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Abstract 

 

Ruthenium complexes are promising candidates for the treatment of cancers.  Two 

ruthenium(III) complexes have previously completed phase I clinical trials and half-

sandwich ruthenium(II) η
6
-arene complexes are receiving much interest as anti-

cancer agents.  A range of new ruthenium(II) complexes have been prepared with a 

κ
3
-N fac-coordinating six electron donor, cis-1,3,5-triaminocyclohexane (cis-tach), 

replacing the η
6
-arene ligand.  It is hypothesised that the cis-tach ligand will allow 

highly active complexes with good water solubility.  

 

Initial access to ruthenium(II) cis-tach complexes was established with 

triphenylphosphane ligands, yielding the complexes [RuCl(cis-tach)(PPh3)2]Cl [1]Cl 

and [RuCl2(cis-tach)(PPh3)] [2].  The complexes adopt a piano-stool type structure, 

similar to η
6
-arene complexes.  Use of labile dmso ligands in [RuCl(dmso-S)2(cis-

tach)]Cl [8]Cl permitted the preparation of a range of complexes.  Those with N–N 

and P–P bidentate chelating ligands, following the formula [Ru(dmso-S)(N–N)(cis-

tach)]
2+

 and [RuCl(P–P)(cis-tach)]
+
 were studied.  Complexes with N–N chelating 

ligands were found to be inert to substitution in aqueous solution compared to the 

bis-dmso complex [8]Cl, and were inactive in tumour growth inhibition. 

 

Complexes with chelating diphosphane ligands are highly water-soluble, with 

excellent in vitro activity in the inhibition of tumor cell growth.  The activity of two 

complexes (P–P = dppp, dppb) was found to exceed that of cisplatin.  A structure-

activity relationship is discussed.  Two compounds were selected for further study 

(P–P = dppe [16]Cl, dppp [17]Cl) for good water solubility and high activity 

respectively.  These complexes undergo rapid hydrolysis of the ruthenium-chlorido 

bond to give the corresponding aqua complexes.  The interaction of these complexes 

with small models of biomolecules and DNA was also investigated. 
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Chapter 1. Introduction 

 

1.1 Preamble 

 

Within the UK, over 320,000 new cases of cancer were diagnosed in 2009.
1
  The 

previous year saw an estimated 12.7 million diagnoses worldwide and 7.6 million 

deaths attributed to this disease.
1
  On average, one in three people within the UK will 

develop a form of cancer at some point in their life and it is the cause of one in four 

deaths.
1
 

 

Cancer is a term describing over 200 diseases,
1
 all of which involve unregulated cell 

growth.
2
  Cancers may also invade surrounding tissues or other locations around the 

body via the lymph or blood stream (metastasis).
2
  Generally, a single genetic 

mutation during cell replication is insufficient to cause cancer; a series of 

independent mutations must occur—all within the lineage of a single cell—and these 

mutations must overcome natural selection and cell control mechanisms.
2
  The 

accumulation of mutations over time accounts for an increased incidence of cancer 

with age, owing to the greater number of times the DNA has been replicated.  

Cancers are rarely diagnosed within the early stages of mutations, and are only 

detectable when they have reached advanced stages, such as invasive carcinomas.
2
   

 

There are numerous characteristics of tumour cells, which are the basis for cancerous 

behaviour.
3, 4

  Tumour cells are often referred to as immortal, where cells will 

proliferate indefinitely with no growth control.  Cancer cells evolve to elude 

apoptotic mechanisms, allowing them to survive conditions in which normal cells 

are expected to die.  They do not require extra-cellular growth stimulation and often 

produce growth factors which act on their own receptors, promoting continuous 

proliferation.  They also exhibit increased genetic instability, which may result in 

changes to the chromosome or multiple replications of growth-promoting genes.  

 

As tumours grow, the distance of oxygen diffusion to cells from blood vessels 

increases, resulting in low oxygen levels (hypoxia).
5
  To allow growth beyond the 

limits of oxygen diffusion, tumours express vascular endothelial growth factors, 
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promoting capillary growth from near-by blood vessels (angiogenesis).
5
  Most 

normal cells do not grow once detached from a tissue, however tumour cells invade 

other tissues resulting in secondary metastases and this is considered the point of 

which a tumour becomes life-threatening.
3, 4

 

 

Tumour cells often exhibit an uncontrolled cell cycle; the over-expression of cyclins 

that promote the progression of the cell cycle into the synthesis (DNA replication) or 

mitosis phase results in unregulated cell proliferation.
3, 4

  Additionally, a cell may 

develop malfunctions in the control and regulation of the cell cycle, where 

checkpoints are not correctly completed.  For example, many tumours lack a 

functional DNA damage-induced p53-dependant checkpoint, allowing increased 

likelihood of accumulating genetic mutations. 
3, 4

 

 

Classical anti-tumour drugs target the p53-dependant checkpoint of the cell cycle.
3
  

The drugs cause modifications to DNA, typically through alkylation, which is then 

recognised by the cell, triggering an apoptotic pathway.  However, many tumours 

have a defective p53 gene, thus many tumours are resistant to classical therapies.
3, 6

   

 

It is due to the inherent and acquired drug resistance of tumours to these drugs, as 

well as the adverse side-effects caused by the toxicity of therapies on other tissues, 

that there is a need for the continual development of new anti-tumour agents.  This 

effort is focused on both classical agents, designed to induce apoptosis by DNA 

damage, and non-classical drugs, designed to target other aspects of cell replication 

or mechanisms vital to cell maintenance.
7
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1.2 Platinum-Based Cancer Therapy 

 

1.2.1 Cisplatin 

 

Cis-diamminedichloridoplatinum(II) (cisplatin, Fig. 1.1) has become one of the most 

widely used drugs in the treatment of cancers.
8
  Its therapeutic capability was 

discovered by Barnett Rosenberg in 1965, over a century after its initial discovery by 

Michel Peyrone in 1845. Generation of cisplatin at a platinum electrode inhibited the 

division of E. coli cells, demonstrating its ability to disrupt cell growth.
9, 10

 

 

 

cisplatin 

 

Figure 1.1:  Structure of cisplatin, [cis-PtCl2(NH3)2], the first metal complex to be 

approved for the treatment of cancers in the clinic. 

 

After entering phase I trials in 1971,
11

 cisplatin was approved for the treatment of 

testicular and ovarian cancers in 1978.
12

  In the case of testicular cancer, the use of 

cisplatin resulted in the survival rate dramatically rising to ca 90%.
12

  It is also used 

in the treatment of bladder, head and neck cancers, as well as the treatment of many 

other cancers in combination therapy with other drugs.
8
   

 

1.2.2 Cisplatin: Mechanism of Action 

 

After intravenous administration of cisplatin, it is transported around the body via 

the blood stream.  This environment has a relatively high chloride concentration of 

100 mM and substitution of the chlorido ligands with water (aquation) is largely 

suppressed.
13

 This reduces the likelihood of ligand-exchange reactions with 

biomolecules, although some do still occur, causing unwanted side-effects and drug 

deactivation.
14
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Cisplatin does bind to intercellular proteins through the sulfur donor atom of thiol 

groups, particularly with those containing cysteine residues such as human serum 

albumin.
15

 This does not necessarily result in deactivation and has been 

demonstrated to improve patient response to treatment.
15

  The leading hypothesis at 

present is that cisplatin may be transported into the cell by passive diffusion, and 

possibly also by organic and metal transporters such as copper transportation 

proteins (Scheme 1.1).
16

   

 

 

 

Scheme 1.1:  Chemical processes involved in the cisplatin-induced DNA damage, 

leading to eventual apoptosis.  Resistance mechanisms may develop by the 

deactivation of the platinum complex via coordination of intracellular thiols or DNA 

repair. 

 

Aquation of one or both chlorido ligands occurs under the lower intracellular 

chloride concentration (4–20 mM),
13

 followed by partial hydrolysis to give the 

unreactive hydroxy species (Scheme 1.1).
17

  Deactivation of cisplatin may occur 
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within the cell by S-coordination of glutathione (GSH), which is an intracellular thiol 

anti-oxidant; increased expression of GSH is often associated with cisplatin 

resistance.
18

  Only a small percentage of cisplatin manages to reach its target, the 

nucleus.  An aqua ligand of the mono-aquated species [cis-PtCl(NH3)2(OH2)]
+
 is 

displaced by a DNA base, to give a mono-functional adduct (Scheme 1.1).
19

 

Cisplatin preferentially binds to the N7 of guanine; formation of adducts with 

adenine are less favoured.  This is followed by ring-closure of coordination of a 

second DNA base,
20

 with intrastrand 1,2 d(GpG) cross-linking predominating (Fig. 

1.2).
21, 22

  

 

 

 

Figure 1.2:  DNA structural distortions from a) intrastrand 1,2 d(GpG) (60–65 %), 

b) intrastrand 1,3 d(GpG) (2–3 %) and c) interstrand 1,2d(GpG) (1–5 %) platination.  

Intrastrand 1,2 d(GpA) (20–25 %) not shown.  Diagram from reference 23. 

 

The platination of DNA causes a bend towards the major groove of DNA (30–60°) 

and unwinding of the double helix (up to 23°) as shown in Fig. 1.2.
24

  The structural 

distortion stalls RNA synthesis (transcription), from either the physical block of 

RNA polymerases, the binding of proteins, or disruption of the nucleosomal 

structure.
23

  Following inhibition of transcription, DNA damage response is 

activated—which is induced by proteins such as p53 (a tumour suppressor protein)—

inducing cell cycle arrest, and eventual apoptosis.
25
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The trans- isomer of cisplatin, [trans-PtCl2(NH3)2] (transplatin), is inactive in 

comparison to the clinical drug.  This was initially rationalised due to its inability to 

form DNA cross-links in the same way as cisplatin.
26

  However, platinum complexes 

with a trans-geometry, such as [trans-PtCl2(pyridine)2], have been reported with 

anti-cancer activity comparable to cisplatin.
27

  These compounds are also capable 

causing DNA structural distortions.
27

  It is hypothesised that the inactivity of 

transplatin is due to a greater kinetic instability, leading to increased deactivation of 

the drug.
26

   

 

Cisplatin has also been also been shown to interfere with RNA, blocking digestion 

and preventing reverse-transcription.
28

  This was hypothesised to disrupt cell-wide 

RNA processing, accounting for cell-wide effects of cisplatin.
28

  Furthermore, 

cisplatin can form DNA-protein cross-links which inhibit DNA polymerisation or 

DNA repair by the nucleotide excision repair system.
29

 

 

Despite the success of cisplatin, problems are experienced with its clinical use. 

Resistance may acquired by one of several mechanisms, including reduced cellular 

drug uptake, DNA damage repair, detoxification by intracellular thiols or lack of 

response to damaged DNA.
30

  Furthermore, treatment of cancers in the clinic with 

cisplatin is limited by side-effects, associated with kidney and nervous system 

toxicity, nausea and vomiting among others.
31

 This has prompted the development of 

platinum drugs displaying increased activity, reduced side effects or the ability to 

overcome resistance mechanisms.
8
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cisplatin (Global) 

  

 
 

carboplatin (Global) oxaliplatin (Global) 

  

 

 

nedaplatin (Japan) heptaplatin (South Korea) 

  

 

 

lobaplatin (China) satraplatin (Clinical trials) 

 

Figure 1.3: Platinum(II) complexes which have been approved for clinical use 

(region in parenthesis) and satraplatin, an orally-active platinum(IV) complex 

currently in clinical trials. 
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1.2.3 Second-Generation Platinum Drugs 

 

Carboplatin, diammine(1,1-cyclobutanedicarboxylato-O,O’)platinum(II) (Fig. 1.3) 

was developed to reduce the side effects experienced with cisplatin.  It is structurally 

similar, but a dicarboxylate replaces the cis-dichlorido ligands.
32

  The chelating 

leaving group provides the complex with a reduced rate of aquation, and therefore a 

decreased general toxicity.
33

  This has allowed the administration of a higher dose in 

comparison to cisplatin with diminished side effects.
8
  Since global approval in 

1989, the use of carboplatin in the treatment of ovarian cancer has surpassed that of 

cisplatin.
8
  However, as carboplatin forms identical DNA adducts to cisplatin, it is 

unable to overcome the majority of resistance mechanisms.
34

 

 

Some cisplatin cross-resistance was first overcome by (1R,2R-

diaminocyclohexane)oxalatoplatinum(II) (oxaliplatin, Fig. 1.3),  which was 

approved globally in 2005 for the treatment of colorectal cancer.
19, 35

  Oxaliplatin is a 

member of the same family as cisplatin and carboplatin but is distinguished by its 

chelating diamine ligand.  The bio-transformations of oxaliplatin are similar to 

cisplatin and carboplatin,
36

 with a similarly high affinity for guanine.
35

  The bulky 

cyclohexane ring of the chelating diamine prevents binding of DNA repair proteins, 

reducing (but not entirely eliminating) cross-resistance.
37

  The importance of 

chirality was also assessed, with the R,R- more effective than the S,S- isomer.
37

 

 

1.2.4 The Ongoing Development of Metallodrugs 

 

A further three complexes have each been approved for clinical use in the market of 

a single nation (Fig. 1.3).
8
  Many platinum(II) and platinum(IV) complexes have 

since entered clinical trials including satraplatin, an orally active Pt(IV) complex 

(Fig. 1.3).
38

 Increasingly, the focus of research is directed towards the use of other 

transition metals for the treatment of cancers.
39

 This is in an effort to overcome the 

difficulties of the platinum-based compounds such as the inherent toxicity to all 

tissues (including healthy cells), undesired side-effects and the development of 

cross-resistance.
8, 40

  Employment of different metals may also allow the 

development of anti-tumour agents with alternative modes of action and reactivity 

with biomolecules. 
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1.3 Ruthenium Complexes as Anti-cancer Agents 

 

In a continuing drive to find alternatives to platinum-based anti-tumour drugs, non-

platinum transition metals have since been widely studied with titanium, gallium and 

ruthenium compounds reaching clinical trails.
41, 42

  Ruthenium complexes have 

gathered much interest, as highlighted by several reviews.
41, 43-47

  The ligand 

exchange kinetics of ruthenium are similar to those observed with platinum in 

aqueous solution, with timescales comparable to cellular processes.
48

  Although in 

many cases ruthenium complexes have a similar affinity to DNA, they do show 

differences to platinum compounds.
40

  Much excitement surrounding ruthenium has 

originated from the hypothesis that ruthenium complexes could be transported into 

tumour cells by transferrin,
49

 due the protein having a similar affinity with some 

ruthenium complexes as to iron,
50

 but also the lower general toxicity compared to 

platinum. Both of these properties have been observed in specific cases, but have 

since been largely discounted for ruthenium compounds in general.
51

  Despite this, 

ruthenium is still regarded as the most promising alternative to platinum-based 

cancer therapy. 

 

1.3.1 Ruthenium Ammine Complexes 

 

The first ruthenium compounds to be realised for their potential as anti-cancer agents 

were discovered in 1976 by Durig and co-workers.  They observed that the 

ruthenium(III) complex [fac-Ru(NH3)3Cl3] inhibited the growth of E. coli cells at 

similar concentrations to those of cisplatin.
52

  Later, Clarke and co-workers 

evaluated the cytotoxic properties of a Ru(II) analogue, [cis-Ru(NH3)4Cl2], which 

also exhibited anti-cancer propreties.
53

 While these complexes were active, poor 

water solubility prevented further investigation into their use as pharmaceuticals.
54
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1.3.2 NAMI-A and KP1019:  Ruthenium Complexes in Clinical Trials 

 

At present, the only two ruthenium-based compounds to have successfully entered 

phase I clinical trials are the ruthenium(III) complexes NAMI-A and KP1019 (Fig. 

1.4).
55

  Although structurally similar, the two complexes display different behaviour 

in vivo.   

 

 

 

NAMI-A KP1019 
 

 

Figure 1.4:  NAMI-A and KP1019, two ruthenium(III) complexes in clinical trials 

for use in cancer treatment.  The numbering scheme used for the nitrogen atoms in 

indazole is given for KP1019. 

 

(imiH)[trans-RuCl4(S-DMSO)(N-imi)] (NAMI-A, Fig. 1.4) initially failed in vitro 

screening for anti-cancer activity, but was shown to inhibit the development and 

growth of metastasis tumours in vivo, particularly in the lungs.
56

  This is a useful 

property given the relative success of Pt(II) complexes in the treatment of primary 

tumours.  NAMI-A has been shown to inhibit metastasis invasion by impeding the 

adhesion of cells to substrates,
57

 as well as controlling angiogenesis (development of 

blood vessels) by the inhibition of endothelial cell functions.
58

   The biological 

activity of NAMI-A first arises from a two-step aquation and a reduction process to 

ruthenium(II),
59

 although the latter has yet to be observed in vivo.
59

 Apoptosis is 

caused by the blocking of mitogen-activated protein kinase/extracellular signal-
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regulated kinase signalling pathways and activation of caspase-3.
60, 61

  More recently, 

the Os(III) analogue of NAMI-A, (imiH)[trans-OsCl4(S-DMSO)(N-imi)]  was 

reported with reasonable antiproliferative activity in vitro with IC50 of 103 μM 

(concentration of drug required to inhibit 50% of cell growth) in the HT-29 colon 

carcinoma cell line (NAMI-A IC50 = 340 μM).   The osmium complexes were also 

shown to be kinetically stable in aqueous solution compared to the ruthenium 

variant.
62

  NAMI-A has successfully completed phase I trials,
63

 and is currently 

undergoing phase II studies.   

 

(indH)[trans-RuCl4(N2-ind)2] (KP1019, Fig. 1.4) was discovered by its effect on the 

growth of chemically induced tumours in mice and reported in 1989 by Keppler.
64

  

The imidazole analogue (c.f. NAMI-A) (imiH)[trans-RuCl4(N-imi)2] was reported 

two years earlier by the same group.
65

 In contrast to NAMI-A, KP1019 is cytotoxic 

and displays both in vitro and in vivo activity against to colorectal tumours cells.
66, 67

  

The in vitro activity of KP1019 is an order of magnitude greater than that of NAMI-

A, with an IC50 of 20 μM vs. 340 μM in the HT-29 colon carcinoma cell line.
66

 

 

KP1019 has been demonstrated to form Ru(III) adducts with proteins such as 

transferrin, assisting with the transportation of the complex into cancer cells.
68

  It has 

been suggested that reduction of the ruthenium(III) centre to ruthenium(II) occurs in 

vivo,
49

 although this is yet to be confirmed.
51

  The target of KP1019 is thought to be 

the DNA bases, forming strong mono-functional adducts with guanine and 

adenine,
69

 at the N7 position.
70

  KP1019 was shown to form bi-functional adducts 

with DNA, but to a lesser extent than cisplatin,
71

 and with a smaller degree of 

structural distortion.
71

  The DNA damage and oxidative stress caused by KP1019 is 

thought to result in apoptosis by the intrinsic mitochondrial pathway.
72

  Recently, 

KP1019 successfully completed phase I clinical trials, with a phase II study 

planned.
73

  Although an osmium(III) analogue of KP1019 has not yet been reported, 

Os(IV) compounds following a similar structural motif, including [trans-OsCl4(N1-

ind)2], have been shown to have promising cytotoxic properties.
74
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1.3.3 The “Activation by Reduction” Theory: Ruthenium(II) 

 

An important step in the activation of ruthenium(III) complexes is proposed as the in 

vivo reduction to ruthenium(II), where reduction occurs in the highly reducing and 

often hypoxic conditions found in tumours.
53, 75

  This was hypothesised by Clarke in 

the “activation by reduction” theory as Ru(II) coordinates biomolecules rapidly in 

comparison to Ru(III).
54

  This has resulted in increased efforts in the study of 

ruthenium(II) complexes to aid in the design of new anti-cancer compounds. 

 

In the past decade, a new class of ruthenium(II) compounds featuring the η
6
-arene 

ligand (Fig. 1.5) have proved promising for use as anti-cancer agents.  It is proposed 

that in these complexes the desired +2 oxidation state at the metal centre is stabilised 

by the arene ligand, providing air and water stable compounds.
76, 77

  The 

ruthenium(II) η
6
-arene moiety forms a piano-stool type structure, with three fac-

coordination sites available for fine-tuning by various ligands to obtain the desired 

properties.   

 

 

 

Figure 1.5:  Piano-stool structure of ruthenium(II) η
6
-arene complexes. 

 

The cytotoxic potential of ruthenium(II) η
6
-arene complexes was first realised when 

the anti-cancer activity of an existing agent, metronidazole, was enhanced by 

coordination to a [RuCl2(η
6
-C6H6)] fragment.

76
  Since, anti-tumour ruthenium(II) η

6
-

arene compounds were simultaneously developed by Sadler and Dyson in 2001,
78, 79

 

and since have been the subject of many studies. 
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      IC50 (μM) 

 M η
6
-arene L X refs A549 A2780 

 Ru benzene en Cl 
78

  20 

 Ru p-cymene en Cl 
78, 80

  10 

RM175 Ru biphenyl en Cl 
81, 82

 3.0 5 

 Ru biphenyl en I 
83

  5 

 Ru biphenyl en N3 
83

  4 

 Ru dha en Cl 
80

  2 

HC11 Ru tha en Cl 
80, 81

 0.5 0.4 

 Ru indan bipy Cl 
82

  >100 

 Ru indan phen Cl 
82

  55 

 Ru p-cymene tmeda Cl 
82

  >100 

 Ru p-cymene dab Cl 
82

  11 

 Ru biphenyl dab Cl 
82

  5 

 Ru tha dab Cl 
82

  23 

 Ru p-cymene gly Cl 
82

  >100 

 Ru p-cymene pico Cl 
84

  42.5 

 Ru benzene acac-Me2 Cl 
82

  >50 

 Ru p-cymene acac-Me2 Cl 
82

  19 

 Ru dha acac-Me2 Cl 
82

  70 

 Ru p-cymene acac-
t
Bu2 Cl 

82
  14 

 Ru p-cymene Acac-Ph2 Cl 
82

  11 

 Os bip en Cl 
85

 10 7.6 

 Os tha en Cl 
85

 6.4 9.4 

 Os bip pico Cl 
86

 8 4.2 

  cisplatin   
80, 81

 2.6 0.6 

  carboplatin   
80

  6 

 

Table 1.1: In vitro activity of ruthenium and osmium N,N-, N,O- and O,O- 

complexes, following the general formula of [M
II
(X)(η

6
-arene)(L)]

n+
. IC50 values are 

given for the A549 and A2780 cell lines.  Lower values indicate a greater cytotoxic 

activity. 
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1.4 Classical Ruthenium(II) η
6
-Arene Complexes 

 

1.4.1 1,2-Ethylenediamine Complexes 

 

Since their initial discovery in 2001, Sadler and co-workers have studied complexes 

following the general formula [RuX(η
6
-arene)(L)]

n+
, where X is a leaving group and 

L is an N,N-, N,O- or O,O- chelating ligand.
78

  A summary of these complexes and in 

vitro activity by growth-inhibition assays, the IC550 value, is given in Table 1.1. The 

IC50 is defined as the concentration required to inhibit cell growth by 50 %. 

 

The lead complex (RM175, Fig. 1.6) from the initial report by Sadler and co-workers 

consists of η
6
-biphenyl as the η

6
-arene, 1,2-ethylenediamine (en) as the chelating 

ligand (L) and chlorido as the leaving group (X).  Complexes of this type with the en 

ligand are abbreviated to RAen.  RM175 was found to be equipotent to carboplatin 

in A2780 human ovarian cancer cells.
78

  Reduction in the size of the arene to para-

cymene and η
6
-benzene resulted in reduced activity.  It was later reported that use of 

highly extended aromatics, such as 1,4,9,10-tetrahydroanthracene (tha) in the 

complex HC11 (Fig. 1.6) resulted in greater activities than the smaller arene 

ligands.
80

  The lead compound, HC11 is equipotent to cisplatin in the A2780 ovarian 

cancer cell line.
80

  These complexes are cytotoxic; they exhibit both in vitro and in 

vivo activity against primary tumour cells, similar to KP1019. 

 

  

RM175 HC11 

 

Figure 1.6:  Structures of RM175 and HC11, two leading ruthenium(II) η
6
-arene 

anti-tumour complexes developed by Sadler. 
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The cross-resistance profiles of these complexes were assessed with the cisplatin-

resistant cell line, A2780cis and multi-drug/adriamycin resistant cell line, A2780
AD

.  

These cell lines display acquired resistance to clinical drugs.  For example, 

A2780cis, which is obtained from the repeated exposure of the A2780 cell line to 

cisplatin, has increased DNA-repair and glutathione expression.
87, 88

  The resistance 

factor (RF) is defined as the ratio of IC50 values obtained in the resistant and 

sensitive cell lines; a value of one denotes identical activity in both cell lines, with 

lower values indicating improved activity in the drug-resistant cell line.  For 

example, the RF for cisplatin is 10 and 8 for the A2780cis and A2780
AD

 cell lines 

respectively.  RM175 and HC11 both retained activity in A2780cis (RF 0.5–1), but 

activity was lost in the multi-drug resistant cell line (RF >15).
80

  Therefore, it was 

hypothesised that the RAen complexes have a different mechanism of action 

compared to cisplatin. 

 

1.4.2 Structure-Activity Relationships 

 

Structure-Activity relationships (Table 1.1) further demonstrated the importance of 

the identity of the arene ligand; the greatest activity is observed with extended 

hydrophobic systems.
82

  This increased hydrophobicity was hypothesised to provide 

the complex with a greater ability to passively diffuse through cell membranes, and 

to form stronger interactions with DNA via intercalation.
89

  Studies of the ortho-, 

meta- and para-terphenyl ligands (terpy) in [RuCl(terpy)(en)]
+
 have also supported 

the hypothesis that extended hydrophobic systems enhance cytotoxicity by increased 

intercalation of this group with DNA.  The para-terpy complex displayed high 

activity with IC50 of 4 μM in A2780 (cisplatin 2.8 μM) and was an order of 

magnitude more potent than the ortho- and meta- isomers.
89

 

 

Modification of the leaving group to iodo and azido failed to alter the in vitro 

activity of the en complexes.  This was attributed to these ligands undergoing 

exchange with chloride, resulting from the high intercellular chloride 

concentrations.
83
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Variation of the en ligand by modification of the alkyl backbone also resulted in little 

effect on the in vitro cytotoxicity.
82

  However, removal of hydrogen-bonding donors 

by employment of N,N,N’,N’-tetramethylethylene-1,2-diamine (tmeda) and 2,2’-

bipyridyl (bipy) derivatives, resulted in inactive compounds.
82

  This supports the 

hypothesis that en assists in the stabilisation of the DNA-Ru adduct by formation of 

hydrogen-bonds with the DNA bases.
90

  Since these studies, polypyridyl complexes 

have been shown to be capable of photo-activated DNA binding,
91

 with promising in 

vitro activity.
92

 

 

Introduction of 1,2-diaminobenzene (dab, Scheme 1.2) as the chelating ligand 

resulted in little change in activity to the parent en complexes in the A2780 cell line.  

However, the resistance factor (RF) for the multi-drug resistant variant A2780
AD

 was 

significantly improved to 0.8–2 from >45.  Optimum activity was achieved when 

dab was accompanied by smaller extended arenes, suggesting a limit of lipophilicity 

for optimum cytotoxicity.
82

  The ruthenium dab complexes were shown to undergo 

oxidation to ortho-benzoquinonediimine.
93

  The resulting immine complexes are 

biologically less active, allowing a potential switch mechanism, where the complex 

is activated by the reduction of the immine ligand to dab by the intracellular 

antioxidant glutathione, or from the greater reducing environment of tumour cells 

(Scheme 1.2).
93

 

 

 

 

Scheme 1.2: Reduction/Oxidation of the ortho-benzoquinonediimine/1,2-

diaminobenzene chelating ligand (L) in the complex [RuCl(η
6
-p-cym)(L)], which is 

capable of acting as a switch mechanism.  
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Antiproliferative activity was retained on use of O,O- chelating diketones (Fig. 1.7) 

in comparison to en, with activity loosely correlating with lipophilicity of the 

diketone.
82

  In contrast to the en complexes, the activity dependence upon the size of 

the arene is no longer applicable; the η
6
-benzene complex, and those with an 

extended arene, such as 9,10-dihydroanthracene (dha), were found to be less active 

than the p-cymene and biphenyl complexes.
82

 These complexes rapidly aquate and it 

was hypothesised that bulkier arene ligands, such as p-cymene and biphenyl, protect 

the chelating ligand from displacement and deactivation.
94

  Coordination of the β-

diketone curcumin, a natural product, gave active compounds which display 

moderate activity in vitro with IC50 of 23 μM in the A2780 cell line (vs. cisplatin 1.3 

μM).
95

  

 

Use of mixed N,O- chelating ligands, such as natural amino acids, in Sadler’s 

structure-activity relationship studies failed to provide active candidates.
82

  However, 

some moderately active compounds have since been reported, such as [RuCl(η
6
-p-

cym)(pico)] (pico = picolinate) by McGowan and co-workers (Fig. 1.7).
84

 

 

  

 

Figure 1.7:  Structures of cytotoxic ruthenium(II) η
6
-arene complexes [RuCl(η

6
-p-

cym)(acac)] (left) and [RuCl(η
6
-p-cym)(pico)] (right) with O,O- and N,O- chelating 

ligands. 
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1.4.3 Mechanism of Action 

 

Studies with the ruthenium RAen complexes RM175 and HC11 revealed that the 

reaction of these species with nucleobases proceeds via the corresponding aqua-

adduct [Ru(OH2)(η
6
-arene)(en)]

2+
 (Scheme 1.3).

96
 Further investigations 

demonstrated that aquation is rapid, with first-order rates which are greater than 

twenty times that of cisplatin.
97

  The pKas of the resulting complexes were 

determined as 7.71 and 8.01 respectively, so therefore hydrolysis is expected to be 

largely suppressed at physiological pH with the more reactive aqua adduct 

dominating.
97

 

 

 

 

Scheme 1.3: Proposed aquation and DNA binding of the RAen complexes, causing a 

break of an adjacent base pairing and eventual apoptosis.  Delivery of the complex to 

DNA is hypothesised to be via coordination of glutathione. 
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It is predicted that at therapeutic-relevant concentrations of the RAen complexes, the 

chlorido species dominates in the relatively high chloride concentrations of blood 

plasma (>89%). However, upon transportation into the cell where chloride 

concentrations are lower, 45–65% of the bulk will exist as the aqua adduct with 9–

25% as the hydroxy complex.
97

  Exposure of analogous complexes with other 

halides to physiological chloride concentrations results in the formation of the 

chlorido complex, thus rendering the alternative leaving groups redundant, and 

therefore producing no effect on cytotoxicity when used in vivo.
83

 

 

Similar to cisplatin, DNA is hypothesised as the eventual target for the RAen 

complexes, but only a single covalent bond is formed between the ruthenium centre 

and purine base by displacement of the aqua ligand (Scheme 1.3).
90, 96, 98

  There is 

strong preference for binding to the N7 of guanine, verified by interactions of 

RM175 with an oligonucleotide and analysis by negative ion ESI-MS.
78

  DNA 

ruthenation is similar to the platination by cisplatin and correlates to cytotoxic 

potency with the RAen complexes binding DNA stronger than cisplatin.
51, 99

  The 

DNA base selectivity of RAen complexes is in the order of guanine(N7) > 

thymine(N3) > cytosine(N3) > adenine(N7) > adenine(N1) as determined by 

reactions with the mononucleosides.
96

  The guanine adduct was the 

thermodynamically favoured product in competitive reactions.
96

  With modification 

of the chelating ligand from en to the anionic acetylacetonate (acac), the rate and 

extent of hydrolysis are not only increased,
82

 but the affinity for adenine was found 

to be greater than guanine.
96

  This was thought to be due to specific hydrogen-bond 

recognition of the complex by the bases.  

 

The structural features which assist in the binding of RAen complexes to DNA via 

guanine were demonstrated in the crystal structures of the 9-ethyl guanine adduct of 

HC11 (Fig. 1.8).
90

  The selectivity towards the N7 of guanine is enhanced by 

hydrogen-bond formation between the en NH protons and the O6 of guanine and the 

hydrophobic interactions of the extended arenes with the DNA core by 

intercalation,
100, 101

 resulting in the unwinding of DNA by at least 14°.
102
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Figure 1.8: Left: X-ray crystal structure of [Ru(en)(EtG)(η
6
-tha)]

2+
, showing the 

hydrogen-bond between the en NH ankl=d the O6 of guanine, and the arene-

nucleobase stacking.
90

 Right:  Structure and numbering scheme of 9-Ethylguanine 

(EtG) 

 

Ab initio studies based on [RuCl(η
6
-p-cymene)(en)]

+
 additionally suggested that 

binding of this complex to duplex DNA results in a break in an adjacent Watson-

crick base pair.
103

  The mechanisms of aquation and Ru-DNA adduct formation have 

also been investigated using computational methods.
104, 105

  It is hypothesised that 

this structural distortion is recognised by the cell and it has been shown that RM175 

causes cell-cycle arrest and apoptosis by a p53 (tumour suppressor protein) and Bax 

(apoptosis-inducing protein) dependant mechanism.
106

   

 

Although the Ru-G adduct is resistant to hydrolysis, at the elevated temperatures for 

annealing DNA the ruthenium moiety is capable of migrating to other G residues in 

DNA suggesting that the complex may be easily removed from damaged DNA.
99

 

Therefore, DNA may not be the ultimate target of the RAen complexes.  This is in 

contrast to cisplatin where stable, strong adducts are formed and suggests an 

additional contribution to the differing mechanism of these two compounds.
24

  

Ruthenium migration occurs via a SN1 pathway, with complex dissociation assisted 

by the solvent and followed by coordination of a nearby guanine-N7. 

 

The en complexes exhibit high selectivity for DNA bases over other biomolecules, 

including cytochrome c and L-histidine.
107

  Furthermore, competitive reactions with 

O6 NH 

Ru 

N7 
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glutathione showed that in addition to the Ru-guanine adduct being 

thermodynamically favoured, the abundant intracellular reducing agent may be 

involved in the ruthenation of DNA by delivering the complex to the nucleus, 

thereby protecting it.
108

  In contrast, glutathione is capable of the detoxification of 

cisplatin, and up-regulation is associated with cisplatin resistance.
18, 109

   

 

In addition to DNA, a potential target for the RAen complexes was identified as 

protein tyrosine phosphatase 1B, a key target for the treatment of breast and ovarian 

cancers.  The para-cymene complex [RuCl(η
6
-p-cym)(en)]

+
 inhibits the enzyme with 

an IC50 of 19 µM.
110

  Preferential binding of the ruthenium complex was 

demonstrated with employment of the model compound 2-mercaptobenzanilide, 

even in the presence of excess glutathione.
110

  This study also demonstrated the 

ability for the en ligand to be labilised at low pH by thiol coordination. 

 

1.4.4 Osmium Analogues 

 

The importance of the metal used in these compounds was investigated by Sadler 

with the preparation of osmium analogues of RM175 and its related compounds.  

The ethylenediamine complex [OsCl(η
6
-bip)(en)]PF6 (Fig. 1.9) was initially found to 

be inactive and this was thought to be due to the slow aquation and domination of 

the inactive hydroxy species [Os(OH)(η
6
-bip)(en)]

+
 with pKa 6.3.

94
  Modification of 

the chelating ligand to O,O- donors in [OsCl(η
6
-p-cym)(L)] L = acac or maltolato, 

provided complexes which readily aquate with a biologically accessible pKa of 7.6.  

These complexes rapidly form adducts with guanine and adenosine bases, but in both 

cases formation of the dimer [{Os(η
6
-p-cym)}(OH)3{Os(η

6
-p-cym)}]

+
 resulted in an 

inactive species.
94, 111

 

 

To overcome these difficulties, N,O- donor ligands were employed to combine the 

stability of the complexes containing en with the more ideal aquation reactivity of 

the acac ligand.  The complex [OsCl(η
6
-bip)(pico)] (Fig. 1.9) readily aquates without 

dimer formation,  giving a highly active complex in vitro with an IC50 of 4.2 μM 

(equipotent to carboplatin) for the A2780 cell line.
86

  This line of compounds have 

since been optimised by variation of substituent groups on the pyridyl ring.
112

  The 
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arene ligand is also thought to be important in the activity of these compounds, with 

a similar hydrophobicity trend as the ruthenium complexes.
113

 

 

 

 

Figure 1.9:  Structures of cytotoxic osmium(II) η
6
-arene complexes [OsCl(η

6
-

bip)(en)]PF6, an analogue of RM175 (left) and [OsCl(η
6
-bip)(pico)], designed to 

balance the reactivity of N,N- and O,O- chelating ligands (right) 

 

Re-evaluation of [OsCl(η
6
-bip)(en)]PF6 showed that the decomposition of the 

complex in DMSO prior to its use in growth inhibition assays accounted for its 

apparent inactivity.
85

  Use of freshly prepared solutions of [OsCl(η
6
-arene)(en)]BF4 

(arene = bip or tha) were found to be highly active in vitro with IC50 of 7.6 μM in 

A2780, equipotent to RM175 and carboplatin.
85

  The osmium en complexes have an 

affinity for guanine and adenine bases, similar to their ruthenium analogues,
85

 and 

have been demonstrated to bind to DNA as a potential biological target.
114

  Although 

highly active, the osmium en complexes are two orders of magnitude less reactive 

then the ruthenium variants.
85

  This may reduce the occurrence of side effects in 

clinical use, in a similar manner to the reduced reactivity of carboplatin compared to 

cisplatin. 

 

1.4.5 Conclusions 

 

The RAen family of compounds are capable of high activities when a suitably 

hydrophobic arene ligand (e.g. tha) is employed.  The in vitro activities of these 

complexes are comparable to carboplatin and cisplatin.  Although they are 

hypothesised to inhibit tumour growth by a classical mechanism, they have been 

demonstrated to overcome some platinum cross-resistance.  Although highly 
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promising, there are also efforts to develop ruthenium(II) η
6
-arene complexes which 

employ non-classical mechanisms. 

1.5 Non-Classical RAPTA Complexes 

 

1.5.1 Initial Discovery 

 

Ruthenium (II) arene complexes containing P-1,3,5-triaza-7-phosphatricyclo-

[3.3.1.1]decanephosphine (PTA), termed ‘RAPTA’, were initially reported in 2001. 

The para-cymene derivative, RuCl2(p-cym)(PTA) “RAPTA-C” (Fig. 1.10) exhibited 

pH dependent DNA damage, with the greatest damage occurring at the pH proposed 

to occur within cancer cells (pH < 7).
79, 115

  Molecular dynamics simulations showed 

that RAPTC-C induces a localised kink in duplex DNA by forming intrastrand cross-

links between guanine bases.
103

   

 

  

RAPTA-C  

 

Figure 1.10:  Structures of the anti-metastatic agent RAPTA-C (left) and the N-Me 

modified complex (right), in which selectivity for tumour cells is lost. 

 

The In vitro biological activity of several RAPTA compounds was investigated with 

the TS/A mouse adenocarcinoma cancer and HBL-100 human mammary (non-

tumour) cell lines (Table 1.2).  These studies revealed that RAPTA complexes are 

moderately active against the cancer cell line, but inactive in the non-tumour cells 

(up to 300 μM).
116

   

 

It was proposed that potential binding of RAPTA complexes to biomolecular targets 

at pH values typical of hypoxic cells involved N-protonation of the PTA ligand, 
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potentially forming a secondary hydrogen-bond interaction.  To explore this 

hypothesis, an N-methylated analogue of the PTA ligand was prepared.  This 

modification resulted in the increased cytotoxicity to both tumour and healthy cell 

lines, but with the loss of selectivity to the cancer cells (Table 1.2).
116

 

 

   IC50 / μM 

 η
6
-arene L TS/A HBL-100 

RAPTA-B benzene PTA 231 > 300 

RAPTA-T toluene PTA 74 > 300 

RAPTA-C p-cym PTA > 300 > 300 

 p-cym MePTA
+ > 300 246 

RAPTA-H C6Me6 PTA 199 > 300 

 

Table 1.2:  Initial in vitro biological evaluation of RAPTA complexes with TS/A 

(adenocarcinoma) and healthy HBL-100 cells following the formula [Ru
II
Cl2(η

6
-

arene)(L)]
n+

. 

 

Due to having similar behaviour in vitro to NAMI-A, both RAPTA-C and RAPTA-B 

were selected for in vivo evaluation on CBA sub-strain of mice bearing the MCa 

mammary carcinoma.
116

 Like the in vitro studies, reduction of primary tumour 

growth was not observed, but activity was seen against secondary lung metastases, 

indicating that like NAMI-A, RAPTA-C acts as an anti-metastatic agent.
116

 

 

Given the similarities with NAMI-A, the RAPTA series were considered to be a 

viable contender for further studies.  In addition to a high selectivity against 

secondary metastasis tumours, RAPTA compounds were also discovered to possess 

anti-angiogenic (anti-blood vessel development) properties.
117

  Although the RAPTA 

complexes are not as cytotoxic as those with the en ligand, they exhibited a 

significant enough selectivity for tumours over healthy cells, providing a distinct 

therapeutic advantage. 
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1.5.2 Mechanism of Action 

 

Studies on the aquation and hydrolysis of RAPTA-C (Scheme 1.4) highlighted the 

important steps needed for the activation of these complexes in biological systems.  

Under physiologically relevant conditions, the major product was found to be the 

mono-aqua adduct, [RuCl(p-cymene)(OH2)(PTA)]
+
, along with a smaller amount of 

[Ru(OH)(p-cymene)(OH2)(PTA)]
+
.
118

 Aquation of this complex is two orders of 

magnitude faster than cisplatin, and approximately three times faster than the RAen 

complexes described earlier.   

 

 

 

Scheme 1.4: Aquation and hydrolysis reactions of RAPTA-C which are accessible 

under physiologically-relevant conditions.  It is proposed these reactions occur when 

the complex enters the cell, where the chloride concentration is lower than in the 

blood. 

 

In order to optimise the pKa of the aqua ligand to match the pH of tumour cells, 

Computational studies (Density Functional Theory) suggested incorporation of 

fluorinated analogues of the arene ligands such as η
6
-C6H5CF3 into the complexes.

119
  

This resulted in an improvement of in vitro activity by ten-fold in the A2780 cell line 

(IC50 38 μM vs. 353 μM for the p-cymene analogue).  This is hypothesised to be the 

result of suppression of hydrolysis of the aqua ligand selectively in the lower pH 

environment of tumour cells.
119

 

  

In contrast to cisplatin and the RAen complexes, the RAPTA family of complexes 

are not believed to reduce tumour growth through coordination to DNA, since no 

correlation between DNA interactions and activity was observed.
116, 120

  Therefore 

investigations were directed towards the interaction of RAPTA compounds with 

proteins.  Recent work has found that even in the nucleosomal core, where the DNA 
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concentration is at its highest, RAPTA-C preferentially forms stable adducts with 

chromatin at specific histone protein sites in favour of ruthenium-DNA 

interactions.
121

 

 

RAPTA-T was found to inhibit steps associated with metastasis in vitro such as 

detachment and re-adhesion of tumour cells.
122

  Therefore, RAPTA-T was evaluated 

for its ability to bind or inhibit potential target enzymes in these processes.  RAPTA-

T was found to be a potent inhibitor of cathepsin B, a protease commonly over 

expressed in tumours, and it also showed limited inhibition of thioredoxin reductase, 

an enzyme essential for cell growth.
123

  Molecular docking studies have suggested 

that RAPTA complexes may bind to an important cysteine residue within the active 

site of cathepsin B (Fig. 1.11).
123

 

 

 

 

Figure 1.11:  Left: Docking geometry of [RuCl2(η
6
-C6H5(CH2)5OH)(PTA)] with the 

active site of the enzyme cathepsin B.  A cysteine thiol is coordinated to the 

ruthenium complex and the arene participates in hydrogen bonds with histidine 

residues.  Diagram taken from ref.
123

  Structure of fluorescent anthracene tagged 

RAPTA complex used to investigate accumulation of the complex within cells by 

emission studies (right). 

 

  



27 

 

The eventual target for RAPTA-C and RAPTA-T remains unknown and efforts to 

identify its biological targets are ongoing.  The distribution of RAPTA complexes in 

the cell was investigated by tethering the RAPTA moiety to anthracene to act as a 

fluorescent label for the complex (Fig. 1.11).
124

  The fluorophore-labelled complexes 

showed similar cellular uptake and in vitro cytotoxicity to RAPTA-C and RAPTA-T.  

Although the cellular distribution of the anthracene-tagged complex may not reflect 

those of the whole RAPTA family, fluorescence emission studies revealed that the 

complex does not accumulate in the cell nucleus; this evidence was proposed to 

support the hypothesis that RAPTA complexes do not target DNA.
124

  Further 

studies are focusing on the possible conjugation of functionalised RAPTA 

complexes to biomolecular targets, but at present, only results which demonstrate the 

proof-of-concept are so far reported.
125

 

 

Cysteine-rich intracellular compounds, such as glutathione (GSH), are known to be 

involved in the detoxification of cisplatin and the increased expression of GSH is 

often associated with cisplatin resistance.
18

  GSH was also demonstrated to cleave 

RAPTA-C from the model protein ubiquitin, resulting in detoxification of the 

complex.
126

  Furthermore, the protein metallothionein-2, which is also responsible 

for resistance to metallo-drugs by the displacement of zinc, was shown to abstract 

RAPTA-C from ubiquitin, with a greater ability compared to cisplatin.
127

 

 

Eventual apoptosis induced by RAPTA-C, in Ehrlich ascites carcinoma cells was 

found to occur by the triggering of the mitochondrial apoptotic pathway causing 

increased levels of p53 (tumour suppressor protein).
128

  In addition, with increased 

expression of p21 (regulator of cell cycle suppression) levels and reduced cyclin E 

levels (required for progression of cell cycle from G1 to S) were also observed.
128
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1.5.3 Structural Modifications 

 

A series of structural modifications to the RAPTA complexes have been made not 

only to improve their activity, but to suggest at possible mechanisms of action.  The 

osmium analogue of RAPTA-C, [OsCl2(η
6
-p-cymene)(PTA)] has been studied but to 

a lesser extent.  It was found to exhibit similar DNA binding and in vitro activity 

profiles to the ruthenium analogue.
120, 129

  No clear conclusions were formed on the 

influence of the metal on in vivo activity. 

 

1.5.3.1 Phosphane and Arene Modification 

 

The η
6
-arene ligand was modified to include hydrogen-bonding substituents in an 

effort to increase anti-tumour activity, by enhancing complex-DNA interactions.  

This either reduced or failed to affect the anti-tumour activity of the complexes.
130

  

However, an improvement of in vitro cytotoxicity against primary tumours was 

achieved by the inclusion of these hydrogen-bonding capable arenes and a 

triphenylphosphane ligand (Fig. 1.12).  Although this resulted in improved cellular 

uptake of the complex and increased the affinity of the complex for DNA, the 

complex was no longer of selectivity for cancer cells over healthy cells.
131

  In 

contrast to the improved DNA binding, poorer selectivity for the proteins ubiquitin 

(directs protein recycling) and cytochrome c (involved in electron transport) was 

observed with the complexes containing the triphenylphosphane ligand.
131

  This 

supports the hypothesis that the biological effects of the RAPTA complexes are due 

to interactions with proteins rather than DNA. Replacement of the 

triphenylphosphane ligand with PPh2R, where R incorporates an extended 

perfluorinated alkyl chain, results in highly cytotoxic compounds (IC50 = 1–11 μM at 

37°C), with thermo-responsive properties; a small activity increase (ΔIC50 = 0.3–2 

μM) was found at elevated temperatures (42°C).
132
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Figure 1.12:  Left: Modification of the RAPTA complexes to include a hydrogen 

bonding substituent on the arene ligand, designed to improve uptake and DNA 

binding. Right: Structure of [RuCl(η
6
-benzene)(PTN)]BF4, where a modification of 

the RAPTA structure has been made to include the ruthenium centre in the 

adamantane structure of the PTA ligand.  

 

A structural variation of the PTA moiety, 3,7-dimethyl-7-phospa-1,3,5-

triazabicyclo[3.3.1]nonane (PTN) was introduced to evaluate the effect of a P–N 

chelate without altering the acid-base properties and solubility of the complexes (Fig. 

1.12). Although the ability for the complex to bind DNA was reduced in comparison 

to the PTA analogues, the complex retained anti-tumour activity and affinity for the 

protein ubiquitin, therefore suggesting that the primary targets of the RAPTA 

compounds are likely to be proteins rather than DNA.
133

 

 

Further modifications of the phosphane ligand were possible by employing a 

phosphite-carbohydrate ligand (Fig. 1.13).
134

  In aqueous solution, the initial 

aquation and hydrolysis of the Ru–Cl bonds occurs followed by the hydrolysis of the 

phosphite P–O bonds.  Both of these processes were found to be suppressed with 

high chloride concentrations.
134

  The reported complexes were selective towards a 

range of tumour cells in comparison to healthy cells, including the cisplatin-resistant 

A2780cisR cell line.
134
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Figure 1.13:  Structure of ruthenium(II) η
6
-arene complexes with a phosphite-

carbohydrate ligand to provide increased structural variation over PTA via the R 

group, which were evaluated for activity against tumour cells. 

 

1.5.3.2 Aquation-Resistant Complexes 

 

In an effort to improve activity of the RAPTA compounds, the cis-chlorido ligands 

were replaced with chelating O,O-donor ligands, in a similar manner to the 

development of the second generation platinum drugs.  These complexes were 

designed to suppress the aquation of the RAPTA complexes.  The structural 

modification was achieved with both a dicarboxylate and oxalate group, giving 

carboplatin and oxaliplatin analogues, named carbo-RAPTA and oxali-RAPTA 

respectively (Fig. 1.14).
135

 However, this failed to enhance the antiproliferative 

activity of the complexes in comparison to the cis-chlorido analogues.  Interactions 

of the three RAPTA complexes were observed with the proteins cytochrome c and 

lysozyme, with preferential binding to surface histidines.
136
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Figure 1.14: RAPTA-C analogues of the second generation platinum drugs, 

carboplatin and oxaliplatin, and the Ph2acac based complex, a highly active complex 

designed to resist aquation. 

 

Following the ruthenium(II) η
6
-arene 1,3-diketonato complexes developed by Sadler 

which are as cytotoxic as their en analogues, Dyson and co-workers prepared a series 

of PTA-acac complexes (Fig. 1.14), designed to resist aquation.
137

  Unlike the parent 

RAPTA complexes, the acac derivatives were found to be cytotoxic in vitro. As 

expected, the complexes of ligands with lipophilic groups exhibited the greatest 

antiproliferative abilities, with IC50 values of 50 and 14 µM reported for 

[Ru(Ph2acac)(p-cym)(PTA)]
+
 in the A549 and A2780 cell lines respectively.

137
  

Although initially over-looked, the successful employment of the acac ligand as a 

leaving group in ruthenium anti-tumour complexes lead to the development of highly 

cytotoxic Pt(II) acac complexes including [Pt(Ph2acac)(NH3)2]NO3.
138

 

 

1.5.3.3 Targeted Therapy 

 

The GST inhibitor ethacrynic acid was incorporated into the η
6
-arene ligand in the 

RAPTA motif (Fig. 1.15) to direct the complex to target glutathione S-transferases 

(GST). These enzymes are responsible for removing xenobiotics from a cell; 

therefore inhibition of these enzymes results in an accumulation of potentially toxic 

compounds.  GSTs, especially GSTP1-1, are frequently over-expressed in solid 

tumours.
139
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ethaRAPTA 

 

Figure 1.15: Structure of the RAPTA moiety functionalised with ethacrynic acid 

through an amide linker, designed to inhibit GST enzymes, which are responsible for 

removing xenobiotics from the cell. 

 

Ethacrynic acid is incorporated by an amide linker in ethaRAPTA (Fig. 1.15).  The 

ethacrynic moiety is able to bind to the active site in addition to the ruthenium centre 

binding to its cysteine target.
139

  The affinity of this ruthenium complex for GST P1-

1 was greater than ethacrynic acid alone.
139

  A two-wave apoptosis is induced by 

ethaRAPTA, proposed to be the result of initial binding to GSTP1-1 through the 

ethacrynic acid group, followed by the release of the metal fragment from drug 

processing.
140

  Ethacrynic acid was also employed as a ligand in the cisplatin Pt(IV) 

analogue [cis,trans,cis-PtCl2(Ea)2(NH3)2] (Ea = ethacrynic acid).  It is proposed that 

intracellular reduction of this complex to Pt(II) results in generation of cisplatin and 

ethacrynic acid, targeting both the inhibition of GSTs and cisplatin-induced DNA 

damage.
141

 

 

1.5.4 Conclusions 

 

Although many details about the mechanism by which RAPTA compounds inhibit 

tumour growth remains unknown, they are highly promising with activity selectively 

against metastases.  Compounds of this type are potentially powerful in the treatment 

of cancers, as the point at which a tumour becomes life threatening is considered to 

be at which the primary tumour metastasises.  The cross-resistance of the RAPTA 

complexes with cisplatin remains largely unknown.  Aside from these complexes, 

many other non-classical complexes have been investigated; some are discussed in 

the next section.  
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1.6 Other Non-Classical Ruthenium(II) η
6
-Arene Compounds 

 

1.6.1 Catalytic Anti-cancer agents 

 

The mechanism by which a metal complex inhibits cell proliferation is not limited to 

the coordination of biomolecules or the disruption of an existing biological pathway.  

A promising family of compounds are the ruthenium(II) η
6
-arene iodo-

phenylazopyridine complexes, reported by Sadler and co-workers (Table 1.3).
142

   

 

 

    IC50 (μM) 

M η
6
-arene R X A549 A2780 

Ru p-cymene NMe2 Cl > 100 > 100 

Ru p-cymene NMe2 I 3 4 

Os p-cymene NMe2 Cl 5.23 1.8 

Os p-cymene NMe2 I 0.38 0.14 

Ru biphenyl NMe2 Cl 49 44 

Ru biphenyl NMe2 I 2 3 

b 
 NMe2  14 > 100 

Ru biphenyl H I > 100 > 100 

b 
 H  > 100 > 100 

 cisplatin
a 

  4.10 1.8 

 

Table 1.3: Structure and in vitro biological evaluation of catalytic ruthenium and 

osmium complexes as anti-tumour agents.  The iodo complexes are inert to 

substitution with water and have been shown to catalyse the oxidation of glutathione. 

a) only reported with Os complexes, b) free ligand. 
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These phenylazopyridine complexes, with a hydroxy or dimethylamino substituent, 

were found to be highly active in the growth inhibition of both A2780 and A549 cell 

lines.
142

  The iodo complexes are inert to aquation, whereas the chlorido analogues 

readily aquate and are significantly less active.
143

 

 

The antiproliferative activity of these complexes is hypothesised to involve reduction 

of the azopyridine ligand by intracellular reducing agents, such as glutathione.  

Reduction of the free ligand is biologically inaccessible but its coordination to the 

metal allows for this process to occur.  It is proposed that these complexes catalyse 

the oxidation of glutathione (GSH) to glutathione disulfide (GSSG), leading to an 

accumulation of reactive oxygen species, and eventual cell death.
142

 

 

Osmium analogues of these complexes have also been studied, with activity 

measured to be over an order of magnitude greater than that of the ruthenium 

compounds or cisplatin.
144

  Again, the iodo complexes which were inert to aquation 

were found to display the greatest activity, with aquation-capable chlorido 

complexes significantly less active.
144

  However, unlike the Ru(II) complexes, they 

have not been shown to catalyse the oxidation of GSH, but it is still hypothesised 

that they catalyse the generation of other reactive oxygen species within the cell.
145

 

 

1.6.2 Complexes Designed to Inhibit Enzymes 

 

A series of half-sandwich η
5
-C5H5 ruthenium(II) carbonyl complexes, which are 

inert to substitution, have been developed to mimic the natural product 

staurosporin.
146

  Both staurosporin and the ruthenium mimics selectively inhibit 

protein kinases, which are responsible for the transfer of phosphate to various 

substrates and is vital for many cellular functions, including signalling pathways.
147

  

Development of these ruthenium complexes allowed for a larger variety of structural 

modifications to be screened for inhibition activity.
147

 

 

The complex DW1/2,a racemic mixture of two isomers (Fig. 1.16) was found to have 

a high affinity for the kinase GSK3beta and Pim-1 enzymes.
148, 149

  These complexes 

were found to successfully inhibit the activity of GSK3beta and PI3K leading to p53 

mediated apoptosis.
150

  These complexes are highly active in inhibiting the growth of 
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1205 Lu melanoma cells, with IC50 values below 1 μM.
151

  The dependence on the 

geometry of the complex was demonstrated by the observation of identical dose-

response curves for both ruthenium and osmium analogues.
151

  These complexes do 

not involve reactivity of the metal centre in their mode of action. 

 

 

 

Figure 1.16:  Left: DW1/2, a half-sandwich ruthenium(II) complexes that selectively 

inhibits protein kinases.  Right: Ruthenium(II) η
6
-arene complex with a paullone 

derived ligand which inhibits cyclin-dependant kinases. 

 

Highly cytotoxic ruthenium(II) η
6
-arene complexes with ligands based on the 

biologically active paullones (Fig. 1.16) were also demonstrated to inhibit enzymes, 

with IC50 values as low as 0.5 μM.
152

  The paullone ligand occupies the active site of 

cyclin-dependant kinases, which control progression of the cell cycle.
153

  However, 

as with DW1/2 it is hypothesised that the antiproliferative activity of the complex 

results from ligand-protein interactions with the metal acting as a scaffold.
152

 

 

Other kinase inhibitor ligands based on indirubin have recently been incorporated 

into ruthenium(II) η
6
-arene complexes with excellent in vitro cytotoxic activity with 

IC50 values as low as 0.3 μM.
154

  Although these complexes were demonstrated to 

aquate, it was hypothesised that coordination of biomolecules by the displacement of 

the aqua ligand did not account for activity, with the inert osmium analogues most 

active.  Again, it was proposed that activity originates from the inhibition of kinases 

by the ligand, with the metal an innocent in the mechanism.  
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1.7 Ruthenium η
6
-Arene Complexes: Conclusions 

 

The number of reported ruthenium(II) η
6
-arene anti-cancer compounds, although a 

relatively young area, is vast.
76, 155, 156

  Many more types of ruthenium(II) complexes 

have been studied;
7, 42, 46, 55, 157

 some of these are discussed later in this thesis.  

Numerous ruthenium(II) η
6
-arene complexes have been identified which are highly 

effective in the inhibition of tumour cell growth.  However, to potentially replace 

platinum based chemotherapeutics in the clinic, one or more of several problems 

with these drugs must be overcome. 

 

A significant problem experienced with Pt(II) compounds for the treatment of 

tumours is acquired resistance.
158, 159

  Therefore, new complexes which exploit other 

pathways of inhibiting growth are desirable, thereby avoiding these resistance 

mechanisms.  The RAen complexes developed have been demonstrated to retain 

activity in cisplatin-resistant cells with some even overcoming multi-drug 

resistance.
80, 82

  These complexes are among the most cytotoxic of the ruthenium(II) 

compounds reported, but they selectively bind to the N7 of guanine in DNA like 

cisplatin.
96

  Resistance is possibly overcome by differing reactivity with intracellular 

thiols (which detoxify cisplatin),
108

 and through causing different structural 

distortions of DNA.
90, 98

  Although the cross-resistance of RAen complexes and 

cisplatin is yet to be observed, some DNA repair mechanisms developed by tumour 

cells may affect the activity of these ruthenium compounds. 

 

The most promising complexes for overcoming both the inherent and acquired 

resistance of Pt(II) complexes are those with non-classical mechanisms.
7
  It is these 

types of compounds which have the greatest potential for use in the clinic.  

Relatively little is known about the mechanism of action for the most promising 

candidates, NAMI-A and RAPTA-C, compared to the classical compounds. 

However, these non-classical compounds are not necessarily unaffected by cross-

resistance with cisplatin.
127

  For example, It has been demonstrated that GSH, which 

detoxifies cisplatin, can displace RATPTA-C from proteins, which are hypothesised 

as a potential target for these complexes.
126
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An unpleasant aspect of platinum based therapy are its associated side-effects, such 

as the renal toxicity.
8, 160

  The reduction of these side effects may be achieved by 

increasing the selectivity of drugs for cancer cells over healthy tissue.
160

  Such 

selectivity has already been demonstrated by the RAPTA family of complexes 

which, in vivo only inhibit the growth of secondary metastases.
116

  However, their 

lack of activity against primary tumours is likely to allow for their use alongside 

other agents, such as platinum drugs.   

 

Although biologically active ligands have been incorporated into ruthenium 

complexes in an attempt to direct the complex to bind proteins or to improve the 

potency of the ligand, their activity is dominated by the pre-existing inhibitor and 

often does not exploit the chemistry available at the ruthenium centre, such as the 

previously discussed staurosporine mimics developed by Meggers.
146

 

 

Several highly potent ruthenium(II) complexes have been identified with in vitro 

cytotoxicities marginally surpassing that of cisplatin.
80, 82, 142

  However, it is often 

common practice to incorporate hydrophobic groups into complexes to achieve 

higher activity, hypothesised to be a result of increased cellular uptake of the drug by 

passive diffusion.
82, 131

  However, this modification also reduces the complex’s water 

solubility, hindering any potential clinical application.  There is therefore a fine 

balance that needs to be achieved in order to maximise both the compounds activity 

and bio-availability. 

 

While ruthenium(II) η
6
-arene complexes are a promising and prospective class of 

compounds, there remain several challenges to overcome before they—or other 

piano-stool type complexes—can be seriously considered for clinical application.  

Ideally, a compound should begin to overcome several of the issues described here 

by having properties such as high potency, good water solubility, an alternative 

mode-of-action to cisplatin (therefore overcoming resistance mechanisms) and some 

selectivity for cancer cells.  It is hypothesised that one possible way to achieve this 

may be by employing of a new facial-coordinating ligand. 
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1.8 Is the η
6
-Arene Ligand Vital for Anti-cancer Activity? 

 

This thesis is focused on the use of an alternative neutral six-electron donor fac-

coordinating ligand for the design of highly cytotoxic metal complexes, based on the 

proven piano-stool structural motif of the ruthenium(II) η
6
-arene complexes. 

 

The requirement for the η
6
-arene ligand in ruthenium(II) anti-cancer complexes was 

first examined by Alessio and co-workers who replaced the arene ligand with the 

cyclothioether, 1,4,7-trithiacyclononane (ttcn).
161

  The antiproliferative activity of 

ttcn complexes (Fig. 1.17) were found to be comparable to the respective η
6
-arene 

analogues (Table 1.4), with minimal loss of activity.  The en complex 

[RuCl(en)(ttcn)]OTf  was found to be the most active,  but lack of data using 

identical cell lines prevents direct comparison with the RAen compounds.  A 

RAPTA analogue, [RuCl(PTA)2(ttcn)]OTf, showed similar selectivity for tumour 

cells over healthy cells when compared to the parent RAPTA complexes.
161

  

 

  

 

Figure 1.17: Ttcn analogues of ruthenium η
6
-arene complexes.  The RAPTA 

analogue with the PTA ligand shows similar selectivity to RAPTA-B (left) and the 

RM175 analogue with en is moderately active against tumour cells in vitro (right). 
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 IC50 (μM) 

Complex TS/A HBL-100 

[RuCl2(PTA)(ttcn)] 650 738 

[RuCl(PTA)2(ttcn)]OTf 388 >1000 

[RuCl(en)(ttcn)]OTf 65 175 

RAPTA-C 507 >1000 

RAPTA-B 231 >1000 

 

Table 1.4:  In vitro biological evaluation of ttcn complexes designed to resemble the 

promising ruthenium η
6
-arene compounds in the TS/A carcinoma and HBL-100 

healthy cell lines.
161

  

 

Further studies on complexes of the ttcn ligand were continued with bipyridyl (bipy) 

ligands which had been functionalised with groups such as hydroxyl and 

carboxylate, capable of forming hydrogen-bonding interactions with potential target 

molecules. However, none of these complexes were found to be of a sufficient 

enough cytotoxicity in vitro, reflecting the findings of studies with the ruthenium(II) 

η
6
-arenes complexes.

162, 163
  Highly active compounds were successfully obtained by 

the conjugation of porphyrin rings to the bipy ligand of a ruthenium-ttcn complex, 

where activity was further enhanced by irradiation with visible light.
164

  A further 

modification of the ruthenium ttcn compounds was explored using N,N-1-(2-

picolyl)-4-phenyl-1H-1,2,3-triazole (ppt) and it was found that the cytotoxic activity 

of [RuCl(ttcn)(ppt)]OTf (A549, 48 h exposure) surpassed that of cisplatin and the η
6
-

p-cymene analogue by over two-fold.
165

 

 

Recently, Alessio and co-workers reported an expansion of the structure-activity 

relationship of the ruthenium ttcn compounds with N,N-, N,O- and O,O- ligands; but 

in vitro activity was only reported for [RuCl(ttcn)(dach)]PF6 (dach = trans-1,2-

diaminocyclohexane) which failed to improve on the cytotoxicity of 

[RuCl(ttcn)(en)]PF6.
166

  This study also focussed on the use of a new fac-

coordinating ligand, 1,4,7-triazacyclononane (tacn) for the development of 

ruthenium(II) anti-cancer compounds (Fig. 1.18).  When accompanied with an N,N- 



40 

 

chelating ligand and DMSO as a leaving group, no detectible antiproliferative 

activity was observed (up to 300 μM). 

 

  

 

Figure 1.18:  Ruthenium(II) tacn complexes [RuCl(DMSO-S)2(tacn)]Cl (left) and 

[Ru(DMSO-S)(en)(tacn)]PF6 (right) developed by Alessio and co-workers and 

assessed for in vitro anti-tumour activity.  Activity was not observed for either 

complex up to 300 μM. 

 

Use of the fac-ligand ttcn has permitted the design of novel ruthenium(II) complexes 

which were inspired by the promising activity of the ruthenium(II) η
6
-arene 

compounds.  These complexes do show some activity, but complexes with the ttcn 

are yet to show any significant advantages over the η
6
-arenes.  Therefore the 

replacement of the arene with another fac-ligand is a viable strategy for the 

preparation of highly active anti-cancer compounds. 
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1.9 The cis-1,3,5-Triaminocyclohexane Ligand 

 

There is an ongoing drive to discover more potent anti-cancer compounds with less 

severe side effects and which overcome cross-resistance with existing 

chemotherapeutics.  Novel use of ligands and new types of complexes are essential 

in this quest for more effective chemotherapeutic agents.  With the promising 

activity of ruthenium(II) compounds, there is the opportunity to explore other 

facially-capping ligands. 

 

Cis-1,3,5-triaminocyclohexane (cis-tach) is capable of acting as a neutral, facially-

coordinating six-electron donor ligand, similar to the η
6
-arene ligands (Fig. 1.19).  

Incorporation of the cis-tach ligand in the design of ruthenium(II) complexes may 

introduce advantageous properties for application as anti-cancer agents.  The amine 

groups of cis-tach provide three key functions (in order of priority): increased water 

solubility, interaction with biomolecules by hydrogen-bonding (cf. RM175), and 

possible increased reactivity, resulting from the strong σ-donors trans- to potential 

leaving groups.  The cyclohexane ring also provides a hydrophobic face to the 

complex, hiding the hydrophilic metal core. 

 

 

 

Figure 1.19:  Hypothesised structure that the ruthenium(II) κ
3
 cis-tach complexes 

will adopt, where cis-tach acts as a six-electron fac-coordinating ligand. 
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1.9.1 Synthesis of cis-tach Complexes 

 

A summary of the synthesis of cis-tach is given in Scheme 1.5.
167

  The cis- ligand is 

obtained from reaction of cis-1,3,5-cyclohexanecarboxylic acid with 

diphenylphosphoryl azide (DPPA) by a Curtius rearrangement, giving cis-1,3,5-

cyclohexanetris(benzylcarbamate).
167

  The carbamates is cleaved by hydrobromic 

acid, yielding the hydrobromide salt of cis-tach.
167

  The preparation of the free ligand 

is finally achieved by removal of the hydrogen bromide by passing through an anion-

exchange column followed by purification by sublimation.
168

 

 

 

Scheme 1.5:  Synthesis of cis-tach.  Reagents and conditions: i) triethylamine, 

DPPA, ii) benzyl alcohol, reflux, iii) HBr (33% in acetic acid by weight), iv) anion 

exchange column, sublimation. 
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When free in solution, the amine groups of cis-tach adopt an equatorial 

conformation.   On coordination to a metal centre, a ring-flip process occurs 

(Scheme 1.6), enforcing an axial conformation of the amine groups with an 

adamantane-type structure forming.  This provides a rigid and highly directional 

basis for metal-complex design.   

 

 

 

Scheme 1.6:  Coordination of cis-tach ligands to a metal, adopting an all-axial 

geometry of the amine ligands (top).  The ligand can be functionalised with “arms” 

on the nitrogen group, prepared by the condensation reaction with aldehydes. 

 

Some early coordination complexes of cis-tach took the form of [M(cis-tach)2]
n+

,
169, 

170
 akin to the organometallic sandwich complexes (Fig. 1.20).  Cis-tach is easily N-

functionalised by a condensation reaction with a range of aldehydes (Scheme 1.6),
171

 

and has been used as to preparing a variety of new ligands.  The additional arms may 

also coordinate to the metal in a hexadentate fashion, such as the tris(acetic acid) 

modified cis-tach ligand (tachta, Fig. 1.20),
172

 or may be innocent in metal 

coordination. 

 

Walton and co-workers have also demonstrated the preparation of mono-substituted 

cis-tach based complexes (Fig. 1.20) formed by the cleavage of two arms upon 

coordination to a metal centre but this approach is limited to arms based on 

benzaldehyde derivatives.
173, 174

  This was overcome by Walton and co-workers by 
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using cinnamaldehydes to functionalise cis-tach and the resulting ligands were 

employed in the small-molecule modelling studies on of the secondary coordination 

spheres of enzyme active sites (Fig. 1.20).
174, 175

 

 

 

 

 

Figure 1.20:  Examples of cis-tach metal complexes with or without modified amine 

groups and the possible metal-coordination motifs accessible These include the 

sandwich-type complexes [M(cis-tach)2]
n+

 (top left), hexadentate coordination with 

[Ga(tachta)] (top right), mono-arm cis-tach complexes obtained from the cleavage of 

benzaldehyde derived arms  (bottom left) and cinnamaldeyde-functionalised cis-tach, 

used to obtain non-coordinating arms resistant to cleavage (bottom right) 

 

A range of structural motifs are accessible with cis-tach, all offering a rigid and 

highly directional basis for complex design.  Although its ruthenium chemistry is 

previously unexplored, the cis-tach ligand has been widely and successfully used in 

coordination chemistry.  Therefore, it is an ideal candidate to be used for 

investigating the design of new complexes with anti-tumour properties. 
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1.9.2 cis-Tach Compounds as Anti-cancer Agents 

 

Compounds derived from cis-tach have previously been studied for their anti-tumour 

activity.  Modification of the amine groups of cis-tach with 2-pyridylmethylene 

groups (by reaction with 2-pyridinecarboxaldehyde and its subsequent reduction) 

gave tachpyr,
167

 a highly cytotoxic compound with an IC50 of 4.6 μM in the A549 

lung adenocarcinoma cell line.
176

    It was hypothesised that the activity originated 

from tachpyr strongly binding iron(III) as a hexadentate ligand with reduction to 

iron(II) (Scheme 1.7).
177, 178

 This is thought to inhibit ferritin synthesis causing iron 

depletion.
176

  Eventual apoptosis is caused by a p53-independent mitochondrial 

caspase pathway and this is advantageous for treating tumours with defective p53 

pathways with these compounds.
179, 180

 

 

 

 

Scheme 1.7: Chelation of iron(II) by tachpyr.  It is proposed that coordination of 

intracellular iron results in a partially-oxidised form of tachpyr. 

 

Zinc was also identified as a potential metal targeted by tachpyr, with the ligand 

chelating 13% of cellular zinc in comparison to 9% of cellular iron.
181

  The pre-

treatment of the cells with zinc or iron prevented apoptosis, suggesting a link 

between metal depletion and cytotoxicity.
181

   N-methylation of the pyridine rings 

results in loss of activity, hypothesised to be due to the reduced strength of binding 

iron(II) or zinc(II).
182

  It has also been shown that the ring-flip process is not a 

significant step in the activity of the complexes.
183

  Since the initial discovery of 

tachpyr, a number of cytotoxic and anti-angiogenic chelating complexes have been 

studied which are based on tachpyr.
184, 185
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Although the anti-cancer abilities of other fuctionalisations of cis-tach have been 

investigated,
186, 187

 there still remains no directly cytotoxic metal complexes which 

incorporate the cis-tach ligand.  It is therefore the aim of the work described in this 

thesis to design, prepare and evaluate such complexes for use as anti-cancer agents, 

with ruthenium as the chosen metal. 

 

It is worth noting that platinum(IV) half-sandwich type complexes of κ
3
-cis-tach 

have been studied, although to a limited extent (Fig. 1.21).
188, 189

  This complex is yet 

to be studied for its anti-cancer properties, but such work may form the basis of an 

interesting future study. 

 

 

 

Figure 1.21:  Structure of a platinum cis-tach complex.  Two of the cis-tach amine 

groups are deprotonated, therefore acting as a dianionic ligand. 
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1.10 Aim of this Project 

 

This thesis is focused on the use of novel cis-tach coordination complexes as 

metallo-anti-cancer agents.  The cis-tach ligand is capable as acting as a neutral, six-

electron, fac-coordinating ligand in a similar fashion to the η
6
-arene ligand in the 

ruthenium(II) half sandwich compounds presented earlier (Fig. 1.22). 

 

 

 

 

Figure 1.22:  Hypothesised structure that the ruthenium(II) κ
3
 cis-tach complexes 

will adopt, where cis-tach acts as a six-electron fac-coordinating ligand. 

 

The hypothesis of this project is that by using the cis-tach ligand in ruthenium(II) 

coordination compounds, the resulting complexes will display anti-proliferative 

properties with good water solubility.  At present, many ruthenium(II) compounds 

with high potency in vitro possess limited water solubility due to the dominance of 

hydrophobic groups within them. 

 

Investigations will first concentrate on establishing the preparation of ruthenium(II) 

cis-tach complexes and the development of a general precursor compound.  This will 

be used in the subsequent preparation of further ruthenium(II) cis-tach complexes, 

where the properties of the complex can be fine-tuned by the co-ligand.  The 

aqueous chemistry, as well as the binding of these candidates to biomolecules is of 

interest to begin assessing their chemistry under physiological conditions.  However, 

most importantly, selected compounds will be assessed for their ability to inhibit 

tumour cell growth by in vitro techniques. 
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Chapter 2. Ruthenium(II) cis-tach Triphenylphosphane 

Complexes 

 

2.1 Introduction 

 

As the preparation of ruthenium(II) cis-tach complexes was previously unexplored, a 

synthetic procedure for obtaining ĸ
3
-cis-tach complexes had to be established.   

 

There are various challenges in the synthesis of ruthenium(II) complexes containing 

a facially-coordinating six electron donor, the first of which is the reduction of the 

ruthenium(III) chloride hydrate to a suitable ruthenium(II) species.  This can be 

performed before, during or after the coordination of the fac-ligand.  A zinc 

reduction method may be utilised, where a ruthenium(III) complex of the ligand is 

reduced to ruthenium(II) in the presence of a suitable co-ligand.
190

  Alternatively, 

reaction of ruthenium(III) chloride with a partially reduced modification of the 

ligand can be employed in the synthesis of the η
6
-arene half-sandwich complexes.

191
  

Alternatively, the ligand may be coordinated to a ruthenium(II) precursor prepared in 

a previous synthetic step.
192

  It is proposed that a successful method for the 

preparation of such compounds is the latter, with reaction of cis-tach with 

ruthenium(II) precursor complexes.  The overall yield of target complexes with 

respect to cis-tach may be enhanced by use of this method. 

 

 

 

Figure 2.1: Structure of Dichlorido-tris(triphenylphosphane) ruthenium(II).
193, 194

 

 

Dichlorido-tris(triphenylphosphane) ruthenium(II) is formally a sixteen-electron 

complex capable of readily binding introduced ligands.
195

  The compound owes its 

reactivity to the electron deficiency of the ruthenium centre, where the bulky 



49 

 

triphenylphosphane groups prevent coordination of a fourth phosphane ligand and 

satisfaction of the 18-electron rule.  The complex is stabilised by an agostic 

interaction from the ortho- hydrogens of the phenyl rings to the metal centre (Fig 

2.1).
196

  Furthermore, the triphenylphosphane ligands are relatively labile, potentially 

allowing for additional electron donors to coordinate.  The complex [RuCl2(PPh3)3] 

has been demonstrated to react with a variety of facial- coordinating ligands 

including η
5
-cyclopentadienyl (Cp) and tris(pyrazolyl)borate (Tp), both resulting in 

the neutral species [RuCl(X)(PPh3)2] (X = Cp or Tp).
197, 198

  Additionally, neutral 

ligands have been successfully coordinated to this precursor, including ttcn, to yield 

the neutral species [RuCl2(ttcn)(PPh3)].
199

 

 

Ruthenium(II) phosphane complexes have been extensively studied for the catalytic 

transformations of organic molecules., including olefin metathesis and the anti-

Markovnikov hydration of terminal alkynes.
200-204

  Recently, ruthenium(II) 

phosphane complexes capable of inhibiting tumour growth, such as RAPTA-C have 

been extensively studied.
79, 116, 118, 131, 136, 137

  This series of compounds have been 

discussed in detail in section 1.5. 

 

The ruthenium(II) complex [RuCl2(PPh3)3] is a suitable candidate to investigate the 

synthetic possibilities of cis-tach with ruthenium.  It was hypothesised that 

ruthenium(II) ĸ
3
-cis-tach compounds could be accessible from this precursor.  The 

reaction of cis-tach with [RuCl2(PPh3)3] is explored, and the resulting products and 

their reactivity are discussed, as well as the assessment of selected compounds for 

biological activity. 
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2.2 Reaction of cis-tach with [RuCl2(PPh3)3] 

 

2.2.1 Formation of [1]Cl 

 

In order to investigate the potential of cis-tach to act as a six electron facial- 

coordinating ligand with ruthenium, [RuCl2(PPh3)3] was added to a suspension of 

one equivalent of cis-tach in CD2Cl2.  Upon dissolution of the ruthenium complex a 

solution formed accompanied by an immediate colour change from dark brown to 

orange.  After standing for 30 min the reaction had visually appeared to reach 

completion as a yellow solution was formed.  The 
31

P{
1
H} NMR spectrum of the 

solution exhibits a single sharp  resonance at δP 47.3 ppm, assigned to [1]Cl, and is 

distinctly different to that of the starting material, a broad resonance at δP 41.0 ppm.  

In addition, liberated triphenylphosphane (δP −5.6 ppm) is observed, in a ratio of half 

that of the ruthenium complex, suggesting two phosphane ligands remain 

coordinated to the metal.   

 

The 
1
H NMR spectrum of [1]Cl, generated in situ from the reaction between cis-tach 

and one equivalent of [RuCl2(PPh3)3] in CD2Cl2 allows for inspection of the cis-tach 

proton environments.  Assessment of the phenyl protons cannot be performed due to 

the resonances for liberated triphenylphosphane coinciding with those of the 

complex.  The cis-tach region (δH 3.8–0.7 ppm) of the 
1
H NMR spectrum of [1]Cl 

and the uncoordinated ligand is given in Fig. 2.2. 

 

The CH and CH2 protons were assigned by cross-peaks in the 2D 
1
H-

13
C correlation 

spectrum (HSQC), with the nature of the adjacent carbon determined by the 
13

C{
1
H} 

DEPT-135 spectrum.  The NH2 resonances were assigned from the remaining 

resonances by observation of a cross-peak in the 2D 
1
H-

1
H COSY spectrum with the 

CH groups; a cross-peak in the 2D 
1
H-

13
C correlation spectrum (HSQC) was not 

observed for these resonances.  Relative integrations of the cis-tach resonances in the 

1
H NMR totalled fifteen, as expected for this ligand which contains fifteen protons.  

Distribution of the integrations was consistent with the expected 
1
H chemical 

environments present within the ligand. 
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Coordination of cis-tach to the metal centre is expected to result in a shift of the 

amine proton resonances to a higher δH.  The large shift of all amine resonances from 

δH 1.04 to 2.15, 3.44 and 3.57 ppm suggests that the amine groups are coordinated to 

the metal in a κ
3
 fashion. 

 

 

 

 

Figure 2.2:  
1
H NMR spectra of cis-tach (bottom) and [1]Cl (top) in CD2Cl2.  Key:  

 NH2,  CH,  CH2.  Relative integrations are given underneath symbol. 

 

The absence of visible axial-axial 
3
JHH coupling (~10 Hz) in the cyclohexane ring 

resonances suggests that a ring-flip process has occurred (Scheme 2.1), with the 

amine groups adopting an all-axial geometry in a chair conformation.  This would 

occur if all the amine groups are coordinated to a metal centre.  The expected 
3
JHH 

coupling for axial-equatorial (~4 Hz) and equatorial-equatorial (~4 Hz) cyclohexane 

protons could not be determined.  
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.  

 

Scheme 2.1:  Conformational change of cis-tach from equatorial amine groups to 

axial on coordination to a ruthenium(II) complex, resulting in a κ
3
 complex. 

 

It is possible to identify the symmetry environment of the cis-tach ligand and 

therefore the symmetry about the ruthenium from the number of 
1
H NMR 

resonances.  A summary of the three symmetry environments and number of 

resonances expected for cis-tach is shown in Fig. 2.3. 

 

 

 

Figure 2.3:  The three different possible symmetry environments for the cis-tach  

ligand when ĸ
3
 coordinated to a metal centre and the number of resonances expected 

for the ligand in the 
1
H NMR spectrum. 

 

The resonances for the cis-tach ligand of [1]Cl in the 
1
H NMR spectrum consists of  

nine signals, two of which are near coincidental and appear as a quartet.  This 

suggests the symmetry about the ruthenium centre is Cs.  Therefore the complex may 

be one of the two possibilities which would exhibit this symmetry with a ĸ
3
 cis-tach 
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ligand, [RuCl(cis-tach)(PPh3)2]
+
 and [RuCl2(cis-tach)(PPh3)]—assuming a chlorido 

ligand completes the coordination sphere of the metal, satisfying the eighteen-

electron rule.  Given the 
13

P{
1
H} integrations of the complex vs. free 

triphenylphosphane (2:1) described earlier, it is initially proposed that the identity of 

[1]Cl is [RuCl(cis-tach)(PPh3)2]Cl (Scheme 2.2).  This assignment is in accordance 

with that reported for a similar reaction with tacn as the fac-ligand,
205

 

 

 
 

 

  [1]Cl 

 

Scheme 2.2: Reaction between cis-tach and [RuCl2(PPh3)3].  The product, formed 

after 30 mins at RT, is proposed as the κ
3
 complex [RuCl(cis-tach)(PPh3)2]Cl, [1]Cl.  

 

Isolation of the cationic species as the hexafluorophosphate salt, [1]PF6, was 

attempted by chloride metathesis of [1]Cl with NaPF6 in CH2Cl2 solution.  The 

excess triphenylphosphane and resulting insoluble NaCl were removed by filtration 

followed by precipitation with pentane.  The resonance for the PPh3 ligands of 

[1]PF6 in the 
31

P{
1
H} NMR spectrum is identical to that of [1]Cl, with δP 47.3 ppm.  

This allowed for spectroscopic information to be gained regarding the phenyl groups 

of the triphenylphosphane ligands and determination of the identity of the complex. 

 

The resonances corresponding to the cis-tach ligand in the 
1
H NMR spectrum 

obtained for [1]PF6 are mostly identical to that of [1]Cl, with small changes in 

chemical shift relating to the altered properties of the anion.  Those relating to the 

aromatic protons of the phosphane ligands suggest that each phenyl ring is 

equivalent and that there is free rotation around the Ru–P bond. The integration of 

these resonances accounts for two phosphane ligands for each cis-tach.  Furthermore, 

the 
13

C{
1
H} NMR spectrum provides evidence for the number of phosphane ligands.   
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Figure 2.4:  ORTEP (50% probability ellipsoids) diagram of one cation of two in the 

asymmetrical unit of [1]PF6.  Hydrogen atoms (except for amino hydrogens) and the 

counter ion are omitted for clarity. Selected bond lengths (/Å) and angles (/°):  

Ru(1)–N(1) 2.144(4), Ru(1)–N(2) 2.180(4), Ru(1)–N(3) 2.176(4), Ru(1)–Cl(1) 

2.424(1), Ru(1)–P(1) 2.339(1), Ru(1)–P(2) 2.354(1), N(1)–Ru(1)–N(2) 87.87(17), 

N(1)–Ru(1)–N(3) 87.75(17), N(2)–Ru(1)–N(3) 82.19(17), P(1)–Ru(1)–P(2) 

98.53(5), P(1)–Ru(1)–Cl(1), 89.09(4), P(2)–Ru(1)–Cl(1) 97.28(5), N(1)–Ru(1)–

Cl(1) 167.56(13), N(2)–Ru(1)–Cl(1) 81.67(13), N(3)–Ru(1)–Cl(1) 84.18(12).  

Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–

H...A, H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom 

*):  N(1)–H(1b)...C(7)* 4.09, 3.27, 145, 39.7, 2.52 (V); N(1)-N(1a)...C(37)* 4.13, 

3.36, 149, 36.3, 2.71 (V); N(2)-H(2c)...C(25)* 3.33, 2.43, 176, 64.4, 1.05 (II); N(3)–

H(3b)...C(13)* 3.96, 3.03, 149, 48.1, 2.03 (V).  Malone hydrogen-bond type is given 

in parenthesis.
206
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The ipso carbons of the phenyl groups are observed as triplets due to virtual coupling 

with |
1
JPC + 

3
JPC| = 37 Hz.  The observed virtual coupling results from a JCP with a 

31
P nuclei strongly coupled to another 

31
P with identical chemical shift, ΔνP-P = 0.  

This therefore appears as though the 
13

C nucleus is equally coupled to two 
31

P nuclei, 

finally confirming the identity of [1]
+
 as [RuCl(cis-tach)(PPh3)2]

+
. 

 

The assigned identity of [1]PF6 is further supported by the 
31

P{
1
H} NMR; 

integration of the PPh3 resonance correlates with approximately double that of PF6, 

suggesting two phosphanes per cation.  The ESI mass spectrum also exhibits a major 

signal with the expected m/z (790.2) and ruthenium/chlorine isotope pattern for [1]
+
.  

The species [Ru(NCMe)(cis-tach)(PPh3)2]
+
 is also observed in the mass spectrum 

with m/z 941.2 (10%); this complex is presumed to be generated in the preparation of 

the sample in acetonitrile for mass spectrum acquisition. 

 

Single crystals suitable for X-Ray diffraction analysis were obtained from slow 

diffusion of pentane into a dichloromethane solution of [1]PF6.  An ORTEP diagram 

and selected bond angles and lengths are given in Fig. 2.4. 

 

The resulting structural determination of [1]PF6 demonstrates that the cis-tach ligand 

adopts a κ
3
 facial-coordination mode, forming a distorted adamantane structure with 

ruthenium.  The entire complex resembles the piano-stool type structures of the η
6
-

arene complexes.  The structure of the ruthenium centre is that of a distorted 

octahedron, due to the geometrical constraints of the cis-tach and 

triphenylphosphane ligands.  For example, the phosphane ligands have a P(1)–

Ru(1)–P(2) bite-angle of 98.53(5)° compared to ideal the octahedral angle of 90°; 

this results from the steric crowding of the phenyl groups when in a cis 

configuration.  There is further distortion in the adamantane structure, as the metal is 

not located in the exact centre between the amine groups.  This is seen from the 

average Ru–N bond lengths, of 2.144(4) and 2.178(6) Å for those trans- to chlorido 

[N(1)] and phosphane [N(2) and N(3)] ligands respectively.  The bite-angle of the 

cis-tach amines also vary due to this distortion, where the N(2)–Ru(1)–N(3) angle is 

82.19(17)°, compared to the average of the remaining two angles of 87.8(2)°.   
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Hydrogen-bonds are present in the crystal structure, between the NH groups of cis-

tach and the π-system of an adjacent phenyl ring of the phosphane ligand.  The 

contact geometries of hydrogen-bonds to an aromatic π system were defined by 

Malone;
206

 those present in [1]PF6 can be described as type II or V (Fig. 2.5).   

 

 

 

Figure 2.5:  Type II (left) and V (right) D–H...π hydrogen-bonds defined by Malone. 

Type II: d(πc...H) ≤ 3.05 Å, θ ≥ 53°, 150° ≤ α ≤ 180°, d > 0.5 Å.  Type V: d(πc...H) ≤ 

4.0 Å, θ ≤ 90°, 90° ≤ α ≤ 180°, d > 1.4 Å. 

 

In both of these geometries, the N–H group is highly directional towards the centroid 

of the phenyl ring.  An almost perfectly perpendicular and linear hydrogen-bond 

would be of type I.  The difference between type II and V is in the proximity of the 

hydrogen-bond donor to the centroid.  In type II, the perpendicular of the hydrogen 

to the phenyl plane is within the ring system, whereas in type V it falls outside. 

 

Isolation of [1]
+
 as the hexafluorophosphate salt was met with difficulty, due to 

formation of a new ruthenium species when standing in CH2Cl2 solution.   It was not 

possible to isolate [1]PF6 with analytical purity.  This is discussed in more detail in 

the next section. 

 

2.2.2 Conversion of [1]Cl to [2] 

 

After two weeks, the 
31

P{
1
H} NMR spectrum of [1]Cl in CD2Cl2—which was 

formed in situ from the reaction of [RuCl2(PPh3)3] and cis-tach—was recorded again.   

The signal for [1]Cl at δP 47.3 ppm was no longer observed, with a new singlet 
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resonance at δP 66.0 ppm, of a new ruthenium cis-tach complex, [2].  The relative 

integration of triphenylphosphane to this had also increased, to double that of the 

metal complex. 

 

The new complex, [2], was of Cs symmetry about cis-tach, evident from eight 

resonances for the ligand in the in the 
1
H NMR spectrum.  The expected nine 

chemical environments of cis-tach appear as eight signals as two geminal CH2 

resonances are coincidentally isochronous, appearing as a singlet.  The κ
3
 

coordination of cis-tach is also retained from [1]Cl.  This is evidenced by the 

absence of axial-axial cyclohexane J couplings, suggesting an all-axial conformation 

of the amine groups, and downfield amine resonances (δH 1.85–4.77 ppm), similar to 

those for [1]Cl. 

 

Given the displacement of a triphenylphosphane group, based on 
31

P{
1
H} NMR 

integrations, it is proposed that [2], [RuCl2(cis-tach)(PPh3)] is the product from the 

charge-neutralisation of [1]Cl (Scheme 2.3).  It is hypothesised that this reaction is 

aided by steric repulsion of the triphenylphosphane ligands, aiding displacement.  

This complex, along with [1]Cl, are the only two plausible κ
3
 cis-tach products 

accessible from the reactants employed. 

 

 

 

 

[1]Cl  [2] 

 

Scheme 2.3:  Charge-neutralisation reaction between the chloride anion and 

[RuCl(cis-tach)(PPh3)2]
+
 ([1]

+
), yielding the neutral complex [RuCl2(cis-tach)(PPh3)] 

([2]) from displacement of a phosphane ligand. 
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Figure 2.6:  ORTEP (50% probability ellipsoids) diagram of one complex of two in 

the asymmetrical unit of [2].  Hydrogen atoms (except for amino hydrogens) and the 

solvent of crystallisation are omitted for clarity. Selected bond lengths (/Å) and 

angles (/°):  Ru(1)–N(1) 2.172(5), Ru(1)–N(2) 2.110(5), Ru(1)–N(3) 2.115(5), 

Ru(1)–Cl(1) 2.446(2), Ru(1)–Cl(2) 2.447(2), Ru(1)–P(1) 2.245(2), N(1)–Ru(1)–N(2) 

86.4(2), N(1)–Ru(1)–N(3) 85.22(19), N(2)–Ru(1)–N(3) 91.3(2), Cl(1)–Ru(1)–Cl(2) 

97.09(6), P(1)–Ru(1)–Cl(1) 92.57(6), P(1)–Ru(1)–Cl(2) 94.67(6), N(1)–Ru(1)–P(1) 

178.91(14), N(2)–Ru(1)–P(1) 94.45(15), N(3)–Ru(1)–P(1) 95.42(15).  Selected 

hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–H...A, 

H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom *):  

N(3)–H(3b)...C(7)* 4.11, 3.36, 141, 44.9, 2.38 (V); N(2)–H(2c)...C(19) 3.72, 2.88, 

152, 55.5, 1.63 (II).  Malone hydrogen-bond type is given in parenthesis.
206
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The complex could be isolated with analytical purity by slow diffusion of diethyl 

ether into a dichloromethane solution with a single molecule of DCM as solvent of 

crystallisation was also present.  Removal of the excess triphenylphosphane by 

washing of the crystals with diethyl ether allowed inspection of the phenyl 

resonances in the 
1
H NMR spectrum.  The relative integration of the phenyl protons 

of 1:1 PPh3:cis-tach agrees with the proposed assignment of the complex.  

Furthermore, the resonances for the ipso carbons of the phenyl rings in the 
13

C{
1
H} 

NMR spectrum appear as doublets with 
1
JCP = 36.0 Hz.  This multiplicity is due to 

the 
13

C nucleus coupling to a single 
31

P nucleus; therefore only one 

triphenylphosphane ligand is coordinated to the metal complex. 

 

The ESI mass spectrum of a sample of [2] exhibits three ions with ruthenium isotope 

patterns, all of which may originate from the proposed structure of [2].  The most 

abundant signal, [RuCl(NCMe)(cis-tach)(PPh3)]
+
 (m/z 569.1, 100%) is formed from 

the displacement of a chlorido ligand with acetonitrile, which is present from sample 

preparation for mass spectrometry.  Other less intense signals are observed for the 

ions [RuCl(cis-tach)(PPh3)]
+
 (m/z 528.1, 25%) and [Ru(cis-tach)(PPh3)]

2+
 (m/z 

246.6, 10%), resulting from the loss of one and two chlorido ligands respectively.  

The loss of a chlorido ligand in these three species allows the formation of a cationic 

species able to be observed by mass spectrometry.  Single crystals suitable for X-Ray 

diffraction analysis were obtained from isolation of [2] as described above.  An 

ORTEP diagram and selected bond angles and lengths are given in Fig. 2.6. 

  

The asymmetric unit of the structure contains two molecules of [2] and a single 

disordered dichloromethane.  Additional disordered solvent was found to be present, 

which was accounted for using the SQUEEZE algorithm.
207, 208

  The cis-tach ligand 

adopts the same κ
3
 fac-coordination mode as in [1]PF6 with the ruthenium centre 

again that of a distorted octahedron.  The adamantane structure is also distorted, 

evident from the differing Ru–N bond lengths, caused by the trans-influence of the 

phosphane and chlorido ligands.  These bond lengths follow the same trend as 

observed in [1]PF6.  This distortion is most apparent from the bite-angles of cis-tach 

with ruthenium. The N(2)–Ru(1)–N(3) angle is 91.3(2)° compared to the remaining 

two of an average 85.81(27)°.  Although the steric hindrance of the ruthenium centre 

is reduced in complex [2] on comparison to [1]PF6, the remaining angles are greater 
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than that expected for an ideal octahedron.  This is due to the inherently small bite-

angles of the fac-coordinating ligand and the chlorido and phosphane ligands 

compensating with larger angles.  This is most notable in the largest cis-angle, 

Cl(1)–Ru(1)–Cl(2) of 97.09(6)°, which is additionally due to the electrostatic 

repulsion of the two ligands. 

 

 

Figure 2.7: ORTEP (50% probability ellipsoids) diagram of the hydrogen-bonded 

dimer of [2].  Hydrogen atoms (except for amino hydrogens) and solvent of 

crystallisation are omitted for clarity.  Selected hydrogen-bond (D–H...A–X) lengths 

(Å) and angles (/°) D...A, H...A, D–H...A, H...A–X: N(1)–H(1a)...Cl(4)-Ru(2) 

3.319(5) 2.541(1) 142.6(3) 93.16(5) (x, y–1, z); N(1)–H(1b)...Cl(3)–Ru(2) 3.436(5) 

2.622(1) 147.8(3) 91.61(5) (x, y–1, z).  Symmetry transformations used to generate 

equivalent atoms are given in parenthesis. 

 

In the unit cell, two molecules of [2] form a hydrogen-bonded dimer, with 

interactions between an amine group and the two chlorido ligands of the other 

complex, shown in Fig. 2.7.  These hydrogen-bonds have a high Ru–Cl...H angular 

preference of approximately 95°, resultant from the halogen p-type lone pair 

orbitals.
209

  Intra-molecular hydrogen-bonds are also present in the structure, with 

Malone type II and V interactions between the amine protons and the aromatic rings.   
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The synthetic procedure to obtain [2] on larger scales (~50 mg) was modified to 

improve reaction times.  This was achieved by heating of the reaction mixture to 50 

°C in a sealed vessel for three days (Scheme 2.4).  The complex was isolated with 

analytical purity by crystallisation on addition of pentane to the reaction mixture. 

 

  

 

  [2], 87%* 

 

Scheme 2.4:  Convenient preparation of [2] from the reaction of [RuCl2(PPh3)3] and 

cis-tach. * Isolated yield. 

 

2.2.3 Conclusions 

 

It has been shown that cis-tach rapidly reacts with dichlorido-

tris(triphenylphosphane) ruthenium(II) resulting in the formation of a kinetic 

product, [1]
+
.  Over time, charge neutralisation occurs from the exchange of 

triphenylphosphane with the chloride anion, to yield [2] as the thermodynamically 

favoured product, which is isolable.  An analogous tacn complex of [1]
+
 has been 

reported,
205

 but it is not evident that similar conversion to the neutral species occurs 

in this complex.  The isolation of [RuCl(tacn)(PPh3)2]Cl is achieved by 

recrystallisation from the slow diffusion of diethyl ether into a dichloromethane 

solution, resulting in an analytically pure sample.  Therefore, it is likely that such a 

process does not occur with the tacn analogue.  This indicates that ruthenium cis-tach 

and tacn complexes may exhibit differing reactivity to each other. 
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2.3 Solid-State Structural Comparisons 

 

The popularity of triphenylphosphane as a ligand in ruthenium(II) chemistry 

provides an abundance of structurally similar compounds with other facial- 

coordinating ligands for comparison.  Analysis of the geometrical properties of 

[1]PF6 and [2] with analogous compounds may provide an insight into the electronic 

differences of the ligands.  With increased electron density located on the metal, the 

Ru–Cl bond is expected to elongate from a weakening of the σ-interaction.  

Furthermore, the triphenylphosphane ligand can provide information regarding the 

π-donor abilities of the metal as phosphanes act as both σ-donors and π-acceptors.  

There is a low lying unoccupied σ*(P–C) orbital located on the phosphane, with 

correct symmetry for π-overlap with the metal d orbitals.
210

  Therefore, a larger 

degree of π back-bonding from ruthenium to the phosphane ligand is expected to 

influence the average bond lengths, with shorter Ru–P and longer P–C bonds.  The 

P–C bond may be considered a better indicator of the Ru–P π-bonding character, as 

this is not influenced by the strength of the σ-donation. 

 

It is hypothesised that cis-tach is a strong σ-donor ligand and lacks π-bonding 

capabilities, as it has no suitable orbitals.  Therefore, in comparison to fac-ligands 

capable of π-back bonding, the average P–C bond length is expected to be longer for 

cis-tach complexes.  The average Ru–Cl, Ru–P and P–C bond lengths for [1]PF6, [2] 

and analogous compounds are given in Table 2.1.   

 

In comparison to other neutral facial-coordinating ligands, the Ru–Cl bonds in [1]
+
 

and [2] are significantly longer, with the exception of [RuCl2(PPh3)(ttcn)] which is 

comparable to cis-tach in this instance.  Unsurprisingly, the replacement of the cis-

tach ligand in [1]
+ 

with η
5
-cyclopentadienyl results in a significantly longer Ru–Cl 

bond, due to the anionic nature of this ligand.  The observed trend agrees with the 

hypothesis, for the cis-tach ligand is a strong σ-donor, thus weakening the Ru–Cl 

bond through the trans-influence.
211

  The η
6
-arenes are weaker donors, and are able 

to accept electron density from the metal by π back-bonding. 
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   Average bond length (Å) 

 Complex ref Ru–Cl Ru–P P–C 

 [RuCl(PPh3)2(η
5
-C5H5)] 

212
 2.448(1) 2.326(1) 1.842(3) 

[1]PF6 [RuCl(PPh3)2(cis-tach)]
+
  2.420(1) 2.343(1) 1.848(3) 

 [RuCl(PPh3)2(ĸ
3
-Tp)] 

198
 2.412(2) 2.340(2) 1.830(1) 

 [RuCl(PPh3)2(ĸ
3
-Tpm)]

+
 

213
 2.400(2) 2.363(2) 1.844(4) 

 [RuCl(PPh3)2(η
6
-p-cym)]

+
 

214
 2.391(1) 2.385(1) 1.837(2) 

 [RuCl(PPh3)2(η
6
- C6H5CH3)]

+ 215
 2.390(3) 2.394(3) 1.827(2) 

[2] [RuCl2(PPh3)(cis-tach)]  2.453(1) 2.238(1) 1.842(2) 

 [RuCl2(PPh3)(ttcn)] 
199

 2.452(2) 2.345(2) 1.834(3) 

 [RuCl2(PPh3)(ĸ
3
N-P(py)3)] 

216
 2.433(1) 2.352(1) 1.850(3) 

 [RuCl2(PPh3)(η
6
-p-cym)] 

217
 2.415(1) 2.344(1) 1.833(2) 

 [RuCl2(PPh3)(η
6
-C6Me6)] 

218
 2.411(1) 2.360(2) 1.836(2) 

 [RuCl2(PPh3)(η
6
-C6H6)] 

219
 2.409(2) 2.364(1) 1.833(2) 

 

Table 2.1: Comparison of selected bond lengths for [1]PF6 and [2] with analogous 

compounds.  Average bond lengths are calculated as the weighted mean.
220

 

 

The Ru–P bond lengths in both cis-tach complexes are shorter than in the complexes 

with other neutral fac-ligands, again with the exception of ttcn.  The largest 

difference in this parameter is seen with the bis-phosphane complexes, where the cis-

tach complex [1]
+
 has a significantly shorter Ru–P bond than the η

6
-arene 

complexes, this is expected due to a possible greater degree of back-bonding from 

the metal.  However, the hypothesis fails when applied to the dichlorido complexes, 

where the Ru–P bond of the cis-tach complex [2] is similar to that of η
6
-p-cymene.  

Surprisingly, there is no significant difference between the P–C bond length of the 

cis-tach complexes and other fac-ligands; this bond length may be more influenced 

by steric or other factors. Alternatively, the influence of the metal may be smaller 

than the precision of the values obtained.  Therefore, no conclusions can be 

extrapolated from these data. 

 

The parameters examined here suggest that cis-tach complexes may in some cases 

resemble those of Cp
 
to a greater extent than the η

6
-arenes.  This is therefore 
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expected to be reflected in the chemistry of ruthenium(II) cis-tach complexes.  For 

example, chlorido ligands may be more easily displaced than for the η
6
-arenes, 

without the requirement for weakly coordinating anions to isolate cationic 

complexes.  This property may be advantageous for the design of anti-tumour 

compounds without the need for potentially toxic counter-ions.  Furthermore, it may 

assist in substitution of chlorido leaving groups with biologically-relevant species.  

This will be discussed later in this thesis. 

 

2.4 Preparation of [{RuCl(PPh3)(cis-tach)}2(μ-Cl)]
+
 

 

In order to investigate the stability of [2] with time, a CD2Cl2 solution was monitored 

over a period of two weeks.  Over this time, the resonance for [2] in the 
31

P{
1
H} 

NMR spectrum was observed to broaden.  This effect was attributed to rapid inter-

conversion of [2] with another species on the NMR timescale.  Low temperature 

NMR studies did improve the appearance of the resonance of [2], although it was not 

possible to resolve two signals. 

 

Addition of triphenylphosphane to the solution did not alter the width of the 

resonance.  However, a sharpening in the signal was observed in the presence of 

n
Bu4NCl suggesting loss of a chlorido ligand as the origin of the observation.  In the 

absence of any potential ligands, the exchange must involve the coordination of the 

solvent or another molecule of [2], forming a dimer.  Addition of NaPF6 resulted in 

the precipitation of sodium chloride, promoting the formation of [3]PF6.  This 

complex is characterised by a sharp, singlet resonance in the 
31

P{
1
H} NMR spectrum 

at δP 60.2 ppm.  The number of cis-tach resonances in the 
1
H NMR spectrum 

indicated a C1 symmetry environment of the ligand.  The ligand also remained as a 

fac-κ
3
 ligand, evidenced by the expected cyclohexane J coupling and chemical shifts 

of the amine protons.  Although one NH resonance is upfield compared to the free 

ligand at δH 0.77 ppm, there is geminal coupling of 
2
JHH = 15.3 Hz to a resonance at 

δH 1.61 ppm; it is proposed the upfield chemical shift is due to the local environment 

of this proton, such as participation in a hydrogen-bond.   
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Figure 2.8: ORTEP (50% probability ellipsoids) diagram of the asymmetric unit of 

[3]BPh4.  Hydrogen atoms (except for amino hydrogens), solvent of crystallisation 

and counter ion are omitted for clarity. Selected bond lengths (/Å) and angles (/°): 

Ru(1)–N(1) 2.159(3), Ru(1)–N(2) 2.112(2), Ru(1)–N(3) 2.111(3), Ru(2)–N(4) 

2.155(3), Ru(2)–N(5) 2.119(2), Ru(2)–N(6) 2.116(2), Ru(1)–P(1) 2.2664(8), Ru(2)–

P(2) 2.2655(8), Ru(1)–Cl(1) 2.4606(8), Ru(2)–Cl(1) 2.4505(7), Ru(1)–Cl(2) 

2.4392(8), Ru(2)–Cl(3) 2.4387(8), N(1)–Ru(1)–N(2) 86.44(10), N(1)–Ru(1)–N(3) 

86.38(10), N(2)–Ru(1)–N(3) 91.72(10), N(3)–Ru(1)–Cl(1) 173.85(7), P(1)–Ru(1)–

Cl(1) 89.74(3), P(1)–Ru(1)–Cl(2) 95.84(3), Cl(1)–Ru(1)–Cl(2) 97.35(3), Ru(1)–

Cl(1)–Ru(2) 128.01(3).  Selected hydrogen-bond (D–H...A–X) lengths (Å) and 

angles (/°) D...A, H...A, D–H...A, H...A–X, H...X:  N(1)–H(1a)...Cl(3)–Ru(2) 

3.219(3), 2.39(4), 164(3), 88.0(8); N(4)–H(4c)...Cl(2)–Ru(1) 3.305(3), 2.45(4), 

176(3), 89.6(8). 
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As ruthenium μ-dichlorido dimers are well known, this new species was considered 

to be a complex of that type.  Although the cis-tach ligand is expected to exhibit Cs 

symmetry in the 
1
H NMR spectrum, it was hypothesised that hydrogen-bonding may 

disrupt the symmetry.  However, the 
31

P{
1
H} NMR integrations of the 

hexafluorophosphate anion suggest one equivalent of anion per two 

triphenylphosphane ligands, and does not agree with the hypothesis. 

 

Attempts to obtain single crystals of [3]PF6 were unsuccessful, but employment of 

tetraphenylborate as the anion gave single crystals suitable for X-ray diffraction 

analysis.  The resonance for the ruthenium complex in the 
31

P{
1
H} NMR spectrum 

of [3]BPh4 is identical to that for [3]PF6.  Resonances in the 
1
H NMR spectrum were 

observed to shift due to the effect of the anion.  An ORTEP diagram of the structural 

solution and selected bond angles and lengths are given in Fig. 2.8. 

 

The structural determination is of a mono μ-chlorido dimer and is consistent with the 

evidence from the 
1
H and {

1
H}

31
P NMR spectra.  Prior to this, the ESI mass 

spectrum of this complex was unable to provide further insight into the identity of 

[3]
+
, due to similarity to the starting complex, [2].  However, the molecular ion, [3]

+
 

was observed in the ESI mass spectrum on further inspection with m/z 1091.1496 (< 

1%).  The identity of the bulk material was confirmed as [3]BPh4.1½CH2Cl2 by 

elemental analysis and reflects the composition of the crystal structure. 

 

The assignment of [3]
+
 as [{RuCl(PPh3)(cis-tach)}2(μ-Cl)]

+
 is as the product of 

chlorido substitution by another molecule of [2] and the formation of a μ-chlorido  

bridge between the two metal centres.  The mono-μ-chlorido bridging mode is 

uncommon for ruthenium and is only achievable in this case due to the ability of cis-

tach to form hydrogen-bonding interactions between the two units, stabilising the 

structure.  Few X-ray crystal structures of single-molecule diruthenium(II) 

complexes with a similar μ-chlorido motif have been reported.
221, 222

  Most of these 

feature bulky ligands around the metals rather than hydrogen bonds, although the X-

ray structure of [{Ru(NCMe)5}2(μ-Cl)](OTf)3 has been reported .
223

 

 

The asymmetric unit in the resulting crystal structure consists of one [3]BPh4 with 

one and a half molecules of dichloromethane, disordered across two sites.  There is a 
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significant peak of residual electron density, believed to be due to the ruthenium 

atoms from a minor twin.  The ruthenium cis-tach moiety displays the same 

structural distortions as [1]PF6 and [2] and the ruthenium centre is again a distorted 

octahedron.  The hydrogen-bonding network and the resulting geometrical 

constraints is responsible for the unusually large Ru(1)–Cl(2)–Ru(2) angle of 

128.01(3)° compared to the ideal 90°.
209

  Four hydrogen-bonds complete the 

bridging structure, with the two ruthenium centres rotated by 104.61° around the 

Ru(1)–Ru(2) axis. A minor stabilisation is provided from two mutual NH–π inter-

nuclear hydrogen-bonds (type V) between the cis-tach and a triphenylphosphane.  

Furthermore stronger hydrogen-bonds are formed between the cis-tach and chlorido 

ligands, with Ru–Cl...H angles close to the ideal 90°.  The structure is completed by 

two hydrogen-bonds between the amine and phenyl groups around each metal centre 

with bond lengths and angles similar to that of [2].  The resulting structure is in 

agreement with the recorded NMR spectra, where both cis-tach ligands are within a 

C1 environment. 

 

Conclusions 

 

It has been shown that [2], over a period of weeks, forms an equilibrium with a new 

species, [3]
+
, formed from the loss of a chlorido ligand and coordination of a second 

molecule of [2].  The identity of this new complex was determined by single crystal 

X-ray crystallography.  The two ruthenium centres are bonded by a single μ-chlorido 

bridging ligand, with mutual hydrogen-bonding systems between the two monomer 

units aiding stabilisation of the structure.  The structural motif of the dimeric 

[3]BPh4 is uncommon for ruthenium(II) compounds, as complexes containing a 

second μ-ligand are the norm.  This effectively demonstrates the different 

coordination chemistry accessible with cis-tach in comparison to the η
6
-arene 

ligands. 
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2.5 Synthesis and Reactivity of Solvent Complexes 

 

2.5.1 Dimethylsulfoxide Complexes 

 

Complex [2] was of great interest for biological evaluation due to the simplicity of 

the molecule, and presence of a stable phosphane ligand.  However, poor water 

solubility hindered assessment of [2] by MTT assay.  Dimethylsulfoxide (DMSO) is 

a common solvent used to aid solubility of compounds in aqueous media for 

biological evaluation, due to its low toxicity.  Therefore, the solvation of [2] in 

DMSO was investigated with the view of obtaining an aqueous solution of [2]. 

 

A resonance at δP 49.7 in the 
31

P{
1
H} NMR spectrum of [2] recorded in d6-DMSO 

confirmed the presence of a single ruthenium phosphane complex; liberated PPh3 

was not observed.  The cis-tach protons in the 
1
H NMR spectrum exhibited 

resonances corresponding to a species in a C1 symmetry environment, in contrast to 

the Cs symmetry of the starting complex.  It was therefore hypothesised that a new 

species had formed, from exchange of a chlorido ligand with the solvent to give 

[RuCl(DMSO)(cis-tach)(PPh3)]Cl, [4]Cl. 

 

The direct dissolution of [2] in DMSO followed by dilution with water was not 

desirable for the preparation of samples for in vitro biological evaluation.  A 

molecule of dichloromethane—a highly toxic compound—in the crystallisation of 

[2] would adversely affect any results obtained.
224

  To overcome this problem, [4]Cl 

was prepared and isolated prior to any in vitro experiments.  This was achieved by 

heating [2] under reflux in methanol with one equivalent of DMSO.  This gave the 

cationic complex [4]Cl in good yield (87%, Scheme 2.5) with analytical purity as 

[4]Cl.½DMSO. 
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[2]  [4]Cl, 87%* 

 

Scheme 2.5:  Synthetic procedure for obtaining the DMSO complex [RuCl(DMSO-

S)(cis-tach)(PPh3)]Cl ([4]Cl) from the reaction between [2] and one equivalent of 

DMSO. *Isolated yield. 

 

ESI mass spectrometry confirmed the identity of [4]
+
, with a molecular ion observed 

at m/z 606.1, displaying the expected isotope pattern.  This signal was observed 

without fragmentation or other species.  The coordination of DMSO was evidenced 

by 
 
resonances at δH 3.20 and 2.69 ppm for the two methyl groups of the ligand in the 

1
H NMR spectrum.  These chemical shifts are indicative of an S- bound coordination 

mode.
225

  The inequivalence of the DMSO methyl groups reflects the C1 symmetry 

environment of cis-tach.  Therefore, [4]
+
 is chiral and expected to be a racemic 

mixture of the R- and S- enantiomers.  The water solubility of [4]Cl is improved 

compared to [2]; first, the complex is ionic, and therefore capable of forming 

electrostatic interactions with water.  Secondly, both the cis-tach and DMSO ligands 

are capable of participating in hydrogen-bonds with the solvent, further stabilising 

the solvated state.  This complex was evaluated for in vitro activity and is discussed 

later.
 

 

2.5.2 Acetonitrile Complexes 

 

The synthetic diversity available from [2] was explored with the aim of preparing 

complexes containing common solvents as ligands.  These solvent complexes may 

allow a convenient synthetic methodology for the preparation of complexes 

incorporating other ligands by displacement of acetonitrile.  Not only may other ĸ
1
 

ligands be introduced, but complexes with chelating ligands may be accessible.  

Complexes of this type have been demonstrated in the preparation of η
6
-arene 
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complexes with chelating diphosphanes (Scheme 2.6). The acetonitrile is substituted 

by the diphosphane ligand and results in the subsequent displacement of the 

triphenylphosphane and ring closure, yielding the chelate complex.
226

   

 

 

 

Scheme 2.6:  Preparation of η
6
-para-cymene ruthenium(II) complexes with 

chelating ligands such as dppm from a triphenylphosphane/acetonitrile precursor.  

The diphosphane coordinates by displacement of the acetonitrile ligand forming a 

pendant-phosphane complex.  This is followed by ring-closure with substitution of 

triphenylphosphane, promoted by the chelate effect. 

 

The applicability of this method in the preparation of new cis-tach complexes was 

investigated.  The dissolution of [2] in acetonitrile was expected to readily yield 

[RuCl(NCMe)(cis-tach)(PPh3)]
+
, as the chloride ligand is believed to be easily 

displaced.  The neutral complex [2] was found to be poorly soluble in acetonitrile, 

requiring treatment with an equimolar amount of sodium hexafluorophosphate to 

facilitate the formation of an acetonitrile complex in solution.  After 30 min stirring 

at room temperature, the product was isolated by removal of the solvent in vacuo.  

Dissolving the residue in DCM allowed for the removal of NaCl by filtration and the 

product was precipitated by addition of diethyl ether to this solution. 
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The formation of a new species from this reaction is evidenced by a resonance at δP 

60.61 ppm in the 
31

P{
1
H} NMR spectrum, recorded in CD2Cl2.  Similar to the 

reaction of [2] with DMSO, resonances suggesting a C1 cis-tach symmetry 

environment were evident in the 
1
H NMR spectrum as well as a resonance 

corresponding to the coordinated acetonitrile ligand at δH 2.29 ppm.  The identity of 

the new complex is proposed as [RuCl(NCMe)(cis-tach)(PPh3)]PF6, [5]PF6 (Scheme 

2.7). 

 

 

 

 

 

[2] [5]PF6, 71%* 

 

Scheme 2.7:  Synthesis of the acetonitrile complex [RuCl(NCMe)(cis-

tach)(PPh3)]PF6 ([5]PF6) from chloride metathesis of [2] with NaPF6 in acetonitrile.  

*Isolated yield. 

 

During isolation of this complex, washing with diethyl ether resulted in minor loss of 

acetonitrile and small quantities of the dimeric species [3]PF6 was observed in the 

31
P{

1
H} NMR spectrum.  The identity of [5]PF6 was supported by the observation of 

the expected molecular ion (m/z 569.11) and isotope pattern in the ESI mass 

spectrum.  Elemental analysis of the isolated compound indicated the presence of 

residual dichloromethane and diethyl ether from the synthesis, but a sample of 

sufficient analytically purity could not be obtained, the largest discrepancy being in 

nitrogen content (found 6.61% vs. calc. 7.06%). 

 

Milder conditions are required for the preparation of [5]PF6 from [2] (room 

temperature) in comparison to the analogous reaction with [RuCl2(η
6
-p-

cymene)(PPh3)],
226

 where the p-cymene complex must be heated at reflux (80 °C+) 

in acetonitrile.  The difference in the required conditions reflects the more labile 
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chlorido ligand in the cis-tach complexes, as hypothesised from the comparison of 

structural parameters in [1]PF6 and [2] with analogous η
6
-arene complexes, owing to 

the stronger σ-donor properties of the cis-tach ligand. 

 

Displacement of the second chlorido ligand with acetonitrile was possible by heating 

[2] at reflux in acetonitrile with two equivalents of NaPF6 for 4h (Scheme 2.8).  The 

resulting complex was isolated in the same manner as [5]PF6.  The 
31

P{
1
H} NMR 

spectrum of the product in CD2Cl2 contains a single resonance from the 

triphenylphosphane ligand at δP 55.93 ppm.  The coordination of a second 

acetonitrile is evidenced by the integration of the resonance for coordinated 

acetonitrile at δH 2.40 ppm, corresponding to two ligands per cis-tach.  This is 

reflected in the restoration of cis-tach resonances of a Cs symmetry environment.  

This new species is the product of displacement of the chlorido ligands in [2] by 

metathesis with NaPF6 in acetonitrile and coordination of two solvent molecules, 

giving [Ru(NCMe)2(cis-tach)(PPh3)](PF6)2 ([6](PF6)2, Scheme 2.8) .   

 

 

 

 

[2]  [6](PF6)2, 51%* 

 

Scheme 2.8:  Displacement of both chlorido ligands in [RuCl2(cis-tach)(PPh3)] with 

acetonitrile by metathesis with NaPF6 with heating at reflux, giving the solvent 

complex [Ru(NCMe)2(cis-tach)(PPh3)](PF6)2, [6](PF6)2.  *Isolated yield. 

 

The ESI mass spectrum of [6](PF6)2 is in agreement with the proposed identity with 

a single signal observed at m/z 720.14, corresponding to [7+PF6]
+
 (100%).  

Displacement of the chlorido ligand is again achieved with relative ease compared to 

other fac-ligands.  For example, the analogous reaction with [RuCl2(ttcn)(PPh3)] 

requires use of light-sensitive silver salts, which are more reactive than their sodium 

equivalents, as well as heating the reaction at reflux.
227
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2.5.3 Reactivity of the Acetonitrile Complexes 

 

The reactivity of the acetonitrile complexes was investigated with 

methylenebis(diphenylphosphane) (dppm), a chelating diphosphane, with the aim to 

prepare [RuCl(dppm)(cis-tach)]PF6 from displacement of the acetonitrile and 

triphenylphosphane ligands in [5]PF6.  A solution of [5]PF6 with an excess of dppm 

in CD2Cl2 was heated at 50°C in a sealed NMR tube and monitored by NMR 

spectroscopy.   After 45 minutes, a large quantity of a new species, [7]PF6, was 

observed in the 
31

P{
1
H} NMR spectrum (Fig. 2.9), with integration corresponding to 

approximately 40% conversion. 

 

         

 

Figure 2.9:  Resonances assigned to [7]PF6 in the resulting 
31

P{
1
H} NMR spectrum 

of the reaction between [5]PF6 and dppm in CD2Cl2 after 45 minutes at 50°C.  The 

two resonances at δp 45–48 ppm indicate that there are two coordinated phosphane 

ligands in the complex, as well as a pendant phosphane, evidenced by the resonance 

at δp −28 ppm. 

 

Two of the three phosphorus environments in [7]PF6 occur between δp 45–48 ppm; 

these chemical shifts are indicative of coordination to a metal centre.  The two 

resonances are coupled to each other by a 
2
JPP of 30 Hz.  The doublet of doublets is 

further coupled to the 
31

P nucleus with chemical shift of −28 ppm with a 
2
JPP 

coupling of 33.5 Hz.  This resonance appears as a triplet due to the similarity of the 

two coupling constants.   The resonance at δp −28 ppm is proposed to indicate  a 

pendant phosphane.  Together with the absence of liberated triphenylphosphane, this 

evidence suggests the dppm ligand has coordinated in a ĸ
1
 fashion as [RuCl(ĸ

1
-

dppm)(cis-tach)(PPh3)]PF6 (Fig. 2.10).   
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Figure 2.10:  Proposed structure of the pendant-phosphane complex [RuCl(ĸ
1
-

dppm)(cis-tach)(PPh3)]PF6 ([7]PF6), formed in the reaction between [5]PF6 and 

dppm.  Displacement of the triphenylphosphane ligand and ring-closure is not 

observed on further heating. . 

 

The diphosphane is still to undergo ring closure by displacement of the 

triphenylphosphane ligand to give the target complex [RuCl(dppm)(cis-tach)]PF6.  

However, further heating in an attempt to obtain the target complex 

[RuCl(dppm)(cis-tach)]PF6 resulted in the degradation of the sample.   

 

2.5.4 Conclusions 

 

The preparation of solvent complexes from [2] has expanded the accessible 

chemistry of ruthenium cis-tach compounds with a DMSO and two acetonitrile 

based complexes.  However, employment of these complexes in the preparation of 

complexes with desirable ligands, such as chelating phosphanes, was met with 

difficulty.  Therefore, only complexes incorporating the triphenylphosphane ligand 

are accessible from [2] due to problematic displacement of the phosphane.  

Therefore, alternative synthetic methods must be investigated to expand the library 

of ruthenium (II) cis-tach complexes. 
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2.6 In Vitro Biological Evaluation 

 

As this thesis is concerned with the biological activity of ruthenium(II) cis-tach 

complexes, it was of interest to evaluate the triphenylphosphane complexes 

presented in this chapter.  Compounds were only selected if analytically pure 

samples were attainable.  Furthermore, complexes which displayed readily labile 

phosphane ligands, such as [1]Cl or insufficient water solubility were excluded from 

the study.  Consequently, only one complex, [4]Cl, was chosen for evaluation.  In 

vitro growth inhibition assays were performed using the MTT colorimetric assay 

with the A549 lung adenocarcinoma and A2780 ovarian carcinoma cell lines.
228

  The 

determined IC50 values are given in Table 2.2. 

 

 A549
 

 A2780 

Compound IC50 (μM) slope  IC50 (μM) slope 

cisplatin 2.70(5) 0.92(5)  0.43(1) 1.36(3) 

[4]Cl 194(4) 2.00(5)  67.8(10) 1.95(6) 

 

Table 2.2: Biological evaluation of cisplatin and [RuCl(DMSO-S)(cis-

tach)(PPh3)]Cl ([4]Cl) in the A549 (lung) and A2780 (ovarian) tumour cell lines.  

The IC50 is defined as the concentration of drug required to inhibit 50% of cell 

growth over a 72 h incubation. 

 

Compound [4]Cl displayed weak anti-proliferative activity (ability to inhibit growth) 

in both the A549 and A2780 cell lines on comparison to the clinically used drug 

cisplatin.  Furthermore, the dose-response profile is steeper than in cisplatin, 

therefore a smaller (logarithmic) concentration range spans the activity profile of the 

complex.  Thus, the ability to control the dose in a clinical application is limited in 

comparison to cisplatin.  Most importantly, although weakly active, [4]Cl represents 

the possibility for ruthenium (II) cis-tach complexes to be highly active anti-cancer 

agents with further design and development of the complexes.  Therefore, structural 

modifications, such [RuCl(dppm)(cis-tach)]
+
, the target of the reaction between 

[5]PF6 and dppm, must be investigated to advance the design of ruthenium cis-tach 

complexes.  In addition, the racemic mixture obtained in the preparation of the chiral 
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complex [4]Cl may contain only a single biologically-active enantiomer.  Further 

development of such compounds will require investigations into the effect of the 

different enantiomers in a biological environment.  However, complex [4]Cl has 

demonstrated the potential for ruthenium(II) cis-tach complexes to act as anti-tumour 

drugs, holding some promise for further developments. 

 

2.7 Chapter Conclusions 

 

In summary, the coordination chemistry of cis-tach with ruthenium has been 

established.  cis-tach reacts readily with [RuCl2(PPh3)3] to yield the cationic species 

[RuCl(cis-tach)(PPh3)2]Cl [1]Cl.  The ligand was confirmed to coordinate in a ĸ
3
-

fashion as a six electron facial-coordinating ligand.  On standing for a period of time 

in dichloromethane [1]Cl undergoes a charge neutralisation reaction with chloride to 

[RuCl2(cis-tach)(PPh3)], [2] with loss of PPh3.  Furthermore, a dimerisation process 

is observed with complex [2], whereby abstraction of a chlorido ligand and 

subsequent coordination of another molecule of [2] forms [{RuCl(cis-

tach)(PPh3)}2(μ-Cl)]
+
 [3]

+
.  A dimer formed by single μ-chlorido bridge is rare in 

ruthenium(II) chemistry. 

 

The bond lengths in the X-ray structural solutions of the complexes [1] and [2] 

suggest that cis-tach is a strong σ-donor, resulting in increased localisation of 

electron density on the metal in comparison to the η
6
-arenes and is comparable to 

that of anionic ligands, such as Cp.  Therefore, the subsequent chemistry of 

ruthenium cis-tach complexes is expected to resemble that of Cp with a greater 

likelihood for chlorido dissociation.  

 

The preparation of solvent complexes based on [2] provided an increased synthetic 

diversity.  The inclusion of the DMSO ligand in [4]Cl was observed to significantly 

increase water solubility in comparison to the parent compound.  The anti-

proliferative activity [4]Cl was shown to have poor activity against the cancer cell 

lines, yet demonstrated the potential for ruthenium(II) cis-tach complexes to act as 

cytotoxic agents, proving promise for the design of future compounds. 

 



77 

 

Use of acetonitrile as a synthetic precursor for further compounds was investigated, 

however displacement of the triphenylphosphane ligand proved difficult.  Therefore, 

alternative synthetic methods must be investigated, whereby a common synthetic 

precursor to a variety of compounds is prepared.  This forms the basis of the next 

chapter. 
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Chapter 3. Ruthenium(II) cis-tach Dimethylsulfoxide Precursor 

Complexes 

 

3.1 Introduction 

 

The preparation of ruthenium(II) cis-tach complexes by use of a common precursor 

with a desired ligand has the potential to offer a diverse library of compounds.  This 

may be achieved by the incorporation of labile ligands providing a template for the 

target complex.  The DMSO ligand is often employed in synthetic chemistry for this 

purpose.
229

  For example, use of 1,4,7-trithiacyclononane (ttcn) dimethylsulfoxide 

complexes by Alessio, Dyson and co-workers permitted the preparation of a series of 

moderately cytotoxic ttcn complexes (Scheme 3.1) containing PTA, en, bipy and 

imidazole.
161, 162

  These ligands had previously been employed in the η
6
-arene family 

of compounds for the development of anti-cancer compounds with varying degrees 

of success.
78, 116, 163, 230

  More recently, Alessio reported a series of ruthenium(II) fac-

(DMSO-S)3 complexes to replace the Ru-ttcn moiety. However, this resulted in a 

loss of activity, demonstrating the importance of the identity of the fac-ligand.
231

 

 

 

 

 

 

Scheme 3.1:  Preparation of [RuCl(en)(ttcn)]OTf from the precursor [RuCl(DMSO-

S)2(ttcn)]OTf by displacement of the DMSO-S ligands with 1,2-ethylenediamine 

(en). 

 

The use of sulfoxide ligands in ruthenium antitumor complexes was originally 

pioneered by Alessio, Sava and co-workers with tetrakis-dimethylsulfoxide halide 

compounds.  The complex [cis-RuCl2(DMSO-S)3(DMSO-O)] exhibited antitumor 

activity in vivo against metastases, and was demonstrated to bind DNA in vitro, with 
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favourable interactions with guanine residues.
232, 233

  Although this complex 

displayed weak in vivo antitumor activity, use of [trans-RuCl2(DMSO-S)4] allowed 

for increased activity at doses of up to twenty times lower than the cis-isomer.
234

  

The DMSO ligand was incorporated by Alessio and Sava into the imidazole 

ruthenium(III) complex [imiH][trans-RuCl4(imi)2], originally developed by Keppler 

and co-workers.
65

 It was found that Na[trans-RuCl4(DMSO-S)(imi)] exhibited anti-

metastatic activity comparable to that of cisplatin.
235

  The imidazolium salt of this 

complex, NAMI-A entered and recently successfully completed Phase I clinical 

trials.
55

   

 

 

 

 
  NAMI-A 

 

Figure 3.1:  Structures of two ruthenium DMSO complexes assessed for antitumor 

activity, the early complex [trans-RuCl2(DMSO-S)4] (left) and the anti-metastatic 

agent [imiH][trans-RuCl4(DMSO-S)(imi)] (NAMI-A) which has entered clinical 

trials (right). 

 

To further develop ruthenium(II) cis-tach complexes, it was proposed to explore the 

coordination chemistry of cis-tach with dimethylsulfoxide containing precursors.  

The formation of an analogous complex to [RuCl(DMSO-S)2(ttcn)]OTf may allow 

for the introduction of a wide variety of co-ligands into the coordination sphere of 

the metal.  Given the precedent of ruthenium sulfoxide complexes in the literature 

displaying potency in the treatment of tumors, we were also interested in the in vitro 

biological activity of these novel sulfoxide complexes as well as understanding the 

mechanism of aquation reactions occurring in aqueous solution. 

  



80 

 

3.2 Preparation of [RuCl(DMSO-S)2(cis-tach)]Cl 

 

3.2.1 Synthesis and Characterisation 

 

The preparation of ruthenium(II) DMSO complexes often employs [cis-

RuCl2(DMSO-O)(DMSO-S)3], which is readily synthesised from the reaction of 

RuCl3.xH2O with DMSO.
236

  Successful treatment of this ruthenium precursor with 

facially-coordinating ligands was achieved with [9]ane-S3 (1,4,7-trithiacyclononane), 

tpm (trispyrazolylmethane) and tacn (1,4,7-triazacyclononane), to generate 

[RuCl2(DMSO-S)([9]ane-S3)], [RuCl2(DMSO-S)(tpm)] and [RuCl(DMSO-

S)2(tacn)]Cl respectively.
227, 229, 237

  It was hypothesised that the reaction of cis-tach 

with [cis-RuCl2(DMSO-O)(DMSO-S)3] would follow a similar route.   

 

The conditions employed for the reaction of cis-tach with [cis-RuCl2(DMSO-

O)(DMSO-S)3] was inspired by a similar method employed for the preparation of the 

analogous tacn complex.
237

  cis-tach and [cis-RuCl2(DMSO-O)(DMSO-S)3] were 

heated in DMSO at 130°C for 30 minutes, yielding a single product.  The 

coordination of cis-tach as a ĸ
3
 fac-ligand to the metal is evidenced by the 

1
H NMR 

spectrum of the material isolated by addition of ethyl acetate.  Resonances 

accounting for all six amine protons, assigned by the absence of cross-peaks in the 

2D 
1
H/

13
C correlation spectrum, were detected in d4-methanol, suggesting exchange 

between the protic solvent and the amines does not occur rapidly.  Therefore the 

three nitrogen electron lone pairs are involved in coordination to the metal, as they 

are unable to participate in rapid proton exchange mechanisms with the solvent.  

Furthermore, all amine protons are shifted downfield (δH 3.75–4.5 ppm) in 

comparison to a non-coordinated amine (δH ~1 ppm).  A total of nine proton 

environments are observed for cis-tach in the 
1
H NMR spectrum, suggesting a Cs 

symmetry environment.  Additionally, a single resonance for coordinated DMSO 

was present at δH 3.33 ppm with a relative integration corresponding to two ligands 

per complex.  A single chlorido ligand is expected to complete the eighteen valence 

electron, six-coordinate complex [RuCl(DMSO)2(cis-tach)]
+
 ([8]

+
, Scheme 3.2)  This 

is evidenced by the observation of the molecular ion  in the ESI mass spectrum at 

m/z 422.0271 with expected ruthenium and chlorine isotope pattern.  The complex 
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was isolated with a chloride counter-ion by the addition of ethyl acetate to the 

reaction mixture in DMSO and cooling to −20°C as [8]Cl with analytical purity and 

in excellent yield (92%).   

 

 

 

 
  [8]Cl, 92%* 

 

Scheme 3.2:  Synthesis of [RuCl(DMSO)2(cis-tach)]Cl ([8]Cl) from [cis-

RuCl2(DMSO-O)(DMSO-S)3].  It is proposed that two DMSO ligands coordinate to 

the metal centre via the sulfur atoms.  * Isolated yield. 

 

As DMSO is capable of coordinating to a metal through either the sulfur or oxygen 

atom, identification of the donor atom was of importance.  
1
H NMR and IR 

spectroscopy techniques are both capable of providing evidence for the coordination 

mode of the dimethylsulfoxide ligand. The chemical shift of the DMSO ligands in 

the 
1
H NMR spectrum at δH 3.33 ppm is indicative of an S- bound coordination 

mode.
225

 The IR band for the sulfur-oxygen bond stretching frequency of the bound 

dimethyl sulfoxide, ν(S=O), appears at 1061 cm
-1

 at the lower boundary for S-

DMSO. The difference in the stretching frequencies between O- (878–1035) and S- 

(1070–1233) geometries relate to the bonding character of the S–O bond.
238

 Oxygen 

coordination stabilises the resonance structure, S
+
–O

-
, decreasing the bond order, and 

thus ν(S=O).  Sulfur coordination stabilises the S=O electronic structure, increasing 

the bond order and ν(S=O).
239

  Although the band appears outside of the literature 

values for S-DMSO complexes, complexes with other fac-coordinating ligands in 

place of cis-tach exhibit similar stretching frequencies.  For example, the ν(S=O) 

band in [RuCl(η
5
-C5Me5)(DMSO-S)2] is observed at 1060 cm

-1
. 

240
  The assignment 

of the DMSO ligand as a sulfur donor is consistent with many other ruthenium 

complexes of this type.
166, 229
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Figure 3.2:  ORTEP (50% probability ellipsoids) diagram of [8]PF6.  Hydrogen 

atoms (except for amino hydrogens) and the counter ion are omitted for clarity. 

Selected bond lengths (/Å), angles (/°) and torsions (/°):  Ru(1)–N(1) 2.1255(18), 

Ru(1)–N(2) 2.137(2), Ru(1)–N(3) 2.135(2), Ru(1)–Cl(1) 2.4170(6), Ru(1)–S(1) 

2.2581(5), Ru(1)–S(2) 2.2524(5), S(1)–O(1) 1.5011(18), S(2)–O(2) 1.4883(17), 

N(1)–Ru(1)–N(2) 88.30(8), N(1)–Ru(1)–N(3) 88.49(8), N(2)–Ru(1)–N(3) 85.89(8), 

S(1)–Ru(1)–S(2) 97.49(2), S(1)–Ru(1)–Cl(1) 96.04(2), S(2)–Ru(1)–Cl(1) 92.37(6), 

N(1)–Ru(1)–Cl(1) 173.36(5), Ru(1)–S(1)–O(1) 109.62(7), Ru(1)–S(2)–O(2) 

116.79(7), N(3)–Ru(1)–S(1)–O(1) 29.93(11), N(1)–Ru(1)–S(2)–O(2) −12.40(11).  

Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–

H...A, H...A–X:  N(1)–H(1a)...O(2)–S(2) 3.143(3) 2.53(3) 124(2) 88.3 (7), N(3)–

H(3b)...O(1)–S(1) 2.852(3) 2.11(3) 130(3) 95.2(9).  
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3.2.2 X-Ray Crystallography 

 

Slow evaporation of a methanol solution of [8]PF6, obtained from chloride 

metathesis with sodium hexafluorophosphate followed by filtration, gave crystals 

suitable for X-ray diffraction analysis. An ORTEP diagram and selected bond 

angles, lengths and torsions, as well as hydrogen-bond parameters are given in Fig. 

3.2. 

 

As for [1]PF6 and [2], the obtained crystal structure of [8]PF6 is that of a distorted 

octahedron.  The ruthenium cis-tach moiety is again a distorted adamantane structure 

due to the geometrical constraints of the cis-tach ligand, resulting in the three N–Ru–

N angles of less than the idealised 90°.  The three angles of the L3 ligand-set of 

DMSO and chlorido are greater than 90°, most prominent in the S(1)–Ru(1)–S(2) 

bite angle of 97.49(2)°.  This is due to the Ru–N bond constraints of cis-tach, where 

the three “L3” ligands are able to occupy a larger spatial region around the metal.  

The hexafluorophosphate anion, omitted from the ORTEP plot for clarity, is 

disordered between two sites in the asymmetric unit at equal occupancy. 

 

The two DMSO ligands are rotated towards the cis-tach amine groups to participate 

in intramolecular hydrogen-bonds.  The DMSO ligand containing O(1) is rotated to 

occupy the location between N(3) and N(1).  However, the sulfoxide group is 

directed more towards N(3).  This is evidenced by a shorter torsion angle and H...O 

distance of 29.93(11)° and 2.53(3) Å for O(1)/N(3) compared to −58.72(10)° and 

2.77(3) Å for O(1)/N(1).  When taking into account the directionality of DMSO 

ligand towards the hydrogen atom, the torsion angle is −3(2)° between H(3b) and 

O(1), suggesting an exclusive intramolecular hydrogen-bond of O(1) with N(3).   

The second DMSO ligand [containing O(2)] participates in intramolecular hydrogen-

bonding with N(2) with a torsion angle of −12.40(11)°.  Both of these intramolecular 

interactions have an S–O...H angle of 95.2(9) and 88.3(7)° respectively.  The 

absence of a hydrogen-bond between N(1) and O(1) is further evident by the 

comparatively small S–O...H angle of 75.3(6)°.   
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In addition to these intramolecular interactions, two different intermolecular 

hydrogen-bonds between the cationic units are present in the crystal structure.  These 

interactions form a two dimensional sheet structure, as shown in Fig. 3.3.  The larger 

structure is comprised of a repeating set of four cations in a rhombical geometry with 

an angle of 67.5(1)°. Each of the cation layers is separated by hexafluorophosphate 

anions, which also participate in hydrogen-bonding interactions with cis-tach.  

Finally, the layers are off-set from those adjacent by a translation corresponding to 

one cation, or half of the rhomboidal unit. 

 

 

 

Figure 3.3:  Sheet-like structure formed from intermolecular hydrogen-bonds 

between the cis-tach amine protons and DMSO oxygen of an adjacent complex in 

the crystal packing of [8]PF6.  Hydrogen bonds are drawn as D...A. 

 

3.2.3 Conclusions 

 

[8]Cl was prepared by reaction of [cis-RuCl2(DMSO-S)3(DMSO-O)] with cis-tach 

and characterised by NMR and IR spectroscopy, mass spectrometry and single 

crystal X-ray diffraction, with the hexafluorophosphate derivative used in the latter.  

Two DMSO-S ligands were retained in the complex along with a single chlorido, 

giving a cationic species without the use of weakly coordinating anions.  The 

biological activity of this complex and its aqueous chemistry forms the basis for the 

second half of this chapter. 
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Figure 3.4:  ORTEP (50% probability ellipsoids) diagram of [9].  Hydrogen atoms 

(except for amino hydrogens) are omitted for clarity.  Cl(1a) and the DMSO ligands 

are disordered across the two coordination sites, where the major form is given.   

Selected bond lengths (/Å), angles (/°) and torsions (/°):  Ru(1)–N(1) 2.154(3), 

Ru(1)–N(2) 2.091(3), Ru(1)–N(3) 2.131(3),  Ru(1)–Cl(1a) 2.4650(12), Ru(1)–Cl(2) 

2.4385(9), Ru(1)–S(1a) 2.1775(10), S(1a)–O(1a) 1.496(3), N(1)–Ru(1)–N(2) 

88.08(13), N(1)–Ru(1)–N(3) 88.31(13), N(2)–Ru(1)–N(3) 90.28(13), Cl(1a)–Ru(1)–

Cl(2) 95.53(3), Cl(2)–Ru(1)–S(1a) 90.69(3), Cl(1a)–Ru(1)–S(1a) 91.33(4), N(1)–

Ru(1)–S(1a) 177.56(9), Ru(1)–S(1a)–O(1a) 119.54(13), N(3)–Ru(1)–S(1a)–O(1a) 

1.29(18).  Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, 

H...A, D–H...A, H...A–X):  N(2)–H(2d)...O(1a)–S(1a) 3.146(4), 2.61(5), 127(5), 

86(1). 
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3.3 Solid-State Structure of [RuCl2(DMSO-S)(cis-tach)] 

 

An attempt was made to synthesise [RuCl(dppm)(cis-tach)]PF6 by the reaction of 

dppm with [8]Cl by heating at reflux in methanol.  Single crystals were obtained 

from slow evaporation of a methanolic solution of the product of this reaction.  

However, the crystal was found to have the formula RuCl2(DMSO-S)(cis-tach) [9] 

by X-ray diffraction analysis.  This compound is the respective neutral variant of 

[8]Cl, formed from charge neutralisation.  An ORTEP diagram and selected bond 

angles, lengths and torsions, as well as hydrogen-bond parameters are given in Fig. 

3.4. 

 

Once again, the complex is of a distorted octahedron and adamantane structure.  The 

DMSO and one chlorido ligand, Cl(1a), were found to be disordered across two sites 

in a ratio of 93:7. An intramolecular hydrogen-bond is present between N(2) and 

O(1a) with a torsion angle of 1.29(18)°.  This interaction has resulted in a distortion 

of the adamantane structure. The Ru(1)–N(2) bond length is shorter than Ru(1)–

N(3), the amine generated by the Cs reflection plane of cis-tach (in solution), at 

2.091(3) compared to 2.131(3) Å.  As in the case of [8]PF6, [9] forms an extended 

hydrogen-bond network in two-dimensional layers, with a total of twelve hydrogen-

bonds formed between one complex and those surrounding it (Fig. 3.5).   

 

Unfortunately, this species has only been observed by single crystal X-ray diffraction 

and not by any spectroscopic technique, to any extent. Therefore, further 

investigations of this complex were not possible. 
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Figure 3.5: Top: Two-dimensional hydrogen-bonding motif between cis-tach amine 

protons and the chlorido and DMSO ligands of adjacent complexes in the structure 

of [9].  Hydrogen bonds are drawn as D...A.   Bottom: Detailed view of hydrogen-

bonding which is present along both axes (as seen in top diagram).  Each complex 

donates and accepts hydrogen-bonds with an adjacent complex.  The hydrogen-

bonding structure alternates between two motifs.  The first (left) is of NH...O and 

NH...Cl interactions, whereas the other (right) consists of one NH...O and three 

NH...Cl hydrogen-bonds.  Hydrogen bonds are drawn as D...A.   
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3.4 Comparison of X-Ray Structures 

 

The nature of the bonding between ruthenium and DMSO may be determined from 

crystallographic evidence.
239, 241

  Although the Ru–S bond is dependent upon both σ-

donation and π-interactions, information regarding the π-bonding between the metal 

and ligand can be obtained from the S–O bond length.  DFT calculations have shown 

that DMSO has three almost degenerate low-lying unoccupied orbitals.  Two of 

these have strong σ*(S–C) character and the other is predominantly π*(S=O); with 

π*(S=O) being the lowest in energy.  These  orbitals are involved in the back-

donation of electron density from the metal, with most significant contribution to the 

π*(S=O) orbital.
242

  

 

In order to gain insight to the electronic influence of the cis-tach ligand on the Ru-

DMSO moiety, selected and mean bond lengths for [8]PF6 and [9] were compared to 

those of analogous complexes with other six electron facial-coordinating ligands in 

Tables 3.1 and 3.2 respectively.   

 

  Average Bond Length (Å) 

 fac-ligand Ru–Cl Ru–S S–O 

 Tp
243

 2.414(1) 2.27(3) 1.481(3) 

[8]PF6 cis-tach 2.417(1) 2.255(5) 1.495(10) 

 ttcn
229

 2.420(1) 2.332(10) 1.483(5) 

 tacn
166

 2.426(1) 2.257(10) 1.485(4) 

 η
5
-C5Me5

240
 2.447(3) 2.301(5) 1.476(9) 

 

Table 3.1:  Selected bond lengths from [8]
+
 and ruthenium(II) fac-ligand analogue 

complexes following the formula [RuCl(DMSO-S)2(fac-ligand)]
n+

.  The Ru–S and 

S–O bond lengths are given as the weighted mean for clarity.
220

 

 

Due to the large variation of the Ru–S and S–O bond lengths in [8]PF6, there is no 

significant difference between these parameters and those of similar complexes, with 

the exception of the Ru–S bond length of the η
5
-C5Me3 and ttcn complexes.  Both of 

these bond lengths are longer than that of the cis-tach complex [8]PF6, suggesting a 
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stronger Ru-DMSO bonding interaction in [8]PF6.  This is proposed to be due to 

increased π-back bonding from the metal centre of the cis-tach complex to the 

π*(S=O) orbital of DMSO.  There is little variation in Ru–Cl bond length between 

the neutral fac-ligands available for analysis; a significant difference is only seen on 

comparison with the anionic Cp* ligand. 

 

  Bond Length (Å) 

 fac-ligand Ru(1)–Cl(1) Ru(1)–Cl(2) Ru(1)–S(1) S(1)–O(1) 

[9] cis-tach 2.465(1) 2.438(2) 2.178(1) 1.495(3) 

 η
6
-p-cymene

244
 2.411(1) 2.405(1) 2.340(1) 1.477(3) 

 η
6
-tha

245
 2.391(5) 2.400(6) 2.333(6) 1.48(2) 

 

Table 3.2:  Selected bond lengths from [9] and other ruthenium(II) fac-ligand 

complexes with the formula [RuCl2(DMSO-S)(fac-ligand)]. 

 

A greater difference in bond lengths is seen when comparing [9] to η
6
-arene 

analogues (Table 3.2).  First, both Ru–Cl bond lengths in [9] are significantly longer 

than those in the η
6
-p-cymene or η

6
-tha.  This is as expected from the analysis of the 

triphenylphosphane crystal structures in chapter 2, where it is proposed that cis-tach 

is a stronger σ-donor and poor π-acceptor.  A similar difference is seen for the Ru–S 

and S–O bond lengths, where the parameters for [9] suggest a greater bond-order of 

the metal-ligand interaction, proposed to be due to increased π character of the bond 

from an electron rich metal.  This is also reflected in the S–O bond length (when 

compared to p-cymene only), where the longer bond length suggests a weaker 

bonding character, from back-donation into the π*(S=O) orbital of DMSO.  

However, the involvement of the DMSO ligand in hydrogen-bonds to the cis-tach in 

the crystal structure influences the S–O bond length and therefore this parameter 

cannot be interpreted significantly.   
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3.5 In Vitro Biological Evaluation 

 

The MTT assay is a rapid colorimetric assay for the quantitative determination of 

cell viability.
246

  A modified procedure of that reported by Carmichael and co-

workers was used, and [8]Cl was assessed for antiproliferative activity with two cell 

lines, A549 and A2780.
228

  [8]Cl does not inhibit the growth of either cell line by 

50% up to a concentration of 300 μM, and is therefore considered inactive. 

 

These results are not unexpected given the conclusions of Sadler and co-workers, 

where it is hypothesised that the activity can be related to the lipophilicity of the 

complex, which can influence the ability of the compound to enter the cell by 

passive diffusion through the cell membrane.
80, 89

  The low lipophilicity of [8]Cl is 

reflected by the insolubility of the compound in apolar solvents.  [8]Cl is only 

readily soluble in water, methanol and DMSO, and sparsely in ethanol.  This theory 

is further supported on comparison of the bis-dimethylsulfoxide complex to [4]Cl, 

whereby replacement of a DMSO ligand with triphenylphosphane results in 

moderate activity in both cell lines employed.  It is evident that inclusion of a 

hydrophobic group is favourable for obtaining antiproliferative activity.  Therefore 

further development of the structure of ruthenium (II) cis-tach complexes will focus 

on the incorporation of such ligands into the coordination sphere of the metal. 

 

Although it has been shown that [8]Cl does not inhibit tumour cell growth, 

investigations into the aqueous chemistry of this complex were undertaken to 

provide a rationale for the absence of antitumor activity.  The next section 

investigates the ligand exchange processes which occur when [8]Cl is in aqueous 

solution, to further aid in the understanding of the chemical identity of the species 

present when applied to physiological conditions. 

 

  



91 

 

3.6 Aquation Studies 

 

The aquation and hydrolysis of metal complexes is an important activation step in 

the mechanism of the activation of several transition metal drugs, including cisplatin 

and the RAen and RAPTA complexes.
97, 118, 247

  Therefore, the exchange reactions 

which occur between [8]Cl and the solvent in aqueous solution was investigated. It 

was expected that [8]Cl would exchange the chlorido ligand with a single water 

molecule to give [Ru(OH2)(DMSO-S)2(cis-tach)]Cl2.  However investigations into 

the identity of the aquation products revealed that additional processes are involved 

in the reaction between [8]Cl and water. 

 

The aquation reaction of [8]Cl was initially investigated by ESI mass spectrometry.  

The mass spectrum of the complex in 50% H2O/50% MeOH immediately after 

preparation consists of the single molecular ion of the chlorido complex [8]
+
 (m/z 

422.0).  However, pre-treatment of the sample in aqueous solution at 40°C for 18 h 

resulted in a change to the spectrum.  Only a small quantity of the parent ion was 

observed, whereas the mass spectrum of the starting material under the same 

conditions exhibited only a signal for [8]
+
, with no fragmentation ions.  The majority 

of ions observed in the mass spectrum were most likely the result of fragmentation of 

the aqua-adducts of [8]Cl.  Ion fragments originating from both chlorido and DMSO 

dissociation were observed, at m/z 193.6 and 163.6 corresponding to [Ru(DMSO-

S)2(cis-tach)]
2+

 and [Ru(OH2)(DMSO-S)(cis-tach)]
2+

 respectively.  In order to gain 

further insight into the species formed, further reactions were monitored by 
1
H NMR 

spectroscopy.  A D2O solution of [8]Cl was heated at 40°C for 24 h, after which the 

1
H NMR spectrum was recorded.  Selected resonances are given in Fig. 3.6.   
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Figure 3.6:  Cis-tach CH resonances in the 
1
H NMR spectrum resulting from the 

aquation of [8]Cl.  Each symbol represents a single CH proton.  The DMSO-S 

resonances have been omitted for clarity with chemical shifts δH  3.34,  3.33,  

3.30 ppm.  Key:  [8]
+
,  [8a]

n+
,  [8b]

n+
. 

 

Aside from the starting material, resonances accounting for the formation of two new 

species were observed, [8a]
n+

 and [8b]
n+

 with Cs and C1 cis-tach symmetry 

respectively.  Two resonances corresponding to DMSO-S ligands of [8a]
n+

 and 

[8b]
n+

 were present both with integration proportional to one sulfoxide ligand per set 

of cis-tach resonances.  Therefore both new complexes formed from the reaction of 

[8]Cl with water contained a single coordinated DMSO-S ligand.  Over the course of 

the reaction the resonances for the NH2 protons are lost through from proton-

deuteron exchange with D2O, and therefore not observed in the resulting 
1
H NMR 

spectrum. 

 

The product with C1 symmetry was assigned as [RuCl(OHx)(DMSO-S)(cis-

tach)]
(x−1)+

, [8a]
n+

.  The degree of protonation of the aqua ligand cannot be assumed 

with the limited evidence available.  The configuration of ligands in [8a]
n+

 represents 

the only plausible combination which would exhibit C1 symmetry. A product 

containing an aqua and hydroxy ligand, while apparent to be C1 symmetry, would 

exhibit Cs symmetry on the 
1
H NMR timescale, as the proton exchange between the 

two ligands is relatively fast.
248

  The facile liberation of DMSO resembles the 

complexes [trans-RuCl2(DMSO-S)4] and [cis-RuCl2(DMSO-S)3(DMSO-O)], where 

the ruthenium DMSO bond is readily cleaved in water.
234

    

 

// 
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[8a]
n+

 [8b]
n+

 

 

Figure 3.7:  Proposed structures of the two aquation products from solvation of 

[8]Cl in aqueous solution.  Exchange occurs between only DMSO-S and the solvent 

([8a]
n+

) or both a chlorido ligand and DMSO-S with water ([8b]
n+

). 

 

The Cs product [8b]
n+

 must contain two identical ligands to satisfy the cis-tach 

symmetry observed in the 
1
H NMR spectrum.  The only plausible configurations 

containing a single DMSO-S ligand are [RuCl2(DMSO-S)(cis-tach)] and 

[Ru(OHx)2(DMSO-S)(cis-tach)]
(2-2x)+

, both of which agree with the 
1
H NMR 

spectrum.  Aquation of [8]Cl with elevated chloride concentrations (100 mM NaCl 

in D2O) suppressed the formation of the species with Cs symmetry to a limited 

extent.  This evidence suggests the identity of [8b]
n+

 as [Ru(OHx)2(DMSO-S)(cis-

tach)]
(2−2x)+

.  Complete inhibition of the formation of both species was only achieved 

in D2O solution with 100 mM of DMSO and NaCl. 

 

It was proposed that kinetic analysis of the aquation of [8]
+
 would confirm the active 

mechanism in the formation of the two aqua complexes.  This was achieved by the 

monitoring of a 10.8 mM solution of [8]Cl in D2O by 
1
H NMR spectroscopy.  

Spectra were recorded at 20 minute intervals and the reaction maintained at 40°C 

under an argon atmosphere.  One equivalent of ethyl acetate was added to act a 

reference in data analysis.  Integrals of CH protons of each ruthenium complex and 

the CH3 groups of the free DMSO ligand were calculated relative to the CH3 of the 

ethyl group in ethyl acetate.  The resulting data were analysed using DynaFit and 

modelled to the following reaction Scheme given in Scheme 3.3. 
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Scheme 3.3:  Reaction scheme employed for 
1
H NMR kinetics data analysis of the 

aquation of [RuCl(DMSO-S)2(cis-tach)]Cl, [8]Cl.  cis-tach = ĸ
3
-N,N’,N’’-cis-tach, S 

= DMSO-S.  Modification to incorporate inter-conversion between the two aqua 

species did not give a suitable fit for the data. 

 

Modifying the reaction mechanism to incorporate formation of [8b]
n+

 via [8a]
n+

 did 

not give a suitable fit for the data (or vice versa, see Fig. 3.8).  It is proposed that 

[8b]
n+

 is formed from chlorido dissociation from [8]Cl, rapidly followed by DMSO 

loss; as opposed to the loss of the chlorido ligand in [8a]
n+

.  Clearly there are two 

distinctive processes occurring in the reaction between [8]Cl and the solvent in 

aqueous solution.  In addition, both products were formed with pseudo-first order 

kinetics, supporting the structural assignment of [8b]
n+

.  The data were analysed 

using DynaFit, where the plot and reaction parameters are provided in Fig. 3.8 and 

Table 3.2 respectively.
249

 

 

It is apparent from the kinetic parameters that the aquation reactions of [8]Cl are 

significantly slower than those of [RuCl(en)(η
6
-biphenyl)]PF6 and [RuCl2(η

6
-p-

cymene)(PTA)] by two orders of magnitude.
97, 118

  Furthermore, the equilibrium 

constants for both these processes in [8]Cl are lower than those for the ruthenium(II)  
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Figure 3.8:  DynaFit
 
plot of the 

1
H NMR integrations and kinetic fit for the aquation 

reaction of [8]Cl (1, blue) with the mechanism in Scheme 3.3 (left), to give [8a]
n+

 (2, 

pink), [8b]
n+

 (3, red) and DMSO (4, green).  Plots for alternative mechanisms are 

also given (right; DMSO trace is excluded for clarity) of [8]Cl  [8a]
n+

  [8b]
n+

 

(top) and [8]Cl  [8b]
n+

  [8a]
n+

 (bottom). 

 

 k (s
−1

)
 

K (M)
 

[8]Cl   

k1/k1’ (3.96±0.05) x 10
−5 

(1.11±0.31) x 10
−3

  

k2/k2’ (4.47±0.05) x 10
−5 

(1.87±0.05) x 10
−4

 M
c 

[RuCl(η
6
-bip)(en)]PF6

97
  

a (3.95±0.09) x 10
−3 

(9.1±0.9) x 10
−3

 

[RuCl2(η
6
-p-cymene)(PTA)]

118
  

b (3.33± 0.02) x 10
−3

 (3.8 ± 0.2) x 10
−3

 

 

Table 3.3:  Calculated rate and equilibrium constants for the first-order aquation of 

[8]Cl in D2O at 313 K. a) Aquation of [RuCl(η
6
-bip)(en)]PF6, 310 K with 100 mM 

NaClO4 in H2O at pH 6.29; b) First aquation of [RuCl2(η
6
-p-cymene)(PTA)] (Ru–Cl2 

→ Ru–Cl{OHx}) , 298K with 150 mM NaClO4 in H2O. c) Equilibrium constant unit 

of M
2
 due to second-order nature of the reverse reaction. 

re
la

ti
v
e 

in
te

g
ra

ti
o
n
 

time / s 
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η
6
-arene complexes by at least a factor of three.  Therefore, a smaller fraction of the  

aquated—and potentially more reactive—species may be present compared to  

the RAen and RAPTA complexes at the same chloride concentrations.  This slow 

and limited aquation may provide additional rationale for the poor antitumor activity 

of [8]Cl.  It is proposed that insufficient quantities of the aqua species would be 

slowly generated (t1/2 >4 h) within a physiological environment such as the 

cytoplasm of nucleus of a cell. 

 

The 
1
H NMR spectrum at the end of the reaction is able to provide an insight into the 

possibility of inter-conversion between [8a]
n+

 and [8b]
n+

.  Observation of the NH2 

protons of [8b]
n+

 (only approximately 40% deuteration), but not those of [8a]
n+

 

(100% deuteration) provides evidence for the absence of exchange between the two 

species.  It is most probable that inter-conversion can only slowly occur via the 

starting material [8]Cl.  Further inspection of the NH2 
1
H NMR resonances of [8b]

n+
 

reveals an unequal distribution of deuteration in the amine proton environments, as 

shown in Fig. 3.9. 

 

 

 

Figure 3.9:  
1
H NMR spectrum of the NH2 protons in [8b]

n+
, from the aquation of 

[8]Cl in D2O.  Integrations are relative to the CH signal used for kinetic analysis 

with integration of 2.0. 

 

The relative integrations of the two doublet resonances of δH 4.90 and 4.99 ppm 

reveals a deuterium incorporation of approximately 30% more than the singlet at δH 

5.05 ppm.  This difference in intensity is observed in all the 
1
H NMR spectra 

throughout the reaction and therefore not the result of increased proton – deuteron 
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exchange kinetics.  This disparity suggests that a single deuteron has been 

incorporated equally into the geminal amine resonances. 

The conjugate base mechanism SN1CB, is a pathway for metal amine and ammine 

complexes to undergo ligand exchange.  The amine group is deprotonated by a base 

such as the hydroxide in water, where the ligand trans- to the amine dissociates and 

is subsequently replaced by an aqua ligand.  This may be applied to the proposed 

mechanism of formation of [8b]
n+

 (Scheme 3.4) and may account for the observed 

deuteration pattern in the 
1
H NMR spectrum of [8b]

n+
. 

 

 

 

Scheme 3.4:  Proposed conjugate base mechanism for formation of [8b]
n+

 from 

[RuCl(DMSO-S)2(cis-tach)]Cl, [8]Cl, with deuteration of the cis-tach ligand 

indicated.  The deprotonated NH
-
 group is highlighted in red.  S = DMSO-S. 
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Although a second order reaction, the rate equation for the SN1CB mechanism 

remains a pseudo-first order reaction with respect to ruthenium, assuming no overall 

change in hydroxide concentration. However, the observed rate constant would be a 

function of the hydroxide concentration due to its involvement in the rate 

determining step.  Therefore, the distribution of species after 18 h at 40°C at varying 

pH was determined to evaluate the reaction dependence on pH.  Sodium phosphate 

buffer was employed at pH 6.4, 7.4 and 8.2 in 10% D2O/90% H2O solution.  The 

relative amounts of each complex are given in Table 3.4.   

 

pH [8]
+
 (%) [8a]

n+
 (%) [8b]

n+
 (%) 

6.4 46.4 30.7 22.8 

7.4 21.2 19.9 58.9 

8.2 24.1 20.9 55.0 

 

Table 3.4: Ratios of starting material and products in the aquation of [8]Cl at pH 

6.4, 7.4 and 8.2 in 10% D2O solution with 10 mM sodium phosphate buffer. 

 

It is evident that a dramatically increased proportion of [8b]
n+

 is formed at pH 7.4 

compared to at pH 6.4, providing a degree of support for the conjugate base 

mechanism.  However, it was expected for change to be observed in the relative 

proportions of the species between pH 7.4 and 8.4.  These 
1
H NMR experiments 

suggest that the physiological pH of a cell, 7.4 is near the optimal pH for the 

aquation of [8]Cl. 

 

These studies on the aqueous chemistry of [8]Cl reveal that solvation of the complex 

in water results in two exchange mechanisms occurring; that of exchange between 

DMSO and an aqua ligand and also a classical aquation reaction which is followed 

by a rapid exchange of DMSO for a second aqua ligand.  Both processes involve 

dissociation of DMSO, therefore formation of an equilibrium requires dmso to be 

present, not just chloride.  It is proposed that aquation is not suppressed in any 

biological environment, including the conditions found within the blood stream.  
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Therefore this complex may be deactivated before it has been able to enter the cell.  

The rate of aquation has been correlated to cytotoxicity in several structure-activity 

relationships, with complexes exhibiting faster aquation generally being more 

active.
86

 Both aquation reactions occur at rates two orders of magnitude slower than 

the that of leading ruthenium(II) η
6
-arene complexes, providing a rationale for the 

poor in vitro activity of [8]Cl.
 

 

3.7 Reactions with Nucleosides 

 

Metal-DNA interactions are thought to be involved in the mechanism of action of 

many anti-cancer compounds; thus, DNA is often the first target screened against 

potential anti-tumour compounds.
84, 96, 233, 250

  In order to investigate the potential for 

[8]Cl with to react with DNA, the small-molecule model guanosine (Guo) was 

chosen for the selectivity cisplatin and RAen complexes exhibit for this base.
20, 96

 

 

A 5 mM solution of [8]Cl was treated with two equivalents of Guo at 40°C for 18 

hours resulting in the formation of a blue solution. The ESI mass spectrum of the 

solution, supplemented with 50% methanol exhibited a single major species, 

corresponding to loss of both a DMSO and chlorido ligand from the coordination of 

guanosine to the metal centre. The starting material was observed (m/z 422.1, 5%), 

with three signals assigned as [Ru(DMSO-S)(Guo)(cis-tach)–H]
+
 (m/z 591.1, 100%) 

[Ru(DMSO-S)(Guo)(cis-tach)]
2+

 (m/z 296.1, 10%) and [Ru(DMSO-S)(guanine)(cis-

tach)]
2+

 (m/z 230.1 25%).  These are proposed to be fragments of a single complex 

with a minimum formula of [Ru(DMSO-S)(Guo)(cis-tach)]
2+

.  The structural 

configuration of the guanosine ligands is unable to be determined, but examples of 

plausible structures which may account for the fragments observed are given in Fig. 

3.10. 
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Figure 3.10:  Possible structures of guanosine adducts of [8]
+
, which may produce 

the fragmentation observed in the ESI mass spectrum. 

 

In addition, a minor species, [Ru(DMSO-S)(Guo)2(cis-tach)]
2+

 (m/z 398.6, 25%) was 

observed in the mass spectrum.  Although the structural configuration of the Guo 

molecules cannot be determined, the complex may contain two coordinated Guo 

ligands, akin to the G,G-cross-linking of cisplatin.
22

  However, guanosine was often 

observed in the ESI mass spectrum as a dimer, presumably due to hydrogen-bonding 

interactions; this interaction may account for a bis-guanosine ruthenium ion.  

 

The cisplatin and RAen complexes have been demonstrated to form adducts not only 

with guanine, but also adenine.
22

 Therefore, the reactivity of [8]Cl to adenosine was 

investigated. Reaction of a 5mM solution of [8]Cl with two equivalents of adenosine 

at 40°C over 18 h resulted in the formation of an orange solution, suggesting a 

reaction had occurred.  A single peak was observed in the ESI mass spectrum 

assigned as [Ru(DMSO-S)(Ado)(cis-tach)]
2+

  (m/z 575.1, 100%).  This complex is 

expected to follow a similar structure to the Guo adduct.  

 

The ability for [8]Cl to bind both adenosine and guanosine to an extent is 

unsurprising given the structural similarity of the two bases.  Both contain two 

suitable donor atoms (Guo: N7/O6, Ado: N7/N6) which can participate in donation 
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to the metal centre of [8]Cl and may also result in chelation.  It should be noted that 

adenine is unlikely to chelate in this way when part of DNA as the amine is a base-

pair hydrogen-bond acceptor with thymine, thus preventing N6 coordination.  
 

 

These initial reactions of [8]Cl with the nucleosides guanosine and adenosine have 

demonstrated the that ruthenium(II) cis-tach complex may interact with DNA via 

covalent interactions.  However, the reactions described here were performed at 

concentrations of 5 mM of [8]Cl and when applied to physiologically-relevant 

concentrations, this affinity may not be significant.  Further experiments including 

1
H NMR spectroscopy were not performed due to the poor anti-tumour activity of 

[8]Cl. 

 

3.8 Chapter Conclusions 

 

Preparation of a cationic dimethylsulfoxide ruthenium cis-tach complex [8]Cl was 

achieved by the reaction of cis-tach with [cis-RuCl2(DMSO-O)(DMSO-S)3].  This 

complex was isolated and fully characterised by a range of spectroscopic techniques.  

The DMSO ligand was identified as coordinating to the metal through the sulfur 

atom by NMR and infra-red spectroscopy.  The structural assignment was supported 

by the single crystal X-ray diffraction of [8]PF6 obtained by the metathesis of [8]Cl 

with sodium hexafluorophosphate.  In addition to the cationic complex, a single 

crystal of the neutral complex [9] was obtained. 

 

[8]Cl was found to be inactive (IC50 > 600 μM) in the inhibition of cancer cell 

growth in both the A549 and A2780 cell lines by the MTT assay.  The complex does 

participate in ligand exchange with the solvent in aqueous solution, but the reactivity 

is dominated by the dissociation of one DMSO ligand.  Interactions of this complex 

with nucleosides were observed with guanosine and adenosine.  It is postulated that 

the poor in vitro activity of [8]Cl is due to the hydrophilic nature of the complex 

resulting in reduced cell uptake, combined with poor reactivity of the complex in 

aqueous solution.  For example, aquation is slow and both exchange processes 

involve the loss of DMSO, therefore the “chloride concentration switch” does not 
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apply and the complex may be activated by aquation and subsequently deactivated 

before it can reach a suitable biological target. 

 

However, more significantly, the advent of the precursor compound [8]Cl permits 

the design and development of new ruthenium (II) cis-tach compounds for 

application in cancer therapy.  The labile DMSO ligands permit the preparation of 

complexes with a diverse range of ligands.  Those of particular interest are chelating 

ligands, which have often been employed in the design of cytotoxic molecules, 

which are more strongly bound to the metal due to the chelate effect.  The design, 

preparation and evaluation of ruthenium (II) cis-tach complexes with chelating 

ligands derived from [8]Cl form the basis of the remaining chapters in this thesis. 
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Chapter 4. Ruthenium(II) cis-tach Complexes with N-N Chelates 

 

4.1 Introduction 

 

The synthetic development of ruthenium(II) cis-tach complexes from the precursor 

[RuCl(DMSO-S)2(cis-tach)]Cl [8]Cl was concentrated on the incorporation of a 

chelating ligand to give [RuCl(L)(cis-tach)]Cl.  These ligands provide more 

predictable ligand exchange due to increased stabilisation from the chelate effect and 

reduction in the number of potential vacant coordination sites.  Suitable candidates 

are the N,N-donor 2,2’-bipyridyl (bipy) and its derivatives.  Ruthenium complexes 

containing these ligands are already well known to be highly promising anti-cancer 

agents.
251

  Amongst the earliest examples was [mer-RuCl3(terpy)] (terpy = 

2,2’:2’,2’’-terpyridine) (Fig. 4.1), which is capable of forming DNA intrastrand cross 

links.
252

   

 

 

 

Figure 4.1: Structure of the polypyridyl ruthenium(II) complexes [mer-

RuCl3(terpy)] (left) [Ru(bipy)2(N–N)]
2+

 (middle) where N–N = dppz (top right) or 

tpphz (bottom right) evaluated for antitumor activity. 

 

Since the observation that [Ru(N–N)2(dppz)]
2+

 (Fig. 4.1, N–N = 2,2’-bipyridyl or 

1,10-phenanthroline; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) reversibly binds to 

DNA, ruthenium(II) complexes of the general type [RuL3]
2+

 (L = 2,2’-bipyridyl or 

derivative) have been studied more recently.
253

  Although in aqueous solution the 

luminescence of these complexes is quenched, intercalation with DNA results in an 
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emission from a 
3
MLCT excited state, permitting the application of these complexes 

as imaging agents.
254

  Battaglia, Thomas and co-workers recently developed the two 

related complexes [Ru(N–N)2(tpphz)]
2+

 (Fig. 4.1 B, tpphz = tetrapyrido[3,2-a:2′,3′-

c:3′′,2′′-h:2′′′,3′′′-j]phenazine) which not only act as “light-switch” complexes 

capable of use in imaging techniques, but are also highly cytotoxic.
255

 

 

The immediate success of ruthenium(II) polypyridyl complexes did not extend to 

complexes containing η
6
-arenes as the species [RuCl(η

6
-bip)(N–N)]PF6 (N–N = 2,2’-

biypridine and 1,10-phenathroline)
82

  were found to be poorly cytotoxic in 

comparison to [RuCl(η
6
-bip)(en)]PF6 (RM175).  The cause for the loss in activity 

was proposed to be the absence of hydrogen-bond donors in the complex, preventing 

hydrogen-bond formation with the DNA target.  The effect of subtle differences on 

the biological activity of a complex was demonstrated by modification of the 2,2’-

bipyridyl ligand with hydroxyl groups at the 3,3’ positions (Fig. 4.2).  Deprotonation 

of one hydroxyl group results in a bridging O–H...O which is stabilised from the 

resulting planarity.  These compounds were found to be moderately active in the 

ovarian A2780 cell line.
163

  Further studies with η
6
-arene complexes and extended 

1,10-phenanthroline ligands have shown that these type of complexes are highly 

cytotoxic in vitro and bind to duplex DNA.
256

 

 

 

 

Figure 4.2:  Structure of two ruthenium(II) η
6
-arene polypyridyl-based complexes 

studied for anti-tumour activity: [RuCl(bipy
175

O)(η
6
-biphenyl)]PF6 (left) and the 

light-activated [Ru(py)(bipyrimidine)(p-cymene)](PF6)2 (py = pyridine) (right) 

 

The first light activated aquation of a ruthenium η
6
-arene complex was achieved by 

the employment of bipyrimidine (Fig. 4.2).  In aqueous solution, dissociation of the 
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pyridine ligand is promoted by light,
91

 to afford the solvent complex which was 

demonstrated to further react with ethyl-guanine and DNA, with promising in vitro 

activity under ambient lighting conditions.
92

 

 

Given that polypyridyl ligands have promising application in the development of 

ruthenium(II) anti-cancer compounds, these complexes were of interest to 

investigate.  Also, cis-tach can participate in hydrogen-bonding to target compounds, 

a key feature missing in the η
6
-arene bipyridyl complexes.  Additionally, 

modification of the ligands is possible by substitution on the pyridyl rings.  

Investigations into the synthetic possibilities were at first focused on the ligands 

2,2’-bipyridyl (bipy) and 1,10-phenanthroline (phen), and later expanded to include 

ethylenediamine (en).  The synthesis, characterisation and X-ray structures are 

discussed.  Initial investigations into the synthesis of these complexes were 

undertaken with Mr Thomas Hunter (see BSc report 2009–2010, University of 

York).  The aqueous chemistry and in vitro biological evaluation of one of these 

complexes is also discussed. 

 

  



106 

 

4.2 Synthesis and Characterisation 

 

4.2.1 Polypyridyl Complexes 

 

The reaction of [8]Cl with one equivalent of the N,N-ligands 2,2’-bipyridine (bipy) 

and 1,10-phenanthroline (phen) was achieved by heating under reflux in water, 

resulting in a colour change of the solution from yellow to a deep red (Scheme 4.1).  

Isolation of the product by washing with DCM to remove the excess ligand and 

evaporation to dryness gave a deep orange powder.  The 
1
H NMR spectra of these 

compounds in D2O exhibited the expected cis-tach resonances for a complex with Cs 

symmetry, alongside those for the coordinated N,N-chelating ligand.  However, a 

resonance arising from coordinated DMSO was additionally observed in the 
1
H 

NMR spectrum at δH 2.63 and 2.52 ppm for the 2,2’-bipyridyl and 1,10-

phenanthroline complexes respectively.  It was therefore evident that the identity of 

the two complexes were [Ru(bipy)(DMSO)(cis-tach)](Cl)2, [10](Cl)2, and 

[Ru(DMSO)(phen)(cis-tach)](Cl)2, [11](Cl)2. ESI mass spectrometry confirmed the 

identity of the two complexes; peaks were observed at m/z of 232.5573 ([M]
2+

, 

100%) and 244.5570 ([M]
2+

, 100%) for [10]
2+

 and [11]
2+

 respectively.  The observed 

isotope pattern corresponds to a dicationic ruthenium species in both cases.  

 

 

 

 

[8]Cl 
   

N-N = bipy [10](Cl)2, 80%* 

 phen [11](Cl)2, 64%* 

 

Scheme 4.1:  Reaction of [8]Cl with 2,2’-bipyridyl and 1,10-phenanthroline to give 

the complexes [10](Cl)2 and [11](Cl)2 respectively.  Both complexes were dicationic 

with a DMSO ligand. * Isolated yield. 
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Figure 4.3:  ORTEP diagram (50% probability ellipsoids) of [10](PF6)2.  Hydrogen 

atoms (except for amino hydrogens) and counter ions are omitted for clarity.  

Selected bond lengths (/Å), angles (/°) and torsions (/°):  Ru(1)–N(1) 2.136(3), 

Ru(1)–N(2) 2.141(3), Ru(1)–N(3) 2.148(3), Ru(1)–N(4) 2.077(3), Ru(1)–N(5) 

2.076(2), Ru(1)–S(1) 2.2223(8), S(1)–O(1) 1.500(2), N(1)–Ru(1)–N(2) 87.60(11), 

N(1)–Ru(1)–N(3) 88.71(11), N(2)–Ru(1)–N(3) 85.96(11), N(4)–Ru(1)–N(5) 

78.79(10), N(4)–Ru(1)–S(1) 96.58(7), N(5)–Ru(1)–S(1) 97.37(7), N(1) –Ru(1)–S(1) 

175.10(8), Ru(1)–S(1)–O(1) 112.23(9), N(2)–Ru(1)–S(1)–O(1) 40.95(13), N(3)–

Ru(1)–S(1)–O(1) −45.05(13).  Selected hydrogen-bond (D–H...A–X) lengths (/Å) 

and angles (/°) D...A, H...A, D–H...A, H...A–X:  N(2)–H(2d)...O(1)–S(1): 3.074(4), 

2.40(4), 127(3), 86.0(9); N(3)–H(3a)...O(1)–S(1): 3.126(4), 2.51(3), 130(3), 82.8(8). 
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Single crystals suitable for X-ray diffraction were obtained by chloride metathesis 

with potassium hexafluorophosphate and slow evaporation of the resulting methanol 

solution of the complexes.  The crystals of [10](PF6)2 were obtained by, and 

[11](PF6)2(MeOH) with, Mr Thomas Hunter (see BSc report 2009–2010, University 

of York).  ORTEP diagrams and selected bond angles, lengths, torsions and 

hydrogen-bond parameters are given for [10](PF6)2 and [11](PF6)2(MeOH) in Figs. 

4.3 and 4.4 respectively. 

 

The resulting crystal structures of [10](PF6)2 and [11](PF6)2(MeOH) contain similar 

distorted octahedron and adamantane geometries to the previously described 

structures in this thesis.  The DMSO ligand was identified as being coordinated via 

the sulfur atom in the same fashion as the precursor complex [8]
+
.  Spectroscopic 

analysis of the DMSO ligand coordination mode is discussed later in section 4.2.3.  

The structure of the cations [10]
2+

 and [11]
2+

 are very similar, as expected; both with 

hydrogen-bonds present between the DMSO oxygen and the adjacent amine groups. 

In both structures the DMSO ligand is orientated to reside approximately equidistant 

to the two adjacent amine groups, evident from bond torsions between 40 and 45°.   

 

While the 1,10-phenathroline ligand of [11](PF6)2(MeOH) is geometrically 

constrained to a planar nature, the pyridine rings of the 2,2’-bipyridyl ligand in 

[10](PF6)2 are twisted by approximately 5.5°.  Additionally, the 2,2’-bipyridyl 

deviates from planarity with the N-Ru-N plane by an average of 10°, towards cis-

tach.  This is in contrast to 1,10-phenanthroline in [11]
2+

, where only a bend of 1.2° 

of the aromatic plane compared to the octahedron centre is observed. 

 

In both structures, the cations are assembled into linear chains, separated by the 

hexafluorophosphate anions.  The cations within [10](PF6)2 are linked by two 

hydrogen-bonds shown in Fig. 4.5.  One bond is present between an amine and 

DMSO oxygen and the other is between a second amine and the π-system of a 

pyridyl ring.  From one cation to the next, there is a rotation about the ruthenium 

centre of 70.87(5)° - the direction of rotation alternates along the chain, with a 

repeating unit of two cations.   
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Figure 4.4:  ORTEP diagram (50% probability ellipsoids) of [11](PF6)2(MeOH).  

Hydrogen atoms (except for amino hydrogens), solvent and counter ions are omitted 

for clarity. Selected bond lengths (/Å), angles (/°) and torsions (/°):  Ru(1)–N(1) 

2.1470(17), Ru(1)–N(2) 2.1470(17), Ru(1)–N(3) 2.1333(16), Ru(1)–N(4) 

2.0881(17), Ru(1)–N(5) 2.1008(16), Ru(1)–S(1) 2.2145(8), S(1)–O(1) 1.5016(15), 

N(1)–Ru(1)–N(2) 87.79(7), N(1)–Ru(1)–N(3) 89.26(7), N(2)–Ru(1)–N(3) 85.79(7), 

N(4)–Ru(1)–N(5) 79.23(7), N(4)–Ru(1)–S(1) 94.64(5), N(5)–Ru(1)–S(1) 94.64(5), 

N(1)–Ru(1)–S(1) 176.39(5), Ru(1)–S(1)–O(1) 114.08(7), N(2)–Ru(1)–S(1)–O(1) 

44.09(8), N(3)–Ru(1)–S(1)–O(1) −41.71(8). Selected hydrogen-bond (D–H...A–X) 

lengths (/Å) and angles (/°) D...A, H...A, D–H...A, H...A–X):  N(2)–H(2d)...O(1)–

S(1): 3.173(2), 2.57(2), 124.0(17), 82.3(6); N(3)–H(3b)...O(1)–S(1): 3.126(2), 

2.48(2), 132(2), 82.6(6). 
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Figure 4.5:  Capped stick diagram of the intermolecular hydrogen-bonds within the 

linear chains of cations in [10](PF6)2, separated by the PF6 anions.  Hydrogen-bonds 

are drawn as D...A.  Selected hydrogen-bond (D–H...A–X) lengths (/Å) and angles 

(/°) D...A, H...A, D–H...A, H...A–X:  N(1)–H(1a)...O(1)–S(1) (x, −y+1/2, z−1/2) 

2.996(4), 2.17(3), 165(3), 157.6(8); N(2)–H(2d)...N(4)
C
–N(4)

P
 (−x, y−1/2, −z+1/2) 

4.44, 3.52, 164, 57.7 (Malone type V).
206

 C and P
 
denote the centroid and plane of 

the respective six-membered ring. 

 

The cationic chain of [11](PF6)2(MeOH) is different to that of [10](PF6)2, with two 

distinctly different regions of intermolecular interactions as shown in Fig. 4.6.  First, 

between two ruthenium complexes, which relate to each other by an inversion along 

the chain axis, several hydrogen-bonds are present.  Two triangular hydrogen-

bonding motifs are formed between an amine, DMSO oxygen and the methanol 

solvent.  Secondly, π-π interactions are present between the 1,10-phenanthroline 

rings of adjacent complexes.  
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Figure 4.6:  Diagram of the intermolecular hydrogen-bonds within the linear chains 

of cations in [11](PF6)2(MeOH).  The chains are separated by the PF6 anions.  

Selected π–π length (Å): C(10)–C(18) (2−x, 2−y, 1−z) 3.334(3).  Selected hydrogen-

bond (D–H...A–X) lengths (/Å) and angles (/°) D...A, H...A, D–H...A, H...A–X:  

N(3)–H(3b)...O(1)–S(1) (−x, −y, −z) 3.127(2), 2.45(2), 136(2), 140.4(6); N(3)–

H(3a)...O(3)–C(21) (−x, −y, −z) 2.951(2), 2.15(3), 152(2), 149.2(8); O(2)–

H(2)...O(1)–S(1) (x, y, z+1) 2.839(2), 2.06(3), 155(3), 134(1).   

 

Conclusions 

 

Successful coordination of a chelating ligand to [8]Cl was achieved with 2,2’-

bipyridyl and 1,10-phenanthroline to give the complexes [10](Cl)2 and [11](Cl)2.  

These complexes were characterised by NMR spectroscopy, mass spectrometry and 

single crystal X-ray diffraction.  In place of the expected chlorido based complex, a 

DMSO complex was obtained, in which the coordination mode was revealed by the 

resulting structural determination to be through sulfur donation.  Further aspects of 

the nature of the metal–DMSO bonding are discussed later (section 4.2.3). 
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4.2.2 1,2-Ethylenediamine Complex 

 

In addition to the two pyridyl based ligands employed in [10]
2+

 and [11]
2+

, the 

preparation of a Ru(II) cis-tach 1,2-ethylenediamine (en) complex was investigated 

to expand the family of N,N-chelate complexes and to attempt to prepare an RM175 

analogue. Reaction of en with [8]Cl followed a similar route to the previous N,N-

chelate complexes under the same conditions, giving a yellow product (Scheme 4.2).  

The 
1
H NMR spectrum of the product in D2O replicated that of [10]

2+
 and [11]

2+
, 

with resonances assignable to coordinated N,N-chelate ligand, cis-tach in a Cs 

symmetry environment and a DMSO ligand at δH 3.34 ppm.  The proposed structure 

of the complex, [Ru(en)(DMSO)(cis-tach)]
2+

, ([12]
2+

) was confirmed by ESI mass 

spectrometry by the observation of a peak assigned to the molecular ion, with m/z 

184.5553 (100%, [M]
2+

) and an isotope pattern corresponding to a dicationic 

ruthenium species. 

 

 

 

 

[8]Cl  [12](Cl)2, 68%* 

 

Scheme 4.2:  Reaction of [8]Cl with 1,2-ethylenediamine (en) to give 

[Ru(en)(DMSO)(cis-tach)](Cl)2, [12](Cl)2.  A DMSO and the chlorido ligand are 

displaced by coordination of en, giving a DMSO-S complex.  *Isolated yield. 

 

Single crystals suitable for X-ray diffraction were obtained by chloride metathesis of 

[12](Cl)2 with potassium hexafluorophosphate and slow evaporation of a methanol 

solution.  ORTEP diagram and selected bond angles, lengths, torsions and hydrogen-

bond parameters are given for [12](Cl)(PF6) in Fig. 4.7. 
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Figure 4.7:  ORTEP diagram (50% probability ellipsoids) of [12](Cl)(PF6).  

Hydrogen atoms (except for amino hydrogens) and counter ions are omitted for 

clarity. Selected bond lengths (/Å), angles (/°) and torsions (/°):  Ru(1)–N(1) 

2.1665(13), Ru(1)–N(2) 2.1396(14), Ru(1)–N(3) 2.1316(14), Ru(1)–N(4) 

2.1262(14), Ru(1)–N(5) 2.1373(14), Ru(1)–S(1) 2.1885(4), S(1)–O(1) 1.5008(12), 

N(1)–Ru(1)–N(2) 88.67(5), N(1)–Ru(1)–N(3) 83.26(6), N(2)–Ru(1)–N(3) 92.00(5), 

N(4)–Ru(1)–N(5) 81.59(5), N(4)–Ru(1)–S(1) 89.83(4), N(5)–Ru(1)–S(1) 92.68(4), 

N(1)–Ru(1)–S(1) 176.71(4), Ru(1)–S(1)–O(1) 117.15(5), N(4)–Ru(1)–S(1)–O(1) -

7.99(7).  Selected hydrogen-bond (D–H...A–X) lengths (/Å) and angles (/°) D...A, 

H...A, D–H...A, H...A–X):  N(4)–H(4d)...O(1)–S(1): 2.9833(19), 2.27(2), 137.9(17), 

89.3(5). 
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The solid state structure of [12](Cl)(PF6) does not follow the model of [10](PF6)2 and 

[11](PF6)2(MeOH).  The DMSO ligand does not participate in intramolecular 

hydrogen-bonding with cis-tach, but to the ethylenediamine ligand.  This most likely 

results from the increased flexibility of the en ligand, whereby stronger hydrogen-

bonds can be formed.  The most prominent difference in the crystal structure of 

[12]
2+

 when compared to [10]
2+

 and [11]
2+

 is the partial metathesis of chloride with 

hexafluorophosphate, whereby a single chloride anion has been retained.  The 

chloride resides in a hydrogen-bonding pocket, created by two cationic units as 

shown in Fig. 4.8.   The greater capability for [12]
2+

 to hydrogen-bond to a chloride 

anion, due to the increased number of hydrogen-bond donors in comparison to [10]
2+

 

and [11]
2+

 provides a rationale for the chemical composition observed. 

 

 

 

Figure 4.8:  Diagram of the intermolecular hydrogen-bonds between the ruthenium 

complexes and chloride anions in [12](Cl)(PF6).  Selected hydrogen-bond (D–H...A–

X) lengths (Å) and angles (/°) D...A, H...A, D–H...A: C(9)–H(9a)...Cl(1): 3.811(2) 

2.8788(4), 159.3(1); C(10)–H(10c)...Cl(1): 3.680(2), 2.7249(4), 164.8(1). 

 

On further inspection of the groups surrounding the chloride anion, there are two 

highly directional near-space interactions of 2.8788(4) and 2.7249(4) Å between two 

methyl protons of DMSO and the chloride anion, also shown in Fig. 4.8.  As the 

methyl protons in DMSO carry a partial positive charge, δ
+
, they are therefore able 
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to participate in hydrogen-bonding to the chloride anion.
257

  This interaction 

completes the hydrogen-bonding cavity in which the chloride anion resides. 

 

The cations are assembled in a hydrogen-bonded “zigzag” structure as opposed to 

the linear chains present in the structures [10]
2+

 and [11]
2+

.  The hydrogen-bonding 

structure of these chains is shown in Fig. 4.9.  The bonding between two of the 

cations consists of two intermolecular hydrogen-bonds, with cis-tach and 1,2-

ethylenediamine of one cation acting as donor groups and the DMSO ligand of an 

adjacent complex an acceptor of both interactions.   

 

 

 

Figure 4.9:  Diagram of the intermolecular interactions within the “zigzag” chains of 

cations in [12](Cl)(PF6).  The chains are separated by Cl and PF6 anions.  Selected 

hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–H...A, 

H...A–X:  N(2)–H(2c)...O(1)–S(1) (−x+1, y+1/2, −z+1/2) 2.9376(18), 2.17(2), 

147.0(19), 138.6(6); N(5)–H(5a)...O(1)–S(1) (−x+1, y+1/2, −z+1/2) 3.1352(18), 

2.54(2), 129.1(17), 122.4(5). 

 

The chloride anions act as a template around which the chains are arranged; a 

schematic diagram is given in Fig. 4.10.  The hexafluorophosphate anions reside 

between sheets of these chains to complete the structure. 
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Figure 4.10:  Schematic diagram of the solid state structure of [12](Cl)(PF6).  The 

arrows and dotted lines represent the cation “zigzag” chain shown in Fig. 4.9 and the 

cation-chloride hydrogen-bonds in Fig. 4.8 respectively.  The arrow tail represents 

the NH donor and the head the oxygen acceptor in the intra-chain hydrogen-bonds. 

 

Conclusions 

 

The reaction of [8]Cl and 1,2-ethylenediamine follows a similar route to the reaction 

with the polypyridyl ligands, as described previously.  Again, a DMSO-S ligand is 

incorporated in the complex [Ru(DMSO-S)(en)(cis-tach)](Cl)2, [12](Cl)2, and the 

spectroscopic and crystallographic properties of the DMSO in the complexes with a 

N,N-chelating ligand will be discussed in detail in the following section. 

 

4.2.3 Analysis of the DMSO Ligand Coordination Mode 

 

The coordination mode of the DMSO ligand in the N,N-chelate complexes [10–12]
2+

 

was initially assigned by the geometry observed in the single crystal X-ray 

diffraction solution.  A single crystal is not representative of the overall composition 

of the compound and bulk spectroscopic techniques are required to fully characterise 

the complexes.  Often, IR spectroscopy is employed to determine the donor atom of 

DMSO in a coordination complex.  Although this was straight-forward in the 

assignment of [8]Cl, the v(S–O) band for the complexes [10-12](Cl)2 range between 

1015 and 1035 cm
−1

.  These are just within the expected DMSO-O region of 878–

1035 cm
−1

.
238

  In comparison, the v(S–O) bands of the recently reported analogous 

DMSO-S tacn complexes with en and bipy range between 1110 and 1077 cm
−1

.
166
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Therefore, further analysis of the data from all techniques is required to confidently 

determine the coordination geometry. 

 

The valence bond model for describing the nature of the bonding character of the 

DMSO-S ligand is considered to be of three resonance forms, shown in Scheme 

4.3.
225

  The resonance form experimentally proven to dominate in DMSO-S metal 

complexes is that of form II.  Coordination of DMSO by the oxygen donor is 

considered to be dominated by the Me2S
+
–O

-
 form.  This is similar to the resonance 

form of free DMSO, which has been proven to be predominantly Me2S
+
–O

- 
from 

crystallographic evidence.
225

   

 

 

 

Scheme 4.3:  Canonical forms of M–S(O)(CH3)2 contributing to the resonance 

hybrid. 

 

The coordination of a sulfoxide to a metal complex via the sulfur atom typically 

results in an increase in the v(S–O) frequency from the increased bond order in 

comparison to the free ligand.
241

  This is reflected in a decreased S–O bond length 

observed in the X-ray crystal structures relative to the free ligand.  On the other 

hand, oxygen coordination results in the opposite occurring, as the Me2S
+
–O

-
 

resonance form is stabilised.
241

  For both coordination modes, the shift in v(S–O) 

parallels the change in S–O bond length in the X-ray crystal structure.  Therefore, 

despite the correlation, the v(S–O) frequency reflects the S–O bond order and length 

– not the identity of the donor atom, a common misinterpretation of infrared spectra. 

Crystallographic and spectroscopic parameters for the complexes [10–12]
2+

 are 

presented in Table 4.1. 
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   Mean r(A–B) (/Å) 

 v(S–O) (cm
−1

) δH CH3 (ppm) M–S S–O 

[10]
2+

 1015 2.63 2.222(1) 1.500(2) 

[11]
2+

 1016 2.52 2.215(1) 1.502(2) 

[12]
2+

 1035 3.34 2.189(1) 1.501(2) 

DMSO-S 1070–1233
238

 ≥ 3.2
225

 2.260(2)
241

 1.480(1)
241

 

DMSO 1055
258

 2.71
259

  1.492(1)
241

 

DMSO-O 878–1035
238

  ≤ 3.2
225

  1.545(3)
241

 

 

Table 4.1:  Infra-red, 
1
H NMR and selected bond lengths of the DMSO ligand in 

[10–12]
2+

 and averages for ruthenium(II) DMSO-S and DMSO-O complexes, as well 

the free ligand. 

 

The frequency of the v(S–O) band in the infrared spectra for complexes [10–12]
2+

 is 

decreased in comparison to DMSO at 1055 cm
−1

 in the solid state.
258

  This suggests 

that the resonance form of the DMSO ligand in these complexes is dominated by the 

Me2S
+
–O

−
 form, therefore the S–O bond length for all three complexes is expected 

to be longer than in the free ligand.  Although the S–O bond length of the free ligand 

has been determined by crystallography to be 1.522(2) Å, poor diffraction quality 

has lead to the suggested value of 1.492(1) Å for a ‘true’ S–O bond length based on 

several DMSO-solvate and sulfoxide structures.
239, 241, 260, 261

  The X-ray diffraction 

data for all three complexes is in agreement with the observed v(S–O) bands in the 

infrared spectra, where the S–O bond lengths of approximately 1.501(2) Å are longer 

than the accepted value for the free ligand.  Therefore, the complexes are proposed to 

adopt resonance form III from Scheme 4.3.  The average S–O bond lengths for 

single-DMSO-S and DMSO-O ruthenium(II) complexes are 1.480(1) Å and 1.545(3) 

Å respectively.
241

  Although both the S–O bond lengths and stretching frequency are 

within the range expected for DMSO-O complexes, the bulk composition of the 

three cis-tach complexes in the solid form is that of S-coordination. 
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The nature of the metal-sulfur bond can also be determined from the X-ray crystal 

data.  All three complexes have shorter Ru–S bonds than the average for single-

DMSO-S ruthenium(II) complexes of 2.260(2) Å.
241

  This is reflected by the 

resonance form of [10–12]
2+

 as form III in Scheme 4.3 opposed to form II for the 

majority of DMSO-S complexes.  This is expected based on the observations made 

in previous chapters of the strong ability for cis-tach to act as a good σ-donor ligand.  

This results in increased π- back donation from the electron-rich metal centre to the 

DMSO π*(S–O) orbital (Section 3.3).  The observed trend in Ru–S bond distances 

correlate to the ability for the N,N-chelate to act as a π-acceptor and therefore reduce 

the electron density of the metal, thereby decreasing the Ru–S bond order. In the 

case of [12]
2+

, the en ligand is a poor π-acceptor so is unable to remove electron 

density from the metal, resulting in a shorter Ru–S bond. 

 

The difference in metal-sulfur bond order for the three complexes would be expected 

to be reflected in the sulfur-oxygen bond length.  However, the crystal data for the 

complexes show this not to be the case, with S–O bond lengths approximately equal 

at 1.501(2) Å.  It has been demonstrated that hydrogen-bonding to a sulfoxide has a 

profound effect on the S–O bond length.
241, 260

  It is evident from the crystal 

structures of [10–12]
2+

 that each DMSO ligand is in a distinctly different hydrogen-

bonding environment.  This may also account for the variation in the v(S–O) band in 

the infrared spectra. 

 

The conclusions made for the bonding nature of the ruthenium(II) cis-tach DMSO 

complexes are in agreement with those for the complex [Ru(NH3)5(DMSO-S)]
2+

,  

especially in the case of [12]
2+

 owing to its structural similarity.  The ammine 

complex is reported to have a v(S–O) of 1045 cm
−1

 and Ru–S and S–O bond lengths 

of 2.188(3) and 1.512(7) Å respectively.
262, 263

  These bond lengths are (within error) 

similar to those of [12]
2+

. 
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    v(S–O)  δH CH3  Mean r(A–B) (/Å) 

 fac-ligand L ref. (cm
−1

) (ppm) M–S S–O 

[10]
2+

 tach bipy  1015 2.63 2.222(1) 1.500(2) 

 tacn bipy 
166

 1077 2.67 2.224(2) 1.498(5) 

 ttcn bipy 
161 a 

2.83 2.285(3) 1.487(8) 

[11]
2+

 tach phen  1016 2.52 2.215(1) 1.502(2) 

[12]
2+

 tach en  1035 3.34 2.189(1) 1.501(2) 

 tacn en 
166

 1110 3.33 2.211(2) 1.492(3) 

 (NH3)3 (NH3)2 
262, 263

 1045 3.28 2.188(3)  1.512(7)  

 

Table 4.2:  IR, 
1
H NMR and selected bond lengths of the DMSO ligand in 

complexes of the formula [Ru(dmso)(fac-ligand)(κ
2
-L)]

2+
. a) not assigned in 

literature. 

 

The other commonly employed spectroscopic technique for the determination of the 

DMSO donor atom is 
1
H NMR spectroscopy.  Coordination to the metal results in 

the deshielding of the methyl protons resulting in a down-field shift.
225

  The 

proximity of the protons to the donor atom is reflected by the degree of deshielding.  

O- coordination of DMSO results in small downfield shifts of less than 0.5 ppm, 

whereas a large shift of ~1 ppm is observed for S- coordination.  This conveniently 

applies to [12]
2+

 with a DMSO-S resonance at δH 3.34 ppm in D2O, a shift of 0.63 

ppm downfield from the free ligand at δH 2.71 ppm.  Again, the observation 

corresponds to [Ru(NH3)5(DMSO-S)]
2+

 with a DMSO-S resonance at δH 3.28 ppm in 

D2O.
262

  However, [10]
2+

 and [11]
2+

 do not follow the trend with resonances slightly 

upfield of the free ligand by 0.1 to 0.2 ppm.  This observation was confirmed by the 

addition of trace amounts of free DMSO.  An upfield shift is not accounted for by O- 

coordination, therefore it is proposed that the near-by polypyridyl ligand aromatic 

system is causing a shielding effect of the methyl protons.  This is apparent from the 

X-ray crystal structure of [10]
2+

 in Fig. 4.11.  
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Figure 4.11:  Diagram of [10](PF6)2 showing the proximity of the DMSO methyl 

protons to the aromatic system of the 2,2’-bipyridine ligand.  The average H...bipy-

plane distance is 2.98(6) Å. 

 

A similar phenomenon was observed with DMSO-S and bipy for the complexes 

[Ru(DMSO-S)(bipy)(ttcn)]
2+

 and [Ru(DMSO-S)(bipy)(tacn)]
2+

 with DMSO-S 

resonances at δH 2.83 and 2.67 ppm respectively in D2O, also attributed to the 

shielding cone of the aromatic system.
161, 166

  A rationale for the greater shielding of 

the methyl protons in the cis-tach and tacn complexes may be due to the geometrical 

constraints from hydrogen-bonding to the fac-ligand.  This hinders the rotation of the 

Ru–S bond and the positioning of the methyl groups away from the π system. 

 

The apparently strong ruthenium–sulfur bond, evident from the crystal structures of 

[10–12]
2+

, is consistent with the inability for the remaining DMSO ligand to undergo 

a substitution reaction with the solvent during synthesis.  Preparation of these 

complexes in water, heated at reflux provides further evidence that the DMSO ligand 

is inert to substitution in complexes [10–12]
2+

.  For example, the corresponding aqua 

species of [11]
2+

, [Ru(OH2)(phen)(cis-tach)]
2+

 is only observed in aqueous solution 

under ionisation conditions in ESI mass spectrometry; these complexes are inert to 

aquation, even when heated at reflux in water.  This is reflected by the significantly 

slower solvolysis of [Ru(DMSO-S)(bipy)(ttcn)]
2+

, which occurs over several days in 

comparison to the chlorido derivative [RuCl(bipy)(ttcn)]
+
 which occurs within 

minutes.
161
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4.2.4 Conclusions 

 

Reaction of [8]Cl with the N,N-chelating ligands bipy, phen and en results in the 

formation of the dimethylsulfoxide complexes [Ru(DMSO-S)(N–N)(cis-tach)](Cl)2 

[10–12](Cl)2 that were characterised by NMR and IR spectroscopy, mass 

spectrometry and single crystal X-ray diffraction.  The isolation of DMSO-S 

complexes opposed to the chlorido analogues with the N,N-chelates is accountable 

by the observations from the spectroscopic and crystallographic techniques 

employed.  It is evident that the metal centre is electron rich in all three complexes, 

resulting in a strong ruthenium–DMSO bond and is therefore expected to be inert to 

substitution reactions.  These complexes were still considered for in vitro biological 

evaluation. 

 

4.3 In Vitro Biological Evaluation 

 

The complex selected for biological evaluation by the MTT assay was [Ru(DMSO-

S)(phen)(cis-tach)](Cl)2 [11](Cl)2 as it was successfully isolated with analytical 

purity.  A modified procedure of that reported by Carmichael and co-workers was 

used, and [11](Cl)2 was assessed for anti-proliferative (growth inhibition) activity 

with the A549 human lung adenocarcinoma cell line.
228, 246

  At concentrations up to 

300 μM, [11](Cl)2 was not found to inhibit the growth of tumour cells and was 

therefore considered inactive. 

 

It is proposed that the poor activity of [11](Cl)2 is due to the poorly labile DMSO 

ligand, and that aquation does not occur, not even when exposed to harsh conditions 

(e.g. boiling, c.f. synthesis).  The DMSO ligand was observed to undergo 

substitution when reacted with guanosine (Guo), where the Ru-Guo adduct 

[Ru(Guo)(phen)(cis-tach)]
2+

 (m/z 347.2, 35%)  was observed by ESI mass 

spectrometry.  Only when subjected to the ionisation conditions of the ESI technique 

is the aqua-adduct [Ru(OH2)(phen)(cis-tach)]
2+

 observed (m/z 214.6, 5%).  The 

dominant ion in the mass spectrum is that of the starting complex, [11]
2+

 (m/z 244.6, 

100%), suggesting poor affinity of guanosine to the complex. 
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A similar conclusion was made for the aquation-inert tacn complexes [Ru(DMSO-

S)(N–N)(tacn)](Cl)2, (where N–N = en, dach), both of which were also inactive in 

vitro.
166

    However, when N–N is bipy, exchange of DMSO with water (aquation) 

was observed, reaching equilibrium in approximately 6 days.
166

  In contrast, the cis-

tach analogue [10](Cl)2 is inert to exchange with the solvent in aqueous solutions, 

further highlighting the difference in reactivity of the ruthenium(II) cis-tach 

complexes and those of its isomer, tacn. 

 

The complexes containing N–N chelating ligands presented within this chapter have 

been demonstrated, by the use of [11]
2+

 as an example, to be inactive in the 

inhibition of cancer cell growth.  The DMSO ligand of this complex is resistant to 

exchange with water or Guo, hypothesised to be due to the strong Ru–S bond.   

 

In an effort to obtain an active anti-cancer compound, a different design strategy 

must be employed.  Principally, complexes with a chlorido leaving group are 

desired, where the chlorido concentration gradient from the plasma to the nucleus 

can be exploited to increase the activation of the compound within a cell and the 

nucleus.  Furthermore, it is hoped that a chlorido ligand will act as a better leaving 

group, as suggested by the X-ray comparisons of the phosphane complexes (Section 

2.3), enabling complexes which readily participate in ligand exchange reactions—

both with the solvent and biomolecules. 

 

4.4 Attempted Preparation of Chlorido Analogues 

 

Due to the resistance to substitution of the DMSO ligand in the complexes [10–12]
2+

, 

the chlorido analogues ([RuCl(N–N)(cis-tach)]
+
) were of interest.  In order to 

prepare these complexes an alternative synthetic strategy is required.  Modification 

of the reaction conditions in the preparation of [10–12]
2+

 is limited by solubility 

issues of [8]Cl.  Therefore, alternative ruthenium(II) cis-tach complexes were 

developed to avoid use of the use of a DMSO precursor. 
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4.4.1 Use of η
4
-1,5-Cyclooctadiene Precursor Compounds 

 

An alternative synthetic precursor to [RuCl(DMSO-S)2(cis-tach)]Cl is potentially 

available by the use of a labile bidentate ligand. The η
4
-1,5-cyclooctadiene ligand is 

commonly used as a labile group in the ruthenium(II) synthetic chemistry of both η
5
-

cyclopentadienyl and ĸ
3
-tris(pyrazolyl)borate.

264, 265
  An equivalent synthetic 

procedure with ruthenium(II) cis-tach complexes would permit the preparation of a 

variety of complexes containing chelating ligands, avoiding the use of the poorly 

labile DMSO ligands in [8]Cl.  A potential ruthenium(II) precursor to use for the 

reaction with cis-tach is the polymeric Ru(II) η
4
-1,5-cyclooctadiene species, 

[RuCl2(η
4
-COD)]n.  However, poor solubility of this compound in polar solvents was 

problematic in the preparation of target compounds.  Therefore, the tris-acetonitrile 

derivative [mer-RuCl(NCMe)3(η
4
-COD)]PF6 was employed.  Use of this species not 

only has the advantage of greater solubility, but metathesis of the chlorido ligand has 

been previously performed.  Displacement of the acetonitrile ligands with cis-tach 

was expected to yield [RuCl(η
4
-COD)(cis-tach)]PF6. 

 

The successful coordination of cis-tach with [mer-RuCl(NCMe)3(η
4
-COD)]

+
 was 

achieved by heating of the two reagents at reflux in ethanol and confirmed by the 

same methods employed for the previous complexes in this thesis.  Amine 

resonances were observed in the 
1
H NMR spectrum and were shifted downfield, 

resultant of electron donation to the metal.  The absence of coordinated acetonitrile 

resonances coupled with those for a coordinated η
4
-COD ligand suggested the 

identity of this species is [RuCl(η
4
-COD)(cis-tach)]PF6, [13]PF6.  Furthermore, the 

cis-tach resonances demonstrated that the complex possessed Cs symmetry, in 

agreement with the η
4
-COD resonances.  The proposed structure is shown in Scheme 

4.4.  Additionally, the ESI mass spectrum supported the assignment with a molecular 

ion observed in 100% abundance with m/z 374.0937 and corresponding isotope 

pattern.  The only other ions observed were those resulting from the loss of a 

chlorido ligand. 
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  [13]PF6 

 

Scheme 4.4:  Preparation of [RuCl(η
4
-COD)(cis-tach)]PF6 ([13]PF6) from the 

reaction of cis-tach with [mer-RuCl(NCMe)3(η
4
-COD)]

+
. (i) Reagents and 

conditions: cis-tach (1 equiv.), solvent: ethanol, heated at reflux for 2 h. 

 

This complex could not to be isolated with analytical purity, nor were crystals 

suitable for X-ray diffraction analysis obtained.  However, this species may offer 

alternative synthetic procedures to overcome the problems encountered with the use 

of the DMSO ligand previously, such as that of the hydrogen-bonding interactions 

with cis-tach which may alter the reactivity of the complex.  This compound 

potentially expands the ruthenium(II) cis-tach synthetic precursors available for 

complex design and preparation. 

 

The reaction of [13]PF6 with 2,2’-bipyridine was monitored by 
1
H NMR 

spectroscopy in CD3OD and heated at 100°C in a sealed NMR tube.  Although a 

colour change from yellow to orange was observed for the solution, no alteration to 

the 
1
H NMR spectrum was recorded.  Further heating for a week failed to alter the 

composition.  Furthermore, dissolution of [13]PF6 in d6-DMSO and heating at 90°C 

for 48 h revealed little change in the 
1
H NMR spectrum. Therefore, the η

4
-1,5-

cyclooctadiene ligand of [RuCl(η
4
-COD)(cis-tach)]

+
 appears to be inert towards 

substitution and is thus a poor precursor for further ruthenium (II) cis-tach 

complexes.  Similar reactivity is observed for the equivalent Tp 

(tris(pyrazolyl)borate) complexes, in which the chloride ligand is readily labile.
265

  

The η
4
-1,5-cyclooctadiene ligand in these complexes is relatively inert to 

substitution, requiring harsh conditions of heating under reflux in DMF for extended 

periods of time.
265

  An explanation for this observation in both systems is due to the 
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highly π-acidic nature of η
4
-COD, resulting in strong bonding with the electron rich 

ruthenium centre.  On comparison to Tp, cis-tach is expected to act as a stronger σ-

donor and therefore require even harsher conditions to displace the η
4
-COD ligand. 

 

4.4.2 Use of Acetonitrile Precursor Compounds 

 

In order to avoid highly π-acidic ligands, acetonitrile was employed.  Successful 

preparation of a complex such as [RuCl(NCMe)2(cis-tach)]
+
 would provide a 

convenient synthesis to the desired complexes by the displacement of the acetonitrile 

ligands.  After initial dissolution in water, reaction of [8]Cl with acetonitrile whilst 

heating under reflux yielded [Ru(NCMe)3(cis-tach)](Cl)2 [14](Cl)2 (Scheme 4.5).  

This was evident from the 
1
H NMR spectrum in D2O where the cis-tach ligand 

exhibits C3v symmetry, alongside a single resonance with integration corresponding 

to three acetonitrile ligands.  The ESI mass spectrum supported the assignment with 

a molecular ion observed in 100% abundance with m/z 177.1 and corresponding 

isotope pattern for [M]
2+

.   

 

 

 

 

[8]Cl  [14](Cl)2 

 

Scheme 4.5:  Preparation of the complex [Ru(NCMe)3(cis-tach)](Cl)2 [14](Cl)2 by 

reaction of [RuCl(DMSO-S)2(cis-tach)]Cl ([8]Cl) with acetonitrile and heating at 

reflux.  [8]Cl required solvation in water and subsequent dilution with acetonitrile. 

 

This species is structurally different to the desired complex, [RuCl(NCMe)2(cis-

tach)]
+
.  The increased electron density located on the metal from a large number of 

nitrogen donor ligands has apparently increased the lability of the chlorido ligand.   

Alteration of the reaction conditions did not provide selectivity for a chlorido 
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complex.  Although it was evident that dissociation of the chlorido ligand had 

occurred during the reaction, the synthetic scope of the compound was investigated 

with 2,2’-bipyridine.  Unfortunately, the reaction in methanol did not provide a 

suitable single product, where it was evident that at least four 2,2’-bipyridine 

ruthenium (II) complexes were present in the reaction mixture. 

 

4.4.3 Conclusions 

 

It is apparent that the aim of preparing a chlorido complex following the general 

formula [RuCl(L)(cis-tach)]Cl, where L is a bidentate ligand is not without difficulty 

for N,N-chelating ligands.  The strong σ-donor of cis-tach results in an electron-rich 

metal centre and is therefore stabilised by coordination of a π-acidic ligand.   In the 

case of bipy, phen and en, the π-acidic nature of the ligands is insufficient to provide 

a suitable complex for application as an anti-cancer agent.  Therefore, the identity of 

L, the chelating ligand, must be modified to compliment the properties of cis-tach.   

 

4.5 Chapter Conclusions 

 

The library of ruthenium cis-tach complexes has been extended to include the N,N-

chelate complexes with bipy, phen and en, [10](Cl)2, [11](Cl)2 and [12](Cl)2 

respectively.  These complexes were isolated and shown to have retained a DMSO 

ligand from the starting complex [8]Cl,  as evidenced by NMR and IR spectroscopy, 

ESI mass spectrometry and single crystal X-ray diffraction.  IR spectroscopy and the 

structural determinations revealed the sulfoxide ligand in all complexes to adopt a 

greater degree of the Me2S
+
–O

- 
resonance form.  This has resulted in a shorter than 

average Ru–S bond, suggesting a poorly labile DMSO ligand and is reflected by the 

inability for displacement of the ligand with solvent while heated at reflux in water. 

 

The complex [Ru(DMSO-S)(phen)(cis-tach)](Cl)2 ([11]{Cl}2) was assessed for 

antiproliferative activity with the A549 human lung adenocarcinoma cell line where 

[11](Cl)2 was found to be inactive.  The lack of activity was hypothesised to be due 

to the poor reactivity of the Ru–S bond, preventing the complex from coordination 

biomolecules. 
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In an attempt to obtain a biologically active species, the preparation of complexes 

following the formula [RuCl(N–N)(cis-tach)]Cl was investigated.  Two techniques 

were attempted to yield the desired compound.  First, [RuCl(η
4
-COD)(cis-tach)]PF6 

[12]PF6 was employed, but the reaction with 2,2’-bipyridine failed to give the target 

species due to the poorly labile η
4
-COD ligand.  This observation was also made 

with tris(pyrazolyl)-type ligands.  Secondly, avoidance of the DMSO ligands was 

attempted via use of acetonitrile ligands, however reaction of [8]Cl gave the tris-

acetonitrile species [Ru(NCMe)3(cis-tach)](Cl)2 [14](Cl)2.  Further reactivity with 

2,2-bipyridine did not yield a single clean product suitable for further investigation.   

 

It is evident that the N,N-chelate complexes do not display suitable properties for the 

design and development of anti-cancer agents, and the identity of this ligand must be 

altered.  Suitable modification principally concerns that of the donor atom of the 

chelating ligand, to those capable of complementing the hard σ donor that is cis-tach, 

providing successful synthesis of a chlorido complex.  This forms the basis of the 

next chapter of this thesis. 
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Chapter 5. Ruthenium (II) cis-tach Complexes with P–P Chelating 

Ligands 

 

5.1 Introduction 

 

The preparation of ruthenium(II) cis-tach chlorido complexes with an N–N chelate 

(Chapter 4) proved difficult. Complexes with the DMSO ligand were exclusively 

obtained, and were found to be inert to substitution under physiologically relevant 

conditions.  This led to the investigation of other chelating ligands which would alter 

the kinetic properties of the complex.  The triphenylphosphane ligand-set (Chapter 2) 

allowed the preparation of chlorido complexes; furthermore, [RuCl(DMSO-S)(cis-

tach)(PPh3)]Cl ([4]Cl) was weakly active in the inhibition of tumour cell growth.  

However, the lack of a chelating ligand in the system prevented adequate control of 

ligand exchange kinetics in a physiologically-relevant environment.  The 

ruthenium(II) cis-tach precursor [RuCl(DMSO-S)2(cis-tach)]Cl ([8]Cl) provides a 

potential synthetic pathway for the preparation of complexes of the type [RuCl(P–

P)(cis-tach)]Cl. 

 

The use of diphosphane ligands in anti-cancer complexes is already well-established.  

For example, incorporation of chelating diphosphanes into the gold(I) complex, 

[Au(dppe)2]Cl, provides kinetic stability and enhanced cytotoxicities over 

monodentate phosphanes.
266

  They have also been employed in ruthenium(II) half-

sandwich complexes; Samuelson and co-workers demonstrated that the complexes 

[RuCl(p-cymene)(P–P)]
+
 where P–P = dppm (Fig. 5.1) and dppe (IC50 = 1.2 and 1.4 

μM respectively in H460, a lung large-cell carcinoma), are equipotent to cisplatin 

(IC50 = 1.7 μM).
267

  These complexes were also shown to bind DNA, inducing cell 

cycle arrest. The use of neutral ĸ
3
-N chelating ligands in the design of ruthenium 

anti-cancer compounds was first reported by Spivak and co-workers with the 

trispyrazolylmethane ligand (Tpm).
268

  These compounds incorporated a chelating 

diphosphane ligand, following the formula [RuCl(P–P)(Tpm)]Cl, where P–P = dppe 

or dppp (Fig. 5.1).  The complexes were shown to be highly potent in the inhibition 

of tumour cell growth with IC50 values of 8.1 and 2.9 μM respectively for the MCF-7 
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cell line.  The activity of these complexes surpassed that of cisplatin (IC50 > 18 μM 

for MCF-7) in selected cell lines.
268

 

 

 

  

Figure 5.1:  Structures of ruthenium(II) complexes with chelating diphosphane 

ligands assessed for anti-tumour activity in vitro: [RuCl(p-cymene)(dppm)]PF6 (left) 

and  [RuCl(dppp)(Tpm)]PF6 (right). 

 

Based on the initial promising results of ruthenium(II) complexes with chelating 

diphosphane ligands, incorporation of these ligands within cis-tach complexes is 

desirable.  Potentially, cis-tach may confer advantageous properties to the complex 

in comparison to the ruthenium(II) compounds previously reported in the literature, 

particularly though the inclusion of hydrogen-bond donors, allowing the preparation 

of freely water soluble compounds.  The synthesis and characterisation of a series of 

cis-tach complexes containing diphosphane chelating ligands is described, followed 

by the discussion of X-ray crystal structures and NMR spectra.  Finally, the 

assessment of the in vitro cytotoxicity of the compounds is provided and a structure-

activity relationship is discussed. 
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5.2 Preparation of Complexes with P–P Chelating Ligands 

 

5.2.1 Synthesis and Characterisation 

 

Initial investigations in the preparation of complexes of the type [RuCl(P–P)(cis-

tach)]Cl were performed with methylenebis(diphenylphosphane) (dppm).  Reaction 

of [8]Cl with two equivalents of dppm, heated at reflux in methanol, resulted in the 

quantitative conversion (by 
1
H NMR, based on [8]Cl) to a new species.  After 

cooling, unreacted phosphane was removed by filtration and the solvent removed in 

vacuo.  The complex was isolated by precipitation on addition of diethyl ether to a 

saturated dichloromethane solution (×2), giving a pale yellow powder in 58% yield.   

 

Spectroscopic evidence demonstrated the successful coordination of the diphosphane 

in a ĸ
2
-fashion; the 

31
P{

1
H} NMR spectrum exhibited a single resonance for the two 

equivalent coordinated phosphorus nuclei at δP 10.1 ppm and the 
1
H NMR spectrum 

indicated a Cs symmetry environment of cis-tach.  The absence of a DMSO 

resonance in the 
1
H NMR spectrum, coupled with the observation of solely the 

chlorido species, [RuCl(dppm)(cis-tach)]
+
, in the mass spectrum (m/z 650.1213 and 

with expected isotope pattern) is indicative of the preference of the complex to retain 

a chlorido ligand rather than DMSO.  All other experimental data were consistent 

with the identity of this species as [RuCl(dppm)(cis-tach)]Cl ([15]Cl, Scheme 5.1). 

 

 

 

 

[8]Cl  [15]Cl, 58%* 

 

Scheme 5.1:  Reaction of [8]Cl with dppm to yield [15]Cl.  * Isolated yield. 
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[8]Cl  [15–20]Cl 

P–P = 

  

dppv 

 

  

dppben 

n =  

 

1 

2 

3 

4 

dppm 

dppe 

dppb 

dppb  

 

Scheme 5.2:  Synthesis and proposed structures of the Ru(II) cis-tach complexes 

[15–20]Cl, which incorporate a chelating diphosphane ligand. 

 

 P–P Abbr.
 

δP (ppm) δH(N
1
)
a
 (ppm) Yield

b
 (%) 

[15]Cl Ph2PCH2PPh2 dppm 10.1 2.28 53 

[16]Cl Ph2P(CH2)2PPh2 dppe 78.3 1.14 93 

[17]Cl Ph2P(CH2)3PPh2 dppp 44.0 2.80 69 

[18]Cl Ph2P(CH2)4PPh2 dppb 46.8 2.55 55 

[19]Cl Ph2PCH=CHPPh2 dppv
 

76.5 0.94 50 

[20]Cl Ph2P(o-C6H4)PPh2 dppben
 

72.9 1.39 69 

 

Table 5.1:  Selected data for the complexes [15–20]Cl of general formula [RuCl(P–

P)(cis-tach)]Cl. a) N
1
 = NH2 resonance trans- to chlorido, b) Isolated yield as 

hydrate. 
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As observed for the previous ruthenium(II) cis-tach complexes, cationic species are 

readily obtained without chloride metathesis with weakly coordinating anions.  The 

absence of these anions—such as hexafluorophosphate—aids the clinical preparation 

of these compounds and avoids incorporation of potentially toxic species. 

 

To expand the range of available compounds of type [RuCl(P–P)(cis-tach)]Cl, 

further complexes were developed by variation of the bridging group in the chelating 

diphosphane ligand (Scheme 5.2).  Initially, the carbon chain length was extended, 

but the series was also expanded to include chelates with a vinyl and benzyl linker.  

Selected data for the complexes [15–20]Cl is given in Table 5.1.   

 

All of the complexes [15–20]Cl were isolated with good yield (> 50%) and 

[RuCl(dppe)(cis-tach)]Cl [16]Cl with excellent yield (93%).  All complexes were 

isolated with analytical purity (95%) with varying water composition, as determined 

by CHN analysis; the solvent composition was also verified by the 
1
H NMR 

spectrum in anhydrous CD2Cl2. 

 

5.2.2 X-Ray Crystallography 

 

Single crystals of [15]PF6 suitable for X-ray diffraction analysis were obtained by 

metathesis of the [15]Cl with sodium hexafluorophosphate in methanol followed by 

filtration and slow evaporation of the solvent.  An ORTEP diagram and selected 

bond angles, lengths and torsions, as well as hydrogen-bond parameters are given in 

Fig. 5.2. 
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Figure 5.2:  ORTEP (50% probability ellipsoids) diagram of one cation {Ru(1)} in 

the asymmetric unit of [15]PF6.  Hydrogen atoms (except for amino hydrogens) and 

the counter ion are omitted for clarity.  Selected bond lengths (/Å) and angles (/°): 

Ru(1)–N(1) 2.119(4), Ru(1)–N(2) 2.171(4), Ru(1)–N(3) 2.162(4), Ru(1)–P(1) 

2.2625(12), Ru(1)–P(2) 2.2610(12), Ru(1)–Cl(1) 2.4139(12), N(1)–Ru(1)–N(2) 

87.65(16), N(1)–Ru(1)–N(3) 88.10(16), N(2)–Ru(1)–N(3) 87.84(16), P(1)–Ru(1)–

P(2) 72.30(4), N(1)–Ru(1)–Cl(1) 168.19(12), P(1)–Ru(1)–Cl(1) 90.67(4), P(2)–

Ru(1)–Cl(1) 94.49(4).  Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles 

(/°) D...A, H...A, D–H...A, H...A–X, H...X (A = centroid and X = plane of respective 

phenyl ring of atom *):  N(1)–H(1a)...C(20)* 4.00, 3.21, 147, 8.5, 2.41 (V); N(1)–

H(1b)...C(8)* 4.25, 3.51, 152, 41.4, 2.35 (V).   Malone hydrogen-bond type is given 

in parenthesis.
206
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As with the previous ruthenium cis-tach complexes, the structure is that of a 

distorted octahedron at the ruthenium centre.  The ruthenium cis-tach adamantane 

moiety is also distorted and tilted in comparison to the octahedron.  This is evident 

from the Ru–N bond lengths of 2.119(4) for the amine trans- to the chlorido ligand 

vs. 2.171(4) and 2.162(4) Å for those trans- to phosphane as a result of the different 

trans-influence of the two ligands.  A small amount of disorder was present in the 

crystal structure with the hexafluorophosphate anions.  The dppm ligand forms a 

four-membered ring with the ruthenium centre, with a bite angle of 72.30(4)°, 

significantly smaller than the idealised 90°.  The chelating phosphane is also angled 

away from the N(1) of cis-tach by approximately 20°, as a result of N–H...π 

hydrogen-bonds involving the amine.  Therefore, the phenyl rings adjacent to the 

chlorido ligand are twisted apart, removing the bulky groups from the locality 

around any leaving group.  The cations in [15]PF6 also form linear hydrogen-bonded 

chains; this is shown in Fig. 5.3. 

 

 

 

Figure 5.3:  Diagram of the asymmetric unit and the intermolecular hydrogen-bonds 

within the linear chains of cations in [15]PF6.  The chains are separated by the PF6 

anions.  Hydrogen-bonds are drawn as D...A, and in the case of the phenyl ring, to 

the closest carbon atom.  Selected hydrogen-bond (D–H...A–X) lengths (Å) and 

angles (/°) D...A, H...A, D–H...A, H...A–X:  N(4)–H(4a)...Cl(1)–Ru(1) 3.180(4), 

2.71(5), 113(4), 164(1); N(4)–H(4b)...Cl(1)–Ru(1) 3.180(4), 2.92(6), 102(5), 164(1).  

Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–

H...A, H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom 

*):  N(2)–H(2d)...C(39)* 4.06, 3.30, 156, 50.6, 2.55 (V); N(3)–H(3b)...C(51)* 4.11, 

3.27, 158, 51.8, 2.57 (V).   Malone hydrogen-bond type is given in parenthesis.
206
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Figure 5.4:  ORTEP (50% probability ellipsoids) diagram of [16]PF6.  Hydrogen 

atoms (except for amino hydrogens) and the counter ion are omitted for clarity.  The 

crystal exhibited a diphosphane ligand disordered equally over two sites, diagram is 

given for one of the solutions.  Selected bond lengths (/Å) and angles (/°): Ru(1)–

N(1) 2.135(4), Ru(1)–N(2) 2.173(5), Ru(1)–N(3) 2.173(5), Ru(1)–P(1) 2.230(11), 

Ru(1)–P(2) 2.320(13), Ru(1)–Cl(1) 2.4431(14), N(1)–Ru(1)–N(2) 87.64(17), N(1)–

Ru(1)–N(3) 87.61(18), N(2)–Ru(1)–N(3) 84.58(17), N(1)–Ru(1)–Cl(1) 170.35(13), 

N(2)–Ru(1)–P(1) 175.3(2), N(3)–Ru(1)–P(2) 174.0(2), P(1)–Ru(1)–P(2) 82.7(4), 

P(1)–Ru(1)–Cl(1) 96.9(2), P(2)–Ru(1)–Cl(1) 89.0(2).  Selected hydrogen-bond (D–

H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–H...A, H...A–X, H...X (A = 

centroid and X = plane of respective phenyl ring of atom *):  N(1)–H(1a)...C(21)* 

4.18, 3.33, 154, 42.6, 2.25 (V); N(1)–H(1b)...C(9)* 3.64, 2.72, 164, 59.0, 2.97 (V).   

Malone hydrogen-bond type is given in parenthesis.
206
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Single crystals of [16]PF6 suitable for X-ray diffraction analysis were obtained by 

metathesis of the [16]Cl with sodium hexafluorophosphate in methanol followed by 

filtration and slow evaporation.  An ORTEP diagram and selected bond angles, 

lengths and torsions, as well as hydrogen-bond parameters are given in Fig. 5.4. 

 

The cation in the solid state structure of [16]
+
 exhibits similar octahedral and 

adamantane structures as [15]
+
.  Increased flexibility of the chelating ring allows for 

disorder of the ligand over two positions with equal occupancy.  The dppe ligand 

participates in a five-membered ring with the metal centre, with a bite angle of 

82.7(4)°; although larger than the respective angle in [15]
+
, the angle remains smaller 

than the idealised 90° for an octahedron.   

 

The two ruthenium–phosphane bond lengths in the cation [16]
+
, unlike the other 

complexes in this chapter, are not equal; the primary coordination sphere of the 

complex does not adopt a true Cs symmetry in the solid state, resulting from the 

geometrical constraints of the chelating ligand.  Although it is evident from the 

structure that the rotation of P(1) allows for maximum overlap of the σ*(P-C) and 

ruthenium 4d orbitals compared to P(2), resulting in the shorter bond length, 

differing σ-donation of the phosphanes to the metal centre may additionally 

influence the bond lengths.   

 

The crystals of [16]PF6 grew in the trigonal space group P3c1, resulting in 

hexagonally-shaped crystals.  This observation was reflected by the long-range 

structure of the crystals, as shown in Fig. 5.5.  The cations of [16]
+
 form trigonal and 

hexagonal motifs around the hexafluorophosphate anions, located on special 

positions.  A single anion and the dppe ligand are disordered across two sites in the 

structural solution.  A hydrophobic solvent channel is present around one of the 

anions, but it did not prove to be possible to model the solvent channel, therefore the 

SQUEEZE algorithm was employed.
207, 208 
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Figure 5.5:  Diagram of the trigonal structures in [16]PF6.  Three cations surround 

each hexafluorophosphate anion, and vice versa.  The PF6
− 

molecules occupy special 

positions of the asymmetric unit. 

 

Single crystals of [17]Cl were obtained by slow evaporation of a methanol solution, 

and [18]Cl  by the standing of an aqueous solution.  ORTEP diagrams are given in 

Fig. 5.6 and selected bond angles and lengths, as well as hydrogen-bond parameters 

are given in Appendix I. 

 

As for the two previous structures, the cations of both [17]
+
 and [18]

+
 are that of a 

distorted octahedron and a Ru-cis-tach adamantane motif.  The increased size of the 

chelate ring to incorporate a total of six and seven members respectively has resulted 

in a P(1)–Ru(1)–P(2) angle close to the idealised 90° of an octahedron, of 

89.481(17)° and 92.98(5) for [17]
+
 and [18]

+
 respectively.  Furthermore, the six-

membered Ru-phosphane ring of [17]
+
 adopts a chair conformation.  Due to the 

increased flexibility of the diphosphane chelate in both complexes, there is reduced 

hydrogen-bonding interactions between N(1) and the mutually cis-phosphane, with 

preference for hydrogen-bonds with the other amines.  Both complexes do not 

exhibit strong hydrogen-bonding interactions between the cations within the solid 

state structure; intermolecular interactions are largely dominated by solvent-cation 

hydrogen-bonding interactions. 
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Figure 5.6:  ORTEP (50% probability ellipsoids) diagrams of [17–20]Cl.  Hydrogen 

atoms (except for amino hydrogens) and the counter ion are omitted for clarity.  

Selected bond and hydrogen-bond lengths and angles are given in Appendix I.  
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Single crystals of [19]Cl and [20]Cl were obtained by slow diffusion of diethyl ether 

into a methanol solution.  ORTEP diagrams are given in Fig. 5.6 and selected bond 

angles and lengths, as well as hydrogen-bond parameters are given in Appendix I. 

 

The structural solutions of [19]
+
 and [20]

+
 are again similar to the previous structures 

of chelating diphosphane complexes with distorted adamantane and octahedral 

structures.  As with [15]
+
, the phosphane is tilted towards the chlorido ligand, 

resulting from the hydrogen-bonding interactions between the phenyl rings and N(1).  

The tilt angles are approximately 11 and 18° for [19]
+
 and [20]

+
 respectively.  Both 

complexes do not exhibit strong hydrogen-bonding interactions between the cations; 

the solid state structure is largely dominated by solvent-cation hydrogen-bonding 

interactions.   

 

5.2.3 Discussion 

 

5.2.3.1 Preference for Chlorido Ligand 

 

In contrast to the complexes incorporating N–N chelating ligands, all complexes 

were isolated with a chlorido ligand in preference to DMSO.  This is proposed to 

result not only from the increased steric hindrance around the applicable 

coordination site favouring the smaller chlorido ligand, but also the electronic 

properties conferred by the metal from the phosphanes.  As phosphanes are capable 

of acting as good π-acceptor ligands, less π-back donation would be involved in the 

metal-DMSO bond.  Therefore the DMSO ligand is expected to be more labile than 

in the complexes with N–N chelating ligands and may be readily exchanged for a 

chloride, forming a stable chlorido complex. 

 

5.2.3.2 31
P{

1
H} NMR Chemical Shifts 

 

In the 
31

P{
1
H} NMR spectra of [15–20]Cl, the chemical shift of the phosphanes are 

between 10 and 80 ppm.  It is expected that the chemical shift will reflect the 

electron donation from the metal complex to the phosphane, where a greater electron 

density located on the phosphorus nuclei will result in increased shielding and an up-

field resonance.  This is assumed to be most influenced by the trans-amine and 
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therefore the overlap between the Ru–P and Ru–N orbitals.  The chemical shifts and 

trans-phosphorus-nitrogen bond angles are given in Table 5.2.   

 

 Bond angle (°) Average trans-  Δδp
a 

Complex P(1)–Ru(1)–P(2) N(2)–Ru(1)–N(3)  N–Ru–P angle (°) (ppm) 

[15]
+
 72.30(4) 87.84(16) 171.0(2) +31.9 

[16]
+
 82.7(4) 84.58(17) 174.7(3) +90.3 

[17]
+
 89.48(2) 82.11(7) 172.74(7) +60.8 

[18]
+
 92.98(5) 82.67(17) 173.8(2) +62.3 

[19]
+
 83.21(2) 83.51(6) 177.97(7) +99.1 

[20]
+
 84.00(2) 84.43(8) 179.11(8) +86.2 

 

Table 5.2: Selected bond angles and 
31

P{
1
H} NMR chemical shifts for [15–20]

+
. a) 

Δδp = δP(complex) − δP(free phosphane);  δP(free phosphane) (CDCl3) = −21.8 

(dppm), −12.0 (dppe), −16.9 (dppp), −15.5 (dppb), −22.6 (dppv), −13.3 (dppben). 

 

The geometrically constrained dppm ligand of [15]
+
 deviates from the ideal 

octahedron more than the other complexes in the trans-P–Ru–N bond, at 171°, 

therefore reducing the trans-influence of cis-tach;  This is reflected in the up-field 

resonance of δp 10.1 ppm.  Of the remaining complexes, [20]
+
 has the optimum 

overlap of 178°, followed by [16]
+
 at 175°.  Both of these complexes contain five-

membered diphosphane rings and exhibit the most downfield resonances in the series 

with [19]
+
 of δp 70–80 ppm.  Furthermore, the diphosphane bite angle mirrors the 

corresponding cis-tach bite angle trans- to the chelate in these three complexes to a 

greater extent than the others.  Finally, the extended chelating ligands of [17]
+
 and 

[18]
+
 are located between the latter two sets of ligands with angles of 173–174° and 

is mirrored in the 
31

P{
1
H} spectra with δp 44–47 ppm. 
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5.2.3.3 1
H NMR Chemical Shift of Amine Groups 

 

The 
1
H NMR chemical shift of the amine group trans- to the chlorido ligand for the 

complexes [16]
+
, [19]

+
 and [20]

+
 are observed at approximately δH 1 ppm, opposed 

to those for all other complexes, which are typically present between 2–5 ppm.  

Although amine chemical shifts in this region are suggestive of a non-coordinated 

nitrogen group, an NOE cross peak between the NH2 resonance and the adjacent 

phenyl rings were observed in CD3OD solution (Fig. 5.7) suggesting the amine is 

within the coordination sphere of the metal.   

 

 

 

Figure 5.7: 
1
H-

1
H NOESY NMR spectrum of [RuCl(dppe)(cis-tach)]Cl ([16]Cl) in 

CD3OD.  

 

PCH2 
o-PPh2

B
 + PPh2 

o-PPh2
A NH2 

NH2 

NH2 
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The ortho proton of the adjacent phenyl ring shares a NOE cross peak with the 

ethylene linker group, although obscured by coincidental resonances in the 1D 

spectrum.  In addition to the NOESY spectrum, the assigned cyclohexane 

conformation of [16]Cl was supported by the 1D 
1
H NMR spectrum from the 

observation of cyclohexane ring J-coupling of an all-axial configuration 

corresponding with all other ĸ
3
-species observed.  It is proposed that upfield-shifted 

amine resonances of [16]Cl, [19]Cl and [20]Cl result from the shielding cone of the 

nearby aromatic systems of the diphosphane ligand.  This is seen in the structural 

solutions obtained by single crystal X-ray diffraction, where the adjacent phosphane 

phenyl rings in [16]PF6, [19]Cl and [20]Cl are located close to the N(1) NH2 protons, 

with an average NH...centroid stance of 3.0(4), 2.7(2) and 3.0(1) Å respectively.  

This is in contrast to 4.0(6) Å for [15]Cl, the only other solid state structure with a 

similar hydrogen-bonding motif; this provides a rationale for the upfield NH2 

resonance in the 
1
H NMR of these complexes. 

 

5.2.3.4 Ruthenium–Chlorido Bond Lengths 

 

A structural parameter relevant to the reactivity of these complexes is the Ru–Cl 

bond length, as ligand exchange reactions are expected to occur at this coordination 

site.  A similar (within error) Ru–Cl bond length was obtained for [16–20]
+
.  

However the Ru–Cl bond in [15]PF6 is shorter than in [16–20]
+
 by almost 0.03 Å.  

Assuming these complexes inhibit the growth of tumour cells by coordination of 

biomolecules to the coordination site occupied by the chlorido ligand, it would be 

expected that the activity of [15]Cl will be greatly compromised in comparison to the 

other complexes.  The Ru–Cl bond lengths in the crystal structures of [15–18]
+
 and 

analogous complexes are presented in Table 5.3. 
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 r(Ru–Cl) (Å), L = 

fac-ligand dppm dppe dppp dppb 

η
5
-C5H5 2.4302(6)

269
 2.4466(7)

269
  2.4404(4)

270
 

cis-tach 2.4139(12) 2.4431(14) 2.4404(4) 2.4379(12) 

η
6
-p-cymene 2.397(2)

271
 2.430(1)

271
   

Tpm  2.397(3)
192

 2.4056(9)
268

  

η
6
-toluene  -  2.399(2)

272
 

Tp
iPr 

 2.352(2)
273

   

 

Table 5.3:  Comparison of Ru–Cl bond lengths from the X-ray crystal structures of 

complexes following the formula [Ru
II
Cl(L)(fac-ligand)]

n+
.  cis-tach complexes: 

[15]PF6 (dppm), [16]PF6 (dppe), [17]Cl (dppp), [18]Cl (dppb). 

 

The Ru–Cl bond lengths in the crystal structures of [15–18]
+
 reflect those of the 

triphenylphosphane complexes detailed in Section 2.3; cis-tach confers similar 

effects to the ruthenium-chlorido bond as the anionic η
5
-C5H5 ligand, with bond 

lengths identical (within error) for the dppe and dppp complexes.  The cis-tach 

ligand in all four structures generally results in a longer metal–halide bond in 

comparison to the neutral fac- ligands, including the cytotoxic complexes 

[RuCl(dppm)(η
6
-p-cymene)]PF6 and [RuCl(dppp)(Tpm)]PF6.  This observation also 

extends to other ruthenium(II) fac-ligand compounds. such as [RuCl(η
6
-

benzene)(phen)]
+
 (2.4132(5) Å),

274
 [RuCl(η

6
-p-cymene)(acac)] (2.4199(6) Å),

275
 and 

the promising anti-cancer complex [RuCl(η
6
-bip)(en)]

+
 (2.4080(15) Å).

78
  This 

observation mirrors that of the triphenylphosphane complexes, where the trans-

influence of the electron rich cis-tach ligand promotes the weakening of the 

ruthenium–chlorido bond in comparison to other fac-ligands such as the η
6
-arenes.  

Although the in vitro activity cannot be compared to this parameter, the differences 

in Ru–Cl bond lengths may be manifested in the ligand exchange reactions of these 

complexes, where favourable kinetics or equilibria may result.  However, other 

physical parameters may also influence these properties, such as mechanism of 

ligand exchange and the stability of transition states or products; therefore the effect 

of the Ru–Cl bond length on the aquation reaction or in vitro activity of these 

complexes cannot be predicted. 
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5.2.4 Conclusions 

 

A series of six cis-tach ruthenium(II) complexes incorporating chelating 

diphosphane ligands was prepared in good to excellent yields with analytical purity.  

The structures of the complexes are ideal for application as cytotoxic agents.  The 

phenyl rings provide a degree of hydrophobicity to the complexes, which could aid 

diffusion across cell membranes; the rings also have the potential to interact with 

biologically relevant molecules through -stacking interactions.  Additionally, the 

other amine groups of the tach are located adjacent to the chlorido ligand and may 

have a role in strengthening interactions with an exogenous ligand through 

hydrogen-bonding.  For these reasons, it is believed these compounds will exhibit 

some potency in the in vitro inhibition of tumour cell proliferation. 

 

5.3 In Vitro Biological Evaluation 

 

All six diphosphane chelate ruthenium(II) cis-tach complexes, [15–20]Cl, were 

selected for assessment of antiproliferative activity by growth inhibition assay with 

the colorimetric MTT assay.
228

  Compounds were tested against the A549 human 

lung adenocarcinoma and the cisplatin-sensitive A2780 human ovarian carcinoma 

cell lines.  Importantly for the biological aspect of this study, analytically pure 

samples of [15-20]Cl are freely soluble in water up to mM levels of concentrations, 

and soluble in media to at least 500 µM, well in excess of that needed for therapy.   

 

5.3.1 Antiproliferative Activity 

 

Media with cells was seeded in a 96-well plate 24 h prior to the addition of the 

compound to be tested.  Cell viability was assessed after 72 h exposure to the 

compound by metabolisation of MTT to the insoluble formazan product.  The 

relative amount of MTT-formazan per well was determined by the absorbance at 540 

nm after aspiration of the media dissolution in DMSO.  Cell viability was calculated 

as a function of the positive (no cells, 0% viability) and negative (no drug added, 

100% viability) controls.   
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Figure 5.8: Logarithmic dose-response curves for  cisplatin,  [16]Cl and▲ 

[17]Cl in the A549 (top) and A2780 (bottom) cell lines.  Solid lines represent the 

calculated best-fit to the dose response curve (Eqn. 5.1). 

 

  

A549 cell line 

A2780 cell line 
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For the compounds cisplatin, [16]Cl and [17]Cl, logarithmic dose-response curves of 

a single experiment performed in octuplicate with the A549 and A2780 cell lines are 

shown in Figs. 5.8.  The resulting IC50 values were calculated as the concentration 

required to inhibit growth by 50%.  The ability for a drug to act on a tumour cell to 

inhibit growth over a wide concentration range is described in the dose-response 

curve by the gradient of the slope, determined by the power value (p) in Eqn. 5.1.    

 

  
   

           
    Equation 5.1 

 

The IC50 and power values for all complexes in the A549 and A2780 cell lines are 

given in Table 5.4.  All values given are the average of three experiments, each 

performed in octuplicate. 

 

 A549
 

 A2780 

Compound IC50 (μM) power       IC50 (μM) power 

cisplatin 2.70(5) 0.92(5)  0.43(1) 1.36(3) 

[15]Cl 41.7(10) 1.87(8)  12.4(2) 1.63(4) 

[16]Cl 9.88(4) 2.06(6)  3.39(12) 2.54(9) 

[17]Cl 1.02(3) 1.74(7)  0.35(1) 2.80(4) 

[18]Cl 1.15(2) 1.76(3)  0.39(1) 2.27(4) 

[19]Cl 25.1(4) 1.92(6)  7.47(17) 2.14(9) 

[20]Cl 2.73(11) 2.30(13)  1.14(4) 2.99(20) 

 

Table 5.4: IC50 and slope values (power, see Eqn. 5.1) for cisplatin and compounds 

[15–20]Cl in both A549 and A2780 cell lines.  Cells were exposed to the selected 

compound for 72 h and cell viability was determined by MTT assay.  Standard 

deviations are given in parenthesis. 

 

In both the A549 and A2780 cell lines, the complexes display a wide range of 

cytotoxicity from moderate to excellent in comparison to cisplatin.  In particular, 

[17]Cl and [18]Cl possess potent activity, exceeding that of cisplatin in the A549 cell 

line by two- to three-fold.  In A2780, these compounds are at least equipotent to the 

clinical drug.  Good activity is also achieved with the complexes [16]Cl and [20]Cl. 
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The success of cisplatin as a clinical drug is evident here, where the gradient of its 

dose response curve for both cell lines is shallow; therefore the range of 

concentrations of which the drug inhibits growth is broad.  A similar shallow 

gradient is only observed with [15]Cl in the A2780 cell line, but it is poorly active 

compared to cisplatin.  The ruthenium cis-tach complexes with activity close to or 

surpassing that of cisplatin are not active over a similarly wide range.  Despite the 

importance of this characteristic of a drug, and ultimately, the ability for a physician 

to moderate a dose, it is rarely reported in literature for complexes which have been 

assessed for in vitro antiproliferative activity.  Therefore, comparison with 

established ruthenium anti-tumour complexes is not possible. 

 

The difference in absolute activity between the two cell lines is the product of 

different biological processes within each system, whereby selected biological 

pathways and cell defence mechanisms vary.  Furthermore, due to the different 

growth characteristics of the cell lines, different conditions were employed.  

Therefore, one cannot perform a direct comparison between the two cell lines used. 

 

Compared to other ruthenium(II) complexes, [17]Cl and [18]Cl are among the most 

active, mono-nuclear and freely water-soluble candidates under study.  The 

complexes [17]Cl and [18]Cl are equipotent to cisplatin.  Similar activity (compared 

to cisplatin) was observed with HC11, [RuCl(η
6
-tha)(en)]PF6—a lead compound 

from the Sadler laboratory—with the A2780 cell line, but a different method was 

used (24 h drug exposure).
80

  These complexes have similar cytotoxicities to the 

previously reported diphosphane complexes [RuCl(η
6
-p-cymene)(P–P)]

+
 and 

[RuCl(P–P)(Tpm)]
+
 (compared to cisplatin).  However, the cis-tach ligand is 

believed to significantly enhance water solubility, with solubility of >10 mM for 

[16]Cl and [17]Cl, without assistance from other solvents (e.g. initial preparation of 

a stock solution in DMSO).  These complexes are promising candidates for future 

studies and developments.  It should be noted that several fac-ligand ruthenium(II) 

complexes exhibit sub-micromolar cytotoxicities, several times greater than 

cisplatin.  However, these are dominated by dinuclear species, such as [{(η
6
-p-

cymene)Ru}2(p-SC6H4Me)3]Cl (IC50 = 0.13 μM in A2780), and these complexes are 

not reported to be freely water soluble, requiring DMSO to assist in solvation for 

growth inhibition assays.
276
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5.3.2 Structure-Activity Relationship 

 

Significant research has focused on the structural properties of anti-cancer 

compounds to provide crucial insights into the vital features for antiproliferative 

activity by structure activity relationships (SARs).  For example, the activities of 

cisplatin (highly potent) vs. transplatin (inactive) is accounted for by differing ligand 

exchange kinetics and the geometrical constraints of cross-linking DNA.
277

  

Knowledge of the SAR allows informative design of new candidates with the aim of 

increasing activity or reducing unwanted side effects.  Although comprehensive 

SARs require many tens of compounds, analysis of the activities of the ruthenium 

(II) cis-tach complexes presented here may highlight key features for future 

development of these compounds. 

 

Antiproliferative activity was only observed in ruthenium(II) cis-tach complexes 

with a phosphane ligand.  The phosphane provides two benefits; a relatively stable 

yet reactive chlorido complex can be prepared and the phenyl groups provide 

increased lipophilicity.  At least one of these factors is absent in [RuCl(DMSO-

S)2(cis-tach)]Cl and [Ru(DMSO-S)(phen)(cis-tach)](Cl)2, possibly accounting for the 

poor activity.  Inclusion of two phosphane donors, in the diphosphane complexes, 

significantly increased activity to surpass that of cisplatin.  This correlates with the 

observations of Sadler and co-workers, where extended and larger arene ligands 

results in improved activity.
82

 

 

The possibility of the activity of these complexes arising as a consequence of 

phosphane dissociation must be considered.  Under physiologically relevant 

conditions, no evidence was obtained to suggest displacement of the chelating 

phosphane.  In chapter 2, it was hypothesised that the Ru–P bonds have a large 

degree of π-back bonding character using crystallographic data from [1]PF6 and [2].  

Therefore, the Ru–P bond is expected to be relatively strong.  Assuming activity 

originated from the free phosphane ligand, one may expect for activity to correlate 

with the ability for the phosphane to be potentially displaced, with the geometrically 

constrained complexes more readily releasing phosphane.  The observed in vitro 

activities of these complexes do not correlate, with the most constrained exhibiting 
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poorest activity.  Furthermore, [RuCl(DMSO-S)(cis-tach)(PPh3)]Cl [4]Cl, which 

features a mono-dentate phosphane is over two orders of magnitude less active than 

[17]Cl, suggesting that phosphane dissociation may not be occurring in the 

conditions of the MTT assays.  It is therefore proposed that phosphane de-

coordination does not occur and that the Ru(II) phosphane complex is responsible for 

the growth inhibition observed. 

 

The solid state structures of all the diphosphane chelate complexes provide potential 

insight into the successful in vitro activity.  The phenyl rings are capable of forming 

hydrogen-bonds to the amine groups, thereby protecting the hydrogen-bond donor 

groups when in an apolar environment such as that of the cell membrane, aiding 

transfer into the cell.  The phenyl rings are also able to extend outward, past the 

chlorido ligand to create steric bulk around the reactive coordination site of the 

complex or form hydrophobic interactions with coordinated biomolecules (Fig. 5.9).  

The ligand as a whole also forms a large hydrophobic face to the complex and in 

conjunction with the cis-tach cyclohexane ring; the majority of the hydrophilic 

properties of the cis-tach ligand is hidden.  Only a strongly hydrophilic region (the 

exposed amine groups) is present around the chlorido ligand, capable of forming 

non-covalent interactions with coordinated biomolecules (Fig. 5.9). 

 

 

 

Figure 5.9:  Schematic representation of the diphosphane complexes showing 

possible sites of interactions when coordinated to biomolecules by substitution of the 

chlorido ligand. 
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For compounds of type [RuCl(Ph2P{CH2}nPPh2)(cis-tach)]Cl, the activity increases 

upon extension of the chelate chain length in both cell lines, up to the case where n = 

3, [17]Cl, which exhibits the highest activity of all compounds tested in both cell 

lines.  However, further extension of the chain results in little change to the activity.  

From the solid state structures of complexes [15–18]
+
, the Ru(1)–Cl(1) bond length 

in [15]Cl is shorter than those with a longer chelating chain at 2.4139(12) vs. 

approximately 2.441(2) Å.  This could result in a less reactive ruthenium-chlorido 

bond, and therefore reduced potency, but this does not extend to [16–20]Cl. 

 

The three structural factors which vary between the complexes are the phosphane 

bite angle, flexibility and lipophilicity/hydrophobicity.  Hydrophobicity is an 

important influence in the potency of a compound; it has been previously 

demonstrated that increased hydrophobicity improves the uptake of a compound into 

the cell, resulting in greater activities.
82, 89, 113, 131

  The complexes [19]Cl and [20]Cl 

share a similar coordination sphere around the metal centre, with only variation in 

the size of the hydrophobic chelating diphosphane.  Extension of the chelate from 

dppv ([19]Cl) to dppben ([20]Cl), results in an increase of activity, as expected, by 

almost an order of magnitude.  Further studies into calculation of the water/octan-1-

ol partition coefficient, logP will prove informative to the link between 

hydrophobicity and potency. 

 

The trend of activity of complexes following the formula [RuCl(cis-tach)]Cl does 

show some correlation to the bite angle of the chelating ligand, with angles of 

72.30(4), 82.7(4), 89.98(5) and 92.98(5)° for [15]
+
, [16]

+
, [17]

+
 and [18]

+
 

respectively.  However, this does not account for the reduced activity in [19]
+
, with 

bite angle of 83.207(17)°.  A structural trend which follows in vitro activity is the 

reduced strain and therefore flexibity of the chelate ring.  The flexibility of the 

complexes is expected to follow the trend of dppb ≥ dppp > dppe > dppv and dppm.  

This trend appears to breakdown when a fully flexible ligand is employed—such as 

dppb—and activity no longer increases.  The flexibility may enhance activity by 

either providing greater protection of the cis-tach amine groups when passing 

through the cell membrane, or for selective protection of the effective “vacant” 

coordination site (from loss of the chlorido ligand).  The flexible phenyl groups 

could mask this coordination site to prevent side reactions from occurring, but also 
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rotate or move to aid in the formation of stronger interactions with biomolecules.  

For the continued development of these complexes, it is proposed that both the 

flexibility and lipophilicity of the chelating diphosphane ligand are important factors 

towards the activity of the complex, as well inclusion of a sufficiently labile chlorido 

ligand.  Therefore these factors should be exploited, although other properties of the 

complexes may also contribute to the observed trends. 

 
5.3.3 Conclusions 

 

The ruthenium(II) cis-tach complexes in this chapter are highly active in the 

inhibition of tumour cell growth, with two compounds surpassing that of cisplatin in 

the A549 cell line.  All the compounds are freely water soluble in at least mM 

concentrations and do not require use of a potentially toxic counter-ions.  The 

activities obtained are among the best obtained for ruthenium(II) complexes 

currently being studied for their cytotoxic capabilities, and present an important class 

of compounds warranting further investigations. 

 

5.4 Chapter Conclusions 

 

The family of ruthenium(II) cis-tach compounds has been expanded to include the 

chelating diphosphane complexes [15-20]Cl.  The complexes are obtained in 

moderate to high yield by the reaction of the respective phosphane and [8]Cl.  Six 

complexes were prepared, characterised and assessed for their antiproliferative 

activity by in vitro technique using the MTT assay.  All compounds were obtained 

with analytical purity and characterised further by single crystal X-Ray diffraction.  

Employment of a chelating diphosphane gives the respective chlorido complex.  

Additionally, all complexes were isolated as the chloride salt, and did not require use 

of weakly coordinating anions for synthesis. 

 

Use of the chelating diphosphane ligand gave complexes which are highly active in 

growth inhibition of both A549 and A2780 cell lines, two of which surpassed the 

activity of the clinical drug cisplatin in the A549 line.  Furthermore, the activity of 

ruthenium(II) cis-tach complexes is among the highest obtained for mono-nuclear 

ruthenium compounds.  It is believed this activity is a consequence of the 
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diphosphane coupled with cis-tach.  Although potent diphosphane complexes with 

facially-coordinating ligands have been previously reported, cis-tach may provide 

additional advantages, such as potential hydrogen-bonding interactions between the 

amine groups and biological target, and improved water solubility.  An initial 

analysis of the structure-activity relationship (SAR) suggests that activity may be 

related to both the lipophilicity of the complex and the flexibility of the chelating 

ligand; further studies are required to form a comprehensive SAR. 

 

However, there are further questions to be answered to understand the cause for the 

excellent potency in vitro of ruthenium cis-tach complexes.  It remains unclear the 

chemical processes these compounds undergo in aqueous media, or the biological 

molecules the compounds target.  These questions form the basis of the final chapter 

of this thesis. 
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Chapter 6. Aquation and Biomolecule Interactions of 

Ruthenium(II) cis-tach Diphosphane Complexes 

 

6.1 Introduction 

 

Given the promising anti-proliferative activity of ruthenium(II) cis-tach complexes, 

the chemical processes which may occur within a cell were of interest.  The 

mechanism by which cisplatin activates a cellular response, which results in 

apoptosis, has been extensively studied.
8, 14, 21

  The universally accepted hypothesis 

is that cisplatin forms cross links between the N7 atoms of the guanine or adenine 

bases in DNA, resulting in distortion of the secondary structure.
19, 24

   Prior to 

interaction with DNA, aquation is required to generate the more reactive aqua 

complex [PtCl(NH3)2(OH2)]
+
 (subsequent aquation and hydrolysis may also occur).

19
  

It has been shown that many ruthenium(II) η
6
-arene complexes that exhibit 

promising anti-tumour activity also generate a reactive aqua species when exposed to 

conditions similar to that within a cell.  For example, the complexes of type 

[RuCl(η
6
-arene)(en)]

+
 are hypothesised to undergo rapid aquation on entering the 

cell prior to binding to DNA selectively via a single covalent bond to the N7 of 

guanine.
96, 99

  Computational studies of this complex with DNA, as well as 

crystallographic studies of small molecular models have shown that the hydrogen-

bonding groups of the en ligand assist in strengthening the interaction, thus 

increasing the structural distortion of DNA.
90, 103

 

 

The aqueous chemistry of ruthenium(II) cis-tach chelating diphosphane complexes is 

herein described.  The aquation of the chlorido species is investigated in detail and 

the resulting aqua complexes characterised in solution.  A kinetic study was 

performed to provide information regarding the transformation these complexes may 

undergo in a biologically-relevant environment, as well as the mechanism of 

aquation.  The reaction equilibrium was also determined to give insight into the 

proportion of each species in various biological conditions.  The potential of DNA as 

a biological target for these complexes was investigated by reaction with the DNA 

model compounds 9-ethyl guanine and guanosine monophosphate, as well as 
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electrophoretic mobility shift assays to assess the ability of the complexes to alter the 

tertiary structure of plasmid DNA. 

 

6.2 Identity of Aquation Products 

 

The aqueous chemistry of the diphosphane complexes was investigated in detail with 

focus on [16]Cl and [17]Cl.  These two compounds were selected as [17]Cl exhibited 

the highest in vitro activity, whereas [16]Cl displayed good activity coupled with 

excellent water solubility.  Furthermore, the results of the investigation may provide 

information to the differing in vitro activity of these two complexes. 

 

6.2.1  Aquation of [16]Cl and [17]Cl 

 

The 
31

P{
1
H} NMR spectra of [16]Cl or [17]Cl at ~300 μM were obtained in H2O 

solution, with 10 mM sodium phosphate buffer (pH 7.4) and 1.6% CD3OD to 

provide a lock signal.  The spectrum for both complexes consisted of two singlet 

resonances (Fig. 6.1).  It is proposed that one of these signals is that of the starting 

chlorido complex ([16]
+
/[17]

+
) and the other a new species, hypothesised as the 

aqua/hydroxy complex, [Ru(OHx)(P–P)(cis-tach)]
x+

 ([16a]
x+

/[17a]
x+

), which results 

from exchange of the chlorido ligand with the solvent (Scheme 6.1).  Both 

complexes co-exist in an equilibrium mixture, which had fully established within the 

time of obtaining the spectrum.  

 

 

 

 

n = 2 [16]
+
, n = 3 [17]

+  n = 2 [16a]
+
, n = 3 [17a]

+
 

 

Scheme 6.1: The complexes [16]Cl and [17]Cl aquate rapidly in aqueous solution, 

giving an aqua/hydroxy complexes [16a]
x+

 and [17a]
x+

. 
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The identity of each resonance in the 
31

P{
1
H} NMR spectra was assigned based on 

the relative change of its integration on addition of sodium chloride to the aqueous 

solution (Fig. 6.1). 

 

  

 

Figure 6.1:  
31

P{
1
H} NMR spectra of a 500 μM solution (pH 7.4) of [17]Cl with 

various chloride concentrations (NaCl) to assign the two resonances.  [Cl
−
] = [NaCl] 

+ [Cl
−
]Ru where [Cl

−
]Ru =  [Cl

−
] inherent from ruthenium species. 

 

The 
31

P{
1
H} NMR and ESI-MS data for the chlorido and aqua species are given in 

Table 6.1.  It is evident from the 
31

P{
1
H} NMR integrations that the aquated species 

is in significantly greater abundance for [16]Cl than in the case of [17]Cl.  It is 

therefore expected that the equilibrium constant for the aquation reaction will be 

higher for [16]Cl than [17]Cl.  ESI mass spectrometry of [16]Cl and [17]Cl in 75% 

H2O/25% MeOH supported the proposed new species as being the aqua/hydroxy 

complex, with mass and isotope patterns corresponding to the [M−Cl+OH]
+
 ion for 

both complexes. 

 

  

[Cl
−
] = 1 mM 

[Cl
−
] = 2 mM 

[Cl
−
] = 5 mM 

[Cl
−
] = 11 mM 

[Cl
−
] = 21 mM 

[17]
+ 

[17a]
x+ 
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 P–P L δP / ppm (∫) m/z (%) 

[16]
+ 

dppe Cl 76.2 (5) 664.0 (10) 

[16a]
x+

 dppe OHx 74.6 (100) 646.1 (100)
a 

[17]
+
 dppp Cl 42.9 (100) 678.1 (100) 

[17a]
x+

 dppp OHx 41.7 (30) 660.1 (20)
a 

 

Table 6.1:  
31

P{
1
H} NMR spectroscopy and ESI mass spectrometry data for 

[Ru(L)(P–P)(cis-tach)]
x+

, where L = Cl or OHx.  [Ru] = 500 μM, pH 7.4 (10 mM 

sodium phosphate).  a) Only the hydroxo species [Ru(OH)(P–P)(cis-tach)]
+
 was 

observed. 

 

Both of the aqua/hydroxy complexes [16a]
x+

 and [17a]
x+

 were characterised by 
1
H 

and 
31

P{
1
H} NMR spectroscopy by preparation of solutions of the triflate salts by 

chloride metathesis with two equivalents of silver triflate.  All cis-tach resonances 

were observed, with the exception of a single NH2 environment in [16a]
x+

.  The 

resonance for the corresponding proton in the chlorido complex is within 0.1 ppm of 

the water signal in CD3OD, and is assumed to have a similar chemical shift in 

[16a]
x+

.  Therefore, it is proposed that this resonance has been suppressed by the 

solvent suppression pulse sequence.  Additionally, due to rapid exchange with the 

solvent, the aqua/hydroxy protons are not observed in the 
1
H NMR spectra.  The 

1
H 

NMR spectra for all complexes correlate with that expected for a ĸ
3
-cis-tach ligand 

in a Cs symmetry environment.  

 

Aquation of [10]Cl in D2O showed evidence for the selective deuteration of trans-

chlorido amine groups, hypothesised as the product of a conjugate base mechansism 

(chapter 3).  Therefore, the incorporation of deuterium into the diphosphane 

complexes was studied by ESI mass spectrometry in 75% D2O/25% CD3OD 

solution.  No deuteration of the cis-tach amine protons were observed, with the only 

deuterium-containing signals corresponding to [M–Cl+OD]
+
 at m/z 647.2 and 661.1 

for [16a]
+
 and [17a]

+
 respectively.  Therefore, it is proposed that the aquation of 

these two complexes does not proceed via an SN1CB type mechanism.  It is expected 

that aquation occurs by either a concerted IA or ID mechanism; a true dissociative 

mechanism is not expected, as exchange has not been observed with solvents other 
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than water.  Given the relatively long Ru–Cl bonds in the crystal structures of the 

chlorido complexes (cf. Chapter 5), it is hypothesised the aquation mechanism will 

have a large dissociative character, suggesting an ID mechanism. 

 

6.2.2 Coordination of Buffer 

 

On further inspection of the NMR spectra obtained from the aquation of [17]Cl, a 

third species was present in solution, with a characteristic singlet in the 
31

P{
1
H} 

spectrum at δP 44.8 ppm.  This species was only observed in sodium phosphate 

buffered solutions and therefore its identity was proposed to be the ruthenium–

phosphate adduct [Ru(PO4-O)(dppp)(cis-tach)]
x+

 [17b]
x+

.  
1
H NMR spectra were 

recorded with sodium phosphate concentrations of 0, 10 and 20 mM with 300 μM of 

ruthenium complex at pH 7.4 (Fig. 6.2). 

 

      

 

Figure 6.2:  
1
H NMR spectra of [17]Cl in H2O with 1.6% CD3OD and 0 (bottom), 

10 (middle) or 20 (top) mM sodium phosphate at pH 7.4. 

 

The resonances for the ruthenium-phosphate species are most prominent at δH 1.5 

ppm where a resonance for the CH2 groups was observed.  Additionally, the 

// 

// 

// 

[17b]
x+

 

[17b]
x+

 

[17a]
x+

 [17]
+
 

[17]
+
 [17a]

x+
 

[PO4] = 20 mM 

[PO4] = 10 mM 

[PO4] = 0 mM 
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phosphate complex contributes to the resonance for a phenyl proton in the chlorido 

complex at δH 7.1 ppm, where the profile of the multiplet is clearly distorted when 

the concentration of sodium phosphate is increased.  It is not possible to identify 

other resonances from [17b]
x+

 due to coincidental or overlapping signals with the 

chlorido and aqua complexes.  The relative proportion of this resonance to those for 

the aqua/hydroxy species was dependent on the concentration of sodium phosphate 

added to the solution. 

 

The relative integration of the phosphate in the 
1
H NMR spectrum is approximately 

10% of the resonance corresponding to the aqua/hydroxy complex at 10 mM sodium 

phosphate, and therefore believed to be a minor constituent of the reaction mixture.  

This process was also observed in the aquation of [16]Cl giving the phosphate 

complex [Ru(PO4-O)(dppe)(cis-tach)]
x+

 [16b]
x+

,  but to a lesser extent of 2–3%.  The 

protonation state of the phosphate ligand in both [16b]
x+

 and [17b]
x+

 remains 

unknown.  The interaction of the aquated complex with the phosphate anions are of 

interest, given that the complexes may form adducts with phosphate-rich species, 

such as the DNA. 

 

6.2.3 Aquation at Physiologically-Relevant Concentrations 

 

The concentrations employed for analysis of the aquation reactions here are over two 

orders of magnitude greater than concentrations used for in vitro biological 

evaluation (300 μM vs. 0.5–10 μM).  It has been demonstrated that osmium en 

complexes may undergo different aquation processes at physiologically-relevant 

concentrations than those typically employed in the laboratory.
94, 111

   For this 

reason, it was of interest to identify the species present in aqueous solution at 

concentrations close to the IC50 values obtained.  The 
1
H NMR spectrum of [16]Cl in 

10% D2O/90% H2O buffered with 10 mM sodium phosphate at pH 7.4 was also 

recorded at 200 and 50 μM.  Both spectra are identical.  The phenyl regions of the 
1
H 

NMR spectra obtained are shown in Fig. 6.3. 
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Figure 6.3:  Phenyl region of the 
1
H NMR spectra of [16]Cl at 200 (top) and 50 μM 

(bottom) in 10% D2O/90% H2O. 

 

The 
1
H NMR spectrum of a 10 μM aqueous solution of [17]Cl was recorded after 4 h 

at 37°C and is shown in Fig. 6.4.  The resulting 
1
H NMR spectrum between δH 7 and 

8 ppm is identical to that of a 300 μM solution of [17]Cl.  The cis-tach resonances 

were too weak to provide suitable comparison due to few protons in each chemical 

environment (1–2 protons) compared to the phenyl groups (4–8 protons).   

 

 

 

Figure 6.4:  Phenyl region of the 
1
H NMR spectra of [17]Cl in H2O at 300 (top) and 

10 μM (bottom) in H2O with 1.6% CD3OD and 10 mM sodium phosphate at pH 7.4. 
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For both compounds, there was no evidence of degradation of the aquated species at 

near physiological concentrations compared to those suitable for NMR analysis.  

Therefore, it is assumed that the solutions studied at 300 to 500 μM are 

representative of those in biological application in terms of speciation. 

 

6.2.4 Stability of Aquation Products with Time 

 

Both compounds were found to be relatively stable for the duration of a typical MTT 

assay experiment.  Over a two week period at 37°C, the 
1
H NMR spectrum of [16]Cl 

in 10% D2O/90% H2O did not change.  However, a sample of [17]Cl in H2O was 

observed to undergo a small change after 48 h.  A new set of phenyl signals 

corresponding to approximately 5% of the phenyl resonance intensity was observed 

in the 
1
H NMR spectrum alongside those of the chlorido and aqua/hydroxy 

complexes, shown in Fig. 6.5. 

 

 

 

Figure 6.5:  
1
H NMR of the phenyl region of [17]Cl in H2O after 1 (top) and 48 h 

(bottom) at 37°C. 
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The species could not be identified, although no liberated cis-tach or phosphane were 

observed in the NMR spectra, therefore it is believed that the ruthenium cis-tach 

diphosphane moiety has not degraded.  Unfortunately, it remains unknown if this 

species is innocent in the biological activity as a deactivation product or acts as the 

active species responsible for the antiproliferative nature of [17]Cl.   

 

6.2.5 Influence of Salts to Moderate Ionic Strength 

 

Attempts to match the ionic strength of aqueous solutions of [16]Cl and [17]Cl to 

physiologically-relevant conditions (~ 0.15 M) were met with difficulty.  Use of 

weakly coordinating anions, including perchlorate, hexafluorophosphate and triflate 

resulted in the formation of a precipitate when exposed to ruthenium cis-tach 

complexes.  Employment of other anions including nitrate and acetate resulted in 

significant coordination of the anion to the ruthenium complex.  Therefore, the only 

suitable salts for moderation of the ionic strength are chlorides; but these suppress 

the aquation reaction, hindering its study.  

 

6.2.6 Conclusions 

 

The dissolution of [16]Cl and [17]Cl resulted in the aquation of the ruthenium 

chlorido bond to give the aqua/hydroxy species [16a]
x+

 and [17a]
x+

.  The aquation of 

[16]
+
 was seen to complete to a greater extent in comparison to the more cytotoxic 

[17]
+
.  These species are stable at low concentrations and over 48 h, therefore these 

solutions are believed to be representative of those employed in the MTT assays for 

biological evaluation.  Both aqua/hydroxy complexes are capable of binding 

phosphate, but only [17a]
x+

 binds phosphate to a significant extent.  The identity of 

the ligand which occupies the coordination site provided by displacement of the 

chlorido ligand remains unclear and identification of the protonation of this group is 

of interest. 
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6.3 Determination of the pKa of the Aqua Ligand in [16a]
x+

 and [17a]
x+

.  

 

Characterisation of the aqua ligand is important in the understanding of the reactivity 

of [16]Cl and [17]Cl.  It has previously been observed with metal-based cytotoxic 

compounds that the protonation state of the aqua ligand may influence the reactivity 

of the complex. For example, the hydroxy derivative of RAen complexes, which is 

formed at high pH, was observed to have reduced reactivity compared to the aqua 

complex at physiological pH, mirroring the reactivity of cisplatin.
96, 97, 278

  Such an 

observation is expected for coordination of biological targets to the ruthenium-aqua 

coordination site, through the aqua ligand’s better ability to act as a leaving group in 

comparison to hydroxy.  Thus, the pKa of metal complexes form the basis of a 

structure-activity relationship study, and it has been hypothesised that resulting aqua 

complexes with higher pKa values exhibit greater potency in vitro.
157

  Therefore, it is 

of interest to ascertain the protonation state of ruthenium(II) cis-tach complexes 

under physiologically-relevant conditions, in an effort to fully characterise these 

complexes. 

 

6.3.1 UV/Vis pH Titrations 

 

Aqueous solutions of [16a](OTf)x and [17a](OTf)x were obtained by reaction of a 

500 μM solution of [16]Cl or [17]Cl with two equivalents of silver 

trifluoromethanesulfonate (triflate) while shielded from light.  Complete chloride 

metathesis was confirmed by 
31

P{
1
H} NMR spectroscopy (with addition of 1.6% 

CD3OD), where the only resonance observed was that of the aqua/hydroxy species.  

The UV/Visible spectrum was recorded at various intervals between pH 4/2 and 12 

at 298 K, with the assumption that the observed spectrum is the weighted average 

according to the populations of the protonated and deprotonated species.  The initial 

data was fitted to the Henderson-Hasselbalch equation which gave pKa values of 

10.80±0.06 and 10.42±0.15 for [16a]
x+

 and [17a]
x+

 respectively (Fig. 6.6).  It is 

proposed that these acid-dissociation constants correspond to the deprotonation of 

the aqua ligand in [16a]
x+

 and [17a]
x+

. 
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Figure 6.6:  UV/Vis pH titration for [16a]
x+

 (left) and [17a]
x+

 (right) from pH 2 to 

12.  The plot of absorbance at 329 ([16a]
x+

) or 298 nm ([17a]
x+

) vs. pH is given as 

well as the change of the UV/Vis spectrum between 250 and 400 nm during the 

experiment.  It is assumed that the spectrum is the weighted average according to the 

populations of the protonated and deprotonated species.  Calculated pKas: [16a]
x+

 = 

10.80±0.06); [17a]
x+

 = 10.42±0.15. 

 

The process was demonstrated as reversible as the original spectrum was obtained on 

returning the solution to pH 2.  Additionally, the ESI mass spectrum of this solution 

at pH 11 corresponds to the previously obtained spectra of the aqueous solutions, but 

with the hydroxy complex observed at 100% intensity.  During the experiments, 

chloride leeching occurred from the pH electrode, evident from the pH titration of 

[17a](OTf)x, where a non-level baseline was obtained.  Therefore, it was necessary 

to employ a technique able to distinguish between the chlorido and aqua/hydroxy 

complexes, such as NMR spectroscopy. 

 

6.3.2 1
H NMR pH Titrations 

  

It is common practice to perform 
1
H NMR pD titrations in D2O, with the assumption 

that the observed chemical shifts are weighted averages according to the populations 

of the protonated and deprotonated species.  The experimental pKa values obtained in 

D2O, pKa*, can then be converted to the corresponding pKa in H2O by the equation 

pKa = 0.929pKa* + 0.42, suggested by Krezel and Bal.
279

  Reliable data from NMR 

measurements are obtained in the range 2 ≤ pH ≤ 12 for compounds with 3 ≤ pKa ≤ 

11.
280

  From translation of the pKa data obtained from the UV/Vis pH titration, the 
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pKa* values would be expected to be 11.17 and 10.76 for [16a]
x+

 and [17a]
x+

 

respectively.  Thus, NMR pH titrations were performed in H2O with 1.6% CD3OD to 

provide a lock signal at 298 K.  The effect of < 0.5% HOD was not factored into 

calculations.  Methanol, with a pKa of 15.5,
281

 will not be deprotonated during the 

experiments and the small quantity of is assumed not to alter the solution properties 

significantly.  Additionally, these conditions replicate the other aquation experiments 

performed studying these two complexes in this chapter.  An ionic strength buffer is 

often employed in pKa determination.  However, increasing the ionic strength of the 

solution will result in the stabilisation of the doubly cationic aqua complex, thereby 

further increasing the pKa.  For this reason and the previously highlighted 

complications associated with weakly coordinating anions and these complexes, the 

ionic strength of the solutions was not fixed by the addition of salts. 

 

Preparation of aqueous solution of [16a](OTf)x and [17a](OTf)x was repeated as for 

the previous UV/Vis titration, but the resulting solutions were supplemented with 

1.6% CD3OD as a lock solvent after removal of silver chloride by filtration.  The pH 

of the solutions was varied from pH 2–12 and 
1
H NMR spectra recorded at various 

intervals.  Selected resonances were fitted to the Henderson-Hasselbalch equation 

with the assumption that the observed chemical shifts are weighted averages 

according to the populations of the protonated and deprotonated species (Fig. 6.7). 

 

The resulting pKa values from the 
1
H NMR titration of 10.85±0.02 and 10.54±0.02 

for [16a]
x+

 and [17a]
x+

 respectively are in accordance with the initial data obtained 

from UV/Vis spectroscopy.  Calculation of the ratio of protonated to deprotonated 

species at pH 7.4 is over 1000:1, therefore both complexes can be considered to exist 

exclusively as the aqua species, [16a]
2+

 and [17a]
2+

.  For these complexes the 

hydrolysis and subsequent deactivation of the aqua species is suppressed under 

physiological conditions, potentially reducing deactivation.   
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Figure 6.7:  
1
H NMR pH titration of [16a]

x+
 and [17a]

x+
 from pH 2 to 12.  One of 

three selected resonances is shown for [16a]
x+

 (left, NH2, pKa 10.85±0.01) and 

[17a]
x+

 (right, CH, pKa 10.53±0.01).  The inset shows the shift of the resonance in 

NMR spectrum during the experiment. 

 

The acid-dissociation constants of these complexes are higher than those commonly 

obtained for ruthenium(II) η
6
-arene complexes, including [Ru(OH2)(η

6
-bip)(en)]

2+
 

(7.71±0.01) [Ru(OH2)(η
6
-tha)(en)]

2+
 (8.01±0.03), and [RuCl(OH2)(η

6
-

C6H6)(PTA)]
2+

 (9.2).
97, 282

  The highest pKa values are typically obtained for O,O- 

chelates, such as [Ru(OH2)(η
6
-p-cym)(mal)]

+
 (9.23±0.02) and [Ru(OH2)(η

6
-p-

cym)(acac)]
+
 (9.41±0.01).

111, 275
 

 

6.3.3 Conclusions 

 

The acid-dissociation constants of the aqua complexes [16a]
2+

 and [17a]
2+

 were 

determined by 
1
H NMR pH titration; the pKa of both complexes were 

physiologically inaccessible by over 3 pH units.  Therefore, aquation affords 

exclusively the aqua adduct.  It is hypothesised that formation of the aqua complex is 

important in the activation of the chlorido complexes, allowing reactivity with 

biomolecules.  Deprotonation to give the hydroxo species is not expected to occur 

under physiological conditions, and therefore the potential deactivation of the aqua 

species by this mechanism is not considered. 

 

  

* 

* 
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6.4 Kinetics of Aquation 

 

The importance of the rate at which the aquation process occurs is somewhat mixed.  

The RAen complexes [RuCl(η
6
-arene)(en)]PF6 aquate relatively rapidly (arene = bip, 

t1/2 = 3 min),
97

 but the Os analogues aquate much slower (arene = bip, t1/2 = 6.4 h),
94

 

yet both display similar in vitro cytotoxicities, with the biphenyl complexes 

equipotent to carboplatin.
78, 85

  Furthermore, the aquation-resistant azopyridine 

complexes [RuI(η
6
-arene)(Azpy)] are also highly active.

142
  The kinetics of aquation 

and anation of ruthenium cis-tach complexes were investigated with the aim of 

proving further insight into structure-activity relationships of the diphosphane series 

of complexes.
 

 

6.4.1 Kinetics of Aquation and Anation of [16]Cl 

 

The rate of aqua adduct [16a]
+
 formation was studied by UV/Visible spectroscopy, 

with the extent of the reaction at completion determined by 
1
H or 

31
P{

1
H} NMR 

spectroscopy.  A selected region of the time-evolution difference spectrum of the 

aquation of a 300 μM solution of [16]Cl at pH 7.4 (10 mM sodium phosphate buffer)  

is provided in Fig. 6.8.  The phosphate acted as both pH and ionic strength buffer (I 

≈ 25 mM).  The ionic strength was unable to be easily elevated to physiologically-

relevant conditions due to coordination of the anion or formation of a precipitate 

(Section 6.2). The pKa of the complex (10.85±0.02) indicates that only the aqua 

species is obtained as hydrolysis is suppressed at pH 7.4.  The presence of isosbestic 

points at 325, 335 and 368 nm suggests the reaction involves a single step 

mechanism in the formation of the aqua derivative from the chlorido complexes.  

The small quantity of ruthenium – phosphate complex formed in the reaction was not 

taken into account in analysis. 
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Figure 6.8:  Time-evolution of UV/Vis difference spectra for the aquation of 300 

μM [16]Cl in aqueous solution buffered at pH 7.4 (10 mM sodium phosphate) with 

1.6% MeOH at 298 K, I ≈ 25 mM.  Plots are given for minutes 1 to 9. ΔA = At − A0, 

where At = absorbance at time t and A0 = A at t = 22 seconds. 

 

The (ΔA)max for [16]Cl occurred at 310 nm and was used in the kinetic study of this 

complex.  The change of absorbance at this wavelength was monitored at 298 K as 

shown in Fig. 6.9. 

 

 

 

Figure 6.9:  Time-dependence of the absorbance at 310 nm in the aquation of a 

[16]Cl (300 μM) aqueous solution, buffered at pH 7.4 (10 mM sodium phosphate) 

with 1.6% MeOH at 298 K. I ≈ 25 mM. 
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The time dependence of the absorbance at 310 nm followed first order kinetics and 

indicated that the reaction had reached equilibrium within 15 minutes at 298 K.  The 

equilibrium constant K was calculated from the ratio of integrations of the ruthenium 

cis-tach species in the 
1
H NMR spectrum and the expected chloride concentration for 

the given distribution of complexes.  The rate of aquation, k, was determined using 

DynaFit kinetic fit analysis and the rate of anation, k’, was calculated using Eqn. 6.1.  

The half life, t1/2 for a first order reaction was determined using Eqn. 6.2. 

 

  
 

  
    Equation 6.1 

     
   

 
    Equation 6.2 

 

The range of temperatures was extended to include 288, 293, 303 and 310 K, for 

which the rate and equilibrium constants are provided in Table 6.2.   

 

T (K) k (10
−3

 s
−1

) t½ (s) k' (M
−1 

s
−1

) K (10
−3

 M)
 

288 2.09±0.02 331±3 0.128±0.002 16.4±0.1 

293 3.60±0.08 192±5 0.232±0.008 15.6±0.4 

298 6.55±0.06 106±1
 

0.430±0.005 15.3±0.1 

303 10.7±0.2 65.1±1.4 0.718±0.021 14.8±0.3 

310 21.0±0.7 32.9±1.1 1.51±0.07 14.0±0.5 

 

Table 6.2:  Rate and equilibrium constants for the aquation of [16]Cl at various 

temperatures.  pH 7.4, I ≈ 25 mM. 

 

The rates of reaction at 298 and 310 K are of particular interest.  The rate of reaction 

at 310 K correlates to a half life of only 33 seconds under physiological conditions.  

Therefore, the rate of aquation is not a significant factor in the in vitro activity of the 

complex as aquation occurs extremely rapidly in comparison to cell proliferation 

(typically 24 h).  The kinetic parameters at 298 K allow for meaningful comparison 

of the kinetics of aquation with [RuCl(η
6
-arene)(en)]

+
 due to similar ionic strengths 

(25 mM for [16]Cl and 15 mM for [RuCl(η
6
-arene)(en)]

+
).  The rate of aquation of 

the cis-tach complex is over five times faster than the η
6
-biphenyl complex 
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(1.28±0.01 x 10
-3 

s
−1

) and over twice as fast as the η
6
-tha complex (2.36±0.02 x 

10
−3

), with half lives of five minutes and greater.
97

  The aquation rate constant of the 

η
6
-arene complexes was not observed to change with ionic strength.  The equilibrium 

constant for [16]Cl is up to twice that of the η
6
-arene complexes.  Analysis of the 

biological implications of the equilibrium constants for both [16]
+
 and [17]

+
 are 

discussed in Section 6.5.  The difference in k between the cis-tach and RAen 

complexes mirrors the Ru–Cl bond lengths. The Ru(1)–Cl(1) bond length of [16]Cl 

(2.4431(14) Å) is significantly longer than that of the RAen complexes (2.405(6)–

2.408(15) Å).  This is proposed as a result of the trans-influence of the strong cis-

tach amine donor atoms, thus weakening the bond and increasing the kinetics of 

aquation. 

 

The reaction rates for aquation and anation allowed the determination of the 

Arrhenius activation energy (Ea), activation enthalpy (ΔH
‡
) and activation entropy 

(ΔS
‡
) using rearrangements of the Arrhenius (Eqn. 6.3) and Eyring (Eqn. 6.4) 

equations.   

 

   
 

 
  

    

  
    

  

 
  

   

 
  Equation 6.3 

 

      
   

  
          Equation 6.4 

 

A plot of ln(k/T) versus 1/T gives a straight line with slope of −(ΔH
‡
/R) and 

intercept of ln(kB/h)+(ΔS
‡
/R), and plot of ln(k) versus 1/T gives a straight line with 

gradient −(Ea/R).  All plots for the aquation and anation reactions are given in Fig. 

6.10.  Data analysis was performed using OriginPro8. 
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Figure 6.10:  A and B:  Arrhenius plots (Eqn. 6.3) for the aquation and anation 

reactions of [16]Cl respectively; C and D: Eyring plots (Eqn. 6.4) for the aquation 

and anation reactions of [16]Cl respectively. 

 

 Ea (kJ mol
−1

) ΔH
‡
 (kJ mol

−1
) ΔS

‡
 (J K

−1
 mol

−1
) 

[16]
+ 79.8±0.7 77.3±0.7 -27.6±4.8 

[16a]
2+ 84.9±1.0 82.4±1.0 24.4±3.4 

 

Table 6.3:  Arrhenius activation energy (Ea), activation enthalpy (ΔH
‡
) and 

activation entropy (ΔS
‡
) for the aquation and anation of [16]

+
 and [16a]

2+
.  pH 7.4, I 

≈ 25 mM. 

 

  

A B 

C D 
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The activation energy and enthalpy of activation for the aquation reaction are similar 

to those reported for RAen complexes.
97

  The difference arises with a smaller 

negative entropy of activation, ΔS
‡
.  This could suggest some association (IA) in the 

substitution mechanism, which is in contrast to the hypothesised ID mechanism, but 

the small value of ΔS
‡
 possibly eliminates a true associative or dissociative type 

mechanism.  The anation reaction has a small positive value of ΔS
‡
 and may 

correspond to a degree of dissociation (ID) in the mechanism.  However, due to the 

small ΔS
‡
 values, little can be concluded as to the type of concerted mechanism 

responsible for either ligand exchange processes.  This may be accounted for by the 

effects of solvent reordering or changes to the conformation of the complex during 

the activation step. 

 

6.4.2 Kinetics of Aquation and Anation of [17]Cl 

 

To complement the kinetic analysis of [16]Cl, the corresponding aquation reaction of 

[17]Cl was monitored by UV/Visible spectroscopy at 298 K under identical 

conditions.  The greatest absorbance change for [17]Cl occurred at 300 nm and was 

used in the kinetic study of this complex.  The change of absorbance at this 

wavelength was monitored at 298 K as shown in Fig. 6.11. 

 

 

 

Figure 6.11:  Time-dependence of the absorbance at 300 nm for the aquation of 300 

μM of [17]Cl in aqueous solution buffered at pH 7.4 (10 mM sodium phosphate) 

with 1.6% MeOH at 298 K, I ≈ 25 mM. 
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The end-point of the reaction was determined by 
1
H and 

31
P{

1
H} NMR 

spectroscopy.  Analysis by the same method as employed for [16]Cl gave parameters 

of k = (63.9±6.0) x 10
−3

 s
−1

, k’ = 32.3±7.4 M
−1

 s
−1

 and K = (1.98±0.49) x 10
−3

 M.  

The rate of aquation for [17]Cl is an order of magnitude faster than [16]Cl.  

However, the rate of the reverse reaction, forming [17]
+
 is comparatively faster, by 

almost two orders of magnitude greater than for [16]
+
.  The difference in reaction 

rate does not correlate with the Ru–Cl bond lengths.  The bond lengths in [16]Cl 

(2.4431(14) Å)  and [17]Cl (2.4404(4) Å) are identical, within error.  Therefore the 

reactions are most likely dictated by the thermodynamic stability of the aqua 

products.  Although full analysis was not possible, it is evident that the equilibria for 

the aquation/anation reaction of both [16]Cl and [17]Cl are almost an order of 

magnitude in difference. 

 

The half life of the reaction was calculated as t½ = 10.8±1.0 s and the reaction 

reached equilibrium within 180 seconds.  As the first recorded measurement was 

only possible from approximately 20 seconds to allow turbidity to subside, two half 

lives have already occurred before the first measurement was obtained.  The reaction 

at 310 K was observed to have reached completion within 30 s; therefore kinetic 

analysis was not possible.  Furthermore, the small measured change in Abs (ΔA = 

0.01–0.02) throughout the reaction increases the error of the calculated rate 

constants, giving parameters with little certainty.  A small amount of bubble 

formation on the inside of the cell also resulted in a change of Abs with time to a 

level comparable to ΔA (Fig. 6.11).  As a result, full kinetic analysis was not 

performed. 

 

6.4.3 Discussion and Conclusions 

 

The rates for the aquation and anation reactions of the ruthenium(II) cis-tach 

complex [16]Cl were determined and activation parameters calculated.  The rate of 

aquation was found to be up to five times faster than the established RAen 

complexes.  Initial investigation into the aquation of [17]Cl found that it has a rate of 

aquation an order of magnitude greater than [16]Cl, and almost 50 times that of 

[RuCl(η
6
-bip)(en)]

+
.  However, the quick rate of aquation at 310 K prevented 

determination of the reaction rate, as equilibrium was reached shortly after 
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commencing measurement.  The rates of aquation for both complexes are unlikely to 

provide further evidence regarding the development of structure-activity 

relationships, as both reactions occur rapidly, reaching completion within minutes. 

 

Although the conditions employed were not directly physiologically relevant, as the 

ionic strength within a cell is higher than the experimental conditions used, it is 

assumed that both the aquation and anation reaction still occur readily at these ionic 

strengths.  The kinetic studies of Sadler and co-workers show that for the RAen 

complexes only the rate of the reverse reaction changes with ionic strength and 

therefore the equilibrium.
97

  This correlates with an associative mechanism for the 

aquation reactions for both the cis-tach and RAen complexes. 

 

It is proposed that the in vitro activities of these complexes are more dependent on 

the ability of the complexes to bind potential biological targets and the equilibrium 

between the chlorido and aquated species, dictating the proportion of activated 

species within the cell.  The equilibrium constants obtained from the kinetic analysis 

for the two species are different by almost an order of magnitude, which is expected 

to be reflected in the proportions of chlorido and aqua species in a given 

environment.  The determination of the equilibrium mixture at physiologically-

relevant conditions forms the basis of the proceeding section. 

 

6.5 Equilibrium of Aquation/Anation 

 

As shown in the kinetic analysis, the rate of aquation is not believed to be an 

important factor for the in vitro activity of the ruthenium(II) cis-tach complexes as 

both [16]Cl and [17]Cl aquate rapidly at 310 K, reaching equilibrium within 

minutes.  Therefore, it is of interest to understand the extent to which these 

complexes aquate within a cell or nucleus to predict the composition of species 

present in a given environment.  Although equilibrium constants were calculated in 

the kinetic analyses, these were not obtained under physiologically-relevant 

conditions due to the difference in ionic strength of the solution; a relevant ionic 

strength, I, is of the order of 10
−1

 M. 
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Rearrangement of the equilibrium Eqn. 6.5 permits the calculation of K by variation 

of chloride concentration and the determination of the concentrations of the 

ruthenium species present in the solution.   

 

For a given I: 

          

      
 

     

 
    Equation 6.5 

 

However, I cannot be maintained constant throughout the chloride concentration 

range employed due to the difficulties discussed in Section 6.2 of either coordination 

of the anion or precipitation.  Therefore, a plot of [chloro]/[aqua] vs. [Cl
−
] will not 

result in a linear correlation and Eqn. 6.1 cannot be used to calculate K.  Estimation 

of K is still possible for a given condition from the ratio of species for the 

corresponding point on the fitted curve.  The plot will not only improve the 

confidence of the calculated value, but also reveal the variation of K between 

physiologically-relevant conditions and those employed for the kinetic studies.    

 

6.5.1 Results 

 

Aqueous solutions of the appropriate complex (500 μM) and sodium chloride (0 to 

100 mM) at pH 7.4 (10 mM sodium phosphate) with 1.6% CD3OD were heated at 

37°C for 2 h before the 
1
H ([16]Cl) or 

1
H and 

31
P{

1
H} ([17]Cl) NMR spectra were 

recorded at 37°C.  Deprotonation of the aqua ligand is not expected to occur at pH 

7.4 and therefore to not affect any speciation observed.  Relative integrations of the 

chlorido and aqua species were calculated for each chloride concentration, the plots 

of which are given in Fig. 6.12.  The ruthenium-phosphate adduct, although present, 

was not accounted for in the analysis.  The chloride concentration was calculated 

accounting for the chloride originating from the ruthenium complexes. 
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Figure 6.12:  Plots of the fraction of chlorido/aquated species and [Cl
−
] for [16]

+
  

(left) and [17]
+
 (right) vs. chloride concentration at pH 7.4 (10 mM sodium 

phosphate) and 37°C.  Ix ≈ [Cl
−
]x +  25 mM.  Curves were fitted using the equation y 

= a(1−b
x
) in OriginPro 8. [16]

+
 a = 5.34±0.29, b = 0.990±0.001; [17]

+
 a = 18.9±0.3, 

b = 0.975±0.001. 

 

For both complexes, K increases with ionic strength, evident from the curve trending 

downwards in the 1/K relationship.  The equilibrium constant for the aquation-

anation of [17]Cl undergoes a greater increase with ionic strength than [16]Cl.  The 

variation with I is as expected, as the higher ionic strengths promotes the formation 

of the doubly charged aqua species as opposed to the mono-cationic chlorido 

complex.  This is resultant from either an enhanced rate of aquation or a reduction in 

the rate of anation.  This observation supports the assumption that the kinetics of 

aquation at higher ionic strengths is at least comparable to those observed in the 

kinetic analysis (Ix ≈ 25 mM).  It is proposed that the anation reaction is unfavoured 

at higher ionic strengths, as observed with the complexes [RuCl(η
6
-arene)(en)]

+
, 

providing the largest contribution to the variation in K.
97

 Therefore the rate of 

aquation and anation is thought not to be of significance to the activity of the 

complexes, but to the equilibrium between the chlorido and aqua complexes. 

 

6.5.2 Calculated Distribution of Species in Biological Environments 

 

The equilibrium constant K was calculated from the fitted curve for the aquation of 

each complex at an ionic strength of approximately 130 mM, corresponding to 104 

mM sodium chloride and 10 mM sodium phosphate at pH 7.4.  The values are 

[16]
+ 

[17]
+
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(30.6±1.7) x 10
−3

 and (5.90±0.08) x 10
-3

 M for complexes [16]Cl and [17]Cl 

respectively.  The two complexes are evidently very different to the degree at which 

aquation occurs within a given environment.  In order to illustrate the physiological 

relevance of the equilibrium constant, the predicted distribution of chlorido and aqua 

species are given in Table 6.4 for the blood, cytoplasm and cell nucleus.  These are 

calculated based on the chloride concentrations reported for these environments.
97, 247 

 

   Predicted % Aqua
a
 (Ru–OH2) at pH 7.4 

 K (10
−3

 M)
 

pKa
b 

Blood
c 

Cytoplasm
d 

Nucleus
e 

[16]Cl
 

30.6±1.7
f
 10.85±0.02 22.8±1.2 48.6±3.2 88.5±4.9 

[17]Cl 5.90±0.08
f 

10.54±0.02 5.4±0.1 20.7±0.3 59.6±0.8 

RM175
g
 
97

 9.1±0.9
h 

7.71±0.01 5.2
i 

18.6
i
 45.2

i
 

HC11
j97

 11.7±0.7
h 

8.01±0.03 8.8
i
 29.7

i
 65.2

i
 

RAPTA-C
118 

3.8±0.2
k 

9.2
282i,l

 
m
 

m
 

m
 

[PtCl2(en)]
283

 
n 

6.53
i
 2.7

i m 
42

i 

 

Table 6.4:  Equilibrium constants and proportion of ruthenium species aquated 

under various physiologically-relevant conditions.  Values of K for [16]Cl and 

[17]Cl were calculated for a pH 7.4 10 mM sodium phosphate solution, I = 130 mM 

at 37°C.  Equilibrium constant used was calculated for 104 mM NaCl.  ± values are 

one standard deviation.  a) predicted, based on K, b) T = 298 K, values given for first 

aqua deprotonation only (if applicable), c) 104 mM, d) 22.7 mM, e) 4 mM NaCl,  f) 

T = 310 K, I = 130 mM, g) [RuCl(η
6
-bip)(en)]PF6, h) T = 310 K, I = 100 mM, i) No 

standard deviations reported; remainder of species made up of both chlorido and 

hydroxy species, j) [RuCl(η
6
-tha)(en)]PF6, k) T = 298 K, I = 150 mM, l) Calculated 

pKa for [RuCl(OH2)(η
6
-C6H6)(PTA)]

+
, m) no speciation reported, n) 296 K, I = 200 

mM. 

 

It is believed the activity of cisplatin and the ruthenium(II) η
6
-arene complexes is 

resultant from the formation of the aqua species within the cell.  Formation of 

hydroxo-complexes causes inactivation due to the poor lability of the hydroxide 

compared to the aqua ligand.
21, 96, 278

  Therefore, only the percentage of aqua 
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complex provides an indication of the active species, which is dependent upon both 

K and pKa. 

 

The equilibrium constants for the two cis-tach complexes are remarkably different 

from each other.  The equilibrium constant for the aquation of [16]Cl is significantly 

greater than [17]Cl and results in a considerable difference in speciation.  The two 

equilibrium constants encompass those of the RAen complexes.  Unfortunately, the 

equilibrium constant for the aquation of [16]Cl is not desirable, as it results in the 

formation of the aqua species in all environments, leading to a greater possibility for 

deactivation reactions to occur.  For example, cisplatin is deactivated by glutathione 

binding prior to reaching the nucleus;
18

 a similar process may account for the poor 

activity of this complex compared to [17]Cl. 

 

The combination of both a lower equilibrium constant of aquation and pKa of the 

aqua species has resulted in a favourable proportion of [17a]
2+

 formed under each 

environment.  The equilibrium constant is not too low that aquation does not occur to 

a significant extent, plus deprotonation to form the potentially inactive hydroxo 

species is inhibited by the high pKa.  This might result in a low proportion of aqua 

species in the blood, but a high percentage in the nucleus in comparison to the RAen 

complexes.  Therefore, the proportion of aqua species across the physiologically-

relevant chloride concentrations is more greatly exaggerated than the other 

complexes presented.  This gives an ideal balance between protection of the complex 

outside the cell and a relative higher degree of activation inside the cell.  As 

demonstrated by the kinetic study, the rate at which the complex is aquated once in 

the cell is very rapid and is not a factor in the speciation. 

 

6.5.3 Conclusions 

 

Both [16]Cl and [17]Cl undergo rapid aquation in water, which is suppressed by the 

addition of chloride.  The formation of the aqua species [16a]
2+

 is not suppressed by 

chloride concentrations comparable to the blood to the same extent as for established 

cytotoxic compounds, with > 20% [16a]
2+

 present.  Furthermore, a much higher 

proportion of [16a]
+
 is also present at concentrations relevant to the cell and nucleus.  

In contrast, [17]Cl aquates to a lesser extent under all conditions, despite kinetics of 
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aquation an order of magnitude faster.  This results in a low proportion of the aqua 

complex in conditions similar to blood and the cytoplasm.  The lower equilibrium 

constant combined with the high pKa of the cis-tach ruthenium(II) complexes results 

in a greater proportion of the aquated species in the nucleus than the promising RAen 

complexes.  This complex is predicted to possess an effective balance between the 

protection from deactivation while in the blood and to an extent, the cytoplasm, 

whilst allowing abundant activation in the nucleus. 

 

6.6 Interactions of [16]Cl and [17]Cl with Nucleosides 

 

The cis-tach ligand for ruthenium(II) anti-cancer complexes was chosen to replicate 

the DNA-binding characteristics of the existing compounds, [RuCl(η
6
-arene)(en)]

+
.  

These complexes form strong covalent adducts with DNA, with a preference to the 

N7 of guanine.
90, 96, 103

  This is further strengthened by hydrogen-bonding 

interactions between the amine groups of the en ligand and the O6 of an adjacent 

guanine residue.  Therefore, the interactions with ruthenium(II) cis-tach complexes 

with DNA, particularly the guanine base, were of interest. 

 

9-Ethyl guanine (EtG, Fig. 6.13) and guanosine monophosphate (GMP, Fig. 6.13) 

were selected as small molecular models of DNA for NMR spectroscopy 

experiments to determine the capability for the cis-tach complexes to react with 

purine bases.  EtG is advantageous for use in NMR spectroscopy experiments over 

guanine and guanosine, as it displays good solubility in neutral solutions and lacks a 

chiral centre, reducing the complexity of resulting resonances.  It has been 

commonly used with ruthenium compounds in the investigation of metal-DNA 

interactions via the N7 of guanine.
90, 108, 157, 284

  In order to also provide a model 

compound closer to the molecular structure of DNA, GMP was employed.  It was of 

interest to use a model with the phosphate incorporated due to the potential 

interactions of this group with the complexes, either by coordination or hydrogen-

bond interactions. 
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EtG GMP 

 

Figure 6.13:  Structure and numbering scheme of 9-ethyl guanine (EtG, left) and 

Guanosine monophosphate (GMP, right). 

 

6.6.1 Interaction of [16]Cl with DNA Model Complexes 

 

In order to evaluate the potential for [16]Cl to form covalent bonds to the N7 of a 

guanine residue, the complex was heated at 310 K for 24 h with one equivalent of 

EtG or GMP (1 mM) in H2O.  The solutions were characterised by 
1
H and 

31
P{

1
H} 

NMR spectroscopy, supplemented with 1.6% CD3OD as a lock solvent. 

 

The reaction with EtG resulted in a new guanine containing species in the 
1
H NMR 

spectrum, evident from a new H8 resonance (ΔδH(H8) = −1.93 ppm), shown in Fig. 

6.14.  Approximately 25% of the aquated species [16a]
+
 reacted with EtG under the 

conditions employed.  The proposed coordination site of the guanine residue is the 

N7 position, resulting in [Ru(EtG-N
7
)(dppe)(cis-tach)]

2+
 [16c]

2+
.  A similar species is 

also observed in the reaction of [16]Cl with guanosine monophosphate with ΔδH(H8) 

= −1.87 ppm for [Ru(GMP-N
7
)(dppe)(cis-tach)] [16d], but to a lesser extent (~15%). 
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Figure 6.14:  Guanosine H8 and phenyl region of the 
1
H NMR spectra for [16]Cl (1 

mM, bottom) and the reaction of [16]Cl (1 mM) with EtG (1 mM , top) after 24 h at 

310 K. 

 

Displacement of the chorido ligand by a guanine derivative was demonstrated by the 

reaction of [16]Cl (1 mM) with guanosine (Guo, 2 eq.) after incubation at 37°C for 

24 h in water. The solution was diluted to 0.1 mM with 50% methanol in water and 

the ESI mass spectrum recorded.  An ion with mass and isotope pattern 

corresponding to [M−Cl+Guo−H]
+
 (30%) and [M−Cl+Guo]

2+
 (30%) was observed at 

m/z 911.1 and 456.2 respectively along with chlorido (100%) and hydroxy (30%) 

species. 

 

For both complexes, resonances corresponding to cis-tach with Cs symmetry are 

present in the 
1
H NMR spectra (Fig. 6.15).  However, in the case of [16d]

x+
, protons 

localised near the GMP ligand reflect its chiral nature with slight inequivalence of 

atoms related by symmetry. 

 

[16]Cl 

[16]Cl + EtG 

H8(EtG) 

H8([16c]
2+

) 

PPh2([16c]
2+

) 

// 

// 

PPh2([16]
2+

) 

PPh2([16a]
2+

) 
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Figure 6.15:  cis-tach CH2 region of the 
1
H NMR spectra for [16]Cl (1 mM, bottom) 

and the reaction of [16]Cl (1 mM) with EtG (1 mM , middle) and GMP (1 mM, top) 

after 24 h at 310 K. 

 

The 
31

P{
1
H} NMR spectra mirror the 

1
H NMR experiments with signals 

corresponding to [16]
+
 and [16a]

2+
 present in both reactions (δP 76.2 and 74.6 ppm 

respectively) as well as the guanine adducts.  The model guanine adduct complexes 

are both upfield to the aqua species at δP 72.9 for [16c]
2+

 and 72.6 and 71.5 ppm for 

[16d], where the two phosphorus nuclei are also inequivalent, as seen with the cis-

tach protons.  The 
2
JPP coupling was unable to be observed due to weak signals. 

 

 

 

  

H10([16c]
2+

) 

H10(EtG) 

CH2([16c]
2+

) 
CH2([16c]

2+
) 

CH2([16]
+
) 

CH2([16]
+
) 

CH2([16d]
x+

) CH2([16d]
x+

) 

NH2([16]
+
) 

[16]Cl 

[16]Cl + EtG 

[16]Cl + GMP 
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Figure 6.16:  Top: Geometry optimised structure of [Ru(EtG-N
7
)(dppe)(cis-tach)]

2+
, 

obtained by DFT calculations.  The O6 of guanine is rotated to participate in 

hydrogen-bond interactions with two cis-tach amine groups.  Bottom: Geometry 

optimised structure of [Ru(EtG-O
6
)(dppe)(cis-tach)]

2+
, obtained by DFT 

calculations.  The N7 is involved in a hydrogen-bond with cis-tach. 
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The large upfield shift of the H8 proton is in contrast to the observations of Sadler 

and co-workers, where only a comparatively small downfield shift (+0.3 < ΔδH(H8) 

< +1.0 ppm) was seen in the 
1
H NMR of the complexes [Ru(η

6
-arene)(en)(EtG-

N7)]
2+

.
90

  The chemical shift for the RAen complexes is as expected, where 

coordination results in a down-field shift due to electron donation from the purine 

ring system to the metal centre.  It was initially hypothesised that the large difference 

in chemical shift was due to the H8 proton being rotated towards a phenyl ring from 

the geometrical constraints of a hydrogen-bonding interaction between the O6 and 

cis-tach. 

 

In order to probe the 3D-structure of [16c]
2+

, DFT calculations on complexes 

[Ru(EtG-N
7
)(dppe)(cis-tach)]

2+
 and [Ru(EtG-O

6
)(dppe)(cis-tach)]

2+
 were performed 

at the (RI-)PBE0/def2-TZVPP//(RI-)BP86/SV(P)
299

 level using TURBOMOLE 

5.10
299

 by Dr Jason Lynam (unpublished work, University of York, 2012).  The 

geometry optimised structures are given in Fig. 6.16. 

 

The energies of the two EtG-N
7
 complexes were compared, with the N7 coordination 

mode 14 (enthalpy) and 12 (free energy at 298 K) kJmol
-1

 lower in energy than the 

O6 complex.  A structure was not able to be obtained for an N3-bound EtG complex.  

Although calculations were performed for the gaseous state, they agree with the 

postulated coordination mode of the EtG ligand in [16c]
2+

 in solution.  The EtG-N7 

ligand is rotated perpendicular to the cis-tach ligand to participate in hydrogen-

bonding interactions with two amine groups of cis-tach and does not direct the H8 

towards an adjacent phenyl ring.  Therefore, the upfield shift of the H8 resonance 

may be due to electron back-donation from the metal to the EtG purine ring. 

 

6.6.2 Interaction of [17]Cl with DNA Model Complexes 

 

In contrast to the case of [16]Cl, the reaction of [17]Cl with EtG failed to provide an 

observable product in the 
1
H NMR spectrum after 24 h at 310 K.  Therefore, it is  

plausible that coordination of [17]
+
 the N7 of guanine is not involved in the 

mechanism by which the complex inhibits proliferation.  However, reaction of 

[17]Cl with GMP resulted in a small quantity of new species after 24 h, observed as 

a new guanine H8 resonance in the 
1
H NMR spectrum (Fig. 6.17).   
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Figure 6.17:  Guanine H8 and phenyl region of the 
1
H NMR spectra for [17]Cl (1 

mM, bottom) and the reaction of [17]Cl (1 mM) with EtG (1 mM , middle) and GMP 

(1 mM , top) after 24 h at 310 K. 

 

The small upfield alteration of the chemical shift of H8 (ΔδH(H8) = −0.33 ppm) in 

the proposed product [Ru(GMP)(dppp)(cis-tach)]
x+

 [17d],  would suggest a minor 

alteration in the environment of the H8 proton upon coordination.  However, the 

identity of the coordination mode of the 5’-GMP cannot be determined.  A PO4-O 

coordination modes is plausible, given that coordination was only achieved with 

inclusion of the phosphate-ribose group and it was observed in the aquation studies 

(Section 6.2.2) that phosphate is capable of coordinating to [17]Cl.  However, the 

possibility of an N7- coordination must not be overlooked, given a similar—but to a 

lesser extent—up-field shift of the H8 resonance on coordination.  Again, this may 

result from close proximity to the phenyl rings of the diphosphane ligands, but with 

greater flexibility in the chelate ring allowing reduced geometrical constraint.  The 

inclusion of the charged group may also assist in coordination by salt formation. 

 

PPh2([17a]
2+

) 
PPh2([17]

+
) 

 

[17]Cl 

[17]Cl + EtG 

[17]Cl + GMP 
H8(EtG) 

H8(5’-GMP) 

H8([17d]) 

PPh2([17d]) 
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Figure 6.18:  GEMSA of [16]Cl (top) and [17]Cl (bottom) with pUC18 plasmid 

DNA after 20 h at 37°C.  Lanes: Molecular marker (1); pUC18 (2 and 10); pUC18 + 

[17]Cl (% bpe), 2.5 (3), 10 (4), 25 (5), 50 (6), 100 (7); pUC18 + 10% bpe cisplatin 

(8); pUC18 linearised by single cut with SmaI (9). bpe = base pair equivalents. 

  

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 
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After 48 h, the reaction mixture was observed to contain multiple products in the 

31
P{

1
H} NMR spectrum, possibly from degradation of the aqua species, as discussed 

in Section 6.2.4.  Despite an interaction, it is not of the magnitude one would expect 

to result in the inhibition of cell proliferation by coordination of the complex with 

DNA.  Based on integrations from the 
1
H NMR spectrum, only 10% of the aqua 

complex has reacted with GMP.  Therefore, it is not expected that [17]Cl will 

significantly modify the structure of DNA. 

 

6.6.3 Interaction of [16]Cl and [17]Cl with Plasmid DNA  

 

The interaction of [16]Cl and [17]Cl with plasmid DNA was investigated with gel 

electrophoretic mobility shift assays (GEMSA), where the mobility of the open coil 

(OC) and super-coiled (CCC) form of plasmid DNA is altered by modifications of 

the tertiary structure.  GEMSA experiments were performed with pUC18 plasmid 

DNA with varying concentrations of [16]Cl and [17]Cl and the results are shown in 

Fig. 6.18. 

 

Under the conditions employed, [16]Cl alters the mobility of the OC or CCC forms 

of pUC18 DNA to a limited extent.  Only at, and above, 25% bpe (base pair 

equivalents), a small shift is observed which increases with concentration of the 

complex.  These correlate with the results from the NMR experiments, where a small 

degree of binding to GMP was observed.  At the same concentration (10% bpe), 

[16]Cl does not alter the tertiary structure of DNA to the extent of which cisplatin 

does, where the platinated OC and CCC forms have the same mobility; this is in 

contrast to only a minor change to the mobility of the two plasmid forms with 

[16]Cl.   

 

Across the entire concentration range used, [17]Cl does not cause any effect either in 

the mobility of the OC or CCC plasmid forms under the conditions employed.  As 

with [16]Cl, this observation mirrors those from the NMR experiments with 9-ethyl 

guanine and guanosine monophosphate, where little interaction was observed. 

 

From the GEMSA experiments with [16]Cl and [17]Cl, it is unclear as to whether 

DNA is involved in the mechanism by which these complexes inhibit proliferation.  
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However, it is evident that the DNA interactions of these compounds are different to 

cisplatin.  Therefore, is it hypothesised that these complexes inhibit cell growth by 

an alternative mechanism, which most likely does not involve DNA. 

 

6.6.4 Conclusions 

 

The ruthenium(II) cis-tach complexes [16]Cl and [17]Cl have exhibited limited 

reactivity towards the DNA model compounds 9-ethyl guanine and 5’-guanosine 

monophosphate.  A greater degree of coordination of EtG is observed with [16]Cl, 

with [17]Cl showing no reactivity on the mM level after 24 h at 37°C.  This was 

mirrored in the gel electrophoresis assays with pUC18 DNA, where [17]Cl—with 

the greatest in vitro activity—did not alter the mobility of either the OC or CCC 

forms of the plasmid under the conditions employed.  It is evident that these 

complexes have different reactivity with DNA than cisplatin. 

 

Furthermore, these findings are in contrast to those of the complex [RuCl(p-

cymene)(dppm)]PF6, which was demonstrated to unwind supercoiled DNA,
267

 and 

the [RuCp(dppm)(L)]
+
 (L = 4-methyl pyridine) which is hypothesised to intercalate 

into DNA.
250

  The biological activity of these cis-tach and organometallic half-

sandwich complexes cannot be attributed to the presence of a diphosphane ligand 

alone, as it is clear these complexes have significantly different reactivities.  The 

possible absence of DNA in the mechanism of action of the cis-tach complexes is 

potentially advantageous by the avoidance of drug-resistance mechanisms, such as 

platinated-DNA repair. 

 

However, it remains unclear if DNA is involved in the inhibition of cell growth by 

these complexes.  A weak or dynamic binding may be present, thereby undetectable 

in the GEMSA experiments as dissociation could be promoted in the gel 

environment.  Alternatively, the ruthenium–DNA interactions may have failed to 

alter the tertiary structure, despite successful coordination.  Further investigations are 

required to determine the potential role of DNA in the mechanism of activity, such 

as circular dichromism which is able to provide information regarding the secondary 

structure of DNA in the presence of [16]Cl and [17]Cl. 
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6.7 Interaction of [16]Cl and [17]Cl with a Protein Model: Glutathione 

 

The coordination of sulfur-containing residues to metallo-based anti-cancer 

compounds has often been associated with negative side effects and the development 

of resistance mechanisms.
18, 109

  The tripeptide glutathione (GSH) is an abundant 

intracellular biological nucleophile and is involved in the detoxification of 

cisplatin.
285

  GSH is also involved in the cleavage of ruthenium–ubiquitin bonds in 

RAPTA-C, resulting in detoxification.
126

  However, competitive reactions of cyclic 

guanosine monophosphate (cGMP) and glutathione with RM175, [RuCl(η
6
-

bip)(en)]
+
,
 
showed that GSH may play an important role in the ruthenation of DNA 

via glutathione-S complexes.
108

  The complex was ultimately able to bind cGMP via 

a ruthenium–GSH adduct, even in the presence of a 250 fold excess of the tripeptide.  

Although GSH is not required for the binding of the complex to DNA, it may act as 

a delivery system to protect the complex until it reaches the cell nucleus. 

 

GSH is not only of a physiological concern to the mode of action of cytotoxic 

transition metal complexes, but it may also be employed as a model compound for 

the assessment of the interactions of [16]Cl and [17]Cl with proteins.  Glutathione 

(Fig. 6.19) was specifically chosen for its simplicity and its inclusion of a cysteine 

residue.  It has four potential donors for coordination to a transition metal complex in 

a mono-dentate fashion: the two terminal carboxylic acid groups, the amine group of 

glutamic acid and the thiol side chain of cysteine. 

 

 

 

Figure 6.19:  Structure of the tripeptide γ-L-Glutamyl-L-cysteinylglycine, 

glutathione (GSH) in aqueous solution at pH 7.  GSH was employed as a simple 

model for the initial investigation of the ability for [16]Cl and [17]Cl to bind 

peptides or proteins. 
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Figure 6.20:  
31

P{
1
H} NMR spectra of the reaction between GSH and [16]Cl (top) 

or [17]Cl (bottom). 

 

Solutions of [16]Cl and [17]Cl (1 μM) were exposed to an equimolar amount of 

GSH at 310 K.  After 24 h, new ruthenium(II) cis-tach species, [16e] and [17e], were 

observed in the resulting 
31

P{
1
H} NMR spectra for both compounds, shown in Fig. 

6.20.  The resonances for the new species were characteristic of inequivalent 

phosphorus nuclei from the coordination of the chiral glutathione ligand (GS) to the 

complex. 

 

The extent of both reactions could not be determined by 
1
H NMR spectroscopy due 

to a large number of overlapping resonances of the cis-tach and phosphane protons 

of the chlorido, aqua and glutathione complexes as well as those of GSH, both free 

and coordinated. It was also not possible to determine the coordination mode of 

glutathione from the 
1
H NMR spectrum.  It is evident that [17]

+
 may have a greater 

affinity than [16]
+
 for glutathione based on 

31
P{

1
H} signal intensities; competitive 

reactions may provide further information.  Given the previously observed 

[17]
+
 

[17a]
2+

 

[17e] 

[16]
+
 

[16a]
2+

 

[16e] 
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preference for ruthenium(II) cis-tach compounds to coordinate soft donor ligands 

such as sulfur and phosphorus, it is hypothesised that the glutathione ligand may be 

coordinated via the S-donor of cysteine, [Ru(GS-S)(L)(cis-tach)] (L = dppe [16e] or 

dppp [17e]). 

 

The role of glutathione coordination in the mechanism of [16]Cl or [17]Cl remains 

unknown, and has differing roles in the biological activity of other inorganic 

compounds, including the detoxification of cisplatin.
18, 108, 126

  It could suggest that a 

plausible biomolecular target for these compounds may be that of a protein via the 

thiol of a cysteine residue in a protein, possibly inhibiting its function.  The role of 

ruthenium-protein interactions should be considered for future experiments to 

determine the mechanism of action for the cis-tach ruthenium(II) complexes. 

 

6.8 Chapter Conclusions 

 

The highly active cytotoxic complexes [16]Cl and [17]Cl have been demonstrated by 

NMR spectroscopy and mass spectrometry to aquate when in aqueous solution.  It is 

proposed—as in the case of cisplatin and other cytotoxic ruthenium(II) chlorido 

complexes—that this reaction is the initial activation step in the mechanism by 

which these species inhibit tumour cell growth.  The resulting aqua complexes 

[16a]Cl and [17a]Cl were characterised by NMR spectroscopy by the preparation of 

the triflate salts; these complexes exist in the protonated aqua form at physiological 

pH with hydrolysis unable to occur.  Both of these species were stable at 

physiologically-relevant concentrations, with [16]Cl stable to degradation over 72 h 

in aqueous solution, whilst [17]Cl showed only a small degree of degradation over 

the time period used for the MTT assays. 

 

The kinetics of aquation and anation of [16]Cl were studied; the rate of the forward 

reaction is over five times faster than cisplatin and the established RAen complexes.  

Initial analysis of the ligand exchange kinetics with [17]Cl showed the reaction had 

reached equilibrium within thirty seconds at 310 K  and it is therefore proposed that 

the kinetics of aquation is not a major influence in the in vitro activity of these 

complexes. 
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To understand speciation under physiologically-relevant conditions further 

experimental work was conducted.  It is proposed that a greater proportion of the 

aqua species [16a]
2+

 will be observed in the blood than other ruthenium complexes 

and cisplatin, indicating activation before the complex has entered the cell.  The 

combination of aquation and hydrolysis equilibria for [17]
+
 result in a greater 

contrast between the speciation in the blood and the cell nucleus than that observed 

for cisplatin and the RAen complexes, with a suitable balance between activation of 

the complex and deactivation before it has reached its target. 

 

NMR experiments have shown that EtG does not coordinate to [17]
+
 or [17a]

+
 under 

physiologically-relevant conditions, therefore suggesting that the N7 of guanine is 

not involved in the mechanism of action.  Furthermore, the complexes [17]Cl and 

[18]Cl did not alter the mobility of plasmid DNA, suggesting that the tertiary 

structure of DNA is unaffected by this complex, unlike half-sandwich 

organometallic analogues.  Further studies showed that these complexes do have an 

affinity to glutathione; therefore proteins may be involved in the mechanism of anti-

proliferative activity. 

 

The experimental evidence obtained for the complexes presented here suggest their 

activity originates from a different mechanism to cisplatin and the RAen complexes.  

Further investigations are required to identify biomolecules which may be involved 

in the mode of action and if nucleic acids, proteins, enzymes or other biomolecules 

are responsible for the potency of the ruthenium cis-tach complexes presented in this 

thesis. 
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Chapter 7. Conclusions and Future Work 

 

7.1 Thesis Conclusions 

 

This thesis was set out to achieve three key aims:  to establish the preparation of 

ruthenium(II) cis-tach complexes; to develop a general-purpose precursor complex, 

allowing the synthesis of a wide range of compounds; and finally to evaluate these 

compounds for their in vitro activity in the inhibition of tumour cell growth. 

 

The first preparation of ruthenium(II) cis-tach complexes was achieved by the 

reaction of the ligand with [RuCl2(PPh3)3] in DCM, rapidly forming the cationic 

complex [RuCl(cis-tach)(PPh3)2]Cl [1]Cl.  Charge neutralisation occurs much 

slower, affording [RuCl2(cis-tach)(PPh3)2] [2].  Solvent complexes were prepared, 

but these complexes provided limited scope in the design of new complexes, with 

displacement of the triphenylphosphane ligand difficult.  The DMSO complex 

[RuCl(DMSO-S)(cis-tach)(PPh3)]Cl [4]Cl proved weakly cytotoxic against the A549 

and A2780 cell lines. 

 

Reaction of [cis-RuCl2(DMSO)4] with cis-tach in DMSO at elevated temperatures 

yielded the solvent complex [RuCl(DMSO-S)2(cis-tach)]Cl [8]Cl.  This complex was 

able to be employed as a precursor to complexes containing N–N and P–P chelating 

ligands.   Complexes of type [Ru(DMSO-S)(N–N)(cis-tach)](Cl)2 were obtained by 

reaction of [8]Cl with bipy, phen and en.  The DMSO ligand in these complexes is 

inert to substitution by water, but the DMSO ligand was shown to exchange with 

guanine to a limited extent.  This complex was inactive against the A549 cell line, 

hypothesised to be due to poor hydrophobicity, possibly reducing cellular uptake and 

poor reactivity of the ruthenium-DMSO bond. 

 

Reaction of P–P chelating ligands with [8]Cl afforded chlorido complexes with the 

formula [RuCl(P–P)(cis-tach)]Cl.  All complexes were isolated with analytical purity 

as the chloride salt, with good water solubility.  These compounds displayed good to 

excellent in vitro cytotoxicity, with two complexes (P–P = dppp [17]Cl and dppb 

[18]Cl) twice as active as the clinical drug cisplatin in A549 and equipotent in 
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A2780.  The inclusion of a reactive chlorido ligand and improved lipophilicity from 

the phosphane ligands is proposed to account for the improved activity compared to 

the N–N chelates. 

 

The aqueous chemistry of two diphosphane complexes, [16]Cl and [17]Cl (P–P = 

dppe and dppp) was investigated, selected for the high water solubility and excellent 

in vitro activity respectively.  Both complexes aquate extremely rapidly with t½ = 

106 and 10.8 s, respectively at 298 K yielding the corresponding aqua species; 

therefore the rate of aquation is considered to be insignificant in comparison to the 

cell cycle.  It is hypothesised that the aqua species is responsible for reacting with 

biomolecules, with the chlorido complex inactive.  Deprotonation of the aqua ligand 

is inaccessible under physiological conditions, resulting in exclusively the aqua 

product.  A key difference between these two species is the extent of aquation in the 

plasma, cytoplasm and nucleus, where [16]Cl aquates to a greater extent than [17]Cl.  

This may results in decreased deactivation of [17]Cl by protection as the chlorido 

complex, providing a rationale for the increased antiproliferative activity. 

 

Studies with DNA model compounds revealed the poor affinity for these complexes 

with guanine.  Of the two complexes studied, [17]Cl displayed the least binding to 

guanine, in contrast with the in vitro activities.  The same observations were made 

with mobility shift assays, where [17]Cl did not inhibit the mobility of plasmid 

DNA, with [16]Cl only affecting it to a small extent.  Therefore, it is hypothesised 

that DNA is not the target for these complexes in their anti tumour activity and is by 

a novel mechanism.  The lack of evidence for strong interactions with DNA is in 

contrast with many ruthenium(II) half-sandwich complexes which aquate, where 

many highly active compounds (including RAen and RAPTA) have been shown to 

bind DNA.  Initial studies with glutathione suggested that ruthenium-protein 

interactions should not be overlooked, and may form the basis of future studies. 

 

This thesis has described the use of cis-tach as a new facially-coordinating ligand for 

water-soluble ruthenium(II) half-sandwich type compounds.  A series of complexes 

based on this ligand have been prepared, with several complexes highly active in the 

inhibition of tumour cell growth and are believed to act by a novel non-classical 
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mechanism.  The ruthenium(II) cis-tach complexes presented in this thesis are highly 

promising and exciting, certainly warranting further investigations. 

 

7.2 Future Work 

 

The potential scope for the development and further study of ruthenium(II) cis-tach 

compounds is extensive.  Structure-activity relationships may be continued to further 

explore possible new cytotoxic complexes, exploring new chelating ligands, 

tethering to other anti-tumour complexes or biologically active ligands, or the 

development of multinuclear complexes.  Complexes with phosphane ligands have 

shown exciting activity and properties, where further variation of these ligands 

should logically form the core of further studies.  A phosphane of particular interest 

is S,S- and R,R-chiraphos (Fig. 7.1), where their possibly differing reactivity with 

biomolecules and in vitro activities may provide clues to the mechanism of action. 

 

 

 

Figure 7.1:  Structure of R,R- and S,S-chiraphos, chiral phosphanes based on dppe. 

 

The complexes presented in this thesis have only been screened against two selected 

cell lines by in vitro technique.  This study should not only be expanded to other 

tumour types, but to drug-resistant variants such as A2780cis and A2780
AD

.  This 

will provide further information in the mode of the ruthenium cis-tach complexes, 

whereby similar mechanisms of action can be identified.  Screening against a large 

range of cell lines is required before these complexes can be considered for in vivo 

experiments.  Other in vitro studies may include apoptosis assays/determination. 

 

Finally, this thesis began to look at what happens to the cis-tach diphosphane 

complexes when introduced to cell, although little is known on the cellular uptake or 

interactions with biomolecules.  Such experiments to expand understanding would 

include determination of the partition coefficient, logP and investigations into in 
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vitro cellular uptake.  Finally, the mechanism by which these complexes disrupt the 

cell cycle remains unknown, therefore the attention of future experiments must be 

directed towards the interactions with biomolecules.  Further DNA binding studies 

are required—for example circular dichroism to investigate the alteration of DNA 

secondary structure by these complexes—before DNA can be excluded as a target, 

as well as investigating the interactions with other biomolecules, such as proteins.   

 

Computational methods, such as density functional theory (DFT) and molecular 

dynamics (MD) may also be employed to probe the interaction of ruthenium(II) cis-

tach complexes with biomolecules.  Such studies include assessing the DNA bases 

and amino acids, which may feature side-chains with carboxylate, amine, hydroxyl 

and imidazole groups which are capable of coordinating to a metal. 
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Chapter 8. Experimental 

 

8.1 General 

 

All chemicals used were purchased from Sigma-Aldrich UK and solvents from 

Fisher Scientific, with the exception of cis-cis-1,3,5-Cyclohexanetricaboxylic acid 

(TCI UK) ruthenium trichloride hydrate (Precious Metals Online), methylenebis 

(diphenylphosphane) (Acros Organics), propane-1,3-diylbis(diphenylphosphane) 

(Strem Chemicals) and butane-1,4-diylbis(diphenylphosphane) (Lancaster 

Synthesis).  Cis,cis-1,3,5-triaminocyclohexane (cis-tach),
167, 168

 dichloridotris 

(triphenylphosphane)ruthenium(II)
195

,  dichlorido[fac-tris(dimethylsulfoxide-κS)] 

(dimethylsulfoxide-κO)ruthenium(II)
286

 and mer-chloro-trisacetonitrile(η
4
-cycloocta-

1,5-diene)ruthenium(II) hexafluorophosphate
287

 were prepared according to 

literature procedures.  Di-μ-chloro(η
4
-1,5-cyclooctadiene)ruthenium(II) was 

synthesised by the Lynam research group according to the literature procedure
287

. 

 

NMR spectra were obtained using either a Jeol ECS 400, Jeol EXC 400 (
1
H 399.78 

MHz, 
31

P 161.83, 
13

C 100.52) at 293 K or a Bruker Avance 500 spectrometer (
1
H 

500.23 MHz, 
31

P 202.50, 
13

C 125.78) at 295 K.  
31

P and 
13

C spectra were recorded 

with proton decoupling.  The CD2Cl2 used for NMR experiments was dried over 

CaH2 and degassed with three freeze-pump-thaw cycles.  All other solvents were 

used as received.  IR spectra were recorded on a Unicam (Research Series) FTIR 

using SensIR Technologies ATR equipment.  High resolution mass spectrometry 

was performed by the University of York mass spectrometry service using the ESI 

technique on a Bruker Daltronic microTOF instrument.  Elemental analyses (CHN) 

were performed using an Exeter Analytical Inc. CE-440 analyser.  Residual solvent in 

analyses were confirmed by 1H NMR spectroscopy in anhydrous solvent (CD2Cl2).  

Specific experimental details for each chapter can be found at the beginning of each 

corresponding section.  pH measurements were recorded using a MeterLab ION 450 

calibrated with Aldrich standard solutions of pH 4, 7 and 10.  For NMR samples in 

10% D2O/90% H2O, no correction was applied for the effect of deuterium on the 

glass electode. 
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8.1.1 X-Ray Crystallography 

 

All data collection and structural solutions were obtained by Dr Adrian Whitwood 

and Dr Robert Thatcher (University of York Crystallography service) and Dr Jason 

Lynam. 

 

8.1.1.1 Bruker Smart Apex 

 

Diffraction data were collected at 110 (2) K on a Bruker Smart Apex diffractometer 

with Mo-K radiation ( = 0.71073 Å) using a SMART CCD camera.  

Diffractometer control, data collection and initial unit cell determination was 

performed using SMART.
292

  Frame integration and unit-cell refinement was carried 

out with SAINT+.
293

  Absorption corrections were applied by SADABS.
294

  

Structures were solved by direct methods using SHELXS-97 (Sheldrick, 1997)
294

 

and refined by full-matrix least squares using SHELXL-97 (Sheldrick, 1997).
294

  All 

non-hydrogen atoms were refined anisotropically.  Hydrogen atoms were placed 

using a “riding model” and included in the refinement at calculated positions.   

 

8.1.1.2 Oxford Diffraction SuperNova 

 

Diffraction data were collected at 110.0 K on an Oxford Diffraction SuperNova 

diffractometer with Mo-K radiation ( = 0.71073 Å) using an EOS CCD camera.  

The crystal was cooled with an Oxford Instruments Cryojet. Diffractometer control, 

data collection, initial unit cell determination, frame integration and unit-cell 

refinement was carried out with Crysalis.
295

  Face-indexed absorption corrections 

were applied using spherical harmonics, implemented in SCALE3 ABSPACK 

scaling algorithm.
296

  OLEX2
297

 was used for overall structure solution, refinement 

and  preparation of computer graphics and publication data.  Within OLEX2, the 

algorithms used for structure solution were direct methods using the XS (Sheldrick, 

2008).
294

  Refinement by full-matrix least-squares used the SHELXL-97
298

 algorithm 

within OLEX2.
297

  All non-hydrogen atoms were refined anisotropically.  Hydrogen 

atoms were placed using a “riding model” and included in the refinement at 

calculated positions. 
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8.1.2 In Vitro Biological Evaluation 

 

The A549 cell line was kindly donated by The Bioscience Technology Facility, 

Department of Biology, University of York.  The A2780 cell line was purchased 

from the ECACC.  Cell cultures were maintained in a 90% humidified atmosphere of 

CO2 at 37°C, in DMEM (A549) or RPMI 1640 (A2780) medium supplemented with 

2 mM glutamine and 10% Foetal Bovine Serum.  Sub-confluent cultures (70-80%) 

were split at a seeding of 1:3 to 1:6 using 0.25% Trypsin/EDTA.  Culture medium 

and FBS were obtained from Invitrogen/Gibco and all other materials from Sigma. 

 

Growth inhibition assays were performed using the MTT (3-(4,5-Dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide) assay, with a modified procedure of 

Carmichael et al.
228

  Suitable seeding density of cells was determined prior to 

experiments to ensure logarithmic phase of growth and prevention of over-confluent 

culture at the end of the assay, and that optical density of the metabolised MTT 

formazan measured was within the linearity limits of the plate reader.  

 

Cells were seeded at a density of 1,000 (A549) or 2,500 (A2780) cells per well in 

100 μL of their respective culture medium in a 96 well plate, with positive (columns 

1 and 11) and negative (columns 2 and 12) controls located at each end of the plate. 

Positive controls consisted of culture medium with no cells, representative of 100% 

inhibition of MTT metabolisation, and negative controls consisted of untreated cells, 

representative of 0% inhibition.  Cells were allowed to adhere to the plate surface by 

incubating for 24 h before addition of compound to be tested.  100 μL of culture 

medium was added to each control well, and 100 μL of a 2x solution of the 

compound to be tested in culture medium to the remaining wells.  A total of eight 

concentrations were tested, performed in octuplicate and typically between 300 μM 

and 0.1 μM, with the eight concentrations selected to fall on the dose-response curve 

for the compound. 

 

The cells were incubated with the drug for 72 h before addition of MTT (50 μL, 2 

mg/mL) in PBS and incubated for a further 2 h, over which MTT was metabolized to 

insoluble formazan crystals.  The plates were centrifuged at 500 g for 10 minutes and 

220 μL of the culture medium in each well was removed.  The formazan was 
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solubilised by addition of DMSO (150 μL). The plate was shaken to ensure complete 

dissolution of the formazan, and absorbance at 540 nm recorded using a Hidex Plate 

Chameleon V plate reader.  The value for each concentration of drug was plotted 

graphically as a percentage of the negative control compared to the positive.  The 

data was fitted using a dose-response function and the concentration of drug to cause 

50% reduction of the absorbance (compared to control values) was calculated as the 

IC50 value.  Statistical calculations were performed using Origin v8.5.  IC50 values 

were calculated as the average of three independent experiments as the weighted 

mean. 

 

8.1.3 1
H and 

13
C{

1
H} NMR Assignments 

 

The resonances in 
1
H and 

13
C{

1
H} NMR spectra are assigned using a code scheme.  

The schemes used are given in Figs 9.1 to 9.4. 

 

 

 

Figure 8.1:  cis-tach 
1
H and 

13
C{

1
H} NMR assignments for Cs (left) and C1 (right) 

symmetry environments used in characterisation. 

 

  



201 

 

 

 

Figure 8.2:  Triphenylphosphane and asymmetrical-DMSO-S 
1
H and 

13
C{

1
H} NMR 

assignments used in characterisation.  Triphenylphosphane assignments apply to all 

three phenyl rings of the phosphane. 

 

 

 

Figure 8.3:  2,2’bipyrdiyl and 1,10-phenanthroline 
1
H and 

13
C{

1
H} NMR 

assignments used in characterisation. 

 

 

 

Figure 8.4:  Diphosphane 
1
H and 

13
C{

1
H} NMR assignments used in 

characterisation.  The bridging alkyl chain is numbered Br
n
, where n = number of 

bonds to nearest phosphorus.  The dppb ligand is used as an example.  Of the two 

phenyl ring environments as shown, “a” and “b” correlate between 
1
H and 

13
C{

1
H} 

NMR spectra. 
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8.1.4 Synthesis of cis-tach 

 

8.1.4.1 cis,cis-1,3,5-Cyclohexanetris(benzyl carbamate)  

 

The literature procedure was followed.
167

  Triethylamine (9.65 g, 69.5 mmol) and 

diphenylphosphorlyazide (15 ml, 69.5 mmol) were added to a mixture of cis-cis-

1,3,5-cyclohexanetricarboxylic acid (5 g, 23.2 mmol) and benzene (125 ml).  The 

suspension was refluxed until all solid had dissolved. Benzyl alcohol (7.2 ml, 69.5 

mmol) was added to the solution, and was heated under reflux for 16 h. The cream 

precipitate was collected by vacuum filtration.  The filtrate was washed with small 

amounts of chilled diethyl ether and dried in vacuo.  Yield: 6.43 g (51%, 11.7 

mmol).  
1
H NMR ((CD3)2SO, 399.8 MHz, 293K): δ 7.35 (m, 15H, Ar-H), 5.01 (s, 

6H, -CO2CH2Ph), 3.36 (m, 3H, CR2H), 1.89 (d, 
3
JHH = 12.3 Hz, 3H, CH(Heq)), 1.07 

(q, 
3
JHH = 12.3 Hz, 

2
JHH = 12.3, 3H, CH(Hax)). 

 

8.1.4.2 Cis,cis-1,3,5-triaminocyclohexane trihydrobromide 

 

The literature procedure was followed.
167

  Hydrogen bromide (50 ml of 30% by 

weight in acetic acid) was added to cis,cis-1,3,5-cyclohexanetris(benzyl carbamate) 

(3.46 g, 7.07 mmol) and stirred for 16 h.  Ethanol (100 ml) was added and stirred for 

24 h.  The precipitate was isolated by filtration, washed with small amounts of 

chilled ethanol and dried in vacuo.  Yield: 1.90 g (72.3%, 5.11 mmol of cis-

tach.3HBr).  
1
H NMR (D2O , 399.8 MHz, 293K): δ 3.51 (tt, 

3
JHH = 11.7 Hz, 

3
JHH = 

3.7, 3H,
 
CR2H), 2.46 (dt, 

2
JHH = 11.7 Hz, 

3
JHH = 3.7, 3H, CH(Heq)), 1.65 (q, 

3
JHH = 

11.7 Hz, 
2
JHH = 11.7, 3H, CH(Hax)). 

 

8.1.4.3 Cis,cis-1,3,5-triaminocyclohexane (cis-tach) 

 

The literature procedure was followed.
168

  Cis,cis-1,3,5-triaminocyclohexane 

trihydrobromide (1.00 g, 2.68 mmol) was dissolved in the minimum amount of water 

and loaded on to a Dowex 1X4-50 (300 g) anion exchange column, which was pre-

rinsed with water, hydrochloric acid (1 M), sodium hydroxide (1 M) and finally 

water until washings were neutral.  The basic fractions were collected and the 

solvent removed by rotary evaporation.  The solid was sublimed at 10
-2

 mbar at 70 
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o
C onto a cold finger at 77 K.  Yield: 0.295 g (85.1%, 2.28 mmol of cis-tach).  

1
H 

NMR (CD2Cl2, 500.2 MHz, 295K): δ 2.67 (tt, J = 11.3, 3.9 Hz, 3H, CHNH2) 1,89 

(dm, J = 11.8 Hz, 3H, CHaxH) 1.04 (s, 6H, NH2) 0.76 (q, J = 11.6, 3H, CHHeq);  

13
C{

1
H} NMR (CD2Cl2, 125.8 MHz, 295K): δ 48.5 (s, CHNH2) 47.5 (s, CH2). 

 

8.2 Chapter 2 Experimental 

 

All reactions were performed under an atmosphere of dry nitrogen using standard 

Schlenk line and glove box techniques.  Dichloromethane, acetonitrile and pentane 

were purified with an Innovative Technologies anhydrous solvent engineering 

system.  Diethyl ether was dried over sodium, and d2-dichloromethane over calcium 

hydride and vacuum transferred prior to use.  All other chemicals were purchased 

from Sigma-Aldrich UK. 

 

8.2.1 Reaction of [RuCl2(PPh3)] with cis-tach. 

 

cis-cis-1,3,5-triaminocyclohexane (3 mg, 0.023 mmol) was added to a CD2Cl2 

solution of dichloridotris(triphenylphosphane)ruthenium(II) (20 mg, 0.021 mmol) in 

an NMR tube fitted with a Teflon tap.  After 30 minutes, 
1
H and 

31
P NMR spectra 

were recorded. The NMR features observed were similar to those reported for 

[1]PF6.  After standing for one week, the NMR features were similar to those 

reported for [2].  In both cases, a resonance for additional triphenylphosphane was 

observed. 

 

8.2.2 [RuCl(PPh3)2(cis-tach)]PF6, [1]PF6 

 

cis-cis-1,3,5-triaminocyclohexane (13 mg, 0.1 mmol) was added to a Schlenk tube 

charged with dichloridotris(triphenylphosphane)ruthenium(II) (100 mg, 0.1 mmol) in 

dichloromethane (20 mL) and stirred for 45 minutes, after which, sodium 

hexafluorophosphate (20.8 mg, 0.125 mmol) was added and stirred for 8 h.  The 

precipitate was removed by filtration and the product precipitated by the addition of 

pentane.  The solvent was removed by filtration, and the pale orange powder was 

washed twice with pentane.  Yellow crystals were obtained by slow diffusion of 
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pentane into a dichloromethane solution. [1]PF6 was unable to be isolated pure as a 

solid.  
1
H NMR (CD2Cl2, 399.8 MHz, 293 K) δ 7.43 (app. t, 

2
JHP = 10 Hz, 

3
JHH = 7.5 

Hz, 
4
JHH = 1.5 Hz, 12H, PPh3, Ar

2
), 7.37 (m, 6H, PPh3, Ar

4
), 7.25 (tt, 

3
JHH = 7.6 Hz, 

4
JHH = 1.5 Hz, 12H, PPh3, Ar

3
), 3.57 (d, 

2
JHH = 11.8 Hz, 2H, NH2, N

2
), 3.44 (d, 

2
JHH 

= 11.8 Hz, 2H, NH2, N
2
), 3.27 (s, 2H, CH, Cy

2
), 2.96 (s, 1H, CH, Cy

1
), 2.15 (s, 2H, 

NH2, N
1
), 1.97 (d, 

2
JHH = 15.7 Hz, 1H, CH2, Cy

4
), 1.91 (d, 

2
JHH = 15.7 Hz, 1H, CH2, 

Cy
4
), 1.77 (d, 

2
JHH = 15.0 Hz, 2H, CH2, Cy

3
), 1.42 (d, 

2
JHH = 15.0 Hz, 2H, CH2, 

Cy
3
);  

31
P{

1
H} NMR (CD2Cl2, 161.8 MHz, 293 K) δ 47.3 (s, 2P, PPh3) -144.67 

(septet, 
1
JPF = 710.5 0Hz, 1P, PF6);  

13
C{

1
H} NMR (CD2Cl2, 100.5 MHz, 293 K) δ 

134.5 (t, |
2
JPC + 

4
JPC| = 9.5 Hz, PPh3, Ar

2
), 133.1 (t, |

1
JPC + 

3
JPC| = 37.0 Hz, PPh3, 

Ar
1
), 130.7 (s, PPh3, Ar

4
), 129.3 (t, |

3
JPC + 

5
JPC| = 8.8 Hz, PPh3, Ar

3
), 43.0 (s, CH, 

Cy
2
), 42.8 (s, CH, Cy

1
), 35.0 (s, CH2, Cy

4
), 33.3 (s, CH2, Cy

3
).  ESI-MS: m/z 

941.2051 ([1−Cl+NCMe+PF6]
+
, Calc. for C44H48F6N4P3Ru

+
: 941.2039, 10%),  

790.1826 ([1]
+
, C42H45ClN3P2Ru

+
: 790.1815, 100).  Crystals suitable for X-ray 

diffraction analysis were obtained by the slow diffusion of n-pentane into a saturated 

dichloromethane solution of [1]PF6. 

 

8.2.3 [RuCl2(PPh3)(cis-tach)], [2] 

 

cis-cis-1,3,5-triaminocyclohexane (30.0 mg, 0.232 mmol) was added to an ampoule 

charged with dichloridotris(triphenylphosphane)ruthenium(II) (196 mg, 0.204 mmol) 

dissolved in dichloromethane (20 mL), causing an instant colour change from black 

to orange.  The solution was stirred at 50 
o
C for 4 days in the sealed vessel, during 

which time the solution changed colour to yellow and a white precipitate formed.  

The precipitate was removed by filtration and the filtrate reduced in volume to 

approximately 1 mL in vacuo.  The product was precipitated by addition of pentane 

(20 mL) as an orange powder, and washed twice with pentane (20 mL).  Yield: 115 

mg (87%, 0.177 mmol of [RuCl2(cis-tach)(PPh3)].CH2Cl2).  Found: C 46.25; H 4.92; 

N 6.43%.  Calcd for C24H30Cl2N3PRu(CH2Cl2): C 46.31; H 4.97; N 6.48%.  
1
H 

NMR (CD2Cl2, 399.8 MHz, 293 K) δ 7.85 (app t,
 3

JHH = 7.5 Hz, 
2
JHP = 5.8 Hz, 

4
JHH 

= 1.5 Hz,  6H, PPh3, Ar
2
), 7.36 (m, 9H, PPh3, Ar

3
 + Ar

4
), 4.77 (s, 2H, NH2, N

1
), 3.90 

(bs, 1H, CH, Cy
1
), 2.92 (s, 2H, CH, Cy

2
), 2.65 (d, 

2
JHH = 10.6 Hz, 2H, NH2, N

2
), 

1.92 (s, 4H, CH2, Cy
3
), 1.85 (d, 

2
JHH = 10.6 Hz, 2H, NH2, N

2
), 1.62 (d, 

2
JHH = 15.3 

Hz, 1H, CH2, Cy
4
), 1.00 (d, 

2
JHH = 15.3 Hz, 1H, CH2, Cy

4
);  

31
P{

1
H} NMR (CD2Cl2, 
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161.8 MHz, 293 K) δ 66.0 (s, 1P, PPh3);  
13

C{
1
H} NMR (CD2Cl2, 100.5 MHz, 293 

K) δ 136.2 (d, 
1
JPC = 36.0 Hz, PPh3, Ar

1
), 134.2 (d, 

2
JPC = 10.1 Hz, PPh3, Ar

2
), 

129.5 (d, 
4
JPC = 1.9 Hz, PPh3, Ar

4
), 128.8 (d, 

3
JPC = 8.7 Hz, PPh3, Ar

3
), 44.0 (s, CH, 

Cy
1
), 43.8 (s, CH, Cy

2
), 35.0 (s, CH2, Cy

3
), 33.6 (s, CH2, Cy

4
).  ESI-MS: m/z 

569.1186 ([2−Cl+NCMe]
+

, Calc for C26H33ClN4PRu
+
: 569.1173, 100%), 528.0919 

([2−Cl]
+

, C24H30ClN3PRu
+
: 528.0907, 25), 246.5607 ([2−2Cl]

2+
, C24H30N3PRu

2+
: 

246.5608, 10).  ATR-IR (cm
−1

): 3462, 3283, 3240, 3050, 2888, 1649, 1588, 1480, 

1432 (P–Ph), 1367, 1346, 1270, 1211, 1183, 1156, 1089, 1027, 968, 905.  Crystals 

suitable for X-ray diffraction analysis were obtained by the slow diffusion of 

diethylether into a saturated dicholormethane solution of [2]. 

 

8.2.4 [{RuCl(PPh3)(cis-tach)}2(μ-Cl)]BPh4, [3]BPh4 

 

Sodium tetraphenylborate (44.2 mg, 0.129 mmol) was added to a solution of 

[2].CH2Cl2 (65.5 mg, 0.101 mmol) in dichloromethane (20 mL) and allowed to stir 

for 6 h.  The precipitate was removed by filtration and the product crystallised by 

slow diffusion of pentane (100 mL).  The crystals were isolated by filtration and 

dried in vacuo.  Yield: 43.2 mg (56%, 0.014 mmol of [{RuCl(cis-tach)(PPh3}2(μ-

Cl)]BPh4.1½CH2Cl2).  Found: C 57.72; H 5.51; N 5.38%.  Calcd for 

C72H80BCl3N6P2Ru2(1½ CH2Cl2): C 57.40; H 5.43; N 5.46%.  
1
H NMR (CD2Cl2, 

399.8 MHz, 293 K) δ 7.70 (m, 12H, PPh3), 7.29 (m, 26H, PPh3, BPh4), 7.00 (m, 8H, 

BPh4), 6.85 (m, 4H, BPh4), 6.73 (d, 
2
JHH = 10.5 Hz, 2H, NH2, N

1
), 4.24 (d, 

2
JHH = 

10.5 Hz, 2H, NH2, N
1
), 3.93 (m, 2H, CH, Cy

1
), 2.90 (s, 2H, CH, Cy

2
), 2.67 (d, 

2
JHH 

= 11.6 Hz, 2H, NH2, N
2
), 2.62 (s, 2H, CH, Cy

3
), 2.39 (d, 

2
JHH = 11.6 Hz, 2H, NH2, 

N
2
), 1.96 (m, 8H, CH2, Cy

4
 + Cy

6
), 1.87 (d, 

2
JHH = 10.7 Hz, 2H, NH2, N

3
), 1.52 (d, 

2
JHH = 15.8 Hz, 2H, CH2, Cy

5
), 0.80 (d, 

2
JHH = 10.7 Hz, 2H, NH2, N

3
), 0.70 (d, 

2
JHH 

= 15.8 Hz, 2H, CH2, Cy
5
);  

31
P{

1
H} NMR (CD2Cl2, 161.8 MHz, 293 K) δ 60.3 (s, 

2P, PPh3);  
13

C{
1
H} NMR (CD2Cl2, 100.5 MHz, 293 K) δ 136.4 (s, BPh4), 135.2 (d, 

1
JPC = 35.5 Hz, PPh3, Ar

1
), 133.6 (d, 

2
JPC = 9.8 Hz, PPh3 Ar

2
), 130.0 (s, PPh3, Ar

4
), 

129.0 (d, 
3
JPC = 8.6 Hz, PPh3, Ar

3
), 126.1 (m, BPh4), 122.3 (s, BPh4), 43.9 (s, CH, 

Cy
1
), 43.65 (s, CH, Cy

3
), 43.6 (s, CH, Cy

2
), 35.1 (s, CH2), 34.2 (s, CH2), 33.0 (s, 

CH2).  ESI-MS: m/z 1091.1496 ([3]
+
, Calc. for C48H60Cl3N6P2Ru2

+
:  1091.1502, < 

1%), 569.1175 ([RuCl(NCMe)(cis-tach)(PPh3)]
+

, C26H33ClN4PRu
+
: 569.1173, 100), 

528.0896 ([RuCl(cis-tach)(PPh3)]
+

, C24H30ClN3PRu
+
: 528.0907, 20).  ATR-IR 
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(cm
−1

): 3281, 3237, 3137, 3049, 2896, 1590, 1480, 1434 (P–Ph), 1265, 1158, 1092, 

1027, 903.  Crystals suitable for X-ray diffraction analysis were obtained by the slow 

diffusion of n-pentane into a saturated dichloromethane solution of [3]BPh4. 

 

8.2.5 [{RuCl(PPh3)(cis-tach)}2(μ-Cl)]PF6, [3]PF6 

 

Preparation is identical to [3]BPh4, however sodium hexafluorophosphate (0.129 

mmol) was used opposed to sodium tetraphenylborate.  
1
H NMR (CD2Cl2, 399.8 

MHz, 293 K) δ  7.84 (m, 4H, PPh3), 7.71 (m, 8H, PPh3), 7.35 (m, 10H, PPh3), 7.26 

(m, 8H, PPh3), 6.74 (d, J = 10.1 Hz, 2H, NH2), 4,27 (d, J = 10.1 Hz, 2H, NH2), 3.96 

(bs, 2H, CH), 3.00 (s, 2H, CH), 2.73 (d, J = 11.8 Hz, 2H, NH2), 2.67 (s, 2H, CH), 

2.45 (d, J = 11.8 Hz, 2H, NH2), 1.98 (m, 12H, CH2), 1.61 (d, J = 15.3 Hz, 2H, NH2), 

0.77 (d, J = 15.3 Hz, 2H, NH2);  
31

P{
1
H} NMR (CD2Cl2, 161.8 MHz, 293 K) δ 60.2 

(s, 2P, PPh3), −144.6(septet, 
1
JPF = 710.5 0Hz, 1P, PF6);  

 

8.2.6 Dissolution of [2] in d6-DMSO 

 

[2].CH2Cl2 was dissolved in d6-DMSO and the 
1
H and 

31
P{

1
H} NMR spectra 

recorded.  
1
H NMR ((CD3)2SO, 399.8 MHz, 293 K) δ 7.86 (m, 6H PPh3), 7.46 m 

(m, 8H PPh3), 4.97 (d, 1H, 
2
JHH = 11.7 Hz, NH2), 4.28  (d, 1H, 

2
JHH = 12.1 Hz, 

NH2), 3.83  (d, 1H, 
2
JHH = 11.7 Hz, NH2), 3.71  (d, 1H, 

2
JHH = 12.1 Hz, NH2), 3.58  

(d, 1H, 
2
JHH = 11.8 Hz, NH2), 3.35 (s, 1H, CH, obscured by δ 3.33), 3.33 (H2O), 3.06 

(s, 1H, CH), 2.56 (s, 1H, CH), 1.99 (d, 1H, 
2
JHH = 14.6 Hz, CH2), 1.80 (d, 1H, 

2
JHH = 

14.6 Hz, CH2), 1.67 (d, 1H, 
2
JHH = 15.2 Hz, CH2), 1.59 (d, 1H, 

2
JHH = 15.2 Hz, CH2), 

1.53 (d, 1H, 
2
JHH = 15.9 Hz, CH2), 1.25 (d, 1H, 

2
JHH = 14.9 Hz, CH2), 1.16 (d, 1H, 

2
JHH = 11.8 Hz, NH2); 

31
P{

1
H} NMR (CD2Cl2, 161.8 MHz, 293 K) δ 49.7 (s, 1P, 

PPh3). 

 

8.2.7 [RuCl(DMSO-S)(PPh3)(cis-tach)]Cl, [4]Cl 

 

An orange mixture of [2].CH2Cl2 (56.4 mg, 0.0870 mmol) in methanol (10 mL) was 

heated at reflux with dimethylsulfoxide (6.5 μL, 0.095 mmol) for 3 h.  The pale 

yellow solution was allowed to cool to room temperature, and the solvent removed 

in vacuo.  The product was washed with pentane (2 x 10 mL) and dried in vacuo.  
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Yield 42.8 mg (87%, 0.0613 mmol of [RuCl(DMSO-S)(cis-

tach)(PPh3)]Cl.H2O.½(C2H6SO)).  Found: C 46.48; H 5.87; N 5.92%.  Calcd for 

C26H36Cl2N3OPRuS(H2O)(½ C2H6SO): C 46.44; H 5.87; N 6.02%.  
1
H NMR 

(CD3OD, 399.8 MHz, 293 K) δ 7.93 (m, 6H, PPh3, Ar
2
), 7.50 (m, 9H, PPh3, Ar

3
 + 

Ar
4
), 5.10 (d, 1H, 

2
JHH = 10.9 Hz, NH2, N

1
), 4.38 (d, 1H, 

2
JHH = 12.2 Hz, NH2, N

2
), 

4.03 (d, 1H, 
2
JHH = 10.9 Hz, NH2, N

1
), 3.77 (d, 1H, 

2
JHH = 12.2 Hz, NH2, N

2
), 3.65 

(d, 1H, 
2
JHH = 11.5 Hz, NH2, N

3
), 3.49 (m, 1H, CH, Cy

1
), 3.20 (m, 4H: 3H, 

(CH3)2SO, So
1
; 1H, CH, Cy

3
), 2.69 (m, 4H: 3H, (CH3)2SO, So

2
; 1H, CH, Cy

2
), 2.09 

(d,  
2
JHH = 15.2 Hz, 1H, CH2, Cy

6
), 1.98 (d, 

2
JHH = 15.2 Hz, 1H,  CH2, Cy

6
), 1.82 (m, 

2H, CH2, Cy
4
), 1.72 (m, 1H CH2, Cy

5
), 1.34 (m, 3H: 1H, CH2, Cy

5
; 1H, NH2, N

3
);  

31
P{

1
H} NMR (CD3OD, 161.8 MHz, 293 K) δ 48.8 (s, 1P, PPh3);  

13
C{

1
H} NMR 

(CD3OD, 399.8 MHz, 293 K) δ 134.65 (d, 
1
JPC = 39.5 Hz, PPh3, Ar

1
), 134.6 (d, 

2
JPC 

= 9.5 Hz, PPh3, Ar
2
), 131.6 (d, 

4
JPC = 2.5 Hz, PPh3, Ar

4
), 130.3 (d, 

3
JPC = 9.5 Hz, 

PPh3, Ar
3
), 48.9 (s, (CH3)2SO, So

2
), 45.4 (s, (CH3)2SO, So

1
), 44.15 (s, CH, Cy

3
), 

44.1 (s, CH, Cy
2
), 43.8 (s, CH, Cy

1
), 34.9 (s, CH2, Cy

6
), 33.8 (s, CH2, Cy

4
), 33.4 (s, 

CH2, Cy
5
).  ESI-MS: m/z 606.1062 ([4]

+
, Calc. for C26H36ClN3OPRuS

+
: 606.1046, 

100%). 

 

8.2.8 [RuCl(NCMe)(PPh3)(cis-tach)]PF6, [5]PF6  

 

To a mixture of [2].CH2Cl2 (55.5 mg 0.085 mmol) in acetonitrile (20 mL) was added 

sodium hexafluorophosphate (18.0 mg, 0.107 mmol).  The resulting pale yellow 

solution was stirred for 30 mins until all the solid had dissolved.  The solvent was 

then removed in vacuo, and the residue taken up in dichloromethane (10 mL).  The 

insoluble salts were removed by filtration, and the pale cream product precipitated 

by addition of diethyl ether (50 mL).  The product was isolated by filtration and 

washed a further time with diethyl ether (20 mL).  Yield: 48.3 mg (71%, 0.060 mmol 

of [RuCl(NCMe)(cis-tach)(PPh3)]PF6).  Found: C 43.39; H 4.61; N 6.61%.  Calcd 

for C26H33ClF6N4P2Ru(½CH2Cl2)(½Et2O): C 43.14; H 4.95; N 7.06%.  
1
H NMR 

(CD2Cl2, 399.8 MHz, 293 K) δ 7.75 (m, 6H, PPh3, Ar
2
), 7.45 (m, 9H, PPh3, Ar

3
 + 

Ar
4
), 4.12 (m, 2H, NH2, N

1
), 3.77 (m, 1H, CH, Cy

1
), 3.12 (s, 1H, CH, Cy

2
), 3.05 (d, 

2
JHH = 12.0 Hz, 1H, NH2, N

2
), 2.89 (s, 1H, CH, Cy

3
), 2.85 (d, 

2
JHH = 12.0 Hz, 1H, 

NH2, N
3
), 2.49 (d, 

2
JHH = 12.2 Hz, 1H, NH2, N

2
), 2.29 (s, 3H, CH3CN), 2.15 (d, 

2
JHH 

= 15.5 Hz, 1H, CH2, Cy
6
), 1.96 (m, 2H, CH2, Cy

4
),1.85 (d, 

2
JHH = 15.5 Hz, 1H, CH2 
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Cy
6
), 1.68 (d, 

2
JHH = 15.4. 2.0 Hz, 1H, CH2, Cy

5
), 1.30 (d, 

2
JHH = 12.1 Hz, 1H, NH2, 

N
3
), 1.00 (d, 

2
JHH = 15.4. 2.0 Hz, 1H, CH2, Cy

5
);  

31
P{

1
H} NMR (CD2Cl2, 161.8 

MHz, 293 K) δ 60.6 (s, 1P, PPh3), -144.67 (septet, 1P, PF6);  
13

C{
1
H} NMR 

(CD2Cl2, 100.5 MHz, 293 K) δ 133.8 (d, 
1
JPC = 38.7 Hz, PPh3, Ar

1
), 133.7 (d, 

2
JPC  = 

9.9 Hz, PPh3, Ar
2
), 130.5 (d, 

4
JPC = 2.1 Hz, PPh3, Ar

4
), 129.5 (d, 

3
JPC =  8.8 Hz, 

PPh3, Ar
3
), 126.4 (s, NCCH3), 43.8 (s, CH, Cy

1
), 43.6 (s, CH, Cy

3
), 43.4 (s, CH, 

Cy
2
), 34.8 (s, CH2, Cy

4
), 33.5 (s, CH2, Cy

5
 + Cy

6
), 4.7 (s, NCCH3).  ESI-MS: m/z 

720.1416 ([5−Cl+NCMe+PF6)]
+

, Calc for C28H36F6N5P2Ru
+
: 720.1393, 2%), 

569.1167 ([5]
+
, C26H33ClN4PRu

+
: 569.1173, 100), 528.0909 ([5−NCMe]

+
, 

C24H30ClN3PRu
+
: 528.0907, 5), 287.5866 ([5−Cl+NCMe]

2+
, C28H36N5PRu: 

287.5874
2+

, 25), 267.0733 ([5−Cl]
2+

, C26H33N4PRu
2+

: 267.0741, 35), 246.5603 

([5−Cl−NCMe]
2+

, C24H30N3PRu
2+

: 246.5608, 25).  ATR-IR (cm
−1

): 2249 (C≡N), 

1596, 1482, 1436 (P–Ph), 1367, 1270, 1174, 1140, 1118, 1009, 915, 838 (PF6
−
). 

 

8.2.9 [Ru(NCMe)2(PPh3)(cis-tach)](PF6)2, [6](PF6)2 

 

A mixture of sodium hexafluorophosphate (37.8 mg, 0.225 mmol) and [2].CH2Cl2 

(56.1 mg, 0.086 mmol) were heated under reflux in acetonitrile for 4 h.  After, the 

solvent was removed in vacuo, and the product extracted in dichloromethane (40 

mL).  The insoluble salt was removed by filtration, and the filtrate concentrated to 10 

mL.  The white product was precipitated out by addition of diethyl ether (50 mL), 

collected by filtration, washed with diethyl ether (20 mL) and dried in vacuo. Yield: 

38.1 mg (51%, 0.044 mmol of of [RuCl(NCMe)2(cis-tach)(PPh3)](PF6)2.)  
1
H NMR 

(CD2Cl2, 399.8 MHz, 293 K) δ 7.53 (m, 15H, PPh3, Ar
2
 + Ar

3
 + Ar

4
), 3.82 (s, 2H, 

NH2, N
1
), 3.74 (s, 1H, CH, Cy

1
), 3.36 (d, 

2
JHH = 12.5 Hz,

 
2H, NH2, N

2
), 3.06 (s, 2H, 

CH, Cy
2
), 2.40 (s, 3H, CH3CN), 2.21 (d, 

2
JHH = 15.2 Hz, 2H, NH2, N

2
), 1.92 (m, 4H, 

Cy
3
), 1.70 (d, 

2
JHH = 15.6 Hz, 1H, CH2, Cy

4
), 0.85 (d, 

2
JHH = 15.6 Hz, 1H, CH2, 

Cy
4
);  

31
P{

1
H} NMR (CD2Cl2, 161.8 MHz, 293 K) δ 55.9 (s, 1P, PPh3), -144.67 

(septet, 2P, PF6);  
13

C{
1
H} NMR* (CD2Cl2, 100.5 MHz, 293 K) δ 133.2 (d, 

2
JPC = 

10.1 Hz, PPh3, Ar
2
), 131.6 (d, 

4
JPC = 2.4 Hz, PPh3, Ar

4
), 131.5 (d, 

1
JPC = 42.6 Hz, 

PPh3, Ar
1
), 130.2 (d, 

3
JPC = 9.3 Hz, PPh3, Ar

3
), 43.9 (s, CH, Cy

1
), 43.2 (s, CH, Cy

2
), 

33.4 (s, CH2, Cy
4
), 33.2 (s, CH2, Cy

3
), 4.8 (s, NCCH3).  ESI-MS: m/z 720.1372 

([6+PF6]
+
, Calc for C28H36F6N5P2Ru

+
: 720.1395, 100%).  * The NCCH3 signal was 

not observed. 
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8.2.10 Reaction of [5]PF6 with dppm 

 

Methylenebis(diphenylphosphane) (5 mg, 0.01 mmol) was added to a CD2Cl2 

solution of [5]PF6 (5mg, 0.01 mmol) in an NMR tube fitted with a Teflon tap. The 

solution was heated at 50 
o
C for 45 minutes and the 

31
P{

1
H} NMR spectrum was 

recorded.  Data is provided for [RuCl(η
1
-dppm)(cis-tach)(PPh3)]PF6, [8]PF6 from 

this spectrum.  
31

P{
1
H} NMR (CD2Cl2, 161.8 MHz, 293 K) δ 48.2 (d, 

2
JPP = 30.0 

Hz, PPh3), 45.1 (dd, 
2
JPP = 33.5, 

2
JPP = 30.0 Hz, RuPPh2), -28.1 (d, 

2
JPP = 33.4 Hz, 

pend-PPh2).  The 
1
H and 

31
P{

1
H} NMR spectra were recorded after a further 16 h of 

heating, however no identifiable signals were present due to degredation. 

 

8.3 Chapter 3 Experimental 

 

8.3.1 [RuCl(DMSO-S)2(cis-tach)]Cl, [8]Cl 

 

Cis-tach (65.0 mg, 0.503 mmol) was added to a solution of dichloro[fac-

tris(dimethylsulfoxide-κS)](dimethylsulfoxide-κO)ruthenium(II) (243.0 mg, 0.501 

mmol) in dimethylsulfoxide (20 mL).  The resulting yellow suspension was heated at 

130°C for 30 minutes.  The pale yellow solution was allowed to cool, and the 

product was precipitated out by addition of 200 mL of ethyl acetate.  The mixture 

was chilled to −20°C for 18 hours, forming more precipitate, which was isolated by 

filtration under reduced pressure, washed with ethyl acetate (2 x 20 mL) and dried in 

vacuo.  Yield: 200.1 mg (92%, 0.461 mmol of [RuCl(DMSO-S)2(cis-tach)]Cl).  

Found: C 26.33; H 5.83; N 8.96%.  Calcd for C10H27Cl2N3O2RuS2: C 26.26; H 5.95; 

N 9.19%.  
1
H NMR (D2O, 399.8 MHz, 293K): δ 4.52 (d, 

2
JHH = 11.6 Hz, 2H, NH2, 

N
2
), 4.23 (d, 

2
JHH = 11.6 Hz, 2H, NH2, N

2
), 3.88 (s, 2H, NH2, N

1
), 3.53 (s, 2H, CH, 

C
2
), 3.36 (s, 6H, (CH3)2SO), 3.27 (s, 1H, CH, Cy

1
), 2.14 (d, 

2
JHH = 15.5 Hz, 1H, 

CH2, Cy
4
), 2.07 (d, 

2
JHH = 15.5 Hz, 2H, CH2, Cy

3
), 2.04 (d, 

2
JHH = 15.5 Hz, 1H, CH2, 

Cy
4
), 1.84 (d, 

2
JHH = 15.5 Hz, 2H, CH2, Cy

3
);  

13
C{

1
H} NMR (D2O 100.5 MHz, 

293K): δ 44.2 (s, (CH3)2SO), 43.1 (s, CH, Cy
1
), 42.4 (s, CH, Cy

2
), 33.4 (s, CH2, 

Cy
4
), 32.5 (s, CH2, Cy

3
).  ESI-MS: m/z 422.0271 ([8]

+
, Calc for 

C10H27ClN3O2RuS2
+
: 422.0269, 100%).  ATR-IR (cm

−1
): 3261 (w), 2089 (m), 1595 

(m), 1359 (m), 1223 (m), 1174 (w), 1061 (s, S–O), 909 (m), 682 (m).  Crystals of 



210 

 

[8]PF6 suitable for X-ray diffraction analysis were obtained by the addition of 1.5 

equivalents of potassium hexafluorophoshate to a methanol solution followed by 

filtration and slow evaporation. 

 

8.3.2 [RuCl2(DMSO-S)(cis-tach)], [9] 

 

Crystals of [RuCl2(DMSO-S)(cis-tach)] [9] were obtained from an attempted 

crystallisation of [15]PF6 by slow evaporation. 

 

8.3.3 Aquation of [8]Cl: Mass Spectrometry 

 

An aqueous solution of [8]Cl (1 mM, 10 mL) was heated at 40°C for 18 hours.  The 

solution was diluted to 100 μM with 50% H2O/50% MeOH and the ESI mass 

spectrum recorded using a Bruker Esquire instrument.  Selected peaks:   

 

m/z Ion Calc. for Calc. Height (%) 

422.0 [8]
+ 

C10H27ClN3O2RuS2
+ 

422.0 5 

362.0 [8−DMSO+H2O]
+
 C8H23ClN3O2RuS

+ 
362.0 10 

344.0  [8−DMSO]
+
 C8H21ClN3ORuS

+
 344.0 10 

232.5  [8−Cl+DMSO]
2+

 
 

C12H33N3O3RuS3
2+ 

232.5 100 

202.5  [8−Cl+H2O]
2+

 C10H29N3O3RuS2
2+ 

202.5 50 

193.6  [8−Cl]
2+

 C10H27N3O2RuS2
2+

 193.5 60 

163.6  [8−DMSO−Cl+H2O]
2+

,
 

C8H23N3O2RuS
2+ 

163.5 30 

154.6  [8−DMSO−Cl]
2+

 C8H21N3ORuS
2+

 154.5 10 

 

Table 8.1:  ESI-MS data for the aquation of [8]Cl 

 

8.3.4 Aquation of [8]Cl: NMR Kinetics 

 

A solution of [8]Cl (10.8 mM) in D2O, (0.5 mL) with ethyl acetate (1 equiv.) was 

prepared under a dinitrogen atmosphere in an NMR tube fitted with a Teflon tap at 

40°C.  The sample was loaded into a thermally equilibrated Bruker AV500 NMR 

spectrometer, where 
1
H NMR spectra were recorded at 20 minute intervals for 14 
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hours.  Kinetic analysis of integrations relative to ethyl acetate were performed using 

DynaFit with the mechanisms [8]Cl → [8a]
n+

 + DMSO and [8]Cl → [8b]
n+

 + DMSO 

+ Cl
−
.
249

 

 

8.3.5 Aquation of [8]Cl: pH Study 

 

A solution of [8]Cl (10 mM) was prepared in 10% D2O/90% H2O (20 mL) with 10 

mM sodium phosphate and the pH adjusted to 6.4, 7.4 or 8.2 under an atmosphere of 

dinitrogen.  An aliquot (0.5 mL) was transferred into an NMR tube fitted with a 

Teflon tap under a dinitrogen atmosphere.  The solution was heated at 40°C for 18 

hours, after which the 
1
H NMR spectrum was recorded using a Bruker AV500 

spectrometer. 

 

8.3.6 Reaction of [8]Cl with Nucleosides 

 

An aqueous solution of [8]Cl (5 mM, 25 mL) was heated at 40°C for 18 hours with 

two equivalents of guanosine or adenosine.  The resulting solution was diluted to 

100 μM with 50% H2O/50% MeOH and the ESI mass spectrum recorded on a 

Bruker Esquire instrument. 

 

m/z Ion Calc. for Calc. Height (%) 

627.1 [8−DMSO+Guo]
+
 C18H34ClN8O6RuS

+ 
627.1 5 

591.1 [8−DMSO−Cl+Guo−H]
+
 C18H33N8O6RuS

+ 
591.2 100 

422.0 [8]
+
 C10H27ClN3O2RuS2

+ 
422.0 5 

398.6 [8−2DMSO−Cl+2Guo]
2+

 C26H41N13O10Ru
2+ 

398.6 25 

296.1 [8−DMSO−Cl+Guo]
2+

 C18H34N8O6RuS
2+ 

296.1 10 

230.1 [8−DMSO−Cl+Guo−ribose]
2+

 C13H26N8O2RuS
2+ 

230.0 25 

575.1  [8−DMSO−Cl+Ado−H]
+
 C18H33N8O5RuS

+ 
575.2 100 

 

Table 8.2:  ESI-MS data for the reaction of [8]
+
 and Guo (top) and Ado (bottom). 
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8.4 Chapter 4 Experimental 

 

8.4.1 [Ru(bipy)(DMSO-S)(cis-tach)](Cl)2, [10](Cl)2  

 

[8]Cl (45.7 mg, 0.0999 mmol) and 2,2’-bipyridine (18.7 mg, 0.120 mmol) were 

heated at 120ºC in water (5 mL) for 20 minutes, resulting in a deep red solution.  

Once cooled, the solution was washed with dichloromethane (3 x 10 mL) and dried 

in vacuo, giving a dark red residue.  This was dissolved in methanol (5 mL) and 

dried in vacuo, giving an orange powder.  Yield: 42.7 mg (80%, 0.0797 mmol of 

[Ru(bipy)(DMSO-S)(cis-tach)](Cl)2).  
1
H NMR (D2O, 399.8 MHz, 293K) δ 8.95 

(dd, 
3
JHH = 5.8 Hz, 

4
JHH = 1.2, 2H, bipy, Py

6
), 8.43 (dd, 

3
JHH = 8.3 Hz, 

4
JHH = 1.3, 

2H, bipy, Py
3
), 8.14 (td, 

3
JHH = 7.8 Hz,

 4
JHH = 1.2, 2H, bipy, Py

4
), 7.70 (ddd, 

3
JHH = 

7.8 Hz, 
3
JHH = 5.8 Hz,

 4
JHH = 1.3, 2H, bipy, Py

5
), 4.33 (d, 

2
JHH = 12.5 Hz, 2H, NH2, 

N
2
), 4.16 (d, 

2
JHH = 12.5 Hz, 2H, NH2, N

2
), 4.01 (s, 2H, NH2, N

1
), 3.49 (s, 2H, CH, 

Cy
2
), 3.24 (s, 1H, CH, Cy

1
), 2.63 (s, 6H, (CH3)2SO), 2.03 (m, 3H, CH2; 2H Cy

3
 + 1H 

Cy
4
), 1.83 (m, 3H, CH2; 2H Cy

3
 + 1H Cy

4
);  

13
C{

1
H} NMR (D2O, 100.5 MHz, 

293K) δ 157.7 (s, bipy, Py
2
), 151.5 (s, bipy, Py

6
), 138.6 (s, bipy, Py

4
), 127.3 (s, bipy, 

Py
5
), 125.5 (s, bipy, Py

3
), 43.5 (s, CH, Cy

2
), 43.1 (s, (CH3)2SO), 42.0 (s, CH, Cy

1
), 

33.2 (s, CH2, Cy
4
), 32.8 (s, CH2, Cy

3
).  ESI-MS: m/z 464.1064 ([10−H]

+
, Calc. for 

C18H28N5ORuS
+
: 464.1056, 5%), 232.5573 ([10]

2+
, C18H29N5ORuS

2+
: 232.5568, 

100).  ATR-IR (cm
−1

): 3383, 3211, 3101, 2919, 1602, 1444, 1369, 1226, 1127, 

1066, 1050, 1015 (s, S–O), 910.  Crystals of [10](PF6)2 suitable for X-ray diffraction 

were obtained by the addition of 3 equivalents of potassium hexafluorophoshate to a 

methanol solution of [10](Cl)2 followed by filtration and slow evaporation.   

 

8.4.2 [Ru(DMSO-S)(phen)(cis-tach)](Cl)2, [11](Cl)2 

 

[8]Cl (45.8 mg, 0.100 mmol) and 1,10-phenanthroline (21.6 mg, 0.120 mmol) were 

heated at 120ºC in water (5 mL) for 20 minutes, resulting in a deep red solution.  

Once cooled, the solution was washed with dichloromethane (3 x 10 mL) and dried 

in vacuo giving a dark red residue.  This was dissolved in methanol (5 mL) and dried 

in vacuo, giving an orange powder.  Yield: 35.9 mg (64%, 0.641 mmol of 

[Ru(DMSO-S)(phen)(cis-tach)](Cl)2).  Found: C 40.79; H 5.55; N 11.29%.  Calcd 
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for C20H29Cl2N5ORuS(2 H2O): C 40.34; H 5.58; N 11.75%.  
1
H NMR (D2O, 399.8 

MHz, 293K) δ 9.36 (dd, 
3
JHH = 5.3 Hz, 

4
JHH = 1.1, 2H, phen, Py

6
), 8.71 (dd, 

3
JHH = 

8.25 Hz, 
4
JHH = 1.1, 2H, phen, Py

4
), 8.16 (s, 2H, phen, Py

7
), 8.03 (dd, 

3
JHH = 8.25 

Hz, 
3
JHH = 5.3, 2H, phen, Py

5
), 4.54 (d, 

2
JHH = 12.4 Hz, 2H, NH2, N

2
), 4.31 (d, 

2
JHH 

= 12.4 Hz, 2H, NH2, N
2
), 3.90 (s, 2H, NH2, N

1
), 3.55 (s, 2H, CH, Cy

2
), 3.20 (s, 1H, 

CH, Cy
1
), 2.52 (s, 6H, (CH3)2SO), 2.07 (m, 3H, CH2; 2H Cy

3
 + 1H Cy

4
), 1.89 (m, 

3H, CH2; 2H Cy
3
 + 1H Cy

4
);  

13
C{

1
H} NMR (D2O, 100.5 MHz, 293K) δ 152.3 (s, 

phen, Py
6
),  148.2 (s, phen, Py

2
), 137.9 (s, phen, Py

4
), 131.2 (s, phen, Py

3
), 128.0 (s, 

phen, Py
7
), 125.6 (s, phen, Py

5
), 43.5 (s, CH, Cy

2
), 42.9 (s, (CH3)2SO), 42.0 (s, CH, 

Cy
1
), 33.2 (s, CH2, Cy

4
), 32.9 (s, CH2, Cy

3
).  ESI-MS: m/z 244.5570 ([11]

2+
, Calc. 

for C20H29N5ORuS
2+

: 244.5565, 100%).  ATR-IR (cm
−1

): 3374, 3251, 4149, 2922, 

1602, 1432, 1226, 1126, 1016 (s, S–O), 912.  Crystals of [11](PF6)2 suitable for X-

ray diffraction were obtained by the addition of 3 equivalents of potassium 

hexafluorophoshate to a methanol solution of [11](Cl)2 followed by filtration and 

slow evaporation.   

 

8.4.3 [Ru(DMSO-S)(en)(cis-tach)](Cl)2, [12](Cl)2 

 

[8]Cl (45.8 mg, 0.100 mmol) and 1,2-diaminoethane (7.2 mg, 8.0 μL, 0.12 mmol) 

were heated at 120ºC in water (5 mL) for 20 minutes, resulting in a deep red 

solution.  Once cooled, the solution was washed with dichloromethane (3 x 10 mL) 

and dried in vacuo giving an orange residue.  This was dissolved in methanol (5 mL) 

and dried in vacuo, giving an orange powder.  Yield: 29.7 mg (68%, 0.0676 mmol of 

[Ru(DMSO-S)(en)(cis-tach)](Cl)2).  
1
H NMR (D2O, 399.8 MHz, 293K) δ 4.66 (s, 

2H, NH2, N
1
), 4.10 (d, 

2
JHH = 12.0 Hz, 2H, NH2, N

2
), 3.71 (s, 1H, CH, Cy

1
), 3.60 (d, 

2H, 
2
JHH = 11.1 Hz, en-NH2), 3.48 (d, 2H, 

2
JHH = 11.1 Hz, en-NH2), 3.37 (d, 

2
JHH = 

12.0 Hz, 2H, NH2, N
2
), 3.34 (s, 6H, (CH3)2SO), 3.31 (s, 2H, CH, Cy

2
), 2.52 (s, 2H, 

en-CH2), 2.07 (d, 
2
JHH = 15.2 Hz, 2H, CH2, Cy

3
), 1.95 (d, 

2
JHH = 15.2 Hz, 2H, CH2, 

Cy
3
), 1.91 (d, 

2
JHH = 15.4 Hz, 2H, CH2, Cy

4
), 1.57 (d, 

2
JHH = 15.4 Hz, 2H, CH2, 

Cy
4
);  

13
C{

1
H} NMR (CD3OD, 100.5 MHz, 293K) δ 45.3 (s, 6H, (CH3)2SO), 44.6 (s, 

en-CH2), 43.2 (s, CH, C
1
), 42.9 (s, CH, C

2
), 33.1 (s, CH2, C

3
), 32.6 (s, CH2, C

4
).  

ESI-MS: m/z 368.1045 ([12−H]
+
, Calc. for C10H28N5ORuS

+
: 368.1057, 5%), 

184.5553 ([12]
2+

, C10H29N5ORuS
2+

: 184.5568, 100).  ATR-IR (cm
−1

): 3220 (m), 

3150 (vbr, s), 3108 (m), 2874 (w), 1609 (m), 1454 (m), 1329 (w), 1215 (w), 1129 
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(m), 1034 (s, S–O), 911 (m).  Crystals of [12](Cl)(PF6) suitable for X-ray diffraction 

were obtained by the addition of 3 equivalents of potassium hexafluorophoshate to a 

methanol solution of [12](Cl)2 followed by filtration and slow evaporation.   

 

8.4.4 Reaction of [11](Cl)2 with Guanosine 

An aqueous solution of [11](Cl)2 (5 mM, 25 mL) was heated at 40°C for 18 h with 

guanosine (2 eq).  The resulting solution was diluted to 100 μM with 50% H2O/50% 

MeOH and the ESI mass spectrum recorded on a Bruker Esquire instrument 

 

m/z Ion Calc. for Calc. Height (%) 

693.2  [11−DMSO+Guo−H]
+
 C28H36N10O5Ru

+ 
693.2 15 

347.2  [11−DMSO+Guo]
2+

 C28H37N10O5Ru
2+

 347.1 100 

244.6  [11]
2+ 

C20H29N5ORuS
2+ 

244.6 50 

214.6  [11−DMSO+H2O]
2+

 C18H25N5ORu
2+ 

214.6 25 

 

Table 8.3:  ESI-MS data for reaction of [11]
2+

 with Guo. 

 

8.4.5 [RuCl(η
4
-COD)(cis-tach)]PF6, [13]PF6 

 

A solution of mer-tris(acetonitrile)chloro(η
4
-1,5-cyclooctadiene)ruthenium(II) 

hexafluorophosphate (51.3 mg, 0.100 mmol) and cis-tach (13.0 mg, 0.101 mmol) in 

deoxygenated ethanol (10 mL) was heated at reflux for 2 h.  The orange solution was 

allowed to cool to room temperature, and the volume reduced by half in vacuo and 

diethyl ether (30 mL) added.  The resulting precipitate was collected by filtration and 

washed with diethyl ether (2 x 10 mL) and dried in vacuo. Yield: 35.0 mg (64%, 

0.0637 mmol of [RuCl(η
4
-COD)(cis-tach)]PF6).  

1
H NMR (CD3OD, 399.8 MHz, 

293K) δ 5.13 (s, 2H, NH2, N
1
), 4.20 (d, 2H, 

2
JHH = 11.2 Hz, NH2, N

2
), 3.97 (m, 2H, 

COD-CH), 3.73 (m, 4H: 2H, COD-CH; 2H, NH2, N
2
), 3.36 (s, 2H, CH, Cy

2
), 3.18 

(m, 1H, CH, Cy
1
), 2.50 (m, 2H, COD-CH2), 2.35 (m, 2H, COD-CH2), 2.16 (m, 2H, 

CH2, Cy
3
), 2.03 (m, 6H: 2H, CH2, Cy

4
; 4H, COD-CH2), 1.89 (d, 2H, 

2
JHH = 14.9 Hz, 

CH2, Cy
3
);  

13
C{

1
H} NMR (CD3OD, 100.5 MHz, 293K): 91.7 (s, COD-CH), 88.4 (s, 

COD-CH), 43.6 (s, CH, Cy
2
), 43.4 (s, CH, Cy

1
), 34.0 (s, CH2, Cy

3
), 33.5 (s, CH2, 

Cy
4
), 31.1 (s, COD-CH2), 29.5 (s, COD-CH2).  ESI-MS: m/z 374.0937 ([13]

+
, Calc. 
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for C14H27ClN3Ru
+
: 374.0932, 100%), 169.5588 ([13−Cl]

+
, C14H27N3Ru: 169.5624, 

25). 

 

8.4.6 Reaction of [13]PF6 with 2,2’-bipyridine 

 

A solution of [13]PF6 (5.0 mg) and 2,2’-bipyridine (2 eq) in CD3OD (0.5 mL) was 

heated at 100°C for 24 h in an NMR tube fitted with a Teflon tap under nitrogen.  

Although a colour change had occurred to red, the 
1
H NMR spectrum was identical 

to that of [13]PF6.  No significant reaction was observed after one week of further 

heating. 

 

8.4.7 Ru(NCMe)3(cis-tach)](Cl)2, [14](Cl)2 

 

All synthetic procedures were performed under deoxygenated conditions with an 

argon atmosphere.  [8]Cl (25.0 mg, 0.547 mmol) was taken up in the minimum 

volume of water (~ ½ mL), and acetonitrile (7 mL) added.  The solution was heated 

under relflux for 6 h and the solvent removed in vacuo.  The residue was taken up in 

the minimum volume of methanol, and addition of diethyl ether (50 mL) resulted in 

precipitation of the product, which was collected by filtration and dried in vacuo.  

Yield: 15.9 mg (69% of [Ru(NCCH3)3(cis-tach)](Cl)2).  
1
H NMR (D2O, 399.8 MHz, 

293K) δ 3.91 (s, 6H, NH2), 3.30 (s, 3H, CH), 2.41 (s, 9H, CH3CN), 1.92 (d, 
2
JHH = 

15.2 Hz, 3H, CH2), 1.70 (d, 
2
JHH = 15.2 Hz, 3H, CH2);  

13
C{

1
H} NMR (D2O, 100.5 

MHz, 293K) δ 123.9 (s, CH3CN), 42.9 (s, CH), 32.7 (s, CH2), 3.2 (CH3CN).  ESI-

MS: m/z 177.1 ([14]
2+

, Calc for C12H24N6Ru
2+

: 177.1, 100%), 165.5 

([14−NCMe+H2O]
2+

, C10H23N5ORu
2+

: 165.5, 60), 156.6 ([14−NCMe]
2+

, 

C10H21N5Ru
2+

: 156.5, 30), 145.1 ([14−2NCMe+H2O]
2+

, C8H20N4ORu
2+

: 145.0, 5). 

ATR-IR (cm
−1

): 3345 (br, m), 3221 (br, m), 3168 (m), 3118 (m), 2911 (w), 2266 (m, 

C≡N), 1619 (s), 1365 (m), 1228 (m), 1185 (m), 1129 (w), 1033 (w), 916 (m). 

 

8.4.8 Reaction of [14](Cl)2 with 2,2’-bipyridine 

 

A solution of [14](Cl)2 (5 mg, 0.01 mmol) and 2,2’bipyridyl (2 eq, 0.02 mmol) in 

CD3OD (0.5 mL) was heated at 100°C for 30 minutes, after which the 
1
H NMR 

spectrum was recorded.  Selected resonances:  
1
H NMR (CD3OD, 399.8 MHz, 
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293K) 9.45 (d), 9.33(d), 9.23(d) 9.17 (d), 8.66 (d), 8.57 (d), 8.47 (d), 8.37(d), 8.31 

(d), 8.19 (td), 8.01 (td), 7.96 (td), 7.81 (td), 7.77 (td), 7.63 (ddd), 7.51 (ddd), 7.45 

(ddd).  Further heating provided no change. 

 

8.5 Chapter 5 Experimental 

 

8.5.1 [RuCl(dppm)(cis-tach)]Cl, [15]Cl 

 

A solution of [8]Cl (50.1 mg, 0.109 mmol) in methanol (10 mL) was heated under 

reflux with methylenebis(diphenylphosphane) (76.9 mg, 0.200 mmol) for 18 h.  The 

solution was filtered to remove unreacted phosphane, and the solvent removed in 

vacuo.  The residue was taken up in dichloromethane (1 mL), followed by addition 

of diethyl ether (10 mL), resulting in precipitation.  The product was collected by 

filtration, and the process repeated.  The pale cream product was dried in vacuo.  

Yield: 41.0 mg (58%, 0.0631 mmol of [RuCl(dppm)(cis-tach)]Cl.1½H2O).  Found: 

C 52.40; H 5.26; N 5.85%.  Calcd for C31H37N3P2Cl2Ru(1½ H2O): C 52.25; H 5.66; 

N 5.89%.  
1
H NMR (CD3OD, 500.23 MHz, 300K) δ 7.74 (dd, 

3
JHP = 11.5 Hz, 

3
JHH = 

7.5 Hz, 
4
JHH = 1.5 Hz, 4H, PPh2, Ar

2a
), 7.67 (dd, 

3
JHP = 11.5 Hz, 

3
JHH = 7.5 Hz, 

4
JHH = 

1.5 Hz,  4H, PPh2, Ar
2b

), 7.50 (t, 
3
JHH = 7.5 Hz, 4H, PPh2, Ar

3a
), 7.43 (t, 

3
JHH = 7.5 

Hz, 
4
JHH = 1.5 Hz, 2H, PPh2, Ar

4a
), 7.34 (m, 6H, PPh2, Ar

3b
 + Ar

4b
), 5.79 (dt, 

2
JHH = 

15.8 Hz, 
2
JHP = 10.6 Hz, 1H, PCH2, Br

1
), 5.17 (d, 

2
JHH = 11.0 Hz, 2H, NH2, N

2
), 3.99 

(dt, 
2
JHH = 15.8 Hz, 

2
JHP = 11.4 Hz, 1H, PCH2, Br

1
), 3.72 (d, 

2
JHH = 11.0 Hz, 2H, 

NH2, N
2
), 3.60 (s, 2H, CH, Cy

2
), 2.95 (s, 1H, CH, Cy

1
), 2.30 (d, 

2
JHH = 14.9 Hz, 1H, 

CH2, Cy
4
), 2.28 (s, 2H NH2, N

1
), 2.17 (d, 

2
JHH = 14.9 Hz, 1H, CH2, Cy

4
), 1.95 (d, 

2
JHH = 14.9 Hz, 2H, CH2, Cy

3
), 1.72 (d, 

2
JHH = 14.9 Hz, 2H, CH2, Cy

3
);   

31
P{

1
H} 

NMR (CD3OD, 202.5 MHz, 295K) δ 10.1 (s, 2P, PPh2);  
13

C{
1
H} NMR (CD3OD, 

125.8 MHz, 295K) δ 136.12 (vt, |
1
JPC + 

3
JP’C| = 40 Hz, PPh2, Ar

1b
), 133.9 (vt, |

2
JPC + 

4
JP’C|  = 10 Hz, PPh2, Ar

2b
), 133.4 (vt, |

1
JPC + 

3
JP’C| = 33 Hz, PPh2, Ar

1a
), 132.2 (vt, 

|
2
JPC + 

4
JP’C| = 10 Hz, PPh2, Ar

2a
), 131.2 (s, PPh2, Ar

4a
), 131.1 (s, PPh2, Ar

4b
), 130.8 

(vt, |
3
JPC + 

5
JP’C| = 9 Hz, PPh2, Ar

3a
), 129.1 (vt, |

3
JPC + 

5
JP’C| = 9 Hz, PPh2, Ar

3b
), 

48.7 (m, PCH2, Br
1
), 44.8 (s, CH, C

2
), 44.7 (s, CH, C

1
), 35.5 (s, CH2, C

4
), 34.7 (s, 

CH2, C
3
).  ESI-MS: m/z 650.1213 ([15]

+
, Calc. for C31H37N3P2ClRu

+
: 650.1194, 

100%).  ATR-IR (cm
-1

): 3290 (br, w), 3121 (br, w), 2913 (br, w), 1609 (br, m), 1433 
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(m, P-Ph), 1368 (w), 1160 (m), 1098 (m), 901 (m), 726 (s), 705 (s).  Crystals of 

[15]PF6 suitable for X-ray crystallography were obtained by the addition of 1.5 

equivalents of potassium hexafluorophosphate to a methanol solution of [15]Cl 

followed by filtration and slow evaporation. 

 

8.5.2 [RuCl(dppe)(cis-tach)]Cl, [16]Cl 

 

A solution of [8]Cl (50.0 mg, 0.109 mmol) in methanol (10 mL) was heated under 

reflux with ethane-1,2-diylbis(diphenylphosphane) (85.0 mg, 0.213 mmol) for 18 h.  

The solution was filtered to remove unreacted phosphane, and the solvent removed 

in vacuo.  Ethanol (1 mL) was added to the residue, followed by diethyl ether (10 

mL) and the product collected by filtration, and the process repeated.  The pale 

cream product was dried in vacuo.  Yield: 76.6 mg (93%, 0.102 mmol of 

[RuCl(dppe)(cis-tach)]Cl.3H2O).  Found: C 50.88; H 5.66; N 5.65%.  Calcd for 

C32H39N3P2Cl2Ru(3 H2O): C 50.99; H 6.02; N 5.58%.  
1
H NMR (CD3OD, 500.2 

MHz, 295K) δ 7.87 (ddd, 4H, 
3
JHP = 8.8 Hz, 

3
JHH = 7.5 Hz, 

4
JHH = 1.2 Hz, PPh2, 

Ar
2a

), 7.48 (t, 4H, 
3
JHH = 7.7 Hz, PPh2, Ar

3b
), 7.43 (m, 8H, PPh2, Ar

2b
 + Ar

4a
 + Ar

4b
), 

7.30 (td, 4H, 
3
JHH = 7.5 Hz, 

4
JHH = 1.2 Hz, PPh2, Ar

3a
), 4.82 (d, 

2
JHH = 11.5 Hz, 2H, 

NH2, N
2
), 3.98 (d, 

2
JHH = 11.5 Hz, 2H, NH2, N

2
), 3.58 (br. s, 2H, CH, Cy

2
), 3.06 (m, 

ΣJHH,HP = 61.3 Hz, 
2
JHH = 16.1 Hz, 

3
JHH = 7.7 Hz, 2H, PCH2, Br

1
), 2.55 (s, 1H, CH, 

Cy
1
), 2.38 (m, ΣJHH,HP = 60.0 Hz, 

2
JHH = 16.1 Hz, 

3
JHH = 7.7 Hz, 2H, PCH2, Br

1
), 

2.30 (d, 
2
JHH = 15.8 Hz, 1H, CH2, Cy

4
), 2.10 (d, 

2
JHH = 15.8 Hz, 1H, CH2, Cy

4
), 1.76 

(d, 
2
JHH = 15.4 Hz, 2H, CH2, Cy

3
), 1.38 (d, 

2
JHH = 15.4 Hz, 2H, CH2, Cy

3
), 1.14 (s, 

2H NH2, N
1
);   

31
P{

1
H} NMR (CD3OD, 202.5 MHz, 295K) δ 78.3 (s, 2P, PPh2);  

13
C{

1
H} NMR (CD3OD, 125.8 MHz, 2950K) δ 136.2 (d, |

1
JPC + 

3
JP’C| = 40 Hz, 

PPh2, Ar
1a

),  135.6 (vquint., |
2
JPC + 

4
JP’C| = 20 Hz, PPh2, Ar

2a
), 135.3 (d, |

1
JPC + 

3
JP’C| 

= 40 Hz, PPh2, Ar
1b

), 132.1 (s, PPh2, Ar
4a

), 131.3 (s, PPh2, Ar
4b

), 130.9 (vquint., 

|
2
JPC + 

4
JP’C| = 20 Hz, PPh2, Ar

2b
), 130.7 (vquint., |

3
JPC + 

5
JP’C| = 20 Hz, PPh2, Ar

3b
), 

129.2 (vquint., |
3
JPC + 

5
JP’C| = 20 Hz, PPh2, Ar

3a
), 44.6 (s, CH, Cy

2
), 44.0 (s, CH, 

Cy
1
), 35.5 (s, CH2, Cy

3
), 34.3 (s, CH2, Cy

4
), 29.7 (m, |

2
JPC + 

4
JP’C| = 45 Hz, PCH2, 

Br
1
).  ESI-MS: m/z 664.1356 ([16]

+
, Calc. for C32H39N3P2ClRu

+
: 664.1351, 100%).  

ATR-IR (cm
-1

): 3395 (br, w), 3283 (br, w), 3145 (br, w), 2913 (br, w), 1604 (br, m), 

1432 (m, P-Ph), 1168 (m), 1131 (w), 1095 (m), 902 (m), 751 (m), 702 (s).  Crystals 

of [16]PF6 suitable for X-ray diffraction were obtained by the addition of 1.5 
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equivalents of potassium hexafluorophoshate to a methanol solution of [16]Cl 

followed by filtration and slow evaporation. 

 

8.5.3 [RuCl(dppp)(cis-tach)]Cl, [17]Cl 

 

A solution of [8]Cl (53.9 mg, 0.117 mmol) in methanol (10 mL) was heated under 

reflux with propane-1,3-diylbis(diphenylphosphane) (97.3 mg, 0.236 mmol) for 18 

h.  The solvent was removed in vacuo, recrystallised three times in 

dichloromethane/diethyl ether, collected by filtration and the pale cream product 

dried in vacuo.  Yield: 60.1 mg (69%, 0.0802 mmol of [RuCl(dppp)(cis-

tach)]Cl.2H2O).  Found: C 52.65; H 5.80; N 5.39%.  Calcd for C33H41N3P2Cl2Ru(2 

H2O): C 52.87; H 6.05; N 5.61%.  
1
H NMR (CD3OD, 500.2 MHz, 295K) δ 7.66 (br. 

s, 4H, PPh2, Ar
2b

), 7.54 (t, 
3
JHH = 7.5 Hz, 2H, PPh2, Ar

4a
), 7.47 (m, 6H, PPh2, Ar

4b
 + 

Ar
3b

), 7.44 (t, 
3
JHH = 7.5 Hz, 4H, PPh2, Ar

3a
), 7.12 (app. t, 

3
JHP = 9.2 Hz, 

3
JHH = 7.5 

Hz, 4H, PPh2, Ar
2a

), 3.61 (d, 2H, 
2
JHH = 11.8 Hz, NH2, N

2
), 3.29 (s, 2H, CH, Cy

2
), 

3.20 (d, 2H, 
2
JHH = 11.8 Hz, NH2, N

2
), 3.02 (s, 1H, CH, Cy

1
), 2.82 (m, 2H, PCH2, 

Br
1
), 2.80 (s, 2H NH2, N

1
), 2.34 (m, 2H, PCH2 Br

1
), 2.28 (m, 1H, PCH2CH2, Br

2
), 

2.00 (d, 1H, 
2
JHH = 15.0 Hz, CH2, Cy

4
), 1.90 (d, 1H, 

2
JHH = 15.0 Hz, CH2, Cy

4
), 1.83 

(d, 2H, 
2
JHH = 15.3 Hz, CH2, Cy

3
), 1.74 (d, 2H, 

2
JHH = 15.3 Hz, CH2, Cy

3
), 1.60 (m, 

ΣJHH,HP = 60.0 Hz, 
2
JHH = 13.6, 

3
JHH = 13.6 1H, PCH2CH2, Br

2
);  

31
P{

1
H} NMR 

(CD3OD, 202.5 MHz, 295K) δ 44.0 (s, 2P, PPh2);  
13

C{
1
H} NMR (CD3OD, 125.8 

MHz, 2950K) δ 136.4 (t, |
1
JPC + 

3
JP’C| = 37 Hz, PPh2, Ar

1a
), 134.5 (t, |

1
JPC + 

3
JP’C| = 

35 Hz, PPh2, Ar
1b

), 134.3 (t, |
2
JPC + 

4
JP’C| = 5 Hz, PPh2, Ar

2a
), 133.7 (t, |

2
JPC + 

4
JP’C| 

= 4 Hz, PPh2, Ar
2b

), 131.4 (s, PPh2, Ar
4a

), 130.9 (s, PPh2, Ar
4b

), 130.5 (t, |
3
JPC + 

5
JP’C| = 8.5 Hz, PPh2, Ar

3a
), 129.9 (t, |

3
JPC + 

5
JP’C| = 8.5 Hz, PPh2, Ar

3b
), 44.5 (s, CH, 

Cy
2
), 44.3 (s, CH, Cy

1
), 35.2 (s, CH2, Cy

4
), 34.4 (s, CH2, Cy

3
), 29.3 (t, |

1
JPC + 

3
JP’C| = 

35 Hz, PCH2, Br
1
), 20.9 (s, PCH2CH2, Br

2
).  ESI-MS: m/z 678.1505 ([17]

+
, Calc. for 

C33H41N3P2ClRu
+
: 678.1508, 100%).  ATR-IR (cm

-1
): 3399 (vbr, s), 3290 (w), 3158 

(w), 3052 (br, w), 2916 (br, w), 1587 (br, m), 1483 (w), 1433 (m, P-Ph), 1370 (w), 

1133 (m, br), 1094 (m), 902 (m), 747 (m), 699 (s).  Crystals of [17][Cl] suitable for 

X-ray diffraction were obtained by the slow evaporation of a saturated methanol 

solution. 
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8.5.4 [RuCl(dppb)(cis-tach)]Cl, [18]Cl 

 

A solution of [8]Cl (50.0 mg, 0.109 mmol) in methanol (10 mL) was heated under 

reflux with butane-1,4-diylbis(diphenylphosphane) (90.1 mg, 0.211 mmol) for 18 h.  

The solvent was removed in vacuo, and the residue recrystallised twice in 

dichloromethane/diethyl ether, and the product was dried in vacuo.  Yield: 45.2 mg 

(55%, 0.0599 mmol of [RuCl(dppb)(cis-tach)]Cl.1½H2O).  Found: C 54.16; H 6.01; 

N 5.84%.  Calcd for C34H43N3P2Cl2Ru(1½ H2O): C 54.11; H 6.14; N 5.56%.   
1
H 

NMR (CD3OD, 500.2 MHz, 295K) δ 7.67 (ddd, 
3
JHP = 12.0 Hz 

3
JHH = 7.3, 

4
JHH = 

1.5, 4H, PPh2, Ar
2a

), 7.61 (m, 6H, PPh2, Ar
3b

 + Ar
4b

), 7.47 (m, 
3
JHP = 9.6 Hz 

3
JHH = 

7.0, 
4
JHH = 1.5, 4H, PPh2, Ar

2b
), 7.42 (m, 6H, PPh2, Ar

3a
 + Ar

4a
), 3.70 (d, 2H, 

2
JHH = 

11.8 Hz, NH2, N
2
), 3.33 (d, 2H, 

2
JHH = 11.8 Hz, NH2, N

2
), 3.21 (m, 4H: 2H, CH, 

Cy
2
; 2H, PCH2, Br

1
), 2.65 (s, 1H, CH, Cy

1
), 2.55 (s, 2H, NH2, N

1
), 2.34 (m, ΣJHH,HP 

= 30.5 Hz, 
2
JHH = 13.6, 

2
JHH = 5.3, PCH2, Br

1
), 2.00 (d, 1H, 

2
JHH = 15.0 Hz, CH2, 

Cy
4
), 1.93 (m, 2H, PCH2CH2, Br

2
), 1.88 (d, 1H, 

2
JHH = 15.0 Hz, CH2, Cy

4
), 1.67 (d, 

2H, 
2
JHH = 15.0 Hz, CH2, Cy

3
), 1.49 (d, 2H, 

2
JHH = 15.0 Hz, CH2, Cy

3
), 1.35 (vquint, 

ΣJHH,HP = 49.0 Hz, 
2
JHH = 

3
JHH = 12.0, 2H, PCH2CH2, Br

2
);  

31
P{

1
H} NMR (CD3OD, 

202.5 MHz, 295K) δ 46.8 (s, 2P, PPh2);  
13

C{
1
H} NMR (CD3OD, 125.8 MHz, 

2950K) δ 139.1 (t, |
1
JPC + 

3
JP’C| = 36 Hz, PPh2, Ar

1a
), 135.8 (t, |

1
JPC + 

3
JP’C| = 34 Hz, 

PPh2, Ar
1b

), 135.0(t, |
2
JPC + 

4
JP’C| = 9 Hz, PPh2, Ar

2b
), 134.4 (t, |

2
JPC + 

4
JP’C| = 9 Hz, 

PPh2, Ar
2a

), 131.8 (s, PPh2, Ar
4b

), 130.8 (s, PPh2, Ar
4a

), 130.1 (t, |
3
JPC + 

5
JP’C| = 8 

Hz, PPh2, Ar
3b

), 129.7 (t, |
3
JPC + 

5
JP’C| = 8.5 Hz, PPh2, Ar

3a
), 44.3 (s, CH, Cy

2
), 44.0 

(s, CH, Cy
1
), 35.5 (s, CH2, Cy

4
), 33.6 (s, CH2, Cy

3
), 33.1 (t, |

1
JPC + 

3
JP’C| = 30 Hz, 

PCH2, Br
1
), 23.9 (s, PCH2CH2, Br

2
).  ESI-MS: m/z 692.1662 ([18]

+
, Calc. for 

C34H43N3P2ClRu
+
: 692.1665, 100%).  ATR-IR (cm

-1
): 3270 (vbr, s), 2925 (m), 2856 

(w), 1599 (br, m), 1483 (w), 1433 (m, P-Ph), 1352 (w), 1228 (w), 1176 (m), 1144 

(m), 1092 (m), 1006 (w), 903 (s), 815 (s), 700 (s).  Crystals of [18]Cl suitable for X-

ray diffraction were obtained from the standing on an aqueous solution of [18]Cl. 

 

8.5.5 [RuCl(dppv)(cis-tach)]Cl, [19]Cl 

 

A solution of [8]Cl (50.0 mg, 0.109 mmol) in methanol (5 mL) was heated under 

reflux with (Z)-ethylene-1,2-bis(diphenylphosphane) (80.0 mg, 0.202 mmol) under 

an argon atmosphere for 24 h, resulting in an orange solution.  The solution was 
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allowed to cool, the insoluble phosphane was removed by filtration, and diethyl 

ether (50 mL) added, forming a pale yellow precipitate.  The product was collected 

by filtration and dried in vacuo. Yield: 39.5 mg (50%, 0.0545 mmol of 

[RuCl(dppv)(cis-tach)]Cl.H2O).  Found: C 53.70; H 5.48; N 5.89%.  Calcd for 

C32H37N3P2Cl2Ru(H2O): C 53.71; H 5.49; N 5.87%.  
1
H NMR (CD3OD, 500.2 

MHz, 295K) δ 7.99 (t, 
3
JHP = 10.9 Hz, 

3
JHH = 7.6, 

4
JHH = 1.5, 4H, PPh2, Ar

2a
), 7.94 

(vd, |
2
JPH + 

3
JP’H| = 60.7 Hz, 2H, PCH=CHP, Br

1
), 7.52 (t, 

3
JHP = 10.1 Hz,  

3
JHH = 

7.6, 
4
JHH = 1.5, 4H, PPh2, Ar

2b
), 7.47 (t, 

3
JHH = 7.5 Hz, 4H, PPh2, Ar

3a
), 7.43 (m, 8H, 

PPh2, Ar
3b

 + Ar
4a

 + Ar
4b

), 5.17 (d, 2H, 
2
JHH = 11.4 Hz, NH2, N

2
), 3.99 (d, 2H, 

2
JHH = 

11.4 Hz, NH2, N
2
), 3.59 (s, 2H, CH, Cy

2
), 2.46 (s, 1H, CH, Cy

1
), 2.32 (d, 1H, 

2
JHH = 

15.1 Hz, CH2, Cy
4
), 2.13 (d, 1H, 

2
JHH = 15.1 Hz, CH2, Cy

4
), 1.77 (d, 2H, 

2
JHH = 15.0 

Hz, CH2, Cy
3
), 1.40 (d, 2H, 

2
JHH = 15.0 Hz, CH2, Cy

3
), 0.94 (s, 2H, NH2, N

1
);  

31
P{

1
H} NMR (CD3OD, 202.5 MHz, 295K) δ 76.5 (s, 2P, PPh2);  

13
C{

1
H} NMR 

(CD3OD, 125.8 MHz, 295K) δ 152.4 (vd, |
1
JPC + 

2
JP’C| = 69.5 Hz, PCH=CHP, Br

1
), 

136.0 (vquint., |
2
JPC + 

4
JP’C| = 18 Hz, PPh2, Ar

2a
), 135.7 (vd, |

1
JPC + 

3
JP’C| = 43 Hz, 

PPh2, Ar
1a

), 133.6 (vd, |
1
JPC + 

3
JP’C| = 43 Hz, PPh2, Ar

1b
), 132.4 (vquint., |

2
JPC + 

4
JP’C| = 17.5 Hz, PPh2, Ar

2b
), 131.5 (s, PPh2, Ar

4a
), 131.3 (s, PPh2, Ar

4b
), 130.7 

(vquint., |
3
JPC + 

5
JP’C| = 17.5 Hz, PPh2, Ar

3a
), 129.4 (vquint., |

3
JPC + 

5
JP’C| = 18 Hz, 

PPh2, Ar
3b

), 44.6 (s, CH, Cy
2
), 44.1 (s, CH, Cy

1
), 35.6 (s, CH2, Cy

4
), 34.3 (s, CH2, 

Cy
3
).  ESI-MS: m/z 662.1195 ([19]

+
, Calc. for C32H37N3P2ClRu

+
: 622.1194, 100%).  

ATR-IR (cm
-1

): 3462 (br, w), 3284 (m), 3245 (m), 3144 (br, w), 2934 (br, w), 1647 

(w), 1596 (w), 1481 (w), 1435 (m P-Ph), 1372 (w), 1176 (m), 1129 (w), 1093 (m), 

998 (w), 902 (m), 755 (s), 701 (s).  Crystals of [19]Cl suitable for X-ray diffraction 

analysis were obtained from the slow diffusion of diethyl ether into a methanol 

solution of [19]Cl. 

 

8.5.6 [RuCl(dppben)(cis-tach)]Cl, [20]Cl 

 

A solution of [8]Cl (50.0 mg, 0.109 mmol) in methanol (5 mL) with phenylene-1,2-

bis(diphenylphosphane) (80 mg, 0.179 mmol) was heated at 90 °C in sealed ampoule 

under argon for 48 h.  The deep orange solution was allowed to cool, over which a 

white precipitate formed. The unreacted phosphane precipitate was removed by 

filtration and diethyl ether (90 mL) added to the solution, forming a cream 

precipitate.  The mixture was cooled to -20 °C for 2 h, the product isolated by 



221 

 

filtration and dried in vacuo.  Yield: 58.6 mg (69%, 0.0748 mmol of 

[RuCl(dppben)(cis-tach)]Cl.2H2O). Found: C 55.50; H 5.44; N 5.33%.  Calcd for 

C36H39N3P2Cl2Ru(2 H2O): C 55.18; H 5.53; N 5.36%.  
1
H NMR (CD3OD, 500.2 

MHz, 295K) δ 8.07 (ddd, 
3
JHP = 11.0 Hz, 

3
JHH = 7.5 Hz, 

4
JHH = 1.2 Hz, 4H, PPh2, 

Ar
2a

), 7.52 (m, 6H: 2H, PPh2, Ar
4a

; 4H, PC6H4P, Br
2
 + Br

3
), 7.44 (t, 

3
JHH = 7.5 Hz, 

4H, PPh2, Ar
3a

), 7.39 (dd, 
3
JHH = 7.4 Hz, 

3
JHH = 7.2 Hz, 4H, PPh2, Ar

3b
), 7.34 (td, 

3
JHH = 7.2 Hz, 

4
JHH = 1.4 Hz, 4H, PPh2, Ar

4b
), 7.34 (ddd, 

3
JHP = 10.0 Hz, 

3
JHH = 7.4 

Hz, 
4
JHH = 1.4 Hz, 4H, PPh2, Ar

4b
), 4.93 (d, 

2
JHH = 11.8 Hz, 2H, NH2, N

2
), 3.87 (d, 

2
JHH = 11.8 Hz, 2H, NH2, N

2
), 3.56 (s, 2H, CH, Cy

2
), 2.72 (s, 1H, CH, Cy

1
),  2.30 (d, 

2
JHH = 15.4 Hz, 1H, CH2, Cy

4
), 2.14 (d, 

2
JHH = 15.4 Hz, 1H, CH2, Cy

4
), 1.86 (d, 

2
JHH 

= 15.2 Hz, 2H, CH2, Cy
3
), 1.74 (d, 

2
JHH = 15.2 Hz, 2H, CH2, Cy

3
), 1.39 (s, 2H, NH2, 

N
2
);  

31
P{

1
H} NMR (CD3OD, 202.5 MHz, 295K) δ 72.9 (s, 2P, PPh2);  

13
C{

1
H} 

NMR (CD3OD, 125.8 MHz, 2950K) δ 145.6 (vt, |
1
JPC + 

2
JP’C| = 82 Hz, PC6H4P, 

Br
1
), 139.9 (t, |

2
JPC + 

4
JP’C| = 10 Hz, PPh2, Ar

2a
), 133.6 (m, PPh2, Ar

1a
 + Ar

1b
), 133.5 

(t, |
2
JPC + 

3
JP’C| = 17 Hz, PC6H4P, Br

2
), 133.0 (t, |

2
JPC + 

4
JP’C| = 9 Hz, PPh2, Ar

2b
), 

131.8 (s, PC6H4P, Br
3
; s, PPh2, Ar

4a
), 131.1 (s, PPh2, Ar

4b
), 130.5 (t, |

3
JPC + 

5
JP’C| = 9 

Hz, PPh2, Ar
3b

), 129.5 (t, |
3
JPC + 

5
JP’C| = 9 Hz, PPh2, Ar

3a
), 44.7 (s, CH, Cy

2
), 44.4 (s, 

CH, Cy
1
), 35.6 (s, CH2, Cy

4
), 34.3 (s, CH2, Cy

3
).  ESI-MS: m/z 712.1372 ([20]

+
, 

Calc. for C36H39N3P2ClRu: 712.1352
+
, 100%).  IR (ATR) (cm

-1
): 3646 (br, w), 3282 

(w), 3241 (w), 3110 (vbr, m), 3069 (br, w), 2914 (br, w), 1611 (br, m), 1482 (w), 

1431 (m, P-Ph), 1368 (w), 1170 (s), 1127 (w), 1091 (s), 902 (m), 754 (s), 701 (s).  

Crystals of [20]Cl suitable for X-ray diffraction analysis were obtained from the slow 

diffusion of diethyl ether into a methanol solution of [20]Cl. 

 

8.6 Chapter 6 Experimental  

 

8.6.1 NMR Spectroscopy 

 

NMR experiments were performed using a Bruker AV 500 spectrometer operating at 

500.23 MHz (
1
H) and  202.50 (

31
P).  

1
H NMR experiments using solvent suppression 

techniques used the zgesgp pulse program with 1D excitation sculpting (using 180° 

water-selective pulses).  Quantitative phosphorus experiments were performed using 

the zgig pulse program with a relaxation delay (D1) of 10 s.  Unless otherwise stated, 
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all NMR experiments were performed at in H2O supplemented with 1.6% CD3OD as 

a lock solvent and solvent suppression techniques employed.  

 

8.6.2 Mass Spectrometry of Aquation Products 

 

A solution of [16]Cl or [17]Cl (300 μM) in H2O or D2O (5 mL) was heated at 310 K 

for 2 h.  The solution was diluted to 15 mL with H2O or D2O and 5 mL CH3OH or 

CD3OD added, giving a final concentration of approximately 75 μM.  The ESI mass 

spectrum was recorded on a Bruker Esquire instrument.   

 

 Solvent [M]
+
 (calc, %) [M−Cl+OH]

+a
 (calc, %)

 
[M−Cl]

2+
 (calc, %) 

[16]Cl H2O 664.0 (664.1, 10) 646.1 (646.2, 50) 314.6 (314.6, 100) 

[16]Cl D2O 664.1 (664.1, 60) 647.2 (647.1, 100) 314.7 (314.6, 75) 

[17]Cl H2O 678.1 (678.2, 100) 660.1 (660.2, 20) 321.6 (321.6, 60) 

[17]Cl D2O 678.1 (678.1, 100) 661.2 (661.2, 60) 321.6 (321.6, 40) 

 

Table 8.4: ESI-MS data for aquation of [16]Cl and [17]Cl in H2O and D2O. a) 

[M−Cl+OD]
+
 when in D2O. 

 

8.6.3 [Ru(OH2)(dppe)(cis-tach)](OTf)2, [16a](OTf)2 

 

A solution of [16]Cl (500 μM) and silver triflate (2 equiv) in H2O (25 mL) was 

stirred for 18 h, shielded from light.  The resulting suspension was filtered over celite 

to remove the insoluble silver chloride.  1,4-dioxane (1 equiv, reference at δH 3.75) 

and CD3OD (1.6%) were added to the solution.  NMR spectra were recorded on a 

Bruker Avance AV500 spectrometer at 310 K using solvent suppression techniques 

and CD3OD as deuterium lock.  
1
H NMR (H2O, 500.2 MHz, 298K) δ 7.62 (t, J = 8.6 

Hz, 4H, PPh2), 7.50 (m, 16H, PPh2), 4.27 (d, 
2
JHH = 12.5 Hz, 2H, NH2, N

2
*), 3.37 (s, 

2H, CH, Cy
2
), 3.12 (m, 2H, PCH2), 2.68 (m, 2H, PCH2), 2.38 (s, 1H, CH, Cy

1
), 2.27 

(d, 
2
JHH = 14.8 Hz, 1H, CH2, Cy

4
), 2.18(d, 

2
JHH = 14.8 Hz, 1H, CH2, Cy

4
), 1.74 (d, 

2
JHH = 17.7 Hz, 2H, CH2, Cy

3
), 1.26 (s, 2H, NH2, N

1
), 0.99 (d, 

2
JHH = 17.7 Hz, 2H, 

CH2, Cy
3
); 

31
P{

1
H} NMR (H2O, 202.5 MHz, 295K) δ 74.6 (s, 2P, PPh2).  * 
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Integration suppressed and geminal resonance not observed due to solvent 

suppression technique.   

 

8.6.4 [Ru(OH2)(dppp)(cis-tach)](OTf)2, [17a](OTf)2 

 

A solution of [17]Cl (500 μM) and silver triflate (2 equiv) in H2O (25 mL) was 

stirred for 18 h, shielded from light.  The resulting suspension was filtered over celite 

to remove the insoluble silver chloride.  1,4-dioxane (1 equiv, reference at δH 3.75) 

and CD3OD (1.6%) were added to the solution.  NMR spectra were recorded on a 

Bruker Avance AV500 spectrometer at 310 K using solvent suppression techniques 

and CD3OD as deuterium lock.  
1
H NMR (H2O, 500.2 MHz, 298K) δ 7.59 (app q, J 

= 7.4 Hz, 2H, PPh2), 7.54 (d, J = 7.6 Hz, 2H, PPh2), 7.50 (t, J = 7.4 Hz, 8H, PPh2), 

7.42 (t, J = 7.6 Hz, 4H, PPh2), 7.25 (t, J = 7.4 Hz, 4H, PPh2), 3.78 (d, 
2
JHH = 15.3 

Hz, NH2, N
2
), 3.35 (m, 4H; 2H, NH2, N

2
; 2H CH*, Cy

2
), 2.90 (s, 1H, CH, Cy

1
), 2.64 

(m, 2H, PCH2), 2.45 (m, 4H; 2H, PCH2; 2H NH2*, N
1
), 2.27 (m, 1H, PCH2CH2), 

1.99 (app. s, 2H; CH2, Cy
4
), 1.92 (m, 1H, PCH2CH2), 1.82 (d, 

2
JHH = 17.5 Hz, 2H, 

CH2, Cy
3
), 1.46 (d, 

2
JHH = 17.5 Hz, 2H, CH2, Cy

3
); 

31
P{

1
H} NMR (H2O, 202.5 MHz, 

295K) δ 41.7 (s, 2P, PPh2).  * Unable to unequivocally assign resonances without 

1
H/

13
C 2D correlation spectrum. 

 

8.6.5 NMR Sample Preparation – Aquation Experiments 

 

Sodium phosphate solutions were prepared prior to addition of ruthenium complex.  

Desired salts (where stated, e.g. NaCl, 4–100 mM) were added to NaH2PO4 and 

Na2HPO4 solutions (10 mM) in Millipore water.  The Na2HPO4 solution was titrated 

to pH 7.4 using the NaH2PO4 solution at 310 K.  Solutions were stored in the dark in 

a sealed vessel prior to use. 

 

A stock solution of [16]Cl or [17]Cl (50 μL, 20 mM) in CD3OD was added to the 

sodium phosphate solution (3 mL) giving a final concentration of approximately 300 

μM.  The solutions were heated at 310 K for 2 h prior to loading in the spectrometer.  

1
H and/or 

31
P{

1
H} NMR spectra were recorded on a Bruker Avance AV500 

spectrometer at 310 K using solvent suppression techniques and CD3OD as 

deuterium lock. 
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Determination of Phosphate Complex 

 

Procedure for NMR sample preparation was followed; however sodium phosphate 

solutions used were 0, 10 and 20 mM concentrations. 

 

Low Concentration NMR Studies 

 

For [16]Cl, a 50 μM solution was prepared in 10% D2O/90% H2O and heated at 310 

K for 2 h.  The 
1
H NMR spectrum was recorded on a Bruker Avance AV 700 

spectrometer at 310 K.  For [17]Cl, the NMR sample preparation was followed, 

however the solution was diluted with 1.6% CD3OD/H2O to 10 μM and the 
1
H NMR 

spectrum recorded on a Bruker Avance AV 500.   

 

Stability Studies 

 

The NMR sample preparation was followed, however 
1
H NMR spectra were 

recorded after 1, 24 and 48 h of heating at 310 K. 

 

8.6.6 pH Titrations 

 

Solutions of the aqua complexes [16a](OTf)2 and [17a](OTf)2 were prepared by the 

addition of silver triflate (2 equiv) to a solution of [16]Cl and [16]Cl (500 μM) in 

H2O (25 mL).  The solutions were stirred for 18 h, shielded from light.  The resulting 

suspension was filtered over celite, and 1,4-dioxane (1 equiv) and CD3OD (1.6%) 

added.  pH values were adjusted using triflic acid (0.1 M) or sodium hydroxide 

(0.01, 0.1 and 1 M) supplemented with 1.6% CD3OD to between pH 2 and 12.  A 

small amount of leakage of Cl
−
 ions from the electrode occurred into the solutions, 

as evident in the UV/Vis titration of [17a]
2+

.  UV/Vis spectra were recorded on an 

Aglient Technologies UV-Vis Diode Array spectrometer, and 
1
H NMR spectra on a 

Bruker Avance AV500 spectrometer using solvent suppression techniques and 

CD3OD as deuterium lock.  Solutions were maintained at 298 K throughout the 

experiment.  Selected resonances were fitted to the Henderson-Hasselbalch equation 

with the assumption that the observed chemical shifts are weighted averages 

according to the populations of the protonated and deprotonated species. 
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8.6.7 Kinetics of Aquation 

 

Sodium phosphate solutions were prepared prior to addition of ruthenium complex.  

NaH2PO4 and Na2HPO4 solutions (10 mM) were prepared in Millipore water and the 

Na2HPO4 solution was titrated to pH 7.4 using the NaH2PO4 solution at the 

temperature to be used (288 – 310 K).  Solutions were stored in the dark in a sealed 

vessel prior to use. 

 

A stock solution of [16]Cl or [17]Cl (50 μL, 20 mM) in CD3OD was added to a 

sodium phosphate solution (3 mL, pH 7.4, no added salts) giving a final 

concentration of approx. 300 μM in situ.  The absorbance was recorded at 5 (single 

wavelength, λ = 310/300 nm for [16]Cl/[17]Cl) or 20 s (diode array) intervals at T = 

288–310 K.  After the reaction was complete (no change in absorbance was 

observed), the 
1
H NMR spectrum was recorded using a Bruker Avance AV500 

spectrometer at the required temperature (288 – 310 K) using solvent suppression 

techniques and CD3OD as deuterium lock.  The proportions of the aqua and chlorido 

species were obtained from 
1
H NMR integrations and the equilibrium constant, K, 

calculated by Eqn. 9.1. 

 

   
           

          
 

 

Equation 8.1:  Calculation of the equilibrium constant, K, for the aquation of [16]Cl 

and [19]Cl.  The concentration of Cl
−
 was calculated from those of the ruthenium 

complexes. 

 

The initial and final absorbance values for the kinetic profile was calculated using 

DynaFit,
249

 and the absorption coefficients for the chlorido and aqua species 

calculated using Eqn. 9.2, assuming no contribution to the absorbance from the 

minor amounts of phosphate complex (< 2.5%) 
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Equation 8.2:  Calculation of the absorption coefficients for the aqua and chlorido 

complexes. 

 

The absorbance coefficients were applied to the Dynafit script and the time-

absorbance data fitted to first order reaction [X]
+
 → [Y]

2+
 + Cl

−
, giving the first 

order rate constant (k).  The anation rate constant (k’) was calculated using the 

equation k’ = k / K. 

 

Full kinetic analysis of [17]Cl was not performed due to limitations of the reaction.  

However, analysis was performed at 298 K using the same technique as for [16]Cl, 

but the absorbance was measured at 300 nm (for [17]Cl). 

 

8.6.8 Equilibrium Constants 

 

NMR Samples were prepared in the same manner as Kinetics of Aquation (Section 

8.6.7), however with addition of NaCl (0 to 100 mM) to the buffer solution prior to 

titration to pH 7.4.  Samples were heated at 310 K for 2 h.  
1
H NMR spectra were 

recorded on a Bruker Avance AV500 spectrometer at 310 K using solvent 

suppression techniques and CD3OD as deuterium lock.  
31

P{
1
H} NMR spectra were 

recorded on a Bruker Avance AV500 spectrometer at 310 K using CD3OD as 

deuterium lock and the zgig pulse sequence (d1 = 10 s). 

 

8.6.9 NMR Sample Preparation – Guanine and GSH Experiments 

 

A solution of [16]Cl or [17]Cl (1 mM) and 9-EtG, GMP or GSH (1 mM) in H2O (5 

mL) with CD3OD (85 μL, 1.6%) was heated at 310 K for 24 h.  
1
H and 

31
P{

1
H} 

NMR spectra were recorded on a Bruker Avance AV500 spectrometer at 310 K 

using solvent suppression techniques and CD3OD as deuterium lock.  NMR spectra 

of a negative control for each complex (complex only, 1 mM, without 9-EtG, GMP 

or GSH) was also obtained after 24 h at 310 K. 
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8.6.10 Mass Spectroscopy of [16]Cl with Guo 

 

A solution of [16]Cl (1 mM) and Guo (2 mM) in H2O (5 mL) 310 K for 24 h.  50% 

methanol was added to an aliquot of the solution and the ESI mass spectrum 

recorded on a Bruker Esquire instrument. 

 

m/z Ion Calc. for Calc. Height (%) 

911.1  [16−Cl+Guo]
+
 

 
911.3 30 

664.1  [16]
+
  664.1 100 

646.2  [16−Cl+OH]
+  

646.2 30 

456.2  [16−Cl+Guo]
2+

 
 

456.1 30 

314.7  [16−Cl]
2+

 
 

314.6 70 

 

Table 8.5:  ESI-MS data for the reation of [16]Cl with Guo. 

 

8.6.11 Interaction of Ruthenium Complexes with pUC18 Plasmid DNA 

 

Aliquots (10 μL) of pUC18 plasmid DNA (105 ng, 161 μM bp) were incubated at 

37°C for 20 h with between 0.025 and 1.0 bpe (base pair equivalents) of the 

ruthenium complexes [16]Cl or [17]Cl.  After incubation, gel loading buffer (3 μL) 

was added the samples, and separated by electrophoresis in 1% agarose gel for 1 h at 

100 V, 400 mA using Tris-acetate-EDTA buffer (TAE).  The gel was stained with 

ethidium bromide solution for 5 minutes and imaged by UV.  Cisplatin (0.1 bpe) and 

pUC18 linearised by a single cut with SmaI were employed as controls. 

 

8.6.12 DFT Calculations 

 

Initial optimisations were performed at the (RI-)BP86/SV(P) level, followed by 

frequency calculations at the same level. All minima were confirmed as such by the 

absence of imaginary frequencies and all transition states were identified by the 

presence of only one imaginary frequency.  
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Single-point calculations on the (RI-)BP86/SV(P) optimised geometries were 

performed using the hybrid PBE0 functional and the flexible def2-TZVPP basis set. 

The (RI-)PBE0/def2-TZVPP SCF energies were corrected for their zero point 

energies, thermal energies and entropies (obtained from the (RI-)BP86/SV(P)-level 

frequency calculations). In all calculations, a 28 electron quasi-relativistic ECP 

replaced the core electrons of Ru. No symmetry constraints were applied during 

optimisations. All calculations were performed using the TURBOMOLE V5.10 

package using the resolution of identity (RI) approximation.
299
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Appendix I. ORTEP Diagrams of [17–20]Cl 

 

 

 

Figure I.1:  ORTEP (50% probability ellipsoids) diagram of [17]Cl(H2O)2.15.MeOH.  

Hydrogen atoms (except for amino hydrogens), counter ion and solvent of 

crystallisation are omitted for clarity.  Selected bond lengths (/Å) and angles (/°): 

Ru(1)–N(1) 2.133(2), Ru(1)–N(2) 2.182(2), Ru(1)–N(3) 2.185(2), Ru(1)–P(1) 

2.2721(1), Ru(1)–P(2) 2.2836(1), Ru(1)–Cl(1) 2.4404(1), N(1)–Ru(1)–N(2) 

90.77(6), N(1)–Ru(1)–N(3) 87.28(6), N(2)–Ru(1)–N(3) 82.11(7), N(1)–Ru(1)–Cl(1) 

169.78(4), N(2)–Ru(1)–P(1) 173.01(5), N(3)–Ru(1)–P(2) 172.47(5), P(1)–Ru(1)–

P(2) 89.481(17), P(1)–Ru(1)–Cl(1) 88.939(17), P(2)–Ru(1)–Cl(1) 90.332(16).  

Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–

H...A, H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom 

*):  N(1)–H(1a)...C(22)* 4.29, 3.53, 147, 35.7, 2.06 (V); N(2)–H(2d)...C(28)* 3.99, 

3.28, 147, 48.2, 2.44 (V); N(3)–H(3b)...C(16)* 3.77, 2.99, 156, 52.1, 3.26 (V).   

Malone hydrogen-bond type is given in parenthesis.
206
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Figure I.2:  ORTEP (50% probability ellipsoids) diagram of [18]Cl(H2O)4.  

Hydrogen atoms (except for amino hydrogens), counter ion and solvent of 

crystallisation are omitted for clarity.  Selected bond lengths (/Å) and angles (/°): 

Ru(1)–N(1) 2.139(4), Ru(1)–N(2) 2.172(4), Ru(1)–N(3) 2.174(5), Ru(1)–P(1) 

2.2872(13), Ru(1)–P(2) 2.2860(14), Ru(1)–Cl(1) 2.4379(12), N(1)–Ru(1)–N(2) 

86.67(16), N(1)–Ru(1)–N(3) 87.22(16), N(2)–Ru(1)–N(3) 82.67(17), N(1)–Ru(1)–

Cl(1) 168.19(12), N(2)–Ru(1)–P(1) 173.32(12), N(3)–Ru(1)–P(2) 174.30(12), P(1)–

Ru(1)–P(2) 92.98(5), P(1)–Ru(1)–Cl(1) 90.44(4), P(2)–Ru(1)–Cl(1) 93.48(5).  

Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–

H...A, H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom 

*):  N(1)–H(1a)...C(23)* 3.87, 3.00, 164, 55.9, 2.43 (V); N(3)–H(3a)...C(17)* 3.47, 

2.58, 169, 63.5, 2.31 (V).   Malone hydrogen-bond type is given in parenthesis.
206
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Figure I.3:  ORTEP (50% probability ellipsoids) diagram of [19]Cl(H2O)1.5.  

Hydrogen atoms (except for amino hydrogens), counter ion and solvent of 

crystallisation are omitted for clarity. Selected bond lengths (/Å) and angles (/°): 

Ru(1)–N(1) 2.1266(15), Ru(1)–N(2) 2.1932(15), Ru(1)–N(3) 2.2003(15), Ru(1)–

P(1) 2.2661(5), Ru(1)–P(2) 2.2699(5), Ru(1)–Cl(1) 2.4415(4), N(1)–Ru(1)–N(2) 

88.84(6), N(1)–Ru(1)–N(3) 87.18(6), N(2)–Ru(1)–N(3) 83.50(6), N(1)–Ru(1)–Cl(1) 

172.04(4), N(2)–Ru(1)–P(1) 177.59(5), N(3)–Ru(1)–P(2) 178.34(4), P(1)–Ru(1)–

P(2) 83.207(17), P(1)–Ru(1)–Cl(1) 93.562(16), P(2)–Ru(1)–Cl(1) 92.982(16).   

Selected hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–

H...A, H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom 

*):  N(1)–H(1a)...C(21)* 3.51, 2.61, 160, 64.2, 2.35 (II); N(1)–H(1b)...C(9)* 3.69, 

2.87, 165, 59.4, 2.48 (V).   Malone hydrogen-bond type is given in parenthesis.
206
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Figure I.4:  ORTEP (50% probability ellipsoids) diagram of [20]Cl(CH3OH)3.  

Hydrogen atoms (except for amino hydrogens), counter ion and solvent of 

crystallisation are omitted for clarity. Selected bond lengths (/Å) and angles (/°): 

Ru(1)–N(1) 2.124(2), Ru(1)–N(2) 2.181(2), Ru(1)–N(3) 2.182(2), Ru(1)–P(1) 

2.2756(6), Ru(1)–P(2) 2.2657(6), Ru(1)–Cl(1) 2.4426(6), N(1)–Ru(1)–N(2) 

88.37(8), N(1)–Ru(1)–N(3) 87.37(8), N(2)–Ru(1)–N(3) 84.43(8), N(1)–Ru(1)–Cl(1) 

169.11(6), N(2)–Ru(1)–P(1) 178.69(6), N(3)–Ru(1)–P(2) 179.52(6), P(1)–Ru(1)–

P(2) 84.00(2), P(1)–Ru(1)–Cl(1) 95.21(2), P(2)–Ru(1)–Cl(1) 95.16(2).  Selected 

hydrogen-bond (D–H...A–X) lengths (Å) and angles (/°) D...A, H...A, D–H...A, 

H...A–X, H...X (A = centroid and X = plane of respective phenyl ring of atom *):  

N(1)–H(1a)...C(25)* 3.78, 3.005, 164, 53.9, 2.43 (II); N(1)–H(1b)...C(13)* 3.73, 

2.95, 161, 54.8, 2.41 (V).   Malone hydrogen-bond type is given in parenthesis.
206
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Figure II.1:  ORTEP (50 % probability ellipsoids) diagram of the asymmetrical unit 

of [18]PF6.  Hydrogen atoms (except for amino hydrogens), solvent of crystallisation 

and counter ion are omitted for clarity. Selected bond lengths (/Å) and angles (/°):  

Ru(1)–N(1) 2.1842(14), Ru(1)–N(2) 2.1798(15), Ru(1)–N(3) 2.1801(15), Ru(1)–

C(1) 2.1378(17), Ru(1)–C(2) 2.134(2), Ru(1)–C(3) 2.147(2), Ru(1)–C(4) 2.134(2), 

Ru(1)–C(5) 2.143(2), Ru(1)...c 1.76, N(1)–Ru(1)–N(2) 85.28(5), N(2)–Ru(1)–N(3) 

84.40(6), N(1)–Ru(1)–N(3) 84.75(6), N(1)–Ru(1)...c 130, N(2)–Ru(1)...c 129, N(3)–

Ru(1)...c 128, Cis-tach cone 126.5(10), Cp cone 101.5(3). c = centroid of Cp ring. 

 

 

ref 

average 

r(Ru–C) (Å) Cone Angle (°) 

[Ru(η
5
-C5H5)(NCMe)3]

+
  

288
 2.135(3)  

[Ru(η
5
-C5H5)(cis-tach)]

+
   2.138(1) 126.5(10) 

[Ru(η
5
-C5H5)(ĸ

3
-Tp)] 

289
 2.153(3) 169(1) 

[Ru(η
5
-C5H5)2] 

290
 2.202(2) 101.5(3) 

[Ru(η
5
-C5H5)(η

6
-C6H6)]

+
 

291
 2.208(2) 108.56(2) 

 

Table II.1: Comparison of average Ru–C bond lengths of the RuCp fragment in 

various complexes. Averages calculated as the weighted mean.
220

  Cone angles were 

calculated as the average of the outermost centroid...Ru...H angles. 
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Appendix II. Preparation of a Metallocene Analogue 

 

The acetonitrile precursor compound [Ru(η
5
-C5H5)(NCMe)3]PF6 provides a 

structural template for the preparation of a ruthenocene analogue with cis-tach. The 

reaction of [Ru(η
5
-C5H5)(NCMe)3]PF6 with cis-tach in CD2Cl2 occurs rapidly, giving 

[Ru(η
5
-C5H5)(cis-tach)]PF6 (Scheme II.1).* 

 

 

 

 
  [18]PF6 

 

Scheme II.1:  Preparation of the ruthenocene analogue [18]PF6 from [Ru(η
5
-

C5H5)(NCMe)3]PF6 and cis-tach. 

 

On standing, single crystals suitable for X-ray diffraction analysis slowly formed 

from the reaction mixture.  An ORTEP diagram and selected bond lengths and 

angles are given in Fig. II.1.  Most interestingly the cone angle of cis-tach when 

participating in ĸ
3
 coordination to ruthenium can be calculated (Table II.1).  This is 

aided by the absence of bulky co-ligands or significant hydrogen-bonding, coupled 

with the geometrical freedom incurred by the Cp ligand.  The cone angle was 

calculated as 126.5(10)°, which is between that of the small carbon donor  (Cp, η
6
-

benzene) ligands the bulky pyrazolyl-based ligands (Tp).  In comparison, the average 

ruthenium carbon bond lengths (Table II.1) for the η
5
-C5H5 ligand of 2.138(1) Å are 

significantly shorter for [9]PF6 than in analogous organometallic and Tp complexes.  

This observation is accounted for by the increased π-acceptor character of these 

ligands, whereas cis-tach has no suitable orbitals.   

___________________________________________________________________________________________ 

*Experimental Data: [Ru(η5-C5H5)(NCMe)3]PF6 (4 mg 0.015 mmol) and cis-tach (2mg 0.015 mmol) were 

taken up in CD2Cl2 (0.5 mL) and allowed to mix for 5 minutes. The solution was left to stand for 24 h, over 

which crystals suitable for X-ray diffraction has formed.  1
H NMR (CD2Cl2, 399.8 MHz, 293 K) δ 3.95 (br. s, 

6H, NH2), 3.72 (s, 5H, Cp), 3.54 (br. s, 3H, CH), 1.81 (m, 6H, CH2);  
13C{1H} NMR (CD2Cl2, 399.8 MHz, 293 

K) δ 63.4 (s, Cp), 43.5 (s, CH), 34.6 (s, CH2).  
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Appendix III. X-Ray Crystallography Data 

 

 [1]PF6 

Identification code  jml0928a 

Empirical formula  C42H45ClF6N3P3Ru 

Formula weight  935.24 

Temperature / K 110(2) 

Wavelength / Å 0.71073  

Crystal system  Orthorhombic 

Space group  Pca21 

a / Å, b / Å, c / Å 24.817(2), 10.1230(9), 31.819(3) 

α / °, β / °, γ / ° 90, 90, 90 

Volume / Å
3
 7993.7(12)  

Z 8 

Density (calculated) / Mg/m
−3 

1.554  

Absorption coefficient / mm
−1

 0.643  

F(000) 3824 

Crystal size / mm
3
 0.34 × 0.33 × 0.07  

θ range for data collection / ° 1.64 to 28.30 

Index ranges −33 ≤ h ≤ 33, −13 ≤ k ≤ 13, −42 ≤ l ≤ 42 

Reflections collected 77522 

Independent reflections 19871 [Rint = 0.0737] 

Completeness to θ 99.9% (θ = 28.30°) 

Max. and min. transmission 1.000 and 0.696 

Data / restraints / parameters 19871 / 7 / 1058 

Goodness-of-fit on F
2
 1.049 

Final R indices [I > 2σ(I)] R1 = 0.0528, wR2 = 0.1101 

R indices (all data) R1 = 0.0706, wR2 = 0.1177 

Largest diff. peak and hole / e Å
−3

 1.639 and −1.520 

Absolute structure parameter 0.00(6) 
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[2]CH2Cl2 [3]BPh4(CH2Cl2)1.5 

jml0927m jml0930a  

C49H62Cl6N6P2Ru2 C73.5H83BCl6N6P2Ru2  

1211.83 1538.05  

110(2) 110(2)  

0.71073  0.71073 

Monoclinic Triclinic  

P21/c P-1  

16.1501(13), 18.0454(14), 18.5649(14) 13.7095(15), 16.0447(17), 16.4533(17) 

90, 90.148(2), 90 90.061(2), 100.534(2), 92.488(2) 

5410.4(7)  3554.6(7)  

4 2  

1.488  1.437  

0.953  0.742  

2472 1582.0  

0.16 × 0.15 × 0.07 0.34 × 0.29 × 0.03  

1.26 to 30.01 1.26 to 30.07 

−22 ≤ h ≤ 22, −25 ≤ k ≤ 25, −26 ≤ l ≤ 25 −19 ≤ h ≤ 19, −22 ≤ k ≤ 22, −22 ≤ l ≤ 22  

59492 39610  

15557 [Rint = 0.0429] 19832 [Rint = 0.0342]  

98.5% (θ = 30.01°) 99.7% (θ = 30.07°) 

0.935 and 0.740 1.000 and 0.714 

15557 / 4 / 616 19832 / 2 / 845  

1.130 1.083  

R1 = 0.0748, wR2 = 0.2272 R1 = 0.0482, wR2 = 0.1209  

R1 = 0.0903, wR2 = 0.2470 R1 = 0.0693, wR2 = 0.1364  

3.183 and −2.418 2.25 and−1.19 
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 [8]PF6 

Identification code  jml1003a 

Empirical formula  C10H27ClF6N3O2PRuS2 

Formula weight  566.96 

Temperature / K 110 

Wavelength / Å 0.71073 

Crystal system  Orthorhombic 

Space group  Aba2 

a / Å, b / Å, c / Å 14.7124(6), 15.6131(7), 17.1848(7) 

α / °, β / °, γ / ° 90, 90, 90 

Volume / Å
3
 3947.5(3) 

Z 8 

Density (calculated) / Mg/m
−3 

1.908 

Absorption coefficient / mm
−1

 1.288 

F(000) 2288 

Crystal size / mm
3
 0.21 × 0.16 × 0.15 

θ range for data collection / ° 2.24 to 28.30 

Index ranges −19 ≤ h ≤ 19, −20 ≤ k ≤ 20, −22 ≤ l ≤ 22 

Reflections collected 19637 

Independent reflections 4902 [Rint = 0.0340] 

Completeness to θ 100% (θ = 28.30°) 

Max. and min. transmission 0.824 and 0.648 

Data / restraints / parameters 4902 / 22 / 306 

Goodness-of-fit on F
2
 1.055  

Final R indices [I > 2σ(I)] R1 = 0.0236, wR2 = 0.0588  

R indices (all data) R1 = 0.0239, wR2 = 0.0590  

Largest diff. peak and hole / e Å
−3

 2.352 and −0.610 

Absolute structure parameter −0.01(2) 
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[9] [10](PF6)2 

jml1004m phw1001a 

C8H21Cl2N3ORuS C18H29F12N5OP2RuS 

379.31 754.53 

110(2) 110(2) 

0.71073 0.71073 

Monoclinic Monoclinic 

P21/n P21/c 

7.9097(16), 9.753(2), 17.456(4) 17.934(3), 10.6572(16), 13.783(2) 

90, 93.394(4), 90 90, 90.055(4), 90 

1344.3(5) 2634.2(7) 

4 4 

1.874 1.903 

1.703 0.906 

768 1512 

0.15 × 0.15 × 0.10
 

0.16 × 0.13 × 0.07 

2.34 to 28.40 2.22 to 28.32 

−10 ≤ h ≤ 10, −12 ≤ k ≤ 12, −23 ≤ l ≤ 23 −23 ≤ h ≤ 23, −14 ≤ k ≤ 13, −18 ≤ l ≤ 18 

13148 26643 

3341 [Rint = 0.0387] 6527 [Rint = 0.0546] 

98.9% (θ = 28.40°) 99.3% (θ = 28.32°) 

1.000 and 0.764 0.9393 and 0.8686 

3341 / 33 / 219 6527 / 0 / 388 

1.079 1.024 

R1 = 0.0365, wR2 = 0.0820 R1 = 0.0407, wR2 = 0.0905 

R1 = 0.0492, wR2 = 0.0876 R1 = 0.0580, wR2 = 0.0997 

1.336 and −0.870 0.999 and −0.784 
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   [11](PF6)2.MeOH 

  Identification code  jml1001m 

  Empirical formula  C21H33F12N5O2P2RuS 

  Formula weight  810.59 

  Temperature / K 110(2) 

  Wavelength / Å 0.71073 

  Crystal system  Triclinic 

  Space group  P-1 

  a / Å, b / Å, c / Å 9.947(4), 10.678(4), 6.409(6) 

  α / °, β / °, γ / ° 93.116(7), 107.140(7), 114.478(7) 

  Volume / Å
3
 1484.2(10) 

  Z 2 

  Density (calculated) / Mg/m
−3 

1.814 

  Absorption coefficient / mm
−1

 0.813 

  F(000) 816 

  Crystal size / mm
3
 0.25 × 0.18 × 0.16 

  θ range for data collection / ° 2.14 to 28.40 

  Index ranges −13 ≤ h ≤ 13, −14 ≤ k ≤ 14, −21 ≤ l ≤ 21 

  Reflections collected 15239 

  Independent reflections 7276 [Rint = 0.0234] 

  Completeness to θ 97.8% (θ = 28.30°) 

  Max. and min. transmission 0.878 and 0.663 

  Data / restraints / parameters 7276 / 6 / 468 

  Goodness-of-fit on F
2
 1.056 

  Final R indices [I > 2σ(I)] R1 = 0.0285, wR2 = 0.0746 

  R indices (all data) R1 = 0.0313, wR2 = 0.0767 

  Largest diff. peak and hole / e Å
−3

 0.832 and −0.677 
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[12]Cl.PF6 [15]PF6 

jml1006m jml1007m 

C10H29ClF6N5OPRuS C31H37ClF6N3P3Ru 

548.93 795.07 

110(2) 130(2) 

0.71073 0.71073 

Monoclinic Triclinic 

P21/c P-1 

9.5843(8), 11.4320(10), 18.2955(16) 11.2999(13), 15.1247(17), 20.609(2) 

90, 90.604(2), 90 79.083(3), 89.207(2), 69.075(2) 

2004.5(3) 3224.9(6) 

4 4 

1.819 1.638 

1.164 0.781 

1112 1616 

0.40 × 0.19 × 0.08 0.10 × 0.09 × 0.08 

2.10 to 28.29 1.01 to 25.06 

−12 ≤ h ≤ 12, −15 ≤ k ≤ 15, −24 ≤ l ≤ 24 −13 ≤ h ≤ 13, −18 ≤ k ≤ 17, −24 ≤ l ≤ 24 

20281 26296 

4979 [Rint = 0.0206] 11364 [Rint = 0.0419] 

99.9% (θ = 28.29°) 99.4% (θ = 25.06°) 

0.911 and 0.771 0.939 and 0.745 

4979 / 0 / 277 11364 / 54 / 899 

1.064 1.040 

R1 = 0.0213, wR2 = 0.0517 R1 = 0.0435, wR2 = 0.1024 

R1 = 0.0234, wR2 = 0.0529 R1 = 0.0684, wR2 = 0.1130 

0.627 and −0.395 1.504 and −0.655 
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 [16]PF6 

Identification code  phw1012 

Empirical formula  C32H39ClF6N3P3Ru 

Formula weight  809.09 

Temperature / K 110(2) 

Wavelength / Å 0.7107 

Crystal system  Trigonal 

Space group  P3c1 

a / Å, b / Å, c / Å 18.9550(7), 18.9550(7), 16.9765(6) 

α / °, β / °, γ / ° 90, 90, 90 

Volume / Å
3
 5282.3(5) 

Z 6 

Density (calculated) / Mg/m
−3 

1.526 

Absorption coefficient / mm
−1

 0.717  

F(000) 2472  

Crystal size / mm
3
 0.1754 × 0.099 × 0.0707  

θ range for data collection / ° 3.22 to 29.00 

Index ranges −21 ≤ h ≤ 16, −23 ≤ k ≤ 25, −12 ≤ l ≤ 23  

Reflections collected 11946 

Independent reflections 5256 [Rint = 0.0334]  

Completeness to θ 99.6% (θ = 29.00°) 

Max. and min. transmission 1.000 and 0.925 

Data / restraints / parameters 5256 / 13 / 511  

Goodness-of-fit on F
2
 1.044 

Final R indices [I > 2σ(I)] R1 = 0.0417, wR2 = 0.0987  

R indices (all data) R1 = 0.0486, wR2 = 0.1040  

Largest diff. peak and hole / e Å
−3

 0.844 and −0.487  
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[17]Cl(H2O)2.15.MeOH [18]Cl(H2O)4 

jml1134 jml1147_twin1_hklf4 

C34H47Cl2N3O3.15P2Ru C34H51Cl2N3O4P2Ru 

782.10 799.69 

110.0 110.00(10) 

0.7107 0.7107 

Monoclinic Triclinic 

P21/n P-1 

9.70362(19), 20.1181(4), 17.9253(4) 8.8119(7), 10.6377(9), 20.0033(13) 

90, 94.431(2), 90 75.110(7), 88.833(6), 78.932(7) 

3488.89(13) 1777.6(2) 

4 2 

1.489 1.494 

0.733  0.723  

1621 832.0 

0.1919 × 0.132 × 0.1156  0.2867 × 0.1014 × 0.0562  

2.92 to 32.15 2.79 to 31.76 

−13 ≤ h ≤ 12, −21 ≤ k ≤ 29, −12 ≤ l ≤ 26  −13 ≤ h ≤ 13, −15 ≤ k ≤ 15, −28 ≤ l ≤ 29  

18989 12956 

10808 [Rint = 0.0267]  12956 [Rint = 0.0000]  

99.8% (θ = 32.15°) 99.0% (θ = 31.76°) 

0.986 and 0.979 1.000 and 0.100 

10808 / 0 / 451  12956 / 0 / 428  

1.034 1.084 

R1 = 0.0344, wR2 = 0.0761  R1 = 0.0666, wR2 = 0.1943  

R1 = 0.0442, wR2 = 0.0813  R1 = 0.0734, wR2 = 0.2037  

0.582 and −0.913  3.36 and −3.61  
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 [19](H3O)0.5(Cl)1.5.H2O  

Identification code  jml1149   

Empirical formula  C32H40.5Cl2N3O1.5P2Ru   

Formula weight  724.58   

Temperature / K 110.00(10)   

Wavelength / Å 0.7107  

Crystal system  Monoclinic  

Space group  P21/a   

a / Å, b / Å, c / Å 16.9554(3), 9.90919(14), 20.2316(5)  

α / °, β / °, γ / ° 90.00, 113.859(3), 90.00  

Volume / Å
3
 3108.72(11)  

Z 4  

Density (calculated) / Mg/m
−3 

1.548  

Absorption coefficient / mm
−1

 0.813  

F(000) 1494.0  

Crystal size / mm
3
 0.2954 × 0.2458 × 0.0541  

θ range for data collection / ° 6.02 to 64.22  

Index ranges −25 ≤ h ≤ 16, −14 ≤ k ≤ 13, −28 ≤ l ≤ 30  

Reflections collected 17028  

Independent reflections 9680 [R(int) = 0.0244]  

Completeness to θ 99.34% (θ = 64.22°)  

Max. and min. transmission 1.000 and 0.709  

Data / restraints / parameters 9680 / 9 / 445  

Goodness-of-fit on F
2
 1.073  

Final R indices [I > 2σ(I)] R1 = 0.0314, wR2 = 0.0689   

R indices (all data) R1 = 0.0403, wR2 = 0.0737   

Largest diff. peak and hole / e Å
−3

 0.83 and −0.84  

Absolute structure parameter   
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[20]Cl(CH3OH)3 [21]PF6.CH2Cl2 

jml1137 jml0929a  

C39H51Cl2N3O3P2Ru C12H22Cl2F6N3PRu  

843.74 525.27  

110.0 110(2) 

0.7107 0.71073 

Monoclinic Orthorhombic  

Cc Pna21  

18.3263(7), 8.5294(2), 26.4162(13) 15.4931(12), 11.9225(9), 10.0452(8) 

90, 109.141(5), 90 90, 90, 90 

3900.9(3) 1855.5(2)  

4 4 

1.437 1.880  

0.662 1.277  

1752 1048.0  

0.1549 × 0.1457 × 0.0797  0.16 × 0.15 × 0.12  

2.90 to 30.05 2.16 to 29.98 

−25 ≤ h ≤ 25, −11 ≤ k ≤ 12, −34 ≤ l ≤ 34  −21 ≤ h ≤ 21, −16 ≤ k ≤ 16, −13 ≤ l ≤ 13  

22702 20007  

9763 [Rint = 0.0336]  5332 [Rint = 0.0173]  

99.8% (θ = 30.05°) 99.3% (θ = 29.98°) 

0.989 and 0.981 1.000 and 0.865 

9763 / 2 / 484  5332 / 1 / 250  

1.035 1.055  

R1 = 0.0283, wR2 = 0.0570  R1 = 0.0174, wR2 = 0.0428  

R1 = 0.0305, wR2 = 0.0585  R1 = 0.0181, wR2 = 0.0432  

0.410 and −0.402  0.60 and −0.41 

 0(10) 
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Compound Codes 

 

[RuCl(tach)(PPh3)2]Cl   [1]Cl 

[RuCl2(tach)(PPh3)]Cl   [2] 

[{RuCl(PPh3)(cis-tach)}2(μ-Cl)]BPh4 [3]BPh4 

[RuCl(DMSO-S)(cis-tach)(PPh3)]Cl [4]Cl 

[RuCl(NCMe)(cis-tach)(PPh3)]PF6 [5]PF6 

[Ru(NCMe)2(cis-tach)(PPh3)](PF6)2 [6](PF6)2 

[RuCl(κ
1
-dppm)(cis-tach)(PPh3)]PF6 [7]PF6 

[RuCl(DMSO-S)2(cis-tach)]Cl  [8]Cl 

[Ru(OHx)2(DMSO-S)(cis-tach)]
(2-2x)+

, [8a]
n+ 

[RuCl(OHx)(DMSO-S)(cis-tach)]
n+

 [8b]
n+

 

[RuCl2(DMSO-S)(cis-tach)]  [9] 

[Ru(bipy)(DMSO-S)(cis-tach)](Cl)2 [10](Cl)2 

[Ru(DMSO-S)(phen)(cis-tach)](Cl)2 [11](Cl)2 

[Ru(DMSO-S)(en)(cis-tach)](Cl)2  [12](Cl)2 

[RuCl(COD)(cis-tach)]PF6   [13]PF6 

[Ru(NCMe)3(cis-tach)](Cl)2  [14](Cl)2 

[RuCl(dppm)(cis-tach)]Cl   [15]Cl 

[RuCl(dppe)(cis-tach)]Cl   [16]Cl 

[RuCl(dppp)(cis-tach)]Cl   [17]Cl 

[RuCl(dppb)(cis-tach)]Cl   [18]Cl 

[RuCl(dppv)(cis-tach)]Cl   [19]Cl 

[RuCl(dppben)(cis-tach)]Cl  [20]Cl 

[Ru(OHx)(dppe)(cis-tach)]
n+

  [16a]
x+ 

[Ru(OHx)(dppp)(cis-tach)]
n+

  [17a]
x+

 

[Ru(OH2)(dppe)(cis-tach)]
n+

  [16a]
2+ 

[Ru(OH2)(dppp)(cis-tach)]
n+

  [17a]
2+

 

[Ru(PO4-O)(dppe)(cis-tach)]
n+

  [16b]
x+ 

[Ru(PO4-O)(dppp)(cis-tach)]
n+

  [17b]
x+ 

[Ru(dppe)(EtG)(cis-tach)]
2+

  [16c]
2+ 
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[Ru(dppp)(EtG)(cis-tach)]
2+

  [17c]
2+ 

[Ru(dppe)(GMP)(cis-tach)]
2+

  [16d]
n+ 

[Ru(dppp)(GMP)(cis-tach)]
2+

  [17d]
n+ 

[Ru(dppe)(GSH)(cis-tach)]
2+

  [16e]
n+ 

[Ru(dppp)(GSH)(cis-tach)]
2+

  [17e]
n+ 

[RuCp(cis-tach)]PF6    [21]PF6 

 

Abbreviations 

 

A  absorbance 

Ado  adenosine 

acac  acetyl acetonate 

Ar  aryl group (NMR assignment) 

ATR  Attenuated Total Reflectance 

ax  axial 

bip  biphenyl 

bipy  2,2’-bipyridyl 

Bn  benzyl 

bpe  base-pair equivalents 

br  broad 

Br  bridging group (NMR assignment) 

t
Bu  tert-butyl 

Calc.  calculated 

CCC  covalently closed circular 

cGMP  cyclic 5’-guanosine monophosphate 

COD  1,4-cyclooctadiene 

COSY  Correlation spectroscopy 

Cp  η
5
-cyclopentadienyl 

Cp*  η
5
-pentamethylcyclopentadienyl 

Cy  cyclohexyl 

d  doublet 

dab  1,2-diaminobenzene 

dach  trans-1,2-diaminocyclohexane 
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DCM  dichloromethane 

dha  9,10-dihydroanthracene 

DMSO  dimethylsulfoxide 

DNA  deoxyribonucleic acid 

DPPA  Diphenylphosphoryl azide 

dppb butane-1,4-diylbis(diphenylphosphane);  

1,4-bis(diphenylphosphino)butane 

dppben  phenylene-1,2-bis(diphenylphosphane);  

1,2-bis(diphenylphosphino)benzene 

dppe  ethane-1,2-diylbis(diphenylphosphane);  

1,2-bis(diphenylphosphino)ethane 

dppm  methylenebis(diphenylphosphane); bis(diphenylphosphino)methane 

dppp propane-1,3-diylbis(diphenylphosphane);  

1,3-bis(diphenylphosphino)propane 

dppv  (Z)-ethylene-1,2-bis(diphenylphosphane);  

cis-1,2-bis(diphenylphosphino)ethylene 

EtG  9-ethyl guanine 

en  1,2-ethylenediamine 

eq  equatorial 

Eqn.  Equation 

ESI  electrospray ionisation 

Et  ethyl 

fac  facial 

Fig.  Figure 

G  guanine 

GEMSA Gel electrophoretic mobility shift assay 

gly  glycine 

Guo  guanosine 

GMP  5’-guanosine monophosphate 

GS  glutathione, S-deprotonated 

GSH  glutathione 

h  hour(s) 

HC11  [RuCl(η
6
-tha)(en)]PF6 

HSQC  Heteronuclear single quantum coherence 
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imi  imidazole 

ind  indazole 

IR  infra-red 

L  ligand 

LUMO  Lowest unoccupied molecular orbital 

m  multiplet (NMR) 

m  medium (IR) 

m  meta 

mal  maltolato 

Me  methyl 

mer  meridinal 

min  minute(s) 

MS  mass spectrometry 

MTT  (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

N  amine (NMR assignment) 

NMR  nuclear magnetic resonance 

NOESY Nuclear overhauser effect spectroscopy 

o  ortho 

OC  Open Circular 

ORTEP Oak Ridge Thermal Ellipsoid Program 

OTf  Trifluoromethanesulfonate 

p  para 

PBS  Phosphate Buffered Saline 

Ph  phenyl 

phen  1,10-phenanthroline 

pico  picolinate 

ppm  parts per million 

Pr  propyl 

ppt  1-(2-picolyl)-4-phenyl-1H-1,2,3-triazole 

PTA  1,3,5-triaza-7-phosphaadamantane 

py  pyridine 

q  quartet 

RAen  Ruthenium(II) η
6
-arene en (complex) 

RAPTA Ruthenium(II) η
6
-arene PTA (complex) 
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RM175 [RuCl(η
6
-bip)(en)]PF6 

RT  Room/ambient Temperature 

s  singlet (NMR) 

s  strong (IR) 

SAR  Structure-Activity Relationship 

t  triplet 

t½  half-life 

cis-tach cis,cis-1,3,5-triaminocyclohexane 

tachpyr cis,cis-1,3,5-N,N’,N’’-tris(2-pyridylmethylene)triaminocyclohexane 

tacn  1,4,7-triazacyclononane 

tha  1,4,9,10-tetrahydroanthracene 

Tp  hydrogen trispyrazolylborate 

Tp
iPr  

hydrogen tris(3,5-di-isopropylpyrazolyl)borate 

Tpm  trispyrazolylmethane 

ttcn  1,4,7-trithiacyclononane 

UV  ultra-violet 

v  virtual (NMR) 

v  very (IR) 

Vis  visible 

w  weak (IR) 
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