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Abstract

Thermal runaway (TR) is a significant safety concern of Li-ion Batteries (LIBs) that

can lead to hazardous events, such as fire and explosion of the battery, that presents

a great risk to persons/assets in the vicinity of the battery system. However, through

experimental investigation and computational modelling this phenomenon can be better

understood, and hence, allow for improved LIB design that leads to safer systems.

The aim of this work was to further the understanding of TR in LFP LIBs, in con-

junction with developing improved theory and greater understanding of LIB TR models.

The work is split into two main studies. First, experimental studies, in which the TR

behaviour of LFP cells by accelerated rate calorimetry (ARC) and oven testing is investi-

gated to carry out a novel assessment of LFP cells at various state of charge (SOC) and

under rapid heating scenarios. Second, computational studies, in which a novel advanced

abuse model (AAM) is developed to model the TR of LIBs, which is then parameterised

for the study of LFP cells and extended to investigate the thermal runaway propagation

(TRP) resilience of LFP LIB packs. Within the development of the AAM a novel repre-

sentation of the cell pressurisation is considered, viz. assuming that the electrolyte/gas

mixture within the cell is at bubble point.

From the experimental work, results show, at SOC of 100% and 110%, the negative

and positive electrode reactions are the main contributors to TR, while at lower SOC it

is the negative electrode reaction that dominates. Cells at 100% SOC exposed to high

temperatures during oven tests show, along with the ARC analysis, that the presence of the

cathode and electrolyte reactions leads to an increase in the severity of a TR event for oven

temperatures above 200°C. By comparing the heat generated in ARC and oven testing,

it is shown that ARC does not fully capture the self-heating and TR safety hazard of a

cell, unlike oven testing. This work gives new insight into the nature of the decomposition

reactions and also provides an essential data set useful for model validation which is of

importance to those studying LFP cells computationally.

In developing the AAM, the novel bubble pressure assumption is validated against

experimental data, and it is shown that the AAM significantly improves the predictions

of time to TR and of temperatures after TR. Further, it is shown that there is significant

uncertainty in the parameters defining the decomposition reactions for LFP cells. Impor-

tantly, cell pressurisation is most dependent on the gases released by the solid electrolyte

interphase reaction, and venting is dependent on cell burst pressure and reaction activa-

tion energies. The AAM is essential for accurate abuse modelling, due to its improved

temperature predictions, and considerably enhances the LIB TR field of study.
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In studying the TRP potential of LFP packs it is shown that TRP does not occur

when an initiation cell undergoes total internal short circuit. This occurs, as, even though

the abused cell undergoes complete TR, the amount of energy released by the abused

cell does not raise the temperature of adjacent cells to the point that the energetic NE

reaction develops significant decomposition rates. It is also shown that given different

reaction parameters that lead to similar TR events of a single cell do not lead to significant

variation in pack results. Finally, lower cell surface emissivities are shown to reduce the

overall cell-to-cell heat transfer, and hence can enable safer lighter packs by simple cell

surface alterations.
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Chapter 1

General Introduction

1.1 Li-ion Batteries in the Wider Scope of Energy Storage

Greenhouse gas (GHG) emissions due to human activities are the widely accepted cause

of global warming [1, 2]. To mitigate the dangerous effects of climate change requires,

in part, CO2 GHG emissions to reach a net zero value by the year 2050 [3]. Hence,

there is the requirement to implement alternative energy sources, such as renewables and

nuclear, to de-carbonise primary energy production, as well as utilising new technologies

for: improved energy efficiency; fossil free fuels for transportation; energy storage; and

carbon sequestration [4].

The automotive industry has been de-carbonising for the past decade through the

development of hybrid (HEV) and plug-in hybrid electric vehicles (PHEV) based on the

mature nickel metal hydride (NiMH) battery [5, 6]. Today, LIBs vastly outperform NiMH

in terms of high energy capacity (see Fig. 1.1), high cycle efficiency and low self-discharge,

whilst being available at a competitive price [6–9]. These characteristics have made Li-ion

technology most favourable for EVs as it enables increased vehicle driving range. Hence,

through ongoing development in LIB technology, it is predicted that consumer fully electric

vehicles (FEV) will become 100% powered by Li-ion technology in the future [10].

Renewable energy sources, such as wind and solar, are being increasingly utilised [12–

15]. However, due to renewables’ intermittent nature and low inertia, new energy storage

technologies are required to provide auxiliary services so that renewables can be fully

utilised [16]. Many storage technologies have been proposed as useful to support the

grid [17], see Fig. 1.2. However, due to the falling cost of manufacture and flexibility in

providing multiple auxiliary services, LIBs are becoming a key energy storage technology

for grid scale services [6, 18–21].
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CHAPTER 1. GENERAL INTRODUCTION

Figure 1.1: Comparison of battery technologies in terms of volumetric and gravimetric energy densities.
Reproduced from [11].

Figure 1.2: Comparison of different energy storage technologies in terms of discharge time and power.
Reproduced from [22].
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1.2. LITHIUM-ION BATTERIES - AN OVERVIEW
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Figure 1.3: Li-ion total global market capacity trends. Solid filled bar is the higher prediction, line filled
bar is the lower prediction. xEV is for hybrid and fully electric vehicles i.e. cars, buses etc.; Other includes
consumer products, power tools etc.; Non-automotive accounts for applications such as marine. Data from
[24]

Overall, the increasing growth of these applications is leading to a significant increase

in the installed market capacity of LIBs (see Fig. 1.3). Highlighting the importance of

LIBs in the present and the future. Further, as the energy demands of these applications

grow, so does the requirement for LIBs to have greater energy capacity [23]. However, Li-

ion cells do suffer from safety concerns, which, for increased energy capacity requirements

of LIBs leads to greater safety risks. This is discussed in Section 1.3, first however, a

description of the Li-ion cell in more detail is given so that the safety concerns of Li-ion

cells can be fully understood.

1.2 Lithium-ion Batteries - An Overview

A battery, Li-ion or otherwise, is a collection of one or more cells electrically connected

together in such manner to meet the electrical demands of a user [25]. With respect to

LIBs, the broad term “lithium-ion” or “Li-ion” covers a type of electrochemical cell that

utilises lithium ions to store charge. The chemical energy stored in a cell’s active materials

is converted into electric energy by the means of an electrochemical oxidation-reduction

(redox) reaction [25].
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The construction and operation of the individual cells within a battery are described

in Section 1.2.1, while the various Li-ion chemistries and their characteristics are outlined

on Section 1.2.2.

1.2.1 Li-ion Cell Construction & Operation

A cell is constructed of several components: the electrodes, separator, current collectors

and electrolyte, collectivity termed the jelly roll, which is housed in a container that

can take several forms, i.e. cylindrical, prismatic or pouch [25]. Figure 1.4 shows the

construction of a cell at decreasing scales, from the macroscopic scale of the cell down to

the microscopic scale of the particles within a cell’s active materials. This figure shows

how these components are structured relative to each other.

In common LIBs the anode, cathode and electrolyte are made from carbon (graphite),

metal oxides and lithium salts in an organic solvent, respectively [26]. The available

cathode materials are further discussed in Section 1.2.2. Further details of the unit cell

construction [27–31], electrode construction [32, 33], separator [26, 34, 35] and electrolyte

can be found in the cited literature.

Figure 1.4 also shows, on the scale of the active particles, the movement of Li+ and

electrons during operation of a cell. A detailed description of cell operation can be found

in Refs. [25, 30]. The redox reactions during operation is summarised (for the example of

an LFP cell) by Eq. (1.1) and Eq. (1.2) for the anode and cathode respectively [36].

LiC6 ←−→ C6 + Li+ + e− (1.1)

FePO4 + Li+ + e− ←−→ LiFePO4 (1.2)

At the end of discharging, the negative electrode will be depleted of Li+ while the positive

will be saturated with Li+, the reverse is true for a fully charged cell.

On charging and discharging a battery heat is generated by several reactions. These

include reversible entropic reactions and irreversible sources such as Ohmic, contact, en-

thalpy and mixing [37]. Under normal operational conditions this heat is not an issue.

But under extreme environments, inadequate battery cooling or electrical abuse, this heat

can build up leading to a dangerous temperature rise [38].
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Figure 1.4: Schematic of Li-ion cell construction and operation.
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1.2.2 Li-ion Chemistries and Their Cell Characteristics

The distinction between different types of Li-ion cells is by the chemistry of the cell. The

chemistry commonly refers to the positive electrode’s active material, while the negative

electrode active material is commonly carbon based. There are many chemistries available,

with the most prominent being:

� Lithium Cobalt Oxide

� Lithium Manganese Oxide

� Lithium Nickel Manganese Cobalt Oxide

� Lithium Iron Phosphate

� Lithium Nickel Cobalt Aluminium Oxide and

� Lithium Titanate (anode)

Table 1.1, presents a comparison of key features of these various Li-ion chemistries, along

with common abbreviation that they are referred by. This table shows, that even within

the category of Li-ion cells, there is much variation in the performance of a cell in terms

of operational voltage, capacity, rate capabilities, cycle life and safety. From Table 1.1 it

can be seen that LMO, LFP and LTO are best for power applications, while NCA and

NMC are better for applications that require high specific energy. LFP and LTO cells also

have long cycle lives, however these are currently the most expensive chemistries. A cell’s

chemistry also has an effect on cell safety, this is further discussed in Section 1.4. First,

the safety concerns of Li-ion cells are introduced in the next section (Section 1.3).
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Table 1.1: Characteristics of common Li-ion cell chemistries. Data sourced from Ref. [39].

Cell Chemistry
Lithium Cobalt

Oxide

Lithium
Manganese

Oxide

Lithium Nickel
Manganese

Cobalt Oxide

Cathode/ anode LiCoO2/graphite LiMn2O4/graphite
LiNiMnCoO2/
graphite

Short name LCO, Li-cobalt
LMO,
Li-manganese

NMC (NCM,
CMN, CNM,
MNC, MCN)

Year of
introduction

1991 1996 2008

Nominal voltage 3.6 V 3.7 V 3.6 V/3.7 V

Operating voltage
range

3.0–4.2 V 3.0–4.2 V 3.0–4.2 V/4.3 V

Capacity 150–200 W h/kg 100–150 W h/kg 150–220 W h/kg

Rate capability,
charge/discharge

0.7-1C / 1C
0.7-1C (3C max) /
1C (10C possible,
30C pulse)

0.7-1C / 1-2C

Cycle life 500–1,000 300–700 1,000–2,000

Cost - - ~420 $/kWh

Comments

Very high specific
energy, limited
specific power.
Cobalt is
expensive.

High power, lower
capacity, safer than
LCO, can be mixed
with NMC for
improved
performance.

High capacity and
power. Hybrid cell,
suitable for many
uses.

Role in current
Li-ion market

An early Li-ion
cell, no longer
relevant.

Less relevant
today, limited
growth potential.

Leading system;
dominant cathode
chemistry with
increasing market
share.
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Table 1.1 (cont.): Characteristics of common Li-ion cell chemistries. Data sourced from Ref. [39].

Cell Chemistry
Lithium Iron
Phosphate

Lithium Nickel
Cobalt

Aluminium
Oxide

Lithium
Titanate

Cathode/ anode LiFePO4/graphite
LiNiCoAlO2/
graphite

LMO or NMC/
Li2TiO3(titanate)

Short name LFP, Li-phosphate
NCA,
Li-aluminium

LTO, Li-titanate

Year of
introduction

1996 1999 2008

Nominal voltage 3.2 V/3.3 V 3.6 V 2.4 V

Operating voltage
range

2.5–3.65 VV 3.0–4.2 V 1.8–2.85 V

Capacity 90–120 W h/kg
200–260 W h/kg;
300 W h/kg
predictable

50–80 W h/kg

Rate capability,
charge/discharge

1C / 1C (up to
25C)

0.7C / 1C
1C (5C max) / 10C
possible (30C
pulse)

Cycle life >2,000 ~500 3,000–7,000

Cost ~580 $/kWh ~350 $/kWh ~1005 $/kWh

Comments

Flat voltage profile
but low capacity.
One of the safest.
Used in speciality
markets. Relatively
high self-discharge.

Share similarities
with LCO. Used
primarily as an
“energy” cell.

Long life, fast
charging, but low
specific energy and
costly.

Role in current
Li-ion market

Used in
applications
requiring high
currents and
durability.
Moderate market
growth.

Mainly used by
Panasonic and
Tesla. Has growth
potential.

Limited to
speciality
applications due to
cost, ultra-fast
charging.
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1.3 Thermal Runaway Hazard of Li-ion Batteries

The phenomenon most prominent in LIB safety is that of thermal runaway (TR). TR is

an event in which a Li-ion cell undergoes an uncontrollable temperature rise, due to the

exothermic chemical decomposition of the cells internal components, which can ultimately

lead to extremely high temperatures, fire and explosion [38]. This presents significant

hazards to people. Further, with the increasing capacity of LIBs there is a greater risk to

safety, as a critical failure of a LIB will in turn be more energetic.

The extent of the problem of TR over the past decade is evident from the number of

TR incidents, for example, in mobile phones, laptops, Boeing 747 aircraft, HEV/FEVs,

E-cigarettes, “hoverboards” and head-phones [40–43]. Figure 1.5 shows several of these

TR incidents, spanning different orders of magnitude of battery energy storage capacity,

indicating the hazards possible to the general public. In the incidents mentioned here,

overcharging, internal short, debris penetration and overheating have all been cited as a

cause of TR in one case or the other. Thus highlighting the numerous ways in which TR

can be triggered and hence the complexity of the problem.

There is limited data on the total number of LIB incidents worldwide, however fires

are estimated to occur in 1 cell in every 1 to 10 million manufactured cells [55]. The

Federal Aviation Administration (FAA) keeps a record of incidents involving smoke, fire,

extreme heat or explosion associated with LIBs in the USA aviation sector. From 1991 to

the 1st August 2019 there have been 265 recorded incidents, with the number increasing

each year. In 2017-18, 94 events occurred, half of which were to do with portable battery

packs and e-cigarettes, while 18% were due to phones. Further, in the first five months of

2019 alone there were 26 incidents [56]. E-cigarettes lead to a significant number of TR

incidents, and are thought to be an increasing problem due to their prominence in the

consumer market, which is cost competitive, and is leading to 18650 cells being sold at a

low price through re-labelling damaged, or defective cells, that are disposed of by major

manufactures [57].

There have been several EV fires initiated by a number of causes: penetration of debris

into the pack, short circuit while charging, overcharging, overheating, water immersion

into the pack and crashes [58]. Additionally, the hazards presented by TR may not be

limited to the initial TR event and fire, as one FEV incident shows. In one occurrence,

TR was initiated due to the vehicle crashing, while, hours after the initial battery fire was

extinguished visible smoke and audible venting were present without fire, and a further 5

days later the car re-ignited [59]. Similarly, crash testing of Chevrolet Volts in different

orientations led to the car catching fire immediately in one case, hours in a second case,

while it was not until 1 and 3 weeks later in other cases [60]. This outlines how difficult

it can be to confidently state that TR has been fully quenched and that no TR hazard

remains.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Thermal runaway incidents across various scales of battery energy capacity, (a) E-cigarette
explosion in a persons pocket [44] (insert: types of e-cigarettes [45]), (b) Samsung Galaxy Note 7 smart-
phone post TR due to internal short due to manufacturing errors [46, 47], (c) “hoverboard” post TR while
being on charge [48], (d) Boeing 787 Dreamliner auxiliary battery pre/post TR with no definitive cause
known [49, 50], (e) Tesla model S on fire due to debris penetrating battery [51, 52] and (f) electric-hybrid
bus on fire during charging [53, 54].
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It is thought that the probability of EV fires, due to the failure of one cell from

manufacturing defects, is 1 in 10,000 vehicles [58]. However, the Advanced Propulsion

Centre UK/ Automotive Council UK has the goal of eliminating TR in battery packs by

2040 [61].

Further, as LIBs become increasingly used within consumer products, more LIBs are

entering local/ council waste management facilities through household waste. The unin-

tentional mixing of LIBs in general waste can lead to severe fire incidents. LIB have been

thought to be the cause of large fires at both landfill and electrical waste recycling facilities

[62, 63]. In the UK in 2017-18, 25% percent of 510 recorded fires at waste management

facilities were attributed to LIBs, this is up from 20% in the previous year [62]. Also, LIBs

are causing issues in the recycling of lead acid batteries, in which LIBs have been know to

cause fires and explosions in the transport, storage, breaking and smelting operations of

lead acid battery recycling [64].

In light of these occurrences, while the number of incidents relative to the total number

of manufactured cells is small, it is stated by Spinner et al. [55] that the primary concerns

with respect to LIBs and safety are a “result from a lack of knowledge and general fear

of the unknown”. This is understandable considering the vast and diverse uses of LIBs,

and the varied ways in which TR can be initiated as well as the unpredictable behaviour

of TR. This highlights the need for ongoing research to better understand and predict TR

behaviour in order to inform the manufactures, policy-makers and the public leading to

increased safety.

1.3.1 Thermal Runaway Process

A major concern with the operation and safety of LIBs is the phenomena of TR. TR is the

result of processes, electrochemical, chemical, electrical and thermal, that are individually

complex and influential to each other [26]. The safety characteristics of TR of a LIB

system depends on [23, 26, 65–67]:

1. the cell type (geometry, materials and inherent electrochemical behaviour, materials

activity and interactions);

2. conditions before misuse (state of charge, ageing effect, discharge rate, temperature);

3. type of misuse (over temperature, overcharge, etc.);

4. external measures (built in safety devices, cooling methods, confinement/ packaging);

and

5. pack size and configuration.
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Figure 1.6: The thermal runaway process. A deviation from safe operation (green box) due to possible
initiation sources (yellow box) leads to initial heat generation (orange box). The positive feedback loop of
TR (cycle of orange boxes) is due to the exothermic decomposition processes of cell components.

The TR process is depicted in Fig. 1.6. It can be seen that the TR process is initiated

by heat generation due to a primary abuse event, leading to an initial temperature rise.

After which, generally speaking, TR is a process where exothermic reaction(s), from the

decomposition of jelly roll components, have increased reaction rates due to an increase

in temperature. With this, the self-heating generation rates increase, leading to further

increases in temperature and hence reaction rates, and so on [26]. In such a situation, if

the heat generated is greater than the heat dissipated, the temperature of the system rises

significantly [68]. Further, as the temperature increases, so does the internal pressure of

the cell due to gas evolution from the decomposition reactions [26]. The ultimate outcome

of TR can be extremely high temperatures, combustion of flammable gases and explosion

of the cell.

An important feature to note of TR is the relationship between heat generation and

heat dissipation with temperature. The relationship between heat generation and dissipa-

tion can be depicted in a Semenov plot, see Fig. 1.7. This is commonly used to visualise TR

reactions [26]. Line 4 of Fig. 1.7 depicts a heat generation profile which has an exponential

relation with temperature when assuming Arrhenius law. Heat dissipation, represented

by lines 1 to 3, has a linear relation with temperature when assuming Newton’s law of

cooling [68]. As can be seen by comparing the heat generation to the heat dissipation of

line 1, the coolant temperature is sufficiently cold enough to control the temperature of

the cell below T1. However, most importantly, above T1, for a given temperature rise,

the heat generated can quickly out strip the heat dissipated leading to a catastrophic TR

event.

Within a pack the hazard of TR is multiplied. If a cell catches fire it can spread to

adjacent cells and its surroundings [69, 70]. Additionally, once ignited, a LIB fire can
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Figure 1.7: Representation of heat generation by decomposition reactions following Arrhenius law (red)
and heat dissipation (green) for a generic vessel. A, B and C represent 3 different environmental temper-
atures. A is safe up to temperature T1, B is at the critical temperature (point of no return) TNR and C
cannot control the thermal runaway. Edited from [68].

be very difficult to extinguish due to their self-fuelling nature [71]. Water can be used to

quench the fire and cool the battery [72], aided by the use of surfactants [73, 74]. However,

there is a further hazard of explosion as the lithium compound can react with the water

to produce hydrogen gas [74].

1.3.1.1 Thermal Explosion Theory

As mentioned above the relationship between heat generation and dissipation is important

in the TR process. This behaviour can be explained by the “Thermal Explosion” Theories

developed by Semenov [75] and Frank-Kamenetskii [76]. Semenov’s Theory assumes a

container of self-heating fluid is at a spatially uniform temperature. In which the heated

generated by the fluid, expressed by an Arrhenius equation, is balanced by Newtonian

cooling. Frank-Kamenetskii theory assumes a self-heating solid exposed to a uniform

ambient temperature. In which the increase in the solid’s temperature is based on Fourier’s

heat conduction equation with heat generation expressed by an Arrhenius function.

These theories allow for determination of critical conditions, below which steady state

exists and TR does not occur. The critical conditions are presented by the Semenov

equation, see Eq. (1.3), and Frank-Kamenetskii equation,see Eq. (1.4), below [77].

Se =
∆HA0EV

USRT 2
c

exp

(
−E
RTc

)
= e−1 (1.3)

Where H, A0, E, V , U , S, R, Tc are the heat of reaction, frequency factor, activation en-

ergy, fluid volume, overall heat transfer coefficient, surface area, Gas constant and critical
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temperature, respectively. For any shape, if the equation above with Tc = Tamb leads to

Se < e−1 conditions remain stable.

δc =
∆HA0Er

2

λRT 2
c

exp

(
−E
RTc

)
(1.4)

Where, with similar notation as above and, r is the characteristic radius of the solid.

Depending on shape, i.e. infinite slab, infinite cylinder or sphere, δc equals 0.878, 2.00 and

3.32, respectively. Hence, for a specific shape, if the equation above with Tc = Tamb leads

to δ < δc conditions remain stable.

The assumptions behind each theory lead to the Semenov equation being effective un-

der the condition of the Biot number tending to 0 and defines the critical temperature

of a fluid under isothermal conditions. While the Frank-Kamenetskii equation is effec-

tive under the condition of the Biot number tending to infinity and defines the critical

temperature of a solid under isothermal conditions.

1.3.2 Decomposition Reactions

The process of TR in Li-ion cells is complex due to the fact that many exothermic reac-

tions can occur within a Li-ion cell. These can include reversible & irreversible reactions,

due to charge and discharge of the cell; and chemical reactions, due to decomposition of

the cells components at elevated temperatures [78]. The heat generated during normal op-

eration from the reversible & irreversible reactions (due to entropy and enthalpy changes,

overpotentials, reaction heating and ohmic heating) can be readily dissipated to maintain

safe operating temperatures, and hence presents little risk. However, the chemical decom-

position reactions present a much greater hazard due the vast amounts of heat they can

produce and the rapid rate at which they release it. The chemical decomposition reactions

that can take place include the:

� solid electrolyte interphase (SEI) decomposition reaction (on the negative active

material)

� negative electrode (NE) reaction

� positive electrode (PE) reaction

� electrolyte decomposition

� lithium metal reactions with electrolyte on overcharging

� lithium metal reactions with binder.

Each of these decomposition reactions have key properties such as: the temperature at

which the reaction starts, the heat released by the reaction, and the rate of heat release.
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Hence, understanding how each of the reactions behaves, and how they interact to pro-

duce an overall self-heating TR event, is essential to understanding Li-ion cell safety, as

well as for identifying areas to improve abuse tolerance and mitigation strategies [79].

Additionally, understanding how different abusive events affect TR is important, as the

process leading to TR, and hence the required mitigation strategies, can be different under

different abuse events.

Experimental studies have gone some way to find the major contributing decomposition

reactions leading to cell TR, and the order in which they occur. These are listed as [78, 80–

83]:

1. SEI decomposition reaction: The SEI protects the negative electrode from reacting

with the solvent electrolyte. This layer is metastable and at T > 85°C–120°C it

decomposes exothermically leading to low-rate reactions that steadily increase with

temperature [84].

2. Negative solvent reaction: At T > ~120°C the SEI layer no longer protects the nega-

tive electrode and the active material comes into direct contact with the electrolyte.

Thus, an exothermic reaction between the intercalated ions and the electrolyte occur.

3. Negative binder reaction: The fluorinated binder can react exothermically with lithi-

ated carbon.

4. Positive solvent reaction: For T > ~150°C the exothermic reaction is thought to

be due to one of two chemical reactions. Either: a) the positive active material

decomposing, releasing oxygen which reacts with the electrolyte, or b) direct reaction

between the positive active material and the electrolyte. In either case, reduction of

the positive active material is highly exothermic leading to high rate reactions with

peak rates in excess of 100°C/min [84].

5. Electrolyte decomposition: At T > ~200°C the electrolyte can decompose.

Although the reactions are listed by their reaction onset temperature in the list above,

the reactions themselves are not discrete. Each reaction may occur over a narrow or

wide temperature range, see Fig. 1.8, leading to a summation of some or all of the heat

generation rates and hence an increased temperature rate. Throughout these stages there

are points where the separator material melts and flammable gases are produced, which

is discussed in more detail below.

The decomposition of the SEI layer occurs in two stages [80], see Fig. 1.9. The first,

which leads to an initial peak temperature rate, is a decomposition of the metastable SEI

into stable SEI. The second, is a reaction of intercalated lithium with electrolyte leading to

a new metastable SEI, which results in an increasing temperature rate with temperature

(as long as lithium is able to diffuse from the anode particle to the electrolyte). The SEI
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> 90°C: Electrolyte flash points: EC-160°C, PC-132°C,DEC-25°C, DMC-17°C

> 150°C: Cathode decomposition
LiCoO2-150°C, LiMn2O4-265°C, LiFePO4-310°C

> 200°C: electrolyte 
decomposition

> 140°C: Electrolyte volatilization

> 130°C: Separator melting

> 120°C: Graphite anode reacts with electrolyte

85-120°C: SEI 
decomposition

80°C 100°C 120°C 140°C 160°C 180°C 200°C 220°C

Figure 1.8: General thermal runaway sequence (edited from Ref. [83]).

Figure 1.9: SEI formation and decomposition (reproduced from Ref. [36]).

formation involves charge transfer, where the electrolyte solvent (ethylene carbonate, EC)

decomposes by reacting with a lithium ion to form the metastable SEI, (CH2OCO2Li)2

[26, 36]. The decomposition reaction does not involve charge transfer, but decomposes to

a stable product (e.g. Li2CO3) with the release of gases (e.g CO2, O2, C2H4) [36, 78].

Further still, as the temperature rises, the intercalated lithium in the negative electrode

reacts with the organic solvents leading to the release of flammable hydrocarbons but no

oxygen [26, 78]. As the gas is generated, pressure builds up in the cell, and while the

temperature is above the flash point of the electrolyte, combustion does not occur as there

is no free oxygen [26].

At 130°C–165°C the separator melts leading to a short-circuit between the electrodes

and an additional source of heat generation [85–87]. Eventually the temperature is high

enough for the decomposition of the cathode which also generates heat and gases, including

oxygen and oxocarbons, leading to greater pressure and temperatures. The release of

oxygen enables the burning of the highly flammable electrolyte, which is above the flash

point, and flammable gases leading to the production of carbon dioxide and water [78, 88].

At higher temperatures still, 200°C–300°C, electrolyte solvents decompose directly [26].

When the pressure is above the safety vent limit gases are released through the vent. If
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the pressure rise is too rapid/ great then the cell explodes. In either case, this leads to the

ejection of flammable gases into air which burn due to the presence of oxygen [26, 89–91].

The ejection of highly flammable gases pose a further hazard [92]. Reactions between the

binder also occur, but are relatively small in terms of heat generation in comparison with

other reactions [78].

1.3.3 Cell and Battery Safety Devices

The safety of a battery, from a design aspect, can be considered to fall into two broad

categories: inherent and inbuilt safety devices. The first category includes the choice of

anode, cathode and electrolyte, and the use of additives for fire retardation and overcharge

resilience [26, 93]. As discussed above, the electrodes and electrolyte lead to heat genera-

tion when they decompose. As such, choosing materials that generate less heat will lead

to safer cells. The relative safety of different cathode materials is discussed in Section 1.4.

To help protect against abnormal conditions, cells, modules and packs have inbuilt

safety features [23, 26, 93, 94]. Safety devices that are of most relevance to this work are

safety vents and shutdown separators. Cell vents are designed to release the build up of

internal pressure, from gas generation, at a specific pressure. However, once open they

allow for atmospheric air to enter, bringing with it oxygen and moister, presenting a risk

of combustion and further reaction of the electrolyte [95].

In Li-ion cells, the separator is a micro-porous polymer membrane, constructed of layers

of polyethylene (PE) and/or polypropylene (PP) and prevents short circuit between the

negative and positive electrodes. The separator within a cell can act as a safety device to

help prevent TR by limiting current flow through a process known as separator “shutdown”

at 130°C–140°C. This prevents Li+ flow, and therefore reduces reversible and irreversible

heat generation [96]. Shutdown is the only safety mechanism that can provide protection

against internal shorts, so long as the heating rate is not too high [34] e.g micro-shorts

due to dendrites. However, when the separator melts at 165°C–170°C large internal short

circuits occur leading to vast ohmic heating [96, 97].

The safety devices used in practice may not be adequate to prevent cell TR and/

or pack TR propagation, as shown by the incidents discussed above. This is due to

impurities, which cannot be eliminated in manufacturing process, or hotspots which may

lead to short circuit over time, or other unexpected causes such as debris and damage

[52, 98, 99]. Hence, there are a number of safety standards and tests LIBs have to be

subject to, to understand their TR potential and hazards, as discussed in Section 1.3.4.
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1.3.4 Standards and Abuse Tests

TR can originate from exothermic chemical reactions, mass or thermal transfer processes

and also mechanical issues [37]. Hence, there are a number of different standards and

testing protocols that cells, modules and packs must conform to for safety [100]. A com-

prehensive list can be found in Refs. [101, 102]. Further, possible abuse scenarios are

simulated experimentally to understand the resulting TR event. The most common abuse

tests include overheating, penetration, crush, overcharge and short-circuiting [58, 78]. Ad-

ditionally, the abuse of cells under a worst case scenario, i.e. under adiabatic conditions,

can be carried out through accelerated rate calorimetry (ARC). A detailed discussion of

relevant abuse testing for the work carried out in this thesis is further provided in Sec-

tion 2.1. An overview of common standards is provided below.

Safety standards are provided by regional organizations, e.g. the Underwriter Labora-

tory (USA), the UN (EU/ECE), the Korea Motor Vehicle Safety Standards (Korea), the

Automotive Industry Standard (India) and the Chinese National Quality Control Stan-

dards, as well as international bodies, e.g. SAE, ISO and IEC.

These bodies provide the most widely used safety standards for assessing the safety of

Li-ion cells, modules, batteries and systems. For the application of EVs, these standards

are:

� SAE J2464 (international) [103] - covers the safety and abuse testing for electric and

hybrid vehicles with rechargeable batteries. Featuring safety tests for cells, modules

and packs for various vehicle applications with BESS above 60 V.

� SAE J2929 (international) [104] - covers the safety standards for Li-ion battery

systems used in electric and hybrid vehicles. Featuring safety tests for cells, modules

and packs but with a focus on the entire battery system.

� ISO 12405-4:2018 (international) [105] - covers the safety specifications for recharge-

able energy storage systems, focusing on safety tests for packs used in electric road

vehicles.

� IEC 62660-2/3 (international) [106, 107] - covers the reliability, abuse testing and

safety requirements for Li-ion cells used in electric road vehicles.

� UN/ECER100 (EU and further countries) [108] - covers the safety requirements for

EV BESS and their subsystems including cells.

� UL 2580 (USA) [109] - covers the methods to asses a battery assembly or its sub-

components, e.g. cells and modules, to withstand abuse conditions and to prevent

the exposure of person to hazards as result of abuse.

� USABC (USA) [110] - covers the safety tests to be carried out on cells, modules and

packs.
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� SAND2017-6925 (USA) [111] - covers the recommendations for abuse testing recharge-

able battery energy systems, from cell to pack level.

� AIS-048 (India) [112] - covers the mechanical abuse of cells and modules and the

electrical abuse of cells to packs.

� QC/T 743 (China) [113] - covers the mechanical, electrical and thermal stability of

Li-ion cells and packs for EVs.

Each of the above standards cover all, or many of, the same abuse tests. However, the

criteria of abuse or pass/fail of a test can vary slightly between standards. These criteria

also depend on the system level assessed (i.e. cell, module, pack, vehicle). Example

pass/fail criteria for tests under reasonable misuse (e.g. external sort, thermal shock,

vibration) are “no fire”, “no explosion”, “no rupture”, and “no leakage”, while for fire

resistance the criteria is “no explosion” [108, 109].

The following sections, Sections 1.3.4.1 to 1.3.4.4, discuss the criteria of mechanical,

electrical, environmental and chemical abuse tests, respectively.

1.3.4.1 Mechanical Abuse Standards

1.3.4.1.1 Mechanical Shock Test This test is used to evaluate the robustness of a

device under test (DUT), i.e cell, module, pack, to harsh accelleration/ deceleration. Shock

forces are given in terms of acceleration and duration to simulate different conditions. For

example, conditions such as driving over a curb at high speed [105] or a vehicle crash [108].

The shocks are applied with a given pulse shape, such as a half-sine wave, characteristic

of the simulated condition.

The harshest criteria is outlined by Ref.[103], requiring that cells <0.5 kg be sub-

jected to an acceleration of 150G (at 10 ms shock duration). In comparison, Ref.[109] and

Ref.[108] have peak acceleration criteria of 50G (at 15 ms shock duration) and 10 (at 80 ms

shock duration), respectively.

1.3.4.1.2 Drop Test This test is used to simulate when a DUT is accidentally dropped

while being installed/ removed form a system. The DUT, at a given SOC (typically the

max operating SOC or 100%), is left to fall from a specified height onto a rigid flat surface

or cylindrical steel object. The fall height varies from 1 m [109] to 10 m [111].

1.3.4.1.3 Penetration This test is used to simulate the incursion of a metal object

into the DUT as it can cause electrical short circuit of the DUT. A sharp steel rod,

commonly called a ‘nail’, is forced into the DUT at a constant speed. Variables in the
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test include: nail diameter, and depth and speed of penetration, SOC and duration that

the nail remains in the DUT after penetration. For a cell, a nail diameter of 3 mm is

commonly used. With a nail speed of 8 cm/s2 and penetration depth of 3 mm.

1.3.4.1.4 Immersion This test is used to simulate the submerging or partial flooding

of a vehicle battery. A battery is fully submerged in salt water (with a similar composition

to sea water) for a period of at least 1 h.

1.3.4.1.5 Crush/ crash This test is to simulate an external load that can damage a

DUT, such as a vehicle crash. In the test, a DUT is crush be an initial degree (i.e. to

85% initial dimension), then after 5 min it is further crushed (to 50% initial dimension)

[103, 108, 111, 113] or until there is and abrupt voltage drop [106].

The for applied during the crush test has to be limited to less than 1000 times the

weight of the DUT, or 100 kN.

1.3.4.1.6 Vibration This test is used to evaluate the effect long term vibrations have

on battery components. Vibration profile follow sine-waves or random amplitudes and

frequencies. Sine-waves can be used to identify resonant frequencies of a DUT, with

random profiles representing real world scenarios.

1.3.4.2 Electrical Abuse Standards

1.3.4.2.1 External short circuit test This test is used to evaluate the safety of

a DUT under an external short and the ability of safety devices to prevent hazardous

situations, mainly excess heat generation and the possible resulting TR, explosion and fire

events.

A low resistance element, 5 mW [106, 108], 20 mW [105, 111] or 100 mW [105], is con-

nected across the battery teminals. This is done in less than 1 s and maintained for a

defined period of time. Soft shorts are defined as when the external resistance is similar

to the cell internal resistance, while hard shorts are when the external resistance is much

lower than the internal. Soft shorts can be used to ensure the response of the cell, rather

than the current dependent protective devices, is evaluated [103].

1.3.4.2.2 Internal short circuit test Internal shorts are hard to simulate and several

methods have been developed. As mentioned above, nail test can be used. Separator shut

down tests, heat a cell up to a temperature just above the shutdown temperature to

evaluate the effectiveness of the shutdown mechanism [103]. Forced internal short can be
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implemented by inserting a L-shaped nickel particle between jelly roll layers. Such that

under compression the particle pieces the separator and causes a short circuit [107]. An

indentation test, similar to a crush test, can be used to deform the outer most electrode

layers, by applying pressure to deform the cell, leading the tearing/ piecing of the separator

and short circuit.

1.3.4.2.3 Overcharge/ overdischarge test This is carried out to evaluate the effects

of charging a battery above or below its rated limits. Under overcharge, a constant current

(e.g. 1/3C) is applied up to a set SOC. Depending on the standard this overcharge SOC

can 110% to 200%. Overdischarging requires discharging the battery from fully charged

until the tested device limits or interrupts discharging [108].

1.3.4.3 Environmental Abuse Standards

1.3.4.3.1 Thermal stability test This test is used to identify at what temperature

TR begins. It requires a cell to be heated by 5°C steps with a 30 min wait period between

each step up to 200°C above the maximum operating temperature of the cell or a catas-

trophic event occurs [108]. The maximum operating temperature is 300°C for Ref.[103].

After this, a second run is done with 2°C temperature increment to refine the TR onset

temperature.

1.3.4.3.2 Thermal shock and cycling test The test is to evaluate the effect of

expansion and contraction of a DUT from sudden changed in temperature. During the

test a DUT is exposed to an upper and lower temperature limit (60°C/85°C and =40°C)

for a specified amount of time.

1.3.4.3.3 Overheat test This test is used to evaluate the outcome of thermal man-

agement system failure. A DUT is cycled (e.g. 20 times charge/ discharge with no resting

[103, 104]) with the cooling system disabled. The test is stopped when (a) the DUT in-

terrupts charging/discharging, (b) the temperature is stable, or (c) the DUT is damaged

[108].

1.3.4.3.4 Extreme cold temperature test This test evaluates the DUT when dis-

charged at 1C at temperature of =40°C, =20°C, 0°C and 25°C [111]. The test is stopped

if abnormal conditions, voltage or temperature, or physical damage occurs.

1.3.4.3.5 Fire test The fire test is used to asses the risk of explosion. Radiant-heat

tests heat a sample to 890°C in less than 90 s and held for 10 min [103, 111]. Projectile
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fire tests expose a DUT to a uniform fire [104, 109]. Grating table tests use a burning fuel

pan [108]. The DUT is first preheated for 60 s at the distance of 3 m. Then the DUT is

placed directly in the flame for 70 s. The test is passed if there is no evidence of explosion

during the test.

1.3.4.4 Chemical Abuse Standards

1.3.4.4.1 Emissions tests These tests are used to asses the hazardous substances

emitted during failure and to determine if they remain below safe concentrations. Re-

quirements [105] state that concentrations of hazardous substances should not be allowed

near the driver, passenger or load comportments.

1.3.4.4.2 Flammability test This test is to determine the flammability limit of the

gases emitted from a battery [103, 104, 109, 111]. This can include using spark ignition

sources in the testing enclosure or gas monitors.

1.4 Cell Chemistry and Safety: The Role of LiFePO4 as a

Cathode

As stated previously, cell chemistry plays a significant role in the TR of a cell. Li-ion

cells with a LiFePO4 (LFP) positive electrode are of interest for electrochemical energy

storage applications due to their increased thermal stability and reduced hazard of TR

[71, 114–117]. Chen and Richardson [71] explain why LFP is considered safer than other

chemistries: at high temperatures the organic solvents making up the electrolyte can ig-

nite in the presence of oxygen, which can then lead to fire and explosion of a cell. The

chemistry of the positive electrode plays a crucial role in the availability of oxygen. This is

because charged oxide cathodes, such as LixCoO2, LixNiO2, LixMn2O4, LixNi0.8Co0.2O2,

Lix(Ni0.8Co0.15Al0.05)O2, and Liy[NixCo1-2xMnx]O2 decompose and release oxygen at ele-

vated temperatures. However, olivine-type LiMPO4 (M= Fe, Mn, Co, and Ni) cathodes on

the other hand are seen as safer alternatives as oxygen loss is inhibited by strong covalent

P-O bonds.

For example, the calculated release of oxygen for a 18650 LFP cell is 0.5 g compared

to 3.25 g for a comparative lithium cobalt oxide (LCO) cell [118]. In turn, the lack of

oxygen limits the amount of electrolyte that can be ignited during TR, vastly reducing

the amount of heat produced and in turn reducing the overall severity of TR.
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The safety of Li-ion cathode material can be ranked from most safe to least safe in the

order [71, 119]: LiFePO4, Li[Ni3/8Co1/4Mn3/8]O2, Li1+xMn2-xO4, LiCoO2, LiNi0.7Co0.2

Ti0.05Mg0.05O2, LiNi0.8Co0.2O2, LiNiO2 [119].

While other chemistries, such as the common LiCoO2 (LCO), Liy[NixCo1-2xMnx]O2

(NMC) and LixMn2O4 (LMO), benefit from greater energy density and higher voltages

compared to LFP [114, 120, 121], LFP has the advantages of being non-toxic, dependent

on the resource abundance of iron, highly efficient and have high cycle life [122–124]. LFP

are also claimed to have a lower cost, better rate capabilities and greater power densities

[122, 123, 125]. Due to the documented safety of LiFePO4 chemistry over other Li-Ion

chemistries [71, 114, 115, 117, 126, 127], it is suggested that LiFePO4 are suited to mobile

and large-scale energy storage where safety and cost are extremely important [119, 128].

To date, the use of LFP chemistry in stationary applications is 170 MW out of a total

2.3 GW install global capacity of all Li-ion chemistries [129]. Their uptake is not as wide

spread as other chemistries, as commercially they have some way to go to reduce cost,

and to be competitive for mobile applications there needs to be an increase in specific

energy capacity, while their power densities and rate capabilities are competitive [130].

However, if these criteria are met, it is not hard to see the value of such a stable Li-ion

cell throughout electrochemical energy storage applications, and hence their increase in

popularity. It is due to this fact that cells based on LFP chemistry have been chosen to

study herein.

Even though the reported safety of LFP cells is good in laboratory tests, TR incidents

still remain in the real world. It is apparent that safety concerns still remain for LFP

battery solutions by the fire of an EV bus powered by an LFP battery pack that went into

TR when charging [53, 54, 131].

While LFP cells are deemed to be safer than other chemistries from experimental

findings, modelling their abuse behaviour can give greater insight to their stability under

a wider variety of operational, environmental and abuse conditions. Although there has

been extensive computational and modelling research into TR of LIBs, very little has

been done in relation to cells with positive electrodes of LFP chemistry. To the author’s

knowledge only Refs. [38, 128, 132] model the TR of LFP Li-ion cells, their work is further

discussed in Section 2.2. It is proposed here that cells utilising a lithium iron phosphate

(LFP) cathode can address many TR safety concerns, while despite their attractiveness,

LFP cells have not been studied to the same extent as other chemistries, experimentally

and computationally. Hence, it is of great interest to further the understanding of this

chemistry. This will be addressed through experimental investigations in Chapter 4, and

through computational TR model developments and pack investigations in Chapter 5 and

Chapter 6 respectively.
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1.5 Role of Computational Modelling

Improving the performance and safety of LIBs requires a greater understanding of the

physical, electrical and chemical processes occurring within the battery, from the scale of

the active material particles up to the pack level. Modelling the behaviour of LIBs can

be a more cost effective and time-saving method of furthering the understanding of LIBs

than through experimental methods. Specifically with regard to increasing the safety of

LIBs, the understanding of the TR behaviour of Li-ion cells is necessary, i.e. what causes

its onset and how does the process progress.

Modelling TR can be implemented at various levels, from individual cells [e.g. 133–137]

to packs [e.g 138–142]. In modelling TR of LIB, an accurate model of TR in a single Li-

ion cell is most important, and the starting point for more advanced TR modelling. The

fundamental principles of a cell TR model are a coupling of 1) heat transfer behaviour,

and 2) exothermic chemical decomposition behaviour. The methods to develop TR models

for LIBs will be discussed in detail in Section 2.2.

A thermal-abuse model can be used to ensure proper thermal management of a battery

under normal operating conditions or in predicating TR behaviour [79]. It follows, that it

can also be used to determine the best cell characteristics and battery design for mitigating

disastrous thermal events, and in turn, aiding in the development of improved and safer

battery designs.

Once a fundamental TR model has been developed and validated, it can then be

extended to include other factors such as electro-chemistry, gas generation and combustion

theory, and changes to material physical properties due to such things as temperature or

deformation [133, 143–145]. These, in turn, allow aspects such as short-circuiting, impact

damage, ageing, separator breakdown/ melting and heat transfer by fire to be incorporated

for analysis of their effect on TR behaviour and cell safety [37]. Further, with an accurate

single cell TR model available, studies of modules or packs can be undertaken.

There has been much work into the development of TR models for various Li-ion cell

chemistries, with varying amounts of complexity and at various scales [e.g. 38, 78, 99, 132,

135, 146–148]. However, the study of TR in LFP cells, specifically in relation to modelling,

is lacking. Additionally, the only modelling of LFP done to date (see Refs. [38, 132]) has

not been validated, and when compared to preliminary experimental work done here, is

shown to be significantly inaccurate. For these reasons, and the growing market share

[39], LFP cells have been chosen as a case study within this thesis.

For the development and validation of an accurate model, including TR models, there

is a need for real-word data. As will be shown in the Literature Review (Chapter 2),

extensive data of this kind is not available for LFP cells. Hence, there is a need in this
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work to gather the TR response of LFP cells under various thermal abuse scenarios to

provide a more detailed understanding of LFP TR.

1.6 Summary

The General Introduction has outlined the increasing importance of LIBs to modern soci-

ety, while highlighting the important and potentially hazardous phenomenon of TR that

LIBs present. Computational modelling, aided by experimental testing, is fundamental

to further understanding of the TR behaviour of LIBs. The intention of this thesis is to

expand the knowledge of the TR behaviour of Li-ion cells and further the development of

more advanced and robust LIB battery TR models, and discuss difficulties within them.

The thesis will focus on LFP chemistry as a case study, due to its under-representation in

the literature, and discuss any safety issues they may present. Although the development

to the TR model will be sought for a specific case study, its principle works aim to be

generally applicable to the field of study.

1.7 Outline of Thesis

In Chapter 2 a review of the literature with regard to the experimental and computational

study of Li-ion cells and battery packs is presented. This covers the fundamental abuse test

of over-heating, namely by ARC and oven testing. Additionally, other initiation criteria

are discussed, i.e. types of short circuit, that are important to the understanding of TR

in packs. The development, formulation and parametrisation of Li-ion cell TR models is

covered, including the inclusion and coupling of other relevant behaviours, such as electro-

chemistry, short circuit and venting. The literature on TR in Li-ion modules/packs is

presented, going from a cell model to pack models, and under experimental study. This

literature review is used to outline specific aims and objectives to address areas in the

literature that can be developed with respect to the thesis’ intention of a more advanced

TR model and better understand of TR in LFP cells.

Chapter 3 outlines the methodology for the experimental investigations undertaken.

This includes the charging of cells, determining the heat capacity of a cell and assessing TR

of cells by ARC and oven abuse testing. The chapter also covers the governing equations

of the fundamental TR model, i.e. heat transfer and exothermic decomposition relations.

Additionally, it presents the governing equations for an extended TR model including cell

pressurisation and venting, as well as additional simmering reactions.

Chapter 4 investigates the TR behaviour of cylindrical 18650 LFP cells under ARC

and oven testing. The TR behaviour is characterised in terms of stability and severity, and

compared to similar cells of other chemistries from the literature. Further, a new method is
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applied to estimate the heat generation from the temperature profile. From these finding,

comments on the processes taking place during TR under different conditions are made,

and hence, operational limits of the cell are suggested to mitigate TR. This chapter also

provides essential data sets, to an extent not previously available, that are required for

developing meaningful TR models of LFP cells.

Chapter 5 details the development of an advanced TR model for a LFP cell case study.

This, in part, highlights the considerations that should be taken when utilising literature

values of key parameters. It further highlights the difficulty in parametrising a composite

structure when there is uncertainty about the knowledge of the internal structure. The

advanced model includes simmering reactions and venting behaviour. This is discussed

with regard to the improvement of TR predictions, as well as how the formulation of

the governing equations for the pressure behaviour of the venting model and abuse pa-

rameters values affect the venting predictions. General comments are then made for the

considerations that should be taken when venting behaviour is included into generic LIB

TR models.

Chapter 6 applies the advanced TR model developed in the previous chapter to in-

vestigate the TR propagation potential of LFP packs, and how the inclusion of advanced

behaviour affects the predictions of pack propagation. It also presents an investigation of

the importance of radiative heat transfer in Li-ion packs.

Chapter 7 summaries the work of the thesis and outlines the key findings of Chapters 4

to 6, with reference made to the aims of the thesis. This chapter also outlines future work

to be carried out to further develop the governing theory and parameterisation of abuse

models, and to further investigate LFP packs.
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Chapter 2

Literature Review

As highlighted in Chapter 1, TR is a major safety concern in regard to LIBs. Hence, with

the vast use of LIBs through homes and industry, there is a need to reduce the probability

and severity of LIB TR. This can be achieved through greater understanding of TR with

the aid of computational and experimental studies, as the presented literature throughout

this chapter will show. However, robust TR models are still lacking due to uncertainty in

the parameterisation of models, calculation of cell pressure and the scarcity of information

about the TR behaviour in LFP cells. The literature here will cover general points of

experimental assessment of TR in Li-ion cells and modelling of Li-ion cells. Additionally,

it will focus more specifically on the assessment of cylindrical 18650 cells and the LFP

chemistry, as LFP 18650 cells are used through this work as a case study.

Section 2.1 discusses the fundamental experimental assessments of TR, including calor-

imetry and oven testing. Section 2.2 discusses the development of TR modelling. This

includes considerations that need to be made about model dimensionality, the predicted

TR process, the affect of heat transfer considerations, and discussion on cell pressurisation

and venting. Section 2.3 discusses the assessment of TR in LIB packs through experimen-

tal and computational means. It covers the fundamentals of pack abuse, an overview

of thermal management of packs, description of thermal runaway propagation (TRP)

behaviour, important heat transfer pathways, and specific literature on LFP packs. Sec-

tion 2.4 concludes the Literature Review, summarising the important methods for proper

model construction and TR assessment, as well as highlighting areas in the literature that

need developing.

2.1 Characterising Li-ion Cell Thermal Runaway

TR can originate from exothermic chemical reactions, mass or thermal transfer processes

and also mechanical issues [37]. The triggering events in such cases can be due to one of
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several abuse conditions. These include: internal/external short circuit, over-dis/charge,

overheating, penetration, crushing or leakage [37, 58, 139]. Further, the onset of TR can

be influenced by the cell/battery SOC, ageing and applied load [149]. As such, Li-ion

cells have been widely subjected to various abuse tests, to simulate the above triggering

events, from which TR behaviour can be characterised and cell safety quantified. Tests

such as these are used to emulate specific abuse conditions that can occur during storage,

transport or use of LIBs.

Li-ion cells can be considered as chemical systems with the potential to undergo

exothermic decomposition at elevated temperatures. As such, overheating or thermal

abuse tests are key to providing data on the fundamental characteristics, i.e. stability and

severity [38], of TR. Stability is the resilience of a cell against TR. Stability is commonly

measured by the temperature at which the cell goes into TR, where a higher tempera-

ture is more beneficial and safer. The severity is commonly measured by the amount of

thermal energy released, or the maximum temperature reached, by the cell, where a lower

energy release/ temperature is better. Thermal abuse testing can be carried out in several

ways, including by calorimetry, most commonly differential scanning calorimetry (DSC)

and accelerated rate calorimetry (ARC), and convection oven tests. Calorimetry and oven

testing findings are further discussed in Section 2.1.1 and Section 2.1.2, respectively.

2.1.1 Calorimetry

Several types of calorimetry exist to investigate exothermic reactions. Such as, DSC and

adiabatic calorimetry, including ARC and vent sizing package 2 (VSP2). Each calorime-

try method has its own advantages of providing information about an exothermic reaction

[150]. DSC is a useful tool to study small samples of cell components, such as the elec-

trodes, the electrolyte and the reaction between the two, to quantify the heat of reaction,

with some measure of reaction rates. However, it lacks pressure data, cannot extrapolate

to normal/ abuse conditions and has a limited sample size, unrepresentative of a real

system. ARC and VSP2 overcome these disadvantages and are able to follow runaway

reactions adiabatically. ARC generally has a better temperature sensitivity over VSP2,

0.005°C/min [151] compared to 0.15°C/min [152], while VSP2 has a lower thermal inertia

and is inherently better for gas analysis and vent sizing due to its sealed pressure vessel.

Li-ion cells of various chemistries, forms (i.e. cylindrical, prismatic and pouch) and

scales (i.e. component/cell level) have been studied by adiabatic calorimetry methods.

The most common methods are ARC [115, 153–155] and VSP2 [118, 122, 156], while

custom apparatus are also used, such as constant power calorimetry [114, 157].

The ARC and VSP2 equipment are shown in Fig. 2.1. The fundamental principle of

ARC and VSP2 equipment is to heat a sample to the point that exothermic reactions

begin and to maintain a sample in an adiabatic condition when an exothermic reaction
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is detected, while the heat generated by the reaction will accelerate the reaction [158,

159]. From this, the self-heating behaviour of the sample, usually a single Li-ion cell

or cell components, under TR can be determined. Then, this self-heating behaviour is

characterised by key values to describe the stability and severity of the cell in relation to

TR.

ARC and VSP2 equipment maintain adiabatic conductions by slightly different meth-

ods due to the different equipment set-ups, see Fig. 2.1(a) and Fig. 2.1(b). However, both

follow the principle of using external heaters to prevent heat loss from a sample. Further,

both experimental set-ups have the capability of providing similar test information, i.e.

temperature and pressure data. Detailed descriptions of ARC and VSP2 construction can

be found in [158] and [159], respectively.

In both ARC and VSP2, the heat-wait-seek (HWS), also known as the heat-wait-search,

method is employed to identify the initiation and progress of the exothermic reaction

[151, 155, 161]. The HWS procedure, depicted in Fig. 2.2, operates as described by [158]:

the calorimeter is heated to a desired start temperature and, during the wait period, the

temperature is maintained while the sample reaches thermal equilibrium. After which,

during the seek period, the sample rate is monitored, and the temperature is held constant

or follows the sample temperature. If the temperature rate of the sample is below the

predetermined limit that defines an exotherm, then heating is applied. This is repeated

continually until an exotherm, i.e. a sample temperature rate above the present limit, is

detected, or other end conditions, such as maximum operating temperature, are reached.

If an exotherm is detected, then adiabatic conditions are maintained, without any further

HWS steps, until the reaction has finished.

From this HWS method key values can be quantified, i.e. onset temperature, maxi-

mum temperature, maximum temperature rate and maximum pressure rate. The onset

temperature is the temperature when the exothermic temperature rate of the cell, i.e.

the rate due to self-heating, first exceeds the predetermined (critical) rate. Two onset

temperatures can be quoted, the onset of self-heating and the onset of TR. The critical

rate for determining the self-heating onset is typically in the range of 0.015–0.2°C/min

[117, 153, 155, 162], where ARC accounts for the more sensitive (0.015°C/min) values.

The onset of TR is defined as the point cell temperature rates exceed 1°C/min [155, 162].

For a selected critical rate, a higher onset temperature means the cell is more stable as

self-heating/ TR start later. The maximum temperature, temperature rate and pressure

rate describe the severity of the TR event, if any. Under adiabatic conditions, the max-

imum temperature the cell reaches can be used to directly calculate the energy released

during TR. The temperature rate is directly proportional to the heat generation rate and,

in turn, is an indicator of the cooling required to keep TR under control.

Custom constant power calorimetry rigs have been developed by Golubkov et al. [114]

and Liu et al. [157], see Fig. 2.3. Each, although different in experimental set-up, follows
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(a)

(b)

Figure 2.1: (a) ARC [151] and (b) VSP2 [160] schematics.
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Figure 2.2: HWS operation modes.

a similar method, whereby a cell is heated at a constant power, while purely through

insulation [157], or by additional heaters [114], adiabatic-like conditions are upheld during

TR. The apparatus by Golubkov et al. [114], is constructed of a sealed reactor, with gas

feed through, which allows pressure measurements and gas sampling. The apparatus by

Liu et al. [157], known as Copper Slug Calorimetry, is small and simplistic. It consists of

a copper slug wrapped in thick insulation, where an 18650 cell with an attached heater is

inserted tightly into the slug. This allows for versatile experimental set up as the Copper

Slug Calorimeter can be easily used in conjunction with other testing methods. Using

the Copper Slug Calorimeter TR can be studied in ambient air, under cone calorimetry

conditions to calculate flame power and allow gas sampling, and under inert environments.

DSC data enables one to understand the potential overlapping sequences of decompo-

sition reactions within Li-ion cells, depending on their constituent components. As well

as, determining the magnitude of heat release for each reaction. Figure 2.4 shows the

characteristic DSC plots of Li-ion cell components compiled by Zheng et al. [163]. The

key characteristics of these plots include: Q, the heat release power; ∆H, the enthalpy

representing the total heat released; and Tx, the onset, peak and terminal temperatures,

represented by the subscripts onset, peak and end respectively. The vertical position of

each hill-shaped reaction plot, i.e. each coloured region, is determined by ∆H. The start

and end of the plot is determined by the onset and terminal temperatures respectively,

while the shape of the hill is determined by the value of Q at each temperature (see bot-

tom left insert of Fig. 2.4). The lightning bolts represent the temperature at which a

short circuit will occur due to separator breakdown, dependent on the separator material

present in a cell. The arrows represent the magnitude of heat released by internal short

circuit and evolved gas combustion events.
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(a)

(b)

Figure 2.3: Constant power calorimetry: (a) Constant power reactor [114] and (b) Copper Slug Calorime-
ter [157] schematics.

Figure 2.4: Characteristic DSC plots of Li-ion cell components compiled from the literature. Cells at
100% SOC with a DSC test scan rate of 10°C/min. (Reproduced from [163]).
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Table 2.1: Heat released by negative (carbon) and positive (LFP) electrode reactions.

Reaction Heat released, ∆H Reference
(J/g)

NE*
~1300 - 2800 [88, 166, 167]

PE ~150 - 340 [71, 88, 126, 164]
* Heat released in negative reaction includes SEI reaction.

2.1.1.1 Key Experimental Findings

The onset temperature, peak exotherm temperature and heat released of a charged LFP

cathode under DSC analysis are 250°C, 280°C (with a second smaller peak at 315°C)

and 147 J/g, respectively [164]. Comparatively, Takahashi et al. [126] reports the peak

exotherm temperature at 360°C, with a reaction heat of 288 J/g. By comparison the onset

temperature, peak exotherm temperature and heat released for LCO are 180°C, 231°C

and 760 J/g, respectively. For NMC they are 270°C, 297°C and 290 J/g, respectively [119].

From this data, and its graphical presentation in Fig. 2.4, LFP is the safest on the basis

of having a relatively high onset temperature and peak exotherm temperature with a

relatively low heat of reaction [71]

Ben Mayza et al. [153] and Larsson and Mellander [165] compared the anode and

cathode of LFP cells under DSC analysis. They found that the graphite anode is the

major contributor to heat production, with peak heat flow in the anode ten times greater

than that of the cathode, and also with greater heat flow for a larger temperature range.

Table 2.1 lists the heat released by the NE (which includes the SEI reaction) and PE

reactions. For LFP cells it can be clearly seen that the NE reaction is the major contributor

to the TR potential of the cell.

Further, the sequence of reactions during TR can be inferred from the reaction onset

temperatures and peak rate temperatures, which, from the literature, have been sum-

marised in Table 2.2. The SEI reaction begins to release heat at 50–120°C with maxi-

mum heat release at 253–300°C [84, 166]. A carbon/graphite anode has a heat release

onset temperature between 80–160°C and exhibits peak self-heating between 200–350°C

[81, 153, 166–168]. LFP cathodes at 100% SOC have a heat release onset temperature

between 180–250°C and exhibit peak heating between 210–360°C [115, 119, 126, 164, 169].

Takahashi et al. [126] also show that the fully discharged LFP cathode presents no self-

heating up to 400°C. ARC tests on LFP cathodes in electrolyte show two exotherms [170].

The first is thought to be due to the decomposition of the salt (Lithium hexafluorophos-

phate, LiPF6) additive in the electrolyte decomposing on the surface of the electrode,

before the second reaction that is the decomposition of the LFP cathode itself. At high

temperatures (>250°C), the electrolyte can ignite in the presence of oxygen releasing large

amounts of heat [71]. Hence, for the solvent reaction to occur, decomposition of the LFP

cathode is required (assuming that the cell is intact such that no oxygen can enter from the

environment into the cell) [170]. The most significant reactions during TR are the strongly
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Table 2.2: Key Temperatures relating to decomposition reactions.

Reaction
Self-heating onset
temperature (°C)

Temperature at
peak temperature

rate (°C)
Reference

SEI 50–120 253–300 [84, 166]
NE 80–160 200–350 [81, 153, 166–168]
PE 180–250 210–360 [115, 119, 126, 164, 169]
Electrolyte >250 - [71]

exothermic combustion of carbonous material and Li oxidation, which are affected by the

amount of available O2 and intercalated Li in the anode (both greater at increased SOC),

respectively [65]. This data, and that in Fig. 2.4, can be used to infer the process of TR

in cells abused by ARC and oven tests.

Work by Jiang and Dahn [115] states that the addition of electrode binder to the LFP

cathode prolongs the LFP reaction (not in electrolyte) over a larger temperature range.

Specifically, the LFP reaction initiates at 300°C and ends at 320°C when binder is not

considered, with the binder the reaction ends at 350°C. Jiang and Dahn [115] also shows

the LFP reaction occurs at a much lower temperature in electrolyte. In electrolytes of

LiPF6 ethylene-carbonate/diethyl-carbonate (EC/DEC) and lithium bis(oxalato)borate

(LiBOB) EC/DEC, the reaction starts at 190°C and 240°C, respectively, while ending at

240°C and 285°C, respectively.

The interactions between cell components are shown to be important when studying

individual reactions. Through ARC experiments, Jiang and Dahn [115], showed that the

onset of self-sustained exothermic reactions occurred at 150°C, 220°C and 310°C for LCO,

NMC and LFP respectively when in solvents. However, when in solvents with LiFP6 salts,

their onset temperatures became 220°C, 190°C and 180°C for the same chemistries. This

shows that the addition of lithium salts suppress the onset of LiCoO2 reaction while aiding

the others.

Previous calorimetry experiments have quantified the severity of TR in 18650 LFP

cells at 100% SOC. The onset of self-heating was determined to be ~90°C [171], while

the TR onset temperature was determined to be 200°C [122, 156]. Further, it has been

shown that the maximum temperature and temperature rate were between 240–259°C and

3–5.36°C/min, respectively [122, 156, 171]. Heats of reaction were calculated to be 184 J/g

[171] and 31.06 J/g [117]. The large discrepancy may be due to the different experimental

methods used, i.e ARC by [171] and VSP2 by [117]. In larger 26650 cylindrical LFP cells

of 3 Ah capacity the maximum rates reached were on the order of 100°C/min [172].

By comparison, Lei et al. [171] showed that, at 100% SOC, LMO and NMC cells have

reaction rates 3-4 orders of magnitude larger, maximum temperatures 2-3 times larger

and heats of reaction an order of magnitude greater than LFP cells. Figure 2.5 shows
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a typical temperature rate vs. temperature plot for cells subject to ARC. From which

Lei et al. [171] show the significant reduction in overall severity of TR for LFP cells

compared to LMO and NMC cells. Further ARC experiments by Lu et al. [117] compared

the safety of LFP over LCO through testing of 18650 type cells. A fully charged LFP

cell (3.6 V) had an onset temperature just below 200°C, peak temperature of 243°C, a

maximum temperature rate of 5.39°C/min and reaction heat of 1.02 kJ. In contrast, a

fully charged LCO cell (4.2 V) had an onset temperature of 130°C, peak temperature of

370°C, a maximum temperature rate of over 56 000°C/min and reaction heat of 7.85 kJ.

Thus, showing the increased stability of LFP up to higher temperatures, less temperature

rise at thermal runaway and increased safety as maximum heating rate is four orders of

magnitude slower than for LCO.

Golubkov et al. [114] compared three 18650 cells (LCO/NMC 2.65 Ah, NMC 1.5 Ah and

LFP 1.1 Ah) under adiabatic-like conditions with constant heating rates applied. Onset

temperatures were respectively 149°C, 168°C and 195°C and peak temperatures of 853°C,

678°C and 404°C were observed. Comparison of the ARC [171] and constant power [114]

methods shows that the detection of TR is later and the maximum temperature reached is

higher in the constant power method. The higher temperature reached is thought to be due

to the more rapid heating of the cell in the constant power method, hence decomposition

and heating occur over a shorter time frame.

Liu et al. [116] investigated the heat release of 18650 Li-ion cells using copper slug bat-

tery calorimetry. They found LCO, NMC and LFP generated a maximum total heat when

fully charged of 14.37 J/mAh (37.37 kJ/cell), 15.11 J/mAh (34.0 kJ/cell) and 9.13 J/mAh

(13.7 kJ/cell) respectively. Under fire calorimetry, Chen et al. [173] showed LFP cells pose

a lower explosion risk than LCO, with the latter releasing much more oxygen. The calcu-

lated released oxygen of fully charged LCO 18650 cell is 3.25 g which is much larger than

LFP 18650 cell, releasing 0.5 g.

The process by which TR occurs, which is informative for developing accurate TR

models so that reactions are simulated in the correct order and with the appropriate

magnitude of heat relative to each other, has been described in little detail with regards

to LFP cells. Ben Mayza et al. [153] propose the series of decomposition reactions that

occur throughout TR in fully charged (4 V) 18650 LFP cells under ARC. Ben Mayza et al.

[153] state that the first exotherm occurs at 90°C and lasts until 130°C and is due to the

SEI decomposition. Then, at 150°C, a second exotherm is reported while at 245°C the

cathode begins to decompose. Finally, a third exotherm at >260°C is attributed to oxygen

reacting with the organic solvents. The cell reached a maximum heating rate of 6°C/min

at approximately 285°C, corresponding to the electrolyte reaction taking place. Kvasha

et al. [88] also suggest the decomposition sequence to be initiated by the SEI reaction,

provoking the negative electrode reaction and leading to separator melting, followed by

severe negative and positive electrode reactions with the electrolyte, where overall cell TR

35



CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Typical results of an ARC test, shown are the plots of three commercial 18650 cells of different
chemistries (reproduced from [171]).

is due to the negative electrode reaction. Even though separator melting occurs, TR is

not caused by shorting of the cell due to the stability of the LFP cathode [174].

The effect of SOC on self-heating characteristics of cells has been thoroughly studied

in relation to metal oxide based cathodes [118, 154, 155], but less so in LFP cells, with

little discussion of the self-heating process at different SOC. Cells at a lower SOC are more

stable and safer than their fully charged counterparts. Cells at a lower SOC go into TR at

a higher temperature, reach a lower peak temperature, lose less mass, have lower pressure

and temperature rates, and have a lower heat of reaction [116, 152, 154, 155]. Ishikawa

et al. [154] and Mendoza-Hernandez et al. [155] have shown from ARC experiments, for

LCO and LMO cells, that the temperature region in which non-self-heating occurs reduces

with increased SOC, while the temperature region that self-heating and TR occur increases

with SOC. They also showed that, depending on SOC and chemistry, a cell can go into

multiple self-heating and non-self-heating (i.e. heating by the ARC) regions before self-

heating is sustained or TR is triggered. They also showed that TR is not triggered below

22% SOC for LCO cells or 50% SOC for LMO.

With regards to LFP cells, Lu et al. [117] showed that, at 3.3 V compared to 3.6 V,

the 18650 LFP cell (with no capacity stated) had: little change in onset temperature; a

10% reduction in absolute maximum temperature; 75% and 65% reduction in the maxi-

mum temperature rate and pressure rate respectively; and overall 54% reduction in heat

of reaction. An overcharged LFP cell showed little change in the onset and maximum

temperatures compared to a fully charged cell, while contrary to expectations there was

a 45% reduction in maximum temperature rate for the overcharged cell compared to the
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fully charged cell [122]. More specifically, 18650 1.1 Ah LFP cells at 100%, 75%, 50% and

0% SOC have been shown to have maximum temperature rates of 4.5°C/min, 0.7°C/min,

0.3°C/min and 0.4°C/min respectively, while presenting onset temperatures of 106°C at

0%, and 101°C at all other SOC [174]. Similar trends are seen in work by Kvasha et al.

[88], however the onset temperature at 0% was recorded to be 218°C. TR, defined as

rates above 1°C/min, is only seen in 18650 LFP cells at 100% SOC [88, 174], occurring

at approximately 200–250°C and lasting until ~300°C. For larger 26650 cells, TR occurs

at lower temperatures, approximately 175°C at 100% SOC, and at 190°C for 50% SOC

[172]. This may be due to the lower surface-to-volume ratio of the larger 26650 cylindrical

cells, leading to less effective heat loss, hence greater average internal temperature and

therefore reaction rates, as shown in computational studies [99, 175].

The SOC TR dependence is discussed by [88]: for the carbon anode, as (cell) SOC

increase there is a slight decrease ins onset temperature of the negative electrode-electrolyte

reaction. But more significantly there is a large increase in its enthalpy from 230 J/g at

0% SOC to 1246 J/g at 100% SOC, while the main exothermic peak remains in the range

of 296–307°C. However, for the LFP cathode, a (cell) SOC increase from 0% to 100% SOC

leads to a 20°C reduction in onset temperature, while there is only a relatively modest

increase in enthalpy from 114 J/g to 337 J/g over the same SOC values. Most of the

increase in reaction heat occurs over the range of 0–50% SOC, where the total increases

by 2.4 times, while over the 50–100% SOC it only grows by an additional 1.2 times.

Overall, at 0% the main contributors to heat are the electrolyte and negative electrode

reactions; at 50% and 100% it is the negative electrode that is the main contributor.

The reduction in onset temperature at lower SOC of Li-ion cells is due to the influence

of lithiation on the thermal stability of the electroactive materials within a cell [155]. In

the case of LFP cells, it has been shown that a lithiated (graphite) anode is more reactive

than a delithiated (LFP) cathode [122, 153], i.e. in a fully charged LFP cell the anode

may provide more heat during TR than the LFP cathode.

During ARC experiments it is common to see a drop in the temperature profile, which

literature attributes to the heat of vaporisation as electrolyte and gases are vented [154,

155]. Ishikawa et al. [154] also showed that venting occurs at lower temperatures for

higher SOC. While Chen et al. [173] showed that, under fire calorimetry, the time to

venting shortened as SOC increased. Further, under constant power calorimetry, multiple

venting occurrences have been seen [114]. One prior to rapid TR and one at the start of

rapid TR, where gas was released over a 30 s period for LFP compared to <1 s for the

other two chemistries, due to the slower decomposition of the LFP cell.
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2.1.2 Oven Exposure

As stated previously, a convection oven experiment is a fundamental test which allows us

to study the response of a cell when rapidly exposed to high temperatures. A battery may

experience high temperatures due to extreme environmental conditions, improper thermal

management or the failure of a neighbouring cell by other means. For these reasons, an

oven experiment provides a more realistic scenario than ARC, with the severity of TR due

to oven heating complimentary to ARC data.

Oven tests on cylindrical Li-metal-oxide cells, in which the cell is placed in an oven

and heated to the desired temperature, show that ovens at higher temperatures cause TR

more quickly and result in higher cell temperatures during TR [176]. This behaviour is also

shown by Hatchard et al. [146] (where cylindrical 18650 cells are lowered into a preheated

oven) in the investigation of LCO cells, and by Jiang et al. [177] in the investigation of

the effect of electrolyte composition on TR stability and severity in LCO cells. Tobishima

and Yamaki [176] also show that a relatively small increase in oven temperature can mean

the difference between no TR and TR, e.g. an oven temperature of 150°C can lead to

negligible temperature rise, whereas at 155°C there is rapid and extreme heating.

Under forced convection oven tests, Larsson and Mellander [165] subjected LFP pouch

cells (7 Ah and 45 Ah) to a stepped temperature rise. This was so that the onset of TR

could be detected. The lower capacity cell went into TR at a temperature of ~210°C, and

reached a maximum temperature <250°C. Comparatively, the higher capacity cell had

an onset and maximum temperature of ~183°C and ~350°C. The energy released during

TR was approximately 10–30% of the stored energy. Further work by Larsson et al. [178]

on a LCO 18650 cell under external heating showed a small reduction in cell temperature

coinciding with the voltage drop due to the melting of the separator.

The method of thermal abuse, ARC (conducting a heat-wait-seek test) compared with

thermal ramp heating (i.e. oven test), has been shown to affect the nature of the tem-

perature rate during the exotherm of TR. Thermal ramp heating leads to higher reaction

rates at lower temperatures for a given cell [171].

As with ARC, the onset of TR can be defined by the cell temperature rate. For thermal

abuse methods (e.g. oven test, constant temperature rate and constant power) there is

little literature covering the definition of thermal runaway onset. However, for a constant

temperature rate heating test, Duh et al. [179] defines TR onset to be 100°C/min. With

similar rapid heating occurring in oven tests, this definition can be applicable here. Hence,

in experimental and simulated oven exposure tests the TR of a cell is considered to occur

when the temperature rate is greater than 100°C/min.

An application of oven abuse experiments is shown by [146] and [148], in validating

computational simulations of LiCoO2 undergoing thermal runaway. However, a lack of
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oven test data for LFP cells presents an obstacle in validating similar computational work

on LFP cells [see, for example, ref. 38], and hence shows the necessity and practicality of

this work.

2.2 Modelling Thermal Runway

Thermal runaway modelling is a complex problem to define due to the composite nature

of a Li-ion cell, as described in Section 1.2.1, resulting in many parameters that need to

be defined. Further, these parameters can be difficult to determine, especially for the

late stages of TR where physical properties will change and unknown reaction products

will be formed which can react with unknown kinetics [180]. However, there are two

methods from which thermal abuse models can be developed, 1) by calorimetry, or 2) by

a chemical reaction approach [79]. The calorimetry approach requires measuring thermo-

physical properties of the cells components, along with calculated kinetic properties, from

ARC or DSC experiments [79], to characterize reaction rate equations. This approach

has the advantage that model parameters are relatively easy to quantify compared to the

chemical reaction approach, which relies on the identification of all significant reactions

and understanding how these decompose to form products.

Following the work by Dahn’s group on developing a thermal abuse model for a carbon

anode [81, 181], which was further extended to model the thermal abuse of a Li-ion cell

by including a cathode reaction [146, 182], and finally the inclusion of the electrolyte

decomposition reaction by Spotnitz and Franklin [78], the calorimetry approach of thermal

abuse modelling has become the standard method within this field.

Within this, the reaction rate of a cell or its components is governed by Arrhenius type

equation(s), in a form similar to that of Eq. (2.1):

dCx
dt

= −Ae
(−EaRT )

Cix (2.1)

which are characterised by the activation energy (Ea), frequency factor (A) and reaction

order (i), for species Cx [80]. In turn, the heating rate can be directly calculated as a

function of the reaction rate(s).

The reaction kinetics, of any component of a Li-ion cell, are defined by a “kinetic

triplet” [183]. These are the reaction model, activation energy and frequency factor. Mac-

Neil and Dahn [183] state that the reaction model can take several forms when describing

the thermal decomposition of solids. The majority of the literature determines the param-

eters for the reaction kinetics by numerical analysis of thermal abuse experiments, namely

ARC and DSC, on full cells and/or their components [79]. Determining reaction kinetics

by regressing [81, 134, 181] the model to experimental DSC data can be done relatively
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easily. Recent work has used inverse modelling to determine the reaction kinetics of Li-ion

cells [180].

Given a reaction model, inverse modelling of Ea and A will result in a reasonable fit.

The choice of model can affect the determined optimised activation energy and frequency

factor, by a factor of 4 and several orders of magnitude respectively, with little change in

residual of fit [183]. For example, Richard and Dahn [81] show that for the NE reaction,

although the values for the reaction kinetics are different dependent on the assumed Li+

transport process, the models predict an almost identical outcome.

However, the determined parameter values are dependent on the amount of experi-

mental data gathered, and, outside of the bounds of the experimental data the confidence

in the model is limited. This can limit the understanding of TR behaviour and reduce

the circumstances in which the model predictions are valid. This can be overcome some-

what by determining calorimetry data for cells at different DSC sweep rates [134, 183],

ARC started at different temperatures [80], different sample combinations [134] and other

considerations including various SOC, cells that are aged, or cells under charge/discharge

cycling [79]. With a wider set of experimental data the kinetic triplet can be determined

from parameters that lead to the smallest sum of residuals and refinement of parameter

selection. The use of ARC data (rather than DSC) has been shown to be more sensitive

to the selection of reaction model and hence limits the choice of reaction model, while the

low effective sweep rate provides a larger sweep range over which the exothermic reactions

can be analysed, leading to further improved confidence in parameter selection. Further,

MacNeil and Dahn [183] show that the kinetics triplets determined are reliable, however

are non-unique.

The use of various different sample combinations enables the identification of important

and unimportant reactions [134]. Reaction kinetics have also been defined as a function

of conversion of the decomposition reaction [184]. From this it is shown that, for an NMC

cathode in electrolyte, the change in activation energy and frequency factor increase as

the reaction proceeds, presumably because the cathode becomes more stable as it releases

oxygen. Further, temperature predictions are more sensitive to activation energy than

other reaction parameters [184]. Richard and Dahn [80] show that for a lower reaction

order the rate of reaction increases at a given temperature, while there is also an increase

in maximum temperature rate and temperature of maximum rate. Regarding the NE

reaction, Richard and Dahn [81] show that reaction parameters change with SOC [168].

Methods other than best-of-fit and trial-and-error have been utilised. Ping et al. [86]

uses a deconvolution method applied to C80 calorimetry data of various component and full

cell samples. TR of a sample representative of a full cell is shown, see Fig. 2.6 showing heat

flow vs. temperature, to be made up of 7 peaks corresponding to 7 reactions. Peaks a, b,

c, d, e, f and g are respectively attributed to the decomposition of the SEI layer, separator

melting, short-circuiting, disproportionation and decomposition of the cathode (LCO),
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Figure 2.6: Deconvolution method to determine reaction parameters. Top) initial and deconvoluted C80
curves of heat flow at 0.2°C/min scan rate for a full cell, Bottom) individual curves making up deconvoluted
curve. (Reproduced from [86]).

the reaction between intercalated lithium in the anode with the electrolyte, further LCO

decomposition and the reaction of the electrolyte solvent with oxygen along with binder

decomposition. However, while this method is successful at determining the contributions

of heat generation in a whole cell, it first requires a database of possible reactions.

Unlike other work, Liu et al. [180] determines the parameters for the reaction kinetics

by inverse modelling of the temperature vs. time profiles from Copper Slug Battery

Calorimetry (CSBC) tests on cells at different SOC. Liu et al. [180] use only one modified

Arrhenius expression to represent all the chemical processes occurring within a cell. For

which, a third order polynomial for each of the kinetic parameters was determined as a

function of SOC. Subsequent CSBC predictions were accurate, with no more than 5%

error.

From the work by Liu et al. [180], it can be seen that utilising one global governing

equation for the heat generated by the decomposition reactions allows for simpler determi-

nation of the kinetic parameters. Not only because there are less parameters to determine,

but also due to avoiding the complex and difficult to interpret interactions of the four clas-

sical Li-ion cell TR reactions. However, by not simulating the reactions individually, a

prediction of the TR sequence cannot be made and in turn determination of mitigation

strategies would be limited. Additionally, there is a lack of simulation of other abuse

conditions to enable the validation of estimated parameters.
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2.2.1 Model Dimensionality

TR reactions can be assumed to be either 1) homogeneous, where the bulk material can be

assumed to be of uniform temperature, or 2) heterogeneous, in which reactions propagate

rapidly or combustion and explosion occur [40, 185]. The choice of assumption implies

that homogeneous reactions can be modelled in 0D, while heterogeneous reactions have to

be modelled in at least 1D to capture spacial differences in the progression of the reaction.

Kim et al. [99] shows that 3D modelling is important for studying geometrical effects

on TR and for the study of non-uniform heat generation abuse scenarios, i.e. internal

shorts/ point heat sources. However, 18650 cells under uniform heating can be accurately

represented by a 1D radial model [99, 146].

1D radial models are adequate because, as Chen et al. [27] shows, the heat transfer

is most important in the radial direction (because the thermal gradients are greater in

the radial direction than the axial direction), while in the spiral direction heat transfer is

minimal. This is because the effective thermal conductivity of the spiral is low, due to

the many windings of an 18650 cell [27, 186]. Further, Shi et al. [186] also show that the

thermal contact resistance between jelly roll layers has an effect on predicted temperatures.

This additional thermal resistance can lead to greater radial temperature gradients, while

the effective thermal conductivity of a cell increases with increased winding tension (of

the jelly roll), as this reduces thermal contact resistance.

Although the Biot number of cylindrical cells is low enough to be valid for a 0D

assumption, 0D models predict TR poorly and are greatly affected by the surface area-

to-volume ratio of the cell [99]. Hatchard et al. [146] shows that a 0D model closely

agrees with the results of a 2D planar model. However, the lumped method predicts safer

operation up to slightly higher temperatures.

To reduce computational cost in a non-0D model, the small structure of the thin

jelly roll electrode, current collector and separator layers can be modelled by a single

continuous material with non-isotropic properties [99, 132]. Further, in 3D models of

a cell, the spatially average temperature of the cell can be lumped to be implemented

into coupled 0D reaction model. Coman et al. [143] shows this leads to less than 3%

change in the results of a 18650 cell, comparing a fully 3D model (of heat transfer and

decomposition reactions) to a model using the 3D heat transfer coupled with the 0D

reaction model. However, this is only if the cell exhibits uniform heat loss coefficients on

all sides, otherwise a volumetric heat source is not appropriate, i.e. the 0D model or the

use of the volume averaged temperature in 3D. Further, if heat loss is uniform the results

confirm that this relatively simple model for short-circuiting, which reduces computation

time and complexity, still provides informative results about temperature.
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2.2.2 TR Evolution

Modelling has shown the overlapping nature of reactions and the ability to predict the

sequence of reactions, along with determining the significance of each reaction to overall

heat generation. For example, the onset of reactions for LiCoO2 cells are predicted to

occur in the order of SEI, NE, PE, then the electrolyte [99, 146].

The self-heating and TR process under oven exposure is summarised for LCO cells

[99, 146, 148, 187]: the self-heating process is found to proceed slowly at first. The NE

reaction is relatively slow compared to the SEI reaction due to its dependence on the SEI

layer thickness term. TR is initiated by the rapid positive solvent reaction, which in turn

leads to a high rate negative solvent reaction occurring simultaneously and the occurrence

of the electrolyte reaction.

For LCO cells, where TR occurred due to relatively high oven temperatures, most of

the heat generated is due to the positive reaction [187]. Further the NE and electrolyte

reactions are much more severe at higher oven temperatures than in the lower temperature

case. Oven simulations at 175°C indicated that for LiNizCo1-zO2 cells the negative solvent

and positive solvent reactions play the most crucial role in initiating TR, while for LiMn2O4

cells the solvent (electrolyte) reaction is more significant [78]. Peng et al. [187] note

that increasing the stability or lowering the severity of the positive reaction would vastly

increase the overall safety of the cell. Further, Lopez et al. [148] show that the inclusion

of electrolyte decomposition reaction is necessary for an accurate simulation of a 18650

cylindrical (LiCoO2) cell under a constant power oven test, while combustion source terms

must be included to accurately simulate a cell that ignites upon thermal runaway. The

negative-binder reaction, while having a high heat of reaction, has been shown to be

insignificant due to the low volume fraction of binder in a cell [78].

Comparatively, at lower oven temperatures for LCO cells a similar reaction sequence

occurs, i.e. SEI, NE and then PE, while the electrolyte reaction does not occur [187].

Compared to higher oven temperature exposure the SEI reaction progresses at a similar

rate, while the NE and PE reactions are much slower. As such, the heating rates were

relatively low, and so the heat from decomposition could be readily dissipated to the

surroundings and TR did not occur [99]. Under these circumstances, most of the heat

generated is due to the SEI and NE reactions [187].

The reaction evolution for LFP cells is less clearly defined. Kupper et al. [188] show

the heating from the SEI reaction is not enough to lead to TR. Peng and Jiang [38] show

that, for oven simulations at 275°C, reactions occur in the order of SEI, NE, electrolyte

and, much later, PE. However, this model lacks validation, and the temperature profiles

of TR do not resemble the general shape of TR of cells under oven abuse. In studying

the effect of separator melt-down temperature on TR, Wang et al. [128] show that the PE

reaction occurs before the electrolyte, which is predicted to occur before the NE reaction.
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Wang et al. [128] state that TR is caused by both of the electrode decomposition reactions

(when separator melting is above 220°C; for melting temperatures below this, it is Joule

heating from short circuit that leads to TR), while Peng and Jiang [38] show that the

peak cell temperature coincides with the PE reaction.

Higher C-rates are shown lead to TR to occur sooner and reach higher temperatures

due to the higher electrochemical (EC) heat generation rates [189]. Ping et al. [189] work

shows the effect the electrochemical heat has on the TR onset and hence the importance

of accounting for it. Dong et al. [190] find that overcharging is a greater risk to TR, rather

than high discharge rates, for NMC 1.5 Ah 18650 cells. However, in both Refs. [189, 190]

there is no link to SOC and kinetic parameters.

The lack of accounting for internal short circuits has been cited as a cause of discrep-

ancies in TR modelling [134]. The difference in TR behaviour due to different short-circuit

scenarios has been modelled by Spotnitz and Franklin [78] and Zavalis et al. [191] utilis-

ing electrochemical governing equations. Coman et al. [143] accounted for short circuit

through an additional Arrhenius equation for the heating due to electrical discharge of

the short as a function of SOC. Kim et al. [99] use a 3D model to simulate an internal

short of a cylindrical cell, by releasing 15% of the batteries stored energy into a volume

equal to 0.5% of the total jellyroll at a point half-way along the radius of the cell. This

showed several stages of sudden increases in self-heating rate, and also how the reaction

front and temperature profile radiated out over time from the site of the internal short.

Propagation through the cell, depicted in Fig. 2.7, can be explained as follows:

1. Initial reaction propagation extends along the axial and azimuthal (winding) direc-

tions, to form a hollow cylindrical reaction zone around the mandrel.

2. As the centre is hottest, reactions begin here and propagate axially to colder regions

where reactants still remain.

3. As the cell is continually heated by decomposition reactions, the container is heated

from bottom to top as the centre of the jelly roll (the hottest point) is connected to

the can bottom.

Zhang et al. [192] find that the energy released by an internal short circuit has to be great

enough to initiate critical reactions, i.e. PE reaction in LCO cells, to cause cell TR.

2.2.3 Heat Transfer Considerations

A high (combined radiation/convection) heat transfer coefficient allows the cell to heat

up quicker, but also dissipate heat better, and hence withstand higher oven temperatures

before TR occurs [187]. In general, for a higher heat transfer coefficient, when TR does
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Figure 2.7: Simulated propagation front of the SEI decomposition reaction due to self-heating initiated
by a local hot spot (each frame is 4 s apart). (Reproduced from [99]).

occur for a given oven temperature it is less severe but occurs sooner [148]. Further,

an increase in convection coefficient allows higher exposure temperature without cell TR.

Temperature predictions are affected little by changes in the cell conduction coefficient

value, while temperatures are sensitive to changes in heat capacity [193].

Radiation from the cell surface has been shown to be important [27, 146], where under

normal conditions during discharge, radiative heat transfer is 150% of that by natural

convection [194]. A parameter sweep of emissivity values shows that for lower values of

ε the cell is less effective at radiating/ absorbing heat, and in turn takes longer to warm,

but importantly is more likely to go into TR sooner and more severely [146].

Under external heating, time to TR increases with reduced environmental temperature

[82]. Surface-to-volume ratio is important in the TR process of Li-ion cells. A larger heat

exchange area to cell volume leads to TR being initiated at lower oven temperatures and in

a quicker time frame, if TR occurs at all [99, 175]. Although, a smaller heat exchange area

to cell volume leads to a cell being heated more slowly from external heat sources, once

self-heating is initiated, it means that the cell is less efficient at dissipating the internal

heat. Hence, a greater accumulation of heat occurs, leading to a greater temperature rise

and reactions proceeding faster.

For a fixed environmental temperature (or a fixed convection coefficient) there exists a

critical convection coefficient (or environmental temperature) value, where at an infinite

time the mean cell temperature remains below a critical value to avoid TR [82]. For exam-

ple, for LCO cells the critical cell temperature was predicted to be 137°C [82]. For 18650

NMC/LTO cell, a critical ambient temperature of 162°C is predicted for a convective heat

transfer coefficient of 20 W/m2 K [195]. To determine the critical ambient temperature,
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Figure 2.8: Colour plot of Tcritical for surface heat transfer coefficient, h, and radial conductivity coef-
ficient, k, based on heat generation following the reaction model of Ref. [146]. Curves of three different
critical temperatures are shown. (Reproduced from [196]).

Huang et al. [195] used non-dimensional Semenov and Thomas models which are shown

to predict TR occurrence accurately when compared to typical oven model simulations.

Esho et al. [196] also calculates a theoretical critical temperature, i.e. the maximum

allowable internal temperature, a cell can reach before TR is initiated by utilising the

Thermal Runway Number (TRN) [197]. The TRN is a non-dimensional quantity, taking

account of the whole heat transfer problem, where TR is said to occur when TRN >

1. Using this method, Esho et al. [196] show that small changes in allowable critical

temperature (i.e. 125°C, 135°C and 145°C) can greatly affect the relationship between

h and k that prevent TR, as shown in Fig. 2.8. For Tcritical =125°C, a value of h =

20 W/m2 K or higher can prevent TR for all values of k in the range of 0.2–1 W/m K.

However, at Tcritical =145°C, there is a lower limit of k below which the critical temperature

cannot be prevented for any value of h between 0–500 W/m2 K. Above this lower limit of

k, there is an exponential decay of the required value of h as k increases.

Further non-dimensional analysis has been used by Cabrera-Castillo et al. [198] to

define a quantity known as “State of Safety” (SOS). SOS values of 1 (safe) to 0 (completely

unsafe), take account of temperature, voltage, current, SOC, state of health, impedance,

mechanical deformation and variable derivatives. They show, as presented in Fig. 2.9, the

SOS decreases more rapidly with voltage than temperature. Further, this method can be

used in real time to indicate SOS during operation.

Stating the safety of the cell at a given instant from the stand-alone knowledge of a

cell’s surface temperature is not possible, as the difference between the cell surface and
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Figure 2.9: Surface plot of SOS for LFP 18650 cell considering voltage and temperature (Reproduced
from [198] with added annotations).

the maximum cell temperature can be large and dependent on abuse scenario [27, 193].

The hottest temperatures of a cylindrical cell are at a point near the mandrel but not

in the exact cell centre, due to the lack of heat generation from decomposition in the

mandrel [27]. When a cell is heated slowly, the difference in surface and core temperature

is minimal until the onset of decomposition reactions. However, under flash heating in an

oven the core is cooler than the surface while heat conducts through the cell [193].

2.2.3.1 Computational Thermal Abuse Studies of LiFePO4 Cells

Modelling of LFP cells is limited [for example 38, 128, 132, 188] and where it has been

carried out, it is generally not validated, or is inaccurate when compared to experimental

data.

Guo et al. [132] developed a 3D model of high capacity (55 Ah) prismatic LFP cell

to analyse the response under oven abuse. In comparison to experimental data at an

oven temperature of 155°C their model is inaccurate, over predicting the time to TR and

greatly over predicting the severity. Hence, determination of cell safety with this model

is limited. A lack of description of the decomposition model leads to an inability to

determine the reasons for the inaccuracies. Guo et al. [132] state that inaccuracies are due

to not including venting of gases and the resulting effect of Joule-Thomson cooling in the

model. This is unlikely, as inclusion of this would further delay the onset of TR leading

to a greater discrepancy between the experimental and simulation. However, the validity

of these findings is somewhat questionable as both the experimental data and modelling

data suggests TR will occur at oven temperature as low as 155°C, whereas under adiabatic

conditions LFP cells are stable at temperatures of 195°C or more [114, 117].
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Wang et al. [128] used a 2D coupled electrochemical-thermal model with abuse re-

actions modelled using typical Arrhenius relations to investigate the effects of separator

melting temperature on TR. At melting temperatures above 200°C the major cause of

TR is heating from decomposition reactions, as self-heating decomposition reactions are

already occurring at high rates, below this temperature heat from short-circuiting is more

significant. The simulations show that for separators at higher meltdown temperatures

TR is delayed, i.e. thermal stability is increased. However, the maximum cell tempera-

ture due to TR, i.e. cell severity, is increased. While the findings by Wang et al. [128]

provide informative qualitative data about the importance of cell melting temperature on

the effect of TR, the lack of validation of their model means that the quantitative data

on cell safety is questionable, while also it cannot be said how appropriate their reaction

kinetics are.

Peng and Jiang [38] completed a comparative study of the safety of different LIB

chemistries in a simulated oven test. They kept all parameters the same besides the kinetic

parameters of the positive electrode reaction according to the chemistry in question. Their

results quantitatively agree with that of experimental data on the stability and severity

of different cathode chemistries. Having no experimental data to validate their simulation

results for LFP, NMC and LCO/NMC, they claim their results are qualitatively similar

to the findings of Golubkov et al. [114]. However, the results from [38] are not comparable

to the experimental results of [114] as the experimental procedure of [114] heats the cell

at constant rate and power, so is not representative of heating at constant temperature

as in the oven test of [38]. Their results for LCO are qualitatively similar to that of

the literature i.e. Hatchard et al. [146], however there are discrepancies in critical oven

temperature and peak temperatures.

Kupper et al. [188] uses physico-chemical modelling to, in part, study the multi-stage

SEI reaction in LFP cells. The SEI reaction is seen to have 2 peaks: the first peak is due

to the formation of secondary species due to decomposition primary species, up to 120°C;

the second peak (above this temperature) is due to the sequential formation of primary

species (consuming electrolyte) and secondary species at equal rates, leading to a quasi-

steady-state reaction. They show a single set of parameters can appropriately simulate

multiple scenarios (ARC, DSC and internal short), and that initial self-heating due to the

SEI reactions is not enough for TR, however they do not consider other decomposition

reactions.

2.2.4 Modelling Li-ion Cell Venting

It is commonly stated that the time to TR is not predicted well due to the lack of mod-

elling of venting, which leads to the cell cooling through the Joule-Thompson effect [146].

Further, the overestimate of simulated temperature rise is attributed to the same effect, as
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venting will additionally transfer heat away from the cell [132, 148]. Hence, by not taking

account of endothermic contributions during parameter fitting of reaction kinetics there

is a loss of information about the reactions [143]. The difficulty arises in modelling the

venting process, as it is a complex phenomenon involving the boiling and evaporation of

electrolyte, expansion of pressurised gases and vapours on venting, and the mass transport

of ejecta from the cell.

With regard to Li-ion cells specifically, little work has been carried out to model the

venting of fluids through an orifice, which can be used to describe cell venting during the

TR process. Only the works by Coman et al. [143, 199] are known to the author in which

modelling of Li-ion cell venting is defined from first principles.

In the earliest work, Coman et al. [143] developed a lumped model of cell venting,

considering heat generation from the four typical exothermic decomposition reactions,

as well as heat loss by venting of electrolyte vapour, electrolyte boiling and solid mass

ejecta. Through modelling of the thermal response of a cell under constant temperature

rate oven exposure, it was shown that the time to TR is more accurately predicted with

the inclusion of venting phenomena, as TR is delayed due to the time required for the

cell to recover to its pre-venting temperature. The simulations predict that at the point

in time when the internal pressure reaches the critical venting pressure, then the vapour

present in the cell is instantaneously ejected. The loss of thermal energy from the cell by

electrolyte boiling, mass ejecta and gas venting are estimated to be 1.7 kJ, 3.2 kJ and 4.1 kJ,

respectively. The simulated temperature profile of venting is more rapid and extreme than

the experimental data they compare it to. The magnitude of the temperature drop may

be due the lumped model approximation overpredicting the volume averaged heat loss or

due to the assumed model parameters, such as the mass of electrolyte, mass of ejecta and

enthalpy of vaporisation. The overly rapid temperature drop, due to the instantaneous

release of vapour, may be the cause of assuming a burst condition in which the vent

opening is considered to be ideal and achieve full vent opening area instantaneously; in

reality this may not always occur.

The assumptions made about the ejected vapour are significant. They do not consider

the gas generation by the other (SEI, PE and NE) decomposition reactions. As discussed

in Section 2.1.1.1, it is well-known for reactions to occur at temperatures below 100°C, and

generate gases that can be considered significant contributors to the pressure build up and

gas venting, which would significantly reduce the time at which they predict venting. The

work by Coman et al. [143] is extended by Coman et al. [199]. Here, the electrolyte is more

accurately modelled, defined by its major component the DMC solvent. The internal cell

pressure is the sum of the saturation pressure of the electrolyte vapour and the pressure of

the gas, while electrolyte boiling and ejecta are ignored. Gas generation is approximated

by simulating the decomposition of the SEI layer, from which the reaction rate is used

to govern the evolution of CO2. The maximum mass of gas is estimated by fitting the
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venting pressure limit to be exceeded at the same temperature as in the experimental

data. The simulated pressure profile predicts the experimental data well. The exponential

decomposition of the SEI leads to exponential gas generation and an accurate prediction

of the exponential pressure increase. These results show that approximating the gases

present (related to each reaction) by the most abundant gas (relative to each reaction)

may be an acceptable simplification for accurate predictions.

The work by Coman et al. [143] shows that, while the physical description of venting

is not ideal, its inclusion improves predictions of time to TR significantly. Through the

developments by Coman et al. [199], an accurate prediction of pressure and temperature is

made up to the point of venting. However, from their work it is clear that for a complete

TR model, to predict temperature and pressure profiles beyond the point of venting,

the inclusion of the four decomposition heat generation terms (SEI, NE, PE electrolyte),

linking their reaction rates to gas generation, is required. Further, calculating the pressure

of a multiphase, multi component fluid is more commonly done under the bubble point

assumption [200], rather than by summation of liquid saturation pressure and gas pressure,

as in [199]. Hence, determining if the bubble point assumption is valid for the electrolyte-

gas composition in a cell under TR is of interest.

The work by Coman et al. [143] has been utilised by Wang et al. [201], while Ostanek

et al. [202] extends the work by Coman et al. [143, 199]. Ostanek et al. [202] separates

out the species equation for the change in mass of DMC, such that there are individual

governing equations for the vapour and liquid phases. When the vent is closed vapour-

liquid-equilibrium is assumed, but when the vent is open, the evaporation of liquid DMC

to vapour is assumed to occur through a convection drying process. As in Ref. [143, 199],

Ostanek et al. [202] calculates the cell pressure from the partial pressures of the DMC

and generated gases. However, Ostanek et al. [202] includes a compressibility factor for

the partial pressure of the DMC vapour. Further, Ostanek et al. [202] considers the gas

generated by each reaction, where the amount of gas is approximated proportionately

from the heat generated by each reaction. Ostanek et al. [202] also assumes CO2, H2,

CO, C2H4, CH4 are present and the mixture is consistent throughout the simulation to be

that measured from post-failure experiments. Fluid properties were calculated from the

CoolProp database [203].

Ostanek et al. [202], studying 18650 NMC cells, shows similar pressure behaviour

predictions up to the point of cell venting (with vent pressure limit of 2158 kPa) as in

[199]. However, Ostanek et al. [202] also predict a second pressure peak of 482 kPa,

coinciding with the main TR event, due to the constrictions of the vent opening area.

They also predict the total mass loss (including solids) and total moles ejected accurately.

This they use as validation of the approximation of vent gas production proportional to

heat production rates. They state that the electrolyte reaction is the main cause in gas

production. It was shown that by increasing the evaporation rate constants (which could
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be achieved through cell design or electrolyte formulation in practice) TR can be postponed

and the severity reduced. Greater rates lead to quicker electrolyte loss after the vents open.

Hence, more electrolyte is lost sooner, and at lower temperatures, so less is available for

decomposition and heat generation. As such, not only does the electrolyte reaction produce

less heat, but higher temperature reactions are suppressed as temperatures are not reached

for their initiation.

Other work, by Cai et al. [204], has calculated the internal pressure of a pouch cell by

using the ideal gas law and the number of moles of CO2 produced from SEI decomposition.

The number of moles of CO2 is assumed to be equal to the number of moles of the SEI

consumed, which itself is calculated from the change in SEI species. No comparison is

made with experimental internal cell pressure, but the instance of pressure rise is predicted

accurately when compared to the increase in strain of the cell surface (used as a proxy for

pressure) due to gas generation. However, the increase in pressure is instantaneous when

compared to the exponential increase in strain.

The effect of DMC (electrolyte solvent) deposition, from vent gas, onto cells has been

investigated by Srinivasan et al. [205] as a fluid dynamics problem. However, the governing

pressure to drive the gas flow along a channel are determined from experimental measure-

ments. The explosion hazards of different cell vent gas compositions from experimental

findings have been investigated by Baird et al. [206]. Using Cantera (a chemical kinetics

program for gas transport and molecular properties) Baird et al. [206] calculate the lower

flammability limit, laminar flame speed and overpressures of vent gas mixtures. Compared

to experimental data their predictions agree well. They show LFP cells are safer due to

lower flame speeds and maximum over pressure and due to greater lower flammability

limits. This work is useful for vent sizing for battery packs.

2.2.4.1 Gas Generation

To aid the understanding of the sources of the gases, the chemical composition of the

common components of Li-ion cells is first presented. For an LFP cell the anode is most

commonly made of graphite (LiC6), while the cathode is LFP (LiFePO4). The organic sol-

vents commonly used in electrolytes in Li-ion cells are dimethyl carbonate (DMC), ethylene

carbonate (EC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and propylene

carbonate (PC) [91]. The molecular formula, along with the flash point and boiling point,

for these solvents are presented in Table 2.3. Common electrolyte salts include: lithium

hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4), lithium hexafluoroarsenate

monohydrate (LiAsF6), and lithium tetrefluoroborate (LiBF4) [91].

The SEI layer is formed of both stable inorganic compounds, such as lithium fluoride

(LiF) and lithium carbonate (Li2CO3), and metastable organic compounds, such as lithium

alkyl carbonate (ROCO2Li), dilithium ethylene glycol dicarbonate ((CH2OCO2Li)2) and
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Table 2.3: Summary of common electrolyte solvents.

Solvent Molecular Formula Flash Point (°C) Boiling Point (°C)

EC [207] C3H4O3 146 248
DMC [207] C3H6O3 18 91
EMC [207] C4H8O3 23 110
DEC [208] C5H10O3 445 126
PC [208] C4H6O3 445 242

lithium n-butoxide (ROLi) [209–212]. During the SEI decomposition reaction, the break-

down of the metastable compounds leads to the release of carbon dioxide, ethylene and

oxygen [213, 214].

After the decomposition of the protective SEI layer, the organic solvents of the elec-

trolyte can react with the metallic or intercalated lithium of the anode. In doing so,

flammable hydrocarbons such as ethylene, propane and ethane are generated [78]. The

decomposition of the LFP cathode is thought to occur directly, resulting in the release of

oxygen [120, 215]. The electrolyte can react with the oxygen, leading to the production

of H2O [78]. Further decomposition of the electrolyte can occur at high temperatures

(>200°C), releasing carbon dioxide, fluoride gases and various hydrocarbons by a multi-

tude of reactions [91]. Reactions between the fluorinated binder and lithium can occur

leading to carbon fluoride, hydrogen fluoride and hydrogen [78, 216]. Other than the

binder reaction, fluoride gases such as HF can be produced from the decomposition of the

electrolyte salt (LiPF6) [217–219].

Additional to the reactions outlined above, flammable gases can be produced by further

reactions mainly involving the electrolyte solvents, as outlined by Wang et al. [91]. Carbon

monoxide can be produced by the reduction of CO2 or the reduction of the electrolyte

with intercalated lithium at the anode. Methane can be produced by the reduction of

DMC with lithium in the presence of hydrogen. Similarly, ethylene can be produced by

the reaction between the EC solvent and lithium, or between lithium and the SEI layer.

Ethane can be produced by reactions between the DMC solvent and lithium, or the DEC

solvent and lithium in the presence of hydrogen.

2.2.4.2 Vent Behaviour and Characteristics - LFP

LFP cells at 100% SOC produce relatively small amounts of gas, 50 mmol, compared to

265 mmol and 149 mmol for LCO/NMC and NMC 18650 cells respectively [114], as shown

in Fig. 2.10. The gas venting process for the LFP cells consisted of releasing 20 mmol of

gas when the burst plate opens, prior to TR, with the remaining gas being released over

30 s, due to the slow gas production, which is a long time compared to the sub 1 s period

for the metal-oxide cells. The amount of gas produced is relativity constant between

25% and 100% SOC, as shown in Figure 2.11, however more gas is produced at 0% SOC
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Figure 2.10: Cell gas generation with temperature. Reproduced from [114].
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Figure 2.11: Amount of gas generated from 18650 LFP cells at different SOC [65].

and overcharged [65]. Overcharge 18650 LFP cells show stages of gas ignition upon vent

rupture, followed by violent ejecta and stable combustion before final flame abatement,

while the cell remained mostly intact with positive terminal still in place [220].

The gas composition, determined under an inert atmosphere, for LCO, NMC and

LFP cells are similar, mostly consisting of CO2 and H2, with CO present in a higher

concentration in metal-oxide cells than LFP cells [114]. The variation of gas composition

between cells abused at different SOC has been studied by Golubkov et al. [65]. Their

results, summarised in Figure 2.12, show that CO2 and H2 are the most abundant for all

SOC. At 0% SOC, the gas is almost entirely CO2, while at higher SOC H2 and CO are

increasingly abundant. The amount of ethylene and methane also increase between SOC

of 0% and 100%.

The burst pressures of vent caps from 50 MTI cell components and 4 actual LG cells

were calculated by Mier et al. [221]. They found the MTI burst pressure to be, on average,

2.158 MPa and to closely follow a normal distribution, while the LG vent cap burst at a

pressure of 1.906 MPa. They also note that the burst disks of 30% of the MTI vent caps

completely detached. Of the vent caps in which the burst disk remained attached, the

burst pressure distribution remained close to the normal distribution. On the other hand,

in the occurrences where the burst disk completely detached, the burst pressure was skewed
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Figure 2.12: Variation of vent gas composition from 18650 LFP cells at different SOC: a) H2, CO2 and
CO, b) CH4, C2H4 and C2H6 [65].

towards a higher pressure. The measured opening area of the burst disk, approximately

9.87 mm2 and 7.03 mm2 for MTI and LG respectively, is shown to be significantly smaller

than the maximum perforated plate opening, 24.98 mm2 and 12.71 mm2 for MTI and LG

respectively. Also, the fact that the measured opening areas are similar indicates that the

positive terminal and the opening around the burst disk, which is similar between cells,

are the dominant features to choke the gas flow.

2.3 Thermal Runaway of Li-ion Battery Packs

TR studies of LIBs are largely of single cells, which is applicable to smaller devices where

TR has little impact beyond the device, however, the TR of a cell in a battery pack has

the potential to be more severe [90]. In a pack, the heat released from one cell under

TR can propagate to the surrounding cells, raising their temperature to the point of self-

heating, in turn causing a cascade failure from cell-to-cell, also known as TRP, that leads

to total system failure [90, 222]. Hence, there is a need to be able to accurately predict

TRP behaviour of packs. Experimental investigations are costly and time-consuming, so

there is a need for modelling capabilities that can accurately predict cell TR and extend

it to pack systems [223]. The development of a TRP model occurs in two stages (1)

development of an accurate and validated model for single cell; (2) combining the single
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cell model into pack with necessary heat transfer laws between cells [70]. This section

presents key experimental and computational findings of TRP.

2.3.1 Fundamentals of Pack Abuse Studies

Pack studies are usually carried out at a small scale, on modules of less than 10 cells

and usually without any pack casing [e.g. 90, 98, 222]. Some are larger, i.e. 40 cells,

and consider the whole pack construction including wrapping, insulation and pack casing

[89]. Initiating TR in a pack requires that, typically, just a single cell is abused. Abuse is

implemented experimentally through one of several ways: a heater attached to a cell [222],

nail penetration [89, 90, 98], radiant heating [224] or a cartridge heater in a cell casing

replacing a full cell [55].

Computationally, the abuse of the initiation cell has been carried out, most commonly,

by simulating heat generation due to a internal short circuit [e.g. 70, 225–227]. Less

commonly, initiation heat generation has been governed by: cell cycling [140]; cell heat

generation rates from experiments, e.g. calorimetry [138, 142] and fire tests [228]; or

externally applied constant power heating [180]. Representing the heat generated by an

internal short circuit occurring in a cell has been implemented in computational models

in various ways, i.e. by:

� an instantaneous temperature rise [225, 229, 230];

� a release of a percentage of the stored electrochemical energy over a defined time

period, either over a certain jelly roll volume [226], or over the whole cell [70, 140,

142];

� an Arrhenius equation to define the electrochemical reaction of a short [227]; and

� experimental heating rates from nail tests [141].

Abuse modelling in packs has been carried out defining heat generation in cells in its

full form, i.e. using individual Arrhenius equations for each reaction [e.g. 70, 141, 226,

227, 231], and in a reduced form, where self-heating rate is defined either as;

� a function of temperature, estimated [230] or fit to calorimetry data [138, 229]; or

� as a function of time, estimated [140, 142] or fit to experimental abuse data [225, 228];

or

� a single, SOC dependent, Arrhenius equation [180].

The use of the full form of reaction equations within pack modelling, while requiring

the most parameterisation, allows for the understanding of the reactions leading to cell
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TR and, in turn, TRP. Further, if the abuse model for a single cell is valid over a variety

of abuse conditions, then resultant pack simulation would in turn be more robust. The

reduced forms of heat generation dependent on time or temperature, while providing a

simplicity to the model, are limited beyond studying the experimental condition from

which they were determined. Hence, they have a limited ability to predict pack behaviour

abuse scenarios dissimilar to the initial experiment. The use of a single global Arrhenius

equation, to account for all decomposition reactions, improves ease of model development

and reduces computational complexity, while overall temperature predictions are accurate

[180]. However, the lack of accounting for individual reactions leads to a lack of ability to

predict reaction sequence.

2.3.2 Thermal Management of Packs

It is recommended that TR should be prevented in cells adjacent to a cell already under

TR, rather than just postpone it [70]. Postponing TR can lead to greater average tem-

peratures in adjacent cells leading to more severe TR events in said cells. Hence, the key

to preventing TRP is adequate thermal management of the pack.

Thermal management can be passive (i.e. air, phase change material (PCM) etc.) or

active (i.e. forced air or liquid). Methods include: cooling plates, mini channels, forced air

flow, PCMs, refrigerant cooling, liquid cooling [141, 142, 227, 232]. Active systems can be

complex, heavy, bulky and require a high power demand to drive the flow of fluid, while

passive systems (i.e. PCMs) can suffer from low specific heat and thermal conductivity

issues [233].

As the demand for batteries with a higher volumetric energy density leads to modules

that are arranged with more tightly packed cells, the difficulty of thermal management

increases [222]. Further, the thermal management systems are typically designed for gen-

eral operation, where the heat from reversible and irreversible electrochemical reactions is

relatively low, compared to what is generated during TR, and can be readily dissipated by

thermal management system [222]. However, these systems generally cannot manage the

heat generated by the high rate, high energy decomposition reactions, and fail to maintain

favourable pack temperatures [140, 229].

Increasing cell-to-cell spacing, thus reducing heat transfer from an abused cell to ad-

jacent cells, is an easy method to reduce TRP potential [138, 222]. However, this can

greatly sacrifice pack volumetric energy density. Compared to air alone, carbon (graphite)

composite-PCM (C-PCM) between cells has been shown to be beneficial at preventing

TRP by greatly absorbing and dissipating heat, reducing surface temperatures of cells

adjacent to the failed cell. This is due to the high thermal conductivity and heat capacity

graphite in the PCM [89, 225, 226]. Further, the use of C-PCMs allows for TRP preven-

tion at smaller cell-to-cell spacings when compared to air, due to the above reasons [225].
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Thus, battery packs using C-PCM have relatively higher volumetric energy densities, while

gravimetric energy density is lower due to the additional weight of the C-PCM. Further,

if PCMs are used on their own they are shown not to be able to prevent TRP due to the

low heat capacity of the material [234].

Similarly, a cold block design, using an aluminium block, is better than air or C-

PCM at TRP prevention due to the even larger heat capacity and thermal conductivity of

aluminium compared to a C-PCM [142, 226]. However, a copper C-PCM can result in a

weight saving of up to 60% compared to an aluminium cold block design, but the copper

wax block requires a wider cell-to-cell spacing (10 mm compared to 1 mm) to achieve the

same performance as a solid aluminium block [142].

Another thermal management method using insulating “Mica” paper around the cells

has been shown to reduce heat transfer to adjacent cells [227]. Active cooling methods,

e.g. micro-channel cooling, are shown to be impractical for preventing TRP in battery

packs as the pumping rates required are impractical [141]. The use of a radiant barrier, or

intumescent material, between prismatic cells can successfully prevent propagation [222].

2.3.3 TRP Behaviour

The energy required to cause TRP may be relatively small, e.g. for NMC cells as little as

12% of the total heat released from one cell can lead to the TR of a neighbouring cell [98].

But TRP is shown to be prevented if the temperature of a cell adjacent to a failed cell is

kept below the onset of severe reactions, e.g. in the work by Li et al. [235], the onset of the

cathode reaction for LCO cells. However, even if the TR of one cell causes the front face

of an adjacent cell to reach high temperatures (in excess of the onset of severe reactions)

this hot spot is not enough to cause TR in the adjacent cell [236]. This occurs if the high

temperatures only exist for a short period, and hence not enough heat is transferred to

the adjacent cell that self-heating reactions develop. Hence, reporting the TRP potential

is difficult as large temperature difference can be present within a cell, where the front

edge of a cell adjacent to the abused cell can be hundreds of °C hotter than the backside

[98, 236]. As such, depending on the location on a cell the temperature measurement is

taken, there is a significant variation in recorded severity.

Similarly, during the rapid heating event of the abused 18650 cell there can be dif-

ferences of 43°C to 71°C radially, between the centre and sides, of the surrounding cells

[55]. Hence, predictions of TRP are affected by the accuracy to which a cylindrical cell’s

anisotropy is known [180]. This affects a cell’s radial heat transfer, and in turn, indirectly

affecting the cell-to-cell heat transfer. Further, as with TRP through the pack, propaga-

tion also exists within the cells [237]. Propagation through a cell is shown to be slower

for cells going into TR later on in TRP due to their lower SOC as they have discharged

energy into failed cells [238].
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Pack propagation speed, i.e. time between subsequent row failures, increases for sub-

sequent rows due to the pre-heating of the later cells by the heat generation of the former

and increased combustion efficiency as more batteries burn simultaneously [180, 239].

Propagation speed has been shown to linearly reduce with the square of cell spacing (in a

3-by-3 pack) and is attributed to the radial decline of radiation with the square of distance

[240]. For high energy NMC pouch cells, Li et al. [237] shows that for a five cell module

propagation of TR through a cell is consistent at 10 s, but propagation between cells takes

longer (on average 86 s). Further, TRP is slower for later cells, in contradiction of Liu

et al. [180] findings. Propagation speed is shown to be linearly related with SOC, while

the use of PCM has been seen to increase propagation speed due to low thermal conduc-

tivity and accumulation of heat in the PCM [240]. TRP of a module can be quicker in

larger modules due to adjacent cells being insulated by each other, retaining heat leading

to greater decomposition heating rates, while operational discharging of the cells further

leads to quickening the onset of TR [241].

The location of the initiation cell within a pack has been show to effect TRP potential.

Propagation has been shown to be more likely (for an eight 18650 cell laptop battery pack)

when the failed cell is in contact with fewer cells and when those cells are in contact with

the pack wall [230]. Similarly, Kizilel et al. [225] shows that cells in contact with the failed

cell can reach different temperatures, depending on how many cells these neighbouring

cells are themselves in contact with. Kizilel et al. [225] also showed that increased ambient

temperatures and lower convection coefficient increase TRP potential.

With reference to statements about the location of initiation cell above: the increase in

TRP potential is due to the increase in heat transfer from the initiation cell to individual

neighbouring cells (when there are less neighbouring cells to absorb the heat), and less heat

loss from the neighbouring cells due to relatively insulating plastic battery pack casing,

leading to a greater temperature rise in these neighbouring cells [225, 230]. As such,

the greater temperature increases the chance of TRP as reactions are initiated at higher

temperatures. This shows the importance of how modelling can help direct experimental

work by studying the initiation of TR at different locations within a module and identifying

the cell most likely to induce TRP.

TRP is considered more likely when multiple cells that fail are aligned diagonally

rather than laterally (determined by the use of two 250 W heaters in a module of four

18650 cells) because diagonally arranged cells are more closely packed [242]. Ouyang et al.

[242] also state that batteries undergoing TR near the centre of a module would cause

more severe TRP. However, this is only true for the constant heating method they used.

This applies more heat (due to constant heating until TR detected) to more cells, rather

than realistically where the heat released by decomposition would be shared between more

cells if the failed cell was central, resulting in adjacent cells heating up less than when a

failed cell is near the edge and adjacent to fewer cells.
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2.3.4 Heat Transfer Pathways, Electrical and Fire Considerations

The heat transfer through cell tab connections is an important consideration in packs of

cylindrical cells [90]. This is because the physical contact area between cylindrical cells is

relatively small and hence heat transfer by cell-to-cell surface contact conduction is low,

compared to pouch cells. Without tab connections heat transfer is dominated by fluxes at

the cells surface [239]. Kizilel et al. [225] show that when tabs are considered, in modelling

a pack of 18650 cells, a relatively large cell spacing of 2 mm (compared to a case where

tabs are not considered) cannot prevent TRP as the heat transfer is dominated by that

through the tabs and not the air. However, the use of a C-PCM matrix, due it its higher

thermal capacity and conductivity compared to air, can absorb heat more readily from the

cell under TR. For modules of cells under normal operation, cells will have similar surface

temperatures and so convection would be dominant when surface conduction is excluded

[194]. However, by Rad et al. [194] reasoning, under TR of a cell in a module there

would exist large cell-to-cell temperature differences, so radiation would be significant.

Reductions in contact resistances as cells deform during TR, when not accounted for in

simulations, can lead to overpredictions of heat transfer [235].

The importance of different heat transfer mechanisms is numerically investigated by

[243] for a 3-by-3 pack of NMC 18650 cells with an “M” type tab connection where cell

spacing, tab width and tab solder radius were varied. In all cells (excluding the trigger

cell), in all cases over the ~30 min simulation, the heat is transferred into cells by tab

conduction and radiation, while heat is lost by convection. For increased cell spacing the

magnitude of heat transfer reduces for all cells besides the trigger cell. The trigger cell has

a reduced heat transfer contribution from conduction, while heat transfer by radiation is

increased, overall the total heat loss increases. In the trigger cell radiative heat transfer is

the most dominant, while it plays an important roll in cells in view of, but not connected

to, the trigger cell. Conduction dominates in cells connected to trigger cell. Soldering

area primarily, and intuitively, affects heat conduction. A greater soldering radius leads

to improved and greater heat transfer by conduction. Hence, this has a greater effect on

cells that already have a high proportion of heat conduction, i.e. cells connected to trigger

cell. The same is true for increased tab width.

Fire presents a significant heat transfer path [231]. For example, considering NMC

18650 cells, nearly 3 time more energy can be generated by the burning of vent gases than

what is released from the reactions inside the cell [157]. The fire originates due to the

ignition of ejected electrolyte when in the presence of oxygen [98, 180]. This increases the

TRP potential if: 1) vented gases/ flames are directed at neighbouring cells close by; or 2)

if cells are enclosed in a casing, as is most common [55, 231, 244, 245]. For enclosed cells,

the flame behaviour can lead to complex heat transfer around the pack as the flames engulf

other cells causing local hot spots at unpredictable locations [224]. Further, Srinivasan

et al. [205] predict that DMC, which is ejected as a cell vents, can condense out of the
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ejecta and be deposited on cells within a pack, where on the TR of the vented cell the

DMC in-turn burns due to the high temperatures, enhancing TRP. In a pack that allows

venting to the open atmosphere, Feng et al. [98] show the flames had little effect of heating

other cells. However, Chen et al. [239] show that when flames are not contained the down

ward radiation from the flame enhances propagation.

The series or parallel connectivity between cells within a pack has a significant im-

pact on the overall TRP potential [90, 222]. For cells in series, or where a failed cell is

disconnected from the parallel string, TRP is unlikely [89]. This is due to the tempera-

ture rise in cells adjacent to the failed cell is usually short-lived and the heat is dissipated

throughout many cells and from the pack. However, for cells in parallel the chance of TRP

increases due to additional heating from ohmic sources. This occurs as a failed cell in a

parallel string acting as an external short, allows all other cells in that string to discharge

[222, 246]. This leads to several detrimental factors :

1. concentration of heat generation around the already failed cell,

2. prolonged heating of adjacent cells, and

3. a release of over 100% of a cell’s rated energy capacity.

In turn, leading to greater average cell temperatures than compared to similar series

connected cells, and an increase in the likelihood of TRP [90, 222]. Further, the nearest

cells to the failed cell (with the shortest electrical connections) discharge the most severely

and undergo greater TR events. The mitigation of cell shorting is commonly achieved

through blocking or discharge diodes, which prevent current flow from healthy cells to

shorted cells [90].

Additionally, the configuration of the tab connections is shown to affect TRP potential.

A branched configuration shows less damage (lower temperatures, voltage drops and visible

signs) to the cells surrounding the abused cell, compared to a similar module connected

in a serpentine manner [222]. Greater damage is seen in the serpentine layout as it allows

greater electrical discharge in the abused cell that has shorted due to separator melting.

Also, venting leads to unpredictable consequences inside a battery pack due to ejecta

causing shorts away from the failed cell [89]. Thus making it difficult to predict the

overall outcome in detail.

2.3.5 LFP Pack TRP Behaviour

Little research has been undertaken into the TRP of LFP packs. Of that available, exper-

imental investigations of 18650 LFP packs under forced convection cooling are shown to

be resilient to TRP as they require an order of magnitude more energy (178 kJ to 430 kJ)
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to be supplied to the pack to initiate TRP compared to the cell rated energy capacity

(17.4 kJ) [247]. Modelling of an LFP pack constructed of pouch cells by Larsson et al.

[228] shows that 1 mm cooling plates between all cells and 5 mm fire walls between modules

of 10 cells are effective at preventing TRP. However, neither of these studies investigate

the reasoning and limit of this resilience.

2.4 Summary

The literature regarding ARC has shown that it is a useful method to quantify the stability

and severity of TR for (non LFP) Li-ion cells at various SOC and to determine a safe

operating window for a cell in terms of SOC and temperature. It has also been shown that

ARC data can be used to understand the stages of TR in a cell. The mechanisms relating

SOC and severity present information for analysing the ARC data, while the thermal maps

show that investigation is required to determine if self-heating is self-sustaining and hence

a safety issue. It is of interest here to obtain data of this nature regarding LFP cells, such

that a thorough and comparable analysis could be made of LFP cells to determine under

what conditions self-heating reactions are self-sustaining and at what SOC TR occurs.

Hence, enabling a detailed description of the TR process and outlining the conditions

necessary to avoid TR.

The literature regarding oven heating has outlined methodology and the general char-

acteristics of TR for (non LFP) Li-ion cells in response to ovens at various temperatures.

It shows that it is a necessary technique to understand if there is drastic change in TR

severity for a small increase in oven temperatures, whilst also outlining the increased sever-

ity compared to that of ARC. It also outlines the necessity of such data for other areas of

TR research e.g. model validation, which is lacking for LFP.

Hence, to address gaps in the literature on the SOC dependence and oven heating

response of LFP cells, this thesis, in part, will characterise the safety of LFP cells under

thermal abuse conditions (ARC and convection oven tests) to quantify their safe operating

window in terms of SOC and temperature, and identify the hazards they pose. Calorimetry

will be carried out under near-adiabatic conditions and represents the worst case scenario

of a cell undergoing heating, as there is zero heat loss from the cell. ARC also allows

us to infer the process by which TR occurs, which is necessary for developing accurate

models of TR by ensuring that the reactions are simulated in the correct order and with

the appropriate magnitude of heat relative to each other [153]. A convection oven test

allows us to study the response of a cell when rapidly exposed to high temperatures,

representing what might occur due to environmental conditions or as a result of heating

from a neighbouring cell which has failed by other means.
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The literature regarding modelling TR in Li-ion cells has shown that the calorimetry

approach, i.e. governing the decomposition of cells by Arrhenius formulation, is most

common and able to produce adequate predictions. However, a lack of validation of pre-

vious LFP models requires further work to comprehensively understand parameterisation

of LFP cells. Further, the inclusion of venting behaviour is shown to improve TR predic-

tions. However, unlike the literature, it is more appropriate to consider that the system

is at bubble point. Hence, this should be investigated to determine if appropriate for

LIBs. The literature has shown the importance of considering cells assembled into packs

to assess TRP potential. However, little work has examined TRP for LFP at pack level,

nor quantified the importance of radiation to TRP.
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Methodology

The methodology chapter is split into three sections, that of experimental methods, Sec-

tion 3.1; that of governing equations for a single cell TR model, Section 3.2; and that of

modelling a battery pack, Section 3.3. The experimental section discusses ARC and oven

abuse testing, as well as cell charging and determination of cell specific heat. The exper-

imental methods, though important independent of any other work, are also important

to the understanding, development and parametrisation of the TR model. Section 3.2

presents a classical Li-ion cell TR model, including governing equations for heat transfer

in a solid body and heat generation from cell decomposition reactions. This is then ex-

tended to included additional behaviour of cell venting and simmering reactions. Finally,

Section 3.3 presents how the battery pack is constructed, how governing equations are

applied over the geometry and the abuse scenario implemented.

3.1 Experimental Methods for Assessing Cell Thermal Run-

away Behaviour and Determining Cell Properties

The thermal runaway behaviour of Li-ion cells is assessed, in this work, by analysing

the thermal and physical response of cells when thermally abused. The thermal abuse

tests carried out are ARC and oven testing. ARC testing allows for thermal abuse under

near adiabatic conditions and represents a worst case scenario of a cell under heating, to

allow the inference of the TR process. The convection oven test compliments the ARC test,

allowing one to study the response of a cell when it is rapidly heated to a high temperature,

where rapid heating is more representative of realistic scenarios. The procedures of ARC

testing and oven testing are described in Section 3.1.1 and Section 3.1.2 respectively.

For each ARC and oven abuse experiment, every cell that is tested is required to be at a

specific SOC to investigate the effect of the SOC on the TR behaviour. The methodology

for charging the Li-ion cells to the required SOC prior to an abuse test is presented
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in Section 3.1.3. Further, for investigating heat generation during TR and TR model

development, the value of the cells specific heat capacity is required. The methodology

for determining the specific heat capacity of a cell is presented in Section 3.1.4.

3.1.1 Accelerated Rate Calorimetry Procedure

Fig. 3.1 presents a schematic of the ARC equipment, see Fig. 3.1(a), resulting data plot,

see Fig. 3.1(b) and operating procedure, see Fig. 3.1(c). The ARC, see Fig. 3.1(a), con-

tains a sample, i.e. a cell, inside the ARC jacket. A thermocouple is attached to the

surface of the sample/ cell surface. The jacket is constructed of three zones, top, bot-

tom and sides, which are individually heated and monitored by individual thermocouples.

Adiabatic conditions are maintained by keeping the bomb (cell surface) temperature and

jacket temperature exactly equal. During exothermic reactions, the adiabatic condition

is upheld by maintaining a temperature difference of zero by using proportional, integral

and differential control algorithms. Alongside temperatures, pressures can be monitored.

The ARC test is conducted following the standard method of operation known as the

Heat, Wait, Seek (HWS) procedure. The HWS procedure is illustrated in Fig. 3.1(c) and

undergoes the following steps:

1. The HWS procedure consists of heating the walls of the chamber by a small amount,

∆T, such that the chamber temperature increases, which in turn increases the tem-

perature of the cell contained in the chamber.

2. A wait period (∆t1) then follows to allow the cell to become in thermal equilibrium

with the chamber walls.

3. Following this, in the seek period (∆t2), the surface temperature of the cell is moni-

tored and the chamber set to follow the cell temperature.

4. Temperature rate check:

(a) If the rate of change of temperature with respect to time of the cell surface

is greater than a predefined value (rateonset), then the ARC enters exotherm

mode, such that the system is in near adiabatic conditions.

(b) If the temperature rate condition is not met the heat-wait-seek steps are re-

peated until this condition or the maximum temperature condition is satisfied.

From the resulting exothermic data, TR behaviour of a cell can be outlined with key

characteristics such as: the exothermic onset temperature (T0), heat of decomposition

(∆H), maximum temperature (Tmax) and self-heating rate (dT/dt).
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Figure 3.1: ARC HWS procedure. (a) illustration of an ARC (b) illustration of resulting data plot (c)
flow diagram of HWS procedure.
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(a)

CellTC

(b)

Figure 3.2: Experimental set up of ARC test. (a) Thermal Hazard Technology ARC EV+ (b) close up
of cell suspended in the ARC with thermocouple (TC) attached.

More specifically, the ARC tests were performed using a Thermal Hazard Technology

ARC EV+ calorimeter, as shown in Fig. 3.2(a). The HWS method was set up with the

following conditions:

� a start temperature of 50°C,

� end temperature of 315°C (the maximum operating temperature of the ARC),

� temperature step of 5°C,

� temperature rate sensitivity of 0.02°C/min, and

� a wait time of 60 min.

A full list of the standard operating parameters for this procedure is presented in Table 3.1.

The selection of temperature rate sensitivity, temperature step and seek time have an

effect on the resulting calculated self-heating onset temperature. A lower temperature

rate sensitivity allows for a more accurate determination of the onset of self-heating due

to lower reaction rates. A larger temperature step leads to faster experimental times as it

results in fewer HWS steps. However, self-heating will be determined to a lesser precision.

For example, if a large temperature step is taken, i.e. 20°C, over the temperature range of

80–100°C knowing that self heating begins at 92°C, then self-heating can only be picked

up at earliest at 100°C. Whereas, if a temperature step of 5°C is used, then self heating

can be detected much closer to the true value. Conversely, a smaller temperature step

increases the experimental time for a diminishing increase in accuracy.

The onset of self-heating of the cell is taken to be when the cell surface temperature

rate is >0.02°C/min. TR of the cell is taken to be when this rate is >1.0°C/min. The

ARC test was carried out on LFP cells at 0%, 28%, 63%, 100% and 110% SOC (charged
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according to the procedure in Section 3.1.3). The test was repeated at least three times at

each SOC. Following the test, thermocouple placements on the cells’ surface were visually

checked to ensure that they were still firmly attached. This was done to ensure that the

temperature reading would be accurate throughout the entirety of the test run. In the

event that the thermocouple became loose, additional repeats were taken to ensure at least

three accurate repeats were available for comparison.

The physical arrangement of the LFP cell in the ARC is depicted in Fig. 3.2(b). The

cell was removed from its shrink wrapping and an N-type thermocouple was attached to the

surface of the cell with glass cloth tape. The cell was then suspended from an aluminium

frame to ensure it did not come into contact with the walls of the ARC vessel. The cell

was attached to the frame using glass cloth tape, to ensure that there was negligible heat

transfer between the cell and frame, allowing the phi-factor (a factor to compensate for

the thermal mass of the holder) to be taken as unity.

To further ensure the robustness of the data gathered, calibration and drift checks

were periodically carried out every 10 tests or every 4 weeks, which ever came sooner.

The calibration test is required to determine the temperature offset between the ARC

temperature and the sample temperature. It is carried out in a similar manner to the

standard HWS test, except that the sample is inert and the temperature sensitivity is

twice that of the standard HWS test (i.e. 0.01°C/min). The scheduled calibrations can

account for external environmental temperatures or the build up of debris on the chamber

walls from TR that may alter the temperature offset. Here the sample thermocouple is

attached to a thin sheet of aluminium (approximately 2 mmÖ20 mmÖ50 mm) placed in the

bottom of the ARC chamber and isolated from the chamber floor by a thermally resistant

ceramic plinth.

The drift test is then performed to ensure there is no positive or negative feedback,

again carried out with an inert sample, but with a temperature rate sensitivity equal to

that which would be used in a standard HWS test. A positive drift would bring the

onset of self-heating forward, making some or all of the exothermic data irrelevant, while

a negative drift would mask the onset of self-heating, leading to the onset of self-heating

to be reported to be at a higher temperature than in actuality. If any drift is detected the

calibration is re-run until the drift test is successful. A full list of the standard operating

parameters for the calibration and drift check procedures are presented in Table 3.1.

3.1.2 Oven Test Procedure

The oven test was carried out using a VWR DRY-Line 53 natural convection oven (internal

dimensions 401Ö401Ö330 mm), shown in Fig. 3.3(a), with a maximum set temperature

of 220°C. The oven was preheated to the desired abuse temperature before a cell (at

100% SOC) was placed on a steel wire shelf in the centre of the oven. With minimal
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Table 3.1: ARC operating parameters.

Parameter HWS Calibration Drift Test

Start temperature, °C 50 50 50
End temperature, °C 315 315 315
Temperature step, °C 5 50 20
Temperature rate sensitivity, °C/min 0.02 0.01 0.02
Wait time, min 60 60 60
Calculation temperature step, °C 0.2 0.2 0.2
Cool temperature, °C 35 35 35
Door release temperature, °C 50 50 50
Maximum safety pressure, bar 200 200 200
Maximum temperature drop, °C 25 25 25
Maximum pressure drop, bar 20 20 20
Maximum exotherm rate, °C/min 1000 1000 1000
Maximum pressure rate, bar/min 1× 105 1× 105 1× 105

Driver heater power, % 20 20 20
Data logging temperature step, °C 0.5 1.0 1.0
Data logging time step, min 0.5 0.5 0.5
Exotherm logging temperature step, °C 0.5 1.0 1.0
Calibration mode settling time, min - 60 -

surface-to-surface contact between the cell and the shelf, heat conduction from the shelf

was assumed to be negligible. The oven and cell surface temperatures were measured by K-

type thermocouples and recorded using a Pico USB TC-08 data logger and PC. The shrink

wrapping on the cell was removed to improve the contact between the thermocouples and

cell surface. The test began from the moment the cell was placed in the oven and ran for

90 minutes. Figures 3.3(b) and 3.3(c) show the placement of the thermocouples on the

cell and in the oven. The two cell thermocouples were attached to the long edge of the

cell (i.e. not the flat end terminals) with glass cloth tape, 1 cm from either end of the cell.

The thermocouple measuring the oven temperature was placed at the same height as the

cell but away from the cell surface and out of the path of vented gases to minimize any

affect the heating from the cell or gas jet would have on the oven temperature reading.

All cells were tested at 100% SOC (charged according to the procedure in Section 3.1.3)

and had been stored in ambient conditions beforehand.

3.1.3 Charging Cells to Required SOC

To charge an LFP cell to the required SOC for either the ARC or oven test, the following

procedure was adhered to: cells were charged to their required SOC using the constant

current - constant voltage (CC - CV) method on a MACCOR 4000M battery cycler, under

ambient conditions. Prior to charging, as cells were stored partially charged, all cells were

discharged at 0.5C until 2.5 V, then at CV until the current dropped below 0.01C. To

charge, a CC of 0.5C (0.75 A) was applied until the charge voltage was reached e.g. 3.65 V
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(a)
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Figure 3.3: Experimental set up of oven test. (a) convection oven (b) close up of cell in oven with TC
placements (c) schematic of oven set up.
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for 100% SOC, thereafter a CV (of e.g. 3.65 V) was applied until the charge current

dropped below 0.01C. For a SOC of 28% and 63%, the cells were charged at 0.5C, with

a CC cut off criterion determined by the corresponding charge capacity for the desired

SOC (420 mAh and 945 mAh respectively). For 0% SOC, the cell was discharged but not

recharged. For overcharge at 110%, the cell is charged at 0.5C until 4.2 V, then at 0.2C

to reduce ohmic heating, cut off is determined by measured capacity (1650 mAh).

3.1.4 Determining Cell Specific Heat Capacity

To determine the cell’s average specific heat capacity an adiabatic calorimetry test was

undertaken, following the methodology as described by Bryden et al. [248], utilising an

ARC (specifically a Thermal Hazard Technology ARC EV+). The basic principle employs

the First Law of Thermodynamics:

∆U = Qnet −Wnet (3.1)

where ∆U (W) is the time dependent change in internal energy of a body, Qnet (W) is the

net heat supplied to the body and Wnet (W) is the net work done by the body. Further,

Qnet = Qin−Qout, where Qin (W) and Qout (W) are the heat transferred to and from the

body.

In an adiabatic system, with no work being done, Eq. (3.1) can be rewritten as:

mCp∆T = Qin∆t (3.2)

where ∆U is substituted by the change in enthalpy (mCp∆T ) on the assumptions of:

1. The cell being considered as a system of solid and liquid materials, as the amount

of gas present within the cell under normal conditions is negligible. The mass of gas

is on the scale of 1× 10=3 g [199] verses a cell mass of approximately 40 g.

2. That over the temperature range of the experiment (approximately 15°C to 55°C)

there is no change of phase of the cells materials. Specifically, the evaporation of the

liquid electrolyte does not occur, as the lowest boiling point of the solvents that are

used in the liquid electrolyte is 91°C, see Table 2.3.

Furthermore, it is assumed the mass, m (kg), and specific heat capacity, Cp (J/kg K),

remain constant. In turn, the heat capacity of the body can be determined from Eq. (3.2)

if ∆T/∆t (K/s) and Qin are known.

Equation (3.2) can be used to find the specific heat capacity of a body, specifically the

Li-ion cell, by using the following methodology to determine the temperature rate of the

body, for a supplied heater power P = Qin. The test is carried out on a single cell, as well
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Figure 3.4: Different sample sizes and cell arrangements for heat capacity experiment.

as groupings of multiple cells. For the single cell, a Kapton heater (rated at 1 W when

connected to a 12 V supply) is applied directly to the surface of the cell. A thermocouple

is applied to the cell surface on the opposite side, see Fig. 3.4, while the temperature is

recorded by the ARC instrument. Both the heater and thermocouple are secured in place

with aluminium tape. Similar set-ups are carried out for groupings of multiple cells, see

Fig. 3.4. Together, the cell(s), aluminium tape and heater are termed the “sample”.

The mass of the cell(s) and heater are recorded before the sample is assembled, and

once assembled, the sample is also weighed. In doing so, the mass of aluminium tape used

can be determined by the difference between the unassembled mass and assembled mass,

see Eq. (3.3).

n∑
i=1

mcell,i +mheater +mtape = msample (3.3)

Due to practical reasons, having to attach the thermocouple once the sample is in place in

the ARC, the sample mass does not account for the tape to hold down the thermocouple.

However, the amount used for this purpose is limited to the smallest practical amount and

negligible to the sample.

The assembled sample is suspended, by glass cloth tape from an aluminium frame,

such that it is in the centre of the ARC chamber, see Fig. 3.5. This is to ensure that the

sample does not come into contact with the chamber, where it would be inappropriately

heated, and also, such that no heat is lost through suspending the cell, as the glass cloth

tape provides a negligible heat conduction pathway. The thermocouple is attached to the

sample with aluminium tape, while the heater’s electrical wires are connected the ARC’s

auxiliary cables, which allow for an electrical interface between the interior of the ARC

chamber and the external environment, see Fig. 3.5(a). The external connection of the

auxiliary cables are attached to a 12 V power supply.
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(a) (b)

Figure 3.5: Experimental set up of heat capacity test. (a) sample in ARC chamber (b) close up of sample.

The ARC chamber is then sealed and the test begins by setting the ARC chamber to

temperature approximately 5°C greater than ambient. The ARC is held at this condition

until the sample temperature is within 0.5°C of the chamber temperature, where the system

is deemed to be in equilibrium. At this point the ARC is put into “exotherm” mode,

in which the ARC instrument controls the chamber temperature such that it matches

the sample temperature. In turn, the sample can be considered to be in an adiabatic

environment. As no heat is being generated, the sample should remain at a constant

temperature. If this does not occur the system can be considered faulty and the set-up

checked and previous sets repeated. Otherwise, the heater power can be switched on. At

which point the sample will start to heat up and the ARC will also heat up to maintain

adiabatic-like conditions. The heater remains on until the sample reaches 55°C, as this

nears the safe operating limit of the LFP cell of 60°C, after which, it is turn off and the

ARC set to “cool down” mode. This concludes the experiment.

The exothermic operating region of the experiment allows the calculation of the adia-

batic temperature rate, dT/dt, of the sample. The supplied heater power, P , is calculated

from the measured heater values of 0.0956 A and 11.97 V [248]. These values were mea-

sured once and assumed the same for each experimental run. Hence, the total specific

heat capacity, Cp,tot, of the sample can be determined from Eq. (3.2) by substituting

dT/dt and P accordingly. The average specific heat capacity of a single cell can therefore

be determined from:

msampleCp,tot = mtapeCp,Al +

n∑
i=1

mcell,iCp,cell (3.4)

where Cp,Al = 913 J/kg K [249], and in which the heat capacity of the heater is neglected.

This process is repeated for a given sample to determine any variation in determined Cp,cell
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values. The number of repeats is given in further detail in the result of the heat capacity

test in Section 4.2.1.

3.2 Modelling and Simulation Methodology

The governing equations describing the TR model of a Li-ion cell are arranged into sev-

eral “sub-models” for ease of reference. These sub-models consist of the heat-transfer

sub-model (see Section 3.2.1), abuse sub-model (see Section 3.2.2) and venting sub-model

(see Section 3.2.3). These sub-models and how they are coupled to one another to form

the overall advanced abuse model (AAM) is shown in Fig. 3.6. The heat-transfer sub-

model describes all applicable heat transfer pathways through conduction, convection and

radiation, with heat source terms coupled from the abuse and venting sub-models. The

abuse sub-model describes the exothermic chemical decomposition of the cell, consider-

ing the four general decomposition reactions commonly quoted in Li-ion TR modelling.

Further, the abuse model is extended to include an additional heat generation term (see

Section 3.2.2.1), named here as a “simmering reaction”, specific for the cells under study.

The venting sub-model describes the internal pressure increase of the cell throughout TR

and the heat lost upon venting for rigid body cylindrical cells. This is developed beyond

the literature to take account of CO2/DMC mixture at bubble point, see Section 3.2.3.2.

3.2.1 Heat Transfer Sub-Model

The heat transfer in a single cell is governed by the energy balance between the rate of heat

generated inside the cell and the rate of heat dissipated from the cell to the environment

[37]. It is assumed that no convective heat transfer within the liquid electrolyte occurs

inside the jelly roll. This is because the flow of the electrolyte is assumed to be restricted

by the porous structures it occupies. Hence, the conservation of heat energy within the

cell is described by Fourier’s Law for a solid body:

ρCp
∂T

∂t
+∇q = Q (3.5)

where ρ (kg/m3) is density, Cp (J/kg K) is the specific heat capacity, T (K) is temperature.

Cp is used instead of Cv as, under normal conditions, it is assumed that the cell (composed

of 85% to 95% solid materials with the remainder liquid) can be represented by a solid

body that has negligible change in volume when heated and is also subjected to constant

atmospheric pressure. The conductive heat flux, q (W/m), is described as:

q = −κ∇T (3.6)
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Figure 3.6: Coupling of sub-models within the AAM (reproduced from [250]).

where κ (W/m K) is the thermal conductivity coefficient. At the surfaces where heat

transfer to and from the cell is applicable, assuming convective and/or radiative heat

transfer can be present, the boundary condition is then:

n · q = hconv(Tenv − Tsurf ) + εσ(T 4
env − T 4

surf ) (3.7)

where n·q (W/m2) is the heat flux normal to the surface, hconv (W/m2 K) is the convection

coefficient, ε is the emissivity value, σ is the Stefan-Boltzmann constant (W/m2 K4), while

subscripts surf and env denote the surface and environmental temperatures respectively.

The heat generation term Q (W/m3) in Eq. (3.5) can include various sources. At

present, in this work, the source terms considered are from: the 4 classical decomposition

reactions, encompassed in Qdecomp (W/m3);the simmering reaction, Qsmr (W/m3); and

heat loss by venting, Qvent (W/m3). Hence, Q can be written as:

Q = Qdecomp +Qsmr +Qvent (3.8)

The definitions of the terms on the right-hand side of Eq. (3.8) are given in the following

sections.

3.2.2 Abuse Sub-Model

Here the four most commonly considered and fundamental reactions involved in the TR

of Li-ion cells are discussed. They are the solid electrolyte interface (SEI) decompo-

sition, reaction of intercalated lithium with electrolyte at the negative electrode (NE),

positive material decomposition (PE) and electrolyte decomposition (E) [78]. The gov-

erning equations, Eqs. (3.9) to (3.15), for these reactions are following those outlined by

Refs. [99, 128, 146].
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The rate of reaction, Rx (1/s), for the SEI, positive and electrolyte reactions are de-

scribed by Eq. (3.9). This form is used as it describes the general equation for the thermal

decomposition of solids, simplified from MacNeil and Dahn [183]. T Where subscript x cor-

responds to one of the reactions sei, pe or e. Ax (1/s) is the frequency factor, Ea,x (J/mol)

is the activation energy, R and T the ideal gas constant (8.3145 J/mol K) and temperature

(K) respectively, Cx (1) the reaction species while ix (1) and jx (1) are constants.

Rx = Axe

(
−Ea,x
RT

)
Cixx (1− Cx)jx (3.9)

The negative electrode reaction in Eq. (3.10) is similar, with the additional term taking

account of the change in thickness of the SEI layer as it decomposes. Where tsei (1) is the

non dimensional thickness of the SEI layer and tsei,0 (1) the initial thickness.

Rne = Anee

(
−Ea,ne
RT

)
Cinene (1− Cne)jne e

(
−tsei
tsei,0

)
(3.10)

The change in reaction species for each decomposition reaction and SEI layer thickness

is given by Eqs. (3.11) to (3.15).

∂Csei
∂t

= −Rsei (3.11)

∂Cne
∂t

= −Rne (3.12)

∂tsei
∂t

= Rne (3.13)

∂Cpe
∂t

= Rpe (3.14)

∂Ce
∂t

= −Re (3.15)

The volume specific heat generation terms Qx (W/m3) from each decomposition reac-

tion are given in Eqs. (3.16) to (3.19). In which, Hx (J/kg) is the specific heat of reaction

and Wcarbon (kg/m3), Wpos (kg/m3) and We (kg/m3) are the volume specific content of
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carbon, positive active material and electrolyte respectively.

Qsei = HseiWcarbonRsei (3.16)

Qne = HneWcarbonRne (3.17)

Qpe = HpeWposRpe (3.18)

Qe = HeWeRe (3.19)

Hence, the total heat generation from the decomposition of the cell is:

Qdecomp = Qsei +Qne +Qpe +Qe (3.20)

and is used in Eq. (3.8).

3.2.2.1 Simmering Reaction

The cells under study in this work are observed to produce heat in a relativity low but

stable manner well after the main TR event. This is attributed to a slow unknown reaction

or set of reactions. Due to the behaviour which is observed, it is termed the “simmering

reaction”. Although the TR reactions considered in Section 3.2.2 are formulated using an

Arrhenius function, typical of chemical reactions, this form is not used for the simmering

reaction. This is because of the unknown nature of the simmering reaction, i.e. the

reactive pathways/species and rate limiting factors, that make quantifying the parameters

of the Arrhenius function difficult. A typical Arrhenius function requires activation energy,

frequency factor, reaction heat, specific mass and reaction species, hence, to reduce the

number of unknown parameters, a simple formulation to describe the simmering reaction,

Qsmr (W/m3), of the LFP cell is presented, see Eq. (3.21):

Qsmr =

 0 before venting

Qmaxsmr

Tave − T1
T2 − T1

tsmr at and after the point of venting
(3.21)

Arbitrarily, before venting the simmering reaction is considered to be zero. After venting,

the simmering reaction is assumed to be a function of an estimated maximum reaction

heating power, which is linearly related to two dimensionless terms. The first is a function
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of the average cell temperature and the other a function of time. The average cell tem-

perature is limited between bounds, see Eq. (3.22), and determined through parameter

fitting the TR model when applied to oven simulations. The linear temperature relation

and temperature bounds are implemented such that during the main TR event (i.e. the

decomposition of the four major reactions) the simmering reaction is restricted This is

done on the assumption that in reality the reaction would be limited by the availability

of reaction species and/or oxygen. However, this formulation still allows the simmering

reaction heat generation rate some dependence on the cell temperature after the main

TR event. In turn, the formulation encompasses the complex interdependent relationship

between the cell temperature, reaction rate and (theoretical) species generation/ oxygen

availability of, what is considered to be, a metastable reaction after the main TR event.

T1 ≤ Tave ≤ T2 (3.22)

The term tsmr in Eq. (3.21), defined by Eq. (3.23), determines the length of time the

simmering reaction proceeds for, linearly reducing from 1 to 0 over the time interval

tsmr,length (i.e. the assumed length of the simmering reaction). In Eq. (3.23), t is the

simulation time, in s, and tvent (s) is the time at which venting occurs. The following

conditions are assumed: tsmr = 1 at t = tvent, and tsmr = 0 at t = tsmr,length. The

quantity tsmr is estimated, assuming possible periods over which the reaction is sustained,

while also being fit (through oven simulations) such that the temperature gradient of the

cell, long after the main TR event, is predicted well.

tsmr = max

(
tsmr,length − (t− tvent)

tsmr,length
, 0

)
(3.23)

Through fitting, the parameters of Eq. (3.21) and Eq. (3.23) were determined to be Qmaxsmr =

85 kW/m3, T1 = 120°C and T2 = 218°C, while tsmr,length = 600 min was estimated.

The above methodology provides a description of the simmering reaction that can be

easily parametrised. This considers the complex slow rate reactions that are present for

relatively long time frames from unknown reaction pathways and species.

3.2.3 Venting Sub-Model

The venting of a cell is governed by the internal cell pressure. A new methodology is

developed here to determine the cell pressure from bubble point pressure of the CO2/DMC

mixture. This is termed the bubble point venting (BPV) method. This new method is

developed based on the work by Coman et al. [199], in which the pressure is calculated from

the liquid saturation and gas pressures. This is referred to as the partial pressure venting

(PPV) method. The PPV method is reproduced for comparison with the BPV method.

An overview and comparison of these methods is shown in Fig. 3.7. The remainder of this

section discusses the governing equations of PPV method as developed by Coman et al.
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Figure 3.7: Comparison of theory behind venting sub-model methodologies.

[199]. Subsequently, Section 3.2.3.1 discusses the coupling of the vent model to the other

sub-models, while Section 3.2.3.2 discusses the development of the BPV method.

The venting sub-model describes an unsteady flow energy and mass balance for an

open system, with the following assumptions outlined by Coman et al. [199]:

� The enthalpy of the electrolyte mixture is averaged between the saturated liquid

henth,l [kJ/kg] and saturated vapour henth,vap [kJ/kg] phases (note the enthalpy of

vaporization henth,vap is more commonly denoted by the subscript fg i.e. hfg or in

the notation used here henth,fg):

henth = henth,l + xhenth,vap (3.24)

where x is the vapour fraction, which is the ratio of the mass of electrolyte vapour

me,v over the total mass of electrolyte me:

x =
me,v

me
(3.25)

� The liquid and solid phases are assumed incompressible, while the vapour and gas

phases are assumed to have ideal gas behaviour. During venting, as the system

temperature and pressure remain away from critical values, the ideal gas assumption

is assumed to hold for the vapour.

� As the amount of gas in the system is small, the energy contribution from the gas

phase is neglected from the energy balance.

� Only the Dimethyl Carbonate (DMC) component of the electrolyte is considered as

it is the major component, while the LiPF6 salts are ignored.

� No solid mass is considered to be transported away within the ejecta during venting.
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For an open system, Eq. (3.26) describes the general unsteady energy equation con-

sidering enthalpy change [150, 199]. This is derived from the general energy equation

considering internal energy. This is achieved as it is assumed that the solid and liquid

phases are incompressible. Hence, the contributions to internal energy change from solid

or fluid volume change are zero [150], further as it is an open system there is also no

change in pressure. So internal energy can be represented by enthalpy alone.

∑
Q̇net − ṁouthenth,out =

d(mhenth)

dt
(3.26)

where Q̇net [W] contains any heat source and heat flux terms, mass loss from the system

is given by ṁout [kg/s], henth [kJ/kg] is the enthalpy of the electrolyte mixture, m and h

are the mass and the specific enthalpy of the entire system respectively.

For the closed system, prior to the vent opening, the mass loss ṁout is zero and hence

the mass of electrolyte remains constant. However, for the open system, after the burst

pressure is reached and the vent opens, the mass loss can be calculated by:

ṁout = −dme

dt
(3.27)

The enthalpies for each phase are given by:

henth,s = Cp,s(T − Tref ) (3.28)

henth,l = Cp,l(T − Tref ) (3.29)

henth,v = Cp,v(T − Tref ) (3.30)

where the enthalpy is measured against a reference temperature of 0 K.

Taking the general unsteady energy equation, Eq. (3.26), and replacing the appropriate

parameters with those described by Eq. (3.24), Eq. (3.25) and Eqs. (3.27) to (3.30). The

energy balance for a 0D system, which can be solved to determine the temperature of the

cell, becomes:

{msCp,s +me [(1− x)Cp,l + xCp,v]}
dT

dt
=
∑

Q̇net

−me
dx

dt
henth,vap − henth,vap

dme

dt
(x− 1) (3.31)

where ms [kg] is the mass of the cell’s solid components i.e. electrodes, separator and

current collectors and cell case, Cp,s, Cp,v and Cp,l (all in kJ/kg) are the specific heats of
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the solid components, electrolyte vapour phase and electrolyte liquid phase respectively,

dT/dt [K/s] is the temperature rate of the cell and dx/dt [1/s] is the rate of change of the

vapour fraction. The average specific heat for the combined solid components is calculated

by:

Cp,s =

∑
Cp,imi

ms
(3.32)

where the index i corresponds to the individual cell components e.g. carbon anode (ano),

LFP cathode (cath), copper foil (Cu), aluminium foil (Al), polymer separator (sep) and

steel case (steel).

The vapour fraction, x, is calculated from the following equation:

dx

dt
= −dme

dt

ve
mevlv

− xdvlv
dt

1

vlv
− dvl

dt

1

vlv
(3.33)

where the specific volume of the electrolyte mixture ve [m3/kg] is given as:

ve = vl + xvlv (3.34)

and vlv [m3/kg] is the difference in the specific volumes of the saturated vapour vv and

the saturated liquid vl, given by:

vlv = vv − vl (3.35)

The relations defining the specific volumes of saturated vapour and saturated liquid for

DMC are defined later, in Chapter 5 when parameters are defined for specific modelling

scenarios, along with other material properties of DMC.

The mass flow rate, dme/dt, is calculated assuming the vented electrolyte mixture

behaves as a gas passing through a nozzle, for which the isentropic flow equation can be

applied [143, 199]:

dme

dt
= −uPventAvent

RDMCTvent
(3.36)

where u [m/s] is the vapour velocity, Pvent [kPa] is the pressure at the outlet of the vent,

Avent [m2] is the cross-sectional area of the burst disk opening, RDMC [kJ/kg K] is the gas

constant of the electrolyte, and T [K] is the temperature of the vent gas at the outlet.

For the assumed isentropic venting process, the variables Pvent, Tvent and v are defined

as [199, 251]:

Pvent =
P(

1 +
γ − 1

2
M2

) γ
γ−1

(3.37)
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Tvent =
T

1 +
γ − 1

2
M2

(3.38)

v = M
√
γRDMCTvent (3.39)

where P [kPa] is the internal cell pressure, γ is the ratio of specific heats for the electrolyte

mixture, M is the Mach number and T [K] is the average cell temperature. This work,

following [199], assumes the vapour is calorically perfect, leading to a constant specific

heat ratio. Before venting occurs, and no flow is present, then Pvent and Tvent equal P

and T respectively. The Mach number is determined by the following equation [199, 251]:

M =


0 if P < Pburst no flow√

2
γ−1

[(
P

Pamb

) γ−1
γ − 1

]
if Pamb > P

[
2

γ + 1

] γ
γ−1

subsonic flow

1 if Pamb ≤ P
[

2
γ+1

] γ
γ−1

choked flow

(3.40)

Prior to venting due to the lack of flow M = 0, while Pburst is the pressure limit of the

burst disk (at all times).

The internal cell pressure is defined as the sum of the partial pressures of the electrolyte

vapour Psat and decomposition gases Pg. Hence, the internal cell pressure is:

P = Psat + Pg (3.41)

The saturation pressure of the mixture is defined specifically for the DMC electrolyte later

in Chapter 5. In general, Psat is only valid when the system is closed. This is because the

system cannot be in vapor-liquid equilibrium when it is open. Hence, Psat vanishes at the

point of venting. The partial pressure of the gas is calculated using the ideal gas law:

Pg =
mgRgT

Vh
(3.42)

where mg [kg] is the mass of gas, Rg [J/kg K] is the gas constant and Vh [m3] is the head

space volume of the cell that the electrolyte vapour and decomposition gases occupy. The

head space volume is defined as:

Vh = ηhVcell (3.43)

where Vcell [m3] is the overall cell volume, and ηh is the estimated fraction that the cell’s

void volume occupies compared to the overall volume.
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The initial value for the mass of gas in the cell is calculated from the ideal gas law,

taking account of the partial pressure of the electrolyte vapour:

mg,0 =
[P0 − Psat (T0)]Vh

RgT0
(3.44)

where the equation is solved for the initial values of pressure (P0) and temperature (T0).

The change in mass of gas, Eq. (3.45), is determined by using the reaction rate dCrxn/dt

from the abuse sub-model:

dmg

dt
= −mg,rxn

dCrxn
dt

+
dme

dt
(3.45)

The first term on the right-hand side of Eq. (3.45) governs the gas production rate, where

mg,rxn is the maximum amount of gas produced by the decomposition reactions. The

reaction rate (dCrxn/dt), used to determine the gas production, is calculated from the

overall decomposition of the cell, Crxn. Here, in the development of the AAM, an averaged

and normalised reaction rate of all reactions is used, see Eq. (3.46). This is unlike Coman

et al. [199] that only considers the SEI reaction. Considering all reactions allows for

the importance of individual reactions on gas generation and venting to be determined.

Although it is known that secondary and interdependent reactions occur during TR [252],

here for simplicity and compatibility with typical TR modelling [e.g 38], the gas generation

governed by Eq. (3.46) is only dependent on the primary (SEI, NE, PE and electrolyte)

reactions. Further, the formulation of Eq. (3.46) implies equal weighting of reactions to

the overall decomposition of the cell. Inherently, following on from this, the maximum

amount of gas produced is equally split over the four reactions. The second term on the

right-hand side is the mass flow from the system, as defined by Eq. (3.36).

Crxn =

Csei
Csei,0

+ Cne
Cne,0

+
1−Cpe
1−Cpe,0 + Ce

Ce,0

4
(3.46)

Within the calculation of the average cell decomposition value, Eq. (3.46), each reaction

species (for the SEI, NE and electrolyte reactions) is normalized by its respective initial

value. For the PE reaction this is additionally standardised through one minus the reaction

species. This is because unlike the other reactions the PE reaction initiates at 0 not 1.

In turn, each of the four terms on the right-hand side of Eq. (3.46) are initially at 1, and

tend to 0 as the cell undergoes TR.

3.2.3.1 Complete Coupling of the Three Sub-Models

To couple the 0D venting sub-model to a non-zero dimensional heat transfer sub-model

minor alterations have to be made. First, the mass loss of electrolyte, governed by the

venting model, has to be incorporated into the definition of the total mass of electrolyte,
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me. Hence, me is rewritten as:

m∗e = m0
e −m0

e,vent +me,vent (3.47)

where m0
e is the total initial mass of electrolyte in the cell, m0

e,vent is the amount of elec-

trolyte estimated to be ejected upon venting, while me,vent is the amount of electrolyte

ejected as a function of time. This formulation is used as during venting the model would

otherwise predict total loss of electrolyte. As such, the model is limited to ejecting m0
e,vent

amount of electrolyte. The value of m0
e,vent is fitted such that the model predicts a magni-

tude of temperature drop upon venting comparable to that observed in the experimental

data. Hence, upon venting, me,vent tends from m0
e,vent to 0. The change in me,vent is

determined by:

dme,vent

dt
= −uPventAvent

RDMCTvent
(3.48)

replacing Eq. (3.36).

From the energy balance equation, Eq. (3.31), two relations can be defined such that

the 0D venting sub-model can be coupled to the heat transfer-abuse model. These are the

heat loss during venting Qvent and the change in cell heat capacity mcellCp,cell. From the

right hand-side of Eq. (3.31), Qvent can be defined as:

Qvent = −m∗e
dx

dt
henth,vap − henth,vap

dm∗e
dt

(x− 1) (3.49)

while from the left hand-side, mcellCp,cell can be defined as:

mcellCp,cell = msCp,s +m∗e [(1− x)Cp,l + xCp,v] (3.50)

The average cell properties mcell and Cp,cell are known, as they have been determined

experimentally in Section 4.2.1. In addition, the physical properties for the DMC elec-

trolyte and an assumed electrolyte mass (taken from literature) are also known. Hence,

relations to estimate the mass and specific heat capacity of the solid components can be

defined. The mass of solid components can be determined from:

mcell = ms +m∗e (3.51)

whereby substituting in the relevant initial values of cell mass and electrolyte mass gives

a value for the non-time varying mass of the solid. The solid mass is taken to be constant

as it is assumed that:

1. No solid component material is lost during venting
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2. The conversion of mass from solid to gas can be neglected in terms of mass balance.

This is because the mass of gas generated by decomposition of relevant materials is

negligible (on the order of 1× 10=3 g).

Similarly, in order to simplify and due to a lack of data on the cell’s temperature depen-

dent specific heat capacity at temperatures seen under thermal abuse, the specific heat

capacity of the solid components are assumed to be constant. The specific heat of the solid

components can be estimated from Eq. (3.50) by re-arranging for Cp,s and substituting in

relevant initial values. Thus Eq. (3.32) can be replaced from the fundamental 0D venting

model. With ms and Cp,s known, relevant time varying physical properties, i.e. density

and specific heat, for the cell can be defined as:

ρcell,t =
ms +m∗e
Vcell

(3.52)

and

Cp,cell,t =
msCp,s +A

ms +m∗e
(3.53)

where

A =

{
m∗e [(1− x)Cp,l + xCp,v] before venting

(m0
e −m0

e,vent)C
DMC
p,l after venting

(3.54)

The time varying specific heat capacity of the cell (Eq. (3.53)) is only valid up to the

point of venting. After venting the remaining electrolyte is assumed to be completely in

the liquid phase. With this assumption the electrolyte takes a specific heat capacity value

for pure liquid DMC at the initial temperature, not in a saturated phase. This assumption

is undertaken for simplicity. This is because the constitution of the DMC after venting is

hard to predict. This in itself is due to:

1. the data for the DMC electrolyte physical and thermodynamic properties are only

defined up to temperatures of 600 K, this is below the maximum cell temperature

observed experimentally (see Section 4.2.3), and

2. for temperatures at and above the experimental venting temperature, and at at-

mospheric pressure (i.e. assumed cell properties after venting) the saturation table

states that the DMC would be in the gas phase.

From this it is clear that the assumption of the DMC electrolyte being in the liquid phase

after venting is significant. However, this has not been explored further as the prediction

of the transition from liquid to gas is difficult and beyond the scope of this work.
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Finally, as the abuse model is dependent on mass of reactants, i.e. me, the specific

mass of electrolyte is replaced by:

We =
me

Vjelly
(3.55)

3.2.3.2 Venting-Sub Model Development: Bubble Pressure

The BPV method is developed to account for the correct phase equilibria of the CO2/DMC

system, rather than assume an ideal mixture of an ideal gas and a saturated liquid as in

PPV method. The BPV method is governed by the mole fraction xb, which is the bulk

ratio of moles of CO2 to total moles of the CO2/DMC mixture (see Eq. (3.57)), while

the vapour-liquid fraction is not calculated. This is to avoid iteratively determining the

vapour-liquid fraction and mole fraction of each component in each phase, as this would

be slow to calculate and beyond the scope of this work. As such, the vapour properties

are neglected from the BPV method as the amount of vapour is assumed to be small and

has negligible effect on the thermo-physical properties. Hence, fluid parameters (i.e. the

heat of vaporisation hvap,b, specific heat of the liquid phase Cmixp,l and internal cell pressure

Pbubble) are redefined for the CO2/DMC mixture in terms of temperature, T and xb. The

re-defined governing equations are presented below (Eqs. (3.56), (3.61) and (3.65)), after

the method in which the bubble pressure properties are determined has been discussed.

To determine the thermodynamic properties of the CO2/DMC mixture, the commercial

software REFPROP - NIST Standard Reference Database [253] was employed. Data was

taken from the saturation tables for a liquid at bubble point with coexisting vapour, over

the temperature range 270 K to 460 K, repeated for various liquid phase mole fraction ratios

from 0.0001/0.9999 to 0.1/0.9 (CO2/DMC). Data was only taken over this temperature

range as the bubble point assumption is only valid up to the point of venting, which occurs

at approximately 450 K. The bulk mole fraction only goes up to 10% CO2 as the gas

generation estimated from Coman et al. [199] leads to a mole fraction significantly under

this value. Within REFPROP, the mixing rule used was the KW0 Generalized mixture

model with the following coefficients: βT = 0.967, βV = 1, γT = 1.0856, γV = 0.9926,

Fij = 1.5222. The reference states used were those set as default within REFPROP, being:

h = 1170 kJ/kg, s = 11.7 kJ/kg K, T = 298.15 K and P = 0.001 MPa.

From the methods described above the bubble pressure, the liquid and vapour phase

enthalpies, and the liquid phase specific heat capacity are determined. The internal cell

pressure is determined by the bubble pressure of the mixture, replacing the sum of the

partial pressure in Eq. (3.41):

Pbubble = 5.652− 3.531×10−2T − 42.38xb + 5.495×10−5T 2

+ 0.1643Txb − 11.56x2b
(3.56)
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where T is temperature and xb is the mole fraction:

xb =
mg/Mg

mg
Mg

+ m∗e
MDMC

(3.57)

where m∗e is described by Eq. (3.47), and mg by Eq. (3.45). In order to determine the

initial mole fraction x0b , the initial amount of gas in the bubble pressure model is set to the

same value as used in the Coman et al. [199] model as to make a fair comparison between

methods.

The heat of vaporisation of the CO2/DMC mixture is not given by REFPROP. How-

ever, the isobaric heat of finite vaporisation can be estimated from the definite integral of

the isobaric heat of infinitesimal vaporisation, qP , as described by Akasaka et al. [254]:

qP |ωa→ωb =
1

ωb − ωa

∫ ωb

ωa

qP (ω)dω

=
henth(P, ωb)− henth(P, ωa)

ωb − ωa

(3.58)

where henth(P, ω) is the molar enthalpy of the system and ω is the dryness fraction, see

Eq. (3.59):

ω =
xsystem,i − xl,i
xV,i − xl,i

(3.59)

where xj,i are the mole fractions of the ith component for the phases j = system, l, v

(system, liquid and vapour). Hence, the total heat of vaporisation of a fluid at the bubble

point (ωa = 0) to the dew point (ωb = 1) can be estimated from Eq. (3.58), resulting in:

hvap,est =
henth(P, 1)− henthh(P, 0)

1− 0

= henth,v(P )− henth,l(P )

(3.60)

A similar relation can be described for the isothermal heat of finite vaporisation, where the

enthalpies are a function of T , not P . Hence, the reported liquid phase and vapour phase

enthalpies for a CO2/DMC mixture (from REFPROP) as a function of temperature can

be used to replace henth,v and henth,l in Eq. (3.60) at each system molar fraction. From

this, a function of the heat of vaporisation can be fit for each temperature and molar

fraction:

henth,vap,b(T, xb) =

4∑
i=0

4∑
j=0

ai,jT
ixjb (3.61)
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Table 3.2: Quality of Fit of Pbubble, C
mix
p,l and henth,vap,b Functions.

Pbubble Cp,l
mix hvap,b

R2 0.9995 0.9993 0.9930
RMSE 0.0209 0.0038 8.4910

where the coefficients ai,j are given by Eq. (3.62).

ai,j =


365.2 2.091×104 −6.206×105 5.114×106 −1.128×107

2.917 −7.097 911.4 −6355 0

−1.359×10−2 −6.391×10−2 3.152×10−1 0 0

1.799×10−5 −1.194×10−5 0 0 0

−6.189×10−9 0 0 0 0

 (3.62)

The enthalpy of vaporization for the bubble pressure model is denoted by hvap,b.

The updated heat of vaporisation, henth,vap,b, is used in the determination of the venting

cooling power:

Qvent,b = henth,vap,b
dmmix

dt
(3.63)

where mmix is the total mass of electrolyte and gas mixture as given by Eq. (3.64), and
dmmix
dt is only valid upon venting.

mmix = m∗e +mg (3.64)

The specific heat capacities for the liquid phase and vapour phase utilized in Eq. (3.50)

and Eq. (3.53) are replaced by:

Cmixp,l = 2.111−3.312×10−3T − 0.614xb + 7.959×10−6T 2

+ 2.031×10−3Txb + 4.997×10−1x2b
(3.65)

The polynomials of Pbubble, C
mix
p,l and henth,vap,b have R2 and RMSE values as listed in

Table 3.2, and show a high quality of fit.

The specific heat capacities of the cell, solids and the heat loss due to venting are

re-defined as:

ρalt =
mcell

Vcell
=

ms +m∗e
πr2batthbatt

(3.66)

where ρalt is the alternate definition of cell density,

Cp,alt =
(msCp,s) + (Ab)

ms +m∗e
(3.67)
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Figure 3.8: Single cell geometry for AAM development. Left - cell schematic showing orientation of 1D
model geometry. Right - Detailed illustration of 1D geometry including the regions in which the specific
heat gain and loss terms are applied.

Cp,alt is the alternate definition of cell specific heat capacity, where Ab accounts for the

heat capacity of the electrolyte. Ab is a function of the liquid phase heat capacity of the

mixture before venting, while after venting it is a function of the DMC heat capacity as a

pure liquid; this is as defined for the previous model (see Eq. (3.54)).

Ab =

{
m∗eC

mix
p,l before venting

(m0
e −m0

e,vent)C
DMC
p,l after venting

(3.68)

The heat capacity of the solids is constant with time throughout the simulation and is

defined as:

Cp,s =
mcellCp,cell −m0

eC
mix
p,l (Tint, x

0
b)

ms
(3.69)

3.2.4 Model Geometry and Implementation

The AAM is developed over a 1D geometry, see Fig. 3.8, and represents an axi-symmetric,

one dimensional slice through an 18650 cylindrical cell. The heat transfer equations are

applied over the entire cell geometry, while the decomposition reactions and simmering

reaction are applied over the jelly roll domain. The venting sub-model is solved through a

coupled 0D component, see Fig. 3.6, from which the heat loss due to venting is determined

and applied over the entire cell geometry.

The model is developed in the commercial finite element modelling software COMSOL

Multiphysics [255]. The heat transfer sub-model is implemented using the relevant built-in

equations within COMSOL. The reaction rates of the abuse sub-model are implemented

through domain ordinary differential equations (ODEs), while the mass rate of the venting

sub-model is implemented by a global ODE.
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Start

Define model
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Define initial
conditions

Create model
components. Define
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varying T

Solve Eqs. (3.11)-
(3.15) to obtain
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Yes
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Figure 3.9: Flowchart showing the major steps of the model solution process for determining the values
of dependent variables and the occurrence of venting.

89



CHAPTER 3. METHODOLOGY

The process of solving the model is summarized in Fig. 3.9. It shows the steps taken

to solve the equations that govern the dependent variables. It is assumed the reader will

understand the interdependency of the steps presented and the equations that are not

referred to. It also shows the process of averaging the 1D temperature and decomposition

variables to be used in the 0D model. Further, it presents the condition at which venting

occurs, leading to the simmering reaction and calculation of electrolyte mass loss along

with the resulting change in material dependent variables.

3.3 Pack Model Description

The pack model is developed in consideration of key findings from the Literature Review

(Chapter 2). These key findings include:

� Modelling the decomposition reactions in all cells allowing for the propagation path

and severity to be quantified [70, 180, 225, 226, 229, 230];

� Typically inducing TR in the initiation cell by simulating an internal short circuit,

modelled by an initial high temperature [225, 229, 230], or by modelling a small

fraction of the cell’s electrochemical energy released over a prescribed time, i.e. 10 s,

in a specified volume of the jelly roll [70, 226];

� Accounting for tabs as they have been shown to be an important heat transfer path

[90], that can mean the difference between predicting a safe outcome if not accounted

for and an unsafe, TRP, outcome if considered [225];

� The location of the initiation cell, as TRP is more likely to occur when a cell initiated

into TR is in contact with the least number of neighbouring cells, and also when

these neighbouring cells are in contact with fewer cells, while cells packed closer

together lead to greater TRP severity [225, 230].

The battery pack is taken to be constructed of 9 LFP 18650 (1.5 Ah) cells, the same

cells as those studied throughout Chapters 4 and 5. The model geometry for the battery

pack is presented in Fig. 3.10. The 3-dimensional model is built in COMSOL Multiphysics

5.2a [255]. The cells are arranged in a square matrix (3 cells by 3 cells) with an inter-

cell spacing dcc, see Fig. 3.10(b), while air is assumed to fill intra-pack spacing, i.e. the

voids between cells. The cells are connected by an ‘S ’ shaped nickel busbar, representing

an arrangement of 9 cells in parallel. The cells are wrapped in a thin layer of shrink

wrapping (see Fig. 3.10(d)), while the pack is assumed to surrounded by air on all sides.

The geometrical dimensions and material properties of the cells and the pack are given in

Table 3.3.
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Figure 3.10: Pack geometry: a) pack with shrink wrapping (dimensions in m); b) pack without shrink
wrapping (dimensions in m) showing inter-cell spacing dcc > 0 mm, with cell reference numbers and abused
cell indicated (by red text); c) cut through the x-z plane at y=0 (for a pack where dcc = 0 mm) showing
the internal cell geometry; and d) enlargement of a cut through the x-z plane at y=0 showing the relative
thickness of shrink wrapping and cell case.
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Table 3.3: Pack study parameters.

Parameter Unit Value

Geometry
Cell height, hcell mm 65

Jelly roll height, hjelly
* mm 57.3

Cell radius, rcell mm 9
Jelly roll outer radius, rjelly mm 8.7
Mandrel radius, rman mm 2
Cell casing thickness, dcan

� mm 0.3
Wrapping thickness, dwrap

� µm 15
Tab thickness, dtab mm 0.15
Tab width, Wtab mm 5

Material Properties
Wrapping - specific heat, Cp,wrap

§ J/kg K 1,000

Wrapping - density, ρwrap
|| kg/m3 1,380

Wrapping - thermal conductivity, κwrap
|| W/m K 0.2

Wrapping - emissivity, εwrap
¶ - 0.5

Nickel - specific heat, Cp,Ni
|| J/kg K 440

Nickel - density, ρNi
|| kg/m3 8,890

Nickel - thermal conductivity, κNi
|| W/m K 90.9

Cell - specific heat, Cp,cell J/kg K Eq. (3.53)
Cell - density, ρcell kg/m3 Eq. (3.52)
Cell - axial thermal conductivity, κaxi,cell

¶ W/m K 30
Cell - radial thermal conductivity, κrad,cell

¶ W/m K 0.5

Cell - emissivity, εwrap
** - 0.8

Air - specific heat, Cp,air
�� J/kg K Eq. (3.70)

Air - density, ρair
�� kg/m3 Eq. (3.71)

Air - thermal conductivity, κair
�� W/m K Eq. (3.72)

Abuse Condition
Ambient temperature, Tamb °C 60
Initial pack temperature, Tint °C 60
Internal short circuit power, Pshort

�� W 1,728
Internal short circuit initiation time, tint,short s 2
Internal short circuit period, tshort s 10

Decomposition and Venting
Parameter sets MAH, MAL, MBH and MBL for individual cases.§§

*Mandrel is the same height as the jelly roll.
�Defines the vertical distance between the outer surface of the cell at the negative
terminal and the bottom of the jelly roll.
�Pack shrink wrapping.
§Value from Ref. [256].
||Value estimated from the ranges given in Ref. [257].
¶Estimated.
**From Ref. [258].
��From Ref. [255].
��Pshort = VcellQcell/tshort, where Vcell is the nominal cell voltage (V), here 3.2 V,
and Qcell is the cell capacity in Coulombs (C), here determined for a cell a with
1.5 Ah capacity.
§§See Table 5.6.
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Each cell geometry in the pack considers the main internal cell features, i.e. the

mandrel, jelly roll and cell casing, see Fig. 3.10(c). The height of the jelly roll (which

the mandrel is also equal to) and the thickness of the can are given in Table 3.3. The

difference in height between the jelly roll and the overall cell height represents the end

cap. The intricate structures of the end cap, such as the vent opening and burst disk, are

not represented.

The construction of the cell domains in this manner allows the volume specific heat

generation from the decomposition reactions to be correctly applied only to the jelly roll

region. For computational efficiency, simplifying the wound jelly roll structure to a single

domain, the cell is modelled as a single homogeneous material with a fixed average heat

capacity and density properties whilst considering anisotropic thermal conductivity, see

Table 3.3 for values.

The shrink wrapping is assumed to be Polyvinyl Chloride (PVC). The values of the

material properties of the PVC and the nickel tabs are listed in Table 3.3. The air material

is defined by COMSOL’s built in parameters for air [255]. The specific heat capacity,

thermal conductivity and density of air are defined by Eqs. (3.70) to (3.72) respectively.

For Eqs. (3.70) to (3.72), T represents temperature in kelvin, while Eqs. (3.70) and (3.71)

are valid over the temperature range 200–1600 K. Furthermore, P is pressure (Pa), R is the

ideal gas constant (8.314 J/mol K) and Mair is the molar mass of dry air (0.028 97 kg/mol).

Cp,air = 1047.63657− 0.372589265T + 9.45304214× 10−4T 2

− 6.02409443× 10−7T 3 + 1.2858961× 10−10T 4
(3.70)

κair = −0.00227583562 + 1.15480022× 10−4T − 7.90252856× 10−8T 2

+ 4.11702505× 10−11T 3 + 7.43864331× 10−15T 4
(3.71)

ρair =
PMair

RT
(3.72)

All heat transfer behaviours are governed by COMSOL’s inbuilt functionality of the

“Heat Transfer” package [255]. Within the pack, heat transfer by conduction through all

domains and surface-to-surface radiation between cells is considered, while convection in

the air domain is ignored. At the surface of the pack, the boundary conditions assume

free convection and radiation between the surface and the environment. The direction of

radiation for the surface-to-surface radiation between cells is controlled by opacity. The

free convection coefficients for the vertical walls and, the bottom and top surfaces, of

the pack are governed by the Nusselt number correlations for flat vertical and horizontal

plates. The convection coefficients are calculated through COMSOL’s external natural
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Figure 3.11: LFP pack abuse model flow chart.

convection option, for vertical walls (for the pack walls), horizontal plate upside (for the

top surface) and horizontal plate downside (for the bottom surface). The convection

coefficient is defined by the characteristic length, absolute pressure (101 kPa), and the

external air temperature. For the vertical walls the characteristic length is the height of

the walls, while for the horizontal surfaces it is the area of the surface divided by the

parameter of the surface.

The AAM, governed by the equations in Section 3.2.2 and Section 3.2.3, is used to de-

scribe the decomposition reactions and venting of each cell. The decomposition reactions,

for computational simplicity, are solved as a 0D problem for each cell. The temperature

variable in the Arrhenius formulations and venting formula for each cell are set to be the

average temperature of the jelly roll for each cell respectively. From the 0D decomposition

reactions, the calculated volumetric heat generation of each cell is applied over the jelly

roll domain of each respective cell. The volumetric heat loss due to venting of a cell is

applied over the entire cell. The coupling between the 3D heat transfer model and the 0D

AAM is shown in Fig. 3.11.
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The abuse of the battery pack is considered to occur under a worst case scenario, i.e.

the pack is initially at a high temperature, 60°C, which is representative of the maxi-

mum operating temperature of the cell as stated by the manufacture [259], and exposed

to high environmental temperatures, also 60°C. TR is induced in the initiation cell by

assuming a large internal short circuit. This is simulated by releasing 100% of a single

cells electrochemical energy (Ecell = 17.28 kJ) for a period (∆tshort) of 10 s over the jelly

roll domain. The volume specific power of the short, Qshort (W/m3), is governed by a

rectangular function:

Qshort =
Pshort
Vjelly

Π(t) (3.73)

where Π(t) is the rectangular function,

Π(t) =


0 if t < 2 s

1 if 2 s ≤ t < 12 s

0 if t ≥ 12 s

(3.74)

and Pshort is the heating power of the short,

Pshort =
Ecell

∆tshort
(3.75)

A corner cell (in this case cell 1, see Fig. 3.10(b)) is taken to be the cell abused by

an initiation scenario. Again this is to study a worst case scenario, as the literature

suggests that the cell in contact with the pack case (environment boundary) and that is

also neighbour to the least amount of cells will cause the worst TR event.

Figure 3.12 presents the meshed geometry (with the air and wrapping domains re-

moved). The meshed geometry contains 110 622 domain elements, which, for the governing

equations applied leads to 223 551 degrees of freedom.

Two simplifications are made to the model regarding physics implemented, 1) exclusion

of electrochemical behaviours, which can be used for calculating Ohmic heating through

failed cells when cells are connected in parallel, and 2) exclusion of heat transfer my

vent gas convection or gas combustion and flame behaviour. Both of these simplifications

ignore important heat sources [90, 180, 231]. Although electrochemical behaviour and

related heating is important for an exact understanding of risk, a simplified model purely

accounting for abuse behaviour, such as the one here, can still provide practical information

on the possibility of TRP occurring. The results from the model can identify important

heat transfer pathways and aid the design of mitigation strategies. The exclusion of

heat transfer by vented gas can be applicable in situations when cells are free to vent

to the atmosphere such that gases/flames are not contained within the pack [224, 231].

Furthermore, it is applicable in cases where a cell’s ejecta/flame does not directly impinge

on other cells, i.e. in cells arranged side-by-side (as in this case), unlike cells arranged end-
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Figure 3.12: LFP pack - mesh.

to-end (along the axis of 18650 cell) where the vent of one cell directs towards the negative

terminal of others [222, 245, 260]. As this pack is held together by shrink wrapping, any

gases/flames generated are assumed to be able to easily escape through destruction of

the wrapping local to the positive terminal, hence heat transfer by gases/ flames can be

neglected here.

3.3.1 Preliminary Studies

For the aid of determining the robustness of the pack model, two preliminary studies

are undertaken to investigate two important considerations that can affect predictions.

The first determines the effect of model dimensionality on predictions, while the second

determines the effect of model mesh density on predictions. These studies are presented

below.

3.3.1.1 Model Dimensionality

The parameterisation of the single cell LFP model was done using a 1D geometry, however,

the pack model (described in detail in Section 3.3) utilises a 3D geometry for heat transfer,

while solving the AAM in 0D. Hence, it is of importance to investigate the effect of cell

geometrical dimensionality on the results of comparable simulations. This is to determine

if any changes occur in predictions and ensure no significant differences are present that

could affect the quantification of safety and TRP.
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To carry out this investigation, a comparison is made between oven temperature sim-

ulations using both the 1D and 3D single cell models. The parameterised 1D model,

utilising parameter set MAL, was used as a reference value. The 3D model of the cell uses

the exact same parameters as the 1D model, while for a fair comparison, the end caps

(terminals) of the 3D cell are taken to be insulated. This removes additional heat transfer

surfaces that are not accounted for in the 1D model, while all other boundary condition

remain the same. The 3D model is meshed using COMSOL’s Physics-controlled Extremely

Coarse Mesh [255] (the same meshing criteria used later for the pack model), resulting in

3,006 domain elements. See M1 of Fig. 3.14 for a depiction of the mesh for this study,

and the corresponding row of Table 3.4 for the related computational degrees of freedom.

3.3.1.2 Model Dimensionality Results and Discussion

Figure 3.13 compares the results of the 1D model for the LFP cell under study and the

3D heat transfer/ 0D abuse model. The 1D model is reproduced from Chapter 5 for

the model with parameters MAL, while the 3D model used identical parameters to this.

Figure 3.13(a) shows the predicted cell surface temperature for the entire time period for

the two simulation studies and also the experimental data of cell surface temperature.

Figure 3.13(b) shows an enlarged view of the cell surface temperature around the vent-

ing event. Figure 3.13(c) shows the average cell decomposition species, with dominant

reactions highlighted that lead to the reduction in average reaction species throughout

simulations. Figure 3.13(d) shows the average jelly roll volume temperature from simula-

tions.

From Figure 3.13(a) three differences in predictions between the 1D and 3D models

can be seen: 1) the 3D model heats up quicker; 2) the location of peak cell temperatures

are different; and 3) the severity of TR (i.e. maximum cell surface temperature reached)

is less for the 3D model.

As stated above, the 3D model heats quicker. However, as the end caps are insulated

in this comparison, then axial heat transfer can be ruled out as an additional heat transfer

surface and not a factor leading to more rapid heating in the 3D model. Even though the

3D model heats up quicker than the 1D model, the time to venting (as a reference point)

only advances by 1 min under either oven temperature exposure, see Fig. 3.13(b). This is

due to the higher temperatures in the 3D model (early on) leading to initial decomposition

occurring sooner than for the 1D model, see Fig. 3.13(c), hence gas production and venting

are earlier.

The advance in surface temperature remains until just prior to the maximum tempera-

ture (~26 min) for the lower oven temperature case. This coincides with the end of the NE

reaction. Under the higher oven exposure temperature, the advance in surface temperature
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Figure 3.13: Comparison of oven temperature simulations of a single cell with different dimensionalities.
(a) maximum surface temperature, (b) enlargement of venting event, (c) average cell decomposition and
(d) average jelly roll temperature.
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Figure 3.13 (cont.): Comparison of oven temperature simulations of a single cell with different di-
mensionalities. (a) maximum surface temperature, (b) enlargement of venting event, (c) average cell
decomposition and (d) average jelly roll temperature.
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remains until just prior to the occurrence of the fast decomposition reactions (~15 min),

see Fig. 3.13(a). This has implications on the time to maximum cell temperature.

Although the 3D model heats up quicker, only the lower oven temperature case reaches

a peak temperature sooner than the 1D model. In the higher oven temperature case, the

3D model has a delayed rapid temperature rise compared to the 1D model, and hence

delayed peak temperature. This is attributed to the fact the 1D model assumes a jelly roll

the length of the cell, while the more realistic 3D representation has a smaller jelly roll

volume than the 1D model. Hence, the total heat produced in the 3D model is less due

to volumetric heat generation being applied over a smaller volume than in the 1D model.

As such, at each stage of TR, less heat is produced.

With this, at temperatures below 200°C there is a low rate of reactivity (as seen

by the change in species Fig. 5.7) and hence a low rate of heat generation by energetic

reactions, so the temperature is dominated by convection from the oven. However, above

this temperature the rapid PE and electrolyte reactions have an increasing contribution

to heat generation (leading to greater NE heat generation). But, as stated previously,

in the 3D model the total heat generation is lower for a given temperature. Therefore,

the TR positive feed back loop is weaker and the occurrence of the rapid reactions are

delayed, leading to a delayed maximum temperature. This behaviour is less apparent in

the lower oven exposure case as severe reactions do not occur, hence peak temperatures

are not delayed. Further to this, it can be seen from Fig. 3.13(c), particularly for cells

abused at 180°C, that the reaction rates are greater in the 1D case (inferred from the

steeper gradient of the average reaction species) than the 3D model, when the fast PE

reactions are present, due to the higher average jelly roll temperature in the 1D model,

see Fig. 3.13(d).

Similarly, due to the smaller jelly roll volume, there is less total heat produced which

leads to lower overall severity of TR in both cases of the 3D model compared to the

1D model. For the higher oven temperature case, the reduction in predicted severity is

seen by a maximum temperature prediction 25°C lower than the experimental value, see

Fig. 3.13(a). The difference is greater in the higher oven temperature case as more heat is

produced by decomposition (~10.5 kJ compared to ~3.4 kJ for the higher and lower oven

exposure cases respectively, see Table 5.7), than for the lower oven temperature case where

maximum temperature is greatly dominated by the oven temperature.

Although Fig. 3.13 has shown that there are overall differences between using the 1D

and 3D model, these are slight, and the 3D model produces an acceptable prediction of

TR. Hence, with the knowledge of the small delay to the occurrence of the TR event and

the slight reduction in predicted TR severity, simulations and analysis of a pack can be

undertaken considering (with the use of the 3D model) propagation may be postponed due

to the delayed TR event of a cell or, if propagation is boarderline, cautious assessments of

safety should be made considering the under prediction of severity.
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Table 3.4: Number of mesh elements for each mesh study.

Mesh ID
No. of

elements
DOF

Extremely coarse M1 3,006 4,576
Extra coarse M2 5,368 8,053
Coarser M3 10,303 15,394
Coarse M4 22,150 32,342

Figure 3.14: Meshes of geometry for each mesh study.

3.3.1.3 Mesh Analysis

A mesh analysis should carried out to determine the effect of mesh density on TRP predic-

tions. However, due to computational limitations, the 3D pack model has to be simulated

using an “extremely coarse” mesh, which also prevents undertaking a mesh analysis on

the pack its self. Hence, the 3D single cell model is used as an approximation for the pack

to determine if there are any changes in predictions between an “extremely coarse” mesh

and relatively finer meshes that could significantly affect the quantifications of cell safety

and hence pack TRP potential.

Initially, the same 3D model is used as in the dimensional analysis above, while abuse

is only carried out by oven exposure at 218°C. Further simulations are performed at

increasing mesh densities. The mesh is selected through and controlled by COMSOL’s

Physics-controlled Mesh [255] options. The number of mesh elements for each simulation,

with corresponding degrees of freedom, are presented in Table 3.4, while Fig. 3.14 show

the meshes for each refinement.

3.3.1.4 Mesh Analysis Results and Discussion

Figure 3.15 presents the relative error of simulations using meshes M1–M3 when calculated

against the results of the simulation using the finest mesh, M4. The relative error is

overlaid on the cell surface temperature results of the simulation using mesh M4. Three

instances in time are annotated on Figure 3.15. These are: I – the point of venting, II –
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Figure 3.15: Mesh sensitivity study of a single cell under oven abuse. Annotations indicates times at
which significant relative errors occur.

a short time after venting, and III – the TR event. Figure 3.15 shows that, during the

period of 0 min to 45 min (i.e. when the cell is heating up due to heat transfer from the

oven, undergoing TR and then cooling down to the oven temperature) the relative error is

the greatest. Whereas, when the cell is in near equilibrium with the oven temperature (in

the period >45 min to end) then the relative error is effectively zero. There are significant

peaks (up to 5%) in the magnitude of relative error at points I and III for meshes M1–M3,

while less significant relative errors occur around point II for meshes M1 and M2. For

points I and III, this coincides with the occurrences of very steep temperature gradients

due to venting and TR, respectively. Hence, it is clear that the relative error is greatest

when the temperature rates are the greatest. As is to be expected, the finer meshes M2 and

M3 lead to reduced relative errors, while M3 leads to almost zero relative error through

the simulation besides at points I and III.

The points I–III are further presented in Fig. 3.16(a) to clearly show their loca-

tions on the temperature graph, while these points are further enlarged and presented

in Figs. 3.16(b) to 3.16(d) so details can be precisely examined. Figure 3.16(b), shows the

enlargement of point I, the venting event. From this it is clear that the large increase in

relative error occurs due to the offset in time at which venting occurs between each sim-

ulation, as cells heat up quicker in simulation M1 and M2, while the general behaviour,

such as magnitude of temperature drop due to venting, is similar in all cases. For point

II, see Fig. 3.16(c), a deviation of the temperature of simulations M1 and M2 from M4

occurs, again, due to the earlier increase in temperature, in this case as self-heating begins.

At point III, see Fig. 3.16(d), these offsets in time amplify the relative error. As, for a

given point in time due to the steep temperature gradients there is a large difference in
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Table 3.5: Key values throughout thermal runaway, with corresponding relative errors calculated against
mesh M4.

Mesh
Time to vent Max. temp. Time to max. temp.

(min) Err. (%) (°C) Err. (%) (min) Err. (%)

M1 10.36 =0.91 361.14 =0.49 18.43 =0.36
M2 10.40 =0.54 361.38 =0.42 18.43 =0.36
M3 10.48 0.05 361.34 =0.43 18.56 0.38
M4 10.45 0.00 362.90 0.00 18.49 0.00

temperature. As the large relative errors are caused by small offsets in time, a further

investigation of the relative errors of key TR values is undertaken.

The relative errors of the key values of time to venting, maximum cell temperature and

time to maximum cell temperature are presented in Table 3.5. From this table we see

that M4, with no strong relation between error and mesh elements, has converged onto

an accurate solution. Also, the coarsest mesh (M1), comparable to what is used in the

pack study, has an error of less than 1% for all key values, much lower than apparent in

Fig. 3.15. As such, while the plot of relative errors indicates a relatively high percentage

error (~5%), this is entirely due to small errors in the onset time of key events (where the

temperature changes very rapidly). Hence, the use of a similarly coarse mesh (i.e. M1)

for the pack study can be done with confidence.
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Figure 3.16: Inspection of the occurrence of significant relative errors. (a) temperature plot identifying
areas of significant relative error, (b) enlargement of area I, (c) enlargement of area II and (d) enlargement
of area III.
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Figure 3.16 (cont.): Inspection of the occurrence of significant relative errors. (a) temperature plot
identifying areas of significant relative error, (b) enlargement of area I, (c) enlargement of area II and (d)
enlargement of area III.
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3.4 Summary

The Methodology utilises tried and tested experimental techniques, i.e. ARC and oven

testing which are fundamental to assessing Li-ion battery TR behaviour. It also presents

the methods to determine cell specific heat. Although there are questions about the

effect of sample size on the validity of calculated results. The governing equations for

the modelling of cell TR have been described by the heat transfer, abuse (accounting for

the decomposition reactions) and venting sub-models. Further, the AAM is presented

with developments to the governing theory for determining cell pressure, i.e. by the BPV

method rather than the PPV method, and the inclusion of a novel simmering reaction.

Finally, a typical pack geometry is presented, including the coupling of the 3D thermal

model to a 0D abuse model for computational efficiency.
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Chapter 4

Experimental Investigation of the

Safety of LFP Cells

Aims & Objectives

The aim of this chapter is to address gaps in the literature in regard to the TR behaviour

of LFP cells under thermal abuse. In doing so, obtain the necessary data required for

developing LFP TR models in Chapter 5. The objectives to address these gaps are:

(1) to carry out a comprehensive analysis of 18650 LFP cells under ARC at various SOC

to allow for a detailed understanding of the self-heating characteristics as a function

of SOC and temperature;

(2) to carry out convective heating oven abuse tests to analyse the thermal response

under rapid heating, providing essential data for LFP TR model validation;

(3) to quantify the severity of TR, present a detailed description of the TR process and

discuss how TR can be avoided in LFP cells using the results from objectives (1)

and (2);

(4) to determine the energy released in each abuse test/scenario for a comparison of test

suitability in determining cell safety and TR characterisation.

4.1 Introduction

In this chapter an investigation of LFP cells’ safety is undertaken through two thermal

abusive tests to enable characterisation of the resulting TR behaviour. In turn, the cells’

safe operating window in terms of SOC and temperature can be quantified, along with
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Table 4.1: Technical specification of ENIX Energies 1500 mAh 3.2 V 18650 cell [259].

Specification Value

Chemistry LiFePO4

Dimensions 18.2 (D) Ö 64.8 (H) mm
Weight 42 g approx.
Standard capacity 1550 mAh at 0.5C

1500 mAh at 1.0C
Capacity range 1450–1550 mAh
Charge voltage 4.20± 0.05 V
Nominal voltage 3.2 V
Charge cut-off voltage 3.65± 0.05 V
Discharge cut-off voltage 2.5 V
Cut-off current 0.01C
Internal resistance 60 mW
Cycle life 2000 cycles
Max. continuous discharge current 4.5 A
Pulse discharge current 10 A, 5 s
Working temperature Charge: 0–55°C

Discharge: =20–60°C
Storage temperature =20–45°C

identifying any hazards the cells pose. The first abusive scenario is an ARC test, while

the second is abuse by overheating in an oven test. Calorimetry is carried out under

near-adiabatic conditions and represents the worst case scenario of a cell when heated, as

there is zero heat loss from the cell. ARC also allows us to infer the process by which

TR occurs, which is necessary for developing accurate models of TR by ensuring that

the reactions are simulated in the correct order and with the appropriate magnitude of

heat relative to each other [153]. A convection oven test allows us to study the response

of a cell when rapidly exposed to high temperatures, representing what might occur due

to environmental conditions or as a result of heating from a neighbouring cell which has

failed by other means. Additional to investigating the safety of the LFP cells, the cells

are also characterized in terms of their physical, thermo-physical and electrical properties.

This is to precisely determine the LFP cells’ dimensions, mass, specific heat capacity and

electrical energy capacity.

The investigation into the safety of LFP cells, in relation to the potential of cell TR

and TR severity, was carried out on commercially produced cylindrical 18650 LFP cells.

Cells of this form factor were chosen due to them being readily available, their place

as an industry standard in many applications and to allow for comparison to the large

amount of literature regarding other Li-ion chemistries also in the form of 18650 cells. The

commercial cells tested herein were specifically ENIX Energies 1500 mAh 3.2 V 18650 cells,

hereafter referred to as the LFP cell throughout this chapter. The precise cell chemistry is

currently unknown and unavailable from the manufacturer, however known cell properties

from the manufacturer’s data sheet are summarised in Table 4.1.
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In order to achieve the objectives outlined at the start of this chapter, the following

was carried out:

� to achieve objective (1), the ARC test was carried out, according to the methodology

in Section 3.1.1, with cells at 0%, 28%, 63%, 100% and 110% SOC, of which the

results are presented in Section 4.2.2;

� to achieve objective (2), the oven abuse test was carried out, according to the

methodology in Section 3.1.2, on cells at 100% SOC, with results presented in Sec-

tion 4.2.3;

� to achieve objective (3), the results of the ARC and oven test are analysed and

compared to each other and literature findings, with the discussion presented in

Sections 4.2.2 and 4.2.3;

� to achieve objective (4), a new methodology to estimate the energy released by

cells due to TR under oven exposure is formulated and implemented, and the heat

released by cells in each abuse test are in turn calculated, presented and discussed in

Section 4.2.4, along with recommendations with regard to abuse testing for ensuring

robust quantification of Li-ion cell safety.

4.2 Results and Discussion

The Results and Discussion are organised as follows: first, a record of experiments is

presented listing the experiment under taken by each cell, the cell mass and cell electrical

capacity, then Sections 4.2.1 to 4.2.3 present the results and discussion of the heat capacity,

ARC and oven abuse tests respectively. Following this, Section 4.2.4 compares the different

abuse methods, while Section 4.4 concludes the experimental chapter.

Table 4.2 presents the record of experimental tests, indicating which cells underwent

ARC, oven and heat capacity tests. The table also presents the SOC of each cell under

ARC, while all oven test cells were at 100% SOC. Finally, included in the table are the

measured masses of cells, either with or without shrink wrapping, and the measured

electrical capacity determined at a 1C discharge rate after 20 cycles. From this, the

average mass of the cells is calculated to be 40.48 g with shrink wrapping and 38.89 g

without shrink wrapping. The average electrical capacity of the cells was determined to

be 1.48 Ah.
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Table 4.2: Record of experimental tests.

Cell
No.

Test

Mass,
unwrapped
(wrapped).

[g]

Capacity at
100% SOC

[Ah]

01 n/a - 1.54
02 Oven (200°C) - 1.54
03 Oven (220°C) - 1.49
04 Oven (180°C) - 1.50
05 ARC (100% SOC, R4) 39.77 1.49
06 ARC (100% SOC,R5) 39.97 1.50
07 n/a - -
08 Oven (220°C) 39.96 1.48
09 Oven (220°C) 39.82 1.47
10 Oven (180°C) 40.05 1.49
11 n/a 40.05 1.48
12 Oven (200°C) 39.74 1.47
13 Oven (200°C) 39.89 1.48
14 Oven (220°C) 39.90 1.49
15 Oven (180°C) 39.85 1.47
16 Oven (180°C) 39.85 1.49
17 Oven (220°C) 39.95 1.49
18 ARC (100% SOC, R1) 39.71 1.47
19 Oven (180°C) 39.68 1.45
20 Oven (220°C) 39.88 1.47
21 Oven (220°C) 39.86 1.47
22 Oven (220°C) 39.73 1.46
23 ARC (100% SOC, R6) 39.99 1.48
24 ARC (100% SOC, R2) 39.74 1.48
25 ARC (100% SOC, R3) 39.85 1.49
26 ARC (0% SOC, R4) 40.08 1.49
27 ARC (0% SOC, R1) 39.98 1.49
28 ARC (33% SOC, R1) 39.93 1.47
29 ARC (33% SOC, R2) 39.89 1.47
30 ARC (66% SOC, R1) 39.91 1.47
31 ARC (66% SOC, R2) 39.79 1.47
32 n/a 39.80 1.47
33 ARC (66% SOC, R4) 39.81 1.47
34 ARC (66% SOC, R3) 39.77 1.48
35 ARC (33% SOC, R3) 40.00 1.47
36 ARC (0% SOC, R2) 40.03 1.49
37 ARC (0% SOC, R3) 39.88 1.47
38 ARC (100% SOC, R7) 39.95 1.48
39 n/a 39.96 1.49
40 Cp (40.45) 1.48

continued on next page
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Table 4.2 (cont.): Record of experimental tests.

Cell
No.

Test

Mass,
unwrapped
(wrapped).

[g]

Capacity at
100% SOC

[Ah]

41 ARC (110% SOC, R1) 39.76 1.48
42 ARC (110% SOC, R2) 40.42 1.49
43 ARC (110% SOC, R3) 39.84 1.48
44 Cp (40.57) 1.49
45 Cp (40.53) 1.49
46 Cp (40.47) 1.48
47 Cp (40.34) 1.48
48 Cp (40.42) 1.49
49 Cp (40.55) -

Ave. 39.89 (40.48) 1.48

4.2.1 Specific Heat Capacity Calculation

As stated in Section 3.1.4, for the calculation of the specific mass of the cells, the average

heating rate of the sample is required. An example of how this is determined is presented

in Fig. 4.1. Figure 4.1 shows the sample temperature and the mean temperature of the

ARC (from its three temperature readings) over time, along with the difference between

the sample and ARC temperatures over time. From this figure, it can be seen that, at

t = 0 s the ARC temperature is ramped up, and for a period of time after, the sample

is heated to the target start temperature. Once the sample and ARC temperatures are

within 0.5°C of each other (see the blue temperature difference line of Fig. 4.1 and the

threshold temperature difference), the sample and ARC are said to be in equilibrium. At

this point the sample heater is switched on, and the time denoted as tstart. At this point

the ARC follows the temperature of sample, creating pseudo-adibiatic conditions, until

the sample reaches the safety cut off temperature (55°C). This point in time signifies the

end of the test, denoted by tend.

The sample heating rate is calculated over the period tstart to tend in which the sample

heater is on and the cell is under adiabatic conditions. Figure 4.1(b) presents data solely

of this period. From this, the slope can be calculated by fitting a linear trend line to the

data, with the slope of the trend line taken to be the average heating rate. The specific

heat capacity can be determined from this rate (for each test), and the mass and heater

measurements, following the methodology of Section 3.1.4. For each test configuration,

these values and the calculated specific mass of the cell are presented in Table 4.3.
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Figure 4.1: Example of heat capacity test results. (a) temperature vs. time plot for all time, and (b)
temperature vs. time plot for constant power heating period used to determine the sample temperature
rate.
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A summary of the calculated specific heats of the cells (Cp,cell) is presented in Fig. 4.2.

This figure shows the mean Cp,cell values and standard deviation for samples constructed

of 1 and 3 cells, which have been repeated 3 times, and the single values of Cp,cell calculated

for samples containing 6 and 7 cells. From this figure it can be seen that, as the number of

cells in the sample increases, the calculated Cp,cell reduces. The difference between Cp,cell

values of samples with 1 and 3 cells is slight, with the Cp,cell of 3 cell sample within the

variation of the 1 cell sample. However, the Cp,cell values for the 6 and 7 cells samples are

significantly lower than the 1 and 3 cell samples.

The low Cp,cell of 6 and 7 cell samples are attributed to the fact that the heat conduction

surfaces are minimal between cells. As such, in the 7 cell sample, where the central cell

has the heater applied to it and the thermocouple attached to the opposite side of the

same cell (see Fig. 3.4), the thermocouple heats up at a faster rate than a solid block the

same mass of the sample and Cp would. Similar behaviour is thought to occur in the 6 cell

sample, in which the thermocouple is place on a cell opposite the heater attached to the

neighbouring cell (see Fig. 3.4), however to a lesser extent due to the minimal contact of

the heater with the cell that the thermocouple is attached to. In these cases the cell and

hence the thermocouple temperature are recorded at a greater rate than the overall sample.

Inherently, as a larger temperature rate implies a lower specific heat value, where all other

things are equal, the Cp,cell of 6 and 7 cells samples are significantly lower than 1 and 3

cell samples. With this, it is recommended that the one cell sample method is the most

appropriate way to measure cell specific heat capacity. As such, from the mean values of the

1 cell sample tests, the LFP cells in question are quoted to have a Cp,cell = 1107kJ/kg K.

Although the 1 cell sample is recommended as being the most appropriate method to

determine Cp,cell, the utilization of a 1 W heater results in the heating of the cell up to

the maximum allowable within approximately 20 min. Hence, it is further recommended

that the heater power is scaled such that the test lasts approximately 60 min in order to

reduce fluctuations in the temperature rate and to gather more data points.
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Figure 4.2: Comparison of calculated specific heat capacity of LFP cells depending on number of cells in
sample. Standard deviation (SD) of specific heat capacity shown for sample sizes of 1 and 3 cells.

4.2.2 Accelerated Rate Calorimetry

The cell surface temperature vs. time plots of the ARC experiment results are presented in

Fig. 4.3. The sub-figures Figs. 4.3(a), 4.3(c), 4.3(e), 4.3(g) and 4.3(i) present the full range

of data, from initiating the test until the end of the test at the 315°C cut-off temperature.

The sub-figures Figs. 4.3(a), 4.3(c), 4.3(e), 4.3(g) and 4.3(i) relate to cells charged to 100%,

0%, 28%, 63%, 110% SOC, respectively. Enlargements of the period of time over which

venting occurs for each SOC, 100%, 0%, 28%, 63%, 110%, are presented in Figs. 4.3(b),

4.3(d), 4.3(f), 4.3(h) and 4.3(j), respectively. Throughout Fig. 4.3, the notation of R1, R2,

R3, etc. in the figure key, is used to denote the individual test runs at each SOC. Hence,

each individual test run can be uniquely identified by stating, for example, “run 28%-R2”

referring to run 2 of the 28% SOC data.

This same data is also presented in temperature rate vs. temperature plots, as in

Fig. 4.4, which normalises the data allowing for better comparison between experimental

runs. Figure 4.4 presents the temperature rate vs. temperature data for the exothermic

regions (where the ARC is operating in exotherm mode) of the T vs.t data of Figs. 4.3(a),

4.3(c), 4.3(e), 4.3(g) and 4.3(i).

It should also be noted that all cells, regardless of SOC, remained intact up to 315°C.

This implies that, with operational cell vents, the rate of gas generation was not great

enough to lead to a build up of internal cell pressure that could cause the cell case to

fracture (on inspection by the naked eye) or explode.
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By comparing runs for a given SOC in Fig. 4.3, it appears apparent that there is

significant variation between results. However, due to the temperature dependence of the

reactions, it is more informative to compare runs on a temperature rate vs. temperature

basis, see Fig. 4.4. It can be seen from Fig. 4.4 that, given a cell’s SOC, there is an

overall agreement between the temperature rate of different experimental runs. Further,

to validate the results, a comparison between the data gathered here to that of comparable

LFP cells is made. This is shown in Fig. 4.5 for cells at 100% SOC. As can be seen from

Fig. 4.5, there is good agreement between literature sources and the results found here,

for the magnitude and profile of reaction rate up to approximately 250°C. After this

temperature differences are seen between the literature values, however the results found

here are between the literature findings. As such, considerable confidence in the ARC

results presented herein is upheld, and further analysis presented.

From Fig. 4.3 it can be seen that, in almost all the runs, upon the detection of a cell’s

exothermic behaviour the ARC remains in exotherm mode. This can be seen for example

in run 100%-R4 of Fig. 4.3(a). In which, after the stepwise behaviour of temperature

(during the HWS period), in the time up to 15 h, no more step increases in temperature

occur. Exceptions to this do occur, i.e. 100%-R6 (approximately at 36 h, see Fig. 4.3(b)),

0%-R1/R4 (R1, approximately at 30 h; R4, several instances after 30 h, see Fig. 4.3(d)),

28%-R2 (approximately at 19 h, see Fig. 4.3(e)) and 110%-R1/R2 (approximately at 12 h

to 20 h, see Fig. 4.3(i)). These additional instances of HWS steps are indicated on Fig. 4.3

by “HWS step”.

For the cells at 0% SOC, the additional HWS steps occur over a relatively large period

of time, and in the case of 0%-R4, there are several additional periods of time when

this occurs. The cause of the additional HWS periods is attributed to the high stability

of the cells when discharged. Where the low reactivity of the cell leads to little heat

generation and very low temperature rates below the defined 0.02°C/min onset value. For

the occurrences of step increase in temperature in the cells at 28% SOC and 100% SOC,

there is only a single additional HWS step, rather than a period of several steps as in the

0% SOC example. Looking at the region over which the HWS step occurs, i.e. 100°C–

110°C, for the 28% SOC occurrence, we can see from Fig. 4.4(e) that over the temperature

range the rate follows the same trend as the other runs. Hence, the HWS step is treated as

an anomaly. In the 100% SOC occurrence, the single HWS step occurs after the instance

of venting. For 100%-R6, the temperature reduction due to venting is small compared

to other runs, e.g. 100%-R1. For similar small temperature reductions on venting, i.e.

100%-R5 and 110%-R3, a reduction in rate and plateau (indicated on Fig. 4.3) in the

temperature is seen, see Figs. 4.3(b) and 4.3(i) respectively. This plateau is attributed to

additional vent gas being slowly released and cooling the cell. Hence, given the comparable

profiles of 100%-R1/R5 and 110%-R3, the additional HWS step of 100%-R1 is thought to

be negligible. In the case of the 110% SOC occurrences, the additional HWS steps occur

after an earlier onset of self-heating (compared to 100% SOC cells), due to the reduced
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Figure 4.3: ARC temperature vs. time plots for cells at different SOC. The dashed box on “all time”
plots indicates the period over which venting occurs and is enlarged in the corresponding “venting” plots.
Stars on venting plots indicated individual venting events for each run.
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(c) 0% SOC - all time

(d) 0% SOC - venting

Figure 4.3 (cont.): ARC temperature vs. time plots for cells at different SOC. The dashed box on “all
time” plots indicates the period over which venting occurs and is enlarged in the corresponding “venting”
plots. Stars on venting plots indicated individual venting events for each run.

118



4.2.2. ACCELERATED RATE CALORIMETRY

(e) 28% SOC - all time

(f) 28% SOC - venting

Figure 4.3 (cont.): ARC temperature vs. time plots for cells at different SOC. The dashed box on “all
time” plots indicates the period over which venting occurs and is enlarged in the corresponding “venting”
plots. Stars on venting plots indicated individual venting events for each run.
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Figure 4.3 (cont.): ARC temperature vs. time plots for cells at different SOC. The dashed box on “all
time” plots indicates the period over which venting occurs and is enlarged in the corresponding “venting”
plots. Stars on venting plots indicated individual venting events for each run.
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(i) 110% SOC - all time

(j) 110% SOC - venting

Figure 4.3 (cont.): ARC temperature vs. time plots for cells at different SOC. The dashed box on “all
time” plots indicates the period over which venting occurs and is enlarged in the corresponding “venting”
plots. Stars on venting plots indicated individual venting events for each run.
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(b) 100% SOC - selected runs
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Figure 4.4: Cell surface temperature rate against cell surface temperature from exothermic period of
HWS test for various SOC (note logarithmic scale on y-axis). Regions I-IV in sub-figure (b) indicate
stages of self-heating.
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Figure 4.5: ARC results of LFP 18650 cells at 100% SOC compared with literature (Ref. (a): [153], Ref.
(b): [171]).

stability of the cell from overcharging. Hence, the additional HWS step lead to heating

the cell between the unstable Li metal reaction and the onset of the SEI reaction.

Figure 4.3 also shows that cell venting occurs in all cases, leading to various scales of

temperature loss. In many cases, excluding 0% SOC cells, a single venting event leading to

a 10°C to 15°C temperature loss occurs. For cells at 0% SOC, when single temperature loss

is seen it is on the order of 3°C to 5°C. For runs in which an initial small loss of temperature

occurs upon venting, typically further small venting events or plateau(s) in temperature

occur. The total loss of temperature for each run and the average temperature drop for

each SOC is shown in Fig. 4.6. As can be seen from Fig. 4.6, there is a significant amount

of variation in the venting behaviour, more so than the rate behaviour. Figure 4.6 also

shows that there are runs for the 100% and 110% SOC cases that have significantly smaller

temperature drops, skewing the mean temperature drops at these SOC to be significantly

lower than at 28% and 63% SOC.

As stated above, and referring to Fig. 4.4, for a given SOC the temperature rate

behaviour is similar for all runs. However, notable variations are present between runs in

the 100%, 63% and 0% SOC results, see Figs. 4.4(a), 4.4(d) and 4.4(f) respectively. ARC

test on cells at 100% SOC have been repeated 7 times. From Fig. 4.4(a), it can be clearly

seen that runs 4 and 6 do not show the same maximum rate (at approximately 240°C) as

the other runs. Further, runs 5 and 7 show a slightly higher and delayed peak reaction

rate when compared to runs 1-3. This shows there is variation in abuse behaviour within

commercially manufactured cells. In later discussions only runs 1-3 are considered as they

represent the most common profiles, this allows for a clear understanding and presentation
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Figure 4.6: Temperature loss of cells upon venting due to thermal abuse in ARC experiments.

of results. Further, runs 63%-R4 and 0%-R4 are excluded from further discussion. With

regard to run 63%-R4, the ARC instrument did not detect the exotherm between 150°C

and 240°C. A smoothed plot of the temperature rate determined from the full data series

within this region is presented in Fig. 4.4(d). This shows the maximum rate reached was

greater, while after 240°C the rate is lower than runs 63%-R1\2\3. As for run 0%-R4,

the broken temperature rate plot and the relatively low temperature rate is due to the

relatively slow and non-self-sustaining reaction. Hence, similar to the 100% SOC case,

only runs R1-R3 are considered for further analysis for both the 63% and 0% SOC cases.

Figure 4.4(b) shows the results of cells at 100% SOC and will be discussed first as a

benchmark to compare the results at other SOC. It can be seen from Fig. 4.4(b), that

from the onset of self-heating at 95°C, the temperature rate increases up to the maximum

temperature rate of 3.7°C/min (value determined from the average of the maximum tem-

perature rates of the three runs) at ~230°C, where after, the temperature rate generally

reduces with increasing temperature until the end of the experiment (315°C). A secondary

peak of 1.6°C/min is seen at 280°C. From Fig. 4.4(b), we see that the cells’ temperature

behaviour can be further split into 4 distinct regions, determined by inspection (also de-

picted in Fig. 4.7 which, for visual clarity, compares a single ARC temperature rate plot

from each SOC that is most representative of the average behaviour at each respective

SOC): (I) first exotherm - containing self-heating onset to venting; (II) endothermic event

- attributed to the expansion of the venting gases cooling the cell (and is seen in the as

a break in the data points as the ARC exits exothermic mode); (III) second exotherm -

containing the first peak temperature rate; (IV) third exotherm - containing the second

peak temperature rate.
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Figure 4.7: Comparison of temperature rate for cells at different SOC under ARC testing. Regions: (I)
first exotherm - containing self-heating onset to venting; (II) endothermic event - due to venting; (III)
second exotherm - containing the first peak temperature rate; (IV) third exotherm - containing the second
peak temperature rate.

From the temperature rate plot in Fig. 4.4(b), and referring to the onset temperature

of the individual reactions from the literature (see Table 2.2), relevant reactions can be

associated with each region. The first exotherm in region (I), over the range of 95–

150°C can largely be attributed to the solid electrolyte interphase (SEI) reaction, with

an increasing contribution from the negative electrode-solvent (NE) reaction at higher

temperatures. The second exotherm in region (III), over the range of 150–255°C is due

to the NE and positive electrode-solvent (PE) reactions. The NE reaction generates the

most heat overall, on the scale of an order of magnitude greater than the PE reaction

(see Table 2.1), and therefore dominates the temperature rate profile in this region. The

final exotherm in region (IV), at >255°C, is due to the increased contribution of the

decomposition reaction of the electrolyte with oxygen evolved from the decomposition of

the LFP.

From Fig. 4.4(c) and Fig. 4.4(d), it can be seen that the temperature rate profiles at

110% and 63% SOC respectively are similar to that at 100% SOC. However, as can be

seen in Fig. 4.7, there are two distinct differences when comparing the results from these

three different SOC with regard to regions (III) and (IV): (1) the magnitude and position

of the absolute peak temperature rate, and (2) the magnitude and position of the second

temperature rate peak.

With regard to Item (1) and referring to Fig. 4.8, which shows the absolute maximum

cell temperature rates, the temperature at which the absolute maximum rates occur and

self-heating onset temperature for a given SOC (mean and standard deviation of runs 1-3),
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Figure 4.8: Maximum rate at given SOC with the corresponding temperature that the maximum rate
occurs at; and onset temperature of first exotherm (Note: error bars are equal to one standard deviation).

it can be seen that as SOC increases the absolute peak temperature rate also increases.

This occurs due to the greater amount of energy stored and the resulting increased in-

stability of the electrodes at higher SOC, particularly in the negative electrode due to

more lithium being available in the intercalated carbon to react with the binder, filler

and electrolyte at higher temperatures [166]. This behaviour can also explain Item (2), as

more heat generated by the NE and PE reactions over a larger temperature range at 110%

SOC, thus leading to a greater overlap between these two reactions and the electrolyte

reaction, and hence a summation of their heat generation rates. This in turn reduces the

distinction between the 1st and 2nd peak temperature rates leading to an increase in the

overall peak rate. Conversely, at 63% SOC, the increased stability of the electrodes leads

to less heat being produced over a smaller temperature range which in turn increases the

separation between the 1st and 2nd peak rates. Additionally, the reduction in the 2nd

peak temperature rate at 63% SOC compared to that at 100% SOC can be somewhat

attributed to (1) the likelihood of less oxygen being available to fuel the electrolyte reac-

tion as the positive electrode will have decomposed less, releasing less oxygen; and (2) the

reduced contribution of the NE and PE reactions at higher temperature to the overall

heat generated.

Figure 4.4(e) presents the ARC results at 28% SOC and shows the temperature rate

increases from onset until a peak at ~190°C whereupon the rate drops. Between 200°C

and 225°C, the temperature rate is relatively constant, while after 225°C the temperature

rate slowly increases. The behaviour in regions (I) and (II) is comparable to that for the

100% SOC, see Fig. 4.7. However, the peak temperature rate in region (III) for the 28%

SOC case occurs at a much lower temperature (~190°C) than at higher SOC and is present
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over a smaller temperature range. These characteristics suggest that the NE reaction is

the main contributing factor to the self-heating peak, as the NE reaction is more unstable

and energetic at lower SOC than the PE reaction. The behaviour beyond 200°C is due

to the decomposition of the PE and electrolyte reactions; however, due to the stability of

the cathode, these reactions do not occur at a significant rate.

Finally, Fig. 4.4(f) presents the ARC results at 0% SOC and shows the temperature

rate is relatively low across all temperatures with a slight trend of increased rate with

temperature. The initial heating in region (I) is comparable to that of the other SOCs, see

Figure 4.7, with the exception of a delay in the onset temperature. The peak temperature

rate at ~190°C that occurs in the 28% SOC is no longer present, while after 200°C the

temperature rate is similar to that in the 28% SOC case. The loss of the temperature

rate peak at ~190°C is consistent with the electrodes being in their most stable state and,

with the negative electrode being fully delithiated, the NE reaction only occurs at a slow

rate. As the cell is fully discharged, the heating from the PE electrode will be negligible

[126]. Additionally, as the discharged PE electrode will also have released very little O2,

the electrolyte reaction will be limited, but might be facilitated by O2 entering from the

open vent [95]. The factors causing the delayed onset are discussed later.

As stated previously, from Fig. 4.8 we can see that, at increased SOC, the maximum

temperature rate during TR is greater. Further, disregarding 0% SOC (because there is

no distinct peak in the temperature rate plot of Fig. 4.4(f)), the temperature at which

these peak rates occur increases with SOC. However, it can also be seen that the increase

in temperature rate is not linear, with a proportionally greater increase in maximum

temperature rate over the range of 28%–100% SOC than 0%–28% SOC, and greater still

over the range of 100%–110% SOC. Similar behaviour is seen by Refs. [118, 155] in the

study of LiCoO2 and LiMn2O4 cells, as shown in Fig. 4.9. This behaviour is related to

the amount of energy stored, the stability of a given reaction at a given SOC and the

extent to which reactions occur simultaneously. In other words, as SOC increases there

is greater electrochemical potential energy that leads to higher reaction rates and more

heat generation, while the resulting greater heat generation leads to larger temperature

increases and hence the occurrence of more energetic reactions that only occur at higher

temperatures in turn leading to peak reaction rates occurring at higher temperatures. As

the maximum temperature rate is directly related to the maximum heat generation rate,

it therefore is a good quantity by which to quantify safety, as one can use the maximum

temperature rate at different SOC to predict the risk of TR at different SOC.

Figure 4.9 compares the maximum temperature rate at different SOC from the results

in this work to that of different chemistries from the literature. Considering the 100% SOC

case, it can be clearly seen that LFP cells have a significantly lower maximum temperature

rate, of around 3 orders of magnitude lower, and hence are significantly safer than the

other chemistries. Indeed, even at low SOC, LFP is significantly less reactive than LCO

127



CHAPTER 4. EXPERIMENTAL INVESTIGATION OF THE SAFETY OF LFP
CELLS

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 1

1

1 0

1 0 0

1 0 0 0

1 0 0 0 0
 L F P  -  1 . 5 A h  ( A R C a )
 L F P  -  1 . 1 A h  ( A R C b )
 L F P  -  1 . 1 A h  ( A R C c )
 L C O  -  2 . 6 A h  ( V S P 2 d )
 N M C  -  2 . 2 A h  ( V S P 2 c )
 L M O  -  1 . 6 A h  ( V S P 2 c )
 N C A  -  3 . 3 A h  ( A R C b )Ma

x. 
Ra

te 
(°C

/m
in)

S O C  ( % )
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cells. Readers should note the different energy densities of the cells compared. The higher

energy densities (2.2–3.3 Ah) of the NMC, LCO and NCA cells from the literature makes

direct comparison difficult against the LFP (1.5 Ah) studied here. However, as the LMO

literature case with a capacity of 1.6 Ah clearly shows, it is not the amount of energy

available within a cell that is the major concern for maximum temperature rate, but the

cell’s chemistry and the resultant reaction rates of its components.

Figure 4.8 also shows the relationship between onset temperature and SOC. Between

28% and 100% SOC, there is little difference in the onset temperature which occurs be-

tween 92–96°C. However, at 0% SOC and 110% SOC, there is a significant delay (127°C)

to and advance (67°C) of, respectively, the onset temperature. The delay to onset at 0%

SOC suggests that there is a reaction other than the SEI decomposition contributing to the

onset of self-heating in region (I) of Fig. 4.7 for cells at higher SOC. This is because, once

formed, the SEI layer is metastable [209, 261] and hence would decompose and produce

the same amount of heat irrespective of SOC. Under the assumption of a four reaction

system, this suggests that the lithiation of the negative electrode at SOC ≥28% causes a

reduction in the onset temperature. To the author’s knowledge, this is the first report of

the negative electrode to be the trigger of thermal runaway. This offers the opportunity

to design batteries where electrodes are thermally decoupled.

The mechanism that advances the onset temperature at 110% SOC is easily identified.

Upon overcharge, lithium is irreversibly removed from the cathode and deposited on the

surface of the anode. Upon heating, the delithiated cathode and/or the deposited lithium

metal leads to reduction of the electrolyte at relatively low temperatures, below that of the
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NE or SEI reactions and hence leads to a reduction of the onset temperature of self-heating

[92, 176, 262].

Figure 4.10 presents a thermal map of the ARC data from Fig. 4.4 (mean and standard

deviation of runs 1-3 for each SOC), and in this format allows for an easier assessment of

the TR processes at different SOCs. The green region represents the temperatures over

which no detectable self-heating occurs and the ARC is operating in HWS mode. There is

an exception at approximately 150°C, due to the cooling of the cell by vented gases which

dissipates more heat than is generated by the decomposition reactions. The orange and

red regions of Fig. 4.10 relate to when the ARC is in exothermic mode. The orange region

indicates when a cell is undergoing detectable self-heating. That is to say, when a cell is

increasing in temperature at a rate ≥0.02°C/min and <1°C/min. Where 0.02°C/min is

set as the detection limit when carrying out the HWS procedure. The red region indicates

when a cell is undergoing TR, i.e. where self-heating leads to temperature rates ≥1°C/min.

A cell can go from self-heating to TR and back to a self-heating region as the temperature

rates pass through the limits mentioned previously.

As can be seen from Fig. 4.10, the venting of gases at 150°C only occurs in cells of

28–110% SOC, with the exception of run R1 of 0% SOC. It can be assumed that venting

does not occur at 0% SOC due the stability of the cell, leading to little decomposition

of the electrodes/electrolyte and hence little gas production. Also, once self-heating has

been initiated, the reactions are self-sustaining up to the ARC cut off temperature. This

is evident of no further HWS procedure being carried out by the ARC from the onset

of self-heating until the end of the test. This is excluding the 110% SOC case, where

for runs R1 and R2 there is an initial self-heating reaction at ~67°C due to the lithium
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plating decomposition reaction [92, 176, 262] before self-sustaining self-heating is initiated

at ~75°C. At 110% SOC the onset temperature of self-heating is therefore 75°C. This

is still lower than the other SOC cases. Hence, overcharge is still a cause of reduced

stability and therefore a safety concern in LFP cells. Analysis of the TR region, indicated

in red in Fig. 4.10, shows that at 28% SOC and below TR does not occur, while in all

other cases TR occurs at temperatures >200°C. As TR onset occurs at temperatures at

approximately 200°C, and the NE reaction onset occurs at temperatures as low as 80°C

while the PE reaction onset does not occur until 180°C (see Table 2.2), it implies that the

NE reaction is the cause of TR initiation as the PE reaction will only have just initiated

and have a negligible heating rate at this point. Hence, if the carbon anode self-heating

onset can be postponed, then LFP cells can be stable to greater temperatures.

4.2.3 Oven Test

A record of all oven tests undertaken is presented in Table 4.4, including the cell number

to uniquely identify each run, the corresponding oven set temperature, mean oven tem-

perature (T̄oven) before and after maximum cell temperature, and observations about the

thermocouples (TC) post test. Figure 4.11 presents, on individual sub-plots for each cell,

the resulting cell surface temperatures at the positive and negative end of the cell as well

as the oven temperature. The figures further present the cell surface temperature rates

for each cell thermocouple and annotations indicating the maximum temperatures and

temperature rates.

The T̄oven before TR is calculated because, as Fig. 4.11 shows, there is an initial drop

in the oven temperature before returning to the oven set temperature sometime later. The

temperature drop is due to cooling during oven chamber access. This means that, even

though the cells are placed into a preheated oven, the oven set temperature is not precisely

the temperature experienced by the cell. However, as the oven temperature is recorded

independently, an accurate reading of the oven temperature is obtained and only varies

slightly between experimental runs (see Table 4.4). Additionally, as the heating of the cell

prior to TR is most important to the behaviour of the TR event, the oven temperature

the cell experienced is taken as the average oven temperature up to the occurrence of

maximum cell surface temperature. The T̄oven before TR is calculated from the time that

the cell temperature rate is greater than 1°C/min up to the time at which the maximum

cell temperature. The value of 1°C/min is selected as an indicator of the time at which the

cell is put into the oven and started to be heated. This is done because, while the oven is

preheated, the cell remains outside. At the point the oven set temperature is reached, the

data recorder is set to record, and thereafter the cell placed in the oven. As such the initial

data recorded, is of the cell while it is still outside of the oven. The mean temperature

after TR is from the time of maximum cell temperature until the end of the test, i.e. at

90 min.
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Table 4.4: Record of oven exposure tests.

Cell
No.

Oven set
temperature

(°C)

Mean oven
temp. before

max. cell
temp. (°C)

Mean oven
temp. after
max. cell

temp. (°C)

Observation

02 200 190 199 -
03 220 210 219 loose -ve TC
04 180 170 180 -
08 220 - - oven TC touching cell
09 220 216 223 -
10 180 181 185 -
12 200 199 205 -
13 200 194 200 loose TCs
14 220 213 219 loose +ve TC
15 180 179 182 -
16 180 180 182 -
17 220 217 223 loose -ve TC
19 180 180 184 -
20 220 213 219 loose -ve TC
21 220 - - oven TC touching cell
22 220 217 225 loose -ve TC

After undergoing an oven test, visual inspection of the LFP cells, see Fig. 4.12, show

that the cells remain intact even after a TR event has occurred and hence do not present

an explosion risk. The only visible difference between the 180°C and 220°C oven temper-

ature cases is that the higher oven temperature leads to a cell that has a greater area

of darker discolouration around the cell vents. This is attributed to a greater amount of

decomposition/combustible products being produced and expelled through the cell vents.

From the observations made of each cell after testing (see Table 4.4), it was noted

that on several occurrences that a TC did not remain firmly attached to, and hence make

good contact with, the cell. This occurred in cells 3, 14, 17, 20 and 22, which had 1 loose

TC, while for cell 13, both TC came away from the cell surface. As can be seen from

Figs. 4.11(b), 4.11(h), 4.11(i), 4.11(l), 4.11(n) and 4.11(p), the occurrence of loose TC

leads to difference in temperature readings between the negative and positive TC. As can

be seen from the aforementioned figures, the difference in recorded temperature occurs at

or just before peak temperatures. Further, it can be seen from Table 4.4 that the instances

of loose TC occur at high oven set temperatures (200°C or 220°C), leading to more severe

TR events. Indicating that high temperatures can cause the affixed glass cloth tape to

deform if not appropriately wound tight enough, and with enough wraps. However, as will

be discussed in detail later, analysis can be still undertaken on these cells, focusing on the

TC that is still firmly attached. On two occurrences (cells 8 and 21), the TC measuring

the oven temperature was in contact with the cell, leading to erroneous readings of oven

temperature. In these cases, as the oven temperature was measured inaccurately, as can
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be seen from Figs. 4.11(d) and 4.11(o), the mean oven temperature before and after TR

could not be calculated, and hence these cells are excluded from further analysis.

Inspecting the negative and positive temperatures for each cell in Fig. 4.11, it can

be seen that, additional to the cells identified as having loose TC in Table 4.4, cells 2,

16 and 21 (Figs. 4.11(a), 4.11(k) and 4.11(o) respectively) also present different values

between the negative and positive TC. This indicates that a TC also became loose on

these cells during the test, however less so than those outlined in Table 4.4, such that it

was not visibly noticeable. However, in Figs. 4.11(c), 4.11(d), 4.11(j) and 4.11(m) it can

be seen that there is negligible temperature difference between the two thermocouples,

this is true even when venting occurs. The uniform temperature over the cells surface is

due to the high axial thermal conductivity of the steel cell can and copper and aluminium

jelly roll windings. Following this, we can state that under uniform heating the cell has a

near uniform surface temperature along its length before, during and after TR. As such,

analysis can still be carried out on cells with a loose TC, taking the values recorded by the

firmly attached TC as an accurate representation of the overall cell surface temperature.

In turn, in all cases, analysis of maximum cell temperature, maximum cell temperature

rate, time to maximum values and heat released are calculated for each cell from the TC

with the largest maximum temperature reading.

As mentioned above, in the tests of cell 8 and 21, the TC is placed too close to the cell

leading to inaccurate recordings of oven temperature. At the end of these tests the oven

TC either records temperatures higher than the cell (see Fig. 4.11(d)), or equal to the

cell temperature (see Fig. 4.11(o)). In all other cases, except cell 2, the oven temperature

remains slightly or very noticeably below the cell temperature at the end of the test.

However, in the case of cell 2, the oven temperature is greater than the cell at the end of

the test, suggesting an inaccurate recording of the oven temperature.

The temperature rates, plotted in Fig. 4.11, are calculated from the temperature time

data, by, first, filtering the data so that consecutive temperature values that are equal to

each other are removed. This is done, as on a sampling rate of 100 ms with temperature

recorded to an accuracy of two decimals places, there are many equal consecutive values.

Hence, when the rate is calculated, these consecutive temperature values lead to zero rate

values, while non zero rates are erroneously high. These erroneously high rates are due to

fact a change in temperature is recorded over a short time instance (i.e. 100 ms), rather

than the whole time period (i.e. >100 ms) from the first instance of a given temperature.

From this filtered data the temperature rate is calculated using the ”gradient” function

in MATLAB [263]. The rate calculated herein varies slightly from that determined in

Ref. [264]. In Ref. [264] the rate is determined on data down sampled to 1 s, while equal

consecutive values are left in and the gradient calculated manually from the difference in

consecutive temperature values over the difference in consecutive time values, and assigned

to a time halfway between consecutive time values.
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Figure 4.11: Results of oven exposure tests, temperature and temperature rate vs. time, with maximum
surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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Figure 4.11 (cont.): Results of oven exposure tests, temperature and temperature rate vs. time, with
maximum surface temperatures and maximum surface temperature rates indicated.
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(a) (b) (c)

Figure 4.12: 18650 LiFePO4 cells. (a) before TR, (b) and (c) post TR after exposure to oven temperatures
of 180°C and 220°C respectively.

For comparison of the TR behaviour cells under oven exposure at different oven tem-

perature, the results of individual runs are organised into two groups. Group A consists

of cells whose T̄oven before TR lie around 180°C, i.e. cells 10, 15, 16 and 19, while group

B consists of cells with a T̄oven before TR approximately 215°C, i.e. cells 3, 9, 14, 17, 20,

22 (see Fig. A.1 for a depiction of cells’ T̄oven relative to each other). The temperature

profiles of group A and B are presented in Fig. 4.13(a) and Fig. 4.13(c), respectively.

Figures 4.13(a) and 4.13(c) also indicate key stages of TR under oven exposure and the

location of venting. The period of venting is enlarged in Figs. 4.13(b) and 4.13(d).

The cell surface temperature plots in Fig. 4.11 show, in general, the increase in cell

surface temperature from room temperature up to a maximum temperature beyond the

oven temperature, before cooling towards the oven temperature. This behaviour can be

broken into four regions as depicted in Figs. 4.13(a) and 4.13(c). Region (A) is below a

cell surface temperature of 95°C, corresponding to the onset temperature of self-heating

reactions determined from the ARC data of a cell at 100% SOC in Section 4.2.2. Region

(B) is a period of increasing reaction rates and self-heating over a cell surface temperature

range of 95°C to 175–180°C, at which point venting occurs. Region (C) is the period

of TR, from venting to peak temperatures. Finally, Region (D) is the period at which

the cells cools down trending to the oven temperature after the reactions (are expected

to) have finished. In this last region, at times nearing the end of the test, it can be

seen from Figs. 4.11(b), 4.11(c), 4.11(e) to 4.11(n) and 4.11(p), that a cell typically does

not cool right down to the oven temperature. A temperature offset, with a mean value

of ~7°C (with a standard deviation of 4°C), is present. Here, this is attributed to low

rate simmering reactions, providing relatively low heating rates, but significant enough to

prevent the cells returning all the way to the oven temperature. Also, it can be seen from

Figs. 4.13(a) and 4.13(c), that there is a high degree of repeatability for the measured

surface temperatures between each experimental run. With regard to this, cells 10 and 20
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Figure 4.13: Comparison of temperature profiles for cells in Group A and for cells in Group B, with
venting highlighted and enlarged in corresponding figures. Regions A, B, C and D indicate key stages of
TR under oven exposure (discussed in text).
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Figure 4.13 (cont.): Comparison of temperature profiles for cells in Group A and for cells in Group B,
with venting highlighted and enlarged in corresponding figures. Regions A, B, C and D indicate key stages
of TR under oven exposure (discussed in text).
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show a significant deviation from the rest of the cells in group A and B respectively. This

will be discussed in detail later.

Table 4.5 presents the mean values of important measurements for both oven set tem-

perature groups. This includes the mean calculated oven temperature, maximum cell

temperature, maximum temperature rate (after venting) and the time to these two max-

imums. From this data, it can be seen that these maximum cell surface temperatures

relate to a temperature rise of 41°C and 180°C above the mean oven set temperatures of

180°C and 214°C respectively (minor difference, e.g. 4°C relating to maximum tempera-

ture, between values here and those in Ref. [264] occur due to sampling data at 100 ms

here and 1 s in Ref. [264], and inclusion of a larger data set that leads cells being added

to group B in this work). From the data presented here, compared to that from the liter-

ature [146, 176], we can see that LFP cells are much safer than LCO cells for a given oven

temperature. LFP cells, compared to LCO, are more stable as they go into rapid TR at

a higher oven temperature (200°C compared to 155°C), and react less severely leading to

lower maximum temperatures (~400°C compared to ~700°C).

As the safety of a battery pack is directly related to the safety of the cells that the pack

is constructed of, then the use of LFP cells, such as those studied here which have been

shown to be a safer alternative to LCO cells, will in turn improve the safety of a battery

pack. This supports the suggestion by MacNeil et al. [119] that LFP cells are suited to

large format batteries, which have a greater energy capacity and hence safety is a greater

concern, especially batteries that would be used in a domestic setting where risk to people

is greater, or in harsh environments where the probability of abuse is greater.

Table 4.5 also presents the variation of key measurements for each group of cells. As

previously stated, Figs. 4.13(a) and 4.13(c) shows that test have been completed with

high repeatability. Table 4.5 quantifies that the calculated oven set temperature of each

group has a relative standard deviation (RSD) less than 1.5%. Highlighting the high

repeatability of the test conditions. The RSD of the maximum temperature and time

to temperature is less than 7% in both groups. However, the RSD of the maximum cell

temperature rate is an order of magnitude greater than this. This implies that, while the

overall variation of TR severity of a cell is small given a test condition, the rate of reaction

is more unpredictable.

Figure 4.11 also shows that, except for cell 20 (see Fig. 4.13(d)), the LFP cells vent at

approximately 175°C resulting in a 5–10°C temperature drop at the cell’s surface. However,

with regard to cell 20 that does not show this temperature drop, there is an inflection in

the cell’s temperature profile a few minutes after venting for the other cells in group B.

This inflection indicates that there is a reduction in the net heat generated, which in-turn

implies that the cell’s vents opened, but not completely. It is this lack of successful venting,

and hence cooling of the cell by the Joule-Thomson effect, to which is attributed the 24°C

increase in maximum cell temperature of cell 20 (421°C) compared to the mean maximum
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Table 4.5: Mean values of important measurements for each oven set temperature group.

Measurement
Group A Group B

Value RSD (%) Value RSD (%)

Calculated oven temperature (°C) 180 0.49 214 1.32
Max. cell temperature (°C) 221 4.62 394 4.10
Time to max. cell temperature (min) 34 6.33 19 5.18
Max. cell temperature rate (°C/min) 8 14.82 550 29.04
Time to max. cell temp. rate (min) 23 12.64 18 4.83

temperature of group B (394°C). This shows that, although venting is not capable of

halting TR, venting does influence the maximum temperature reached.

With regard to cell 10, the cell used in this run had a capacity of 1.49 Ah (see Table 4.2)

compared to the mean value of 1.48 Ah for the cells of group A. It was exposed to the

highest oven temperature, 181°C compared to the mean of 180°C and had a temperature

drop due to venting in the same range as other cells in the group. Such factors can be ruled

out as being influential to the temperature difference between cell 10 and the remaining

cells in group A. Hence, one can speculate that the cause of this anomaly is due to less

heat being produced as a result of decomposition reactions not fully completing. This and

the previous paragraph show the importance of considering cell variability when studying

the safety of battery modules or packs.

From Table 4.5 we see that these LFP cells under a free convection oven test procedure

behave in a similar manner to those of other chemistries in literature [146, 176, 177], i.e.

a higher oven set temperature leads to a higher cell TR temperature in a shorter amount

of time, as well as reducing the time to venting. Even though the venting occurs sooner

at higher oven temperatures (compare Figs. 4.13(a) and 4.13(c)), it occurs at a similar

cell temperature for each oven set temperature, see Figs. 4.13(b) and 4.13(d). Therefore,

it is assumed here that it relates to cell internal pressure and hence as a result of greater

convection heating and of faster reaction rates for the decomposition reactions which in

turn leads to gas being produced more quickly.

Additional to the large increase in TR temperature of cells in group B compared to

cells of group A, group B shows 2 orders of magnitude greater maximum temperature

rate than group A, see Table 4.5. Table 4.5 also shows the maximum temperature rate in

group B occurs 1 min before the maximum temperature, while in group A the maximum

rate occurs 10 min before the maximum temperature. As the temperature rate of the cell

is governed by the heat generation rate, it can be inferred that the maximum reaction

rate is much lower in group A than B. From the time difference between maximum rate

and maximum temperature, and the breadth of the peak temperature rate (i.e. period

over which the rate begins to increase before venting, up to the maximum temperature

rate, and onto reducing to zero, see Fig. 4.11) there can be further inferences made about
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the reaction rate. Where these two values are greater, while the reaction rate is slower,

it proceeds for a longer period of time. This behaviour occurs in group A (cells exposed

to relatively lower oven temperatures), where relatively slow reaction rates lead to heat

generated over a longer period and a broader peak in temperature, while in group B the

reactions occur at a quicker rate but for a relatively short period, so the TR peak is less

broad, see Fig. 4.11. This has implications on risk mitigation, in which the reaction rate

behaviour of group A requires a thermal management system that can transfer heat away

from the cell at a relatively low power for a long time, while conversely, the reaction rate

behaviour of group B requires a thermal management system that can transfer heat away

at a high flux for a short period of time.

Although the difference in maximum surface temperatures between the two oven tem-

peratures is to be expected, it is interesting to note the large increase in cell surface

temperature rate of group B (T̂oven = 214°C). This suggests that between the two T̂oven

of group A (T̂oven = 180°C) and B there are additional reactions occurring in group B

compared to group A. The analysis of the ARC data for a LFP cell at 100% SOC in

Fig. 4.4(b) shows peak reaction rates to be at 228°C, while the decomposition of the LFP

electrode has peak reaction rates at temperatures >210°C [115, 119, 126, 164] and heat-

ing due to electrolyte decomposition does not occur until >255°C [71, 153]. Therefore,

for group A where the cells surface temperature did not reach beyond 230°C, it is clear

the cell’s internal temperature does not reach a temperature that leads to the onset, or

to significant reaction rates, of one or both of the PE and, electrolyte reactions. Most

significantly, the cells in group A did not reach the point for the evolution of oxygen and

the electrolyte reaction. The absence of these reactions therefore leads to the significantly

reduced reaction rate and heat of reaction of the cell for the lower oven temperature.

Furthermore, Fig. 4.14 shows the resulting maximum cell surface temperatures and

maximum cell-oven temperature difference (∆T) occurring at particular T̂oven before TR

for all cells. For a definitive understanding of Fig. 4.14 in terms of the overall data of

Fig. 4.11, it is reproduced in Appendix A and additionally labelled with corresponding

cell numbers (see Fig. A.1). It can be seen from Fig. 4.14 that between 170°C and 190°C,

there is a slight increase in maximum cell temperature with oven temperature. Following

this, between 190°C and 200°C there is a step increase in maximum cell temperature.

Beyond 200°C oven temperature, there again is only a slight increase in maximum cell

temperature. The temperature difference (∆T) is almost flat below 190°C and above

220°C oven temperatures. However, between a (pre-TR average) oven temperature of

190°C and 200°C (denoted by the red highlighted region in Fig. 4.14), there is a significant

increase in the observed ∆T. This suggests that in this oven temperature range the cell

reaches the critical temperature for the additional (PE, electrolyte) reactions to occur.

This indicates that if an LFP cell is maintained below this critical temperature for these

reactions, then not only will the overall cell temperature from TR be considerably lower,
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Figure 4.14: Maximum cell surface temperature, temperature difference and time to maximum temper-
ature vs. oven temperature.

but the rate of reaction of the cell will be much lower and therefore the cell much easier

and safer to manage.

Also, from Fig. 4.14, it can be seen that the time to maximum cell temperature reduces

with increasing oven set temperature, as to be expected [146]. However, while the maxi-

mum cell temperature shows a step change around the critical oven temperature region,

the time to maximum cell temperature shows linear behaviour inversely proportional to

the oven set temperature. Implying that the time to TR is dominated by the oven set

temperature and not the proceeding reactions.

The maximum cell temperature rate vs. calculated oven set temperature is presented

in Fig. 4.15, along with time to maximum rate. As with the maximum cell temperature

of Fig. 4.14, the maximum cell temperature rate shows a step change in severity around

the critical oven temperature region. This shows the reaction rate of the cell increases

significantlky over a small (10°C) temperature range, and hence the small safety window

going from what would be a heating rate that is relevantly easy to manage, to a heating rate

that is severe and difficult to manage. However, unlike the time to maximum temperature,

the time to maximum temperature rate is not linear with oven set temperature. The time

to maximum cell temperature rate remains relatively constant, approximately 25 min,

for oven set temperatures between 170°C and 200°C (which is the end of the critical

oven set temperature region). After 200°C the time to maximum temperature rate is

approximately 18 min. Further, Fig. 4.16 compares the time to maximum temperature

and time to maximum temperature rate. This shows the time to maximum rate follows

the same linear trend, inversely proportional to oven set temperature, as the time to
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Figure 4.15: Maximum cell surface temperature rate and time to maximum temperature rate vs. oven
temperature.

maximum temperature, for oven set temperatures greater than 190°C. However, at and

below 190°C this trend is not upheld. On inspection of the relevant plots of Fig. 4.11 for

cells 2, 4, 10, 15, 16, 19 (see Fig. A.2 to determine the cell number of cells exposed to oven

set temperatures at and below 190°C), it can be seen that the peak temperature rates

occur, approximately, at the point at which the oven and cell temperatures are equal. It

can be inferred that, due to the low heat generation rate of the cell, the maximum rate

occurs when there is effectively no heat loss (as cell and oven temperatures are equal).

After this point, with heat generation rates still being relatively low, the temperature rate

begins to reduce as the cell temperature is increasingly greater than the oven, in turn heat

loss from the cell increases. As a result, this in effect means that the time to maximum

temperature rate of cells at and below 190°C is equal to the time for the cell to reach the

oven temperature.

A conservative comparison of the oven simulation data from Peng and Jiang [38] to

this newly gathered oven experimental data, shows that under simulation there is a large

overestimation of the oven temperatures that lead to TR, a large underestimation of cell

temperature increase due to TR and an overall disagreement with the qualitative behaviour

of the cell surface temperature profile. This outlines the importance of these oven exposure

results as a data set for validation of TR models of LFP cells.
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Figure 4.16: Comparison of time to maximum temperature and time to maximum temperature rate.

4.2.4 Comparison of Abuse Methods

By comparing the oven data to the ARC data at 100% SOC, we see that for cells exposed to

an oven temperature of approximately 215°C, a more drastic TR event occurs compared

to the ARC tests. Similar behaviour is noted by Lei et al. [171]. In the oven test, a

mean maximum cell surface temperatures of ~394°C is achieved, with a mean maximum

temperature rate of 550°C/min (see Table 4.5). In comparison, under ARC tests, the

mean maximum cell surface temperature (315°C) and temperature rates (3.7°C/min) are

significantly lower, even though there is no heat loss. This can be explained by the

contribution of self-heating to cell temperature rise. In the ARC, the temperature rise of

the cell is entirely due to the thermal energy generated by self-heating, raising the cell’s

temperature from 95°C to 315°C. In the oven, however, due to rapid convective heating

from the air and conduction through the cell, the cell can reach a higher temperature

(up to the oven set temperature) more quickly than that which would occur from the

evolution of the reaction rates alone. As the cells (at 100% SOC) are identical in the oven

and ARC tests, the amount of energy that can be released during TR will also be the same.

However, in the oven test, due to the relatively high temperature rate from convection

heating (compared to self-heating in ARC at same temperature), there is a significant

increase in temperature before the decomposition reactions can progress. Hence more

heat is released at higher temperatures (compared to the ARC), in turn leading to a

larger temperature rise overall. Additionally, the compounding of the reaction rates of the

four reactions at higher temperatures leads to an overall increase in reaction rate of the

cell. Moreover, for the oven at 220°C, it can be seen that TR initiates below the oven set
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temperature and occurs so rapidly that the system is effectively adiabatic. This indicates

that the severity of TR is increased under rapid heating of the cell and should be taken

into account when considering safety, especially in circumstances such as rapid heating of

a cell due to short circuit of a neighbouring cell, overheating due to temperature control

failure or another source of heat such as fire.

4.2.4.1 Calculation of Heat Released

For further insight into the reactions taking place under the different abuse scenarios,

an analysis of the heat released by cells at 100% SOC under ARC and oven testing was

undertaken.

Under ARC the thermal energy released can be easily calculated from the adiabatic

temperature rise of the cell by Eq. (4.1). In Eq. (4.1), the adiabatic temperature (∆T )

is the difference between the onset and maximum cell temperature, Cp is the average

specific heat of the cell and m is the average mass of the cell. The average mass of a cell

was measured to be 40.48 g (with shrink wrapping). The Cp value, following the method

outlined by [248], was calculated by Eq. (4.2) from the average temperate rate (dT/dt) of

a cell in an adiabatic environment subject to a constant heating power (P ) at the cells

surface, as described in Section 4.2.1. The specific heat of the cell was determined to be

1107 J/kg K. For the cells at 100% SOC under ARC, the average adiabatic temperature

rise is approximately 220°C. Therefore, from Equation 4.1, QARC = 9.85 kJ.

Q = ∆TCpm (4.1)

P =
dT

dt
Cpm (4.2)

The determination of the heat released under oven exposure can be estimated from

the cell surface temperature rate, Fig. 4.17 shows an example cell surface temperature

rate plot from oven exposure. The temperature rate, determined by differentiation of the

temperature plot, can be used in conjunction with Eq. (4.2) to determine the heating

power at the cells surface for every instance in time. By integration, this in turn can be

used to determine the thermal energy released during TR.

As the temperature, and in turn the temperature rate, are both dependent on the

heat transfer from the oven as well as the self-heat generation, their contributions to cell

heating have to be identified. As discussed in the ARC study, self-heating does not initiate

until ~95°C, so at any point in time when the cell surface temperature is <95°C it can
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Figure 4.17: Method to calculate heat generated by cell under oven testing, with key time indices
annotated.

be confidently said that transfer from the oven dominates. Although a large temperature

difference between the cell interior and cell surface can exist during TR due to internal

heat generation, at this early stage with no self-heating the surface can be assumed to be

hottest [193]. Above this temperature, self-heating will become increasingly important.

On inspecting the temperature rate (taking the profile in Fig. 4.17 as an example), it is

found that after a plateau in the rate, the rate increases at times coinciding with cell surface

temperatures greater than approximately 150°C. Hence, it is assumed that self-heating is

not important until surface temperatures are >150°C, at which point it dominates the heat

rise of the cell up to the cell’s maximum temperature. Beyond the maximum temperature

the cell cools. However, this does not mean the decomposition reactions are complete at

this point. This is evident from the temperature difference between the cell surface and

oven at the end of the test, suggesting low rate reactions are still occurring such that the

cell does not equilibrate at the oven temperature.

From this interpretation several key time instances and features can be identified and

utilised to estimate the heat generated during TR of a cell under oven exposure. The

time instances t1, t2, t3 and t4, depicted on Fig. 4.17, can be defined as: t1, the time

that self-heating becomes dominant; t2, the time that the cell becomes hotter than the

oven; t3, the time that the maximum cell temperature occurs and the point the cell begins

to cool; and t4, the point that the cell temperature rate is negligible. Beyond t4 the

temperature difference between the oven and cell surface (from t4 to the end of the test),

due to simmering reactions, is defined as ∆Tti , at ti. The negative rate region at point V

is due to cooling from the venting gases.

The absolute energy released by self-heating (i.e. considering heat loss due to venting

as positive as it inherently originates from self-heating) between t1 and t3, Qt1−3,Abs , can
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be determined by integrating the absolute power between t1 and t3. In turn the energy

lost through venting, QV , can be estimated from the difference between Qt1−3,Abs and

the net energy released between t1 and t3, Qt1−3,Net , i.e. QV = Qt1−3,Abs − Qt1−3,Net . If

no heat is generated after the peak temperature, it is expected that the heat lost during

t3–t4, Qt3−4,Loss (by the cell cooling down to the oven set temperature), to be equal to

the heat that was generated between t2–t3, Qt2−3 . Any difference in these values can be

attributed to self-heating as the cell cools. Hence, the heat generated as the cell cools

is defined as, Qt3−4 = Qt2−3 + Qt3−4,Loss , as Qt3−4,Loss is inherently negative. Beyond t4,

where dT/dt ≈ 0, we can assume steady state conditions. Hence, the self-heating rate,

Pti,SH , equals the heat loss rate due to convection and radiation, Pti,HL, at each interval in

time ti between t4–tend. Radiation is considered because of its importance in convection

oven experiments, as Hatchard et al. [258] highlights. The heat loss, Pti,HL, is defined

by Eq. (4.3), where TC and TO are the cell surface and oven temperature respectively,

h is the convective heat transfer coefficient, A is the heat transfer area, ε radiative heat

transfer coefficient and R is the Stefan-Boltzmann constant. Therefore, the heat generated

is determined by Eq. (4.4), where ∆tti is the time interval between data points. The total

heat generated by self-heating is given by Eq. (4.5).

Pti,HL = (TC,ti − TO,ti)hconvA+
(
T 4
C,ti − T

4
O,ti

)
εAR (4.3)

Qt4−end
=

tend∑
t4

Pti,HL∆tti (4.4)

Qtotal = Qt1−3,Abs +Qt3−4 +Qt4−end
(4.5)

Following this method, with hconv = 10 W/m2 K (estimated from [146] from the values

for a bare stainless steel cylinder, 12.5 W/m2 K, and for a cell with a label, 7.2 W/m2 K,

hconv for the tested cell is calculated to be the average of these values assuming half of

the cell surface area is bare stainless steel, and the remaining surface that is covered in

glass cloth tape has the same hconv if was covered in the label), A = 4.18× 10−3 m2,

ε = 0.8 [146] and ∆t is the time between temperature readings after consecutive values

are removed (as explained earlier, see Page 132), the self-heat generated during TR under

oven exposure is calculated.

Table 4.6 presents the calculated heat released for each cell, following the above

method, during each of the time periods, including the total heat generated during TR
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and heat lost due to venting, as well as the mean values for groups A and B1. As a val-

idation of the methodology, the calculated total heat released can be compared to the

total electrochemical energy of the cell. For the cells in question, with a capacity of

1.5 Ah at 100% SOC and a nominal voltage of 3.2 V, the total electrochemical energy is

QElechem = 17.28 kJ. For cells abused under the highest temperatures, and assuming that

all possible decomposition reactions take place in the cells to the fullest extent, then the

heat released by these cells can be considered representative of full conversion of electro-

chemical energy to thermal energy. Hence, by comparing the mean total heat released

by group B, Qtotal,B = 15.93 kJ, to the electrochemical energy, QElechem = 17.28 kJ, it is

shown that the calculated heat released is close to the energy capacity of the cell. As such,

the method to calculate heat generation under oven abuse scenarios is valid for the higher

oven temperature exposure. Moreover, by comparing the values of Qtotal,A = 7.46 kJ and

Qtotal,B = 15.93 kJ estimated here to those predicted by modelling in Section 5.2.3, where

Qtotal,A = 7.76 − 8.34 kJ and Qtotal,B = 16.04 − 16.64 kJ (see Table 5.7), it is shown that

the numerical method for determining heat generation under oven exposure is close to

that predicted computationally in both oven exposure cases, and hence valid for further

discussion.

As can be seen from Table 4.6, the heat released (Qtotal ) by the cells exposed to the

lower oven temperature is approximately a half of that at the higher oven temperature.

This supports the previous statement in the discussion above, that at the higher oven

temperature additional reactions, i.e. PE and electrolyte, are taking place. The amount

of heat calculated to be released upon venting is greater in the lower oven temperature

case. This is thought to be due to, in the higher oven temperature case, greater heat

generation rates at the time of venting reducing the overall temperature reduction, in

turn reducing the calculated heat loss.

As previously stated, approximately double the heat is released by cells in group B

compared to A (see Table 4.6), however the relative change in surface temperature against

oven set temperature in group B is 3 times greater than that of group A (see Fig. 4.14).

However, inspecting values of Qt1-3,A, which corresponds to the heat released from self-

heating onset to maximum cell temperature, better relates to the maximum cell tempera-

1Values in Table 4.6 differ slightly to those of the corresponding table in Ref. [264]. This is due to 1) the
number of cells considered in each group; 2) the temperature rate value at a given time due to the filtering
of the data (see Page 132) rather than down sampling to 1 s; and 3) defining that simmering begins when
the gradient of the temperature rate is first negative and hence the temperature rate starts to fluctuate
about zero, rather than defining simmering to begin when then cooing rate is 10% of the maximum cooling
rate. The mean total calculated heat released for group B is similar between the method here and of that
of Ref. [264], where there is a 8% difference between the two. However, greater differences occur between
the mean total calculated heat released for group A. On inspecting the heat release during the different
stages of TR it can be seen that this is mainly due to the calculated heat release in the simmering region.
Further, comparison of the heat release calculated from experimental data in Table 4.6 and predicted by
simulation in Table 5.7, it can be seen that the estimated heat of the simmering reaction calculated here
is close to the predicted values, whereas those in Ref. [264] are not. As such, the calculated heat released
during simmering is sensitive to method at which onset is determined, but the method used herein is more
accurate that that used in Ref. [264].
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tures of Fig. 4.14. As such, from the mean values of Qt1-3,A for each group it can be seen

that cells in group B release 2.8 times more heat than group A, almost equivalent to the 3

times increase in temperature. Hence, the methodology to determine heat released during

oven exposure is upheld to be valid. Further, from Table 4.6 it can be seen that the heat

released due to simmering reactions, Qt4−end , is greater, on average, for cells of group B

than group A. However, the proportion of simmering heat of the total heat released is

larger for group A, with simmering accounting for 34% of the total heat, while for group

B, simmering accounts for 24% of the total. The large fraction of simmering heat of the

total heat for the mean value of group A leads to the ratio of total heats between group

A and B being closer to 2 than 3.

Cell to cell variation is a significant consideration regarding the safety of battery packs.

If a cell is less stable or reacts more severely than expected, this may lead to thermal

management and safety measures unable to prevent TR propagation. Hence, a large

variability in the heat released during TR of commercial cells (which are manufactured

to be identical) under exposure to similar abuse conditions can be considered a hindrance

to pack safety. However, for the LFP cells in this study, the heat released during the

main TR event, Qt1-3,A, does not vary by more than 1 kJ from the mean value in both

groups, while the variation in total heat released is of the order of the variation in the

oven set temperature, see Table 4.6. From Fig. 4.13(a) and Fig. 4.13(c) we can see the

variation in Qt1-3,A equates to less than a 25°C difference in maximum cell temperature

about the modal maximum temperature of each group. As such, it can be said that the

small variation in severity between similar tests shows these cells behave predictably.

When comparing the two abuse methods, ARC and oven exposure, it can be seen that

the cells under ARC generate significantly less heat (QARC = 9.85 kJ) than cells exposed

to mean oven temperatures of 215°C, which generate QOven,215°C = 15.93 kJ of heat. The

higher temperature oven clearly represents a more complete TR event when compared to

the electrochemical energy available, QElechem = 17.28 kJ. It is expected that a cell under

adiabatic conditions in the ARC would capture the complete TR process, and hence the

heat generated by the cell would be at least equal to that in the higher temperature oven

case. As this is not the case, and as the ARC used here only operates up to 315°C, it is

apparent that the ARC does not capture the TR event to completion.

4.2.4.2 Recommendations on Abuse Testing Li-ion Cells

In ARC, self-heating is defined when the temperature rate of the cell is >0.02°C/min.

Naturally, self-heating can be defined as ending when the temperature rate drops below

this value. Returning to the temperature rate plot of from the ARC test (Fig. 4.4(b)), it

can be clearly seen that the cell is some way off from this cut-off value. In fact the rate is

almost constant from 300°C to the end, again suggesting an incomplete reaction. However,

under similar (ARC) conditions but up to higher maximum operating temperatures, i.e.
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Table 4.6: Heat released during TR by cells under oven exposure.

Cell
No.

Group

Calcu-
lated
oven
temp.
(°C)

Qt1-3,A

(kJ)
Qt1-3,N

(kJ)
Qt2-3

(kJ)
Qt3-4,L

(kJ)
Qt4-end

(kJ)
Qtotal

(kJ)
Qv

(kJ)

02 – 190 4.52 3.82 1.74 =1.66 – 4.60 =0.70
03 B 210 10.88 10.19 7.27 =6.59 2.32 13.88 =0.69
04 – 170 3.88 2.72 1.41 =0.10 6.43 11.63 =1.17
08 – n/a 9.90 9.41 6.25 =5.75 – 10.41 =0.49

09 B 216 10.63 10.15 6.99 =6.34 2.65 13.93 =0.47
10 A 181 3.63 2.49 1.02 =0.28 1.70 6.08 =1.14
12 – 199 11.41 10.31 7.96 =7.59 0.54 12.32 =1.09
13 – 194 9.25 8.93 6.81 =6.04 3.24 13.26 =0.32

14 B 213 11.60 11.14 8.18 =7.57 3.87 16.08 =0.45
15 A 179 4.48 3.52 2.14 =1.34 2.83 8.10 =0.96
16 A 180 4.19 3.29 1.95 =0.95 3.75 8.95 =0.90
17 B 217 11.32 10.95 7.82 =6.49 7.40 20.06 =0.37

19 A 180 4.02 3.35 1.93 =1.21 1.96 6.70 =0.67
20 B 213 12.13 12.13 9.20 =8.18 5.09 18.24 0.00
21 – n/a 11.42 10.75 7.62 =7.19 – 11.84 =0.67
22 B 217 11.72 11.01 7.70 =7.35 1.36 13.42 =0.71

Group A, ave. 180 4.08 3.16 1.76 =0.94 2.56 7.46 =0.92
Group A, SD 0.88 0.35 0.46 0.50 0.47 0.93 1.31 0.19
Group B, ave. 214 11.38 10.93 7.86 =7.09 3.78 15.93 =0.45
Group B, SD 2.83 0.55 0.73 0.78 0.73 2.20 2.72 0.26
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>400°C as this is what is reached in the oven test, it maybe seen that the cell reaches the

same maximum temperature and generates the same heat release as in the higher oven

temperature case. In fact, assuming the total heat release upon TR to be equal to the

electrochemical energy (QElechem = 17.28 kJ) and substituting this into Eq. (4.1), with

appropriate Cp and mass values for the cells under study, and an onset temperature of

95°C, it is shown that the maximum cell temperature under adiabatic conditions would

be 481°C. Also, the ARC being limited to a maximum temperature of 315°C also prevents

determining if the cells at different SOC cease self-heating at different temperatures, and

hence prevents determination of an accurate heat release for different SOC. As this inves-

tigation is beyond the scope of the study here, it is recommended that the self-heating

behaviour in an adiabatic environment above 481°C to be made the focus of future work,

along with investigation to identify if the discrepancies between ARC and oven tests are

true of other cell chemistries.

In contrast, the oven exposure test with a set temperature high enough to induce rapid

TR (in this case temperatures >200°C), captures nearly the entirety of the decomposition

process within the cell in terms of the proportion of the electrochemical energy released

as heat. Also, oven testing is cheaper and more readily accessible as a safety test. Hence,

it is concluded that ARC alone could be unsuitable for characterising TR as it does not

capture the full severity of TR (in terms of temperature rate). Furthermore, ARC also

may not capture maximum achievable cell temperatures. As such, ARC testing should be

complimented with oven testing. However, as the temperature measurements are recorded

with thermocouples on the cell’s surface, there will be a lag between the reactions occur-

ring and the measured temperature. This could have implications on differentiating the

individual chemical decompositions reactions compared to ARC, particularly during the

high-rate thermal processes that occur during TR. To supplement this, the use of TR

abuse modelling could be used to predict the decomposition reaction process and self-heat

generated during oven testing, whilst also checking the assumptions of the simple model

used here to determine the self-heat generation in the oven test. This is discussed in

Chapter 5.

4.3 Statistical Analysis of Experimental Results

For any experimental practice, it is beneficial to quantify how the results obtained from

the tested sample represent the population. For the greatest confidence of a sample being

representative of a population it is desirable to have a large sample size.

Methods to determine minimum samples size typically require knowing the population

standard deviation [265]. In the case of this work, the population standard deviation

is not known. However, Mathews [265] show that in such a case a preliminary sample

of n = 193 can be used to estimate the population standard deviation (assuming 95%
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confidence level and a confidence interval half width of 0.2). Another method, by Cochran

[266], calculates sample size given a desired confidence interval and level of variability.

From this, a sample size of sample size of 364 is calculated assuming 95% confidence level

and maximum variability, for a population of 7000. Where 7000 is the number of 18650

cells used in an EV [267].

It is clear that the sample size in this work, where n < 10 for a given set of variables,

is small compared to the desired sample sizes suggested above. This means that there is

less likelihood that the sample is truly representatives of a population.

Furthermore, to test if a sample is representative of a population the population mean

or standard deviation need to be known [268]. This is such that a hypothesis test can be

carried out to determine if there is a statistical significance that the sample and population

means are equal. As the population mean and standard deviation are not known for this

work this can not be implemented.

However, confidence intervals on samples can be calculated without population data.

These confidence intervals then give the bounds in which the population mean will likely

lie, for a given confidence level. The following section will investigate the confidence

intervals, based on this small sample size, for the oven and ARC results.

4.3.1 Confidence Intervals

When the sample size is small, i.e. n < 30, the Student’s t Distribution can be used

to compute the confidence intervals for the population mean, assuming the population is

normally distributed [269]. This is done using the following equation:

µ = X ± tn−1,α/2
s√
n

(4.6)

where µ is the calculated confidence interval for the population mean, X is the sample

mean, tn−1,α/2 is the Student-t distribution (determined from look up tables [see, for

example, 270]), s is the sample standard deviation, n sample size, and α is the confidence

internal. For a 95% confidence interval with two tails, α = 1− 0.95.

4.3.1.1 Oven Test Analysis

Eq. (4.6) is used to calculate the 95% confidence interval of the cell temperature at every

0.02 min time instances for the oven abuse test data. The mean cell temperature and

confidence intervals are presented in Fig. 4.18.

From Fig. 4.18 it can be seen that the confidence intervals are tight around the mean for

both oven temperature tests. But, the confidence intervals grow around the self-heating/
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Figure 4.18: Oven exposure test – 95% confidence intervals determined from the Student-t distribution
for a) Group A (n=4), and b) Group B (n=6).
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TR events (approximately 20 min to 40 min). This highlights the variability of the TR

events.

Figure 4.18 also shows that there is a 95% probability that the population mean peak

cell temperatures are 203°C < Tmax,A < 238°C and 352°C < Tmax,B < 426°C for the re-

spective oven exposure temperatures of 180°C and 214°C.

4.3.1.2 ARC Test Analysis

Eq. (4.6) is also used to calculate the 95% confidence interval of the cell temperature

rate given 0.5°C temperature steps for the 100% SOC ARC abuse data. The mean cell

temperature rate and confidence intervals are presented in Fig. 4.19.

The data of Fig. 4.19 is split into two sub-sets. One for the data before venting, and

one for the data after venting. This is done to facilitate the interpolation of the rate data.

As the whole data set can contain more that one record of a given temperature due to the

cooling of the cell at venting, as can be seen in the mean temperature rate in Fig. 4.19.

Thus making it difficult in interpolate the continuous data series.

As each run of the ARC tests result in different temperatures at which self-heating

is onset and venting starts and stops, there is not a constant sample size over the entire

temperature range. Table 4.7 presents the sample size used in calculating the confidence

interval at each temperature step. Further, form Fig. 4.19 it can be seen that the mean

line extends beyond the ends of the confidence interval. This is due to only one sample

being recorded at those temperatures, hence the confidence interval cannot be calculated.

It can be seen from Fig. 4.19 that the 95% confidence interval for the temperature rate

remains at the magnitude of the mean at a given temperature. However, around the point

after venting (i.e. the start of the “after venting” data subset) and of peak temperature

rate (above the 1°C TR definition) the relative width of the confidence interval increases.

This highlights the variability of the venting and TR behaviour.

Figure 4.19 also shows that there is a 95% probability that the population mean peak

cell temperature rate is 1.38°C/min < Trate,max < 4.26°C/min for cells at 100% SOC under

ARC exposure.

Further testing would be beneficial to determine the difference in the mean and variance

of two sample sets (for given oven exposure temperature, or SOC under ARC testing). This

would help determine if they can individually be considered representative of a population.

As well as carrying out further testing to identify what sample size can be considered

representative of a population.
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Figure 4.19: 95% confidence intervals determined from the Student-t distribution for the 100% SOC
ARC tests. n=7 over the majority of the temperature range. However, due to the variation in the data,
at the start and end of the “before venting” and “after venting” sub-sets n varies, see Table 4.7.

Table 4.7: Sample size over temperature range for 100% ARC results.

Before Venting After Venting
Temp. Range (°C) Sample size, n Temp. Range (°C) Sample size, n

92.0–92.5 2 154.0–158.5 2
93.0–96.5 3 159.0–159.5 4
97.0–97.5 4 160.0–163.5 5
98.0–101.5 6 164.0–304.0 7
102.0–145.0 7 304.5–313.0 6
145.5–147.0 6 313.5–314.0 5
147.5–149.0 4
149.5–150.0 3
150.5–153.0 2
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Figure 4.20: Means and 95% confidence intervals (depicted by the error bars) for specific a) temperatures,
and b) times, of the ARC experiments for all SOC. n = 4, 3, 4, 7, 3 for SOC of 0%, 28%, 63%, 100%,
110%, respectively. There are no TTR or tTR for the 0% and 28% SOC cases as TR does not occur.
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For the ARC experiments, the confidence intervals of key temperature and time points

are calculated for a comparison of important stages throughout TR and for analysis of

all SOC studied. Figure 4.20(a) presents the mean temperature and confidence intervals

for the onset of self-heating, the onset of TR and for the maximum temperaturre rate.

Similarly, Fig. 4.20(b) presents the mean time and confidence intervals for the onset of

self-heating, the onset of TR and for the time to end of test.

From Fig. 4.20(a) it can be seen that the confidence intervals for the temperature at

which self-heating and TR start are relatively narrow and do not overlap (for a given

SOC). This means there is a statistical difference between the mean self-heating onset and

mean TR onset temperatures [271]. However, the confidence intervals for the temperature

at maximum temperature rate is very wide in most cases, except for 63% SOC. In the case

of 28%, 100% and 110% SOC, this leads to the confidence intervals of the temperature

at maximum rate overlapping the confidence intervals if the self-heating or TR onset

temperatures. Similar features are present in the time plot Fig. 4.20(b) for the confidence

intervals of time to TR and time to end for the 63%, 100% and 110% SOC cases.

To state that the means are statistically different in the cases were the confidence

intervals overlap we first describe a null hypothesis: µ0 = group means are the same.

Then, calculate the 95% confidence interval on the difference between 2 group means. If

the confidence interval contains 0, then we can accept the null hypothesis and state the

means are the same at the α = 0.05 level [271]. Otherwise, we reject the null hypotheses

and state that there is a difference in group means.

The 95% confidence interval on the difference between 2 group means (µx − µy) can

be found from the following equation [269]:

(µx − µy) =
(
X − Y

)
± tν,α/2

√
s2X
nx

+
s2Y
nY

(4.7)

where the number of degrees of freedom v (rounded down to the nearest integer) is deter-

mined from:

ν =

(
s2X
nx

+
s2Y
nY

)2
(s2X/nX)

2

nx−1 +
(s2Y /nY )

2

nY −1

(4.8)

The notation of this equation follows that as in Eq. (4.6), but with X and Y referring to

the properties of the two different groups under analysis.

Utilising Eqs. (4.7) to (4.8) the calculation of the confidence interval on the difference

between 2 group means is presented in Table 4.8, for the instances where confidence

intervals cross over. From Table 4.8 it can be seen that the null hypotheses is accepted in

all cases. This is because the confidence interval on the difference between 2 group means
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Table 4.8: 95% confidence interval for the difference between 2 group means for variable X and Y.

Variable
(X,Y)

SOC X Y sX sY nX nY ν tν,α/2
Lower

(µx − µy)
Upper

(µx − µy)

TTR,Trate 100 203.24 224.21 10.37 44.59 7 7 6.65 2.45 -63.31 21.38
Tonset,Trate 28 95.26 127.17 2.60 22.47 3 3 2.05 4.30 -88.12 24.29
TTR,Trate 110 201.07 216.33 7.31 59.46 3 3 2.06 4.30 -164.08 133.57
Tonset,Trate 110 72.36 216.33 9.86 59.46 3 3 2.11 4.30 -293.70 5.77
tTR,tend 63 1957.78 2299.31 229.30 328.84 4 4 5.36 2.57 -856.87 173.82
tTR,tend 100 2422.19 2513.78 346.73 342.38 7 7 12.00 2.18 -492.91 309.73
tTR,tend 110 3770.42 3911.80 243.79 298.04 3 3 3.85 3.18 -848.76 566.00

includes 0 in all cases. Hence, we can not say the means are different within the tested

groups, e.g between TTR and Tmax,rate for 100% SOC.

Intuitively, in the 100% and 110% SOC cases one would expect, for the population,

the mean temperature of maximum rate to be different to (and greater than) the mean

temperature of TR onset. Hence, it would be beneficial to increase the sample size to

determine if the variation, and confidence intervals, reduce in size, particularly for the

temperature at maximum rate, time to TR and time to end. Hence, with a greater sample

size improve predictions and determine if the means of the temperature at maximum rate

and TR onset are different.

4.4 Conclusion

ARC and free convection oven experiments were undertaken to investigate the stability

and severity of TR in LFP cells. In both experiments, all cells remained intact, showing

the that LFP cells are likely to present no explosion risk.

ARC was carried out on LFP 18650 cells at various states of charge, including over-

charge. It was found that as SOC increases, so does TR severity whilst cell stability

reduces. From the resulting exothermic data, the contribution of the four decomposition

reactions to the thermal runaway potential of the cell for each different SOC was discussed.

To date, analysis of this type has not been presented in the literature. It was found that

at higher states of charge, there was an increasing overlap in the occurrence of the NE,

PE and electrolyte reactions leading to an overall increase in maximum temperature rate.

Also, the main contributions to TR at SOC of 100% and 110% were the negative and pos-

itive electrode reactions, while at lower SOC TR is dominated by the negative electrode

reaction. At SOC greater than 0%, the negative electrode reaction is a significant con-

tributor to self-heating onset temperature and at 110% SOC, the lithium plating reaction

reduces the onset temperature. At and below 28%, SOC thermal runaway did not occur

and hence is most suitable for the storage and transport of LFP cells, while for cells above

28% SOC the onset of TR occurs at approximately 200°C, at which point TR onset was

due to the NE reaction. In comparison to other chemistries studied in the literature, LFP
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cells have a reaction rate 3 orders of magnitude lower, even at low SOC, due to the limited

oxygen production.

Oven tests were carried out to analyse the TR response of LFP 18650 cells at 100% SOC

to understand how the cells respond under rapid heating, and to compare effects of the

two different thermal abuse techniques on the severity of TR. It was shown that for higher

oven temperatures the LFP cell had a more extreme TR event. Results indicate that

if the cell temperature remains below the critical temperature (190–200°C) for cathode

decomposition and electrolyte/O2 reactions to occur, there is a significant reduction in

maximum cell temperature and cell reaction rate. Hence, there is an improved ability to

manage the temperature rise of the cell which in turn increasing overall safety. Compared

against the literature, the LFP cells studied here are safer at a given oven temperature than

other chemistries, with TR onset occurring at a higher oven temperature whilst reaching

a lower maximum temperature. In oven tests, higher cell temperatures and temperature

rates can be achieved than in ARC, showing how failure accelerated by external heating

(where decomposition reactions are compounded) leads to more severe TR.

By comparing the heat released in both ARC and oven tests, it is shown that ARC

(at temperatures up to 315°C) does not capture the full decomposition process of a cell

during TR. Hence, care should be taken when determining safety from ARC results. As

such it is recommended complimenting ARC with oven testing, as oven testing presents a

more severe TR event. As a result, a more complete picture of TR and cell safety can be

obtained.

The work of this chapter was, in part, motivated by the need of well-defined abuse

conditions and an accurate record of the thermal response of cells for model development

and validation. Extensive data of this kind was not available for LFP cells, a cell chemistry

which is also not accurately modelled. Hence, considering the complexity of Li-ion cell TR

and the level of data required (to characterise TR response under various thermal abuse

conditions), this work provides an essential data set for the development of accurate LFP

TR models and will be used in the following Chapter 5.
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Chapter 5

Development of an Advanced

Thermal Abuse Model for LFP

Cells

Aims & Objectives

The aim of this chapter is to develop an extended TR abuse model, referred to as the

advanced abuse model (AAM), and validate it for LFP cells. Within this, the objectives

are to:

(1) show that the classical abuse model and literature parameters are not valid for LFP

cells;

(2) validate the novel BPV method that describes cell pressurisation;

(3) parametrise the AAM, that includes the BPV method and simmering reactions, for

an LFP cell; and

(4) investigate the effects that the governing pressure method and the inclusion of sim-

mering reactions has on model parameterisation.

5.1 Introduction

In this chapter, the development and assessment of the novel AAM is undertaken to address

points highlighted by the Literature Review in Section 2.2. Specifically, addressing the

lack of accuracy of classical TR models representing LFP cells (e.g. Refs. [38, 132]),

apparent when comparing the predictions of Refs. [38, 132] to the experimental work in
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Chapter 4. In turn, as highlighted by Abada et al. [272], there is a low confidence in the

parameter values used for LFP TR modelling. Further, previous work does not account for

cell venting in parameterising LFP cells, which, for other chemistries, is shown to improve

predictions [199]. However, the PPV method used previously to calculate internal cell

pressure is uncommon for similar systems. In other words, calculating the pressure of

a multiphase (liquid and vapour), multi component (e.g. electrolyte and decomposition

gases) fluid is more commonly done under the bubble point assumption [200], hence the

development of the novel BPV methodology (see Section 3.2.3.2).

Section 5.2, presents the results of several studies to address the points and objectives

highlighted above. First, a classical TR model with literature abuse parameters is used to

highlight the inaccuracies of the literature method and the behaviour that is responsible

for said inaccuracies. This highlights the caution that should be taken when using pa-

rameter values quoted in the literature for the reaction kinetics. Then, the BPV method

is validated against the PPV method for appropriateness of predicting cell pressurisation

in TR modelling. After, the AAM (outlined in Section 3.2) is parameterised for different

assumed cell composition on burst pressures. From which, the improvements of the AAM

over the classical TR are shown, while affects of assumed parameters are discussed. Fi-

nally, Section 5.3 concludes the chapter, this highlights cautions that should be taken in

TR model development, outlines the improvements the AAM has over the classical model,

and summarises the link between reaction parameters and venting behaviour.

Throughout this chapter TR model development and parameterisation is carried out

against experimental data of LFP 18650 (1.5 Ah) cells under oven exposure at 180°C and

218°C from Section 4.2.3. Parameter estimation is carried out, using heuristic fitting

methods where reactions are progressively introduced to the model, and their parameters

estimated to fit the model to a larger proportion of the experimental data (as discussed in

Section 5.2.1). Further, throughout this work the cells’ thermo-physical and heat transfer

properties, as well as the initial values of the dependent variable within the decomposition

reactions and the constants mx and nx, are kept the same between investigations. These

general parameters are given in Table 5.1.
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Table 5.1: General Parameters.

Parameter Value Source/ notes

Specific heat capacity of cell, Cp (J/kg K) 1107 measured [264]
Thickness of cell can, dcan (mm) 0.3 [123]
Surface emissivity of cell, ε (-) 0.8 [146]
Convection coefficient, hconv (W/m2 K) 12.5 [146]
Height of cell, hcell (mm) 65 measured
Height of jelly roll, hjelly (mm) 57.3 [123]
Radial conductivity of cell, κ (W/m K) 0.5 estimated
Mass of cell, mcell (g) 39.9 measured
Radius of cell, rbatt (mm) 9 measured
Radius of mandrel, rman (mm) 2 [123]
Density of cell, ρ (kg/m3) 2418 measured [264]
Initial cell temperature, Tinit (°C) 16.5 See notea

Oven set temperature, Toven (°C) 180, 218 See notea

Simulation length, tlength (min) 90 See notea

Abuse parameters
Initial species concentration SEI, Csei,0 (-) 0.15 [99]
Initial species concentration NE, Cne,0 (-) 0.75 [99]
Initial SEI thickness, tsei,0 (-) 0.33 [99]
Initial species concentration PE, Cpe,0 (-) 0.04 [99]
Initial species concentration E, Ce,0 (-) 1 [99]
msei (-) 1 [99]
nsei (-) 0 [99]
mne (-) 1 [99]
nne (-) 0 [99]
mpe (-) 1 [99]
npe (-) 1 [99]
mele (-) 1 [99]
nele (-) 0 [99]
aset to match experimental conditions.
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5.2 Results and Discussion

The Results and Discussion is organised as follows: Section 5.2.1 presents preliminary

work on using the classical model showing its inadequacy and outlining the affect of using

different assumed cell mass compositions. Section 5.2.2 validates the BPV methodology.

Section 5.2.3 discusses the AAM predictions against experimental data and classical TR

model results. Finally, Section 5.2.4 validates the TR predictions beyond the oven set

temperatures the model was parameterised against (i.e. 180°C and 218°C) and discusses

LFP cell TR behaviour beyond experimental findings.

5.2.1 Preliminary Findings - Using the Classical Abuse Model

Preliminary oven abuse simulations were carried out using a classical abuse model (i.e.

without simmering reactions or venting accounted for) with literature decomposition re-

action parameters (see initial values in Table 5.2 and Table 5.3). Fig. 5.1 shows the

Temperature vs. Time plots of these simulations for different oven set temperatures, and

compares them to experimental data from Section 4.2.3 .

From Fig. 5.1, it can be clearly seen that the simulation vastly over-predicts TR severity

while under predicting time to TR. From this, the high TR temperatures suggest that the

heat within this reaction model is too large. I.e. the specific mass of reactant(s) or the

heat of reaction(s) are too large. Further, the early occurrence of TR suggests the onset of

(at least some of) the reactions occur at too low a temperature, i.e. the activation energies

are, in general, too low. Hence, the reaction parameters (Ea,x, Ax, Wx and Hx) are of

interest, and an investigation should be carried out to determine their appropriate values.

Abada et al. [272] has shown the importance of the values of specific masses. The

specific mass of a jelly roll component can be derived from the mass of a given com-

ponent within a cell divided by the jelly roll volume, V jelly (here this takes a value of

Vjelly = 1.29× 10=5 m3, calculated from Eq. (5.1)). Several references give the mass com-

position of Li-ion cells, with [65] and [273] giving values for LFP 18650 cells specifically,

which are presented in Table 5.4. The relative masses from Table 5.4 allow for the es-

timation of two cell compositions of the cells studied here (also presented in Table 5.4),

providing two case studies, referred to as Cell A and Cell B. Cell A is derived from the

mass ratios of [65], while Cell B is derived from the mass ratios of [273]. The calculated

respective specific masses for each component in each case are presented in Table 5.5.

Vjelly = πhjelly

(
(rbatt − dcan)2 − r2mandrel

)
(5.1)

Comparing Table 5.5, showing the calculated specific masses, and Table 5.3, show-

ing literature values, clearly presents that there significant differences between the two.
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Table 5.2: Abuse parameters for LFP cells, from literature and estimated parameters in terms of a factor
of original value, which were used in preliminary studies.

Parameter
Absolute value Scaling factor

Initial Case (from [38]) Case A Case B

Ea ne (J/mol) 1.3508× 105 1.05 1.06
Ea sei (J/mol) 1.3508× 105 1.1 1.115
Ea pe (J/mol) 1.03× 105 0.935 0.965
Ea e (J/mol) 2.74× 105 1.1 1.05
Ane (1/s) 2.5× 1013 1.0 1.0
Asei (1/s) 1.667× 1015 1.0 1.0
Ape (1/s) 2× 108 1.0 1.0
Ae (1/s) 5.14× 1025 1.0 1.0
Hne (J/g) 1714 2.0 1.65
Hsei (J/g) 257 2.249 2.249
Hpe (J/g) 194.7 1.24 1.0
He (J/g) 155 2.2 1.9

0 1 5 3 0 4 5 6 0 7 5 9 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

Te
mp

era
tur

e (
°C

)

T i m e  ( m i n )

E x p e r i m e n t a l
 1 8 0 ° C  2 1 8 ° C

S i m u l a t i o n
 1 8 0 ° C  2 1 8 ° C

Figure 5.1: Preliminary results employing classical thermal runaway model simulating oven exposure
using literature parameters (see initial values Table 5.2 and Table 5.3).

Table 5.3: Range of specific masses used in the modelling of TR (PE specifically for LFP cells), and
values used by Peng and Jiang [38] which are used in the initial simulations in this work. *Values taken
from references [38, 78, 82, 99, 190].

Specific Mass Range* Initial Values

Wne (kg/m3) 610-1700 1700
Wpe (kg/m3) 960 960
We (kg/m3) 407-500 500
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Figure 5.2: Preliminary results employing classical thermal runaway model simulating oven exposure:
(a) and (b) fit of abuse parameters given the specific masses (of Table 5.5) for case A and B, respectively.
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Table 5.4: Cell composition by mass from literature and estimates for the cell under study.

Ref. [65] Ref. [273] Estimates for cell under study

Capacity (Ah) 1.1 n/a 1.5
g % g % Cell A (g) Cell B (g)

Cell Total 38.87 45.00 39.90 39.90
Cathode, active 7.73 19.90 14.22 31.60 7.94 12.61
Cathode, other 1.93 4.97 1.94 4.31 1.98 1.72
Anode, active 4.84 12.46 8.15 18.11 4.97 7.23
Anode, other 0.34 0.88 0.90 2.00 0.35 0.80
Electrolyte 6.41 16.50 2.20 4.89 6.58 1.95
Separator 1.15 2.96 2.00 4.44 1.18 1.77
Case 10.45 26.90 10.09 22.42 10.73 8.95
Foil 6.00 15.44 5.50 12.22 6.16 4.88

Table 5.5: Calculated specific masses for cell mass compositions of Case A and B.

Case A Case B
g kg/m3 g kg/m3

Anode, active 4.97 385 7.23 560
Cathode, active 7.94 615 12.61 977
Electrolyte 6.58 510 1.95 151

Also, there is a large difference in the ratios of specific masses between the two cases (Ta-

ble 5.5). This highlights the uncertainty in the literature regarding appropriate values of

specific mass of reactants. In turn, this makes it a necessity to evaluate the effect of the

specific mass values on determining the remaining abuse parameters through parameter

estimation.

With the specific masses set to those from Table 5.5, parameter estimation on the

abuse parameters (Ea,x, Ax and Hx) was carried out using the classical TR model. Using

the classical TR model and the specific masses of Table 5.5, three stages of parameter

estimation were carried out. Where each stage was developed on the findings of the

previous. Stage 1 utilised the (initial) kinetic parameters of Table 5.2. Stage 2 required

updating the upper bounds of the heat of reaction of the SEI and electrolyte reactions

to be that of the upper values used in the literature (Hsei,max = 578J/g , He,max =

645J/g). Then, within these bounds, parameter estimation was carrying out on the SEI

and electrolyte heats of reaction and on the activation energies for all reactions. Finally,

Stage 3 required increasing the upper bounds on the heats of reaction for the NE and PE

reactions, see Table 2.1. Then, again, carrying out parameter estimation on all activation

energies and heats of reaction. Following this procedure, the resulting prediction of cells

undergoing TR during oven testing is presented in Fig. 5.2(a) and Fig. 5.2(b), for case A

and B respectively.
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From the results presented in Fig. 5.2(a) and Fig. 5.2(b), it can be seen the severity

of TR has been be predicted accurately, significantly improving predictions over those

using the initial values used in Table 5.2. However, the shape of the temperature pro-

files compared to the experimental data differ in agreement depending on the oven set

temperature. For both cases A and B, at the higher oven temperature the cell surface

temperature profile resembles that of the experimental data well. Further, for the lower

oven temperature (180°C) case, while the peak temperature is predicted accurately, the

smooth temperature profile is not reproduced. At the higher oven temperature (218°C),

without the occurrence of venting (investigated in Section 5.2.2) the TR incident occurs

sooner than that in the experiment. For each oven temperature, the model does not sim-

ulate any simmering reactions (investigated in Section 5.2.3), causing the discrepancies,

seen at later times between, the simulation and experimental results.

Table 5.2 presents the estimated parameters used to produce the predictions of Fig. 5.2(a)

and Fig. 5.2(b). From this table, it is shown that to meet the TR maximum temperature

the model requires significant changes, from initial values, of the heat of reaction of the

reactions.

5.2.2 Vent Sub-Model Development

A reproduction of the work by Coman et al. [199] for predicting internal cell pressure and

venting behaviour is first presented for validation. Then, a comparison between the PPV

method and the BPV method is made.

The reproduction of the predicted pressures vs. average cell temperature by the partial

pressure model is presented in Fig. 5.3, along with the original data from Coman et al.

[199] for comparison. The original data is titled “Literature” in the legend, while the

title “Reproduction” refers to the results of this work. It can be seen from Fig. 5.3 that

the overall prediction of cell pressure Ptot is reproduced well, although there is an under

prediction of Ptot over the entire temperature range up to the point of venting. The cause

of this under prediction is discussed below.

The total pressure, as defined by Eq. (3.41), is the sum of the saturation and gas

pressures. The saturation pressure is governed by the same empirical formula in both

modelling approaches, hence is exactly reproduced in Fig. 5.3. Then, rationally, it is clear

that it is the prediction of the gas pressure that is leading to the discrepancies in the

total pressure. This can be seen from the differences in the gas pressure plots of Fig. 5.3.

The gas pressure, Pg, of the reproduction does not begin to deviate from the initially

linear pressure increase until a higher temperature of approximately 115°C. At this point,

the increase of pressure with temperature is slow compared with the literature data. At

approximately 130°C, the gradient of pressure with temperature of the reproduction begins

to become steeper than the literature. This continues to increase in gradient up to the
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Figure 5.3: Validation of the reproduced PPV method. Literature from [199].

point of venting. Thus leading to the temperature of venting in the reproduction to be

the same as in the literature.

As sated in the methodology (Section 3.2.3), the gas pressure is governed, in part,

by the SEI reaction species. However, due to the slight differences in the formulation

of the SEI decomposition equation in this work and in the work by Coman et al. [199],

there is a difference in the fitted value of the SEI reaction activation energy. However, the

implementation here of the partial pressure model is deemed acceptable. This is because

the temperature at which venting is predicted is reproduced correctly, and the fact that

the deviation of the reproduction from the experimental plot in Fig. 5.3 is of the same

magnitude as the deviation of the literature prediction from the experimental.

A comparison between the current method (i.e. the PPV method by Coman et al. [199])

and the new BPV method is now presented. In both cases the following parameters are

used: the general properties from Table 5.1, the specific masses of Cell A from Table 5.5,

the abuse parameters corresponding to column A of Table 5.2 and a burst pressure (Pburst)

of 1224 kPa.

Figure 5.4(a) shows the surface temperature of a cell under oven abuse simulations

considering both venting methodologies. This data is presented for two oven set temper-

atures, and is further compared with experimental results. The venting methodology has

little effect on the overall predicted temperature profile and TR behaviour. The most

significant difference between the methodologies is the temperature at which venting is

predicted. As can be seen in Fig. 5.4(b), the BPV method predicts venting at a later

time/ higher temperature and is closer to the experimental data.

173



CHAPTER 5. DEVELOPMENT OF AN ADVANCED THERMAL ABUSE MODEL
FOR LFP CELLS

0 1 5 3 0 4 5 6 0 7 5 9 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0
Te

mp
era

tur
e (

°C
)

T i m e  ( m i n )

E x p e r i m e n t a l
 1 8 0 ° C  2 1 8 ° C

P P V  m e t h o d
 1 8 0 ° C  2 1 8 ° C

B P V  m e t h o d
 1 8 0 ° C  2 1 8 ° C

V e n t i n g
l o c a t i o n

(a)

5 1 0 1 5 2 0

1 2 5

1 5 0

1 7 5

E x p e r i m e n t a l
 1 8 0 ° C  2 1 8 ° C

P P V  m e t h o d
 1 8 0 ° C  2 1 8 ° C

B P V  m e t h o d
 1 8 0 ° C  2 1 8 ° C

Te
mp

era
tur

e (
°C

)

T i m e  ( m i n )
(b)

Figure 5.4: Oven abuse simulations for both internal pressure methods (a) whole time frame (b) enlarge-
ment of venting location.
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The location of venting predicted by the BPV method can be further analysed by

looking at the pressure vs. surface temperature plots in Fig. 5.5(a). Firstly, it is important

to note that, following the bubble point assumption, there should only exist a single

electrolyte temperature for a given pressure and bulk mole fraction, this is not the case

for the surface temperature. Unlike the PPV method, which predicts a steady increase in

pressure due to the saturation and gas pressures, the BPV method predicts little pressure

increase until approximately 110°C, at which point the pressure increases steeply. The

sudden pressure increase in the BPV method simulation is because the cell is initially at

a pressure of 0.1 MPa, which, for temperatures below 110°C and a mole fraction near the

initial value, is greater than the bubble pressure. Hence, the pressure remains constant

until temperatures greater than 110°C, at which point the bubble pressure is greater than

0.1 MPa and the pressure increases according to Eq. (3.57). Further, as the mole fraction

remains relatively constant up to 125°C (see Fig. 5.5(b)), it is clear that the increase in

pressure up to approximately 125°C is predominantly determined by temperature.

As discussed above, the pressure predictions at lower cell temperatures are significantly

different between methods. However, once the mole fraction within the BPV method starts

to increase, i.e. when gas begins to be generated, then the pressure prediction of the BPV

method resembles that of the PPV method. Although, the pressure profiles between

methods are somewhat offset along the temperature axis.

As stated above, there is a difference in the predicted temperature at which venting

occurs between the two methods. However, one must consider that the literature, i.e. [199],

fits the point of venting in simulations to experimental data by altering the SEI reaction

activation energy. Hence, it is conceivable that either method could be used to predict

venting in TR modelling, although each would require different reaction parameters to

provide the same location of venting. However, the BPV method is, the author believes,

more representative of the system under study as it accounts for the phase equilibria of

the mixture, unlike the PPV model which assumes the CO2 generated is entirely in the

gaseous phase. Therefore, the BPV method will be used in the remainder of this work.

Further, one can see in Fig. 5.4 that the BPV model predicts venting closer to the

experimental data for the given parameter set. However, if the assumed burst pressure

were to be higher (as in [221]) then the point of venting for both methods would be at a

higher temperature. Hence, it can be clearly recognised that the assumed burst pressure

can have an indirect influence on the abuse parameters through the need to accurately fit

the location of venting. This will be systematically investigated as part of Section 5.2.3.

5.2.3 Advanced Abuse Model Investigation

This section discusses the results of the AAM, which includes venting phenomena and a

reaction to describe simmering reactions. This is to address the suggested improvements
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Figure 5.5: Comparison of (a) Pressure vs. temperature (b) vapour or mixture fraction vs. temperature,
from oven abuse simulations for both internal pressure methods.
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in Section 5.2.1, along with a study of the effects of assumed burst pressure on estimated

abuse parameters.

Figure 5.6 shows the resulting temperature plots of oven simulations for the two dif-

ferent mass fractions (see Table 5.5) and for two different burst pressures (Pburst,Low =

1224 kPa and Pburst,High = 2158 kPa). It can be clearly seen from Fig. 5.6(a) and Fig. 5.6(b)

that the AAM predicts TR very accurately for the higher oven temperature exposure when

compared to the experimental data, and vastly improves predictions when compared the

classical abuse model, see Fig. 5.2(a) and Fig. 5.2(b). Specifically, the implementation

of the venting behaviour delays TR noticeably, such that the peak temperatures of the

simulation occur at a closer time to the experimental peak than the predictions of the

classical model. Additionally, under the lower oven temperature abuse scenario the shape

of the temperature profile better resembles the experimental results when using the AAM

when compared with the classical model.

From Fig. 5.6(a) and Fig. 5.6(b) it can be seen for the lower oven temperature exposure

case the peak temperature and time to peak temperature are under predicted. Through the

parameter estimation process, it was found that to accurately predict the peak temperature

for the 180°C oven exposure case one of two conditions needed to be met:

1. the heat of reaction of the NE reaction needed to be increased. However, this lead

to TR occurring too soon under the higher oven temperature exposure case. Or,

2. lowering of the onset of the PE reaction. However, this also lead to TR occurring

too soon under the higher oven temperature exposure case. Additionally, this also

lead to “deforming” of the temperature profile for the lower oven exposure case (such

that it does not resemble the experimental data) due to the faster rate of the PE

reaction compared to the NE reaction.

Hence, it is suspected that there are secondary or interdependent reactions that are of

a similar reaction rate to the NE reaction but are most important to consider at lower

oven exposure temperatures. These additional reactions are thought to be SEI reforma-

tion/decomposition and/or secondary NE dependent reactions.

Inspection of the temperature profile upon venting shows that the predicted tem-

perature drop occurs more rapidly than in the experimental data, see Fig. 5.6(c) and

Fig. 5.6(d). Clearly, if the venting behaviour was predicted to occur over a greater time

period, then the peak temperature would, in turn, be predicted later and more accurately

when compared with the experimental data. Hence, while the venting methodology used

here significantly improves predictions, it also identifies that there are some important

phenomena missing. It is hypothesised that this could be due to a disequilibrium between

phases [274], as, upon venting of the vapour, there is a rapid pressure drop. When there

is a pressure drop, for the liquid to remain in equilibrium, it has to cool accordingly. If
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Figure 5.6: Temperature plots for oven abuse simulations for parametrised advanced abuse model (a)
mass composition A (b) mass composition B (c) enlargement of venting location mass composition A and
(d) enlargement of venting location mass composition B.
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Figure 5.6 (cont.): Temperature plots for oven abuse simulations for parametrised advanced abuse model
(a) mass composition A (b) mass composition B (c) enlargement of venting location mass composition A
and (d) enlargement of venting location mass composition B.
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the liquid does not cool at a rate quickly enough for the rate of pressure drop, this leads

to superheated liquid, as has been seen elsewhere (see for example [275]). Equilibrium is

re-established after some time as the liquid evaporates/ flashes, during which the depres-

surisation rate is reduced because the pressure starts to recover due to the volume increase

of evaporation. Further, the inclusion of the simmering reaction improves the predictions

after the TR event, showing its importance to the AAM.

On inspection of the estimated parameters for the AAM (see Table 5.6) it can be seen

that the values of the SEI, PE and electrolyte heats of reaction lie within the bounds

presented in the literature (see Table 2.1). However, of most interest is the estimated

values of the NE heat of reaction, which are somewhat larger than the upper bound in

Table 2.1. This is a direct result of the value of the specific masses of carbon used, as

the heat generated is directly related to the product of specific mass and heat of reaction

for a given reaction. As can be seen from Table 5.5, the value of specific mass of carbon

used in the AAM (385–560 kg/m3) is much smaller than that used in the literature, i.e.

1700 kg/m3 (see Table 5.3). Further, for the case in which the specific mass of carbon is

lowest, i.e. cases A, the value of Hne is highest. The values of Hne are relatively high,

i.e. 3771 J/g for case A and 2914 J/g for case B see Table 5.6, compared to the initial

case, 1714 J/g see Table 5.2. However, in case B the value of Hne is not significantly

larger than the upper values found in the literature (see Table 2.1). The value of Hne is

closer to literature bounds for the simulation utilising mass composition B than with A.

This suggests that the mass ratio used in case B is a better representation of the mass

composition of the cell under study.

As the largest discrepancy in temperature predictions is for the lower oven temperature

case, see Fig. 5.6, where the PE reaction does not occur, both improving the prediction at

lower oven temperature and reducing the estimated value of Hne could be addressed by

the inclusion of additional reactions. With this, it is suggested that other reaction(s), such

as possible secondary and tertiary decomposition of active materials, decomposition of the

reaction products and reactions involving the binder, should be accounted for, concurring

with comments and findings made by Hatchard et al. [146] and Ping et al. [86].

Table 5.7 presents the heat generated by each reaction over the entire 90 min simulation,

and also the heat generated by each reaction over the time only up to the point of maximum

cell temperature. This table shows that the model predicts that, under the high oven

temperature exposure, approximately 16 kJ of heat is produced. It should be noted that

this is almost equal to the 17 kJ of electrochemically stored energy of the cell [264]. For

the entire time period, under both oven set temperatures, the majority of this heat is

produced by the NE reaction and the simmering reaction. However, up to the point of

maximum cell temperature, it is the NE reaction that dominates the total heat generated,

with a considerable contribution from the PE reaction at higher oven abuse temperatures.
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Table 5.6: Advanced abuse model parameters.

Parameters A.Pl A.Ph B.Pl B.Ph Source/ note

Abuse sub model
Wcarbon (kg/m3) 385.12 385.12 560.24 560.24 estimated, see Table 5.5
Wpos (kg/m3) 615.26 615.26 977.13 977.13 estimated, see Table 5.5
We (kg/m3) me/Vjelly -
me,0 (g) 6.58 6.58 1.95 1.95 estimated, see Table 5.5
Ea,ne (J/mol) 1.4183× 105 1.4042× 105 1.4751× 105 1.4325× 105 fit
Ea,sei (J/mol) 1.5007× 105 1.4413× 105 1.5453× 105 1.5007× 105 fit
Ea,pe (J/mol) 1.0197× 105 1.0197× 105 1.0197× 105 1.03× 105 fit
Ea,e (J/mol) 2.877× 105 2.877× 105 2.877× 105 2.877× 105 fit
Ane (1/s) 2.0× 1013 1.75× 1013 2.25× 1013 1.25× 1013 fit
Asei (1/s) 1.667× 1015 1.667× 1015 1.667× 1015 1.667× 1015 fit
Ape (1/s) 1.4× 108 1.4× 108 1.2× 108 1.4× 108 fit
Ae (1/s) 3.598× 1025 3.598× 1025 5.14× 1025 5.14× 1025 fit
Hne (J/g) 3771 3771 2914 2914 fit
Hsei (J/g) 578 578 578 578 fit
Hpe (J/g) 292 292 204 224 fit
He (J/g) 170 170 164 178 fit

Venting sub model
mvented,0 (g) 0.8 0.8 0.7 0.7 fit
Pburst (kPa) 1224 a 2158 b 1224 a 2158 b a[199], b[221]
Av (m2) 8.9× 10=6 [221]
γ (-) 1.4 [199]
kb (J/K) 1.38× 10=23 [199]
MDMC (g/mol) 90 [199]
Mg (g/mol) 44.01 CO2

mg,rxn (g) 0.88 [65]
P0 (kPa) 130 [199]
Pamb (kPa) 101 [199]
RDMC (J/kg K) 92.38 [199]
Rg (J/kg K) 188.9 CO2

Vcell (m3) 1.654× 10=5 [199]
Vh (m3) 0.07*Vcell [199]
Xmixture,0 (-) 8.2308× 10=4 Calculated from [199]

From the above discussion, for the LFP cell under study, it can be said that TR is

dominated by the heat from NE reaction, followed by the PE (at higher oven temper-

atures), until the point of maximum temperature. After this point, the heat generated

is dominated by the simmering reaction followed by NE reaction, while for lower oven

temperature the PE reaction contributes. As such, the greatest improvement to the safety

of LFP cells can be made through cell developments that lead to a reduced heat of re-

action of the NE reaction, for example, by electrolyte additives [276] or anode structure

[277]. Further, while it has been shown that the heat lost through venting is important

to improve temperature predictions, its value is small in comparison to the total energy

released by decomposition reactions before the maximum cell temperature. Hence, the

exclusion of such behaviour would only lead to small errors in the predicted total heat

generated.

5.2.3.1 Venting Behaviour

This section discusses the venting behaviour in further detail. Assessing the influence

of assumed burst pressure on model prediction and parameterisation. Identifying the

reaction(s) that lead to venting and discussing the causes of discrepancies within the

temperature drop of the cell at venting.

181



CHAPTER 5. DEVELOPMENT OF AN ADVANCED THERMAL ABUSE MODEL
FOR LFP CELLS

Table 5.7: Heat released for different mass compositions and burst pressure scenarios under oven test
simulations. (The values in brackets represent the heat released up to the point in time that maximum
cell temperature occurs).

Heat (kJ)
Mass composition A Mass composition B

Toven=180°C Toven=218°C Toven=180°C Toven=218°C
Pburst,low Pburst,high Pburst,low Pburst,high Pburst,low Pburst,high Pburst,low Pburst,high

SEI 0.43 (0.43) 0.43 (0.43) 0.43 (0.43) 0.43 (0.43) 0.63 (0.63) 0.63 (0.63) 0.63 (0.63) 0.63 (0.63)
NE 3.09 (2.19) 3.16 (2.26) 7.62 (6.24) 7.56 (6.17) 2.57 (1.65) 2.89 (1.95) 8.07 (6.54) 8.26 (6.73)
PE 1.25 (0.09) 1.14 (0.08) 2.23 (2.23) 2.23 (2.23) 1.07 (0.09) 0.89 (0.08) 2.71 (2.71) 2.71 (2.71)
Electrolyte 0.01 (0.00) 0.00 (0.00) 1.01 (1.01) 1.01 (1.01) 0.00 (0.00) 0.00 (0.00) 0.24 (0.24) 0.24 (0.24)
Simmering 3.57 (0.66) 3.58 (0.70) 4.79 (0.32) 4.81 (0.35) 3.50 (0.78) 3.54 (0.71) 4.76 (0.39) 4.79 (0.36)
Total 8.34 (3.37) 8.31 (3.47) 16.06 (10.22) 16.04 (10.18) 7.76 (3.14) 7.95 (3.37) 16.41 (10.51) 16.64 (10.67)
Venting -0.14 -0.13 -0.14 -0.13 -0.12 -0.11 -0.11 -0.10

Returning to Fig. 5.6, it can be seen that the choice of burst pressure has little ef-

fect on overall TR predictions. However, venting is predicted to occur at slightly later

times and lower temperatures for a lower burst pressure than compared with higher burst

pressures. This can be explained by further looking at the fitted abuse parameters (see

Table 5.6) and the plots of reaction species with time (Fig. 5.7). By comparing the ac-

tivation energies of the reactions for the two burst pressure cases (see Table 5.6), it can

be seen that at the higher burst pressure the model requires lowering of the activation

energies of the SEI and NE reaction slightly (by 1% to 4%), compared with the lower

burst pressure limit. This is due to more gas being required to be generated to meet the

higher pressure limit while at the same temperature limit of experimental data. As such,

the reaction(s) have start earlier at lower temperatures. This can be seen by the dashed

lines in Fig. 5.7. As the reactions start earlier, heat is generated earlier and the cells reach

higher temperatures earlier. Hence, the time to venting is shorter but it occurs at slightly

higher temperatures. However, this shows that by lowering the activation energy of the

reactions, the temperature at which venting occurs can be controlled for different assumed

burst pressures.

Table 5.8 presents the degree of conversion of each reaction just prior to venting. This

table shows that the SEI reaction is the only reaction to undergo a significant degree of

conversion, while the NE reaction contributes slightly to the overall decomposition and

gas generation. Hence, under the assumption that the mass of gas is dependent on the

equal weighting of the four decomposition reactions (see Eq. (3.46)), gas generation from

the SEI and NE reactions are the main contributors to initial gas generation and cell

pressurisation up to the cell burst pressure of the experimental results. However, due to

the large mass difference between the anode and the SEI it is logical that the NE reaction

would produce more gas than the SEI reaction (when fully decomposed). As such, even

though the NE reaction is much slower than the SEI it may have a greater influence (than

calculated here) on gas generation up to the point of venting. This implies it would be

beneficial, in further work, to separate out the gas generation terms for each reaction to

identify the amount of gas produced by each reaction through TR.
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Figure 5.7: Plots of the cell decomposition species vs. time at different oven temperature, cell mass
compositions and burst pressure limits. Sub-figures: (a) oven at 180°C, mass composition A; (b) oven at
218°C, mass composition A; (c) oven at 180°C, mass composition B; (d) oven at 218°C, mass composition
B, for high and low burst pressures. Time of venting is average of both the high and low burst cases (as,
on the time scale shown, individual lines for each pressure limit are indistinguishable).
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Figure 5.7 (cont.): Plots of the cell decomposition species vs. time at different oven temperature, cell
mass compositions and burst pressure limits. Sub-figures: (a) oven at 180°C, mass composition A; (b)
oven at 218°C, mass composition A; (c) oven at 180°C, mass composition B; (d) oven at 218°C, mass
composition B, for high and low burst pressures. Time of venting is average of both the high and low burst
cases (as, on the time scale shown, individual lines for each pressure limit are indistinguishable).
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Table 5.8: Percentage degree of conversion for each reaction at the point just prior to venting for different
mass compositions and burst pressure scenarios.

Degree of conversion (%)
Mass composition A Mass composition B

Toven=180°C Toven=218°C Toven=180°C Toven=218°C
Pburst,low Pburst,high Pburst,low Pburst,high Pburst,low Pburst,high Pburst,low Pburst,high

Csei 23.87 72.79 19.95 66.17 7.50 22.34 6.25 20.24
Cne 1.07 1.24 0.87 1.10 0.27 0.45 0.22 0.40
Cpe 0.07 0.06 0.05 0.05 0.06 0.05 0.04 0.04
Ce 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.9: Amount of gas generated and average decomposition of cell at the instant before venting.

Mass composition at
oven set temperature

Pb=1224 kPa Pb=2158 kPa Mass
ratiomg (g) Ö10-2 Cave (-) mg (g) Ö10-2 Cave (-)

A, 180°C 5.76 0.9375 16.6 0.8148 2.88
B, 180°C 1.80 0.9804 5.10 0.9429 2.83
A, 218°C 4.85 0.9478 15.1 0.8317 3.11
B, 218°C 1.51 0.9837 4.63 0.9483 3.07

Considering the large burst pressure range investigated (1224 kPa to 2185 kPa), there

is only a small change to the Ea,sei and Ea,ne parameters, while predictions are almost

identical. The value of the burst pressure is therefore not critical to TR model parame-

terisation. Conversely, if the value of the burst pressure is exactly known then it would

help in parameterisation. This is because it would be required of the model to accurately

predict the internal cell pressure, in addition to the predictions of temperature.

The time to venting is predicted accurately under both oven exposure temperatures

and the temperature that venting occurs in the higher oven exposure is accurate (see

Fig. 5.6(c) and Fig. 5.6(d)). However, the temperature at which venting is predicted

in the 180°C oven is noticeably lower than in the experiment. Hence, the discrepancy

between the temperature at which venting occurs in the 180°C simulation and experiment

highlights that the AAM, while significantly improving predictions, lacks some features

that influence the complex pressure behaviour.

Table 5.9 also shows the ratio of gas generation between the high and low burst limit

simulation from which it can be seen that, at the higher burst limit, three times more gas

is produced prior to venting. Also, the magnitude of gas generated prior to venting is on

the order of, or two orders lower, that the total measured, e.g 0.79 g to 1.4 g [65, 114, 278],

depending on the assumed burst pressure.

For simplicity, the bubble pressure is determined from the bulk mole fraction. For

fluids that are very similar to each other and along the bubble point line, this is similar

to the mole fraction of each phase. However, for dissimilar fluids, as is the case here,

the mole fraction of each phase can be very different (this can be seen specifically for

the CO2/DMC from the data in Ref. [253]). Hence, with respect to the bubble point
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of a mixture, the possible cause of the temperature of venting discrepancy is the lack of

calculation of the overall vapour/ liquid ratio of the mixture and the lack of calculation

of the composition (i.e. CO2/DMC ratio) of the liquid and vapour phases. The bulk mole

fraction assumption may be inaccurate for a complete description of venting. However,

for the purpose of validating the BPV model (as is the objective of this work) as a way

to govern internal pressure rather than using the PPV model, it is believed that it is

acceptable for proving that new model is valid. Further development beyond the scope of

this work is required to incorporate the compositions of each phase.

5.2.4 Validation

Further validation of the estimated parameters for the AAM can be achieved by simulating

the oven experiment over a range of values below and above those so far discussed. Fig-

ure 5.8 presents the maximum cell temperature and maximum change in cell temperature

compared with the oven set temperature, both plotted against the oven set temperature.

This provides a useful data set to compare with experimental results. From Fig. 5.8, it

is clear the model predictions are in good agreement with the experimental data. Hence,

the model can be used to investigate cell abuse beyond the experimental temperature

range. However, from Fig. 5.8, over the range that experimental data is presented, the

predicted temperatures are somewhat lower at oven set temperatures below 180°C and

between 195°C–205°C. At the critical point at 195°C, where there is a step change in

the TR severity of the experimental data, the model predicts the step change but does

not predict the correct magnitude of temperature increase. Below is discussed possible

contributing factors that lead to the discrepancies in predictions of Fig. 5.8.

The under prediction of maximum cell surface temperature at oven set temperatures

below 180°C in Fig. 5.8 are attributed to a lack of representation of additional SEI ref-

ormation/decomposition and/or secondary NE dependent reactions. This is previously

discussed in Section 5.2.3 of simulations made at oven exposure temperatures of 180°C.

The discrepancies at oven set temperatures of 195°C–205°C are thought to be linked to

the under prediction of step change at the oven set temperature of 195°C. A possibility of

sudden increase in heat generation that leads to the step change in cell surface tempera-

ture could occur due to the internal short of the cell when the separator melts. However,

typical layered polyethylene-polypropylene separators used in common Li-ion cells melt at

approximately 165°C–170°C [96, 97]. As this melting temperature is significantly below

the step increase, where cell temperatures are approximately 230°C, it can be ruled out

as a contributing factor to the step increase in surface temperature of the experimental

data that is not accounted for in the AAM. As previously stated, it is suspected that addi-

tional SEI decomposition and secondary NE dependent reactions may occur that are not

represented in the model. These reactions at higher temperatures may contribute to the

sudden increase in reactivity at 195°C. It is also possible that interdependent reactions,
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which are not considered, are the cause of the step increase in surface temperature. For

example, electrolyte solvents (with flash points between 17°C to 160°C [83]) can combust

in the presence of on O2 [26, 148]. O2 becomes available within a cell when released by

cathode decomposition [71]. As Table 2.2 shows, PE decomposition of LFP cathode begins

at 180°C–250°C. As such, the step change in experimental data, which occurs at cell sur-

face temperatures of approximately 230°C, maybe caused by combustion of the electrolyte

upon availability of O2. Further investigation, beyond the scope of this work, would be

required to identify the probable cause of under prediction of the cell temperature.

The model allows assessment of TR behaviour beyond the scope of experimental test-

ing. At an oven set temperature of 140°C, the maximum cell temperature is equal to that

of the oven set temperature. Hence, from these predictions the LFP cells in question are

shown to be stable up to 140°C oven exposure. From 140°C to 185°C oven set temperature

there is a steady increase in severity following a linear trend. The magnitude of severity is

small, i.e. ∆T below 50°C. Between 185°C and 220°C oven set temperature there is a sig-

nificant increase in severity, with ∆T equal to 150°C at 218°C oven set temperature. Most

interestingly, however, beyond an oven set temperature of 218°C, there is little increase

in severity in relative terms to the oven set temperature; in fact, beyond 230°C, there is a

slight decrease in relative severity.

From the above, it has been shown that the use of this AAM has enabled the prediction

of cell TR severity outside the experimental oven set temperature range. In turn, showing

that cells abuse beyond 190°C could lead to the same hazard at any oven temperature, i.e.

∆T = 150°C. However, if the cells are kept below 185°C, to avoid the onset of the PE and

electrolyte reactions and also avoiding significant heat generation from the NE reaction,

then the hazard the cells pose is small. A hazard on this scale would be manageable

by traditional thermal management techniques for battery packs. This is because the

maximum heat generated at this abuse temperature is under 5 W, which is on the scale of

the heat generated (up to 2.6 W [279]) by a high rate discharge of a similar cell.

187



CHAPTER 5. DEVELOPMENT OF AN ADVANCED THERMAL ABUSE MODEL
FOR LFP CELLS

1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

E x p e r i m e n t a l
 E x p  S u r f a c e
 E x p .  D T

P b u r s t  -  l o w
 S i m .  S u r f a c e
 S i m .  D T

P b u r s t  -  h i g h
 S i m .  S u r f a c e
 S i m .  D TTe

mp
era

tur
e (

°C
)

O v e n  s e t  t e m p e r a t u r e  ( °C )
(a)

1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

E x p e r i m e n t a l
 E x p  S u r f a c e
 E x p .  D T

P b u r s t  -  l o w
 S i m .  S u r f a c e
 S i m .  D T

P b u r s t  -  h i g h
 S i m .  S u r f a c e
 S i m .  D TTe

mp
era

tur
e (

°C
)

O v e n  s e t  t e m p e r a t u r e  ( °C )
(b)

Figure 5.8: Simulated thermal runaway severity vs. oven abuse temperature (a) mass composition A (b)
mass composition B, compared to experimental data.
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5.3 Conclusion

In this chapter, through the development of the AAM, the performance of current TR

models has been shown to be inadequate for LFP cells. This is because, when using

existing models, TR is predicted too early as venting is not accounted for. Also, accuracy

after TR is poor when using existing models due to their lack of representation of the

simmering reaction. Further, parameters values used in the literature are shown to be

inappropriate, leading to vast over predictions of TR severity. From this, the need for

parameter estimation of reaction kinetics is shown. However, the variation in the mass

fractions of cell components available in the literature leads to estimation of different

reaction kinetic parameters that lead to similar TR predictions. Highlighting the non

unique nature of parameterising the TR phenomenon.

The AAM model is shown to outperform the classical TR models due to its inclusion

of novel venting behaviour and simmering reactions. The venting behaviour, based on a

bubble-point assumption, is a more accurate description of a multiphase, multicomponent

system like a cell under TR. The AAM leads to accurate predictions of time to venting,

magnitude of heat loss at venting and time to maximum TR temperature. The inclusion of

simmering reactions improves predictions of temperature after a TR, and hence is essential

for LFP cells.

From parameterising the AAM, accurate knowledge of the burst pressure is required

for determining accurate reaction parameters. The time of venting is most dependent on

the decomposition of the SEI reaction, and slightly on the NE reaction. For higher burst

pressures, the activation energies for the SEI and the NE reactions must be reduced, to

allow the pressure increase by the time that venting should occur.

The work here aids the wider Li-ion battery community and the development of ad-

vanced batteries. The AAM, with its predictions of internal cell pressure, is a development

enabling two pressure dependent phenomena to be modelled. The first, the prediction of

battery state-of-health through pressure sensors in state-of-the-art battery management

systems. The second, the modelling of the ejecta process and with it the complex heat

transfer process of ejecta flow in a battery pack.

Three main points are outlined for future work regarding the development of LIB TR

models:

1. consideration of secondary and interdependent reactions;

2. improved phase-equilibria of the liquid-vapour mixture for an improved prediction of

pressure during the venting process, through accounting for the liquid-vapour frac-

tion and mole fraction in each phase, expansion of vapour phase and re-equilibrium;

and
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3. focus on developing an intelligent computational aided method for model parameter-

isation to enable a statistical analysis of the appropriateness of parameters values.
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Chapter 6

Thermal Runaway Propagation

Potential Studies

Aims & Objectives

The aim of this chapter is to determine the safety and thermal runaway propagation (TRP)

potential of LFP battery packs. The objectives are:

(1) simulate a battery pack constructed of 18650 LFP cells under a worst case scenario to

determine the TRP potential of the pack and how individual decomposition reactions

contribute;

(2) determine how estimated parameters affect predictions of TRP behaviour; and

(3) investigate the importance of heat transfer pathways, most significantly that of ra-

diation, on TRP potential.

6.1 Introduction

In this chapter an investigation of the safety of LFP battery packs is made. Such studies

are important because, as has been discussed in Chapter 2, when cells are assembled into

modules and packs the potential hazards are more severe [90, 222]. This is due to the

fact that the TR of a single cell presents a serious hazard to the surrounding cells. This

occurs as the heat released by a single cell will dissipate to the neighbouring cells, which

can in turn lead to these surrounding cells to heat up to the point that they themselves go

into TR. Thus, this can be the start of a chain reaction of TR from cell-to-cell occurring

throughout the entire module, known as TRP. Hence, here the aim is to determine the

potential of TRP in LFP packs.
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The motivation for studying the TRP of LFP packs is that, even though LFP cells

are the safest Li-ion chemistry available, LFP batteries, including those in EV buses, have

been reported to undergo TR [54, 114–116]. Hence, it is important to develop the current

limited research on LFP cell safety. To the author’s knowledge, only one study has been

carried out on LFP packs, in which a module of pouch cells is studied [228]. Evidently,

there is a need to expand the understanding of the TR behaviour of LFP packs when

abused, to facilitate their wider adoption.

To investigate the TRP of LFP battery packs, a small lab scale battery pack is modelled

based on the parameterised single cell model of Chapter 5. Further, a worst case scenario

is considered, assuming extreme environmental temperatures and the most severe abuse

condition i.e. total internal short circuit. In modelling the pack, the estimated abuse

parameters determined in Chapter 5 are used.

Further, considering the previous finding identifying the importance of radiative heat

transfer [27, 146, 222, 243], the effect of emissivity on the TRP of packs has not been

studied. To address this, the pack model developed here is used to quantify the importance

of radiative heat transfer on TRP for various cell surface emissivity and cell spacing values.

The remainder of this chapter is arranged as follows: Section 6.2 presents a summary

of the results of two preliminary studies. The first of which investigates the effect of

cell geometrical dimensionality, due to increasing the dimensionality from 1D, for the

parameterised model of Chapter 5, to a 3D model representative of the cell in the pack.

The second is a mesh analysis study for a single cell, to be used as a proxy mesh analysis

for the pack due to computational limitations restricting the ability to undertake mesh

analysis on the pack. Section 6.3 describe the main studies undertaken to investigate the

TRP of LFP packs, the effects of model parameters and the importance of radiative heat

transfer. Section 6.4 presents the results and discussion of the pack study presenting the

results of the abuse of a small LFP battery pack under worst case scenario, commenting

on the TRP potential of the LFP battery pack and the influence of parameters. Within

this, Section 6.4.5 discusses the importance of radiative heat transfer pathways in packs.

Finally, Section 6.5 concludes the chapter.

6.2 Summary of Preliminary Findings

Two preliminary studies (see Sections 3.3.1.1 and 3.3.1.3) were undertaken to investigate

the effect of model dimensionality, and the effect of model mesh density on predictions.

The key findings are summarized here.

The results of the dimensionality study, Section 3.3.1.2, show that there is a slight

under estimate of TR severity by the 3D-HT/1D-abuse model compared to the 1D-HT-

abuse model. This is due to the more accurate, but smaller, volume of jelly roll in the 3D-
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HT/1D-abuse model. As decomposition heat generation is dependent on jelly roll volume,

heat generation is proportionately smaller in the 3D-HT/1D-abuse model. Further there

is a slight delay in maximum temperature using the 3D-HT/1D-abuse model, for the same

reason. With this in mind, the pack study can be undertaken considering propagation

may be postponed due to the delayed TR event of a cell or, if propagation is boarder-line,

cautious assessments of safety should be made considering the under prediction of severity.

The results of the mesh study, Section 3.3.1.4, show that the relative errors of key values

(e.g. time to venting, maximum cell temperature and time to maximum cell temperature)

for the coarsest mesh (comparable to the one used in the pack study) are less than 1%

(compared to the finest mesh). As such, the use of a coarse mesh (i.e. M1) is suitable for

the pack study.

6.3 TRP Studies

To investigate the TRP potential of LFP cells assembled in a pack the model geometry

presented in Fig. 3.10 is used with dcc = 0 mm, with environmental and abuse conditions as

stated in Section 3.3. Further, the study considers four AAM parameter sets as estimated

in Table 5.6. These parameter sets, consisting of reaction kinetics, mass composition

and vent burst pressure limits, are referred to by the abbreviations MAH, MAL, MBH

and MBL. The abbreviations respectively stand for (and relate to the parameters of) mass

composition A, with high burst pressure limit ; mass composition A, with low burst pressure

limit ; mass composition B, with high burst pressure limit ; and mass composition B, with

low burst pressure limit, respectively. Note, cell surface emissivity used in this study is

0.8.

For the study of cell surface emissivity effects on TRP potential the same model is

used as above, with the exception that only the AAM parameters set MAH is considered

for cell surface emissivity values of 0, 0.27, 0.54, 0.8 and 1, with dcc values of 0 mm, 1 mm,

2 mm and 4 mm.

6.4 Results and Discussion

The values of average cell temperature, average cell decomposition and accumulated cell

decomposition energy for each of the 9 cells in the simulated pack, utilising parameters

for case MAH, are presented in Figs. 6.1 to 6.3, respectively. Case MAH is selected, as an

example, to discuss, in Section 6.4.1, the general behaviour of the pack under abuse. The

results of the pack abuse for each (mass composition/burst pressure) case are presented

in Figs. B.1 to B.3 of the Supplementary Figures and Tables of Heat Transfer Pathway

Study (Appendix B.1), which shows the behaviour in the pack is similar in each case,
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Figure 6.1: Average cell temperature within pack where Cell 1 is abused by short circuit for case MAH.

allowing for the general discussion. A more detailed discussion of key features on the

response of the abused pack is presented in Sections 6.4.2 and 6.4.3 respectively for the

temperature rise of Cell 1 and the decomposition of Cells 1, 2 and 4. A comparison of the

different parameter cases is presented in Section 6.4.4. Finally, Section 6.4.5 discusses the

importance of different heat transfer pathways.

6.4.1 Overview of Pack Behaviour Under Abuse

Although the simulation was solved for a 2 h period, for Figs. 6.1 to 6.3, only the first

hour is shown as all quantities reach a stable value by this point. The plot of average cell

temperature, Fig. 6.1, shows that Cell 1, the abused cell, heats up rapidly at the point

when the short circuit occurs, and reaches a maximum temperature of almost 800°C. Note,

for Cell 1, the maximum surface temperature is similar to the maximum of the average

cell temperature. The rapid heating is due to the heat from the short circuit, over the

small period of 10 s, leading to TR and the near complete decomposition of Cell 1, see

Fig. 6.2, and a release of approximately 16 kJ of heat, see Fig. 6.3.

Following the large and rapid temperature rise of Cell 1, Cells 2 and 4, which are in

contact with cell 1, heat up the most out of the remaining cells in the pack, see Fig. 6.1.

Cells 2 and Cell 4 reach maximum average temperatures of 167°C and 144°C, respectively.

Cells 2 and 4 undergo self-heating, as seen by the decomposition and energy release of

Figs. 6.2 and 6.3, but not to a great extent. Compared to the near full decomposition of

cell 1 and the ~16 kJ heat released, Cell 2 only decomposes by 25%, releasing ~1.1 kJ of
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Figure 6.2: Average cell decomposition within pack where Cell 1 is abused by short circuit for case MAH.
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Figure 6.3: Accumulated energy from decomposition within pack where Cell 1 is abused by short circuit
for case MAH.
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heat, while cell 4 decomposes by 10%, releasing less than 0.5 kJ of heat.1 Although Cells

2 and 4 are located in similar locations relative to the rest of the cells (see Fig. 3.10),

Cell 2 reaches a slightly higher average temperature, and at a greater rate, than Cell

4. The positioning of Cell 2 and 4 means that they experience comparable heat transfer

paths, excluding that through the tabs. From Fig. 3.10(b) it can be seen that Cell 2 has

the additional heat transfer path through the tabs that directly connects Cells 1 and 2,

while Cell 4 is not connected to Cell 1 by the tabs. As such, as has been found elsewhere

[222, 225], the tabs have been shown to be an important heat transfer path.

The remaining Cells (3 and 5 to 9) heat up relatively slowly, with little difference

between temperature plots of Cells 6 to 9. From Figs. 6.2 and 6.3, it can be seen Cells 3

and 5 to 9 shown negligible decomposition and thermal energy release. This indicates that

the temperature rise of the cell is due to energy from Cells 1, 2 and 4 being transferred

through the pack. At later times (approximately >0.5 h), all cells are in the processes of

cooling down, tending to 60°C (the environmental temperature), while the pack remains

stable as it does not show any TRP behaviour. Hence, after the TR of Cell 1, self-heating,

but not TR, of Cells 2 and 4 occurs, while the remainder of the cells undergo no self-heating.

As such, under this study, a battery pack constructed of LFP cells is shown to be very

resilient to TRP, even under extreme circumstances, and highlights the abuse resilience

and potential for uses in harsh environments of the LFP battery pack. This finding is

substantiated by the work from Said et al. [247], which required an attached heater to

provide a constant power of 115 W over the length of the experiment, providing 10–24

times more energy than the electrochemical energy stored in one cell, to induce cell-to-cell

propagation. Here, however, the fact that there is an underestimate of heat generation

by the 0D abuse model, requires that this statement should be further corroborated by

analysing the heat released of individual reactions, and assessing if the additional heat

would lead to any further cells going into TR.

6.4.2 Discussion of Cell 1 Temperature Rise

As stated in Section 6.4.1, the maximum surface temperature of Cell 1 reached ~800°C.

Which, compared to the maximum surface temperatures of 400°C under oven exposure,

from the experimental work of Chapter 4 (see Fig. 4.11), is relativity high. Further, as

shown by Huang et al. [280], short circuit by nail penetration of a cell similar to those

studied here leads to maximum cell TR temperatures less than 140°C.

1The percentage decomposition refers to averaged decomposition value, and hence the overall decom-
position of the cell. As such, it does not strictly represent the percentage of total heat released by the cell,
which on complete decomposition, is mostly from the NE, PE and simmering reactions, as discussed in
Section 5.2.3, see Table 5.7. For example, for Cell 2 in MAH, the 25% decomposition is primarily due to
the entire decomposition of the SEI reaction (1 of 4 reactions), while the heat released is due to the SEI
(417 J), NE (414 J) and simmering (230 J) reactions, see Table 6.2. In which, the NE produces a similar
amount of heat to the SEI reaction even though it has no developed significantly because the NE reaction
as a much greater heat of reaction.

196



6.4.3. DISCUSSION OF INDIVIDUAL REACTIONS OF CELLS 1, 2 AND 4

This overestimate of initiation cell maximum temperature is due to the fact that the

cell’s thermal energy potential has been accounted for twice, once through the short cir-

cuit and once through the decomposition behaviour. The decomposition of a single LFP

cell at 100% releases approximately the same energy as the cell is electrically rated (see

Chapter 4). This inherently occurs due to:

1. the simplification of omitting the electrochemical behaviour, as such there is no

description of cell SOC change under discharge; and

2. as there is a lack of parameterisation of the abuse model as a function of SOC it is

not possible to couple the cell decomposition model and cell SOC due to discharge

when shorting.

However, since the electrical capacity and decomposition energies are similar for the cells

studied, it can be cautiously assumed here that Cell 1 is heated approximately twice as

much as what may occur in reality, explaining the maximum temperatures predicted that

are double experimental oven tests.

In comparing the maximum surface temperatures from these two different abuse sce-

narios, the fact they are both rapid allows the assumption of pseudo-adiabatic conditions,

and hence the ability to compare temperatures. The fact that there is an over estimate

of energy released from cell 1, and hence the initial abuse condition, is not a significant

concern to the study of the LFP pack, as it only further highlights the abuse resilience of

the LFP pack.

6.4.3 Discussion of Individual Reactions of Cells 1, 2 and 4

As stated previously, while Cell 1 undergoes near complete decomposition, Cells 2 and

4 only undergo a small fraction of decomposition and a low amount of self-heating. To

further explore the discrete reactions that have occurred in these cells, Fig. 6.4 presents the

individual species decomposition values for Cells 1, 2 and 4 for the first 0.5 h of results form

case MAH, in Figs. 6.4(a) to 6.4(c) respectively, while Fig. 6.4(d) shows an enlargement

of the rapid decomposition behaviour of Cell 1. From Fig. 6.4 (and Fig. 6.4(d)) it can be

seen that all reactions quickly (in ~3 s) run to completion, besides the NE reaction, which

has some active species remaining after the TR event. However, for Cell 2, Fig. 6.4(b)

shows only the SEI reaction completes, while there is a small reduction in the NE active

species from 0.75 to 0.73. For Cell 4, see Fig. 6.4(c), the SEI again shows the largest

change, while no discernible change is seen in the species of the other reactions.

Further to the individual decomposition species for each reaction of the Cells 1, 2 and

4, Fig. 6.5 presents the individual accumulated energy released for each reaction in each

cell (of Cells 1, 2 and 4). From Fig. 6.5(a), it is shown that the NE reaction contributes
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Figure 6.4: Decomposition species of individual reactions for cells 1, 2 and 4 (parameters set MAH).
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the most heat (~11 kJ) of the decomposition reactions to the heating of Cell 1, while

the PE reaction and the sum of the SEI, electrolyte and simmering reactions contribute

approximately 2.2 kJ of heat each. This is comparable to the heat released under high

temperature oven exposure (see Table 5.7), with the difference that under short abuse

in the pack, Cell 1 reaches higher temperatures than the oven abused cell, leading to

greater NE decomposition and hence more NE heat release in Cell 1. Whereas the heat

released by the simmering reaction in Cell 1, in the pack, generates less heat due to the low

temperature (<120°C) of Cell 1 for the majority of the time after venting. Hence, due to

the temperature dependence of the simmering reaction, the predicted heat is lower in Cell

1 than the oven abuse of cells, as under oven abuse the cells remain at high temperatures

after venting.

For cell 2, Fig. 6.5(b) shows that the heat generated by the decomposition reactions

is dominated by the SEI and NE reactions, which generate approximately 400 J of heat

each, while the simmering reaction generates half as much as either of these. For Cell 4,

see Fig. 6.5(c), which reaches a lower temperature than Cell 2 and in which venting does

not occur, the heat generated is dominated by the SEI reaction, which releases ~200 J

of heat, while the NE reaction on generates ~100 J and simmering does not occur as the

vents have not opened.

The behaviour described above is similar for all cases, which can be seen in Figs. B.4

to B.9, while discrete differences between all cases are highlighted through the values of

the decomposition species and energy released, for each reaction of Cells 1, 2 and 4 at the

end of the simulations, in Tables 6.1 and 6.2, respectively. From Table 6.1 it can be seen

that the SEI reaction undergoes more decomposition in the cases for mass composition

A than that for mass composition B. Considering that the activation energy of the SEI

reaction is lower for mass composition A (for given a burst Pressure), see Table 5.6, it

is to be expected that for a similar temperature rise the SEI reaction will start sooner

and develop further than for mass composition B. The same is true for the NE reaction

between mass composition cases, and the SEI reaction between pressure cases for mass

composition B.

As previously stated, the SEI reaction of mass composition A decomposes more than

B, leading to more heat release in Cells 2 and 4. However, for Cell 1 in which SEI

reaction completes in both mass compositions, interestingly more heat is released by the

SEI reaction of mass composition B. From Table 5.6, it is clear the SEI reaction of mass

composition B has more potential to generate heat as the specific mass of carbon is greater

for mass composition B, while the heat of reaction of the SEI reaction is the same for both

mass compositions. More heat is generated by the SEI and NE reactions, given mass

composition, by the higher burst pressure cases, due to the lower activation energies of

reactions in these cases, as explained in Section 5.2.3.1. The energy released by the PE and

simmering reactions are, for each reaction, the same between cases. For mass composition
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Figure 6.5: Accumulated energy of individual reactions for cells 1, 2 and 4 (parameters set MAH).
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Table 6.1: Decomposition species value at the end of simulation for cells 1, 2 and 4.

Decomposition species
Case Cell SEI NE PE Ele

MAL
Cell 1 0.00 0.13 1.00 0.00
Cell 2 0.00 0.73 0.04 1.00
Cell 4 0.07 0.74 0.04 1.00

MAH
Cell 1 0.00 0.13 1.00 0.00
Cell 2 0.00 0.73 0.04 1.00
Cell 4 0.07 0.74 0.04 1.00

MBL
Cell 1 0.00 0.14 1.00 0.00
Cell 2 0.12 0.74 0.04 1.00
Cell 4 0.14 0.75 0.04 1.00

MBH
Cell 1 0.00 0.14 1.00 0.00
Cell 2 0.06 0.74 0.04 1.00
Cell 4 0.13 0.75 0.04 1.00

Note: Initial values of SEI, NE, PE and Ele decom-
position values are 0.15, 0.75, 0.04 and 1, respec-
tively.

B, relative to A, the energy released by the electrolyte reaction is less due to the smaller

mass of electrolyte available, especially after venting, as explained in Section 5.2.3, while

the energy from the NE reaction is greater due to the significantly larger NE mass and

NE heat of reaction in mass composition B.

As shown in Section 6.4.1, the average cell values, such as decomposition and accu-

mulated energy, allows one to understand the overall behaviour of the pack. However, to

properly inform of the TRP potential, the values of these quantities has to be presented

and analysed on a single reaction basis to understand the potential of high energy reactions

occurring. Also, from Tables 6.1 and 6.2, while the NE reaction shows little change from

its initial decomposition value in Cells 2 and 4, similar amounts of energy are released as

the SEI reaction. Hence, it is important to consider more than the average or individual

decomposition values when discussing the TR behaviour of a cell in a pack, as the values

of energy provide more information to temperature rise and TRP potential.

From the above discussion, it has been shown that the shorted cell decomposition

reactions generate heat in a similar manner to cells abused at high oven temperatures.

However, in the neighbouring cells, Cells 2 and 4, there is lack of decomposition of the

energetic NE reaction, as well as the PE and electrolyte reactions. Due to the stability

of the LFP cell chemistry, and the lack of heat transferred into the neighbouring cells of

the shorted cell minimising the heating of Cells 2 and 4, the positive TR feed back loop

(Fig. 1.6) does not develop in Cells 2 and 4 as the energetic decomposition reactions have

not developed. Considering that there is an underestimate of heat produced by the 0D

abuse model (detailed in Section 3.3.1.1), the significant lack of development of the NE

and PE reactions suggests that even for the larger heat generation of the 1D model TRP
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Table 6.2: Accumulated energy at the end of simulation for cells 1, 2 and 4.

Accumulated energy (J)
Case Cell SEI NE PE Ele Smr

MAL
Cell 1 388 10,953 2,196 805 1,001
Cell 2 187 280 3 0 183
Cell 4 43 69 1 0 0

MAH
Cell 1 486 10,931 2,177 820 1,015
Cell 2 417 414 4 0 230
Cell 4 213 101 1 0 0

MBL
Cell 1 521 12,388 2,261 200 1,021
Cell 2 113 103 4 0 223
Cell 4 23 22 1 0 0

MBH
Cell 1 488 12,165 2,564 176 1,029
Cell 2 374 224 4 0 262
Cell 4 87 46 1 0 0

would still not occur. Hence, it is clearly shown that within this pack there is no potential

of TRP due to the stability and lack of severity of the LFP cells.

6.4.4 Comparing the Effects of Different Mass Compositions and Burst

Pressures

As stated previously, the overall behaviour of an abused pack in each case study is similar.

Here, however, the finer details of the results are discussed to understand the affects the

different parameters have on the resulting abuse of the pack. Figure 6.6 compares, for

Cells 1, 2 and 4, cells which undergo the largest changes, the temperature results between

cases which use different masses with the same cell burst pressure, and between cases that

use different cell burst pressures for the same mass. Similarly, Figs. 6.7 and 6.8 undertake

this comparison but for the average decomposition and accumulated energy parameters,

respectively.

As can be seen from Figs. 6.6(a) and 6.6(b), mass composition B leads to slightly

greater temperatures than mass composition A. For Cell 1, this increase in temperature is

approximately 25°C. This temperature difference is due to the greater energy released by

mass composition B (16.4 kJ for MBH vs. 15.4 kJ for MAH), see Figs. 6.8(a) and 6.8(b),

which has been discussed in Section 6.4.3, where it was shown that the NE reaction is

the cause of the additional heat. Further, Figs. 6.6(c) and 6.6(d) compare the resulting

cell temperatures for abused packs of each burst pressure for mass composition A and B,

respectively. From these figures it can be seen that, given a mass composition, the value

of cell burst pressure has little effect on overall temperatures.
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Figure 6.6: Effect of different mass compositions and burst pressures on temperature. (a) Comparison of
different mass compositions for a high burst pressure (for zoom area I see Fig. 6.9(a)), (b) comparison of
different mass compositions for a low burst pressure, (c) comparison of different burst pressures for mass
composition A (for zoom area II see Fig. 6.9(b)), and (d) comparison of different burst pressures for mass
composition B.
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Figure 6.6 (cont.): Effect of different mass compositions and burst pressures on temperature. (a)
Comparison of different mass compositions for a high burst pressure (for zoom area I see Fig. 6.9(a)),
(b) comparison of different mass compositions for a low burst pressure, (c) comparison of different burst
pressures for mass composition A (for zoom area II see Fig. 6.9(b)), and (d) comparison of different burst
pressures for mass composition B.
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From the comparison of average decomposition species plots, Figs. 6.7(a) and 6.7(b),

it can be seen that for a given cell, those of mass composition A decompose quicker than

B. From Fig. 6.4 and Figs. B.4 to B.6 it can see that this is due to the earlier onset and

decomposition of the SEI reaction. Which, as can be seen from the values of the activation

energies (see Table 5.6) where for mass composition A for a given pressure they are lower,

is to be expected. Similarly, for cases with a higher cell burst pressure the cells decompose

quicker, see Figs. 6.7(c) and 6.7(d). Again, the lower activation energies of the SEI and

NE reactions, in the higher burst pressure cases, leads to sooner decomposition over cases

with lower burst pressure. Furthermore, the heat generation’s, and hence, accumulated

energy’s, are intrinsically dependenent on the reaction species change for a given mass

composition. Inherently, mass composition B cases and the lower cell burst pressure cases

lead to less accumulated energy (see Fig. 6.8) due to the higher activation energies of the

SEI and NE reactions, while the temperature rise is driven by heat from Cell 1. This is

apparent in all cells besides cell 1, which has undergone equal decomposition between cell

burst pressure cases due to the abuse condition on Cell 1.

In Figs. 6.6(a) and 6.6(c) the point of venting of Cell 2 is highlighted, referred to as

zoom area I and zoom area II, respectively. For Figs. 6.6(a) and 6.6(c), these zoom areas

are enlarged and presented in Figs. 6.9(a) and 6.9(b), respectively. From Fig. 6.9(a), it can

be seen that venting is predicted earlier for mass composition B, while from Fig. 6.9(b) it

can be seen that for a lower burst pressure venting is predicted later, which is also seen

in the oven simulations of Section 5.2.3.1. To explain the advance and lag of venting,

Figs. 6.10 and 6.11 present the pressure, temperature, mole fraction, gas generation rate

and average decomposition value for Cell 2, in comparing case MAH to MBH, and MAH

to MAL, respectively.

Differences between cases MAH and MBH in Fig. 6.10 will be discussed in reference

to annotations I, II and III.

� Referring to point I in Fig. 6.10, by 20 s the temperature of Cell 2 in MBH is greater

than that of Cell 2 in MAH. Considering the lack of decomposition in either case until

>100 s, due to the greater amount of energy released by cells of mass composition

B, the additional heat from Cell 1 in MBH over that of MAH leads to greater heat

transfer to Cell 2 in case MBH.

� Hence, over the period of region II in Fig. 6.10 there is a higher temperature of

Cell 2 in case MBH over case MAH. Further, over this period it can be seen that

MBH has a slightly greater cell pressure than MAH, see the top panel of Fig. 6.10.

However, from the bottom panel of Fig. 6.10, it can be seen that the mole fractions

between the cases are indistinguishable over the same period. Hence, as the (cell)

bubble pressure is known to be more sensitive to temperature than mole fraction,

see Fig. 5.5, the difference in pressure between cases MAH and MBH over the first

230 s can be attributed to the higher temperature of the cell in the case of MBH.
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Figure 6.7: Effect of different mass compositions and burst pressures on average decomposition species.
(a) Comparison of different mass compositions for a high burst pressure, (b) comparison of different mass
compositions for a low burst pressure, (c) comparison of different burst pressures for mass composition A,
and (d) comparison of different burst pressures for mass composition B.
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Figure 6.7 (cont.): Effect of different mass compositions and burst pressures on average decomposition
species. (a) Comparison of different mass compositions for a high burst pressure, (b) comparison of
different mass compositions for a low burst pressure, (c) comparison of different burst pressures for mass
composition A, and (d) comparison of different burst pressures for mass composition B.

207



CHAPTER 6. THERMAL RUNAWAY PROPAGATION POTENTIAL STUDIES

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0

2

4

6

8

1 0

1 2

1 4

1 6
Ac

cu
mu

lat
ed

 en
erg

y (
kJ)

T i m e  ( h r )

M a s s  c o m p .  A
 C e l l  1  C e l l  2
 C e l l  4

M a s s  c o m p .  B
 C e l l  1  C e l l  2
 C e l l  4

(a)

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0

2

4

6

8

1 0

1 2

1 4

1 6

Ac
cu

mu
lat

ed
 en

erg
y (

kJ)

T i m e  ( h r )

M a s s  c o m p .  A
 C e l l  1  C e l l  2
 C e l l  4

M a s s  c o m p .  B
 C e l l  1  C e l l  2
 C e l l  4

(b)

Figure 6.8: Effect of different mass compositions and burst pressures on accumulated energy. (a) Com-
parison of different mass compositions for a high burst pressure, (b) comparison of different mass compo-
sitions for a low burst pressure, (c) comparison of different burst pressures for mass composition A, and
(d) comparison of different burst pressures for mass composition B.
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Figure 6.8 (cont.): Effect of different mass compositions and burst pressures on accumulated energy.
(a) Comparison of different mass compositions for a high burst pressure, (b) comparison of different mass
compositions for a low burst pressure, (c) comparison of different burst pressures for mass composition A,
and (d) comparison of different burst pressures for mass composition B.
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� After this period, at point III in Fig. 6.10, it can be seen that the pressure of

the cell in case MBH rises more rapidly than in MAH (see top panel of Fig. 6.10).

Which, from (the bottom panel of) Fig. 6.10, can be seen to be due to the increase

in mole fraction of MBH compared to MAH. Interestingly, the mole fraction of MBH

increases quicker at point III than for case MAH, although MAH decomposes more

rapidly.

However, considering Eq. (3.57), which governs the mole fraction as a function of the

variable mass of gas and the fixed value of mass of electrolyte (up to the point before

venting), then, for a given profile of gas mass increase, the system that has a lower mass

of electrolyte will lead to larger values of mole fraction for a given mass of gas. Hence, as

MBH has a lower mass of electrolyte, 1.95 g compared to MAH with 6.58 g of electrolyte,

it has a greater mole faction, even though less decomposition has occurred. Further, the

deviation occurs because the production of gas in MAH slows at point II, and shortly after

reaches a peak so the slope of mole fraction for MAH lessens, while in MBH the production

is still to reach a maximum and the gradient of mole fraction remains relatively steep. As

such, even though the SEI and NE reactions are delayed in MBH, the lower amount of

electrolyte amplifies the gas’s contribution to increasing the mole fraction, and the earlier

occurrence of venting.

From Fig. 6.11, it can be seen that case MAH vents before MAL as the cell in case MAH

reaches its pressure limit sooner. Interestingly, this occurs even though the pressure limit

is higher in case MAH. As above, from Eq. (3.56) we see that the internal cell’s pressure

is governed by the average cell temperature and mole fraction of the mixture. In the cases

of MAH and MAL, the temperatures of the cells remain equal up to approximately 175 s,

refer to I of Fig. 6.11. However, the pressure starts to increase in MAH much before this,

at approximately 120 s (see point II of Fig. 6.11), and deviates away from the pressure in

MAL. It can be seen from Fig. 6.11 (bottom panel) that this deviation coincides with the

more rapid increase in mole fraction of MAH compared to MAL, see point III of Fig. 6.11.

The mole fraction is governed by the mass of gas produced, see Eq. (3.57), which in turn

is governed by the decomposition rate, see Eq. (3.45). From this, it can be seen that

the greater gas production rate of MAH, see IV of Fig. 6.11, leads to the increased cell

pressurisation over MAL. This in turn is due to the lower activation energies of the SEI

and NE reactions of the MAH case. As such, while the burst pressure is higher, the limit

is reached sooner as the reactions start earlier in the MAH case.

Here, due to the stability of the LFP cells, the variation in parameters between cases

lead to insignificant changes in TRP hazards. However, it has been shown how assumptions

on cell mass composition and cell pressure limit affects the nature of decomposition in a

cell, and hence, between cells in a pack. Specifically, the selection of cell burst pressure

affects the parametrisation of the SEI and NE reactions most significantly. This, in turn

can effect the time to severe TR reactions. For example, the higher burst pressure leads
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Figure 6.9: Effect of different mass compositions and burst pressures on vent behaviour. (a) different
mass compositions for a high burst pressure, an enlargement of zoom area I of Fig. 6.6(a), and (b) different
burst pressures for mass composition A, an enlargement of zoom area II of Fig. 6.6(c).

211



CHAPTER 6. THERMAL RUNAWAY PROPAGATION POTENTIAL STUDIES

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

Pre
ssu

re 
(M

Pa
)

T i m e  ( s )

 P ,  M A H
 P ,  M B H
 T ,  M A H
 T ,  M B H

I I

I I I

6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0

Te
mp

era
tur

e (
°C

)

x_
mi

xtu
re

T i m e  ( s )

 x ,  M A H
 x ,  M B H
 m g  r a t e ,  M A H
 m g  r a t e ,  M B H
 C a v e ,  M A H
 C a v e ,  M B H

0 . 0

0 . 5

1 . 0

1 . 5

Ga
s g

en
. ra

te 
(×1

0-6  kg
/s)

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Av
e. 

de
co

mp
os

ito
n (

-)

I

Figure 6.10: Comparison of key values related to the venting of Cell 2 for cases MAH and MBH (x is
mole fraction of mixture, mg rate is mass of gas rate).
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Figure 6.11: Comparison of key values related to the venting of Cell 2 for cases MAH and MAL (x is
mole fraction of mixture, mg rate is mass of gas rate).
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to lower activation energies for the SEI and NE reactions, which lead to them occurring

sooner. Here, this has no effect of TRP as the cells are stable. However, for cells that

are more unstable with more energetic self-heating reactions, which could in turn go into

TR, one can expect that TR would occur sooner, and TRP faster than cells that are

parameterised assuming a lower burst pressure. This highlights the importance of looking

at the sensitivity and range of parameters that are first representative of an oven simulation

in parameter estimation development, and the effect it can have on TRP prediction.

6.4.5 Importance of Heat Transfer Pathways

As Fig. 6.1 shows, Cells 1, 2, 4 and 5 undergo the most significant changes in the pack when

abused. Hence, they are the focus of analysis on the affect cell surface emisivity, εcell, and

cell spacing, dcc, have on maximum cell temperatures and decomposition heat released.

With this, Figure 6.12 presents the maximum mean cell temperature at given emissivity

and cell spacing values for Cell 1 (Fig. 6.12(a)) and Cells 2, 4 and 5 (Fig. 6.12(b)) which

surround Cell 1. Similarly, Figure 6.13 presents the total decomposition heat generated for

Cells 1, 2, 4 and 5 at various emissivity and cell spacing values. To study the heat transfer

pathways Tables B.1 to B.4 presents the net heat transfer to a cell by radiation, surface

conduction, tab conduction and the total sum, for each εcell up to the time of maximum cell

temperature for inter-cell spacings of 0 mm, 1 mm, 2 mm and 4 mm, respectively. Further,

Tables B.5 and B.6 presents the net heat transfer from maximum cell temperatures to the

end time of simulation for inter-cell spacings of 0 mm and 4 mm, respectively. With regard

to Tables B.1 to B.6, positive values indicate that over the time period in question the

overall heat transfer is into a cell, while for negative values the opposite is true.

6.4.5.1 Tab Heat transfer

It was stated in Section 6.4.1 that the heat transfer through the tabs causes the heating

of Cell 2, which is connected to Cell 1 by the tabs, more greatly than Cell 4, which is not

connected to cell 1 by the tabs. The significance of the tabs as a heat transfer pathway

can be quantified through Tables B.1 to B.4.

Comparing the heat transfer for Cell 2 and 4 in Table B.1, which presents data for

the same cell spacing as in Section 6.4.1, it can be seen the total heat transfer to cell 2

(4295 kJ) is greater than to Cell 4 (3553 kJ). In which, the heat transfer by radiation and

surface conduction is greater in Cell 4 (accumulatively 3830 kJ) than Cell 2 (accumulatively

2922 kJ). However, Cell 4 loses heat by tab conduction (=277 kJ), compared to Cell 2 witch

gains significant heat by tab conduction (1374 kJ) from Cell 1. Hence, the highly thermal

conductive tabs between Cell 1 and 2, and not between 1 and 4, clearly is the cause of the

temperature difference between Cell 2 and 4.
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Figure 6.12: Maximum mean temperature reached at various εcell and dcc values. Sub-figures (a) and
(b) present cell 1 and cells 2, 4 and 5 respectively.
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Figure 6.13: Accumulated decomposition energy for cells 1, 2, 4 and 5 at various εcell and dcc values.

6.4.5.2 Effect of εcell and dcc on Maximum Cell Temperature

For cell 1, from Fig. 6.12(a), it can be seen that at a given cell-to-cell spacing as εcell

increases the maximum cell temperature reduces. From εcell = 0 to εcell = 1 the tem-

perature reduces by 8–12°C, irrespective of dcc. For a given emissivity the maximum

temperature increases as dcc increases. From 0 mm to 1 mm the temperature increases

by approximately 6°C, while for further increases in dcc the increase in temperature is

generally lower. This shows that the severity of TR in a cell under TR is worsened by

lower cell surface emissivity and greater cell-to-cell spacing, however only slightly.

For the cells adjacent to Cell 1 (i.e. Cells 2, 4, and 5) the trends in maximum tem-

perature with emissivity and cell spacing are opposite to that observed for Cell 1. That

is to say, as emissivity increases and cell spacing is reduced maximum cell temperature

increases, see Figure 6.12(b). As such, it is apparent that to reduce the TRP potential by

reducing heat transfer through increased cell spacing and reducing cell surface emissivity

there is an inherent increase in the severity of the initiation cell.

For Cell 2, when dcc = 0 mm there is little change (2°C) in the maximum temperature

reached in the cell over the range of εcell = 0 to εcell = 1. Over this range the heat transfer

to the cell only increases by 107 J, while radiation accounts for 36% of the heat transfer

up to the point of maximum cell temperature when εcell = 1 (see Table B.1). However,

at dcc = 4 mm there is a greater temperature increase, 10°C, and a greater dependence of

maximum temperature on emissivity value. This is due to an increase in heat transfer, by

384 J, between cases with εcell = 0 and εcell = 1 (see Table B.4), while radiation is more
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dominant (in general) at any given εcell at larger dcc compared to small dcc, see Tables B.1

to B.4. For comparison, when εcell = 1 radiation accounts for 62% of the heat transfer up

to maximum temperature of cell 2 when dcc = 4 mm.

A similar trend, whereby there is a greater increase in maximum mean cell temperature

over the studied εcell range at larger dcc compared to lower dcc, is observed in cells 4 and

5, see Fig. 6.12(b). However, the magnitude of this behaviour for a given dcc is greater in

Cells 4 and 5 compared to Cell 2. Further more, Cell 4 is more sensitive to εcell than Cell

5, even though a larger fraction of heat transfer to Cell 5 is by radiation than compared to

Cell 4. As can be seen from Tables B.1 to B.4, this is due to the greater relative increase

in radiative heat transfer at each increment of εcell from the last, for Cell 4 compared to

5. As the perpendicular distance to the dominant heat source (i.e. cell 1) is greater to

Cell 5 (i.e. d⊥ =
√

2 (dcc + 2rcell) − 2rcell) than Cell 4 (i.e. d⊥ = dcc), then due to the

dependence of radiative flux on the inverse of the squared distance, then the heat transfer

by radiation to Cell 5 is lower by a proportional (1/
√

2) amount (approximately) and as

such further increases are proportionally lower.

Figure 6.12(b) also shows that at a given emissivity value, as dcc increases the maximum

temperature reduces in cells adjacent to Cell 1, as shown elsewhere [e.g. 222]. However,

this effect is greater for lower εcell values. As can be seen from Tables B.1 to B.4, at lower

εcell a larger proportion of heat transfer is by conduction and the overall heat transfer up

to the time of maximum cell is reduced for smaller εcell, while as dcc increases heat transfer

is increasingly dependent on radiation. Further, for cells not connected to the failed cell by

the busbar (i.e. Cells 4 and 5) the greatest reduction in maximum temperature between

incremental increases in dcc is by increasing dcc from 0 mm to 1 mm. This is due to the

removal of contact heat transfer between cells and the insulation air provides between

cells [225, 227]. As such, the TRP potential of any pack can be reduced by reducing the

cell surface emissivity for any given cell spacing, while a minimum spacing is beneficial to

remove contact heat transfer.

Section 6.4.1 showed LFP packs are highly resilient to TRP with typical cell surface

emissivities. Further, under the parameter sweep of εcell and dcc, Fig. 6.12(b) shows that

even under the conditions that heat transfer is greatest, i.e. dcc = 0 mm and εcell =

1, the maximum temperatures of adjacent cells remain below 170°C. The accumulated

decomposition energy also remains relatively low for cells 2, 4 and 5 (following similar

trends with εcell and dcc to that of maximum temperature of Fig. 6.12(b)), see Fig. 6.13,

due to the dependence of Qdecomp on temperature. Hence, under these extreme abuse and

environmental conditions LFP packs can be stated to be highly resilient to TRP at any

cell spacing and cell surface emissivity value.
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6.4.5.3 Importance of Radiation Heat Transfer in Pack at Key Time Instances

The heat transfer behaviour of cells in the pack can be analysed for the cell under TR,

referred to as the initiation cell, for the cells adjacent to the initiation cell, termed primary

cells, and for cells adjacent to the primary cells, termed secondary cells. The initiation

cell is Cell 1, the primary cells are Cells 2, 4 and 5, and the secondary cells are Cells 3,

6, 7–9. The heat transfer over two important time instances is discussed. The first is up

to the time of each individual cell’s maximum temperature, and the second is the period

from the individual cell’s maximum temperature to the end time of simulation, a.k.a the

cool down period.

The heat transfer up to an individual cells’ maximum temperature is first discussed.

For the initiation cell the magnitude of total heat transfer from the cell up to the maximum

cell temperature generally increases with larger εcell. Between εcell = 0 and εcell = 1

at a dcc = 0 mm the magnitude of heat loss increases by 105 J (see Table B.1), while

at a dcc = 4 mm the magnitude of heat loss increases by 203 J (see Table B.4). The

heat transfer by surface conduction is greater than that by conduction through the tabs,

due to the small surface area of the tabs compared to the cell surface area. As εcell

increases a greater proportion of heat transfer is by radiation and the proportion by

surface conduction reduces, while that by conduction through the tabs remains relativity

constant. For example at dcc = 0 mm (see Table B.1) the fraction of heat transfer that

is by radiation increases from 0% to 30% over the range of εcell = 0 to εcell = 1, while

heat transfer by surface conduction and tab conduction reduce from 80% to 54% and

20% to 15%, respectively. At larger dcc the magnitude of total heat transfer is less (see

Tables B.1 to B.4), for example at dcc = 0 mm compared to dcc = 4 mm when εcell = 0.8

the total heat loss is =1136 J compared to =832 J, see Table B.1 and Table B.4 respectively.

However, for the same εcell, a greater amount of this total is by radiation, e.g. 44% at

dcc = 4 mm compared to 26% at dcc = 0 mm. Reduction in overall heat transfer is due to

the lower values of conduction, dominated by lower cell surface conduction values, while

tab condition reduces less at larger dcc due to the high thermal conductivity of the nickel

busbar.

Similar to the initiation cell, both the primary and secondary cells have increased total

heat transfer with increased εcell, and reduced total heat transfer with increased dcc as

Tables B.1 to B.4 show. Also, as with the initiation cell, there is an increased proportion

of heat transfer by radiation with increased εcell and increased dcc. This shows that TRP

potential of the pack can be reduced by lowering εcell without any reduction in pack

volumetric or gravimetric energy density that would occur through increased cell spacing

or the use of conductive intra-pack materials such as aluminium or composite PCMs.

The magnitude of heat transfer over the time to maximum cell temperature in the

primary cells is greater than in the initiation cell. This is due to the fact that the initiation
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cell’s temperature rise is driven by rapid internal heat generation, while the primary cells’

inward heat transfer is driven by the large temperature difference between the initiation

and primary cells, leading to a greater period of heat transfer before peak temperature in

the primary cells. Furthermore, the magnitude of heat transfer to the secondary cells is

less than to the primary cells. This is due to the smaller temperature difference driving

heat transfer between the primary and secondary cells compared to the initiation and

primary cells.

In general, radiation accounts for a greater portion of heat transfer in the primary cells

compared to secondary cells due to the greater temperature difference between initiation

and primary cells and the dependence of radiative heat transfer on T 4
2 − T 4

1 . For example

at εcell = 0.8 and dcc = 0 mm Table B.1 shows that radiation, on average, accounts for

45% of the heat transfer up to the maximum temperatures of the primary cells, while

for the secondary cells radiation accounts for only 29% of total heat transfer on average.

Comparatively, at dcc = 4 mm Table B.4 shows that radiation, on average, accounts for

81% and 61% of total heat transfer in primary and secondary cells, respectively. Cell 2 is

the exception, where radiative heat transfer accounts for a similar fraction of heat transfer

as in secondary cells, due to the large amount of heat transfer by the direct connection

with the initiation cell through the busbar. At dcc = 0 mm when εcell = 0.8 radiation

accounts for 30% of total heat transfer compared to the 44% and 62% for cells 4 and 5

respectively.

The heat transfer over the cool down period is now discussed. Above it has been

shown that radiation can be important in the heating of cells adjacent to a cell in TR.

However, as Tables B.5 and B.6 show, the heat transfer as the cells cool (i.e. from the

time of maximum cell to end time of simulations) is dominated by surface conduction in all

cells. However, this is due to the fact that heat transfer after maximum cell temperatures

is calculated over a longer period of time of which cell temperatures are similar for the

majority (approximately 80%) of the cooling time, see Fig. 6.1. Hence, the heat transfer

benefits of radiation and tab conduction at large temperature differences are not influential.

In primary cells tab conduction is the second larger contributor, while radiation and tab

conduction play a larger role in the cooling of primary cells than secondary cells. This

occurs as the primary cells have slightly longer periods of larger temperature differences

than secondary cells.

The magnitude of total heat loss from cell 1, summing corresponding values in Ta-

ble B.1 and Table B.5, is an order of magnitude greater than the next highest cells.

However, this is due to the heat generated by short circuit (17.28 kJ) and decomposition

(15.4–16.2 kJ see Fig. 6.13) of the cell being large, which in turn approximately equals the

31.5–32.0 kJ of heat lost from cell 1.

As above, increased εcell and smaller dcc increases heat transfer, as such, cells cool more

effectively under these conditions. Hence, there is the competing effects of increasing heat
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transfer from a cell to reduce its TR potential, which improves heat transfer to adjacent

cells and hence increases TRP potential. As TRP did not occur in this pack, due to the

intrinsic stability of LFP cells, it is difficult to make confident conclusions on the effect

cell emissivity has on TRP potential. It is shown that radiation and tab heat transfer

are important at large temperature differences, present when a cell is under TR, and a

lower emissivity reduces heat transfer to neighbouring cells, which in turn may reduce

TRP potential. However, if more unstable and energetic cells are used, then reducing

cell surface emissivity may only postpone TRP by increasing the time it takes for heat

to be transferred to adjacent cells. This may lead to more severe TR as more heat can

accumulate [70]. As such, further work would assist the study of the effect of cell surface

emissivity on pack constructed more cells of different chemistries.

6.5 Conclusion

In this chapter a computational investigation into the safety of LFP battery packs has

been undertaken. The aim was to establish the potential of pack TRP under extreme

environmental temperatures when a single cell had undergone short circuit. To achieve

this, a small 9-by-9 cell battery pack was modelled in 3D (a.k.a. 3D transfer model, 3D-

HT), utilising the AAM, developed in Chapter 5 for a single LFP cell, solved in 0D (a.k.a

0D-AAM) for each cell.

First, to evaluate the suitability of the 0D abuse model assumption, and the use of

a relatively coarse mesh due to computational limitations, 3D-HT/0D-AAM single cell

simulations were carried out. This showed that the use of the 3D-HT/0D-AAM model

leads to quicker heating of the cell from the environment, however this only leads to a

slight advance of the cell temperature, e.g. by 1 min. Further, the 3D-HT/0D-AAM leads

to an underestimate of energy released from cell decomposition. A reduction of 25°C

in maximum temperature using the 3D-HT/0D-AAM compared to the 1D parametrised

model is apparent. This due to the smaller jelly roll in the 3D model compared to the

1D parametrised model of Chapter 5. In turn, this also leads to a later occurrence of TR.

Although differences are apparent between the 3D-HT/0D-AAM and 1D models, they are

quantified and, overall, small. Hence, the 3D-HT/0D-AAM was deemed appropriate for

full pack studies.

The use of a relatively coarse mesh was shown to have little effect on the prediction

of key TR values, i.e. time to venting, time to maximum temperature and maximum

temperature. There was less than 1% deference between the coarsest and finest meshes.

Hence, the coarse mesh was deemed suitable for the pack study.

From the LFP pack simulation, it was shown that under the abuse of short-circuiting

of one cell, there is not enough energy available to heat the neighbouring cells up to the

219



CHAPTER 6. THERMAL RUNAWAY PROPAGATION POTENTIAL STUDIES

temperature at which significant self-heating reactions occur. Particularly, the NE reaction

does not develop by any significant amount in cells neighbouring the abused cell, as such

TR is not present in the neighbouring cells and TRP does not occur. Therefore, it is clear

that LFP cell lead to battery pack that are greatly resilient to TRP.

The influence of differences between the parametrised single cell model are negligible

to the overall prediction of pack TRP potential in this case study. However, effects of the

parameterised model give rise to important considerations when analysing pack behaviour,

particularly in respect to the inclusion of venting behaviour. Mass composition B, which

has a greater carbon and LFP content, leads to a greater temperature in the shorted cell,

but cooler temperatures in the neighbouring cells, compared to the respective cells of mass

composition A. The choice of burst pressure does not affect the resulting temperatures.

The temperature rise in the cells adjacent to the shorted cell is driven by the heat from the

shorted cell, as self heating reaction do not evolve significantly until higher temperatures

that are not reached. For this reason, the greater heat in mass composition B in the

shorted cell, over mass composition A, leads to cell venting sooner in the neighbouring

cell, as the higher temperatures lead to higher pressure evolution sooner, as the bubble

pressure is more dependent on temperature than mole fraction. Further, for a given

gas production rate, a system with less electrolyte present leads to a greater increase

in mole fraction, considering all else is equal. Hence, even in the case where activation

energies of the NE and SEI reactions are higher, with less electrolyte present in the system

the mole fraction increases to greater values sooner, leading to venting sooner. Given

comparable masses, lower activation energies leads to venting sooner. Here, between case

studies, the difference in venting and heating is small for different burst pressures given

a mass composition. However, considering high rate and energy reactions of other Li-

ion chemistries, the assumed burst pressure may have a greater influence on the advance/

delay of heating and hence TRP predictions, where higher assumed burst pressure (leading

to lower parameterised activation energies) leads to heating and TRP sooner.

The importance of radiative heat transfer and cell surface emissivity on heat transfer

within a pack was also studied. It was shown that radiation is more important at larger cell

spacings and for greater surface emissivity values. At any cell spacing TRP potential of

cells adjacent to a cell under TR can be reduced by lowering cell surface emissivity, which

lowers overall heat transfer between cells. As such, it is recommended to lower cell surface

emissivity to reduce pack TRP potential without any loss in overall pack volumetric or

gravimetric energy density.

This work is important in the larger scope of LIB packs, as through novel investigation

of cell surface emissivity on heat transfer within a pack, it enables the design of lighter

battery packs that are resilient to TRP through simple alterations of cell surface to reduce

emissivity value.
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It has been shown that, considering only decomposition phenomena, LFP packs are

resilient against TRP. Although cell electrochemistry (EC), and hence pack voltage, have

not been considered, if one assume cells are connected in series then the LFP pack would

be safe, while EC would have to be included to accurately state if the pack is safe under

parallel arrangement. Hence, future work should include the modelling of EC to account

for the additional ohmic heating that may lead to significant temperature rise and addi-

tional cell TR events. Future work should also consider the heat transfer by vent debris

and vent gas combustion. TRP resilient batteries, such as those constructed of LFP cells,

provide a safety advantage over other batteries, especially in uses such as home storage

or extreme environments. Hence, further studies should develop on this work to consider

larger batteries, suitable for these applications, to understand their resilience considering

their larger battery capacity and electrical influences. It is also important that the TR

field of study takes account of the affect venting has on parametrisation of models, and

it turn the effects on TRP predictions. Finally, further work is recommended to corrob-

orate these findings by investigating the effect of cell surface emissivity in LIB pack of

cells of greater TR severity and accounting for electrical discharge between cells in parallel

connections.
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Chapter 7

Conclusions and Future Work

This thesis has introduced the TR hazard of Li-ion cells and the safety benefits of using

an LFP chemistry in applicable applications. The aim of this work was to carry out an in-

depth analysis of the TR hazard of LFP cells by experimental and computational methods,

while further developing the theory and understanding of Li-ion TR models. From this,

the following novel contributions have been made to the study of LIB TR:

� the first assessment of TR in LFP cells at various SOC under ARC and oven testing;

� the recommendation that ARC may not capture the full severity of TR and, hence,

should be complemented by oven testing;

� development of a novel TR model referred to as the AAM, in which the assumption

of cell pressurisation occurring at the bubble point of the electrolyte/ gas mixture is

validated, and the use of the AAM is shown to considerably improve TR predictions

of the LFP cells;

� using the parametrised LFP AAM, predictions of TR severity beyond the experimen-

tal studies were made, this showed that even at significantly higher temperatures

beyond a critical oven set temperature the relative TR severity did not increase

further;

� LFP packs are resilient to TRP under severe environmental and abuse scenarios even

without any thermal management system in place;

� in packs where cells are closely packed radiation can account for up to 30% of heat

transfer, while TRP potential can be reduced by lowering cell surface emissivity.

The findings of this work have been published in peer reviewed journals (see “List of

Publications” on Page v). The following paragraphs summarise each chapter of the thesis.
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The rapidly growing installed capacity of LIBs to facilitate renewable energy generation

and enable EVs is motivation to study TR in Li-ion cells. Further, the potential and

real dangers of TR at various battery scales has been shown through examples of past

incidents. The TR process is known to be complex due to the many reactions occurring

simultaneously. TR is also known to be hazardous due to the positive feedback loop

that leads to vast amounts of heat generation, toxic and flammable gases, and the risk

of explosion. Also, the LFP Li-ion chemistry is understood to be the safest chemistry

available, whilst having additional benefits of being non-toxic and relatively low cost. As

such the LFP chemistry has a substantial potential for utilisation at larger scales. However,

TR incidents of LFP LIBs have still been recorded in the real world, viz. in EV buses.

This highlights the need to further understand the complicated TR process so that it can

be better prevented and, specifically, aid the utilisation of LFP LIBs as they provided

environmental benefits over other Li-ion chemistries.

From undertaking a literature review, it was shown that the abuse scenarios of adia-

batic calorimetry (which leads to zero heat loss from the cell and hence considered a worst

case scenario) and oven testing are fundamental to TR analysis. From which, it was ap-

parent that there was a lack of literature regarding detailed analysis of LFP cells. Further,

the literature review discussed the modelling of TR in Li-ion cells, where it was shown

that the calorimetry approach, based on Arrhenius formulae, was the most appropriate

method for representing the TR reactions. However, regarding LFP cells, there was a

lack of literature modelling LFP cells that had been validated. Additionally, the literature

had shown that accounting for cell venting was important for accurate TR predictions. In

other areas, such as a pressurised vessels representative of a system similar to Li-ion cells,

a more detailed consideration of the thermodynamics usually requires that the system is

at the bubble point. As such, the partial pressure method used in the literature is an

over-simplification of cell pressurisation.

The literature also highlighted that investigations should be carried out upon battery

packs. This is to understand a cell’s safety under conditions that can lead to the more

hazardous TRP event. To prevent TRP several thermal management techniques were

reported in the literature. However, none had quantified the importance of cell-to-cell

heat transfer by radiation.

LFP cells were chosen for investigations to assess the highlighted gaps in the literature

regarding LFP specifically and Li-ion cell models generally as there is a lack of experimental

testing and validated abuse models for LFP cells. Greater understanding of LFP cells

will increase their accessibility in battery markets, providing a safer and less toxic Li-ion

alternative, while advanced TR models will aid the development of safer LIBs.

The experimental thermal abuse of cells in this work was undertaken under ARC

(specifically Thermal Hazard Technology ARC EV+) and oven testing. Further, a test to

determine the cells’ specific heat capacity, which is a key parameter to the TR models,
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was undertaken. Modelling studies were carried out utilising the novel AAM TR model.

The AAM considers cell pressurisation at bubble point, as highlighted by the literature

review, and also a simmering reaction, identified in the experimental results.

ARC and oven testing was carried out to analyse the TR behaviour of 18650 LFP at

various SOC under thermal abuse. From ARC testing it was found that TR only occurred

at SOC greater than 28%, and in these cases was initiated at approximately 200°C, while

maximum temperature rates where low (below 10°C/min). Hence, the overall safety of

LFP cells at any SOC is greater than other chemistries. In fact, the maximum temperature

rate of LFP cells is 3 to 4 orders of magnitude less than LMO, LCO, NMC and NCA cells

at SOC of 30% and above. Further, it was concluded that NE reaction was the main cause

of self-heating and the onset of TR. Therefore, improvements to the negative electrode

are of primary importance to enhance the safety of LFP cells. From oven testing it was

shown that there is a critical oven set temperature, at which there is a step change in

TR severity of the cell. However, below this critical temperature, the heat generated by

TR is at a rate on the same order of magnitude as high discharge operation, and hence

manageable by typical thermal management systems.

A novel numerical method for estimating the heat generated by TR under oven expo-

sure was presented, and shown to provide suitable estimates when compared to compu-

tational predictions. Utilising this and comparing the heat generated by cell TR under

ARC and oven exposure for cells at 100% SOC, it was shown that the heat generated

under ARC testing was less than that under abuse by oven exposure at 218°C oven set

temperature. As ARC analysis is considered to be a worst case scenario, this highlights

that the ARC analysis may not capture the full decomposition processes and hence should

be complimented by oven analysis for a fuller picture of a cell’s TR behaviour and safety.

In developing the AAM, it was shown that a classical TR model could not be parame-

terised such that the TR response of LFP cells under oven exposure could be reproduced

accurately. Also, the bubble point assumption determining cell pressurisation through the

BPV method in the AAM was tested, and proven valid by comparison with a previous

methodology in the literature. The AAM was shown to greatly outperform the classical

TR model due to the inclusion of the venting and simmering reactions. Although sim-

ilar TR predictions can be made for the different mass compositions and pressure limit

values, defining the exact reaction kinetics is difficult without precise knowledge of these

parameters. This highlights the presence of valid but non-unique reaction kinetics, which

brings to attention the caution needed when applying the same kinetic parameters across

different cell mass compositions.

The AAM also allowed simulation of oven tests at oven set temperatures beyond those

studied experimentally. From this, the same step change in severity at the critical oven

temperature was predicted as seen in the experimental results. It was also shown that at

oven temperatures significantly above this critical temperature there is no further increase
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in relative TR severity. The AAM aids the battery community as accurate predictions of

cell pressurisation help the development of safer batteries through aiding the development

of advanced BMS, accounting for pressure measurements, and being an enabling step

towards modelling vent ejecta and their associated heat transfer.

Considering a 18650 LFP battery pack in extreme environmental temperatures expe-

riencing a severe internal short circuit, it was shown that the pack did not undergo TRP.

This was attributed to the high stability of the LFP cells, as the heat released from the

failed cell was not sufficient to heat the neighbouring cell to the temperatures that lead to

significant progression of the energetic NE reaction. It was also shown that any of the pa-

rameterised models, which lead to similar single cell TR predictions in all cases, had little

effect on the results of pack simulations. However, it was noted that in cases with larger

NE masses there was a slight increase in temperatures of neighbouring cells due to the

disproportionate influence of the NE reaction on the overall heat generated owing to the

energetic nature of the NE reaction and its low onset temperature. Finally, it was shown

that radiation is more important at greater cell spacings, while overall heat transfer can

be reduced by lowering cell surface emissivity value. Hence, it is recommended to design

battery packs with lower cell surface emissivities, through simple surface alterations, in

order to design safer and lighter LIBs.

7.1 Future Work

From the work carried out in this thesis several opportunities for future work are brought

to the attention of the reader.

7.1.1 Abuse Model Governing Theory Development

In parameterising the AAM for the LFP cell, errors in predictions at lower oven set

temperatures and at the critical oven set temperature highlight further points for investi-

gation. Additionally, under the assumed four reaction system of TR modelling, at lower

oven temperatures, peak TR temperature could not be met while still maintaining ac-

curate predictions. Hence, secondary and interdependent reactions, which are stated to

occur in the literature but generally not accounted for in modelling, are recommended for

consideration in future work.

While the BPV method of cell pressurisation was validated, the behaviour of the tem-

perature drop at venting was seen to occur too rapidly. Therefore an improved represen-

tation of the phase equilibrium of the liquid-vapour mixture is needed. This requires the

development the governing equation away from the dependence of the bulk mole fraction

of the electrolyte/DMC mixture, to one that considers vapour fraction and mole fraction
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in each phase to improve pressure calculation. Also, this allows for the expansion and

re-equilibrium of the mixture as the cell cools during venting which is thought to slow the

rate pressure drop of the cell and in turn the temperature rate over venting. Furthermore,

developing on this, there should be work on predicting the vent gas flow and combustion

behaviour, as it is known to be a significant fire hazard.

7.1.2 Abuse Model Parameterisation Methodology

Parameterising an abuse model is difficult and slow due to the complex reactions’ be-

haviours. Hence, there needs to be development of a computationally aided and intelligent

method of parametrisation, such as using Gaussian Processes or deep learning techniques.

Thus, parameterisation could be undertaken more rapidly, allowing for statistical analy-

sis and for greater detailed models, making it more useful to industry. Model detail can

be increased by intelligent parameterisation as it can be used to aid parameterisation of

individual reactions dependent on SOC, which is important for battery packs under oper-

ation where SOC is time variant. Further, it can allow for a black box model approach,

considering a reaction database, that can be used to perform reaction pathway analysis

to determine the likely reactions occurring in individual cell chemistries. This will enable

the determination and utilisation of interdependent and secondary reactions highlighted

as important in Section 7.1.1.

7.1.3 LIB Pack Studies

In this work only the decomposition heat generation was accounted for in the LFP pack

studies. However, it is known that ohmic heating through failed cells is important in

parallel connected cells. Hence, there is a need for further work on assessing the TRP

potential of the LFP pack studied, considering the electrical behaviour alongside validation

against experimental data. Further, building on the developments of cell pressurisation

and the further work mentioned in Section 7.1.1, there should be work including vent gas

flow and combustion, as it is shown to be important to TRP under experimental tests.

Finally, for the LFP cells studied, it was shown that lower cell surface emissivities reduced

overall heat transfer to cells adjacent to the abused cell and in turn lead to reduced

decomposition of said cells. However, these findings should be corroborated for packs of

cells of chemistries that are more prone to TRP to determine if this is true in all cases.
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Appendix A

Supplementary Figures of Oven

Test Data
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Figure A.1: Maximum cell surface temperature, temperature difference and time to maximum tempera-
ture vs. oven temperature with cell annotation.
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Figure A.2: Maximum cell surface temperature rate and time to maximum temperature rate vs. oven
temperature with cell annotation.
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B.1. SUPPLEMENTARY FIGURES AND TABLES OF HEAT TRANSFER
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Appendix B

Supplementary Pack Study Data

B.1 Supplementary Figures and Tables of Heat Transfer

Pathway Study
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Figure B.1: Average cell temperatures within pack where Cell 1 is abused by short circuit. Sub-figures
are for models utilising different abuse parameters and burst pressures - (a) MAH, (b) MAL, (c) MBH,
(d) MBL.
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APPENDIX B. SUPPLEMENTARY PACK STUDY DATA

Table B.1: Heat transfer to/from (positive/negative value) individual cells up to the respective times of
maximum cell temperatures with inter-cell spacing dcc = 0 mm.

Heat transfer
(J)

Cell
1 2 3 4 5 6 7 8 9

εcell = 0

Radiation 0 0 0 0 0 0 0 0 0
Surface conduction -805 2413 587 3601 1377 337 309 623 344
Tab conduction -203 1803 634 -376 239 499 573 21 113
Total -1008 4216 1221 3226 1616 836 882 645 457

εcell = 0.27

Radiation -107 460 127 524 460 107 111 98 49
Surface conduction -680 2117 491 3101 1032 285 248 560 317
Tab conduction -181 1635 607 -322 198 468 557 16 112
Total -968 4213 1224 3303 1689 860 916 675 477

εcell = 0.54

Radiation -206 916 224 1084 835 177 228 180 95
Surface conduction -676 1849 452 2642 785 273 200 531 299
Tab conduction -183 1490 572 -291 161 444 540 5 112
Total -1065 4256 1247 3435 1781 894 967 717 505

εcell = 0.8

Radiation -296 1296 315 1576 1160 251 348 268 148
Surface conduction -658 1626 395 2254 571 235 162 490 275
Tab conduction -182 1374 556 -277 136 438 511 0 112
Total -1136 4295 1266 3553 1867 925 1021 758 534

εcell = 1

Radiation -336 1554 392 1915 1400 317 450 348 200
Surface conduction -605 1476 358 1978 414 208 124 451 246
Tab conduction -171 1293 535 -248 123 425 491 -7 112
Total -1113 4323 1284 3646 1937 951 1066 792 558
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(d)

Figure B.1 (cont.): Average cell temperatures within pack where Cell 1 is abused by short circuit.
Sub-figures are for models utilising different abuse parameters and burst pressures - (a) MAH, (b) MAL,
(c) MBH, (d) MBL.
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(b)

Figure B.2: Average cell decomposition within pack where Cell 1 is abused by short circuit. Sub-figures
are for models utilising different abuse parameters and burst pressures - (a) MAH, (b) MAL, (c) MBH,
(d) MBL.
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(d)

Figure B.2 (cont.): Average cell decomposition within pack where Cell 1 is abused by short circuit.
Sub-figures are for models utilising different abuse parameters and burst pressures - (a) MAH, (b) MAL,
(c) MBH, (d) MBL.
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(b)

Figure B.3: Accumulated energy from decomposition for each cell within pack, where Cell 1 is abused
by short circuit. Sub-figures are for models utilising different abuse parameters and burst pressures - (a)
MAH, (b) MAL, (c) MBH, (d) MBL.
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(d)

Figure B.3 (cont.): Accumulated energy from decomposition for each cell within pack, where Cell 1 is
abused by short circuit. Sub-figures are for models utilising different abuse parameters and burst pressures
- (a) MAH, (b) MAL, (c) MBH, (d) MBL.
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(c) Cell 4
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(d) Cell 1, enlargment of time period when short occurs

Figure B.4: Decomposition species of individual reactions for cells 1, 2 and 4 (parameter set MAL).
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(c) Cell 4
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(d) Cell 1, enlargment of time period when short occurs

Figure B.5: Decomposition species of individual reactions for cells 1, 2 and 4 (parameter set MBH).
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(c) Cell 4
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(d) Cell 1, enlargment of time period when short occurs

Figure B.6: Decomposition species of individual reactions for cells 1, 2 and 4 (parameter set MBL).
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Figure B.7: Accumulated energy of individual reactions for cells 1, 2 and 4 (parameter set MAL).
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(c) Cell 4

Figure B.8: Accumulated energy of individual reactions for cells 1, 2 and 4 (parameter set MBH).
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(c) Cell 4

Figure B.9: Accumulated energy of individual reactions for cells 1, 2 and 4 (parameter set MBL).
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Table B.2: Heat transfer to/from (positive/negative value) individual cells up to the respective times of
maximum cell temperatures with inter-cell spacing dcc = 1 mm.

Heat transfer
(J)

Cell
1 2 3 4 5 6 7 8 9

εcell = 0

Radiation 0 0 0 0 0 0 0 0 0
Surface conduction -491 371 -105 2843 744 -3 3 321 121
Tab conduction -258 3470 1137 -476 459 655 588 73 143
Total -749 3841 1032 2367 1203 652 590 394 264

εcell = 0.27

Radiation -133 593 65 808 536 82 55 93 50
Surface conduction -392 377 -107 2235 488 -36 -19 313 98
Tab conduction -229 2900 1085 -417 330 652 622 44 152
Total -754 3870 1042 2627 1353 698 657 450 300

εcell = 0.54

Radiation -255 1197 129 1567 914 143 106 172 101
Surface conduction -387 264 -101 1697 303 -23 -5 297 82
Tab conduction -232 2472 1001 -357 261 607 625 31 151
Total -874 3933 1030 2906 1479 726 726 500 333

εcell = 0.8

Radiation -326 1699 205 2190 1242 212 172 272 161
Surface conduction -335 164 -102 1277 174 4 -17 277 62
Tab conduction -213 2119 959 -329 193 555 636 8 149
Total -874 3982 1063 3139 1610 771 791 556 373

εcell = 1

Radiation -413 2048 276 2612 1501 277 237 361 218
Surface conduction -329 102 -113 991 78 0 -30 252 42
Tab conduction -213 1869 931 -297 135 534 639 -8 147
Total -955 4019 1094 3306 1714 811 846 605 407

268
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Table B.3: Heat transfer to/from (positive/negative value) individual cells up to the respective times of
maximum cell temperatures with inter-cell spacing dcc = 2 mm.

Heat transfer
(J)

Cell
1 2 3 4 5 6 7 8 9

εcell = 0

Radiation 0 0 0 0 0 0 0 0 0
Surface conduction -574 1250 205 2250 809 -56 -76 266 104
Tab conduction -175 2396 687 -377 138 583 532 19 79
Total -749 3645 892 1874 947 526 456 285 183

εcell = 0.27

Radiation -145 664 87 893 602 111 76 119 57
Surface conduction -426 1070 168 1719 495 -49 -105 244 82
Tab conduction -144 1962 664 -337 75 536 585 -1 92
Total -715 3696 919 2276 1171 598 556 362 231

εcell = 0.54

Radiation -273 1306 162 1682 1026 190 132 222 114
Surface conduction -418 801 143 1244 300 -43 -91 229 66
Tab conduction -145 1648 647 -296 36 514 601 -19 96
Total -836 3755 953 2631 1362 661 642 432 277

εcell = 0.8

Radiation -358 1832 242 2326 1384 277 205 326 186
Surface conduction -377 577 131 899 157 -53 -106 201 39
Tab conduction -136 1411 623 -290 -2 497 627 -23 100
Total -871 3819 997 2936 1539 721 726 504 325

εcell = 1

Radiation -422 2166 308 2688 1624 351 266 420 253
Surface conduction -354 441 115 676 56 -57 -98 170 9
Tab conduction -130 1251 601 -239 -23 468 615 -32 101
Total -906 3859 1024 3125 1657 762 784 558 363
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Table B.4: Heat transfer to/from (positive/negative value) individual cells up to the respective times of
maximum cell temperatures with inter-cell spacing dcc = 4 mm.

Heat transfer
(J)

Cell
1 2 3 4 5 6 7 8 9

εcell = 0

Radiation 0 0 0 0 0 0 0 0 0
Surface conduction -575 895 64 1566 571 56 48 147 66
Tab conduction -156 2305 614 -217 96 307 256 25 38
Total -731 3201 678 1349 666 363 304 171 104

εcell = 0.27

Radiation -160 698 116 904 641 154 105 162 66
Surface conduction -409 750 53 1141 306 31 35 113 37
Tab conduction -125 1813 559 -197 18 281 291 -9 58
Total -694 3261 728 1848 965 466 431 266 161

εcell = 0.54

Radiation -267 1374 200 1714 1099 261 173 285 128
Surface conduction -366 539 31 763 146 3 20 89 20
Tab conduction -117 1472 544 -189 -19 284 337 -27 65
Total -750 3385 776 2289 1226 547 530 347 213

εcell = 0.8

Radiation -369 1898 278 2313 1446 365 241 411 203
Surface conduction -349 377 28 491 41 -16 19 60 -4
Tab conduction -114 1230 520 -168 -46 269 358 -45 66
Total -832 3505 825 2636 1441 618 617 426 266

εcell = 1

Radiation -468 2231 351 2663 1698 450 311 511 265
Surface conduction -351 284 -2 329 -34 -24 -3 35 -19
Tab conduction -115 1070 515 -136 -74 246 375 -57 64
Total -934 3585 864 2856 1590 672 683 490 310
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Table B.5: Heat transfer to/from (positive/negative value) individual cells from respective times of peak
cell temperatures to end of simulation with inter-cell spacing dcc = 0 mm.

Heat transfer
(J)

Cell
1 2 3 4 5 6 7 8 9

εcell = 0

Radiation 0 0 0 0 0 0 0 0 0
Surface conduction -26909 -3825 -1036 -1364 -941 -652 -810 -293 -312
Tab conduction -5212 -787 -51 -1866 -509 -40 62 -210 -14
Total -32121 -4612 -1087 -3230 -1450 -692 -747 -504 -326

εcell = 0.27

Radiation -3811 -301 -62 -154 -82 -45 -45 -25 -18
Surface conduction -23403 -3486 -968 -1405 -931 -629 -779 -294 -320
Tab conduction -4748 -790 -71 -1781 -525 -52 32 -225 -17
Total -31963 -4578 -1100 -3340 -1538 -726 -791 -543 -355

εcell = 0.54

Radiation -6278 -468 -80 -209 -132 -64 -55 -28 -20
Surface conduction -21030 -3374 -982 -1578 -967 -644 -806 -329 -347
Tab conduction -4397 -814 -62 -1754 -538 -53 16 -230 -18
Total -31704 -4655 -1124 -3541 -1636 -762 -845 -587 -385

εcell = 0.8

Radiation -8165 -604 -82 -267 -184 -76 -49 -24 -13
Surface conduction -19264 -3273 -988 -1743 -990 -641 -859 -364 -380
Tab conduction -4128 -827 -77 -1712 -553 -77 8 -241 -21
Total -31558 -4705 -1147 -3721 -1726 -794 -900 -629 -414

εcell = 1

Radiation -9490 -710 -75 -318 -225 -84 -38 -22 -7
Surface conduction -18138 -3202 -1011 -1860 -1004 -647 -900 -395 -406
Tab conduction -3952 -842 -77 -1696 -569 -89 -6 -246 -26
Total -31581 -4754 -1163 -3874 -1797 -820 -944 -663 -439
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Table B.6: Heat transfer to/from (positive/negative value) individual cells from respective times of peak
cell temperatures to end of simulation with inter-cell spacing dcc = 4 mm.

Heat transfer
(J)

Cell
1 2 3 4 5 6 7 8 9

εcell = 0

Radiation 0 0 0 0 0 0 0 0 0
Surface conduction -26385 -2726 -679 -394 -267 -295 -299 -57 -58
Tab conduction -6433 -575 83 -866 -294 20 59 -51 7
Total -32818 -3302 -597 -1260 -561 -276 -240 -108 -51

εcell = 0.27

Radiation -6049 -344 -31 62 -51 -30 -2 16 9
Surface conduction -21159 -2418 -686 -803 -410 -372 -417 -123 -113
Tab conduction -5363 -613 68 -1021 -401 22 58 -88 5
Total -32571 -3374 -649 -1762 -861 -380 -361 -195 -99

εcell = 0.54

Radiation -9327 -524 -29 105 -98 -47 7 37 24
Surface conduction -18254 -2339 -711 -1185 -540 -415 -503 -190 -172
Tab conduction -4662 -686 44 -1135 -484 1 39 -118 3
Total -32243 -3548 -696 -2215 -1122 -460 -456 -271 -145

εcell = 0.8

Radiation -11562 -667 -13 85 -165 -59 26 57 41
Surface conduction -16371 -2297 -758 -1463 -633 -455 -588 -257 -233
Tab conduction -4164 -743 27 -1197 -537 -17 23 -146 -3
Total -32097 -3706 -745 -2575 -1335 -531 -539 -346 -195

εcell = 1

Radiation -12918 -772 -4 41 -245 -63 36 76 60
Surface conduction -15229 -2284 -773 -1638 -681 -492 -634 -314 -290
Tab conduction -3839 -776 -6 -1226 -559 -30 -5 -169 -7
Total -31987 -3832 -783 -2823 -1485 -585 -603 -408 -237
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