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Abstract

In this thesis we study the theta lifting of a weight 2 Bianchi modular form F
of level Γ0(n) with n square-free to a weight 2 holomorphic Siegel modular

form. Motivated by Prasanna’s work for the Shintani lifting, we define the

local Schwartz function at finite places using a quadratic Hecke character χ

of square-free conductor f coprime to level n . Then, at certain 2 by 2 Gram

matrices β related to f , we can express the Fourier coefficient of this theta

lifting as a multiple of L(F , χ, 1) by a non-zero constant. If the twisted

L-value is known to be non-vanishing, we can deduce the non-vanishing of

our theta lifting.
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Introduction

Shimura initiated the systematic study of holomorphic modular forms of half-integral

weight and provided a correspondence between certain modular forms of even weight

and modular forms of half-integral weight. Later, in the other direction, Shintani

[Shi75] described a method in terms of weighted periods of holomorphic cusp forms

to construct modular forms of half-integral weight. Waldspurger showed in [Wal81] a

proportional relation between special values of L-functions attached to an eigenform

of even weight and the square of the square-free Fourier coefficients of the Shintani

lifting. For the special case of modular forms on the full modular group, Kohnen-

Zagier [KZ81] proved a simple version of Waldspurger’s theorem with the constant of

proportionality given explicitly. Inspired by their work we will analyse the theta lifting

of Bianchi modular forms to Siegel modular forms and investigate the relationship

between Fourier coefficients of this lifting and special L-values attached to the Bianchi

modular forms. This can be used to describe the non-vanishing of the theta lifting

which is an open problem in general.

Shintani’s result can be recovered as a special case of the Kudla-Milson cohomo-

logical theta lifting (see [KM90], [Fun02] and [FM11]) which can be described as an

integral of the exterior product of two cohomology classes over arithmetic quotients of

the symmetric space attached to orthogonal groups. To construct the Shintani lifting of

a weight 2 cusp form f for a congruence subgroup Γ, we can consider a 3-dimensional

rational quadratic space V of signature (2,1) associated to which the symmetric space

D is isomorphic to the upper half plane H2 . By the Eichler-Shimura isomorphism,

the cusp form f can be realised as a cohomology class represented by the differential

form ηf on the arithmetic quotient Γ\D . This is paired against the cohomological

theta kernel form θ defined on the product of two locally symmetric spaces attached

to S̃L2 × SO(2, 1) where S̃L2 denotes the metaplectic group of SL2 . Given a cohomo-

logical Schwartz form ϕ on V with the infinity part defined by Kudla-Milson, namely

vi
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ϕ∞ = ϕKM
∞ , and the usual Weil representation ω , the theta kernel is defined as

θ(g, h, z) :=
∑
x∈V

ω(g, h)ϕ(x, z) for g ∈ S̃L2, h ∈ SO(2, 1), z ∈ D.

Then the theta lifting, which is a weight 3/2 cusp form, is given by

Θϕ(ηf )(g) =

∫
Γ\D

f(z)dz ∧ θ(g, h, z).

Further results of Kudla-Milson [KM90] and Funke [FM02] imply an interpretation of

its Fourier coefficients as period integrals over certain cycles C . More explicitly, the

coefficient at β > 0 is given by ∑
x∈Γ\Ωβ

ϕχf (x)

∫
Cx

f(z)dz

where Ωβ := {x ∈ V : −det(x) = β} . For an auxiliary quadratic character χ we

here take ϕ = ϕ∞ϕ
χ
f with the finite part ϕχf almost the same as that defined in

[Pra09]. Then the coefficient of Θϕ(ηf ) at certain β (depending on the conductor

of χ) can be expressed as the above weighted sum of period integrals over infinite

geodesics. In Section 3.3.1, the period integral over the infinite geodesic with one end

point at the cusp ∞ can be related to L(f, χ, 1). Those over other infinite geodesics

can be transformed by Atkin-Lehner operators to be over infinite geodesics ending in

∞ . Eventually the Fourier coefficient at β turns out to be a multiple of L(f, χ, 1) by

a non-vanishing constant. If the twisted L-value is known to be non-vanishing then so

is this Shintani lifting.

Proposition 0.0.1 (Proposition 3.3.5). Let f be a weight 2 cusp form of level Γ0(N)

with odd square-free N and χm a quadratic Dirichlet character of odd square-free con-

ductor m such that (m,N) = 1. Then, at m2 the Fourier coefficient of the theta lifting

can be expressed as

(∗) · L(f, χm, 1)

where the non-zero factor (∗) is given explicitly in (3.7).

To construct the theta lifting of a weight 2 Bianchi modular form F for level Γ0(n)

with n a square-free ideal for an imaginary quadratic field F , following [KM90] and

[Ber14] we consider the 4-dimensional rational quadratic space V given by Hermitian

matrices with entries in F . Its associated symmetric space D is isomorphic to the

upper half space H3 . In our theta integral we use the differential form ηF attached to

F defined on the arithmetic quotient Γ\D . Different to the Shintani case we choose

the Schwartz form ϕ = ϕKM
∞ ϕf defined on a pair of vectors in V so that the theta
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kernel is given by

θ(g, h, z) :=
∑

(x1,x2)∈V 2

ω(g, h)ϕ(x1,x2; z) for g ∈ Sp4 ⊂ GL4, h ∈ SO(3, 1).

Then the theta lifting is constructed as

Θϕ(ηF )(g) =

∫
Γ\D

ηF (z) ∧ θ(g, h, z)

which turns out to be a weight 2 holomorphic Siegel modular form. To calculate its

Fourier coefficient at a 2× 2 symmetric matrix β > 0, given here by∑
(x1,x2)∈Γ\Ωβ

ϕf (x1,x2)

∫
CU(x1,x2)

ηF

where Ωβ := {(x1,x2) ∈ V 2 : 1
2((xi,xj)) = β} and U(x1,x2) := Span{x1,x2} ⊂ V .

For an auxiliary quadratic Hecke character χ with its conductor coprime to n we define

the Schwartz form as ϕ = ϕKM
∞ ϕχf . The choice of the Schwartz function ϕχf in Section

4.3 is crucial for us to get the period integral related to some twisted L-values. With

this choice we take certain β > 0 (again depending on the conductor of χ) at which

the coefficient of Θϕ(ηF ) is expressed as the above weighted sum of period integrals

over infinite geodesics joining two cusps. By Theorem 1.4.12, the period integral over

infinite geodesics ending in ∞ can be related to L(F , χ, 1). We apply Atkin-Lehner

operators to transform other infinite geodesics so as to obtain the period integral over

geodesic lines through ∞ . In Section 4.4 I compute the coefficient at such a β as a

multiple of L(F , χ, 1) by a non-vanishing number. By Friedberg-Hoffstein’s theorem

[FH95, Theorem B], we can deduce that there always exists a character χ such that the

twisted L-value is non-vanishing which implies the non-vanishing of the corresponding

theta lifting.

Theorem 0.0.2 (Theorem 4.4.17). Let F = Q(
√
d) (square-free d < 0) be an imagi-

nary quadratic field of class number one and denote by O its ring of integers. Consider

a weight 2 Bianchi cusp form F of level Γ0(n) with n a square-free ideal away from

ramified primes in F/Q. Given a square-free product m of split or inert primes in

F/Q such that (m, n) = 1, we choose a quadratic Hecke character χm of conductor

m
√
dO . Then, at certain β > 0 related to m, the Fourier coefficient of the theta lifting

can be computed as

(∗) · L(F , χm, 1)

where the non-zero constant (∗) is given explicitly in (4.35).



Chapter 1

Background

§ 1.1 Locally symmetric spaces

Locally symmetric spaces arise in different areas such as differential geometry, number

theory, automorphic forms and representation theory. The most important class con-

sists of quotients of symmetric spaces by arithmetic groups, for example, the quotient

of the upper half plane H2 by SL2(Z). In this section we review locally symmetric

spaces and arithmetic groups based on Ji’s lecture notes [Ji].

Let M be a complete Riemannian manifold. For any point x ∈ M , there exists

a neighbourhood U such that

(1) every point in U is connected to x by a unique geodesic,

(2) there exists a star-shaped domain V ⊂ TxM containing the origin 0 and sym-

metric with respect to 0 such that the exponential map exp : V → U is a

diffeomorphism.

On such a neighbourhood U , there is a geodesic symmetry sx defined by reversing

geodesics passing through x , i.e., for any geodesic γ(t), t ∈ R , with γ(0) = x ,

sx(γ(t)) = γ(−t),

when γ(t) ∈ U . Since sx 6= Id and s2
x = Id, sx is involutive and called the local

geodesic symmetry at x .

Definition 1.1.1. (1) A complete Riemannian manifold M is called locally sym-

metric if for any x ∈M , the (local) geodesic symmetry sx is a local isometry.

1
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(2) The manifold M is called a symmetric space if it is locally symmetric and every

local isometry sx extends to a global isometry of M .

If M is symmetric, then for all values of t , we have sx(γ(t)) = γ(−t). Clearly,

symmetric spaces are also locally symmetric spaces. If M is a locally symmetric space,

then its universal covering space X = M̃ with the lifted Riemannnian metric is sym-

metric. The fundamental group Γ = π1(M) of M acts isometrically and properly, and

M = Γ\X . So locally symmetric spaces are quotients of symmetric spaces.

Denote by G = Is0(X) the identity component of the isometry group Is(X) of

the symmetric space X . It is well known that if X is a symmetric space then G is a

Lie group and acts transitively on X , see [Ji, Proposition 2.4]. Fix a base point x0 ∈ X
and the stabilizer of x0 in G is denoted by

K = {g ∈ G : g · x0 = x0}.

Then K is a compact subgroup of G and we have

G/K ' X, gK 7→ gx0.

The fundamental group Γ acts isometrically on X and is a discrete subgroup of G . So

any locally symmetric space M is of the form

M = Γ\G/K.

Therefore, each locally symmetric space determines a triple (G,K,Γ).

We can reverse the above process to construct locally symmetric spaces. If G

is a connected non-compact semisimple Lie group and K ⊂ G a maximal compact

subgroup, then endowed with a G-invariant metric X = G/K is symmetric space.

Any torsion free discrete subgroup Γ of G acts isometrically on X and the quotient

Γ\X is a locally symmetric space. Such discrete groups Γ are often constructed via

algebraic groups, e.g. arithmetic groups which will be defined in the following. More

generally Γ can be any discrete subgroup of G , not necessarily torsion free. Since many

natural important arithmetic subgroups such as SL2(Z) are not torsion free, Γ\X is

also called a locally symmetric space for a non-torsion free discrete subgroup Γ.

Example 1.1.2. Consider

G = SL2(R) =

{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
,

K = SO(2) =

{(
cos θ − sin θ

sin θ cos θ

)
: θ ∈ R

}
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and

Γ = SL2(Z) =

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The modular group Γ is not torsion free since for example(
0 −1

1 0

)
6= Id but

(
0 −1

1 0

)4

= Id .

Let the upper half plane

H2 = {z = x+ iy ∈ C : x ∈ R, y > 0}

with metric ds2 = 1
y2

(dx2 + dy2). The group SL2(R) acts isometrically and holomor-

phically on H2 via fractional linear transformation(
a b

c d

)
· z =

az + b

cz + d
.

By this action we can show that H2 is a symmetric space. The geodesic symmetry at

the base point x0 = i is given by

si(z) = −1/z̄ =

(
0 1

−1 0

)
· z

and is an isometry of H . Under the conjugation by elements in SL2(R), it follows that

for any point x ∈ H2 the geodesic symmetry sx is an isometry. The stabilizer of x0 = i

is K = SO(2), and hence

X = SL2(R)/ SO(2) ' H2, g SO(2) 7→ gi

and a locally symmetric space is Γ\H2 .

A variety G over a field k is called an algebraic group if it is also a group and

the group operations

λ : G×G→ G, (g1, g2) 7→ g1g2,

µ : G→ G, g 7→ g−1

are morphisms of varieties. We are interested in linear algebraic groups. The first

example of those is GLn(k) which is contained in the affine space of Mn×n(k) ' kn
2
.

It can be realised as an affine variety via the embedding

GLn(k)→Mn×n(k)× k = kn
2+1, (gij) 7→ ((gij), (det(gij))

−1).

Let (Xij , Z) be the coordinates of Mn×n(k) × k . Then the image is the affine hyper-

surface defined by det(Xij)Z = 1 which is a polynomial in Xij and Z . One can check

that the group actions on GLn(k) are given by polynomials in Xij and Z . So GLn(k)
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is an affine algebraic variety.

Linear algebraic groups often occur as the automorphism groups of some struc-

tures such as determinant and quadratic forms.

Example 1.1.3. � Special linear group

SLn(k) = {g ∈ GLn(k) : det(g) = 1}.

� Symplectic group

Sp2n(k) = {g ∈ GL2n(k) : det(g) = 1;F (gX, gY ) = F (X,Y ) for X,Y ∈ k2n}

where

F (X,Y ) = x1y2n + x2y2n−1 + · · ·+ xnyn+1 − xn+1yn − · · · − x2ny1

is a skew-symmetric form. Note that Sp2 = SL2 .

Example 1.1.4. Special orthogonal group

� Let

SO(m,n) = {g ∈ SLm+n(k) : gtIm,ng = Im,n}

where Im,n stands for a diagonal matrix whose diagonal entries are m +1’s

followed by n -1’s. Denote SO(n, 0) (or SO(0, n) which is the same group)

by SO(n).

� A symmetric bilinear form B on kn is non-degenerate if for all nonzero v ∈ kn

there exists w ∈ kn such that B(v, w) 6= 0. Define

SO(B, k) = {g ∈ SLn(k) : B(gv, gw) = B(v, w) for all v, w ∈ kn}.

� A quadratic form on kn is homogeneous polynomial Q(x1, . . . , xn) of degree 2.

It is non-degenerate if the corresponding bilinear form is non-degenerate. Define

SO(Q, k) = {g ∈ SLn(k) : Q(gv) = Q(v) for all v, w ∈ kn}.

These three approaches give rise to the same groups SO(m,n).

With the transitive action of SL2(R) on the upper half plane H2 by fractional

linear transformation, we have seen that H2 ' SL2(R)/ SO(2). This has a higher-

dimensional generalisation, the Siegel upper half space, consisting of symmetric complex

n× n matrices with positive definite imaginary part:

Hn := {Z = X + iY : X,Y ∈Mn×n(R) : Xt = X,Y t = Y, Y > 0}

(in particular, H1 = H2 is the upper half plane). We may see this as open subset of

Cn(n+1)/2 by sending a matrix (zij) to the point (zij)i≤j ∈ Cn(n+1)/2 , so there is a

natural complex structure.
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Recall that the symplectic group can also be defined as

Sp2n(R) :=

{
g =

(
A B

C D

)
∈M2n×2n(R) : gt

(
0 In

−In 0

)
g =

(
0 In

−In 0

)}
and it acts transitively on Hn by

g · Z = (AZ +B)(CZ +D)−1 for g ∈ Sp2n, Z ∈ Hn.

We have a subgroup of unitary matrices

U(n) = {Z ∈Mn×n(C) : Z̄tZ = ZZ̄t = In}

(in particular, SO(2) ' U(1)). This can can be identified with a subgroup of Sp2n(R)

via

X + iY 7→

(
X Y

−Y X

)
and is a maximal compact subgroup of Sp2n(R) stabilising the base point iIn in Hn .

In fact we have as a symmetric space

Hn ' Sp2n(R)/U(n).

A linear algebraic group G is said to be defined over Q if the polynomials defining

G as a subvariety have coefficients in Q . Let G ⊂ GLn(C) be a linear algebraic group

defined over Q , G(Q) ⊂ GLn(Q) the set of its rational elements and G(Z) ⊂ GLn(Z)

the set of its elements with integral entries. A subgroup Γ ⊂ G(Q) is called an

arithmetic subgroup if it is commensurable to G(Z), i.e. Γ ∩G(Z) has finite index in

both Γ and G(Z). As an abstract affine algebraic group defined over Q , G admits

different embeddings into GLn′(C) (n′ might different from n). Choosing a different

embedding, we will get a different integral subgroup G(Z). One can show that these

different embeddings and different choices of integral structures lead to the same class

of arithmetic groups.

For the following discussion, we need a bit more general set-up of arithmetic

groups, see [Ji, Section 4]. Let F be a number field and OF its ring of integers. Let

G ⊂ GLn(C) be a linear algebraic group defined over F . A subgroup Γ ⊂ G(F )

is called arithmetic if it is commensurable to G(OF ) = G ∩ GLn(OF ). In fact, by

the functor of restriction of scalars, there is an algebraic group ResF/Q G defined over

Q such that ResF/Q G(Q) = G(F ) and G(OF ) is commensurable to ResF/Q G(Z)

under this identification. If [F : Q] = r , then ResF/Q G is a linear subgroup of

GLnr(C) ⊂Mnr×nr(C).

Example 1.1.5. Consider the upper half space, a model of 3-dimensional hyperbolic
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space which closely resembles the upper half plane,

H3 := {(z, r) : z = x+ iy ∈ C, r > 0}.

The notation for points in H3 is

P = (z, r) = (x, y, r) = z + rj where j = (0, 0, 1).

We equip H3 with the hyperbolic metric coming from the line element

ds2 =
dx2 + dy2 + dr2

r2
.

Let F = Q(
√
d) be an imaginary quadratic field with square-free d < 0. Then

ResF/Q SL2 is defined over Q and ResF/Q SL2(R) = SL2(C). For g =

(
a b

c d

)
∈

SL2(C) and P ∈ H3 , the action of g on H3 is given by

P 7→ g · P := (aP + b)(cP + d)−1

where the inverse is taken in the skew field of quaternions. More explicitly, writing

g · (z + rj) = z′ + r′j , we have

z′ =
(az + b)(c̄z̄) + d̄+ ac̄r2

|cz + d|2 + |c|2r2
and r′ =

r

|cz + d|2 + |c|2r2
.

The stabilizer of j with respect to this action is SU(2) = {g : g ∈ U(2),det(g) = 1}
which is one of maximal compact subgroups of SL2(C). Then the symmetric space

associated to SL2(C) is SL2(C)/ SU(2) which can be realised as H3 . Here we have the

map

SL2(C)→ H3, g 7→ g · j

which gives rise to an SL2(C)-equivariant bijection between the symmetric space of

SL2(C) and H3 .

The arithmetic subgroup SL2(OF ) is a discrete subgroup of SL2(C) and called

the Bianchi group. For Γ ⊂ SL2(OF ), the quotient Γ\H3 is a typical non-compact

arithmetic 3-dimensional hyperbolic manifold which is a locally symmetric space.

Let V be a rational vector space of dimension m = p+ q with a non-degenerate

symmetric bilinear form ( , ) of signature (p, q). Let G = SO(V ) and G(p, q) =

G0(R) ' SO0(p, q) be the connected identity component of the real points of G . The

associated symmetric space is given by D = G(p, q)/(G(p)×G(q)). It can be identified

with the space of negative q -planes Z in V (R) on which the bilinear form ( , ) is

negative definite:

Grq = {Z ⊂ V (R) : dimZ = q and ( , )|Z < 0},
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see e.g. [KM90, Section 2].

Example 1.1.6. Here we assume the exceptional isomorphism, e.g. PSL2(R) ' G(2, 1)

and PSL2(C) ' G(3, 1), which we will discuss in details in our next Section 1.2.

� For signature (2,1), over R we fix an isomorphism

V (R) '

{
x =

(
b a

c −b

)
∈M2×2(R)

}
with quadratic form q(x) = −det(x) and corresponding bilinear form (x,y) =

tr(x,y). The group G(2, 1) acts isometrically on V (R) by x 7→ g · x := gxg−1

for g ∈ G(2, 1). We fix an orthonormal basis of V (R) given by e1 =

(
0 1

1 0

)
,

e2 =

(
1 0

0 −1

)
and e3 =

(
0 1

−1 0

)
. Pick the line Z0 spanned by e3 , the base

point of D with stabilizer G(2). Then we have the isomorphism

H2 → D = G(2, 1)/G(2)→ Gr1

with

z = x+ iy ∈ H2 7→ gG(2) 7→ R · g · Z0 =: l(z)

where g ∈ PSL2(R) ' G(2, 1) such that g ·i = z , e.g. g =

(
1 x

0 1

)(√
y 0

0 1√
y

)
=(√

y x√
y

0 1√
y

)
. We see that l(z) is generated by

x(z) := y−1

(
−x x2 + y2

−1 x

)
with q(x(z)) = −1.

� For signature (3,1), over R we fix an isomorphism

V (R) '
{
x ∈M2×2(C) : xt = x̄

}
with quadratic form q(x) = −det(x) and corresponding bilinear form (x,y) =

tr(xy∗) where

(
a b

c d

)∗
=

(
d −b
−c a

)
. The group G(3, 1) acts isometrically on

V (R) by g ·x = gxḡt for g ∈ G(3, 1). We fix an orthonomal basis of V (R) given

by e1 =

(
1 0

0 −1

)
, e2 =

(
0 1

1 0

)
, e3 =

(
0 i

−i 0

)
and e4 =

(
1 0

0 1

)
. Pick the

line Z0 spanned by e4 , the base point of D with stabilizer G(3). Then we have

the isomorphism

H3 → D = G(3, 1)/G(3)→ Gr1
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with

P = z + rj ∈ H3 7→ gG(3) 7→ R · g · Z0 =: l(P )

where g ∈ PSL2(C) ' G(3, 1) such that g ·j = P , e.g. g =

(
1 z

0 1

)(√
r 0

0 1√
r

)
=(√

r z√
r

0 1√
r

)
. We can calculate that l(z) is generated by

x(P ) := r−1

(
|z|2 + r2 z

z̄ 1

)
with q(x(P )) = −1.

§ 1.2 The exceptional isomorphism

Given a quadratic space V over a field K of characteristic not 2, we have an exact

sequence

1→ {±1} → Spin(V )
Λ−→ SO(V )→ K×/(K×)2,

see [Hah04, Theorem 7]. Here Spin stands for the spin group associated to this

quadratic space which will be defined later. So Λ induces an isomorphism

Spin(V )/{±1} ' SO+(V )

where SO+(V ) := Im(Λ). In the case of dimV = 3, we have Spin3 ' SL2 which

implies the exceptional isomorphism PSL2 ' SO+(2, 1), and furthermore if K = R ,

we obtain

PSL2(R) ' SO+
3 (V (R)) = SO0(V (R)). (1.1)

In the following, we shall describe the construction of an isomorphism between PSL2

and SO+(3, 1) in the case of dimV = 4, see [EGM98, Section 1.3].

We start off with certain facts about Clifford algebras. Let K be a field of

characteristic not equal to 2 and V an n-dimensional K -vector space. Suppose that

Q : V → K is a non-degenerate quadratic form with associated symmetric bilinear

form B : V × V → K , that is

B(x, y) = Q(x+ y)−Q(x)−Q(y),

Q(x) =
1

2
B(x, x).

Denote by T (V ) the tensor algebra of V and by aQ its two-sided ideal generated by

the elements x⊗ y+ y⊗x−B(x, y) where x, y run through the elements of V . Define
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the Clifford algebra of Q to be the quotient C(Q) := T (V )/aQ . The field K and the

vector space V inject into C(Q) with their canonical images. Let e1, . . . , en be an

orthogonal basis of V with respect to Q . Then we have in C(Q):

e2
i = Q(ei) and ei · ej = −ej · ei.

Let P be the set of subsets of {1, . . . , n} . For M = {i1, . . . , ir} ∈ P with i1 < · · · < ir ,

we define

eM := ei1 · · · · · eir

with the convention e∅ = 1. Then the 2n elements eM make a vector basis of C(Q).

For M,N ∈ Pn the product eM ·eN can be calculated explicitly as a scalar factor times

an appropriate eL . The Clifford algebra C(Q) has main anti-involution ∗ and a main

involution ′ commuting with ∗ acting on eM given by:

e∗M = (−1)
r(r−1)

2 eM · eM and e′M = (−1)r · eM
where r stands for the cardinality of M . The span of the elements eM with M of even

cardinality is a subalgebra called C+(Q).

Let us consider a particular example as discussed [EGM98, Section 1.3]. For

non-zero ε ∈ K let Vε = K · f3 be the one-dimensional K -vector space with basis f3 .

The quadratic form Qε on Eε is given by Qε(f3) = −ε . Then the Clifford algebra

C(Qε) is two-dimensional and commutative. In case −ε ∈ K×2 the K -algebra C(Qε)
is isomorphic to K ×K , if not then C(Qε) is a quadratic extension of K . Here K×2

denotes the subgroup of squares in K× . In case K = R and ε = 1 we call f3 also i ,

which makes the identification C(Q1) = C .

We now fix a 3-dimensional vector space E0 with basis f0, f1, f2 and the quadratic

form Q0 on it is given by

Q0(y0f0 + y1f1 + y2f2) = Q0(y0, y1, y2) = y2
0 + y2

1 + y2
2.

It is well known that C+(Q0) = M2(K), the algebra of 2 by 2 matrices over K . An

isomorphism between these two algebras can be constructed as follows. We define the

elements of C(Q0) depending on λi :

τ0 =
1

2
(f0 + f1), τ1 =

1

2
(f0 − f1),

u = τ1τ0 =
1

2
f0f1, w1 = τ1f2 =

1

2
(f0f2 − f1f2),

w0 = τ0f2 =
1

2
(f0f2 + f1f2), v = τ0τ1 = −1

2
f0f1.
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Then the map(
1 0

0 0

)
7→ u,

(
0 1

0 0

)
7→ w1,

(
0 0

1 0

)
7→ w0,

(
0 0

0 1

)
7→ v

extends to an algebra isomorphism

ψ : M2(K) −→ C+(Q0).

We have

ψ

((
α β

γ δ

))∗
= ψ

((
δ −β
−γ α

))
.

The following construction will be important for our definition of the exceptional

isomorphism.

Consider the K -vector space Ṽε := V0⊕ Vε with quadratic form Q̃ε := Q0 ⊥ Qε .
We define the map • : Vε → C+(Q̃ε) with ẋ := f0f1f2 · x which extends to an injective

K -algebra homomorphism • : C(Qε) → C+(Q̃ε). This map commutes with the anti-

automorphism ∗ . Then the map ψ : M2(C(Qε))→ C+(Q̃ε),

ψ

((
α β

γ δ

))
:= α̇u+ β̇w1 + γ̇w0 + δ̇v

is a K -algebra isomorphism and satisfies

ψ

((
α β

γ δ

))∗
= ψ

((
δ∗ −β∗

−γ∗ α∗

))
.

We are now ready to describe an isomorphism between SL2(C(Qε)) and the spin

group of a suitable quadratic form.

Let U be an n-dimensional K vector space with non-degenerate quadratic form

q . Then the spin-group of q is defined as

Spinn(K, q) := {s ∈ C+(q) : s · U · s∗ ⊂ U, s · s∗ = 1}.

The K -algebra isomorphism ψ defined above then restricts to a group homomorphism

ψ : SL2(C(Qε))→ Spin4(Q̃ε).

The spin-group of a quadratic form has a canonical homomorphism to the cor-

responding orthogonal group which we will review in the following. Let U be a n-

dimensional vector space with non-degenerated quadratic form Q . The space U is

identified with a subspace of C(Q) and for x ∈ U we have Q(x) = x · x∗ . Let

On(K,Q) := {g ∈ GLn(K) : Q ◦ g = Q} . For s ∈ Spinn(K,Q) we define the lin-
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ear map Λ(s) ∈ GL(U) given by Λ(s)(x) := s · x · s∗ . Then the computation

sxs∗ · (sxs∗)∗ = sxs∗sx∗s∗ = sxx∗s∗ = xx∗

shows that Λ(s) ∈ On(K,Q). We have constructed now a homomorphism

Λ : Spinn(K,Q) −→ On(K,Q).

Let Ωn(K,Q) be the commutator subgroup of On(K,Q) and Γ(Q) the subgroup of

K×/K×2 generated by the expressions Q(x)Q(y) with Q(x) 6= 0 6= Q(y). Let x ∈ U
with Q(x) 6= 0. The linear map σx : U → U ,

σx(v) := v − 2
B(v, x)

Q(x)
· x

is called the reflection in the hyperplane perpendicular to x . Every element g ∈
On(K,Q) can be expressed as a product of reflections g = σx1 · · ·σxr . Associating to

g the product Q(x1) · · ·Q(xr) in K×/K×2 we get a well-defined homomorphism

Σ : SOn(K,Q) −→ K×/K×2

which is called the spinorial norm homomorphism. Then we have

Proposition 1.2.1 (Proposition 3.8, [EGM98]). Let U be an n-dimensional K -vector

space with non-degenerate quadratic form Q. Then the following hold.

(1) We have Λ(Spinn(K,Q)) ⊂ SOn(K,Q),Σ(SOn(K,Q)) ⊂ Γ(Q) and the resulting

exact sequence

1→ {±1} → Spinn(K,Q)
Λ−→ SOn(K,Q)→ Γ(Q)→ 1.

(2) We define SO+
n (K,Q) := Im(Λ) and get Ωn(K,Q) ⊂ SO+

n (K,Q).

For the special quadratic form Qε defined above we consider Ψ : SL2(C(Qε)) →
O4(K, Q̃ε) given by Ψ := Λ ◦ψ . The isomorphisms ψ,Ψ are usually called exceptional

isomorphisms. Then we have

Proposition 1.2.2 (Proposition 3.10, [EGM98]). The map Ψ : SL2(C(Qε))→ O4(K, Q̃ε)

satisfies Ψ(SL2(C(Qε))) = SO+
4 (K, Q̃ε) and the resulting sequence

1→ {±1} → SL2(C(Qε))
Ψ−→ SO4(K, Q̃ε)→ K×/K×2 → 1

is exact.

Example 1.2.3. (1) Let K = R and take the one-dimensional R-vector space V1 =

R·f3 with quadratic form Q1(λf3) = −λ2 . We have the identification C(Q1) = C .

Then we have the exact sequence

1→ {±1} → SL2(C)→ SO(3, 1)(R)→ R×/R×2 → 1.
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Note that SO+(3, 1)(R) is the connected component SO0(3, 1)(R) of the identity

in SO(3, 1)(R), see [EGM98, Proposition 3.12]. It follows that we have the excep-

tional isomorphism PSL2(C) ' SO0(3, 1)(R) which also implies the symmetric

space both for PSL2(C) and SO0(3, 1)(R) is H3 as in Example 1.1.6.

(2) Let K = Qq with odd prime q split in the imaginary quadratic field Q(
√
d)

(square-free d < 0). Take the one-dimensional Qq -vector space V−d = Qq ·
√
d

with quadratic form Q−d(λ
√
d) = λ2d < 0. We have C(Q−d) ' Qq × Qq . Then

we have the exact sequence

1→ {±1} → SL2(Qq ×Qq)→ SO(3, 1)(Qq)→ Q×q /Q×2
q → 1

from which we can deduce the isomorphism PSL2(Qq ×Qq) ' SO+(3, 1)(Qq).

(3) Suppose the assumptions in the second example hold but q is inert or ramified.

Then we have C(Q−d) ' Qq(
√
d) and the exact sequence

1→ {±1} → SL2(Qq(
√
d))→ SO(3, 1)(Qq)→ Q×q /Q×2

q → 1

implying PSL2(Qq(
√
d)) ' SO+(3, 1)(Qq).

§ 1.3 Hecke characters

In this section we review Hecke characters classically and idelically from Shurman’s

lecture notes (see [Shu]).

Let F be an imaginary quadratic field with the integer ring O . Let f be an

integral ideal, i.e. an ideal of O . The elements of F× that generate fractional ideals

coprime to f form a subgroup,

F (f) = {α ∈ F× : ((α), f) = 1}.

Definition 1.3.1 (Multiplicative Congruence). For a pair of nonzero field elements

α, β ∈ F (f), the condition α ≡ β mod× f means β − α ∈ F (f)f .

Define

Ff = 1 + F (f)f = {α ∈ F× : α ≡ 1 mod× f} ⊂ F (f)f,

I(f) = {fractional ideal of F coprime to f},

P (f) = {principal fractional ideal (α) of F coprime to f},

Pf = {principal fractional ideal (α) of F where α ≡ 1 mod× f}.

We have a map

F× −→ C, α 7−→ 1⊗ α,
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where we identify R⊗ F (tensoring over Q) with C in the usual way.

Definition 1.3.2 (Classical Hecke Character). Let f be a (nonzero) ideal of O , and

let χ∞ : C× → C× be a continuous character. Then the character

χ : I(f) −→ C×

is a Hecke character with conductor f and infinity-type χ∞ if χ∞ determines χ on Pf

by the rule

χ((α)) = χ−1
∞ (1⊗ α) for all α ∈ Ff.

The group of units of the adele ring AF is called the group of ideles, denoted IF .

Under the subspace topology inherited from AF , IF is not a topological group since

inversion (−)−1 : IF → IF cannot be continuous. However, IF can be endowed with

the subspace topology given by the embedding

IF → AF × AF : x 7→ (x, x−1).

In this way, we get a locally compact topological group. Alternatively, for each finite

S containing the set of archimedean places, we have a locally compact group

IF,S =
∏
v∈S

F×v ×
∏
v/∈S

O×v

since each unit group O×v is compact, and the idele group can be described as the

colimit over a filtered system of open inclusions

IF = colimS IS .

Indeed the idele topology coincides with the filtered colimit topology.

Definition 1.3.3 (Idelic Hecke Character). A Hecke character of F is a continuous

character of the idele group of F that is trivial on F× ,

χ : IF −→ C×, χ(F×) = 1.

A Hecke character χ : IF −→ C× has a conductor intrinsically built in, a product

of local conductors at the finite places, even though its definition makes no direct

reference to a conductor. We discuss this in the following.

At any nonarchimedean place v the local character χv : F×v → C× is determined

by its value on the local units O×v and by its value on a uniformizer $v . By the nature

of the idele topology, the kernel of any continuous group homomorphism IF → C×

contains almost all the local unit groups O×v . Therefore χv takes the unramified form

χv(x) = |x|sv (where s ∈ C) for almost all nonarchimedean v .
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If χv is unramified then the local conductor of χ is Ov . If χv is ramified then

the local conductor of χ is pevv for the smallest ev > 0 such that χv is defined on

O×v /(1 + pevv ) ' (Ov/pevv )× .

Given an idelic Hecke character, we show how to produce a corresponding classical

Hecke character. Let the idelic Hecke character be

χ =
⊗
v

χv

and let its conductor be

f =
∏
v

pevv .

Define a character of fractional ideals coprime to f ,

χ̃ : I(f) −→ C×,

by the conditions

χ̃(pv) = χv(O×v $v), non-archimedean v - f.

The conditions are sensible because the local characters are unramified away from the

conductor. In order to get a classical Hecke character χ̃ , the composition

Ff −→ I(f)
χ̃−−→ C×

needs to take form a 7→ χ̃−1
∞ (1 ⊗ a) for some character χ̃∞ on C× . We compute the

composite for any a ∈ Ff , with (a) =
∏

qαvv , using the fact that χ is trivial on F× at

the last step,

a −→
∏

χ̃(pv)
αv =

∏
χv(O×v $v)

αv = χ(afin) = χ−1(ainf).

Here subscripts inf and fin denote the infinite part and the finite part respectively.

The natural identification of I∞ and C× takes ainf to 1 ⊗ a . Thus, given an idelic

Hecke character χ , the corresponding character χ̃ of I(f) is a classical Hecke character

whose infinite type matches that of the idelic character, i.e. χ̃∞ = χ∞ .

Conversely, given a classical Hecke character χ of F having conductor f and

infinity-type χ∞ , we have a corresponding idelic Hecke character χ̃ :

� Since 1⊗ Ff is dense in R⊗ F , the infinite part χ̃∞ of χ̃ is determined by χ∞ .

� For v - f , define

χ̃v(O×v $v) = χ(pv).

� Any x ∈
∏
v|f F

×
v is closely approximated by some a ∈ F× , and so the desired

value χ̃(x) is closely approximated by
∏
v-f χ̃

−1
v (av) (including infinite v ) as χ̃ = 1

on F× .
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§ 1.4 Automorphic forms

Throughout this chapter we let G be a reductive group over a number field F . Our goal

of this chapter is to review automorphic forms both classically and adelically following

[GH19]. We will relate the adelic definition to automorphic forms on locally symmetric

spaces, and then to classical modular forms on arithmetic quotients of the upper half

plane. In the end, we will discuss two important examples of automorphic forms used

in this thesis, Bianchi modular forms and Siegel modular forms.

1.4.1 Classical automorphic forms

Write A = AF and its finite part Af . Let K∞ ⊂ G(F∞) be a maximal compact

subgroup and Kf ⊂ G(Af ) a compact open subgroup. In fact, the quotient

G(F )\G(Af )/Kf

is finite, which is also known as the finiteness of class number. Let h be its size and

t1, . . . , th a set of representatives for this quotient. Then we have a homeomorphism
h∐
i=1

Γi(Kf )\G(F∞) −→ G(F )\G(A)/Kf

given on the i-th component by

Γi(Kf )g∞ 7−→ G(F )g∞tiΓi(Kf ),

where

Γi(Kf ) := G(F ) ∩ ti ·G(F∞)Kf · t−1
i .

In this subsection we work only at the infinity place and then pass to the adelic setting

in the next subsection.

Let

ι′ : G −→ GLn

be a closed embedding and ι : G→ GL2n the embedding defined by

ι(g) :=

(
ι′(g)

ι′−t(g)

)
. (1.2)

We then define the norm

‖g‖ := ‖g‖ι =
∏
v|∞

sup
1≤i,j≤2n

|gij |v.

Let g be the Lie algebra of G(F∞) and U(g) the universal enveloping algebra of
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complexion gC with its centre Z(g).

Definition 1.4.1. A function

Φ∞ : G(F∞) −→ C

is of moderate growth or slowly increasing if there are constants c, r ∈ R>0 such that

Φ∞(g∞)| ≤ c‖g∞‖r.

In particular, the notion of moderate growth is independent of the choice of ι . For

the definition of automorphic forms we will require the notion of K∞ -finite functions

and Z(g)-finite functions.

Definition 1.4.2. We say a function Φ∞ : G(F∞)→ C is right K∞ -finite if the space

spanned by the right translates of Φ∞ by elements of K∞ is finite-dimensional.

Recall from [GH19, Section 4.2] that there exists an exponential map

exp : g −→ G(F∞)

where g denotes the Lie algebra of G(F∞). In the case where G = GLn , the Lie

algebra gln is the collection of n by n matrices. In this case the exponential is given

by

exp(X) :=

∞∑
j=0

Xj

j!
.

In general, the representation G → GLn induces an inclusion g → gln , and the ex-

ponential on g is obtained by restriction. Let (ρ, V ) be a Hilbert representation of

G(F∞). Given v ∈ V and X ∈ g , we set

ρ(X)v =
d

dt
ρ(exp(tX))v|t=0

=

(
lim
h→0

ρ(exp(t+ h)X)v − ρ(exp(tX))v

h

)
|t=0

if the limit exists. Simply we write Xv for ρ(X)v . A vector v ∈ V is C1 if for X ∈ g ,

the derivative Xv is defined. We define Ck inductively by stipulating that v ∈ V is

Ck if Xv is Ck−1 for all X ∈ g . A vector v ∈ V is C∞ , which is called to be smooth,

if it is Ck for all k ≥ 1. The action of g defined above is a Lie algebra representation,

see e.g. [GH19, Lemma 4.2.2]. We can extend the action of g to an action of the

complexification gC := g ⊗R C by setting (X + iY )v = Xv + iY v . Let U(g) be the

universal enveloping algebra of gC and Z(g) its centre.

Definition 1.4.3. Let V be a Z(g)-module. A vector Φ∞ ∈ V if Z(g)-finite is

Z(g)Φ∞ is finite-dimensional.
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We now finally come to the definition of a classical automorphic form:

Definition 1.4.4. Let Γ ⊂ G(F∞) be an arithmetic subgroup. A smooth function

Φ∞ : G(F∞) → C of moderate growth is an automorphic form on Γ if it is left

Γ-invariant, right K∞ -finite, and Z(g)-finite. We denote by A(Γ) the space of auto-

morphic forms on Γ.

1.4.2 Adelic automorphic forms

Let ι : G→ SL2n be the embedding of (1.2). For a place v of F let

‖g‖v := ‖g‖ι,v = sup
1≤i,j≤2n

|gij |v

and for a set of places S of F (finite or infinite) let

‖g‖S :=
∏
v∈S
‖g‖v.

If S is the set of all places of F then we omit it from notation.

As in the archimedean setting we have a definition of an adelic function of mod-

erate growth:

Definition 1.4.5. A function

Φ : G(A) −→ C

is of moderate growth or slowly increasing if there are constants c, r ∈ R>0 such that

|Φ(g)| ≤ c‖g‖r.

Let Kmax ⊂ G(A) be a maximal compact subgroup; thus Kmax = K∞ ×Kf,max

where K∞ ⊂ G(F∞) and Kf,max ⊂ G(Af ) are maximal compact subgroups. As before,

we say that a function Φ : G(A)→ C is right Kmax -finite if the span of translates

{x 7→ Φ(xk) : k ∈ Kmax}

is finite-dimensional. The reason that we do not include the subscript max at the infinite

component is that it is rare to consider non-maximal compact subgroups in this setting,

although it is very natural to consider non-maximal compact open subgroups at the

finite places.

Now we can give the definition of an adelic automorphic form:

Definition 1.4.6. A function

Φ : G(A) −→ C
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of moderate growth is an automorphic form on G if it is left G(F )-invariant, Kmax -

finite, and Z(g)-finite. The C-vector space of automorphic forms is denoted by A of

A(G).

Definition 1.4.7. An automorphic form Φ ∈ A is said to be cuspidal if for every

proper parabolic subgroup P ⊂ G with unipotent radical N one has∫
[N ]

Φ(ng)dn = 0

for all g ∈ G(A) where the terminology [ · ] is described in [GH19, Section 2.6].

1.4.3 From modular forms to automorphic forms

In this subsection we make the connection between classical modular forms and auto-

morphic forms precisely with help from an additional reference [Boo15].

Set F = Q and G = GL2 . Recall that the strong approximation theorem states

that for any compact open subgroup Kf ⊂ GL2(Af ) such that det(Kf ) = A×f , we have

GL2(AQ) = GL2(Q) GL2(R)Kf .

Note that this relies on the class number of Q being one. A convenient compact open

subgroup to work with will be

K0(N) =

{(
a b

c d

)
∈ GL2(Ẑ) : c = 0 mod N

}
.

The connection between the GL2(R)+ (or SL2(R)) and GL2(AQ) is the following

proposition:

Proposition 1.4.8. [Boo15, Proposition 1.2] For any positive integer N , there are

natural isomorphisms

Γ0(N)\SL2(R) ' Z(AQ) GL2(Q)\GL2(AQ)/K0(N),

Γ0(N)\GL2(R)+ ' GL2(Q)\GL2(AQ)/K0(N).

In particular, adding in an archimedean component to K0(N) such as SO(2) would

give a more direct comparison with the upper half plane, i.e.

Γ0(N)\H2 ' Z(AQ) GL2(Q)\GL2(AQ)/ SO(2)×K0(N),

Γ0(N)\H2 ' GL2(Q)\GL2(AQ)/SO(2)×K0(N).

With the identification of spaces in the above proposition, we can set up a corre-

spondence between functions on the upper half plane, GL2(R)+ and GL2(AQ). Instead
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of working with the quotients Γ0(N)\H2 , we will work with functions on GL2(R) and

GL2(AQ) which satisfy transformation laws.

We start with the classical modular forms on the upper half plane H2 . Let

Γ ⊂ SL2(Z) be a congruence subgroup. For example, we could set

Γ = Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z) : N |c

}
.

Now we recall the definition of a classical modular form for Γ:

Definition 1.4.9. Let k ∈ Z>0 and H2 the complex upper half plane. The space of

weight k modular forms for Γ is space Mk(Γ) of holomorphic functions f : H2 → C
satisfying the following conditions:

(1) f
(
az+b
cz+d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ and all z ∈ H2 ,

(2) f extends to holomorphically to the cusps.

If f additionally vanishes at the cusps we say that f is a cusp form. The space of

weight k cusp forms is denoted Sk(Γ).

We will now discuss how a modular form is an example of an automorphic form

on GL2(R). The observation that GL2(R)+ acts on the upper half plane with stabilizer

K = SO(2) suggests the relationship between modular forms on H2 and automorphic

forms on GL2(R). Given a cusp form f , we consider the function defined on g =(
a b

c d

)
∈ GL2(R)+ by

F (g) := (f |kg)(i) = (ad− bc)k/2(ci+ d)−kf

(
ai+ b

ci+ d

)
.

One can show that it has many nice transformation properties and then it is the auto-

morphic form for GL2(R), see [Boo15, Section 2.2]. Among these properties, we want

to highlight the following:

� for γ ∈ Γ0(N), F (γg) = F (g);

� for κ =

(
cos θ − sin θ

sin θ cos θ

)
∈ K = SO(2), we see that

F (gκ) = e−ikθF (g)

which implies that F is K -finite;

� for γ ∈ Z(R)+ ⊂ GL2(R), we have

F (γg) = F (g).
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It follows that the automorphic form F on GL2(R) descends to the function on the

locally symmetric space Γ0(N)\GL2(R)+/Z(R)+ SO(2) ' Γ0(N)\H2 .

We now describe how to associate to f and F an automorphic form Φ on

GL2(AQ). The idea is similar to that of GL2(R)+ ; that is using Proposition 1.4.8 to

see a relation between the spaces, and then a connection between functions on GL2(R)

and those on GL2(AQ) satisfying certain transformation properties. For γ ∈ GL2(Q),

g∞ ∈ GL2(R)+ and κf ∈ K0(N), we define

Φ(γg∞κf ) := F (g∞) = (f |kg∞)(i). (1.3)

One can show that the function Φ is well defined and it is a cusp form, see [Boo15,

Proposition 2.3]. For the transformation properties of Φ, see [Boo15, Section 2.3] in

details. Again, we point out some properties here:

� Φ is left invariant under GL2(Q) by definition;

� for κ = κ∞κf ∈ K = SO(2)K0(N), we have that

Φ(gκ) = e−ikθΦ(g)

which implies the K -finiteness;

� for g ∈ GL2(AQ) and z ∈ A×Q , we can check that

Φ

((
z 0

0 z

)
g

)
= Φ(g).

So, by the above proposition, we can observe that the automorphic form Φ on GL2(AQ)

descends via (1.3) to the function on the locally symmetric space

Z(AQ) GL2(Q)\GL2(AQ)/ SO(2)×K0(N) ' Γ0(N)\ SL2(R)/SO(2) ' Γ0(N)\H2.

1.4.4 Bianchi modular forms

In this section we consider cusp forms on the adele group GL2(A) for the adele ring

A = AF over an imaginary quadratic field F of class number one. For arbitrary class

number, see e.g. [Gha99, Section 2]. The class number in this thesis is restricted since

we know how to use Atkin-Lehner operators in Section 4.4.2 only in this case of class

number one. We will treat larger class numbers in the future.

Let Ô =
∏
v<∞Ov . Given an ideal N ⊂ O , we define

K0(N) :=

{(
a b

c d

)
∈ GL2(Ô) : c ∈ NÔ

}
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which is a compact open subgroup of the finite part of GL2(A). Let Vn(C) be the

space of homogeneous polynomials of degree n in two variables s =
(
S
T

)
with complex

coefficients.

In the following we will define the automorphic forms on GL2(AF ) which are

eigenforms of the Casimir operator (which is central) in the universal enveloping algebra

of the complexification sl2(C)⊗R C . First we recall the Casimir operator explicitly in

this case from [Hid93, Section 1.3]. For

sl2(C) = {x ∈ gl2(C) : tr(x) = 0},

we have sl2(C)⊗RC = sl2(C)⊕sl2(C). Here, sl2(C) is embedded into sl2(C)⊕sl2(C) as

x 7→ x⊕xc for the complex conjugation c . We write the first (resp. second) projection

of x ∈ sl2(C)⊕ sl2(C) as x′ (resp. x′′ ). Let

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
and then the Casimir operator in sl2(C) is given by

C =
1

8
(ef + fe) +

h2

16
− 1

8
((ie)(if) + (if)(ie))− (ih)2

16
As an element of the complexification, we have

C =
1

4
(D′ ⊕D′′)

where D′ = e′f ′+f ′e′+h′2/2 and D′′ = e′′f ′′+f ′′e′′+h′′2/2. Following the discussion

in Section 1.4.1, the Lie algebra sl2(C) acts on smooth functions Φ on GL2(C) by

XΦ(g∞) =
d

dt
{Φ(g∞ exp(tX))}

∣∣
t=0

for X ∈ sl2(C).

Definition 1.4.10. A smooth function Φ : GL2(AF ) −→ V2(C) is said to be a cusp

form of weight 2 and level K0(N) if it satisfies:

(i) Φ(rg, s) = Φ(g, s) for r ∈ GL2(F );

(ii) Φ(zg, s) = Φ(g, s) for z ∈ Z(GL2(C)) ' C× ;

(iii) Φ(gk, s) = Φ
(
g, k∞

(
S
T

))
for k = k∞ · kf ∈ SU(2)×K0(N);

(iv) Φ is an eigenfunction of the complexification (in the Lie algebra sl2(C)⊗R C) of

the Casimir operator of sl2(C) with eigenvalue 0, i.e.

D′Φ = 0 and D′′Φ = 0

for D′, D′′ defined above. Here Φ(g∞gf ) is considered as a function of g∞ ∈
GL2(C);
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(v) Φ satisfies the cuspidal condition∫
U(F )\U(AF )

Φ(vg)dv = 0

for all g ∈ GL2(AF ), where

U(F ) =

{
v =

(
1 u

0 1

)
: u ∈ F

}
, U(AF ) =

{
v =

(
1 u

0 1

)
: u ∈ AF

}
and dv is the Lebesgue measure on AF .

Remark 1.4.11. Condition (iii) implies that Φ is Kmax -finite as in Definition 1.4.6.

Condition (iv) implies that Φ is C -finite for the Casimir operator C . As the centre

Z(g) of the universal algebra is generated by C and the identity matrix, condition (ii)

and (iv) imply that Φ is Z(g)-finite. It is not obvious to show that Φ has moderate

growth. To do so we can follow the treatment in the classical case of GL2(AQ) (see e.g.

[Tro, page 16]) but we omit details here. To conclude, the function Φ defined above

on GL2(AF ) is indeed an automorphic form given in Definition 1.4.6.

From now on such a cusp form is called a Bianchi modular form of weight 2 and

we denote the space of these Bianchi modular forms by S2(N). The Bianchi modular

form Φ has Fourier expansion ([Hid94, Theorem 6.1]):

Φ

(
y x

0 1

)
= |y|F

∑
α∈F×

c(αyδ,Φ)W (αy∞)eK(αx) (1.4)

where:

(1) | · |F is the usual idele character of A×F trivial on F× ;

(2) δ =
√
dF (where dF is the discriminant of F ) is a generator of the different D

of F , i.e. δO = D ;

(3) the Fourier coefficient c(· ,Φ) is a well defined function on the fractional ideals

of F such that c(I,Φ) = 0 for I non-integral;

(4) W : C× → V2(C) is the Whittaker function

W (s) :=

2∑
n=0

(
2

n

)(
s

i|s|

)1−n
Kn−1(4π|s|)X2−nY n,

where Kn(x) is (a modified Bessel function that is) a solution to differential

equation
d2Kn

dx2
+

1

x

dKn

dx
−
(

1 +
n2

x2

)
Kn = 0,

with asymptotic behaviour Kn(x) ∼
√

π
2xe
−x as x→∞ . Note that K−n = Kn ;
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(5) eK is an additive character of F\AF given by

eK =

(∏
p

(ep ◦ TrFp/Qp)

)
· (e∞ ◦ TrC/R).

Here ep(x) = exp(2πiFrp(x) for x ∈ Qp where Frp(x) denotes the fractional part

of x and e∞(x) = exp(2πix) for x ∈ R .

The adelic cusp form Φ can descend to a function F : GL2(C) → V2(C). The

strong approximation theorem gives us the decomposition

GL2(AF ) = GL2(F ) · [GL2(C)×K0(N)].

We define the discrete subgroup of SL2(F ) via

Γ0(N) =

{(
a b

c d

)
: a, b, d ∈ O, c ∈ N, ad− bc = 1

}
.

One can check that SL2(F ) ∩ [GL2(C)× U0(N)] = Γ0(N).

Define F : GL2(C) → V2(C) via F(g) = Φ(g). It is a cusp form on GL2(C)

and determines in turn a cusp form F on H3 in the following. We introduce the

automorphy factor

j(γ, (z, r)) =

(
cz + d −cr
c̄r c̄z̄ + d̄

)
for γ =

(
a b

c d

)
∈ SL2(C), (z, r) ∈ H3.

Define F : H3 → V2(C) by

F((z, r), s) = F(g, j(g, (0, 1))ts),

where g ∈ SL2(C) is chosen such that g · (0, 1) = (z, r). One can check that F is well

defined and that it satisfies the automorphy condition

F(γ · (z, r), s) = F((z, r), j(γ, (z, r))ts) for γ =

(
a b

c d

)
∈ Γ0(N).

Thus F ∈ S2(Γ0(N)), the space of cusp forms on H3 satisfying the above condition.

For the associated cusp forms F on H3 , the Fourier expansion can be worked

out to be

F((z, r), s) = r

2∑
n=0

(
2

n

) ∑
α∈K×

[
c(αδ)

(
α

i|α|

)1−n
×

Kn−1(4π|α|r)e2πi(αz+αz)
]
S2−nTn.

For n ∈ {0, 1, 2} , let Fn : H3 −→ C be the functions determined by the expression

F((z, r), s) = r

2∑
n=0

Fn(z, r)S2−nTn. (1.5)
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More explicitly, we have

Fn(z, r) =
∑
α∈K×

c(αδ)

(
α

i|α|

)1−n
Kn−1(4π|α|r)e2πi(αz+αz). (1.6)

For the cusp form F corresponding to Φ, we want to define the twist of the

L-function by a Hecke character ψ of conductor f . For each ideal m coprime to f , we

have ψ(m) =
∏

pn||m ψp(πp)
n . Then define

L(Φ, ψ, s) = L(F , ψ, s) := |O×F |
−1

∑
α∈K×

c((α),Φ)ψ((α))N((α))−s. (1.7)

Theorem 1.4.12 (Theorem 1.8, [Wil17]). Let Φ be a cusp form of weight 2 and of

level K0(N) corresponding the cusp form F on H3 . For n ∈ {0, 1, 2}, let Fn be as

defined in (1.6) above. Let ψ denote a Hecke character of conductor f with infinity

type (−u,−v) =
(
−1−n

2 , 1−n
2

)
. Then, for s ∈ C, we have

L(Φ, ψ, s) = A(n, ψ, s)
∑

[a]∈f−1/OF
(af,f)=1

ψ(af)−1auāv
∫ ∞

0
r2s−2Fn(a, r)dr

and

A(n, ψ, s) =
4 · (2π)2si1−n ( 2

n )−1

|O×F | · |dF |s · Γ
(
s+ n−1

2

)
Γ
(
s− n−1

2

)
τ(ϕ−1)

.

Here τ denote the Gauss sum defined to be

τ(ψ) :=
∑

[a]∈f−1/OF
(af,f)=1

ψ(af)ψ∞

(a
δ

)
e2πiTrF/Q(a/δ).

Proof. Williams proved this formula for the cusp form of level K1(N) (the adelic anal-

ogy of the congruence subgroup Γ1(N)). However the Fourier expansion used by him

in the case of K1(N) and (k, k) is the same as that for level K0(N) and weight (k, k)

in [Hid94, Theorem 6.1] and [Gha99, Section 2]. So we can deduce this formula again

for the level K0(N) following Williams’ proof without any change.

1.4.5 Siegel modular forms

As we will construct the theta lifting of a Bianchi modular form, which is a weight 2

Siegel modular form, the aim of this section is to introduce a brief overview on basic

aspects of Siegel modular forms with [AS01] as our main reference.

For considering Siegel modular forms (of degree 2) in the context of automorphic
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form, we define

H := GSp4 = {g ∈ GL4 : ∃ λ(h) ∈ GL1 s.t. hJ th = λ(h)J},

where J =

(
I2

−I2

)
for I2 the 2× 2 identity matrix. The function λ is called the

multiplier homomorphism. Its kernel is the group Sp4 and there is an exact sequence

1 −→ Sp4 −→ H −→ GL1 −→ 1.

The centre Z of G consists of the scalar matrices.

Recall the Siegel upper half plane given by

H2 = {Z = X + iY ∈M2(C) : X,Y ∈M2(R), X = Xt, Y = Y t, Y > 0}.

Siegel modular forms of degree 2 are certain holomorphic functions on the Siegel upper

half plane H2 . The group Sp4(R) acts on the upper half plane by linear fractional

transformations, that is

h · Z = (AZ +B)(CZ +D)−1 for h =

(
A B

C D

)
∈ Sp4(R).

The full modular group is Sp4(Z) and the principal congruence subgroup of level N is

given by

Γ2(N) = {γ ∈ Sp4(Z) : γ ≡ I4 mod N}.

A subgroup Γ of Sp4(Z) such that Γ2(N) ⊂ Γ is called a congruence subgroup of level

N . We will consider a Siegel modular form of weight 2, degree 2 and character χ with

respect to Γ in the sense that f |2γ = χ(det(A))f for γ =
(
A B
C D

)
∈ Γ, where

(f |2γ)(Z) := det(CZ +D)−2f(γ · Z) for γ =

(
A B

C D

)
∈ Sp4(R), Z ∈ H2.

The Siegel modular form has the Fourier expansion

f(Z) =
∑
R

cR exp(2πi tr(RZ)) for Z ∈ H2,

where R runs over semi-integral, positive definite matrices.

We will associate a function Φf : H(A)→ C to f on H2 as follows. One can use

strong approximation for Sp4 to show that

H(A) = H(Q)H(R)+
∏
p<∞

H(Zp),

where H(R)+ denotes those elements of H(R) with positive multiplier. Write h ∈
H(A) as

h = hQh∞k for hQ ∈ H(Q), h∞ ∈ H(R)+, k ∈ Kf ,
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where Kf =
∏
p<∞Kp with Kp = H(Zp). Then we define

Φf (h) = (f |kh∞)(I), (1.8)

where I = diag(i, i) ∈ H2 . This is well-defined due to the transformation properties of

f .

The map f 7→ Φf injects the space of modular forms of weight 2 into a space of

functions Φf on H(A) satisfying the following properties

(i) Φf (γh) = Φf (h) for γ ∈ H(Q),

(ii) Φf (hkf ) = Φf (h) for kf ∈ Kf ,

(iii) Φf (hk∞) = Φf (h)j(k∞, I)−2 for k∞ ∈ K∞ ,

(iv) Φf (hz) = Φf (h) for z ∈ Z(A),

where Z ' GL1 is the centre of GSp4 and K∞ ' U(2) is the standard maximal

compact subgroup of Sp4(R). If f is a cusp form, then the automorphic form Φf is

cuspidal, i.e., ∫
N(Q)\N(A)

Φf (nh)dn = 0 for all h ∈ H(A)

for each unipotent radical N of each proper parabolic subgroup of H .

In the other direction, given the weight 2 adelic form Φ on H(A) of level Kf ⊂∏
p<∞H(Zp) satisfying above conditions (i)-(iv), the isomorphism

Γ\Sp(R)/U(2) ' Z(A)H(Q)\H(A)/U(2)×Kf for Γ = Sp4(R) ∩Kf

induced by the strong approximation theorem

H(A) = H(Q)H(R)+
∏
p<∞

H(Zp),

helps us observe that Φ descends via (1.8) to the classical Siegel modular form on the

locally symmetric space Γ\H2 .

§ 1.5 Automorphic forms and cohomology

Consider a weight 2 modular (cusp) form f ∈ M2(Γ) (respectively S2(Γ)) for Γ ⊂
SL2(Z). Then

ηf := f(z)⊗ dz



CHAPTER 1. BACKGROUND 27

defines a closed holomorphic 1-form on X = Γ\H2 with complex values. It is well

known that this assignment induces the Eichler-Shimura isomorphism

M2(Γ)⊕ S2(Γ) ' H1(X,C)

where S2(Γ) denotes the space of anti-holomorphic cusp forms in S2(Γ), which is in this

case isomorphic to S2(Γ). For arbitrary weight of the modular form, see e.g. [FM11,

Section 4]. In the following we will discuss in more details differentials on the upper

half space H3 and the Eichler-Shimura-Harder isomorphism in this case.

1.5.1 Differentials on H3

In this section we will recall the differential forms on the upper half space as discussed

in [Wil16, Section 3.2 and Section 5.2].

Let G be an arbitrary Lie group that has the structure of a real Riemannian

manifold. Left translation by an element g ∈ G , denoted Lg , induces a pull-back

action L∗g on differentials. A differential ω ∈ Ωr(G,C) is said to be left-invariant if

L∗gω = ω for all g ∈ G . We can choose a basis for the space of left-invariant differentials.

If a set of complex differentials (βi) is chosen so that the evaluations ((βi)0) at the

identity span the space (T0G)∗ , then any left-invariant 1-form ω can written uniquely

as

ω =
∑
i

αiβi, αi ∈ C.

Now let G = G∞ = Z∞B∞K∞ where

G∞ = GL2(C)

Z∞ =

{
ζ

(
1 0

0 1

)
: ζ ∈ C×

}
,

B∞ =

{(
r z

0 1

)
: z ∈ C, r ∈ R>0

}
,

K∞ = SU(2) =

{(
u v

−v̄ ū

)
: u, v ∈ C, uū+ vv̄ = 1

}
.

In fact B∞ can be identified with the coset space G∞/Z∞K∞ and also with the space

H3 in the obvious manner. We write π : G∞ → H3 for the canonical projection of G∞

onto H3 . The restriction of π to B∞ is the bijection identifying B∞ with H3 so every

element of H3 can be written as π(b) for a suitable b ∈ B∞ .
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The action of G∞ on H3 is given explicitly by(
α β

γ δ

)
· (z, r) =

(
(αz + β)(γ̄z̄ + δ̄) + αγ̄r2

|γz + δ|2 + |γ|2r2
,

|αδ − βγ|r
|γz + δ|2 + |γ|2r2

)
; (1.9)

we write Lg : H3 → H3 for the map (z, r) 7→ g · (z, r). We can choose a basis

β = (β0, β1, β2)T of left-invariant differentials on H3 with respect to L∗g as follows:

β0 = −dz
r
, β1 =

dr

r
, β2 =

dz̄

r
. (1.10)

Write β = β(z, r) as a column vector. For g ∈ GL2(C) and (z, r) ∈ H , the

Jacobian matrix J(g, (z, r)) is defined by

β(g · (z, r)) = J(g; (z, r))β(z, r) (1.11)

As a function, J satisfies the cocycle relation

J(g1g2; (z, r) = J(g1; g2 · (z, r))J(g2; (z, r)) for g1, g2 ∈ GL2(C).

Left-invariance under B∞ gives J(b; (z, r)) = 1 for all b ∈ B∞ , and combined with the

cocycle relation we have

J(g; (z, r)) = J(π(g)−1g; (z, r)),

where π(g)−1g ∈ C× · SU2(C). Note that π(g) = g · π(1) where π(1) = (0, 1) ∈ H3 .

Let g =
(
a b
c d

)
. Write ∆ = ad− bc , t = cz + d , and s = c̄r . Then we have

J(g; (z, r)) =
1

|∆|(tt̄+ ss̄)

∆ 0 0

0 |∆| 0

0 0 ∆̄


t

2 −2ts t2

ts̄ tt̄− ss̄ −t̄s
s̄2 2t̄s̄ s̄2

 . (1.12)

We now define the representation ρ on Z∞K∞ to be the restriction of J(g; (0, 1)) to

g ∈ Z∞K∞ . For F : H3 → C3 and g ∈ G∞ we define F|g given explicitly by

(F|g)(π(b)) = F(gπ(b))ρ(π(gb)−1gb) for b ∈ B∞. (1.13)

In the special case when ρ is given by (1.12), this simplifies to

(F|g)(z, r) = F(g · (z, r))J(g; (z, r)) for (z, r) ∈ H3. (1.14)

In the sequel, we attach differential forms to the cusp forms defined in the previous

section 1.4.4. Suppose that Φ : GL2(AF )→ V2(C) is a cusp form, giving rise to a cusp

form F on H3 . Let F be the corresponding cusp form on GL2(C). Restricting to

SL2(C) and composing with this map, F can be considered as F : SL2(C) → V2(C).

Identifying V2(C) with the space of differentials spanned by the basis (β0, β1, β2) as in

(1.10), we can view the map F as an element of Ω1(SL2(C),C). Then this differential

descends to the quotient H3 = SL2(C)/SU(2).
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Proposition 1.5.1. Let g, b, π be as above. We have

F(gπ(b)) · β(g · (z, r)) = (F|g)(π(b)) · β(z, r).

Proof. Combing (1.11) and (1.13) we observe that

F(gπ(b)) · β(g · (z, r)) = (F|g)(π(b))ρ(π(gb)−1gb)−1J(g; (z, r)) · β(z, r).

It suffices to show that

ρ(π(gb)−1gb) = J(g; (z, r)).

Write π(b) = (z, r) with π(b) = b · π(1). By the cocycle relation of J , we have

J(g;π(b)) = J(gb;π(1))J(b;π(1))−1 = J(π(gb)−1gb;π(1)) = ρ(π(gb)−1gb).

1.5.2 The Eichler-Shimura-Harder isomorphism

In this section we will describe how to realise cusp forms over the imaginary quadratic

field as differential forms on arithmetic quotients of the upper half space in an explicit

way as outlined in [Gha99, Section 5].

Over F , there are two isomorphisms which are special cases of the isomorphisms

for GL2 over general number fields relating cusp forms to C∞ harmonic differential

forms. We denote these by

σq : S2(Γ0(N)) ' Hq
cusp(Γ0(N)\H3,C),

with q = 1, 2. There is an action of the Hecke algebra on both sides, and the σq are

Hecke equivariant. In this thesis we only consider the first isomorphism, that is cusp

forms over F are realised as differential 1-forms. For simplicity we write σ for σ1 .

Let F ∈ S2(Γ0(N)) (resp. F) be the cusp forms defined on H3 (resp. GL2(C)).

We will describe how to construct σ(F) explicitly. Denote the restriction of F to

SL2(C) by F for simplicity. The SL2(C)-action on V2(C) is given by(
a b

c d

)
· P

(
A

B

)
= P

((
ā c̄

−c a

)(
A

B

))
for

(
a b

c d

)
∈ SL2(C).

Then we define σ(F)(g) = g ·F(g) for g ∈ SL2(C). Here we have replaced Ω1(H3) with

V2(C) and the pull back action on Ω1(H3) by the induced action on V2(C). Thus we

must replace (A2, AB,B2) by (−dz, dr, dz̄). One can show that σ(F)(gu) = σ(F)(g)

for u ∈ SU(2) so that σ(F)(gu) can be thought of as differential 1-form on H3 .
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It is possible to make the above construction completely explicit. Given the

auxiliary variables u =
(
U
V

)
, we set

Q =

((
2

α

)
(−1)2−αUαV 2−α

)
α=0,1,2

= (V 2,−2UV,U2).

For variable a =
(
A
B

)
, let ψ = ψ(a) = (ψ0, ψ1, ψ2)t where the ψi = ψi(a) is a

homogeneous polynomial of degree 2 in s defined by

(AV −BU)2 = Q ·ψ.

It is easy to calculate that ψ(a) = (A2, AB,B2). For u ∈ SU2(C) it has the special

property

ψ(ua) = ρ2(u) ·ψ(a).

Here

ρ2

(
a b

c d

)
·

(
A

B

)2

=

((
a b

c d

)(
A

B

))2

for

(
a b

c d

)
∈ GL2(C)

where (
A

B

)2

= (A2, AB,B2)t.

As F takes values in V2(C) we let Fα be the components of F , namely F(g,a) =∑2
α=0 Fα(g)A2−αBα . Define F′ : SL2(C)→ V2(C) by

F′(g,a) = (F0(g),F1(g),F2(g)) ·ψ(a).

One can prove that F′(gu,a) = F′(g, ua) for u ∈ SU2(C). Finally define F′′ : SL2(C)→
V2(C) by F′′(g,a) = F′(g, ga). One can checke that it has the property F′′(gu,a) =

F′′(g,a).

Thus, in summary, we have

Definition 1.5.2. [Gha99, Definition 6] σ(F) is the C-valued differential form on

H3 obtained from F′′ by replacing (A2, AB,B2) by (−dz, dr, dz̄). More specifically, if

g · (0, 1) = (z, r), e.g. g =

(√
r z√

r

0 1√
r

)
, then

σ(F)(z, r) = (F0(g),F1(g),F2(g)) · 1

r
ψ(a) = −F0(g)

dz

r
+ F1(g)

dr

r
+ F2(g)

dz̄

r
.

Here Fi(g) for i ∈ {0, 1, 2} is in one-to-one correspondence to Fi(z, r) as in (1.6).
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§ 1.6 Automorphic representations

In Section 4.5 we will use results in [FH95] about the non-vanishing of L-values attached

to automorphic representations for GL2(AF ) over an imaginary quadratic field F . So

in this section we will sketch the passage from weight 2 Bianchi modular forms defined

in the previous section 1.4.4 to the corresponding automorphic representations. The

material in this section can be found in [GH11] and [Kud03].

For simplicity denote G = GL2 and A = AF for the imaginary quadratic field of

class number 1.

Definition 1.6.1 (Definition 2.1, [Kud03]). The space of automorphic forms A(G) on

G(A) with trivial central character is the space of complex valued functions Φ on G(A)

as defined in Definition 1.4.6 such that:

(1) Φ(zγg) = Φ(g) for z ∈ Z(A) ' A× and γ ∈ G(F ).

(2) The function g∞ 7→ Φ(g∞gf ) is smooth on G(F∞).

(3) The space spanned by the right translates of Φ by elements of K∞ ' U(2) is

finite-dimensional, i.e., Φ is right K∞ -finite.

(4) There is a compact open subgroup Kf ⊂ G(Af ) such that Φ is invariant under

right translation by Kf .

(5) Φ is Z(g)-finite.

(6) Φ is of moderate growth.

Definition 1.6.2 (Definition 2.2, [Kud03]). The space A0(G) ⊂ A(G) of cuspidal

automorphic forms is defined by adding the following cuspidal condition:

(7) For all g ∈ G(A), ∫
F\A

Φ

((
1 x

0 1

)
g

)
dx = 0.

Recall that g denotes the complexification of gl2(C), U(g) its enveloping algebra

whose elements can be identified with differential operators Dα for α ∈ g , and K∞ '
U(2). Next we define two important types of modules playing a major role in the

representation theory:

(g,K∞)−module and (g,K∞)×G(Af )−module.

Definition 1.6.3. [Kud03, Definition 2.3(i)] We define a (g,K∞)-module to be a
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complex vector space V with actions

πg : U(g)→ EndV = {set of all linear maps V → V },

πK∞ : K∞ → GL(V ) = {set of all invertible linear maps V → V },

such that the subspace of V spanned by {πK∞(k) · v : k ∈ K∞} is finite dimensional,

and

πg(Dα) · ππ∞(k) = ππ∞(k) · πg(Dk−1αk) for all α ∈ g, k ∈ K∞.

Further we require that

πg(Dα) · v = lim
t→0

1

t
(πK∞(exp(tα)) · v − v)

for all v ∈ V and α in the Lie algebra of K∞ .

We shall denote the pair of actions (πg, πK∞) by π and refer to the ordered pair

(π, V ) as a (g,K∞)-module.

Definition 1.6.4. [Kud03, Definition 2.3(ii)] We define a (g,K∞)×G(Af )-module to

be a complex vector space with actions

πg : U(g)→ End(V ),

πK∞ : K∞ → GL(V ),

πf : G(Af )→ GL(V ),

such that V, πg and πK∞ form a (g,K∞)-module, and in addition the relations

πf (af ) · πg(Dα) = πg(Dα) · πf (af ),

πf (af ) · πK∞(k) = πK∞(k) · πf (af ),

are satisfied for α ∈ g , Dα ∈ U(g), k ∈ K∞ and af ∈ G(Af ).

We let π = ((πg, πK∞), πf ) and refer to the ordered pair (π, V ) as a (g,K∞) ×
G(Af )-module. We say the (g,K∞)×G(Af )-module is smooth if every vector v ∈ V is

fixed by some open compact subgroup of G(Af ) under the action πf . The (g,K∞)×
G(Af )-module is said to be irreducible if it is non-zero and has no proper non-zero

subspace preserved by the actions πg, πK∞ , πf . One main result is that A0(G) is

a smooth (g,K∞) × G(Af )-module, see [Kud03, Section 2]. The representation of

(g,K∞)×G(Af ) on A0(G) is the so-called automorphic representation.

In the previous section 1.4.4 we have defined the weight 2 Bianchi modular form

F on H3 and the corresponding ΦF on G(A) = GL2(AF ) taking values in V2(C). To

have scalar-valued functions, we can consider any non-zero linear form L on V2(C),
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and define

F̃(z, r) := L(F(z, r)) for (z, r) ∈ H3

and

Φ̃F (g) := L(Φ(g)) for g ∈ G(A).

It is straightforward to check that Φ̃F ∈ A0(G) since ΦF ∈ A0(G) as discussed in

Remark 1.4.11, e.g.

Φ̃(ggf ) = L(Φ(ggf )) = L(Φ(g)) = Φ̃(g) for gf ∈ Kf ⊂ G(Af ).

The choice of L is irrelevant as we will eventually consider the space A
0,F̃ ⊂ A0

spanned by all right translates of Φ̃F under the action of π .

Definition 1.6.5 (Analogue of Definition 5.2, [Tro]). Let F̃ and Φ̃F be as above. The

automorphic representation πF̃ attached to F̃ is the restriction of the representation

of (g,K∞)×G(Af ) on the subspace A
0,F̃ (G) of A0(G) defined by:

A
0,F̃ (G) := {π(g)Φ̃F : g ∈ (g,K∞)×G(Af )}.



Chapter 2

Weil representation and the

Kudla-Millson theory

§ 2.1 Weil representation for symplectic-orthogonal dual pair

In this section we discuss the Weil representation for the dual pair (Sp(W ),O(V ))

following Kudla’s lecture notes [Kud96].

Let W be a symplectic vector space over a local field F . For a group A with

subgroup B , we let

CentA(B) = {a ∈ A : ab = ba for all b ∈ B}

be the commutant of B in A . A pair of subgroups B and B′ of A are said to be

mutual commutants if CentA(B) = B′ and CentA(B′) = B . A reductive dual pair

(G,G′) in Sp(W ) is a pair of subgroups G and G′ of Sp(W ) such that G1 and G2

are reductive groups and

CentSp(W )(G) = G′ and CentSp(W )(G
′) = G.

We will simply call such (G,G′) as a dual pair. The pair (Sp(W ), {±1W }) is the most

trivial example of a dual pair.

Dual pairs can be constructed as tensor products. Let W be a finite dimensional

left vector space over F with a non-degenerate skew-symmetric bilinear form

〈 , 〉 : W ×W −→ F

34
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with

〈ax, by〉 = a〈x, y〉b and 〈y, x〉 = −〈x, y〉.

Let

Sp(W ) = {g ∈ GL(W ) : 〈xg, yg〉 = 〈x, y〉 for all x, y ∈W}

be the isometry group of W . Similarly, let V be a finite dimensional right vector space

over F with a non-degenerate symmetric bilinear form

( , ) : V × V −→ F

with

(xa, xb) = a(x, y)b and (y, x) = ε(x, y).

Let

O(V ) = {g ∈ GL(V ) : (gx, gy) = (x, y) for all x, y ∈ V }

be the isometry group of V .

The rational vector space W = W⊗F V has a non-degenerate bilinear alternating

form

〈〈x1 ⊗ y1, x2 ⊗ y2〉〉 = 〈x1, x2〉(y1, y2)

and there is a natural map

Sp(W )×O(V )→ Sp(W), (h, g) 7→ h⊗ g.

Thus we obtain a dual pair (Sp(W ),O(V )) in Sp(W).

Let dimF W = 2n and dimF V = m . We will describe a Weil representation

of Sp(W ) × O(V ) when m is even, and of Mp(W ) × O(V ) when m is odd where

Mp denotes the metapletic cover of Sp. We can make the identification Mp(W ) =

Sp(W )×C× . In this thesis we are interested in m = 3 with signature (2,1) and m = 4

with signature (3,1).

Let ψ be an additive character on F and χV be the quadratic character of F×

defined by

χV (x) = (x, (−1)
m(m−1)

2 det(V ))F

where det(V ) is the determinant of the Gram matrix with respect to the bilinear form

on V and ( , )F denotes the Hilbert symbol. We let, for x ∈ F ,

γ(ψ) = γ(ψ ◦ x2)

be the Weil index of the character φ of second degree on F given by φ(x) = ψ(x2).
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For a ∈ F× , let

γ(a, ψ) = γ(ψa)/γ(ψ)

where ψa(x) = ψ(ax). For z ∈ C× , let

χψV (x, z) = χV (x) ·

{
z · γ(x, ψ)−1, if m is odd,

1, if m is even.

Fix a direct sum W = X + Y with maximal isotropic subgroups X,Y . Then we

have that W = X ⊗ V + Y ⊗ V and that

X ⊗ V ' V n = {x = (x1, . . . , xn) : xi ∈ V }.

For x,y ∈ V n , we write

(x,y) = ((xi, yj)) ∈ Symn(F ).

View elements of W as row vectors (x, y) with x ∈ X and y ∈ Y . We can write

g ∈ Sp(W ) as

g =

(
a b

c d

)
where a ∈ End(X), b ∈ Hom(X,Y ), c ∈ Hom(Y,X) and d ∈ End(Y ). Let

M =

{
m(a) =

(
a 0

0 a∨

)
: a ∈ GL(X)

}
and

N =

{
n(b) =

(
1 b

0 1

)
: b ∈ Hom(X,Y ), symmetric

}
.

Here a∨ ∈ GL(Y ) is determined by the condition that 〈xa, ya∨〉 = 〈x, y〉 for all x ∈ X
and y ∈ Y .

The Weil representation of Mp(W ) = Sp(W )×C× can be realised on the Schwartz

space S(V n) which is the space of locally constant, compactly supported functions

on V n if F is non-archimedean, and consists of those Schwartz functions of the form

p(x)ϕ0(x) if F is archimedean, where p is a polynomial function on V n and ϕ0 denotes

the standard Gaussian later given in (2.8).

Let ϕ ∈ S(V n) and the action of O(V ) on S(V n) is given by

ωψ,W (h)ϕ(x) = ϕ(h−1x) for h ∈ O(V ),x ∈ V n.

We will describe the action of Mp(W ) on S(V n) as follows. For a ∈ GLn(F ) and

z ∈ C× ,

ωψ,V (m(a), z)ϕ(x) = χψV (det(a), z)|det(a)|
m
2 ϕ(xa)
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and for b ∈ Symn(F ),

ωψ,V (n(b), 1)ϕ(x) = ψ

(
1

2
tr((x,x)b)

)
ϕ(x).

For w = wn =

(
0 1n

−1n 0

)
,

ωψ,V (w, 1)ϕ(x) = γ(ψ ◦ V )−n
∫
V n

ψ(− tr((x,y)))ϕ(y)dy

where dy is the measure on V n which is self dual for this Fourier transform. Here

the factor γ(ψ ◦ V ) is the Weil index of the quadratic space associated to the bilinear

form on V , which is an eighth root of unity depending only on the isomorphism class

of quadratic forms on Fm .

Using the local Weil representation, we can define a global representation of

Sp(W)(A) for the adele ring A of a number field, see [Ral84, Section VIII]. There is a

projective representation of Sp(W)(A) on S(V (A)n) by taking the tensor product of

local representations.

We end this section via showing the Weil representation in two cases of interest

in this thesis:

Example 2.1.1. Fix an additive character ψq of Qq with kernel qZq . Note that its

kernel is crucial for us to determine the level of the corresponding theta lift.

(1) As given in Example 1.1.6, let V be a 3-dimensional quadratic space of signature

(2,1) with quadratic form Q . In this case we consider the metaplectic cover

S̃L2 = SL2×{±1} paired against the orthogonal group SO(2, 1). For x ∈ Qq

and α ∈ Q×q , let

n(x) =

(
1 x

0 1

)
, n(x) =

(
1 0

x 1

)
, d(α) =

(
α 0

0 α−1

)
, w =

(
0 1

−1 0

)
,

and notice that

n(x) = d(−1) · w · n(−x) · w.

The local Weil representation ωψq of SL2(Qq) × {±1} on S(V (Qq)), which can

also be found in [Pra09, Section 2.1.3], is characterised by

ωψq(n(y))ϕq(x) = ψ(yQ(x))ϕq(x),

ωψq(d(α))ϕq(x) = (1/q, α)3
q(α,−1)q|α|3/2ϕq(αx),

ωψq(w)ϕq(x) = γψq ϕ̂q(x),

ωψq(1, ε)ϕq(x) = εϕq(x),
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where ε ∈ {±1} and ϕ̂q(x) denotes the Fourier transform with respect to the

pairing (x1,x2) 7→ ψq((x1,x2)) and γψq is a certain complex number of absolute

value 1.

(2) Let V be a 4-dimensional quadratic space of signature (3,1) with quadratic form

Q as in Example 1.1.6. In this case we consider the pair Sp4×SO(3, 1), of which

the Weil representation on S(V (Qq)
2) (see [Ber14, Section 3.1]) is given by, for

X ∈ V (Qq)
2 ,

ω(1, h)ϕq(X) = ϕq(h
−1X), (2.1)

ω

((
1 b

0 1

)
, 1

)
ϕq(X) = ψq

(
1

2
tr(b(X,X))

)
ϕq(X), (2.2)

ω

((
a 0

0 ta−1

)
, 1

)
ϕq(X) = χV,q(det(a))| det(a)|2qϕq(Xa), (2.3)

ω

((
0 1

−1 0

)
, 1

)
ϕq(X) = γϕ̂q(X). (2.4)

Here the Fourier transform is defined by

ϕ̂q(X) =

∫
V (Qq)2

ϕq(Y)ψq(tr(X,Y))dY

and γ is a certain complex number of absolute value 1.

§ 2.2 Theta series

We first recall the classical theta series from Funke’s notes [Fun08].

Let V be a rational vector space of dimension m = p+ q with a non-degenerate

positive definite symmetric bilinear form ( , ). Assume the dimension m is even so

that we do not need to consider the metaplectic cover. Let L be an even lattice of level

N ; that is Q(x) := (x, x) ∈ 2Z for x ∈ L and Q(L])Z = 1
NZ . Here L] is the dual

lattice. Furthermore, we fix a vector h ∈ L]/L once and for all and write L = h+ L .

It is well known that for τ ∈ H2 = H1 , the upper half plane, the associated theta series

θ(τ,L) =
∑
x∈L

eπi(x,x)z ∈Mm
2

(Γ(N)) (2.5)

is a modular form for the principal congruence subgroup Γ(N) ⊂ SL2(Z) of weight m
2 .

We have a more representation-theoretic approach to describe this classical theta

series. Let S(V (R)) be the space of Schwartz functions ϕ(R) on VR . We write G′ =

SL2(R) and let K ′ = SO(2) be its standard maximal compact subgroup. Let G =
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O(V (R)) be the orthogonal group of V (R). Then G′ × G acts on S(V (R)) via the

Weil representation ωR for the additive character t 7→ e2πit . For x ∈ V (R) and g ∈ G ,

G acts naturally on S(V (R)) by

ωR(g)ϕR(x) = ϕR(g−1x).

Following the discussion in the previous subsection 2.1, the action of G′ is given as

follows:

ωR

((
a 0

0 a−1

))
ϕR(x) = am/2ϕR(xa),

ωR

((
1 b

0 1

))
ϕR(x) = eπib(x,x)ϕR(x),

ωR

((
0 −1

1 0

))
ϕR(x) = im/2ϕ̂R(x),

where a > 0 and ϕ̂R(y) =
∫
VR
ϕR(x)e−2πi(x,y)dx is the Fourier transform.

Let ϕR ∈ S(V (R)) be an eigenfunction under SO(2) of weight r ; that is ωR(k′)ϕR =

χr(k
′)ϕR for k′ ∈ SO(2), where χr is the standard one-dimensional character of

SO(2) ' U(1) given by z 7→ χr(z) = zr . Then we can define

ϕR(x, τ) = j(g′τ , i)
rω(g′τ )ϕR(x) = v−r/2+m/4ϕR(

√
vx)eπi(x,x)u,

where g′τ ∈ SL2(R) is any element which moves the base point i ∈ H2 to τ = u+iv ∈ H2

and j(g′τ , i) = v−1/2 denotes the usual automorphy factor. Then the associated theta

series is defined as

θ(τ, ϕR,L) :=
∑
x∈L

ϕR(x, τ), (2.6)

which is in general non-holomorphic modular form of level N and weight r , see e.g.

[FM02, Theorem 4.5]. For the above classical theta series (2.5), we have θ(τ,L) =

θ(τ, ϕ0,L) with the Gaussian ϕ0(x) := e−π(x,x) .

In the following we review a family of Schwartz forms in S(V (R)n) ⊗ Ωn(D)

taking values in the space of differential forms on the symmetric space D , constructed

by Kudla and Millson, see [FM02, Section 4] and [FM06, Section 5].

Let V be a real quadratic space of dimension m = p + 1 and signature (p, 1).

Denote by S(V n) the space of complex-valued Schwartz functions on V n . Let G′ =

Mpn(R) be the metaplectic cover of the symplectic group Spn(R) and K ′ the inverse

image of the standard maximal compact subgroup U(n) ⊂ Spn(R) under the covering

map Mpn(R) → Spn(R). The embedding of U(n) into Spn(R) is given by A + iB 7→
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(
A B

−B A

)
. Let ω = ωV be the Weil representation of G′ × O(V ) acting on S(V n)

associated to the additive character t 7→ e2πit .

Let Hn = {τ = u + iv ∈ Symn(C) : v > 0} ' Spn(R)/U(n) be the Siegel upper

half space of genus n . Write g′ and k′ for the complexified Lie algebra of Spn(R)

and U(n) respectively. We have the Cartan decomposition as g′ = k′ ⊕ p′ and write

p′ = p+⊕ p− for the decomposition of the tangent space of the base point i1n into the

holomorphic and anti-holomorphic tangent spaces.

Let G = SO0(V (R)) be the identity component of SO(V (R)) and K the maximal

compact subgroup of G stablising the base point Z0 of D . We have seen in Section

1.1 that the symmetric space D ' G/K can be realised as the set of negative 1-planes

in V and we have demonstrated this in Example 1.1.6 for signature (2,1) and (3,1).

We pick an orthonomal basis {ei} of V such that (eα, eα) = 1 for α = 1, . . . , p

and (eµ, eµ) = −1 for µ = p+ 1. Let g be the Lie algebra of G and k of K . We write

the Cartan decomposition as g = p + k . Then p ' g/k is isomorphic to the tangent

space at the base point of D . The elements Xαµ of the standard basis of p is induced

by the basis {ei} of V , i.e.,

Xαµ(ei) =


eµ, if i = α,

eα, if i = µ,

0, otherwise.

(2.7)

We let ωαµ ∈ p∗ be the elements of the associated dual basis, and Ωk(D) the space of

complex-valued differential k -forms on D .

The main result of [KM90] is the construction of a certain differential n-form of

D with values in the Schwartz space S(V (R)n).

Theorem 2.2.1 (Theorem 4.1, [FM02]). For each n with 0 ≤ n ≤ p, there is a

non-zero Schwartz form

ϕn ∈ [S(V (R)n)⊗ Ωn(D)]G '

[
S(V (R)n)⊗

n∧
(p∗)

]K
,

such that

(1)

dϕn = 0,
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i.e., for each X ∈ V (R)n , ϕn is a closed n-form on D which is GX -invariant:

g∗ϕn(X) = ϕn(X)

for g ∈ GX , the stabilizer of X in G.

(2) The forms are compatible with the wedge product:

ϕn1 ∧ ϕn2 = ϕn1+n2 ,

where ϕn = 0 for n > p.

Fundamental for its relationship to modular forms is that

ω(k′)ϕn = det(k′)m/2ϕn

for k′ ⊂ K ′ the maximal compact subgroup of Mpn(R) where ω is the Weil represen-

tation.

We now give some explicit formulae for the form ϕn ∈ [S(V (R)n)⊗
∧n(p∗)]K ,

see [FM02, Section 4]. At the end of this subsection, we will show two examples used

in this thesis, ϕ1 for signature (2,1) and ϕ2 for (3,1).

Consider the standard Gaussian,

ϕ0(X) = e−π tr(X,X)Z0 ∈ S(V n) for X = (x1, . . . , xn) ∈ V n, (2.8)

where the majorant ( , )z is given by

(X,X)Z =

{
(X,X), if X ∈ Z⊥,
−(X,X), if X ∈ RZ.

Following (2.7) we can determine the basis of p as {e1, . . . , ep} so p can be

identified with Rp . Then ωi becomes the functional on p which picks out the i-th

coordinate. For X = (x1, . . . , xn) ∈ V (R)n 'Mm,n(R) w.r.t. the basis {e1, . . . , ep+1},
and for 1 ≤ s ≤ n , we define the 1-form

ω(s,X) =

p∑
i=1

xisωi.

We set

2−n/2ϕn(X) =

(
n∧
s=1

ω(s,X)

)
· ϕ0(X)

= ϕ1(x1) ∧ · · · ∧ ϕ1(xn).

It can be seen that

ϕn(X) = 2n/2
∑

1≤j1<···<jn≤p
Pj1,...,jn(X) exp(−π tr(X,X)Z0)⊗ ωj1 ∧ · · · ∧ ωjn ,



CHAPTER 2. WEIL REPRESENTATION AND THE
KUDLA-MILLSON THEORY 42

where Pj1,...,jn(X) is the determinant of the n by n matrix obtained from X by

removing all rows except the j1, . . . , jn . Then we have

ϕn(X)(W ) = 2n/2 det(X,W ) exp(−π tr(X,X)Z0)

for W ∈ TZ0(D)n ' pn ' (Z⊥0 )n . We demonstrate this in two cases of interest in this

thesis:

Example 2.2.2. (1) Let p = 2 and n = 1. For X = x1 = x11e1 + x21e2 + x31e3 ∈
V (R), we have the 1-form

ω(1, X) = x11ω1 + x21ω2.

Set

2−1/2ϕ1(X) = (x11ω1 + x21ω2)ϕ0(X).

For W = ν1e1 + ν2e2 ∈ Z⊥0 , we have

ϕ1(X)(W ) = 21/2(x11ω1 + x21ω2)(W )ϕ0(X) = 21/2(x11ν1 + x21ν2)ϕ0(X)

= 21/2(X,W )ϕ0(X)

where the last equality is the consequence of

(X,W ) = (x11e1 + x21e2 + x31e3, ν1e1 + ν2e2)

= x11ν1(e1, e1) + x21ν2(e2, e2) = x11ν1 + x21ν2.

(2) Let p = 3 and n = 2. For

V (R)2 3 X = (x1, x2) '


x11 x12

x21 x22

x31 x32

x41 x42

 ,

we define the 1-form for s ∈ {1, 2}

ω(s,X) = x1sω1 + x2sω2 + x3sω3,

and then

2−1ϕ2(X) = (ω(1, X) ∧ ω(2, X)) · ϕ0(X)

= ((x11x22 − x12x21)ω1 ∧ ω2 + (x11x32 − x12x31)ω1 ∧ ω3

+(x21x32 − x31x22)ω2 ∧ ω3) · ϕ0(X).

For W = (W1,W2) ∈ (Z⊥0 )2 with Wj = ν1je1 + ν2je2 + ν3je3 , j = 1, 2, we can
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show

ϕ2(X)(W ) =2 ((x11x22 − x12x21)ν11ν22 + (x11x32 − x12x31)ν11ν32

+(x21x32 − x31x22)ν22ν32) · ϕ0(X)

=2 det(X,W )ϕ0(X),

where the last identity is deduced via expanding

det(X,W ) = (x1,W1)(x2,W2)− (x1,W2)2.

Now we can form the theta series for ϕn , as in (2.6), which can be seen to be a

Γ-invariant differential form on D for a subgroup Γ of finite index of the stabilizer of

L in G . Hence it descends to a form on X = Γ\D . Thus

θ(τ, ϕn,L) ∈ NHolMm/2(Γ(N))⊗ Ωn(X)

is a non-holomorphic modular form of weight m/2 with values in the differential n-

forms of X , see [FM02, Theorem 4.5].

§ 2.3 Special cycles

In this section we recall special cycles and their basic properties from [KM90, Section

2].

Let V be a rational vector space of dimension m and L a Z-lattice. Let ( , )

be a non-degenerate quadratic form on V , which is integral (Z-valued) on L and has

signature (p, 1) with p + 1 = m . Denote by G = SO0(p, 1) the identity component

in SO(V (R)). Let Γ be a torsion-free congruence subgroup of GL(V ) preserving L

and ( , ). Let U ⊂ V be an oriented subspace such that ( , )|U is non-degenerate.

Then we will construct special cycles CU ⊂ Γ\D , where D is the symmetric space

associated to G . Recall from Section 1.1 that D can be viewed as the open subset of the

Grassmannian Gr1(V ) consisting of those lines Z such that ( , )|Z is negative definite.

Since ( , )|U is non-degenerate, we have a direct sum decomposition V = U + U⊥ .

Suppose that ( , )|U is positive definite and we define a subset DU ⊂ D by

DU = {Z ∈ D : Z = Z ∩ U⊥}.

We let GU denote the stabilizer of U in G and put ΓU = Γ∩GU . We let CU = ΓU\DU

and note that CU is an orientable manifold.

We now explain how an orientation of U gives rise to an orientation of DU . We
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choose a base point Z0 ∈ D and choose an orientation of Z0 and an orientation of

V once and for all. Propagate the orientation of Z0 continuously to orient all other

Z ∈ D . Orienting D is equivalent to giving an orientation of Hom(Z,Z⊥) which

depends continuously on Z . Since V is oriented we obtain an induced orientation of

Z⊥ such that the orientation of Z⊥ followed by that of Z is the orientation of V .

Then TZ(D) ' Hom(Z,Z⊥) is oriented. When ( , )|U is positive definite, there are

canonical isomorphims of the tangent space TZ(DU ) and the normal space νZ(DU )

TZ(DU ) ' Hom(Z,Z⊥ ∩ U⊥) and νZ(DU ) ' Hom(Z,U).

Then TZ(DU ) will receive an orientation by the rule that the orientation of TZ(DU )

followed by the orientation of νz(DU ) is the orientation of TZ(D).

We now define Ωβ ⊂ V n for β an n by n symmetric matrix by

Ωβ = {X ∈ V (Q)n :
1

2
(X,X) = β}.

If X ∈ Ωβ then the G-orbit O := GX ⊂ Ωβ . In case β is positive definite, then

G acts transitively on Lβ and O = Ωβ . We will write Cβ instead of CO for the

cycle corresponding to O = Ωβ . In this case Cβ is a locally finite cycle such that

each irreducible component has real dimension p − n . Indeed pairs of frames X =

(x1, x2, . . . , xn) and X ′ = (−x1, x2, . . . , xn) would occur in Ωβ if β were diagonal.

To avoid such cases where Cβ would be trivially zero we can introduce a congruence

condition. Let h ∈ Ln and a ⊂ O an ideal. Then we replace Ωβ∩Ln by Ωβ∩(h+aLn).

We assume that γ ∈ Γ implies that γ ≡ 1 mod a so that Γ acts on this intersection.

This congruence condition will be used to construct the theta lift in the following

section.

§ 2.4 The work of Kudla-Millson and Fourier coefficients

We first recall the classical theta lift as a function on the Siegel upper half plane from

[KM90] and [FM02], and then discuss that constructed on Sp2n(A), see [KM90] and

[Ber14].

2.4.1 Classical theta lift

Let V (Q) be a rational vector space of dimension m = p+ 1 with a symmetric bilinear

form ( , ) of signature (p, 1) and put G(Q) = SO(V (Q)). Let G = G0(R) ' SO0(p, 1)

be the connected component of the identity of the real points of G . Let L be an even
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lattice of level N with the dual lattice L] . Fix a vector h ∈ L]/L and write L = h+L .

Let Γ be a torsion free subgroup of finite index of the stabilizer of L in G . We denote

by D the symmetric space associated to G .

Let ϕn(X,Z) be the Schwartz form as given in Section 2.2 for X ∈ V (R)n and

Z ∈ D . For τ = u+ iv ∈ Hn , the Siegel space of genus n , following [FM02, Section 4]

we define

ϕn(τ,X,Z) = det(v)−m/4ω(g′τ )ϕn(X,Z)

where

g′τ =

(
1 u

0 1

)(
v1/2 0

0 v−1/2

)
=

(
v1/2 v−1/2u

0 v−1/2

)
moves the base point iIn ∈ Hn to τ . One obtains (see [FM02, Section 4])

ϕ(τ,X,Z)(W ) = 2n/2 det(v)1/2 det(X,W ) exp(πi tr(X,X)τ,Z)

for W ∈ (TZ(D))n ' (Z⊥)n and with (X,X)τ,Z = u(X,X) + iv(X,X)Z .

For a congruence condition h ∈ (L])n , we define the theta series θ(τ) with values

in the differential n-forms on D by

θ(τ, Z) =
∑

X∈h+Ln

ϕn(τ,X,Z).

One can show that it is a non-holomorphic Siegel modular forms of weight m/2 with

values in the Γ-invariant differential forms of D for some suitable subgroup of Sp2n(Z),

see [FM02, Theorem 4.5].

For a rapidly decreasing closed differential (p − n)-form η in Γ\D , Kudla and

Millson defined the transform

Θ(η)(τ) =

∫
Γ\D

η ∧ θ(τ, Z). (2.9)

and showed that it is a holomorphic Siegel modular form of weight m/2, see [KM90,

Theorem 1]. Moreover, the Fourier coefficients are given as periods of η over certain

special cycles Cβ in Γ\D attached to positive definite β ∈ Symn(Q), i.e.,

Θ(η)(τ) =
∑
β>0

aβ(η)e2πi tr(βτ)

with

aβ(η) =

∫
Γ\D

η ∧ θβ(τ). (2.10)

The derivation of the Fourier coefficient will be discussed with more details in the
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following subsection. Recall from Section 2.3 that

Ωβ =

{
X ∈ V (Q)n :

1

2
(X,X) = β

}
.

The main point of Kudla-Millson’s work is that

θβ =
∑

X∈Ωβ∩(h+Ln)

ϕn(iv, Z,X)e−2π tr(βv)

is a Poincaré dual form for the composite cycle Cβ , i.e.,

aβ(η) =

∫
Γ\D

η ∧ θβ =

∫
Cβ

η

for all rapidly decreasing closed (p− n)-forms in Γ\D .

Example 2.4.1. Let V be the rational vector space of signature (2,1) as in the Example

1.1.6. Recall from Example 2.2.2 (1) that, for x = x1e1 + x2e2 + x3e3 ∈ V (R) and

W = ν1e1 + ν2e2 ∈ p ' TZ0(D), we have

ϕ1(x)(W ) = 21/2(x1ω1 + x2ω2)(W )ϕ0(x).

Recall the theta series associated to ϕ1 , for z = x+ iy ∈ D and τ = u+ iy ∈ H2 ,

θL(τ, z, ϕ1) =
∑
x∈L

ϕ0(
√
vx)eπi(x,x)u.

As discussed in [FM11, Remark 7.2], Shintani defines a scalar-valued theta kernel

θ(τ, z, ϕS) which is integrated against a holomorphic cusp form f . His kernel func-

tion at the base point Z0 = i is given by

ϕS(x) = (x1 + ix2)ϕ0(x).

For such input, the kernels are closely related, namely one has

ηf ∧ θ(τ, z, ϕ1) = 21/2θ(τ, z, ϕS)f(z)
dx ∧ dy

y
.

This can be seen by a direct calculation of

dz ∧ ϕ1(x) = (dx+ idy) ∧ 21/2ϕ0(x)

(
x1
dy

y
− x2

dx

y

)
= 21/2ϕ0(x)(x1 + ix2)

dx ∧ dy
y

= 21/2ϕS(x)
dx ∧ dy

y
.

2.4.2 Adelic theta lift

In the following we discuss the adelic theta lift on Sp2n(A).

Let G = SO(V ) and recall the symmetric space D associated to G0(R) :=
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SO0(V (R)). We have seen the Schwartz form ϕn ∈ [S(V (R))n⊗Ωn(D)]G0(R) in Section

2.2. For a finite Schwartz function ϕf ∈ S(V (Af )n), let

ϕ = ϕn ⊗ ϕf ∈ [S(V (A)n)⊗ Ωn(D)]G0(R).

Let G′ = ResR/Q Sp2n and let G̃′(A) be the metaplectic cover of G′(A). For

convenience, we can take this group to be the extension of G′(A) by C1 . Recall from

Section 2.1 that G̃′(A) acts on S(V (A)n) via the global Weil representation associated

to an additive character ψ of AQ .

Let Γ ⊂ G(Q) ∩ SO0(V (R)). For g′ ∈ G̃′(A), if ϕf is Γ-invariant, the theta

series

θ(g′, ϕf , z) =
∑

X∈V (Q)n

ω(g′)ϕ(X, z) (2.11)

defines a closed n-form on Γ\D . Now we can define an adelic theta lift, for a rapidly

decreasing (p− n)-form η in Γ\D , to be

Θ(η)(g′) =

∫
Γ\D

η(z) ∧ θ(g′, ϕf , z). (2.12)

By Theorem 1 of [KM90], it is an adelic Siegel modular form on G̃′(A) of weight m/2.

Remark 2.4.2. For any prime q and any lattice L ⊂ V ⊗ Qq define its dual lattice

by L] = {X ∈ V ⊗Qq : 2(X,Y ) ∈ Zq ∀ Y ∈ L} . Now let L be an integral lattice on V

and put Lq = L⊗Z Zq . Fix a h ∈ (L])n/Ln . If we take the finite Schwartz function as

the product of the characteristic function of the lattice hq + Lnq at each prime q , i.e.,

ϕf :=
∏
q

1{hq+Lnq }

then the above theta series (2.11) can be rewritten as

θ(g′, ϕf ) =
∑

X∈h+Ln

ω(g′)ϕn(X).

In the case of sign (2,1) and n = 1, it recovers the theta series on the upper half

plane in (2.6). Invariance properties of θ(g′, ϕf ) under subgroups of G̃′(A) allow us to

use the strong approximation theorem. As discussed in Section 1.3.5, the adelic Siegel

modular form can be realised as the classical one defined on the Siegel upper half plane.

It follows that with ϕq being the characteristic function the theta lift as define above

in (2.12) descends to the classical one on the Siegel upper half plane as given in (2.9).

Write τ = u + iv ∈ g′(i · 1n) ∈ Hn , the Siegel upper half plane of genus n . By
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the Iwasawa decomposition, we have

g′∞ =

(
1 u

0 1

)(
v1/2 0

0 v−1/2

)
k′

where k′ ⊂ K ′ , the inverse image of U(n) under the covering map Mpn(R)→ Spn(R).

Then the Whittaker function is given by

Wβ(g′∞) = det(v)m/4 exp(trβτ) det(k′)m/2 for β ∈ Symn(R).

Returning to our space V of signature (p, 1). Let U ⊂ V be a Q-subspace

with dimQ U = n such that ( , )|U is positive definite. Following Section 2.3 we have

DU = {Z ∈ D : Z ⊥ U} and let G0
U be the stabilizer of U in G0(R). Set ΓU = Γ∩G0

U

and then we have the cycle CU = ΓU\DU as defined in Section 2.3.

For a positive definite symmetric matrix β ∈Mn(Q), consider the corresponding

hyperboloid

Ωβ =

{
X ∈ V (Q)n :

1

2
(X,X) = β

}
.

Let S(V (Af )n)Z be space of locally constant Z-valued functions on S(V (Af )n) of

compact support. Given any commutative ring R , let

S(V (Af )n)R = S(V (Af )n)Z ⊗Z R.

We now make the following definition, motivated by [Kud97, Proposition 5.4],

Definition 2.4.3 (Definition 5, [Ber14]). For a Γ-invariant Schwartz functionϕf ∈
S(V (Af )n)R , let

Z(β, ϕf ,Γ) =
∑

X∈Γ\Ωβ

ϕf (X) · CU(X)

where U(X) is the Q-subspace of V spanned by the components of X .

The following result, called Thom Lemma, is stated in [KM90, Theorem 9.1],

where the results of [KM86] for ΓU\D compact and [KM87] for ΓU\D finite volume

are recorded. In fact, these results do not cover the case of an infinite geodesic, which

can rise for signature (p, 1). It is proved in the case of signature (2,1) and n = 1 in

[FM02], and signature (3,1) and n = 2 in [Ber14, Section 4.3].

Lemma 2.4.4. Let β > 0 and X ∈ Ωβ . Put U = U(X). Let ΓU be a discrete

subgroup of G0
U . For any closed and bounded (p− n)-form η on ΓU\D ,∫

ΓU\D
(ω(g′∞)ϕn)(X) ∧ η = Wβ(g′∞)

∫
ΓU\DU

η.
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This lemma is just about the archimedean situation so it can be used to prove

the result in (2.10). For p = 2 and n = 1, and p = 3 and n = 2, applying the above

lemma we can prove:

Theorem 2.4.5 (Theorem 8.1, [Kud97] and Theorem 9, [Ber14]). Let [η] ∈ H1
c (Γ\D,C)

and ϕf ∈ S(V (Af )n)Γ . For g′ ∈ G′(A), let

ϕ′ = ω(g′f )ϕf ∈ S(V (Af )n).

Then we have

Θϕf (η)(g′) = cKf ∗
∑
β>0

Wβ(g′∞) ·
∫
Z(β,ϕ′,Γ)

η,

where cKf =

{
2, if − 1 ∈ Γ;

1, else .

Proof. Put U = U(X). Choose a Γ such that ϕf is Γ-invariant and such that, if p is

even, then -1 is not in the image of Γ in SO(V ). Let η be a closed 1-form on Γ\D .

Then ∫
Γ\D

θ(g′, ϕ′) ∧ η =
∑

β∈Symn(Q)

∑
X∈Γ\Ωβ

∫
ΓU\D

ω(g′)ϕ′(X) ∧ η. (2.13)

One main result of [KM90] is that the terms in (2.13) where β is not positive

definite vanish. Thus, using the Thom Lemma, we obtain∑
β>0

∑
X∈Γ\Ωβ

ϕ′(X) ·
∫

ΓU\D
ω(g′)ϕn(X) ∧ η

=
∑
β>0

∑
X∈Γ\Ωβ

ϕ′(X) ·Wβ(g′∞) ·
∫

ΓU\DU
η. (2.14)

If p is even and -1 is in the image of Γ in SO(V ), then all terms in (2.14) must

be multiplied by a factor of 2.



Chapter 3

Shintani lift and Fourier

coefficient

In this chapter, we explain the adelic theta lifting of a weight 2 cusp form f . For

an finite Schwartz function related to an auxiliary quadratic character χ , we express

certain Fourier coefficients of this lifting in terms of the twisted L-value L(f, χ, 1).

§ 3.1 Orthogonal group of sign (2, 1) and cycles

In this section we recall some basic aspects on orthogonal groups of signature (2,1) and

cycles in this case from [FM02] and [FM11].

Let V be a rational vector space of dimension 3 with a non-degenerate symmetric

bilinear form ( , ) of signature (2, 1). We write q(x) = 1
2(x,x) for the associated

quadratic form. We denote the discriminant of the quadratic space by a square-free

negative integer d . Throughout we assume that V is isotropic, and in fact we can pick

the isomorphism

V (Q) '

{(√
−dx1 x2

x3 −
√
−dx1

)
: xi ∈ Q

}
=: B0(−d;Q).

Then q(x) = −det(x) and (x,y) = tr(xy). For simplicity we assume that the discrim-

inant is −1. In this model, we define the action of GL2 on V given by g ·x := gxg−1 .

Noth that this action preserves the quadratic form, i.e. q(g ·x) = q(x) and the bilinear

50
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form as well since the computation

(g · x, g · y) = tr(gxg−1gyg−1) = tr(xy) = (x,y).

We pick an orthogonal basis e1, e2, e3 of V (R) such that (e1, e1) = (e2, e2) = 1 and

(e3, e3) = −1. This also gives rise to an orientation of V . Explicitly, we set

e1 =

(
0 1

1 0

)
, e2 =

(
1 0

0 −1

)
, e3 =

(
0 1

−1 0

)
.

We let K ' SO(2) be the stabilizer of e3 in G = SL2(R), and recall from Section

1.1 that the symmetric space D = G/K ' H2 can be identified with the hyperboloid

D ' {x ∈ V (R) : (x,x) = −1, (x, e3) < 0}.

Hence e3 represents the base point z0 of D . The tangent space Tz0(D) at the base

point is canonically isomorphic to e⊥3 . We orient D by stipulating that e1, e2 is an

oriented basis of Tz0(D) and propagate this orientation continuously around D .

Recall the complex upper half plane H2 = {z = x + iy ∈ C : y > 0} and the

action of GL+
2 (R) on it is given by linear fractional transformations as follows(

α β

γ δ

)
· z =

αz + β

γz + δ
for

(
α β

γ δ

)
∈ GL+

2 (R), z ∈ H2

The isomorphism H2 ' D as in Example 1.1.6 is given explicitly by

µ : z = x+ iy 7−→ 1

y

(
−x zz̄

−1 x

)
. (3.1)

Proposition 3.1.1. The above map µ in (3.1) intertwines the action of GL+
2 (R) on

V and H2 ; that is µ(g · z) = g · µ(z) for z ∈ H2 and g ∈ GL+
2 (R).

Proof. Let g =
(
α β
γ δ

)
∈ GL+

2 (R) and z = x+ iy ∈ H2 . Then we compute

z′ = g · z =
αz + β

γz + δ
=

(αz + β)(γz̄ + δ)

(γz + δ)(γz̄ + δ)

=
αγzz̄ + (αδ + βγ)x+ βδ + (αδ − βγ)yi

|γz + δ|2
and

z′z̄′ =
αz + β

γz + δ
· αz̄ + β

γz̄ + δ
=
α2zz̄ + 2αβx+ β2

|γz + δ|2
.

It follows that

µ(z′) =
1

(αδ − βγ)y

(
−αγzz̄ − (αδ + βγ)x− βδ α2zz̄ + 2αβx+ β2

−|γz + δ|2 αγzz̄ + (αδ + βγ)x+ βδ

)
.
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In the other direction we compute

g · µ(z) =
1

(αδ − βγ)y

(
α β

γ δ

)(
−x zz̄

−1 δ

)(
δ −β
−γ α

)

=
1

(αδ − βγ)y

(
−αx− β αzz̄ + βx

−γx− δ γzz̄ + δx

)(
δ −β
−γ α

)

=
1

(αδ − βγ)y

(
−αδx− βδ − αγzz̄ − αβx αβx+ β2 + α2zz̄ + αβx

−γδx− δ2 − γ2zz̄ − γδx βγx+ βδ + αγzz̄ + αδx

)
.

Comparing the entries we can deduce that µ(g · z) = g · µ(z).

Let L ⊂ V (Q) be an integral lattice of full rank, i.e. L ⊂ L] , the dual lattice of L

which is given by {x ∈ V : (x,y) ∈ Z ∀y ∈ L} . We let Γ be a torsion-free congruence

subgroup of SL2(Z) preserving L . We let X = XΓ = Γ\D be the associated arithmetic

quotient which is a modular curve due to the identification D ' H2 .

The set of cusps of H2 is denoted P1(Q) = Q∪∞ . Here we use [a : b] to denote

homogeneous coordinates for a point in P1(Q) and [1 : 0] for ∞ . We define the action

of GL2(Q) on P1(Q) by(
α β

γ δ

)
· [a : b] = [αa+ βb : γa+ δb] for

(
α β

γ δ

)
∈ GL2(Q).

Note that the action of GL2(Q) on P1(Q) extends the action on H2 = H2 ∪ P1(Q) if

we treat a cusp a/b+ 0 · i ∈ H . The set of all isotropic lines in V , i.e. Iso(V ) = {x ∈
V : q(x) = 0} , can be identified with P1(Q) by means of the map

ν : [a : b] 7−→ span

(
−ab a2

−b2 ab

)
∈ Iso(V ). (3.2)

Proposition 3.1.2. The above map ν in (3.2) commutes with the GL2(Q)-action;

that is ν (g · [a : b]) = g · ν([a : b]) for g ∈ GL2(Q) and [a : b] ∈ P1(Q).

Proof. Let g =
(
α β
γ δ

)
∈ GL2(Q) and [a : b] ∈ P1(Q). Then we compute

ν(g · [a : b]) = ν ([αa+ βb : γa+ δb]) =

(
−(αa+ βb)(γa+ δb) (αa+ βb)2

−(γa+ δb)2 (αa+ βb)(γa+ δb)

)
.



CHAPTER 3. SHINTANI LIFT AND FOURIER COEFFICIENT 53

On the other hand we have

g · ν ([a : b]) =
1

det(g)

(
α β

γ δ

)(
−ab a2

−b2 ab

)(
δ −β
−γ α

)

=
1

det(g)

(
−αab− βb2 αa2 + βab

−γab− δb2 γa2 + δab

)(
δ −β
−γ α

)

=
1

det(g)

(
−αδab− βδb2 − αγa2 − βγab αβab+ β2b2 + α2a2 + αβab

−γδab− δ2b2 − γ2a2 − γδab βγab+ βδb2 + αγa2 + αδab

)
.

Thus we can deduce that ν (g · [a : b]) = g · ν ([a : b]) in Iso(V ).

The cusp ∞ corresponds to the isotropic line l∞ spanned by x∞ = ( 0 1
0 0 ). For

y ∈ Iso(V ), pick g ∈ SL2(Q) such that g · y = βx∞ with β ∈ Q× . Put Γ′ = gΓg−1 .

Hence, Γ′x∞ = gΓyg
−1 is equal to

{
±
(

1 kα
0 1

)
: k ∈ Z

}
(if −I ∈ Γ) for some α ∈ Q+ .

We call such α the width of the cusp κ corresponding to y . However this is not well

defined, since it depends on the choice of g ∈ SL2(Q) and hence on β . Instead we

define the width of the cusp κ as ε(y,Γ) = α/|β| which only depends on y and Γ.

Following Section 2.3, a vector x ∈ V (R) of positive length defines a geodesic

Dx in D via

Dx = {z ∈ D : z ⊥ x}

where being orthogonal is in the sense of the bilinear form. In the upper half plane

model, the cycle Dx is given for x =
(
b a
−c −b

)
by

Dx = {z ∈ H2 : µ(z) ⊥ x} = {z ∈ H2 : c|z|2 + 2bRe(z) + a = 0}.

We orient Dx by requiring that a tangent vector v ∈ Tz(Dx) ' z⊥ ∩ x⊥ followed by

z⊥∩x gives a properly oriented basis of Tz(D) ' z⊥ . Then 〈z⊥∩x⊥, z⊥∩x, z〉 has the

same orientation as 〈e1, e2, e3〉 , i.e. the determinant of the base change is positive. We

let Γx be the stabilizer of x in Γ∩ SO0(2, 1)(R). We denote the image of the quotient

Γx\Dx in X by Cx .

A space with quadratic form is said to split if there is a subspace which is equal

to its own orthogonal complement. The stabilizer Γx is either trivial or infinite cyclic

which can be classified by the following lemma. If Γx is infinite, then Cx is a closed

geodesic in X , while Cx is infinite if Γx is trivial. In the latter case Cx is exactly a

classical modular symbol.

Lemma 3.1.3. Let q(x) > 0 for x ∈ V (Q), so x⊥ has signature (1,1). Then Γx is

trivial if x⊥ splits over Q. Conversely, if x⊥ is non-split, i.e., anisotropic over Q,
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then Γx is infinite cyclic.

Proof. See [Fun02, Lemma 4.2].

Proposition 3.1.4. For x ∈ V (Q) ' B0(1;Q) with q(x) > 0 the following statements

are equivalent:

(1) x⊥ is split over Q,

(2) q(x) ∈ (Q×)2 .

Proof. See [Fun02, Lemma 3.6] for an arbitrary discriminant d .

If q(x) = m2 for m ∈ Q× , then x is orthogonal to two cusps κ1 and κ2 corre-

sponding to isotropic lines lκ1 and lκ2 with generators uκ1 and uκ2 respectively. We

distinguish lκ1 and lκ2 by requiring that uκ1 ,x, uκ2 gives a properly oriented basis of

V which also gives a different way of characterizing the orientation of Dx . Note that

〈uκ1 ,x, uκ2〉 and 〈uκ2 ,−x, uκ1〉 share the same orientation as the base change has a

positive determinant. Consider

Lm2 = {x ∈ L : q(x) = m2}

For a fixed cusp κi , we write

Lm2,κi,+ = {x ∈ Lm2 : x ⊥ κi,x pos orient}

and note that the stabilizer Γκi ⊂ Γ of the cusp κi acts on this set.

Proposition 3.1.5. We have

#Γ\Lm2 =
∑
i

#Γκi\Lm2,κi,+

where the sum is over all the non-equivalent cusps and

#Γκi\Lm2,κi,+ = 2mε(xi,Γ)

where xi is the isotropic line corresponding to the cusp κi .

Proof. See [Fun02, Lemma 3.7] in a bit more general setting.

Lemma 3.1.6. Let x ∈
{(

b 2a
0 −b

)
: a ∈ Q, b ∈ Q×

}
⊂ V and the associated cycle is

given by

Dx = {z ∈ H2 : bRe(z) + a = 0}.

Then the sign of b determines the orientation of Tz(Dx).
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Proof. Given an element z = −a
b + iy ∈ Dx , we have

z = −a
b

+ iy 7−→ 1

y

(
a
b

a2

b2
+ y2

−1 −a
b

)
∈ V (R).

Let

(
α β

γ −α

)
∈ z⊥ and we compute

1

y

(
α β

γ −α

)(
a
b

a2

b2
+ y2

−1 −a
b

)
=

(
a
bα− β ∗
∗ a2

b2
γ + y2γ + a

bα

)
.

It follows that β = a2

b2
γ + y2γ + 2a

b α and thus we have

z⊥ =

{(
α a2

b2
γ + y2γ + 2a

b α

γ −α

)
: α, γ ∈ Q

}
.

Suppose

(
α β

γ −α

)
∈ x⊥ and we compute(

α β

γ −α

)(
b 2a

0 −b

)
=

(
bα ∗
∗ 2aγ + bα

)
.

It follows that bα+ aγ = 0 and thus we have

x⊥ =

{(
−a
bγ β

γ a
bγ

)
: β, γ ∈ Q

}
.

Then we can calculate

z⊥ ∩ x⊥ =

{(
−a
bγ −a2

b2
γ + y2γ

γ a
bγ

)
: γ ∈ Q

}

=

〈
ε

(
−a
b −a2

b2
+ y2

1 a
b

)〉
(ε = ±1 describes the orientation of Tz(Dx))

=

〈
ε

(
−a
b
e2 +

1

2
(e1 + e3)

(
−a

2

b2
+ y2

)
+

1

2
(e1 − e3)

)〉
=

〈
ε

(
1

2

(
−a

2

b2
+ y2 + 1

)
e1 −

a

b
e2 +

1

2

(
−a

2

b2
+ y2 − 1

)
e3

)〉
,

z⊥ ∩ x =

〈(
b 2a

0 −b

)〉
= 〈ae1 + be2 + ae3〉 ,
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and

z ' 1

y

(
a
b

a2

b2
+ y2

−1 −a
b

)
=

1

y

(
a

b
e2 +

1

2
(e1 + e3)

(
a2

b2
+ y2

)
− 1

2
(e1 − e3)

)
=

1

y

(
1

2

(
a2

b2
+ y2 − 1

)
e1 +

a

b
e2 +

1

2

(
a2

b2
+ y2 + 1

)
e3

)
.

To conclude we obtain thatz
⊥ ∩ x⊥

z⊥ ∩ x

z

 =


ε
2

(
−a2

b2
+ y2 + 1

)
− εa

b
ε
2

(
−a2

b2
+ y2 − 1

)
a b a

1
2y

(
a2

b2
+ y2 − 1

)
a
yb

1
2y

(
a2

b2
+ y2 + 1

)

e1

e2

e3


where the base change has the determinant

det =
εb

4y

∣∣∣∣∣∣∣
−a2

b2
+ y2 + 1 −2a

b −a2

b2
+ y2 − 1

a
b 1 a

b
a2

b2
+ y2 − 1 2a

b
a2

b2
+ y2 + 1

∣∣∣∣∣∣∣
=
εb

4y

∣∣∣∣∣∣∣
2y2 0 2y2

a
b 1 a

b
a2

b2
+ y2 − 1 2a

b
a2

b2
+ y2 + 1

∣∣∣∣∣∣∣
=
εby

2

((
−a

2

b2
+ y2 + 1

)
+

(
a2

b2
− y2 + 1

))
= εby > 0.

Thus we can deduce that the sign of b determines the orientation ε of Tz(Dx).

Corollary 3.1.7. Consider the lattice L =
{(

b 2a
2c −b

)
: a, b, c ∈ Z

}
such that the cusp

∞ has width 1/2. Assume that m is a positive integer. We can choose a set of

representatives in Γ∞\Lm2,∞,+ given by{(
m 0

0 −m

)
,

(
m 2

0 −m

)
, . . . ,

(
m 2(m− 1)

0 −m

)}
.

Proof. Given an element x ∈ Lm2,∞,+ of form
(
b 2a
0 −b

)
, Lemma 3.1.6 allows us to orient

x positively by requiring that the top left entry of x is positive, e.g. b = m > 0.

From the proof of Proposition 3.1.5, we know that the Γ∞ -action on x only makes the

top right entry of x vary. Thus we can choose such representatives in Γ∞\Lm2,∞,+ as

stated above.



CHAPTER 3. SHINTANI LIFT AND FOURIER COEFFICIENT 57

§ 3.2 Dirichlet character and Schwartz function

Following Section 1.3, we first recall from [GH11, Section 2.1] the idelic lift of a Dirichlet

character of conductor pf where pf is a fixed prime power in the following. We define

the idelic lift of χ : (Z/pf )× → C× to be a Hecke character χ̃ : Q×/A×Q → C× defined

as

χ̃(a) = χ̃2(a∞) · χ̃(a2) · · · , for a = (a∞, a2, . . . ) ∈ A×Q,

where

χ̃∞(a∞) =


1, if χ(−1) = 1,

1, if χ(−1) = −1 and a∞ > 0,

−1, if χ(−1) = −1 and a∞ < 0,

and where

χ̃v(av) =

{
χ(v)m, if av ∈ vmZ×v and v 6= p,

χ(j)−1, if av ∈ pk(j + pfZp) with j, k ∈ Z, (j, p) = 1, and v = p.

One can verify that this actually defines a Hecke character as given in Section 1.3.

More generally, every Dirichlet character χ (mod m), with m =
∏r
i=1 p

fi
i , where

p1, p2, . . . , pr are distinct primes and f1, f2, · · · , fr ≥ 1 can be factored as

χ =
r∏
i=1

χ(i)

where χ(i) is a Dirichlet character of conductor pfii . It follows that χ can be lifted to

a Hecke character χ̃ on A×Q as being

χ̃ =
r∏
i=1

χ̃(i),

where

χ̃v(av) =



r∏
i=1

χ(i)(pv)
ordv(av), if pv - m

χ(v)(j)−1 ·
r∏

i=1,pv 6=pi
χ(i)(pv)

ordv(av), if av ∈ pkv(j + pfvv Zpv) with j, k ∈ Z,

(j, pv) = 1, and pv|m.

Remark 3.2.1. To avoid the trivial vanishing of the theta lifting, one approach is to

introduce a congruence condition and take the finite Schwartz function as the product

of characteristic functions of hq + Lq as discussed in Remark 2.4.2. Instead of this

approach which is adopted in [Shi75] and [FM02], we follow Prasanna’s treatment

[Pra09, Section 3.2], that is carefully choosing the finite Schwartz function ϕf on S(Vf )

related to a quadratic Dirichlet character χm of square-free conductor m . Then we
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construct ϕ := ϕ1ϕf where ϕ1 denotes the Schwartz form at the archimedean place as

in Example 2.2.2 (1).

In this chapter we need to consider the pair S̃L2×SO(2, 1) to construct the theta

lift where S̃L2 = SL2×{±1} . We have seen the Weil representation of S̃L2 in Example

2.1.1(1).

Let N be an odd square-free integer coprime to m , which will be the level of

modular form considered in next section. Now, adapting Prasanna’s choice (see [Pra09,

Section 3.2]), we define the local Schwartz function ϕq at each finite place q away from

N in the following:

(1) If q is odd and q - mN , ϕq = 1{L⊗Zq} where L :=

{(
b a

c −b

)
: a, b, c ∈ Z

}
,

(2) If q|m and q - N , ϕq

(
b a

c −b

)
= 0, unless a, b, c ∈ Zp , −b2−ac ∈ qZq , in which

case

ϕq

(
b a

c −b

)
=


χ̃m,q(−a) (resp. χ̃m,q(c)), if ordq(a) = 0 (resp. ordq(c) = 0),

0, if both ordq(a) 6= 0 and

ordq(c) 6= 0,

(3) If q = 2, ϕ2

(
b a

c −b

)
= 1Z2(b)12Z2(a)12Z2(c).

Definition 3.2.2. At each place q|N , we define the local Schwartz function ϕNq to be

the characteristic function of{(
b a

c −b

)
∈ V (Qq) : a, b, c ∈ Zq, b ≡ m mod q

}
.

Remark 3.2.3. We cannot take the local Schwartz function ϕNq simply as the char-

acteristic function of integral lattices otherwise the theta lifting constructed in our

next section would be vanishing for some trivial reason. The vanishing will be seen

clearly after the whole treatment of next section, and at the end of next section (see

Remark 3.3.4 (i)), we will give some concrete examples to show why we don’t take the

characteristic function as our local Schwartz function.

With the above ϕq defined at each finite place, one can check that the finite
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Schwartz function ϕf is invariant under

Γ(2mN) : =

{(
α β

γ δ

)
∈ PSL2(Z) : ±

(
α β

γ δ

)
≡ ±

(
1 0

0 1

)
mod 2mN

}
⊂ PSL2(R) ' SO0(2, 1)(R) (by the exceptionl isomorphism in (1.1))

via observing the expansion(
α β

γ δ

)
·

(
b a

c −b

)
=

(
αδb+ βδc− αγa+ βγb −αβb− β2c+ α2a− αβb
γδb+ δ2c− γ2a+ γδb −βγb− βδc+ αγa− αδb

)
.

Here Γ denotes the image of Γ ⊂ SL2 in PSL2 .

We want to construct a Γ0(2mN)-invariant finite Schwartz function ϕnew
f related

to ϕf defined above. For γ ∈

(
a b

c d

)
∈ PSL2(Z), there is an homomorphism

λN :

(
a b

c d

)
7→

(
ā b̄

c̄ d̄

)
mod N

with ker(λN ) = Γ(N). As

λN (Γ0(N)) =

{(
a b

0 a−1

)
∈ PSL2(Z/NZ) : a ∈ (Z/NZ)×, b ∈ Z/NZ

}
,

we have a complete set of representatives of Γ0(N)/Γ(N) consisting of the elements

γ ∈

{(
a b

0 a−1

)
∈ PSL2(Z/NZ) : a ∈ (Z/NZ)×, b ∈ Z/NZ

}
.

Then, at each finite place q|2mN , ϕnew
q is defined to be

ϕnew
q (x) :=

∑
[γ]∈Γ0(q)/Γ(q)

ωψq(γ)ϕq(x) =
∑

[γ]∈Γ0(q)/Γ(q)

ϕq(γ
−1 · x).

At all other finite places, we do not make any changes to the local Schwartz function.

Hence, the corresponding ϕnew
f is Γ0(2mN)-invariant.

On the symplectic side, the following invariance properties under subgroups of

SL2(Zq)×{±1} will help us determine the level of our theta lifting in our next section.

This procedure will be repeated in a bit more complicated setting in our next chapter

on the theta liftings of Bianchi modular forms, see Section 4.3.

Proposition 3.2.4. (1) For ε = 1, ωψq(1, ε)ϕq(x) = ϕq(x).

(2) For q - 4N and σ ∈ SL2(Zq), ωψq(σ)ϕq = ϕq ,

(3) For q = 2 and σ ∈ Γ0(4) ⊂ SL2(Z2), ωψ2(σ)ϕ2 = ϕ2 ,

(4) For q|N and σ ∈ SL2(Zq) such that h ≡

(
∗ 0

0 ∗

)
mod q , ωψq(σ)ϕNq = ϕNq .
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Proof. It is clear for the first part, and for (2) and (3) see the proof of [Pra09, Propo-

sition 3.4]. We will prove (4) in details inspired by his proof. For simplicity, we set

ϕq = ϕNq . Setting x =

(
b a

c −b

)
and y =

(
β α

γ −β

)
, we write the Fourier transform

ϕ̂q(x) =

∫
(x,y)ϕq(y)dy

=

∫
1

2
(aγ + cα+ 2bβ)ϕq(y)dy.

By definition of ϕq above, we know that ϕq(y) is invariant under β 7→ β+q , α 7→ α+Zq
and γ 7→ γ+Zq . For the non-vanishing of ϕ̂q(x), we need a ∈ qZq , b ∈ Zq and c ∈ qZq .

It follows that

ωψq

((
1 x

0 1

)(
0 1

−1 0

))
ϕq = ωψq

((
0 1

−1 0

))
ϕq for x ∈ qZq

which implies

ωψq

((
1 0

x 1

))
ϕq = ϕq for x ∈ qZq.

Also it is clear that

ωψq

((
1 x

0 1

))
ϕq = ϕq for x ∈ qZq.

Then the assertion follows.

§ 3.3 Shintani lift and Fourier coefficient

We have seen in Example 2.2.2 (1) the Schwartz form at the archimedean place:

ϕ1(xR, z) ∈ S(V (R))⊗ Ω(D) for xR ∈ V (R), z ∈ D.

Given the finite Schwartz function ϕnew
f on S(V (Af )) defined in the previous section,

we can construct

ϕ(x, z) := ϕ1 ⊗ ϕnew
f ∈ S(V (A))⊗ Ω(D) for x ∈ V (A), z ∈ D. (3.3)

Following (2.11), the theta series in this case is given by

θ(g′, ϕnew
f , z) =

∑
x∈V (Q)

ω(g′)ϕ(x, z) for g′ ∈ SL2(A)× {±1}

which defines a closed differential 1-form on Γ0(2mN)\D . For the non-vanishing of

ϕnew
f , this theta series descends to the sum over the integral lattice

L :=

{(
b 2a

2c −b

)
: a, b, c ∈ Z,−b2 − 4ac ≡ 0 mod m

}
, (3.4)
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i.e. θ(g′, ϕnew
f , z) =

∑
x∈L ω(g′)ϕ(x, z).

Remark 3.3.1. In [Fun02, (3.17)], the theta series is given as the sum over the shift

h+L of L with the finite Schwartz function being the characteristic function. But we

take the non-trivial ϕnew
f as our finite Schwartz function and then the corresponding

theta series becomes a sum over the integral lattice in (3.4).

Let f ∈ S2(Γ0(N)) be a weight 2 cusp form corresponding to a differential form

ηf on Γ0(N)\D and Γ(L) ⊂ SO0(2, 1)(R) the stabilizer group of L . Following (2.12),

we have the theta lifting of f , which is cusp form of weight 3/2, given by

Θϕ(ηf )(g′) =

∫
Γ\D

f(z)dz ∧ θ(g′, ϕnew
f , z)

where Γ := Γ0(N)∩Γ(L)∩Γ0(2mN) = Γ0(2mN). With the Schwartz function defined

in the previous section, Proposition 3.2.4 implies that this theta lifting has level

L :=

{(
a b

c d

)
∈ SL2(Z) : N |b, 4N |c

}
.

Set β = m2 . By Theorem 2.4.5, the Fourier coefficient at m2 is given by

I =
∑

x∈Γ\Lm2

ϕnew
f (x)

∫
Cx

f(z)dz (3.5)

where Lm2 = {x ∈ L : q(x) = m2} . By Proposition 3.1.5 we have Γ\Lm2 =∑
i Γκi\Lm2,κi,+ . It follows that the Fourier coefficient at m2 can be decomposed

as

I =
∑

x∈Γ\Lm2

ϕnew
f (x)

∫
Cx

f(z)dz =
∑
i

∑
x∈Γκi\Lm2,κi,+

ϕnew
f (x)

∫
Cx

f(z)dz. (3.6)

In this case x⊥ is split over Q due to Proposition 3.1.4, and then by Lemma 3.1.3 the

stabilizer Γx is trivial. So the cycle Cx = Γx\Dx is an infinite geodesic joining two

cusps.

Remark 3.3.2. To express our coefficient I at m2 in terms of twisted L-values, we

were inspired by Kohnen’s computations in [Koh85, Corollary 1]. Over cycles through

the cusp ∞ , the above period integral can be related to the special L-value L(f, χ, 1)

in subsection 3.3.1. Treating other cycles not through ∞ in subsection 3.3.2, we

need Atkin-Lehner operators. In [Koh85, Theorem 3], Kohnen calculated the prod-

uct c(m)c(n) of Fourier coefficients in terms of period integrals. With the condition

that −n is a fundamental discriminant, one can derive the formula for the square of

the Fourier coefficient at a square-free integer in [Koh85, Corollary 1]. If −n is not a
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fundamental discriminant, he also gave a bit more complicated version of c(m)c(n) in a

Remark right after [Koh85, Theorem 3]. This might also lead to a relationship between

the square of the Fourier coefficient at a square integer and the twisted L-value, but

we have not pursued this.

3.3.1 On cycles through ∞

The goal of this subsection is to calculate

I∞ :=
∑

x∈Γ∞\Lm2,∞,+

ϕnew
f (x)

∫
Cx

f(z)dz.

We have seen a set of representatives of Γ∞\Lm2,∞,+ in Corollary 3.1.7. Write

x =
(
m 2a
0 −m

)
∈ Γ∞\Lm2,∞,+ with a positive. By Definition 3.2.2, for the non-

vanishing of ϕNq we can exclude −x from Lm2,∞,+ and only need to count
(
m 2a
0 −m

)
∈

Γ∞\Lm2,∞,+ . By Corollary 3.1.7, we observe that a ranges over Z/mZ .

Lemma 3.3.3. For above m and a, we have

ϕnew
f

(
m 2a

0 −m

)
= 2

∏
q|mN

[Γ0(q) : Γ(q)] · ϕf

(
m 2a

0 −m

)
.

Proof. Set q|2mN . Write the representative in Γ0(q)/Γ(q)

γ =

(
x y

0 x−1

)
with x ∈ (Γ0(q)/Γ(q))×, y ∈ Γ0(q)/Γ(q).

Then we compute

ϕnew
q

(
m 2a

0 −m

)
=

∑
[γ]∈Γ0(q)/Γ(q)

ϕq

(
γ−1 ·

(
m 2a

0 −m

))

=
∑

[γ]∈Γ0(q)/Γ(q)

ϕq

(
m 2x−1ym+ 2x−2a

0 −m

)
.

At q|m , we see

ϕq

(
m 2x−1ym+ 2x−2a

0 −m

)
= χ̃m,q(−2a) = ϕq

(
m 2a

0 −m

)
.

Similarly, at q|2N , we observe that

ϕq

(
m 2x−1ym+ 2x−2a

0 −m

)
= ϕq

(
m 2a

0 −m

)
.
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So, we have

ϕnew
q

(
m 2a

0 −m

)
= [Γ0(q) : Γ(q)] · ϕq

(
m 2a

0 −m

)
,

and deduce that

ϕnew
f

(
m 2a

0 −m

)
= 2

∏
q|mN

[Γ0(q) : Γ(q)] · ϕf

(
m 2a

0 −m

)
.

Now following the above lemma we are ready to calculate

I∞ =
∑

x∈Γ∞\Lm2,∞,+

ϕnew
f (x)

∫
Cx

f(z)dz

= 2
∏
q|mN

[Γ0(q) : Γ(q)] ·
∑

a∈Z/mZ

ϕf

(
m 2a

0 −m

)∫ i∞

− a
m

f(z)dz

= 2
∏
q|mN

[Γ0(q) : Γ(q)] ·
∑

a∈(Z/mZ)×

∏
q|m

χ̃m,q((−2a)q)

∫ i∞

− a
m

f(z)dz

= 2
∏
q|mN

[Γ0(q) : Γ(q)] ·
∑

a∈(Z/mZ)×

χ−1
m (−2a)

∫ ∞
0

f(− a
m

+ it)dt

= 2
∏
q|mN

[Γ0(q) : Γ(q)] · 1

2π
χ−1
m (2)τ(χ−1

m )L(f, χm, 1). (3.7)

The last equality is the consequence of Birch’s lemma, which can be derived from the

computation on [DFK04, page 4] repeated in the following:

Let χ be a Dirichlet character of conductor m with Gauss sum

τ(χ) =
∑

amodm

χ(a)e2πia/m. (3.8)

The twisted L-function L(f, χ, s) can be expressed as

L(f, χ, s) =
∑
n≥1

χ(n)c(n)n−s

=
∑
n≥1

χ(n)c(n)(2π)sΓ(s)−1

∫ ∞
0

ts−1e−2πntdt

= (2π)sΓ(s)−1

∫ ∞
0

ts−1
∑
n≥1

χ(n)c(n)e−2πntdt.

From the identity∑
n≥1

χ(n)c(n)e2πinz =
1

τ(χ−1)

∑
amodm

χ−1(a)f(z + a/m),
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we have

L(f, χ, 1) = 2π

∫ ∞
0

1

τ(χ−1)

∑
amodm

χ−1(a)f(it+ a/m)dt

=
2π

τ(χ−1)

∑
amodm

χ−1(a)

∫ ∞
0

f(it+ a/m)dt.

Remark 3.3.4. [Koj97] discusses Fourier coefficients of the Shintani lifting of a weight

2 cusp form f . Theorem 1 tells us that the integral appearing in 3.7 can be expressed

in terms of twisted L-values, i.e.,∫ ∞
0

f(− a
m

+ it)dt = |(Z/mZ)×|−1
∑
ψ

ψ−1(a)H0(f, ψ) (3.9)

where the sum
∑

ψ is taken over all Dirichlet characters ψ modulo m and

H0(f, ψ) = i(2π)−1K0(ψ)(c(p1), . . . , c(pr))L(f, ψ−1, 1).

Here p1, . . . , pr are all prime divisors of m , c stands for Fourier coefficients of f and

K0(ψ) is a rational function of r variables given in [Koj97, Lemma 2.2]. Following the

identity in (3.9), our I∞ turns out to be

I∞ = 2
∏
q|mN

[Γ0(q) : Γ(q)] ·
∑

a∈(Z/mZ)×

|(Z/mZ)×|−1χ−1
m (−2a)

∑
ψ

ψ−1(a)H0(f, ψ).

The difference comes from having the particular weighted sum and being able to apply

Birch’s lemma in (3.7).

3.3.2 On other cycles

In this subsection we aim to calculate, for κi 6=∞ ,

Iκi :=
∑

x∈Γκi\Lm2,κi,+

ϕnew
f (x)

∫
Cx

f(z)dz

with the help of Atkin-Lehner operators.

We recall Asai’s treatment of cusps [Asa76, Section 1.1] in the following. Each

cusp can be expressed as a reduced fraction with positive numerator except 0 = 0/1. It

is known that equivalence classes of cusps are in one-to-one correspondence with ordered

decompositions N = M0M of two positive divisors. We say a cusp κi = κi,2/κi,1

belongs to Mi -class if g.c.d.(κi,1, N) = Mi . For each decomposition N = M0,iMi and

any cusp κi = κi,2/κi,1 of Mi -class, we can take a typical matrix which transforms κi
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to ∞ = 1/0:

ωκi =

(
1 0

0 M0,i

)
ακi with ακi =

(
M0,iλ1 λ2

−κi,1 κi,2

)
∈ SL2(Z) and λi ∈ Z. (3.10)

As (κi,1, κi,2) = 1, there exists an integer b such that bκi,2 ≡ 1(mod κi,1) and as

(κi,1,M0,i) = 1 there exists an integer c such that cM0,i ≡ 1(mod κi,1). Taking

λ1 = bc we observe that λ2 =
1−M0,iλ1κi,2

κi,1
is an integer. So such a ωκi always exists

but is not unique.

Proposition 3.3.5. Let f be a weight 2 cusp form of level Γ0(N) with N square-free

and m a square-free positive integer. Assume that (2,m,N) = 1. Choose the Schwartz

form as in (3.3). Then the Fourier coefficient of the theta lifting of f as in (3.6) at

m2 is I = I∞ which is calculated in (3.7).

Proof. Inspired by Kohnen’s work [Koh85, Corollary 1] we calculate the Fourier coef-

ficient in the following.

It is well known that the fractional linear transformation on the extended upper

half plane is the composition of an even number of inversions which means it preserves

the orientation ([Ber05, Section 2.3]). Note that ωκi acts on integral x via ωκi · x =

ωκixω
−1
κi . Thus, by Proposition 3.1.2, for x ∈ Lm2,κi,+ we have ωκi · x ∈ Lm2,∞,+ .

Note that the integrality of lattice is preserved under the action of ωκi . Then we have

Iκi =
∑

x∈Γκi\Lm2,κi,+

ϕnew
f (x)

∫
Cx

f(z)dz

=
∑

x∈Γκi\Lm2,κi,+

ϕnew
f (ω−1

κi · ωκi · x)

∫
Cx

f(z)dz

=
∑

x∈Γ∞\Lm2,∞,+

ϕnew
f (ω−1

κi · x)

∫
C
ω−1
κi
·x

f(z)dz.

We will describe ϕnew
f (ω−1

κi · x) in the following.

Write

ωκi =

(
M0,iλ1 λ2

−M0,iκi,1 M0,iκi,2

)
with det(ωκi) = M0,i

and

ω−1
κi = M−1

0,i

(
M0,iκi,2 −λ2

M0,iκi,1 M0,iλ1

)
with det(ω−1

κi ) = M−1
0,i .
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For x =

(
b 2a

0 −b

)
∈ Γ∞\Lm2,∞,+ with b = m , we compute

ω−1
κi ·

(
b 2a

0 −b

)
= ω−1

κi

(
b 2a

0 −b

)
ωκi

=M−1
0,i

(
M0,iκi,2 −λ2

M0,iκi,1 M0,iλ1

)(
b 2a

0 −b

)(
M0,iλ1 λ2

−M0,iκi,1 M0,iκi,2

)

=M−1
0,i

(
M0,iκi,2b 2M0,iκi,2a+ λ2b

M0,iκi,1b 2M0,iκi,1a−M0,iλ1b

)(
M0,iλ1 λ2

−M0,iκi,1 M0,iκi,2

)

=

(
M0,iκi,2λ1b− 2M0,iκi,2κi,1a− κi,1λ2b 2κi,2λ2b+ 2M0,iκ

2
i,2a

2M0,iκi,1λ1b− 2M0,iκ
2
i,1a κi,1λ2b+ 2M0,iκi,1κi,2a−M0,iκi,2λ1b

)

= :

(
b′ 2a′

2c′ −b′

)
Note that M0,iλ1κi,2 + λ2κi,1 = 1 as det(ωκi) = M0,i .

To analyse ϕnew
q (ω−1

κi ·x) at q|2mN , for γ =

(
x y

0 x−1

)
∈ Γ0(q)/Γ(q) we compute

γ−1 ·

(
b′ 2a′

2c′ −b′

)
=

(
b′ − 2xyc′ 2x−1yb′ − 2y2c′ + 2x−2a′

2x2c′ −b′ + 2xyc′

)
.

Return to the decomposition N = M0,iMi . At q|M0,i|N , we observe that(
b′ − 2xyc′ 2x−1yb′ − 2y2c′ + 2x−2a′

2x2c′ −b′ + 2xyc′

)

≡

(
−κi,1λ2b ∗
∗ κi,1λ2b

)
≡

(
−b ∗
∗ b

)
6≡

(
m ∗
∗ −m

)
mod q.

So ϕNq

(
γ−1 ·

(
b′ 2a′

2c′ −b′

))
is vanishing which implies ϕnew

q at q|M0,i|N is vanishing

on ω−1
κi · x .

Therefore, we can deduce that ϕnew
f is vanishing on ω−1

κi · x for x ∈ Lm2,∞,+

which implies Iκi = 0 for κi 6=∞ . Then the assertion follows.

Remark 3.3.6. (i) Let ϕNq be the characteristic function of integral lattice and we

will explain why the theta lifting would be vanishing in the following. Assume

χm(−1) = 1. Then
∑

x∈Γ\Lm2
ϕnew
f (x)

∫
Cx
f(z)dz in (3.6) would be vanishing

since both x and −x (giving rise to different orientation) lie in Γ\Lm2 . Also, on
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the last part of (3.6) we would calculate

I =

1 +
∑

non-trivial M0,i|N

εM0,iχm(M0,i)

 I∞

where εM0,i is the Atkin-Lehner eigenvalue corresponding to ωκi . Recall from

[Miy06, Theorem 4.3.12] that the sign of functional equation attached to L(f, χm, s)

is −εNχm(N) in our case. For example, let N = q1q2 . To achieve the non-

vanishing of I∞ , we need L(f, χm, 1) 6= 0, i.e. we need to have

εNχm(N) = εq1χm(q1)εq2χm(q2) = −1

which implies

1 + εq1χm(q1) + εq2χm(q2) + εNχm(N) = 0.

Then we see that the Fourier coefficient I would be vanishing.

(ii) Another approach to avoid the trivial vanishing of the theta lifting is to take the

local Schwartz function at the finite place as the characteristic of a shift of the

integral lattice by a suitable rational vector, see e.g. [FM11]. Following this, the

finite Schwartz function is invariant under some principal congruence subgroups.

Then, a modular forms whose level is a principal congruence subgroup is required

to be paired against this theta series while we want to construct theta liftings

of modular forms for Γ0 -subgroups. So, in preparation for our work in the case

of Bianchi modular forms, we instead incorporated an auxiliary quadratic Hecke

character which also gives us flexibility in applying the result of Friedberg and

Hoffstein about the non-vanishing of the twisted L-values by Hecke characters in

Section 4.5.

The work of Bump, Friedberg and Hoffstein [BFH90, Theorem] guarantees the

existence of infinitely many quadratic characters χ such that the twisted L-value

L(f, χ, 1) is non-vanishing. So if L(f, χm, 1) is known to be non-vanishing, we can

deduce that the Fourier coefficient at m2 of the theta lifting defined using χm is non-

vanishing which implies the non-vanishing of our theta lift.



Chapter 4

Theta lift of Bianchi modular

form

§ 4.1 Binary Hermitian forms

In this section we recall some basics from linear algebra about Hermitian matrices and

Hermitian binary forms from [EGM98, Chapter 9]. For a complex matrix A , the matrix

Ā is obtained from A by applying complex conjugation to all entries and the matrix At

is the transpose of A . An n× n matrix A with complex entries is called Hermitian if

Āt = A . By the definition we see that an Hermitian matrix is unchanged by taking its

conjugate transpose. Note that any Hermitian matrix must have real diagonal entries.

Let R be a subring of C with R = R̄ . We write H(R) for the set of Hermitian

2× 2 matrices with entries in R , i.e.

H(R) = {A ∈M2(R) : Āt = A}.

Every f ∈ H(R) defines a binary Hermitian form with coefficients in R . If f =

(
a b

b̄ d

)
then the associated binary Hermitian form is the semi quadratic map f : C × C → R
defined by

f(u, v) = (u, v)

(
a b

b̄ d

)
(ū, v̄)t = auū+ buv̄ + b̄ūv + dvv̄.

We shall often call an element f ∈ H(R) a binary hermitian form with coefficients in

R . The discriminant ∆(f) of f ∈ H(R) is defined as ∆(f) = det(f). Set |a| = (aā)1/2

68
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for a ∈ C where − denotes the complex conjugation. We define the GL2(R)-action on

H(R) given by the formula

σ · f = (| det(σ)|−1/2σ)f(|det(σ̄t)|−1/2σ̄t) = | det(σ)|−1σfσ̄t (4.1)

for σ ∈ GL2(R) and f ∈ H(R). If σ =
(
α β
γ δ

)
∈ GL2(R) we have

σ · f = |det(σ)|−1

(
(α, β)f(ᾱ, β̄)t (α, β)f(γ, δ)t

(γ, δ)f(ᾱ, β̄)t (γ, δ)f(γ̄, δ̄)t

)
.

Note that ∆(σ · f) = ∆(f) for every σ ∈ GL2(R) and f ∈ H(R). Two elements

f, g ∈ H(R) are called GL2(R)-equivalent if g = σ · f for some σ ∈ GL2(R); SL2(R)-

equivalence is defined analogously.

A binary Hermitian form f ∈ H(R) is positive definite if f(u, v) > 0 for all

(u, v) ∈ C × C \ {(0, 0)} . If −f is positive definite f is called negative definite. If

∆(f) < 0 then f is called indefinite.

We define

H+(R) = {f ∈ H(R) : f is positive definite}

H−(R) = {f ∈ H(R) : f is indefinite}.
Clearly the group GL2(R) leaves the H± invariant. It is easy to see that f ∈ H+(R)

if and only if a > 0 and ∆(f) > 0. The group R>0 acts on H+(C) by scalar multipli-

cation. Similarly R× acts on H−(C). We define

H̃+(C) := H+(C)/R>0, H̃−(C) := H−(C)/R×.

For f ∈ H±(C), [f ] stands for the class of f in H̃±(C). The action of GL2(C) on

H±(C) clearly induces an action of GL2(C) on H̃±(C). The centre of SL2(C) acts

trivially on H(C), so we get an induced action of PSL2(C) on H(C) and H̃±(C).

Recall the upper half space H3 = C× R>0 , elements of which can be written as

(z, r) with z = x+ iy for x, y ∈ R, r ∈ R>0 .

Definition 4.1.1. The map φ : H+(C)→ H3 is defined as

φ : f =

(
a b

b̄ d

)
→ b

d
+

√
∆(f)

d
· j

In fact φ induces a map φ : H̃+(C)→ H3 .

This map is a bijection since for a point (z, r) ∈ H3 there exists f =
(
|z|2+r2 z

z̄ 1

)
such that φ(f) = z + rj ∈ H3 . Therefore, this map gives a one to one correspondence

between equivalence classes of positive definite Hermitian forms and points in the upper
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half space. Note that φ is the analogue of identification of the set of equivalence classes

of binary positive definite quadratic forms with points of the upper half plane as in (3.1).

Proposition 4.1.2. The map φ : H̃+(C) → H3 is a PSL2(C)-equivariant bijection;

that is φ(σ · f) = σ · φ(f) for every σ ∈ PSL2(C) and f ∈ H̃+ .

Proof. See [EGM98, Proposition 9.1.2, Chapter 9].

Definition 4.1.3. For a binary Hermitian form f =
(
a b
b̄ d

)
∈ H−(C) we define

ψ(f) = {z + rj ∈ H3 : a− b̄z − bz̄ + dzz̄ + r2d = 0}

and G = {ψ(f) | f ∈ H−(C)} which is a set of geodesic planes in H3 .

Remark 4.1.4. This map ψ is slightly different to the map in [EGM98, Definition

1.3, Chapter 9] which is given by

f 7→ {z + rj ∈ H3 : a+ b̄z + bz̄ + dzz̄ + r2d = 0}.

The above map ψ is chosen for us to prove Proposition 4.2.4. In addition we will

consider the cycle DU as in Section 2.3 for positive definite U generated by f with

f ∈ H−(C).

If d 6= 0 then ψ(f) is the following geodesic hemisphere

ψ(f) = {z + rj ∈ H3 : |dz − b|2 + |d|2r2 = −∆(f)}.

If d = 0 then ψ(f) is a vertical plane. The group PSL2(C) acts on G by its induced

action on subsets of H3 . Clearly ψ induces a map ψ : H̃−(C)→ G .

Proposition 4.1.5. The map ψ : H̃−(C) → G is a PSL2(C)-equivariant bijection;

that is ψ(σ · f)) = σ · ψ(f) for every σ ∈ PSL2(C) and f ∈ H̃−(C).

Proof. We will prove the equivariance property only for the generators of PSL2(C).

Let σ =
(

1 β
0 1

)
where β ∈ C . Then

σ · f =

(
1 β

0 1

)(
a b

b̄ d

)(
1 0

β̄ 1

)
=

(
a+ βb̄+ β̄b+ ββ̄d b+ βd

b̄+ β̄d d

)
.

It follows that

ψ(σ · f) = {z + rj ∈ H3 | a+ βb̄+ β̄b+ ββ̄d− (b̄+ β̄d)z − (b+ βd)z̄ + dzz̄ + r2d = 0}.

On the other hand, for z+ rj ∈ ψ(f), we have σ · (z+ rj) = (z+β) + rj ∈ H3 . Setting

z′ = z + β and r′ = r , we observe that

a− b̄(z′ − β)− b(z̄′ − β̄) + d(z′ − β)(z̄′ − β̄) + r′2d = 0.
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Then it is not hard to see that ψ(σ · f)) = σ · ψ(f) for σ =
(

1 β
0 1

)
.

In the same way we prove this property for σ =
(

0 −1
1 0

)
. We have

σ · f =

(
0 −1

1 0

)(
a b

b̄ d

)(
0 −1

1 0

)
=

(
d −b̄
−b a

)
.

It follows that

ψ(σ · f) = {z + rj ∈ H3 : d+ bz + b̄z̄ + azz̄ + r2a = 0}.

For z + rj ∈ ψ(f), we have z′ + r′j := σ · (z + rj) = − z̄
|z|2+r2

+ r
|z|2+r2

j . Then

|z′|2 + r′2 = 1
|z|2+r2

. It follows that z = − z̄′

|z′|2+r′2 and r = r′

|z′|2+r′2 . Hence the

following identity holds

a+ b̄
z̄′

|z′|2 + r′2
+ b

z

|z′|2 + r′2
+ d

z′z̄′

(|z′|2 + r′2)2
+ d

r′2

(|z′|2 + r′2)2
= 0.

Then we can see that ψ(σ · f)) = σ · ψ(f) for σ =
(

0 −1
1 0

)
.

§ 4.2 Orthogonal group of sign (3, 1) and cycles

In this section we recall some basic aspects on orthogonal groups of signature (3,1) and

cycles in this case from [Ber14, Section 4].

Let F = Q(
√
d) (d < 0) be an imaginary quadratic field of class number 1 with

discriminant dF < 0. Denote by O by its ring of integers. For an ideal n ⊂ O put

Γ0(n) =

{(
a b

c d

)
∈ SL2(O) : c ∈ n

}
.

Assume that the four-dimensional space V over Q is given by the hermitian matrices

V = {x ∈M2(F ) : xt = x},

with quadratic form

x 7−→ q(x) =
1

2
(x,x) = −det(x)

and corresponding bilinear form

(x,y) 7−→ − tr(xy∗),

where (
a b

c d

)∗
=

(
d −b
−c a

)
. (4.2)

Note that this bilinear form is preserved under the action of GL2(C) where its action
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is given in (4.1); that is, for g ∈ GL2(C),

(g · x, g · y) = (|det(g)|−1gxḡt, |det(g)|−1gyḡt)

= −1

2
tr(|det(g)|−1gxḡt|det(g)|(ḡt)−1y−1g−1 det(| det(g)|−1gyḡt))

= −1

2
tr(gxy−1 det(y)g−1) = (x,y). (4.3)

We fix an orthogonal basis of V (Q) given by e1 =
(

1 0
0 −1

)
, e2 = ( 0 1

1 0 ), e3 =
(

0
√
d

−
√
d 0

)
and e4 = ( 1 0

0 1 ) = Z0 such that the discriminant of V is d . The basis of Z⊥0 can be

identified with {e1, e2, e3} .

We have seen in Example 1.1.6 that the symmetric space D ' H3 is isomorphic

to the Grassmannian Gr1 via the map

µ : z + rj ∈ H3 7−→
1

r

(
|z|2 + r2 z

z̄ 1

)
. (4.4)

The GL2 -action on the Hermitian form defined as in (4.1) induces that on H3 in the

following. For g =
(
α β
γ δ

)
we have g · 1

r

(
|z|2+r2 z

z̄ 1

)
= 1

r′

(
|z′|2+r′2 z′

z̄′ 1

)
; expand the LHS,

g · 1

r

(
|z|2+r2 z

z̄ 1

)
= r−1|det(g)|−1

(
α β
γ δ

)(
|z|2+r2 z

z̄ 1

)(
ᾱ γ̄
β̄ δ̄

)
= r−1|det(g)|−1

(
α|z|2+αr2+βz̄ αz+β

γ|z|2+γr2+δz̄ γz+δ

)(
ᾱ γ̄
β̄ δ̄

)
= r−1|det(g)|−1

(
αᾱ|z|2+αᾱr2+ᾱβz̄+αβ̄z+ββ̄ αγ̄|z|2+αγ̄r2+βγ̄z̄+αδ̄z+βδ̄

ᾱγ|z|2+ᾱγr2+ᾱδz̄+β̄γz+β̄δ γγ̄|z|2+γγ̄r2+γ̄δz̄+γδ̄z+δδ̄

)
,

and then

z′ =
(αz + β)(γ̄z̄ + δ̄) + αγ̄r2

|γz + δ|2 + |γ|2r2
, r′ =

|αδ − βγ|r
|γz + δ|2 + |γ|2r2

.

By (4.4), we can deduce the action of GL2(C) on H3 (as in (1.9)) to be as(
α β

γ δ

)
· (z, r) =

(
(αz + β)(γ̄z̄ + δ̄) + αγ̄r2

|γz + δ|2 + |γ|2r2
,

|αδ − βγ|r
|γz + δ|2 + |γ|2r2

)
. (4.5)

Proposition 4.2.1 (Analogue of Proposition 3.1.1). The above map µ as in (4.4)

intertwines the GL2(C)-action on V (R) and H3 ; that is µ(g · (z, r)) = g · µ(z, r) for

g ∈ GL2(C).

Proof. It suffices to calculate µ(g · (z, r)) for g =
(
α β
γ δ

)
. Writing (z′, r′) = g · (z, r),

by the formula (4.5) we have

µ(g · (z, r)) =
1

r′

(
|z′|2 + r′2 z′

z̄′ 1

)
.

It is not difficult to observe that the entries of µ(g · (z, r)) are the same as the coun-
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terparts of g · µ(z, r) except for the top left one

|z′|2 + r′2

r′
=
|(αz + β)(γ̄z̄ + δ̄) + αγ̄r2|2 + |αδ − βγ|2r2

r|det g| · (|γz + δ|2 + |γ|2r2)
. (4.6)

We want to show that

the numerator in (4.6) = (|αz + β|2 + |α|2r2)× (|γz + δ|2 + |γ|2r2).

Expanding both sides, we have

LHS =|αz + β|2|γz + δ|2 + αᾱγγ̄r4 + (αγ̄zz̄ + αδ̄z + βγ̄z̄ + βδ̄)ᾱγr2

+ (ᾱγzz̄ + βγ̄z + ᾱδz̄ + β̄δ)αγ̄r2 + (αᾱδδ̄ − αβ̄γ̄δ − ᾱβγδ̄ + ββ̄γγ̄)r2

and

RHS =|αz + β|2|γz + δ|2 + αᾱγγ̄r4

+ (αᾱzz̄ + αβ̄z + ᾱβz̄ + ββ̄)γγ̄r2 + (γγ̄zz̄ + γδ̄z + γ̄δz̄ + δδ̄)αᾱr2.

As LHS=RHS, we have that

|z′|2 + r′2

r′
=

1

r|det g|
(αᾱ|z|2 + αᾱr2 + ᾱβz̄ + αβ̄z + ββ̄)

which is equal to the top left entry of g · µ(z, r). Hence the GL2(C)-equivariance

property of µ has been proven.

The set Iso(V ) of all isotropic lines (1-dimensional x ∈ V such that q(x) = 0)

in V (Q) can be identified with P1(F ) = F ∪ ∞ (∞ = [1 : 0]). Assume that the

cusp ∞ corresponds to the isotropic line spanned by u∞ = ( 1 0
0 0 ). Given an element

g =
(
α β
γ δ

)
∈ SL2(F ) transforming the cusp ∞ to another cusp κ = [α : γ] , we can see

that

g · u∞ =

(
α β

γ δ

)(
1 0

0 0

)(
ᾱ γ̄

β̄ δ̄

)
=

(
αᾱ αγ̄

ᾱγ γγ̄

)
.

Hence we can identify the cusp with the isotropic line by means of the map

ν : [a : b] 7−→ span

(
aā ab̄

āb bb̄

)
∈ Iso(V ). (4.7)

Proposition 4.2.2 (Analogue of Proposition 3.1.2). The above map ν satisfies

ν(g · [a : b]) = g · ν([a : b])

for g ∈ GL2(F ) and [a : b] ∈ P1(F ).

Proof. We compute

ν(g · [a : b]) = span

(
(αa+ βb)(ᾱā+ β̄b̄) (αa+ βb)(γ̄ā+ δ̄b̄)

(ᾱā+ β̄b̄)(γa+ δb) (γa+ δb)(γ̄ā+ δ̄b̄)

)
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and for g =
(
α β
γ δ

)
∈ GL2(F ) with | det g| ∈ Q ,

g · ν([a : b])

=span
1

|det g|

(
α β

γ δ

)(
aā ab̄

āb bb̄

)(
ᾱ γ̄

β̄ δ̄

)
= span

(
αaā+ βāb αab̄+ βbb̄

γaā+ δāb γab̄+ δbb̄

)(
ᾱ γ̄

β̄ δ̄

)

=span

(
αᾱaā+ ᾱβāb+ αβ̄ab̄+ ββ̄bb̄ αγ̄aā+ βγ̄āb+ αδ̄ab̄+ βδ̄bb̄

ᾱγaā+ ᾱδāb+ β̄γab̄+ β̄δbb̄ γγ̄aā+ γ̄δāb+ γδ̄ab̄+ δδ̄bb̄

)
.

Comparing the entries we have proven this property.

Let U ⊂ V be a Q-subspace with dimQ U = 2 such that ( , )|U is positive

definite. Then its orthogonal complement U⊥ has signature (1,1). As in Section 2.3,

we have the special cycle

DU = {Z ∈ D : Z ⊥ U}

and let ΓU be the stabilizer of U in SO0(3, 1)(V (R)). We denote the image of the

quotient ΓU\DU in Γ\D by CU . The stabilizer ΓU is either trivial (if the orthogonal

complement U⊥ ⊂ V is split over Q) or infinite cyclic (if U⊥ is non-split over Q) (see

[Fun02, Lemma 4.2]). If ΓU is infinite, then CU is a closed geodesic in Γ\D , while CU

is infinite if ΓU is trivial (see [Ber14, Section 4.3]).

Lemma 4.2.3 (Analogue of Proposition 3.1.4). For above U , the following two state-

ments are equivalent:

(1) U⊥ is split over Q,

(2) disc(U) ∈ −d(Q×)2 .

Proof. For an arbitrary subspace U of a non-degenerate quadratic space V we have

dim(V ) = dim(U) + dim(U⊥). Thus U⊥ is also 2-dimensional. By assumption U⊥

is a hyperbolic plane. By Witt’s Theorem (a 2-dimensional quadratic space over

a field F is a hyperbolic plane if and only if its discriminant lies in −(F×)2), we

have disc(U⊥) ∈ −(Q×)2 . Thus disc(U) ∈ −d(Q×)2 as disc(V ) = disc(U)disc(U⊥) ∈
d(Q×)2 .

Conversely suppose disc(U) ∈ −d(Q×)2 . Again by disc(V ) = disc(U)disc(U⊥),

we have disc(U⊥) ∈ −(Q×)2 which implies that U⊥ is split over Q .

We orient DU by requiring that a tangent vector v ∈ TZ(DU ) ' Z⊥∩U⊥ followed

by Z⊥∩U gives a properly oriented basis of TZ(D) ' Z⊥ . Then 〈Z⊥∩U⊥, Z⊥∩U,Z〉
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has the same orientation as 〈e1, e2, e3, e4〉 , i.e. the determinant of the base change is

positive.

For β = βt ∈M2(Q) a positive definite symmetric matrix, let

Ωβ =

{
(x1,x2) ∈ V 2(Q) :

1

2

(
(x1,x1) (x1,x2)

(x1,x2) (x2,x2)

)
= β

}
.

Consider the subspace U(x1,x2) := Span{x1,x2} ⊂ V . For a fixed cusp κi corre-

sponding to the isotropic line lκi , we write

Ωβ,κi = {(x1,x2) ∈ Ωβ : U(x1,x2) ⊥ lκi}.

From now on, fix a β such that detβ ∈ −d(Q×)2 , i.e. disc(U(x1,x2)) ∈ −d(Q×)2

for (x1,x2) ∈ Ωβ . Let (x1,x2) ∈ Ωβ and U = U(x1,x2). Given a vector x ∈ U , by

Lemma 4.2.3, it is orthogonal to two isotropic lines lκ1 and lκ2 generated by uκ1 and

uκ2 respectively associated to two cusps κ1 and κ2 . Again, if these two cusps are not

equivalent with respect to Γ, we can give a positive orientation to U to distinguish

the cusps in the sense that the new base 〈uκ1 ,x1,x2, uκ2〉 preserves the orientation of

〈e1, e2, e3, e4〉 . For a fixed cusp κi corresponding to the isotropic line lκi , we write

Ωβ,κi,+ = {(x1,x2) ∈ Ωβ,κi :U(x1,x2) ⊥ 〈uκi , uκj 〉,

〈uκi ,x1,x2, uκj 〉 has a positive orientation}.

It should be mentioned here that 〈uκi ,x1,x2, uκj 〉 and 〈uκi ,−x1,−x2, uκj 〉 have the

same orientation which means that we need to count (x1,x2) and (−x1,−x2) simulta-

neously in Ωβ,κi,+ . Alternatively, the following Lemma 4.2.7 describes the orientations

associated to two pairs (x1,x2) and (−x1,−x2) in Ωβ,∞,+ . Note that the stabilizer

Γκi ⊂ Γ of the cusp κi acts on Ωβ,κi,+ as GL2(C) preserves bilinear forms and the

orientation.

Proposition 4.2.4 (Analogue of Proposition 3.1.5). For det(β) ∈ −d(Q×)2 , we have

Γ\Ωβ =
∑

κi∈Γ\P1(F )

Γκi\Ωβ,κi,+.

Proof. Given a representative [(x1,x2)] in Γ\Ωβ such that U(x1,x2) ⊥ uκi , we consider

its Γ-orbit Γ · (x1,x2). The corresponding DU for U = 〈Γ · (x1,x2)〉 has the image

C(x1,x2) in Γ\H3 under the natural projection H3 → Γ\H3 . For a γ ∈ Γ we have

UΓ·(x1,x2) ⊥ γ · uκi . By Proposition 4.2.1, we know that γ · uκi = uγ·κi . It follows that

γ · (x1,x2) lies in Ωβ,γ·κi,+ . Thus, modulo the Γ-action, we have a well-defined map:

ι : Γ\Ωβ −→
∐

κi∈Γ\P1(F )

Γκi\Ωβ,κi,+.
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If two pairs (x1,x2) and (y1,y2) are not Γ-equivalent then they are not Γκi -equivalent

since Γκi ⊂ Γ. Hence this map is injective.

We will show that the inverse map ι−1 is injective in the following. For x =
(
a b
b̄ d

)
,

we calculate its orthogonal complement in H3 using the isomorphism (4.4),

x⊥ ∩H3 = {z + rj ∈ H3 : d(|z|2 + r2)− bz̄ − b̄z + a = 0} = ψ(x)

where ψ is defined as in Definition 4.1.3. Observe that x⊥1 ∩x⊥2 ∩H3 = ψ(x1)∩ψ(x2) of

which one boundary point on the extended complex plane is κi . Suppose that two pairs

(x1,x2) and (y1,y2) are not Γκi -equivalent in Γκi\Ωβ,κi,+ . Note that ψ(x1) ∩ ψ(x2)

and ψ(y1)∩ψ(y2) have a boundary point in common, the cusp κi . Assume that there

exists an element γ ∈ Γ such that γ · (x1,x2) = (y1,y2). Then, by Proposition 4.1.5,

we have γ · ψ(x1) = ψ(y1) and γ · ψ(x2) = ψ(y2). It is easy to observe that

γ · (ψ(x1) ∩ ψ(x2)) = γ · ψ(x1) ∩ γ · ψ(x2) = ψ(y1) ∩ ψ(y2).

It follows that γ must be in Γκi , which is a contradiction to that (x1,x2) and (y1,y2)

are not Γκi -equivalent. So such a γ does not exist. We have proven the injectivity of

ι−1 .

Set det(β) ∈ −d(Q×)2 . It is easy to observe that, for the cusp ∞ , we have

Ωβ,∞ =

{((
a1 b1

b̄1 0

)
,

(
a2 b2

b̄2 0

))
∈ Ωβ : a1, a2 ∈ Q, b1, b2 ∈ F

}
.

For (x1,x2) =
((

a1 b1
b̄1 0

)
,
(
a2 b2
b̄2 0

))
∈ Ωβ,∞ , we have

β =
1

2

(
(x1,x1) (x1,x2)

(x1,x2) (x2,x2)

)
=

(
b1b̄1

1
2(b1b̄2 + b̄1b2)

1
2(b1b̄2 + b̄1b2) b2b̄2

)
.

of which the determinant is

det(β) = disc(U(x1,x2)) = −1

4
(b1b̄2 − b̄1b2)2.

We are not interested in the case when b1b̄2 ∈ Q since then det(β) = 0.

Let U = U(x1,x2) for (x1,x2) ∈ Ωβ,∞ . We will calculate its corresponding spe-

cial cycle DU in the following. Given a point z+rj ∈ H3 identified with 1
r

(
|z|2+r2 z

z̄ 1

)
,

we compute
1

r

(
|z|2+r2 z

z̄ 1

)(
a1 b1
b̄1 0

)∗
=

1

r

(
|z|2+r2 z

z̄ 1

)(
0 −b1
−b̄1 a1

)
=

1

r

(
−b̄1z ∗
∗ −b1z̄+a1

)
.

Thus we have

x⊥1 = {z + rj ∈ H3 : a1 − b1z̄ − b̄1z = 0},
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and similarly,

x⊥2 = {z + rj ∈ H3 : a2 − b2z̄ − b̄2z = 0}.

Then, solving above equations, we can deduce that the special cycle DU consists of the

infinite geodesic line joining two cusps ∞ and

zU =
a2b1 − a1b2
b1b̄2 − b̄1b2

. (4.8)

Lemma 4.2.5. Suppose that O = Z[ω] with ω is either
√
d or 1+

√
d

2 and denote the

stabilizer of the cusp ∞ by Γ∞ = {( 1 α
0 1 ) : α ∈ O}. Denote

L∞,† =

{((
a1 b1

b̄1 0

)
,

(
a2 b2

b̄2 0

))
: a1, a2 ∈ Z, b1, b2 ∈ O, the condition † holds

}
where the condition † is given by(

b1

b2

)
= m

(
α β

γ δ

)(
1

ω

)
(4.9)

with α, β, γ, δ ∈ Z, αδ − βγ = ±1 and m ∈ F . Then the cusp zU(x1,x2) associated to

the pair (x1,x2) in Γ∞\L∞,† runs through all the representatives in (m
√
dF |)−1O/O .

Proof. Write U = U(x1,x2). The Γ∞ -action on (x1,x2) ∈ L∞,† is given explicitly by(
1 α

0 1

)
· (x1,x2) =

((
a1 + αb̄1 + ᾱb1 b1

b̄1 0

)
,

(
a2 + αb̄2 + ᾱb2 b2

b̄2 0

))
.

Under the Γ∞ -action, the cusp zU becomes z′U ; that is

z′U =
(a2 + αb̄2 + ᾱb2)b1 − (a1 + αb̄1 + ᾱb1)b2

b1b̄2 − b̄1b2

=
a2b1 + αb̄2b1 − a1b2 − αb̄1b2

b1b̄2 − b̄1b2
= zU + α.

By our assumption, the cusp zU can be rewritten as

zU =
ma2(α+ βω)−ma1(γ + δω)

−mm(α+ βω)(γ + δω̄) +mm(α+ βω̄)(γ + δω)

=
a2(α+ βω)− a1(γ + δω)

−m(αδ − βγ)(ω̄ − ω)
=
a2(α+ βω)− a1(γ + δω)

m
√
dF

of which the numerator ranges over the whole O .

Thus, modulo the Γ∞ -action, the corresponding cusp zU runs through all the

representatives in (m
√
dF )−1O/O .

Remark 4.2.6. Let m be a square-free product of split or inert primes.
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(1) Let d ≡ 1 mod 4 and then dF = d . The above zU ranges over (m
√
d)−1O .

Writing f = (m
√
d)O , we have

zU f =

(
a2b1 − a1b2
b1b̄2 − b̄1b2

)
f =

(
a2b1 − a1b2

m

)
O.

(2) Let d ≡ 2, 3 mod 4 and then dF = 4d . Note that in this case prime 2 is ramified

in F = Q(
√
d). Rewrite (4.9) above as(

b1

b2

)
=

1

2
m

(
α β

γ δ

)(
1

ω

)
with α, β, γ, δ ∈ Z , αδ − βγ = ±1. Then the above zU ranges over (m

√
d)−1O .

Writing f = (m
√
d)O , we have

zU f =

(
a2b1 − a1b2
b1b̄2 − b̄1b2

)
f =

(
2(a2b1 − a1b2)

m

)
O.

In Section 4.3 we will define the Schwartz function evaluated at a2b1−a1b2
m or 2(a2b1−a1b2)

m

as above depending on d .

Let U = 〈x1,x2〉 =
〈(

a1 b1
b̄1 0

〉
,
(
a2 b2
b̄2 0

)〉
where a1, a2 ∈ Q and b1, b2 ∈ F× . We

have seen that DU consists of the infinite geodesic line joining the cusps ∞ and zU

as in (4.8). Choose a point Z = zU + rj on DU and then the orientation of TZ(DU )

depends on the sign of Im(b1b̄2) (assuming Im(b1b̄2) 6= 0) by the following lemma.

Lemma 4.2.7 (Analogue of Lemma 3.1.6). Let U,DU , Z be as above. Then the sign

of Im(b1b̄2) (assuming Im(b1b̄2) 6= 0) determines the orientation of TZ(DU ).

Proof. Let Z = zU +rj be a point on DU which can be identified with 1
r

(
zU z̄U+r2 zU

z̄U 1

)
.

Suppose that
(
α β
β̄ δ

)
∈ Z⊥ and we compute, recalling ∗ action in (4.2)(

α β
β̄ δ

)(
zU z̄U+r2 zU

z̄U 1

)∗
=
(
α−βz̄U ∗
∗ −β̄zU+δ(zU z̄U+r2)

)
.

It follows that

Z⊥ =
{(

α β
β̄ δ

)
: α− βz̄U − β̄zU + δ(zU z̄U + r2) = 0

}
.

We describe the subspace Z⊥ ∩ U as

Z⊥ ∩ U =
{(

α β
β̄ 0

)
: α− βz̄U − β̄zU = 0, α ∈ R, β ∈ C

}
=
{(

βz̄U+β̄zU β
β̄ 0

)}
where β = Span{b1, b2} . Set β = β1 + β2i , zU = zU,1 + zU,2i and bj = bj1 + bj2i

(j = 1, 2). Suppose that β = ub1 + vb2 for u, v ∈ Q and then we observe that
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β1 = ub11 + vb21 and β2 = ub12 + vb22 . Consider(
βz̄U+β̄zU β

β̄ 0

)
=
(

2(β1zU,1+β2zU,2) β1+β2i
β1−β2i 0

)
=β1

(
2zU,1 1

1 0

)
+ β2

(
2zU,2 i
−i 0

)
=(ub11 + vb21)

(
2zU,1 1

1 0

)
+ (ub12 + vb22)

(
2zU,2 i
−i 0

)
=u
(
b11

(
2zU,1 1

1 0

)
+ b12

(
2zU,2 i
−i 0

))
+ v

(
b21

(
2zU,1 1

1 0

)
+ b22

(
2zU,2 i
−i 0

))
=u

(
1

2
(b1 + b̄1)

(
2zU,1 1

1 0

)
− 1

2
i(b1 − b̄1)

(
2zU,2 i
−i 0

))
+ v

(
1

2
(b2 + b̄2)

(
2zU,1 1

1 0

)
− 1

2
i(b2 − b̄2)

(
2zU,2 i
−i 0

))
=u

(
1

4
(b1 + b̄1)(zU + z̄U )(e1 + e4) +

1

2
(b1 + b̄1)e2

−1

4
(b1 − b̄1)(zU − z̄U )(e1 + e4)− 1

2
i(b1 − b̄1)e3

)
+ v

(
1

4
(b2 + b̄2)(zU + z̄U )(e1 + e4) +

1

2
(b2 + b̄2)e2

−1

4
(b2 − b̄2)(zU − z̄U )(e1 + e4)− 1

2
i(b2 − b̄2)e3

)
=u

(
1

2
(b1z̄U + b̄1zU )(e1 + e4) +

1

2
(b1 + b̄1)e2 −

1

2
i(b1 − b̄1)e3

)
+ v

(
1

2
(b2z̄U + b̄2zU )(e1 + e4) +

1

2
(b2 + b̄2)e2 −

1

2
i(b2 − b̄2)e3

)
.

Observe that

b1z̄U + b̄1zU =b1
a2b̄1 − a1b̄2
b̄1b2 − b1b̄2

+ b̄1
a2b1 − a1b2
b1b̄2 − b̄1b2

=
−a2b1b̄1 + a1b1b̄2 + a2b1b̄1 − a1b̄1b2

b1b̄2 − b̄1b2
= a1

and similarly that b2z̄U + b̄2zU = a2 . Then we deduce that

Z⊥ ∩ U =

〈
1

2
a1(e1 + e4) +

1

2
(b1 + b̄1)e2 −

1

2
i(b1 − b̄1)e3,

1

2
a2(e1 + e4) +

1

2
(b2 + b̄2)e2 −

1

2
i(b2 − b̄2)e3

〉
which coincides with U =

〈(
a1 b1
b̄1 0

〉
,
(
a2 b2
b̄2 0

)〉
.

To describe the subspace U⊥ , we consider
(
α β
γ δ

)
∈ U⊥ which satisfies that, due
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to the orthogonality, {
δa1 = βb̄1 + β̄b1

δa2 = βb̄2 + β̄b2
.

Then we have by solving equations

β =
(a2b1 − a1b2)δ

b1b̄2 − b̄1b2
= zUδ and β̄ =

(a2b̄1 − a1b̄2)δ

b̄1b2 − b1b̄2
= z̄Uδ.

It follows that

Z⊥ ∩ U⊥ =

{(
(zU z̄U − r2)δ zUδ

z̄Uδ δ

)
: δ ∈ Q

}
=

〈
ε

(
zU z̄U − r2 zU

z̄U 1

)〉

=

〈
ε

2
(zU z̄U − r2 − 1)e1 +

1

2
(zU + z̄U )e2 −

1

2
i(zU − z̄U ) + e3

ε

2
(zU z̄U − r2 + 1)e4

〉
where ε = ±1 describes the orientation of TZ(DU ) ' Z⊥ ∩ U⊥ . If the cycle DU is

directed from zU to ∞ then we take ε = −1. For a different direction of DU we take

ε = 1.

For the point Z on DU we consider its corresponding vector in V :
1

r

(
zU z̄U+r2 zU

z̄U 1

)
=

1

r

(
1

2
(zU z̄U + r2)(e1 + e4) +

1

2
(zU + z̄U )e2 −

1

2
i(zU − z̄U )e3 −

1

2
(e1 − e4)

)
=

1

r

(
1

2
(zU z̄U + r2 − 1)e1 +

1

2
(zU + z̄U )e2 −

1

2
i(zU − z̄U )e3 +

1

2
(zU z̄U + r2 + 1)e4

)
.

Then we consider the base change, which describes the orientation related to

introducing Ωβ,κi,+ , given by z
⊥ ∩ U⊥

z⊥ ∩ U
z

 = M


e1

e2

e3

e4


where

M =


ε
2(zU z̄U − r2 − 1) 1

2(zU + z̄U ) −1
2 i(zU − z̄U ) ε

2(zU z̄U − r2 + 1)
1
2a1

1
2(b1 + b̄1) −1

2 i(b1 − b̄1) 1
2a1

1
2a2

1
2(b2 + b̄2) −1

2 i(b2 − b̄2) 1
2a2

1
2r (zU z̄U + r2 − 1) 1

2r (zU + z̄U ) − 1
2r i(zU − z̄U ) 1

2r (zU z̄U + r2 + 1)

 .
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We calculate its determinant in the following:

detM =
ε

r

∣∣∣∣∣∣∣∣∣∣
−r2 0 0 −r2

1
2a1

1
2(b1 + b̄1) −1

2 i(b1 − b̄1) 1
2a1

1
2a2

1
2(b2 + b̄2) −1

2 i(b2 − b̄2) 1
2a2

1
2(zU z̄U + r2 − 1) 1

2(zU + z̄U ) −1
2 i(zU − z̄U ) 1

2(zU z̄U + r2 + 1)

∣∣∣∣∣∣∣∣∣∣
=− εr

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

1
2a1

1
2(b1 + b̄1) −1

2 i(b1 − b̄1) 0
1
2a2

1
2(b2 + b̄2) −1

2 i(b2 − b̄2) 0
1
2(zU z̄U + r2 − 1) 1

2(zU + z̄U ) −1
2 i(zU − z̄U ) 1

∣∣∣∣∣∣∣∣∣∣
=− εr

∣∣∣∣∣12(b1 + b̄1) −1
2 i(b1 − b̄1)

1
2(b2 + b̄2) −1

2 i(b2 − b̄2)

∣∣∣∣∣
=− εr1

2
i(b1b̄2 − b̄1b2) =

1

2
εrIm(b1b̄2) > 0

which implies that the sign of Im(b1b̄2) determines the orientation ε of TZ(DU ).

§ 4.3 Schwartz function

Let F = Q(
√
d) be an imaginary quadratic field and denote by O its ring of integers.

Choose m ∈ Z as a square-free product of inert or split primes and put m = mO .

Let χm be a quadratic Hecke character of conductor f =
√
dm . Denote by χ̃m the

induced idelic one as in Section 1.3 and by χ̃m,v its local component. In this section we

will define a finite Schwartz function related to this character χm . At the archimedean

place we take the Schwartz form ϕ2 ∈ S(V (R)2)⊗ Ω2(D) as in Example 2.2.2 (2).

We first describe how to localise the quadratic space in the following proposition.

In Section 3.2 we have chosen the rational quadratic space of dimension 4 such that

(V (Q), q) ' (H(F ),−det). Thus, to extend it to a 4-dimensional quadratic space over

p-adic numbers Qp , we can consider H(F ) ⊗ Qp . Following [Rob01, p.273], there are

two four dimensional quadratic spaces over Qp with discriminant d ∈ Q×p /(Q×p )2 up

to isometry. If d = 1, it is isometric to M2×2(Qp) equipped with the determinant; if

d 6= 1, it is isometric to

V1(Qp) =

{(
e f

√
d

g
√
d e

)
: f, g ∈ Qp, e ∈ Qp(

√
d)

}
⊂M2

(
Qp(
√
d)
)

equipped with the determinant.

Proposition 4.3.1. For a prime p, the four dimensional quadratic space over Qp is
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isometric to either (V1(Qp), det) when p is inert or ramified in F/Q, or (M2(Qp),det)

when p splits in F/Q.

Proof. Given a diagonal quadratic form Q =
∑4

i=1 aix
2
i with ai ∈ Q×p , we define

the Hasse invariant as cp(Q) = c(Q) =
∏
i<j(ai, aj)p = ±1 where ( , ) denotes the

Hilbert symbol. The non-degenerate quadratic spaces over Qp (p < ∞) are in 1-1

correspondence with the triples (4, d, c), where d is the discriminant and c is the Hasse

invariant, see [Cas78, Theorem 1.1, Chapter 4].

Let p be inert in F/Q which implies that
√
d /∈ Qp and that F ⊗Qp = Qp(

√
d).

Then we have

H(F )⊗Qp =

{(
a b

b d

)
: a, d ∈ Qp, b ∈ Qp(

√
d)

}
= H(F ⊗Qp),

where − denotes the non-trivial action in Gal(Qp(
√
d)/Qp). Equipping H(F ) ⊗ Qp

with the quadratic form being −det and choosing an orthogonal basis e1 = ( 1 0
0 1 ),

e2 =
(

1 0
0 −1

)
, e3 = ( 0 1

1 0 ) and e4 =
(

0
√
d

−
√
d 0

)
, we have an associated diagonal form

Q = −x2
1 + x2

2 + x2
3 − dx2

4 . It follows that d = d and c = (−1,−d)p = 1 since

p - d . Similarly, for V1(Qp) with the discriminant d = d , choosing an orthogonal

basis e′1 = ( 1 0
0 1 ), e′2 =

(√
d 0

0 −
√
d

)
, e′3 =

(
0
√
d√

d 0

)
and e′4 =

(
0
√
d

−
√
d 0

)
in V1(Qp)

above, we have a diagonal form Q′ = x2
1 − dx2

2 − dx2
3 + dx2

4 . Then d′ = d3 and

c′ = (1,−d)2
p(1, d)p(−d,−d)p(−d, d)2

p = 1 since p - d . Thus, we can deduce that

(H(F )⊗Qp,−det) ' (V1(Qp), det) if p is inert in F/Q .

Let p split in F/Q such that (p) = pp . Then d has a square root α in the

ring Zp of p-adic integers by Hensel’s lemma. It is known that F ⊗ Qp = Fp × Fp

where Fp, Fp are both isomorphic to Qp . Consider the map H(F ) ⊗ Qp → M2(Qp)

via
(
a b
b d

)
⊗ x 7→

(
apx bpx
bpx dpx

)
where the subscripts p, p, p̄ denote images under Q ↪→ Qp ,

F ↪→ Fp and F ↪→ Fp respectively. Note that bp, bp have the same image in Qp .

It is not hard to see the map H(F ) ⊗ Qp → M2(Qp) is surjective: for any element(
0 1
−1 0

)
· λ with λ ∈ Qp we can find its preimage

(
0
√
d

−
√
d 0

)
⊗ α−1λ in H(F )⊗Qp ; for

( 1 0
0 1 ) · λ ,

(
1 0
0 −1

)
· λ and ( 0 1

1 0 ) · λ , we can find their preimages ( 1 0
0 1 ) ⊗ λ ,

(
1 0
0 −1

)
⊗ λ

and ( 0 1
1 0 ) ⊗ λ respectively in H(F ) ⊗ Qp . Then H(F ) ⊗ Qp ' M2(Qp) as they are

both 4-dimensional over Qp . In fact M2(Qp) equipped with the determinant is one

isometric class of four dimensional quadratic spaces of discriminant 1 [Rob01, p.273].

Again, equipping H(F ) ⊗ Qp with minus determinant and choosing an orthogonal

basis e1 = ( 1 0
0 1 ), e2 =

(
1 0
0 −1

)
, e3 = ( 0 1

1 0 ) and e4 =
(

0
√
d

−
√
d 0

)
, we have an associated

diagonal form Q = −x2
1 + x2

2 + x2
3 − dx2

4 . It follows that d = d (square in Zp ) and
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c = (−1,−d)p = 1. Choosing an orthogonal basis e′1 = ( 1 0
0 1 ), e′2 =

(
1 0
0 −1

)
, e′3 = ( 0 1

1 0 )

and e′4 =
(

0 1
−1 0

)
in M2(Qp) we have d′ = 1 and c′ = 1. Thus we can deduce that

(H(F )⊗Qp,−det) ' (M2(Qp), det) if p splits in F/Q .

Suppose that p is ramified in F/Qp and then we have F ⊗ Qp = Qp(
√
d). As

in the inert case, H(F )⊗Qp = H(F ⊗Qp). Corresponding to (H(F )⊗Qp,−det) the

Hasse invariant c = (−1,−d)p = (−1)
p−1
2 . For (V1(Qp), det) we calculate

c′ = (1, d)p(−d,−d)p = (1,−d)p(1,−1)p(1,−d)p(−d,−d)p = (−d,−d)p = (−1)
p−1
2

where the last equality holds as d is square-free and divisible by q . Thus, if p is

ramified we have (H(F ⊗Qp),−det) ' (V1(Qp), det).

In this chapter we need to consider the pair Sp4×SO(3, 1) to construct the theta

liftings of weight 2 Bianchi modular forms. We have seen its Weil representation in

Example 2.1.1 (2). In the following subsections 4.3.1, 4.3.2 and 4.3.3, we define local

Schwartz functions at split primes dividing m , inert primes dividing m and ramified

primes away from 2 respectively. In Section 4.4 we will construct the theta lifting of

a weight 2 Bianchi modular form of Γ0(n) with square-free n coprime to (m|dF |). To

avoid the vanishing of our theta lifting as discussed in Remark 3.3.6 (i), in subsection

4.3.4 we define the local Schwartz function at each place dividing N(n) (norm of n)

and ramified prime 2, to be different to the characteristic function of integral lattice .

In subsection 4.3.5 we consider all other finite places.

4.3.1 At split prime dividing m

Let q|m be a split prime such that (q) = qq̄ . According to Proposition 4.3.1, there is

an isomorphism (H(F )⊗Qq,−det) ' (V1(Qq), det) for q split in F/Q given by(
a b

b̄ d

)
7−→

(
a b

c d

)
where c is the image of b̄ ∈ F under F ↪→ Fq ' Qq .

Definition 4.3.2. (1) Suppose that d ≡ 1 mod 4. The local Schwartz function ϕχm
q

at q is vanishing unless

ai ∈ Zq, bi ∈ qOq, ci ∈ qOq, di ∈ Zq, a2d1 − a1d2 ∈ qZq,
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in which case

ϕχm
q

((
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))

=

{
(χ̃m,qχ̃m,q̄)

(
a2b1−a1b2

m + c2d1−c1d2
m

)
, if a2b1−a1b2

m + c2d1−c1d2
m ∈ O×q ×O×q̄ ,

0, if a2b1−a1b2
m + c2d1−c1d2

m ∈ qOq or q̄Oq̄.

where (χ̃m,qχ̃m,q̄)(−) = χ̃m,q(−)χ̃m,q̄(−). Note that bi ∈ qOq, ci ∈ qOq is equiva-

lent to bi ∈ qOq × q̄Oq̄ .

(2) Suppose that d ≡ 2, 3 mod 4. Replace above a2b1−a1b2
m by 2(a2b1−a1b2)

m and c2d1−c1d2
m

by 2(c2d1−c1d2)
m as discussed in Remark 4.2.6

In the following we will check the invariance properties of this local Schwartz

function under some congruence subgroups of Sp4 and SO(3, 1) in details in case of

d ≡ 1 mod 4 and the other case can be treated similarly. We need to calculate the

transformation properties (2.1), (2.2), (2.3) and (2.4). For simplicity we write ϕq = ϕχm
q

and χ = χm in the following computation.

Set X = (x1,x2) =
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

))
. For ai ∈ Zq , bi ∈ qOq , ci ∈ qOq ,

di ∈ Zq , it is not difficult to observe that

ω

((
1 u

0 1

))
ϕq(X) = ϕq(x1,x2) for u ∈M2(qZq) (4.10)

as ψq
(

1
2 tr(u(X,X))

)
is trivial for such (x1,x2) and u .

Set Y = (y1,y2) =
((

α1 β1
γ1 δ1

)
,
(
α2 β2
γ2 δ2

))
. Inspired by Prasanna’s computations

in the proof of [Pra09, Proposition 3.4], we will calculate the Fourier transform

ϕ̂q(Y) =

∫
ai∈Zq ,bi∈qOq

ci∈qOq,di∈Zq

ψq(tr(X,Y))ϕq(X)dX for i = 1, 2,

where

tr(X,Y) = −(a1δ1 − b1γ1 − c1β1 + d1α1 + a2δ2 − b2γ2 − c2β2 + d2α2).

Denote by λ√d the image of
√
d in Oq . By the above definition, ϕq is invariant

under the transformations ai 7→ ai + q , bi 7→ bi + q2 , bi 7→ bi + q2λ√d (or bi 7→
bi + q2 1+λ√d

2 ) and di 7→ di + q . Sending ai 7→ ai + q , we will have ψq(−qδi), factored

out of the above integral, which has to be trivial for the non-vanishing of ϕ̂q . So for

ϕ̂q(Y) non-vanishing we need δi ∈ Zq . Sending b1 7→ b1 + q2 , we get ψq(q
2(γ1 +

β1)). For b1 7→ b1 + q2λ√d and bi 7→ bi + q2 1+λ√d
2 , we get ψq(q

2(γ1 − β1)λ√d) and

ψq(
1
2q

2(γ1 + β1) + 1
2q

2(γ1 − β1)λ√d) respectively. For ϕ̂q(Y) non-vanishing we need
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γ1−β1, γ1−β1 ∈ q−1Zq which implies β1, γ1 ∈ q−1Zq . Repeating the same argument we

can deduce that for the non-vanishing of ϕ̂q the following conditions must be satisfied,

αi ∈ Zq, βi ∈ q−1Zq, γi ∈ q−1Zq, δi ∈ Zq.

It follows that ω
((

0 1
−1 0

))
ϕq(Y) is vanishing unless αi ∈ Zq , βi ∈ q−1Zq , γi ∈ q−1Zq

and δi ∈ Zq .

Recall from (2.2) that

ω

((
1 u

0 1

))
ϕ̂q(Y) = ψq

(
1

2
tr(u(Y,Y))

)
ϕ̂q(Y).

For αi ∈ Zq, βi ∈ q−1Zq, γi ∈ q−1Zq, δi ∈ Zq and u ∈ M2(q3Zq), ψq
(

1
2 tr(u(Y,Y))

)
is

trivial. Thus we can deduce that

ω

((
1 u

0 1

)(
0 1

−1 0

))
ϕq(Y) = ω

((
0 1

−1 0

))
ϕq(Y) for u ∈M2(q3Zq), u = ut

which implies

ω

((
1 0

u 1

))
ϕq(Y) = ϕq(Y) for u ∈M2(q3Zq), u = ut. (4.11)

For a =
(
α β
γ δ

)
∈ GL2(Zq), we compute

Xa = (x1,x2)

(
α β

γ δ

)
=

((
αa1 + γa2 αb1 + γb2

αc1 + γc2 αd1 + γd2

)
,

(
βa1 + δa2 βb1 + δb2

βc1 + δc2 βd1 + δd2

))
due to which we obtain that

a′2b
′
1 − a′1b′2
m

=
(βa1 + δa2)(αb1 + γb2)− (αa1 + γa2)(βb1 + δb2)

m

=
(αδ − βγ)a2b1 − (αδ − βγ)a1b2

m
= det(a) · a2b1 − a1b2

m

and similarly that
c′2d
′
1−c′1d′2
m = det(a)· c2d1−c1d2m . Then from (2.3) we see that if det(a) ∈

Z×q then

ω

((
a 0

0 ta−1

))
ϕq(X) = χV,q(det(a))|det(a)|2q(χ̃qχ̃q̄)(det(a))ϕq(X). (4.12)

Combining (4.10), (4.11) and (4.12), we have proved the following lemma:

Lemma 4.3.3. We have

ω(k1)ϕq = χV,q(det(A))|det(A)|2q(χ̃qχ̃q̄)(det(A))ϕq

for

k1 =

(
A B

C D

)
∈

{(
A B

C D

)
∈ Sp4(Zq) : B ∈M2(qZq), C ∈M2(q3Zq)

}
.
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Proof. The assertion follows from the Iwahori decomposition of Sp4 .

We next discuss the action of SO(3, 1)(V (Qq)) on ϕq characterised by

ω(1, h)ϕq(x1,x2) = ϕq(h
−1x1, h

−1x2) for h ∈ SO(3, 1)(V (Qq)).

We have seen the exceptional isomorphism PSL2 ' SO+(3, 1) in Section 1.2, and in

this case of split q as in Example 1.2.3 (2), we want to check congruence subgroups of

PSL2(Zq×Zq) under which the Schwartz function ϕq is invariant. Recall from [Rob01,

Section 2] that h−1xi := h−1
1 xi

t(h−1
2 )∗ for h = (h1, h2) ∈ PSL2(Zq) × PSL2(Zq) =

PSL2(Zq × Zq).

Lemma 4.3.4. For h = (h1, h2) ∈ PSL2(Zq)× PSL2(Zq) satisfying

hi ∈ Γ(q) =

{(
α β

γ δ

)
∈ PSL2(Zq) : ±

(
α β

γ δ

)
≡ ±

(
1 0

0 1

)
mod q

}
,

we have that

ω(1, h)ϕq(x1,x2) = ϕq(x1,x2). (4.13)

Proof. Set

h−1
j =

(
αj βj

γj δj

)
and xi =

(
ai bi

ci di

)
for i, j ∈ {1, 2}

with αj , δj ≡ 1 mod q and βj , γj ≡ 0 mod q .

First we assume that ai, di ∈ Zq and bi, ci ∈ qZq so that ϕq is non-vanishing on

(x1,x2) .

We compute(
a′i b′i
c′i d′i

)
:=h−1

1 xi
t(h−1

2 )∗

=

(
δ2(α1ai + β1ci)− β2(α1bi + β1di) −γ2(α1ai + β1ci) + α2(α1bi + β1di)

δ2(γ1ai + δ1ci)− β2(γ1bi + δ1di) −γ2(γ1ai + δ1ci) + α2(γ1bi + δ1di)

)
.

It is not hard to observe thatb′i, c
′
i ∈ qZq as bi, ci, βj , γj ∈ qZq , and

a′2d
′
1 − a′1d′2 ≡ α1α2δ1δ2(a2d1 − a1d2) ≡ a2d1 − a1d2 mod q.

Modulo q2 , we have

a′2b
′
1 − a′1b′2 ≡δ2α1a2(−γ2α1a1 + α2α1b1 + α2β1d1)− δ2α1a1(−γ2α1a2 + α2α1b2 + α2β1d2)

≡α2
1α2δ2(a2b1 − a1b2) + α1α2β1δ2(a2d1 − a1d2).
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It follows that
a′2b
′
1 − a′1b′2
m

≡ a2b1 − a1b2
m

mod q.

Similarly, we obtain that modulo q2

c′2d
′
1 − c′1d′2 ≡α2δ1d1(δ2γ1a2 + δ2δ1c2 − β2δ1d2)− α2δ1d2(δ2γ1a1 + δ2δ1c1 − β2δ1d1)

≡α2δ
2
1δ2(c2d1 − c1d2) + α2γ1δ1δ2(a2d1 − a1d2).

and
c′2d
′
1 − c′1d′2
m

≡ c2d1 − c1d2

m
mod q.

Therefore, when ϕq is non-vanishing, we can deduce that

ω(1, h)ϕq((x1,x2)) = ϕq((x1,x2)) for h = (h1, h2) ∈ Γ(q)× Γ(q).

When ϕq is vanishing, we consider that b1 ∈ Z×q and other cases that b2 , d1 or d2 in

Z×q can be treated similarly . For h−1 =
((

α1 β1
γ1 δ1

)
,
(
α2 β2
γ2 δ2

))
∈ Γ(q), it is observed

that

b′1 = −γ2(α1a1 + β1c1) + α2(α1b1 + β1d1) ∈ Z×q

which makes ϕq vanish on (h−1x1, h
−1x2). Now we have proven this lemma.

4.3.2 At inert prime dividing m

Let q be an inert prime dividing m such that (q) = q . According to Proposition 4.3.1,

there is an isomorphism (H(F ) ⊗ Qq,−det) ' (V1(Qq

√
d), det) for q inert in F/Q

given by (
a b

b̄ c

)
7−→

(
b a

√
d

c
√
d b̄

)
for a, c ∈ Qq, b ∈ Qq(

√
d)

where − on the right hand side denotes the non-trivial action in Gal(Qq(
√
d)/Qq).

Definition 4.3.5. (1) Suppose that d ≡ 1 mod 4. The local Schwartz function ϕχm
q

at q is vanishing unless, for i = 1, 2,

ai ∈ Zq, bi ∈ qOq, ci ∈ Zq and a2c1 − a1c2 ∈ qZq,
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in which case

ϕχm
q

((
b1 a1

√
d

c1

√
d b̄1

)
,

(
b2 a2

√
d

c2

√
d b̄2

))

=

{
χ̃m,q

(
a2b1−a1b2

m + b̄2c1−b̄1c2
m

)
, if a2b1−a1b2

m + b̄2c1−b̄1c2
m ∈ O×q ,

0, if a2b1−a1b2
m + b̄2c1−b̄1c2

m ∈ qOq.

(2) Suppose that d ≡ 2, 3 mod 4. We replace above a2b1−a1b2
m by 2(a2b1−a1b2)

m and
b̄2c1−b̄1c2

m by 2(b̄2c1−b̄1c2)
m as discussed in Remark 4.2.6.

In the following we will check the invariance properties of this local Schwartz

function with respect to Sp4×SO(3, 1) in detail in case of d ≡ 1 mod 4 and the other

case can be treated similarly. For simplicity we write ϕq = ϕχm
q and χ = χm .

Set X = (x1,x2) =
((

b1 a1
√
d

c1
√
d b̄1

)
,
(

b2 a2
√
d

c2
√
d b̄2

))
. For ai ∈ Zq ,bi ∈ qOq and

ci ∈ Zq , it is easy to observe that

ω

((
1 u

0 1

))
ϕq(x1,x2) = ϕq(x1,x2) for u ∈M2(qZq). (4.14)

Set Y = (y1,y2) =
((

β1 α1

√
d

γ1
√
d β̄1

)
,
(

β2 α2

√
d

γ2
√
d β̄2

))
. Consider the Fourier trans-

form

ϕ̂q(Y) =

∫
ψq(tr(X,Y))ϕq(X)dX

where

tr(X,Y) = −(b1β̄1 + b̄1β1 − a1γ1d− α1c1d+ b2β̄2 + b̄2β2 − a2γ2d− α2c2d).

By the definition, ϕq is invariant under the transformations ai 7→ ai + q , bi 7→ bi + q2 ,

bi 7→ bi + q2
√
d (or bi 7→ bi + q2 · 1+

√
d

2 ) and ci 7→ ci + q . Repeating arguments in the

previous subsection, we can observe that the Fourier transform ϕ̂(y1,y2) is vanishing

unless, for i = 1, 2,

αi ∈ Zq;β, β̄ ∈ q−1Oq(as βi + β̄i ∈ q−1Zq, βi − β̄i ∈ q−1
√
dZq); γi ∈ Zq.

It follows that, for u ∈M2(q3Zq) such that u = ut ,

ω

((
1 u

0 1

)(
0 1

−1 0

))
ϕq(y1,y2) = ω

((
0 1

−1 0

))
ϕq(y1,y2)

which implies

ω

((
1 0

u 1

))
ϕq(y1,y2) = ϕq(y1,y2) for u ∈M2(q3Zq), u = ut. (4.15)
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For a ∈ GL2(Zq), write
((

b′1 a′1
√
d

c′1
√
d b̄′1

)
,
(

b′2 a′2
√
d

c′2
√
d b̄′2

))
= Xa . We have a′2b

′
1 −

a′1b
′
2 = det(a)(a2b1 − a1b2), b̄′2c

′
1 − b̄′1c

′
2 = det(a)(b̄2c1 − b̄1c2) and a′2c

′
1 − a′1c

′
2 =

det(a)(a2c1 − a1c2). So for det(a) ∈ Z×q , we obtain

ω

((
a 0

0 ta−1

)
, 1

)
ϕq(x1,x2) = χV,q(det(a))|det(a)|2qχ̃q(det(a))ϕq(x1,x2). (4.16)

Combining (4.14),(4.15) and (4.16), we can deduce the following lemma:

Lemma 4.3.6. We have

ω(k2)ϕq = χV,q(det(A))| det(A)|2qχ̃q(det(A)ϕq

for

k2 =

(
A B

C D

)
∈

{(
A B

C D

)
∈ Sp4(Zq) : B ∈M2(qZq), C ∈M2(q3Zq)

}
.

We next discuss the action of SO(3, 1)(V (Qq)) on ϕq characterised by

ω(1, h)ϕq(x1,x2) = ϕq(h
−1x1, h

−1x2) for h ∈ SO(3, 1)(V (Qq)).

Due to the exceptional isomorphism PSL2(Qq(
√
d)) ' SO+(3, 1)(V (Qq)) as in Exam-

ple 1.2.3 (3), in this case we check the invariance property under some congruence

subgroups of PSL2(Oq). Here we have that h−1xi := h−1xi(h̄
−1)∗ for i = 1, 2 where

− denotes the non-trivial action in Gal(Qq(
√
d)/Qq) (see [Rob01, Section 2]).

Lemma 4.3.7. For

h ∈ Γ(q) =

{(
α β

γ δ

)
∈ PSL2(Oq) : ±

(
α β

γ δ

)
≡ ±

(
1 0

0 1

)
mod q

}
,

we have that

ω(1, h)ϕq(x1,x2) = ϕq(x1,x2). (4.17)

Proof. Set

h−1 =

(
α β

γ δ

)
and xi =

(
bi ai

√
d

ci
√
d b̄i

)
.

with α, δ ≡ 1 mod q and β, γ ≡ 0 mod q .

First we assume ai ∈ Zq , b̄i ∈ qOq ,ci ∈ Zq so that ϕq is non-vanishing on
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(x1,x2). Writing h−1xi =

(
b′i a′i

√
d

c′i
√
d b̄′i

)
, we compute(

b′i a′i
√
d

c′i
√
d b̄′i

)
=

(
α β

γ δ

)(
bi ai

√
d

ci
√
d b̄i

)(
δ̄ −β̄
−γ̄ ᾱ

)

=

(
αbi + βci

√
d αai

√
d+ βb̄i

γbi + δci
√
d γai

√
d+ δb̄i

)(
δ̄ −β̄
−γ̄ ᾱ

)

=

(
δ̄(αbi + βci

√
d)− γ̄(αai

√
d+ βb̄i) −β̄(αbi + βci

√
d) + ᾱ(αai

√
d+ βb̄i)

δ̄(γbi + δci
√
d)− γ̄(γai

√
d+ δb̄i) −β̄(γbi + δci

√
d) + ᾱ(γai

√
d+ δb̄i)

)
.

It is not hard to observe that a′i ∈ Zq ,b′i ∈ qOq , c′i ∈ Zq and that a′2c
′
1 − a′1c

′
2 ≡

a2c1 − a1c2 mod q . Then we expand

a′2b
′
1 − a′1b′2

=

(
ᾱβb̄2 − β̄αb2√

d
− β̄βc2 + ᾱαa2

)
(δ̄(αb1 + βc1

√
d)− γ̄(αa1

√
d+ βb̄1))

−
(
ᾱβb̄1 − β̄αb1√

d
− β̄βc1 + ᾱαa1

)
(δ̄(αb2 + βc2

√
d)− γ̄(αa2

√
d+ βb̄2)),

and, modulo q2 , we get

a′2b
′
1 − a′1b′2 ≡α2ᾱδ̄(a2b1 − a1b2) + αᾱβδ̄

√
d(a2c1 − a1c2).

Similarly, we have, modulo q2 ,

b̄′2c
′
1 − b̄′1c′2

≡δδ̄c1(−β̄δc2

√
d+ ᾱ(γa2

√
d+ δb̄2))− δδ̄c2(−β̄δc1

√
d+ ᾱ(γa1

√
d+ δb̄1))

≡δ2ᾱδ̄(b̄2c1 − b̄1c2) + ᾱγδδ̄
√
d(a2c1 − a1c2).

Then we can deduce that
a′2b
′
1 − a′1b′2
m

+
b̄′2c
′
1 − b̄′1c′2
m

≡ a2b1 − a1b2
m

+
b̄2c1 − b̄1c2

m
mod q

which implies that

ϕq

(
a′2b
′
1 − a′1b′2
m

+
b̄′2c
′
1 − b̄′1c′2
m

)
= ϕq

(
a2b1 − a1b2

m
+
b̄2c1 − b̄1c2

m

)
.

Next we assume b1 ∈ O×q so that ϕq is vanishing on (x1,x2). It follows that

δ̄αb1 ∈ O×q and then b′1 ∈ O×q which makes ϕq is vanishing on (h−1x1, h
−1x2). Other

cases that b̄′1, b
′
2, b̄
′
2 ∈ O×q can be treated in the same way and recall that a′2c

′
1−a′1c′2 ≡

a2c1−a1c2 mod q . Hence, if ϕq is vanishing on (x1,x2), so is that on (h−1x1, h
−1x2).

Now we have proven this lemma.
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4.3.3 At ramified prime away from 2

Let q be a ramified prime away from 2 such that (q) = q2 . According to Proposition

4.3.1, there is an isomorphism (H(F ) ⊗ Qq,−det) ' (V1(Qq), det) for q ramified in

F/Q given by (
a b

b̄ c

)
7−→

(
b a

√
d

c
√
d b̄

)
for a, c ∈ Qq, b ∈ Qq(

√
d)

where − on the right hand side denotes the non-trivial action in Gal(Qq(
√
d)/Qq).

Note that when d ≡ 2, 3 (mod 4) the prime 2 is ramified and at the ramified 2 the local

Schwartz function is defined in the next subsection.

Definition 4.3.8. (1) Suppose that d ≡ 1 mod 4. The local Schwartz function ϕχm
q

at q is vanishing unless, for i = 1, 2,

ai ∈ Zq, ci ∈ Zq, bi ∈ Oq, b1b̄2 − b̄1b2 ∈ qOq,

in which case

ϕχm
q

((
b1 a1

√
d

c1

√
d b̄1

)
,

(
b2 a2

√
d

c2

√
d b̄2

))

=

{
χ̃m,q

(
a2b1−a1b2

m + b̄2c1−b̄1c2
m

)
, if a2b1−a1b2

m + b̄2c1−b̄1c2
m ∈ O×q ,

0, if a2b1−a1b2
m + b̄2c1−b̄1c2

m ∈ qOq.

(2) Suppose that d ≡ 2, 3 mod 4. We replace above a2b1−a1b2
m by 2(a2b1−a1b2)

m and
b̄2c1−b̄1c2

m by 2(b̄2c1−b̄1c2)
m as discussed in Remark 4.2.6.

In the following we will check the invariance properties of this local Schwartz

function with respect to Sp4×SO(3, 1) in case of d ≡ 1 mod 4 and the other case can

be treated similarly. For simplicity we write ϕq = ϕχm
q and χ = χm .

Set X = (x1,x2) =
((

b1 a1
√
d

c1
√
d b̄1

)
,
(

b2 a2
√
d

c2
√
d b̄2

))
. For ai, ci ∈ Zq and bi, b̄i ∈ Oq ,

it is easy to observe that

ω

((
1 u

0 1

))
ϕq(x1,x2) = ϕq(x1,x2) for u ∈M2(qZq). (4.18)

Set Y = (y1,y2) =
((

β1 α1

√
d

γ1
√
d β̄1

)
,
(

β2 α2

√
d

γ2
√
d β̄2

))
. Consider the Fourier trans-

form

ϕ̂q(Y) =

∫
ψq(tr(X,Y))ϕq(X)dX
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where

tr(X,Y) = −(b1β̄1 + b̄1β1 − a1γ1d− α1c1d+ b2β̄2 + b̄2β2 − a2γ2d− α2c2d).

By the definition, ϕq is invariant under the transformations ai 7→ ai + q , bi 7→ bi + q ,

bi 7→ bi +
√
d and ci 7→ ci + q . Repeating arguments in the previous subsection, we can

observe that the Fourier transform ϕ̂(y1,y2) is vanishing unless, for i = 1, 2,

αi, γi ∈ q−1Zq and βi, β̄i ∈ Oq(as βi + β̄i ∈ Zq, βi − β̄i ∈ Zq
√
d).

It follows that, for u ∈M2(q2Zq) such that u = ut ,

ω

((
1 u

0 1

)(
0 1

−1 0

))
ϕq(y1,y2) = ω

((
0 1

−1 0

))
ϕq(y1,y2)

which implies

ω

((
1 0

u 1

))
ϕq(y1,y2) = ϕq(y1,y2) for u ∈M2(q2Zq), u = ut. (4.19)

For a ∈ GL2(Zq) with det(a) ∈ Z×q , we also have

ω

((
a 0

0 ta−1

)
, 1

)
ϕq(x1,x2) = χV,q(det(a))|det(a)|2qχ̃q(det(a))ϕq(x1,x2). (4.20)

Again, combining (4.18),(4.19) and (4.20), we can deduce the following lemma:

Lemma 4.3.9. We have

ω(k3)ϕq = χV,q(det(A))|det(A)|2qχ̃q(det(A))ϕq

for

k3 =

(
A B

C D

)
∈

{(
A B

C D

)
∈ Sp4(Zq) : B ∈M2(qZq), C ∈M2(q2Zq)

}
.

We next discuss the action of SO(3, 1)(V (Qq)) on ϕq characterised by

ω(1, h)ϕq(x1,x2) = ϕq(h
−1x1, h

−1x2) for h ∈ SO(3, 1)(V (Qq)).

In this case, we check the invariance property under congruence subgroups of PSL2(Oq)

and have that h−1xi := h−1xi(h̄
−1)∗ for i = 1, 2 where − denotes the non-trivial action

in Gal(Qq(
√
d)/Qq) (see [Rob01, Section 2]).

Lemma 4.3.10. For

h ∈ Γ(q) =

{(
α β

γ δ

)
∈ PSL2(Oq) : ±

(
α β

γ δ

)
≡ ±

(
1 0

0 1

)
mod q

}
,

we have that

ω(1, h)ϕq(x1,x2) = ϕq(x1,x2). (4.21)
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Proof. Set

h−1 =

(
α β

γ δ

)
and xi =

(
bi ai

√
d

ci
√
d b̄i

)
.

with α, δ ≡ 1 mod q and β, γ ≡ 0 mod q .

First we assume ai, ci ∈ Zq and bi, b̄i ∈ Oq so that ϕq is non-vanishing on

(x1,x2). Writing h−1xi =

(
b′i a′i

√
d

c′i
√
d b̄′i

)
, we compute(

b′i a′i
√
d

c′i
√
d b̄′i

)
=

(
α β

γ δ

)(
bi ai

√
d

ci
√
d b̄i

)(
δ̄ −β̄
−γ̄ ᾱ

)

=

(
αbi + βci

√
d αai

√
d+ βb̄i

γbi + δci
√
d γai

√
d+ δb̄i

)(
δ̄ −β̄
−γ̄ ᾱ

)

=

(
δ̄(αbi + βci

√
d)− γ̄(αai

√
d+ βb̄i) −β̄(αbi + βci

√
d) + ᾱ(αai

√
d+ βb̄i)

δ̄(γbi + δci
√
d)− γ̄(γai

√
d+ δb̄i) −β̄(γbi + δci

√
d) + ᾱ(γai

√
d+ δb̄i)

)
.

It is not hard to observe that a′i, c
′
i ∈ Zq, b′i, b̄′i ∈ Oq and b′1b̄

′
2 − b̄′1b′2 ≡ b1b̄2 − b̄1b2 mod

q . Modulo q , we have

a′2b
′
1 − a′1b′2

≡δ̄αb1
(
ᾱβb̄2 − β̄αb2√

d
+ ᾱαa2

)
− δ̄αb2

(
ᾱβb̄1 − β̄αb1√

d
+ ᾱαa1

)
≡α2ᾱδ̄(a2b1 − a1b2)− αᾱβδ̄/

√
d(b1b̄2 − b̄1b2),

and

c′2b̄
′
1 − c′1b̄′2

≡ᾱδb̄1
(
δ̄γb2 − δγ̄b̄2√

d
+ δ̄δc2

)
− ᾱδb̄2

(
δ̄γb1 − δγ̄b̄1√

d
+ δ̄δc1

)
≡δ2ᾱδ̄(c2b̄1 − c1b̄2) + ᾱγδδ̄/

√
d(b1b̄2 − b̄1b2).

So, modulo q , we get

a′2b
′
1 − a′1b′2
m

≡ α2ᾱδ̄
a2b1 − a1b2

m
and

c′2b̄
′
1 − c′1b̄′2
m

≡ δ2ᾱδ̄
c2b̄1 − c1b̄2

m
.

It follows that

ϕq

(
a′2b
′
1 − a′1b′2
m

+
c′2b̄
′
1 − c′1b̄′2
m

)
= ϕq

(
a2b1 − a1b2

m
+
c2b̄1 − c1b̄2

m

)
.

Next we assume b1 ∈ q−1O×q so that ϕq is vanishing on (x1,x2). It follows that

δ̄αb1 ∈ q−1O×q and then b′1 ∈ q−1O×q which makes ϕq be vanishing on (h−1x1, h
−1x2).

Other cases for ai, ci, b̄1, b2, b̄2 can be treated in the same way. Hence, if ϕq is vanishing

on (x1,x2), so is that on (h−1x1, h
−1x2).
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Now we have proven this lemma.

4.3.4 At places dividing N(n) and ramified 2

In this subsection we consider the local Schwartz function at finite places dividing N(n)

and at ramified prime 2 (when d ≡ 2, 3 mod 4). For a place q and an integral lattice

X on V , we put Xq = X ⊗Z Zq .

Definition 4.3.11. (1) Let q|N(n) be split with (q) = qq̄ .

� Suppose that (n, (q)) = q . Define the local Schwartz function ϕq to be the

characteristic function of{((
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ X2

q : b1c2 + c1b2 ∈ O×q , di ∈ qZq

}
.

� Suppose that (n, (q)) = q̄ . Define ϕq to be the characteristic function of{((
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ X2

q : b1c2 + c1b2 ∈ O×q̄ , di ∈ qZq

}
.

� Suppose that (n, (q)) = (q). Define ϕq to be the characteristic function of{((
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ X2

q : b1c2 + c1b2 ∈ O×q ×O×q̄ , di ∈ qZq

}
.

(2) At inert place q|n with (q) = q , we define ϕq to be the characteristic function of{((
b1 a1

√
d

c1

√
d b̄1

)
,

(
b2 a2

√
d

c2

√
d b̄2

))
∈ X2

q : b1b̄2 + b̄1b2 ∈ O×q , ci ∈ qZq

}
(3) If 2 is ramified with (2) = q2

2 , we define ϕ2 to be the characteristic function of{((
b1 a1

√
d

c1

√
d b̄1

)
,

(
b2 a2

√
d

c2

√
d b̄2

))
: ai, ci ∈ Z2, bi ∈

1

2
Oq2 , b1b̄2 + b̄1b2 ∈

1

2
O×q2

}
.

Note that if we take the local Schwartz function at finite places dividing N(n) and

ramified 2 as the characteristic function of integral lattice, the resulting theta lifting

would be vanishing as discussed in Remark 3.3.6 (i).

In the following we will check the invariance properties of this local Schwartz

function with respect to Sp4×SO(3, 1).

Lemma 4.3.12. (1) For ϕq as in above Definition 4.3.11 (1) and (2), We have

ω(k4)ϕq = ϕq
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for

k4 ∈

{(
A B

C D

)
∈ Sp4(Zq) : A ∈

(
Zq qZq
qZq Zq

)
, B ∈M2(qZq), C ∈M2(qZq)

}
.

(2) At ramified 2, we have

ω(k5)ϕ2 = ϕ2

for

k5 ∈

{(
A B

C D

)
∈ Sp4(Zq) : A ∈

(
Z2 2Z2

2Z2 Z2

)
, B ∈M2(24Z2)

}
.

Proof. (1) We prove this lemma in details only for split q with (n, (q)) = q and other

cases can be treated similarly.

Set X = (x1,x2) =
((

a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

))
∈ X2

q . It is not difficult to observe that

ω

((
1 u

0 1

))
ϕq(X) = ϕq(x1,x2) for u ∈M2(qZq).

Set Y = (y1,y2) =
((

α1 β1
γ1 δ1

)
,
(
α2 β2
γ2 δ2

))
. Consider the Fourier transform

ϕ̂q(Y) =

∫
X2
q,v

ψq(tr(X,Y))ϕq(X)dX for i = 1, 2,

where

tr(X,Y) = −(a1δ1 − b1γ1 − c1β1 + d1α1 + a2δ2 − b2γ2 − c2β2 + d2α2).

By the above definition, ϕq is invariant under the transformations ai 7→ ai +Zq ,

bi 7→ bi + q , bi 7→ bi + qλ√d (or bi 7→ bi + q
1+λ√d

2 ) and di 7→ di + q . Note that

b1c2 + c1b2 ∈ O×q is not preserved under bi 7→ bi + q or bi 7→ bi + q̄ . Then we can

deduce that ω
((

0 1
−1 0

))
ϕq(Y) is vanishing unless αi ∈ Zq , βi ∈ Zq , γi ∈ Zq and

δi ∈ qZq . It follows that

ω

((
1 u

0 1

)(
0 1

−1 0

))
ϕq(Y) = ω

((
0 1

−1 0

))
ϕq(Y) for u ∈M2(qZq), u = ut

which implies

ω

((
1 0

u 1

))
ϕq(Y) = ϕq(Y) for u ∈M2(qZq), u = ut.

For a =
(
α β
γ δ

)
∈ GL2(Zq), set

((
a′1 b

′
1

c′1 d
′
1

)
,
(
a′2 b

′
2

c′2 d
′
2

))
:= (x1,x2)a . It is clear that

d′1 = αd1 + βd2 and d′2 = γd1 + δd2

lie in qZq . Also we have

b′1c
′
2 + c′1b

′
2 = (αb1 + γb2)(βc1 + δc2) + (βb1 + δb2)(αc1 + γc2).
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If β, γ ≡ 0 mod q and det(a) ∈ Z×q , then b′1c
′
2 + c′1b

′
2 ∈ O×q . We can deduce that

ω

((
a 0

0 ta−1

))
ϕq(X) = ϕq(X) for a ∈

(
Zq qZq
qZq Zq

)
and det(a) ∈ Z×q .

(2) Set X = (x1,x2) =
((

b1 a1
√
d

c1
√
d b̄1

)
,
(

b2 a2
√
d

c2
√
d b̄2

))
. For ai, ci ∈ Z2 and bi ∈ 1

2Oq2 ,

it is easy to observe that

ω

((
1 u

0 1

))
ϕq(x1,x2) = ϕq(x1,x2) for u ∈M2(24Z2).

Set Y = (y1,y2) =
((

β1 α1

√
d

γ1
√
d β̄1

)
,
(

β2 α2

√
d

γ2
√
d β̄2

))
. Consider the Fourier trans-

form

ϕ̂q(Y) =

∫
ψq(tr(X,Y))ϕq(X)dX

where

tr(X,Y) = −(b1β̄1 + b̄1β1 − a1γ1d− α1c1d+ b2β̄2 + b̄2β2 − a2γ2d− α2c2d).

By the definition, ϕq is invariant under the transformations ai 7→ ai + Z2 , bi 7→
bi + Z2 , bi 7→ bi + Z2

√
d and ci 7→ ci + Z2 . Repeating arguments in the previous

subsection, we can observe that the Fourier transform ϕ̂(y1,y2) is vanishing

unless, for i = 1, 2,

αi, γi ∈ 2Z2 and βi ∈ 2Oq2(as βi + β̄i ∈ 2Zq, βi − β̄i ∈ 2Zq
√
d).

It follows that, for u ∈M2(Z2) such that u = ut ,

ω

((
1 u

0 1

)(
0 1

−1 0

))
ϕq(y1,y2) = ω

((
0 1

−1 0

))
ϕq(y1,y2)

which implies

ω

((
1 0

u 1

))
ϕq(y1,y2) = ϕq(y1,y2) for u ∈M2(Z2), u = ut.

For a =
(
α β
γ δ

)
∈ GL2(Zq), set

((
b′1 a′1

√
d

c′1
√
d b̄′1

)
,
(

b′2 a′2
√
d

c′2
√
d b̄′2

))
:= (x1,x2)a . We

have

b′1 = αb1 + γb2 and b′2 = βb1 + δb2

and then

b′1b̄
′
2 + b̄′1b

′
2 = (αb1 + γb2)(βb̄1 + δb̄2) + (αb̄1 + γb̄2)(βb1 + δb2).

If β, γ ∈ 2Z2 and αγ ∈ Z×2 , we have

ω

((
a 0

0 ta−1

)
, 1

)
ϕ2(x1,x2) = ϕ2(x1,x2).
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Lemma 4.3.13. (1) Let q|N(n) split with (q) = qq̄.

� Suppose that (n, (q)) = q. We have

ω(1, h1)ϕq(x1,x2) = ϕq(x1,x2)

for h1 = h1,1 × h1,2 with

h1,i ∈ Γ(q) =

{(
α β

γ δ

)
∈ PSL2(Oq) : ±

(
α β

γ δ

)
≡ ±

(
1 0

0 1

)
mod q

}
.

� If (n, (q)) = q̄, we have

ω(1, h2)ϕq(x1,x2) = ϕq(x1,x2) for h2 ∈ Γ(q̄).

� If (n, (q)) = (q), we have

ω(1, h3)ϕq(x1,x2) = ϕq(x1,x2) for h3 ∈ Γ(q).

(2) For inert q|N(n) with (q) = q, we have

ω(1, h4)ϕq(x1,x2) = ϕq(x1,x2) for h4 ∈ Γ(q).

(3) For 2 ramified with (2) = q2
2 , we have

ω(1, h5)ϕq(x1,x2) = ϕq(x1,x2) for h5 ∈ Γ(q2).

Proof. In part (1), we prove the first statement and other cases can be treated similarly.

Let (q) = qq̄ . Set h−1
j =

(
αj βj

γj δj

)
and xi =

(
ai bi

ci di

)
with αj , δj ≡ 1 mod q and

βj , γj ≡ 0 mod q . We compute(
a′i b′i
c′i d′i

)
:=h−1

1 xi
t(h−1

2 )∗

=

(
δ2(α1ai + β1ci)− β2(α1bi + β1di) −γ2(α1ai + β1ci) + α2(α1bi + β1di)

δ2(γ1ai + δ1ci)− β2(γ1bi + δ1di) −γ2(γ1ai + δ1ci) + α2(γ1bi + δ1di)

)

≡

(
∗ bi

ci di

)
mod q.

So the conditions on b1c2 + b2c1 and d′i for ϕq non-vanishing are preserved.

Let q be an inert prime. Set h−1 =

(
α β

γ δ

)
and xi =

(
bi ai

√
d

ci
√
d b̄i

)
with
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α, δ ≡ 1 mod q and β, γ ≡ 0 mod q . It suffices to show that(
b′i a′i

√
d

c′i
√
d b̄′i

)
=

(
α β

γ δ

)(
bi ai

√
d

ci
√
d b̄i

)(
δ̄ −β̄
−γ̄ ᾱ

)

=

(
δ̄(αbi + βci

√
d)− γ̄(αai

√
d+ βb̄i) ∗

δ̄(γbi + δci
√
d)− γ̄(γai

√
d+ δb̄i) −β̄(γbi + δci

√
d) + ᾱ(γai

√
d+ δb̄i)

)

≡

(
bi ∗

ci
√
d b̄i

)
mod q.

It is clear that if ϕq is vanishing on (x1,x2), then so is ω(1, hj)ϕq on (x1,x2) in the

same way as dicussed in previous subsections. Similarly at ramified 2 we obtain the

same result.

4.3.5 At other finite places

We consider non-archimedean places away from m|dF |N(n). For such a place q and

an integral lattice X on V , we put Xq = X ⊗Z Zq . Define its dual lattice

X]
q = {x ∈ V ⊗Qq : (x,y) ∈ Zq ∀y ∈ Xq}

and let (q−lq) be the Zq -module generated by {(x,x) : x ∈ X]
q} . In [Ber14, Lemma 27],

it is shown that lq = 0 at these places. At each place q , we define the local Schwartz

function ϕq to be the characteristic function of X2
q . Note that ϕq is invariant under

PSL2(Zq) × PSL2(Zq) for split q and PSL2(Oq) for inert or ramified q due to lq = 0

(see [Ber14, Section 5.2]).

Lemma 4.3.14. ([Yos84, Lemma 2.1]) At non-archimedean q - m|dF |N(n) we have

ω(σ)ϕq = χV,q(detA)ϕq for σ =

(
A B

C D

)
∈ Sp4(Zq).

§ 4.4 Theta lift and Fourier coefficient

Let F = Q(
√
d) be an imaginary quadratic field of class number 1. Denote its ring of

integers by O = Z[ω] and the discriminant by dF . Let m be a product of distinct inert

or split primes as introduced in Section 4.3 and choose a quadratic Hecke character χm

(m = mO ) of conductor f =
√
dm . Let n be square-free and coprime to (m|dF |).

Suppose that F = (F0,F1,F2) : H3 → C3 is a weight 2 cusp form for Γ0(n) with the

corresponding Γ0(n)-invariant differential ηF on H3 of the form −F0
dz
r +F1

dr
r +F2

dz̄
r

for (z, r) ∈ H3 , see Definition 1.5.2.
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Remark 4.4.1. (1) Suppose that d ≡ 1 mod 4 with dF = d . We choose the local

Schwartz function ϕχm
q at each place q dividing m|dF | as defined in Definition

4.3.2, 4.3.5 and 4.3.8. At each place q dividing N(n), the local Schwartz function

ϕn
q is chosen to be as in Definition 4.3.11. For all other finite places we take the

local Schwartz function as in Section 4.3.5.

(2) Suppose that d ≡ 2, 3 mod 4 with dF = 4d . We choose the local Schwartz function

ϕχm
q at each place q dividing m as defined in Definition 4.3.2 and 4.3.5, and that

at ramified place away from 2 as in Definition 4.3.8. At each place q dividing

2N(n), the local Schwartz functions ϕn
q and ϕ2 are chosen to be as in Definition

4.3.11. For all other places we take the local Schwartz function as in Section 4.3.5.

It has been shown in Lemma 4.3.4, Lemma 4.3.7, Lemma 4.3.10 and Lemma 4.3.13

that the local Schwartz function ϕv at each place v dividing m|dF |N(n) is invariant

under the action of the principal congruence subgroup Γ(qv) ⊂ SO+(3, 1)(V (Qv)). As

what we have done on the Shintani lifting in Chapter 3, we now consider a Γ0(qv)-

invariant local Schwartz function ϕnew
v at these places defined by

ϕnew
v (x1,x2) =

∑
[γ]∈Γ0(qv)/Γ(qv)

ω(1, γ)ϕv(x1,x2)

where the sum is taken over all the representatives of Γ0(qv)/Γ(qv). With this new

local Schwartz function we know that ϕnew
f is invariant under Γ0(fn) when d ≡ 1 mod

4 or Γ0(fnq2) when d ≡ 2, 3 mod 4.

Give the Schwartz form ϕ2 ∈ S(V (R)2)⊗Ω2(D) as in Example 2.2.2 (2) and the

above finite Schwartz function ϕnew
f on V (Af )2 , we now consider a Schwartz form

ϕ(X, z) := ϕ2 ⊗ ϕnew
f ∈ S(V (A)2)⊗ Ω2(D) for X ∈ V (A)2, z ∈ D.

Following (2.11), the theta series in this case is given by

θ(g′, ϕnew
f , z) =

∑
X∈V (Q)2

ω(g′)ϕ(X, z) for g′ ∈ Sp4(A)

which defines a closed differential 2-form on Γ0(2mN)\D .

Following (2.12), the theta lifting of F , which is a holomophic Siegel modular

form of weight 2, is given by

Θϕ(ηF )(g′) =

∫
Γ\D

ηF (z) ∧ θ(g′, ϕnew
f , z)

where Γ = Γ0(fn) ∩ Γ0(n) = Γ0(fn) when d ≡ 1 mod 4 or Γ = Γ0(fnq2) ∩ Γ0(n) =

Γ0(fnq2) when d ≡ 2, 3 mod 4. By Lemma 4.3.3, Lemma 4.3.6, Lemma 4.3.9 and
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Lemma 4.3.14, we can determine that it has level

Lm,n =

{(
A B

C D

)
∈ Sp4(Z) : A ∈

(
Z n1N(n)Z

n1N(n)Z Z

)
,

B ∈M2(n2m|d|N(n)Z), C ∈M2(m3d2N(n)Z)
}

with {
n1 = n2 = 1, if d ≡ 1 mod 4

n1 = 2, n2 = 24, if d ≡ 2, 3 mod 4.

Recall

Ωβ =

{
(x1,x2) ∈ V (Q)2 :

1

2

(
(x1,x1) (x1,x2)

(x1,x2) (x2,x2)

)
= β

}
.

By Theorem 2.4.5, the Fourier coefficient of the theta lifting Θϕ(ηF ) at β > 0 is given

by

CΘϕ(ηF ),β =
∑

(x1,x2)∈Γ\Ωβ

ϕnew
f (x1,x2)

∫
CU(x1,x2)

ηF

=
∑

[κi]∈Γ\P1(F )

∑
(x1,x2)∈Γκi\Ωβ,κi,+

ϕnew
f (x1,x2)

∫
CU(x1,x2)

ηF (4.22)

where the second equality is the consequence of Proposition 4.2.4. For simplicity we

will denote CΘϕnew (ηF ),β := I =
∑

[κi]∈Γ\P1(F ) Iκi where

Iκi =
∑

(x1,x2)∈Γκi\Ωβ,κi,+

ϕnew
f (x1,x2)

∫
CU(x1,x2)

ηF . (4.23)

Similar to what we have done in Section 3.3, we will first express I∞ in terms of

the twisted L-value L(F , χm, 1) in subsection 4.4.1 and then use Atkin-Lehner opera-

tors to calculate Iκi for κi 6=∞ in subsection 4.4.2.

Remark 4.4.2. We will describe how to choose the Gram matrix β for which we will

show that CΘϕ(ηF ),β is non-vanishing.

� Let detβ ∈ −d(Q×)2 . Then for (x1,x2) ∈ Ωβ , U(x1,x2)⊥ is split over Q due to

Proposition 4.2.3 and U(x1,x2)⊥ has signature (1,1). The same arguments as in

the proof of Lemma 3.1.3 show that the stabilizer ΓU ⊂ Γ of U = U(x1,x2) is

trivial if U⊥ is split over Q .

� For (x1,x2) =
((

a1 b1
b̄1 0

)
,
(
a2 b2
b̄2 0

))
∈ Ωβ,∞,+, we have

β =

(
β11 β12

β21 β22

)
=

(
b1b̄1

1
2(b1b̄2 + b̄1b2)

1
2(b1b̄2 + b̄1b2) b2b̄2

)
.
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We want this pair to satisfy the condition † as in Remark 4.2.6. This will allow

us to apply Lemma 4.2.5 to deduce that the corresponding cusp zU(x1,x2) runs

through all the representatives in f−1/O . For the non-vanishing of ϕχm
q at split

or inert q dividing f , we only count (x1,x2) such that bi (i = 1, 2) is divisible

by m . Via imposing conditions on β itself, we can achieve that for any pair

(x1,x2) in Ωβ,∞,+ the assumption † as in Remark 4.2.6 holds. Explicit examples

of β will be given at the end of the subsection 4.4.1, see from Example 4.4.6 to

Example 4.4.11.

Assume that β is given as in above Remark 4.4.2. For (x1,x2) in Ωβ,∞,+ , we

have (
b1

b2

)
= m

(
x y

z w

)(
1

ω

)
if d ≡ 1 (4.24)

or (
b1

b2

)
=

1

2
m

(
x y

z w

)(
1

ω

)
if d ≡ 2, 3 (4.25)

with x, y, z, w ∈ Z and xw − yz = ±1. We want to find out if there is another pair

(y1,y2) in Ωβ,∞,+ such that it gives rise to the same cycle DU as that generated by

(x1,x2).

Assume that such a pair (y1,y2) exists in Ωβ,∞,+ . For U(x1,x2) = U(y1,y2)

we consider an element σ =
(
a b
c d

)
∈ GL2(Q) such that(

a b

c d

)(
x1

x2

)
=

(
y1

y2

)
. (4.26)

To make 〈u∞,x1,x2, uκj 〉 and 〈u∞,y1,y2, uκj 〉 represent the same orientation, we need

σ ∈ GL+
2 (Q). Additionally the Gram matrix β ’s corresponding to (x1,x2) and (y1,y2)

must be identical.

Expressing (yi,yj) in terms of (xi,xj) and using bilinearity, we have

(y1,y1) = a2(x1,x1) + 2ab(x1,x2) + b2(x2,x2),

(y2,y2) = c2(x1,x1) + 2cd(x1,x2) + d2(x2,x2),

(y1,y2) = ac(x1,x1) + (ad+ bc)(x1,x2) + bd(x2,x2).
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Consider that detβ is preserved; more explicitly,

detβ = det((yi,yj)) = (y1,y1)(y2,y2)− (y1,y2)2

=a2c2(x1,x1)2 + b2d2(x2,x2)2 + 4abcd(x1,x2)2 + (a2d2 + b2c2)(x1,x1)(x2,x2)

+ 2ac(ad+ bc)(x1,x1)(x1,x2) + 2bd(ad+ bc)(x1,x2)(x2,x2)

− a2c2(x1,x1)2 − b2d2(x2,x2)2 − (ad+ bc)2(x1,x2)2 − 2abcd(x1,x1)(x2,x2)

− 2ac(ad+ bc)(x1,x1)(x1,x2)− 2bd(ad+ bc)(x1,x2)(x2,x2)

=(detσ)2 det((xi,xj)) = det((xi,xj)).

Since σ has positive determinant we know that σ ∈ SL2(Q).

Moreover, to preserve β the following identities must hold:

(x1,x1) = a2(x1,x1) + 2ab(x1,x2) + b2(x2,x2), (4.27)

(x2,x2) = c2(x1,x1) + 2cd(x1,x2) + d2(x2,x2), (4.28)

(x1,x2) = ac(x1,x1) + (ad+ bc)(x1,x2) + bd(x2,x2). (4.29)

As detσ = ad− bc = 1, we can rewrite (4.29) as

ac(x1,x1) + 2bc(x1,x2) + bd(x2,x2) = 0. (4.30)

We will describe σ in different cases in the following.

(I) Let b be 0. From (4.27) we know that a2 = 1, and from (4.29) we have that

(x1,x2) = ac(x1,x1)+(x1,x2) which implies c = 0. So σ = ± ( 1 0
0 1 ). In the same

way, if c = 0 then σ = ± ( 1 0
0 1 ).

(II) Assume that bc 6= 0. Substituting (x1,x2) in (4.27), we have

(x1,x1) = a2(x1,x1) + b2(x2,x2)− a

c
(ac(x1,x1) + bd(x2,x2))

which is simplified to be

c(x1,x1) + b(x2,x2) = 0. (4.31)

Combining (4.30) and (4.31) we have

ac(x1,x1) + 2bc(x1,x2)− cd(x1,x1) = 0

and then d = a+ 2b (x1,x2)
(x1,x1) . As ad− bd = 1, we have

a2 + 2ab
(x1,x2)

(x1,x1)
+ b2

(x2,x2)

(x1,x1)
= 1. (4.32)

Set x1 =
(
a1 b1
b̄1 d1

)
, x2 =

(
a2 b2
b̄2 d2

)
, y1 =

(
a′1 b

′
1

b̄′1 d
′
1

)
and y2 =

(
a′2 b

′
2

b̄′2 d
′
2

)
. Combining

(4.24) and (4.26), we can rewrite

b′1 = ab1 + bb2 = m((ax+ bz) + (ay + bw)ω)
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or combining (4.25) and (4.26)

b′1 = ab1 + bb2 =
1

2
((ax+ bz) + (ay + bw)ω).

Then we need ax+bz = µ ∈ Z and ay+bw = ν ∈ Z . Solving these two equations

we get

a =
µδ − νγ
αδ − βγ

∈ Z and b =
να− µβ
αδ − βγ

∈ Z.

Similarly, we can deduce that c, d ∈ Z when treating b′2 . Therefore, the linear

transform σ ∈ SL2(Q) on (x1,x2) ∈ Ωβ,κi,+ generates the same cycle, but the

Schwartz function on (y1,y2) vanishes if σ /∈ SL2(Z).

For particular choices of βwe get limited possibilities of above σ . We can rewrite

(4.32) as (
a+ b

(x1,x2)

(x1,x1)

)2

+ b2
(x1,x1)(x2,x2)− (x1,x2)2

(x1,x1)2
= 1. (4.33)

(II.1) If (x1,x2) = 0 and (x1,x1) = (x2,x2), then a2 = 0 as bc 6= 0 by our

assumption. So in this case σ = ±
(

0 1
−1 0

)
.

(II.2) If (x1,x2) = 0 and (x1,x1) < (x2,x2), i.e. detβ
(x1,x1)2

> 1, then there is no

such a σ that bc 6= 0.

(II.3) If (x1,x2) 6= 0 and (x1,x1)(x2,x2)−(x1,x2)2

(x1,x1)2
> 1, then b has to be 0 which is a

contradiction to bc 6= 0.

Remark 4.4.3. The possibilities of σ in (4.26) will determine the constant µβ in

Proposition 4.4.5. After the whole treatment of this section 4.4, we will see that this

µβ does not effect the non-vanishing of our theta liftings since it appears in the Fourier

coefficient as a non-zero multiplier. In Example from 4.4.6 to 4.4.11, we will show how

to get the exact values of µβ .

4.4.1 On cycles through ∞

We will first calculate the part I∞ corresponding to the cusp ∞ as in (4.23). We pick

a fundamental domain for Γ∞\DU and integrate with respect to the cycle. Since we

are integrating along a vertical path with z -coordinate constant, we can ignore dz and

dz̄ . We obtain

I∞ =
∑

(x1,x2)∈Γ∞\Ωβ,∞,+

ϕnew
f (x1,x2)

∫
(z,r)∈CU(x1,x2)

1

2
F1(z, r)dr. (4.34)

Lemma 4.4.4. For (x1,x2) ∈ Γ∞\Ωβ,∞,+ , we have

ϕnew
f (x1,x2) = λm,nϕf (x1,x2)
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where

λm,n =
∏

q1|m|d|

[Γ0(q1) : Γ(q1)]
∏

q2 above ramified 2

[Γ0(q2) : Γ(q2)]
∏
q3|n

[Γ0(q3) : Γ(q3)].

Proof. Note that any pair (x1,x2) in Ωβ,∞ is of form
((

a1 b1
b̄1 0

)
,
(
a2 b2
b̄2 0

))
. Recall from

Section 1.3, for a ∈ O× satisfying ((a), f) = 1 we have∏
v|f

χ̃v(av) =
∏
v-f

χ̃−1
v (av) = χ−1((a)).

Then, for our choice of finite Schwartz function ϕf , we have

ϕf (x1,x2) =
∏
v|f

χ̃m,v

(
a2b1 − a1b2

m

)

=
∏
v-f

χ̃−1
m,v

(
a2b1 − a1b2

m

)
= χ−1

((
a2b1 − a1b2

m

))
or

ϕf (x1,x2) = χ−1

((
2(a2b1 − a1b2)

m

))
.

Let q be the split prime dividing m . Consider the representative

γ = (γ1, γ2) =

((
xγ,1 yγ,1

0 x−1
γ,1

)
,

(
xγ,2 yγ,2

0 x−1
γ,2

))
for Γ0(q)/Γ(q) with [xγ,j ] ∈ (O/(q))× and [yγ,j ] ∈ O/(q). By the computation in the

proof of Lemma 4.3.4, we can observe that

ϕχm,new
q (x1,x2) =

∑
[γ]∈Γ0(q)/Γ(q)

(χ̃m,qχ̃m,q̄)(x
−2
γ,1)(χ̃m,qχ̃m,q̄)

(
a2b1 − a1b2

m

)

=
∑

[γ]∈Γ0(q)/Γ(q)

(χ̃m,qχ̃m,q̄)

(
a2b1 − a1b2

m

)
= [Γ0(q) : Γ(q)]ϕχm

q (x1,x2)

Similarly we have for inert q|m

ϕχm,new
q (x1,x2) = [Γ0(q) : Γ(q)]ϕχm

q (x1,x2),

and for ramified prime q with (q) = q2

ϕχm,new
q (x1,x2) = [Γ0(q) : Γ(q)]ϕχm

q (x1,x2).

At the place q|N(n) we will show that

ϕn,new
q = [Γ0(q) : Γ(q)]ϕn

q .
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For q split, set xi =

(
ai bi

ci 0

)
and compute

w(1, γ) · (x1,x2) =

((
∗ x−1

γ1 x
−1
γ2 b1

xγ1xγ2c1 0

)
,

(
∗ x−1

γ1 x
−1
γ2 b2

xγ1xγ2c2 0

))
.

It is not hard to observe that the condition on b1c2 + b2c1 is preserved as xγ,j ∈ Z×q .

It follow that

w(1, γ)ϕq(x1,x2) = ϕq(x1,x2)

which implies the assertion. For q inert, set xi =

(
bi ai

√
d

0 b̄i

)
and compute

γ−1 · (x1,x2) =

((
x−1
γ x̄γb1 ∗

0 xγ x̄
−1
γ b̄1

)
,

(
x−1
γ x̄γb2 ∗

0 xγ x̄
−1
γ b̄2

))
.

Again the condition on b1b̄2 + b̄1b2 is preserved and so the assertion follows. The case

at ramified 2 can be treated similarly.

Now we have proven the lemma.

Proposition 4.4.5. Assume that the Gram matrix β is chosen so that the condition

† in Lemma 4.2.5 is satisfied. Then we can calculate

I∞ =
µβλm,nL(F , χm, 1)

2A(1, χm, 1)
(4.35)

where µβ is a non-zero integer depending on β as stated in Remark 4.4.3 and A(1, χm, 1)

is given explicitly in Theorem 1.4.12.

Proof. By the above lemma, we can express

I∞ =
∑

(x1,x2)∈Γ∞\Ωβ,∞,+

ϕnew
f (x1,x2)

∫
(z,r)∈CU(x1,x2)

1

2
F1(z, r)dr

=λm,n
∑

(x1,x2)∈Γ∞\Ωβ,∞,+

ϕf (x1,x2)

∫
(z,r)∈CU(x1,x2)

1

2
F1(z, r)dr.

Under our assumption on β , by Lemma 4.2.5 we have

I∞ = µβλm,n
∑

[zU ]∈f−1/O,(zU f,f)=1

χ−1
m (zU f)

∫ ∞
0

1

2
F1(z, r)dr

where µβ is a non-zero integer depending on the possibilities of σ as discussed in

Remark 4.4.3. At last, by Theorem 1.4.12 with n = 1, we can compute

I∞ = µβλm,n
∑

[zU ]∈f−1/O,(zU f,f)=1

χ−1
m (zU f)

∫ ∞
0

1

2
F1(z, r)dr =

µβλm,nL(F , χm, 1)

2A(1, χm, 1)
.
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For a diagonal Gram matrix β , the pair (x1,x2) ∈ Ωβ,∞,+ has b1b̄2 + b̄1b2 = 0.

It follows that ϕn
q is vanishing on such a pair (x1,x2). So, for the non-vanishing of I∞ ,

the Gram matrix β being diagonal is ruled out of our consideration. In the following

we give some examples of β satisfying the condition † (as promised in Remark 4.4.2)

for which I∞ can be expressed in terms of L(F , χm, 1).

Example 4.4.6. Let F = Q(
√
−3) with dF = −3 and O = Z[ω] with ω = 1+

√
−3

2 .

Suppose that

β =

(
b1b̄1

1
2(b1b̄2 + b̄1b2)

1
2(b1b̄2 + b̄1b2) b2b̄2

)
=

(
m2 1

2m
2

1
2m

2 m2

)
.

We have

I∞ =
4λm,nL(F , χm, 1)

A(1, χm, 1)
.

Proof. For the non-vanishing of ϕχm
q , we need m|bi . Solving bib̄i = m2 , we must take

bi = ±m , ±mω or ±mω̄ . Observing

(x1,x2) =
1

2
(b1b̄2 + b̄1b2) =

1

2
m2,

we can determine bi with the condition † as in Proposition 4.2.5 satisfied:{
b1 = m

b2 = mω
∼

(
b1

b2

)
= m

(
1 0

0 1

)(
1

ω

)
{
b1 = m

b2 = mω̄
∼

(
b1

b2

)
= m

(
1 0

1 −1

)(
1

ω

)
{
b1 = −m
b2 = −mω

∼

(
b1

b2

)
= m

(
−1 0

0 −1

)(
1

ω

)
{
b1 = −m
b2 = −mω̄

∼

(
b1

b2

)
= m

(
−1 0

−1 1

)(
1

ω

)
{
b1 = mω or mω̄

b2 = m,

{
b1 = −mω or −mω̄
b2 = −m.

We have seen in Lemma 4.2.7 that the sign of Im(b1b̄2) determines the orientation

ε of TZ(DU ) via εIm(b1b̄2) > 0. If the cycle DU integrated over is directed from the

cusp on the complex plane to the cusp ∞ , we need ε < 0 which implies Im(b1b̄2) < 0.

We will list all pairs in Γ∞\Ωβ,∞,+ with Im(b1b̄2) < 0.

First we consider one pair

(x1,1,x1,2) =

((
a1,1 m

m 0

)
,

(
a1,2 mω

mω̄ 0

))
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with a1,1, a1,2 ∈ Z which gives rise to the cycle DU(x1,1,x1,2) directed from the cusp

zU(x1,1,x1,2) =
a1,1ω−a1,2
m
√
−3

∈ F to the cusp ∞ . Rewriting (4.32) as a2 − ab+ b2 = 1, we

have either a2 = 1, b2 = 0 or a2 = 0, b2 = 1 and then σ = ± ( 1 0
0 1 ) or ±

(
0 1
−1 0

)
. So the

following four pairs give rise to the same cycle DU(x1,1,x1,2) :

(x1,1,x1,2), (−x1,1,−x1,2), (x1,2,−x1,1), (−x1,2,x1,1). (4.36)

Lemma 4.2.5 tells us that for (x1,1,x1,2) ∈ Γ∞\Ωβ,∞,+ , zU(x1,1,x1,2) ranges over f−1/O
with f =

√
−3m .

Suppose that

(x2,1,x2,2) =

((
a2,1 −m
−m 0

)
,

(
a2,2 −mω̄
−mω 0

))
with a2,1, a2,2 ∈ Z is another pair in Ωβ,∞,+ which gives rise to the cycle DU(x2,1,x2,2)

directed from the cusp zU(x2,1,x2,2) =
a2,1ω̄−a2,2
m
√
−3

∈ F to the cusp ∞ . Similarly we have

following pairs

(x2,1,x2,2), (−x2,1,−x2,2), (x2,2,−x2,1), (−x2,2,x2,1) (4.37)

giving rise to the same cycle DU(x2,1,x2,2) . Also for (x2,1,x2,2) ∈ Γ∞\Ωβ,∞,+ we have

zU(x1,1,x1,2) running through f−1/O with f =
√
−3m .

It is obvious that the eight pairs in (4.36) and (4.37) are not Γ∞ -equivalent since

the Γ∞ -action on the pair preserves off-diagonal entries of each component of the pair.

Then we can split I∞ as

I∞ =I(x1,1,x1,2) + I(−x1,1,−x1,2) + I(x1,2,−x1,1) + I(−x1,2,x1,1)

+ I(x2,1,x2,2) + I(−x2,1,−x2,2) + I(x2,2,−x2,1) + I(−x2,2,x2,1),

where the subscript (−,−) indicates the sum as in (4.34) over [zU(−,−)] ∈ f−1/O . By

Theorem 1.4.12 with n = 1, we can calculate

I(x1,1,x1,2) = I(x2,1,x2,2) =
λm,nL(F , χm, 1)

2A(1, χm, 1)
.

So, in this case we have µβ = 8 and then we can deduce that

I∞ = 8 · I(x1,1,x1,2) =
4λm,nL(F , χm, 1)

A(1, χm, 1)
.

Example 4.4.7. Let F = Q(
√
d) with d ≡ 1 (mod 4) and d 6= −3 in which case

dF = d and O = Z[ω] with ω = 1+
√
d

2 . Suppose that

β =

(
m2 1

2m
2

1
2m

2 1−d
4 m2

)
.
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We have

I∞ =
2λm,nL(F , χm, 1)

A(1, χm, 1)
.

Proof. For the non-vanishing of ϕχm
q and by solving (xi,xj), we can determine that{

b1 = m

b2 = mω or mω̄,

{
b1 = −m
b2 = −mω or −mω̄

with the condition † holding.

Again in this case we need Im(b1b̄2) < 0. Suppose that

(x1,1,x1,2) =

((
a1,1 m

m 0

)
,

(
a1,2 mω

mω̄ 0

))
gives rise to the cycle DU(x1,1,x1,2) directed from zU(x1,1,x1,2) to the cusp ∞ and that

(x2,1,x2,2) =

((
a2,1 −m
−m 0

)
,

(
a2,2 −mω
−mω̄ 0

))
to the cycle DU(x2,1,x2,2) directed from zU(x2,1,x2,2) to the cusp ∞ . Combing (I) and

(II.3), we have σ = ± ( 1 0
0 1 ). So, in this case we have µβ = 4 and then we can calculate

I∞ =I(x1,1,x1,2) + I(−x1,1,−x1,2) + I(x2,1,x2,2) + I(−x2,1,−x2,2)

=4I(x1,1,x1,2) =
2λm,nL(F , χm, 1)

A(1, χm, 1)
.

Example 4.4.8. Let F = Q(
√
d) with d ≡ 2, 3 (mod 4) and d 6= −1 in which case

dF = 4d and O = Z[d] . Let

β =

(
1
4m

2 1
4nm

2

1
4nm

2 1
4(n2 − d)m2

)
with n ∈ Z coprime to 2n (for the non-vanishing of ϕn

q and ϕ2 ). We have

I∞ =
2λm,nL(F , χm, 1)

A(1, χm, 1)
.

Proof. For the non-vanishing of ϕf , via solving
(x1,x1) = 1

4

m2(x1,x2) = 1
2(b1b̄2 + b̄1b2) = 1

4nm
2

(x2,x2) = b2b̄2 = 1
4(n2 − d)m2
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we can determine that{
b1 = 1

2m

b2 = 1
2(n+

√
d)m

∼

(
b1

b2

)
=

1

2
m

(
1 0

n 1

)(
1√
d

)
{
b1 = 1

2m

b2 = 1
2(n−

√
d)m

∼

(
b1

b2

)
=

1

2
m

(
1 0

n −1

)(
1√
d

)
{
b1 = −1

2m

b2 = −1
2(n+

√
d)m

∼

(
b1

b2

)
=

1

2
m

(
−1 0

−n −1

)(
1√
d

)
{
b1 = −1

2m

b2 = −1
2(n−

√
d)m

∼

(
b1

b2

)
=

1

2
m

(
−1 0

−n 1

)(
1√
d

)
with the condition † holding.

For Im(b1b̄2) < 0, we consider

(x1,1,x1,2) =

((
a1,1

1
2m

1
2m 0

)
,

(
a1,2

1
2(n+

√
d)m

(n−
√
d)1

2m 0

))
and

(x2,1,x2,2) =

((
a2,1 −1

2m

−1
2m 0

)
,

(
a2,2

1
2(n−

√
d)m

1
2(n+

√
d)m 0

))
By (I) and (II.3), we have σ = ± ( 1 0

0 1 ). In this case we have µβ = 4 and then we get

I∞ =I(x1,1,x1,2) + I(−x1,1,−x1,2) + I(x2,1,x2,2) + I(−x2,1,−x2,2)

=4I(x1,1,x1,2) =
2λm,nL(F , χm, 1)

A(1, χm, 1)
.

Example 4.4.9. Let F = Q(i) with dF = −4 and O = Z[i] . Set

β =

(
1
4m

2 1
4nm

2

1
4nm

2 1
4(n2 + 1)m2

)
with 1 < n ∈ Z coprime to 2n (for the non-vanishing of ϕn

q and ϕ2 at ramified 2). We

have

I∞ =
4λm,nL(F , χm, 1)

A(1, χm, 1)
.

Proof. For the non-vanishing of ϕχm
q , via solving

(x1,x1) = 1
4m

2

(x1,x2) = 1
2(b1b̄2 + b̄1b2) = 1

4nm
2

(x2,x2) = b2b̄2 = 1
4(n2 + 1)m2
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we can determine that{
b1 = 1

2m

b2 = 1
2(n± i)m,

{
b1 = 1

2mi

b2 = 1
2(ni± 1)m,

{
b1 = −1

2m

b2 = −1
2(n± i)m,

{
b1 = −1

2mi

b2 = −1
2(ni± 1)m.

For Im(b1b̄2) < 0, we write

(x1,1,x1,2) =

((
a1,1

1
2m

1
2m 0

)
,

(
a1,2

1
2(n+ i)m

1
2(n− i)m 0

))
,

(x2,1,x2,2) =

((
a2,1 −1

2m

−1
2m 0

)
,

(
a2,2

1
2(n− i)m

1
2(n+ i)m 0

))
,

(x3,1,x3,2) =

((
a3,1

1
2mi

−1
2mi 0

)
,

(
a3,2

1
2(ni− 1)m

1
2(−ni− 1)m 0

))
,

(x4,1,x4,2) =

((
a4,1 −1

2mi
1
2mi 0

)
,

(
a4,2 −1

2(ni− 1)m
1
2(ni+ 1)m 0

))
.

By (I) and (II.3), we have σ = ± ( 1 0
0 1 ). So we have µβ = 8 and then

I∞ =I(x1,1,x1,2) + I(−x1,1,−x1,2) + I(x2,1,x2,2) + I(−x2,1,−x2,2)

I(x3,1,x3,2) + I(−x3,1,−x3,2) + I(x4,1,x4,2) + I(−x4,1,−x4,2)

=8I(x1,1,x1,2) =
4λm,nL(F , χm, 1)

A(1, χm, 1)
.

Example 4.4.10. Let F = Q(
√
d) with d ≡ 1 (mod 4) and d 6= −3 in which case

dF = d and O = Z[ω] with ω = 1+
√
d

2 . Set

β =

(
m2 nm2

2
nm2

2
n2−d

4 m2

)
with 1 < n ∈ Z coprime to qn . We have

I∞ =
2λm,nL(F , χm, 1)

A(1, χm, 1)
.

Proof. We can determine that{
b1 = m

b2 = n±
√
d

2 m
or

{
b1 = −m
b2 = −n±

√
d

2 m.

It is not hard to check that the condition † is satisfied. For Im(b1b̄2) < 0, we write

(x1,1,x1,2) =

((
a1,1 m

m 0

)
,

(
a1,2

n+
√
d

2 m
n−
√
d

2 m 0

))
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and

(x2,1,x2,2) =

((
a2,1 −m
−m 0

)
,

(
a2,2 −n+

√
d

2 m

−n−
√
d

2 m 0

))
.

Similarly we get µβ = 4 and

I∞ =I(x1,1,x1,2) + I(−x1,1,−x1,2) + I(x2,1,x2,2) + I(−x2,1,−x2,2)

=4I(x1,1,x1,2) =
2λm,nL(F , χm, 1)

A(1, χm, 1)
.

Example 4.4.11. Let F = Q(
√
−3) with dF = d = −3 and O = Z[ω] with ω =

1+
√
−3

2 . Set

β =

(
m2 nm2

2
nm2

2
n2−d

4 m2

)
with odd n ∈ Z greater than 1 and coprime to n . We have

I∞ =
3λm,nL(F , χm, 1)

A(1, χm, 1)
.

Proof. We can determine bi :{
b1 = m

b2 = n+
√
d

2 m
∼

(
b1

b2

)
= m

(
1 0
n−1

2 1

)(
1

ω

)
{
b1 = m

b2 = n−
√
d

2 m
∼

(
b1

b2

)
= m

(
1 0
n+1

2 −1

)(
1

ω

)
{
b1 = mω

b2 = n+
√
d

2 mω
∼

(
b1

b2

)
= m

(
0 1
d−1

4
n+1

2

)(
1

ω

)
{
b1 = mω

b2 = n−
√
d

2 mω
∼

(
b1

b2

)
= m

(
0 1

1−d
4

n−1
2

)(
1

ω

)
{
b1 = mω̄

b2 = n+
√
d

2 mω̄
∼

(
b1

b2

)
= m

(
1 −1

2n−d−1
4

1−n
2

)(
1

ω

)
{
b1 = mω̄

b2 = n−
√
d

2 mω̄
∼

(
b1

b2

)
= m

(
1 −1

2n+d+1
4 −n+1

2

)(
1

ω

)
and {

b1 = −m
b2 = −n±

√
d

2 m

{
b1 = −mω
b2 = −n±

√
d

2 mω

{
b1 = −mω̄
b2 = −n±

√
d

2 mω̄.
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For Im(b1b̄2) < 0, we consider

(x1,1,x1,2) =

((
a1,1 m

m 0

)
,

(
a1,2

n+
√
d

2 m
n−
√
d

2 m 0

))
,

(x2,1,x2,2) =

((
a2,1 mω

mω̄ 0

)
,

(
a2,2

n+
√
d

2 ω
n−
√
d

2 mω̄ 0

))
,

(x3,1,x3,2) =

((
a3,1 mω̄

mω 0

)
,

(
a3,2

n−
√
d

2 ω̄
n+
√
d

2 mω 0

))
.

and (−x1,1,−x1,2), (−x2,1,−x2,2), (−x3,1,−x3,2). In this case we have µβ = 6 and

I∞ = 6I(x1,1,x1,2) =
3λm,nL(F , χm, 1)

A(1, χm, 1)
.

Remark. We can swap the diagonal entries of each β in Example from 4.4.6 to 4.4.11

and obtain same results.

4.4.2 On other cycles

We introduce the Atkin-Lehner operator as defined in M. Lingham’s thesis [Lin05,

Section 5.3]. Lingham developed this for all odd class numbers while we shall only

use results for class number 1 since then we can follow Asai’s treatment of cusps (see

[Asa76, Section 1.1]) in the case of principal ideal domain. For m in O dividing n such

that m and n
m are coprime, take

Wm =

(
x y

z w

)
(4.38)

where x ∈ m , y ∈ O , z ∈ n ,w ∈ m and 〈xw − yz〉 = m .

Proposition 4.4.12. (1) For any ideal m dividing n such that m and n
m are co-

prime, we can find a matrix of the form (4.38).

(2) Wm is an involution (i.e. W 2
m (modulo scalars) lies in Γ0(n)), normalizes Γ0(n)

and is independent of the particular choice of x, y, z, w .

Proof. See [Lin05, Lemma 5.3.1 and Lemma 5.3.2].

In particular if we take m = O we get an element of Γ0(n) and if we take m = n

we get the analogue of the classical Fricke involution. One can check that the Fricke
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involution can be formed as a product of Atkin-Lehner involutions, where m runs over

prime power divisors of n .

Lemma 4.4.13. Let α1 = p1
q1

, α2 = p2
q2

be two cusps such that 〈p1, q1〉 = 〈p2, q2〉 = O .

Then the following are equivalent

(1) α2 = Mα1 for some M ∈ Γ0(n);

(2) q2s1 − q1s2 ∈ q1q2O + n, where si satisfies pisi ≡ 1 (mod qi ).

Proof. See [Lin05, Lemma 1.5.1] for a more general version holding over any number

field.

It follows that two cusps are equivalent relative to Γ0(n) if and only if the ide-

als generated by the denominators have the same ‘greatest common divisor’ with n ,

so each equivalence class of cusps is in one-to-one correspondence with each ordered

decomposition n = ML . Following Asai’s treatment (see [Asa76, Section 1.1]) again as

in section 3.3.2, we say a cusp κ2/κ1 belongs to L-class if gcd(κ1O, n) = L . For each

decomposition n = ML with M = MO and any cusp κ = κ2/κ1 of L-class, we can

take a typical matrix Wκ which transforms κ to ∞ :

Wκ =

(
1 0

0 M

)
ακ with ακ =

(
Mλ1 λ2

−κ1 κ2

)
∈ SL2(O). (4.39)

As 〈κ1, κ2〉 = 〈κ1,M〉 = O there exist b, c ∈ O such that bκ2 ≡ 1 (mod κ1 ) and

cM ≡ 1 (mod κ1 ). Taking λ1 = bc ∈ O we observe that λ2 = 1−Mλ1κ2
κ1

belongs to

O . So Wκ is well-defined. It is not difficult to see that Wκ is of type of Atkin-Lehner

operator as defined in (4.38).

Fix a representative κi = κi,2/κi,1 ∈ P1(F )/Γ of each equivalence class of cusps

corresponding to the ordered decomposition m
√
dFn = MiLi with Mi generated by

Mi and Li by Li . Write as defined in (4.39)

Wκi =

(
1 0

0 Mi

)(
Miλ1 λ2

−κi,1 κi,2

)
which transforms κi to ∞ .

It is well known that the fractional linear transformation on the extended upper

half space is composition of an even number of inversions (see e.g. [Ber05, Section 2.3]).

So the action of GL2(C) on the subspace U preserves the orientation. By Proposition

4.2.2 we know that if U(x1,x2) ⊥ ν(∞) then U(W−1
κi · (x1,x2)) ⊥ ν(W−1

κi · ∞). We

have proven that the bilinear form on a pair of vectors is preserved under the action of
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GL2(C) in (4.3) and hence so is the Gram matrix β . Thus for (x1,x2) ∈ Ωβ,∞,+ we

have | det(Wκi)| ·W−1
κi · (x1,x2) ∈ Ωβ,κi,+ . Then we obtain

Iκi =
∑

(x1,x2)∈Γκi\Ωβ,κi,+

ϕnew
f (x1,x2)

∫
CU(x1,x2)

ηF

=
∑

(x1,x2)∈Γ∞\Ωβ,∞,+

ϕnew
f (| det(Wκi)| ·W−1

κi · (x1,x2))

∫
C
U(| det(Wκi )|·W

−1
κi
·(x1,x2))

ηF

=
∑

(x1,x2)∈Γ∞\Ωβ,∞,+

ϕnew
f (| det(Wκi)| ·W−1

κi · (x1,x2))

∫
C
U(W−1

κi
·(x1,x2))

ηF

where the last equality is the consequence of U(|det(Wκi)| ·W−1
κi · (x1,x2)) = U(W−1

κi ·
(x1,x2)).

Remark 4.4.14. Slightly different to what we have done in the Shintani case, we intro-

duce the factor |det(Wκi)| to make sure that for (x1,x2) ∈ Γκi\Ωβ,κi,+ , |det(Wκi)|−1 ·
Wκi · (x1,x2) lies in V (Q)2 (so in Γ∞\Ωβ,∞,+ ) but not just in V (R)2 .

Next we will analyze ϕnew
f (|det(Wκi)| ·W−1

κi · (x1,x2)) for (x1,x2) ∈ Γ∞\Ωβ,∞,+ .

For simplicity we write χ = χm .

We begin the calculation in a slightly more general setting. Given g =

(
x y

z w

)

and (x1,x2) =

((
a1 b1

b̄1 0

)
,

(
a2 b2

b̄2 0

))
, we compute((

a′1 b′1
b̄′1 d′1

)
,

(
a′2 b′2
b̄′2 d′2

))
:= | det g|−1 · g ·

((
a1 b1

b̄1 0

)
,

(
a2 b2

b̄2 0

))
=|det(g)|−2

((
a1xx̄+b̄1x̄y+b1xȳ a1xz̄+b̄1yz̄+b1xw̄
a1x̄z+b̄1x̄w+b1ȳz a1zz̄+b̄1z̄w+b1zw̄

)
,
(
a2xx̄+b̄2x̄y+b2xȳ a2xz̄+b̄2yz̄+b2xw̄
a2x̄z+b̄2x̄w+b2ȳz a2zz̄+b̄2z̄w+b2zw̄

))
(4.40)

and then

(a′2b
′
1 − a′1b′2) =| det(g)|−4[(a2xx̄+ b̄2x̄y + b2xȳ)(a1xz̄ + b̄1yz̄ + b1xw̄)

− (a1xx̄+ b̄1x̄y + b1xȳ)(a2xz̄ + b̄2yz̄ + b2xw̄)]

=|det(g)|−4[a2b1(xx̄xw̄ − xȳxz̄)− a1b2(xx̄xw̄ − xȳxz̄)

+ b1b̄2(xx̄yw̄ − xȳxz̄) + b̄1b2(xȳyz̄ − x̄yxw̄)]

= det(g)−2 det(ḡ)−1[(a2b1 − a1b2)x2 + (b1b̄2 − b̄1b2)xy], (4.41)
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(b̄′2d
′
1 − b̄′1d′2) =|det(g)|−4[(a2x̄z + b̄2x̄w + b2ȳz)(a1zz̄ + b̄1z̄w + b1zw̄)

− (a1x̄z + b̄1x̄w + b1ȳz)(a2zz̄ + b̄2z̄w + b2zw̄)]

=|det(g)|−4[a2b1(x̄zzw̄ − ȳzzz̄)− a1b2(x̄zzw̄ − ȳzzz̄)]

+ b1b̄2(x̄wzw̄ − ȳzz̄w)− b̄1b2(x̄wzw̄ − ȳzz̄w)

= det(g)−2 det(ḡ)−1[(a2b1 − a1b2)z2 + (b1b̄2 − b̄1b2)wz]. (4.42)

Remark 4.4.15. With our choice of β , the pair (x1,x2) ∈ Γ∞\Ωβ,∞,+ satisfies the

condition † as in Remark 4.2.6. It means that bi ∈ qOq × q̄Oq̄ (i.e. q|bi ) for split q|m
with (q) = qq̄ , and bi ∈ qOq for inert q|m with (q) = q . So b1b̄2 − b̄1b2 appearing in

(4.41) and (4.42) turns out to be divisible by q2 for each prime q|m .

Recall the ordered decomposition fn = MiLi (or fnq2 = MiLi with q2 above

2 when d ≡ 2, 3 mod 4) and its corresponding representative κi =
κi,2
κi,1

of equivalence

class of cusps with κi,1 and κi,2 coprime.

Lemma 4.4.16 (Analogue of Lemma 3.3.3). For (x1,x2) ∈ Γ∞\Ωβ,∞,+ and non-trivial

Mi dividing fn when d ≡ 1 mod 4 (or fnq2 with q2 above 2 when d ≡ 2, 3 mod 4), we

have that ϕnew
f is vanishing on | det(Wκi)| ·W−1

κi · (x1,x2).

Proof. Write

W−1
κi =

(
κi,2 − λ2

Mi

κi,1 λ1

)
=:

(
x y

z w

)
with det(W−1

κi ) =
1

Mi

and for (x1,x2) =

((
a1 b1

b̄1 0

)
,

(
a2 b2

b̄2 0

))
∈ Γ∞\Ωβ,∞,+ , set

(x′1,x
′
2) =

((
a′1 b′1
b̄′1 d′1

)
,

(
a′2 b′2
b̄′2 d′2

))
:= |det(Wκi)| ·W−1

κi ·

((
a1 b1

b̄1 0

)
,

(
a1 b1

b̄1 0

))
.

By (4.40), we have for j = 1, 2

a′j =|Mi|2(ajxx̄+ b̄j x̄y + bjxȳ) = |Mi|2ajκi,2κ̄i,2 −M ib̄j κ̄i,2λ2 −Mibjκi,2λ̄2,

b′j =|Mi|2(ajxz̄ + b̄jyz̄ + bjxw̄) = |Mi|2ajκi,2κ̄i,1 −M ib̄jλ2κ̄i,1 + |Mi|2bjκi,2λ̄1,

b̄′j =|Mi|2(aj x̄z + bj ȳz + b̄j x̄w) = |Mi|2aj κ̄i,2κi,1 −Mibj λ̄2κi,1 + |Mi|2b̄j κ̄i,2λ1,

d′j =|Mi|2(ajzz̄ + b̄j z̄w + bjzw̄) = |Mi|2(ajκi,1κ̄i,1 + b̄j κ̄i,1λ1 + bjκi,1λ̄1).

(I) Let q a prime dividing m|dF | which is split, inert or ramified. We will only treat

in details the case when q is split with (q) = qq̄ and other cases can be treated

similarly. We want to show that if

(Mi, (m)) = q, (Mi, (m)) = q̄ or (Mi, (m)) = (q)
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then ω(1, γ)ϕχq is vanishing on | det(Wκi)| ·W−1
κi · (x1,x2) for [γ] ∈ Γ0(q)/Γ(q).

(I.1) Let (Mi, (m)) = q and then we have

q|Mi, q̄|Mi, q̄|(κi,1), q|(κ̄i,1), q̄ - (κi,2), q - (κ̄i,2)

By Remark 4.4.15, there is no need to discuss the integrality of bj but we

care for that of aj .

Suppose that aj ∈ Zq . It is easy to observe that a′j , b
′
j , b̄
′
j , d
′
j ∈ qOq . Set

γ = (γ1, γ2) =

((
u1 v1

0 u−1
1

)
,

(
u2 v2

0 u−1
2

))
with [u1], [u2] ∈ (O/(q))× and [v1], [v2] ∈ O/(q). We write

(x′′1,x
′′
2) =

((
a′′1 b′′1
c′′1 d′′1

)
,

(
a′′2 b′′2
c′′2 d′′2

))
:= (γ−1

1 x′1
t(γ−1

2 )∗, γ−1
1 x′2

t(γ−1
2 )∗)

and compute(
a′′j b′′j
c′′j d′′j

)
=

(
u−1

1 −v1

0 u1

)(
a′j b′j
b̄′j d′j

)(
u2 0

v2 u−1
2

)

=

(
u−1

1 u2a
′
j − v1u2b̄

′
j + u−1

1 v2b
′
j − v1v2d

′
j u−1

1 u−1
2 b′j − v1u

−1
2 d′j

u1u2b̄
′
j + u1v2d

′
j u1u

−1
2 d′j

)
.

Then, as a′j , b
′
j , b̄
′
j , d
′
j ∈ qOq , we can observe that a′′j , b

′′
j , c
′′
j , d
′′
j ∈ qOq as well

which implies that

a′′2b
′′
1 − a′′1b′′2
m

+
c′′2d
′
1 − c′′1d′2
m

∈ qOq.

It immediately follows that ω(1, γ)ϕχ,new
q is vanishing on | det(Wκi)| ·W−1

κi ·
(x1,x2).

Suppose that aj /∈ Zq and set lq = min{ordq(aj)} ≤ −1. Assume that

ω(1, γ)ϕχ,new
q is non-vanishing on |det(Wκi)| ·W−1

κi · (x1,x2) which requires

that a′′j , d
′′
j ∈ Zq and b′′j , c

′′
j ∈ qOq .

� We first consider v2 ∈ (O/(q))× . Observing

c′′j = u1u2b̄
′
j + u1v2d

′
j and d′′j = u1u

−1
2 d′j ,

we know that for c′′j ∈ qOq and d′′j ∈ Zq we need d′j ∈ Zq and at least

b̄′j ∈ Oq . As

b̄′j = |Mi|2aj κ̄i,2κi,1 −Mibj λ̄2κi,1 + |Mi|2b̄j κ̄i,2λ1

with κ̄i,2, κi,1 ∈ O×q , we then need Mi ∈ q−lq which makes

d′j = |Mi|2(ajκi,1κ̄i,1 + b̄j κ̄i,1λ1 + bjκi,1λ̄1) (q|κi,1κ̄i,1)

lie in qZq . Looking back to c′′j = u1u2b̄
′
j + u1v2d

′
j ∈ qOq , that d′j ∈ qZq

makes b̄′j ∈ qOq . It follows that we need Mi ∈ q−lq+1Oq , a contradiction
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to that Mi is square-free.

� Let v2 = 0. Then we have(
a′′j b′′j
c′′j d′′j

)
=

(
∗ ∗

u1u2b̄
′
j u1u

−1
2 d′j

)
.

For c′′j ∈ qOq , we need

b̄′j = |Mi|2aj κ̄i,2κi,1−Mibj λ̄2κi,1+|Mi|2b̄j κ̄i,2λ1 ∈ qOq (κ̄i,2, κi,1 ∈ O×q )

which requires Mi ∈ q−lq+1Oq contradicting to that Mi is square-free.

Therefore, when (Mi, (m)) = q , we can deduce that ω(1, γ)ϕχq is vanishing

on | det(Wκi)| ·W−1
κi · (x1,x2).

(I.2) When (Mi, (m)) = q̄ , we can prove it in the same way.

(I.3) Let (Mi, (m)) = q and then we have q|Mi and κi,1, κ̄i,1 ∈ O×q . It is clear

for aj ∈ Zq .

Suppose that aj /∈ Zq and set lq = min{ordq(aj)} ≤ −1. First assume v1

is a unit. Let lq = −1. Then we have that all a′j , d
′
j , b
′
j , b̄
′
j are divisible by

q and so are a′′j , d
′′
j , b
′′
j , c
′′
j . Let lq = −2. It is clear that d′j ∈ Zq . Then, for

b′′j , b̄
′′
j ∈ qOq , we need b′j , b̄

′
j ∈ Oq . Expand

a′′2b
′′
1 − a′′1b′′2 =u−2

1 (a′2b
′
1 − a′1b′2) + u−1

1 v1(a′2d
′
1 − a′1d′2)

+ u−1
1 v1(b′1b̄

′
2 − b̄′1b′2) + v2

1(b̄′2d
′
1 − b̄′1d′2)

and

c′′2d
′′
1 − c′′1d′′2 = u2

1(b̄′2d
′
1 − b̄′1d′2).

It is not hard to observe that a′2d
′
1 − a′1d′2 ∈ q2Zq and b′1b̄

′
2 − b̄′1b′2 ∈ q2Oq .

By (4.41) and (4.42), we have

a′2d
′
1 − a′1d′2 = Mi|Mi|2((a2b1 − a1b2)κ2

i,2 + (b′1b̄
′
2 − b̄′1b′2)κ2

i,2(−λ/Mi))

and

b̄′2d
′
1 − b̄′1d′2 = Mi|Mi|2((a2b1 − a1b2)κ2

i,1 + (b′1b̄
′
2 − b̄′1b′2)κi,1λ1),

both of which lie in q2Oq . It follows again that

a′′2b
′′
1 − a′′1b′′2
m

+
c′′2d
′
1 − c′′1d′2
m

∈ qOq.

For lq < −2 there is no chance for d′′j ∈ Zq as Mi,1 is square-free. It is clear

for v1 = 0. Therefore ω(1, γ)ϕχq is vanishing on |det(Wκi)| ·W−1
κi · (x1,x2)

in this case.

(II) Next we consider ϕn
q for split q|N(n) and omit details for inert q . As discussed

in subsection 4.3.4, we can have (n, (q)) = q , (n, (q)) = q̄ or (n, (q)) = (q). Again

we want to show that if (n, (q))|Mi then ω(1, γ)ϕn
q is vanishing on |det(Wκi)| ·
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W−1
κi · (x1,x2) for [γ] ∈ Γ0(q)/Γ(q), Γ0(q̄)/Γ(q̄) or Γ0(q)/Γ(q) respectively.

Let aj ∈ Zq . Assume that (n, (q)) = q and q|Mi . Then it is clear that b̄′j ∈ qOq

and d′j ∈ qZq . Expanding

b′′1c
′′
2 + b′′2c

′′
1 =(u−1

1 u−1
2 b′1 − v1u

−1
2 d′1)(u1u2b̄

′
2 + u1v2d

′
2)

+ (u−1
1 u−1

2 b′2 − v1u
−1
2 d′2)(u1u2b̄

′
1 + u1v2d

′
1),

we see it is in qOq . So ω(1, γ)ϕn
q is vanishing on |det(Wκi)| ·W−1

κi · (x1,x2). Also

it is clear for q̄|Mi or (q)|Mi .

Let aj /∈ Zq and set lq = min{ordq(aj)} ≤ −1. Assume that (n, (q)) = q and

q|Mi . Then we have q - κi,1 . Look at

d′j = |Mi|2(ajκi,1κ̄i,1 + b̄j κ̄i,1λ1 + bjκi,1λ̄1).

Then there is no chance for d′′j = d′j to be in qZq as Mi is square-free. So

ω(1, γ)ϕn
q is vanishing on | det(Wκi)| · W−1

κi · (x1,x2). This also occurs in the

case that (n, (q)) = q̄ and q̄|Mi . Now assume that (n, (q)) = (q) and (q)|Mi .

If lq = −1, then we have b′j , b̄
′
j ∈ qOq which implies that b′′1c

′′
2 + b′′2c

′′
1 ∈ qOq .

If lq ≤ −2, we can observe that there is no room for d′′j = u1u
−1
2 d′j ∈ qZ for

square-free Mi .

Let q′ be another prime dividing N(n) with q′ = q′q̄′ . Similarly, if q′|Mi , q̄′|Mi

or (q)|Mi , we can show that ω(1, γ)ϕn
q′ is vanishing on |det(Wκi)|·W−1

κi ·(x1,x2).

(III) To finish our proof we consider ϕ2 if 2 is ramified with (2) = q2
2 . Set γ =(

u v

0 u−1

)
with [u] ∈ (O/q2)× and [v] ∈ O/q2 . We write

(x′′1,x
′′
2) =

((
b̄′′1 a′′1

√
d

c′′1
√
d b̄′′1

)
,

(
b̄′′2 a′′2

√
d

c′′2
√
d b̄′′2

))
:= (γx′1γ̄

∗, γx′2γ̄
∗).

Suppose that q2|Mi . If lq = min{ordq(aj)} ≥ −1, then we have b′j ∈ 1
q2
Oq2 and

then b′′j ∈ 1
q2
Oq2 as well. So b′′1 b̄

′′
2 ∈ 1

2Oq2 and then b′′1 b̄
′′
2 + b̄′′1b

′′
2 = 2Re(b′′1 b̄

′′
2) ∈ Z2

which makes ϕ2 vanish on |det(Wκi)|·W−1
κi ·(x1,x2). If lq = min{ordq(aj)} ≤ −2,

then there is no chance for d′j ∈ Z2 as Mi is square-free, and so for c′′j . So again

we have ω(1, γ)ϕ2 vanishing on | det(Wκi)| ·W−1
κi · (x1,x2).

If follows that Iκi is vanishing for κi 6=∞ . So we have proven our main theorem:

Theorem 4.4.17. Suppose that F = Q(
√
d) is an imaginary quadratic field of class

number 1 with the discriminant dF and denote its ring of integers by O . Let m be a

square-free product of inert or split primes, and put m = mO and f =
√
dm. Choose a
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quadratic Hecke character χm of conductor f. Given a square-free ideal n coprime to

(m|dF |), let F be a weight 2 Bianchi cusp form of level Γ0(n). Choose the Schwartz

function as in Remark 4.4.1 (1) and (2), and β as in Remark 4.4.2. Then the Fourier

coefficient of the theta lift at β as in (4.22) is

I∞ =
µβλm,nL(F , χm, 1)

2A(1, 1, χm, 1)

as in Proposition 4.4.5.

So, if L(F , χm, 1) 6= 0, we can deduce the non-vanishing of our theta lifting as

above.

§ 4.5 Non-vanishing of theta lifting

Recall from [CW94] that a new form in S2(Γ0(n)) is an eigenform for all the Hecke

operators Tp for p not dividing n , which is not induced from in S2(Γ0(m)) for any

level m properly dividing n . There is an involution J induced by the action on H3 of

the matrix ( ε 0
0 1 ), where ε generates the unit group of O . The effect of J on Fourier

coefficients is c(α) → c(εα); the involution commutes with the Hecke operators, and

splits S2(Γ0(n)) into two eigenspaces,

S2(Γ0(n)) = S+
2 (Γ0(n))⊕ S−2 (Γ0(n)).

Newforms in S+
2 (Γ0(n)) were called plusforms, and their Fourier coefficients satisfy the

additional condition c(εα) = c(α) for all α ∈ O . Denote by Snew
2 (Γ0(n)) the space of

newforms in S2(Γ0(n)) and by Snew,+
2 (Γ0(n)) the space of plusforms in Snew

2 (Γ0(n)).

More discussions on newforms and plusforms of weight 2 Bianchi modular forms can

be found in [CW94].

As discussed in Section 1.5,

β =

(
−dz
r
,
dr

r
,
dz̄

r

)
for (z, r) ∈ H3

is a basis for the left-invariant differential forms on H3 . Let F ∈ Snew
2 (Γ0(n)) and

recall its Mellin transform from [CW94, Section 2.5]:

Λ(F , s) =
(4π)2

|dF |
·
∫ ∞

0
t2s−2F · β (4.43)

for F = (F0,F1,F2) as given in (1.5) and (1.6).

Proposition 4.5.1. [CW94, Proposition 2.1] Let F ∈ Snew,+
2 (Γ0(n)). Then
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(1) For Re(s) > 3/2 we have

Λ(F , s) = (2π)2−2s|dF |s−1Γ(s)2L(F , s) (4.44)

for L(F , s) given in (1.7) with trivial character.

(2) Assume that F is an eigenform for the Fricke involution ωn =

(
0 −1

n 0

)
, i.e.,

F|ωn = εnF with εn = ±1. Then Λ(F , s) satisfies the functional equation

Λ(F , s) = −εnN(n)1−sΛ(F , 2− s). (4.45)

Put α(a) =

(
1 a

0 1

)
and ωN = ω(N) =

(
0 −1

N 0

)
. Let ψ be a character of

(O/mψ)× with conductor mψ . Similar to the twisted Hilbert modular forms [SW93,

Section 5], the twist of F by ψ can be defined as, for m ∈ mψ ,

Fψ = G(ψ−1, 1/m)−1
∑

u∈(O/mψ)×

ψ−1(u)F|2α(u/m)

where G(ψ−1, 1/m)−1 is the Gauss sum of ψ−1 .

Lemma 4.5.2. Let F ∈ S2(Γ0(n)), ψ a character of (O/mψ)× , and M the least

common multiple of n, m2
ψ , and mψ . Then Fψ ∈ S2(Γ0(M), ψ2).

Proof. We will apply Miyake’s treatment in [Miy06, Lemma 4.3.10] to our case without

any new techniques.

Let γ =

(
a b

cM d

)
∈ Γ0(M) where M ∈M and put

γ′ = α(u/m)γα(d2u/m)−1,

then γ′ ∈ Γ0(M) ⊂ Γ0(n). Writing γ′ =

(
a′ b′

c′ d′

)
, we have

F|2α(u/m)γ = F|2γ′α(d2u/m) = F|2α(d2u/m).

Therefore

Fψ|2γ = G(ψ−1, 1/m)−1
∑

u∈(O/mψ)∗

ψ−1(u)F|2α(u/m)γ

= G(ψ−1, 1/m)−1
∑

u∈(O/mψ)∗

ψ−1(u)F|2α(d2u/m)

= ψ(d2)G(ψ−1, 1/m)−1
∑

u∈(O/mψ)∗

ψ−1(d2u)F|2α(d2u/m)

= ψ2(d)Fψ
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which implies that fψ ∈ S2(Γ0(M), ψ2).

Lemma 4.5.3. Let F ∈ S2(Γ0(n)) and ψ a character of (O/mψ)× . If (n,mψ) = 1,

then

Fψ|2ω(nm2
ψ) = CψGψ−1

where G = F|2ωn and

Cψ = Cψ,n = ψ(n)G(ψ)/G(ψ−1).

Proof. We will apply Miyake’s treatment in [Miy06, Lemma 4.3.11] to our case without

any new techniques.

For u ∈ O prime to m ∈ mψ , take n, v ∈ O and N ∈ n so that nm−Nuv = 1.

Then

α(u/m)ω(Nm2) = m · ω(N)

(
m −v
−uN n

)
α(v/m). (4.46)

Since G = F|2ωn belongs to S2(Γ0(n)), (4.46) implies

F|2α(u/m)ω(Nm2) = G|2α(v/m),

so that

G(ψ−1)Fψ|2ω(Nm2) =
∑

u∈(O/mψ)×

ψ−1(u)F|2α(u/m)ω(Nm2)

=
∑

v∈(O/mψ)×

ψ(−Nv)G|2α(v/m)

=ψ(−N)
∑

v∈(O/mψ)×

ψ(v)G|2α(v/m).

Then the assertion follows immediately.

Combining Lemma 4.5.3 and Proposition 4.5.1, for the central value at s = 1 we

obtain:

Proposition 4.5.4. For F ∈ Snew,+
2 (Γ0(n)) and ψ a quadratic Hecke character, we

have

L(Fψ, 1) = −εnψ(n)L(Fψ, 1).

Let n , χm and m be as in Theorem 4.4.17. For F ∈ Snew,+
2 (Γ0(n)), it follows

that for the non-vanishing of L(F , χm, 1) = L(Fχm , 1), we need at least εnχm(n) = −1.

Lemma 4.5.5. Given a Bianchi modular form F ∈ Snew,+
2 (Γ0(n)), there always exists

a quadratic Hecke character χm of conductor m such that εnχm(n) = −1.
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Proof. Assume that

εnχm(n) =
∏

prime qi|n

εqiχm(qi) = −1.

We denote, for each prime qi dividing n ,

λqi := χm(qi)εqi ∈ {±1}. (4.47)

Recall the Chinese Remainder Theorem in the following. Let N =
∏
i ni with

the ni being pairwise coprime. Given any integer ai there exists an integer x such that

x ≡ ai (mod ni ) for every i . To solve the system of congruences consider Ni = N/ni

and then there exists integers Mi such that NiMi ≡ 1 (mod ni ). A solution of the

system of congruences is x =
∑

i aiNiMi . The way for computing the solution can also

be applied into principal ideal domains.

Recall the quadratic residue symbol from [Neu99, Chapter V]. The quadratic

residue symbol for O is defined by, for a prime ideal p ⊂ O ,(
α

p

)
= α

Np−1
2 mod p.

It has properties completely analogous to those of classical Legendre symbol(
α

p

)
=


0, α ∈ p,

1, α /∈ p and ∃η ∈ O : α ≡ η2 mod p,

−1, α /∈ p and there is no such η.

The quadratic residue symbol can be extended to take non-prime ideals or non-zero

elements as its denominator, in the same way that the Jacobi symbol extends the Leg-

endre symbol. For 0 6= β ∈ O then we define
(
α
β

)
:=
(
α

(β)

)
where (β) is the principal

ideal generated by β . Analogous to the Jacobi symbol, this symbol is multiplicative in

the top and bottom parameters.

We are interested in the quadratic reciprocity law in the case of the imaginary

quadratic field F = Q(
√
d) with class number one (see [Hec81, Chapter VIII]. For any

α ∈ O with odd norm we define elements tα, t
′
α ∈ Z/2Z by

α ≡
√
d
tα

(1 + 2
√
d)t
′
αξ2 mod 4 for ξ ∈ O.

Then the quadratic reciprocity law for coprime elements of odd norm is given by(
α

β

)(
β

α

)
= (−1)T

where

T ≡

{
tαt
′
β + t′αtβ + tαtβ mod 2, if d ≡ 1, 2 mod 4

tαt
′
β + t′αtβ mod 2, if d ≡ 3 mod 4.
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In particular, if α ≡ 1 mod 4, we can observe that tα = t′α = 0 which implies that

T ≡ 0 mod 2. It follows that(
α

β

)(
β

α

)
= 1 for α ≡ 1 mod 4. (4.48)

We want to find a quadratic character defined by the quadratic residue symbol,

χm =
(
·

m
√
d

)
, such that χm(qi) = εqiλqi for λqi given in (4.47). By our assumption

m is the product of inert or split primes. We can impose that m ≡ 1 mod 4 to

get
( ·
m

)
=
(
m
·
)

by the above quadratic reciprocity law (4.48). To achieve χm(qi) =(
m
qi

)(
qi√
d

)
= εqiλqi , we need

(
m
qi

)
=
(

qi√
d

)
εqiλqi which can be done via imposing

congruence conditions (∗) on m modulo qi . Therefore, by the Chinese remainder

theorem, there exists a m satisfying{
m ≡ 1 mod 4

congruence conditions (∗) on m mod qi for each prime qi|n.
(4.49)

Now we have proven this lemma.

Write S := {place v : v | 2|d|n} . Let ξ be a quadratic idelic Hecke character

of conductor MξO such that Mξ ≡ 1 mod 4, Mξ ≡ mmod qi for each qi|n and at v

dividing
√
dO the local component ξv is ramified with square-free conductor. Note that

its conductor is coprime to 2n and divisible by
√
dO , and so is its induced character

χξ of (O/MξO)× . Also we can observe that Mξ satisfies the conditions in (4.49). So,

by the preceding lemma there exists a χξ attached to ξ such that εnχξ(n) = −1. Let

Ψ(S; ξ) denote the set of quadratic characters χξ such that χ̃ξ,v = ξv for all v ∈ S .

Recall from [FH95, Theorem B(1)]

Proposition 4.5.6. Suppose π is a cuspidal automorphic representation of GL2(A)

which is self-contragredient. Suppose that for some quadratic character χ ∈ Ψ(S; ξ) one

has root number ε(π ⊗ χ) = 1. Then there exist infinitely many quadratic characters

χ′ ∈ Ψ(S; ξ) such that L(π ⊗ χ′, 1) 6= 0.

In Section 1.6 we have discussed the automorphic representation π on the space of

weight 2 Bianchi modular forms. Also, we have shown that there exists a χξ ∈ Ψ(S; ξ)

such that εnχξ(n) = −1, i.e., ε(π⊗ χξ) = 1. So we can apply the above proposition to

deduce that, for F ∈ Snew,+
2 , there are infinitely many quadratic characters χ ∈ Ψ(S; ξ)

such that L(F , χ, 1) is non-vanishing.

We will explain that these infinitely many quadratic characters always include a

quadratic character with square-free conductor. This is necessary since the quadratic
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character χm as in Theorem 4.4.17 has the square-free conductor m . Suppose that

Ψ(S; ξ) 3 χM : (O/M)× → C× is a quadratic Hecke character. Set M =
∏

prime pi|M prii
with ri ≥ 1. By the Chinese Remainder Theorem, we have (O/M)× '

∏
pi|M(O/prii )×

and then can write χM =
∏
χM,pi with χM,pi defined on (O/prii )× . It is known that

(O/pr)× has cyclic order of either pr(p−1) for p above split prime p or p2(r−1)(p2−1)

for p above inert prime p . So χM,pi is induced from a character defined on (O/p)×

which implies that χM is induced from a primitive character χm0 of square-free con-

ductor m0 .

We will show that the non-vanishing of L(F , χM, 1) is equivalent to that of

L(F , χm0 , 1). Write M = m0n
2
0 . It is a fact that

L(F , χM, s) = L(F , χm0 , s)
∏
v|n0

(1− aF (pv)χm0(pv)N(pv)
−s +N(pv)

1−2s)

where aF denotes the Fourier coefficient of F . It suffices to show the non-vanishing of

1− aF (pv)χm0(pv)N(pv)
−s +N(pv)

1−2s at s = 1

which can be rewritten as the Hecke polynomial

(1− αF (pv)N(pv)
−s)(1− βF (pv)N(pv)

−s).

As |αF (pv)| < N(pv) and |βF (pv)| < N(pv), we can deduce the non-vanishing of

(1− αF (pv)N(pv)
−1)(1− βF (pv)N(pv)

−1).

As m0 is square-free, divisible by
√
d and coprime to n such that L(F , χm0 , 1)

is non-vanishing, following Theorem 4.4.17 we can deduce that

Theorem 4.5.7. Given a Bianchi modular form F ∈ Snew,+
2 with n coprime to dFO ,

there always exists a quadratic Hecke character such that the theta lifting as in Theorem

4.4.17 is non-vanishing.

Example 4.5.8. Let F = Q(
√
−3) with O = Z[ω] and dF = d = −3. Consider the

weight 2 Bianchi modular form F of level Γ0(p283.1) with p283.1 = (19ω − 13) above

split prime 283 (LMFDB label: 2.0.3.1-283.1-a). It has root number -1 which implies

that L(F , 1) is vanishing. The Atkin-Lehner eigenvalue is εp283.1 = 1. Using Magma

calculator, we can find a quadratic Hecke character χ of conductor f = (7
√
d) such

that χ(p283.1)εp283.1 = −1:

K:= Quadrat icFie ld (=3);

OK<w>:= I n t e g e r s (K) ;

I :=7*OK*(2*w=1);

H:= HeckeCharacterGroup ( I ) ;
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H;

ch i := H. 1 ;

Order ( ch i ) ;

p283 1 := F a c t o r i z a t i o n (283*OK) [ 1 , 1 ] ;

p283 1 ;

ch i ( p283 1 ) ;

Abel ian Group isomorphic to Z/2 + Z/6 given as Z/2 + Z/6

Group o f Hecke c h a r a c t e r s H o f modulus o f norm 147

over Quadratic F i e ld with d e f i n i n g polynomial $ . 1ˆ2 + 3

over the Rat iona l F i e ld mapping to Cyclotomic F i e ld

o f order 6 and degree 2

2

Prime I d e a l o f OK

Two element gene ra to r s :

283

2*w + 88

=1

Then, by Theorem 4.4.17, the Fourier coefficient at β (as in Example 4.4.6 or

4.4.11) equals to I∞ which is non-vanishing if L(F , χ, 1) 6= 0.
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