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Abstract

In the last decade, spintronics has emerged as a major field in condensed

matter physics. It aims to use the spin degree of freedom of charge carriers

to store, process and transmit information. Offering low power consump-

tion and high efficiency devices, it represents a path towards the next step

up for modern electronics. Spin-orbit torque (SOT) is a spintronics-based

phenomenom. It makes use of the coupling between the electronic spin and

momentum present in some systems to electrically control the magnetisation

of magnetic materials.

Two dimensional (2D) materials offer an ideal venue for spintronics ap-

plications due to their low dimensionality, versatility and tunability. Vertical

stacking of different layers allows for a remarkable control of the resulting

properties. This includes the engineering of the much sought after spin-orbit

coupling (SOC) via proximity interaction. The effects of strong SOC in these

heterostructures, however, remains fairly unexplored.

The aim of this thesis is twofold: to understand how SOC changes the

quantum interference effects, and to develop a microscopic theory for SOT

in disordered 2D Dirac heterostructures.

In Dirac materials the interplay between spin, pseudospin and isospin

vastly enriches the picture of quantum interference corrections. We find

that an unconventional SOC-driven weak localisation phase arises due to

spin-pseudospin coupling. Intervalley scattering recovers the standard weak

anti-localisation making detecting it very challenging.

Interesting results arise in ferromagnetic Dirac heterostructures. We find

new skew-scattering-induced spin responses: a collinear Edelstein effect and

out-of-plane spin response. Both constitute robust sources of damping-like

SOT and are highly sensitive to disorder strength. We show how all the re-

sponses can be interpreted in terms Fermi surface spin textures. In gapped

systems the SOT becomes highly anisotropic and a non-perturbative ap-

proach is necessary. These findings provide new insight into the nature of

SOT in ultra-thin structures.
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Chapter 1

Introduction

Two Dimensional Materials: Ever more relevant

Science is a paradoxical field that lives by the very thing it tries to eradicate:

the unknown. For this goal, it does not shy away from the inconceivably

large nor from the unthinkably small. Ideas and concepts need to go through

the ultimate filter that is nature. Once in a while, unusual and non-intuitive

concepts manage to pass this sifting process and that is when the scientific

community goes into a frenzy and breakthroughs are made.

It has been more than 15 years since the first isolation of a truly two

dimensional (2D) material [1]. The successful isolation of atomically thin

carbon layers, known as graphene, marked the beginning of a scientific "gold

rush". The study of low dimensional materials became much more than an

abstract endeavour as exciting new application possibilities sprouted across

a wide range of areas. Energy storage, water filtration systems, solar cells

and biological tissue fabrication [2–4] are but a few examples of graphene’s

versatility. Its low dimensionality plays a crucial role in the unique elec-

tronic, thermal and optical properties that allow for such applications [5].

Concurrently, it provided a perfect playground to tackle fundamental ques-

tions regarding the behaviour of fermions in the 2D limit with respect with

Klein tunneling [6, 7], Fermi liquid theory [8] and quantum Hall effect [9,

10], to name a few.

Perhaps most importantly, graphene was proof that 2D materials were

not only a real possibility, but also hosts to interesting physical properties

and phenomena. It was not long until new atomically thin compounds were

13



isolated [11]. Monolayer hexagonal boron nitride (hBN) is an isomorph of

graphene, but displays a large direct band gap [12], and 2D crystals obtained

from transition metal dichalcogenide (TMD) compounds can be metallic

(e.g. NbS2 [13]) or semiconductors (e.g. MoS2 [14] and WS2 [15]). It is this

vast variety, mixed with the high degree of tunability that is inherent to 2D

materials, that makes them prime candidates for cutting-edge technological

applications [16]. These monolayers can be obtained from their respective

bulk compounds via mechanical or chemical exfoliation techniques [11, 17,

18]. Alternatively, large scale high quality samples can be fabricated em-

ploying bottom-up approaches such as chemical vapour deposition [19–21].

The advancement of our understanding, together with the improvement of

fabrication techniques have led to new methods of enhancing their qualities

(and lessening their drawbacks), as well as to the discovery of new mono-

layer crystals. With proposals of 2D topological insulators (TI) [22] and,

more recently, their experimental realisation [23, 24] and the first isolations

of magnetic 2D materials [25, 26], new paths for research are still being

paved. The field of 2D physics is still flourishing as atomically thin materials

continue to provide a fertile ground for physics discoveries.

Exploring internal degrees of freedom:

Spintronics, Valleytronics

The field of electronics has completely reshaped the technological paradigm

of the 20th century. The invention of the transistor in 1948 triggered a

self-sustained boom of technological development that quickly permeated

through much of our daily lives. The order of the day is speed and efficiency,

and the need for better electronic devices is nothing but increasing. The ex-

ponential growth of the density of transistors in integrated circuits observed

in the last 50 years – known as Moore’s Law [27] – is slowing down. Technol-

ogy giants like Samsung Electronics were pushing for mass scale production

in 2020 of "5mm node" transistors but the development is becoming slower

and more expensive. At this scale, quantum tunneling and quantum confine-

ment effects become more pronounced (the atomic radius of silicon is ∼ 0.1

nm), leading to higher power consumption due to leakage currents [28]. In

light of these difficulties, there has been big a focus on finding alternative

technologies able to keep up with the demands set by precedent develop-

ments. A complete overhaul of the technology industry is a daunting and

14



incredibly expensive task, especially after decades of investment and devel-

opment, so it comes as no surprise that efforts are concentrated into com-

plementary technologies. Among those, spintronics shows a lot of promise,

making use of extra information encoded in the electrons: the spin.

The goal of spintronics is to use, in addition to the charge, the spin de-

gree of freedom (DOF) of charge carriers to store, transfer and process data

in solid state devices. Some of its main selling points include dissipation-

less pure spin currents and high stability spin-based non volatile memories,

which are attractive from the point of view of energy consumption of de-

vices and data storage applications. The field of spintronics can be said to

have started in the 1970s with the detection of spin polarised electron tun-

neling [29], and later the first injection of spin-polarised currents into non-

magnetic metals in 1985 [30], but it truly came to life with the discovery

of the giant magnetoresistance (GMR) effect by Albert Fert and Peter Grün-

berg in 1988 [31, 32], which earned them the Physics Nobel Prize in 2007,

cementing the importance of spintronics as an emergent research field. The

GMR is a phenomenom wherein the resistance of a magnetic multilayer sys-

tem greatly depends on the relative magnetic orientation of the layers and

paved the way for magnetoresistive random access memories (MRAMs).

Electrical control of the electron’s spin

To develop robust spintronics devices it is necessary to have control over the

eletronic spin DOF and ways of generating spin currents. For earlier devices,

this was accomplished via magnetic materials: the exchange interaction be-

tween the local magnetic moments and the itinerant electrons leads to a

transfer of angular momentum so that driving a charge current through a

ferromagnet (FM) generates a polarised charge current. Recently there has

been a great interest in all-electrical control and generation of spin currents

in non-magnetic media, bypassing the magnetic parts which make it harder

to integrate into existing electronic systems. The quintessential example of

such charge-to-spin current coupling is the spin Hall effect (SHE)[33]. First

predicted in 1971 by Mikhail Dyakonov and Vladimir Perel [34], it consists

in a generation of a pure spin current perpendicular to the applied charge

current, as depicted in Fig. 1.1a. This spin current usually manifests itself as

spin accumulation of opposite signs at the edges of the conductor (Fig. 1.1b).

The resulting polarisation is always perpendicular to both the initial charge

current and ensuing spin current [35]. In thin films the spin current is po-
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(a)
(b)

Figure 1.1: (a) The spin-Hall effect is the spin analogy to the conven-
tional Hall effect. In spin-orbit-active materials, electrons experience a spin-
dependent scattering which leads to a pure spin current transverse to the
applied current. (b) Optical measurement of the edge spin accumulation
generated by SHE in the semiconductor GaAs [37].

larised in the out-of-plane direction since there is much more phase space for

scattering in the plane defined by the film. The separation of spin projections

is enabled by spin-orbit coupling (SOC) present in the material (either intrin-

sically or in impurities), similarly to a Mott scattering event [36]. It was first

experimentally detected in semiconductors by measuring the spin accumula-

tion at the edges [37, 38] using Kerr rotation. This is a technique that makes

use of the magneto-optic Kerr effect, which is the change of the polarisation

of a reflected light beam due to the magnetisation/spin-polarisation of the

medium. The reciprocal effect to SHE, wherein a spin current generates a

transverse charge current, known as the inverse spin Hall effect (ISHE), was

first seen in metals, and later semiconductors [39–41] and can be used as a

spin current detection tool that does not require magnetic components.

Spin orbit interaction enables more charge-to-spin conversion mecha-

nisms other than the SHE. The inverse spin galvanic effect (ISGE), or Rashba-

Edelstein effect (REE), is the generation of an in-plane spin polarisation in

systems with broken inversion symmetry, upon application of a charge cur-

rent. The theory behind this phenomenom was developed with the model for

a 2D electron gas (2DEG) in the presence of a SOC of the Bychkov-Rashba1

type [42] in mind [43–46]:

1For brevity we refer to it as simply Rashba SOC from now on.
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H2DEG =
p2

2me

+ λR
(
pxsy − pysx

)
, (1.1)

where p =
(
px, py

)
is the electron momentum, me is the electron effective

mass, λR is the Rashba parameter and s = (sx, sy, sz) is the vector of Pauli

matrices acting on the spin space, defined as:

sx =

(
0 1

1 0

)
, sy =

(
0 −i
i 0

)
, sz =

(
1 0

0 −1

)
. (1.2)

The Rashba SOC is allowed by the breaking of the z → −z inversion sym-

metry and it should be clear that without any inversion asymmetry there

could be no connection between a charge current and a non-equilibrium

spin polarisation since these two quantities transform differently under such

transformation. The ISGE has a simple semiclassical explanation based on

Fermi surface effects. The Rashba SOC locks the electron spin in plane, wind-

ing around the Fermi rings (with opposite chirality in each ring) such that

a population imbalance brought about by an electric field invariably leads

to a non-cancellation of the spin in the direction perpendicular to the elec-

tric field. It was actually the reciprocal of the ISGE, the spin galvanic effect

(SGE), that was measured first in GaAs quantum wells [47]. Subsequently,

experiments in InGaAs and AlGaAs/GaAs heterostructures [38, 48] showed

evidence of the ISGE in conjuction with SHE. In general, separating the two

contributions is no easy task and requires either multiple experiments with

different devices or a careful symmetry analysis of the results with respect to

an external magnetic field. Sánchez et al. have measured a charge current

generated after the injection of a spin current in Bi/Ag system that is much

larger than the one measured in the Ag/Ag or Bi/Bi structures, indicating

that the spin to charge conversion mechanism is dominated by the SGE [49]

(Figs. 1.2a-1.2b).

Other types of SOC can arise upon breaking of other inversion symme-

tries. The Dresselhaus SOC, for instance, is present in systems that lack an

inversion center. Originally studied in Zinc Blende structures [50], it has the

following form in 2D:

HD = λD
(
sxpx − sypy

)
, (1.3)

to linear order in the momentum, with coupling strength λD. Depending on

the particular asymetry there can be other types of spin-orbit interactions,

17



such as the spin-valley coupling (see Chapter 3).

In graphene-based heterostructures the ISGE was recently measured in

a spin-valve geometry [30, 51], illustrated in Fig. 1.2c. In this set up one

first generates a spin density (in this case via either the SHE or ISGE) at the

injection point. The spins then diffuse through a channel where a magnetic

field is applied, inducing Larmor precession. The spin signal is then detected

at the end of the spin channel via a ferromagnet, as shown in Fig. 1.2c.

Sweeping the magnetic field modulates the signal yielding Hanle precession

curves (Fig. 1.2d). The SHE and ISGE have different symmetries regard-

ing the orientation of the magnetic field so they can be discriminated using

oblique fields [52–55].

The spin orbit interaction plays a key role in the electrical control of

spins and was expertly exploited in the 1990 proposal of a spin field-effect

transistor by Datta and Das [58]. They envisioned a device composed of a

spin source and drain (ferromagnets) and a channel through which the spins

would propagate. Similarly to the aforementioned spin valve set up, the rel-

ative orientation between the drain magnetisation and the spins determines

the strength of the signal, however, in this case there is no applied magnetic

field. The spin precession is activated by the SOC that is assumed to exist

in the channel, and acts as a pseudo-magnetic field. The final piece is the

SOC tuning via a gate voltage, allowing for the control of the spins preces-

sion rate and thus the signal at the drain. The Datta-Das transistor is an

important concept in spintronics and functioning versions of it have already

been manufactured [59]. With this device in mind we shall see in the next

Sections why 2D materials are so promising for spintronics applications.

Spin Orbit Torque

Spin-charge conversion mechanisms such as the SHE, ISGE and their in-

verse are now playing major roles in the development of MRAM. Non-volatile

memory cells have seen remarkable advances. Originally based on the GMR

effect, developments on magnetic tunnel junctions (MTJ) [60–62] and spin

transfer torque (STT) [63–65] have opened paths towards new paradigms

of MRAM. The STT is the transfer of angular momentum from itinerant elec-

trons to the local magnetic moments of a magnet. Typically, the electrons are

polarised by interacting with local magnetic moments in a localised region

of the system (e.g. a FM layer of a multilayer system or a domain of a FM)

and then flow into another region with a different magnetisation orientation
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(a)

(b)

(c)
(d)

Figure 1.2: In (a) and (b) (taken from Ref. [49]) a spin current is excited in
a ferromagnet via magnetic resonance. This spin current is then converted
into a charge current at the Ag/Bi interface, seen in the bottom right panel of
(b). If interface asymmetry is removed, by making it Ag/Ag or Bi/Bi (bottom
left and center panels respectively), there is a significant reduction of the
detected signal, indicating that the conversion must be done mainly via the
SGE. The spin valve set up shown in (c) from Ref. [51] is be used to detect
spin signals (often to extract spin diffusion lengths [56, 57]). At the injector,
a spin polarisation is generated (for example via the ISGE) which diffuses
through the channel where a magnetic field is applied. By changing the
intensity and orientation of the magnetic field, one can modulate the signal
measured at the detector, generally a ferromagnet. Such a modulation can
be seen in (d), from Ref. [54], as a magnetoresistivity curve that captures
the dependence of the resistivity on the relative orientation between the
electrons spins and the mangnetisation of the ferromagnet.

exerting a torque and reorienting the magnetisation, as depicted in panel

(a) of Fig. 1.3. Spin pumping is the reciprocal effect of STT [66]– i.e. the

emission of spin currents by magnetisation dynamics – and is a valuable tool

in probing spin-dependent phenomena [67, 68]. There are some issues with

the STT approach for large density memories where large spin currents must

be driven through MTJ without damaging the barriers and maintaining reli-

able switching [69]. Furthermore, ultrafast switching requires large currents
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that are damaging to the magnetic junction. An alternative method known

as spin-orbit torque (SOT) is a variation of STT where the spin polarisation

is generated via charge-to-spin conversion phenomena such as the SHE or

ISGE [70–72]. Placing a heavy metal (HM) in contact with the FM and driv-

ing a charge current through it leads to the polarisation of electrons at the

interface (panels (b) and (c) of Fig. 1.3). This way, the switching of the

FM can be achieved without relying on extra magnetic parts. Reversing the

current changes the sign of spin polarisation, so SOT allows for a reversible

control of the magnetisation. These electrically driven torques have already

been observed in a wide variety of structures such as HM/FM bilayers [69,

73, 74], TI [75, 76] and, more recently, 2D materials [77–81].

The standard measurement of SOT is based on ferromagnetic resonance

(FMR) experiments [82]. In FMR, an alternating current is applied in plane,

generating a torque field which in turn excites magnetisation dynamics in

the FM. Due to the anisotropy magnetoresistance of the FM, the measured

resistance will oscillate in time with a frequency set by an external magnetic

field that is non collinear with the applied current. This leads to frequency

mixing and a dc voltage Vmix that is measured. When the resonance fre-

quency of the FM matches the ac frequency, Vmix displays a peak whose

shape characterises the existing torques in the sample.

Another technique for measuring SOT is known as the second harmonic

Hall measurement [83, 84]. This makes use of the fact that the tilting of

magnetisation in a FM induces a change in the Hall resistance ρH [85].

Hence, driving an ac current I (ω) through a FM will modulate the Hall

resistance due the oscillation of the current-generated SOT. The Hall volt-

age includes then second harmonic terms VH = ρHI (ω), with respect to the

relative angles between the applied magnetic field and the current. From

the harmonic expansion one can extract the effective fields associated with

the SOT. This technique has been used to detect SOTs in various systems

such as oxide trilayers [83, 84, 86], normal metal/FM bilayers [87, 88] and

TMD/FM bilayers [77].

There are already significant advancements when it comes to the theory

behind the microscopic origin of SOT in 2DEG [89, 90] and topological in-

sulators [91]. 2D materials on the other hand are lagging behind in this

aspect as the nature of SOT in this ultrathin limit is still unclear [92]. With

proposals for SOT devices based entirely on 2D materials [93, 94], a general

microscopic theory for SOT in these systems is sorely needed.
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Figure 1.3: The various methods for electrical switching in a MTJ. (a) Using
STT, electrons are first polarised via interaction with the reference FM layer
(blue). A spin current then flows into the recording layer (red), where, via
exchange interaction transfers its angular momentum to the local magneti-
sation, exerting a torque. After some time (switching time of the device) the
recording and reference layer magnetisations are aligned. The SOT achieves
the switching of the recording layer without using the reference layer. In-
stead, the polarisation happens by driving a charge current through a SOC-
active layer which generates a non-equilibrium spin polarisation via the SHE
(b) or the ISGE (c). Diagram from Ref.[95].

2D Materials in Spintronics

As the field of 2D materials established itself within the scientific commu-

nity, their potential for spintronics applications became clear. Their low

dimensionality is extremely useful for compact device fabrication but they

hold much more potential than simply being used for their extreme thin-

ness. Graphene is an excellent spin channel, being able to hold spin currents

across lengths of micrometre scale [96, 97]. This long spin diffusion length

is a result of both a high mobility of the charge carriers and a very weak

intrinsic SOC (recent microwave measurements put it at 42 µeV [98]). On

the other hand, this lack of a meaningful SOC does not allow for an easy

control of the spin precession. For this reason, the enhancement of SOC in

graphene without jeopardising its transport properties became a prominent

topic of research [99].

Enhancing SOC in Graphene: van der Waals Heterostructures

The carbon atoms in a graphene layer are sp2 hybridised, with these bonds

providing the structural integrity of the system. Its electronic properties are

vastly dominated by the electrons from the pz orbitals. Initial attempts to

increase the SOC in graphene drew some inspiration from another carbon

compound: diamond, in which the carbon atoms are sp3 hybridised and dis-
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plays a much larger SOC (around 10 meV [100]). Doping the graphene layer

with adatoms (e.g. hydrogen) would induce a distortion in the carbon lattice

with local sp3 hybridisation, increasing the SOC in the system [101]. Several

more studies followed, concerning adatom decoration with heavier species

(3d and 5d transition metals) predicting further increase of the SOC together

with a quantum anomalous Hall effect [102, 103]. However, experiments

with heavy elements such as In [104, 105] and Ir [106] showed no evidence

of a sizeable SOC-induced gap, likely due to the low diffusion barrier of

adatoms that leads to their clustering [107] or intervalley scattering [108].

An alternative to adatom decoration is to make use of other 2D materi-

als properties and layer-stacking them in what are known as van der Waals

(vdW) heterstructures (Fig. 1.4) [109, 110]. Their name derives from the

namesake forces that hold the different layers together (much like in the

case of graphene/graphite). These structures have already been realised

successfully. Graphene/hBN and graphene/WS2 can be used as a field-effect

tunnelling transistor [111, 112], and graphene/MoS2 is a candidate for non

volatile memory cells [113]. The fractional quantum Hall effect and the

Hofstadter butterfly observed in graphene/hBN [114] are examples of the

interesting phenomena these systems hold. The underlying principle behind

this band structure engineering are proximity effects: the hybridisation of

bands from different layers as electrons tunnel between them.

After the success of the first vdW heterostructures, it is vital to identify

what are the ideal layer combinations. Monolayer TMDs seem to be great

"partners" for graphene. These 2D materials are made up of three atomic

layers: two chalcogen layers interposed by a transition metal layer. Each

layer forms a triangular lattice, such that the crystal displays a honeycomb

lattice akin to graphene’s. However, the breaking of sublattice opens a gap

in the band structure that can be bigger than 1 eV [115]. Furthermore, the

presence of heavy metallic atoms leads to large SOC, with splitting of the

valence bands on the order of hundreds of meV [116]. They are also hosts

of a characteristic spin-orbit interaction known as the spin-valley coupling.

This interaction is activated by the in-plane inversion asymmetry that is in-

herent in these materials with two different atomic species. The spin-valley

interaction makes different extrema points in the momentum space (known

as valleys, or K points) exhibit different spin-splitting [117]. Charge carriers

can then be selectively excited from each valley by using circularly polarised

light [118, 119] by making use of optical selection rules. As such, TMDs are

considered prime candidates for applications in valleytronics and optoelec-
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Figure 1.4: The simple yet powerful idea of stacking different 2D materials
with the intent of combining different characteristics into one system. By
carefully selecting which layers to use we can engineer many different band
structure effects that allow for an array of different applications [109].

tronics.

Early first principles calculations predicted a SOC in graphene/TMD het-

erostructures up to 100 times bigger than in simple graphene. Not only

that, but as the graphene states lie within the TMD gap, the Dirac nature

of the charge carriers remains intact [98, 120, 121]. Experiments suggest

an even bigger enhancement with reports of a decrease of spin relaxation

time [122] and a giant spin lifetime anisotropy (SLTA) [51, 56, 57] indi-

cating SOC of ∼ 10 meV. The interface-induced spin-valley coupling is also

present in these heterostructures, where optical spin injection has been al-

ready achieved [123], a testament to the success of proximity effect-based

approaches.

Quantum Interference Effects: Weak Localisation

Coherent Backscattering

The concept of wave-particle duality of particles had a profound impact in

physics since de Broglie associated a momentum-dependent wavelength to

all particles. For electrons in particular, this duality is beautifully captured

by electron diffraction [124, 125] first observed in 1927 and now widely
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used as an experimental technique for structure analysis. Its classical coun-

terpart has been known since the 17th century and is an example of wave

interference.

Another manifestation of wave interference is coherent backscattering.

When light travels through a medium with a large number of scatterers with

size comparable to its wavelength, it will scatter off in every direction (the

same effect that causes the glare when shining light into fog). As it does so,

it interferes with itself generating a pattern around the cluster of scatterers

that depends on the positions of each centre. Coherent backscattering is

a general phenomenom wherein, regardless of the layout of the scatterers,

there is constructive interference at a scattering angle θ = π relative to the

incident source. This phenomenom also occurs with electrons scattering off

impurities in disordered conductors, in what is known as weak localisation

(WL)2.

Coherent Interference of Electron Waves

Weak localisation is a negative correction to the conductivity of disordered

systems when taking into account quantum interference effects. It stems

from the interference between the different possible paths an electron can

take through the scattering centers. It is evident that the conductivity of a

material is related to the probability W of electrons to move from an initial

pointA to another pointB. To do that the electrons can take several different

paths. The total probability is then obtained by summing all the different

paths contributions and then taking the modulus square:

W =

∣∣∣∣∣∑
i

wi

∣∣∣∣∣
2

=
∑
i,j

wiw
∗
j =

∑
i=j

|wi|2 +
∑
i 6=j

wiw
∗
j . (1.4)

The first term in Eq.(1.4) is the probability for the electron to take any

path. This is the classical contribution, in which the paths are uncorrelated,

and is the origin for the Drude contribution [129]. The second term takes

into account the interference between all the different amplitudes and is

inherently a quantum effect. Each path is associated with a phase so that

vast majority of path pairs i 6= j will have a large phase difference, and

therefore, will average out when summing over all the paths. The exception

2Actually, the classical case with waves was observed after its quantum counterpart [126–
128], since the θ = π peak can be very sharp making managing a source/detector system at
such angles very challenging.
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are path pairs that cancel each other’s phase exactly, i.e. paths that are time

reversal pairs, as depicted in Fig. 1.5. In this case the particle retraces the

trajectory in reverse, which is only possible if the initial and final points A

and B are the same. Considering two of these paths we have:

WCC = |w1|2 + |w2|2 + w1w
∗
2 + w2w

∗
1 = 4 |w1|2 , (1.5)

since the two amplitudes only differ by a phase: φ1 = −φ2. Equation (1.5)

tells us that the probability of finding the particle in the same place after the

scattering events is twice the value that one would get in the classical picture.

There is a constructive interference increasing the likelihood of electrons re-

maining stuck in these loops, thus not contributing towards transport. Note

that this is not a many body effect, but rather a phenomenom of self inter-

ference.

The theory of WL started in the end of the 1970s with Abrahams, An-

derson, Licciardello and Ramakrishnan [130]. Using renormalisation theory

they realised that the 2D case of electrons diffusing through random media

is special: instead of a transition from a conducting to a localised regime

at some critical disorder strength as in 3D, it has a crossover from a loga-

rithmic localisation to the conventional exponential localisation. This pecu-

liarity was already noted by Langer and Neal back in 1966 as a breakdown

of perturbation theory for the resistivity [131]. Diagrammatic calculations

soon followed [132, 133] that computed the full set of maximally crossed

diagrams (for details see Chapter 2) confirming this result. The inclusion of

SOC changes the problem interestingly. Hikami, Larkin and Nagaoka [134]

showed that, if the spin and orbital degrees of freedom are strongly coupled,

the interference becomes destructive instead. This is because spin states of

the interfering waves are off-phase by 2π, as the spin rotates with the mo-

mentum. This phase difference, for fermions, leads to a minus sign and the

quantum correction to the conductivity becomes positive in what is known

as weak anti-localisation (WAL) [135]. These quantum coherence effects are

only observable in 2D materials since in 3D there are more "escape routes"

available out of the loops. Furthermore, they are low temperature effects

as they hinge on electrons being able to maintain quantum coherence. The

latter can only be maintained at lengths up to the coherence length L which

decreases sharply with temperature. For systems much larger than the co-

herence length, the WL/WAL effects are the leading contributions towards

the quantum corrections to electronic transport. The case where the coher-
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ence length is larger than the system size falls outside of the scope of this

work. It is the realm of mesoscopic physics where other quantum interfer-

ence effects become relevant as well. Systems at this scale require a quantum

treatment of their transport properties, yet statistical treatment is still ade-

quate. Random matrix theory is a formalism to study such systems which

exhibit features of quantum chaos [136–139].

Figure 1.5: The localisation corrections arise when considering impurity
loops that can be traversed anti-clockwise (w1) or clockwise (w2). If the
system is time reversal invariant, the two paths have the same phase and
interfere constructively, yielding an increased probability for electrons to re-
main in these loops. This manifests as a negative contribution to the conduc-
tivity of the system, known as weak localisation. Image adapted from Ref.
[140].

Magnetic fingerprint of quantum interference

For most systems the WL corrections are, as the name indicates, a small

change to the dominant (classical) conductivity. Nevertheless, it is possible

to measure them by analysing the magnetoresistivity of the system at low

temperatures. The perfect constructive/destructive interference is ensured

by time reversal symmetry that connects the two ways of circling around a

loop. Applying a magnetic field breaks this equivalence and introduces a

phase:

WCC = 2 |w|2 [1 + cos (2ϕB)] , (1.6)

which is given by the magnetic flux, Φ, enclosed in the loop: ϕB = −eΦ/~.

When accounting for all the possible impurity loops this phase becomes

effectively a random variable and the interference effects are suppressed,

which translates to a peak in the magnetoresistivity curve for low tempera-

ture. A negative (positive) magnetoresistivity for low values of the magnetic
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field is a sign of weak (anti)localisation. As such, WL corrections can be used

to probe the strength of SOC in a material. The shape of the peak also holds

valuable information about the system’s coherence length, mean free path

and spin diffusion length [141].

Quantum Interference Corrections in Dirac Materials

The interplay between different internal degrees of freedom is vital for quan-

tum interference effects. Honeycomb lattices are made up of two triangular

sublattices (A and B) from which emerges a spin-like DOF known as pseu-

dospin, which characterises the electronic distribution over the two sublat-

tices (e.g. the A sublattice is associated to the "up" pseudospin state). Fur-

thermore, the already mentioned valley DOF (also known as isospin) is also

present. In graphene, the presence of these DOFs dramatically changes the

picture, as first pointed out by Ando and Suzuura [142]. If the valley DOF

is ignored, graphene displays a WAL phase (without SOC), and only when

opening the intervalley channel (e.g. with short range impurities) does it

recover the traditional WL phase. Later, a theory of the quantum correc-

tions to the magnetoresistivity was developed for graphene with pseudospin

and isospin active impurities [143]. Such theories are vital for the accu-

rate interpretation of magnetoresistivity experiments, widely used for the

characterization of 2D materials and vdW heterostructures [141, 144–150].

Many more works followed, first extending the theory to include SOC in the

band structure and impurities [151], and eventually moving to TMDs [152],

vdW heterostructures [153] and even TI [154, 155]. However, the theories

concerning graphene and vdW heterostructures are focused on the case of

either weak SOC or disorder-induced SOC. Nonetheless, some experiments

indicate that the SOC operative in these structures can be as large as 10 meV

[150]. As such, a theory fully non-perturbative in the SOC is amiss and is

one of the focus points of this thesis.

Goals and Outline

This thesis is centered around the effect of strong SOC in 2D Dirac systems,

namely graphene-based vdW heterostructures with proximity-induced SOC

and graphene/TMD/FM heterostructures. We will be focused on two dif-

ferent aspects: quantum interference effects in the former and SOT for the

latter.
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This work is organized as follows. We start by laying down the formalism

used for the theoretical study of the above mentioned matters in Chapter

2. We will introduce a diagrammatic technique that allows us to treat, in

a fully quantum mechanical manner, SOC and disorder non-perturbatively

in the limit of dilute impurities. This is an extension to the standard di-

agrammatic formalism that is limited to weak disorder strength (Gaussian

approximation) [156, 157]. In Chapter 3 we present the models used to

study the different systems. We start with the simplest case of graphene and

slowly build upon it until we reach the model for general honeycomb lat-

tices of graphene/TMDs heterostructures coupled to FM. This is where band

structure, spin texture, and other quantities will be discussed. Additionally,

the effects of disorder in terms of self energy and propagators for the chosen

approximations will also be analysed. Chapter 4 is dedicated to the study

of quantum corrections to the conductivity in graphene with strong SOC. In

order to build familiarity with the formalism we will start with conventional

graphene in the presence of different types of disorder before we delve into

the strong SOC case with the inclusion of valley-mixing scatterers. Spin orbit

torque in graphene and vdW heterostructures coupled to FM is the subject

of Chapter 5. To conclude, we summarise the main points achieved in this

work and discuss possible extensions to this project in Chapter 6.
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Chapter 2

Theory

2.1 Linear Response Theory: The Kubo Formula

Linear response theory is a widely used tool to compute how a system re-

sponds to a weak external perturbation V (r, t) that drives it out of equilib-

rium. It hinges in the simple idea that, if the perturbation is indeed small,

the response should be linear in the applied field. The derivation of the

Kubo formula assumes that there is only one frequency perturbing the sys-

tem, however, this should not be seen as a limitation since, within linear

response, different frequencies act independently of each other so that we

need only sum the individual contributions of each frequency.

Let H0 be the Hamiltonian that is being probed by the external force and

is time independent, and, from now on, we set ~ = 1. Suppose now that the

system is in some eigenstate |ψ(t′)〉 of the unperturbed Hamiltonian when

the external perturbation is switched on. Physically, this perturbation can be

brought about by a field h (r, t) that couples to some operator, Bµ (r), as:

V (t) =

∫
d3rBµ (r)hµ (r, t) . (2.1)

The dynamics of the system are now controlled by the full Hamiltonian H =

H0 + V . The expectation value of the observable Oα at a time t > t′ is:

〈Oα(r, t)〉 = 〈ψ(t)|Oα(r)|ψ(t)〉, (2.2)

Since the perturbation is small, we can separate the time dependence of the

state vectors into a fast, trivial, oscillatory component driven by H0 and a
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slower one controlled by V . This owes itself to be treated using the interac-

tion picture: |ψI (t)〉 = eiH0t/~|ψ (t)〉 (the state/operator on the rhs are in the

Schrödinger picture). The time evolution of the states |ψI(t)〉 is controlled

by the time evolution operator U (t, t′):

|ψI(t)〉 = U (t, t′) |ψI(t′)〉. (2.3)

This operator can be expanded using the Dyson’s Series:

U (t, t′) = T
[
exp

(
−i/~

∫ t

t′
dt1V (t1)

)]
≈ 1− i

∫ t

t′
dt1 V (t1), (2.4)

where T stands for the time ordering operator and we have linearised the

exponential in V . Using Eq.(2.4) and (2.1) into (2.3) yields [158, 159]:

〈Oα(r, t)〉 = 〈Oα(r)〉0 +

∫
d3r′

∫ +∞

−∞
dt′
∑
β

XR
αβ(r, r′, t, t′)hβ(r′, t′), (2.5)

with the response function defined as:

XR
αβ(r, r′, t, t′) = −iθ (t− t′) 〈[Oα(r, t),Bβ(r′, t′)]〉 . (2.6)

The step function ensures causality and is equivalent to introducing the

above mentioned switching on process explicitly in the time dependence

of the perturbation. This result is easily extended for finite temperature by

considering a canonical ensemble and the only difference is that the symbol

〈·〉 now denotes a thermal average [160]. Since H0 is time independent, the

response function will only depend on the time difference t − t′. Using the

eigenstates of H0, H0|n〉 = En|n〉 and going to the frequency domain we can

recast Eq.(2.6) into its Lehmann representation:

X L
αβ (r, r′, ω = 0) = i

∑
nm

〈n|Oα(r)|m〉〈m|Bβ(r′)|n〉
En − Em

f (Em)− f (En)

En − Em + i0+
, (2.7)

having introduced the Fermi distribution function f(E) =
(
1 + eE/kBT

)−1.

In this thesis we are interested in spin/charge current responses of 2D

systems to a constant and homogeneous electric field E, in which case B is

the charge current Jβ = −evβ, vβ being the velocity operator (β = x, y). We

now make use of the fact that, in Dirac materials, the physical observables we

are interested can be written solely in terms of the elements of the algebra.
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Let us denote the elements of this d-dimensional algebra by {γi}, with i =

0, . . . , d − 1. For example, for 1/2 spin fermions, d = 16 or 64 depending

whether isospin is disregarded or not. The γi are matrices spanned by the

tensor product between the different Pauli matrices, including the identity,

which is γ0. As such, they have dimensions D×D, with D = 8 in the full case

where we consider spin, pseudospin and isopsin. The generalised response

function is, from Eq.(2.7):

Xαβ (ω = 0) = i
∑
nm

〈n|γα|m〉〈m|γβ|n〉
En − Em

f (Em)− f (En)

En − Em + i0+
. (2.8)

The positive infinitesimal imaginary part assures the causality of the θ (t)

and it singles out the contribution from the Fermi surface to the response

function. To further work Eq.(2.8) we introduce the one particle propaga-

tors, known as the retarded/advanced Green’s functions (GFs). They are

extremely useful when tackling the problem of randomly distributed impu-

rities and are defined as follows:

GR/A
p (ε) =

1

ε−H0 ± i0+
=
∑
n

|n〉〈n|
ε− En ± i0+

, (2.9)

in the spectral representation. After recasting Eq.(2.8) in terms of GFs we

arrive at a more useful version of the equation, the Kubo-Bastin formula

[161]:

Xαβ = i

∫ +∞

−∞
dε f (ε) Tr

{
γα

dGR (ε)

dε
γβδ (ε−H0)− dGA (ε)

dε
γαδ (ε−H0) γβ

}
.

(2.10)

The Kubo-Bastin formula is more suited to treat disordered systems due to

the presence of the GFs. From this equation one can identify two different

contributions, in the form of the Kubo-Streda formula [162, 163]. In this

form, the response function is separated into two different parts: σγ,Iαβ that

pertains to the contribution of the electrons at the Fermi surface, and σγ,IIαβ ,

which encodes the contribution from the whole Fermi sea:

X I
αβ =

1

4π
Tr
{
γα
[
GR −GA

]
γβG

A − γαGRγβ
[
GR −GA

]}
, (2.11)

X II
αβ =

1

4π

∫ +∞

−∞
dε f (ε) Tr

{
γαG

R (ε) γβ
dGR

dε
− γα

dGR

dε
γβG

R (ε) + h.c.

}
.

(2.12)
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Equation 2.11 in particular will be at the core of this work as we explore

different response functions for Dirac systems in the dilute impurity regime.

The contribution from the Fermi sea, or the Berry phase contribution en-

codes the intrinsic response (i.e. of the clean system) and is sub-leading

for diffusive processes that are mediated by impurity scattering. As such,

the next section is devoted to the diagrammatic expansion technique, which

allows to compute X I
αβ in the presence of a disordered potential.

2.2 Diagrammatic Expansion of Response

Functions

The Hamiltonian of the unperturbed system we are studying is generally a

combination of a bare termHb, coming from the periodic nature of the lattice

(the general form of which is determined by the lattice’s symmetries), and a

disorder term U , originating from randomly distributed impurities:

H0 = Hb + U. (2.13)

The presence of the U term hampers the straightforward approach of directly

using Eq.(2.9). Rather, one must take Eqs.(2.11) and (2.12) to be disorder
averaged. In the thermodynamic limit, the disorder average of an operator

〈O〉 is defined as:

〈O〉dis = lim
N,Ω→∞

N∏
i=1

∫
dri
Ω
O (ri, ..., rN) , (2.14)

where the limit is taken such that the ratio between the number of impurities

N and the system volume Ω is constant so that we have a finite impurity

concentration n = N/Ω. In this work we shall assume that the impurity

scatterers are short-ranged, and follow some statistical distribution:

U (r) = U

N∑
i=1

δ (r− ri) , (2.15)

here U can have a matrix structure (to include magnetic or SOC-active im-

purities for instance).

To illustrate the effects of this disorder average procedure let us look at

the one particle Green’s Function. Before impurity average, the GF is related

to the transition amplitude between an electron in state p to a state p′ and
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can be written as a infinite series containing any number of scatterings:

Gp,p′ = G0
pδpp′ +G0

pUp−p′G0
p′ +

∑
q

G0
pUqG

0
p−qUp−q−p′G0

p′ + ... (2.16)

with G0 being the free propagator, pertaining to the bare (clean) system Hb

and Uq is the Fourier transform of U (r). The above expression is made more

transparent when viewed in its diagrammatic form, shown in Fig. 2.1. Upon

disorder averaging, translational invariance is recovered and the impurities

lines are "connected". Diagrammatically this is achieved by joining the im-

purities lines of each term in Gp,p′ in all possible manners, as shown in Fig.

2.2. Here we define reducibility: the maximum number of propagator lines

we can cut in a diagram such that we still end up with valid diagrams. Irre-

ducible diagrams are the one in which we cannot cut any G0
p line. We now

write the disorder averaged propagator Gp in terms of a Dyson-like series:

Gp = G0
p +G0

pΣ (p)Gp , (2.17)

where we have introduced the Self Energy of the system Σ. This quantity

contains every irreducible diagram (without the external propagator line)

and, if we were able compute it exactly, it would allow us to treat to prob-

lem of random short range scatterers exactly. The fact that this is not the

case, however, should not be seen as a major impediment. The diagram-

matic method provides a way of tuning into a particular transport regime

by choosing which subsets of the full series we sum. The simplest choice is

the Gaussian approximation, in which we only keep the diagrams with two

potential lines (second diagram in Fig. 2.3) and is the limit of weak po-

tential disorder. This approximation is equivalent to assuming the disorder

Figure 2.1: The electron propagator in the presence of disorder can be de-
picted as an infinite series of diagrams of free propagators (solid lines) going
through any number of scattering events. In these, the electrons interact via
the impurity potential (dashed lines) with the impurities (stars), changing
their momentum state.
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potential follows "white noise" statistics:

〈U (r)U (r′)〉dis = nu2
0δ (r− r′) ; 〈U (r)〉dis = 0. (2.18)

A more refined approach is known as the T-matrix approximation in which

we keep all the one impurity diagrams.

TR/A =
U

1− UgR/A
, (2.19)

where we have defined the momentum integrated GF:

gR/A =
1

Ω

∑
p

GR/A (2.20)

In this way the self energy becomes ΣR/A = nTR/A. This allows the treatment

of very strong potentials and any non-coherent single impurity scattering

events, enabling us to capture scattering events that distinguish between left

and right (relative to the electric field), known as skewness. Capturing this

asymmetry is essential when looking for phenomena such as the SHE, where

it is the scattering cross section for each spin projection favouring a particular

direction that leads to the generation of the transverse spin current.

The reason why we can indeed only select a subset of all the diagrams

but still get accurate result is the perturbative nature of the diagrammatic

expansion in the dilute regime. Not only are there diagrams that encode

multiple impurity scatterings so they are next order in the impurity concen-

tration, but for the same order in n there is a hierarchy in place. This is the

case of crossing diagrams, where potential lines cross. These depict coherent

scattering between different impurities and are smaller than their non cross-

ing counterparts by a factor of (kF `)
−1 which is a small number for metals

(here kF is the Fermi momentum and ` is the mean free path). When impu-

rity lines cross, the phase space volume available for the internal propagator

line is much smaller since it is constrained by conservation of momentum

Figure 2.2: The disorder averaged GF contains every possible way of con-
necting impurity lines from Gp,p′. This includes reducible diagrams (5th)
and irreducible diagrams of one (2nd, 3rd and 4th) and multiple impurities
(6th).
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for two different scattering events at the same time. The crossing diagrams

are related to quantum corrections that become increasingly important as

kF ` decreases. This quantity marks the transition between a system where

the semi-classical picture adequately describes the electronic states and one

where quantum effects need to be taken into account.

The computation of the self energy is the first step towards evaluating

the response function. Once that is done the disorder averaged GF is simply:

G =
1

(G0)−1 − Σ
. (2.21)

This expression can be used to recursively generate the rainbow diagrams

of the self-consistent Born approximation, in which we first compute G in

the Gaussian approximation and then re-insert it in Eq.(2.21) replacing G0,

and repeating the process. This however, amounts to a correction of order

(kF `)
−1 to the Gaussian self energy, so we shall ignore it.

2.2.1 Vertex Corrections and the Diffuson

We have seen how the disorder average procedure can be done by connecting

impurity lines. We now apply the same procedure to the response function

in Eq.(2.11). Now we can connect impurity lines coming from the same or

different fermionic propagators, i.e. GR and GA. The first case is taken care

of by using the disorder averaged GF as the propagator lines: GR/A → GR/A.

The latter case, on the other hand, pertains to the connecting diagrams, and

again we will work within a subset of diagrams that we can sum and that will

encode the phenomena we are interested in. In the Gaussian approximation

mentioned, for example, we keep only the "ladder diagrams", depicted in

Fig. 2.4. Similarly to the self energy discussion, other diagrams contribute

to next order in the diagrammatic expansion. We will discuss the connecting

Figure 2.3: The skeleton expansion of the self energy. By recursively in-
serting it into the Dyson equation we generate the disorder averaged GF.
The choice of what diagrams we keep in the self energy determines which
regime/approximation we go into. The Gaussian approximation refers to
keeping only the second diagram (second order in the impurity potential)
whereas the T-Matrix is given by all the single impurity diagrams (e.g. 1st,
2nd, 3rd diagrams).
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Figure 2.4: The response function is given by a product of GF connected via
the two vertexes γα,β and via impurity lines. In the Gaussian approximation
(depicted) we only keep the "ladder diagrams". Equivalently we can include
all the ladders in a "bare bubble" with the renormalised vertex γ̃β which is
defined recursively as shown in the bottom line.

crossing diagrams and their role in quantum corrections later on, in Section

2.3.3.

The connecting diagrams are typically taken into account by incorpo-

rating them into a renormalised vertex γ̃i which generates recursively the

desired scattering processes (see bottom of Fig. 2.4). As such, the response

can then be computed using the renormalised vertex as:

Xαβ =
1

2π

∑
p

Tr
{
γαGRp γ̃βGAp

}
. (2.22)

We have neglected the terms mixing GF from different sectors. The other

terms GaGa in Eq.(2.11) are subdominant since the two GF involved are

analytical in the same half of the complex plane.

The renormalised vertex satisfies a Bethe-Salpeter equation. Within the

T-Matrix approach it has the following form:

γ̃i = γi + n
∑
p

GRp TRγ̃iTAGAp. (2.23)

The renormalised vertex γ̃i includes an infinite series of non-coherent scat-

terings (and therefore is more general than the standard ladder approxima-

tion). This is formally achieved via substitution of the impurity lines in the

ladder series by T-Matrix insertions [164].

An alternative method that bypasses the sum in Eq.(2.22) is the Diffuson
method, which was first developed in the context of 2DEG with Gaussian im-

purities (ladder approximation) [165]. The method can be generalised for
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Dirac systems within the T-Matrix approximation [166]. This makes use of

the fact that we can write the operators in terms of algebra elements, includ-

ing the renormalised vertex, such that γ̃i =
∑

j cijγj. Projecting Eq.(2.23)

onto the basis set yields:

cβρ = δβρ +
∑
δ

cβδ
∑
p

n

D
Tr
{
TRGRγδG

ATAγρ
}

= δβρ +
∑
δ

cβδMδρ,
(2.24)

with

Mδρ ≡
n

4

∑
p

Tr
{
TRGRγδG

ATAγρ
}
. (2.25)

Here c is a matrix whose lines are the coefficients for the different renor-

malised vertices, and the elements of the algebra are matrices with dimen-

sions D ×D. We can rewriteM by introducing two new matrices:

Nαβ =
1

D
Tr
{
GRγαG

Aγβ
}
, (2.26a)

Υαβ =
n

D
Tr
{
TRγαT

Aγβ
}
, (2.26b)

which allow us to write M = N · Υ1. The response function can then be

computed entirely from only N and Υ:

Xαβ =
1

2π

∑
p

Tr
{
γαGRp γ̃βGAp

}
=

1

2π

∑
ρ

cβρ
∑
p

Tr
{
γαG

RγρG
A
}

=
D

2π
[c · N ]βα

=
D

2π

[
(c− 1) Υ−1

]
βα

=
D

2π

[(
(1−NΥ)−1 − 1

)
Υ−1

]
βα
.

(2.27)

Finally we introduce the Diffuson matrix D = (1−M)−1 to arrive finally at:

1It is easy to see that, for any matrices A, B, C and D:

Tr
{
AσαBσβ

}
Tr
{
CσβDσγ

}
= Aabσ

α
bcBcdσ

β
daCefσ

β
fgDghσ

γ
he

= 2CeaAabσ
α
bcBcdDdhσ

γ
he

= 2Tr {CAσαBDσγ} ,

where we have used the property of Pauli Matrices σαabσ
α
cd = 2δadδbc.
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Xαβ =
D

2π

[
(D − 1) Υ−1

]
βα
. (2.28)

The Gaussian limit is easily obtainable by setting Υ = nu2
0/4. This T-Matrix

approximation is a more general and powerful framework that allows access

to the strong impurity potential regime, even capturing the unitary limit

u0 →∞ (the case of vacancies) [167–169].

Equation (2.28) provides a clear and straightforward way to access any

response function at semi-classical level from the Diffuson matrix. The Dif-

fuson encodes information about how the different physical quantities in

the system (the ones described by the algebra elements γi) diffuse and how

they are coupled. As such, it can be used to derive the continuity and dif-

fusion equations of the system if we include the frequency and momentum

response.

We shall make use of this formalism when we look into the non-equilibrium

spin density response of different systems to an external electric field. The

study of quantum effects, however, requires us to go beyond single impurity

scattering events and take into account coherent scattering. This shall be the

focus of the next section.

2.3 Quantum Effects in Disordered Conductors

Resistivity in metals is a simple result of the fact that electrons, when mov-

ing in the presence of some driving force, encounter obstacles within the

medium they are trying to traverse. At room temperature the main contri-

bution for resistivity comes from electron-phonon scattering, in other words,

lattice vibrations. The dependence of the phonon density with tempera-

ture is then passed on to the resistivity. As temperature decreases electron-

phonon interactions become less and less important. However, resistivity

never reaches zero, instead, at near zero temperature, it remains finite. This

residual resistivity comes from lattice imperfections and from the scattering

between electrons and impurities. This is even more so in graphene, since

the electron-phonon coupling is weak even at room temperature [170–173].

Another famous effect of impurities on the resistivity is known as the Kondo

effect [174], wherein the scatering off magnetic impurities results in a resis-

tivity minimum at finite temperatures. This is the reason why a meaningful

description of electronic transport must take impurities into consideration.

Besides, as was already mentioned, very frequently impurities are not an
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unwanted factor but actually the main ingredient that enable some physical

phenomena.

2.3.1 The Semi-Classical Picture

In the Drude-Sommerfeld picture, electrons in a metal form a gas of non-

interacting particles that move freely between collisions with the impurities.

The collisions are taken to be instantaneous and the effect of impurities is

included in a momentum relaxation time τp, which is the average time be-

tween scattering events. The mean free path is then given by ` = vF τp, where

vF is the Fermi velocity. If we apply an electric field E, these particles will

move according to the following equation of motion:

m
dv
dt

= −eE − m

τp
v, (2.29)

with −e < 0 the electron charge and v the velocity of the electron. Restrict-

ing ourselves to the steady state, dv
dt = 0, one immediately gets:

v = −eτp

m
E . (2.30)

From the expression for the charge current J = −Neev = σE, we can read

the Drude conductivity:

σ =
Nee

2τp

m
, (2.31)

where Ne is the electron density of the metal. It is worth to stress that this

expression tells us that the conductivity is linear in τp. Generally, in the

absence of magnetic fields, we get that τp must be inversely proportional to

the impurity density: τp ∼ 1
n
, which implies that the Drude conductivity is

of the order 1/n, a signature feature of a semi-classical contribution. There

were several assumptions made in order to arrive at Eq.(2.31): we assumed

that, between collisions, electrons are described by non-interacting classical

particles, and collisions occur instantaneously with a probability τ−1
p per unit

time and are independent of each other.

Neglecting the electron-electron interactions is justified within Landau’s

Fermi Liquid theory in which the interacting system is equivalent to quasi-

particles whose ground state is the non-interacting system. In this picture,

one is allowed to make the non-interacting approximation with a simple

renormalisation of certain physical quantities such as electronic mass and

magnetic moment of the electron gas. For Dirac fermions, the properties of
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the Fermi liquid depends on the charge carrier density. At the Dirac point,

where the spectral weight vanishes, the system is marginally Fermi liquid,

while away from that point, system behaves as a conventional Fermi liquid

[8]. The presence of disorder changes the renormalisation parameters but

does not break the Fermi liquid phase [175, 176].

Treating electrons as classical particles can be justified as follows. Wave

packets move classically if the uncertainty in momentum ∆k is much smaller

than the momentum itself, kF . If we take the position uncertainty ∆x to be

given by the mean free path ` = vF τp, where vF is the Fermi velocity, and we

use the uncertainty relation ∆x∆k > 1/2 we have: 1
2l
< ∆k � kF , and so

we have our condition for classical electrons:

kF `� 1. (2.32)

Equivalently, the above condition implies that the semi-classical description

is valid when the electron wavelength is much smaller than the mean free

path λF � `. Therefore, we can treat electrons as classical particles in sys-

tems with dilute impurity densities. As disorder increases we expect quan-

tum effects to become relevant. In fact, this semi-classical result is only

the leading term in the expansion of the conductivity in terms of the small

parameter (kF `)
−1. As the impurity concentration increases some electrons

states become localised, thus not contributing to conduction. Eventually this

leads to an insulating phase in what is known as Anderson localisation [177].

In three dimensions this localisation occurs when the impurity concentra-

tion surpasses a given critical value, whereas in one and two dimensions any

amount of disorder (in the absence of SOC and disorder correlations) will

induce localised states in the thermodynamic limit at zero temperature [178,

179].

2.3.2 Semi-Classical Boltzmann Equation

The Boltzmann formalism allows us to study semi-classical electronic trans-

port properties via a statistical description of the system in terms of a distri-

bution function f (r,p, t). This function encodes the probability density for

finding a particle in a small region of the phase space centered around mo-

mentum p and position r at time t. We will use make use of the Boltzmann

equation to gain some physical intuition about the mechanisms behind the

SOT terms in Chapter 5. This formalism is capable of capturing semi classi-

cal responses which are determined primarily by the distortion of the Fermi
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surface of the system as a response to an external driving force. In our case

the driving force is provided by the external electric field E and, considering

a stationary state for a homogeneous system, the linearised equation reads

[180]:

− ev · Eδ (ε− εp) = n

∫
dp′Wpp′ (δfp − δfp′) , (2.33)

with the short-hand notation fp ≡ f (r,p, t) and having defined the transi-

tion amplitude

Wpp′ = 2π |〈p|T |p′〉|2 δ (εp − εp′) , (2.34)

with T being the T-Matrix of the system and the change of the Fermi surface

due to the external field is δfk. This distortion can be written in terms of

a harmonic expansion in the momentum angle parameterised by relaxation

times. In general, the crux of the problem lies in finding these relaxation

times. As such, we can use the following expression for the Fermi surface

distortion:

δfp = δ (ε− εp) vp
(
τ‖p̂ · E + τ⊥p̂× E

)
. (2.35)

The distortion of the Fermi surface along the direction of the electric field is

controlled by the longitudinal transport time τ‖ whereas transverse distor-

tion (skewness) is parameterised by the skewscattering time τ⊥ [168]. In

an isotropic system there are only these first order harmonics. When the

Fermi surface is anisotropic there can be any number of harmonics. With the

distortion of the distribution function we can compute the non-equilibrium

spin density that is generated by the electric field via:

δSi =
∑
α

∫
dp

4π2
〈si〉αp δfαp, (2.36)

where we have introduced a band label α to account for multiband systems

and denoted the expectation value of the spin operator si in band α as 〈si〉αp.

Through Eqs.(2.35) and (2.36) one can predict what kind of responses are

active and which mechanisms activate them based on the harmonics present

in the spin texture. As such we will not actually compute the relaxation times

but rather see which responses each time can activate.
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Figure 2.5: The series of maximally crossed diagrams, known as the
Cooperon, that encodes the weak localization corrections, the dominant
quantum interference processes.

2.3.3 Quantum Effects within Diagrammatic Theory:

The Cooperon

To capture the quantum effects in the response function one needs to go

beyond the ladder diagrams. The diagrams that need to be considered are

the maximally crossed diagrams whose series is known as the Cooperon.

These are multiple impurity scattering diagrams where each impurity line

crosses every other once as shown in Fig. 2.5.

The reason these are the diagrams to consider can be traced back to its

connection to the Diffuson. Time reversal symmetry ensures that the diver-

gence at zero momentum of the Diffuson (the signature of charge conserva-

tion) is also present in the Cooperon [181]. In fact, this connection is made

clear if we "twist" the lower fermionic line of the Cooperon diagrams, since

the resulting diagrams form the ladder series of the Diffuson. For systems

with a scalar GF, the Diffuson and the Cooperon are related via a simple

change of variables. When the GF has a matrix structure this relation is

more complex.

The Cooperon describes the scattering processes that contribute towards

WL corrections. These are the dominant quantum interference phenomena

in systems larger in size than the coherence length of electrons L. It is not

possible to sum the maximally crossed diagrams within a vertex correction

as we did for the ladder diagrams. Instead, we make use of the four point

vertex function γ and we recast the Kubo-Streda formula as (summing over

repeated indices):

σ =
e2

2πΩ

∑
pp′

[
GA (p) vx (p)GR (p)

]
γα

Γαβδγ (p,p′)
[
GR (p′) vx (p′)GA (p′)

]
βδ
.

(2.37)

The four point vertex function is defined as

Γαβδγ (p,p′) =
〈
GR
αβ (p,p′)GA

δγ (p′,p)
〉
dis
, (2.38)
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or, making use of the tensor product definition:

Γ (p,p′) =
〈
GR (p,p′)⊗GA (p′,p)

〉
dis
. (2.39)

The four point vertex function contains every diagram that connects the two

fermionic lines. The way we perform the disorder average will determine

which diagrams we capture. If we choose these to be the maximally crossed

diagrams only, we single out the WL contribution to the conductivity. We

denote the four point vertex function that only contains the Cooperon as C.
To sum the whole maximally crossed series we start by writing the first few

diagrams2:

Cs1s2s3s4
(Q) = nUs1s2Us3s4 + n2

∑
p′′

(
UGRp′′U

)
s1s2

(
UGAQ−p′′U

)
s3s4

+

n3
∑
p′′,k′′

(
UGRp′′UGRk′′U

)
s1s2

(
UGAQ−p′′UGAQ−k′′U

)
s3s4

+ ...
(2.40)

The Cooperon depends only on a single momentum variable Q = p + p′

which is the sum of initial and final momenta of the scattering process. Since

we are looking at backscattering phenomena we expect the Cooperon mo-

mentum to be small: Q � pF . We are working within the possibility of

the impurity potential U having a matrix structure defined on the space of

the internal DOFs of the Dirac material. This will allow us to study what

are the effects of intervalley scattering, for example, in Section 4.2.3. Go-

ing now to a two-particle space and using the property of tensor product

(a · b) ⊗ (c · d) = (a⊗ c) · (b⊗ d) we can write a recursive relation for the

Cooperon:

C = nU ⊗ U + n
∑
p′′

(
UGRp′′

)
⊗
(
UGAQ−p′′

)
C, (2.41)

and thus the Cooperon admits the form:

C (Q) =
ξ

1− ξP (Q)
, (2.42)

where we have defined ξ = nU⊗U . The recursive insertion for the Cooperon

2Since we are looking at homogeneous electric fields we do not include any momentum
transfer between the upper and lower fermionic lines. Interestingly, one can show that the
Cooperon is completely insensitive to such inhomogeneities as they can be absorbed in the
summed momenta [160].
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is:

P (Q) =
∑
p′′

GRp′′ ⊗ GAQ−p′′ . (2.43)

In this way the computation of the Cooperon hinges primarily on finding

P (Q). What’s more, this formalism allows us to easily study different im-

purity potentials once we have P (Q), by using Eq.(2.42). Typically we take

advantage of the fact that Q is small to expand P (Q) in a power series:

P (Q) ≈ P (0) +QP (1) +Q2P (2), (2.44)

with Q = |Q|. We shall use this expansion when we first apply this formal-

ism to the simpler cases. However it is possible to compute P (Q) without

expanding in the Cooperon momentum, which is useful when dealing with

systems with very strong spin-orbit coupling (see Section 4.3.3). For that we

use the following identity:

P (Q) =

∫
dθQ
2π

i

4
ρ̃ (ε)

[
1

H2 (pF )−H1 (Q− pF ) + 2iη
− (1↔ 2)†

]
. (2.45)

Here the superscripts represent the "two particle" subspaces that arise due

to the tensor product present, for example, in Eq.(2.41), such that H1 =

Hb⊗1D×D andH2 = 1D×D⊗Hb. The imaginary part of the self energy (which

is assumed scalar for this expression) is given by η, the average density of

states of the bands is ρ̃ and we are integrating over the angle of Q. This

identity holds within the limit of Q � pF and the Fermi level ε much larger

than the SOC. The proof of this expression is presented in Appendix E.

The Cooperon is a two particle object lending itself to be analysed in a

two particle basis, i.e. as a singlet-triplet basis. We can look at the "disper-

sion" of Cooperon modes by studying the Cooperon Hamiltonian [182, 183]:

HC = 1− ξP. (2.46)

The dispersion of the Cooperon modes can give us a lot of information re-

garding the mechanisms behind WL/WAL. Modes that vanish at zero mo-

mentum are called gapless and will tend to contribute the most to the con-

ductivity correction since the Cooperon is peaked at Q ≈ 0. The way the

gaps depend on the system parameters contains information about when

WL/WAL transitions might occur, for example, how strong must the spin-
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orbit coupling be for a system to display WAL (see Section 4.3).

2.3.4 The Kubo-Streda formula for Quantum Corrections

Having introduced and understood the structure of the Cooperon we can

compute the quantum correction to the conductivity using:

∆σ =
e2

2πΩ
Tr

{∑
p

W (p,−p) ·
∑
Q

C (Q)

}
. (2.47)

The remaining fermionic lines as well as the ladder-renormalised vertices

comprise the weight matrix W :

W βα
γδ (p,p′) =

[
GA (p) vxGR (p)

]
γα

[
GR (p′) vxGA (p′)

]
βδ
. (2.48)

The weight matrix has an important role in the quantum corrections: it de-

termines the weight and sign of the Cooperon modes. We shall neglect the

Cooperon momentum Q in W as it will only bring about higher order cor-

rections since it is the Cooperon which carries the divergent contribution

at small momentum. This divergence is a manifestation of charge conser-

vation. Its presence should pose no practical problems for calculations as

the Cooperon is an object bound by the two length scales: the mean free

path and the coherence length; so that the Q sum in Eq.(2.47) is taken for

L−1 < Q < `−1. At low temperatures, the main contribution towards L are

electron-electron interactions so we can indirectly include them via tuning

the coherence length parameter.

Armed with this formalism we will analyse in Chapter 4 the quantum

correction to the conductivity.

45



Chapter 3

Model Hamiltonians

3.1 Monolayer Graphene

We start with the highest symmetry level model of graphene to establish

nomenclature and notation. This will also be the starting point for our study

of weak localisation corrections in Dirac systems realised in vdW heterostru-

tures in Chapter 4.

Monolayer graphene is composed of carbon atoms arranged in a honey-

comb lattice. This is not a Bravais lattice as it is composed of two interpene-

trating triangular sub-lattices, shown in Fig. 3.1a. This feature is the root for

the pseudospin/sublattice degree of freedom which distinguishes graphene

from conventional metals/semi-conductors. The system belongs to the D6h

point symmetry group: is invariant under 6-fold rotations about the axis per-

pendicular to the plane plane (ẑ) and is inversion symmetric with respect to

the transformation ẑ → −ẑ. The reciprocal unit cell is a hexagon and the

Fermi level of (undoped) graphene lies precisely at its vertices. These are

known as Dirac points and there are only two non-equivalent ones (K and

K′), connected by time-reversal. This gives rise to yet another electronic

degree of freedom in the continuum limit: the isospin/valley.

A low energy description of graphene focuses on momenta close to the K

points. Let p be this momentum, as measured from the Dirac point. There

are several possible representations for the graphene Hamiltonian depending

on the basis of choice. The three most commonly used are presented in Table

3.1. The Hamiltonian for monolayer graphene around the Dirac points reads,

in magic basis 2:

46



(a)

(b)

Figure 3.1: (a) The honeycomb lattice with its two triangular sublattices,
A and B, highlighted in different colours. The hexagonal Brillouin zone is
represented next to it, with two Dirac points, K and K ′, shown. The low
energy theory of graphene is centered around these points. This is a con-
tinuum theory from which two extra SU(2) DOF are born: the pseudospin,
related to the A/B sublattices and the isospin, dealing with the valleys K and
K ′. At the Dirac points the valence and conduction bands meet in a linear
dispersion depicted in (b).

Hb,p = vτ0σ · p, (3.1)

where σi and τi, i = 0, x, y, z are the Pauli matrices acting on, respectively,

the pseudospin/sublattice and valley degrees of freedom introduced earlier,

and v ≈ 106m/s is the Fermi velocity of massless Dirac fermions. As per con-

vention, we omit the tensor product symbol: τiσj ≡ τi⊗σj.The energy bands

take the characteristic linear shape εp = ±vp. In the absence of intervalley

processes we can restrict ourselves to one valley, as we can just recover the

effect of the other as a degeneracy factor at the end. It is worth pointing

Basis Wallace Magic 1 Magic 2
Ordering (AK, BK, AK′ , BK′) (AK, BK, BK′ , AK′) (AK, BK,−BK′ , AK′)

Hb,p v
(
τzσxpx + σypy

)
τzvσ · p τ0vσ · p

Table 3.1: The most common basis used to write the graphene Hamiltonian.
The normal, or Wallace basis is the one originally used to study the band
structure of graphene [184] but the Hamiltonian does not have a symmetri-
cal form in the momentum directions. In the magic basis 1 and 2 the sym-
metry is present. Magic basis 2 shows that the valley is indeed a degenerate
DOF. In this basis, the valley DOF is only explicitly present for the terms that
truly depend on it.
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out that intrinsic SOC is present in bare graphene, known as the Kane-Mele

SOC [185]. This term however, is very small, leading to a spin-orbit gap

of only 42µeV [98]. Proximity effects do enhance this term but it remains

much weaker than other SOC [186, 187]. For this reason, we shall ignore it

throughout this thesis.

3.1.1 Disorder effects

The D6h graphene model will also be used as a practical introduction of the

diagrammatic formalism of quantum corrections. These are brought about

by impurities which we shall take to be δ-scatterers:

U (r) = U
∑
i

δ (r−Ri) . (3.2)

We start by considering the simple case of scalar disorder such that U = u01.

As we have seen in Chapter 2, to treat disorder effects we need the disorder

averaged Green’s function which we can obtain from G
R(A)
0p system via:

Gap =
1(

Ga
0p

)−1 − Σa
, (3.3)

where Σa is the self energy that must be computed within some approxi-

mation. Here, we will consider the Gaussian approximation which amounts

to keeping only diagrams that are quadratic in the U : 〈U (r)U (r′)〉dis =

nu2
0δ (r− r′). In this weak potential limit the self energy takes the simple

form:

Σ
R/A
G = nu2

0g
R/A
0 . (3.4)

Here we have introduced the momentum integrated clean Green’s function

[164]:

g
R/A
0 =

∫
dp

4π2
G
R/A
0p

= − ε

2πv2
ln

∣∣∣∣Λε
∣∣∣∣∓ i |ε|4v2

,

(3.5)

where Λ is an ultraviolet cutoff for the low energy theory [167]. In this case,

the integrated GF is scalar and does not introduce any new matrix structures

not present in Hb, which will allow us to obtain the disorder averaged GF by
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an analytical continuation of Ga
0p. The momentum integrated GF defines the

real and imaginary parts of the self energy:

Σ
R/A
G = δε± iη (3.6)

the real part of the self energy, δε, is a small shift of the Fermi level which

can be neglected [164, 166]. The imaginary part η = nu2
0ε/4v

2, on the other

hand is the impurity broadening of the energy levels and is essential for the

calculation. This broadening is related to the momentum scattering time

τp = 1
2η

. Finally, the disorder averaged GF for graphene in the Gaussian

approximation is [164]:

GR(A)
p =

1

ε−H0,p − Σ
R/A
G

=
ε± iη + vσ · p
(ε± iη)2 − v2p2

. (3.7)

3.2 Graphene based Heterostructures:

Proximity-Induced SOC

3.2.1 The C6v Dirac-Rashba Model

The only spin-orbit interaction compatible with all symmetries of graphene,

the famous Kane-Mele SOC [185], is too weak for practical purposes [98].

The Dirac-Rashba model, which arises when the inversion symmetry is bro-

ken along the direction normal to the plane, already allows for SOC in the

bare system and is the main object of study in the topic of quantum correc-

tions in Chapter 4. Such an asymmetry is achieved, for example, via placing

the graphene layer on a suitable substrate. This breaks the mirror symmetry

ẑ → −ẑ lowering the symmetry class from D6h to C6v. The graphene Hamil-

tonian is endowed with the Rashba SOC [42], turning it into what we call

the Dirac-Rashba model. We will use this model to study the quantum cor-

rections to the conductivity in graphene with strong SOC doped with scalar

impurities in Section 4.3.

Model and Energy Bands

In the "magic basis 2" (see Table 3.1), the Hamiltonian for the clean system

reads:

H0p = τ0vσ · p + ατ0 (σxsy − σysx) , (3.8)
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(a)
(b)

Figure 3.2: (a) The Dirac-Rashba model has spin degeneracy lifted by SOC
with spin gap 2α. This introduces two energy regimes characterized by how
many bands does the Fermi level cross, one in regime I and two in the case of
regime II. In (b) it is shown a top view of the spin texture at the Fermi rings
in regime II, with the characteristic in-plane winding of the spins around the
Fermi surface.

where τ0 is the 2×2 identity matrix acting on the valley DOF and σi, si are the

Pauli matrices corresponding to the sublattice and spin degrees of freedom.

The energy bands have the dispersion relation εp = λ
(
α + s

√
v2p2 + α2

)
,

where λ, s = ±1 are the band labels. The Rashba SOC lifts the spin de-

generacy creating a spin gap of 2α at the Dirac points. This introduces two

different regimes, shown in Fig. 3.2a: Fermi energy ε inside (regime I) or

outside this pseudo-gap (regime II). We will leave intervalley physics for later

so we restrict the following discussion to a single valley τ0 = 1. To simplify

the expressions and discussions we will also take the Fermi energy and the

Hamiltonian couplings to be positive from now on.

The prominent feature of this model is the in-plane spin-momentum lock-

ing:

〈s〉p = ±
√
ε (ε± 2α)

ε± α
(p̂× ẑ) , (3.9)

with ± standing for the spin majority (+) and minority (−) bands. The

electrons spin is thus locked in plane, perpendicular to the direction of the

momentum, winding around the Fermi surface with a well defined and op-

posite chirality for each band (Fig. 3.2b). For this reason, phenomena that

hinge on this spin texture are typically stronger in regime I where all elec-

trons have the same chirality [188].
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Clean Green’s Function

For ease of notation we define the 4×4 matrices γij = σi⊗ sj. These span an

orthogonal basis for the matrix algebra and are at the same time the momen-

tum independent operators for all the relevant observables, like charge/spin

currents and spin densities. The presence of Rashba SOC generates new

terms in the clean GF [166]:

GR(A)
0 (ε,p) =

Gp
0 +Gθ

0

(ε2 − v2p2)2 + 4ε2α2

∣∣∣∣
ε→ε±i0+

. (3.10)

We have separated the radial and angular components as:

Gp
0 = ε

(
ε2 − v2p2 − 2α2

)
γ00 + αε2γR − 2α2εγ33, (3.11a)

Gθ
0 =2αεvp (γ02 cos θ − γ01 sin θ) + vp

(
ε2 − v2p2

)
(γ10 cos θ + γ20 sin θ) +

v2p2α [sin (2θ) (γ22 − γ11) + cos (2θ) (γ12 + γ21)] ,

(3.11b)

with γR = γ12 − γ21. The momentum integrated GF is the foundation for the

disorder averaging of the GF. It is comprised of 3 structures coming from the

radial components as the angular terms vanish upon integration:

gR(A) = g
R(A)
0 γ00 + g

R(A)
3 γ33 + g

R(A)
R γR, (3.12)

with each term being given by:

g
R(A)
0 =− ε

8πv2
ln

∣∣∣∣ Λ4

ε2 (ε2 − 4α2)

∣∣∣∣− α

8πv2
ln

∣∣∣∣ε− 2α

ε+ 2α

∣∣∣∣
∓ i

4v2

{
ε+ α

2
θ (2α− ε) + εθ (ε− 2α)

}
,

(3.13a)

g
R(A)
3 = − α

8πv2
ln

∣∣∣∣ε− 2α

ε+ 2α

∣∣∣∣∓ i α8v2
θ (2α− ε) , (3.13b)

g
R(A)
R =

ε

16πv2
ln

∣∣∣∣ε− 2α

ε+ 2α

∣∣∣∣± i ε

16v2
θ (2α− ε) , (3.13c)

where θ (x) is the Heaviside step function. The imaginary part is scalar in

regime II which will lead to a scalar self-energy formally identical to the one

in Eq.(3.4) in the Gaussian limit.
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Disorder Averaged Green’s Function

The T-Matrix formalism allows to capture the resonant-scattering limit. For

this model, the T-Matrix TR(A) =
[
u−1

0 − g
R(A)
0

]−1

acquires a matrix structure

and the self energy becomes:

ΣR(A) = (δε∓ iη0) γ00 + (m3 ∓ iη3) γ33 + (mR ∓ iηR) γR, (3.14)

with the components given by:

δε ≈ nu2
0g
R
0,r, η0 ≈ −nu2

0g
R
0,i, (3.15a)

m3 ≈ nu2
0g
R
3,r, η3 ≈ −nu2

0g
R
3,i, (3.15b)

mR ≈ nu2
0g
R
R,r, ηR ≈ −nu2

0g
R
R,i, (3.15c)

within the weak scattering regime (u0 � |g0|−1). In regime II the self-energy

is a scalar (neglecting the real part) just like in the bare graphene case,

whereas in regime I there is a rich matrix structure that imprints a strong

energy dependence on various response functions. The disorder averaged

Green’s Function is obtained via:

GR(A)
p =

1

ε−H0 − ΣR(A)
. (3.16)

The self energy in Eq.(3.14) has the same structure as H0 but with an extra

term in γ33. This means that we can obtain the disorder average GF for the

original system if we instead compute the clean GF of a system with a mass

term in γ33:

Hm = H0 +mσzsz, (3.17)

and then use the following substitution rules:

ε→ ε± iη0, α→ α +mR ∓ iηR, m→ m3 ∓ iη3. (3.18)

The clean GF for the massive system can be written as:

GR(A)
m (ε,p) =

(
Gp
m +Gθ

m

)
/LR(A), (3.19)

with the denominator being given by:

LR(A) =
(
v2p2 − (ε−m) (ε− 2α +m)

) (
v2p2 − (ε−m) (ε+ 2α +m)

)
,

(3.20)
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and

Gp
m =

[
ε
(
ε2 −m2 − v2p2 − 2α2

)
+ 2mα2

]
γ00 + α (ε−m)2 γR

−
(
2α2ε+m

(
m2 + v2p2 − ε2 − 2α2

))
γ33,

(3.21a)

Gθ
0 =2α (ε−m) vp (γ02 cos θ − γ01 sin θ) +

+ vp
(
ε2 − v2p2 −m2

)
(γ10 cos θ + γ20 sin θ) +

+ v2p2α [sin (2θ) (γ22 − γ11) + cos (2θ) (γ12 + γ21)] ,

(3.21b)

using the substitution (3.18).

3.2.2 The C3v Generalised Dirac-Rashba Model

To describe more complex systems such as TMD monolayers and heterostruc-

tures like graphene/TMD, TMD/graphene/FM and TMD/FM, we lift some of

the symmetry constraints which allow more terms in the Hamiltonian [187].

Systems with broken sublattice symmetry, such as TMDs, require a gener-

alisation of the Dirac-Rashba model. The Hamiltonian is endowed with an

orbital gap and a valley resolved SOC known as spin valley coupling. This

general model, together with a proximity-induced exchange interaction, will

be the starting point of our SOT analysis in Chapter 5.

Model and Energy Bands

Ferromagnetic Dirac vdW heterostructures can be described by the magne-

tised Dirac-Rashba Hamiltonian which reads as follows:

Hb = vσ · p + α (σxsy − σysx) + ∆τzσz −∆xcm · s, (3.22)

in magic basis 2 from Table 3.1. Here, additionally to the Rashba SOC,

brought about by the breaking of interfacial symmetry due to the FM film,

there are several new energy scales. The breaking of sublattice symmetry

that is present in TMDs is captured by the staggered on-site potential ∆

which can open orbital gaps close to 2 eV in some samples [115]. Systems

with broken inversion symmetry such as TMDs display spin-valley (SV) cou-

pling λsvτzsz which can be accounted for as a valley dependent Zeeman term.

Note that, in order to allow a Dresselhaus-type term as discussed in Chapter

1 we would need further lower the symmetry level of the model.

The interaction between the spins of the 2D charge carriers and the local

moments of the FM induces an exchange field that takes the form −∆xcm ·s,

53



when assuming a mean field description of the FM magnetisation m [90, 92],

where ∆xc is the exchange coupling strength. The magnetisation direction

can be set by a bias external field. The presence of this field complicates the

calculations so we assume it is removed after setting m. The presence of

in-plane magnetisation mx,y breaks the rotational invariance of the system,

inducing anisotropy and, as we will show in Chapter 5, will be crucial in

activating a multitude of SOT terms. Without loss of generality we take the

in-plane anisotropy to be along the x̂-axis so that:

m = mx x̂+mz ẑ ≡ sin θm x̂+ cos θm ẑ. (3.23)

The aforementioned spin-valley coupling can thus be included as mz →
mz − λsv

∆xc
τz. In the absence of intervalley processes we can perform any

calculations on the 4 × 4 space spanned by only the spin and pseudospin

DOFs setting τz = ±1 and then simply adding the outcomes. The interplay

between all the energy scales gives rise to a variety of band structures with

interesting features and different energy regimes. These can be accessed

in gated devices which allow for an easy control of the carrier density via

back-gate voltages [1, 189].

To simplify expressions we introduce m̃ = m + τzλsvẑ with m = −∆xcm.

A typical band structure is shown in Fig. 3.3a and comprises four distinct

spectral regions (for illustration purposes we take α > m̃z � mx):

• Regime Ia: Only present in the anisotropic case. This is a low energy

regime where the Fermi level crosses an electron/hole pocket that is

situated away from the K point. It is contained within the energies:

εIa < |ε| < εIb; (3.24)

• Regime Ib: A distorted "Mexican Hat". Very narrow energy range where

the Fermi level crosses two different Fermi rings both belonging to the

spin majority band. This happens for:

εIb < |ε| < εIc; (3.25)

• Regime Ic: Intermediate regime where the Fermi level crosses only the

spin majority band, hinting at stronger spin density responses for

εIc < |ε| < εII; (3.26)
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(a) (b)

Figure 3.3: (a) The typical magnetised generalised Dirac-Rashba band struc-
ture along the anisotropy direction as the full lines (ŷ for in-plane magneti-
sation along x̂) and along x̂, as dashed lines, showing the distorted mexican
hat. The shaded region highlight the spectral region II. This is an example
of a TMD|graphene|FM heterostructure with α = 40 meV, mz = 30 meV and
mx = 20 meV. (b) The spin texture for the spin majority band. The in-plane
spin (top) shows a locking that resembles the one from the Dirac-Rashba
model but with a small deviation due to mx. The presence of mz and ∆ in-
duces an out-of plane spin (black arrows, bottom) that is modulated by the
in-plane magnetisation. For visual effect, the impact of mx is exaggerated.
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Regime ∆ = 0 ∆ 6= 0

εII
√

m̃2
z + 4α2 m̃z + ∆

εIc m̃z + m2
x

2m̃z

√
(∆− m̃z)

2 + 4α2

εIb
m̃zα√
m̃2

z+α2
+

αmxm̃z

√
2α2+m̃2

z

(α2+m̃2
z)3/2

α(∆+m̃z)√
α2+m̃2

z

+
αmx

√
m̃z(∆+m̃z)(2α2+m̃2

z−∆m̃z)

(α2+m̃2
z)3/2

εIa
m̃zα√
m̃2

z+α2
− αmxm̃z

√
2α2+m̃2

z

(α2+m̃2
z)3/2

α(∆+m̃z)√
α2+m2

z

− αmx

√
m̃z(∆+m̃z)(2α2+m̃2

z−∆m̃z)

(α2+m̃2
z)3/2

Table 3.2: Spectral regimes of the C3v model. To ease the notation, all cou-
plings are taken to be positive.

• Regime II: High energy regime which for which we present the results

in the coming sections. Here we have ε > εIV and the Fermi level

crosses two Fermi rings with opposite spin textures;

The expressions for the different limits are given in Table 3.2. The high

energy regime can be tuned into in gated devices [11, 190].

Spin and Pseudospin Textures

Understanding how the spin polarisation depends on the momentum and

how it changes with the Hamiltonian parameters is key to identify what

the mechanisms are behind the spin density semi-classical response. For

high-electronic densities (regime II), the spin operators have the following

equilibrium average values, in the asymptotic limit ε� mz ≡ m̃z � mx (with

θ the wave-vector angle with respect to the x̂ axis):

〈sx〉 =
α√

α2 + m2
z

(
1− (∆mz + α2) 2

2ε2 (α2 + m2
z)

)
sin θ + mx

m2
z + α2 cos2 θ

(α2 + m2
z)

3/2
, (3.27a)

〈sy〉 = − α√
α2 + m2

z

(
1− (∆mz + α2) 2

2ε2 (α2 + m2
z)

)
cos θ +

mx

2

α2 sin 2θ

(α2 + m2
z)

3/2
, (3.27b)

〈sz〉 =
mz√
α2 + m2

z

(
1 +

α2

2ε2
∆2 −m2

z

α2 + m2
z

− mxα

α2 + m2
z

sin θ

)
+
α4

ε2
∆−mz

(α2 + m2
z)

3/2
,

(3.27c)

for the spin majority band, the other band has opposite polarity. In Fig. 3.3b

it is shown the spin texture for the spin majority band at a fixed Fermi energy.

The pseudospin texture, on the other hand, is:

〈σx〉 =

(
1− α2 + ∆2

2ε2

)
cos θ ± αmx

2ε

sin 2θ√
α2 + m2

z

, (3.28a)
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〈σy〉 =

(
1− α2 + ∆2

2ε2

)
sin θ ∓ αmx

2ε

1 + cos 2θ√
α2 + m2

z

, (3.28b)

〈σz〉 =
∆

ε
∓ mz√

α2 + m2
z

∆mz + α2

ε2

(
1− αmx

α2 + m2
z

sin θ

)
, (3.28c)

where the ± refers to the spin majority and minority bands, respectively.

Figure 3.4 shows the spin and pseudospin profiles along the x̂ and ŷ direc-

tions in momentum space. The orbital mass (∆) broadens up the p-space

spin texture dramatically, which boosts the generation of out-of-plane spin

polarisation in applied current. Near p = 0 we see that both the spin and

pseudospin textures display non-trivial features such as fast oscillations and

change of sign. These can be traced back to the "Mexican hat" shape of the

energy bands. Near zero momentum, the velocity changes its sign several

times and so does the pseudospin (the velocity operator of the model is the

pseudospin). With ∆, λsv 6= 0 the "Mexican hat" is no longer present and the

pseudospin texture is smoothed. Due to spin momentum-locking the spin

texture follows a similar progression.

Self-Energy

The presence of all the couplings in the Hamiltonian (3.22) generates new

matrix structures in the self-energy, even with scalar disorder. The T-Matrix

now has the following structure:

ΣR =t00γ00 + t01γ01 + t03γ03 + t12γ12 + t20γ20 + t21γ21+

+ t23γ23 + t30γ30 + t31γ31 + t33γ33

(3.29)

In the Gaussian approximation it gets significantly simpler:

ΣR
G = −iη

(
1 +

∆

ε
τzσz +

mx

ε
sx +

mz

ε
sz

)
, (3.30)

where η = nu2
0ε/(4v

2) is the disorder-induced quasiparticle broadening. The

magnetised Dirac-Rashba model thus has the extra feature that, already at

Gaussian level with scalar impurities, the self-energy is not scalar even in

the high energy regime. However, since it does not generate any new matrix

structures we can obtain the disorder average GF from the clean GF via the

substitution similar to the one from Eq.(3.18) but now for mz and mx. The

expression for the GF of the clean systems is presented in Appendix A for the

case where mx is small. Due to its complexity the full T-Matrix case will be
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Figure 3.4: Spin (top row) and pseudospin (bottom row) profiles along x̂
(left column) and ŷ (right column). The semi transparent curves refer to
the massless case (∆ = 0). This mass term greatly broadens the profiles,
particularly of sz which is highly peaked near zero energy in the massless
case. Parameters used α = 20 meV, ∆xc = 15 meV, θm = π/8, ∆ = 400 meV,
λsv = 0.

treated numerically in Chapter 5.

We end this section highlighting a difference between this generalised

model and the Dirac-Rashba introduced in Section 3.2. In the standard

Dirac-Rashba model skewness is absent. Scalar impurities yielding the po-

tential from Eq.(3.2) do not distinguish between the left and right scattering

directions. This can be explicitly confirmed by computing the transition am-

plitude1:

Wpp′ = W (ϕ) = 2πn
∣∣〈p′|TR|p〉∣∣2 δ (εp − ε′p) , (3.31)

which can be shown to be even in ϕ = θ − θ′, the difference between the

initial and final momentum angles [191]. In the generalised version, how-

ever, the presence of mz is enough to distinguish left and right scattering

1For simplicity we have presented an expression valid in regime I where the Fermi level
crosses only one band. In regime II one would have to include inter-band transitions, how-
ever the final conclusion is unchanged.
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processes, akin to an external magnetic field. This asymmetry is carried

through onto the scattering cross section Wpp′ and is the source of skews-

cattering upon impurity scattering. This will be key when analysing the SOT

response of the system and is one of the reasons why we employ the T-Matrix

formalism.
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Chapter 4

Weak Localisation Corrections

4.1 Quantum Corrections to the Conductivity in

Graphene

In this Chapter we will put into practice the formalism we have presented

in previous sections to compute the quantum corrections to conductivity.

We will start by applying it to simple systems with the aim of familiarising

ourselves with the type of arguments and features that are characteristic of

this approach. We start with graphene with simple scalar impurities and

then recovering the famous results of Ando and Suzuura for graphene with

intervalley scatterers [142]. This will serve as the foundation for our goal of

studying the case of strong SOC in the band structure.

4.1.1 Vertex Corrections and Conductivity

For pedagogical reasons we briefly review the semi-classical (dominant) con-

tribution for the longitudinal conductivity in this system. This can be easily

computed using Eq.(2.22):

σc =
e2

2π

∫
dp

4π2
Tr
{
vxGRp ṽxGAp

}
, (4.1)

where vi = ∂pi
H0 = vσi is the (bare) velocity operator and the tilde denotes

vertex renormalisation due to disorder. For scalar disorder, these vertex cor-

rections can be computed using:
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ṽi = vi + nu2
0

∫
dp

4π2
Tr
{
GRp ṽiGAp

}
, (4.2)

which is a specific case of Eq.(2.23). In this simple case the structure of the

renormalised vertex is the same as the bare one and we get the notorious

result for electrons in graphene:

ṽx = 2v̂x. (4.3)

Inserting this result in Eq.(4.1) yields, to leading order in the impurity con-

centration:

σc =
e2v2

π

(
|ε|

2v2η

)
=
e2

π
ετtr,

(4.4)

already accounting for spin and valley degeneracy factors. We have defined

the transport time τtr ≡ 2τp, which is the average time between collisions

that significantly alter the electrons trajectory so that they are no longer

contributing to the longitudinal transport. The fact that, in graphene, this

time is twice the average time between any collisions is the manifestation of

the suppression of backscattering in pristine graphene. This suppression can

be traced back to graphene’s Berry phase of π [9, 192].

4.1.2 The Cooperon Structure

The Cooperon is a two particle object encoding the series of maximally

crossed diagrams that control the weak (anti)localisation effects. This se-

ries of diagrams can be fully summed using:

C (Q) =
nu2

0

1− nu2
0P (Q)

, (4.5)

where P (Q) is the recursion insertion given by:

P (Q) =
∑
p′′

GRp′′ ⊗ GAQ−p′′ ≈ P (0) +QP (1) +Q2P (2), (4.6)

in the small momentum Q limit (Q� pF ) as discussed in Section 2.3.4.

It is important to choose a suitable basis to perform the calculations, not

only to make them simpler, but to also provide insight into the nature of
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the interference corrections. The following transformation Tθ which makes

P (Q) block diagonal:
|χ1〉
|χ2〉
|χ3〉
|χ4〉

 =
1√
2


eiθQ 0 0 −eiθQ

0 1 −1 0

0 1 1 0

eiθQ 0 0 eiθQ



|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉

 , (4.7)

with θQ the Cooperon momentum angle [193]. We shall call this the “block

basis” and will denote matrices written in this basis by a tilde. The states |χ1〉
,|χ3〉 and |χ4〉 are pseudospin (sublattice degree of freedom) triplets and |χ2〉
is the pseudospin singlet. This block basis is useful to perform the matrix

inversion needed to get the Cooperon. This transformation is formed by the

eigenvectors of the matrix σθQ ⊗ σθQ, where σθQ = −i (σx cos θQ + σy sin θQ)

rotates the momemtum in the Hamiltonian as θ → 2θQ−θ. The usual singlet

triplet basis can be obtained via the following transformation matrix JM :
|t1〉
|s〉
|t2〉
|t4〉

 =


1 0 0 0

0 1√
2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1



|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉

 . (4.8)

In the block basis we get the following result for P , at leading order in η/ε

(the tilde denotes matrices in the block basis):

P̃ (0) =
1

8v2

|ε|
η


1 0 0 0

0 2 0 0

0 0 0 0

0 0 0 1

 , (4.9a)

P̃ (1) = i
|ε|

16vη2


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 (4.9b)

P̃ (2) = − |ε|
128η3


3 0 0 0

0 4 0 0

0 0 0 0

0 0 0 1

 (4.9c)

We thus get the following result for P̃ :
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nu2
0P̃ (Q) =


1
2
− 3`2Q2

8
i `Q

2
0 0

i `Q
2

1− `2Q2

2
0 0

0 0 0 0

0 0 0 1
2
− `2Q2

8

 . (4.10)

Here we have introduced the mean free path ` = vτp = v/2η and have used

Eqs.(3.4) and (3.5) to write nu2
0 = 4v2η/ε. In this block basis none of the

terms depend on the angle of the Cooperon momentum θQ. Eq.(4.10) al-

ready hints about the nature of the quantum corrections to the conductivity.

Firstly the triplet |χ3〉 (the one with 0 angular momentum projection) does

not contribute as it is a completely flat mode. Furthermore, the singlet and

triplet |χ1〉 are coupled to each other linearly in Q. This coupling is funda-

mental to capture the correct transport time of the system, as we shall show

shortly.

The Cooperon matrix then takes the following form:

1

nu2
0

C̃ (Q) =


X11 X12 0 0

X21 X22 0 0

0 0 X33 0

0 0 0 X44

 , (4.11)

where the X coefficients can be written as:

X11 =
c11

λ−2
1 +Q2

, X22 =
c21

λ−2
1 +Q2

+
c22

λ−2
2 +Q2

, (4.12a)

X33 = 1, X44 =
c44

λ−2
4 +Q2

, (4.12b)

with c11 = 8`−2/3 and c21 = c22 = `−2. The quantities λi are relaxation

lengths that describe the average length a particle hole pair from each chan-

nel can travel while preserving their sublattice coherence. They are given

by:

λ1 =

√
3

8
`, λ2 =∞, λ4 =

`

2
. (4.13)

We emphasise that these relaxation lengths are different from other micro-

scopic relaxation lengths such as the mean free path. These control instead

the typical length scale of pseudospin two particle coherence. Let us focus
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Figure 4.1: The dispersions of the Cooperon modes for graphene with scalar
impurites. The only gapless mode is the pseudospin singlet, making it the
dominant contribution for large coherence length L� `. The point at which
e3 and e4 join marks the momentum at which the modes are no longer real.

our attention on the singlet mode. For small momentum we have:

X22 ∼
1

DτpQ2
, (4.14)

which has the familiar form of a diffusion pole with a diffusion coefficient

given by D = v2τtr/2, where the transport time is twice the momentum re-

laxation time τtr = 2τp. So the coupling between the singlet and the triplet,

which is the anti-hermitian part of the Cooperon Hamiltonian, encodes in-

formation about the suppression of the backscattering in graphene and is

fundamental to capture the correct diffusion behaviour. Furthermore, it is

also responsible for endowing the dispersion of the modes with a imaginary

part [193]. The presence of the diffusion pole links the singlet state with

charge conservation. In fact, we will see that this holds true for all our sys-

tems.

The relaxation lengths are effectively gaps in the dispersion relations of

each mode, with the singlet being the only gapless. The WL corrections are

controlled by the low momentum contributions, therefore the modes that

contribute the most are the ones with the lowest gaps. An alternative and

more straightforward method for obtaining these gaps is by computing the

eigenvalues of the Cooperon Hamiltonian HC = 1 − nu2
0P at Q = 0. The

real part of the full dispersions are shown in Fig. 4.1. Again we see the

single gapless mode, that should be the one dominating the physics. We can
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analyse the eigenstates to identify the different modes. For small η and Q

these are:

v1 =


0

1

1

0

 , v2 =


e−iθQ

0

0

eiθQ

 , (4.15a)

v3 =


−e−iθQ

i 2η
vQ

−i 2η
vQ

eiθQ

 , v4 =


−e−iθQ

ivQ
2η

−ivQ
2η

eiθQ

 , (4.15b)

with the respective dispersion relations:

e1 = 1, e2 =
1

2
+
Q2v2

32η2
, (4.16a)

e3 =
Q2v2

4η2
, e4 =

1

2
− Q2v2

32η2
. (4.16b)

The first state is precisely the triplet |t2〉. We see that both v3 and v4 have

contributions from the singlet state (0, 1,−1, 0)T . This reflects the fact that

triplet 1 and the singlet are coupled in P (Q), however, only v3 is gapless.

As Q → 0 this state becomes essentially the singlet. After inverting the

Cooperon Hamiltonian and performing the angular integration (recovering

translational symmetry) we will see that the singlet is a true mode of the

Cooperon and the only one that is gapless.

4.1.3 The Weight Matrix

As defined before, the weight tensor is given by:

W µ′µ
ν′ν =

∑
p

(
GAp ṽxGRp

)
ν′µ

(
GR−pṽxGA−p

)
µ′ν
, (4.17)

with ṽx = 2vσx being the renormalised velocity operator. We obtain the

following structure, in the tensor product basis:

W =
|ε|
8η3


−1 0 0 1

2

0 1 −1 0

0 −1 1 0
1
2

0 0 −1

 . (4.18)

65



Looking at its structure we can already guess that W will not be diagonal in

the JM basis since it has terms mixing the states |↑↑〉 and |↓↓〉. These states

are not mixed in the JM basis. Indeed the basis that diagonalises W is given

by the following transformation, J?M :
|t?1〉
|s?〉
|t?2〉
|t?4〉

 =
1√
2


1 0 0 1

0 1 −1 0

0 1 1 0

1 0 0 −1



|↑↑〉
|↑↓〉
|↓↑〉
|↓↓〉

 , (4.19)

such that:

W ? = J?M .W. (J
?
M)−1 =

|ε|
16η3


−1 0 0 0

0 4 0 0

0 0 0 0

0 0 0 −3

 (4.20)

where the star denotes matrices written in the J?M basis. In this way we

can see that the true modes of the problem are not eigenstates of the z

projection of the total pseudospin. Furthermore, it is at this level that we

see the singlet contributing with an opposite sign to the other two triplets,

already highlighting the importance of the matrix structure of W .

4.1.4 Correction to the Conductivity

The weight matrix can be written as:

W =


W11 0 0 −W11/2

0 −W11 W11 0

0 W11 −W11 0

−W11/2 0 0 W11

 , (4.21)

with W11 = − |ε|
8η3

. Since the singlet triplet basis depends on the direction of

Q we go back to the tensor product basis and integrate the Cooperon over

θQ:

∫
d2Q

(2π)2 C (Q) =

∫
dQ
2π

Q
4v2η

|ε|


X11+X44

2
0 0 0

0 X22+X33

2
X22−X33

2
0

0 X22−X33

2
X22+X33

2
0

0 0 0 X11+X44

2

 ,

(4.22)
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with Xii given by Eqs.(4.12a) and (4.12b). The correction to the conductiv-

ity becomes:

∆σ =
e2

2π

4v2η

|ε|

∫
dQ
2π

QW11 [X11 − 2X22 +X44]

=
e2Dτ

π

∫
dQ
2π

Q [2X22 −X11 −X44] ,

(4.23)

with D = v2τtr/2. In this way we can see that triplets 1 and 4 contribute

with the same weight to the conductivity while the singlet has the opposite

sign and has double their weight. Since W11 < 0 the singlet contribution is

positive, being anti-localising in nature, while the triplets contribute towards

weak localisation. Going back to Eq.(4.22) we can see that, after angular

integration, the Cooperon has two degenerate eigenvalues corresponding to

the states |↑↑〉 and |↓↓〉. For this reason, the Cooperon is diagonal in both

basis JM and J?M since |t?1〉 and |t?4〉 are linear combinations of degenerate

eigenstates. Note that this is only true after the angular integration. In any

of these two basis we get:

∫
d2Q

(2π)2 C
? (Q) =

∫
dQ
2π

Q
4v2η

|ε|


X11+X44

2
0 0 0

0 X22 0 0

0 0 X33 0

0 0 0 X11+X44

2

 . (4.24)

This form together with Eq.(4.20) paints a complete picture of the problem.

The W ? matrix tells us which modes are (anti) localising simply by the sign

of its diagonal entries.

Finally we get for the correction to the conductivity:

∆σ =
e2v2

4πη2

∫ 1
`

1
L

dQ
2π

[
2

`2Q
− 1

4

Q

1 + 3
8
`2Q2

− 2
Q

1 + 1
4
`2Q2

]
=

e2

2π2

[
2 ln

(
L

`

)
− 1

3
ln

(
11

8 + 3
(
`
L

)2

)
− 4 ln

(
5

4 +
(
`
L

)2

)]
.

(4.25)

It can be seen that this function is always positive for L > ` : it is an anti-

localisation correction. For L � `, the dominant term will be the ln (L/`)

coming from the singlet. Accounting for spin and valley degeneracy we ob-

tain:

∆σ = 4
e2

π2
ln

(
L

`

)
, (4.26)
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which is the celebrated result obtained by Ando and Suzuura [142]. The

weak anti-localisation nature of bare graphene is yet another manifestation

of the absence of backscattering in this system due graphene’s Berry phase

of π [9, 192]. In the next section we will show the case where a more

realistic disorder is able to activate backscattering, altering the nature of the

quantum coherence effects.

4.2 Bare Graphene with Complex Impurities

So far we have restricted ourselves to the simplest of impurity potentials.

Scalar impurities do not connect different valleys and neither do they allow

for backscattering as we can see if we take the overlap between two eigen-

states of the system in the same band:

|〈ψθ|U |ψθ′〉|2 =
1 + cos (θ − θ′)

2
u2

0, (4.27)

so for backscattering we have θ − θ′ = π and the probability is completely

suppressed. In this way, backscattering in simple graphene is forbidden and

the conductivity correction can never be negative. In the light of this argu-

ment the result previously obtained is not too surprising.

4.2.1 Impurities with σz: Single valley calculation

We can open the backscattering channel by considering different types of

impurity potentials. A simple mismatch between the local energies in the A

and B sublattices is sufficient. This is achieved via:

U = u0σ0 + uzσz. (4.28)

Now we have

2 |〈ψθ|U |ψθ′〉|2 = u2
0 + u2

z +
(
u2

0 − u2
z

)
cos (θ − θ′) (4.29)

and the backscattering probability is u2
z. So we expect that, beyond a certain

value of uz the quantum correction will change its sign and weak localisation

will be established. We can perform a similar calculation to the one we have

done previously with a few tweaks. In the presence of a general impurity

potential the Cooperon is given by:
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C (Q) =
ξ

1− ξP (Q)
, (4.30)

with ξ = nU⊗U . Again we assume Gaussian impurities and we take different

types of disorder to be uncorrelated: 〈ui (r)uj (r′)〉dis = nu2
i δijδ (r− r′), with

i, j = 0, z. This leads to ξ = n (u2
0 + u2

zσz ⊗ σz). With uncorrelated disorder

the self energy remains scalar so that GR,Ap = [ε−H0p ± iη]−1 with:

η =
ε

4v2
n
(
u2

0 + u2
z

)
. (4.31)

We can get useful information by looking at the modes of the Cooperon

Hamiltonian. Remarkably, for this case, there is no gapless mode. The sub-

lattice disorder gaps the sublattice singlet:

e1 = 1, e2 =
1

2
+
v2Q2

32η2
, (4.32a)

e3 = 2
u2
z

u2
0 + u2

z

+
v2Q2

4η2

(u2
0 − u2

z)
2

(u2
0 − 3u2

z) (u2
0 + u2

z)
, (4.32b)

e4 =
1

2
− v2Q2

32η2

u2
0 + 5u2

z

u2
0 − 3u2

z

. (4.32c)

The eigenstates are now:

v1 = (0, 1, 1, 0) , v2 =
(
e−iθQ , 0, 0, eiθQ

)
, (4.33a)

v3 =

(
− u2

0 + u2
z

u2
0 − 3u2

z

e−iθQ , i
2η

vQ
,−i 2η

vQ
,
u2

0 + u2
z

u2
0 − 3u2

z

eiθQ
)
, (4.33b)

v4 =

(
−u

2
0 − 3u2

z

u2
0 − u2

z

e−iθQ , i
vQ

2η
,−ivQ

2η
,
u2

0 − 3u2
z

u2
0 − u2

z

eiθQ
)
, (4.33c)

assuming u2
0 > 3u2

z. The full dispersions are shown in Fig. 4.2a. The lack

of a gapless mode is due to the fact that the disorder we have used actually

breaks time-reversal invariance. When looking at the physics of a single

valley the time reversal operator is σyK which does not commute with σz.

This breaks the equivalence between the Cooperon and the Diffuson [157],

so we lose the gapless state (diffusion pole). As we increase uz the singlet

stops dominating the quantum corrections. Since it is the singlet the only

one that entails a positive correction, after that point the correction must

become negative. We can see this happening in Fig. 4.2b. Looking at the

separate channels, we find that the singlet actually changes the sign of its

contribution at u0 = uz due to a prefactor u2
0 − u2

z in its term. The t?1 and t?2
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channels are relatively unaffected by uz.

(a) (b)

(c)
(d)

Figure 4.2: (a) The dispersion of the Cooperon modes for graphene with
σz impurities, in one valley, for u0 = 4uz. The most striking feature is the
absence of a gapless mode, as the presence of uz gaps the singlet mode. (b)
Quantum correction for the conductivity (per valley, per spin) in graphene
with sublattice disorder σz, for ε = 0.2 eV, ` = 0.2 µm, L = 1 µm and n = 1014

cm−2. The coloured lines show the individual contributions towards ∆σ from
each mode channel in the J?M basis. Since the singlet gap increases linearly
with uz, for uz � u0 we have the WAL phase dictated by this channel. As uz
increases, so does the singlet gap and the t?1 and t?2 channels become more
relevant, as they remain largely unaltered, eventually driving the system
towards a WL phase, which can be seen in the total correction to the con-
ductivity (black line). Taking into account the two valleys splits the modes
into four, two with the wrong symmetries that cancel each other (c) and two
others with the right symmetries that yield the degeneracy factor of 2 to ∆σ
(d).
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4.2.2 Impurities with σz: Two valley calculation

To recover time reversal symmetry we need to include the second valley.

We perform exactly the same calculation but now including explicitly the

isospin (valley degree of freedom), which we act on using the Pauli matrices

τi, i = 0, x, y, z. At this stage there are a few points to note. In the normal

{A,B,A,B} basis the angular momentum (without the orbital part) is given

by τzσz which makes it difficult to define a basis where valley and sublattice

are decoupled. So we use the "magic basis 2" {A,B,−B,A}, from Table 3.1.

In this basis the angular momentum is simply σz. Furthermore, the Hamil-

tonian is separated into two exact copies for each valley. For these reasons,

this is the basis that will yield the results that are the most straightforward to

analyse. From now on we define triplets and singlets relative to whichever

basis we are working on, which means that the singlet is |↑↓〉 − |↓↑〉, where

the ↑ state is whatever state is the first in the basis for the SU(2) space we

are referring to. Lastly we will use the short-hand notation of ab to denote a

product state |a〉 ⊗ |b〉 and similarly for abc ≡ |a〉 ⊗ |b〉 ⊗ |c〉
With these preliminaries done we can focus on the quantum corrections.

The Hamiltonian in this basis is given by:

H0p = vτ0σ · p, (4.34)

and the impurity potential is

U = u0τ0σ0 + uzτzσz. (4.35)

notice the appearance of τz. This is simply to ensure the system is invariant

under time reversal, which in this basis is given by the operator τyσyK. 1

Performing the calculation in the same way as before we first find that

the modes of the Cooperon Hamiltonian come in degenerate pairs. This

pairing is always between different types of intra and inter-valley states. For

example, the two gapless states, the ss state and the t3s state, are paired, as

are t2t3 and t1t3, and so on. The gaps for the pseudospin singlet states are:

∆ss = 0 = ∆t3s, ∆t2s = ∆t1s = 2
u2
z

u2
0 + u2

z

(4.36)

This pairing is also visible when we look at the different channels for the

quantum corrections, Figs. 4.2d and 4.2c. The intervalley channels cancel

1It is in this basis that is most evident that isospin and pseudospin work as effective spins
of the theory since, under time reversal, they transform exactly as a normal spin.
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each other in pairs while the intravalley modes from one valley contribute

exactly as the ones from the other valley yielding a simple factor of two with

respect to the calculation done accounting for just one valley. Interestingly,

since in this case the two gapless states ss and t3s cancel each other, the

quantum corrections are actually controlled by the higher energy modes t1s

and t2s.

4.2.3 Intervalley Scattering Impurities

Now we do the same exercise but with impurities that connect the two val-

leys. Intervalley scattering can be activated via very localised potentials

that induce large momentum scatterings, capable of changing the electronic

isospin [148]. Connecting the two valleys also allows for backscattering in

graphene so we again expect the nature of quantum corrections to change,

as with the sublattice imbalance impurities from the previous sections. In

the magic basis 2 such an effect is achieved via2:

U = u0τ0σ0 − uxτxσz, (4.37)

this specific intervalley term can be generated by a hollow adatom [194].

Again, the presence of σz ensures the system remains time reversal invariant.

Now the pseudospin singlets have the following gaps:

∆ss = 0 = ∆t2s, ∆t1s = ∆t3s = 2
u2
x

u2
0 + u2

x

(4.38)

With these impurities again we have a pairing of the eigen-modes of the

Cooperon Hamiltonian. However, in this case, the pairing is between states

that transform the same way when we exchange valleys. So the degenerate

states are ss and t2s, t1t3 and t3t3, etc. Looking at the channels for the quan-

tum correction we have that the modes that are odd under K ↔ K′ cancel

each other in pairs while the even ones contribute equally. This happens be-

cause the disorder we are considering does not distinguish between K and

K′, i.e. it commutes with τx which generates this transformation.

The appearance of this double degeneracy has to do with the fact that

this disorder still preserves C2 symmetry, a rotation of π around the z-axis.

If we include an extra term τyσz in our disorder:

U = u0τ0σ0 − uxτxσz − uyτyσz, (4.39)

2This impurity corresponds to one of the type τxσx in the normal basis.
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the C2 symmetry is broken. In this case there remains only one gapless mode,

the singlet-singlet:

∆ss = 0, ∆t1s = 2
u2
x

u2
0 + u2

x + u2
y

,

∆t2s = 2
u2
y

u2
0 + u2

x + u2
y

, ∆t3s = 2
u2
x + u2

y

u2
0 + u2

x + u2
y

.

(4.40)

In this situation for strong ux,y disorder, the quantum correction will be dom-

inated by the singlet-singlet state only. The singlet will contribute with a

positive correction to the conductivity, leading to a WL phase when the inter-

valley scattering is sufficiently large. Such a phase has already been studied

[143] and experimentally observed [144–146, 195] and is indeed the stan-

dard phase expected since realistic graphene flakes have atomic defects that

activate intervalley scattering.

4.3 Graphene with Rashba SOC

So far we have shown how the innate pseudospin DOF in graphene can

activate a WAL phase due to the suppression of backscattering in the pres-

ence of scalar impurities. A more "conventional" WL phase settles if the

backscattering channel is opened by a more complex impurity landscape for

example. The presence of SOC is responsible for a WAL in 2DEG [193] but

so far it has remained relatively unexplored in the context of vdW Dirac

heterostructures. It is an important topic not only due to the broad appeal

that SOC-active 2D materials have for a variety of spintronics applications

but also due to the unique way SOC manifests in these, entangling spin and

pseudospin. Some works have focused on weak in-band SOC [151, 153] or

impurity SOC [152]. Within such approaches the coupling between the spin

and pseudospin DOFs is either weak or non-existing. This section is devoted

to the impact a strong coupling can have in graphene. For that we shall

use the Hamiltonian introduced in Eq.(3.8), that comprises the Rashba SOC,

and, using the diagrammatic formalism presented in Chapter 2, go beyond

the standard weak SOC limit and explore the case where the spin-splitting is

well resolved within the impurity broadening η, i.e. α > η.
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4.3.1 Weak SOC: Cooperon Structure

As previously, we start by computing the disorder corrections to the charge

current vertex:

ṽx,y = 2v
(
σx,y +

α

ε
sy,x

)
, (4.41)

ṽx,y = 2v

(
1 + α

ε− 2α

ε2 + 4α2

)
σx,y − ε

ε+ 2α

ε2 + 4α2
vsy,x, (4.42)

for regimes I and II (see Chapter 3), respectively. The appearance of sx,y in

the renormalised vertex structure signals the onset for the Rashba-Edelstein

effect by which a charge current is converted into a spin density in the sys-

tem, introduced in Chapter 1.

The conductivity in regimes I and II is, respectively:

σc =
4v2

nu2
0

ε (ε+ 2α)

ε2 + 4α2
, (4.43)

σc =
4v2

nu2
0

, (4.44)

per valley, in units of e2/h. With both spin and pseudospin as relevant DOFs,

the Cooperon is a 16 x 16 matrix making the choice of basis even more im-

portant in this case. We can turn the Cooperon matrix block diagonal via the

transformation Tθ. This transformation is given by the eigenvectors of the

rotation:

ΣθQ =

(
0 −ie−iθQ

−ieiθQ 0

)
⊗

(
0 ie−iθQ

−ieiθQ 0

)
, (4.45)

which rotates the momentum vector θ → 2θQ − θ while leaving the Rashba

term invariant. For weak SOC we can expect the sublattice and spin degrees

of freedom to be weakly coupled and we can use the decoupled basis:

{|σs〉} =
{
singletA,B ⊗ singlet↑,↓

}
⊕
{
singletA,B ⊗ triplet↑,↓

}
⊕{

tripletA,B ⊗ singlet↑,↓
}
⊕
{
tripletA,B ⊗ triplet↑,↓

}
,

(4.46)

where these triplets are the ones given by J∗M from Eq.(4.19), since we previ-

ously saw that these are the ones that diagonalise the W matrix when α = 0.

The full expressions for the Cooperon Hamiltonian can be found in Ap-

pendix B. Here we will be mainly focused at the structure atQ = 0. Building

on the previous sections, let us begin by analysing the case of weak SOC

α � η. At zero Cooperon momentum, in the absence of SOC the Cooperon
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was well described in terms of pseudospin singlet and triplets. As we turn

on the SOC, each of these modes will split into four modes which are, up to

small corrections in α, spin triplets and singlets. So for small SOC the physics

is well described in terms of spin and pseudospin two particle states. For now

let us focus on the modes that are borne from the pseudospin singlet, since

the others had large gaps without SOC already. In Table 4.1 the states and

their respective gaps are shown. Firstly we see that the pseudospin singlet-

spin singlet state (henceforth shortened to singlet-singlet) ss state is the only

gapless one and the singlet-triplet states acquire masses proportional to the

Dyakonov-Perel relaxation rate τ−1
DP = 4α2τp [196] and have small mixing

with other pseudospin triplet states. These are quite small gaps so all four

states are relevant and the quantum correction to the conductivity is only

slightly altered relative to its value without SOC.

State ss st?1 − 2ατpt
?
1t
?
3 st?2 − 2ατpt

?
2t
?
3 st?3 − 2ατp (t?1t

?
2 + t?2t

?
1)

Gap 0 τp/2τDP τp/2τDP τp/τDP

Table 4.1: The low energy Cooperon Hamiltonian eigenstates and their re-
spective gaps, in the limit of small SOC.

Figure 4.3 shows a close up of the 4 low energy states, the pseudospin

singlet states.

Figure 4.3: The small momentum behaviour of the low energy eigenstates of
the Cooperon Hamiltonian for small SOC: α = 0.1 meV, ε = 0.2 eV. These are
the states that split from the pseudospin singlet with the coloured dashed
lines corresponding to spin triplets and the solid black line to the singlet.
The latter is the only gapless mode but the triplets still compete significantly
as long as their gaps remain small.
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4.3.2 Weak SOC: The Weight Matrix

For weak SOC we have:

W ? =


W11 0 W13 0

0 W22 0 0

−W13 0 W33 W34

0 0 −W34 0

 (4.47)

in the decoupled basis. The 4 x 4 blocks are given by:

W11 =
ε

4η3


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (4.48)

W13 = i
α

2η3


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , W34 = −i α
4η3


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , (4.49)

with the relations W22 = −W11/4 and W33 = −3W11/4. The weight matrix in

this limit is almost diagonal, with off-diagonal terms being ∼ O (α/ε), and

determines the sign of the four low gap states: the singlet-singlet is WL and

the singlet-triplets are WAL. As a general rule, the sign of the contribution is

determined by the parity of the state under particle exchange, such that an

odd state is WAL. This form also justifies ignoring the matrix structure of W

and taking simply a weighted trace of the Cooperon to compute the quantum

correction to the conductivity, an approximation that is widely used [151,

152, 155].

4.3.3 Cooperon Structure: High SOC Limit

We now turn to the strong SOC case, which, in this instance, means that

the Rashba spin gap starts to be well resolved within the disorder broaden-

ing: α & η. In the presence of strong spin-orbit interaction the spin and

pseudospin degrees of freedom of Dirac fermions become heavily entangled.

This has deep consequences for the quantum nature of the charge carriers

and can be seen already at the Cooperon level.

Firstly, the Cooperon Hamiltonian modes are no longer simple two parti-
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cles product states of spin and pseudospin. What’s more, we shall show that

the perturbative treatment of the Cooperon momentum no longer accurately

captures the physics behind quantum coherence effects. Our discussions so

far have relied on the assumption that the biggest contribution for the quan-

tum corrections come from Q ≈ 0, allowing for a small momentum expan-

sion. This assumption is not valid when α approaches η, as there are some

states that, even though they are gapped at Q = 0, they have a minimum

at finite momentum. In this way, there is a large contribution coming from

those states away from the origin, rendering the small momentum expan-

sion inappropriate. Using the Eq.(E.10) derived in section E of the Appendix

we computed the Cooperon non-perturbatively in Q. This approach hinges

on the assumption ε � α but, crucially, it allows us to accurately study the

regime where the Cooperon momentum is larger than the disorder broaden-

ing, which is fundamental to capture the physics of the low energy Cooperon

states at finite momentum, that appear for α ≈ η. In Fig. 4.4 it is clear that

the perturbative approach (dashed lines) are not accurate for vQ & η. In the

conventional weak SOC limit this is not an issue since the main contribution

comes from the gapless mode at small Q and thus differences in the high

energy modes for large momenta are typically not significant.

Using Eq.(E.5), we now turn to the case of strong SOC, α ≈ η. The en-

tanglement between the pseudospin and spin has deep consequences for the

Cooperon structure. We find the Cooperon Hamiltonian to no longer be well

described by product states. As these states evolve they start increasing in

energy, leaving the only gapless state, singlet-singlet, dominating the quan-

tum interference correction. This leads to a non-trivial transition, where the

SOC drives the system from WAL towards WL due to the high mass that the

SU(4) states acquire. The gaps and states at zero momentum can be found

in Appendix C.

4.3.4 The Weight Matrix: High SOC Limit

The weight matrix now takes a more complex form, in the decoupled basis

it can be written as:

W ? =


W11 W12 W13 W14

W †
12 W22 W23 W24

W †
13 W23 W33 W †

12

W14 W †
24 W12 W44

 (4.50)

77



Figure 4.4: Comparison between the Cooperon Hamiltonian modes ob-
tained using a treatment perturbative (dashed lines, Eq.(2.44)) and non-
perturbative in Q (solid lines, Eq.(2.45)). The discrepancies are noticeable
for vQ ≈ η. For the ss state, in blue, this difference is not important as it hap-
pens at higher energies, for the other state (red lines) though this difference
is very significant as the perturbative approach will overestimate its contri-
bution for finite momentum due to the much more pronounced minimum in
the dispersion. Parameters used: ε = 0.2 eV; η = 0.7 meV and α = 2η/3.

with the 4x4 blocks:

W11 =


−2α2+ε2

4η3ε
0 0 0

0 3ε3

16η3(ε2−α2)
0 0

0 0 ε3

16η3(ε2−α2)
0

0 0 0 0

 , (4.51)

W22 =


ε3

16η3(ε2−α2)
0 0 0

0 8α4−6α2ε2−ε4
32η3ε(ε2−α2)

0 0

0 0 8α4−2α2ε2−ε4
32η3ε(ε2−α2)

0

0 0 0 0

 , (4.52)

W33 =


3ε3

16η3(ε2−α2)
0 0 0

0 8α4−2α2ε2−5ε4

32η3ε(ε2−α2)
0 0

0 0 8α4−6α2ε2−ε4
32η3ε(ε2−α2)

0

0 0 0 0

 , (4.53)
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W44 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −α2(ε2−2α2)
4η3ε(ε2−α2)

 , (4.54)

W12 = i
α

16η3


0 0 0 0

0 0 0 0
3ε2−4α2

ε2−α2 0 0 0

0 0 0 0

 , W13 = i
3α

16η3


0 8

3
0 0

3ε2−4α2

ε2−α2 0 0 0

0 0 0 0

0 0 0 0

 ,

(4.55)

W23 =


0 0 0 0

0 0 8α4−6α2ε2−ε4
32η3ε(ε2−α2)

0

0 8α4−10α2ε2+ε4

32η3ε(ε2−α2)
0 0

0 0 0 0

 , (4.56)

W24 = i
α

16η3


0 0 0 0

0 0 0 0

0 0 0 ε2−4α2

ε2−α2

0 0 0 0

 . (4.57)

The states st3, t?1t3 t
?
2t3, t3s, t3t

?
1 and t3t

?
2 do not contribute to the quan-

tum correction. Furthermore, the diagonal entries follow the general trend

wherein a state that is odd (even) under particle swap contributes for WAL

(WL). However, now we cannot neglect the off-diagonal components that

strongly couple different states. In the strong SOC regime, the matrix struc-

ture of the weight matrix should be taken into account.

4.3.5 The Quantum Correction to the Conductivity:

High SOC

The quantum correction to the conductivity is presented in Fig. 4.5 (black

line) as a function of the SOC strength relative to the disorder broadening.

We employed the non-perturbative expression for the Cooperon in order to

access the large SOC regime of α ≈ η. The figure can be divided in two

main regions: one that is WAL, for α < η and a WL one for α > η. The

former starts with the absence of SOC, where the gapless pseudospin singlet

dominates with a positive contribution to ∆σ. Spin orbit interaction then

splits this mode into four. Of these, only the singlet-singlet mode (WL in

nature) remains gapless, however, the spin triplets contribute with an op-

posite sign and, for weak SOC they dominate the corrections and thus the
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system remains in a WAL phase. Furthermore these triplets acquire minima

in their dispersion relations away from Q = 0 that become deeper with the

increase of α which explains the initial increase of ∆σ. The curve then hits a

peak as we approach the strong SOC regime. At this point the gaps of these

low-lying states start becoming too large and their minima less pronounced

so that their contribution becomes less significant. The singlet-singlet state

remains unaffected and eventually becomes the dominant mode changing

the sign of the quantum corrections3. This is a transition from a WAL phase

to a WL phase driven by spin orbit interactions that strongly couples the

pseudospin and spin degrees of freedom in the Dirac system. This is in stark

contrast to what is typically found in conventional metals where SOC drives

the towards a WAL phase.

4.4 Rashba SOC and Intervalley Impurities

Finally, in this section we treat the full problem of the Dirac Rashba system

with intervalley scattering in the disorder potential. This is fundamental to

study the effect of point defects that are ubiquitous in current samples. We

start from the Hamiltonian:

Hbp = vσ · p + α (σxsy − σysx) , (4.58)

written in the magic basis 2 from Table 3.1 (we omitted the identity matrix

acting on the valley space). We choose the disorder potential

U = u0 + uxτxσz + uyτyσz (4.59)

since it preserves time reversal symmetry but is general enough that it does

not lead to duplicated gapless modes in the Cooperon structure, as we saw

in Section 4.2.3. We assume Gaussian "white noise" statistics where the dif-

ferent disorder types are uncorrelated, which has the advantage of not gen-

erating any additional matrix structures in the self energy. This means that

the disorder averaged GF is simply a diagonal matrix in the valley space,

with two copies of the GF from Eq.(3.19), one for each valley. Generally

there will be correlations between the different disorder terms but cannot

open any more gaps in the Cooperon modes and therefore should alter qual-

3This is because the singlet-singlet state is also part of the total angular momentum basis
for the SU(4) algebra.
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itatively our results. The self energy (in regime II for example) becomes:

ΣR = −in
(
u2

0 + u2
x + u2

y

) ε

4v2
. (4.60)

We define the intra and intervalley scattering rates as:

τ−1
v = nu2

0

ε

4v2
, (4.61a)

τ−1
iv = n

(
u2
x + u2

y

) ε

4v2
. (4.61b)

Although tackling this problem is technically very complicated due to the

size of the objects involved (the Cooperon is now a 64 × 64 matrix), con-

ceptually we can easily understand it by simply combining the two pictures

that we already have for the SOC case and the intervalley impurity. We

expect the modes observed in the Dirac-Rashba model with scalar impuri-

ties to split into valley singlets and triplets with the valley singlet remaining

the only gapless state. For large enough intervalley scattering rate this gap-

less state should be the sole dominant contribution and change the sign of

the quantum corrections from WAL to WL (weak SOC) or from WL to WAL

(strong SOC). There is still the question of how strong must the intervalley

scattering rate be. This is important to understand how robust is the new

SOC driven WL phase analysed in the previous section. To answer this ques-

tion we must carry out the calculation. This task is significantly simplified by

making use of the properties of tensor products. In essence, the Cooperon is

obtained via:

HC ∼ GR ⊗ GA =
(
12 ⊗ GR1v

)
⊗
(
12 ⊗ GA1v

)
, (4.62)

with 1n being an n×n identity matrix and the 1v subscript indicates that the

GF is for one valley only. We want to make use of the Cooperon for a single

valley that we have already computed. For that we start from the object

H̃C = 14 ⊗HC,1v, (4.63)

which is essentially the true Cooperon Hamiltonian but in a basis that is a

reordering of the usual tensor product basis from Eq.(4.62). Hence, we can

write

HC = S−1H̃CS, (4.64)
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and similarly for the weight matrix. The explicit form of the transformation

matrices used is given in Appendix D. To get the final result we need to in-

vert and integrate the Cooperon in the momentum, which we do numerically

(making use of the Tθ transformation for the inversion). The results for ∆σ

are shown in Fig. 4.5 in the coloured lines. The novel SOC driven WL phase

seen before is extremely sensitive to intervalley scattering since already for

values of τ−1
iv = τ−1

v /10 it is replaced by a more conventional transition from

WL to WAL in the presence of strong SOC. This makes experimental detec-

tion of this new WL phase difficult as experiments put τiv ∼ 1ps and less

than 10 times greater than τv [146, 197].

Figure 4.5: The interference correction to the conductivity in graphene with
Rashba SOC. The black line depicts the case without intervalley scattering
and showcases the unusual SOC driven WL phase that settles in the strong
SOC regime (α > η). The case with intervalley impurities is captured by the
coloured lines. The WL at strong SOC still survives for very low intervalley
scatering rates (purple curve). However, already for intervalley rates ten
times smaller than the intravalley scattering rate the new SOC driven WL
phase is destroyed and replaced by the conventional picture of a WL→WAL
transition in the presence of SOC. Parameters used: ε = 0.2 eV, L = 1 µm,
` = 0.3 µm and n = 1014 cm−2.

4.5 Conclusions

In this chapter we have studied the quantum interference corrections to the

conductivity in graphene with proximity-induced SOC. The inherent pseu-

dospin DOF which couples to the momentum, mimicking SOC and leading
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to a WAL phase. If spin and isospin are not irrelevant DOFs (either via im-

purities or in band effects) we need to take into account the interference

between them as well. These interactions split the modes into simple sin-

glet/triplets states (in the case of impurities) or more complicated states (in

the case of strong in-band effects). Generally, the quantum corrections are

dominated by singlet states as long as time reversal symmetry is preserved.

The exceptions are the cases where the disorder potential preserves some

rotation symmetries of the system leading to pairwise cancellations between

states that change under that transformation.

In the presence of strong Rashba SOC, graphene hosts a WL phase un-

like what happens in conventional conductors. To access this new phase it

is necessary to perform the calculation non-perturbatively in the Cooperon

momentum in order to accurately capture the low energy behaviour of some

states at vQ ≈ η. This new phase unveiled in this thesis is highly sensitive to

intervalley scattering and it quickly gives way to the conventional picture of

WAL with strong SOC. This extreme sensitivity is the underlying reason why

no studies so far have managed to capture experimentally the WAL phase

that should exist in pristine graphene (i.e. absence of intervalley scatter-

ing and meaningful spin orbit interactions), but rather an impurity driven

WL [144–146, 195]. Similarly, magnetotransport studies on graphene/TMD

heterostructures have reported WAL[141, 148, 149, 198, 199]. The SOC-

driven WL phase should be observed in ultraclean samples with minimal

point defects.
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Chapter 5

Spin-Orbit Torque

5.1 Preliminaries

The physics of spin-orbit torque is deeply intertwined with non-equilibrium

spin polarisations that can be generated in materials with broken inversion

symmetry via an external electric field. The diagrammatic formalism pre-

sented in Chapter 2 allows us to study the extrinsic (i.e. impurity driven)

contribution to these non-equilibrium phenomena even in the presence of

strong SOC, which is vital for an accurate understanding of the SOT in fer-

romagnetic vdW heterostructures within the diffusive regime.

Ultimately, the goal is to predict how the magnetisation of our system will

change once a current is driven through it or through a material coupled to

it. We will restrict ourselves to ferromagnetic materials although the formal-

ism can be extended to anti-ferromagnetic systems. Let the magnetisation

of the ferromagnet (FM) be given by M = Msm, with Ms the saturation

magnetisation and m the unit vector. The dynamics of the magnetisation

are controlled by the Landau-Lifshitz-Gilbert (LLG) equation [63, 92]:

dm

dt
= −γm×BM + αGm× dm

dt
+

γ

Ms

T, (5.1)

where γ is the gyromagnetic ratio (with units T−1s−1) and αG the dimen-

sionless Gilbert damping parameter. The first term in the rhs of Eq.(5.1)

accounts for the precession of the magnetisation around the effective mag-

netic field BM that is generated by all the magnetic moments of the FM. The

second term is the damping that will make the magnetisation relax towards
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its equilibrium position. Finally, the third term includes all torques that are

exerted by the conduction electrons on the magnetisation and is our main

focus. We will derive microscopically the torques that are generated in a 2D

interface between the thin FM and a spin-orbit active 2D material that are

coupled via a a ferromagnetic interaction with strength ∆xc. In this case the

generated torque can be written as [92]:

T = −∆xc

d
m× S, (5.2)

where S is the current driven spin density. The appearance of the FM film

thickness d reflects 2D origin of the torque since, the thicker the FM is, the

harder it is to induce magnetisation switching via SOT. This non-equilibrium

spin polarisation S occurs at the level of the 2D layer and is activated a

combination of SOC and a magnetic exchange interaction induced by the

FM film via proximity effects.

Within linear response theory we write S = K̂J ·J, where the spin density

response to an applied current density J is controlled by the 3 × 2 tensor

K̂J = K̂ · σ̂−1 that contains the spin susceptibility response tensor K̂ and the

conductivity tensor σ̂. These response functions are given by:

Kαβ = 2π
∑
p

Tr
{
sαGRp ṽβGAp

}
, (5.3)

σαβ =
1

2π

∑
P

Tr
{
vαGRp ṽβGAp

}
, (5.4)

which are particular cases of Eq.(2.22), and, as we have seen in Chapter

2, can be computed using the Diffuson method. This is a controlled and

accurate probe into the extrinsic mechanisms behind SOT which dominate

in the diffusive regime due to their semi-classical scaling ∼ 1/n [164].

The current induced SOT is conventionally classified into two categories:

the field-like torque (Todd) is m-odd and acts like an effective magnetic field

and the damping-like torque (Teven) which is m-even and renormalises the

damping parameter in the LLG equation. Assuming a perturbative expansion

of the torque in terms of the magnetisation is possible we can write:

Todd = to1 m× (ẑ × J) + to2 m× (m× ẑ) (m · J) +O
(
m5
)
, (5.5a)

Teven = te1 m× (m× (ẑ × J)) + te2 m× ẑ (m · J) +O
(
m4
)
, (5.5b)
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with the torque parameters te1,2 and to1,2 are to be determined and should

not depend on the magnetisation unit vector m. Of particular importance

is the damping-like torque since it is responsible for the much sought af-

ter magnetic switching in this devices. Rigorously, it does not suffice to look

into the parity with respect to m and one needs to perform a vector spherical

harmonics decomposition of each term SOT term to discern its nature, espe-

cially in the presence of strong in-plane magnetisation [200]. In that case,

both tei and toi will yield field and damping-like contributions. The leading

contributions are nonetheless as we have denoted them (with the exception

of to2 which strongly mixes field-like and damping-like SOT). Keeping this in

mind, however, from now on refer to the different torques as is commonly

done with toi being field-like and tei damping-like.

In the subsequent sections we will show how to use diagrammatic meth-

ods to compute the torque parameters in the case of a thin FM coupled to

a monolayer transition metal dichalcogenide (TMD), invariant under 3-fold

rotations. To that end we will use the Hamiltonian from Equation (3.22),

with focus on regime II.

5.2 Symmetry Analysis of the Magnetised C3v Dirac-

Rashba Model

We start by performing a symmetry analysis of the problem to find out what

kind of terms are possible within our system. To determine the symmetries,

it suffices to consider the “empty” bubble (no vertex corrections). Using the

commutation relations between the different Pauli matrices together with

the Hamiltonian properties under the transformation m → −m (see details

on section F of the Appendix) the response function admits the following

general structure (sum over repeated indices is implied):

K̂ =

 mzκxx + m2
a~αξ · ~faxx + ~αξ · ~g κxy + mz~αξ · ~fxy + m2

ah
a
xy

−κxy −mz~αξ · ~fxy + m2
ah

a
yx mzκyy + ~αξ · ~g + m2

a~αξ · ~fayy
mxκzx + mzmx~αξ · ~zzx mzmxκzy + mx~αξ · ~zzy

 , (5.6)

where ~αξ = ξ(λsv,∆). The coefficients {κia, fa,g, ha, z} are even functions of

mx and mz. In the particular case of λsv = ∆ = 0, Kxx, Kyy and Kzy are

odd (even) in mz (mx), so that any anisotropy effect in the generation of

spin density collinear with the applied electric field must be at least O (m2
x).
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Similarly, Kxy = −Kyx +O (m2
x), with these terms being instead even in mz

since they encode the REE, which is already present in the non-magnetised

system [188]. The only terms odd inmx areKzx andKzy so the generation of

out-of-plane spin polarisation necessitates an anisotropic deformation of the

Fermi surface. The inclusion of λsv and ∆, possible due to the the breaking

of sublattice symmetry, activates terms linear in ~αξ that vanishing upon the

summation over the two valleys.

5.3 An Intuitive Picture: Using Boltzmann

While the powerful diagrammatic formalism allows us to get accurate values

for the dominant disorder-induced responses in the diffusive limit, a simpler

geometric analysis based on the spin texture at the Fermi surface is capable

of not only determining which responses should we expect in the system but

also of providing a physical intuition for such phenomena. To simplify our

analysis we restrict ourselves to the C6v-invariant model (λsv = ∆ = 0) with

a proximity induced FM interaction. In the spirit of the Boltzmann formalism

introduced in Section 2.3.2 we write the non-equilibrium spin polarisation

in terms of the distortion of the Fermi surface due to the applied electric field

δf±,p, such that:

S =
∑
p

〈s〉+,p (δf+,p − δf−,p) , (5.7)

where 〈s〉+,p is the average value of the spin operator on the state |k〉+ whose

dependence on the p-direction is shown in Eqs.(3.27a)-(3.27c). We have

already taken into account that the two bands (↑ / ↓) have opposite spin

polarities. The other piece needed for the response is the deviation of the

Fermi surface from its equilibrium value:

δf νp ∝ τ ν‖ p̂ · E + τ ν⊥ (p̂× E)z . (5.8)

Here we are interested simply in the angular dependencies so that we know

which terms survive the integration on Eq.(5.7)1. The current-induced devi-

ation of the Fermi surface is written using the parallel transport times τ ν‖ that

controls the deviation along the direction of the electric field and is there-

fore connected to forward scattering processes; and the transverse transport

1Both vF and pF carry angular dependences in the presence of mx. These, however,
vanish upon angular integration so we neglect them in the analysis.
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times τ ν⊥ that in turn are behind skew scattering generating imbalances in the

scattering cross section between angles±θ relative to E. This skewness plays

an crucial role in activating damping-like SOT terms which play a major role

in magnetisation switching.

Let us start our analysis by taking the electric field to be along the x̂-

direction so that δf νk ∝ τ ν‖ Ex cos θ− τ ν⊥ Ex sin θ. The longitudinal distortion of

the distribution function (∝ τ‖) breaks the equivalence between points in the

Fermi surface along this direction, so that a spin imbalance is created leading

to the generation of an in-plane spin polarisation along ŷ. This is the well

known REE that is already present in the usual non-magnetic Dirac-Rashba

model [54, 188]. Concurrently, the skewness term τ⊥ is responsible for two

extra effects. Firstly, it picks up a contribution from Eq.(3.27a) to Sx. Sim-

ilarly to the previous effect, this is a current-induced spin polarisation that

is generated due to a spin imbalance, but in this case the imbalance occurs

perpendicularly to E due to skewness, so that the spin density generated is

along the current direction. Since it does not require mx, it is already present

in isotropic systems. This phenomenon, that we shall call collinear Edelstein

effect, can be generated efficiently since it is still a semi-classical effect, scal-

ing with the impurity density as n−12. Lastly, an out-of-plane spin response is

generated via a mechanism combining skewness and the anisotropy in the sz
texture due to the in-plane exchange coupling. It is the left-right imbalance

together with the angle dependence of the sz spin texture that activate this

response.

We can apply the same reasoning when the electric field is along the ŷ-

direction. Just like previously, the REE and the collinear version are present

but now generate a Sx and Sy response, respectively. An additional out-

of-plane non-equilibrium spin polarisation is also generated, however, in

this case, it is captured by τ‖, not requiring any sort of skewness, since

the anisotropy direction of the out-of-plane spin texture coincides with the

direction of the applied electric field. All these mechanisms can be visu-

alised using Figure 5.1. The reasoning outlined above provides a general

and intuitive tool to predict which SOTs are operative in different systems,

by analysing their spin textures.

Both the collinear Edelstein effect and the generation of out-of-plane spin

polarisation discussed are new effects which can have important contribu-

tions towards SOT as we shall see in the next section. It is important to note

2Note that the formalisms that we use are meant to study diffusive processes that hinge
on the presence of impurities. Therefore, the n = 0 is not contemplated in this work.
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Figure 5.1: Spin responses responsible for the SOT mechanisms in the sys-
tem can be understood based on the spin texture and the deformation of the
Fermi surface due the electric field E. For simplicity, only the spin major-
ity band (blue line) is shown. The image is divided into in-plane response
(left block) and out-of-plane (right block). The responses on the top (bot-
tom) row are activated by an electric field along x̂ (ŷ), assuming in-plane
magnetisation to be along x̂. The shadowed grey (red) circles represent
the field-induced distortion parallel (perpendicular) to the applied field, de-
scribed by τ‖ and τ⊥ in Eq.(5.8).

that these arguments are applicable to each band separately. Since they have

opposite spin polarities it would be possible for the effects to cancel when

summing over the two bands. This however is not to be expected since the

two bands have different Fermi momenta and a rigorous calculation proves

that all the effects listed above are indeed present even when the two oppo-

site spin bands are populated.

We finish this discussion by drawing the comparison between the magne-

tised Dirac-Rashba model here discussed and the 2DEG Rashba model with

induced exchange interaction [90]. The Rashba-Edelstein effect is operative

in both systems since they share the winding spin texture around the Fermi

rings. However, the different nature of the dispersions is important. In the

2DEG there is a cancellation between the two bands that negates the simple

mechanism outlined above for the generation of Sz via Ey. Furthermore, the

skew-scattering-activated mechanisms are not as robust in the 2DEG [201].

5.4 Diagrammatics on the SOT

The main goal of this section is to develop an accurate microscopic the-

ory of SOT that incorporates disorder effects self consistently. To that end

we employ the diagrammatic formalism outlined in Chapter 2. This tech-

nique allows us to treat all the couplings non-perturbatively enabling the
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study of a variety of rich regimes, including the more experimentally rele-

vant case of proximitised materials with competing energy scales α ≈ ∆xc.

Furthermore, by summing all single impurity diagrams using T -Matrix inser-

tions in the vertex corrections we capture all processes that contribute at the

semi-classical level. Such an approach has proved to be more accurate than

the standard ladder diagrams approximation and has the advantage of not

only bridging the gap between the weak scattering Gaussian approximation

and the unitary limit (the case of vacancies), but also capturing the skew-

scattering mechanisms [164]. We can obtain simple analytical expressions

in the weak scattering limit by expanding the GF in the anisotropy mx in

Dyson’s series [90].

In order to study the charge-spin conversion phenomena in weakly disor-

dered systems we focus on the Fermi surface contributions that are captured

using Eq.(5.3). The 3 × 2 K tensor encodes every charge-to-spin response.

From the symmetry analysis done in Section 5.2 we can infer the following

form for the charge current-to-spin response tensor:

K̂J =

mzκ
ss
xx κxy

κyx mzκ
ss
yy

mxκ
ss
zx mxmzκzy

 , (5.9)

where the superscript ss marks the responses that are activated by skew

scattering. And similarly for the conductivity:

σ̂c =

(
σxx mzσ

ss
xy

mzσ
ss
yx σyy

)
. (5.10)

We have made explicit which terms are odd upon inversion of the magneti-

sation components so that the terms καβ and σαβ are even functions in mx

and mz.

With the decomposition in Eq.(5.9), the K̂ tensor elements and the torque

parameters from Eqs.(5.5b) and (5.5a) are related via:

to1 = ∆xc

(
κxy −m2

xκzy
)

; to2 = ∆xc

(
κxy + κyx

m2
x

− κzy
)

; (5.11a)

te1 = ∆xcκyy; te2 = ∆xc

(
κxx − κyy

m2
x

− κzx − κxx
)
. (5.11b)

In order to accurately capture the diffusive regime, we perform the calcula-

tions using T -Matrix insertions in the Bethe-Salpeter equation for the renor-
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malised current vertex. For that we can use Eq.(2.28):

Kαβ =
2

π

[
(D − 1) Υ−1

]
βα

(5.12)

where now α = 2 (sx) , 3 (sy) , 4 (sz) runs the indices that cover the spin den-

sity operators and β = 5 (σx) , 9 (σy) covers the velocity operators.

5.4.1 Results: Graphene/FM heterostructure

To develop a generic SOT theory, not reliant on spinful scattering centers

[168, 169, 194, 202] we chose a simple scalar disorder potential:

U (x) = u0

∑
i=1

δ (x−Xi) . (5.13)

We start with the simpler case of the C6v invariant model in the presence of

an FM induced exchange interaction (∆ = λsv = 0). The exchange coupling

in these samples can be up to the order of 10s of meV [94]. The results are

summarised in Fig. 5.2a where it is shown the Fermi energy dependence of

the relevant KJ terms. The familiar Rashba-Edelstein response (κyx) stands

out with a high efficiency (∼ 0.4 for εF = 0.4 meV), comparable to what is

found in topological insulators and graphene/TMD bilayers [91, 188]. Ad-

ditionally, there is a significant generation of out-of-plane spin polarisation

(κzy). Both of these responses are present even in the Gaussian limit mak-

ing them inherently more robust. These terms make up the field-like SOT

and are incapable of inducing magnetic switching by themselves. The T -

Matrix approximation captures skewscattering, which is present in systems

with mz 6= 0 (see Fig. 5.1). This reveals two more contributions to the SOT.

A collinear Edelstein effect (κii), which establishes a spin polarisation along

the same direction as the applied current, is present already in the isotropic

model (mx = 0). This is the main contribution towards the damping-like

SOTs: te1 and te2, which are desirable for magnetic switching based devices.

Lastly, the in-plane magnetisation induces a small out-of-plane spin density

response. Both these effects are present for moderate impurity potential

strength and are finite as soon as skewscattering is activated. Interestingly,

these terms are also present in the 2DEG, albeit much weaker, since they

appear as higher order terms (in terms of potential strength) in the diagram-

matic expansion [201].

Both skewscattering-activated responses (KJ
xx and KJ

zx) are highly sensi-
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(a) (b)

Figure 5.2: The current induced spin response in magnetised graphene, as a
function of the Fermi energy, for α = 20 meV, ∆xc = 15 meV, θm = π/11, n =
1011 cm−2. (a) For an intermediate disorder potential u0 = 1.2 eVnm2, using
the T-Matrix approximation, all responses are active, however the damping-
like terms are very low, with efficiencies below 1%. (b) Comparison between
the weak scattering limit, u0 = 0.1 eVnm2 (full lines) and the unitary limit
u0 → ∞ (dashed lines) showing the increase in the SOT efficiencies KJ

xx
and KJ

z x with the impurity potential due to their skewscattering origin.

tive to the scattering potential strength. While the Edelstein efficiency shows

slow logarithmic disorder corrections [188], the damping-like efficiencies in-

crease ten-fold when approaching the unitary limit (u0 → ∞), as shown in

Fig. 5.2b. In systems where resonant scatterers (such as vacancies) are pre-

dominant the collinear Edelstein effect efficiency can get close to 1%.

It is possible to obtain approximate expressions for the torque coefficients

in the weak scattering limit by treating the anisotropy perturbatively. We ex-

pand the GF in the anisotropy "parameter" mx and insert it already at the

level of Bethe-Salpeter equation for the vertex renormalisation. In this way

the renormalised vertex acquires matrix structures dependent on mx already

containing information about which responses are activated. This is because

once we insert the renormalised vertex into the final integral we automat-

ically generate all diagrams to leading order in mx. In the Gaussian ap-

proximation in particular, the matrix components of the renormalised vertex

yield (apart from a multiplicative factor) the response. In this case we get a

non-trivial structure for the self-energy Σ:

iΣR = η1− ηxsx − ηzsz, (5.14)
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mx = 0 O (mx)

J̃x σxs0, σ0sy, σxsz, σzsy σxsx, σysy
J̃y σys0, σ0sx, σysz, σzsx σ0s0, σzs0, σ0sz, σxsy, σysx, σzsz

Table 5.1: The matrix structures generated upon disorder renormalisation
of the charge current vertices, in the Gaussian approximation. Notice the
presence of sy in J̃x and of sx and sz in J̃y.

with

η = nu2
0

ε

4v2
, ηx = nu2

0

mx

4v2
, ηz = nu2

0

mz

4v2
, (5.15)

where we have have again defined m = ∆xcm and neglected the real part of

the self energy since it does not contribute to leading order terms. In Table

5.1 we show all the matrix structures of the charge current vertices generated

by disorder renormalisation. The presence of sx and sy in, respectively, J̃y
and J̃x is a manifestation of the Rashba-Edelstein effect. Additionally, the

appearance of sz in the former encodes the out-of-plane spin polarisation

that is generated, at Gaussian level, by an electric field applied normal to

the anisotropy direction.

The longitudinal conductivity is given by:

σxx = σyy = σ0

(
1− 4α2m2

z (ε2 − 2α2)

ε4 (α2 + m2
z)−m4

z (ε2 − 3α2)

)
(5.16)

where σ0 = ε/η is the conductivity of pure Dirac fermions. The longitudi-

nal conductivity is lower when α,mz 6= 0 since backscattering is no longer

completely suppressed. The Rashba-Edelstein response is, in turn:

Kxy =
σ0

v

2α3ε (ε2 + m2
z)

ε4 (α2 + m2
z)−m4

z (ε2 − 3α2)
= −Kyx, (5.17)

and the out-of-plane spin polarisation response is:

Kzy =
σ0

v

2mxmzα

ε (α2 + m2
z)

+O
(
ε−2
)
, (5.18)

in the limit of high Fermi energy. These are the only responses that are

captured by the widely used Gaussian approximation. It is necessary to go

beyond it and include skewness to activate the remaining terms and, con-

sequently, damping-like torque. In the weak scattering limit we do that by

considering the "Y-diagrams" which are the next order diagrams in the impu-

rity potential strength, shown in Fig. 5.3. Including these is also enough to
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Figure 5.3: The Y diagrams are the the lowest order diagrams that capture
skewscattering in the weak scattering limit. For these diagrams we need to
renormalise both opeators involved.

capture the extrinsic contribution to the Hall response:

σY
xy = − 2u0mzα

6 (ε2 +m2
z)

3
σ0

v2 (ε4 (α2 +m2
z)−m4

z (ε2 − 3α2))2 = −σY
yx, (5.19)

as well as the newly unveiled collinear Edelstein effect:

KY
xx = KY

yy =
u0mzα

5ε (ε2 −m2
z) (ε2 + m2

z)
2
σ0

v3 [ε4 (m2
z + α2)−m4

z (ε2 − 3α2)]2
, (5.20)

and another out-of-plane response

KY
zx = −σ0

u0mxm
2
zα

5

2v3ε (α2 + m2
z)

3 +O
(
ε−2
)
. (5.21)

Now every response is present and, more importantly, all of them scale

linearly with the conductivity. This is a stark contrast to previous theoret-

ical works where skewness was not taken into account. In such cases the

damping-like torques appear as subleading terms (in the case of perturbative

diagrammatic calculations [91, 203]) or weakly dependent on the transport

time (in the case of first principle calculations [204, 205]). The coefficients

of the torque (te(o)i ≡ d−1∆xcτe(o)i) in this limit admit the following expres-

sions:

τo1 ' 2α3 /fε , τo2 ' 2∆2
xcα/fε , (5.22a)

τe1 ' u0∆xcε α
5/(vf 2

ε ) , τe2 ' −τe1 , (5.22b)

where fε = vε(α2 + m2
z).

5.4.2 Results: TMDs/FM heterostructures

We now move on to systems with broken sublattice symmetry (C6v → C3v)

which spans a wide range of materials. We will study the case of a semi-

conductor TMD/FM heterostructure. These materials typically have sizable
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orbital gaps Eg = 2∆ and an extra SOC known as spin-valley coupling λsv.

Since this interaction is diagonal in the valley space we compute the response

functions for each separate valley and then add them to get the final result.

Furthermore, in these systems, α and ∆xc can be much larger than the values

seen in the graphene case [206–209]. In particular we shall explore the case

where the exchange coupling is of the order of 100s of meV.

The presence of the additional energy scales make an analytical treat-

ment extremely unpractical. Hence, we compute the Diffuson and Υ matrix

numerically and bypass integrating the renormalised vertex via Eq.(2.28).

The evolution of the SOTs with the orbital gap is depicted in Fig. 5.4. There

are two main features here. First is the strong enhancement of the out-of-

plane damping-like SOT efficiency KJ
zx relative to what was obtained be-

fore, due to a large out-of-plane equilibrium spin polarisation established by

the orbital mass. Furthermore the collinear Edelstein effect is now highly

anisotropic as |τe1| 6= |τe2|, a difference that increases with the orbital gap.

This anisotropy is further illustrated in the inset of Fig. 5.4 which shows that

even for a small magnetisation angle of π/10 there is already a 25% differ-

ence between the two. What’s more, the fact that the angle dependence is so

noticeable for small angles means that a non-perturbative treatment of the

problem is necessary and one cannot make the approximation of taking the

torquances te/o,i to be constant in θm when solving the LLG equation.

The values obtained for the SOT terms are small (one order of magnitude

smaller) when compared to typical experimental values [77–79]. This is a

consequence of the fairly simplified model that was used (scalar, uncorre-

lated disorder) and the fact that we are considering the Rashba Hamiltonian

as the only SOC contribution. These results however represent a large im-

provement over previous theories where damping-like SOT is only captured

at next order O (n0) in the impurity density [91], and, therefore, will con-

tribute much less in diffusive samples. Furthermore, this theory is mainly

aimed at providing an understanding about the microscopic mechanisms be-

hind the generation of SOT in 2D materials.

5.5 Conclusions

In this chapter we have presented a microscopic theory for purely interfacial

SOT, focusing in the Fermi sea response, which is dominant in the diffusive

limit of disordered systems. Such a theory was sorely lacking and repre-

sents an important step away from the previous idea that, in the mono-
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Figure 5.4: Orbital gap dependence of the damping-like SOT efficiencies
generated in TMDs in the unitary limit, for a fixed carrier density of ne =
4.7 × 1013cm−2, ∆xc = 0.1eV, α = 60meV, λsv = 3meV and impurity density
n = 10× 11 cm−2. The circle points are realizations for θm = π/18 while the
squares are θm = π/10.There is a high degree of anisotropy between KJ

xx and
KJ
yy that gets amplified for higher ∆. The inset depicts angle dependence of

τe1(2). The shaded area indicates strong non-perturbative region where high-
order harmonics τen (n > 2) become prominent.

layer limit, the Rashba SOC would induce a predominantly field-like re-

sponse [90, 92, 210]. When skewscattering is taken into account, a ro-

bust damping-like response that scales linearly with the conductivity is acti-

vated. This enhancement of the damping-like SOT efficiency comes in tan-

dem with two novel charge-to-spin conversion phenomena: the collinear

Edelstein effect, wherein a spin polarisation is generated along the direc-

tion of the applied current (Si = KiiEi), and an out-plane spin polarisation

response (Sz = KzxEx) [211]. These findings dismiss the expectation that

anti-damping SOT required the presence of bulk SHE [92] or intrinsic Berry

phase-related mechanisms [212–214].

These results relied on a self consistent treatment of disorder that allows

for a full resummation of single impurity diagrams (T -Matrix approach). It is

the first instance this formalism is used in the context of SOTs. It allows study

all impurity potential regimes from the weak (Gaussian) to the resonant

(unitary) scattering limits non-perturbatively in all the couplings of the bare

Hamiltonian, including randomly oriented magnetisation. This formalism

can be easily used for other systems such as topological insulators and lower

symmetry TMDs [201].
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Chapter 6

Summary and Outlook

In this thesis we have studied 2D honeycomb lattice systems under the ef-

fects of strong proximity induced spin-orbit and exchange interactions in

the presence different types of disorder potential landscapes. We employed

a diagrammatic formalism that allows for a fully quantum and controlled

treatment of the problem in the dilute impurity regime, non-perturbatively

in the energy scales of the Hamiltonian.

We first analysed C6v-invariant focusing on the quantum interference cor-

rections to the conductivity and how they are affected by strong entangle-

ment between the different DOFs: spin, pseudospin (sublattice) and isospin

(valley). The analysis was heavily centered on the Cooperon structure, and

understanding which types of states are dominant. By studying them on sim-

ple graphene, we found that for certain types of disorder the WL corrections

are not dominated by a singlet state as is generally assumed, and is the basis

for most of the approximations used ([143, 151–153, 182]). The presence

of strong SOC in graphene significantly alters the Cooperon modes, as they

are no longer well described by spin-pseudospin product states. Further-

more, the SOC makes the weight matrix non-diagonal leading to the mixing

of different Cooperon states. This feature is missed if we take the commonly

taken approximation of a diagonal weight matrix. Finally, we found a new

weak localisation phase that is driven by the spin-orbit interaction, a con-

trasting picture to what happens in conventional conductors. This regime

required the development of a non-perturbative treatment in the Cooperon

momentum to accurately capture the low energy behaviour of the Cooperon

states. The observation of this WL phase would require ultra clean samples,
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since it is highly sensitive to intervalley scattering, which quickly changes

the nature of the quantum interference, giving way to the conventional WAL

phase. Moving forward on this topic, it would be interesting to apply this

formalism to C3v-invariant materials such as TMDs and analyse the quantum

corrections in the different energy regimes and see if this non-perturbative

treatment yields again new results compared to previous perturbative stud-

ies [152, 153]. Furthermore, while we have assumed throughout this work

that the coherence length of electrons is much larger than the mean free

path. This might not be true in some samples, in which case other diagrams,

besides the maximally crossed become relevant [215]. It would be interest-

ing to understand what role do these diagrams play in this case. And lastly,

the inclusion of a magnetic field and the study of the magnetoconductivity

would facilitate comparisons with experimental results.

In the second part of this thesis we applied the diagrammatic formalism

to develop a general microscopic theory of spin-orbit torques in graphene

and TMDs proximity coupled to a ferromagnetic material. This allows us to

access a wide range of points of the Hamiltonian parameters phase space:

weak and strong SOC, strong exchange, intermediate energy regimes, arbi-

trary direction of magnetisation and strong impurity potential strength. Fur-

thermore, the T-Matrix formalism employed takes fully into account skews-

cattering. This proved to be crucial as it activates all possible spin density re-

sponses, including new charge-to-spin conversion phenomena, the collinear

Edelstein effect and the generation of the out-of-plane spin polarisation,

which are responsible for damping-like SOT. This comes to dispel the no-

tion that one needs a complex impurity potential landscape (e.g. magnetic

impurities) to get a damping-like SOT response in the 2D limit. The skews-

cattering nature of these responses makes them very sensitive to disorder

potential strength getting greatly enhanced in the unitary limit. In TMDs,

where the exchange interaction can be much larger, the in-plane mangeti-

sation can lead to a highly anisotropic collinear Edelstein response as the

higher harmonics terms become important. Moving forward we can use this

formalism to study the SOT in topological insulators and the intrinsic re-

sponse of the system.
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Appendix A

The Green’s function in the magnetised

Dirac Rashba model

We will compute the GF for the clean magnetised Dirac-Rashba system with

an orbital mass term. The Hamiltonian describing this system is:

Hb,p = vσ · p + α (σxsy − σysx) + ∆σz + mzsz + mxsx, (A.1)

with the Pauli matrices σi, si, i = 0, 1, 2, 3 being the Pauli matrices acting,

respectively on the sublattice and spin DOF, α is the Rashba SOC, ∆ is the

orbital mass term and mx,z = −∆xcmx,z the induced exchange term that

couples the conduction electrons to the magnetisation m with strength ∆xc.

The clean system GF has the following structure:

G
R/A
0,p =

Gp
0 +Gθ

0

(v2p2 − z2
1) (v2p2 − z2

2)
+ mx

Gp
x +Gθ

x

(v2p2 − z2
+)

2
(v2p2 − z2

−)
2 , (A.2)

where we have expanded in the in-plane magnetisation and defined the

terms:

z2
± = ε2 −∆2 + m2

z ± 2

√
ε2 (α2 + m2

z)− α2 (∆ + mz)
2, (A.3)

and the radial and angular parts:

Gp
0 = gp

00γ00 + gp
03γ03 + gp

RγR + gp
30γ30 + gp

33γ33, (A.4)

Gθ
0 =2vpαε (γ02 cos θ − γ01 sin θ) + 2vpεmz (γ13 cos θ + γ23 sin θ) +

vp
(
ε2 − v2p2 −∆2 + m2

z

)
(γ10 cos θ + γ20 sin θ) +

v2p2α [sin (2θ) (γ22 − γ11) + cos (2θ) (γ12 + γ21)] +

2vpα (∆ + mz) (γ32 cos θ − γ31 sin θ) ,

(A.5)
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We have defined:

gp
00 = ε

(
ε2 − v2p2 − 2α2 −∆2 −m2

z

)
,

gp
03 = mz

(
ε2 + v2p2 − 2α2 + ∆2

)
−m3

z − 2α2∆,

gp
R = α

(
ε2 − (∆ + mz)

2) ,
gp

30 = ∆m2
z − 2α2mz + ∆

(
ε2 − v2p2 − 2α2 −∆2

)
,

g33 = −2ε
(
α2 −∆mz

)
.

(A.6)

Finally the first order terms in mx cumbersome expressions of the various

energy scales. Spin-valley coupling can easily be included with the substitu-

tion mz → mz + λsv in the K valley and mz → mz − λsv and ∆→ −∆ for the

K′ valley.
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Appendix B

The Cooperon Hamiltonian

We write the Cooperon HamiltonianHC = 1−ξP using two particle pseudo-

spin and spin operators: Σ = (σ1 + σ2) /2, Σ̃ = (σ1 − σ2) /2 and S =

(s1 + s2) /2. The superscripts refer to the particles sub-spaces such that σ1 =

(σ ⊗ s0)⊗ 14.

In the absence of SOC and with scalar, Gaussian impurities we have:

H0
C =

q2

8
+
i

4
Q · Σ̃ +

i

16
qxqyΣz +

1

16

(
8− q2

) (
Σ2
x + Σ2

y

)
+

+
1

16

q2
x − q2

y

2

(
Σ2
y − Σ2

x

)
− 1

8
qxqyΣxΣy,

(B.1)

where we have defined the dimensionless quantity q = vQ/η. Including the

Rashba SOC rapidly increases the complexity of the problem. For weak SOC

we get:

HC = H0
C + iC1

(
8− 3q2

) (
Σ̃xSy − Σ̃ySx

)
+ C2

(
8− q2

)
(ΣxSy − ΣySx) +

+ 4C1 (qxSy − qySx) + C2

Q2
x − q2

y

2
(ΣxSy + ΣySx)

− i3C1

q2
x − q2

y

2

(
Σ̃xSy + Σ̃ySx

)
+ i3C1qxqy

(
Σ̃xSx − Σ̃ySy

)
− C2qxqy (ΣxSx − ΣySy) +

+
{
C1qx

[
Sx
(
σ1
xσ

2
y + σ1

yσ
2
x

)
− Sy

(
σ1
yσ

2
y + 3σ1

xσ
2
x

)]
− x↔ y

}
(B.2)

The factors are given by C1 = α
16η

and C2 = α
16ε

, so we can neglect C2 for

high Fermi energies.
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Appendix C

Cooperon Modes with strong SOC

At zero momentum, the eigenvalues and eigenvectors of of the Cooperon

Hamiltonian in the strong SOC case are as follows:

e1 = 0, e2 =
ε

2 (ε+ α)
, e3 =

ε2 − 4α2

2 (ε2 − α2)
,

e4 =
ε

2 (ε− α)
, e5 =

3ε2 − 4α2

4 (ε2 − α2)
, e6 = 1,

(C.1)

in ascending order. Their respective eigenstates are:

v1 = ss, v2,a =
1√
2

(st2 + it2s) , v2,b =
1√
2

(st1 − it1s) ,

v3 =
1√

2
(
1 + 4α

2

ε2

) (t1t2 − t2t1 − 2i
α

ε
t3t3

)
,

v4,a =
1√
2

(st2 − it2s) , v4,b =
1√
2

(st1 + it1s) ,

v5,a = t1t1, v5b = t2t2,

v6,a = t2t3, v6,b = t3t2,

v6,c =
1√
2

(st3 + t3s) , v6d =
1√
2

(t1t2 + t2t1) ,

v6,e =
1√

2
(
1 + 4α

2

ε2

) (t3s+ t3t3 − 2i
α

ε
t1t2

)
,

v6,f =
1√

2
(
1 + 4α

2

ε2

) (st3 + t3t3 − 2i
α

ε
t1t2

)
,

v6,g = t3t1, v6,h = t1t3,

v6,i =
1√

2
(
1 + 4α

2

ε2

) (t1t2 + t2t1 − 2i
α

ε
t3t3

)
,

(C.2)
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Appendix D

Transformation Matrices for HC and W

in the valley space

For conciseness we define the matrices Ξijk
lmn ≡ (τiσjsk) ⊗ (τlσmsn) with the

indices i, j, k, l,m, n = 0, 1, 2, 3 and the matrices τi σi and si being the Pauli

matrices acting on isospin, pseudospin and spin DOFs. We use the following

transformation to obtain the Cooperon Hamiltonian:

HC = S−1H̃CS, (D.1)

from a simplified form H̃C = 14 ⊗HC,1v that directly uses the result for one

valley only. The transformation matrix in given by:

S =
1

4

(
Ξ000

000 + Ξ011
000 + Ξ022

000 + Ξ033
000 + Ξ001

100 + Ξ002
200 + Ξ003

300 + Ξ010
100 − iΞ012

300+

+iΞ013
200 + Ξ020

200 + iΞ021
300 − iΞ023

100 + Ξ030
300 − iΞ031

200 + iΞ032
100

)
.

(D.2)

Similarly for the weight matrix we have:

W = SL (14 ⊗W1,v)SR (D.3)

with the following transformation matrices:

SL =
1

4

(
Ξ000

000 + Ξ011
000 + Ξ022

000 + Ξ033
000 + Ξ001

100 + Ξ002
200 + Ξ003

300 + Ξ010
100 + iΞ012

300−

−iΞ013
200 + Ξ020

200 − iΞ021
300 + iΞ023

100 + Ξ030
300 + iΞ031

200 − iΞ032
100

)
,

(D.4)
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SR =
1

8

(
Ξ011

000 + Ξ022
000 + Ξ033

000 + Ξ101
000 + Ξ110

000 − iΞ123
000 + iΞ132

000 + Ξ202
000+

+iΞ213
000 + Ξ220

000 − iΞ231
000 + Ξ303

000 − iΞ312
000 + iΞ321

000 + Ξ330
000 + Ξ000

000+

+Ξ001
100 + Ξ002

200 + Ξ003
300 + Ξ010

100 − iΞ012
300 + iΞ013

200 + Ξ020
200 + iΞ021

300−

−iΞ023
100 + Ξ030

300 − iΞ031
200 + iΞ032

100 + Ξ111
100 + Ξ122

100 + Ξ133
100 − iΞ203

100−

−Ξ212
100 + Ξ221

100 − iΞ230
100 + iΞ302

100 − Ξ313
100 + iΞ320

100 + Ξ331
100 + Ξ100

100−

−iΞ102
300 + iΞ103

200 + Ξ112
200 + Ξ113

300 − iΞ120
300 − Ξ121

200 + iΞ130
200 − Ξ131

300+

+Ξ211
200 + Ξ222

200 + Ξ233
200 − iΞ301

200 − iΞ310
200 − Ξ323

200 + Ξ332
200 + Ξ200

200+

+iΞ201
300 + iΞ210

300 + Ξ223
300 − Ξ232

300 + Ξ311
300 + Ξ322

300 + Ξ333
300 + Ξ300

300

)
.

(D.5)
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Appendix E

Non-perturbative Expression for the

Cooperon

In this section we provide a proof for a treatment of the Cooperon Hamilto-

nian non-perturbative in the momentum. The key quantity is the integral:

P (Q) =

∫
dp

(2π)2 G
R
Q−p ⊗ GAp . (E.1)

We shall restrict ourselves to the case where the self energy is scalar. If we

represent the GF in terms of the projectors Pλs = |λs〉 〈λs|, given in terms of

the Hamiltonian eigenstates |λs〉, (λ and s are band labels) it follows that:

P (Q) =
∑
ss′λλ′

∫
dp

(2π)2

Pλ′s′ (Q− p)

ε− Eλ′
s′ (Q− p) + iη

⊗ Pλs (p)

ε− Eλ
s (p)− iη

. (E.2)

Performing partial fraction decomposition:

P (Q) =
∑
ss′λλ′

∫
dp

(2π)2L (Q,p)

(
P ⊗ P

ε− Eλ
s (p)− iη

− P ⊗ P
ε− Eλ′

s′ (Q− p) + iη

)
.

(E.3)

We have defined, for convenience P ⊗ P = Pλ′s′ (Q− p)⊗ Pλs (p) and:

L (Q,p) =
1

Eλ
s (p)− Eλ′

s′ (Q− p) + 2iη
. (E.4)
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Using the Sokhotski–Plemelj theorem:

P (Q) =
∑
ss′λλ′

∫
dp

4π

(
iδ
(
ε− Eλ

s (p)
)
P ⊗ P

Eλ
s (p)− Eλ′

s′ (Q− p) + 2iη
−

−
iδ
(
ε− Eλ′

s′ (Q− p)
)
P ⊗ P

Eλ′
s′ (Q− p)− Eλ

s (p)− 2iη

)
,

(E.5)

where we have neglected the principal part of the integral since it contains

higher order terms in the impurity concentration. Now, firstly, in the second

term of Eq.(E.5) we make the change of variable Q−p→ p, then we notice

that, depending on the sign of the Fermi energy, either only the positive

energy bands or the negative energy bands will contribute to each of the

terms. From now on we assume a positive Fermi energy. In this case the sum

is dominated by the positive energy bands due to the difference of energies

in the denominator:

P (Q) ≈
∑
ss′

∫
dθ
4π
i

[
ρ (ε)P+

s′ (Q− pF )⊗ P+
s (pF )

E+
s (pF )− E+

s′ (Q− pF ) + 2iη
−

− ρ (ε)P+
s′ (pF )⊗ P+

s (Q− pF )

E+
s′ (pF )− E+

s (Q− pF )− 2iη

]
.

(E.6)

We have defined the density of states ρ (ε) = |p|dp/dε and assumed it is the

same for all bands, and the same for the Fermi momentum pF
1. If the Fermi

energy were negative instead we would have:

P (p) ≈
∑
ss′

∫
dθ
4π
i

[
ρ (ε)P−s′ (Q− pF )⊗ P−s (pF )

E−s (pF )− E−s′ (Q− pF ) + 2iη
−

− ρ (ε)P−s′ (pF )⊗ P−s (Q− pF )

E−s′ (pF )− E−s (Q− pF )− 2iη

]
.

(E.8)

Upon relabeling s ↔ s′, we notice that Eqs.(E.6) and (E.8) are very similar.

The difference comes from the angular integration of the projectors and is

1In the case of graphene with Rashba SOC there are two different density of states,
one for each band ρ+ and ρ−. So we can define ρ = (ρ+ + ρ−) /2. The error of this
approximation is given by

δρ =
ρ+ − ρ−
ρ+ + ρ−

=

√
ε (ε+ 2α) + α2 −

√
ε (ε− 2α) + α2√

ε (ε+ 2α) + α2 +
√
ε (ε− 2α) + α2

=
α

ε
, (E.7)

for large Fermi energies, for each band.

107



zero when Q = 0:∫
dθP−s (−pF )⊗ P−s′ (pF ) =

∫
dθP+

s′ (pF )⊗ P+
s (−pF ) (E.9)

For finiteQ this relation no longer holds and introduces and error∼ O (Q/pF ).

We now want to extend the range of integration of energy to the whole space

]−∞,+∞[. For the positive bands this is allowed but the other half will now

pick up a finite contribution that was not there before. We acount for this

with a factor of 1/2, which is justified as long as Q/pF � 1. Plus we can also

include the interband terms that mix positive and negative energies, also

allowed in the limit of large Fermi energy. Plugging the Hamiltonians back

yields:

P (Q) ≈
∫

dθ
8π

[
iρ (ε)

H2 (pF )−H1 (Q− pF ) + 2iη
−

− iρ (ε)

H1 (pF )−H2 (Q− pF )− 2iη

]
,

(E.10)

where the superscripts refer to which particle subspace the Hamiltonians are

acting on. Eq.(E.10) provides an alternative way to compute the Cooperon

that is valid even when vQ is is comparable to the disorder broadening vQ ∼
η as long as the spin splitting of the bands due to SOC is small relative to the

Fermi level. It is a more general version of other expressions that are used

for the 2DEG [182].
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Appendix F

Symmetries of the Magnetised

Dirac-Rashba Model

Defining the following transformations:

S1 ≡ {mz → −mz, λsv → −λsv,∆→ −∆} , (F.1a)

S2 ≡ {m→ −m, λsv → −λsv,∆→ −∆} , (F.1b)

S3 ≡ {mx → −mx} (F.1c)

The disorder-averaged Green’s functions for the Hamiltonian (3.22)satisfy

the following symmetry relations:

sxσyGa(−px, py)σysx = Ga(px, py)|S1
, (F.2a)

syσxGa(px,−py)syσx = Ga(px, py)|S2
, (F.2b)

szσzGa(−px,−py)szσz = Ga(px, py)|S3
. (F.2c)

Using these symmetries in Eq.(5.3), we easily find:

Kxx(yy) = − Kxx(yy)

∣∣
S1
, Kxx(yy) = − Kxx(yy)

∣∣
S2
, Kxx(yy) = Kxx(yy)

∣∣
S3
,

(F.3a)

Kxy(yx) = Kxy(yx)

∣∣
S1
, Kxy(yx) = Kxy(yx)

∣∣
S2
, Kxy(yx) = Kxy(yx)

∣∣
S3
, (F.3b)

Kzx = Kzx|S1
, Kzx = − Kzx|S2

, Kzx = − Kzx|S3
, (F.3c)

Kzy = − Kzy|S1
, Kzy = Kzy|S2

, Kzy = − Kzy|S3
. (F.3d)

These relations imply the structure of the response function presented in

Eq.(5.6) of the main text.
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Glossary

2D Two dimensional.

2DEG Two dimensional electron gas.

DOF Degree of freedom.

FM Ferromagnet.

FMR Ferromagnetic resonance.

GF Green’s function.

GMR Giant magnetoresistance.

hBN Hexagonal Boron Nitride.

HM Heavy metal.

ISGE Inverse spin galvanic effect.

ISHE Inverse spin Hall effect.

LLG Landau-Lifshitz-Gilbert.

MRAM Magnetoresistive random access memory.

MTJ Magnetic tunnel junction.

REE Rashba-Edelstein effect.
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SGE Spin galvanic effect.

SHE Spin Hall effect.

SLTA Spin lifetime anisotropy.

SOC Spin-orbit coupling.

SOT Spin-orbit torque.

STT Spin transfer torque.

TI Topological insulator.

TMD Transition metal dichalcogenide.

vdW van der Waals.

WAL Weak anti-localisation.

WL Weak localisation.
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