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Abstract

Gravity currents are flows that are driven by a density difference and include pyro-

clastic flows, landslides and turbidity currents. Gravity currents can be a geohazard

and have significant economic impact to connected industries. This thesis focuses

on two important questions relating to gravity current dynamics: How do pulses

or surges affect the flow dynamics? And, how does a viscosity contrast affect the

mixing process between the current and its ambient?

Real-world gravity current flows rarely exist as a single discrete event, but are instead

made up of multiple surges. These are studied by the sequential release of two lock

gates. The first release creates a gravity current, while the second creates a pulse

that eventually propagates to the head of the first current. A shallow-water model

is used to analyse the flow structure in terms of two parameters: the densimetric

Froude number at the head of the current, Fr, and a dimensionless time between

releases, tre. The pulse speed exhibits negative acceleration for a region of (Fr, tre)-

space. Critically for sediment-laden gravity currents, pulsed flows may change from

erosional to depositional further affecting their dynamics. Experimental modelling

using glycerol/water mixtures reveals that the pulse can cause a rapid dilution of

the current and transition to fully turbulent behaviour.

In a lock-exchange configuration, the effect of a viscosity contrast between the ambi-

ent and the current is studied using fully resolved direct numerical simulation of the

Navier-Stokes equations. Viscosity acts to both dissipate energy in the bulk of the

current and locally inhibit mixing at the interface. Energy lost to viscous heating is

dominant when the viscosity contrast is large, i.e. ten times the ambient. However,

when the viscosity contrast is small but non-zero, the reduced mixing of the current

enables a more efficient transfer between kinetic and potential energy and the total

energy lost to mixing and viscous dissipation is reduced when compared to an equal

viscosity case.
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speed of the head, ẊN , and pulse, Ẋs, (d-f) for all of the experiments

conducted for the following cases: RD77-1/2 (a&d), RD84-1/2 (b&e)

and RD90-3/8 (c&f). Pulse separation times tre are displayed on the

t axis for each case: (a) 2.48, (b) 2.33 and (c) 3.36. . . . . . . . . . . 86



xiii

3.23 Snapshots from the RD90-1/8 case after tre = 23.6. Initially (top

left), the pulse is predominantly in the second current (blue or darker

fluid). The pulse gradually transitions into the first current (top

right) and completely separates from the second current (bottom).

Over time the pulse becomes wider and less pronounced. . . . . . . . 87

3.24 Pulse arriving at the head for the RD77-1/2 case with release time

tre = 2.48. The pulse arrives from the left and reaches the head of

the current (top three images corresponding to t = 10.67, 12, 13.3).

However, the current remains relatively dense until over 2 lock-lengths

further downstream (bottom image at t = 21). Each image is approx-

imately 35 cm wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.25 Pulse arriving at the head for the RD84-1/8 case with release time

tre = 8.6. The pulse arrives from the left and, but becomes indistin-

guishable from the current before it reaches the head (the three images

correspond to t = 24.1, 27.5, 31). Each image is approximately 25

cm wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.26 Pulse arriving at the head for the RD90-3/8 case with release time

tre = 3.36. The pulse arrives from the left and, but becomes indistin-

guishable from the current before it reaches the head. (three images

correspond to t = 14.9, 17.5, 20.2). Each image is approximately 25

cm wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.27 (a) Head position against time and (b) head velocity against time for

the single release experiments, xN , and shallow-water simulations, XN

for concentration, 0.77, 0.84 and 0.90 and Froude numbers, Fr, 0.88,

0.83 and 0.80, respectively. Head position is plotted on the x-axis for

comparison with the characteristic diagrams in chapter 2. . . . . . . 91

3.28 Shock position for the experiments, Xs, and the shallow-water model,

xs, at different gate release separation times, tre: (a) concentration

0.84 (Fr = 0.80) and (b) concentration 0.90 (Fr = 0.77). . . . . . . 93

3.29 Shock velocity for the experiments, Ẋs, and the shallow-water model,
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Chapter 1

Introduction

Gravity currents are flows driven by pressure gradients resulting from density dif-

ferences. These may be the result of temperature, suspended sediment or salinity

differences. Gravity currents form significant geophysical flows in atmospheric, ter-

restrial and subaqueous environments. Examples include landslides, avalanches,

turbidity currents, pyroclastic currents and lahars (Simpson, 1997). A pyroclas-

tic current produced by an eruption of the Soufriére hills volcano, Montserrat is

displayed in figure 1.1. Pyroclastic currents are comprised of a hot gas with a sus-

pension of particles which creates an excess density to the surrounding air (Doyle

et al., 2010). They can attain speeds of hundreds of metres per second (Doyle et al.,

2010), travel for greater than 100 km and transport blocks of nearly a metre in

diameter (Roche et al., 2016). The majority of fatalities from volcanic eruptions are

associated with pyroclastic currents (Breard and Lube, 2017). Generally, gravity

currents are restricted to the study of flows along (nearly) horizontal boundaries

and closely related problems, such as a liquid protruding in between a less dense

and a more dense layer, or a stratified density gradient are classed as intrusions

(Ungarish, 2009). When the pressure gradients drive the flow vertically, flows are

often classed as plumes (Turner, 1979; Woods, 2010). Although the driving forces

are the same, differing flow dynamics are observed.

Two significant types of underwater gravity currents are sub-aqueous de-

bris flows and turbidity currents, figure 1.2. Both have a density difference with the

surrounding water caused by the presence of suspended sediment and are the dom-

inant process for transporting sediment from shallow to deep water environments

(Meiburg and Kneller, 2010). One mechanism of initiation for sub-aqueous debris

flows is the geotechnical failure of the sea-floor. The resulting sea-floor landslide

suspends a large amount of sediment, causing a pressure differential driving the cur-



2

Figure 1.1: Pyroclastic flow produced by an eruption of the Soufriére hills volcano,
Montserrat. Image published by Huppert (2006) and taken by R. S. J. Sparks.

rent down the slope. A single flow can transport 100 km3 (Piper et al., 1999), which

is roughly ten years worth of sediment transported by all the world’s rivers (Milli-

man and Syvitski, 1992). Sub-aqueous debris flows have their sediment supported

by matrix strength (particle-particle interaction), exhibit laminar flow character-

istics and non-Newtonian behaviour such as yield strength and shear-thinning or

shear-thickening (Talling et al., 2012). Further, a wide range of particle sizes can

be observed ranging from silts to sands and even cobbles and boulders (De Bla-

sio et al., 2011). Turbidity currents produce graded deposits (turbidites) by the

preferential settling of larger grains, figure 1.3. Debris flow deposits (debrites) are

associated with en masse settling, where the entire flow, or parts of it, arrest almost

instantaneously (Amy and Talling, 2006).

Sub-aqueous debris flows can transition into turbidity currents through a

variety of mechanisms discussed by Felix and Peakall (2006):

� Instant or gradual liquefaction of part or the entire initial sediment mass (Kue-

nen and Migliorini, 1950);

� Ingestion of water underneath the head of the debris flow (Allen, 1971);

� Progressive disintegration, i.e. the continual break up into smaller parts

(Schwarz, 1982);
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(a) (b)

Figure 1.2: Sandy debris flow produced in the laboratory. Image published in
De Blasio et al. (2011). b - Laboratory scale turbidity current. Image published in
Sequeiros et al. (2010)

� Dilution through a hydraulic jump (van Andel and Komar, 1969);

� Erosion of material by shear at the head (Hampton, 1972); and

� Turbulent mixing with the overlying layer of water as a result of the waves

and instabilities (Morgenstern, 1967).

(a) (b)

Figure 1.3: (a) - Turbidite deposit consisting of a upwards-fining sandstone, a silt-
stone layer and a mudstone layer. (b) - Pebble-rich debrite deposit in the Paganzo
Basin, south-western La Rioja Province, Argentina. Image published by Fallgatter
et al. (2017).

Critically, the turbidity currents predicted by all these methods are dilute

and usually contain only a limited amount of the initial mass contained in the

underwater landslide, i.e. they are inefficient. Further, the transition takes place

over long time and length scales. Turbidity current deposits indicate the transition
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can not only occur rapidly but also suspend more of the initial mass (Talling et al.,

2002).

Some events may remain as debris flows for their entire flow distance (up

to thousands of kilometres (Embley, 1976)) with only slight changes in rheology.

Whereas others may fully transform into turbidity currents before reaching the con-

tinental slope boundary (Talling et al., 2002). Sub-aqueous debris flow are more

likely to transform than their sub-aerial counter-parts because of the increased re-

sistance from the ambient (Norem et al., 1990) and the lack of surface tension from

interstitial water (Mulder and Alexander, 2001).

Moreover, there is uncertainty regarding the driving mechanisms, for ex-

ample, does the rheology control the transition to turbulent flow? Is the change in

rheology driven by sediment deposition and suspension, or by mixing, or both? An

increased understanding in these critical areas will lead to more accurate predictions

of the attributes of turbidity currents created by sea-floor landslides. Knowledge of

run-out lengths and sediment deposition patterns are critical, not only for predict-

ing the location of turbidite deposits but for identifying regions with risk of damage

from these currents.

The inherent pulsing nature of debris flows (Hungr, 2000) may also cause

parts of the debris flow to transform through different mechanisms (Felix et al.,

2009). Deposits of seismically generated turbidity currents at the Cascadia margin,

Washington USA record multiple currents that combined downstream at as many as

seven confluences (Goldfinger et al., 2017). The separation time between the flows

can be negligible or of the order a few hours. Further, experimental modelling has

demonstrated that the signature of individual turbidity currents can be destroyed

after the different events interact (Ho et al., 2018b).

Turbidity currents have significant economic impact; they can travel with

head speeds as high as 19 ms−1 on slopes less than 0.25◦ (Piper et al., 1999) and

can cause significant damage to sea-floor equipment, including pipelines, oil rig

moorings (Gonzalez-Juez et al., 2009; Barley, 1999) and seafloor telecommunication

cables (Dengler et al., 1984; Heezen and Ewing, 1952) (which accounts for over 95%

of trans-oceanic data transfer (Carter et al., 2009)). Turbidity currents are a key

mechanism of sediment distribution from shallow to the deep marine environment

throughout the oceans and lead to the creation of sedimentary rocks (turbidites)

which are linked to gold deposits (Keppie et al., 1986), banded iron-formations

(Lascelles, 2007) and host some of the largest hydrocarbon reservoirs (Weimer et al.,

2007).
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Pulses are a common feature in gravity currents and may result from flow

instabilities, variable supply of dense material (Mulder and Alexander, 2001), com-

bining of flows from different sources (Goldfinger et al., 2017), flow splitting and

recombining (Nakajima and Kanai, 2000), or flow interactions with topography

(Haughton, 1994). For example, failure mechanisms for landslides and similar events

are varied (Wang et al., 2016) and can result in pulsed flows: an initial failure of

an embankment or dam can create a steep main scarp as the supporting material

slides away, which, in turn, can lead to a further ‘retrogressive’ failure. The process

may repeat creating a significantly larger event comprised of many smaller pulses.

Surges and pulses internal to gravity currents can have a significant impact on the

hazards associated and flow properties when compared to a single release of the same

volume. This is particularly significant for compositional gravity currents where the

variations in velocity affect the deposition or erosion that can occur (Dorrell et al.,

2018).

Figure 1.4: Aerial photo of the tailings dam break out at Merriespruit, South Africa.
Image published in Fourie et al. (2001).

After 50 mm of heavy rain the gold mine tailings dam at Merriespruit,

South Africa failed retrogressively (Wagener et al., 1998). The breakout led to the

deaths of 17 people and widespread damage in the village of Merriespruit (Fourie

et al., 2001), figure 1.4. After the dam had breached the tailings liquefied retrogres-

sively creating a multi-pulsed flow over a period of a few minutes (Blight and Fourie,
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2003). New Zealand’s worst volcanic disaster occurred in 1953 at Mount Ruapehu

when the tephra (rock fragments and particles ejected during a volcanic eruption)

dam over the outlet of Crater Lake failed creating a lahar and the subsequent de-

struction of a rail bridge leading to the loss of 151 lives (O’Shea, 1954; Manville,

2004). A new tephra dam was formed following the 1995-96 eruption sequence that

failed retrogressively 11 years later on the 18th March 2007 (Massey et al., 2010).

Heavy rains in 1999 remobilised large tephra deposits deposited during the 1995-96

sequence. Hodgson and Manville (1999) observed deposits that showed between one

and three depositional units signifying a pulsed flow.

Pyroclastic flows are a suspension of particles in hot gas that capable of

travelling hundreds of metres per second (Doyle et al., 2010) and are formed from a

collapsing eruption column (Wilson, 1976). A pyroclastic flow generated by the 1997

eruption of the Soufriére hills volcano contained three distinct major flow surges

over its 25-minute duration (Loughlin et al., 2002). Deposits from the first two

major surges partially filled the main drainage channel which the pyroclastic flow

flowed along. This caused the third to overspill and travel into a region considered

to be at low risk. The release dynamics of these gravity currents and potential

evolution downstream in multiple surges impacts the dynamics of the flow. The

deposits left by previous surges, and information they contain, can be destroyed

by subsequent surges making flow dynamics difficult to identify. Further, run-out

length, inundation zones and hazards are affected by the internal dynamics.

1.1 Aims of the thesis

Many geophysical gravity currents flows are modelled as single discrete events even

though they arise from the combining of initially distinct flow events or separate into

pulses and recombine further downstream. Pulses in gravity currents are studied

in a double lock-release configuration in this thesis, where the denser fluid is held

behind two lock gates that are released sequentially. The density difference drives

the fluid out of the first lock-box as a gravity current. The second release creates a

pulse that propagates towards the head of the current. The time between releases

tre and the dimensionless speed of the current are varied to study the range of

possible dynamics. The equations are solved using the Lax-Wendroff finite-difference

scheme employed by Bonnecaze et al. (1993). Experiments based on the setup

of Ho et al. (2018a,b, 2019), but at a lower viscosity, are conducted. Further, a

theoretical shallow-water model is used to analyse the flow dynamics. Preliminary,

but unpublished, experiments of Ho et al. (2018a,b, 2019) indicate that a rapid
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transition from transitional or laminar behaviour to fully turbulent when the pulse

reaches the head of the gravity current and a significant increase in the rate of mixing

is observed. The experiments provide a source of validation to the shallow-water

model and this transition from transitional or laminar behaviour to fully turbulent

is studied further.

The effect of viscosity on mixing dynamics in a gravity-driven flow is then

studied using the lock-exchange problem, where the lock-box occupies one-half of

the domain. Direct numerical simulations, which fully resolve the flow dynamics

are conducted in which the viscosity of the current is varied. The aim of this is to

characterise the impact of a viscosity contrast between the ambient and the current

on the flow dynamics and on the mixing that occurs. The results from the direct

numerical simulations are then compared to a theoretical two-layer shallow-water

model, which has significantly reduced computational time.

1.2 Studying gravity currents

1.2.1 Lock-exchange and lock-release problem

Gravity currents have been extensively studied by theoretical and experimental ap-

proaches, often based around the idealized lock-release or lock-exchange problem,

where dense fluid is released by the rapid removal of a gate, providing a well-

controlled initial condition, figure 1.5. The lock-box length is l and the depth of

the locked fluid is hlock. This method provides a suitable means to create repeat-

able fixed-volume currents that allow meaningful comparison to theoretical models

(Hoult, 1972; Huppert and Simpson, 1980; Huppert, 1982; Shin et al., 2004; Lowe

et al., 2005). Specifically in this thesis the lock-exchange problem will refer to a con-

figuration where the locked dense fluid will occupy one half of the domain. Although

these two problems are similar, quantitative differences between the two flows can

be observed when the ratio between the locked fluid depth hlock and the ambient

depth H is less than two (Ungarish, 2009). This is discussed further in section 1.2.6.

Recently, surge effects have been studied in the laboratory for turbulent saline flows

using multiple lock-releases, in which a series of lock-boxes positioned behind the

first were released at set times after the initial release (Ho et al., 2018a,b, 2019).

The second current intruded into the first release and propagated towards the head

of the current.

The lock-exchange and lock-release are examples of constant-volume grav-
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Figure 1.5: Lock-release (right) and lock-exchange (left) configuration before release
where the fluid is held in place by a vertical lock gate (top) and just after where the
denser red fluid is driven to the right by (bottom).

ity currents. I.e. the total volume per unit width qvol = hlockl of dense material

remains constant throughout. In theory, the material can be supplied at any vari-

able rate, but the two most commonly studied are the constant-volume gravity

current, where qvol is constant, and the constant-flux, where the rate of supply of

material dqvol/dt is constant (for example, Didden and Maxworthy (1982); Britter

(1979); Hallworth et al. (1996) and many others).

The form of a gravity current is characterised by the Reynolds number of

the flow Re = ρUL/µ, where ρ is the density, µ is the dynamic viscosity, and U and

L are a suitable velocity and length scales for the current, indicates the dominant

force that opposes buoyancy. When the Reynolds number of the current is small and

the viscosity of the current is large compared to the ambient, Re � 1, the current

propagates the balance is between viscous forces and buoyancy. In the viscous regime

a better estimate for the size of viscous forces is the effective or reduced Reynold

numbers Reδ = δρUH/µ, where H is a depth scale for the flow and δ = H/L is the

depth aspect ratio (Ungarish, 2009). However, when Re� 1, the balance is between

buoyancy and inertial forces. For viscously dominated flows, like the spreading of

honey, the depth decreases monotonically to zero in the direction of propagation and

a parabolic velocity profile can be observed over the height of the current, figure 1.6.

Whereas, when the Reynolds number is high and viscous forces are negligible a

head is formed that rises up from the bed and a turbulent wake behind it is often

observed, where mixing can occur, figure 1.6. A uniform mean velocity profile can

be observed within the body of the current, but small-scale turbulent structures will

be present throughout (Cantero et al., 2008)
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Figure 1.6: Gravity current for low Reynolds numbers (left) and high Reynolds
numbers (right).

Initially an inertial gravity current of constant volume evolves at a constant

propagation speed on a horizontal bed during the “slumping phase.” When the lock-

depth hlock is less than half that of the ambient a backwards-travelling rarefaction

wave is observed within the lock-box as the fluid drains out (Hogg, 2006). This

disturbance reflects off the back of the lock-box and towards the head of the current

and signifies the region of the flow affected by the finite supply of material. Upon

reaching the head, the current enters a self-similar phase and the head propagates

at a speed proportional to t2/3 (Rottman and Simpson, 1983; Hogg, 2006). For

viscously dominated lock-release gravity currents, a self-similar phase exists in which

the current propagates at a speed proportional to t1/5.

1.2.2 Navier-Stokes equations

For a general fluid-flow problem in orthogonal co-ordinates x = (x, y, z) with hori-

zontal direction x, vertical direction y, cross-stream direction z, and corresponding

velocity components u = u(x, t) = (u, v, w), the equations for mass and momentum

conservation are (Tritton, 2012):

ρ

(
∂ u

∂ t
+ (u · ∇) u

)
=−∇p+∇ · τ + ρg, (1.1)

∂ ρ

∂ t
+∇ · (ρu) =0, (1.2)

where ρ = ρ(x, t) is the density, p = p(x, t) is the pressure, g = (0,−g, 0) is the

body force, g is acceleration due to gravity and τ is the deviatoric stress tensor. For

a viscous Newtonian fluid the deviatoric stress tensor τ is

τ = µ
(
∇u +∇uT

)
, (1.3)
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where µ is the dynamic viscosity of the liquid. Further, if the flow is assumed to be

incompressible, i.e. Dρ/Dt ≡ ∂ ρ/ ∂ t+ u ·∇ρ = 0, then the equations reduce to the

incompressible Navier-Stokes equations

ρ

(
∂ u

∂ t
+ (u · ∇) u

)
=−∇p+ µ∇2u + ρg (1.4)

∇ · u =0. (1.5)

When the ambient density and viscosity are small relative to that of the

current ρ2 � ρ1, µ2 � µ1 the flow in the ambient can be neglected (for example,

Stansby et al. (1998)) and replaced with a free-surface boundary condition. If the

current and ambient have similar densities ρ2/ρ1 ∼ 1, then the Boussinesq approx-

imation can be applied. The Boussinesq approximation neglects density variations

in the governing equations except in the gravitational forcing term and enables a

simplified momentum equation for the current to be posed in this case(
∂ u

∂ t
+ (u · ∇) u

)
= − 1

ρ2

∇p+ ν2∇2u + g′(0,−1, 0), (1.6)

where ν2 = µ2/ρ2 in the kinematic viscosity of the current and g′ = g(ρ2 − ρ1)/ρ2

is the reduced gravity. The Boussinesq approximation remains valid for density

variations of up to 20% and the transition to non-Boussinesq flow dynamics is not

dramatic (Ungarish, 2007, 2009).

1.2.3 Shallow-water and depth-averaged models

The shallow-water equations are a system of equations that have been extensively

used in the study of high Reynolds number gravity currents (Huppert, 2006) and are

obtained by exploiting the long and thin nature of a flow (Whitham, 2011), where

H a depth scale for the flow is small compared to L a length scale for the flow in the

flow direction so that δ = H/L � 1. In the limit of small δ, the flow is effectively

uni-direction and vertical variations in velocity can be neglected to obtain a system

of equations for the depth-averaged velocity ū = ū(x, t) and flow depth h = h(x, t).

Consider the flow an incompressible fluid with constant density ρ and no

cross-stream variation, so that the flow can be described in two dimensions (x, y).

The effects on entrainment are neglected and the fluid is confined between a rigid

base at y = 0 and a free surface at y = h(x, t), figure 1.7. Further, it is assumed the

viscosity is negligible and that the vertical scales of the flow are small when compared
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Figure 1.7: Two-dimensional shallow water description of the flow with depth-
averaged velocity ū(x, t) and flow depth h(x, t)

the horizontal. i.e. the length of the flow L � h(x, t) and |u(x, y, t)| � |v(x, y, t)|.

At the free surface atmospheric pressure pa is imposed p(x, y, t) = pa.

Additionally the kinematic condition at both flow boundaries are

v(x, 0, t) = 0, (1.7)

v(x, h(x, t), t) =
∂ h

∂ t
+
∂ h

∂ x
u(x, h(x, t), t). (1.8)

With these assumptions the Navier-Stokes equations (1.1-1.2) reduce to the two-

dimensional Euler equations

ρ

(
∂ u

∂ t
+ u

∂ u

∂ x
+ v

∂ u

∂ y

)
=− ∂ p

∂ x
, (1.9)

ρ

(
∂ v

∂ t
+ u

∂ v

∂ x
+ v

∂ v

∂ y

)
=− ∂ p

∂ y
− ρg, (1.10)

with the incompressibility condition

∂ u

∂ x
+
∂ v

∂ y
= 0. (1.11)

By integrating the incompressibility condition (1.11) over the depth of the

current yields ∫ h

0

∂ u

∂ x
+
∂ v

∂ y
dy = 0 =⇒ ∂ h

∂ t
+

∂

∂ x
(hū) = 0, (1.12)

where

ū =
1

h

∫ h

0

u dy (1.13)

is the depth-averaged velocity. Given that the vertical velocity v is negligible com-
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pared to the u, the left hand side of the y-momentum equation (1.10) can be ne-

glected. Thus, the pressure is purely hydrostatic

p = pa + ρg(h− y). (1.14)

With the hydrostatic pressure and neglected v components of velocity, the depth-

integrated horizontal momentum equation is

ρ
∂

∂ t

(∫ h

0

u dy

)
+ ρ

∂

∂ x

(∫ h

0

u2 dy

)
+

∂

∂ x

(∫ h

0

ρg(h− y) dy

)
= 0, (1.15)

which can be simplified to

∂

∂ t
(hū) +

∂

∂ x

(
βuhū

2 + g
h2

2

)
= 0, (1.16)

where

βuhū
2 =

h∫
0

u2 dy. (1.17)

The coefficient βu ≥ 1 allows for variations in the horizontal velocity profile

over the depth and is known as a shape factor. When βu = 1, there is no depth vari-

ation in the horizontal velocity and thus ū = u. For a value of βu > 1 there is shear

in the horizontal velocity profile, which may depend on the Reynolds number and

the boundary roughness (Piau, 1996; Hogg and Pritchard, 2004). For high Reynolds

number flows βu is typically set equal to one (Iverson, 1997; Iverson and Denlinger,

2001; Ancey, 2001). However, when the density difference arises from suspended

sediment or particles, such as a turbidity current, both velocity and density profiles

are stratified over the depth of the flow (Islam and Imran, 2010; Sequeiros et al.,

2010; Abad et al., 2011; Dorrell et al., 2019). Neglecting this stratification, by as-

suming βu = 1 (Castro-Dı́az et al., 2013; Hu et al., 2012; Parsons et al., 2009),

produces different predictions for run-out lengths and flow entrainment/deposition

rates (Dorrell et al., 2014). In this thesis the shape-factor βu is assumed to be unity

and thus the shallow-water equations, written in terms of the discharge m = hu are

given by

∂ h

∂ t
+
∂ m

∂ x
= 0, (1.18)

∂ m

∂ t
+

∂

∂ x

(
m2

h
+ g

h2

2

)
= 0. (1.19)
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When the current and ambient have similar densities, the Boussinesq approximation

can be applied and the gravitational acceleration in (1.19) is replaced by the reduced

gravity g′. If the mixing or entrainment occurs within the flow, so that a sharp

interface at y = h(x, t) does not exist, then an alternative definition posed by Ellison

and Turner (1959) can be used. By defining

ūh =

∞∫
0

u(x, y, t) dy, (1.20)

ū2h =

∞∫
0

u2(x, y, t) dy, (1.21)

the depth h and depth-averaged velocity of the flow ū can be calculated

ū =
1

h

∞∫
0

u dy (1.22)

h =
(ūh)2

ū2h
=

(∫∞
0
u(x, y, t) dy

)2∫∞
0
u2(x, y, t) dy

. (1.23)

However, this integral depth is an underestimate of height of the flow where the

velocity goes to zero (Dorrell et al., 2014).

In the opposite limit when the viscosity of the current is large, so that the

Reynolds number is small Re � 1, a parabolic horizontal velocity profile can be

obtained by balancing viscous forces to the buoyancy. This simplifies the system of

equations to a single equation for the depth of the flow (Didden and Maxworthy,

1982; Rottman and Simpson, 1983; Ungarish, 2009):

∂ h

∂ t
− 1

3

g′

ν

∂

∂ x

(
h3∂ h

∂ x

)
= 0. (1.24)

1.2.4 Froude number condition

The shallow-water model neglects vertical gradients, but these become significant

at the head of the flow where turbulent drag and three-dimensional flow structures

dissipate momentum. To capture this dissipation, shallow-water and other theoret-

ical models are supplemented with an imposed flow velocity at the head x = xN(t)

via a densimetric Froude number condition (Abbott, 1961). The densimetric Froude

number is a dimensionless velocity of the current Fr = uN/
√
g′hN , where subscript
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N indicate values at the head, and is ratio between flow speed and infinitesimal

long surface waves on the gravity current (Hogg, 2006). Theoretical values of the

Froude number can be determined through application of Bernoulli’s theorem and

a momentum balance far upstream and far downstream of the head of the current

in rectangular channels (von Kármán, 1940; Benjamin, 1968). Von Kármán (1940)

incorrectly applied Bernoulli’s theorem along a contour through a turbulent region

of the flow. This was corrected by Benjamin (1968) who arrived at the same result.

The Froude number calculated by Benjamin FrB is a function of the fractional depth

of the current a = hN/H and is given

FrB ≡ FrB(a) =

√
(2− a)(1− a)

1 + a
. (1.25)

Note that in the limit of an infinitely deep ambient the Froude number tends to
√

2.

Further expressions can be obtained with a vorticity balance without the requirement

of an explicit dissipation assumption for Boussinesq flows (Borden and Meiburg,

2013; Konopliv et al., 2016). These differing approaches have been demonstrated to

differ only by an assumption about the dissipation and can be reconciled within the

same framework (Ungarish and Hogg, 2018).

In addition, densimetric Froude number conditions have been calculated

for a stratified ambient (Ungarish, 2005) and non-rectangular cross-sections (Un-

garish, 2012). The densimetric Froude number condition has also be determined

experimentally to be 1.2 for deep currents (Huppert and Simpson, 1980; Simpson

and Britter, 1979), which is similar to the theoretical value of
√

2 obtained using the

two-dimensional theory of Benjamin (1968). For non-Boussinesq flows, where the

density difference between the current and the ambient is large, the Froude number

can be large and tends to infinity as the density ratio becomes large. For example,

water propagating into an air ambient. This corresponds to the depth of the flow

front tending to zero (Whitham, 2011).

1.2.5 Scaling arguments and similarity solutions

Dimensional arguments and simple integral models are able to predict the position

of the head xN as a function of the initial conditions by assuming a dominant bal-

ance between buoyancy and either inertial or viscous forces (Fay, 1971; Hoult, 1972;

Huppert and Simpson, 1980; Huppert, 1982; Hogg et al., 2005). After an initial tran-

sience, the flows generally enter a self-similar phase where the solution is similar to

itself when the independent and dependent variables are appropriately scaled. These
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similarity solutions capture some of the horizontal features of the flow. However,

similarity solutions do not always exist. For example, in the axisymmetric spreading

of a compositional gravity current, the tail of the current is self-similar but the head

is time-dependent (Johnson et al., 2015). Further, particle-laden gravity currents

which can be modelled by the depth-averaged equations with an additional particle-

advection equation and variable buoyancy depending on particle concentrations, for

example Bonnecaze et al. (1993); Dade and Huppert (1995), do not yield similarity

solutions in general.

When viscous forces are dominant from the outset (Re � 1) a similarity

solution exists for the mass and momentum conservation equations (1.24) (Huppert,

1982, 1986). These similarity solutions capture some of the vertical structure of the

flow and the head propagation speed and have been shown to provide excellent

agreement to available experiments (Huppert, 1982, 1986).

Provided, the initial Reynolds number is large the current propagates un-

der a balance between inertia and buoyancy forces and the standard shallow-water

theory presented in the section 1.2.3 can be applied. In addition, the simple box

model, which assumes that the slumping motion of the current maintains a rectan-

gular cross-section throughout, introduced by Huppert and Simpson (1980) can be

used with the supplement of a Froude number condition. However, as the current

thins, viscous forces become more important over time and at a critical time, tc,

viscous and inertia forces become equal in magnitude. For t � tc viscous forces

provide the dominant resistance to buoyancy and the current propagates under the

viscous buoyancy balance. For a lock-release (constant volume) gravity current, the

critical time in which viscous, inertial and buoyancy forces are in balance is

tc ∼ (l4h4
lock/(ν

3g′
2
))1/7, (1.26)

where l is the length of the lock-box, hlock in the depth of the locked fluid and ν is

the kinematic viscosity of the current.

A near plug-like flow is observed when the current propagates in a balance

between inertia and buoyancy. However, deviation from this constant velocity profile

is observed in a thin boundary layer near the base of the flow where viscous effects

become significant and act as a drag force on the gravity current. Further, when the

viscosities of the ambient and current are similar a boundary layer occurs near the

fluid interface. Hogg and Woods (2001) study the transition from inertia to bottom-

drag dominated gravity currents when viscous effects in the bulk of the current are

negligible.
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1.2.6 Two-layer shallow-water models

The single-layer or single-fluid shallow-water model introduced above is applicable

when the depth of the ambient is large relative to that of the current or the ambient

fluid has negligible density. For example, the lock-release problem figure 1.8. When

the densities of the fluids are similar (so that momentum is not negligible) quali-

tatively different flow behaviour is observed when the depth ratio between the lock

fluid and the ambient is less than two (Ungarish, 2009). The backwards travelling

rarefaction wave observed during the slumping phase is replaced by a shock, which

is similar to the current head when the depth ratio is unity (the lock-exchange con-

figuration, figure 1.8). Further, the slumping time is considerably longer. These

qualitative differences arise because of the momentum required to drive the ambient

fluid back into the lock box inhibits the propagation of the current. When the depth

ratio between the locked fluid and the ambient is greater than two, the flow dynam-

ics are qualitatively similar to an infinite depth ambient, but quantitative differences

are still observed that decrease with increase lock depth to ambient ratio.

Thus, when the depth ratio between the locked fluid and the ambient is

less than two, the flow in the ambient cannot be neglected. To incorporate this

into a depth-averaged model, the flow is split into two layers each with depth-

averaged velocity ui and thickness hi, so that the total depth of the flow is given

H(x, t) = h1(x, t) + h2(x, t), figure 1.8. The denser layer or current is labelled layer

2 and the less dense or ambient layer 1. In this thesis the total depth of the flow is

considered fixed, i.e. H is a constant and a rigid boundary is placed at y = H.

In terms of the interface pressure Pi at y = h1(x, t) the two-layer shallow-

water equations are in (Hogg et al., 2000):

∂ h1

∂ t
+

∂

∂ x
(h1u1) = 0, (1.27)

∂

∂ t
(h1u1) +

∂

∂ x

(
h1u1

2
)

+ h1
∂ Pi
∂ x

= 0 (1.28)

∂ h2

∂ t
+

∂

∂ x
(h2u2) = 0, (1.29)

∂

∂ t
(h2u2) +

∂

∂ x

(
h2u2

2 + g′
h2

2

2

)
+ h2

∂ Pi
∂ x

= 0, (1.30)

As the flow is confined between the depths of y = 0 and y = H the mass conservation
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Figure 1.8: Schematic of the two-layer shallow-water model for the lock-exchange
problem. Each layer has depth hi, depth-averaged velocity, ui and a Reynolds
number Rei. The total depth is fixed, so that h1 + h2 = 1

for the system forces the discharge of each layer to be equal and opposite

u1h1 + u2h2 = 0, (1.31)

and thus using h1 = H − h2 and u1 = −u2h2/(H − h2), the system can

be reduced to two equations for the mass and momentum conservation equation for

layer two (Hogg et al., 2000):

∂ h2

∂ t
+

∂

∂ x
(h2u2) = 0 (1.32)

∂

∂ t
(h2u2) +

(
1− h2

H

)
∂

∂ x

(
h2u

2
2 + g′

h2
2

2

)
− h2

H2

∂

∂ x

(
h2

2u
2
2

1− h2
H

)
= 0. (1.33)

The terms in this second equation are change in momentum over time, gain of

momentum in fluid 2 from convection and hydrostatic pressure, and momentum lost

accelerating fluid 1. In the limit of the current being thin compared to the total

flow depth h2 � H, the equations for the single-layer shallow-model are recovered.
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1.2.7 Entrainment

As a turbulent gravity current propagates, mixing occurs resulting in entraining of

ambient fluid into the current (Hallworth et al., 1993, 1996; Marino et al., 2005; Sher

and Woods, 2015). Prandtl (1952) first proposed that mixing between the ambient

and the head of a gravity current would lead to the body of the current travelling

faster than the head. For a turbulent lock-release problem mixing increases the

volume of the current by a factor roughly 3-4 over 8-10 lock lengths from release and

by 7-10 lock lengths all the current had entrained at least some ambient (Sher and

Woods, 2015). This entrainment reduces the buoyancy and leads to stratification

within the current affecting the driving force of the current, and hence its dynamics.

The majority of box models and self-similar shallow-water theory models neglect

entrainment within the flow (Sher and Woods, 2015) and therefore variations in

buoyancy.

For large scale flows, the Péclet number Pe = HU/D is large, where D

is the mass diffusivity and is the ratio between momentum and mass diffusivities.

Large values of the Péclet number Pe = HU/D indicate that molecular diffusivity is

negligible and mixing only occurs through turbulent processes (Johnson and Hogg,

2013). Mixing and entrainment in gravity currents has extensively been studied

both experimentally and theoretically by numerous studies (For example, Hallworth

et al. (1993, 1996); Hacker et al. (1996); Marino et al. (2005); Fragoso et al. (2013);

Johnson and Hogg (2013); Sher and Woods (2015)). Hallworth et al. (1993, 1996)

investigated the entrainment of ambient fluid both experimentally and theoretically.

They conclude from many experiments that the majority of mixing occurs almost

entirely at the head arising from the shear instability of the interface and the over-

riding of the head of the current. Hacker et al. (1996) however, report that a

significant amount of mixing arises during the early stages of flow. This led to

studies using direct numerical simulation to try and interpret the controls on mixing

(Härtel et al., 2000).

The rate of entrainment (defined as the rate of volume flux over surface

area) as a result of turbulence in a shear flow can be modelled using an empirical

relationship, in which the rate of entrainment is proportional to the velocity be-

tween the two layers by dimensional arguments (Morton et al., 1956; Turner, 1986).

I.e., the rate of entrainment we = E|u1 − u2|, where the dimensionless parame-

ter E is in general a function of all dimensionless groups relevant to the flow and

in particular, the Reynolds number Re, the density ratio ρ2/ρ1 of the two layers,

the bulk Richardson number Ri = g′H/U2, which is the ratio of stabilising effect
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of the density difference to the destabilising velocity shear and the Péclet number

Pe = HU/D. However in the regime of gravity currents satisfying the Boussinesq

approximation (ρ2/ρ1 ≈ 1) and where Re and Pe are both large, the entrainment

constant E reduces to a function of the bulk Richardson number Ri and has the

asymptotic behaviour E = 0.075, when Ri� 1 and E ∼ 1/Ri, when Ri� 1.

Johnson and Hogg (2013) use an empirical relationship for the rate of en-

trainment in a shallow-water model, which incorporates variable buoyancy along the

current. They predict that a third regime can exist between the inertial-buoyancy

and viscous-buoyancy regimes in which the head of the current evolves xN ∼ t0.447.

This regime will only occur if the current is initially large enough so that entrainment

becomes important before viscous forces set in. Thus, laboratory-scale experiments

may not exhibit this regime.

The depth-averaged assumption assumes that the entrained fluid is dis-

tributed evenly over the depth of the current. However, the experiments of Sher

and Woods (2015); Marino et al. (2005) demonstrate that the reduced gravity max-

imum occurs at the head of the current for up to 25 lock lengths and decreases

upstream from the head.

1.2.8 Depth-resolving models

With the increase of computational power depth-resolved models have been increas-

ingly used to study turbulent gravity currents over the past 20 years (Meiburg and

Kneller, 2010). These models fall into three categories Reynolds-averaged Navier-

Stokes (RANS) equations, large eddy simulations (LES) and direct numerical sim-

ulations (DNS),

The RANS equations are time-averaged fluid flow equations for the time-

averaged velocity. They solve for the large scale three-dimensional structure of the

flow, but require supplementation with empirical models for the additional dissipa-

tion arising from the fluctuating (time-dependent) components of velocity. These

closure models are commonly used in oceanographic examples (Mellor and Yamada,

1982; Ilıcak et al., 2008). Numerous studies have been conducted with some of

the available second-order closure models, for example, two-equations RANS mod-

els such as k–ε (Kassem and Imran, 2004; Imran et al., 2004) or k–ω (Burchard

et al., 2009). Ilıcak et al. (2008) test a variety of available two-equation models and

produce salinity profiles within 20% of observations of gravity currents in the Red

Sea.
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Large eddy simulations (LES) resolve more of the flow structure than

RANS models and only parametrise the small scale turbulent motions below a cut-

off length scale (Sagaut, 2006). The governing equations are filtered to remove

this small scale motion, the effects of which are then included with a sub-grid-scale

(SGS) model. A variety of choices of sub-grid scale models exist and Özgökmen

et al. (2009b) demonstrate that they all produce different rates of mixing in the

lock-exchange problem, with the optimal model varying with Reynolds number.

Direct numerical simulations require no empirical modelling and numeri-

cally solve the Navier-Stokes equations directly. Thus, the scales of motion needs

to be resolved down to the Kolmogorov scale (Kolmogorov, 1941), which is an eddy

length scale at which viscous and inertial forces are equal in magnitude. These

high-resolution numerical models are used to develop and validate parameterisa-

tions discussed in Ilıcak et al. (2009). Resolving all scales of the flow down to

viscosity requires significant computation power, with simulations of the order 103

times longer for DNS when compared to LES for stratified mixing in turbulent flows

(Özgökmen et al., 2009a). This limits the range of Reynolds numbers that can be

studied.

Two-dimensional simulations can greatly reduce the computational cost by

neglecting all variations in the cross-stream direction (for example, Özgökmen et al.

(2004); Cantero et al. (2007); Kneller et al. (2016)). However, Özgökmen et al. (2004)

demonstrate that the head propagation speed is 20% lower for two-dimensional

rather than three-dimensional simulations, and the work of Cantero et al. (2007)

reveals a strong three-dimensional structure in the body of the current. Espath

et al. (2014) conducted two- and three-dimensional simulations of a mono-dispersed

particulate gravity current produced by a lock-release and conclude that, with the

exception of the sedimentation rate, two-dimensional simulations are not able to

reproduce the results obtained in three-dimensional simulations. This conclusion

was also found for bi-dispersed particulate gravity currents (Francisco et al., 2017).

A variety of different numerical schemes exist for conducting DNS. Härtel

et al. (2000) produced some of the first direct numerical simulation of a gravity cur-

rent in the lock exchange configuration. The Navier-Stokes equations were solved

using a mixed spectral/spectral-element method discussed and validated in Härtel

et al. (1997). Nasr-Azadani and Meiburg (2011) use the finite-difference based spa-

tial discretisation of Chorin (1968). For a particle driven flow Necker et al. (2002,

2005) used the method of Härtel et al. (1997, 2000). The spectral element code

NEK5000 (Fischer et al., 2008) has been used extensively to study lock-exchange flow

(Özgökmen and Chassignet, 2002) and extended to complex geometry (Özgökmen
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et al., 2004) and ambient stratification (Özgökmen et al., 2006).

1.3 Structure of the thesis

This thesis is structured as follows: In chapter 2 a shallow-water model is em-

ployed that extends the analysis of the single-release case presented by Hogg (2006)

to a double-lock release; Next in chapter 3 the double lock-release experimental

configuration studied by Ho et al. (2018a,b, 2019) is extended to higher viscosity

glycerol/water gravity currents; Then in chapter 4 the lock-exchange problem with a

viscosity contrast between the two fluids is studied with direct numerical simulation

of the Navier-Stokes equations; This problem is then considered with a shallow-

water type model in chapter 5; finally concluding remarks are discussed in chapter

6.
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Chapter 2

The phased lock-release problem

2.1 Introduction

In chapter 1 numerous examples of pulsed gravity current were discussed. A pulsed

flow can either arise from flow instabilities, variation in the supply of material (Mul-

der and Alexander, 2001), combining of flows from different sources (Goldfinger

et al., 2017), flow splitting and recombining (Nakajima and Kanai, 2000). Although

the lock-release problem has been extensively studied, it assumes that all the ma-

terial is released instantaneously and thus the dynamics of pulse-prone gravity cur-

rents or the combining of separate events may be poorly captured. The goal of this

chapter is to extend the lock-release problem for the shallow-water equations to a

double-release case, where a second equally sized lock-box is released subsequently.

The second release will create a shock that will propagate through towards the head

current.

Hogg (2006) employed the method of characteristics to solve the prob-

lem of a single-lock release flow. The shallow-water equations yield two families

of characteristic curves along which the Riemann invariants α = u + 2
√
g′h and

β = u−2
√
g′h are conserved. Hogg (2006) showed that the structure of the solution

depended qualitatively on the densimetric Froude number, Fr. For Fr ≥ 2, charac-

teristics leaving the back of the head never reached the back of the lock-box and an

internal shock formed for Fr > 2. For Fr < 2, a structured solution exists in which

the characteristic (x, t)-space is split into regions where both, one or neither of the

two characteristics variables are constant. Hogg (2006) analytically determined the

boundary between these regions and the solution when at least one of the charac-

teristic variables is constant. These models have not been extended to the multiple
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Figure 2.1: Configuration of the single (left) and double (right) lock-release prob-
lems. Initial conditions (- -) and current depth, h(x, t), (–) are displayed.

release case.

A Lax-Wendroff finite-difference scheme based on the implementation of

Bonnecaze et al. (1993) is employed to solve the governing shallow-water equations.

The characteristics are then computed from this solution afterwards, in order to

describe the form of the solution in (x, t) space. For a double-release problem with

identical lock-boxes, there is an additional parameter as well as the densimetric

Froude number: the dimensionless release time t∗re = tre
√
g′hlock/l, where tre is the

gate separation time, hlock is the lock depth and l is the lock length. The work

presented here explores the (Fr, tre) parameter space for Fr < 2. Simulations of

the single-release case are compared to the analytical solution of Hogg (2006) for

validation. The double-release simulations reveal a variety of distinct regions in the

(Fr, tre) parameter space with qualitatively different behaviour in the shock velocity.

For tre → ∞, the two releases behave as two non-interacting events, whereas for

tre ≤ 1 the flow is effectively a single discrete event of twice the volume. However,

the two events interact, affecting pulse propagation, for intermediate tre-values and

a range of qualitatively different solutions are obtained. Regions are separated

by three key characteristic curves, which corresponds to whether or not they are

affected by the amount of material in the second lock-box and the path through

the single release solution structure. The velocity of the shock has implications for

the dynamics of the pulsed gravity currents flows discussed in chapter 1 and the

assessment of their hazards.

2.2 Theoretical modelling

Consider a constant volume gravity current propagating over a fixed horizontal rigid

surface in two spatial dimensions (x, y), where x and y are the horizontal and vertical

co-ordinates, respectively, with the time from the first release defined as t, figure
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2.1. The current has density ρ2 and the deep ambient has density ρ1. Thus, the

buoyancy-adjusted gravity for the current may be expressed as g′ = (ρ2 − ρ1)g/ρ2,

where g = 9.81 ms−2. In the lock-gate configuration, the flow quickly reaches a

state where the height h(x, t) is much smaller than the length of the current xN(t).

Therefore, in considering the horizontal momentum of the flow we can average over

the depth and assume purely hydrostatic pressure. Further, the flows are assumed

inviscid (with no basal drag), entrainment is negligible, and the ambient is quiescent

and infinitely deep. These assumptions allow us to apply the simplified depth-

averaged shallow-water equations as discussed in the chapter 1

∂ h

∂ t
+
∂ m

∂ x
= 0, (2.1)

∂ m

∂ t
+

∂

∂ x

(
m2

h
+ g′

h2

2

)
= 0, (2.2)

where h and m are respectively the depth and the discharge of the flow. The shallow

water equations are first order approximations in terms of the aspect ratio between

the depth and length of the current δ and contain no source terms, i.e. drag and

entrainment. However, at the head of the current x = xN(t) the dissipation is

accounted for via a densimetric Froude number condition (Benjamin, 1968), which

is imposed as a dynamic boundary condition at the head

dxN
dt
≡ ẋN =

m(xN , t)

h(xN , t)
=

√
ρ2

ρ1

√
g′h(xN , t)FrB(a) =

√
g′h(xN , t)Fr, (2.3)

where Fr =
√
ρ2/ρ1FrB is a constant, subscript N denotes a value at the head and

a = hN/H ≤ 1/2. The factor of
√
ρ2/ρ1 arises because the speed of the front, as

calculated by Benjamin (1968) is proportional to (ρ2−ρ1)/ρ1 and the intrinsic speed

of the current is proportional to (ρ2 − ρ1)/ρ2. Critically, the Boussinesq approxi-

mation is not required and so large density differences can be considered and we

refer to Ungarish (2009) for further details. For an infinitely deep ambient (a→ 0),

FrB(a)→
√

2 and thus the dimensionless head speed imposed is proportional to√
ρ2/ρ1. This analysis assumes that ρ2 > ρ1. If a top surface current is considered,

i.e. a current in the fluid of density ρ1 propagating into a infinitely deep quiescent

ambient of density ρ2. Then the head speed is proportional to
√
ρ1/ρ2. Thus, all

possible values of Fr can be obtained. Recall, as motivated earlier, that this chapter

limits the range of study to Fr < 2 and therefore fluids with
√
ρ2/ρ1 ≥

√
2 can

produce flows outside of this range. Note that this condition is less restrictive than

the Boussinesq approximation.

Both lock-boxes are assumed to be of the same length l and filled to a depth

of hlock. Initially, no flux boundary conditions are imposed at the back of both lock-
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boxes x = 0, l. After the second gate is released at t = tre, the no flux condition

at x = l is removed. From the momentum equation (2.2), no flux is equivalent to

∂ h/ ∂ x = 0 and so

∂ h

∂ x
(x0, t) = 0 for

x0 = 0, l if t ≤ tre,

x0 = 0 if t > tre.
(2.4)

Similarly, the initial conditions, figure 2.1, are defined as

h(x, 0) =

hlock if x ∈ [0, 2l],

0 otherwise.
(2.5)

The mass and momentum conservation equations (2.1) & (2.2) are non-dimensionalised

using l as the horizontal length scale, hlock as the depth scale,
√
g′h3

lock as the mo-

mentum scale and l/
√
g′hlock as the convective time-scale:

∂ h∗

∂ t∗
+
∂ m∗

∂ x∗
= 0, (2.6)

∂ m∗

∂ t∗
+

∂

∂ x∗

(
m∗2

h∗
+
h∗2

2

)
= 0, (2.7)

where ∗ denotes a dimensionless variable. Similarly, the dimensionless boundary

conditions (2.4) and (2.3) are:

∂ h∗

∂ x∗
(x∗0, t

∗) = 0 for

x∗0 = 0, 1 if 0 ≤ t∗ ≤ t∗re,

x∗0 = 0 if t∗ > t∗re,
(2.8)

dx∗N
dt∗

=
m∗N
h∗N

= Fr
√
h∗N (2.9)

and initial conditions (2.5) become

h∗(x∗, t∗) =

1 if x∗ ∈ [0, 2],

0 otherwise.
(2.10)

2.2.1 Analysis of characteristics: single release case

This section will discuss the behaviour of the flow for t < tre, which is equivalent

to the single release solution of Hogg (2006). From this point the ∗ are neglected

from the dimensionless variables for brevity, unless stated otherwise. The system of

equations (2.6-2.7) can be transformed into its characteristic form (Whitham, 2011)
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by changing to characteristic variables

α = u+ 2c, β = u− 2c, (2.11)

where u = m∗/h∗ and c =
√
h∗ to obtain

dα

dt
= 0 on

dx

dt
= u+ c, (2.12)

dβ

dt
= 0 on

dx

dt
= u− c. (2.13)

Thus, α and β, the Riemann invariants, are constant along characteristics curves

with gradients in (x, t)-space of u+c and u−c, respectively. The gradients u±c are

the eigenvalues of the system of equations (2.6) & (2.7) and, provided the flow depth

is non-zero, are real and distinct everywhere. Thus, the system is hyperbolic and the

method of characteristics may be applied. The values of the characteristic variables

can be determined from boundary or initial conditions that the characteristics pass

through.

Initially, α = 2 and β = −2 on all positive and negative characteristics that

originate from 0 < x < 2, t = 0, see figure 2.2. Thus, with the imposed densimetric

Froude number condition uN = FrcN , positive characteristics collide with the head

at a finite time provided Fr 6→ ∞ (in the limit Fr → ∞, the head corresponds to

the leading characteristic). While positive characteristics arrive at the head with

α = 2, the velocity and wave speed at the head are constant and take value

uN = FrcN and cN =
2

Fr + 2
. (2.14)

Thus, negative characteristics emanating from the back of head have constant

β = βm ≡ 2(Fr − 2)/(Fr + 2) ≥ −2. (2.15)

An expansion fan of negative characteristics emanates from (2,0) and connects the

two regions where β is constant, see figure 2.2b. These negative characteristics

correspond to straight lines through the origin and satisfy

x = 1 + (4 + 6β)(2− β)−
3
2 t for β ∈ [−2, βm] . (2.16)

The negative characteristics with β = βm and β = −2, and their subsequent

reflections are denoted xfan(t) and xref(t), respectively, and form the boundaries

between uniform (U) and simple (S) wave regions in which either β is constant or

β varies. The fastest backwards travelling negative characteristic, xref(t), originates
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1 2

1

(a)

1 2

(b)

Figure 2.2: Characteristic diagrams shortly after the first release for a densimetric
Froude number Fr less than 1. For 1 < Fr < 2, xref has positive gradient until in-
tersecting xfan The head of the current xN (–) moves at constant speed until xref(·−)
collides with it. Positive (a) and negative (b) characteristics (· · · ) are displayed for
a small range of starting values. The boundary between the expansion fan and the
constant region behind the head is xfan(· · · −).

U1S1

C1

S2

1 2
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1 2

1

(b)

Figure 2.3: Characteristic diagram highlighting the two curves xref(·−) and
xfan(· · · −) and how the solution is partitioned into uniform (U), simple (S) and
complex (C) regions shortly after the release (a) and at a later time (b).
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from the initial release at x = 2 and represents the furthest part of the lock that

is affected by the initial release. For clarity, the curves xref and xfan represent

different characteristics with different values of the conserved quantities after each

reflection. They alternate between positive and negative characteristics between

each branch. All positive characteristics intersecting the first branch of xref arrive

from unperturbed fluid and so have α = 2, yielding dx/dt = −1 and thus xref(1) = 1.

The positive characteristics emanating from t > 1 have α < 2, because h < 1 and

u = 0. The last characteristic with α = 2 signifies the boundary of the region

of the flow that is affected by the finite length of the first lock-box. For t > 1,

xref defines the last characteristic with α = 2. The curves xref and xfan collide

at t = (2 + Fr)3/2/
√

8. Beyond this point, xfan enters a region of varying α and

therefore has a non-constant gradient. In contrast, xref enters a region of constant β

and thus has constant gradient until reaching the head. Hogg (2006) gives the xref

characteristic between the back wall and the head as

xref(t) =


2 + 2t− 3t

1
3 if t ∈

[
1, (2+Fr)

3
2√

8

]
,

2−
√

2(2 + Fr) + 2Fr+1
Fr+2

t if t ∈
[

(2+Fr)
3
2√

8
, (2+Fr)

3
2√

2

]
.

(2.17)

At times beyond this characteristic, complex (C) or simple (S) wave regions

exist, where both or one characteristic varies in time, respectively. The lines xfan

and xref are continually defined through reflections as, respectively, the first or last

characteristic upon which either α or β are locally constant. For Fr < 2 they

reflect between the head and the rear lock-box and divide the solution space into

uniform (U), simple (S) and complex (C) wave regions, figure 2.3. Constant negative

characteristics in regions U1, S2 and U2 have β = βm (2.15) and thus, at the back

of the first lock-box where, from the boundary condition (2.8), u = 0 and hence

α = −β = 2c = −βm, new positive characteristics in the regions U2, S3 and U3 take

the value α = −βm.

The densimetric Froude number condition (2.9) implies negative character-

istics have β = βm(Fr−2)/(Fr+ 2) when positive characteristics with the constant

value α = −βm arrive at the head. This holds in regions U3, S4 and U4. These

boundary conditions continually create regions in the flow where the characteristics

variables α or β are constant. The values of α or β may be calculated in any region

in which they are constant (Hogg, 2006). For n ∈ N regions U2n, S2n+1 and U2n+1

have

α = 2

[
2− Fr
2 + Fr

]n
≡ 2λn, (2.18)
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because of the no flux boundary condition (2.8), while in regions U2n+1, S2n+2 and

U2n+2

β = −2

[
2− Fr
2 + Fr

]n+1

= −2λn+1, (2.19)

because of the densimetric Froude number condition (2.9). As n→∞, α→ 0, and

β → 0, and thus u → 0 and c → 0. When Fr ∼ 0 , λ ∼ 1 and therefore the flows

will interact for a large number of reflections and hence longer release times. For

Fr . 2 there is minimal interaction between the events. Critically, xref and xfan

partition the single-release solution into three distinct regions for any fixed t where

the behaviour of α and β are qualitatively different.

2.2.2 Extension to double release

From the structure described in section 2.2.1 we can determine the nature of the

solution when the second gate is released at t = tre. If tre ≤ 1 then trivially the

solution behaves identically to a single-release of lock-box length 2, because the

backwards travelling disturbance has insufficient time to reach x = 1. For tre > 1,

a shock is created where positive characteristics in x < 1, having α = 2, collide

with positive characteristics from x ≥ 1 having α < 2. Depending on the release

time, tre, the shock is released into a region of constant depth (uniform region) or

varying depth and velocity (complex region) and so the relative position of the two

curves, xref and xfan, determine the initial motion of the shock. Imposing that mass

and momentum fluxes are conserved across the shock, the shock velocity ẋs can

be obtained from the Rankine-Hugoniot conditions of the shallow water equations,

because they are in a conservative form. In terms of the characteristic variables

ahead of and behind the shock, α+, β+, α−, β−, respectively, the shock velocity ẋs is

ẋs =
1

2

(α+ + β+) (α+ − β+)
2 − (α− + β−) (α− − β−)

2

(α+ − β+)2 − (α− − β−)2 , (2.20)

from mass conservation (2.6) and

ẋs =
1

16

8 (α+ − β+)
2
(α+ + β+)

2 − 8 (α− − β−)2 (α− + β−)
2
+ (α+ − β+)

4 − (α− − β−)4

(α+ + β+) (α+ − β+)2 − (α− + β−) (α− − β−)2
(2.21)

from momentum conservation (2.7). Initially α− = 2 as the positive characteristics

come from unperturbed fluid. Shocks that propagate into a uniform region have

both α+ and β+ constant and thus, by the Rankine-Hugoniot conditions (2.20) &

(2.21), both ẋs and β− are also constant. In simple and complex regions, the shock

will accelerate or decelerate and values of β− will vary.
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In uniform regions adjacent to x = 1, the boundary condition u(1) = 0 (2.8)

implies that u(x) = 0 throughout the uniform region. Thus, and whilst α− = 2,

the problem replicates the wet dam break (Whitham, 2011) and the shock velocity

can be calculated explicitly throughout the uniform region. The Rankine-Hugoniot

conditions (2.20) & (2.21) provide an implicit relation for the constant shock velocity,

ẋs, for uniform regions adjacent to the head. For a shock of positive velocity, ẋs,

causality implies that positive characteristics cannot be emitted by the shock. Thus,

the shock represents the furthest point in the domain that has been affected by the

release of the second gate.

Similar to the line xref(t), an additional line xfin(t) is introduced for the sec-

ond release. The first branch tracks the backwards propagating disturbance of the

second release, i.e. the fastest negative characteristic from (1, tre). On this charac-

teristic β = −2, and positive characteristics intersecting it arrive from unperturbed

fluid and therefore α = 2. Thus

dxfin

dt
= −c = −1 (2.22)

and so

xfin(t) = 1− (t− tre) for t ∈ [tre, tre + 1]. (2.23)

At t = tre + 1, the fluid at the back of the second lock starts to be affected by the

gate release and beyond this time α < 2 at x = 0. The last α = 2 characteristic

leaves x = 0 at t = tre + 1, which is denoted as the continuation of the line xfin.

The second branch of the curve xfin defines the part of the solution affected by the

finite length of the second lock-box. If this characteristic intersects the shock, then

α− < 2 thereafter.

Both β− and the shock velocity ẋs are constant when the shock propagates

through a uniform region. Thus, for a shock propagating in a uniform region, a

region of constant β is created, which in turn creates another region of constant

α < 2 upon reaching the back of the lock-box. The structure of the characteristic

space is displayed for a shock released into a uniform region, figure 2.4, and a com-

plex region, figure 2.5 . For shocks released into either uniform or complex regions

negative characteristics will have gradients greater than −1 (2.13) and another ex-

pansion fan of negative characteristics must exist at (1, tre). A shock released into

a uniform region will initially travel at a constant speed. Further, the flow depth

and velocity will be constant either side of the shock. This will hold until the shock

intersects one of the three curves xref, xfan, or xfin, with each possibility leading to a

different structure behind the shock. The example drawn in figure 2.4 has the shock
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Figure 2.4: Schematic showing an example structure of the characteristic space for
a shock released into the U2 region. Ahead of the shock, the regions are bounded by
the two lines xref(·−) and xfan(· · · −), the head of the current xN (–) and the shock
xs (- -). At the point of release, an additional expansion fan is bounded between
xfin(· · · ) and the slowest backwards travelling characteristic from the second release
(· · −).

intersecting xref initially. For complex shocks, figure 2.5, the shock speed accelerates

from the outset, because the values of α+ and β+ are decreasing. The shock may

exhibit a region of constant velocity, but only once it has intersected both xref and

xfan. The three curves xref, xfan and xfin bound critical regions where characteristic

variables α and β change from either being constant or varying. The single release

solution space is partitioned by xref and xfan into regions with varying or constant α

and β. Therefore, their position relative to the shock when it is released influences

the initial shock velocity. The dynamics of the shock change when it collides with

xref or xfan, which in turn affects the negative characteristics behind it. Further,

when xfin intersects the shock, an additional change in dynamics occurs. The order

in which these effects occur creates a range of different shock velocities.

The shallow-water equations (2.6) & (2.7) coupled with boundary (2.8) &

(2.9) and initial (2.10) conditions are solved using the method of Bonnecaze et al.
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Figure 2.5: Schematic showing an example structure of the characteristic space for
a shock released into a C3 region. Ahead of the shock, the regions are bounded by
the two lines xref(·−) and xfan(· · · −), the head of the current xN (–) and the shock
xs (- -). At the point of release, an additional expansion fan is bounded between
xfin(· · · ) and the slowest backwards travelling characteristic from the second release
(· · −).
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(1993). For stability the initial depth, hN , and velocity, uN , at the head were set to

slumping phase values;

uN =
2Fr

2 + Fr
and hN =

(
2

Fr + 2

)2

. (2.24)

Further, the shock initiates at (x, t) = (1, tre), where u = 0, and thus the positive

and negative characteristics ahead of the shock takes values

α+ = 2
√
h(1, tre) and β+ = −2

√
h(1, tre). (2.25)

Together with α− = 2, the Rankine-Hugoniot conditions (2.20) & (2.21) were used

to determine the initial shock velocity and depth, ẋs(tre), and these were imposed at

the node coinciding with the shock for the first time step after release. The position

of the shock is determined

The shallow-water equations are remapped to the unit interval using the

change of variables (ζ, τ) = x/xN(t), t). This removes the moving boundary condi-

tion simplifying the application of the Froude number condition. For full details see

appendix A of Bonnecaze et al. (1993). The transformed equations are solved using

a Lax-Wendroff finite-different scheme. The dynamics of the shock are resolved di-

rectly from the numerical integration of the governing equations and do not require

use of the Rankine-Hugoniot conditions. The position, and from it the velocity,

of the shock presented in the results and discussion section is calculated from the

largest jump in depth behind the head of the flow. Numerical integration with a

upwind finite-difference scheme is used to determine the positive characteristic that

arrives at the head, ζ = 1, at the next time step and provide, together with the

Froude number condition, a second equation for u and c at the head. This enabled

us to determine suitable values used as boundary conditions at the head for the next

time step.

2.2.3 Verification

Model verification is performed by comparing the numerical solution at t = 1 and

the curve xref(t) with the exact solution given by Hogg (2006). This was chosen,

because of the significance of the three lines xref(t), xfan(t) and xfin(t) to assess the

ability of the simulations to capture the distinct regions where behaviour changes.

Depth and velocity profiles at t = 1 are compared for fixed ∆t and varying ∆x and

vice versa, figure 2.6. The error of the variable Ef is calculated via the `1-norm of
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Figure 2.6: (a) Depth and velocity profiles at t = 1 for a single release problem
(∆x = 0.0002, ∆t = 10−5, Fr = 1). (b) Error in depth and velocity for fixed ∆t =
10−5 (left) and fixed ∆x = 0.005 (right). Straight lines drawn between the end
points have Eh ∼ ∆t0.85, Eu ∼ ∆t0.79, Eh ∼ ∆x1.04 and Eu ∼ ∆x1.04.

the variable

Ef =
`1(fa − fn)

Nint

=
1

Nint

Nint∑
k=1

|fa − fn|, (2.26)

where f = h or f = u ≡ m/h and Nint is the number of nodes over the averaging

interval. The numerical, subscript n, and analytical, subscript a, solutions are inter-

polated onto an equally spaced grid with Nint = 104. For fixed ∆x the error quickly

converges to the spatial error and therefore a numerical solution ∆t = 10−6 and

∆x = 0.005 is used instead of the analytical solution for comparison. A fixed time

step is used throughout the simulations, which was chosen conservatively to ensure

that the CFL condition was satisfied. After t = 1, complex regions start appearing

in the characteristic space and a depth and velocity profile across the length of the

current cannot be explicitly written down everywhere. However, the curve xref has

been expressed in closed form in equation (2.17) and this expression is compared to

a positive characteristic emanating from (1,1) calculated from the numerical solu-

tion. An excellent agreement between the analytical and numerical expression for

xref is observed, figure 2.7. Although the Lax-Wendroff finite-difference scheme is

formally second order accurate, the model verification suggests that it is first order

accurate in both time and space. This is to be expected as the analytic solution

of the dam break does not have a continuous derivative everywhere. Although not

displayed here, for lower resolutions the contribution to the error is largest at x = 0

and x = 1.
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Figure 2.7: Comparison between the analytical expression and the numerically-
computed xref between (1,1) and the point that it intersects the head.

2.3 Results and Discussion

In this section, the range of possible solutions from the shallow-water model are

classified in terms of qualitative differences in the shock velocity throughout its

motion towards the head of the current. The generic structure of the (Fr, tre) phase

space is presented from a parametric study, and the solution types are presented.

2.3.1 Shock Evolution

The numerical solutions are first distinguished by the region the shock is released

within, C1, U2, C3 etc. If the shock at xs(t) is released into a uniform region,

the shock velocity remains constant until it enters the simple wave region. If the

shock is released into a complex region, its velocity varies from the outset. The

characteristics that bound the region of varying or constant α and β, xfan(t) and

xref(t), are bounded by the flow front and must collide with the shock before it

reaches the front. The intersection times, tfan and tref, i.e. xfan(tfan) = xs(tfan) and

xref(tref) = xs(tref), signify changes in behaviour in front of the shock.

If the shock is released into a complex region, three distinct paths through

(x, t)-space may occur: i) The shock first intersects xfan and enters a simple wave

region in which β is constant. The shock then intersects xref after it has reflected

off the front, entering another complex region; ii) The shock intersects xfan first, but

intersects xref before it has reflected off the head. Thus, the shock enters a uniform

region until colliding with the head; iii) The shock intersects xref, entering a simple

region within which α is constant. It then intersects xfan, entering a uniform region.

The three possibilities for C1 are displayed in figure 2.8a. A similar distinction is
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(a) (b)

Figure 2.8: Schematic showing examples of the three characteristic diagrams for the
three distinct paths C1 (a) and U2 (b) shocks, xs, (- -) can take through the single
release solution, i,ii and iii. The shock intercepts xref and xfan (· · · −) at tfan(H) and
tref(�), respectively. The shock intercepts the front, xN(−), at t = tcol(�). Uniform
(Ui), Simple (Si) and complex (Ci) regions are indexed by the order in which they
appear.

drawn for the uniform cases, for example U2 in figure 2.8b: i) β varies within the

simple wave region before becoming constant again; ii) β starts varying first followed

by α; iii) α starts varying followed by β. Further, if the shock is affected by the finite

length of the domain lock-box, i.e. xfin intersects with the shock before it reaches

the head of the flow, then this is equivalent to α− < 2 beyond this point. The first

time the shock and xfin coincide is defined as tfin, such that xfin(tfin) = xs(tfin). If

the shock is affected by the finite length of the lock-box, the case is labelled ‘F’,

otherwise ‘N’. For example U2Fi is a shock that is released into the U2 region of

type i that is affected by the finite length of the lock-box.

Numerical solutions for the U2N shocks are displayed in figure 2.9. For case

i, figure 2.9a&b, β varies upon entering the S3 region and the shock accelerates at

approximately a constant rate until entering U3, where it returns to a constant but

higher velocity until colliding with the head of the current. In contrast the shock

velocity increases throughout in cases ii, figure 2.9c&d, and iii, figure 2.9e&f, as first

one characteristic starts varying and then the other (β first for case ii and α first

for case iii). The shock velocity at tfin is largest for case iii, with case i being the

slowest.

For larger densimetric Froude numbers, the shock has further to travel
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before reaching the front and therefore is more likely to be affected by the finite

length of the lock-box. The U2F shocks are qualitatively similar to the U2N cases,

figure 2.10, until xfin collides with the shock at t = tfin, after which the velocity

decreases and the maximum shock velocity occurs before the head. Case U2Fi does

not exist. i.e., the shock can only be affected by the finite length of the lock-box if

it enters a region where α is varying. Further, our simulations reveal that this case

U4Fi does not exist. Shocks released into complex regions immediately increase

in velocity as both α+ is decreasing and β+ is increasing. Example C3N cases

are presented in figure 2.11. As expected, the acceleration of the shock decreases

after tfan for case i, because β takes a constant value until tref, after which β starts

decreasing again and the acceleration of the shock increases. For cases ii and iii, the

acceleration of the shock decreases when it enters the S3 region before becoming zero

when entering U3 until reaching the head of the current. For C3 and subsequent

complex and uniform cases, the shock may feel the affect of the finite length of

the lock-box before colliding with xref or xfan. The acceleration of the shock still

decreases after it is affected by the finite length of the domain, but the range of

possibilities becomes more complex, figure 2.12.

2.3.2 Classification of Solutions

A large number of numerical simulations were run in the range of values (Fr, tre) ∈
[0, 2) × (1, 21] and from the three curves, xref, xfan&xfin, and the shock, xs, the

corresponding case was determined. For each Fr, the boundaries between regions

were chosen at tre values between the simulations of different cases. In an iterative

process, further simulations were run at these parameter values in order to resolve

the parameter space accurately. The distinct regions of the parameter space are

presented in figure 2.13, with the i, ii, and iii distinctions only shown for cases C1,

U2 and C3. As Fr → 0, the boundaries collapse onto odd integers and the regions

of complex shocks tend to zero. This is to be expected, as xref and xfan coincide for

Fr = 0, and, in fact, u = 0 everywhere so positive and negative characteristics have

gradient 1 or -1, respectively. Cases C1ii and C1iii are the only two possible cases

where the shock collides with xref with α = 2. Our simulations reveal that neither

of these cases exist.

The classification of each case determines exactly which three regions the

shock travels through. The Rankine-Hugoniot conditions (2.20) & (2.21) ensure that

the shock velocity is constant in uniform regions where the shock is not affected by

the finite length of the lock-box α− = 2. For shocks in simple wave regions, one of
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Figure 2.9: Example U2N cases for: U2Ni, (a) & (b) (Fr = 0.4 and tre = 4.2);
U2Nii, (c) & (d) (Fr = 0.6 and tre = 5); and U2Niii, (e) & (f) (Fr = 0.9 and
tre = 5.8): (a), (c), (e) Characteristic diagram displaying the flow boundaries (–),
xref and xfan (· · · −), the shock xs (- -) and xfin(·); (b), (d), (f) Shock velocity for
t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-f). The shock velocity is only constant
in Uniform regions, §2.3.1.
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Figure 2.10: Example U2F cases for: U2Fii, (c) & (d) (Fr = 0.9 and tre = 10); and
U2Fiii, (e) & (f) (Fr = 1.1 and tre = 10): (a), (c) Characteristic diagram displaying
the flow boundaries (–), xref and xfan (· · · −), the shock xs (- -) and xfin(·); (b), (d)
Shock velocity for t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-d).
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Figure 2.11: Example C3N cases for: C3Ni, (a) & (b) (Fr = 0.4 and tre = 10);
C3Nii, (c) & (d) (Fr = 0.6 and tre = 11.4); and C3Niii, (e) & (f) (Fr = 0.7 and
tre = 11): (a), (c), (e) Characteristic diagram displaying the flow boundaries (–),
xref and xfan (· · · −), the shock xs (- -) and xfin(·); (b), (d), (f) Shock velocity for
t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-f).
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Figure 2.12: Example C3F cases for: C3Fi, (a) & (b) (Fr = 0.3 and tre = 20); C3Fii,
(c) & (d) (Fr = 0.8 and tre = 22); and C3Fiii, (e) & (f) (Fr = 0.9 and tre = 20):
(a), (c), (e) Characteristic diagram displaying the flow boundaries (–), xref and xfan

(· · · −), the shock xs (- -) and xfin(·); (b), (d), (f) Shock velocity for t > tre. tfan(H),
tref(�), tcol(�) and tfin(•) (a-f).
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α+ or β+ will take constant value given in equation (2.18) or (2.19), respectively,

while the other will vary monotonically between two constant values dependent on

Fr (from the neighbouring uniform regions). In a complex region, the values of α+

and β+ both vary between the constant values given in equations (2.18) & (2.19).

Solving the Rankine-Hugoniot conditions (2.20) & (2.21) numerically for a

fixed α− = 2 and varying Fr, α+ and β+ enables us to explore the regions of the

flow where the shock ẋs may accelerating or decelerating. Studying the regions up

to S7 and C6 revealed that the shock accelerates for all possible parameter values in

regions of fixed α+ (S3, S5 and S7) and for all values of α+ above a critical value of

the densimetric Froude number Frc in regions of fixed β+ (S2, S4 and S6). Similarly

one variable was fixed and the other varied to determine Frc-values for complex

regions. This analysis revealed that apart from case C3Ni in the C4 region and

C3Niii in the C3 region, all the Frc-values lie in the F region of the parameter space

and therefore, all shocks in the N region up to case U6 have non-decreasing velocities,

ẋs. Sampling the C3Niii case did not reveal any decelerating shocks. Decelerating

shocks were found in C3Ni near the N-F boundary and just before the shock reaches

the head. However, these were also observed for other cases near the N-F boundary.

As the numerical method is not exact, the maximum shock velocity may arise just

before the reflection of the backwards travelling disturbance xfin reaches the shock,

figure 2.12b,d&f. The velocity maximum occurs just before tfin. This is believed to

be a numerical artefact from the dissipative nature of the Lax-Wendroff scheme and

that N shock do not necessarily decelerate.

The velocity of the flow behind the shock u− = (α− + β−)/2 is related to

the velocity of the shock through the Rankine-Hugoniot conditions (2.20) & (2.21).

The simulations reveal that the acceleration of the flow behind the shock has the

same sign as the shock acceleration, except when the shock is propagating through

S2n regions of the flow, i.e. regions where β+ takes a constant value. In these regions

the acceleration has the opposite polarity. Critically, this means that an increasing

shock speed is equivalent to an increasing fluid velocity behind the shock for all

other regions in the single release flow.

Depth h and velocity u = m/h are compared for cases U2Ni and C3Ni in

figure 2.14. The position of the curves xref(�) and xfan(H) are displayed along the

x-axis to highlight the boundaries between uniform, simple, and complex regions.

After the second release the position of the shock (�) and xref(•) are also shown.

Both cases are for the same Fr, so the initial dynamics are identical. After the

second release, the flow depth is deeper, but slower, behind the shock for the U2Na

case when compared with the C3Ni case. When the shock reaches the head of
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Figure 2.13: Structure of the (Fr, tre) parameter space up to C3 shocks. Numerically
determined boundaries between regions (–), sub-regions (· · · ) and N/F (- -) are
shown.

the flow the expected constant depth and velocity is observed for the U2Na case.

Whereas for the C3Ni case, the velocity increases to a maximum at the head of the

flow. This maximum is larger than the maximum velocity for the U2Na case.

2.3.3 Momentum of the Head

Both the destructive potential, i.e. the amount of damage it can cause, of the

gravity current and its run-out length can be affected by the fluid momentum at

the head of the current m(xN , t). In figure 2.15 we compare the momentum at

the time when the shock collides with the head at the same time, m(xN , tcol), for
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Figure 2.14: Depth h(−·) and velocity u = m/h(· · · ) profiles at eight equally-spaced
time steps until the shock reaches the head of the current for the following cases:
U2Ni (left) and C2Ni (right). Positions of the curves xref(�) and xref(H) are displayed
on the x-axis until they intersect the shock xs(�). The position of xfin(•) is also
displayed on the x-axis.
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Figure 2.15: Computed momentum at the head of the flow when the shock arrives,
m(xN , tcol), for four Froude numbers Fr = (0.5, 0.75, 1, 1.25) in increments of 2 pulse
separation times tre (–) against: (a) pulse separation time tre; (b) displacement of
the head at the time of collision, tcol. Momentum at the collision time, tcol, for a
single release of twice the size tre < 1 (· · · ) is also shown.

four different Froude numbers Fr against pulse separation times tre. Also shown

on this plot is the corresponding momentum for a single release of twice the size at

(x, t) = (xN , tcol). For a fixed Fr, the momentum is significantly lower for a single

release than the corresponding double release. Although both cases contain the

same amount of material, the depth at the head of the flow starts decreasing later

for the single release and therefore the dissipation is larger. Further, the dissipation

is significantly larger at the head of the flow than at the shock.

In contrast to the single release, where increasing the densimetric Froude

number decreases the dissipation at the head, plotted against separation time the

momentum in the corresponding double release is lower for higher densimetric Froude

numbers. This is a consequence of the head moving faster for higher Froude num-

bers. If instead the momentum at t = tcol is plotted against the position of the head

xN(tcol), figure 2.15b the expected trend is observed with higher Froude numbers

being less dissipative. Critically, although the distinction is less with larger Froude

numbers Fr, a single release event is more dissipative than a double release.

2.4 Conclusions and future work

We have explored the effect of pulses on gravity current propagation using an ex-

tension of the shallow-water model for the single lock-release case studied by Hogg

(2006). The range of solutions are classified in terms of two parameters: the Froude
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number at the head of the current, Fr, and a dimensionless pulse separation time,

tre. For tre ≤ 1 the problem is identical to a single release, whilst the limits tre →∞
and tre → 1+ correspond to two independent events and a single event of twice the

volume, respectively. For intermediate values of tre the order the pulse intersects

three curves xref, xfan and xfin, qualitatively determine its propagation velocity. Crit-

ically, the pulse has non-negative acceleration before it intersects xfin and negative

acceleration thereafter. For small values of tre and/or small values of the Froude

number, Fr, xfin does not intersect the pulse before it reaches the front, figure 2.13.

Variations in pulse velocity affect the rate of energy dissipation, and thus of

the energy transferred through to the head of the current, which may enable the flow

to transition from laminar to turbulent behaviour. For pulse-prone, compositional

flows such as pyroclastic flows, the dynamics of the flow depend on dynamics of the

release and the changes in flow velocity may have implications for hazard prediction

models, which sometimes neglect the release dynamics and the subsequent pulses

created.

The parameter space considered in this chapter is limited to tre ∈ (1, 21]

and Fr ∈ (0, 2). Hogg (2006) considered the single-release problem for Fr ∈ (0,∞).

However, qualitative differences in the solution are observed for Fr ≥ 2. When

Fr ≥ 2 and finite the characteristic xref reflects once off the back of the lock-box

and then off the head, but the propagates forwards in time and space, but at a slower

rate than the head. Further, the xfan characteristic propagates forwards from release

and never intersects the head or the back of the lock-box. Further, an internal shock

occurs within the solution in finite time for Fr > 2. As Fr → ∞ this shock does

not occur, xref only reflects off the back wall and xfan is coincident with the head

of the flow xN . This shock may form before the pulse reaches it and the pulse may

affect the formation of the shock. Thus, a considerably different structure would be

observed in the (Fr, tre)-parameter space for Fr ≥ 2. Studying a larger region of tre

would be less insightful as the distinctions between the cases reduce as tre increases

and the releases appear more like independent events. This chapter is restricted

to equally sized lock-boxes. Further extensions to this could explore varying the

depth or length of one of the lock-boxes. Further, entrainment, basal-drag and bed

slope are neglected and their effects could be incorporated. Finally, a sediment-

bearing flow could be studied in the double-lock configuration by employing the full

equations studied by Bonnecaze et al. (1993).
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Chapter 3

Experimental study of pulses in

gravity currents

3.1 Introduction

In this chapter the double lock-release problem considered in the previous chapter

will be studied using idealised experiments in a similar configuration to Ho et al.

(2018a,b, 2019). Ho et al. (2018a,b) investigated the phased release of turbulent

saline gravity currents, where two lock boxes of equal volume of locked fluid were

released sequentially into a quiescent ambient. Their flows quickly entrained ambient

water creating a density stratification after the first release. For a short delay time

between releases, the fluid from the second lock-box propagated through the body

of the first at the bottom of the mixing zone. The velocity and density maximum

occurs just behind the head of the current (Sher and Woods, 2015; Hughes, 2016)

and Ho et al. (2018b) argue that this results in the intrusion catching up with

the head of the current. Whereas for long delay times, a pulse was created that

propagated similar to the first release and mixed with both the first current and the

ambient diluting it. The thin basal layer of the remnants of the first pulse reduced

the drag of the flow and led to the pulse catching up with the head. The complex

dynamics, that arise from the density stratification, would be poorly captured by

the depth-averaged shallow-water presented in the previous chapter.

A preliminary, unpublished, experiment conducted by Ho et al. (2018a,b)

used a higher viscosity 0.8 glycerol/water mixture (80% glycerol) for the current and

a water ambient, which produced a laminar-transitional gravity current. Laminar-

transitional is identified as plug-like flow in the body with only a small region of
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velocity fluctuations localised at the head. However, the Reynolds number defined

in chapter 1 Re � 1. A small region behind the head was mixed, but the bulk

of the release remained unmixed, signified by the interface remaining sharp. The

second release displaced the remnants of the first release and created a bore that

transitioned into the tail of the first current and towards the head of the current.

This is in contrast to the turbulent saline releases of Ho et al. (2018a,b, 2019), where

the second release propagates through the body of the first release and transfers

material to the head.

Intriguingly, the pulse caused a rapid transition to turbulent behaviour

upon arriving at the head of the flow, which coincided with a rapid dilution of

the head brought on by a cascade of mixing, figure 3.2. I.e., increased energy

resulted in the onset of turbulence and more mixing, which is turn reduced the

viscosity and promoted further mixing. This was enhanced by the highly non-linear

dependency of viscosity on the concentration for glycerol/water mixtures (Cheng,

2008). This can be observed behind the head in figure 3.2 by the significant amount

of mixing, whilst the mixed fluid and the current maintain a well defined boundary.

In addition to exploring the behaviour of pulsed flows at a higher viscosity, this

work investigates the laminar-transitional to turbulent transition observed in this

preliminary experiment. Further, a comparison between the shallow-water model

presented in chapter 2 is presented.

3.2 Methodology

3.2.1 Physical Setup

Pulsed gravity currents were created in a horizontal Perspex® tank of length 5 m,

width 0.2 m and depth 0.3 m by releasing glycerol/water mixtures into a water

ambient, figure 3.1. The configuration of the tank was identical to the work of Ho

et al. (2018a,b). Two lock gates encapsulating the dense fluid were spaced at 0.25

m intervals from the end of tank. 0.25 m deep Perspex® sheets were placed 0.1 m

from either end of the tank to create overspill boxes, which enabled surface waves

to dissipate.

In the first series of experiments, the evolving flow was recorded by two

rolling cameras capable of recording high-definition video at 24 Hz. Each camera

frame had a resolution of 1920 by 1080 pixels with each pixel representing 3.0×10−4

m at the nearside of the tank. The cameras were moved by hand along fixed rollers
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Figure 3.1: Schematic of experimental design, based on Ho et al. (2018a,b) the
first lock box is dyed red (lighter colour, in greyscale) and the second blue (darker)
and are filled to a depth of 0.1 m. The ambient depth is 0.25 m . Pneumatically
controlled gates release the first gate at t = 0 and the second at t = tre. The evolving
flow is filmed with either a pair of rolling cameras or a fixed high-speed camera (not
shown). Overspill boxes at either enable surface waves to dissipate and any excess
ambient fluid to drain from the tank. Not to scale.

to keep them steady. A measuring tape was placed just below the tank on the

nearside face, to enable the extraction of the distance from the videos afterwards.

The first camera tracked the head and the second tracked the pulse from initiation

during the double release experiments. The cameras were refocused before each

experiment. Sliding cameras were used so that the entire flow could be captured at

relatively high resolution over the run-out length, which was approximately 2-3 m.

Beyond this distance, the flows became viscously dominated and propagated very

slowly. In, a second series a high-speed camera was installed in a fixed position and

focused a location capturing the pulse transition region (0.15-0.75 m downstream of

the front of the first lock gate). The high-speed camera recorded at high-definition

(1920 by 1200 pixels) video at 200 Hz for a period of 18 s, which was sufficient to

capture both the head and the pulse for the range of tre values considered. With

all cameras, photographs of a chequerboard were taken before each experiment and

the inherent lens distortion was removed from the videos subsequently using the

Camera Calibration toolbox in MATLAB (Bouguet, 2004). During the early stages

of the flow, when the current was moving at its fastest, some of the videos were

slightly blurred, likely a result of the shutter speed being insufficient. Every effort

was made to move the cameras smoothly to account for this, but removing the all

blurriness proved impossible.
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The depth of the mixture within the lock-gate, hlock, was 0.1 m and the

ambient 0.25 m. Therefore, the depth ratio between the ambient and lock was

2.5. For depth ratios less than 2, single-layer shallow-water models (equivalent to

an infinite ambient depth) are not suitable for capturing the dynamics of a lock

release, because the initially smooth rarefaction wave develops a shock, which is

subsequently reflected off the back of the lock-box and travels towards the head of

the currents (Ungarish, 2009). Further, the slumping distance (region of constant

head speed, ẋn) of the motion is larger and the shape of the interface is changed.

These differences will still be present for a ratio of 2.5. However, they are less

significant. Having a ratio larger than 2.5 would be more desirable in this regard,

but with a fixed tank size, the only way to increase this would be by decreasing the

depth of the locked fluid. However, the depth of the resulting current would also be

reduced, decreasing the resolution at which the current can be observed. Therefore,

the ratio of 2.5 was chosen as a balance between the resolution and the agreement

with the single layer shallow water model.

Figure 3.2: Stills from experimental videos demonstrating the mostly un-mixed and
laminar transitional behaviour at the head of the current (left) and the fully mixed
and turbulent behaviour after the pulse reaches the head (right). Ruler for scale in
centimetres.

Lock-release flows are often used to model large-scale geophysical flow that

may be unconfined or only partially confined. The design and withdrawal mech-

anisms of the lock gate can have an impact on the resulting experiment. Two-

dimensional simulations that resolved the motion of the lock-gate have been con-

ducted to assess the impact on the withdrawal on the flow (Giorgio Serchi et al.,

2011). The withdrawal of a lock gate causes disturbance in six main ways: i) spon-

taneous rotation of the current ambient interface; ii) reduction in free surface height

inside the lock-box as the current starts to flow; iii) tangential shear on the with-

drawing lock-gate; iv) Variations in free surface height; v) Wake vorticity of the

lock-gate and replacing the void left by withdrawal; vi) difference in timescales be-

tween the flow and the triggering mechanism. Although these are argued to be more

significant to compositional gravity currents, Giorgio Serchi et al. (2011) conclude
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that to minimise these affects the lock-gate should be as feasibly thin as possible

and withdrawn mechanically as quickly as possible without inducing shaking.

A pneumatic lock-control box controlled the withdrawal of the lock-gates

to ensure they were raised smoothly and consistently. The lock-gate were set into

groves cut into the side of the Perspex® tank. The groves created a tight seal to

stop leakage and prevented the gates from shaking. Upon release of the first lock-

gate, the lateral pressure gradient drove the flow out as a gravity current. The time

between withdrawal, tre, was specified for double-release flows. The release of the

second current created a pulse, which transitioned from the second current into the

first and propagated towards the head of the flow.

Giorgio Serchi et al. (2011) recommended that the lock gate be withdrawn

as quickly as possible, whilst not shaking the gate, and that the gate is as thin as

possible. However, the flows considered in their simulations were of a significantly

higher lock-gate Reynolds number, defined as Regate = Ugatedgate/ν, where Ugate is

the gate withdrawal speed, dgate is the width of the lock box and ν is the kinematic

viscosity, which was constant in their simulations. Their lock-gate Reynolds numbers

were 1500 or 3000 and within the fully turbulent regime. Using the viscosity of the

glycerol/water mixtures, a lock-width of 0.005 m and withdrawal speed of 1 ms−1

yields Regate-values of 20, 43 and 90, which are laminar-transitional. Although

the gates could have been withdrawn faster than 1 ms−1, this would increase the

turbulent mixing of the flow. This was highlighted by the increased amount of

mixing in the cases with lower glycerol concentration.

3.2.2 Glycerol properties

Glycerol (CH2(OH)CH(OH)CH2(OH), for a more complete description see Christoph

et al. (2006), is a colourless, odourless, viscous liquid that is a simple polyol com-

pound. It has extensive uses in the food and pharmaceutical industries. The three

hydroxyl (OH−) groups result in its water solubility and its hygroscopic (attracting

and holding water molecules) nature. Pure glycerol can be synthesised, but it is

an expensive process to do so Christoph et al. (2006). The glycerol used in the

experiments had been purified and was quoted to be at least 99.5% pure. Glyc-

erol behaves like a Newtonian fluid and its mixtures with water vary in viscosity

by three orders of magnitude (from pure water to pure glycerol), making it highly

suitable for a wide range of experiments. Furthermore, as discussed later in this

section, empirical relationships for the viscosity exist and are accurate to within a

few percent over all possible concentrations and the temperatures experienced in the
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Table 3.1: Properties of pure glycerol at room temperature (20 ◦C) (Christoph et al.,
2006).

Density
(ρg, kgm−3)

Dynamic Viscosity
(µg, Nsm−2)

Kinematic Viscosity
(νg, m2s−1)

Molar Mass
(Mg, gmol−1)

1261 1.412 0.00112 92.094

experiments. Relevant properties of pure glycerol are given in table 3.1.

The concentrations studied in the experiments were chosen to provide

Reynolds numbers, Ret, within the laminar-transitional regime. These Reynolds

numbers were determined using the half lock height, hlock/2 as the length scale and

a balance between kinetic and potential energy for the velocity scale, U ∼
√
g′hlock,

Ret =
√
g′h3

lock/2ν, (3.1)

where ν = µ/ρ is the kinematic viscosity. For Ret = 90, 180 and 360, the viscosity

and density parametrisation of glycerol/water mixtures by Cheng (2008) was used

to determine the required glycerol concentration, αg, (correct to two s.f.) by volume,

at room temperature (20 ◦C) of αg = 0.90, 0.84 and 0.77, respectively. Selection of

these Reynolds numbers minimised turbulent mixing and entrainment in the current

and thus ensured that the glycerol concentration in the current remained relatively

constant throughout. In addition these Reynolds numbers ensured that the flow was

not dominated by viscous drag and kept the gravity current in the inertial-buoyancy

regime for long enough to enable comparison with the shallow-water model. The

finite supply of material implies that the current would slow down and become

thinner after the initial slumping phase, resulting in an increased effect from vis-

cous drag over time. Thus, the inviscid assumption required for our shallow-water

model becomes invalid at long time-scales. The time-scale when viscous, inertial

and buoyancy forces are are all equal can be estimated by a simple dimensional

argument

tc ∼

[
(hlockl)

4

g′2ν3

] 1
7

, (3.2)

Huppert (1982). This produced non-dimensional transition times for the three con-

centrations, αg = 0.77, 0.84, 0.90, of 11.5, 8.5 and 6.2, respectively. For values of t

larger than this, the viscous forces will become larger and the current would propa-

gate with a dominant balance between viscous and buoyancy forces.

The dynamic viscosity, µ, and density, ρ, of the pure glycerol (subscript g)



55

and water (subscript w) are given by Cheng (2008):

µw = 0.00179 exp

(
−(1230 + T )T

36100 + 360T

)
, (3.3)

µg = 12.1 exp

(
(T − 1233)T

9900 + 70T

)
, (3.4)

ρw = 1000

(
1−

∣∣∣∣T − 4

622

∣∣∣∣ 1710
)
, (3.5)

ρg = 1277− 0.654T. (3.6)

and the mass fraction of glycerol Cm

Cm =
αgρg

αgρg + (αw)ρw
, (3.7)

where αw = 1 − αg is the water concentration and T ∈ [0, 100] is the temperature

in Celsius. Cheng (2008) used a mixing power law for the dynamic viscosity and a

volume weighted density

µ = µιwµ
1−ι
g , (3.8)

ρ = αgρg + (1− αw)ρw, (3.9)

where the parameter ι is given in terms of Cm and two parameters a and b

ι = 1− Cm + abCm
1− Cm

aCm + b(1− Cm)
, (3.10)

a = 0.705− 0.0017T, (3.11)

b = (4.9 + 0.036T )a
5
2 . (3.12)

The empirical model derived by Cheng (2008) is based on three studies

(Segur and Oberstar, 1951; Shankar and Kumar, 1994; Chenlo et al., 2004) into the

viscosity of water/glycerol mixtures and is able to predict the dynamic viscosity, µ

within a few percent, table 3.2. Crucially, the temperature (approximately 20 ◦C)

and the glycerol concentration (0.77 to 0.90) lies within the ranges considered by

the empirical model of Cheng (2008). However, at high concentration ranges, the

viscosity of the mixture can vary by as much as 10% for a change of 1 ◦C or 0.01

concentration and thus, care must be taken to ensure that temperature and concen-

tration fluctuations do not contribute a major source of error. Like most mixtures,

there is a volume contraction when glycerol and water mix. At 20 ◦C, the largest

contraction is approximately 1.1% (Volk and Kähler, 2018) and occurs at a glycerol

concentration of 0.6. This is an upper bound on the error of the volume-weighted
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Table 3.2: Temperature (T,◦C) and concentration ranges considered by the three
studies from which the empirical model of Cheng (2008) for the dynamic viscosity µ
of glycerol-water mixtures is constructed. Also included is the maximum and mean
error between the model fit and the data points in each of three works calculated by
Cheng (2008). The percentage error is calculated |µpredicted − µactual|/µactual × 100%

Reference
Temperature
range (◦C)

range of glycerol
mass concentration (Cm)

Maximum
error (%)

Mean
error (%)

Chenlo et al. (2004) 20-50 0-0.315 2.2 0.7
Segur and Oberstar (1951) 0-100 0-1 3.5 1.3
Shankar and Kumar (1994) 10-50 0-1 8.5 2.3

mixture density and less than the error in dynamic viscosity.

3.2.3 Procedure

On the Friday of the week proceeding any experimental work, two large storage

tanks (each with volume 1.8 m3) were filled with domestic water and left over the

weekend to equilibrate to lab temperature. This removed variations in the ambient

temperature and provided enough water to run 14 experiments (each of volume

0.25 m3) The temperature of the laboratory area was thermostatically controlled 24

hours a day.

The glycerol/water mixtures were premixed at least a day prior to ex-

perimentation in a 0.2 m3 mixing tank at the desired concentration for a series of

experiments. Mixing was preformed with an electric motor-driven vertical impeller

with four blades inclined at 30◦. A minimum of 45 l of liquid was required to sub-

merge the impeller blades, but larger volumes reduced the amount of air that was

entrained during mixing. Post mixing, the mixture was left to rest for a few hours

so that most of the air could escape. A pump was then used to extract the mixture

from the bottom of the mixing tank and fill 5 l containers (corresponding to the re-

quired volume of locked fluid, 0.1×0.25×0.2 m3). Each container contained a small

amount of either red or blue dye and was shaken to mix the dye in. The containers

were then left overnight to allow remaining air bubbles to escape. A total of four

batches were mixed and samples of the mixture, labelled in order, were kept and

later used to measure the viscosity in a rotary rheometer. The second batch, with

concentration 0.84, was sampled twice and labelled 2a and 2b.

Both the mixing process and the pumping raised the temperature by a few

degrees each, but this had dissipated by the following morning. Over the period the

experiments were conducted, the stored water temperature varied by at most 1.5 ◦C

during the first phase of experiments. Fluctuations were the result of variable lab
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temperature caused by other work being conducted in the lab area that affected the

temperature near the thermostat. and were beyond our control. During the second

phase of experiment, the temperature was lower by as much as 3 ◦C. as a result of

temperature gradients throughout the lab area and seasonal temperature variations.

The temperature-normalised domestic water was pumped into the perspex

tank to the desired depth of the ambient (0.25 m) prior to each experiment. The lock-

gates were then lowered and a 0.25 m high perspex panel was placed 5 m downstream

to create the overspill box at the far end. This panel and the lock-gates sat inside

groves cut into the side of the Perspex® to create a seal and prevent seepage.

Silicon grease was applied to the seals when necessary to keep them watertight. The

drain was then opened to release some of the water in this overspill box. Various

concentrations, table 3.3, of dyed blue glycerol/water mixture were partially filled

into the back lock box with a peristaltic pump to a depth hlock = 0.1 m. Two holes

of radius 0.01 m had been carefully drilled into each lock gate centred 0.01 m above

the ambient depth 0.25 m. Filling the lock boxes displaced the ambient water into

the overspill boxes, which kept the ambient at the required depth of 0.25 m.

The filling rate was initially slow in order to minimise mixing with the

ambient water. The filling rate was increased after there was sufficient glycerol/water

mixture to fully submerge the outlet of the pipe. The pipe was clamped in place

prevent it from moving during the filling process. The filling process took roughly 20-

25 minutes, which was limited by the maximum speed of the pump, and unavoidably

increased the temperature of the mixture by approximately 2 ◦C, because of the

work done forcing the highly viscous mixture though the pipe. For double-release

experiments, the same procedure was followed to fill the front lock-box with red-dyed

mixture, figure 3.3.

Figure 3.3: Snapshot of the lock-boxes just before the release of the lock gates. No
mixing can be observed between the glycerol/water mixtures and the ambient.
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Following this procedure resulted in no observable mixing at the free sur-

face. Further, there was no noticeable diffusion of the interface between the mixture

and ambient water. This, however, does not mean that no mixing took place, since

glycerol is hygroscopic and there could have been a mass exchange dominated in

the direction into the current. For this reason, and to save considerable time, the

experiment was conducted at the conclusion of filling rather than allowing the glyc-

erol/water mixture to reach the same temperature as the ambient water.

Before each experiment commenced, the ambient and glycerol/water mix-

tures temperatures were measured with a digital thermometer. A small amount of

glycerol remained in the pipes of the peristaltic pump and this was used to mea-

sure the viscosity using a British standard u-tube viscometer, as discussed later.

Further, the temperature of the mixture was taken before being used in the u-tube

viscometer.

After each experiment, the tank was refilled with domestic tap water and

a squeegee was used to mix any deposited glycerol/water mixture with this water

before being drained. The lock-boxes were refilled at least three times, again with

domestic tap water, and released into an air ambient before being drained. This

ensured that all glycerol from the previous experiment had been removed. The

hygroscopic nature of glycerol made this cleaning process relatively straightforward.

Further, although transparent, glycerol has a significantly different refractive index

than water (Haynes, 2014), facilitating detection of unmixed patches.

Glycerol is a simple sugar alcohol and therefore is an ideal medium for

bacterial growth. Care was taken to minimise and to clean any spillages throughout

the experimental work. Further, the glycerol used in each experiment was inspected

beforehand to ensure that it had not been contaminated. Glycerol was mixed in

batches to accommodate this and used within a few days.

3.2.4 Cases

The single-release experiments were conducted to determine appropriate release

times of the second gate, tre. For the single-release experiments, the second gate

was held stationary to record the depth of fluid remaining within the lock-box.

The release times, tre, were chosen in terms of fractions (1/2, 3/8, 1/4 and 1/8) of

remaining fluid within the first lock box. A piece-wise linear interpolation of the

depth inside the lock box, using each end of the box and the mid-point as the three

stencil points, was used to determine this remaining fraction. All experimental cases



59

are presented in table 3.3. Initially, multiple runs of each case was conducted to as-

sess repeatability, table 3.4, which is discussed in section 3.5.1. Note that for the

RD90-1/8 case, the time scale to reach 1/8 depth was of the order of minutes and a

more appropriate non-dimensional time of 23.5 was chosen.

The range of Reynolds numbers was selected, because a suitable glycerol

concentration to inhibit mixing with the ambient, whilst maintaining the inertia-

buoyancy balance could not be known a priori. Further, the range was selected

around that of the preliminary experiment to attempt to reproduce the laminar-

transitional to fully turbulent behaviour observed in the preliminary experiment of

Ho et al. (2018a,b), for similar Reynolds number values. Release times were chosen

to be similar across the experiments. Further, fractions of greater than 1/2 were

not considered, because the pulse would become increasingly smaller and difficult

to detect. Non-dimensional release times of less than 1 would yield meaningless

comparisons to the theoretical shallow water model, because this is the time for the

backwards travelling disturbance to reach the back of the lock-box.

After the series of experiments with the rolling cameras, it became obvious

that there was still a noticeable amount of mixing with the ambient and dilution at

the head for the higher two concentrations. As a result of this, and further, to keep

costs down, only the highest concentration was used with the high-speed camera.

3.2.5 Viscometry

The section details the two methods used to measure post experiment the glyc-

erol/water mixture viscosity: the Ubbelohde u-tube viscometer and the parallel-

plate rotary rheometer. Both utilise Stokes’ flow and are suitable for measuring

high viscosity liquids, like oils. The rotary rheometer may also be used for non-

Newtonian fluids.

The Ubbelohde, or suspended level, viscometer, figure 3.4, is a type of u-

tube or capillary viscometer invented by Dr. Leo Ubbelohde to measure the viscosity

of viscous liquids, (Ubbelohde, 1936). Liquid is filled through the top pipe until the

bottom two bulbs are half full. Then, by closing pipe b and providing suction to

the top of pipe c, liquid is drawn up the pipe and through a constriction of known

diameter, R, and length, Lu, to a level above line A. Pipe b is then released to allow

the fluid to return to equilibrium in the bottom of the viscometer. The previously

used Ostwald viscometer did not have this pipe and as such, the variations of total

fluid in the device affected the hydrostatic pressure between a and c. By assuming
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Figure 3.4: The Ubbelohde or suspended level viscometer (Ubbelohde, 1936). The
two bulbs are partially filled with the liquid to be measured through pipe a. Whilst
pipe b is sealed, the liquid is drawn up pipe c, through suction, to above A. Pipe
b is then released and the suction removed to allow the liquid to flow through the
constriction below B. The time taken, tcon, to drain the fluid is proportional to the
viscosity for large values of tcon. The device is kept vertical with clamps during the
entire process. Not to scale.
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Table 3.3: Table of experimental parameters. Key: R - rolling cameras, HS - high
speed camera, S - single release, D - double release; glycerol concentration, αg, by
volume (0.77,0.84 or 0.90); and fraction of remaining fluid in the first lock at t = tre
(1/2, 3/8, 1/4, 1/8). The kinematic viscosity of the current and the Reynolds number
Re =

√
g′h3

lock/2ν Note that at 0.90 concentration, the time to reach a remaining
fraction of 1/8 was of the order of minutes and a tre-value of 23.5 was chosen instead.

Case name
Single/
Double

(αg)
Remaining

fraction
tre

Current
density

(ρc, kg·m−3)

Kinematic
viscosity

(ν, ×10−5m2·s−1)

Reynolds
number
Re

RS77 S 0.77 - - 1210 5.54 374
RS84 S 0.84 - - 1227 11.6 184
RS90 S 0.90 - - 1240 24.4 90

RD77-1/2 D 0.77 1/2 2.48 1210.3 5.54 374
RD84-1/2 D 0.84 1/2 2.33 1227 11.6 184
RD84-3/8 D 0.84 3/8 3.19 1227 11.6 184
RD84-1/4 D 0.84 1/4 4.9 1227 11.6 184
RD84-1/8 D 0.84 1/8 8.6 1227 11.6 184
RD90-1/2 D 0.90 1/2 2.3 1240 24.4 90
RD90-3/8 D 0.90 3/8 3.36 1240 24.4 90
RD90-1/4 D 0.90 1/4 5.84 1240 24.4 90
RD90-1/8 D 0.90 - 23.5 1240 24.4 90

HSD90-1/2 D 0.90 1/2 2.3 1240 24.4 90
HSD90-3/8 D 0.90 3/8 3.36 1240 24.4 90
HSD90-1/4 D 0.90 1/4 5.84 1240 24.4 90

Poiseuille flow within the constriction, the rate of change of volume, V , can be

calculated

dV

dt
= vconπR

2 =
πR4

8µ

(
∆P

Lu

)
, (3.13)

where vcon is the velocity of the liquid in the constriction and ∆P is the pressure

difference between the top of the free surface and the bottom of the constriction. The

difference between measurement points A and B is significantly less than the length

of the constriction Lu and so constant pressure may be assumed, i.e. ∆P = ρgHu .

For a known volume, V0, between the lines A and B the volume flux equation (3.13)

may be integrated with respect to time to yield

V =
πR4

8µ

ρgH
Lu

tcon =⇒ ν =
µ

ρ
=
πR4gHu

8LV0

tcon, (3.14)

where tcon is the time taken for the fluid level to drop from A to B. Crucially,

the kinematic viscosity, ν, only depends on parameters that are constant to the

viscometer and the time, tcon.

U-tube viscometers are generally used to measure the viscosity of oils and

other liquids, many of which are immiscible in water. Glycerol is miscible so it was
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Table 3.4: Temperature measurements taken from the ambient, first and second
lock-boxes. The corresponding sample or batch number is given for each case. For
the cases measured, the temperature of the mixture before the u-tube viscometer
used, the time for the liquid to drain and the corresponding kinematic viscosity
calculated from the u-tube viscometer also given. Finally, the Reynolds number
calculated from React =

√
h3

lockg
′/2ν is given.

Case Temperature (◦C) Sample
Sample

Temperature
(◦C)

Sample
Time (s)

Measured
viscosity

(ν,×10−5)
(m2 s−1)

React

Ambient 1st 2nd 1st 2nd 1st 2nd

RS77
18.4 19.7 N/A 1 N/A N/A
18.5 20.0 N/A 1 N/A N/A
18.5 20.3 N/A 1 N/A N/A

RS84
16.9 18.0 N/A 2a 18.3 N/A 105.5 N/A 10.6 202
17 17.9 N/A 2a N/A 83.0 N/A 8.30 258

16.8 17.9 N/A 2b N/A N/A

RS90
17.8 19.0 N/A 4 18.4 N/A 170.0 N/A 17.0 129
17.9 19.3 N/A 4 N/A N/A
18.0 19.2 N/A 4 N/A N/A

RD77-1/2
16.9 18.0 17.7 1 18.2 48.9 4.89 425
16.9 18.0 17.9 1 49.2 4.92 422
16.9 17.9 17.8 1 19.3 18.4 47.88 48.2 4.80 433

RD84-1/2
16.8 17.9 17.9 2b 18.2 18.2 108.3 105.2 10.7 200
16.9 18.0 18.0 2b
17.0 18.1 18.1 2b 103.4 10.3 207

RD84-3/8
17.3 18.9 18.7 3 20.2 80.6 8.06 265
17.9 19.3 19.2 3

RD84-1/4
17.2 19.4 19.9 3 19.2 76.4 7.64 280
17.9 19.3 19.2 3

RD84-1/8
17.3 19.2 19.2 3
17.7 19 19 3 19.5 76.3 7.63 280

RD90-1/2
17.5 19.2 19 4 19 188.2 18.8 116
17.5 19 18.8 4

RD90-3/8 17.5 19 18.7 4 19 179.3 17.9 122

RD90-1/4
17.5 18.8 19.2 4
17.6 19.2 19.5 4

RD90-1/8 17.5 19.2 19 4

HSD90-1/2
15.8 17.9 17.9
15.8 18 18

HSD90-3/8
15.8 18 17.9
15.8 18 18

HSD90-1/4
15.7 16.9 17
15.7 17.3 17.3
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easily cleaned from the device by repeated rinsing. However, small amounts of water

remained within the viscometer, which could not be removed except by evaporation

over the period of a few days. This meant that after the first measurement conducted

during the week, the results were corrupted by the mixing of the additional water

into the mixture. The extent of this was not realised until after the experiments

had been conducted.

Figure 3.5: Diagram of a parallel-plate rheometer. The plate separation, H, radius
of the circular plate R and angular velocity Ωpp are fixed. The viscosity is calculated
by measuring the required torque M to maintain a fixed angular velocity, Ωpp. In
axisymmetric cylindrical co-ordinates (r, z).

The viscosity of samples from each batch of glycerol/water mixtures used

during the first series of experiments was evaluated in a parallel plate rotary rheome-

ter, figure 3.5. This type of rheometer measures the dynamic viscosity, µ, of a liquid

from the torque required to maintain two plates rotating at a constant angular ve-

locity, Ωpp. The two plates are separated by a distance, H, and filled with the

sample fluid in a configuration similar to a Hele-Shaw cell. Provided the plates are

sufficiently close together, Stokes flow may be assumed. The shear strain, γ̇, at a

given radius, r, is γ̇(r) = rΩpp/Hpp. The total torque, M , for a Newtonian fluid

required to rotate the plate at angular velocity, Ωpp, is

M =

R∫
0

2πr2γ̇µ dr =

R∫
0

2πr3Ωppµ

Hpp

dr =
πµΩppR

4

2Hpp

. (3.15)
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Thus, by measuring the torque M for a fixed value of the angular velocity Ωpp, the

dynamic viscosity, µ, may be calculated as

µ =
2HppM

πΩppR4
. (3.16)

For non-Newtonian fluids, varying Ωpp varies the shear rate rate, γ̇, and the

change in µ may be measured. For Newtonian fluids, the viscosity should, obviously,

remain constant. In addition to the five samples from the experiments, a further

sample of the pure glycerol provided was retained and labelled ‘sample 5’. The

sample number for each case is included in table 3.4. For each sample, a number

of different temperatures, displayed in table 3.5, were selected and the dynamic

viscosity, µ, of the mixture was measured using the rotary rheometer over a range of

angular velocities, Ωpp, figure 3.6. The rotary rheometer had an inbuilt temperature

control that was accurate to two decimal places about the desired temperature. At

high values of Ωpp, viscous dissipation raised the temperature by as much as 0.1 ◦C,

but the measured values of dynamic viscosity were already inaccurate from the

choice of Ωpp. A suitable range of angular velocities Ωpp was not known a priori and

so a range was selected over three to four orders of magnitude with equal spacings

of 10 per decade on a log scale. The values of the measured dynamic viscosity

presented in table 3.5 are the mean values over the range of Ωpp presented for each

case. Significant variations of the measured dynamic viscosity were observed for

Ωpp ≤ 0.1 (log Ωpp ≤ −2.3) from sample 3, figure 3.6, and these were excluded

before calculating the mean. Samples 2a, 2b and 3 correspond to the same glycerol

concentration (0.84). The mean value from samples 2a and 2b is relatively close

to the target dynamic viscosity, table 3.5, and, as expected, roughly double mean

value of sample 1. Samples 3, 4 and 5 measure the dynamic viscosity to be roughly

30 to 40% lower than the target value, table 3.5. Further, although more prevalent

for sample 5, all samples, apart from sample 1, exhibit shear-thinning behaviour,

figure 3.6. It was unclear what caused this variation in the dynamic viscosity or

the discrepancy between the first three and the last three samples. A possible

explanation would be that viscous dissipation raised the temperature of the sample

reducing its viscosity. However, the internal temperature readings on the rheometer

only detected an increase of 0.2 ◦C for sample 4 and 0.4 ◦C for sample 5, which would

only change the viscosity by 1.6 and 3.17%, respectively.
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Figure 3.6: Measured dynamic viscosity, µ (kg·m·s−s), from the rotary viscometer
against the natural log of the target angular velocity, Ωpp (s−1), for different glycerol
concentrations: 0.77 (sample 1); 0.84 (samples 2a, 2b and3); 0.90 (sample 4); and
0.995 (sample 5). Measurements were repeated over a range of temperatures to
capture the range of temperatures observed during experiments.



66

Table 3.5: Table of the measured dynamic viscosities from the rotary rheometer for
the six different samples at glycerol concentration αg. The target dynamic viscosity
and the current density, ρc, is calculated using the empirical model of Cheng (2008).
The viscosity discrepancy is calculated as |µmeasured − µtarget|/µtarget. The corre-

sponding Reynolds numbers from the measured viscosity, React =
√
g′h3

lockρc/2µ,
are given. The measured dynamic viscosity is calculated from the mean value over
possible angular velocities, Ωpp, from the data presented in figure 3.5 with the ex-
ception of sample three, where the values Ωpp ≤ 0.1 (log(Ωpp) ≤ −2.3) are excluded
before averaging.

Sample αg T ( ◦C)

Measured
dynamic
viscosity

(µ, kg·m·s−1)

Target
dynamic
viscosity
(µ, kg·m·s−1)

Viscosity
discrepancy

(%)

Current
density

(ρc, kg·m−3)
React

1

0.77 17.7 0.0842 0.0778 8.2 1211.7 299
0.77 17.9 0.0816 0.0768 6.3 1211.6 309
0.77 19.7 0.0717 0.0684 4.8 1210.5 350
0.77 20.3 0.0687 0.0659 4.2 1210.1 365

2a 0.84 18.0 0.1673 0.165 1.4 1227.8 157
2b 0.84 18.0 0.1512 0.165 8.4 1227.8 174

3
0.84 18.7 0.1097 0.157 30.1 1227.4 240
0.84 19.2 0.1076 0.151 28.7 1227 244
0.84 19.9 0.0958 0.144 33.5 1226.6 274

4
0.90 18.8 0.2167 0.333 34.9 1240.8 125
0.90 19.2 0.1982 0.323 38.6 1240.5 137
0.90 19.5 0.1895 0.315 39.8 1240.3 143

5 1 18.1 1.225 1.689 27.4 1261.9 23
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3.3 Image processing

3.3.1 Lens distortion

A pinhole camera is a simple camera without a lens, figure 3.7. Effectively it is a

lightproof box with a small opening on one side that is known as an aperture. Light

passes through the aperture and creates an inverted image on the back of the box,

which is known as the image plane. All light rays travel in straight lines through

the aperture producing a near infinite depth of view (the range of distances where

the objects are in focus). However, they require long exposure times. The principal

axis is defined in the direction normal to the image plane that passes through the

aperture.

Lens are transparent objects added to cameras. Simple convex or concave

lens bend light rays by an amount proportion to the distance from the central axis

of the lens, figure 3.8. Convex lens reduce the field of view (the angle through which

the camera can detect light), figure 3.9, and the depth of view, but significantly

increase the amount of light from the observed region reaching the image plane

when placed in front of the aperture. Thus, they are essential for most situations,

in particular those where the objects are moving or in darker environments. The

amount that the lens bends light is measured by its focal length, the distance from

the lens that parallel rays of light converge, figure 3.8. The focal length, Zc also

determines the magnification of the image that is projected onto the image plane.

Short focal lengths provide a wider field of view, whereas long focal lengths are more

suitable for viewing objects that are further away. Compound lenses, with variable

focal lengths, are constructed from a series of lens along a common axis. Varying

the separation of these lens adjusts the focal length of the compound lens. However,

the image quality is reduced when compared to a single (or prime) lens.

Figure 3.7: Schematic of a pinhole camera. Light from an objects travels in straight
lines through the aperture creating an inverted image on the image plane. The field
of view is the angle between the the two extreme edges that are displayed on the
image plane.
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Figure 3.8: The affect on parallel rays of light from a convex (top) and concave
(bottom) lens with focal lengths, Zc and −Zc, respectively. The convex lens bends
light rays towards the central axis, whereas the concave lens bends light rays away.

Figure 3.9: The affect of different types of lens on the field of view in a camera.
The convex lens has a narrow field of view, but increase the magnification and the
amount of light entering from a more distance object. A concave lens has a negative
focal length and any object outside of the camera will be out of focus. As such, the
concave lens is not useful on its own, but is an essential part of a compound lens.
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One of the main drawback of lens is the distortion of images, particularly

near the edges of images, that they introduce. This is arises from the inability to

construct lens that distort light rays perfectly, as in figure 3.9, and a uniform rate

of increase from the optical centre. This leads to radially symmetric distortions.

Asymmetric distortions can arise from asymmetry in the lens itself, which is usually

negligible relative to the symmetric distortion. Further, distortion can arise if the

lens is incorrectly aligned with the image plane. These produce more complex

distortion patterns and are known as tangential distortions.

Figure 3.10: The virtual image plane is the observed space capture at distance of
the focal length of the camera Zc with plane co-ordinates (Xc, Yc) centred about the
principal axis (dashed line).

In order to estimate the affect of lens distortion the position of the 3-D

object, in world co-ordinates (X, Y, Z), that is being observed needs to be converted

onto the virtual image plane defined with normal in the direction of the principal

axis and at distance Zc from the aperture, figure 3.10. The co-ordinates of the

virtual image plane are (Xc, Yc, Zc). The object can be mapped to the virtual image

plane by a rotation matrix R, translation vector t such that,

(Xc, Yc, Zc) = R(X, Y, Z) + t. (3.17)

The rotation and translation are the extrinsic (independent of the camera) param-

eters and represent the location of the camera in 3-D space relative to the ob-

ject. If the size of the object is known, then the pixel lengths on the virtual image

plane, (px, py) can be determined. The focal length is normalised by these lengths,

(fx, fy) = (Zc/px, Zc/py). Further, the skew s = fx tanαs can be determine, where

αs is the difference in angle between orthogonal axes and the image axes. Finally,

we translate to camera co-ordinates which are centred about the principal point, the

centre of the virtual image plane in pixels (cx, cy), and normalised by the normalised
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focal lengths. This is encoded in the intrinsic matrix, K, given by,

K =

 fx 0 0

s fy 0

cx cy 1

 . (3.18)

The camera co-ordinates (x, y) are then defined

(x, y, 1) = K(Xc, Yc, Zc) = K (R(X, Y, Z) + t) . (3.19)

The intrinsic (specific to the camera) parameters represent the translation of the

observed object onto the image plane of the camera.

Radial distortions can be modelled in the form of a power series in r2

(
xd

yd

)
=

(
x

y

)(
1 + k1r

2 + k2r
4 + · · ·

)
, (3.20)

(Fitzgibbon, 2001) where r2 = x2 + y2 is the distance from the principle point, ki

are the radial distortion coefficients and (xd, yd) are the distorted image co-ordinates

in the camera co-ordinates. In practice only the first few terms from the series are

required to accurately capture most radial lens distortions(De Villiers et al., 2008).

The three common types of radial lens distortions are displayed in figure

3.11. Barrel and pincushion distortions are both quadratic, with opposite signs of

the k1 coefficient. Quartic order radial distortions either look similar to the quadratic

distortions (when k1 and k2 share the same sign) or produce a blending of the two.

When k1 < 0 and k2 > 0 straight lines near the centre curve up near the centre

and the opposite way towards the edges creating curves that look like moustaches,

figure 3.11d, which are hence known as moustache distortions. When k1 > 0 and

k2 < 0 the opposite effect occurs, figure 3.11e. This is not generally observed and

so is unnamed.

Tangential distortions arise from the lens and the image place not being

completely aligned. Brown (1966) proposed the following model for calculating the

undistorted points, (x, y) in the camera co-ordinates
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(a)

(b) (c)

(d) (e)

Figure 3.11: (a) A mesh grid with no distortion. Types of quadratic (b and c) and
quartic (d and e) radial distortions: (a) barrel (k1 < 0, k2 = 0), (b) pincushion
(k1 > 0, k2 = 0), (c) moustache (k1 < 0, k2 > 0) and (d) (k1 > 0, k2 < 0). The
names are derived from common objects. The line appear to bulge in the centre
of a barrel distortion resembling a barrel. The pincushion pinches at the corners.
Lines near the centre curve upwards near the centre and then the other way in a
moustache distortion. The final type does not appear in standard lens and, as such,
has no name.
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Table 3.6: Table of parameters and errors from the camera calibration. Errors for the
radial diffusion coefficients, ki are one standard deviation of the data. The camera
co-ordinates of the top right corner of the image is (xmax, ymax) and has corresponding
distance rmax from the principal point. This is approximately equivalent for all four
corners of the image. The correction is calculated at the extreme points. Also given
is the smallest and largest corrections at one standard deviation from the mean.

k1 k2 xmax ymax r2
max r4

max xcor (mm) ycor (mm)
0.0583±0.004 -0.0091±0.0056 0.538 0.359 0.418 0.175 6.5 (5, 9.2) 4.3 (3.4, 6.1)

(
xd

yd

)
=

(
x

y

)(
1 + k1r

2 + k2r
4 + · · ·

)
+

(
2P1xy + P2(r2 + 2x2)

P1(r2 + 2y2) + P2xy

)(
1 + P3r

2 + P4R
4 + · · ·

) (3.21)

A checkerboard pattern with squares of length 33 mm was created and still

photographs were taken at numerous angles before each day of filming within the

laboratory. By using the detectCheckerboardPoints function in MATLAB. A col-

lection of points in world co-ordinates, of known distances apart, can be identified

within each image, figure 3.12. From the multiple orientations, the intrinsic param-

eters of the camera, the radial and translation errors and the skew can be estimated.

For the cameras used in the experiments the error introduced tangential distortion

and the skew are negligible compared to those from the radial distortion. The radial

coefficients are given in table 3.6 along with a errors at one standard deviation from

the mean. Using dimension of known objects in the image (e.g. the checkerboard

or the ruler) the size of the image in world units can be determined and from this

the maximum radial distortion in mm, table 3.6. The radial correction is computed

rcor =
√
x2

cor + y2
cor. Correction by the mean values of the radial distortion coef-

ficients, reduces the radial distortion by 7.8 mm at the corners. At one standard

deviation away from the mean values the largest error is 3.2 mm. Ideally the head

or pulse of the current is kept in the centre of the image whilst filming. This was

true for the majority of experiments. Additionally, the current remains confined

vertically near the centre of the camera reducing the effect of lens distortion. Thus,

after correction, we do not expect lens distortion to be significant.
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Figure 3.12: Still photos of the checkerboards taken in different orientations. The
corners of the square detected using the detectCheckerboardPoints function in MAT-
LAB are shown by red circles. Although not all of the corners are detected, a
sufficient number are detected in order to the use the camera calibration.
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Figure 3.13: Still photos of a front on checkerboard taken before camaera calibration
(top) and afterwards(bottom). Straight red lines are drawn between the checker-
board corners to demonstrate the curvature that is removed by lens correction.
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3.3.2 Image processing

As a result of the lobe and cleft structures that to formed at the head, together with

wall effects, there was noticeable cross-stream variation at the head of the flow, figure

3.14. Further, it was unclear how far from the near side wall the maximum occurred

and variations behind it were obstructed. Thus the average values of minimum and

maximum observed values over the cross-stream would still be prone to error and

for simplicity, the head of the current was defined to be the maximum value (i.e.

1.85 m in figure 3.14).

The position of the pulse in the experiments, Xs, is difficult to quantify

exactly for two reasons: First, upon release and during a brief initial transience, the

pulse had not formed, figure 3.14. Second, further downstream, the pulse was of

the order of 0.1 m long, figure 3.15a. Far downstream, the depth maximum (2.15 m

in figure 3.15b) was used. In the early stages, both the local depth maximum (if it

existed) and the maximum observable distance of the blue mixture were considered.

The maximum of these two values was then chosen as the pulse position.

Both the head and pulse position were measured at a rate of 4 Hz. Explic-

itly defining how the head and pulse position were captured reduced measurement

bias and enabled more consistent measurements across different cases. However,

these methods were still subject to some level of interpretation and error. For small

tre cases, the pulse depth was less than double the height of the surrounding current,

making the depth maximum difficult to interpret. Further, although best effort was

made to keep the cameras centred exactly at the position of the head or pulse, this

proved impossible and measurements were subject to parallax error, figure 3.15b.

The speed of the head, ẊN , and pulse, Ẋs, was then calculated from the change

in position and the time between frames. There was significantly less cross-stream

variation in the pulse and so, the near-wall position was used. This helped minimise

parallax error.

The maximum error in measuring the position is assumed to be ±0.005

m for the head and, as it is significantly harder to identify, ±0.01 m for the pulse.

This yields dimensionless errors (scaled by hlock) of ± 0.05 for the head and ± 0.1

for the pulse. The maximum parallax error can be estimated from the image frames

by considering the difference between the pulse position on the near and far side

walls. For the worst case scenario, where the pulse is at the edge of the image,

the difference can be as large as 0.03 m. Thus, the dimensionless errors are ±0.15.

Further, it is assumed that the error in time measurement in between the camera

frames is negligible relative to the error in position. Thus, using the smallest velocity
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scale (as it varies slightly with the density of the current) over the three cases, the

maximum error for the speed is ±0.1 for the head and ±0.2 for the pulse.

Figure 3.14: Downstream (case: RD90-3/8) image at dimensionless time t = 9.0
after release taken from the first camera. The cross-stream variation in head position
can be observed. The variations cover the region between 1.84 and 1.85 m. The
head position is taken to be the larger of these two values.

(a) (b)

Figure 3.15: Downstream images (case: RD90-3/8) from the second camera, which
tracks the head of the flow: (a) t = 5.5 and (b) t = 10.4 after initial release.
Blurring is observed in (a), as a result of the shutter speed on the camera being too
low. Parallax error may be observed in (b), because the camera is centred at 2.03
m.
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3.4 Surface tracking

MATLAB was used to extract the free surface position and the interface between

the two fluids from individual frames within the videos. The processing algorithm

involved the use of several different colour schemes. There are numerous colour

schemes available for representing the colour spectrum digitally. Many consist of

co-ordinate based systems that closely resemble commonly used co-ordinate bases,

such as Cartesian or cylindrical co-ordinate systems. Perhaps the most well known

are additive schemes such as RGB, where three values between 0 (no colour) and 1

(full colour) control the strength of three channels of: red, R; green, G; and blue, B,

light. Each colour in RGB corresponds to the long, medium and short wavelength

receptors in the eye, respectively, red, green, and blue light. Each interval [0,1] is

usually discretised into 28 or 216 classes, each with a specified intensity. This scheme

allows for the largest representation of human colour space to be captured. However,

every human eye detects the intensity of wavelengths slightly differently and this is

reflected in manufacturers using different values for these three wavelengths.

One of the main drawbacks of the RGB colour scheme is its lack of intu-

itiveness. Given three values for the channels RGB, it is not immediately obvious

what the resulting colour will look like and this is compounded by the fact that

the human eye is more sensitive to different wavelengths of light. The HSV (and

closely related HSL) is a cylindrical colour system developed during the 1970s to be

closer to the way human vision interprets light. In cylindrical co-ordinates (r, θ, z)

the angular component, θ, controls the hue, H, and represents a colour wheel going

from red (0◦), to green (120◦), to blue (240◦), and back to red (360◦). The radial

component, r controls the saturation of the colour, with 1 being fully saturated

and 0 being shades of grey. The vertical co-ordinate, z, controls the value, where

0 is fully black and 1 is fully white. RGB and HSV produced the most promising

results.

A key component to image filtering is the Gaussian filter. The function is a

discrete version of the two dimensional Gaussian normal distribution with standard

deviation, σ,

G(x, y) =
1

2πσ2
exp

(
−(x− x0)2 + (y − y0)2

2σ2

)
, (3.22)

where (x0, y0) is the 2 dimensional position of the centre of the pixel being consid-

ered. The normal distribution produces a bell shaped peak about the point (x0, y0).

Weighting factors for a matrix, known as a Gaussian smoothing kernel are produced
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by averaging G(x, y) over unit-squares in (x, y)-space and centred around (x0, y0).

For example, the middle element is

1
2∫

− 1
2

1
2∫

− 1
2

G(x, y) dxdy (3.23)

In practice, the weighting factors are negligible more than 3σ from the centre and so

are neglected. Thus producing a matrix of size d6σe × d6σe, where de is the ceiling

or round-up function. Once calculated, this can be applied to each pixel to smooth

the image. For pixels that are within 3σ of the boundary the stencil of the matrix

will partially lie outside of the image. To correct for this, it is assumed that the

image is symmetric about its edges.

3.4.1 Single-release surface tracking

The single-release experiments are considered first, because they are simpler than

the double-release. For a single-release, there is only a single colour of dye. Mixing

occurred only with the ambient, which diluted, but did not alter the colour of the

liquid. Each frame from the videos were imported into MATLAB and converted into

RGB values. These were normalised by three times the lightness, 3I = (R+G+B),

the average of the RGB values of each pixel, figure 3.16a & 3.16c. This procedure

removed downstream variations in the brightness of each image, caused by one end of

the tank being closer to external light sources. Note that the lightness, I, is different

from the value, V , used in the HSV scheme even though they represent the same

physical quantity. The resulting images were then converted to HSV , figures 3.16b

& 3.16d. The advantage of using both colour schemes is that different parts of the

flow are more easily identified in certain channels, figure 3.16. For example, the

modified red, R, and blue, B, channels capture the taps with the highest contrast,

which need to be removed, whereas in the saturation channel, S, there is the largest

distinction between the current and the ambient, figures 3.16b & 3.16d. The aim

was to utilise the strengths of the different channels to identify the depth of the

current in each frame.

Throughout this section, when a pixel was excluded from further calcula-

tion, this means that the RGB and HSV channels were set to values outside the

range that were subsequently considered. Thus, they still appear as white or black,

or a fixed shade of grey. First, the values of hue, H, greater than 0.65 and less than

0.1 were excluded. Second, regions of saturation, S, less than 0.1 were excluded and



79

(a) (b)

(c) (d)

Figure 3.16: Single-release (case: RS84) at t =2.4 (a & b) and t =12.8 (c & d):
(a & c) - RGB colour channels and (b & d) - HSV colour channels. The RGB
channels were normalised by three times the lightness, 3I = (R + G + B), before
being converted to the HSV channels. Note that value, V , is the maximum value
of the three RGB channels and, generally greater than the lightness, I.
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finally red, R, less than 0.15. The resulting channels for R, S and H are displayed

in figure 3.17. This selection of H, S and R values removed the taps and the bulk

of the ambient in the red, R, and saturation, S, channels. Next, a Gaussian filter

with standard deviation σ = 4 (as described earlier) was applied to the saturation

channel S, to remove high frequency noise. Finally, for each column, and starting at

the top, the first pixel to have saturation S above 0.4, 0.6, or 0.8, was calculated and

plotted as the corresponding green, black, and red lines in figure 3.18. All three lines

are in close agreement during the early stages of the flow where there had been only

a limited amount of mixing and the saturation was larger, figure 3.18a. However,

further downstream, mixing with the ambient can be seen to blur the saturation,

increasing the separation of the lines, figure 3.18b. The red (0.8 saturation) does

not capture the front of the flow, whereas the green line (0.4 saturation) captures

too much of the ambient.

Normalising by the light intensity, 3I, as the initial step provided significant

improvement to these results. The main problem arose from the fact the colour of

the current approaches that of the ambient as it flows and thus, noise in the colour

channels played an increasingly significant role. Further, it is significantly easier for

the viewer to recognise the location of the free surface, compared to a computer.

Attempts to introduce time varying light intensity modification (e.g. as a function

of average lightness of the total frame) did not produce noticeably better results.

(a) (b)

Figure 3.17: R, S and H channels at t = 2.4 (a) and t = 12.8 (b) of a RS84 single-
release flow. Regions of hue, H, greater than 0.65 and less than 0.1, regions of
saturation, S, less than 0.1 and regions of red, R, less that 0.15 have been masked
and excluded.
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(a)

(b)

Figure 3.18: Images at t = 2.4 (a) and t = 12.8 (b) of a RS84 single-release flow.
Coloured lines correspond to the highest vertical value with saturation, S, above:
0.4 (red); 0.6 (black); or 0.8 (green). The position of the current is significantly
easier to identify by eye early in the experiments.

3.4.2 Double-release surface tracking

For the double-release experiments, the extraction of the surface profile proved more

difficult for numerous reasons: First, the extra colour produced different distribu-

tions of the colour channels across the current, and mixing between these two in the

wake of the pulse, figures 3.19a & 3.19d, created blurred boundaries between the

distinct colours. Second, the red dye proved harder to contrast with ambient than

the blue. Third, the red dye was more transparent, resulting in larger variations in

average frame lightness.

The process of the single release surface tracking was extended and modified

to the double release case. An overview of the steps involved is presented below:

1. Each frame was loaded into MATLAB in RGB format and cropped above the

starting height of the lock gate and below the bottom of the tank.

2. The RGB format was converted into HSV . Entries in the value channel, V ,

were replaced by the frame-average value. This was an improvement from the

single-release process to normalise each frame by the light intensity, I, that

proved more effective for the double-release.

3. The resulting HSV was converted back into RGB to create R,G and B chan-

nels that had been normalised by value, V .
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(a) (b)

(c) (d)

Figure 3.19: Colour channels for the double-release case: RD84-1/2 at t = 3.4 (a &
b) and t = 18.1 (c & d). Corresponding channels are: RGB (a & c) and HSV (b &
d).
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4. Regions of Hue, H, less than 0.2 were excluded from further calculations.

5. The Gaussian filter, with standard deviation σ = 3, was applied to the satu-

ration, S, and green, G, channels. After which, regions of green, G, greater

than 0.5 were excluded. This consisted of the majority of the ambient.

6. Two alternatives were then used to determine the position of the free surface:

In each column of an image frame, the largest difference between neighbouring

pixels in hue, H, was used; or alternatively, the largest difference in green, G,

figure 3.20.

(a)

(b)

Figure 3.20: Images for the double-release case RD84-1/2 for the camera tracking
the pulse at t = 3.4 (a) and t = 18.1 (b). The black line indicates the boundary of
the pixels that were excluded, the white line represents the points with the largest
vertical gradient in hue H and the green line represents the largest vertical gradient
in green. The excluded pixels are coloured grey.

Many variations on this method were tried, but none produced improved

results. In figure 3.20, the region of the domain excluded before the final step is

shown as grey and the edge highlighted with a black line. The lines representing the

largest gradient in hue, H, (white line) and green, G, (green line) colour channels

do capture some regions of the flow, but others poorly.
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3.5 Results and discussion

3.5.1 Repeatability of the experiments

The repeatability of the experiments was assessed by comparing experiments within

the same case, figure 3.21. Head position was consistent between runs for each of

the three cases, with only a minor deviation at late times for one of the RS90 ex-

periments, figure 3.21. However, there was more variation in the estimated speed,

figure 3.21. This variation is within the measurement error discussed in the pre-

vious section. Similarly, the position and speed of the head and pulse for three

double release cases (RD77-1/2, RD84-1/2 & RD90-1/4) are presented in figure

3.22. Although only three cases are presented, all other cases where multiple runs

were conducted showed similarly strong agreement. To reduce experimental costs,

later cases consisted of fewer runs, table 3.4, because the experiments were highly

repeatable, figures 3.21 & 3.22.

3.5.2 Visualisation

In contrast to the hydraulic jump in the numerical model presented in chapter 2, the

disturbance from the second release in the experiments was quickly smoothed out to

form a solitary wave, or bore, of order 0.4l. Initially, the pulse was predominantly

contained within the blue current, but it rapidly transitioned into the red current

and through towards the front of the flow, figure 3.23. As the pulse propagated

towards the head of the flow it became wider and less pronounced.

Figure 3.24 displays stills from the video recorded on the rolling camera

following the head of the current for the RD77-1/2 case. The first three images

show the pulse as it arrived at the head of the current and the final image when the

transition to dilute flow had occurred. In contrast to the preliminary experiments

of Ho et al. (2018a,b, 2019), the arrival of the pulse resulted in an increase of dense

fluid at the head of the flow. In a single release case, the head transitioned into a

dilute flow regime within 10 cm from this point of the flow. However, the additional

supply of dense material keeps the head in a relatively dense regime for a further

60 cm. Thus, in this case, it was observed that the pulse inhibited the transition to

a dilute current. Slowing down this transition resulted in more of the current being

mixed with the ambient and a thicker head in the dilute phase when compared with

the single release.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Dimensionless head position, XN (a-c) and speed ẊN (d-f) for each of
the three experiments conducted for each concentration: RS77 (a&d), RS84 (b&e)
and RS90 (c&f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Dimensionless position of the head, XN , and pulse, Xs, (a-c) and speed
of the head, ẊN , and pulse, Ẋs, (d-f) for all of the experiments conducted for the
following cases: RD77-1/2 (a&d), RD84-1/2 (b&e) and RD90-3/8 (c&f). Pulse
separation times tre are displayed on the t axis for each case: (a) 2.48, (b) 2.33 and
(c) 3.36.
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t=30.6

t=25.9 t=29.0

Figure 3.23: Snapshots from the RD90-1/8 case after tre = 23.6. Initially (top
left), the pulse is predominantly in the second current (blue or darker fluid). The
pulse gradually transitions into the first current (top right) and completely separates
from the second current (bottom). Over time the pulse becomes wider and less
pronounced.

Similar results to the RD77-1/2 were observed for the RD84-1/2 and RD84-

3/8. However, the increased viscosity resulted in less mixing with the ambient and

a smaller dilute current after the head of the flow had transitioned. For RD84-1/4

the current diluted before the pulse of denser fluid reached the head of the flow.

Upon the arrival of the pulse at the head, a brief transition back into laminar-

transitional behaviour was observed before transitioning back into a dilute regime.

For the longest release time, RD84-1/8, the pulse itself transitioned to a turbulent

behaviour whilst inside the already diluted head of the first current, figure 3.25.

Minimal mixing occurred for the highest glycerol concentration and this

led to neither the single- or double-release cases transitioning to dilute turbulent

behaviour at the head. For example, images from the videos for the RD90-3/8 case

are displayed in figure 3.26. Before and after the pulse arrived the head of the flow

remains unmixed. The arrival of the pulse did provide a brief increase to mixing,

but it was insufficient to initiate a cascade of mixing, which led to the dilution of

the head for the lower concentrations.

In all three cases the pulse increased the amount of mixing that occurred

during the flow. However, the amount of this was negligible for the highest glycerol

concentration considered. In the lowest two glycerol concentrations considered (0.77

and 0.84) the head of the flow always transitioned to dilute behaviour. However, this

either occurred after the pulse reached the head of the flow (RD77-1/2, RD84-1/2

and RD84-3/8), where dilution was delayed by a supply of denser material from the

pulse, or before (RD84-1/4 and RD84-1/8). For the latter, the pulse either diluted



88

Figure 3.24: Pulse arriving at the head for the RD77-1/2 case with release time
tre = 2.48. The pulse arrives from the left and reaches the head of the current
(top three images corresponding to t = 10.67, 12, 13.3). However, the current
remains relatively dense until over 2 lock-lengths further downstream (bottom image
at t = 21). Each image is approximately 35 cm wide.
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Figure 3.25: Pulse arriving at the head for the RD84-1/8 case with release time
tre = 8.6. The pulse arrives from the left and, but becomes indistinguishable from
the current before it reaches the head (the three images correspond to t = 24.1,
27.5, 31). Each image is approximately 25 cm wide.
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within the current or transitioned the flow back into a denser regime for a brief

period. The double-lock release experiments conducted by Ho et al. (2018a,b, 2019)

at 0.80 glycerol concentration (Ret = 280) is the only case where the cascade of

mixing occurred with the arrival of the pulse at the head of the flow. Thus, this

behaviour may only occur for a limited range of concentrations and release times

and further investigation would be required to quantify this.

Figure 3.26: Pulse arriving at the head for the RD90-3/8 case with release time
tre = 3.36. The pulse arrives from the left and, but becomes indistinguishable from
the current before it reaches the head. (three images correspond to t = 14.9, 17.5,
20.2). Each image is approximately 25 cm wide.

3.5.3 Validation of shallow-water model

In this section, results from the experimental model are presented and compared to

the shallow-water model discussed in chapter 2. The position of the head, XN , and

shock, Xs, were extracted from the footage from the two rolling cameras at 0.5 s

intervals, as discussed in section 3.3.2.

In figure 3.27a head position, XN , up to t = 15 for the three concentrations

for the single release cases. Time is plotted on the y axis for consistency with the
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Figure 3.27: (a) Head position against time and (b) head velocity against time for the
single release experiments, xN , and shallow-water simulations, XN for concentration,
0.77, 0.84 and 0.90 and Froude numbers, Fr, 0.88, 0.83 and 0.80, respectively. Head
position is plotted on the x-axis for comparison with the characteristic diagrams in
chapter 2.

characteristic diagrams. Further, the head velocity from the double release exper-

iments up to t = 15 is plotted in figure 3.27b. Beyond t = 15 the fastest pulse

starts interacting with the head. After an initial transience, a period of constant

velocity is observed (the slumping phase) before the velocity starts decreasing. The

approximately constant value of the velocity was used to estimate the densimetric

Froude number Fr = uN/
√
hN of the flow. Simulations were conducted in the single

release configuration for the determined values of Fr = (0.80, 0.83, 0.88) correspond-

ing to concentrations (0.90, 0.84, 0.77). Note that these experiments are outside of

the Boussinesq regime as the current density is more than 20% larger than the cur-

rent. Thus our estimates of the Benjamin Froude number are adjusted by the square

root of the density ratio to give FrB = (0.89, 0.92, 0.97). The strong quantitative

agreement between the head position and velocity, figure 3.27b confirms the validity

of the constant Fr in the theoretical model.

As discussed in the introductory chapter, the Benjamin Froude number

condition (1.25) is an increasing function of the fractional depth of the current

a = h/H. Thus, the theoretical dimensionless speed of the current increases over

time as the current thins and the depth ratio between the ambient and the cur-

rent H increases. This indicates why a constant velocity region is not observed in

the experiments. Further, the slumping distance (distance travelled by the current

whilst in the slumping phase of constant head velocity) increases as the depth ratio

H decreases. For H = 2.5 Ungarish and Zemach (2005) estimate this distance to

be approximately 3 using a single-layer (infinitely deep ambient) and 5.5 using a



92

two-layer shallow-water model using a Benjamin head condition. This is confirmed

by the experimental and single-layer model results in figure 3.27. The head velocity

of the single-layer model is constant until t = 4, whereas the experiments show a

sharper decrease in head velocity at around t = 6. Simple dimensional arguments

to calculate the time-scale tc for inertia, viscosity and buoyancy to all be balanced

(Huppert, 1982) produces tc ∼ 3-7 and so unsurprisingly the head velocity in the

experiments reduces quickly after the end of the slumping phase.

Figures 3.28 & 3.29 plot the shock position and velocity, respectively,

against time for concentrations 0.84 and 0.9. Without the equivalent of a Froude

number condition at the pulse, the extra dissipation at the shock is poorly captured

by the numerical model, leading to over prediction of the shock velocity. However,

the model does correctly predict that shocks with a longer release time tre travel

faster. The shock velocity is overestimated by roughly a factor of 2. The overes-

timate is a consequence of the inviscid assumptions in the shallow water equations

and could be feasibly included into the model via a source term into the momentum

equation. However, although this may provide a better model of the experiments, an

additional parameter would be introduced. Figure 3.30 shows the temporal varia-

tion of the ratio between the distance the shock has travelled in both the theoretical

model and the experiments. After the initial transience caused by the variable time

the shock takes to accelerate between the experiments and the theoretical model,

the different concentrations tend to similar ratios, signifying the constant effect of

dissipation for a given concentration. Thus, the (Fr, tre) parameter space will qual-

itatively change for every concentration considered.

Simple two-layer models have been used to describe the propagation speed

of a bore into a quiescent ambient (White and Helfrich, 2014). However, these as-

sume the denser fluid and the ambient are both stationary and of constant thickness.

Further a variety of closure models, as discussed in White and Helfrich (2014), are

required to provide an expression for the pressure drop across the bore. These clo-

sure models do not produce ideal agreement with numerical or observational results

over the full range of parameters. Critically, the bore propagation is assumed to

be steady in its own reference frame. However, as observed in the experiments pre-

sented here, the bore is dispersive, figure 3.23. Further, given that the ambient and

first current are flowing relative to each other and that the first current is thinning,

application of these simplified two-layer bore models is hard to justify.
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Figure 3.28: Shock position for the experiments, Xs, and the shallow-water model,
xs, at different gate release separation times, tre: (a) concentration 0.84 (Fr = 0.80)
and (b) concentration 0.90 (Fr = 0.77).
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Figure 3.29: Shock velocity for the experiments, Ẋs, and the shallow-water model,
ẋs at different gate release separation times, tre: (a) concentration 0.84 (Fr = 0.80)
and (b) concentration 0.90 (Fr = 0.77).
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Figure 3.30: Comparison of the ratio of shock displacement from the front of the
second lock box between experiments and the shallow-water model at concentrations
0.84 (–) and 0.90 (· · · ) for four different gate release separation times, tre.

3.6 Conclusions and further work

In this chapter pulses in gravity currents have studied using an idealised double-lock

release problem. The setup was based on the work of Ho et al. (2018a,b, 2019), but

an order of magnitude smaller Reynolds numbers were considered. By increasing the

viscosity of the current the amount of entrainment and mixing was reduced during

the flow. Further, the transition to dilute turbulent behaviour was observed through

a cascade of mixing, which was enhanced by large viscosity contrast between glycerol

and water and the non-linear relationship between the mixture viscosity and glycerol

concentration (Cheng, 2008). However, the increased viscosity led to viscous forces

becoming increasingly significant over time.

The second release created a pulse that appeared as a bore that transitioned

from the second release into the body of the first current and towards the head of

the flow. This pulse transferred energy to the head of the flow and led to an increase

in mixing. In contrast, the dilute experiments of Ho et al. (2018a,b, 2019) where an

intrusion is formed that transport mass as well energy to head of the flow.

A series of single-release experiments were conducted to determine a suit-

able Froude number Fr for the head of current at each concentration to enable

comparison with the theoretical shallow-water model presented in chapter 2. Excel-

lent agreement with the head and speed over time was observed for the first 10 to

15 time units of the flow. This is before viscous effects start to become important

and the head slows down relative to the theoretical model. The numerical model

over-predicts the speed of the pulse by a factor of two. This discrepancy arises be-

cause of the neglected viscous forces that would act to smooth the shock and energy
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required to displace the ambient water. At the head of the flow, these are captured

by the Froude number condition. However, no such condition exist for the pulse

in the numerical model. Thus, a further developed model could impose a similar

condition to the constant frontal Froude number at the shock. However, the Froude

number condition is determined for a current head propagating into an ambient

and not through the body of another gravity current. Further, this would be more

difficult to impose numerically as for the flow considered in this chapter, the pulse

propagates at a different speed to the surrounding current. This contrasts the head

of the first current where the head speed is the same as the fluid velocity there.
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Chapter 4

Direct numerical simulation of the

lock-exchange problem

4.1 Introduction

4.1.1 Lock-exchange problem

In the experimental chapter, the lock-release problem was studied with large viscos-

ity gradients between the current and the ambient using three glycerol-water mix-

tures. This chapter will explore the behaviour of gravity driven flows with a large

viscosity contrast and categorise how a viscosity contrast affects the flow dynamics,

and in particular the mixing. Direct numerical simulation using the spectral-element

solver NEK5000 (Fischer et al., 2008) is used to capture the mixing dynamics across

the relevant scales. To fully resolve the experiments presented in the previous chap-

ter requires more computational resources than available and therefore, a reduced

problem based on the lock-exchange problem of Özgökmen et al. (2009b) is con-

sidered, which significantly reduces the required domain size. Further, boundary

conditions are chosen to be free-slip or periodic to remove the viscous boundary

layers near the wall and simple linear relationships are posed for fluid properties,

such as density and viscosity, to reduce the computational cost. These assumptions

enable the study of viscosity contrast between the ambient and current of up to

an order of magnitude in simulations that are sufficiently resolved. All simulations

were conducted on ARC3, part of the High Performance Computing facilities at the

University of Leeds. The amount of cores available on this shared system limited

the amount of simulations that could be conducted and their resolution.
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Figure 4.1: Diagram of the lock exchange problem. Initially denser (red) fluid and
less dense (blue fluid) is held in place by a vertical gate in the centre of the domain
(top). At t = 0 the gate is released with the density difference driving the flow
outwards (bottom).

The lock-exchange problem considers a lock-release problem where the

locked fluids each occupy exactly half of the domain, figure 4.1. Initially denser

(red fluid) and less dense (blue fluid) are separated by a vertical gate in the centre

of the domain. At t = 0 the gate is released and the density difference drives the

red fluid to the right along the base and similarly the blue fluid to the left along the

top of the domain.

The lock-exchange problem has been used as a bench-mark for studying

mixing in stratified flows. This is a fundamental area of research in oceanography be-

cause mixing occurs in subsurface flows near equatorial zones (Kantha and Clayson,

2000), overflows (Price and Baringer, 1994) and flows that interact with topographic

features (Ledwell et al., 2000). Özgökmen et al. (2009b) extend their previous test-

ing of large-eddy simulation (LES) of the lock-exchange problem (Özgökmen et al.,

2007, 2009a) with DNS conducted with NEK5000. They investigated the sensitivity

of the LES results with respect to the Reynolds number and use both DNS and

LES to explore how the extent of mixing changes for a range of Reynolds numbers.

As a result of the available computational power, they limit their DNS to Reynolds

numbers between 103 and 3× 104. Pseudo-spectral simulations for a longer domain

have also been conducted (Cantero et al., 2006, 2007). The setup considered in this



99

chapter is similar to that of Özgökmen et al. (2009b). However, in additional to a

density variation between the two fluids, a viscosity difference is introduced with

the viscosity based on the local concentration of each fluid.

4.2 Methodology

Navier-Stokes and advection-diffusion equations

The gravity driven flow of two fluids of different densities and viscosities in a lock-

exchange configuration is modelled with the Navier-Stokes equations and single

transport equation for the local phase concentration, φ = φ(x, y, z, t). The denser

fluid, which will form the intruding gravity current along the base is denoted as

fluid 2 and the lighter or ambient fluid as fluid 1. Each pure phase has constant

density ρi and dynamic viscosity µi. The phase concentration φ ∈ [0, 1] represents

the concentration of fluid 2 and thus, φ = 1 or φ = 0 corresponds to points of purely

fluid 2 or fluid 1, respectively. This is an adaption of the volume-of-fluid (VOF)

method (Scardovelli and Zaleski, 1999), as here the viscosity is also a function of

the phase concentration.

By studying the Stokes’ equations Moresi et al. (1996) demonstrated that

the accuracy of two finite-element-type schemes depended on the viscosity gradients

between adjacent cell rather than the contrast across the entire domain. Although

this study is for a related problem, it illustrates viscosity gradients are a limiting fac-

tor for required resolution. Thus, in order to minimise the computational resources

used, linear relationships are assumed for both viscosity and density

ρ(φ) =φρ2 + (1− φ)ρ1 =

(
1 +

ρ2 − ρ1

ρ1

φ

)
ρ1 (4.1)

µ(φ) =µ∗(φ)µ1 = (1 + γφ)µ1, (4.2)

where γ is a constant. A linear relationship provides the smoothest transition be-

tween fluid 1 and fluid 2 viscosities and therefore higher viscosity contrasts can be

studied. Surface tension and other inter-molecular forces are neglected. The density

difference between the two layers is assumed to be small, i.e. ρ2/ρ1 ∼ 1, so that the

Boussinesq approximation (Boussinesq, 1897) can be applied. This neglects density

variations in all terms that are not multiplied by gravitational acceleration g.

The domain Ω used is a rectilinear box, in three spatial dimensions (x, y, z),

of length L, height H, and width, W . Thus Ω = {(x, y, z) ∈ R3 |x ∈ [−L/2, L/2], y ∈



100

[0, H], z ∈ [0,W ]}, figure 4.2. The aspect ratio L/H is an important parameter of

the system. When L � H, the flow is essentially a two-layer exchange flow with

counter-propagating gravity currents with the appearance of Kelvin-Helmholtz rolls

(Ilıcak et al., 2009). Mixing occurs predominately by turbulent breakdown and

second-instabilities about these rolls in a stably-stratified setting (Özgökmen et al.,

2009b). A longer domain would be more representative of the experimental setup

discussed in 3, but would significantly increase the computational cost. In a short

domain with L < H the gravity currents would rapidly encounter the two end walls

at x = ±L/2. An aspect ratio L/H = 2 provides regions of the flow when stably-

stratified mixing occurs and more complex convection-driven mixing at the ends

wall whilst keeping computational cost reasonable and allowing a range of viscosity

differences to be studied. The width aspect ratio W/H is fixed at 1, which is the

same as the studies of Özgökmen et al. (2009a,b) and similar to value of 1.5 used

by (Härtel et al., 2000; Cantero et al., 2006).

Figure 4.2: Geometry for the lock-exchange problem. A box length L, height H and
width W in the x-, y-, and z-directions, respectively. The aspect ratios used in all
simulations are L/H = 2 and W/H = 1.

For spatial co-ordinates aligned with the horizontal, vertical and orthogonal

direction, x = (x, y, z) and time t, the Navier-Stokes equations for an incompressible

Boussinesq fluid are, Tritton (2012):

∂ u

∂ t
+ (u · ∇) u =−∇p+∇ · τ +

ρ(φ)

ρ1

g, (4.3)

∇ · u =0, (4.4)

where, u(x, t) = (u(x, t), v(x, t), w(x, t)), is the velocity along the three spatial axes,

g = (0,−g, 0) is the gravitational vector and g is gravitational acceleration. The

stress tensor, τ , is expressed
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τ = µ
[
(∇u) + (∇u)T

]
, (4.5)

Further, an advection-diffusion equation is used to model the transport of dense

phase concentration φ,
∂ φ

∂ t
+ u · ∇φ = ∇ · (D∇φ) , (4.6)

whereD is the mass diffusivity. These equations (4.3, 4.4 & 4.6) are non-dimensionalised

with length scale, H, velocity scale, U , and the advective time-scale H/U

(x, y, z) = H(x∗, y∗, z∗), (u, v, w) = U(u∗, v∗, w∗), and t =
H

U
t∗, (4.7)

where an asterisk ∗ refers to a dimensionless quantity. The velocity scale

U =
√
g′H/2, where g′ = g(ρ2 − ρ1)/ρ1, is the reduced gravity, is used. Finally,

a high-Reynolds number scaling based on the fluid 1 density, ρ1, was used for the

pressure and pressure normalised by p − ρ1g = p∗ρ1U
2. This yields dimensionless

equations

D∗u∗

D∗t∗
=−∇∗p∗ +

1

Re1

∇ ·
(
µ∗(φ)

(
(∇∗u∗) + (∇∗u∗)T

))
− φ

Fr
(0, 1, 0), (4.8)

∇∗ · u∗ =0, (4.9)

D∗φ

D∗t∗
=∇∗ ·

(
1

Pe
∇∗φ

)
, (4.10)

where Fr = U2/(Hg′) is the Froude number, Re1 = HU/ν1 = ρ1HU/µ1, is the

ambient or fluid 1 Reynolds number and Pe = HU/D is the Péclet number, which

is the ratio between advective and diffusive transport rates. With our choice of

velocity scale Fr = 1/2. The Péclet number is more commonly expressed in terms

of the Schmidt number, Sc = ν/D, the ratio of momentum and mass diffusivities,

and the Reynolds number,

Pe = Re1Sc. (4.11)

The asterisks ∗ are dropped for convenience, except on the viscosity func-

tion µ∗(φ), yielding
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Du

Dt
=−∇p+

1

Re1

∇ ·
(
µ∗(φ)

(
(∇u) + (∇u)T

))
− 2φ(0, 1, 0), (4.12)

∇ · u =0, (4.13)

Dφ

Dt
=∇ ·

(
1

Re1Sc
∇φ
)
, (4.14)

to be solved on the dimensionless domain Ω = {(x, y, z) ∈ R3 |x ∈ [−1, 1], y ∈
[0, 1], z ∈ [0, 1]}. Three dimensionless parameters categorise the flow behaviour: the

ambient Reynolds number Re1, the Froude number Fr and the Schmidt number

Sc. The Schmidt number depends only on material properties and the local con-

centration φ and in the limits of pure water diffusing into glycerol and pure glycerol

diffusing into water yield 9×102 and 5×107, respectively. These were calculated by

D’Errico et al. (2004) using an extrapolation technique for concentrations of nearly

pure water or glycerol at 25 ◦C.

Large Schmidt numbers indicate the mass diffusivity is negligible compared

to the vorticity. As the limit tends to infinity this corresponds to immiscible flu-

ids that can only be mixed at macroscopic scales through interface instability and

fluid turbulence (Bonometti and Balachandar, 2008). For flows involving (nearly)

immiscible fluids, surface tension effects can become important.

In the context of gravity currents, initial studies suggested a Schmidt num-

ber Sc similarity for values larger than roughly 1 (Necker et al., 2005) or that the

influence of the Schmidt number Sc to be quite small in the range 0.2-5 (Birman

et al., 2005). Bonometti and Balachandar (2008) demonstrated that quantitative

changes can be observed between gravity currents with high or low Schmidt numbers

Sc. A depression that separates the head from the body occurs at high-Sc, which

can move up or down the gravity current body. If it reaches the head it can either

shrink and disappear or result in an oscillatory behaviour depending on the Reynolds

number. Bonometti and Balachandar (2008) observe that at high Reynolds numbers

(Re > 104) the effect of the Schmidt number Sc on the head of a gravity current

in small. However, the value of the Schmidt number Sc affects vortex formation

within the body.

The linear relationship between concentration and viscosity reduces the

sharp jump between viscosity that can occur at the interface between the two fluids.

Further, by keeping the Schmidt number Sc limited to 7, there is at least some

diffusive thickening of the concentration boundary layers. This increases the amount

of mixing that occurs locally at the interface and will act to smooth the sharp density
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and viscosity gradient there. This contribution to mixing increases over time and

therefore will be dominant for large integration times. Thus, fixing the Schmidt

number Sc at 7 limits the total integration time the simulations can be conducted

for. However, as discussed in section 4.2.2, Sc = 7 is sufficient for numerous sloshings

to occur without significant diffusive mixing to occur.

Boundary and initial conditions

The boundaries of the domains at x = −1, x = 1, y = 0, y = 1 are prescribed as

symmetry planes

u(−1, y, z, t) ·n = 0, u(1, y, z, t) ·n = 0, u(x, 0, z, t) ·n = 0, u(x, 1, z, t) ·n = 0,

(4.15)

where n is the outward pointing normal on the domain boundary ∂ Ω and at the

z = 0 and z = 1 planes a periodic condition is imposed

u(x, y, 0, t) = u(x, y, 1, t), φ(x, y, 0, t) = φ(x, y, 1, t) (4.16)

The initial conditions consist of a concentration profile, in which the ma-

jority of the fluid is either at φ = 0 or φ = 1. A small sinusoidal perturbation is

introduced to the interface in the z direction η(z) = 0.05 sin(2πz) and the sharp

jump between φ = 0 and φ = 1 is replaced by a linear variation in concentration of

a small region of width 2ζ0 = 0.01.

φ(x, y, z, 0) =


1 if x ∈ [−1,−ζ0 − η(z)],

1
2ζ0

(ζ0 − x− η(z)) if x ∈ [−ζ0 − η(z), ζ0 − η(z)],

0 if x ∈ [ζ0 − η(z), 1].

(4.17)

The velocity is set to zero everywhere initially, u(x, y, z, 0) = 0. The

boundary condition remove the viscous boundary layers that would required signif-

icantly more computational resources. Further, limiting the Schmidt number Sc to

7 enables us to study the mixing that occurs in gravity driven flows with a range of

viscosity differences between the two layers. As discussed in the introduction chap-

ter, a no-slip boundary condition along the bottom boundary results in the nose

of the gravity current rising up from the bed and forcing ambient fluid underneath

as it propagates. This leads to entrainment into the body of the current. With a
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free slip boundary condition the propagating wavefront will not raise up from the

boundary and hence no fluid will be entrained through this mixing mechanism.

Numerous studies use simplified boundary conditions to allow better reso-

lution of the mixing dynamics that occur. For example free-slip conditions on the

top, bottom, and end walls of the domain and periodic boundary conditions in the

cross-stream direction (Härtel et al., 2000; Cantero et al., 2006; Özgökmen et al.,

2009a,b). Further studies have been conducted in a two-dimensional domain, but

these cannot capture any three-dimensional variations in the flow.

Cases conducted

For the set of simulations conducted, the fluid 1, or ambient, Reynolds number is

fixed at 1000. By varying the coefficient γ, the fluid 2 Reynolds number, defined as

Re2 = Re1/(1 + γ) can be varied. Six different values of γ are chosen for the simu-

lations conducted, γ = 0, 0.1, 1, 2, 4, 10. The corresponding dimensionless numbers

for each case is presented in table 4.1.

The base case is γ = 0 where the Reynolds numbers in each layer are the

same and provides a source of comparison to the cases where the base layer Reynolds

number is increased. Increasing the viscosity contrast, increases the computational

cost required to reach suitably resolved solutions, as discussed later in section 4.2.3.

The largest value of γ that is feasible in this study is γ = 10. The remaining cases

are chosen to vary the viscosity difference over two orders of magnitude between

that of γ = 10 and the base case, γ = 0. The total integration time for each case

Tint is fixed at 13.5 in dimensionless units. As discussed by Özgökmen et al. (2009b)

this corresponds to 3.35 times the time for the current to cross one length of the

domain and 2.15 times the buoyancy period. Thus, although it is not sufficient

for the flow to come to rest, it captures multiple sloshings and is sufficient for the

bulk of turbulent mixing to occur (Özgökmen et al., 2009b). Further, the choice of

integration time is low enough for the diffuse contribution to mixing to be negligible.

4.2.1 Solver and numerical details

What is NEK5000?

NEK5000 is a computational fluid dynamics code that solves the Navier-Stokes

equations by direct numerical simulation (Fischer et al., 2008). It uses the spectral
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Table 4.1: Fluid 2 (current) Re2 and fluid 1 (ambient) Re1 Reynolds numbers,
Schmidt numbers Sc and Péclet numbers Pe corresponding to the cases studied in
this chapter.

γ Re2 Re1 Sc Pe
0 1000 1000 7 7000

0.1 910 1000 7 7000
1 500 1000 7 7000
2 333 1000 7 7000
4 200 1000 7 7000
10 91 1000 7 7000

element method to discretise the spatial domain, which has significant advantages

over other schemes when the Reynolds number is large or long time integration is re-

quired, because of the minimal numerical dispersion and dissipation that occurs. It

is designed for laminar, transitional and turbulent flows with both heat and species

transport, and can also be used for incompressible magnetohydrodynamics (MHD)

or low-Mach number flows. NEK5000 has been demonstrated to be more computa-

tionally efficient for high-fidelity jets when compared with a finite-volume method

(FVM) based scheme (Capuano et al., 2019) in the open-source code OpenFOAM

(Jasak et al., 2007). NEK5000 provides extremely rapid (exponential) convergence

in space and fast-scalable multi-grid solvers making it efficient in terms of paralleli-

sation. NEK5000 has been demonstrated to reach the scaling limits for PDE-based

simulations on peta-scale computers with up to 2 billion degrees of freedom (Fis-

cher, 2015; Offermans et al., 2016; Merzari et al., 2020). Weak-scaling results in a

fixed computational time if the number of processors and the degrees of freedom to

be increased proportionally, whereas strong-scaling allows computational cost to be

reduce inversely proportional to the number of processors for a fixed problem size

Merzari et al. (2020). Reaching these limits is required for the simulations to be

computationally efficient.

Spectral elements methods (SEM) are a class of high-order weighted resid-

ual techniques and a subset of finite-element methods (FEM) (Deville et al., 2002)

and were developed by Patera (1984). In this computational method the domain is

split into E rectilinear elements with basis functions formed from an N -th order ten-

sor product polynomial in each spatial direction. Thus, there are (N +1)d degrees of

freedom for each element E, where d is the number of spatial dimensions. Spectral

elements are optimised for polynomial orders N between 7 and 15 (Patera, 1984).

For a given suitably smooth function f(ξ, t), the spectral element approximation on
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a reference cube (ξx, ξy, ξz) ∈ [−1, 1]3 is represented as

f(ξ, t) ≈
N∑

i,j,k=0

fijk(t)πi(ξx)πj(ξy)πk(ξz). (4.18)

Figure 4.3: the Legendre polynomials Pn up to degree 6. The Legendre polynomials
are the unique polynomial solutions to the equation 〈Pi, Pj〉 = 2/(2i+ 1)δij.

In NEK5000 these basis functions πi(ξ) for SEM, up to degree N , are

constructed from the Legendre polynomials, PN , of degree N , which are the unique

polynomial solutions to

〈Pi, Pj〉 =

1∫
−1

PiPj dξ =
2

2i+ 1
δij, (4.19)

where δij is the Kronecker delta. The first few Legendre polynomials are plotted in

figure 4.3. The Gauss-Lobatto-Legendre (GLL) points are used as the quadrature

nodes for fitting the smooth functions in each element. For a polynomial interpo-

lation of order N , the set of GLL points is defined ΞN = {ξ0, ξ1, . . . , ξN} as the

ordered solutions to the equation

(
1− ξ2

)
P ′N (ξ) = 0, (4.20)

where P ′N is the derivative of PN with respect to its argument. The set basis

functions {πj} for interpolation can be calculated from the Legendre polynomials.

These functions are explicitly given
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πj(ξ) =
−1

N (N + 1)

(1− ξ2)P ′N (ξ)

(ξ − ξj)PN (ξj)
. (4.21)

Crucially the roots of equation (4.20) are distinct and are normalised so

that πj(ξk) = δjk, i.e. at the each GLL quadrature point precisely one of the basis

functions πj is non-zero and takes the value 1. ForN = 6 the basis functions {πj} are

plotted along with the GLL points in figure 4.4. A regular mesh is created by posing

the number of elements in each of the spatial direction (Nx, Ny, Nz). This gives the

total number of elements E = NxNyNz. Each element e then contains N 3 nodes

corresponding to relative positions of the GLL points when the element is mapped

onto the reference cube. An example mesh with (Nx, Ny, Nz,N ) = (32, 16, 16, 8) is

displayed in figure 4.5 corresponding to a total of 8192 elements and approximately

4.2×106 nodes. For simplicity, all the results presented in this chapter are first inter-

polated onto a regular mesh containing the same number of nodes as the simulation

mesh. Increasing the number of nodes up to a factor of eight times the number of

simulation nodes did not noticeably change any of the results.

Figure 4.4: The Legendre interpolation basis functions πj based of the Legendre
polynomial of degree N = 6. At the GLL points ξk πj(ξk) = δjk.

Time integration

Two expansions are used in time discretisation: a k-th order backwards-difference

scheme; and, to reduce some of the complexity of handling the non-linear advection

terms, a forward extrapolation to k-th order. Consider a simple first-order in time



108

(a) (b)

Figure 4.5: Example spectral element mesh on a 2×1×1 domain with 32×16×16 =
213 elements and N = 8 (a). Close up highlighting the node structure within each
element. The total number of nodes in the mesh is 213 × 83 ≈ 4.2× 106.

PDE of the form

∂ u

∂ t
= L∗ [u] , (4.22)

where L∗ is an arbitrary spatial differential operator. The k-th order backwards

difference scheme (BDFk), for time steps given by superscript, is

L∗[un+1] =
1

∆t

k∑
i=0

biu
n+1−i, (4.23)

where ∆t is the time-step. The k-th order extrapolation (EXTk) is

L∗[un+1] =
k∑
i=1

aiL∗ [u]n+1−i . (4.24)

The expansion coefficients are given in table 4.2 for the first values of k. By com-

bining both BDFk and EXTk an implicit/explicit (IMEX) scheme can be obtained.

For the convection-diffusion equation, BDF3 is used to discretise the time deriva-

tives and EXT3 is used to remove the implicit (n+1) dependence on the convection

term u ·∇φ. The time-stepping for the Navier-Stokes follows the PN −PN approach

presented in Tomboulides et al. (1997) and Tomboulides and Orzag (1998). The

method involves a splitting approach, where first an intermediary velocity is created

using EXTk (4.24) to remove the implicit non-linear terms. Then the Laplacian of

the pressure is updated from this velocity. Finally, the velocity is updated using

the pressure gradient and the viscous source terms. The splitting introduces a small



109

mass error, but provides high temporal accuracy (Tomboulides et al., 1997).

Table 4.2: Coefficients for the k-th order backwards difference scheme (ai) and the
extrapolation scheme (bi) for k = 1, 2, 3.

Backwards difference
coefficients (bi)

Extrapolation
coefficients (ai)

k b0 b1 b2 b3 a1 a2 a3

1 1 -1 0 0 1 0 0
2 3/2 -2 1/2 0 2 -1 0
3 11/6 -3 3/2 -1/3 3 -3 1

Computational cost

The computational cost for a direct numerical simulation is a function of both the

number of mesh points and the number of time steps. The spatial resolution required

in each direction can be estimated from the Kolmogorov length scale lν = (ν3/ε̄)1/4,

where ε̄ is the mean turbulence energy dissipation rate, (Kolmogorov, 1941). The

Kolmogorov length scale is an eddy length scale based on inertial and viscous forces

being equal in magnitude. Length scales smaller than this will be dominated by

viscosity and do not need to be resolved. The mean turbulence energy dissipation

rate is proportional to u′RMS
3/LE, where LE is the largest eddy structure in the flow

(bounded above by the domain size) and the root-mean square velocity fluctuation

is given by

u′RMS =

√
u′2 + v′2 + w′2

3
(4.25)

and (u′, v′, w′) are the fluctuating velocity components (Lipatnikov, 2012). Thus,

the Kolmogorov length scale is lν = (ν3LE/u
′3)3/4. To capture the turbulence at

its smallest scales, the grid spacing ∆x = LE/N (assuming the worst case scenarios

where the largest eddy is the size of the domain) needs to be below the Kolmogorov

scale, i.e.,

N >
LE
η

=

(
u′3L3

E

ν3

) 1
4

= Re
3
4 . (4.26)

For a three dimensional problem the number of cells required N3 is proportional

to Re9/4. However, increasing the number of cells also decreases the largest stable

time-step that can be used. Kooij et al. (2018) demonstrated that the total cost

(in CPU hours) is proportional to the number of cells to the power of 4/3. Thus,

the total computational cost for a three dimensional time-dependent problem is

proportional to Re3 (Pope, 2001). So far the effect of the mass diffusivity has not
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be discussed. The Batchelor length scale, lb is the diffusion length scale for the

problem and can be expressed lν = Sc1/2lb (Meiburg et al., 2015). For Sc < 1 this

is larger than the Kolmogorov scale and so the above computational cost estimate

is sufficient. However, when Sc > 1 this diffusive length scale becomes the smallest

and so a problem requires a total number of cells N3 ∼ Re9/4Sc3/2 and for a time

dependent problem, the total computation cost is proportional to Re3Sc2. As a

result of this most studies of gravity currents either reduce the value of the Schmidt

number to close to unity or do not use sufficient resolution to capture the region of

sharp concentration gradients.

Stability and projection

For convection dominated flows, the Galerkin formulation suffers from a well known

instability arising from under-resolved boundary layers, for example Brown (1995).

This can lead to energy accumulation in high-frequency modes (small spatial scales)

that cannot be resolved (Özgökmen et al., 2009b). Although the instability is more

common at very large Reynolds numbers, it has been observed at moderate to high

Reynolds numbers (103-104). Filtering attempts to address this behaviour, whilst

also preserving the exponential converge rate in space (Fischer and Mullen, 2001;

Fischer et al., 2002), and involves multiplying the highest order basis polynomial

coefficient by a factor 1 − βf . Fischer et al. (2002) demonstrate a value βf = 0.05

mostly removes the instability for problems such as shear layer roll-up and plane-

Poiseuille flow. As such, the value βf = 0.05 is used throughout our simulations,

which is consistent with other studies in the literature (Özgökmen et al., 2004;

Özgökmen and Fischer, 2008; Özgökmen et al., 2009b; Lomperski et al., 2017).

High-frequency oscillations can also lead to instability through an alias-

ing error. I.e. errors arising from insufficient resolution to capture high frequency

oscillations, which can instead appear as spurious low-frequency noise (Kirby and

Karniadakis, 2003). Even if the resolution is of the order of the Kolmogorov length

scale lν , errors can be introduced from the non-linear terms in the Navier-Stokes

equations. For a linear equation, the solution for the polynomial coefficients is in-

terpolated exactly (within computational error) with (N + 3)/2 quadrature points

when the solution is a polynomial of degree N . However, the convection term in

the Navier-Stokes equation is quadratic rather than linear. This leads to a stronger

requirement of 3(N + 1)/2 quadrature points. Without sufficient GLL points, an

aliasing error can arise from this non-linear term (Ohlsson et al., 2011). To correct

for this, d3(N + 1)/2e GLL points are used in each direction for the integration

of the non-linear term, where d e is the ceiling or round-up function. This is simi-
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lar to 3/2-rule in pseudo-spectral methods (Ohlsson et al., 2011) and is consistent

with other studies in the literature (Özgökmen et al., 2004, 2009b). Note, that the

aliasing error leads to problems with stability and not accuracy (Özgökmen et al.,

2004).

NEK5000 implements an iterative solver to approximate the solutions to

the linearised equations equations. By suitable choice of an initial guess to com-

pute the values at the (n + 1)-th time-step the number of iterations can be greatly

reduced and hence the computational time. A simple choice is to use the values

at the previous time-step. However, this can be improved by considering a Taylor

expansion backwards in time of a set number of time-steps and extrapolating to

estimate the values at the current time-step. These extrapolation methods have

been used extensively and further details are given by Hageman and Young (1981).

Fischer (1998) developed an optimal implementation given a specific basis using a

projection scheme with a reduced risk of a poor initial guess, which is implemented

into NEK5000. The projection process starts after the 5th time-step and uses data

from up to 20 (where available) previous time-steps to compute the initial guess used

in the iterative solve. Solver tolerances are expressed in terms of residual error and

set to 10−5 for the pressure solver and 10−7 for the Helmholtz solvers (velocity and

scalar-transport equations). These tolerances were chosen to be as large as possible

to minimise the computational time without affecting the solution.

4.2.2 Analysis tools

Residual potential energy and energy balance

Upon release, the potential energy stored in the initial distribution of fluid 2 is

converted into kinetic energy as it is driven horizontally by the density difference.

When the propagating waves reach the end walls at x = −1 and x = 1 they are driven

vertically converting some of the kinetic energy back into potential energy. The

potential energy is then converted back into kinetic energy as the density difference

drives the flow back the other way. Without mixing or viscous dissipation this

exchange between potential and kinetic energy would continue indefinitely. The

total kinetic energy KE(t) and potential energy PE(t) are given functions of time

(Winters et al., 1995):
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KE(t) =
1

2

∫
Ω

(u2 + v2 + w2) dV, (4.27)

PE(t) =

∫
Ω

φ

Fr
y dV =

∫
Ω

2φy dV, (4.28)

As a result of the Boussinesq approximation only the potential energy

contains the excess density φ. Further, recall that the Froude number Fr = 1/2.

The total energy of the system at time t therefore satisfies

KE(t) + PE(t) +Dv(t) = PE(0) = 1, (4.29)

where Dv(t) is the energy converted into heat by viscous dissipation. Thus, by

calculating the kinetic energy KE and potential energy PE over time, the viscous

dissipation can be obtained from

Dv(t) = 1− PE(t)−KE(t). (4.30)

The potential energy PE(t) can be further decomposed into two components: resid-

ual potential energy (RPE) and available potential energy (APE). The residual

potential energy RPE(t) provides a measure for quantifying the mixing that occurs

within a closed system (Winters et al., 1995). At fixed time t the RPE represents

the minimum potential energy that can be obtained through adiabatic redistribu-

tion of the fluid within the domain, to a stratified state with the most dense fluid

at the bottom and is no density variation across the length or width of the flow.

RPE is monotonically (but not strictly) increasing over time and measures how

much potential energy has been irreversibly lost to mixing. The available potential

energy APE(t) = PE(t) − RPE(t) is the maximum amount of potential energy

that can be converted into kinetic energy KE(t) (Lorenz, 1955). Thus the total in

the system can be expressed

PE(0) = KE(t) +RPE(t) + APE(t) +Dv(t) (4.31)

The dense phase concentration φ is equivalent to the excess density in

the system (4.12-4.14) and is used to determine the RPE. Following the method of

Tseng and Ferziger (2001), the first step is compute the density distribution function

P (φ) for the concentration φ ∈ [0, 1]. From the density distribution function, the

height of fluid, of concentration φ in the minimum potential energy state Yr(φ) is
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given by

Yr(φ) =

1∫
φ

P (φ̃) dφ̃. (4.32)

Given the depth of the concentration in the minimal energy state, the residual

potential energy is then

RPE = 4

1∫
0

φYr(φ)dYr, (4.33)

where the factor of four arises from the cross-sectional area of the domain in the

x, z plane and the reciprocal Froude number 1/Fr = 2. By definition, the height

of the fluid, at concentration φ in the minimum potential energy state is mono-

tonic function and so invertible. Thus, the residual potential energy RPE can be

expressed

RPE = 4

1∫
0

φ(Yr)YrdYr. (4.34)

Given the discrete data obtained from the simulations, the probability

density function P (φ) is approximated using the ‘histcounts’ function in MATLAB

(MathWorks, 2018a). A total of Nbins equally spaced bins that form a partition of

concentrations in the interval [0, 1] are created. The ith bin corresponds to concen-

trations [(i− 1)/Nbins, i/Nbins]. The total number of nodes that have concentration

within the i-th bin is denoted ni, such that

n =

Nbins∑
i=1

ni. (4.35)

Thus, the thickness of each layer corresponding to the ith bin is hi = ni/n. The

concentration is each cell is approximated by its mid-value φi = (i+1/2)/Nbins. The

height of the fluid in the ith cell is then approximated

Yr(φi) ≈ Yri =


h1
2

if i = 1,

h1
2

+
∑i

l=2

(
hi+hi−1

2

)
if i > 1.

(4.36)

Thus, the residual potential energy can be approximated

RPE = 4

1∫
0

φ(Yr)Yr dYr ≈ 4

Nbins∑
i=1

hiφiYri (4.37)

The values of RPE over time are computed in intervals of 0.5 dimensionless
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time and normalised by the initial state RPE(0). The completely mixed state, where

φ = 1/2 throughout the entire domain, corresponds to

RPEmax = 4

1∫
0

Yr
2

dYr = 1. (4.38)

The normalised residual potential energy NRPE(t) is defined

NRPE(t) =
RPE(t)−RPE(0)

RPEmax −RPE(0)
(4.39)

This is distinct from the definition of Winters et al. (1995) who instead

define

NRPE(t) =
RPE(t)−RPE(0)

RPE(0)
. (4.40)

However, as 2RPE(0) ≈ RPEmax in our setup both methods give similar results,

but the definition (4.39) takes values between 0 and 1. The fully mixed stated,

i.e. φ = 1/2 everywhere, yields NRPE(t) = 1. The normalised residual potential

energy NRPE will be used to classify the amount of mixing that occurs in the flow

over time.

Mixing volume fraction

A second measure based on the volume fraction of the fluid that has been mixed

is also used to measure the mixing in the flow. For a parameter βv, the volume

fraction in the domain that is within concentration [βv, 1− βv] is

θ(t; βv) =
1

2

∫
Ω

F(φ; βv) dV, (4.41)

where F(φ; βv) is the box filter function defined as

F(φ; βv) =

1 if φ ∈ [βv, 1− βv],

0 otherwise.
(4.42)

This method is similar to that of Bonometti and Balachandar (2008). However,

they normalised the integral by a volume based on the depth H and the distance

the protruding fronts have travelled. In our case, as the flow reaches the end walls at
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x = −1 and x = 1 within a fraction of the total integral time Tint, the total volume∫
Ω

dV = 2 (4.43)

is used instead. The parameter βv is set to 0.01 throughout. Similarly to the

residual potential energy, the mixing volume fraction θ(t) is scaled using its initial

and maximum, θmax = 1, value

Nθ(t) =
θ(t)− θ(0)

θmax − θ(0)
(4.44)

Thus the valuesNθ(t) = 0 andNθ(t) = 1 correspond respectively to no mixing of the

initial state and to mixing having occurred everywhere (i.e. φ ∈ [β, 1− β] ∀(x, y, z) ∈
Ω). The statistics Nθ and normalised residual potential energy NRPE provide

two different methods for computing the amount of mixing that has occurred in

the flow. For sharp initial conditions Nθ(t) ≥ NRPE(t), with equality only if

φ(x, y, z, t) ∈ {0, 0.5, 1} ∀(x, y, z) ∈ Ω. Note that as a result of the linear concen-

tration gradient over a region of thickness 2ζ0 = 0.01 it is possible for Nθ(t) <

NRPE(t). However, the difference would be close to zero.

Normalised mixing volumeNθ provides a more global picture of the mixing,

whereas, NRPE includes effects from local mixing across concentration gradients.

For example, if a small amount of diffusion occurs and convection redistributes

changes in concentration φ over the domain, so that a relatively sharp transition is

maintained, but most regions of the flow have concentration φ ∈ [β, 1 − β]. Then

Nθ will increase rapidly compared to NRPE. Conversely, if the interface itself is

smoothed, but the majority of the flow has concentration φ 6∈ [β, 1 − β]. Then

NRPE will increase at a rate similar to Nθ. Thus distinctions between the rates

that Nθ and NRPE increase can be used to indicate the relative importance of

local mixing near the interface.

Diffusive contribution to mixing

Diffusion of the concentration will lead to a slow rate of mixing in the fluid at a rate

that depends on the inverse of the Peclet number 1/Pe or, since Pe = ReSc, Schmidt

number Sc. In the limit Sc → ∞ no mixing occurs as the fluids are immiscible.

However, as discussed earlier large Schmidt numbers require increased computa-

tional resources to accurately resolve the solution. Given the initial conditions used

for the lock-exchange problem (4.17), a lower bound of pure diffusive mixing can
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be obtained from the system of equations (4.12–4.14) with u = 0 everywhere. This

reduces to the diffusion equation

∂ φ

∂ t
=

1

Re1Sc
∇2φ. (4.45)

Instead of considering the full three-dimensional solution to the diffusion

equation, a reduced one-dimensional (in the x-direction) problem is considered with

the following initial conditions

φ(x, y, z, 0) = φ0(x) =


1 if x ∈ [−∞,−ζ0],

1
2ζ0

(ζ0 − x) if x ∈ [−ζ0, ζ0],

0 if x ∈ [ζ0,∞],

(4.46)

where 2ζ0 = 0.01 as before and the flow boundaries at x = ±1 are replaced by

boundaries at infinity. This removes the slight variation in the z direction and

reduces the problem to solving a one-dimensional diffusion equation

∂ φ

∂ t
=

1

Re1Sc

∂2 φ

∂ x2
. (4.47)

for each fixed y and z. Further, using an infinite domain removes negligible contribu-

tion from the boundary conditions and enables the general solution to be expressed

as

φ(x, t) =

∞∫
−∞

S (x− y, t)φ0(y) dy, (4.48)

=

−ζ0∫
−∞

S (x− y, t) dy +

ζ0∫
−ζ0

S (x− y, t) ζ0 − y
2ζ0

dy, (4.49)

where

S (x, t) =

√
Re1Sc

4πt
exp

(
−Re1Scx

2

4t

)
(4.50)

(Evans, 2010). These integrals were solved numerically in MATLAB (Math-

Works, 2018a) on a spatial grid containing 3000 points at time intervals of t = 0.5

up to the total integration time Tint = 13.5. The lower limit of the first integral

was replaces with −104. These choices of spatial resolution and lower limit were

checked for convergence. The concentration profile subject to diffusion at the total
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integration time Tint = 13.5 with Pe = 1/(Re1Sc) = 7000 is presented in figure 4.6.

Noticeable diffusion can be observed, but localised around x = 0.

Figure 4.6: Concentration profiles φ for a one-dimensional pure diffusion problem
at t = 0 and t = 13.5. The Péclet number Pe is fixed at 7000.

With this profile, the three-dimension equivalent can be reconstructed

based on the initial conditions without z variation (4.46). Pseudo-colour plots are

presented in figure 4.7 at t = 0 and t = 13.5 demonstrating the change in con-

centration profiles arising from pure diffusion in the (x, z)-plane, in which deep red

corresponding to fluid 2 (φ = 1) and deep blue corresponding to fluid 1 (φ = 0).

Further, the change in NRPE and Nθ over time is displayed in figure 4.8. An

approximately linear increase in NRPE over time can be observed, whereas Nθ

increases proportionally to
√
t, as locally the solution is self-similar with ξ0 = x/

√
t,

has a decreasing gradient as the interface grows diffusively.

By assuming no variation in the z direction, the initial surface area of the

region of the flow where φ(x, y, z, 0) = 0.5 is reduced and the amount of mixing

is underestimated. However, the surface area ratio ψ0 between the curved initial

conditions and the x = 0 plane is the same as the ratio of arc lengths or sinuosity

of the z-variation

ψ0 =

∫ 1

0

√
1 + η′2 dz∫ 1

0
dz

, (4.51)

where η′ = dη/dz = 0.1 cos(2πz). This integral can be reduced to a complete

elliptic integral of the second kind, to which no closed form solution exists (Carlson,

1995). However, numerical approximations can be obtained, again using MATLAB

(MathWorks, 2018a), providing ψ0 ≈ 1.024. Thus the error for neglecting the z-

variation of the initial conditions is negligible. Further, the initial values of residual
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(a)

(b)

Figure 4.7: Distribution of concentration φ in the (x, y)-plane at t = 0 (a) and
t = 13.5 (b) for the pure diffusion problem.

potential energy RPE(0) and θ(0) can be expressed in terms of ψ0

RPE(0) =

1/2−0.005ψ0∫
0

y dy +

1/2+0.005ψ0∫
1/2−0.005ψ0

1

0.01ψ0

(1 + 0.005ψ0 − y) y dy ≈ 0.5002,

(4.52)

θ(0) =0.0098ψ0 ≈ 0.01004. (4.53)
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Figure 4.8: Normalised residual potential energy (NRPE, left) and Normalised θ
(Nθ, right) over time for the pure diffusion problem.

Free surface and depth averaged properties

As mixing and diffusion occur within the flow, the interface between the two fluids

becomes blurred over time. An approximate position of it can be defined in multiple

ways. The first method used is the depth integration of the concentration

hint(x, z, t) =

1∫
0

φ(x, y, z, t) dy. (4.54)

This produces a single depth of the fluid at each point in the (x, z)-plane. An alterna-

tive is to define the interface, where the concentration is 0.5. However, this leads to

a multi-valued function. For example if eddies that result from a Kelvin-Helmholtz

instability lead to fluid fluid overturning. The depth integration of concentration

can be averaged over the cross-stream (z-direction) as well to produce an averaged

depth along the horizontal extent of the domain

h̄int(x, t) =

1∫
0

hint(x, z, t) dz. (4.55)

Further alternatives that avoid multi-valued functions can be used by tak-
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ing the maximum or minimum y-value for which φ = 0.5

hmax(x, z, t) = sup{y ∈ [0, 1] |φ(x, y, z, t) ≥ 0.5}, (4.56)

hmin(x, z, t) = inf{y ∈ [0, 1] |φ(x, y, z, t) ≤ 0.5}. (4.57)

These too can be computed based on cross-stream-averaged data

h̄max(x, t) = sup

{
y ∈ [0, 1]

∣∣∣ ∫ 1

0

φ(x, y, z, t) dz ≥ 0.5

}
, (4.58)

h̄min(x, t) = inf

{
y ∈ [0, 1]

∣∣∣ ∫ 1

0

φ(x, y, z, t) dz ≤ 0.5

}
. (4.59)

In regions where the flow overturns the depths based of the extremal values

hmin and hmax can result in large differences. Further, the maximum value may

include regions of the flow with zero, or close to, concentration which corresponds

to fluid 1. Thus, the average of these two have(x, z, t) will also be considered

have(x, z, t) =
hmax(x, z, t) + hmin(x, z, t)

2
. (4.60)

In regions of the flow without overturning hmin and hmax produce the same

result. With the corresponding definition of the free surface, the depth-averaged

velocity of fluid 2 is defined as

uf (x, z, t) =
1

hf

hf∫
0

φ(x, y, z, t)u(x, y, z, t) dy, (4.61)

ūf (x, t) =
1

hf

hf∫
0

1∫
0

φ(x, y, z, t)u(x, y, z, t) dzdy, (4.62)

where f ∈ {max,min, ave} or

uint(x, z, t) =
1

hint

1∫
0

φ(x, y, z, t)u(x, y, z, t) dy, (4.63)

ūint(x, t) =
1

hint

1∫
0

1∫
0

φ(x, y, z, t)u(x, y, z, t) dzdy, (4.64)
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4.2.3 Resolution

Five meshes, labelled A, B, C, D, and E are used to perform a grid (or mesh)

independence study. Mesh independence studies are used to demonstrate that the

solution to a numerical computational does not depend on the grid sized used for

the mesh (Klein, 1999). The total number of nodes in the mesh n, and other mesh

statistics, are presented in table 4.3. The number of elements in each spatial direc-

tion (Nx, Ny, Nz) are chosen to provide equal resolution in each spatial dimension,

i.e. Nx = 2Ny = 2Nz. The number of GLL points N is chosen to be within the op-

timal range of 7 to 15 (Patera, 1984). Each simulation is conducted with a Courant

number Cr = 0.1 in our resolution study. The corresponding computation cost in

terms of core hours (simulation time times the number of cores used) and the total

number of cores used for each simulation is presented in table 4.4. All simulations

were conducted on the ARC3, part of the High Performance Computing facilities

at the University of Leeds, UK. Each compute node consisted of 24 Broadwell E5-

2650v4 CPUs with a base frequency of 2.2 GHz. Note that the variable viscosity

cases take significantly longer even when the viscosities are similar (γ = 0.1, for

example) because the full discretisation of the stress tensor is required.

Table 4.3: Characteristics of the meshes presented in this chapter. The number
of elements in each spatial direction (x, y, z) is (Nx, Ny, Nz). The total number of
elements in the domain is E = NxNyNz. Each element contains N GLL points in
each spatial direction giving the total number of nodes n = EN 3.

Mesh Nx Ny Nz E N n
A 32 16 16 8192 8 4194304
B 48 24 24 27648 9 20155392
C 60 30 30 54000 9 39366000
D 72 36 36 93312 9 68024448
E 84 42 42 148176 9 108020304

Table 4.4: Computational time in core hours (number of computational cores times
the clock time) for each case and mesh. The number of cores used for each simulation
is shown in brackets. Dashed indicate that a lower resolution mesh was deemed
sufficiently resolved and hence not conducted.

Mesh γ = 0 γ = 0.1 γ = 1 γ = 10
A 213 (48) 424 (48) 394 (48) 463 (48)
B 2361 (96) 4303 (120) 3999 (120) 3592 (120)
C 5890 (192) 14244 (216) 10700 (216) 9118 (216)
D - - - 20152 (432)
E - - - 37828 (480)

To reduce the physical memory restraints of saving the results from each
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simulations, the data at each node n is exported every 0.5 dimensionless time units.

The mixing and energy variables introduced in section 4.2.2 are interpolated between

these points using a piece-wise cubic spline that matches the values and gradients

at the known time steps. This creates a smoothed fit for the variables in between

the known values at 0.5 intervals.

In figure 4.9 the normalised residual potential energy NRPE is plotted

each case and each mesh used. For γ = 0 and γ = 0.1 similar results are obtained

for all the meshes considered indicating that the meshes are sufficiently resolved.

As the viscosity difference between the layers increases (γ = 1 and γ = 10), higher

resolution is required to produce a mesh-independent solution. In particular, the

NRPE on mesh B is not sufficient for γ = 1, as it deviates after approximately

t = 9. A distinct difference between the NRPE for all four meshes for γ = 10 can

be observed. A higher resolution mesh would be required for γ = 10 to confirm that

the mesh E, γ = 10 solution is sufficiently resolved. However, this was not possible

given the computational resources available and thus mesh E will be used assuming

that it is sufficiently resolved. Further, mesh D will be used for cases γ = 2 and

γ = 4.

In addition to NRPE, Nθ for γ = 0 and γ = 10 with their corresponding

meshes is plotted against time in figure 4.10. Finally, the distributions of potential

energy PE, kinetic energy KE, available potential energy APE and dissipated en-

ergy Dv for γ = 10 are displayed in figure 4.11. Apart for the solutions obtained

using mesh A, all the results for Nθ and the energy distributions are nearly coin-

cident. The agreement between meshes appears better for the energy distributions

when compared to NRPE, but arises because the total variation is smaller for

NRPE. Finally, for γ = 0 on mesh C, normalised residual potential energy NRPE

and normalised theta Nθ are plotted for three different Courant numbers Cr (0.5,

0.25, 0.1) in figure 4.12. Decreasing the Courant number decreases the time-step

used and similarly to decreasing the spatial resolution, both NRPE and Nθ produce

similar result for Cr = 0.1 and Cr = 0.25. Although the NRPE is not coincident

for Cr = 0.1 and Cr = 0.25 it is for the remaining energy distributions, figure 4.13.

Thus, a Courant number of 0.1 is deemed to be sufficient for all simulations.

4.3 Results and discussion

In this section the results from all cases are reported on the mesh with the highest

resolution used in the mesh independence study. I.e., mesh C for γ = 0, γ = 0.1,
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(a) (b)

(c) (d)

Figure 4.9: Normalised residual potential energy NRPE against time for different
meshes: (a) - γ = 0 , (b) - γ = 0.1, (c) - γ = 1, and (d) - γ = 10

(a) (b)

Figure 4.10: Normalised volume fraction of mixed fluid Nθ(t) against time for the
four meshes A,B,C and D. The curves for B and C for γ = 0 and B, C, and D for
γ = 10 are coincident.

γ = 1 and E for γ = 10. Mesh D is used for cases γ = 2 and γ = 4. Further, every

simulation is conducted with a Courant number of 0.1.
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Figure 4.11: Potential energy PE, Kinetic energy KE, Available potential energy
APE and dissipated energy D for γ = 10 simulations with the meshes used. The
curves for B, C, D and E are coincident.

(a) (b)

Figure 4.12: Normalised residual potential energy NRPE (a) and Normalised vol-
ume fraction of mixed fluid Nθ (b) against time for mesh C and γ = 0 simulations
at different Courant numbers
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Figure 4.13: Potential energy PE, Kinetic energy KE, Available potential energy
APE and dissipated energy Dv for γ = 0 on mesh C with Courant numbers of 0.1,
0.25 and 0.5.

4.3.1 Visualisations

Pseudo-colour plots of fluid 2 concentration φ on the centre-plane z = 1/2 at 0.5

time intervals are displayed in figure 4.14 for the case of equal viscosity, i.e. γ = 0.

The concentration φ is used to colour the plane with φ = 1 corresponding to a

deep red and φ = 0 corresponding to deep blue. Intermediate values are coloured

from red to white to blue as concentration decreases, thus highlighting regions of

the flow that have mixed. Over the first few times steps a symmetric profile of

concentration can be observed as the density difference drives fluid 2 to the right

and fluid 1 to the left. Just before the wave fronts hit the side walls at x = −1 and

x = 1, Kelvin-Helmholtz-like rolls start to form behind the propagating wavefronts.

These rolls are absorbed into the wavefronts as they travel back towards the centre.

The rolls start to diffuse into the surrounding fluid becoming less clearly defined by

the time the two wave fronts intersect in the middle, at t = 4. After this, a large

mixed region can be observed behind each wavefront. After t = 8.5 a clearly defined

wavefront can no longer be seen because of the increase is mixing and dissipation

within the flow. Towards the end of the simulation only a thin region near y = 0
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and y = 1 remains completely unmixed. The symmetry of the flow is maintained

throughout. This is to be expected due to the equal viscosities of the two fluids, but

its preservation demonstrates that the simulation is properly resolved.

At nine different time-steps pseudo-colour plots of concentration are pre-

sented for γ = 0, γ = 1 and γ = 10 in figure 4.15. At t = 1 the flows appear

similarly, but by t = 2, the increasing viscosity in the base layer inhibits the for-

mation of the Kelvin-Helmholtz rolls that start to form. The intermediate viscosity

(γ = 1) produces Kelvin-Helmholtz rolls, but less fluid is exchanged between the

bulk of each layer. Asymmetry in the flow is clearly observed at later times for

γ = 1 and γ = 10 at t = 3. The Kelvin-Helmholtz roll entrains more fluid in

x > 0 than the corresponding roll in x < 0 for γ = 1. The returning wavefront

in x < 0 for γ = 10 appears in a similar shape to γ = 0 and γ = 10 without

the Kelvin-Helmholtz roll, but a constant gradient is observed in x > 0, which has

increased mixing across the fluid interface. At t = 5 significantly more of fluid 2 is

entrained by the right-travelling head of fluid 1 for γ = 1 when compared to γ = 0.

Although, less actual mixing appears to occur. As the simulation time increases

towards t = 13.5, significantly more unmixed regions can be observed as the viscos-

ity of fluid 2 increases. Further, the sloshing speed appears to be affected by the

viscosity with γ = 1 having significantly more fluid 2 in x > 0 when compared to

the other two cases. The effect of viscosity on the mixing and sloshing speed will be

characterised later in this section.

In order to visualise the full three-dimensional variation in the concen-

tration φ, isosurface plots are displayed for γ = 0 and γ = 10 in figure 4.16

at different time steps. Isosurfaces represent surfaces of constant concentration

(φ = 0.05, 0.25, 0.5, 0.75, 0.95 for these cases) and are a natural extension to two-

dimensional contour plots. Each of the five surfaces is coloured from blue to green

to red with increasing fluid 2 concentration. The Kelvin-Helmholtz rolls observed in

γ = 0 propagate over the cross-stream (z-direction) of the flow. However, after the

reflected wavefronts cross at t = 5.5 the flow starts to become more chaotic, figure

4.17. The cross-stream variation of the extreme isosurfaces (φ = 0.05 and φ = 0.95)

extends over much of the domain by t = 9.5 for γ = 0. In contrast γ = 10 shows only

slightly cross-stream variation all the way through to t = 9.5 signifying the effect of

increasing viscosity on the flow. However, from t = 2.5 onwards, the variation in the

flow across φ = 0.5 is apparent with the formation of a smaller Kelvin-Helmholtz

roll only in fluid 1.
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Figure 4.14: Pseudo-colour plots of concentration φ on the centre plane z = 1/2
over t = 0.5 time steps for the γ = 0 (Re1 = Re2 = 1000). Deep red corresponds to
the denser fluid 2 and deep blue corresponds to fluid 1.



128

Figure 4.15: Pseudo-colour plots of concentration φ on the centre plane z = 1/2
for three different cases: γ = 0 (left), γ = 1 (middle) and γ = 10 (right). These
correspond to layer two Reynolds numbers Re2 = (1000, 500, 91), respectively. Deep
red corresponds to the denser fluid 2 and deep blue corresponds to fluid 1.
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Figure 4.16: Isosurface plots of concentration φ for γ = 0 (left) and γ = 10 (right).
Each coloured surface corresponds to concentrations φ = (0.05, 0.25, 0.5, 0.75, 0.95)
ranging from deep blue (φ = 0.05) to deep red φ = 0.95.
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Figure 4.17: Isosurface plots of concentration φ for γ = 0 (left) and γ = 10 (right).
Each coloured surface corresponds to concentrations φ = (0.05, 0.25, 0.5, 0.75, 0.95)
ranging from deep blue (φ = 0.05) to deep red φ = 0.95.
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4.3.2 Depth averaging

In this section the different ways of defining the depth of the flow discussed in section

4.2.2 are compared to the DNS results. For data on the centre plane z = 1/2,

hint(x, z, t), hmax(x, z, t) hmin(x, z, t) and have(x, z, t) are overlaid onto pseudo-colour

plots of concentration for γ = 0 and γ = 10, figure 4.18. The increased viscosity

of γ = 10 inhibits the free surface deformation and therefore the depth of the flows

defined with the four defined depths all producing similar results. During the later

stages of the flow, when the interface starts to diffuse, hint deviates away from hmin,

hmax and have. This arises because hint considers contributions from concentrations

φ < 0.5 that are spread over the entire depth. However, in γ = 0, where mixing is

significantly larger, no method is able to capture the overturning regions accurately.

hint and have provide smoother transitions in the overturning regions of the flow.

Similar results are obtained if the z averaged fluid 2 depths are used instead. In the

rest of this section the depth of fluid 2 used is defined by have. This captures the

regions of the flow where there is limited mixing and provides a smoother transition

in the overturning regions than hmax or hmin individually.

Figure 4.18: Pseudo-colour plots of concentration for γ = 0 (left) and γ = 10
(right) overlaid with depth averaged profiles calculated on the centre plane z =
1/2: hint(x, z, t) (yellow); hmax(x, z, t) (red); hmin(x, z, t) (blue); and have(x, z, t) =
(hmax(x, z, t) + hmin(x, z, t))/2 (green).

Using the averaged depth definition have, the depth of the flow and x and y

components of velocity (uave,vave) are compared for the four cases in figure 4.19. At

t = 1 the depth profiles reveal that the distance the wavefronts propagate over the

first time unit decreases as γ increases. Further, both components of velocity are

smaller in magnitude for the highest viscosity case, γ = 10. By t = 2 small changes
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in the profiles can be observed between γ = 1 when compared to γ = 0 and γ = 0.1

indicating that the increased viscosity is starting to affect the flow. For all cases the

maximum and minimum of vertical velocity is close to 1 and -1, respectively, but it

is localised near the side walls at x = ±1.

Figure 4.19: Centre-plane depth of the flow have(x, 1/2, t) for the cases γ =
0, 0.1, 1, 10.

Pseudo-colour plots of u and v components of velocity on the centre-plane

z = 1/2 overlaid with depth are displayed in figure 4.20 for γ = 0 and figure 4.21

for γ = 10. Similar to the depth-averaged profiles presented in figure 4.19, the flow

is predominantly horizontal except in a region localised near the flow boundaries

at x = ±1. The largest vertical velocities are observed at t = 2 when the wave

fronts are reflecting off these side walls. As expected, γ = 10, with the higher fluid 2

viscosity, produces much smoother velocity gradients in both components over the

domain.

4.3.3 Mixing and energy distribution

For the cases considered normalised residual potential energyNRPE and normalised-

mixing fraction Nθ over time is displayed in figure 4.22. Similar trends can be

observed with both mixing measures. As time increases, the amount of mixing in-

creases. However, the amount of mixing decreases with increasing fluid 2 viscosity.

γ = 0, γ = 0.1 and γ = 1 all exhibit similar levels of mixing up to t = 6 for both

NRPE and Nθ. Curiously, this continues up to t = 9 for normalised mixing frac-

tion Nθ. Thus, the initial impact of increasing the viscosity is to reduce the local
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Figure 4.20: Pseudo-colour plots of u and v on the centre plane z = 1/2 for γ = 0.
The lines overlaid are have(x, 1/2, t) (green).

mixing at the sharp concentration gradient. For γ = 10 the increased viscosity of

fluid 2 creates significantly less mixing after the wavefronts reflect of the end walls,

x = ±1, at t = 1.5. Similarly to γ = 1, NRPE increases at a reduced rate before

Nθ for γ = 10 indicating that the increase is viscosity first acts to reduce the local

mixing near the interface and then the larger-scale free surface deformation. This

can also been seen in figure 4.15.

In figure 4.23 potential energy PE, kinetic energy KE, available potential

energy APE and energy dissipated Dv are plotted against time for the four cases. As

the flow sloshes back and forth the exchange between potential and kinetic energy

can be observed. For γ = 10, with the highest viscosity in the current, the rate of

dissipation increases sharply during the periods of the flow between the reflections

of the wavefronts off the side walls, i.e., when the kinetic energy is largest.
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Figure 4.21: Pseudo-colour plots of u and v on the centre plane z = 1/2 for γ = 10.
The lines overlaid are have(x, 1/2, t) (green).

Up until t = 6 γ = 1 exhibits similar behaviour to γ = 0 and γ = 0.1.

However, after t = 6 two key differences can be observed: first, the local extremal

values of the potential energy PE and kinetic energy KE do not decrease as quickly;

second, the time between the extrema increases. This indicates that more of the

available potential energy APE in converted to kinetic energy KE and that the

sloshing speed slows down for γ = 1 and vice versa. The extra dissipation in γ = 10

reduces the total energy in the system and hence the maximum value of the extrema

of potential energy PE and kinetic energy KE. Further, the exchange between

potential energy PE and kinetic energy KE occurs more quickly after t = 6 for

γ = 10. These changing speeds are consistent with the centre-plane concentration

profiles in figure 4.15. At t = 13.5, γ = 10 is closest to the lowest potential energy

state, with γ = 0 and γ = 1 both showing fluid 2 concentration distributions before
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(a) (b)

Figure 4.22: Normalised residual potential energy NRPE (a) and normalised-θ Nθ
for the cases γ = 0, 0.1, 1, 2, 4, 10.

Figure 4.23: Energy distribution for the cases γ = 0, 0.1, 1, 2, 4, 10: potential en-
ergy PE (top-left), kinetic energy KE (top-right), available potential energy APE
(bottom-left) and energy dissipated D (bottom-right).

this state.

To explore the energy loss from the system further, the change in residual
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Figure 4.24: For the cases γ = 0, 0.1, 1, 2, 410: Gain in residual potential energy
Dm = RPE(t) − RPE(0) (top-left); energy lost to viscous dissipation Dv (top-
right); rate of change of residual potential energy dDm/dt (bottom-left); and rate
of change of viscous dissipation dDv/dt (bottom-right).

potential energy over time Dm is introduced

Dm(t) = RPE(t)−RPE(0). (4.65)

This measures the increase in amount of energy that can no longer be converted

into kinetic energy within the flow. The change in residual potential energy over

time Dm, total viscous dissipation Dv and the rate of change of both quantities over

time, dDm/dt and dDv/dt, is presented in figure 4.24. The gradients of Dm and the

energy dissipated to viscous diffusion Dv are calculated using a forward difference

scheme and a total of 200 points equally spaced and interpolated from the piece-wise

cubic spline for each variable. At t = 0 these gradients are assumed to be 0. As

expected, all cases exhibit local maxima of viscous dissipation rate when the kinetic

energy is largest. Initially, the rate of mixing is the same for all cases reaching

a global maximum during the simulation. The time this global maximum occurs

reduces as the fluid 2 viscosity is increased. further, the rate of viscous dissipation

γ = 10 although initially taking the largest values decreases at a rate much faster

than the other cases and has slower rates of viscous diffusion at the extrema near
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t = 9 and t = 11.5.

Figure 4.25: Isosurface plots of concentration φ for γ = 0 (top), γ = 1 (middle)
and γ = 10 (right) cases and at times t = 6 (left) and t = 9 (right). Each coloured
surface corresponds to concentrations φ = (0.05, 0.25, 0.5, 0.75, 0.95) ranging from
deep blue (φ = 0.05) to deep red φ = 0.95.

Isosurface plots of the concentrations γ = 0, γ = 1 and γ = 10 at times

t = 6 and t = 9 are presented in figure 4.25. At t = 6 the wave fronts have just

reflected off the boundaries x = ±1 with fluid 2 travelling back towards the right

(positive x) and fluid 1 towards the left. These wave fronts reflect back off end walls

at x = ±1 and cross again just before t = 9. Increasing the viscosity initially acts to

decrease the mixing locally near the interface. This can be observed by the reduced

visibility of the 0.25 and 0.75 isosurfaces in γ = 1 when compared with γ = 0.
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However, the 0.5 isosurfaces remain similarly perturbed in both cases. In γ = 10

and at t = 6 the deformation of the free surface is significantly reduced. By t = 9,

the mixing in γ = 0 is affecting the majority of the flow and all isosurfaces are more

distorted. In γ = 1 and γ = 10 the isosurfaces remain closer together indicating less

mixing across the fluid interface. The 0.05 isosurface for γ = 1 is significantly more

broken up near x = 1 compared to the 0.95 isosurface near x = −1. This highlights

noticeable asymmetry in the flow and demonstrates that the increased viscosity in

fluid 2 is inhibiting the mixing into that fluid. γ = 10 again exhibits significantly

reduce free surface deformation.

The total surface area of the 0.5 isosurface A0.5(t) is used to measure the

surface area of the fluid 1-fluid 2 interface. Initially, the interface surface area

increases in size as the flow spreads out laterally, figure 4.26. The rate of increase

decreases with increasing fluid 2 viscosity. After t = 2 for the cases γ = 0, γ = 0.1

and γ = 10 a decrease in surface area is observed. The decrease for γ = 10 the

decrease is marginal and remains fairly constant after the initial phase of becoming

horizontal. This corresponds to the wavefronts reflecting of the side walls and the

flows becoming more horizontally stratified. γ = 1, however, does not exhibit this

noticeable decrease, but still increases at a similar rate afterwards. Thus, during

the first three oscillations the fluid 2 viscosity increase predominantly affects the

surface-destruction rather than surface-creation mechanisms. Large scale flow shear

(when the wave fronts at crossing) increases the surface area. Interface-scale mixing

and diffusion then reduces it.

Oscillatory behaviour can be observed with local maxima of A0.5(t) coin-

ciding with the maximal kinetic energy configuration, i.e. when the wave fronts cross

and the flow is in the lowest potential energy state. γ = 1 exhibits the largest sur-

face area between t = 3 and t = 11 before rapidly decreasing at the end of the flow.

γ = 10 still exhibits the sharp increase of interface size as the flow spreads horizon-

tally from release, but decays in a oscillatory behaviour thereafter. Clearly, viscosity

has a significant affect on the flow during the first few time units by dissipating the

energy required for significant interface deformation.

γ = 1 appears as an intermediary case in which, the increase in fluid 2

viscosity is not sufficiently large to inhibit the shear and interface creation on the

system scale, but is sufficient to inhibit local interface-scale mixing. The increase

in maximum available potential energy APE for γ = 1 at t = 8 and t = 12 arises

because of the decreased mixing in the flow, which is aided by the increase viscosity.

However, increasing the viscosity further, i.e. γ = 10, inhibits the initial surface

deformation and dissipates considerably more energy in the system.
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Figure 4.26: Surface area of the 0.5 isosurface A0.5 against time for the cases γ =
0, 0.1, 1, 2, 4, 10

In order to explore this behaviour further, two additional simulations are

conducted with γ = 2 and γ = 4 on mesh D. As the viscosity increases, the NRPE

decreases away from the equal viscosity case (γ = 0) more quickly, figure 4.22.

Further, the normalised mixing fraction Nθ stays coincident with γ = 0, but for

less time (8 for γ = 2 and 5 for γ = 4). Increasing the viscosity also decreases the

phase difference between the extrema of kinetic and potential energy, figure 4.23.

Similar time differences can be observed for γ = 2, but γ = 4 shows phase difference

similar to the equal viscosity case again. Further, the maximal and minimal values

become more extreme. Although the total dissipation increases, the rate of change

of dissipation decreases towards the total integration time Tint = 13.5, figure 4.24.

The total dissipation might decrease below that of γ = 0 if the total integration

time was increased. Finally, similar behaviour in terms of the total surface area

A0.5 is observed initially. However, by t = 6 γ = 4 transitions into a state more

similar to γ = 10 and remains fairly constant. For γ = 2 a reduced surface area

is observed, but oscillatory behaviour is still present. These two additional cases

behave similarly to γ = 1, but as time increase (in particular for γ = 4) behaviour

more similar to γ = 10 is observed. This further indicates that increasing the

viscosity initially impacts the local interface mixing and enhances the exchange of

energy between kinetic and potential energy and as the viscosity is increased further,

viscous dissipation within the body of the flow starts to dominate.

4.4 Conclusions and future work

This chapter explored the lock-exchange problem with a variable viscosity for the

denser fluid over transitional to moderate Reynolds numbers. The ambient or fluid
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1 Reynolds number Re1 was kept fixed at 103 throughout. A linear relationship was

posed for the mixture viscosity as a function of fluid 2 concentration φ with the

fluid 2 Reynolds number varying between 91 and 103. This linear relationship and

the simple choice of domain and boundary conditions enabled the study of excess

viscosity over two orders of magnitude. Direct numerical simulation was conducted

using the spectral element solver NEK5000.

A small increase in the viscosity of fluid 2 by 10% produced similar results

to those obtained for equal viscosities. However, when the fluid 2 viscosity was

double that of the ambient (γ = 1) the viscosity gradients at interface act to suppress

local mixing. Preservation of the viscosity gradient across the fluid interface lead to

an enhanced ability of the flow to transfer energy between available potential energy

APE and kinetic energy KE. Further, the total energy dissipated to viscosity was

lower for this case than the lower viscosity cases (γ = 0 and γ = 0.1) and an

increased sloshing period was observed. However, when the fluid 2 viscosity was

increased further to 11 times that of the ambient (γ = 10) viscous dissipation was

significantly higher resulting in a decreased sloshing time.

The available computational resources limited the cases studied and there-

fore there are many possibilities for extension to the results presented here, which

were unfortunately beyond the scope of this chapter. First, the domain could be

extended to that of the lock-release problem to see if similar traits are observed as

the viscosity is increased. Second, a large range of viscosity differences and differ-

ent functions for the viscosity could be studied, such as the empirical relationship

developed by Cheng (2008) for the viscosity of glycerol/water mixtures rather than

rather than a linear mixing law. Further, for the glycerol concentration experiments

the viscosity ratio was as large as 300. Finally, although a Schmidt number Sc of 7

limited the amount of diffusion, studying larger Schmidt numbers would allow the

characterisation of the effect of this assumption.
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Chapter 5

Two-layer model for the

lock-exchange problem

5.1 Introduction

In the previous chapter, the lock-exchange problem with different viscosities for the

denser fluid (fluid 1) was investigated using direct numerical simulation (DNS) of the

Navier-Stokes equations. The fully resolved DNS captured all the scales of motion

down to the limit of viscosity. However, this required significant computational cost

that increases with the excess viscosity ratio γ. The two fluids remained relatively

unmixed over the total integration time T and exhibited predominantly horizontal

flow. Further, the horizontal velocity profile was approximately uniform over the

depth of the flow.

Depth-averaged models are capable of capturing some of the key flow dy-

namics at significantly reduced computational costs as discussed in the chapters 1

and 2. However, in contrast to the lock-release model in Chapter 2, the ratio of the

locked fluid to the ambient is now 1, which is below the critical value of 2 for quanti-

tative differences in the solution to be observed (Ungarish, 2009). Thus a two-layer

model, which includes the ambient flow, is required. Two-layer shallow-water mod-

els have been used to study the lock-exchange problem before (for example Rottman

and Simpson (1983); Bonnecaze et al. (1993); Hogg et al. (2000); Hallworth et al.

(1998)). However, in this chapter, the equations are extended by the inclusion of a

source term representing the viscous strain in each layer. The equations are solved

using a linearised finite-volume scheme (LeVeque, 2002) for the hyperbolic equations

and then the source terms contributions are included using a 4th-order Runge-Kutta
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(Süli and Mayers, 2003).

This chapter explores whether a depth-averaged model can capture the

affects of changing the denser fluid viscosity on the flow dynamics. Further, the

significantly reduced computational cost (of order 104) enables the study of more

cases and, in particular, varying an equal viscosity for both layers is investigated.

Finally, a comparison between the depth-averaged results from the DNS discussed

in the previous chapter and the two-layer shallow-water model is conducted for

model validation. In particular, what structure and features can be captured by the

theoretical model.

5.2 Methodology

Figure 5.1: Schematic of the two-layer shallow-water model for the lock-exchange
problem. Each layer has depth hi, depth-averaged velocity ui and Reynolds number
Rei =

√
g′H3/2ν2

i , where νi is the kinematic viscosity of layer i and g′ = g(ρ1 −
ρ2)/ρ2) is the reduced gravity. The total depth is fixed, so that h1 + h2 = H

Similar to the previous chapter, the lock-exchange problem with two in-

compressible fluids of density ρi and dynamic viscosity µi is considered. The den-

sity difference between the fluids is assumed to be small so that the Boussinesq

approximation can be applied. The results from the DNS demonstrate that the
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flow has negligible cross-stream velocity and therefore, a two-dimensional prob-

lem in the (x, y) plane is considered. Thus, the problem domain Ω reduces to

Ω = {(x, y) ∈ R |x ∈ [−L/2, L/2], y ∈ [0, H]}, where L/H = 2. The depth of the

domain remains fixed, and so

H = h1(x, t) + h2(x, t), (5.1)

where hi(x, t) is the thickness of each layer and the interface between the two fluids

is at y = h1(x, t). In this chapter it is assumed that the fluids are immiscible, so

that the concentration of fluid 2 φ can only take the values 0 or 1. This assumption

requires that no mixing or entrainment occurs within the flow. Further, the flow

is assumed to remain stratified at all times with the denser fluid (fluid 2) beneath

the less dense fluid (fluid 1). Apart from near x = −L and x = L, when the

wavefronts reflect off the end wall, the flow direction is predominantly horizontal as

demonstrated in the previous chapter. Therefore, it is assumed that the velocity in

each fluid can be described by its depth-averaged quantity

u1(x, t) =

∫ h1

0

u(x, y, t) dy (5.2)

and by conservation of mass the depth-averaged velocity in fluid 2 as u2 = −h1u1/h2.

These assumptions allow us to apply the two-layer shallow water equations to the

problem as discussed in chapter 1.

In order to incorporate the effects of differing viscosity in each layer into

the shallow-water model the further assumption that the layer i Reynolds number

Rei =
√
g′H3/2ν2

i is large for both layers. This is required for the horizontal velocity

profile to be uniform (Dorrell et al., 2014) and hence the shape factor β takes the

value 1. Neglecting basal drag as considered in the DNS study, the effects of viscosity

on the flow are included via a viscous source term in the two-layer shallow-water

model. This appears on the right-hand side of the layer 1 and layer 2 momentum

equations:
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∂ h1

∂ t
+

∂

∂ x
(h1u1) = 0, (5.3)

∂

∂ t
(h1u1) +

∂

∂ x

(
h1u1

2
)

+ h1
∂ Pi
∂ x

= ν1h1
∂2 u1

∂ x2
, (5.4)

∂ h2

∂ t
+

∂

∂ x
(h2u2) = 0, (5.5)

∂

∂ t
(h2u2) +

∂

∂ x

(
h2u2

2 +
g′

2
h2

2

)
+ h2

∂ Pi
∂ x

= ν2h2
∂2 u2

∂ x2
, (5.6)

and is of the form considered by Higuera (1994); Dasgupta and Govindarajan (2010);

Kanayama and Dan (2013). Although direct depth-averaging of the Navier-Stokes

equations yields a viscous source term of the form (Gustafsson and Sundström,

1978):

νi
∂

∂ x

(
hi
∂ ui
∂ x

)
= νihi

∂2 ui
∂ x2

+ νi
∂ hi
∂ x

∂ ui
∂ x

. (5.7)

This form does not reproduce the same symmetries as the momentum dissipation

in the Navier-Stokes equations (Gent, 1993; Schär and Smith, 1993) and Schär and

Smith (1993) propose a new form of the dissipation in attempt to address this.

However, the additional term in dissipation term (5.7) is only large near the head

of the flow where the shallow-water approximation also breaks down. Critically

interfacial drag terms are neglected in the model. An estimate of the size of these

terms is ∼ µ|u2 − u1|/hlayer, where hlayer is an estimated thickness of the velocity

transition region. These terms are likely to be of similar order, and may even

been larger, to the momentum diffusion terms and therefore the regime with only

momentum diffusion may not be realistic.

The depth of each layer is scaled by H, and the same spatial, time, and

velocity scales are used as in the DNS

hi = Hh∗i , x = Hx∗, ui =

√
g′H

2
u∗i , t =

√
2H

g′
t∗, (5.8)

where g′ = g(ρ2 − ρ1)/ρ2 is the reduced gravity and g is gravitational acceleration.

In dimensionless form the two-layer shallow water model (5.3-5.6) is
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∂ h1

∂ t
+

∂

∂ x
(h1u1) = 0, (5.9)

∂

∂ t
(h1u1) +

∂

∂ x

(
h1u1

2
)

+ h1
∂ Pi
∂ x

=
1

Re1

h1
∂2 u1

∂ x2
, (5.10)

∂ h2

∂ t
+

∂

∂ x
(h2u2) = 0, (5.11)

∂

∂ t
(h2u2) +

∂

∂ x

(
h2u2

2 + h2
2
)

+ h2
∂ Pi
∂ x

=
1

Re2

h2
∂2 u2

∂ x2
, (5.12)

where P ∗i is the dimensionless interfacial pressure. The interfacial pressure

P ∗i term is left implicit, and can be eliminated from the momentum equations (5.10)

and (5.12) to yield a single momentum conservation equation for both layers in

terms of just h2 and u2, where for brevity the asterisks ∗ are neglected

∂

∂ t
(h2u2) + (1− h2)

∂

∂ x

(
h2u

2
2 + h2

2

)
− h2

∂

∂ x

(
h2

2u
2
2

1− h2

)
= ψ(x, t), (5.13)

where ψ(x, t) are the viscous source terms given by

ψ(x, t) ≡ (1− h2)h2
∂2

∂ x2

(
u2

(
1

Re2

+
1

Re1

h2

1− h2

))
. (5.14)

Note, that the definition h1 + h2 = 1 has been used to simply these expressions.

With our mass conservation for the basal layer (5.11), this gives two equations for

the two unknowns h2 and u2. Zero flux boundary conditions are imposed at the

ends of the domain for all cases

u2(−1, t) = 0 and u2(1, t) = 0. (5.15)

The momentum conservation equation (5.13) contains second order spatial deriva-

tives of h and m and therefore two additional boundary conditions are required.

At the boundaries x = ±1, the momentum equation combined with the zero flux

boundary conditions (5.15) reduces to

(1− h2) 2h2
∂ h2

∂ x
= ψ at x = ±1 (5.16)

As with the single-layer shallow-water equation when the viscous source terms are

zero, this reduces ∂ h2/ ∂ x(±1, t) = 0 and will be used later when applying the

fractional step method. When the viscous sources terms are not in general zero in
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the bulk of the flow, zero boundary conditions will be imposed on ψ(±1, t) = 0.

This is equivalent to

∂ h2

∂ x
(−1, t) = 0 and

∂ h2

∂ x
(1, t) = 0 (5.17)

by considering equation (5.16). The initial conditions are prescribed functions of x

u2(x, 0) = u0(x), (5.18)

h2(x, 0) = h0(x). (5.19)

In contrast to the single-layer model discussed in chapter 2, no Froude number

condition is imposed. In the DNS simulations presented in the previous chapter, a

clearly defined gravity current head is not observed during the later stages of the

flow (t >≥ 9) or during the phases of the flow where it is interacting with the end

walls at x = ±1.

5.2.1 Numerical scheme

Henceforth, the following variables used h = h2 and m = h2u2 for simplicity. The

mass (5.11) and momentum equations (5.13) for the basal layer can be written in

matrix form
∂ q

∂ t
+A∂ q

∂ x
= Ψ, (5.20)

where

q =

(
h2

h2u2

)
=

(
h

m

)
, (5.21)

A =

(
0 1

P(h,m) Q(h,m)

)
, (5.22)

Ψ =

(
0

ψ(h,m)

)
, (5.23)

P(h,m) = (1− h)

(
2h− m2

h2

)
− hm2

(1− h)2 , (5.24)

Q(h,m) =
2m(1− 2h)

h(1− h)
, (5.25)

ψ(h,m) = h(1− h)
∂2

∂ x2

(
m

(1− h)Re1

+
m

hRe2

)
. (5.26)

The eigenvalues of the Jacobian matrix A are required to be real and
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distinct for the system to be hyperbolic. These eigenvalues are given by

λ± =
Q±

√
Q2 + 4P
2

, (5.27)

and are real and distinct provided the discriminant Q2 + 4P is positive. Numerical

calculations are used to evaluate the regions where the eigenvalues, (5.27) are real,

figure 5.2. As the depth of the flow becomes dominated by one of the layers (h→ 0

or h→ 1), the momentum must tend to zero as well, figure 5.2a. This however, is not

true for the velocity in each layer, figure 5.2b. The velocity in the layer can increase

provided the momentum itself tends to zero as h → 0. When h > 0.5, the velocity

magnitude is larger in the top layer than the basal, because u1 = −u2h/(1−h). For

the two-layer shallow water without fixed depth, loss of hyperbolicity corresponds

to the formation of Kelvin-Helmholtz instabilities forming at the interface (Castro

et al., 2001; Audusse, 2005; Kim and LeVeque, 2008). These instabilities arise when

small perturbations to the interface grow in time with the growth (or decay) rate

determined by a balance between shearing force and buoyancy and leads to mixing

as a source to dissipate energy. The eigenvalues becoming complex signifies that the

no-entrainment/mixing assumption in the model breaking down and therefore, the

solver is restricted to the case where the equations remain hyperbolic.

(a) (b)

Figure 5.2: Regions in (h,m)-space (a) and (h, u)-space (b), where the system of
equations are hyperbolic, shown in yellow. Outside of these ranges, shown in purple,
the finite-volume schemes cannot be applied. Critically, as h → 1, the equations
become elliptic for all finite values of the velocity u. Thus an arbitrarily thin wetting
layer in the overlying fluid is not compatible with a finite-volume scheme.
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Fractional step method

Provided the eigenvalues of the matrix A remain distinct, the balance law, here a

conservation equation with a second-order source term, (5.20) can be solved using

finite-volume schemes (LeVeque, 2002). A standard approach for solving such prob-

lems are the fractional step methods, or operator splitting (LeVeque, 2002). The

balance law (5.20) is split into two simpler problems that are solved independently

∂ q

∂ t
+A∂ q

∂ x
= 0, (5.28)

∂ q

∂ t
−Ψ = 0. (5.29)

At each time-step first the homogeneous hyperbolic equation (5.28) is solved to

produce an intermediate solution, q∗, which is then used as the initial state for the

source term correction (5.29). Although this introduces an additional source of error

into the numerical method, it enables the use of standard schemes for solving these

individual problems. A linearised finite-volume scheme, detailed below, is used to

solve the hyperbolic equation (5.28). A 4th-order Runge-Kutta method is used to

solve separately for the ODE corresponding to the source terms (5.29). Note, that

Riemann invariants exists for the reduced hyperbolic problem (5.28) as stated in

Bonnecaze et al. (1993).

Finite-volume scheme

This section details how the first part of the fractional step method (5.28) is solved

using a scheme for non-conservative non-linear hyperbolic equations. Although, the

system of PDEs (5.28) is not hyperbolic for all values of h and m, it is for a range

of physically realistic variables. Thus, in this section it is assumed that the problem

is hyperbolic. I.e., the matrix A has two, real and distinct eigenvalues, λ1 = λ+ and

λ2 = λ−, given by (5.27) with corresponding eigenvectors

r1 =

(
1

λ1

)
and r2 =

(
1

λ2

)
. (5.30)

Thus the Jacobian matrix, A, can be decomposed
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A = BΛB−1 =

(
1 1

λ1 λ2

)(
λ1 0

0 λ2

)(
1 1

λ1 λ2

)−1

. (5.31)

The significance of the equation being hyperbolic is that the solution of the

Riemann problem for the equation decouples into two independent linear equations

in the directions ri with speeds λi and, provided the waves from neighbouring cell

interfaces do not interact, the flux through each cell interface can be calculated.

The sign of the eigenvalue determines whether each wave is left (negative) or right

(positive) propagating. The Jacobian matrix can be decomposed into its left A−

and right-propagating A+ components

A± = B

(
(λ1)± 0

0 (λ2)±

)
B−1. (5.32)

The domain, x ∈ [−1, 1], is split into Nx equally spaced cells of width

∆x = 2/Nx and so that the i-th cell is the region [xi−1/2, xi+1/2] and centred at xi,

where xi = −1 + (i − 1/2)∆x. The initial depth h0 and momentum m0 = h0U0

profiles are integrated over each cell, denoted by subscript i, and divided by the cell

width ∆x to produce the cell-averaged quantities

Q0
i =

xi+1/2∫
xi−1/2

q(x, 0) dx. (5.33)

To compute the flux between cells, and hence the cell-averaged quantities

at the next time step, superscript (n + 1), the solution of the Riemann problem

(or approximation of it) needs to be obtained. Eigenvalues and eigenvectors of the

Jacobian matrixA are required at the cell interfaces. However, the values of h and m

are only stored at the cell centres, not the interfaces. The values at the interfaces are

computed as an average of the values from the neighbouring cells thus approximating

the solution. Various different averaging methods have been proposed (e.g. Roe’s

method (Roe, 1981), but in general closed forms of these averages do not exist in

general). For the two-layer model considered here closed form of the Roe averages

could not be obtained and so the arithmetic average

hi−1/2 =
hi + hi−1

2
and mi−1/2 =

mi +mi−1

2
(5.34)
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is instead used. The eigenvalues and eigenvectors at each interface are then calcu-

lated from these values

λ1
i−1/2 =

Qi−1/2 +
√

(Qi−1/2)2 + 4Pi−1/2

2
, (5.35)

λ2
i−1/2 =

Qi−1/2 −
√

(Qi−1/2)2 + 4Pi−1/2

2
, (5.36)

r1
i−1/2 =

(
−λ2

i−1/2

1

)
, (5.37)

r2
i−1/2 =

(
−λ1

i−1/2

1

)
, (5.38)

where

Pi−1/2 =
(
1− hi−1/2

)(
2hi−1/2 −

(
mi−1/2

hi−1/2

)2
)
−
hi−1/2

(
mi−1/2

)2(
1− hi−1/2

)2 , (5.39)

Qi−1/2 =
2mi−1/2

(
1− 2hi−1/2

)
hi−1/2

(
1− hi−1/2

) . (5.40)

The approximate eigenvalues and eigenvectors are used to define the local

approximation to the non-linear problem (5.28)

∂ q

∂ t
−Ai−1/2

∂ q

∂ x
= 0 (5.41)

at each cell interface. The difference in Q between neighbouring cells at the i− 1/2

interface is computed

∆Qn
i−1/2 = Qn

i −Qn
i−1. (5.42)

When the solution is smooth, ∆Qn
i−1/2 = O(∆x) and the Jacobian matrix

is nearly constant (LeVeque, 2002) and the linearised Riemann solver provides an ac-

curate approximation of the true Riemann solution. However, near shocks ∆Qn
i−1/2

can be large and the application of a linearised method is harder to justify. This

can result in the solution near shocks being inaccurately captured. Note, that Roe

averaged interface variables are chosen to ensure the correct behaviour near a shock

captured (Roe, 1981). The inclusion of viscous diffusion acts to smooth the solution

near regions where the velocity gradients are large and suppress the formation of

shocks that can occur in an inviscid case.

As the eigenvectors of Ai−1/2 form a basis, the difference ∆Qn
i−1/2 may be
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expressed as a linear combination, with coefficients γpi−1/2 of the two eigenvectors

2∑
p=1

γpi−1/2r
p
i−1/2 = ∆Qn

i−1/2. (5.43)

The coefficients γpi−1/2 are given by

(
γ1
i−1/2

γ2
i−1/2

)
= B−1∆Qn

i−1/2. (5.44)

The waves are then split into left- and right-fluctuations

A−∆Qi−1/2 =
2∑
p=1

(
λpi−1/2

)−
γpi−1/2r

p
i−1/2 =

2∑
p=1

(
λpi−1/2

)−
Wp

i−1/2, (5.45)

A+∆Qi−1/2 =
2∑
p=1

(
λpi−1/2

)+

γpi−1/2r
p
i−1/2 =

2∑
p=1

(
λpi−1/2

)+

Wp
i−1/2, (5.46)

where (x)+ = max(0, x) and (x)− = min(0, x). These represent the right- and left-

going fluctuations in the flux of m and h and correspond to waves Wp
i−1/2 travelling

at speed λpi−1/2 Finally, the solution of the hyperbolic equation in each cell at the

next time step is computed

Q∗ni = Qn
i −

∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
. (5.47)

This intermediate solution, Q∗ni , is now used as the initial data for the the source-

term part of the fractional step method (5.29). This intermediate solution in each

cell is calculated from the cell’s values at the previous time step and those from the

adjacent cells. This is known as a three-point stencil. For the first and last cells

(those with interfaces at the boundary) additional ‘ghost’ cells are required at i = 0

and i = Nx + 1 to impose the boundary conditions u(−1, t) = u(1, t) = 0. For the

homogenous hyperbolic equation (5.28), these boundary conditions are equivalent

to symmetry conditions, i.e.

∂ h

∂ x
(−1, t) =

∂ h

∂ x
(1, t) = 0. (5.48)

When computing the eigenvalue and eigenvectors at these boundary values, the
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discretised boundary conditions provide m1/2 = mNx+1/2 = 0 and

h0 + h1

∆x
= 0 =⇒ h1/2 = h1, (5.49)

hNx + hNx+1

∆x
= 0 =⇒ hNx+1/2 = hNx , (5.50)

(5.51)

Entropy violating shocks

By linearising the Jacobian matrix, A, the system of PDEs is essentially reduced

to two linearly-independent problems, which are solved separately with each corre-

sponding to an advection equation with speed λp in the direction rp in (h,m)-space

(LeVeque, 2002). The main disadvantage of linearised Riemann solvers is that the so-

lutions to the Riemann problem can only consist of discontinuities (shocks), whereas

for non-linear conservation laws can result in rarefaction waves (LeVeque, 2002). For

a scalar conservation law with flux function f(q), i.e. ∂ q/ ∂ t + ∂(f(q))/ ∂ x = 0,

which is assumed to be concave (or convex), i.e. f ′′(q) does not change sign over

the region of interest, there are five possible choices for exact solutions, Q↓i−1/2 =

q↓(Qn
i−1, Q

n
i ) to the Riemann problem along the interface x = xi−1/2, figure 5.3.

When both the left, λpi−1, and right λpi eigenvalues are negative, figure 5.3 a&c, the

solution is Q↓i−1/2 = Qi and when both are positive, figure 5.3 b&d, the solution is

Q↓i−1/2 = Qi−1. However, when the eigenvalues change sign from negative to positive

across the cell interface, figure 5.3e, the rarefaction wave spreads both to the left

and to the right of the interface. This has exact solution Q↓i−1/2 = qs, where qs is

the unique value satisfying f ′(qs) = 0. Crucially the weak solutions to conservation

laws are not necessarily unique and in general an additional condition, for example

based on entropy, is required (Goodman and LeVeque, 1988).

In a linearised solver, the only time the correct solution is not selected is

when the transonic rarefaction exists (LeVeque, 2002). To address this, the Harten-

Hyman entropy fix developed by Harten and Hyman (1983) is used when a transonic

rarefaction exists, with the exact formulation slightly modified by LeVeque (1990).

When a transonic rarefaction exists, the averaged eigenvalue at the cell interface

λpi−1/2 is split into left- and right-propagating components via

(λp)−i−1/2 = Γpλpi−1 and (λp)+
i−1/2 = Γpλpi , (5.52)
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(a) (b)

(c) (d)

(e)

Figure 5.3: The five possible solutions to a linearised scalar conservation equation
for the Riemann problem. Solid lines represent shocks (a and b) in the Riemann
solution or expansion fan regions (c,d and e). Dotted lines represent characteristic
curves. They are characterised by the values of the eigenvalues to the left (λpl and
right (λpr of the cell interface located at the position of the t axis: (a) (λpr < λpl < 0)
- left going shock, (b) (0 < λpr < λpl - right going shock, (c) (λpl < λpr < 0) left
going rarefaction wave, (d) (0 < λpl < λpr) - right going rarefaction wave and (e)
(λpl < 0 < λpr) transonic rarefaction wave.

where

Γp =
λpi − λpi−1/2

λpi − λpi−1

. (5.53)

These modified eigenvalues are then used in the calculation of the fluxes
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with both a left and right going contribution from the p-th wave.

High-resolution scheme

The approximate Riemann solver presented earlier is only first order accurate and in-

troduces significant numerical diffusion, which acts to smooth out the solution. This

is particularly noticeable for solutions that require a long-time integration (LeV-

eque, 2002). High-resolution schemes, which include second-order-accurate correc-

tion terms, remove a lot of the numerical diffusion, but can lead to oscillations near

discontinuities. The introduction of limiters, which act to suppress, or even negate,

the second-order correction terms near shocks provide a scheme that is second-order

accurate wherever possible that does not introduce spurious and non-physical os-

cillations. Further, LeVeque (2002) demonstrated that second-order methods when

used in conjunction with the entropy fix, provide significantly more accurate results

in the presence of transonic rarefactions waves compared with the entropy fix alone.

The approximate Riemann solver is extended to a high-resolution scheme

with the addition of correction terms, Fi+1/2, to yield the following

Q∗ni = Qn
i −

∆t

∆x

(
A+∆Qi−1/2 +A−∆Qi+1/2

)
− ∆t

∆x

(
Fi+1/2 −Fi−1/2

)
(5.54)

(LeVeque, 2002). The high-resolution corrections are computed from the wave

speeds

Fi−1/2 =
1

2

2∑
p=1

|spi−1/2|
(

1− ∆t

∆x
|spi−1/2|

)
W̃p

i−1/2, (5.55)

where W̃p
i−1/2 is the limited wave speed. The limited wave speed is obtained by

comparing Wp
i−1/2 to its upwind value, Wp

I−1/2, where

I =

i− 1 if spi−1/2 > 0,

i+ 1 if spi−1/2 < 0.
(5.56)

This increased the stencil from three to five grid-points and thus an addi-

tional ghost cell is required at each boundary. For example, the waves at the left

boundary Wp
1/2 can be compared to Wp

−1/2, which is computed from cells 0 and -1.
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The limited wave, W̃p
i−1/2, is computed from a flux limiter function φ,

W̃p
i−1/2 = φ(θi−1/2)Wp

i−1/2, (5.57)

where its argument, θpi−1/2, is determined from the projection of Wp
I−1/2

onto Wp
i−1/2,

θpi−1/2 =
Wp

I−1/2 · W
p
i−1/2

Wp
i−1/2 · W

p
i−1/2

. (5.58)

A variety of different choices exist for the flux limiter, φ, which all produce

similar, but slightly different, behaviour. Zhang et al. (2015) provide a thorough

review of ten different flux limiters. One of the simplest to impose is the minmod

(Roe, 1986) function

φ(θ) = minmod(1, θ) = max(0,min(1, θ)), (5.59)

and was chosen as the flux limiter for this high-resolution scheme. A comparison

between three simulations using the minmod, superbee (Roe, 1986; Kemm, 2011)

and the monotonized central (Van Leer, 1974) flux limiters revealed no noticeable

change in the solution. When the solution is relative smooth Wp
I−1/2 ∼ W

p
i−1/2,

giving θ ∼ 1 and W̃p
I−1/2 ∼ W

p
i−1/2. Conversely, when there is a rapid change in

the solution near the interface, either θ is large, in which φ takes the value 1 and

W̃p
I−1/2 ∼ W

p
i−1/2 or θ is close to 0 and thus the correction term is as well. Thus,

producing the required limiter behaviour.

Runge-Kutta 4th order method for the source term correction

A 4th-order Runge-Kutta scheme was used to solve the system of ODEs (5.29)

representing the viscous source terms. Note that as the first component of ψ is zero,

this reduces to a scalar ODE. The Runge-Kutta method is an iterative process that

defines coefficients ki (Süli and Mayers, 2003) as follows:
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k1 =∆tΨ (Q∗ni ) ; (5.60)

k2 =∆tΨ (Q∗ni + k1/2) ; (5.61)

k3 =∆tΨ (Q∗ni + k2/2) ; (5.62)

k4 =∆tΨ (Q∗ni + k3) , (5.63)

where

Ψ(Q∗ni ) =

(
0

hni (1−hni )
∆x2

[
ξni+1 − 2ξni + ξni−1

] ) , (5.64)

ξni =mn
i

[
1

(1− hni )Re1

+
1

hni Re2

]
(5.65)

and for simplicity we have dropped the ∗ from the intermediate variables. The 4th-

order Runge-Kutta method is then used to compute the values of hn+1
i and mn+1

i at

the next time step

Qn+1
i = Q∗ni +

1

6
( k1 + 2k2 + 2k3 + k4) . (5.66)

Although an explicit method, the 4th-order Runge-Kutta scheme produces

O (∆t5) error (Süli and Mayers, 2003). This was compared to a Crank-Nicholson

semi-implicit method, which produced near-identical results.

CFL-condition

A necessary, but not sufficient, condition for the stability is the CFL-condition

(Courant et al., 1928), which states “A numerical method can be convergent only if

its numerical domain of dependence contains the true domain of dependence of the

PDE, at least in the limit as ∆t and ∆x go to zero.” (LeVeque, 2002, p. 69). The

Courant number Cr is defined as a maximum over all cells i and eigenvalues p

Cr =
∆t

∆x
max
i,p
|λpi | (5.67)

This represents the number of cells travelled by the fastest travelling wave

in a single time step. For a three-point scheme, In order for the domain of dependence

of the numerical scheme to contain the domain of dependence of the PDE, it is

required that the waves do not interact with the solution in neighbouring cells. This
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is equivalent to Cr < 1. Further, if Cr < 1/2 then the fastest forwards-travelling

and backwards- travelling waves do not interact. A five-point scheme provides a less

restrictive condition than a three-point scheme (Laney, 1998), but the flux limiters

may produce a three-point scheme in certain regions of the flow. However, Cr < 1

is only a necessary, not sufficient. Therefore, there may be stricter conditions on the

time-step size and often, smaller values are used. To keep the ratio, ∆t/∆x, fixed,

the Courant number is imposed across the simulation and thus the time-step

∆t =
Cr∆x

max
i,p
|λpi |

(5.68)

is determined from it. By imposing the Courant number Cr rather than fixing the

time-step enables larger time-steps to be used in periods where the maximum wave

speeds are smaller.

Linear stability analysis

The particular form of the combined momentum diffusion term in the two-layer

shallow water model can further restrict the range depth h and momentum m which

produce stable solutions. To explore this further, linear stability analysis is con-

ducted on the system of equations (5.20). First, it is noted that the constant solution

q0 = (h0,m0) satisfies the system of equations for all h0 ∈ (0, 1) and m0 ∈ R. Next

a perturbation q′ = (h′,m′) is introduce, where |h′|, |m′| � 1 and it is assumed that

h0 +h′ ∈ (0, 1). To study linear stability analysis, consider q = q0 +q′. Substituting

into the system of equations (5.20) yields

∂ q′

∂ t
+A(q0)

∂ q′

∂ x
=

(
0

ψ(q)

)
+O(h′

2
,m′h′,m′

2
), (5.69)

where

ψ(q) =
1− h0

Re2

(
m′xx −

m0h
′
xx

h0

)
+

h0

Re1

(
m0h

′
xx

(1− h0)
+m′xx

)
+O(h′

2
,m′h′,m′

2
).

(5.70)

To study linear stability consider the following forms for h′ and m′

h′ = A exp(ikx+ ωt), (5.71)

m′ = B exp(ikx+ ωt), (5.72)

for some constants A,B ∈ R. Note that the wavenumber k and growth rate ω can
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be chosen as the same for both h′ and m′ without loss of generality from the mass

conservation equation. With this form, the diffusive term ψ(q) can be expressed

ψ(q) =− k2

(
m0h0

(1− h0)Re1

− m0(1− h0)

h0Re2

)
h′ − k2

(
1− h0

Re2

+
h0

Re1

)
m′ (5.73)

≡− k2ψhh
′ − k2ψmm

′, (5.74)

where quadratically small terms are neglected. Combining this with the left-hand

side of (5.69) yields the following system of equations for the coefficients A and B(
ω ik

ikP(q0) + ψh ikQ(q0) + ψm + ω

)(
A

B

)
=

(
0

0

)
, (5.75)

in which the following expressions have been used to simplify

∂ h′

∂ x
= ikh′, (5.76)

∂ h′

∂ t
= ωh′, (5.77)

∂ m′

∂ x
= ikm′, (5.78)

∂ m′

∂ t
= ωm′. (5.79)

The system of equations (5.75) can only yield non-trivial solutions if the determinant

of the matrix is zero. Thus, the growth rate ω is the solutions of the following

quadratic equation

ω2 + (ikQ(q0) + ψm)ω − ikψh + k2P(q0) = 0 (5.80)

For a given Re1, Re2, h0, m0 and k this equation yields two complex roots for

the growth rate ω with the stability of the solution determined by the real part of

each root. If both of the real parts of these two roots are less than zero, then the

constant solution to the system of equations is linearly stable. If one is positive then

the system of equations is linearly unstable for the given Re1, Re2, h0, m0 and k.

Note than in the inviscid limit Re1, Re2 →∞, this reduces to

ω = ±k
2

√
−Q(q0)2 − 4P(q0), (5.81)

which gives the following condition for the equation to be linearly unstable

−Q(q0)2 − 4P(q0) > 0. (5.82)
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This is identical to the condition for the eigenvalues of the conservative part of the

system of equations (5.27) to be no longer be real and distinct (i.e., for the system to

no longer be hyperbolic). The growth rate equation (5.81) is solved numerically in

MATLAB for a range of conditions Re1, Re2, h0, m0 and k. Two key simplifications

are observed: First, the stability of a solution is independent on the magnitude of

Re1, Re2, and only their relative magnitude contributes to whether a solution is

stable or not. With equal Reynolds numbers, Re1 = Re2, the same stability as

the inviscid case is produced. Second, the stability of a solution is independent of

the wavenumber k. However, the magnitude of the growth is dependent on both

the Reynolds numbers and wavenumber k. Thus the studyis restricted to a limited

number of Reynolds number ratios Re1/Re2 = 1, 2, 4, 11, 41, 100 to illustrate how

the stability changes over a range of h0 and m0.

The linearly stability for a given pair (h0,m0) is displayed in figure 5.4.

Similarly to the hyperbolicity plots, figure 5.2, the stability is also plotted in (h0, u0)-

space, where u0 = m0/h0. The coloured regions correspond to the lowest value of

the Reynolds number ratio for which the solution is linearly unstable. For example

dark blue regions are only linearly unstable for Re1/Re2 = 1 and yellow regions

are linearly unstable for all ratios considered. White regions are stable for all the

Reynolds number ratios considered. As the Reynolds number ratio is increased,

significantly more regions of (h0,m0) space become unstable. During the early stages

of the flow, where the flow depth is greater than 1 and the momentum is large

solutions may become unstable. Finally, we note that if this analysis is repeated

with Re2 fixed and Re2/Re1 varied a similar pattern is observed, but with the

stability plots reflected about h0 = 0.5. This arrives naturally from the symmetry

of the problem discussed earlier.

Critically, this analysis reveals that when the Reynolds numbers in each

layer are distinct, the simulations can be unstable to a viscous-driven instability as

small perturbations growing in time. Even though there is a small amount of nu-

merical diffusion present in the finite volumes scheme small perturbations to h and

m can grow in time for a suitably large viscosity ratio, which would be damped out

for an equation Reynolds number case. This was observed in the highest Reynolds

number ratios studied in this chapter and in order to counteract this, a small amount

of mass diffusion was introduced into the model. This provides an additional stabil-

ising affect to the small perturbations and acts to smooth them out before they grow

too large. As demonstrated later in the chapter, the mass diffusion has negligible

effect on the solution provided the diffusion coefficient is chosen to be small enough.
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(a) (b)

Figure 5.4: Stability of linearly perturbed solution in: (a) (h0,m0)-space and
(b) (h0, u0)-space. Dark blue represents the region that is linearly unstable for
Re1/Re2 = 1. Each subsequent colour (up to yellow, where Re1/Re2 = 100) rep-
resents the additional region that becomes unstable as the Reynolds number ratio
is increased. The region coloured white is stable for all Reynolds number ratios
considered. As discussed in the text, the stability is independent on magnitude of
the Reynolds numbers (only their relative magnitude) and the wavenumber k.

The conservation of mass is adjusted to include this diffusion term as follows

∂ h

∂ t
+
∂ m

∂ x
= D1

∂2 h

∂ x2
, (5.83)

where D1, the diffusion coefficient, is constant. Similar to viscous source terms, this

contribution is solved during the Runge-Kutta step by adjusting the source vector

Ψ to be

Ψ(Q∗ni ) =

(
D1

hni+1−2hni +hni−1

∆x2

hni (1−hni )
∆x2

[
ξni+1 − 2ξni + ξni−1

] ) , (5.84)

Inclusion of the mass diffusion term is difficult to justify as it breaks mass

conservation. Further, the mass conservation is used to simplify the momentum

equation, which further impacts the validity of the model. However, inclusion of

the mass diffusion term stabilises the equations and allows for a larger range of

Reynolds number ratios to be studied. The instability that caused by the anti-

diffusion is shear-related. In a physical system small perturbations to the surface

would rupture the surface and lead to dispersion or entrainment allowing them

to dissipate. However, no such mechanism is present in our system without the

inclusion of the mass diffusion term.
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5.2.2 Verification

To explore grid resolution and the effect of other parameter values on the numerical

scheme, a series of tests were performed varying each parameter individually for the

two-layer shallow-water problem with the following initial conditions

h0(x) = ε0 +
1− 2ε0

2
(1− tanh(ζ0x)) (5.85)

u0(x) = 0, (5.86)

where ε0 and ζ0 are constants. This provides similar conditions to the dam break

provided ε0 is small, but imposes that the depth is non-zero in both layers, which

would lead to the problem no longer being hyperbolic. As discussed in section 5.2.1,

the linearised scheme may not accurately capture the solution near the presence

of shocks. Thus, the step function used for the DNS simulations is replaced by a

tanh profile to smooth the initial condition. The constant ζ0 = 10 is chosen and

motivated in section 5.2.2.

Assuming that these constants are fixed, the only physical parameters that

can be varied in the model are the Reynolds number of each layer, Rei. The pa-

rameter of a numerical model that can be varied are the number of cells Nx, the

Courant number, Cr, and the mass diffusion parameter D1.

Visualisation

For ε0 = 0.01, depth and momentum profiles evolving in time, withNx = 1600, Cr =

0.02, D1 = 1/1000, Re1 = 1000 and Re2 = 1000, are presented in figure 5.5. Initially,

a right-propagating wave in the basal layer and a left-propagating wave in the above

fluid can be observed as the density difference drives the denser fluid to the right.

These waves reflected off the side walls and back towards the centre numerous times

during the duration. As expected, the depth profile remains rotationally symmetric

about x = 0, y = 0.5 and the momentum symmetric about x = 0.

Resolution

Grid resolution was studied by varying Nx with all other parameters fixed. Depth

h and momentum m profiles are plotted in figure 5.6 for various values of Nx at

t = 13.5. For the lowest values of Nx considered, significant numerical diffusion is

present. As Nx decreases, the profiles sharpen and appear to converge towards a
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Figure 5.5: Evolution of the depth, h, and momentum over time with the following
parameters: Nx = 1600, Cr = 0.02, D1 = 10−3, Re1 = 1000, Re2 = 1000.

fixed value. A similar study, with fixed Nx = 1600 and varying the Courant number

Cr, revealed that the variations in time-step (which is inversely proportional to the

Courant number, are negligible. Finally, in figure 5.7, the convergence of the `1-error
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defined in chapter 2 for the two variables with either fixed spatial resolution or fixed

Courant number Cr is presented, also at t = 13.5. The analytical solution for this

problem is not known, so instead the error are calculated relative to Nx = 6400 and

Cr = 0.02 for the spatial error and Nx = 1600 and Cr = 0.0025 for the temporal

error. Gradients of these lines provide the scaling of the error in terms of ∆x and

∆t. The error for both variables scales approximately as ∆x and ∆t.

All simulations conducted henceforth in this chapter use Nx = 1600 and

Cr = 0.02. The choice of spacial resolution was chosen as the highest value, which

still had a reasonable run time of order a couple of hours. A low Courant number

was required for stability at the lowest Reynolds numbers considered. Using a step

profile required an order of magnitude larger number of spatial cells to provide

converged solutions. Further, the majority of the error arises during the early stages

of the flow t < 0.5 signifying that sharp initial conditions required significantly more

cells. The error still decreases proportional to ∆x and ∆t, but a reduced number

of cells is required to provide a sufficiently resolved solution. As a balance between

computational time and capturing the initial conditions of the DNS motivates the

choice ζ0 = 10 and Nx = 1600.

Mass diffusion

Finally, the affect of the mass diffusion parameter D1 on the simulations is demon-

strated in figure 5.8. At time t = 12.5, the solutions are coincident for D1 ≤ 10−4

and within a similar accuracy to the spatial error for D1 = 10−3. The highest value

of diffusion considered D1 = 10−2 smooths the solution considerably and is too large

to use.

5.3 Results and Discussion

Two studies are conducted using the model presented in this chapter. First, the

ratio of the Reynolds number is kept fixed at unity and the Reynolds number in

both layers is varied at the same time. Second, the Reynolds number of the top

layer is fixed at Re1 = 1000 and the basal layer Reynolds number is varied. In this

section, unless otherwise stated, all simulations were conducted with the following

parameters: Nx = 1600, Cr = 0.02, D1 = 10−3, ε0 = 10−2. Smaller values of the

wetted layer ε0 lead to stable solutions when the Reynolds number in each layer were

equal (or similar). However, for all but the lowest Reynolds number considered, the
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Figure 5.6: Depth h (top) and momentum m (bottom) profiles at t = 12.5 for various
values ofNx. Other parameters are: Cr = 0.02, D1 = 0, Re1 = 1000, Re2 = 1000. As
Nx increases, the profiles converge towards a value. For low values of Nx significant
numerical diffusion can be observed.

solutions contained regions with velocities greater than one, and as high as 1.3 for

the inviscid case, when ε0 = 10−4. This could result in a viscosity driven instability

and divergence of the solution when the Reynolds number ratio is large. A wetting

layer thickness ε0 = 10−2 produced peak velocities less than 0.9 for an inviscid case.

The mass diffusion D1 = 10−3 was only required to make the highest two viscosity

ratios stable. Further, when the viscosity ratio was fixed, stability was still achieved

without mass diffusion. The values of D1 and ε0 will quantitatively change the
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(a) (b)

Figure 5.7: `1-error for depth Eh and momentum Em at: (a) fixed Courant number
Cr = 0.02 (a) and Nx = (100, 200, 400, 800, 1600, 3200) and (b) fixed Nx = 1600
and Cr = (0.5, 0.25, 0.1, 0.05, 0.02, 0.005). Other parameters for these graphs are
D1 = 1/1000, Re1 = 1000 and Re2 = 1000. The gradient of the lines (computed
using the end points) provide the convergence rate of the scheme. Eh ∼ ∆x0.93,
Em ∼ ∆x1.06, Eh ∼ ∆t1.01, Em ∼ ∆t0.99.

solutions by a small amount, but they are required to study the highest viscosity

ratios considered here. Keeping these values consistent across all simulations enabled

a consistent comparison between each case considered.

In the early stages of the flow, before the waves have reflected off the

x = −1 and x = 1 boundaries, the positions of wavefronts heads are defined

xL = min
x∈(−1,0)

(
∂ h

∂ x

)
, (5.87)

xR = min
x∈(0,1)

(
∂ h

∂ x

)
. (5.88)

Defining the head positions based on a depth threshold proved less effective because

the high variance in head position as the threshold value changed for the lowest

Reynolds number cases.

Varying Reynolds number in both layers

First, the effect of varying the Reynolds number in both layers simultaneously, whilst

keeping the ratio fixed at unity, i.e. Re1 = Re2 is studied. At t = 0.5 a significant

effect on the flow profiles can be observed even for the highest Reynolds number

(1000), when compared to an inviscid case (Rei = ∞), figure 5.9a. Decreasing the

Reynolds number decreased the propagation speed of both wavefronts and smoothed

out the momentum profiles. Although reducing the Reynolds number in both layers
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Figure 5.8: Depth h (top) and momentum m (bottom) profiles at t = 12.5 for
four different values of D1. Other parameters are: Nx = 1600, Cr = 0.02, Re1 =
1000, Re2 = 1000.

reduces the maximum momentum value, the change is less noticeable. In particular,

the depth and momentum values for the inviscid case and highest Reynolds number

cases are coincident except for the regions near the head. Thus viscosity is only

non-negligible when the flow gradients are large.

The symmetric momentum profile of the Re1 = Re2 = 1000 case leads to

a velocity profile that is increasing up to a maximum value just before the head of

the flow at around x = 0.4, figure 5.11. Conversely, the velocity in the upper layer

takes its most negative value at around x = −0.4. When the Reynolds number of
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each layer are equal, the smoothing displays a symmetric pattern between the two

layers, figure 5.11a&b. The maximum value of the velocity initially decreases with

increasing viscosity, but below Rei = 200 this value does not change. Similarly to

when only the bottom layer Reynold number is decreased, as both Reynolds number

are decreased the propagation of the speed of the wavefronts is reduced. Near x = 0.4

for the basal layer and x = −0.4 for the top layer, the two highest viscosity cases

(Rei = 15, 25) show a highly smoothed behaviour near the wavefronts of the flow

and it appears as though these flows are travelling faster. However, the momentum

in these regions is still negligible, figure 5.9a. This arises from the viscous diffusion

providing a small amount of momentum to travel into the thin wetting layer ahead of

the wavefront. Similarly to the depth and momentum profiles, the velocity continues

to smooth out as time increases.

Just before the reflected wavefronts cross, further viscous diffusion can be

observed, figure 5.9b. The wavefronts remain clearly visible for the highest three

Reynolds numbers as the sharp jump in depth just to the left and right of x = 0. The

front position of the reflected wave becomes harder or even impossible to identify

by eye for the three lower Reynolds numbers. Just after the third and fourth times

the wave fronts cross, figure 5.9c and figure 5.9d, respectively, all profiles can be

seen to be smoothed, but the highest three Reynolds number still maintain a clearly

defined wave front. In particular, the highest two cases the smoothing is likely to be

a result of the grid resolution rather than the viscosity (recall the spatial resolution

study, figure 5.6). Critically, the separation of the wave fronts appears to remain

roughly constant for the later stages of the flow indicating that viscosity plays a

significant role on the wavefront speed only during the initial stages of the flow

when the gradients are large.

Varying basal layer Reynolds number

To study the effects of varying the Reynolds number ratio, only one Reynolds number

needed to be varied. This is because the problem is invariant under the transform

h to 1 − h, x to −x and Re1 to Re2. This produces the momentum profiles that

were symmetric about x = 1 when the Reynolds number of each layer was equal and

forces h(1, t) = 1/2 ∀t. The top layer Reynolds number was fixed to be 1000 and

four decreasing values of the base layer Reynolds number were chosen along with

Re2 = 1000 for comparison. The depth and momentum profiles at four times are

displayed in figure 5.10.

At t = 0.5, just after the release, the asymmetry of the flow is clear,
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(a) (b)

(c) (d)

Figure 5.9: Depth (top of each pair) and momentum (bottom of each pair) profiles
for the lock exchange problem with both layers having the same Reynolds number
compared to the inviscid case Re = ∞. Profiles are at times: (a) 0.5, (b) 2.5, (c)
8.5 and (d) 12.

figure 5.10a. The right propagating wavefront of the lower layer travels at reduced

speed with decreasing Reynolds number, similar to when the Reynolds number in

both layers are increased. Further, the depth at x = 0 no longer takes the value

1/2. Predominately, the viscosity acts to prevent the flow in the basal layer from

travelling to the right. This can be seen clearly in the asymmetric momentum

profiles.
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(a) (b)

(c) (d)

Figure 5.10: Depth (top of each pair) and momentum (bottom of each pair) profiles
for the lock exchange problem with both layers having the same Reynolds number
compared to the inviscid case Re = ∞. Profiles are at times: (a) 0.5, (b) 2.5, (c)
3.5 and (d) 12. Inset in (a) shows the head of the left propagation wavefront.

Varying the viscosity in just the basal layer has a significantly different

effect on both top and basal layer velocity profiles, figure 5.11c&d. In contrast to

varying the Reynolds number in both layers, the velocity maximum in the basal layer

decreases with decreasing Reynolds number and the top layer maximum velocity

only shows minimal variation. The variation in the top layer is less pronounced and

focused in the region where it is thickest, x > 0. Later in time, when the wave fronts
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(a) (b)

(c) (d)

Figure 5.11: Velocity profiles for the top (a&c) and bottom (b&d) at t = 0.5. The
top two graphs (a&b) vary the Reynolds number in both layers, whereas the bottom
two graphs (c&d) fix the top layer Reynolds number (Re1 = 1000) and vary the basal
layers Reynolds number Re2. Top layer velocity is computed u1 = −m/(1− h) and
basal layer u2 = m/h.

have reflected off the side walls and the deepest part of the flow now occurs in x > 0,

the viscosity provides a strong affect in these regions. Thus, the resulting profiles

look more similar to those where both Reynolds numbers are varied. Finally, the

sharpening affect of the viscous source term can be observed in figure 5.11d. As the

viscosity of the basal layer increases, there is an increased resistance to flow to the

right of x = 0 as a result of the basal layer being thinner there. This acts to sharpen

the velocity profile near x = 0.

Contributions to viscous diffusion

The viscous diffusion term ψ is dominant near the waves fronts of the flow as the

momentum gradients change most rapidly there. In order to study this diffusion

term and the effect on the propagating wave fronts travelling co-ordinates with each
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(a) (b)

(c) (d)

Figure 5.12: Total viscous diffusion ψ (−−) and the contribution from each layer
h(1 − h)ψ1/Re1 (−·) and h(1 − h)ψ2/Re2 (· · · ) at t = 0.5 for the left-travelling
wavefront, when the viscosity in both layers are equal. (a), (b), and (c) corresponds
to the Reynolds number in both layers being 200, 50, and 25, respectively. (d)
compares the total viscous diffusion for these three cases. Co-ordinates in the frame
of the left travelling wavefront ξL are used.

wavefront are introduced:

(ξL, τL) = (xL − x, t), (5.89)

(ξR, τR) = (x− xR, t), (5.90)

where xL (5.87) and xR (5.88) are the positions of the left- and right-travelling

wavefronts, respectively. This allows a more straightforward comparison when com-

paring layers of different Reynolds number because, positive values of ξL or ξR both

correspond to values ahead of the wavefront.

The contributions to the total viscous diffusion

ψ(h,m) = h(1− h) (ψ1/Re1 + ψ2/Re2) , (5.91)

where

ψ1 = ∂2 / ∂ x2(m/(1− h)) and ψ2 = ∂2 / ∂ x2(m/h), (5.92)
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are plotted for variations of the Reynolds number in both layers, figure 5.12 for

the left-propagating wave. When the Reynolds number in each layer is equal, the

total viscous diffusion is dominated by the thinner layer of the flow, figure 5.12 a,

b, and c, 5.14 a and 5.13 a, but with diminishing effect as the Reynolds number is

decreased. Specifically, the dominant contribution comes from layer 1 for the left-

propagating wavefront, figure 5.14a, and from layer two for the right-propagating

wavefront, figure 5.13a. This is to be expected as the velocity is proportional to

1/h or 1/(1 − h) for the top and basal layers, respectively. The contribution from

the thicker layer is not completely negligible and predominately acts to add a slight

phase difference between the thinner layer and the total contribution. The size

of the phase difference increases with viscosity and acts to push the peak viscous

diffusion further behind the head of the flow, figure 5.12. The maximum amount of

viscous diffusion occurs in the Rei = 200 case when the layers have equal viscosity

at t = 0.5. This is because viscous diffusion is a lot stronger in the early stages of

the flow for the higher viscosity cases and thus the profiles are already smoothed

considerably by t = 0.5.

By increasing the viscosity in the basal layer, this symmetry in clearly

broken, figure 5.10. At the right-propagating wave, figure 5.13, the total diffusion

is dominated by the basal layer diffusion. For both cases (Re2 = 167 and Re2 = 24)

the contribution to the total viscous diffusion from the top layer decreases. This

is a result of the increased overall diffusion of the flow. For the left-propagating

wave, figure 5.14, the dominant contribution to viscosity now comes from the basal

layer rather than the top (thinner layer). This results in a phase difference that

now pushes the peak of viscous diffusion further to the right (positive ξL). Thus,

relative to the equal Reynolds number cases, the viscous source term acts to push

the velocity peak towards the front of the left-propagating wavefront and increase

the overall propagation speed.

Validation against DNS

In this section simulations from the two-layer shallow-water model are compared

to the DNS simulations in the previous chapter. As discussed earlier, the two-

layer shallow-water model requires a smoothed initial conditions in the form of

a tanh profile rather than the sharp interface used in the DNS. To address this,

when comparing to the DNS results, the simulations are initialised at t = 0.5 with

the depth have and momentum mave profiles obtained by depth averaging the DNS

simulations at t = 0.5. For flow depths less than the wetting layer thickness, h < ε0

and h > 1− ε0, are set to ε0 and 1− ε0, respectively. Depth and momentum profiles
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(a) (b)

(c) (d)

Figure 5.13: Total viscous diffusion ψ (−−) and the contribution from each layer
h(1 − h)ψ1/Re1 (−·) and h(1 − h)ψ2/Re2 (· · · ) at t = 0.5 for the right-travelling
wavefront, when the viscosity in the top layer is fixed at Re1 = 1000. (a), (b)
and (c) corresponds to the Reynolds number in the basal layers being 1000, 167
and 24, respectively. (d) compares the total viscous diffusion for these three cases.
Co-ordinates in the frame of the right travelling wavefront ξR are used.
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(a) (b)

(c) (d)

Figure 5.14: Total viscous diffusion ψ (−−) and the contribution from each layer
h(1 − h)ψ1/Re1 (−·) and h(1 − h)ψ2/Re2 (· · · ) at t = 0.5 for the left-travelling
wavefront, when the viscosity in the top layer is fixed at Re1 = 1000. (a), (b)
and (c) corresponds to the Reynolds number in the basal layers being 1000, 167
and 24, respectively. (d) compares the total viscous diffusion for these three cases.
Co-ordinates in the frame of the left travelling wavefront ξL are used.
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are displayed in figure 5.15 for three cases corresponding to a basal layer Reynolds

numbers Re2 = 1000, 500 and 91 over and for five times including the initial state.

The two-layer simulation for Re2 = 91 becomes unstable before reaching t = 3 and

so further comparison for all three of these cases is not possible.

From the identical initial conditions the shallow-water model predicts as

faster propagation speed of the wavefronts and higher momentum at t = 1. By

t = 2.5 the reflected waves front are near x = ±1 for the DNS simulations, whereas

for the shallow-water model they have travelled further reaching x = ±0.5. The

maximum observed value of momentum is similar between the models and nearly

exact before the wavefronts reflect of the side walls. Increasing the viscosity in the

basal layers produces similar features in both flows: The head speed is reduced;

the maximum value of momentum is reduced (although this is less obvious in the

shallow-water simulations); and the momentum profile is smoother. This is partly

as result of the increased mixing and turbulence that is present when the fluid 1

and fluid 2 viscosities are similar. In particular for Re2 = 1000, the depth and

momentum profiles exhibit high-frequency disturbances as a result of the depth-

averaging process near x = ±0.5 at t = 2.5. The correct trend is, in general, still

reproduced with the highest viscosity case producing the smoothest profile over the

length of the flow.

The flow in the DNS is significantly more diffusive indicating that three-

dimensional structures and, mixing and entrainment affect the flow dynamics. This

can be seen in the depth and momentum profiles after reflection; the DNS remain

smooth whereas the two-layer shallow-water model predicts a sharper jump. The

mixing and entrainment act to smooth out the profiles. This is further enhanced

by the interaction of the flow with the end walls at x = ±1, which create three-

dimensional structures and mixing that the two-layer shallow-water model cannot

capture.

5.4 Conclusions and future work

In this chapter, the lock-exchange problem with variable viscosity was studied using

the two-layer shallow-water model presented in Hogg et al. (2000) with the inclusion

of source term to account for viscous momentum dissipation. The system of two

equations was solved using a fractional step method with a high-resolution finite-

volume scheme for the conservative part and a fourth-order Runge-Kutta for the

source terms. Linear stability analysis revealed that increasing the Reynolds number
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Figure 5.15: Depth-averaged concentration have and fluid 2 momentum mave from
the DNS and fluid 2 depth h and momentum m from the two-layer shallow model
at five different times. The two-layer shallow water model uses the profiles of have

and mave at t = 0.5 as initial conditions.
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ratio increases the region of the (h0,m0) parameter space where the solution is

unstable.

When the ratio of the Reynolds numbers was kept fixed, decreasing the

Reynolds number smooth the depth and momentum profiles whilst maintaining the

symmetry between the two layers. With a fixed ambient Reynolds number, decreas-

ing the basal layer Reynolds number results in an increased asymmetry between

the two layers. Further, the right-propagating wavefront reduced whereas the left-

propagating wavefront increased in speed. This arose as the ratio of the Reynolds

numbers increases because of the phase difference between the contributions from

each layer. Comparison with the DNS simulations presented in the previous chapter

demonstrated that the two-layer shallow-water model can qualitatively capture some

of the key features of the flow, such as the smoothing of depth and momentum pro-

files and the maximum value of momentum. However, the two-layer shallow-water

model over-predicted the propagation speed of the wavefronts.

The model presented here neglects entrainment, which is observed in the

DNS simulations presented in the previous chapter. Entrainment could be included

by the introduction of a third transition-layer in between the two fluids, for example

Hogg et al. (2005). Further, as discussed in the methodology, multiple forms of

the viscous diffusion have been used previously; each with their advantages and

disadvantages. Studying these various forms and comparison with the DNS would

indicate which is most suitable for the variable viscosity lock-exchange flow. Finally,

the neglecting interfacial drag terms are likely to be significant and their inclusion

would be a important to develop the model further.
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Chapter 6

Conclusions and outlook

Motivated by the enigmatic transition mechanics observed between sub-aqueous de-

bris flows and turbidity currents, this thesis considered two different problems: the

phased lock-release and the variable viscosity lock-exchange. Pulses in flow occur

regularly in gravity currents and can arise from flow instabilities, the combining

of flows downstream or a variable supply of material. Further, preliminary exper-

iments of Ho et al. (2018a,b, 2019) indicate that a pulse can cause a cascade of

mixing and a rapid transition to dilute behaviour for compositional gravity currents

when there is a significant viscosity difference between the current and the ambient.

This motivated the study of lock-release flows with currents of different viscosities.

Varying the viscosity in the current enabled the mixing dynamics that occur in a

gravity-driven flow to be studied.

In chapter 2 pulses in gravity were explored using a depth-averaged shallow-

water model to study the double lock-release problem. The phased release of the

two lock-gates created a pulse that propagated as a shock through to the head of the

current. The shallow-water model was solved using a Lax-Wendroff finite difference

scheme based on the method presented by Bonnecaze et al. (1993). By extending the

characteristic method used by Hogg (2006) for the single release, we showed that the

solutions changed qualitatively depending on the interaction of three critical curves,

xfan, xfin and xref, the head of the flow xN and the position of the shock xs. The

critical curves being the three characteristic curves and their subsequent reflection.

the flow is fully characterised by two parameters: The dimensionless head speed or

Froude number Fr; and a dimensionless lock-gate release time tre. For Fr ∈ (0, 2)

and tre ∈ (1, 21) the qualitatively different solutions were classified. Critically, this

demonstrated that pulses were either non-decelerating or accelerate for a time and

then decelerate thereafter.
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Chapter 3 presented an experimental study of the double lock-release for

three glycerol/water mixtures at different concentrations (77%, 84% and 90%) re-

leased into a water ambient. This work was motivated by the rapid transition from

concentrated to dilute behaviour observed in a preliminary experiment conducted

by Ho et al. (2018a,b, 2019) and to provide validation for the shallow-water model

presented in chapter 2. Four different release times tre were chosen based on the

remaining fraction of fluid in the first lock gate. In these experiments the pulse

propagated as a bore rather than a shock that transitioned from the second current

into the first and towards the head of the flow.

At the highest glycerol concentration (0.90) transition to a dilute flow was

not observed and the total amount of mixing was negligible. Significantly more mix-

ing was observed for the other glycerol concentrations (0.77 and 0.84) At the lowest

concentration (0.77), where only one release time was studied, the extra supply

of dense material delayed the onset to dilute behaviour by as much as two lock-

lengths. Three qualitatively different behaviours were observed for the intermediate

glycerol concentration (0.84) depending on the release time tre. The lowest two re-

lease times behaved qualitatively similar to the lowest glycerol concentration (0.77).

The second-longest release time produced a brief transition back into concentrated

flow with the arrival of the pulse at the head of the current. For the longest release

time, the pulse diluted within the body of the second current.

The shallow-water model presented in chapter 2 neglected the effects of

entrainment, bed drag and viscous dissipation of the flow. Despite these simplifi-

cations, the head propagation speed was captured by the shallow-water model up

until the latter stages of the flow where viscous forces became increasingly signif-

icant. However, the pulse speed was over-estimated. This likely arose from the

viscous smoothing of the sharp shock in the shallow water model to a bore in the

experiments and the absence of a term equivalent to the Froude number condition

imposed at the head.

The changing dynamics observed in chapter 3 in the high-viscosity contrast

experiments motivated the study of the variable-viscosity lock-exchange problem

considered in the next two chapters of the thesis. In chapter 4, direct numerical

simulations of the variable viscosity lock-exchange problem were conducted in the

spectral element code NEK5000. The use of the lock-exchange problem with simpli-

fied boundary conditions enabled fully resolved results for current to ambient excess

viscosity ratios γ as large as 10. Although less than the viscosity ratio of the exper-

iments, this range of viscosity ratios does reveal the change in the mixing dynamics

from cases where the current and ambient are of similar viscosity.
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Increasing the viscosity of the current decreases the total energy irretriev-

ably lost through mixing. When compared to the equal viscosity case, γ = 0, when

the excess viscosity of the current is increased to γ = 1 or γ = 2 an increase in slosh-

ing time and a more efficient transfer between kinetic and potential energy. Further,

the total energy lost to viscous diffusion decreased. This arose because of the inter-

mediate increase in viscosity suppressing the small scale mixing that occurred near

the interface, which acted to preserve the concentration gradient. As the viscosity

ratio was further increased viscous diffusion effects become more significant and the

sloshing time decreased. For γ = 10, it was faster than the equal viscosity case.

Further for both γ = 4 and γ = 10 the total energy lost increased when compared

to the equal viscosity case.

Finally, in chapter 5, the lock-exchange problem with variable viscosity

was modelled with a two-layer shallow-water model, where effects of viscous diffu-

sion were included as a source term. This chapter assessed whether a depth-averaged

model could capture the flow dynamics observed in chapter 4 and further, to explore

more cases with the reduced computational cost. The equations were solved using a

fractional step method with a finite-volume scheme for the conservative part and a

fourth-order Runge-Kutta for the viscous source terms. When the ambient viscosity

was kept fixed, increasing the current viscosity led to viscous diffusion becoming

dominant in the current. The contribution to viscous diffusion for each layer was

out of phase and this resulted in different propagation speeds of the head and an

increased asymmetry of the flow. With the viscosity of each layer the same, increas-

ing the viscosity smoothed out the flow features, but symmetry was maintained.

A qualitative agreement can be observed with the DNS results, but the wavefronts

propagate at a faster rate in the two-layer model.

6.1 Implications

We can now reflect on the implications of our findings on the geophysical events

discussed in chapter 1. For particle-driven flows, the particle size distribution is

the dominant control on when erosion and deposition rates are in balance (Dorrell

et al., 2018). For dilute flows, this equilibrium point defines a particle concentration

above or below which the flow is erosional or depositional, respectively. The models

discussed in Dorrell et al. (2018) have increasing functions of the shear velocity at

the bed u∗, which can be empirically modelled as proportional to, or related to a

positive power of the depth-averaged velocity u = m/h (Soares-Frazão and Zech,

2011; Simpson and Castelltort, 2006; Yang et al., 2019). Thus, in regions where the
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flow speed is increasing it is more erosional and conversely for regions where the

flow speed is decreasing it is more depositional. When the particle concentration is

large, for example, lahars and landslides, the particles are in constant contact and

suspended by matrix strength rather than the fluid. Therefore there is no simple

relationship between erosion and deposition rates and the acceleration of the flow

for these flows. Instead, erosion and deposition are controlled by a stress balance at

the bed (Iverson and Ouyang, 2015).

The hazard assessments conducted for the Soufriére Hills Volcano, Montser-

rat assume a continuous steady release of material from the lava dome during the

1997 eruption creating a pyroclastic surge flow (Loughlin et al., 2002). However,

at the 1997 eruption, the dome failed retrogressively producing a continuous release

with three distinct peaks in volume flux identified as individual pulses. Sedimenta-

tion from pyroclastic surges can create a complex flow structure with a dense, basal

pyroclastic flow component with high-particle concentration, which is overlain by

and an upper, less dense pyroclastic surge. In the 1997 event, 1.4 km downstream

from the source the third pyroclastic flow associated with the third pulse overspilled

the drainage channel and went on to hit the villages of Streatham and Windy Hill.

Despite the bend coinciding with a constriction in the channel cross-sectional area,

these villages were not considered at risk. However, the previous two pulses had left

significant deposits thus increasing the risk of surge detachment and overspilling.

The pulsed nature of this flow affected its run-out and the inundation zone

of this flow when compared to a continuous release of the same size (Loughlin et al.,

2002). The shallow-water model discussed in chapter 2 suggests that the separation

time between the pulses may have a crucial effect on whether the pulses were ero-

sional or depositional at a particular location. Pulses that are close together (case

N) are non-decelerating and may entrain more material downstream increasing the

depth of the channel or increase the velocity/momentum of the flow. For large sep-

aration times, the pulses may transition from erosional to depositional downstream

filling in the channel and making it more susceptible to future flows overspilling.

Although the experiments conducted in chapter 3 were not able to replicate

the rapid transition to dilute behaviour observed by Ho et al. (2018a,b, 2019), the

gravity current was composed of Newtonian fluid with no yield strength. In a

pulsed debris flow, the yield strength may prevent it from transforming until the

pulse reaches the head of the flow and increasing the range of parameters of which

transformation with the arrival of the pulse can occur.
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6.2 Outlook

Although each chapter has natural extensions that are discussed in each, here we

discuss directions future work could take from the material presented in this thesis.

Throughout, compositional flows, where the density difference is assumed to be

caused by a dissolved solute or the two fluids are distinct, have been considered.

Critically, these have been assumed to be evenly distributed. For highly turbulent

flows, the small scale eddies provide sufficient mixing for the particles to be evenly

distributed over the depth of the current. However, particle-driven flows commonly

exist with insufficient energy to distribute the particles evenly over the current depth

resulting in stratification and may deposit or entrain particles as discussed in the

section above. Thus, a natural extension to the work conducted in this thesis would

be to explore the differences between these flows and particle-driven flows. This

would elucidate debris to turbidity current transformation mechanisms and the effect

of pulses on other significant geophysical flows.

Our work has been confined to two-dimensional geometries with a hori-

zontal bed, whereas in nature these currents often fan out or are partially- (Kelly

et al., 2019) or fully-constrained by topography (Loughlin et al., 2002). For exam-

ple the 1997 eruption of the Soufriére Hills Volcano, Montserrat, where the pulsed-

pyroclastic flow was mostly confined to a drainage channel. Further, bed slope

affects gravity current run out lengths and the mechanisms that control debris flow

to turbidity current transition (Sohn, 2000). Thus the effects of topography and

bed slope could be included into the models to provide a better understanding of

real-world gravity currents.

At high particle volume fractions, particulate driven gravity currents will

exhibit non-Newtonian rheology. Constitutive laws exist for dry granular flows

(Pouliquen, 1999; Jop et al., 2006). However, when the density and viscosity of the

ambient are significant, two-phase models are required. For example, an underwater

granular avalanche was studied using a two-phase depth-averaged model by Pailha

and Pouliquen (2009). Further, the non-Newtonian behaviour can be enhanced by

the cohesive strength of materials such as clay (Talling et al., 2012). Incorporat-

ing these non-Newtonian effects into depth-averaged models could provide further

insight into debris flow to turbidity current transition mechanisms.
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