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Abstract

Here we present three different models that can be tested against
observed sunspot oscillations: (i) A magnetic flux tube of circular
cross-sectional shape with the axis parallel to the observer’s line
of sight; (ii) a magnetic flux tube of elliptical cross-sectional shape
with the axis parallel to the observer’s line of sight; (iii) a magnetic
flux tube of actual cross-sectional shape with the axis parallel to
the observer’s line of sight. The theory of MHD wave modes in
cylindrical magnetic waveguides is well developed. In this work
we will solve the dispersion relation in cylindrical magnetic waveg-
uides using a new numerical algorithm for solving transcendental
equations.

Next, we will present a model that predicts the MHD wave modes
of compressible magnetic flux tubes with an elliptical cross-section.
Therefore, the developed numerical algorithm is also implemented
to solve the dispersion relation for elliptical magnetic waveguides.
From a practical point of view the information from the resultant
dispersion diagrams does not actually show what these MHDmodes
will actually look like in observational data. Therefore, we will il-
lustrate the spatial structure of the eigenfunctions of these MHD
wave modes to explain how the eccentricity affects different wave
modes when the flux tube axis is parallel to the observers line of
sight. Finally, we present a model that predicts the MHD wave
modes of compressible magnetic flux tubes using the actual ob-
served cross-sectional shape. We will illustrate the spatial struc-
ture of the eigenfunctions of these MHD wave modes and compare
them with other models, i.e cylindrical and elliptical.
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CHAPTER 1

Introduction

1.1 A brief history of solar science

For more than 4.6 billion years, the Sun has provided us with energy. However,
many secrets of the Sun are still a mystery for scientists, e.g., the variety
of phenomena that occur on its surface such as the origin of the solar wind
(see, e.g. Vaquero and Vázquez, 2009; Despois and Gargaud, 2006) and many
others. Exploration of the sun and the phenomena occurring on its surface
began around 2000 BC, when the first solar eclipse was recorded in China
(see, e.g. Eddy, 1980; Priest, 2014). Astronomers observed some dark areas
on the Sun’s surface, but could not explain them. The first observation of a
sunspot dated back to 800 BC in ancient Greece. The beginning of 17th century
can be considered a significant starting point for understanding and defining
many astronomical events. In 1609, Johannes Kepler studied the heliocentric
system. He expanded the study of Copernicus to include elliptical orbits of
the planets around the Sun. The most important event in astronomy was
when the telescope was designed by Hans Lippershey in 1609. This invention
contributed to a much better understanding of many astronomical phenomena
which were not possible to study before. Dark areas on the Sun were observed
by Chinese astronomers or what are now known as sunspots, were the first
observed telescopically in late 1610 by Galileo Galilei and Thomas Harriot (see
Figure 1.1). There is still controversy about who was first to record sunspots:
some references attribute the first sunspot recording to British astronomer
and mathematician, Thomas Harriot, in 1610, then followed by Galileo Galilei
in 1612. In the same year Galileo Galilei investigated and tracked sunspots’
movement across the solar disk and concluded that the Sun rotates around its
own axis. The discoveries were not limited to sunspots only. The study was
extended to include many important aspects of the Sun and astronomy. In
1619, Johannes Kepler explained the orientation of comet’s tails by a directed
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(a) Galileo Galilei: sunspots (b) Sunspots, courtesy of NASA.

Figure 1.1: Left panel: representation of a sunspot in the early seventeenth
century. Right panel: a high-resolution sunspot observation courtesy of
SDO/HMI.

solar wind. In the late 1660s, Isaac Newton laid the foundation for solar
spectroscopy.

In the late 18th century, the nebular hypothesis was formulated by Pierre
Simon de Laplace in 1796. He proposed a gravitational collapse of a large,
slowly rotating gas cloud to explain the solar system’s formation.

In the late 19th century, most studies were focused on solar spectroscopy
due to the discovery of solar spectroscopy such as William Herschel, who was
the first to detect the Sun’s invisible infrared radiation in 1800, and Johann
Wilhelm Ritter, who detected solar ultraviolet radiation in 1801. One of the
most important discoveries in the middle of 19th century was the Doppler
effect, defined as the change in frequency of a wave due to the motion of the
source detected by an observer in a different reference frame, discovered by
Christian Doppler and named after him. Astronomers not only monitored
sunspots, but they also went further and studied the sunspot cycle as well,
which is known as the change in the number of sunspots which starts from a
minimum and then increases into more sunspots (that is, about 250 sunspots)
and back to a minimum again. In 1843, Samuel Heinrich Schwabe was the first
astronomer who discovered the sunspot cycle and defined the 11 year sunspot
period. The Swiss astronomer, Rudolf Wolf then confirmed what Schwabe
found (Arlt, 2014). In 1852, Edward Sabine discussed how the sunspot cycle
is directly linked to magnetic field activity. The study of sunspot distribution
was also studied by Spörer, who discovered his law for sunspot distribution in
1861 (Lockyer, 1904). British astronomers Carrington and Hodgson were the
first to observe a solar flare in 1859. In 1889 George Ellery Hale developed
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the first spectroheliograph for the Kenwood Astrophysical Observatory. His
instrument was designed to capture a photographic image of the Sun at a single
wavelength of light.

The progress and development in the 20th century contributed to explor-
ing the Sun more and more accurately. Solar physics evolved during the last
century due to the innovation of new and accurate telescopes and instruments.
Astronomers and physicists contributed in the past two centuries to accom-
plishing and discovering many important phenomena in solar physics, some
of them mentioned previously. Researchers in 20th century followed the same
path and made great progress with advanced modern spacecraft. The French
solar physicist Bernard Lyot developed the first instrument (coronagraph) in
1931 that blocks out light emitted by the Sun’s actual surface so that the
corona can be observed. This helps to see the corona in full daylight. In 1940,
the German astrophysicist Walter Grotrian observed coronal spectral lines,
and the results revealed that the coronal temperature was million of degrees
(Russell, 2018).

Hannes Alfvén initiated the concept of magnetohydrodynamics (MHD) and
Cowling (1976) summarised the theory of MHD in his book in 1956. In 1962,
Leighton discovered the five-minute oscillations in the solar photosphere (see,
e.g. Leighton et al., 1962a). The most important achievements that revolu-
tionised solar physics and astronomy is discovering dark absorption lines in
the solar spectrum by Joseph von Fraunhofer. The spectroscope’s further de-
velopment has contributed greatly to providing researchers the opportunity to
conduct much analysis and explain many plasma processes. Space-based solar
observations began regularly in the 60’s with the Orbiting Solar Observatories
(OSO). This continued with the launch of the Japanese Hinotori satellite in the
80’s and many others successful solar observatories such as Yohkoh (or Solar-
A) satellite, Hinode (SOLAR-B), Solar Dynamics Observatory (SDO), the In-
terface Region Imaging Spectrograph (IRIS), and the Solar and Heliospheric
Observatory (SOHO). In 1995, NASA and The European Space Agency (ESA)
launched SOHO. This spacecraft provided us with many important discoveries
about the solar wind and its speed. The Japanese solar observatory space-
craft Yohkoh helped us reveal the dynamic nature of the corona and magnetic
reconnection in solar flares in the 1990s (Priest, 2014). In 2004, samples of so-
lar wind particles were brought back to Earth and studied thanks to NASA’s
Genesis spacecraft. The Japanese spacecraft Hinode (JAXA) revealed mag-
netic waves in the chromosphere in 2006. The first three-dimensional images
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Figure 1.2: The overall structure of the Sun, courtesy of Priest (2014).

of the Sun were obtained by the double-spacecraft Solar Terrestrial Relations
Observatory (STEREO) NASA mission in 2007. The remarkable development
in the theory of MHD, besides ground-based observations, have provided us
with an opportunity to understand the Sun better than was ever possible in
the previous two centuries.

Now we live in a very exciting era of the modern ground and space-based
solar observational facilities. Just recently, The Daniel K. Inouye Solar Tele-
scope (DKIST), Solar Orbiter and Solar Parker Probe become operational.
These new instruments will provide solar researchers with unprecedented hi-
resolution observational data (≈ 30km) and will definitely lead to our better
understanding of the physics of the Sun.

In the following Section, we will discuss the structure of the Sun and its
atmosphere.

1.1.1 Internal structure of the Sun and its atmosphere

The Sun is a G2V main-sequence star located in the centre of the solar system.
It has a diameter of about 1.39 million kilometers, or 109 times the Earth’s
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diameter, and it is located at about 90 million miles away from the Earth. The
mass of the Sun is about 1.99× 1030 kg. The surface gravity of the Sun is 274
ms−2. One of the most important and abundant elements that make up the Sun
is hydrogen, which accounts for 92% of its composition, helium, accounting for
7.8%, besides trace amounts of other heavy elements such as carbon, nitrogen,
oxygen, and silicon (see, e.g. Priest, 2014). Nuclear fusion occurs in the Sun’s
core, and this is the source of solar energy. The hydrogen fuses into helium
due to the huge pressure of up to 265 billion bar. The structure of the Sun
can be divided into two parts: the interior layers and atmosphere.

In this Section, we discuss the internal and external structures of the Sun
and the definition of some important phenomena and features that occur on
its surface. A general description of the Sun’s structure can be found, for
example, in Aschwanden (2005); Priest (2014).

1.1.1.1 The solar interior

The solar interior contains three main layers: the core, radiative zone, and
convection zone.

The core is located in the centre of the Sun and is the hottest and most
dense part of the Sun with a temperature of about 15.7 million kelvin (K)
and a density of 150 g/cm3, which up to 150 times larger than the density
of water. It contains 34% of the Sun’s mass and extends from the center of
the Sun to 20− 25% of its radius. It also has a tremendous pressure of about
265 billion bar that causes high temperatures and the fusion of hydrogen to
helium, a process which will persist for about another 4 billion years. This
process releases all the energy emitted from the Sun (see Figure 1.2).

The radiative Zone is the layer above the core that extends up to about
70% of the solar radius. The density of this layer varies between 20 g/cm3

to 0.2 g/cm3 and decreases from the bottom to the top of the radiative zone.
The photons generated in the core are slowly transferred via radiation and
conduction through this layer. The density of the material in this region
prevents photons from travelling a long distance without colliding with another
particle, causing a change in direction and losing some energy. Photons take
about a million years to escape this zone (Priest, 2014). Throughout this
region, the temperature drops from about 7 million K at the bottom to about
2 million K at the top (see Figure 1.2).

The convection Zone allows the transfer of heat and light through the
convective process. Its depth is about 200,000 km, and it transmits energy
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(a) Photosphere (b) Coronal loop

Figure 1.3: The left image shown the feature of photosphere such as sunspot
(black region on solar atmosphere) and granules. The right image shown a
coronal loop, courtesy of NASA.

from the edge of the radiation region to the Sun’s surface. The plasma at the
bottom is scorching, and bubbles form until they reach the surface; where they
lose their heat to space. As the plasma cools, it returns to the bottom of this
layer again (see Figure 1.2).

The latest model of the Sun adds one interior region called tachocline
is thin layer containing the strong radial differential rotation at the base of
the convection zone and this layer separates the radiative zone and convection
zone. This layer is probably significant in the generation of the global solar
magnetic field.

1.1.1.2 The solar atmosphere

The solar atmosphere is divided into four regions: photosphere, chromosphere,
transition region, and corona. The physical characteristics of each region differ
from the others, and based on these physical characteristics, the effect and
structure of the magnetic field on each region varies. For instance, in the
photosphere, plasma pressure is greater than magnetic pressure, so the plasma
β, which is defined as the ratio of plasma pressure to magnetic pressure, is
of order unity or larger. In contrast, in the corona, the magnetic pressure
dominates, so the plasma β is small, i.e., less than one. The plasma β can be
written as

β =
nkBT

B2/µ0

. (1.1)

where µ0 is the magnetic permeability of free space, which is defined as

µ0 = 4π × 107 N/A2, (1.2)
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Figure 1.4: The mean variation of the density and temperature in the Sun’s
atmosphere, courtesy of Avrett and Loeser (2008).

kB ≈ 1.38 × 10−23JK−1 is the Boltzmann constant, T is the temperature,
and n is the total number density.

Photosphere: This is the 300 miles thick visible part of the solar atmo-
sphere. It is the lowest layer of the Sun’s atmosphere and is the most dense
relative to the upper layers. The photosphere contains many features related
to solar magnetic activity or convection, and is dominated by bright, bubbling
granules of plasma and dark sunspots. The magnetic field mostly emanates
from intergranular lanes (see Figure 1.3). Granules are a small convection cell
pattern with a bright centre of hot rising gas and a cooler edge where the gas
sinks (see Figure 1.3). Granules have an irregular shape and cover the whole
photosphere. They are formed as a result of the temperature gradient near
the surface of the Sun. Granules have a wide range of widths, from 0.2 Mm

to 2 Mm with a lifetime of about 5 to 10 minutes. Sunspots are cool, darker
spots than the surrounding area on the Sun’s photosphere; sunspots will be
discussed in more detail in Section 1.2. The photosphere emits the bulk of
heat and light that reaches the Earth. The temperature of the photosphere
decreases outwards (see Figure 1.4). The temperature at the bottom of the
photosphere is about 6400 K, while at the top is about 4400 K.
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Figure 1.5: The structure of the quiet Sun lower atmosphere. The magnetic
field lines are represented by the solid lines and field lines with footpoints in
the internetwork are shown by thin dashed lines. Large arrows at the bottom
represent large-scale convective flows and small arrows represent the flows on
smaller spatial scales, courtesy of Wedemeyer-Böhm et al. (2009).

Chromosphere: The next layer that sits above the photosphere layer is
known as the chromosphere which is extending to an average height of ∼ 2000

km above the photosphere (see Figure 1.2). The chromosphere conducts heat
from the interior of the Sun to the transition region and corona. The chro-
mospheric temperature increases and the density decreases with height. The
chromospheric temperature varies between ∼ 4500 K and ∼ 20000 K with
minimum of approximately ∼ 3800 K. The chromosphere is characterised by
spicules which emerge outwards. Spicules are defined as plasma jets extend-
ing from the photosphere up toward the chromosphere (Bray and Loughhead,
1974; Zirin, 1998; Tavabi et al., 2012; Porfir’eva and Yakunina, 2016). The
lifetime of spicules is about 15 minutes. Spicules make up one percent of the
Sun’s surface, and prominences are a dense, bright ionised gas eruptions
on the Sun’s surface and can extend up to thousands of kilometers from the
chromosphere to corona (see, e.g. Carpmael, 1870; Lockyer and Lockyer, 1902;
Buss, 1926; Aschwanden, 2005; Priest, 2014).

Transition Region: This region is known as the narrow layer between the
chromosphere and solar corona where the temperature rises from about 8000
to approximately 1,000,000 K (see, e.g. Burton et al., 1971; Boehm-Vitense,
1984).

Corona: The fourth layer and the outermost part of the Sun’s atmosphere
is the corona. The corona is characterised by a higher temperature than the
lower layers of the solar atmosphere. The Sun’s corona extends millions of
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Figure 1.6: A sketch of the magnetic field topology of sunspot in the lower solar
atmosphere. The brown lines shows the distribution of magnetic field lines
close to solar surface for the inner circle (umbra), surrounding ring (penumbra)
and granular vicinity of the spot. The arrows illustrate the convection motion.
Courtesy of Thomas et al. (2002).

kilometers into external space (see, e.g. Burton et al., 1971; Boehm-Vitense,
1984; Kerr, 2012; Witze, 2017). The magnetic field dominates in the corona.
The corona is structured by magnetic loops and open coronal hole regions
and can be seen during a solar eclipse. Coronal loops are magnetic arcs that
begin and end in the photosphere (see Figure 1.3). They may expand up to
thousands of kilometers into corona with extremely high temperatures. The
coronal density is about 10 million times less than Sun’s surface. As a result
of the low density, the corona looks much less bright than of the Sun’s surface.
One of the most important dilemmas in physics of the Sun is knowing the
cause of the high temperature in corona (see, e.g. Peter et al., 2008; Rappazzo
and Velli, 2010; Winebarger et al., 2012; Bourdin et al., 2014).

1.2 Sunspots

Our review in Section 1.1 about the crucial achievements in solar physics’s
history shows that sunspot observations dominated solar physics’s history, be-
ing the first identifiable feature on the solar surface observed by telescopes.
Sunspots are still the focus of many scientists’ attention, especially studying
the phenomenon of waves observed in sunspots. A brief description of the
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basic structures and oscillations in sunspots will be presented next section.

1.2.1 Sunspot properties

Sunspots are defined as regions located on the Sun’s surface, which are cool,
darker than the surrounding, and appear where strong regions of magnetic
field spread from solar interior through the surface. Sunspots are known as
one of the most important features of the photosphere. Sunspots are relatively
dark region because their magnetic field causes partial inhibition of convective
transport of heat. Therefore, they are cooler than their surroundings with
average temperatures around 3800 K while average temperatures around is
5800 K. A strongly magnetized region characterizes sunspots. A complex
active region can develop due to strong magnetic field concentrations and can
be classified according to the size of the sunspots, distribution, penumbra, and
magnetic field properties (McIntosh, 1990). Large formations of sunspots can
be seen from the ground with the naked eye without the need for a telescope
(Solanki, 2003). Sunspots have a typical radius of 10 Mm to 20 Mm and consist
of an umbra and a penumbra. The central dark spot is called the umbra and
has a vertical magnetic field located at the centre. The typical strength of
the magnetic field in an the umbra is about 2.8 kG and decreases gradually
with radius (Thomas et al., 2002). The umbra’s radius is about 40 percent of
the whole sunspot radius. The lighter annulus surrounding the dark spot is
known as penumbra and has an inclined magnetic field with a mean value of
70 to 80 degrees at the edge of the spot. The strength of the magnetic field in
penumbra falls to less than 700 G to 900 G.

1.2.2 Sunspot oscillations

In the previous Section, we discussed the magnetic field configurations related
to sunspots, in the umbra and penumbra of sunspot (see Figure 1.6). Through
studies that have been conducted for decades on the properties of waves from
the low photosphere to the high chromosphere, many important things have
been proven, including that the behaviour of waves above sunspots differs in
both the photosphere and the chromosphere, and the oscillations that have
periods of a few minutes are most prominent in sunspots (see, e.g. Gurman
et al., 1982; Kentischer and Mattig, 1995; Rouppe van der Voort et al., 2003;
Centeno et al., 2006). Global oscillations were monitored with periods ranging
from hours to days in sunspots.
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In the following sections we will describe the main properties of waves and
oscillations in the umbral and penumbral regions of sunspots.

1.2.2.1 Waves and oscillations in the umbra and penumbra

The investigation and study of solar oscillations began with the discovery
of pressure waves in the photosphere (Leighton et al., 1962b). After de-
tecting acoustic p-modes that propagate within the convection zone and the
photosphere, important oscillations were also measured in the atmosphere of
sunspots (Beckers and Tallant, 1969; Zirin and Stein, 1972). Giovanelli (1972)
have classified these into three different types of oscillations,

• Five-minute oscillations in sunspots at the photospheric level,

• Three-minute oscillations and umbral flashes at the chromospheric level,

• Running penumbral waves in the penumbral chromosphere.

The periods of the characteristic p-modes peak at 5 min in the local region
in the lower photosphere. Kobanov (1990) carried out observations of oscilla-
tions in six sunspots by a differential method and found that sunspot umbrae
oscillates as a whole. Scheuer and Thomas (1981); Thomas and Scheuer (1982);
Thomas (1984) suggested that the 3-minute photospheric oscillations, which
often appear as individual peaks in velocity power spectra, might be a resonant
mode of sunspots, with a cavity that could be located in the sunspot umbra
at subphotospheric layers. In the umbral photosphere, three-minute oscilla-
tions were also observed. It was found that these oscillations are dominant in
the chromosphere (see, e.g. Gurman et al., 1982; Kentischer and Mattig, 1995;
Rouppe van der Voort et al., 2003; Centeno et al., 2006), and therefore, they
have the high-frequency tail that are allowed to propagate into chromosphere
(see, e.g. Bogdan and Judge, 2006). Lites (1986) found that the regions with
high oscillatory power in the 3-min band were uncorrelated with those with of
high oscillatory power in the 5-min band. Lites (1986) argued that the photo-
sphere’s 5-min oscillations do not drive the 3-min chromospheric oscillations.
As umbral three-minute oscillations dominate in the chromosphere, many stud-
ies have focused on this type of oscillation in the chromosphere and upper
photosphere. Stangalini et al. (2012) analysed magnetic pores by using IBIS
observations (photospheric FeI 617.3 nm line) and found that three-minute
waves are strictly confined to the umbral region and are present at the height
of formation of this line. Small-scale fluctuations in sunspot umbrae were also
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identified by the observing of chromospheric oscillations at high-spatial resolu-
tion (see, e.g. Socas-Navarro et al., 2009; Bharti et al., 2013; Yurchyshyn et al.,
2014).

One of the largest chromospheric phenomena are running penumbral waves,
which appear as bright coherent quasi-circular bands in a chromospheric line’s
spectral intensity. They propagate radially outward across the sunspot penum-
bra (see, e.g. Zirin and Stein, 1972; Giovanelli, 1972). The periodical oscilla-
tions of penumbral waves were discovered after the detection of umbral flashes.
Many authors suggested that running penumbral waves could be another man-
ifestation of slow linear conversion of magneto-acoustic-gravity (MAG) waves
upwards along the inclined magnetic field (Bloomfield et al., 2007; Felipe et al.,
2010). Lites (1988) analysed observations of penumbral magneto-acoustic os-
cillations and found that in the outer penumbra, 5-min velocity oscillations
dominate. It was also shown that at photospheric heights there is a ring of
minimum power halfway between the inner and the outer penumbral boundary.
Besides that, the authors found that oscillations of much lower frequencies are
dominant in the chromospheric region.

1.3 Magnetohydrodynamic theory

1.3.1 Properties of plasma

Plasma is the fourth, and unique state, of matter that we can describe as an
ionized gas that is characterized, in general, by a mixture of neutrals, ions (pos-
itive), and electrons. Plasma can be strongly influenced by magnetic fields and
high temperatures, which leads to electrons being separated from their nuclei.
This results in negative and positive charges moving separately. These charges,
called electrons and ions, make the plasma a good conductor of electricity that
is highly affected by a magnetic field, i.e., the ions in the plasma react to
magnetic fields because they are charged (the plasma is so hot that all the
negatively charged electrons are removed from the atoms, leaving them with
a positive charge). The most important plasma properties that can be found
in a more accurate definition of plasma is that the plasma is a quasi-neutral
gas of charged particles that exhibit collective behaviour (see, e.g. Jardine,
1994; Chen, 2016). Therefore, the first of the most important characteristics
in which a plasma is distinguished is the medium that is electrically neutral ,
meaning that the number of positive and negative charges are equal and that
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their overall charge densities cancel each other in equilibrium. Thus, if we as-
sume that ne and ni are the number densities of electrons and ions respectively,
with charge state Z, then these are locally balanced, i.e.,

ne ' Zni. (1.3)

The ion density, ni, can be defined as,

ni =
number of particles

volume
, [ni] = m−3. (1.4)

Likewise, both electron ne and na neutral density can be defined in the same
way. It is also worth noting that, according to Gauss’s law, an electrostatic
field will appear immediately in the case of a net charge imbalance. Likewise,
according to Ampere’s law, the same set of charges moving with specific veloc-
ities will give rise to a current density which in turn, induces a magnetic field.
In addition, the net charge imbalance produces an electric field with a spatial
range of the Debye length (see, e.g. Gurnett and Bhattacharjee, 2005),

λD =

√
ε0kBT

e2n
, (1.5)

where ε0 is the permittivity of vacuum which can be written as

ε0 =
1

µ0c2
≈ 8.854187817...× 10−12 Fm−1, (1.6)

and µ0 is the magnetic permeability of free space, which is defined as

µ0 = 4π × 107 N/A2, (1.7)

with c ≈ 2.998× 108ms−1 being the speed of light, kB ≈ 1.38× 10−23JK−1

is the Boltzmann constant, T is the temperature, e = 1.6 × 10−19C and n is
the total number density of electrons or ions.

An ionized gas with a very large number of particles in the sphere of radius
λD can be defined as plasma. This defines the plasma parameter as

ND =
4

3
πλ3Dn� 1. (1.8)

The second property, the collective behaviour arises because the charged par-
ticles interact through long distance electromagnetic forces which means that
the disturbances resulting from the long-range electromagnetic forces affect
the movement of a large number of ions and electrons. This, in turn, governs
collective behaviour in the response to the perturbations of electromagnetic
fields (see, e.g. Chen, 1984).
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1.3.1.1 Plasma criteria

Plasma forms 99 % of the visible cosmic matter between the stars and galaxies.
The Sun is the most important example of an ionized gas for humankind (see,
e.g. Choudhuri, 2018). The Earth is surrounded by a dense plasma called the
ionosphere and interacts by a tenuous plasma called the solar wind.

The physical description of a plasma requires many important parameters
such as the characteristic time scale, length scales and a minimum number
of charged particles by unit volume. Therefore, there are important criteria
that must be taken into account to consider an ionised gas as a plasma. The
electrons oscillate as a whole around the equilibrium state due to their dis-
placement around positive ions and electrical forces drive these oscillations.
The time required for these oscillations to occur is one of the most important
temporal factors in plasma. These oscillations can only develop if the oscilla-
tion period, tp, is short compared with mean free time between collisions tc,
i.e.

tp � tc or
tc
tp
� 1, (1.9)

where tp = 1/ωpe and ωpe is electron plasma frequency which can be defined
as

ωpe =

√
nee2

meε0
, (1.10)

where me is the effective electron mass.
The Debye length is one of the main spatial parameters that help in defining

plasmas. If the length scale, L, of system is larger than the Debye Length, we
can consider the plasma to be quasi-neutral, i.e.

λD � L. (1.11)

The study of continuous plasma behaviour is governed by what is known as
MHD theory, which treats the plasma as a single electrically conducting fluid
interacting with an external magnetic field.

1.3.2 The equations of MHD

The complexity of plasma behaviour and the influence of magnetic fields makes
the solar atmosphere an interesting and challenging subject to study. The
MHD framework provides a good description of large scale and slow plasma
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dynamics and it is restricted to phenomena that having characteristic velocity
slow compared to the speed of light in vacuum. The characteristic times are
much larger than the gyration time of the ions, and the characteristic length
scales are much greater than ion gyro radius and mean free path length. The
basic equations of MHD are a reduced form of Maxwell’s equations together
with Ohm’s law, the gas law, and equations of mass continuity, momentum,
and energy. The MHD approximation for Maxwell’s equations is based on the
assumption that the plasma is electrically neutral. The displacement current
is negligible from Maxwell’s equations since this deals with high frequency
effects on much smaller timescales than the MHD approximation is valid for.
Specifically, the MHD time scale is much larger than the time required for light
to traverse the plasma. We begin by introducing the Maxwell’s equations as
following:

∇×B = µ0j +
1

c2
∂E

∂t
, (1.12)

where B is the magnetic field, E is the electric field, j the current den-
sity. This equation is known as Ampére’s circuital law, which shows that the
magnetic field could be generated by either currents or time-varying electric
field.

∇× E = −∂B
∂t
, (1.13)

∇ · E =
ρ∗

ε
. (1.14)

where ρ∗ the charge density. Equations (1.13) and (1.14) are the Maxwell-
Faraday equations and Gauss’s law for an electric field, respectively. These
equations state that either electric charges or time - varying magnetic field
may create an electric field.

∇ ·B = 0. (1.15)

Equation (1.15) is Gauss’s law for magnetism, or the solenoidal condition,
which implies that there no magnetic monopoles.

The next equation is Ohm’s law which shows that the current density is
proportional to the total electric field. Therefore, Ohm’s law links the electric,
magnetic and velocity fields via the current density.

j = σ(E + v ×B), (1.16)
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where σ is electrical conductivity.
The following equation is the induction equation which links the magnetic

field and velocity of an electrically conductive fluid.
∂B

∂t
= ∇× (v ×B) + η∇2B, (1.17)

where η = 1/µ0σ is the magnetic diffusivity.
The mass continuity equation is the equation for the evolution of the den-

sity, which can written as follwing
dρ

dt
= −ρ∇ · v, (1.18)

where v is velocity of a plasma. The last equation is the energy equation which
states that the rate of increase heat for unit volume as it moves in space is due
to the net effect of the energy sinks and sources.

ρT
ds

dt
= −L, (1.19)

where L is the energy loss function, T is the plasma temperature and s is the
entropy per unit mass of plasma.

1.3.3 The theory of MHD waves

The interaction between plasma and the magnetic field in the solar atmosphere
supports a rich variety of complex phenomena in the Sun. One phenomenon
is that this interaction excites and supports wave propagation. For example,
we can observe ubiquitous MHD waves in sunspots. There are many different
MHD wave modes present on the Sun as a result of different restoring forces
and these have aroused the interest of many researchers. To properly analyse
and understand the behaviour of MHD waves that we observe in the solar
atmosphere we should find the relevant wave solutions for the MHD equations.

The wave solutions of the MHD equations provide understanding for the
observed behaviour of waves in the Sun’s atmosphere. The ideal MHD equa-
tions which neglect viscosity, electrical resistivity, and thermal conductivity
are:

dρ

dt
= −ρ∇ · v, (1.20)

ρ
dv

dt
= −∇P + ρg +

1

4π
[(∇×B)×B] , (1.21)

d

dt

(
Pρ−γ

)
= 0, (1.22)

∇× (v ×B) =
∂B

∂t
, (1.23)

∇ ·B = 0. (1.24)
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These equations are expressed only in terms of the variables ρ, P , v, and
B, where ρ, P , v, and B are density, pressure, velocity, and magnetic field. We
start from the ideal MHD equations and rewrite them for adiabatic processes
by eliminating the pressure term in Equation (1.21) using the relation ∇P =

c2S∇ρ, introducing the sound speed c2S = γP
ρ
, where γ is the ratio of specific

heats and using vector identities to substitute Equation (1.24) into Equations
(1.21) and (1.23). The ideal MHD equations then take the form,

dρ

dt
= −ρ∇ · v, (1.25)

ρ
dv

dt
= −c2S∇ρ+ ρg +

1

4π

[
−1

2
∇B2 + (B · ∇)B

]
, (1.26)

∂B

∂t
= −B(∇ · v) + (B · ∇)v − (v · ∇)B. (1.27)

1.3.4 Dispersion relation

The most common method used to find the wave solutions is by linearising the
ideal MHD equations. Let us set up a small perturbation from the equilibrium
and investigate whether disturbances propagate as MHD waves. By neglecting
the second order perturbations and the gravity term to obtain the following
linearised MHD equations,

dρ1
dt

= −ρ0∇ · v1, (1.28)

ρ
∂v1

∂t
= −c2S∇ρ1 +

1

4π
[−∇(B0 ·B1) + (B0 · ∇)B1] , (1.29)

∂B1

∂t
= −B (∇ · v1) + (B0∇·)v1. (1.30)

Here ρ0, v0, and B0 are the background plasma density, velocity and magnetic
field quantities and ρ1, v1, and B1 are the perturbed quantities, correspond-
ingly.

1.3.5 Dispersion relation of wave propagation in an un-
bounded and homogeneous plasma

The nature of wave propagation in an unbounded and homogeneous plasma has
been discussed previously, e.g. Cowling (1976). By assuming a homogeneous
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Figure 1.7: Friedrich’s diagrams showing the phase speeds of the magneto-
acoustic and Alfvén waves under different background conditions.

magnetic field as B0ẑ and the wave vector k = (kx, 0, kz) in the xz-plane,
Equations (1.28)-(1.30) can be combined as,

∂4∆

∂t4
− (c2S + v2A)

∂2

∂t2
∇2∆ + c2Sv

2
A

∂2

∂z2
∇2∆ = 0, (1.31)

here vA = B0√
µ0ρ0

is the Alfvén speed and ∆ = div v. In order to obtain a

dispersion relation, we introduce the Fourier components ∆ = ∆̂(x) exp(iωt+

ily+ikz). If the perturbed velocity is perpendicular to the wave vector (k·v1 =

0), we will obtain the dispersion relation which describes the Alfvén wave,

ω2 = v2Ak
2 cos2(θ). (1.32)

Here θ is the angle between the wavevector, k, and the background magnetic
field, B0. This describes an incompressible wave where the only restoring force
is magnetic tension.

Allowing for compressibility (k · v1 6= 0), we obtain the dispersion relation
for fast and slow magneto-acoustic waves.

ω4 − k2(c2S + v2A)ω2 + k2zk
2c2Sv

2
A cos2(θ) = 0. (1.33)

Figure 1.7 from Jess et al. (2015) illustrates the propagation of waves in a
uniform unbounded magnetised plasma. It is clear that the Alfvén and the slow
magneto-acoustic waves cannot propagate perpendicular to the magnetic field
direction, unlike the fast magneto-acoustic waves which can. The Alfvén wave
has a phase speed (vph = ω

k
) and vph ≤ vA while the slow magneto-acoustic

wave has a phase speed 0 ≤ vph ≤ min(cS, vA). The fast magneto-acoustic
wave has a phase speed max(cS, vA) ≤ vph ≤ (c2S + v2A)

1
2 .
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1.3.6 Dispersion relations of MHD wave propagation in
a magnetically structured atmosphere

Wave propagation in an unbounded homogeneous plasma has features that
are completely different from those which propagate in a bounded and inho-
mogeneous plasma. Inhomogeneity and the structure of the plasma can have a
very strong influence on the propagation of waves. Therefore, it is important
to study wave propagation in bounded inhomogeneous plasma configurations.
Previous models for different solar features include the magnetic interface,
magnetic slab and magnetic cylinder. These simple but instructive models
provided the basis for understanding, e.g waves observed in coronal loops. All
these cases will be covered in the next sections.

1.3.6.1 MHD surface waves at magnetic interface

High-resolution images of the Sun show that there are very inhomogeneous re-
gions of plasma e.g., at the edge of sunspots and coronal loops. A basic model
for plasma inhomogeneity is to have plasma parameters changing discontinu-
ously at some spatial location. One such example of an inhomogeneous plasma
structure is a discontinuity interface. Wentzel (1979) investigated the effect of
compressibility on the propagation of surface waves at a single interface and de-
rived an expression for the energy carried by such waves. This study obtained
the dispersion relation for isothermal disturbances but he did not investigate
the solutions as fully as Roberts (1981a), who provided a more general under-
standing of wave propagation at a magnetic interface. Roberts (1981a) derived
the dispersion relation for surface wave propagation in a sharply structured
plasma. The dispersion relation governing wave propagation at a magnetic
interface discussed by Roberts (1981a) is,

ρi(k
2v2Ai − ω2)(m2

e + l2)
1
2 + ρe(k

2v2Ae − ω2)(m2
i + l2)

1
2 = 0, (1.34)

where,

m2
i =

(k2c2Si − ω2)(k2v2Ai − ω2)

(c2Si + v2Ai)(k
2c2T − ω2)

, (1.35)

m2
e =

(k2c2Se − ω2)(k2v2Ae − ω2)

(c2Se + v2Ae)(k
2c2Te − ω2)

, (1.36)

c2T i =
c2Siv

2
Ai

c2Si + v2Ai
, (1.37)

c2Te =
c2Sev

2
Ae

c2Se + v2Ae
. (1.38)
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Figure 1.8: A schematic picture the profile of the velocity amplitude for (a)
trapped waves on an interface; (b) surface waves in a slab; (c) body waves in
a slab. Adapted from (Priest, 2014).

Here, cT is tube speed and the subscripts i and e refer to the different neigh-
bouring regions.

Roberts (1981a) found that slow surface waves can propagate only when
one side of the interface is field free. In addition, fast surface waves may
propagate if the plasma in one region is cooler than the other. Such "trapped"
surface waves have the general property that their wave amplitude and energy
decrease with increasing distance from the magnetic interface (see Figure 1.8).

1.3.6.2 MHD waves in a magnetic slab

The second example of waves propagation in a sharply structured atmosphere
is an isolated magnetic slab. The behaviour of MHD waves that propagate
in slab has been discussed previously by many authors. For instance, Parker
(1974) described the occurrence of surface waves in an isolated slab for an
incompressible plasma. Cram and Wilson (1975) studied wave propagation in
a compressible slab. Interestingly they showed that the fast wave is not a free
mode of vibration of the slab. Roberts (1981b) found that the result of Cram
and Wilson (1975) was only true if the slab was warmer than its field-free
environment. Roberts (1981b) derived the dispersion relation governing MHD
wave propagation in an isolated magnetic slab of width 2x0,

(k2v2Ai − ω2)me =
ρe
ρi
ω2mi

(
tanh

coth

)
(mix0), (1.39)
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where,

m2
e = k2 − ω2

c2Se
. (1.40)

Roberts (1981b) found that there are two main magneto-acoustic modes, the
sausage and kink modes, that have various sub-categories, e.g. slow/fast body
and surface waves (see Figure 1.8). The fast magneto-acoustic wave propa-
gates only if the slab is cooler than or equal to the temperature the field-free
environment.
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CHAPTER 2

Solar atmospheric magnetohydrodynamic wave modes
in magnetic flux tubes of circular cross-sectional
shape

2.1 MHD waves in a magnetic cylinder

Edwin and Roberts (1983) provided a simple but instructive model for coronal
loops and flux tubes by analysing wave propagation in a magnetic cylinder by
considering a straight magnetic (B0i = B0i z) flux tube with circular cross-
section embedded within a uniform magnetic field (B0e = B0e z). Here, z is
the unit vector in the z direction, which is parallel to the flux tube axis; index
0 corresponds to the unperturbed equilibrium state; all dependent variables
inside the flux tube have index i, while quantities outside the tube are denoted
with index e. The flux tube boundary is defined by ra.

The linear equation governing magnetohydrodynamic modes can be found
in Section 1.3.3. Linear perturbations about this equilibrium lead to the
Equations (1.28-1.30) in Section 1.3.4 (see, e.g. Lighthill, 1960; Cowling, 1976;
Roberts, 1981a; Aschwanden, 2005) and they can be combined to obtain:

∂4∆

∂t4
− (c2S + v2A)

∂2

∂t2
∇2∆ + c2Sv

2
A

∂2

∂z2
∇2∆ = 0. (2.1)

In the cylindrical coordinate system (r, θ, z) the Laplace operator can be
represented as,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (2.2)

The solution of Equation (2.1) takes the form,

∆ = R(r) exp(i(ωt+ nθ + kz)), (2.3)

where k is the wavenumber in z direction, n is the azimuthal wavenumber in θ
direction, ω is the angular frequency and the function R(r) is to be determined.
By substituting Equation (2.3) in Equations (1.28-1.30) which can be written
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in term of ∇ · v, the perturbed MHD variables in the cylindrical coordinate
system can be derived explicitly as (see e.g. Spruit, 1982a),

vr = A
ω2 − k2c2S
ω2m2

i

d

dr
Bn,

vθ = iA
ω2 − k2c2S
ω2m2

i

n

r
Bn,

vz = −Aikc
2
S

ω2
Bn,

br = −B0
k

ω
vr,

bθ = B0
k

ω
vθ,

bz = iAB0
ω2 − k2c2S

ω3
Bn,

P = iAρ0
c2S
ω
Bn,

PT = −iρ0
ω3

(c2S + v2A)(ω2 − k2c2T )Bn.

Here, A is an arbitrary amplitude and the perturbed velocity components are
given by v = vr, vθ and vz in the r, θ and z directions, respectively; the
perturbed magnetic field components are given by br, bθ and bz. P is the
pressure perturbation and PT is the total pressure perturbation, i.e the sum
of kinetic and magnetic plasma pressures. Bn is the Bessel function and

m2
i =

(k2c2Si − ω2)(k2v2Ai − ω2)

(c2Si + v2Ai)(k
2c2T i − ω2)

. (2.4)

After substitution of Equation (2.3) into Equation (2.1) we obtain,

d2R

dr2
+

1

r

dR

dr
−
(
m2
i +

n2

r2

)
R = 0, (2.5)
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2.1.1 The general solution inside the magnetic flux tube

The solution of Equation (2.5) confined within boundary ra of magnetic flux
tube, r < ra, we take,

∆i = R(r) =

{
AiIn(mir) m2

i > 0,

BiJn(mir) n2
i = −m2

i > 0.
(2.6)

where Ai and Bi are arbitrary constants, In and Jn are Bessel functions, and
n is the order of Bessel functions.

2.1.2 The general solution outside of the magnetic flux
tube

In order to obtain the solution outside of the magnetic flux tube (r > ra),
we assume that there is no propagation of energy away from, or towards the
boundary of magnetic flux tube in the external region,

∆e = R(r) = AeKn(mer), (2.7)

where Ae is an arbitrary constant. HereKn denotes a modified Bessel function,
and n is the order of Bessel functions.

2.1.3 The general dispersion relation

Background pressure balance implies that,

p0i +
B2

0i

2µ0

= p0e +
B2

0e

2µ0

, (2.8)

where p0i and p0e are plasma pressure inside and outside of the magnetic cylin-
der and B0i and B0e are magnetic field inside and outside of the magnetic flux
tube.

By taking into account the continuity of radial velocity component, vr, and
the total (gas plus magnetic) pressure across the boundary of magnetic flux
tube r = ra, we obtain the dispersion relation.

• For surface waves (m2
i > 0),

ρi(k
2v2Ai − ω2)me

K ′n(mera)

Kn(mera)
= ρe(k

2v2Ae − ω2)mi
I ′n(mira)

In(mira)
. (2.9)

• For body waves (m2
i = −n2

i < 0),

ρi(k
2v2Ai − ω2)me

K ′n(mera)

Kn(mera)
= ρe(k

2v2Ae − ω2)ni
J ′n(nira)

Jn(nira)
. (2.10)

Here, the dash denotes the derivative of Bessel functions with respect to
its argument.

24



Figure 2.1: The red line cylindrical magnetic wave guides schematic diagram
shows the longitudinal (sausage) and transversal (kink) modes. The left di-
agram illustrates the sausage wave which is excited by a periodic stretching
and squeezing of the magnetic field while the right diagram illustrates the kink
wave which is characterized by a displacement of the symmetry axis magnetic
flux tube. The thick arrows show the velocity amplitudes and the thin arrows
indicate the direction of the background magnetic field. Image takes from
(Morton et al., 2012)

.

2.2 Model

2.2.1 New numerical algorithm for solving transcenden-
tal equations

We have developed a new numerical algorithm to solve developed transcen-
dental equations with application to solving MHD dispersion relations. The
routine that we developed uses the bisection method with a matrix technique
to solve an equation of two variables. In addition, we can further refine the
solution for each value of wavenumber.

2.2.2 Description of the method

We started by defining the boundary limits and possible wavenumbers. To
do this we divided the phase speed into many intervals. Each interval has an
upper, ai, and a lower, bj, bound. Then we applied these boundaries with
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a wavenumber in two matrices so each element in the matrix represents the
function values with a boundary limit and wavenumber. We created an upper
matrix U which contained the function values with an upper bound and a
wavenumber. We also created a lower matrix L that contained the function
values with a lower bound and a wavenumber.

Lower matrix =


f(a1, k1) f(a1, k2) · · · f(a1, kn)
f(a2, k1) f(a2, k2) · · · f(a2, kn)

... . . .
f(an, k1) f(an, k2) · · · f(an, kn)

 ,

Upper matrix =


f(b1, k1) f(b1, k2) · · · f(b1, kn)
f(b2, k1) f(b2, k2) · · · f(b2, kn)

... . . .
f(bn, k1) f(bn, k2) · · · f(bn, kn)

 .
Next, a multiplication was performed in which each of the elements in the
upper matrix multiplied the corresponding element in lower matrix. Thus, we
obtain the UL matrix.

UL =


f(a1, k1) · f(b1, k1) f(a1, k2) · f(b1, k2) · · · f(a1, kn) · f(b1, kn)
f(a2, k1) · f(b2, k1) f(a2, k2) · f(b2, k2) · · · f(a2, kn) · f(b2, kn)

... . . .
f(an, k1) · f(bn, k1) f(an, k2) · f(bn, k2) · · · f(an, kn) · f(bn, kn)

 .
In addition, we created three matrices that represent the value of the upper
bound and lowers bound of phase speed and wavenumber with the same di-
mension of the multiplication. The elements in each matrix have the same
order of the equivalent elements in the multiplication e.g., matrix A and B re-
peat the values of the first column for all columns while the matrix K repeats
the first row for all rows. The matrices created are as follows:

A =


a1 a1 · · · a1
a2 a2 · · · a2
... . . .
an an · · · an

 ,

B =


b1 b1 · · · b1
b2 b2 · · · b2
... . . .
bn bn · · · bn

 ,

K =


k1 k2 · · · kn
k1 k2 · · · kn
... . . .
k1 k2 · · · kn

 .
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After the multiplication, we looked for where the multiplication has a negative
sign and determine the location of these signs to extract the values from matrix
A, matrix B and matrix K. Then, we put the values extracted in three arrays
for A, B and K to test them and find solutions. Then we implemented the
bisection method to test only these elements in the three arrays because we
knew that only these elements satisfy the condition that the multiplication
of the function at the upper bound with the lower bound is less than zero.
The method works by picking up each element of these three arrays and then
moving to the next element until all elements are tested and the solution is
found.

Figure 2.2: The phase speeds of modes under photospheric conditions were
shown. The bottom panel shows a magnification of the section corresponding
to the slow body and surface waves. The blue line represents kink modes while
the red line represents sausage modes.

2.2.3 Photospheric tubes

The numerical algorithm described in Section 2.2.2 was applied to solve the
dispersion relation equations governing wave propagation in a magnetic cylin-
der, as was done by Edwin and Roberts (1983). We have adapted this model
to the actual physical plasma conditions. Under photospheric conditions, we
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Figure 2.3: The phase speeds (ω/k) of modes under coronal conditions were
shown. The bottom panel shows a magnification of the section corresponding
to the slow body waves. The blue line represent kink modes and the red line
represent sausage modes. kra is wavenumber.

assume that the background plasma temperature, density and pressure in um-
bra is less than the in the penumbra and the magnetic field strength is greater
in the umbra than the penumbra (see, e.g. Maltby et al. 1986). This leads
to the following relations between the characteristic plasma speeds: i.e., vAi,
cSe > cSi, vAe. These particular conditions have important consequence for
the types of MHD wave modes that can be supported by such a waveguide.
Specifically, under these conditions, the MHD wave modes with the largest
phase speeds, vph, in the z direction are surface modes with vph ∈ (cSi, cSe),
with the largest amplitude oscillations at the umbra/penumbra boundary. In
addition, we found that such of a waveguide can support the slow body modes
and these have a slower phase speeds in the z direction with vph ∈ (cT i, cSi)

(see Figure 2.2).
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Figure 2.4: Instantaneous map of the filtered Doppler velocity, derived from the
IBIS Fe I 6173 Å spectral imaging sequence. Courtesy of Dr Marco Stangalini.

2.2.4 Coronal loops

The solutions obtained by solving Equations (2.10) under coronal conditions:
i.e., cSe < vAi < vAe are a slow body waves (kink and sausage) modes that
have a phase speed between cT i and cSi and fast body waves (kink and sausage)
modes that have a phase speed between vAi and vAe. The sausage mode causes
expansions and contractions of the plasma structure and kink mode illustrates
the mode that causes the displacement of the axis of the plasma structure (see
Figure 2.1). Figure 2.3 illustrates the behaviour of the sausage (m = 0) and
kink (m = 1) body modes of oscillations. There are no surface modes under
conditions expected in coronal conditions.

These results under photosperic and coronal conditions correspond well
to the result found by Edwin and Roberts (1983). This is evidence of the
effectiveness of the method used, which will be used later in finding solutions
of the dispersion relation of the MHD waves propagate in the magnetic flux
tubes with elliptical cross sectional shape in Chapter 3.
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Figure 2.5: Sausage mode were plotted under coronal conditions, i.e.
vAe, vAi > cSi, cSe.

2.3 Sausage mode

Here, the cylindrical model will be used to give an explanation of wave mode
shown on Figure 2.4. In this model, the line of sight (LOS) magnetic (bz)
and velocity (vz) perturbations are simply proportional to each other. The
observed MHD wave mode is almost rotationally symmetric (apart from the
small region at the top left of the umbra) with four nodes in the radial direc-
tion. Hence, the approximate rotational symmetry of the oscillatory motion is
closest to the sausage wave mode in a cylindrical waveguide and the presence
of radial nodes tells us that it is higher order radial harmonic. It is clearly seen
that the observed modes have nodes in the radial direction (see Figure 2.4).
As we mentioned, in previous Section the surface modes do not have nodes
in the radial direction this does not match with what we observe. The only
MHD wave modes which can have nodes in the radial direction are body modes
and these have a slower phase speeds in the z direction with vph ∈ (cT i, cSi).
Under these conditions the sausage mode internal solution for the LOS veloc-
ity and magnetic perturbations is given by vz ∝ bz ∝ J0(|mi|ra), where J0 is
the zeroth order Bessel function of the first kind. Under the chosen sunspot
conditions should be m2

i < 0 for the required body mode solution in Equa-
tion 2.10. To closely approximate the observed radial mode structure of the
sausage mode shown in Figure 2.4. We see that the fourth radial node occurs
in the neighbourhood of the umbra/penumbra boundary. The fourth zero of
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J0(|mi|ra) occurs when |mi|ra ≈ 11.79. Although we do not know the values of
kz, vph and the characteristic plasma speeds that define mi this estimate helps
us to constrain the solutions of the full dispersion relation derived in Section
2.1.3. The particular ratios used to numerically solve the dispersion relation
are vAi = 2cSi, cSe = 1.5c0, vAe = 0.5cSi. Total pressure balance between the in-
ternal and external plasma demands that ρe/ρi = (2c2Si + γv2Ai)/(2c

2
Se + γv2Ae).

Taking γ = 5/3 for a neutral hydrogen gas gives ρe/ρi = 1.76. For the slow
sausage body mode shown Figure 2.2 the chosen solution has vph = 0.95 ,
kz = 16.69 and |mira| = 12.13.
It appears that the mode obtained from numerical modeling in Figure 2.5 is
almost similar to the mode observed in Figure 2.4, which gives an initial im-
pression that this observed pattern is the sausage modes. However, we will
make more sure whether this result really gives correct explanation of the ob-
served mode. We will confirm whether the observed mode is actually sausage
mode in Chapter 4.
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CHAPTER 3

Solar atmospheric MHD wave modes in magnetic
flux tubes of elliptical cross-sectional shape

The purpose of this Chapter is to present the result on study of the behaviour
of magnetohydrodynamic (MHD) wave modes that propagate in compressible
magnetic flux tubes with an elliptical cross-section, embedded in a magnetic
environment. The dispersion relation, which describes the behaviour of MHD
wave modes permitted in an elliptical magnetic flux tube, is solved numerically.
Distortion of the spatial structure of the purely real eigenmodes from the well
known circular flux tube model has been considered. The problem has been
studied under both photospheric and coronal conditions. Our result show that
(i) solutions in the form of even Mathieu functions are more sensitive to the
value of eccentricity than solutions with the form of odd Mathieu functions; (ii)
if ellipticity of the magnetic flux tube cross-section is increased, a sausage mode
(m = 0) can not be easily identified; (iii) even solutions which correspond to
the fluting mode (m = 3) can be misinterpreted as a kink mode (m = 1) due to
their similarities. In contrast to the fluting modes which are polarised along the
major axis and strongly depend on the ellipticity of the magnetic flux tube, the
kink and sausage surface modes are practically unaffected by ellipticity. Several
examples of the spacial structure of the eigenmodes permitted in the pores
and sunspots have been visualised. The solutions obtained in approximation
of cylindrical symmetry are in good agreement with previous studies.

3.1 Introduction

High-resolution ground and space-based observations of the solar atmosphere
in combination with the theory of magnetohydrodynamic (MHD) wave prop-
agation provides us with an opportunity to understand the behaviour of ob-
served waves in more detail. Since the discovery by Alfvén (1942), which states
that plasma supports wave-like variation in the magnetic field, much research
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effort has been devoted to the study of MHD waves and oscillations in the
solar atmosphere under a variety of plasma parameters and different mag-
netic structures. MHD wave propagation in unbounded homogeneous plasma
was previously analysed by many researchers such as Lighthill (1960); Cowl-
ing (1976); Parker (2004); Goedbloed and Poedts (2004); Aschwanden (2005);
Priest (2014).

MHD wave propagation in a bounded inhomogeneous plasma configuration
has been extensively studied in the past. For example, (see, e.g. Verth, 2008;
Fedun, 2008; Goossens et al., 2014; Jess et al., 2015). Verth (2008) investigated
the effect of an inhomogeneous magnetic field on coronal loop oscillations. The
effects caused by the presence of a magnetic twist in cylindrical flux tubes have
been studied by Fedun (2008). Goossens et al. (2014) studied the kink wave
in solar magnetic flux tubes and found that the velocity field is naturally a
sum of both transverse and rotational motion. Jess et al. (2015) reviewed
the characterization and interpretation of oscillations that appear in the solar
chromosphere.

A variety of analytical models have been used to analyse wave propagation
in the magnetic interface (Wentzel, 1979; Musielak et al., 2000; Huang et al.,
2017; Roberts, 1981a; Ballai et al., 2011; Vickers et al., 2018), magnetic slab
(Parker, 1974; Cram and Wilson, 1975; Roberts, 1981b; Hornsey et al., 2014;
Pascoe and Nakariakov, 2016; Mather et al., 2018). Magnetic cylinders with a
vertical magnetic field have been studied by Edwin and Roberts (1983); Erdélyi
and Fedun (2007); Verth (2007); Jess et al. (2015) and for the case of a twisted
magnetic field, by Ruderman et al. (2014); Giagkiozis et al. (2016); Williams
et al. (2016); Fedun et al. (2017). In particular, Wentzel (1979) investigated
the effect of compressibility on the propagation of surface waves at a single
interface and derived an expression for the energy carried by such waves. The
author has obtained the dispersion relation for the isothermal plasma distur-
bances without analysis of solutions. Later, Roberts (1981a) provided a more
general study of MHD wave behaviour at the magnetic interface and analysed
propagation of slow surface waves when one side of the interface is magneti-
cally free. It was shown that "trapped" surface waves have the general property
that their wave amplitude and, therefore, energy decreases with distance from
the magnetic interface. Ballai et al. (2011) investigated the nature of globally
propagating waves at the spherical interface under solar corona conditions and
has shown that the frequency of waves is increased as the density of plasma
decreases at the interface.
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In relation to MHD wave propagation in slab geometry, Parker (1974) has
described the occurrence of surface waves in the isolated slab for the incom-
pressible plasma approximation. Cram and Wilson (1975) studied wave prop-
agation in a compressible slab. The authors have shown that fast MHD waves
are not free modes of the slab. Roberts (1981b) obtained the dispersion relation
governing MHD wave propagation in an isolated magnetic slab and specified
two main magneto-acoustic modes; the sausage and the kink waves. These
have various sub-categories e.g. slow/fast body and surface waves. The fast
magneto-acoustic wave propagates only if the magnetic slab temperature is less
than or equal to the temperature of the field-free environment. Furthermore,
Roberts (1981b) investigated wave propagation in a slender slab and found
that the kink mode may exist in this regime as well, i.e. when the width of the
waveguide is much less than the longitudinal wavelength. Interestingly, under
these conditions, the sausage mode can be either a body or surface wave with
a phase speed that is close to the tube speed.

Edwin and Roberts (1983) proposed a simple but instructive model for the
analysis of MHD wave propagation in magnetic flux tubes which is based on
cylindrical geometry. In spite of the complexity of realistic magnetic configura-
tions, many previous studies were focused on studying the behaviour of waves
in the magnetic cylinder under different conditions because of the simplicity of
the model. For example, Erdélyi and Fedun (2007) analysed the effect of com-
pressible magnetically twisted flux tubes on MHD sausage waves. The authors
have found that the period of sausage mode oscillations depends on the mag-
netic twist. More studies in categorizing and interpreting wave propagation
in the solar chromosphere were reviewed by Jess et al. (2015). Verth (2007)
showed that the frequency and amplitude of the standing fast kink mode can
provide us with information regarding the density and magnetic structure of
coronal loops.

Ruderman (2003) studied the resonant damping of oscillations of coronal
loops with elliptic cross-sections under the assumption of zero plasma-β. Erdé-
lyi and Morton (2009) studied wave propagation in a compressible magnetic
flux tube with an elliptical cross-section when finite plasma-β is considered. It
was found that the thin flux tube approximation supports the propagation of
slow sausage and the fast body mode. Under coronal conditions, the slow and
fast body waves for both kink and sausage modes were present, while under
photospheric conditions the slow body waves and fast surface waves for kink
and sausage modes were present.

34



Despite the fact that the high-resolution ground-based observations show a
great variety of sunspots, a number of studies were devoted to the analysis of
the plasma behaviour in a magnetic waveguide with an elliptical cross-section.
For instance, Liu et al. (2016) studied the flare-induced rotation of a sunspot
with an elliptical shape. There is observational evidence of elliptic pores shown
by Keys et al. (2018).

It is well known that the sunspots and pores do not have an ideal circular
cross-sectional shape, (see Figure 3.1, for example). As a result, any imbalance
in the diameter of the waveguide requires the use of an elliptical coordinate
system instead of a cylindrical one. In this Chapter, we attempt to analyse the
MHDmodes permitted in the elliptical magnetic flux tubes. The corresponding
dispersion relation has been solved numerically under both photospheric and
coronal conditions.

This Chapter is tailored to identifying wave modes in pores and sunspots
that can be closely approximated with elliptical cross-sections. From observa-
tional data (see e.g. Jess et al., 2017; Kang et al., 2019; Albidah et al., 2021)
we are restricted to an analysis of the spatial structure of the oscillations inside
the umbral regions of pores and sunspots only. The oscillatory signal decays
too rapidly outside of these regions to analyse with any certainty. Hence, this
indicates that we are observing slow mode type wave modes (which do not
strongly perturb the boundary). From a modelling point of view, the differ-
ence in external/internal values of magnetic field strength and density only
affects the decay rate length scale of the oscillation outside of the waveguide.
The internal spatial structure of the mode is largely unaffected and is not of
primary interest for the purposes of our study.

This Chapter is structured as follows. In Section (3.2), we derive the gen-
eral dispersion relation which describes the linear magneto-acoustic waves in
a compressible magnetic flux tube with an elliptical cross-section. In Section
(3.3) and (3.4) the numerical solutions of this relation obtained under coronal
and photospheric conditions are analysed. In Section (3.5), the MHD wave
modes under coronal and photospheric conditions are investigated. In Section
(3.6) we conclude our results.
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Figure 3.1: Two active regions, NOAA AR12565 (left) and NOAA AR12149
(right), captured in the G-band by the Rapid Oscillations in the Solar Atmo-
sphere (see, e.g. Jess et al., 2010) instrument at the Dunn Solar Telescope.
Each panel shows a non-circularly symmetric sunspot structure, highlighting
the existence of elliptical magnetic field concentrations in the solar atmosphere.
The eccentricity of the elliptical shape of the left image is 0.76, while in the
right image the eccentricity is 0.58.

3.2 General dispersion relation

Let us consider a straight magnetic flux tube (B0i = B0i z) with an elliptical
cross-section embedded in a uniform external magnetic field (B0e = B0e z),
where z is the unit vector parallel to the flux tube axis. The index ”0” cor-
responds to the unperturbed equilibrium state; all dependent variables inside
the flux tube have index ”i”, while quantities outside the tube are denoted
with index ”e”. The cross-section of the flux tube, perpendicular to its axis, is
most conveniently described by the elliptic coordinate system (s,φ) shown in
Figure 3.2. The flux tube boundary is defined by the confocal ellipse s0 (see
blue line in Figure 3.2).

The well-known equation governing small-amplitude MHD waves, obtained
by linearizing the ideal MHD equations (see, e.g. Lighthill, 1960; Cowling, 1976;
Roberts, 1981a; Aschwanden, 2005), is

∂4∆

∂t4
− (c2S + v2A)

∂2

∂t2
∇2∆ + c2Sv

2
A

∂2

∂z2
∇2∆ = 0, (3.1)

where
∆ = ∇ · v, vA =

B0√
µ0ρ0

, cS =

√
γ
p0
ρ0
.

Here, ∆ is the divergence of velocity perturbation v, vA is the Alfvén speed,
cS is the sound speed, µ0 is the magnetic permeability, γ is the ratio of specific
heats, p0 is the unperturbed kinetic plasma pressure and ρ0 is the plasma
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Figure 3.2: A sketch of the elliptic coordinate system in the x, y plane which
is perpendicular to the magnetic flux tube axis. The elliptic coordinates are
(s, φ), where s is a non-negative real number and φ ∈ [0, 2π]. The confocal
ellipses are shown as contours of the constant values of s and the orthogonal
hyperbolas correspond to the constant φ contours. The blue confocal ellipse
s0 shows the boundary of the magnetic flux tube. The distance between the
centre of the ellipse and the focal points is σ.

unperturbed density. In the elliptic cylindrical coordinate system (s, φ, z) the
Laplacian operator can be represented as:

∇2 = H−2
(
∂2

∂s2
+

∂2

∂φ2

)
+

∂2

∂z2
, (3.2)

where
H2 = σ2

(
sinh2(s) + sin2(φ)

)
, (3.3)

is a scale factor and σ is the distance between the centre of the ellipse and
its focal points (see Figure 3.2). The connection to the Cartesian coordinate
system are given by,

x = σ cosh(s) cos(φ), y = σ sinh(s) sin(φ),

where the x-axis is directed along the major axis of the ellipse and the y-axis
is directed along its minor axis.

By applying Fourier decomposition and separation of variables the solution
of Equation (3.1) can be represented as:

∆ = S(s)Φ(φ) exp(i(kz − ωt)), (3.4)
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where k is the wavenumber in z direction, ω is the angular frequency and the
functions S(s) and Φ(φ) are to be determined. By substituting Equation (3.4)
in Equation (3.1) the perturbed components of velocity v, magnetic field b,
pressure p and total pressure pT , i.e the sum of kinetic and magnetic plasma
pressures, in the elliptic coordinate system can be derived explicitly as (see
e.g. Erdélyi and Morton, 2009):

vs(s, φ) = −
(
ω2 − k2c2S
Hω2m2

0

)
∂S(s)

∂s
Φ(φ),

vφ(s, φ) = −
(
ω2 − k2c2S
Hω2m2

0

)
S(s)

∂Φ(φ)

∂φ
,

vz(s, φ) = −
(
ikc2S
ω2

)
S(s)Φ(φ),

bs(s, φ) = B0
k

ω
vs(s, φ),

bφ(s, φ) = −B0
k

ω
vφ(s, φ),

bz(s, φ) = −iB0
ω2 − k2c2S

ω3
S(s)Φ(φ),

p(s, φ) = −iρ0
c2S
ω
S(s)Φ(φ),

pT (s, φ) = −iρ0
ω3

(c2S + v2A)(ω2 − k2c2T )S(s)Φ(φ),

ρ(s, φ) = −iρ0
ω
S(s)Φ(φ).

Here, vs, vφ and vz are the perturbed velocity components in the s, φ and z
directions, respectively; bs, bφ and bz are the perturbed magnetic field com-
ponents; ρ is the plasma density perturbation. It is clear that the density
perturbation is proportional to other MHD variables. Note that all other com-
ponents are proportional to the same functions.
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Next let us represent Equation (3.1) in elliptic cylindrical coordinates. By
substituting ∇2 from Equation (3.2) and ∆ from Equation (3.4) into Equation
(3.1) we obtain

H−2
(

1

S

∂2S

∂s2
+

1

Φ

∂2Φ

∂φ2

)
+

4

σ2
m2

0 = 0, (3.5)

where

m2
0 =

σ2

4

(ω2 − k2c2S)(ω2 − k2v2A)

(c2S + v2A)(ω2 − k2c2T )
. (3.6)

and

c2T i =
c2Sv

2
A

c2S + v2A
(3.7)

is the tube speed. By using the scale factor given by Equation (3.3), Equation
(3.5) can be rewritten as

1

S

∂2S

∂s2
+ 4m2

0 sinh2(s) = −
(

1

Φ

∂2Φ

∂φ2
+ 4m2

0 sin2(φ)

)
. (3.8)

By introducing the separation constant h, Equation (3.8) can be reduced to
two ordinary differential equations, where h is the constant to be determined
(see appendix A).

d2Φ

dφ2
+ (h− 2m2

0 cos(2φ))Φ = 0 (3.9)

and

d2S

ds2
− (h− 2m2

0 cosh(2s))S = 0. (3.10)

The Equation (3.9) and Equation (3.10) represent the Mathieu equation
and modified Mathieu equation in case of h and m0 being real and m2

0 > 0

(see e.g., Mathieu, 1868; Abramowitz and Stegun, 1964).
The quantity m2

0 under elliptical coordinates has an opposite sign of m2
0

under cylindrical coordinates. Note that 4
σ2m

2
0 in elliptical coordinates is equal

to −m2
0 in cylindrical coordinates (see e.g. Edwin and Roberts, 1983; Spruit,

1982a).
In order to obtain the periodic solution of the Mathieu equation, the par-

ticular value of m2
0 should be suitably related to the parameter h which has

an infinite set of distinct values (see appendix A for more detail). The Math-
ieu equations have odd solutions with respect to the minor axis denoted by
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Table 3.1: The permitted combination of the indexes of the radial Mathieu
function with respect to the major (even solution), Cm(s, m2

0) and minor (odd
solution), Sm(s, m2

0) axes. Here, m = 2n+ j is the order of Mathieu function
and j = 0 corresponds to the even order of the Mathieu function. For the odd
Mathieu function of even order, n starts from 1 and, therefore, the case m = 0
for S2n can not be realized.

m C2n S2n

0 n = 0 n/a
2 n = 1 n = 1
4 n = 2 n = 2
6 n = 3 n = 3
: : :

Table 3.2: The permitted combination of the radial Mathieu function indexes
with respect to the major (even solution), Cm(s, m2

0) and minor (odd solution),
Sm(s, m2

0) axes. Again, the quantity m = 2n + j is the order of Mathieu
function and j = 1 corresponds to the odd order of the Mathieu function.

m C2n+1 S2n+1

1 n = 0 n = 0
3 n = 1 n = 1
5 n = 2 n = 2
7 n = 3 n = 3
: : :

S2n+j(s, m
2
0) for radial Mathieu functions and s2n+j(φ, m2

0) for angular Math-
ieu functions. The even solutions with respect to the major axis are denoted by
C2n+j(s, m

2
0) for radial Mathieu functions and c2n+j(φ, m2

0) for angular Math-
ieu functions(see, e.g. McLachlan, 1947), where n ∈ N and j = 0, 1 (see the
Table 3.1 and 3.2 for more details).

The modulus of m0 in the Mathieu functions argument plays a crucial role
in determining how much the confocal ellipse node is of the modes. There is an
infinite set of possible values of m0 that satisfy the boundary conditions. On
the other side, even and odd Mathieu functions have an even and odd order
which correspond to the different hyperbola nodes.

In elliptic coordinates, the modified Mathieu function given by Equation
(3.10) is the solution of the radial Mathieu equation, and corresponds to the
Bessel equation in polar coordinates. When m2

0 > 0, the solutions of Equation
(3.10) are oscillatory radial Mathieu functions which can be represented as
a series of Bessel functions of first kind (Jm) (see Appendix B). This case
provides the internal part of the solutions for body modes (Section 3.2.1).
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When m2
0 < 0, Equation (3.10) becomes

d2S

ds2
− (h+ 2m2

0 cosh(2s))S = 0 (3.11)

and the solutions are non-oscillatory radial Mathieu functions which can be
represented as a series of modified Bessel functions of the first kind (Im) (see
appendix C). These provide the internal part of the solutions for surface modes
(see Section 3.2.1). There are also evanescent modified Mathieu functions of
the third kind which can be written as a series of modified Bessel functions
of the second kind (Km) and the first kind (Im), when m2

e < 0 (see Appendix
D). These functions correspond to the external part of the solutions for both
body and surface modes (see Section 3.2.2).

3.2.1 The general solution inside the magnetic flux tube

The even and odd solutions of Equations (3.10) and (3.11), confined within
the flux tube boundary confocal ellipse s0 (s < s0), are

∆i = S(s)Φ(φ) =

{
A0C2n+j(s, m

2
0i)c2n+j(φ, m

2
0i) even,

B0S2n+j(s, m
2
0i)s2n+j(φ, m

2
0i) odd.

, (3.12)

Here, A0 and B0 are arbitrary constants and

m2
0i =

σ2

4

(ω2 − k2c2Si)(ω2 − k2v2Ai)
(c2Si + v2Ai)(ω

2 − k2c2T i)
.

Let us introduce the ΘE
m and ΘO

m notations for the internal body mode solutions
where the superscripts E and O denote the even and odd solutions, respec-
tively. The subscript m relates the elliptical to the cylindrical wave modes,
i.e., sausage (m = 0), kink (m = 1) and fluting (m ≥ 2), see Table 3.1 and 3.2
for more details.

When m2
0i > 0 the internal even and odd body mode solutions are:

ΘE
m(m0i, s) = C2n+j(s, m

2
0i), (3.13)

ΘO
m(m0i, s) = S2n+j(s, m

2
0i). (3.14)

We introduce ΞE
m and ΞO

m notations for the even and odd internal surface mode
solutions, respectively.

When m2
0i < 0 the internal surface mode solutions are:

ΞE
m(|m0i|, s) = C2n+j(s, m

2
0i), (3.15)

ΞO
m(|m0i|, s) = S2n+j(s, m

2
0i). (3.16)
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The functions Θ and Ξ used here can be represented in the form of series of the
bessel functions Jm and Im (see appendices B, C and D). The representation of
obtained solutions in the Bessel functions form is more convenient for numerical
calculations.

3.2.2 The general solution outside the magnetic flux tube

Form2
0e < 0 in the external region (s > s0) the amplitude of the non-oscillatory

perturbations decays with distance from the magnetic flux tube and, therefore:

∆e = S(s)Φ(φ) =

{
AeFeK2n+j(s, m

2
0e)c2n+j(φ, m

2
0e) even,

BeGeK2n+j(s, m
2
0e)s2n+j(φ, m

2
0e) odd.

, (3.17)

Here,

m2
0e =

σ2

4

(ω2 − k2c2Se)(ω2 − k2v2Ae)
(c2Se + v2Ae)(ω

2 − k2c2Te)
,

andAe andBe are the arbitrary constants and FeK2n+j(s, m
2
0e) andGeK2n+j(s, m

2
0e)

are the modified Mathieu functions of the third kind. Let us introduce the no-
tations for the even and odd external evanescent solutions as ΨE

m and ΨO
m,

respectively, so

ΨE
m(|m0e|, s) = FeK2n+j(s, m

2
0e),

ΨO
m(|m0e|, s) = GeK2n+j(s, m

2
0e).

3.2.3 The general dispersion relation

To obtain the equilibrium and the general dispersion relation, the background
pressure balance has to be satisfied, i.e.:

p0i +
B2

0i

2µ0

= p0e +
B2

0e

2µ0

. (3.18)

Here, p0i and p0e are the plasma pressures inside and outside of the magnetic
flux tube, B0i and B0e are the magnetic fields in corresponding regions.

By taking into account the continuity of the velocity vs and total plasma
pressure (pT ) across the boundary of magnetic flux tube s = s0 (see e.g. Equa-
tion (3.18)), the dispersion relations for body modes (m2

0i > 0) can be written
as:

v2ph − c2Si
m2

0iv
2
ph

M0e
Θ′E,Om (m0i, s0)

ΘE,O
m (m0i, s0)

=
v2ph − c2Se
m2

0ev
2
ph

M0i
Ψ′E,Om (|m0e|, s0)
ΨE,O
m (|m0e|, s0)

(3.19)
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Table 3.3: The symmetrical properties of the Mathieu functions.

Mathieu functions Order Major axis Minor axis

even even symmetrical symmetrical
even odd symmetrical asymmetrical
odd even asymmetrical asymmetrical
odd odd asymmetrical symmetrical

Similarly the dispersion relation for surface modes (m2
0i < 0) is given by

v2ph − c2Si
m2

0iv
2
ph

M0e
Ξ′E,Om (|m0i|, s0)
ΞE,O
m (|m0i|, s0)

=
v2ph − c2Se
m2

0ev
2
ph

M0i
Ψ′E,Om (|m0e|, s0)
ΨE,O
m (|m0e|, s0)

. (3.20)

Here, vph = ω
k
is the phase speed, and

M0i = ρ0i(c
2
Si + v2Ai)(c

2
T i − v2ph),

M0e = ρ0e(c
2
Se + v2Ae)(c

2
Te − v2ph).

The prime in Equations (3.19)-(3.20) denotes the derivative of the Mathieu
function in respect to the confocal ellipse curve s.

Figure 3.3: The phase speed (ω/k) of slow body and surface modes and fast
surface modes are shown under photospheric conditions. The panels a), b)
and c) correspond to the different values of eccentricity of the magnetic flux
tube cross-section, i.e. ε = 0.24 (s0 = 2.1), ε = 0.65 (s0 = 0.99) and ε = 0.84
(s0 = 0.60). The bottom panels show the zoom of corresponding regions from
the panels above. The blue curves on all plots show the kink modes polarised
along major axis of elliptical cross-section of the magnetic flux tube (indicated
as capital M as an index), magenta curves represent the kink modes polarised
along minor axis (indicated as m as an index) and the red curves represent the
sausage modes.
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3.3 Coronal conditions

To model coronal conditions, we assume that the internal plasma temperature,
density and pressure are greater than at the external region and internal mag-
netic field strength is less than external. These correspond to the following
relations between the characteristic plasma speeds: vAe, vAi > cSi, cSe. The
chosen conditions are required for slow and fast body waves to occur. There-
fore, if we choose vAi > vAe, fast body waves are absent and only two of the
infinitely many slow body waves are shown (Edwin and Roberts, 1983). The
wave solutions must satisfy the physical conditions, whereby the oscillations
are mainly confined to the ellipse region and they decay outside of the bound-
ary of the magnetic flux tube. Therefore, m2

0e should be negative in order
to satisfy the evanescent solutions in the external region and m2

0i should be
positive in order to satisfy the oscillation solutions in the internal region. For
numerical calculations the following values of the characteristic speeds have
been used: vAe = 5cSi, cSe = 0.5cSi and vAi = 2cSi. In particular, vph is the
normalised phase speed by internal sound speed cSi = 1 and ks0 = kes0σ/2 is
dimensionless wavenumber k normalised by es0σ/2. This term, i.e. es0σ/2→ a

if b = a (i.e. elliptical cross section circular cross section). In more details, the
distance between major axis a and minor axis b are connected with s0 (where
s0 is the confocal elliptic cylinders centered on the origin) and σ =

√
a2 − b2

. Therefore, the limit of s0 → ∞ corresponds to a tube with circular cross
section and in the opposite, when s0 → 0, the tube cross-section is shrunk into
the interval [−σ, σ] of the x-axis, where σ is a quantity with the dimension of
length.

For this set of chosen parameters the total pressure balance between the
internal and external plasma requires ρe

ρ0
= 0.21. The numerical algorithm

described in Section 2.2.2 was applied to solve Equations (3.19) and (3.20).
The set of solutions were obtained: (i) the slow kink and sausage body modes
that have a phase speed ranging between internal tube speed, cT i, and internal
sound speed, cSi, (ii) fast kink and sausage body modes with a phase speed
ranging between internal Alfvén speed, vAi, and external Alfvén speed, vAe,
(see Figure 3.3). It was also found that eccentricity defined as

ε =
1

cosh(s0)
(3.21)

has strong effect on the behaviour of solution. In particular, as the ellipticity
of the cross-section increased, the difference in the phase speeds of the two kink
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(a) (b)

(c)

Figure 3.4: The diagrams compare the circle size with an ellipse. This diagram
shows how the frequency of wave polarised in vertical and horizontal directions
of elliptical shape can be compared with the frequency of wave polarised in
a circular shape. The ellipse represented by the black color, and the red and
green color represent the circle used to approximate the ellipse arcs in vertical
and horizontal directions with the circle. Panel (a) shows the case when the
ellipse is almost equal to the circle, panel (b) shows the case when the eccen-
tricity of the ellipse is moderate, and panel (c) shows the situation when the
eccentricity of the ellipse is very high.

modes which are polarised along the major axis and the minor axis is also in-
creased. If ellipticity decreased, i.e. in the approximation of a circular shape,
the difference in the phase speeds of the two kink modes is also decreased.
It is clear from Figure 3.3 that in panels (a,d) when (ε = 0.24), the solution
polarised along major axis and minor axis is almost identical, while the differ-
ences between the phase speed increased in panels (b,e) when (ε = 0.65) and
(c,f) when (ε = 0.84), as ellipiticiy is increased. We found that the fast body
waves (the kink modes) polarised along minor axis has higher phase speed that
those polarised along the major axis. As the ellipticity of the tube increases,
the major axis stretches while the minor axis is contracted. This, in turn,
allows the waves polarised the minor axis to have a higher phase speed as it
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has more space than the wave polarised along major axis. The contrast, for
slow waves, as we can see in panels (d,e and f) of Figures 3.3, the situation is
completely opposite, so the waves that are polarised on the minor axis have
smaller frequency than those polarised along the major axis, and the reason is
because the slow magneto-acoustic waves are polarised mainly longitudinally,
along the field lines, this make it less affected by the change in shape of the
cross-section.

3.4 Photospheric conditions

Adapting this model to consider realistic physical plasma conditions of a
sunspot under photospheric conditions, we assume that the internal plasma
temperature, density and pressure are smaller than the external values of their
corresponding parameters, and internal magnetic field strength is greater than
its external value. This leads to the following relations between the charac-
teristic plasma speeds: vAi, cSe > cSi, vAe. These conditions are needed for
surface waves to occur. For example, if the internal plasma is cooler than the
external plasma these conditions allow a fast surface wave to propagate with a
phase speed cSe. If the internal magnetic field strength is greater than external
value these conditions will allow a slow surface mode with phase speed equal to
cT i. For the numerical calculations we used the following ratios: vAe = 0.5cSi,
cSe = 1.5cSi and vAi = 2cSi. The total pressure balance between the internal
and external plasma requires ρe

ρ0
= 1.76. Since for slow body mode m2

0i > 0

and m2
0e < 0, the dispersion Equation (3.19) was used. The case m2

0i < 0 and
m2

0e < 0 correspond to the slow and fast surface mode and, therefore, the dis-
persion equation (3.20) is applicable for the surface wave. Under photospheric
conditions we obtained: (i) slow kink and sausage surface modes, and slow kink
and sausage body modes that have phase speeds between cT i and cSi, (ii) fast
kink and sausage surface modes which have the phase speed between the kink
speed ck =

√
(ρiv2Ai + ρev2Ae)/(ρi + ρe) and cSe (see Figure 3.5). The effect of

ellipticity on solutions under photospheric conditions is similar to its effect on
solutions under coronal conditions, as we see in the Figure 3.5, so the more
the ellipticity, the greater the difference between the phase speed in between
the polarised waves on both the minor and the major axis, but it is worth
noting here that the phase speed of the fast surface waves polarised along the
minor axis is less than the phase speed of the waves along the major axis, that
is, here the condition is completely opposite to the phase speed of fast body
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waves under coronal conditions. Perhaps the reason is that the surface waves
have a maximum amplitudes at the boundary, which means that the directed
frequency of wave polarised in the direction of the minor axis is equal to the
frequency of a circular cross section of the same arc size in the direction of the
minor axis, and the frequency of the polarised wave on the major axis is equal
to the frequency of a wave in the size of a circular cross section equal to the
arc in that direction (see Figure 3.4).

Our results show perfect agreement with the results obtained previously by
Erdélyi and Morton (2009). In the following sections we discuss the obtained
mode patterns and the effect of ellipticity on MHD modes in more details.

Figure 3.5: The phase speed (ω/k) of slow body and surface modes and fast
surface modes are shown under photospheric conditions. The panels a), b)
and c) correspond to the different values of eccentricity of the magnetic flux
tube cross-section, i.e. ε = 0.24 (s0 = 2.1), ε = 0.65 (s0 = 0.99) and ε = 0.84
(s0 = 0.60). The bottom panels show the zoom of corresponding regions from
the panels above. The blue curves on all plots show the kink modes polarised
along major axis of elliptical cross-section of the magnetic flux tube (indicated
as capital M as an index), magenta curves represent the kink modes polarised
along minor axis (indicated as m as an index) and the red curves represent the
sausage modes.

3.5 MHD wave modes under coronal and pho-
tospheric conditions

3.5.1 Coronal conditions

In the next section the main attention is paid to the fast and slow body modes
since there are no surface modes under coronal conditions.
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Fast body sausage modes, even, m = 0

Slow body sausage modes, even, m = 0

Figure 3.6: The normalised density perturbation calculated under coronal con-
ditions i.e., vAe, vAi > cSi, cSe for different values of eccentricity. The upper
panel shows the fast branch of the sausage mode which has no hyperbola
node and no ellipse node. The lower panel shows the slow branch of sausage
mode which has no hyperbola node and one ellipse node, i.e., even solution
of the Mathieu equation. m = 0 represents the order of the Bessel function.
For numerical calculations we used the fixed normalised value of the ellipti-
cal sunspot area to keep the smooth transition from circle to ellipse and to
be able to explore the wave modes modification, the corresponding videos are
currently available at: http://pdg.group.shef.ac.uk/Visualisations.html.
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Fast body kink modes, odd, m = 1

Slow body kink modes, odd, m = 1

Fast body fluting modes, odd, m = 2

Fast body fluting modes, odd, m = 3

Figure 3.7: The normalised density perturbations under solar corona condi-
tions (i.e., vAe, vAi > cSi, cSe) for the different values of eccentricity. From
the top to bottom we show: the fast branch of the kink mode which has one
hyperbola node and one ellipse node; the fast branch of the kink mode which
has one hyperbola node and two ellipse nodes; the fast branch of the fluting
(m = 2) mode which has two hyperbola nodes and one ellipse node; the fast
branch of the fluting (m = 3) mode which has three hyperbola nodes and one
ellipse node. (i.e., odd solution of Mathieu equation).

49



Fast body kink modes, even, m = 1

Slow body kink modes, even, m = 1

Fast body fluting modes, even, m = 2

Fast body fluting modes, even, m = 3

Figure 3.8: The normalised density perturbations under solar corona condi-
tions (i.e., vAe, vAi > cSi, cSe) for the different values of eccentricity. From
the top to bottom we show: the fast branch of the kink mode which has one
hyperbola node and one ellipse node; the fast branch of kink mode which has
one hyperbola node and two ellipse nodes; the fast branch of fluting (m = 2)
mode which has two hyperbola nodes and one ellipse node; the fast branch of
fluting (m = 3) mode which has three hyperbola nodes and one ellipse node.
(i.e. even solution of the Mathieu equation).
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3.5.1.1 Sausage mode

For the sausage modes (m = 0), the permitted combinations of the indices
of the radial Mathieu function with respect to the major (even solution) and
minor (odd solution) axes are shown in Table 3.1 and 3.2. Figure 3.6 illustrates
the density perturbation of sausage modes by taking into account different
eccentricity of the elliptical cross-section of the magnetic flux tube. The chosen
value used to plot this mode is shown in Table E.1. The upper panels in Figure
3.6 shows the fundamental sausage modes. It is clear that as ellipticity, (ε)

of the cross-section is increased, the sausage mode can be identified easier.
However, for the case when we have higher order sausage modes (see the lower
panels in Figure 3.6), the mode pattern changes in comparison to the pattern
of the sausage mode for the circular cross-section. As ellipticity of the cross-
section increased, the mode pattern of this mode became different from the
sausage mode of the flux tube with circular cross-section (see Figure 3.6). This
happens since as ellipticity of the tube increased, the length of the major axis
of the flux tube increases while the minor axis of the tube shrinks. Therefore,
the displacement limitation has to be extended to the first elliptic node along
the major axis causing the separation of the displacement that surrounds it. As
a result, for clear mode identification, it is necessary to take into account the
symmetric properties of the Mathieu functions. Since c2n(φ,m2

0i)= c2n(2π −
φ,m2

0i), when solutions are even functions (the displacement or perturbation
is polarised along the major axis) and when they have an even order expressed
by C2n(s,m2

0i)c2n(φ,m2
0i), the displacement will be symmetric about the major

and minor axes. Figure 3.6 shows the symmetric density perturbation with
respect to the major and minor axes (see Table 3.3). The first and second
panels in Table E.1 reveal the eccentricity, wave number and phase velocity
which were used for visualisation of the fast body sausage mode solution under
coronal conditions.

3.5.1.2 Kink mode

The parameters used to plot the kink mode (m = 1) are shown in the Table E.1
(see appendix E). For this set of parameters the fast body kink mode is shown
in the top panels of Figures (3.7) and (3.8) while the slow body kink mode
is shown in the second panels of the same figures. Since the displacement
could be toward the major or minor axes, there are two polarised kink modes
in the elliptical flux tube. The Mathieu functions of the even type describe
the behaviour of the kink mode as a bulk transverse motion along the major
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axis, while the Mathieu functions of the odd type describe the behaviour of
the kink mode as a bulk of transverse motion along the minor axis. The first
and second panels in Figure 3.7 illustrate the kink modes polarised along the
minor axis for different flux tubes of diverse eccentricity, whereas the first and
second panels in Figure 3.8 illustrate the kink modes polarised along the major
axis for the different flux tubes of the diverse eccentricity. The first panel in
Figures 3.7 and 3.8 represents the fundamental kink mode. As ellipticity, (ε)

of the flux tube cross-section is increased, the fundamental kink mode can be
easily identified for waves polarised along the major and minor axes.

However, as ellipticity of the flux tube cross-section is increased, the higher
order kink mode polarised along the major axis appears similar to a fluting
mode m = 3, hence, could be misinterpreted. The second panel in Figure 3.8
starting from the left displaying a kink mode for the case of the magnetic flux
tube close to the circular cross-section and as one progresses to the right ends
up as a kink mode with ε = 0.89, which can lead to misinterpretation.

Alternatively, as ellipticity of the flux tube cross-section is increased, the
kink overtone mode polarised along the minor axis can be easily identified.
C2n+1(s, m

2
0i)c2n+1(φ, m

2
0i) represent the solution of the kink waves polarised

along major axis. The even and odd solutions of the elliptic modes correspond
to the kink mode of the circular membrane. Since c2n+1(φ, m

2
0i)=-c2n+1(π ±

φ, m2
0i), the density perturbation is symmetric about the major axis but it

is asymmetric about the minor axis (see the first and second panel in Figure
3.8). S2n+1(s, m

2
0i)s2n+1(φ, m

2
0i) represents the solution of kink waves polarised

along the minor axis. Since s2n+1(φ, m
2
0i)=∓s2n+1(π ± φ, m2

0i), the density
perturbation is asymmetric about the major axis but it is symmetrical with
respect to the minor axis i.e., the first and second panels in Figure 3.7.

3.5.1.3 Fluting modes

For fluting modes (m ≥ 2), the values used for visualisation are presented
in Table E.1. The third and fourth panels in Figures 3.7 and 3.8 illustrate
perturbations in the density along the minor and major axes for different
eccentricity values. From studying the third and fourth panels of Figure 3.8 it
is shown that as the eccentricity of the flux tube is increased, the displacements
of density merge. As a result, it may lead to the visual interpretation of these
modes as a kink mode (m = 1). Note, the waves that are perturbed along the
minor axis are less affected by the ellipticity, thus, one can clearly observe the
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Fast sausage surface modes, even, m = 0

Fast kink surface modes, even, m = 1

Fast fluting surface modes, even, m = 2

Fast fluting surface modes, even, m = 3

Figure 3.9: The normalised density perturbation under photospheric condi-
tions (i.e., vAi, cSe > cSi, vAe) for different value of eccentricity. From the top
to bottom on the corresponding panels we show: the fast surface branch of the
sausage mode; the fast surface branch of kink mode; the fast surface branch
of (m = 2) fluting mode; the fast surface branch of (m = 3) fluting mode (i.e.,
even solution of the Mathieu equation).
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Fast kink surface modes, odd, m = 1

Fast fluting surface modes, odd, m = 2

Fast fluting surface modes, odd, m = 3

Figure 3.10: The normalised density perturbation under photospheric condi-
tions (i.e., vAi, cSe > cSi, vAe) for the different value of eccentricity. From the
top to bottom on the corresponding panels we show: the fast surface branch
of the kink mode; the fast surface branch of the (m = 2) fluting mode; the
fast surface branch of the (m = 3) fluting mode (i.e., odd solution of Mathieu
equation).
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fluting modes (m = 2) and (m = 3) as eccentricity increases, again, see the
third and fourth panel in Figure 3.7.

For the fluting mode (m = 2), C2n(s, m2
0i)c2n(φ, m2

0i) represents the solu-
tion for perturbation along the major axis. Since c2n(φ, m2

0i)=c2n(π±φ, m2
0i),

the density perturbation is symmetric about both axes (see the third panel
of Figure 3.8). S2n+2(s, m

2
0i)s2n+2(φ, m

2
0i) represents the solution for pertur-

bation about the minor axis. Since s2n+2(φ, m
2
0i)=±s2n+2(π ± φ, m2

0i), the
density perturbation is asymmetric with respect to both axes (see the third
panel in Figure 3.7).

For the fluting mode (m = 3), C2n+1(s, m
2
0i)c2n+1(φ, m

2
0i) represents the so-

lution along the major axis. Since c2n+1(φ, m
2
0i)=-c2n+1(π±φ, m2

0i), the density
perturbation is symmetric about the major axis but it is asymmetric about
the minor axis (see the fourth panel of Figure 3.8). S2n+1(s, m

2
0i)s2n+1(φ, m

2
0i)

represents the solution of fluting waves perturbed along the minor axis. Since
s2n+1(φ, m

2
0i)=∓s2n+1(π ± φ, m2

0i), the density perturbation is asymmetric
about the major axis and symmetric about the minor axis (see the fourth
panel of Figure 3.7).

3.5.2 Photospheric conditions

In the next section the main attention is paid to the fast surface mode, as
the slow body mode is similar to that investigated before under coronal condi-
tions. The symmetrical properties will not be discussed as they were already
presented in the section 3.5.1.

3.5.2.1 Sausage mode

The values used for visualisation of this mode are shown in Table E.2. The
fast surface sausage mode is presented in the first panel on Figure 3.9. All four
modes have the same wavelength, but have been calculated for different values
of ellipticity, (ε) of the cross-section of magnetic flux tube. The first panel in
Figure 3.9 shows the density perturbations which correspond to the sausage
mode. As discussed before, the fundamental sausage mode is only very slightly
affected by altering the ellipticity. Therefore, the identification of the surface
fundamental sausage mode is easier. For example, from the first panel of the
Figure 3.9, one can see that as ellipticity increased, the surface sausage mode
can be identified more easily.
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3.5.2.2 Kink Mode

The second panel of Figure 3.9 illustrates the density perturbation of the kink
mode polarised along the major axis with differing eccentricity values in an
elliptic tube while the first panel in Figure 3.10 illustrates the kink mode
polarised along the minor axis. The parameters used for these calculations are
presented in the Table E.2. The eccentricity of the flux tube does not affect the
appearance of the kink surface mode as we only have fundamental kink surface
modes unlike the body kink mode which is affected by the ellipticity of tube
when we have higher order kink modes. Therefore, it is possible to observe
both kink surface modes in the photosphere even if eccentricity is large.

3.5.2.3 Fluting modes

The third and fourth panels in Figure 3.9 represent the density perturbation of
the m = 2 and m = 3 fluting mode, respectively. Both of them are perturbed
along the major axis. The second and third panels in Figure 3.10 represent
the density perturbation which corresponds to the fluting mode for m = 2

and m = 3 which are perturbed along the minor axis (see parameters used
for this calculations in the Table E.2). The fluting surface modes which are
perturbed along the major axis exhibit the same behaviour as fluting body
modes perturbed along the major axis. It is difficult to determine the type
of the mode other than the fluting surface modes perturbed along the minor
axis. The second and third panels in Figure 3.10 show the fluting modesm = 2

and m = 3 as eccentricity is increased. The third and fourth panels in Figure
3.9 show that identification of the fluting modes m = 2 and m = 3 is more
difficult.

3.6 Conclusions

In this Chapter, MHD modes of the magnetic flux tube with elliptical cross-
section embedded in a magnetic environment are discussed. The spatial struc-
ture of wave mode identification was studied under both photospheric and
coronal solar conditions. Special attention was paid to the investigation of
the effect of eccentricity of a flux tube on the body modes under coronal and
surface modes under photospheric conditions. The effect of the eccentricity of
a flux tube varies according to the direction of the wave’s polarisation along
the axes with order of modes and the type of wave observed (body or surface
waves).
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The higher order modes are strongly affected by ellipticity of the flux tube
when taking into account the direction of the polarised wave. Therefore, the
higher order modes which are polarised along the major axis are strongly
affected by the ellipticity of the tube, while those modes that are polarised
along the minor axis are very slight effected by ellipticity. The eccentricity
affects the wave modes polarised along major axis in a way that makes the
mode look like another type of mode. This can lead to misinterpreting the
wave mode in observations. For example, as ellipticity of the flux tube cross-
section is increased, the fluting mode (m = 3) may be misinterpreted as a kink
mode (m = 1) (see Figure 3.8). It is evident that the sausage mode (m = 0)

cannot be easily identified (see Figure 3.6). As for fundamental modes, they are
not affected by altering the ellipticity of the flux tube and it is easy to identify
the mode type independent of the axis of perturbation, i.e. whether they
are perturbed along the major or minor axis. For example, the kink overtone
modes, which are polarised along the major axis are affected by ellipticity more
than fundamental kink modes (see Figures 3.8 and 3.7). The body waves with
higher order, which are polarised along the major axis are affected by ellipticity
of the flux tube. In the case of surface waves, fluting modes (m > 1), which
are polarised along the major axis, are only affected by the eccentricity of flux
tube. All surface and body modes that are polarised along the minor axis and
all the fundamental surface and body wave modes that are polarised along the
minor and major axis are less sensitive to ellipticity. Despite the influence of
ellipticity on the wave modes, we can identify the patterns by looking at the
symmetry properties and the number of elliptical and hyperbolic nodes.

The obtained results can be useful for the interpretation of upcoming hi-
resolution observations by, e.g DKIST and Solar Orbiter. It can be used for
validation of MHD wave propagation in the wave-guides with non circular
cross-section. This work will help both theorists and observers to understand
how the spatial structure of the purely real eigenmodes are distorted from the
well known circular flux tube model when ellipticity is considered. The study of
the spatial structure of the MHD wave modes highlighted in this thesis opens
a whole new avenue in understanding waves observed in localised magnetic
structures in the Sun’s atmosphere.
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CHAPTER 4

MHD wave modes of solar magnetic flux tubes
with realistic cross-sectional shapes

In this Chapter, we review the possibility of modelling magnetohydrodynamics
(MHD) modes for direct comparison with the observational patterns. The ex-
pressions for the linear MHD perturbations of a magnetic flux tube are derived
by assuming zero value of the vertical component of the velocity perturbation
at the boundary of the flux tube which is in a good agreement with obser-
vations. The governing equation for the vertical velocity perturbation will be
solved by taking into account the observed shape of the sunspot umbra. It is
shown that the proposed model is applicable for the analysis of the slow body
modes under photospheric conditions, as well as, for the fast body modes under
coronal conditions. The obtained results also show that the proposed method-
ology works well for slow body modes for the case when kz is very small at the
boundary.

4.1 Introduction

The further understanding and interpretation of MHD waves signatures in a
variety of realistic magnetic structures are important problems of modern so-
lar physics. These waves may directly contribute to the heating of the corona.
One of the key mechanisms of coronal heating could be through the damp-
ing of MHD waves (see, e.g. Cranmer 2020; Oran et al. 2017; Tiwari et al.
2019; Usmanov et al. 2016). By considering a combined transverse and tor-
sional driver at the loop footprint, Guo et al. (2019) discussed wave based
heating. The authors found that both transverse and torsional oscillations in
coronal loops lead to the development of Kelvin-Helmholtz instabilities and,
it therefore, may increase the effectiveness of wave heating. Karampelas et al.
(2019) have studied the effects of wave heating in coronal loops via the en-
ergy dissipation from transverse waves in coronal loops by taking into account
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the presence of gravitational stratification. Cases such as ideal, resistive, and
viscous MHD were discussed. It was shown that the effect of gravity on the
dynamic development of the system is important.

The observed MHD waves can also be used, indirectly, as a diagnostic tool
for the study of properties and structure of the magnetic flux tubes. Analysis
of these waves is mostly based on the theoretical models that use different
types of MHD waveguides; most previous studies rely on the derivation of
the dispersion relation for propagating or standing MHD waves in a simpli-
fied magnetic configurations, e.g. magnetic interface such as Musielak et al.
(2000) who studied linear MHD surface wave propagation in a compressible
plasma with a discontinuous interface in the magnetic field and temperature.
The propagation of magnetoacoustic-gravity waves at a spherical interface was
discussed by Ballai et al. (2011). The propagation of magneto-acoustic surface
waves at a single density interface, in the presence of an inclined magnetic
field was discussed by Vickers et al. (2018). Waves in a magnetic slab was
discussed by many, including the study of sausage oscillations of plasma slabs,
standing sausage modes in curved coronal slabs, and the dissipative instability
that appears in a compressible partially ionized plasma slab embedded in a
uniform magnetic field (see, e.g. Hornsey et al., 2014; Pascoe and Nakariakov,
2016; Mather et al., 2018). The dispersion relation for propagating or stand-
ing MHD waves in a magnetic cylinder have been studied by many, including
the study of MHD waves in incompressible and compressible flux tubes with
twisted magnetic fields, MHD waves in solar coronal loops, MHD waves in the
solar chromosphere, and torsional Alfvén waves (see, e.g. Erdélyi and Fedun,
2006; Verth, 2007; Verth et al., 2010; Fedun and Erdélyi, 2010; Jess et al.,
2015). Finally, the study of MHD wave propagation in elliptical flux tubes
has been discussed by very few researches. Ruderman (2003) investigated the
resonant damping of coronal loop oscillations in a magnetic tube with an el-
liptical cross-section in a zero plasma-β approximation. The propagation of
MHD waves in finite plasma-β, compressible magnetic flux tubes with ellip-
tical cross-sectional shapes by ignoring the explicit effects such as gravity or
granular shear was investigated by Erdélyi and Morton (2009). They found
that eccentricity has a strong effect on the solution behaviour.

Spectroscopic observations are one of the most important tools used to
study the properties of the solar atmosphere. The identification and analysis
of velocity and intensity perturbations help to obtain important information
regarding the frequency and wavelength of MHD waves. For example, high
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resolution UV spectroscopy provides us with high-resolution images of the so-
lar atmosphere, which have contributed to increasing our knowledge of the
dynamics of the upper layers of the solar atmosphere, (see, e.g. Bonnet 1978).
Modern ground and space-based solar observatories, e.g. the Dunn Solar Tele-
scope, Swedish Solar Telescope, Hinode etc., have already detected a number
of oscillations that occur in the atmosphere of the Sun, based on spectroscopic
measurements of the temporal and spatial variations of intensity and Doppler
velocity emission from the chromosphere.

A number of observations (see, e.g. Sobotka et al. 1999; Mathew et al.
2003; Ryutova et al. 2008; Solanki 2003; Borrero and Ichimoto 2011; Schlichen-
maier et al. 2016; Sobotka and Rezaei 2017; Keys et al. 2018; Houston et al.
2018) have shown that the cross-sectional shape of solar magnetic structures is
usually far from circular. Therefore, to explain eigenmodes of the observable
magnetic waveguides more precisely, it requires a more accurate representation
of theoretically modelled cross-sectional shapes, as eigenmodes of waveguides
are, in general, strongly determined by their cross-sectional shape Aldhafeeri
et al. (2021). The theoretical studies of MHD wave propagation in the mag-
netic flux tubes with elliptical cross section are limited compared to those that
have been devoted to the analysis of waves in waveguides with a circular cross
section. The effect of ellipticity of the magnetic flux tube on MHD wave mode
patterns has been analysed by Aldhafeeri et al. (2021). It has been shown,
that in the case of an elliptical shape of the magnetic flux tube it is easy to
misinterpret the observed wave modes. This result was the impetus for find-
ing a new approach that clarifies and provides an accurate explanation of the
type of observed wave mode patterns. In this Chapter, we have analysed the
MHD wave modes in magnetic flux tubes and, in particular, in sunspots with
arbitrary shape by applying the finite difference method (FDM) (see, e.g. Guo
et al. 2017). Usually, FDM is used to solve a wide range of problems such
as linear, non-linear, time independent and dependent problems with different
kinds of boundary conditions. It has a wide use in many fields such as solv-
ing problems related to electric and magnetic fields (Binns and Lawrenson,
1973; Demerdash and Nehl, 1979; Hoole and Pearmain, 1992; Chari and Sa-
lon, 2000), physical problems such as solving problems related to stresses in a
masonry dam, heating problems and flow (Kazem and Dehghan, 2018; Russell
and Wheeler, 1983; Richardson and Glazebrook, 1911; Mattiussi, 2000; Ding
et al., 2007; Guo et al., 2017; Demirbaş et al., 2020) and engineering disci-
plines such as the design of structures and hydraulic engineering (Perrone,
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1978; Liszka and Orkisz, 1980; Széliga, 2014).

In this Chapter we focus on the study of the observed modes and how
these wave modes change due to changes in the wave guide cross-sectional
shape. The Chapter is structured as follows. In Section (4.2) we discuss the
numerical model which was applied. Section (4.3) is devoted to the application
of the proposed approach and the analysing of the circumstances our approach
can and cannot be applied. Section (4.4) provides comparison between waves’
signature in cylindrical, elliptical and irregular shape models. Section (4.5)
is devoted to the study of method necessary to convert ellipse sunspots into
actual shape. In Section (4.7) we conclude the results.

4.2 The numerical model

The simplest, however, illustrative model to study wave propagation in mag-
netic flux tubes, e.g. coronal loops, sunspots etc., is the cylindrical magnetic
flux tube model (see, e.g. Wentzel 1979; Wilson 1979; Spruit 1982b; Edwin and
Roberts 1983). This model provides the main features of the observed patterns
of line of sight (LOS) magnetic and velocity perturbations. In applications to
sunspots this model assumes that the oscillations are mainly confined to the
umbral region and decay outside, i.e. in the penumbra. Despite the effec-
tiveness of this model for sunspots with a circular cross-section, it cannot be
applied to the patterns of MHD perturbations for sunspots with an irregular
cross-section. Due to fact that the spatial structure of the eigenmodes is very
sensitive to cross-sectional shape as we have shown in Chapter 3.

In our analysis of the cylindrical model, we assume that the sunspot umbra
is the “internal region” of the magnetic flux tube and the penumbra is the “ex-
ternal region” by adopting different plasma parameters inside (i) and outside
(e) the magnetic flux tube. This model requires the continuity of the radial
velocity component and the total pressure (kinetic plus magnetic) across the
boundary of the magnetic flux tube. However, we do not assume any preferred
geometrical shape of the umbra.

By using the Cartesian coordinate system, we assume the plane of the pho-
tosphere to be the xy-plane and the vertical direction to be along the z axis.
Then, we have to derive and solve the governing equation of the v̂z velocity
perturbation using the actual cross-sectional shape of the umbra and setting
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v̂z = 0 at the umbra/penumbra boundary to be consistent with the observa-
tional data. The equation governing small amplitude MHD perturbations can
be obtained by linearising the ideal MHD equations (see, e.g. Lighthill, 1960;
Cowling, 1976; Roberts, 1981a; Aschwanden, 2005):

∂4∆

∂t4
− (c2S + v2A)

∂2

∂t2
∇2∆ + c2Sv

2
A

∂2

∂z2
∇2∆ = 0, (4.1)

where
∆ = ∇ · v, vA =

B0√
µ0ρ0

, cS =

√
γ
p0
ρ0
.

Here, ∆ is the divergence of velocity perturbation v, vA is the Alfvén speed, cS
is the speed of sound in the [medium/plasma], µ0 is the magnetic permeability,
γ is the ratio of specific heats, p0 is the unperturbed kinetic plasma pressure
and ρ0 is the unperturbed plasma density. By using the Fourier form of ∆:

∆ = v̂z(x, y) exp[i(ωt+ kz)], (4.2)

after some algebra one can obtain the internal governing equation of the v̂z
velocity perturbation is of Helmholtz type, i.e.

∂2v̂z
∂x2

+
∂2v̂z
∂y2
−m2

i v̂z = 0, (4.3)

where m2
i is the eigenvalue:

m2
i =

(k2zc
2
Si − ω2)(k2zv

2
Ai − ω2)

(c2Si + v2Ai)(k
2
zc

2
T i − ω2)

. (4.4)

Here kz is the vertical wavenumber, ω is the angular frequency and
cT i =

√
c2Siv

2
Ai

c2Si+v
2
Ai

is the tube speed.
To identify the wave modes in the sunspot umbra, the following procedures

have been applied: first, the shape of the umbra was determined by identifying
its boundaries as vertices in the xy-coordinate system using tracebound-

ary command in MATLAB (see Appendix F). Second, the eigenfunctions of
Equation (4.3) for the particular geometry have been calculated, based on the
eigenvalue m2

i in Equation (4.3). Implicit parameters of m2
i cannot be esti-

mated from the observation data explicitly, however, this does not actually
matter since we are interested in modelling the spatial structure of the eigen-
functions accurately and this only requires calculating the numerical values of
m2
i which solve the eigenvalue problem subject to the stated boundary condi-

tions. Then, we solve Equation (4.3) numerically using the standard delsq

routine in MATLAB, which is a MATLAB implementation of the ARnoldi
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PACKage (Lehoucq et al., 1998). This routine discretizes the domain for use
as an input for eigs. After that, we solve the final system of equations using
eigns command in MATLAB. Finally, we obtain a set of discrete solutions
of Equation (4.3).

63



(a) (b) (c)

(d) (e) (f)

Figure 4.1: In panels (a), (b), and (c) we plot the behaviour of various slow
sausage body modes calculated under photospheric conditions for the chosen
value (mi < 4). The same modes are shown in panels (d), (e), and (f) but for
the chosen value mi ≥ 4. The the top (a) and bottom (d) left panels show
dependence of the amplitude of v̂z in z direction inside the tube (indicated in
blue) and outside (green). The maximum amplitude of v̂z inside the flux tube
and at the boundary, are shown in the middle panels (b) and (d). The purple
dots indicate the maximum amplitude of v̂z inside the flux tube for various
modes while the red dots show the maximum amplitude at the tube boundary.
The ratio between maximum v̂z1 at the boundary and the v̂z0 is maximum of
v̂zi (inside the flux tube).
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4.3 Applications of actual shape model

In this Section we discuss the conditions under which our numerical model can
be used. Therefore, we study in detail the solutions obtained in a cylindrical
geometry. Performing this study allows us to know when the v̂z perturbation
effect is very small on umbra/penumbura boundary. This is roughly consistent
with proposed numerical model, which assumes v̂z = 0 at the umbra/penumbra
boundary. Therefore, we have solved the following dispersion equations under
cylindrical coordinates model (see, e.g. Spruit, 1982b; Edwin and Roberts,
1983; Aschwanden, 2005):
For surface waves (m2

i > 0), the dispersion relation takes the form

ρi(k
2v2Ai − ω2)me

K ′n(mea)

Kn(mea)
= ρe(k

2v2Ae − ω2)mi
I ′n(mia)

In(mia)
. (4.5)

For body waves (m2
i = −n2

i < 0), the dispersion relation takes the form

ρi(k
2v2Ai − ω2)me

K ′n(mea)

Kn(mea)
= ρe(k

2v2Ae − ω2)ni
J ′n(nia)

Jn(nia)
, (4.6)

where,

m2
e =

(k2c2Se − ω2)(k2v2Ae − ω2)

(c2Se + v2Ae)(k
2c2Te − ω2)

, (4.7)

c2Te =
c2Sev

2
Ae

c2Se + v2Ae
. (4.8)

Here, a is the radius of the magnetic flux tube, vAe, cSe , cTe, ρe are the Alfvén
speed, the sound speed, the tube speed and the plasma density outside of
the tube respectively. Kn, In and Jn are the Bessel functions and the ’prime’
denotes the derivative of Bessel function. The dispersion relationship provides
the relation between the longitudinal wave number k (along the axis of the
cylinder), and the frequency ω. Using the k and ω that are obtained from the
dispersion relations 4.5 and 4.6, we plot and test the v̂z component of velocity
under coronal and photospheric conditions. We write v̂z as the following:

v̂zi = −Ai
ikc2Si
ω2

Jn(mia),

v̂ze = −Ae
ikc2Se
ω2

Kn(mea),

where Ai and Ae are arbitrary constants to be determined.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: In panels (a), (b), and (c) we show the behaviour of various slow
sausage body modes, calculated under coronal conditions for the chosen value
(mi < 4). The same modes are shown in panels (d), (e), and (f) but for the
chosen value mi ≥ 4. The top (a) and bottom (d) left panels show dependence
of the amplitude of v̂z in z direction inside the tube (indicated in blue) and
outside (green). The maximum amplitude of v̂z inside the flux tube and at
the boundary, are shown at the middle panels (b) and (e). The purple dots
indicate the maximum amplitude of v̂z inside the flux tube for various modes
while the red dots shows the maximum amplitude at the tube boundary. The
ratio between maximum v̂z1 at the boundary and the v̂z0 is maximum of v̂zi
inside the flux tube is shown in the rights panels (c) and (f). A is the amplitude
of v̂zi.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: In panels (a), (b), and (c) we show the behaviour of various fast
sausage body modes, calculated under coronal conditions for the chosen value
(mi < 4). The same modes are shown in panels (d), (e), and (f) but for the
chosen value (4 ≤ mi < 8). In panels (g), (h), and (i), we show various a fast
sausage body modes for the chosen value (mi ≥ 8). The three left panels, (a),
(d) and (g), show the dependence of the amplitude of v̂z in z direction inside
the tube (indicated in blue) and outside (green). The maximum amplitude of
v̂z inside the flux tube and at the boundary, are shown at the middle panels (b),
(e) and (h). The purple dots indicate the maximum amplitude of v̂z inside the
flux tube for various modes, while the red dots show the maximum amplitude
at the tube boundary. The ratio between maximum v̂z1 at the boundary and
v̂z0 has maximum value of v̂zi inside the flux tube are shown in panel (c), (f)
and (i). 67



4.3.1 Test 1: Photospheric conditions

Here we show the v̂z component for various ω and k which have been obtained
from solving Equation (4.6) under photospheric conditions, i.e. vAi > cSe >

cSi > cT i > vAe > cTe. For illustrative purposes we have taken cSi = 1,
vAi = 2cSi, cSe = 1.5cSi and vAe = 0.5cSi. These particular conditions play a
key role in determining the types of MHD wave modes that can be supported
by the considered waveguide. In particular, under these conditions the MHD
wave modes are:

• with the largest phase speeds, vph, in the z direction are surface modes
with vph ∈ [cSi, cSe],

• slow body modes with the phase speed vph ∈ [cT i, cSi],

• slow surface modes with the phase speed vph ∈ [vAe, cT i].

We have plotted v̂z, only for the slow body modes, as shown in Figure 4.1. Here,
we have ignored solving Equation (4.5) for the surface wave modes because the
surface wave is evanescent within the umbra and has maximum amplitude at
the umbra/penumbra boundary. This contradicts the hypothesis of the new
model, which assumes the v̂z component will be evanescent at the boundary.
We found that the slow body modes under the photospheric conditions have
a slight effect at the umbra/penumbra boundary while there is a strong effect
inside the umbra (see Figure 4.1). This figure shows v̂z with analysis of the
maximum possible amplitude inside and outside of the tube. It can be clearly
seen from panels (a) and (d) of Figure 4.1 that the modes do not perturb the
boundary much. The amplitude of v̂z at the boundary is close to 0, see the red
star in panel (b) and (e) of Figure 4.1 which shows the maximum amplitude
at the tube boundary. The ratio between the maximum amplitude inside the
boundary and at the boundary of the umbra/penumbra region is about 0.1
and 0.3 for both fundamental modes and higher order modes (see panels (c)
and (f) of Figure 4.1). We note here that under photospheric conditions there
are no fast body modes, but there are fast surface modes and these modes are
not consistent with the ones present in our model.
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Figure 4.4: Upper panels show different branches of sausage modes obtained
by numerical model. Lower panels show different branches of the slow body
of sausage modes obtained by cylindrical model. m = (a, b) denotes the type
of modes and branch i.e, a = 0 means the sausage mode and b = 2 means the
second branch of solution.

Figure 4.5: Upper panels show different branches of kink modes obtained by
numerical model. Lower panels show different branches of the slow body of
kink modes obtained by cylindrical model. (m = (a, b)) denotes the type of
modes and branch i.e, a = 1 means the kink mode and b = 2 means the second
branch of solution.
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4.3.2 Test 2: Coronal conditions

Under coronal conditions, we should assume that the internal plasma temper-
ature, density and pressure are greater than at the external region and internal
magnetic field strength is less than external.. This leads to the following rela-
tions between the characteristic plasma speeds: vAe > vAi > cSi > cT i > cSe >

cTe. For modelling purposes we have taken cSi = 1, vAi = 2cSi, cSe = 0.5cSi

and vAe = 5cSi. With these particular assumptions, we found an important
consequence for the types of MHD wave modes that can be supported by such
a waveguide: the fast body modes propagate with phase speed vph ∈ [vAi, vAe]

and the slow body modes propagate with phase speed vph ∈ [cT i, cSi] in the z
direction. Here we present the v̂z component for various ω and kz which have
been obtained by solving Equation (4.6). We have plotted v̂z for the slow and
fast sausage body modes, shown in Figures 4.2 and 4.3, respectively. Our re-
sult show that the fundamental slow modes (i.e one circular node (the outside
edge)) have an effect on the boundaries, and that the amplitude at the bound-
ary is very close to the maximum amplitude within the tube (see panel (a)
of Figures 4.2). It is obvious from panel (b) of Figure 4.2 that the maximum
amplitude of v̂z1 at the boundary is very close to the maximum amplitude of
v̂z0 inside the umbra. The ratio between v̂z1 and v̂z0 are high, i.e. between 0.4
and 0.80 (see panel (c) of Figure 4.2).

In addition, we have studied the higher order radial modes (i.e more than
one radial node) for the slow body modes separately, and we found that this
kind of mode has a small effect on the boundary, which is smaller than the
effect of fundamental modes (see panel (d) and (e) of Figure 4.2). The higher
order modes have about half of the effect of that caused by fundamental modes.

In the case of the fast body modes, we have found that they have a slight
effect on the umbra/penumbra boundary, and their effect is similar to the
effect of slow body modes under the photospheric conditions. Both have an
amplitude of v̂z, on umbra/penumbra boundary, very close to zero whilst,
within the umbra, the amplitude is large. We also note that the higher order
modes have less impact at the umbra/ penumbra boundary. As radial nodes
increase, the ratio between v̂z1 and v̂z0 decreases (see panel (c), (f) and (i) of
Figure 4.3 from top to bottom).

4.3.3 Modes test

In the previous section, we have shown for all cases that can be used with the
model by testing the v̂z component of velocity. In this Section we will show
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the 2D plot of the v̂z component to analyse the extent, to which, the cylinder
tube model corresponds to our numerical model. Here we review the sausage
and kink slow body modes under photospheric conditions. Figures 4.4 and
4.5 show the value of v̂z for sausage modes and kink modes, respectively. The
comparison of sausage modes with our numerical and cylindrical model are
shown in Figure 4.4. Four different branches of sausage mode were chosen,
which are represented by m = (0, 1), m = (0, 2), m = (0, 3) and m = (0, 4)

where, 0 indicates the sausage mode and 1,2,.. indicate the branch. Figure
4.5 illustrates four different branches of kink modes which have been obtained
by both the numerical and cylindrical model. It is clear from Figures 4.4
and 4.5 that the numerical model is consistent with the cylindrical model for
all modes presented. The cylindrical model has an amplitude of v̂z, at the
umbra/penumbra boundary, very close to zero and this is consistent with the
numerical results which has zero amplitude at umbra/penumbra boundary.
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Figure 4.6: The columns from left to right represent the eigenfunction of cir-
cular, elliptical and irregular sunspots, respectively. The rows from top to
bottom represent the fundamental sausage mode (m = (0, 1)), second overtone
sausage mode (m = (0, 2)) and third overtone of sausage modes (m = (0, 3)),
respectively. The dashed red and black lines denote the circular and elliptical
shape.
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4.4 Cylinder model vs actual shape model vs el-
liptical model

The modal basis used for the modeling of sunspots of irregular shape, which is
shown in right panel of Figure 4.6, was computed numerically. The shape in the
right panel of Figure 4.6 is not an actual umbral boundary. It is a synthetic
image to resemble a non-standard sunspot. We have chosen 1332 discrete
points around the umbra/penumbra boundary to model the eigenfunctions
with sufficient resolution. We have generated a 68397 x 68397 matrix using
delsq and found the first 50 eigenvalues and eigenfunctions, and we have
shown 3 of them in right columns of Figure 4.6. By using the same methods,
we also analysed the first 50 eigenvalues and eigenfunctions of circular and
elliptical shapes. Three of them are shown in the left and middle columns of
Figure 4.6, respectively. The sausage modes have been plotted for each of the
three shapes. It is clear, that the observed mode is the fundamental sausage
mode in each of the of three shapes, seen in the first row of Figure 4.6. However,
the situation is completely different with the higher order modes. The second
row of Figure 4.6 (right panel) represents the sausage mode of the irregular
shape, but the obtained pattern does not represent a usual sausage mode (in
case of cylindrical geometry). In the case of an elliptical shape (middle panel)
this mode is more similar to the kink mode, while it appears as a clear sausage
mode in cylindrical geometry (left panel).

We found that the lower order modes are not affected much by the changing
of their shape, but the higher-order modes, even with a small-scale spatial
structure, are affected by the changing of their shape significantly (see the
irregular and elliptical shape in the second and third row of Figure 4.6). Due
to the fact that the spatial structure of the eigenmodes is very sensitive to the
cross-sectional shape, especially in the higher order modes, we need at least
the elliptical model to interpret the observed modes. As we note in the second
and third rows of Figure 4.6, the elliptical modes better explain the modes in
the irregular shape than the circular does.

4.5 Converting elliptical sunspots into the ac-
tual shape

We mentioned in the previous Section that we need at least the elliptical shape
in order to give explanations for the patterns that appear in the irregular
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shapes. In order to make sure that we can actually use the elliptical shape to
interpret these patterns, we have created an algorithm (see appendix G) that
works as follows:

• Find the closest ellipse to the desired sunspots shape.

• Gradually transforms the elliptic shape into sunspots shape.

• Apply the numerical method in the Section 4.2 to all shapes obtained
from Step 2 and find the desired pattern for all these shapes.

The algorithm has been used on one of the sunspots close to an elliptical
shape and we have found many interesting patterns in the eigenfunctions.
Here we have illustrated two modes in Figure 4.7 and 4.8. It is clear that the
shape begins to convert from ellipse (left) to actual sunspots (right). Figure
4.7 represents the fundamental sausage mode. We can clearly observe the
sausage pattern in each of the five shapes, which confirms that the elliptical
shape did indeed give a correct interpretation of the observed pattern in actual
sunspots. We have previously mentioned that the fundamental modes are not
significantly affected by the shape of the borders of sunspots, so the sausage
pattern is evident in each of the five shapes in the image. Figure 4.8 shows
what the traditional kink pattern associated with the cylindrical model looks
like in each of the five shapes. We also note that as the shape of the waveguide
is deformed, the kink pattern becomes completely unrecognisable. However,
the gradual and smooth change in the mode in each of the five shapes fully
proves that we can rely on the modes that appear in the elliptical shape to
explain the patterns that appear in the actual shape. In addition, Figure
4.8 illustrates how sensitive the higher order modes are to the shape of the
sunspots.
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Figure 4.7: From the left to right we show how the shape can be deformed
from ellipse to actual sunspots shape. The pattern of the fundamental sausage
mode (m = 0) is shown for each of the shapes.
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Figure 4.8: From left to right we show how the shape changes from the ellipse
to actual sunspots. The second higher order kink mode (m = 1) is shown for
each of the shapes.
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4.6 Is it possible to rely on the cylindrical model
to explain the observed patterns in the ac-
tual shape?

The wave propagation in cylindrical magnetic flux tubes has been studied for
years, and this model has been relied upon to explain the patterns of the
observed waves in sunspots, as we did in Section 2.3. Here we will apply
our numerical model to the same sunspot that we used previously after we
confirmed that it is possible to apply this model for slow body wave in pho-
tosphere (see Section 4.3). In Section 2.3, we interpreted the MHD wave in
Figure 2.4 as a sausage mode using the cylindrical model. Figure 4.9 repre-
sents the eigenfunction using the actual shape of sunspots in Figure 2.4 and
the eigenfunctions of an elliptical waveguide which have been obtained by nu-
merical methods. The eignfunction of the actual sunspot shape has also been
obtained by using the same numerical method. It is obvious from Figure 4.9
that the mode obtained by numerical methods using the actual shape is close
to observational data. The cylinder model gives the same phase and ampli-
tude in each sausage mode annulus. However, in observational data the annuli
are more patchy. In our numerical model this "patchiness" is caused by the
irregular cross-sectional shape as Figure 4.9 shows. We can say here that it
is possible to rely on the circular model to explain the observed patterns if
the sunspot shape can be approximated as a circle. Nevertheless, we see that
relying on flux tubes with an elliptic cross-section is more preferable, because
actually most sunspots cannot be approximated by a circle, but rather by an
ellipse that has small eccentricity.
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Figure 4.9: The left panel shows the mode obtained by the numerical model
after taking into account the boundary of the sunspots have shown on Fig-
ure 2.4. The right panel shows the mode of the approximation ellipse of the
sunspots (the dashed line).

4.7 Conclusions

The proper interpretation and identification of wave modes detected in the
observational data is important for understanding of plasma processes in the
solar atmosphere and their connection to space weather. In this Chapter we
discussed the possibility of applying a numerical model to provide explanations
for the MHD patterns that may be detected in observational data. We also
discussed when can we use this form and under what conditions. We concluded
in this research that this model cannot be applied to surface waves because
surfaces waves are evanescent within the umbra and have maximum amplitude
at the umbra/penumbra boundary. We also concluded that this model can
be applied to slow waves under the conditions of the photosphere, because
its effect on the boundaries is very small. Surprisingly, we found that the
numerical model cannot be applied to slow modes under the conditions of
the corona because it has an effect on the boundaries, and its amplitude at
the borders is very close to its amplitude within the boundary of the umbral
region. Nevertheless, this model can be applied to fast modes under coronal
conditions; the reason may be due to the fact that when plasma-β is high, slow
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waves propagate mainly along magnetic field lines, while when plasma-β is low
fast waves propagate mainly along magnetic field lines. We also conclude that
the higher modes are very sensitive to the cross sectional shape, so this must
be taken into account when analysing and studying the observed patterns in
order that waves are not misinterpreted.In this Chapter, we have shown to
what extent the cross-sectional shape of the waveguide affects the observed
modes and how simple cross-sectional shapes of waveguides, such as a circle,
may not give a correct interpretation of the observed modes or cannot provide
an explanation of some modes.
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CHAPTER 5

Conclusions

5.1 Overview of thesis

The present Thesis constitutes a study of MHD modes in solar magnetic flux
tubes with various cross-sectional shapes. Chapter 1 introduces the back-
ground material that is needed for MHD wave theory. The equations of ideal
MHD were derived from Maxwell’s equations and the equations of fluid dy-
namics. The dispersion relation of wave propagation in unbounded and ho-
mogeneous plasma and in a structured plasma such as interface and slab were
derived.

MHD wave propagation in cylindrical magnetic flux tubes was studied and
reviewed in Chapter 2. In this Chapter, we derived the dispersion relation
in such structures and then we presented the algorithm used for solving the
dispersion equations. In addition, we have tested the effectiveness of this
method by solving the dispersion equations and comparing results with the
results obtained previously.

The behaviour of MHD wave propagation in magnetic flux tubes with el-
lipticial cross section was investigated in Chapter 3. It involved the derivation
and study of the dispersion relations. We also studied the effect of ellipticity
on solutions of the dispersion relations, in addition to giving an idea of how
to observe patterns in elliptical magnetic flux tubes and to what extent the
ellipticity of tube affects these patterns.

In Chapter 4 we studied MHD wave modes by considering the actual shape
of sunspot boundaries. We solved the governing equation for the v̂z velocity
perturbation by setting v̂z = 0 at the umbra/penumbra boundary to be con-
sistent with the observational data. We discussed how the modes appeared in
the flux tube using the actual shape and compared them in the shape of the
modes in both the cylindrical and elliptical model.
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5.2 Summary of results

5.2.1 Chapter 2

The dispersion relation of waves propagating in a cylindrical flux tube was
obtained in Section 2.1.3. We obtained a good agreement with the results of
Edwin and Roberts (1983) using the new algorithm. It was found that there
are a slow body waves and fast surface waves under photospheric conditions in
in Section 2.2.3. The slow and fast body waves were obtained under coronal
conditions in Section 2.2.4.

5.2.2 Chapter 3

The dispersion relation of waves propagating in an elliptical flux tube was
derived in Section 3.2.3. The solutions were obtained under coronal and pho-
tospheric conditions in Section 3.3 and 3.4, respectively. We found that there
are slow and fast body waves under coronal condition while there are slow
body waves and fast surface waves under photospheric conditions. We showed
that there are two kink waves polarised along the major and the minor axes
in an elliptical flux tube. The effect of increasing ellipticity is that it increases
the difference between the phase speed for modes polarised along the minor
and the major axes. The body waves polarised along minor axes have a phase
speed greater than those polarised along major axes. However, surface waves
polarised along the minor axes have a phase speed less than those polarised
along major axes. The MHD wave modes of elliptical flux tubes under coronal
and photospheric conditions were obtained in Section 3.5. It was found that
the effect of ellipticity is greater on the patterns with higher order and on the
polarizing waves on the main axes. In addition, we found that the fundamental
modes, such as sausage or kink fundamental modes, beside the polarised waves
along the minor axes are less affected by the eccentricity of the flux tube. The
surface modes of higher order are more strongly affected by eccentricity than
the fundamental surface modes.

5.2.3 Chapter 4

In Section 4.2, the MHD equations were derived in two dimensions using Carte-
sian coordinates. The numerical results have a very good agreement with the
results obtained using the cylindrical model in Section 4.4. The numerical
model is very applicable for slow body waves under photospheric conditions,
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but it is also applicable for fast body waves under coronal conditions as in
Section 4.3. We found that the numerical model is not applicable for slow or
fast surface waves. It was concluded that the higher modes are more sensitive
to shape of sunspots than fundamental modes in Section 4.4.

5.3 Future work

In solar physics the theory of MHD wave modes in cylindrical magnetic waveg-
uides is well developed. However, realistic forward modelling of the observable
signatures of such wave modes to compare them with high resolution data of
the Sun’s atmosphere is still in its infancy. One of the most important ex-
tensions to the investigation, which was performed in Chapter 2 is to forward
model how the actual integrated spectral line intensity and Doppler velocity
of such MHD wave modes will appear in observational data depending on the
particular wavelength used and the observer’s line of sight with respect to the
magnetic cylinder axes.

Apart from the work in this Thesis the study of waves in an elliptical flux
tube has not received much attention in solar physics. An interesting extension
to the work in Chapter 3 will be to obtain a dispersion relation for linear wave
propagation in a twisted incompressible elliptical magnetic waveguide because
of the natural occurrence of twisted magnetic flux tubes from the Sun’s interior,
throughout the solar atmosphere and knowing the extend of its impact on
observed modes. It will also be important to study how the actual integrated
spectral line intensity and Doppler velocity of such MHD wave modes will
appear in observational data depending the particular wavelength used and
the observer’s line of sight with respect to the elliptical flux tube axes.

The study and modelling of magnetohydrodynamic waves in waveguides of
irregular cross-sectional shape with continuity of the radial velocity component
and the total (gas plus magnetic) pressure across the boundary of the actual
shape is an important extension of Chapter 4. The investigation of the effect
of magnetic field twisting on the observed patterns in the actual sunspot shape
is very important.
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APPENDIX A

Power series expansions for Mathieu functions in
the form of hyperbolic and trigonometric series

The expansion of the Mathieu functions in the form of hyperbolic series in s
direction:

C2n(s, m2
0) =

∞∑
r=0

A2n
2r cosh(2rs) (A.1)

C2n+1(s, m
2
0) =

∞∑
r=0

A2n+1
2r+1 cosh((2r + 1)s) (A.2)

S2n+1(s, m
2
0) =

∞∑
r=0

B2n+1
2r+1 sinh((2r + 1)s) (A.3)

S2n+2(s, m
2
0) =

∞∑
r=0

B2n+2
2r+2 sinh((2r + 2)s) (A.4)

The expansion of the Mathieu functions in the form of trigonometric series
in φ direction.

c2n(φ, m2
0) =

∞∑
r=0

A2n
2r cos(2rφ) (A.5)

c2n+1(φ, m
2
0) =

∞∑
r=0

A2n+1
2r+1 cos((2r + 1)φ) (A.6)

s2n+2(φ, m
2
0) =

∞∑
r=0

B2n+2
2r+2 sin((2r + 2)φ) (A.7)
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s2n+1(φ, m
2
0) =

∞∑
r=0

B2n+1
2r+1 sin((2r + 1)φ) (A.8)

The coefficients A2n
2r , A

2n+1
2r+1 , B

2n+1
2r+1 and B2n+2

2r+2 are related by recurrence rela-
tions which can be obtained by substituting Equations (A.2)-(A.4) in Equation
(3.10) or Equations (A.5)-(A.8) in Equation (3.9). The recurrence relations
among the expansion coefficients are

• even-even (c2n(φ, m2
0))

hA
(0)
ee −m2

0A
(2)
ee = 0,

(h− 4)A
(2)
ee −m2

0

[
2A

(0)
ee + A

(4)
ee

]
= 0,

[h− (2j)2]A
(2j)
ee −m2

0

[
2A

(2j−2)
ee + A

(2j+2)
ee

]
= 0 j=2,3,4...

, (A.9)

• even-odd (c2n+1(φ, m
2
0))(h− 1)A

(1)
eo −m2

0

[
A

(1)
eo + A

(3)
eo

]
= 0,

[h− (2j + 1)2]A
(2j+1)
eo −m2

0

[
2A

(2j−1)
eo + A

(2j+3)
eo

]
= 0 j=2,3,4...

,

(A.10)

• odd-even (s2n+2(φ, m
2
0)){

(h− 4)B
(2)
oe −m2

0B
(4)
oe = 0,

[h− (2j)2]B
(2j)
oe −m2

0

[
2B

(2j−2)
oe +B

(2j+2)
oe

]
= 0 j=2,3,4...

,

(A.11)

• odd-odd (s2n+1(φ, m
2
0))(h− 1)B

(1)
oo −m2

0

[
B

(1)
oo +B

(3)
oo

]
= 0,

[h− (2j + 1)2]B
(2j+1)
oo −m2

0

[
2B

(2j−1)
oo +B

(2j+3)
oo

]
= 0 j=1,2,3,4...

,

(A.12)

where ee, eo, oe and oo indicates even-even, even-odd, odd-even and odd-
odd respectively for more detail about this see (see e.g., McLachlan, 1947;
Abramowitz and Stegun, 1964; Arscott, 1964).
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APPENDIX B

Power series expansions for Mathieu functions in
terms of Bessel function of the first and second
kind

The expansion of the Mathieu functions in terms of Bessel function of the first
kind (Jm):

C2n(s, m2
0) =

P2n

A2n
0

∞∑
r=0

(−1)rA2n
2rJr(v1)Jr(v2) (B.1)

C2n+1(s, m
2
0) =

P2n+1

A2n+1
1

∞∑
r=0

(−1)rA2n+1
2r+1

× [Jr(v1)Jr+1(v2) + Jr(v2)Jr+1(v1)] . (B.2)

S2n+1(s, m
2
0) =

s2n+1

B2n+1
1

∞∑
r=0

(−1)rB2n+1
2r+1

× [Jr(v1)Jr+1(v2)− Jr(v2)Jr+1(v1)] (B.3)

S2n+2(s, m
2
0) = − s2n+2

B2n+2
2

∞∑
r=0

(−1)rB2n+2
2r+2

× [Jr(v1)Jr+2(v2)− Jr(v2)Jr+2(v1)] (B.4)
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APPENDIX C

The non-oscillatory case

For the non-oscillatory case, the parameterm2
0 orm2

e in the Mathieu equation is
negative. A change in sign of parameters m2

0 or m2
e corresponds to replacement

of s by (πi
2

+ s). By taking this into account the Fourier series expansion
corresponding e.g FeK2n (for more details see Chapter 8 of McLachlan (1947))
when the parameter m2

e is positive we have

C2n(s0, −m2
e) = (−1)nC2n

((
πi

2
+ s0

)
,m2

e

)
(C.1)

The expansion of the modified Mathieu functions in terms of Bessel function
of the first kind (Im).

C2n(s, −m2
0) =

P
′
2n

A2n
0

∞∑
r=0

(−1)rA2n
2r Ir(v1)Ir(v2) (C.2)

C2n+1(s, −m2
0) =

s
′
2n+1

B2n+1
1

∞∑
r=0

(−1)rB2n+1
2r+1

× [Ir(v1)Ir+1(v2) + Ir(v2)Ir+1(v1)] (C.3)

S2n+1(s, −m2
0) =

P
′
2n+1

A2n+1
1

∞∑
r=0

(−1)rA2n+1
2r+1

× [Ir(v1)Ir+1(v2)− Ir(v2)Ir+1(v1)] (C.4)

S2n+2(s, −m2
0) =

s
′
2n+2

B2n+2
2

∞∑
r=0

(−1)rB2n+2
2r+2

× [Ir(v1)Ir+2(v2)− Ir(v2)Ir+2(v1)] (C.5)
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APPENDIX D

Power series expansions of the modified Mathieu
functions of the third kind in terms of modified
Bessel function of the first and second kind

The expansion of the modified Mathieu functions of the third kind in terms of
modified Bessel function of the first kind (Im) and the second kind (Km).

FeK2n(s, −m2
0) =

P
′
2n

πA2n
0

∞∑
r=0

A2n
2r Ir(v1)Kr(v2), (D.1)

FeK2n+1(s, −m2
0) =

s
′
2n+1

πB2n+1
1

∞∑
r=0

B2n+1
2r+1

[Ir(v1)Kr+1(v2)−Kr(v2)Ir+1(v1)] , (D.2)

GeK2n+1(s,−m2
0) =

P
′
2n+1

πA2n+1
1

∞∑
r=0

A2n+1
2r+1

[Ir(v1)Kr+1(v2) +Kr(v2)Ir+1(v1)] , (D.3)

GeK2n+2(s, −m2
0) =

s
′
2n+2

πB2n+2
2

∞∑
r=0

B2n+2
2r+2

[Ir(v1)Kr+2(v2)−Kr(v2)Ir+2(v1)] , (D.4)

where v1 = |m0| e−s, v2 = |m0| es, and

P
′

2n =
(−1)nc2n(0, m2

0)c2n(π
2
, m2

0)

A2n
0

= (−1)nP2n,

P
′

2n+1 =
(−1)n+1c2n+1(0, m

2
0)c

′
2n+1(

π
2
, m2

0)

m0A
2n+1
1

= (−1)nP2n+1,

s
′

2n+1 =
(−1)ns

′
2n+1(0, m

2
0)s2n+1(

π
2
, m2

0)

m0B
2n+1
1

= (−1)ns2n+1,

s
′

2n+2 =
(−1)n+1s

′
2n+2(0, m

2
0)s

′
2n+2(

π
2
, m2

0)

m2
0B

2n+2
2

= (−1)n+1s2n+2.
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APPENDIX E

The chosen values for solution of Chapter 3

ε ks0 vph

Sausage modes (m = 0), even (0, 1)

0.241 2.98 3.3547
0.55 2.98 3.3807
0.80 2.98 3.5476
0.89 2.98 3.7626
Sausage modes (m = 0), even (0, 2)

0.241 4.53 4.1316
0.55 4.53 4.2498
0.80 4.53 4.6510
0.89 4.53 4.9935
kink modes (m = 1), even (1, 1)

0.241 3.99 3.5748
0.55 3.99 3.5108
0.80 3.99 3.4887
0.89 3.99 3.6007
kink modes (m = 1), odd (1, 1)

0.241 3.99 3.6080
0.55 3.99 3.7100
0.80 3.99 4.0059
0.89 3.99 4.3085
Kink modes (m = 1), even (1, 2)

0.241 3.99 0.9031
0.55 3.99 0.9030
0.80 3.99 0.9017
0.89 3.99 0.9007

ε ks0 vph

Kink modes (m = 1), odd (1, 2)

0.241 3.99 0.9028
0.55 3.99 0.9020
0.80 3.99 0.9003
0.89 3.99 0.8991
Fluting modes (m = 2), even (2, 1)

0.241 3.99 4.2523
0.55 3.99 4.1590
0.80 3.99 3.9591
0.89 3.99 3.9012
Fluting modes (m = 2), odd (2, 1)

0.241 3.99 4.2556
0.55 3.99 4.2236
0.80 3.99 4.0088
0.89 3.99 3.7333
Fluting modes (m = 3), even (3, 1)

0.241 3.99 4.9322
0.55 3.99 4.8564
0.80 3.99 4.5414
0.89 3.99 4.3602
Fluting modes (m = 3), odd (3, 1)

0.241 3.99 4.9325
0.55 3.99 4.9117
0.80 3.99 4.9270
0.89 3.99 4.9807

Table E.1: The chosen values for all modes under coronal condition.
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ε ks0 vph

Sausage surface modes, even (0, 1)

0.241 2.50 1.4386
0.55 2.50 1.4394
0.80 2.50 1.4449
0.89 2.50 1.4528

Kink surface modes, even (1, 1)

0.241 2.50 1.3325
0.55 2.50 1.3573
0.80 2.50 1.4091
0.89 2.50 1.4468

Kink surface modes, odd (1, 1)

0.241 2.50 1.3225
0.55 2.50 1.2972
0.80 2.50 1.2417
0.89 2.50 1.1968
Fluting surface modes (m = 2), even (2, 1)

0.241 2.50 1.2856
0.55 2.50 1.2882
0.80 2.50 1.3061
0.89 2.50 1.3308
Fluting surface modes (m = 2), odd (2, 1)

0.241 2.50 1.2854
0.55 2.50 1.2817
0.80 2.50 1.2564
0.89 2.50 1.2207
Fluting surface modes (m = 3), even (3, 1)

0.241 11.0 1.2741
0.55 11.0 1.2981
0.80 11.0 1.3388
0.89 11.0 1.3747
Fluting surface modes (m = 3), odd (3, 1)

0.241 11.0 1.2597
0.55 11.0 1.1787
0.80 11.0 1.4349
0.89 11.0 1.3636

Table E.2: The chosen values for all modes under photospheric condition.
.
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APPENDIX F

Tool for analysis of oscillatory modes

The Tool for Analysis of Oscillatory Modes (TAOM) version 1.0 (TAOM v1.0,
written in MatLab) is designed to detect and trace the boundary of binary
image of sunspots umbra (or other feature for which boundary can be traced)
and then calculate the eigenmodes and eigenfunctions of the shape of the
input sunspots image with implies a fixed boundary condition using discrete
Laplacian in MatLab. The code scans parameter space for eigenvalues and
orthogonal eigenvectors that match the boundary conditions for any given
cross-sectional shape. This code is designed to find the best elliptical (or other
shape) approximation of the sunspot, calculate the eigenmodes/ eigenfunctions
and provides the comparison between the umbra of the sunspots and elliptical
membrane. This code works with binary image only.

F.1 Usage

This manual includes the following parts:

(1) software environment setting;
(2) description of the tool functions;
(3) overall procedure how to use the TAOM;
(4) examples of use.

F.1.1 Software environment setting

We recommend to use MatLab 2017a or later versions to avoid any incompat-
ible conflicts with software.

F.1.2 Description of the tool functions
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Table F.1: Description of the tool functions

Function name Description of function
TAOM_v2 This is the main function which should be used to anal-

ysis of oscillatory modes of input image.
redblue.m This code change the colormap from bright

blue, white to bright red, see copyright de-
tails https://www.mathworks.com/matlabcentral/
fileexchange/25536-red-blue-colormap

subplot_tight.mThis code is defining margins and wrapping the
existing subplot function, see copyright details
https://uk.mathworks.com/matlabcentral/fileexchange/
27991-tight_subplot-nh-nw-gap-marg_h-marg_w

Apart from the redblue.m programme the all other parts of the code were de-
veloped by the Author. Description and usage of redblue.m programme can be
found at: https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap
(including copyright details).

F.1.3 Overall procedure on the use of TAOM

Step 1: Input the parameters

1 Input image input_image.
2 Input how many modes do you want to obsreved e_N.
3 Input the grid size h_S.
4 To create video for modes input vd equal to 1, otherwise 0.
5 To save data for observed modes input da equal to 1, otherwise 0.

Step 2: Run the main function

The TAOM_v2 function will work only with binary images.

F.2 Example 1 (sunspot shape)

In this part, we will show how to analyse the oscillatory modes of the shape
ex_1.png which is located in (TAOM_v2) folder.
input_image = imread(ex_1.jpg)
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e_N=51

h_S=500

vd=1

ad=1

[V0,omg,V1,omg1]=TAOM_v2(input_image,e_N,h_S,vd,da)

Processes and results

Step 1 First, scan the binary image and detect the boundary.

Figure F.1: Left panel (a) shows observed sunspots. Right panel (b) shows the
observed sunspots with the detection the boundary of sunspots in red colour.

Step 2 Finding the best ellipse approximation for observed shape.
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Figure F.2: Approximation of ellipse (the dash line).

Step 3 Compute the eigenvalues and eigenfunctions of each shape.
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Figure F.3: Left panel on each image shows the eigenfunction of observed
sunspots. Right panel on each image shows the eigenfunction of elliptical
sunspot.

Step 4 Make TAOM_avi movie for all modes (optional) .

Step 5 Save data for the exact shape TAOM_data.mat file for all modes
(optional).
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F.3 Example 2 (modelled shape)

We used the figure ex1_1.png which is located in the (TAOM_v2) folder.

input_image = imread(ex1_1.jpg)

e_N=51

h_S=500

vd=1

ad=1

[V0,omg,V1,omg1]=TAOM_v2(input_image,e_N,h_S,vd,da)

Processes and results

Step 1 First, scan the binary image and detect the boundary.

Figure F.4: Left image shows the input shape. Right image shows the the
input shape with the detection the boundary in red colour.

Step 2 Finding the best ellipse approximation for detected shape.
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Figure F.5: Approximation of ellipse (the dash line).

Step 3 Compute the eigenvalues and eigenfunctions of each shape.
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Figure F.6: Left panel on each image shows the eigenfunction of observed
sunspots. Right panel on each image shows the eigenfunction of elliptical
sunspot.

Step 4 Make TAOM_avi movie for all modes (optional) .

Step 4 Save data for the exact shape TAOM_data.mat file for all modes
(optional).

97



APPENDIX G

Tool for transformation of oscillatory modes from
circular-elliptical to actual shape.

Here, I describe a tool for the transformation of the circular or elliptical cross-
sectional shape to the actual cross-sectional shape. Version 1.0 ( TCETA v1.0,
written in MatLab) is designed to detect and trace the boundary of the binary
image of sunspots umbrae (or other features for which boundary can be traced)
and then find the approximated circular or elliptic shape of actual sunspots.
Then, calculate the eigenmodes and eigenfunctions of the all transformations
shapes of the input sunspots image with implies a fixed boundary condition
using discrete Laplacian in MatLab. The code scans parameter space for eigen-
values and orthogonal eigenvectors that match the boundary conditions for all
shapes and then collects all similar modes on one video to show how each mode
is changing when the shape of sunspots is changed, i.e., sausage mode or kink
mode. This code only work with binary images only.

G.1 Usage

This manual includes the following parts:

(1) software environment setting;
(2) description of the tool functions;
(3) overall procedure how to use the TCETA;
(4) examples of use.

G.1.1 Software environment setting

We recommend to use MatLab 2017a or later versions to avoid any incompat-
ible conflicts with software.
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Table G.1: Description of the tool functions

Function nameDescription of function
TCETA_v1 This is the main function which should be used to

analysis of oscillatory modes of input image.
redblue.m This code change the colormap from bright

blue, white to bright red (https://www.
mathworks.com/matlabcentral/fileexchange/
25536-red-blue-colormap)

G.1.2 Description of the tool functions

Apart from the redblue.m programme the all other parts of the code were de-
veloped by the Author. Description and usage of redblue.m programme can be
found at: https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap
(including copyright details).

G.1.3 Overall procedure how to use the TCETA

Step 1: Input the parameters

1 Input image input_image.
2 Input how many shapes do you want for transform the ellipse to the actual
shape n_S.
3 Input what type of mode do you want for example mode number 50 which
corresponds to sausage waves n_m.
4 Input how many modes do you want to obsreve e_N.
5 Input the grid size h_S.
6 To create video for modes input vd equal to 1, otherwise 0.

Step 2: Run the main function

The TCETA_v1 function will work only with binary images.

G.2 Example 1 (sunspot shape)

In this part, we will show how to analyse the oscillatory modes of the shape
ex_1.png, which is located in the (TCETA_v1) folder.

99

https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap
https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap
https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap
https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap


input_image = imread(pp.png)

e_N=50

h_S=400

vd=1

n_S=200

n_m=39

[h1]=TCETA_v1(input_image,n_S,e_N,n_m,h_S,vd)

Processes and results

Step 1 First, scan the binary image and detect the boundary.

Figure G.1: The image shows observed sunspots.

Step 2 Finding the best ellipse approximation for observed shape.
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Figure G.2: Approximation of ellipse (the dashed line).

Step 3 Calculate all the transformation shapes from ellipse to actual shape.
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Figure G.3: Transform the ellipse into the actual shape.

Step 4 Compute the eigenvalues and eigenfunctions of each shape.
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Figure G.4: From left to right we show how the shape deform from ellipse to
actual sunspots. The second higher order kink mode (m = 1) is shown in each
of the shapes.

Step 5 Make TCATA_avi movie for all modes (optional).
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