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Abstract 

 
This thesis presents the evaluation of a novel Scanning Electron Microscope 

based biomaterial characterisation technique which possess the ability to 

provide chemical surface mapping of polymer-derived biomaterials. The ability 

of a biomaterial to sustain cellular life is a critical dependency for successful 

deployment of polymer based biomaterials and consequently the 

cellular/biomaterial surface interface is a key focus for research.  Chemical, 

structural and topographic characteristics at nanometre and micrometre length 

scales have been shown to be key factors in the promotion of cellular 

attachment.  For biomaterial characterisation only a small number of existing 

characterisation techniques provide the capability to undertake surface analysis 

at the nanoscale. Of these none provide the ability to undertake multiscale 

(including nanoscale) chemically mapping of beam sensitive biomaterials. 

Therefore, a requirement clearly exists for a high resolution, multiscale, 

chemical mapping capability for characterisation of synthetic polymer derived 

biomaterials.   

This thesis evaluates the recently developed technique of Secondary Electron 

Hyperspectral Imaging (SEHI). SEHI captures and configures spectral 

information from material samples presented within a Scanning Electron 

Microscope to enable image analysis that reveals and maps chemical bonding 

within polymer derived biomaterials to surface depths of <10 nm. Although it has 

been shown that the SEHI technique can provide extensive chemical and 

synchronised structural characterisation information, three key questions 



remain over its future use for the characterisation of polymer derived 

biomaterials. 1) Can SEHI deliver insights into the mechanical properties of a 

material? 2) Is the captured SE spectra able to identify specific functional groups 

that play a key role in biomaterials engineering /TE? And if so can SEHI map 

these functional groups at the nanoscale? 3) Does the surface roughness of 

different polymer systems impact on SEHI`s ability to allow for chemical 

mapping? This thesis will focus on providing evidence to determine the answers 

to these questions. The conclusion of my analysis presented in this thesis makes 

a persuasive argument for researchers to consider establishing SEHI as the 

toolset of choice for polymer characterisation in the context of establishing 

chemically mapping of the surface of biomaterials due to its effectiveness, 

flexibility and unique insights.  
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1 Introduction 

Medical progress has been increasingly influenced in recent years by the 

adoption, development and deployment of intervention treatments based on the 

availability of novel biomaterials via tissue engineering (1) (TE). Biomaterials are 

now considered to be viable elements of many clinical procedures providing 

transient or permanent treatments for damaged or diseased tissues in diverse 

and critical body systems. The potential widespread deployment of biomaterials 

within many dissimilar in vivo environments has highlighted the importance of 

confirming suitability for their intended application prior to clinical use (2, 3).  

Confirmation of suitability is a complex task, as many factors contribute to the 

selection of a biomaterial to fulfil a projected role, further complicated by the 

fact that biomaterials may be sourced or fabricated through a number of 

alternative materials.  

There are two primary research approaches; the preparation of scaffolds from 

biological sources (Section 2.1.2) or the creation of new synthetic polymer 

derived scaffolds (Section 2.1.3) (4).  Natural polymers are constrained by issues 

including; purification complications, potential immunogenic host reactions, 

timeliness of enzymatic degradation, and confirming sterility of the polymer. 

Synthetic, polymer derived biomaterials represent a major advancement in TE 

and regenerative medicine since they take advantage of the well-established 

tunable physical properties of polymers and their ability to be quickly produced 



 
 

2 
 

and are widely accessible. Furthermore, biodegradable polymers have shown 

great promise whilst being explored as potential biomaterials. Researched 

thermoplastic biopolymers for TE applications include poly glycolic acid (PGA) 

(5), poly(lactic-co-glycolic acid) (PLA) (6) and poly(glycerol sebacate) (PGS) (7).  

Over the last twenty years PGS in particular has especially attracted extensive 

interest by researchers (Section 2.1.3.3). Among its attractions is that PGS is 

sourced from the non-toxic and low-cost monomers, sebacic acid and glycerol. 

The elastomeric mechanical properties of PGS can easily be constructed to 

enhance its cytocompatibility and degradation in vivo (7). The ability to tailor the 

density of crosslinking has optimised porous PGS for a range of soft tissue 

bioengineering applications including; blood vessels, cardiac tissue (8, 9) and 

cartilage (10).   

In contrast to the positive advantages of PGS as a tailorable biomaterial, PGS 

does have limitations introduced through its processing demands. The high 

temperatures required to form precise geometries is a significant obstacle and 

impedes the direct incorporation of cells or temperature sensitive molecules in 

PGS. However, a novel photocurable form of PGS (PGS-M) has been produced 

by functionalisation with methacrylate units and has been shown in a 

contemporary study to address many of these limitations (11). The availability of 

PGS-M has made feasible many potential new and exciting opportunities for 

future clinical deployments of polymer based biomaterials and has therefore 

been adopted as the focus biomaterial for this thesis.  
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However, despite PGS-M’s promise the success of biodegradable materials in 

general lies in the researcher’s capability to produce polymers which achieve 

required degradation, biocompatibility, and physical properties to elicit positive 

biological responses. To ensure the effective functioning of any implanted 

biomaterial, preservation of the material’s surface chemistry and mechanical 

properties within the body is essential [1] (Figure 1 (A)). Figure 1 (B) displays an 

overview of the cell – surface interaction process.  The interactions between the 

polymer biomaterials and elements of the biological system arise at the 

polymers surface interface (>10 nm) (Section 2.1.5). The adsorbed protein layer 

(12) in addition to surface topography (13) and surface chemistry (functional 

group surface distribution) (14). All of which occur on the nanoscale surface of 

the material.  

To fully realise the potential of biomaterials, polymer surface related research 

needs to be the focus of development efforts, especially the field of surface 

modification (Figure 1 (C)). Advancements in surface functionalisation have 

demonstrated progress in the ability to modify a biomaterials surface through 

patterning techniques. The impact of incorporating surface chemical functional 

groups, such as amine (-NH2), carboxyls (-COOH), hydroxyls (-OH), and methyls 

(-CH3), have on a polymers capacity to promote cellular growth have also been 

evaluated in previous studies (15, 16). Research studies have also shown that -

OH surface functionality presents a neutral, hydrophilic surface upon which 

cellular growth is related to an increase in surface functionalities containing 

oxygen (17).  The requirement for bioengineering to produce biomaterials with 

specific surfaces suited to cellular growth is crucial. Understanding how and 
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why a surfaces topography and surface chemistry improves or limits a cells 

ability to grow on a material is the first step in developing the next generation 

of cell specific biomaterials (15, 16, 17).  

 

Figure 1: Section A. Two key requirements for biomaterials. 1) Tuneable mechanical 
properties and 2) Cellular biocompatibility. Section B. An overview of cell – surface 

interaction process. A) Water – surface interaction. B) Protein adsorption to 
biomaterial. C) Cell attachment. D) Cell differentiation. Section C. The overview of the 

goal of developing future biomaterials.  
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As highlighted in selecting an appropriate characterisation technique is integral 

in the process of developing future biomaterials (Figure 1 C.3). Polymeric 

biomaterial characterisation is a multifaceted undertaking where a range of 

complementary characterisation approaches can each provide a contribution. 

An ideal characterisation technique will without changing either the chemical 

composition or structures architecture, provide comprehensive multiscale 

information pertaining to the materials nanostructure. Including a biomaterials 

mechanical structural properties, surface topography and surface functional 

group distribution (28).   

 There are many existing characterisation approaches that possess capabilities 

which have the potential to contribute to the characterisation of biomaterials 

but currently they all exhibit limitations which preclude them from completely 

satisfying these requirements (Section 2.2); Energy Dispersive X-ray 

Spectroscopy (EDX) can characterise the elemental composition of materials 

(20), however, some elements do have overlapping EDX peaks and EDX does not 

provide an insight into the topography of nanoscale structures. Electron Energy 

Loss Spectroscopy (EELS) is capable of identifying the elemental components, 

the sensitive response to a samples configuration and composition and EELS 

high energy based resolution make it very effective and powerful tool. Yet EELS 

is limited in that it does not provide information on topographical structure and 

the high energies used can damage beam sensitive biomaterials (21). Raman 

Spectroscopy is fast and reliable in generating a materials chemical spectra but 

has limitations stemming from poor lateral resolution with only micron scale 

analysis (22). X-ray photoelectron spectroscopy (XPS) is able to characterise 
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sample materials through element and chemical composition identification (23). 

XPS is also highly sensitivity technique when applied to inorganic and organic 

materials (23, 24), but it is not capable of undertaking chemical surface mapping 

at nanoscale resolutions. Lastly, Phase-contrast Atomic Force Microscopy 

(AFM) can deduce 3-dimensional material morphology, distinguish between 

different materials, providing spatial distribution information and does not 

require a vacuum (25). However, AFM has signal to noise ratio issues as well as 

management of tip sample forces required.  

As indicated in Figure 1 (3.4) enhanced material characterisation capabilities 

including; novel surface chemical spectroscopy and imaging methods on nano- 

and micro-scale levels are considered necessary to provide the fundamental 

analysis steps needed to support future biomaterial surface development. For 

biomaterial characterisation only a small number of existing characterisation 

techniques provide the capability to undertake surface analysis at the 

nanoscale. Of these none provide the ability to undertake multiscale chemically 

mapping of beam sensitive biomaterials. Therefore, the requirement for a high 

resolution, multiscale, chemical mapping capability for characterisation of 

synthetic polymer derived biomaterials is yet to be satisfied. 

This thesis exploits the recently developed technique of Secondary Electron 

Hyperspectral Imaging (SEHI). SEHI captures and analyses spectral information 

from material samples providing a means of mapping chemical bonding within 

polymer derived biomaterials at surface depths of >10 nm (Section 2.4.6). 

Collection of Secondary Electron (SE) emission spectra (SES) by means of the 
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Scanning Electron Microscope (SEM) provides the foundation for the SEHI 

technique. SEHI accomplishes this by constructing a series of images based on 

the target area of the material sample, where a selected SE energy band forms 

each image. The process of collecting SE spectra wholly relies on the probe 

electron – material interactions. SES calculates electron emission energies post 

inelastic collisions. SES benefits from employing a low KeV (between 0.5-2 keV) 

primary electron beam which makes it possible for the SES to collect the 

spectra of beam sensitive materials. Although, SEs are produced throughout the 

primary beam interaction depth, only SEs emitted within the SE escape depth 

can be detected as SEs emitted at a greater depth will be absorbed by the bulk 

of the sample material. The SE shallow escape depth raises the issue of surface 

contamination affecting the spectra results, a problem faced by other surface 

analysis techniques. However, SES has been shown to have operational 

characteristics that allow it to overcome substantial surface contamination to 

produce accurate spectra that are reproducible and reveal characteristics of the 

underlying material (26, 27). Previous research work had established that the 

SE spectra for certain hydrocarbon materials are substantially affected by 

excitation of intramolecular vibrations (18, 19). Although the SEHI technique can 

provide extensive chemical and synchronised structural characterisation 

information, this thesis showed that SEHI is capable of multiscale, chemically 

mapping, which critically can be employed on beam sensitive biomaterials. 

Chapters 3, 4 and 5 in this thesis all shows SEHI has the requirement for 

multiscale, high resolution, chemical mapping.  
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Figure 2: Thesis structure. Chapters 4 and 5 build upon the data provided in Chapter 3.  

The publication in chapter 3 titled “Characterising cross-linking within polymeric 

biomaterials in the SEM by Secondary Electron Hyperspectral Imaging.” 

introduced SEHI as a novel SEM-based analysis tool for beam sensitive 

biomaterials. Secondary electrons emanating from polymer derived materials 

within the SEM for hyperspectral imaging were for the first time exploited to 

identify CH functional groups allowing spatially-resolved cross-linking analysis. 

This included; molecular order/orientation and cross linking density. As shown 
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in Figure 2, the findings presented in Chapter 3 are built upon by Chapters 4 and 

5.  

Chapter 4 furthers on this initial paper discussing the publication titled 

“Understanding surface modifications induced via Argon Plasma treatment 

through Secondary Electron Hyperspectral Imaging”. Here SEHI maps were 

employed to highlight the lateral distributions of diverse functional groups that 

were impacted by the sterilisation treatments. This evidence combined with the 

results from a number of established surface analysis techniques and a cellular 

metabolic activity assay constructed a strong argument as to why low-pressure 

Argon glow discharge should be considered for future optimisation as a 

prospective terminal sterilisation method. This chapter included modification of 

a biomaterial`s surface and introduced the possibility of mapping functional 

groups on a biomaterials surface using SEHI. Lastly the publication presented 

in chapter 5 entitled “Identifying and mapping chemical bonding within Phenolic 

Resin using Secondary Electron Hyperspectral Imaging” presents a detailed 

investigation of phenolic resin surface structures by means of SEHI analysis. 

SEHI made possible novel insights into the phenolic resin secondary electron 

emission variations and relate these to localised differences in chemical 

bonding.  

Chapter 5 builds on the work published in Chapter 3, by presenting SEHI`s ability 

to map chemical crosslinks locally across a materials surface. In this instance 

to map both methylene and ether bridge distribution within phenolic resin.  SEHI 

results was then used to predict localised stiffness variation which was 
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subsequently validated using novel nano-indentation mapping. The results 

obtained confirmed that SEHI is a significant advance in high resolution chemical 

imaging capability. Having the ability to understanding localised stiffness is 

essential for not just understanding the structurally integrity of a polymer-

derived biomaterial network, but also how cells respond to differing localised 

crosslinking. 

The analysis presented in this thesis makes a persuasive argument for 

establishing SEHI as a viable and effective toolset for polymer characterisation 

in the context of TE. It is anticipated that the research findings published during 

the completion of this thesis will assist researchers in the development of novel 

and practical biomaterials through the ability of SEHI to offer new insights into 

the composition and structure of polymer material systems. The author is also 

confident that the advanced characterisation approach promoted by SEHI will 

be of high value to researchers from many disciplines involved in the multiscale 

characterisation of polymers and complex chemical macromolecular structures 

beyond tissue engineering. It is observed that the development of advanced 

polymeric materials can only be efficiently achieved with the development of 

correspondingly advanced material characterisation techniques.   

While it has been shown that the SEHI technique can provide extensive chemical 

and synchronised structural characterisation information, two key questions 

remain over its future use for the characterisation of polymer derived 

biomaterials. 1) Can SEHI deliver insights into the mechanical properties of a 

material? 2) Is the captured SE spectra able to identify functional groups that 
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play a key role in biomaterials engineering TE, and if so, can SEHI map these 

functional groups at the nanoscale? This thesis will focus on providing evidence 

to determine the answers to these questions. 
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2. Literature Review 

2.1 Tissue engineering of Biomaterials 

Tissue engineering (TE) is a biomedical engineering discipline which combines 

biology with engineering (1). The goal of TE research is the creation of 

replacement human organs or tissue structures.  Maintenance, restoration or 

improvement of tissue function, through TE, is expected to allow the more 

effective treatment of medical disorders than is possible using current medical 

practices. TE, as its name implies, is a field of research that requires a 

multidisciplinary approach. Although research is principally driven from a 

biology and engineering discipline perspective, other disciplines including 

polymer chemistry also have valuable contributions to make. The future 

importance of TE can be judged by the fact that it has been estimated that in the 

region of 7.5 million patients require artificial biological implants each year in 

the United States alone (2).  Difficulties with current clinical practices, including 

in vivo compatibility and donor availability, have driven the demand for a radical 

alternative approach such that TE offers.  

Biomaterials are considered to offer an essential contribution to the 

improvement of human health and associated quality of life (3). The scope of 

potential TE products encompasses a diverse and widespread range of clinical 

replacements including, but not limited to, skin, blood vessels, cardiac tissue, 

nerve conduits and structural cartilage and bone applications.  Significant 
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challenges still need to be overcome prior to the universal deployment of viable 

human compatible biomaterials. Four key processes have been identified during 

the in vivo or in vitro phases of tissue development and growth (4):  

1. Cellular differentiation and proliferation  

2. Extracellular matrix (ECM) production 

3. Degradation of the scaffold 

4. Remodelling and potential growth of the tissue.  

For a TE product to be a truly viable replacement for natural tissue, it is essential 

that the replacement’s physical and biological properties provide for these 

processes to occur.  Synthetic materials incorporated within the TE replacement 

must be accepted by the host without adverse side effects and also often 

eventually degrade as new host tissue develops and remodels. A matrix 

framework, usually called a scaffold, is the core of a TE product which is seeded 

with cells either in vitro or in vivo.  The TE matrix scaffold may be sourced or 

constructed through a number of alternative materials. However, there are two 

principal research approaches; the preparation of biological scaffolds and the 

creation of new synthetic polymer derived scaffolds. Polymeric biomaterials 

(biopolymers) can be used for the substitution of a range of tissues over short 

or long time periods within physiological environments (5).  

 



PhD Thesis Nicholas T.H Farr Chapter 2: Literature Review 

15 
 

2.1.1 Polymer derived biomaterials  

Polymer materials exhibit a range of chemical, mechanical and physical 

properties. These properties have encouraged extensive research and 

development into potential applications of polymeric biomaterials. The field of 

biomedical applications has made significant advances over recent years in the 

development of polymeric materials that are biodegradable and biocompatible 

(3).  Within the range of synthetic and hybrid materials being employed in 

medicine, polymeric biomaterials are the most widely used (6). 

Developments of biodegradable polymeric materials, which exhibit a nominal 

immunogenicity, are currently being assessed for their suitability for 

deployment as biomaterials. These materials hold the promise of being 

excellent choices for developing therapeutic devices.  Candidate applications 

include controlled/sustained release drug delivery vehicles, temporary 

prostheses and permeable structures. Polymer derived biomaterials may be 

divided into two subgroups based on the mechanism by which they degrade 

within the host. For use in biomedical products a number of synthetic and 

natural polymers are being assessed that are capable of degradation by 

hydrolytic or enzymatic mechanisms.  

Natural and synthetic polymers each have different strengths; natural polymers 

are similar to the constituents found in extracellular matrices, synthetic 

polymers are comparatively versatile, adaptable and suitable for chemical 

modification (7). 
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2.1.2  Natural polymers biomaterials 

Naturally occurring polymers generally display an enzymatically degradable 

mechanism and have a respectable clinical record as biodegradable 

biomaterials (8). In contrast to some synthetically produced polymers, natural 

polymers are comparable to biological tissues (9) as they display bioactivity (10, 

11), offer cells with receptor-binding ligands and exhibit proteolytic degradation 

(12). Disadvantages of natural polymers include purification complications, 

possible immunogenic host response, reproducibility, timeliness of enzymatic 

degradation, and ensuring sterility of the material.  

2.1.3  Synthetic polymer biomaterials 

Hydrolytically degradable polymers are synthetically produced constructed by 

means of hydrolytically labile chemical bonds. There are many functional groups 

susceptible to hydrolysis which frequently includes orthoesters, esters, amides, 

anhydrides and urethanes (13). Synthetic organic chemistry research together 

with novel bioprocesses is driving the development of polymeric materials that 

have the future potential to be viable biomaterials.  

The mechanical, chemical and physical properties of polymeric biomaterials 

may be tailored by chemical modification or synthesis of its functional groups in 

response to the regeneration potential of any tissue (14). The ability to 

polymerise and synthesise reactive monomers using a range of chemical 

processes, in situ, has provided options for many injectable polymers, both 

permanent and biodegradable (6). The success of biodegradable materials lies 
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in the capacity to produce biomaterials which achieve suitable biocompatibility, 

physical properties and degradation to provoke favourable cellular responses.   

Commonly researched biodegradable polymers include poly(α-hydroxy esters), 

poly glycolic acid (PGA), together with their copolymers poly(glycerol sebacate) 

(PGS) and poly(lactic-co-glycolic acid) (PLA). Hydrolysis of ester bonds and bulk 

erosion are these polymers degradation mechanism.  By modifying the 

copolymer ratio, the crystallinity and the molecular weight, the rate of 

degradation may be tailored as required (14). 

2.1.3.1 Polyglycolic acid (PGA)  

One of the first biodegradable synthetic polymers explored for potential use as a 

biomedical material is Polyglycolide acid (PGA). PGA is formed through either 

polycondensation of glycolic acid or ring-opening polymerisation of glycolide and has a 

crystallinity of ~60% (see figure 1). The high crystallinity of PGA confers it with a high 

tensile modulus and beneficial mechanical properties (15, 16). 

 

Figure 1: Ring-opening polymerization of glycolide to polyglycolide. 
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PGA was first researched due to its excellent skin closing performance as 

biocompatible glue (16). Although PGA demonstrates an ability to assist in the 

regeneration of damaged tissue, in vivo degradation may lead to toxic by-

products (16, 17).  The high rate of PGA degradation has limited a wider role for 

the material in biomedical applications.  Non-specific scission of its ester 

backbone is the mechanism by which PGA degrades and may lead within 1-2 

months to substantial loss of strength in vivo (18).  

2.1.3.2 Polylactic acid (PLA) 

Ring-opening polymerisation of lactide acid is the usual method of creating PLA 

(See figure 2). Two optically active forms of PLA exist, termed d-lactide and l-

lactide. Formation of semi-crystalline PLA is the result of polymerisation of 

these monomers. Production of PGA is by the same mechanism of 

polymerisation.  
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Figure 2: The ring-opening polymerisation of lactide acid to produce Polylactic acid 

(PLA). 

PLA polymer exhibits high tensile strength and PGA degrades gradually.  These 

characteristics make the PLA polymer appropriate for situations where a 

biomaterial replacement will be subject to load bearing including orthopaedic 

repair. Research has combined PLA and PGA together in a copolymer to form a 

biomaterial scaffold which was then seeded with fibroblasts and endothelial 

cells. Published data reported that the PGA/PLA scaffolds were formed after 14 

days and were closely comparable to native tissue (19).  A study using a 

PGA/PLA sandwich scaffold implanted into a lamb model (20, 21) reported initial 

polymer stiffness issues with the scaffold being susceptible to structural 

problems. Both PGA and PLA have strengths and weaknesses when used 

separately or together in biomaterials but are not at the time of publication 

considered a viable alternative to native tissue due to concerns of the polymers 

in vivo structural integrity (20, 21). 
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2.1.3.3 Poly(glycerol sebacate) (PGS) and PGS-M Scaffolds 

The synthetic polymer Poly(glycerol sebacate) (PGS) has attracted much 

interest by researchers over the last twenty years. PGS is sourced from the 

non-toxic and inexpensive monomers, sebacic acid and glycerol. The 

elastomeric mechanical properties of PGS can be configured to optimise its 

degradation in vivo and cytocompatibility (22). This capability is the result of 

being able to fine-tune the polycondensation reactions by which PGS is 

produced. Tailoring the density of crosslinking has optimised porous PGS for 

several bioengineering applications such as; cardiac tissue (23), blood vessels 

(24), and cartilage (25).  The use of PGS as a biomaterial for cell transport to 

damaged tissues has also led to applications in heart (26) and retina (27) 

research.  An interesting application of PGS as a biomaterial is as nerve 

guidance tubes for peripheral nerve repair (28).  

 

Figure 3: Crosslinking of PGS. 



PhD Thesis Nicholas T.H Farr Chapter 2: Literature Review 

21 
 

The processing capabilities of PGS have limitations that are in contrast to the 

positive advantages of PGS as a tailorable biomaterial. Through a 

polycondensation reaction, PGS as a soluble prepolymer is uncomplicated to 

manufacture, although high temperatures (>110°C) within a vacuum to thermally 

cure the polymer is needed to crosslink PGS (See figure 3). This complication 

makes the construction of accurate geometries challenging and impedes PGS 

in directly incorporating cells or temperature sensitive molecules. 

However, an alternative form of photocurable PGS produced by functionalisation 

with methacrylate units (29) has in a contemporary study addressed some of 

these limitations.  Without the high temperatures previously needed the study 

found that PGS is able to crosslink through the addition of methacrylate units 

and a photoinitiator molecule. Methacrylation has been regularly used as 

functionalisation method to make photocurable biomaterials (29). PGS-

methacrylate (PGS-M) crosslinks by the way of free-radical polymerisation and 

its synthesis is straightforward. The distinctive properties of PGS-M are likely 

to be the result of the configuration of crosslinking and the hydrogen-bonding 

interactions between the hydroxyl groups. Good biocompatibility of PGS-M has 

been observed through in vitro studies (29).  The ability to configure the 

nanoscale features of the polymer has raised expectations that PGS-M may lead 

to a new generation of biomaterials.  

2.1.4 Cell - Surface interactions  
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All biomaterials derived from biological and polymer origins, synthetic and 

natural, have both strengths and weaknesses in their suitability as medical 

replacements. For successful clinical applications, polymer-derived 

biomaterials are required to endure the biological environment of an 

implantation site and also promote a desired cell interaction. This interaction is 

dependent on the molecular and structural properties of the material (30). 

Crucially, the interactions between elements of the biological system and 

polymer biomaterials occur at the surface interface. Despite synthetic polymers 

often providing appropriate degradation mechanisms and physical 

infrastructure to form a viable biomaterial, their ability to replicate a natural 

environment in which cells proliferate and grow raises concerns (31). Figure 4 

shows the cell – surface interaction process and at what length scale each 

interaction occurs. Biological environments invariably are characterised by the 

presence of water which attempts to penetrate the surface of biomaterials 

through molecular adsorption according to the specifics of the biomaterial 

surface structure and nanoscale chemistry. 

A surface can either be classified as hydrophilic or hydrophobic dependent to 

what extent a surface promotes water adsorption. The behaviour of 

water/biomaterial surface interaction has long been under investigation as it 

forms the basis of the biological response of the biomaterial when placed within 

a biological environment.  Studies have previously shown that increased 

hydrophilicity results in enhanced cell adhesion (32) making the requirement for 

a hydrophilic surface a prerequisite for successful biomaterials.  
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Figure 4: An overview of cell – surface interaction process. A) Water – surface 

interaction. B) Protein adsorption to biomaterial. C) Cell attachment. D) Cell 

differentiation. 

As consequence of a biomaterial coming into contact with a biological 

environment a monolayer of protein adsorbs into the biomaterials surface 

within minutes. It is expected that adsorption from the biomaterial surface will 

initially start with proteins due to them being immediately available for 

attachment. Prior to their substitution by larger proteins which have a stronger 

attraction to the surface (33). The three major proteins which support cellular 

adhesion are albumin, IgG, and fibrinogen. Investigations into the mechanisms 

by which polymers surfaces adsorb these proteins has been long an area of 

interest for biomaterial researchers (34). Displaying the ability to absorb 

proteins gives a potential biomaterial a promising advantage to sustain cellular 

growth (35).      

As Figure 5 indicates the first two stages of the cell-surface interaction process 

interact at the nano-scale. Consequently, both the water and protein absorption 
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which happen on the biomaterials surface is directly reliant on on the nano-

structural chemistry of the material. The third stage involves cells attaching to 

the surface as part of the biological response. This stage is slightly more 

complexed as to which length scale it falls under, although cells are micron 

sized they attach and are influenced by the nano-structural chemistry of the 

material. Initial cell attachment is influenced by the adsorbed protein film (36) 

as well as surface topography (37) and surface chemistry (38, 39).  It is essential 

that the biomaterial surface will have undergone protein and water adsorption 

creating a modified surface layer prior to the arrival of any cells. Cell spreading 

and differentiation forms the final stage of the process and is effected by the 

roughness and wettability of the microscale surface features.  

Both improved cell growth and increased biocompatibility are recognised 

benefits of biomaterial surfaces exhibiting moderate hydrophilicity (40). Having 

an understanding of these processes is the key to developing future 

biomaterials with surfaces optimised to supporting cellular growth.  

2.1.5 Nano-structural requirements of Biomaterials 

As previously discussed the interactions between elements of the biological 

system and polymer biomaterials occur at the surface interface. The 

requirement for bioengineering to produce biomaterials with specific surfaces 

suited to cellular growth is crucial. Understanding how and why a surface’s 

topography and surface chemistry improves or limits a cells ability to grow on 

a material is the first step to developing the next generation of cell specific 



PhD Thesis Nicholas T.H Farr Chapter 2: Literature Review 

25 
 

biomaterials. Therefore, surface related research needs to be at the forefront of 

development efforts in order to achieve the progress required to fully realise 

the potential of biomaterials, especially in the fields of surface characterisation 

and surface modification (41). Substantial research effort has been focused on 

understanding the influence of polymer surface functionality in the observed 

cellular response (42). Chemical functional groups present in the polymer’s 

surface can directly influence cell growth (43).  

Characterising the chemical functional groups in a biomaterial’s surface is 

considered integral to understanding its cellular response. Previous studies 

have evaluated the impact surface chemical functional groups, such as 

Carboxyls (-COOH), Hydroxyls (-OH), Amine (-NH2) and Methyls (-CH3), have on 

a polymers ability to sustain cellular growth (44, 45).  Protein adsorption studies 

have revealed that albumin and fibronectin are readily eluted from surfaces 

coated with –COOH (46). Similarly, research has proposed that -OH surface 

functionality represents a neutral, hydrophilic surface on which cellular growth 

is proportional with an increase in oxygen containing surface functionalities 

(43).  Studies highlighted above often assume that functional group distribution 

across a polymers surface is uniform. However, advancements in surface 

functionalisation have shown great success in being able to modify a 

biomaterials surface by patterning techniques (47, 48). A number of studies 

have shown that cellular behaviour is directly influenced by the configuration of 

the surface morphology at the micro and nanoscale related to the surface’s 

texture and chemical distribution (49).  This finding provides an opportunity to 

regulate cell function by tailoring the chemical surface patterning and 
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topography of a biomaterial (50, 51).  In particular, the adhesion of bacteria (52), 

leukocytes (53) and platelets (54) can all be influenced by means of surface 

chemistry in both micron and nanoscale structures.  

 

Figure 5: The overview of the goal of developing future biomaterials. 

The development of a polymer with a nanostructure which is optimised to 

facilitate a positive cellular response should be a goal of materials scientists. 

Figure 5 displays the process by which bioengineering requires the use of 

biomaterial surface characterisation methods to help create the next generation 

of biomaterials. If this can be achieved, then polymer derived biomaterials have 

the potential of being the first choice as TE replacement options. Establishing a 

detailed understanding of what are the essential surface chemical 

characteristics a biomaterial must possess in order to promote cellular 

proliferation and growth is a crucial first step.
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2.2 Nanoscale surface characterisation methods 

The structure of a biomaterial capable of promoting cell growth and remodelling 

is by nature usually relatively fragile and lacking in robustness.  The 

characterisation of polymeric biomaterials is a complex undertaking where a 

number of complementary characterisation techniques can each make a 

contribution (55). An ideal characterisation technique will provide detailed 

multiscale information relating to the materials nanostructure without changing 

either the structures architecture or chemical composition.   Many current 

characterisation techniques possess valuable capabilities that may contribute 

to biomaterial characterisation but all have limitations which prevent them from 

fully satisfying these requirements. As figure 5 illustrates consideration must 

be given to the scale/depth each characterisation method allows information to 

be taken from. For biomaterials there is a clear requirement to give true surface 

analysis for reasons discussed in 2.1.4.  To drive the development of improved 

polymer based biomaterials it is essential that characterisation techniques are 

available which provide materials scientists with the appropriate information to 

guide the production of suitable polymer chemical patterned surface structures. 

Analysis of the chemical and structural composition of a biomaterial’s surface 

at the nanoscale is required allowing for chemical and structural information to 

be obtained (56, 57). 

Commonly applied analysis techniques for polymer characterisation include: 

electron energy loss spectroscopy (EELS), energy dispersive X-ray 

spectroscopy (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy 
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(XPS) and atomic force microscopy (AFM) (58).  Each offers an ability to 

characterise biomaterials but each have their own unique benefits and also 

limitations for use in characterising polymeric biomaterials. As described in 

previous sections the length scale and physical depth of analysis of the material 

is of critical importance. Section 2.14. discussed that cell – biomaterial surface 

interactions happen primarily within the surface layer (< 10nm) of biomaterials 

and between nano-micron length scales. Crucial water, protein and initial cell 

interactions occur in response to the nano structure features of the biomaterial 

surface. Figure 6 shows the length scale of analysis and the lateral and depth 

resolution for each of the common characterisation techniques highlighted. 

Despite some techniques not allowing for nanoscale or true surface analysis, 

these have been included for discussion as they are routinely used 

characterisation methods for biomaterials.     

 

Figure 6: A comparison of the length scale resolution and depth analysis of common 
biomaterial characterisation techniques. 
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2.2.1 Energy Dispersive X-ray Spectroscopy (EDX) 

 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique 

extensively applied in the elemental characterisation of target samples. EDX 

exploits the characteristic X-ray spectrum emitted by a sample once bombarded 

by a beam of electrons to acquire chemical information. These x-rays emissions 

are a result of inelastic interaction (specifically ionisation) with inner shell 

electrons. EDX can characterise the elemental composition of the analysed 

volume, with features or phases able to be analysed.  

Unfortunately, EDX peaks for low atomic number elements (H to Be) are weak 

and the detection limits are relatively high (59, 60). Some elements also have 

overlapping EDX peaks which makes the correct interpretation of the data 

dependent on the operator. The ability to correctly identify low atomic number 

elements such as C, N, O, is very important for the characterisation of polymer 

derived biomaterials which use these elements commonly in their underlying 

chemistry.  An alternative method of measuring characteristic x-rays 

overcoming some of these peak identification issues is wavelength-dispersive 

X-ray spectroscopy (WDS). WDS is a characterisation technique with the ability 

to give elemental information for a range of materials with a better resolution 

to that of EDX. However, WDS is very expensive and therefore not often 

available.  

Usually, EDX is supplied with electron microspores to facilitate the chemical 

analysis of sample features being observed in a digital monitor (61). In 
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conjunction with electron microscopes, the EDX technique has the ability to 

construct elemental distribution maps called ‘dot maps’, an example of which is 

shown in Figure 7. Figure 7 shows an example where EDX has been used to 

characterise bone healing (62). Detection using EDX in this study successfully 

identified Ca and P in the interface to the bone implant corroborating new bone 

formation along the implant surface.  EDX also identified Ca at interface of the 

bone cartilage which correlated with local nanomechanical properties (63). 

However, despite studies showing EDX’s ability to map elements, the X-ray 

emissions are being formed by large emission interaction volumes with the 

elemental mapping not being truly surface sensitive.  

 

Figure 7: BSE image and Ca (magenta), P (yellow), and Sr (cyan) elemental maps 
demonstrate Sr incorporation into the fracture callus after therapeutic administration. 

Adapted with permission from Springer Nature (62). 

Quantitative analysis of heterogonous materials frequently results in inaccurate 

data as EDX is a comparatively insensitive method (64). EDX can be seen to be 

a valuable tool to analyse a target sample’s chemical composition but it does 

not provide an insight into the topography of nanoscale structures that directly 

impact cellular growth. For chemical analysis EDX has a role in biomaterial 
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research but its lack of surface specific analysis information is a significant 

limitation.   

2.2.2 Electron Energy Loss Spectroscopy (EELS) 

 

Electron Energy Loss Spectroscopy (EELS) provides a capability to identify the 

elemental components of a target sample. EELS is a technique used in electron 

microscopes, however, EELS measures the ionisation losses suffered by the 

primary electron beam. The EELS technique is centred on the inelastic 

interaction of the primary beam electrons with the electrons present within the 

sample material. Electrons in the primary beam lose energy in ionization events. 

This energy loss is dependent on the identity of the atoms that are ionised. Large 

energy losses come from ionisation events, small energy losses are from 

collective excitation (e.g. Plasmon’s etc.) and allow for information regarding 

bonding present within a material. 

An EELS spectrum is generated by measuring the transmitted primary electrons 

sorted by energy. An example EELS spectrum is shown in Figure 8 (65). Figure 

8 shows typical EELS spectra from biological compounds. The two different 

EELS spectra presented show (a) the low loss region which give information 

regarding the bonding present. As little energy is needed to interact with valence 

electrons as they are weakly bound, the low loss region therefore gives less 

information regarding the elements and more about bonding present. (b) is the 

loss due to core shell ionisation, this is similar to EDX, but also the shape of the 

ionisation edges provides some bonding information. For the purpose of 
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characterising the surface of biomaterials the low loss region is of specific 

interest.  

 

Figure 8: Image obtained from (65) “Typical electron energy loss spectra (EELS) from 
biological compounds. (a) Low-loss spectra up to energy loss of 30 eV from major 

cellular components after processing to remove plural inelastic scattering. (b) EELS 
up to energy loss of 650 eV from DNA deposited on a thin carbon film, showing core 

edges of phosphorus, carbon, nitrogen and oxygen.” 

The sensitivity and high energy based resolution by EELS to a samples 

configuration and composition make it very effective analysis toolset. For light 

elements the sensitivity of EELS is superior to that of EDXS.  However, EELS 

shares with EDX the limitation that it does not provide information on the 

topographical structure of a biomaterial directly. EELS requires that thin 

samples must be used (< 100 nm), the preparation of sufficiently thin sections 

from biomaterials is a significant challenge and limitation as it rules EELS out 
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as a surface analysis technique. In many instances the surface of biomaterials 

is often rough as a result of surface oxidation or a product of the polymerisation 

process, such surface irregularities can considerably alter the EELS vibrational 

spectra.  

The ability of EELS to detect vibrational spectra within the primary beam induced 

electronic transitions has been achieved through technique advancements 

where energy resolution can now be greater than 40 meV. The development is 

also applicable to biomaterials (66), although with cautious monitoring for 

prospective beam damage (67). To apply EELS in studies of beam sensitive 

materials a primary beam is frequently used to control the exposure and provide 

an EELS spectrum. EELS often requires a primary beam of electrons to be 

accelerated to energies usually between 100 keV and 1 MeV (68) prior to 

impacting the samples, some beam sensitive materials are not capable of 

withstanding this volume of election bombardment without damage. At even 

considerable lower energies (4 KeV) materials have been shown to undergo 

sputtering damage, and alter the EELS spectra as a consequence of beam 

exposure (69).    

2.2.3 Raman Spectroscopy  

 

Raman spectroscopy is a routinely applied technique for biomaterial 

characterisation. The basis for Raman spectroscopy is the interaction of an 

incident light beam comprising of monochromatic light, UV range or near-

infrared, producing a scattering effect when focused on the vibrating molecules 

within the target sample (70). Elastic scattering, known as Rayleigh scattering, 
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occurs at a radiation frequency comparable to that of the incident light beam 

where the beam strikes the sample. Alternatively, after the incident beam 

interacts with vibrational modes associated with the chemical bonding present 

within the material, the resulting inelastic scattered radiation has a different 

frequency when likened to that of the incident beam (71). This inelastic scattering 

is known as Raman scattering (72). Capturing these emissions allows Raman 

spectroscopy to provide that every molecule has an associated characteristic 

vibrational mode due to its unique profile of chemical bonds, this is known as a 

‘molecular footprint’. Therefore, Raman is widely deployed in the analysis of 

synthetic biomaterials as it is a fast and reliable means of sampling the 

vibrational modes in the material allowing a material’s Raman profile to be 

calculated (70). 

Great interest has been shown in the recent development of Raman 

microspectroscopy and its potential to extend the application of the Raman 

technique. Here, a Raman spectrometer is integrated within an optical/electron 

microscope, hence facilitating both visual and spectroscopic characterisation of 

the sample (70). Raman mapping capability can be integrated into SEMs to obtain 

both local chemical information and microstructural information often 

simultaneously. However, poor lateral resolution is a feature of Raman profile. 

Recent advances have predicted that Raman combined with the Scanning 

Electron Microscopy instrumentation could achieve a 1.5 µm depth resolution 

and a sub-micron lateral resolution (73). Another exciting advancement has 

come with Tip-enhanced Raman spectroscopy (TERS) which aims for molecular 

mapping at the nanoscale. A distinctive aspect of TERS is its sensitivity and 
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increased spatial resolution when compared to that of conventional Raman 

making it appropriate for analysing interactions and the structure of polymers 

with nano-structures (74). Making Raman with <100 nm spatial resolution is 

possible using TERS (75).  TERS application hinges on correct tip condition and 

structure being key for the ability to produce an improved Raman signal. Further 

research is still required to fabricate reliable tips which allow for a reduced 

signal to noise ratio. SEM-Raman and TERS ownership is considered expensive 

and consequently is a capability that is not widely available. 

Raman in general has an interaction escape volume greater than ~1.5 µm 

(dependent on the wavelength and the material) which means that for 

biomaterial analysis, which demands information at nanoscale depths, Raman 

fails to provide the required surface sensitivity. Raman profiles are currently 

only able to provide material characteristics on the micron scale where 

information is based on taking averages across the materials surface (first 

monolayer) /subsurface. Despite these limitations Raman is still considered a 

valuable tool for characterising the sub-surface chemical composition of 

biomaterials.  

2.2.4 X-ray photoelectron spectroscopy (XPS)  

 

X-ray photoelectron spectroscopy (XPS) is a spectroscopy technique that 

exploits the photoelectron effect where the exposure of a material to 

electromagnetic radiation results in the consequent emission of electrons, 

identified as photoelectrons, from the material. Emitted photoelectrons are 

captured by detectors which enable measurement of the energy of the 
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photoelectron emissions. Measuring the energies of the photoelectrons 

provides insights into the chemical elements of the material by calculating the 

energy emitted due to the work function and binding energy of an element. 

Calculating the binding energy of the emitted electron allows the XPS technique 

to characterise sample materials through element identification, chemical 

composition and distributions (76). XPS can be used to qualitatively display the 

change in chemical bonding as a consequence of a shift in binding energy. An 

example XPS spectrum is given in Figure 9. This XPS spectrum shows elemental 

measurements of non-treated and plasma treated polypropylene (PP) modified 

for use as a potential biomaterial (77). Plasma treated PP exhibiting a shape 

change of its XPS peak compared to that of untreated PP. The visible shoulders 

on the high bonding energy side of treated PP suggests that more O containing 

(and COOH/COOR @ 289.2 eV) functional groups are introduced by the plasma 

treatment of PP.    

 

Figure 9: X ray photoelectron spectrometer (XPS) peak fits of the non-treated and 
plasma treated polypropylene (77). 
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XPS has been shown to be a highly sensitivity technique for inorganic and 

organic materials (78) capable of characterising the surface of sample materials 

(79). XPS uses monochromatic X-rays to bombard the sampling volume, 

resulting in the emission of photoelectrons whose energies are representative 

to the chemical bonding present. XPS uses such X-rays as the electromagnetic 

radiation source usually at an energy of <1.5 KeV. This relatively low energy 

beam consequently results in the typical photoelectron emission escape depth 

being between 1-10 nm of the materials surface (76). The shallow escape depth 

of the photoelectrons makes XPS a valuable technique in the analysis of the 

chemical characterisation of biomaterial surfaces (80, 81).  

XPS has many strengths as a polymer characterisation capability but it also has 

limitations.   Significantly, XPS is capable of undertaking chemical surface 

mapping but it does not possess the ability to capture nanoscale resolution of a 

material’s surface (82).  Therefore, it is considered that XPS alone would not 

provide a full scope characterisation capability without other complimentary 

surface imaging techniques at an appropriate image resolution. Additionally, the 

physical size limit of an XPS target sample at < 2.5 cm introduces restrictions 

for materials where cutting of the samples to fit the apparatus may lead to 

deformity or contamination of the material surface. 

2.2.5 Atomic force microscopy (AFM) 

For the characterisation of polymer materials, the AFM technique has a number 

of attractive features particularly the absence of the need for the sample to 

undergo any pre-analysis treatment or be subject to a vacuum during analysis. 
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Avoidance of the need to apply treatments to subject samples does allow the 

technique to be applied to a range of materials that are sensitive to harsher test 

environments, including polymer derived biomaterials.  

AFM employs a cantilever to which is attached a sharp tip of approximately 20 

nm in diameter. The AFM tip, usually comprising of Si, moves in reaction to tip–

surface interactions (as shown in Figure 8). Measurements of tip movement are 

taken by using a photodiode to focus a laser beam (83).  Tip geometry may be 

selected according to the characteristics of the samples surface topology, the 

image line for tips with both large and small opening angles can be seen in 

Figure 10 (84). Appropriate tip selection is essential as, a larger diameter tip can 

describe a significantly different image line depending on the topology 

characteristics of the sample.  AFM instruments typically have horizontal 

resolutions of around 1 nm and vertical resolutions of less than 0.1 nm (85). For 

characterising biomaterials AFM has a number of advantages. It is feasible to 

measure the scale of the nano-structures quantitatively due to AFM images 

being represented in 3D (85). 
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Figure 10:  Image taken from (84) “Influence of the tip geometry on the resulting 
image line for a tip with large opening angle (above) and small opening angle 

(bottom). In the case of a large angle, the convolution leads to a significant change in 
the slope of the measured image line.” 

However, despite the successes of AFM it does come with disadvantages for use 

in characterising biomaterials. A significant restriction on the overall 

effectiveness of the AFM toolset for polymer characterisation is its limited 

magnification capability, denying it a true multiscale analysis range unlike the 

electron microscope linked techniques described above. Another limitation is 

that a scanning electron microscope typically has an image size for a signal 

scan in the millimetre range whereas AFM is limited to scans of approximately 

150 square micrometres (83). Thermal drift linked with a relatively slow scan 

rate also has the potential to induce thermal derogation within sensitive 

polymer derived biomaterials.  A prerequisite for material samples to be 

produced with a ‘flat surface’, possible through cryomicrotoming, to permit 

surface imaging makes AFM a poor choice for imaging polymer derived 

biomaterials as this pre-treatment will eliminate or modify key individual 
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surface topology features.  The surface features of biomaterials as previously 

discussed play an essential role in the attachment of cells through their 

chemical and topographical properties. Without a flat surface AFM suffers from 

tip wear which makes it very difficult to accurately reproduce results. 

2.3 Perspective on current state of biomaterial characterisation and the 

potential of the scanning electron microscope. 

As summarised in Table 1, to date there is unquestionably an extensive range of 

biomaterial characterisation techniques. These methodologies together allow 

for a detailed overview of biopolymer chemistry and morphology at various 

length scales. Imaging techniques, perhaps, give the most detailed overview of 

surface information and offer accurate material identification at the nanometre 

scale. However, TEM in common with other imaging techniques does not 

possess the ability to characterise molecular scale properties including bulk 

averaged polymer crystallinity or orientation. This prevents most researchers 

having access to high quality morphology characterisation data without cutting 

edge apparatus and associated proficiency. Included in Table 1 but yet to be 

discussed is a conventional SEM analysis. In this thesis, it is proposed that novel 

techniques integrated with the capabilities of a scanning electron microscope 

(SEM) has the potential to offer a viable solution to this problem.  

Each of the methods evaluated have their advantages and disadvantages as 

discussed. For biomaterial characterisation use, only a select few allow crucial 

surface analysis to be performed at the nanoscale (AFM, XPS, EELS). Of these 
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only two allow for chemical analysis conclusions to be drawn (XPS and AFM). 

Unfortunately, XPS does not allow nanoscale resolution for chemical mapping 

and AFM does not allow multiscale analysis and suffers with tip wear related 

issues. With that said, there is to date no analysis method capable of multiscale 

(micron – nano), chemically mapping, which can be employed on beam sensitive 

biomaterials. The requirement for multiscale, high resolution, chemical mapping 

is yet to be satisfied.  
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Table 1: Comparison of the strengths and weaknesses of biomaterial characterisation methods.  

Characterisation 

Method 

Strengths Weaknesses 

Energy 

Dispersive X-ray 

Spectroscopy 

(EDX) 

-Can characterise the elemental composition 

-In conjunction with TEM and SEM microscopes, EDX technique is 
capable of producing elemental distribution maps 

-Elemental depth information of a sample is possible 

 

-Some elements do have overlapping EDX peaks so that 
interpreting the data sometimes requires experience 

-Low atomic number elements (H to Be) cannot be 
detected. Which is important for polymers consisting of 
C, N, or O. 

-Does not provide an insight into the topography of 
nanoscale structures 

Electron Energy 

Loss 

Spectroscopy 

(EELS) 

-Capable of identifying the elemental components of a target sample 

- The sensitive response and high energy based resolution to a 
samples configuration and composition make it very effective and 
powerful tool. 

-For light elements the sensitivity of EELS is superior to that of EDXS 

-Limited in that it does not provide information on the 
topographical structure 

-High energies could damage beam sensitive 
biomaterials 

-Analysis requires that ‘thin’ samples must be used 

Raman 

Spectroscopy 

-Fast and reliable in generating a materials chemical spectra 

-SEM-Raman could attain a sub micron lateral resolution and 1.5 µm 
depth resolution 

- Raman mapping can be incorporated into SEMs to obtain both local 
chemical and microstructural data concurrently. 

-Issues stem from its poor lateral resolution  

-Difficult to interpret data 

-Only able to give bulk material characteristics on the 
micron scale 
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Characterisation 

Method 

Strengths Weaknesses 

X-ray 

photoelectron 

spectroscopy 

(XPS) 

-Technique is able to characterise sample materials element 
identification, chemical composition. 

-Highly sensitivity technique for inorganic and organic materials 

-The shallow escape depth of the photoelectrons makes XPS a 
valuable technique in the analysis of the chemical characterisation 
of surfaces 

-Not capable of undertaking chemical surface mapping 
at nanoscale resolutions 

-Expensive 

 

Phase-contrast 

AFM  

-Can deduce 3-dimensional material morphology 

-No need for the sample to undergo any pre-analysis treatment 

-Can distinguish between different materials, providing spatial 
distribution information 

- Does not need vacuum 

-Limited magnification capability denying it a true 
multiscale analysis range 

-Signal to noise ratio issues 

-Management of tip sample forces required 

Conventional 

SEM 

-Recent SEM`s have now have a lateral resolution competitive to that 
of TEM 

- High productivity, minimal sample preparation 

-Data can be difficult to reliably analyse, open to 
interpretation 
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As noted in Table 1, SEMs are already commonly accessible in universities and 

industry throughout the world. Scientific advancements over recent decades 

have enhanced the spatial resolution achievable in an SEM to a level competitive 

to that of a TEM (86). For high-resolution biomaterial characterisation, 

conventional secondary electron (SE) based SEM techniques are not optimal. 

Different polymer structures found in biomaterials display similar topography 

which can result in the generation of contrast images which are problematic to 

interpret. EDX and backscattered electron (BSE) imaging are two commonplace 

techniques for material identification using the SEM, conventional arrangements 

of these methods are deficient in the spatial resolution essential to evaluate the 

nanoscale features which are widely considered as key for the analysis of 

biomaterials. This thesis is focused on the evaluation of a novel, SEM based 

surface sensitive imaging technique, capable of overcoming current 

conventional analysis shortfalls by providing nanoscale chemical mapping.  
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Prelude - For section 2.4 of the literature review some of the sections provided 

have been reproduced from (N.T.H. Farr, S.F. Hamad, E. Gray, C.M. Magazzeni, F. 

Longman, D.E.J. Armstrong, J.P. Foreman, F. Claeyssens, N.H. Green, C. 

Rodenburg: Identifying and mapping chemical bonding within Phenolic Resin 

using Secondary Electron Hyperspectral Imaging. Polym. Chem., 2021,12, 177-

182). Sections which include wording from this publication are clearly stated 

before the section. This is an open access article under the terms of the Creative 

Commons Attribution License, which permits use, distribution and reproduction 

in any medium, provided the original work is properly cited. I, Nicholas Farr am 

the first author of this publication and wrote the manuscript, including the 

sections included in this thesis.   

2.4 Scanning Electron Microscopy  

 

Release, acceleration and focusing of electrons from an electron gun to form a 

narrow beam which is scanned over a target sample (See figure 11) are the core 

operating principles of a Scanning electron microscope (SEM) (87).  Continuing 

developments in ease of use, sample preparation techniques, beam control, 

improved detectors and the ability to capture scanning results within a digital 

database for post-scan processing have all contributed to the improvement of 

SEM capabilities over recent decades since its first applications (88, 89).  
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Figure 11: Basic representation of an SEM. Image amended from (90) 

Inclusion of electromagnetic lenses focuses the incident e beam and ensures 

that electrons leaving the sample can reach the detectors without undergoing 

further scattering. Usually, the electron beam is thermionically emitted from an 

electron gun fitted with either a tungsten or lanthanum hexaboride cathode (91). 

Some SEMs have a field-emission electron gun (FEG) as the beam source with 

the electron beam either cold-cathode or thermionically emitted using single 

crystal tungsten wire. This single crystal tungsten wire is shaped to a fine point 

less than 100 nm and commonly coated with a thin layer of Zirconium Dioxide 

emitter (ZrO2) (92). This layer is applied to decrease the surface work function 

as set in the ‘Schottky’ type emitter design. Within the column a series of 

electromagnetic lenses focus the primary electron beam in the direction of the 

target sample (92). Magnetic fields within the lenses are employed to accurately 

focus the electron beam. To control the current reaching the target sample an 

objective lens aperture and a pair of condenser lenses are installed. Through 
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varying the current flowing through the objective lens coil the electron beam 

can be focused on to the target sample (93).  

Scanning the surface of a target sample is completed using a raster based 

approach with distinct steps of the electron probe which correspond to a single 

pixel in an SEM image (94). The electron signal produced from the sample at 

each step can be captured by a range of possible detectors (See section 3.4). 

The SEM image is constructed by repeating the steps until all the selected 

surface area is scanned.  The resolution of the image obtained for a given probe 

size is given by the target material and primary beam energy. The electron beam 

probe only interacts with a limited interaction volume due to the effect of 

electron interactions (More information given in Section 2.4.3). This volume is 

determined by the primary beam energy. The greater the primary beam energy 

is the larger volume of sample interaction. This incident beam interaction 

volume is demonstrated in Figure 12 with a characteristic ‘waterdrop’ shape. 
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Figure 12: An electron beam interaction diagram. Obtained and amended from (95). 

Carefully chosen SEM operating techniques combined with innovative post 

processing of captured data forms the basis for an approach called secondary 

electron hyper spectral imaging (SEHI). The evaluation of this technique is the 

main objective of this thesis and section 2.4.6 introduces SEHI`s development. 

But first a comprehensive understanding of the characteristics and application 

techniques of SEMs is an essential prerequisite for researchers to fully exploit 

the potential of the SEM in their work. In addition to competence in the basic 

operation of the equipment, a comprehensive understanding of images and 

spectra obtained in the SEM requires in-depth knowledge of electron beam 

specimen interaction and the equipment (in particular detectors) (96).  
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2.4.1 Electron Detectors with an SEM (Section published in Farr et al 

Polym. Chem., 2021,12, 177-182) 

Both SE and BSE emissions can each be exploited to extract complementary 

sets of information from a target sample within an SEM. Modern SEMs are 

configured to utilise detectors which have the ability to distinguish between 

these two types of emissions and are capable of filtering either SEs or BSEs 

from an intermixed sample image signal. As previously highlighted the ability to 

research surface effects in polymers at the nanoscale level relies primarily on 

the capture of target images built from SE1 emissions. The most common 

detector employed in SE imaging is the Everhart-Thornley detector (ETD). ETDs 

mix SE1, SE2 and SE3 emissions, this approach provides limited resolution with 

SE images being hard to interpret in respect to their specific SE emissions. 

Alternatively, the other commonly used SE detector is the Through-lens 

detector (TLD). The TLD supresses SE2 and SE3 emissions to collect mainly SE1 

emissions (92). By virtue of collecting SE1 emissions the TLD can provide high 

resolution surface images, suited perfectly for the use of chemically mapping 

the nanoscale surface of polymers. 

2.4.1.1 Everhart-Thornley detector (ETD) 

The electron detector installed within the majority of current SEMs is the ETD.   

ETD detectors possess the ability to detect both BSE and SE emissions. ETD 

detectors are composed of a scintillator mounted within a Faraday cage located 

in the specimen chamber (97).  When it is stimulated by target emitted electrons 

a luminescence signal is generated by the scintillator.   The Faraday cage works 
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to reduce the unwanted background electromagnetic resonance that may distort 

the detectors signal. For applications supporting biomaterial research the ETD 

is primarily employed for its SE detection capability rather than BSE.  The 

luminescence signal generated by the scintillator releases photons which travel 

to a photomultiplier via a light guide and photocathode (97).  Prior to arriving at 

a collector the photomultiplier amplifies the signal (see figure 13).  

 

Figure 13: Everhart-Thornley detector schematic. Obtained and amended from (98). 

Creating a voltage bias in the Faraday cage component of the ETD enables the 

ETD to be selective as to which electrons can reach the detector based on the 

electrons energy. This technique allows low energy electrons to be detected 

regardless of their emission energy. Figure 13 illustrates an example ETD set 

up. To capture an image signal composed of mainly SEs an ETD bias of 

approximately +250 V will be required to swamp the low number of BSEs likely 

to arrive at the detector (91, 97). Consequently, switching the ETD to a negative 

bias would cause low energy SEs to be repelled from the ETD and therefore the 

high energy BSEs would dominate the image signal.  For polymer derived 
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biomaterial research where the configuration of the SEM is optimised to support 

topographical nanoscale analysis, an ETD detector biased to approximately +250 

V is considered appropriate to deliver superior SE detection.   

2.4.1.2 Through-lens detector (TLD) (Section published in Farr et al Polym. 

Chem., 2021,12, 177-182) 

The detector of choice in this thesis and all subsequent section was the TLD. The 

TLD selected is depicted in figure 14. This TLD arrangement utilises electrostatic 

deflectors to enable the detection of SEs when set to a high-resolution 

immersion mode where target samples are immersed in a magnetic field and 

the TLD is positioned above the objective lens of the electron column (99). 

 

Figure 14: Schematics of TLD arrangements in SEMs manufactured by FEI Co. XL-30 

design TLD. Adapted from (99) with permission from Elsevier. 
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Configuration of TLD detectors varies according to both the manufacture and the 

actual SEM model.  Figure SI 3 illustrates a FEI XL-30 design which is a widely 

used SEM having a TLD integrated into the incident electron probe consisting of 

a scintillator detector and a ‘deflector’ electrode (99).  The deflector is installed 

as a guide to drive SEs towards the detector and is set to a bias of -60V. This 

bias can be adjusted to collect SE1 emissions from energy ranges of interest.  

Additionally, the SEM’s pole-piece incorporates a positively biased electrode 

whose purpose is to help attract SEs within the specimen chamber towards the 

detector. TLDs predominantly detect SE1s which provide the highest spatial 

resolution information as they are emitted by the target sample through direct 

interaction with the primary electron beam.  

2.4.2 Imaging polymer derived biomaterial in a SEM 

Three key challenges that need to be addressed by researchers to effectively 

use an SEM in the analysis of polymer based biomaterials are:  

1) The development of SEM techniques that are capable of producing 

chemical contrast images at higher lateral image resolution. 

2) A reduction of polymer charging whilst imaging. Often due to the non-

conductor nature of polymers. 

3) The reduction of radiation damage to the polymer sample through beam 

interaction 

Innovations in the development of the low-voltage scanning electron 

microscope (LVSEM) have made significant steps towards addressing these 
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challenge. An LVSEM is essentially an SEM operating with primary beam energy 

values of between 1 and 2 keV.  Key advancements in electron optics and 

developments of the FEG gun have enabled LVSEMs to operate at nanometre 

resolution with low beam voltages (100). It was not feasible for previous 

generations of SEM designs to operate satisfactorily at these low beam voltages 

(100). Polymer material analysis was limited by only having access to low quality 

images due to the low energies with the beam resulting in lack of resolution 

prior to these developments (100).  

2.4.2.1 Issues with resolution and contrast  

Previous work has made clear that the existing SEM apparatus lacked the 

spatial resolution needed for analysis of organic polymer samples (101).  To 

enable LVSMs to produce high resolution images at low beam energies 

(between 1-2 KeV) significant developments in the capability of electron optics 

has been necessary, particularly in the field of beam focus and detection 

techniques (101, 102, 103).  

One common approach adopted is setting the target sample to a negative bias 

voltage, the electron beam exiting the column can then be decelerated prior to 

interacting with the sample (see figure 15). 
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Figure 15: The process of electron beam deceleration 

The practical disadvantage of using such techniques is that to achieve a high 

quality electron beam the electron column must generate a relatively high 

energy beam, however, by applying these beam decelerating techniques the 

electron beam voltage can be reduced prior to interacting with the sample 

without loss of beam quality.   For most biomaterials that typically display 

complex geometries or have high insulating properties beam deceleration 

techniques are not always successful.  Although through many developments 

the capabilities of the SEM have been constantly improved, the quality of the 

sample employed is still as important as the quality of the instrument (102). 

Sample preparation is still one of the most challenging components in achieving 

optimal resolution. For polymer-derived biomaterials which require analysis of 

the true surface of the material, this means there is a requirement not to use 

conductive coating of the samples prior to imaging. Conductive coatings are 

employed to reduce the accumulation of surface electrons, in particular for 

beam energies in the range of 5-20 keV, this effect can prevent electron 
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emissions from the target sample (102, 103). This formation of electrons on the 

surface creates what is observed as “glaring” on SEM images. Literature has 

indicated the use of freezing methods in preparation of polymer and biological 

samples can improve SEM image resolution (104). However, complications arise 

from not freezing the material quickly enough allowing the formation of 

damaging ice crystals within the material as a consequence of the preparation 

process. To overcome these issues polymer samples can instead be placed on 

carbon conductive tabs and imaged at lower ~1 KeV beam energies. Additionally, 

the dimensions of the polymer can be optimised by imaging thinner sections of 

the sample and using carbon conductive paint to electrically ground the samples 

onto the carbon mounting tabs.  

2.4.2.2 Reduction of sample charging  

As previously highlighted, the build-up on the target sample of negative charge 

is a common occurrence when using an SEM at conventional voltages (5 – 20 

keV) for polymers analysis (103). During the raster scanning process any 

negative charge that builds up on the polymer sample triggers the polymer to 

repel the electron beam.  Distortion or obscuration of SEM images may occur 

through hydrocarbon contamination in conditions such as the presence of 

ambient hydrocarbons (105). An unwanted charge can build on the polymer 

when the incident electron beam probe delivers electrons at a faster rate than 

the sample surface can emit electrons after surface interactions. LVSEMs 

reduce the likelihood of this charge build-up by operating at lower beam 

acceleration voltages (100, 105).  
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The deployment of innovative beam scanning patterns, such as frame 

integration, is also an effective strategy to mitigate the consequences of charge 

build up. Frame integration scanning patterns use short dwell times (100ns) to 

capture within a sample area a number of frame sequences, thereby reducing 

polymer charging prior to integration of the frame pixels within the final image 

(106). The rational for short dwell times is to facilitate the dissipation of any 

charge accumulated during each capture frame before the scan pattern 

advances onto the next frame. If charge accumulation issues are still apparent, 

then orientating the polymer target to a high angle relative to the electron beam 

has been shown to establish a geometry that promotes the escape of SEs. 

Coating of the polymer sample prior to imaging is also regard as a feasible 

option.  However, sample coating requires that the nano-structure of the 

polymer enveloped with a conductive `splutter coat` layer, such a layering 

approach does raise questions of whether the captured images are actually true 

representations of the samples surface topology.    

2.4.2.3 Reducing polymer damage in SEM 

Where the electron beam interacts with the target sample a proportion of the 

energy from the beam is transformed into heat relative to the acceleration 

voltage selected (105). The effects of this heating are dependent on the 

characteristic of the sample material but at typical SEM accelerating voltages 

possible deterioration in the form of; cracking, sublimation, decomposition and 

deformation may take place. 
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Heat can build up within the sample as a direct result of the collisions involved 

in the inelastic scattering of primary beam electrons. Inelastic collisions are 

capable of causing effects such as crosslinking and chain scission through 

energy transfer to the target sample. Studies have shown at primary beam 

energies of 20 – 30 KeV surface temperatures are as high as 53°C (107).  Such 

surface temperatures is problematic when considered that biopolymers have 

been shown to undergo initial heat induced crystallisation at ~45°C (108). The 

ability of a sample to withstand this heat is dependent on the samples 

dimensions, the beam current conditions and the likelihood of radial conduction 

heat loss due to the samples thermal conductivity.  

The poor thermal conductivity of organic polymer materials results in a higher 

propensity for the heating effects of beam currents to inflict thermal damage to 

the samples through only small increases in temperature (105). However, with 

LVSEM technology using lower acceleration voltages than typical SEM practice, 

sample damage is expected to be also be correspondingly less. LVSEMs using 

acceleration voltages of 2 KeV or less are considered to be capable of minimal 

target sample damage (107). 

2.4.3 Background of the interpretation of Secondary electrons (Section 

published in Farr et al Polym. Chem., 2021,12, 177-182) 
 

The primary electron beam interacts with atoms within the material by causing 

electrons to be emitted. These emissions are as a result of a range of physical 

interactions (93). Figure 13 shows the interaction volume of a primary electron 

beam and a range of association emissions.     
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Elastic interactions are those which change the path of the incident electrons in 

the primary electron beam probe whilst having a negligible effect on their kinetic 

energy. Inelastic interactions in contrast are those which result in a loss of 

kinetic energy of the incident electrons (94). High energy electrons that are 

emitted by an elastic interaction of an incident electron with the nucleus of the 

material samples’ atoms, are designated as back scattered electrons (BSE). The 

energy of BSEs is comparable to that of the beam probe’s incident electrons. 

Electrons emitted from the sample at lower energy are categorised as 

secondary electrons (SE). SEs typically display energy voltage of less than 50 

eV. SEs result from inelastic scattering and are the consequence of either 

collisions within the electron cloud or by interaction with loosely bound 

electrons in the material’s structure.  

As stated previously the electron beam probe will only interact within a finite 

interaction volume due to the effect of inelastic interactions. This volume is 

depended on the primary beam energy. The greater the primary beam energy is, 

the greater volume of sample interaction. This incident beam interaction volume 

is represented in figure 16 with a characteristic ‘waterdrop’ shape.  

SEs are the sample’s emissions that are associated with SEM images (109). SEs 

may be emitted from the materials at relatively low kinetic energies, < 10 eV, as 

a result of potential interaction with electron clouds.  The low kinetic energy 

places a significant limit on the actual escape depth of SEs emitted from a 

sample, which can often be < 10 nm, and as a consequence SE derived images 

are inherently surface specific.  To interpret the images generated by an SEM it 
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is essential to understand how the SE contrast is captured. Selection of an 

appropriate detector by the user is also dependent on this knowledge.  

 

Figure 16: Diagram shows the relative escape depths of SEs and BSEs and their 
interaction paths prior to detection. Image adapted from (110) with permission from 
Elsevier.  “Schematic of the electrons emitted from a range, R, below the surface of 
the sample. SE1 is generated from impacted electrons (IE) right after incidence, SE1 

have spatially localised information (s1). Then, IE spread to interaction volume with a 
size of range R.”  

There are a number of different ways that SEs are detected in an SEM (See 

figure 16). The majority of SEs detected originate as a result of inelastic 

interactions between the probe incident electrons and the sample (110), this is 

in addition to collisions between BSEs and the SEM chamber components after 

emission from the target sample surface. (This process is depicted in figure 16) 

These different sources of SEs are termed SE1, SE2 and SE3 retrospectively. 

SEs from each of these difference sources exhibit dissimilar signals types for 

both resolution and contrast. When undertaking SEM analysis of a polymer`s 
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topographical nanostructure, it is essential to configure the apparatus with a 

detector which can isolate SE1 from SE2 and SE3. Despite both SE1 and SE2 

emissions providing topographical contrast due to their angular distribution and 

their short escape depth (as shown in Figure 17).   SE1 emission differs from that 

of SE2 as a result of their interaction paths, SE2s emissions are generated from 

BSEs when they pass through the surface, when exiting the sample, unlike SE1 

which are generated from impacted electrons directly after beam incidence. SE1 

emissions therefore possess spatially localised information and are suitable for 

processing into high resolution surface images. 

 

Figure 17: Diagram showing the topographic effect on SEM contrast of SE1 and SE2 
emissions. Figure amended from (111) 
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2.4.4 Information contained in secondary electron spectra (SES) (Section 

published in Farr et al Polym. Chem., 2021,12, 177-182) 

 

Electrons emitted from a target sample through probe electron/material 

interactions within the SES can be detected and displayed by way of spectra 

constructed according to their measured energy ranges.  From the resultant 

spectra, conclusions can be drawn regarding the samples chemical composition 

and structure. SES is not a recent development for material characterisation, 

SES has been investigated since 1947 (112). Over the last few decades, SES has 

only recently started to flourish through innovations in instrumentation, signal 

processing and imaging proficiency (113, 114, 115).  

The process of developing SE spectra wholly relies on the probe electron – 

material interactions. SES measures electron emission energies post inelastic 

sample collisions. SES benefits from employing a low KeV (between 0.5-2 keV) 

primary electron beam which makes it possible for the SES to collect the 

spectra of beam sensitive materials. Although, SEs are produced throughout the 

primary beam interaction depth, only SEs emitted within the SE escape depth 

can be detected, as SEs emitted at a greater depth will be absorbed by the bulk 

of the sample material. The SE shallow escape depth raises the issue of surface 

contamination affecting the spectra results, a problem faced by other surface 

analysis techniques. However, SES has been shown to have operational 

characteristics that allow it to overcome substantial surface contamination to 

produce accurate spectra that are reproducible and reveal characteristics of the 

underlying material (113, 115). In contrast EELS provides an average 

measurement over the material samples thickness and does not allow for high 
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resolution surface characterisation. For polymers which require a tailored 

surface, such as polymer derived biomaterials, the SES form of detailed surface 

analysis is considered to be an essential perspective due to the fact that 

established cells react to a biomaterial’s surface on the nanoscale level.  

Although, SES, EELS and XPS all have strengths as material characterisation 

methods, the singular ability of SES to support the secondary electron 

hyperspectral imaging (SEHI) technique is considered particularly 

advantageous for the analysis of a range of material types. As distinctive SE 

energy spectra have been collected for many decades (114, 115) it is often 

wrongly assumed that SE images show only topographical contrast. However, 

with recent progress in SE spectra analysis and energy-filtering detection, 

advances in capability now enable the capture of spectral images from selected 

distinct SE energy ranges, which studies have shown to carry chemical and 

functional information (116, 117, 118). Both SE and BSE emitted at low primary 

beam energy ranges contain chemical information. Lower energy SEs contains 

information about valence bands and higher energy SEs (SE2) have been 

associated to the atomic number of the elements from which they are emitted 

(116). BSE imaging has demonstrated a capacity to provide chemical contrast 

images of materials where topographical features are negligible, however, SEHI 

can provide comparable images of materials at significantly enhanced image 

resolutions (117).  Standard SEM images are compiled from all surface emitted 

SEs without discrimination of their energy ranges.  In contrast, SEHI compiles a 

series of images based on the specific energy ranges of emitted SEs. SEHI 
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software processes capture this series of energy range images to construct an 

inclusive SE spectrum for the material.  

SE emission has also been used to assess structural changes through 

topographical changes. Previously published work has shown that surface 

morphology effects are particularly meaningful in higher energy emissions (117, 

118, 128, 131). However, if a user wished to avoid topographical SE emissions and 

reduce the possibility of surface morphology effects, attention should be given 

to emissions below 6 eV. With previous work showing that these energy ranges 

are suitable to functional group emissions and not surface morphology effects 

emissions (116, 117).  

Figure SI 12 (graphical abstract) displays the process by which information 

contained in the SEHI spectrum provides the basis for mapping chemical 

changes within the surface of materials.  This capability is predicted to provide 

new opportunities for researchers to characterise novel polymer materials. The 

value of the SEHI characterisation technique has successfully been 

demonstrated in range of applications varying between; the analysis of 

molecular orientation within organic electronic devices, semi-crystalline 

polymers chemical mapping and exposing variations in nanostructures that 

form natural materials (116, 117, 118, 119). SEHI can be summarised as a technique 

that is responsive to surfaces and is capable on beam sensitive materials of 

resolving chemical, compositional and structural differences at the nanoscale 

level. It is proposed that an effective microanalysis tool for nanostructured 

polymers results from the integration of the capabilities of a low voltage SEM 

and those of secondary electron microscopy. 



PhD Thesis Nicholas T.H. Farr Chapter 2: Literature Review  

64 

 

2.4.5 Modelling secondary electron spectroscopy (SES) (Section 

published in Farr et al Polym. Chem., 2021,12, 177-182) 

SE emissions captured in electron microscopes has been the subject of an 

increasing number of studies using a modelling approach that simulates the 

production of secondary electron emission from sample materials. Many of 

these studies have adopted the Monte Carlo approach to simulation modelling. 

Within a Monte Carlo simulation a statistical probability is assigned to every 

event, with the probability figure based on first principles and available 

experimental results. Multiple events are simulated until the process yields a 

statistically relevant result.  Monte Carlo simulation, based on a conductive 

polymer using experimental data, has revealed that a material’s local 

crystallinity and electron affinity directly influence the SE energy spectrum (120, 

121). 

In addition to polymer analysis, further insightful work has been directed at 

carbon species analysis.   The characteristic SE spectra of sp3 hybridised, sp2 

hybridised, or hydrocarbon contamination moieties captured using a 

combination of experimental studies and Monte Carlo based simulation has 

been published (118, 120, 122). This result has enabled carbon based 

contamination and deposition induced by the electron beam within a SEM to be 

identified and mitigated. Through applied modelling simulations, significant 

advances in the appreciation of time dependence both in secondary electron 

emission (123) and in the charge dynamics of insulators (124) have been made.  

2.4.6 Introducing Secondary Electron Hyperspectral Imaging (SEHI)  
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As previously mentioned, an ideal characterisation technique will without 

changing either the chemical composition or structures architecture, provide 

comprehensive multiscale information pertaining to the materials 

nanostructure. Many of the existing characterisation techniques evaluated have 

a role in the characterisation of biomaterials but are unable to fulfil all the 

requirements due to inherent limitations. Enhanced material characterisation 

capabilities including; novel surface chemical spectroscopy and imaging 

methods on nano- and micro-scale levels are considered necessary to provide 

the fundamental analysis steps needed to support biomaterial deployment. Only 

a subset of existing characterisation techniques discussed can perform surface 

analysis at the nanoscale. Of these, none can chemically map of beam sensitive 

biomaterials at multiscale.  

 This thesis explores the recently developed technique of SEHI with the aim to 

evaluate its ability to fulfil the requirement for as a high resolution, multiscale, 

chemical mapping characterisation method applicable to polymer based 

biomaterials. SEHI captures and analyses spectral information from material 

samples providing a chemical fingerprint of polymer derived biomaterials at 

surface depths of >10 nm. Figure 18 shows a Venn diagram of how SEHI 

development has been made achievable by the SEM advancements previously 

discussed. Combining both SE imaging and the collection of SE emission spectra 

by means of the SEM provides the foundation for the SEHI and has been 

extensively discussed (125, 126, 127, 128). Briefly, SEHI constructs a series of 

images based on the target area of the material sample, where a selected SE 

energy band forms each image. Figure 19 shows an example of a range of image 
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slices taken at different energies which make up a SEHI image stack. In order 

to allow chemical information to be resolved on both nanometre and sub-

nanometre scales by SEHI, an LV-SEM instrument with a probe diameter 

appropriate to these scales is required (129). The ability of SEHI to compose 

spectral images that supress topographic contrast whilst containing functional 

and chemical information has been dependent on modern advances in data 

analysis and energy filtered SE detection (125). 

 

Figure 18: Venn diagram of the development of secondary electron hyperspectral 
imaging (SEHI). 

 

Determining crystallinity in polymer samples using SEHI has made swift 

advances (120, 121, 126). Previous research work had established that the SE 

spectra for certain hydrocarbon materials are substantially affected by 

excitation of intramolecular vibrations (118, 121). The successful results of these 
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studies has increased confidence that deployment of SEHI could enable a unique 

characterisation method to be established that will support the evaluation, at a 

nanoscale level, the mechanics of cellular response within a biomaterial formed 

environment. Effective deployment of SEHI is anticipated therefore to ideally 

play a major role in the development of functional tissue scaffolds built from 

novel biomaterials.      

 

Figure 19: An overview of the process of secondary electron hyperspectral imaging 
(SEHI) Amended from (130). 

Although it has been shown that the SEHI technique can provide extensive 

chemical and synchronised structural characterisation information, two key 

questions remain over its future use for the characterisation of polymer derived 

biomaterials. 1) Can SEHI deliver insights into the mechanical properties of a 

material? 2) Is the captured SE spectra able to identify functional groups that 

play a key role in biomaterials engineering /TE? And if so can SEHI map these 
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functional groups at the nanoscale? This thesis will focus on providing evidence 

to determine the answers to these questions. 
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3.1 Prelude 

A biomaterial’s mechanical properties are defined by its underlying chemical 

composition and structural relationships whose local variations determine cell growth 

propensity. For this reason, novel surface chemical spectroscopy and imaging methods 

on nano- and micro-scale levels are needed. In particular, crosslinking density and 

local variations in molecular order are major contributors to a biomaterial’s mechanical 

properties (local stiffness) and consequently the biocompatibility of the material [1]. 

Established averaging methods for the estimation of molecular order and crosslinking 

density do not provide information of spatial distributions within the biomaterials.  

Chapter 3 presents the publication titled “Characterising cross-linking within polymeric 

biomaterials in the SEM by Secondary Electron Hyperspectral Imaging.” This publication 
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shows SEHI can provide the necessary spectral information and that the captured 

spectra can also be exploited for SE imaging.  

3.1.1 Thesis Question 1 Can SEHI deliver insights into the mechanical properties of a 

biomaterial? 

Chapter 3 tackled this question by evaluating the efficacy of SES to reveal new insights 

into the mechanical properties of PGS-M morphology. Chapter 3 was the first 

publication to show secondary electron spectroscopy (SES) being used to characterise 

crosslinking in polymer derived biomaterials. Characterisation of three different forms 

of PGS-M each with different crosslinking structures was successfully conducted. Here 

SES provided a cross-linking characterisation toolset with crosslinking density and 

variation information captured at a multi-scale level. Prior to this publication the 

magnitude of crosslinking within a biomaterial could only be inferred through limited 

analytical techniques undertaken with traditional approaches for measuring the extent 

of crosslinking based on bulk mechanical averaging techniques.   

SES showed the capacity to overcome these limitations by providing the means to 

identify the bonding (CHx) associated with crosslinking within PGS-M together with its 

unique ability to distinguish spatial distributions of this bonding across the polymers 

surface. The publication presented in this chapter shows that changes in Raman 

intensity (Green 514.5 nm laser) (at 2950 cm−1 (C–H vibrations [2-6]) closely correlates 

with the SE intensity changes at 3.6 eV. Both intensity peaks are similarly affected by 

CH bonding and consequently the cross‐linking process of PGS‐M. This result was the 

first time SES had been shown to be capable of predicting and evaluating indirectly the 

mechanical properties of a polymer. Selecting potential biomaterials for tissue 
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engineering applications is dependent on mechanical properties such as surface 

stiffness and roughness. 

3.1.2 Thesis Question 2: Is the captured SE spectra able to identify specific functional 

groups that play a key role in biomaterials engineering TE and if so can SEHI map these 

functional groups at the nanoscale? 

Chapter 3 was the first publication to identify the SE emissions of a chemical functional 

group. SES provided the means to identify the bonding (CHx) associated with 

crosslinking within PGS-M together with the ability to distinguish spatial distributions 

of this bonding across the polymers surface. 

3.1.3 Brief Summary 

This study demonstrated that by using SEHI it is possible to map a biomaterial’s CH 

variation with ease in the scanning electron microscope. SEHI images show that cross-

linking and thus hardness is also likely to change locally observed as variation in CH 

vibrations. This work therefore proposes an innovative surface approach to providing 

researchers with effective tools to visualise and characterise novel biomaterials in the 

SEM. 

3.2 Contributions 

NF performed the majority of the experimental work and data analysis and wrote the 

manuscript. SPT synthesised PGS-M and conducted the mechanical testing.   NG, FC 

and CR contributed to the experimental design, project supervision, and the writing of 

the manuscript. Please see overleaf for the paper. Published by WILEY-VCH Verlag 

GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the 

Creative Commons Attribution License, which permits use, distribution and re-
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production in any medium, provided the original work is properly cited. For more 

information see (https://creativecommons.org/licenses/by/4.0/) 
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signal processing, and imaging capability 
that SE spectroscopy can be exploited 
to open up a new realm of opportuni-
ties for novel material characterization of 
polymers in the scanning electron micro-
scope (SEM) by SE hyperspectral imaging 
(SEHI). While in a standard SEM an image 
is formed from all detected SEs that are 
emitted from a surface regardless of their 
energy, in SEHI a series of images is col-
lected, each of which is created using SEs 
from a defined energy band. Such SEHI 
image series can then be used to extract a 
SE spectrum. In the last 5 years, SEHI has 
been deployed in a wide variety of applica-
tions, but in particular, for the mapping of 
semi-crystalline polymers, exploring the 
molecular orientation of organic electronic 
devices, and recently revealing nanostruc-
ture variations within natural materials.[2,3] 
Here we show that the SEHI approach can 
be also utilized as a novel characterization 
tool to map cross-link densities in beam 
sensitive biomaterials.

Polymer cross-links are the covalent 
bonds which are irreversibly formed 
between molecular chains of the 

polymer. Increasing the density of cross-links decreases the 
ability of polymer chains to slide over each other and accord-
ingly increases the relative mechanical tensile strength of the 
polymer and its brittle fracture resilience.[4]

Therefore, a polymer-based biomaterial’s cross-linking den-
sity is a major contributor to its mechanical properties.[5] For a 
polymer to be considered as a viable biomaterial, promotion of 
cell growth is essential. The ability of the biomaterial to promote 
cell growth is highly influenced by local surface variations that 
arise as a consequence of these mechanical properties. Local-
ized variations in cross-linking density are important for the 
biocompatibility of the material and as yet there is no imaging 
tool available to assess such variations. This might seem sur-
prising as it has been shown that cross-linking density is also 
associated with the biodegradation rate of biomaterial scaffolds 
and can be utilized as an effective control of biodegradation.[6]

Additionally, cross-linking has demonstrated an ability to sup-
press the immunogenicity of an implanted scaffold.[7] Thus the 
ability to quantify the extent and density of cross-linking is con-
sidered to be a key capability to promote the efficient develop-
ment of effective biomaterials. The behavior and kinetics of the 

A novel capability built upon secondary electron (SE) spectroscopy provides 
an enhanced cross-linking characterization toolset for polymeric biomate-
rials, with cross-linking density and variation captured at a multiscale level. 
The potential of SE spectroscopy for material characterization has been 
investigated since 1947. The absence of suitable instrumentation and signal 
processing proved insurmountable barriers to applying SE spectroscopy to 
biomaterials, and consequently, capturing SE spectra containing cross-linking 
information is a new concept. To date, cross-linking extent is inferred from 
analytical techniques such as nuclear magnetic resonance (NMR), differ-
ential scanning calorimetry, and Raman spectroscopy (RS). NMR provides 
extremely localized information on the atomic scale and molecular scale, 
while RS information volume is on the microscale. Other methods for the 
indirect study of cross-linking are bulk mechanical averaging methods, such 
as tensile and compression modulus testing. However, these established 
averaging methods for the estimation of polymer cross-linking density are 
incomplete because they fail to provide information of spatial distributions 
within the biomaterial morphology across all relevant length scales. The 
efficacy of the SE spectroscopy capability is demonstrated in this paper by the 
analysis of poly(glycerol sebacate)-methacrylate (PGS-M) at different degrees 
of methacrylation delivering new insights into PGS-M morphology.

The potential of secondary electron (SE) spectroscopy for mate-
rial characterization has been investigated as far back as 1947.[1] 
However, it is only with recent advancements in instrumentation, 

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and re-
production in any medium, provided the original work is properly cited.
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cross-linking processes of polymer-derived biomaterials have 
been previously surveyed by applying diverse analytical tech-
niques such as nuclear magnetic resonance (NMR), differential 
scanning calorimetry, and Raman spectroscopy (RS). While NMR 
can provide extremely localized information on both the atomic 
scale and molecular scale, the RS information volume is typically 
on the microscale. Other available methods for the indirect study 
of the cross-linking structures of soft polymers are bulk mechan-
ical averaging methods, such as tensile and compression mod-
ulus testing. However, these established averaging methods for 
the estimation of polymer cross-linking density are incomplete 
as they fail to provide information on spatial distributions within 
the biomaterial morphology across all relevant length scales.

To develop a comprehensive understanding of the key rela-
tionships between the biocompatibility of different polymer 
structures, the capability to reveal both nano- and microscale 
levels of structural detail is essential. Here we demonstrate 
that SEHI can provide structural detail information using 
poly(glycerol sebacate)-methacrylate (PGS-M) as an example.

PGS-M is an elastomeric degradable polymer and a function-
alized form of the well-studied poly(glycerol sebacate) (PGS). 
PGS being a non-toxic tuneable polymer,[8,9] has become an 
interesting potential biomaterial in various promising applica-
tions such as supporting the growth of cardiac tissue,[10] blood 
vessels,[11,12] and cartilage.[13,14] PGS-M differs from PGS as a 
result of functionalization with methacrylate groups which 
causes the polymer to be photocurable. The photocurable capa-
bility of PGS-M enhances the existing strengths of PGS by 
allowing the material to be cross-linked at lower temperatures 
and pressures. This enables the precise fabrication of highly 
detailed microscale structures and the potential direct incorpo-
ration of cells or temperature sensitive molecules.[15] The ease 
with which PGS-M can be synthesized together with the adapt-
ability of its physical properties and suitability for use with 
different cell types, makes PGS-M an attractive candidate for 
an extensively deployed biomaterial.[15] The adaptability relies 
on user-defined cross-linking as PGS-M can be photocured 
at various degrees of methacrylation and the degree of meth-
acrylate (DM) used in its production has a direct relationship 
to the density of cross-linking. The greater the DM, the greater 
the average cross-linking density. Tensile testing has previously 
revealed that the mechanical properties of PGS-M varied in 
accordance with its morphology, both Young’s modulus and 
UTS increased significantly with increasing levels of DM.[15,16] 
Further validation is required to confirm this relationship but 
PGS-M is generating much interest as a biomaterial. PGS-M 
is therefore considered an ideal model polymer to assess SEHI 
as a viable biomaterial cross-linking characterization technique.

In this study, SEHI will be applied to characterize the 
increasing cross-linking densities of PGS-M at three different 
DM levels: 30%, 50%, and 80%. Argon plasma treatment has 
been included in the study to initiate supplementary cross-
linking variation within a single set of PGS-M samples.

Plasma modification of a polymeric biomaterial’s surface layer 
is often carried out in order to: generate functional groups on its 
surface, change free surface energy, increase surface hydrophi-
licity or achieve hydrophobicity, change cross-linking of surfaces, 
change surface morphology, or remove impurities. Previous 
studies on PGS, which has a similar structure to PGS-M, have 

observed that plasma treatment[17] intensified hydrophilicity, 
increased the capability of stimulating cell proliferation, and 
extracellular matrix production. Such studies have also indicated 
that plasma treatment has induced surface cross-linking within 
the chemically similar PGS, but as yet no technique has been 
able to map their existence[17] using traditional characterization 
methods, presumably due to a lack in surface sensitivity.

During plasma treatment inert gases are used to eliminate 
some of the atomic species from the polymer’s surface, thereby 
producing reactive surface radicals. These radicals subsequently 
react within the surface structure forming chemical bonds, a 
process that has the potential to result in a cross-linked sur-
face.[18] Argon plasma treatment is active in sputtering several 
nanometers of material from the sample surface, thus making 
surface modifications on a nanometer scale, which may be 
beneficial to the deployment of PGS-M as a biomaterial.[19] The 
purpose of the introduction of argon plasma treatment within 
the study will be to treat the surface of PGS-M and analyze the 
resulting cross-linking density on cross-sections of the material 
as a further illustration of lateral and depth mapping of cross-
linking using SEHI.

Nanoindentation results displayed in Figure 1, showed a 
relationship between the increase in the degree of methacryla-
tion and a subsequent increase in hardness and stiffness of 
the polymer. Alongside previous work this result corroborates 
the proposition that increasing the percentage of the degree 
of methacrylate (DM) used in the production of PGS-M has a 
direct relationship to the density of cross-linking observed.[15,16] 
The results also provide evidence that increasing DM does 
directly increase the hardness of the material and has a strong 
influence on its elastic modulus.

Figure 2A presents the results of Raman spectroscopy 
applied to the PGS-M samples with three different DM. The 
expected position of the first peak of interest is at 2200 cm−1 
and relates to CC bonding.[20] The weaker bonding energies 
of double bonds and acrylate groups are a common starting 
point for radical reactions like polymerization or cross-linking 
processes. Therefore, the absence of this peak in the observed 
results is a strong indication of the successful process of cross-
linking and shows that polymerization is complete. The most 
prominent differences observed between PGS-M 30%, 50%, 
and 80% DM were in the spectral range around 2950 cm−1. 
PGS-M photocured polymers show an increase of CH vibra-
tions, specifically CH alkyl, which is associated with the 
cross-linking of PGS-M after photo-polymerization. The asym-
metric and symmetric stretching vibration of a methyl group 
usually occurs at about 2965 and 2880 cm−1, respectively. Peaks 
in the data within this range consist of C–H vibrations with the 
intensity ratios having previously been related to composition 
and cross-linking.[21] Formation of the polymer network after 
successful photocuring of PGS-M can therefore be confirmed 
by identifying an increase in alkyl groups. This is a product 
of the elimination of acrylate groups,[22] which are observed 
through a corresponding increase in C–H vibrations. Further-
more, due to the small height of PGS-M samples, the observed 
signal included components detected at <1500 cm−1 which were 
generated by the underlying borosilicate glass. This is not an 
uncommon occurrence and has previously been documented 
to produce pronounced peaks in the fingerprint region.[15]

Macromol. Rapid Commun. 2020, 41, 1900484
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The SE spectra captured from the surfaces of PGS-M for the 
three specimens with different cross-linking densities are dis-
played in Figure 2B. It can be observed that the dominant peak 
intensity values rise as the DM-driven cross-linking density 
increases. This effect is prominent within the energy window 
of 2.9–4.3 eV for PGS-M. It has been recently established that 
SE emission 3.3–4.7 eV are attributable to hydrogenated carbon 
bonding. Abrams et al.[23] have shown by the results of an elec-
tron beam contamination study that amorphous contamination 
(hydrogenated carbon) deposits on carbon-based samples can 
be identified through energy peaks within the 3.3–4.7 eV range.

The peaks associated with hydrogenated carbon correlate 
with the observed C–H vibrations peak given in the captured 
Raman spectrum as predicted by these results. Figure 2C,D 
shows the change in the Raman data at 2950 cm−1 and SE 
emission change at 3.6 eV respectively, for PGS-M samples. 
The changes in Raman intensity at 2950 cm−1 (C–H vibrations) 
closely correlates with the SE intensity changes at 3.6 eV. Both 
peaks are similarly affected by CH bonding and consequently 
the cross-linking process of PGS-M. The correlation also holds 
for the relative integrated intensity for both Raman and SE 
emissions representing the wider to C–H vibrations windows 

Macromol. Rapid Commun. 2020, 41, 1900484

Figure 1. A) Outlines the hardness (MPa) and B) reduced elastic modulus (MPa) obtained from nanoindentation for varying degrees of methacrylation 
of PGS-M (mean  ±  STD error bars). The degree of significance is indicated as ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05.
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Figure 2. A) Offset Raman spectra for 30%, 50%, and 80% low-molecular-weight PGS-M. B) Secondary electron spectra for 30%, 50%, and 80% low-
molecular-weight PGS-M. C) Raman peak values for 30%, 50%, and 80% low-molecular-weight PGS-M (n = 4) at 2950 cm−1 (mean  ±  STD error bars). 
D) Secondary emission values for 30%, 50%, and 80% low-molecular-weight PGS-M (n = 4) at 3.6 eV (mean  ±  STD error bars).
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(Raman: 3000–2790 cm−1 and SE energy region: 2.9–4.3 eV) as 
shown in Figure S4, Supporting Information. The consistency 
of SEHI results when compared to those of the Raman spec-
trum provides a strong argument that both the techniques pos-
sess the ability to detect cross-linking in PGS-M through CH 
bonding changes. However, SEHI displays the additional ben-
efits of a multiscale imaging capability and thus the ability to 
capture spatial variations.

The SE spectrum also provides a new insight into a previ-
ously unknown link between DM and the heterogeneous/
homogeneous structure of the PGS-M polymer. Figure 3A 
displays the standard deviation of the cross-linking variation 
between samples of PGS-M at 80% and 30% DM. The results 
reveal that PGS-M 30% DM displays a significantly greater 
variation than that of PGS-M at 80%. The evident increase in 
the variation in SE spectra values that represents cross-linking 
density across the polymer samples appears to correlate to a 
lower DM percentage. This is not unexpected as the chemical 
composition between samples will exhibit production vari-
ability. However, the variation detail observed in the SEHI data 
across the range of DM% provides an insight not available 
previously.

The ability of SEHI to isolate compositional chemical 
changes in both the micro- and nanoscale is expected to provide 
a novel capability for future work directed at analyzing cellular 
behavior within seeded biomaterials. As previously affirmed, 
other techniques that have been historically applied to quanti-
fying cross-linking lack the ability for spatial mapping of the 
variation of the cross-linking within a sample across these 
length scales. This makes SEHI an especially useful technique 
to characterize cross-linking variations within a multiscale 
approach that provides the ability to map nanoscale variations 
in particular, if component analysis is used (see Figures S2, S3, 
and S5, Supporting Information).

In order to isolate cross-linking density as the major con-
tributor to the peak intensity of SE emissions observed in 
the SEHI spectra, the potential contribution from PGS-M 
molecular weight was investigated. Comparison results of 
SEHI spectra of low- and high-molecular-weight forms of 30% 
PGS-M are displayed in Figure 3B. These results show that 
molecular weight has no direct impact on the relative inten-
sity of the previously dominant (3.6 eV) peak. However, a 
new dominant peak around 2.1 eV was observed within the 
spectrum for the high-molecular-weight form (Figure 3B). 
Whilst all the spectra have broadly the same profile, some 
notable differences can be observed that are the consequence 
of variations in molecular ordering. Conspicuously, around 
2.1 eV, the high-molecular-weight PGS-M sample is seen 
to display a clear peak whereas in the low-molecular-weight 
PGS-M sample a lesser peak is observable, resulting in only 
a slight change within the spectrum gradient around 2 eV. 
These differences can be attributed to the crystalline phases 
in the semi-crystalline PGS-M sample. This spectral associa-
tion with increased molecular weight has not been previously 
observed. The region of these peaks are consistent with pre-
viously published work,[24] which show the shift to higher or 
lower energies is related to differences in the molecular order 
of the material. In this instance, the addition of a peak around 
1.4–2.3 eV for high-molecular-weight PGS-M is considered a 

marker of a more crystalline state in high-molecular-weight 
when compared to that of low-molecular-weight PGS-M. 
The ability to observe and, ideally in a future capability, to 
quantify molecular weight ordering within polymer-derived 
biomaterials is considered to be an important development, 
particularly as molecular weight has been shown to have a 
strong influence on cellular growth.[25] Figure S2, Supporting 
Information, displays component analysis of captured SEHI 
image stacks that indicate 30% low-molecular-weight PGS-M 
possesses a measurably greater variation of lateral molecular 
weight composition than that observed for the 80% low-
molecular-weight PGS-M sample. These variations are consid-
ered to be the consequence of different regions of the PGS-M 
samples containing dissimilar ratios of high-molecular-weight 
and low-molecular-weight structures as a result of an expected 
inconsistency in polymer curing. The approach of SEHI to 
construct spectra from a stack of images, captured from dif-
ferent deflector voltages, enables the option to further vali-
date this hypothesis by examining each of the individual SEM 
images. The source SEM images shown in Figure 3B provide 
supporting evidence that a greater variation of structures is 
present on the high-molecular-weight PGS surface. It can 
therefore be seen that the elements of the SEHI approach 
are complementary and facilitate biomaterial characterization 
through multiple perspectives and has the ability to carry out 
depth analysis by using SEHI on cross-sections.

Figure 4A shows that there are variations in the PGS-M 
sample within the thickness of the sample. While there is only 
a slight intensity difference between surface and subsurface 
spectra in the region responding to cross-linking, the appear-
ance of a dominant low energy peak around 2.2 eV within 
the subsurface PGS-M SE spectrum is indicative of variations 
in molecular weight. Some surface fragmentation, perhaps 
hydrolysis-driven surface degradation, would affect the ratio of 
crystalline and amorphous phases. The subsurface of PGS-M is 
assumed to be protected from such environmental factors and 
consequently exhibits a more ordered and crystalline structure. 
The observation of this low energy peak is consistent with pre-
viously documented changes in SE electron emission profiles 
in response to molecular ordering dissimilarities.[24] This pro-
posed rationale for surface fragmentation is further supported 
by the slight reduction in cross-linking recorded in the intensity 
of the CH bonding SE peak.

Figure 4B presents the SE spectrum of PGS-M after under-
going 100 W argon plasma surface treatment for 3 min. An 
SEM image of argon plasma treated cross-section of PGS-M 
distinctly shows morphology differences between an upper 
surface “crust” and the polymer’s internal structure. Both 
surface and subsurface spectrums exhibit small molecular 
weight peaks at 2 and 1.6 eV respectively, slightly changing 
the gradient of each spectrum. However, in contrast to non-
treated PGS-M samples, the 2.9–4.3 eV peaks associated with 
C–H vibrations are dominant. The fragmentation of mole-
cular chains is expected to occur deeper than 50 µm.[26] This 
has resulted in the reduction of the molecular weight peak 
observable within the spectrum of subsurface argon plasma 
treated PGS-M in comparison to that of untreated subsurface 
PGS-M. The spectrum of the near surface of PGS-M collected 
post argon treatment indicates a clear increase in dominant 

Macromol. Rapid Commun. 2020, 41, 1900484
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peak intensity compared to that of the subsurface spectrum. 
This indicates an increase of cross-linking within the surface 
of argon plasma treated PGS-M. It has long been established 

that argon plasma has sufficient energy to produce radicals 
by breaking the CH bonds. The recombination of these 
radicals leads to cross-linking of the molecular chains at the 

Figure 3. A) Secondary electron spectra for 30% (n = 4) and 80% (n = 4) low-molecular-weight PGS-M isolating SD variation between 2–3.6 eV (mean  
±  STD error bars). B) Secondary electron spectra for 30% low- (n = 4) and high-molecular-weight (n = 4) (mean  ±  STD error bars). Inset SEM images 
show sub-micron variation visually between high- and low-molecular-weight PGS-M.
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polymer surface. SEHI spectra displayed in Figure 4B has for 
the first time highlighted that post plasma treatment, there is 
an increase of cross-linking on the surface when compared to 
subsurface layers of PGS-M.

This future potential application of SEHI as a characteriza-
tion tool for polymer-derived biomaterials is of interest as most 
polymer surfaces, especially hydrocarbon surfaces; are chemi-
cally inert, have low surface energies, and also exhibit low adhe-
sion properties, all of which are disadvantageous for many bio-
material practical applications.

In conclusion, this study provides evidence that SEHI ena-
bles the mapping of cross-linking distribution at a multiscale 
level within a polymer (PGS-M). The SEHI capability to pro-
vide both nano- and microscale levels of detail of the mor-
phology of biomaterials is considered to be a valuable tool, 
especially for polymer-based biomaterials. Here, cross-linking 
density and local variations in molecular order are major 
contributors to a biomaterial’s mechanical properties and 
accordingly the consequential biocompatibility of the mate-
rial. SEHI not only provides an alternative to contemporary 

analysis tools, but also provides researchers with a novel and 
enhanced nanostructure analysis capability for character-
izing cross-linking and its spatial variation in beam sensitive 
biomaterials.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Materials and Methods 

For the following methods, all chemical reagents were obtained from Sigma Aldrich, UK, unless otherwise stated. 

Synthesis of PGS Prepolymer 

The melt-polycondensation reaction of equimolar amounts of sebacic acid and glycerol was employed to produce the PGS 

prepolymer (Fisher Scientific, UK).  For 24 h in a nitrogen gas atmosphere at 120°C, the constituents were intermixed and 

stirred.  To extract water from the mixture a vacuum was applied.  The reaction was then sustained for 24, or 48 h as required. 

Synthesis of PGS-M Prepolymer 

PGS-M prepolymer was synthesised as described previously (1). PGS prepolymer free hydroxyl groups were methacrylated to 

manufacture a photocurable prepolymer. It was presumed that two of the three hydroxyl groups present in glycerol reacted 

with sebacic acid. This reaction leaving 3.9 mmol of hydroxyl groups per gram of PGS prepolymer available for methacrylation 

(2, 3). PGS prepolymer was methacrylated at two distinct molecular weights. PGS prepolymer at low and high molecular weight 

(referred to as Low Mw and High Mw PGS) was created by polycondensation reactions, respectively of 48 and 72 h duration. 

Gel permeation chromatography (GPC) (ViscotekGPCMaxVE 2001 with PLgel 5μm Mixed C column) determined the number 

average molecular weight (Mw) of the PGS prepolymer to be 2,230 ± 40, 2,770 ± 100, and 3,360 ± 50 g/mol and the weight 

average molecular weight (Mw) to be 5,420 ± 430, 8,960 ± 840, and 17,340 ± 760 g/mol for reaction lengths of 48, 60, and 72 h, 

respectively.  PGS prepolymer was synthesized by the polycondensation reaction of glycerol with sebacic acid at 120◦C.  
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Dichloromethane was used to dissolve the prepolymers (Fisher Scientific, UK) 1:4 (w/v) then methacrylic anhydride and an 

equimolar quantity of trimethylamine was added gradually. To achieve PGS-M polymers of 30%, 50% and 80% DM, methacrylic 

anhydride at three concentrations (0.3, 0.5, and 0.8 mol/mol of PGS prepolymer hydroxyl groups) was employed in the 

reaction.  4-methoxyphenol was also added to the PGS prepolymer at 1 mg/g. After the reaction was instigated at 0°C the 

temperature was raised over a 24h period to room temperature. 30 mM hydrochloric acid (Fisher scientific, UK) at 1:1 (v/v) was 

used to wash the solution which was then dried with calcium chloride (Fisher scientific, UK). Rotary evaporation was then used 

to remove the dichloromethane under vacuum.  

Synthesis of Photocured PGS-M 

PGS-M prepolymers were mixed at 1% (w/w) with the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide/2-

hydroxy-2-methylpropiophenone (50/50 blend) (further denoted as photoinitiator blend), cast in silicone moulds and exposed 

to UV light for 10 min (100 W, OmniCure Series 1000 curing lamp) to photocure. Photocured PGS-M samples were washed in 

methanol to remove residual photoinitiator blend and unreacted prepolymer and then dried (1). 

 

Figure S1 - Displays PGS-M chemical synthesis from monomers, to PGS pre-polymer and finally produced of PGS-M. 

 

PGS-M Cross-linking Characterisation    

1. SEM and Image Data Processing  
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Imaging 

Observation of the surface morphology of the PGS-M samples was performed using a Scanning Electron Microscope (FEI Nova 

Nano 450 SEM). The PGS-M samples were not subject to deposition of conductive coating, in contrast to usual polymers SEM 

analysis practice. To avoid surface charging and consequent damage to the sample a low accelerating voltage (1 KV) with typical 

vacuum pressure of 10−
5
 mbar at a working distance of 3mm was applied. An Everhart-Thornley Detector (ETD) for low 

magnification images and a Through Lens Detector (TLD) for high magnification images were used for the collection of SE 

images. 

SEHI Acquisition and Image Processing  

The FEI Nova Nano 450 SEM is provided with a through lens detector which includes a voltage controlled deflector electrode. 

The deflector electrode channels the signal into the SE detector.  The deflector electrode is set to a predetermined number of 

deflector voltages and an image is generated for each deflector voltage.  Spectra and hyperspectral images are acquired 

through post-processing of such image series. Stage bias has been performed to allow energy calibration of this process 

through experiments (4, 5). Fiji software was utilised to perform image processing (6). Histogram and spectral off-set 

normalisation (7) has been applied retrospectively to optimise all images for brightness and contrast, and to limit the effects of 

differing sample work functions. Once S curves have then been obtained they are differentiated to produce the SE curves which 

are reported in the main manuscript. Component analysis was then preformed to image stacks utilising non negative matrix 

factorization (nnmf) to isolate components of interest. 

PGS-M Cross-linking Validation 

Raman Spectroscopy  

Raman spectroscopy (Renishaw inVia micro-Raman) was employed to analyse the chemical structure of the PGS-M Low Mw 

30%, 50% and 80% placed on borosilicate glass. Using a 50x objective the laser power  was 20 mW with a 1 μm spot size. A 

Peltier-cooled multichannel CCD detector was used for data recording with a 2,400 lines/mm diffraction grating at a slit opening 

of 65 μm and a spectral resolution of in the order of 1 cm
−1

. 

Nanoindentation  

Nanoindentation measurement was performed on wax embedded PGS-M disks. The PGS-M was embedded at 42°C and 

sectioned smooth. A Bruker's Hysitron TI Premier nanoindenter, attached to a Berkovich tip was used for nanoindentation 

studies. A matrix of 12 indentations was applied, spaced 60 µm apart. The polymer sample was loaded for 5 s, held for 80 s, and 
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unloaded for 3 s. The hold period was added to allow any effects from creep in the polymer to be minimised. A peak force of 

200 µN was applied with a lift height of 20 nm. The Oliver Pharr method was utilised to analyse each of the unloading segments 

of the polymer indentation. This provided a reduced modulus (Er) value as well as sample hardness (H).  

Low Temperature Plasma Treatment  

PGS-M samples were exposed to low-pressure Argon gas in a Diener Electronic Zepto plasma cleaner at 40 kHz, 100 W, and 0.3 

mbar air for 3 minutes. 3 minutes of exposure was chosen as a maximum limit to exclude any effects of sample heating which 

have been shown to lead to surface modification of a different kind (8). SEHI spectra were then collected from the plasma 

treated surface and sub surface of cross-sectioned PGS-M 30%. An Argon plasma source was selected as a consequence of its 

main mechanism being physical sputtering by Argon ions, this process has previously been linked to causing highly crosslinked 

surfaces. As the molecular structure of PGS-M includes oxygen atoms this enhances the treatment, whereby carbon atoms in 

polymers are easily volatised when oxygen atoms are present.  

Additional Results 

Figure S2 displays component analysis of 80% and 30% Low Mw PGS-M. In this instance non-negative matrix factorization 

(nnmf) isolated two components between 0 – 5 eV, one being a peak around 3.2 eV, highlighted in the text as CH vibrations, 

and another with peaks observed around 1.4 – 2.3 eV. This is in the energy range that we attributed to molecular weight in the 

main manuscript. The graphs reveal some variation between 80% and 30% PGS in both components but this particularly 

pronounced for the molecular weight component (component 2) of the 30% PGS-M sample. Images displayed in figure S3 of the 

supporting information reflect the spatial variation in component 2 for both 80% and 30% PGS-M. These images provide further 

support for the view that the variation observed in component 2 in the 30% PGS-M sample is caused by spatial variations.  
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Figure S2 - Non negative matrix factorization (nnmf)  multivariate analysis of 30% (n=4) and 80% (n=4) PGS-M. Isolating two 
components: component 1 is  associated with CH Vibrations and component 2 is associated with Molecular Weight.  

 

Figure S3 Resulting images of component 2 of 30% and 80% PGS-M from non negative matrix factorization (nnmf) component 
analysis.  

The peaks associated with hydrogenated carbon correlate with the observed CH vibrations peak given in the captured Raman 

spectrum. Figure 4A/B shows the relative intensity change in the Raman data between 3000 - 2790 cm-1 and SE relative intensity 

emission change between 2.9 – 4.3 eV respectively for PGS-M samples.   The changes in Raman intensity around this region (CH 
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vibrations) closely correlates with the SE intensity changes identified. Both peaks are similarly affected by CH bonding and 

consequently the cross-linking process of PGS-M.   

 

Figure S4 A) Relative Intensity Raman peak values for 30%, 50% and 80% Low Mw PGS-M (n=4) at 2950 cm-1 (mean ± STD error 
bars).  B) Relative Intensity Secondary emission values for 30%, 50% and 80% Low Mw PGS-M (n=4) at 3.6 eV (mean ± STD error 

bars). 

Figure S5 displays component analysis of subsurface 30% Low Mw PGS-M post Argon plasma treatment. In this case non-

negative matrix factorization (nnmf) isolated two components between 0 – 4 eV, the first being a peak observed around 2.9 eV, 

highlighted in the manuscript text as CH vibrations, and and the second a peak observed around 1.8 eV. This occurs in the 

energy range that we have attributed the molecular weight component in the main manuscript. Images in the figure provide 

further support for our assertion that the two components have different visual distributions within the material.   
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Figure 5 - Non negative matrix factorization (nnmf)  including component images of the subsurface of 30% PGS-M post Argon 
plasma treatment. Isolating two components: component 1 is associated with CH Vibrations and component 2 is associated with 

Molecular Weight. 
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4.1 Prelude 

This chapter presents the article titled “Understanding Argon Plasma Sterilisation 

through Secondary Electron Hyperspectral Imaging”. The work presents a detailed 

investigation of biomaterial surface structures by means of SEHI. SEHI allows key 

insights into a samples secondary emission properties and in turn their chemical 

functional groups which results in high resolution chemical imaging. Such imaging 

provides key insights into the biocompatibility of biomaterials. Specifically, by applying 

SEHI the energy distribution of emitted secondary electrons (SEs) is used to map 

various sample properties. SEHI maps were developed to evaluate the application of 

Argon Plasma Sterilisation in combination with a novel gas permeable packaging 

method. Thus opened up a new route to achieving biomaterial terminal sterilisation.  
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Terminal sterilisation is the process of destroying all microorganisms within a final 

stage of a packaging process. Prior to being selected for an invasive surgical procedure 

it is standard practice for all non-biological materials to be sterilised. Prior to this study 

PGS-M was sterilised using a high temperature autoclave procedure. This process 

limits the advantages of PGS-M over PGS as the high temperatures required to sterilise 

the material prevents heat sensitive biomolecules being included during the production 

of PGS-M. Aside from autoclaving a range of sterilisation techniques, such as gamma 

(γ) radiation, are deployed in the medical device industry but their suitability for being 

applied to polymeric biomaterials have at this time has not yet been established. A 

widely employed and effective non-thermal option for tissue sterilisation has been 

Gamma radiation. However, gamma radiation has been shown to cause polymer chain-

scission and an alternative non-thermal sterilisation is required to suit the 

requirements of poly-derived biomaterials.    

4.1.1 Thesis Question 1 Can SEHI deliver insights into the mechanical properties of a 

biomaterial? 

Chapter 4 further progressed the work presented in chapter 3 by modifying the surface 

of PGS-M using Ar plasma treatment. SEHI data and nanoindentation measurements 

identified that Ar plasma treatment significantly increased the stiffness of PGS‐M 

samples due to crosslinking. SEHI produced maps of CO bonding that for the first time 

suggested the surface structures of PGS-M varied locally and can be changed 

depending on Ar treatment time. SES provided a toolset that delivered crosslinking 

density and functional group variation data at the nanoscale. 
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4.1.2 Thesis Question 2: Is the captured SE spectra able to identify specific functional 

groups that play a key role in biomaterials engineering TE and if so can SEHI map these 

functional groups at the nanoscale? 

Furthering chapter 3, the SEHI technique facilitated the capture of a number of key 

insights into the sample’s electron emission properties leading to the identification of 

their chemical functional groups (C-H, C-O, C-C, O-H). This consequently resulted in 

the creation of high resolution chemical images. The publication showed for the first 

time such chemical imaging was capable of being produced using SEHI and also 

provided evidence of its potential to reveal key insights into the biocompatibility of the 

biomaterials analysed.  

The publication focused on characterising the effects on the biomaterial samples of 

different conditions of Argon Plasma treatment when compared to the known industry 

standard Autoclave sterilisation technique. The experimental process followed during 

this work exploited a range of analysis techniques, including the pioneering use of SEHI. 

This was an exciting development for SEHI as it delivered the ability to isolate functional 

groups on the surface of biomaterials, in addition to its novel capacity to map them at 

the nanoscale. The publication presented in chapter 4 also analysed a range of 

polymers with different functional group distributions. These included; PGS-M, PCL, 

PCL-M, Nylon 6 and polypropylene. All the materials apart from polypropylene were 

imaged as a rough surface and SES/SEHI demonstrated its capability of imaging or 

mapping their surfaces chemically. Analysis of the polypropylene was the first time 

SES/SEHI mapping had been conducted on a fibre shaped material with differing 

surface angles. Despite this challenge, SES analysis was successfully preformed and 

reliable mapping data of Polypropylene’s surface functional groups distributions was 

collected. 
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Aside from identifying oxygen containing functional groups this study also furthered 

previously published work from the Rodenburg group that has shown that surface 

morphology effects are particularly meaningful in higher SE emissions (1,2,3). This 

publication aimed to reduce the possibility of surface morphology effects by focusing 

on emissions below 6 eV. Previous work has shown that these SE energy ranges are 

appropriate to functional group emissions and not surface morphology emissions 

effects (4,5). To clarify this point an experimental section was added to the supporting 

information (page 14/15). As the manuscript indicates we do observe a rougher surface 

after AC compared to that of Argon treatment. This relationship is similarly observed 

within the SE spectra taken at higher energies (Figure S12 of the SI). S13 allows a 

comparison to be drawn from SEHI functional group emission and > 6 eV topographical 

SEM images. 

4.1.3 Brief Summary 

In summary this work focuses on characterising the effects on the biomaterial samples 

of different conditions of Argon Plasma treatment comparable to the known industry 

standard of Autoclave sterilisation. In the process of doing so this work exploits a range 

of analysis techniques including the pioneering use of SEHI, which for the first time has 

been able to characterise various surface functional groups. This is an exciting 

development as SEHI delivers the ability to isolate functional groups on the surface of 

biomaterials, in addition to its novel capacity to map them at the nanoscale.    

4.2 Contributions 

NF performed the majority of the experimental work and data analysis and wrote the 

manuscript. JT synthesised PGS-M and conducted the cell culture/contact angle 

measurements. JS and AQ conducted the XPS analysis. NG, FC and CR contributed to 
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the experimental design, project supervision, and the writing of the manuscript. Please 

see overleaf for the paper. Advanced Science published by Wiley-VCH GmbH. This is an 

open access article under the terms of the Creative Commons Attribution License, 

which permits use, distribution and reproduction in any medium, provided the original 

For more information see (https://creativecommons.org/licenses/by/4.0/). 
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Understanding Surface Modifications Induced via Argon
Plasma Treatment through Secondary Electron
Hyperspectral Imaging

Nicholas Farr,* Jeerawan Thanarak, Jan Schäfer, Antje Quade, Frederik Claeyssens,
Nicola Green, and Cornelia Rodenburg

Understanding the effects that sterilization methods have on the surface of a
biomaterial is a prerequisite for clinical deployment. Sterilization causes
alterations in a material’s surface chemistry and surface structures that can
result in significant changes to its cellular response. Here we compare
surfaces resulting from the application of the industry standard autoclave
sterilisation to that of surfaces resulting from the use of low-pressure Argon
glow discharge within a novel gas permeable packaging method in order to
explore a potential new biomaterial sterilisation method. Material surfaces are
assessed by applying secondary electron hyperspectral imaging (SEHI). SEHI
is a novel low-voltage scanning electron microscopy based characterization
technique that, in addition to capturing topographical images, also provides
nanoscale resolution chemical maps by utilizing the energy distribution of
emitted secondary electrons. Here, SEHI maps are exploited to assess the
lateral distributions of diverse functional groups that are effected by the
sterilization treatments. This information combined with a range of
conventional surface analysis techniques and a cellular metabolic activity
assay reveals persuasive reasons as to why low-pressure argon glow
discharge should be considered for further optimization as a potential
terminal sterilization method for PGS-M, a functionalized form of
poly(glycerol sebacate) (PGS).
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Biomaterials are rapidly expanding their
contribution to today’s medical progress,
particularly in the role of a permanent or
transient alternative for damaged or dis-
eased tissues. It is essential that all bio-
materials are sterilized prior to implanta-
tion within the patient. Additionally, the
preservation of the mechanical proper-
ties and surface chemistry of a bioma-
terial poststerilization is essential for the
correct function of the material within
the body.[1] However, commonly deployed
sterilization techniques such as autoclav-
ing (AC), irradiation, or chemical treat-
ment have been shown to alter the sur-
face and/or the mechanical structure of
polymer-based biomaterials.[2] In compari-
son, plasma technology has demonstrated
a promising potential for surface treatment
of biomaterials.[3] A recent review suggests
that argon (Ar) plasma can be employed as a
viable alternative sterilization procedure for
biomaterials.[4] However, several challenges
have to be overcome in order to establish
plasma sterilization as a standardized ISO
method including the characterization of

bioactive species of plasma,[5] understanding of microbiological
interactions,[6] and achieving standardization of the plasma
sterilization method. In particular, ISO standardization requires
separate time consuming analyses of surface properties for each
specified sterilization condition. Here, Ar plasma treatment is
combined with the deployment of semi gas-permeable packag-
ing in order to form a model treatment of potential sterilization
method for future use with polymer-based biomaterials. More-
over, secondary electron hyperspectral imaging (SEHI) is applied
to reveal any localized changes in key functional groups (CH,
OH, and CO) on the surface of a biomaterial induced as a result
of Ar treatment.

The foundation of SEHI is the collection of secondary elec-
tron (SE) emission spectra by means of the scanning electron mi-
croscope (SEM). The SE spectra for some hydrocarbon materials
were found to be strongly influenced by excitation of intramolec-
ular vibrations.[7] Thus, SEHI can be successfully applied to the
characterization of polymers,[8] including novel polymeric bio-
materials, and has already revealed the changes in molecular
weight and CH vibrations that occur as a consequence of Ar
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Figure 1. A) Secondary electron spectra for AC, Ar 4, and Ar 10 treated PGS-M highlighting the regions identified as associated with functional group
emissions. B) SEHI images generated from the component analysis of Ar 10 and AC. Mapping C 1s, CH, OH, and CO bonding.

plasma treatment.[9] As SEHI is carried out in the SEM, local
variation in chemical changes and sample topography can be as-
sessed in one step.[10] To do this, SEHI constructs a series of im-
ages of the sample area, where each image is formed from a se-
lected SE energy band. While innovative synchronized structural
and chemical characterization of materials by SEHI has many
uses, this study focuses on revealing and mapping the spatial
variation of functional groups that are affected by Ar plasma treat-
ment through identifying specific energy bands for CH–, OH–,
and CO– groups. In order to identify suitable energy bands for
mapping such variations, a number of reference materials are
used to evaluate the effects that Ar plasma treatment exhibits on
local surface chemistry of sterilized biomaterials. This is impor-
tant as a biomaterial’s functional groups are closely coupled to its
ability to promote cell growth through the local surface variations
that result from the differing polymer side chains.[11,12,13] Detri-
mental surface hydrophobic characteristics of some biomateri-
als developed from synthetic polymers are manifested as a lack
of cell adhesion,[14] resulting in the implanted biomaterial pre-
senting poor tissue infiltration and integration outcomes. Thus a
range of material characterization techniques in addition to SEHI
are utilized here to further evaluate the effects of Ar plasma treat-
ment of the surface topology of a polymer-based biomaterial, in
this instance PGS-M.

PGS-M is a functionalized form of poly(glycerol sebacate)
(PGS)[15,16] The PGS-M polymer, formed by rendering PGS
(an elastomeric degradable and nontoxic tunable polymer[15])
photocurable through the process of methacryation, displays
characteristics that are perceived as advantageous for biomaterial
applications.[17,18] It has been observed that PGS-M is likely to
include small quantities of unreacted methacrylate side chains
after polymerization by UV, removal of the unreacted methacry-

late, and creating OH– groups on the surface has the potential
to aid cellular growth and further the materials biocompatibility.
Previous studies have indicated that plasma treatment can
remove unreacted methacrylate.[19] In this study, low-pressure
argon glow discharge has been applied for surface treatment
of PGS-M samples. Plasma treated samples exhibit different
functional group densities than those of nontreated PGS-M
control samples. Changes include CO bonding and an increase
of polar hydroxyl groups established through SEHI. These
changes explain the varying ability of PGS-M to support cellular
adhesion after AC or Ar plasma treatment as demonstrated by
contact angle measurements and cell metabolic activity assays.

The PGS-M materials were enclosed in a gas semipermeable
bag, which was exposed to low-pressure Ar glow discharge. Use
of the semipermeable bag ensures that any sterilization effect will
not be compromised between the Ar plasma treatment and cell
growth experiments. In order to assess the chemical changes tak-
ing place during this Ar plasma treatment, and compare this to
the effects of AC sterilization, SE spectra were collected and pre-
sented in Figure 1. This figure shows the SE spectra of AC PGS-
M, 10 min argon plasma treated PGS-M (Ar 10), and 4 min argon
plasma treated PGS-M (Ar 4) (nontreated PGS-M spectra can be
found in the Supporting Information). For all treatments a peak
is observable within the 1.4–2.3 eV range, however, differences
arise in intensities of the peaks found within this range. Previous
studies have isolated the energy range of 1.4–2.3 eV to the molec-
ular order of carbon (C 1) polymers[6] with a higher order yield
intensity in this energy region. Ar 10 clearly exhibits a greater
carbon peak (Mw) compared to that of Ar 4 and AC. This can
be understood as follows: argon plasma treatment causes a high
levels of free radicals to create crosslinking sites post-treatment,
which directly affect the molecular order of the material. Argon
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plasma treated surfaces also exhibit a greater SE emission in the
energy range that is associated with CH vibrations, with all sam-
ples expressing CH2 and CH3 peaks (Rationale in Figure S2 in the
Supporting Information). Furthermore, the intensity is increased
by prolonged Ar plasma exposure. The peak intensity in this en-
ergy region has been previously shown to have a direct relation-
ship with the crosslinking density of PGS-M.[9] Therefore, the
SE spectrum of Ar 10 suggests a highly crosslinked surface layer.
Reactions within the surface structure by argon plasma induced
radicals form crosslinks, which have the potential to enhance the
crosslinking density between the surface molecular chains.[20,21]

Further, differences in the SE spectra for argon plasma treated
and AC samples are observed within the region of 5–5.5 eV, re-
lated to C=O bonding (Figure S2, Supporting Information). The
spectrum shows that post-argon plasma treatment emissions in
the 5–5.5 eV range are greatly diminished. Argon plasma treat-
ment is understood to cleave away C–O–C bonds attached to
the methacrylate within PGS-M (Figure S6, Supporting Infor-
mation). By cleaving away this bond, removal of methacrylate
greatly decreases the amount of C=O bonds present within the
polymer. It is worth noting that the decrease in C=O bonding is
most noticeable in the Ar 10 rather than Ar 4 samples, which in-
dicates that the cleavage of methacrylate units is time and area
dependent. As more methacrylate is removed, surface crosslink-
ing recombination increases, resulting in an increase in surface
crosslinking of Ar 10. Once methacrylate units are removed, an
OH containing hydroxyl group remains, signified by Ar 10 and
Ar 4 showing emissions within 4.3–5 eV.

While the SE spectra provide an insight into the average chem-
ical changes at the surface, which could also be obtained by
other surface sensitive methods such as x-ray photoelectron spec-
troscopy (XPS) (Figures S3–S5, Supporting Information), using
the above specific energy ranges to form images in the SEM is
only possible with SEHI. In order to obtain images from the
corresponding spectral components, a non-negative matrix fac-
torization (nnmf) was used to isolate various components be-
tween 0 and 6 eV (Figure S7, Supporting Information). Fig-
ure 1B displays images generated of these components from the
Ar 10 and AC surfaces that can be matched to the peak allo-
cation described in the Supporting Information (SEHI images
and nnmf of nontreated PGS-M are displayed in Figure S13 in
the Supporting Information). When viewing SEHI images, the
brighter the primary color, the greater the SE emissions associ-
ated with that component. Consequently, the brighter the emis-
sion color, the greater the functional group prevalence,[9] where
all analyzed materials are used to determine the upper and low-
est emission values. It is expected that at the length scale of mi-
cro/nanometers, structures will include emission from multi-
ple functional groups. To establish the distribution of functional
groups, one should consider the brightness of specific emissions.
Figure 1B shows the distribution of C 1, C–H, O–H, and C=O
bonding within Ar 10 and AC samples.

It is notable that the topography of Ar 10 plasma treated sam-
ples differs greatly from AC samples, an observation consistent
with previous reports.[4] SEHI images show micrometer-sized
spherical features are clearly present within AC, with strong SE
emission signatures of C=O bonding. The C=O bonding related
emissions of these structures indicate that they contain excess
methacrylate groups. C=O bonding across the matrix of Ar 10 on

the whole is diminished seemingly as a result of the cleaving of
methacrylate post-Ar plasma treatment. SEHI images displayed
in Figure 1B do show spherical nanofeatures within Ar 10, which
exhibit emission of C=O bonding. It is proposed that remnants
of methacrylate, which have not yet been cleaved away from the
surface of PGS-M by Ar plasma treatment, are still traceable. Ad-
ditionally, the micrometer spherical features within AC samples
emitted a far weaker CH bonding signature than the Ar plasma
treated samples, indicating that less crosslinking occurs around
these larger regions. Figure 2 displays SEHI images that further
confirm the breakdown of the micrometer spherical features in
AC PGS-M with high SE emission in relation to CO bonding into
the nanodot structures present in the Ar 10 surface.

From SEHI images alone it is obvious from the reduction of
area with strong SE emission in the CO– bonding related en-
ergy range that excess methacrylate has been removed from the
sample as a consequence of the Ar plasma treatment. Further-
more, the increase in OH groups and CH related crosslinking
has clearly become more abundant across the surface matrix
post-Ar plasma treatment. As previously stated, the removal of
unreacted methacrylate together with the introduction of sur-
face OH groups is recognized to aid cell growth through the
enhanced cellular response expected in materials that exhibit
greater crosslinking, and it is expected that cells would adhere
and proliferate better on Ar plasma treated surfaces.

To test the expectations based on SEHI functional group map-
ping and for the purpose of using argon plasma as a terminal
sterilant, it is important to understand how the SEHI results link
to those obtained through commonly practiced characterization
methodologies. This is achieved by investigating how the argon
plasma treatment has affected the mechanical properties of PGS-
M. Figure 3A shows the results of nanoindentation. As forecasted
by the SEHI analysis above, Ar 10 displayed an increase in hard-
ness compared to Ar 4 or AC samples. The trend in the nanoin-
dentation data substantiates the SEHI map of CH vibrations and
opens up the potential of SEHI as a nondestructive alternative to
time consuming nanoindentation measurements. Furthermore,
SEHI has the advantage of allowing for crosslinking information
to be obtained at a scale smaller than that available with nanoin-
dentation, using CH-bonding maps.

While CH-bonding maps offer a potential substitute for
nanomechanical testing, we speculate that OH-bonding maps
could substitute for contact angle measurements since cleav-
age of excess methacrylate units from PGS-M allows the forma-
tion of hydroxyl groups, leading to an increased hydrophilicity.
SEHI bonding maps allow for spatially detailed information un-
like that from a contact angle, which just gives bulk samples data.
XPS data (Figure S3, Supporting Information) and SE spectra
(Figure 1A) both show the average content of OH– groups in-
crease as a result of Ar treatment. What SEHI offers is a greater
spatial understanding of how the micrometer–nanoscale struc-
tures emit high traces of OH– groups in the AC samples. SEHI
images in Figure S9 in the Supporting Information show that
the Ar plasma treated PGS-M displayed a greater signature of
OH-groups around nanoscale structures, which are polar and
therefore increase hydrophilicity.[22] Indeed, contact angle results
(Figure 3C) showed that argon plasma treatment increased the
hydrophilicity, which is consistent with previous studies that
demonstrated that plasma has the capacity to change the surface
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Figure 2. SEHI images generated from the component analysis of AC, Ar 4, and Ar 10 mapping CO bonding. Red insets highlight the reduction of
micrometer–nanoscale features high in CO bonding.

Figure 3. A) The hardness (MPa) obtained from nanoindentation for varying degrees of AC, Ar 4, and Ar 10 treated PGS-M (mean± STD error bars). B)
The cell metabolic rate increase (Resazurin assay) of cells cultured on argon treated PGS-M with relative increase given compared to that of AC scaffolds
C) The contact angle (theta) obtained for varying degrees of AC, Ar 4, and Ar 10 treated PGS-M (mean± STD error bars).

chemistry, generating increased hydrophilicity and resulting in
enhanced cell adhesion.[23] However, it is noted that there can be
contributions from topography changes, which can effect contact
angle measurements as surface alterations are visible. Previous
research has also shown that an increase in OH containing func-
tionalities is proportional to improved cellular growth.[24] Based
on this and SEHI results, one expects improved cellular growth
even though the sample materials were not directly exposed to
the plasma but were enclosed within a gas-permeable bag ensur-
ing that the surfaces remain sterile after plasma treatment until
future use.

Here, we assess the sample materials potential to support cel-
lular growth using a cellular metabolic activity assay (Resazurin
assay). Figure 3B displays metabolic activity of cells growing on
the argon plasma treated PGS-M samples and also the AC PGS-
M samples. The results show greater cellular metabolic activity
on the argon plasma treated sample surfaces, indicative of an in-
crease in cell adherence and proliferation above that of the AC
samples. Although a large disparity in cellular metabolic activ-
ity was observed between the argon plasma treated samples, it
is considered that this was due to variation in plasma conditions
within the actual plasma chamber at different sample positions
due to the Ar inlet being located at the rear of the plasma cham-
ber. These disparities emphasize the importance of minimizing
variations in the plasma conditions, a more consistent plasma
environment may be achievable using more advanced plasma
sources.

The observed data confirms that argon plasma treatment
shows a positive relationship to cellular growth. However, SEHI

data and nanoindentation also identified that Ar plasma treat-
ment significantly increased the stiffness of PGS-M samples due
to crosslinking. SEHI maps of CO bonding suggest that surface
structures vary locally and can be changed from ≈500 nm size
(4 min Ar) to ≈50 nm size (10 min Ar) depending on Ar treatment
time. Therefore, future work is recommended to optimize the Ar
plasma intensity and duration in order to produce a sterilized bio-
material while controlling the local variation of mechanical prop-
erties to surface patterns that promote cellular growth. Further to
this work, a large scale sterilization study is required to determine
the efficacy of the model argon plasma treatments with regards
to sterilization at various conditions with a view to providing ev-
idence of its capacity to achieve the recommended sterility as-
surance levels (SALs) to be termed a sterilization method under
ISO requirements[25,26] SEHI offers an efficient way to achieve
this due to its ability to map functional groups with the required
image resolution together with an ability to map at multilength
scales. This ability is vital to attaining a comprehensive under-
standing of cell behavior on Ar plasma treated surfaces. This fu-
ture work, in combination with the use of gas semipermeable
bags as demonstrated in this study, would pave the way for the
wider deployment of argon plasma as a terminal biomaterial ster-
ilization process.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Materials and Methods 

For the following methods, all chemical reagents were obtained from Sigma Aldrich, UK, unless otherwise stated. 

Synthesis of polyglycerol (sebacate)-methacrylate (PGS-M) 

The low molecular weight PGS-M polymer was fabricated following the protocol from Pashneh-Tala et al [1]. In brief, the 

PGS prepolymer was synthesised by mixing 1:1 (mol/mol) glycerol and sebacic acid, using a hot plate at 120°C, 300 rpm for 

48 hours. Nitrogen gas was applied in the first 24 hours, then a vacuum was applied to the system for another 24 hours to 

remove the water from condensation. To methacrylate the PGS prepolymer, 1:4 (w/v) dichloromethane (DCM) was used to 

dissolve the prepolymer. Subsequently, the system was changed to 0°C in dark condition at 300 rpm. 1:1 (mol/mol of PGS 

hydroxyl groups) of Triethylamine (TEA) and 1 mg/g PGS hydroxyl group of 4-Methoxyphenol (MeHQ) were added into the 

system. Methacrylate anhydride (MAA) was used to control the percentage of methacrylation, in this case, 0.5 mol of MAA 

was added per mol PGS hydroxyl groups. After 24 hours of methacrylation, 30mM hydrochloric acid was used to wash the 

PGS-M polymer. The water from reaction was then removed by using CaCl2. Lastly, DCM was removed by rotary 

evaporation. 



 

 

To synthesis PGS-M scaffolds, residual DCM was taken out from PGS-M polymer using vacuum. 70% PGS-M in DCM was 

blended with 1:1 (w/w) toluene, 10% Hypermer
TM

 B246 and 25% diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide/ 2-

hydroxy 2-methylpropiophenone and blended (photoinitiator) at 350 rpm. After 5 minutes of blending, 4 ml dH2O was 

added dropwise to the emulsion. The emulsion was then photocured for 5 minutes each side and washed with methanol 

for 4 days and dH2O for 4 days.  

 

Figure S1 -  PGS-M chemical synthesis from monomers, to PGS pre-polymer and finally produced of PGS-M. 

 

Low Temperature Plasma Sterilisation Treatment  

PGS-M samples were prepared by exposing them to low-pressure argon glow discharge in a Diener Electronic Zepto plasma 

cleaner at 40 kHz, 100 W, and 0.3 mbar air for 4 minutes and 10 minutes in Tyrex gas semi-permeable packaging. 10 

minutes of exposure was chosen as a maximum limit to exclude any effects of sample heating which have been shown to 

lead to additional surface modifications [2].  

Autoclave sterilisation 

To sterilise PGS-M samples by steam sterilisation an autoclave method was performed. This required the samples to be 

immersed in dH2O within a hot-steam environment at approximately 121°C for 20 minutes. The autoclaved PGS-M 

samples were then stored in the sterile dH2O. 

PGS-M Characterisation    



 

 

1. SEM and Image Data Processing  

Imaging 

Observation of the surface morphology of the PGS-M samples was performed using a Scanning Electron Microscope (FEI 

Nova Nano 450 SEM). The PGS-M samples were not subject to deposition of conductive coating, in contrast to usual 

polymers SEM analysis practice. To avoid surface charging and consequent damage to the sample a low accelerating 

voltage (1 KV) with typical vacuum pressure of 10
−5

 mbar at a working distance of 3mm was applied. An Everhart-Thornley 

Detector (ETD) for low magnification images and a Through Lens Detector (TLD) for high magnification images were used 

for the collection of SE images. 

SEHI Acquisition and Image Processing  

The FEI Nova Nano 450 SEM is provided with a through lens detector which includes a voltage controlled deflector 

electrode. The deflector electrode channels the signal into the SE detector.  The deflector electrode is set to a 

predetermined number of deflector voltages and an image is generated for each deflector voltage.  Spectra and 

hyperspectral images are acquired through post-processing of such image series. A short dwell time of 100 ns and the 

inclusion of 16 frame integrations is applied to reduce beam exposure and sample damage. Stage bias has been performed 

to allow energy calibration of this process through experiments [3, 4]. Fiji software was utilised to perform image 

processing [5]. Histogram and spectral off-set normalisation [6] has been applied retrospectively to optimise all images for 

brightness and contrast, and to limit the effects of differing sample work functions. Once S curves have then been obtained 

they are differentiated to produce the SE curves which are reported in the main manuscript. Component analysis was then 

preformed to image stacks utilising non negative matrix factorization (nnmf) to isolate components of interest. 

Raman Spectroscopy  

Raman spectroscopy (Renishaw inVia micro-Raman) was employed to analyse the chemical structure of the PGS-M placed 

on borosilicate glass. Using a 50x objective the laser power was 20 mW with a 1 μm spot size. A Peltier-cooled 

multichannel CCD detector was used for data recording with a 2,400 lines/mm diffraction grating at a slit opening of 65 μm 

and a spectral resolution of in the order of 1 cm
−1

. 

Nanoindentation  

Nanoindentation measurement was performed on wax embedded PGS-M disks. The PGS-M was embedded at 42°C and 

sectioned smooth. A Bruker's Hysitron TI Premier nanoindenter, attached to a Berkovich tip was used for nanoindentation 

of PGS-M. A matrix of 12 indentations was applied, spaced 60 µm apart. The polymer sample was loaded for 5 s, held for 



 

 

80 s, and unloaded for 3 s. The hold period was added to allow any effects from creep in the polymer to be minimised. A 

peak force of 200 µN was applied with a lift height of 20 nm. The Oliver Pharr method was utilised to analyse each of the 

unloading segments of the polymer indentation. This provided a reduced modulus (Er) value as well as sample hardness 

(H).  

Water contact angle 

Before measuring water contact angle, PGS-M samples were air dried inside a class II biological cabinet. The wettability of a 

surface of the samples was measured by dropping 5 µl of water onto the dried surface. A blunt cannule was pointed 

vertically to the model and placed above the surface of the samples for approximately 1-2 mm before injecting the water 

droplet. The needle and the water droplet were monitored by the build-in camera. The horizontal line was specified at the 

upper surface of the sample. Once the water droplet was injected, the angle data and the image of the droplet were 

obtained within 30 seconds.  

Cell Culture  

Human dermal fibroblasts were isolated from donor skin obtained with informed consent and ethical approval 

(15/YH/0177). Fibroblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) with 10% (v/v) Fetal Calf Serum 

(FCS), 2x10
-3

 M glutamine, 10% (v/v) Penicillin-Streptomycin and 0.625 µg/ml amphotericin B. 1x10
5
. Cells were then 

seeded in a 12 well-plate and allowed to attach on the samples overnight before moving to a fresh 12 well-plate. The cells 

were then grown for one week at 37°C, 5% CO2 in an incubator. A control was also prepared by seeding the cells onto 

tissue culture plastic surface. After one week of experiment, the samples were stained with resazurin assay to quantify the 

cell metabolic rate. 

Metabolic activity assay 

The reduction of resazurin to its fluorescent product resorufin was used to measure the metabolic activity of the cells on 

the scaffolds. Resazurin sodium salt solution (10 mg ml
-1

 in PBS) was diluted 1:50 ratio in fresh culture media. The cell 

seeded samples were then immersed in 2 ml of this solution for 4 hours in an incubator. The plate was placed on a rocker 

throughout the incubation time. Aliquots of the solution were then removed and fluorescent absorbance was measured 

using the Biotek FLx 800 fluorescence plate reader (ex 530 nm, em 590 nm). 

Statistical Analysis 

SE spectra for all materials were processed through an in-house MATLAB script to organise and process the spectrum 

image stack in to the spectra given in Figure 1 and SI 2. Each materials SE spectra was formed by calculating a mean and 



 

 

standard deviation of n=4 independent SE spectra measurements. An in-house Non-Negative Matrix Factorization (NNMF) 

method was applied to determine the spectrum distribution of the SE components within each material. NNMF retains the 

spatial information of extracted components that corresponds to the structural differences in the components. NNMF 

achieves this by allowing only positive correlated combinations which enables an intuitive representation of the data. 

NNMF spectra output is then presented graphically with no further statistical analysis.   

Hardness measurements presented are set from the raw MPa hardness values provided by the Bruker's Hysitron TI Premier 

nanoindenter. To present these results in a graph, as shown in Figure 3, a mean and standard deviation was calculated 

from the n=12 raw indent measurements (captured for each material). For the cell metabolic assay, fluorescent 

absorbance was measured using the Biotek FLx 800 fluorescence plate reader. A mean and standard deviation of these 

values was then calculated and presented in figure 3. Contact angle (Theta) raw values was obtained and captured by the 

built-in camera. From the raw values captured a mean and standard division was calculated and presented in figure 3 for 

the three materials (n=3).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Additional Results 

Analysis of Reference Samples 

 

Figure S 2 -  Secondary electron spectra for Nylon 6, Polycaprolactone, Polypropylene and Air Plasma treated 
Polypropylene. 

Figure S2 displays the SE spectrums of Polypropylene (PP), Air Plasma treated PP, Nylon 6 and Polycaprolactone (PCL). 

Previous studies have isolated the energy range of 1.4 – 2.3 eV to the molecular order of the materials [7], for polymers, 

isolating the molecular weight of the material, thought to be associated with C-C backbone bonding [8]. For all reference 

materials (PP, PCL and Nylon 6) a peak is observable within the 1.4 – 2.3 eV range. Preceding studies have also 

characterised multiple peaks in this energy range of 2.9 - 4.3 eV as emissions attributed to CH vibrations [9]. In this instance 

two peaks occur within the data set. Firstly, a peak around 2.3 eV which is visible in all reference sample spectra, and 

secondly a peak around 3.2 eV which is expressed in all but Nylon 6. It is therefore considered that due the chemical 

structure of these materials the 2.3 eV peak is related to CH2 bonding whereas the 3.2 eV peak is related to CH3 bonding. 

This hypothesis explains why the 3.2 eV peak is absent in Nylon as this material does not possess the CH3 functional group.     

Previously captured SE spectra of HOPG have shown that emission peaks around 4.5 – 5 eV are observed within aged HOPG 

[9]. It is now proposed that this is at least partially a consequence of oxidation on the material surface resulting in –OH 

hydroxyl groups forming. This process of oxidation to change the surface structure of a PP material was used in this study. 

The PP was air plasma treated to allow hydroxyl groups to form on the surface of the sample. During the air plasma 



 

 

oxidation process polar groups such as carboxylic acids, ketones and ester groups will also develop at the polymer surface 

[10].  Figure S2 displays the SE spectra of air plasma treated PP and non-treated PP. It is notable that the molecular weight 

peak of air plasma treated PP is greatly reduced. This is attributed to surface melting occurring due to the slight surface 

heating associated with the action of the chemical etching breaking crosslinks, this may possibly also explain the reduction 

in CH vibrations observed. The air plasma treatment of PP is shown to have caused an increase in SE emissions within two 

peaks around 5 eV and 6 eV when compared to non-treated PP. The previously described 5 eV peaks in aged HOPG leads to 

an assumption that observations in this energy range are associated with an increase in OH groups on the surface of PP 

post aging oxidation. An additional peak of interest occurs around 6 eV, this peak is proposed to be the result of CO 

bonding ensuing from carboxylic acid groups that were formed post treatment.  

To provide supporting evidence for this proposal, Nylon 6 and PCL-M were used as reference materials. Nylon 6 contains 

an amide CO, but does not possess a hydroxyl group. This is confirmed in its observed SE spectrum and further contributes 

to the proposal by showing emission peaks around 5 – 6 eV. However, there are minimal emission peaks present around 

4.5 - 5 eV. PCL-M has emission peaks present at both 4.3-5 eV that are associated with OH and also at 5 – 6 eV which are 

considered to be associated with C=O (see figure 1D). This result is expected as PCL-M contains both of these functional 

groups.  

X-ray photoelectron spectrometer (XPS) measurements of the samples were taken and applied to corroborate the SE 

spectra results. XPS is an effective technique for the identification of chemical composition and oxidation state. Subtle 

changes in peak positions and shape can yield information on changes in surface chemistry. Figure S3 shows all samples 

contained carbon, oxygen and nitrogen elements.  The results indicated that all the samples surfaces showed evidence of 

impurities such as: (N), Si, Na, Ca, Cl and S. The samples also followed the same trends identified by SEHI in relation to O 

composition within their structures.  Post plasma treatment the PP-surface showed a higher concentration of O in 

comparison to the original PP non-treated surface.  The PP O/C ratio on treated sample surfaces was observed to increase 

after application of plasma treatment in air, a result that further points to plasma treatment establishing oxygen rich 

functional groups. 



 

 

 

Figure S 3 - X ray photoelectron spectrometer (XPS) measurements of Nylon 6, PCL-M , Polypropylene and Air Plasma 
treated Polypropylene. 

Survey scans of the non-treated and plasma treated polypropylene are shown in Figure S4. This figure displays that 

contaminates, such as: Na, N, Cl and Si were detectable, particularly after plasma treatment. Small peaks are noticeable 

within the accompanying SE spectra but further analysis is required before these can be reliably detected and 

characterised. The source of this contamination is expected to be the consequence of the multi sample use of the plasma 

chamber. Thus for sterilisation applications a dedicated plasma treatment chamber should be used.   

Figure S5 depicts that plasma treated PP exhibiting a shape change of its XPS peak compared to that of untreated PP. The 

observable shoulders on the high bonding energy side of treated PP suggests that more O containing (and COOH/COOR @ 

289.2 eV) functional groups were introduced by the plasma treatment of PP.   

 



 

 

 

Figure S 4 - X ray photoelectron spectrometer (XPS) Survey scans of the non-treated and plasma treated polypropylene 

 

Figure S 5 - X ray photoelectron spectrometer (XPS) peak fits of the non-treated and plasma treated polypropylene 

 

 

 

 

 

 



 

 

 

Further analysis of Argon Treated PGS-M 

To support the premise that Argon plasma cleaves methacrylate from the surface of treated PGS-M, Raman spectra were 

captured from the samples (S6). Figure S6a shows the Raman fingerprint region in the range of 500 – 2000 cm
-1

.  A notable 

difference between Argon plasma treated and AC samples is observed within a peak at 1045 cm-
1
 , which is associated with 

C-O-C bonding in PLA [11].  SE analysis correlates with the observed CH vibrations (2750 – 3200 cm
-1

) peak present in the 

Raman spectra as predicted by these results. The changes in Raman intensity at 2950 cm
-1

 (CH vibrations) closely correlates 

with the SE intensity changes within the 2.9 – 4.3 eV range. Both peaks are similarly affected by CH bonding and 

consequently the cross-linking process of PGS-M. The consistency of both SE and Raman spectra provides a robust 

argument that both techniques can detect cross-linking in PGS-M through CH bonding changes. However, SE displays the 

additional benefits of a multiscale imaging capability and thus the ability to capture spatial variations. 

 

Figure S 6 - A) Off set full Raman spectrums for AC, AR 4 and Ar 10  treated PGS-M. B) Raman fingerprint region 
spectrums for AC, AR 4 and Ar 10  treated PGS-M. 

From the combined results of Raman and SE analysis there is a strong argument that unreacted methacrylate has been 

removed by Argon plasma treatment. A slight reduction of C=O was identified by Raman (700 cm
-1

). However, as the 

escape depth of Raman is greater it is likely Raman is giving reference to the aggregate sample whereas SEHI is closely 

focused at the surface of PGS-M with an escape depth of 10 nm.  

In order to obtain images from the corresponding spectral components a non-negative matrix factorisation (nnmf) was 

used to isolate various components between 0 – 6 eV. Figure 1B displays images generated these components from the Ar 

10 and AC surfaces that can be matched to the peak allocation described above. Of specific interest, one component 



 

 

consisted of a peak ~3 eV highlighted that was previously identified as CH vibrations. Additionally, a component at 4.5 eV 

associated with OH is observable, together with a peak evident around 5.6 eV related to C=O bonding.  Here SEHI 

demonstrates that it is possible to map functional groups on the surface of PGS-M using the components generated from 

nnmf. 

 

Figures S 7 - Non negative matrix factorisation (nnmf)  multivariate analysis of AC, Ar 4 and Ar 10 treated PGS-M. 
Isolating four components. 



 

 

 

Figure S 8 - Resulting SEHI images of AC, Ar 4 and Ar 10 treated PGS-M. Isolating functional group components from non 
negative matrix factorisation (nnmf) component analysis. 

 

Figure S 9 - Resulting SEHI images of AC, Ar 4 and Ar 10 treated PGS-M. Isolating one component (OH) from non-negative 
matrix factorisation (nnmf) component analysis. 

 



 

 

Analysis of Autoclaved PGS-M vs Non Sterile (Non treated) PGS-M 

This publication focuses on PGS-M as a biomaterial source, therefore, there are no circumstances that can be conceived 

where it could possibly be implanted without first being subject to sterilisation. However, SE emission data was collected 

on non-treated non-sterile PGS-M as a comparison study with autoclaved PGS-M and is presented in Figure S10. Previous 

group publications (1) have discussed the development of PGS-M and the practicalities of the inclusion of methacrylate to 

render the polymer photo-curable. Producing this photocurable form of PGS gives the material a host of production 

benefits including the speed and simplicity of the singles step photocuring process and the potential ability to attach 

bioactive molecules on the remnant acrylate groups without the fear of denaturing as a result of heat polymerisation, 

However, as a non-heat sterilisation method was yet to be evaluated this previous work included autoclaving as a terminal 

sterilant. 

As it is known PGS/PGS-M can be cross-linked with high temperatures (120°c for 48 hours) (12). The process of autoclaving 

is performed with the material being hydrated. The consequence of hydrating PGS-M was that the polymer would not 

crosslink in response to heat, as high pressures in heat polymerisation are required to remove water from the material. If 

the polymer is still hydrated this process cannot be completed. Therefore, the only crosslinking within the material would 

be in response to the UV photocuring step. Subsequent to the established process step of including dH2O to stop the 

mechanism of autoclaving causing cross-linking, SE spectra was collected before and after autoclaving. It was established 

that this process resulted in autoclaving inducing no extra crosslinking. Instead a slight decrease of CH vibrations (2.9 – 4.3 

eV) previously linked to crosslinking density of the material (8) was observed. This was also coupled with a very slight 

overall emission decrease in molecular order (1.4 – 2.3 eV) of the polymer.  

This decrease in cross-linking and molecular order associated emission was expected in response to hydrolysis degradation, 

both through the hydrolysis of anhydride, stopping further cross-linking, and the hydrolysis of the PGS-M backbone ethers 

(Figure S11). It is the design intent of PGS/PGS-M to degrade by ether hydrolysis within the body over time. This is common 

with thermally cured PGS which showed degradation in PBS, reducing in mass by 10% in 31 days (13). However, this 

process was advanced when high autoclave temperatures were used. Hydrolysing cross-linked PGS-M reduces CH 

vibrations as well as produce amorphous regions within the polymer surface. SE emission associated with OH/CO is 

increased as the formation of OH/CO containing functional side chains are formed through the ether hydrolysis reaction 

(Figure S11).  

Figure 2 in the main manuscript displays how functional group distribution influences local plasma etching behaviour thus 

leading to topography and surface chemistry changes. As mentioned in the manuscript this isn’t a novel finding for organic 

compounds as it is known plasma treatment of Polytetrafluoroethylene (PTFE) strips the fluorine molecules from the 



 

 

carbon backbone of the polymer.  Topographically, plasma treatment changes the surface morphology of PTFE with 

different morphologies resulting from different plasma gases used (14). The inset in S10 is a further indication of this 

process for PGS-M as it is clear non-treated PGS-M samples show micron-scale structures which appear to diminish after Ar 

plasma treatment (Figure 2). This is an expected effect of OH/CO containing sidechains from PGS-M being stripped away by 

Ar plasma changing the surface morphology and chemistry. 

To allow a comparison to be drawn using SEHI images analysis, nnmf component analysis was performed on both AC PGS-

M and non-treated PGS-M. The SE spectra components of both materials given from nnmf are shown in figure S12. Here 

we see components highlighted with peaks around 3.5 eV, 4.5 eV, and 5.5 eV. These peak positions fit into the ranges 

previously highlighted as CH, OH and CO functional groups emissions. Figure S13 allows the comparison of SEHI images 

produced from nnmf. SEHI images show that CH emission (given in red) has a slightly greater overall intensity within AC 

PGS-M than Non treated PGS-M. Whereas for CO and OH emissions, non-treated PGS-M has a greater emission than that 

of AC PGS-M.. These SEHI images corroborate the SE spectrums shown in S10. Figure S13 also includes an overlay of OH 

and CH SEHI maps for AC PGS-M. This overlay shows emission intensities from OH and CH differing across the materials 

surface. Future work should look to introduce colour mapping for SEHI images to allow multiple overlays without losing the 

high image resolution 

 

Figure S10 - Secondary electron spectra for PGS – M (non-sterile) and PGS-M after autoclave (AC) sterilisation. Inset 
shows an SEM image (HFW 15 um) of non-sterile PGS-M.  



 

 

 

 

Figure S11 – Hydrolysis reaction of PGS-M. 

 

 

Figure S12 - Non negative matrix factorisation (nnmf) multivariate analysis of non-treated and AC PGS-M. Isolating three 
components. 



 

 

 

Figure S13 - Resulting SEHI images of non-treated and AC PGS-M. Isolating three components from non negative matrix 
factorisation (nnmf) component analysis. SEM images showing topography emission (>6 eV) are also included. HFW for 

all images shown is 4 um. SEHI emission intensities for AC images differ slightly to that in the main manuscript. This is as 
a result of nnmf analysing just the two conditions (non treated and AC) than that of all treatment groups. 

Using Secondary Election Spectroscopy to assess structural changes through topographical changes 

Figure 1B shows SEHI images of PGS-M after Ar 10, Ar 4 and AC treatments. These images indicate that AC PGS-M surface 

has an irregular topography compared to that of Ar 10 and Ar 4. In the main text of this publication we focus on emissions 

below 6 eV which are appropriate to functional group emissions and not surface morphology related SE emissions (9)(16) . 

However, it is known that analysing higher level SE energy emission can provide information regarding the topography of 

the material (15). Figure S14 corroborates SEHI images in Figure 1B by indicating a stronger SE emission in higher energies 

regimes of AC PGS-M compared to that of Argon plasma treatment samples. Future work to better understand this 

emission range would be beneficial but it is apparent that surface roughness can exhibit higher SE emission yields in higher 

energies.  Figure S13 shows SEHI functional group component images accompanied with SEM images showing topography 

emissions greater than 6 eV. The previous section has discussed how functional group distribution influences local plasma 



 

 

etching behaviour and as a consequence leads to topography changes. In figure S13 we see that topographical images 

show a depth perception and greater surface edge resolution compared to those of SEHI images. A caveat on this form of 

analysis is that different materials are expected to show chemical and topographical information at different energies as 

this information is dependent on the emission angle of the material (16).  

 

Figure S14 – Higher energies secondary electron spectra for PGS – M after undergoing AC, Ar 4 and Ar 10 plasma 
treatment.   
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5.1 Prelude 

Chapter 5 presents the article titled “Identifying and mapping chemical bonding within 

Phenolic Resin using Secondary Electron Hyperspectral Imaging”. The work presents a 

detailed evaluation of phenolic resin surface using the SEHI technique which is based 

on the collection of secondary electron emission spectra in an SEM. This unique 

approach allows key insights into a samples SE emission properties and in turn their 

chemical bonding which results in high resolution chemical imaging. Such imaging 

provides key insights into the mechanical properties of phenolic resin.  
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Prior to this publication the author of this thesis co-authored the publication “S. Hamad, 

N. Farr, T. Fei, N.F. Shukor, J.S. Dean, S.A. Hayes, J.P. Foreman, C. Rodenburg: 

Optimizing size and distribution of voids in phenolic resins through the choice of 

catalyst types. Journal of Applied Polymer Science 136(47):48249. (See appendix 2)” This 

publication layed the groundwork for the development of the fast acting resin 

investigated within this chapter. In Hamad et al investigation of the bonding present 

within the newly developed phenolic resin was conducted by bulk chemical averaging 

methods and did not provide information of the chemical bonding variation existing 

within the material.  

Hamad et al identified that the mechanical properties of cured phenolic resins are 

affected by the incidence of microvoids. Producing resins that are void free is usually 

accomplished through the employment of long heated cure cycles (3 > 4 days). This long 

cure period incurs excessive energy consumption and time costs for industry. To 

address this issue an ability to modify the distribution and void size was developed 

based on a short cure cycle (4 hrs) enabled through a fast action acid catalyst to 

improve the balance between the resin’s mechanical properties and the curing time 

necessary. 

5.1.1 Thesis Question 1 Can SEHI deliver insights into the mechanical properties of a 

biomaterial? 

SEHI spectra captured in this chapter revealed local variations in crosslinking and 

molecular order across phenolic resin. This was the first time SES or SEHI was applied 

to analysis of thermoset, highly crosslinked polymer networks.  

Presented SEHI analysis and related SE spectra provided compelling evidence that a 

greater prevalence of CO bonding exists in close proximity (∼50 nm) to void sites than 
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the typical distribution observed within the matrix. This result can be explained to be 

the consequence of an increased incidence of ether bridges observed at such void sites. 

Based on the demonstrated capability, SEHI is considered to be an ideal analysis tool 

with the capacity to isolate local variations in chemical bonding which have a direct 

relation to the mechanical properties of phenolic resin. 

5.1.2 Thesis Question 2: Is the captured SE spectra able to identify specific functional 

groups that play a key role in biomaterials engineering TE and if so can SEHI map these 

functional groups at the nanoscale? 

Chapter 5 applies the findings from chapters 3 and 4 to a different materials system for 

further evaluation. SEHI images overlaid on standard SEM images showed for the first 

time the distribution of CO bonding within Phenolic resin. In this publication SEHI 

mapped CHx CO and OH functional groups providing a better understanding of the 

functional group distribution that exists around phenolic resin void sites. 

Selection of a suitable component analysis method is a key requirement to generate 

SES functional group SE components without user bias. Component Analysis is used to 

determine the spectrum distribution of components in the material. This chapter 

includes an evaluation of the application of Non-Negative Matrix Factorization (NNMF) 

being applied to generate spectral components. An example data set analysing phenolic 

resin was used to illustrate the selection of the component analysis methodology. In 

this instance a 5 component analysis was selected for review. In Fig SI 10, the spectrum 

plot of five (5) components is shown. Two methods are utilised to compare their 

performances in the component analysis process. Firstly, the Principal Component 

Analysis (PCA) that aims to reduce the dimensionality of the data (stack of 

hyperspectral SEHI images) in an interpretable (components) way. It achieves this by 



 
 

90 
 

preserving the information of the data within the components and clustering positive 

and negative correlated components together. PCA assumes that the components are 

a linear combination of features and therefore, concentrates these features within the 

first component of the data. The orthogonality assumption of PCA therefore implies that 

spectrum is only concentrated in the first component of the analysis. On the other hand, 

the NNMF method preserves the spatial information of extracted components that 

corresponds to the structural differences in the components, hence retaining the global 

structure of the material. It achieves this by allowing only additive (positive) correlated 

combinations this enables an intuitive representation of the data since each component 

forms a part of the data (see Fig SI 10). The above analysis shows that the NNMF 

performs better when dealing with SEHI image stacks due to its ability to efficiently 

extract features that are only positively correlated which ensures that both spatial and 

structural information are retained. Additionally, this non-negativity nature of NNMF 

improves result interpretation and precision. 

5.1.3 Brief Summary 

The publication presented in this chapter showed for the first time that characterising 

and gaining a better understanding of the effects of differing chemical bonding 

mechanisms together with mapping any lateral distributions on the mechanical 

properties of phenolic resin can be accomplished using SEHI. In the process of doing 

so this work exploits a range of analysis techniques which for the first time has been 

able to characterise various surface chemical bonding. This is an exciting development 

as SEHI delivers the ability to isolate chemical bonding on the surface of polymer, in 

addition to its novel capacity to map them at the nanoscale.    
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The distributions of methylene and ether bridges have been shown

to impact the mechanical properties of phenolic resin. This work

demonstrates the ability of the novel SEM based technique, sec-

ondary electron hyperspectral imaging (SEHI), to characterise and

map methylene and ether bridges within phenolic resin at the

nanoscale.

Phenolic resins are a group of the most versatile polymers ever
formulated. Although they were first produced around 1907
and were consequently one of the first polymers commercially
available, they have been in constant development and use
ever since and are widely used in various applications.1 A
recent review article highlighted the deployment prospects of
phenolic resin and evaluated where future research should
focus to further increase and improve the potential of phenolic
resins for future industrial applications.2 The article high-
lighted that improving phenolic resin’s heat resistance and
reducing brittleness are key enablers to future deployment
opportunities. Demands from the aerospace industry and
other industries with challenging environmental conditions
raise the requirement to improve the long-term high-tempera-
ture oxidation resistance of phenolic resin.3 Historical studies
have long establishing how novel synthesis interventions can
augment the material’s properties by altering the macromol-
ecular structure of phenolic resin.4,5

Research focused on increasing phenolic resin’s thermal
stability with the aim of producing ‘tougher’ forms of phenolic
resin has shown success by optimising the distribution of
voids in the resins.6 Alternative approaches to addressing
known ‘brittleness issues’ within phenolic resin,7,8 have also

shown success through the inclusion of substances such as,
rubber, glass fibres and thermoplastic resins.9–11

Further work towards delivering ‘tougher’ phenolic resins
has investigated altering the polymer network of the resin by
changing the bonding ratios of methylene and ether
bridges.12,13 This work has identified improvements to the
efficiency of the resin’s production process which also mitigate
environmental concerns of current practice. It has been
observed that the quantity of ether bridges forming within the
resin increases when the F : P (formaldehyde : phenol) ratio
increases and, depending on processing conditions, high
numbers of ether linkages14 reduce the strength of the cured
resin.15

Despite the improved functionality of such resin more
efficient and potentially greener ways of improving toughness
of phenolic resin have come from studies targeted at altering
the polymer network of phenolic resin by changing the
bonding ratios of methylene and ether bridges have also deli-
vered tougher materials.12,13 The proportion of ether bridges
rises with increases in the F : P (formaldehyde : phenol) ratio,
with an excessive amount of ether linkages14 reducing the
strength of the cured resin.15 It is important to note that pro-
cessing conditions are also influential on the final strength of
the cured resin.

Fast acting catalysts reduce the resin’s curing time and
impart “void like” structures.6 This is in contrast to phenolic
resins that are required to be produced free from voids which
typically require intensive curing processes using multiple
heating cycles.

Such processes carry the disadvantage of slower curing
cycles that create extra formaldehyde emissions. Future optimi-
sation of phenolic resin properties requires an understanding
of how these processes affect the material’s structure at the
nanoscale. The ability to map chemical bonding changes at
the nanoscale would enable polymer scientists to better con-
struct and optimise processes’ designed to alter the bonding
ratios of methylene and ether bridges observed in phenolic
resin.

†Electronic supplementary information (ESI) available. See DOI: 10.1039/
d0py01220c

aDepartment of Materials Science and Engineering, Sir Robert Hadfield Building,

Mappin Street, University of Sheffield, UK. E-mail: nfarr1@sheffield.ac.uk
bInsigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert

Hadfield Building, Mappin Street, Sheffield, UK
cDepartment of Materials, University of Oxford, Parks Road, Oxford, UK
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Secondary electron hyperspectral imaging (SEHI) is a novel
technique built on SE spectroscopy and has been used for char-
acterising the surface chemistry of innovative polymeric bioma-
terials.16 A scanning electron microscope’s (SEM) ability to
detect secondary electrons (SEs) emissions from a material
sample is the basis for SEHI. A series of images collected from
selected SE energy bands is constructed to form the SEHI
images stacks. This is in contrast to a standard SEM which
assembles a single image with SEs of all energies contributing
to it. SEHI delivers novel characterisation insights by creating a
wide-ranging SE spectral representation of the sample material.
A number of research studies have demonstrated SEHI’s effec-
tiveness including; molecular orientation of organic electronic
devices,17 semi-crystalline polymer mapping and natural
materials nanostructure variations18 but has not yet been
applied to the mapping of ether or methylene bridges.

This study focuses on analysing the chemical bonding
structure of a form of phenolic resin, PR382. PR382 has
recently been produced6 with the design aim of minimising
losses in desirable mechanical properties which occur as a
consequence of using typical current resin production pro-
cesses. This is achieved by substituting a new faster curing,
more cost effective and environmentally friendlier fast curing
cycle based production process. Analysis of phenolic resin
requires the ability to map the chemical bonding distribution
within the resin through the application of the SEHI tech-
nique. The emphasis of this study is mapping and showing
sensitivity to specific bonding mechanisms that are present
within the phenolic resin sample post synthetic intervention,
as an example of how the SEHI technique can provide an
enhanced understanding of micron – nano scale structures.
This work establishes that the voids created as the phenolic
resin cures in response to a slow acting acid catalyst, are a
focus for a high level of CO bonding attributable to ether
bridge formation around the voids sites.

Materials and methods
Materials

In this study, the resole commercial phenolic resin Cellobond
J2027X pre-polymer was used (supplied by Caleb Technical
Products Ltd, UK). This kind of resin is usually available as a
water-based controlled-viscosity resin, which can be cured
either with the application of heat only using long cure cycle
(3–4 days) or with the use of a strong acid catalyst, short cure
cycle (3 h) at low temperature (∼60 °C). It is suitable for the
fabrication of fibre composites by hand layup and resin trans-
fer molding. Catalyst (Cellobond Phencat 382), supplied by the
same company (Caleb Technical Products Ltd, UK), was used
in this study. Phencat 382 is a relatively slow action acid cata-
lyst (working life ∼4 h), which is activated at low temperature,
typically 60–80 °C. It is an acid-based catalyst consisting of,
C3–9-alkyl esters (75–90%) and phosphoric acid (10–25%) by
weight. A short cure cycle was selected where the resole pheno-
lic resin was initially mixed with slow action acid catalyst

(Phencat 382) then decanted into the PTFE mold to be placed
in an autoclave for polymerisation. The catalyst ratio was
5 wt% of the resin. Phenolic resin samples were fractured to
allow for analysis of the cross-section of the material.

Methods

Imaging. Phenolic resin samples were fractured and placed
on a carbon tab on an aluminium stub ready for SEM imaging.
Observation of the fracture surface morphology of the flexural
strength samples (PR382) was performed using a Scanning
Electron Microscope (FEI Nova Nano 450 SEM). The PR382
samples were not subject to deposition of conductive coating,
in contrast to usual polymers SEM analysis practice. To avoid
surface charging and consequent damage to the sample a low
accelerating voltage (1 kV) with typical vacuum pressure of
10−5 mbar at a working distance of 3 mm was applied. An
Everhart–Thornley Detector (ETD) for low magnification
images and a Through Lens Detector (TLD) for high magnifi-
cation images were used for the collection of SE images.

SEHI acquisition and image processing. The FEI Nova Nano
450 SEM is provided with a through lens detector which
includes a voltage controlled deflector electrode. The deflector
electrode channels the signal into the SE detector. The deflec-
tor electrode is set to a predetermined deflector voltages and
an image is generated for each deflector voltage (more detailed
information provided in ESI†). Spectra and hyperspectral
images are acquired through post-processing of such image
series. Stage bias experiments have been performed to allow
energy calibration of this process through experiments.17,19

Fiji software was utilised to perform image processing.20

Histogram and spectral off-set normalisation21 has been
applied retrospectively to optimise all images for brightness
and contrast, and to limit the effects of differing sample work
functions. The work function of a material is the minimum
energy required to remove an electron from the solid to
outside the solids surface within a vacuum. Once S-curves have
then been obtained they are differentiated to produce the SE
curves. Component analysis was then preformed to image
stacks utilising non negative matrix factorization (nnmf) to
isolate components of interest.

Theoretical grounds of secondary electron spectroscopy
(SES). A typical SE spectra is a plot of the number of electrons
detected within a specific energy range. Each chemical func-
tional group produces a set of characteristic peaks in the SE
spectra (SES).16 Based on knowledge of functional groups,
material properties can also be inferred from the measurement
of the kinetic energy and the number of the emitted SÈs in
some circumstances. SEHI can be summarised as a technique
that is responsive to surfaces and is capable of imaging beam
sensitive materials by resolving chemical, compositional and
structural properties at the nanoscale level – depending on the
energy range used for imaging. SEHI is proposed as an
effective microanalysis tool for nanostructured polymers with
the ability of mapping chemical functional groups of particu-
lar interest. More information on the theoretical grounds for
probe-sample analysis and SES are given in the ESI.†
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Results and discussion

To illustrate the chemical bonding variations within PR382, SE
spectra given in Fig. 1 represent spectra captured from three
different areas (1, 2 and 3) across the cross-sectioned material.
Each area’s SEM field of view is included to show the exact
region of analysis. Area 3 differs by virtue of its increased mag-
nification which allows analysis of a single void site of interest.

Previous studies have isolated the energy range of 1.4–2.3 eV
to the molecular order of polymers.22 An increase in peak
intensity in this range indicates an increased molecular order,
indicative of the material being more crystalline. Areas 1 & 2
show a higher intensity level when compared to area 3. Area 3
is therefore disordered, as we do not observe any sharp peaks
within 1.4–2.3 eV range. These observed differences are due to
areas 1 and 2 both encompassing a greater density of cured
cross-linked networks than that of area 3 which focuses on a
singular void site.

SE spectra analysis can provide for comparisons to be
drawn regarding crosslinking networks. The SE emission cap-
tured in this study for areas 1 and 2 exhibited a greater SE
emission in the energy range associated with CH vibrations
and –OH groups16,23,24 when compared to that of area 3. The

increase of CH2 and –OH formation in this polymer system
indicates the presence of methylene bridges. Results obtained
from the raw SE spectra display an increase in CH vibrations.
The data given in Fig. 2A, shows an increase in –OH groups
(when all areas are normalised to CH peak emission). These
two results provide evidence to support the conclusion that
areas 1 and 2 contain a greater density of methylene bridges
than area 3.

All three areas show emissions within the SE emission
region associated with C–O bonding. C–O bonding in area 3
displays the strongest emission ratios (when all areas are nor-
malised to their respective CH emissions peak) compared to
areas 1 and 2. As C–O bonding in phenolics is related to ether
bridges (see Fig. 2B), area 3 possesses a large density of ether
bridges compared to area 1 and 2. Fig. 2B shows the chemical
bond formation of the two common types of crosslinks
present within phenolic resin. Fig. 2B(1) depicts the various
example structures of methylene bridges formation which is
the most common form of crosslink with phenolic resin net-
works.15 Fig. 2B(2) depicts the formation of ether bridges
which are less commonly found within phenolic resin.

From the SE spectra results it can be assumed that this is
consistent with areas 1 & 2 having a greater matrix (areas away

Fig. 1 Secondary electron spectra with accompanying SEM images for PR382 area 1, 2 and 3 highlighting SE regions identified as associated with
functional group emissions. Area 1 & 2 HFW = 30 μm whereas area 3 HFW = 25 μm.
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from voids) concentration in the analysed field of view which
will consequently have more (CH2, –OH) linked methylene
bridges. Thus the SE spectra results show that areas 1 and 2
contain a higher density of methylene bridges than area 3 and
also display a greater molecular order SE peak than area 3
compared to area 3. Methylene bridges possess a shorter brid-
ging length when compared to that of ether bridges, which
has a greater number of atoms between its phenyl rings.
Therefore, phenolic resin with a greater ratio of methylene
bridges to ether bridges would present a more ordered struc-
ture by virtue of ether bridges having a higher number of
rotational degrees of freedom and being inherently flexible
(see Fig. 3). The difference in chain length could also explain
why there is a higher concentration of –OH detected as the
phenyl rings appear more densely packed.

Various techniques have already shown that phenolic resin
contains different ratios of methylene and ether bridges and
this study’s results above are not novel in that respect.
However, by building on SE emission ranges obtained from
the resulting SE spectra, it is now possible to use SEHI to map
ether and methylene bridge spatial distributions on different
length scales as demonstrated in Fig. 4 (and SI1†).

Fig. 4 shows SEHI images overlaid on standard SEM images
to show the distribution of CO bonding. While the standard
SEM image does not allow to determine the origin of the con-

Fig. 2 (A) A graph which shows the ratio of OH and CO functional
groups for area 1, 2 and 3 after all area spectra were normalised to their
CH emission peaks. (B) Displays the possible cross-linking mechanisms
(methylene and ether bridge formation) within phenolic resin.

Fig. 3 The rotational degrees of freedom observed in ether bridges.

Fig. 4 SEHI images generated from the component analysis of
PR382 mapping CO bonding (indicating ether bridge distributions). With
the stronger emission intensity showing greater CO bonding. SEHI
images are overlaid with grayscale standard SE images (integral over all
energy ranges) of PR382.
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trast associate with the voids, SEHI data enable component
analysis to be performed on image stacks utilising non-nega-
tive matrix factorization (nnmf) to isolate components of inter-
est (see ESI 1, 2 & 3†). The nnmf process gives a number of
components which are derived in relation to the SE emission
peaks of interest. Of particular importance to phenolic resin,
nnmf isolated a region around 5–5.5 eV which has previously
been shown to be a response to CO bonding.16,24 Therefore,
this technique provides SEHI with the ability to map where
ether bridges exist within the resin. SEHI images observes CO
bonding emission to be most prominent around the edges of
void sites. The mechanism of how ether bridges form around
these voids is a subject for debate. The authors in this instance
propose two potential mechanisms to be involved, but future
work is required to fully understand this reaction.

One mechanism is based on the curing reaction of the
resin itself: the structural inhomogeneity of “water/formal-
dehyde bubbles” is associated with density fluctuation that is
related to crosslink density distributions that have been
reported to exist within phenolic resin.25 In this case we
propose that the inhomogeneous distribution of crosslinks
can cause void trapping. As the water/formaldehyde bubbles
form and migrate within the autoclave to the surface of the
material, it is postulated that they become trapped by ether
bridges developing around the edges of the voids. It has been
long established that increasing the F : P molar ratios favours
the production of ether bridges.14 As the voids sites predomi-
nantly contain water and formaldehyde, both by-products of
previous crosslink reactions, it is suggested that voids sites
have an increased localised F : P ratio. This relationship would
explain the ether bridge configuration around void sites as
their formation is the preferred crosslink route.15

A proposed alternative mechanism is associated with the
possibility that there is a preferred route for the water/formal-
dehyde bubbles take when attempting to leave the resin during
curing.26 As the phenolic resin cures, the bubbles will leave the
material by following a path of least resistance and therefore
their migration will follow the least dense regions within the
resin (see Fig. 5). Consequently, the voids will be concentrated
away from areas of higher density molecular structures (strong
methylene bridge content) and towards less dense molecular
regions (strong ether bridge content). This is as a result of ether
bridges containing a greater number of atoms between the
anchoring phenol rings with intramolecular forces known to
decrease rapidly with distance. Prior modelling studies have
revealed that mass density fluctuations within phenolics are due
to the inhomogeneous reactions described previously.27 These
studies have observed density variations at the nano-scale but
have encounter difficulties modelling at larger length scales.
SEHI, being inherently multiscale in analysis, confirms the
observed density variations in phenolic resin at the nano-micron
scale and also provides evidence that they are dependent on
inhomogeneous crosslinking reactions. Fig. SI4† supports the
proposal that such variation observed in molecular density and
crosslinking reactions does translates to large variations being
exhibited in the nano-structural hardness of the resins.

Conclusions

The presented SEHI analysis and related SE spectra provide
compelling evidence that a greater prevalence of C–O bonding
exists in close proximity (∼50 nm) to void sites than the typical
distribution observed within the matrix. This result can be
explained to be the consequence of an increased incidence of
ether bridges observed at such void sites. SEHI further revealed
local variations in crosslinking and molecular order and func-
tional groups (CH, OH) across the resin. Based on the demon-
strated capability, SEHI is considered to be an ideal analysis
tool with the capacity to isolate local variations in reactant rem-
nants, such as formaldehyde, within phenolic resin.
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1. Additional background 

1.A - Background of the interpretation of Secondary electrons

The primary electron beam interacts with atoms within the material by causing electrons to be emitted. These emissions 

are as a result of a range of physical interactions (2). Figure SI1 shows the interaction volume of a primary electron beam 

and a range of association emission.    

Elastic interactions are those which change the path of the incident electrons in the primary electron beam probe whilst 

having a negligible effect on their kinetic energy. Inelastic interactions in contrast are those which result in a loss of kinetic 

energy of the incident electrons (3). High energy electrons that are emitted by an elastic interaction of an incident electron, 

with the nucleus of the material samples’ atoms, are designated as back scattered electrons (BSE). The energy of BSEs is 

comparable to that of the beam probe’s incident electrons. Electrons emitted from the sample at lower energy are 

categorised as SE. SEs typically display energy voltage of less than 50 eV. Secondary electrons (SE) result from inelastic 

scattering and are the consequence of either collisions within the electron cloud or by interaction with loosely bound 

electrons in the material’s structure. 

The electron beam probe will only interact within a finite interaction volume due to the effect of inelastic interactions. This 

volume is depended on the primary beam energy. The greater the primary beam energy is the greater volume of sample 

interaction. This incident beam interaction volume is repersented in figure SI1 with a characteristic ‘waterdrop’ shape. 

Electronic Supplementary Material (ESI) for Polymer Chemistry.
This journal is © The Royal Society of Chemistry 2020



SEs are the sample emissions that are associated with SEM images (4). SEs may be emitted from the materials at relatively 

low kinetic energies, < 10 eV, as a result of potential interaction with electron clouds.  The low kinetic energy places a 

significant limit on the actual escape depth of SEs emitted from a sample, which can often be <10 nm, as a consequence SE 

derived images are inherently surface specific.  To interpret the images generated by an SEM it is essential to understand 

how the SE contrast is captured. Selection of an appropriate detector by the user is also dependent on this knowledge. 

Figure SI 1 – Diagram shows the relative escape depths of SEs and BSEs and their interaction paths prior to detection. 
Image adapted from (5) with permission from Elsevier.  “Schematic of the electrons emitted from a range, R, below the 
surface of the sample. SE1 is generated from impacted electrons (IE) right after incidence, SE1 have spatially localised 

information (s1). Then, IE spread to interaction volume with a size of range R.” 

There are a number of different ways that SEs are detected in an SEM (See SI 1), the majority of SEs detected originate as a 

result of inelastic interactions between the probe incident electrons and the sample (4), in addition to collisions between 

BSEs and the SEM chamber components after emission from the target sample surface. (This process is depicted in figure SI 

1) These different sources of SEs are termed SE1, SE2 and SE3 retrospectively. SEs from each of these difference sources 

exhibit dissimilar signals types for both resolution and contrast. When undertaking SEM analysis of a polymer`s 

topographical nanostructure, it is essential to configure the apparatus with a detector which can isolate SE1 from SE2 and 

SE3.Despite both SE1 and SE2 emissions providing topographical contrast due to their angular distribution and their short 

escape depth (as shown in Fig2).   SE1 emission differs from that of SE2 as a result of their interaction paths, SE2s emissions 

are generated from BSEs when they pass through the surface, when exiting the sample, unlike SE1 which are generated 



from impacted electrons directly after beam incidence. SE1 emissions are therefore possess spatially localised information 

and are suitable for processing into high resolution surface images.

Figure SI 2 –Diagram showing the topographic effect on SEM contrast of SE1 and SE2 emissions. Figure amended from 
“Yougui Liao, Practical Electron Microscopy and Database, (2006), www.globalsino.com/EM/”

1. B- Electron Detectors within an SEM.

Both SE and BSE emissions can each be exploited to extract complementary sets of information from a target sample 

within an SEM. Modern SEMs are configured to utilise detectors which have the ability to distinguish between these two 

types of emissions and are capable of filtering either SEs or BSEs from an intermixed sample image signal. As previously 

highlighted the ability to research surface effects in polymers at the nanoscale level relies primarily on the capture of 

target images built from SE1s emissions. The most common detector used in SE imaging is the Everhart-Thornley detector 

(ETD). ETDs mix SE1, SE2 and SE3 emissions, this provides limited resolution with SE images being hard to interpret in 

respect to their specific SE emissions. Alternatively, the other commonly used SE detector is the Through-lens detector 

(TLD). The TLD supresses SE2 and S3 to collect mainly SE1 emission (6). By virtue of collecting SE1 emissions the TLD can 



provide high resolution surface images, suited perfectly for the use of chemically mapping the nanoscale surface of 

polymers. The TLD used for this study is depicted in figure SI 3. This TLD step up utilises electrostatic deflectors to enable 

the detection of SEs when set to a high-resolution immersion mode where target samples are immersed in a magnetic field 

and the TLD is positioned above the objective lens of the electron column (8).

Figure SI 3. Schematics of TLD arrangements in SEMs manufactured by FEI Co. XL-30 design TLD. Adapted from (8) with 
permission from Elsevier.

Configuration of TLD detectors varies according to both manufactures and actual SEM models.  Figure SI 3 illustrates a FEI 

XL-30 design which is a widely used SEM having a TLD integrated into the incident electron probe consisting of a scintillator 

detector and a ‘deflector’ electrode (8).  The deflector is installed as a guide to drive SEs towards the detector and is set to 

a bias of -60V. This bias can be adjusted to collect SE1 emissions from energy ranges of interest.  Additionally, the SEM’s 

pole-piece incorporates a positively biased electrode whose purpose is to help attract SEs within the specimen chamber 

towards the detector. TLDs predominantly detect SE1s which provide the highest spatial resolution information as they are 

emitted by the target sample through direct interaction with the primary electron beam. 



1.C – Information contained in secondary electron spectroscopy (SES)

Electrons emitted from a target sample through probe electron/material interactions within the SES can be detected and 

displayed by way of spectra constructed according to their measured energy ranges.  From the resultant spectra, 

conclusions can be drawn regarding the samples chemical composition and structure. SES is not a recent development for 

material characterisation, SES has been investigated since 1947 (9). Over the last few decades, SES has only recently 

started to flourish through innovations in instrumentation, signal processing and imaging proficiency (10,11,12,13). 

The process of developing SE spectra wholly relies on the probe electron – material interactions. SES measures electron 

emission energies post inelastic sample collisions. SES benefits from employing a low KeV (between 0.5-2 keV) primary 

electron beam which makes it possible for the SES to collect the spectra of beam sensitive materials. Although, SEs are 

produced throughout the primary beam interaction depth, only SEs emitted within the SE escape depth can be detected, 

as SEs emitted at a greater depth will be absorbed by the bulk of the sample material. The SE shallow escape depth raises 

the issue of surface contamination affecting the spectra results, a problem faced by other surface analysis techniques. 

However, SES has been shown to have operational characteristics that allow it to overcome substantial surface 

contamination to produce accurate spectra that are reproducible and reveal characteristics of the underlying material (10, 

13). In contrast EELS provides an average measurement over the material samples thickness and does not allow for high 

resolution surface characterisation. For polymers which require a tailored surface, such as polymer derived biomaterials, 

the SES form of detailed surface analysis is considered to be an essential perspective due to the fact that established cells 

react to a biomaterial’s surface on the nanoscale level. 

Although, SES, EELS and XPS all have strengths as material characterisation methods, the singular ability of SES to support 

the secondary electron hyperspectral imaging (SEHI) technique is considered particularly advantageous for the analysis of a 

range of material types. As distinctive SE energy spectra have been collected for many decades (9,12,13) it is often wrongly 

assumed that SE images show only topographical contrast. However, with recent progress in SE spectra analysis and 

energy-filtering detection, advances in capability now enable the capture of spectral images from selected distinct SE 

energy ranges, which studies have shown to carry chemical and functional information [11, 14, 19]. Both SE and BSE 

emitted at low primary beam energy ranges contain chemical information. Lower energy SEs contains information about 

valence bands and higher energy SEs (SE2) have been associated to the atomic number of the elements from which they 

are emitted (13). BSE imaging has demonstrated a capacity to provide chemical contrast images of materials where 

topographical features are negligible however, SEHI can provide comparable images of materials at significantly enhanced 

image resolutions (14).  



Standard SEM images are compiled from all surface emitted SEs without discrimination of their energy ranges.  In contrast, 

SEHI compiles a series of images based on the specific energy ranges of emitted SEs. SEHI software processes this captured 

series of energy range images to construct an inclusive SE spectrum for the material. 

Figure SI 12 (graphical abstract) displays the process by which information contained in the SEHI spectrum provides the 

basis for mapping chemical changes within the surface of materials.  This capability is predicted to provide new 

opportunities for researchers to characterise novel polymer materials. The value of the SEHI characterisation technique has 

successfully been demonstrated in range of applications, varying between the analysis of molecular orientation within 

organic electronic devices, semi-crystalline polymers chemical mapping and exposing variations in nanostructures that 

form natural materials (11, 15). SEHI can be summarised as a technique that is responsive to surfaces and is capable on 

beam sensitive materials of resolving chemical, compositional and structural differences at the nanoscale level. It is 

proposed that an effective microanalysis tool for nanostructured polymers, results from the integration of the capabilities 

of a low voltage SEM and those of secondary electron microscopy.

1.D - Modelling secondary electron spectroscopy (SES)

SE emissions captured in electron microscopes has been the subject of an increasing number of studies, using a modelling 

approach that simulates the production of secondary electron emission from sample materials. Many of these studies have 

adopted the Monte Carlo approach to simulation modelling. Within a Monte Carlo simulation a statistical probability is 

assigned to every event, with the probability figure based on first principles and available experimental results. Multiple 

events are simulated until the process yields a statistically relevant result.  Monte Carlo simulation, based on a conductive 

polymer using experimental data, has revealed that a material’s local crystallinity and electron affinity directly influence 

the SE energy spectrum (16,17).

In addition to polymer analysis, further insightful work has been directed at carbon species analysis.   The characteristic SE 

spectra of sp3 hybridised, sp2 hybridised, or hydrocarbon contamination moieties captured using a combination of 

experimental studies and Monte Carlo based simulation has been published (18, 19). This result has enabled carbon based 

contamination and deposition induced by the electron beam within a SEM to be identified and mitigated. Through applied 

modelling simulations, significant advances in the appreciation of time dependence both in secondary electron emission 

(20) and in the charge dynamics of insulators (21) have been made. 

2. Additional Results 

2. A – Selecting the Region of Interest (ROI) for Phenolic Resin.



Figure SI 4 shows an example of the process used to select ROIs of phenolic resin samples for SES and SEHI analysis. After 

having been subject to flexural testing, spectra were collected from the centre of a cross-section area of P382 resin 

exposed as result of flexural testing (figure SI4 A). The red boxes within the figure show how by increasing the 

magnification the user can select the length scale of sample area they wish to analyse. The ability to perform multi-length 

scale analysis is one of the key advantages of using SES and SEHI.  The material system is described in detail in Hamad et al 

(1).

Figure SI 4 – A diagram showing the process of selecting a ROI within Phenolic resin prior to SES and SEHI analysis. Red 
boxed inserts show the process of enhancing magnification to allow the user to analyse a length scale of interest. 



2.B - Secondary electron spectroscopy (SES) analysis of long cure phenolic resin.

Previous work has validated SES`s ability to isolate chemical bonding and functional groups in a range of materials (22). 

However, this is the first time such analysis has been conducted on phenolic resin. To corroborate the SES results described 

in the main manuscript an additional phenolic sample was included as a control sample. This control is a phenolic resin 

sample produced by the application of a long cure cycle, with the same F:P molar ratio as that of the Phenolic 382 used in 

this publication. The only difference between the two materials is that the control sample’s long cure cycle does not 

employ a fast acting acid catalyst and consequently cures over a longer period of time and produces a void free material. 

A comparison between phenolic 382 and a long cured phenolic resin (LCP) has previously been conducted in Hamad et al 

2019 (1) study, there it was concluded that although a P832 cure time was substantially shorter than LCP, its flexural 

strength properties were significantly reduced, 88 MPa and 47 MPa respectively (1). Fourier Transform Infrared 

Spectroscopy (FTIR) measurements captured in this study showed that there was a reduction in ether bridges formation 

within phenolic resin cured using a fast action catalyst when compared to that of phenolic resin cured without such an acid 

catalyst. The paper stated that the more acidic the catalyst, the more the phenol is protonated and therefore the less 

nucleophilic it is (1). As a result, it is less likely that it will follow the crosslinking mechanism which forms ether bridges. 

Figure SI 5 displays a spectra comparison of the LCP control sample and the three areas of P382. Here, we observe the 

results are consistent with those given in the Hamad et al publication. The LCP control sample shows a greater molecular 

order peak emission (1.4 – 2.3 eV) and increased CH vibrations emissions (2.3 - 4.3 eV) compared to that of the PR832 

sample areas. This result   is expected as both an increase in crystallinity and methylene bridges (CHx related) in the LCP 

sample would indeed create a material with greater flexural strength. A point of interest in the SES data is that the LCP 

does show more emissions are related to methylene bridge (CH) than ether bridge (CO) formation. This finding is predicted 

by the chemical crosslinking analysis described above and supports the proposition that an increasing ratio of acid catalyst 

inclusion would favour methylene bridge formation. When comparing CO functional group emission between LCP and 

areas of PR382 it is also noticeable that CO bonding is slightly less in LCP. This is also an expected result as even though 

ether bridges are still present in LCP they are not the anticipated   prevailing method of crosslinking within this material.



Figure SI 5 - Secondary electron spectra with accompanying SEM images for LCP (long cure) and PR382 Area 1, 2 and 3 
highlighting SE regions identified as associated with functional group emissions. Area 1 & 2 HFW = 30 μm whereas Area 

3 HFW = 25 μm.

2.C - Secondary electron spectroscopy (SES) energy calibration. 

Prior to SE spectra capture it is good practise is to collect test spectra from known sample materials for the purpose of energy 

range calibration and assessment of the SEM environment conditions for SE collection. By virtue of SES high surface 

sensitivity it has been shown that surface contamination, often in the form of amorphous carbon, can produce emissions 

that are captured by SES and distort the resulting target materials spectra. The amorphous carbon can be present within the 

chamber of the SEM as a consequence of previous use prior to imaging or it can form on the surface of a test material as a 

product of the e-beam probe.  Essential requirements for a control sample are to calibrate the SE energy ranges and also to 

have the ability through their SE spectra to highlight contamination indicators. For these purposes the authors recommend 

the use of highly oriented pyrolytic graphite (HOPG) as the energy calibration sample of choice.  HOPG is a molecular ordered 

form of synthetic graphite (23). HOPG offers a calibration spectra, for collection accuracy, by observing background emission 



peaks within a materials spectrum. Figure SI 6 gives an example of this calibration process by comparing the spectra of PR382 

to that of the calibration HOPG material. With SEHI being shown to be effective in monitoring beam damage (19) the 

technique can therefore be utilised to avoid beam damage through an appropriate choice of frame integration and short 

dwell times. This study also evaluated SES’s ability to characterise contributions of sp2-like or sp3-like bond types and 

amorphous hydrogenated carbon on HOPG surfaces (20). In such circumstances, we use HOPG to avoid contamination by 

regularly plasma cleaning the chamber and then monitoring sp2 amorphous carbon build up within the HOPG spectra after 

prolonged exposure (19).



Figure SI 6 - Secondary electron spectra with accompanying SEM images for PR382 and HOPG. Spectra emission 
normalised to MW peak SE emission range. Spectra highlights SE regions associated with functional group emissions. 



2. D - Observing the drying process of Carbon paint using SES.

In this investigation a dynamic experimental approach was designed to demonstrate the capabilities of SES to identify 

functional group changes over time within a material whilst within an SEM. The material selected for this experiment was a 

Carbon paint known as “Conductive graphite paint with isopropanol base” (Agar Scientific). Carbon paint is commonly used 

to attach a material of interest to an aluminium stub prior to SEM imaging. After the material of interest is positioned on the 

stub, Carbon paint is applied and the user waits for it to dry/set to bind the material to the stub. As the Carbon paint dries, 

the paint’s isopropanol base evaporates. In this study, carbon paint alone was applied to an aluminium stub and spectra 

were collected at regular time points as the carbon paint dried. The purpose behind the experiment was twofold; firstly, to 

analyse how long it takes for the paint to dry, which is useful information to SEM users in general, and secondarily as the 

paint dries and the isopropanol evaporates off the surface, to monitor the prevalence of functional groups (CO, OH and CH) 

which are predicted to gradually decrease over time as a consequence. Figure SI 7 displays SES spectra captured during this 

experiment which corroborate the experimental results with the predicted results. OH and CO functional groups were 

observed to greatly diminish as the carbon paint dried by the evaporation of isopropanol. After 30 minutes from 

commencement of the experiment the dried carbon paint, now purely graphite flakes, as expected provided spectra that 

was markedly similar to that of the HOPG spectra shown in figure SI 6.     



Figure SI 7 - Secondary electron for Graphite flakes in an Isopropanol base taken at different time points. Spectra 
emission was normalised to MW peak SE emission range. Spectra highlights SE regions associated with functional group 

emissions.

2. E - CH / CO / OH Mapping of Phenolic Void remnants.



Figure SI 8 displays component analysis of PR382. In this instance non-negative matrix factorisation (nnmf) isolated three 

major components between 2 – 6 eV; firstly a component around 3.2 eV, highlighted in the text as CH vibrations, a second 

component peak at 4.5 eV related to CO bonding and lastly a component peak around 5.5 eV related to OH groups. The 

images displayed in figure SI1 reflect the spatial variation in components 1, 2 and 3 in response to void like 

macrostructures. These images provide further support for the view that CO bonding is apparent with greater emission. 

within the void sites than when compared to either CH or OH.  

Figure SI 8 - Non negative matrix factorisation (nnmf) multivariate analysis of PR382. Isolating three components: 
component 1 is associated with CH Vibrations, component 2 is associated with CO bonding and component 3 is 

associated with OH groups. Each spectrum includes an inset of the resulting void images from nnmf component analysis 
(HFW = 3 μm).



2. F - Nanoindentation 

Figure SI 9 shows the measured modulus obtained through nanoindentation mapping with a KLA Tencor NanoG200. Using a 

diamond Berkovich tip at a load of 0.02 mN, corresponding to an average depth of approximately 150 nm, the map was 

collected with an indent spacing of 0.9 μm. Care must be taken when considering the values reported: the absolute values 

have been calculated through a proprietary method which has been shown to produce variable data. Furthermore, this 

dataset is collected with a relatively low load, owing to the requirement to space the indents in close proximity to one 

another. The capacity of the mapping method to accurately collect data at such loads has not been tested. Finally, the 

specimen is known to contain scratches throughout the surface. Considering these caveats, the data can be used 

speculatively to compare the relative modulus from pixel to pixel. In this respect, the variability shown arises from a 

combination of surface effects and fundamental material behavioural change from the presence of ether bridges.

Figure SI 9 – Nanoindentation mapping of Phenolic Resin P382. Nanoindentation modulus measured through 
nanoindentation mapping with a KLA Tencor NanoG200. Using a diamond Berkovich tip at a load of 0.02 mN, 

corresponding to an average depth of approximately 150 nm, the map was collected with an indent spacing of 0.9 μm.

3. More detailed methodology background

3.A Selection of suitable component analysis method



An example data set that analysed phenolic resin was used to highlight the selection of the component analysis methodology. 

In this instance a 5 component analysis was selected for review. Component Analysis is used to determine the spectrum 

distribution of components in the material. In Fig SI 10, the spectrum plot of five (5) components is shown. Two methods are 

utilised to compare their performances in the component analysis. Firstly, the Principal Component Analysis (PCA) that aims 

to reduce the dimensionality of the data (stack of hyperspectral SEHI image) in an interpretable (components) way. It 

achieves this by preserving the information of the data within the components and clustering positive and negative 

correlated components together.  PCA assumes that the components are a linear combination of features and therefore, 

concentrates these features within the first component of the data as shown in Fig SI 11. Additionally, we notice large 

variance axes in the first component, while areas of low variance axes are treated as noise with little information in 

subsequent components especially in components 3 and 4. The orthogonality assumption of PCA implies that spectrum is 

only concentrated in the first component of the analysis. On the other hand, the Non-Negative Matrix Factorization (NNMF) 

method preserves the spatial information of extracted components that corresponds to the structural differences in the 

components, hence retaining the global structure of the material. It achieves this by allowing only additive (positive) 

correlated combinations this enables an intuitive representation of the data since each component form a part of the data 

(see Fig SI10).

Figure - SI 10 FIVE COMPONENT ANALYSIS USING THE NON-NEGATIVE FACTORIZATION METHOD



Figure SI 11 - FIVE COMPONENT ANALYSIS USING THE PRINCIPAL COMPONENTS ANALYSIS METHOD

The above analysis shows that the NNMF performs better when dealing with SEHI image stacks due to its ability to efficiently 

extract features that are only positively correlated which ensures that both spatial and structural information are retained. 

Additionally, this non-negativity nature of NNMF improves result interpretation and precision.  

4. Graphical Abstract

Figure SI S12 displays the graphical abstract for this publication. 

“Secondary Electron Hyperspectral Imaging (SEHI) is an innovative SEM-based analysis tool allowing spatially-resolved 

chemical analysis beyond elemental composition.”  



Figure SI 12. 
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6. Conclusions and Future Work 

It is widely accepted that a key enabler for the development of more effective 

biomaterials for clinical use is the ability of researchers to gain a greater 

understanding of the chemical, structural and topographical characteristics of 

the material.  To be successful, any newly developed material characterisation 

technique is expected to offer new insights into one or more of these 

characteristics, ideally at a range of scales, including the nanoscale. The 

literature review presented in chapter 2 revealed a “gap” exists in currently 

available characterisation techniques, where none are capable of providing 

nanoscale surface chemical mapping of polymers used for TE. The leading 

requirement for such a technique in respect to biomaterials development is 

primarily due to the specific relationship between cellular adhesion and the 

surface properties (< 10 nm) of the material.  

In this thesis, to evaluate the potential significance of the SEHI technique an 

extensive range of novel and advanced characterisation techniques were 

applied to characterise polymer-derived biomaterials, all of which had 

previously undergone various surface modification treatments. A wide range of 

polymers were also selected for analysis to allow for a broad range of polymer 

systems within which to evaluate SEHI`s application, these included: PGS-M, 

Polycaprolactone (PCL), Nylon, Polypropylene, Polyvinylidene fluoride and 

Phenolic Resin. The publications presented in this thesis in chapters 3-5 
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highlight evaluations of the experimental application of SEHI. These publications 

not only demonstrated the unique capabilities of SEHI in the field of material 

characterisation but also provided evidence attained from established 

characterisation techniques (EDX, EELS, XPS, Raman, AFM) to corroborate the 

finding that SEHI is capable of delivering chemically mapping at the nanoscale. 

This multiscale approach included the ability to identify and evaluate the 

chemical functional groups within nano-structural features found at the surface 

of polymer derived biomaterials.  

Two key questions were identified as part of the literature review in chapter 2, 

regarding the future use of SEHI for the characterisation of polymer derived 

biomaterials:  

1) Can SEHI deliver insights into the mechanical properties of a biomaterial?  

2) Is the captured SE spectra able to identify specific functional groups that 

play a key role in biomaterials engineering /TE? And if so can SEHI map these 

functional groups at the nanoscale?  

Table 2: summarises the answers to the questions based on the publications 

presented in chapter 3-5. 
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Question 1: SEHI deliver insights into the mechanical properties of a 
biomaterial? 

Question 2: Is the captured SE spectra able to identify specific 
functional groups that play a key role in biomaterials engineering 
/TE? And if so can SEHI map these functional groups at the 
nanoscale? 

Chapter 3 - Chapter 3 tackled the question by evaluating the efficacy of SES 
by revealing new insights into the mechanical properties of PGS-M 
morphology. Chapter 3 was the first publication to show secondary electron 
spectroscopy (SES) being used to characterise crosslinking in polymer 
derived biomaterials. Characterisation of three different forms of PGS-M 
with different crosslinking was successfully conducted. Here SES provided 
a cross-linking characterisation toolset with crosslinking density and 
variation captured at a multi-scale level. Prior to this publication the 
magnitude of crosslinking within a biomaterial could only be inferred 
through limited analytical techniques with traditional approaches for 
measuring the extent of crosslinking based on bulk mechanical averaging 
techniques.   
 
SES showed the capacity to overcome these limitations by providing the 
means to identify the bonding (CHx) associated with crosslinking within 
PGS-M together with the unique ability to distinguish spatial distributions of 
this bonding across the polymers surface. This result was the first time 
SES had been shown to be capable of predicting and evaluating indirectly 
the mechanical properties of a polymer. 
 
Chapter 4 -  further progressed the work presented in chapter 3 by 
modifying the surface of PGS-M using Ar plasma treatment. SEHI data and 
nanoindentation measurements identified that Ar plasma treatment 
significantly increased the stiffness of PGS‐M samples due to crosslinking. 
SEHI produced maps of CO bonding, for the first time suggested that 
surface structures of PGS-M varied locally and can be changed depending 
on Ar treatment time. SES provided a toolset that delivered crosslinking 
density and variation at the nanoscale. 
 

Chapter 3 – was the first publication to identify SE emission of a chemical 
functional group. SES provided the means to identify the bonding (CHx) 
associated with crosslinking within PGS-M together with the ability to 
distinguish spatial distributions of this bonding across the polymers surface. 
 
Chapter 4 – Furthering chapter 3, the SEHI technique facilitated the capture 
of a number of key insights into the sample’s electron emission properties 
leading to the identification of their chemical functional groups (C-H, C-O, C-
C, O-H). This consequently resulted in the establishment of high resolution 
chemical imaging. The publication showed for the first time such chemical 
imaging was capable of being produced using SEHI and also provided 
evidence of its potential to reveal key insights into the biocompatibility of the 
biomaterials analysed.  
 
The publication focused on characterising the effects on the biomaterial 
samples of different conditions of Argon Plasma treatment when compared 
to the known industry standard of Autoclave sterilisation. The experimental 
process followed during this work exploited a range of analysis techniques, 
including the pioneering use of SEHI. This was an exciting development for 
SEHI as it delivered for the first time the ability to isolate functional groups 
on the surface of biomaterials, in addition to its novel capacity to map them 
at the nanoscale. 
 
The publication presented in chapter 4 also analysed a range of polymers 
with different functional group distributions. These included; PGS-M, PCL, 
PCL-M, Nylon 6 and polypropylene. All the materials apart from 
polypropylene were images as a flat (rough) surface and SES/SEHI had no 
issues imaging or mapping their surfaces chemically. Polypropylene 
analysis was the first time SES/SEHI mapping had been conducted on a fibre 
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Chapter 5 – SEHI revealed local variations in crosslinking and molecular 
order across Phenolic Resin.  This was the first time SES or SEHI was 
applied to thermoset, highly cross-linked networks. Presented SEHI 
analysis and related SE spectra provided compelling evidence that a 
greater prevalence of C–O bonding exists in close proximity (∼50 nm) to 
void sites than the typical distribution observed within the matrix. This 
result can be explained to be the consequence of an increased incidence of 
ether bridges observed at such void sites. Based on the demonstrated 
capability, SEHI is considered to be an ideal analysis tool with the capacity 
to isolate local variations in chemical bonding which have a direct relation 
to the mechanical properties of phenolic resin.  

shaped material with differing surface angles. Despite this challenge SES 
analysis was successfully preformed and reliable mapping data of 
Polypropylenes surface functional groups distributions was collected. 
 
Chapter 5-  Chapter 5 applies the findings from chapters 3 and 4 to a 
different materials system for further evaluation. SEHI images overlaid on 
standard SEM images showed for the first time the distribution of CO 
bonding within Phenolic resin. In this publication SEHI mapped CHx CO and 
OH functional groups providing a better understanding of the functional 
group distribution existing around phenolic resin void sites. 
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Overall the analysis results, based on a wide range of biomaterials, captured by 

the SEHI toolset combination has made a persuasive argument for establishing 

the toolset as a highly effective and innovative option for polymer 

characterisation. It is anticipated that the research published during the 

completion of this thesis will assist researchers to target and accelerate fresh 

developments in the search for effective biomaterials by offering new insights 

into the composition and structure of material systems. The author is confident 

that the novel advanced characterisation approach provided by SEHI will be of 

value in the characterisation of multiscale polymers and complex chemical 

structures undertaken by researchers from many disciplines. It is further 

considered that the development of advanced polymeric materials, can only be 

efficiently achieved with the development of correspondingly advanced 

characterisation techniques.   

Future work 

At this stage of development, researchers have the option to take the future 

development and application of SEHI in many different paths, the authors own 

recommendation would be to consider three different avenues. Firstly, to 

conduct research directed at further development of the SEHI material 

characterisation techniques such that they will advance their ability to be 

applied to a broader range of material systems and also to facilitate SEHI’s 

potential for ground-breaking investigative research within specific materials. 

As highlighted above, further work is required to help develop SEHI to become 

a more complete and accessible material characterisation tool. It has been 
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shown that the SE spectra are reflected from the surface properties of a range 

of biomaterials, therefore, an appropriate starting point for future investigations 

in to SE spectroscopy is a larger comparison study employing a wider set of 

organic biomaterials in combination with conventional methods for probing 

polymer structures such x-ray photoelectron spectroscopy. Having previously 

shown in papers published that focus on biomaterials and phenolic resin, the 

author is particularly interested and indeed excited about the opportunity for 

SEHI to be used to characterise other polymers and potentially further research 

into using SEHI to study inorganic material systems. To achieve this a set of 

reference samples would be required to be selected and undergo bulk SES and 

SEHI analysis in order to build a database of material signatures.    

The second area of interest would be to add to the current body of research 

evaluating how cells react to polymer surfaces. Currently, a significant 

constraint of using SEHI to evaluate biomaterials is that of the material is not 

able to incorporate living cells at the time of imaging. Possessing the ability to 

take SEHI maps of the behaviour of live cells on material surfaces would be a 

significant step forward in our ability to observe cell/surface interaction of time 

periods. Using the SEHI material surface penetration capability could 

theoretically facilitate the capture of images ‘through the cells’ and capture local 

chemical information of the surface structures that the cells adhere too. 

However, such a novel process would not conventionally be possible as SEM`s 

require samples to be placed within high vacuum conditions which would not 

sustain cellular life. However, recent advancements have led to the 

development of a thin barrier layer (TBL) which holds moisture on the surface 



 
 

99 
 

of a polymer which protects cells that have been cultured on a biomaterial and 

allows them to survive for a time period within the SEM’s high vacuum 

conditions.  Together with SEHI and this new coating advancement this approach 

is considered a prime opportunity to showcase the novel and precise material 

characterisation capabilities possible when the SEHI technique is applied to a 

polymer system.  Additionally, utilising a TBL solution will also offer the 

opportunity of a step forward for SEHI development by facilitating direct SEM 

observation of live cells. This development would provide an insightful ability to 

better understand the interactions between cells and biomaterials at a scale of 

analysis previously not possible.   

The third area of future work would be to consider integrating the SEHI 

technique with an oxygen plasma FIB-SEM (O-PRFIB) approach to produce a 3D 

chemically sensitive characterisation ability. This future work could lead to the 

establishment of a combined toolset that is potentially capable of providing 

compelling new insights in materials characterisation with the prospect of 

developing a wide range of more effective materials. An initial assessment study 

has raised confidence that SEHI and the O-PRFIB have complimentary 

capabilities and it is feasible that through integration they could develop into a 

highly effective single instrument to perform enhanced 3D chemically sensitive 

characterisation which is optimised for biomaterial applications. 
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Appendix 1.  

  

Selected Conference presentations:  
 

2019 

Insigneo Showcase 2019, Sheffield, UK, May 2019, conference poster 

presentation  

Microscience Microscopy Congress 2019, Manchester Central, UK. Abstract 

accepted for Flash talk and Poster presentation. 

Engineering Researcher Symposium, Sheffield, UK 2019. Abstract accepted, 

poster presented. 

Multiscale Innovative Materials and Structures 2019, Salerno, Italy. Abstract 

and accepted for 20 minute oral presentation. 

PicoFIB workshop 2019, UCL London. Abstract and accepted for 20 minute oral 

presentation. 

 

2020 

Nanobrucken 2020, Max Planck Institute, Germany, Abstract and accepted for 

20 minute oral presentation. 

European Microscopy Congress 2020, Copenhagen, Abstract and accepted for 

20 minute oral presentation. 
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Appendix 2.  

  
Prelude  

Prior to the publication of the paper presented in chapter 5, the author of this 

thesis co-authored the publication “Optimizing size and distribution of voids in 

phenolic resins through the choice of catalyst types” This publication laid the 

groundwork for the development of the fast acting resin investigated within 

chapter 5. In Hamad et al, investigation of the chemical bonding present within 

the newly developed phenolic resin was conducted by bulk chemical averaging 

methods and did not provide information of the chemical bonding variation 

existing within the material. This analysis limitation was overcome in the 

results presented in chapter 5.  
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ABSTRACT: Phenolics are widely used for over a century in different industries due to their chemical resistance and thermomechanical
properties. However, the presence of voids in phenolic resins has negative effects on the mechanical properties and a conventional approach is to
avoid these by utilizing very long cure cycles. Our alternative approach investigates the tailoring of void size and distribution to achieve a better
balance between processing time and mechanical properties. Therefore, we produced phenolic resin with a void-free microstructure by a long
cure cycle as a reference. To alter the void size and distributions, we utilized different catalysts and a short cure cycle to obtain phenolic resins
and test their flexural properties with respect to the reference. We investigated the fracture surfaces of all materials by SEM, FTIR and compared
results to finite element modeling that confirmed the effects of different void size and distributions on the mechanical properties. © 2019 The

Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48249.
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INTRODUCTION

Phenolics or phenol-formaldehyde resins are amongst the oldest
thermosetting polymers, with excellent ablative properties, low
smoke density, high chemical resistance, and thermal stability.1–5

Such resins have been used in a broad range of applications such
as molding compounds, thermal insulation materials, coatings,
laminates, wood products industry, and structural adhesives,6,7

and most of all as light weight foams in aerospace applications.8,9

Furthermore, phenolics are also utilized as a matrix material for
composite applications in the sport and construction industries
due to their capability of withstanding highly corrosive environ-
ments.10 However, it might be seen surprising even nowadays
phenolic resins still suffer from the slow crosslinking rate and the
high curing temperature.11 Moreover, the mechanical properties of
phenolic resins can be compromised by porosity and how to control
it to a desired level still poses a scientific and industrial challenge.12

The reason for this is the long and complex polymerization process
together with the generation of water and formaldehyde as by

products. Void-free phenolic parts usually require long heating
cycles,13 thus not only taking a long time to produce but their
production is also energy intensive. Here, we investigate how to
minimize any loss in mechanical properties as a consequence of
implementing a short curing cycle.

Phenolic resins are produced from the polycondensation reaction of
the phenol and formaldehyde. Based on the formaldehyde/phenol
molar ratios and curing properties, phenolic resin is characterized
into two main categories: novolac and resole resins.14–16 Generally,
both cured phenolic resin types (novolac and resole) are almost
identical in terms of mechanical properties and chemical resis-
tance.17 Novolacs are synthesized in the presence of an acid cata-
lyst with an excess of phenol and do not react further without a
curing agent. Hence, to produce a crosslinked structure of novolac
resin, curing agents such as hexamethylenetramine (HMTA) must
be added.17 However, the resin of interest for liquid molding is
resole resin.16 Resoles are prepared in the presence of an alkaline
catalyst with an excess of formaldehyde, producing a soluble and
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fusible prepolymer. Resole structures contain reactive hydroxymethyl
groups and by heating, a crosslinked structure can be produced.17

During the crosslinking of the phenol-formaldehyde resin, the
release of the by-products becomes very difficult as the resin viscosity
rises.18 Consequently, the presence of these by-products in the cured
resin can lead to porosity in the form of macro13 or microvoids
(8–10 μm in size),16 which adversely affects the mechanical properties
of the final cured resin.16 However, it has been reported that phenolic
resin with void-free microstructures could be produced if the gelation
time is kept long enough for the water vapor to be released.13,19 This
approach requires a very long heat cure cycle, which is not favorable
for most industries due to time and energy consumption issues. There-
fore, there have been many attempts to accelerate the crosslinking rate
of the phenolic resins with the use of different curing agents 20–23 but
in each case, the formation of voids cannot be avoided.

No existing approaches allow void-free microstructures to be
achieved with a short cure cycle, therefore, a novel approach to opti-
mize the microvoids size and distribution in a fast curing process for
better mechanical properties at minimum processing time is pro-
posed as an alternative. This investigation is inspired by the observa-
tion that in phenolic foams with deliberately high void volumes,
the void diameter and distribution do affect the mechanical prop-
erties in a way that is not predicted by any current models.24 Not
only the void volume fraction but void diameter and void distri-
bution were empirically found to be of importance in determining
the final mechanical properties. However, the void size distribu-
tions (100–450 μm) obtained in phenolic foams 25 are signifi-
cantly larger than those in phenolics intended as bulk materials or
as matrix for composite materials. For the latter group of mate-
rials, few studies have considered the effects of the void size and
distribution on the final mechanical properties of the cured phenolic
resins.26 Most studies have focused on the investigation of the
effects of formaldehyde/phenol (F/P) molar ratios,27–29 reaction
conditions (temperature and time),26 degree of condensation,30

catalyst concentrations,26 and catalyst type 31 on the final properties of
the cured resins. Here, we investigate the possibility of changing the
catalyst type to tailor void size and distributions in order to enable fast
resin curing, while minimizing the effect of voids on the mechanical
properties in comparison to the reference sample.

The objective of this study is to investigate the optimum void size
and diameter distribution as well as the spatial distribution of the
voids in the phenolic produced in a fast curing process and com-
pare their mechanical properties to a void-free reference phenolic.
To this end a cross-linked resole phenolic resin material was
produced using a long cure cycle (4 days) without the use of a
catalyst. A slow action acid catalyst (Phencat 382) and a fast action
acid catalyst (Phencat 10) were then utilized to produce two phe-
nolic resin samples types with varying void sizes and distributions
and mechanical properties (strength and modulus obtained from
bending tests). To visualize and quantify detailed void structures,
diameters and distributions, low voltage scanning electron micros-
copy (LV-SEM) was used to image the fractured surface of the
above three types of cured phenolic resin. The latter enables the
observation of highly localized variation in chemistry and crack
behavior. To account for the effects introduced by the variation of
average chemical composition all of the cured phenolic resins
where subject to analysis by Fourier transform infrared (FTIR).

EXPERIMENTAL

Materials
In this study, a resole commercial phenolic resin called Cellobond
J2027X was used (kindly supplied by Caleb Technical Products
Ltd., UK). This kind of resin is usually available as a water-based
controlled-viscosity resin, which can be cured either with the
application of heat only (long cure cycle) or at lower temperature
(60�C), short cure cycle (3 h), with the use of a strong acid cata-
lyst.16 It is suitable for the fabrication of fiber composites by hand
layup and resin transfer molding.32 Two types of catalyst
(Cellobond Phencat 382 and Cellobond Phencat 10) supplied by
the same company (Caleb Technical Products Ltd., UK) were
used in this study. Phencat 382 is a relatively slow action acid
catalyst (working life 4 h), which is activated at low temperature,
typically 60–80 �C.16 It is an acid-based catalyst consisting of
phosphoric acid, C3-9-alkyl esters (75–90%), and phosphoric acid
(10–25%) by weight. Phencat 10 is a general purpose catalyst for
processes such as contact molding giving working life of about
20 min. It is a composition consists of p-toluenesulphonic acid
(35–50%) and phosphoric acid (10–25%) by weight.

Curing Process of Commercial Resole Phenolic Resin
Two different curing schedules were used to cure the resole phe-
nolic resin:

1-. Long cure cycle, the as received resole phenolic resin was
poured into a PTFE mold and then placed in an autoclave to be
cured using the cure cycle as shown in Figure 1.
2-. Short cure cycle, the resole phenolic resin was first mixed
with either slow action acid catalyst (phencat 382), or fast action
acid catalyst (phencat 10), and then poured into the PTFE mold
to be placed in an autoclave using a short cure cycle as shown in
Table I. The catalyst ratio was maintained at 5 wt% of the resin
for all samples.

Characterization
Scanning Electron Microscopy SEM. Scanning electron micros-
copy (FEI Nova Nano SEM 450) was used for the morphology
observation of the fracture surface of the flexural strength sam-
ples. Unlike standard SEM analysis, no conductive coating was
deposited onto the samples. Therefore, a low accelerating voltage
(1 KV) was used to avoid sample surface charging and damage
with typical vacuum pressure of 10−5 mbar, and a working dis-
tance of about 4 mm. Secondary electron images were collected
using either an Everhart–Thornley Detector (ETD) for low mag-
nification images or a Through Lens Detector (TLD) to obtain
high magnification images.

Fourier Transform Infrared Spectroscopy. The chemical com-
position of all cured phenolic resins was investigated using a
PerkinElmer Frontier spectrometer. To prepare the FTIR sam-
ple pellet, 2 mg of sample powder (ground from the bulk sam-
ple) was diluted with 300 mg of spectroscopic grade KBr. The
test was performed at room temperature (22 � 3�C) with a
wavenumber range between 4000 and 600 cm−1, and the aver-
age of scan repetitions was 32 scans for each sample at 2 cm−1

of resolution. Before loading the sample, a background spec-
trum was taken as a control.
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Flexural Test. The flexural properties (strength and modulus) of
all specimens were determined using a Lloyd TA500 tensometer.
The test was performed according to the ASTM D790 (standard
test methods for flexural properties of unreinforced and
reinforced plastics and electrical insulating materials) with a span
to sample thickness ratio of 16. Crosshead speeds of all tests were
2.0 mm/min. The tests were performed at room tempera-
ture (22 � 3�C).

The ultimate bending results of each type of phenolic resin were
calculated as an average of seven specimens per test condition. The
flexural modulus was determined from the following formula:

E =
L3 F

4wh3 d
ð1Þ

Where E is the modulus of elasticity in bending (MPa), L is the
support span (mm), F is the peak load (N), w is the width of the
sample (mm), h is the thickness (mm), and d is the sample
deflection (mm).

RESULTS AND DISCUSSION

Fracture Surface Characterization
The fracture surfaces obtained by the bending test of the three
types of cured phenolic resin were observed by LV-SEM and
their micrographs are shown in Figure 2. A homogenous fracture

surface without any micron-sized voids was observed for the
reference sample cured without catalyst, using the long cure cycle
(Figure 1), as shown in Figure 2(a). A higher magnification image
[Figure 2(b)] reveals the presence of a large number of bright
nanostructures with diameters well below 100 nm. Their dimen-
sions are consistent with previous electron microscopy studies of
replicas of fractured phenolic resin surfaces.33 These structures
were interpreted as localized areas of increased crosslinking
density 33 but the observed contrast would have been consis-
tent with voids too. A few such bright nanostructures can be
seen also in at the fracture surface of the specimens prepared
with the slow action catalyst as shown in Figure 2(c,d). How-
ever, the latter fracture surfaces also show clear evidence of
voids with diameters that reach from hundreds of nanometres
to several micrometers. This is more easily seen in the diame-
ter distribution histograms in Figure 3(a), which was derived
from the binary images [Figure 4(a)]. Likewise, we present
SEM images of the fracture surfaces obtained from materials
produced with a fast action catalyst in Figure 2(e,f ) and the
respective diameter distribution histogram in Figure 3(b). The
histogram was derived from the binary images presented in in
Figure 4(b). The histogram [Figure 3(b)] shows clearly that the
overwhelming majority of structures is of submicron size, with
an average diameter of 0.52 � 0.15 μm, while the SEM images
demonstrates the dense and homogenous coverage [Figure 2
(f)] of the fracture surface with spherical features.

Figure 1. Long cure cycle used to cure phenolic resin without any catalyst. The heating ramp rate and pressure ramp rate were 2�C/min and 0.3 Bar/min,
respectively. [Color figure can be viewed at wileyonlinelibrary.com]

Table I. Short Cure Cycle Used to Cure Phenolic Resin With the Addition of Catalyst

Temperature (�C)
Temperature
ramp rate (�C/min) Pressure (Bar)

Pressure ramp
rate (Bar/min) Dwell time (min)

80 2.00 7.00 0.30 180

130 2.00 7.00 0.00 60

27 2.00 0.00 0.20 0.00
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To understand the origin of the patterns is worth noting that a
combination of small-angle neutron scattering (SANS) and small-
angle X-ray scattering (SAXS) experiment on phenolic resins rev-
ealed that rough interfaces between voids and phenolic matrix with
a fractal dimensions ~2.46 to 2.6 exist.34 This fractal dimension is
consistent with the existence of Apollonian arrangement for which
a fractal dimensions of 2.4739465 was established.35 Apollonian
packing is found and used in the controlled preparation of ordered
porous films exploiting Breath Figures, to produce so called Breath
Figure arrays (BFA).36 In BFA fabrication, the irregular pore arrays
are observed if water droplet can coalesce, while homogenous pore
arrays when the coalesce of water droplets can be prevented.

Therefore, all of the observations in Figure 2 can be understood in
terms of time available before the gel point is reached. If this is
long enough for the release of the water vapor before the start of

crosslinking in the resin structure,19 the formation of voids can be
prevented as is the case in the reference material [Figure 2(a)]. In
contrast, with the use of catalysts, the crosslinking rate of the
phenol-formaldehyde resins is relatively fast. As the amount of
water in the resin increased during the reaction, molecular clusters
can form that then nucleate when the saturation level at a given
temperature and pressure is locally exceeded.12 This leads to
phase-separation and produces water domains.32 With the fast
action catalyst [Figure 2(e,f)), the crosslinking rate is very fast
(only 20 min working life according to the technical data sheet),
and the gelation time is very short. Therefore, the trapped water,
present as a result of the complex polymerization process including
the release of formaldehyde and water as by-products,37 will not be
able to be released or diffuse, resulting in a homogenous distribu-
tion of voids with the very narrow size distribution as seen in

Figure 2. LV-SEM micrographs of the fracture surface of the three types of cured phenolic resins, (a) low and (b) high magnification images of phenolic resin cured
using long cure cycle without added catalyst, (c) low and (d) high magnification images of phenolic resin cured with the addition of slow action catalyst (phencat
382), and (e) low and (f) high magnification images of phenolic resin cured with the addition of fast action catalyst (phencat 10). Arrows in (c) indicate the bubbles
coalescence. Arrows in (d) and (f) (insert micrograph) indicate the cracks. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 3(b). In contrast, with the use of a slow action catalyst
[material in Figure 2(c,d)], the cross linking rate is slower (4 h
working life according to the technical data sheet), and the gelation
time is longer. Therefore, the generated water can move and coalesce
leading to the very broad size distribution of voids, as well as a wide
variation in distances between voids. Larger voids tend to be sur-
rounded by void-free zones as can be seen in the binary image and
distance map in Figure 4(a). The distance between small voids in
Figure 4(a) is similar to that found in the distance map obtained
from the material made by the fast action catalyst [Figure 4(b)].
However, the distance to larger voids in Figure 4(a) is substantially
larger than the distance in Figure 4(b).

The above is also reflected in Figure 4(c), which compares the
distances between voids in the materials made using slow and

fast action catalysts, respectively. While for the slow action
catalysts, distances between voids can exceed 4 μm, the use of
fast action catalyst results in distances between voids <1.5 μm.
This difference is likely to play a critical role with regards to
the mechanical properties, as the voids do seem to effect crack
initiation and growth as evidenced by Figure 2(d,f ) (indicated
by arrows). Both figures contain the evidence of cracks (wide
due to the edge effect). In the material produced from the slow
action catalyst [Figure 2(d)] fewer but longer cracks are
observed than in the material made with the fast action cata-
lyst [Figure 2(f) (insert micrograph)]. The longest cracks in
Figure 2(d) are found to propagate in the void-free zones with
no clear termination point, while all of the cracks visible in
Figure 2(f ) (insert micrograph) are terminated at both ends by
voids.

Figure 3. Histogram of voids diameter distribution: (a) phenolic resin cured with a slow action catalyst (phencat 382), and (b) phenolic resin cured with a
fast action catalyst (phencat 10). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 4. Voids analysis in phenolic resins cured with (a) a slow action catalyst, and (b) a fast action acid catalyst. (c) Histogram of intervoids distance for
the images presented in (a) and (b). Image processing was performed using Fiji software.38 [Color figure can be viewed at wileyonlinelibrary.com]
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Further differences between the materials made using slow and
fast action catalysts, respectively, is in the volume fraction taken
up by the voids structures. We can only measure area fractions
from the 2D SEM images (28% in materials from fast action cata-
lyst & 33% in materials using slow action catalyst). However, the
volume fraction is only directly proportional to the area fraction
if the sectioning plane intersects the structural features at ran-
dom. As are sections are produced by fracture the later condition
is not necessarily fulfilled here, because as seen in Figure 2(d)

(indicated by arrows) wide cracks are seen to run along the larger
voids. While all of the above will affect the mechanical properties
(see sections 3.3 and 3.4 for full details), differences in chemistry
as a result of using the different catalysts could also be responsi-
ble for the differences in mechanical properties.

The Chemical Composition Analysis
Results of FT-IR measurements are presented in Figure 5 in order
to enable component identification of the products produced by
the condensation reaction of phenol and formaldehyde. The stan-
dard peak positions39 and the observed peaks of the resole phe-
nol/formaldehyde resins are assigned in Supporting Information
(Supporting Information Table S1).

It was expected that both catalysts used would be observable
through two clear absorption bands; one band at 1650 cm−1,
noted for hydrated phosphates P OH and corresponding to O H
stretching and O H deformation vibrations and second band
between 1300 and 900 cm−1 that is characteristic of P O and
C O vibrations.40 In this reaction, these absorption bands cannot
be independently isolated as both bands coincide with the phenolic
resin bands at 1594 cm−1, corresponding to the absorption of
C C of phenyl rings, and bands 1100 cm−1, which are the charac-
teristic of the C H flexural of phenyl rings.

Two bands observed at 1630 cm−1 and 1612 cm−1 are of particu-
lar interest. The first band was noted as the C O stretch

Figure 5. The IR spectrum of phenol/formaldehyde resin cured (a) without
catalyst, (b) with a slow action catalyst (Phencat 382), and (c) with a fast action
catalyst (Phencat 10). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. Two possible reactions of phenol/formaldehyde resin with acid catalyst.

ARTICLE WILEYONLINELIBRARY.COM/APP

48249 (6 of 10) J. APPL. POLYM. SCI. 2019, DOI: 10.1002/APP.48249

http://wileyonlinelibrary.com
http://WILEYONLINELIBRARY.COM/APP


(overlapped with OH scissors of water), which is the characteristic
of unreacted formaldehyde. This first band has higher intensity
when the materials is made using a catalyst with a short cure cycle
when compared to phenolic cured without a catalyst using long
cure cycle. This absorption band can be interpreted in either of the
two ways: firstly, the resins formed using a catalyst might have a
slightly reduced cross linking density or secondly, and more likely,
the acid catalyst pushes the equilibrium of the two-step reaction
toward the second step of the polymerization of phenolic resin.
Either interpretation results in less formaldehyde being used in the
initial reaction and thus leads to the presence of unreacted formal-
dehyde. The latter is more likely because it is observable that the
phenolic resin cured with a fast action acid catalyst showed a stron-
ger 1630 cm−1 band when compared to that of phenolic resin cured
with a slow action acid catalyst. This result would be expected as
the fast catalyst is the more acidic.

An interesting feature is the absorption band present at 1612 cm−1.
This absorption band displays a greater intensity in the case of phe-
nolic resin cured without catalyst than that of either catalyst. The
band is caused by the C C aromatic ring within a functional
group of phenol-formaldehyde resin. This is the product of the first
step reaction of phenol and formaldehyde and therefore is consistent
with the premise that the acid catalyst is slowing down the forma-
tion of this product.

Two interesting bands were also noted at 2912 cm−1 and
1100 cm−1, these bands are attributed to methylene and ether
bridges, respectively.39 Changes in the two bands values were observed

between the two catalysts. These changes are expected to originate
from the differences of the phenol-bonding mechanism. It was noted
that there was a reduction of ether bridges within phenolic resin cured
with a fast action catalyst when compared to that of phenolic resin
cured with a slow action catalyst and a consequential increase inmeth-
ylene bridges in phenolic cured with fast catalyst when compared to
that of phenolic cured with slow catalyst. The more acidic the catalyst,
the more that the phenol is protonated and therefore the less nucleo-
philic it is. As a result, it is less likely that it will follow a secondmecha-
nism and form ether bridges (see Figure 6). The results observed point
to an increased likelihood that the first mechanism is the correct one.
If so, themore acidic catalyst (fast action catalyst) will promote the for-
mation of methylene bridges within the phenolic. Methylene bridges
have a greater bond strength than that of ether bridges.41 This can
result in different mechanical properties of the phenolic due to more
methylene bridges (see section 3.3).

Flexural Strength and Modulus
The flexural properties of the three types of cured phenolic resins
were determined and are presented in Table II. It can be seen
that the phenolic resin cured without a catalyst, using a long cure
cycle (almost 4 days), has the highest average values of flexural
strength (88 � 18 MPa) and modulus (3.2 � 0.28 GPa) in com-
parison to those of phenolic resins cured with catalysts. This is
expected and can be explained in part by the reduced area of
phenolic resin due to the presence of voids when prepared with
catalysts. With the use of a slow action catalyst, the flexural
strength and modulus of the cured phenolic resin were decreased

Table II. Flexural Properties of The Three Types of Cured Phenolic Resins

Sample
Flexural
strength (MPa) STDEV

Flexural
modulus (GPa) STDEV

Deflection
(mm) STDEV

Phenolic without catalyst 88 18 3.2 0.28 1.2 0.25

Phenolic with slow action catalyst
(382)

47 8 2.0 0.25 0.99 0.11

Phenolic with fast action catalyst
(10)

68 12 2.3 0.43 1.2 0.25

Figure 7. The microstructural representations of phenolic resin cured with a slow action catalyst (Phencat 382) (~150 individual microvoids) and a fast
action catalyst (Phencat 10) (~300 individual microvoids). Each model has an overall solid density of 70%.
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to 47 � 8 MPa and 2.0 � 0.25 GPa, respectively. The presence of
the voids in the cured resin increases the pressure on the sur-
rounding resin and also they act as stress concentrators rendering
the material more fragile.42,43. When the sample is subjected to a
load, stress and strain concentrations will be generated around the
voids causing a local plastic deformation. Then with increasing
load, cracks will be initiated and grow in the voids-free resin zones,
with the resultant reduction in the resin strength.44,45 Such cracks
were clearly observed by SEM image as shown in Figure 2(d).

However, it is important to point out that the average values of
the flexural strength (68 � 12 MPa) and the flexural modulus
(2.3 � 0.43 GPa) of the phenolic resin cured with a fast action
catalyst were higher than those of phenolic resin cured with a
slow action catalyst. Moreover, some of the tested samples from

the phenolic resin cured with a fast action catalyst showed very
close or even the same flexural strength values as some of phenolic
resin cured without a catalyst (see Supporting Information Table S3
and Figure S1). By taking into account the void volume fraction, it
has been noted that the flexural strength of the phenolic resin
cured with a fast action catalyst was similar to the flexural strength
of the reference sample (cured without catalyst). Whereas in the
case of using a slow action catalyst, the flexural strength remains
lower than that of reference and fast action cured samples.

Therefore, the differences in the flexural properties between the
two phenolic resins (cured with either slow or fast action catalyst)
can be attributed to both the structural and chemical changes
presented in this article. In terms of the chemical changes, it is
possible that the presence of high prevalence methylene bridges

Figure 8. The comparison of the stress distribution in models that represent phenolic resin cured with a slow action catalyst (phencat 382) (a,c) and pheno-
lic resin cured with a fast action catalyst (phencat 10) (b,d). The resulting von-Mises stress is plotted (a,b) as a cross section of the cube. Red indicates a
stress of 88 MPa, while blue indicates a minimum stress of 0. Parts (c) and (d) are top down views of the model highlight only the top 20% of stresses
(70-88 MPa) within the system. The red-dashed line indicates the cross section seen in parts (a) and (b). Parts (e) and (f) are the SEM micrographs of the
fracture surface of the phenolic cured with slow action catalyst and fast action catalyst, respectively. The small images to the right of the figure highlight the
direction of the image seen. [Color figure can be viewed at wileyonlinelibrary.com]
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in the case of using a fast action catalyst (as discussed within
FTIR analysis in section 3.2) could potentially improve the flex-
ural properties of the cured resin. But more significantly, it can
be confirmed that the increase in the flexural properties in the
case of using fast action catalyst were due to the void size and
distribution in the cured resin. For instance, in phenolic foams, it
has been found that the cell size and cell distribution have signifi-
cant effects on the final mechanical properties of the foam.
Smaller and more uniform cell size in the final cured foam will
potentially improve the mechanical properties.24 Similarly, in this
study, the LV-SEM micrograph and image analysis of the fracture
surface of the phenolic resin cured with a fast action catalyst
shows small and uniform void diameter distribution, whereas a
non-uniform void diameter distribution was observed in the case
of using slow action catalyst (see section 3.1).

To understand this further, it was thus confirmed that the void
diameter distribution plays a major role in the crack initiation
and propagation. Small cracks terminated at both ends by voids
were observed in the fracture surface of phenolic resin cured with
a fast action catalyst. It was assumed that the small and uniform
distances between the small voids can help to prevent the crack
propagation in the void-free resin. This is in contrast, to the
cracks in the case of using a slow action catalyst was fewer and
longer cracks exist, which are seen by SEM in Figure 2(d) to
propagate in the void-free area and also along the large voids.
Moreover, the long boundary between the void-free area and the
large voids is also expected to accelerate the crack growth and
hence the early sample failure. All the above were further con-
firmed by the model in section 3.4.

Finite Element Modeling
To study the effect of the void size and distribution of phenolic resin
cured with slow and fast action catalyst has upon the stress concen-
tration and ultimately the failure strength of the resins, we employ a
simplistic finite element model. Experimental void sizes calculated in
Figure 3 are directly implemented into a finite element model using
an approach previously used to study the effect of electric field
enhancement in electro-ceramic materials.46 Treating the voids as
hard spheres, the lists of diameters are randomized and then sequen-
tially positioned randomly into a cube. This process continues until
the effective density of the solid is reduced to 70% (assuming both
materials have the same voids area fraction [30%] for simplification).
These spheres are then subtracted from the solid cube to form the
semidense structure replicated the two materials. Due to the differ-
ences in size and number of voids for each system (as already seen in
SEM images [section 3.1]), the size of the cube is modified to save
computation time. Hence, to create models for phenolic resin cured
with a fast action catalyst requires approximately 300 voids in a cube
of 5μm3, while for phenolic resin cured with a slow action catalyst,
approximately 150 voids in a cube of 15μm3 are need to generate a
70% dense solid. An example for each model can be seen in Figure 7.

The models are then imported into COMSOL 47 and solved using
the structural module. We assume the resin Young’s modulus is
3.2 GPa with a Poisson’s ratio of 0.3.48 The model assumes the
resin is entirely elastic and isotropic. Due to the simplicity in per-
forming the model with the tensile load instead of the bending
load, we apply a tensile load of 21 MPa on the top surface as a

reference. This value is chosen as it generates a maximum stress
in both samples of approximately 88 MPa, the failure point of
the microvoid-free sample. The bottom surface was restricted in
movement within plane and a single node in the center of the
surface fixed rigidly in all dimensions to not overly constrain
the system. Symmetry was employed on the other four surfaces
to replicate a central region of “bulk”-like material. The model
was then discretised with over two-million tetrahedron elements,
ensuring convergence of the results. Figure 8 shows von-Mises
stress, highlight in red, the points at which failure may begin. In
Figure 8(a), it can be seen that the representation of phenolic resin
cured with a slow action catalyst (phencat 382) generates significant
stresses between the large voids (over 70 MPa), which extends over
a few micrometers in length. This is in comparison to phenolic resin
cured with a fast action catalyst (phencat 10) where stresses are as
great but highly localized between the small particles and typically
restricted to less than 1 μm in length due to the proximity of the
voids [Figure 8(b)]. To highlight this further, we plot only the
stresses greater than 70 MPa in Figure 8(c,d) as a top-down view. It
is clearly visible that for phenolic resin cured with a slow action cat-
alyst high stresses are located around the circumference of larger
voids in relation to the applied stress [Figure 8(c)] and extend
through the system to other large voids. The same high stresses in
phenolic resin cured with a fast action catalyst are only found
between two closely placed voids [Figure 8(d)]. If the yield strength
of the material is considered to be the point at which a crack would
form and spread, it is clear that for phenolic resin cured with a fast
action catalyst, these cracks would be between neighboring voids,
traveling less than 1 μm. Conversely, for phenolic resin cured with a
slow action catalyst, due to the increased distance between voids, the
crack could propagate much further, and as such reach a critical
point for fracture earlier. This is clearly consistence with the SEM
micrographs shown in Figure 8(e,f) and also in good agreement
with the flexural property results in section 3.3 (Table II).

CONCLUSIONS

LV-SEM combined with the finite element modeling suggests that
the size and spatial distribution of the voids in the cured phenolic
resin are of great importance in determining the final mechanical
properties of the resin. While the conventional approach in phe-
nolic resins is to minimize or to avoid the void content in the
cured resin, here we show that for the similar void content,
achieving a homogenous void distribution is critical. More atten-
tion should be paid to the engineering of voids size and distribu-
tion. With the use of fast action catalyst in curing the resole
phenolic resins, a better balance between the properties and cure
cycle could be achieved.
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