC will have a similar success

rate and will take a longer amount of time to complete the task in comparison

with TAMPC.

I conduct experiments in simulation and on a real robotic system. I consider

the tasks of pushing an object to a goal region and grasping an object in clutter.

Given an environment for planning, I create two instantiations:

˝ Planning environment: The robot generates plans in the simulated

planning environment. The trajectory optimizer (Alg. 9) uses determin-

istic physics during planning and my online MDP solver uses stochastic

physics to evaluate actions.

˝ Execution environment: Here, the robot executes actions and ob-

serves the state evolution. It is the physical world for real robot ex-

periments but it is simulated for simulation experiments. The execution

environment is stochastic.

For the planning environment and the execution environment when it is

simulated, I use a physics engine, Mujoco[92], to model the deterministic state

transition function f in Eq. 7.1. I model stochasticity in the physics engine

by adding Gaussian noise on the velocities t 9qR, 9q1, . . . , 9qDu of the robot and

objects at every simulation time step:

t 9rqR, 9rq1, . . . , 9rqDu “ t 9qR, 9q1, . . . , 9qDu ` µ, µ „ N p0, βputqq (5.9)

where N is the Gaussian distribution and β is an action dependent variance

function. I create a linear model for the variance function as:

βputq “ b||ut|| (5.10)

Where b is a constant. In my simulation experiments, uncertainty level refers

to the degree of stochasticity dictated by the slope b of the variance function β

used to generate the Gaussian noise µ injected at every simulation time step in

Eq. 5.9.

5.6.1 Push planning simulation experiments

I present a high accuracy task in Fig. 5.1 (top). It is made up of a thin strip

and a small goal region. I also define a low accuracy task in Fig. 5.1 (bottom)

5.6. Experiments 73

(a) Success rates for low accuracy tasks (b) Success rates for high accuracy tasks

(c) Total elapsed time for low accuracy tasks (d) Total elapsed time for high accuracy tasks

Figure 5.3: Success rate and total elapsed time versus uncer-
tainty level for low and high accuracy tasks.

which is a much larger table with a wider goal region. I create 200 such planning

environments for each of the high and low accuracy tasks. For each environment:

1. I randomly select the shape (box or cylinder) of the pushed object.

2. For each object, I randomly1 select shape dimensions (radius and height

for the cylinder, extents for the boxes), mass, and coefficient of friction.

3. I randomly2 select a position on the working surface for the pushed object.

I create four uncertainty levels: no uncertainty, low uncertainty, medium un-

certainty and high uncertainty. For the no uncertainty case, no extra noise was

added to the physics engine. For low, medium and high levels of uncertainty,

b “ t0.05, 0.075, 0.1u respectively. I test the different planning and control ap-

proaches and specify a timeout of 3 minutes including all planning, re-planning

and execution.
1The uniform range used for each parameter is given here. Box x-y extents:

r0.05m, 0.075ms; box height: r0.036m, 0.05ms; cylinder radius:r0.04m, 0.07ms; cylinder
height:r0.04m, 0.05ms; mass:r0.2kg, 0.8kgs; coef. fric.:r0.2, 0.6s.

2The random position for the pushed object is sampled from a Gaussian with a mean at
the lower end of the table (0.1m from the edge of a 0.6m long table along the center axis and
a variance of 0.01m.)

74
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

Initial scene After 1 action After 8 actions Goal in 15 actions

Initial scene After 10 actions After 40 actions Goal in 45 actions

Figure 5.4: Push planning in a changing environment (top)
using a single fast push initially and then slow pushes later on
due to the narrow strip. For the L-shaped environment (bot-
tom), the robot executes many actions to successfully navigate

the edge.

Success rates: I declare success when the robot is able to push an object

to the target region without dropping it off the edge of the table within the

specified time limit. I plot the results in Fig. 5.3a and Fig. 5.3b. For the low

accuracy level push planning task (Fig. 5.3a), TAMPC and UAMPC were able

to maintain a 100 % success rate while MPC showed a slight decrease in success

rates as uncertainty grew. For the high accuracy pushing task (Fig. 5.3b),

TAMPC and UAMPC were also able to maintain a good average success rate.

MPC on the other hand maintains a poor success rate. The major reason for

this is uncertainty.

Total time: The total time in my experiments includes all planning and exe-

cution time. Fig 5.3c and Fig 5.3d show the average of 200 scenes with 95 %

confidence interval of the mean. For the low accuracy level task, my TAMPC

planner is able to achieve the goal in under 5s (Fig 5.3c), while UAMPC and

MPC took significantly more time to complete the task. This clearly shows that

my method is able to generate successful fast actions while maintaining a high

success rate. For the high accuracy level task (Fig 5.3d), my planner is able to

generate as many small actions as needed as the uncertainty grew. Hence it was

able to maintain a high success rate and still complete the task within a very

small amount of time in comparison with the baseline approach. Furthermore, I

also test the adaptive behavior of my approach for the environments in Fig. 5.4.

In the changing environment (Fig. 5.4, top), the robot begins with a fast push

due to a large initial area. Thereafter, it naturally switches to slow pushes on

the thin strip to complete the task. For pushing in the L-shaped environment

(Fig. 5.4, bottom), the robot generally pushes slow. However, it spends a lot of

time to navigate the corner.

5.6. Experiments 75

Initial scene After 3 actions After 7 actions Goal in 11 actions

Figure 5.5: Grasping in clutter: The robot uses fast actions
initially but chooses slower actions as it gets closer to the goal

object near the edge of the table.

5.6.2 Grasping in clutter simulation experiments

I conducted simulation experiments for grasping in clutter in scenes similar to

Fig. 5.5. My scenes are randomly generated containing boxes and cylinders. In

addition, my robot now has four control inputs (including the gripper). I tested

the task adaptive planner in clutter to observe how the planner adapts given

different environment configurations. I see that the robot manipulates clutter

and is able to grasp the target object. An example scene is shown in Fig. 5.5

where the aim is to grasp the target object in green without pushing any other

objects off the edge of the table. The robot initially begins with fast actions to

push obstacles out of the way. However, as the robot gets closer to the target

object, it chooses slower actions due to a higher probability of task failure in

that region.

5.6.3 Real robot experiments

In the real robot experiments I use a UR5 robot with a Robotiq 2 finger gripper.

I restrict the motion of the gripper to a plane parallel to the working surface such

that I have a planar robot. I use OpenRave[23] to find kinematics solutions at

every time step. For the push planning experiments, the gripper is completely

open such that the robot receives three control inputs ut “ p 9θx, 9θy, 9θrotationq

at every time step. I use a medium uncertainty level to model the real world

stochasticity. I place markers on the pushed object and track its full pose with

a motion capture system (OptiTrack). I manually replicated three execution

worlds for each task accuracy level from the randomly generated environments

I created during push planning simulation experiments. I tested my planners

in these environments. I show snapshots from my real robot experiments. In

Fig. 5.6 (top), I have a low task accuracy environment where the standard MPC

approach is successful after 20 actions. However, by using a single dynamic push

76
Chapter 5. Task-Adaptive Planning for Non-prehensile Manipulation

Under Uncertainty

L
ow

A
cc

u
ra

cy

T
as

k Ö
Goal

Initial scene After 5 actions After 12 actions Goal in 20 actions

H
ig

h
A

cc
u
ra

cy
T

as
k Ö

Goal

Initial scene After 5 actions After 10 actions Failed in 13 actions

Figure 5.6: MPC using a large number of actions to complete
a low accuracy level task (top), and causing the pushed object

to fall off for a high accuracy level task (bottom).

in Fig. 5.1 (bottom), my task-adaptive control approach is able to complete the

push planning task in under 2 seconds.

Moreover, for the high task accuracy problem, MPC was unable to push

the target object to the desired goal location (Fig. 5.6 (bottom)). It executes

actions without reasoning about uncertainty and pushed the goal object off

the edge. The task-adaptive controller was able to consider uncertainty while

generating small pushes (Fig. 5.1 (top)) to complete the task. These results can

be found in the accompanying video at https://youtu.be/8rz_f_V0WJA.

5.7 Discussion

I presented a closed-loop planning and control algorithm capable of adapting to

the accuracy requirements of a task by generating both fast and slow actions.

This is an exciting first step toward realizing task-adaptive manipulation plan-

ners. In this work, I use a stochastic trajectory optimizer that outputs locally

optimal control sequences. Thus, the resulting policy can get stuck in a local

optima. Moreover, the trajectory optimizer may not return a good control se-

quence that reaches the goal for a given task if some design parameters (e.g.

nmax) are chosen poorly.

https://youtu.be/8rz_f_V0WJA

77

Chapter 6

Combining Coarse and Fine

Physics for Manipulation

using Parallel-in-Time

Integration

Physics predictions are used during multi-contact interactions for methods through-

out Chapters 3, 4, and 5. These predictions are computationally expensive. How

can we make physics predictions for robotic manipulation faster?

In this chapter, I present a method for fast and accurate physics predictions

during non-prehensile manipulation planning and control. Take the case study

in Fig.6.1, where a cylindrical object moves towards the right, pushing a box. I

am interested in predicting the motion of the pushed box, in a fast and accurate

way. To achieve this, I combine coarse physics models with fine physics mod-

els. By coarse models, I mean computationally cheap but relatively inaccurate

predictive physical models. For example in Fig.6.1a, I use a coarse model to

compute the motion of the box. The motion is not completely realistic, but I

can compute it extremely fast (7 ms wall-clock time to compute a simulated 8 s

push). By fine models, I mean computationally expensive but accurate predic-

tive physical models. In Fig.6.1d, I use a fine model (in this case, the Mujoco

simulator [92]) to compute the motion of the same box. The motion is more

realistic, but it also requires much more time to compute (668 ms).

I combine these two models to deliver a prediction that is as accurate as the

fine model but runs in substantially less wall-clock time. The motion predicted

in Fig.6.1b is similar to the fine model prediction, but is four times faster to

compute. The motion predicted in Fig.6.1c is indistinguishable from the fine

model prediction for real world manipulation purposes, and is two times faster

to compute.

78
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

(a) Coarse physics
model (7 ms)

(b) Hybrid physics
model-1 (168 ms)

(c) Hybrid physics
model-2 (350 ms)

(d) Physics engine
prediction (668 ms)

Figure 6.1: A spectrum of physics predictions from cheapest
and least accurate (a) to expensive and most accurate (d).

Given an initial state and a sequence of controls, the problem of predicting

the resulting sequence of states is a key component of a variety of model-based

planning and control algorithms [41, 49, 47, 94, 11, 39, 3, 90, 61]. Mathemati-

cally, such a prediction requires solving an initial value problem. Typically, those

are solved through numerical integration over time-steps (e.g. Euler’s method

or Runge-Kutta methods) using an underlying physics model. However, the

speed with which these accurate physics-based predictions can be performed is

still slow [26] and faster physics-based predictions can contribute significantly

to contact-based/non-prehensile manipulation planning and control.

There are several ways that could be used to construct coarse models for

manipulation planning. Quasi-static physics, which ignores accelerations, is

widely used in non-prehensile manipulation planning and control [66, 69, 34],

and can be seen as a coarse model. Learning is another method which can be

used to generate approximate but fast predictions [71, 56, 81, 100]. Recently,

with the advance of deep-learning, there has been multiple attempts at learning

approximate “intuitive” physics models which are then used for manipulation

planning [7, 28, 29, 79, 70, 25, 8]. Especially when these networks are faced

with novel objects that are not in their training data (e.g. consider a network

trained with boxes and cylinders, but used to predict the motion of an ellipse)

they can generate approximate predictions of motion, and therefore are good

candidates as coarse models.

A key question I investigate is whether I can combine such cheap but ap-

proximate models, with expensive but more accurate and general models (such

as physics engines) to generate a hybrid model that is at the required speed and

accuracy for a given manipulation task.

I do this by using a coarse physics model to obtain a rough initial guess of

the state at each time point of a trajectory. Then, I evaluate the fine physics

model in parallel across time starting from the initial guesses. Thereafter, I

combine the coarse and fine predictions using the iterative Parareal algorithm

[68, 62, 82].

In this chapter, I use this approach to perform physics-based predictions

6.1. Combining Physics Models for Planning 79

within a planner for robotic manipulation. Specifically, I consider the task of

pushing an object to a goal location while avoiding obstacles. I provide a cheap

coarse model and combine it with the Mujoco physics engine as the fine model.1

The planner performs trajectory optimization to generate a control sequence,

executes the first control in the sequence, and then re-runs the trajectory opti-

mizer, in a model-predictive-control fashion. I present this planner in Sec. 6.2.

As a baseline, I use the same planner, with the fine model, Mujoco, as the

predictive model. I conduct experiments in simulation and on a real setup and

show that the planner with hybrid physics models achieves the same success

rates but faster.

To the best of our knowledge, the use of Parareal for contact dynamics (and

in general for robotic planning and control) has not been investigated before.

When used for contact dynamics, the original Parareal formulation can produce

infeasible states where rigid bodies penetrate. I extend Parareal to handle these

infeasible state updates through projections to the feasible state space.

6.1 Combining Physics Models for Planning

Given an initial state x0 and a sequence of N controls tu0,u1, . . . ,uN´1u, I am

interested in predicting the resulting sequence of states tx1,x2, . . . ,xNu of a

physical system. As an example, I consider the problem of pushing an object

to a goal location with a cylindrical pusher. The system’s state consists of the

pose q and velocity 9q of the pusher P and slider S: xn “ rq
P
n , q

S
n, 9q

P
n , 9q

S
ns. The

slider’s pose consists of the translation and rotation of the object on the plane

qS “ rqSx , qSy , qSθsT . The pusher’s pose is: qP “ rqPx , qPy sT and control inputs

are velocities un “ ru
x
n, u

y
ns
T applied on the pusher for a control duration of ∆t.

To predict the next state of the system given an initial state and a control

input, I need a physics model F . I use a general physics engine [92] to model

the system dynamics. It solves Newton’s equations of motion for the complex

multi-contact dynamics problem:

xn`1 “ F pxn,un,∆tq. (6.1)

Normally, computing all states xn happens in a serial fashion, by evaluat-

ing (6.1) first for n “ 0, then for n “ 1, etc. Instead, I replace this inherently

serial procedure by a parallel-in-time integration process. Specifically, I adapt

the Parareal algorithm for the contact-based manipulation problem.

1I use Mujoco since it is recently the most widely used physics-engine for model-based
planning [79, 70, 25, 2].

80
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

x

n
0 1 2 3 4

(a) Initial coarse physics
predictions with C

x

n
0 1 2 3 4

(b) Fine physics predictions
with F in parallel

x

n
0 1 2 3 4

(c) Parareal update at time
n “ 1

x

n
0 1 2 3 4

(d) Parareal update at time
n “ 2

x

n
0 1 2 3 4

(e) Updates after 1 Parareal
iteration

x

n
0 1 2 3 4

(f) Fine physics predictions
for Parareal iteration 2

Figure 6.2: Combining coarse and fine physics with the
Parareal algorithm (a) Initial coarse physics predictions across
time with a cheap model (C), (b) Fine physics predictions in
parallel starting from coarse initial guesses with F . (c) A
Parareal update at time n “ 1 as a linear combination of

coarse and fine approximations of the state (d) A Parareal
update at time n “ 2 using the updated state at time n “ 1,

(e) Final trajectory updates after k “ 1 Parareal iteration, (f)
Next Parareal iteration begins with fine physics predictions in

parallel.

Parareal begins with a rough initial guess of the state at each time point

n of the trajectory as shown in Fig. 6.2a. To get an initial guess, I define a

second, coarse physics model:

xn`1 “ Cpxn,un,∆tq (6.2)

It needs to be computationally cheap relative to the fine model but does not

need to be very accurate.

The next step is to evaluate the fine physics model in parallel starting from

N initial guesses as shown in Fig. 6.2b. Thereafter, I do a coarse sweep across

the time points. I start from the initial state x0 and make a coarse prediction

for the next state x1 (dotted lines in Fig. 6.2c). Now, I have 3 approximations

of the state at time n “ 1. I linearly combine these approximations to get an

update for x1 (in green). Then starting from this new update for x1, I make a

coarse prediction for the next state x2 (dotted lines in Fig. 6.2d at n “ 2). I

combine the three approximations to get an update at n “ 2. I continue this

coarse sweep for all time points to get the updated trajectory in Fig. 6.2e. This

is the end of the first iteration. I then repeat the whole process iteratively using

new updates as initial guesses as shown in Fig. 6.2f.

In summary, Parareal starts by computing rough initial guesses xk“0n of

the system states using the coarse model. The newly introduced superscript k

6.1. Combining Physics Models for Planning 81

counts the number of Parareal iterations. In each Parareal iteration, the guess

is then refined via

xk`1n`1 “ Cpxk`1n ,un,∆tq ` F px
k
n,un,∆tq ´ Cpx

k
n,un,∆tq, (6.3)

for all timesteps n “ 0, . . . , N ´ 1. The key point in iteration (7.4) is that

evaluating the fine physics model can be done in parallel for all n “ 0, . . . , N ´ 1,

while only the fast coarse model has to be computed serially.

Parareal iterations converge exactly to the fine physics solution after k “ N

iterations. After one iteration, x1
1 is exactly the fine solution. I can see this

in Fig. 6.2c where the two coarse physics predictions in Eq. 7.4 are same and

cancel out. After two iterations, x1
1 and x2

2 are exactly the fine solutions and

so on.

The idea is to stop Parareal at much earlier iterations such that it requires

significantly less wall-clock time than running F serially step-by-step. To do

this, C must be computationally much cheaper than F .

Parareal can be thought of as producing a spectrum of solutions increasing

in accuracy and computational cost, from the cheap coarse physics model to

the expensive fine physics model — i.e. the N different approximations after

each iteration. An important question is which of these models to choose; i.e.

how many iterations of Parareal to use? To decide on the required prediction

accuracy, I rely on recent work which analyzes the stochasticity in real-world

pushing [97, 13]. I propose to stop Parareal when the approximation error with

respect to the fine model is below the real-world pushing stochasticity.

Note that, for the sake of simplicity, I assume here that the number of

controls N and the number of processors used to parallelize in time are identical.

6.1.1 Expected speedup performance of Parareal

I can describe the expected performance of Parareal by a simple theoretical

model [72]. Let cc and cf be the time needed to compute the coarse physics

model C and the fine physics model F respectively, for a duration of ∆t. The

speedup of Parareal sp over the serial fine model is approximately:

sp “
N ¨ cf

p1`Kq ¨N ¨ cc `K ¨ cf
“

1

p1`Kq cc
cf
` K

N

(6.4)

This illustrates the importance of finding a cheap coarse model that minimizes

the ratio cc{cf . In that case, speedup will be determined mainly by the number

of iterations K. For example, for a coarse model with negligible cost, after

82
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

θ

dfree
dcontact

qPn`1

qPn

qSn
qSn`1

rc

Figure 6.3: Coarse physics model

K “ 1 Parareal iteration with N “ 4 sub-intervals, then the theoretical speedup

would be sp „ N{K “ 4. That is, I can expect to make physics predictions

about four times faster than using only the fine physics model in serial.

6.1.2 Coarse physics model

As a case study, I consider the challenging problem of pushing an object. I seek

a general coarse physics model with the following requirements:

• It must be significantly cheaper to compute with respect to the fine model.

• It must provide a physics prediction for all possible pusher motions but

can be inaccurate.

• It must provide a prediction for sliders of any shape and inertial parame-

ters.

Instead of solving Newton’s equation of motion for the multi-contact dy-

namics problem, I propose a simple kinematic pushing model Cpxn,un,∆tq. It

moves the slider with the same linear velocity as the pusher, as long as there

is contact between the two. I also apply a rotation to the slider, based on the

position and direction of the contact, with respect to the center of the object.

Formally, given the linear velocity of the pusher as the controls un “ ru
x
n, u

y
ns
T ,

the next state of the system is given by;

qSn`1 “ q
S
n ` ru

x
n, u

y
n, ωs

T
¨ pc ¨∆t (6.5)

6.1. Combining Physics Models for Planning 83

pc “
dcontact

dcontact ` dfree
, ω “ Kω ¨

||un|| ¨ sin θ

||rc||
(6.6)

9qSn`1 “ tru
x
n, u

y
n, ωs

T if pc ą 0, 9qSn otherwiseu (6.7)

qPn`1 “ q
P
n ` un ¨∆t, 9qPn`1 “ un. (6.8)

In Eq. 6.5 the slider’s pose is updated as described above. Here, pc is the ratio of

the distance dcontact travelled by the pusher when in contact with the slider and

the total pushing distance as shown in Fig. 6.3. rc is a vector from the contact

point to the object’s center (green dot) at the current state qSn, θ is the angle

between the pushing direction and the vector rc. Moreover, ω is the coarse

angular velocity induced by the pusher on the slider, where Kω is a positive

constant parameter.

Also note that, even though Fig. 6.3 shows the pusher and slider in contact

at the next time step, this does not have to be so; i.e. the coarse model can

leave the two in separation.

In Eq. 6.7 the velocity of the slider is updated to be the same as the current

pusher velocity if there is any contact. In Eq. 6.8 the pusher position and

velocity are updated.

6.1.3 Infeasible states

The new iterate xk`1n`1 given by the Parareal iteration (Eq. 7.4) can be an infea-

sible state where the pusher and slider penetrate each other. Contact dynamics

is not well-defined for such states. It can lead to infinitely large object ac-

celerations and an unstable fine physics model. I have not encountered such

a problem of infeasible (or unallowed) states in other dynamics domains that

Parareal has been applied to.

To handle these cases, I project the infeasible state to the nearest feasible

state. I write the following optimization problem:

qS˚n`1 “ arg min
qSn`1

||qSn`1 ´ q
Sinfeasible
n`1 ||, s.t. dp ď 0 (6.9)

where q
Sinfeasible
n`1 is the infeasible slider’s pose, and dp is the penetration

depth. The goal is to find the nearest slider pose qS˚n`1 that satisfies the no-

penetration constraint dp ď 0.

84
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

I can use an off-the-shelf optimizer to find a solution rather efficiently. How-

ever, for simple systems I can analytically find the penetration depth and move

the slider along the contact normal to resolve penetration.

In Sec. 6.3.2, I evaluate the open-loop pushing performance of our hybrid

physics models. Our goal is to use these hybrid models for planning and control.

6.2 Push Planning and Control

I use the predictive models described above in a planning and control framework

for pushing an object on a table to a goal location, avoiding a static obstacle.

This task retains many challenges of general robotic control through contact

such as impulsive contact forces, under-actuation and hybrid dynamics (sepa-

ration, sticking, sliding, e.t.c.). I present an example scene and execution in

Fig. 6.4.

To solve this problem, I take an optimization approach. Given the obstacle

and goal position and geometry, the current state of the pusher and slider x0,

and an initial candidate sequence of controls tu0,u1, . . . ,uN´1u, the optimiza-

tion procedure outputs an optimal sequence tu˚0 ,u
˚
1 , . . . ,u

˚
N´1u according to

some defined cost. I explain this optimization process, and the cost formulation

that is optimized, below (Sec. 6.2.1).

The predictive models that I have developed earlier in the paper are used

within this optimizer to roll-out a sequence of controls, to predict the states

tx1, . . . ,xNu, which are then used to compute the cost associated with those

controls.

Once the optimization produces a sequence of controls, I use it in a model-

predictive-control (MPC) fashion, by executing only the first control in the

sequence. Afterwards, I update x0 with the observed state of the system, and

repeat the optimization to generate a new control sequence. This is repeated

until task completion. I consider the task completed if the slider reaches the

goal region (success), if it hits the obstacle (failure), if it falls off the edge of the

table (failure) or if a maximum number of controls are executed before failure

occurs.

When I repeat the optimization within MPC, I warm-start it by using the

previously optimized control sequence as the initial candidate sequence. For the

very first optimization, the initial candidate sequence is generated as a straight

line push towards the goal (which collides with the obstacle in all our scenes).

Such an optimization-based MPC approach to pushing manipulation is fre-

quently used [11, 41, 54, 3]. Here, our focus is to evaluate the performance of

6.2. Push Planning and Control 85

Figure 6.4: Push planning with a hybrid physics model to
avoid an obstacle (in black) while pushing the cylindrical slider

to a goal location (in red).

different predictive physics models described before in the paper within such a

framework.

6.2.1 Trajectory Optimization

In this section I use the shorthand u0:N´1 to refer to the control sequence

tu0,u1, . . . ,uN´1u. Similarly for states I use x0:N .

Our goal is to find an optimal control sequence u˚0:N´1 for a planning horizon

N , given an initial state x0, and an initial candidate control sequence u0:N´1.

I define the cost function J , for a given control sequence and the correspond-

ing state sequence:

Jpx0:N ,u0:N´1q “

N´1
ÿ

n“1

Jnpxn,un´1,unq ` w ¨ JNpxNqq, (6.10)

where Jn is the running cost at each step, w is a positive weighting constant,

JN is the terminal (final) cost function.

The output of optimization is the minimizing control sequence:

u˚0:N´1 “ arg min
u0:N´1

Jpx0:N ,u0:N´1q, s.t. xn`1 “ fpxn,un,∆tq, x0 fixed.

(6.11)

Here, f is the system dynamics constraint that must be satisfied at all times.

I define the running cost for our pushing around an obstacle problem as:

Jnpxn,un´1,unq “ ws ¨ p1{||rq
sx , qsy sT ´ pobs||

2
q ` wp ¨ p1{||q

p
´ pobs||

2
q

`wu ¨ ||ut ´ ut´1||
2
`WE

where ws, wp, wu are positive constant weights. pobs is the position vector of

the static obstacle to be avoided, and rqsx , qsy s are the x,y positions of the

86
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

slider respectively. The above formula associates high cost for the slider or the

pusher to approach the obstacle. It has a smoothness cost, to prevent high

accelerations. Additionally, it has a constant edge cost WE for the slider falling

off the table.

I define the final cost JN as: JNpxnq “ ||rq
sx , qsy sT ´ pgoal||

2, where pgoal is

the position vector of the target/goal location.

There exists different optimization methods to solve this problem [61, 49, 94,

41, 3]. The main difference lies in the way the cost gradient is computed for a

given sequence of controls. For ease of implementation, here I use derivative-free

stochastic sampling-based methods [49, 94, 3]. Particularly, I use the algorithm

Chapter 5. In each optimization iteration, to find the cost gradient at the

current control sequence, these stochastic sampling methods generate multiple

noisified versions of the current control sequence, they roll-out these noisy con-

trols to find the cost associated with each one, and use these costs to compute a

numerical gradient, which is then used to update the control sequence to min-

imize the cost. The roll-out of these noisy control sequences to compute the

resulting states and the cost is where I use the physics models.

6.2.2 Parareal and MPC

The Parareal framework for generating hybrid physics models yields itself well

to model-predictive control. Recall from Fig. 6.2e that after 1 Parareal iteration,

physics prediction for the first state x1 is exactly the same as the fine model.

This means planning is accurate at least for the first action for all our hybrid

models. This aligns well with our MPC framework since I execute only the first

action and then re-plan.

6.3 Experiments and Results

In our experiments, I address three key issues. First, I investigate how fast

Parareal converges to the fine physics solution for pushing tasks. Second, I

investigate the open-loop pushing performance of different physics models and

compare it with real-world data. Finally, I investigate how the different physics

models generated by Parareal (at different iterations) can be used within a

planning and control framework to complete non-prehensile manipulation tasks.

The goal of Parareal for push planning is to simulate physics faster than

any given fine physics model. Therefore, I must stop Parareal at much earlier

iterations to achieve meaningful speedup. However, I must also understand how

different Parareal’s predictions are with respect to the fine physics predictions

6.3. Experiments and Results 87

at different iterations. I investigate Parareal’s convergence for specific pushing

examples in Sec. 6.3.1.1. In addition, in Sec. 6.3.1.2, I measure the empirical

speedup I get from Parareal, and compare it with the theoretical speedup that

was presented in Sec. 6.1.1.

During push planning and control, I must decide on a Parareal iteration

that gives us an acceptable approximation to the fine solution. To this end, in

Sec 6.3.2, I conduct open-loop pushing experiments. I statistically investigate

Parareal’s approximation error with respect to the fine solution, for a particular

number of Parareal iterations. To do that, I start from a large number of random

initial states and apply different control sequences open-loop. I then analyze

how these statistical approximation errors compare with the standard deviation

of the real-world uncertainty during similar pushing tasks [97].

In Sec 6.3.3 I investigate the performance of different physics models pro-

duced by Parareal, when used within the MPC framework described in Sec. 6.2

to push an object to a goal region, avoiding an obstacle. I compare the suc-

cess rates and total task completion times for the different physics models (the

coarse model, Parareal at different iterations, and the fine model). I perform

these experiments on a real robot setup Sec 6.3.3.

6.3.1 Parareal convergence for pushing

6.3.1.1 Parareal convergence for specific pushing examples:

I consider simulating the results of applying a control sequence starting from

an initial state for a box and a cylinder as shown in Fig. 6.5. I consider four

cases: pushing a cylinder from the center (Fig. 6.5a), pushing a cylinder from

the side, pushing a box from the center, and finally pushing a box from the side

(Fig. 6.5b). The control sequence used here is u0:3 “ tr25, 0s, r25, 0s, r25, 0s, r25, 0summ{s

where each control input is applied for a control duration ∆t “ 1s such that

the total pushing distance is 100mm.

I use the Mujoco [92] physics engine as the fine physics model. To make the

fine model as fast as possible, I run it at the largest possible simulation time-

step (1ms) for our model. Beyond this time-step, the physics engine becomes

unstable and breaks down. In addition, all experiments are run on a desktop

computer (Intel(R) Xeon(R) CPU E3-1225 v3) with N “ 4 cores. At each

iteration of Parareal, I calculate the root mean square (RMS) error between

Parareal’s predictions and the physics engine’s predictions of the corresponding

sequence of states. These RMS errors can be seen in Fig. 6.5 for two different

cases. The results are similar for others. Note that the errors are given in log

88
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

(a) Center cylinder push (b) Side box push

Figure 6.5: Root mean square error (in log scale) along the
full trajectory for pushing a cylinder (a) and box (b) from the
center and side respectively, for increasing Parareal iterations.

The motions are illustrated lower-right in each plot.

scale for the full state of the slider (pose and velocities). In general, I see a

quick decrease in the error along the full trajectory starting from the large error

of the coarse model at iteration 0. In addition, at the final iteration, I verify

that the Parareal solution is exactly the same as using the fine model since the

errors go to 0.

6.3.1.2 Parareal speedup for specific pushing examples:

Using each hybrid physics model, I repeatedly predict the sequence of states

(which is deterministic for a given physics model) and record the total time it

takes (which varies slightly depending on computer load). In Fig. 6.6, I see

the average prediction time over 100 runs for each physics model for a box side

push. These actual prediction times are close to the expected prediction time

(Eq. 6.4) for the different physics models. For example, at 1 Parareal iteration

I spent 28% of the time spent by the full physics engine, i.e. about four times

faster. The results for the cylinder side push, cylinder center push and box

center push are similar to those in Fig. 6.6.

6.3.2 Open-loop pushing experiments

I compare the predictions of different physics models (Parareal iterations) for

open-loop pushing. I start from 100 randomly sampled initial states2. At each

initial state, I used three different control sequences, giving 300 different slider

trajectories. The three control sequences ut1,2,3u that I used at each initial state

2I change the pusher’s position along the direction perpendicular to the direction of motion.
I sample uniformly within the edges of the slider (rectangle).

6.3. Experiments and Results 89

Figure 6.6: Physics simulation time averaged over 100 runs for
a box side push within 95 % confidence interval of the mean.

were fixed, and are given by:

ui0:3 “ vc ¨ tv, v, v, vu, v “ rcospαiq, sinpαiqs, αi “ t0
˝

, 15
˝

,´15
˝

u, i P 1, 2, 3

(6.12)

vc is a constant pushing speed:vc “ 25mm{s.

I applied each control input for a duration of ∆t “ 1.5s such that the total

distance travelled by the pusher is 150mm in all cases. I calculated for each

physics model (Parareal iteration), the RMS difference of the final state (in

comparison with the final state prediction of the fine physics model) for the 300

trajectories.

Our results are shown in Table. 6.1. I see that on the average the coarse

physics model is quite inaccurate but with increasing Parareal iterations, the

mean difference from the fine physics model goes to zero. However, to decide

on how much error with respect to the physics engine is appropriate for pushing

tasks, I look at the real-world’s uncertainty for pushing dynamics.

Yu et al. [97] provide real-world pushing data for a similar pusher-slider

system. Starting at the same initial state, they push a box repeatedly in the

real-world with a cylindrical pusher and record the resulting final positions.

The pushing distance is 150mm with a quasi-static pushing speed of 20mm{s.

As shown in Table 6.1, they record a translation standard deviation of 8.10mm

and a rotation standard deviation of 4.20
˝

on a plywood surface. Notice that for

Parareal after 2 iterations, I see a mean translation difference of 6.39mm and

a mean rotation difference of 3.82
˝

when compared to the fine model (physics

engine) predictions.

I conclude that, for real-world purposes, it should not be necessary to run

Parareal for more than 2 iterations, as approximating the physics engine more

90
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

Table 6.1: Open-loop pushing

Mean trans. diff. (mm) Mean rot. diff. (deg)

Coarse Physics 62.67 17.63
Parareal-1 iter. 28.43 6.30
Parareal-2 iter. 6.39 3.82
Parareal-3 iter. 2.47 0.79
Parareal-4 iter. 0.00 0.00

Trans. std. (mm) Rot. std. (deg)

Push dataset [97] 8.10 4.20

accurately than the inherent uncertainty in real-world pushing should not con-

tribute to real-world performance. Note that, 2 Parareal iterations here corre-

sponds to a) exactly the fine physics predictions for your first two actions and

b) a model that is two times faster than the physics engine.

6.3.3 Push planning and control with hybrid

physics models

I measure the performance of the different physics models when used within the

optimization and MPC framework, described in Sec. 6.2, to push an object to

a goal region, while avoiding an obstacle.

Our real robot setup is shown in Fig. 6.8 where I have a Robotiq two-finger

gripper holding the cylindrical pusher. I place markers on the pusher and slider

to sense their full pose in the environment with the OptiTrack motion capture

system. I consider 5 randomly generated scenes (one shown in Fig. 6.8) where

the pusher must avoid the obstacle at the center of the table before bringing the

slider to the goal location. For each of the 5 scenes, I used the coarse physics

model, Parareal iterations (1,2, and 3), and the full physics engine for push

planning and control. That is a total of 25 planning and control runs with

the real robot. I plan using our various physics models and execute actions in

the real world in an MPC fashion. For the stochastic trajectory optimizer, our

control sequences contain 4 control inputs each applied for a control duration

of ∆t “ 1s. In addition, I use 20 noisy control sequence samples (as explained

in Sec. 6.2.1) per optimization iteration for the trajectory optimizer with an

exploration variance of 10´4. Normally, each noisy control sequence of the

optimizer is rolled out independently. However, since I use a standard quad-

core desktop PC, the parallelization is across time only.

6.4. Discussion 91

Figure 6.7: Total task completion time (within 95 percent con-
fidence interval of the mean) for push planning with obstacle
avoidance using different physics models for 100 randomly sam-

pled initial states.

As the pusher attempts to bring the slider to a desired goal location, there

are three possible failure modes. First, I declare failure when the slider collides

with the static obstacle. Second, I declare failure when the pusher is unable

to bring the slider to the goal location after executing 20 actions (5 times the

number of actions in a given control sequence). Third, I declare failure when

the slider falls off the edge of the table.

For each hybrid physics model, I achieved 100% success rate on the real

robot. This is same as using a full physics engine, only significantly faster

Fig. 6.7. For instance, using 1 Parareal iteration, I can complete the push

planning task about four times faster than the physics engine. Note that the

planning times here can be reduced by parallelizing the stochastic trajectory

optimizer on a PC with more cores. Currently, the 4 cores of our PC is used to

parallelize across time. Furthermore, in all the 5 scenes considered, the robot

was unable to complete the push planning task by using only the coarse model.

I present snapshots from the experiments in Fig. 6.8.

6.4 Discussion

This chapter introduces a method to combine coarse and fine physics models

for manipulation planning and control, using parallel-in-time integration. It

introduces a coarse physics model and combines it with a physics engine as fine

model to speed-up physics predictions. I showed faster physics-based robotic

manipulation planning and control with hybrid models where task success rates

weren’t sacrificed. I considered a simplified manipulation task of single object

pushing, which however still retains many of the challenges of contact-based

manipulation. Multi-object contact scenarios are addressed in the next chapter.

92
Chapter 6. Combining Coarse and Fine Physics for Manipulation

using Parallel-in-Time Integration

S

Figure 6.8: Pushing with a hybrid physics model. I complete
the push planning task about four times faster than a physics

engine.

Another important point is the convergence of Parareal. Faster convergence can

result in faster physics predictions. Parareal’s convergence can be improved with

a better coarse physics model as we demonstrate in the next Chapter.

93

Chapter 7

A Learned Coarse Model for

Robotic Manipulation

using Parareal

In Chapter 6, I demonstrated that physics predictions for a robot pushing a

single object can be made faster by combining a fine physics-based model with a

simple, coarse physics-based model using the parallel-in-time method Parareal.

Using 4 cores, Parareal was about a factor two faster than the fine physics

engine alone while providing comparable accuracy and the same success rate

for a push planning problem with obstacle avoidance.

In this chapter, I extend these results by investigating a deep neural net-

work as coarse model and show that it leads to faster Parareal convergence. I

also demonstrate that Parareal can be used to speed up physics prediction in

scenarios where the robot pushes multiple objects, such as in Fig. 7.1.

7.1 Robotic Manipulation with Parareal

7.1.1 Robotic manipulation

Consider the scene shown in Figure 7.1. The robot’s manipulation task is to

control the motion of the green goal object through pushing contact from the

cylindrical pusher in the robot’s gripper. The robot needs to push the goal

object into a goal region marked with an X. It is allowed to make contact with

other sliders but not to push them off the table or into the goal region.

The system’s state at time point n consists of the pose q and velocities, 9q

of the pusher P and Ns sliders, Si . . . SNs :

xn “ rq
P
n , q

Si

n , . . . , q
SNs
n , 9qPn , 9q

Si

n , . . . , 9q
SNs

n s.

94
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

Figure 7.1: Example of a robotic manipulation planning and
control task using physics predictions. The robot controls the
motion of the green object solely through contact. The goal is
to push the green object into the target region marked X. The
robot must complete the task without pushing other objects off

the table or into the goal region.

The pose of slider i consists of its position and orientation on the plane:

qS
i
“ rqS

i
x , qS

i
y , qS

i
θsT . The pusher’s pose is qP “ rqPx , qPy sT and control inputs

are velocities un “ ru
x
n, u

y
ns
T applied on the pusher at time n for a control du-

ration of ∆t.

A robotics planning and control algorithm takes in an initial state of the

system x0, and outputs an optimal sequence of controls tu0,u1, . . . ,uN´1u.

However, to generate this optimal sequence, the planner needs to simulate

many different control sequences and predict many resulting sequences of states

tx1,x2, . . . ,xNu.

The planner makes these simulations through a physics model F of the real-

world that predicts the next state xn`1 given the current state xn and a control

input un

xn`1 “ F pxn,un,∆tq. (7.1)

I use the general physics engine Mujoco [92] to model F . It solves differential

algebraic equations of motion for the complex multi-contact dynamics problem

Mpqq dv “ pbpq,vq ` τq dt` JEpqq
TfEpq,v, τq

`JCpqq
TfCpq,v, τq

(7.2)

where q, v, and M are position vector, velocity vector, and inertia matrix

respectively in generalized coordinates. b contains bias forces (Coriolis, gravity,

centrifugal, springs), fE and fC are impulses caused by equality constraints and

contacts respectively and JE and JC are the corresponding Jacobians and τ are

external/applied forces. The equations are then solved numerically. Mujoco

obtains a discrete-time system with two options for integrators — semi-implicit

Euler or 4th order explicit Runge-Kutta.

7.2. Coarse models 95

7.1.2 Parareal

Normally, computing all states xn happens in a serial fashion, by evaluat-

ing (7.1) first for n “ 0, then for n “ 1, etc. Parareal replaces this inher-

ently serial procedure by a parallel-in-time integration process where some of

the work can be done in parallel.

It requires a coarse physics model:

xn`1 “ Cpxn,un,∆tq. (7.3)

and it predicts states using the following equation:

xk`1n`1 “ Cpxk`1n ,un,∆tq ` F px
k
n,un,∆tq ´ Cpx

k
n,un,∆tq, (7.4)

for all timesteps n “ 0, . . . , N ´ 1. The newly introduced superscript k counts

the number of Parareal iterations. The key point in Eq. (7.4) is that evaluating

the fine physics model can be done in parallel for all n “ 0, . . . , N ´ 1, while

only the fast coarse model has to be computed serially. Please see Chapter 6

for the complete detail on Parareal.

7.2 Coarse models

In this section, I introduce a learned coarse model and briefly summarize the

analytical coarse model from Chapter 6.

7.2.1 Learned coarse model

As an alternative to the coarse physics model, I train a deep neural network as

a coarse model for Parareal for robotic pushing.

7.2.1.1 Network architecture

The input to our neural network model is a state xn and a single action un.

The output is the change in state ∆x which is added to the input state to

obtain the next state xn`1. The dimensions of the input is 2(3Ns+2) +2, and

the dimension of the output is 2(3Ns+2). I use a feed-forward deep neural

network (DNN) with 5 fully connected layers. The first 4 contain 512, 256, 128

and 64 neurons, respectively, with ReLU activation function. The output layer

contains 24 neurons with linear activation functions.

96
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

7.2.1.2 Dataset

I collect training data using the physics engine Mujoco [92]. Each training

sample is a tuple (xn,un,xn`1). It contains a randomly1 sampled initial state,

action, and next state. I collect over 2 million such samples from the physics

simulator.

During robotic pushing, a physics model may need to predict the resulting

state even for cases when there is no contact between pusher and slider. I

include both contact and no-contact cases in the training data.

I train a single neural network to handle one pusher with at least one and

at most Ns objects being pushed (also called sliders). While collecting data

for a particular number of sliders, I placed the unused sliders in distinct fixed

positions outside the pushing workspace. These exact positions must be passed

to the neural network at test time if fewer than Ns sliders are active. For

example, if Ns “ 4, to make a prediction for a 3 slider scene, I place the last

slider at the same fixed position used during training.

7.2.1.3 Loss function

The standard loss function for training is the mean squared error between the

network’s prediction and the training data. On its own, this leads to infeasible

state predictions where there is pusher-slider or slider-slider penetration. I

resolve this by adding a no penetration loss term such that the final loss function

reads:

fl “ WF ¨

Ns
ÿ

i“1

Ns
ÿ

j“i`1

minp||pNNi ´ pNNj || ´ pri ` rjq, 0q
2

`WF ¨

Ns
ÿ

i“1

minp||pP ´ p
NN
i || ´ prp ` riq, 0q

2

`||xf ´ xNN ||2.

(7.5)

Here, WF is a constant weight, xf is the next state predicted by the fine model,

xNN is the next state predicted by the DNN model. pNNi and pNNj are the new

positions of sliders i and j predicted by the DNN model, respectively, and pP is

the position of the pusher. rp is the radius of the pusher, and ri, rj represent the

radius of sliders i and j, respectively. The first line of Equation 7.5 penalizes

slider-slider penetration, the second line penalizes pusher-slider penetration,

and the third line is the standard mean squared error.

1I use rejection sampling to ensure that sampled states do not have objects in penetration,
i.e. fulfill the algebraic constraints of Eq. 7.2.

7.3. Planning and control with hybrid models 97

Finally, the network makes a single step prediction. However, robotic manip-

ulation typically needs a multi-step prediction as a result of a control sequence.

To do this, I start from the initial state and apply the first action in the se-

quence to get a resulting next state. Then, I use this next state as a new input

to the network together with the second action in the sequence and so on. This

way, I repeatedly query the network with its previous predictions as the current

state input.

7.2.2 Analytical coarse model

In Chapter 6, I proposed a simple, kinematic coarse physics model for pushing

a single object. The model moves the slider with the same linear velocity as

the pusher as long as there is contact between the two. Further detail can be

found in the Chapter 6.

7.3 Planning and control with hybrid models

I use the predictive model based on Parareal described above in a planning

and control framework for pushing an object on a table to a target location. I

take an optimization approach to solve this problem. Given the table geometry,

goal position, the current state of the pusher and all sliders x0, and an initial

candidate sequence of controls tu0,u1, . . . ,uN´1u, the optimization procedure

outputs an optimal sequence tu˚0 ,u
˚
1 , . . . ,u

˚
N´1u according to some defined cost.

The predictive model is used within this optimizer to roll-out a sequence of

controls to predict the states tx1, . . . ,xNu. These are then used to compute

the cost associated with those controls. The details of the exact trajectory

optimizer are in Chapter 5. The cost function I use penalizes moving obstacle

sliders and dropping objects from the table but encourages getting the goal

object into the goal location.

I use the trajectory optimizer in a model-predictive control (MPC) frame-

work. Once I get an output control sequence from the optimizer, I do not

execute the whole sequence on the real-robot serially one after the other. In-

stead, I execute only the first action, update x0 with the observed state of

the system, and repeat the optimization to generate a new control sequence. I

repeat this process until the task is complete.

Such an optimization-based MPC approach to pushing manipulation is fre-

quently used to handle uncertainty and improve success in the real-world [3, 11,

98
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

41, 54]. Here, our focus is to evaluate the performance of Parareal with learned

coarse model for planning and control.

7.4 Experiments and Results

Analytical coarse model
single-step prediction

Learned coarse model
single-step prediction

Coarse prediction
Fine prediction
Pusher

Figure 7.2: Root mean square error (in log scale) of Parareal
along the full trajectory for single object pushing using both a
learned and an analytical coarse model (top). These results are
for a control sequence with 4 actions where the average object
displacement is 0.043 ˘ 0.033 m. The error at iteration four is
0. The learned coarse model gives a better Parareal convergence
rate. Sample motions for the learned coarse model (bottom,
right) and the analytical coarse model (bottom, right). The
learned coarse model’s prediction is closer to the fine model pre-

diction shown in green.

In our experiments, I investigate three key issues. First, I investigate how

fast Parareal converges to the fine solution for robotic pushing tasks with dif-

ferent coarse models. Second, I investigate the physics prediction accuracy of

7.4. Experiments and Results 99

Parareal with respect to real-world pushing data. Finally, I demonstrate that

the Parareal physics model can be used to complete real-robot manipulation

tasks.

In Subsection 7.4.1 I provide preliminary information used throughout the

experiments. Subsection 7.4.2 investigates convergence of Parareal for two dif-

ferent coarse models – the analytical coarse model for single object pushing

and a learned coarse model for both single and multiple object pushing. In

Subsection 7.4.3 I present results from real-robot experiments. First, I compare

the accuracy of Parareal predictions against real-world pushing physics. Then,

I show several real-robot plan executions using Parareal with a learned coarse

physics model as predictive model.

7.4.1 Preliminaries

To generate physics-based robotic manipulation plans as fast as possible, I run

Mujoco at the largest possible time-step (1ms) in all our experiments. Beyond

this time-step the simulator becomes unstable, leading to unrealistically large

object accelerations and breakdown of the simulator. I use the 4th order Runge-

Kutta integrator for Mujoco. All computations run on a standard Laptop PC

with an Intel(R) Core (TM) i7-4712HQ CPU @2.3GHz with N “ 4 cores. Our

control sequences consist of four or eight actions, each applied for a control

duration ∆t “ 1s.

The software version used to create training data and run experiments was

Mujoco 2.00 with DeepMind DM Control bindings to Python 3.5 [91]. To

develop, train and test the coarse model the Keras API was used, which is built

in to TensorFlow 2.0. I used a learning rate of 5e-4 with 100 epochs and a batch

size of 1024 to train the neural network model.

Our real robot setup is shown in Figure 7.1. I have a Robotiq two-finger

gripper holding the cylindrical pusher of radius 1.45 cm. I place markers on the

pusher and sliders to sense their full pose in the environment with an OptiTrack

motion capture system. Sec. 7.1.1 states were defined to include orientation of

objects but, to keep experiments simple, I use cylindrical objects such that only

positions play a major role. The slider radius used in all experiments is 5.12 cm.

7.4.2 Parareal convergence

Parareal produces the exact fine physics solution when the number of iterations

is equal to the number of timeslices regardless of the coarse physics model [33,

100
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

62]. The convergence rate for scalar ordinary differential equations was theo-

retically shown to be superlinear on bounded intervals [33]. However, for the

differential algebraic equations in Eq. 7.2 that describe the multi-contact dy-

namics problem, no such theoretical result exists and I study the convergence

rate numerically.

I investigate through experiments how fast Parareal converges using two

coarse models - the analytic model for single object pushing and the learned

model for both single object and multi-object pushing. At each iteration, I

compute a root mean square (RMS) error between Parareal’s predictions and the

fine model’s predictions of the corresponding sequence of states. I compute the

RMS error over only positions since I used cylindrical objects in all experiments.

7.4.2.1 Single object pushing

I randomly sample an initial state for the pusher and slider. I also randomly

sample a control sequence where the pusher contacts the slider at least once

during execution. Thereafter, I execute the control sequence starting from the

initial state using Parareal. For the sample state and control sequence, I perform

two runs, one using the learned model and the other using the analytical model

as coarse propagator in Parareal.

I collect 100 state and control sequence samples. The analytical model

makes a single step prediction 227.1 times faster than the fine model on average,

while the learned model is 228.4 times faster on average. For example, to

predict a 4s long trajectory, the fine model requires 1.22s while one iteration

of Parareal requires only 0.31s (for both models) on average. I see that both

coarse models are so fast that our actual speedup in using Parareal is almost

completely governed by the number of iterations.

Furthermore, for these samples, I also compute the RMS error between

Parareal and the fine model run in serial. The results are shown in Fig. 7.2 (left)

for a control sequence with 4 actions where the average object displacement is

0.043˘ 0.033 m.

I see that the learned model leads to faster convergence of Parareal than

the analytical model for single object pushing. One reason for this could be

that, in general, more accurate coarse models lead to better convergence. The

single-step prediction of the learned model, shown in read in Fig. 7.2 (right),

is much closer to the fine prediction shown in green than the analytical model

shown in Fig. 7.2 (center).

7.4. Experiments and Results 101

4-slider
Parareal prediction

2-slider
Parareal prediction

Figure 7.3: Root mean square error (in log scale) along the
full trajectory per slider in a 4-slider pushing experiment (top)
using only the learned model. Two sample motions are illus-
trated (bottom, left and right) for multi-object physics predic-
tion. These results are for a control sequence with 4 actions
where the average object displacement is 0.015˘ 0.029 m. The
error at iteration four is 0 except for accumulation of round-off
errors. I find that the learned model enables Parareal conver-

gence for the multi-object case.

7.4.2.2 Multi-object pushing

I randomly sample a valid initial state for the pusher and multiple sliders.

Then, similar to the single object pushing case, I also sample a random control

sequence that makes contact with at least one slider. I then predict the corre-

sponding sequence of states using Parareal. However, for multi-object pushing

I use only the learned model as the coarse physics model within Parareal. The

analytical model for single-object pushing would need significant modifications

to work for the multi-object case. Again, I collect 100 state and control se-

quence samples and run Parareal for each of them. Our results are shown in

102
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

Fig. 7.3.

Fig. 7.3 (left) shows the RMS error per slider for each Parareal iteration.

While there are differences in the accuracy of the predictions for different slides,

all errors decrease and Parareal converges at a reasonable pace.

These results are for a control sequence with 4 actions and where average

object displacement is 0.015˘ 0.029 m. Some sample predictions are shown for

a 4 slider environment in Fig. 7.3 (center), and for a 2-slider environment in

Fig. 7.3 (right). In both scenes, the pusher moves forward making contact with

multiple sliders and Parareal is able to predict how the state evolves.

I also investigate Parareal convergence for a longer control sequence of 8

actions. I do this for single object and multi-object pushing where all other

conditions are the same as for the 4-action control sequence. Results can be

found in Fig. 7.4 (left) for multi-object pushing and Fig. 7.4 (right) for single

object pushing. The average object displacement for multi-object pushing is

0.034˘ 0.082 m and for single object pushing it is 0.046˘ 0.040 m. In general

I find a similar convergence trend for both learned and analytical models for

single and multi-object pushing.

Note that the shapes and sizes of the objects used are known and in fixed

order. Therefore the learned model naturally does not generalize to new ob-

jects. However, it can still be used to make rather coarse predictions for similar

objects.

7.4.3 Real robot experiments

In this section I investigate the physics prediction accuracy of Parareal with

respect to real-world pushing physics. I do this for the multi-object case. In

addition, I show real-world demonstrations for robotic manipulation where I

use Parareal for physics prediction.

7.4.3.1 Parareal prediction vs. real-world physics

Our coarse model neural network was trained using simulated data. Here, I

demonstrate that Parareal using the trained coarse model is also able to predict

real-world states. I randomly set an initial state in a real-world example by

selecting positions for the pusher and sliders. This state is recorded using our

motion capture system. Next, I sample a control sequence and let the real

robot execute it. Again, I record the corresponding sequence of states using

motion capture. Then, for the recorded initial state and control sequence pair,

7.4. Experiments and Results 103

Figure 7.4: Root mean square error (in log scale) along the full
trajectory per object for single object pushing (bottom) and mul-
tiple object pushing (top) using only the learned model. Here
I consider a control sequence of 8 actions. The average object
displacement for multi-object pushing is 0.034˘0.082 m and for
single object pushing it is 0.046 ˘ 0.040 m. The error at itera-
tion eight is 0. I find that the convergence of Parareal appears

similar even with a longer control sequence.

I use Parareal to produce the corresponding sequence of states and compare the

result against the states measured for the real robot with optical tracking.

Figure 7.5 shows the RMS error between Parareal’s prediction at different

iteration numbers and the real-world pushing data. Vertical red bars indicate

95% confidence intervals.

Parareal’s real-world error decreases with increasing iteration numbers and

it is eventually twice as accurate as the coarse model. These results indicate

that Parareal’s predictions with a learned coarse model are indeed close to the

real-world physics predictions. Figure 7.7 shows snapshots of the experiments.

104
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

Figure 7.5: Root mean square error along the full trajectory
for all 4 sliders measured with respect to the real-world pushing
data. The vertical bars indicate a 95% confidence interval of
the mean. The learned coarse physics model at iteration 0 has
the largest error and the fine model provides the best prediction

w.r.t the real-world pushing physics.

7.4.3.2 Planning and control

Figure 7.6: The resulting sequence of states for applying a
random control sequence starting from some random initial state
in the real-world. Our goal is to assess the accuracy of the
Parareal physics models with respect to real-world physics. I
collect 50 such samples. These are some snapshots for 3 of such
scenes - one per row with initial state on the left and final state

on the right.

I use the Parareal predictive model for robotic manipulation to generate

plans faster than using the fine model directly. In this section, I complete 3 real

7.5. Summary 105

robot executions with Parareal at 1 iteration. I use the learned model as the

coarse model in all cases.

As can be seen in Figure 7.7, the robot’s task is to push the green slider into

the target region marked with X. The robot is allowed to make contact with

other sliders. An execution fails when a non-goal object is pushed into the goal

region or over the edge of the table.

The robot was successful for all 3 sample scenes. Some sample plans for

two scenes are shown in Figure 7.7. The third scene is shown in Figure 7.1. I

find that using Parareal with a learned coarse model for physics predictions, a

robot can successfully complete complex real-world pushing manipulation tasks

involving multiple objects. At 1 Parareal iteration, I complete the tasks about

4 times faster than directly using the fine model.

In general, I trade-off physics prediction accuracy with respect to time. An

important question then is how many iterations of Parareal to use for physics-

based robotic manipulation i.e. how accurate should the physics predictions

be? This depends on the manipulation task. For example, physics prediction

accuracy should be higher when a robot is tasked with pushing an object on a

narrow strip versus a large table where the chances of failure are lower.

Fig. 7.5 shows coarse physics errors (iteration 0) w.r.t. the real-world data of

up to 5cm which is about the radius of a slider. Therefore, I conclude that the

coarse model alone is not sufficient to complete the robotic manipulation task

considered here — an object can easily fall-off the table due to an inaccurately

planned action.

Furthermore, there is uncertainty during robotic pushing in the real-world

[97].Agboh, Ruprecht, and Dogar [5] showed that physics predictions with errors

below real-world stochasticity (e.g. position standard deviation at the end of

a real-world push) have similar planning success rates. Hence it is usually

pointless to have physics predictions as accurate as the fine model.

7.5 Summary

I demonstrate the use of Parareal to parallelize the predictive model in a robot

manipulation task involving multiple objects. As coarse model, I propose a

neural network, trained with a physics simulator. I show that for single object

pushing, Parareal converges faster with the learned model than with a coarse

physics-based model I introduced in Chapter 6. Furthermore, I show that

Parareal with the learned model as coarse propagator can successfully complete

106
Chapter 7. A Learned Coarse Model for Robotic Manipulation

using Parareal

Figure 7.7: Robotic manipulation planning and control for 2
different scenes. The robot succeeds in all scenes using Parareal
with a learned coarse model for physics predictions. The third

planning and control scene is in Fig. 7.1.

tasks that involve pushing multiple objects. I also show that although a simu-

lator is used to provide training data, Parareal with a learned coarse model can

accurately predict experiments that involve pushing with a real robot.

An important question when combining coarse and fine models with Parareal

is the choice of a coarse model. Should one use a learned or analytical coarse

model? It depends on the task. If an intuitive, fast-to-compute model exists

for a task then one should use it, otherwise one can rely on a learned coarse

physics model for the task.

107

Chapter 8

Conclusion

I presented planners and controllers for physics-based manipulation. Our focus

was on methods that improve real-world manipulation success under uncertainty

and in multi-contact environments, while achieving fluent/real-time execution.

I learned the following lessons:

• An online re-planning/closed-loop approach to physics-based manipula-

tion can significantly improve success rates under clutter and uncertainty.

• Given that physics simulations are computationally expensive, physics-

based planning and re-planning is typically slow. I demonstrated that real-

time re-planning cycles can be achieved through an appropriate underlying

planning algorithm - one that accepts warm-starts. Thus, I showed for

the first time, real-time reactive physics-based manipulation in clutter.

• I showed that fully robust open-loop plans are difficult to find/may not

exist for many multi-contact manipulation environments. Our approach of

interleaving robust open-loop execution and closed-loop control improved

success rates and lead to more fluent/real-time execution.

• Robots can adapt their actions to the accuracy requirements of a task

- pushing fast for low accuracy tasks and slow for high accuracy tasks.

In this thesis, I proposed a task-adaptive planning algorithm that makes

this possible. A robot can embrace uncertainty, and adapt to the accuracy

requirements of a task, by slowing down and generating “careful” motion

when the task requires high accuracy, and by speeding up and moving

fast when the task tolerates inaccuracy.

• I combined coarse and fine physics models to generate hybrid models.

The combination is possible thanks to the parallel-in-time integration al-

gorithm, Parareal. With these hybrid models, I showed a significant re-

duction in physics-based manipulation planning time, without sacrificing

success rates.

108 Chapter 8. Conclusion

• I showed faster Parareal convergence with a learned coarse physics model.

This translates to faster physics-based manipulation planning and control.

8.1 Limitations and Future Work

8.1.1 State estimation

Throughout this thesis, we rely on a motion capture system, Optitrack, to es-

timate the state of objects. This requires that markers are placed on objects.

While these markers are not aesthetically desirable, they allow for one to con-

duct more controlled experiments, where uncertainty can be induced during

state estimation. The focus of this thesis has been on the underlying planners

and controllers, not on scene perception with cameras. In future work, I plan to

investigate scene perception methods for robotic manipulation [95], and tightly

couple these methods with my planners and controllers.

8.1.2 Full observability

In this thesis, I assume that the state space is fully observable. I.e. we have

complete information about the position and velocities of all objects and the

robot. However, for some problems this assumption would not hold. For exam-

ple, imagine opening the shelf to retrieve a salt shaker, but it is not immediately

visible. It is probably hidden behind other objects in the fridge. In such settings,

it is not possible to know the state of all objects at all times. In future work,

I plan to integrate my planners and controllers within a partial observability

framework [44].

8.1.3 Deformable objects

Deformable objects such as ropes were not considered in this thesis. We used

a rigid body physics model assumption. An important question is how to rep-

resent and estimate the state of such deformable objects. Also, deformable

object physics predictions are currently much more computationally expensive

in comparison with rigid-bodies. In the future, I plan to build coarse models of

physics for deformable object manipulation [88, 35], and significantly speed-up

their predictions through parallel-in-time integration.

8.1. Limitations and Future Work 109

8.1.4 Parallelization

Parallelization has been a central theme throughout this thesis. From paral-

lelization in stochastic trajectory optimization to parallelization across time, to

speed up physics predictions. Compute has become cheaper and more accessi-

ble, with more parallel cores becoming available. These advances will make the

algorithms presented in this thesis much more relevant with time, significantly

increasing their impact for robotic manipulation.

8.1.5 Robust or non-robust object motions

In this thesis, I proposed methods to generate robust robot manipulation plans.

However, they focused on the overall system state. However, individual object

motions can provide useful information for manipulation planning and control.

Robot actions can result in object motions that are robust or non-robust. In

Fig. 8.1, I show an example of object motions that result in an overall robust or

non-robust trajectory. I generate several sample initial states as shown on the

left image, varying initial object positions, around their current position. Then

I apply the forward robot motion shown. In the right image I see the resulting

state distribution for several objects, at the end of a single action. The object

position distribution is smaller at the final state for the cylinder compared with

the initial state. Hence, this is a robust action for the cylinder. However, the

opposite is the case for the box. The final object position distribution is larger

for the box. This is due to the fact that sometimes the gripper makes contact

with it, and rotates it, and other times it does not. The action is non-robust

for the box.

The overall robustness of an action in these scenes is then judged through

the aggregate of these robust and non-robust object motions. An important

direction for future work is to identify ’important’ objects of interest for a given

task. Then one can focus planning on making these object motions robust.

8.1.6 Uncertainty model

In this work, we used simplified uncertainty models that are mainly based on

randomly changing physics parameters in a simulator. This is only an approx-

imation of the real world stochastic phenomena. I will work toward finding

uncertainty models that better describe the real world physics stochasticity es-

pecially for manipulation in clutter.

110 Chapter 8. Conclusion

Figure 8.1: An example of robust and non-robust object mo-
tions in a given trajectory segment. On the left image, each
object takes several possible positions. This illustrates the ini-
tial state uncertainty. After a robot motion that pushes on both
a cylinder to the left and a box to the right, the size of the state
uncertainties change. It is smaller for the cylinder to the left,
and larger for the box to the right. Hence the cylinder’s motion

is robust and the boxes’ motion is not.

8.1.7 Task adaptivity with physics models

Different tasks require different degrees of accuracy [2]. For example, think of

searching for a sock in the sock drawer, versus searching for a wine glass in the

glass cabinet. It is okay for a robot’s physics predictions to be coarse in the

former example, which is not the case in the latter. Parareal can be used to

explore this spectrum, and generate coarse predictions when it is sufficient for

the task, and more accurate predictions as the task requires.

8.2 Summary

In this thesis I addressed the problems of uncertainty and multi-contact inter-

actions during physics-based manipulation. To handle uncertainty, I proposed

robust open-loop methods, closed-loop methods, and a combination of both.

To achieve real-time planning/re-planning, I proposed two approaches. First, a

new stochastic trajectory optimization algorithm that accepts warm-starts, such

that re-planning only takes a few iterations to converge. Second, I introduced

hybrid physics models through a combination of coarse and fine physics mod-

els. These hybrid models are as accurate as the fine model but are significantly

faster to compute, thanks to parallel computing.

I believe that through the physics-based manipulation planning and control

algorithms presented in this thesis, we as a society can get closer to seeing

robots in our everyday lives.

111

Bibliography

[1] Abraham, I., Handa, A., Ratliff, N., Lowrey, K., Murphey, T. D., and

Fox, D. “Model-Based Generalization Under Parameter Uncertainty Us-

ing Path Integral Control”. In: IEEE Robotics and Automation Letters

5.2 (2020).

[2] Agboh, W. C. and Dogar, M. R. “Pushing Fast and Slow: Task-Adaptive

Planning for Non-prehensile Manipulation Under Uncertainty”. In: Al-

gorithmic Foundations of Robotics XIII. 2020.

[3] Agboh, W. C. and Dogar, M. R. “Real-Time Online Re-Planning for

Grasping Under Clutter and Uncertainty”. In: IEEE-RAS International

Conference on Humanoid Robots (Humanoids). 2018.

[4] Agboh, W. C. and Dogar, M. R. “Robust Physics-Based Manipulation

by Interleaving Open and Closed-Loop Execution”. In: arXiv. 2021.

[5] Agboh, W. C., Ruprecht, D., and Dogar, M. R. “Combining Coarse and

Fine Physics for Manipulation using Parallel-in-Time Integration”. In:

International Symposium on Robotics Research (ISRR) (2019).

[6] Agboh, W. C., Ruprecht, D., and Dogar, M. R. “Parareal with a learned

coarse model for robotic manipulation”. In: Comput. Visual Sci. 23.8

(2020).

[7] Agrawal, P., Nair, A. V., Abbeel, P., Malik, J., and Levine, S. “Learn-

ing to poke by poking: Experiential learning of intuitive physics”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2016.

[8] Ajay, A., Wu, J., Fazeli, N., Bauza, M., Kaelbling, L. P., Tenenbaum,

J. B., and Rodriguez, A. “Augmenting Physical Simulators with Stochas-

tic Neural Networks: Case Study of Planar Pushing and Bouncing”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). 2018.

[9] Anders, A. S., Kaelbling, L. P., and Lozano-Perez, T. “Reliably Arrang-

ing Objects in Uncertain Domains”. In: 2018 IEEE International Con-

ference on Robotics and Automation (ICRA). 2018.

112 Bibliography

[10] Angelov, D., Hristov, Y., Burke, M., and Ramamoorthy, S. “Composing

Diverse Policies for Temporally Extended Tasks”. In: IEEE Robotics and

Automation Letters 5.2 (2020), pp. 2658–2665. doi: 10.1109/LRA.2020.

2972794.

[11] Arruda, E., Mathew, M. J., Kopicki, M., Mistry, M., Azad, M., and

Wyatt, J. L. “Uncertainty averse pushing with model predictive path

integral control”. In: IEEE-RAS International Conference on Humanoid

Robots (Humanoids). 2017.

[12] Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., and Levine, S.

“Stochastic Variational Video Prediction”. In: International Conference

on Learning Representations (ICLR). 2018.

[13] Bauza, M. and Rodriguez, A. “A probabilistic data-driven model for

planar pushing”. In: IEEE International Conference on Robotics and

Automation (ICRA). 2017.

[14] Bejjani, W., Agboh, W. C., Dogar, M. R., and Leonetti, M. “Occlusion-

Aware Search for Object Retrieval in Clutter”. In: arXiv. 2020. eprint:

2011.03334 (cs.RO).

[15] Bejjani, W., Dogar, M. R., and Leonetti, M. “Learning Physics-Based

Manipulation in Clutter: Combining Image-Based Generalization and

Look-Ahead Planning”. In: IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS). 2019.

[16] Bejjani, W., Papallas, R., Leonetti, M., and Dogar, M. R. “Planning

with a Receding Horizon for Manipulation in Clutter Using a Learned

Value Function”. In: IEEE-RAS International Conference on Humanoid

Robots (Humanoids). 2018.

[17] Bejjani, W., Leonetti, M., and Dogar, M. R. “Learning image-based

Receding Horizon Planning for manipulation in clutter”. In: Robotics

and Autonomous Systems 138 (2021), p. 103730. issn: 0921-8890. doi:

https://doi.org/10.1016/j.robot.2021.103730. url: https://

www.sciencedirect.com/science/article/pii/S0921889021000154.

[18] Cadeau, T. and Magoules, F. “Coupling the Parareal Algorithm with the

Waveform Relaxation Method for the Solution of Differential Algebraic

Equations”. In: International Symposium on Distributed Computing and

Applications to Business, Engineering and Science. 2011, pp. 15–19.

https://doi.org/10.1109/LRA.2020.2972794
https://doi.org/10.1109/LRA.2020.2972794
2011.03334
https://doi.org/https://doi.org/10.1016/j.robot.2021.103730
https://www.sciencedirect.com/science/article/pii/S0921889021000154
https://www.sciencedirect.com/science/article/pii/S0921889021000154

Bibliography 113

[19] Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., and Dol-

lar, A. M. “Benchmarking in Manipulation Research: Using the Yale-

CMU-Berkeley Object and Model Set”. In: IEEE Robotics Automation

Magazine 22.3 (2015), pp. 36–52.

[20] Choi, S., Lee, K., Lim, S., and Oh, S. “Uncertainty-Aware Learning

from Demonstration Using Mixture Density Networks with Sampling-

Free Variance Modeling”. In: IEEE International Conference of Robotics

and Automation. 2018.

[21] Cruciani, S. and Smith, C. “In-hand manipulation using three-stages

open loop pivoting”. In: IEEE International Conference on Intelligent

Robots and Systems (IROS). 2017.

[22] Davchev, T., Luck, K. S., Burke, M., Meier, F., Schaal, S., and Ra-

mamoorthy, S. “Residual Learning from Demonstration: Adapting Dy-

namic Movement Primitives for Contact-rich Insertion Tasks”. In: (2020).

arXiv: 2008.07682 [cs.RO].

[23] Diankov, R., Srinivasa, S. S., Ferguson, D., and Kuffner, J. “Manipula-

tion planning with caging grasps”. In: IEEE-RAS International Confer-

ence on Humanoid Robots (Humanoids). 2008.

[24] Dogar, M., Hsiao, K., Ciocarlie, M., and Srinivasa, S. “Physics-Based

Grasp Planning Through Clutter”. In: Proceedings of Robotics: Science

and Systems. 2012.

[25] Ebert, F., Dasari, S., Lee, A. X., Levine, S., and Finn, C. “Robustness

via Retrying: Closed-Loop Robotic Manipulation with Self-Supervised

Learning”. In: Conference on Robot Learning (CoRL). 2018.

[26] Erez, T., Tassa, Y., and Todorov, E. “Simulation tools for model-based

robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX”. In:

IEEE International Conference on Robotics and Automation. 2015.

[27] Fan, T., Schultz, J., and Murphey, T. “Efficient Computation of Higher-

Order Variational Integrators in Robotic Simulation and Trajectory Op-

timization”. In: Algorithmic Foundations of Robotics XIII. 2020, pp. 689–

706.

[28] Finn, C., Goodfellow, I., and Levine, S. “Unsupervised learning for phys-

ical interaction through video prediction”. In: Advances in Neural Infor-

mation Processing Systems (NeurIPS). 2016.

https://arxiv.org/abs/2008.07682

114 Bibliography

[29] Finn, C. and Levine, S. “Deep visual foresight for planning robot mo-

tion”. In: IEEE International Conference on Robotics and Automation

(ICRA). 2017.

[30] Finn, C., Goodfellow, I., and Levine, S. “Unsupervised Learning for

Physical Interaction through Video Prediction”. In: Advances in Neu-

ral Information Processing Systems (NeurIPS). 2016.

[31] Finn, C. and Levine, S. “Deep visual foresight for planning robot mo-

tion”. In: 2017 IEEE International Conference on Robotics and Automa-

tion (ICRA). 2017, pp. 2786–2793. doi: 10.1109/ICRA.2017.7989324.

[32] Fitts, P. M. “The information capacity of the human motor system in

controlling the amplitude of movement”. In: Experimental Psychology

(1954).

[33] Gander, M. and Vandewalle, S. “Analysis of the Parareal Time-Parallel

Time-Integration Method”. In: SIAM Journal on Scientific Computing

29.2 (2007), pp. 556–578.

[34] Goyal, S., Ruina, A., and Papadopoulos, J. “Planar sliding with dry

friction Part 1. Limit surface and moment function”. In: Wear 143.2

(1991), pp. 307 –330.

[35] Grannen, J., Sundaresan, P., Thananjeyan, B., Ichnowski, J., Balakr-

ishna, A., Hwang, M., Viswanath, V., Laskey, M., Gonzalez, J. E., and

Goldberg, K. “Untangling Dense Knots by Learning Task-Relevant Key-

points”. In: Conference on Robot Learning (CORL). 2020.

[36] Guibert, D. and Tromeur-Dervout, D. “Adaptive Parareal for Systems of

ODEs”. In: Domain Decomposition Methods in Science and Engineering

XVI. Ed. by Widlund, O. and Keyes, D. Vol. 55. Lecture Notes in Com-

putational Science and Engineering. Springer Berlin Heidelberg, 2007,

pp. 587–594.

[37] Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. “Dream to Control:

Learning Behaviors by Latent Imagination”. In: International Confer-

ence on Learning Representations (ICLR). 2020.

[38] Hasan, M., Warburton, M., Agboh, W. C., Dogar, M. R., Leonetti, M.,

Wang, H., Mushtaq, F., Mon-Williams, M., and Cohn, A. G. “Human-

like Planning for Reaching in Cluttered Environments”. In: IEEE Inter-

national Conference on Robotics and Automation. 2020.

https://doi.org/10.1109/ICRA.2017.7989324

Bibliography 115

[39] Haustein, J. A., King, J., Srinivasa, S. S., and Asfour, T. “Kinodynamic

randomized rearrangement planning via dynamic transitions between

statically stable states”. In: IEEE International Conference on Robotics

and Automation. 2015.

[40] Hogan, F. R., Grau, E. R., and Rodriguez, A. “Reactive Planar Manip-

ulation with Convex Hybrid MPC”. In: 2018 IEEE International Con-

ference on Robotics and Automation (ICRA). 2018.

[41] Hogan, F. R. and Rodriguez, A. “Feedback Control of the Pusher-Slider

System: A Story of Hybrid and Underactuated Contact Dynamics”. In:

Algorithmic Foundations of Robotics XII (2020), pp. 800–815.

[42] Hoque, R., Seita, D., Balakrishna, A., Ganapathi, A., Tanwani, A. K., Ja-

mali, N., Yamane, K., Iba, S., and Goldberg, K. “VisuoSpatial Foresight

for Multi-Step, Multi-Task Fabric Manipulation”. In: Robotics: Science

and Systems (RSS). 2020.

[43] Howe, R. D. and Cutkosky, M. R. “Practical force-motion models for

sliding manipulation”. In: International Journal of Robotics Research

(IJRR) 15.6 (1996), pp. 557–572.

[44] Hsiao, K., Kaelbling, L. P., and Lozano-Perez, T. “Grasping POMDPs”.

In: IEEE International Conference on Robotics and Automation (ICRA).

2007.

[45] Huang, E., Jia, Z., and Mason, M. T. “Large-Scale Multi-Object Re-

arrangement”. In: IEEE International Conference on Robotics and Au-

tomation (ICRA). 2019.

[46] Huang, S. H., Zambelli, M., Kay, J., Martins, M. F., Tassa, Y., Pi-

larski, P. M., and Hadsell, R. Learning Gentle Object Manipulation with

Curiosity-Driven Deep Reinforcement Learning. 2019. arXiv: 1903.08542

[cs.RO].

[47] Johnson, A. M., King, J., and Srinivasa, S. “Convergent Planning”. In:

IEEE Robotics and Automation Letters 1.2 (2016), pp. 1044–1051. issn:

2377-3766. doi: 10.1109/LRA.2016.2530864.

[48] Kahn, G., Villaflor, A., Pong, V., Abbeel, P., and Levine, S. “Uncertainty-

Aware Reinforcement Learning for Collision Avoidance”. In: CoRR (2017).

[49] Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S.

“STOMP: Stochastic trajectory optimization for motion planning”. In:

International Conference on Robotics and Automation. 2011.

https://arxiv.org/abs/1903.08542
https://arxiv.org/abs/1903.08542
https://doi.org/10.1109/LRA.2016.2530864

116 Bibliography

[50] Kearns, M. J., Mansour, Y., and Ng, A. Y. “A Sparse Sampling Algo-

rithm for Near-Optimal Planning in Large Markov Decision Processes”.

In: International Joint Conferences on Artificial Intelligence (IJCAI).

1999.

[51] Kiatos, M. and Malassiotis, S. “Robust object grasping in clutter via sin-

gulation”. In: 2019 International Conference on Robotics and Automa-

tion (ICRA). 2019.

[52] King, J. E., Haustein, J. A., Srinivasa, S. S., and Asfour, T. “Nonprehen-

sile whole arm rearrangement planning on physics manifolds”. In: IEEE

International Conference on Robotics and Automation (ICRA). 2015.

[53] Kitaev, N., Mordatch, I., Patil, S., and Abbeel, P. “Physics-based tra-

jectory optimization for grasping in cluttered environments”. In: IEEE

International Conference on Robotics and Automation (ICRA). 2015.

[54] Kloss, A., Schaal, S., and Bohg, J. “Combining learned and analytical

models for predicting action effects”. In: CoRR abs/1710.04102 (2017).

[55] Kong, N. J. and Johnson, A. M. “Optimally Convergent Trajectories for

Navigation”. In: International Symposium on Robotics Research. 2019.

[56] Kopicki, M., Zurek, S., Stolkin, R., Moerwald, T., and Wyatt, J. L.

“Learning modular and transferable forward models of the motions of

push manipulated objects”. In: Autonomous Robots (2017).

[57] Koval, M. C., King, J. E., Pollard, N. S., and Srinivasa, S. S. “Robust

trajectory selection for rearrangement planning as a multi-armed bandit

problem”. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems. 2015.

[58] Laskey, M., Lee, J., Chuck, C., Gealy, D., Hsieh, W., Pokorny, F. T.,

Dragan, A. D., and Goldberg, K. “Robot grasping in clutter: Using a

hierarchy of supervisors for learning from demonstrations”. In: IEEE In-

ternatioanl Conference on Automation Science and Engineering (CASE).

2016.

[59] Laskey, M., Lee, J., Chuck, C., Gealy, D., Hsieh, W., Pokorny, F. T.,

Dragan, A. D., and Goldberg, K. “Robot grasping in clutter: Using a hi-

erarchy of supervisors for learning from demonstrations”. In: IEEE Inter-

national Conference on Automation Science and Engineering (CASE).

2016.

Bibliography 117

[60] Li, J., Lee, W. S., and Hsu, D. “Push-Net: Deep Planar Pushing for

Objects with Unknown Physical Properties”. In: Robotics: Science and

Systems. 2018.

[61] Li, W. and Todorov, E. “Iterative Linear Quadratic Regulator Design for

Nonlinear Biological Movement Systems”. In: International Conference

on Informatics in Control, Automation and Robotics. 2004.

[62] Lions, J.-L., Maday, Y., and Turinici, G. “A ”parareal” in time discretiza-

tion of PDE’s”. In: Comptes Rendus de l’Académie des Sciences - Series

I - Mathematics 332 (2001), pp. 661–668.

[63] Lohmiller, W. and Slotine, J. E. “On Contraction Analysis for Non-linear

Systems”. In: Automatica 34.6 (1998), pp. 683–696. issn: 0005-1098.

[64] Luck, K. S., Vecerik, M., Stepputtis, S., Amor, H. B., and Scholz, J.

“Improved Exploration through Latent Trajectory Optimization in Deep

Deterministic Policy Gradient”. In: IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). 2019.

[65] Luders, B., Kothari, M., and How, J. “Chance constrained RRT for prob-

abilistic robustness to environmental uncertainty”. In: AIAA Guidance,

Navigation, and Control Conference. 2010. doi: 10.2514/6.2010-8160.

[66] Lynch, K. M., Maekawa, H., and Tanie, K. “Manipulation And Active

Sensing By Pushing Using Tactile Feedback”. In: IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). 1992.

[67] Maday, Y. and Turinici, G. “Parallel in time algorithms for quantum

control: Parareal time discretization scheme”. In: International Journal

of Quantum Chemistry 93.3 (2003), pp. 223–228.

[68] Martin, K. “Parallel multiple shooting for the solution of initial value

problems”. In: Parallel Computing 20.3 (1994), pp. 275–295.

[69] Mason, M. “Mechanics and Planning of Manipulator Pushing Opera-

tions”. In: International Journal of Robotics Research 5.3 (1986), pp. 53–

71.

[70] Matas, J., James, S., and Davison, A. J. “Sim-to-Real Reinforcement

Learning for Deformable Object Manipulation”. In: Conference on Robot

Learning (CoRL). 2018.

[71] Meriçli T., V. M. and Akın, H. “Push-manipulation of complex passive

mobile objects using experimentally acquired motion models”. In: Au-

tonomous Robots 38 (2015).

https://doi.org/10.2514/6.2010-8160

118 Bibliography

[72] Minion, M. “A hybrid parareal spectral deferred corrections method”.

In: Commun. Appl. Math. Comput. Sci. 5.2 (2010), pp. 265–301.

[73] Muhayyuddin, Moll, M., Kavraki, L., and Rosell, J. “Randomized Physics-

Based Motion Planning for Grasping in Cluttered and Uncertain En-

vironments”. In: IEEE Robotics and Automation Letters 3.2 (2018),

pp. 712–719.

[74] Pan, Z. and Manocha, D. “Time Integrating Articulated Body Dynamics

Using Position-Based Collocation Method”. In: Algorithmic Foundations

of Robotics XIII. 2020, pp. 673–688.

[75] Papallas, R., Cohn, A. G., and Dogar, M. R. “Online Replanning With

Human-in-the-Loop for Non-Prehensile Manipulation in Clutter — A

Trajectory Optimization Based Approach”. In: IEEE Robotics and Au-

tomation Letters 5.4 (2020), pp. 5377–5384. doi: 10.1109/LRA.2020.

3006826.

[76] Papallas, R. and Dogar, M. R. “Non-Prehensile Manipulation in Clutter

with Human-In-The-Loop”. In: 2020 IEEE International Conference on

Robotics and Automation (ICRA). 2020.

[77] Pauly, L., Agboh, W. C., Hogg, D. C., and Fuentes, R. “O2A: One-

shot Observational learning with Action vectors”. In: arXiv. 2020. eprint:

1810.07483 (cs.RO).

[78] Péret, L. and Garcia, F. “On-line search for solving Markov decision

processes via heuristic sampling”. In: European Conference on Artificial

Intelligence (ECAI). IOS Press. 2004.

[79] Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov,

E., and Levine, S. “Learning Complex Dexterous Manipulation with

Deep Reinforcement Learning and Demonstrations”. In: Robotics Sci-

ence and Systems (RSS). 2018.

[80] Richter, C. and Roy, N. “Safe Visual Navigation via Deep Learning and

Novelty Detection”. In: Robotics Science and Systems (RSS). 2017.

[81] Ruiz-Ugalde, F., Cheng, G., and Beetz, M. “Fast adaptation for effect-

aware pushing”. In: IEEE/RSJ International Conference on Humanoid

Robots (Humanoids). 2011.

[82] Ruprecht, D. “Implementing Parareal - OpenMP or MPI?” In: CoRR

(2015).

https://doi.org/10.1109/LRA.2020.3006826
https://doi.org/10.1109/LRA.2020.3006826
1810.07483

Bibliography 119

[83] S. Günther L. Ruthotto, J. S. E. C. N. G. “Layer-Parallel Training of

Deep Residual Neural Networks”. arXiv:1812.04352 [math.OC]. 2019.

url: https://arxiv.org/abs/1812.04352.

[84] Schroder, J. “Parallelizing Over Artificial Neural Network Training Runs

with Multigrid”. arXiv:1708.02276 [cs.NA]. 2017. url: https://arxiv.

org/abs/1708.02276.

[85] Seita, D., Ganapathi, A., Hoque, R., Hwang, M., Cen, E., Tanwani, A. K.,

Balakrishna, A., Thananjeyan, B., Ichnowski, J., Jamali, N., Yamane,

K., Iba, S., Canny, J., and Goldberg, K. “Deep Imitation Learning of

Sequential Fabric Smoothing Policies”. In: International Symposium on

Robotics Research (ISRR). 2019.

[86] Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., and Abbeel,

P. “Combined task and motion planning through an extensible planner-

independent interface layer”. In: IEEE International Conference on Robotics

and Automation (ICRA). 2014.

[87] Stilman, M., Schamburek, J. U., Kuffner, J., and Asfour, T. “Manip-

ulation Planning Among Movable Obstacles”. In: IEEE International

Conference on Robotics and Automation (ICRA). 2007.

[88] Sundaresan, P., Grannen, J., Thananjeyan, B., Balakrishna, A., Laskey,

M., Stone, K., Gonzalez, J. E., and Goldberg, K. “Learning Rope Ma-

nipulation Policies Using Dense Object Descriptors Trained on Synthetic

Depth Data”. In: IEEE International Conference on Robotics and Au-

tomation (ICRA). 2020.

[89] Tancredi, G., Sánchez, A., and Roig, F. “A Comparison Between Meth-

ods to Compute Lyapunov Exponents”. In: The Astronomical Journal

121 (2001), pp. 1171–1179.

[90] Tassa, Y., Erez, T., and Todorov, E. “Synthesis and stabilization of com-

plex behaviors through online trajectory optimization”. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems. 2012.

[91] Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Las Casas, D. de,

Budden, D., Abdolmaleki, A., Merel, J., Lefrancq, A., Lillicrap, T., and

Riedmiller, M. DeepMind Control Suite. Tech. rep. DeepMind, Jan. 2018.

url: https://arxiv.org/abs/1801.00690.

[92] Todorov, E., Erez, T., and Tassa, Y. “MuJoCo: A physics engine for

model-based control”. In: IEEE/RSJ International Conference on Intel-

ligent Robots and Systems. 2012.

https://arxiv.org/abs/1812.04352
https://arxiv.org/abs/1708.02276
https://arxiv.org/abs/1708.02276
https://arxiv.org/abs/1801.00690

120 Bibliography

[93] Trindade, J. M. F. and Pereira, J. C. F. “Parallel-in-Time Simulation

of Two-Dimensional, Unsteady, Incompressible Laminar Flows”. In: Nu-

merical Heat Transfer, Part B: Fundamentals 50.1 (2006), pp. 25–40.

[94] Williams, G., Aldrich, A., and Theodorou, E. “Model Predictive Path

Integral Control using Covariance Variable Importance Sampling”. In:

CoRR (2015).

[95] Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. “PoseCNN: A Con-

volutional Neural Network for 6D Object Pose Estimation in Cluttered

Scenes”. In: Robotics: Science and Systems (RSS). 2018.

[96] Yalla, G. R. and Engquist, B. “Parallel in Time Algorithms for Mul-

tiscale Dynamical Systems Using Interpolation and Neural Networks”.

In: Proceedings of the High Performance Computing Symposium. 2018,

9:1–9:12.

[97] Yu, K. T., Bauza, M., Fazeli, N., and Rodriguez, A. “More than a mil-

lion ways to be pushed. A high-fidelity experimental dataset of planar

pushing”. In: IEEE International Conference on Intelligent Robots and

Systems (IROS). 2016.

[98] Yuan, W., Hang, K., Kragic, D., Wang, M. Y., and Stork, J. A. “End-to-

end nonprehensile rearrangement with deep reinforcement learning and

simulation-to-reality transfer”. In: Robotics and Autonomous Systems

119 (2019), pp. 119–134.

[99] Zhan, A., Zhao, P., Pinto, L., Abbeel, P., and Laskin, M. “A Frame-

work for Efficient Robotic Manipulation”. In: (2020). arXiv: 2012.07975

[cs.RO].

[100] Zhou, J., Mason, M. T., Paolini, R., and Bagnell, D. “A convex polyno-

mial model for planar sliding mechanics: theory, application, and exper-

imental validation”. In: International Journal of Robotics Research 37.2

(2018), 249 – 265.

[101] Zhou, J., Paolini, R., Johnson, A. M., Bagnell, J. A., and Mason, M. T.

“A Probabilistic Planning Framework for Planar Grasping Under Un-

certainty”. In: IEEE Robotics and Automation Letters 2.4 (2017).

[102] Zito, C., Stolkin, R., Kopicki, M., and Wyatt, J. L. “Two-level RRT

planning for robotic push manipulation”. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 2012.

https://arxiv.org/abs/2012.07975
https://arxiv.org/abs/2012.07975

	Introduction
	Main themes
	Contributions
	Roadmap

	Related Work
	Manipulation in Clutter
	Open-Loop Execution
	Robust Open-Loop Execution
	Closed-loop Control Policies
	Uncertainty-Aware Planning and Control
	Speeding-up Physics Simulators
	Combining Different Physics Models
	Manipulation with Visual Dynamics
	Summary

	Real-Time Online Re-Planning for Grasping Under Clutter and Uncertainty
	Physics-based Grasping in Clutter
	Physics-based Grasping through Online Re-planning
	Experiments and Results
	Discussion

	Robust Physics-Based Manipulation by Interleaving Open and Closed-Loop Execution
	The Robust Manipulation Problem
	Interleaving Open and Closed-Loop Execution
	Robustness to Uncertainty
	Robust Planning and Control
	Robot Experiments and Results
	Discussion

	Task-Adaptive Planning for Non-prehensile Manipulation Under Uncertainty
	Task-Adaptive Planning as an MDP
	Approximate Online MDP Solution
	Generating a Variety of Actions
	Trajectory Optimization
	Baseline Approach
	Experiments
	Discussion

	Combining Coarse and Fine Physics for Manipulation using Parallel-in-Time Integration
	Combining Physics Models for Planning
	Push Planning and Control
	Experiments and Results
	Discussion

	A Learned Coarse Model for Robotic Manipulation using Parareal
	Robotic Manipulation with Parareal
	Coarse models
	Planning and control with hybrid models
	Experiments and Results
	Summary

	Conclusion
	Limitations and Future Work
	Summary

	Bibliography

