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Abstract

The composition of the inner and outer crusts of neutron stars is explored, using nuclear

models with considerable improvements.

We first directly compare the Hartree–Fock–Bogoliubov method and the extended Thomas–

Fermi + Strutinsky integral (ETFSI) method in the inner crust, and find a large energy discrep-

ancy, caused by the lack of neutron paring correlations in the ETFSI method. We implement

neutron pairing using the local-density approximation, and find that the energy discrepancy is

essentially eliminated.

We systematically investigate the inner crust using a variety of Skyrme energy density

functionals, and find that there is a strong correlation between the pure neutron matter (PNM)

equation of state (EoS) of a functional, and its predictions for the proton fraction and pressure

in the inner crust. This calls for the use of Skyrme functionals with more stringent constraints

on the low-density part of the PNM EoS.

Finally, we present a new mass model for the outer crust, where the existing DZ10 model

is supplemented with a Gaussian process term. This new model provides reliable extrapolation

beyond the limit of measured nuclei, and crucially comes with error bars, so that predictions

for the outer crust composition can be given with confidence intervals.
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Chapter 1

Introduction

1.1 History, formation, and phenomenology

Neutron stars are fascinating objects: with a typical mass of 1.5 times the mass of the sun,

and radius R ≈ 12 km [Gre19], they are an ideal laboratory to study the properties of nuclear

matter under extreme conditions. They bring together numerous fields of physics, from solid

state and nuclear physics to general relativity and astronomy.

The existence of an ultra-dense star, composed of entirely of neutrons, was first proposed

by Landau in 1932 [Lan32]. Two years later, Baade and Zwicky then suggested that neutron

stars could be the final stage of stars after having undergone supernova explosions [BZ34]. The

equations to determine the structure of a spherically-symmetric star using General Relativity

were developed in 1939, by Tolman [Tol39] and also by Oppenheimer and Volkoff [OV39]. These

same TOV equations were solved by Oppenheimer and Volkoff, by assuming that a neutron

star is composed of a simple non-interacting neutron gas, and are still used to this day in the

global modelling of neutron stars.

The first observations came in 1967, when PhD student Jocelyn Bell together with Antony

Hewish detected periodic pulses of radio waves every 1.337 s [Hew68], and suggested that the

source of this pulsar could be either a neutron star or a white dwarf. It was confirmed as a

neutron star the following year [Gol68].

As depicted in Fig. 1.1, neutron stars are the remnants of core-collapse supernova explosions

which occur at the end of the life of massive stars, i.e., with a mass of M ≈ 10− 20M�, where

M� is the mass of the Sun [CH08]. After successive fusion reactions create layers of increasingly

heavy elements inside the massive star, a core of 56Fe begins to form. Being the isotope with

the highest binding energy per nucleon, it is no longer energetically favourable to form heavier

elements through fusion, and instead the iron core grows. It is supported temporarily by the
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1.1. History, formation, and phenomenology

Figure 1.1: The stellar life cycle.

degenerate relativistic electron gas present in the core, but as the core grows, the electron

fraction decreases, and the core rapidly decreases in size [ST08], forming the beginnings of a

neutron star. The observed supernova explosion comes from the rapid contraction of the upper

layers of the star, followed by their bouncing off the core, helped by large amounts of heating

from the escaping neutrinos. A huge amount of gravitational energy is released in this explosion

(> 1046 J).

Many neutron stars are often found in binary systems, where the companion star can be

a variety of objects, from a main sequence star to another neutron star. They have a wide

range of masses, as shown in Fig. 1.2. They typically rotate with highly stable frequencies

between ≈ 1 − 800 Hz, which we now observe not only at radio frequencies but also as X-ray

and gamma-ray emissions. Occasionally however they undergo pulsar glitches, where there is a

sudden increase in rotation speed. Explaining this phenomenon requires a detailed description

of the outer layers of the neutron star, including the superfluid neutrons within. Today, we

can now observe neutron stars as sources of both electromagnetic and gravitational [Abb17]

radiation concurrently. The gravitational wave observations in particular offer new possibilities

of constraints on the equation of state (EoS) of nuclear matter, especially with next-generation

detectors.
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Chapter 1. Introduction

Figure 1.2: All measured masses of pulsars in binary systems, in units of solar masses, as of
January 2017. Image taken from Ref. [Lat19].

18



1.2. Structure

Figure 1.3: The BCC (body-centred cubic) lattice structure, as found in neutron star crusts.
Each lattice site, as shown in the right panel, is occupied by a nucleus (outer crust) or nuclear
cluster (inner crust).

1.2 Structure

Due to a strong pressure gradient, the matter within a neutron star arranges itself into layers

with different properties [CH08]. Going from the most external regions of the star to its centre,

the matter density ρ spans several orders of magnitude from ≈ 10−11n0 to ≈ 3–5n0, where

n0 = 0.16 fm−3 ≈ 2.7× 1014g cm−3 is the typical value of the density at the centre of an atomic

nucleus [RS80], called the saturation density.

Due to the extreme pressure gradient, neutron star matter is not homogeneous. With current

models [CH08], one can identify two main regions. Near the surface is the crust, which has a

crystalline structure, represented schematically in Fig. 1.3, comprising neutrons and protons in

nuclei or nuclear clusters. This crystal structure is known to be a body-centred cubic lattice

(BCC) [CH08; BC18]; in the right panel of this figure, each lattice site is occupied by a nucleus

in the outer crust, or a large neutron-rich nuclear cluster in the inner crust.

Going further towards to the centre of the star, there is a gradual transition through a

pasta phase to a liquid phase [Man20] in the core [Xu09], whose composition is still under

debate [LP04; Alf07; CV16; Vid18; LSW18]. These various layers are depicted in Fig. 1.4.

The crust spans a density range of ≈ 10−8n0 to ≈ 0.5n0. Although the crust only accounts

for a small fraction of the mass of the neutron star, it plays a major role in a variety of astro-

physical phenomena, including the r-process [Lat77], short gamma-ray burst precursors caused

by resonant shattering [Tsa12a], soft gamma-ray repeater giant flares [TD95; SW06], and ther-

mal relaxation in soft x-ray transients. The EoS of the crust is also believed to influence many

properties of neutron stars, such as the moment of inertia [Cha13; PFH14] which influences

pulsar glitches, transport phenomena within the star [LEL99; BRT06; Bro00], the relation be-
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Figure 1.4: A schematic representation of the the different phases of nuclear matter within a
neutron star, starting with the outermost layers on the left.

tween the radius and tidal deformability in low-mass neutron star [FP20], and the value of the

second Love number, k2 [PF19; PCS20]. Therefore it is crucial to have a reliable model of the

crust of a neutron star, to achieve accurate descriptions of these phenomena.

In the simple case of a cold non-accreting neutron star, the crust can be separated into

the inner and outer parts. From the earliest models [BPS71] to more modern ones [PGC11;

CF16], it has been predicted that the outer crust has a crystalline structure of neutron-rich

nuclei surrounded by a gas of free ultra-relativistic electrons [BPS71; Pas20; Fan20]. The inner

crust begins above baryonic densities of nb ≈ 1011 g cm−3. Here, neutrons are no longer confined

to bound states in finite nuclei, but they begin to drip out of the nuclei, forming a gas [NV73;

Cha15; Pas20] which surrounds these nuclear clusters.

The quest to find the EoS that best describes the properties of neutron stars [CH08] is

one of the major challenges in nuclear physics. Neutron stars are extremely compact objects,

and so the density and pressure through their interior spans several orders of magnitude, and

consequently it is important to use a theoretical model that can accurately describe such a

large density range. Without a reliable EoS model, one cannot safely make predictions about

global properties of a neutron star, such as its maximum mass, or the radius at a given mass.

The tool of choice to describe both finite nuclei and neutron stars is the nuclear en-
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ergy density functional (NEDF) [RB04]. By carefully adjusting the parameters of the func-

tional [GCP09b], it is possible to obtain a unified EoS [Sha15; Pea18] that can describe the

entire neutron star, from the low-density outer regions to the core. Thanks to the latest ad-

vances both in the way one observes them [GAO12] and the technique used [Abb17], it is

possible to provide additional constraints to the EoS [Mos18; BC18]. By combining those with

more traditional constraints based on heavy-ion collision experiments [SG86; DLL02], it is pos-

sible to obtain interesting information about the properties of nuclear matter at high densities.

Using all this information together with the most recent measurements of finite nuclei [Ste08],

it is possible to construct accurate models to describe the physics of such massive objects.

The crust of a neutron star, while not comprising a large portion of the star’s mass, nev-

ertheless represents an important component of the EoS that is not yet precisely determined.

The goal of this thesis is to make improvements to current nuclear models used in calculations

of the EoS of neutron stars, in order to improve our understanding of the crust. In particular,

I have investigated four key questions during my PhD thesis:

1. How does the semiclassical extended Thomas–Fermi + Strutinsky integral (ETFSI) ap-

proach compare with the Hartree–Fock–Bogoliubov (HFB) method when used to describe

the inner crust?

2. In such semiclassical methods, the pairing correlations are typically ignored. What is the

role of neutron and proton superfluidity in the composition of the crust?

3. How do the properties of the NEDF used in the ETFSI method affect the results for the

inner crust?

4. When using a nuclear mass model to describe the composition of the outer crust, can we

use machine learning techniques to provide more reliable extrapolations?

In Chapter 2, we outline the approximations made in order to model the inner crust, and

detail the various contributions to the total energy of the system. In Chapter 3, we describe

the two theoretical methods used to perform calculations for the inner crust, ETFSI and

HFB, and compare in general the results each one produces. In Chapter 4, we introduce a

method to include neutron pairing within the ETFSI method, and again compare with HFB. In

Chapter 5, we employ a number of different Skyrme models, using the ETFSI+pairing method

developed in Chapter 4, and investigate how their infinite nuclear matter properties influence

their predictions of the inner crust’s composition. In Chapter 6, we briefly overview how the

outer crust is modelled, and present a new way of improving the performance of nuclear mass
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models in regions where there is no experimental data. Finally, in Chapter 7 we present our

conclusions, and provide an outlook for future work for the modelling of neutron star crusts.
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Chapter 2

The inner crust

Since the pioneering work of Negele and Vautherin [NV73], many theoretical models have

been developed to study the properties of the inner crust. The presence of a neutron gas

dramatically changes the properties of the clusters [Avo07], in contrast to the outer crust, whose

nuclei are isolated. Consequently, determining the composition of the inner crust requires a

simultaneous treatment of the clusters and the neutron gas. Ideally one should use band theory,

as typically used in solid state physics, to discuss the properties of a crystal with delocalised

electrons [Cha07; Cha12].

To simplify this task, it is customary to adopt the Wigner–Seitz (WS) approximation [WS33],

in which the inner crust is decomposed into independent spheres with a radius RWS, centered

around each cluster, named Wigner–Seitz cells. It is assumed that there is no interaction be-

tween the cells. We refer to Ref. [Cha07] for a detailed discussion on the validity of such an

approximation. Each cell is at β-equilibrium, with a certain number of protons, Z, and the

same number of electrons (under the condition of charge-neutrality) spread through the cell.

Using this approximation, the values of Z (the chemical composition) and RWS can be deter-

mined at a given baryonic density, nb, by minimising the total energy per particle, e, of the

cell [Pea12]. This then yields the total particle number A, and the proton fraction Yp = Z/A,

a quantity of astrophysical importance. This procedure is valid only in the zero-temperature

limit, which is applicable to the case of a non-accreting neutron star (NS). To consider the

effects of finite-temperature in the inner crust, one should minimise the Helmholtz or Gibbs

free energy, as done in Refs. [Ons08; GR15; Bur15].

Since the density of electrons in the crust is essentially uniform [WI03], it is possible to

calculate their contribution to e analytically [CH08]. The nuclear contribution is more complex

and requires the use of a model. In the literature, several models are used to determine the

nuclear binding energy of the system, such as the compressible liquid drop model [DH00], semi-
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Chapter 2. The inner crust

classical models using the Thomas–Fermi approximation [OY94; OPP97; Ons08; Pea12; MU15;

Sha15; LH17], or the Hartree–Fock(–Bogoliubov) equations [NV73; GMS11].

Ideally, to model the EoS of a NS in a unified way, one should use the same model for all

of its layers. The ideal choice is a fully microscopic method based on solving the Hartree–

Fock–Bogoliubov equations [PBL11; GMS11; Pas17], using an effective nucleon-nucleon inter-

action [Sky56; RB04] adjusted to reproduce selected nuclear observables [Kor14]. One typically

uses Dirichlet–Neumann boundary conditions [BST06; MVS08; Pas17] in solving the HFB

equations. However, this causes a discretisation of the neutron continuum states, leading to

spurious shell effects. New methods to overcome such a problem have been suggested [Cha12;

Jin17], but no systematic calculations of the WS cells have been yet been performed.

To avoid this difficulty, several authors have opted to instead use the extended Thomas–

Fermi method [OPP97; MU15; Mon20]. Due to its semiclassical nature, the ETF method is

not affected by the spurious shell effects of the neutron gas encountered in the standard HFB

approach. In Ref. [Ons08], the ETF method was extended to use the Strutinsky integral (SI)

correction to recover the important shell effects for the protons in the clusters. This method,

named ETFSI, calculates the nuclear energy contribution using parameterised nuclear density

profiles, while still using the same energy density functional to generate the fields as in the

HFB method. In Ref. [Pea15], the ETFSI method was further developed to take into account

the effects of proton pairing correlations. However, there has so far not been a direct and

systematic comparison of the ETFSI and HFB methods in the inner crust.

2.1 The Wigner–Seitz approximation

In the Wigner–Seitz (WS) approximation, we divide the periodic body-centred-cubic (BCC)

lattice of nuclei in the inner crust into spherical charge-neutral non-interacting WS cells, shown

schematically in Fig 2.1. The radius of each cell is such that the total number of baryons in

each cell divided by the cell volume is equal to the baryonic density nb. Therefore, there is a

small overlap between cells. For a given nb, all cells are assumed identical. Each contains a

nuclear cluster at its center surrounded by a gas of superfluid neutrons, and also contains a

near-homogeneous ultra-relativistic electron gas.

The radius of a cell RWS is defined as half of the distance between neighboring clusters.

Under the condition of charge neutrality, the number of protons Z in the WS cell must equal

the number of electrons. For given values of nb and RWS, the total number of particles A is

fixed by the relation
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2.2. Nuclear contribution

Figure 2.1: A schematic representation of the Wigner–Seitz approximation for a hexagonal
lattice. Figure taken from Ref. [CH08].

A = nb
4π

3
R3

WS. (2.1)

Consequently, a WS cell is uniquely defined by the parameters {nb, Z,RWS}. At zero tem-

perature, the total energy per particle of the system is given by

e = eSky + ee − YpQn,β, (2.2)

where eSky is the contribution arising from the baryons interacting via the strong force and

from the Coulomb interaction between protons, while ee is sum of the kinetic and potential

energies of ultra-relativistic electrons [ST08] and the proton-electron interaction [GMS11]. The

last term accounts for the mass difference between neutrons and protons, Qn,β = 0.782 MeV.

Yp = Z/A is the proton fraction of the cell.

The terms related to electrons (ee) and to the Coulomb component of eSky are treated on

equal footing for the HFB and ETFSI methods. We follow closely the approach of Ref. [Pea12],

and provide the relevant expressions in the following sections.

2.2 Nuclear contribution

The energy contribution per particle for an effective interaction [Sky56] is expressed as func-

tional of local densities1

eSky =
1

A

∫
ESky

(
ρq(~r ), τq(~r ), ~J(~r )

)
d~r, (2.3)

1In this work, we only consider time-even systems.
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Chapter 2. The inner crust

where q = n, p stands for the nuclear charge. Considering only time-reversal invariant systems,

the Skyrme functional depends only on a linear combination of the matter densities ρq(r), kinetic

densities τq(r), the spin current densities ~J(r) and their derivatives [Per04]. The procedure used

to calculate the local densities differs in the HFB and semiclassical methods, and it is outlined

in the Sections 3.1 and 3.2. Other authors have opted to use a finite-range Gogny interaction

in place of a Skyrme interaction to model the inner crust [Mon20]. However, at present, Gogny

interactions are not suitable for calculations of an entire NS, since their EoS are not able to

predict the existence of the most massive neutron stars [SR14].

The standard Skyrme energy density functional (EDF) is given by:

ESky =
~2

2m
(τn + τp)

+
1

4
t0
[
(2 + x0)ρ2 − (2x0 + 1)(ρ2

n + ρ2
p)
]

+
1

24
t3ρ

σ
[
(2 + x3)ρ2 − (2x3 + 1)(ρ2

n + ρ2
p)
]

+
1

8
[t1(2 + x1) + t2(2 + x2)]ρτ

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)](ρnτn + ρpτp)

+
1

32
[3t1(2 + x1)− t2(2 + x2)](∇ρ)2

− 1

32
[3t1(2x1 + 1) + t2(2x2 + 1)]

[
(∇ρn)2 + (∇ρp)2

]

+
1

2
W0

[
~J · ∇ρ+ ~Jn · ∇ρn + ~Jp · ∇ρp

]
,

(2.4)

where ρ is the total density ρn+ρp, and t0−3, x0−3, σ,W0 are parameters that are adjusted using

some optimisation procedure [Kor14].

By performing the first functional derivative of ESky with respect to τq, ~Jq, ρq, one obtains

the effective mass m∗q, spin-orbit field ~Wq, and central field Uq respectively. These fields are

used in the HFB and ETFSI calculations, detailed in Chapter 3. The effective mass is given by

~2

2m∗q
=

~2

2m
+

1

8
[t1(2 + x1) + t2(2 + x2)]ρ+

1

8
[t2(2x2 + 1)− t1(2x1 + 1)]ρq. (2.5)

The spin-orbit field is given by

~Wq =
W0

2
~∇(ρ+ ρq). (2.6)
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The central field is given by

Uq = t0

[(
1 +

x0

2

)
ρ−

(
x0 +

1

2

)
ρq

]

+
t1
4

[(
1 +

x1

2

)(
τ − 3

2
∆ρ

)
−
(
x1 +

1

2

)(
τq −

3

2
∆ρq

)]

+
t2
4

[(
1 +

x2

2

)(
τ +

1

2
∆ρ

)
+

(
x2 +

1

2

)(
τq +

1

2
∆ρq

)]

+
t3
12

[(
1 +

x3

2

)
(2 + σ)ρσ+1 −

(
x3 +

1

2

)(
σρσ−1

∑

q′

ρ2
q′ + 2ρσρq

)]

− W0

2

(
∇ ~J +∇ ~Jq

)

+ δq,p (VCoul + VCoul,pe) ,

(2.7)

where the Coulomb potential VCoul from the interaction of protons is given by

VCoul(r) =
e2

2

∫ RWS

0

d3r′
ρp(r

′)

|r − r′| − e
2

(
3

π

)1/3

ρ1/3
p (r), (2.8)

and the potential arising from the proton-electron interaction VCoul,pe is detailed in Sec. 2.3.

The second term of Eq. 2.8, the exchange term VCoul,exc, has been treated with the Slater

approximation, and the first (direct) term is treated as follows:

VCoul,dir = 4πe2

[
1

r

∫ r

0

dr′ρp(r
′)r′2 −

∫ r

0

dr′ρp(r
′)r′ +

∫ RWS

0

dr′ρp(r
′)r′
]
. (2.9)

The energy density for the proton-proton Coulomb interaction is then given by

ECoul =
ρpVCoul,dir

2
+

3ρpVCoul,exc

4
. (2.10)

Eqs. 2.4 to 2.7 contain extra terms for the BSk family of forces (BSk18 [CGP09] and newer),

details of which are given in Appendix A. For BSk15 [GP08] and newer, the Coulomb exchange

terms are set to 0, and in Eqs. 2.8 and 2.9 the proton densities are replaced with the charge

density.

2.3 Electronic contribution

It is generally assumed that the electron density ρe in the WS cell is constant. Martin and

Urban [MU15; Mar16] investigated the possibility of a non-uniform electron gas, by solving the
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Poison equation for the electric charges in the WS cell, but they found no significant effect on

the results. We can therefore safely define a constant ρe as

ρe =
3Z

4πR3
WS

. (2.11)

There are three energy components to consider: the electron kinetic energy, the electron-

electron potential energy, and the proton-electron potential energy. The total kinetic energy

for the relativistic electrons in the WS cell is given by [Sal61]

Ee,kin = Zmec
2

(
3

8x3

[
x(1 + 2x2)

√
1 + x2 − sinh−1 x

]
− 1

)
, (2.12)

where me is the electron mass, and the relativistic parameter x is

x =
~ckF,e
mec2

, (2.13)

where the electron Fermi momentum kF,e = (3π2ρe)
1/3

. The total potential energy for the

electrons is given by [Sal61]

Eee,pot =
3Z2e2

5RWS

[
1− 5

4

(
3

2πZ

)2/3

Φ(x)

]
, (2.14)

where the function Φ(x) is given by

Φ(x) = − 1

2x4

[
3x2 + x4 − 6x

√
1 + x2 sinh−1 x+ 3

(
sinh−1 x

)2
]
. (2.15)

Finally, the total proton-electron potential energy is [GMS11]

Epe,pot = −3Z2e2

2RWS

+
Ze2

2R3
WS

∫ RWS

0

ρpr
2 · 4πr2dr. (2.16)

The corresponding proton-electron potential, included in the central potential Uq in Eq. 2.7,

is [GMS11]

VCoul,pe(r) =
Ze2

2RWS

[(
r

RWS

)2

− 3

]
. (2.17)
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Chapter 3

Comparison between the ETF and

HFB methods

Within the NEDF framework, one should calculate the nuclear contribution to the total energy

of the WS cell using the Hartree–Fock–Bogoliubov equations [RS80], since they provide a fully

quantum mechanical description of the system without making an artificial distinction between

bound and unbound neutrons. The downsides of the HFB method are its computational cost

and the possible numerical inaccuracies related to the boundary conditions adopted in the

calculation [BST06; MVS08; PBL11]. We refer to Ref. [Pas17] for a more detailed discussion.

More recently, the HFB method has been used to investigate heating of the crust [Fan18] and

the crust-core transition [Sch19], though these are not systematic studies of the crust.

To overcome the numerical difficulties that arise in the HFB method, but also to reduce the

computational cost, several authors have adopted semiclassical methods based on the extended

Thomas–Fermi approximation [BJC76]. To account for nuclear shell structure, an energy cor-

rection is added using the Strutinsky integral (SI) method [Pea12]. Combined, these are named

the ETFSI method.

The results obtained using the two methods seem to qualitatively disagree. Using HFB, one

typically observes clusters with a variety of different Z through the crust [GMS11; Pas17]. On

the other hand, ETFSI points towards an inner crust comprising clusters with only Z = 40,

both with Skyrme forces [Pea12; Pea15; Pea18] and with finite-range Gogny forces [Mon20].

The main reason for this disagreement is probably related to the properties of the functional

used to perform the calculations.

In this chapter, we outline and then directly compare the HFB and ETFSI approach, in

particular the densities, fields, and total energy predictions for each method.
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3.1 The Hartree–Fock–Bogoliubov method

In the HFB approach, the densities (and thus the fields) are calculated directly using the

quasi-particle wave-functions, which are the solutions of the HFB equations [RS80]:

∑

n′

(hqn′nlj − εF,q)U iq
n′lj +

∑

n′

∆q
nn′ljV

iq
n′lj = Eq

iljU
iq
nlj (3.1a)

∑

n′

∆q
nn′ljU

iq
n′lj −

∑

n′

(hqn′nlj − εF,q)V iq
n′lj = Eq

iljV
iq
nlj (3.1b)

where εF,q is the Fermi energy. We used the standard notation nlj for the spherical single-

particle states with radial quantum number n, orbital angular momentum l and total angular

momentum j. V iq
nlj and U iq

nlj are the Bogoliubov amplitudes for the i-th quasi-particle with

energy Eq
ilj. The single-particle Hamiltonian h is built from the Skyrme functional, while ∆q

nn′lj

are the matrix elements of the pairing gap obtained from a contact pairing interaction. In the

case of vanishing pairing, these equations reduce to the Hartree–Fock (HF) one. For more details

on the numerical methods used to solve these equations we refer to references [Pas17; PBL11;

Pas12; Pas13]. The most relevant point for the following discussion is the choice of the boundary

conditions used to solve Eqs. 3.1a and 3.1b. In this thesis, we use the Dirichlet–Neumann mixed

boundary conditions: (i) even-parity wave-functions vanish at r = RWS; (ii) the first derivative

of odd-parity wave-functions vanishes at r = RWS. We call them Boundary Conditions Even

(BCE), in contrast to the boundary conditions odd (BCO) where the two parity states are

treated in the opposite way. We have checked that this particular choice does not affect the

final results. See also Ref. [Pas17] for more details.

3.2 The ETFSI method

In this section, we briefly describe the extended Thomas–Fermi + Strutinsky integral method,

as developed in references [GV79; BB02; Ons08; Pea12] for a system with no pairing. Within the

semiclassical approach, the neutron and proton densities are parameterised. This differs from

the HFB method, in which all densities are calculating using the quasi-particle wave-functions.

Assuming no proton gas, we use a generalized Fermi–Dirac distribution of the form
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3.2. The ETFSI method

ρq(r) =
ρliq
q − δq,nρgas

1 + exp
(
r−rq
aq

) + δq,nρ
gas. (3.2)

ρliq
q are the densities of the neutrons and protons at the center of the WS cell, r = 0, while ρgas

is the density of neutrons at the edge, r = RWS. rq are the cluster radii of the neutrons and

protons, and aq are the diffusivities of the cluster surface. These seven adjustable parameters

are determined by the minimization of the energy per particle, given in Eq. 2.2, under the

constraints of charge neutrality and β-equilibrium. See Sec. 3.2.1 for more details.

The authors of references [Ons08; Pea12; Pea18] have introduced an additional damping

factor in Eq. 3.2. Although such a term may be useful for avoiding convergence problems at

high nb, it has a small impact on the energy per particle of the system, and for the following

analysis we can safely proceed without it. In Ref. [MU15] the authors introduced an exponent

for the denominator in Eq. 3.2, but they concluded that the results are largely unchanged, so

we do not consider such a parameterisation.

The kinetic and spin-current densities are expressed as a function of the matter density

ρq and its derivatives via the Wigner–Kirkwood expansion [RS80]. In the present work, we

use the full expansion, up to 4th-order in gradients, employing the explicit expressions for the

4th-order density contributions as given in the appendix of Ref. [BB02]. This differs from the

approach of Ref. [Pea12], explained in Section II of this reference. Below we present all terms

up to 2nd-order in gradients, giving the 4th-order terms in Appendix B.

In the Thomas-Fermi approximation, i.e., 0th-order in gradients, the kinetic energy den-

sity τ
(TF)
q is simply given by

τ (TF)
q [ρq] =

3

5
(3π2)2/3ρ5/3

q . (3.3)

There is no contribution to the spin current density ~J at 0th-order.

The extended Thomas-Fermi approximation contains contributions to ~J , and extra contri-

butions to τq. At 2nd-order, the kinetic energy density contribution is
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τ (2)
q [ρq] =

1

36

(~∇ρq)2

ρq
+

1

3
∆ρq

+
1

6

~∇ρq · ~∇fq
fq

+
1

6
ρq

∆fq
fq
− 1

12
ρq

(
~∇fq
fq

)2

+
1

2

(
2m

~2

)2

ρq

(
~Wq

fq

)2

,

(3.4)

where fq is the effective mass ratio m/m∗q. The spin current density contribution at 2nd-order

is

~J (2)
q = −2m

~2

ρq
fq
~Wq. (3.5)

We have checked that all contributions to τq and ~Jq are calculated correctly by performing

benchmarks (see Appendix C) against the calculations of Bartel and Bencheikh [BB02]. Our

calculations are in exact agreement, proving the quality of our implementation.

Under the ETF approximation, shell effects are not accounted for. Consequently, the authors

of Ref. [Ons08] suggested including (at least for protons) a perturbative contribution to the total

energy using the Strutinsky integral (SI) theorem, without acting on the densities or fields. For

the sake of completeness we implemented exactly the same method. For a system at T = 0

with no pairing between protons, the total energy correction is given by

ESI
p =

occ.∑

i

niεi,p −
∫ RWS

0

(
~2

2M∗
p

τp + ρpUp + ~Jp · ~Wp

)
· 4πr2dr, (3.6)

where the sum goes over all occupied single-particle proton states i, ni are the occupancies (= 0

or 1) for each state, and εi,p are corresponding single-particle energies, obtained by solving the

single-particle Schrödinger equation:

{
−~∇ ~2

2M∗
p (~r )

· ~∇+ Up(~r )− i ~Wp(~r ) · ~∇× ~σ
}
φi,p = εi,pφi,p. (3.7)

We made comparisons with ETFSI results from the literature, to check that our imple-

mentation gives consistent results. In Fig. 3.1, we show a comparison between the energy per

particle e obtained from our work and from Pearson et al. [Pea12], for WS cells at the drip

density nb = 0.00026346 fm−3 using BSk19. The slight discrepancies are due to our slightly

different choice of density profile, as explained in Sec. 3.2, given that all other aspects of the
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Figure 3.1: Comparison between the energy per particle e from our work and from the upper
panel of Fig. 2 of Ref. [Pea12], for ETF only (solid lines), and for ETFSI (dashed lines).
Calculations are for WS cells with nb = 0.00026346 fm−3, using the BSk19 functional.

calculations are the same. These discrepancies are most pronounced at the drip density where

the clusters are smallest. For larger nb, the agreement is the same or better.

It is possible to extend the SI theorem to systems with proton pairing; this is outlined in

Chapter 4.

3.2.1 Energy minimization with ETFSI

A key ingredient of the ETFSI calculation is the determination of the seven parameters of the

density profiles, using a minimization procedure. For this case we have used the Python library

SciPy [Sci20]. For a given nb and Z, an initial guess is made for the number of neutrons, and

the corresponding RWS is calculated using Eq. 2.1. The parameters of the density profiles in

Eq. 3.2 are varied to minimize the total energy of the WS cell (Eq. 2.2), which is calculated

using a code [She21] written in Fortran 90. Two of the seven parameters can be expressed in

terms of the others as follows:

ρgas =
3
(
N − Inρliq

n

)

4πR3
WS

·
[
1− 3In

4πR3
WS

]−1

, (3.8a)

ρliq
p =

Z

Ip
, (3.8b)

where Iq is given by
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Iq =

∫ RWS

0

4πr2dr

1 + exp
{
r−rq
aq

} . (3.9)

This leaves only five free parameters in the minimisation.

After the profile parameters have been determined, the SI correction and proton pairing

energy is added perturbatively, which is necessary to prevent anomalously large values for

the SI correction [Pea12]. This energy minimization is systematically repeated with different

neutron numbers to find the cell configuration with the minimum energy.

After repeating this process for every even value in 20 ≤ Z ≤ 60, one finds the Z that yields

the lowest energy per particle e; this is the optimum Z for a given nb. We used this range of Z

since it is the relevant range observed by previous authors; however, we always check that the

global minima fall within this range.

Attempts to use the full 4th-order expressions for densities, along with the profiles using

an extra damping factor as used in [Ons08; Pea12; Pea18], made the minimization much more

difficult. Even without the damping factor, at nb ≈ 0.05 fm−3 and above, our minimization

procedure begins to fail increasingly often. This is the same difficulty reported by the au-

thors of Ref. [Pea12]. Furthermore, the presence of non-spherical clusters is expected above

nb ≈ 0.05 fm−3 [PCP20]. Since the goal of this thesis is not to provide a complete EoS for

calculations of an entire NS, we have limited our investigation to the range of baryonic densities

0.00025 fm−3 ≤ nb ≤ 0.048 fm−3. In our formalism, spherical symmetry is imposed, which is

likely a poor assumption at higher nb [PCP20].

3.3 Choice of functionals

Before a more detailed analysis on the results obtained with HFB and ETFSI, we briefly discuss

the choice of the Skyrme functionals used in this chapter. In Fig. 3.2, we show the energy per

particle e curves for pure neutron matter (PNM) as a function of the density of the system for

the three functionals: SLy4 [Cha98], BSk21 [Pea12] and BSk24 [GCP13].

Their parameters were all adjusted for the functionals to be applicable to both finite nuclei

and higher density neutron star matter. They have therefore been used frequently in the

modelling of an entire neutron star. On the same figure we also show the APR EoS calculated

using ab-initio methods by Akmal, Pandharipande, and Ravenhall in Ref. [WFF88; Wir93],

and the LS2 EoS calculated by Li and Schulze in Ref. [LS08]. Both BSk21 and BSk24 have

been fit on the LS2 EoS, while SLy4 has been adjusted using APR.

In Table 3.1, we give some properties in infinite nuclear matter (INM) for each functional.
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Figure 3.2: Energy per particle e in PNM for the three functionals used. The EoS calculated in
references [WFF88; Wir93] (APR), and the one calculated in Ref. [LS08] (LS2) are also shown.

Functional n0 [fm−3] E0 [MeV] J [MeV] L [MeV] m∗/m

SLy4 0.160 -15.97 32.00 45.94 0.69

BSk21 0.158 -16.05 30.00 46.56 0.80

BSk24 0.158 -16.05 30.00 46.40 0.80

Table 3.1: Selected INM properties for the functionals used to compare ETFSI and HFB.

Each functional has very similar properties, having the canonical values for nuclear saturation

density n0 ≈ 0.16 fm−3 and for the energy per particle at saturation E0 ≈ 16 MeV. As seen

in the inset of Fig. 4.5, all three functionals have very similar PNM EoS at the low densities

relevant for the inner crust. For this initial investigation, we do not seek to understand the effect

of using functionals with very different properties. There is still no agreement in the literature

on the exact form of the PNM EoS or on the values of the various INM properties; see for

example the discussion in Ref. [Dut12]. These aspects are analysed in detail in Chapter 5.

3.4 Comparison between ETFSI and HFB

We now examine the quality of our semiclassical method by comparing the densities and fields

with those obtained from a fully self-consistent HFB calculation. In Fig. 3.3, we illustrate the

density profiles for a WS cell with nb = 0.02 fm−3, Z = 40 and RWS = 24.0 fm, obtained using

the SLy4 functional [Cha98], by solving the HFB equations. In the same figure, we also illustrate
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Chapter 3. Comparison between the ETF and HFB methods

the results obtained using ETFSI: the seven parameters characterizing the semiclassical matter

densities (Eq. 3.2) were adjusted to reproduce the matter densities obtained from the HFB

calculation.

We observe that the 4th-order expansion works nicely, and reproduces very well the neutron

kinetic and spin-current densities, as shown in panel a of Fig. 3.3. The proton kinetic density

presents a small bump around 7 fm, as seen in panel b of Fig. 3.3. Due to the large density

gradient in the proton cluster surface compared to the neutron one, the 4th-order truncation is

probably not fully satisfactory. The main consequence is the poor reproduction of the proton

spin current density. This is not a major issue since the spin-orbit field is not too affected by

such a difference.

From the densities, one obtains the corresponding fields [Per04]: the central potentials

Uq(r), the effective masses ~2

2m∗q(r)
and the spin-orbit fields ~Wq(r). They are shown in the lower

panels of Fig. 3.3, together with the corresponding ones obtained solving the HF equations. In

both neutron and proton cases the agreement is very good, thereby showing the validity of the

semiclassical approximation in capturing the main features of the HFB calculation. The bump

in the kinetic and spin current proton densities translates to an oscillation of the central proton

potential at r ≈ 7 fm, but the impact is small.

We now perform a systematic comparison between the ETFSI, HF (i.e., no pairing), and

HFB methods, for various WS cells with baryonic densities in the range 0.0003 fm−3 < nb <

0.024 fm−3. We use the SLy4 functional, and all cells have Z = 50 and a fixed cell radius RWS =

60 fm. No minimisation is carried out, as we only seek to compare the energy per particle e for

a given cell with each method.

The left panel of Fig. 3.4 shows the difference in energy per particle ∆e obtained between

the ETFSI and HF methods, and between the ETFSI and HFB methods. At low nb, ∆e is

as high as 0.09 MeV per particle, but then starts decreasing rapidly as nb increases. This

demonstrates that HF(B) is preferable near the drip density, where there is almost no neutron

gas present. From nb = 0.001 fm−3 and above, the two curves show very different trends. ETFSI

and HF agree to within about 0.02 MeV per particle for all densities, whereas for ETFSI-HFB

the difference increases again as pairing switches on, reaching a maximum of ≈ 0.22 MeV

per particle. At higher densities, when the pairing starts decreasing, ∆e starts decreasing

again. Except at very low densities, the discrepancy between the two methods is one order of

magnitude worse than in the non-superfluid case.

In the right panel of Fig. 3.4, we give the pairing gap in PNM for the SLy4 functional, using

the same pairing interaction (see Chapter 4 for details) as used in the HFB calculations. We

observe a maximum at a similar density to where the ETFSI-HFB discrepancy is largest. This
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Figure 3.3: Densities (top row) and fields (bottom row), for neutrons (left column) and protons
(right column), for a WS cell with nb = 0.02 fm−3, Z = 40 and RWS = 24 fm. Black lines show
the matter densities and central potentials, orange lines show the kinetic densities and effective
masses, and purple lines show the spin current densities ~Jq and spin-orbit fields ~Wq. Solid lines
show the HFB results, and dotted lines the ETFSI results; both use the SLy4 functional. Note
the different scales used in panels a and b for the neutron and proton densities, and that ~Jq
and ~Wq are multiplied by 5 to make them more visible.
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Figure 3.4: Left: the difference in energy per particle ∆e obtained from the ETFSI and HF
methods (solid line), and from the ETFSI and HFB methods (dashed line); all cells have Z = 50
and RWS = 60 fm. Right: the pairing gap in PNM at neutron density nn for SLy4 with the
Strong pairing interaction (see Chapter 4 for details).

clearly shows that neglecting pairing correlations for neutrons in the ETFSI approach leads to

a large error, much larger than those arising from choice of boundary conditions and box-size

effects as discussed in Ref. [SP20].

The implementation of pairing in the ETFSI method, in particular for neutrons, will be

discussed in detail in Chapter 4.
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Chapter 4

The role of pairing correlations

Within the literature, there is a wide consensus on the importance of pairing correlations within

the inner crust of neutron stars [Bar97; DH03; BST06; GMS11; PBL11; SVL04; Cha12; MHF14;

WP17; BK08]. In Chapter 3, we compared the structure of some WS cells, performing both

ETFSI and HFB calculations using the same functionals. We observed an energy discrepancy

far larger than the estimated error of the HFB method [Pas17], and we identified the cause as

a lack of neutron pairing correlations [Pas13] in the ETFSI approach [Pea15]. In this chapter,

we develop the ETFSI+pairing method for the inner crust, which for the first time takes into

account the role of pairing for both protons and neutrons.

4.1 Proton pairing correlations

While pairing correlations are naturally included within the HFB equations (Eqs. 3.1a and 3.1b),

the original ETFSI method [Ons08] is not capable of treating such correlations. As a conse-

quence, in Ref. [Pea15] the authors have modified the ETFSI formalism to include the effects

of proton pairing with the BCS approximation [RS80], but still with no explicit treatment of

neutron pairing correlations.

We now briefly outline the combined Strutinsky integral and BCS formalism. When we

include pairing in the BCS approximation, we have to both alter ESI
p to account for differ-

ent single-particle occupations, and we have to include the reduction in energy from proton

pairing Epair
p .

In Chapter 3 we gave the expression for the total Strutinsky integral energy correction ESI
p

without pairing (Eq. 3.6). ESI
p is now given by
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ESI
p =

all∑

i

V 2
i,pεi,p −

∫ RWS

0

(
~2

2M∗
p

τp + ρpUp + ~Jp · ~Wp

)
· 4πr2dr, (4.1)

where the sum now goes over all single-particle proton states i. V 2
i,p are the single-particle

occupation probabilities:

V 2
i,p =

1

2

[
1− εi,p − µp

Eqp
i,p

]
. (4.2)

µp is the proton chemical potential, and Eqp
i,p are the quasi-particle energies for each state:

Eqp
i,p =

√
(εi,p − µp)2 + ∆2

i,p, (4.3)

where ∆i,p are the pairing gaps for each state, defined as

∆i,p =

∫ RWS

0

∆p(r)φ
2
i,p(r) · 4πr2dr. (4.4)

∆p(r) is the pairing field and φ2
i,p are the single-particle wave-functions appearing in Eq. 3.7.

εi,p, µp, and ∆i,p are determined by solving the BCS equations:

Z =
all∑

i

V 2
i,p, number equation (4.5a)

∆p(r) =
1

2
fp(r)ρ̃

BCS
p (r), gap equation (4.5b)

where fp is the pairing strength (see Sec. 4.3) evaluated at a given BCS proton density ρBCS
p .

The expressions for ρBCS
p and the anomalous density ρ̃BCS

p are

ρBCS
p =

all∑

i

(2j + 1)V 2
i,pφ

2
i,p(r), (4.6a)

ρ̃BCS
p =

all∑

i

(2j + 1)Ui,pVi,pφ
2
i,p(r), (4.6b)

where j is the total angular momentum of the i-th single-particle state, and U2
i,p = 1− V 2

i,p.

Finally, from solving the BCS equations, we also obtain the proton pairing energy

Epair
p =

1

2

∫ RWS

0

∆p(r)ρ̃
BCS
p (r) · 4πr2dr. (4.7)
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Figure 4.1: Comparison between the energy per particle e from our work and from the upper
panel of Fig. 1 of Ref. [Pea15], for ETFSI only (solid lines), and for ETFSI+BCS (dashed lines).
Calculations are for WS cells with nb = 0.00026 fm−3, using the BSk21 functional.

To verify our implementation of this ETFSI+BCS method, we made comparisons with the

calculations of Pearson et al. [Pea15]. In Fig. 4.1, we overlay the energy per particle e obtained

from our work with that from Pearson et al., for WS cells at the drip density nb = 0.00026 fm−3

using BSk21. The slight discrepancies are the same as those seen and explained in the ETFSI

benchmark that we made in Chapter 3. The fact that we obtain the same shift from ETFSI to

ETFSI+BCS demonstrates our correct implementation of the BSk pairing protocol (detailed

in Appendix A) and of the combined Strutinsky integral and BCS method.

4.2 Neutron pairing correlations

Since the neutrons in the inner crust form a gas, it is not possible to apply directly the

same methodology without running into the same type of problems encountered with the HFB

method, which are related to spurious shell effects in the neutron gas [MVS08]. In this work,

we have developed an additional energy correction based on the local-density approximation

(LDA). A similar approach was already proposed in Ref. [Bur15]. In the the weak-coupling

limit, the correction to the energy per particle from superfluid neutrons is [PVB97]

econd =

∫ RWS

0

−3∆2
n(nn(r))

8µn
nn(r) · 4πr2dr. (4.8)

The chemical potential µn is approximated by the Fermi energy εFn = k2
Fn~2/2m∗n, where
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kFn = (3π2nn)
1/3

. ∆n is the local pairing gap as extracted from PNM calculations at a given

neutron density nn as discussed in Ref. [Pas08] and illustrated in Fig. 4.2. For the BSk forces,

∆n has an analytical form, as explained in Appendix A. In the case of infinite nuclear matter,

in which we can solve the BCS equations exactly, we have checked that the use of Eq. 4.8 leads

to an error of the order of a few percent [PSD17]. It is therefore a reasonable approximation

for treating neutron pairing in the WS cell, since at medium to high densities the effects of

neutron pairing will occur predominantly in the neutron gas. We refer to Appendix D for a

more detailed discussion. The energy correction in Eq. 4.8 can be easily implemented in the

ETFSI formalism without a major increase in the computational cost.

4.3 Pairing interaction

The SLy4 functional was fit to doubly-magic nuclei; as a consequence, we are left with some

freedom in choosing how to model pairing correlations. In this work, we use a simple density-

dependent pairing interaction of the form [BE91]

vpair
q (r1, r2) = v0q

[
1− η

(
ρq(r)

n0

)α]
δ (r1 − r2) . (4.9)

We choose the parameters η = 0.7 and α = 0.45. We assume that the pairing strength is

the same for neutrons and protons and we fix the pairing strength v0q to obtain a maximum

pairing gap in PNM of ≈ 3 MeV, hereafter named strong, or a maximum of ≈ 1 MeV, hereafter

named weak, as done in Ref. [GMS11]. These choices largely cover the available range of

results concerning the density evolution of the pairing gap in infinite nuclear matter [Gan08].

To avoid the ultraviolet divergence of the interaction given in Eq. 4.9 [BY02], we adopt a

smooth cut-off in quasi-particle space at Eq
ijl ≥ 20 MeV that is defined by an Gaussian factor

exp
[(
Eq
ijl − 20

)
/100

]
. In Fig. 4.2, we report the density dependence of the pairing gap in

PNM obtained by solving the BCS equations. The maxima of these pairing gaps are located

at nn ≈ 0.03 fm−3 (SLy4), corresponding to a Fermi momentum of kFn ≈ 0.94 fm−1.

The pairing interactions for the BSk21 and BSk24 functionals [Cha10] have been adjusted

to reproduce the 1S0 pairing gaps in both symmetric nuclear matter and PNM, as obtained

from Brueckner calculations using the Argonne V 18 nucleon-nucleon potential [CLS06]. The

implementation details are provided in Appendix A. The resulting pairing gap is also reported

in Fig. 4.2 as a function of the neutron density. We observe that in this case, the pairing

gap reaches a maximum of ∆n ≈ 2.5 MeV around nn ≈ 0.02 fm−3, corresponding to a Fermi
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Figure 4.2: The pairing gap in PNM, as a function of density, for the two pairing strengths used
with the SLy4 functional (green dash-dotted line shows weak, red dashed line shows strong),
and for the BSk24 functional (orange dotted line).

momentum of kFn ≈ 0.87 fm−1.

For a given functional and pairing interaction, one would expect that any changes to the

inner crust from including neutron pairing would be greatest at nb near the value of nn for

which ∆n(nn) is at its greatest.

In Fig. 4.3 we illustrate the different contributions to the energy per particle e for various

WS cells at fixed baryonic density nb = 0.02 fm−3, but for the cases of weak and strong pairing.

The ETFSI+pairing results have been obtained using a complete minimization of the total

energy of the WS cell using the SLy4 functional. In the upper-left panel we show the nuclear

contribution, referring to the ETF energy including proton-proton Coulomb interaction. The

higher e with stronger pairing simply reflects the larger neutron number obtained. The higher

the proportion of neutrons in the system, the more neutron pairing can occur, lowering the

total energy. When we include also the electron-electron and proton-electron interactions, as

shown in the lower-left panel, we see almost no difference between the weak and strong pairing

cases. For strong pairing, the increase in the nuclear energy is offset by a decrease in the energy

contribution from the electrons, a result of the larger WS cell.

In the upper-right panel of Fig. 4.3, we see that the contribution to e from neutron pairing is

almost flat with respect to Z, for weak and strong. Note that the weak case has been multiplied

by 10 in this panel. From Fig. 4.2, where the PNM gap is about three times higher for the

strong interaction at nb = 0.02 fm−3, and Eq. (4.8), showing the quadratic dependence of econd
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Figure 4.3: Individual contributions to energy per particle e for a WS cell with nb = 0.02 fm−3.
Results are shown for the two pairing strengths used with the SLy4 functional (green dash-
dotted line shows weak, red dashed line shows strong). The top left panel shows only eSky, while
the bottom left shows eSky + ee; see Eq. 2.2 and text for details. In the top right panel, which
shows econd (Eq. 4.8), the weak result has been multiplied by 10 to make clear the variations
for weak and strong on the same scale.

on the PNM gap, we see that the factor of nine increase in the neutron condensation energy

was expected.

The energy per particle coming from the SI correction and proton pairing energy, as calcu-

lated in Ref. [Pea15], are shown in the lower-right panel of Fig. 4.3. The shell effects give rise

to local minima at Z = 20, 28, 40, 50, 58 for both the weak and strong interactions. The effect

of increasing the proton pairing strength is to partially smooth out these shell effects.

4.4 HFB vs. ETFSI+Pairing

In this section we compare the results obtained in WS cells from solving the HFB equations

with those from the ETFSI method, with and without the additional correction for neutron

pairing correlations.

In Fig. 4.4, we show the results obtained with ETFSI, ETFSI+pairing and HFB, for the
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Figure 4.4: Selected slices of the energy surface at fixed baryonic densities nb, showing the
variation of e with Z. Black solid lines show the HFB results, blue dotted lines the ETFSI
results and the red dashed lines the results for ETFSI with neutron and proton pairing included.
Results with the SLy4 functional (with strong pairing) are shown in the left column, and those
with BSk24 are shown in the right column. The HFB calculations use the optimum values of
RWS found with the ETFSI+pairing method.

WS cells at a few selected nb, using the functionals SLy4 and BSk24. For the SLy4 functional,

the strong pairing was used. The results obtained with BSk21 were almost identical to BSk24,

so we do not show them in the figure. For each WS cell, the energy minimization is performed

using the full ETFSI method, with or without pairing. The parameters of the resulting WS

cells (nb, Z,RWS) were used to perform HFB calculations using the same functionals. We have

previously performed fully self-consistent HFB calculations [Pas17] using the SLy4 functional

and the strong pairing interaction given in Equation 4.9, not using the ETFSI cell parameters.

We found that, while this leads to slightly different minima, they all still lie within the error

bars estimated in that work.
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The energy dependence as a function of Z for a full ETF calculation would be a smooth

parabola, but due to the Strutinsky integral correction, we clearly observe a modification to

the total energy resulting from shell structure. By comparing the ETFSI calculations with and

without pairing, we observe that the positions of the minima do not change, but we observe a

general reduction in the relative energy difference between the shell or sub-shell closure values

and between the other WS cells. As discussed in Ref. [Pea15], this is mainly the effect of proton

pairing. The neutron pairing acts to globally shift the total energy as shown in Fig. 4.3.

The HFB results are remarkably close to the ETFSI+pairing ones: near the drip density,

nb = 0.00041 fm−3, there is a larger discrepancy between HFB and ETFSI+pairing. This

energy difference is of the order of ≈ 100 keV per particle. At these low densities, the energy

from the cluster is greater than that from the neutron gas, and so the different density profiles

of the ETFSI and HFB methods, seen in Fig. 3.3, are more important. The correction for

neutron pairing is also less accurate at these very low densities.

For both SLy4 and BSk24, we find the two local minima at Z = 40 and Z = 50 for

ETFSI+pairing, as also found by other works [Pea12; Pea15; Pea18]. However, the minima

found with HFB take several values between Z = 36 and Z = 50. The small discrepancy could

be related to the role of neutron shell effects of the cluster that are not taken into account

within the ETFSI method. From nb = 0.0013 fm−3, when the neutron gas contribution starts to

become more important, there is a remarkable agreement between the full HFB calculation and

the ETFSI+pairing. This result confirms our previous hypothesis concerning the discrepancy

observed between the two methods in Chapter 3. At this density, the total energy difference

between the two methods is less than 10 keV per particle. The energy minimum obtained

with HFB is at Z = 50, while the one with ETFSI+pairing is at Z = 40. As discussed in

Ref. [Pas17], the accuracy of our HFB code is ≈ 4–5 keV per particle. Inspecting the figure,

we notice that the relative energy difference between the HFB configuration at Z = 40 and

Z = 50 is ≈ 2 keV per particle, clearly within the error of our calculations.

At a higher baryonic density nb = 0.005 fm−3, the agreement between the HFB and

ETFSI+pairing remains, although the energy minima obtained by the two calculations do

not agree. However they are still compatible due to the error we estimate for the HFB calcu-

lations. From this figure, we conclude that the inclusion of neutron pairing correlations in the

ETFSI method leads to a very good agreement in the total energy per particle with the more

involved HFB calculation.
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4.5 Results for the inner crust

Having demonstrated the compatibility between the ETFSI+pairing and HFB methods, it is

now possible to use ETFSI+pairing for systematic calculations of the inner crust. We first

tested our method, without neutron pairing, against previous work. We used BSk21 and SLy4,

as in Ref. [Pea12], and BSk24, as in Ref. [Pea18]. For all of these functionals, we found that

the energy minimum occurs at Z = 40 in the range 0.00025 fm−3 ≤ nb ≤ 0.048 fm−3 (as in the

previous work), except for at very low densities, less than ≈ 0.01 fm−3, where we find Z = 50.

As noted in [Pea12], the two local minima corresponding to Z = 40 and 50 are very close

in energy at low densities. This result is independent of whether or not we add the energy

correction from neutron pairing correlations.

We attribute the discrepancy in our results to our treatment of the 4th-order ETF contribu-

tions to the energy (explained in Sec. 3.2). The smaller clusters found at these lower densities

have less diffuse surfaces. Therefore, using the full 4th-order expressions with its higher-order

derivatives is more vulnerable to numerical inaccuracies. A possible source of error is the way

the total energy is calculated. These small numerical discrepancies are related to the method of

numerical integration and we have seen that they are sufficient to explain the different minima

observed at very low density, as discussed in Ref. [Pea12].

In Fig. 4.5, we present the equation of state obtained with a full ETFSI minimization,

using SLy4. ETFSI results are shown with blue dotted lines, and ETFSI+pairing results (with

strong pairing) with red dashed lines. As expected, the inclusion of neutron pairing effects in

the system decreases the energy per particle, as shown in Fig. 4.5, but it does not affect the

global trend.

In Fig. 4.6, we compare other properties of the WS cells obtained using SLy4 with and

without pairing. In panel a of Fig. 4.6, we observe a larger total nucleon number A is the case

of ETFSI+pairing. This reflects in a small reduction of the proton fraction Yp = Z/A as shown

in panel b, and a small increase of the WS cell radius RWS, shown in panel c. This adds to the

reliability of the ETFSI method, whose semiclassical Wigner–Kirkwood expansion is exact in

the limit of PNM (Yp → 0).

The pressure, defined as

P = −


∂E
∂V



T,N,Z

, (4.10)
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Figure 4.5: Energy per particle e in the inner crust using the SLy4 functional. The ETFSI
result is shown by the blue dotted line, and the ETFSI+pairing (using the strong pairing) result
by the red dashed line.

is calculated as the sum of three contributions: the nucleon pressure Pnuc, the electron gas

pressure Pe, and the Coulomb exchange contribution PCoul,ex. Pnuc is given by

Pnuc =
~2

3M
τn +

∑

q=0,1

[
(ρgas)2Cρ

q +
5

3
ρgasτnC

τ
q + (ρgas)3 ∂C

ρ
q

∂ρgas
+ (ρgas)2 τn

∂Cτ
q

∂ρgas

]
, (4.11)

where τn = 3
5
(3π2)2/3nn(R)5/3, and the coupling constants Cρ,τ

q (ρ) (defined in Appendix A) are

all evaluated at ρ = ρgas. Since we assume here a constant electron density ne, the pressure

contributions arising from the electrons have an analytical form. Pe is given by

Pe = nemec
2 3

8x3

[
x

(
2x2

3
− 1

)√
1 + x2

]
+ sinh−1 x, (4.12)

where

x =
~c
mec2

(
3π2ne

)1/3
. (4.13)

PCoul,ex is given by

PCoul,ex =
e2

8

(
3

π

)1/3

n4/3
e . (4.14)
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Chapter 4. The role of pairing correlations

A full derivation of each contribution is provided in Appendix B of Ref. [Pea12]; since we assume

here that there is no proton gas, the expressions shown above are simplified slightly compared

with those given in this reference.

In the presence of neutron pairing the pressure of the cell decreases but, as panel d of

Fig. 4.6 shows, this difference is negligible, and is certainly far smaller than the difference that

would arise from using different functionals.

All of these observed differences are at their greatest around nb = 0.015 fm−3. This is near

the densities where the PNM pairing gaps, shown in Fig. 4.2, are at their maximum. The small

bumps for the ETFSI+pairing case in Fig. 4.6, most notably in panel a, can be attributed to

the inclusion of the SI correction and pairing in the second minimization step, when the total

nucleon number A is determined (see Sec. 3.2.1).

We find that, for all functionals and densities tested, the inclusion of neutron pairing does

not change the optimum Z. This is easily understood by looking at panel b of Fig. 4.3, where

the contribution to e from neutron pairing is almost constant with respect to Z.

4.6 Summary

We have presented a systematic comparison between solving the HFB equations and using

the ETFSI method, using exactly the same numerical conditions. We have observed that the

inclusion of neutron pairing correlations in ETFSI using a simple LDA approximation leads to

a remarkable reduction in the discrepancy between the two methods, showing the success of

using ETFSI+pairing for the determination of the properties of WS cells in the inner crust.

After neutron pairing is included in the modeling of the inner crust, we find no change in

the prediction of the optimum proton number Z at a given baryonic density nb, for any of the

functionals SLy4, BSk21 and BSk24. The location of the minimum of the nuclear contribution,

dictated by the choice of functional, has a much bigger influence on the optimum Z.

The additional neutron pairing energy contribution leads to a general energy reduction in

the Wigner–Seitz cell across the range 20 ≤ Z ≤ 60 investigated. The most interesting effect

of neutron pairing is the increase in the radius of the WS cells and the number of neutrons

per cell, which means a small decrease in the proton fraction is observed. The pressure is also

slightly decreased, but the change is not significant.

We conclude that ETFSI+pairing method is capable of giving a very accurate description of

the structure of the inner crust. The results obtained are of the same quality as more advanced

HFB calculations done under the same numerical conditions. We recall that given the proximity

in energy of the minima, small numerical inaccuracies may lead to different minima, thereby
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4.6. Summary

explaining the apparent discrepancy of results within the scientific literature.

The reliability of the ETFSI+pairing method calls for a hybrid approach to inner crust

calculations: HFB would be still be used at lower densities, where it has a superior quality, and

at higher densities up to the crust-core transition, ETFSI+pairing would be used.
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Chapter 5

The effect of functional choice on inner

crust structure

In Chapter 4, we developed the ETFSI+pairing method, and validated its ability to reproduce

HFB results. We now use it to investigate the role played by the particular Skyrme interaction

chosen to study the inner crust.

The HFB and ETFSI methods have typically yielded different results for the structure of the

inner crust. In particular, we observed that by adding to ETFSI the effects of neutron pairing

correlations under a simple local density approximation, the resulting energy per particle agrees

well with that obtained using the HFB method, apart from the very low density region where

the outer-inner crust transition takes place.

Having quantified the agreement of this ETFSI+pairing method with HFB, we can now

address an interesting question, namely, why Zirconium isotopes (i.e. clusters with Z = 40)

are consistently predicted throughout the inner crust [Pea12; Pea18; Pea19; PCP20; Mon20].

To answer this, we perform systematic calculations of the inner crust EoS, selecting several

Skyrme functionals whose various infinite nuclear matter (INM) properties [Dut12] cover rea-

sonable ranges. By investigating possible relationships between the INM properties of Skyrme

functionals and the proton content and pressure of the WS cells, we aim at providing a better

understanding of previous investigations of the structure of the inner crust.

5.1 INM properties of Skyrme functionals

According to Ref. [Dut12], more than 240 Skyrme functionals have been published in the

literature. Typically, their parameters are adjusted to reproduce the binding energy of some

(or all) atomic nuclei, and also some INM properties. There is no standard parameter fitting
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5.1. INM properties of Skyrme functionals

protocol; various (pseudo)-observables are used in fitting, with widely varying uncertainties.

As a consequence, it is difficult to assess the quality of functionals.

The neutron gas in the WS cell is similar to an infinite nuclear system, and comprises the

majority of the baryonic matter in the inner crust. We therefore focus on four INM properties

of the functionals: the saturation density n0, and then the energy per particle at saturation E0,

the symmetry coefficient J , and the slope of the symmetry energy at saturation L. These

quantities depend exactly on the EoS of INM [PC09], and so one can expect that variations

in the EoS lead to modifications in the energy per particle of the neutron gas, thus changing

the relative energy contributions from baryons and electrons in the WS cell, and ultimately

affecting the chemical composition and pressure in the inner crust.

The EoS of symmetric nuclear matter (SNM) at density n is given by

eSNM(n) =
3~2

10M
k2

F(n) +
3

8
t0n+

3

80
[3t1 + t2(5 + 4x2)]nk2

F(n) +
1

16
t3n

σ+1, (5.1)

where kF(n) = (3π2n/2)1/3. E0 is then defined as eSNM(n0). The symmetry energy at a given

density n in symmetric nuclear matter is

S(n) =
~2

6M
k2

F(n)− 1

8
t0(2x0 + 1)n

+
1

24
[−3t1x1 + t2(4 + 5x2)]nk2

F(n)− 1

48
t3(1 + 2x3)nσ+1.

(5.2)

J is then defined as S(n0). The slope of the symmetry energy at saturation is given by

L = 3n0

(
∂S
∂n

)

n=n0

=
~2

3M
k2

F0 −
3

8
t0(2x0 + 1)n0

+
5

24
[−3t1x1 + t2(4 + 5x2)]n0k

2
F0 −

σ + 1

16
t3(1 + 2x3)nσ+1

0 ,

(5.3)

where kF0 = (3π2n0/2)1/3.

eSNM, S, and L each have extra terms for the BSk forces (BSk18 and newer), which are

provided in Appendix A.

In Fig. 5.1, we show as histograms the distributions of n0, E0, J , and L, for all the functionals

in Ref. [Dut12]. Not all functionals given in Ref. [Dut12] are shown in the lower two panels (J

and L). In our selection process, we imposed two additional constraints on J and L, namely

30 ≤ J ≤ 35 MeV and L = 58 ± 18 MeV. These ranges of values are the ones suggested in

Ref. [Dut12]. These constraints are to some extent arbitrary, as there is no consensus on
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Figure 5.1: Each panel shows the distribution of the Skyrme functionals given in Ref. [Dut12]
for four INM properties. Starting from the top left panel and going clockwise we show n0, E0,
L and J . The values of each quantity for the fifteen functionals selected in this work are shown
as labelled vertical lines.

what constitutes reasonable ranges of values for J and L, but they are consistent with the

findings of recent analyses [Tsa12b; Che10; Vid09; Roc11; Li14], and with results and associated

uncertainties from new chiral EFT calculations [DHS19; Dri20].

From this group, we selected fifteen functionals which cover a wide range of values for each of

n0, E0, J , and L: BSk22 and BSk24 [GCP13], KDE [ASA05], KDE0v1 [ASA05], LNS [Cao06],

NRAPRii [Ste13] (NRAPR [Ste05] with the spin-orbit strengthened), SII [VB72], SIV [Bei75],

SKRA [Ras00], SKA [Köh76], SLy4 [Cha98], SQMC650 and SQMC700 [Gui06], SkM∗ [KTB80;

Bar82], and Skz-1 [MNV02]. Their INM properties are labelled in Fig. 5.1. Five of them

— KDE0v1, LNS, NRAPRii, SKRA and SQMC700 — are consistent with all the INM

constraints presented in Ref. [Dut12], and are named in that reference and hereafter as the

CSkP∗ set.

54



5.1. INM properties of Skyrme functionals
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Figure 5.2: The EoS of PNM as a function of the neutron density nn for the 15 functionals
selected in this work. The shaded area gives the constraint given in Fig. 4(a) of Ref. [Dut12].
The functionals labelled in the upper left are the Stiff set, and those in the lower right the Soft
set.

For our functional selection, we also show energy per particle ePNM in pure neutron mat-

ter (PNM) in Fig. 5.2, for the density range relevant for spherical inner crust calculations. ePNM

at neutron density nn is given by

ePNM(nn) =
3~2

10Mn

k2
Fn(nn) +

1

4
t0(1− x0)nn +

3

40
t1(1− x1)nnk

2
Fn(nn)

+
9

40
t2(1 + x2)nnk

2
Fn(nn) +

1

24
t3(1− x3)nσ+1

n .

(5.4)

where kFn(nn) = (3π2nn)1/3. ePNM contains extra terms for the BSk forces (BSk18 and newer),

which are provided in Appendix A.

The functionals clearly fall into two distinct families: the set BSk24, KDE, KDE0v1, SII, and

SLy4, with a stiff EoS at these low densities (hereafter the Stiff set), and the set BSk22, LNS,

NRAPRii, SIV, SKRA, SKa, SQMC650, SQMC700, SkM∗, and Skz-1, with a very soft EoS

(hereafter the Soft set). On the same figure, we have added a shaded area which corresponds to

the range spanned by several ab-initio calculations used to derive the EoS in PNM, and which

is discussed in Fig. 4(a) of Ref. [Dut12].

The Stiff set, including SLy4 and BSk24 which have been widely used for NS calculations,

are in disagreement with the ab-initio calculations at these densities. In contrast, the majority
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Figure 5.3: Left: the symmetry energy S as a function of density n for the 15 functionals
selected in this work. Right: the slope of the symmetry energy, L, as a function of density n
for the 15 functionals selected in this work. The functionals labelled in the upper left of each
plot are the Stiff set, and those in the lower right the Soft set.

of the Soft set are in reasonable agreement, apart from Skz-1 which is very soft. However, the

ab-initio calculations selected in Ref. [Dut12] do not represent the entire range available in the

literature. As shown in Ref. [GCP13], BSk24 and SLy4 are compatible with the error bars

provided by chiral effective field theory calculations from Ref. [Tew13].

The inner crust does not only comprise neutrons, but also has a significant proton fraction,

and so it is interesting to observe the behaviour of S in the relevant density region and not only

at n0. This is shown in the left panel of Fig. 5.3, where we again observe a similar grouping into

the Stiff and Soft sets as shown in Fig. 5.2. The reason is quite simple and can be understood

from Fig. 5.1: the vast majority of the functionals have values of n0 and E0 in a very narrow

range. This means that all these functionals have a very similar EoS in SNM in the low density

region, as shown in Fig. 5.4. Since S is just the difference between the EoS in PNM and SNM

(within the parabolic approximation [DPN16]), it follows that the pattern observed in PNM

repeats here in a very similar way. The exceptions to this simple rule are SII and SIV. They

have extremely low values of n0, shown in Fig. 5.1, and so a significantly different EoS in

SNM compared to the other functionals. LNS, SQMC650, and SQMC700 also show a slightly

different behaviour in SNM approaching n0, which is easily understood from their unusually

high values for n0 and E0, as shown in Fig. 5.1.

Finally, in the right panel of Fig. 5.3, we show how the the slope of the symmetry energy,

L (Eq. 5.3), evolves at subnuclear densities. We see a similar behaviour to S, where there is a
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Figure 5.4: The EoS of SNM eSNM as a function of density n for the 15 functionals selected in
this work. The functionals labelled in the upper left are the Soft set, and those in the upper
right the Stiff set.

small separation between the Stiff and Soft sets, but only at the very lowest densities.

5.2 Inner crust composition

To calculate the EoS and determine the chemical composition of the inner crust, we minimise

the total energy per particle e in the WS cell, given in Eq. 2.2, using the method explained

in Chapters 3 and 4. The pairing strength v0q for each functional was chosen with the same

procedure as for the strong interaction for SLy4 in Chapter 4, such that the maximum pairing

gap in PNM is ≈ 3 MeV. The functionals have different effective masses m∗, which have an

impact on the pairing gap, and so v0q must be adjusted accordingly to reproduce a similar gap.

We cover the range of baryonic densities nb ∈ [0.00025, 0.05] fm−3, above which non-spherical

pasta phases are expected to appear [PCP20], and the range of proton numbers Z ∈ [16, 60].

5.2.1 Selected baryonic densities

We first show results for a few selected baryonic densities nb = 0.01, 0.02 and 0.03 fm−3, for a

smaller group of functionals. Fig. 5.5 illustrates the energy per particle as a function of Z. We

show a re-scaled energy per particle, es, defined as
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Figure 5.5: The re-scaled energy per particle es, defined in Eq. 5.5, for selected functionals from
the Soft (left column) and Stiff (right column) sets, at three values of baryonic density nb. The
large dot on each curve represents the position of the energy minimum.
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Selected baryonic densities

es(nb) = e(nb)− ePNM(nb)− en,pair(nb), (5.5)

where en,pair is the neutron pairing energy per particle. This is purely for visual reasons, so

that all values lie within a similar energy range. Since ePNM is independent of Z, and en,pair

is roughly constant with respect to Z (demonstrated in Chapter 4), this results in a simple

shift in e for a given functional. In the left column are five from the Soft set: BSk22, LNS,

NRAPRii, SKRA, and SQMC700; in the right column are four functionals from the Stiff

set: BSk24, KDE0v1, SII, and SLy4, as explained in Sec. 5.1.

In this figure, we clearly see the different behaviour of the Soft and Stiff sets. The Stiff set

has a persistent minimum at Z = 40, while the Soft set has minima that favour lower Z, or

that shift towards lower Z as nb increases, with all favouring Z = 20 at nb = 0.03 fm−3. The

exception in the Soft set is BSk22, which transitions to Z = 20 just above nb = 0.03 fm−3,

and which has one of the stiffest PNM EoS in this set. NRAPRii is unique among all the

functionals investigated, in that it favours Z = 28 at nb = 0.01 fm−3. This is likely related

to an issue involving the spin-orbit parameter W0. See the discussion in Ref. [Ste13] for more

details. Below nb = 0.01 fm−3, nearer the transition region between the outer and inner crust,

other finite-size effects not considered in our ETFSI+pairing method may become significant,

changing the results. The HFB method is preferable in this very low density range.

To better understand the origin of the different minima, we plot in Fig. 5.6 the smooth part

of the total energy per particle esmooth, defined as

esmooth = e− en,pair − (eSI
p + ep,pair), (5.6)

where the last term is the sum of the SI correction with BCS pairing for protons, and the proton

pairing energy, as explained in Ref. [Pea15]. This results in a smooth parabola-like shape, with

a single minimum. We select two representative functionals SQMC700 and BSk24, from the

Soft and Stiff sets respectively. The parabola shifts significantly in Z going between the two

functionals. Furthermore, as nb increases, we observe that for SQMC700 the minimum moves

from Z = 32 to Z = 28, while for BSk24 it stays at Z = 46.

When the SI correction is included, as in Fig. 5.5, each functional at each density displays

local minima at (semi-)magic Z values between 20 and 50. However, Fig. 5.6 shows how the

global minimum in each case is governed more by the stiffness of the PNM EoS. In this work,

we strictly consider no temperature effects. Since the various energy minima are quite close to

each other, the inclusion of such effects may change this picture. See discussion in Ref. [Bur15]
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Figure 5.6: Total energy per particle, esmooth, obtained without using shell or pairing corrections,
for two functionals at three representative baryonic densities nb.

for more details.

5.2.2 Results for the full baryonic density range

A more systematic study of the evolution of the proton content of the clusters in the inner crust

is illustrated in Fig. 5.7, for all functionals in the Soft and Stiff sets. For clarity, small vertical

offsets have been added to each line, and the Soft and Stiff sets in are shown in separate panels.

At very low nb several values of Z are observed, but above nb = 0.02 fm−3 only two minima

are observed: Z = 20 and Z = 40. The minimum at Z = 40 seems to be favoured by most

functionals at around nb = 0.01 fm−3, but at nb = 0.03 fm−3 the majority of the Soft set have

transitioned to the Z = 20 configuration. The only exception to this rough classification is

SQMC650, whose ePNM is the highest out of the Soft set, as seen in Fig. 5.2, and it maintains

a Z = 40 minimum up to quite a high baryonic density of nb ≈ 0.04 fm−3.

It is interesting to note that Z = 20 is favoured by functionals whose PNM EoS is com-

patible with ab-initio calculations. This result is also in good agreement with the findings of

Ref. [Bal05]. Although further analysis is necessary, our results suggest that a better under-

standing of the EoS in low-density PNM may help to clarify the chemical composition of the
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Figure 5.7: Proton content of WS cells in the inner crust as a function of the baryonic density
nb, for all functionals in the Soft and Stiff sets. A small vertical offset has been added to each
line to make them more visible; all lines only take values from one of Z = 20, 28, 40, 50.

inner crust.

Having calculated the chemical composition of the inner crust, we now study its general

properties with the different functionals. In Fig. 5.8, we show the total energy per particle e

(Eq. 2.2) for the WS cells in the inner crust, obtained through the energy minimisation, as a

function of the baryonic density nb. The pattern formed by the various Soft and Stiff functionals

is almost identical to that seen for ePNM, shown in Fig. 5.2. This further supports the PNM

EoS being the major driver of the inner crust EoS.

Another relevant astrophysical quantity is the proton fraction in the inner crust, Yp = Z/A.

It plays a role in the transport properties of a NS and in the determination of the neutrino

mean free path in the stellar medium [IP82]. In Fig. 5.9, we report Yp as a function of nb for

the same smaller selection of functionals shown in Fig. 5.5. The same feature already observed

in Fig. 5.7 is clear: the Soft functionals predict WS cells with fewer protons, and have a lower

Yp, while the contrary is true for the Stiff functionals. At around nb = 0.02 fm−3, Yp varies by

up to a factor of 2 between the two sets. When Z in a WS cell changes, the baryon content

of each WS cell follows this change quite closely. As a consequence, the factor of 2 observed
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Figure 5.8: The energy per particle e in the inner crust, as a function of the baryonic density
nb. Four functionals from the Stiff set are shown, labelled in the upper left, and five from the
Soft set, labelled in the lower right.

between the two dominant minima in Fig. 5.7 (Z = 20, 40) is conserved here.

It is worth commenting on the case of BSk24, a functional specifically created to be able

to provide a unified description of the NS EoS. This was adjusted under many constraints,

including the requirement that it reproduce the LS2 equation of state [LS08] in PNM, which

was calculated using the microscopic Brueckner-Hartree-Fock method. The authors note in

Ref. [GCP13] that they focused on supernuclear densities when constraining BSk24 to the LS2

EoS. As a result, the BSk24 PNM EoS is significantly stiffer than LS2 at inner crust densities.

Around nb = 0.04 fm−3, LS2 is better approximated by SQMC650, SQMC700, and NRAPRii,

than by BSk24.

In Refs. [Pea18; Pea19], the authors claim that the constraining PNM EoS has little effect on

Yp in the inner crust, and show that J is an important INM quantity. However, by inspecting

carefully Figs. 5.2 and 5.9, we see that BSk24 (J = 30 MeV), SLy4 (J = 32 MeV), and

KDE0v1 (J = 34.6 MeV) have a Yp largely in the range 0.03 − 0.04. The functionals with a

softer PNM EoS — BSk22, LNS, NRAPRii, SKRA, and SQMC700 — have a Yp mostly in the

range 0.02 − 0.025, despite having J ranging from 31.3 to 33.4 MeV. We therefore conclude

that J is not the driving factor leading to large variations of Yp, but it is the equation of state

of PNM at low density, or equivalently S at low density as shown in the left panel of Fig. 5.3

and discussed in Sec. 5.1.

The softest functional investigated in Ref. [Pea18; Pea19], BSk22, which more closely fol-
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Figure 5.9: Proton fraction Yp in the inner crust, as a function of the baryonic density nb. Four
functionals from the Stiff set are shown, labelled in the upper right, and five from the Soft set,
labelled in the upper left.

lows LS2 at inner crust densities, gives results favouring an energy minimum at Z = 20 at

intermediate inner crust densities, and lower values for Yp, e, and P . This means that the

results presented here are consistent with those in Refs. [Pea18; Pea19], but given the small

variations in the properties of the functionals used, the authors were not able to observe such

an interesting correlation.

It is also interesting to note from Fig. 5.9 that almost all of the CSkP∗ set, selected in

Ref. [Dut12] according to several criteria based on INM properties, tend to favour a very small

Yp within the crust. The only exception is KDE0v1, from the Stiff set.

In Fig. 5.10, we show the surface energy coefficient aMTF
surf as calculated using the MTF

approximation, introduced in Ref. [Jod16], which approximates very well the surface energy

coefficient calculated in a full HF calculation. In the recent work of Carreau et al. [Car20],

where they adopt a compressible liquid drop picture, it is claimed that the surface properties

of the functional are the most important in the inner crust. However, by looking at Fig. 5.10,

we see that there is no clear correlation between asurf and the EoS, shown in Fig. 5.7. Neither

the Soft or Stiff set show a consistently higher or lower value of aMTF
surf .

In Fig. 5.11, we illustrate the evolution of the radius of the Wigner-Seitz cell, RWS, as a

function of the baryonic density, again for the smaller selection of functionals. While in the

low density region, nb ∈ [0.00025, 0.015] fm−3, we observe significant variations in the sizes of

the cells, at higher baryonic densities, we notice that the size of the cell is almost independent
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Figure 5.10: The surface energy coefficient aMTF
surf as calculated using the MTF approximation,

introduced in Ref. [Jod16], for the various functionals investigated in this chapter.

of the functional. In particular, we clearly identify again the Stiff set and the Soft set, giving

values of RWS very close to each other. The sudden jumps shown in this figure correspond to

abrupt changes in the chemical composition of the crust, as seen in Fig. 5.7.

Finally, in Fig. 5.12, we illustrate the evolution of the pressure P as a function of the

baryonic density nb, for the same eight functionals already discussed in Figs. 5.8 and 5.9. In

this case, the separation into the Stiff and Soft sets is only visible up to around nb = 0.025 fm−3.

We recall that the pressure depends on the derivatives of the EoS, rather than its value.

5.3 Summary

In this chapter we have performed a systematic analysis of the structure of the inner crust of a

non-accreting NS, using the ETFSI+pairing method. By selecting 15 different functionals with

different infinite nuclear matter properties, we have illustrated a possible correlation between

the a functional’s PNM EoS at low density, and the proton content and pressure of the Wigner-

Seitz cells. In particular, we have shown that functionals with a soft PNM EoS at low densities

tend to favour the Z = 20 minimum, as well as a lower proton fraction, and a lower pressure
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Figure 5.11: Radius of WS cells RWS in the inner crust, as a function of the baryonic density
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up to around nb = 0.025 fm−3, while functionals with a stiff PNM EoS show the opposite

behaviour, and favour instead the Z = 40 minimum. This result clearly shows the importance

of the constraining the PNM EoS more tightly at subnuclear densities in the adjustment protocol

of Skyrme functionals used to study NS. This is not the standard procedure, since authors tend

to focus more on the high density trend of the EoS; indeed, this is necessary to prevent the

collapse of the NS, and to reproduce its global properties such as the maximum mass and

radius [ZFH17]. More stringent constraints on functionals obtained by more recent ab-initio

calculations at low density should pave the way toward a more reliable unified EoS for neutron

star matter.
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The outer crust

As discussed in Refs. [RHS06; Cha20], at β-equilibrium the composition of each layer of the

outer crust at a given pressure P is obtained by minimising the Gibbs free energy per nucleon.

The latter is the sum of three main contributions: the nuclear, electronic and lattice. There has

been some investigation into the possibility of the coexistence of multiple isotopes (in binary or

ternary compounds) at a given density [CF16], but it was found that the effect on the EoS is

very small. The effects of considering the system at a finite temperature have been presented in

Ref. [Fan20]. Since a large fraction of nuclei present in the outer crust are extremely neutron-

rich, their binding energies are not known experimentally, and consequently one has to rely on

a nuclear mass model. We refer the reader to Ref. [Oer17] for a review of the properties of

various equation of state (EoS) used to describe dense stellar matter.

Several models are available within the scientific literature with a typical accuracy, i.e.,

the root mean square (RMS) deviation of the residuals, of 500 keV [SLP18]. In recent years,

some of these mass models have been equipped with additional algorithms such as kernel

ridge regression [WZ20] or radial basis function interpolation [WL11; Niu18], thus reducing

the typical RMS to ≈ 200–300 keV. Although such an RMS is remarkably low compared

to the typical binding energy of a nucleus, the discrepancies between various models are still

important, especially when used to predict the composition of the outer crust of a NS [Wol13].

Analysis of the residuals of various mass models shows that they do not show chaotic

behaviour [Bar05], thus it should be possible to further improve their accuracy, at least up

to the level of Garvey-Kelson relations [GK66], by adding additional terms to account for the

missing physics. This may be a very complex task, but machine learning methods can provide

major support in achieving this goal.

In recent years, several authors have tried to reduce the discrepancy between theory and

experiment by supplementing various mass models with neural networks (NNs) [Cla99; Ath04;
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Ath05; UPP16; Neu18; Pas20], where the NN learns the behaviour of the residuals. NNs are

excellent interpolators [Les93], but they should be used with great care for extrapolation. The

major problem is the presence of an unwanted trend related to the particular choice of the

activation function. See Refs. [Xu21; PC20] for a more detailed discussion on the topic.

A possible alternative to NNs has been discussed in Ref. [Neu18], and it is based on Gaussian

processes (GPs) [BO09; Pas17; She19]. This GP method assumes that the residuals originate

from some multivariate Gaussian distribution, whose covariance matrix contains some param-

eters to be adjusted in order to maximise the likelihood for the GP’s fit to the residuals. The

main advantage of a GP over a NN is that its predictions do not contain unwanted trends in

extrapolation, but instead will always return to 0 after a predictable extrapolation distance.

Moreover, GP predictions come equipped naturally with error bars. This is not the case for

a standard NN (only Bayesian neural networks are equipped with posterior distributions that

can be interpreted as error bars [Nea12]), and a more involved procedure is required to obtain

an estimate [PC20]. We have previously tested the use of Gaussian processes as emulators,

firstly of the energy per particle in the inner crust [Pas17], and secondly of the χ2 surface in

the fitting of nuclear models with Bayesian optimisation [She19].

In this chapter, we present a new mass table, made by combining the predictions of a Duflo-

Zucker [DZ95] mass model with a GP, in order to further reduce the RMS of the residuals. We

use the resulting model to analyse the composition of the outer crust of a NS. As previously done

in Ref. [Pas20], we perform a full error analysis of the mass model and we use a Monte-Carlo

procedure to propagate these statistical uncertainties through to the final EoS.

6.1 Gaussian process regression

We now introduce Gaussian processes, and their use as a regression tool. A Jupyter notebook

is available as supplementary material; it was used to create Figs. 6.1 and 6.2, and contains

additional plots which give a step-by-step introduction.

A Gaussian process (GP) is an infinite-dimensional Gaussian distribution. Similar to how

a one dimensional (1D) Gaussian distribution has a mean µ and variance σ2, a GP has a mean

function µ(x), and a covariance function k(x,x′), also known as the kernel. In principle, x can

be a vector of length d representing a point in a d-dimensional input space, but for now we

will just consider the case d = 1, i.e., where x is a single number. Just as we can draw random

samples (numbers) from a 1D Gaussian distribution, we can also draw random samples from

a GP, which are functions f(x). The kernel k(x, x′) tells us the typical correlation between

the value of f at any two inputs x and x′, and entirely determines the behaviour of the GP
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(relative to the mean function). In our work here, we use here a constant mean function of

0. The purpose of the GP is to capture any fluctuations around this mean function. In our

application later to a nuclear mass model, the trend of the data is given by the nuclear model,

and the GP describes anything not described well by the model.

GPs can be used for regression of data if the underlying process generating the data is

smooth and continuous. See Ref. [RW06] for a thorough introduction to GPs for regression

and machine learning. Many software packages are available for GP regression; for this work

we use the Python package GPy [GPy20]. For a set of data Y(x) = {y1(x1), y2(x2), . . . yn(xn)},
instead of assuming a fixed form for the interpolating function, we treat the data as originating

from a Gaussian process GP :

Y(x) ∼ GP(µ(x), k(x, x′)). (6.1)

We adopt the commonly used RBF (radial basis function) kernel, also known as the squared

exponential or Gaussian. A variety of other kernels are available; however, the RBF is the

simplest and most popular choice, and has easily interpretable parameters for our work. It

yields very smooth samples f(x), and has the form

kRBF(x, x′) = η2exp

[
−(x− x′)2

2`2

]
, (6.2)

where η2, ` are parameters to be optimised for a given Y . Both have easily interpretable

meanings: η gives the typical magnitude of the oscillations of f(x), and ` the typical correlation

length in x. When |x− x′| is small, the correlation is large, and we expect f(x) and f(x′) to have

similar values. As |x− x′| grows beyond a few correlation lengths `, the correlation between

f(x) and f(x′) drops rapidly to 0.

A simple way to understand GPs is to make use of Bayes’ theorem. Before doing the exper-

iments we have a prior distribution for f(x), characterised by the kernel given in Eq. 6.2. We

can then draw sample functions from this prior, which are fully determined by the parameters

η2, `. In Fig. 6.1, we show five sample draws of functions f(x) from some priors, which have

η = 1 and various choices of `. We observe that by varying ` we can have very different shapes

in the prior samples. On average, they all lie within the shaded area representing 1σ confidence

interval 68% of the time.

In Fig. 6.2 we show a simple demonstration of GP regression, where the underlying true
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Figure 6.1: Colors online. Examples of the structure of prior functions for various choices of
the ` parameter. The shaded area represents the 1σ confidence interval.

function generating the data (dotted line) is simply y = sin(x). We perform the experiment

and we extract five data points, indicated by crosses on the figure, which are used to build

the likelihood for f(x); by combining this likelihood with the prior, we then obtain a posterior

distribution of f(x). The GP mean (solid line) here represents the average of all possible

samples from the posterior distribution of f(x) passing through the data Y (crosses), i.e. the

average prediction. Since both the likelihood and the prior are Gaussian, so is the posterior.

The GP mean is smooth, and interpolates all data points exactly. Outside the input domain,

it approaches 0. As we would expect, the quality of the regression is greatest where there is

more data available, in this case 0 ≤ x ≤ 4.

Also shown in Fig. 6.2 are confidence intervals, here representing 2σ (≈ 95%). The confi-

dence intervals are 0 at each data point, and grow in between data points, more rapidly so when

data are further apart. At the edges of the input domain, they also grow rapidly, representing

the uncertainty in extrapolation, until reaching a maximum of 2η. A very important aspect of

the GP is the confidence intervals: in this case, we see that the true function does not always

match the GP mean, but ≈ 95% of the true function falls within the 2σ interval.

The GP is fully characterised by the two kernel parameters; clearly some sets of these
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Figure 6.2: Demonstration of Gaussian process regression. The true function is y = sin(x),
and the data points are at x = {0, 0.5, 2, 3.5, 6}. The solid line represents the GP mean,
and the shaded areas give the 2σ confidence intervals. The optimised kernel parameters are
η2 = 0.602, ` = 1.063. See text for details.

parameters lead to better regression. For example, if ` is smaller than the typical data spacing,

the GP mean will approach 0 in between data points, making it useless for interpolation (over-

fitting); if η2 is too large, the size of the confidence intervals will be overestimated. These

parameters are determined using likelihood maximisation as discussed in Ref. [GW19].

6.2 Nuclear masses

Nuclear mass models are used to reproduce the nuclear binding energies of all known nuclei,

≈ 3200 [Wan17]. Within the mass database we distinguish two types of data: nuclear masses

that have been directly measured (≈ 2400) and the extrapolated ones (≈ 750). The latter are

obtained by indirect mass measurements and we will use them to benchmark our extrapolations.

For this investigation, we use the Duflo-Zucker mass model[DZ95]; it consists of 10 terms

(DZ10 model), and is able to reproduce all known masses with a root mean square deviation

of σRMS ≈ 0.6 MeV [Pas20]. The details of the model are not relevant for our work here; DZ10

was chosen since it is commonly used, and because it is not very CPU intensive. We refer the

reader to Refs. [Zuk11; Qi15] for a detailed discussion on the different terms in the model.

The parameters of the DZ10 model have been adjusted in Ref. [Pas20] using the block-

bootstrap (BB) method [Pas19], yielding the optimal parameter set a0. The reason for using

BB is that it provides robust error bars on the parameters that take into account correlations

between them [Lah99; BB17].
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Figure 6.3: Left panel: residuals as a function of nucleon number A for the DZ10 model, for
measured masses. In the right panel are the same residuals shown as a histogram, with a
Gaussian fit overlaid (for which the mean is fixed to 0, and the standard deviation to that of
the residuals). See text for details.

The assumption used to fit DZ10, as with any other mass model, is that the experimental

binding energies Bexp(N,Z) are equal to the theoretical ones Bth(N,Z|a0) up to a Gaussian

error ε(N,Z):

Bexp(N,Z) = Bth(N,Z|a0) + ε(N,Z), (6.3)

where Bth(N,Z) is the binding energy calculated using DZ10. In Fig. 6.3, we illustrate the

residuals for DZ10 as a function of the nucleon number A = N + Z. One clearly sees that

these residuals show structure, thus indicating the presence of some missing physics that is not

properly accounted for by the model. In the right panel of the same figure, we plot the same

residuals as a histogram, and we draw a Gaussian with mean 0 and width fixed to the RMS of

the residuals. The height of the Gaussian is fitted on the residuals.

A more detailed statistical test can be performed on these residuals to verify that they do

not follow a regular Gaussian distribution — see for example Refs. [CP20; Pas20] for more

details — but for the current discussion a qualitative analysis is sufficient.

Having identified that there is room to improve the accuracy of the model, the most natural

option to take is to add new terms [Qi15]. For example, a version of the Duflo-Zucker model

with 33 parameters is available. Although the RMS reduces to ≈ 300 keV, the extra terms

appear poorly constrained [Qi15], and therefore the model is unsuitable for extrapolation. We

refer the reader to Ref. [NV16] for a detailed discussion on poorly constrained parameters.
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Instead of explicitly creating new terms for a given mass model, we can take advantage of

machine learning methods. For example, in Refs. [UPP16; Pas20], the authors have adjusted a

NN on the residuals of the DZ10 model in order to reduce the discrepancy between theory and

experiment. The NN is able to reduce this discrepancy to a typical RMS of ≈ 350 keV [Pas20].

NNs are often very complex models, with several hundred free parameters. As discussed

in [Neu18], a Gaussian process represents a valid alternative to a NN; the main advantages

are the very small number of adjustable parameters, as discussed in Sec. 6.1, and the superior

performance on the database of nuclear masses when compared with a NN [Neu18]. Moreover,

the procedure using GPs outlined in this thesis can be easily generalised to any other mass

model that has non-Gaussian-distributed residuals. We leave this for a future extension of this

work.

6.2.1 Augmenting the DZ10 model with a GP

Having introduced the GP in Sec. 6.1, we now apply it to the case of nuclear masses. As done

in Ref. [Neu18], we consider the same kernel given in Eq. 6.1, but now in the 2D case, meaning

there are now three adjustable parameters. We also use a fourth parameter σn, named the

nugget. The use of the nugget carries several advantages, including numerical stability [Nea97],

and improved predictions [GL12]. Its use is standard where the data have statistical error bars,

as is the case with nuclear masses. The kernel we use is then given by

kRBF(x, x′) = η2 exp

[
−(N −N ′)2

2ρ2
N

− (Z − Z ′)2

2ρ2
Z

]
+ σ2

nδxx′ , (6.4)

where in the present case x = (N,Z), and η2, ρZ , ρN are the adjustable parameters. Follow-

ing Ref. [Neu18], ρN and ρZ are interpreted as correlation lengths in the neutron and proton

directions, while η2 gives the strength of the correlation between neighbouring nuclei.

The addition of the nugget means that the GP mean now does not necessarily pass directly

through each data point, and that the 1σ confidence intervals only shrink to a minimum of σn.

After performing preliminary investigation using a full minimisation with all four parameters,

we have found that the optimal value is σn = 0.2 MeV. We have decided to fix this value, in

order to simplify the analysis of the posterior distribution.

The main role of the nugget is to avoid over-fitting, which manifests itself via a correlation

length smaller than the typical separation of the data. For example, setting σn = 0 MeV would

lead to a perfect reproduction of the data, but the resulting model would be totally useless;
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it would not be able to perform any kind of prediction, since the correlation lengths would be

smaller than one (i.e., the separation the nuclear mass data). The nugget gives us an extra

flexibility in identifying the residual correlations between the data as discussed in Ref. [PC20].

For a more detailed discussion on GP and the role of the nugget we refer to Ref. [Neu18].

As discussed previously, we adjust the parameters of the GP on the residuals of the DZ10

model (shown in Fig. 6.3). The parameters η, ρN , ρZ are determined through maximising the

likelihood for the GP. See Ref. [GW19] for details. In Fig. 6.4, we illustrate the posterior

distribution of the parameters in the form of a corner plot. The distributions were obtained

with Markov chain Monte-Carlo (MCMC) sampling [Gey92]. We used the emcee [For13] Python

package, which makes use of an affine-invariant ensemble sampler [GW10], using 32 chains of

2000 samples each. This incurred a significant computational cost — almost 40 hours on a

32-core compute node — as well as having a large memory requirement of ≈ 0.8 TB). The

main computational bottleneck is the repeated inversion of a correlation matrix during the

optimisation of the GP parameters; this optimisation procedure takes place at every MCMC

step. The matrix contains n2 elements, where n ≈ 2400 is the number of measured nuclei. We

have therefore implemented a Python code to run the sampling on a computing cluster.

Fig. 6.4 illustrates the shapes of the distributions around the optimal parameter set, and it

provides us with the error bars for the parameters and information about their correlations. In

this case we see that all parameters are very well determined by the residuals data, and a weak

correlation is observed between η and ρN , and between η and ρZ .

A very interesting result is that the two correlation lengths ρN,Z are as large as, or greater

than, 2. This means that, if we know the residual for a nucleus with mass number A, we can

infer properties of the nucleus with A ± 2. This result is in agreement with the analysis done

in Ref. [Pas20], which was based on the auto-correlation coefficients.

We now construct our new model for Bth (appearing in Eq. 6.3) as Bth = BDZ10 − GP ,

which we name DZ10-GP. In Fig. 6.5 we compare the residual distributions for the DZ10 and

DZ10-GP models for measured masses. We see that the RMS of the DZ10 model has been

greatly reduced. The RMS of the DZ10-GP model is σ = 178 keV, which at the moment is

probably among the lowest values ever obtained using a mass model fitted on all the available

masses, with a total of 10 + 4 = 14 adjustable parameters.

In Fig. 6.6, we illustrate the residuals obtained from the DZ10-GP model as a function of

mass number A. We clearly see that the GP has been able to capture the missing physics of the

DZ10 model, in particular smoothing out the spikes observed in Fig. 6.3. We observe that the

maximum discrepancy between theory and experiment is now always lower than 1 MeV, and the

structure observed in Fig. 6.3 has now disappeared, with the new residuals exhibiting behaviour
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Augmenting the DZ10 model with a GP

Figure 6.4: Posterior distributions of GP parameters obtained through MCMC sampling. The
horizontal and vertical solid lines indicate the optimal parameter values obtained by maximising
the likelihood. The vertical dotted lines on each 1D histogram indicate the mean and 1σ
confidence intervals obtained through the MCMC sampling. See text for details.
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Figure 6.5: Distributions of the residuals for the DZ10 and DZ10-GP models, for measured
masses. Gaussian fits to the residuals are also shown, with the mean fixed to 0, and the
standard deviation to that of the residuals. See text for details.
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Figure 6.6: The same as Fig. 6.3, but for the DZ10-GP model. See text for details.

close to white noise. The presence or not of white noise in the model may represent a lower

bound on the accuracy one can achieve with a theoretical model, as discussed in Ref. [Bar05];

we leave such an interesting analysis for a future investigation.

6.2.2 Extrapolation using the DZ10-GP model

Having created the DZ10-GP model, we now benchmark its extrapolations on the set of ≈ 750

nuclear masses obtained via indirect measurements [Wan17]. The results are presented in

Fig. 6.7. The original DZ10 model gives an RMS of 1.426 MeV; the inclusion of GP corrections

reduces the RMS to 1.100 MeV. It is worth noting that some outliers are still present. We

have checked that the six nuclei with a residual larger than 6 MeV are all in the region of

super-heavy nuclei with Z ≥ 108.

Since the main goal of this chapter is the study of the outer crust of a neutron star, in

Fig. 6.8 we illustrate in great detail the evolution of the residuals for two isotopic chains —

copper and nickel — that play a very important role in determining the composition of the

outer crust [Wol13].

We observe that the original DZ10 model reproduces fairly well the data in the middle of the

isotopic chains, and that it tends to give large discrepancies at the edges. Even the inclusion of

the statistical error bars of DZ10 are not enough to explain such a discrepancy. We refer the

reader to Ref. [Pas20] for a detailed discussion on how these error bars have been obtained. On

the contrary, the use of the GP helps to flatten out the discrepancies, and produces predictions

very close to the data in the extrapolated region. By considering the experimental and the

theoretical error bars, we observe that our DZ10-GP model reproduces these data reasonably
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Figure 6.7: Same as Fig. 6.5, but for extrapolated masses. See text for details.
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Figure 6.8: Residuals for the DZ10 and DZ10-GP models, for the Z = 28 and Z = 29 isotopic
chains. The vertical dashed lines represent the transition from nuclei used for training to nuclei
for which predictions are made. See text for details.
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1σ 2σ 3σ

Full chart 61% 88.8% 96.2%
50 ≤ A ≤ 150 59.2% 89.1% 97.3%
20 ≤ Z ≤ 50 54.4% 84.1% 95.5%

Table 6.1: Percentage of nuclei included in the total error bars for the DZ10-GP model for
three different sectors of the nuclear chart

well. The error bars of the DZ-GP model have been obtained using a näive approach, i.e.,

summing in quadrature the statistical error bars of the original DZ model and the confidence

intervals of the GP model.

As done in Ref. [Pas20], we validate the error bars by comparing with experimental masses.

In particular, we expect that 68% of known masses differ from the model prediction no more

than σ = σth + σexp, where σth is the theoretical error bar of the DZ10-GP model and σexp is

the experimental error bar. By increasing the error bar by a factor of 2 and 3 we should obtain

95% and 99.7% of experimental binding energies falling into the interval.

From Table 6.1, we observe that most of the nuclei fall within these error bars as expected,

although we still underestimate in some relevant regions of the chart, such as 20 ≤ Z ≤ 50 which

is important for outer crust calculations. This discrepancy may be a sign of other contributions

to the error bar that were not taken into account here, for example correlations between the

DZ10 and GP error bars.

In Fig. 6.9, we show the evolution, along two isotopic chains, of the GP’s contribution

to binding energy. We see that these contributions drop to 0 as the neutron-rich region is

approached. On the same figure, we also report the evolution of a 1σ error bar provided by the

GP. As discussed previously, we notice that the error bars grow towards the neutron drip-line,

where we have little or no available data to constrain the GP.

From Fig. 6.9, we observe that the confidence interval provided by the GP model at large

values of N becomes constant and equal to η. This means that at very large extrapolations, the

GP error bar is most likely underestimating. In this case, the model error bar should become

larger and be the dominant source of error. See for example [Gao13].

This behaviour can be understood from the value of the GP’s correlation length for neutrons,

ρN = 2.67: by construction the GP predictions tend to the mean of the data, in this case 0,

after ≈ 2-3 times ρN . This means that the GP will be effective in describing extrapolated

neutron-rich nuclei with at most ≈ 8-10 neutrons more than the last nucleus in our training

set. This is clearly only a rule of thumb, but it is enough to cover most of the extrapolated

nuclei that are present in the outer crust [PGC11] of a neutron star. For nuclei further away
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Figure 6.9: GP correction for Z = 28 and Z = 29. The vertical dashed lines represent the
transition from nuclei used for training to nuclei for which predictions are made. The shaded
ares represent the GP 1σ error bars. See text for details.

from the known data-set, the extrapolation is governed by the underlying nuclear mass model,

i.e., the DZ10 model. This is not the case for other approaches, for example with NNs that can

introduce an additional trend on top of the model. Such a trend is difficult to predict a priori,

and it may be strongly biased by the training method. See Ref. [PC20] for a more detailed

discussion. In the recent work of Neufcourt et al. [Neu19], extrapolation to the neutron drip

line was carried out using a combination of GPs with Bayesian model averaging, to avoid model

dependence. This would be an interesting avenue to explore in future work.

6.2.3 Comparison with AME2020

Having trained and developed the DZ10-GP model on the AME2016 database [Wan17], we now

benchmark the predictions against the newly published AME2020 database [Hua21]. Between

the 2016 and 2020 database, we have 74 new isotopes.

In Fig. 6.10, we report the distribution of the residuals for the new isotopes presented in

AME2020 database, apart from the Cu measurements already published in Ref. [Wel17]. We

observe that the RMS of the original DZ10 model for these new data is σDZ10 = 701 keV, while

for the DZ10-GP model it is σDZ10-GP = 299 keV. Notice that in this case we do not re-adjust

the GP model over the new data. This test clearly proves that the GP is not over-fitting

the data, but it was really able to grasp a signal in the residuals and is therefore capable of

performing extrapolations in regions in the proximity of the data set used for the training. We

also observed that 50% of the new isotopes fall within the error bars of the original DZ10-GP

model. This value is slightly lower than what is reported in Table 6.1, but still reasonable
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Figure 6.10: Distributions of the residuals for the DZ10 and DZ10-GP models, for new masses
presented in AME2020 [Hua21]. Gaussian fits to the residuals are also shown, with the mean
fixed to 0, and the standard deviation to that of the residuals. See text for details.

compared to the expected 68%.

6.3 Outer crust composition

To determine the chemical composition of the outer crust, we minimise the Gibbs free energy

per particle, which is defined as [BPS71]

g = Enuc(N,Z) + Ee(A,Z) + El(A,Z) +
P

ρb
, (6.5)

where ρb is the baryonic density. The three terms Enuc, Ee, El are the nuclear, electronic and

lattice energies per nucleon respectively [Bas15]. The pressure P arises only from lattice and

electron contributions as P = PL + Pe. For more details, we refer to Ref. [BPS71], where the

entire formalism has been discussed in great detail.

The novelty of the current approach is in the treatment of the nuclear term, which takes

the form

Enuc(N,Z) =
Zmp +Nmn

A
− B(N,Z)

A
(6.6)

where mp(n) is the mass of the proton (neutron) and B is the nuclear binding energy given by

the mass model. In this work, we use the mass model DZ10-GP as discussed in Sec. 6.1. The
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DZ10 DZ10-GP

Pmax [MeV fm−3] N Z Pmax [MeV fm−3] N Z

3.30 · 10−10 30 26 3.30 · 10−10 30 26

4.36 · 10−8 34 28 4.36 · 10−8 34 28

3.56 · 10−7 36 28 3.56 · 10−7 36 28

4.02 · 10−7 38 28 4.02 · 10−7 38 28

1.03 · 10−6 50 36 1.03 · 10−6 50 36

5.59 · 10−6 50 34 5.59 · 10−6 50 34

1.76 · 10−5 50 32 5.59 · 10−6 50 32

1.77 · 10−5 50 30

1.58 · 10−4 50 28 3.22 · 10−5 50 28

1.82 · 10−4 82 42 1.21 · 10−4 82 42

3.31 · 10−4 82 40 1.81 · 10−4 82 40

4.83 · 10−4 82 38 3.31 · 10−4 82 38

4.86 · 10−4 82 36 4.84 · 10−4 82 36

Table 6.2: Composition of the outer crust of a NS using the DZ10 and DZ10-GP mass models.
In the first and fourth columns we report the maximum value of pressure at which the nucleus
is found using the minimisation procedure. The horizontal line separates the measured and
extrapolated masses reported in AME2016 [Wan17].

composition predicted by the mass models is given in Table 6.2. By comparing the DZ10-GP

results with those obtained using only the DZ10 model, we observe some discrepancies in the

extrapolated region at low P . In particular, we notice that the improved mass model (DZ10-

GP) predicts the existence of 80Zn, that is not considered in the original DZ10 model. At

higher P , the two mass models give very similar results. This is simple to understand since, as

discussed in Sec. 6.1, the GP correction tends to 0 for large extrapolations, as seen in Fig. 6.9.

Since our goal is to obtain the statistical uncertainties of the equation of state, we perform

a simple Monte-Carlo sampling of the error bars of our DZ10-GP model (under a Gaussian

assumption). We generate 104 new mass tables, and we use them to calculate the composition

of the outer crust.

Using a frequentist approach [Bar89], we define the existence probability of each nucleus as

the ratio of the number of times a given nucleus appears in the various EoS at a given pressure,

divided by the total number of mass tables. See Ref. [Pas20] for more details.

In Fig. 6.11, we show the evolution of the existence probability for each nucleus in the
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Figure 6.11: Colors online. Existence probability of a given nucleus within the outer crust as a
function of the pressure, obtained via a Monte-Carlo sampling using the DZ10-GP mass table.
See text for details.

outer crust as a function of the pressure of the star. We notice that, as confirmed by other

authors [PGC11], the favourable configurations are those close to the neutron shell closures at

N = 50 and N = 82. However, due to the large error bars, there is a non-negligible probability

for several nuclei to be present within the outer crust.

It is interesting to compare the composition obtained with DZ10-GP with the predictions

of other mass models, since different mass models may yield different extrapolations. We

have selected two popular mass models currently used in astrophysics: BSk20 [PGC11] and

BPS [Sha15]. The results are reported in Fig. 6.12. The shaded area on the figure represents

all the possible EoS obtained using the Monte-Carlo procedure detailed above using a 1% cut-off

on the existence probability. We observe that the results obtained with the different procedure

are in good agreement with the DZ10-GP model once the error bars are properly taken into

account. It is important to notice that the transition region between the outer and inner crust

is mainly governed by the mass model and not by the GP correction. As a consequence, we

may expect different results using various models as shown in Fig. 6.12.

Using the same data set, we also define a statistical uncertainty for the EoS: by counting

the 104 EoS built before, we define the 68%, 95%, and 99% quantiles of the counts, i.e., 1σ, 2σ

and 3σ deviations, under the assumption that the errors follow a Gaussian distribution. The

results are presented in Fig. 6.13. We observe that the largest uncertainties are located close to

the transition from N=50 to N=82 at P ≈ 1.2× 10−4MeV fm−3 and approaching the transition

to the inner crust at P ≈ 5× 10−4MeV fm−3.
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Figure 6.12: Variations of Z and N with pressure in the outer crust for the BSk20 and BPS
models. The shaded area represent the regions covered by the Monte-Carlo procedure detailed
in the text and obtained using the DZ10-GP model. See text for details.
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Figure 6.13: Equation of state, including statistical uncertainties, of the outer crust of a NS,
calculated using the DZ10-GP mass model. See text for details.
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6.4 Summary

By using a Gaussian process fitted to the residuals of the Duflo-Zucker mass model, we have

been able to create a mass model with a global RMS of less than 200 keV. The resulting DZ10-

GP model has the major advantage of having a very limited amount of parameters (ten in the

original DZ model plus four for the GP), but it is also one of the very few mass models equipped

with error bars [GC14; Qi15].

We have then applied the resulting mass model to study the composition of the outer crust

of a neutron star, paying particular attention to the role of statistical errors and how they

propagate to the final EoS. Following the methodology presented in Ref. [Pas20], we have

defined an existence probability of a nucleus within the crust. Such a quantity helps us to

identify the possible accuracy problems related to our model, and it may help in prioritising

future experimental proposals to further improve our knowledge of the crust of a neutron star.
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Conclusions and perspectives

Despite neutron stars first having been predicted almost a century ago, we still lack a unified

equation of state that can accurately describe all layers of the star. Regarding the crust, the

Skyrme functionals typically used are not very varied, and so many aspects of the outer and

inner crust compositions are far form being determined. In the case of the neutron-rich inner

crust, there had previously been no conclusive link between a Skyrme functional’s properties

and its predictions in this system. For the outer crust, calculations have historically almost

always been carried out using mass models with no associated uncertainties.

In this PhD project, we have offered several improvements to the models used to describe

both the inner and outer crusts of neutron stars, while also identifying key deficiencies in

previously used models.

After outlining the various energy contributions to an inner crust WS cell in Chapter 2, we

carried out the first direct comparison between the ETFSI and HFB methods in Chapter 3 in

the inner crust. We found that the densities and fields from ETFSI calculations can reproduce

the HFB densities and fields very well, but that there is a significant energy discrepancy. We

identified this as coming from a lack of neutron pairing in the ETFSI formalism.

In Chapter 4, we introduced for the first time a method to include neutron pairing cor-

relations in an inner crust calculation. The resulting ETFSI+pairing model was remarkably

successful at closing the gap observed in Chapter 3 between previous ETFSI work (which only

included proton pairing) and HFB calculations (where all pairing correlations are included

naturally).

In Chapter 5, we performed a systematic investigation of the inner crust, with the new

ETFSI+pairing model, in order to shed light on the persistence of nuclear clusters with Z = 40.

We demonstrated clearly that, when using a Skyrme functional to model the inner crust, the

results are largely influenced by PNM EoS of the particular functional. This has a simple
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explanation, in that a large fraction of the inner crust matter is well-approximated by a uniform

neutron gas. We concluded that, if one wishes to have a unified EoS that accurately describes

the inner crust, it must have an accurate PNM EoS at sub-nuclear densities, i.e. well constrained

by ab-initio calculations.

In the modelling of the outer crust, it is necessary to have use a nuclear mass model which

can be relied upon in extrapolation beyond the region of measured nuclei. In Chapter 6,

presented a novel data-driven Bayesian approach to augmenting existing mass models. Using

Gaussian process (GP) regression, we developed a new mass model — DZ10-GP — which has

a very low RMS error on measured nuclei of less than 200 keV, and the ability to extrapolate

robustly several isotopes beyond the neutron drip line. It also produced modified predictions

of the sequence of nuclei predicted to lie in the outer crust. Crucially, DZ10-GP is one of the

few existing nuclear mass models to come equipped with error bars, which are necessary to

quantify our degree of belief about the presence of an isotope in the outer crust.

There are a number of paths along which the research from this project could continue.

For the inner crust, there is now a need to include the effects of finite temperature in this new

framework that accounts for neutron pairing, to have a complete model for (non-accreting)

NSs. This adds a third dimension to the parameter space to be explored; GPs also provide

an promising opportunity to be used as emulators [Pas17; She19], to make this investigation

computationally tractable. There is also a clear need to even more rigorously determine how

the properties of Skyrme functionals affect the predictions in the inner crust. In particular, the

relative importance of properties such as the PNM EoS, the symmetry energy coefficient J , the

slope of the symmetry energy L, and even the surface energy, should be analysed quantitatively.

For the outer crust, several other statistical and machine learning techniques have been

proposed to augment existing mass models. It would be very insightful to compare them

directly, and assess which are most suited to extrapolation, and whether they can provide

meaningful errors as GP regression can do.
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Appendix A

BSk functionals

Here we give extra details for the BSk family of forces, which have extra terms and parameters

(BSk18 and newer) when compared to standard Skyrme forces, and which have their own

prescription for treating pairing correlations (BSk16 and newer).

A.1 The generalised Skyrme interaction for BSk forces

The generalised Skyrme interaction with new extra terms was introduced in Ref. [CGP09] as a

means to model neutrons stars so that they are stable against polarisation and collapse. These

terms come with six new parameters: t4, x4, β, t5, x5, γ. The full interaction is given by

vi,j = t0(1 + x0Pσ)δ(~rij)

+
1

2
t1(1 + x1Pσ)

1

~2

[
p2
ijδ(~rij) + δ(~rij)p

2
ij

]

+ t2(1 + x2Pσ)
1

~2
~pij · δ(~rij)~pij

+
1

6
t3(1 + x3Pσ)ρ(~r)σδ(~rij)

+
i

~2
W0(σi + σj) · ~pij × δ(~rij)~pij

+
1

2
t4(1 + x4Pσ)

1

~2

[
p2
ijρ(~r)βδ(~rij) + δ(~rij)ρ(~r)βp2

ij

]
extra terms

+ t5(1 + x5Pσ)
1

~2
~pij · ρ(~r)γδ(~rij)~pij, extra terms

(A.1)

where the displacement between two particles i and j is ~rij = ~ri−~rj, ~r = (~ri+~rj)/2, their relative

momentum ~pij = −i~(~∇i − ~∇j)/2, Pσ is the spin exchange operator, and ρ(~r) = ρn(~r) + ρp(~r)

is the total density, where ρn(~r) and ρp(~r) are the neutron and proton densities.
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The full energy density functional is then
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∑

q=n,p

~2

2Mq

τq +
1

2
t0

[(
1 +

1

2
x0

)
ρ2 −

(
1

2
+ x0

) ∑

q=n,p

ρ2
q

]

+
1

4
t1

[(
1 +

1

2
x1

)(
ρτ +

3

4
(∇ρ)2

)

−
(

1

2
+ x1

) ∑

q=n,p

(
ρqτq +

3

4
(∇ρq)2

)]

+
1

4
t2

[(
1 +

1

2
x2

)(
ρτ − 1

4
(∇ρ)2

)

+

(
1

2
+ x2

) ∑

q=n,p

(
ρqτq −

1

4
(∇ρq)2

)]

+
1

12
t3ρ

σ

[(
1 +

1

2
x3

)
ρ2 −

(
1

2
+ x3

) ∑

q=n,p

ρ2
q

]

+
1

4
t4

[(
1 +

1

2
x4

)(
ρτ +

3

4
(∇ρ)2

)
extra terms

−
(

1

2
+ x4

) ∑

q=n,p

(
ρqτq +

3

4
(∇ρq)2

)]
ρβ extra terms

+
β

8
t4

[(
1 +

1

2
x4

)
ρ(∇ρ)2 extra terms

−
(

1

2
+ x4

)
~∇ρ ·

∑

q=n,p

ρq ~∇ρq
]
ρβ−1 extra terms

+
1

4
t5

[(
1 +

1

2
x5

)(
ρτ − 1

4
(∇ρ)2

)
extra terms

+

(
1

2
+ x5

) ∑

q=n,p

(
ρqτq −

1

4
(∇ρq)2

)]
ργ extra terms

+
1

2
W0

(
~J · ~∇ρ+

∑

q=n,p

~Jq · ~∇ρq
)
.

(A.2)

Note that we exclude J2 terms in all work in this thesis project.

A.2 Fields

Here we given the fields for the extended BSk Skyrme forces. The central field Uq is
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Uq = t0

[(
1 +

1

2
x0

)
ρ−

(
1

2
+ x0

)
ρq

]

+
1

4
t1

[(
1 +

1

2
x1

)(
τ − 3

2
∇2ρ

)
−
(

1

2
+ x1

)(
τq −

3

2
∇2ρq

)]

+
1

4
t2

[(
1 +

1

2
x2

)(
τ +

1

2
∇2ρ

)
+

(
1

2
+ x2

)(
τq +

1

2
∇2ρq

)]

+
1

12
t3

[(
1 +

1

2
x3

)
(2 + σ)ρσ+1

−
(

1

2
+ x3

)(
2ρσρq + σρσ−1

∑

q′=n,p

ρ2
q′

)]

+
1

8
t4

[(
1 +

1

2
x4

)
ρβ−1

{
2(1 + β)ρτ extra terms

− (2β + 3)
(1

2
β(∇ρ)2 + ρ∇2ρ

)}
extra terms

+

(
1

2
+ x4

)
ρβ−2

{
3βρ~∇ρ · ~∇ρq + 3ρ2∇2ρq extra terms

− 2ρ2τq + β(β − 1)ρq(∇ρ)2 + βρρq∇2ρ extra terms

− 1

2
βρ

∑

q′=n,p

[
(∇ρq′)2 + 4ρq′τq′ − 2ρq′∇2ρq′

]}]
extra terms

+
1

4
t5

[(
1 +

1

2
x5

){
(1 + γ)ρτ +

1

4
γ(∇ρ)2 +

1

2
ρ∇2ρ

}
extra terms

+

(
1

2
+ x5

){
ρτq +

1

2
ρ∇2ρq extra terms

+ γ
∑

q′=n,p

{
ρq′τq′ −

1

4
(∇ρq′)2

}
+

1

2
γ~∇ρ · ~∇ρq

}]
ργ−1 extra terms

− W0

2

(
∇ ~J +∇ ~Jq

)
+ δq,p (VCoul + VCoul,pe) .

(A.3)

The spin-orbit field Wq remains unchanged from the standard form (Eq. 2.6). The effective

mass M∗
q is given by
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~2

2M∗
q

=
~2

2Mq

+
1

4
t1

[(
1 +

1

2
x1

)
ρ−

(
1

2
+ x1

)
ρq

]

+
1

4
t2

[(
1 +

1

2
x2

)
ρ+

(
1

2
+ x2

)
ρq

]

+
1

4
t4

[(
1 +

1

2
x4

)
ρ−

(
1

2
+ x4

)
ρq

]
ρβ extra terms

+
1

4
t5

[(
1 +

1

2
x5

)
ρ+

(
1

2
+ x5

)
ρq

]
ργ. extra terms

(A.4)

A.3 Coupling constants

Here we give the Skyrme coupling constants Cρ,τ
q , needed to calculate the pressure in the inner

crust. Note that the expression for Cρ
1 was given with a typo in Eq. A30b of Ref. [CGP09] and

in Eq. B30b of Ref. [Pea12].

Cρ
0 (ρ) =

3

8
t0 +

3

48
t3ρ

σ (A.5a)

Cρ
1 (ρ) = − 1

4
t0

(
1

2
+ x0

)
− 1

24
t3(

1

2
+ x3)ρσ (A.5b)

Cτ
0 (ρ) =

3

16
t1 +

1

4
t2

(
5

4
+ x2

)

+
3

16
t4ρ

β +
1

4
t5

(
5

4
+ x5

)
ργ extra terms (A.5c)

Cτ
1 (ρ) = − 1

8
t1

(
1

2
+ x1

)
+

1

8
t2

(
1

2
+ x2

)

− 1

8
t4ρ

β

(
1

2
+ x4

)
+

1

8
t5ρ

γ

(
1

2
+ x5

)
extra terms (A.5d)

A.4 PNM quantities

Here we give expressions for various PNM quantities for the full extended Skyrme interaction.

As in the previous section, all terms containing t4, t5 etc. are the new extra terms.

The energy per particle in pure neutron matter with neutron density nn is

90



A.4. PNM quantities

ePNM(nn) =
3~2

10Mn

k2
Fn(nn)2 +

1

4
t0(1− x0)nn +

3

40
t1(1− x1)nnk

2
Fn(nn)2

+
9

40
t2(1 + x2)nnk

2
Fn(nn)2 +

1

24
t3(1− x3)nσ+1

n

+
3

40
t4(1− x4)nβ+1

n k2
Fn(nn)2 +

9

40
t5(1 + x5)nγ+1

n k2
Fn(nn)2,

(A.6)

where k2
Fn(nn) = (3π2nn)1/3. The energy per particle in symmetric nuclear matter with den-

sity n is

eSNM(n) =
3~2

10M
k2

F(n) +
3

8
t0n+

3

80
[3t1 + t2(5 + 4x2)]nk2

F(n) +
1

16
t3n

σ+1

+
9

80
t4ρ

β+1k2
F(n) +

3

80
t5(5 + 4x5)ργ+1k2

F(n),

(A.7)

where kF(n) = (3π2n/2)1/3. The symmetry energy is

S(n) =
~2

6M
k2

F(n)− 1

8
t0(2x0 + 1)n

+
1

24
[−3t1x1 + t2(4 + 5x2)]nk2

F(n)− 1

48
t3(1 + 2x3)nσ+1

− 1

8
t4x4n

β+1k2
F(n) +

1

24
t5(4 + 5x5)nγ+1k2

F(n),

(A.8)

where here n denotes the density of symmetric nuclear matter, and M is defined as

2

M
=

1

Mn

+
1

Mp

. (A.9)

The symmetry coefficient J is given by S(n0). Finally, the slope of the symmetry energy at

saturation is

L =
~2

3M
k2
F0 −

3

8
t0(2x0 + 1)n0

+
5

24
[−3t1x1 + t2(4 + 5x2)]n0k

2
F0 −

σ + 1

16
t3(1 + 2x3)nσ+1

0

− 5 + 3β

8
t4x4n

β+1
0 k2

F0 +
5 + 3γ

24
t5(4 + 5x5)nγ+1

0 k2
F0,

(A.10)

where kF0 = (3π2n0/2)
1/3

.
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A.5 Pairing formalism

The BSk forces BSk16 and newer use an effective contact pairing interaction. The pairing

gap ∆q at a given asymmetry is given by

∆q(ρn, ρp) = ∆SM(ρ)(1− |η|)±∆NM(ρq)η
ρq
ρ
, (A.11)

i.e., an interpolation between the gap in symmetric nuclear matter ∆SM and in pure neutron

matter ∆NM. The asymmetry parameter η = (ρn − ρp)/ρ, and the upper (lower) sign is for

q = n(p). These gaps have parametric forms, given by

∆SM(ρ) = θ(km − kF) ∆0
k3

F

k2
F + k2

1

(kF − k2)2

(kF − k2)2 + k2
3

, (A.12a)

∆NM(ρn) = θ(km − kFn) ∆0
k2

Fn

k2
Fn + k2

1

(kFn − k2)2

(kFn − k2)2 + k2
3

, (A.12b)

where θ is the Heaviside unit step function, and the various parameters are summarised in

Table A.1. Note that for BSk16 [CGP08], a simpler ansatz was used for ∆q, that it just takes

the form of Eq. A.12b, with the parameters given in Table A.2.

∆0 k1 k2 k3 km

SM 133.779 0.943146 1.52786 2.11577 1.51

NM 14.9003 1.18847 1.51854 0.639489 1.52

Table A.1: Parameters of the analytical pairing gaps for symmetric nuclear matter and pure

neutron matter (Eq. A.12), for BSk17 onwards.

∆0 k1 k2 k3 km

NM 910.603 1.38297 1.57068 0.905237 1.57

Table A.2: Parameters of the analytical pairing gap for BSk16 (Eq. A.12b).

In infinite nuclear matter, the pairing interaction strength is [Cha10],

vπq[ρn, ρp] = − 8π2

Iq(ρn, ρp)

(
~2

2M∗
q (ρn, ρp)

)3/2

, (A.13)
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where

Iq(ρn, ρp) =

∫ µq+εΛ

0

dξ

√
ξ√

(ξ − µq)2 + ∆q(ρn, ρp)2
, (A.14)

where εΛ is the pairing cutoff parameter. In Eq. A.14, µq = λq − Uq is the reduced chemical

potential. However, Iq has an analytical form, derived in Ref. [Cha10], given by

Iq =
√
εFq

[
2 log

(
2εFq

∆q

)
+ Λ

(
εΛ

εFq

)]
, (A.15)

where

Λ(x) = log(16x) + 2
√

1 + x− 2 log
(

1 +
√

1 + x
)
− 4. (A.16)

For very low densities, it is necessary to use the low-density limiting form for Eq. A.14 of 2
√
εΛ.

When performing BCS calculations for protons, it is necessary to use Eqs. A.13 and A.15,

and the parametric form of ∆q given in Eq. A.11. It is also necessary to multiply by the BSk

pairing parameter f+
p for an even number of protons, and f−p for an odd number.

For treating neutron pairing in the LDA approximation, we only need the pairing gap in

infinite nuclear matter, given by

∆q = ∆(0)
q exp

(
1

2
Λ(y)

)
y−1/2, (A.17)

where y = εΛ/εFq, and ∆
(0)
q is given by

∆(0)
q = 2

√
εFqεΛ exp

(
2π2~2

vπ qM∗
q kFq

)
(A.18)

N.B. In Eqs. A.13 and A.18 BSk16 uses the effective mass, but it is set to 1 for BSk17 on-

wards [GCP09a].
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Appendix B

Extended Thomas-Fermi densities

Here we give the remainder of the full expressions for the contributions to the kinetic and spin

current densities, in the case of spherical symmetry, in the extended Thomas-Fermi method

at 4th-order. Instead of using these explicit forms for the densities and integrating them

numerically to obtain their energy contributions, it is also possible to use integrated forms of

these expressions which only contain derivatives up to 2nd-order, as discussed in Ref. [Pea12]

(the expressions are provided in Appendix A of Ref. [BGH85]). Using instead the explicit forms,

as done in this work, only incurs a tiny discrepancy in energy, which is most significant at the

very lowest densities, as shown in Chapters 3 and 4.

B.1 Kinetic densities

In order to make benchmarks with previous ETF calculations (see Appendix C), it is useful

to separate out the contributions to the kinetic density τq at 4th-order that do and do not

arise from the spin-orbit interaction [BB02]. The 4th-order contribution to the kinetic density,

containing no spin-dependence, is given by
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τ (4)
q [ρ] = (3π2)−2/3 ρ
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′
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q )
2 +

36

r
ρ
′′

qρ
′
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′
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′
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′
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′
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, (B.1)

where a prime represents the derivative with respect to r.

The spin-dependent part is given by

τ (4)so
q [ρ] = (3π2)−2/3

(
mW0

~2

)2
ρ

1/3
q

4f 2
q

{
1

2

[
2A′qA

′′′
q + (A′′q)
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A′qA
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f ′qA
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q
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2(f ′q)
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3fqρq

[
fq(A

′′
q +

1

r
A′q)− f ′qA′q
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, (B.2)

where Aq = ρ+ ρq.

B.2 Spin current densities

The 4th-order contribution to the spin current density is given by

~J (4)
q [ρ] = (3π2)−2/3mW0

~2

ρ
1/3
q

4fq

{
−
[
A′′′q +

2

r
A′′q −
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r2
A′q
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+

1
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f ′′qA

′
q + f ′qA

′′
q +

1
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f 2
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2
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3fqρq
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1

r
A′q)− f ′qA′q

]}
. (B.3)

Below we give the contributions to the divergence of the spin current density div ~Jq[ρ], which

is needed for the central potentials Uq. The 2nd-order contribution is
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div ~J (2)
q = −2m
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1

fq

[
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, (B.4)

where div ~Wq is equivalent to W0

2

(
2
r
A′q + A′′q

)
. The 4th-order contribution is

div ~J (4)
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. (B.5)
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Appendix C

Benchmarks for ETF calculations

Here we make comparisons with results of the detailed investigation of the ETF method carried

out by Bartel and Bencheikh [BB02]. All calculations were performed for a 208Pb nucleus, using

the Skyrme force SkM∗ [KTB80; Bar82], using the matter densities ρq extracted from Fig. 1

in Ref. [BB02]. The 2nd-order expressions for kinetic and spin current densities are given in

Chapter 3, and all 4th-order expressions in Appendix B.

In Fig. C.1, we show the order-by-order contributions to the kinetic density for neutrons τn,

as shown in Fig. 2 (a) of Ref. [BB02]. For the sake of visibility, the 4th-order contributions are

multiplied by 10.
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TF (this work)
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TF (Bartel & Bencheikh)
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ETF (this work)

τ(2)
ETF (Bartel & Bencheikh)

τ(4)
ETF(×10) (this work)

τ(4)
ETF(×10) (Bartel & Bencheikh)

Figure C.1: Comparison between the kinetic density contributions for neutrons from our work

and from Fig. 2 (a) of Ref. [BB02], for 208Pb using SkM∗.
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In Fig. C.2, we show the different components of τn at 2nd-order, as shown in Fig. 2 (b)

of Ref. [BB02]. The discrepancy observed for the terms with gradients of f is likely due to a

plotting error in Ref. [BB02].
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-0.0075
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τ(2
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∇ρ (Bartel & Bencheikh)
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∇ f (Bartel & Bencheikh)
∇ρ∇ f (this work)
∇ρ∇ f (Bartel & Bencheikh)
s-o (this work)
s-o (Bartel & Bencheikh)

Figure C.2: Comparison between the 2nd-order kinetic density components for neutrons τn

from our work and from Fig. 2 (b) of Ref. [BB02], for 208Pb using SkM∗. Black lines represent

terms containing gradients of ρ, blue lines for terms with gradients of f , red lines for terms

containing gradients of both ρ and f , and green lines for spin-orbit terms.

In Fig. C.3, we show the different components of τn at 4th-order, as shown in Fig. 2 (c) of

Ref. [BB02].
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Figure C.3: Same as Fig. C.2, but for 4th-order contributions, where the comparison is made

with Fig. 2 (c) of Ref. [BB02].

In Fig. C.4, we show the order-by-order contributions to the spin current density for neu-

trons ~Jn, as shown in Fig. 3 of Ref. [BB02].

0 2 4 6 8 10 12
r [fm]

-0.005

0

0.005

0.01

0.015

~ J n
[f

m
−

4 ]

~J (2)
ETF (this work)

~J (2)
ETF (Bartel & Bencheikh)

~J (4)
ETF (this work)

~J (4)
ETF (Bartel & Bencheikh)

Figure C.4: Comparison between the spin current density contributions for neutrons ~Jn from

our work and from Fig. 3 of Ref. [BB02], for 208Pb using SkM∗.
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Appendix D

Neutron condensation energy

We derive here the expression for the pairing condensation energy per particle for PNM, given

in Eq. 4.8. For simplicity we set ~ = m = 1. Since we use a contact pairing interaction,

the pairing gap in PNM is momentum-independent. The single-particle energy, relative to the

effective chemical potential, is given by

ξk =
k2

2
+ U − µ, (D.1)

where µ is the effective chemical potential, i.e., scaled respect to the HF mean field, and k

is the particle momentum. The quasi-particle energy is then given by

Ek =
√
ξ2
k + ∆2, (D.2)

where ∆ is the pairing gap. We write the energy per unit volume of a superfluid system as

E(µ,∆) =

∫ Λ

0

k2

2π2

[−∆2

2Ek
+
k2

2

(
1− ξk

Ek

)]
dk, (D.3)

where Λ is the cut-off momentum. After integration, the first term of the integrand of

Eq. D.3 yields the pairing energy density, and the second term the kinetic energy density

corrected by the depletion of the occupation factors [RS80]. The kinetic energy density per

unit volume of a non-superfluid system with the same density is

E0 =
k5

F

10π2
. (D.4)

In a superfluid system with a given µ, the density can be calculated as

ρ(µ,∆) =

∫ Λ

0

k2

2π2

(
1− ξk

Ek

)
dk. (D.5)
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Figure D.1: Solid black line shows the ratio of the weak-coupling approximation for δε (Eq. D.7)
to the exact result (Eq. D.6). The blue dotted line shows the same, but with µ in Eq. D.7
replaced by εF.

We now estimate the true energy gain per particle, in terms of the quantities expressed in

Eqs. D.3–D.5 as

δε =

(
E − E0

ρ

)
. (D.6)

The previous equation can be simplified in the weak coupling limit, where ∆ � µ. In this

case, the change in the kinetic energy density and in the density of the system is negligible, so

Eq. D.6 reduces to

δεweak = −3∆2

8µ
. (D.7)

This expression is in agreement with the one given in Ref. [PVB97]. Eq. D.7 can be further

simplified by approximating the chemical potential µ with the Fermi energy εF = (3π2ρ)2/3/2.

In Fig. D.1, we compare the validity of the weak coupling limit by comparing the result exact

result given by Eq. D.6 and the two different approximations. It shows the ratio of Eq. D.6 to

Eq. D.7, using either µ or εF in the denominator of Eq. D.7. We vary the ratio ∆/µ over the

range 0.03–0.3.

We observe that the weak coupling limit gives a very nice reproduction of the total energy

correction with an error of ≈1% over relevant range of variation. In the regions of the star where

∆ � µ, the use of εF instead of µ is then fully justified. The weak coupling approximation
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with εF tends to give a larger error especially in the low-density region of the star, but such an

error is still less than 10%, and is probably less important than other approximations in the

ETFSI method [CGM19].
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[RHS06] SB Rüster, M Hempel, and J Schaffner-Bielich. “Outer crust of nonaccreting cold

neutron stars”. In: Physical Review C 73.3 (2006), p. 035804.

[Roc11] X Roca-Maza et al. “Neutron skin of Pb 208, nuclear symmetry energy, and the

parity radius experiment”. In: Physical Review Letters 106.25 (2011), p. 252501.

[RS80] P Ring and P Schuck. The Nuclear Many-Body Problem. Springer-Verlag, 1980.

[RW06] CE Rasmussen and CKI Williams. Gaussian Processes for Machine Learning. Adap-

tive Computation and Machine Learning. Cambridge, Mass: MIT Press, 2006.

[Sal61] EE Salpeter. “Energy and Pressure of a Zero-Temperature Plasma.” In: The As-

trophysical Journal 134 (Nov. 1961), p. 669.

[Sch19] B Schuetrumpf et al. “Survey of Nuclear Pasta in the Intermediate-Density Regime:

Shapes and Energies”. In: Physical Review C 100.4 (Oct. 2019), p. 045806.

[Sci20] SciPy 1.0 Contributors et al. “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python”. In: Nature Methods 17.3 (Mar. 2020), pp. 261–272.

[SG86] H Stoecker and W Greiner. “High energy heavy ion collisions—probing the equation

of state of highly excited hardronic matter”. In: Physics Reports 137.5-6 (1986),

pp. 277–392.

[Sha15] BK Sharma et al. “Unified Equation of State for Neutron Stars on a Microscopic

Basis”. In: Astronomy & Astrophysics 584 (Dec. 2015), A103.

[She19] M. Shelley et al. “Advanced Statistical Methods to Fit Nuclear Models”. In: vol. 12.

3. 2019, p. 649.

[She21] M Shelley. etf. http://github.com/mgeshelley/etfFinal. Version 1.0. Apr. 2,

2021.

[Sky56] THR Skyrme. “CVII. The nuclear surface”. In: Philosophical Magazine 1.11 (1956),

pp. 1043–1054.

114

http://github.com/mgeshelley/etfFinal


Bibliography

[SLP18] A Sobiczewski, YA Litvinov, and M Palczewski. “Detailed illustration of the accu-

racy of currently used nuclear-mass models”. In: Atomic Data and Nuclear Data

Tables 119 (2018), pp. 1–32.

[SP20] M Shelley and A Pastore. “How accurately can the extended Thomas-Fermi method

describe the inner crust of a neutron star?” In: vol. 1668. 2020, p. 012037.

[SR14] R Sellahewa and A Rios. “Isovector Properties of the Gogny Interaction”. In: Phys-

ical Review C 90.5 (Nov. 2014), p. 054327.

[ST08] SL Shapiro and SA Teukolsky. Black holes, white dwarfs, and neutron stars: The

physics of compact objects. John Wiley & Sons, 2008.

[Ste05] AW Steiner et al. “Isospin asymmetry in nuclei and neutron stars”. In: Physics

Reports 411.6 (2005), pp. 325–375.

[Ste08] AW Steiner. “Neutron star inner crust : Nuclear physics input”. In: Physical Review

C 77 (2008), p. 035805.

[Ste13] PD Stevenson et al. “Do Skyrme forces that fit nuclear matter work well in fi-

nite nuclei?” In: AIP Conference Proceedings. Vol. 1529. 1. American Institute of

Physics. 2013, pp. 262–268.

[SVL04] N Sandulescu, N Van Giai, and RJ Liotta. “Superfluid properties of the inner crust

of neutron stars”. In: Physical Review C 69.4 (2004), p. 045802.

[SW06] TE Strohmayer and AL Watts. “The 2004 Hyperflare from SGR 1806–20: Further

Evidence for Global Torsional Vibrations”. In: The Astrophysical Journal 653.1

(2006), p. 593.

[TD95] C Thompson and RC Duncan. “The soft gamma repeaters as very strongly mag-

netized neutron stars-I. Radiative mechanism for outbursts”. In: Monthly Notices

of the Royal Astronomical Society 275.2 (1995), pp. 255–300.

[Tew13] I Tews et al. “Neutron Matter at Next-to-Next-to-Next-to-Leading Order in Chiral

Effective Field Theory”. In: Physical Review Letters 110 (3 Jan. 2013), p. 032504.

[Tol39] RC Tolman. “Static Solutions of Einstein’s Field Equations for Spheres of Fluid”.

In: Physical Review 55.4 (Feb. 1939), pp. 364–373.

[Tsa12a] D Tsang et al. “Resonant Shattering of Neutron Star Crusts”. In: Physical Review

Letters 108.1 (Jan. 2012), p. 011102.

[Tsa12b] MB Tsang et al. “Constraints on the symmetry energy and neutron skins from

experiments and theory”. In: Physical Review C 86.1 (2012), p. 015803.

115



Bibliography

[UPP16] R Utama, J Piekarewicz, and HB Prosper. “Nuclear mass predictions for the crustal

composition of neutron stars: A Bayesian neural network approach”. In: Physical

Review C 93.1 (2016), p. 014311.

[VB72] D Vautherin and DM Brink. “Hartree-Fock calculations with Skyrme’s interaction.

I. Spherical nuclei”. In: Physical Review C 5.3 (1972), p. 626.

[Vid09] I Vidaña et al. “Density dependence of the nuclear symmetry energy: A microscopic

perspective”. In: Physical Review C 80.4 (2009), p. 045806.

[Vid18] I Vidaña et al. “The d*(2380) in Neutron Stars—A New Degree of Freedom?” In:

Physics Letters B 781 (2018), pp. 112–116.

[Wan17] M Wang et al. “The AME2016 atomic mass evaluation (II). Tables, graphs and

references”. In: Chinese Physics C 41.3 (2017), p. 030003.

[Wel17] A Welker et al. “Binding Energy of Cu 79: Probing the Structure of the Doubly

Magic Ni 78 from Only One Proton Away”. In: Physical Review Letters 119.19

(2017), p. 192502.

[WFF88] RB Wiringa, V Fiks, and A Fabrocini. “Equation of State for Dense Nucleon Mat-

ter”. In: Physical Review C 38.2 (Aug. 1988), pp. 1010–1037.

[WI03] G Watanabe and K Iida. “Electron screening in the liquid-gas mixed phases of

nuclear matter”. In: Physical Review C 68.4 (2003), p. 045801.

[Wir93] RB Wiringa. “From Deuterons to Neutron Stars: Variations in Nuclear Many-Body

Theory”. In: Reviews of Modern Physics 65.1 (Jan. 1993), pp. 231–242.

[WL11] N Wang and M Liu. “Nuclear mass predictions with a radial basis function ap-

proach”. In: Physical Review C 84.5 (2011), p. 051303.

[Wol13] RN Wolf et al. “Plumbing Neutron Stars to New Depths with the Binding Energy

of the Exotic Nuclide Zn 82”. In: Physical Review Letters 110.4 (2013), p. 041101.

[WP17] G Watanabe and CJ Pethick. “Superfluid density of neutrons in the inner crust of

neutron stars: new life for pulsar glitch models”. In: Physical Review Letters 119.6

(2017), p. 062701.

[WS33] E Wigner and F Seitz. “On the Constitution of Metallic Sodium”. In: Physical

Review 43.10 (May 1933), pp. 804–810.

[WZ20] XH Wu and PW Zhao. “Predicting nuclear masses with the kernel ridge regression”.

In: Physical Review C 101.5 (2020), p. 051301.

116



Bibliography

[Xu09] J Xu et al. “Locating the inner edge of the neutron star crust using terrestrial

nuclear laboratory data”. In: Physical Review C 79.3 (2009), p. 035802.

[Xu21] K Xu et al. How neural networks extrapolate: From feedforward to graph neural

networks. Mar. 2, 2021. arXiv: 2009.11848v5 [cs.LG].

[ZFH17] JL Zdunik, M Fortin, and P Haensel. “Neutron star properties and the equation of

state for the core”. In: Astronomy & Astrophysics 599 (2017), A119.

[Zuk11] A Zuker. “The anatomy of the simplest Duflo-Zuker mass formula”. In: 11th Sym-

posium on Nuclei in the Cosmos. Vol. 100. SISSA Medialab. 2011, p. 083.

117

https://arxiv.org/abs/2009.11848v5

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Acknowledgements
	Author's declaration
	Introduction
	History, formation, and phenomenology
	Structure

	The inner crust
	The Wigner–Seitz approximation
	Nuclear contribution
	Electronic contribution

	Comparison between the ETF and HFB methods
	The Hartree–Fock–Bogoliubov method
	The ETFSI method
	Energy minimization with ETFSI

	Choice of functionals
	Comparison between ETFSI and HFB

	The role of pairing correlations
	Proton pairing correlations
	Neutron pairing correlations
	Pairing interaction
	HFB vs. ETFSI+Pairing
	Results for the inner crust
	Summary

	The effect of functional choice on inner crust structure
	INM properties of Skyrme functionals
	Inner crust composition
	Selected baryonic densities
	Results for the full baryonic density range

	Summary

	The outer crust
	Gaussian process regression
	Nuclear masses
	Augmenting the DZ10 model with a GP
	Extrapolation using the DZ10-GP model
	Comparison with AME2020

	Outer crust composition
	Summary

	Conclusions and perspectives
	BSk functionals
	The generalised Skyrme interaction for BSk forces
	Fields
	Coupling constants
	PNM quantities
	Pairing formalism

	Extended Thomas-Fermi densities
	Kinetic densities
	Spin current densities

	Benchmarks for ETF calculations
	Neutron condensation energy
	Bibliography

