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Abstract

Cerebral vasospasm is a prolonged acute constriction of a cerebral artery and an
aftermath of subarachnoid haemorrhage. It is the leading cause of death in patients
who survive hospitalisation due to the decrease in blood, and therefore oxygen, supply
to the brain. Despite its prevalence, its complex multifactorial pathophysiology make it
a still poorly understood disease. Recent results concerning the treatment strategy, i.e.
the success of stent retrievers in some cases, has challenged the current understanding
of the disease. Stents represent a safer option compared to the traditional treatment
via balloon angioplasty and thus there is motivation to further understand the disease
with the aim of personalising the treatment strategy for individual patients.

A novel hypothesis is formulated on the pathophysiology of cerebral vasospasm and
tested in a mathematical model. The artery is represented as a non-linearly elastic
cylindrical membrane and a constrained mixture approach is adopted which includes
elastin, collagen and vascular smooth muscle cells. The key interest is in the study of
how the pressure-diameter curve changes from health to vasospasm and predict the
magnitude of pressure that an interventional device should apply in order to resolve
the disease. The success criterion for a device is a strain-based damage criterion for
the smooth muscle cells. The predictions of the model are consistent with published
clinical observations.

The membrane model assumes a uniform strain-field across the arterial wall thickness:
this is reasonable for a healthy vessel but likely to no longer be true in moderate to
severe cases of vasospasm. The model is therefore integrated into a finite element
framework which has been successfully used to model aneurysm growth and remodelling
with anisotropic volumetric growth. The framework is extended to accommodate a
more realistic material model of collagen to include a fibre waviness distribution and
remodeling, a material model for vascular smooth muscle cells with contractile active
response and remodelling, and a damage model. Analogously to the mathematical
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model, the evolution of the pressure-diameter curves is studied and predictions of the
magnitude of pressure required for effective treatment are obtained and compared to
the mathematical model.

A sophistication is finally included to account for the effect of the growth and re-
modelling of collagen on the development of vasospasm and its treatment, which
had initially be assumed negligible. The results suggest that collagen growth and
remodelling can play a significant role and should be included in models that aim at
providing clinical support in the treatment decision.

The work presented in this thesis is an illustration of how mathematical and compu-
tational modelling can be a useful tool for hypothesis testing in problems of clinical
relevance. There is still however a lack of experimental data to inform the model: this
holds not only for cerebral vasospasm in particular, but also for general knowledge of
cell mechanobiology, i.e. the interaction between the mechanical environment of the
cell and its biological function. The hope is that computational modelling motivates
further research into these topics and offers suggestions regarding which research
questions to address.
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Chapter 1

Introduction

The relationship between form and function is crucial for the understanding of the
behaviour of soft tissue in development, health and disease. Arteries play the essential
role of containing and directing the flow of blood throughout the body and their
correct functioning is fundamental for the health of the entire body. The structure
of the arterial wall (Section 1.1) must therefore balance rigidity and compliance in
order to not only contain blood and maintain pressure but also allow the blood to
flow at the appropriate speed and adapt to states of low to high exertion. The main
translational application presented in this dissertation concerns cerebral vasospasm,
a prolonged acute constriction of a cerebral artery that in severe cases impairs the
blood supply to the brain and resulting in high morbidity and mortality (1.2). The
modelling framework adopted is characterised by the inclusion of both biomechanical
and mechanobiological aspects, where the former refers to the study of the mechanical
properties of living tissue while the latter is concerned with the relationship between
the mechanical environment and the activity of the cell. Key aspects of mechanobiology
are overviewed in Section 1.3. Finally, fundamental concepts of mathematical and
computational modelling of soft tissue that underpin the work presented here are
discussed in Section 1.4.

1.1 Structure of the Arterial Wall

Most of the content in this Section comes diffusely from three main sources and therefore they are

listed here for convenience: Alberts et al. (2015), Holzapfel et al. (2000), Robertson & Watton (2013).

In-text citations remain for specific claims when appropriate.

3
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The arterial wall can be divided into three concentric layers, each comprised
of a number of vascular cells (such as endothelial cells, smooth muscle cells, and
fibroblasts) embedded in a network of macromolecules called the extracellular ma-
trix (ECM). The macromolecules in the ECM are mostly proteins (elastin, collagen,
fibronectin and laminin) and glycosaminoglycans (GAGs), i.e. unbranched polysaccha-
ride chains. Among serving other functions, GAGs draw water into the ECM giving
it a gel-like consistency which accounts for its compressive resistance and enables
diffusion of molecules within the wall.

Vascular cells play a crucial role in the production, degradation and repair of the ECM,
which is crucial for the good functioning of the arterial wall. The mechanisms of ECM
maintenance are dictated by the interpretation of chemical and mechanical signals in
the extracellular environment: examples of chemical signals are acidity, oxygenation,
concentration of growth factors or other relevant molecules, while examples of mechan-
ical signals are changes in cyclic deformations, wall shear stress and wall shear stress
gradient among others. These signals are communicated to the cell nucleus, where
they regulate DNA transcription and thus influence the cell morphology, proliferation,
migration, alignment, etc.

The three concentric layers comprising the arterial wall are structured as follows (see
Fig. 1.1):

• Endothelium: this is the innermost layer and is mainly comprised of endothelial
cells in direct contact with the blood flow within the lumen on one side and
attached to a collagen network called the basement membrane on the other.

• Tunica media: this is the middle layer and is mostly occupied by smooth
muscle cells in a network of elastin and collagen fibres.

• Tunica adventitia: this is the outermost layer and it mostly consists of collagen
fibres maintained by a population of fibroblasts.

The layers are divided by the so called elastic laminae, which consist of concentric
sheets of elastin fibres punctuated by fenestrae (windows) which allow transport of
substances between the layers:

• the internal elastic lamina separates the endothelial from the medial layer,
and

• the external elastic lamina separates the medial from the adventitial layer.
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Figure 1.1: Structure of arterial wall. The innermost layer (intima) is mostly comprised of
endothelial cells; the middle layer (media) contains mostly smooth muscle cells and elastin;
the outermost layer (adventitia) is mostly formed by collagen fibres and fibroblast cells. Each
layer is separated from the next by an elastic lamina. Source: Holzapfel et al. (2000)

The components of the arterial wall that are more often incorporated in computational
models will now be described in more detail: collagen, elastin, endothelial cells, smooth
muscle cells and fibroblasts.

Collagen is not understood as a single molecule, but as a heterogeneous family
of molecules sharing the same structure: each collagen molecule comprises three
polypeptide right-handed α-chains, where each strand is a left-handed helix with
three amino acids per turn. There are 28 different types of collagen that have been
discovered to date, each identified by a Roman numeral. Collagen molecules can
organize into fibrils, microfibrils, filaments and network-like structures, according to
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the function they serve. These can in turn be arranged into more complex structures,
for example fibrils can arrange into fibres and lamellae, while network-like structures
can assemble into basement membrane, among others. The structural integrity of
collagen is crucial to its mechanical function. Hydrogen bonds and lysine are two
elements that play a key role in the robustness of the structures: the first binds the
α-chains thus stabilizing the helical structure, while the second is an amino acid
responsible for the cross-linking between α-chains and between collagen molecules.
More than 90% of vascular collagen is of type I, III or V, which are of the fibril-forming
kind and play the most important role in mechanical load-bearing. Fibrils can be
10−500nm in diameter in mammals and can combine to form larger fibres (0.5−3µm),
which in turn assemble into fibre bundles. The morphology of the fibres changes
across the wall and throughout the vasculature and displays different fibre diameters,
orientation and tortuosity. In unloaded arterial tissue, all collagen fibres appear
crimped with different levels of waviness. They are responsible for the strong non-
linearity of the arterial response at higher stretches, since the fibres are progressively
recruited to load-bearing. Collagen types I and III represent roughly 60% and 30% of
the total arterial collagen respectively, with the remaining 10% being mostly Collagen
V and others.
Another relevant type of Collagen is number IV, which is exclusively found in basal
laminae. It is a key component of the basement membrane but is also found in the
basal lamina surrounding VSMCs, where it is believed to influence their migration,
proliferation and phenotype (Steucke et al. (2015)).

Elastin is an extremely hydrophobic protein formed of loose, unstructured polypeptide
chains, in contrast with the highly organized collagen molecule. It is responsible for
storing the majority of the elastic energy of the arterial wall, making it highly flexible
at low loads and very resilient. The elastin molecules are arranged in fibrils about
10nm in diameter, which are in turn assembled into fibres and lamellae.
The majority of arterial elastin is formed during the perinatal period and the wall’s
capacity to maintain it drops significantly after puberty (Hill et al. (2012)). The
absence of elastin turnover means that any damage to the constituent will be hard,
if not impossible, to repair, but it could also play a stabilizing role for growth and
remodelling processes within the wall, since the unloaded configuration of elastin can
be of reference for the entire wall.

Endothelial cells (ECs) play a crucial role in mechanotransduction and transport of
molecules through the arterial wall.
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Due to their being in direct contact with the blood flow, ECs can sense changes in
mechanical stimuli, such as cyclic deformations, wall shear stress, wall shear stress
gradient, etc., and translate them into chemical signals. Although this process,
called mechanotransduction, is not completely understood, a few elements have been
identified as playing an important role, namely the intracellular cytoskeletal structure,
cell-to-matrix binding molecules (e.g. integrins) and cell-to-cell binding molecules.
When these elements sense a perturbation, they communicate it to the nucleus which
changes its regulatory activity and the cell further relays the signals throughout the
remainder of the wall.
Furthermore, the direct contact with blood makes the endothelial layer the key
regulator of wall permeability, i.e. the rate of absorption of molecules from the blood
stream, such as oxygen, nutrients, leukocytes, etc. This is a crucial process for vascular
homeostasis and wound healing. A central factor in determining the permeability of
the wall is the level of overlap of the edges of ECs.

Smooth Muscle Cells (SMCs) have a spindle-like shape and are mostly found in
the medial layer, aligned in the circumferential direction (Rothermel et al. (2020),
Ushiwata & Ushiki (1990)). They are about 100µm long and 5µm wide. Contrary
to the other cells and constituents in the arterial wall, SMCs can not only undergo
passive elastic stretch, but also provide an active contraction which allows them to
regulate the arterial diameter, blood pressure and blood flow distribution.
In a healthy artery, they mostly appeared in a contractile state, but can adopt a range
of phenotypes between the contractile and the synthetic. The latter is characterized
by a more cobblestone-like shape and higher rates of proliferation, migration and
synthesis of ECM, especially collagen. The switching between phenotypes can be
remarkably fast, allowing them to enact quick changes in vessel caliber as well as a
prompt response when tissue repair is necessary.

Fibroblasts are mostly found in the adventitial layer where they are responsible for
the regulation of the ECM. This is a very important task since the adventitia becomes
the main load bearer at higher stretches, when the risk of tissue rupture increases.
Fibroblasts are known to be able to secrete ∼ 3.5 million procollagen molecules per
day, where procollagen is a precursory molecule to collagen. They also secrete a
number of other ECM components, as well as molecules that balance the production
and degradation of collagen, such as matrix metalloproteinases (MMPs) and their
inhibitors (TIMPs). They also play a key role in wound healing and in the initiation,
modulation and maintenance of the inflammatory response.
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Fibroblasts display a range of phenotypes characterized by different levels of activity
such as proliferation, differentiation and ECM regulation. Phenotypes with high
activity levels are called myofibroblasts and are activated in, for example, inflammation
or wound healing.
Fibroblasts are connected to the adventitial ECM through protein aggregates called
focal adhesions, e.g. integrins. These adhesions are mechanosensitive and can transmit
mechanical signals to the inside of the cell, where they are translated into chemical
signals that regulate cell activity (Beningo et al. (2001), Webster et al. (2014)).

The functionality of the arterial wall obviously depends not only on the single con-
stituents but on their interaction and relative spatial distribution. Understanding
cell signalling and cell activity regulation is a crucial component of understanding
the growth and remodelling processes occurring within the wall in both health and
disease.

1.2 Cerebral Vasospasm

Cerebral vasospasm (CV) is a prolonged constriction of a cerebral artery which
diminishes blood flow to the brain and in severe cases can lead to cerebral ischemia or
infarction. It is likely to occur in patients presenting with subarachnoid hemorrhage
(SAH), which is in turn most often caused by either rupture of an intracranial aneurysm
(IA) or by traumatic head injury (Humphrey et al. (2007 Septembera)). In the former
case, it will occur in about 70% of patients, manifesting between three and five days
post IA rupture; 30 − 50% of patients will show neurological deficits (Bhogal et al.
(2016), Wicker et al. (2008)). For patients who survive hospitalization after IA rupture,
it is the leading cause of morbidity and mortality. The peak of constriction occurs
about 7 to 10 days after the initial bleed, thus a prompt and effective clinical response
is critical. However cases have been observed in which vasospasm self-resolves and
the affected vessel returns to its nominal diameter in an average time of four weeks
(Humphrey et al. (2007 Septembera), Reilly et al. (2004)), therefore it is also important
to correctly determine whether treatment is necessary. The etiology and pathogenesis
of the disease are complex, multifactorial and not yet completely understood.

The current understanding of the disease is summarized as follows. The location of
the constriction is observed to coincide with the area of blood accumulation and the
severity appears to be proportional to the size of the blood clot, therefore there is little
doubt that the hemorrhage is the initial causal factor of disease inception. This is in
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fact thought to cause an increase in the production of vasoconstricting substances, in
particular oxyhemoglobin and endothelin-1, which drive the contraction of smooth
muscle cells (SMCs) in the medial layer (Macdonald & Weir (1991), Provencio & Vora
(2005)). This first immediate (up to 3 days) phase can be reversed by administration
of vasodilators, but the fact that this is no longer effective in later stages suggests
that other processes begin to occur (Macdonald et al. (1995), Matsui et al. (1994),
Nakagomi et al. (1990), Vorkapic et al. (1991a, 1990, 1991b)). It is believed that
these changes in the arterial wall cause an increase in stiffness and thus a leftward
shift in the active force-diameter curve (Bevan et al. (1987), Humphrey et al. (2007
Septembera), Macdonald et al. (1995), Matsui et al. (1994), Nagasawa et al. (1982),
Vorkapic et al. (1991a, 1990), Yamaguchi-Okada et al. (2005)). Secondarily, the
increasing vasoconstriction can severely corrugate and damage the endothelial layer
(Kapp et al. (1985), Mizukami et al. (1976), Nakagomi et al. (1990), Smith et al. (1985),
Zubkov et al. (2002)), with some cells detaching from the arterial wall and leaving
exposed subintimal connective tissue that platelets and other blood elements can
attach to, possibly forming mural thrombi (Kapp et al. (1982)). Endothelial damage
can also alter mechanotransduction of hemodynamic signals into cellular activity in
the medial and adventitial layer, together with exacerbating the chemical imbalance
responsible for SMCs contraction: for example endothelial cells (ECs) are, among
other things, capable of releasing vasodilating nitric oxide (Kassell et al. (1985)).

Finally, inflammation has been observed in vasospastic arteries (Hughes & Schianchi
(1978), Mayberg et al. (1990)). This could be caused by the extravascular blood
clot and exacerbated by damage to the endothelium and could be the cause of other
observed changes in wall structure. The pathophysiology of vasospasm indeed appears
to be a highly complex and multifactorial process and the morphological changes
occurring in the arterial wall appear to depend not only on the severity of the disease
but also on the time since SAH. Analysis of the literature on human and animal models
of vasospasm is complicated by the highly time-dependent evolution of the disease
and the fact that this time scale is not always reported in the studies or, especially in
older ones, not even considered. The most relevant morphological changes reported in
the literature are the following:

• Intimal thickening: in human models it is reported by Mizukami et al. (1976)
as “ intimal thickening consisting of loosely arranged eellulofibrous tissue confined
to one side of the arterial wall" and by Hughes & Schianchi (1978) who observe
one case in which “the subendothelial thickening consist-ed of collagen fibers,
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fibroblasts, and foamy macrophages"; the monkey model presented by Findlay
et al. (1989) reported presence of collagen which is confirmed by Macdonald
et al. (1992) who stained for specific types of collagen proteins and identified
types I and III.

• Myointimal cells, i.e. muscle-like cells in the intimal layer of the wall. This
is reported in several studies such as Findlay et al. (1989), Kapp et al. (1985),
Mayberg et al. (1990), Smith et al. (1985) and Sacher & Tenner (1978). In
particular Macdonald et al. (1992) and Hughes & Schianchi (1978) report it as a
feature of vasospasm that only appears at a late stage, specifically at day 28 and
after three weeks respectively, where Macdonald et al. (1992) made observations
every 7 days.

• Corrugation of the internal elastic lamina is easily observed and has
thus been reported in several studies such as Findlay et al. (1989), Hughes &
Schianchi (1978), Kapp et al. (1985), Macdonald et al. (1992), Mayberg et al.
(1990), Nakagomi et al. (1990), Sacher & Tenner (1978), Zubkov et al. (2002)
and Mizukami et al. (1976). This results in the elastic lamina bending and
looking “wavy" at the microscope.

• Myonecrosis, i.e. necrosis of smooth muscle cells, has been observed in some
cases in Kapp et al. (1985), Mayberg et al. (1990) and Findlay et al. (1989),
more consistently in Sacher & Tenner (1978), Smith et al. (1985) and Mizukami
et al. (1976), and finally Hughes & Schianchi (1978) reports it as very significant
after three weeks.

• VSMC differentiation into a synthetic and migratory phenotype is observed
in Yamaguchi-Okada et al. (2005) and Mayberg et al. (1990). Chen et al.
(2009) report an increase of molecules p-ERK1/2 where ERK1/2 are hinges of
the MAPK signalling pathway, which is the main pathway regulating vascular
proliferation; this can therefore be considered as indirect evidence of VSMC
proliferation.

• Medial fibrosis has been analysed in several studies with varying and sometimes
conflicting results. It is observed in Hughes & Schianchi (1978), Kapp et al.
(1985), Macdonald et al. (1992), Mayberg et al. (1990), Smith et al. (1985),
Yamaguchi-Okada et al. (2005) and Sacher & Tenner (1978) but the identity of
the proteins responsible for this fibrosis have not been clearly identified: Kasuya
et al. (1993) reports an increase in the gene expression of procollagen I and III
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as well as TGF-β, an up-regulating molecule of collagen synthesis; Yamaguchi-
Okada et al. (2005) has quantified collagen content in vasospasm over time and
but a statistically significant increase was only observed at day 14, while it
was not significant at days 7 and 28; they therefore submit that the increased
connective tissue might consist of a different molecule. Finally Macdonald et al.
(1992) observes no increase in collagen via both qualitative and quantitative
methods, but does report increased immunoreactivity to fibronectin. It is
therefore suggested that medial fibrosis could consist of molecules of fibronectin,
which additionally participate in the cross-inking of collagen molecules, and
could therefore contribute to the increased stiffness of the arterial wall.

When the studies consider the time course of the disease, it is evident that there is a
high dependence on time from SAH of the remodelling processes occurring within the
arterial wall during the disease. This of course has a significant impact on the choice
of a suitable treatment method.

If vasospasm is detected in its first phase, it is possible to resolve it by sole adminis-
tration of vasodilating substances, for example nimodipine or other calcium-channel
antagonists (Vorkapic et al. (1990)). If the constriction is too severe or detected at a
later stage, a different treatment strategy must be adopted. One option is through
hypertension, hypervolemia and hemodilution (HHH), which has been shown to be
effective in some cases. However, it is not clear which of the three mechanisms is actu-
ally effective and why, and comes with serious risks, such as cardiac failure, electrolyte
abnormalities, cerebral edema, bleeding abnormalities, and rupture of an unsecured
aneurysm (Mayberg et al. (1994)). The most often adopted treatment strategy for
severe cases of vasospasm is balloon angioplasty. This consists in the insertion of
a balloon in the area of the vessel affected by vasospasm, inflation of the balloon
until a desired diameter or pressure is achieved, and finally deflation and retrieval of
the balloon (Fig. 1.2). A review of reported cases shows that angioplasty achieves
reduction of neurological damage in 31% to 81% of cases and vasospasm does not
recur following treatment (Li et al. (2019)). The main drawback of this interventional
method is that complications occur in 5% of cases and can be severe, such as rupture
of the arterial wall, which is almost inevitably fatal, and stroke due to interruption of
blood flow during the procedure (Macdonald (2006)). Moreover, balloon angioplasty
has been shown to damage the extracellular matrix and cause a decrease in arterial
response to vasoconstricting substances.
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Figure 1.2: Schematic of balloon angioplasty. First the balloon catheter is inserted
into the area of interest (A), then the balloon is inflated to a desired diameter (B), fi-
nally it is deflated and retrieved (C). (Courtesy of Wikimedia, licence CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=19334307)

Recently, a new treatment strategy has been proposed by Bhogal et al. (Bhogal et al.
(2016), Bhogal et al. (2017)), which advocates the use of self-expanding stent-retrievers
for the mechanical dilation of the artery (Figure 1.3). Stent-retrievers were originally
designed to retrieve blood clots that could be occluding an artery. These stents are
enveloped in a sheath, the sheath is inserted into the artery then pulled back to release
the stent in a desired location. The stent slowly “springs" open trying to return to
its stress-free diameter until it touches the vessel wall and an equilibrium is reached
between the expanding force of the stent and the resistance of the wall to this dilation
which depends on its stiffness.
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Figure 1.3: Photograph of a stent. (Courtesy of Frank C. Müller, licence CC BY-SA 4.0,
https://creativecommons.org/licenses/by-sa/4.0/deed.en)

The advantages of this treatment are related to the significantly lower forces exerted
by the stents compared to balloon catheter. These would in fact cause little to no
damage to the extracellular matrix and there would be no risk of arterial wall rupture.
This treatment strategy has been observed to be successful in arteries of up to about
3mm diameter, while they have had no effect in larger arteries (Bhogal et al. (2016),
Bhogal et al. (2017)). An ideal mechanical treatment would exceed the minimum
sufficient pressure to resolve the disease by the smallest amount possible so as to avoid
exerting unnecessary pressures that could damage the arterial wall. Because of the
dramatically lower forces exerted by stent-retrievers compared to balloon angioplasty,
it is relevant to answer the following questions:

• what magnitude of internal pressure should an interventional device provide to
mechanically resolve cerebral vasospasm?

• is it sufficient to “disrupt" the smooth muscle cells or should other constituents
such as the ECM be “damaged" too?

At the moment it is not specified what is meant by “disruption" or “damage" and the
issue is discussed in more detail in later Chapters. Since the precise mechanism of action
of either balloon angioplasty or stent treatment is unknown, in this work no assumption
is made on the precise nature of the damage but as a mathematical idealisation it is
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meant that a constituent is no longer contributing to load bearing. These questions
have constituted the motivation behind the model I discuss in Chapter 2. The focus
of the model has been on hypotheses regarding the microstructural remodelling of the
arterial wall, in particular of smooth muscle cells, and the model predictions have been
consistent with documented cases of treatment via self-expandable stents. If further
validated, this could lead to a revolution in the treatment strategy of the disease,
decreasing its risk factors and its negative side effects post-intervention.

Mathematical modelling can be a useful method to test competing hypotheses on the
pathogenesis of the disease and help in discerning which interventional strategy is
better suited to a specific case of cerebral vasospasm. In order to do this, the model
presented in Chapter 2 will need to be sophisticated and possible directions for further
research are discussed in Chapter 6.

1.3 Cell structure and mechanobiology

Observations that the mechanical environment of a cell has an influence on its biological
function go back to at least a century ago and in the last fifty years interest in the study
of this relationship has been rising. Indeed it is thought that a deeper understanding
in this field, termed mechanobiology, is crucial to gain insight into the development
processes of various diseases and thus improve the ability to predict disease progression
and eventually treatment strategy.

There are two main pathways by which a cell might receive mechanical signals: either
via cell-to-cell interaction or via cell-to-matrix. In both cases proteins on the cell
membrane connect to either another cell or a protein of the extracellular matrix
and transmit the mechanical signal to the cytoskeleton of the cell, which might
communicate with either the cell nucleus or another mechano-sensing protein in a
different location on the cell membrane.

On the inside of the cell wall, mechanical signals are transmitted by the cell’s cytoskele-
ton, a complex network of several types of proteins that give the cell its structure,
mechanical as well as motor function. There are three main families of filaments: actin,
microtubules and intermediate filaments. Actin filaments shape the cell surface and
are the key actors in cell locomotion; microtubules connect to cytoplasmic organelles
and direct intracellular transport, while intermediate filaments provide mechanical
strength. The structure of the cytoskeleton is not fixed in time, but is highly adaptable
and responds to chemical and mechanical cues. This adaption is realised by the
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assembly and disassembly of specific filaments depending on the circumstances.

At the cell membrane, the mechano-sensing proteins regulating cell-to-cell commu-
nication involving the cytoskeleton are of two types: adherens junctions anchor to
actin filaments within the cell, while hemidesmosomes anchor to intermediate fila-
ments. Other types of connections exist that do not connect to the cytoskeleton: tight
junctions connect adjacent cells tightly having one of their ends in one cell and the
other in the adjacent cell, while gap junctions function as “channels" connecting the
cytoplasm (Alberts et al. (2015)). For cell-to-matrix junctions, the most important
type is called focal adhesion. Each of these junctions consists of a number of proteins
but the main role is played by the transmembrane protein connecting the interior of
the cell to the outside. This can belong to one of two families: cadherins regulate cell-
to-cell communication, while integrins connect the cell to the matrix. A particularly
interesting feature of integrins is their ability to adopt a range of states from active to
passive which affect its conformation and the relative positions of the two subunits
that comprise them, denominated α and β. This range of activity allows the cell to
rapidly assemble or disassemble connections to the cytoskeleton and thus have more
refined communication with the matrix surrounding it.

Cell-to-matrix interaction is particularly important since the ECM is maintained by
residing cells which regulate its production, degradation and organisation. For example
newly secreted collagen is attached to the matrix by a “crawling"-like movement of
the cell along existing fibres (Robertson & Watton (2013)). Moreover, it has been
shown that cells, in particular fibroblasts, apply tension to the extracellular matrix,
tugging on it, and organise the structure of the matrix. Depending on the mechanical
environment, they are capable of identifying the “correct" orientation at which collagen
must be deposited (Alberts et al. (2015)). Tension plays a key role in the assembly of
fibronectin as well: indeed fibres of this type assemble at the cell surface where the
tension applied by the cell reveals otherwise concealed binding sites that allow the
fibrils to bind to each other and form complete fibres.

The insight that the mechano-sensitivity of cells might play a key role in the develop-
ment of various soft tissue diseases has led mathematical and computational modellers
to formulate mechanobiologically motivated hypotheses that have found many useful
applications. Humphrey (2008) advanced the hypothesis of “tensional homeostasis",
namely the existence of an optimal level of stress that a cell aims to maintain. This
can differ among cell types and indirectly apply to non-living tissue components, such
as collagen. Indeed, although collagen is maintained by an external entity which is
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the cell, it is possible for the cell to “know" the optimal level of stress at which to
maintain the collagen fabric. This simple hypothesis has found good success and
proved powerful in several modelling scenarios (Cyron (2019), Humphrey & Holzapfel
(2012)) and has also been adapted to a “homeostatic stretch" version compared to the
original “homeostatic stress" formulation (Eriksson et al. (2014), Grytsan et al. (2017),
Watton et al. (2004), Watton, Ventikos & Holzapfel (2009)). From the perspective
of numerical implementation, the stress formulation is more natural since stress is
a convenient variable that is solved for and explicitly computed in biomechanical
problems and thus is easier to work with in a computational model. On the other
hand, the stretch formulation is directly measurable in experiments and therefore
easier to validated experimentally.

Recently it has been proposed that the hypothesis of the homeostatic level of
stress/stretch being constant could be refined to an “adaptive homeostasis" hypothesis
that allows the definition of homeostasis to vary according to the chemo-mechanical
environment of the cell (Ambrosi et al. (2019), Aparìcio et al. (2016), Ateshian &
Humphrey (2012), Watton, Ventikos & Holzapfel (2009)). This has proved to yield
more realistic results in some cases (Chen (2014)) and warrants further exploration.

In general the study of mechanobiology is attracting growing interest and will play
a crucial role for the successful modelling of various soft tissue diseases especially
leading to better predictions of disease development thus affecting clinical decision-
making. A challenge in the modelling of mechanobiological phenomena is the current
paucity of experimental data and therefore deeper collaborations are warranted in this
field. Moreover recommended future directions include the incorporation of chemical
signalling pathways, since there is continuous translation of mechanical stimuli into
chemical ones and viceversa, and thus the aim of a realistic model of soft tissue
evolution warrants coupling of the two mechanisms (Ambrosi et al. (2019), Ateshian
& Humphrey (2012), Irons & Humphrey (2020)).

1.4 Overview of previous modelling

The models presented in this dissertation are based upon the framework originally
proposed by Holzapfel, Gasser and Ogden (Holzapfel et al. (2000)) and later expanded
by Watton et al. (Watton et al. (2004), Watton, Ventikos & Holzapfel (2009)). The
framework proposed in Holzapfel et al. (2000) was the first to include histological
information about the arterial tissue differentiating between the layers that comprise
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the structure of the arterial wall and the microstructural constituents within each
layer. In particular, the strain energy density function was additively split into the
contribution of the isotropic components, like elastin and ground matrix, and that of
the anisotropic components like collagen:

Ψ =
∑

L=M,A

cL
2

(I1 − 3) +
k1L

2 k2L

n∑
i=1

(exp
(
k2L(I iL − 1)2

)
− 1), (1.1)

where L = M,A indicates the medial and adventitial layer, cL, k1L and k2L are material
parameters, and I1, IiL, i = 1, . . . , n are invariants of the modified Cauchy-Green
tensor C defined as I1 = C : I, IiL = C : AiL where AiL is the structure tensor
associated with the directions of the collagen fibres in family i (n being the number of
fibre families).

For clinical purposes it was important to not only have a biomechanical model of arterial
tissue that would allow the study of the tissue properties at a fixed moment in time,
but also to model how the structure of the tissue, and therefore its mechanical function,
evolved over time. The initial models were therefore extended to include “growth and
remodelling": “growth" describes the changes in mass of a tissue constituent, while
“remodelling" refers to structural changes that may alter the constituent properties,
such as reorientation, increased or decreased cross-linking, etc. In Humphrey &
Rajagopal (2002) the first constrained mixture model of growth and remodelling
is proposed, in which individual constituents could undergo changes in mass and
structure while consistency of deformation was maintained for the whole tissue. The
SEDF was then changed to the following

Ψ =
∑
i,L

vL φ
k
L Ψk

L, (1.2)

where vL is the volume fraction of layer L, φkL is the mass fraction of constituent k in
layer L and Ψk

L is the SEDF of constituent k in layer L.

This framework became widely popular as it allows the definition of different mechanical
behaviours for different constituents as well as the possibility to consider changes in
mass and/or volume whenever vL, φkL and Ψ are time dependent. This opened up the
possibility of defining evolution laws for these variables, or other variables they would
depend on, and thus growth and remodelling models were created.
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A particular subset of this type of model is that focused on mechanobiologically-
informed growth and remodelling laws. As discussed in Section 1.3, the mechanical
environment of living cells affects their activity in various ways and the interplay
between the two can play a critical role in the stabilisation or lack thereof of eventual
pathologies (Humphrey (2008)). There has therefore been significant interest in
developing G&R laws that related mechanical variables (pressure, stretch, stress, wall
shear stress, etc.) to cell activity, which can influence the mass and/or configuration
of tissue constituents.

Two different approaches have been developed for the problem: an integral and a
differential formulation. The former was first proposed by Baek et al. (2005) and
expresses the current mass fraction of a constituent as the integral up to time t of the
production rate mk

L(τ) times the survival function q(t−τ). It is a natural and intuitive
formulation, but has a drawback in the need to store a large quantity of information
(i.e. the history in time interval [τ, t]) which limits its numerical application. The
differential formulation was first proposed by Watton et al. (2004) where differential
equations are used and mass growth/atrophy as well as other variable changes are
rate-dependent. This avoids the need for numerical integration entirely, making it
more feasible for numerical implementation, although some information is lost as only
the result of the production and degradation of a constituent is explicitly saved, not
the two separate processes.

The constrained mixture differential formulation proposed by Watton et al. (2004) was
integrated into a thick-walled finite element framework and coupled with haemody-
namics in Watton, Ventikos & Holzapfel (2009). The framework allowed the study of
the effect that transmurally heterogeneous material properties within the arterial wall
have on the stress distribution in the evolution of abdominal aortic aneurysms. Finally
Eriksson et al. (2014) extended the finite element framework to include volumetric
growth and Grytsan et al. (2017) implemented a model of anisotropic volumetric
growth. The most recent extension of the framework has been proposed by Aparìcio
et al. (2016) who introduced a bio-chemo-mechanical feedback cycle which relates
changes in the concentrations of relevant signalling molecules to growth and remod-
elling process which are finally coupled to the haemodynamics. As a first iteration this
has been implemented with a membrane assumption but it would be straight-forward
to integrate it into the finite element framework.

This modelling framework has been used to model aneurysms, both cerebral and
abdominal aortic, but its general nature allow for a wider scope of application and
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it can therefore be applied to model other soft tissue diseases. In the case of this
dissertation, the interest is in modelling cerebral vasospasm.

To the author’s knowledge only one mathematical model of the development and pro-
gression of cerebral vasospasm has been proposed. Humphrey et al. (2007 Septemberb)
and Baek et al. (2007) have proposed a constrained mixture growth and remodelling
model of non-severe cases which hypothesizes that the development of vasospasm
is initially driven by a chemically-induced increased vasoconstriction accompanied
by cell and matrix turnover that increase the wall stiffness, while a later phase is
dominated by mechanical and haemodynamical signals that alter the growth and
remodelling process in a way that returns the vessel to its original healthy state. The
model is two-dimensional in the geometry, one-dimensional in the haemodynamics
and zero-dimensional in the chemical insult to the tissue. The model indeed captures
salient features of the pathophysiology of vasospasm such as the decreased contractility
and compliance of the vessel wall in the chronic phase of vasospasm and the potential
of the disease to “self-reverse" in some cases once the extravascular blood clot has been
cleared and the haemodynamical stimuli gradually restore the vessel to its physiological
geometry.

1.5 Contributions to the state of the art

The work presented in this dissertation consists of a mathematical and a finite element
model of cerebral vasospasm based on a novel hypothesis that the disease is primarily
driven by contraction and remodelling of vascular smooth muscle cells. Moreover
it aims to estimate the amount of pressure that an interventional device, such as a
balloon or a stent, needs to apply in order to mechanically resolve the disease. The
model is built on the framework developed by Watton et al. (2004), which is selected
as it allows to more easily neglect the haemodynamics as a first step and focus on
the growth and remodelling processes occurring in the arterial wall. Since the model
has mostly been applied to aneurysms, where vascular smooth muscle cells are often
considered necrosed and negligible, it needs to be extended to include a material
model for VSMCS: this is adapted from Baek et al. (2007). The resulting model
is presented in Chapter 2. The mathematical model is then integrated into a finite
element framework to study whether the non-uniformity of the strain field across the
wall thickness has an effect on the pressure predictions related to the treatment of
the disease. The adopted finite element framework is the one developed by Watton,
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Eriksson and Grytsan (Eriksson et al. (2014), Grytsan et al. (2017), Watton, Ventikos
& Holzapfel (2009)) and applied to aneurysms. Analogously to the mathematical
model, the framework needs to be extended to accommodate the role of VSMCs in
the model as well as damage mechanisms to the constituents. These extensions are
described in Chapter 3. The finite element model resulting from the integration of the
mathematical model into the extended finite element framework is described in Chapter
4. Chapter 5 describes an extension to the mathematical model that includes collagen
growth and remodelling. Indeed an assumption of the mathematical model presented
in Chapter 2 is that the role of collagen growth and remodelling is negligible for the
purpose of modelling cerebral vasospasm at the time at which it most often requires
treatment, i.e. 1-2 weeks after subarachnoid hemorrhage. However is it possible that
even small changes have an effect on the pressure predictions for treatment and thus
a study is conducted for this purpose. Finally the main achievements and limitations
of these models are discussed in Chapter 6.



Chapter 2

1D Model of Cerebral Vasospasm

2.1 Introduction

This Chapter presents a model of cerebral vasospasm which focuses on the microstruc-
tural adaptations occurring in the arterial wall and how these affect its mechanical
response. This choice was made in view of the specific translational motivation, which
is to determine the magnitude of pressure that an interventional device (such as a
stent-retriever or balloon catheter) should provide in order to mechanically resolve
the disease. The model is based on the framework developed by Watton et al. (2004),
Watton, Ventikos & Holzapfel (2009), i.e. a constrained mixture of the relevant con-
stituents of the vessel wall (in this case elastin, collagen and vascular smooth muscle
cells) where the mass and reference configuration of the constituents can change over
time according to custom evolution equations. Our main hypothesis is that vasospasm
is driven by VSMC remodelling: following an initially chemically-driven contraction,
the cells remodel their cytoskeleton and attachments to the extracellular matrix in
order to maintain a preferred state of stretch. Based on a strain-based damage model
for VSMCs, predictions are obtained of success or lack thereof for commonly available
stents and compared to reported clinical observations.

2.2 Methods

The artery is modelled as a nonlinear elastic incompressible cylindrical membrane,
subject to internal pressure and a constant axial stretch. By modelling the artery as a
membrane it is assumed that the variations in the stress field across the wall thickness
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are negligible and thus only the value of the stress at the mid-plane is used. It is also
assumed that bending moments and transverse shears are negligible. The configuration
corresponding to the absence of forces acting on the artery, in which therefore the
stress within the wall is null, is referred to as the unloaded configuration. In this state,
the artery has wall thickness H, radius R and length L. The mechanical stretch of
the tissue is defined in relation to this configuration and thus it is denominated the
reference configuration. After applying an internal pressure p equal to systolic blood
pressure and an axial pre-stretch λz, the cylinder is in its loaded configuration. In this
state the circumference has been stretched by a factor λ and the new wall thickness h,
radius r and length l are equal to

h =
H

λz λ
, (2.1)

r = λ R, (2.2)

l = λz L. (2.3)

See Fig. 2.1 for reference.

Figure 2.1: Effect of axial stretching and intraluminal pressurization on elastic cylinder.
Source: Aparìcio et al. (2016).

The force balance equation for a pressurised and axially stretched cylinder can be
expressed as

p =
h

r

1

λzλ
σ, (2.4)

where σ is the Cauchy stress through the entire wall.
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A constrained mixture approach is adopted where the overall stress response of the
tissue is the sum of the contributions of its microstructural load-bearing constituents.
Each constituent has its own independent reference configuration but deforms consis-
tently with the rest of the tissue. The differences in mechanical properties and reference
configurations among the constituents allow us to capture the different mechanical
roles they play. The most mechanically relevant constituents are considered: elastin
(E), collagen (C) and vascular smooth muscle cells (M).

For each constituent it is postulated that there exists a preferred state of stretch,
which optimizes its mechanical function in some sense. This state of stretch is called
the attachment stretch or homeostatic stretch. In healthy, physiological conditions
the constituents aim to maintain this optimal level of stretch and thus it is assumed
that in these conditions all constituent stretches equal their respective attachment
stretches. Mathematically,

λE =λATTE in health, (2.5)

λM =λATTM in health. (2.6)

where λ(·) is the current stretch of a constituent defined with respect to its reference
configuration, which may differ from one constituent to another. For collagen, it
is assumed that there isn’t a single value of stretch for all fibres comprising the
constituent, but instead a continuous distribution of collagen fibre stretches: more
details are given later. In this case the distribution of fibre stretches ΛC in the healthy
artery equals the attachment distribution ΛATT

C :

ΛC = ΛATT
C in health. (2.7)

All stretches in this model are to be interpreted as occurring at systole. In the
particular case of elastin, which has a very long halflife, it is assumed that its stretch
equals the tissue stretch:

λE = λ always. (2.8)

The above holds in all conditions. The attachment stretch for elastin therefore equals
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the physiological circumferential stretch of the vessel, which is assumed equal to 1.3

(see Table 2.1):

λATTE = λATT . (2.9)

It is now possible to define the recruitment stretch of a constituent as the level of
tissue stretch at which it is recruited to load bearing, i.e. at which the constituent
stretch equals 1. The assumption that constituent stretches equal their attachment
stretches in health, i.e. when λ = λATT , allows us to determine the recruitment stretch
of a constituent by a simple proportion:

λR(·) =
λATT

λATT(·)
, (2.10)

where (·) = E,M .

In Fig. 2.2 a schematic is shown of how the constituent stretches change as the tissue
is stretched from its reference configuration Ω0 to its current "healthy" configuration
Ωt. In the stress-free configuration Ω0 elastin has unitary stretch, since this is equal
to the tissue stretch, while the other constituents have stretches lower than 1, i.e. are
wavy or crimped. In the figure an individual collagen fibre is considered and thus a
single value of attachment and recruitment stretch: this is for illustrative purposes only
since in the real model there is a distribution of stretches. As the tissue is stretched,
the configuration in which the stretch of VSMCs is unitary (λM = 1) is achieved and
the level of tissue stretch at this configuration is the recruitment stretch of VSMCs
λRM . Analogously the recruitment stretch for collagen is defined, λRC . Finally, the
current "healthy" configuration is obtained in which all constituent stretches equal
their attachment stretches.

In the case of collagen, the model assumes that there is not a single value for the
recruitment variable but a distribution of them. Following Chen (2014) and Aparìcio
et al. (2016), a triangular distribution is assumed (see Figure 2.3):
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Figure 2.2: Definition of recruitment stretch for a constrained mixture of elastin (blue),
smooth muscle cells (red) and collagen (green).

ρ(λRC) =



0 if λRC < a,

2(λRC−a)
(b−a)(c−a) if a ≤ λRC < c,

2(b−λRC)
(b−a)(b−c) if c ≤ λRC < b,

0 if b ≤ λRC ,

(2.11)

where the following abbreviations are used: λminR , λmaxR and λmodR by a, b and c re-
spectively (see Fig. 2.2). Two separate distributions of recruitment stretches are
assumed for medial and adventital collagen: this allows us to capture the fact that
medial collagen is load-bearing in health, while adventitial collagen plays a protective
role and is only recruited to load bearing at higher, supraphysiological stretches.
The distribution for medial collagen ρmeC is determined by the triplet of values
(λminRme

, λmodRme
, λmaxRme

) = (1.215, 1.287, 1.3), which correspond to actual fibre stretches
between 1 and 1.07, while the distribution for adventitial collagen ρadC is determined
by the triplet (λminRad

, λmodRad
, λmaxRad

) = (1.3, 1.444, 1.625), which correspond to actual fibre
stretches between 0.8 and 1. (see Table 2.1). Given that the physiological tissue
stretch is λ = 1.3, it holds that at that level of tissue stretch medial collagen has been
fully recruited to load bearing (actual fibre stretches are ≥ 1), while no part of the
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Figure 2.3: Distribution of recruitment stretches of medial and adventitial collagen.

adventitial collagen population has (all fibre stretches are ≤ 1) (see Fig. 2.3).

It is assumed that the stress of the entire tissue equals the sum of the stress contribu-
tions of its microstructural constituents. Mathematically:

σ = σE + σmeC + σadC + σpassM + σactM , (2.12)

where σ is the stress of the entire tissue, σE the contribution from elastin, σmeC and
σadC the contributions from medial and adventitial collagen respectively, σpassV SMC and
σactV SMC the passive and active contributions of smooth muscle cells respectively. The
active response of VSMCs is added to represent their ability to relax and contract
in order to control the vessel diameter, ability which is unique to this constituent in
arterial tissue.

Constitutive models are now assigned to the constituents to describe how their stress
contributions depend on the stretch they experience.

For elastin an isotropic neo-Hookean model is chosen, which is standard from the
literature (Gundiah et al. (2007), Holzapfel et al. (2000)). For a cylindrical geometry,
the stress function for a neo-Hookean material is given by

σE(λ) = kE λ2
(

1− 1

λz
2 λ4

)
, (2.13)

where kE is the material parameter for elastin, λz is the fixed axial stretch. Recall
that elastin stretch equals the tissue stretch λ = λE.
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For collagen, it is assumed that individual fibres display a linear stress response, i.e.

Ψ̃CJ (λCJ ) =
kCJ
2

(λCJ − 1)2 , (2.14)

where J ∈ {me, ad} denotes medial or adventitial collagen and kCJ is the material
parameter for either fibre population (see Table 2.1). To obtain the stress contribution
of the whole fibre population, it is necessary to integrate over the recruitment stretch
distribution:

ΨCJ (λ) =

∫ λ

1

Ψ̃CJ (λCJ ) ρCJ (λRCJ ) dλRCJ , (2.15)

where λCJ = λ/λRCJ . Derivation of the Cauchy stress is as follows:

σCJ (λ) = λ
∂

∂λ
ΨCJ (λ). (2.16)

For the passive response of VSMCs a neo-Hookean model is adopted, following
Humphrey et al. (2007 Septemberb):

σpassM (λM) = fpk
pass
M λ2

(
1− 1

λz
2 λM

4

)
, (2.17)

where kpassM is the material parameter modulating the passive response and fp is a
parameter that is set as unitary in health: fp = 1 in health. It may increase in
vasospasm to represent a possible stiffening of the cell (see Section 2.3.3).

For the active response the model proposed by Humphrey et al. (2007 Septembera) is
used with a slight simplification. The material model proposed follows in turn the
experimental measurements of Rachev & Hayashi (1999). Therefore the active stress
response takes the following form:

σactM = fa cv k
act
M λM

[
1−

(
λmeanM − λM
λmeanM − λminM

)]
, (2.18)

where kactM is the material parameter modulating the active response, cv is the baseline
ratio of concentrations of vasoconstrictors to vasodilators equal to cv = 0.68 (Humphrey
et al. (2007 Septembera)), λminM is the minimum cell stretch at which the active response
is non-zero, λmeanM regulates the cell stretch at which the active response is maximal,
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and fa is a parameter that is set as unitary in health: fa = 1 in health. It may increase
in vasospasm to represent the increase in vasoactive tone caused by the increased
concentration of vasoconstrictors (see Section 2.3.3). The stress-stretch relationship
σactM as a function of λM is displayed in Figure 2.4.
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Figure 2.4: Active component of the stress response of vascular smooth muscle cells as
a function of their stretch (continuous curve). The dashed line corresponds to the stress
response when VSMC stretch equals its attachment value λM = λATTM = 1.15.

Finally the material parameters must be determined. In the case of elastin this has
been estimated experimentally at around 100kPa Grytsan et al. (2017), Holzapfel
et al. (2000). For the other constituents, the parameters are computed by imposing
two conditions:

• the load-bearing proportions are such that elastin bears about 60% of the load,
passive VSMCs 20%, active VSMCs 10% and collagen 10% (Robertson & Watton
(2013), Watton, Ventikos & Holzapfel (2009));

• if the VSMC active response is null, the diameter of the healthy artery is 15%

larger than if the active stress was present (Robertson & Watton (2013)).

At this point the mechanical behaviour of the arterial tissue in relation to that of its
microstructural constituents has been fully described. The pressure-diameter curve
for a healthy artery is plotted in Figure 2.5, where a nominal diameter of 2.9mm is
assumed which is the average value for a middle cerebral artery. The solid curve is the
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pressure-diameter curve for the whole wall: if the reader imagines gradually "inflating"
an unloaded arterial wall, i.e. applying an internal pressure, this curve describes
which diameter corresponds to which internal pressure. Physiological systolic blood
pressure, i.e. 16kPa corresponds to the nominal diameter of 2.9mm. The non-solid
curves represent the contributions to load-bearing of each individual constituents. The
distance between the x-axis and the point at which a constituent curve cuts the red
vertical dashed line at x = 2.9 gives the proportion of the pressure load borne by
each constituent: elastin is the main load bearer by a rather wide margin, followed by
passive VSMC, active VSMC and finally collagen. It is also worth noting how, despite
the linear stress response of individual collagen fibres, the implementation of a stretch
distribution still allows us to capture the exponential-like behaviour that has been
experimentally observed and traditionally represented by an explicitly exponential
function.
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Figure 2.5: Pressure-diameter curve for a middle cerebral artery with profiles of stress
contributions of mechanically relevant constituents.

The main equation describing mechanical equilibrium that is solved by the simulation
is obtained by combining Eq. 2.4 and 2.12:

p =
h

r

1

λzλ

(
σE + σmeC + σadC + σpassM + σactM

)
, (2.19)

and finally by plugging into each stress component σ(·) its corresponding function,
which is given respectively by Eq. 2.13 for σE, Eq. 2.16 for σC (where σmeC and σadC
are differentiated by the respective stretch distributions), Eq. 2.17 for σpassM and Eq.
2.18 for σactM . Each stress contribution is a function of the related constituent stretch
and the constituent stretch is related to the tissue stretch via
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λl =
λ

λRl
, (2.20)

where λl is the stretch of constituent l, λ is the tissue stretch and R
L is the recruitment

stretch of constituent l. Therefore Equation (2.19) describes the pressure-stretch
relationship for the arterial tissue. This is the key equation that is solved by the
model.

Now that the model of the healthy artery has been set up, it is necessary to formulate
hypotheses on how the microstructure of the wall changes in vasospasm.

Based on reports in the literature, vasospasm is modelled as follows. The extravas-
cular blood clot that formed following SAH causes an increase in oxyhaemoglobin,
which causes a signalling cascade resulting in an increased ratio of vasoconstrictor to
vasodilator concentration. This causes the VSMCs to contract which results in an
initial diameter reduction. Following this initial constriction, it is assumed that the
following occurs on a time scale of the order of days to weeks (much larger than the
cardiac cycle):

• VSMCs remodel to return their actual stretch to their preferred value (VSMC
attachment stretch) via remodelling (Watton et al. (2004), Watton, Ventikos
& Holzapfel (2009)): this is achieved through reconfiguration of their internal
cytoskeleton and/or attachments to the ECM;

• as VSMCs remodel and become the primary load bearer at the smaller diameter,
in order to maintain force-balance, they increase their stiffness and/or their
active tone; this is captured mathematically by increasing the parameters fp
and/or fa respectively;

• elastin and collagen do not remodel; elastin production ceases after puberty and
the collagen halflife is assumed to be large compared to the considered time
course.

Following these changes, it is now possible to study how the pressure-diameter curve
changes for an artery from healthy conditions to vasospasm.

Finally, since the aim of the model is to evaluate the effectiveness of mechanical
treatment via stents, a success criterion is needed for mechanical intervention. The
precise mechanism behind the resolution of vasospasm via stents is currently unknown.
Damage to the vascular smooth muscle cells could take many forms, such as rupture
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of cytoskeletal components, detachment from other VSMCs and/or the extracellular
matrix, or inhibition of their contractility. As a mathematical idealisation, in this
model it is assumed that an interventional device is successful if it causes sufficient
damage to the smooth muscle cells to nullify their stress contributions. A strain-
based damage criterion is selected: if the VSMCs are stretched beyond a threshold,
denominated dilatation threshold, then they are so damaged that their contribution
to the stress response of the tissue becomes null. The dilatation threshold is assumed
to be a cell stretch of 1.8, as a conservative choice based on the experimental data
reported in Fischell et al. (1990).

Parameter Value Reference
h/r 1/5 Watton et al. (2004)
λz 1.3 Wicker et al. (2008)
λATTM 1.15 -
λATTE 1.3 Watton, Ventikos & Holzapfel (2009)
λminR,me 1.215
λmodR,me 1.287 stretch distributions selected
λmaxR,me 1.300 as reasonable estimates with media
λminR,ad 1.300 load bearing in health, not adventitia
λmodR,ad 1.444 Robertson & Watton (2013)
λmaxR,ad 1.625
kE 93.14kPa material parameters determined via
kpassM 22.09kPa load-bearing proportions from
kactM 18.07kPa Watton, Ventikos & Holzapfel (2009)
kC,me 639.5kPa Robertson & Watton (2013)
kC,ad 5115.6kPa
cv 0.68 Humphrey et al. (2007 Septembera)

fp (healthy) 1 -
fa (healthy) 1 -

λminM 0.4 Humphrey et al. (2007 Septembera)
λmeanM 1.1 Humphrey et al. (2007 Septembera)

Table 2.1: Table of relevant model parameters.

The time-continuous evolution of the arterial tissue from health to vasospasm is not
captured in this model. First the system is parametrised for the healthy state so that
either the relevant parameters come directly from experimental measurements or they
replicate features of the tissue that have been experimentally observed, such as the
load-bearing proportions of the different constituents or the increased compliance
of the tissue in absence of the active response of VSMCs. The vasospastic state is
obtained by prescribing that the new vessel diameter is half the healthy value, thus
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capturing a 50% level of stenosis, and that in this state the VSMCs have returned to
their attachment stretch. By Eq. 2.2, in order for the vessel diameter to be half its
healthy value, the same must hold for the tissue stretch, i.e. in vasospasm λ = λATT

2
.

Assuming that the VSMCs have returned to their attachment stretch in vasospasm,

implies that their recruitment stretch has changed and is now λRM =
λATT

2

λATTM
= λATT

2 λATTM
.

These two prescriptions, together with the choice of parameter pair (fa, fp) which
is explored in the Parameter Study (see Section 2.3.3), allows the study of the new
pressure-stretch relationship for a vasospastic artery and therefore the estimation of
the effectiveness of stents as treatment strategy.

The code for the implementation of this model in MATLAB is reported in Appendix
A.

2.3 Results

2.3.1 Pressure-diameter curves for healthy and vasospastic artery

As a result of the remodelling process prescribed to occur in vasospasm, the structure of
the wall adapts to the evolving geometry and thus the pressure-diameter curve changes
accordingly. In Figure 2.6 the pressure-diameter curve for a middle cerebral artery
at 50% stenosis (reduction in diameter) is shown, together with the contributions
to load bearing of its individual constituents, namely the pressure-diameter curve of
the arterial tissue if only one constituent was present. A comparison between the
pressure-diameter curves in health and vasospasm (those relating to the whole tissue)
is shown in Fig. 2.7. These are the solid curves shown in Figure 2.5 for the healthy
tissue and in Figure 2.6 for the vasospastic tissue, shown in the same Figure for ease
of comparison. For illustrative purposes, parameters fp and fa, which regulate the
load-bearing potential for passive and active VSMCs respectively, are increased by
20% and 47.5% respectively; the reader is referred to Section 2.3.3 for a more detailed
parameter study.
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Figure 2.6: Pressure-diameter curve for a middle cerebral artery in vasospasm at 50%
stenosis with profiles of stress contributions of mechanically relevant constituents.
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Figure 2.7: Comparison between mechanical equilibrium curve for an artery of nominal
diameter 2.9mm in health and in vasospasm at 50% stenosis. The dashed lines highlight what
diameter corresponds at physiological systolic pressure thus showing the nominal diameter of
2.9mm and the diameter in disease at about 1.45mm.

It is immediate to notice that the value of physiological systolic blood pressure 16kPa
now corresponds to a diameter of about 1.49mm, which is an approximate level of
stenosis of 50%. The curves for elastin and collagen are unaltered, while the passive
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and active stress contributions from VSMCs have shifted to the left and increased in
intensity: the leftward-shift and part of the increase in intensity is the consequence of
the remodelling of the cells to return their level of stretch to the attachment value,
while a further increase in intensity is modulated by the two factors fp and fa.

In Figure 2.8 the concept of the dilatation threshold is illustrated. The thicker solid
curve is the pressure-diameter curve for the vasospastic artery, the same as in Figure
2.6. In vasospasm, namely at a diameter of 1.49mm, the level of VSMC stretch equals
the attachment stretch, as per the assumption of remodelling in vasospasm. If an
increasing internal pressure was applied to the vessel, a configuration would be reached
at which VSMC stretch equals the dilatation threshold, i.e. a cell stretch of 1.8. In this
example, this corresponds to an arterial diameter of about 2.75mm. At this threshold,
the stress contributions from VSMCs become null and pressure load is now borne by
elastin and collagen only: this is illustrated by the blue arrow “jumping” from the
thicker to the thinner solid curve. Mathematically, the pressure-diameter relationship
for the arterial tissue goes from

p =
h

r

1

λz λ

(
σE + σC + σpassM + σactM

)
(2.21)

before damage, to

p =
h

r

1

λz λ
(σE + σC) (2.22)

after the smooth muscle cells cease to contribute to load bearing.
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Figure 2.8: Illustration of the concept of dilatation threshold for a middle cerebral artery
at 50% stenosis: the threshold corresponds to a VSMC stretch of 1.8, at which it is assumed
that the cells can no longer contribute to load bearing.
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2.3.2 Treatment Simulation

Now that the pressure-diameter curve for the vasospastic artery is known as well as
how to identify the dilatation threshold, it is possible to determine what magnitude
of pressure is necessary to overstretch the smooth muscle cells until damage and
mechanically resolve the disease. In order to do this, the effect of applying an
additional intraluminal pressure is simulated as would be provided by four commonly
available stent-retrievers: Solitaire 6, Solitaire 4, Capture 3 and Trevo 4x20. At first
their deployment in a middle cerebral artery at 50% stenosis will be simulated, as wwas
modelled in Section 2.3.1, and subsequently in cerebral arteries of 1.5, 2 and 4mm
respectively, at the same level of stenosis.

In order to do this, the chronic outward force data provided by the stent manufacturers
needs to be transformed into the corresponding pressure they would exert on the
arterial wall. According to Cabrera et al. (2017), the following derivation is carried
out:

1. The chronic outward force (COF ) data provided by the manufacturer has di-
mension N/mm and is defined as

COF =
HF

l
, (2.23)

where l is the length of the stent and HF is the hoop force the stent applies in
the circumferential direction.

2. By definition of stress, it holds that

HF = σ l h, (2.24)

and by the law of Laplace
σ = P

r

h
, (2.25)

where r is the arterial radius and h the wall thickness.

3. Putting the above together, one obtains

P =
HF

r l
=
COF

r
. (2.26)

The plots for the Chronic Outward Force of the four considered stents are reported
in Figure 2.9 and the derived curves for the pressure exerted are in Figure 2.10. It
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is worth noting how the curves decrease as the stents expand: this is the opposite
of what happens in balloon angioplasty, where pressure inside the balloon must be
increased to increase dilation, and one of the key reasons why stent retrievers would
be a safer treatment strategy.
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Figure 2.9: Chronic Outward Force exerted by four commonly available stent retrievers as
a function of their diameter following deployment.
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Figure 2.10: Pressure exerted by four commonly available stent retrievers as a function of
their diameter following deployment.

Now that the internal pressure that a stent would provide has been identified, the
effective pressure is defined as the sum of systolic blood pressure and the stent pressure.
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This is the total pressure that would be acting on the arterial wall following stent
deployment.
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Figure 2.11: Evaluation of the effectiveness or lack thereof of a stent retriever in the
mechanical resolution of vasospasm. A stent is effective if its related effective pressure
curve remains above the mechanical equilibrium curve (solid, thick) up until the dilatation
threshold.

Using the pressure-diameter relationships identified in Section 2.3.1, it is now possible
to determine the effectiveness of stent-retrievers in the mechanical resolution of
vasospasm. This is possible by modelling the stent deployment as quasi-static. This
is illustrated in Figure 2.11, where the solid lines describe mechanical equilibrium
within the arterial wall when all constituents are bearing load (thicker curve) and
when load is borne by elastin and collagen only (thinner curve). The dotted and
dashed lines instead represent the effective pressures associated to each stent-retriever,
of which only two are considered for illustration. A stent is effective if its related
effective pressure curve remains above the mechanical equilibrium curve from the point
corresponding to the initial vasospastic diameter up until the dilatation threshold.
This signifies that the stent is applying more pressure to the wall than the wall can
balance out and thus the artery keeps expanding up until the VSMCs are damaged. If
instead the two curves intersect before the threshold, that corresponds to the system
reaching a new mechanical equilibrium in which the stent has stretched the artery but
has not damaged any of the constituents; upon retrieval of the stent, the artery would
return to its vasospastic diameter. Thus in Figure 2.11 the stent Solitaire 6 would be
successful in resolving vasospasm, while Trevo 4mm would be ineffective.
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Finally, the effectiveness of the four considered stent retrievers is tested in arteries of
different original diameters, all at a 50% level of stenosis. These are shown in Figure
2.12: case A corresponds to an original diameter of 1.5mm, case B of 2mm, case C of
2.9mm and case D of 4mm.
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Figure 2.12: Evaluation of the effectiveness or lack thereof of four stent retrievers in the
treatment of vasospasm in four arteries of different physiological diameter at 50% stenosis.
Most stents are successful in the smaller arteries but their effectiveness decreases with
increasing vessel diameter.

It is worth noticing that the effectiveness of the stent retrievers decreases as the value
of the physiological arterial diameter increases. Most stents are effective up to 2mm,
none are successful at 4mm and one could infer that the threshold of effectiveness is
around 3mm. This is consistent with published clinical observations: reported cases
of success involve arteries like the M2 section of the middle cerebral artery (mean
2.2mm) or the A2 section of the anterior cerebral artery (mean 2.5mm), while failure
is consistently reported for larger arteries like the internal carotid arteries (> 4mm)
and there are mixed results for the M1 segment of the middle cerebral artery (> 3mm)
(Bhogal et al. (2016, 2017, 2019), Li et al. (2019)).
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2.3.3 Parameter study

As a result of the increased smooth muscle contraction, the vessel cross-section is
reduced. Without remodelling, this decreases the stretch of the elastin and collagen
components thus decreasing the proportion of pressure load that they bear. With
progressive remodelling of the VSMCs, the vessel diameter is further decreased until
in severe cases of vasospasm the stretches of elastin and collagen drop below one. As
a result, VSMCs become the sole load bearer of the transmural pressure load. Since
VSMCs are modelled as providing both a passive and an active stress contribution,
the increased pressure load must be distributed between the two. Given the absence
of experimental data on this process and the possibility that his may be dependent on
patient-specific characteristics, a parameter study is run to explore the possible impact
that the variations in relative load bearing proportions would have on treatment
requirements.

The relative roles of active and passive VSMCs are modulated by parameters fp and
fa (see Section 2.4 for a biological interpretation of these changes). The parameters
are unitary in health and need to increase in this model to capture the increased load
borne by the stress response. The two variables are coupled so that the mechanical
equilibrium of the arterial wall is maintained. In the previous Section 2.3 a specific case
(fp = 1.2, fa = 1.475) was considered. Here the entire parameter space is explored.

First the solutions for the two extreme cases are obtained, i.e. when only one of the
two parameters is changed and the other remains unitary. If the passive response is
not affected (fp = 1), then fa must increase by 75%; conversely, if fa = 1, then fp
increases by 55% (Fig. 2.13 ). Then fp is gradually increased from 1 to 1.55 (with
fp = 1.55 corresponding to fa = 1 by small constant increments and the equation of
mechanical equilibrium (Eq. (2.27)) is solved: this gives us the relationship between
fa and fp (see Fig. 2.13).

p =
h

r

1

λzλ

(
fp σ

pass
M + fa σ

act
M

)
(2.27)

For each pair of values the critical pressure is computed, i.e. the amount of pressure
that should be applied to the arterial wall in order to reach the dilatation threshold
and thus damage the VSMCs (see Fig. 2.14). Systolic blood pressure (16kPa) is
then subtracted from the critical pressure to obtain the additional pressure: this is
the amount required from an interventional device in order to mechanically resolve
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Figure 2.13: Relationship between active stress factor fa and passive stress factor fp in
response to increased load bearing proportion for VSMCs in vasospasm.

vasospasm.

The results show that the minimum pressure required from a device is 5kPa while the
maximum is around 11kPa. Although these values are relatively significant and can
make a difference in the success or lack thereof of a specific stent in different patients,
they are relatively low values which could be achieved by either currently available or
specifically designed stents. The range of results remains an order of magnitude lower
than what is required from balloon angioplasty.
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Figure 2.14: Critical and additional pressures required to mechanically resolve vasospasm
over the parameter space spanned by the active and passive stress factors.

2.4 Discussion

In Chapter 2 a biomechanical model of pronounced cerebral vasospasm is proposed
with a focus on the role of smooth muscle cells and the evolution of their stress
response with the changing geometry. The model captures the essential mechanism of
the disease by means of a simple assumption on the attempt by arterial constituents to
maintain a preferred state of stretch. Its aim is to determine the magnitude of pressure
that an interventional device should provide in order to mechanically resolve the
disease. This can have important translational applications such as advising the use of
stent-retrievers in place of balloon angioplasty in smaller arteries (diameter < 3mm),
which is a less invasive and less risky procedure. It is important however to remember
that the success of the stent depends not only on the original arterial diameter, but
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also on the degree of spasm, the time elapsed since subarachnoid haemorrhage and
possibly patient-specific characteristics. With regards to providing support in clinical
decisions, the model is still at too early a stage to be reliable and more experimental
data is needed to corroborate the assumptions that have been made. However, the
results show that the magnitude of pressure necessary for the mechanical resolution of
the disease is far lower than what is currently deemed necessary (10−20kPa compared
to 300kPa for balloon angioplasty) and there is potential for the design of specific
stents that could apply such pressures and become the primary treatment strategy
for the disease bringing a significant decrease in the risk of tissue rupture during
intervention.

The model presented in this Chapter was developed as a conceptual first step to test
the formulated key assumptions. Some simplifications have therefore been made and
priority was given to the representation of mechanical aspects of the problem without
capturing the full biological complexity of the arterial wall or its temporal evolution.

The main limitation of the model is that it is based on a membrane, thin wall
assumption. This is reasonable for a healthy artery where experimental measurements
have shown the presence of a pre-stress which results in a uniform strain-field across
the wall thickness. However, this is likely to no longer hold true in vasospasm due
to the severe constriction. It is also likely to affect the resulting predictions of the
model since the stent would apply higher stress on the cells or constituents closer
to the lumen compared to those closer to the adventitial layer; thus damage to the
VSMCs may not be uniform across the thickness of the vessel wall. This limitation is
addressed by integrating this model into a finite element framework: the framework is
extended for this purpose as described in Chapter 3 and applied to model vasospasm
for comparison with this model as detailed in Chapter 4.

The time-course of vasospasm is such that the peak of the constriction usually occurs
at 7-10 days following SAH. It is therefore within this time frame that evidence of
vasospasm is likely to appear and treatment decisions are made. This time frame is
much smaller than the halflife of arterial collagen, which is on average around 70 days,
and therefore it has been assumed that the effect of collagen remodelling is negligible
in the presented model. However it is possible that even partial remodelling could
affect the results or that the cells’ activities regarding ECM maintenance are altered
or accelerated since collagen turnover rate has been shown to decrease down to about
10 days in pathological conditions. This limitation is addressed in Chapter 5 where
this model is extended to include growth and remodelling of the collagen matrix.
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The remodelling of VSMCs, which is assumed to be the key driver of vasospasm,
is a complex and multifactorial process which involves both chemical signals (the
interaction between vasoconstrictors, vasodilators and their inhibitors) and the me-
chanical environment that the cells perceive. It is also a time-dependent process where
the early stage is dominated by the chemical signals while in the chronic stage it is
the mechanical environment that plays the greater role. In the model these detailed
processes are not explicitly captured but the return of the stretch of VSMCs to their
homeostatic value is simply prescribed. The prediction on the pressure necessary for
treatment thus assume that this remodelling is complete, while in reality this is a
gradual change in the structure of the cells and may not be complete at the time of
treatment. At the time of writing experimental data is lacking on the timescale of
these remodelling mechanisms. An interesting model extension would therefore be an
explicitly time-dependent one where the entire time course of the disease is described
and the treatment prediction could be dependent on how mny days have been elapsed
since subarachnoid haeomrrhage as well.

Finally, although the endothelial layer plays a negligible mechanical role, it is re-
sponsible for the mechanotransduction of intraluminal mechanical signals (pressure,
wall shear stress, etc.) through the arterial wall (Kassell et al. (1985)). Due to the
severe constriction, the endothelial layer is crimped: this can both damage it through
desquamation (loss of endothelial cells, Kapp et al. (1985), Mizukami et al. (1976),
Nakagomi et al. (1990), Smith et al. (1985), Zubkov et al. (2002)), possibly followed by
inflammation, and impair the signalling process which is responsible for the regulation
of cell function. This model did not consider the endothelial layer since the interest
lied in the mechanical resolution of the disease; however, it would be an important
sophistication to include this, especially for modelling the disease evolution.

The role of inflammation also appears to be prominent in vasospasm and would be
worth including (Hughes & Schianchi (1978), Mayberg et al. (1990)). Indeed there
is evidence that it is inflammatory processes that drive some of the growth and
remodelling mechanisms occurring within the arterial wall during disease progress
and relating these processes to inflammatory signalling would result in a more precise
mode of the pathophysiology of vasospasm.

Despite its limitations, the model presented here captures some essential aspects of
the disease and is a promising first step towards a clinical tool that can advise on
viable treatment strategies. Although a parameter study is necessary, the results
produced so far are consistent with reported clinical cases of use of stent-retrievers
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for the treatment of the disease, which supports the validity of the model. It has
been interestingly obtained that stent-retrievers are in some cases a better treatment
strategy and thus the results help foster an improvement in the care of patients
presenting with CVS, since this type of intervention involves significantly reduced
damage to the extracellular matrix, eliminates the need to interrupt blood flow and
greatly reduces the risk of arterial tissue rupture.

These positive initial results corroborate the validity of the hypothesis that vasospasm
is primarily driven by vascular smooth muscle contraction and remodelling, and that
therefore treatment should be calibrated accordingly. It would be extremely useful if
this hypothesis could be supported by experimental results. A possible experiment
involves the application of arterial blood to different samples excised ex vivo of the
same section of a cerebral artery: this should cause vasospasm and each sample could
then be observed at the microscope after different amounts of time, such as 7, 14 and
21 days, in order to study the morphology of the VSMCs at different phases of the
disease.

2.5 Conclusion

The model of cerebral vasospasm presented in this Chapter is based on a novel
hypothesis that the constriction is driven by the remodelling of vascular smooth
muscle cells towards a homeostatic level of stretch and that the necessary and sufficient
condition to treat the disease is to overstretch these cells to functional failure, i.e.
a state in which they bear no pressure load. This hypothesis is consistent with
observations of morphological changes observed in the arterial wall in both human
and animal models as well as with clinical data on the time-course of the disease and
its response to pharmacological treatment. This hypothesis also potentially reconciles
conflicting reports on the increase or lack thereof of connective tissue mass in the
medial layer, which was hypothesised to be the main reason for the increased stiffness
of the wall.

Despite its significant morbidity and mortality, cerebral vasospasm has been a his-
torically poorly understood disease, in part due do its complex and multifactorial
aetiology. The success of stent retrievers in treating the constriction has challenged the
commonly held assumption that it was necessary to damage the extracellular matrix
in order to resolve the constriction. Further experimental validation is warranted in
this regard, but this novel hypothesis could help shed light on the mechanism by which
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this disease progresses and thus lead to improved and safer treatment strategies.
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Chapter 3

Finite Element Framework Extension

In the one-dimensional model of cerebral vasospasm presented in Chapter 2 the
arterial wall was idealised as a non-linear elastic cylindrical membrane. The membrane
assumption is reasonable when considering that arterial tissue is pre-stressed, as
evidenced by the presence of an "opening angle" at which it springs open when cut
longitudinally. This makes the stress field uniform across the wall thickness and allows
us to assume that constituent stresses will be uniform along the radial direction.

However, in the presence of a rapid and significant deformation such as that occurring in
vasospasm, this is likely to no longer be true when the constriction is sufficiently severe.
Therefore the model defined in Chapter 2 is hereby integrated into a three-dimensional
finite element framework to compare the results against the one-dimensional membrane
case.

The framework developed by Eriksson and Grytsan has been selected as the most
suitable. It has already been successfully applied to model the evolution of abdominal
aortic aneurysms (Eriksson et al. (2014), Grytsan et al. (2017, 2015)). The framework
is a constrained mixture of elastin, ground matrix and collagen, with the possibility
to include anisotropic volumetric growth. The framework is developed in the software
package FEAP (http://projects.ce.berkeley.edu/feap/), an academic open source
software which allows full customisation of material models as well as evolution
equations.

In order to integrate the membrane model of cerebral vasospasm into the framework,
three extensions to the model by Grytsan et al. (2017) are necessary:

• incorporation of new constitutive model of collagen to represent stretch distribu-

47
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tion, and remodelling;

• incorporation of new constitutive model for vascular smooth muscle cells with
both passive and active response, and remodelling;

• damage model for each constituent.

In this Chapter only those sophistications are described which have been implemented
and numerically verified. In Section 3.1the basic definitions and relations from Solid
Mechanics are summarised that the modelling framework is founded upon. In Section
3.2 the formulation, implementation and verification of the material model for collagen
with stretch distribution and remodelling is presented. In Section 3.3.2 the same is
done for vascular smooth muscle cells regarding the addition of the active response
and remodelling. Finally in Section 3.4 the model for constituent damage is described
and verified.

3.1 Concepts of Solid Mechanics

In this Section the basic concepts of Solid Mechanics are introduced that are relevant
to the work described in this Chapter and the next. For more in-depth information,
the reader is referred to Holzapfel (2000).

3.1.1 Kinematics

Consider a body B and a particle P ∈ B in a three-dimensional Euclidean space at a
given time t. In order to describe the deformation of this body, it is useful to introduce
a reference frame consisting of three orthonormal coordinate axes (e1, e2, e3) and
a point of origin O. As the body is deformed through space and time, it occupies a
continuous sequence of geometrical regions denominated configurations. The region
occupied at time t = 0 is called the initial configuration. The region occupied by
the body in a stress-free state is called the reference configuration and denoted
by Ω0. Notice that the two may not coincide. For the applications of interest in
my work, the latter plays a far more important role since strains will be defined
against the reference configuration and, in general, the initial configuration will not
be stress-free, thus not coincide with the reference configuration. However, in the
following the body is considered to be in the reference configuration at t = 0.The
position vector X is defined as the vector describing the position of particle P ∈ B
in the reference configuration with respect to the chosen coordinate system. After
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undergoing a deformation, the body will occupy a different geometric region called
the current configuration and denote by Ω. The vector describing the position of
particle P in the current configuration is denoted by x. Since the sequence of occupied
regions is continuous, there exist a continuous vector field χ such that

x = χ(X, t), ∀X ∈ Ω0, ∀t. (3.1)

This vector field is called the motion of body B.

Consider now X and x to be not points but curves inside body B, namely:

X = Γ(ξ) ⊂ Ω0, (3.2)

x = γ(ξ, t) ⊂ Ω. (3.3)

By definition of the motion vector field, it holds that

x = γ(ξ, t) = χ(Γ(ξ), t). (3.4)

The tangent vectors, also referred to as line elements, to the two curves are denoted
by dX and dx respectively. Therefore

dX = Γ′(ξ)dξ, (3.5)

dx = γ′(ξ, t)dξ, (3.6)

where the abbreviations (·)′ = ∂(·)
∂ξ

are used. From (3.4), it follows that

dx =
∂χ(X, t)

∂X
dX = F(X, t)dX, (3.7)

where F(X, t) is defined as the deformation gradient, which is a crucial quantity
and a primary measure of deformation.

Another relevant quantity to define is the right Cauchy-Green tensor C, also
referred to as the Green deformation tensor. This is given by

C = FTF (3.8)
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and has the important properties of being symmetric and positive definite at each
X ∈ Ω0, namely

C = FTF =(FTF)T = CT , (symmetry), (3.9)

u ·Cu > 0 ∀u 6= o, (positive definite). (3.10)

The above properties hold for the left Cauchy-Green tensor b too, which is defined
as

b = FFT (3.11)

and is another important strain measure with reference to the current configuration.

3.1.2 Stress Tensors

Consider a plane surface intersecting body B passing a given point x ∈ Ω in the
current configuration. Let ds ∈ ∂Ω be an infinitesimal surface element and let n be a
unit vector normal to this surface. The resultant force acting on the surface element
is denoted by df . Finally, while x, ds and n are defined in the current configuration,
let X, dS and N be the respective elements in the reference configuration.

Then, for every surface elements, it holds that

df = tds = TdS, (3.12)

where

t = t(x, t,n), (3.13)

T = T(X, t,N). (3.14)

The first vector t is called the Cauchy (or true) traction vector and represents
the force measured per unit surface element in the current configuration. Vector T is
called the first Piola-Kirchhoff (or nominal) traction vector and represents the
force measured per unit surface area in the reference configuration.
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Cauchy’s stress theorem is a fundamental result in solid mechanics and introduces
stress tensors. It claims that there exist unique second-order tensor fields σ and P

such that

t(x, t,n) = σ(x, t)n, (3.15)

T(X, t,N) = P(X, t)N, (3.16)

where σ is called the Cauchy (or true) stress tensor and is symmetric, while P
is called the first Piola-Kirchhoff (or nominal) stress tensor. Cauchy’s stress
theorem is a fundamental result in continuum mechanics and states that, if either
stress tensor depends on the outward unit normal, then it must be linear in it.

It is possible to pass from one stress tensor to the other through the Piola transfor-
mations :

P = JσF−T , (3.17)

σ = J−1PFT , (3.18)

where J = det F.

Consider traction vector t and let m be a unit vector embedded in the surface ds
orthogonal to n. Then t can be written as the vector sum of a component parallel to
n and one parallel to m, namely

t = tn + tm = (n · t)n + (m · t)m = σn + τm. (3.19)

The length σ of component tn is called the normal stress, while the length τ of
component tm is called the shear stress.

Next,it is of interest to find the maximum and minimum normal stresses and their
respective directions. In order to do this, it is necessary to determine the eigenvalues
and eigenvectors of the Cauchy stress tensor σ and thus the characteristic equation of
σ must be solved, i.e.

det(σ − λI) = 0, (3.20)

which can be rewritten as
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λ3 − I1λ2 + I2λ− I3 = 0. (3.21)

In (3.21) the expression on the left-hand side is called the characteristic polynomial of
σ and the factors I1, I2 and I3 are called the principal stress invariants of tensor
σ. They are equal to

I1(σ) = tr(σ), (3.22)

I2(σ) =
1

2

[
(tr(σ))2 − tr(σ2)

]
, (3.23)

I3(σ) = det(σ). (3.24)

Equation (3.21) yields three solutions λi, i = 1, 2, 3, called the eigenvalues of σ, which
can be substituted in

(σ − λiI)v = 0 (3.25)

to find their corresponding eigenvectors vi, i = 1, 2, 3. The three eigenvalues λi
are called the principal normal stresses and the maximum and minimum among
them correspond to the maximum and minimum normal stresses. The corresponding
eigenvectors are called the principal directions, while their related normal planes
are called the principal planes. These are characterized by the fact that shear stress
vanishes on the principal planes. Moreover, because σ is symmetric, the eigenvectors
form an orthogonal basis.

Finally, a third stress tensor S is introduced, the second Piola Kirchhoff stress
tensor. Although it does not admit a physical interpretation in terms of surface
tractions, it is symmetric and, since it sits completely in the reference configuration
and is not affected by rigid body rotations, it is a very useful stress measure. It is
related to the Cauchy stress tensor by

S = JF−1σF−T , (3.26)

with inverse

σ = J−1FSFT . (3.27)
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3.1.3 Constitutive Equations

The material of the body under consideration is assumed to be hyperelastic, namely
such that there exists a Helmholtz free-energy function Ψ, defined per unit volume,
which is sufficient to describe the material mechanical behaviour. Since Ψ is assumed
to depend solely on the deformation gradient F, it is called a strain energy function.
Once Ψ is defined, the stress tensors can be derived according to

P =
∂Ψ(F)

∂F
, (3.28)

σ = J−1
∂Ψ(F)

∂F
FT = J−1F

(
∂Ψ(F)

∂F

)T
. (3.29)

Since C = FTF, the strain energy function can be expressed as a function of the right
Cauchy-Green tensor, namely Ψ(F) = Ψ(C). Then all three stress tensors can be
derived according to

σ = 2J−1F
∂Ψ(C)

∂C
FT , (3.30)

P = 2F
∂Ψ(C)

∂C
, (3.31)

S = 2
∂Ψ(C)

∂C
. (3.32)

The material is also assumed to be incompressible, i.e. such that its volume is
not changed throughout a motion. In order to enforce numerical incompressibility a
multiplicative split of the deformation gradient is adopted in which:

F = J
1
3 F, (3.33)

where J = det F is the volume ratio and det F = 1 (Holzapfel et al. (2000)).

In order to implement this constraint, the strain energy function is postulated to be
of the form

Ψ = Ψ(F− p(J − 1), (3.34)

where p is a Lagrange multiplier that can be identified as hydrostatic pressure. Its
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value can only be determined by equilibrium equations and boundary conditions.

The modified right Cauchy-Green tensor is defined as

C = F
T
F (3.35)

and the invariants of C are given by

I1 =tr(C), (3.36)

I2 =tr(C)2 − tr(C2
), (3.37)

I3 = det(C) = 1, (3.38)

and similarly for other invariants that will be defined later.

Parameter p, which is controlled through the bulk modulus in the numerical imple-
mentation, is used as a penalty parameter selecting for deformations that minimise
volume changes, thus realising near-incompressibility.

The derivation of the stress tensors therefore becomes

P = − pF−T +
∂Ψ(F)

∂F
, (3.39)

S = − pC−1 + 2
∂Ψ(C)

∂C
, (3.40)

σ = − pI + F

(
∂Ψ(F)

∂F

)T
. (3.41)

According to the chosen material model, the next step will be to express one of the
above stress tensors as a function of the invariants of C, which are computationally
more tractable than the entire tensors. For the application of this model, it will in
general be more convenient to derive the second Piola-Kirchhoff stress tensor and then
use equation (3.27) to find σ and thus identify principal stresses and planes.

To improve readability the remainder will omit the symbol · and thus denote F by F

and C by C since the original tensors are not directly used in the framework.
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3.1.4 Constrained Mixture Model

In order to implement a constrained mixture model of arterial tissue, it is necessary
to define its constitutive equation. A constrained mixture approach is adopted, which
assumes that each material constituent has its own independent reference configuration
but deforms consistently with the rest of the tissue. It is assumed that the stress
response of the tissue is the sum of the stress contributions of its mechanically relevant
microstructural constituents. Mathematically, the strain energy function is additively
split as

Ψ = Ψel + Ψgm + Ψcol,a0 + Ψcol,g0 + Ψpass
V SMC + Ψact

V SMC , (3.42)

where "el" stands for elastin, gm for ground matrix, col for collagen and VSMC

for vascular smooth muscle cells. The following assumptions are made for these
constituents:

1. elastin, ground matrix and the passive response of VSMCs behave as isotropic
neo-Hookean materials;

2. collagen is highly anisotropic, being able to stretch in only one preferred direction
for each fibre;

3. the active response of VSMCs is anisotropic, acting only in the circumferential
direction, and has a functional form similar to a downward-facing parabola,
which is motivated by experimental measurements and described in Section 2.2.

The collagen constituent consists of two families of collagen fibres oriented at
symmetric angles with respect to the circumferential direction, corresponding to the
additive terms Ψcol,a0 and Ψcol,g0 . Let a0 and g0 be the unit vectors representing the
directions of the collagen fibres. The constitutive equation for a generic incompressible
isotropic material surrounded by two families of fibres depends on nine invariants: the
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first three are defined in (3.22), while the remaining are defined by

I4(C, a0) = a0 ·Ca0, (3.43)

I5(C, a0) = a0 ·C2a0, (3.44)

I6(C,g0) = g0 ·Cg0, (3.45)

I7(C,g0) = g0 ·C2g0, (3.46)

I8(C, a0,g0) = a0 ·Cg0, (3.47)

I9(a0,g0) = (a0 · g0)2. (3.48)

Since I9 is a geometrical constant that does not depend on the deformation, it is no
longer considered. The resulting general constitutive equation is therefore given by

S = − pC−1 + 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− ∂Ψ

∂I2
C + I3

∂Ψ

∂I3
C−1 (3.49)

+
∂Ψ

∂I4
A0 +

∂Ψ

∂I5
(a0 ⊗Ca0 + a0C⊗ a0) (3.50)

+
∂Ψ

∂I6
G0 +

∂Ψ

∂I7
(g0 ⊗Cg0 + g0C⊗ g0) (3.51)

+
1

2

∂Ψ

∂I8
(a0 ⊗ g0 + g0 ⊗ a0)

]
, (3.52)

where

A0 = a0 ⊗ a0, (3.53)

G0 = g0 ⊗ g0. (3.54)

A0 and G0 are referred to as structural tensors.

Vascular smooth muscle cells typically appeared to be aligned in the circumferential
direction in healthy arteries. It is therefore assumed that the active contractile response
is also anisotropic and only non-negative in that direction. Vector m0 is defined as
the unit vector in the circumferential direction and M0 = m0 ⊗m0 is the structural
tensor for the active response of VSMCs. The invariant associated to structural tensor
M0 is defined analogously to (3.43) as

IM(C,m0) = m0 ·Cm0. (3.55)
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Finally the functional form of the strain energy functions of the constituents must
be specified. For elastin, ground matrix and passive VSMCs a neo-Hookean
material model is adopted, namely

Ψ(·) =
µ(·)

2
(I1 − 3), (3.56)

where (·) = el, gm and µ(·) is a material parameter. For collagen, a distribution of
recruitment stretches is implemented following Grytsan et al. (2017) and Eriksson
et al. (2014), which is described in more detail in Section 3.2.1. It is however assumed
that the strain energy density function for collagen depends only on the fourth resp.
sixth invariant, depending on the fibre family.

The material model for vascular smooth muscle cells is described in Section 3.3.2. The
passive response is modelled as neo-hookean while the active response is assumed to
be dependent on IM only.

These choices of strain energy function Ψ are such that the dependence on I2, I5, I7
and I8 has been eliminated, while the dependence on I3 has been substituted by the
incompressibility constraint. Thus in this case, (3.49) becomes

S = −pC−1 + 2

[
∂Ψ

∂I1
I +

∂Ψ

∂I4
A0 +

∂Ψ

∂I6
G0 +

∂Ψ

∂IM
M0

]
, (3.57)

where p is the hydrostatic pressure and works as a penalty parameter that enforces
incompressibility.

For the following, the main parts of the code used in the finite element modelling
are reported in Appendix B and the input file for each simulation can be found in
Appendix C.

3.2 Collagen Stretch Distribution: Constitutive Model

and Remodelling

3.2.1 Motivation

In constrained mixture models of fibre-reinforced soft tissues, the stress response of
collagen is often described using the HGO model, which uses an exponential-like
function (Holzapfel et al. (2000)). Although this model successfully captures the
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rapid stiffening of the tissue as the load borne by collagen increases, there has been
difficulty in relating the parameters of the stress response to their biological meaning.
Microscopic imaging of collagen in arterial walls have shown that this appear with
varying levels of waviness, in a continuous distribution (Schrauwen et al. (2012)).
Hill et al. (2012) showed that including a distribution of levels of waviness into the
constitutive model of the material, as well as initiating recruitment at a finite stretch,
yields the best fit to experimental data.

The material model initially included in the framework is therefore sophisticated to
one that would represent this distribution of levels of waviness. In order to simplify
notation and denomination, in the following the term "stretch" will indicate any state
of linear deformation compared to the stress-free configuration, whether this be larger
or smaller than 1, even though it would be more intuitive to speak of "waviness" or
"undulation" when the stretch is smaller than 1.

The constitutive model proposed by Chen (2014) and Aparìcio et al. (2016) is adopted.
This is an adaption of the model described in 2.2 into a three-dimensional framework
and is described in the next Section.

3.2.2 Constitutive Model

It is assumed that collagen appears with a continuous distribution of levels of stretch.
This distribution is modelled as triangular: this seems to be a reasonable approx-
imations when considering experimental data (Hill et al. (2012), Schrauwen et al.
(2012)) and is desirable for computational complexity, since it allows derivation of the
analytical form for the total stress contribution of collagen, thus avoiding numerical
integration, which would be computationally expensive.

The distribution is uniquely determined by the triplet of values

(
λAT,minC , λAT,modC , λAT,maxC

)
, (3.58)

where AT stands for "attachment" (stretch), λAT,minC and λAT,maxC are the minimum
and maximum stretches of collagen fibres respectively, while λAT,modC corresponds to
the stretch with maximum probability density, i.e. the "peak" of the triangle.

The distribution ρ(λRC) is then given by
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ρ(λRC) =



0 if λRC < λR,minC ,

2(λRC−λ
R,min
C )

(λR,maxC −λR,minC )(λR,modC −λR,minC )
if λR,minC ≤ λRC < λR,modC ,

2(λR,maxC −λRC)
(λR,maxC −λR,minC )(λR,maxC −λR,modC )

if λR,modC ≤ λRC < λR,maxC ,

0 if λR,maxC ≤ λRC ,

(3.59)

where all stretches are to be understood as along the fibre direction.

A function Ψ̃C(λC) will then be defined which represents the contribution to the strain
energy function given by the fibres recruited at λRC . An individual fibre is assumed to
have a linear stress response:

Ψ̃C(λC) =
µC
2

(λC − 1)2 , (3.60)

where µC is a stiffness-like material constant.

The total stress contribution from the collagen material is then obtain by integrating
over the distribution of recruitment stretches:

ΨC(λ) =

∫ λ

1

Ψ̃C

(
λ

λRC

)
ρ(λRC) dλRC . (3.61)

The choice of a triangular distribution of recruitment stretch results in the Piola-
Kirchhoff stress admitting an analytical form of type:

∂ΨC

λ
(λ) = µC C1

[
(λ+ C2) ln(

λ

C3

) + C4 λ+ C5

]
, (3.62)

where Ci = Ci(λ
R,min
C , λR,modC , λR,maxC ) are constants depending on λR,minC , λR,modC and

λR,maxC .

3.2.3 Remodelling

Vascular cells continuously maintain the collagen fabric: they secrete collagen-degrading
enzymes called matrix metalloproteinases and their inhibitors TIMPs (tissue inhibitors
of metalloproteinases), as well as synthesize and secrete new fibres which they then
attach to the existing matrix. It is assumed that cells aim to maintain collagen with a
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stretch distribution that optimises its mechanical function. Therefore a fibre stretch
distribution is defined that corresponds to physiological homeostatic conditions:

(
λmin,hC , λmod,hC , λmax,hC

)
. (3.63)

Collagen can remodel towards this target distribution according to the following
equations, which are linear in the deviation from the corresponding target stretches:

∂λR,minC

∂t
= αC

λmaxC − λmax,hC

λmax,hC

, (3.64)

∂λR,modC

∂t
= αC

λmodC − λmod,hC

λmod,hC

, (3.65)

∂λR,maxC

∂t
= αC

λminC − λmin,hC

λmin,hC

, (3.66)

where λminC , λmodC and λmaxC are the current collagen stretches while λR,minC , λR,modC and
λR,maxC the current recruitment stretches. Thus, if for example λmaxC > λmax,hC , then
the partial derivative of λR,minC is positive, the system will evolve to increase λR,minC

and this corresponds to the desired decrease in λmaxC . Similarly for λR,modC and λR,maxC .
In the above, time is treated numerically and thus the computational implementation
is

λR,minC = λR,minC + αC
λmaxC − λmax,hC

λmax,hC

· dt, (3.67)

where dt is a numerical time step. The analogous holds for the other variables. The
reader is also reminder that λC is a function of λRC according to λC = λ/λRC with λ
the tissue stretch.

3.2.4 Implementation

In a finite element setting the initial configuration of the material is unloaded. If
the natural state of the material to be studied is subject to loads, these must be
gradually applied in a number n of numerical steps set by the user. Therefore the
stages corresponding to numerical times t = 0, . . . , n correspond to loading of the
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material and, if the loads applied are static, the configuration at numerical time t = n

corresponds to the loaded configuration. In the simulations of arterial geometry
presented in this thesis, loading of the material will consist of the application of an
internal pressure of 16kPa and of an axial stretch of λZ = 1.3. However this does not
yet correspond to the healthy state of arterial tissue.

Indeed the models presented in this work characterises the healthy arterial tissue as
not only being in the loaded configuration but also having all its constituent stretches
equal to the respective attachment stretches. It is not straight-forward to know what
distribution of stretches at time t = 0 results in the desired distribution at the end of
the loading phase. In order to obviate this problem, a second phase is implemented
during which all constituents remodel towards their attachment stretches according
to the equations described in Section 3.2.3. Therefore it is only at the end of this
second phase that the tissue represents a healthy arterial wall, after both loading and
remodelling towards homeostasis.

In order to complete the constitutive model and carry out the necessary calculations,
the program must receive the following information from the input file with regards
to the collagen material: the direction vectors of the fibre families, the material
parameter, the target homeostatic distribution and an initial guess distribution.

The direction vectors are supplied as an n × m matrix, where n is the number of
nodes and m = 3k, where k is the number of fibre families and for each family the
triplet of (x, y, z) coordinates of each direction vector must be provided. The material
parameter is a scalar value and represents a stiffness-like material property. The target
homeostatic distribution is given by the triplet of values as in (3.63). In addition, an
initial distribution must be specified, corresponding to the unloaded configuration at
t = 0.

To implement the constitutive model that includes the stretch distribution, two
subroutines are created: one computes the first and second derivative of the strain
energy density function, while the second computes the stress tensor and the tangent
stiffness matrix, which depend on the direction vectors of the fibre families, from the
two derivatives. The choice of a triangular distribution allows the integral defined in
(3.61) to be expressed in an analytical form, thus bypassing the need for numerical
integration. Following Chen (2014) and Aparìcio et al. (2016), the explicit expressions
for the first Piola-Kirchhoff stress are obtained through application of equation (3.39):
these are given by Eq. (3.68) where the abbreviations a = λR,minC , b = λR,maxC and
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c = λR,modC are used.

PC(λ) =



0 if λ < a,

γ((a+ λ) log(λ
a

+ 2(a− λ))) if a ≤ λ < c,

γ((a+ λ) log( c
a
) + a− c+ (a

c
− 1)λ) + ...

−δ((b+ λ) log(λ
c
) + b+ c− ( b

c
+ 1)λ) if c ≤ λ < b,

γ((a+ λ) log( c
a
) + a− c+ (a

c
− 1)λ) + ...

−δ((b+ λ) log( b
c
)− b+ c− ( b

c
− 1)λ) if b ≤ λ,

(3.68)

where

γ =
2µ

(b− a)(c− a)
, (3.69)

δ =
2µ

(b− a)(b− c)
. (3.70)

The evolution laws that govern the remodelling (Eq. (3.64)) are discretised by means
of the explicit Euler method and implemented in a subroutine that collects "user
macros" which can be custom called by the user from the input file. The equations
prescribe remodelling of the recruitment stretch so that the current constituent stretch
evolves towards its homeostatic (attachment) value. The remodelling rate is linear in
the deviation of the current stretch from its attachment value (Eq. (3.71)):

∂λR,minC

∂t
= α

Imax4C − IATT,max4C

IATT,max4C

, (3.71)

∂λR,modC

∂t
= α

Imod4C − I
ATT,mod
4C

IATT,mod4C

, (3.72)

∂λR,maxC

∂t
= α

Imin4C − I
ATT,min
4C

IATT,min4C

. (3.73)

3.2.5 Verification of Constitutive Model

In this Section a model of biaxial extension for a cubic sample of arterial tissue is
presented. The model has been implemented in FEAP and used to verify the correct
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implementation of the new constitutive model for collagen and later vascular smooth
muscle cells. This is possible because the analytical solution for this simple case is
available and computed through the software MATLAB.

A cubic sample of arterial tissue is modelled as a constrained mixture of elastin, ground
matrix, collagen and VSMCs. Biaxial extension is enforced by applying the following
deformation gradient:

F =

λ 0 0

0 λ 0

0 0 1
λ2

 , (3.74)

where λ grows linearly from 1 to 2 in a number n of uniform steps. The first two
diagonal elements are due to the uniform stretching of the tissue in the x− and y−
directions, while the third follows from the incompressibility constraint J = det F = 1.

In order to solve equation (3.57), it is necessary to determine the hydrostatic pressure
p. This is done by prescribing S33 = 0 where S33 is the entry of S in the third row
and third column. This corresponds to absence of stress in the z direction. Since a0

and g0 are of the form cosφ,

sinφ,

0

 ,

it follows that the third diagonal elements of A0 and G0 are equal to 0. From this
it follows that it is possible to determine the value of p by setting S33 = 0 in (3.57),
thus obtaining

p = 2
∂Ψ

∂I1

1

λ4
. (3.75)

Now that p is known, it can be substituted into (3.57) and solve for S. Finally, the
transformation defined by (3.27) can be applied to obtain σ and identify the principal
stresses.

Due to the symmetry of the geometry and the loading, only one eighth of the tissue
sample is modelled, represented by a unit cube lying in the first octant. The mesh
consists of 4× 4× 1 (number of elements in x, y and z directions respectively) Q1P0
elements of 8 nodes each, yielding a total of 16 elements and 50 nodes. The cube is
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positioned to have one corner in (0, 0, 0) and be fully contained in the first octant
(Figure 3.1). The following symmetry boundary conditions (BCs) are applied:

• displacement ux(x = 0) = 0 ,

• displacement uy(y = 0) = 0,

• displacement uz(z = 0) = 0.

Displacement-controlled biaxial extension is implemented by prescribing:

• displacement ux(x = 1) = 1, and

• displacement uy(y = 1) = 1.

At every step of the simulation, the principal stresses are extracted at a specified node
and compared with the analytical model. Due to the homogeneity of the stress state,
the choice of the node can be arbitrary.

The parameters chosen for the model are listed in Table 3.1.

Parameter Value
kE 0.0093 MPa
kC 5.8 MPa

λAT,minC 0.85

λAT,modC 0.95

λAT,maxC 1.05
φ in (a0) π

4

φ in (g0) −π
4

Table 3.1: List of model parameters for biaxial extension validation.

The principal stress from the numerical and analytical mode are plotted in Fig. 3.3.
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Figure 3.1: Biaxial extension verification case at λ = 1, corresponding to the beginning of
the simulation.

Figure 3.2: Biaxial extension verification case at λ = 2, corresponding to the end of the
simulation.
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Figure 3.3: Comparison of principal stresses in the x-direction (σxx) and y-direction (σyy)
from the analytical (AN) versus the numerical (FE) solutions in the case of symmetric biaxial
stretching of a simple cube. The initial linear behaviour is due to the properties of elastin,
which is the main load bearer at smaller stretches, while the visible stiffening of the tissue at
higher stretches is due to the gradual recruitment to load-bearing of the collagen fibres.

3.2.6 Verification of Remodelling

In order to verify the correct implementation of the evolution laws governing re-
modelling of the collagen stretch distribution (3.64), the model of biaxial stretching
presented in the previous Section is extended and tested for robustness against different
initial conditions.

The first part of the model is equal to the one described in Section 3.2.5: a cubic
sample of tissue is symmetrically stretched in the x- and y-directions, linearly over
time until λ = 2. No remodelling occurs in this phase. When the final stretch λ = 2

is achieved, the tissue is held at this state of stretch and collagen remodelling begins,
i.e. the user macro running the evolution equations is called at every time step. To
ensure a small enough difference between the actual stretch distribution and the target
distribution, the second part of the model is run for 450 time steps, until t = 500.
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The target distribution is set at:

λATTmin = 0.85, (3.76)

λATTmod = 0.95, (3.77)

λATTmax = 1.05. (3.78)

The remodelling equations are tested for robustness by varying the initial conditions.
Four distinct cases are considered with different initial distributions corresponding to
the following scenarios:

• Case 1 represents the case in which the initial distribution has the same width
and same skew as the target one;

• Case 2 represents the case in which the initial distribution has the same width
but different skew;

• Case 3 represents the case in which the initial distribution has different width
compared to the target one but symmetric skew like the target one;

• Case 4 represents the case in which the initial distribution has different width
and different (asymmetric) skew from the target one.

The corresponding initial distributions are given by the following values and plotted
in Figure 3.4:
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Case 1 :


λminC = 0.75,

λmodC = 0.85,

λmaxC = 0.95;

(3.79)

Case 2 :


λminC = 0.7,

λmodC = 0.85,

λmaxC = 0.9;

(3.80)

Case 3 :


λminC = 0.6,

λmodC = 0.8,

λmaxC = 1.0;

(3.81)

Case 4 :


λminC = 0.6,

λmodC = 0.8,

λmaxC = 0.9.

(3.82)
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Figure 3.4: Collagen stretch distributions for the four representative cases selected for the
verification of robustness of the remodelling equations for the collagen fibres.

Looking at Figures 3.5-3.8, it is easy to notice that all cases converge successfully
towards the target distribution and that the evolution is robust in terms of the initial
conditions: the values, width and skew of the initial distribution have no effect on
the correct convergence of the stretch values. The implementation of the remodelling
equations is thus considered verified.
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Figure 3.5: Evolution of collagen stretch distribution for Case 1 (initial distribution with
same width and skew as target distribution). During the first 50 seconds the cubic sample
is gradually stretched until λ = 2 and then it is held in position while collagen remodels
towards its target distribution.
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Figure 3.6: Evolution of collagen stretch distribution for Case 2 (initial distribution with
same width but different skew compared to target distribution). During the first 50 seconds
the cubic sample is gradually stretched until λ = 2 and then it is held in position while
collagen remodels towards its target distribution.
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Figure 3.7: Evolution of collagen stretch distribution for Case 3 (initial distribution
symmetric width like target distribution but different skew). During the first 50 seconds the
cubic sample is gradually stretched until λ = 2 and then it is held in position while collagen
remodels towards its target distribution.
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Figure 3.8: Evolution of collagen stretch distribution for Case 4 (initial distribution with
different width and asymmetric skew compared to target distribution). During the first 50
seconds the cubic sample is gradually stretched until λ = 2 and then it is held in position
while collagen remodels towards its target distribution.
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3.3 Vascular Smooth Muscle Cells with Active Re-

sponse: Constitutive Model and Remodelling

3.3.1 Motivation

One limitation to the finite element framework developed by Eriksson et al. (2014)
and Grytsan et al. (2017) is the absence of a constitutive model for vascular smooth
cells (VSMCs). Following Humphrey et al. (2007 Septembera) and Baek et al. (2007),
a constitutive model is chosen that includes both a passive and active response, where
the latter captures the ability of VSMCs to contract and dilate to regulate vessel
diameter.

3.3.2 Constitutive Model

The passive response is modelled as neo-hookean with material parameter kpassM :

Ψpass
M =

kpassM

2

(
I1 − 3

)2 (3.83)

The active response follows Baek et al. (2007) who have chosen the simplest functional
form that closely resembles the active response measured in animal experiments. This
stress function is in principle the one that was implemented in Chapter 2 in Eq. (2.18):
the only difference is that factors fp and cv are omitted. Vascular smooth muscle cells
are assumed to be aligned in the circumferential direction and thus the active stress is
assumed to act only in that direction (Rothermel et al. (2020), Ushiwata & Ushiki
(1990)). In Baek et al. (2007) a general strain energy density function is not given,
but since only its first and second derivative are needed for the implementation, it is
only necessary to prescribe the former, which coincides with the first Piola-Kirchhoff
stress. This is thus given by:

∂Ψact
M

∂λM
=


0 if λM < λminM ,

kactM λM

[
1−

(
λmeanM −λM
λmeanM −λminM

)]
, if λminM ≤ λM ≤ λmaxM ,

0 if λmaxM < λM ,

(3.84)

where



73

λM =
√
I4M , I4M = C : M0, (3.85)

where M0 = m0 ⊗ m0 with m0 the unit vector in the circumferential direction
(see Section 3.3.4). The functional form and parameters of the stress function are
identical to that used in the 1D model and thus the stress response of VSMCs in the
circumferential direction is illustrated in Figure 3.9, which is identical to Figure 2.4 in
Chapter 2 but reported here for ease of readability.
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Figure 3.9: Active component of the stress response of vascular smooth muscle cells as
a function of their stretch (continuous curve). The dashed line corresponds to the stress
response when VSMC stretch equals its attachment value λM = λATTM = 1.15.

3.3.3 Remodelling

Similarly to what has been defined for the collagen fibres, VSMCs are assumed to
have a recruitment stretch λRM such that

λRM =
λ

λM

(3.86)
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where λ is the current tissue stretch and λM the current cell stretch of VSMCs. The
value of the recruitment stretch can change in response to a changing mechano-chemical
environment. In the models presented in this work remodelling will be used in two
cases:

• towards health: as explained in Section 3.2.4, the finite element model requires
two phases in order for the modelled tissue to represent healthy arterial tissue;
the first phase is a loading phase in which internal pressure and axial pre-stretch
are applied, while the second phase is needed to allow constituent stretches to
attain their attachment values;

• vasospasm: it is assumed that a driving mechanism of vasospasm is the re-
modelling of VSMCs about the new geometry, namely the fact that at the
reduced vessel diameter (and therefore circumferential stretch) they remodel
their configuration (in the form of the recruitment stretch) in order that their
stretch equals the attachment stretch.

It is assumed that the target value (VSMC attachment stretch λATTM ) is known and
that the remodelling process is linear in the deviation of the current recruitment
stretch from the target:

∂λRM
∂t

= αM
λM − λATTM

λATTM

. (3.87)

This is the equivalent of the remodelling equations used for the collagen distribution.

3.3.4 Implementation

The passive response of VSMCs is modelled as isotropic neo-Hookean and thus the same
material model for elastin is used, with the material parameter modified accordingly.
The active response is modelled to only act in the circumferential direction. This
choice is motivated by the experimental observation that VSMCs are mostly aligned
in this direction in arterial tissue. Similarly to collagen, a unitary direction vector m0

must be supplied to represent this direction. The corresponding structural tensor for
VSMCs is constructed by

M0 = m0 ⊗m0. (3.88)

The structure vector m0 is defined differently according to the numerical model used.
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Figure 3.10: Numerical computation of circumferential direction at each element (repre-
sented for one element only). The normalised vector difference between nodes 1 and 2 is the
unit tangent to the element in the middle point of the outer surface and represents a good
approximation of the circumferential direction. The same calculation is performed at each
element.

In the case of biaxal stretching of a cubic material sample, which is used for the
verification of the material model, the active stress response is assumed to be positive
only in the x direction and therefore m0 = (1, 0, 0). In the case of the cylindrical
model, which is used for the verification of remodelling and damage, the active stress
response will be assumed to be positive only in the circumferential direction. This
is less straight-forward to implement and the chosen process is the following: m0 is
computed for each element as the normalised difference vector between two nodes
that share the same radial and axial coordinates (see Figure 3.10). This gives the
unit vector tangent to the cylinder at the middle point on the element surface, which
represents a good approximation of the circumferential direction in this application.

Similarly to the case of collagen, two subroutines are created: the first computes the
first and second derivative of the SEDF in the circumferential direction, while the
second takes the two derivatives as input and derives the stress tensor and tangent
stiffness matrix, which depend on the direction vector of the material.
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As far as remodelling is concerned, the evolution equation (3.87) is again discretised
by the explicit Euler method and implemented in the "user macros" subroutine, which
is called from the input file via a custom phrase.

The passive and active material parameters as well as the direction vector are supplied
by the user via the input file. In the implementation used for this model the remodelling
rate parameter αM has been hard-coded into the program, but it would be straight-
forward to make it available for user customisation through the input file.

3.3.5 Verification

The correct implementation of the material model is verified through the same model
used in Section 3.2.5 for the verification of the material model of collagen: symmetric
biaxial stretching of a cube. In this model the active response of VSMCs is assumed
to be positive only in the x-direction.

The principal stresses are computed at every time step and compared to the analytical
solution, which is available for this simple case and derived in the software MATLAB.
The analytical solution is computed by solving Eq. (3.57) via the steps described in
Section 3.2.5. The results are plotted in Fig. 3.11.
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Figure 3.11: Comparison of principal stresses in the x- (σxx) and y- (σyy) directions for
the analytical (AN) versus the numerical (FE) solution. The active stress only acts in the
x− direction and thus the principal stress σxx is higher than σyy. The graph shows excellent
agreement between the numerical and analytical solution.
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From Fig. 3.11 it is immediately visible that there is excellent agreement between the
analytical and the numerical solution and thus the model is considered as correctly
implemented. It is easily noticeable that the stress response in the x-direction is higher,
which is consistent with the VSMC active response only affecting said direction.

3.3.6 Verification of remodelling

In order to verify the correct implementation of the evolution equation for the recruit-
ment stretch of VSMCs the simulation of biaxial stretching of a cube is abandoned and
a cylindrical geometry is used instead, which will be useful for the model of cerebral
vasospasm discussed in Chapter 4.

The verification model used to test the correct implementation of VSMC remodelling
is a cylinder inflation. A mesh for a quarter cylinder is used with 8 elements in the
circumferential direction, 4 in the radial and 12 in the axial. The radial layers do not
correspond to anatomical layers, but are all composed of the same material that is the
composition of the three main constituents. The cylinder is internally pressurised to
physiological systolic blood pressure p = 16kPa and axially pre-stretched by a factor
λz = 1.2. The boundary conditions are assigned as follows:

• ux(x = 0) = 0,

• uy(y = 0) = 0,

• uz(z = 0) = 0,

• uz(z = 0.0125) = 0.0025,

where the former three conditions fix the boundary surfaces x = 0, y = 0 and z = 0,
so that the geometry can be thought of as the symmetric eighth of a 3cm cylinder.
The latter condition enforces the axial pre-stretch of λz = 1.2. The cylinder has a
diameter of d = 2.9mm and thickness h = 0.29mm, and thus h/r = 1/5.

The cylinder is assumed to be a constrained mixture of elastin, collagen and VSMCs.
Thus:

Ψ = Ψel + Ψcol,a0 + Ψcol,g0 + Ψpass
V SMC + Ψact

V SMC . (3.89)

Two families of collagen fibres are included with direction vectors a0 and g0 of the form
(sin(φ), cos(φ), 0) with φa0 = π/4 and φg0 = −π/4. Elastin is modelled as isotropic
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neo-Hookean material, while collagen and VSMCs are modelled according to the
constitutive equations described in Sections 3.2.5 and 3.3.2 respectively. The material
parameters and other relevant parameters for the model are reported in Table 3.2.
The material parameters have been chosen so that, similarly to what is hypothesised
in Chapter 2, elastin and passive VSMCs would bear about 80% of the pressure load
and deactivation of the active response of VSMCs would result in a dilation of about
15% (Latorre et al. (2019)).

Parameter Value
h 0.29mm
d 2.9mm
h/r 1/5
λz 1.2
kE 93kPa
kC 5800kPa
kpassM 45.1kPa
kactM 11kPa
φa0

π
4

φg0 −π
4

Table 3.2: Table of relevant model parameters for simulation of VSMC remodelling.

The model is divided into four phases:

• Phase 1 (time steps: 0− 50): Loading
Pressurisation and axial pre-stretching of unloaded cylinder;

• Phase 2 (time steps: 51− 500): Health
Remodelling of collagen and VSMCs towards homeostatic stretch; the end of
this phase corresponds to arterial tissue in health;

• Phase 3 (time steps: 501− 1000): Constriction
Increase of VSMC active stress response;

• Phase 4 (time steps: 1001− 1500): Remodelling
Remodelling of VSMCs towards homeostatic stretch.

With regards to the stretch of VSMCs, the following is expected to occur in the four
phases:

• Phase 1 (time steps: 0− 50): Loading
Pressurisation and axial pre-stretching of unloaded cylinder: VSMC stretch
increases linearly according to the deformation, recruitment stretch is constant;
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• Phase 2 (time steps: 51− 500): Health
Remodelling of collagen and VSMCs towards homeostatic stretch: recruitment
stretch changes in order to return VSMC stretch to attachment value;

• Phase 3 (time steps: 501− 1000): Constriction
Increase of VSMC active stress response; VSMC stretch decreases as the geometry
shrinks in response to the stress increase, recruitment stretch is constant;

• Phase 4 (time steps: 1001− 1500): Remodelling
Remodelling of VSMCs towards homeostatic stretch: recruitment stretch changes
in order to return VSMC stretch to attachment value;
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Figure 3.12: Evolution of VSMC cell stretch and recruitment stretch in homeostasis and
following constriction. Following the initial pressurisation (time steps 0-50) remodelling of
VSMC stretch towards its homeostatic value occurs (time steps 50-500) and the recruitment
stretch adapts accordingly. After the arterial geometry is constricted due to an increase in
the active response (time steps 500-1000, no remodelling in this phase), VSMC remodelling
occurs and the recruitment stretch adapts to the new geometry reaching a value that results
in the cell stretch to equal its attachment stretch (steps 1000-1500).

Figure 3.12 shows the evolution of the cell stretch λM and recruitment stretch λRM
over time, where the two values have been averaged across all elements. The results
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are as expected:

1. Phase 1: Loading
VSMC stretch increases linearly as the cubic sample is gradually stretched by a
factor of 2; the recruitment stretch remains constant as no remodelling occurs
in this phase;

2. Phase 2: Health
Recruitment stretch remodels in order to obtain λM = λATTM = 1.15 at current
tissue stretch; λM indeed evolves towards its target value;

3. Phase 3: Constriction
The increase in active stress response causes the tissue to shrink and thus its
circumferential stretch decreases; since no remodelling occurs in this phase, the
cell stretch decreases according to the deformation while the recruitment stretch
remains constant;

4. Phase 4: Remodelling
Recruitment stretch remodels in order to obtain λM = λATTM = 1.15 at cur-
rent tissue stretch; λM is indeed returned to its target value while λRM has
attained a different value than in Phase 2 since the new geometry has a different
circumferential stretch and thus λRM adapts according to λRM = λ/λM .

In Figure 3.13 a “time lapse" is presented of the evolution of the cell and recruitment
stretch for vascular smooth muscle cells, which allows us to contextualise the results
in the geometry. Each row corresponds to the end of the related phase: the first row
shows the end of Phase 1 at t = 50, the second row end of Phase 2 at t = 500, the third
end of Phase 3 at t = 1000 and finally the fourth end of Phase 4 at t = 1500. The
results outlined above are uniform in the circumferential and axial directions, but vary
in the radial direction: indeed the circumferential stretch presents a gradient across the
thickness of the vessel and thus, in order for the cell stretch to be uniform in the radial
direction, the recruitment stretch must also present a gradient. The results presented
in Figure 3.13 use a scale that covers the range of the entire simulation. In order to
better appreciate the radial gradient, Figure 3.14 shows the same variables with the
scale localised to a specific time point (t = 500 above and t = 1500 below). Here it
is easier to notice the change in geometry and the range of values the recruitment
stretch needs to attain in either configuration.
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Figure 3.13: Evolution of cell stretch (left) and recruitment stretch (right) over the four
phases of the simulation. During Phase 1 (pressurisation) λRM is constant and equal to an
initial value set by the user while λM changes consistently with the geometry. Following
Phase 2 (physiological remodelling) λM is equal to its attachment value and λRM has evolved
in order to achieve that: notice that λRM changes across the vessel thickness which is necessary
since the circumferential stretch is different. Following the constriction of Phase 3, during
which no remodelling occurs (therefore λRM is unchanged and λM evolves with the geometry),
during Phase 4 VSMCs achieve homeostasis again where λRM has attained a new distribution
which allows λM to return to its attachment value in the new geometry.



82

Figure 3.14: VSMC stretch and recruitment stretch at t = 500 (end of Phase 2, above) and
t = 1500 (end of Phase 4, below) with localised value scale. Since the circumferential stretch
is non-uniform across the vessel thickness, the recruitment stretch must attain a gradient of
values across the radial direction in order for the cell stretch to be uniform in all directions.
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3.4 Damage Model

3.4.1 Motivation

The absence of a damage model for constituents is a shortcoming of many existing
mathematical and computational models of soft tissue (Ambrosi et al. (2019)). In
the case of this model, where the aim is to simulate mechanical treatment of cerebral
vasospasm, this is a feature that cannot be missing from the modelling framework.
This can be a useful addition to several models of soft tissue diseases and/or treatment.

Following Li et al. (2012) a scalar damage variable is introduced per constituent,
varying between a minimum of 0 (no damage) to 1 (complete failure), where damage
is represented in a decrease of the constituent’s contribution to load bearing, i.e. of
its stress response. The continuous nature of the damage variable allows for easier
numerical implementation, though in reality damage to a constituent is likely to be
of a more discrete nature (detachment or rupture of fibrils within a collagen fibres,
detachment of focal adhesions and/or tight junctions, rupture of a stress fibre forming
the cytoskeleton of a cell, etc.). However the model of vasospasm treatment presented
here does not aim to describe the structure of the tissue down to this small scale
and thus this formulation of cell damage is sufficient. The mathematical details and
numerical implementation are discussed in Section 3.4.2.

3.4.2 Implementation

Following Li et al. (2012) a scalar damage variable is introduced for each constituent
d0,i ∈ [0, 1], with i ∈ {E,CM , CA,Mpass,Mact}, which represents the extent of damage
to the constituent. The case d0,i = 0 corresponds to no damage, while d0,1 = 1

corresponds to complete failure. Indeed, the strain energy density functions of the
individual constituents are pre-multiplied by the quantity (1− d0,1) and thus damage
to a constituent corresponds to a decrease in its contribution to load-bearing:

Ψi −→ (1− d0,i)Ψi, (3.90)

for i ∈ {E,CM , CA,Mpass,Mact}.

In other words, the total SEDF of the tissue is now given by
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Ψ = (1− d0,E)ΨE + (1− d0,C)ΨC + (1− d0,Mpass)Ψpass
M + (1− d0,Mact)Ψact

M . (3.91)

For the purposes of the model, it is only necessary to have a damage criterion for
VSMCs, but it would be straight-forward to extend the framework to accommodate
criteria for all the damage variables.

A strain-based damage criterion is used. In a first implementation, the aim was to
parallel the mathematical model presented in Chapter 2 as complete failure when cell
stretch λM = 1.8. However, implementing a sudden step increase of d0,Mact from 0 to
1 gave numerical problems and convergence was never obtained. The criterion was
therefore changed to the following: it is assumed that there is a level of strain λminM,d

(with Imin4M,d = (λminM,d)
2), called minimum damage threshold, at which damage would

begin to occur. The amount of damage added at each time step would be dependent
on the deviation of the cell stretch from the minimum damage threshold. If the cell
continued to be in overextension, damage would increase at every time step. It is
ensured that d0,M never exceeds one.

Algorithmically, this translates to the following:

IF I4M ≥ Imin4M,d THEN

d0,M = d0,M + αd(I4M − Imin4M,d)

END IF (3.92)

IF d0,M ≥ 1 THEN

d0,M = 1

END IF

where I4M = (λM)2.

The damage variables are hard-coded into the model and for each constituent they
are defined as a l × n matrix, with l being the number of nodes and n the number of
elements. The material parameters used in this simulation are reported in Table 3.3.

The damage criterion is implemented as a user macro in a dedicated "user macros"
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Parameter Value
h 0.29mm
d 2.9mm
h/r 1/5
λz 1.2
kE 93kPa
kC 5800kPa
kpassM 45.1kPa
kactM 11kPa
φa0

π
4

φg0 −π
4

λATTM 1.15

λATT,minC 0.85

λATT,modC 0.95

λATT,maxC 1.05
Imin4M,d 1.7
αd

1
100

Table 3.3: Table of relevant model parameters for verification of damage model.

file and is called by the user from the input file through a four-letter code word. The
implementation is similar to the remodelling routines described in previous Sections
of this Chapter.

3.4.3 Verification

The model is divided into four phases:

• Phase 1 (time steps: 0− 50): Loading
Pressurisation and axial pre-stretching of unloaded cylinder;

• Phase 2 (time steps: 51− 500): Health
Remodelling of collagen and VSMCs towards homeostatic stretch;

• Phase 3 (time steps: 501− 1000): Constriction
Increase of VSMC active response resulting in cylinder diameter reduction;

• Phase 4 (time steps: 1000− 1500): Damage
Gradual application of additional internal pressure up to 12kPa.

Phases 1 and 2 are analogous to what has been implemented in the previous verification
cases. Phase 3 is implemented by pre-multiplying the active stress response of VSMC
by a factor kA:
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σactM = kA cv k
act
M λM

[
1−

(
λmeanM − λM
λmeanM − λminM

)]
. (3.93)

which is initially set to 1, thus kA = 1 at t = 0. At the beginning of phase 3, kA is
prescribed to increase by the following law:

∂kA
∂t

= kmaxA − kA, (3.94)

where kmaxA is a parameter regulating the maximum increase in active stress and thus
the maximum diameter reduction this increase achieves. For this simulation this value
has been chosen as kmaxA = 5.

In phase 4 an additional internal pressure is applied to the luminal layer of the
vessel wall. In FEAP this is done through command “NEWForce” which allows the
prescription of an increase in internal pressure as a percentage of the initially prescribed
value. For this simulation a percentage of 75% was selected as this was the maximum
possible value before numerical convergence problems would arise. Given that the
initial internal pressure was prescribed as 16kPa, this results in a total additional
pressure of 12kPa.

Figure 3.15 shows the evolution of the geometry across Phases 2, 3 and 4. From the
physiological configuration (first row, end of Phase 2) the increase in active stress
causes a constriction of the artery (second row, end of Phase 3). After the application
of additional internal pressure, the arterial geometry is dilated (third row, end of
Phase 4).
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Figure 3.15: Evolution of the arterial geometry across Phases 2, 3 and 4 of the simulation.
From the physiological configuration (Phase 2) the increase in active stress causes a constric-
tion of the artery (Phase 3) and finally an additional internal pressure is applied with dilates
the geometry (Phase 4).

In Figure 3.16 it is possible to observe the behaviour of λM and λRM over the first three
phases of the simulation. Similarly to what has been presented in Section 3.3.6, the
remodelling mechanism aims at maintaining the cell stretch equal to its attachment
value and the recruitment stretch adapts to the evolving geometry accordingly.



88

0 200 400 600 800 1000

Time (s)

1

1.1

1.2

 
M

 

VSMC Stretch

Health Constriction

0 200 400 600 800 1000

Time (s)

0.8

0.9

1

 
MR

 

VSMC Recruitment Stretch

Health Constriction

Figure 3.16: Evolution of VSMC cell and attachment stretch during Phases 1, 2 and 3 of
the simulation. The remodelling mechanism aims at maintaining the cell stretch equal to its
attachment value and the recruitment stretch evolves with the changing geometry in order
to attain λM = λATTM .

In this simulation it is obtained that damage initiates at t = 1516, corresponding to
an additional internal pressure of 6.192kPa and all layers are damaged at t = 1864,
corresponding to an additional internal pressure of 10.368kPa. Figure 3.17 reports
four significative time points of the simulation from damage initiation until all layes
are completely damaged (d0,M i=1, ∀i = 1, 2, 3, 4). In the left column the evolution of
the damage variable dM,0 is reported, while in the right column the VSMC stretch λM
is considered. The results are symmetric in the circumferential and axial direction and
thus the focus is placed on the radial. It is immediate to notice the damage occurs in
the luminal, innermost layer first: this is consistent with the intuition that the stress
exerted by the internal pressure on the tissue decreases with increasing distance from
the lumen and is thus highest on the innermost layer. The damage then propagates
across the wall thickness towards the adventitial, outermost layer. Moreover, from a
qualitative point of view, the damage appears to increase consistently with increasing
VSMC stretch λM (right column).
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Figure 3.17: Damage variable dM,0 and VSMC stretch λM at four meaningful time points
of the simulation. Time point t = 1545 is the minimum time at which the second layer is
damaged (d0,M2

> 0) while the last time point, t = 1865 is the minimum time at which all
layers are completely damaged (d0,M i=1, ∀i = 1, 2, 3, 4). Time points t = 1655 and t = 1765
are evenly spaced between the first and last to represent intermediate phases of the damage
process.
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In Table 3.4 the state of damage of the four layers is reported at significant time
points: the time points considered are the minimum times at which wither d0,M i

> 0

or d0,M i
= 1 for some i.

Time d0,M1
d0,M2

d0,M3
d0,M4

1516 0.000004 0 0 0
1546 0.003494 0.000005 0 0
1573 0.014726 0.002942 0.000001 0
1598 0.033267 0.012975 0.002627 0.000004
1815 1 0.88064 0.746887 0.633351
1831 1 1 0.884883 0.757252
1847 1 1 1 0.887759
1864 1 1 1 1

Table 3.4: Evolution of damage variables at representative time points for each of the four
radial layers.

In Figure 3.18 the evolution of the damage variables for each of the four layers is
plotted, where the layers are numbered from innermost (i = 1) to outermost (i = 4).
The same damage variable are then plotted as a function of the tissue stretch in
Figure 3.19. The two figures mentioned above report the evolution over the entire
dilation phase, while in Figures 3.20 and 3.21 the plot is localised where the four
variables range from their minimum value 0 to their maximum 1: the first shows how
the damage variable evolves over time, while the latter shows it as a function of tissue
stretch.
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Figure 3.18: Evolution of the damage variables for each of the four cross-thickness layers
over the entire dilation phase of the simulation.
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Figure 3.19: Damage variables as a function of tissue stretch for each of the four cross-
thickness layers over the entire dilation phase of the simulation.
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Figure 3.20: Evolution of the damage variables for each of the four cross-thickness layers
over the local temporal range within which all variables increase from their minimum value 0
to their maximum 1.
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Figure 3.21: Damage variables as a function of tissue stretch for each of the four cross-
thickness layers over the local temporal range within which all variables increase from their
minimum value 0 to their maximum 1.
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It is easy to notice how damage starts in the innermost layer first, then propagates
across the other layers towards the outermost layer which is the last to be damaged.
Figures 3.19 and 3.19 highlight how damage propagates faster through the outermost
layer than in the innermost. This is due to the fact that, during damage of the
outermost layer, there is more damage overall in the tissue than during damage of
the innermost layer; moreover the overall tissue stretch is higher and therefore so is
the VSMC stretch. Therefore the total active stress response of the tissue is lower
and the expansion is faster: I4M − Imin4M,d is higher and damage propagates faster in
the outermost layer compared to the innermost.

Finally the criterion for correct implementation is verified, namely that damage
propagation initiates if and only if I4M ≥ Imin4M,d. To this end a plot of d0,M versus
I4M − Imin4M,d is shown (Figure 3.22): the damage criterion is correctly implemented
since d0,M = 0 as long as I4M − Imin4M,d ≤ 0, d0,M > 0 if and only if I4M − Imin4M,d > 0, and
finally d0,M does not exceed 1.
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Figure 3.22: Damage variable d0,M vs I4M−Imin4M,d for verification of correct implementation
of damage criterion. The criterion is verified since d0,M = 0 as long as I4M − Imin4M,d ≤ 0,
d0,M > 0 if and only if I4M − Imin4M,d > 0, and finally d0,M does not exceed 1.
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3.5 Conclusions and Discussion

The framework presented in this Chapter has wide scope of application, being able to
model multi-layered, multi-material tissue with complete customisation of material
properties and evolution laws. Although the initial framework has been mostly used
to model the evolution of aneurysms, both cerebral (Mandaltsi (2016)) and abdominal
aortic (Eriksson et al. (2014), Grytsan et al. (2017, 2015), Schmid et al. (2012), Watton
et al. (2004), Watton, Ventikos & Holzapfel (2009)), and although the extensions
presented here have focused on application to arterial tissue, the framework is easily
adapted to model different soft tissues as well as several pathologies of said tissues.
Heart, oesophagus, trachea and bladder among others would all be straight-forward
applications of the model and examples of related disease that could be studied include
oesophagea athresia, asthma and bladder outlet obstruction.

The constrained mixture model easily accommodates the addition or removal of
relevant materials, each endowed with suitable material properties and constitutive
model. It is possible to implement either isotropic or anisotropic volumetric growth
with custom laws describing the volume changes. Growth and remodelling evolution
laws are also fully customisable as they are written as finite difference equations in
a dedicated macro scripts. The damage model has been implemented with different,
independent variables for each material so that custom damage propagation equations
can be used for each constitutive material.

The software allows for the integration of fluid dynamics into the model and thus
there is potential to further extend the framework to couple the blood flow to the
G&R laws thus obtaining a fluid-solid-interaction (FSI) model. The mesh is also read
from standard input files and thus easily allows the use of patient-specific meshes.

A recommended refinement would be the inclusion of a bio-chemo-mechanical modelling
framework such as that proposed by Aparìcio et al. (2016). The implementation
would be straight-forward as it would consist of adding custom coupling equations
to the macros master file that describe the feedback cycles between the signalling
molecules and relevant model variables. The incorporation of a new molecular scale
to the framework has great potential for the study of relationships between the
mechanical properties and stimuli of the system and the signalling cascades governing
the maintenance of the tissue structure and function. Care should be taken in selecting
suitable variables and inter-dependencies however as computational complexity could
increase rapidly with the introduction of several variables that interact in complex



95

ways.

Moreover this refinement would be highly model-specific as no structural change needs
to be made to the framework and thus each individual model would implement its
own chemo-mechanical feedback coupling model.

3.6 Conclusion

In this Chapter an extension of the finite element framework proposed by Watton,
Ventikos & Holzapfel (2009) and extended by Eriksson et al. (2014) and Grytsan et al.
(2017) has been described which includes

• a material model for vascular smooth muscle cells with both active and passive
stress responses,

• a material model for collagen that includes a distribution of collagen stretches,
and

• a model of damage to the individual constituents.

The framework resulting from this extension is a constrained mixture finite element
model with microstructurally motivated material models, growth and remodelling,
anisotropic volumetric growth, active stress response and damage. To the author’s
knowledge this is the most complete finite element framework currently available to
model biological soft tissue diseases.

It has a wide scope of application and is easily customisable to a model’s specific needs.
Together with the coupling of the growth and remodelling to the haemodynamics
and with the inclusion of complex bio-chemo-mechanical interaction laws, there is
vast potential to apply this framework to the study of various soft tissue diseases and
further their understanding.
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Chapter 4

Finite Element Model of Vasospasm

This Chapter presents a finite element model of cerebral vasospasm and treatment.
The mathematical model developed in Chapter 2 and published in Bhogal et al. (2019)
is integrated into the finite element framework developed by Eriksson, T. and Grytsan,
A. (Eriksson et al. (2014), Grytsan et al. (2017, 2015)) which was extended in Chapter
3. The artery is modelled as a thick-walled cylinder subject to internal pressure and
axial pre-stretch. A constrained mixture approach is adopted where the stress response
of the tissue is given by the sum of the stress contributions of its microstructural
constituents. The constriction of the healthy geometry is achieved by increase in the
vasoactive tone of the vascular smooth muscle cells and their remodelling to maintain
a homeostatic stretch. Mechanical treatment via stents is evaluated on the basis of a
strain-based damage criterion applied to VSMCs.

4.1 Methods

The artery is modelled as a fibre-reinforced cylinder comprised of a contrained mixture
of elastin, vascular smooth muscle cells and two families of collagen fibres. The geom-
etry is internally pressurised to a pressure p = 16kPa, corresponding to physiological
systolic blood pressure, and subject to an axial pre-stretch λz (see Table 4.1).

The strain energy density function of the whole tissue is the sum of the SEDFs of the
individual constituents, i.e.

Ψ = Ψel + Ψcol,a0 + Ψcol,g0 + Ψpass
V SMC + Ψact

V SMC . (4.1)
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Two families of collagen fibres are considered with direction vectors a0 and g0 of the
form (sin(φ), cos(φ), 0) with φa0 = π/4 and φg0 = −π/4 (Table 4.1).

Regarding constitutive models, the material models previously described in this thesis
are selected:

• Elastin is modelled as isotropic neo-Hookean material, as is standard from the
literature (see eq. (3.56));

• Collagen fibre families are modelled with a distribution of recruitment stretches
as described in Section 3.2.2;

• VSMCs are modelled with both a passive and active response as described in
Section 3.3.2.

The following boundary conditions are applied to the cylinder:

• ux(x = 0) = 0,

• uy(y = 0) = 0,

• uz(z = 0) = 0,

• uz(z = 0.0125) = 0.0025,

where the former three conditions fix the boundary surfaces x = 0, y = 0 and z = 0,
so that the geometry can be thought of as the symmetric eight of a 3cm cylinder. The
latter condition enforces the axial pre-stretch of λz = 1.2.

Material parameters and other parameters relevant to the constitutive models of the
constituents are reported in Table 4.1.

The development of vasospasm is modelled according to the same dynamics used in
Chapter 2:

• the increase in vasoconstrictors and scavengers of vasodilators, result of a
signalling cascaded initiated by the extravascular blood clot, causes an increase
in the active tone of VSMCs;

• following this chemically-driven constriction, the smooth muscle cells remodel to
return their level of stretch to its homeostatic value;

• elastin and collagen do not remodel.

The increase in the active stress response of VSMCs is achieved by pre-multiplication
of their stress function by a parameter kA, which is set equal to 1 in healthy conditions
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Parameter Value
h 0.29mm
d 2.9mm
h/r 1/5
p 16kPa
λz 1.2
kE 93kPa
kC 5800kPa
kpassM 45.1kPa
kactM 11kPa
φa0

π
4

φg0 −π
4

λattM 1.15

λATT,minC 0.85

λATT,modC 0.95

λATT,maxC 1.05
kmaxA 11

Table 4.1: Table of relevant model parameters for finite element model of cerebral
vasospasm.

and increases in vasospasm. It substantially serves the same role as parameter fa in
the model presented in Chapter 2. Parameter kA is defined as a (l × n)-matrix where
l is the number of nodes and n the number of elements. Therefore the equation for
the active stress response of VSMCs in the circumferential direction becomes:

σactM = kA cv k
act
M λM

[
1−

(
λmeanM − λM
λmeanM − λminM

)]
. (4.2)

In order to model constriction in only part of the artery, the increase in vasoactive
tone is prescribed only in the central third of the geometry. Let zmin and zmax be
the coordinates in the axial direction that delimit the central third of the cylinder.
The following increase in tone is therefore prescribed for the nodes which satisfy
zmin ≤ z ≤ zmax, where z is the node’s axial coordinate:

∂kA
∂t

= kmaxA − kA, (4.3)

where kmaxA is the maximum increase in the active stress response. In this model kmaxA

is set equal to 11 to achieve a peak constriction of 50% in the middle of the geometry.

In parallel to the increase in active stress, the evolution equations for remodelling of
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VSMCs are run, which have been described in Section 3.3.3:

∂λRM
∂t

= αM
λM − λATTM

λATTM

, (4.4)

with αM = 2.

Finally, in order to simulate treatment, an increase in the internal pressure is prescribed
up to a maximum of 12kPa. The implementation procedure has been described in
Section 3.4.3. This additional pressure is applied equally to all elements, so it does
not differentiate between the location of the spasm and the areas of physiological
geometry.

In order to test whether this additional pressure would be sufficient to bring VSMCs
to functional failure, which is the success criterion for an interventional device, the
damage model that was implemented as described in Section 3.4 is used.

The model is divided into four phases:

• Phase 1 (time steps: 0− 50): Loading
Internal pressurisation and axial pre-stretching of cylinder;

• Phase 2 (time steps: 51− 500): Health
Remodelling of collagen and VSMCs towards homeostatic values of stretch;

• Phase 3 (time steps: 501− 1000): Vasospasm
Development of vasospasm with vessel constriction;

• Phase 4 (time steps: 1001− 2000): Treatment
Simulation of treatment via application of additional internal pressure.

4.2 Results

The model can be considered to consist of three parts: simulation of healthy arterial
tissue (t = 0 to 500), the development of vasospasm (from t = 500 to t = 1000) and
the modelling of treatment (from t = 1000 to t = 2000). In Section 4.2.1 the results
regarding the development of vasospasm are discussed, while Section 4.2.2 is concerned
with the results relating to treatment.
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4.2.1 Vasospasm

In the first part of the simulation the arterial geometry is transformed from a healthy,
physiological state to a constricted, vasospastic state with a degree of stenosis ranging
from 43.95% to 51.01% across the vessel thickness. Figures 4.1 and 4.2 show the
evolution of the geometry over time. The reference configuration (t = 0) is first pres-
surised and axially pre-stretched (t = 50), then remodelling routines are implemented
so that each constituent achieves its attachment configuration thus realising a state
of physiological homeostasis at t = 500. This is the configuration corresponding to
a healthy artery in homeostasis. Finally an increase in the active tone of vascular
smooth muscle cells in the central (axial) third of the geometry causes a local stenosis
of the vessel until peak constriction is achieved at t = 1000.

Figure 4.1: Evolution of VSMC stretch λM at four representative stages of the development
of vasospasm in axial and radial view. At the peak of constriction, t = 1000, VSMC stretch
equals its attachment value uniformly across the geometry.
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Figure 4.2: Evolution of VSMC recruitment stretch λRM at four representative stages during
the development of vasospasm in axial and radial view. In order to attain λM = λATTM in
the constricted geometry, the recruitment stretch must assume a distribution value with
gradients in both the radial and axial direction.

Figures 4.1 and 4.2 also report the VSMC cell stretch λM and recruitment stretch
λRM to verify that remodelling is occurring correctly. Both variables are initialised as
uniform throughout the entire geometry and thus both are uniform at t = 0. Following
pressurisation and axial pre-stretch, where no remodelling occurs, VSMC stretch now
varies across the wall thickness, since the internal pressure exerts a higher stress on
the layers closer to the lumen, while the recruitment stretch has remained unchanged.
Following remodelling of the recruitment stretch so that VSMC stretch equals its
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attachment value, a uniform transmural strain field is realised at t = 500: this is
the configuration corresponding to a healthy artery. In the third phase increase in
the active stress response of VSMC occurs and remodelling of VSMC recruitment
stretch: t = 1000 corresponds to the artery in vasospasm at peak constriction where
the remodelling process is complete and VSMC stretch equals the attachment value
throughout the entire geometry. It is worth noting how wide the range of VSMC
recruitment stretch needs to be in order to accommodate homeostatic VSMC stretch
through such a significant change in geometry. While in the healthy artery only a
gradient in the radial direction was necessary, in vasospasm the recruitment stretch
has attained a distribution of values with gradients across both the axial and radial
directions. The addition of a gradient in the axial direction is indeed necessary to
maintain the cell stretch in homeostasis when the geometry is no longer uniform in
the axial direction.

The quantitative evolution of λM and λRM is displayed in Figure 4.4 on a continuous-
in-time scale. The values of cell and recruitment stretch are reported for four represen-
tative elements which are identified in Figure 4.3: one pair of elements is chosen from
a section of the artery unaffected by constriction (identified by the letter h), while
the other from the section where constriction is maximal (identified by acronym cvs).
Each pair consists of an element on the innermost (luminal) layer (inn) and one on
the outermost (adventitial) layer (out).

Figure 4.3: Identification of four representative locations on vessel geometry for interpreta-
tion of Figure 4.4.
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Figure 4.4: Evolution of VSMC cell and recruitment stretch in four representative locations
of the artery during the development of vasospasm. Label h indicates a location unaffected
by the constriction, while cvs indicates an area of maximum constriction. Label inn indicates
the innermost layer of the artery, while out indicates the outermost.

Time steps 0− 50 corresponds to loading of the geometry: you can see how the cell
stretch increases while the recruitment stretch remains constant, which is consistent
with the progressive loading and lack of remodelling in this phase. Time steps
51− 500 correspond to remodelling of the VSMCs towards their homeostatic state
of stretch: you can see the level of cell stretch is independent of both the axial and
radial directions, while the recruitment stretch depends on the radial direction; this
is due to the internal pressure requiring a different stress response from the luminal
layer compared to the outermost layer. Finally, time steps 501− 1000 correspond to
development of vasospasm. Looking at the evolution of λM , it is easy to see that the
increase in vasoactive tone is the dominating factor at the inception of the disease and
initially there is a significant deviation of the VSMCs from their attachment stretch.
As remodelling "catches up" with the constricting geometry, cell stretches across all
elements are gradually returned to their homeostatic value and the process is complete
by time step 1000, though quite stable already at time step 700. Looking at the
recruitment stretches λRM , one can notice significant differences following vasospasm.
There is still a gradient in the radial direction but the range of values it covers is wider
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in health rather than in vasospasm, where the curves corresponding to the luminal
and adventitial layer are much closer together than those corresponding to a healthy
vessel. This is a consequence of the incompressibility of the material. Indeed in this
finite element model the ends of the arterial segment are fixed. The constriction causes
an increase in the surface of the vessel (if a line was drawn on the vessel surface along
the axial direction, its length would increase following vasospasm due to the newly
present concavity in the middle) and thus, in order to preserve volume, the thickness
must be reduced. Since incompressibility is conserved per element, this results in the
elements affected by vasospasm having smaller thickness than those corresponding to
healthy tissue. Lower thickness implies smaller gradient in circumferential stretch and
this results in a smaller gradient between recruitment stretches in the radial direction
in the arterial segment affected by the disease.

The most significant difference is however in the axial direction, i.e. with dependence
on the level of vasoconstriction. The recruitment stretch indeed needs to adapt to the
new geometry and, the more pronounced the constriction, the wider the deviation is
of the recruitment stretch from its physiological value.

Finally in Figure 4.6 the distribution of recruitment stretch λRM is shown in four
representative locations across along the longitudinal direction of the artery, between
healthy and maximally constricted, at the peak of the disease (t = 1000) (see Figure
4.5 to identify locations). In the left column the distribution is shown on a global
value scale, while in the right column it is shown on a local scale in order to highlight
the magnitude of the gradient across the vessel thickness. In the first row the section
of the artery corresponds to the region of maximum constriction and each subsequent
row corresponds to a shift of two elements along the axial direction towards the edge
of the artery; the fourth row corresponds to the edge layer in the axial direction.

Figure 4.5: Four representative locations for the distribution of recruitment stretch shown
in Figure 4.6.
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Figure 4.6: Transmural distribution of VSMC recruitment stretch in four representative
locations across along the longitudinal direction of the artery, between healthy and maximally
constricted, at the peak of the disease (t = 1000)

It is worth noting here that in order to obtain the same level of constriction the active
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stress response of vascular smooth muscle cells had to be increased by a factor of 11

while in the one-dimensional model it had been increased by at most 1.75. A key
difference that partially explains this stark difference is that in the 1D model the
passive response was increased as well, whereas in this finite element model only the
active stress response is increased. A future study is warranted where both models
adopt the same mechanisms of increase in active and/or passive response to more
precisely study if and how the thick-wall model affects the degree of increase in stress
responses necessary to model vasospasm.

4.2.2 Treatment

The second part of the simulation is concerned with modelling treatment of vasospasm
via the use of a stent retriever. This is modelled by the application of an additional
internal pressure to the luminal layer, which is gradually increased from 0 to 12kPa.

The evolution of the damage variables d0,M is shown in Figure 4.8 where each subplot
corresponds to one of the four radial layers and each line corresponds to a slice in the
longitudinal direction as shown in Figure 4.7: z1 corresponds to the edge of the artery
in the axial direction (e.g. z = 0) and each subsequent index corresponds to a shift
of two elements towards the middle of the artery; z5 corresponds to the area of peak
constriction.

Figure 4.7: Visualisation of the locations of elements z1, , z5 in the arterial geometry as
used in Figure 4.8
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Figure 4.8: Evolution of damage variables during treatment of vasospasm.
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It is of interest to focus on the area of peak constriction to study the propagation
of damage and its relationship with the corresponding amount of additional internal
pressure applied. Moments of interest are either times at which damage is initiated,
i.e. mint d0,M(t) > 0, or times at which complete functional failure is achieved, i.e.
mint d0,M(t) = 1. Table 4.2 reports these values, together with the corresponding
levels of additional pressure and values of the damage variables for the section of the
artery characterised by maximum constriction. These values are extracted from the
data set plotted in Fig. 4.8. In order to identify the four transmural elements of the
arterial section the following abbreviations are adopted: lum identifies the luminal
layer, me1 the first medial layer, me2 the second medial layer and adv the adventitial
layer; finally padd is used to indicate the amount of additional internal pressure in kPa
applied at that moment on the luminal layer.

Time padd d0,Mlum
d0,Mme1

d0,Mme2
d0,Madv

1387 4.64 0.000001 0 0 0
1417 5.00 0.000713 0.000001 0 0
1445 5.34 0.003718 0.000582 0.000001 0
1470 5.64 0.008798 0.003006 0.000461 0.000001
1769 9.23 1 0.907848 0.797063 0.703572
1782 9.38 1 1 0.909878 0.805558
1796 9.55 1 1 1 0.916994
1810 9.72 1 1 1 1

Table 4.2: Evolution of damage variables at representative time points for each of the four
radial layers.

The results reported in Table 4.2 highlight the relationship between the additional
internal pressure and damage propagation. For an artery of physiological diameter
2.9mm at about 50% stenosis the prediction is that:

• 4.64kPa of additional pressure are necessary to initiate damage in the luminal
layer,

• 5.64kPa are necessary to initiate damage in all layers,

• 9.23kPa to bring VSMCs in the luminal layer to d0,M = 1, and

• 9.72kPa to bring VSMCs to functional failure across all layers.

Therefore initiating damage in the outermost layer compared to the innermost requires
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an additional 1kPa of pressure whereas to reach functional failure in the outermost
compared to the innermost layer requires an additional 0.49kPa. With reference to
Figure 2.10, which shows the amount of pressure exerted by four stent retrievers as a
function of the diameter at which they’re extended (or compressed), this difference
would not influence the selection of an appropriate device: indeed the finite element
model predicts that the only stent potentially capable of exerting the necessary amount
of pressure is the Solitaire 6, which is the same prediction resulting from the 1D

model. In the case of a smaller artery, however, where multiple stents could potentially
be suitable, this difference in pressure requirement between the luminal and the
adventitial layer might have greater influence in the selection of a suitable device,
since even a 0.5kPa difference could determine the success or lack thereof of a specific
stent retriever. It is therefore recommended that the finite element simulation be run
for arteries of different physiological diameter for a more direct comparison with the
one-dimensional model.

When considering the magnitude of pressure necessary to reach functional failure
of VSMCs, this result is comparable to that obtained in the one-dimensional model
presented in Chapter 2: for an artery of 2.9mm at about 50% stenosis the 1D model
predicted that an additional pressure of about 7.5kPa was necessary to reach the
dilatation threshold, while the finite element model presented here predicts that a
pressure between 9 and 10kPa is necessary. These results can be considered consistent
since a direct comparison of numerical values is not entirely appropriate: indeed the
1D model considers the experimental measurements of the outward pressure applied
by the stents and the fact that this pressure is higher when the stent is “compressed"
just before deployment and gradually decreases as the stent expands; on the contrary
the finite element implementation of this model uses an increasing internal pressure
which is less accurate in representing the behaviour of a stent. As a consequence, the
1D model predicts an additional pressure of 7.5kPa at the dilatation threshold, but
the stent must have been able to apply higher pressures before reaching that threshold
or it would not have been able to dilate the artery up until that level of stretch.

4.3 Discussion

The objective of the model of cerebral vasospasm presented in this Chapter is to
explore whether the membrane assumption adopted in the one-dimensional model
presented in Chapter 2 is suitable or whether the non-uniformity of the strain field
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across the thickness of the arterial wall leads to a significantly different prediction
in the magnitude of pressure necessary to treat the disease. In order to address this
question the model presented in Chapter 2 has been integrated into the finite element
framework discussed in Chapter 3 to obtain a constrained mixture finite element model
of cerebral vasospasm and treatment which, to the author’s knowledge, is the only
one of its kind.

In the case of a middle cerebral artery of physiological diameter 2.9mm at about 50%

stenosis we find that the difference in the amount of pressure required to damage the
adventitial layer compared to the luminal is about 0.5kPa. When considering the
chronic outward force profiles of four commonly available stent retrievers (Figure 2.10),
the same ones used in Chapter 2, this difference would not influence the selection
of the most appropriate for the specific case as the differences between them are
around 10 or 20kPa. In particular in this case only one stent is predicted to be
potentially successful, i.e. the Solitaire 6. However it is possible that in arteries of
smaller physiological diameter, where it becomes increasingly important to not apply
excessive pressure, this same difference could indicate a better stent selection among
similar choices and a difference of 0.5kPa could have a more significant impact on
the potential damage incurred by other constituents of the wall. Moreover, as new
stents are designed with the specific goal of treating vasospasm (as opposed to the
current situation in which the stents used to treat vasospasm had been designed to
retrieve blood clots), it may be beneficial to have more accurate predictions on the
amount of additional pressure required for treatment. It is therefore recommended
that a wider selection of cases is made to apply this model to in order to obtain a
broader set of results to be compared with the 1D model. In particular, arteries of
different physiological diameters should be considered, for which predictions from the
one-dimensional model are still available.

It is worth noting that direct numerical comparisons between the two models are not
entirely appropriate as two key differences have a significant impact of the numerical
results: the mode of application of the additional internal pressure and the damage
criterion.

The one-dimensional model presented in Chapter 2 allows for the direct use of the
pressure profiles of the stents which are validated by experimental measurements. A
key property of these profiles is that, as the stent expands, the amount of pressure
they apply decreases with a functional form similar to a negative exponential. On
the contrary, in the finite element model the additional internal pressure is gradually
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increased from 0kPa to a maximum of 12kPa in a linear fashion resulting in the
pressure increasing as the arterial wall expands, which is the opposite behaviour of
the stents.

The damage criterion has also been needed to be adapted to the finite element
framework: the damage criterion employed in the 1D model is “instantaneous" and the
VSMC active response jumps from positive to null in a step-wise fashion. This criterion
was initially implemented in the framework for direct comparison with the membrane
model but convergence problems arose which could not be fixed by other means (such
as use of a finer mesh) and thus the instantaneous damage model was abandoned.
A gradually increasing damage model was adopted where it was assumed that there
exists a stretch-based threshold at which damage of the VSMCs initiates and further
propagates at a rate proportional to the difference between the current cell stretch and
the threshold (see (3.92)). This minimum damage threshold is different from the one
used in the one-dimensional model. The step-wise criterion was that a vascular smooth
muscle cell would be completely damaged when λM = 1.8. In the finite element model
it is assumed that damage initiates at I4M = 1.7, which corresponds to a cell stretch
of about λM ∼ 1.3, while the cell stretch at which complete damage occurs varies
depending on the distance from the area of peak constriction: where the constriction is
maximal complete damage occurs at a cell stretch of λM ∼ 1.89 while halfway between
the area of peak constriction and the edge of the artery it corresponds to a cell stretch
of λM ∼ 1.45. This is consistent with the different damage propagation profiles in five
different positions along the axial direction shown in Figure 4.8.

A comparative analysis between the two models should therefore take these aspects
into account and consider a margin of error in the numerical values obtained by the
models. A study on the influence of various model parameters on the final predictions
is also warranted. In the next Section recommendations for future work are discussed,
including numerical methods that would allow a more consistent alignment of the
two models and thus a more thorough analysis of the effect or lack thereof of the
transmural strain gradient on the predictions of pressure requirements and thus on
the selection of a treatment device.

The model presented in this Chapter still shows that much lower pressures than
balloon angioplasty are sufficient for the treatment of vasospasm, at least in selected
cases, and thus warrants further study.
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4.3.1 Comparison with one-dimensional model

Three key differences between the one-dimensional and the finite element model
presented in this dissertation hinder the validity of a direct comparison between the
respective predictions:

1. Mechanism for increase of VSMC stress response,

2. Representation of the additional pressure exerted by the stent,

3. Damage criterion.

In the one-dimensional model both the passive and the active stress responses of
VSMCs are increased and a parameter study is run on the relationship between the
two factors fa and fp (Chapter 2, Section 2.3.3). This results by the active response
requiring an increase of up to 1.75 and the passive factor up to 1.55. In the finite
element model only the active response of VSMCs is increased and the value of the
multiplicative factor that achieves a comparable level of stenosis is ka = 11. The
implementation in the finite element model corresponds in the 1D model to the special
case of the parameter study in which fp = 1, which resulted in fa = 1.75: this
means that the introduction of a thick-walled representation of the wall compared
to a membrane idealisation results in a 6.3-fold increase in the factor that regulates
the increase in active VSMC stress. This is an important difference and it is worth
exploring whether the introduction of an increase of the passive response in the finite
element model alongside the increase of the active response affects these increase
factors and, if so, how these differences eventually translate in the stent pressure
predictions.

Another limitation of the finite element model is the modality of simulation of the
additional pressure exerted by the stent. When cerebral vasospasm is treated via stent
retrievers, the stent is inserted in a compressed state inside the lumen and, following
deployment, it expands towards its stress-free configuration which is a larger diameter
than that at which it is inserted. As shown by the experimental measurements reported
in Chapter 2 Section 2.3, the pressure exerted by the stent decreases rapidly as it
expands then slowly tapers towards 0 as it nears its stress-free configuration. While
this is represented in the one-dimensional model, in the finite element model the
additional pressure exerted by the stent is modelled as linearly increasing, which is
the opposite behaviour to that presented by the stent. This is less straight-forward to
address but a possible solution method could be the use of a custom surface mesh,
ideally placed only on the section of the artery affected by vasospasm, to which either
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force or displacement conditions can be applied that result in the mesh simulating the
pressure profile applied by the stent to the inner wall.

Finally a damage criterion should be selected that can be consistently applied to both
models. Since the implementation of the step-wise criterion has been unsuccessful
in the finite element framework, it is recommended that the criterion is changed in
the one-dimensional model to one that is continuous in the cell stretch. A parameter
study should also be carried out in both models on the influence of the stretch-based
damage threshold Imin4M,d and the damage propagation rate αd on the final stent pressure
predictions. Indeed the choice implemented in this model is that damage is initiated
at λM ∼ 1.3 which could be argued to be too small since the attachment stretch of
VSMCs is assumed to be λATTM = 1.15. Moreover, while complete damage is assumed
to occur at λM = 1.8 in the 1D model, in the finite element model it is observed to
occur at values as low as λM = 1.45 but also at λM = 1.9 depending on the local level
of constriction and on the radial distance from the lumen. In absence of experimental
data, it is recommended that a parameter space spanning values for both Imin4M,d and
αd is explored and that a study on the level of cell stretch at which complete damage
occurs is carried out.

4.3.2 Future Directions

The most immediate recommendation for improving the current model is to implement
the three key changes outlined in the previous Section. A great limitation in selecting
parameters and evolution laws to address those limitations is the current scarcity of
experimental data on the growth and remodelling of vascular smooth muscle cells
in vasospasm as well as their mechanical and failure properties. For example the
hypothesis that both the active and passive response of VSMCs are increased during
vasospasm is that the increase of vasoconstrictors and scavengers of vasodilators
causes the cells to contract more (increase in active response); in response to this
sustained state of contraction, remodelling of their cytoskeleton and/or focal adhesion
occurs affecting their material properties including increasing their stiffness (increase
in passive response). This hypothesis is based on observed behaviour of these cells in
circumstances other than vasospasm and is therefore reasonable but complex behaviour
of these cells has been observed in this disease (see Chapter 1, Section 1.2) and it
would be highly desirable to obtain more precise information on their remodelling in
this disease.

The damage criterion is another aspect of the model that requires a biologically-
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informed foundation. Not only would it be difficult to establish a “reasonable"
parameter space for the criterion implemented in this model, but the functional form
of the criterion itself can be discussed. Indeed the criterion implemented in this
model has been selected according to the hypothesis that functional failure of the
smooth muscle cells is due to either their detachment from the extracellular matrix
or the breakage of the stress fibers composing their cytoskeleton. However either
failure mechanisms could be more suitable: for example it is possible that cell damage
occurs by delamination and the damage propagation law should therefore reflect that
behaviour. More precise information on the failure mechanics of VSMCs is a key
aspect of the model that needs experimental data for proper validation.

It is crucial that in the future the adopted damage criterion is corroborated by
experimental measurements. A possible initial experiment could consist of progressively
stretching individual cells along their preferred direction (recognisable due to their
“spindle" shape) in order to identify both the mode of failure of the cell and the
magnitude of deformation required. A more desirable experiment would be to excise
an intracranial arterial segment ex vivo and, after fixing the two ends, applying an
internal pressure with either a balloon or a stent, to study what kind and amount
of damage a specified magnitude of pressure causes. The use of stents would more
directly provide information on their performance on arterial tissue, while the use
of a balloon would have the advantage of greater control on the amount of pressure
applied.

Another aspect of VSMC mechanobiology that has a significant effect on the model is
the remodelling rate: indeed in this model it is assumed that VSMCs have returned
to their homeostatic state of stretch at the time of treatment whereas this might not
be the case. The state of stretch of the cell at the moment of treatment would be a
key factor in the predicted magnitude of pressure and thus more experimental data is
warranted on this topic.

In general it is necessary to have more precisely biologically-informed laws for the
sophistication of this model towards one that is suitable for clinical application. As
long as experimental data is not available, the most thorough approach would be to
select evolution laws that most closely resemble real-world behaviour to the modeller’s
knowledge and to run parameter studies on the variables deemed most influential on
the model results on suitably selected parameter spaces.

After the limitations of the model discussed so far are addressed, a few sophistications
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of the mathematical and computational aspects of the model are recommended.

The third main assumption on the pathophysiology of vasospasm made in both the
one-dimensional and the finite element model is that no collagen remodelling occurs
during disease progression and thus no damage is necessary to this constituent. As
discussed in Chapter 2 it is worth exploring how the stent pressure predictions change
if this hypothesis is no longer satisfied. This is addressed in Chapter 5 where a study
on the remodelling of the collagen stretch distribution is carried out.

The material model for collagen also warrants a further sophistication, namely the
inclusion of a dispersion model, i.e. a distribution of fibre orientations in the wall.

An immediate model extension that could be explored is the inclusion of anisotropic
volumetric growth since this is already present in the framework. Indeed Eriksson et al.
(2014), Grytsan et al. (2017) have reported significant differences in the evolution of the
considered geometries when different modes of volumetric growth, isotropic in Eriksson
et al. (2014) and anisotropic in Grytsan et al. (2017), were adopted. This is therefore
another sophistication highly worth exploring since it might affect what is required
in terms of VSMC remodelling in order to achieve the same level of constriction in
presence compared to in absence of volumetric growth.

In order to make the model more realistic and more suitable for clinical use, it is
worth improving on the idealisation of the stent treatment as an increase in internal
pressure. It would be more realistic if the stent geometry was represented since the
mesh density and material properties might affect the application of pressure on the
arterial wall and in particular the propagation of cell damage across the wall thickness
(Geith et al. (2020)).

Finally it would be ideal to move towards model personalisation and abandon the
perfectly cylindrical geometry in favour of a patient-specific mesh. Indeed arteries
usually display irregular surfaces and it might be insufficient to consider the degree
of stenosis and the physiological diameter of the affected artery as the only inputs
for the selection of a treatment device. Instead the patient-specific geometry of the
vasospastic section of arterial tissue must be taken into consideration. Indeed an
irregular geometry might lead to irregular damage patterns on the vasospastic area
and result in ineffective treatment.
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4.4 Conclusion

The mathematical model described in Chapter 2 has been integrated into the finite
element framework described in Chapter 3 with the objective of studying the effect
of the thick-walled assumption on the stent pressure predictions compared to the
membrane assumption. To the author’s knowledge this is the only finite element model
of cerebral vasospasm to date. Consistently with the membrane model, it is based on
a constrained mixture formulation with microstructurally motivated material models
and based on the key hypotheses that vessel constriction is driven by vascular smooth
muscle cell remodelling towards a homeostatic level of stretch and that the condition
for successful treatment is functional disruption of VSMCs.

Although direct comparisons with the membrane model are not entirely appropriate
due to two key differences in the model formulations and implementations, it is sug-
gested that the use of a thick-walled finite element model would provide more precise
predictions for the magnitude of pressure necessary for an interventional device to
resolve the disease. In order to achieve clinical application, however, more sophisti-
cations are required which are discussed in the previous Section and experimental
validation is warranted to inform properties and remodelling processes for both VSMCs
and collagen.

Implementation of these sophistications would represent crucial steps in the formulation
of a constrained mixture finite element model with patient-specific geometry and
parametrisation that could be a useful aid to the clinician in the selection of the most
suitable treatment method and device for a patient-specific case.
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Chapter 5

Study on Collagen Remodelling in
Vasospasm

The model presented in Chapter 2 is extended to study the role of collagen growth and
remodelling in vasospasm and its potential effect on treatment requirements. The fibre
population is divided into mature and immature collagen where the distinction is made
according to whether the fibre was produced respectively before or after subarachnoid
haemorrhage. The material model of collagen includes a distribution of fibre stretches
and it is assumed that remodelling of this constituent consists of changes in the shape
and position of this distribution. Two studies are carried out: one in which growth
occurs but no remodelling, and other other in which the opposite takes place.

5.1 Motivation

In this Chapter an extension is formulated to the 1D model of cerebral vasospasm
developed in Chapter 2 Bhogal et al. (2019) where the hypothesis that no collagen
remodelling or growth/atrophy occurs is relaxed. The assumption was made because
the halflife of collagen (∼ 70 days) is longer than the time a vasospastic vessel takes
to reach peak constriction (∼ 7− 10 days), which is usually also the time neurological
symptoms emerge and the disease is treated. However it is possible that even partial
remodelling affects the effectiveness of stent-retrievers as a treatment strategy and
thus it is important to investigate if and how this may occur.

Moreover, experimental evidence of increased collagen deposition has been reported in
animal models of vasospasm ( Hughes & Schianchi (1978), Kapp et al. (1985), Kasuya
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et al. (1993), Mayberg et al. (1990), Nagasawa et al. (1982), Smith et al. (1985),
Yamaguchi-Okada et al. (2005)). Three of these studies are animal models that only
report qualitative observations drawn from imaging of the tissue samples (Kapp et al.
(1985), Mayberg et al. (1990), Nagasawa et al. (1982)). Only two of these studies
are on human samples. Hughes & Schianchi (1978) conducted a retrospective review
of 20 autopsies for SAH which revealed an increase in collagen concentration and a
marked difference in the morphology of the tissue samples starting about 3 weeks
after the time of haeomrrhage. After this time, the increase in collagen content was
more evident. Smith et al. (1985) reported a histological study of human tissue where
arterial specimens from three patients who had suffered SAH were studied and the
morphology compared to angiograms taken only a few days prior. The samples were
stained for Type V collagen and a significant increase in the mass of this constituent
was observed in two cases out of three. Three studies looked explicitely at the time
dependence of the disease. In Kasuya et al. (1993) an increase in procollagen type
I and III, as well as in the collagen-promoting molecule TGF-β was observed: the
concentration of procollagen type I was highest on day 7 and had diminished by
day 14, while the concentration of procollagen type III had increased by day 7 and
maintained the same level on day 14; TGF-β, which is known to promote collagen
deposition by vascular cells, reached its highest concentration on day 3 and then
gradually diminished. In Mayberg et al. (1990) a qualitative increase in collagen
was observed in TEM images of a porcine model of MCA vasospasm starting at 14
days after SAH. Yamaguchi-Okada et al. (2005) is to the author’s knowledge the
only quantitative study on collagen content in cerebral vasospasm. The study is a
canine model and the authors reported increases of collagen concentration compared to
control of 12± 42% at day 7, 43± 29% at day 14, −2± 28% at day 21 and −28± 18%

at day 28 after SAH.

However, evidence of increased collagen deposition in models of vasospasm is not con-
sistent. For example, Macdonald et al. (1992) did not observe any increase in collagen
at any point during vasospasm, using both semi-quantitative (immunofluorescence
microscopy) and quantitative (amino acid analysis) methods. Furthermore, they used
different antibodies for collagen type I, III, IV and V and reported no increase in any
type, which is in direct contradiction to the findings of Kasuya et al. (1993) and Smith
et al. (1985).

In absence of definitive evidence of collagen growth and remodelling in vasospasm
and with limited literature on the remodelling processes of collagen fibres in general,
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Figure 5.1: Recruitment stretch distributions for medial and adventitial collagen in healthy
conditions. Physiological tissue stretch is λ = 1.3: since the entire distribution of recruitment
stretches for medial collagen is to the left of this value, all medial fibres have been recruited
to load bearing and thus make a positive contribution to the stress response of the artery;
on the contrary, the distribution of recruitment stretches for adventitial collagen is to the
right of this value, signifying that fibres have not yet been recruited to load bearing and
their contribution to the vessel’s stress response is null.

a simple theoretical model is formulated to explore preliminary hypotheses on these
mechanisms in the context of cerebral vasospasm.

5.2 Methods: 1D model

In the model developed in Chapter 2 a constitutive model for collagen was adopted
that accounts for the observed distribution of levels of waviness (Aparìcio et al. (2016),
Cheng et al. (2017)). A distinction was made between medial and adventitial collagen
and separate distributions were assigned to each population: ρRC,me and ρRC,ad for medial
and adventitial collagen respectively. In healthy conditions, where the physiological
tissue stretch at systole is λ = 1.3, the former is load-bearing while the latter plays a
protective role and is only recruited to bear load at supraphysiological levels of tissue
stretch (Fig. 5.1).

In this model extension a distinction is introduced between mature and immature
collagen. The two populations of collagen fibres are then defined as follows:

• mature collagen is defined as the fibre population present in the vessel wall at
the time of SAH;
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• immature collagen is the fibre population produced at any time after SAH
(where the time of the considered model is 4 weeks and it is assumed that the
maturation time for collagen is the same).

Immature collagen is thus produced in pathological conditions, due to the development
of vasospasm, and is the fibre population that will have the most relevant effect on
the treatment. In the following, it is assumed that SAH occurs at t = 0.

As reported in Ryan & Humphrey (1999), the halflife of collagen has been observed to
range between 15 and 70 days, where the shorter values correspond to pathological
chemo-mechanical conditions. Since vasospasm presents such a pathological environ-
ment to the cells, it is assumed that medial collagen degrades exponentially with a
halflife of 15 days.

mme
C (t) = e−α

me
C t, (5.1)

with αmeC = 0.462, which is obtained by imposing mme
C (15) = 1

2
mme
C (0), i.e. that the

mass density is halved at t = 15 days. For simplicity, it is assumed that no mass
change occurs in adventitial collagen since this would have no effect on the effectiveness
of vasospasm treatment. For the same reason remodelling of mature collagen, both
medial and adventitial, is also neglected, while focus is placed on the growth and
remodelling of the newly produced immature collagen.

There are two key quantities that greatly affect the stress response of collagen: its mass
and its maximum attachment stretch. More broadly, the entire stretch distribution of
the fibres should be considered, but for simplicity it will be assumed that the width and
skew of the distribution remains constant. Therefore, once the maximum attachment
stretch is known, so is the entire distribution. As a preliminary theoretical study, the
two variables, mass and maximum attachment stretch, are considered separately and
two independent studies are conducted:

• Study A: (growth, no remodelling) where immature collagen is attached with
a fixed maximum attachment stretch, and thus fixed distribution, while mass
increases;

• Study B: (remodelling after growth) where immature collagen is deposited
instantaneously at t = 0, and remodelling gradually occurs afterwards.
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5.2.1 Study A: Growth without Remodelling

In this study it is assumed that the distribution of immature collagen stretches is
fixed with

λATT,maxC,i = 1.05. (5.2)

This value is chosen because VSMCs, which become the primary load bearer in
vasospasm, are assumed to aim to transfer part of the load to the newly produced
collagen without risking overloading the fibres, for which damage is known to occur at
λC = 1.1. Assuming that the distribution has the same width and skew as that of
mature collagen in healthy conditions, it follows that:

λATT,modC,i = 0.95, (5.3)

λATT,minC,i = 0.85. (5.4)

As far as mass growth is concerned, a linear increase will be assumed for this variable,
according to equation (5.5):

mi
C(t) = mmax

C,i

t

τgr
, (5.5)

and consider a range of values for the variables mmax
C,i and τgr, which signify the

maximum mass of immature collagen deposited in the vasospastic vessel and the
number of days after which the mass of immature collagen reaches said maximum
value.

With reference to the study by Yamaguchi-Okada et al. (2005), the range for mmax
C,i is

assumed to be 0.2 ≤ mmax
C,i ≤ 0.7 and is spanned at an interval of 0.1. With regards to

the collagen deposition speed τgr, a discrete set of values is considered: 3, 7, 10, 14, 21

and 28 days. In other words,

mmax
C,i ∈{0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, (5.6)

τgr ∈{3, 7, 10, 14, 21, 28}. (5.7)
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Figure 5.2: Evolution of the mass density of immature collagen in a subset of cases for
Study A: mmax

C,i is held constant and equal to 0.2 while τgr takes on all values considered in
the study.

All possible pairings of the values for the two variables are considered giving a total of
36 cases.

The evolution of the mass density of immature collagen over time is plotted for two
subsets of cases: in Fig. 5.2 mmax

C,i = 0.2 is constant and τgr varies through all its
possible values, while in Fig. 5.3 τgr = 14 is constant and mmax

C,i varies through all its
possible values.

5.2.2 Study B: Remodelling after Growth

In this study it is assumed that all immature collagen fibres are secreted instantaneously
at time t = 0 (Sang et al. (2020)). Vascular cells then attach the secreted fibres to the
matrix in progressively load bearing configurations and thus remodelling occurs.

With regards to mass growth, in this study the mass of immature collagen is assumed
to be

mi
C = 0.43, ∀t > 0, (5.8)

where the value is taken from the quantitative estimation reported in Yamaguchi-Okada
et al. (2005).

The target maximum attachment stretch for the remodelling process is assumed to be
λATT,maxC,i = 1.05. For simplicity, the stretch distribution maintains fixed width and
skew, thus only shifting (translating) along the x−axis. The modal and minimum
stretches are therefore obtained by subtracting the half-width and width of the
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Figure 5.3: Evolution of the mass density of immature collagen in a subset of cases for
Study A: τgr is held constant and equal to 14 while mmax

C,i takes on all values considered in
the study.

distribution respectively from the maximum stretch.

Similarly to study A, a linear increase of the fibre stretches is prescribed over time:

λmaxC,i (t) = λmaxC,i (0) +
(
λATT,maxC,i − λmaxC,i (0)

) t

τrem
, (5.9)

A range of values for the variables λmaxC,i (0) and τrem is considered, where the former
is the level of stretch at which a new fibre is secreted from the cell and the latter is
the number of days at which the maximum attachment stretch of the distribution
reaches the value λATT,maxC,i = 1.05, thus stabilising the remodelling process. As a lower
bound for the variable λmaxC,i (0), 0.5 is chosen, which is the closest approximation to
one decimal place for the maximum stretch of mature medial collagen when the artery
is at 50% stenosis, i.e. λmaxC,me(0) = 0.525. As an upper bound 1.0 is selected, since any
value higher than that would be very close to a collagen fibre immediately deposited
and attached at maximum target stretch, which is the case of Study A. As far as the
remodelling speed is concerned, the same range of values for τrem is used as for τgr in
Study A. Therefore:

λmaxC,i (0) ∈{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, (5.10)

τrem ∈{3, 7, 10, 14, 21, 28}. (5.11)
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All possible pairings of the values for the two variables are explored and thus a total
of 36 cases.

In Figures 5.4 and 5.5 the evolution of the stretch distribution of immature collagen
over time is shown: Fig. 5.4 refers to the case where λmaxC,i (0) = 0.5 and τrem = 28,
while Fig. 5.5 refers to the case where λmaxC,i (0) − 0.7 and again τrem = 28. The
distribution is plotted at time points t = 0, 14 and 28.
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Figure 5.4: Evolution of stretch distribution of immature collagen for case λmaxC,i (0) = 0.5
and τrem = 28 of Study B. The distribution maintains fixed skew and width but shifts to the
right from its initial point λmaxC,i (0) = 0.5 to the final λmaxC,i (τrem) = 1.05.
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Figure 5.5: Evolution of stretch distribution of immature collagen for case λmaxC,i (0) = 0.7
and τrem = 28 of Study B. The distribution maintains fixed skew and width but shifts to the
right from its initial point λmaxC,i (0) = 0.7 to the final λmaxC,i (τrem) = 1.05.
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Similarly to Study A, the evolution of the maximum attachment stretch is shown for
two subsets of cases: in Fig. 5.6 λmaxC,i (0) = 0.5 is fixed while τrem varies over all its
possible values, while in Fig. 5.7 τrem = 14 is constant while λmaxC,i (0) varies over all
its possible values.
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Figure 5.6: Evolution of the maximum attachment stretch of immature collagen for a fixed
initial value of λmaxC,i (0) = 0.5 and all possible values of τrem.
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Figure 5.7: Evolution of the maximum attachment stretch of immature collagen for a fixed
remodelling time of τrem = 14 and all possible values of the initial stretch λmaxC,i (0).

5.3 Results

The results are reported for an artery of physiological diameter 2mm at a 50% level
of stenosis. This level of stenosis was chosen for consistency with the model described
in Chapter 2 and the specific arterial diameter since it provides the most interesting
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results: with reference to the results from Chapter 2 it is obtained that at a larger
diameter only one, if any, stent is successful and thus incorporation of collagen G&R
would likely result in stents being unsuccessful in most if not all cases; conversely in
smaller vessels the stents had a wider margin of success and collagen G&R would have
likely not affected the results.

Similarly to what has been done in Chapter 2, it is possible to look at how the
pressure-diameter curve changes from health to vasospasm. In Fig. 5.8 the curve for a
healthy artery is shown.
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Figure 5.8: Pressure diameter curve for a healthy cerebral artery of physiological diameter
2mm. The solid line represents the response of the whole tissue, while the non-solid curves
illustrate the contribution of the individual constituents within the wall: E for elastin, C for
collagen, Mp and Ma for the passive and active response of vascular smooth muscle cells
respectively.

Recall the results for the case in which no collagen remodelling was hypothesised, i.e.
in the model presented in Chapter 2. Figure 5.9 shows the pressure-diameter curve for
the artery in vasospasm and the pressure curves that the stents exert while expanding
within the vessel. One can see that both Solitaire 6 and Capture 3 are successful, with
a generous margin of error, as well as Solitaire 4.
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Figure 5.9: Effectiveness of four commonly available stent retrievers in treating a vasospastic
artery of original physiological diameter 2mm and current 50% level of stenosis. A stent
is successful if its related pressure curve remains above the thick solid curve up until the
dilatation threshold. Stents Solitaire 6, Capture 3 and Solitaire 4 would be effective in
treating the disease, while Trevo 4x20 would be unsuccessful.

5.3.1 Study A

For Study A, the pressure-diameter curve for a case of vasospasm with 50% stenosis is
obtained for each possible pair of values (mmax

C,i , τgr) and the effectiveness of commonly
available stents is tested for treatment of the constriction. The two strongest stents
out of the four considered in Chapter 3 are selected, i.e. Solitaire 6 and Capture 3mm,
and last day at which the stent would be successful in damaging the VSMCs and thus
resolving the spasm is recorded. The results are reported in Table 5.1 for the Solitaire
6 stent and in Table 5.2 for the Capture 3mm.

τgr = 3 τgr = 7 τgr = 10 τgr = 14 τgr = 21 τgr = 28

mmax
C,i = 0.2 2 4 6 9 14 18

mmax
C,i = 0.3 1 3 4 6 9 12

mmax
C,i = 0.4 1 2 3 4 7 9

mmax
C,i = 0.5 0 1 2 3 5 7

mmax
C,i = 0.6 0 1 2 3 4 6

mmax
C,i = 0.7 0 0 1 2 4 5

Table 5.1: Clinical window in days after SAH for treating vasospasm in a 2mm artery at
50% stenosis using a Solitaire 6 stent.
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τgr = 3 τgr = 7 τgr = 10 τgr = 14 τgr = 21 τgr = 28

mmax
C,i = 0.2 1 3 4 6 9 12

mmax
C,i = 0.3 0 1 2 4 6 8

mmax
C,i = 0.4 0 1 2 3 4 6

mmax
C,i = 0.5 0 1 1 2 3 4

mmax
C,i = 0.6 0 0 1 2 3 4

mmax
C,i = 0.7 0 0 0 1 2 3

Table 5.2: Clinical window in days after SAH for treating vasospasm in a 2mm artery at
50% stenosis using a Capture 3 stent.

The pressure-diameter curves and stent pressure curves for four representative cases
from this study are also presented in Figure 5.10

• A1: mmax
C,i = 0.3, τgr = 7,

• A2: mmax
C,i = 0.3, τgr = 21,

• A3: mmax
C,i = 0.6, τgr = 7,

• A4: mmax
C,i = 0.6, τgr = 21.

5.3.2 Study B

Similarly to study A, for each possible pair of values the pressure-diameter curve is
obtained for the vessel at 50% stenosis and the effectiveness of two stents in resolving
the constriction is compared. The clinical window for treatment in each case is reported,
i.e. the last day after SAH at which the stent would be successful in resolving the
disease: the results for the Solitaire 6 stent are reported in Table 5.3 and those for the
Capture 3 stents in Table 5.4.

τgr = 3 τgr = 7 τgr = 10 τgr = 14 τgr = 21 τgr = 28
λmaxC,i (0) = 0.5 1 4 5 8 12 16
λmaxC,i (0) = 0.6 1 3 4 6 10 13
λmaxC,i (0) = 0.7 1 2 3 4 7 9
λmaxC,i (0) = 0.8 0 0 0 1 1 2
λmaxC,i (0) = 0.9 0 0 0 0 0 0
λmaxC,i (0) = 1.0 0 0 0 0 0 0

Table 5.3: Clinical window in days after SAH for treating vasospasm in a 2mm artery at
50% stenosis using a Solitaire 6 stent.
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τgr = 3 τgr = 7 τgr = 10 τgr = 14 τgr = 21 τgr = 28
λmaxC,i (0) = 0.5 1 3 4 6 10 13
λmaxC,i (0) = 0.6 1 2 3 5 8 10
λmaxC,i (0) = 0.7 0 1 2 3 4 5
λmaxC,i (0) = 0.8 0 0 0 0 0 0
λmaxC,i (0) = 0.9 0 0 0 0 0 0
λmaxC,i (0) = 1.0 0 0 0 0 0 0

Table 5.4: Clinical window in days after SAH for treating vasospasm in a 2mm artery at
50% stenosis using a Capture 3 stent.

The pressure-diameter curves and stent pressure curves are also reported in Figure
5.11 for four representative cases from this study:

• B1; λmaxC,i = 0.5, τrem = 7,

• B2; λmaxC,i = 0.5, τrem = 21,

• B3; λmaxC,i = 0.8, τrem = 7,

• B4; λmaxC,i = 0.8, τrem = 21.

5.4 Discussion

A theoretical model of collagen growth and remodelling has been incorporated into
the cerebral vasospasm model presented in Chapter 2 in order to evaluate its effect
on both the pathophysiology of the disease and the model predictions regarding the
amount of pressure required for treatment. It represents a first step in the research of
accurate evolution laws that can capture the complex changes that the extracellular
matrix undergoes in various soft tissue diseases. The model has shown that collagen
growth and remodelling, even if partial, can greatly affect the predictions on the
effectiveness or lack thereof of treatment via stent retrievers and thus further study
is warranted on the subject. It is first recommended that various limitations of the
model are addressed which are discussed in Section 5.4.1.

5.4.1 Limitations of the Model

The model that has been presented in this Chapter is an extension of the model
presented in Chapter 2 and thus all limitations of that model still apply here.

The membrane assumption is reasonable when the stress field across the thickness is
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likely to remain uniform. In the case of vasospasm, however, the significant change of
geometry caused by the constriction is likely to make this hypothesis no longer valid.
It is therefore recommended to integrate this model into a finite element framework
to obtain more realistic results.

The time-course of vasospasm is also not modelled directly, but rather a 50% level of
stenosis is imposed and it is assumed that VSMCs have returned to their homeostatic
state of stretch. In reality this is likely to be a continuous process and it is possible
that, when a patient becomes symptomatic and treatment is considered, the VSMCs
have not returned to their homeostatic state of stretch yet.

In this idealised geometry it is also assumed that collagen is aligned circumferentially.
However, experimental observations have shown that the dispersion of collagen fibres
is different for different tissues and, in the case of arterial tissue, even from layer to
layer. It is recommended that the orientation of the fibres is therefore considered. The
simplest extension to include this could assume collagen fibres aligned at ±π/4 radians
from the circumferential direction. A more sophisticated extension could include a
continuous distribution of fibre directions (Gasser et al. (2006)).

Another limitation of the model is how treatment is simulated. Indeed an interventional
device is idealised as an increase in pressure, uniform across the inner surface of the
vessel, irrespective of the device’s geometry. A recommended improvement would be
the consideration of the geometry of the stent, since this might affect the distribution
of the additional pressure on the inner surface, especially depending on the mesh
density.

This model does not consider the endothelial layer. Endothelial cells play a negligible
role in the mechanics of the vessel but a crucial one in mechanotransduction, i.e. the
translation of mechanical signals, such as pressure and shear stress, to the other layers
in the tissue. The constriction causes the internal elastic lamina to become corrugated
(Findlay et al. (1989), Hughes & Schianchi (1978), Kapp et al. (1985), Macdonald et al.
(1992), Mayberg et al. (1990), Mizukami et al. (1976), Nakagomi et al. (1990), Sacher
& Tenner (1978), Zubkov et al. (2002)), which can damage the attached endothelial
cells, and some studies have also observed endothelial desquamation. This can impair
the translation of mechanical stimuli to chemo-biological ones and thus impair cell
function in VSMCs and fibroblasts.

Aside from smooth muscle cells, which are assumed to be functionally disrupted and
brought to failure when a mechanical treatment is effective, damage to the other
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constituents of the wall was not considered. Although VSMCs are likely to be the
first constituent to reach failure in the context of vasospasm treatment, it would be
important to consider even just partial damage to the other components, since it is for
example possible that damage to some collagen fibres occurs during treatment of CVS
although that might not be the main criterion of success or lack thereof of a specific
strategy.

Finally, a significant limitation is that in this model the evolution of either the mass
density or the stretch distribution is prescribed and given as a function of time. In
reality, collagen is maintained by vascular cells residing in the vessel wall, most notably
vascular smooth muscle cells and fibroblasts. The current biological knowledge is
that pro-collagen molecules are formed within the cell wall, then secreted into the
extracellular space where they self-assemble into fibrils and then into fibres, and finally
are attached to the existing matrix by a crawling-like movement of the cell (Alberts
et al. (2015), Robertson & Watton (2013)).It would therefore be more realistic to have
the collagen growth and remodelling processes coupled to the state of their neighboring
cells. Suggestions for possible coupling mechanisms are discussed in the next Section.

5.4.2 Recommendations for Future Directions

Despite the limitations mentioned in the previous section, the main obstacle to
modelling growth and remodelling of collagen is a lack of experimental observations
upon which to base choices for parameter values, variables of interest and evolution
laws. It would therefore be highly desirable that more experimental studies were
carried out on growth and remodelling processes, in both health and disease.

Although some knowledge exists on how collagen fibres are synthesised and deposited
by the vascular cells, the process by which they attach the fibres to the matrix and
how they determine what stretch and orientation would be optimal for the tissue
function is still an open question. This is a complex process which could involve
several variables of interest: rate of synthesis of new collagen, rate of production of
matrix metalloproteinases (collagen-degrading molecules) and their inhibitors TIMPs,
and stretch distribution, stiffness and orientation of new collagen. Ultimately it would
be ideal to be able to describe the behaviour of these variables in terms of the state of
the cell that regulates them, which would in turn depend on the chemo-mechanical
environment of the cell. To this end the approach of Aparìcio et al. (2016) could be
adopted, who developed a bio-chemo-mechanical framework in which a feedback loop is
established between molecular-level processes, the mechanical structure and properties
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of the wall and the blood flow with its resulting metrics such as radial pressure and
wall shear stress. It would be mathematically straight-forward to integrate a similar
model into the framework presented here while the challenge would lie in the selection
of variables of interest among the countless involved in molecular processes within the
cell and choice of laws of mutual interaction between them.

Limited information is also available regarding collagen growth and remodelling in the
specific case of vasospasm. There are indeed conflicting results in the experimental
literature: while some studies observed an increase in collagen mass, others found no
increase or decrease; different studies that stained for specific collagen types reported
contradicting results (see Section 1.2, Hughes & Schianchi (1978), Kapp et al. (1985),
Macdonald et al. (1992), Mayberg et al. (1990), Sacher & Tenner (1978), Smith et al.
(1985), Yamaguchi-Okada et al. (2005)). One study showed that, despite noticing a
statistically significant increase in collagen mass at day 14, the collagen content had
returned to base value by day 28 (Yamaguchi-Okada et al. (2005)). Due to this lack
of definitive results of increased collagen content, a few studies even suggested that
the molecule reacting to the stain in models that do report increases in collagen mass
is actually not collagen, but a different type of ECM molecule, perhaps fibronectin
or something unspecified (Macdonald et al. (1992), Yamaguchi-Okada et al. (2005)).
It would therefore be important that more experimental studies were carried out to
identify this protein, or perhaps family of proteins, and determine its mechanical
properties as well as what factors in the development of vasospasm have determined
its production.

A possible experimental design to address some of these questions is to replicate
vasospasm ex vivo. If the current technology allows it, one could apply arterial
blood to a segment of a cerebral artery and observe whether changes have occurred
in the collagen fabric and, if so, quantify them. The main challenge of such an
experiment would be to maintain the tissue sample in in vivo-like conditions, such
as by maintaining flow through the tissue and providing nutrients to the cells, but it
would provide the most direct answer to the research questions involved in this work
and thus accelerate the development of a clinical tool.

From the perspective of computational modelling, there are four research directions it
would be most valuable to explore in future studies.

The first one addresses the limitation of modelling the artery as a membrane. It is
likely that the property of having a uniform strain field through the wall thickness
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is lost in vasospasm due to the high level of constriction and thus it is important to
integrate this model into a finite element framework and compare the results, since
the prediction of the magnitude of pressure necessary for mechanical treatment might
be significantly different. This would also move in the direction of being able to apply
this model to patient-specific geometries in the future, which is highly desirable for
clinical applications.

From a theoretical point of view, the prescribed temporal evolution of the variables
of interest should be abandoned in favour of one that depends directly on the state
of the cell. In order to do this, it would be necessary to formulate an explicitly
time-dependent model, which would be straight-forward to do. It would be ideal to
have some experimental evidence upon which to base hypotheses on how collagen
growth and remodelling depends on the cell mechanobiology but, until these are
available, theoretical models can be tested. A initial simple scenario that could be
explored involves using a similar approach to Chen (2014) and use a modified Richards’
growth function (Richards (1959)) to evolve one of the three stretches that define the
distribution, for example λATT,maxC . Two cases could be explored: one in which the
evolution depends on the deviation of the VSMC stretch from its attachment value,
i.e.

λATT,maxC = λATT,maxC |t=0 +
λfailC − λATT,maxC |t=0

1 + exp(−B (λM − λATTM ))
, (5.12)

and one where it depends on the deviation of the cell stress from its homeostatic value,
i.e.

λATT,maxC = λATT,maxC |t=0 +
λfailC − λATT,maxC |t=0

1 + exp(−B (
σM−σhM

105
))
, (5.13)

where λfailC is the maximum assumed collagen stretch before damage occurs, σhM is the
homeostatic level of VSMC stress and 105 is chosen as normalising value that could
be adapted if necessary. The implementation of laws of this kind would be a first step
in the study of the effect of remodeling mechanisms that depend on the state of the
tissue.

In regards to specific variables, the assumption that remodelling of the collagen network
is achieved by a "shifting-only" change in the stretch distribution is rather limiting.
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Other studies have shown that including skewing and narrowing/expanding of the
distribution can yield more realistic results Chen (2014). Therefore hypotheses where
the width and skew of the distribution can also change should be tested.

Finally, a dispersion model, i.e. a distribution of the orientations of the collagen fibres,
should be included in the model (Gasser et al. (2006) ). Beside including it in the
material model of collagen, it is worth considering the possibility that the dispersion
might change in pathological conditions and thus include it in the remodelling process.

5.5 Conclusion

In this Chapter a simple theoretical model has been presented to study the effect of
collagen growth and remodelling on the effectiveness of stent retrievers as a treatment
strategy to mechanically resolve cases of cerebral vasospasm. It includes a novel
distinction between mature and immature collagen, where the former is the population
present at the time of subarachnoid haemorrhage and the latter the population newly
synthesized after SAH. Two distinct studies were carried out: Study A focused on the
growth aspect and assumed a fixed stretch distribution (no remodelling), while Study
B focused on the remodelling aspect and assumed that all the mass of immature fibres
would be secreted at the time of SAH and remained constant afterwards (no growth).

Across all cases it is evident that collagen growth and remodelling can play a decisive
role in the stiffening of the vessel wall in vasospasm to the point where stents would
no longer be effective. It is therefore crucial to include this aspect of the disease in any
computational model that wishes to make predictions on the time-course of vasospasm
so as to guide clinicians in the selection of an optimal treatment strategy for a specific
patient . The presented formulation is but a simple theoretical framework that was
used as a preliminary exploration. It is the author’s hope that this work motivates
further exploration of the subject through both computational and experimental
efforts. The study of collagen growth and remodelling can be decisive not only for the
study of cerebral vasospasm, but also other diseases, such as aneurysms (Hill et al.
(2012), Phillippi et al. (2014), Watton, Ventikos & Holzapfel (2009)), asthma (Hill
et al. (2018)), myocardial infarction and others. A stronger collaboration between
the modelling and experimental community is therefore necessary to develop accurate
models of disease progressions that would be able to achieve clinical application.



Chapter 6

Discussion and Future Research

A novel hypothesis on the pathophysiology of vasospasm is formulated and used to
develop a mathematical membrane model of the disease (Ch. 2) and a thick-walled
finite element model (Ch. 3,4). The membrane model is extended to study the
potential impact of collagen growth and remodelling in the evolution and treatment
of the disease (Ch. 5).

In this Chapter the main findings produced by the work described in this Dissertation
are summarised and a discussion is presented on the recommended directions for future
work.

6.1 Summary and Main Findings

The normal functioning of blood vessels is highly dependent on their structure and
most cardiovascular diseases can be explained as maladaptive changes in the structure
of the vessel walls. Vascular cells play a fundamental role in this as they continuously
maintain the extracellular matrix and regulate their biological activity according to
their surrounding chemo-mechanical environment. The processes of wall structure
maintenance are very complex, multifactorial and multiscalar, ranging from gene
transcription to the diffusion or transport of molecules that constitute chemical
signalling to the mechanical interplay between the properties of the blood flow in the
vessel lumen and the stress responses of the wall constituents. Therefore it is crucial
for modelling frameworks of soft tissues to not limit themselves to the biomechanical
description of their behaviour, but to consider the mechanobiology of vascular cells, i.e.
the processes by which the mechanical environment of the cells affects their biological
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activity thus altering the microstructure of the vessel.

In this work existing frameworks for modelling the growth and remodelling of arterial
tissue have been adapted and extended to formulate a mathematical model of cerebral
vasospasm with the objective of estimating the amount of pressure necessary for its
mechanical treatment. Consistently with experimental observations on the morphology
of the spastic vessel as well as on the time-dependent effectiveness of pharmacological
treatment, it is hypothesised that the main driver of vasospasm is the remodelling
of vascular smooth muscle cells which attempt to maintain their homeostatic level
of stretch. This follows an initial change in vessel geometry caused by a chemically-
driven increase in VSMC active contraction. Contrary to a commonly held belief
among clinicians, it is assumed that successful mechanical treatment does not require
damage to the extracellular matrix, but only to the VSMCs. The predictions of the
magnitude of pressure necessary to treat vasospasm are consistent with reported clinical
observations of success or lack thereof of stent-retrievers as a treatment strategy. More
importantly they highlight that, even in case of stent failure, the pressure required
would only be slightly higher than what the stent could provide and thus there is
potential to specialise stent design for the purpose of treating vasospasm (the currently
used ones are designed for blood clot removal) with significant clinical benefits: the
far lower pressures exerted by the stents dramatically decrease if not nullify the risk of
tissue rupture and, compared to balloon cathethers, they have better maneuverability
and thus can reach branches of the distal vasculature that would otherwise not be
treatable.

As a first stage, a conceptual mathematical model was developed where the artery is
modelled as a cylindrical membrane (Chapter 2). Following the conceptual framework
of Watton et al. (2004), Watton, Ventikos & Holzapfel (2009), a constrained mixture
model is adopted where the constitutive elements of the vessel wall have independent
reference configurations so as to capture their different mechanical roles and properties.
Each constituent has a preferred state of stretch, called homeostatic or attachment
stretch, which optimizes its mechanical function in some sense. While elastin is the
main contributor to the elasticity of the blood vessel and bears the majority of the
pressure load, VSMCs play a dynamic role by actively contracting or relaxing in
response to a changing mechanical environment. It is therefore assumes that, after
a prolonged period of chemically-driven contraction, estimated to be about 2 − 3

days, a remodelling process is initiated by which the cells attempt to return to their
homeostatic state of stretch and level of active contraction. On a molecular level, it is
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imagined that this may correspond to rearrangement of their internal cytoskeleton
and/or attachment to the ECM and other neighbouring cells, but more experimental
data is warranted on this hypothesis. The remodelling causes a leftward shift in the
pressure-diameter curve of the VSMC response and thus of the whole arterial wall
as well as an increase in the proportion of pressure load borne by these cells: due
to lack of remodelling of elastin and collagen, VSMCs become the only load bearing
constituent in moderate to severe levels of stenosis. The model thus predicts how
the pressure-diameter curve adapts in vasospasm and can predict the magnitude of
pressure necessary to resolve the disease. It is assumed that the necessary pressure is
such that it would overstretch the VSMCs beyond a dilatation threshold at which the
cells would sustain such damage as to no longer be able to bear any pressure load or
contract. Experimental measurements of the force exerted by four commonly available
stent-retrievers are used to test their effectiveness or lack thereof in treating vasospasm
in vessels of different original diameter (and thus different arteries or branches of
arteries in the cerebral circulation). The model predictions are consistent with clinical
observations and seem to identify a “cut off” point at a diameter of about 3mm such
that stents are likely to be successful in arteries smaller than that value but usually
fail in larger vessels. The consistency with clinical data suggests validity of the central
hypothesis and provides motivation to address some model limitations and further
sophisticate it.

The mathematical model presented in Chapter 2 models the artery as a membrane,
which assumes a uniform transmural strain field across the vessel wall. Although this
is reasonable for a healthy vessel, it is likely to no longer hold true when the artery is
constricted as a consequence of vasospasm. This is likely to affect the results since,
following stent deployment, the VSMCs closer to the lumen would be subject to a
higher stress compared to those farther away and thus the damage provided by the
stents may not be uniform across the wall thickness. In order to address this the model
developed in Chapter 2 is integrated into a suitable finite element framework. The
framework developed by Eriksson et al. (2014), Grytsan et al. (2015) and Grytsan et al.
(2017) is adopted, which has successfully been applied to the modelling of abdominal
aortic and intracranial aneurysms. Before it is applied directly to model cerebral
vasospasm, the framework required a few extensions and sophistications, which are
described in Chapter 3. The material model of collagen is sophisticated in order
to include the experimentally observed distribution of fibre waviness and evolution
equations that allow it to remodel are implemented. A material model for vascular
smooth muscle cells is added which includes both a passive and active response, as
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well as remodelling of their mechanical stretch. Finally, a damage model is introduced
via the inclusion of a damage variable for each constituent and a damage criterion
for VSMCs for the purpose of modelling vasospasm. Although these aspects are not
used in this model, the framework includes the possibility of modelling anisotropic
volumetric growth as well as growth/atrophy of the constituents, alongside their
remodelling. The framework is implemented in the software FEAP, an open source
academic software with a high level of customisation from the modeller. To the
author’s knowledge, this is an internationally leading framework for modelling growth
and remodelling of arterial tissue due to its inclusion of anisotropic volumetric growth,
VSMC active contraction, microstructurally motivated collagen material model and
constituent-specific damage criteria. The framework can also easily accommodate an
extension to describe the interaction between the wall structure and the dynamics of
blood flow (fluid-solid growth model) as well as patient-specific geometries.

In Chapter 4 the model developed in Chapter 2 is integrated into the finite element
framework developed in Chapter 3. The model is structured so as to be as close a
comparison as possible to the 1D model in order to obtain consistent predictions. A
small deviation from the model had to be accommodated for with regards to the
damage model due to numerical reasons. While in the 1D model there was no need to
quantify the damage and simply assume null stress response in the VSMC whenever
their stretch was equal to or exceeded the dilatation threshold, in the finite element
framework the approach by Li et al. (2012) is followed and a damage variable d0 ∈ [0, 1]

is introduced such that d = 0 corresponds to no damage and d = 1 to complete damage
and null stress response. The implementation of a sudden step-change in the damage
parameter from 0 to 1 in correspondence of the VSMC stretch being equal to the
dilatation threshold, which would be the closest translation of the 1D criterion in the
FE framework, would prevent numerical convergence. In order to resolve this, the
existence of a “damage threshold” is postulated, mathematically equivalent to a level
of stretch smaller than the dilatation threshold, at which damage to the cell begins to
occur. Whenever the cell stretch exceeded the damage threshold, the damage variable
would increase proportionally to the deviation of the cell stretch from the damage
threshold. If the dilatation threshold was exceeded or the damage variable became
larger than one, the equality d0 = 1 is prescribed.

When comparing the predictions from the FE models to those yielded by the 1D
model, we find, as expected, that the non-uniformity of the transmural strain and
stress fields in the vasospastic vessel has the potential to affect the results. Indeed
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simulations suggest that the cells experience decreasing pressure from the stents and
thus are less damaged with increasing distance from the vessel lumen. Since the blood
clot is also localised in the axial direction, the model predicts that there would be a
“tapering” transition region between the region of maximal constriction and the region
of physiological geometry and thus the effects of mechanical treatment would be non-
homogeneous in the longitudinal direction as well. It is therefore recommended that
any model that in the future would like to serve as guidance for clinicians in treatment
selection be a three-dimensional finite element model. To the author’s knowledge this
model is the only three-dimensional finite element model of cerebral vasospasm. The
model predictions corroborate the results of the one-dimensional model: the order
of magnitude necessary to treat vasospasm is far lower than that exerted by balloon
angioplasty and closer to that of currently available stents. However, the threshold
between success and failure of a specific stent in a specific case is small and thus small
parameter changes would yield opposing predictions. It is highly desirable that more
experimental work is carried out in order to increase understanding of the time course
of vasospasm and identify which factors play a more prominent role in its evolution in
order to be able to determine the most suitable treatment course for a specific patient.

The one-dimensional model developed in Chapter 2 assumes that the role of collagen
growth and remodelling is negligible with regards to vasospasm treatment, since its
halflife is much longer than the time course of the disease. However it has been shown
that collagen degradation and deposition processes can accelerate in pathological
conditions and halflives as low as 15 days have been reported. In Chapter 5 we
therefore investigated if and how collagen growth and remodelling affects the model
predictions on the magnitude of pressure necessary for treatment. Experimental data
on collagen remodelling in vasospasm is lacking and only one study was found that
reported quantitative information on collagen mass changes. Moreover there are
conflicting reports among studies on whether there indeed are changes in collagen mass
at all and, if so, in which types of collagen fibres. In absence of definitive observations,
a conceptual model is developed where foundational concepts of collagen growth and
remodelling are established and competing hypotheses on how these processes occur
can be tested.

The process of collagen deposition can be roughly divided into three phases: intracellu-
lar production of pro-collagen molecules, secretion of pro-collagen into the extracellular
space where the molecules self-assemble into fibres and finally attachment of the fibres
to the ECM (Robertson & Watton (2013)). The time course of this process is not yet
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clear but there likely is a transition phase between fibre secretion and achievement of
a “mature” fibre with a homeostatic level of stretch. The model presented in Chapter
5 aims at capturing this delayed “maturation” of collagen and distinguishes between
two fibre populations: “mature” and “immature” (Sang et al. (2020)). The former is
defined as the population present at the time of SAH, while the latter is comprised of
all fibres secreted after that time. The maturation process is not explicitly followed for
each individual fibre but aim to capture the global behaviour of the two populations
over time.

Two independent studies are formulated: the first focuses on growth/atrophy of
the collagenous matrix and assumes a fixed stretch distribution, while the second
emphasizes the remodelling process and assumes instantaneous deposition of immature
collagen at the time of SAH. A large parameter space is considered for the deposition
and the remodelling rates and for each case a clinical window of treatment is provided,
i.e. the maximum number of days from SAH at which the strongest stent would
be successful in treating vasospasm. The results suggest that collagen G&R can
indeed affect the effectiveness of stents as a treatment strategy and thus should
be included in models of the disease. There is however a pressing need to obtain
experimental data on how collagen GR is regulated by resident vascular cells and
what chemo-mechanical factors affect these processes. An increased understanding
of these mechanisms has a wide scope of application and can be applied not only in
modelling cerebral vasospasm and treatment, but also other soft tissue diseases such
as aneurysms, bladder obstruction, myocardial infarction or oesophageal athresia. In
general it is fundamental to gain a deeper understanding of the mechanobiology of
vascular cells in order to provide realistic and biologically informed models that can
achieve real clinical impact.

6.2 Limitations and Recommendations

6.2.1 Cell Mechanobiology

The most remarkable feature of biological tissues is engrained in their name: “bio”,
meaning “living”, underlines that these tissues are constantly evolving and it would thus
be reductive to model them only as elastic geometries. In order to fully understand and
thus model biological tissues so as to achieve clinical impact and real world applications
it is therefore fundamental to consider the microstructure of these materials and its
evolution across time in response to chemical and mechanical signals. Since it is
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resident cells which regulate the growth and remodelling of the tissue structure, it is
towards them and their interplay with the surrounding chemo-mechanical environment
that the modelling and experimental community are invited to turn their attention
(Ambrosi et al. (2019), Irons & Humphrey (2020)).

In the case of cerebral vasospasm, it has been hypothesised that the disease is driven
by VSMC remodelling aimed at maintaining a homeostatic level of stretch. This
hypothesis is based on the concept of mechanical homeostasis and the assumption
that this is of crucial importance to VSMCs since they play a fundamental role in
vessel diameter regulation. There is no direct evidence of this process occurring in
vasospasm (albeit probably because no one has thought to look for this before), but
some studies report shortening and “rounding” of the smooth muscle cells (Findlay
et al. (1989), Yamaguchi-Okada et al. (2005), Zubkov et al. (2002)), which may be a
consequence of cytoskeleton reconfiguration. A relevant role of VSMC remodelling has
been hypothesised for other diseases as well, such as arterial stiffness (Sehgel, Vatner &
Meininger (2015)) and hypertension in aging (Sehgel, Sun, Hong, Hunter, Hill, Vatner,
Vatner & Meininger (2015)). However, there is a significant lack of experimental data
on many aspects of this process: what it entails at a (macro)molecular level, what is
its time scale and how does it depend on the chemo-mechanical environment of the
cell.

Furthermore it has been assumed that there exists a “dilatation threshold” at which
VSMCs become damaged to the point of not being able to bear the pressure load.
Although the damage criterion adopted in these models is based on experimental
measurements of VSMC damage (Fischell et al. (1990)), there is a lack of information
on how damage occurs in VSMCs, how does it affect the cell at the (macro)molecular
level and what is the time scale of recovery, if and when that is possible. Indeed a
deeper knowledge of how damage occurs in VSMC would help clarify the mechanisms
by which mechanical intervention resolves vasospasm, thus guiding the choice of
treatment or the design of specific stents, and aid the prevention of restenosis, i.e. the
return of the vessel to a contracted state after mechanical treatment. The latter is
a problem that occurs not only in the treatment of vasospasm, but in other modes
of endovascular treatment of various cardiovascular diseases. Thus the availability of
more experimental data on this topic would be relevant not only for the purpose of
modelling vasospasm, but would have wide implications in a clinical setting whenever
there is a risk of post-operatorial vessel narrowing following corrective surgery of some
cardiovascular pathology (i.e. atherosclerosis, aneurysms, etc.)
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Growth and remodelling of collagen fibres is another aspect of the pathophysiology
of vasospasm which the modelling presented in this thesis suggests has the potential
to affect the effectiveness of different treatment strategies. The proposition of a
new microstructurally motivated material model for collagen that would include the
distribution of fibre waviness as experimentally observed (Hill et al. (2012), Schrauwen
et al. (2012)) is only recent (Aparìcio et al. (2016), Chen (2014)) and to the author’s
knowledge there is no experimental data on how this distribution evolves in evolving
chemo-mechanical environments. The adaptation of the stretch distribution of the
collagen fabric is likely to play a role not only in vasospasm, but other cardiovascular
diseases such as aneurysms or myocardial infarction.

The process of collagen maintenance consists of two parallel activities: degradation of
existing fibres and deposition of new ones. These processes are continuously regulated
by resident vascular cells and their harmonious interplay plays a key role in the mainte-
nance of a physiologically functioning tissue. Degradation of collagen fibres is carried
out by specific enzymes called collagenases (a type of matrix metalloproteinase) which
are inhibited by other enzymes called TIMPs (tissue inhibitors of metalloproteinases).
Both these types of enzymes are secreted by the cells. Collagen deposition is roughly
tri-phasic: pro-collagen molecules are created intracellularly, then secreted by the
cells into the extracellular space where they appear to self-assemble in fibrils and
then into fibres, and finally they are attached to the existing ECM by the secreting
cell via a “crawling”-like movement of the cell (Robertson & Watton (2013)). Beside
this, little is known about this process and there are several questions that biological
experiments could address: how do the production rates of matrix metalloproteinases
and TIMPs depend on the mechanical environment? What is the time scale of the
collagen deposition, from pro-collagen formation to attachment to the ECM, and how
does it depend on the chemo-mechanical environment? What factors does the stretch
at which the cell configures the fibre depend on and in what way? What factors
influence the orientation of the fibrel when it is attached to the ECM? Do different cell
types maintain the collagen fabric differently (e.g. fibroblasts compared to VSMCs)?
Furthermore “collagen” does not refer to a single protein, but to a family of them
and at least 29 distinct types are known. It would therefore be interesting to also
investigate whether the proportions of different collagen types change in changing
chemo-mechanical conditions. The process of collagen maintenance regulated by
vascular cells is highly complex and there is a plethora of research questions worth
investigating on the subject. The most important aspect that focus should be placed
on is the adaptation of the stretch distribution of the collagen fabric to a changing
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chemo-mechanical environment. Further understanding of this adaptation has wide
application in modelling soft tissue diseases and is a good compromise between mi-
crostructural level of detail to inform the constituent’s potentially evolving stress
response and numerical complexity for the purposes of computational implementation.

Finally it would be highly desirable to obtain more experimental data on the patho-
physiology of cerebral vasospasm and its time course. The experimental studies
identified by the author are for the vast majority animal models: for obvious reasons
the possibility of conducting experiments directly in humans is severely limited. The
limitation of animal models is that there may be significant differences among animal
species (most models were rabbit, canine or porcine) as well as between animals and
humans: for example the process of clearing out the blood clot in the subarachnoid
space is significantly faster than in humans and, since the progression of the disease is
highly time dependent, this somewhat invalidates results on the temporal scale of the
three phases of vasospasm. However there are interesting aspects to be explored in
animal models and technological improvements now make ex vivo studies on human
cerebral vessels possible.

In either case it is recommended that the temporal evolution of the cystoskeletal
structure of VSMCs as well as their attachment to surrounding ECM and other cells
is observed. Indeed the hypothesis that VSMC remodelling drives the second phase
of vasospasm (where the first covers the first 2 − 3 days and is characterised by
a principally chemically-driven contraction) is reasonably based on the concept of
mechanical homeostasis, there is so far no direct evidence in support of this hypothesis.
It is therefore crucial to first and foremost corroborate this main hypothesis. If
validation for this assumption was provided, it would then be recommended that the
process of damage to the VSMCs be studied: since VSMCs appear tightly arranged in
the medial layer of arteries and are therefore likely to be connected to one another,
damage should be investigated not only in isolated cells but if possible in whole vessels,
ideally following vasospasm. Finally, a further key component worth examining is
collagen growth and remodelling, as addressed in previous paragraphs.

Further exploration of the morphology of vasospastic vessels in the third phase of
vasospasm (at 2− 3 weeks from SAH) is also warranted. Indeed there are conflicting
reports in the literature on whether there is an increase in collagen mass of any kind,
what type of collagen is secreted or even if it is collagen at all: some authors speculate
that it may be a different ECM protein that is secreted at this stage (Mayberg et al.
(1990)) with one group suggesting fibronectin (Yamaguchi-Okada et al. (2005)). It
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would therefore be important to investigate how the morphology of the spastic vessel
changes in the chronic phase of vasospasm since, if increased production of a different
ECM protein is initiated at an earlier stage, this process might affect the treatment
predictions.

6.2.2 1D Model of Vasospasm

The model presented in Chapter 2 and published in Bhogal et al. (2019) is a funda-
mental first step for testing the novel hypotheses on the mechanisms of vasospasm
development and its treatment formulated in this thesis. In order to improve the
biological realism of the model and move closer to clinical translation, a number of
extensions are recommended.

The fundamental shortcoming of this model is the lack of explicit representation of the
cell. Although assumptions are made on the mechanobiological processes that mediate
the changes in wall structure in vasospasm, these are not represented explicitly and only
the macroscopic mechanical variables relevant for the model (e.g. constituent stretch)
are considered. However, as suggested by other world-leading researchers in the field
(Ambrosi et al. (2019), Humphrey & Latorre (2020)) as well as encouraged by the
relevance of models that do incorporate this mechanobiological aspect (Aparìcio et al.
(2016), Hill et al. (2018)), the most relevant model extension to be made is the inclusion
of an explicit representation of the vascular cell and a more detailed description of the
complex interplay between chemical signals, mechanical behaviour and biological cell
function that drive the growth and remodelling of the vessel wall Ambrosi et al. (2019).
The highly multifactorial nature of vasospasm is such that the pathophysiology of the
disease may be different in different patients and a more detailed biologically informed
framework, without excessively impinging on computational complexity, may allow
for personalised parametrisation of the model according to patient specific data and
thus become an invaluable tool in the clinical setting. Moreover such a framework
would allow for the testing of competing hypothesis on mechanobiological processes
which would apply not only to vasospasm but to other soft tissue diseases as well.

The constitutive model of collagen that has been selected incorporates the microstruc-
tural description of a distribution of collagen fibre stretches. However it has been
assumed that collagen is circumferentially aligned which is usually not the case in
healthy arteries (Finlay et al. (1995), Hill et al. (2012), Holzapfel et al. (2002)). It is
therefore recommended to include a fibre dispersion model as proposed by Gasser et al.
(2006) and ideally of its potential remodelling in the case of a changing mechanical
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environment.

In the model extension described in Chapter 5 a first theoretical implementation of
remodelling of the stretch distribution of the collagen fabric has been implemented.
With ideally more data from experimental measurements, it is recommended that
a study on how this stretch distribution adapts to the changing chemo-mechanical
environment is carried out. It is often assumed in G&R models that there exists a
homeostatic level of stretch at which a given constituent tries to maintain its actual
stretch. This can be reasonable in many cases but it is possible that the definition of
homeostatic stretch/distribution may be dependent on the chemical and mechanical
environment of the cells: in other words, while in conditions that are only a small
deviation from the physiological state vascular cells may degrade and secrete collagen
so as to maintain a fixed stretch distribution, it is possible that the definition of this
“target” distribution are not fixed and conditions-independent but instead depend on
the mechanical environment of the cell. Investigations on this problem may be useful
not only in vasospasm, but also for models of aneurysms and myocardial infarction,
among others.

There are other aspects of the pathophysiology of vasospasm which have been assumed
negligible thus not included in the one-dimensional model. However these have the
potential to affect the model predictions and should therefore be considered in future
model extensions.

Inflammation is thought to play a significant role in vasospasm (Hughes & Schianchi
(1978), Mayberg et al. (1990)) and the complex signalling pathways that characterise
it are likely to guide the growth and remodelling processes occurring in the arterial
wall. Further experimental studies on the role and form of inflammatory pathways
are therefore warranted which can inform a modelling framework that would include
this important aspect of the disease. As for other investigations recommended in this
Chapter, the study of inflammation is another ubiquitous research area which would
find application in other soft tissue diseases, such as aneurysms (Tulamo et al. (2018)),
atherosclerosis (Libby et al. (2002)) or asthma (Hill et al. (2018)).

A few studies also reported evidence of VSMC differentiation into a synthetic phenotype,
migration towards the endothelial layer and/or partial apoptosis. These changes in
the wall morphology have the potential to affect the treatment predictions and it is
worth investigating whether these effects would be negligible or should instead be
integrated into the model for improved accuracy. Apoptosis of part of the smooth
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muscle population would result in the remaining living cells taking on an even larger
proportion of the pressure load and thus their remodelling process might be different
from what has been hypothesised in this work; differentiation of part of the population
would have the same effect as apoptosis but also suggest there may indeed be an
increase in ECM proteins deposition since the synthetic phenotype of VSMCs has
less of a contractile role but is capable of secreting higher amounts of ECM; finally
migration towards the endothelium suggests VSMC differentiation, since the synthetic
phenotype is more migratory than the contractile, and is also likely to affect the load
bearing proportion of the constituent as well as probably involve a change in cell
orientation. It is therefore recommended that this aspect of the evolution of the wall
morphology be investigated through in vitro or ex vivo experiments and hypotheses be
tested in mathematical or computational models with regards to the potential impact
on the effectiveness of a given treatment strategy.

The endothelial layer has not been considered in this model since its load bearing
contribution is considered negligible. However it plays a fundamental role in mechan-
otransduction, i.e. the “translation" of mechanical signals that the blood flow directly
applies to the endothelial cells into molecular signalling pathways that regulate cell
activity within the vessel wall. In vasospasm it is thought that, although the disease
is initiated by the extravascular blood clot, the released Oxyhaemoglobin travels
(or communicates via further signalling) to the endothelial layer where it signals
the endothelial cells to increase production of vasoconstrictors and of scavengers of
vasodilators (Pluta (2005), Weir & BK (1991)). Together with the incorporation of
chemical signalling pathways and their interactions with resident cells it would there-
fore be of interest to study the role of the endothelial layer in vasospasm. This would
be necessary if in the future the model aimed to include the potential of the disease to
self-resolve as a constant interplay between the wall structure and the haemodynamics
is required to explain this. Furthermore, the study of mechanotransduction and the
role of the endothelial layer is relevant not only for vasospasm but other soft tissue
diseases as this cell type is the universal fluid-solid mediator in all soft tissues. For
example it is thought to play a significant role in the development and evolution of
aneurysms (Robertson & Watton (2013), Vamsi Krishna et al. (2020)) and thus the
study of this crucial process could be useful for predicting the evolution of this disease,
in particular its stabilisation or risk of rupture.

Although the mechanical response of several soft tissues, including cardiovascular
and arterial tissues, has been shown to be viscoelastic (Golob & Chesler (2018)), the
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majority of biomechanical model of soft tissue growth and remodelling use a hypere-
lastic formulation. This is in part due to the increase complexity of implementation
for viscoelastic constitutive modes compared to hyperelastic. Holzapfel et al. (2002)
proposed a two-layer constitutive formulation aimed at simulating the passive mechan-
ical behaviour of healthy arteries in the large viscoelastic strain regime. The local
stress in each layer was decomposed into a volumetric componenet, an elastic isochoric
component and finally a viscoelastic component. Zhang et al. (2019) introduced
fractional viscoelasticity which brings the benefit a low number of parameters and
effectiveness at simulating materials with power-law behaviour at the cost of the high
computational requirements needed for the approximation of the fractiona derivative.
A numerical implementation is proposed in which fractional viscoelasticity is evaluated
via a recursive approximation, resulting in computational costs comparable to those
of hyperelastic models. The adoption of a viscoelastic model allows a more realistic
representation of the behaviour of various soft tissues, however at the cost of increase
complexity of implementation. It is therefore worth analysing in which cases it is
warranted to make use of a viscoelastic framework and in which it is a sufficiently good
approximation to use the simpler and less computationally expensive hyperelastic
formulation.

Finally it would be of interest to explore a further sophistication of the constitutive
model of the collagen network to include the sub-components of an individual fibre
thus explaining the macroscale behaviour of the material by means of its nanoscale
properties. Indeed a collagen fibre can present multiple levels of “assembly" of molecules:
collagen polypeptide α chains secreted by the cells are assembled into triple-stranded
ropelike superhelical structures which define the collagen molecule; these molecules
can then be assembled into microfibrils, fibrils, filaments and network-like structures
(Alberts et al. (2015), Robertson & Watton (2013)). A collagen fibre is defined as
an aggregate of collagen fibrils but the degree and mode of assembly varies between
collagen types. An important factor in the determination of the material stiffness
is the density of cross-linking between the sub-structures of the fibres. Marino &
Vairo (2013) and Maceri et al. (2010) have proposed a novel constitutive model for
collagen that captures this nano- to macro-scale structure of the constituent and
grounds its highly nonlinear behaviour in its molecular structure. The model uses a
few parameters which are biologically informed but need to be correctly evaluated
as small changes at the nanoscale result in large variations at the macroscale. The
inclusion of cross-linking would be a useful sophistication to adopt for the model of
cerebral vasospasm as it is possible that the observed increased tissue stiffness is due
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not only to medial fibrosis but to increased cross-linking of the connective tissue as well.
Testing this hypothesis would be useful in addressing the apparently contradictory
observations in the experimental literature regarding the increased presence or lack
thereof of collagen in the medial layer in vasospasm.

6.2.3 Finite Element Model of Vasospasm

The structure of a blood vessel wall is highly dependent on its function. This can vary
across different vessel types, such as coronary compared to cerebral arteries, but in
general consists in maintaining a level of elasticity which balances vessel compliance,
which is needed to accommodate significant changes in blood flow (e.g. in exercise),
with vessel resistance, which is necessary to allow the blood to continue flowing
through the circulatory system. Therefore the haemodynamics of blood flow play a
crucial role in the determination of the growth and remodelling processes occurring
in the vessel wall, in both physiological and pathological conditions. The modelling
frameworks presented in this work do not incorporate this aspect and this is a significant
limitation of the work. The framework proposed by Watton, Raberger, Holzapfel &
Ventikos (2009), Watton et al. (2011) and extended by Aparício et al. (2014) and
Grytsan et al. (2015) is a natural candidate for adapting the models presented in
this dissertation since it builds on the same modelling assumptions used in the model
presented in Chapter 2, such as modelling soft tissues as constrained mixtures of
suitable constituents, postulating the existence of (potentially environment-dependent)
homeostatic configurations for such constituents and incorporation of evolution laws
that regulate the growth and remodelling of the tissue. The framework has been
applied to model abdominal aortic aneurysms and the adaptation to modelling cerebral
vasospasm would be straight-forward.

The two-dimensional model of vasospasm proposed by Baek et al. (2007), Humphrey
et al. (2007 Septembera) includes equations that couple the wall structure to the
haemodynamics with the vessel lumen. Incorporation of this relationship allows the
modelling of a self-resolving case of vasospasm, which is the interesting evolution of
this disease in the case it does not manifest in neurological symptoms and thus does
not require treatment. Indeed, although the model proposed in does not include VSMC
remodelling, it considers the effect of a decreasing chemically-driven active contraction
of VSMCs due to the progressive removal of the extravascular blood clot, which is
responsible for the initiation of the spasm. It would therefore be of great interest to
study how the progressive relaxation of VSMCs, which has not been considered in
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the models here presented, interacts with their remodelling and with the blood flow
dynamics.

The finite element framework presented in Chapter 3 accommodates the possibility of
modelling anisotropic volumetric growth (AVG). The question of how mass changes of
different constituents are accommodated in the finite space occupied by a soft tissue
is still an open question, but it has been shown by Schmid et al. (2012) that assuming
isotropic volumetric growth for all constituents can lead to unrealistic results, such
as the shrinking of arterial tissue in response to elastin degradation as opposed to
the experimental observation that this would cause an enlargement. Initial steps
for modelling volumetric growth were taken by Schmid et al. (2012) and Valentín
et al. (2013) who verified the initial concepts in ideal cubic and cylindrical geometries.
Eriksson et al. (2014) applied the framework to modelling abdominal aortic aneurysms
and tested competing hypotheses of constant density compared to constant volume
laws for volumetric growth. In 2017 Grytsan et al. (2017) extended the framework to
incorporate anisotropic volumetric growth and compared four modes of anisotropic
growth in their predictions of aneurysm growth. They found that different types of
anisotropy lead to significantly different results, some of which are unrealistic. However
there is still a significant lack of experimental data to inform the growth models:
thus care must be taken in prescribing specific AVG laws and further experimental
investigations on this subject are warranted.

Moving towards clinical applications it is highly desirable to move away from idealised
geometries, such as cylinders for arteries or sphere for the heart, and adapt the
modelling frameworks to patient-specific geometries. The finite element framework
used in this work already accommodates for this and it is recommended that the
model be applied to a variety of patient-specific data so that treatment predictions
can be compared. This can be highly valuable tool since it allows the identification of
the patient-specific factors that are more likely to influence the model predictions and
can therefore guide the study and acquisition of patient data to parametrise the model
accordingly thus moving ever closer to the desirable world of personalised medicine.

The predictions made by the models presented in this dissertation are based on the
idealisation of stent retrievers as additional pressures acting on the vessel lumen,
which are therefore uniform in the axial and circumferential direction. This does
not capture the influence of the stent geometry and properties (e.g. material, mesh
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density) and may affect the treatment predictions. There already exist finite element
meshes describing specific stents which capture their geometry, design and mechanical
properties. It would therefore be straight-forward to incorporate this into the model
presented in Chapter 4 and test whether the stent design has an influence on its
effectiveness in the treatment of vasospasm or whether the idealisation as a uniform
additional pressure is sufficiently accurate.

6.3 Conclusion

The work presented in this dissertation is a striking example of how mathematical and
computational modelling can become valuable tools not only in testing hypotheses on
the physiology and pathophysiology of soft tissue but also as a clinical tool to aid the
selection of the most appropriate course of treatment for various diseases. A novel
hypothesis on the pathophysiology of vasospasm is tested which potentially reconciles
apparently conflicting experimental observations on the disease and supports the use
of stent retrievers as a treatment strategy with essential benefits such as increased
safety for the patient. Modelling frameworks are extended and sophisticated into
world-leading standards with high customisation potential, microstructurally-informed
material models and evolution laws, anistropic volumetric growth and the possibility
to model constituent damage with custom criteria. The model of vasospasm presented
here is at an early stage of development but there appears to be potential to eventually
design a model that balances biological detail with computational tractability and
allows personalised tailoring to patient-specific cases.

This work highlights the importance of considering not only the mechanical behaviour
of arterial tissue but also its mechanobiology, which plays a fundamental role in
the morphological evolution of the wall structure in development, aging and disease.
The pursuit of experimental studies on this topic would benefit from a wide scope
of application and greatly aid the sophistication of computational models towards
increased biological realism. There is indeed a need for stronger collaboration between
the modelling and the experimental community: experimental data informs and
validates the mathematical formulations of tissue properties and behaviour while
computational modelling can highlight which aspects of a research question should
take higher priority for further study. The synergistic collaboration between the two
fields is therefore of the utmost value and helps maximise translational impact in the
field of in silico medicine.
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Appendix A

The following code has been used for the implementation of the model presented in
Chapter 2.

% −−−−−−−−−−−−−−− WORKSPACE CLEANUP −−−−−−−−−−−−−

clear ; clc ; close a l l

% −−−−−−−−−−−− Parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−− #

c_diam_tzero_mm = 2 . 9 ; % ph y s i o l o g i c a l diameter at t=0 in mm

c_radius_tzero = c_diam_tzero_mm ∗ 10^(−3) / (2 ∗ 1 . 3 ) ;
% unloaded rad ius at=0 in m

c_thickness_tzero = c_radius_tzero /5 ; % th i c kn e s s at t=0
c_pressure_sys = 16000; % s y s t o l i c b lood pres sure in Pa

% −−−−−−−−−−−−−−− I n i t i a l S t r e t c h Cons idera t ions −−−−−−−−−−−−−−−−− #

c_lambda_z = 1 . 3 ;
c_lambda_elastin = 1 . 3 ;

c_collagen_ratio_ad_me = 8 ;

% Col lagen d i s t r i b u t i o n in media

c_att_min_me = 1 .00001 ;
c_att_mod_me = 1 . 0 1 ;
c_att_max_me = 1 . 0 7 ;

c_rec_max_me = c_lambda_elastin / c_att_min_me ;
c_rec_min_me = c_lambda_elastin / c_att_max_me ;
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c_rec_mod_me = c_lambda_elastin / c_att_mod_me ;

v_a_me = c_rec_min_me ;
v_c_me = c_rec_mod_me ;
v_b_me = c_rec_max_me ;

% Col lagen d i s t r i b u t i o n in a d v e n t i t i a

c_att_min_ad = 0 . 8 ;
c_att_mod_ad = 0 . 9 ;
c_att_max_ad = 0 .99999 ;

c_rec_max_ad = c_lambda_elastin / c_att_min_ad ;
c_rec_min_ad = c_lambda_elastin / c_att_max_ad ;
c_rec_mod_ad = c_lambda_elastin / c_att_mod_ad ;

v_a_ad = c_rec_min_ad ;
v_c_ad = c_rec_mod_ad ;
v_b_ad = c_rec_max_ad ;

% Muscle s t r e t c h e s : attachment s t r e t c h + mean and min
% fo r a c t i v e response

c_lambda_muscle = 1 . 1 5 ;
c_rec_muscle = c_lambda_elastin / c_lambda_muscle ;

c_musc_mean = 1 . 1 ;
c_musc_min = 0 . 4 ;
c_vasodil_conc = 0 . 6 8 ; % Concentrat ion o f v a s o d i l a t o r s to

% va s o c on s t r i c t o r s at homeostas i s

c_ge_muscle = ( c_lambda_muscle^2 − 1 . 0 ) / 2 . 0 ;
% from s t r e t c h to green s t r a i n

% −−−−−−−−−−−−−−−−−−−−− Mater ia l Parameters −−−−−−−−−−−−−−−−−−−−−−− #

% Assign load bear ing propor t i ons to each c on s t i t u en t
% then s o l v e force−ba lance equat ion f o r k_ ( . )
% us ing s y s t o l i c b lood pres sure f o r P
% and attachment s t r e t c h e s f o r lambda ’ s
%
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% for example f o r muscle pa s s i v e
% c_load_borne_muscle_p ∗ P =
% (H/R) ∗ ( 1 / ( lambda ∗ lambda_z ) )∗sigma_M^pass ( lambda_M)
% k_M i s i n s i d e sigma_M

c_load_borne_elastin = 0 . 5 0 ;
c_load_borne_muscle_p = 0 . 2 0 ;
c_load_borne_muscle_a = 0 . 2 0 ;
c_load_borne_collagen = 1 − c_load_borne_elastin − . . .

c_load_borne_muscle_p − c_load_borne_muscle_a ;

c_common_factor = ( c_pressure_sys ∗ c_radius_tzero ∗ . . .
c_lambda_elastin^2 ∗ c_lambda_z ) / c_thickness_tzero ;

c_k_elast in = ( c_load_borne_elastin ∗ c_common_factor ) / . . .
( c_lambda_elastin^2 ∗ . . .

( 1 − (1 / ( c_lambda_z^2 ∗ c_lambda_elastin ^4)) ) ) ;

c_k_collagen =( c_load_borne_collagen ∗ c_common_factor ) / . . .
( ( 2 ∗ c_lambda_elastin / ( (v_b_me−v_a_me)∗ (v_c_me−v_a_me) ) ) . . .
∗( (v_a_me+c_lambda_elastin )∗ log ( c_lambda_elastin/v_a_me ) . . .
+ 2∗(v_a_me−c_lambda_elastin ) ) ) ;

c_k_muscle_p = ( c_load_borne_muscle_p ∗ c_common_factor ) / . . .
( c_lambda_muscle^2 ∗ . . .
( 1 − (1/ ( c_lambda_z^2 ∗ c_lambda_muscle^4) ) ) ) ;

c_k_muscle_a = ( c_load_borne_muscle_a ∗ c_common_factor ) / . . .
( c_vasodil_conc ∗ ( c_lambda_muscle ∗ ( 1 − . . .

( (c_musc_mean − c_lambda_muscle ) . . .
/(c_musc_mean − c_musc_min) )^2 ) ) ) ;

%% −−−−−−−−−−−−− HEALTHY ARTERY −−−−−−−−−−−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−−−−−−−−STRESS FUNCTIONS LOOP −−−−−

n=235;

% Storage arrays



168

sv_stretch_var = zeros (1 , n ) ;
sv_stres s_var_elas t in = zeros (1 , n ) ;
sv_stress_var_col lagen = zeros (1 , n ) ;
sv_stress_var_muscle_a = zeros (1 , n ) ;
sv_stress_var_muscle_p = zeros (1 , n ) ;
sv_stress_var_muscle_t = zeros (1 , n ) ;
sv_stress_var_tota l = zeros (1 , n ) ;
sv_pressure_var = zeros (1 , n ) ;
sv_pressure_var_elast in = zeros (1 , n ) ;
sv_pressure_var_col lagen = zeros (1 , n ) ;
sv_pressure_var_muscle = zeros (1 , n ) ;
sv_pressure_var_muscle_a = zeros (1 , n ) ;
sv_pressure_var_muscle_p = zeros (1 , n ) ;
sv_pressure_var_collagen_me = zeros (1 , n ) ;
sv_pressure_var_collagen_ad = zeros (1 , n ) ;
% Loop

for i =1:n

% I n i t i a l i z e s t r e t c h
sv_stretch_var ( i ) = 0 .55 + ( i −1)∗0 .01 ;

% Define s t r e s s f unc t i on s
v_lambda_collagen = @(x ) x / c_rec_col lagen ;
v_lambda_muscle = @(x ) x / c_rec_muscle ;
v_m = @(x ) (x / c_rec_muscle ) ;

v_ge_collagen = @(x ) ( v_lambda_collagen (x)^2 − 1 . 0 ) / 2 . 0 ;
v_ge_muscle = @(x ) ( v_lambda_muscle ( x)^2 − 1 . 0 ) / 2 . 0 ;
v_ge = @(x ) ( x^2 − 1 ) / 2 ;

v_sigma_elastin = @(x ) x^2 ∗ c_k_elast in ∗ . . .
( 1 − (1 / ( c_lambda_z^2 ∗ x^4 ) ) ) ;

v_sigma_muscle_p = @(x ) v_lambda_muscle ( x)^2 ∗ . . .
c_k_muscle_p ∗ . . .
( 1 − (1 / ( c_lambda_z^2 ∗ v_lambda_muscle ( x )^4)) ) ;

v_sigma_muscle_a = @(x ) c_vasodil_conc ∗ c_k_muscle_a ∗ . . .
v_m(x ) ∗ ( 1 − ( (c_musc_mean − v_m(x ) ) . . .
/ (c_musc_mean − c_musc_min) )^2 ) ;

v_sigma_muscle_t = @(x ) v_sigma_muscle_a (x ) . . .
+ v_sigma_muscle_p (x ) ;
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% Col lagen Cauchy s t r e s s e s in media

v_gamma_me = c_k_collagen / . . .
( (v_b_me − v_a_me) ∗ (v_c_me − v_a_me) ) ;

v_delta_me = c_k_collagen / . . .
( (v_b_me − v_a_me) ∗ (v_b_me − v_c_me) ) ;

v_sigma_collagen_me_0 = @(x ) x ∗ 0 ;
v_sigma_collagen_me_ac = @(x ) x ∗ v_gamma_me ∗ 2 ∗ . . .

( ( x + v_a_me) ∗ log ( x/v_a_me) + 2∗(v_a_me − x ) ) ;
v_sigma_collagen_me_cb = @(x ) x ∗ v_gamma_me ∗ 2 ∗ . . .

( ( x + v_a_me)∗ log (v_c_me/v_a_me) + v_a_me − v_c_me + . . .
( (v_a_me − v_c_me) / v_c_me ) ∗ x ) . . .
− x ∗ v_delta_me ∗ 2 ∗ ( ( x + v_b_me)∗ log ( x/v_c_me) + . . .
v_b_me + v_c_me − ( (v_b_me + v_c_me) / v_c_me ) ∗ x ) ;

v_sigma_collagen_me_b = @(x ) x ∗ v_gamma_me ∗ 2 ∗ . . .
( ( x + v_a_me)∗ log (v_c_me/v_a_me) + v_a_me − v_c_me + . . .
( (v_a_me − v_c_me) / v_c_me ) ∗ x ) . . .
− x ∗ v_delta_me ∗ 2 ∗ ( ( x + v_b_me)∗ log (v_b_me/v_c_me) . . .
− v_b_me + v_c_me − ( (v_b_me − v_c_me) / v_c_me ) ∗ x ) ;

v_sigma_collagen_me =@(x ) . . .
v_sigma_collagen_me_0 (x ) . ∗ ( x<v_a_me ) . . .
+ v_sigma_collagen_me_ac (x ) . ∗ ( x>=v_a_me & x<v_c_me ) . . .
+ v_sigma_collagen_me_cb (x ) . ∗ ( x>=v_c_me & x<=v_b_me ) . . .
+ v_sigma_collagen_me_b (x ) . ∗ ( x>v_b_me) ;

% Col lagen Cauchy s t r e s s e s in a d v e n t i t i a

v_gamma_ad = c_collagen_ratio_ad_me ∗ . . .
c_k_collagen / ( (v_b_ad − v_a_ad) ∗ (v_c_ad − v_a_ad) ) ;

v_delta_ad = c_collagen_ratio_ad_me ∗ . . .
c_k_collagen / ( (v_b_ad − v_a_ad) ∗ (v_b_ad − v_c_ad) ) ;

v_sigma_collagen_ad_0 = @(x ) x ∗ 0 ;
v_sigma_collagen_ad_ac = @(x ) x ∗ v_gamma_ad ∗ 2 ∗ . . .

( ( x + v_a_ad) ∗ log ( x/v_a_ad) + 2∗(v_a_ad − x ) ) ;
v_sigma_collagen_ad_cb = @(x ) x ∗ v_gamma_ad ∗ 2 ∗ . . .

( ( x + v_a_ad)∗ log (v_c_ad/v_a_ad) + v_a_ad − v_c_ad + . . .
( (v_a_ad − v_c_ad) / v_c_ad ) ∗ x ) . . .
− x ∗ v_delta_ad ∗ 2 ∗ ( ( x + v_b_ad)∗ log ( x/v_c_ad) + . . .
v_b_ad + v_c_ad − ( (v_b_ad + v_c_ad) / v_c_ad ) ∗ x ) ;

v_sigma_collagen_ad_b = @(x ) x ∗ v_gamma_ad ∗ 2 ∗ . . .
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( ( x + v_a_ad)∗ log (v_c_ad/v_a_ad) + v_a_ad − v_c_ad + . . .
( (v_a_ad − v_c_ad) / v_c_ad ) ∗ x ) . . .
− x ∗ v_delta_ad ∗ 2 ∗ ( ( x + v_b_ad)∗ log (v_b_ad/v_c_ad) − . . .
v_b_ad + v_c_ad − ( (v_b_ad − v_c_ad) / v_c_ad ) ∗ x ) ;

v_sigma_collagen_ad =@(x ) v_sigma_collagen_ad_0 (x ) . ∗ . . .
( x<v_a_ad ) . . .
+ v_sigma_collagen_ad_ac (x ) . ∗ ( x>=v_a_ad & x<v_c_ad ) . . .
+ v_sigma_collagen_ad_cb (x ) . ∗ ( x>=v_c_ad & x<=v_b_ad ) . . .
+ v_sigma_collagen_ad_b (x ) . ∗ ( x>v_b_ad ) ;

v_sigma_collagen =@(x ) v_sigma_collagen_me (x ) + . . .
v_sigma_collagen_ad (x ) ;

v_pres_prefactor = @(x ) c_thickness_tzero / . . .
( c_radius_tzero ∗ c_lambda_z ∗ x^2 ) ;

v_pressure_ECM = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) + v_sigma_collagen (x ) + v_sigma_muscle_t (x ) ) ;

v_pressure_EC = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) + v_sigma_collagen (x ) ) ;

v_pressure_EM = @(x) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) + v_sigma_muscle_t (x ) ) ;

v_pressure_E = @(x ) v_pres_prefactor ( x ) ∗ ( v_sigma_elastin ( x ) ) ;

v_pressure_e last in = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_elastin ( x ) ;

v_pressure_col lagen = @(x ) v_pres_prefactor ( x ) ∗ . . . .
v_sigma_collagen (x ) ;

v_pressure_muscle = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_muscle_t (x ) ;

v_pressure_muscle_a = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_muscle_a (x ) ;

v_pressure_muscle_p = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_muscle_p (x ) ;

v_pressure_collagen_me = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen_me (x ) ;

v_pressure_collagen_ad = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen_ad (x ) ;

% Store r e s u l t s
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sv_stres s_var_elas t in ( i ) = v_sigma_elastin ( sv_stretch_var ( i ) ) ;
sv_stress_var_col lagen ( i ) = v_sigma_collagen ( sv_stretch_var ( i ) ) ;
sv_stress_var_muscle_a ( i ) = v_sigma_muscle_a ( sv_stretch_var ( i ) ) ;
sv_stress_var_muscle_p ( i ) = v_sigma_muscle_p ( sv_stretch_var ( i ) ) ;
sv_stress_var_muscle_t ( i ) = v_sigma_muscle_t ( sv_stretch_var ( i ) ) ;
sv_stress_var_tota l ( i ) = sv_stres s_var_e las t in ( i ) + . . .

sv_stress_var_col lagen ( i ) + sv_stress_var_muscle_t ( i ) ;

sv_pressure_var_elast in ( i ) = v_pressure_e last in ( sv_stretch_var ( i ) ) ;

sv_pressure_var_elast in ( i ) = max( v_pressure_e las t in ( . . .
sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_col lagen ( i ) =v_pressure_col lagen ( . . .
sv_stretch_var ( i ) ) ;

sv_pressure_var_collagen_me ( i ) =v_pressure_collagen_me ( . . .
sv_stretch_var ( i ) ) ;

sv_pressure_var_collagen_ad ( i ) =v_pressure_collagen_ad ( . . .
sv_stretch_var ( i ) ) ;

sv_pressure_var_muscle_p ( i ) = max( v_pressure_muscle_p ( . . .
sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_muscle_a ( i ) = max( v_pressure_muscle_a ( . . .
sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_muscle ( i ) = sv_pressure_var_muscle_a ( i ) + . . .
sv_pressure_var_muscle_p ( i ) ; . . .

sv_pressure_var ( i ) = sv_pressure_var_elast in ( i ) + . . .
sv_pressure_var_collagen_me ( i ) + . . .

sv_pressure_var_collagen_ad ( i ) + sv_pressure_var_muscle ( i ) ;

end

%% −−−−−−−−−−−−−− PLOTS PRESSURE VS STRETCH

n_zoom = 120 ;

f igure

hold on
plot ( sv_stretch_var ( 1 : n_zoom) , . . .

sv_pressure_var ( 1 : n_zoom) . / ( 10^3 ) , ’ LineWidth ’ , 2 )
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plot ( sv_stretch_var ( 3 3 : n_zoom ) , . . .
sv_pressure_var_elast in ( 3 3 : n_zoom) . / ( 10^3 ) , ’−− ’ , ’ LineWidth ’ , 2 )

plot ( sv_stretch_var ( 6 5 : n_zoom ) , . . .
sv_pressure_var_collagen_me (65 : n_zoom) . / ( 10^3 ) , ’−− ’ , ’ LineWidth ’ , 2 )

plot ( sv_stretch_var ( 6 5 : n_zoom ) , . . .
sv_pressure_var_collagen_ad ( 65 : n_zoom) . / ( 10^3 ) , ’−− ’ , ’ LineWidth ’ , 2 )

plot ( sv_stretch_var ( 4 5 : n_zoom ) , . . .
sv_pressure_var_muscle_p (45 : n_zoom) . / ( 10^3 ) , ’−− ’ , ’ LineWidth ’ , 2 )

plot ( sv_stretch_var ( 1 : n_zoom ) , . . .
sv_pressure_var_muscle_a ( 1 : n_zoom) . / ( 10^3 ) , ’−− ’ , ’ LineWidth ’ , 2 )

plot ( sv_stretch_var ( 1 : n_zoom ) , . . .
sv_pressure_var ( 1 : n_zoom) . / ( 10^3 ) , ’ LineWidth ’ , 2 )

hold o f f
legend ( ’ Total ’ , ’ E l a s t i n ’ , ’ Col lagen ␣media ’ , ’ Col lagen ␣adve ’ , . . .

’ Muscle␣ Pass ive ’ , ’ Muscle␣Active ’ , ’ Locat ion ’ , ’ northwest ’ )

xlabel ( ’ S t r e t ch ’ )
ylabel ( ’ Pressure ␣ (kPa) ’ )
set (gca , ’ f o n t s i z e ’ , 16)

%% −−−−−−−−− PAPER − PRESSURE VS DIAMETER − CONSTITUENTS

n_zoom = 125 ;

sv_diam_var = 2 ∗ c_radius_tzero ∗ 10^3 ∗ sv_stretch_var ;

sv_pressure_var_smc = sv_pressure_var_muscle_a + . . .
sv_pressure_var_muscle_p ;

sv_pressure_var_col l = sv_pressure_var_collagen_me + . . .
sv_pressure_var_collagen_ad ;

sv_pressure_var2 = sv_pressure_var_elast in + . . .
sv_pressure_var_col l + sv_pressure_var_smc ;

f igure

hold on
plot ( sv_diam_var ( 1 : n_zoom ) , . . .

sv_pressure_var2 ( 1 : n_zoom) . / ( 10^3 ) , ’ k ’ , ’ LineWidth ’ , 6 )
plot ( sv_diam_var ( 3 3 : n_zoom ) , . . .
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sv_pressure_var_elast in ( 3 3 : n_zoom) . / ( 10^3 ) , ’ k−− ’ , ’ LineWidth ’ , 3 )
plot ( sv_diam_var ( 6 7 : n_zoom ) , . . .

sv_pressure_var_col l ( 6 7 : n_zoom) . / ( 10^3 ) , ’ k−. ’ , ’ LineWidth ’ , 3 )
plot ( sv_diam_var ( 4 5 : n_zoom ) , . . .

sv_pressure_var_muscle_p (45 : n_zoom) . / ( 10^3 ) , ’ k+’ , ’ LineWidth ’ , 2 )
plot ( sv_diam_var ( 1 : n_zoom ) , . . .

sv_pressure_var_muscle_a ( 1 : n_zoom) . / ( 10^3 ) , ’ k . ’ , ’ LineWidth ’ , 2 )
plot ( sv_diam_var ( 1 : n_zoom ) , . . .

sv_pressure_var2 ( 1 : n_zoom) . / ( 10^3 ) , ’ k ’ , ’ LineWidth ’ , 6 )
l ine ( [ 2 . 9 2 . 9 ] , [ 0 16 ] , ’ c o l o r ’ , ’ red ’ , ’ L ineSty l e ’ , ’−− ’ , ’ LineWidth ’ , 2 )
l ine ( [ 1 2 . 9 ] , [ 1 6 16 ] , ’ c o l o r ’ , ’ red ’ , ’ L ineSty l e ’ , ’−− ’ , ’ LineWidth ’ , 2 )
plot ( 2 . 9 , 16 , ’ ro ’ , ’ LineWidth ’ , 3 )
hold o f f
legend ( ’ Total ’ , ’E ’ , ’C ’ , ’VSMCp’ , ’VSMCa ’ , ’ Locat ion ’ , ’ northwest ’ )

xlabel ( ’ Diameter␣ (mm) ’ )
ylabel ( ’ Pressure ␣ (kPa) ’ )
set (gca , ’ f o n t s i z e ’ , 24)
ylim ( [ 0 6 0 ] )

%% −−−−−−−−−−−−−−−− VASOSPASM −−−−−−−−−−−

c_s t i f f n e s s_ f a c t o r = 1 . 1 ;
c_k_muscle_p = c_s t i f f n e s s_ f a c t o r ∗ c_k_muscle_p ;
c_k_muscle_a = c_s t i f f n e s s_ f a c t o r ∗ c_k_muscle_a ;

%v_rec_col lagen = c_rec_col lagen ;
v_rec_muscle = 0 . 7 2 ; % New recru i tment s t r e t c h f o r SMC

% −−−−−−−−−−−−−−−−−−−−−−−−STRESS FUNCTIONS LOOP −−−−−
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n=215;

sv_stretch_var = zeros (1 , n ) ;
sv_stres s_var_elas t in = zeros (1 , n ) ;
sv_stress_var_col lagen = zeros (1 , n ) ;
sv_stress_var_muscle_a = zeros (1 , n ) ;
sv_stress_var_muscle_p = zeros (1 , n ) ;
sv_stress_var_muscle_t = zeros (1 , n ) ;
sv_stress_var_tota l = zeros (1 , n ) ;
sv_pressure_var = zeros (1 , n ) ;
sv_pressure_var_elast in = zeros (1 , n ) ;
sv_pressure_var_col lagen = zeros (1 , n ) ;
sv_pressure_var_muscle = zeros (1 , n ) ;
sv_pressure_var_muscle_a = zeros (1 , n ) ;
sv_pressure_var_muscle_p = zeros (1 , n ) ;

for i =1:n

% I n i t i a l i z e s t r e t c h

sv_stretch_var ( i ) = 0 .55 + ( i −1)∗0 .01 ;

% Define s t r e s s f unc t i on s

v_lambda_collagen = @(x ) x / v_rec_col lagen ;
v_lambda_muscle = @(x ) x / v_rec_muscle ;

v_ge_collagen = @(x ) ( v_lambda_collagen (x)^2 − 1 . 0 ) / 2 . 0 ;
v_ge_muscle = @(x ) ( v_lambda_muscle ( x)^2 − 1 . 0 ) / 2 . 0 ;
v_ge = @(x ) ( x^2 − 1 ) / 2 ;

v_sigma_elastin = @(x ) x^2 ∗ c_k_elast in ∗ . . .
( 1 − (1 / ( c_lambda_z^2 ∗ x^4 ) ) ) ;

v_sigma_muscle_p = @(x ) v_lambda_muscle ( x)^2 ∗ . . .
c_k_muscle_p ∗ . . .
( 1 − (1 / ( c_lambda_z^2 ∗v_lambda_muscle ( x)^4 ) ) ) ;

v_sigma_muscle_a = @(x ) 0 .952 ∗ v_lambda_muscle ( x ) ∗ . . . .
c_k_muscle_a ∗ ( 1 − . . .
( (c_musc_mean − v_lambda_muscle ( x ) ) / . . .
(c_musc_mean − c_musc_min) )^2 ) ;

v_sigma_muscle_t = @(x ) v_sigma_muscle_a (x ) + . . .
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v_sigma_muscle_p (x ) ;

% Col lagen Cauchy s t r e s s e s in media

v_gamma_me = c_k_collagen / . . .
( (v_b_me − v_a_me) ∗ (v_c_me − v_a_me) ) ;

v_delta_me = c_k_collagen / . . .
( (v_b_me − v_a_me) ∗ (v_b_me − v_c_me) ) ;

v_sigma_collagen_me_0 = @(x ) x ∗ 0 ;
v_sigma_collagen_me_ac = @(x ) x ∗ v_gamma_me ∗ . . .

2 ∗ ( ( x + v_a_me) ∗ log ( x/v_a_me) + 2∗(v_a_me − x ) ) ;
v_sigma_collagen_me_cb = @(x ) x ∗ v_gamma_me ∗ . . .

2 ∗ ( ( x + v_a_me)∗ log (v_c_me/v_a_me) + v_a_me − . . .
v_c_me + ( (v_a_me − v_c_me) / v_c_me ) ∗ x ) . . .
− x ∗ v_delta_me ∗ 2 ∗ ( ( x + v_b_me)∗ log ( x/v_c_me) + . . .
v_b_me + v_c_me − ( (v_b_me + v_c_me) / v_c_me ) ∗ x ) ;

v_sigma_collagen_me_b = @(x ) x ∗ v_gamma_me ∗ 2 ∗ . . .
( ( x + v_a_me)∗ log (v_c_me/v_a_me) + v_a_me − v_c_me + . . .
( (v_a_me − v_c_me) / v_c_me ) ∗ x ) . . .
− x ∗ v_delta_me ∗ 2 ∗ ( ( x + v_b_me)∗ log (v_b_me/v_c_me) . . .
− v_b_me + v_c_me − ( (v_b_me − v_c_me) / v_c_me ) ∗ x ) ;

v_sigma_collagen_me =@(x ) v_sigma_collagen_me_0 (x ) . ∗ . . .
( x<v_a_me ) . . .
+ v_sigma_collagen_me_ac (x ) . ∗ ( x>=v_a_me & x<v_c_me ) . . .
+ v_sigma_collagen_me_cb (x ) . ∗ ( x>=v_c_me & x<=v_b_me ) . . .
+ v_sigma_collagen_me_b (x ) . ∗ ( x>v_b_me) ;

% Col lagen Cauchy s t r e s s e s in a d v e n t i t i a

v_gamma_ad = c_collagen_ratio_ad_me ∗ . . .
c_k_collagen / ( (v_b_ad − v_a_ad) ∗ (v_c_ad − v_a_ad) ) ;

v_delta_ad = c_collagen_ratio_ad_me ∗ . . .
c_k_collagen / ( (v_b_ad − v_a_ad) ∗ (v_b_ad − v_c_ad) ) ;

v_sigma_collagen_ad_0 = @(x ) x ∗ 0 ;
v_sigma_collagen_ad_ac = @(x ) x ∗ v_gamma_ad ∗ 2 ∗ . . .

( ( x + v_a_ad) ∗ log ( x/v_a_ad) + 2∗(v_a_ad − x ) ) ;
v_sigma_collagen_ad_cb = @(x ) x ∗ v_gamma_ad ∗ 2 ∗ . . .

( ( x + v_a_ad)∗ log (v_c_ad/v_a_ad) + v_a_ad − v_c_ad + . . .
( (v_a_ad − v_c_ad) / v_c_ad ) ∗ x ) . . .
− x ∗ v_delta_ad ∗ 2 ∗ ( ( x + v_b_ad)∗ log ( x/v_c_ad) + . . .
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v_b_ad + v_c_ad − ( (v_b_ad + v_c_ad) / v_c_ad ) ∗ x ) ;
v_sigma_collagen_ad_b = @(x ) x ∗ v_gamma_ad ∗ 2 ∗ . . .

( ( x + v_a_ad)∗ log (v_c_ad/v_a_ad) + v_a_ad − v_c_ad + . . .
( (v_a_ad − v_c_ad) / v_c_ad ) ∗ x ) . . .
− x ∗ v_delta_ad ∗ 2 ∗ ( ( x + v_b_ad)∗ log (v_b_ad/v_c_ad) − . . .
v_b_ad + v_c_ad − ( (v_b_ad − v_c_ad) / v_c_ad ) ∗ x ) ;

v_sigma_collagen_ad =@(x ) v_sigma_collagen_ad_0 (x ) . ∗ . . .
( x<v_a_ad ) . . .
+ v_sigma_collagen_ad_ac (x ) . ∗ ( x>=v_a_ad & x<v_c_ad ) . . .
+ v_sigma_collagen_ad_cb (x ) . ∗ ( x>=v_c_ad & x<=v_b_ad ) . . .
+ v_sigma_collagen_ad_b (x ) . ∗ ( x>v_b_ad ) ;

v_sigma_collagen =@(x ) v_sigma_collagen_me (x ) + . . .
v_sigma_collagen_ad (x ) ;

v_pres_prefactor = @(x ) c_thickness_tzero / . . .
( c_radius_tzero ∗ c_lambda_z ∗ x^2 ) ;

v_pressure_ECM = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) + v_sigma_collagen (x ) + . . .
v_sigma_muscle_t (x ) ) ;

v_pressure_EC = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) + v_sigma_collagen (x ) ) ;

v_pressure_EM = @(x) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) + v_sigma_muscle_t (x ) ) ;

v_pressure_CM = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_collagen (x ) + v_sigma_muscle_t (x ) ) ;

v_pressure_E = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_elastin ( x ) ) ;

v_pressure_C = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_collagen (x ) ) ;

v_pressure_M = @(x ) v_pres_prefactor ( x ) ∗ . . .
( v_sigma_muscle_t (x ) ) ;

v_pressure_e last in = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_elastin ( x ) ;

v_pressure_col lagen = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen (x ) ;
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v_pressure_muscle_p = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_muscle_p (x ) ;

v_pressure_muscle_a = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_muscle_a (x ) ;

v_pressure_muscle = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_muscle_t (x ) ;

v_pressure_collagen_me = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen_me (x ) ;

v_pressure_collagen_ad = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen_ad (x ) ;

% Store r e s u l t s

sv_stres s_var_elas t in ( i ) = v_sigma_elastin ( sv_stretch_var ( i ) ) ;
sv_stress_var_col lagen ( i ) = v_sigma_collagen ( sv_stretch_var ( i ) ) ;
sv_stress_var_muscle_a ( i ) = v_sigma_muscle_a ( sv_stretch_var ( i ) ) ;
sv_stress_var_muscle_p ( i ) = v_sigma_muscle_p ( sv_stretch_var ( i ) ) ;
sv_stress_var_muscle_t ( i ) = v_sigma_muscle_t ( sv_stretch_var ( i ) ) ;
sv_stress_var_tota l ( i ) = sv_stres s_var_e las t in ( i ) + . . .

sv_stress_var_col lagen ( i ) + sv_stress_var_muscle_t ( i ) ;

sv_pressure_var_elast in ( i ) = max( . . .
v_pressure_e last in ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_col lagen ( i ) = max( . . .
v_pressure_col lagen ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_muscle_p ( i ) = max( . . .
v_pressure_muscle_p ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_muscle_a ( i ) = max( . . .
v_pressure_muscle_a ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_muscle ( i ) = sv_pressure_var_muscle_a ( i ) + . . .
sv_pressure_var_muscle_p ( i ) ; . . .

sv_pressure_var ( i ) = sv_pressure_var_elast in ( i ) + . . .
sv_pressure_var_col lagen ( i ) + . . .
sv_pressure_var_muscle_p ( i ) + sv_pressure_var_muscle_a ( i ) ;
sv_pressure_var_collagen_me ( i ) = max ( . . .

v_pressure_collagen_me ( sv_stretch_var ( i ) ) , 0 ) ;
sv_pressure_var_collagen_ad ( i ) = max( . . .

v_pressure_collagen_ad ( sv_stretch_var ( i ) ) , 0 ) ;

end
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diameters = [ 1 , 1 . 5 , 2 , 2 . 5 , 3 , 3 . 5 , 4 , 4 . 5 ] ;
f o r c e s_so l 6 = [ 0 . 0 8 97 , 0 .0215 , 0 .0172 , 0 .0141 , 0 .0127 , 0 .0109 , . . .

0 . 0080 , 0 ] ;
f o r c e s_so l 4 = [ 0 . 0 2 02 , 0 .0132 , 0 .0103 , 0 .0089 , 0 .0074 , 0 .0066 , 0 , 0 ] ;
fo rces_capt3 = [ 0 . 0 3 17 , 0 .0178 , 0 .0132 , 0 .0109 , 0 .0042 , 0 , 0 , 0 ] ;
f o rces_trevo420 = [ 0 . 0 2 57 , 0 .0061 , 0 .0031 , 0 .0009 , 0 , 0 , 0 , 0 ] ;

query_stretches = 0 . 5 5 : 0 . 0 1 : 3 ;
query_radi i = c_radius_tzero ∗ 10^3 ∗ query_stretches ;
query_diam = 2 ∗ query_radi i ;

i n t e r p o l a t e_ f o r c e s = @(x ) interp1 ( diameters , x , query_diam , ’ l i n e a r ’ ) ;
i n t e rp_force s_so l6 = in t e r p o l a t e_ f o r c e s ( f o r c e s_so l 6 ) ;
in t e rp_force s_so l4 = in t e r p o l a t e_ f o r c e s ( f o r c e s_so l 4 ) ;
interp_forces_capt3 = in t e r p o l a t e_ f o r c e s ( forces_capt3 ) ;
interp_forces_trevo420 = in t e r po l a t e_ f o r c e s ( fo rce s_trevo420 ) ;

force_to_pressure = @(x ) 10^3 ∗ x . / query_radi i ;
in te rp_pres sure_so l6 = force_to_pressure ( in t e rp_force s_so l6 ) ;
inte rp_pres sure_so l4 = force_to_pressure ( in t e rp_force s_so l4 ) ;
interp_pressure_capt3 = force_to_pressure ( interp_forces_capt3 ) ;
interp_pressure_trevo420 = force_to_pressure ( . . .

interp_forces_trevo420 ) ;

%% −−−−−−−−−− PAPER − PRESSURE VS DIAMETER − CONSTITUENTS

f igure

n_zoom = 115 ;

sv_diam_var = 2 ∗ c_radius_tzero ∗ 10^3 ∗ sv_stretch_var ;

sv_pressure_var_col l = sv_pressure_var_collagen_me + . . .
sv_pressure_var_collagen_ad ;

hold on
plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var ( 1 : n_zoom) . / ( 10^3 ) , ’ k ’ , ’ LineWidth ’ , 6)
plot ( sv_diam_var ( 3 4 : n_zoom ) , . . .
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sv_pressure_var_elast in ( 3 4 : n_zoom) . / ( 10^3 ) , ’ k−− ’ , ’ LineWidth ’ , 3)
plot ( sv_diam_var ( 6 7 : n_zoom ) , . . .

sv_pressure_var_col l ( 6 7 : n_zoom) . / ( 10^3 ) , ’ k−. ’ , ’ LineWidth ’ , 3)
plot ( sv_diam_var ( 9 : n_zoom ) , . . .

sv_pressure_var_muscle_p ( 9 : n_zoom) . / ( 10^3 ) , ’ k+’ , ’ LineWidth ’ , 2)
plot ( sv_diam_var ( 1 : 7 6 ) , . . .

sv_pressure_var_muscle_a ( 1 : 7 6 ) . / ( 1 0^3 ) , ’ k . ’ , ’ LineWidth ’ , 3)
plot ( sv_diam_var ( 1 : n_zoom ) , . . .

sv_pressure_var ( 1 : n_zoom) . / ( 10^3 ) , ’ k ’ , ’ LineWidth ’ , 6)
l ine ( [ 1 . 4 6 1 . 4 6 ] , [ 0 16 ] , ’ c o l o r ’ , ’ red ’ , ’ L ineSty l e ’ , ’−− ’ , ’ LineWidth ’ , 2 )
l ine ( [ 1 1 . 4 6 ] , [ 1 6 16 ] , ’ c o l o r ’ , ’ red ’ , ’ L ineSty l e ’ , ’−− ’ , ’ LineWidth ’ , 2 )
plot ( 1 . 4 6 , 16 , ’ ro ’ , ’ LineWidth ’ , 3 )
hold o f f
legend ( ’ Total ’ , ’E ’ , ’C ’ , ’VSMCp’ , ’VSMCa ’ , ’ Locat ion ’ , ’ northwest ’ )
xlabel ( ’ Diameter␣ (mm) ’ )
ylabel ( ’ Pressure ␣ (kPa) ’ )
ylim ( [ 0 , 6 0 ] )
set (gca , ’ f o n t s i z e ’ , 24)

%% −−−−−−−−− COLLAGEN REMODELLING −−−−−−−−−−−−−−−−−−−−−

c_tissue_stretch_cvs = c_lambda_muscle ∗ v_rec_muscle ;

c_rec_min_vs_me = c_tissue_stretch_cvs / c_att_max_me ;
c_rec_mod_vs_me = c_tissue_stretch_cvs / c_att_mod_me ;
c_rec_max_vs_me = c_tissue_stretch_cvs / c_att_min_me ;

v_a_vs_me = c_rec_min_vs_me ;
v_c_vs_me = c_rec_mod_vs_me ;
v_b_vs_me = c_rec_max_vs_me ;

c_rec_min_vs_ad = c_tissue_stretch_cvs / c_att_max_ad ;
c_rec_mod_vs_ad = c_tissue_stretch_cvs / c_att_mod_ad ;
c_rec_max_vs_ad = c_tissue_stretch_cvs / c_att_min_ad ;

v_a_vs_ad = c_rec_min_vs_ad ;
v_c_vs_ad = c_rec_mod_vs_ad ;
v_b_vs_ad = c_rec_max_vs_ad ;

t_start = 0 ;
t_end = 30 ;
t_step = 0 . 0 1 ;
t = t_start : t_step : t_end ;
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h a l f l i f e = 72 ;
alpha = 1 / h a l f l i f e ;

f =@( t ) exp(−alpha .∗ t ) ;

% Col lagen Cauchy s t r e s s e s in media − VASOSPASM

v_gamma_vs_me = c_k_collagen / . . .
( (v_b_vs_me − v_a_vs_me) ∗ (v_c_vs_me − v_a_vs_me) ) ;

v_delta_vs_me = c_k_collagen / . . .
( (v_b_vs_me − v_a_vs_me) ∗ (v_b_vs_me − v_c_vs_me) ) ;

v_sigma_collagen_vs_me_0 = @(x ) x ∗ 0 ;
v_sigma_collagen_vs_me_ac = @(x ) x ∗ v_gamma_vs_me ∗ 2 ∗ . . .

( ( x + v_a_vs_me) ∗ log ( x/v_a_vs_me) + 2∗(v_a_vs_me − x ) ) ;
v_sigma_collagen_vs_me_cb = @(x ) x ∗ v_gamma_vs_me ∗ 2 ∗ . . .

( ( x + v_a_vs_me)∗ log (v_c_vs_me/v_a_vs_me) + v_a_vs_me − . . .
v_c_vs_me + ( (v_a_vs_me − v_c_vs_me) / v_c_vs_me ) ∗ x ) . . .
− x ∗ v_delta_vs_me ∗ 2 ∗ ( ( x + v_b_vs_me)∗ log ( x/v_c_vs_me) + . . .
v_b_vs_me + v_c_vs_me − ( (v_b_vs_me + v_c_vs_me) / . . .
v_c_vs_me ) ∗ x ) ;

v_sigma_collagen_vs_me_b = @(x ) x ∗ v_gamma_vs_me ∗ 2 ∗ . . .
( ( x + v_a_vs_me)∗ log (v_c_vs_me/v_a_vs_me) + v_a_vs_me − . . .
v_c_vs_me + ( (v_a_vs_me − v_c_vs_me) / v_c_vs_me ) ∗ x ) . . .
− x ∗ v_delta_vs_me ∗ 2 ∗ ( ( x + v_b_vs_me)∗ log (v_b_vs_me / . . .
v_c_vs_me) − v_b_vs_me + v_c_vs_me − ( (v_b_vs_me − v_c_vs_me ) . . .
/ v_c_vs_me ) ∗ x ) ;

v_sigma_collagen_vs_me =@(x ) v_sigma_collagen_vs_me_0 (x ) . ∗ . . .
( x<v_a_vs_me ) . . .
+ v_sigma_collagen_vs_me_ac (x ) . ∗ . . .
( x>=v_a_vs_me & x<v_c_vs_me ) . . .
+ v_sigma_collagen_vs_me_cb (x ) . ∗ . . .
( x>=v_c_vs_me & x<=v_b_vs_me ) . . .
+ v_sigma_collagen_vs_me_b (x ) . ∗ ( x>v_b_vs_me ) ;

% Col lagen Cauchy s t r e s s e s in a d v e n t i t i a − VASOSPASM

v_gamma_vs_ad = c_collagen_ratio_ad_me ∗ c_k_collagen / . . .
( (v_b_vs_ad − v_a_vs_ad) ∗ (v_c_vs_ad − v_a_vs_ad) ) ;

v_delta_vs_ad = c_collagen_ratio_ad_me ∗ c_k_collagen / . . .
( (v_b_vs_ad − v_a_vs_ad) ∗ (v_b_vs_ad − v_c_vs_ad) ) ;
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v_sigma_collagen_vs_ad_0 = @(x ) x ∗ 0 ;
v_sigma_collagen_vs_ad_ac = @(x ) x ∗ v_gamma_vs_ad ∗ 2 ∗ . . .

( ( x + v_a_vs_ad) ∗ log ( x/v_a_vs_ad) + 2∗(v_a_vs_ad − x ) ) ;
v_sigma_collagen_vs_ad_cb = @(x ) x ∗ v_gamma_vs_ad ∗ 2 ∗ . . .

( ( x + v_a_vs_ad)∗ log (v_c_vs_ad/v_a_vs_ad) + v_a_vs_ad − . . .
v_c_vs_ad + ( (v_a_vs_ad − v_c_vs_ad) / v_c_vs_ad ) ∗ x ) . . .
− x ∗ v_delta_vs_ad ∗ 2 ∗ ( ( x + v_b_vs_ad)∗ log ( x/v_c_vs_ad) + . . .
v_b_vs_ad + v_c_vs_ad − ( (v_b_vs_ad + v_c_vs_ad) / v_c_vs_ad ) . . .
∗ x ) ;

v_sigma_collagen_vs_ad_b = @(x ) x ∗ v_gamma_vs_ad ∗ 2 ∗ . . .
( ( x + v_a_vs_ad)∗ log (v_c_vs_ad/v_a_vs_ad) + v_a_vs_ad − . . .
v_c_vs_ad + ( (v_a_vs_ad − v_c_vs_ad) / v_c_vs_ad ) ∗ x ) . . .
− x ∗ v_delta_vs_ad ∗ 2 ∗ ( ( x + v_b_vs_ad ) ∗ . . .
log (v_b_vs_ad/v_c_vs_ad) − v_b_vs_ad + v_c_vs_ad − . . .
( (v_b_vs_ad − v_c_vs_ad) / v_c_vs_ad ) ∗ x ) ;

v_sigma_collagen_vs_ad =@(x ) v_sigma_collagen_vs_ad_0 (x ) . ∗ . . .
( x<v_a_vs_ad ) . . .
+ v_sigma_collagen_vs_ad_ac (x ) . ∗ . . .
( x>=v_a_vs_ad & x<v_c_vs_ad ) . . .
+ v_sigma_collagen_vs_ad_cb (x ) . ∗ . . .
( x>=v_c_vs_ad & x<=v_b_vs_ad ) . . .
+ v_sigma_collagen_vs_ad_b (x ) . ∗ ( x>v_b_vs_ad ) ;

v_sigma_collagen_healthy =@(x ) v_sigma_collagen_me (x ) + . . .
v_sigma_collagen_ad (x ) ;

v_sigma_collagen_vs =@(x ) v_sigma_collagen_vs_me (x ) + . . .
v_sigma_collagen_vs_ad (x ) ;

v_pressure_collagen_vs_me = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen_vs_me (x ) ;

v_pressure_collagen_vs_ad = @(x ) v_pres_prefactor ( x ) ∗ . . .
v_sigma_collagen_vs_ad (x ) ;

sv_pressure_var_collagen_vs_me = zeros (1 , n ) ;
sv_pressure_var_collagen_vs_ad = zeros (1 , n ) ;
sv_pressure_var_coll_vs = zeros (1 , n ) ;
sv_pressure_col l_0 = zeros (1 , n ) ;
sv_pressure_col l_5 = zeros (1 , n ) ;
sv_pressure_col l_10 = zeros (1 , n ) ;
sv_pressure_col l_15 = zeros (1 , n ) ;
sv_pressure_col l_20 = zeros (1 , n ) ;
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sv_pressure_col l_25 = zeros (1 , n ) ;
sv_pressure_col l_30 = zeros (1 , n ) ;

for i =1:n

sv_stretch_var ( i ) = 0 .55 + ( i −1)∗0 .01 ;

sv_pressure_var_collagen_vs_me ( i ) = max( . . .
v_pressure_collagen_vs_me ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_collagen_vs_ad ( i ) = max( . . .
v_pressure_collagen_vs_ad ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_coll_vs ( i )= sv_pressure_var_collagen_vs_me ( i ) . . .
+ sv_pressure_var_collagen_vs_ad ( i ) ;

sv_pressure_col l_0 ( i ) = f (0 ) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 0 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_5 ( i ) = f (5 ) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 5 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_10 ( i ) = f (10) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 1 0 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_15 ( i ) = f (15) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 1 5 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_20 ( i ) = f (20) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 2 0 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_25 ( i ) = f (25) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 2 5 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_30 ( i ) = f (30) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f ( 3 0 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

end

%% −−−−− REMODELLING VS TIME −−−−−−−−−−−−−−−− MASS VS TIME −−−−−−−−−−−−−−−−−−

n_zoom=125;
n_start=20;

f igure
hold on
plot ( sv_diam_var ( n_start : n_zoom ) , . . .

sv_pressure_col l_5 ( n_start : n_zoom) . / ( 10^3 ) , ’ k ’ , ’ LineWidth ’ , 2)
plot ( sv_diam_var ( n_start : n_zoom ) , . . .
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sv_pressure_col l_10 ( n_start : n_zoom) . / (10^3 ) , ’ r ’ , ’ LineWidth ’ , 2)
plot ( sv_diam_var ( n_start : n_zoom ) , . . .

sv_pressure_col l_15 ( n_start : n_zoom) . / (10^3 ) , ’ r−. ’ , ’ LineWidth ’ , 2)
plot ( sv_diam_var ( n_start : n_zoom ) , . . .

sv_pressure_col l_20 ( n_start : n_zoom) . / (10^3 ) , ’ k−− ’ , ’ LineWidth ’ , 2)
plot ( sv_diam_var ( n_start : n_zoom ) , . . .

sv_pressure_col l_25 ( n_start : n_zoom) . / (10^3 ) , ’m’ , ’ LineWidth ’ , 2)
plot ( sv_diam_var ( n_start : n_zoom ) , . . .

sv_pressure_col l_30 ( n_start : n_zoom) . / (10^3 ) , ’ k−. ’ , ’ LineWidth ’ , 2)
hold o f f
yl im ( [ 0 60 ] )
xlabel ( ’ Diameter ’ )
ylabel ( ’ Col lagen ␣ pr e s su r e ␣ con t r i bu t i on ’ )
legend ( ’ t=5 ’ , ’ t=10 ’ , ’ t=15 ’ , ’ t=20 ’ , ’ t=25 ’ , ’ t=30 ’ , ’ Locat ion ’ , ’ northwest ’ )
set (gca , ’ f o n t s i z e ’ , 24)

f igure
hold on
plot ( t , f ( t ) , ’ k ’ , ’ LineWidth ’ , 2)
plot ( t ,1− f ( t ) , ’ k−− ’ , ’ LineWidth ’ , 2 )
hold o f f
xlabel ( ’Time␣ ( days ) ’ )
ylabel ( ’Mass␣ proport ion ’ )
legend ( ’Old␣ co l l a g en ’ , ’New␣ co l l a g en ’ )
set (gca , ’ f o n t s i z e ’ , 24)

saveas ( gcf , ’ 1dmodel_colremod_massvstime . png ’ ) ;

%% −−− DAY 7 REMODELLING FOR DIFFERENT HALFLIVES −−−−−

f h l =@(x ) exp(−7/x ) ;

sv_pressure_var_collagen_vs_me = zeros (1 , n ) ;
sv_pressure_var_collagen_vs_ad = zeros (1 , n ) ;
sv_pressure_var_coll_vs = zeros (1 , n ) ;
sv_pressure_col l_hl5 = zeros (1 , n ) ;
sv_pressure_col l_hl10 = zeros (1 , n ) ;
sv_pressure_col l_hl15 = zeros (1 , n ) ;
sv_pressure_col l_hl30 = zeros (1 , n ) ;
sv_pressure_col l_hl45 = zeros (1 , n ) ;
sv_pressure_col l_hl60 = zeros (1 , n ) ;
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sv_pressure_col l_hl72 = zeros (1 , n ) ;

sv_pressure_var_tot_hl5 = zeros (1 , n ) ;
sv_pressure_var_tot_hl10 = zeros (1 , n ) ;
sv_pressure_var_tot_hl15 = zeros (1 , n ) ;
sv_pressure_var_tot_hl30 = zeros (1 , n ) ;
sv_pressure_var_tot_hl45 = zeros (1 , n ) ;
sv_pressure_var_tot_hl60 = zeros (1 , n ) ;
sv_pressure_var_tot_hl72 = zeros (1 , n ) ;

sv_pressure_var_part = sv_pressure_var_elast in + . . .
sv_pressure_var_muscle_a + sv_pressure_var_muscle_p ;

for i =1:n

sv_stretch_var ( i ) = 0 .55 + ( i −1)∗0 .01 ;

sv_pressure_var_collagen_vs_me ( i ) = max( . . .
v_pressure_collagen_vs_me ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_collagen_vs_ad ( i ) = max( . . .
v_pressure_collagen_vs_ad ( sv_stretch_var ( i ) ) , 0 ) ;

sv_pressure_var_coll_vs ( i ) = sv_pressure_var_collagen_vs_me ( i ) . . .
+ sv_pressure_var_collagen_vs_ad ( i ) ;

sv_pressure_col l_hl5 ( i ) = f h l (5 ) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 5 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_hl10 ( i ) = f h l (10) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 10 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_hl15 ( i ) = f h l (15) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 15 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_hl30 ( i ) = f h l (30) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 30 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_hl45 ( i ) = f h l (45) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 45 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_hl60 ( i ) = f h l (60) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 60 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_col l_hl72 ( i ) = f h l (72) ∗ sv_pressure_var_col l ( i ) + . . .
(1− f h l ( 72 ) ) ∗ sv_pressure_var_coll_vs ( i ) ;

sv_pressure_var_tot_hl5 ( i ) = sv_pressure_var_part ( i ) + . . .
sv_pressure_col l_hl5 ( i ) ;

sv_pressure_var_tot_hl10 ( i ) = sv_pressure_var_part ( i ) + . . .
sv_pressure_col l_hl10 ( i ) ;
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sv_pressure_var_tot_hl15 ( i ) = sv_pressure_var_part ( i ) + . . .
sv_pressure_col l_hl15 ( i ) ;

sv_pressure_var_tot_hl30 ( i ) = sv_pressure_var_part ( i ) + . . .
sv_pressure_col l_hl30 ( i ) ;

sv_pressure_var_tot_hl45 ( i ) = sv_pressure_var_part ( i ) + . . .
sv_pressure_col l_hl45 ( i ) ;

sv_pressure_var_tot_hl60 ( i ) = sv_pressure_var_part ( i ) + . . .
sv_pressure_col l_hl60 ( i ) ;

sv_pressure_var_tot_hl72 ( i ) = sv_pressure_var_part ( i ) + . . .
s . v_pressure_col l_hl72 ( i ) ;

end

figure

n_zoom = 115 ;
sv_diam_var = 2 ∗ c_radius_tzero ∗ 10^3 ∗ sv_stretch_var ;
sv_pressure_var_col l = sv_pressure_var_collagen_me + . . .

sv_pressure_var_collagen_ad ;

hold on

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl5 ( 1 : n_zoom) . / ( 10^3 ) , ’ k−− ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl10 ( 1 : n_zoom) . / ( 10^3 ) , ’ k−. ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl15 ( 1 : n_zoom) . / ( 10^3 ) , ’ k . ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl30 ( 1 : n_zoom) . / ( 10^3 ) , ’b ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl45 ( 1 : n_zoom) . / ( 10^3 ) , ’b−− ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl60 ( 1 : n_zoom) . / ( 10^3 ) , ’b−. ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var_tot_hl72 ( 1 : n_zoom) . / ( 10^3 ) , ’b . ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom ) , . . .
sv_pressure_var ( 1 : n_zoom) . / ( 10^3 ) , ’ k ’ , ’ LineWidth ’ , 2)

plot ( sv_diam_var ( 1 : n_zoom) ,16+ interp_pres sure_so l6 ( 1 : n_zoom ) , . . .
’m’ , ’ LineWidth ’ , 4)
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l ine ( [ 1 . 4 6 1 . 4 6 ] , [ 0 16 ] , ’ c o l o r ’ , ’ red ’ , ’ L ineSty l e ’ , ’−− ’ , ’ LineWidth ’ , 2 )
l ine ( [ 1 1 . 4 6 ] , [ 1 6 16 ] , ’ c o l o r ’ , ’ red ’ , ’ L ineSty l e ’ , ’−− ’ , ’ LineWidth ’ , 2 )
plot ( 1 . 4 6 , 16 , ’ ro ’ , ’ LineWidth ’ , 3 )

l ine ( [ 2 . 9 6 2 . 9 6 ] , [ 0 60 ] , ’ c o l o r ’ , ’ red ’ , ’ LineWidth ’ , 6)

hold o f f
legend ( ’HL␣=␣5␣days ’ , ’HL␣=␣10␣days ’ , ’HL␣=␣15␣days ’ , ’HL␣=␣30␣days ’ , . . .

’HL␣=␣45␣days ’ , ’HL␣=␣60␣days ’ , ’HL␣=␣72␣days ’ , ’ no␣ remode l l ing ’ , . . .
’ S o l i t a i r e ␣6 ’ , ’ Locat ion ’ , ’ northwest ’ )

xlabel ( ’ Diameter␣ (mm) ’ )
ylabel ( ’ Pressure ␣ (kPa) ’ )
ylim ( [ 0 , 6 0 ] )
set (gca , ’ f o n t s i z e ’ , 16)

saveas ( gcf , ’ 1 dmodel_colremod_stenteval . png ’ ) ;



Appendix B

The following are subroutines that constitute key command sequences in the finite
element framework presented in Chapter3 and applied to cerebral vasospasm in Chapter
4. The following subroutines are reported:

• cacgmodel.f is the main subroutine that calls the material models for each
constituents and computes the stresses;

• umacr6.f contains several subroutines governing the evolution of the tissue,
such as collagen and VSMC remodelling, increase in active stress response and
damage. Subroutines in this file are called from the input file by command gmac
followed by the four-lettered label of the desired subroutine;

• activestressd.f, activecircumfdam.f, fiberremdistdam.f and fibdistdam.f
relate to the material models of VSMCs and collagen and compute the first and
second derivative of the SEDF in the appropriate material directions.

The following is the code contained in cacgmodel.f

c Editor : Thomas S .E. Er iksson

subroutine cacgmodel (F , f inv , jacc , ud , l , h1 , nh , s ig , dd , isw )

c ∗ ∗ F E A P ∗ ∗ A Fin i t e Element Ana lys i s Program

c . . . . Copyright ( c ) 1984−2010: Regents o f the Un ive r s i ty o f Ca l i f o r n i a
c All r i g h t s r e s e rved
c−−−−−[−−.−−−−+−−−−.−−−−+−−−−.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]
c Mod i f i ca t i on log Date (dd/mm/year )
c Or i g i na l v e r s i on 19/04/2013
c−−−−−[−−.−−−−+−−−−.−−−−+−−−−.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]
c Purpose : User Cons t i tu t i v e Model (AFCG)
c A r t e r i a l Fiber Composite Growth model
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c Input :
c F(∗ ) − Current s t r a i n s at po int ( smal l deformation )
c − Deformation grad i en t at po int ( f i n i t e deformation )
c f i n v (∗ ) − Inve r s e o f deformat ion grad i ent ( f i n i t e deformation )
c j a c c − Trace o f s t r a i n at po int
c − Determinant o f deformation grad i ent
c ud (∗ ) − User mate r i a l parameters (nud)
c l − Current quadrature po int number

c Output :
c s i g (∗ ) − S t r e s s e s at po int .
c N.B. 1−d models use only s i g (1 )
c dd (6 ,∗ ) − Current mate r i a l tangent moduli
c N.B. 1−d models use only dd (1 , 1 ) and dd (2 , 1 )
c−−−−−[−−.−−−−+−−−−.−−−−+−−−−.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]

implicit none

integer l , isw , nh
real ∗8 F(3 , 3 ) , f i n v (3 , 3 ) , jacc , ud (∗ ) , s i g ( 10 ) , dd (6 , 6 )

c Model parameters
real ∗8 h1 (nh)
real ∗8 jm13 , jm12 ! J^{−1/3} modi f ied jacob ian
real ∗8 invdet ! J^{−1} inv e r s e jacob ian
real ∗8 pdgr (3 ) ! growth in p r i n c i p a l d i r e c t i o n s

c real ∗8 Ft (3 , 3 ) ! Modi f ied deformation g rad i en t F∗J^{−1/3}
real ∗8 Ft (3 , 3 ) ! Transpose o f deformation g rad i en t
real ∗8 Fmod(3 , 3 ) ! Modi f ied ( i s o c h o r i c ) deformation g rad i en t
real ∗8 Fmodt (3 , 3 ) ! t ranspose o f modi f ied ( i s o c h o r i c ) deformation g rad i en t
real ∗8 det fg , d e t l l ! determinant o f growth deformation g rad i en t
real ∗8 Fg (3 , 3 )

c real ∗8 invFg (3 , 3 )
real ∗8 rCG(3 , 3 ) ! r i g h t Cauchy−Green tensor
real ∗8 lCG(3 , 3 ) ! l e f t Cauchy−Green tensor
real ∗8 tau_f (6 ) ! K i r cho f f s t r e s s , f i b e r
real ∗8 tau_ff ! K i r cho f f s t r e s s , in f i b e r
real ∗8 tau_e (6) ! K i r cho f f s t r e s s , e l a s t i n
real ∗8 tau_gm(6) ! K i r cho f f s t r e s s , ground matrix
real ∗8 t au c i r
real ∗8 dd_ma(6 , 6 )
real ∗8 dd_mp(6 , 6 )
real ∗8 tau_ma(6)
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real ∗8 tau_mp(6)
real ∗8 l1 , l2 , l 3
real ∗8 kt , kmp, dmd
real ∗8 dd_f (6 , 6 ) ! Tangent moduli , f i b e r
real ∗8 dd_e (6 , 6 ) ! Tangent moduli , e l a s t i n
real ∗8 dd_gm(6 ,6 ) ! Tangent moduli , ground matrix
real ∗8 be (6 ) ! Le f t Cauchy−Green tensor
real ∗8 anl (3 ) ! Fiber vec tor , Lagrangian
real ∗8 n i ( 3 ) , n i i ( 3 ) , nni (3 ) ! Normal vec tor , in t e rmed ia t e
real ∗8 nn (3 , 3 ) ! Normal t ensor product , in t e rmed ia t e
real ∗8 ani ( 3 , 2 ) ! Fiber vec tor , in t e rmed ia t e
real ∗8 ane (3 ) ! Fiber vec tor , Eu ler ian
real ∗8 FDTN( ne l ) ,FDTG
real ∗8 vhat
real ∗8 am(3)
real ∗8 bm(3)
real ∗8 I4mh
real ∗8 I4m_r0
real ∗8 I4 t
real ∗8 norm , xd i f f , y d i f f , z d i f f
real ∗8 test_colmod
integer i , j , k , f f , nd irv ! Counters
integer cnp ! C l o s e s t e lement node to quadrature po in t
integer c lnode ! C l o s e s t node number to quadrature po in t
integer neld ! Number o f e lements wi th d i r e c t i o n v e c t o r s
integer nnum( ne l )
integer e ln
integer i soan , e l i s o ! f l a g : 0 − no growth ; 1 − i s o t r o p i c growth ; 2 − t r an s v e r s e i s o t r o p i c ( in−p lane ) ; 3 − t r . i s o ( in−t h i c kn e s s )
log ica l i s o g r ! f l a g : t rue − i s o t r o p i c growth ; f a l s e − an i s o t r o p i c growth

c Include header f i l e , g ene ra l in FEAP
include ’ e l da ta . h ’
include ’ i o f i l e . h ’
include ’ pconstant . h ’
include ’ po in t e r . h ’
include ’ comblk . h ’
include ’ sdata . h ’
include ’ cdata . h ’
include ’ f l u c o . h ’
include ’ t e l n . h ’
include ’ tdata . h ’
include ’ pfeapb . h ’
include ’ e l c o o r . h ’
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c include ’ de fgrd . h ’
c Include header f i l e s , problem s p e c i f i c
c include ’ grow . h ’

include ’ grup . h ’
include ’ gpcoord . h ’
include ’ umac1 . h ’
include ’ upar . h ’
include ’ vo lg . h ’
include ’ afcgparam . h ’
include ’ qudshp . h ’
include ’ f i b s t r . h ’
include ’ vsmc . h ’
include ’ damage . h ’

C i f ( hr (up ( 5 ) ) . eq . 0 ) then
C ca l l a s spo in t ( hr (up ( 5 ) ) , nhex ∗3∗8)
C ca l l a s spo in t ( hr (up ( 6 ) ) , nhex ∗3∗8)
C endif

i f ( nvolu ( l , n ) .EQ. 0 . 0 d0 ) then
nvolu ( l , n ) = 1 .0 d0

endif
vhat = nvolu ( l , n )
i f ( j a c c .EQ. 0 . 0 d0 ) then

WRITE(∗ ,∗ ) ’ oops ! ’
endif
invdet = nvolu ( l , n )/ j a c c ! i n v e r s e o f modi f ied J^e
jm13 = invdet ∗∗( one3 ) !

c Ret r i eve and s t o r e the gauss po int coo rd ina t e s
do i = 1 ,3

gpc l ( i , l , n ) = x r e f ( i )
C ca l l a s spo in t ( hr (up(5)+(n−1)∗8∗3+( l −1)∗3+ i ) , x r e f ( i ) )

gpce ( i , l , n ) = xcur ( i )
C ca l l a s spo in t ( hr (up(6)+(n−1)∗8∗3+( l −1)∗3+ i ) , xcur ( i ) )

enddo

i f ( f s g t r u e ) then
C INTERPOLATE FD TO GPs
c Retr i eve the element node numbers

do i = 1 , ne l
nnum( i ) = mr(np (33) + i−1 + nen1 ∗(n−1))

enddo
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c Use g l oba l node number i f p a r a l e l l run
i f ( pfeap_on ) then

do i = 1 , ne l
nnum( i ) = mr(np (244) + nnum( i ) − 1 )

enddo
endif

c Ret r i eve FD f o r each node
do i = 1 , ne l

c FDTN( i ) = hr (up(7)+nnum( i ) )
FDTN( i ) = FDND(nnum( i ) )

enddo
c Ret re ive FD i n t e r p o l a t i o n at quadrature po int

FDTG = 0.0 d0
do i = 1 , ne l

FDTG = FDTG+shp3 (4 , i , l )∗FDTN( i )
enddo

c ca l l a s spo in t ( hr (up(8)+(n−1)∗8+ l ) ,FDTN)
fdgp ( l , n ) = FDTG

endif ! f s g t r u e

c Compute Fg
c Compute r i g h t and l e f t Cauchy−Green tenso r

c I n i t i a l i z e a r rays
ca l l pzero ( tau_e , 6 ) ! S t r e s s E l a s t i n
ca l l pzero (tau_gm , 6 ) ! S t r e s s Ground matrix
ca l l pzero (tau_ma , 6 ) ! S t r e s s Muscle Act ive
ca l l pzero (tau_mp , 6 ) ! S t r e s s Muscle Pass ive
ca l l pzero (dd_e , 3 6 ) ! Tangent s t i f f n e s s matrix E l a s t i n
ca l l pzero (dd_gm,36 ) ! Tangent s t i f f n e s s matrix Ground matrix
ca l l pzero (dd_ma, 3 6 ) ! Tangent s t i f f n e s s matrix Muscle Act ive
ca l l pzero (dd_mp, 36 ) ! Tangent s t i f f n e s s matrix Muscle Pass ive
ca l l pzero (Fg , 9 ) ! Growth tensor

c Convert quadrature po int to c l o s e s t node in element
ca l l gp2np ( l , cnp )

c Find c l o s e s t node to quadrature po int
c lnode = mr(np (33) + cnp−1 + nen1 ∗(n−1))

c Use g l oba l node number i f p a r a l e l l run
i f ( pfeap_on ) then
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c lnode = mr(np (244) + clnode − 1 )
endif

c Ret r i eve number o f f i b e r f am i l i e s
ndirv = nint ( hr (up ( 2 ) ) )

c Loop over number o f f i b e r f am i l i e s
do f f = 1 , ndirv

c Ret r i eve f i b e r ang l e s
i f ( d i r e l ) then

c I f d i rv i s used ( d i r e c t i o n vec to r s on element c en t e r s )
do j = 1 ,3

anl ( j ) = hr (up(2)+(n−1)∗3∗ ndirv+ ( f f −1)∗3 + j )
enddo

endif
i f ( d i rno ) then

c I f ndi r i s used ( d i r e c t i o n ve c t o r s on nodes )
ca l l prvec ( l , ndirv , f f , an l ) !Can ’ t be used wi th user ,21 element

c do j = 1 ,3
c anl ( j ) = hr (up(2)+( clnode −1)∗3∗ ndirv+( f f −1)∗3 + j )
c enddo

endif
c Store d i r e c t i o n ve c to r s in 2 columns

do i = 1 ,3
ani ( i , f f ) = anl ( i )

enddo
enddo
i s oan = volg (1 )
e l i s o = volg (2 )
i f ( ( i soan . eq . 2) . or . ( i s oan . eq . 3 ) ) then

c Cross product to f i nd normal
i f ( ndirv . eq . 1) then

ni (1 ) = 0 .0 d0
n i (2 ) = 0 .0 d0
n i (3 ) = 1 .0 d0

else
ni (1 ) = ani (2 , 1 )∗ ani (3 ,2)− ani (3 , 1 )∗ ani ( 2 , 2 )
n i (2 ) = −(ani (1 , 1 )∗ ani (3 ,2)− ani (3 , 1 )∗ ani ( 1 , 2 ) )
n i (3 ) = ani (1 , 1 )∗ ani (2 ,2)− ani (2 , 1 )∗ ani ( 1 , 2 )

endif
ca l l norma l i z evec to r ( ni , nni )

do i = 1 ,3
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do j = 1 ,3
nn( i , j ) = nni ( i )∗ nni ( j )

enddo
enddo
endif ! c a l c u l a t e normal

do i =1,3
Fg( i , i ) = 1 .0 d0

enddo
i f ( ( i soan .EQ. 1) .OR. ( e l i s o .EQ. 1 ) ) then

! i s o t r o p i c growth
vhat = vhat∗∗(−one3 )
do i =1,3

Fg( i , i ) = vhat
enddo

else i f ( ( i soan .EQ. 2) .OR. ( e l i s o .EQ. 2 ) ) then
! t r a n s v e r s e l y i s o t r o p i c ( in−p lane )
vhat = vhat ∗∗one2
do i = 1 ,3

Fg( i , i ) = vhat
enddo
do i = 1 ,3
do j = 1 ,3

Fg( i , j ) = Fg( i , j ) + nn( i , j )∗ ( 1 . 0 d0−vhat )
enddo

enddo
ca l l i nv e r t 3 (Fg , de t f g )

else i f ( ( i soan .EQ. 3) .OR. ( e l i s o .EQ. 3 ) ) then
! t r a n s v e r s e l y i s o t r o p i c ( in−t h i c kn e s s )

c do i = 1 ,3
c Fg( i , i ) = Fg( i , i ) + 1 .0 d0
c enddo

do i = 1 ,3
do j = 1 ,3
Fg( i , j ) = Fg( i , j ) − nn( i , j )∗ ( 1 . 0 d0−vhat )
enddo

enddo
ca l l i nv e r t 3 (Fg , de t f g )

c else
c WRITE(∗ ,∗ ) ’ Volumetric ␣growth␣model␣not␣ supported ! ’

else i f ( ( i soan .EQ. 4) .OR. ( e l i s o .EQ. 4 ) ) then
! t r a n s v e r s e l y i s o t r o p i c ( cross−s e c t i on )

vhat = vhat ∗∗one2
Fg (1 , 1 ) = vhat
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Fg (2 , 2 ) = vhat
ca l l i nv e r t 3 (Fg , de t f g )

else i f ( ( i soan .EQ. 5) .OR. ( e l i s o .EQ. 5 ) ) then
! t r a n s v e r s e l y i s o t r o p i c ( a x i a l growth )

Fg (3 , 3 ) = vhat
ca l l i nv e r t 3 (Fg , de t f g )

end i f

c ca l l i nv e r t 3 (Fg , de t f g )
ca l l pzero (Fmod, 9 )

c ca l l matrixmult (F , Fg ,Fmod)
do i =1,3

do j =1,3
do k=1,3

Fmod( i , j ) = Fmod( i , j ) + F( i , k )∗Fg(k , j )
enddo
Fmod( i , j ) = Fmod( i , j )∗ jm13

enddo
enddo

c write (∗ ,∗ ) Fmod
c lCG i s now modi f i ed ( i s o c h o r i c ) lCg !

ca l l matr ixt ranspose (Fmod, Fmodt)
ca l l matrixmult (Fmod, Fmodt , lCG)

c Get l e f t Cauchy tenso r in Voigt notat ion
ca l l vo i g t ( lCG , be )

c Loop over number o f f i b e r f am i l i e s
do f f = 1 , ndirv

c I n i t i a l i z e f i b e r c on t r i bu t i on s
ca l l pzero ( tau_f , 6 )
ca l l pzero (dd_f , 3 6 )

c Compute d i r e c t i o n ve c t o r s in e u l e r i a n d e s c r i p t i o n
do i = 1 ,3

ane ( i ) = 0 .0 d0
enddo

do i= 1 ,3
do j= 1 ,3

ane ( i ) = ane ( i ) + Fmod( i , j )∗ ani ( j , f f )
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enddo
enddo

c Number o f ELement with D i r e c t i on ve c t o r s
ne ld = nint ( hr (up ( 4 ) ) )

c Store Eule r ian f i b e r ang l e s
do j = 1 ,3
i f ( d i r e l ) then

c I f d i rv i s used ( d i rv on element )
hr (up(3)+(n−1)∗3∗ ndirv+( f f −1)∗3+ j ) = ane ( j )

endif
i f ( d i rno ) then

c I f ndi r i s used ( d i rv on nodes )
hr (up(3)+( clnode −1)∗3∗ ndirv+( f f −1)∗3 + j ) = ane ( j )

endif
enddo

c Ca l cu la te K i r cho f f s t r e s s e s and tangent
ca l l f iberremdistdam ( f f , l , ud ( 4 ) , ane , dam_f , tau_f , tau_ff , dd_f )

s i g f f ( f f , l , n)=tau_ff
c Sum up f i b e r c on t r i bu t i on s

do i = 1 ,6
s i g ( i ) = s i g ( i ) + ndensc ( f f , l , n )∗ tau_f ( i )
do j = 1 ,6

dd( i , j ) = dd( i , j ) + ndensc ( f f , l , n )∗dd_f ( i , j )
enddo

enddo
enddo

c Compute con t r i bu t i on to s t r e s s e s and e l a s t i c i t y due to e l a s t i n
c Only do t h i s f o r mate r i a l 1 (media ) . [ma s to r ed in e lda ta . h ]
c AG 07 . 1 2 . 2 0 15 : no need to pass j a c c ! be i s a l r eady modi f ied

i f (ma. eq . 1 ) then
ca l l neohookdam(ud (3 ) , be , dam_el , tau_e , dd_e)

c ca l l fungmodel (ud (3 ) , ud (3)/10 , be , tau_e , dd_e)
c E l a s t i n degradat ion

do i = 1 ,6
tau_e ( i ) = ndense ( l , n )∗ tau_e ( i )
do j = 1 ,6
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dd_e( i , j ) = ndense ( l , n )∗dd_e( i , j )
enddo

enddo
endif

c Comp. contr . to s t r e s s e s and e l a s t i c i t y due to ground matrix
c AG 07 . 1 2 . 2 0 15 : no need to pass j a c c ! be i s a l r eady modi f ied

ca l l neohookdam(ud (2 ) , be ,dam_gm, tau_gm ,dd_gm)
c ca l l fungmodel (ud (2 ) , ud (3)/10 , be , tau_gm ,dd_gm)

c Ground matrix re sponse to e l a s t i n degradat ion
do i = 1 ,6

tau_gm( i ) = ndensg ( l , n )∗tau_gm( i )
do j = 1 ,6

c dd_e( i , j ) = f e ( l , n )∗dd_e( i , j )
dd_gm( i , j ) = ndensg ( l , n )∗dd_gm( i , j )

enddo
enddo

c Comp. contr . to s t r e s s e s and e l a s t i c i t y due to pas s i v e muscle
c AG 07 . 1 2 . 2 0 15 : no need to pass j a c c ! be i s a l r eady modi f ied

kmp=kp( l , n )
ca l l neohookdam(ud (6 ) , be ,dam_mp, tau_mp ,dd_mp)

c Sum up e l a s t i n and ground matrix con t r i bu t i on
do i = 1 ,6

s i g ( i ) = s i g ( i ) + tau_e ( i ) + tau_gm( i ) + tau_mp( i )
do j = 1 ,6

dd( i , j ) = dd( i , j ) + dd_e( i , j ) + dd_gm( i , j ) + dd_mp( i , j )
enddo

enddo

c Compute con t r i bu t i on to a c t i v e muscle s t r e s s
c am = s t ru c tu r e t enso r
c bm = F∗am

xd i f f = ( gpc l (1 , 1 , n ) − gpc l (1 , 2 , n ) )
y d i f f = ( gpc l (2 , 1 , n ) − gpc l (2 , 2 , n ) )
norm = SQRT( x d i f f ∗ x d i f f + y d i f f ∗ y d i f f )
am(1) = x d i f f / norm
am(2) = y d i f f / norm
am(3) = 0 .0 d0
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c am(1) = ani (1 , 1 )/SQRT( ani (1 , 1 )∗ ani (1 ,1)+ ani (2 , 1 )∗ ani ( 2 , 1 ) )
c am(2) = ani (2 , 1 )/SQRT( ani (1 , 1 )∗ ani (1 ,1)+ ani (2 , 1 )∗ ani ( 2 , 1 ) )
c am(3) = 0 .0 d0
c am = (/ 1 .0 d0 , 0 . 0 d0 , 0 . 0 d0 /)

do i = 1 ,3
bm( i ) = 0 .0 d0

enddo
do i= 1 ,3

do j= 1 ,3
bm( i ) = bm( i ) + Fmod( i , j )∗am( j )

enddo
enddo

l 1 = 0 .4 d0
l 2 = 1 .1 d0
l 3 = 1 .8 d0
I4 t = I4m( l , n )
kt = ka ( l , n )
dmd = dMa( l , n )
ca l l a c t i v e s t r e s s d ( l , ud (5 ) , l1 , l2 , l3 ,bm,dmd, kt , tau_ma , tauc i r ,dd_Ma)
sigvsmc ( l , n ) = t au c i r

c Add ac t i v e con t r i bu t i on to prev ious ones
do i = 1 ,6

s i g ( i ) = s i g ( i ) + tau_Ma( i )
do j = 1 ,6

dd( i , j ) = dd( i , j ) + dd_Ma( i , j )
enddo

enddo

c Turn Ki rchho f f s t r e s s i n to Cauchy s t r e s s
c invdet = 1 .0/ j a c c
! i n vde t = nvolu ( l , n)/ jacc

do i = 1 ,6
s i g ( i ) = s i g ( i )∗ invdet
do j = 1 ,6

dd( j , i ) = dd( j , i )∗ invdet
end do
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end do

c Add vo lumetr i c component
ca l l a f cgvo lumet r i c (ud , l , jacc , s i g , dd )

end
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The following is the code contained in umacr6.f

subroutine umacr6 ( l c t , c t l )

c ∗ ∗ F E A P ∗ ∗ A Fin i t e Element Ana lys i s Program

c . . . . Copyright ( c ) 1984−2010: Regents o f the Un ive r s i ty o f Ca l i f o r n i a
c All r i g h t s r e s e rved

c−−−−−[−−.−−−−+−−−−.−−−−+−−−−.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]
c Mod i f i ca t i on log Date (dd/mm/year )
c Or i g i na l v e r s i on 01/11/2006
c 1 . Remove ’ prt ’ from argument l i s t 09/07/2009
c−−−−−[−−.−−−−+−−−−.−−−−+−−−−.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]
c Purpose : User interface f o r adding s o l u t i o n command language
c i n s t r u c t i o n s .

c Inputs :
c l c t − Command character parameters
c c t l (3 ) − Command numerica l parameters
c Outputs :
c N.B. Users are r e s p on s i b l e f o r command ac t i on s . See
c programmers manual f o r example .
c−−−−−[−−.−−−−+−−−−.−−−−+−−−−.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−]

implicit none

include ’ i o f i l e . h ’
include ’ cdata . h ’
include ’ e l da ta . h ’
include ’ sdata . h ’
include ’ tdata . h ’
include ’ comblk . h ’
include ’ po in t e r . h ’
include ’ umac1 . h ’
include ’ grup . h ’
include ’ gpcoord . h ’
include ’ f l u c o . h ’
include ’ afcgparam . h ’
include ’ t e l n . h ’
include ’ epar . h ’
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include ’ upar . h ’
include ’ vo lg . h ’
include ’ f i b s t r . h ’
include ’ pconstant . h ’
include ’ vsmc . h ’
include ’ damage . h ’

log ica l pcomp
character l c t ∗15
real ∗8 c t l ( 3 )
integer f f , f f f , l , e ln , ndirv
integer v a r i n i t
integer uprecr
integer uprecc
integer uprecd
integer uprecs
integer upco l l , upelas , upesog , upgrma
integer upco lc
integer up co l l s
integer eldeg_hom
integer e ldeg_ha l f
integer e ldeg_ha l f c
integer eldeg_spot
integer eldeg_exp
integer e ldeg_tes t
integer e ld eg_f lu id
integer eldeg_flumod
log ica l smc_rem_cvs
log ica l smc_rem_hom
log ica l dmg_vsmc
log ica l ks_remod
log ica l ks_increase
log ica l ks_decrease
integer matnum
integer pnv , deb
real ∗8 F(3 , 3 )
real ∗8 l i n i ! l e n g t h at which remode l l . b e g in s
real ∗8 lend ! l e n g t h at which i t ends
real ∗8 alpha
real ∗8 I4at
real ∗8 I 4 e t
real ∗8 I4ea (2 )
real ∗8 I4 r
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real ∗8 I4mrh , I4m_r0
real ∗8 I4mh
real ∗8 I4m_r_cvs
real ∗8 dI4m_r
real ∗8 dI4m
real ∗8 dmgmax
real ∗8 lam_dmg_min , lam_dmg_max, d i f f
real ∗8 f e0
real ∗8 cmin
real ∗8 Tend
real ∗8 muv
real ∗8 DMAX
real ∗8 lamz
real ∗8 Lv
real ∗8 z
real ∗8 Lve
real ∗8 beta
real ∗8 beta0
real ∗8 phi
real ∗8 v o l f r g (2 )
real ∗8 v o l f r e (2 )
real ∗8 vo l f r gp (2 )
real ∗8 vo l f r e p (2 )
real ∗8 v o l f r c (4 )
real ∗8 test_colmod
real ∗8 s igh , ds ig , s i ga t , k1
real ∗8 maxI4c , minI4c , meanI4c , dlamr , dmass
real ∗8 dks
real ∗8 atmin , atmod , atmax
log ica l eldeg_step , wri , homeost
log ica l CID_c ,CID_e ,CID_g
log ica l c o l l s i g , r e c r s i g
log ica l volchange
save

c Set command word

i f (pcomp( uct , ’mac6 ’ , 4 ) ) then ! Usual form
uct = ’GMAC’ ! Spec i f y ’name ’

e l s e i f ( u r e s t . eq . 1 ) then ! Read r e s t a r t data

open(unit=98, f i l e=’ t e l n . r e s t a r t ’ , status=’ old ’ )
read (98 , ’ ( 4 ( i 6 ) ) ’ ) nhex , nqua , ntet , n t r i
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close (98)

open(unit=98, f i l e=’ growth1 . r e s t a r t ’ , status=’ old ’ )
read (98 , ’ (E14 . 6 ) ’ ) I 4a t
read (98 , ’ (E14 . 6 ) ’ ) alpha
read (98 , ’ (E14 . 6 ) ’ ) beta0
read (98 , ’ (E14 . 6 ) ’ ) f e 0
read (98 , ’ (E14 . 6 ) ’ ) cmin
read (98 , ’ (E14 . 6 ) ’ ) Tend
read (98 , ’ (E14 . 6 ) ’ ) muv
read (98 , ’ (E14 . 6 ) ’ ) DMAX
read (98 , ’ (E14 . 6 ) ’ ) Lv
read (98 , ’ (E14 . 6 ) ’ ) Lve
read (98 , ’ (E14 . 6 ) ’ ) v o l f r g (1 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r g (2 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r e (1 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r e (2 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r c (1 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r c (2 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r c (3 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r c (4 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r gp (1 )
read (98 , ’ (E14 . 6 ) ’ ) v o l f r gp (2 )

close (98)

open(unit=98, f i l e=’ growth2 . r e s t a r t ’ , status=’unknown ’ )

c Recruitment va r i a b l e and normal ized dens i ty va r i a b l e
do e ln = 1 , nhex ! numel

do l = 1 ,8
read (98 , ’ (E14 . 6 ) ’ ) f e ( l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) nmasse ( l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) ndense ( l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) nmassg ( l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) ndensg ( l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) nvolu ( l , e ln )
do f f = 1 ,nint ( hr (up ( 2 ) ) )

read (98 , ’ (E14 . 6 ) ’ ) lamr ( f f , l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) f c o ( f f , l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) nmassc ( f f , l , e ln )
read (98 , ’ (E14 . 6 ) ’ ) ndensc ( f f , l , e ln )

enddo
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enddo
enddo

close (98)

e l s e i f ( u r e s t . eq . 2 ) then ! Write r e s t a r t data

open(unit=98, f i l e=’ growth1 . r e s t a r t ’ , status=’unknown ’ )
write (98 , ’ (E14 . 6 ) ’ ) I 4a t
write (98 , ’ (E14 . 6 ) ’ ) alpha
write (98 , ’ (E14 . 6 ) ’ ) beta0
write (98 , ’ (E14 . 6 ) ’ ) f e 0
write (98 , ’ (E14 . 6 ) ’ ) cmin
write (98 , ’ (E14 . 6 ) ’ ) Tend
write (98 , ’ (E14 . 6 ) ’ ) muv
write (98 , ’ (E14 . 6 ) ’ ) DMAX
write (98 , ’ (E14 . 6 ) ’ ) Lv
write (98 , ’ (E14 . 6 ) ’ ) Lve
write (98 , ’ (E14 . 6 ) ’ ) v o l f r g (1 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r g (2 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r e (1 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r e (2 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r c (1 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r c (2 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r c (3 )
write (98 , ’ (E14 . 6 ) ’ ) v o l f r c (4 )
write (98 , ’ (E14 . 6 ) ’ ) vo l f r gp (1 )
write (98 , ’ (E14 . 6 ) ’ ) vo l f r gp (2 )

close (98)

open(unit=98, f i l e=’ growth2 . r e s t a r t ’ , status=’unknown ’ )

c Recruitment va r i a b l e and normal ized dens i ty va r i a b l e
do e ln = 1 , nhex ! numel

do l = 1 ,8
write (98 , ’ (E14 . 6 ) ’ ) f e ( l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) nmasse ( l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) ndense ( l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) nmassg ( l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) ndensg ( l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) nvolu ( l , e ln )
do f f = 1 ,nint ( hr (up ( 2 ) ) )

write (98 , ’ (E14 . 6 ) ’ ) lamr ( f f , l , e ln )
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write (98 , ’ (E14 . 6 ) ’ ) f c o ( f f , l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) nmassc ( f f , l , e ln )
write (98 , ’ (E14 . 6 ) ’ ) ndensc ( f f , l , e ln )

enddo
enddo

enddo
close (98)

else ! Perform user opera t ion

c I n i t i a l i z e input
v a r i n i t = 0
uprecr = 0
uprecc = 0
uprecs = 0
upco l l = 0
upco lc = 0
up co l l s = 0
upe las = 0
upgrma = 0
upesog = 0
uprecd = 0
eldeg_hom = 0
eldeg_exp = 0
e ldeg_ha l f = 0
e ldeg_ha l f c = 0
eldeg_spot = 0
e ldeg_tes t = 0
e ldeg_f lu id = 0
eldeg_flumod = 0
eldeg_step = . fa l se .
wri = . fa l se .
homeost = . fa l se .
CID_c = . fa l se .
CID_g = . fa l se .
CID_e = . fa l se .
vo lchange = . fa l se .
c o l l s i g = . fa l se .
r e c r s i g = . fa l se .
smc_rem_hom = . fa l se .
dmg_vsmc = . fa l se .
ks_remod = . fa l se .
k s_increase = . fa l se .
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ks_decrease = . fa l se .

c Which type CID ( true ) or CIV ( fa l se ) f o r the c on s i t u t en t s
i f ( vo lg ( 1 ) . ge . 1 . 0 d0 ) CID_c = . true .
i f ( vo lg ( 2 ) . ge . 1 . 0 d0 ) CID_e = . true .
i f (CID_e) CID_g = . true .

c Check input
i f (pcomp( l c t , ’ i n i t ’ , 4 ) ) then

v a r i n i t = 1 ! I n i t i a l i z e v a r i a b l e s
e l s e i f (pcomp( l c t , ’ r e c r ’ , 4 ) ) then

uprecr = 1 ! update recru i tment v a r i a b l e
e l s e i f (pcomp( l c t , ’ r e c c ’ , 4 ) ) then

uprecc = 1 ! update recru i tment v a r i a b l e ( cons tant over e lement )
e l s e i f (pcomp( l c t , ’ r e c s ’ , 4 ) ) then

uprecs = 1 ! update recru i tment v a r i a b l e − s t a b i l i z a t i o n f a s e
e l s e i f (pcomp( l c t , ’ c o l l ’ , 4 ) ) then

upco l l = 1 ! update mass o f c o l l a g en ( s t r e t c h based )
e l s e i f (pcomp( l c t , ’ c o l c ’ , 4 ) ) then

upco lc = 1 ! update mass o f c o l l a g en ( s t r e t c h based ) ( cons tant over e lement )
e l s e i f (pcomp( l c t , ’ recd ’ , 4 ) ) then

uprecd = 1 ! update mass o f c o l l a g en ( d i s t r i b u t i o n s t r e t c h based )
e l s e i f (pcomp( l c t , ’ c o l s ’ , 4 ) ) then

up co l l s = 1 ! update mass o f c o l l a g en ( s t r e t c h based ) − s t a b i l i z a t i o n f a s e
e l s e i f (pcomp( l c t , ’ edho ’ , 4 ) ) then

eldeg_hom = 1 ! E l a s t i n degradat ion ( exponen t i a l f unc t i on )
e l s e i f (pcomp( l c t , ’ edex ’ , 4 ) ) then

eldeg_exp = 1 ! E l a s t i n degradat ion ( exponen t i a l f unc t i on )
e l s e i f (pcomp( l c t , ’ edha ’ , 4 ) ) then

e ldeg_ha l f = 1 ! E l a s t i n degradat ion ( h a l f l e n g t h )
e l s e i f (pcomp( l c t , ’ edhc ’ , 4 ) ) then

e ldeg_ha l f c = 1 ! E l a s t i n degradat ion ( h a l f l e n g t h )
e l s e i f (pcomp( l c t , ’ edsp ’ , 4 ) ) then

eldeg_spot = 1 ! E l a s t i n degradat ion ( h a l f l e n g t h )
c e l s e i f (pcomp( l c t , ’ edte ’ , 4 ) ) then
c e ldeg_tes t = 1 ! E l a s t i n degradat ion t e s t

e l s e i f (pcomp( l c t , ’ ed f c ’ , 4 ) ) then
e ld eg_f lu id = 1 ! E l a s t i n degradat ion − f l u i d coup l ing

e l s e i f (pcomp( l c t , ’ edfm ’ , 4 ) ) then
eldeg_flumod = 1 ! E l a s t i n degradat ion − f l u i d coup l ing

e l s e i f (pcomp( l c t , ’ eds t ’ , 4 ) ) then
e ldeg_step = . true . ! E l a s t i n degradat ion ( s t ep wise )

e l s e i f (pcomp( l c t , ’ e l a s ’ , 4 ) ) then
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upe las = 1 ! update mass o f e l a s t i n ( s t r e t c h based )
e l s e i f (pcomp( l c t , ’ esog ’ , 4 ) ) then

upesog = 1 ! update mass o f e l a s t i n ( s t r e t c h based )
e l s e i f (pcomp( l c t , ’ grma ’ , 4 ) ) then

upgrma = 1 ! update mass o f e l a s t i n ( s t r e t c h based )
e l s e i f (pcomp( l c t , ’home ’ , 4 ) ) then

homeost = . true . ! Set homeosta t ic s t a t e
e l s e i f (pcomp( l c t , ’ nvol ’ , 4 ) ) then

volchange = . true . ! Set normal ized volume and d e n s i t i e s
e l s e i f (pcomp( l c t , ’ wr i t ’ , 4 ) ) then

wri = . true . ! Write output
e l s e i f (pcomp( l c t , ’ c s i g ’ , 4 ) ) then

c o l l s i g = . true . ! Update mass o f c o l l a g en ( s t r e s s based )
e l s e i f (pcomp( l c t , ’ r s i g ’ , 4 ) ) then

r e c r s i g = . true . ! Update recru i tment v a r i a b l e ( s t r e s s based )
e l s e i f (pcomp( l c t , ’ vsmh ’ , 4 ) ) then

smc_rem_hom = . true . ! Smooth muscle remode l l ing in h ea l t h
e l s e i f (pcomp( l c t , ’dmgm ’ , 4 ) ) then

dmg_vsmc = . true . ! Act ive VSMC damage
e l s e i f (pcomp( l c t , ’ ksrm ’ , 4 ) ) then

ks_remod = . true .
e l s e i f (pcomp( l c t , ’ ksup ’ , 4 ) ) then

ks_increase = . true .
e l s e i f (pcomp( l c t , ’ ksdw ’ , 4 ) ) then

ks_decrease = . true .
else

write (∗ ,∗ ) ’ I nva l i d ␣gmac␣ s p e c i f i c a t i o n ’
endif
ndirv = nint ( hr (up ( 2 ) ) )

c I n i t i a l i z e paramters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( v a r i n i t . eq . 1 ) then

c Attachment s t r e t c h
c I4at = 1.196 d0 ! 1 .146 d0 ! 1 . 19 d0 !W2009 1.196 , Schmid 2010 1.146

I 4a t = upar ( 1 )∗∗2 . 0 d0
c Remodell ing parameter ( rec ru i tment va r i a b l e )
c alpha = 0 .6 d0 ! cube 0.80 d0 !W2009 2 .0 , Schmid 2010 0.6

alpha = upar (2 )
c Remodell ing parameter ( c o l l a g en growth )
c beta0 = 2 .0 d0 ! 2 .0 d0 ! 25 . 0 d0 ! 2009 25 , Schmid 2010 2.0

beta0 = upar (3 )

c E l a s t i n degradat ion parameters
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f e 0 = epar (1 ) ! I n i t i a l amount o f e l a s t i n
cmin = epar (2 ) ! Target amount o f e l a s t i n
Tend = epar (3 ) ! Time o f maximum degradat ion
muv = epar (4 ) ! Zone o f degradat ion (0 means en t i r e domain )
DMAX = 0.75 d0 ! Maximum degradat ion per year ( f l u i d coup l ing )
Lv = epar ( 5 ) /2 . 0 d0 ! Length o f undeformed ar t e r y ( quar t e r symm)
lamz = epar (6 ) ! Extension in z d i r
Lve = Lv∗ lamz ! Length o f deformed ar t e r y ( quar t e r symm)

c Volume f r a c t i o n s
v o l f r e (1 ) = volg (3 ) ! ! E l a s t i n
v o l f r c (1 ) = volg (4 ) ! Co l lagen f i b e r fami l y 1
v o l f r c (2 ) = volg (4 ) ! Co l lagen f i b e r fami l y 2
v o l f r g (1 ) = 1 .0 d0−vo lg (3)− vo lg (4)∗ ndirv ! Ground matrix

v o l f r e (2 ) = volg (5 ) ! ! E l a s t i n
v o l f r c (3 ) = volg (6 ) ! Co l lagen f i b e r fami l y 1
v o l f r c (4 ) = volg (6 ) ! Co l lagen f i b e r fami l y 2
v o l f r g (2 ) = 1 .0 d0−vo lg (5)− vo lg (6)∗ ndirv ! Ground matrix

c WRITE(∗ ,∗ ) v o l f r g (1 ) , v o l f r g (2 )

vo l f r gp (1 ) = vo l f r g ( 1 ) / ( v o l f r g (1)+ v o l f r e ( 1 ) ) ! Gr mat . Volume f ra c . o f CIV
vo l f r e p (1 ) = v o l f r e ( 1 ) / ( v o l f r g (1)+ v o l f r e ( 1 ) ) ! El mat . Volume f ra c . o f CIV
vo l f r gp (2 ) = vo l f r g ( 2 ) / ( v o l f r g (2)+ v o l f r e ( 2 ) ) ! Gr mat . Volume f ra c . o f CIV
vo l f r e p (2 ) = v o l f r e ( 2 ) / ( v o l f r g (2)+ v o l f r e ( 2 ) ) ! El mat . Volume f ra c . o f CIV

c Damage v a r i a b l e s
dam_el = 0.0000 d0
dam_gm = 0.0000 d0
dam_mp = 0.0000 d0
dam_f = 0.0000 d0

c Recruitment va r i a b l e and normal ized dens i ty va r i a b l e
i f ( colmod . eq . 2 . 0 d0 ) then
I4mh = upar (10)
I4m_r0 = upar (11)

endif
do e ln = 1 , nhex ! numel
do l = 1 ,8

f e ( l , e ln ) = 1 .0 d0
nmasse ( l , e ln ) = 1 .0 d0
ndense ( l , e ln ) = 1 .0 d0
nmassg ( l , e ln ) = 1 .0 d0
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ndensg ( l , e ln ) = 1 .0 d0
nvolu ( l , e ln ) = 1 .0 d0
i f ( colmod . eq . 2 . 0 d0 ) then
I4m( l , e ln ) = I4mh
I4m_r( l , e ln ) = I4m_r0
I4_c i rc ( l , e ln ) = 1.00001 d0
ka ( l , e ln ) = 1.000 d0
kp ( l , e ln ) = 1.000 d0
dMa( l , e ln ) = 0.0000 d0

endif
do f f = 1 , ndirv

c lamr ( f f , l , e ln ) = 1 .13 d0 ! Watt2009 1.13 , Schmid 2010 1.07
lamr ( f f , l , e ln ) = upar (4 ) ! Watt2009 1.13 , Schmid 2010 1.07
i f ( colmod . eq . 2 . 0 d0 ) then

lamrmin ( f f , l , e ln ) = upar (5 )
lamrmax ( f f , l , e ln ) = upar (6 )
lamatmod ( f f , l , e ln ) = upar (7 )
lamatmin ( f f , l , e ln ) = upar (8 )
lamatmax ( f f , l , e ln ) = upar (9 )

endif
nmassc ( f f , l , e ln ) = 1 .0 d0
ndensc ( f f , l , e ln ) = 1 .0 d0

enddo
enddo

enddo

c Reset output f i l e
open(unit=99, f i l e=’ nvol . out ’ , status=’unknown ’ )
write (99 , ’ ( a ) ’ ) ’#␣Written␣ from␣umacr6 . f ’
close (99)

write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣ I n i t i a t i o n ␣ o f ␣ v a r i a b l e s ’
endif

c Set homeostat ic s t a t e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( homeost ) then

c I4a t = I4c (1 , 1 , 1 )
do e ln = 1 , nhex
do l = 1 ,8
s i g f h ( l , e ln ) = s i g f ( l , e ln )

enddo
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enddo
endif

c Update recru i tment va r i a b l e
i f ( uprecr . eq . 1 ) then

c write (∗ ,∗ ) ’ s i g f f (1 ,1 ,1)= ’ , s i g f f ( 1 , 1 , 1 )
do e ln = 1 , nhex ! numel

do l = 1 ,8
do f f = 1 , ndirv

I 4 r = lamr ( f f , l , e ln )∗ lamr ( f f , l , e ln )
lamr ( f f , l , e ln ) = alpha ∗dt ∗( I4e ( f f , l , e ln ) / I 4 r

1 − I 4a t ) / ( I4a t − 1 .0 d0 )
2 + lamr ( f f , l , e ln )

c endif
enddo

enddo
enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ recru i tment ␣ va r i ab l e ’

endif

c Update recru i tment va r i a b l e − constant over element
i f ( uprecc . eq . 1 ) then

do e ln = 1 , nhex ! numel
ca l l average fun ( I4e ( 1 , 1 : 8 , e ln ) , 8 , I 4 e t )
I4ea (1 ) = I4 e t
ca l l average fun ( I4e ( 2 , 1 : 8 , e ln ) , 8 , I 4 e t )
I4ea (2 ) = I4 e t
do l = 1 ,8

do f f = 1 , ndirv
I 4 r = lamr ( f f , l , e ln )∗ lamr ( f f , l , e ln )
dlamr = alpha ∗dt ∗( I4ea ( f f )/ I 4 r − I 4a t ) / ( I4at −1.d0 )
lamr ( f f , l , e ln ) = dlamr + lamr ( f f , l , e ln )

enddo
enddo

enddo
write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣Updated␣ recru i tment ␣ va r i ab l e ’

endif

c Update recru i tment va r i a b l e − s t a b i l i z a t i o n
i f ( uprecs . eq . 1 ) then

do e ln = 1 , nhex ! numel
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do l = 1 ,8
do f f = 1 , ndirv

I 4 r = lamr ( f f , l , e ln )∗∗2
lamr ( f f , l , e ln ) = 3 .0 d0∗ alpha ∗dt ∗( I4e ( f f , l , e ln ) / I 4 r

1 − I 4a t ) / ( I4a t − 1 .0 d0 )
2 + lamr ( f f , l , e ln )

c endif
enddo

enddo
enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ recru i tment ␣ va r i ab l e ’

endif

c Update normal ized c o l l a g en mass change
i f ( upco l l . eq . 1 ) then

do e ln = 1 , nhex ! numel
do l = 1 ,8

do f f = 1 , ndirv
dmass = beta ∗dt ∗( I4c ( f f , l , e ln ) − I 4a t ) / ( I4a t − 1 .0 d0 )
nmassc ( f f , l , e ln ) = nmassc ( f f , l , e ln ) ∗ ( dmass + 1 .0 d0 )

enddo
enddo

enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ normal ized ␣ co l l a g en ␣mass ’

endif

c Update normal ized c o l l a g en mass change ( s t a b i l i z a t i o n )
i f ( up c o l l s . eq . 1 ) then

beta = beta0 ∗5 .0 d0

do e ln = 1 , nhex ! numel
do l = 1 ,8

do f f = 1 , ndirv
c nmassc ( f f , l , e ln ) = ( beta ∗ dt ∗
c 1 ( I4c ( f f , l , e ln ) − I 4a t ) / ( I4a t − 1 .0 d0 )
c 2 + nmassc ( f f , l , e ln ) )

nmassc ( f f , l , e ln ) = nmassc ( f f , l , e ln ) ∗ ( beta ∗ dt ∗
1 ( I4c ( f f , l , e ln ) − I 4a t ) / ( I4a t − 1 .0 d0 )
2 + 1 .0 d0 )

c i f ( nmassc ( f f , l , e ln ) . l t . 1 . 0 d0 ) nmassc ( f f , l , e ln ) = 1 .0 d0
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c f c o ( f f , l , e ln ) = nmassc ( f f , l , e ln )
enddo

enddo
enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ normal ized ␣ co l l a g en ␣mass ’

endif

c Update normal ized c o l l a g en mass change ( s t a b i l i z a t i o n )
i f ( upco lc . eq . 1 ) then

do e ln = 1 , nhex ! numel
ca l l average fun ( I4e ( 1 , 1 : 8 , e ln ) , 8 , I 4 e t )
I4ea (1 ) = I4 e t
ca l l average fun ( I4e ( 2 , 1 : 8 , e ln ) , 8 , I 4 e t )
I4ea (2 ) = I4 e t
do l = 1 ,8

do f f = 1 , ndirv
I 4 r = lamr ( f f , l , e ln )∗ lamr ( f f , l , e ln )
nmassc ( f f , l , e ln ) = nmassc ( f f , l , e ln ) ∗ ( beta ∗ dt ∗

1 ( I4ea ( f f ) / I 4 r − I 4a t ) / ( I4a t − 1 .0 d0 )
2 + 1 .0 d0 )

enddo
enddo

enddo
write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣Updated␣ normal ized ␣ co l l a g en ␣mass ’

endif

c Update mass accord ing to s t r e s s based evo lu t i on law
i f ( c o l l s i g ) then

beta = beta0

do e ln = 1 , nhex
i f ( e ln . le . ( 2∗ nhex /3)) then

k1 = 0.00352 d0
s i g a t = 0.0047 d0

else
k1 = 0.00088 d0
s i g a t = 0.00127 d0

endif
do l = 1 ,8
do f f = 1 , ndirv
ds i g = 2 .0 d0∗k1 ∗( I4c ( f f , l , e ln ) − I 4a t )∗
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1 exp(40d0 ∗( I4c ( f f , l , e ln ) − I 4a t )∗∗2 . 0 d0 )
c s i g a t = 2 .0 d0∗k1 ∗( I4a t − 1 .0 d0 )∗
c 1 exp(40d0 ∗( I4a t − 1 .0 d0 )∗∗2)/ lamr ( f f , l , e ln )∗∗2

nmassc ( f f , l , e ln ) = nmassc ( f f , l , e ln ) ∗ ( beta ∗ dt ∗
1 ds i g / s i g a t + 1 .0 d0 )

c nmassc ( f f , l , e ln ) = nmassc ( f f , l , e ln ) ∗ ( beta ∗ dt ∗
c 1 ( s i g f f ( f f , l , e ln )− s i gh )/ s i gh
c 2 + 1 .0 d0 )

enddo
enddo

enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ normal ized ␣ co l l a g en ␣mass ’

endif

c Update recru i tment s t r e t c h accord ing to s t r e s s based evo lu t i on law
i f ( r e c r s i g ) then
do e ln = 1 , nhex
i f ( e ln . le . ( 2∗ nhex /3)) then

k1 = 0.00352 d0
s i g a t = 0.0047 d0

else
k1 = 0.00088 d0
s i g a t = 0.00127 d0

endif
do l = 1 ,8
do f f = 1 , ndirv

ds i g = 2 .0 d0∗k1 ∗( I4c ( f f , l , e ln ) − I 4a t )∗
1 exp(40d0 ∗( I4c ( f f , l , e ln ) − I 4a t )∗∗2 . 0 d0 )

c s i g a t = 2 .0 d0∗k1 ∗( I4a t − 1 .0 d0 )∗
c 1 exp(40d0 ∗( I4a t − 1 .0 d0 )∗∗2)/ lamr ( f f , l , e ln )∗∗2

lamr ( f f , l , e ln ) = alpha ∗dt∗ ds i g / s i g a t + lamr ( f f , l , e ln )
c lamr ( f f , l , e ln ) = alpha ∗dt ∗( s i g f f ( f f , l , e ln ) − s i gh )/
c lamr ( f f , l , e ln ) = alpha ∗dt ∗( s i g f f ( f f , l , e ln ) − 0 .192 d0 )/
c 1 s i gh + lamr ( f f , l , e ln )

enddo
enddo

enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ normal ized ␣ co l l a g en ␣mass ’

endif
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c Update recru i tment va r i a b l e
i f ( uprecd . eq . 1 ) then

c write (∗ ,∗ ) ’ s i g f f (1 ,1 ,1)= ’ , s i g f f ( 1 , 1 , 1 )
do e ln = 1 , nhex ! numel

do l = 1 ,8
do f f = 1 , ndirv

dlamr =alpha ∗dt ∗( lmcmax( f f , l , e ln )−lamatmax ( f f , l , e ln ) )
1 /lamatmax ( f f , l , e ln )

lamrmin ( f f , l , e ln ) = dlamr + lamrmin ( f f , l , e ln )

dlamr =alpha ∗dt ∗( lmcmod( f f , l , e ln )−lamatmod ( f f , l , e ln ) )
1 /lamatmod ( f f , l , e ln )

lamr ( f f , l , e ln ) = dlamr + lamr ( f f , l , e ln )

dlamr =alpha ∗dt ∗( lmcmin ( f f , l , e ln )−lamatmin ( f f , l , e ln ) )
1 / lamatmin ( f f , l , e ln )

lamrmax ( f f , l , e ln ) = dlamr + lamrmax ( f f , l , e ln )
enddo

enddo
enddo
write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣Updated␣min␣ recru i tment ␣ s t r e t c h ’

endif

c Update normal ized c o l l a g en mass change
i f ( upesog . eq . 1 ) then

beta = beta0

do e ln = 1 , nhex ! numel
do l = 1 ,8

dmass = beta ∗dt ∗( I4c (1 , l , e ln ) − I 4a t ) / ( I4a t − 1 .0 d0 )
nmassg ( l , e ln ) = nmassg ( l , e ln ) ∗ ( dmass + 1 .0 d0 )
nmasse ( l , e ln ) = nmasse ( l , e ln ) ∗ ( dmass + 1 .0 d0 )
nmassc (1 , l , e ln ) = nmassc (1 , l , e ln ) ∗ ( dmass + 1 .0 d0 )

enddo
enddo
write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣Updated␣ normal ized ␣ esophagus ␣mass ’

endif

i f ( upgrma . eq . 1 ) then

beta = beta0
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do e ln = 1 , nhex ! numel
do l = 1 ,8

dmass = beta ∗dt ∗( I4c (1 , l , e ln ) − I 4a t ) / ( I4a t − 1 .0 d0 )
nmassg ( l , e ln ) = nmassg ( l , e ln ) ∗ ( dmass + 1 .0 d0 )

enddo
enddo
write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣Updated␣ normal ized ␣ gr ␣matrix ␣mass ’

endif

c Update normal ized volume and dens i ty change
i f ( volchange ) then

c i f ( tt im . le . Tend) then
c Ca l cu la te t o t a l volume

do e ln = 1 , nhex ! numel
do l = 1 ,8

nvolu ( l , e ln ) = 0 .0 d0
enddo

enddo

do e ln = 1 , nhex ! numel
c Get mate r i a l element number

ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)
do l = 1 ,8
do f f = 1 , ndirv
f f f = f f +2∗(matnum−1)
i f (CID_c) then
nvolu ( l , e ln ) = nvolu ( l , e ln ) + nmassc ( f f , l , e ln )∗ v o l f r c ( f f f )

else
nvolu ( l , e ln ) = nvolu ( l , e ln ) + v o l f r c ( f f f )

endif
enddo
i f (CID_e) then
nvolu ( l , e ln ) = nvolu ( l , e ln ) + nmasse ( l , e ln )∗ v o l f r e (matnum)

else
nvolu ( l , e ln ) = nvolu ( l , e ln ) + v o l f r e (matnum)

endif
i f (CID_g) then

nvolu ( l , e ln ) = nvolu ( l , e ln ) + nmassg ( l , e ln )∗ v o l f r g (matnum)
else

nvolu ( l , e ln ) = nvolu ( l , e ln ) + vo l f r g (matnum)
endif
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enddo
enddo

c endif
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ normal ized ␣volume␣change ’

c write ( iow , ∗ ) ’CID_c␣ value ␣ ( vo l ) ␣ at ␣ time ’ , ttim , ’ ␣ i s ␣ ’ ,CID_c

c Ca lcu la te normal ized dens i ty
do e ln = 1 , nhex ! numel

c Get mate r i a l element number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)
do l = 1 ,8
do f f = 1 , ndirv

i f (CID_c) then
ndensc ( f f , l , e ln ) = nmassc ( f f , l , e ln )/ nvolu ( l , e ln )

else
c ndensc ( f f , l , e ln ) = nmassc ( f f , l , e ln )

ndensc ( f f , l , e ln ) = nmassc ( f f , l , e ln )/ nvolu ( l , e ln )
endif

enddo
i f (CID_e) then

ndense ( l , e ln ) = nmasse ( l , e ln )/ nvolu ( l , e ln )
ndensg ( l , e ln ) = nmassg ( l , e ln )/ nvolu ( l , e ln )

else
c ndense ( l , e ln ) = nmasse ( l , e ln )

ndense ( l , e ln ) = nmasse ( l , e ln )/ nvolu ( l , e ln )
c Mass change o f ground matrix in re sponse to e l a s t i n change
c Only c a l c u l a t e f o r media ( mate r i a l num 1)

i f ( (matnum . eq . 1 ) . and . ( v o l f r gp (matnum ) .ne . 0 . 0 d0 ) ) then
nmassg ( l , e ln ) = (1 . 0 d0 − nmasse ( l , e ln )∗ vo l f r e p (matnum))/

1 vo l f r gp (matnum)
endif
ndensg ( l , e ln ) = nmassg ( l , e ln )/ nvolu ( l , e ln )

c ndensg ( l , e ln ) = 1 .0 d0
c ndensg ( l , e ln ) = 2 .0 d0 − ndense ( l , e ln )

endif
enddo

enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣Updated␣ normal ized ␣ dens i ty ’

c close (99)

endif
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i f ( eldeg_hom . eq . 1 ) then
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
c i f (matnum . eq . 1 ) then

do l = 1 ,8
c Keep e l a s t i n constant i f time i s l a r g e r than Tend
c i f ( tt im . gt . Tend) then
c nmasse ( l , e ln ) = f e0 ∗ cmin
c else
c f e ( l , e ln ) = f e0 ∗ cmin ∗∗( tt im / Tend )

nmasse ( l , e ln ) = f e0 ∗ cmin ∗∗( tt im / Tend )
c endif

enddo
c else
c do l = 1 ,8
cc f e ( l , e ln ) = 1 .0 d0
c nmasse ( l , e ln ) = 1 .0 d0
c enddo
c endif

enddo
write ( iow , ∗ ) ’T. SE .E␣MESSAGE: ␣edho−Ela s t i n ␣ degradat ion ␣performed ’

endif

i f ( eldeg_exp . eq . 1 ) then
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
i f (matnum . eq . 1 ) then

do l = 1 ,8
c Ca lcu la t e e l a s t i n degradat ion
c f e ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )
c 1 ∗ exp( −muv ∗ ( gpc l (3 , l , e ln ) / Lv )∗∗2 . 0 d0 )

nmasse ( l , e ln ) = 1 .0 d0 − ( 1 . 0 d0 − cmin ∗∗( tt im / Tend ) )
1 ∗ exp(−muv∗ ( 1 . 0 d0−gpc l (3 , l , e ln ) / Lv )∗∗2 . d0 )

C nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )∗exp(−muv
C 1 ∗ exp(−muv ∗ (1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C 1 ∗(1−hr (up(6)+( eln −1)∗24+( l −1)∗3+3)/ Lve )∗∗2 . 0 d0 )

enddo
else

do l = 1 ,8
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c f e ( l , e ln ) = 1 .0 d0
nmasse ( l , e ln ) = 1 .0 d0

enddo
endif

enddo
endif

i f ( e ldeg_ha l f . eq . 1 ) then
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
i f (matnum . eq . 1 ) then

do l = 1 ,8
c Ca lcu la t e e l a s t i n degradat ion

nmasse ( l , e ln ) = 1 .0 d0 − ( 1 . 0 d0 − cmin ∗∗( tt im / Tend ) )
1 ∗exp(−muv∗ ( 1 . 0 d0−gpc l (3 , l , e ln )/Lv/2 .0 d0 )∗∗2 . d0 )

c nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )
c 1 ∗ exp(−muv∗(1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )∗exp(−muv
C 1 ∗ exp(−muv ∗ (1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C 1 ∗(1−hr (up(6)+( eln −1)∗24+( l −1)∗3+3)/ Lve )∗∗2 . 0 d0 )

enddo
else

do l = 1 ,8
c f e ( l , e ln ) = 1 .0 d0

nmasse ( l , e ln ) = 1 .0 d0
enddo

endif
enddo

endif

i f ( e ldeg_ha l f c . eq . 1 ) then
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
i f (matnum . eq . 1 ) then

ca l l average fun ( gpc l ( 3 , 1 : 8 , e ln ) , 8 , z )
do l = 1 ,8

c Ca lcu la t e e l a s t i n degradat ion
nmasse ( l , e ln ) = 1 .0 d0 − ( 1 . 0 d0 − cmin ∗∗( tt im / Tend ) )

1 ∗exp(−muv∗ ( 1 . 0 d0−z/Lv/2 .0 d0 )∗∗2 . d0 )
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c nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )
c 1 ∗ exp(−muv∗(1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )∗exp(−muv
C 1 ∗ exp(−muv ∗ (1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C 1 ∗(1−hr (up(6)+( eln −1)∗24+( l −1)∗3+3)/ Lve )∗∗2 . 0 d0 )

enddo
else

do l = 1 ,8
c f e ( l , e ln ) = 1 .0 d0

nmasse ( l , e ln ) = 1 .0 d0
enddo

endif
enddo

endif

i f ( e ldeg_spot . eq . 1 ) then
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
i f (matnum . eq . 1 ) then

do l = 1 ,8
c Ca lcu la t e e l a s t i n degradat ion
c atan prov ides answers in a range [−pi /2 p i /2 ]

phi = atan ( gpc l (2 , l , e ln )/ gpc l (1 , l , e ln ) )
c TODO: add case f o r 3 rd quadrant ! ! !

i f ( gpc l (1 , l , e ln ) . le . 0 . 0 d0 ) then
c 2nd quadrant

phi = phi + pi
endif
i f ( phi . le . 1 . 5 d0 ) then
nmasse ( l , e ln ) = 1 .0 d0 − ( 1 . 0 d0 − cmin ∗∗( tt im / Tend ) )

1 ∗exp(−muv∗( phi ∗0 .5 d0/ p i )∗∗2 . d0 )
2 ∗exp(−muv∗ ( 1 . 0 d0−gpc l (3 , l , e ln )/Lv/2 .0 d0 )∗∗2 . d0 )

endif
c nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )
c 1 ∗ exp(−muv∗(1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C nmasse ( l , e ln ) = 1 − ( 1 − cmin ∗∗( tt im / Tend ) )∗exp(−muv
C 1 ∗ exp(−muv ∗ (1−gpce (3 , l , e ln ) / Lve )∗∗2 . 0 d0 )
C 1 ∗(1−hr (up(6)+( eln −1)∗24+( l −1)∗3+3)/ Lve )∗∗2 . 0 d0 )

enddo
else
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do l = 1 ,8
c f e ( l , e ln ) = 1 .0 d0

nmasse ( l , e ln ) = 1 .0 d0
enddo

endif
enddo

endif

i f ( e ld eg_f lu id . eq . 1 ) then
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
i f (matnum . eq . 1 ) then

do l = 1 ,8
c Ca lcu la t e e l a s t i n degradat ion
c nmasse ( l , e ln ) = nmasse ( l , e ln ) ∗ (1−hr (up(8)+( eln−1)∗8+ l )

nmasse ( l , e ln ) = nmasse ( l , e ln ) ∗ ( 1 . 0 d0−fdgp ( l , e ln )
1 ∗ ( 1 . 0 d0 − DMAX ∗∗ dt ) )

enddo
else

do l = 1 ,8
c f e ( l , e ln ) = 1 .0 d0

nmasse ( l , e ln ) = 1 .0 d0
enddo

endif
enddo
deb=0
i f ( deb . eq . 1 ) then
write (∗ ,∗ ) ’FD␣on␣nodes , ␣El␣1 ’
write (∗ ,∗ ) hr (up (7)+1) , hr (up (7)+2) , hr (up (7)+26) , hr (up(7)+25)

write (∗ ,∗ ) hr (up (7)+265) , hr (up (7)+266) , hr (up (7)+290) , hr (up(7)+289)
write (∗ ,∗ ) ’FD␣on␣GPs , ␣El␣1 ’
write (∗ ,∗ ) hr (up (8)+1) , hr (up (8)+2) , hr (up (8)+3) , hr (up(8)+4)
write (∗ ,∗ ) hr (up (8)+5) , hr (up (8)+6) , hr (up (8)+7) , hr (up(8)+8)
write (∗ ,∗ ) ’GP1coor ’ , hr (up (5)+1) , hr (up (5)+2) , hr (up(5)+3)
write (∗ ,∗ ) ’GP2coor ’ , hr (up (5)+4) , hr (up (5)+5) , hr (up(5)+6)
write (∗ ,∗ ) ’GP3coor ’ , hr (up (5)+7) , hr (up (5)+8) , hr (up(5)+9)
write (∗ ,∗ ) ’GP4coor ’ , hr (up (5)+10) , hr (up (5)+11) , hr (up(5)+12)
write (∗ ,∗ ) ’GP1coor ’ , gpc l ( 1 , 1 , 1 ) , gpc l ( 2 , 1 , 1 ) , gpc l ( 3 , 1 , 1 )
write (∗ ,∗ ) ’GP2coor ’ , gpc l ( 1 , 2 , 1 ) , gpc l ( 2 , 2 , 1 ) , gpc l ( 3 , 2 , 1 )
write (∗ ,∗ ) ’GP3coor ’ , gpc l ( 1 , 3 , 1 ) , gpc l ( 2 , 3 , 1 ) , gpc l ( 3 , 3 , 1 )
write (∗ ,∗ ) ’GP4coor ’ , gpc l ( 1 , 4 , 1 ) , gpc l ( 2 , 4 , 1 ) , gpc l ( 3 , 4 , 1 )
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write (∗ ,∗ ) nmasse ( 1 , 1 ) , ’ ␣ ’ , nmasse ( 1 , 2 ) , ’ ␣ ’ , nmasse (1 , 3 )
endif

write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣ edfc−Ela s t i n ␣ degradat ion ␣performed ’
endif

i f ( eldeg_flumod . eq . 1 ) then
DMAX = 0.5 d0
do e ln = 1 , nhex ! numel

c Get mate r i a l e lement number
ca l l gete lmat (mr(np ( 33 ) ) , nen1 , eln ,matnum)

c Only c a l c u l a t e f o r media ( mate r i a l num 1)
i f (matnum . eq . 1 ) then

do l = 1 ,8
c Ca lcu la t e e l a s t i n degradat ion
C nmasse ( l , e ln ) = nmasse ( l , e ln ) ∗ (1−hr (up(8)+( eln−1)∗8+ l )

nmasse ( l , e ln ) = nmasse ( l , e ln ) ∗ ( 1 . 5 d0−fdgp ( l , e ln )
1 ∗ ( 1 . 5 d0 − DMAX ∗∗ dt ) )

enddo
else

do l = 1 ,8
c f e ( l , e ln ) = 1 .0 d0

nmasse ( l , e ln ) = 1 .0 d0
enddo

endif
enddo
deb=0
i f ( deb . eq . 1 ) then
write (∗ ,∗ ) ’FD␣on␣nodes , ␣El␣1 ’
write (∗ ,∗ ) hr (up (7)+1) , hr (up (7)+2) , hr (up (7)+26) , hr (up(7)+25)

write (∗ ,∗ ) hr (up (7)+265) , hr (up (7)+266) , hr (up (7)+290) , hr (up(7)+289)
write (∗ ,∗ ) ’FD␣on␣GPs , ␣El␣1 ’
write (∗ ,∗ ) hr (up (8)+1) , hr (up (8)+2) , hr (up (8)+3) , hr (up(8)+4)
write (∗ ,∗ ) hr (up (8)+5) , hr (up (8)+6) , hr (up (8)+7) , hr (up(8)+8)
write (∗ ,∗ ) ’GP1coor ’ , hr (up (5)+1) , hr (up (5)+2) , hr (up(5)+3)
write (∗ ,∗ ) ’GP2coor ’ , hr (up (5)+4) , hr (up (5)+5) , hr (up(5)+6)
write (∗ ,∗ ) ’GP3coor ’ , hr (up (5)+7) , hr (up (5)+8) , hr (up(5)+9)
write (∗ ,∗ ) ’GP4coor ’ , hr (up (5)+10) , hr (up (5)+11) , hr (up(5)+12)
write (∗ ,∗ ) ’GP1coor ’ , gpc l ( 1 , 1 , 1 ) , gpc l ( 2 , 1 , 1 ) , gpc l ( 3 , 1 , 1 )
write (∗ ,∗ ) ’GP2coor ’ , gpc l ( 1 , 2 , 1 ) , gpc l ( 2 , 2 , 1 ) , gpc l ( 3 , 2 , 1 )
write (∗ ,∗ ) ’GP3coor ’ , gpc l ( 1 , 3 , 1 ) , gpc l ( 2 , 3 , 1 ) , gpc l ( 3 , 3 , 1 )
write (∗ ,∗ ) ’GP4coor ’ , gpc l ( 1 , 4 , 1 ) , gpc l ( 2 , 4 , 1 ) , gpc l ( 3 , 4 , 1 )
write (∗ ,∗ ) nmasse ( 1 , 1 ) , ’ ␣ ’ , nmasse ( 1 , 2 ) , ’ ␣ ’ , nmasse (1 , 3 )
endif
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write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣ edfc−Ela s t i n ␣ degradat ion ␣performed ’
endif

i f ( e ldeg_step ) then
do e ln = 1 , nhex ! numel
do l = 1 ,8

c Ca l cu la t e e l a s t i n degradat ion
nmasse ( l , e ln ) = nmasse ( l , e ln )∗0 . 8 d0

enddo
enddo

endif

c Update normal ized e l a s t i n mass change
i f ( upe las . eq . 1 ) then

beta = beta0

do e ln = 1 , nhex ! numel
do l = 1 ,8

dmass = beta ∗dt ∗( I4c (1 , l , e ln ) − I 4a t ) / ( I4a t − 1 .0 d0 )
nmasse ( l , e ln ) = nmasse ( l , e ln ) ∗ ( dmass + 1 .0 d0 )

enddo
enddo
write ( iow , ∗ ) ’A.G. ␣MESSAGE: ␣Updated␣ normal ized ␣ e l a s t i n ␣mass ’

endif

c Model r emode l l ing o f va s cu l a r smooth muscle c e l l s towards
c homeostat ic s t r e t c h

i f (smc_rem_hom) then
do e ln = 1 , nhex ! numel
do l = 1 ,8 ! number o f nodes

I4m_r( l , e ln ) = I4m_r( l , e ln ) + 2 .0 d0 ∗( I4m( l , e ln ) − I4mh)∗ dt
enddo

enddo
c write (∗ ,∗ ) I4m (1 , 1 )

endif

i f (dmg_vsmc) then
lam_dmg_min = 1 .7 d0 ! 1 .50 d0
lam_dmg_max = 100.24 d0 ! 1 .80 d0
d i f f = lam_dmg_max − lam_dmg_min
dmgmax = 1.00 d0
do e ln = 1 , nhex
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do l = 1 ,8
i f ( I4m( l , e ln ) . ge . lam_dmg_min) then
dMa( l , e ln ) = dMa( l , e ln ) + 0 .01∗ ( I4m( l , e ln ) − lam_dmg_min)

endif
i f (dMa( l , e ln ) . ge . dmgmax) then
dMa( l , e ln ) = dmgmax

endif
c i f ( l . eq . 1 ) then
c write (∗ ,∗ ) ’dMa␣=␣ ’ , dMa( l , e ln ) , l , e ln
c endif

enddo
enddo

endif

i f ( ks_remod ) then
l i n i = 0.0042 d0
lend = 0.0083 d0
do e ln = 1 , nhex
do l = 1 ,8

i f ( ( gpc l (3 , l , e ln ) . ge . l i n i ) .AND. ( gpc l (3 , l , e ln ) . le . l end ) ) then
ka ( l , e ln ) = ka ( l , e ln ) + ( 11 .0 d0 − ka ( l , e ln ) ) ∗ dt

endif
enddo

enddo
c write (∗ ,∗ ) ’ running ␣KSRM’

write (∗ ,∗ ) ’ ka␣ at ␣ cvs ’ , ka (1 ,156)
endif

i f ( ks_increase ) then
do e ln = 1 , nhex
do l = 1 ,8

ka ( l , e ln ) = ka ( l , e ln ) + ( 5 .0 d0 − ka ( l , e ln ) ) ∗ dt
enddo

enddo
write (∗ ,∗ ) ’ ks ␣=␣ ’ , ka (1 , 4 )

endif

i f ( ks_decrease ) then
do e ln = 1 , nhex
do l = 1 ,8

ka ( l , e ln ) = ka ( l , e ln ) + ( 0 .2 d0 − ka ( l , e ln ) ) ∗ dt
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enddo
enddo
write (∗ ,∗ ) ’ ks ␣=␣ ’ , ka (1 ,156)

endif

i f ( wri ) then

open(unit=99, f i l e=’ nvol . out ’ , status=’unknown ’ , access=’ append ’ )
write (99 , ’ (14(E18 . 1 0 ) ) ’ ) ttim , nvolu ( 1 , 1 ) , nvolu ( 1 , 1 ) ,

& nmassc ( 1 , 1 , 1 ) , nmasse ( 1 , 1 ) , ndensc ( 1 , 1 , 1 ) , ndense ( 1 , 1 ) ,
& lamr (1 , 1 , 1 )∗∗2 , I4e ( 1 , 1 , 1 ) , I4c ( 1 , 1 , 1 ) , I4at ,
& tr_S_c (1 , 1 ) , tr_E_c (1 , 1 ) , ndensg (1 , 1 )

endif
end
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The following is the code contained in fiberremdistdam.f

c Editor : Thomas S .E. Er iksson

c subroutine g r c o l l f i b e r sm l ( f f , l , k1 , k2 , ae , tau , dd)
subroutine f iberremdistdam ( f f , l , kC , ae , dam, tau , t au f f , dd )

c Purpose :
c Compute k i r c hh o f f s t r e s s and e u l e r i a n tangent moduli
c o f a t r a n s v e r s a l l y i s o t r o p i c mate r i a l

c Input :
c k1 . . . . . . . . . F i r s t f i b e r parameter
c k2 . . . . . . . . . Second f i b e r parameter
c ae . . . . . . . . . Eu le r ian f i b r e−vec to r ae_i=F_ij∗ al_j
c (not i d e n t i t y norm ! )
c
c Output :
c tau . . . . . . . . K i r chho f f s t r e s s
c t a u f f . . . . . . K i r chho f f s t r e s s in c o l l a g en f i b e r
c dd . . . . . . . . . Eu le r ian tangent
c
c Used :
c I4 . . . . . . . . . Fourth i nva r i an t I4 = ae_i∗ae_i
c w4 . . . . . . . . . F i r s t d e r i v a t i v e o f the s to r ed energy function
c with r e sp e c t to I4
c w44 . . . . . . . . Second d e r i v a t i v e o f the s to r ed energy function
c with r e sp e c t to I4
c axa . . . . . . . . ( ae x ae )
c dev_axa . . . . dev ( ae x ae )
c tempi . . . . . . pa r t s o f the mate r i a l tangent
c
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

implicit none

real ∗8 tau (6 ) , ae ( 3 ) , dd (6 , 6 ) , I4 , I4at , t au f f , w4 , w44
real ∗8 temp1 (6 , 6 ) , temp2 (6 , 6 ) , temp3 (6 , 6 ) , temp4 (6 , 6 ) , temp5 (6 , 6 )
real ∗8 dev_axa (6 ) , axa ( 6 ) , kC , lam , lmr , lmrmin , lmrmax
integer i , j

integer f f ! Current f i b e r fami l y
integer l ! Current quadrature po in t
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integer ndirv

real ∗8 I4r , I4rmin , I4rmax
real ∗8 dam

c Include header f i l e , g ene ra l in FEAP
include ’ comblk . h ’
include ’ i o f i l e . h ’
include ’ e l da ta . h ’
include ’ pconstant . h ’
include ’ po in t e r . h ’

c Include header f i l e , problem s p e c i f i c
include ’ grup . h ’

c I n i t i a l i z e I4
I4=0.0d0

c Compute 4 th i nva r i an t
do i= 1 ,3

I4 = I4 + ae ( i )∗ ae ( i )
enddo
lam = sqrt ( I4 )

c Ret r i eve number o f f i b e r f am i l i e s
ndirv = nint ( hr (up ( 2 ) ) )

c Store f o r th i nva r i an t f o r update o f rec ru i tment va r i ab l e
I4e ( f f , l , n ) = I4

c Compute recru i tment parameter I 4 r
c I 4 r = lamr ( f f , l , n )∗∗2
c I4rmin = lamrmin ( f f , l , n )∗∗2
c I4rmax = lamrmax ( f f , l , n )∗∗2

c In i n i a t i l z a t i o n I4 r i s undef ined
c i f ( I 4 r . eq . 0 . 0 d0 ) I 4 r = 1.01 d0
c i f ( I4rmin . eq . 0 . 0 d0 ) I4rmin = 1.01 d0
c i f ( I4rmax . eq . 0 . 0 d0 ) I4rmax = 1.01 d0

lmr = lamr ( f f , l , n )
lmrmin = lamrmin ( f f , l , n )
lmrmax = lamrmax ( f f , l , n )
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lmcmin ( f f , l , n ) = lam / lamrmax ( f f , l , n )
lmcmod( f f , l , n ) = lam / lamr ( f f , l , n )
lmcmax( f f , l , n ) = lam / lamrmin ( f f , l , n )

c Co l l e c t I4c va lue s f o r updating co l l a g en growth parameter
I4c ( f f , l , n ) = lmcmax( f f , l , n )
I4c ( ndirv+f f , l , n ) = lmcmod( f f , l , n )
I4c (2∗ ndirv+f f , l , n ) = lmcmin ( f f , l , n )

c Get W_4 and W_44
ca l l f ibd i s tdam (kC , lam , lmr , lmrmin , lmrmax ,dam, w4 , w44)

c Derive Ki rchho f f s t r e s s
ca l l vectorproduct ( ae , axa )

do i = 1 ,6
dev_axa ( i ) = axa ( i )

enddo

ca l l dev ia to r ( dev_axa )
t a u f f = w4
do i = 1 ,6

tau ( i ) = t au f f ∗dev_axa ( i )
enddo

c Compute e l a s t i c i t y t enso r

c Derive s p a t i a l tangent
do i = 1 ,6

do j = 1 ,6
temp1 ( i , j ) = 0 .0 d0

enddo
enddo

do i= 1 ,6
do j= i , 6

temp5 ( i , j ) = dev_axa ( i )∗dev_axa ( j )
enddo
do j= i , 3

temp1 ( i , j ) = dev_axa ( i )
enddo

enddo
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do i = 1 ,6
do j = 1 ,6

temp2 ( i , j ) = 0 .0 d0
temp3 ( i , j ) = 0 .0 d0

enddo
enddo

do i= 1 ,3
do j= i , 6

temp2 ( i , j ) = dev_axa ( j )
enddo
do j= i , 3

temp3 ( i , j ) = 1 .0 d0
enddo

enddo

do i = 1 ,6
do j = 1 ,6

temp4 ( i , j ) = 0 .0 d0
enddo

enddo

temp4 (1 ,1)=1.0 d0
temp4 (2 ,2)=1.0 d0
temp4 (3 ,3)=1.0 d0
temp4 (4 ,4)=0.5 d0
temp4 (5 ,5)=0.5 d0
temp4 (6 ,6)=0.5 d0

do i = 1 ,6
do j = 1 ,6

dd( i , j ) = 0 .0 d0
enddo

enddo

do i = 1 ,6
do j = 1 ,6

dd( i , j ) = −(2.0d0∗w4/3 .0 d0 ) ∗ ( temp1 ( i , j ) + temp2 ( i , j )
& −I4e ( f f , l , n ) ∗ ( temp4 ( i , j ) − one3∗temp3 ( i , j ) ) )

dd( i , j ) = dd( i , j ) + ( 2 . 0 d0∗w44)∗ temp5 ( i , j )
enddo

enddo
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c Symmetrize tangent
do i = 1 ,6

do j= i +1,6
dd( j , i ) = dd( i , j )

enddo
enddo

1000 return

end
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The following is the code contained in fibdistdam.f

subroutine f ibd i s tdam (kC , lam ,me,mu,ma,dam, g , h)

c Purpose :
c De r i va t i v e s with r e sp e c t to the four th i nva r i an t
c

c
c Input :
c kC . . . . . . . Col lagen mate r i a l parameter
c me . . . . . . . Mean recru i tment i nva r i an t in the t r i a n g l e d i s t r i b u t i o n (I4_R^mean)
c mu . . . . . . . Minimum recru i tment i nva r i an t in the t r i a n g l e d i s t r i b u t i o n (I4_R^min)
c ma . . . . . . . Maximum recru i tment i nva r i an t in the t r i a n g l e d i s t r i b u t i o n (I4_R^max)
c I4 . . . . . . . Fourth i nva r i an t
c
c Output :
c g . . . . . . . F i r s t d e r i v a t i v e o f the stored−energy function
c with r e sp e c t to the f ou r t i nva r i an t
c h . . . . . . . Second d e r i v a t i v e o f the stored−energy function
c with r e sp e c t to the f ou r t i nva r i an t
c
c Used :
c gamm
c de l t
c
c===============================================================

implicit none

real ∗8 g , h , lam , kC , mu, me , ma, gamm, de l t , dam

gamm = 2 . d0 ∗ kC / ( (ma−mu)∗ (me−mu) )
d e l t = 2 . d0 ∗ kC / ( (ma−mu)∗ (ma−me) )

i f ( lam . le .mu) then
g = 0 . d0
h = 0 . d0

e l s e i f ( lam . le .me) then
g = gamm ∗ ( (mu+lam)∗ log ( lam/mu) + 2 . d0 ∗ (mu−lam ) )
h = gamm ∗ ( log ( lam/mu) + mu/lam − 1 . d0 )

e l s e i f ( lam . le .ma) then
g = gamm ∗ ( (mu+lam)∗ log (me/mu) +mu−me + (mu/me −1.d0 )∗ lam )
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1 − de l t ∗ ( (ma+lam)∗ log ( lam/me) +ma+me − (ma/me +1.d0 )∗ lam )
h = gamm ∗ ( log (me/mu)+mu/me−1.d0 )

1 −de l t ∗( log ( lam/me)+ma/lam−ma/me)
else

g = gamm ∗ ( (mu+lam)∗ log (me/mu) + mu−me + (mu/me −1.d0 )∗ lam )
1 − de l t ∗ ( (ma+lam)∗ log (ma/me) −ma+me − (ma/me−1.d0 )∗ lam )

h = gamm∗( log (me/mu)+mu/me−1.d0)−de l t ∗( log (ma/me)−ma/me+1.d0 )
endif

g = (1−dam)∗ g /(2∗ lam )
h = (1−dam)∗h/(2∗ lam )

end
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The following is the code contained in activestressd.f

c Editor : Thomas S .E. Er iksson

c subroutine g r c o l l f i b e r sm l ( f f , l , k1 , k2 , ae , tau , dd)
subroutine a c t i v e s t r e s s d ( l , kMa, lmi , lmo , lma , bb ,dam, kt , tau , taum , dd)

c Purpose :
c Compute k i r c hh o f f s t r e s s and e u l e r i a n tangent moduli
c o f a t r a n s v e r s a l l y i s o t r o p i c mate r i a l

c Input :
c kMa . . . . . . . . . . . . . . Mater ia l parameter f o r a c t i v e re sponse
c lmo/mi/ma . . . . . . . . Lambda_mod/min/max in a c t i v e s t r e s s equat ion
c bb . . . . . . . . . . . . . . . Le f t Cauchy−Green tenso r
c
c
c Output :
c tau . . . . . . . . K i r chho f f s t r e s s
c t a u f f . . . . . . K i r chho f f s t r e s s in c o l l a g en f i b e r
c dd . . . . . . . . . Eu le r ian tangent
c
c Used :
c I4 . . . . . . . . . Fourth i nva r i an t I4 = ae_i∗ae_i
c w4 . . . . . . . . . F i r s t d e r i v a t i v e o f the s to r ed energy function
c with r e sp e c t to I4
c w44 . . . . . . . . Second d e r i v a t i v e o f the s to r ed energy function
c with r e sp e c t to I4
c axa . . . . . . . . ( ae x ae )
c dev_axa . . . . dev ( ae x ae )
c tempi . . . . . . pa r t s o f the mate r i a l tangent
c
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

implicit none

real ∗8 tau (6 ) , bb (6 ) , ae ( 3 ) , dd (6 , 6 ) , I4at , taum , w4 , w44
real ∗8 I4mt , I 4 c i r c , I4mh
real ∗8 I4M_min , I4M_mod, I4M_max
real ∗8 temp1 (6 , 6 ) , temp2 (6 , 6 ) , temp3 (6 , 6 ) , temp4 (6 , 6 ) , temp5 (6 , 6 )
real ∗8 dev_axa (6 ) , axa (6 ) , kMa, lmo , lmi , lma
real ∗8 dam, kt
integer i , j , l , e ln
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c Include header f i l e , g ene ra l in FEAP
include ’ comblk . h ’
include ’ i o f i l e . h ’
include ’ e l da ta . h ’
include ’ pconstant . h ’
include ’ po in t e r . h ’

c Include header f i l e , problem s p e c i f i c
include ’ grup . h ’
include ’ vsmc . h ’

c I4mh = 1.1025 d0

I 4 c i r c = 0 .0 d0 ! c i r c um f e r en t i a l t i s s u e s t r e t c h
do i= 1 ,3

I 4 c i r c = I 4 c i r c + bb( i )∗bb( i )
enddo
I4_c i rc ( l , n ) = I 4 c i r c

i f ( I4m_r( l , n ) . eq . 0 . 0 d0 ) then
I4m_r( l , n ) = 1 .00 d0

endif

I4m( l , n ) = I4_c i rc ( l , n ) / I4m_r( l , n )
I4mt = I4m( l , n )

c Get W_4 and W_44
ca l l act ivec ircumfdam (kMa, lmi , lmo , lma , I4mt , dam, kt , w4 , w44)
taum = w4

c Derive Ki rchho f f s t r e s s
ca l l vectorproduct (bb , axa )

do i = 1 ,6
dev_axa ( i ) = axa ( i )

enddo
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ca l l dev ia to r ( dev_axa )
do i = 1 ,6

tau ( i ) = taum∗dev_axa ( i )
enddo

c Compute e l a s t i c i t y t enso r

c Derive s p a t i a l tangent
do i = 1 ,6

do j = 1 ,6
temp1 ( i , j ) = 0 .0 d0

enddo
enddo

do i= 1 ,6
do j= i , 6

temp5 ( i , j ) = dev_axa ( i )∗dev_axa ( j )
enddo
do j= i , 3

temp1 ( i , j ) = dev_axa ( i )
enddo

enddo

do i = 1 ,6
do j = 1 ,6

temp2 ( i , j ) = 0 .0 d0
temp3 ( i , j ) = 0 .0 d0

enddo
enddo

do i= 1 ,3
do j= i , 6

temp2 ( i , j ) = dev_axa ( j )
enddo
do j= i , 3

temp3 ( i , j ) = 1 .0 d0
enddo

enddo

do i = 1 ,6
do j = 1 ,6

temp4 ( i , j ) = 0 .0 d0
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enddo
enddo

temp4 (1 ,1)=1.0 d0
temp4 (2 ,2)=1.0 d0
temp4 (3 ,3)=1.0 d0
temp4 (4 ,4)=0.5 d0
temp4 (5 ,5)=0.5 d0
temp4 (6 ,6)=0.5 d0

do i = 1 ,6
do j = 1 ,6

dd( i , j ) = 0 .0 d0
enddo

enddo

do i = 1 ,6
do j = 1 ,6

dd( i , j ) = −(2.0d0∗w4/3 .0 d0 ) ∗ ( temp1 ( i , j ) + temp2 ( i , j )
& −I4mt∗ ( temp4 ( i , j ) − one3∗temp3 ( i , j ) ) )

dd( i , j ) = dd( i , j ) + ( 2 . 0 d0∗w44)∗ temp5 ( i , j )
enddo

enddo

c Symmetrize tangent
do i = 1 ,6

do j= i +1,6
dd( j , i ) = dd( i , j )

enddo
enddo

1000 return

end
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The following is the code contained in activecircumfd.f

subroutine act ivec ircumfdam (kMa, lmin , lmod , lmax , I4m ,dam, kt , g , h )

c Purpose :
c De r i va t i v e s with r e sp e c t to the four th i nva r i an t
c

c
c Input :
c kC . . . . . . . Col lagen mate r i a l parameter
c me . . . . . . . Mean recru i tment i nva r i an t in the t r i a n g l e d i s t r i b u t i o n (I4_R^mean)
c mu . . . . . . . Minimum recru i tment i nva r i an t in the t r i a n g l e d i s t r i b u t i o n (I4_R^min)
c ma . . . . . . . Maximum recru i tment i nva r i an t in the t r i a n g l e d i s t r i b u t i o n (I4_R^max)
c I4 . . . . . . . Fourth i nva r i an t
c
c Output :
c g . . . . . . . F i r s t d e r i v a t i v e o f the stored−energy function
c with r e sp e c t to the f ou r t i nva r i an t
c h . . . . . . . Second d e r i v a t i v e o f the stored−energy function
c with r e sp e c t to the f ou r t i nva r i an t
c
c Used :
c gamm
c de l t
c
c===============================================================

implicit none

real ∗8 g , h , lmin , lmod , lmax , I4m , kMa, tmp , lam , dam, kt

lam = sqrt ( I4m)

i f ( ( lam . ge . lmin ) .AND. ( lam . le . lmax ) ) then
g = kMa ∗ kt ∗ lam ∗ ( 1 − ( ( lam − lmod )/( lmod − lmin ))∗∗2 )

tmp = ( lmod − lmin )∗∗(−2)
h = kMa∗kt ∗( 1 − tmp∗ ( ( lam − lmod )∗∗2)

1 − 2∗tmp∗ lam ∗( lam − lmod ) ) / (2 ∗ lam )
else

g = 0 .0 d0
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h = 0 .0 d0
endif

g = (1−dam)∗ g
h = (1−dam)∗h

end



Appendix C

The following are input files to the main program that have been used for the
verification of the implementations described in Chapter 3 and for the finite element
model of cerebral vasospasm described in Chapter 4.

The following is the input file for the verification of the correct implementation of the
material model for collagen:

f eap ∗∗ Biax i a l t e s t − Andri i Grytsan
0 0 3 3 3 8

mate r i a l 1 ! Media
s o l i d
f i n i t e
mixed
ucons cacg 1 .000 e+06 0 .000 e−02 9 .300 e−02 5 .800 e+00 0 .000 e+01
! ud vec t o r

rpar ! I4a a lpha be ta recrmean recrmin recrmax atmod atmin atmax
2
1 .195 0 .6 1 .0 1 .3684 1 .2381 1 .5294 0 .95 0 .85 1 .05

vo lg ! v o l g r (0 3) e l v g (0 3) v o l f r a c : ( e last inM , collagenM , e las t inA , co l lagenA )
3 0 0 .18 0 .075 0 .0 0 .075

epar ! f e0 cmin Tend muv Lvf lambda_z
1 .0 0 .2 10 .0 20 .0 0 .0737 1 .2

237
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BLOCK
CARTESIAN 4 4 1
BRICK 8
1 0 .0 0 .0 0 . 0
2 1 .0 0 .0 0 . 0
3 1 .0 1 .0 0 . 0
4 0 .0 1 .0 0 . 0
5 0 .0 0 .0 1 . 0
6 1 .0 0 .0 1 . 0
7 1 .0 1 .0 1 . 0
8 0 .0 1 .0 1 . 0

EBOUN
1 0 .0 1 .0 0 .0 0 .0 ! 1 s t column : which coord ina te i s f i x e d
1 1 .0 1 .0 0 .0 0 .0 ! 2nd column : va lue o f f i x e d coord ina te
2 0 .0 0 .0 1 .0 0 .0 ! 3 ,4 ,5 th column : which o f the t h r ee d i sp lacement s i s de f ined (=1) or f r e e (=0)
2 1 .0 0 .0 1 .0 0 .0
3 0 .0 0 .0 0 .0 1 .0

EDISP
1 0 .0 0 .0 0 .0 0 .0 ! a t x1=0 you have u1=0 (u=disp lacement )
1 1 .0 0 .5 0 .0 0 .0
2 0 .0 0 .0 0 .0 0 .0
2 1 .0 0 .0 0 .5 0 .0
3 0 .0 0 .0 0 .0 0 .0

NDIR
1 50 2 0

1 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
2 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
3 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
4 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
5 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
6 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
7 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
8 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
9 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
10 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
11 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
12 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
13 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
14 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
15 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
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16 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
17 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
18 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
19 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
20 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
21 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
22 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
23 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
24 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
25 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
26 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
27 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
28 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
29 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
30 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
31 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
32 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
33 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
34 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
35 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
36 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
37 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
38 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
39 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
40 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
41 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
42 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
43 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
44 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
45 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
46 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
47 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
48 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
49 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
50 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0

fdno
INCLude input /FD. dat

end
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! i n t e r

BATCH
te l n
gmac , i n i t
op t i
check
time , set ,−1.00E+00
to l , , 1 . 0 e−10
prop , , 1 ! p r opo r t i ona l load s t ep 1
dt , , 0 . 0 2 00
s t r e node
tvtk , grow
! t v t k , wr i t
! Loading − s t r e t c h , pre s sure
LOOP time 50

time
LOOP newton 10

tang , , 1
NEXT newton
s t r e node 5
tvtk , grow

NEXT time

! −−−− Second load s t ep −−−−
! dt , , 0 . 0 2
! prop , , 1
!LOOP time 450
! time
! LOOP newton 30
! tang , , 1
! NEXT newton
! s t r e node
! gmac , recd
! t v t k , grow
!NEXT time

END
1 1 −1.0 0 .001 0 .00 1 .00 0 .00 0 .00 0 .00 1 .00
1 2 0 .001 20 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00

SAVE
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STOP
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The following is the input file for the verification of the correct implementation of
collagen remodelling:

f eap ∗∗ Biax i a l t e s t − Andri i Grytsan
0 0 3 3 3 8

mate r i a l 1 ! Media
s o l i d
f i n i t e
mixed
ucons cacg 1 .000 e+04 0 .000 e−02 9 .300 e−02 5 .800 e+00 1 .100 e−02 4 .510 e−02
! ud vec t o r

rpar ! I4a a lpha be ta recrmean recrmin recrmax I4mod I4min I4max
2
1 .195 2 .0 1 .0 1 .25 1 .11 1 .67 0 .95 0 .85 1 .05 ! 0.9025 0.7225 1.1025

vo lg ! v o l g r (0 3) e l v g (0 3) v o l f r a c : ( e last inM , collagenM , e las t inA , co l lagenA )
3 0 0 .18 0 .075 0 .0 0 .075

epar ! f e0 cmin Tend muv Lvf lambda_z
1 .0 0 .2 10 .0 20 .0 0 .0737 1 .2

BLOCK
CARTESIAN 4 4 1
BRICK 8
1 0 .0 0 .0 0 . 0
2 1 .0 0 .0 0 . 0
3 1 .0 1 .0 0 . 0
4 0 .0 1 .0 0 . 0
5 0 .0 0 .0 1 . 0
6 1 .0 0 .0 1 . 0
7 1 .0 1 .0 1 . 0
8 0 .0 1 .0 1 . 0

EBOUN
1 0 .0 1 .0 0 .0 0 .0 ! 1 s t column : which coord ina te i s f i x e d
1 1 .0 1 .0 0 .0 0 .0 ! 2nd column : va lue o f f i x e d coord ina te
2 0 .0 0 .0 1 .0 0 .0 ! 3 ,4 ,5 th column : which o f the t h r ee d i sp lacement s i s de f ined (=1) or f r e e (=0)
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2 1 .0 0 .0 1 .0 0 .0
3 0 .0 0 .0 0 .0 1 .0

EDISP
1 0 .0 0 .0 0 .0 0 .0 ! a t x1=0 you have u1=0 (u=disp lacement )
1 1 .0 0 .5 0 .0 0 .0
2 0 .0 0 .0 0 .0 0 .0
2 1 .0 0 .0 0 .5 0 .0
3 0 .0 0 .0 0 .0 0 .0

NDIR
1 50 2 0

1 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
2 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
3 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
4 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
5 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
6 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
7 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
8 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
9 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
10 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
11 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
12 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
13 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
14 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
15 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
16 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
17 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
18 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
19 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
20 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
21 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
22 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
23 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
24 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
25 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
26 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
27 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
28 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
29 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
30 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
31 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
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32 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
33 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
34 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
35 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
36 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
37 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
38 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
39 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
40 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
41 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
42 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
43 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
44 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
45 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
46 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
47 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
48 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
49 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
50 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0

fdno
INCLude input /FD. dat

end

! i n t e r

BATCH
te l n
gmac , i n i t
op t i
check
time , set ,−1.00E+00
to l , , 1 . 0 e−10
prop , , 1 ! p r opo r t i ona l load s t ep 1
dt , , 0 . 0 2 00
s t r e node
tvtk , grow
! t v t k , wr i t
! Loading − s t r e t c h , pre s sure
LOOP time 50
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time
LOOP newton 10

tang , , 1
NEXT newton
s t r e node 5
tvtk , grow

NEXT time

! −−−− Second load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 450

time
LOOP newton 30

tang , , 1
NEXT newton
s t r e node
gmac , recd
tvtk , grow

NEXT time

END
1 1 −1.0 0 .001 0 .00 1 .00 0 .00 0 .00 0 .00 1 .00
1 2 0 .001 20 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00

SAVE

STOP
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The following is the input file for the verification of the correct implementation of the
material model for VSMCs with active stress response:

f eap ∗∗ Biax i a l t e s t − Andri i Grytsan
0 0 3 3 3 8

mate r i a l 1 ! Media
s o l i d
f i n i t e
mixed
ucons cacg 1 .000 e+04 0 .000 e−02 9 .300 e−02 5 .800 e+00 1 .100 e−02 4 .510 e−02
! ud vec t o r

rpar ! I4a a lpha be ta recrmean recrmin recrmax
2
1 .195 0 .6 1 .0 1 .3684 1 .2381 1 .5294

vo lg ! v o l g r (0 3) e l v g (0 3) v o l f r a c : ( e last inM , collagenM , e las t inA , co l lagenA )
3 0 0 .18 0 .075 0 .0 0 .075

epar ! f e0 cmin Tend muv Lvf lambda_z
1 .0 0 .2 10 .0 20 .0 0 .0737 1 .2

BLOCK
CARTESIAN 4 4 1
BRICK 8
1 0 .0 0 .0 0 . 0
2 1 .0 0 .0 0 . 0
3 1 .0 1 .0 0 . 0
4 0 .0 1 .0 0 . 0
5 0 .0 0 .0 1 . 0
6 1 .0 0 .0 1 . 0
7 1 .0 1 .0 1 . 0
8 0 .0 1 .0 1 . 0

EBOUN
1 0 .0 1 .0 0 .0 0 .0 ! 1 s t column : which coord ina te i s f i x e d
1 1 .0 1 .0 0 .0 0 .0 ! 2nd column : va lue o f f i x e d coord ina te
2 0 .0 0 .0 1 .0 0 .0 ! 3 ,4 ,5 th column : which o f the t h r ee d i sp lacement s i s de f ined (=1) or f r e e (=0)
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2 1 .0 0 .0 1 .0 0 .0
3 0 .0 0 .0 0 .0 1 .0

EDISP
1 0 .0 0 .0 0 .0 0 .0 ! a t x1=0 you have u1=0 (u=disp lacement )
1 1 .0 0 .5 0 .0 0 .0
2 0 .0 0 .0 0 .0 0 .0
2 1 .0 0 .0 0 .5 0 .0
3 0 .0 0 .0 0 .0 0 .0

NDIR
1 50 2 0

1 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
2 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
3 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
4 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
5 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
6 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
7 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
8 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
9 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
10 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
11 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
12 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
13 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
14 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
15 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
16 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
17 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
18 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
19 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
20 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
21 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
22 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
23 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
24 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
25 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
26 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
27 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
28 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
29 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
30 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
31 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
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32 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
33 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
34 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
35 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
36 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
37 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
38 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
39 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
40 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
41 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
42 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
43 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
44 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
45 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
46 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
47 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
48 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
49 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0
50 0.7071067812 0.7071067812 0 −0.7071067812 0.7071067812 0

fdno
INCLude input /FD. dat

end

! i n t e r

BATCH
te l n
gmac , i n i t
op t i
check
to l , , 1 . 0 e−10
prop , , 1 ! p r opo r t i ona l load s t ep 1
dt , , 0 . 0 1000
s t r e node
tvtk , grow
! t v t k , wr i t
! Loading − s t r e t c h , pre s sure
LOOP time 100

time
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LOOP newton 30
tang , , 1

NEXT newton
s t r e node 5
tvtk , grow

NEXT time

! t v t k , grow

SAVE

END
1 1 0 1 .0001 0 .00 1 .00 0 .00 0 .00 0 .00 1 .00

STOP
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The following is the input file for the verification of the correct implementation of
VSMC remodelling:

f eap ∗∗ Biax i a l t e s t − Andri i Grytsan
0 0 3 3 3 8

mate r i a l 1 ! Media
s o l i d
f i n i t e
mixed
ucons cacg 1 .000 e+04 0 .000 e−02 9 .300 e−02 5 .800 e+00 1 .100 e−02 4 .510 e−02
! ud vec t o r

mate r i a l 2
p r e s su r e
load 1 .600 e−02 ! un i t s shou ld be c on s i s t e n t wi th mater ia l parameters
f o l l ow e r ! l oad f o l l o w s the sur face , i . e . i s app l i e d in curren t con f i g

rpar ! I4a a lpha be ta recrmean_t0 recrmin_t0 recrmax_t0 I4mod_at I4min_at I4max_at I4mh I4mrh
2
1 2 .0 1 .0 1 .25 1 .10 1 .45 0 .95 0 .85 1 .05 1 .15 1 .139

vo lg ! v o l g r (0 3) e l v g (0 3) v o l f r a c : ( e last inM , collagenM , e las t inA , co l lagenA )
3 0 0 .18 0 .075 0 .0 0 .075

epar ! f e0 cmin Tend muv Lvf lambda_z
1 .0 0 .2 10 .0 20 .0 0 .0737 2

COORdinates
INCLude input / cy l . node

ELEMents
INCLude input / cy l . elem

EBOUNdary
1 0 .0 1 0 0
2 0 .0 0 1 0
3 0 .0 0 0 1
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3 0 .0125 0 0 1

EDISPlacements
1 0 .0 0 0 0
2 0 .0 0 0 0
3 0 .0 0 0 0
3 0 .0125 0 0 0 .0025

INCLude input / cy l . d i rv

fdno
INCLude input /FD. dat

end

! INTEractive

BATCH
te l n
gmac , i n i t
op t i
check
time , set ,−1.00E+00
to l , , 1 . 0 e−10
prop , , 1 ! p r opo r t i ona l load s t ep 1
dt , , 0 . 0 2
! SOLVE FOR EQUILIBRIUM TO ACCOMMODATE ACTIVE STRESS!
LOOP newton 10

utan , , 1
NEXT newton
! END SOLVE
s t r e node
tvtk , grow

! Loading − s t r e t c h , pre s sure
LOOP time 50

time
LOOP newton 10

utan , , 1
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NEXT newton
s t r e node
tvtk , grow

NEXT time

! −−−− Second load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 450

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node
gmac , recd
gmac , vsmh
tvtk , grow

NEXT time

! t v t k , grow

! −−−− Third load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 500

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node
gmac , ksup
tvtk , grow

NEXT time

! −−− Fourth load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 500

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node
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tvtk , grow
gmac , vsmh

NEXT time

END
1 1 −1.000 00 .001 0 .00 1 .00 0 .00 0 .00 0 .00 1 .00
1 2 00 .000 09 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00
1 3 09 .000 19 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00
1 4 19 .000 29 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00

SAVE

STOP



254

The following is the input file for the verification of the correct implementation of
damage:

f eap ∗∗ Biax i a l t e s t − Andri i Grytsan
0 0 3 3 3 8

mate r i a l 1 ! Media
s o l i d
f i n i t e
mixed
ucons cacg 1 .000 e+04 0 .000 e−02 9 .300 e−02 5 .800 e+00 1 .100 e−02 4 .510 e−02
! ud vec t o r

mate r i a l 2
p r e s su r e
load 1 .600 e−02 ! un i t s shou ld be c on s i s t e n t wi th mater ia l parameters
f o l l ow e r ! l oad f o l l o w s the sur face , i . e . i s app l i e d in curren t con f i g

rpar ! I4a a lpha be ta recrmean_t0 recrmin_t0 recrmax_t0 I4mod_at I4min_at I4max_at I4mh I4mrh
2
1 2 .0 1 .0 1 .25 1 .10 1 .45 0 .9025 0 .7225 1 .1025 1 .3225 0 .9495

vo lg ! v o l g r (0 3) e l v g (0 3) v o l f r a c : ( e last inM , collagenM , e las t inA , co l lagenA )
3 0 0 .18 0 .075 0 .0 0 .075

epar ! f e0 cmin Tend muv Lvf lambda_z
1 .0 0 .2 10 .0 20 .0 0 .0737 2

COORdinates
INCLude input / cy l . node

ELEMents
INCLude input / cy l . elem

EBOUNdary
1 0 .0 1 0 0
2 0 .0 0 1 0
3 0 .0 0 0 1
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3 0 .0125 0 0 1

EDISPlacements
1 0 .0 0 0 0
2 0 .0 0 0 0
3 0 .0 0 0 0
3 0 .0125 0 0 0 .0025

INCLude input / cy l . d i rv

fdno
INCLude input /FD. dat

end

! INTEractive

BATCH
te l n
gmac , i n i t
op t i
check
time , set ,−1.00E+00
to l , , 1 . 0 e−10
prop , , 1 ! p r opo r t i ona l load s t ep 1
dt , , 0 . 0 2 00
! SOLVE FOR EQUILIBRIUM TO ACCOMMODATE ACTIVE STRESS!
LOOP newton 10

utan , , 1
NEXT newton
! END SOLVE
s t r e node
tvtk , grow
! t v t k , wr i t
! Loading − s t r e t c h , pre s sure
LOOP time 50

time
LOOP newton 10

utan , , 1
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NEXT newton
s t r e node
tvtk , grow

NEXT time

! −−−− Second load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 450

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node

gmac , recd
gmac , vsmh
tvtk , grow

NEXT time

! t v t k , grow

! −−−− Third load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 500

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node
gmac , ksup
gmac , vsmh
tvtk , grow

NEXT time

! −−− Fourth load s t ep −−−−
NEWForce
dt , , 0 . 0 0 1
prop , , 1
LOOP time 1000

time
LOOP newton 30

utan , , 1
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NEXT newton
s t r e node
tvtk , grow
gmac ,dmgm

NEXT time

END
1 1 −1.000 00 .001 0 .00 1 .00 0 .00 0 .00 0 .00 1 .00
1 2 00 .000 09 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00
1 3 09 .000 19 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00
1 4 19 .000 20 .001 1 .00 0 .75 0 .00 0 .00 0 .00 1 .00

SAVE

STOP
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The following is the input file for the finite element model of cerebral vasospasm and
treatment:

f eap ∗∗ Biax i a l t e s t − Andri i Grytsan
0 0 3 3 3 8

mate r i a l 1 ! Media
s o l i d
f i n i t e
mixed
ucons cacg 1 .000 e+04 0 .000 e−02 9 .300 e−02 5 .800 e+00 1 .100 e−02 4 .510 e−02
! ud vec t o r

mate r i a l 2
p r e s su r e
load 1 .600 e−02 ! un i t s shou ld be c on s i s t e n t wi th mater ia l parameters
f o l l ow e r ! l oad f o l l o w s the sur face , i . e . i s app l i e d in curren t con f i g

rpar ! I4a a lpha be ta recrmean_t0 recrmin_t0 recrmax_t0 I4mod_at I4min_at I4max_at I4mh I4mrh
2
1 2 .0 1 .0 1 .37 1 .24 1 .53 0 .95 0 .85 1 .05 1 .3225 1 .28

vo lg ! v o l g r (0 3) e l v g (0 3) v o l f r a c : ( e last inM , collagenM , e las t inA , co l lagenA )
3 0 0 .18 0 .075 0 .0 0 .075

epar ! f e0 cmin Tend muv Lvf lambda_z
1 .0 0 .2 10 .0 20 .0 0 .0737 2

COORdinates
INCLude input / cy l . node

ELEMents
INCLude input / cy l . elem

EBOUNdary
1 0 .0 1 0 0
2 0 .0 0 1 0
3 0 .0 0 0 1
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3 0 .0125 0 0 1

EDISPlacements
1 0 .0 0 0 0
2 0 .0 0 0 0
3 0 .0 0 0 0
3 0 .0125 0 0 0 .0025

INCLude input / cy l . d i rv

fdno
INCLude input /FD. dat

end

! INTEractive

BATCH
te l n
gmac , i n i t
op t i
check
time , set ,−1.00E+00
to l , , 1 . 0 e−10
prop , , 1 ! p r opo r t i ona l load s t ep 1
dt , , 0 . 0 2 00
! SOLVE FOR EQUILIBRIUM TO ACCOMMODATE ACTIVE STRESS!
LOOP newton 10

utan , , 1
NEXT newton
! END SOLVE
s t r e node
tvtk , grow
! t v t k , wr i t
! Loading − s t r e t c h , pre s sure
LOOP time 50

time
LOOP newton 10

utan , , 1
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NEXT newton
s t r e node
tvtk , grow

NEXT time

! −−−− Second load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 450

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node

gmac , recd
gmac , vsmh
tvtk , grow

NEXT time

! t v t k , grow

! −−−− Third load s t ep −−−−
dt , , 0 . 0 2
prop , , 1
LOOP time 500

time
LOOP newton 30

utan , , 1
NEXT newton
s t r e node
gmac , ksrm
gmac , vsmh
tvtk , grow

NEXT time

! −−− Fourth load s t ep −−−−
NEWForce
dt , , 0 . 0 0 1
prop , , 1
LOOP time 1000

time
LOOP newton 30

utan , , 1
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NEXT newton
s t r e node
tvtk , grow

gmac ,dmgm
NEXT time

END
1 1 −1.000 00 .001 0 .00 1 .00 0 .00 0 .00 0 .00 1 .00
1 2 00 .000 09 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00
1 3 09 .000 19 .001 1 .00 0 .00 0 .00 0 .00 0 .00 1 .00
1 4 19 .000 20 .001 1 .00 0 .75 0 .00 0 .00 0 .00 1 .00

SAVE

STOP
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