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Abstract 
The primary methods for consistently improving the strength of silicate glasses is the use of 

thermally or chemically introduced residual stresses, with the latter technique having become 

increasingly important in recent years. Chemical strengthening is based on ion exchange 

which is mainly a diffusional process, takes place in a molten salt by exchanging larger alkali 

for smaller ones to generate surface compression below the glass transition temperature. 

Commonly the focus is on the level of stresses that can be introduced by ion exchange, with 

relatively little attention being paid to other structural and property changes that arise from 

the compositional changes inherent in ion exchange.  

This project involves investigation of the effects of exchanging pairs of ions, ionic species, 

process time and temperature on the enhancement of mechanical properties of ion-

exchanged strengthened alkali – alkaline earth silicate glasses as well as the effects of 

compositional changes arising from ion exchange by making bulk glasses with equivalent 

compositions to glasses produced by ion exchange. The structures of these bulk glasses have 

been assessed using Raman and IR spectroscopies and the results compared to those 

obtained on the ion exchanged glasses. In addition, the mechanical properties, including 

fracture toughness, of the bulk glasses have also been assessed. In this research the primary 

focus has been Na/K ion exchange but ion exchange of different alkali ions such as Na+ for Li+, 

K+ for Na+, Cs+ for Na+ or K+ have been examined using a salt paste method.  

Modifications in the Na+ - K+ ion–exchanged glasses are observed to be associated with 

structural band changes in the silica network structure; notably Qn distribution changes based 

on ion-exchange temperature and time. However, the structural changes cannot all be a 

direct consequence of ion-exchange; some of the changes shown should be due to the stress. 

The Raman Spectroscopy and FTIR reflectance spectra suggest observation of similar features 

in both ion exchange glasses and the as-melted glasses. The ion – exchange process aids to 

improve mechanical properties; however, as the amount of potassium content increases in 

the glass composition, toughness, hardness, elastic moduli all decrease. Consequently, it can 

be seen that although the structural changes are similar in both Na+-K+ ion-exchanged glasses 

and equivalent potassium-containing as-melted glasses, examination of the mechanical 

properties gave better results for the ion-exchange strengthened glasses.  
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Chapter 1. Introduction 
Due to a combination of durability, transparency and optical properties glasses are unique 

materials used in a wide variety of application, despite the fact that many glasses are brittle. 

As well as flat glass and container glass or glass fibres, which are well-known areas of glass 

usage commercially, glasses are also used for high-value products for high technology 

applications such as biological implants, smartphone screens, opto-electronics.  

Theoretically, most oxide glasses can be considered as having high strength due to the strong 

covalent bonds of the network forming oxides. For instance, it was established that vitreous 

silica has a tensile strength of up to 26 GPa (Kurkjian et al., 2003). However, there is a great 

difference between experimental and theoretical values of glass strength due to the presence 

of small flaws which usually occur on the surface (LaCourse, 1987). These flaws can be scratches 

on the surface due to the mechanical interactions with materials which are harder than the 

glass, bubbles coming from the melting process, inhomogeneities related to insufficient 

annealing time, inclusions or any distinguishable mechanical phase. Essentially, for annealed 

soda-lime-silica glass as found in windows and bottles, the strength values vary between ~30 

MPa for aged glass up to ~100 MPa (Varshneya, 2006). Therefore, the improvement of the 

mechanical properties of glasses is of significant interest. Modifications can be done by 

altering the material’s surface or chemical composition or else modifying the processing of 

the material. The most reliable method of improving the practical strength of silicate glasses 

involves the introduction of compressive residual stresses at the glass surface through 

thermal or chemical processing, with thermally strengthened glass being known as safety 

glass (Amidon et al., 1983; As et al., 2005; Mognato et al., 2014). However, chemical strengthening by 

ion exchange is increasingly being used as higher surface compression can be obtained, on 

thinner and more complex shaped glass specimens while the optical quality of glass remains 

the same (Gy, 2008; Macrelli, 2015).  

Ion exchange mostly involves exchanging of smaller alkali ions inside the glass by larger ones, 

at temperatures below the glass transition temperature, to give compressive stresses on the 

glass surface. Ion exchange has been extensively used to modify glass surfaces to enhance not 

only mechanical properties (Gy, 2008), but also electrical (Ramaswamy, 1988), optical (Speranza et 

al., 2009) and chemical (Guldiren et al., 2016) properties. Chemical strengthening by ion exchange 

provides surface compression to prevent the formation of new cracks and propagation of 
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existing cracks on the glass surface. The strength of glass and glass strengthening methods 

which are thermal strengthening, acid etching, fire polishing, lamination, ceramming anc 

coating are reviewed in some papers (Karlsson et al., 2010; Varshneya, 2010a, 2018). For instance 

Karlsson et al., (2010) reported the technology of chemical stregthening applications which 

covers the advantage over the other strengthening techniques such as sol-gel coatings and 

thermal strengthening.  Although sol-gel coatings are relatively inexpensive and easily 

controlled coating methods, the strengthening mechanism is not as effective as thermal or 

chemical tempering.  

Conventionally, chemical strengthening via ion exchange is mostly done by immersion of the 

glass pieces in a salt bath for long hours.  Experimentally many monovalent cations have been 

tested in the ion exchange experiments such as Li+, Na+, K+, Rb+, Cu+, Ag+ using different 

typezof alkali containing glasses for varying times and temperatures (Gy, 2008a; Varshneya, 2010b; 

Karlsson, 2012). There are a few studies that uses different ion exchange methods such as salt 

paste, physical vapor deposition as well as the electric field assisted ion exchange (Oven et al., 

1999; Karlsson, 2012; Patschger and Rüssel, 2016). Structural and property changes that arise from 

compositional changes inherent in ion exchange has been given relatively less attention than 

mechanical property enhancement due to the ion exchange treatment. There are a few 

studies that examined the molecular dynamics for investigations of the structural changes 

induced by an ion-exchange process. (Kreski et al.,  2012; Tandia et al., 2012) 

Hence this thesis investigates the effects of anionic species, process time and temperature on 

the preparation of ion-exchanged soda-lime-silica glasses, using a single-side ion exchange 

process by salt-paste method. Salt paste method is used as an alternative to conventional salt 

bath method, since relatively less amount of salt needs to be used. Soda-lime-silica glasses 

are examined because they are used commercially in many applications and are relatively 

cheap. Due to the contact of the bottom side with the molten tin inside tin tank during float 

process, the composition of the one side of float glass contains tin oxide. Tin side of the glass 

is resistant to ion exchange due to the presence of tin in the surface, grinding and polishing 

presedure needs to be done prior to ion exchange. Glass slides which were used in this study 

checked for the presence of any thin in the surface by using a short wave, 180-280 nm, UV 

lamp. Under UV light tin side is expected to be flourescent and reflects milky white image. 
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However thin was not observed in the surface, therefore grinding and polishing was not 

necessary to remove the tin in the surface(Shelby, 2005; Varshneya, 2006) 

In addition to ion exchange involving potassium, equivalent potassium containing glasses 

have been prepared to determine whether the features are a direct consequence of ion 

exchange or due to the presence of potassium in the glass composition with the aim of 

deconvoluting the effects of introducing residual stresses from compositional changes 

(Gonzalez Rodriguez and Hand, 2013). The comparative interpretation of mechanical and 

structural properties examined from various perpectives are thought to complement the 

contribution to the literature. Furthermore, this work has led to further research and 

development in the industry in terms of developing impact test resistance. Preliminary pilot-

scale tests have been done, further experiments are planned.  

This thesis is divided into five chapters. This chapter (Chapter One) provides the context and 

aims of this project. Chapter Two, the literature review, introduces first the structure of glass 

and secondly, mechanical properties such as strength, elastic moduli, hardness and fracture 

toughness are considered followed by an examination of the strengthening mechanisms 

which are used to improve the mechanical properties of glasses. This leads to a detailed 

consideration of strengthening arising from ion exchange. Chapter Three describes the 

experimental methods used throughout the work. This includes details procedures for the ion 

exchange process and glass production and also a variety of characterization techniques. The 

results obtained for ion exchange strengthening and different alkali metal containing glasses 

are presented in Chapter four. Also, the results are discussed and placed in the context of the 

wider literature in the same chapter. Finally,  conclusions and recommendations for future 

work are presented in Chapter 5. 
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Chapter 2. Literature Review 

2.1. Introduction 
In the following, the structure of silicate glasses is firstly reviewed, followed by the mechanical 

properties of silicate glasses including elastic moduli, hardness, and fracture toughness. 

Finally, glass strengthening methods are reviewed, leading into a detailed consideration of 

chemical tempering or ion exchange strengthening. 

2.2. Glass Structure 
Glasses are one of the most important and impressive types of material with more than 5000 

years of history of production. Glasses are generally known for having a good combination of 

transparency and mechanical stiffness. Although the brittleness of many glasses limits their 

use in some applications, glasses play a major role in modern technology as a result of their 

physical performance and unique structure.   Soda-lime-silica glass is the most widely used in 

architectural windows, beverage containers, household lamps, thermal insulation as it has 

good chemical durability, transparency, and high electrical resistivity (Kearns et al., 2010). 

Originally the word glass derives from a Latin word “glaseum” meaning transparent and glossy 

material. A number of definitions of a “glass” have been made. The American Society for 

Testing and Materials (ASTM) defines glass as ‘‘an inorganic product of fusion which has been 

cooled to a rigid condition without crystallizing” (ASTM 2010). However, techniques such as 

sol-gel or chemical vapour deposition can also be used to fabricate glasses. In addition, other 

glasses such as metallic glasses and organic glasses can also be produced Zachariasen (1932). 

As a result, in 2017, Zanotto & Mauro suggested an improved definition namely “Glass is 

nonequilibrium, non- crystalline condensed state of matter that exhibits a glass transition. The 

structure of glasses is similar to that of their parent supercooled liquids, and they 

spontaneously relax toward the supercooled liquid state. Their ultimate fate, in the limit of 

infinite time, is to crystallize.” This definition does, of course, require a knowledge of the 

meaning of glass transition (see below). 

There are several hypotheses related to glass structure and the conditions of formation of 

glass. One of the earliest is due to Zachariasen's (1932) who proposed the random network 

hypothesis which has become one of the most accepted theories of the structural formation 

of glass. According to Warren (1934) glass formation rules; oxygen atoms should not link to 

more than two cations; the coordination number of the glass forming atom should be small 
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(3 or 4); the cation polyhedra should share corners, not edges or faces. A supportive X-Ray 

diffraction study done by (A.Feltz, 2001) showed that the polyhedra should link in a three-

dimensional network.  

Hence oxide glasses are produced out of components which can be classified as network 

formers, network modifiers or intermediates. Common glassy materials capable of being 

produced using widely-accessible cooling rates, at least one network former must be 

present(Shelby, 2005). Network formers such as SiO2, B2O3, and GeO2, are able to form the 

glass on their own and have high electronegativity. Oxygens linking two formers are known 

as bridging oxygens. Network modifiers include alkali oxides (Li2O, Na2O, and K2O) and alkaline 

earth oxides (MgO, CaO and BaO) and they reduce the connectivity of the network by creating 

non-bridging oxygens. The structure of sodium silicate glass can be seen schematically in 

Figure 2. 1  

 

Figure 2. 1:  Structure of sodium silicate glass 

Thus, by adding network modifiers to the glass composition the connectivity and the 

processing temperature are reduced. Network intermediates or conditional glass formers are 

not able to form a glass on their own since they have a lower electronegativity than any 

network former. However, intermediates can be used to improve some of the mechanical and 

thermal properties. Al2O3, ZrO2, PbO, and TiO2 are examples of intermediates Sun (1947). 

Sun (1947) stated the single bond strength of glass network formers is greater than 80 kcal 

mol-1 (336 kJ mol-1). Intermediates, which can be both a network former and a modifier, have 

the single bond strength between 60 and 80 kcal mol-1 (252 kJ mol-1 – 336 kJ mol-1). Network 
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modifiers have below 60 kcal mol-1 (252 kJ mol-1) of bond strength. Thus, according to (Shelby, 

2005), the higher bond strength means a better glass forming ability for a given oxide.  

Apart from network formers, modifiers, and intermediates other oxides may also be present 

in the glass batch and the final glass. For example, colorants oxides such as FeO/Fe2O3, 

CuO/Cu2O, CoO/Co2O3 may be present at low concentrations to absorb the light thus 

producing a colour. Fining agents are also used to improve the quality of the glass by aiding 

bubble removal during the glass melting process (Shelby, 2005; Varshneya, 2006). Fining agents 

are species such as arsenic, antimony or sulphate usually present at low concentrations. 

Figure 2.2. shows a volume versus temperature diagram for a glass melt. If the molten 

material starts the path at point a, cools down and follows the abc path to below the melting 

temperature, crystallisation occurs. However, providing that the crystal growth rate is slow 

enough and the melt contains a relatively low number of nucleation sites, the volume of the 

liquid material may continue to shrink without crystallisation so that it remains liquid even 

below the melting temperature. In this region, it is a supercooled liquid. On further cooling 

below the supercooled liquid state, the liquid passes through the glass transition region to 

form an amorphous solid (points g and h). The cooling rate required for this to occur is linked 

to the volume, glass transition temperature and amount of disorder   Varshneya (2006).  

 

  

Figure 2. 2: The volume-temperature diagram for a glass-forming liquid adapted from(Kurkjian, 1985b; Lakin, 1991) 
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The structure of silicate glasses is based on a continuous random network of silicon-oxygen 

tetrahedra. This random network consists of SiO4 tetrahedral units linked at their corners. The 

presence of non-bridging oxygens (NBOs) decreases the connectivity of the glass network, 

reduces the viscosity and eases the melting process Varshneya (2006). The number of NBOs 

can be determined through an assessment of Qn species where n represents the number of 

Si-O-Si bonds and can vary from 0 to 4. For instance, a silicon atom is bonded via oxygen to 

four other silicon atoms (Q4 units) in vitreous silica, meaning that the structure is fully 

polymerised and has high network connectivity. A silicon atom bond via oxygen to three other 

silicon atoms and via oxygen to a modifier (Q3 units), means that the structure is less 

polymerised than if just Q4 units are present. Whereas, Q0 represents an isolated tetrahedron 

which does not have any bridging oxygens. Thus, the degree of polymerisation refers to the 

amount of Si-O-Si bonds. A schematic of Qn species can be seen in Figure 2. 3.   

 

Figure 2. 3: Qn species in the silicate glass network adapted from (Shelby, 1989) 

In sodium aluminosilicate glasses both SiO2 and Al2O3 are present as tetrahedral units. SiO2 is 

the main network former, and Al2O3 is an intermediate. Alumina might also be a network 

modifier depending on the amount of alumina versus the amount of alkali and alkaline earth 

in the glass composition. (Day and Rindone, 1962). This is because the aluminium ions need 

charge balancing by an alkali or alkaline earth ion to form AlO4 tetrahedra.  As a result, by 

adding alumina into the glass non-bridging oxygens may be converted to bridging oxygens. A 

schematic of the structure of soda-lime aluminosilicate glass can be seen in Figure 2.4.   

Hence in soda aluminosilicate glasses, aluminium ions can be either fourfold, fivefold or 

sixfold coordination depending on the aluminium / sodium ratio in the glass. (Xiang et al., 

2013). If the ratio of Al/Na ≤1, the aluminium ions will be mainly fourfold coordinated. If the 

ratio of Al/Na > 1, small amounts of five-fold coordinated aluminium ions will be present and 
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some aluminium ions will be sixfold coordinated (Uchino et al., 1993). Sodium ions can be 

located in two different sites. They can either neutralize negatively charged AlO4 units or work 

as a modifier and create NBOs (Kurkjian, 1985a; Shelby, 2005; Varshneya, 2006). The Al2O3 

content of alkali aluminosilicate glasses is typically 10–25% with alkali contents exceeding 

10%. Aluminosilicate glasses have excellent mechanical, chemical and thermal properties. 

Therefore, they are used in many applications such as pharmaceuticals, optoelectronics, 

crystal display substrates. However, in soda-lime-silica glasses all of the aluminium can be 

presumed to be charge balanced.  

 

Figure 2. 4:  Structure of Sodium-Aluminosilicate Glass 

Total ion dynamics can be slow down by the addition of second alkali species which described 

as mixed-alkali effect in the literature. Properties of glasses such as viscosity, electrical 

resistivity, chemical durability, glass transition temperature and thermal expansion 

coefficient changes when a second alkali oxide is added depending on the mobility of ions. 

The mixed-alkali effect is usually studied on a series of glasses in which one alkali oxide is 

substituted for the other on a molar basis, the total alkali concentration remaining 

constant(DOREMUS, 1974; Calahoo, 2016a).  

2.3. Mechanical Properties of Soda-Lime-Silica Glasses 
Glasses are brittle materials, susceptible to stress concentrations and in general do not 

deform plastically, except under indentation. The fracture behaviour of glasses is therefore 

not an intrinsic property as it is controlled by environmental factors. The measurement 

method used to assess fracture strength, the environment and the treatment history of the 
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surface all affect the value of the fracture strength of glasses. Being brittle can also result in 

failure due to thermal shock (Lawn, 1993; Yarema, 1995; Varshneya, 2006; Macrelli, 2017). 

2.3.1. Fracture Strength 

Strength is defined as the applied stress at failure. Despite being highly resistant to 

compressive stresses, silicate glasses fail under low tensile stresses. Theoretically, most 

glasses should have high strength due to the strong covalent bonds of the network forming 

oxides. However, there is a great difference between experimental and theoretical values of 

glass strength due to the presence of small flaws which usually occur on the surface which 

control the strength of glass. Numerous papers have been published on the effects of surface 

flaws. 

 

a) KI : Mode I fracture                 b) KII : Mode II fracture               c) KIII : Mode III fracture 

Figure 2. 5: Modes of crack extension 

Critical values of the stress intensity factor depend on three different modes of crack 

extension which can be seen in Figure 2. 5. Mode I (opening displacement or tensile cracks) 

is opening in tension where the failure plane and the direction of propagation are 

perpendicular to the applied stress direction. Mode II (transverse shear cracks) is sliding in 

shear failure where the applied stress acts to slide fracture planes over each other along the 

direction of propagation.  Mode III (longitudinal shear cracks) is tearing in shear where the 

direction of propagation is perpendicular to that of the stress, but the failure plane is parallel 

to shear stress direction. In general, for brittle solids and glass strength, only the first mode 

of crack extension is relevant Inglis (1913).   

Griffith was one of the first researchers to realise the importance of stress concentrations. 

Afterwards, (Griffith, 1921) expanded the idea and hypothesized that glass strength depends 
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on the existence of flaws in 1921 Irwin (1958). He proposed the existence of a critical crack 

length and thus tensile strength for brittle materials. The larger a piece of glass, the lower the 

average strength and this situation is caused by the increase in the probability of finding faults 

on a larger glass surface. This is the main reason for the difference between the theoretical 

strength and the real strength in the glass and typically can be attributed to surface defects 

that occurred during or after production. Griffith derived an equation showing the stress that 

the glass can withstand without breaking (See Figure 2. 6).   

 

𝜎𝑐 = √
2𝐸𝛾𝑠

𝜋𝑎
                                                                                    Equation 2. 1 

Where σc = the critical stress required for propagation of a brittle crack, a = material constant 

E = Young’s Modulus, and γs = surface energy per unit area.  

(Varshneya, 2006) modified Griffith’s theory and introduced an expression called stress 

intensity factor. The effect of flaws on failure stress is justified through the stress intensity, 

mainly near the crack tip.  

𝜎 =  
𝐾𝐼𝐶

𝑌√𝜋𝑐
                                                                                       Equation 2. 2 

Where σ=failure stress, c=flaw size in meters, KIC=critical stress intensity factor/fracture 

toughness, and Y= geometric constant.  

Figure 2. 6: Schematic diagram of an edge crack (flaw) of length c in a glass

Thus any damage or flaws on the glass surface as well as fracture toughness, static fatigue 

(crack growth due to attack by water), residual stress and bond strain are all parameters 

related to glass strength. Flaws reduce the strength of glass because they concentrate on 
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stress. However, anything which contacts the glass surface might be the reason to create a 

flaw, and it is not easy to produce glass products without touching anything. Thus, 

strengthening and toughening methods have been developed to enable the manufacture of 

glasses with higher strengths Varshneya (2018). Figure 2. 7 shows the relationship between the 

flaw size and failure strength of glass. As the flaw size increases, failure strength decreases 

relatively. The glass strength is strongly related to the state of the surface by the presence of 

flaws which extend generally from few up to tens of micron into the glass.  

 

Figure 2. 7: Strength of glass products adapted from (Shelby, 2005) 

Strength measurement generally consists of applying an increasing magnitude of stress to a 

sample of defined shape until failure occurs. Often glass strengths are measured by using a 3-

point bending test as shown in Figure 2. 8, or preferably, 4-point bending test as shown in 

Figure 2. 9. Strengths measured using these tests may be referred to as modulus of rupture 

(MOR). 
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Figure 2. 8: Schematic diagram of three-point bending 

The stress is obtained by multiplying the maximum bending moment by the half height of the 

rectangular over a geometric moment of the beam cross-section (See Equation 2.2). The 

maximum stress is at the third point and ideally the sample fails from that point. However, 

the strength controlling defect would not always be at the point of maximum applied stress.  

𝜎 =  

(𝐹
2⁄ )(𝐿

2) ℎ/2⁄

𝑏 ℎ3/12
                 Equation 2. 3 

Where b=width, h=height 

 

Figure 2. 9: Schematic diagram of four-point bending 

For the 4-point bending test, the maximum bending stress is given by (Varshneya, 2006) 

𝜎 =  
(𝐹 2) [(𝐿1− 𝐿2) 2⁄ ]ℎ/2⁄

𝑏 ℎ3/12
          Equation 2. 4 
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In four-point bending tests, the maximum flexural stress is spread over the section of the 

beam between the inner loading points. 

2.3.2. Elastic Moduli 

For an isotropic material such as glass, there are 4 elastic moduli; Young’s modulus (E), bulk 

modulus (K), shear modulus (G) and Poisson’s ratio (v) of which 2 are independent. The 

Young’s modulus is defined as the ratio of tensile stress to tensile strain, and is also known as 

elastic modulus, E. The moduli are determined by the structure of the network and the 

individual bonds in the glass (Makishima and Mackenzie, 1973; Makishima and Mackenzie, 1975).  

A good correlation between an equation to predict Young’s modulus and experiments for 

several silicate glasses has been shown in different studies (Makishima and Mackenzie, 1973). The 

method is established on a consideration of the dissociation energy of the oxide constituents 

per unit volume and the packing density. The formula for determining the Young’s modulus 

of an ionic crystal can be obtained as follows.  

The electrostatic energy of attraction U, which is for a pair of ions with opposite signs is equal 

to,   

𝑈 =  −𝑒2/𝑟0            Equation 2. 5 

where e and r0 are electronic charge and interatomic distance, respectively.  

Description for many interactions between ions in a crystal lattice, U is multiplied by the 

Madelung constant α, giving the Madelung energy: 

𝑈𝑚 = 𝛼𝑈           Equation 2. 6 

The force between ions is equivalent to 𝜕𝑈𝑚 𝜕𝑟⁄  so the stress, σ is  

𝜎 ≈
1

𝑟0
2  [

𝜕𝑈𝑚

𝜕𝑟
]                                                                                                            Equation 2. 7 

the change of stress for a change in r is  𝜕𝜎/𝜕𝑟 and hence 

𝑑𝜎 =
𝑑𝑟

𝑟0
2 [

𝜕2𝑈𝑚

𝜕𝑟2
]              Equation 2. 8 

𝑑𝜎 =
𝑑𝑟

𝑟0
2

1

𝑟0
[

𝜕2𝑈𝑚

𝜕𝑟2
]           Equation 2. 9 

The strain is 𝑑𝜀 =
𝑑𝑟

𝑟0
  and  

𝑑𝜎

𝑑𝜀
=E 
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𝑈𝑚 =  −
𝛼𝑒2

𝑟0
 and [

𝜕2𝑈𝑚

𝜕𝑟2
] = −

2𝛼𝑒2

𝑟0
3         Equation 2. 10 

and 

𝐸 =
𝑑𝜎

𝑑𝜀
= [

2𝛼𝑒2

𝑟0
3 ] [

1

𝑟0
] ≈ 2𝛼 [−

𝑒2

𝑟0
] [

1

𝑟0
3]         Equation 2. 11 

where −
𝑒2

𝑟0
= 𝑈 

𝐸 =  
2𝛼

𝑟0
3 [−

𝑒2

𝑟0
] = 2𝛼

𝑈

𝑟0
3                      Equation 2. 12 

 

According to Equation 2.12 the Young’s Modulus is equal to two times of the binding energy 

Um divided by the third power of atomic spacing 𝑟0
3. Madelung energy divided by the third 

power of interatomic distance (𝑈𝑚/𝑟0
3) is replaced by the average dissociation energy per unit 

volume (Dav) and packing density (Cg) (Green, 1998). Because the Madelung constant is not 

applicable for short-range order glasses.  

𝐸 = 2𝐶𝑔𝐷𝑎𝑣                        Equation 2. 13 

Where packing density can be calculated 

𝐶𝑔 =  
4

3
𝜋𝑁𝐴𝜌

∑ 𝑓𝑖 (𝑋𝑖𝑟𝐴
3+𝑦𝑖𝑟𝑂

3)

∑ 𝑓𝑖𝑀𝑖
            Equation 2. 14 

 

Where NA is Avagadro’s number, fi is the molar fraction of the oxide 𝐴𝑥𝑖
𝑂𝑦𝑖

, with molar mass 

Mi, rA and rO are the ionic radii.  

The elastic modulus is known to be dependent on the atomic packing density and the 

interatomic bonding. In fact, the atomic energy per mol atom is connected to the bulk 

modulus and the atomic volume.  

Shear modulus (G) is defined as shear stress over shear strain, which can be described as a 

material’s tendency to the deformation of shape at constant volume under opposing forces. 

Whereas, bulk modulus (K) is described as a material’s tendency to deformation in all 

directions when it is under loads in all directions.  
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If any two moduli are known the others can be calculated using relationships such as equation 

2.15 and Equation 2.16 (Soga and Yamanaka, 1976; Lakin, 1991; Burkhard, 1997). Where v is 

Poisson’s ratio, E is Young’s modulus, K is bulk modulus, G is shear modulus.  

𝐾 =  
𝐸

[3(1−2𝑣)]
                            Equation 2. 15 

 

𝐺 =  
𝐸

2(1+𝑣)
                         Equation 2. 16 

Typically, the addition of an alkali causes a reduction in Young’s modulus. On the other hand, 

if the number of non-bridging oxygens higher than the number of bridging oxygens, Young’s 

modulus and bulk modulus can actually increase (Shelby, 2005).   

2.3.3. Hardness 

Hardness is described as the resistance to deformation of a material under pressure. The 

hardness of glasses is determined by the function of the strength of individual bonds and the 

density of packing of the atoms in the structure. (Wiederhorn 1969) Vickers and Knoop 

indentation are the most widely used hardness measurement techniques for glasses. A 

Vickers hardness indenter is a square pyramid whereas Knoop hardness indenter is an 

elongated pyramid as seen in Figure 2. 10. 

 

Figure 2. 10: Schematic of a) Vickers and b) Knoop indentation  

For Vickers hardness:  

𝐻𝑣 = 1.8555
𝑃

𝑑2
                                                                                                                                                       Equation 2. 17 

Where P is indentation load in kg, and d is the average diagonal length of the impression.  

For Knoop hardness:  
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𝐻𝑘 = 14.23
𝑃

𝐿2
2                                                                                                                                                         Equation 2. 18 

 

Where P is indentation load in kg, and L2 is the long diagonal.  

Due to the exchange of smaller ions to the larger ones, ion exchange strengthened glass 

surfaces are expected to be harder than the non-ion exchanged surface. As the ion exchange 

process takes place at high temperature where the glass has a more open structure, the free 

volume increases. Thus, after the ion exchange process, the surface resists indentation 

penetration in favour of compression stress.  

2.3.4. Fracture Toughness 

Fracture toughness (KIC) defines as an intrinsic resistance of a material to crack growth. Crack 

propagation occurs when stress intensity (KI) equals to fracture toughness (KIC). For glasses, 

the fracture toughness is usually within the range of 0.6 – 1.0 MPa·m1/2, which is much lower 

than that of engineering metals is within the range of 20 to 200 MPa·m1/2  (Griffith 1921; Evans 

and Charles 1976; Tadjiev et al. 2010), hence glasses are flaw sensitive. Fracture toughness 

theoretically depends mainly on intrinsic modulus surface energy for given material residual 

stresses modifying resistance to crack growth.  

Combining the Griffith and Irwin approaches gives  

𝐾𝐼𝐶    = √2𝐸′(𝛾𝑒)                                  Equation 2. 19

      

𝐾𝐼𝐶 = 𝐶𝜎√𝜋𝑎                            Equation 2. 20 

Where σ is strength, a is crack depth, C is a geometric constant 

Residual stresses would affect the results since  

𝐾𝐼𝐶 = 𝐶𝜎√𝜋𝑎 +𝐶′𝜎′√𝜋𝑎        Equation 2. 21 

Relating the plane strain modulus to the Makashima and Mackenzie model gives  

𝐸′ =  
𝐸

(1−𝑣2)
=

2𝐶𝑔𝐷𝑎𝑣

(1−𝑣2)
                              Equation 2. 22 

Where, hence the packing density is also linked to fracture toughness and Dav is the average 

dissociation energy per unit volume (Lawn and Marshall 1979).  
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2.3.5. Brittleness  

The brittleness (B) is described as the ratio of hardness to the fracture toughness. 

𝐵 =
𝐻𝑣

𝐾𝐼𝐶
                                                                                                                          Equation 2. 23 

The ratio of median crack length to the diagonal length of a deformation impression is often 

used to estimate the brittleness. Sehgal and Ito (1999) found that the brittleness is directly 

correlated to the density and for so-called “normal” glasses brittleness increases with 

increasing density (Shelby, 2005; Kurkjian, Gupta and Brow, 2010; Varshneya, 2018). 

2.4. Glass Strengthening Techniques 
This section covers conventional techniques used for permanently strengthening glass. It is 

well known that the surface properties of all types of glasses depend on the composition and 

manufacturing conditions. The surface can be affected by mechanical contact and the 

atmosphere. However, it is not so easy to manufacture flaw-free glass products or to maintain 

them as flaw-free. Surface flaws can be caused by the contact of the surface with moulds, 

dies during the manufacturing, abrasion, moisture, water, chemicals. Typically, anything 

which contacts with a glass surface might therefore be the reason for the decreased 

functional strength of glass products as flaws concentrate stress, therefore, reduce the 

strength of glass. Thus, manufacturers tend to use strengthening or toughening methods. The 

literature associated with the strengthening of glass is extensive covering the range of 

different strengthening mechanisms that have been used over the years. In general, 

increasing the strength of the glass in practice is based on one of the following two 

approaches. The first one can be summarized as destroying or covering the existing cracks on 

the surface, and the second is to increase the strength of the glass by forming near surface 

compressive stresses which are greater than the tensile stresses on the surface and making it 

difficult to advance the cracks that may occur Varshneya (2006). 

As stated by (Varshneya, 2010b), these include reducing the severity of flaws, decreasing the 

risk of surface damage, creating compressive stress on the surface, and crack pinning. In the 

literature, the most commonly used methods are coatings, thermal strengthening, surface 

crystallization, and chemical strengthening.   

Fire polishing, surface etching, and surface coating are techniques that are all focused on 

reducing the density or the severity of pre-existing defects. Thus, fire polishing or etching can 
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be used to reduce the possibility of fracture during manufacturing by decreasing the 

harshness of flaws. Similarly, etching can be used in some production lines for removing flaws. 

However, these methods are temporary solutions since subsequent glass handling will still 

result in flaw generation (James et al. 1993; Barthel et al. 2005). 

Improvement of fracture toughness (KIC) could be another option for the strengthening of 

glass for instance by surface crystallisation. Surface crystallisation can also be used to 

strengthen a glass product. The thermal expansion mismatch between the bulk glass and the 

crystallised surface causes compressive stress development on the surface layer. As the name 

suggests, ceramming involves generating partially crystallised glass; this requires controlled 

heat treatment to obtain optimum crystalline particles inside the glass article (Liversidge et 

al. 1983). 

Glass coatings have been investigated as a glass strengthening technique as well as for optical 

purposes such as antireflection. Some studies reported that strengthening of glass by the 

application of coatings is easier to implement than other techniques (Brzesowsky et al., 1998; 

Mallick and Holland, 2005; El-Sayed and Hand, 2012). The effects of strengthening of glass by 

coatings have been attributed to the filling of the surface flaws as well as the possible 

presence of compressive stresses arising from the coating (Fabes et al., 1986; Fabes and 

Uhlmann, 1990; Chen and Ellis, 1995; Hand et al., 2003; Teisseire et al., 2011). There are a variety of 

glass coating techniques which show a significant increase in glass strength that have been 

reported in the literature. For instance, alkoxide derived coatings, sol-gel coatings 

organosilane derived, organic-inorganic coatings, and epoxy coatings have all been reported 

to strengthen glass  (Fabes and Uhlmann, 1990; Wang et al., 1997; Hand, Wang and Ellis, 1998). 

Polymer coatings can be used to either reduce the size of the flaws on the surface or to 

prevent the growth of flaws (Gordon et al., 1996; Sundberg et al., 2019). Deposition of Al2O3 thin 

films on a glass surface by chemical vapour deposition have also been shown to result in 

provides an improvement in the mechanical properties (Uhlmann, 1980). 

Thermal tempering was first observed in so-called Prince Rupert drops which have been 

known experimentally since the seventeenth century. Rapid cooling of glass droplets provided 

high surface compression with complementary interior tension stress; the high compressive 

stress results in high strength (Olcott, 1963; Uhlmann, 1980). For practical strengthening 

thermal tempering has been used since the 1870s (As et al., 2005). Thermal tempering involves 
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the heating up of the glass product to a uniform temperature above the annealing 

temperature such that the glass is in the viscoelastic state. Then the glass is cooled rapidly 

down to the room temperature usually by using cold air jets; this creates compression in the 

surface. During the process, a temperature gradient develops, and the glass surface cools 

faster than the interior (Lawn and Marshall, 1979; Anderson, 2005).  

Figure 2. 11 shows a schematic diagram of the tension and compression zones in thermally 

tempered glass specimen. For mechanical stability, the induced compression stress in the 

glass near the surface must be balanced by intrinsic tensile stress in the glass body. The stress 

gradually decreases from the surface to inside of the glass. The residual stress distribution 

along the specimen thickness direction is given by:  

𝜎(𝑥, 𝑦) = −𝜎𝑅 [1 −
3𝑥

𝑑
+

3𝑥2

2𝑑2
]                                                                     Equation 2. 24 

Where σR defined as the surface compressive stress and d is the half thickness of the glass 

specimen. The compressive layer is approximately on a fifth of the specimen 

thickness.(Varshneya, 2006)  

 

  

Figure 2. 11: Thermally tempered glass compression and tension zones 

 

Surface compression can be between 70 to 200 MPa after thermal tempering, with most 

commercial fully tempered glasses having 100 MPa surface compression. This is because 

there is always a risk when developing higher interior stress which may be a reason for an 

internal or edge fracture during tempering hence 200 MPa surface compression is rarely 

achieved. However, there are some significant drawbacks to the process such as its inability 
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to strengthen complexly shaped glasses, and due to the limits of air cooling it is not easy to 

strengthen samples with glass that are less than 2 mm thick (Mognato, Brocca and Comiati, 

2018). Thermally tempered glass is called “safety glass” because on fracture it breaks into 

small pieces which makes it much safer than large dagger-like pieces that are commonly 

produced when annealed glass is broken. 

Thus, it is suitable to use tempered glasses in places such as emergency exits, entry areas, 

storefronts and high wind loads. According to the ASTM C 1048, thermally tempered glass 

must have a surface compressive stress over 70 MPa for 6 mm glass. However, to be 

considered as safety glass, it should offer at least 100 MPa compressive stress. (Gy, 2008a; 

Varshneya, 2010b) Glass strengthening techniques are summarised in Table 2. 1.  

Glass 

Strengthening 

Technique 

Advantages Disadvantages Reference 

Thermal 

Tempering 
Fast, thick compressive layers 

Difficult for thin glass and non-

symmetric shapes 

(D.R. Uhlmann and N.J. 

Kreidl, 1980) 

Chemical 

Strengthening 

Easy for thin glass low tensile 

stress 
Slow, thin compressive layers 

(Urbain, Stemeri and 

Charles, 1966) 

Acid etching High strengths possible Surface protection required (Varshneya, 2006) 

Fire polishing Fast, no washing required Difficult for thin glass (Amidon et al., 1983) 

Lamination Reliability, safety Cost, weight 
(Liversidge et al. 

1983) 

Ceramming Increase fracture toughness Cost, loss of transparency (Fabes et al., 1986) 

Coatings Protect from surface damage Changes surface properties (Kistler, 1962) 

Table 2. 1: Glass Strengthening Techniques in a summary 

 

2.4.1. Chemical strengthening  

Chemical strengthening or ion-exchange strengthening (also known as chemical tempering) 

involves placing the glass in contact with a molten salt so that the alkali ions in the glass are 

replaced by larger alkali ions from the salt; once exchanged the larger ions produce surface 

compressive stresses that place a closure stress on surface flaws.  

Studies related to ion exchange for strengthening glass date back to the early 1960s with 

Kistler (1962) reporting the first successful results obtained by heating soda-lime-silica glass 
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in potassium nitrate. Depending on the processing time and temperature of the glass article, 

it was reported that the glass strength could be doubled and sometimes tripled. As ion 

exchange is mainly a diffusional process, the main parameters controlling the process are the 

ion exchange temperature, ion exchange time and the exchanging pair of ions. Glass 

compositions should include mobile alkali ions such as Li+, Na+, K+ for ion exchange. For 

sodium containing glasses, a KNO3 (potassium nitrate) bath is usually used; for lithium-

containing glasses, NaNO3 (sodium nitrate) is used. Exchanging smaller ions is much more 

effective than exchanging larger ones. For instance, Na+ (ionic radius 0. 98 Å) for Li+ (ionic 

radius 0.68 Å) ions is more efficient than exchanging K+ (ionic radius 1.33 Å) for Na+ (ionic 

radius 0.98 Å)(Gy 2008; Varshneya 2010). Ion exchange has been used not only to strengthen 

the glass but also to enhance other mechanical properties of glass (Findakly, 1985) as well as 

electrical (Speranza et al., 2009), optical (Guldiren et al., 2016; Özdemir Yanık et al., 2018) and 

chemical properties (Gy 2008; Varshneya 2010; Mazzoldi et al. 2013; Sglavo 2015; Calahoo et al. 

2016; Macrelli 2017). 

The most commonly used glass compositions for ion exchange strengthening are silica 

glasses, including aluminosilicate, borosilicate and soda-lime silica which contain sufficient 

amounts of mobile alkali ions. Mobile alkaline ions for ion exchange are Na+, Li+ and K+. In 

studies, potassium sulphate (K2SO4), potassium iodide (KI), potassium chloride (KCl), sodium 

sulphate (Na2SO4), lithium chloride (LiCl), Lithium bromide (LiBr), Lithium sulphate (Li2SO4) 

salts reported as used in salt baths, but potassium nitrate (KNO3), sodium nitrate (NaNO3) and 

lithium nitrate (LiNO3) are mostly preferred for the efficiency. Ion exchange on soda-lime-

silica glasses has mainly concentrated on Na+ - K+ exchange. The ion-exchange process 

generally takes 50 to 200°C below the glass transition temperature, and the glass transition 

temperature varies according to the composition, so the process temperatures vary according 

to the determined glass transition temperatures. The temperature range for ion exchange for 

all glass compositions is 370 – 540 °C. Since the glass transition temperature of soda-lime-

silica glass is at around 550 °C, the ion exchange process can be applied at the temperatures 

below 500°C. The exchanging pair of ions directly affects the rate of interdiffusion. Thus, the 

processing time of the ion exchange varies depending on the composition of the glass used 

and the alkali ions in the salt bath. Although there are extended process times reported 
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between 30 minutes to 400 hours, the most consistently used ones are 0.5 to 24 hours 

(Varshneya, 2010b). 

 

 

Figure 2. 12: Schematic Diagrams of the Ion Exchange Process 

The main principle of ion exchange is the immersion of an alkali-containing glass into a molten 

alkali salt such as KNO3 below the annealing temperature of the glass. On heating inter-

diffusion occurs between the ions of glass and the ions from the salt as shown in Figure 2. 12. 

As the ions of the salt are larger than the ions that were originally present inside the glass, a 

high surface compressive stress is obtained. To achieve nearly 450 MPa surface compression 

a soda-lime glass should stay in a KNO3 salt bath for 16 hours at a temperature of 

approximately 475°C (Schott, no date; Corning, 2016). Hence the process is high-cost and can 

only be used economically for high-value products.  Common applications of ion-exchanged 

glasses are touch screen devices, mobile phone screens, displays, and pharmaceutical 

containers. Asahi (AGC) Dragontrail™, Corning® Gorilla® Glass and SCHOTT Xensation™ cover 

glass, Nippon Electric Glass Dinorex™, Sax-on Glass Ion-Armor™ are examples of some of the 

commercially available products. Karlsson (2012) 

The stress profile, which is formed along the cross-section of an ion exchange strengthened 

glass sample, is given in Figure 2. 13 with a representation of residual compressive stresses at 

the surface with a balancing tensile stress in the interior.  
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Figure 2. 13: Principal stress profiles for chemically strengthened flat glass viewed from the thickness cross-

section adapted from (Gy 2008) 

Chemical strengthening has some significant advantages over conventional thermal 

tempering.  

 Ion exchange can be applied to complex shapes, whereas this is not possible for 

thermal tempering.  

 Relatively thin glasses can be strengthened by ion exchange whereas the limitation is 

about 2 mm for conventional thermal tempering. 

 Most significantly greater surface compressive stresses can be obtained by chemical 

tempering. 

 There is no optical distortion on the surface of the chemically strengthened glass. 

(Corning, 2016) 

The magnitude of compressive stress for chemically strengthened glass varies according to 

glass composition, exchanging pair of ions, temperature, time. Typically, the compressive 

stress falls in the range of 100 to 400 MPa for soda-lime-silica glasses and 500 to 700 MPa for 

lithium aluminosilicate glasses. For lithium aluminosilicate glasses compressive stress values 

up to 1 GPa have been reported, with Corning Gorilla®3 glass reported as having an average 

surface compression stress of 1140 MPa and an average layer depth (or case depth) of 9.5µm 

(Varshneya, 2018). The depth of the compression layer for chemical strengthened glasses is 

also an important parameter. For ordinary products, the layer (case) depth could be 30-40 

µm whereas for the products such as aircraft cockpit windshields it should reach up to 300µm 

(Varshneya, 2006). Ion-ArmorTM (marketed by Saxon Glass Technologies) is reported to have 

surface compression values near 1 GPa and a near 1 mm case depth (Chisholm et al. 1966; 

Hammer 1970; LaCourse et al. 1989). 
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There are numerous patent applications related to chemical tempering treatment. Although 

soda-lime-silica glass (Beall et al. 1989; Varshneya 2012)  has been used in some of the patents, the 

most studied glass is alkaline aluminosilicate glass, for instance lithium aluminosilicate (Ellison 

and Gomez, 2010; Varshneya, 2012). Chemical tempering process may involve single or multiple ion 

exchange processes with salt baths which are used in different compositions as pure or as salt 

mixtures. Since chemical tempering is a process based on the mutual diffusion of ions, the 

effects of parameters such as process temperature and duration have been investigated in a 

large number of studies (Nordberg et al., 1964; Donald, 1989). Although there are various products 

and patents developed by different glass producers around the world; as the efficiency of the 

process, temperature, duration, bath composition and concentration vary according to 

different parameters such as glass composition, it is an important research subject where 

studies are continued, and new developments are recorded with each passing day. 

The composition of glass relates to ion exchange capability of glass. Chemical strengthening 

is applicable for many alkali-containing glasses, particularly alkali aluminosilicate glasses 

(Varshneya 2010). Aluminosilicate glasses are reported as having higher ion-exchange rates 

because they have greater glass transition temperatures, due to reduced numbers of non-

bridging oxygens, which enables higher temperature processing and thus more rapid ion 

exchange which aids the achievement of larger case depths (Ragoen et al., 2017). As the 

amount of Al2O3 increases in the base Na-aluminosilicate glasses, the surface compressive 

stress and the surface hardness that can be obtained therefore increases (Olcott 1963; 

Nordberg et al. 1964; Donald 1989; Gy 2008; Varshneya 2010).  

Traditionally, ion-exchange treatments have been mostly carried out using a molten salt bath. 

(Karlson et al. 2010). The salt solution which is attached to the glass surface during the 

treatment needs to be removed easily after the treatment. Therefore, the salt must have high 

solubility in water. To enhance the suitable diffusion rates the temperature of the salt or the 

salt mixture should be close to the glass softening temperature. KNO3 (potassium nitrate) is 

one of the main salts used for the exchange of potassium for sodium. K3PO4 (tripotassium 

phosphate) has also been used, however, it causes stains on the glass surfaces (Yunqiu, 

Duvigneaud and Plumat, 1986). Mixtures of KNO3 (potassium nitrate) and KCl (potassium 

chloride) are also reported to be effective (Talimian and Sglavo 2017). The condition of the salt 

bath also affects the efficiency of ion exchange. Notably, the presence of Ca and Mg in the 
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molten potassium salt results in blocking of K+/Na+ exchange. In particular even a limited 

calcium content in the salt blocks the Na+ - K+ ion exchange process because the exchange 

between Na in the glass and Ca in the salt is thermodynamically preferred (Sglavo et al. 2014; 

Hassani and Sglavo 2015; Sglavo 2015). Therefore, the salt composition should be 

uncontaminated Patschger and  Rüssel (2014).  

Hassani and Sglavo (2019) investigated the effect of ion exchange treatment of an industrially 

produced soda–lime–silica and an industrially fabricated sodium aluminosilicate glasses with 

using different NaNO3 / KNO3 ratios in their salt bath. After the treatment, they found the ion-

exchanged surfaces had higher K+ contents when the salt mixture was rich in KNO3. Although 

they pointed out Na+- K+  exchange in less Na-containing salt was more limited than the one 

in more Na-containing salt potassium rich salt, the particular diffusion coefficients were 

independent of the potassium concentration on the glass surface.   

One of the drawbacks of ion-exchange in a molten salt bath is that the treatment takes a long 

time. During the treatment, the amount of the potassium inside the salt bath decreases and 

the concentration of sodium ion increases, respectively. Thus, the effectiveness of ion 

exchange may be reduced with time. However, (Uhlmann, 1980) found that the efficiency of 

chemical strengthening remained the same up to 5% NaNO3 being present in the KNO3 salt 

bath. The other practical disadvantages of molten salt baths are that the presence of water 

can cause an explosion and the vapours coming out of the bath are corrosive by Weber (1965). 

Use of an electric field in the salt bath was first developed (Talimian et al., 2017) to increase the 

rate of the ion exchange process. Electric field assisted ion-exchange can help to improve the 

surface compression and the diffusion case depth and also takes less process time than 

commercial ion-exchange (Watanabe, 1980).  

Spraying and dipping are alternative methods to the molten salt bath method for ion 

exchange (Fabes and Uhlmann 1990; Patschger and Rüssel 2016). Spraying or using salt paste 

methods require use of mixtures of different salts or addition of another phase such as clays 

or aluminosilicates into the KNO3 Karlsson et al. (2015). A study published by Patschger and 

Rüssel (2016) presents a method in which an aerosol fed through a tube furnace is used to 

deposit some K+ ions into the surface of float glass. The performance of commercial ion-

exchange process conducted using a molten salt bath was compared by ion-exchange 

conducted by vapour deposition. Outcomes showed that the latter technique could be an 
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alternative approach to the industrial ion-exchange process. Nevertheless, further research 

needs to be done to improve the parameters such as salt adhesion and distribution on the 

surface, the pressure in the generator, temperature.  

Similarly, (Patschger et al., 2016) reported an ion exchange treatment using a potassium salt 

coating. A mixture of KNO3 – KCl – K2SO4 salts was applied by spraying on the surface of the 

glass.  The single-side ion exchange process is advantageous because it reduces the amount 

of the salt is used for ion exchange; hence the cost of the overall process decreases. However, 

as the thickness of the salt layer applied by spraying, was between 2 – 6 µm, the diffusion was 

relatively slow. Nevertheless, it was found that for both salt bath and the spraying method, 

the interdiffusion coefficients were similar to each other, meaning that same diffusion depths 

could achieve by using the spraying method (Wang 2014).  

Another method claims that applying an extra layer of a coating such as titanium oxide, helps 

to fill the microcracks on the surface after the ion exchange process (Kistler 1962; Shaisha and 

Cooper 1981; Karlsson et al. 2017). However, this method seems not to be practical for mass 

production, and does not appear to be cost-effective as it involves both ion exchange and a 

subsequent coating process.   

There are also other options of ion exchange by substitution of different monovalent ions. 

Reported diffusion rates are in the order of Ag+ > K+ > Tl+ > Rb+ > Cs+ (Hornschuh et al., 2004; 

Verné et al., 2009; Dimitrova et al., 2016; Guldiren et al., 2016). Hence Ag+ for Na+ exchange gives 

higher interdiffusion coefficients than K+ for Na+ exchange. However, the presence of silver 

leads to the colouration of the glass and thus silver ion-exchange is not usually used for 

strengthening purposes, instead being mostly used for antimicrobial property enhancement 

and colouring (Gy 2008). 

Since the ion exchange strengthening process is based on the principle of the replacement of 

smaller ions by larger ions, it is expected that a volume increase will be observed after the 

treatment. It is stated in the literature  Karlson et al. (2010) that the amount of potassium can 

be calculated by weighing measurements before and after the treatment by assuming that 

the potassium ions in the surface of the glass are displaced in 1:1 ratio with all the sodium 

ions on the surface.  
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Observations of the depth of exchange layer can usually made by SEM-EDS (Scanning Electron 

Microscopy – Energy Dispersive X-ray Spectroscopy), EPMA (Electron Probe Microanalysis) 

and also SIMS (Secondary Ion Mass Spectrometry).  Morris et al. (2004) argued that the Surface 

Ablation Cell technique which is a piece of laboratory equipment for determining the surface 

concentration profiles has been utilised to characterise surface ion exchange processes in 

float glass gives similar results to SEM-EDS, EPMA and SIMS and yet it is cheaper and easier 

to use. Accordingly, it could be a competitive method.  

2.4.1.1. Mechanical Properties of Ion-Exchanged Glasses  

Kese et al. (2004 stated the high surface compressive stress leads a surface hardness 

enhancement as well as the fracture resistance of ion-exchanged aluminosilicate glasses. 

Depending on the process variables such as glass composition, bath composition, 

temperature and time, the amount of compressive stress on the surface is related to the 

changes in hardness. Jannotti et al. (2012)) and (Garza-Méndez et al., 2007; Jannotti et al., 2011) 

determined the change in hardness before and after ion exchange using Vickers 

microhardness and nanoindentation measurements under varying periods and loads. It has 

been found that during indentation the large compressive stress also suppresses radial crack 

formation.  Changes in the hardness values of the glass samples before and after an ion-

exchange treatment have been conducted using Vickers microhardness and nanoindentation 

measurements under varying periods and loads for different studies. Increase in hardness is 

explained by the generation of compressive stress on the glass surface and also compositional 

change at the glass surface by stuffing K+ ions into the smaller sites of Na+ ions occupying Koike 

et al. (2012). (Kese, 2004) reported the difference cracking behaviour of thermally strengthened 

and chemically strengthened soda-lime-silica glasses by using indentation. After 

normalisation by the indent size, they found that the size of the residual stress field in the 

thermally tempered glass was smaller than that in the original glass. Whereas, the size in 

chemically tempered glass was larger than that in the original glass (Kese and Rowcliffe, 2003). 

Chemically tempered glass showed higher cracking resistivity, but higher brittle tendency 

than thermally tempered glass.  

Another method to examine the relationship between hardness and compressive stress 

around a Vickers indentation uses nanoindentation hardness measurements at periodic 

intervals from the indent towards the edge of the sample. As the tensile stress moved away 
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from the trace boundary (towards the areas without stress), an increase was observed in 

hardness (Kese et al., 2006).  

For the determination of the compression stress profile, there are also studies on the glass 

section where Vickers hardness measurements are taken from the surface to the centre at 

periodic intervals. The decrease in the hardness of the measured values of decreasing 

compression occurs in the measurements. It is stated that the hardness and increase in the 

elastic modulus are caused by the fact that the surface has become more resistant to 

penetration Koike et al., (2012).  

Hermansen et al., (2013)  found that the crack initiation load during Vickers indentation 

increases with the surface compressive stress of chemically tempered soda-lime float glass. 

(Morris et al., 2004; Morozumi et al., 2015) also showed as the amount of compression stress 

increases, the crack lengths are reduced. In these studies, the limit load where cracks start to 

propagate is determined by applying gradually increased indentation loads, and mechanical 

behaviour of the samples subjected to ion exchange treatment under different conditions is 

compared. Some of the authors also reported the probability of crack initiation 

measurements (Brzesowsky et al. 1998; Fett et al. 2005; Fett et al. 2007; Wen et al. 2008; Jannotti et 

al. 2014). They found that the probability of crack formation decreases with increasing 

compressive stress.   

It is known that the compressive stress on the glass surface by chemical tempering creates an 

increase in the strength of the glasses up to 10 times. In the literature, the strength 

measurements of the strengthened glass samples have been performed with three or four-

point bending, ball impact and ring-on-ring tests (Karlsson 2012; Karlsson et al. 2013; Erdem et al. 

2017; Varshneya 2018) with the most commonly used method being four-point bending (Sglavo 

et al. 2001; Sglavo and Green 2001; Abrams et al. 2003; Sglavo et al. 2004). Ring-on-ring and ball 

impact tests are biaxial, three- or four-point bending tests are uniaxial. measurement.  

2.4.1.2. Other Ion-exchange Processes 

A two-step ion exchange, or double ion exchange treatment on silicate glasses has been also 

used to produce so-called Engineered Stress Profile (ESP) glasses (Shen and Green, 2004). The 

first treatment is used to induce compressive stresses by conventional ion exchange and then 

the second ion exchange either reintroduces the first host ion or a new ion. For instance, a 
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relatively long ion exchange (from 24 to 120 hr) in a KNO3 bath was applied in the first stage 

where K+ ions are exchanged for Na+ ions followed by a second shorter treatment (30 

minutes) where a portion of the K+ ions are exchanged back for Na+ ions in a KNO3 / NaNO3 

mixed salt bath Shen and Green (2004). This combination of two-step ion-exchange can provide 

multiple cracking prior to failure which provide warning of imminent failure. 

However, Corning have patented a modified version of this process (Corning, 2012) where 

the ion exchange order is opposite from (Lee et al., 2012) for alkali aluminosilicate glasses. In 

this case in the first stage, 2.5 – 10 wt% NaNO3 was added into the KNO3 bath and the 

treatment lasted 270 minutes at 412 °C. In the second stage, samples were subjected to ion 

exchange for 120 minutes at 410 °C in pure KNO3. After the first stage, it was determined that 

the compressive stress on the glass surface decreased with the increasing NaNO3 percentage 

in the salt bath from 710 MPa to 477 MPa. After the second stage, an increase in compressive 

stresses the range of 750 - 765 MPa was determined. It is emphasised that the obtained values 

are higher compared to the compression stress values obtained after single step chemical 

tempering as shown in Figure 2. 14 (Lee, Quintal and Yan, 2012).  

 

Figure 2. 14 compressive stress versus dilution with NaNO3 of the primary (IOX) and secondary (DIOX) ion 
exchange salt baths (Beall et al., 2016) 

Although glass ceramics are more complicated than glasses due to their polycrystalline 

structure, they can also be ion exchanged (Kreski, Varshneya and Cormack, 2012; Tandia et al., 

2012; Fu and Mauro, 2013; Stavrou et al., 2014a). Ion-exchange generally takes place mostly in 

one phase, either in the crystalline phase or in residual glass. For example, lithium disilicate 
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glass ceramics have been reported to be ion exchanged strengthened mainly using Li, Na or K 

nitrates (Fischer et al. 2008; Łączka et al. 2015). Also, a relatively recent study has used Rb+ 

and Cs+ ions for ion exchange strengthening of lithium disilicate glass ceramics to improve 

flexural strength and corrosion resistance (Shan et al. 2018).  

2.4.1.3. Structural changes on ion exchange 

Investigations of the structural changes induced by an ion-exchange process in the literature 

are limited to the calculations of the change in molar volume from the optically measured 

stress or to molecular dynamic (MD) simulation calculations (Tandia et al., 2012; Kreski et al., 

2012). Molecular dynamics has been used mainly for investigations of Na+ / K+ ion-exchanged 

glasses and the equivalent potassium containing as-melted glasses in terms of changes in the 

silicon-oxygen coordination and the difference in potassium-oxygen coordination number 

Tandia et al., (2012).  

On the basis of MD (Lee et al., 1997) reported that the strain generated after ion-exchange, 

which is a key factor in achieving required compressive stress, can be recovered by performing 

a reverse ion-exchange to reinstate the original alkali ions in the glass. Therefore, they claimed 

the deformations happens during ion-exchange can be categorised as nonlinear elasticity.  

Figure 2. 15 shows the presence of a new band near ~ 950cm-1 ion-exchanged glasses which 

signifies the number of non-bridging oxygens has increased in the surface layer reported by 

Lee et al. (1997). After K+ for Na+ ion exchange of soda-lime-silica glass, a shift to the lower 

wavenumbers of the structural 1050 cm-1 peak was also observed. 
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Figure 2. 15: Infrared reflection spectra of soda-lime glass ion-exchanged at 600°C for 3 h in molten KNO3 

(Stavrou et al., 2014a) 

 

(Stavrou et al., 2014a) reported structural changes due to ion exchange of both K+ for Na+ and 

Ag+ for Na+ in aluminoborosilicate glasses by using infrared spectroscopy. They found that the 

replacement of Na+ by K+ led to a shift to the right on Q2 + Q4  2Q3 equilibrium determined 

by Fourier Transform Infrared spectroscopy (FTIR) as shown in Figure 2. 16. However, the 

replacement of Ag+ for Na+ showed an opposite shift.  

 

Figure 2. 16: Infrared range in 850 – 1250 cm-1 due to Si-O stretching vibrations of ion-exchanged 
aluminoborosilicate glasses  (Donald 1989; Varshneya 2010; Macrelli 2017) 

2.4.1.4 Ion Exchange Kinetics 

The ion exchange process is based on diffusion.  Hence heat treatment temperatures and 

times can be predicted by using the mathematics of diffusion and suitable diffusion constants. 

Chemical strengthening (Garfinkel, 1968; Varshneya, 2006) and optical waveguide production 

(Gy 2008; Varshneya 2010) are the most examined ion exchange processes. According to ion-

exchange kinetics, the transport coefficient is controlled by different manufacturing 

parameters, such as the composition of the salt and/or bath, the composition of the substrate 

glass, the size and the charge of exchanging ions, temperature, time. Hence the performance 

of the final product is influenced by those parameters,  

Diffusion is a transport phenomenon where molecules or atoms from a high concentration 

region to a low concentration region. The diffusion coefficient follows an Arrhenius equation: 

𝐷 = 𝐷0 𝑒𝑥𝑝(− 𝐸 𝑅𝑇⁄ )                                                                           Equation 2. 25 
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where D=the diffusion coefficient, D0=a temperature independent pre-exponential, 

E=activation energy for diffusion, R=gas constant, T=absolute temperature.  

Fick’s first law is used to relate the diffusion flux to the concentration:  

𝐽 = −𝐷
𝜕𝐶

𝜕𝑥
                                                                                                                            Equation 2. 26 

where J = diffusion flux, c = concentration, x = distance of a point in the interior of the sample 

from the surface, D = diffusion coefficient, i.e., an expression representing area required to 

permit diffusion of unit volume (or mass) in a unit of time at temperature, t(T). 

With the assumption that D is independent of the concentration and is a constant, the general 

form of the diffusion equation (Fick’s second law) is obtained. 

𝜕𝐶

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
) ,

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2                                                                                Equation 2. 27 

The equilibrium for ion exchange is represented by 

 𝐴𝑔𝑙𝑎𝑠𝑠 + 𝐵𝑠𝑎𝑙𝑡 ⇄  𝐵𝑔𝑙𝑎𝑠𝑠 + 𝐴𝑠𝑎𝑙𝑡                                                                    Equation 2. 28  

where A represents host mobile ion and B represents mobile ion in the molten salt. A ions 

diffuse out of the glass sample and B ions diffuse into the glass from the molten salt. (Cooper 

and Krohn 1969; Sane and Cooper 1987)  

The effective diffusion coefficient is calculated using  

𝐷 =  
𝐷𝐴𝐷𝐵

𝐷𝐴𝐶𝐴+𝐷𝐵𝐶𝐵
                                                                                 Equation 2. 29 

where Ci is the fractional concentration of alkali ion i, and Di is its self-diffusion coefficient in 

mixed-alkali glass compositions.  

The driving force of diffusion is the difference in concentration between the diffusion pair of 

ions. Thus, the more significant the difference in concentration, the higher the rate of mutual 

diffusion will be in theory. During the ion exchange process with soda-lime-silica glass, the 

sodium ions on the surface of the glass pass into the salt bath where they replace the 

potassium ions. This leads to a reduction in the potassium concentration difference between 

the bath and the glass surface which has a decelerating effect. At the same time, since the 

accumulation of potassium ions in the cavities in the surface glass structure will obstruct new 
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potassium ions that are trying to diffuse into the glass surface, the diffusion of the mobile ions 

that are decreasing in mobility towards the centre of the glass will slow down. For this reason, 

it is expected that a profile that reduces from the glass surface towards the centre is observed 

in the ion concentration that is added to the structure (Shaisha and Cooper 1981).  

The ion concentration that is added to the structure is  

𝐶𝐾(𝑥, 𝑡) =  𝐶𝑠𝐾 + (𝐶𝑂 − 𝐶𝑠𝐾) . 𝑒𝑟𝑓 (
𝑥

2.√𝐷𝐴𝐵.𝑡
)     Equation 2. 30 

Where Co is the initial concentration of occupying ions in the glass and CsK is the equilibrium 

surface concentration of occupying ions during the ion-exchange process. CsNa is the surface 

concentration of un-exchanged ions.  

That cO = 0, reduces to:  

𝐶𝐾(𝑥, 𝑡) =  𝐶𝑠𝐾 . 𝑒𝑟𝑓𝑐 (
𝑥

2.√𝐷𝐴𝐵.𝑡
)       Equation 2. 31 

Where the exchange ratio “r” is important to define the condition of maximum of surface 

concentration of occupying ions. For instance, if CsNa=0, r=1. 

𝑟 =
𝐶𝑠𝐾− 𝐶𝑂

𝐶𝑠𝐾+𝐶𝑠𝑁𝑎−𝐶𝑂
         Equation 2. 32 

2.4.1.4.1 Stress Generation by Ion Exchange 

Stress generation by ion-exchange is associated with the difference in the size of exchanging 

pair of atoms and the kinetics of diffusion. The relative volume (ΔV/V) increases due to the 

replacement of smaller ions by larger ones. Thus, stress is generated as expansion is limited 

by the constraint arising from the underling substrate (Hale, 1968). The chemical expansion 

that occurs in the glass body due to a larger alkali ion occupying an alkali site shaped by a 

smaller host alkali ion is similar to thermal expansion, and it is referred to as linear network 

dilatation coefficient (LNDC) (Gy 2008). 

LNDC can be calculated by using 

𝐵(𝑧) =  
1

3

𝜕𝑙𝑛𝑉(𝑧)

𝜕𝐶(𝑧)
                                                                            Equation 2. 33 
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where B (z) represents LNDC, V (z) is molar volume, and C (z) is the concentration of the new, 

larger ion. The stresses resulting from ion exchange as a function of z (the thickness direction) 

are given by,  

𝜎𝑧𝑧 (𝑧) =  0 

𝜎𝑥𝑥 (𝑧) =  𝜎𝑦𝑦 (𝑧)
−𝐸𝐵(𝑧)𝐶(𝑧)

(1−𝑣)
+

𝐸

𝐻(1−𝑣)
∫ 𝐵(𝑧)𝐶(𝑧)𝑑𝑧

𝐻

0
              Equation 2. 34 

 

where stress is a function in the z-direction, E is Young’s Modulus H is the thickness of the 

substrate in the direction of diffusion and v is Poisson’s ratio. (Bradshaw, 1979a)  

The stress profile can be estimated using birefringence which is based on the photoelastic 

principle (Abrams et al., 2004). There are some destructive methods established by etching 

away the surface layer and measuring the subsequent tensile stress change in the centre of 

the glass using scattered light (Sglavo et al., 2005), using transmission photoelasticity (Kishii, 

1983) or by measuring the surface curvature change Hödemann et al. (2016). Non-destructive 

methods for stress profile measurements are done by differential surface refractometry using 

guided waves (Sane and Cooper 1987; Tyagi and Varshneya 1998; Gy 2008), and a gradient 

scattered light method which provides to determine the depth profile of compressive stress 

is proposed by (Varshneya, 2018). As noted above measured stress values (100MPa to 1GPa) 

and ion-exchange case depths (20 to 1000µm) have been reported (Varshneya et al., 2015). 

Stress profile induced by ion-exchange can also be calculated theoretically using simulations 

which supports measurements of complex-shaped glasses.  (Varshneya, 2010c). 
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Figure 2. 17: Biaxial surface compression [σyy]o,t measured at room temperature as a function of time and ion 
exchange temperature of 15Na2O·10CaO·75SiO2 (mol%) glass Nordberg et al. (1964); Varshneya (1975); Sane and 

Cooper (1987); and Shen et al. 2003) 

2.4.1.4.2 Stress Relaxation 

At temperatures approaching the glass transition temperature viscoelastic or structural 

relaxation may occur on the glass surface. On glass surfaces subject to relaxation, the 

concentration profile is unchanged, while the maximum tensile stress moves to a point below 

the surface, depending on the amount of relaxation in the glass (Tyagi and Varshneya 1998). For 

this reason, it is essential to determine the ion exchange parameters that differ in the 

different types and composition of the glass in the chemical tempering process. 

Stress relaxation in ion exchange has been investigated by Ragoen et al. (2018). They found that 

after the introduction of the larger ions into the glass; the network restructures to create new 

sites for the upcoming larger ions. Stress relaxation affects both the stress profile and the final 

strength of ion-exchanged glasses. As the ion exchange time increases the depth of the 

compressive layer will increase, however the final stress will be reduced (Ragoen et al., 2018). 

Kilinc (2016) reported about the effect of network-modifying cations in the stress relaxation 

process. They claimed that despite the stress relaxation process, the potassium ion 

environment in the ion-exchanged glass is not the same as the one in sodium potassium as 

melted glass (Varshneya 2010).  
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2.5. Summary of Literature 
Glass is transparent, reasonably rigid, despite providing strength it is brittle too.  Glass breaks 

under tension, not in compression. Surface flaws limit the strength of glasses. Different 

techniques have been used to increase the strength as summarized in Table 2. 1. Chemical 

tempering or ion-exchange strengthening is based on exchanging a small ion for larger ion in 

the surface of a glass, therefore introducing surface compression. The efficiency of the ion-

exchange process depends on different parameters such as duration, temperature, salt bath 

composition and concentration, glass composition. Therefore, the research related to ion-

exchange strengthening is still popular, new developments needs to be done.   

The literature provides different aspects of ion exchange strengthening mostly focused on 

potassium – sodium and sodium – lithium exchange. There are not any data of ion exchange 

strengthening focused on caesium – potassium exchange. There are a few studies including 

both K+ - Na+ ion-exchanged and as melted sodium – potassium silicate glasses which were 

done mostly using MD simulations. However, those studies are mostly done on 

aluminosilicate glasses.  

During the literature investigations, no source was found that includes and compares these 

characterisation steps all at the same time, as done in this thesis. Therefore, the comparative 

interpretation of the mechanical and structural properties examined from various 

perspectives as a result of the experiments is thought to be a study with a unique value in the 

literature.  
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Chapter 3. Methodology 

3.1 Introduction  
In the following, first the processes of glass melting for as-melted glass specimens are 

explained. Secondly, the ion exchange procedure is explained. Then the background 

information and the methods of measurement techniques are given. Structural property 

measurements were undertaken using Raman Spectroscopy and Fourier Transform Infrared 

Spectroscopy. Other measurement techniques used include density measurements, 

compositional analysis by X-Ray fluorescence and Scanning Electron Microscopy (SEM) and 

Energy Dispersive X-Ray Spectroscopy (EDS). Finally, measurement techniques of mechanical 

properties such as hardness, toughness, and moduli were also undertaken.   

3.2. Glass Compositions 
The nominal glass composition was 72SiO2·13.5Na2O.10CaO·3MgO·1.5Al2O3 (mol %). This is 

the same as the base composition studied by (Nunzio et al. 2004; Gy 2008).  In addition soda 

potassia-soda–lime–silica glasses with compositions 72SiO2·(13.5– 

z)Na2O·zK2O.10CaO·3MgO·1.5Al2O3 (mol %)  where z = 0, 2.7, 5.4, 8.1, 10.8 and 13.5 were also 

prepared for comparison with ion-exchanged samples. Lithia-soda-lime-silica glasses were 

also produced based on the same initial soda-lime-silica glass composition 72SiO2·(13.5 – 

z)Na2O·zLi2O.10CaO·3MgO·1.5Al2O3 (mol %)  where z = 0, 2.7, 5.4, 8.1, 9.0. If z exceeded 

9mol%, it was found that the lithium glasses started to crystallize.  

SiO2 (99.5%), Na2CO3 (99.1%), CaCO3 (99.3%), K2CO3 (99.5%), Li2CO3 (99.4%) (all from 

Glassworks Services), Na2SO4 (sodium sulphate, ≥ 99.0%) (from Acros Organics), 

4MgCO3·Mg(OH)2·5H2O (≥ 99.0%) and Al(OH)3 (≥ 99.0%) (both from Fisher Scientific) were 

mixed to produce the glass batches. Batches to produce 300 g of glass were melted in 

platinum crucibles at a temperature 1450°C. The first hour of the melting process was to allow 

batch reactions to go to completion. For the following four hours the melt was stirred by a 

platinum stirrer. After melting and fining, the glasses were cast into a block shape using 

preheated steel moulds. All the blocks annealed for one hour, at around 500°C to 560°C 

depending on the glass transition temperature and then cooled down to room temperature 

by 1°C/min.  

Pieces were sectioned into square shape slides approximately 2mm×35mm×35mm using 

Secotom-50 tabletop cut-off machine with a water-cooled diamond blade for further analysis. 
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All the broad faces of the square slide were successively ground using SiC 400/600/800/1200 

grits under running water and then polished by 6 μm, 3 μm and 1μm diamond suspensions to 

obtain a mirror-like finish. All polished samples cleaned with isopropanol on both sides and 

dried by compressed air. Subsequently these samples were re-annealed by heating to the 

annealing temperature at 1°C/min, holding for one hour and then cooling down to room 

temperature at a rate of 1°C/min to remove any residual stresses arising from the cutting, 

grinding and polishing. A polariscope was used to check that the residual stresses had been 

removed by the re-annealing. 

3.3. Ion Exchange Procedure 
As mentioned in the literature review, ion exchange is typically conducted by using a molten 

salt bath containing the alkali cations. The methods using coatings or pastes are less popular 

for mechanical applications. Coatings or pastes are usually used in optical modifications by 

ion exchange (Patschger, Marek; Rüssel, 2016). However, in this study ion exchange treatments 

only taken by applying the salt paste on the glass specimen developed by heat treatment 

below the glass transition.   

For initial ion exchange experiments, soda-lime-silica microscope slides 0.7 mm× 35 mm×7.5 

mm in size (Academy Science Limited) with the nominal composition shown in Table 3.1 were 

used.  

Glass code SiO2 Na2O K2O CaO MgO Al2O3 SO3 

microscope 
slide 

72.69 (73) 14.87 (14) 0.36 (0) 5.93 (7) 4.42 (4) 1.56 (2) 0.15(0) 

Table 3. 1: Analysed glass compositions (mol %); XRF data normalised to 100 mol% 

Samples were sectioned using a water-cooled diamond blade on a Secotom-50 cutting 

machine. The laboratory made glasses were cut into 1.8 to 2.5 mm thick specimens. All 

specimens were cleaned using isopropanol and wiped before the ion exchange process to 

minimize contamination on the glass surface. A certain amount of salt or salt mixture mixed 

with enough distilled water to obtain a paste was applied to the surface of the glass. 

Approximately, 0.75 – 1 g of the salt or salt mixture (depending on the exchanging pair of 

ions) was applied per cm2 of the glass piece. After placing the coated glass samples into a 

stainless-steel beaker, they were treated at temperatures between 480°C to 520°C for 4 to 16 
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hours. After the treatment, remaining salt on the glass surface was washed off using water. 

Later, they were cleaned with isopropanol on both sides and dried by compressed air.  

Since the atomic weight of potassium is higher than that of sodium, an increase in sample 

weight was expected after the ion exchange process; weight change has been reported to 

quite notable after K+ - Na+ ion-exchange  (Karlsson, 2012). A digital balance of 10− 4 precision 

was used for the weight measurements of the ultrasonically cleaned samples before and after 

the ion exchange process. The amount of potassium ions added to the glass structure was the 

calculated using  

K in the glass = [(wtbefore – wtafter) / (awK – awNa)]. awK       Equation 3. 1 

where the weights before and after the wtbefore and wtafter ion exchange process, awK and awNa 

are the atomic weights of potassium and sodium, respectively. 

3.3.1. Ion Exchange Treatment 

3.4.1.1. Na/K exchange 

Sodium and potassium ions are widely used alkali metal ions for ion exchange strengthening. 

Mixture of potassium nitrate and potassium chloride salts are used. Potassium nitrate and 

potassium chloride are chosen to bind the paste on to surface and remove it easily after the 

ion exchange process (Kistler, 1962). 1 to 2 and 2 to 1 by mass salt mixtures prepared and 

applied by following the paste application procedure as explained previously. The melting 

temperature of KNO3 is 334°C, the melting temperature of KCl is 770°C; and the eutectic 

temperature for KNO3:KCl is 320°C(Ferraro 2002; Cornel et al. 2012). The ion-exchange 

treatment is conducted at 420°C, 450°C and 480°C at various times from 1 hour to 12 hours.  

3.4.1.2. Li/Na exchange 

Na+ (ionic radius 0.98 Å) for Li+ (ionic radius 0.68 Å) ion exchange was expected to be more 

efficient than exchanging K+ (ionic radius 1.33 Å) for Na+ (ionic radius 0.98 Å) as mentioned 

already in the literature review (Colomban, 2003; Wang et al., 2011). As the diameter difference 

between the exchanging pair of ions becomes smaller, the displacement movement is also 

facilitated. Since the lithium-sodium mutual diffusion coefficient is greater than the 

coefficient of the standed potassium, a greater diffusion layer depth can be obtained at lower 

temperatures and shorter times during the chemical strengthening of lithium-containing 

glasses with sodium. In this way, the risk of viscoelastic or structural relaxation is minimized. 
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8.1 % lithium containing soda-lime-silica glass is used for Li/Na ion exchange.  The treatment 

is conducted at 400°C and 450°C for 12 hours.  

3.4.1.3. K/Cs exchange  

Due to the larger size of Cs+ (ionic radius 1.67 Å) the diffusion is relatively slow and takes 

longer time so exchanging of Cs+ for K+ is relatively harder than Na/K exchange.  The K/Cs 

ion-exchange treatment is conducted at 450°C and 480°C for 12 hours. 

3.1.4.4. Na/Cs exchange  

Again, the exchange of larger size Cs+ the diffusion is expected to be slow. However, Na/Cs 

ion exchanged still conducted at 480°C for 12 and 24 hours. 

3.1.4.5. Ca/Ba exchange 

KNO3 and Ba(NO3)2 mixture is applied as a salt paste expecting both Na/K and Ca/Ba exchange 

at the same time. The treatment is done at 520°C for 8 hours.  

3.5. Structural Property Measurements 

3.5.1. Raman Spectroscopy 

Raman spectroscopy is a technique which utilises the inelastic scattering the incident light. 

When a light quantum or a photon hits a molecule, light can either be scattered elastically or 

inelastically, the latter giving rise to a frequency shift. The vibrational energy transitions that 

can arise and which give rise to fundamental modes of vibrations are shown in Figure 3. 1. 

Rayleigh scattering accounts for the majority of interactions that occur, however, there is a 

small amount of light that undergoes Raman scattering and is transferred from the excitation 

frequency (laser) to the vibrations of the bonds in the sample (Colomban, 2003; Wang et al., 

2011) resulting in scattering of quanta with energy v0 – vvib or v0 + vvib, (Stokes and anti-Stokes 

scattering, respectively). 
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Figure 3. 1: An energy level diagram showing transitions equivalent to IR absorption, Raman, and Rayleigh 
scattering 

Raman Spectroscopy is a useful technique to gain insight into the structure of glass. It is a 

complementary technique to infrared spectroscopy. Raman spectra of silicate glasses 

generally contain bands in 10 - 1500 cm-1 region. There are four main regions: the boson 

region (10 – 250 cm-1), the low-frequency region (250 – 700 cm-1), the medium frequency 

region (700 -850 cm-1) and the high-frequency region (850 – 1300 cm-1) (Wang et al., 2011). The 

850 – 1300 cm-1 high-frequency region is assigned to the Si–O stretching vibrations of [SiO4] 

structural units with different Qn units giving rise to different frequency shifts (see table 3.1). 

Wavenumber 

(cm-1) 
Vibration Modes Reference 

580 

600 

700-850 

850-1300 

Si–O0 rocking motions in fully polymerized SiO2 (Q4) units, isolated SiO4 

Si–O–Si bending vibration in depolymerized structural units 

Si–O–Si symmetric stretching of bridging oxygen between tetrahedra 

Si–O0 and Si–O- stretching vibration of Qn with different n (n=0,1,2,3,4) 

 

(Wang et al., 2011) 

(Wang et al., 2011) 

(Colomban, 2003; 

Wang et al., 2011) 

(Eckert, 2015) 

Table 3. 1. Band frequencies and corresponding vibration modes of Raman spectra of silicate glass (Gervais et 

al. 1987) 

In this study, Raman spectroscopy is used to determine the effect of ion exchange on 

structural modifications and to observe structural differences on the equivalent potassium 

and lithium-containing as-melted glasses. Taking advantage of the relationship between the 

Si-O bond length, Si-O-Si bond angle, and Raman shifts. Raman spectroscopy was performed 
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on bulk samples, using a Renishaw inVia Raman Spectrometer scanned by a green laser (514.5 

nm, 20 mW) from 0 to 1500 cm-1 by 10 accumulations. Calibration was undertaken using a 

silicon wafer, beforehand for each measurement. The raw Raman data were analysed using 

OriginPro and Fityk. First, the raw data were smoothed via Wire 3.4 software and 

deconvoluted, then compared to each other.    

3.5.2. Fourier Transform Infrared Spectroscopy (FTIR)  

FTIR (Fourier transform infrared spectroscopy) is a non-destructive technique that can be 

used to obtain chemical information about the materials especially chemical bonding. The 

system is shown in Figure 3. 2. There are mirrors; one of them is fixed, the other moves on 

the axis perpendicular to its plane constantly. Between the mirrors, there is a beamsplitter 

which partially transmits and reflects the incoming beam. IR radiation goes through the 

sample, and some of the infrared radiation is absorbed by the sample; some of it is passed 

through resulting in a wavelength spectrum. Fourier transform instrument is capable of 

measuring all wavelengths at once, and a transmittance or absorbance spectrum can be 

produced. (Agarwal and Tomozawa 1995)  

 

Figure 3. 2: Schematic of the essential features of a Reflectance Fourier transform infrared spectrometer 

Fourier transform infrared spectroscopy (FTIR) is sensitive to the local structure of silicate 

glasses, which helps to define how the Si-O-Si vibrational mode changes and thus details 

about the structure of glass can be inferred from the resultant infrared spectroscopy data.  

The fundamental silica and silicate structural bands appear from 1500 to 400 cm-1 regions of 

the IR reflection spectra. The infrared spectra of silica and silica glasses generally contain 

three characteristic bands which are localized at around 450, 750 and 1000 cm-1. The 450 cm-

1 and 1000 cm-1 bands correspond to stretching and bending modes, respectively. Whereas 
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750 cm-1 includes bending mode of bridging oxygen perpendicular to Si-Si axis and within Si-

O-Si plane (Agarwal and Tomozawa, 1995). The structural band near 1100 cm-1 which represents 

Si – O – Si bridged stretching is usually dominant.  The band at 950 cm-1 represents Si – O non-

bridging stretching for soda-lime-silica glasses (Agarwal and Tomozawa, 1995). 

Overall due to their different selection rules, FTIR and Raman Spectroscopies are 

complementary techniques.  

 

Type of Glass Bond locations of the vibrational 
bands (cm-1) 

Reference 

As-received soda-lime silicate glass 1056 _ 765 460 (Simon and  McMahon 1952) 

As-polished soda-lime silicate glass 

Vitreous Silica 

Vitreous Silica 

Sodium Calcium Silicate Glass 

Soda Lime Glass 

Fused Silica  

Na2O – 1.41 SiO2 Glass 

20%Na2O – 80%SiO2 

20%Li2O – 80%SiO2 

Sodium Calcium Silicate Glass  

Ag+ - Na+ ion-exchanged glass  

1122 

1100 

1271 

1211 

1080 

1087 

1040 

1100 

1100 

1201 

1194 

_ 

_ 

1125 

1071 

952 

_ 

925 

1000 

950 

1069 

1057 

785 

_ 

_ 

_ 

_ 

815 

_ 

780 

780 

763 

762 

477 

_ 

_ 

_ 

_ 

475 

_ 

480 

480 

473 

466 

(X. Zhou et al. 1990) 

(X. Zhou et al. 1990) 

(Varma, Kothari and Tewari, 2009) 

(Ferraro and Manghnani, 1972) 

(Domine & Piriou 1983) 

(Macdonald et al., 2000) 

(Macdonald et al., 2000) 

(Sharaf, Condrate and Ahmed, 

1991) 

(Sharaf, Condrate and Ahmed, 

1991) 

(Park, J.W. ; Chen, 1980) 

(Park, J.W. ; Chen, 1980) 

Table 3. 2: Summary of FTIR bond locations of the vibrational bands of different types of glasses 

     

Wavenumb
er (cm-1) 

Assignment Vibration Reference 

1050 Si-O-Si Stretching mode involving bridged oxygens (Husung and Doremus, 1990) 

950 

1065 

 

970 

770 

 

460 

Si-O- 

Si-O-Si 

 

Si-O- 

Si-O-Si 

 

Stretching mode of non-bridging oxygens 

Antisymmetric stretching of bridging oxygens within 

the tetrahedra 

Stretching mode of non-bridging oxygens 

Symmetric stretching of bridging oxygens between 

tetrahedra 

Bending modes 

(Husung and Doremus, 1990) 

(Husung and Doremus, 1990) 

 

(Husung and Doremus, 1990) 

(Sharaf, Condrate and Ahmed, 

1991) 
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950 

 

470 

1070 

760 

450 

980 

1060 

 

Si-O-Si and 

O-Si-O 

Si-O- 

 

O-Si-O 

Si-O- 

Si-O- 

Si-O-Si 

Si-O- 

Si-O- 

Stretching modes involving nonbridging 

Oxygens 

 

Bending modes 

Stretching mode involving bridged oxygens 

Stretching mode that involve bridging oxygens 

Bending 

Stretching modes of Si atoms 

Stretching modes of Si atoms 

 

(Sharaf, Condrate and Ahmed, 

1991) 

(Sharaf, Condrate and Ahmed, 

1991) 

 

(Sharaf, Condrate and Ahmed, 

1991) 

(Burns, Brack and Risen, 1991) 

(Burns, Brack and Risen, 1991) 

(Burns, Brack and Risen, 1991) 

Evans and Charles (1976)  

Ponton and Rawlings (1989) 

    

Table 3. 3: Summary of FTIR peak assignments of silicate glasses 

In this study, FTIR spectroscopy is used to determine the effect of ion exchange on the glass 

structure and to observe structural differences in the equivalent potassium and lithium-

containing as-melted glasses. FTIR spectroscopy was performed on bulk samples, the range 

400 to 4000 cm-1 using a Perkin Elmer Frontier Fourier transform infrared spectrometer 

instrument. Prior to measurement background scanning was undertaken collecting data of on 

IR reference material. The acquisition was performed with 4 scans, and a resolution of 4 cm-1 

was performed. Transmittance data were collected after which peaks assigned different 

bonds were using data in the literature. FTIR bond locations of the vibrational bands of 

different types of glasses and peak assignments of silicate glasses are summarised in Table 3. 

2 and Table 3. 3, respectively.  

3.6. Chemical and Physical Measurements 

3.6.1. Density 

The density of fabricated glasses was measured with an electronic densimeter based on 

Archimedes’ principle using deionised water as the immersion medium. The mass of a glass 

specimen in air and in deionised water was weighed as m1 and m2, respectively. Thus, VA is 

the volume of glass, which is equal to the volume change of deionised water ΔVW when the 

glass is completely immersed is obtained by Equation 3.2.   

𝑉𝐴 =  𝛥𝑉𝑊 = 𝛥𝑚𝑊 𝜌𝑊 = (𝑚1 − 𝑚2) 𝜌𝑊⁄⁄                                                Equation 3. 2 
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where ρW is the density of deionised water which is known at a given temperature. Therefore, the 

density of glass (ρ) can be calculated by Equation 3.3.  

𝜌 =  𝑚1 𝑉𝐴⁄ =  𝜌𝑊𝑚1 (𝑚1− 𝑚2)⁄          Equation 3. 3  

Density measurements were assessed as being accurate to 0.001 g/cm-3. Each glass sample 

was measured for five times; error bars were determined using standard deviation from five 

times repeated measurements.  

3.6.2. Differential Thermal Analysis (DSC – TGA) 

The glass transition temperatures (Tg) measurement of the produced glasses was obtained 

using differential thermal analysis (Perkin Elmer STA 8000).  As a reference material alumina 

was used to determine the difference in temperature (ΔT) at a constant heating rate. Particle 

size of the powder samples were < 75 µm. Powder samples were heated up to 1000°C at a 

heating rate of 10°C/min, then cooled down to room temperature at the same rate, followed 

by another heating again up to 1000°C at 10°C/min. The glass transition temperatures were 

obtained from the second heating curve using in-built Pyris software on DTA instrument as 

shown in Figure 3. 3.   

 

Figure 3. 3: DSG -TGA analysis of 72SiO2·13.5Na2O.10CaO·3MgO·1.5Al2O3 glass 
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3.6.3. Compositional Analysis by X-Ray Fluorescence 

The compositional analysis of the as-melted glasses was measured by XRF (X-ray 

fluorescence). Polished bulk samples were undertaken using PanAnalytical Zetium XRF 

instrument. The analysis was run in a vacuum with each sample being cleaned using 

isopropanol to prevent any contamination. As a reference a certified soda lime silica glass is 

used. Results were taken from XRF compositional analysis were semi-quantitative and can be 

used only as a guide to compositions. Estimated experimental errors are ±1 wt. % for SiO2; 

±0.5 wt. % for major oxides which may range between 1.5 - 15 wt. %; and ±0.3 wt. % for minor 

oxides where the content of each was less than 1.5 wt. %. XRF is incapable of detecting any 

elements lighter than boron; hence lithium content was not measured directly.  

3.6.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy 

(EDS)  

EDS is a relatively efficient method regarding geometry and analytics of the detector. 

However, sometimes the energy resolution of the peaks is poor. Sample preparation for SEM 

especially for glass samples needs care. Cold mounted glass samples need to get gentle 

grinding and polishing. Since glass is a non-conductive material carbon coating and silver 

paste were essential for SEM imaging to prevent any charging. The analysis was examined 

using an XL – 30S FEG scanning electron microscope (SEM) with and Energy Dispersive X-Ray 

(EDS) capability. The chemical compositions of selected ion-exchanged strengthened glasses 

and as-melted glasses were analysed using line EDS during SEM examination. The analysis was 

carried out semi-quantitatively.  

3.7. Mechanical Property Measurements 

3.7.1. Vickers Hardness 

Hardness measurements of bulk glasses were assessed using Vickers indentation. The 

polished glass surfaces with a standard load of 9.81 N for 15 seconds using a Durascan Micro 

Hardness Measurement Instrument. The number of indentations made on each specimen 

was ~10. The hardness was calculated using 

𝐻𝑣 = 1.8555
𝑃

𝑑2
                                                                                                    Equation 3. 4 

where P is indentation load in kg, and d is the average diagonal length of the indents. The 

hardness values were calculated from averages of the 10 readings.  
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Vickers indentation was also used to measure the crack resistance of ion-exchange 

strengthened glasses. The glass specimens were indented by a Vickers diamond indenter with 

a 15 s loading time and the radial cracks which were appeared on the corners of the indented 

shape were counted. At least twenty indentations were made for each applied load, and the 

following range of loads (2.94, 4.9, 9.8, 24.5 and 49 N) was used. The probability of crack 

initiation was obtained by a fraction of the number of corners with the cracks to the total 

number of the corners of indentations accordingly to Figure 3. 4. As the applied load 

increases, the percentage of crack initiation increases from 0% (no crack appears at any of 

the indent corners) to 100% (cracks appear at all of the indent corners). 

 

 

Figure 3. 4: Probability of crack initiation (Simultaneous chemical vapour deposition and thermal strengthening 
of glass – Sundberg et al) Effect of densification on crack initiation under Vickers indentation test, 2010 

 

3.7.2. Indentation Toughness  

The indentation fracture toughness measurement of as-melted glasses was measured directly 

after Vickers indentations made five different loads (2.94, 4.9, 9.8, 24.5 and 49 N). After each 

indent, the length of the median-radial cracks originating from the corners was measured. 

Then indentation fracture toughness assessed using 

𝐾𝐼𝑐 =  
0.0824𝑃

𝑐3/2                                                                                                                    Equation 3. 5 

where P is the load in (N) and c is the half crack length, and the constant 0.0824 was 

proposed by (Kilinc, 2016)and supported by Karlsson et al. (2010). 
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3.7.3. Nanoindentation 

Nanoindentation measurements were carried out to understand how the ion exchange 

strengthening affects the near surface hardness and elastic modulus of the surfaces under 

study. 

Nanoindentation is a type of indentation method in which the penetration depth is measured 

in nanometres (10-9 m) instead of microns (10-6 m) or millimetres (10-3 m). Besides the scale 

of the measurement, nanoindentation does not produce a direct measurement of the contact 

area between the specimen and the indenter, unlike conventional indentation techniques. 

Since measuring the area of contact is not convenient for nanoindentation tests, it based on 

obtaining elastic modulus and hardness of a calibration material from load and displacement 

measurements to determine how the shape of the tip varies with depth.  Spherical Indenter, 

Vickers indenter, Berkovich indenter, cube corner indenter are the indenter types used for 

nanoindentation testing. A three sided Berkovich indenter is used for brittle materials such as 

glass and ceramics. The tip radius of a typical Berkovich indenter is 50-100 nm which increases 

up to 200 nm by use (Fischer-Cripps, 2011). 

The most widely used method is Oliver and Pharr's method which was first introduced in 1992 

to determine hardness and elastic modulus from load-displacement data.  In 2003 the method 

improved and extended to be used for wider applications (Oliver and Pharr, 1992; Oliver and 

Pharr, 2004).  

 

Figure 3. 5: A schematic representation of load versus indenter displacement data for an indentation experiment. (Oliver 
and Pharr, 1992) 
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Force and depth of penetration are recorded during the load which is applied for 5 seconds 

from zero to maximum, 5 seconds dwell and 5 seconds from maximum back to zero.  As the 

emphasis was to obtain data in the indentation depth range of 0 to 100 nm, low depth 

calibration was carried out before doing nanoindentation on samples. The basic analysis 

followed the method of Oliver and Pharr (1992), but the calibration function was obtained as 

an equivalent radius, rc, following the procedure suggested by Tadjiev et al., (2010) which was 

designed for shallow depth calibration. Using this procedure calibration runs on fused silica 

were undertaken, which involved producing multiple arrays of 10×10 indents with a standard 

loading scheme. Hardness was evaluated from the load-displacement data by using Equation 

3.6.  

             𝐻 =  
𝑃𝑚𝑎𝑥

𝐴𝑚𝑎𝑥
=  

𝑃𝑚𝑎𝑥

𝜋𝑟𝑐
2                                                                                                                   Equation 3. 6 

                                                              

Pmax = the maximum load during an indentation and Amax = the corresponding tip contact area. 

The unloading stiffness, S, determined by the Oliver and Pharr method and was used to 

calculate the reduced modulus of the samples using 

𝐸𝑟 =  
𝑆

2.1 𝑟𝑐
                                                                                                             Equation 3. 7 

3.7.4. Strength Measurements 

Strength measurements consist of applying increasing the stress on a definitely shaped 

sample until failure occurs. Conveniently, strength is measured by using a 3-point bending 

test, or preferably, 4-point bending test as shown in Figure 3. 6. Strengths measured using 

these tests also which are adjustable to several temperatures and environmental conditions.  

These can also be called as modulus known modulus of rupture (MOR) (Varshneya, 2006). 

For the 4-point bending test,  

𝜎 =  
(𝐹 2) [(𝐿1− 𝐿2) 2⁄ ]ℎ/2⁄

𝑏 ℎ3/12
                                                                                         Equation 3. 8 
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Figure 3. 6: Schematic diagram of four-point bending  

3.7.5. Fracture Toughness 

Fracture toughness measurements of lab-made glasses were made using the SCF method with 

controlled defect introduced via Knoop indentation according to the BS-EN ISO-18756: 2005 

standard. The Knoop indentation load to introduce a controlled crack on the surface was 

19.61 N which is a maximum value on Durascan Micro Hardness Measurement Instrument. 

The samples were cut into rectangular bars of approximately 3.5 × 4.0 × 46 mm cut from bulk 

glass specimen and ground to 600-grit finish. In order to prevent possible notch tip blunting, 

samples were annealed, prior to introducing the Knoop indentation at the centre of the 46 × 

4.0 mm face. The semi-elliptical crack formation was acceptable for all series of glasses by the 

defect introduced using 19.61 N Knoop indentation load Karlsson et al., (2015). A four-point 

bend fixture was mounted on a CSIC small tensometer was used. The articulating rollers of 

the four-point bend fixture was used with the inner and the outer span set to 20 mm and 40 

mm. In order to minimize environmental effects during testing, the pre-crack was filled with 

silicone oil. The characterization of various types of cracks for different fracture toughness 

measurements obtained from Nikon Eclipse LV150 microscope. An example of a semi-

elliptical crack formed after bending an ‘as-indented’ glass specimen as shown in Figure 3. 7.  
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Figure 3. 7: Example of semi-elliptical crack formed after bending an ‘as-indented’ glass specimen (Images obtained from 
Nikon Eclipse LV150 microscope)  

3.7.5. Elastic Moduli 
Elastic moduli of as-melted glass specimens were measured using an Olympus Epoch 6000, ultrasonic 

pulse echo instrument.  The longitudinal (VL) and the transverse (VT) velocities were measured using 

20 MHz and 5 MHz transducers, respectively. Glycerol and a shear coupling gel were used as 

appropriate to obtain a proper contact between the surface and the transducers.  

The wave velocity (V) of the material under test can be calculated as follows. 

𝑉 =  
2𝑙

𝑡
          Equation 3. 9 

where l is the thickness of testing material. 

The Shear modulus, G, was obtained using 

𝐺 =  𝜌𝑉𝑇
2           Equation 3. 10 

where ρ is density, and VT is longitudinal velocity. The Young’s modulus, E, was obtained 

using 

𝐸 =  𝜌𝑉𝑇
2 (3𝑉𝐿

2−4𝑉𝑇
2)

(𝑉𝐿
2−𝑉𝑇

2)
         Equation 3. 11 

To minimise the cumulative error, Poisson’s ratio ( v ) and bulk modulus (K) were also 

obtained from the wave velocities using 
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𝑣 =  
(𝑉𝐿

2−2𝑉𝑇
2)

2(𝑉𝐿
2−𝑉𝑇

2)
             Equation 3. 12 

And  

𝐾 =  𝜌
3𝑉𝐿

2−4𝑉𝑇
2

3
        Equation 3. 13 
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Chapter 4. Results and Discussion 

4.1. Introduction  
This chapter has three main subsections apart from this introduction. Section 4.2 covers the 

experimental results obtained on the K+ for Na+, Na+ for Li+ and Cs+ for K+ ion-exchanged 

glasses. Section 4.3 includes the results obtained on the equivalent potassium containing 

glasses. Finally, section 4.4 covers the experimental results obtained on the lithium-

containing glasses. This chapter also discusses the mechanical and structural properties of 

ion-exchanged glasses produced in this work. Relevant literature on soda-lime-silica- glasses 

and ion-exchanged glasses are used in the discussion for comparison of the results of this 

study. 

4.2. Ion-Exchanged Glasses 

4.2.1. Na/K exchange in soda-lime-silica glasses 

It is essential to understand the structural changes that led to developed mechanical 

properties of ion-exchanged glasses. First of all, there was no visible change in the surface the 

ion-exchanged soda-lime-silica glass slides. Thus, the glass slides were still transparent after 

the ion exchange treatment, and no colour change was observed, as expected.  

The depth profile characterised by line EDX on SEM. Annealing causes the K+ ions to diffuse 

further into the bulk glass, as shown in Figure 4. 1 which shows the atomic percentages of Na+ 

and K+ ions as a function of cross-sectional depth. Black and red dots indicate the sodium 

concentration in the ion-exchanged glass and reannealed ion-exchanged glass, respectively. 

Blue and green dots indicate the potassium concentration in the ion-exchanged glass and 

reannealed ion-exchanged glass, respectively. Purple dots show the potassium amount in the 

original glass composition according to the XRF results (see Table 3. 1). However, the EDS 

results in Figure 4. 1 indicates that the potassium amount is above 1 %. This issue is most 

probably related to the EDS calibration. Overall, it can be seen that K+ concentration is 

decreasing from near surface to bulk, while Na+ concentration is increasing from near surface 

to bulk. On annealing the rate of decrease in K+ concentration with depth is slightly smaller 

than for the ion exchanged glass, indicating increased potassium diffusion to greater depths.   
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Figure 4. 1: EDS measured Na and K contents of soda-lime-silica glass ion exchanged at 480°C for 12 

hrs in a 2:1 KNO3: KCl mixture and ion-exchanged at 480°C for 12 hrs in a 2:1 KNO3: KCl mixture and 

then reannealed  

It is known that the penetration depth is affected by the temperature, process time and the 

concentration dependent interdiffusion coefficient of the alkali ions (Gy 2008). The potassium 

ion diffusion depth is greater than 15-20 µm according to the SEM/EDS results. Patschger and 

Rüssel (2016) using Atomic Absorption Spectroscopy, and a Surface Ablation Cell reported an 

approximately 40 µm diffusion depth for K+ after heat treatment at 500°C for 10 h using single 

side ion exchange. Guldiren et al., (2016) also reported 40 µm diffusion depth for K+ for ion 

exchange in a molten salt at 425°C for 16h. Thus, the data here is in line with reported 

penetration depths for single-side ion exchange.  

Other approaches to potassium ion-exchange have reported similar diffusion depths. For 

instance, (Sharaf et al. 1991; Agarwal and Tomozawa 1995; Lee et al. 1997; Varma et al. 2009) found 

up to a 10 µm penetration depth of K2O on ion-exchanged soda lime silica glasses treated at 

450±60°C and 2 to 6 hr by using in-line vapour deposition method. (Agarwal, Davis and 

Tomozawa, 1995; Varma, Kothari and Tewari, 2009) reported up to a 28 µm diffusion depth of 

potassium following a spray-technique producing 6 µm thick salt layer and up to 30 hours of 

treatment time. Thus, the penetration depth is dependent on the composition of the glass, 

ion exchange time, temperature and the properties of the salt. Therefore, the comparison 

should be made considering all parameters.  
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Both Raman spectroscopy and FTIR showed that replacement of alkali ions induces structural 

changes in the glass network. Infrared reflection spectra from ion-exchanged samples 

produced by using different weight percentage mixtures of potassium nitrate and potassium 

chloride salts are shown in Figure 4. 2 The ion-exchanged samples all exhibit a new peak near 

~ 950 cm-1. This new peak is assigned to the Si – O stretching modes involving nonbridging 

oxygens and suggests that there is an increase in the number of nonbridging oxygen 

concentration in the surface layer, as reported by several authors  (Park and Chen, 1980; Agarwal 

and Tomozawa, 1995; Varma et al., 2009). 

To investigate this further the ion-exchanged specimens were also reannealed at 540°C for 1 

hour to observe whether the new peak near ~ 950cm-1 is a consequence of the compositional 

change or relates to the stresses in the material itself. Figure 4. 3 shows the reflectance 

spectra of an ion-exchanged specimen produced using a 1:2 KNO3: KCl mixed salt paste at 

480°C for 12 hrs and a reannealed specimen of the same ion-exchanged glass. Similarly, Figure 

4. 4 shows the reflectance spectra of an ion-exchanged specimen produced using a 2:1 KNO3: 

KCl mixed salt paste at 480°C for 12 hrs and reannealed specimen of the same ion-exchanged 

glass. Both figures show that after reannealing the new peak near ~950 cm-1 remains, 

however the intensity declines. Hence, it is concluded that this structural peak is linked to the 

K+ for Na+ ion-exchange process. Furthermore, there are some changes in the peak at ~470 

cm-1 which shifts to lower wavenumbers on ion exchange; the shift is the same for different 

weight percentage mixtures of potassium nitrate and potassium chloride salts. The band 

~470cm-1 is associated with O-Si-O bending modes. Agarwal and Tomozawa  (1997) After 

reannealing the position of this peak remains the same for the different weight percentage 

mixtures of potassium nitrate and potassium chloride salts. However, the intensity declines 

similar to the peak near ~950cm-1. The peak ~760cm-1, which is associated with Si – O 

stretching modes that involve bridging oxygens,  also shifts to lower wavenumbers.  
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Figure 4. 2: Infrared reflection spectra of K+ for Na+ ion-exchanged soda-lime-silica glass at 480°C for 12 hrs in 
1:2 KNO3: KCl, 2:1 KNO3: KCl mixtures 

 

Figure 4. 3: Infrared reflection spectra of K+ for Na+ ion-exchanged soda-lime-silica glass at 480°C for 12 hrs in 
1:2 KNO3: KCl mixtures and reannealed 1:2 KNO3: KCl ion-exchanged specimens 
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Figure 4. 4: Infrared reflection spectra of K+ for Na+ ion-exchanged soda-lime-silica glass at 480°C for 12 hrs in 
2:1 KNO3: KCl mixtures and reannealed 2:1 KNO3: KCl ion-exchanged specimens 

Furthermore, after K+ for Na+ ion exchange of soda-lime-silica glass there is a shift to lower 

wavenumbers of the 1050 cm-1 peak which is assigned to the symmetrical stretching modes 

of Si – O – Si i.e. modes involving bridging oxygens (Sharaf et al., 1991; Wang, 1997). According 

to (Sharaf et al., 1991), the structural changes in silica glass which are measurable by infrared 

spectroscopy by observing a structural shift in Si – O stretching band depend on the fictive 

temperature and the hydrostatic compressive stress. They reported a shift towards to lower 

frequencies on the IR reflection band position of ion-implanted and irradiated silica fibre 

glasses compared to same silica fibre samples heat-treated in the temperature range of 950 

to 1400°C.   

The overall experimentally observed band locations of the vibrational bands present are 

summarised in Table 4.  1. 

Type of Glass 
Bond locations of the vibrational bands 

(cm-1) 

Untreated glass 1059  762 471 

Ion exchanged glass (2:1 KNO3:KCl mix) 1055 979 751 463 

Ion exchanged glass (2:1 KNO3:KCl mix) reannealed 1051 980 754 463 

Ion exchanged glass (1:2 KNO3:KCl mix) 1055 992 755 463 
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Ion exchanged glass (1:2 KNO3:KCl mix) reannealed 1052 990 757 463 

Table 4.  1: Experimentally observed bond locations of the vibrational bands (cm-1) (errors are equal to ±1 for 
each value) 

Karlsson (2012) suggested mixing salts in his thesis, where he reported on a single side in-line 

ion exchange method using vapour deposition. Considering the melting temperature of KCl 

(770°C) is notably higher than the melting temperature of KNO3 (334°C), KCl helps the salt 

paste to remain on the surface of the glass for longer during the process, as the mixture 

remains solids at high temperatures hence the KNO3 rich paste mixture (2:1 KNO3: KCl) gives 

a sharper peak around 950 cm-1 than the KCl rich paste mixture (1:2 KNO3: KCl). In the 

literature, annealing after ion exchange has been used to obtain silver nanoclusters to 

produce waveguides in the silver ion-exchanged glasses Özdemir Yanık et al. (2018). Ag+ - Na+ 

ion-exchanged glasses are reported to have noticeable structural band shifts towards to lower 

wavenumbers in reflectance spectra, but, the structural bands shift to higher wavenumbers 

for the same glasses after heat treatment Leboeuf et al. (2013). However, in the current study 

infrared reflectance spectra for reannealed K+ - Na+ ion-exchanged glasses presented band 

shifts still in the same direction to those observed for the K+ - Na+ ion-exchanged glasses. This 

disagreement might be because annealing tends to be at lower temperatures than those used 

for heat treatment to form nanocrystals. Also, the exchanging pair of ions is different and 

after heat treatment silver ions form nanoparticles. Furthermore, the covalent character of 

the Ag - O bond is greater than that of the Na - O bond which causes the force constant for Si 

- O to be lower for Ag – Si – O (NBO) than for Na – Si – O (NBO). (Gy 2008) also suggested a 

structural change after Ag+ for Na+ ion-exchange showing that the structural peak shifted in 

the direction of the lower wavenumbers for the experimentally obtained FTIR reflectance 

data.  
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Figure 4. 5: Infrared reflection spectra of K+ for Na+ ion-exchanged soda-lime-silica glass at 480°C for 0.5 hr to 

12 hrs in 2:1 KNO3: KCl mixture 

Infrared reflection spectra with increasing K+ for Na+ ion-exchange times are shown in Figure 

4. 5. The effect of occupying K+ ions on the glass structure is visible on 9 and 12 hrs at 480°C. 

Most clearly, K+ by Na+ ion-exchanged soda-lime-silica glasses exhibit a structural band shift 

as well as resulting in a new peak near ~ 950cm-1. (Quaranta et al., 2012; Stavrou et al., 2014a; 

Calahoo, Zwanziger and Butler, 2016) reported on FTIR reflectance spectra of Na+ - K+ ion-

exchanged glasses, showing an increase of glass rigidity by polymerisation and an expansion 

around 1000 cm-1 which increases with the ion-exchange time. As the ion exchange process 

time increases, Q4 units decreases while Q3 and Q2 units increase. These changes are 

correlated to the structural modification of the glass strengthened by the ion-exchange 

process. Additionally, the infrared reflection peak shift of K+ by Na+ ion-exchanged soda-lime-

silica glass at 480°C for 0.5 hr to 12 hrs is shown in Figure 4. 6. It can be seen that 6 hrs, 9 hrs, 

and 12 hrs ion exchange times result in an equal maximum shift. It is known that the 

penetration depth is affected by the temperature, process time and the self-diffusion 

coefficient of the alkali metal (Terakado et al. 2016; Calahoo et al. 2016). 
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Figure 4. 6: Infrared reflection peak shift of K+ by Na+ ion-exchanged soda-lime-silica glass at 480°C for 0.5 hr to 
12 hrs in 2:1 KNO3: KCl mixture (errors ~ ±1 for each value) 

Since the atomic weight of potassium ion is greater than that of the sodium ion, it is expected 

to increase the sample weight after the ion-exchange process. Figure 4. 7 shows the effect of 

increasing process temperature and time on the mass increase in the samples. As expected, 

both an increased temperature and a constant temperature with increased ion exchange time 

increases sample weight.  

 

Figure 4. 7: Calculated potassium content divided by area for different temperature and times of ion-exchanged 

samples (errors ~ ±0.01 for each value) 
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Raman spectroscopy has been used for the investigations of ion-exchanged glasses to observe 

the change in the topological structure (Furukawa et al. 1981; P. McMillan, 1984). Depth profile 

analysis of ion-exchanged layers can also be studied by Raman Spectroscopy (Wojdyr, 2010). 

Raman spectra collected at increasing time from K+ by Na+ ion-exchanged soda-lime-silica 

glass surfaces are shown in Figure 4. 8. The spectra have been normalized to the intensity of 

the high-frequency band, for instance the relative height of the low-frequency band to the 

high-frequency band is changing. In Figure 4. 9 the high-frequency region of the spectra is 

shown to indicate how the shifts differ with changing ion exchange time. Increase in potassia 

concentration with the loss of sodium results in some notable changes in the low-frequency 

region of the Raman spectra. The total intensity of the main single low-frequency band 

increases as the Na+ - K+ ion exchange time increased.  There are also changes in band shape 

between 200 cm-1 and 400 cm-1 can be seen in the difference spectra shown in  

Figure 4. 10. Modification in the low-frequency band indicates changes in Qn species as the 

band is assigned to vibrations of the Si-O-Si bridging oxygens (P. McMillan, 1984). 

 

Figure 4. 8: Raman intensity full spectra of K+ by Na+ ion-exchanged soda-lime-silica glass at 480°C for 0.5 hr to 
12 hrs in 2:1 KNO3: KCl mixture 
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Figure 4. 9: High-Frequency region of Raman spectra of K+ by Na+ ion-exchanged soda-lime-silica glass at 480°C 
for 0.5 hr to 12 hrs in 2:1 KNO3: KCl mixture 

 

Figure 4. 10: Differences in Raman Intensity (substrate – ion exchanged glasses by different times) 
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et al., 2014b; Calahoo, 2016a), respectively. In the medium frequency region (700 – 850 cm-1) 

the single peak between 790 – 800 cm-1 is assigned to antisymmetric Si motion in a cage or 

identified as highly depolarized (Brawer and White, 1975; Matson et al. 1983; McMillan, 1984). In 

the high-frequency region (850 – 1200 cm-1) the four peaks at 964, 1039, 1093 and 1146 cm-

1 have been assigned to Si – O- stretches of Q2, Q4, Q3 and Q3’ (that is, Q3 with two different 

second-neighbour environments) units, respectively (Calahoo 2016).  

 

Figure 4. 11: Deconvolution of the Raman spectra of non-ion exchanged soda lime silica glass 

 

Figure 4. 12: Deconvolution of the Raman spectra of ion exchanged soda lime silica glass 
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Figure 4. 13: Area of Qn species of ion-exchanged and non-ion-exchanged glass specimens 

Figure 4. 13 shows the fraction of Qn species. Q4 is slightly reduced, Q2 slightly increased, to 

observe the change in Q3 and Q3’ the data plotted together on the right-hand side which 

shows a slight increase on the overall Q3.  Therefore, reduction in connectivity is observed as 

a direct consequence of ion exchange treatment. Also, the equilibrium of  𝑄2 + 𝑄4 ⇔ 2𝑄3 

shifts to the right after ion exchange treatment. This also agrees with the study published by 

(Varshneya, 2010b) whereas they worked on ion-exchange of sodium aluminosilicate glasses.   

For the high-frequency bands, the Raman shift is a function of internal Si-O bond length, a 

higher wavenumber relates to a shorter Si-O bond. It has been seen to shift to lower 

wavenumber with increased alkali content (Varshneya, 2010b). 
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Figure 4. 14: Full Raman depth profile spectra of K+ by Na+ ion-exchanged soda-lime-silica glass at 480°C for 12 
hrs in 2:1 KNO3: KCl mixture 

Some additional analysis was done to get more information on the changes with increasing 

diffusion depth. The Raman spectra collected at increasing depths from Na+ - K+ ion-

exchanged glass surface is shown in Figure 4. 14. These spectra are increasingly noisy the 

further into the sample the laser spot is focussed. It can be seen that the high-frequency peak 

position shifts slightly to the lower wavenumbers with increasing depth. This is in a good 

agreement with the literature showing that high-frequency peak positions move to higher 

wavenumbers with a decreasing depth into a bulk glass for the chemically strengthened 

Corning Gorilla Glass 3 (Terakado et al. 2016). 

Flexural strengths measured using a 4-point bending test for the 2:1 KNO3: KCl paste and 1:2 

KNO3: KCl paste is shown in Figure 4. 15. The ion-exchange conducted on microscope slides 

at 480°C for 12 hours. The KNO3 rich paste resulted in higher strengths than the KCl rich paste. 

This reflects a greater degree of ion exchange which is in line with the growth observed in the 

peak at 1050cm-1 in the FTIR results as well as the 1100cm-1 shift to the higher wavenumbers 

in the Raman Spectra.  
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Figure 4. 15: Flexural Strength of non-ion-exchanged soda-lime glass, ion-exchanged at 480°C for 12 hrs using 
the 2:1 KNO3: KCl and the 1:2 KNO3: KCl pastes 

Thus, for these ion exchanged soda-lime-silica glass specimens an increase in strength of 3.2 

to 3.8 times was observed; larger strength values have been obtained commercially by ion 

exchange using a salt bath, and it has been stated that the strength of soda-lime-silica glass 

can be increased by 3 to 4 times by ion-exchange (Varshneya, 2001; Gy, 2008a), especially for 

ion exchange times of up to 16 hours (Gervais et al.1987). However, the current results are 

higher than the results which were reported by Patschger and Rüssel (2016) for spray ion-

exchanged samples, when an increase of 2.8 times was obtained. They are also larger than 

the results obtained in the single-side ion exchange strengthening study published by Karlsson 

et al. (2013) in which ring-on-ring flexural strength measurements showed an increase 

between 1.85 to 2.15 times.  

Because of the sample preparation requirements of the 4 – point bending test, the tests could 

not run on the ion-exchanged as melted specimens. However, nanoindentation experiments 

took place for as melted soda-lime-silica glass and the same glass used as a substrate for K+ 

by Na+ ion – exchange performed at 480°C for 12 hours by using 1:2 KNO3: KCl mixture paste. 

It is shown that the values of hardness improved by 10 percent, whereas the reduced modulus 

only slightly increased, as seen in Figure 4. 16.  
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Figure 4. 16: Experimentally obtained Reduced Modulus and Hardness plot of an as melted soda-lime-silica 
glass and the same soda-lime-silica glass ion-exchanged at 480°C for 12 hrs in a 2:1 KNO3: KCl mixture 

The experimental results indicate that the K+ - Na+ ion-exchange resulted in both 

strengthening and structural changes.  As diffusion becomes more rapid with increasing 

temperature, the structural relaxation in the glass also increases and this will relieve some of 

the stresses that are induced with ion-exchange (Varshneya 2010a). The increase in hardness 

at different temperatures can be explained by the compression of the network structure by 

placing the potassium ions in the surface structure into the relatively small regions of the 

sodium ions in the glass structure as indicated in the literature (Macdonald et al., 2000). The 

resulting compressive compression creates stress and increases the resistance of the surface 

to indentation (Kese and Rowcliffe 2003; Garza-Méndez et al., 2007; Jannotti et al., 2011; 

Jannotti et al., 2012; Karlsson 2012; Shim et al., 2015). 

4.2.2. Li/Na exchange in lithia-lime-silica glasses 

Na+ for Li+ ion-exchanged lithia-lime-silica glasses also exhibited no visible change on the glass 

surface with the glass specimens still being transparent after the ion exchange treatment. In 

this case no new bands are seen in the infrared reflectance spectra on ion exchange (see 

figure 4.15), however there is a small shift in the band at ~1100 cm-1 to lower wavenumbers 

with increasing ion exchange temperature (see figure 4.16). Hence the same type of shift is 

seen when smaller alkali ions are replaced by larger ones both when K+ replaces Na+ and when 

Na+ replaces Li+.  
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Figure 4. 17: Infrared reflection spectra of Na+ for Li+ ion-exchanged lithium-lime silica glass 

 

 

Figure 4. 18: Infrared reflection peak shift for Na+ for Li+ ion-exchanged lithium-lime silica glass 

 

 

4.2.3. K/Cs exchange in potassium silica glasses 

Ion exchange of K+ by Cs+ was conducted on as melted potassia-lime-silica glasses. 

Unfortunately, the process resulted in severe cracks in the ion-exchanged specimens. Thus, 

no further mechanical characterisation of these specimens could be undertaken. The infrared 
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reflectance spectra of these specimens as seen in Figure 4. 19 and a new peak at around 

950cm-1 is also observed from Cs+ - K+ ion-exchange at 480°C for 12 hours. Also, the main peak 

at around 1050cm-1 is also shifted slightly to the higher wavenumbers similar to observations 

made on Na+- K+ ion-exchanged glasses.  

 

Figure 4. 19: Infrared reflection spectra of Cs+ for K+ ion-exchanged potassium-lime silica glass 

 

4.2.4. Na/Cs exchange in soda-lime-silica glasses 

Cs+ ion-exchange was also conducted on as melted soda-lime-silica glass. Again, severe 

cracking of the ion-exchanged samples was observed, so no further mechanical 

characterisation was conducted. The infrared reflectance spectra of Cs+ for Na+ ion-exchanged 

specimens at 480°C for 12 and 24 hours in comparison to the spectra for soda-lime-silica glass 

are shown in Figure 4. 20. After 12 hours of ion-exchange treatment nothing was observed in 

the infrared reflectance spectra. The main peak at around 1060cm-1 is also shifted slightly to 

lower wavenumbers as shown in Figure 4. 21 which is the opposite direction to that observed 

on Na+- K+ ion-exchanged glasses. Also, a new peak at around 950cm-1 is also observed for Cs+ 

- Na+ ion-exchange at 480°C for 24 hours. However, this peak is not observed for Cs+ - Na+ ion-

exchange at 480°C for 12 hours.  
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Figure 4. 20: Infrared reflection spectra of Cs+ for Na+ ion-exchanged soda-lime silica glass 

 

 

Figure 4. 21: Infrared reflection spectra of Cs+ for Na+ ion-exchanged soda-lime silica glass 

4.2.5. Ca/Ba exchange in soda-lime-silica glasses 

Severe cracking observed and no change was observed on FTIR reflectance and Raman 

Spectroscopy, so no results could be reported and no further mechanical characterization was 

conducted.  
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4.2.6. Summary of Ion-Exchange Strengthening Results 

The results of experimental work discovered that compared to non-ion-exchanged reference 

soda-lime-silica glass samples, Na+ - K+ ion exchanged glasses provide increased surface 

microhardness / nanohardness, and strength. It can be suggested that the ion – exchange 

process involving the use salt paste was most successfully achieved on Na+ - K+ exchanged 

ones by using 1:2 KCl: KNO3 salt mixture at 480°C for 12 hours ion exchange treatment. 

Alterations in the in the Na+ - K+ ion – exchanged glasses are observed to be associated with 

structural band changes in the silica network structure. Structural alteration occurred near 

the surface as a result of ion-exchange investigated by infrared reflectance spectra is shown 

in  

Figure 4. 22 for different ions. Although, some shifts observed on the exchanges of Na+, K+, 

Cs+ ions the most noticeable ones, the most changing glass was Na – K ion exchanged glass.       

 

Figure 4. 22: Infrared spectra of İon-exchanged glasses 

SEM/EDX results suggest that potassium ion diffusion depth profile is higher than 15-20 µm 

for samples treated at 480°C for 12 hours using 1:2 KCl: KNO3 salt mixture.  

Raman spectra is also shown structural changes accordingly. Raman Spectra of the Na+ - K+ 

ion – exchanged glasses is shown a shift of the ~1100 cm-1 band to higher wavenumbers as 

the ion-exchange temperature increases. 
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4.3. Potassium Containing Glasses 

XRD of the as melted soda-lime-silica glass which is a typical spectrum proves that no 

crystallisation occurred (see Figure 4. 23). 

 

Figure 4. 23: XRD pattern of as melted soda-lime-silica glass 

The glass compositions analysed by XRF are given in Table 4. 1. Experimentally, there is no 

problem with using XRF to confirm the chemical composition of the 72SiO2· (13.5– z) 

Na2O·zK2O.10CaO·3MgO·1.5Al2O3 (mol %) glass series. However, the presence of Li2O in the 

72SiO2·(13.5 – z)Na2O·zLi2O.10CaO·3MgO·1.5Al2O3 (mol %)  glasses lead to significant 

uncertainties as XRF is not capable of detecting elements lighter than boron.  So, only the 

chemical composition of the potassium glass series is given in Table 4. 1.  

Glass 
code 

SiO2 Na2O K2O CaO MgO Al2O3 SO3 

1 72.95 (72) 14.18 (13.5) 0 (0) 9.24 (10) 2.20 (3) 1.42 (1.5) 0 (0) 

2 73.08 (72) 11.59 (10.8) 2.35 (2.7) 9.40 (10) 2.10 (3) 1.46 (1.5) 0 (0) 

3 73.60 (72) 8.91 (8.1) 4.61 (5.4) 9.11 (10) 2.07 (3) 1.42 (1.5) 0.27 (0) 

4 74.64 (72) 5.57 (5.4) 6.98 (8.1) 8.99 (10) 2.10 (3) 1.46 (1.5) 0.25 (0) 

5 74.05 (72) 3.12 (2.7) 9.46 (10.8) 9.56 (10) 2.12 (3) 1.29 (1.5) 0.23 (0) 

6 75.32 (72) 0.19 (0) 11.76 (13.5) 9.09 (10) 2.12 (3) 1.51 (1.5) 0 (0) 

Table 4. 1: Analysed glass compositions (mol %); XRF data normalised to 100 mol%. Batched compositions were 
72SiO2· (13.5– z) Na2O·zK2O.10CaO·3MgO·1.5Al2O3 (mol %) where z = 0, 2.7, 5.4, 8.1, 10.8 for the potassium 

series.                 
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The infrared reflectance spectra of the 5 potassium containing glasses is shown in Figure 4. 

24 and show a slight shift of the band at ~1100 cm1 towards lower frequencies which 

corresponds to the localized vibration of sodium and potassium cations (Hanna and Su, 1964). 

This suggests the addition of alkali metal ions in the glass leads new vibrational modes which 

represent Si – O – [alkali] bending and stretching modes (Park and Chen 1980; Agarwal and 

Tomozawa 1995; Varma et al. 2009). Three reflection bands were observed near 460, 760 and 

1060 cm-1 for all six glasses. 

It is reported that the presence of sodium leads an expansion at low frequency and a division 

of the Si – O stretching mode into two sections which arises for a particular range of 

compositions. This division assigned to the vibration of SiO4 tetrahedra that contain non-

bridging oxygens linked to sodium or potassium (Furukawa et al. 1981; McMillan, 1984). The low 

frequency infrared band at around 460 cm-1 which corresponds to stretching modes shows a 

shift towards to lower wavenumbers with increasing potassium content. The high frequency 

band at around 1060 cm-1 which corresponds bending modes also shifts towards to lower 

wavenumbers. The size of the shift is shown in more detail in Figure 4. 25 represents a shift 

to the lower wavenumbers of the 1050 cm-1 peak which assigned symmetrical stretching 

modes of Si-O-Si, bridging oxygens (Calahoo, 2016b). 

 

Figure 4. 24: Infrared reflection spectra of the potassium containing glass series  
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Figure 4. 25: Infrared reflection peak position as a function of relative alkali ratio  

Raman spectra collected on the as melted potassia-soda-lime-silica glass surfaces are 

smoothed and shown in Figure 4. 26. Increasing potassia concentration and reducing soda 

content resulted in significant changes in the low frequency region of the Raman spectra. For 

spectra normalised by the height of the band at ~1100 cm-1 the relative intensity of the main 

single low frequency band increased as the potassium / sodium molar ratios increased.  

Modification in the low frequency band indicates vibrations of the Si-O-Si bridging oxygens in 

Qn species gives rise to the band in this region (Tandia et al., 2012). Addition of potassia also 

results in substantial changes in the high frequency region. In Figure 4. 27 the high-frequency 

region spectra are smoothed to show the shifts more clearly. In Figure 4. 28 the high-

frequency region of the spectra is shown to more clearly indicate how the shifts differ with 

changing composition. Clearly as the amount of potassium in the bulk glass increases the high-

frequency band shifts to higher wavenumbers.  This is in agreement with the Raman spectra 

obtained on the ion-exchanged glasses. Hence both potassium containing soda-lime-silica 

glasses and potassium containing ion-exchanged glasses exhibit the same type of Raman 

shifts. In the case of the high-frequency band shifts this consists of a shift to higher 

wavenumbers which corresponds to a shorter Si-O bond (Fluegel et al., 2008). The average 

coordination of oxygen around potassium is expected to be larger than the average 

coordination of oxygen around sodium Fluegel et al. (2008).  
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Figure 4. 26: Raman spectra of the potassium containing glass series 

 

Figure 4. 27 : High Frequency band of Raman spectra of the potassium containing glass series 
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Figure 4. 28: Raman Spectroscopy High-Frequency Band Shift as a function of relative alkali ratio  

 

Figure 4. 29: Area of Qn species of 72SiO2· (13.5– z) Na2O·zK2O.10CaO·3MgO·1.5Al2O3 (mol %) glasses as a 
function of relative K2O ratio for the high-frequency peaks which corresponds to Si-O bond lengths  

Deconvolution carried out to observe Qn species for the high-frequency peaks as a function 

of potassium oxide ratio presented in Figure 4. 29. Based on the literature the fitted peaks 

are assigned as follows: Q2 (around 960 cm-1), Q4 (around 1040 cm-1), Q3 (around 1080 cm-1) 

and Q3’ (around 1120 cm-1). Despite discrepancies as the amount of K2O increases in the glass 

composition the numbers of Q2 units does not change within the error band, and Q1 units do 
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not show big changes. The shifts both slightly increase as the potassium oxide amount 

increases, which represents a decrease in connectivity.  

 

Figure 4. 30: Experimentally obtained density and molar volume plot as a function of relative alkali ratio 

 

Figure 4. 30 presents the experimentally obtained density versus molar volume data as a 

function of the amount of potassium oxide in the glass composition. A similar plot is shown 

in Figure 4. 31 where the density is calculated using a model proposed by Fluegel Charles 

(1966). Despite the inconsistency at the lowest soda content between the experimentally 

measured density and the density obtained from the Tandia et al., (2012) the molar volume 

data agree with molar volume increasing with increasing potassium content. Whereas the 

density decreases with the increase the amount of potassium oxide in the glass. Tandia et al., 

(2012 reported that in binary alkali-silicate glasses the replacement of SiO2 by K2O increased 

molar volume of the glass whereas replacement of SiO2 by Na2O decreases the molar volume. 

Compositional dependence of molar volume of as melted glasses and ion-exchanged glasses 

in the xNa2O.(20-x)K2O.80SiO2 (mol%) system is reported by (Fluegel et al., 2008). (Sehgal and 

Ito, 1998, 1999; Kingston and Hand, 2000a; Dériano et al., 2004; Hand and Tadjiev, 2010; Kilinc and 

Hand, 2015)) suggested that the molar volume of as melted glasses decreases as the Na2O 

increases in the glass composition. Also, the molar volume of the ion-exchanged glasses is 

reported to be dependent on the initial glass composition and the molar volume value is less 
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than as-melted potassium glass due to the LNDC.  (see 2.4.1.4.1 Stress Generation by Ion 

Exchange)  

 

Figure 4. 31: density and molar volume plot as a function of relative alkali ratio obtained from the model by 
Kingston and Hand (2000) 

 

Figure 4. 32 represents the Vickers hardness and the indentation fracture toughness of the 

potassium glass series as a function of relative K2O ratio. Both the Vickers hardness and the 

fracture toughness values are in the same trend according to relative potassium oxide ratio. 

The Vickers hardness and fracture toughness values reduce with increasing potassium 

content. However, within error there is a little actual variation apart from the middle 

datapoint indentation fracture tends to go up with increasing K2O.  
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volume than the glasses with soda (Fluegel et al., 2008) suggests a decrease of brittleness due 

to a higher molar volume motivates the deformation.   

 

Figure 4. 32: Vickers hardness (HV) and fracture toughness (KIC) of the series as a function of relative alkali ratio 

Figure 4. 33 represents Reduced Modulus and the hardness of the potassium glass series, 

which obtained on Nanoindentation, as a function of relative K2O ratio. Both Reduced 

Modulus and hardness are in same trend according to potassium oxide ratio. The hardness 

and Reduced Modulus values reduce with increasing potassium content, except the 

composition 72SiO2·5.4Na2O·8.1K2O.10CaO·3MgO·1.5Al2O3 (mol %).  

 
Figure 4. 33: Experimentally obtained Reduced Modulus and Hardness plot of as melted soda-lime-silica glass 

the series as a function of relative alkali ratio 
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The relationship between fracture toughness measured by the SCF method with increasing of 

relative potassium oxide ratio is shown in Figure 4. 34. The fracture toughness increases with 

increasing potassium content in the glass composition. Due to the considerable bubble 

content of the highest potassia containing glass, the fracture toughness measurement could 

not run. Melting for longer hours may help to reduce the bubbles.  

 
Figure 4. 34: Fracture toughness (KIC) of the series as a function of relative alkali ratio 

Young’s Modulus of soda-lime-silica glasses decreases with increasing potassium content as 

seen in Figure 4. 35. Large cations such as potassium expand the network, however larger 

ions form comparatively weaker bonds which lower the modulus. Small cations such as 

aluminium and magnesium increase the packing density and therefore increase the modulus 

(Ray, 1974).  
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Figure 4. 35: Young’s Modulus of the series as a function of relative alkali ratio 

Whereas, Bulk Modulus of soda-lime-silica glasses decreases with increasing potassium 

content as seen in Figure 4. 36.  

 

Figure 4. 36: Bulk Modulus of the series as a function of relative alkali ratio 

 

Shear Modulus also decreases with increasing potassium content for soda-lime-silica glass 

series as seen in Figure 4. 37. 
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Figure 4. 37: Shear Modulus of the series as a function of relative alkali ratio 

 

4.4. Lithium-Containing Glasses 
Structural property assessments of lithium containing series were also conducted. Figure 4. 

38 presents the full infrared reflection spectra of lithium-soda-lime-silica glasses. The spectra 

clearly show difference between different amounts of lithium containing glasses. Three 

reflection bands were observed near 460, 760 and 1060 cm-1 for all five series of glasses. 

 

Figure 4. 38: Infrared reflection spectra of the lithium-containing glass series 
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The structural peak position is at around 1050 cm-1 which is assigned to symmetrical 

stretching modes of Si-O-Si, bridging oxygens shifts to the higher wavenumbers. For 

clarification the reflection peak shift as a function of relative alkali content plotted according 

to Na2O which is shown Figure 4. 39. As the amount of sodium oxide increases in the glass 

composition the structural peak shifts to the lower wavenumbers. This structural band shift 

on symmetrical stretching modes of Si-O-Si shows similar trend as melted potassium 

containing glass series. As the size of the relatively larger sized alkali ion amount increases in 

the glass symmetrical stretching modes of Si-O-Si, shifts to lower wavenumbers.  

Low frequency infrared band at around 460 cm-1 which corresponds stretching shows a shift 

towards to lower wavenumbers with increasing potassium content. The high frequency band 

at around 1060 cm-1 which corresponds to bending modes also shifts towards lower 

wavenumbers. 

 

Figure 4. 39: Infrared reflection peak position as a function of relative alkali ratio 

The Raman intensity spectra of lithium containing glass series are presented in Figure 4. 40. 

As the amount of lithium in the bulk glass increases the high-frequency band shifts to lower 

wavenumbers. The high frequency band shift is presented as a function of [Na2O]/([Na2O] + 

[Li2O]) ratio in Figure 4. 41 to make it comparable to the data shown previously for the 

potassium containing glasses. As the amount of relatively larger ions increases in the bulk 

glass, the high frequency band shift to the higher wavenumbers.  
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Figure 4. 40: Raman Intensity spectra of the lithium-containing glass series  

 

Figure 4. 41: Raman Spectroscopy High-Frequency Band Shift as a function of relative alkali ratio  

The molar volume of the all potassium and lithium series of glasses presented in Figure 4. 42. As the 

amount of the larger size relative alkali ion increase in the bulk glass the molar volume 

increases. Due to the limitations of the XRF method the lithia series are based on batched 

compositions whereas the potassia series were based on measured compositions.   
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Figure 4. 42: molar volume of the series as a function of relative alkali ratio  

 

The experimentally obtained density versus molar volume data as a function of the amount 

of sodium oxide in the glass composition is presented in Figure 4. 43.  A similar plot is shown 

in Figure 4. 44 where the density is calculated using a model proposed by Fluegel (Kreski et al., 

2012; Tandia et al., 2012). The data which was experimentally obtained and the data processed 

according to the model are not in agreement since the trend as such density and molar 

volume increase with increasing relative alkali ratio (Na). This could be related to mixed-alkali 

effect. 
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Figure 4. 43: experimentally obtained density and molar volume plot as a function of relative alkali ratio 

 

Figure 4. 44: density and molar volume plot as a function of relative alkali ratio obtained from the model 

 Figure 4. 45 represents the Vickers hardness and indentation fracture toughness of the 

lithium glass series as a function of relative Na2O ratio. Both the Vickers hardness and the 
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according to relative sodium oxide ratio. The Vickers hardness and fracture toughness values 

reduce with increasing sodium content. 
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Figure 4. 45: Vickers hardness (HV) and indentation fracture toughness (KIc) of the series as a function of 
relative alkali ratio 

Indentation fracture toughness of as melted lithium glass series is presented in Figure 4. 46, 

with increasing sodium content indentation fracture toughness decreases, accordingly.  

 

Figure 4. 46: Indentation fracture toughness (KIC) of the series as a function of relative alkali ratio 
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Figure 4. 47: fracture toughness (KIC) of the series as a function of relative alkali ratio 

Figure 4. 48 presents the Vickers hardness plotted as a function of relative sodium oxide 

ratio.  

 

Figure 4. 48: Vicker’s Indentation Hardness of the series as a function of relative alkali ratio 
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Figure 4. 49:  Raman Polymerization Index of the series as a function of relative alkali ratio 

 

Raman analysis of the microstructure of the glass series pointed out that Raman 
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seen in Figure 4. 49.  
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Figure 4. 50: Young’s Modulus of the series as a function of relative alkali ratio 

The bulk moduli of the lithium series glasses are presented in Figure 4. 51. As with the Young’s 

modulus the bulk modulus tends to decrease with increasing soda content.  

 

Figure 4. 51:  Bulk Modulus of the series as a function of relative alkali ratio 

Figure 4. 52 presents Shear Modulus of lithium glass also decreases with increasing sodium 
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Figure 4. 52: Shear Modulus of the series as a function of relative alkali ratio 

4.5. Structural Comparison of ion-exchanged and non-ion exchanged glasses 
Some computational studies have suggested the glass network connectivity of ion-exchanged 

glasses and as-melted bulk glasses are similar. (Park and Chen, 1980; Agarwal and Tomozawa, 
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be simply due to bigger ions being squeezed into a site previously occupied by smaller ions.  

(Jannotti et al., 2012) reported an increase in the bond distance of K – O in the ion-exchanged 

glasses.  Even though some stress relaxation occurs, the K+ environment in the ion-exchanged 

glass claimed not to be the same in as-melted Na, K – silica glasses because K+ ions occupy 

smaller sites which is not possible to achieve by melting glass with the same amount of 

potassium.  

Difference from Raman spectra for the potassium series glasses are replotted by difference is 

shown in Figure 4. 53. Changes are observed both in the low frequency region and the high 

frequency region. Also, as the amount of potassium increases in the glass the difference 

increases, especially in high frequency region. Changes in the both FTIR and Raman spectra 

with composition and with the ion exchange are showing similar trends.  

 

Figure 4. 53: Raman Intensity (soda lime silica glass – potassium series of glasses)  

Raman intensity spectra of potassium ion-exchanged glasses in different times is also 

replotted by difference to the reference substrate is shown in Figure 4. 54.  Changes observed 

both in low frequency region and high frequency region. As the duration of ion-exchange 

process increases the difference increases the most especially in high frequency region.  
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Figure 4. 54: Raman Intensity (substrate – ion exchanged glasses by different times)  

FTIR Reflectance spectra of potassium glass series is replotted by difference to the reference 

soda-lime silica glass(K=0) and is shown in Figure 4. 55.  More changes are observed as the 

amount of potassium increases in the glass.  

 

Figure 4. 55: FTIR reflectance spectra (soda lime silica glass – potassium series of glasses) 

FTIR Reflectance spectra of potassium ion-exchanged glasses at different times is also 
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observed as the duration of the ion-exchange process increases. 
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Figure 4. 56: FTIR reflectance spectra (substrate – ion exchanged glasses by different times) 

 

 

 

Following figures; Figure 4. 56, Figure 4. 57, Figure 4. 58, Figure 4. 59, Figure 4. 60, Figure 4. 
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on the laboratory-made glasses which was treated by ion-exchange. On the Reflectance 

spectra, all the structural shifts and the new feature near 950 cm-1 observed after ion 
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suggest that the same shift to the higher wavenumbers occurs in ion-exchanged laboratory-

made glasses. 
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Figure 4. 57: FTIR Reflectance Spectra of substrate and potassium ion-exchanged substrate 

 

Figure 4. 58: FTIR Reflectance Spectra of batch 72SiO2· 13.5Na2O.10CaO·3MgO·1.5Al2O3 (mol %) and potassium ion 
exchanged batch 72SiO2· 13.5Na2O.10CaO·3MgO·1.5Al2O3 (mol %) 
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Figure 4. 59: Infrared Reflectance Spectra of batch 72SiO2· 10.8 Na2O·2.7K2O.10CaO·3MgO·1.5Al2O3 (mol %) and potassium 
ion-exchanged batch 72SiO2· 10.8 Na2O·2.7K2O.10CaO·3MgO·1.5Al2O3 (mol %)   

 

Figure 4. 60: Infrared Reflectance Spectra of batch72SiO2· 8.1Na2O·5.4K2O.10CaO·3MgO·1.5Al2O3 (mol %) and potassium 
ion-exchanged batch 72SiO2· 8.1 Na2O.5.4K2O.10CaO·3MgO·1.5Al2O3 (mol %)  
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Figure 4. 61: Raman Intensity of substrate and potassium ion-exchanged substrate 

 

Figure 4. 62: Raman Intensity of batch 72SiO2· 13.5Na2O.10CaO·3MgO·1.5Al2O3 (mol %) and potassium ion-exchanged 
batch 72SiO2· 13.5Na2O.10CaO·3MgO·1.5Al2O3 (mol %)  
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Figure 4. 63: Raman intensity of batch 72SiO2· 10.8 Na2O·2.7K2O.10CaO·3MgO·1.5Al2O3 (mol %) and potassium ion 
exchanged batch 72SiO2· 10.8 Na2O·2.7K2O.10CaO·3MgO·1.5Al2O3 (mol %)   

 

Figure 4. 64: Raman Intensity of batch 72SiO2· 8.1Na2O·5.4K2O.10CaO·3MgO·1.5Al2O3 (mol %) and potassium ion 
exchanged batch 72SiO2· 8.1 Na2O.5.4K2O.10CaO·3MgO·1.5Al2O3 (mol %)  

4.6. Mechanical Property Comparison of ion-exchanged and non-ion exchanged 

glasses 

As shown in the literature survey mechanical properties especially strength varies according 

to the surface properties of glasses and the statistical distribution of flaws on the glass (Garza-

Méndez et al., 2007; Guldiren et al., 2016). Figure 4. 65 shows the percentage of crack initiation 

probability of untreated soda lime silica glass and for exchanged soda lime silica glass (K+ 

replacing Na+). The crack resistance of untreated soda lime silica glass is 1.7 whereas the ion 
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exchange glass has a crack growth resistance of 2.6 which means approximately a 53 % 

increase.  

 

Figure 4. 65: Probability of crack initiation versus Indentation Load of non-ion-exchanged and ion-exchanged 
soda-lime-silica glasses 

Ion exchange strengthening provides an increase in surface hardness and crack resistance. 

For the untreated glass specimen, lateral and radial cracking was observed to initiate at lower 

loads, and as the load increases cracks become increasingly more severe. At small 

indentation, loads crack initiation is remarkably low for ion-exchanged glasses. When the 

applied load increased step-by-step crack initiation was observed on ion-exchanged glasses 

but the length of the cracks was certainly smaller than the ones on the non-ion-exchanged 

glasses. Additionally, when reannealing takes place on ion-exchanged glasses the length of 

the cracks increased, respectively shown in Figure 4. 66.  

 

Figure 4. 66: Vickers Micro Hardness 10 indentations 9.8 N Load 15 s (50 µ) 
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An increase of approximately 10 % is observed in the hardness of the ion exchanged glass 

compared to the hardness results of untreated glasses. Similar findings have been reported 

in the literature for both ion exchanged aluminosilicate glasses (Kato et al., 2010) and soda lime 

silica glass (Kese et al., 2004).  

When the results of the ion exchange process were compared with the untreated sample, it 

was determined that the ion exchange process increased the crack formation limit load as 

indicated in the literature. However, a clear relationship has not been found between the 

crack resistance and Vickers hardness or fracture toughness Sehgal and Ito (1999). Because, 

residual stresses supress the crack initiation whereas they can cause a slight change in 

hardness.  

The crack propagation begins for ion-exchange strengthened glass specimen at lower loads 

than 9.8 N and became gradually more severe with increasing the growing load. The crack 

lengths of strengthened glasses are definitely smaller than the untreated specimens. Vickers 

indentation images for different ion-exchange process temperatures, namely 420°C, 450°C 

and 480°C all applied for 12 hrs are shown in figure 4.68. The indentation loads were started 

at 0.49 N and increased 0.98 N, 1.96 N, 1.96 N, 4.9 N and 9.8 N, respectively.  

 

Figure 4. 67: Indentation crack formation of non-ion-exchanged and ion-exchanged soda-lime-silica glasses 
images  
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The decrease in hardness values by ion exchange can be explained by increased viscoelastic 

relaxation with increasing temperature for the processes applied for a fixed time. As the 

process temperature approaches the glass transition temperature of the glass, there will be 

increased relaxation of the glass structure during the process as indicated in previous 

studies(Bradshaw, 1979b; Wright et al., 1989). With the relaxation of the glass structure, 

potassium ions can undergo local relaxation thereby allowing the potassium to be more 

readily accommodated.  

With increased relaxation the structure of the glass surface might be expected to be similar 

to the structure of a glass containing a large amount of potassium in its main composition. In 

this case, the resulting structural compression and the resulting stress amount is less. This 

relaxation process, long-term processes obtained after the hardness of the values close to 

being able to explain the behaviour Sehgal and Ito (1999). The resistance of the surface to 

indentation decreases in proportion to the relaxation. As stated in the literature, crack 

formation and crack propagation are limited and prevented by the presence of compressive 

stresses on the glass surface. Crack lengths or the size of deformed regions under the same 

load are smaller in samples with high compressive stress. Thus, the effectiveness of the 

chemical tempering process can be interpreted. When the results of the ion-exchanged 

samples were compared with the non-ion-exchanged sample, it was determined that the ion 

exchange process increased the limit load for the crack, as indicated in the literature(Sehgal 

and Ito (1999). 

The molar volume has effects on the fracture toughness of glass. For instance, according to 

Sehgal and Ito (1999) glasses with larger molar volume have higher fracture toughness; 

therefore, smaller brittleness, meaning they deform more easily.  The molar volume of the 

ion-exchanged layer cannot be measured directly. Nevertheless, it has never been reported 

except some mechanisms from simulations have been suggested. One would observe that for 

an ion-exchanged but non-relaxed system the expected molar volume could be more than 

the equivalent relaxed composition.  

4.7. Summary of the Results and Discussion 

The results of experimental work discovered that compared to non-ion-exchanged reference 

soda-lime-silica glass sample, Na+ - K+ ion exchanged glasses provide increased surface 

microhardness / nanohardness, resistance to crack formation and strength. Based on the 
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results and discussion, it can be suggested that the ion – exchange process which had taken 

place by using salt paste was most successfully achieved on Na+ - K+ exchanged ones. 

Alterations in the Na+ - K+ ion – exchanged glasses are observed to be associated with 

structural band changes in the silica network structure. The structural changes are detected 

by a structural band shift on Si – O stretching band located at around 1000-1200 cm-1 as well 

as the new structural infrared band at around 950cm-1.  Raman spectra also show structural 

changes accordingly. Raman Spectra of the Na+ - K+ ion – exchanged glasses show a shift of 

the ~1100 cm-1 band to higher wavenumbers as the ion-exchange temperature increases. 

Alterations in the Na-K ion-exchanged glasses are assumed and observed to be associated 

with the structural changes in the silica network structure which are detected by a shift in the 

Si-O stretching infrared band located at 1000-1200 cm-1.   

It has been demonstrated that an increase in strength of soda-lime-silica glass slices can be 

achieved by applying Na – K ion exchange strengthening. The average four – point bending 

strength of ion-exchange strengthened soda lime silica glasses were up to a factor of 3.8 ± 0.2 

times higher than the untreated soda lime silica glasses.  

The results of mechanical properties suggested major differences between ion-exchanged 

and as melted equivalent potassium-containing glasses. Ion – exchange process aids to 

improve mechanical properties; however, as the amount of potassium content increases in 

the glass composition, toughness, hardness, Elastic Moduli, decrease respectively. This has 

been presented by the outcomes of Nanoindentation Figure 4. 16 and Figure 4. 33.  

However, the structural peak position at around 1050 cm-1 which is assigned to symmetrical 

stretching modes of Si-O-Si, bridging oxygens shifts to lower wavenumbers, similarly on both 

potassium induced by ion exchange or added from the batch into the glass structure. The Qn 

species assignments are also reasonably in the same trend and supported that reduction in 

connectivity is observed as a direct consequence of both ion exchange treatment and the 

addition of potassium into the glass batch.  

The trends of the results of structural and mechanical property assignments of lithium-

containing as melted glasses also supported the findings of as melted potassium-containing 

glasses as well as the ion-exchanged glass specimens. 
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Chapter 5. Conclusions and Suggestions for Further Work 

5.1. Conclusions 
1. Ion exchange of different alkali ions such as Na+ for Li+, K+ for Na+, Cs+ for Na+ or K+ 

have been demonstrated using a salt paste method, although only the K+ for Na+ 

exchange yielded good products, as significant cracking was found in the Li/Na, K/Cs, 

Na/Cs samples. It has been demonstrated that an increase in strength of soda-lime-

silica glass slides can be achieved by applying Na – K ion exchange strengthening using 

a salt paste method.  

2. This Na – K ion exchange strengthening provided an increase in crack resistance. 

Compared to a reference sample, the chance of crack formation was reduced in ion-

exchange treated samples. Vickers hardness and nanoindentation hardness also 

increased. The average four – point bending strength of ion-exchange strengthened 

soda lime silica glasses were up to a factor of 3.8 ±0.2 times higher than the untreated 

soda lime silica glasses.  

3. Structural changes observed using FTIR suggested that network connectivity changes 

following ion-exchange treatment. Structural changes observed using Raman 

spectroscopy suggested that after ion-exchange treatment that the fraction of 

observed Q species slightly changed, indicating a small reduction in connectivity as a 

direct consequence of ion-exchange treatment.  

4. The structural comparison between as melted potassium containing soda-lime-silica 

glass series and sodium-potassium ion exchange strengthened glasses suggested that 

addition of potassium in the structure resulted in similar trends in both FTIR spectra 

and Raman spectra. The FTIR reflectance spectra peak at ~1050 cm1 shifted to lower 

wavenumbers with increasing potassium in the structure. However, the equivalent 

peak in the Raman spectra shifted to higher wavenumbers with increasing potassium 

in the structure. This change is claimed to be related the connectivity difference of 

sodium and potassium ions.  

5. Similar overall trends were observed in the Raman and FTIR spectra for both as melted 

soda potassia lime silica glass series and as melted soda lithia lime silica glass series.  

The FTIR reflectance spectra peak at ~1050 cm1 shifted to lower wavenumbers with 

increasing sodium in the structure. However, the equivalent peak in the Raman 

spectra shifted to higher wavenumbers with increasing sodium in the structure. This 
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indicates that the observed changes in the Raman spectra and the FTIR spectra are 

not simply due to induced residual stresses in the ion exchange process. 

6. The overall trends in mechanical properties are similar for both as melted soda 

potassia lime silicate glass series and as melted soda lithia lime silicate glass series. As 

the potassium content increases in the glass composition, toughness, hardness, elastic 

moduli all decrease; as the amount of lithium content increases in the glass 

composition, toughness, hardness, elastic moduli all increase.  

7. This work has also led to further research and development at the sponsoring 

company in terms of developing impact resistance. Preliminary pilot-scale tests have 

been done, further experiments are planned. 

5.2. Suggestions for Further Work  
 

 Although this study has clearly shown how structural and property changes differ from 

the compositional modifications inherent in ion-exchange more detailed structural 

investigation using Si-NMR is required to confirm the Q-speciation inferred from 

Raman spectroscopy and FTIR.  

 Adjustment of processing parameters to produce uncracked samples for Li-Na, K-Cs 

and Na-Cs exchange would enable a more detailed investigation of the behaviour of 

these glasses.  

 Further nanoindentation experiments to investigate the variation of the moduli and 

hardness with depth in the ion exchanged samples. These measurements should be 

coupled with EDS and Raman on cross-sections to provide both compositional and 

structural information. 

 It would also be beneficial to conduct a similar study using MD simulations to be able 

to make more precise conclusions in terms of using the same glass compositions and 

ion-exchange parameters.  
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