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ABSTRACT

In this thesis we study the theta lifting of a weight 2 Bianchi modular form F
of level T'p(n) with n square-free to a weight 2 holomorphic Siegel modular
form. Motivated by Prasanna’s work for the Shintani lifting, we define the
local Schwartz function at finite places using a quadratic Hecke character x
of square-free conductor f coprime to level n. Then, at certain 2 by 2 Gram
matrices S related to f, we can express the Fourier coefficient of this theta
lifting as a multiple of L(F,x,1) by a non-zero constant. If the twisted
L-value is known to be non-vanishing, we can deduce the non-vanishing of

our theta lifting.
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Introduction

Shimura initiated the systematic study of holomorphic modular forms of half-integral
weight and provided a correspondence between certain modular forms of even weight
and modular forms of half-integral weight. Later, in the other direction, Shintani
[Shi75] described a method in terms of weighted periods of holomorphic cusp forms
to construct modular forms of half-integral weight. Waldspurger showed in [Wal81] a
proportional relation between special values of L-functions attached to an eigenform
of even weight and the square of the square-free Fourier coefficients of the Shintani
lifting. For the special case of modular forms on the full modular group, Kohnen-
Zagier [KZ81] proved a simple version of Waldspurger’s theorem with the constant of
proportionality given explicitly. Inspired by their work we will analyse the theta lifting
of Bianchi modular forms to Siegel modular forms and investigate the relationship
between Fourier coefficients of this lifting and special L-values attached to the Bianchi
modular forms. This can be used to describe the non-vanishing of the theta lifting

which is an open problem in general.

Shintani’s result can be recovered as a special case of the Kudla-Milson cohomo-
logical theta lifting (see [KM90], [Fun02] and [EM11]) which can be described as an
integral of the exterior product of two cohomology classes over arithmetic quotients of
the symmetric space attached to orthogonal groups. To construct the Shintani lifting of
a weight 2 cusp form f for a congruence subgroup I', we can consider a 3-dimensional
rational quadratic space V' of signature (2,1) associated to which the symmetric space
D is isomorphic to the upper half plane Hy. By the Eichler-Shimura isomorphism,
the cusp form f can be realised as a cohomology class represented by the differential
form 7y on the arithmetic quotient I'\D. This is paired against the cohomological
theta kernel form 6 defined on the product of two locally symmetric spaces attached
to gi; x SO(2,1) where gffg denotes the metaplectic group of SLs. Given a cohomo-
logical Schwartz form ¢ on V' with the infinity part defined by Kudla-Milson, namely

vi
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Poo = gogoM, and the usual Weil representation w, the theta kernel is defined as

0(g,h,z):= Z w(g,h)p(x,z) for ge SLy, h € SO(2,1),z € D.

xeV
Then the theta lifting, which is a weight 3/2 cusp form, is given by
O, (17)(9) = (2)dz A 0(g, b, 2).

r\D

Further results of Kudla-Milson [KM90] and Funke [FM02] imply an interpretation of
its Fourier coeflicients as period integrals over certain cycles C'. More explicitly, the
coeflicient at 5 > 0 is given by

> ) [ s

xel\ Qg Cx

where Q3 := {x € V : —det(x) = 8}. For an auxiliary quadratic character x we
here take ¢ = cpoocp}< with the finite part @}‘ almost the same as that defined in
[Pra09]. Then the coefficient of ©,(ny) at certain § (depending on the conductor
of x) can be expressed as the above weighted sum of period integrals over infinite
geodesics. In Section 3.3.1, the period integral over the infinite geodesic with one end
point at the cusp oo can be related to L(f,x,1). Those over other infinite geodesics
can be transformed by Atkin-Lehner operators to be over infinite geodesics ending in
oo. Eventually the Fourier coefficient at 8 turns out to be a multiple of L(f,x,1) by
a non-vanishing constant. If the twisted L-value is known to be non-vanishing then so

is this Shintani lifting.

Proposition 0.0.1 (Proposition [3.3.5)). Let f be a weight 2 cusp form of level T'o(N)
with odd square-free N and xm a quadratic Dirichlet character of odd square-free con-
ductor m such that (m, N) = 1. Then, at m? the Fourier coefficient of the theta lifting

can be expressed as

where the non-zero factor () is given explicitly in (3.7)).

To construct the theta lifting of a weight 2 Bianchi modular form F for level T'y(n)
with n a square-free ideal for an imaginary quadratic field F', following [KM90] and
[Ber14] we consider the 4-dimensional rational quadratic space V' given by Hermitian
matrices with entries in F'. Its associated symmetric space D is isomorphic to the
upper half space Hj. In our theta integral we use the differential form nr attached to
F defined on the arithmetic quotient I'\D. Different to the Shintani case we choose
the Schwartz form ¢ = XMy, defined on a pair of vectors in V so that the theta
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kernel is given by
0(g,h,z):= Z w(g, h)p(x1,x9;2) for g € Spy C GLy, h € SO(3,1).
(x1,%x2)€V?2
Then the theta lifting is constructed as

0,(17)(g) = / WRCITR

which turns out to be a weight 2 holomorphic Siegel modular form. To calculate its
Fourier coefficient at a 2 x 2 symmetric matrix 8 > 0, given here by
Z or(x1,%2) / nr
(x1,%2)€T\Qp QU1 x2)
where Qg := {(x1,%2) € V2 : 1((xi,x;)) = 8} and U(x1,%x2) := Span{xy,x2} C V.

For an auxiliary quadratic Hecke character x with its conductor coprime to n we define

KM
o)

the Schwartz form as ¢ = ¢ cpzﬁ. The choice of the Schwartz function cp}‘ in Section
4.3 is crucial for us to get the period integral related to some twisted L-values. With
this choice we take certain § > 0 (again depending on the conductor of x) at which
the coefficient of O, (nr) is expressed as the above weighted sum of period integrals
over infinite geodesics joining two cusps. By Theorem the period integral over
infinite geodesics ending in oo can be related to L(F,x,1). We apply Atkin-Lehner
operators to transform other infinite geodesics so as to obtain the period integral over
geodesic lines through oo. In Section 4.4 I compute the coefficient at such a g as a
multiple of L(F,x,1) by a non-vanishing number. By Friedberg-Hoffstein’s theorem
[FH95, Theorem B|, we can deduce that there always exists a character y such that the
twisted L-value is non-vanishing which implies the non-vanishing of the corresponding
theta lifting.

Theorem 0.0.2 (Theorem . Let F = Q(v/d) (square-free d < 0) be an imagi-
nary quadratic field of class number one and denote by O its ring of integers. Consider
a weight 2 Bianchi cusp form F of level To(n) with n a square-free ideal away from
ramified primes in F/Q. Given a square-free product m of split or inert primes in
F/Q such that (m,n) = 1, we choose a quadratic Hecke character xm of conductor
m\dO. Then, at certain B > 0 related to m, the Fourier coefficient of the theta lifting

can be computed as

(%) - L(F, Xm, 1)

where the non-zero constant () is given explicitly in (4.35)).



Chapter 1
Background

§1.1 Locally symmetric spaces

Locally symmetric spaces arise in different areas such as differential geometry, number
theory, automorphic forms and representation theory. The most important class con-
sists of quotients of symmetric spaces by arithmetic groups, for example, the quotient
of the upper half plane Hy by SLy(Z). In this section we review locally symmetric

spaces and arithmetic groups based on Ji’s lecture notes [Ji].

Let M be a complete Riemannian manifold. For any point z € M, there exists
a neighbourhood U such that

(1) every point in U is connected to x by a unique geodesic,
(2) there exists a star-shaped domain V' C T,M containing the origin 0 and sym-
metric with respect to 0 such that the exponential map exp : V — U is a

diffeomorphism.

On such a neighbourhood U, there is a geodesic symmetry s, defined by reversing
geodesics passing through z, i.e., for any geodesic y(t), t € R, with v(0) = z,
se((t)) = v(=t),
when v(t) € U. Since s, # Id and s2 = Id, s, is involutive and called the local

geodesic symmetry at x.

Definition 1.1.1. (1) A complete Riemannian manifold M is called locally sym-

metric if for any = € M, the (local) geodesic symmetry s, is a local isometry.
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(2) The manifold M is called a symmetric space if it is locally symmetric and every

local isometry s, extends to a global isometry of M .

If M is symmetric, then for all values of ¢, we have sz(y(t)) = v(—t). Clearly,
symmetric spaces are also locally symmetric spaces. If M is a locally symmetric space,
then its universal covering space X = M with the lifted Riemannnian metric is Sym-
metric. The fundamental group I' = 71 (M) of M acts isometrically and properly, and

M =T\X. So locally symmetric spaces are quotients of symmetric spaces.

Denote by G = Isyp(X) the identity component of the isometry group Is(X) of
the symmetric space X . It is well known that if X is a symmetric space then G is a
Lie group and acts transitively on X, see [Ji, Proposition 2.4]. Fix a base point z¢p € X

and the stabilizer of xy in G is denoted by
K={geG:g9-x9=u10}.
Then K is a compact subgroup of G and we have
G/K ~X, gKw— gx.
The fundamental group I' acts isometrically on X and is a discrete subgroup of G. So
any locally symmetric space M is of the form
M =T\G/K.

Therefore, each locally symmetric space determines a triple (G, K,TI").

We can reverse the above process to construct locally symmetric spaces. If G
is a connected non-compact semisimple Lie group and K C G a maximal compact
subgroup, then endowed with a G-invariant metric X = G/K is symmetric space.
Any torsion free discrete subgroup I'" of GG acts isometrically on X and the quotient
IM\X is a locally symmetric space. Such discrete groups I' are often constructed via
algebraic groups, e.g. arithmetic groups which will be defined in the following. More
generally I' can be any discrete subgroup of GG, not necessarily torsion free. Since many
natural important arithmetic subgroups such as SLa(Z) are not torsion free, I'\ X is

also called a locally symmetric space for a non-torsion free discrete subgroup I'.

Example 1.1.2. Consider

b
G = SLy(R) = {(a d) :a,b,c,deR,ad—bc:l},
C

K = S0(2) = cosf —sinf 0eR
sinf cosé
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b
I = SLy(Z) = {(a d) :a,b,c,deZ,ad—bc:l}.
C

The modular group I' is not torsion free since for example

4
0 -1 0 —1
#1d but ~1d.
1 0 1 0

Let the upper half plane

and

Hy={z=2+iyecC:z2eR,y >0}
with metric ds? = y%(dnr:2 + dy?). The group SLg(R) acts isometrically and holomor-

phically on Hy via fractional linear transformation

<a b) az—+b
= .
c d cz+d

By this action we can show that Hs is a symmetric space. The geodesic symmetry at

the base point zg =i is given by

si(z)=—-1/z= (_01 ;) -z

and is an isometry of H. Under the conjugation by elements in SLg(R), it follows that
for any point x € Hy the geodesic symmetry s, is an isometry. The stabilizer of xg = ¢
is K = S0(2), and hence

and a locally symmetric space is I'\Hs.

A variety G over a field k is called an algebraic group if it is also a group and
the group operations

AN:GxG =G, (g91,92) = 9192,

p:G—-G, gr—gt

are morphisms of varieties. We are interested in linear algebraic groups. The first
example of those is GL, (k) which is contained in the affine space of My (k) ~ k™.
It can be realised as an affine variety via the embedding
2 —
GLn (k) = Myxn(k) x k= k"*1 0 (g55) = ((935), (det(gi;) ).
Let (X;j,Z) be the coordinates of M, x,(k) x k. Then the image is the affine hyper-

surface defined by det(X;;)Z =1 which is a polynomial in X;; and Z. One can check
that the group actions on GL, (k) are given by polynomials in X;; and Z. So GL, (k)
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is an affine algebraic variety.

Linear algebraic groups often occur as the automorphism groups of some struc-

tures such as determinant and quadratic forms.

Example 1.1.3. e Special linear group

SLy(k) = {g € GLy (k) : det(g) = 1}.

Symplectic group
Spoy, (k) = {g € GLay, (k) : det(g) = 1; F(gX, gY) = F(X,Y) for X,Y € k*"}
where

F(X,Y) = m1y2n + T2Y2n—1+ - + TnYnt1 — Tny1¥n — -+ — T22Y1
is a skew-symmetric form. Note that Spy = SLy.

Example 1.1.4. Special orthogonal group
o Let

SO(m,n) = {g € SLusn(k) : ¢' Inng = Ln}

where I,,,, stands for a diagonal matrix whose diagonal entries are m +1’s
followed by n -1’s. Denote SO(n,0) (or SO(0,n) which is the same group)
by SO(n).
e A symmetric bilinear form B on k™ is non-degenerate if for all nonzero v € k"
there exists w € k™ such that B(v,w) # 0. Define
SO(B, k) = {g € SL,(k) : B(gv,gw) = B(v,w) for all v,w € k"}.

e A quadratic form on k" is homogeneous polynomial Q(z1,...,x,) of degree 2.

It is non-degenerate if the corresponding bilinear form is non-degenerate. Define

SO(Q, k) ={g € SLn(k) : Q(gv) = Q(v) for all v,w € k"}.

These three approaches give rise to the same groups SO(m,n).

With the transitive action of SLo(R) on the upper half plane Hy by fractional
linear transformation, we have seen that Hy ~ SLy(R)/SO(2). This has a higher-
dimensional generalisation, the Siegel upper half space, consisting of symmetric complex

n x n matrices with positive definite imaginary part:

Ho={Z=X+iY: X, Y € Mpyn(R): X' = X, Y'=Y,Y > 0}
(in particular, H; = Hy is the upper half plane). We may see this as open subset of
C+D/2 by sending a matrix (z;;) to the point (z;;)i<; € C*"1/2 5o there is a

natural complex structure.
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Recall that the symplectic group can also be defined as

Span(R) = {g = (g g) € Moy xon(R) gt <_0[ Ig) g= (_OI IS)}

and it acts transitively on H, by
g-Z=(AZ+B)(CZ+ D) ' forgcSp,y,,ZcHnp.
We have a subgroup of unitary matrices
Un)={Z € M,x,(C): Z2'Z =27"=1,}
(in particular, SO(2) ~ U(1)). This can can be identified with a subgroup of Sp,,(R)

via
] X Y
X +1iY —
-Y X

and is a maximal compact subgroup of Sp,,, (R) stabilising the base point I, in H,,.

In fact we have as a symmetric space

Hn = Spy, (R)/U(n).

A linear algebraic group G is said to be defined over Q if the polynomials defining
G as a subvariety have coefficients in Q. Let G C GL,(C) be a linear algebraic group
defined over Q, G(Q) C GL,(Q) the set of its rational elements and G(Z) C GL,(Z)
the set of its elements with integral entries. A subgroup I' € G(Q) is called an
arithmetic subgroup if it is commensurable to G(Z), i.e. I' N G(Z) has finite index in
both I' and G(Z). As an abstract affine algebraic group defined over Q, G admits
different embeddings into GL,/(C) (n’ might different from n). Choosing a different
embedding, we will get a different integral subgroup G(Z). One can show that these
different embeddings and different choices of integral structures lead to the same class

of arithmetic groups.

For the following discussion, we need a bit more general set-up of arithmetic
groups, see [Ji, Section 4]. Let F' be a number field and Op its ring of integers. Let
G C GL,(C) be a linear algebraic group defined over F. A subgroup I' C G(F)
is called arithmetic if it is commensurable to G(Or) = G N GL,(OF). In fact, by
the functor of restriction of scalars, there is an algebraic group Resp/g G defined over
Q such that Resp/p G(Q) = G(F) and G(OF) is commensurable to Resp/g G(Z)
under this identification. If [F' : Q] = r, then Resp/gG is a linear subgroup of
L (€) € Mupsins (©).

Example 1.1.5. Consider the upper half space, a model of 3-dimensional hyperbolic



CHAPTER 1. BACKGROUND 6

space which closely resembles the upper half plane,
Hs :={(z,7) : z =z + iy € C,r > 0}.
The notation for points in Hg is
P=(z,r)=(z,y,r) =2+7rj where j=(0,0,1).
We equip Hs with the hyperbolic metric coming from the line element
dx? + dy? + dr?

ds® =
r2

Let F = Q(v/d) be an imaginary quadratic field with square-free d < 0. Then

b
Resp/gSLy is defined over Q and Resp/gSL2(R) = SL2(C). For g = (Z d> c

SL2(C) and P € Hj, the action of g on Hs is given by
Pisg-P:=(aP+0b)(cP+d)*

where the inverse is taken in the skew field of quaternions. More explicitly, writing
g-(z+rj)=2"+1r"j, we have
,  (az+b)(cz) +d+ aer? r
ST e R e MY e
The stabilizer of j with respect to this action is SU(2) = {g : g € U(2),det(g) = 1}
which is one of maximal compact subgroups of SLy(C). Then the symmetric space
associated to SLg(C) is SLa(C)/SU(2) which can be realised as Hs. Here we have the

map

and 1’/

SLy(C) - Hz, grg-J

which gives rise to an SLg(C)-equivariant bijection between the symmetric space of
SL2(C) and H.

The arithmetic subgroup SLa(OF) is a discrete subgroup of SL2(C) and called
the Bianchi group. For I' C SLa(OpF), the quotient I'\Hj is a typical non-compact

arithmetic 3-dimensional hyperbolic manifold which is a locally symmetric space.

Let V be a rational vector space of dimension m = p + ¢ with a non-degenerate
symmetric bilinear form ( , ) of signature (p,q). Let G = SO(V) and G(p,q) =
Gy(R) ~ SOg(p, q) be the connected identity component of the real points of G. The
associated symmetric space is given by D = G(p, q)/(G(p) x G(q)). It can be identified
with the space of negative g-planes Z in V(R) on which the bilinear form ( , ) is

negative definite:

Grg={ZCV(R):dimZ =qand (, )|z <0},
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see e.g. [KM90, Section 2].

Example 1.1.6. Here we assume the exceptional isomorphism, e.g. PSLy(R) ~ G(2,1)
and PSLy(C) ~ G(3,1), which we will discuss in details in our next Section 1.2.

e For signature (2,1), over R we fix an isomorphism

V(R) ~ {x — (b _ab> = M2><2<R)}

with quadratic form ¢(x) = —det(x) and corresponding bilinear form (x,y) =

tr(x,y). The group G(2,1) acts isometrically on V(R) by x ++ g - x := gxg~!
0 1

for g € G(2,1). We fix an orthonormal basis of V(R) given by e; = L o)

0 -1

point of D with stabilizer G(2). Then we have the isomorphism

H, — D = G(2,1)/G(2) — Gr;

1 0 0 1
ey = < ) and e3 = ( O) . Pick the line Zy spanned by es, the base

with
z=c+iy€Hy—= gG2) = R-g-Zy=:1(2)

1 0
where g € PSLy(R) ~ G(2,1) such that g-i = z,e.g. g = t VY L=
01 7

(ﬂ ﬂ) . We see that [(z) is generated by

0o L
—z 22 +y?
x(z) =y ! (_1 Iy )
with ¢(x(z)) = —1.

VY
e For signature (3,1), over R we fix an isomorphism
V(R) =~ {x € Mzy(C) : x* =x}
with quadratic form ¢(x) = —det(x) and corresponding bilinear form (x,y) =

b\" (d -b
tr(xy™*) where (a d> = < > The group G(3,1) acts isometrically on
c

—c a
V(R) by g-x = gxg' for g € G(3,1). We fix an orthonomal basis of V(R) given

1 0 0 1 0 1 10
by e; = , €9 = , €3 = and eq4 = . Pick the

line Zy spanned by ey, the base point of D with stabilizer G(3). Then we have
the isomorphism
Hs — D =G(3,1)/G(3) — Gr;
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with
P=z+rjeHs— gG3)—R-g-Zy=:1(P)

1 0
where g € PSLo(C) ~ G(3,1) such that g-j = P,e.g. g = (0 i) (ﬁ 1 > =

Jr
" |. We can calculate that [(z) is generated by

0
2, .2
X(P) = -1 <|z] +r z)
z 1

S

with ¢(x(P)) = —1.

§ 1.2 The exceptional isomorphism

Given a quadratic space V over a field K of characteristic not 2, we have an exact

sequence
1 — {£1} — Spin(V) -2 SO(V) — K*/(K*)2,

see [Hah04, Theorem 7]. Here Spin stands for the spin group associated to this

quadratic space which will be defined later. So A induces an isomorphism
Spin(V)/{£1} ~ SO™ (V)

where SO1 (V) := Im(A). In the case of dimV = 3, we have Spiny ~ SL; which

implies the exceptional isomorphism PSLy ~ SO"(2,1), and furthermore if K = R,

we obtain

PSLs(R) ~ SO3 (V(R)) = SO¢(V (R)). (1.1)

In the following, we shall describe the construction of an isomorphism between PSLo
and SOT(3,1) in the case of dimV = 4, see [EGM98, Section 1.3].

We start off with certain facts about Clifford algebras. Let K be a field of
characteristic not equal to 2 and V an n-dimensional K -vector space. Suppose that
Q@ : V — K is a non-degenerate quadratic form with associated symmetric bilinear
form B:V xV — K, that is

B(z,y) = Q(z +y) — Q(z) — Q(y),

Qz) = %B(m,x).

Denote by T(V') the tensor algebra of V' and by ag its two-sided ideal generated by
the elements x ® y+y ® x — B(x,y) where z,y run through the elements of V. Define
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the Clifford algebra of @ to be the quotient C(Q) := T'(V)/ag. The field K and the
vector space V' inject into C(Q) with their canonical images. Let ej,...,e, be an
orthogonal basis of V' with respect to . Then we have in C(Q):

e =Q(e;) and ei-ej=—¢; €.
Let P be the set of subsets of {1,...,n}. For M = {iy,...,i,} € P with i1 < -+ < i,

we define

eM jzeil-....ei

T

with the convention ey = 1. Then the 2" elements ey make a vector basis of C(Q).
For M, N € P, the product e;;-en can be calculated explicitly as a scalar factor times

an appropriate ey. The Clifford algebra C(Q) has main anti-involution * and a main

involution / commuting with * acting on ej; given by:
r(r—1)

eyy=(=1)"2 ey-ey and ey =(-1) ey

where r stands for the cardinality of M. The span of the elements e); with M of even
cardinality is a subalgebra called C*(Q).

Let us consider a particular example as discussed [EGM9S8| Section 1.3]. For
non-zero € € K let V. = K - f3 be the one-dimensional K -vector space with basis f3.
The quadratic form Q. on E. is given by Q.(f3) = —e. Then the Clifford algebra
C(Q.) is two-dimensional and commutative. In case —e € K*? the K-algebra C(Q.)
is isomorphic to K x K, if not then C(Q.) is a quadratic extension of K. Here K*?
denotes the subgroup of squares in K*. In case K = R and ¢ = 1 we call f3 also 1,
which makes the identification C(Q1) = C.

We now fix a 3-dimensional vector space Fy with basis fy, f1, fo and the quadratic
form @ on it is given by

Qo(yofo + yrf1 +y2f2) = Qo(yo, y1,y2) = ¥5 + ¥i + v3-
It is well known that CT(Qq) = My(K), the algebra of 2 by 2 matrices over K. An
isomorphism between these two algebras can be constructed as follows. We define the

elements of C(Qy) depending on \;:
1 1
To = §(f0 + fi1), 11 = 5(]”0 — f1)s
1 1
U= TITp = §fof1,w1 =Tifo= g(fofz — fif2),

wo = Tof2 = %(fofz + fif2), v =Tom1 = —%fofl.
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Then the map

1 0 01 00 0 0
— u, — w1, — wo, = v
0 0 0 0 1 0 01

extends to an algebra isomorphism

P Ma(K) — CT(Qo).

62+ 2)

The following construction will be important for our definition of the exceptional

We have

isomorphism.

Consider the K -vector space 176 := Vo @ V. with quadratic form @6 = Qo L Q.
We define the map e : V. — C*(Q.) with @& := fofif2 - # which extends to an injective

K -algebra homomorphism e : C(Q.) — C*(Q¢). This map commutes with the anti-

automorphism *. Then the map 1 : Ma(C(Q.)) — CT(Q.),

(0 ((a 5)) = du—l—Bwl +7wo+5v
v 4

is a K -algebra isomorphism and satisfies

09) ()

We are now ready to describe an isomorphism between SL2(C(Q.)) and the spin

group of a suitable quadratic form.

Let U be an n-dimensional K vector space with non-degenerate quadratic form

¢. Then the spin-group of ¢ is defined as
Spin,,(K,q) :={s€C(¢q):s-U-s* CU,s-s" =1}.

The K -algebra isomorphism 1 defined above then restricts to a group homomorphism

3+ SLa(C(Qe)) — Sping(Qe).-

The spin-group of a quadratic form has a canonical homomorphism to the cor-
responding orthogonal group which we will review in the following. Let U be a n-
dimensional vector space with non-degenerated quadratic form ). The space U is
identified with a subspace of C(Q) and for x € U we have Q(z) = x - x*. Let
On(K,Q) := {9 € GL,(K) : Qog = Q}. For s € Spin,(K,Q) we define the lin-
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ear map A(s) € GL(U) given by A(s)(z) := s-z-s*. Then the computation
ses”™ - (sxs™)* = sxs*sx*s" = sxa*st = xa”
shows that A(s) € O, (K, Q). We have constructed now a homomorphism
A : Spin,, (K, Q) — O,(K, Q).

Let ©,(K,Q) be the commutator subgroup of O,(K,Q) and I'(Q) the subgroup of
K> /K*? generated by the expressions Q(x)Q(y) with Q(z) # 0 # Q(y). Let x € U
with Q(x) # 0. The linear map o, : U — U,

B(v,x) .
Q(x)

is called the reflection in the hyperplane perpendicular to z. Every element g €

ox(v) i=v—2

O, (K, Q) can be expressed as a product of reflections g = o4, -+ 04, . Associating to
g the product Q(z1)---Q(z,) in K*/K*? we get a well-defined homomorphism

¥ :S0,(K,Q) — K*/K*?

which is called the spinorial norm homomorphism. Then we have

Proposition 1.2.1 (Proposition 3.8, [EGM98]|). Let U be an n-dimensional K -vector

space with non-degenerate quadratic form ). Then the following hold.
(1) We have A(Spin, (K,Q)) C SO, (K, Q),3(SO,(K,Q)) C I'(Q) and the resulting
exact sequence
1 — {#1} — Spin, (K, Q) = SO.(K,Q) — T(Q) — 1.
(2) We define SO, (K, Q) := Im(A) and get Q,(K,Q) C SO} (K,Q).

For the special quadratic form Q. defined above we consider ¥ : SLy(C(Qe¢)) —
O4(K, @E) given by ¥ := A o). The isomorphisms 1, ¥ are usually called exceptional

isomorphisms. Then we have

Proposition 1.2.2 (Proposition 3.10, [EGM98]). The map ¥ : SLy(C(Q.)) — O4(K, Q.)
satisfies W(SLa(C(Q.))) = SOF (K, Q.) and the resulting sequence

1 — {£1} = SLy(C(Q.)) - SO4(K, Q.) — K*/K*2 — 1

15 exact.

Example 1.2.3. (1) Let K =R and take the one-dimensional R-vector space V; =
R- f3 with quadratic form Q1(\f3) = —A?. We have the identification C(Q1) = C.

Then we have the exact sequence

1 — {#1} — SLy(C) — SO(3,1)(R) — R*/R*? — 1.
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Note that SO (3,1)(R) is the connected component SOg(3,1)(R) of the identity
in SO(3,1)(R), see [EGM98|, Proposition 3.12]. It follows that we have the excep-
tional isomorphism PSLy(C) ~ SO(3,1)(R) which also implies the symmetric
space both for PSLy(C) and SO(3,1)(R) is Hs as in Example [1.1.6]

(2) Let K = Q, with odd prime ¢ split in the imaginary quadratic field Q(+/d)
(square-free d < 0). Take the one-dimensional Qg-vector space V_g = Qq - Vd
with quadratic form Q_4(AVd) = A2d < 0. We have C(Q_4) ~ Q, x Q,. Then
we have the exact sequence

1 — {£1} = SLa(Qq x Qg) — SO(3,1)(Qy) — QF /Q;* — 1
from which we can deduce the isomorphism PSLy(Q, x Q,) ~ SOT(3,1)(Q,).

(3) Suppose the assumptions in the second example hold but ¢ is inert or ramified.

Then we have C(Q_q) ~ Q,(v/d) and the exact sequence

1= {#1} = SLy(Qy(Vd)) = SO(3,1)(Qy) = @y /Q;* — 1
implying PSLa(Q,(vd)) ~ SO (3,1)(Q,).

§ 1.3 Hecke characters

In this section we review Hecke characters classically and idelically from Shurman’s

lecture notes (see [Shul).

Let F' be an imaginary quadratic field with the integer ring O. Let § be an
integral ideal, i.e. an ideal of @. The elements of F'* that generate fractional ideals

coprime to f form a subgroup,
F(f) ={a € F* : (@), f) =1}

Definition 1.3.1 (Multiplicative Congruence). For a pair of nonzero field elements
a, 8 € F(f), the condition a =  mod™ § means 8 — a € F(f)f.

Define
F =1+ F(f)j = {a € F* :a=1mod* J} C F(,
I(f) = {fractional ideal of F' coprime to f},
P(f) = {principal fractional ideal («) of F' coprime to f},
P; = {principal fractional ideal («) of F' where a =1 mod™ f}.

We have a map

F* —C, ar—1®a,
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where we identify R ® F' (tensoring over Q) with C in the usual way.

Definition 1.3.2 (Classical Hecke Character). Let f be a (nonzero) ideal of O, and

let xoo : C* — C* be a continuous character. Then the character
x:I(f) — C*
is a Hecke character with conductor f and infinity-type Xoo if Xoo determines x on P
by the rule
x(@) =xd(1®a) forallac F.

The group of units of the adele ring Ap is called the group of ideles, denoted Ig.
Under the subspace topology inherited from Ap, Ir is not a topological group since
inversion (—)~!:Ip — Ip cannot be continuous. However, Iz can be endowed with

the subspace topology given by the embedding
Ir > Ap xAp:z (a:,xil).

In this way, we get a locally compact topological group. Alternatively, for each finite
S containing the set of archimedean places, we have a locally compact group

Irs = [[ 7 x [T o

veES v S
since each unit group OJ is compact, and the idele group can be described as the

colimit over a filtered system of open inclusions
Iz = colimg Ig.

Indeed the idele topology coincides with the filtered colimit topology.

Definition 1.3.3 (Idelic Hecke Character). A Hecke character of F' is a continuous
character of the idele group of F' that is trivial on F*,

X:Ip —C*, x(F*)=1

A Hecke character y : Ir — C* has a conductor intrinsically built in, a product
of local conductors at the finite places, even though its definition makes no direct

reference to a conductor. We discuss this in the following.

At any nonarchimedean place v the local character x, : F,;* — C* is determined
by its value on the local units O and by its value on a uniformizer w,. By the nature
of the idele topology, the kernel of any continuous group homomorphism Ip — C*
contains almost all the local unit groups O . Therefore x, takes the unramified form

Xv(z) = |z|5 (where s € C) for almost all nonarchimedean v.
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If x, is unramified then the local conductor of x is O,. If x, is ramified then

the local conductor of x is pSv for the smallest e, > 0 such that x, is defined on
O /(L +p5) = (Ou/pi) .

Given an idelic Hecke character, we show how to produce a corresponding classical

Hecke character. Let the idelic Hecke character be
x=Q)xw
and let its conductor be )
f=]]r
v
Define a character of fractional ideals coprime to f,
X I(f) — C~,
by the conditions
X(py) = x0(O, @), non-archimedean v 1 f.
The conditions are sensible because the local characters are unramified away from the
conductor. In order to get a classical Hecke character Y, the composition
F— I(f) 5 ©~
needs to take form a — Y (1 ® a) for some character Yo, on C*. We compute the
composite for any a € Fj, with (a) = [ qg", using the fact that x is trivial on F'* at
the last step,
a— [T500)* = [T (0 @)™ = xlasa) = x (@)

Here subscripts inf and fin denote the infinite part and the finite part respectively.
The natural identification of I, and C* takes ajnf to 1 ® a. Thus, given an idelic
Hecke character x, the corresponding character Y of I(f) is a classical Hecke character

whose infinite type matches that of the idelic character, i.e. Yoo = Xoo-

Conversely, given a classical Hecke character x of F having conductor § and

infinity-type oo, we have a corresponding idelic Hecke character :

e Since 1 ® Fj is dense in R ® F', the infinite part Yo, of X is determined by X« .
e For v {§, define

Xo(Oy @y) = x(po)-
e Any x € HUHFvX is closely approximated by some a € F*, and so the desired
value Y(x) is closely approximated by Hvﬁ X, 1(a,) (including infinite v) as ¥ = 1

on F*.
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§1.4 Automorphic forms

Throughout this chapter we let G be a reductive group over a number field F'. Our goal
of this chapter is to review automorphic forms both classically and adelically following
IGH19]. We will relate the adelic definition to automorphic forms on locally symmetric
spaces, and then to classical modular forms on arithmetic quotients of the upper half
plane. In the end, we will discuss two important examples of automorphic forms used

in this thesis, Bianchi modular forms and Siegel modular forms.

1.4.1 CLASSICAL AUTOMORPHIC FORMS

Write A = Ap and its finite part Ay. Let Ko C G(Fx) be a maximal compact
subgroup and K; C G(Af) a compact open subgroup. In fact, the quotient

G(FN\G(Af)/ Ky
is finite, which is also known as the finiteness of class number. Let h be its size and
t1,...,ty a set of representatives for this quotient. Then we have a homeomorphism
h

[T Ep\G(Fo) — G(F)\G(A)/K

i=1
given on the ¢-th component by

Li(Kf)goo —> G(F)gootil'i(Ky),

where

Ti(Ky) = G(F)Nt; - G(Fxo) Ky - t; .

In this subsection we work only at the infinity place and then pass to the adelic setting

in the next subsection.

Let
/G — GL,

be a closed embedding and ¢ : G — GLo, the embedding defined by
/(9)
t(g) == B . (1.2)
< J t(g)>

lgll :==llgll. = T] sup  lgislo-

1<4,5<2n
v|oo

We then define the norm

Let g be the Lie algebra of G(F) and U(g) the universal enveloping algebra of
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complexion g€ with its centre Z(g).

Definition 1.4.1. A function
by G(Fs) — C
is of moderate growth or slowly increasing if there are constants ¢,r € Rsq such that

Poo(9oo)| < cllgooll”

In particular, the notion of moderate growth is independent of the choice of ¢. For
the definition of automorphic forms we will require the notion of K, -finite functions

and Z(g)-finite functions.

Definition 1.4.2. We say a function ®, : G(F) — C is right K -finite if the space

spanned by the right translates of ®,, by elements of K, is finite-dimensional.

Recall from [GHI9, Section 4.2] that there exists an exponential map
exp: g — G(Fx)
where g denotes the Lie algebra of G(F). In the case where G = GL,, the Lie

algebra gl,, is the collection of n by n matrices. In this case the exponential is given
by

o0

exp(X) = Z XJ.

=

In general, the representation G — GL,, induces an inclusion g — gl,,, and the ex-

no

ponential on g is obtained by restriction. Let (p,V) be a Hilbert representation of
G(Fx). Given v € V and X € g, we set

p(X)0 = & plexp(tX))vli=o
_ (hm plexp(t + h)X)v — p(exp(tX))v) o

h—0 h
if the limit exists. Simply we write Xv for p(X)v. A vector v € V is C! if for X € g,
the derivative Xv is defined. We define C* inductively by stipulating that v € V is
CF if Xvis CF ! forall X € g. A vector v € V is C*, which is called to be smooth,
if it is C* for all k > 1. The action of g defined above is a Lie algebra representation,
see e.g. |GHI19, Lemma 4.2.2]. We can extend the action of g to an action of the
complexification g€ := g ®g C by setting (X 4+ iY)v = Xv + iYv. Let U(g) be the

universal enveloping algebra of g€ and Z(g) its centre.

Definition 1.4.3. Let V be a Z(g)-module. A vector &, € V if Z(g)-finite is

Z(g)Poo is finite-dimensional.
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We now finally come to the definition of a classical automorphic form:

Definition 1.4.4. Let I' C G(F) be an arithmetic subgroup. A smooth function
¢, : G(Fx) — C of moderate growth is an automorphic form on I' if it is left
[-invariant, right K -finite, and Z(g)-finite. We denote by A(T") the space of auto-

morphic forms on I'.

1.4.2 ADELIC AUTOMORPHIC FORMS

Let ¢ : G — SLg, be the embedding of ([1.2). For a place v of F let

lgllo == llglleo = sup e

1<,7<2n

and for a set of places S of F' (finite or infinite) let

lglls == TT llgllo-

veS
If S is the set of all places of F' then we omit it from notation.

As in the archimedean setting we have a definition of an adelic function of mod-

erate growth:

Definition 1.4.5. A function
¢:GA) —C

is of moderate growth or slowly increasing if there are constants c,r € Ry such that

[2(g)| < cllgll".

Let Kpax C G(A) be a maximal compact subgroup; thus Kyax = Koo X Kt max
where Ko, C G(Fix) and K¢ max C G(Ay) are maximal compact subgroups. As before,
we say that a function ® : G(A) — C is right Kpax-finite if the span of translates

{z+— ®(xk): k € Knax}
is finite-dimensional. The reason that we do not include the subscript max at the infinite
component is that it is rare to consider non-maximal compact subgroups in this setting,

although it is very natural to consider non-maximal compact open subgroups at the

finite places.
Now we can give the definition of an adelic automorphic form:

Definition 1.4.6. A function
¢:GA) —C
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of moderate growth is an automorphic form on G if it is left G(F)-invariant, Kpax-
finite, and Z(g)-finite. The C-vector space of automorphic forms is denoted by A of
A(G).

Definition 1.4.7. An automorphic form ® € A is said to be cuspidal if for every
proper parabolic subgroup P C G with unipotent radical N one has

/ ®(ng)dn =0
[N]

for all ¢ € G(A) where the terminology | - ] is described in [GH19, Section 2.6].

1.4.3 FROM MODULAR FORMS TO AUTOMORPHIC FORMS

In this subsection we make the connection between classical modular forms and auto-

morphic forms precisely with help from an additional reference [Bool5].

Set FF=Q and G = GLy. Recall that the strong approximation theorem states
that for any compact open subgroup Ky C GLa(Ay) such that det(/y) = AT, we have

GLs(Ag) = GLy(Q) GLy(R) K.

Note that this relies on the class number of Q being one. A convenient compact open

subgroup to work with will be

Ko(N) = {(“ Z) € GLy(Z) : c=0 mod N} .

C

The connection between the GLy(R)™ (or SL2(R)) and GL2(Ag) is the following

proposition:

Proposition 1.4.8. [Booll, Proposition 1.2] For any positive integer N, there are
natural isomorphisms
Fo(N)\SL2(R) ~ Z(Ag) GL2(Q)\ GL2(Ag)/Ko(N),
Fo(N)\ GLa(R)* = GLo(Q)\ GLa(Ag)/Ko(N).
In particular, adding in an archimedean component to Ko(N) such as SO(2) would

give a more direct comparison with the upper half plane, i.e.
Lo(N)\Hz =~ Z(Ag) GL2(Q)\ GL2(Ag)/ SO(2) x Ko(N),

With the identification of spaces in the above proposition, we can set up a corre-

spondence between functions on the upper half plane, GLa(R)" and GL2(Ag). Instead
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of working with the quotients I'g(N)\Ha, we will work with functions on GLg(R) and
GL2(Ag) which satisfy transformation laws.

We start with the classical modular forms on the upper half plane Hy. Let

I' € SLy(Z) be a congruence subgroup. For example, we could set

T = To(N) = { (Z 2) € SLy(Z) - N|c} .

Now we recall the definition of a classical modular form for I':

Definition 1.4.9. Let k € Z~q and Hy the complex upper half plane. The space of
weight & modular forms for I" is space My (I") of holomorphic functions f : Hy — C

satisfying the following conditions:

1) f (g;j_g) = (cz+d)Ff(2) for all (¢%) €T and all z € Hy,

(2) f extends to holomorphically to the cusps.

If f additionally vanishes at the cusps we say that f is a cusp form. The space of

weight k cusp forms is denoted Si(T).

We will now discuss how a modular form is an example of an automorphic form
on GLg(R). The observation that GLy(R)™ acts on the upper half plane with stabilizer
K = SO(2) suggests the relationship between modular forms on Hy and automorphic

forms on GLy(R). Given a cusp form f, we consider the function defined on g =

b
“ 7)€ GLy(R)* by
C

ca+d
One can show that it has many nice transformation properties and then it is the auto-

F(g) = (flrg) (i) = (ad — be)*/?(ci + d)* f ( + b> '

morphic form for GLa(R), see [Bool5l Section 2.2]. Among these properties, we want
to highlight the following:

o for v € To(N), F(vg) = F(9);

f —sind
o for k= ) ek = SO(2), we see that
sinf cosd

F(gr) = ¢ F(g)
which implies that F' is K -finite;
e for v € Z(R)" C GLy(R), we have

F(vg) = F(g).
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It follows that the automorphic form F on GL2(R) descends to the function on the
locally symmetric space To(N)\ GLa(R)T/Z(R)T SO(2) >~ T'o(N)\Ha.

We now describe how to associate to f and F an automorphic form @ on
GL2(Ag). The idea is similar to that of GLo(R)™; that is using Proposition to
see a relation between the spaces, and then a connection between functions on GLy(R)
and those on GL2(Ag) satisfying certain transformation properties. For v € GL2(Q),
Joo € GLo(R)™ and sy € Ko(N), we define

D(Vgookif) = F(goo) = (fIkgoo)(i)- (1.3)
One can show that the function ® is well defined and it is a cusp form, see [Bool5l,

Proposition 2.3]. For the transformation properties of ®, see [Boold, Section 2.3] in

details. Again, we point out some properties here:

e & is left invariant under GL2(Q) by definition;
o for kK = Kooy € K = SO(2)Ko(NV), we have that
®(gr) = e "P(g)
which implies the K -finiteness;
o for g € GLa(Ag) and z € Agy, we can check that

()

So, by the above proposition, we can observe that the automorphic form ® on GL2(Ag)
descends via ([1.3)) to the function on the locally symmetric space

Z(Ag) GL2(Q)\ GL2(Ag)/ 50(2) x Ko(N) =~ T'o(N)\ SL2(R)/SO(2) =~ To(N)\Ha.

1.4.4 BIANCHI MODULAR FORMS

In this section we consider cusp forms on the adele group GL2(A) for the adele ring
A = Ap over an imaginary quadratic field F' of class number one. For arbitrary class
number, see e.g. [Gha99, Section 2|. The class number in this thesis is restricted since
we know how to use Atkin-Lehner operators in Section 4.4.2 only in this case of class

number one. We will treat larger class numbers in the future.

Let O =] O,. Given an ideal M C O, we define

Ko(M) := { (“ Z) € GLy(O): c e m@}

C

v<oo
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which is a compact open subgroup of the finite part of GL2(A). Let V,,(C) be the
space of homogeneous polynomials of degree n in two variables s = (%) with complex

coefficients.

In the following we will define the automorphic forms on GLy(Ap) which are
eigenforms of the Casimir operator (which is central) in the universal enveloping algebra
of the complexification slo(C) ®g C. First we recall the Casimir operator explicitly in
this case from [Hid93| Section 1.3]. For

slp(C) = {x € gly(C) : tr(z) = 0},
we have sl (C)®rC = slp(C)@sly(C). Here, sly(C) is embedded into slp(C)@sly(C) as
x — x @z for the complex conjugation ¢. We write the first (resp. second) projection
of z € 5l5(C) ® sly(C) as 2’ (resp. z). Let

(o) (o) =0

and then the Casimir operator in sly(C) is given by

2 ih)®
C= (ef+fe)+%—%((l€)(1f) (Zf)(i‘f))‘(f(s)

As an element of the complexification, we have
1
C = Z(D/ @ D)
where D' = e/ f'+ f'e’ +h/?/2 and D" = €” f" + f"e" + b /2. Following the discussion
in Section 1.4.1, the Lie algebra sl3(C) acts on smooth functions ® on GL2(C) by

X(I)(goo) =

d
@9 exp(tX))}|,,  for X € sbo(C).

Definition 1.4.10. A smooth function ® : GLa(Ap) — V5(C) is said to be a cusp
form of weight 2 and level Ky(0) if it satisfies:

(i) ®(rg,s) = P(g,s) for r € GLy(F);

®(zg,s) = D(g,s) for z € Z(GL2(C)) ~ C*;

®(gk,s) =@ (g9, koo (7)) for k = koo - ky € SU(2) x Ko(N);

® is an eigenfunction of the complexification (in the Lie algebra sl (C) ®g C) of

)
ii)
iif)
iv)

the Casimir operator of slp(C) with eigenvalue 0, i.e.
D'®=0 and D"®=0

for D', D" defined above. Here ®(googs) is considered as a function of g, €

GL2(C);
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(v) @ satisfies the cuspidal condition

/ ®(vg)dv =0
U(F)\U(AF)

for all g € GLo(Ap), where

U(F)z{vz(é ?):UEF}, U(Aﬂz{vz((l) ?):UEAF}

and dv is the Lebesgue measure on Ap.

Remark 1.4.11. Condition (iii) implies that ® is Kpax-finite as in Definition
Condition (iv) implies that ® is C-finite for the Casimir operator C'. As the centre
Z(g) of the universal algebra is generated by C' and the identity matrix, condition (ii)
and (iv) imply that ® is Z(g)-finite. It is not obvious to show that ® has moderate
growth. To do so we can follow the treatment in the classical case of GLa(Ag) (see e.g.
[Tro, page 16]) but we omit details here. To conclude, the function ® defined above
on GL2(Ap) is indeed an automorphic form given in Definition [1.4.6]

From now on such a cusp form is called a Bianchi modular form of weight 2 and
we denote the space of these Bianchi modular forms by S3(9). The Bianchi modular

form ® has Fourier expansion ([Hid94, Theorem 6.1]):

o <y x) = lylr Z c(ayd, ®)W (ayoo ek () (1.4)

01 aceFXx

where:

(1) |- |p is the usual idele character of A} trivial on F*;

(2) § = /dp (where dp is the discriminant of F') is a generator of the different ®
of F,ie. 00 =29;

(3) the Fourier coefficient ¢(- ,®) is a well defined function on the fractional ideals
of F such that ¢(I,®) =0 for I non-integral;

(4) W :C* — V5(C) is the Whittaker function

2 1-n
W(s) := Z (2> <z|2|> K, _1(4n|s)) X?7"Y",

n
n=0
where K, (z) is (a modified Bessel function that is) a solution to differential

2 2
dK”+1dK"—<1+">Kn—o,

equation

dx? z dx 2

with asymptotic behaviour K, (z) ~ \/5-e™"* as © — oo. Note that K_,, = K;
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(5) ek is an additive character of F\Ap given by

ex = (H(ep o Trpp/@p)> “ (e © Trer)-

p
Here e,(x) = exp(2miFr,(z) for x € Q, where Fr,(z) denotes the fractional part

of z and e (x) = exp(2miz) for = € R.

The adelic cusp form & can descend to a function § : GL2(C) — V5(C). The

strong approximation theorem gives us the decomposition
We define the discrete subgroup of SLy(F') via

b
To(MN) = {(a d) :a,b,de(’),ce‘ﬁ,ad—bc—l}.

c
One can check that SLa(F) N [GL2(C) x Up(N)] = To(N).

Define § : GLy(C) — V5(C) via §(g) = ®(g). It is a cusp form on GLy(C)
and determines in turn a cusp form F on Hj in the following. We introduce the

automorphy factor

J(v: (7)) = <
Define F : Hy — V»2(C) by

F((z,7),8) = (9,4(9:(0,1))’s),
where g € SLo(C) is chosen such that g - (0,1) = (z,7). One can check that F is well
defined and that it satisfies the automorphy condition

}—(7 : (Z,?“),S) = f((zvr)aj('% (Z,?"))ts) for v = (Z Z) € FO(m)'

d - b
czt ”) for v = (“ d) € SLy(C), (2,7) € H.
C

cr cz+d

Thus F € S2(T'0(N)), the space of cusp forms on Hs satisfying the above condition.

For the associated cusp forms F on Hs, the Fourier expansion can be worked

out to be

F((2,7),8) = rnio <z> 3 [c(aa) (i")‘a‘)ln «

ac KX
Kn,1(47r|a]r)e2m(°‘z+@)} e
For n € {0,1,2}, let F,, : H3 — C be the functions determined by the expression

2
F((z,r),s) = Tan(z,r)S%”Tn. (1.5)

n=0
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More explicitly, we have

1-n
_ o 2mi(az+az)
Falz,r) = ) c(ad) (m) K, _1(47|alr)e : (1.6)
acKX

For the cusp form F corresponding to ®, we want to define the twist of the
L-function by a Hecke character v of conductor f. For each ideal m coprime to f, we

have 1(m) = [[n|jm ¥p(mp)" . Then define
L(®,,5) = L(F,,8) = [O5 71 Y e((@), ®)(()) N (())~*. (1.7)

acKXx

Theorem 1.4.12 (Theorem 1.8, [Will7]). Let ® be a cusp form of weight 2 and of
level Ko(M) corresponding the cusp form F on Hs. For n € {0,1,2}, let F,, be as
defined in (1.6) above. Let v denote a Hecke character of conductor § with infinity

l-n 1-n

type (—u,—v) = (_Tv T) Then, for s € C, we have
L(®,4¢,s) = A(n,v, s) Z Y(af)tata ”/Oo 372 F(a, r)dr
0

[alef~!/Op
(af;f)=1

and
4-(2m)>it—n(2)7!

OF|ldpls T (s + 231 T (s = 255) 7(¢™)
Here 7 denote the Gauss sum defined to be

T) = Y w(af)woo< ) 2mi Trp /g (a/6).

[a€f1/OF
(af;f)=1

A(n, 1, s) =

Proof. Williams proved this formula for the cusp form of level K (1) (the adelic anal-
ogy of the congruence subgroup I'1(91)). However the Fourier expansion used by him
in the case of K1(M) and (k, k) is the same as that for level Ky(M) and weight (k, k)
in [Hid94, Theorem 6.1] and [Gha99l Section 2]. So we can deduce this formula again
for the level Ky(91) following Williams’ proof without any change. O

1.4.5 SIEGEL MODULAR FORMS

As we will construct the theta lifting of a Bianchi modular form, which is a weight 2
Siegel modular form, the aim of this section is to introduce a brief overview on basic

aspects of Siegel modular forms with [ASO1] as our main reference.

For considering Siegel modular forms (of degree 2) in the context of automorphic
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form, we define

H :=GSp, = {g € GLy : 3 A(h) € GL; s.t. hJ'h = A(h)J},

I
where J = I ) for I the 2 x 2 identity matrix. The function A is called the
—13
multiplier homomorphism. Its kernel is the group Sp, and there is an exact sequence

1—Spy, —H — GL; — 1.

The centre Z of G consists of the scalar matrices.

Recall the Siegel upper half plane given by
Ho={Z=X+iY € Mx(C): X,Y € M(R),X = X" Y =Y" Y > 0}.
Siegel modular forms of degree 2 are certain holomorphic functions on the Siegel upper

half plane #Hy. The group Sp,(R) acts on the upper half plane by linear fractional

transformations, that is
1 A B
h-Z=(AZ+ B)(CZ+ D) for h = c D € Spy(R).

The full modular group is Sp,(Z) and the principal congruence subgroup of level N is
given by
I'o(N) ={y€Spy(Z):y=1, mod N}.

A subgroup I' of Sp,(Z) such that I'a(N) C T is called a congruence subgroup of level
N . We will consider a Siegel modular form of weight 2, degree 2 and character x with
respect to I' in the sense that f|oy = x(det(A))f for y= (A B) €', where

(fl27)(Z) = det(CZ + D) 2f(y- Z)  for v = (A b

€ Sp4(R), Z € Hs.
C D) P4() 2

The Siegel modular form has the Fourier expansion

f(Z2) = ZCR exp(2mitr(RZ)) for Z € Ho,
R
where R runs over semi-integral, positive definite matrices.

We will associate a function ®; : H(A) — C to f on Hs as follows. One can use
strong approximation for Sp, to show that
H(A)=HQH®R)" [[ H(Z,),
p<oo
where H(R)' denotes those elements of H(R) with positive multiplier. Write h €
H(A) as
h = hghook  for hg € H(Q),heo € HR)', k € Ky,
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where Ky =] K, with K}, = H(Zp). Then we define

®s(h) = (flehoo)(I), (1.8)
where I = diag(i,i) € Ho. This is well-defined due to the transformation properties of

f.

p<oo

The map f +— ®; injects the space of modular forms of weight 2 into a space of
functions ®; on H(A) satisfying the following properties

(i) @f(vh) =®(h) for v € H(Q),

(11) (I)f(h ) (h) for k‘f S Kf,
(iil) @f(hkoo) = @ f(h)j(koo, I)72 for keo € Koo,
(iv) ®f(hz) = ®s(h) for z € Z(A),

where Z ~ GL; is the centre of GSp, and K. ~ U(2) is the standard maximal
compact subgroup of Spy(R). If f is a cusp form, then the automorphic form ®; is
cuspidal, i.e.,

/ ®¢(nh)dn =0 forall h € H(A)
(@\N(4)

for each unipotent radical N of each proper parabolic subgroup of H.

In the other direction, given the weight 2 adelic form ® on H(A) of level Ky C
[[)<o0o H(Zp) satisfying above conditions (i)-(iv), the isomorphism
P\ Sp(R)/U(2) = Z(A)H(@Q\H(A)/U(2) x K; for T = Sp,(R) 1 K;
induced by the strong approximation theorem

H(A)=HQH®)" [[ H(Z))

p<oo
helps us observe that ® descends via (1.8) to the classical Siegel modular form on the
locally symmetric space I'\H;.

§ 1.5 Automorphic forms and cohomology

Consider a weight 2 modular (cusp) form f € My(T") (respectively So(I')) for T' C
SLy(Z). Then

ny = f(z)®@dz
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defines a closed holomorphic 1-form on X = T'\Hy with complex values. It is well

known that this assignment induces the Eichler-Shimura isomorphism

My(T) & S5(T) ~ H'(X,C)

where S5(I") denotes the space of anti-holomorphic cusp forms in Sy(I"), which is in this
case isomorphic to So(I'). For arbitrary weight of the modular form, see e.g. [FMI11],
Section 4]. In the following we will discuss in more details differentials on the upper

half space Hj3 and the Eichler-Shimura-Harder isomorphism in this case.

1.5.1 DIFFERENTIALS ON Hij

In this section we will recall the differential forms on the upper half space as discussed
in [Will6l Section 3.2 and Section 5.2].

Let G be an arbitrary Lie group that has the structure of a real Riemannian
manifold. Left translation by an element g € G, denoted L, induces a pull-back
action Lj on differentials. A differential w € Q"(G,C) is said to be left-invariant if
Liw =w forall g € G. We can choose a basis for the space of left-invariant differentials.
If a set of complex differentials (5;) is chosen so that the evaluations ((f;)o) at the
identity span the space (TpG)*, then any left-invariant 1-form w can written uniquely

as

w = ZO&Z’,@Z’, «a; € C.
7

Now let G = G = Zoo Boo Ko where
Goo = GLo(C)

10 y
() o)
Boo:{<g i) :zEC,TER>O},
Koo:SU(2):{<u 1}) :u,veC,uﬂ—l—vﬁzl}.
-0

In fact By can be identified with the coset space Goo/Zoo Ko and also with the space
Hs in the obvious manner. We write 7 : G, — Hs for the canonical projection of G
onto Hg. The restriction of m to By, is the bijection identifying B,, with Hgs so every

element of Hs can be written as m(b) for a suitable b € B .
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The action of G on Hs is given explicitly by

o az Z 40 avr? o0 — T
( /3)_(27T):<< +8)(37 +9) + o jad — 8] ); 1.9)

v 6 vz 4+ 62+ yPr2 T vz + 0P 4 |y]Pr?
we write Ly : H3 — Hsz for the map (z,7) — ¢ - (z,7). We can choose a basis

B = (Bo, B1, B2)T of left-invariant differentials on Hs with respect to L} as follows:

dz dr dz
Bo=——, B1=—, Pa=—.

1.10
r r r ( )

Write 8 = [S(z,r) as a column vector. For g € GL2(C) and (z,7) € H, the
Jacobian matrix J(g, (z,7)) is defined by
Blg - (z,1)) = J(g; (2,7))B(z,7) (1.11)
As a function, J satisfies the cocycle relation
J(9192; (2,7) = J(91;92 - (2,7)) T (92: (2,7)) ~ for g1, 92 € GLo(C).
Left-invariance under By gives J(b; (z,7)) =1 for all b € By, and combined with the

cocycle relation we have

J(g: (z,7)) = J(m(9) " g; (2,7)),
where 7(g)~!g € C* - SU(C). Note that 7(g) = g - 7(1) where «(1) = (0,1) € Hs.

Let g = (‘g 2). Write A =ad —bc, t =cz+d, and s = é . Then we have
A0 0\ [t* —2s
Al 0 ts tt—ss —ts| . (1.12)
0 AJ \s# 25 &
We now define the representation p on Zo Ko to be the restriction of J(g;(0,1)) to

1
J(g;(2,7)) = m

9 € ZooKoo. For F:Hz — C3 and g € Goo we define F|, given explicitly by

(Flg)(m (b)) = Flgm(b))p(m(gb)~'gb) for b € Be. (1.13)
In the special case when p is given by , this simplifies to
(Flg)(z,7) = Flg - (2,7))J(g; (2,7))  for (z,r) € Hs. (1.14)

In the sequel, we attach differential forms to the cusp forms defined in the previous
section 1.4.4. Suppose that ® : GLy(Ap) — V2(C) is a cusp form, giving rise to a cusp
form F on Hjs. Let § be the corresponding cusp form on GL2(C). Restricting to
SL2(C) and composing with this map, § can be considered as § : SLa(C) — V5(C).
Identifying V2(C) with the space of differentials spanned by the basis (fg, 51, 2) as in
(L.10), we can view the map § as an element of Q'(SLy(C),C). Then this differential
descends to the quotient Hs = SL2(C)/SU(2).
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Proposition 1.5.1. Let g,b, 7 be as above. We have
Flgm(b)) - B(g - (z,7)) = (Flg)(m(b)) - B(z,7).

Proof. Combing and we observe that
Flgn (b)) - B(g - (2,7)) = (Flg)(m(b))p(m(gb) ™ gb) " J (g5 (2,7)) - B(2, 7).
It suffices to show that
p(m(gb) " gb) = J(g; (2,7)).
Write 7(b) = (2z,r) with 7(b) =b-7(1). By the cocycle relation of J, we have
J(g;m(b) = J(gbs (1)) (bs (1)) ™" = J(m(gb) ' gbs (1)) = p(m(gb) ™" gb).

1.5.2 THE EICHLER-SHIMURA-HARDER ISOMORPHISM

In this section we will describe how to realise cusp forms over the imaginary quadratic
field as differential forms on arithmetic quotients of the upper half space in an explicit

way as outlined in [Gha99, Section 5].

Over F', there are two isomorphisms which are special cases of the isomorphisms
for GLy over general number fields relating cusp forms to C'°° harmonic differential

forms. We denote these by
oq : S2(T'o(MN)) ~ He g, (To(M)\Hs, C),
with ¢ = 1,2. There is an action of the Hecke algebra on both sides, and the o, are

Hecke equivariant. In this thesis we only consider the first isomorphism, that is cusp

forms over F' are realised as differential 1-forms. For simplicity we write o for oy.

Let F € S2(T'9(M)) (resp. §) be the cusp forms defined on Hs (resp. GLy(C)).
We will describe how to construct o(F) explicitly. Denote the restriction of § to
SL2(C) by § for simplicity. The SLy(C)-action on V2(C) is given by

(2 ()= (C D)) = (5 e

Then we define o(F)(g) = g-F(g) for g € SLa(C). Here we have replaced Q! (H3) with
V2(C) and the pull back action on Q!(H3) by the induced action on V(C). Thus we
must replace (A%, AB, B%) by (—dz,dr,dz). One can show that o(F)(gu) = o(F)(g)
for u € SU(2) so that o(F)(gu) can be thought of as differential 1-form on Hs.
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It is possible to make the above construction completely explicit. Given the

auxiliary variables u = (g) , we set

Q= <<2> <—1>2—aUaV2““> = (V2, 20V, U?).
« a=0,1,2

For variable a = (é), let 9 = (a) = (o, ¥1,92)! where the ; = ;(a) is a
homogeneous polynomial of degree 2 in s defined by

(AV — BU)? = Q- .
It is easy to calculate that p(a) = (A%, AB, B%). For u € SUy(C) it has the special

property
Y(ua) = pa(u) - p(a).

2 2
L) =)
(2) = (A%, AB, B?)".

As § takes values in V2(C) we let §, be the components of §, namely §(g,a) =
Zi:o Tal(g)A?2~*B. Define § : SLy(C) — V5(C) by
Sl(g7a) = (30(9)5%’1(9))3’2(9)) ’ 11b(a)
One can prove that §'(gu,a) = § (g, ua) for u € SU3(C). Finally define §” : SLa(C) —
Vo(C) by §'(g9,a) = §(g,9a). One can checke that it has the property §'(gu,a) =
§"(g. ).

Here

where

Thus, in summary, we have

Definition 1.5.2. |[Gha99, Definition 6] o(F) is the C-valued differential form on
Hs obtained from §” by replacing (A%, AB, B%) by (—dz,dr,dz). More specifically, if

N
g'(ovl):(zvr)7e'g' g:<0 \1[ , then

G
1 d d dz

o(F)(z7) = (Bo(9): §1(9): F2(9)) - ~(a) = =Fo(9) = + F1(9) - +Falg) .
Here §;(g) for i € {0,1,2} is in one-to-one correspondence to Fi(z,r) as in (L.6).
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§1.6 Automorphic representations

In Section 4.5 we will use results in [FH95|] about the non-vanishing of L-values attached
to automorphic representations for GLo(Ap) over an imaginary quadratic field F'. So
in this section we will sketch the passage from weight 2 Bianchi modular forms defined
in the previous section 1.4.4 to the corresponding automorphic representations. The
material in this section can be found in [GHI11] and [Kud03].

For simplicity denote G = GLo and A = Ap for the imaginary quadratic field of

class number 1.

Definition 1.6.1 (Definition 2.1, [Kud03]). The space of automorphic forms A(G) on
G(A) with trivial central character is the space of complex valued functions ® on G(A)
as defined in Definition [L4.6] such that:

(1) ®(zvg) = P(g) for z € Z(A) ~ A* and v € G(F).

(2) The function goo — P(googys) is smooth on G(Fi).

(3) The space spanned by the right translates of ® by elements of Ko ~ U(2) is
finite-dimensional, i.e., ® is right K, -finite.

(4) There is a compact open subgroup Ky C G(Ay) such that ® is invariant under
right translation by K.

(5) @ is Z(g)-finite.

(6) @ is of moderate growth.

Definition 1.6.2 (Definition 2.2, [Kud03]). The space Ay(G) C A(G) of cuspidal

automorphic forms is defined by adding the following cuspidal condition:

[ (FADESE

Recall that g denotes the complexification of gl,(C), U(g) its enveloping algebra

(7) For all g € G(A),

whose elements can be identified with differential operators D, for a € g, and Ko =~
U(2). Next we define two important types of modules playing a major role in the

representation theory:

(9, Koo) —module and (g, K) x G(Af) — module.

Definition 1.6.3. [Kud03| Definition 2.3(i)] We define a (g, K« )-module to be a
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complex vector space V with actions
mg : U(g) = End V = {set of all linear maps V' — V'},
K., : Koo = GL(V) = {set of all invertible linear maps V' — V'},
such that the subspace of V' spanned by {mx_ (k) -v:k € K} is finite dimensional,

and
Tg(Da) - T (k) = Troo (k) - mg(Dg—14) for all o € g, k € K.

Further we require that

mo(De) v = lim - (i (exp(ta)) v — v)

for all v € V and « in the Lie algebra of K.

We shall denote the pair of actions (7y, 7k ) by 7 and refer to the ordered pair
(m, V) as a (g, Koo)-module.

Definition 1.6.4. [Kud03| Definition 2.3(ii)] We define a (g, K« ) x G(Af)-module to
be a complex vector space with actions
g : U(g) = End(V),
K., : Koo = GL(V),
mr: G(Ay) = GL(V),
such that V,my and 7k form a (g, K« )-module, and in addition the relations
m(af) - mo(Da) = mg(Da) - wf(ag),
milar)  Tro (k) = T (k) - me(ag),
are satisfied for o € g, Do € U(g), k € Ko and ay € G(Ay).

We let m = ((my, 7K. ), 7f) and refer to the ordered pair (m,V) as a (g, Kx) X
G(Af)-module. We say the (g, Koo)X G(A¢)-module is smooth if every vector v € V' is
fixed by some open compact subgroup of G(Af) under the action 7y. The (g, Ks) x
G(Af)-module is said to be irreducible if it is non-zero and has no proper non-zero
subspace preserved by the actions 7y, mx. ,7f. One main result is that Ag(G) is
a smooth (g, Ks) x G(Af)-module, see [Kud03, Section 2]. The representation of
(9, Kso) X G(Af) on Ag(G) is the so-called automorphic representation.

In the previous section 1.4.4 we have defined the weight 2 Bianchi modular form
F on Hjs and the corresponding ®r on G(A) = GLy(AF) taking values in V5(C). To

have scalar-valued functions, we can consider any non-zero linear form L on V5(C),
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and define
F(z,r):=L(F(z,7)) for (z,r) € Hs

and

®r(g) = L(D(g)) for g € G(A).

It is straightforward to check that ®r € Ay(G) since ®r € Ay(G) as discussed in
Remark [1.4.11] e.g.

®(gg5) = L(B(ggs)) = L(2(9)) = ®(g) for gy € Kf C G(Ay).
The choice of L is irrelevant as we will eventually consider the space A, z C Ao

spanned by all right translates of 6} under the action of 7.

Definition 1.6.5 (Analogue of Definition 5.2, [Tro]). Let F and @£ be as above. The

automorphic representation 7z attached to F is the restriction of the representation

of (9, Koo) x G(Ay) on the subspace A; 7(G) of Ag(G) defined by:
Ay #(G) = {m(9)®F : g € (8, Koo) x G(Af)}.
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Well representation and the
Kudla-Millson theory

§2.1 Weil representation for symplectic-orthogonal dual pair

In this section we discuss the Weil representation for the dual pair (Sp(W),0O(V))
following Kudla’s lecture notes [Kud96].

Let W be a symplectic vector space over a local field F'. For a group A with
subgroup B, we let

Centa(B) ={a € A:ab=ba for all b € B}

be the commutant of B in A. A pair of subgroups B and B’ of A are said to be
mutual commutants if Cent4(B) = B’ and Cents(B’) = B. A reductive dual pair
(G,G) in Sp(W) is a pair of subgroups G and G’ of Sp(W) such that G; and G,
are reductive groups and

Centgpw)(G) =G and  Centgpy(G') = G.
We will simply call such (G,G’) as a dual pair. The pair (Sp(W),{£1w}) is the most

trivial example of a dual pair.

Dual pairs can be constructed as tensor products. Let W be a finite dimensional

left vector space over F' with a non-degenerate skew-symmetric bilinear form

(VY WxW—F

34
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with
<a:c,by) = a(m,y)b and <y,$> = —<$,y>.

Let
Sp(W) ={g € GL(W) : (xg,yg) = (z,y) for all z,y € W}

be the isometry group of W. Similarly, let V' be a finite dimensional right vector space

over F' with a non-degenerate symmetric bilinear form
(,):VxV—F
with
(za,zb) = a(z,y)b and (y,x) = e(x,y).

Let
O(V)={g€GL(V): (g9z,g9y) = (x,y) for all z,y € V'}

be the isometry group of V.

The rational vector space W = W ®gV has a non-degenerate bilinear alternating

form

(1 ® y1,22 @ y2)) = (21, 22) (Y1, Y2)

and there is a natural map
Sp(W) x O(V) = Sp(W), (h,g) = h®g.
Thus we obtain a dual pair (Sp(W),0(V)) in Sp(W).

Let dimp W = 2n and dimpV = m. We will describe a Weil representation
of Sp(W) x O(V) when m is even, and of Mp(W) x O(V) when m is odd where
Mp denotes the metapletic cover of Sp. We can make the identification Mp(W) =
Sp(W) x C*. In this thesis we are interested in m = 3 with signature (2,1) and m = 4
with signature (3,1).

Let ¢ be an additive character on F' and yy be the quadratic character of F*
defined by

m(m—1)

xv(xz) = (z,(=1)" = det(V))r

where det(V') is the determinant of the Gram matrix with respect to the bilinear form
on V and (, )r denotes the Hilbert symbol. We let, for x € F,

(@) = (¥ o a?)
be the Weil index of the character ¢ of second degree on F given by ¢(z) = 9(z?).
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For a € F*, let
v(a,¥) =v(¥a) /(%)

where 1, (z) = ¢(ax). For z € C*, let

z-y(x, )Y, if mis odd,
x$<m,z>=xv<x>-{ v

1, if m is even.

Fix a direct sum W = X +Y with maximal isotropic subgroups X,Y . Then we
have that W=X® V +Y ® V and that

XQVeV'={x=(r1,...,2,) 1 2; € V}.
For x,y € V", we write

(x,¥) = (2, y5)) € Sym,, (F).

View elements of W as row vectors (z,y) with € X and y € Y. We can write

g € Sp(W) as
_[a b
9= c d

where a € End(X), b € Hom(X,Y), ¢ € Hom(Y, X) and d € End(Y). Let

M = {m(a) = (g aOV> ta € GL(X)}

10
N = {n(b) = (0 1) :b € Hom(X,Y), symmetric} .

and

Here a" € GL(Y) is determined by the condition that (za,ya") = (z,y) for all z € X
and y €Y.

The Weil representation of Mp(W') = Sp(W)xC* can be realised on the Schwartz
space S(V™) which is the space of locally constant, compactly supported functions
on V" if F is non-archimedean, and consists of those Schwartz functions of the form

p(x)po(x) if F' is archimedean, where p is a polynomial function on V"™ and ¢g denotes
the standard Gaussian later given in (2.8).

Let ¢ € S(V™) and the action of O(V) on S(V") is given by
wypw(R)p(x) = p(h~'x) for h € O(V),x € V"
We will describe the action of Mp(W) on S(V"™) as follows. For a € GL,(F) and
zeC*,
wyv (m(a), 2)p(x) = Xy (det(a), z)| det(a)| % p(xa)
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and for b € Sym,, (F),
o (n(0) Da) = b (G0 ) )

0 1
For w = w,, = ",
-1, 0

wy,v (w,1)e(x) =y o V)" g (= tr((x,¥))e(y)dy
where dy is the measure on V"™ which is self dual for this Fourier transform. Here
the factor v(1 o V') is the Weil index of the quadratic space associated to the bilinear
form on V', which is an eighth root of unity depending only on the isomorphism class

of quadratic forms on F™.

Using the local Weil representation, we can define a global representation of
Sp(W)(A) for the adele ring A of a number field, see [Ral84, Section VIII]. There is a
projective representation of Sp(W)(A) on S(V(A)™) by taking the tensor product of

local representations.

We end this section via showing the Weil representation in two cases of interest

in this thesis:

Example 2.1.1. Fix an additive character ¢, of Q, with kernel ¢Z,. Note that its

kernel is crucial for us to determine the level of the corresponding theta lift.

(1) As given in Example let V' be a 3-dimensional quadratic space of signature
(2,1) with quadratic form @. In this case we consider the metaplectic cover
SL, = SL, x{%1} paired against the orthogonal group SO(2,1). For z € Q,

and o € Qy, let
1 1
0 d(a) = a 0 Cw— 0 ,
z 1 0 ot -1 0

. 1 =z
n(r) = (0 1) - n()
n(z)=d(-1) - w-n(—z) - w.

and notice that

The local Weil representation wy, of SLa(Qq) x {£1} on S(V(Qy)), which can
also be found in [Pra09, Section 2.1.3], is characterised by

Wy, (0(y)) g (%) = P(YQ (X)) g (%),

Wi, (A())ipg(x) = (1/g, @) (, —1)glaf*?pq(ax),
Wiy (W) (X) = Yy Pq(X),
Wi (1, €)pq(X) = €pq(x),

)
)
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where € € {1} and ¢,(x) denotes the Fourier transform with respect to the
pairing (x1,X2) = 14((x1,X2)) and 7y, is a certain complex number of absolute
value 1.

(2) Let V be a 4-dimensional quadratic space of signature (3,1) with quadratic form
Q@ as in Example In this case we consider the pair Sp, x SO(3,1), of which
the Weil representation on S(V(Q,)?) (see [Berld, Section 3.1]) is given by, for
X € V(Q,)%,

w(L, h)eq(X) = pq(h™'X), (2.1)

0 =4, (JUOXD ) 000, (22)

h
w((o tol)@) 2a(X) = xvg(det(@)|det(a)Zpg(Xa),  (23)

w<(0 1>,1 (X)) = 734(X). (2.4)

Here the Fourier transform is defined by

LX) = [ (VX))
V(Qq)?
and -y is a certain complex number of absolute value 1.

§ 2.2 Theta series

We first recall the classical theta series from Funke’s notes [Fun0g].

Let V be a rational vector space of dimension m = p + ¢ with a non-degenerate
positive definite symmetric bilinear form ( , ). Assume the dimension m is even so
that we do not need to consider the metaplectic cover. Let L be an even lattice of level
N; that is Q(z) := (v,2) € 2Z for z € L and Q(L*)Z = %Z. Here L* is the dual
lattice. Furthermore, we fix a vector h € L*/L once and for all and write £ = h+ L.
It is well known that for 7 € Hy = H4, the upper half plane, the associated theta series

0(r,£) = e™®M* e Mu (T(N)) (2.5)
€L
is a modular form for the principal congruence subgroup I'(N) C SLy(Z) of weight %.

We have a more representation-theoretic approach to describe this classical theta
series. Let S(V(R)) be the space of Schwartz functions ¢(R) on Vg. We write G' =
SL2(R) and let K’ = SO(2) be its standard maximal compact subgroup. Let G =
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O(V(R)) be the orthogonal group of V(R). Then G’ x G acts on S(V(R)) via the
Weil representation wg for the additive character ¢ — €27, For x € V(R) and g € G,
G acts naturally on S(V(R)) by

wr(9)pr(r) = pr(g ).
Following the discussion in the previous subsection 2.1, the action of G’ is given as

follows:

N
wR ((? _01>> pr(r) = i fr(x),

where a > 0 and ¢r(y) = fV]R{ or(x)e 2™ @Y)dz is the Fourier transform.

Let or € S(V(R)) be an eigenfunction under SO(2) of weight r; that is wr (k') pr =
xr(K)pr for k' € SO(2), where x, is the standard one-dimensional character of
SO(2) ~ U(1) given by z — x,(2) = 2". Then we can define

pr(x,7) = j(gr, ) w(g))pr(x) = v/ 2 M o (Vor)em =0,
where g/ € SLa(R) is any element which moves the base point ¢ € Hs to 7 = u+iv € Hy
and j(g.,i) = v~'/2 denotes the usual automorphy factor. Then the associated theta
series is defined as
0(t, pr, L) == Z or(x,T), (2.6)
zeL
which is in general non-holomorphic modular form of level N and weight r, see e.g.
[FM02, Theorem 4.5]. For the above classical theta series (2.5)), we have (7, L) =
(7, po, L) with the Gaussian pg(z) := e~ @),

In the following we review a family of Schwartz forms in S(V(R)") @ Q"(D)
taking values in the space of differential forms on the symmetric space D, constructed
by Kudla and Millson, see [EMO02], Section 4] and [FMO06, Section 5.

Let V' be a real quadratic space of dimension m = p + 1 and signature (p,1).
Denote by S(V"™) the space of complex-valued Schwartz functions on V". Let G’ =
Mp,,(R) be the metaplectic cover of the symplectic group Sp,,(R) and K’ the inverse
image of the standard maximal compact subgroup U(n) C Sp,,(R) under the covering
map Mp,,(R) — Sp,,(R). The embedding of U(n) into Sp, (R) is given by A +iB
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A B
< B A> . Let w = wy be the Weil representation of G’ x O(V) acting on S(V™)

associated to the additive character t — €27,

Let Hp = {7 =u+iv € Sym,(C) : v > 0} ~ Sp,,(R)/ U(n) be the Siegel upper
half space of genus n. Write g’ and ¢ for the complexified Lie algebra of Sp,(R)
and U(n) respectively. We have the Cartan decomposition as g’ = ¢ @ p’ and write
p’ = pT @p~ for the decomposition of the tangent space of the base point il,, into the

holomorphic and anti-holomorphic tangent spaces.

Let G = SOg(V(R)) be the identity component of SO(V(R)) and K the maximal
compact subgroup of G stablising the base point Zy of D. We have seen in Section
1.1 that the symmetric space D ~ G/K can be realised as the set of negative 1-planes
in V and we have demonstrated this in Example for signature (2,1) and (3,1).

We pick an orthonomal basis {e;} of V such that (eq,eq) =1 for a =1,...,p
and (ey,e,) =—1for 4 =p+1. Let g be the Lie algebra of G and ¢ of K. We write
the Cartan decomposition as g = p + €. Then p ~ g/¢ is isomorphic to the tangent
space at the base point of D. The elements X, of the standard basis of p is induced
by the basis {e;} of V, i.e.,

ey, ifi=a,
Xaplei) =4 eq, ifi=p, (2.7)
0, otherwise.
We let wqy, € p* be the elements of the associated dual basis, and QF(D) the space of

complex-valued differential k-forms on D.

The main result of [KM90] is the construction of a certain differential n-form of
D with values in the Schwartz space S(V(R)").

Theorem 2.2.1 (Theorem 4.1, [FM02]). For each n with 0 < n < p, there is a

non-zero Schwartz form

n € [S(VR)™) © Q"(D))¢ =~

such that

(1)
dSOn = 07
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i.e., for each X € V(R)™, @, is a closed n-form on D which is Gx -invariant:
9 en(X) = pn(X)
for g € Gx, the stabilizer of X in G.
(2) The forms are compatible with the wedge product:
Pny N\ Pny = Pnytna;
where @, =0 for n > p.

Fundamental for its relationship to modular forms is that
w(k)n = det (k)™ 20,
for ¥ C K’ the maximal compact subgroup of Mp,,(R) where w is the Weil represen-

tation.

We now give some explicit formulae for the form ¢, € [S(V(R)™) @ A"(p*)]*,
see [FMO02| Section 4]. At the end of this subsection, we will show two examples used

in this thesis, ¢ for signature (2,1) and ¢y for (3,1).
Consider the standard Gaussian,
eo(X) = e X2 ¢ SV for X = (x1,...,20) €V, (2.8)
where the majorant ( , ), is given by

%, %) { (X,X), ifXezt
’ 7 =

—(X,X), ifXeRZ

Following (2.7) we can determine the basis of p as {er,...,e,} so p can be
identified with RP. Then w; becomes the functional on p which picks out the i-th
coordinate. For X = (z1,...,2,) € V(R)" > My, »(R) w.r.t. the basis {e1,...,ep+1},

and for 1 < s < n, we define the 1-form

P
w(s, X) = Z TisWi.
i=1

We set

It can be seen that

pn(X) =22 " Py (X) exp(—mtr(X, X) 7)) @wj, A Aw,,
1<j1 << jn<p
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where Pj ;. (X) is the determinant of the n by n matrix obtained from X by

removing all rows except the ji,...,J,. Then we have

for W € Tz, (D)™ ~ p" ~ (Z5)™. We demonstrate this in two cases of interest in this

on(X)(W) = 272 det(X, W) exp(— tr(X, X) z,)

thesis:

Example 2.2.2.

V(R), we have the 1-form
w(l, X) = z11w1 + z21W0.

Set

271201 (X) = (zr1w1 + 22102)p0(X).
For W = vie1 + 1heq € ZOL, we have

P1(X)(W) = 22 (@111 + wa1w2) (W)po(X) = 22 (w1101 + warva)po(X)
= 2'/2(X, W)po(X)
where the last equality is the consequence of
(X, W) = (z11€1 + m2102 + T31€3, V1€1 + 12€2)
= z1vi(er, e1) + wa1va(ez, e2) = T11v1 + To1ve.

Let p=3 and n = 2. For

11 T12
21 T22
V(R)? 3 X = (z1,22) ~ ,
r31 I32
T41 T42

we define the 1-form for s € {1,2}
w(s, X) = T15w1 + T2sw2 + T35W3,
and then
27 pa(X) = (w(L, X) Aw(2, X)) - po(X)
= ((z11722 — T12%21 )w1 A w2 + (T11732 — T12231)wW1 A W3

+(x21232 — T31T22) w2 A w3) - @o(X).

For W = (W1, Ws) € (ZOL)2 with W; = vije1 + voje2 + v35e3, j = 1,2, we can

(1) Let p=2 and n=1. For X = z1 = z11€1 + 2162 + w3163 €
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show
2(X)(W) =2 ((z11722 — T12721)V11V22 + (211732 — T12731)V11V32
+(T21732 — T31722)V22032) - o (X)
=2det(X, W)po(X),
where the last identity is deduced via expanding

det(X, W) = (21, W1)(z2, Wa) — (21, Wa)?.

Now we can form the theta series for ¢, , as in (2.6, which can be seen to be a
[-invariant differential form on D for a subgroup I' of finite index of the stabilizer of
L in G. Hence it descends to a form on X =I'\D. Thus

0(7, n, L) € NHolM,,, ;o(T'(V)) @ Q" (X)

is a non-holomorphic modular form of weight m/2 with values in the differential n-
forms of X, see [FMO02, Theorem 4.5].

§ 2.3 Special cycles

In this section we recall special cycles and their basic properties from [KM90, Section
2.

Let V' be a rational vector space of dimension m and L a Z-lattice. Let ( , )
be a non-degenerate quadratic form on V', which is integral (Z-valued) on L and has
signature (p,1) with p+1 = m. Denote by G = SOq(p,1) the identity component
in SO(V(R)). Let T' be a torsion-free congruence subgroup of GL(V) preserving L
and (, ). Let U C V be an oriented subspace such that ( , )|y is non-degenerate.
Then we will construct special cycles Cy C T'\D, where D is the symmetric space
associated to G. Recall from Section 1.1 that D can be viewed as the open subset of the
Grassmannian Gry (V') consisting of those lines Z such that (, )|z is negative definite.

Since (, )| is non-degenerate, we have a direct sum decomposition V = U + U+,
Suppose that (, )|y is positive definite and we define a subset Dy C D by
Dy={ZeD:Z=7ZnU"}.
We let Gy denote the stabilizer of U in G and put I'y = T'NGy. Welet Cy = T'y\Dy

and note that Cy is an orientable manifold.

We now explain how an orientation of U gives rise to an orientation of Dy . We
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choose a base point Zy € D and choose an orientation of Z; and an orientation of
V' once and for all. Propagate the orientation of Zjy continuously to orient all other
Z € D. Orienting D is equivalent to giving an orientation of Hom(Z, Z1) which
depends continuously on Z. Since V is oriented we obtain an induced orientation of
Z+ such that the orientation of Z+ followed by that of Z is the orientation of V.
Then Tz(D) ~ Hom(Z, Z+) is oriented. When ( , )|y is positive definite, there are

canonical isomorphims of the tangent space Tz(Dy) and the normal space vz(Dy)
Tz(Dy) ~Hom(Z,Z+* NUY) and vz(Dy) ~ Hom(Z,U).

Then T (Dy) will receive an orientation by the rule that the orientation of Tz (Dy)

followed by the orientation of v,(Dy) is the orientation of Tz (D).

We now define {23 C V" for 8 an n by n symmetric matrix by
05 = {X € V(Q": 5(X, X) =},
If X € Qg then the G-orbit O := GX C Qg. In case § is positive definite, then
G acts transitively on L5 and O = Qg. We will write Cj3 instead of Cp for the
cycle corresponding to O = {g. In this case Cjg is a locally finite cycle such that
each irreducible component has real dimension p — n. Indeed pairs of frames X =
(z1,22,...,2,) and X' = (—z1,22,...,2,) would occur in Qg if 5 were diagonal.
To avoid such cases where (g would be trivially zero we can introduce a congruence
condition. Let h € L™ and a C O an ideal. Then we replace Q3NL"™ by QgN(h+al™).
We assume that v € I' implies that v =1 mod a so that I'" acts on this intersection.
This congruence condition will be used to construct the theta lift in the following

section.

§2.4 The work of Kudla-Millson and Fourier coefficients

We first recall the classical theta lift as a function on the Siegel upper half plane from
IKM90] and [FMO02], and then discuss that constructed on Sps,(A), see [KM90] and
[Ber14].

2.4.1 CLASSICAL THETA LIFT

Let V(Q) be a rational vector space of dimension m = p+ 1 with a symmetric bilinear
form (, ) of signature (p,1) and put G(Q) = SO(V(Q)). Let G = G,(R) ~ SOyp(p, 1)

be the connected component of the identity of the real points of G. Let L be an even
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lattice of level N with the dual lattice Lf. Fix a vector h € Lf/L and write £ = h+L.
Let T" be a torsion free subgroup of finite index of the stabilizer of £ in G. We denote

by D the symmetric space associated to G.

Let ¢,(X,Z) be the Schwartz form as given in Section 2.2 for X € V(R)™ and
Z e D. For 7 =u+iv € H,, the Siegel space of genus n, following [FMO02, Section 4]

we define
on(1, X, Z) = det(v) "™ *w(gl)pn(X, 2)

P vl/? 0 B w2 12y
o 1) Lo w2 T Lo o
moves the base point il,, € H,, to 7. One obtains (see [FMO02l, Section 4])

o(1, X, Z)(W) = 2/2 det(v)/2 det(X, W) exp(mi tr(X, X )r.2)
for W € (Tz(D))" ~ (Z+)" and with (X, X); 7z = u(X, X) +iv(X, X)z.

where

For a congruence condition h € (L#)™, we define the theta series 6(7) with values
in the differential n-forms on D by

0, 2)= > eul(r.X,2).
Xeh+L"

One can show that it is a non-holomorphic Siegel modular forms of weight m/2 with
values in the I'-invariant differential forms of D for some suitable subgroup of Sp,,,(Z),
see [FMO02, Theorem 4.5].

For a rapidly decreasing closed differential (p — n)-form 7 in I'\D, Kudla and
Millson defined the transform

o) () = /F\Dn/\e(r, 2). (2.9)

and showed that it is a holomorphic Siegel modular form of weight m/2, see [KM90,
Theorem 1]. Moreover, the Fourier coefficients are given as periods of 7 over certain
special cycles Cg in I'\D attached to positive definite 8 € Sym,,(Q), i.e.,
O(n)(r) =Y _ ag(n)e*™ "7
B8>0
with

st = [ A (2.10)

The derivation of the Fourier coefficient will be discussed with more details in the
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following subsection. Recall from Section 2.3 that
1
0= {X V@ jx.x) =},
The main point of Kudla-Millson’s work is that
g = Z on(iv, Z, X)efzmr(ﬁv)

XeQgn(h+L"™)
is a Poincaré dual form for the composite cycle Cg, i.e.,

aﬁ(n)z/F\DnA%:/c n
B

for all rapidly decreasing closed (p —n)-forms in I'\D.

Example 2.4.1. Let V' be the rational vector space of signature (2,1) as in the Example
Recall from Example 2.2.2 that, for x = z1e; + x9es + x3e3 € V(R) and
W =wvie1 + vgeg € p >~ Tz, (D), we have
p1(x) (W) = 212 (w101 + waws) (W )epo(x).
Recall the theta series associated to ¢1, for z=x +iy € D and 7 = u + iy € Hy,
Or(T,2,01) = Z 0o (vux)e™ X,

xeLl
As discussed in [FMIIl Remark 7.2], Shintani defines a scalar-valued theta kernel

0(t,z,¢s) which is integrated against a holomorphic cusp form f. His kernel func-
tion at the base point Zy = ¢ is given by
ps(x) = (21 + i72)po(X).

For such input, the kernels are closely related, namely one has

dz Ad
np ANO(T, 2, 01) = 2120(7, 2, 05) f(2) xy Y

This can be seen by a direct calculation of

d d
dz A 1(x) = (dz + idy) A 2"/ %pp(x) <x1yy - xgx)

dx N\ dy

= 21/2900()()(:61 + ix9)

dx A\ dy

=21244(x
ps(x) ”

2.4.2 ADELIC THETA LIFT

In the following we discuss the adelic theta lift on Spy,, (A).

Let G = SO(V) and recall the symmetric space D associated to Go(R) :=
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SOg(V(R)). We have seen the Schwartz form ¢, € [S(V(R))*®@Q"(D)]%®) in Section
2.2. For a finite Schwartz function ¢ € S(V(Af)"), let

o=, @ere[S(VA)")® QY(D))Go®),

Let G' = Resg/qg Spy, and let G'(A) be the metaplectic cover of G'(A). For
convenience, we can take this group to be the extension of G’(A) by C'. Recall from
Section 2.1 that G'(A) acts on S(V(A)") via the global Weil representation associated
to an additive character 1 of Ag.

Let T C G(Q) N SOo(V(R)). For ¢’ € G'(A), if ¢y is I'-invariant, the theta
series
0 p5,2) = Y, wld)e(X,2) (2.11)
Xev(Qn
defines a closed n-form on I'\D. Now we can define an adelic theta lift, for a rapidly

decreasing (p — n)-form 7 in I'\D, to be
Om)g) = [ n:) A0l ps.2). (2.12)

r'\D
By Theorem 1 of [KM90], it is an adelic Siegel modular form on G'(A) of weight m/2.

Remark 2.4.2. For any prime ¢ and any lattice L C V ® Q, define its dual lattice
by LF ={X e V®Q,:2(X,Y)€Z,YY € L}. Now let L be an integral lattice on V'
and put L, = L ®7Z,. Fix a h € (LF)"/L". If we take the finite Schwartz function as
the product of the characteristic function of the lattice hq + Ly at each prime g, i.e.,
of = [ Yngrrp
q
then the above theta series (2.11)) can be rewritten as

0(g o) = > wlg)en(X).
Xeh+L™
In the case of sign (2,1) and n = 1, it recovers the theta series on the upper half

plane in (2.6)). Invariance properties of (¢, o) under subgroups of G’ (A) allow us to
use the strong approximation theorem. As discussed in Section 1.3.5, the adelic Siegel
modular form can be realised as the classical one defined on the Siegel upper half plane.
It follows that with ¢, being the characteristic function the theta lift as define above
in descends to the classical one on the Siegel upper half plane as given in .

Write 7 =u +iv € ¢'(i - 1,,) € Hy,, the Siegel upper half plane of genus n. By
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the Iwasawa decomposition, we have

g = 1w\ [v'/? 0 ¥
0 1 0 o 1/2

where k' C K’, the inverse image of U(n) under the covering map Mp,, (R) — Sp,,(R).
Then the Whittaker function is given by

Ws(gh,) = det(v)™* exp(tr B7) det(k')™?  for § € Sym,,(R).

Returning to our space V' of signature (p,1). Let U C V be a Q-subspace
with dimg U = n such that (, )|y is positive definite. Following Section 2.3 we have
Dy ={Z e D:Z LU} and let G}, be the stabilizer of U in Gy(R). Set 'y =T'NGY,
and then we have the cycle Cy = I'y\ Dy as defined in Section 2.3.

For a positive definite symmetric matrix g € M, (Q), consider the corresponding

hyperboloid

0= {X V@ Jx.x) -8}

Let S(V(Af)")z be space of locally constant Z-valued functions on S(V(Af)") of
compact support. Given any commutative ring R, let

S(V(Af)" )r = S(V(Af)")z @z R.
We now make the following definition, motivated by [Kud97, Proposition 5.4],

Definition 2.4.3 (Definition 5, [Ber14]). For a I'-invariant Schwartz functiongy €
S(V(Af)n)R, let
ZBepT) = > op(X)- Cyx)
XGF\QB

where U(X) is the Q-subspace of V' spanned by the components of X .

The following result, called Thom Lemma, is stated in [KM90, Theorem 9.1],
where the results of [KMS86] for I'yy\D compact and [KMS&T7] for I';/\ D finite volume
are recorded. In fact, these results do not cover the case of an infinite geodesic, which

can rise for signature (p,1). It is proved in the case of signature (2,1) and n =1 in
[EM02], and signature (3,1) and n = 2 in [Berl4] Section 4.3].

Lemma 2.4.4. Let § > 0 and X € Qg. Put U = U(X). Let I'y be a discrete
subgroup of GY;. For any closed and bounded (p —n)-form n on T'y\D,

/ (@(ge)pn) (X) A = Wagl) / 0
Iy\D

I'v\Duy
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This lemma is just about the archimedean situation so it can be used to prove
the result in (2.10). For p =2 and n =1, and p = 3 and n = 2, applying the above

lemma we can prove:

Theorem 2.4.5 (Theorem 8.1, [Kud97] and Theorem 9, [Ber14]). Let [n] € H}(T'\D,C)
and ¢y € S(V(Ap)™T. For ¢ € G'(A), let
¢ =w(gy)es € S(V(Ag)").

Then we have

0, (1)(6) = cre, + S Waldhe) - |

B8>0 Z(B,¢'T)

, {2, if —1eTy
where ¢k, =
1, else.

Proof. Put U = U(X). Choose a I' such that ¢ is I'-invariant and such that, if p is
even, then -1 is not in the image of I in SO(V). Let n be a closed 1-form on I'\D.
Then

/F\Dew',so'w: DS /FU\Dw(g’)w’(X)An- (2.13)

BeSym,, (Q) Xel'\Qpg

One main result of [KM90] is that the terms in (2.13) where (3 is not positive

definite vanish. Thus, using the Thom Lemma, we obtain

> OY s /F el A

B>0 XeI'\Qp

=3 S QX)W - /F " (2.14)

B>0 Xel'\Qg

If p is even and -1 is in the image of I" in SO(V'), then all terms in (2.14]) must
be multiplied by a factor of 2. O



Chapter 3

Shintani lift and Fourier

coeflicient

In this chapter, we explain the adelic theta lifting of a weight 2 cusp form f. For
an finite Schwartz function related to an auxiliary quadratic character x, we express

certain Fourier coefficients of this lifting in terms of the twisted L-value L(f,x,1).

§3.1 Orthogonal group of sign (2,1) and cycles

In this section we recall some basic aspects on orthogonal groups of signature (2,1) and
cycles in this case from [FM02] and [FM11].

Let V' be a rational vector space of dimension 3 with a non-degenerate symmetric
bilinear form ( , ) of signature (2,1). We write ¢(x) = 3(x,x) for the associated
quadratic form. We denote the discriminant of the quadratic space by a square-free
negative integer d. Throughout we assume that V is isotropic, and in fact we can pick
the isomorphism

V(@) ~ { (Jjjxl _\/x_idlj) 1x; € Q} = Bo(—d;@)-
Then ¢(x) = — det(x) and (x,y) = tr(xy). For simplicity we assume that the discrim-
inant is —1. In this model, we define the action of GLy on V given by ¢-x := gxg~!.

Noth that this action preserves the quadratic form, i.e. ¢(g-x) = ¢(x) and the bilinear

50
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form as well since the computation
(9-%.9-y) =tr(gxg 'gyg™") = tr(xy) = (x,y).
We pick an orthogonal basis eq, ez, es of V(R) such that (ej,e;) = (e2,e2) = 1 and

(es,e3) = —1. This also gives rise to an orientation of V. Explicitly, we set

0 1 1 0 0 1
el = ey = ,e3 = :
o) o 217 a1 o

We let K ~ SO(2) be the stabilizer of e3 in G = SL2(R), and recall from Section
1.1 that the symmetric space D = G/K ~ Hjy can be identified with the hyperboloid

D~{xeV([R): (x,x)=—1,(x,e3) <0}.

Hence e3 represents the base point zp of D. The tangent space T,(D) at the base
point is canonically isomorphic to e?f. We orient D by stipulating that ej, ez is an

oriented basis of T,(D) and propagate this orientation continuously around D.

Recall the complex upper half plane Hy = {z = 2z + iy € C : y > 0} and the

action of GL3 (R) on it is given by linear fractional transformations as follows

(a 5>.Z_az+6 for (a ?)GGL;(R),ZEHQ

v 4 vz +6 ol
The isomorphism Hs ~ D as in Example is given explicitly by
A _
,u:z:x—i—iyb—>< v zz> (3.1)
y\-1 =z

Proposition 3.1.1. The above map p in (3.1)) intertwines the action of GL3 (R) on
V and Hy; that is u(g-2) = g- u(z) for = € Hy and g € GL3 (R).

Proof. Let g = (: ’?) € GL;(R) and z =z 4+ 1y € Hy. Then we compute

g az+ B _ (az+B)(yz+9)
vz + 0 (vz+9)(yz+9)
ayzZ 4 (ad + By)r + B0 + (ad — By)yi
a RERN IS

and
v az+ B az+ B a’zz+2abz 4+ 52

2'z =
yz+d yzZ+06 |vz + 8|2

It follows that
') 1 —ayzzZ — (ad + By)x — o a’z2% 4 2aBx + 2
)= )
g (ad — By)y —|yz 4 6)? ayzZ + (ad + By)x + 86
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In the other direction we compute

1 a B\ [—z =2z 6 —p
o= (3 (0 ()
B 1 (—am -0 wazZ+ Bx) < 0 —B)
(@6 =By \ —yx —6 ~2zZ+6x -y o«
B 1 (—a&c — B8 —ayzZ —afxr afr+ 2+ a2z + ozﬁﬂs)

S (@6 = BY)y \ bz — 82 — 222 — vz Bym + B+ ayzE + adx
Comparing the entries we can deduce that p(g-z) =g - u(z). O

Let L € V(Q) be an integral lattice of full rank, i.e. L C L, the dual lattice of L
which is given by {x € V : (x,y) € ZVy € L} . We let T" be a torsion-free congruence
subgroup of SLa(Z) preserving L. Welet X = Xr = I'\ D be the associated arithmetic

quotient which is a modular curve due to the identification D ~ H.

The set of cusps of Hy is denoted P!(Q) = QU oo. Here we use [a : b] to denote
homogeneous coordinates for a point in P!(Q) and [1 : 0] for co. We define the action
of GL2(Q) on P}(Q) by

() ()
la:b] =[aa+ Bb:~ya+ 0b] for € GL2(Q).
v 0 v 9
Note that the action of GL(Q) on P}(Q) extends the action on Hy = Hy U P1(Q) if
we treat a cusp a/b+ 0-i € H. The set of all isotropic lines in V', i.e. Iso(V) = {x €
V : q(x) = 0}, can be identified with P!(Q) by means of the map

—ab a?
v:[a:b] — span ( ) ) € Iso(V). (3.2)

— a

Proposition 3.1.2. The above map v in (3.2) commutes with the GLa(Q)-action;
that is v(g-[a: b)) = g-v(la:b]) for g € GL2(Q) and [a: b] € PL(Q).

Proof. Let g = (: ’g) € GL2(Q) and [a : b] € P}(Q). Then we compute

(aa + Bb)(va + 8b) (aa + Bb)? > |

V(g.[a:b]):V([aﬁﬂb:waD:( (s8R (aa+ b0+ )
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On the other hand we have

1 a B —ab a? 6 —p
st =i (09 (o 5) (5 7)
1 —aab — Bb?  aa® + Bab 5§ —p
~ det(g) —yab —8b%*  ~va® + Sab -y«
1 (—aéab — Bob? — aya® — Byab  aBab+ B0 + oPa® + aﬁab)

~ det(g) —ybab — 62 — v%a® — yab  Byab + Bob? + aya® + adab
Thus we can deduce that v (g-[a:b]) =g v ([a:b]) in Iso(V). O

The cusp oo corresponds to the isotropic line o, spanned by xo = (J3). For
y € Iso(V), pick g € SL2(Q) such that g-y = fXo with 3 € Q%. Put I" = gI'g~ .
Hence, I', = gl'yg™ ! is equal to {£ ({ %) ke Z} (if -1 € I) for some a € Q.
We call such « the width of the cusp s corresponding to y. However this is not well
defined, since it depends on the choice of g € SLy(Q) and hence on 3. Instead we
define the width of the cusp k as €(y,I') = a/|8| which only depends on y and T'.

Following Section 2.3, a vector x € V(R) of positive length defines a geodesic
Dy in D via
Dy={z€D:z1lx}

where being orthogonal is in the sense of the bilinear form. In the upper half plane
model, the cycle Dy is given for x = (_bc _“b) by
Dy ={z€Hy: u(z) Lx} ={z€Hy:c|z]* + 2bRe(z) +a = 0}.

We orient Dy by requiring that a tangent vector v € T,(Dy) ~ 2+ Nx* followed by
2z Nx gives a properly oriented basis of T,(D) ~ z*+. Then (z+Nx*, 2-Nx, z) has the
same orientation as (ei, ez, es), i.e. the determinant of the base change is positive. We
let I'x be the stabilizer of x in I' N SO((2,1)(R). We denote the image of the quotient
I'y\Dx in X by Ckx.

A space with quadratic form is said to split if there is a subspace which is equal
to its own orthogonal complement. The stabilizer 'y is either trivial or infinite cyclic
which can be classified by the following lemma. If I'yx is infinite, then Cx is a closed
geodesic in X, while Cx is infinite if I'y is trivial. In the latter case Cx is exactly a

classical modular symbol.

Lemma 3.1.3. Let q(x) > 0 for x € V(Q), so x* has signature (1,1). Then Tx is

trivial if x*- splits over Q. Conversely, if x is non-split, i.e., anisotropic over Q,
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then I'x is infinite cyclic.

Proof. See [Fun02, Lemma 4.2]. O

Proposition 3.1.4. For x € V(Q) ~ By(1; Q) with q(x) > 0 the following statements
are equivalent:

(1) x* is split over Q,

(2) a(x) € (Q)*.

Proof. See [Fun02, Lemma 3.6] for an arbitrary discriminant d. O

If g(x) = m? for m € Q*, then x is orthogonal to two cusps x; and kg corre-
sponding to isotropic lines I, and l., with generators u,, and wu,, respectively. We
distinguish I, and ls, by requiring that u,,,x, us, gives a properly oriented basis of
V' which also gives a different way of characterizing the orientation of Dy . Note that
(U, X, Ugy) and (uy,, —X, ug,) share the same orientation as the base change has a

positive determinant. Consider
L2 = {x € L:q(x)=m?}
For a fixed cusp k;, we write
L2 e, + = {X € Ly2 1 x L K4, x pos orient }

and note that the stabilizer I';, C I' of the cusp &; acts on this set.

Proposition 3.1.5. We have
#F\LmQ = Z #Fl’vi\LmQ,m,—i—
i
where the sum is over all the non-equivalent cusps and

#Lw \Lm2 5, + = 2me(x;,T)

where x; 1is the isotropic line corresponding to the cusp K;.

Proof. See [Fun02, Lemma 3.7] in a bit more general setting. O

Lemma 3.1.6. Let x € {(8 3‘})) ra€eQ,be QX} C V and the associated cycle is
given by
Dy = {z € Hy : bRe(z) + a = 0}.

Then the sign of b determines the orientation of T,(Dx).
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Proof. Given an element z = —¢ + 1y € Dy, we have
a 18 44y
z:—+iyv—><b b € V(R).
b y\-1 —¢

o
Let ( p ) € z+ and we compute

1fa B 3 %z+y2 (a8 *
= ) .
y\v —a) \-1 —% * ‘;—27+y27—|—%a

It follows that 8 = Z—;’y + 2y + %aoz and thus we have

a? 2 2a
ZJ‘:{<Q Ty ba):oz,’yé@}.
~ —a

«
Suppose ( ) € xt and we compute

v —«

a B b 2a\ [ba *
v —« 0 -b) \« 2ay +ba )

It follows that ba + ay = 0 and thus we have

{7 2eeed)
Y Y

Then we can calculate

_a. _a 2
2 nxt = b7 b21+y7 vy €Q
Y 5

Gert Lerten) [~ +12) + her— e
bez 261 €3 b2 Yy 261 €3
1 a? 9 a 1 a? 9
€<2<—b2+y +1)€1_b€2+2(—b2+y _1>€3>>7
b 2
zlﬁx:<<0 (Z>>:<ael+bez+a63>,

1
/\/m\/\
N
s

-2 _a L yQ
el ° b? (¢ = £1 describes the orientation of T%(Dx))
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and

1% L4+y?\ 1fa 1 a2 5\ 1
z_a S e = geg—l—i(el—keg) b—2+y —5(61—63)

b
1/1 (a? a 1 [ a?
= (w1 as e (o e)a).

To conclude we obtain that

2 2
ot (5(-E+2+1) - 5(-ErP-1)\ fa
2Anx | = a b a €9
2 2

where the base change has the determinant

, e N ey |
€
det = @ , % 1 , %
Gyi—1 2 Gyl
212 0 212
Gyt—1 2 4424
eb a? a?
ZTy ((—Z)Q+y2+1) + (bz—y2+1>) :€by>0.
Thus we can deduce that the sign of b determines the orientation € of T, (Dx). O

Corollary 3.1.7. Consider the lattice L = {(2”6 z‘})) ta,b,c€e Z} such that the cusp
oo has width 1/2. Assume that m is a positive integer. We can choose a set of

representatives in I'oo\Lp2 o 4 given by

(5 2) (5 2) ()

Proof. Given an element x € L2  ; of form (8 3‘})) ) Lemma allows us to orient
x positively by requiring that the top left entry of x is positive, e.g. b = m > 0.
From the proof of Proposition we know that the I'o-action on x only makes the
top right entry of x vary. Thus we can choose such representatives in '\ L2 o 4 as
stated above. O
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§3.2 Dirichlet character and Schwartz function

Following Section 1.3, we first recall from [GH11l, Section 2.1] the idelic lift of a Dirichlet
character of conductor p/ where pf is a fixed prime power in the following. We define
the idelic lift of x : (Z/p/)* — C* to be a Hecke character X : Q*/Ag — C* defined

as

X(a) = X2(as0) - X(a2) -+, for a = (aco,a2,...) € Ag,
where
1, if x(-1) =1,
Xoo(loo) = 1, if x(—=1) = -1 and ax > 0,
-1, if x(=1) = —1 and a < 0,
and where

“o(ay) x(v)™, if a, € vV™Z) and v # p,
vl\Qy) =
X x() 7Y, if ay Epk(j—f-prp) with j,k € Z,(4,p) = 1, and v = p.

One can verify that this actually defines a Hecke character as given in Section 1.3.

More generally, every Dirichlet character x (mod m), with m = [[;_, plf ¢, where

P1,P2,--.,pr are distinct primes and fy, fo, -+, fr = 1 can be factored as
T
x=J[x?
i=1

where () is a Dirichlet character of conductor p;’. It follows that x can be lifted to

a Hecke character Y on A@ as being

x=]Ix".
i=1

where
r .
X (py)orde(@), if py { m
=1
~ r X
Xolaw) =9 YOG [T x@(py)ordel@) if g, € (G + pi*Zy,) with 4,k € Z,
i=1,pv#p;

(japv) =1, and pv’m~

Remark 3.2.1. To avoid the trivial vanishing of the theta lifting, one approach is to
introduce a congruence condition and take the finite Schwartz function as the product
of characteristic functions of hy + L, as discussed in Remark Instead of this
approach which is adopted in [Shi75] and [FM02], we follow Prasanna’s treatment
[Pra09l Section 3.2], that is carefully choosing the finite Schwartz function ¢ on S(Vy)

related to a quadratic Dirichlet character x,, of square-free conductor m. Then we
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construct ¢ := @1y where ¢ denotes the Schwartz form at the archimedean place as

in Example 2.2.2

In this chapter we need to consider the pair SL x SO(2,1) to construct the theta
lift where gﬂ; = SLy x{#1}. We have seen the Weil representation of §I\; in Example

2.1.1[(1)}

Let N be an odd square-free integer coprime to m, which will be the level of
modular form considered in next section. Now, adapting Prasanna’s choice (see [Pra09l
Section 3.2]), we define the local Schwartz function ¢, at each finite place ¢ away from

N in the following:
. b «a
(1) If ¢ is odd and gt mN, ¢4 = 1{1gz,} Where L := b ca,b,c€Z
C —

b
(2) If gm and gt N, ¢, ( ab) =0, unless a,b,c € Z,, —b* —ac € qZ,, in which
c

case
A Xm,q(—a) (resp. Xmq(c)), if ord,(a) =0 (resp.ordy(c) =0),
a
Pq < b) = 0, if both ordy(a) # 0 and
c —
Ordq(c) 7& 07

a

b> = 12,(b) 12z, (a) Loz, (c).

b
(3) Ifq:27 ¥2 (C

Definition 3.2.2. At each place ¢| N, we define the local Schwartz function goév to be

the characteristic function of

b
{( ab>€V(Qq):a,b,c€Zq,bEm modq}.
C —_—

Remark 3.2.3. We cannot take the local Schwartz function gpév simply as the char-
acteristic function of integral lattices otherwise the theta lifting constructed in our
next section would be vanishing for some trivial reason. The vanishing will be seen
clearly after the whole treatment of next section, and at the end of next section (see
Remark 3.3.4 , we will give some concrete examples to show why we don’t take the

characteristic function as our local Schwartz function.

With the above ¢, defined at each finite place, one can check that the finite



CHAPTER 3. SHINTANI LIFT AND FOURIER COEFFICIENT 29

Schwartz function ¢ is invariant under

T(2mN) : = {(j ?) € PSLy(Z) : + (j ?) =+ (é ?) monmN}

C PSLa(R) ~ SO¢(2,1)(R) (by the exceptionl isomorphism in (1.1)))

via observing the expansion

a B b a\ [adb+Boc—aya+pyb —apfb— %+ afa—afb
v 0 c —b) 78b+ 8%¢ — v2a +~v6b  —pyb — Boc + aya — adb ]

Here T denotes the image of I' C SLy in PSLs.

new

We want to construct a To(2mN )-invariant finite Schwartz function ¢ 7" related

C

a b a
AN —>
v

with ker(Ay) =T(N). As

b
to ¢y defined above. For v € (a d) € PSLy(Z), there is an homomorphism

) mod N

An(To(N)) = { (g aﬁl) € PSLy(Z/NZ) : a € (Z/NZ)* b € Z/NZ} ,

I =al

ISH

we have a complete set of representatives of T'o(N)/T(N) consisting of the elements

b
e { (g _1> € PSLy(Z/NZ) : a € (Z/NZ)*,b € Z/NZ} .
a
Then, at each finite place q|2mN, ¢p°" is defined to be

CR(x) = Y wy, (M) = ) (T x).
[v]€T0(a)/T(a) [v]€T0()/T(a)
At all other finite places, we do not make any changes to the local Schwartz function.

Hence, the corresponding @3 is To(2mN)-invariant.

On the symplectic side, the following invariance properties under subgroups of
SLa(Zg) x {£1} will help us determine the level of our theta lifting in our next section.
This procedure will be repeated in a bit more complicated setting in our next chapter

on the theta liftings of Bianchi modular forms, see Section 4.3.

Proposition 3.2.4. (1) For e =1, wy,(1,€)pq(x) = ©4(x).
(2) For q{4N and o € SLy(Zy), wwq(a)goq = g,
(3) For q =2 and o € I'g(4) C SLa(Z2), wy,(0)p2 = @2,

*

0
(4) For q|N and o € SLa(Z,) such that h = <; ) mod g, wy, (o)l = k.
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Proof. Tt is clear for the first part, and for (2) and (3) see the proof of [Pra09, Propo-
sition 3.4]. We will prove (4) in details inspired by his proof. For simplicity, we set

b
0g = ©N . Setting x = “ and y = p o , we write the Fourier transform
I 1 c —b v =p

Balx) = / (%,¥)2q(y)dy

= / %(a*y + ca+ 2b8)pq(y)dy -

By definition of ¢, above, we know that ¢,(y) is invariant under 8 — f+¢, o — a+Z,
and vy +— y+Zy. For the non-vanishing of ¢,(x), we need a € ¢Z,, b € Z4 and c € qZ,.
It follows that

1 = 0 1 0 1 . coz
w = w or T
va\\lg 1/\ 1 o) )P %\ 1 o) )70 9%q

which implies
10
W%(( ))cpq—goq for x € qZj.
z 1

Also it is clear that

Then the assertion follows. O

§ 3.3 Shintani lift and Fourier coefficient

We have seen in Example 2.2.2 the Schwartz form at the archimedean place:
v1(xr,2) € S(V(R)) @ (D) for xg € V(R),z € D.

new

Given the finite Schwartz function ¢} on S(V(Ay)) defined in the previous section,
we can construct

p(x,2) =1 @™ € S(V(A) @ QD) forx € V(A),z € D. (3.3)
Following ([2.11)), the theta series in this case is given by

0(g, 0™, 2) = > wlg)p(x,2) for g € SLy(A) x {+1}
xeV(Q)

which defines a closed differential 1-form on T'o(2mN)\D. For the non-vanishing of
©%°", this theta series descends to the sum over the integral lattice

b 2
L::{<2 C;)) ca,b,c€Z,—b*> —4ac=0 mod m}, (3.4)
c —
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new

Le. (9", 03", 2) = Yxerw(g)e(x,2).

Remark 3.3.1. In [Fun02, (3.17)], the theta series is given as the sum over the shift
h+ L of L with the finite Schwartz function being the characteristic function. But we

W

take the non-trivial go?e as our finite Schwartz function and then the corresponding

theta series becomes a sum over the integral lattice in (3.4)).

Let f € So(To(N)) be a weight 2 cusp form corresponding to a differential form
ny on Io(N)\D and T'(L) C SOg(2,1)(R) the stabilizer group of L. Following (2.12)),
we have the theta lifting of f, which is cusp form of weight 3/2, given by

Op(ns)(g) = /F A 2)

where T' := To(N)NT(L)NTo(2mN) = To(2mN). With the Schwartz function defined
in the previous section, Proposition implies that this theta lifting has level

L= {(a Z) € SLy(Z) : N\b,4Nyc}.

Set B = m?. By Theorem the Fourier coefficient at m? is given by
I= Z go?ew(x)/ f(z)dz (3.5)
xel\L, » O
where L, = {x € L : q(x) = m?}. By Proposition we have I'\L,,» =
> i Tk \Lm2 s, 1. It follows that the Fourier coefficient at m? can be decomposed

DI A NCTED DD SR A SN AV CTACY)

XEF\ng i XEF,@Z.\LMQ’I%’Jr

In this case x* is split over Q due to Proposition and then by Lemma the

stabilizer I'x is trivial. So the cycle Cx = I'x\Dx is an infinite geodesic joining two

as

cusps.

Remark 3.3.2. To express our coefficient I at m? in terms of twisted L-values, we
were inspired by Kohnen’s computations in [Koh85, Corollary 1]. Over cycles through
the cusp oo, the above period integral can be related to the special L-value L(f,x,1)
in subsection 3.3.1. Treating other cycles not through oo in subsection 3.3.2, we
need Atkin-Lehner operators. In [Koh85, Theorem 3], Kohnen calculated the prod-
uct ¢(m)e(n) of Fourier coefficients in terms of period integrals. With the condition
that —n is a fundamental discriminant, one can derive the formula for the square of

the Fourier coefficient at a square-free integer in [Koh85, Corollary 1]. If —n is not a
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fundamental discriminant, he also gave a bit more complicated version of ¢(m)c(n) in a
Remark right after [Koh85, Theorem 3|. This might also lead to a relationship between
the square of the Fourier coefficient at a square integer and the twisted L-value, but

we have not pursued this.

3.3.1 ON CYCLES THROUGH 00

The goal of this subsection is to calculate

Iy = Z @?CW(X)/C f(2)dz.

XEFOO\Lm2,oo,

We have seen a set of representatives of I'c\L,,2 o, 4 in Corollary Write
x = (124) € Toc\Lp2.0 4 with a positive. By Definition for the non-

0 —m
vanishing of goqu we can exclude —x from L2 o ; and only need to count (’(’} ,2?”) €
Loo\Lp2 00 + - By Corollary we observe that a ranges over Z/mZ.

Lemma 3.3.3. For above m and a, we have

e (:’; f;) =9 H To(q) : T(q)] - ¢ (73 _2:;> '

glmN

Proof. Set q|2mN . Write the representative in T'o(q)/T(q)

72(3 Jﬁl) with = € (To(q)/T())*.y € To(a)/T(a).

Then we compute

new [T 2a 1 m  2a
[v1€To(q)/T(q)

m 2z ym + 22%a
1€T0(a)/T(

—m
[v]e q)

At g|m, we see
m 2z lym + 22 2a ~ m  2a
Pq = Xm,q(—2a) = ¢q :
0 —m 0 —m

Similarly, at ¢|2N, we observe that

m 2z lym + 22 "%a m  2a
Pq = ¥Pq :
0 —m 0 —m
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So, we have
e () = o) Tl (7
(Pq 0 —m — olq) : q Pq 0 —m 5
and deduce that
new [T 2a — — m  2a
o =2 [] [Tola) : T(q)] - &5
0 m 0
glmN
O
Now following the above lemma we are ready to calculate
I = Z neW / f dZ
xEFoo\Lmz
_ m  2a
=2 [ [Mola) Y st< ) NEE
glmN a€Z/mZ —m Tm
=2 H [fO(Q) F(Q)] ) Z Hqu 2(1 . f(z)d=
qlmN a€(Z/mZ)* q|m Tm
— = a
=2 ] Mo() : T(a)] ~2) / e
glmN (Z/mZ
il i Lo -1
=2 [] Fo(@) : T(@)] - 5-x' )7 O )L Xom: 1)- (3.7)
qlmN

The last equality is the consequence of Birch’s lemma, which can be derived from the

computation on [DFK04, page 4] repeated in the following:

Let x be a Dirichlet character of conductor m with Gauss sum

0= 3 aapeEmeln,

amodm

The twisted L-function L(f,x,s) can be expressed as

L(f,x.s) = Zx(n)c(n)n”

n>1
o
= > x(n)e(n)(2m)°T(s)” / 57 Lem2mt gy
n>1 0
= (2m)°T'(s) / 5~ IZX _2mtdt.
0

n>1
From the identity

S x(m)em)e ™ = — L S 10y (2 + afm),

= T(x71)

amodm

(3.8)
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we have

L(f,x,1) = 27r/0C>Q 1 Z x Y(a) f(it + a/m)dt

-1
T(X ) amodm

- “a Ooi a/m
_ qu/o F(it + afm)dt

-1
T(X ) amodm

Remark 3.3.4. [Koj97] discusses Fourier coefficients of the Shintani lifting of a weight
2 cusp form f. Theorem 1 tells us that the integral appearing in can be expressed

in terms of twisted L-values, i.e.,
/ P2 ity = |(2/mz) | 12w a)Ho(f, ) (3.9)

where the sum }_ is taken over all Dirichlet characters 1 modulo m and

Ho(f,9) = i(2m) " Ko(¥)(e(p1), - -, e(pr)) L(fi97 1, 1),
Here p1,...,p, are all prime divisors of m, ¢ stands for Fourier coefficients of f and
Ky(v) is a rational function of r variables given in [K0j97, Lemma 2.2]. Following the
identity in , our I, turns out to be
Io=2 [[ Tol@): T()) - > 1(Z/mZ)] ~2a Z¢ a)Ho(f, ).
qlmN a€(Z/mZ)*
The difference comes from having the particular weighted sum and being able to apply

Birch’s lemma in (3.7).

3.3.2 ON OTHER CYCLES

In this subsection we aim to calculate, for k; # oo,
L= Y 4 [ s
xer”i\Lmz,ni,-‘- Ox

with the help of Atkin-Lehner operators.

We recall Asai’s treatment of cusps [Asa76l Section 1.1] in the following. Each
cusp can be expressed as a reduced fraction with positive numerator except 0 = 0/1. It
is known that equivalence classes of cusps are in one-to-one correspondence with ordered
decompositions N = MoM of two positive divisors. We say a cusp k; = kj2/Ki1
belongs to M;-class if g.c.d.(k;,1, N) = M;. For each decomposition N = M ;M; and

any cusp k; = Ki2/Ki1 of M;-class, we can take a typical matrix which transforms ;
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to oo =1/0:
1 0 Mo\ A
Wi, = oy, with a,, = 0L 2 ) ¢ SL2(Z) and \; € Z. (3.10)
0 Mo, —Kil  Ki2
As (ki1,ki2) = 1, there exists an integer b such that br;» = 1(mod k;;) and as

(kig, Mo;) = 1 there exists an integer ¢ such that c¢My; = 1(mod k;;). Taking
1—Mp i A1Ki2

Ki,1

A1 = bc we observe that Ay = is an integer. So such a w,, always exists

but is not unique.

Proposition 3.3.5. Let f be a weight 2 cusp form of level To(N) with N square-free
and m a square-free positive integer. Assume that (2,m,N) = 1. Choose the Schwartz
form as in . Then the Fourier coefficient of the theta lifting of f as in (3.6) at
m? is I = I which is calculated in .

Proof. Inspired by Kohnen’s work [Koh85 Corollary 1] we calculate the Fourier coef-

ficient in the following.

It is well known that the fractional linear transformation on the extended upper
half plane is the composition of an even number of inversions which means it preserves
the orientation ([Ber05, Section 2.3]). Note that wy, acts on integral x via wy, - x =

1

wy; Xw, . Thus, by Proposition for x € L2, + we have wy, - X € L2 o -

Note that the integrality of lattice is preserved under the action of wy,. Then we have

= Y & /C f(2)dz

x€l, \L

m2, K,

_ new (, —1 X
= Z OF (W, * Wy )/Cx f(z)dz

XEF,% \Lm2v“i +

= new (-1l x z)dz.
R >/Cl f(2)d

XEFOO\LmQ

WX
,00,+ Ky

We will describe @3 (w;il -x) in the following.

Write

Mg\ A
Wi, = 0471 2 with det(ws,) = Mo,
—Mo ki1 Moiki2

and
1 _ el (Mo,mz',z =2

W, = ; with det(w_ 1) = ML
01 Mo,k MO,@')\1> () 0
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b 2
For x = <0 a) € Lo\ L2 oo+ With b= m, we compute

1 (b 2a 1 (b 2a
wn_ . :U‘)K_’_ wﬁi
“\o -b “\o —b

M) Moyikiz  —X2 b 2a Mo i\ A2
"\ Mo,ikin Moidi) \O —b) \—Mo,ki1 Mokiz

! (Mo,z‘fﬁmb 2Mp iKki2a + A2b ) ( Moy i\ A2 )
"\ Moikinb 2Moyirina — Mo Mb) \—Mokin Mo ki
[ Mo ikiaA1b — 2Mp ki 2ki1a — KiA2b 2K 220 + 2M0,i/’v?,2a
B ( 2Mo ki1 Ab — QMO,M?,IG Ki1A2b + 2Mo ;K41 K420 — Mo,i/fz',z)qb)

(Y 2
o v
Note that My ;A iki2 + Aekin =1 as det(wy,;) = Mo,;.
Yy

To analyse ¢ (w,! ) at g2mN, for v = (Z): x1> € T'o(¢q)/T'(q) we compute

(Y24 [V = 2ayd 227yl — 297 4 227 %
7 2 b 222 —b' + 2xyd '

Return to the decomposition N = My ;M;. At q|Mp;|N, we observe that

(b’ —2xycd 2z yb — 2% + 23:20,’)
—b
E( *>§é<m *) mod gq.
* b *  —m

2z2¢ —b' + 2zyd
o *Kll"l)\gb *
o * /'ii’l)\gb
Nl 1 [V 2dY)) . - e . .
So ¢, [+ - o Y is vanishing which implies ¢V at q|Mo;|N is vanishing
Jd —

on wy " X.

W 1

Therefore, we can deduce that @3 is vanishing on wy* - x for X € Ly;2 o 4

which implies I, = 0 for x; # oco. Then the assertion follows. ]

Remark 3.3.6. (i) Let 90(11\7 be the characteristic function of integral lattice and we
will explain why the theta lifting would be vanishing in the following. Assume

Xm(—1) = 1. Then 3 ., , 95" (x) Je, f(2)dz in (3.6) would be vanishing
since both x and —x (giving rise to different orientation) lie in I'\ L,,,>. Also, on
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the last part of (3.6 we would calculate

I=1|1+ Z 5M0,iXm(MO,i) [oo

non-trivial Mo ;|N
where €y, is the Atkin-Lehner eigenvalue corresponding to wy,. Recall from
[Miy06, Theorem 4.3.12] that the sign of functional equation attached to L(f, X, s)
is —enyXxm(N) in our case. For example, let N = ¢i1q2. To achieve the non-

vanishing of I, we need L(f, xm,1) # 0, i.e. we need to have

eENXm(N) = €, Xm(q1)€g,Xm(g2) = —1
which implies

1+ 5Q1Xm((h) + 5(12Xm(QQ) + 5NXm(N) =0.

Then we see that the Fourier coefficient I would be vanishing.

(ii) Another approach to avoid the trivial vanishing of the theta lifting is to take the
local Schwartz function at the finite place as the characteristic of a shift of the
integral lattice by a suitable rational vector, see e.g. [FMI11]. Following this, the
finite Schwartz function is invariant under some principal congruence subgroups.
Then, a modular forms whose level is a principal congruence subgroup is required
to be paired against this theta series while we want to construct theta liftings
of modular forms for I'g-subgroups. So, in preparation for our work in the case
of Bianchi modular forms, we instead incorporated an auxiliary quadratic Hecke
character which also gives us flexibility in applying the result of Friedberg and
Hoffstein about the non-vanishing of the twisted L-values by Hecke characters in
Section 4.5.

The work of Bump, Friedberg and Hoffstein [BEH90, Theorem] guarantees the
existence of infinitely many quadratic characters x such that the twisted L-value
L(f,x,1) is non-vanishing. So if L(f, xm,1) is known to be non-vanishing, we can
deduce that the Fourier coefficient at m? of the theta lifting defined using x,, is non-

vanishing which implies the non-vanishing of our theta lift.



Chapter 4

Theta lift of Bianchi modular

form

§4.1 Binary Hermitian forms

In this section we recall some basics from linear algebra about Hermitian matrices and
Hermitian binary forms from [EGM98, Chapter 9]. For a complex matrix A, the matrix
A is obtained from A by applying complex conjugation to all entries and the matrix A*
is the transpose of A. An n x n matrix A with complex entries is called Hermitian if
A! = A. By the definition we see that an Hermitian matrix is unchanged by taking its

conjugate transpose. Note that any Hermitian matrix must have real diagonal entries.

Let R be a subring of C with R = R. We write H(R) for the set of Hermitian

2 X 2 matrices with entries in R, i.e.
H(R) = {A € My(R): A" = A}.

b
Every f € H(R) defines a binary Hermitian form with coefficients in R. If f = g J

then the associated binary Hermitian form is the semi quadratic map f: Cx C — R

defined by
a b

flu,v) = (u,v) (

; d) (2,0)" = auti + bud + buwv + dvd.

We shall often call an element f € H(R) a binary hermitian form with coefficients in
R. The discriminant A(f) of f € H(R) is defined as A(f) = det(f). Set |a| = (a@)'/?

68



CHAPTER 4. THETA LIFT OF BIANCHI MODULAR FORM 69

for a € C where ~ denotes the complex conjugation. We define the GL2(R)-action on
H(R) given by the formula

o f = (|det(a)|"%0) f(| det(5")|7/25") = | det(o)| o fo" (4.1)
for o € GLo(R) and f € H(R). If 0 = (a ) € GLy(R) we have
(a, B) f(@, B)" (o, B)f(7,0)"
o- de _ .
[ =ldeol <<,>< B (0 >>

Note that A(o - f) = A(f) for every 0 € GLa(R) and f € H(R). Two elements
f,9 € H(R) are called GLa(R)-equivalent if g = o - f for some o € GLa(R); SLa2(R)-

equivalence is defined analogously.

A binary Hermitian form f € H(R) is positive definite if f(u,v) > 0 for all
(u,v) € Cx C\ {(0,0)}. If —f is positive definite f is called negative definite. If
A(f) <0 then f is called indefinite.

We define
HT(R) = {f € H(R) : f is positive definite}
H™(R) ={f € H(R) : f is indefinite}.
Clearly the group GLa(R) leaves the H* invariant. It is easy to see that f € HT(R)
if and only if @ > 0 and A(f) > 0. The group R~( acts on H(C) by scalar multipli-
cation. Similarly R* acts on H~(C). We define
HT(C) :=H'(C)/Rso, H (C):=H (C)/R*.

For f € H*(C),[f] stands for the class of f in #*(C). The action of GL3(C) on
H*(C) clearly induces an action of GLy(C) on H*(C). The centre of SLy(C) acts
trivially on H(C), so we get an induced action of PSLy(C) on H(C) and H*(C).

Recall the upper half space Hg = C x R+, elements of which can be written as
(z,7) with z =z + 1y for z,y € R,r € Ryy.

Definition 4.1.1. The map ¢ : H*(C) — Hjy is defined as

N ) b A(f) .
¢-f—<b d>—>d+d']

In fact ¢ induces a map ¢ : HT(C) — Hs.

This map is a bijection since for a point (z,r) € Hs there exists f = (|Z|2;7”2 i)

such that ¢(f) = z+ rj € Hs. Therefore, this map gives a one to one correspondence

between equivalence classes of positive definite Hermitian forms and points in the upper
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half space. Note that ¢ is the analogue of identification of the set of equivalence classes

of binary positive definite quadratic forms with points of the upper half plane as in (3.1)).

Proposition 4.1.2. The map ¢ : HT(C) — Hs is a PSLy(C)-equivariant bijection;
that is ¢(o - f) = o - ¢(f) for every o € PSLy(C) and f € HT.

Proof. See [EGM98, Proposition 9.1.2, Chapter 9]. O

Definition 4.1.3. For a binary Hermitian form f = (% Z) € 1 (C) we define
U(f)={z+rj €Hs:a—bz—bz+dzz+1r’d=0}
and G = {¢(f) | f € H(C)} which is a set of geodesic planes in Hs.
Remark 4.1.4. This map ¢ is slightly different to the map in [EGM98, Definition
1.3, Chapter 9] which is given by
fo{z+rjcHs:a+bz+bz+dzz+r2d=0}.
The above map 1 is chosen for us to prove Proposition In addition we will

consider the cycle Dy as in Section 2.3 for positive definite U generated by f with
feH (C).

If d # 0 then ¢(f) is the following geodesic hemisphere
D(f) ={z+rj €Hy: |dz — b + |d*r* = —A(f)}.
If d =0 then ¥(f) is a vertical plane. The group PSLy(C) acts on G by its induced
action on subsets of Hs. Clearly v induces a map v : H~(C) = G.

Proposition 4.1.5. The map ¢ : H(C) — G is a PSLy(C)-equivariant bijection;
that is (o - ) = o -(f) for every o € PSLy(C) and f € H(C).

Proof. We will prove the equivariance property only for the generators of PSLs(C).

Let o = (éf) where 5 € C. Then

oo f— 1 B\ fa b\ (1 0\ [a+pBb+pBb+pBd b+ pSd
“\o 1) \p d)\B 1) b+ Bd d |’
It follows that
Y(o-f)={z+rj€Hs|a+ pb+ b+ BBd— (b+ fd)z — (b+ fd)Z + dzz + r’d = 0}.

On the other hand, for z+7rj € (f), we have o-(2+7rj) = (2+ ) +rj € Hs. Setting

2 =2+ 3 and r’ = r, we observe that

a—b(z' = B) = b(z' = B) +d(z' = B)(Z' = B) +r"d=0.
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Then it is not hard to see that ¢ (c - f)) = o - ¢(f) for o = ( f)

In the same way we prove this property for o = ((1) 51 ) . We have
0 =1\ [(a b\ (0 -1 d —b
o-f= _ = .
1 0 b d/ \1 0 b a

¢(U‘f):{Z-H“jEHg:d—i-bz—i-BE—i—azE—i—rQa:O}.

It follows that

For 2+ 1j € %(f), we have 2/ +v'j i= 0+ (2 + 7)) =~ + fpad- Then
2|2 + 1'% = Wﬁ It follows that z = _IZ’IQEﬁ and r = ‘Z,P"m Hence the
following identity holds
_ 2/ z 2/2/ ,',,/2
b b d =0
a+ |Z/|2+T/2 + |Z/’2+T/2 + (‘Z/|2_|_T/2)2 + (|Z/‘2+T/2)2
Then we can see that ¢(o - f)) = o -¥(f) for o = (). O

§4.2 Orthogonal group of sign (3,1) and cycles

In this section we recall some basic aspects on orthogonal groups of signature (3,1) and

cycles in this case from [Berld] Section 4].

Let F = Q(V/d) (d < 0) be an imaginary quadratic field of class number 1 with
discriminant dp < 0. Denote by O by its ring of integers. For an ideal n C O put

To(n) = { (‘C‘ Z) € SLy(0) i c e n} .

Assume that the four-dimensional space V' over Q is given by the hermitian matrices
V={xe€ M(F):x'=x},
with quadratic form
1
x — q(x) = §(x,x) = —det(x)
and corresponding bilinear form

(x,y) — —tr(xy"),

Cy-()

Note that this bilinear form is preserved under the action of GL2(C) where its action

where
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is given in (4.1)); that is, for g € GLy(C),
(9-%,9-y) = (det(g)| 'gxg",| det(g)| ' gyq")

1 o L L
= —5 tr(| det(g)| Lgxg'| det(g)|(g") 'y g~ " det(] det(g)| " 'gyg"))

1 _ _
= —5 tr(gxy ' det(y)g ™) = (x,y). (4.3)
We fix an orthogonal basis of V(Q) given by e1 = (§ %), e2 =(9}), e3 = ( ?f ?)

and e; = (}9) = Zy such that the discriminant of V is d. The basis of Z; can be
identified with {ej, e, e3}.

We have seen in Example that the symmetric space D ~ Hj is isomorphic
to the Grassmannian Grj via the map
2
22+r? 2
p:z+rjeHsr— — <| | ) (4.4)
z 1
The GLg-action on the Hermitian form defined as in (4.1]) induces that on Hj in the
_ ﬁ 2 o / + 2 .
following. For g = ( ) we have g - (' |;’" 2) = <‘Z‘ T ), expand the LHS,
gl
)

Y
1 1 (1575) =i (35) (4°5) (31
r z 1 v 0
- aatal (3 ) (1)
_ 74_1| det(g)|_1 (oi&|z|22+oiar22+éjﬂ,§+gv5z+@3 a?\zli—l—a?ri-&-,{f"y%-&-a&-l-ﬁ_g)
ay|z|*+ayri+adz+Byz+B5  v|z|2+yAr4+70Z+y02+60

jevigell

and then _
,_(az+B)FE+0) +ayr®  , |ad =B
o P 22 0 7 512 2,2
vz + 612 + [y [*r vz + 612 + v [*r

By (4.4), we can deduce the action of GL2(C) on Hj (as in ((1.9)) to be as

a B (G T):<(az+ﬁ)(ﬁz+8)+a~‘yr2 ad — By|r >
v ) vz + 02 + [y 7y o2t |y

(4.5)

Proposition 4.2.1 (Analogue of Proposition [3.1.1). The above map p as in (4.4)
intertwines the GLa(C)-action on V(R) and Hs; that is u(g - (z,7)) = g - u(z,r) for
g € GL2(C).

Proof. Tt suffices to calculate u(g - (z,7)) for g = <,’;‘ g) Writing (2/,7') = g - (2,7),
by the formula (4.5) we have
1 |Z/|2 + r/2 Z/
u(g-(z,r))—r,< = L)

It is not difficult to observe that the entries of u(g- (z,7)) are the same as the coun-
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terparts of g - u(z,7) except for the top left one

2P+ Jaz+ B)(3Z+0) +ayr?? + |ad — By[*r? (4.6)
" rldetgl- (= + 0P+ P2 |

We want to show that

the numerator in (L.6) = (laz + B)? + |a*r?) x (|yz + 0% + |7|*r?).
Expanding both sides, we have
LHS =|az + 8]*|yz + 0> + aayyr? + (a72Z + adz + B7Z + Bd)ayr?
+ (ayzZ + Bz + adz + B8)ayr? + (aadd — afys — aBys + BByY)r?
and
RHS =|az + ]%|yz + 6> + aayqyr?
+ (a@zz 4+ afz + afz + BBV + (v72Z 4+ vz + 70Z + 66)aar?.
As LHS=RHS, we have that
|22+
7! | det g|

(aa|z|? + aar? + afz + afz + BP)
which is equal to the top left entry of ¢ - u(z,7). Hence the GLy(C)-equivariance
property of p has been proven. O

The set Iso(V) of all isotropic lines (1-dimensional x € V' such that ¢(x) = 0)
in V(Q) can be identified with P}(F) = FUoo (oo = [1 : 0]). Assume that the
cusp oo corresponds to the isotropic line spanned by us = (§9). Given an element

g= (3‘ g) € SLy(F) transforming the cusp oo to another cusp x = [ : ], we can see

that
a B 1 0\ (fa # ad oy
g lUoo = - <= | = .
v 4 0 0/ \p § ay vy
Hence we can identify the cusp with the isotropic line by means of the map
a ab
v:[a:b] — span (az ZB) € Iso(V). (4.7)

a

Proposition 4.2.2 (Analogue of Proposition [3.1.2). The above map v satisfies

v(g-la:b]) =g-v(a:b])
for g € GLa(F) and [a:b] € PL(F).

Proof. We compute

v(g-[a: b)) = span <<a“ + Bb)(aa + Bb)  (aa+ Bb)(va + 5b)>

(aa + Bb)(va + 6b)  (ya + 6b)(3a + 3b)
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and for g =

g-v(la:0])

1 a B\ [ea ab\ (& 7 aad + Bab  aab+ Bbb\ (&
=Spaln _ _ _ = Span _ _ _
|detg| \v o) \ab b/ \B & ~aa + dab  ~vab+6bb | \ B

<aaaa + apab + aBab + BBbL  ayaa + fyab + adab + Bébb)
=span .

/

:f) € GLo(F) with |detg| € Q,

S 2l
~

ayaa + adab + Byab + Bébb  yyad + dab 4+ véab + 56bb

Comparing the entries we have proven this property. O

Let U C V be a Q-subspace with dimgU = 2 such that ( , )|y is positive
definite. Then its orthogonal complement U+ has signature (1,1). As in Section 2.3,

we have the special cycle
Dy={ZeD:Z1U}

and let I'yy be the stabilizer of U in SOg(3,1)(V(R)). We denote the image of the
quotient I'y\Dy in T\D by Cpy. The stabilizer I'yy is either trivial (if the orthogonal
complement UL C V is split over Q) or infinite cyclic (if U+ is non-split over Q) (see
[Fun02, Lemma 4.2]). If 'y is infinite, then Cy is a closed geodesic in I'\ D, while Cyy
is infinite if T'yy is trivial (see [Berldl Section 4.3]).

Lemma 4.2.3 (Analogue of Proposition [3.1.4]). For above U, the following two state-

ments are equivalent:

(1) Ut is split over Q,
(2) disc(U) € —d(Q*)?.

Proof. For an arbitrary subspace U of a non-degenerate quadratic space V we have
dim(V) = dim(U) + dim(U~+). Thus U+ is also 2-dimensional. By assumption U~
is a hyperbolic plane. By Witt’s Theorem (a 2-dimensional quadratic space over
a field F is a hyperbolic plane if and only if its discriminant lies in —(F*)?), we
have disc(U+) € —(Q*)2. Thus disc(U) € —d(Q*)? as disc(V) = disc(U)disc(U+) €
4(Q)2.

Conversely suppose disc(U) € —d(Q*)%. Again by disc(V) = disc(U)disc(U+),
we have disc(U+) € —(Q*)? which implies that U~ is split over Q. O

We orient Dy by requiring that a tangent vector v € Tz(Dy) ~ Z+NU* followed
by Z1+NU gives a properly oriented basis of Tz(D) ~ Z+. Then (Z+tNU*+, Z+NU, Z)
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has the same orientation as (e1, ez, es,eq), i.e. the determinant of the base change is

positive.

For 3 = ' € M>(Q) a positive definite symmetric matrix, let
1 ) )
Qp =< (x1,%x2) € VZ(Q) : - Ga,x) e x0)) B
2 (x1,%2) (X2,%2)
Consider the subspace U(x1,x2) := Span{xi,x2} C V. For a fixed cusp k; corre-

sponding to the isotropic line [, we write

Q/g,m = {(Xl,Xg) S QB : U(Xl,Xg) 1 l,ii}.

From now on, fix a 3 such that det 8 € —d(Q*)?, i.e. disc(U(x1,%2)) € —d(Q*)?
for (x1,x2) € Qg. Let (x1,x2) € Qg and U = U(x1,%x2). Given a vector x € U, by
Lemma [4.2.3] it is orthogonal to two isotropic lines I, and l., generated by u,., and
U, respectively associated to two cusps x; and ko. Again, if these two cusps are not
equivalent with respect to I', we can give a positive orientation to U to distinguish
the cusps in the sense that the new base (u,,,X1,X2,ux,) preserves the orientation of

(e1,e2,e3,e4). For a fixed cusp k; corresponding to the isotropic line I, , we write

Qg it = {(x1,%2) € Qg ;U (x1,%2) L (w5 us; ),
(Un;,X1,X2,Uy;) has a positive orientation}.
It should be mentioned here that (u,,X1,X2,us;) and (ux,, —X1, —X2,ux;) have the
same orientation which means that we need to count (x1,x2) and (—x;, —x2) simulta-
neously in Qg ., .. Alternatively, the following Lemma describes the orientations
associated to two pairs (x1,%x2) and (—x1,—X2) in g 4. Note that the stabilizer
I, C I' of the cusp k; acts on Qg ., + as GLa(C) preserves bilinear forms and the

orientation.

Proposition 4.2.4 (Analogue of Proposition [3.1.5). For det(8) € —d(Q*)?, we have

MQg = Z L\, +-
ki €D\P! (F)

Proof. Given a representative [(x1,x2)] in I'\Q2g such that U(x1,x2) L u,,, we consider
its I'-orbit I'- (x1,x2). The corresponding Dy for U = (I"- (x1,x2)) has the image
C(x;,x5) in T'\Hz under the natural projection Hz — I'\H3. For a v € T' we have
Ur.(x1,x5) L 7 Ux,; - By Proposition we know that 7 - wy, = y., . It follows that
v - (x1,%2) lies in Qg +.; +. Thus, modulo the I'-action, we have a well-defined map:

L F\QB — H FM\Q@M#'
ki, EC\PL(F)
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If two pairs (x1,x2) and (y1,y2) are not I'-equivalent then they are not Iy, -equivalent

since I',, C I'. Hence this map is injective.

1

We will show that the inverse map ¢~ is injective in the following. For x = (‘g Z) ,

we calculate its orthogonal complement in Hj3 using the isomorphism (4.4)),
xtNHz = {z+7j € H3 : d(|z|* + %) — bZ — bz + a = 0} = ¢(x)
where 1) is defined as in Definition Observe that xi- Nxy NHs = 1(x1) N (xa) of
which one boundary point on the extended complex plane is x;. Suppose that two pairs
(x1,%x2) and (y1,y2) are not I'y,-equivalent in I'x,\Qg x, +. Note that 1 (x1) N1(x2)
and ¥(y1) N1 (y2) have a boundary point in common, the cusp ;. Assume that there
exists an element v € I" such that ~ - (x1,%x2) = (y1,y2). Then, by Proposition m,
we have v - 1(x1) = ¢¥(y1) and - ¢¥(x2) = ¢¥(y2). It is easy to observe that

v (Y(x1) Np(x2)) =7 - P(x1) Ny - P(x2) = Y(y1) N(y2).

It follows that v must be in I',, which is a contradiction to that (x,x2) and (y1,y2)
are not I'y,-equivalent. So such a v does not exist. We have proven the injectivity of
-1

L. [

Set det(3) € —d(Q*)2. It is easy to observe that, for the cusp oo, we have

ar by az b
Q500 = - | = €Qg:ar,a20 € Q,b1,bo € F ).

For (x1,%2) = ((% b ) , ( jb()?)) € Q3 0, we have
51 <(x1,x1) (xl,xQ)> _ ( biby %(blb2+blb2)>'

==
o=
N Q

2\ (x1,%x2) (x2,x%2) 3 (b1ba + b1by) babs
of which the determinant is
1 - -
det(B) = disc(U(x1,x2)) = —Z(blbg — 5152)2_

We are not interested in the case when b1bs € Q since then det(3) = 0.

Let U = U(x1,x2) for (x1,%2) € 5. We will calculate its corresponding spe-
cial cycle Dy in the following. Given a point z+rj € Hs identified with % ( ‘Z|2;’”2 i) ,
we compute
1 (|z\2+r2 ) (91 bl)* _1 (|z\2+r2 ) ( 0 —bl) _1 (—Blz . ) '
r z 1 b1 0 r z 1 —b1 a1 r *  —biz+ay
Thus we have
X%:{Z-i-rj EHg:CLl—blE—BlZ:O},
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and similarly,
X%‘ = {Z+’r‘j EHgICLQ*bQE*Z_)QZZO}.

Then, solving above equations, we can deduce that the special cycle Dy consists of the

infinite geodesic line joining two cusps oo and
a2b1 — a162
=== = 4.8
U by — biby (4.8)
Lemma 4.2.5. Suppose that O = Z[w] with w is either \/d or % and denote the
stabilizer of the cusp 00 by I = {(}¢) : @ € O}. Denote

b b
Lot = o ) a2 02 tai,ag € Z,b1,bo € O, the condition t holds
by 0 by 0

where the condition T is given by

()=o) (1)

with «, 8,7,0 € Z, ad — py = =+1 and m € F'. Then the cusp 2y(x, x,) associated to
the pair (x1,%2) in Doo\Loot rTuns through all the representatives in (m/dr|)~10/O.

Proof. Write U = U(x1,x2). The I'g-action on (x1,X2) € Lo+ is given explicitly by

1 « a1+ aby +aby b as + aby + @by by
. (X17X2) — - 5 - .
0 1 by 0 by 0

Under the I'y-action, the cusp zy becomes zj;; that is
(ag + aby + aby)by — (ay + aby + aby)bs

I
U bibs — bibs
:azbl + Oél_)zbl — albz — Oél_)lbz E——
bibs — bibs vre

By our assumption, the cusp zy can be rewritten as

maz(a + fw) — maq (7 + ow)
—mm(a + fw)(y + 6w) + mm(a + Bw)(y + dw)
az(a+ fw) —a1(y+dw)  az(a+ fw) —ai(y + dw)
T - w—w) mvdr

of which the numerator ranges over the whole O.

U =

Thus, modulo the I'y-action, the corresponding cusp zy runs through all the
representatives in (mv/dr) 10/0. O

Remark 4.2.6. Let m be a square-free product of split or inert primes.
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(1) Let d = 1mod4 and then dr = d. The above zy ranges over (mvd)~'O.
Writing f = (m+v/d)O, we have

a2b1 — a1b2 a2b1 — a1b2
=l —=——|f=—7]0.
¥ <b1b2 ~biby > i ( - )

(2) Let d =2,3mod4 and then dr = 4d. Note that in this case prime 2 is ramified
in F = Q(vd). Rewrite ([&.9) above as

()= 0 ()

with o, 8,7,0 € Z, ad — 3y = 1. Then the above zy ranges over (mv/d)~'O.
Writing f = (mv/d)O, we have
a2b1 — a1b2 2(a2b1 — albg)
=(—"T)f=|————7=| 0.
wl <b1b2—blbg>f ( m

2(a2b1—a1b2)

In Section 4.3 we will define the Schwartz function evaluated at “2b1;f”b2 or —

as above depending on d.

Let U = (x1,X2) = <(%11 b01>’(%; bOQ)> where aj,as € Q and by, by € F*. We
have seen that Dy consists of the infinite geodesic line joining the cusps oo and zy
as in . Choose a point Z = zy +rj on Dy and then the orientation of T (Dy)
depends on the sign of Im(b1bo) (assuming Im(bybs) # 0) by the following lemma.

Lemma 4.2.7 (Analogue of Lemma [3.1.6)). Let U, Dy, Z be as above. Then the sign
of Im(bibs) (assuming Im(biby) # 0) determines the orientation of Tz(Dy).

Proof. Let Z = zy+1j be a point on Dy which can be identified with % (ZUZ%“'TZ = ) .
Suppose that (% ? ) € Z1+ and we compute, recalling * action in (4.2))

Oj /8 ZU2U+T2 zZU * _ 05752[] _ *

B Zu 1 B *  —Bau+d(zvzu+r?) )
It follows that

zt = {(%g) ca— Bzy — Pay + 02z +1°) :0}.
We describe the subspace Z+ NU as
z-nu={(54) a8 B =0,aeRpeCh ={ (i)}

where § = Span{bi,b2}. Set § = f1 + foi, 2y = zy1 + zu2t and b; = bj; + bjoi
(7 = 1,2). Suppose that 5 = ub; + vbe for u,v € Q and then we observe that
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b1 = ub11 + vbe1 and (o = ubia + vbey. Consider

( Bzu+Bzu 5)
B8 0

( 2(Brzu,1+B22v,2) ,31+522 )
B1—P2i

2z 1 2z i
=51 (97 §) + 62 ( _Ufo)
=(ub11 + vba1) (2zf’1 (1)) + (ubia + vba2) (22:2 8)
:u<bll(22U1 1)+b (22U2 Z))+’U(b21(2ZU1 1)+b (2,2'_[/;2(1))>
( (b +b1) (201 )) - 5i(bl by (P2 0))
7 z 1~ 7 z 7
+wv (2(b2 + b2) (2 i (1)) - 52(52 — bo) <2_UZ-’2 0))
1 - B 1 _
=u <4(b1 +b1)(2u + Zu)(e1 + eq) + *(61 +b1)es
1 _
_Z(bl — bl)(ZU — ZU)(el =+ 64) — *’L b1 — b1 63>
1 _
+v (4(62 + bg)(ZU + EU)(el + 64) (bg + b2)€2
1 _
_i(bQ — bQ)(ZU — EU)<€1 + 64) — *Z b2 — bg 63)
1 _ - 1 - 1. -
=u (2(b1ZU +bizy)(e1 +eq) + §(b1 + b1)eg — Qz(bl - b1)63>

1 - 1 - 1. -
+v (Q(bQZU + bQZU)(el + 64) + 5(1)2 + b2)€2 — El(bg — b2)63> .

Observe that B
a2b1 ale - agbl — a1b2
b b =b;= -
U O = T M biby — buby
_ —agbiby + arbiba + asbiby — aibiby
N biby — biby

and similarly that byZy + bozyy = as. Then we deduce that

1 1 - 1. _
Zi NU = <2a1(61 + 64) + 5(1)1 =+ b1)62 — il(bl — bl)eg,

:al

1 1 _ 1. _
§a2(61 +eq)+ §(b2 + bg)ea — §Z(b2 — b2)63>

which coincides with U = <(%11 b01 > ) (%; b(]2)>-

To describe the subspace U=, we consider ( : '?) € UL which satisfies that, due
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to the orthogonality,

Say = Bby + Bby
Sas = Bby + Bby

Then we have by solving equations
_ (a2b1 — a1b2)6

— 6 and  f= (@i ab)d

— — = = = Zyo.
b1b2 — b1b2 b1b2 - b1b2

It follows that

7l AUt = (zuzy —1%)6 2y P cuEy — 12 2y
Zyd ) 2 1

€ 1 1. _ g, _
= <2(zUEU — 2 —1)ey + i(zU + zZy)es — iz(zU —Zy) + 63§(ZUZU —r? 4 1)e4>
where ¢ = +1 describes the orientation of Tz (Dy) ~ Z+-NUL. If the cycle Dy is
directed from zy to oo then we take e = —1. For a different direction of Dy we take
e=1.

For the point Z on Dy we consider its corresponding vector in V':

1 (ZU—?UJH“2 ZU)
r Zu 1
1/1 1 1. _ 1
=— | =(zvzy +7¥)(e1 +eq) + = (2v + Zv)ea — =i(2v — Zv)es — = (e1 — e4)
r \ 2 2 2 2
1/1 _ 9 1 _ 1, _ 1 _ 9
= §(ZUZU +7r*—1)e; + §(ZU + zZy)ea — §Z(ZU — Zy)es + §(ZUZU +7r 4+ 1)eq ).

Then we consider the base change, which describes the orientation related to

introducing g, +, given by

e
2AnUt !
e
Ay | =M |7
€3
z
€4
where
sGuzu —r?=1) sl +z) —3i —2)  §(awEy —ri 4 1)
M- 301 b +b)  —Fi(br—by) Loy
%QQ %(bZ + b2) —%i(bz — bQ) %CLQ

s(zvzr +r2=1) $(aw+a) —gilev —2v) o (2vz +r2+1)
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We calculate its determinant in the following:

—r? 0 0 —r?
det M =5 %al %(bl +b1) —%i(bl —by) %al
o lag l(bg + 62) —li(bg - Bg) lag
2 2 2 2
slvzy +17 =1) (v +2v) —gilzv —2v) (evzw +1° +1)
1 0 0 0
. a1 Loy +b1) —Li(bi—by) 0
302 Lbg+by) —Li(ba—by) 0
s(zuzu +12=1) (v +2y) —3i(zu —Zv) 1
_ |z b)) —gilh = b)
L(ba +b2) —Li(by —bo)
1

1 - . _
= — €T§i(blb2 — blbg) = §€T1m(b1b2) >0

which implies that the sign of Im(b;bs) determines the orientation ¢ of T (Dy). O

§4.3 Schwartz function

Let F' = Q(v/d) be an imaginary quadratic field and denote by O its ring of integers.
Choose m € Z as a square-free product of inert or split primes and put m = mO.
Let xm be a quadratic Hecke character of conductor § = Vdm. Denote by Ym the
induced idelic one as in Section 1.3 and by Xm,. its local component. In this section we
will define a finite Schwartz function related to this character yu . At the archimedean
place we take the Schwartz form ¢y € S(V(R)?) ® Q?(D) as in Example 2.2.2

We first describe how to localise the quadratic space in the following proposition.
In Section 3.2 we have chosen the rational quadratic space of dimension 4 such that
(V(Q),q) ~ (H(F), —det). Thus, to extend it to a 4-dimensional quadratic space over
p-adic numbers Q,, we can consider H(F') ® Q,. Following [Rob01l, p.273], there are
two four dimensional quadratic spaces over Q, with discriminant ? € Q;/ ((@;)2 up
to isometry. If 0 = 1, it is isometric to Mayx2(Q,) equipped with the determinant; if
0 # 1, it is isometric to

Vi(Qp) = { (g\eﬁ ff) 1 f,9€Qpe€ Qp(\@)} C Mo (@p(ﬁ))

equipped with the determinant.

Proposition 4.3.1. For a prime p, the four dimensional quadratic space over Q, is
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isometric to either (V1(Qp), det) when p is inert or ramified in F/Q, or (M2(Qy),det)
when p splits in F/Q.

Proof. Given a diagonal quadratic form @ = Zle aisv? with a; € QF, we define

X
4 )
the Hasse invariant as ¢,(Q) = ¢(Q) = [[;;(ai,aj), = £1 where (, ) denotes the
Hilbert symbol. The non-degenerate quadratic spaces over Q, (p < oo0) are in 1-1
correspondence with the triples (4,9, ¢), where 9 is the discriminant and ¢ is the Hasse

invariant, see [Cas78, Theorem 1.1, Chapter 4].

Let p be inert in F/Q which implies that v/d ¢ Q, and that F ® Q, = Q,(V/d).

Then we have
b
H(F)®Q, = {(Z d) :a,der,ber(\/E)} =H(F ®Qp),

where ~ denotes the non-trivial action in Gal(Q,(v/d)/Q,). Equipping H(F) ® Q,

with the quadratic form being —det and choosing an orthogonal basis e; = ({9),

e2=(02), es= (%)) and eg = (7?/& ?), we have an associated diagonal form
Q= —2}+ 23+ 23 —dr3. Tt follows that © = d and ¢ = (—1,—d), = 1 since
p 1 d. Similarly, for V1(Q,) with the discriminant @ = d, choosing an orthogonal

basis ¢] = ({9), e, = (?_%), ef = (\%?) and e} = (-?/&?) in V1(Qp)
above, we have a diagonal form Q' = 2?2 — dz3 — dz3 + dz3. Then ? = d° and
d = (1,—=d)2(1,d)p(—d, —d)p(—d,d)? = 1 since p f d. Thus, we can deduce that

(H(F) ® Qp, —det) >~ (V1(Qp),det) if p is inert in F/Q.

Let p split in F/Q such that (p) = pp. Then d has a square root « in the
ring Z, of p-adic integers by Hensel’s lemma. It is known that F'® Q, = F, x Fj
where [, F; are both isomorphic to Q,. Consider the map H(F) ® Q, — M2(Qy)
via (% Z) R x > (g;f Z’;i) where the subscripts p,p,p denote images under Q — Q,,
F — F, and F' — Fjy respectively. Note that by, by have the same image in Q,.
It is not hard to see the map H(F) ® Q, — M2(Q,) is surjective: for any element
(% 3)- X with A € Q, we can find its preimage <_0\/g \{)E) ®@a '\ in H(F)®Q,; for
(D)X, (5 %) -XAand (94)- X, we can find their preimages (§9) @\, (§%)® A
and (9}) ® X respectively in H(F) ® Qp. Then H(F)® Q, ~ M>(Q,) as they are
both 4-dimensional over Q,. In fact M>(Q,) equipped with the determinant is one
isometric class of four dimensional quadratic spaces of discriminant 1 [Rob01) p.273].
Again, equipping H(F') ® Q, with minus determinant and choosing an orthogonal
basis e1 = (§9), e2=(§ Y1), es=(1}) and e4 = (—?/E ?), we have an associated
diagonal form @ = —a? + 23 + 23 — daj. It follows that 0 = d (square in Z,) and
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¢ = (—1,—d), = 1. Choosing an orthogonal basis ¢} = (§9), e, = (§ %), 5 =(9})

and ¢j = (% §) in M(Q,) we have o =1 and ¢ = 1. Thus we can deduce that
(H(F) ® Qp, — det) ~ (M2(Qp), det) if p splits in F/Q.

Suppose that p is ramified in F//Q, and then we have F' ® Q, = Qp(\/g). As
in the inert case, H(F)® Q, = H(F ® Q). Corresponding to (H(F)® Qp, —det) the
Hasse invariant ¢ = (-1, —d), = (—1)%1. For (V1(Qp),det) we calculate

p

d = (L, d)y(=d, —d), = (1, —d)p(1, ~1)p(1, =) (~d, —d)p = (—d, —d), = (~1)*7

where the last equality holds as d is square-free and divisible by ¢. Thus, if p is
ramified we have (H(F ® Qp), —det) ~ (V1(Qp),det). O

In this chapter we need to consider the pair Sp, x SO(3,1) to construct the theta
liftings of weight 2 Bianchi modular forms. We have seen its Weil representation in
Example 2.1.1 In the following subsections 4.3.1, 4.3.2 and 4.3.3, we define local
Schwartz functions at split primes dividing m, inert primes dividing m and ramified
primes away from 2 respectively. In Section 4.4 we will construct the theta lifting of
a weight 2 Bianchi modular form of I'g(n) with square-free n coprime to (m|dr|). To
avoid the vanishing of our theta lifting as discussed in Remark 3.3.6 in subsection
4.3.4 we define the local Schwartz function at each place dividing N(n) (norm of n)
and ramified prime 2, to be different to the characteristic function of integral lattice .

In subsection 4.3.5 we consider all other finite places.

4.3.1 AT SPLIT PRIME DIVIDING m

Let g|m be a split prime such that (¢) = qq. According to Proposition there is
an isomorphism (H(F) ® Qg, —det) =~ (V1(Qy),det) for ¢ split in F//Q given by

a b a b

_ —

b d c d
where ¢ is the image of b € F under F < F, ~ Q,.

Definition 4.3.2. (1) Suppose that d = 1mod4. The local Schwartz function g™

at ¢ is vanishing unless

a; € Zq,bi € q(’)q,cz- S qu,di S Zq,a2d1 —aydy € qu,
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in which case

X ar b az by
oq" ;
C1 d1 C2 d2

~ = asbi—aib codi—cid s agbi—a1b cody1—c1d X X
_{(Xm,qu,ﬁ)<2l 102 21m12)’ 1f21m12+ 21ml2€(/)q><(9EI7

m

0, if @2bimaiby 4 edizad ¢ g0, or §O.
where (Xm,qXm,g)(—) = Xm,q(—)Xm,g(—). Note that b; € qO0q,c; € qO4 is equiva-
lent to b; € 904 x 905.

2(az2b1—aib2) codi—cida

and

(2) Suppose that d = 2,3 mod 4. Replace above GQbI;Lale by
by Q(leT_cld?) as discussed in Remark

m

In the following we will check the invariance properties of this local Schwartz
function under some congruence subgroups of Sp, and SO(3,1) in details in case of

d = 1mod4 and the other case can be treated similarly. We need to calculate the

transformation properties (2.1)), (2.2)), (2.3) and (2.4). For simplicity we write ¢, = p3™

and x¥ = xm in the following computation.

c1 di co do

d; € Zg, it is not difficult to observe that

w (((1) 11L>> 0q(X) = pq(x1,%x2) for u € Ma(qZy) (4.10)

as g (3 tr(u(X,X))) is trivial for such (x1,x2) and u.

Set X = (x1,X2) = ((‘“ b1>,<a2 bQ)). For a; € Zq, b; € 904, ¢; € q0y,

Set Y = (y1,y2) = ((m /31> 7 <O¢2 B2 )> . Inspired by Prasanna’s computations

7 0 Y2 02
in the proof of [Pra09, Proposition 3.4, we will calculate the Fourier transform
0q(Y) = / Yy (tr(X,Y))pqg(X)dX  fori=1,2,
aiEZq,biEqu

c; quq ,d;€Zq
where

tr(X,Y) = —(a101 — biy1 — c181 + diag + az02 — baya — c252 + dava).

Denote by A 5 the image of Vd in Oy. By the above definition, ¢, is invariant
under the transformations a; — a; + q, b; — b; + ¢>, b; — b; + q2)\\/3 (or b; —
b; + q2%) and d; — d; + ¢. Sending a; — a; + g, we will have ,(—qd;), factored
out of the above integral, which has to be trivial for the non-vanishing of ¢,. So for
$4(Y) non-vanishing we need &; € Z,. Sending by — by + ¢, we get ¥,(¢*(11 +
p1)). For by — by + q2>\\/3 and b; — b; + q2%, we get Yq(q* (11 — Bi)Az) and
wq(%q2(fyl + 51) + %qz(vl — B1)Ag) respectively. For ¢¢(Y) non-vanishing we need
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y1—B1,71—B1 € ¢ Z, which implies $1,71 € ¢~ Z,. Repeating the same argument we

can deduce that for the non-vanishing of ¢, the following conditions must be satisfied,
i € Ly, Bi € ¢ Ly, vi € ¢ 2y, 0i € Ly,

It follows that w (( 9 (1))) ©q(Y) is vanishing unless a; € Zq, f; € qiqu, v € qiqu

and 9; € Zy.

Recall from (22.2)) that

1 u R 1 .
’ ((0 1)) £u(%) = vy (5 (Y, X)) ),

For o; € Zy,B; € qiqu,’yi € qilzq,& € Zq and u € Mg(q3Zq), Py (%tr(u(Y,Y))) is

trivial. Thus we can deduce that

T (s ) e

which implies

w ((1 0)) 0(Y) = ¢4(Y) for u € Ma(¢*Zy), u=u'. (4.11)

u 1

For a = (3 g) € GLy(Z,), we compute

a [ aay +yas  aby 4+ vbo Bai + das  [Bby + 0bsy
Xa = (x1,X2) = ,
v 0 acy +yca  ady + vdo Bec1 + deo Bdy + dds
due to which we obtain that
ahby — aith,  (Bai + daz)(aby + vba) — (aay + yas)(Bbr + dbs)

m m

_ (ad = By)asby — (ad — Br)arby det(a)

m
and similarly that % = det(a)- % Then from (2.3) we see that if det(a) €
Zy then

a2b1 — albg

w((‘; tao_l))soq<x>:xv,q<det<a>>rdet(a)rzmxdet(a»soq(X). (4.12)

Combining (4.10]), (4.11) and (4.12), we have proved the following lemma:
Lemma 4.3.3. We have

w(k1)pg = xv,q(det(A))| det(A)[3(XqXq) (det(A)) g

N R re—

for
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Proof. The assertion follows from the Iwahori decomposition of Sp,. O

We next discuss the action of SO(3,1)(V(Qq)) on ¢, characterised by
w(1, h)py(x1,%2) = g (b x1,h 'x2)  for h € SO(3,1)(V(Qy)).
We have seen the exceptional isomorphism PSLy; ~ SO™(3,1) in Section 1.2, and in
this case of split ¢ as in Example 1.2.3 we want to check congruence subgroups of
PSLy(Zq % Zq) under which the Schwartz function ¢, is invariant. Recall from [Rob01}
Section 2] that h~'x; := hy'x;/'(hy')* for h = (h1,ha) € PSLy(Z,) x PSLy(Z,) =
PSLy(Zg X Zy).

Lemma 4.3.4. For h = (hy, he) € PSLy(Z,) x PSLa(Z,) satisfying

hiel“(q):{<(j ?)GPSLQ(ZQ):i<j ?)Ei(é (1]>modq},

we have that
w(l, h)pg(x1,%X2) = @q(x1,%2). (4.13)

B i b .
hj_1 _ (o F and x; = ¢ for i,j € {1,2}
’)/j 5]‘ C; dl

with a;,0; = 1mod g and 3;,7; = Omodg.

Proof. Set

First we assume that a;,d; € Z, and b;, c; € qZ4 so that ¢, is non-vanishing on

(Xl, Xg) .

We compute

B\ ey
<c’. d’,> =hy it ()

_ (52(0416% + Bici) — Ba(a1b; + Prdi)  —y2(ena; + Bici) + az(onb; + 51611)) .
d2(v1a; + 01¢;) — PBa(y1bi + 01d;)  —vy2(y1ai 4 d1¢;) + o (y1b; + 01d;)
It is not hard to observe thatd,c; € ¢Z, as b;,c;, 8,7, € qZq, and
ahd) — a\dy = a1as6102(azdy — a1dy) = asdy — a1dy  mod gq.
Modulo ¢?, we have
aghy — ayby =dzciag(—y2a1a1 + aaarby + azfidy) — daarar(—yeaiaz + azarby + aafids)

Ea%agég(agbl — albg) + a1a26152(a2d1 - aldg).
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It follows that 'y 1y b b
U1 700 _ 9221 T g
m m

Similarly, we obtain that modulo ¢?
chdy — cydy =aadidi (027102 + 020162 — B2d1d2) — dida(d2v1a1 + 0201¢1 — B2d1dy)
=00202(cady — c1ds) + agy16102(azdy — ardy).
and chdy — dydy  cady — erdy

= mod gq.
m m

Therefore, when ¢, is non-vanishing, we can deduce that

w(l, h)eq((x1,%2)) = @q((x1,%2))  for h = (h1,h2) € T'(q) x T'(q).
When ¢, is vanishing, we consider that b; € Z; and other cases that by, di or ds in
ZF can be treated similarly . For h™! = ((O‘l 51) , (0‘2 ’32)) € T'(q), it is observed

71 81 Y2 O2
that
by = —y2(arar + Bicr) + az(aiby + fidi) € Zg
which makes ¢, vanish on (h~!x;,h7!x5). Now we have proven this lemma. O

4.3.2 AT INERT PRIME DIVIDING m

Let g be an inert prime dividing m such that (¢) = q. According to Proposition m
there is an isomorphism (H(F) ® Qg, —det) ~ (V1(Q,Vd),det) for ¢ inert in F/Q

given by
b b avd
(C_; c>'—><0\/cj al_) ) fora,cEQq,bqu(\/g)

where ~ on the right hand side denotes the non-trivial action in Gal(Q,(v/d)/Q,).

Definition 4.3.5. (1) Suppose that d = 1mod4. The local Schwartz function o™

at ¢ is vanishing unless, for i = 1,2,

a; € Lq,b; € 90y, ¢; € Zgq and azcy — a1c2 € qZqg,
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in which case

o b aVd by asVd
o \\evd b ) \evd b

:{ %qu (a2blr71alb2 + 5201;51C2> . if a2b1;la1b2 + 1_7201;15102 c O‘;(,
. b1—a1b bac1—b
07 lf az lmal 2 + QClm 1C2 e qoq.
(2) Suppose that d = 2,3mod4. We replace above “legf”bQ by 2(a2b1w:a1b2) and

bae1 =byz by Abzei=bica) g discussed in Remark

m m

In the following we will check the invariance properties of this local Schwartz
function with respect to Spy x SO(3,1) in detail in case of d = 1mod4 and the other

case can be treated similarly. For simplicity we write ¢, = ¢3™ and X = Xm.

Set X = (x1,%2) = (( by a“/a) ,( b “2‘/3>>. For a; € Zy,b; € 904 and

c1vd by cavd by
¢i € Zg, it is easy to observe that
1 u
w ((O 1)) 0q(x1,%2) = @q(x1,%2) for u € Ma(qZy). (4.14)
_ _ B a1Vd B2 asVd . . .
Set Y = (y1,y2) = ((%\/3 5 ) , (72\/3 5 )) Consider the Fourier trans
form
8uY) = [ (X, Yy (X)X
where

tr(X,Y) = — (b1 + b1f1 — aryid — aqcyd + bafa + bafla — agyed — ascad).
By the definition, ¢, is invariant under the transformations a; — a; +q, b; — b; + 7,
b; — b + ¢>Vd (or b — b +q¢*- 1+T\/3) and ¢; — ¢; + q. Repeating arguments in the
previous subsection, we can observe that the Fourier transform ¢(yi,y2) is vanishing
unless, for i = 1,2,
a; € Zg; B,B € q 1 Oy(as B+ Bi € ¢ Ly, Bi — Bi € ¢TIV dZy); v € Zy.
It follows that, for u € Ms(¢®Z,) such that u = u?,

1 u 0 1 0 1
A e i e
which implies

1 0
w ((u 1)) ©0q(¥y1,¥2) = ¢q(y1,y2) forue Mg(q3Zq), u=u’. (4.15)
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. b/ /\/g b/ /\/E
For a € GLy(Z,), write ((c’l\l/?iall}’l ),(6,2\2’/&1125,2 )) = Xa. We have a4d] —

ajth, = det(a)(aghy — arbe), bhey — bich = det(a)(bac; — bica) and dhcy — ajch, =
det(a)(agc1 — aicz). So for det(a) € Z; , we obtain

w<<§ 0)1) Puloe1,52) = Xv,g(det(a)) | det ()3T (det(a)) a1, 02). (4:16)

Combining (4.14]),(4.15) and (4.16]), we can deduce the following lemma:

Lemma 4.3.6. We have
w(k2)q = xv.q(det(A))] det(A)]2Xq(det(A)p,

R e —

for

We next discuss the action of SO(3,1)(V(Qq)) on ¢, characterised by
w(L, h)pg(x1,%X2) = @g(h'x1,h 7 'x2)  for h € SO(3,1)(V(Qy)).

Due to the exceptional isomorphism PSL(Q,(v/d)) =~ SO'(3,1)(V(Q,)) as in Exam-
ple 1.2.3 in this case we check the invariance property under some congruence
subgroups of PSLy(Oy). Here we have that h™'x; := h™!x;(h™!)* for i = 1,2 where
~ denotes the non-trivial action in Gal(Q,(v/d)/Q,) (see [Rob01}, Section 2]).

Lemma 4.3.7. For

heT(q) = {(: ?) € PSLy(0Oy) : + (j ?) =+ ((1) (1)> modq},

we have that
w(l,h)pg(x1,%2) = pq(x1,%2). (4.17)

-1 _ [ 5 o b; ai\/g
h —<’y 5) andxl—<6i\/g bi).

with «,0 =1 mod ¢ and 8,7 =0 mod gq.

Proof. Set

First we assume a; € Zg, b; € qOq,c; € Zgq so that ¢, is non-vanishing on
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b’ 'd

X1,X2). Writing h~!x; = ! az_\f , we compute
/ \/g b/
G i

v, divd\ [a B b aiVd 5§ -B
gvd b ) \v 0)\avd b -«
_ [abi+ Beivd  aaVd+ Bb; 5 -8
a vbi + seid ya;Vd + 6b; -7«
B §(ab; + Beiv/d) — F(aa/d + Bb;)  —B(ab; + Beiv/d) + alaa;v/d + Bb;)
S(ybi + dcid) — F(vaiVd + 6b)  —B(vb; + 8¢/ d) + a(yaivd + 6b;) |
It is not hard to observe that a; € Zg,b; € qOq, ¢, € Zy and that ajc] — afch =
ascy — ajca mod g. Then we expand

! 1./ !/ 1/
asby — ayby

_ <O_‘ﬁb?\fdﬁab2 — BBecy + aaa2> (6(aby + 501\/@ — ﬁ(aal\/g'i‘ fBb1))
— <@Bbl\}d&“bl — BBe1 + daa1> (6(cba + BeaV'd) — Y(aasVd + Bb)),

and, modulo ¢?, we get
ahb| — a' bl Eazdg(agbl —aibe) + a@ﬁgx/g(agcl — aica).
Similarly, we have, modulo ¢?,
bych — by

=00¢1(—BcaVd + a(yagVd + 6by)) — 6dcy(—BderVd + a(yaiVd + 6by))

=62ad(bycy — byco) + d’y&g\/&(agcl —ajca).
Then we can deduce that B B B

abtl — ay bl N by — by,  asby — aibe N baci — bica

= mod ¢
m m m m

which implies that

0 aébll — allbé + [;/26,1 — 6’10,2 — 0 agbl — albg i 6261 — Blcg
1 m m e m m ’

Next we assume by € Of so that ¢, is vanishing on (x1,x2). It follows that
dab; € qu and then b] € qu which makes ¢, is vanishing on (h~1x1,h 1x3). Other
cases that by, bh, by € OF can be treated in the same way and recall that a)c] —a)c)

ascy —ajce mod q. Hence, if ¢, is vanishing on (x1,x2), so is that on (h™'xy, h™1x3).

O

Now we have proven this lemma.
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4.3.3 AT RAMIFIED PRIME AWAY FROM 2

Let ¢ be a ramified prime away from 2 such that (¢) = q%. According to Proposition
there is an isomorphism (H(F') ® Qg, —det) ~ (V1(Qq),det) for ¢ ramified in

F/Q given by
a b b avd
<5 c) — <C\/E B ) for a,cEQq,bqu(\/g)

where ~ on the right hand side denotes the non-trivial action in Gal(Q,(vd)/Q,).
Note that when d = 2,3 (mod 4) the prime 2 is ramified and at the ramified 2 the local

Schwartz function is defined in the next subsection.
Definition 4.3.8. (1) Suppose that d = 1mod4. The local Schwartz function o™
at ¢ is vanishing unless, for i =1, 2,
i € Zqy¢; € Lg,b; € Oq,b1ba — biba € qO,
in which case
o b aVd by asVd
(a0 o )

_{ %m,q (azbl—(llbg + 5261—5102) . if agbi—aiby baci—bico c OCT’

m m m m

. asbi—aibs boci—bico
0, if @2—dln2 4 28212 € qO.

9) Suppose that d = 2,3mod4. We replace above 92bi=aibz 1y 2(e2bi—aibs) g
(2) Supp ; P - y

- = = - m
boci—bica by 2(bac1 —bic2)

— o as discussed in Remark

In the following we will check the invariance properties of this local Schwartz
function with respect to Spy x SO(3,1) in case of d = 1mod4 and the other case can
be treated similarly. For simplicity we write ¢, = pa™ and X = Xm-

Set X = (x1,%x2) = ((clb\1/3 a%ﬁ) , (C:f/a “25‘2/&)). For a;,c; € Zy and b;, b € Oy,

it is easy to observe that

w (((1) 1:)) @q(Xl,X2) = Sﬁq(x1,X2) for u € MQ(qu). (4.18)

Set Y = (y1,y2) = ((716\1/3 O‘gﬁ) , (fo/a a%f)) Consider the Fourier trans-

form

Bq(Y) = / G(t0(X, Y ))ipg (X)X
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where
tr(X,Y) = —(b181 + b181 — a171d — arc1d + bafBa + ba B2 — azyad — azcad).

By the definition, ¢, is invariant under the transformations a; — a; + ¢, b; — b; + ¢,
b; — bi++/d and ¢; — ¢; +¢. Repeating arguments in the previous subsection, we can

observe that the Fourier transform ¢(yi,y2) is vanishing unless, for i = 1,2,
;Y € q*1Zq and ,31,,31 S Oq(as B; + Bz S Zq,ﬁi — Bz S Zq\/;i).
It follows that, for u € Ms(¢*Z,) such that u = u?,

w <<(1) ?) (_01 ;)) ©0q(y1,y2) = w <<_01 é)) ©0q(y1,¥2)

which implies
w w1 0q(¥y1,¥2) = @q(y1,y2) for u e My(q°Zy), u=u". (4.19)

For a € GLa(Z,) with det(a) € Z , we also have

w((é‘ tfl),l) puloe1,362) = xvig det(@)] det(a) 2a(det()) g1, 32). (4.20)

Again, combining (4.18)),(4.19) and (4.20)), we can deduce the following lemma:

Lemma 4.3.9. We have
w(k3)q = xv.q(det(A))] det(A)]2Xq(det(A))p,

ks = <A B) S { (A B> € Spy(Zy) : B € My(qZ,),C € MQ(q2Zq)} .

for
C D

We next discuss the action of SO(3,1)(V(Qq)) on ¢4 characterised by
w(l, h)pqg(x1,X2) = goq(h_lxl,h_lx2) for h € SO(3,1)(V(Qy)).
In this case, we check the invariance property under congruence subgroups of PSLa(Oy)

and have that h~'x; := h=!x;(h™1)* for i = 1,2 where ~ denotes the non-trivial action

in Gal(Q,(v/d)/Q,) (see [Rob0I Section 2]).
Lemma 4.3.10. For

heI‘(q)—{<: ?)ePSLﬂ(’%):i(j g)gi(é (1)>modq},

we have that
w(1, h)pq(x1,x2) = pq(x1,X2). (4.21)
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-1 _ [ B o b; az‘\/&
h —(7 6) andxz—<6i\/a bi).

with a,6 =1 mod q and 8,7 =0 mod q.

Proof. Set

First we assume a;,¢; € Zg and b, b; € Oq4 so that ¢, is non-vanishing on

b d
(x1,X2). Writing h™'x; = ( /\’/g alb\/f) , we compute
G i

v, alvd [a B b,  a;Vd 5 —p
gvd b ) \v o) \avd b -7«
ab; + BeiVd  aa/d + Bb; § -8B
vb; 4+ dciv/d  yaid+ b ) \ -y @&
_ S(abi + ﬁczx/&) — ’7(0&%\/& + ,BEZ) —B(abi + ﬁczx/ﬁ) + d(aai\/g + ﬁi)z)
-\ (b + civ/d) — F(yagVd + 0b;)  —B(bi + de/d) + a(yai/d +6b;) )

It is not hard to observe that af, c; € Z,, b}, b, € Oy and b} b, — b} b, = b1ba — b1by mod

1771

q. Modulo g, we have
azby — aybh
- aBby — Bab - aBb, — Bab
=daby (% + daa2> — daby (51\%[51 + &acn)
Ea2d5(a2b1 — albg) — 0551,85/\/&(1)162 — i)lbg),
and
AF — &\,
— [6yby — 09by - — [ 6yby — dYby -
=adh; (”\fd“ + 5502> — G6by (71\@71 + 5501>
552075(6261 — 0162) + @753/\/&(1)152 - Blbg).
So, modulo ¢, we get
aéb’l - a/1b12 _ a2_—a2b1 - albg 6/26,1 - Clll;é _ _—Cgi)l - 6162

ad—— =  and 5%ab
m m m m

It follows that
abbh —at b bl — bl asby — ajbs  coby — c1bo
(pq<21m12 21m12> SOq( m m '

Next we assume by € 0(*1(’)qX so that ¢, is vanishing on (x1,x2). It follows that
Saby € q_quX and then b € q_quX which makes ¢, be vanishing on (h~'x1, h71x3).
Other cases for a;, ¢;, b1, ba, ba can be treated in the same way. Hence, if ¢, is vanishing

on (x1,X3), so is that on (h~'xy, h~!xs).
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Now we have proven this lemma. ]

4.3.4 AT PLACES DIVIDING N(n) AND RAMIFIED 2

In this subsection we consider the local Schwartz function at finite places dividing N (n)
and at ramified prime 2 (when d = 2,3mod4). For a place ¢ and an integral lattice
X onV,weput X, =X ®z7Z,.

Definition 4.3.11. (1) Let ¢|N(n) be split with (¢) = qq.
e Suppose that (n,(¢q)) = q. Define the local Schwartz function ¢, to be the

characteristic function of

al bl a9 bQ 2
€ X :bica+cibo € OF,d; € qZy p .

e Suppose that (n,(q)) = q. Define ¢, to be the characteristic function of

b
{<<c1 ) ( d2>> quZ:blcﬁCleeoﬁx’dieqzq}'
1 2

e Suppose that (n,(q)) = (¢). Define ¢, to be the characteristic function of

{((1 ) ( ))EXg:blcg—FclngOqXXO;,diEQZq}.
c1
(2)

(2) At inert place g|n with (¢) = q, we define ¢, to be the characteristic function of

by a1Vd by  asVd 5 = -
_ , _ € X7 :biby+biby € OF, c; € qZ
{((Cl\/& b1 ) <CQ\/ZZ ba g T2 AT 90 < 1%

(3) If 2 is ramified with (2) = q3, we define (2 to be the characteristic function of
bl alx/& bg CLQ\/& 1 - - 1
_ , ~ g, ¢ € Lo, by € =0y, b1ba +b1be € —OF 5.
K(ﬂ b1> (wg b 0 € 50 hiba - haba €500,

Note that if we take the local Schwartz function at finite places dividing N (n) and
ramified 2 as the characteristic function of integral lattice, the resulting theta lifting

would be vanishing as discussed in Remark 3.3.6

In the following we will check the invariance properties of this local Schwartz

function with respect to Sp, x SO(3,1).

Lemma 4.3.12. (1) For ¢g as in above Definition|4.3.11] (1) and (2), We have
w(ka)pq = ¢q
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for
A B Ly q7
ky € €Spy(Zy):Aec | 1 ) B e My(qZ,),C € My(qZ) » .
4 {(C’ D> P4(Zq) <qu Zq> 2(qZq) 2(q q)}
(2) At ramified 2, we have
w(ks)p2 = @2

for
A B Ly 279 4
ks € €Spy(Zg) : A€ , B € My(2°7Z )
5 {(C’ D) P4( q) <QZQ Zg) 2( 2)}

Proof. (1) We prove this lemma in details only for split ¢ with (n, (¢)) = q and other
cases can be treated similarly.
Set X = (x1,%x2) = ((‘“ b1 ) , <a2 ba >> € Xg. It is not difficult to observe that

c1 dy ca da

w (((1) ?)) 0a(X) = pg(x1,%2)  for u € My(qZy).

Set Y = (y1,y2) = ((311 gll) , (322 ’gj )) . Consider the Fourier transform

0g(Y) = Y (tr(X,Y))pq(X)dX  fori=1,2,
X2,
where
tr(X,Y) = —(a161 — by — c1B1 + diag + azdz — baya — caffe + daaa).

By the above definition, ¢, is invariant under the transformations a; — a; + Zg,
bi = bi +q, bi = b+ g) g (o b > by + g2 and d; = d; + q. Note that
bica 4+ c1bs € qu is not preserved under b; — b; +q or b; — b; +q. Then we can
deduce that w (( 0 6)) q(Y) is vanishing unless o; € Zg, B; € Zg, Vi € Zq and
0 € qZq. It follows that

Luy (o1 0 1
T T e s

which implies

w <<1 O)) 0q(Y) = p,(Y) for u € Ma(qZy), u=u'.

u 1

For a = (: g) € GLa(Zy), set ((Z,,l Zl,l) , (‘;,/2 g,? )) := (x1,X2)a. It is clear that
1 %1 2 72
dll = ady 4+ Bdy and dIQ = vydi + ddo
lie in ¢Z,. Also we have

[ ey + bl = (aby + yb2)(Ber + dea) + (Bby + db2)(aer + yeo).
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If 3,7 =0mod g and det(a) € Z;, then bjch + c1by € Oy . We can deduce that

a 0 Ly qZ
X) = X) forac 1 71 and det(a) € Z*.
w<<0 ))w ) = puX) (qu Zq) @<z

(2) Set X = (x1,%2) = <<c1b\1/3 a%lﬁ) , (J@a a%f)). For a;,c; € Zy and b; € 10y, ,

it is easy to observe that

1 u
w ((0 1)) 0q(x1,X2) = pq(x1,%2) foru e M2(24Zg).

Set Y = (y1,y2) = <<71ﬁ\1/3 a1B\1/3) , («/25\2/8 a%ﬁ)) Consider the Fourier trans-

form
8uY) = [ (X, Y) )iy (XX
where
tr(X,Y) = —(b181 + b1f1 — ary1d — caxcrd + bafa + bafa — azyad — ascad).
By the definition, ¢, is invariant under the transformations a; — a; + Za, b; —
b; +7Zso, b; — b; + Zovd and ¢; — ¢; + Zs. Repeating arguments in the previous

subsection, we can observe that the Fourier transform ¢(yj,y2) is vanishing

unless, for 1 = 1,2,
Q;, Y € 279 and Bz S 20q2 (as 51 + ,BZ S QZq,ﬁi — ,Bz S QZq\/g).
It follows that, for u € Ms(Zs) such that u = ut,

w ((; ;L) (_01 (1))) 0q(y1,y2) = w ((_01 é)) ©0q(y1,y2)

which implies

1 0
w ((u >> SOq(Yb}’z) = @q(YLYQ) for u € MQ(Z2), u=ul.

1
_ (a8 b a/ﬂ) (b' ahVd )._
For a = (w) € GLy(Z,), set <(c,1\1/3 V) (L ) = (x1,%2)a. We
have
bll = aby 4+ vby and bézﬁbl—i—ébg
and then

b1y + bibhy = (aby + vb2)(Bby + dba) + (aby + vb2)(Bby + dbs).
If B,v € 2Zy and oy € ZJ , we have

w ((g tao_1> ,1> P2(x1,X2) = pa(x1,X2).



CHAPTER 4. THETA LIFT OF BIANCHI MODULAR FORM 97

Lemma 4.3.13. (1) Let q|N(n) split with (¢) = qq.
e Suppose that (n,(q)) = q. We have
w(1, h1)eq(X1,%X2) = @q(x1,%2)
fOT’ h1 = h171 X hLQ with

hii € T(q) = {(j §> € PSLy(0q) : + (j ?) =+ (; ?) modq}.

e If (n,(q)) =4q, we have
w(1, ha)pg(x1,%2) = @g(x1,%2)  for ha € T(q).
* If (n,(q)) = (q), we have
w(L, ha)pq(x1,%2) = pq(x1,%2)  for hs € T(q).
(2) For inert q|N(n) with (q) = q, we have
w(1, ha)pg(x1,%2) = pg(x1,%x2)  for hy € T(q).
(3) For 2 ramified with (2) = q3, we have

w(l, h5)<,0q(X1,X2) = (pq(Xl,XQ) fOT‘ h5 (S f(qg)

Proof. In part (1), we prove the first statement and other cases can be treated similarly.

i By i b}
Let (¢) = qf. Set h;' = i and x; = | ° with «;,d; = I modq and
Vi 9 ¢ di

Bj,v; = 0modq. We compute

b
<a’ z> 2:h1_1X¢t(h2_1)*
C

.
_ (52(0416% + prci) — Ba(ab; + frdi)  —r2(cua; + fici) + ao(arb; + 51di)>

SN oS

da(mia; + 01¢;) — Ba(mbi +0di)  —va(y1ai + d1¢i) + aa(y1bi + d1d;)

* b
= mod g.

So the conditions on bjcy + bacy and d] for ¢, non-vanishing are preserved.

b; vd\
Let ¢ be an inert prime. Set h™! = a P and x; = a_\f with
v 0 cvd b
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a,0 =1 mod ¢ and S, =0 mod ¢q. It suffices to show that

b a;\/& (o B b, a;Vd 5 —p
c;\/a v a v §) \eavd b -7 o

_ <S<abz- + Be/d) - HaaiV/d + Bb) .

5(vb; + 6ciVd) — F(yaivd + 6b;)  —B(yb; + dei/d) + a(yaiv/d 4 6b;)

= _ mod gq.
civd b I

It is clear that if ¢, is vanishing on (x1,X2), then so is w(1, ;)@ on (x1,X2) in the
same way as dicussed in previous subsections. Similarly at ramified 2 we obtain the

same result. ]

4.3.5 AT OTHER FINITE PLACES

We consider non-archimedean places away from m|dgr|N(n). For such a place ¢ and
an integral lattice X on V', we put X, = X ®z Z,. Define its dual lattice
Xg ={xeV®Q,: (xy)€Z,Vy € X;}

and let (¢~') be the Z,-module generated by {(x,x) : x € Xg}. In [Berld Lemma 27],
it is shown that [, = 0 at these places. At each place ¢, we define the local Schwartz
function ¢, to be the characteristic function of Xg. Note that ¢, is invariant under
PSLy(Zg) x PSLa(Zg) for split ¢ and PSLy(0Oy) for inert or ramified ¢ due to l; =0
(see [Berld, Section 5.2]).

Lemma 4.3.14. ([Yos8/, Lemma 2.1]) At non-archimedean q{m|dp|N(n) we have

B) € Spy(Zy).

A
= det A =
w(o)pg = xv,e(det A)pg  foro (C’ D

§4.4 Theta lift and Fourier coefficient

Let F' = Q(v/d) be an imaginary quadratic field of class number 1. Denote its ring of
integers by O = Z|w| and the discriminant by dp. Let m be a product of distinct inert
or split primes as introduced in Section 4.3 and choose a quadratic Hecke character xm
(m = mO) of conductor f = vdm. Let n be square-free and coprime to (m|dr|).
Suppose that F = (Fo, F1, Fo) : Hz — C3 is a weight 2 cusp form for I'g(n) with the
corresponding I'g(n)-invariant differential nz on Hs of the form —.7:0% +.7:1% +f2%
for (z,r) € Hs, see Definition [1.5.2]

)
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Remark 4.4.1. (1) Suppose that d = 1mod4 with dp = d. We choose the local
Schwartz function @™ at each place ¢ dividing m|dp| as defined in Definition
14.3.2} |4.3.5|and [4.3.8, At each place ¢ dividing N(n), the local Schwartz function
@}y is chosen to be as in Definition For all other finite places we take the
local Schwartz function as in Section 4.3.5.

(2) Suppose that d = 2,3 mod 4 with dp = 4d. We choose the local Schwartz function
o™ at each place ¢ dividing m as defined in Definition and and that
at ramified place away from 2 as in Definition [£.3.8] At each place ¢ dividing

2N (n), the local Schwartz functions ¢p and @2 are chosen to be as in Definition
[4311] For all other places we take the local Schwartz function as in Section 4.3.5.

It has been shown in Lemmal[4.3.4] Lemma[4.3.7] Lemma and Lemma,

that the local Schwartz function ¢, at each place v dividing m|dp|N(n) is invariant
under the action of the principal congruence subgroup I'(q,) € SO*(3,1)(V(Q,)). As

what we have done on the Shintani lifting in Chapter 3, we now consider a To(qy)-

new

invariant local Schwartz function ¢}

at these places defined by

new

oy (x1,%2) = > w(ly)eu(x1,x2)
[v]€T0(qv)/T(qv)

where the sum is taken over all the representatives of To(qy)/T(q,). With this new

local Schwartz function we know that oF

4 or Ty(fngz) when d = 2,3 mod 4.

is invariant under T'g(fn) when d = 1 mod

Give the Schwartz form @9 € S(V(R)?) ® Q%(D) as in Example 2.2.2((2)| and the

above finite Schwartz function ¢%*" on V(Af)?, we now consider a Schwartz form
(X, 2) == 2 @ 5V € S(V(A?) @ Q*(D) for X e V(A% z€ D.
Following ([2.11]), the theta series in this case is given by

(g, o}, 2) = Y w(g)e(X,z) for g’ € Spy(A)
XeV(Q)2

which defines a closed differential 2-form on T'o(2mN)\D.

Following (2.12)), the theta lifting of F, which is a holomophic Siegel modular
form of weight 2, is given by

0, (n7)(g') = /F A A0 )

where T' = Tg(fn) N To(n) = To(fn) when d = 1 mod 4 or T' = Ty(fngz) N To(n) =
To(fngz) when d = 2,3 mod 4. By Lemma {4.3.3, Lemma Lemma and
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Lemma [4.3.14] we can determine that it has level

({4 B ' Z  mNWZ
Lmn = {(C D> € 8py(Z): A€ <n1N(n)Z Z ) ’

B € My(nam|d|N(n)Z),C € My(m>d*N (n)Z)}
with
ny=mno =1, if d =1mod4
ni=2,ny=2% ifd=2 3mod4.

Recall
1 , ,
Qg = ¢ (x1,%2) € V(Q)2 g (x1,%1)  (31,%2) =85.
2 \(x1,%x2) (x2,%2)
By Theorem the Fourier coefficient of the theta lifting ©,(nr) at 5 > 0 is given
by
Co,nr),8 = Z O (x1,%2) /C nr

(X1,X2)€F\QB U(x1,%2)

= > > P (x1,%2) /C nF (4.22)
Ul

[Ni]EF\Pl (F) (X1,X2)€Fﬁi\ﬂg’ni‘+ x1,%2)
where the second equality is the consequence of Proposition For simplicity we
will denote C@wﬂe“’(ﬁ}‘)ﬁ =1= Z[Hi]EF\Pl (F) I’ﬁi where

Iy, = > OF (x1,%x2) /C nF. (4.23)

(xl,xg)erﬁi\gﬁ,ﬁh_‘_ U(x1,x2)

Similar to what we have done in Section 3.3, we will first express I, in terms of
the twisted L-value L(F,xm,1) in subsection 4.4.1 and then use Atkin-Lehner opera-

tors to calculate I, for k; # oo in subsection 4.4.2.

Remark 4.4.2. We will describe how to choose the Gram matrix 8 for which we will

show that Ce(;,,),s is non-vanishing.

o Let det 8 € —d(Q*)2. Then for (x1,x2) € Qg, U(x1,%x2)" is split over Q due to
Proposition and U(x1,x2)" has signature (1,1). The same arguments as in
the proof of Lemma show that the stabilizer I'y C T’ of U = U(x1,X2) is
trivial if UL is split over Q.

e For (x1,x3) = ((%i bol) , (%j b()z)) € Qg,00,+, we have

5= B11 Bz _ biby (bybg + b1b2)
P21 Ba2 3(b1ba + b1ba) baby .

N[ —



CHAPTER 4. THETA LIFT OF BIANCHI MODULAR FORM 101

We want this pair to satisfy the condition { as in Remark This will allow
us to apply Lemma to deduce that the corresponding cusp zy(x, x,) runs
through all the representatives in ~1/O. For the non-vanishing of p§™ at split
or inert ¢ dividing f, we only count (x1,x2) such that b; (i = 1,2) is divisible
by m. Via imposing conditions on [ itself, we can achieve that for any pair
(x1,%2) in €3 + the assumption f as in Remarkholds. Explicit examples
of B will be given at the end of the subsection 4.4.1, see from Example to

Example

Assume that  is given as in above Remark For (x1,%2) in Qg 1, We

(b1> =m (w y) (1> ifd=1 (4.24)
bo Z w w

b 1 x Yy Yy ...

(é) = gm (z w> <w) if d=23 (4.25)

with z,y,2,w € Z and xw — yz = £1. We want to find out if there is another pair

(¥1,¥2) in Qg 4 such that it gives rise to the same cycle Dy as that generated by

(Xl,Xz).

Assume that such a pair (yi,y2) exists in Q3 4. For U(xi,x2) = U(y1,y2)
we consider an element o = (2%) € GL2(Q) such that

a b X
L= (7). (4.26)
c d) \x2 y2
To make (uco, X1,X2, Us;) and (Uco, ¥1, Y2, Us,) Tepresent the same orientation, we need

o € GL (Q). Additionally the Gram matrix 3’s corresponding to (x1,x2) and (y1,y2)

must be identical.

Expressing (y;,y;) in terms of (x;,x;) and using bilinearity, we have
(yi,y1) = a®(x1,%1) + 2ab(x1,%2) + b*(x2,X2),
(y2,¥2) = c*(x1,%x1) + 2cd(x1,%2) + d*(x2,%2),
(y1,¥2) = ac(x1,%x1)+ (ad + be)(x1,x2) + bd(x2,X2).
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Consider that det 8 is preserved; more explicitly,

det § =det((y1,y;)) = (v1,¥1)(y2,¥2) — (y1,¥2)°
=a?c?(x1,x1)? + b2d?(x2, x2)% + dabed(x1, x2)% + (a?d? + b2c?) (x1, %1 ) (X2, X3)
+ 2ac(ad + be)(x1, x1) (X1, X2) + 2bd(ad + be)(x1, x2) (X2, X2)
—a?cA(x1,x1)? — B2d%(x2,%2)% — (ad + be)? (x1,%x3)? — 2abed(x1, X1 ) (X2, X3)
— 2ac(ad + be)(xq,x1)(x1, X2) — 2bd(ad + be)(x1,x2)(x2,X2)
=(det 0)? det((x;, x;)) = det((x;,%;))-

Since o has positive determinant we know that o € SL2(Q).

Moreover, to preserve 8 the following identities must hold:

(x1,x1) = a*(x1,%1) + 2ab(x1,x2) + b*(x2, X2), (4.27)
(x2,%2) = A(x1, x1) + 2cd(x1,X2) + d? (xa, X2), (4.28)
(x1,x2) = ac(x1,x1)+ (ad + be)(x1,x2) + bd(x2,X2). (4.29)
As deto = ad — be = 1, we can rewrite as
ac(x1,X1) + 2be(x1,x2) + bd(x2,%x2) = 0. (4.30)

We will describe ¢ in different cases in the following.

(I) Let b be 0. From (4.27) we know that a? = 1, and from (4.29) we have that
(x1,%2) = ac(x1,%x1)+ (x1,%x2) which implies ¢ = 0. So 0 = £ (}{). In the same
way, if c=0 then o ==+(}9).

(IT) Assume that bc # 0. Substituting (x1,x2) in (4.27)), we have
a
(x1,x1) = a®(x1,x1) + b*(x2,X0) — E(ac(xl,xl) + bd(x2,%2))
which is simplified to be
c(x1,x1) + b(x2,%x2) = 0. (4.31)

Combining (4.30) and (4.31)) we have

ac(xy,x1) + 2be(x1,x2) — cd(x1,%1) =0

and then d:a+2b%. As ad — bd = 1, we have
0?4 20p XX | (X x2) (4.32)
(x1,%1) (x1,%1)

nob] 5 bl ..
Set x; = <%11 Zi), X9 = (%; Zi), y1 = (g/ll d%) and yo = (g; d?2>. Combining
(4.24) and (4.26)), we can rewrite
b, = aby + bby = m((ax + bz) + (ay + bw)w)
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or combining (4.25) and (4.26))

b, = aby + bby = %((aw +bz) + (ay + bw)w).
Then we need ax+bz = p € Z and ay+bw = v € Z. Solving these two equations
we get

T TR L
Similarly, we can deduce that ¢,d € Z when treating b,. Therefore, the linear
transform ¢ € SLp(Q) on (x1,%x2) € Q3,, + generates the same cycle, but the
Schwartz function on (y1,y2) vanishes if o ¢ SLo(Z).

For particular choices of Swe get limited possibilities of above o. We can rewrite

(3 s

2 _ 2
(a+b(X1,X2)> +b2(X1,X1)(X27X2) 2(Xl,Xz) -1 (4.33)
(x1,%1) (x1,%1)
(I1.1) If (x1,x%2) = 0 and (x1,%x1) = (X2,X2), then a®> = 0 as bc # 0 by our

assumption. So in this case o =+ (% ).

(IL.2) If (x1,%x2) = 0 and (x1,%x1) < (x2,X2), ie.
such a o that bc # 0.
(I1.3) If (x31,x2) # 0 and Gerxa) (2 x2) —(a1x2)” 1, then b has to be 0 which is a

(x1,%x1)?

det 8
(x1,x1)?

> 1, then there is no

contradiction to be # 0.

Remark 4.4.3. The possibilities of o in (4.26) will determine the constant ug in
Proposition [£.4.5] After the whole treatment of this section 4.4, we will see that this
pp does not effect the non-vanishing of our theta liftings since it appears in the Fourier
coefficient as a non-zero multiplier. In Example from [.4.6] to we will show how

to get the exact values of pg.

4.4.1 ON CYCLES THROUGH 00

We will first calculate the part I, corresponding to the cusp oo as in (4.23]). We pick
a fundamental domain for I'o,\ Dy and integrate with respect to the cycle. Since we
are integrating along a vertical path with z-coordinate constant, we can ignore dz and
dz. We obtain
1
I, = Z @I}ew(xl,XQ)/ ifl(z,r)dr. (4.34)
(x1,%2)ET00\ Q5 0.4+ (ZvT)GCU(xl,xQ)

Lemma 4.4.4. For (x1,%x2) € I'so\Qg 00+, we have

new (

OF" (x1,%X2) = Amapr(x1,X2)
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Awa =[] Tolar) : T(q)] II [To(az) : T(az)] [[To(as) : T(as)].

q1|m|d| q2 above ramified 2 qsln

Proof. Note that any pair (x1,x2) in 3 is of form ((%11 18) , (%j lg)) . Recall from
Section 1.3, for a € O* satisfying ((a),f) =1 we have

[ xo(a) = ] X0 (@) = x (@)
vlf off
Then, for our choice of finite Schwartz function ¢y, we have

~ az2b; — a1b
pr(x1,%2) = [ [ Xmw (2112>

m
olf

T -1 <a2b1 - a1bz> o <<a261 - Cblb2>>
= HXm,v — ]| =X T,
m m

off

pr(xi,x2) = x ' <<2(a2b1n: a1b2)>> :

Let g be the split prime dividing m. Consider the representative

Tyl Yy Ty2  Yy2
0z, 0 25

for To(q)/T(g) with [z ;] € (O/(g))* and [y,;] € O/(¢q). By the computation in the
proof of Lemma [4.3.4], we can observe that

() = Y <>zm,q>zm,q><x%%><>?m,q>zm,q>(
[v]€To(9)/T(q)

~ ~ a2b1 — a1b2
= Z (Xm,qu,ﬁ) -

= m
[v1€T0(9)/T(q)

= [To(q) : T(@)] g™ (1, %2)

Similarly we have for inert g|m

g (x1,%x2) = [To(g) : T(q)ley™ (x1,%2),
and for ramified prime ¢ with (q) = ¢°

or

m

a2b1 — a1b2>

o™V (x1,x2) = [[o(q)

H

(@)]eg™ (x1,%2).

At the place ¢|N(n) we will show that

"™ = [To(q) : T(q)]¢}-
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a;

Ci

* —l—1p % 1,1
w(L, ) - (x1,%2) = Tt o, 5, b2 )
InTp 0 Loy Lyg €2 0

It is not hard to observe that the condition on bicy + bacy is preserved as x; € qu .
It follow that

b
For ¢ split, set x; = ( OZ> and compute

w(1,7)pq(X1,X2) = pg(X1,X2)
Vid

b; a;
which implies the assertion. For ¢ inert, set x; = <Ol B > and compute

i

g ((FE ) (e )
’ 0 l"yi‘qlbl ’ 0 l"y.f,;lbg

Again the condition on biby + b1by is preserved and so the assertion follows. The case

at ramified 2 can be treated similarly.
Now we have proven the lemma. ]

Proposition 4.4.5. Assume that the Gram matriz 5 is chosen so that the condition
T in Lemmal[{.2.5] is satisfied. Then we can calculate
I, = Mﬂ)\m,nL<]:a Xm 1)

2A(1, xm, 1)
where pg is a non-zero integer depending on 3 as stated in Remark: and A(1, xm, 1)
is given explicitly in Theorem [1.4.13.

(4.35)

Proof. By the above lemma, we can express

1
Io = Z ‘P?ew(xl,xz)/ : 57'-1(2,7")(17“

(x1,%2) €L\ 2, 00,4 (27) €06y xz)
1
=Amn Z @ r(x1,X2) / 5]—'1(2, r)dr.
(x17x2)€Foo\QB,oo,+ (zvr)eCU(xl,xz)

Under our assumption on 3, by Lemma |4.2.5| we have

oo
I = pgAan Z Xml(sz)/ %fl(z,r)dr
[Fulef=1/0,(zufH=1 0
where pg is a non-zero integer depending on the possibilities of o as discussed in
Remark At last, by Theorem with n = 1, we can compute

— o 1 MﬁAan(F, XITH 1)
_ 1 - — )
Le=psdnn X ol [ g = e
[ZU]Efil/Ov(szaf)zl
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For a diagonal Gram matrix /3, the pair (x1,%2) € Qg oo+ has biby + b1by = 0.
It follows that ¢ is vanishing on such a pair (x1,x%2). So, for the non-vanishing of I,
the Gram matrix 8 being diagonal is ruled out of our consideration. In the following
we give some examples of 3 satisfying the condition t (as promised in Remark

for which I can be expressed in terms of L(F, xm,1).

Example 4.4.6. Let F' = Q(/—3) with dp = —3 and O = Z[w| with w = 1+\2/53‘

Suppose that
5 _ _bll;l_ %(blgg —_l— Blbg) _ m2 %m2 '
$(biba + bibo) baby tm?  m?

Ao L(F, Xm, 1)
A(17Xm7 1) ‘

We have

I =

Proof. For the non-vanishing of pg™, we need m|b;. Solving bib; = m?, we must take

b; = £m, £mw or £mw. Observing
1, - - 1
(x1,%2) = 5(5152 +b1b2) = §m27
we can determine b; with the condition { as in Proposition satisfied:

o ()6 ) 0)

b2 = —m.

b1 = mw or m by = —mw or —mw
bgzm,

We have seen in Lemmathat the sign of Im(b1bs) determines the orientation
e of Tz(Dy) via elm(biby) > 0. If the cycle Dy integrated over is directed from the
cusp on the complex plane to the cusp oo, we need € < 0 which implies Im(bybs) < 0.
We will list all pairs in T'oo\Qg 00+ With Im(b1bs) < 0.

First we consider one pair

a171 m (Il’g mw
(x1,1,X1,2) = , i
m 0 mw 0
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with a11,a12 € Z which gives rise to the cycle DU( directed from the cusp

X1,1,X1,2)

2U(x11,x12) = % € F to the cusp co. Rewriting [#.32) as a? —ab+ 0% = 1, we
have either a®> =1,b> =0 or a®? = 0,b* =1 and then o =+ (}9) or = (% §). So the

following four pairs give rise to the same cycle Dyx, | x;,):
(x1,1,%1,2), (—X1,1, —X12), (X1,2, —=X1,1), (—X1,2,X1,1)- (4.36)
Lemmamtells us that for (x1,1,%12) € I'sc\28,00.+ 2y

with f = v/—3m.

Suppose that

azi1 —m az2 —Mw
(X2,17 X2,2) = )
-m 0 —mw 0

with ag1,a22 € Z is another pair in €g o, + which gives rise to the cycle DU(

~1
x1.1,x1,2) Tanges over j—-/O

X2,1,%2,2)

directed from the cusp 2y7(x,; xp0) = % € F to the cusp oo. Similarly we have
following pairs
(x2,1,%X2,2), (—X2,1, —X2,2), (X2,2, =X2,1), (—X2,2, X2,1) (4.37)

giving rise to the same cycle Dy(x, | x,,)- Also for (x2,1,%22) € ['eo\Q28,00,+ We have
2U(x1.1,x1,2) Tunning through §71/O with f = /—3m.

It is obvious that the eight pairs in (4.36]) and (4.37)) are not ', -equivalent since
the ' -action on the pair preserves off-diagonal entries of each component of the pair.

Then we can split I, as

I :I(X1,1,x1,2) + I(—Xl,l,—xl,z) + I(X1,2,—X1,1) + I(—X1,2,X1,1)
+ I(X2,1,X2,2) + I(—X2,1,—X2,2) + I(X2,2,—X2,1) + I(—Xz,z,X2,1)’

where the subscript (—, —) indicates the sum as in over [zy(—,y] € f1/O. By
Theorem [1.4.12| with n = 1, we can calculate

_, _ Amal(F o 1)
X1,1.%1,2) (x2,1,%2.2) 2A(1, xm, 1)
So, in this case we have pg = 8 and then we can deduce that

A L(F, Xm, 1)
)20 T A D)

I

Io=8-1
O

Example 4.4.7. Let F = Q(v/d) with d = 1 (mod 4) and d # —3 in which case
dr =d and O = Z[w] with w = HT‘/E. Suppose that
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We have
I — 2)\m,nL(-7:v Xm, 1)
o =
A(lv Xm; 1)
Proof. For the non-vanishing of ¢3™ and by solving (x;,x;), we can determine that
b1 =m b1 = —m
by = mw or mw, by = —mw or — mw

with the condition { holding.

Again in this case we need Im(b1by) < 0. Suppose that

ar1 m ai2 Mmw
(X1,1, X1,2) = ) _
m 0 mw 0

gives rise to the cycle Dy, | x,,) directed from 2y (x, | x, ,) to the cusp co and that

azi1 —m az2 —MmMw
(X2,1, X2,2) = ) _
-m 0 —mdo 0

x2.1,x2.2) directed from zg( to the cusp oco. Combing and

(IL.3)} we have o = £ (}{). So, in this case we have pug = 4 and then we can calculate

to the cycle Dy

X2,1,X2,2)

Too =Iixyq x12) T Lox11,-x12) T L(xa1x22) T L(—x21,-x2.2)
. 2)\m,nL(}—v Xm; 1)

:4I(xl’1,x1,2) - A(l,Xm) 1)

O]

Example 4.4.8. Let F = Q(v/d) with d = 2,3 (mod 4) and d # —1 in which case

drp = 4d and O = Z[d]. Let
= %mQ ian
%an %(n2 —d)m?

with n € Z coprime to 2n (for the non-vanishing of ¢y and ¢2). We have

7 2wal(Fxm 1)
> A(17 Xm; 1)

Proof. For the non-vanishing of ¢, via solving

(x1,X1) = §

m?(x1,%2) = §(b1bg + bi1bs)
2

— 2
(Xg,Xg) = bQB = %(TIP — d)m2

1
an
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we can determine that

by = 3m bl 1 (1 0\ [1
U v () () ()
{blzgm N<b1>1m<1 0)(1)

bg—%(n—\/g)m ba 2 n —1 Vd

Lin+Vdm

——
S O
(V) —
I
|
DN
3
2
Cls
N——
Il
[\V] (NN
3
|
|
I
=
—_
N———
~/~
gH
ISH
N———

2
by = —%m
{ by =—3(n— Vd)m -
with the condition § holding.

For Im(bybe) < 0, we consider

(x x ): a1,1 %m ai,2 %(n—l-\/g)m
1,1,X1,2 Im 0 ) \(n—Vd)im 0

(X2,1,%X22) = az1  —gm az2 $(n—Vd)m
S —sm 0 ) \G(n+Vd)m 0

By |(I)| and |(IL.3)l we have o =+ (). In this case we have ug =4 and then we get

and

I :I(x1,1,x1,2) + I(—x1,1,—X1,2) + I(x2,17X2,2) + I(_XQ’I’_xm)
~ 2mnLl(F, xm, 1)
X1,1,X1,2) — A(l, Xm, 1) .

=41,

Example 4.4.9. Let F = Q(i) with dp = —4 and O = Z[i]. Set

5o imQ inm2
%an %(n2 +1)m?

with 1 <n € Z coprime to 2n (for the non-vanishing of ¢ and @2 at ramified 2). We

have
B A L(F, Xm, 1)

I =
A(17 Xma 1)

Proof. For the non-vanishing of ¢g™, via solving
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we can determine that

by =
by =

For Im(b1be) < 0, we write

NI D=

m by = %mz by = —5m b1 —%mz
(nEti)ym, | by=3(nit1l)m, bo=—2(nEi)m, | ba=—%(nitl)m.

1, 1/, :
a —smi a —=(nt—1)m
(%41, %12) = 14,1' 2 |, '4,2 5( ) _
ami 0 5(ni+1)m 0

By [(D)] and [IL3)] we have o = £ (§ ). So we have g =8 and then
I :I(X1,1,X1,2) + I(—X1,17—X1,2) + I(X2,17X2,2) + I(—X2,17—X2,2)

I(x3,1,X3,2) + I(_X371,—x;;,2) + I(X4,17X4,2) + I(—X4,17—X4,2)
~ DanL(F, xm, 1)
X1,1,X1,2) — A(l, Xm, 1) .

=81
O

Example 4.4.10. Let F = Q(v/d) with d = 1 (mod 4) and d # —3 in which case
drp =d and O = Z[w] with w = 1+2\/E. Set

2 nm?
5: <m2 2 2 )
nm n“—d, 2
2 1 m

with 1 <n € Z coprime to ¢,. We have
I —_ 2)\m,nL(]:a Xma 1)
OO A(lv Xm; 1)

Proof. We can determine that

bi=m by =—-—m
or
bg — n:l:2\/3m b2 — _n:tQ\/E

It is not hard to check that the condition f is satisfied. For Im(biby) < 0, we write

(X11,%1) = a1 m ai1,2 ‘n+2ﬂm
T m 0)’ 7”*2‘/3771 0

m.
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and

( ) a1 —m a2,2 _%ﬂm

X91,X92) = , .

222 -m 0 —7"_2\/8711 0

Similarly we get g =4 and

Too =I(x; 1 x12) T L(=x11,—x1.9) T Lixo1x0,0) T L(=x0,1,-x2,2)

AT _ 2)\m,nL(}—7 Xmal)
(x1,1,%1,2) A(l, Yy 1)
O

Example 4.4.11. Let F = Q(v/—3) with dp = d = —3 and O = Z[w] with w =

1+v/=3
- Set

2 nm?
ﬁ:<m2 22 )
nm n“—d, 2
2 T m

with odd n € Z greater than 1 and coprime to n. We have
_ 3AmnL(F, Xm, 1)

I
A(17 Xma 1)

Proof. We can determine b;:

by =m by 1 0\ /(1
~ = m
b2 = LB\/&m bQ anl 1 w
by =m by 1 0 1
~ = m
by = ”_2\/8171 by %’_1 —1 w
bl = mw bl 0 1 1
~ = m
b= 5 b AT
bl = mw b1 0 1 1
~ = m
by = n72\/3m‘*’ ba %d nT_l w
by = mw by 1 -1 1
~ =m
b2 — n+2\/3m@ b2 2n—4d—1 I—Tn W
by = mw by 1 -1 1
~ =m
by = n—2\/8m@ by 2n+4d+1 nTJrl w

and
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For Tm(b1b2) < 0, we consider

(X N m a2 n+2\/3m
1,1,%1,2) ) 5
m0) \2Ym 0
(X < a1 Mmw a2 2 n+2\/aw
21,X22) = ) 5
mw 0 7”_2‘/877%0 0
(x3,1,%32) Ga1 T 5.2 "*2\/&@
’ mw ’ 7"+2\/Emw 0 '

and (—x1,1,—X12), (—X2,1, —X2,2), (—X3,1, —X32). In this case we have g = 6 and
3)\m,nL(~7:, Xm; 1)

OO —6I(x11x1 2) - A(l,Xm,l)

N

O]

Remark. We can swap the diagonal entries of each  in Example from to[4.4.11

and obtain same results.

4.4.2 ON OTHER CYCLES

We introduce the Atkin-Lehner operator as defined in M. Lingham’s thesis [Lin05]
Section 5.3]. Lingham developed this for all odd class numbers while we shall only
use results for class number 1 since then we can follow Asai’s treatment of cusps (see

[Asa76l, Section 1.1]) in the case of principal ideal domain. For m in O dividing n such

Wi = (‘T y) (4.38)

where x em, y € O, z€n,w €m and (zw — yz) = m.

that m and . are coprime, take

Proposition 4.4.12. (1) For any ideal m dividing n such that m and 3 are co-

prime, we can find a matriz of the form (4.38).

(2) Wi is an involution (i.e. W2 (modulo scalars) lies in To(n) ), normalizes To(n)

and is independent of the particular choice of x,y,z, w.
Proof. See [Lin05, Lemma 5.3.1 and Lemma 5.3.2]. O

In particular if we take m = O we get an element of I'g(n) and if we take m =n

we get the analogue of the classical Fricke involution. One can check that the Fricke
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involution can be formed as a product of Atkin-Lehner involutions, where m runs over

prime power divisors of n.

Lemma 4.4.13. Let o = %, g = Z—; be two cusps such that (p1,q1) = (p2,q2) = O.

Then the following are equivalent

(1) ag = Moy for some M € Ty(n);
(2) qas1 — q182 € 1920 + n, where s; satisfies p;s; =1 (mod ¢; ).

Proof. See [Lin05, Lemma 1.5.1] for a more general version holding over any number
field. O

It follows that two cusps are equivalent relative to I'g(n) if and only if the ide-
als generated by the denominators have the same ‘greatest common divisor’ with n,
so each equivalence class of cusps is in one-to-one correspondence with each ordered
decomposition n = ML. Following Asai’s treatment (see [Asa76l Section 1.1]) again as
in section 3.3.2, we say a cusp ka2/k1 belongs to £-class if ged(k10,n) = £. For each
decomposition n = ML with M = MO and any cusp k = ka/k1 of £-class, we can

take a typical matrix W, which transforms x to co:
W, = (1 0 ) ap  with = (M A AQ) € SLy(0). (4.39)

0 M —K1 K2

As (k1,k2) = (k1, M) = O there exist b,c € O such that bke = 1 (mod k1) and
cM =1 (mod k). Taking Ay = bc € O we observe that \y = % belongs to
O. So W, is well-defined. It is not difficult to see that W, is of type of Atkin-Lehner

operator as defined in (4.38]).

Fix a representative k; = r;2/k;1 € P1(F)/T of each equivalence class of cusps
corresponding to the ordered decomposition m+v/dpn = M, L; with IM; generated by
M; and £; by L;. Write as defined in (4.39)

1 0 M; A\
W, 1 A2
0 M;) \—ki1 Ki2

which transforms x; to oco.

It is well known that the fractional linear transformation on the extended upper
half space is composition of an even number of inversions (see e.g. [Ber(5, Section 2.3]).
So the action of GL2(C) on the subspace U preserves the orientation. By Proposition
m we know that if U(x1,x2) L v(co) then U(W 1!+ (x1,x2)) L v(W,. 1 00). We

have proven that the bilinear form on a pair of vectors is preserved under the action of
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GL2(C) in (4.3)) and hence so is the Gram matrix . Thus for (x1,%x2) € Qg We
have |det(W,,)| - Wt - (x1,X2) € Qs +. Then we obtain

%

I, = > P (x1,x2) / nF
CU(xy x2)

(xl,xg)EFRi \Qﬁvﬁiv+

=Y e W) W ) [ 0
(x1,%2)ET o0\ Dp. 0o 1 Cu des(Wiey) 1 Wit (x1 x2))
=Y e W) W ) [ 0
C

(x1,%2) €00\ 28,00, + U(Wet(x1,%2))

where the last equality is the consequence of U(| det(Wy,)|- Wb+ (x1,%x2)) = U(W -
(x1,%2)).
Remark 4.4.14. Slightly different to what we have done in the Shintani case, we intro-

duce the factor |det(W,,)| to make sure that for (x1,x2) € T'v,\Qp.x; +, |det(Wy, )|~
Wi, - (x1,%2) lies in V(Q)? (so in I'w\2g.00.+ ) but not just in V(R)2.

Next we will analyze @} (| det(Wy, )| Wt (x1,%2)) for (x1,%2) € Toc\ Q8,004 -

For simplicity we write x = Xm-

x
We begin the calculation in a slightly more general setting. Given g = y)

Z w
b b
and (x1,x2) = o , a2 02 , we compute
by 0 b 0
a b abh b B a; b as b
N B S B e o R W ) Y R
A by df by 0 by 0

:| det( )|—2 alz§:+z)1:fy+blzgj a1x2+§1y2+b1xu7 agxi+_52:fy+bgzg a2x2+§2y2+b2xw
g a1Zz+b1Zw+b1Gz a12Z+b1Zw+b12w ) 7 \ aeZz+baTw+bayz azzzZ+bazZw+bazw

(4.40)
and then
(ahb) — aybh) =|det(g)|~*[(agaZ + boy + boxy)(ar12Z + biyZz + byaw)
— (a12% + by + biwy)(asxZ + bayz + boxw)]
=|det(g)|[ab1 (zZxw — xFxZ) — a1by(zTxW — THTZ)
T bby(ayi — wgez) + biba(eny® — Eyaw)]
=det(g) "2 det(g) " [(agby — arbo)x? + (biby — bybo)zy], (4.41)
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(bydy — bydh) =|det(g)|"*[(agZz + boFw + bafjz)(a12% + by 2w + by 20)
— (a1Z2 + b1Zw + b17z)(a22Z + baZw + bozw))
=|det(g)|"*[agh1 (221 — Jz2Z) — arbo(T22W — §227)]
+ b1ba (Twzw — Jzzw) — b1bay(Twzw — Yzzw)
=det(g) 2 det(g) "[(asby — aibs)2® + (biby — bibo)wz]. (4.42)
Remark 4.4.15. With our choice of 3, the pair (x1,%2) € I'c\Qg 00+ satisfies the
condition t as in Remark It means that b; € qOq x qO5 (i.e. q|b;) for split g|m
with (¢) = qq, and b; € qOq for inert g|m with (¢) = q. So biby — biby appearing in
(4.41]) and turns out to be divisible by ¢? for each prime g|m.

Recall the ordered decomposition fn = ML, (or fnge = M;L; with g2 above
2 when d = 2,3mod4) and its corresponding representative k; = % of equivalence

class of cusps with ;1 and k;2 coprime.

Lemma 4.4.16 (Analogue of Lemma(3.3.3). For (x1,%2) € I'no\Q23,00 4+ and non-trivial
M; dividing fn when d = 1mod4 (or fnqy with q2 above 2 when d = 2,3 mod4 ), we

W

have that @} is vanishing on |det(Wy,)| - Wt (x1,%2).

Proof. Write
A2
_ Ki2 —%F z Yy . -1 1
wt=(" Mi | = with det(W_ 1) = —
i (Iii,l )\1 zZ w ( e ) Mz

a; b az by
and for (x1,x2) = - = €T\ 28 001, set
/ b/ / b/ b b
(hoxh) = (28 1) (22 2 ) ) = et it (S0 ) (S ) )
by d} Lodh ‘ by 0 by O

By (4.40)), we have for j = 1,2

CL;- :]MiIZ(ajm? + Bja?y + bja:gj) = ’Mi‘QajHi72ﬁi72 — Mii)j/%i,g)\g — Mibjliig;\g,

b; :’Mi’2(a]‘$§ + Ejyi + bj.%?f)) = ’Mi‘2a]‘/€i’27€i71 - Migj)\QkiJ + ’Mi‘Qb‘jK)Z"Q;\l,
B; :]MiIQ(ajjz + bjgjz + ijw) = ’Mi‘2aj/§i’2l€i71 — Mibjj\gliiJ + ’MZ“QBJ'RZ"Q)\l,
d; :]MiIQ(asz + I_)ij + bjzu_J) = ’Mi’2(ajﬁi7ll_€i,1 + le_ﬁi,1A1 + bj/i@lj\l).

(I) Let ¢ a prime dividing m|dp| which is split, inert or ramified. We will only treat
in details the case when ¢ is split with (¢) = qq and other cases can be treated

similarly. We want to show that if

(M, (m)) = q, (M, (m)) = g or (M, (m)) = (q)
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then w(1,7)py is vanishing on | det(W,,)| - Wt - (x1,%2) for [y] € To(q)/T(q).

(I.1) Let (9, (m)) = q and then we have

q|M;, a9, ql(ki), al(Ria), Gt (ki2), 9t (Riz2)
By Remark [4.4.15| there is no need to discuss the integrality of b; but we
care for that of a;.

Suppose that a; € Zy. It is easy to observe that a’, b;»,l;;», d; € qO0q. Set

Y= (7,7%) = ((%1 uvl_11> ; (182 :;))

with [u1], [ug] € (O/(q))* and [v1],[ve] € O/(q). We write

"noon alll blll a/2/ b/2/ . —lorty o~k —lorts —1y*
(Xl’x2) = 1/ 1/ Y 1/ 17 = (’Yl Xl (72 ) ”yl X2 (72 ) )
i di ¢y dy

and compute

" 11 —1 / /
/! 7 N; ! —1
uTtugd! — vyugd; + ui tvgl — vivad,  uitus b, — viug td
o 1 2 i 1uU2 ' 1 2 il 102 ' 1 2 Y 1lUg ¢y
- 7/ ! —1 '
U1U25j + ulvgdj U1 Us dj
/ VAN ! " /! /! Ui
Then, as aj,bj,bj,dj € q04, we can observe that aj, bj,cj,dj € q0, as well
which implies that

aybl — vl N cydy = dld,
m m
It immediately follows that w(1,~)pg ™" is vanishing on |det(W,,)|- W'

€ q0;.

(Xl, Xg) .
Suppose that a; ¢ Z, and set I, = min{ordy(a;)} < —1. Assume that
w(1,7)ey™™ is non-vanishing on |det(W,,)| - W'+ (x1,x2) which requires

that af,d; € Zy and b}, c] € qOy.

e We first consider vy € (O/(q))*. Observing
c;-’ = ulqu_); + uwgd; and d;’ = ulug_ld;-,
we know that for ¢ € qO0q and dj € Z; we need d; € Z, and at least
b€ Og. As

by = |M;|?ajRioki1 — Mibjaria + | M;|*bjRi 2\
with Rj2,Ki1 € (’)qX , we then need M; € qflq which makes

d; = |M;|*(ajkiiRin + bjRiad + bjkiahi)  (qlmi1Rin)

lie in ¢Z,. Looking back to ¢ = u1u25;- +uvad; € 90y, that d; € qZ,
makes l_)} € q0y. It follows that we need M; € q~l*10,, a contradiction
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to that 9; is square-free.

e Let vo = 0. Then we have

2 //
/ ! *
/" 1" N =1 |-

For ¢} € qOy, we need
I_);. = |M;|?ajFiaki1—Mibjhaki 1 +|M;|*bjRia\ € qOq  (Riz, ki1 € O7)
which requires M; € q*lqﬂ(’)q contradicting to that 9; is square-free.
Therefore, when (90, (m)) = q, we can deduce that w(1,7)py is vanishing
on |det(Wy,)|- Wil (x1,%x2).
(I.2) When (9, (m)) = q, we can prove it in the same way.
(I.3) Let (M, (m)) = ¢ and then we have ¢|M; and k1, ki1 € O . It is clear
for a; € Zg.
Suppose that a; ¢ Z, and set I, = min{ordg(a;)} < —1. First assume v;
is a unit. Let [, = —1. Then we have that all o/, d}, bV, are divisible by

30 %50 Y50 Y5
q and so are a;-’, d;’, b;-’, c;’. Let l; = —2. It is clear that d; € Zq. Then, for
b;-’,B;’ € qO0q, we need b;-,lgg- € Oq. Expand

A, — by = (a3t — i)+ o —
+ uy tog (Wb — b1y + vi(bhd) — bidh)
and
Y )
It is not hard to observe that abd] — aidy € ¢*Z, and by by, — bib} € ¢*O,.
By (4.41) and (4.42), we have
abdy — alydy = M;|M;|* ((aghy — arba) kg o + (b)by — bybh) ki o(—A/M;))

and
bydy — Bydy = M| M;|((agbi — arba)w7 1 + (V10 — bybh) ki i),
both of which lie in q20,. It follows again that
aybl — bl N cydy = dld,
m
For I, < —2 there is no chance for d;’ € Zq as M; 1 is square-free. It is clear

q0,.

for v; = 0. Therefore w(1,y)gy is vanishing on |det(Wy,)| - Wt - (x1,%2)
in this case.
(IT) Next we consider g for split ¢|N(n) and omit details for inert g. As discussed
in subsection 4.3.4, we can have (n,(q)) =4q, (n,(¢)) =q or (n,(q)) = (¢). Again
we want to show that if (n, (q))[9; then w(1,7)pq is vanishing on |det(Wy,)| -
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(I11)

Wt (x1,%2) for [y] € To(q)/T(a), To(d)/T(a) or To(q)/T(q) respectively.

Let aj € Zy. Assume that (n,(¢)) = q and q|9%. Then it is clear that b; € qO,
and d; € qZy. Expanding
Ve + bcl =(ul uy o) — viug L)) (urugbl + upvadh)
+ (ug uy b — viug tdy) (uyughy + uivady),
we see it is in qO0q. So w(1,7)py is vanishing on |det(W,,)| Wit (x1,%2). Also
it is clear for gq|9M; or (q)|9N;.
Let aj ¢ Z4 and set l; = min{ord,(a;)} < —1. Assume that (n,(¢)) = q and

q|9;. Then we have ¢ { x;;1. Look at
dg» = |Mi|2(aj/£,;71/%¢71 + l_)j/%m)\l + bj/@i,lj\l).

Then there is no chance for dj = d; to be in ¢Z, as M; is square-free. So
w(1,7)ph is vanishing on |det(Wy,)| - W' - (x1,x2). This also occurs in the
case that (n,(¢)) = q and g|9;. Now assume that (n,(q)) = (¢) and (q)|9;.
If I, = —1, then we have b}, b} € qOy which implies that b{cy + byc] € qO,.
If I, < —2, we can observe that there is no room for d; = ulugld;- € q7 for
square-free M;.

Let ¢’ be another prime dividing N(n) with ¢’ = ¢'q’. Similarly, if ¢'|9;, q'|9;

n
q

To finish our proof we consider g if 2 is ramified with (2) = q3. Set v =

or (q)|9M;, we can show that w(1,v)el is vanishing on | det(Wi,)|- W, ' (x1,%2).

(1(; gl> with [u] € (O/q2)* and [v] € O/qy. We write
u

B// a// d B// a// d . .
(x1,x5) = ((d{j/& 11—),1, >,<C,2,2d 25,2, >> = (vx47%, X577,

Suppose that qa|M;. If [; = min{ordg(a;)} > —1, then we have b € q%(’)q2 and
then b € Oy, as well. So Vb € 30,, and then b{by + b{by = 2Re(b{b;) € Zs
which makes ¢y vanish on | det(Wi,)|-W'-(x1,x2). If I; = min{ordg(a;)} < -2,
then there is no chance for d; € Zy as 9M; is square-free, and so for ¢}. So again

we have w(1,7)p2 vanishing on |det(Wy,)| - Wb (x1,%2).

O]

If follows that I, is vanishing for x; # co. So we have proven our main theorem:

Theorem 4.4.17. Suppose that F = Q(V/d) is an imaginary quadratic field of class

number 1 with the discriminant drp and denote its ring of integers by O. Let m be a

square-free product of inert or split primes, and put m = mO and f = Vdm. Choose a
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quadratic Hecke character xm of conductor f. Given a square-free ideal n coprime to
(m|dpl|), let F be a weight 2 Bianchi cusp form of level T'o(n). Choose the Schwartz

function as in Remark 4.4.1 cmd and B as in Remark . Then the Fourier
coefficient of the theta lift at § as in (4.22)) is
I — NB)\mmL(]:a Xm; 1)
o =
2A(1,1, xm, 1)

as in Proposition [{.4.3]

So, if L(F,xm,1) # 0, we can deduce the non-vanishing of our theta lifting as

above.

§4.5 Non-vanishing of theta lifting

Recall from [CW94] that a new form in S3(I'g(n)) is an eigenform for all the Hecke
operators T, for p not dividing n, which is not induced from in S»(I'g(m)) for any
level m properly dividing n. There is an involution J induced by the action on Hs of
the matrix (§9), where e generates the unit group of O. The effect of J on Fourier
coefficients is ¢(a) — c(ea); the involution commutes with the Hecke operators, and

splits S2(I'g(n)) into two eigenspaces,

S2(Lo(n)) = S5 (To(n)) & Sy (To(n)).
Newforms in S5 (T'g(n)) were called plusforms, and their Fourier coefficients satisfy the
additional condition c¢(ea) = ¢(a) for all aw € O. Denote by SyV(I'g(n)) the space of
newforms in Sy(To(n)) and by S5 (Tg(n)) the space of plusforms in S5°%(T'g(n)).
More discussions on newforms and plusforms of weight 2 Bianchi modular forms can

be found in [CW94].

As discussed in Section 1.5,
—,,) for (z,r) € Hs

is a basis for the left-invariant differential forms on Hjz. Let F € S3*V(I'g(n)) and
recall its Mellin transform from [CW94, Section 2.5]:
_ (4m)? . % 252 .
A(F,s) = T F - B (4.43)
[drl o

for F = (Fo, F1,F2) as given in (1.5 and (1.6).

Proposition 4.5.1. [CW3], Proposition 2.1] Let F € S5 *(Ig(n)). Then
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(1) For Re(s) > 3/2 we have
A(F,s) = (2m)* % |dp|* 'T'(s)’L(F, s) (4.44)
for L(F,s) given in with trivial character.
(2) Assume that F is an eigenform for the Fricke involution w, = (: _01> , t.e.,

Flwn = enF with ey = £1. Then A(F,s) satisfies the functional equation
A(F,s) = —eaN(n)'5A(F,2 — 5). (4.45)

1 0 -1
Put a(a) = (0 ?) and wy = w(N) = (N 0 ) Let ¢ be a character of

(O/my)* with conductor my,. Similar to the twisted Hilbert modular forms [SW93|
Section 5], the twist of F by 1 can be defined as, for m € my,
Fo=G@ 1ym)™ > 7 () Fhalu/m)
ue(O/my)*
where G(»™1,1/m)~! is the Gauss sum of ¢!,

Lemma 4.5.2. Let F € S2(I'o(n)), ¥ a character of (O/my)*, and MM the least
common multiple of n, mfp, and my. Then Fy € So(To(M),1h?).

Proof. We will apply Miyake’s treatment in [Miy06, Lemma 4.3.10] to our case without

any new techniques.

b
Let v = <CX/[ d) € I'p(M) where M € Mt and put

/

¥ = afu/mya(dufm) ™,
a v
then 7" € To(M) C To(n). Writing 7' = | s we have
c
Flaa(u/m)y = Flov'a(d?u/m) = Flaa(d*u/m).
Therefore

Foloy=G@ " 1y/m)™ Y ¢ (w)Flaa(u/m)y

uG(O/mM*

=G 1/m)™t Y T (w) Flaa(d®u/m)

ue(O/my)*

= ()G L 1m)~t Y T (dPu) Flaa(dPu/m)

ue(O/my)*

= v*(d)Fy
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which implies that f, € S2(To(9N),¥?). O

Lemma 4.5.3. Let F € So(I'o(n)) and ¢ a character of (O/my)*. If (n,my) =1,
then

f¢|2w(nm12p) = qugwfl

where G = Flown and

Cy = Cyn =9p()G(¥)/Gp).

Proof. We will apply Miyake’s treatment in [Miy06l Lemma 4.3.11] to our case without

any new techniques.

For uw € O prime to m € my, take n,v € O and N € n so that nm — Nuv = 1.
Then
m -

a(u/m)w(Nm?) =m - w(N) (—uN .

) a(v/m). (4.46)

Since G = F|owy belongs to Sa(I'o(n)), (4.46) implies
Flaa(u/m)w(Nm?) = Glra(v/m),

so that
G ) Fplw(Nm?) = >~ ¢~ (u)Flaa(u/m)w(Nm?)
uE(O/m¢)X
= Y ¢(=Nv)Glaa(v/m)
vE(O/mw)X
=p(=N) D Y(w)Glalv/m).
UE(O/mw)X
Then the assertion follows immediately. O

Combining Lemma and Proposition for the central value at s =1 we

obtain:

Proposition 4.5.4. For F € SSeW’Jr(FO(n)) and Y a quadratic Hecke character, we
have
L(Fy,1) = —entp(n) L(Fy, 1).

Let n, xm and m be as in Theorem 4.4.17, For F € S5 (T'y(n)), it follows
that for the non-vanishing of L(F, xm,1) = L(Fy,,1), we need at least enxm(n) = —1.

Lemma 4.5.5. Given a Bianchi modular form F € Sy (Ty(n)), there always exists

a quadratic Hecke character xm of conductor m such that eyxm(n) = —1.
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Proof. Assume that
exmm) = ] eqm(a) =-1.

prime q;|n
We denote, for each prime q; dividing n,

Ag; = Xm(di)q, € {£1}. (4.47)

Recall the Chinese Remainder Theorem in the following. Let N = [[, n; with
the n; being pairwise coprime. Given any integer a; there exists an integer x such that
x = a; (mod n;) for every i. To solve the system of congruences consider N; = N/n;
and then there exists integers M; such that N;M; = 1 (mod n;). A solution of the
system of congruences is = >, a;N;M;. The way for computing the solution can also

be applied into principal ideal domains.

Recall the quadratic residue symbol from [Neu99, Chapter V]. The quadratic
residue symbol for O is defined by, for a prime ideal p C O,

« Np—1
— ] =a 2 modp.
) :

It has properties completely analogous to those of classical Legendre symbol
0, aep,
(a>: 1, a¢pand In€ O:a=n%mod p,
—1, «a ¢ p and there is no such 7.

The quadratic residue symbol can be extended to take non-prime ideals or non-zero
elements as its denominator, in the same way that the Jacobi symbol extends the Leg-
endre symbol. For 0 # 5 € O then we define (%) = (%) where (/) is the principal
ideal generated by 5. Analogous to the Jacobi symbol, this symbol is multiplicative in

the top and bottom parameters.

We are interested in the quadratic reciprocity law in the case of the imaginary
quadratic field F = Q(v/d) with class number one (see [Hec81, Chapter VIII]. For any
a € O with odd norm we define elements t,,t,, € Z/27Z by

a= \/gta(l +2Vd)ee? mod 4 for £ € O.

Then the quadratic reciprocity law for coprime elements of odd norm is given by
O (2) =
I3 Q

T tathy +tots + tatp mod 2, if d =1,2 mod 4
B taty +tots mod 2, if d =3 mod 4.

where
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In particular, if &« = 1 mod 4, we can observe that t, = ¢/, = 0 which implies that
T =0 mod 2. It follows that

(g) <§> =1 fora=1mod 4. (4.48)

We want to find a quadratic character defined by the quadratic residue symbol,
Xm = (m), such that xm(q;) = €q,Aq; for Aq, given in . By our assumption
m is the product of inert or split primes. We can impose that m = 1 mod 4 to
get (E) = (m) by the above quadratic reciprocity law . To achieve xm(q;) =
(;ﬂl) (%) = &g, \q;, we need (%) = (%) £q:Aq; which can be done via imposing
congruence conditions (%) on m modulo q;. Therefore, by the Chinese remainder

theorem, there exists a m satisfying

m =1 mod 4 (4.49)
congruence conditions (*) on m mod q; for each prime q;|n. '
Now we have proven this lemma. O

Write S := {place v : v | 2|d|n}. Let £ be a quadratic idelic Hecke character
of conductor M¢O such that Mg = 1mod4, Mg = mmodgq; for each q;n and at v
dividing v/dO the local component &, is ramified with square-free conductor. Note that
its conductor is coprime to 2n and divisible by v/d®, and so is its induced character
xe of (O/M¢O)*. Also we can observe that M satisfies the conditions in (4.49). So,
by the preceding lemma there exists a x¢ attached to £ such that e;x¢(n) = —1. Let
U(S;€) denote the set of quadratic characters x¢ such that Xx¢, = &, for all v € S.
Recall from [FH95, Theorem B(1)]

Proposition 4.5.6. Suppose m is a cuspidal automorphic representation of GLa(A)
which is self-contragredient. Suppose that for some quadratic character x € ¥(S;&) one
has root number ¢(m ® x) = 1. Then there exist infinitely many quadratic characters
X € W(S;€) such that L(mr ® x',1) #0.

In Section 1.6 we have discussed the automorphic representation = on the space of
weight 2 Bianchi modular forms. Also, we have shown that there exists a x¢ € ¥(S5;¢)
such that enxe(n) = —1, i.e., e(m® x¢) = 1. So we can apply the above proposition to
deduce that, for F € S;lew’+, there are infinitely many quadratic characters y € W(S;¢)
such that L(F,x,1) is non-vanishing.

We will explain that these infinitely many quadratic characters always include a

quadratic character with square-free conductor. This is necessary since the quadratic
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character xm as in Theorem has the square-free conductor m. Suppose that
U(S;€) 3 xam : (O/M)* — C* is a quadratic Hecke character. Set MM = []1ime p,jm p;’
with r; > 1. By the Chinese Remainder Theorem, we have (O/9)* =[], 0n(O/p;*)*
and then can write xon = [ xonp;, with xonyp, defined on (O/p;*)*. It is known that
(O/p")* has cyclic order of either p"(p—1) for p above split prime p or p>("=1(p? —1)
for p above inert prime p. So xonp, is induced from a character defined on (O/p)*
which implies that xop is induced from a primitive character ym, of square-free con-

ductor mg.

We will show that the non-vanishing of L(F,xsm,1) is equivalent to that of
L(F, Xmg»1). Write 9T = mqn2. It is a fact that

L(F, xm, 8) = L(F, Ximo» 8) [ [ (1 = az(po)xXmo (Po) N (p0) = + N (p0)' )

v|ng

where ar denotes the Fourier coefficient of F. It suffices to show the non-vanishing of

L —ar(pv)Xmo(Po)N(py) "% + N(Pv)1_2s at s=1

which can be rewritten as the Hecke polynomial

(1= az(po)N(po) ") (A = Br(pu)N(po) ")
As |ar(py)| < N(py) and |Br(py)| < N(py), we can deduce the non-vanishing of

(1 — az(p)N(ps) ™)1 = Br(pe)N(po) ).

As myg is square-free, divisible by v/d and coprime to n such that L(F, Xm, 1)
is non-vanishing, following Theorem [4.4.17] we can deduce that

Theorem 4.5.7. Given a Bianchi modular form F € S5 with n coprime to dpO,

there always exists a quadratic Hecke character such that the theta lifting as in Theorem

is non-vanishing.

Example 4.5.8. Let F = Q(v/—3) with O = Z[w] and dp = d = —3. Consider the
weight 2 Bianchi modular form F of level T'g(pags.1) with pags = (19w — 13) above
split prime 283 (LMFDB label: 2.0.3.1-283.1-a). It has root number -1 which implies
that L(F,1) is vanishing. The Atkin-Lehner eigenvalue is ep,,,, = 1. Using Magma

calculator, we can find a quadratic Hecke character x of conductor f = (7+/d) such
that x(p283.1)€pags, = —1:

K:=QuadraticField (—3);

OK<w>:=Integers (K);

[:=7+OKx (2xw—1);

H:= HeckeCharacterGroup (I);
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H;

chi:= H.1;

Order(chi);

p283_1:=Factorization (283+OK)[1,1];
p283_1;

chi(p283.1);

Abelian Group isomorphic to Z/2 + Z/6 given as Z/2 + 7Z/6
Group of Hecke characters H of modulus of norm 147
over Quadratic Field with defining polynomial $.1°2 + 3
over the Rational Field mapping to Cyclotomic Field
of order 6 and degree 2
2
Prime Ideal of OK
Two element generators:
283
2+w 4 88

Then, by Theorem [4.4.17] the Fourier coefficient at S (as in Example or
4.4.11)) equals to I, which is non-vanishing if L(F,x,1) # 0.
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